


ABSTRACT

The problems of optimal as well as suboptimal detection for CDMA
transmissions over an additive white Gaussian noise (AWGN) channel, have
been the focus of study in the recent past. However, CDMA transmissions
are frequently made over channels which exhibit fading and/or disperston;
hence receivers need to be designed which take into account this behaviour.

In spite of the major research effort invested in multiuser demodulation
techniques, several practical as well as theoretical open problems still exist.
Some of them are considered in more detai) in this thesis. The aim of the
thesis 1s to develop multiuser demodulation algonthms for mobile
communication systems n frequency-selective fading channels, and to
analyze their implementation complexity. The emphasis is restricted to the
uplink of an asynchronous DS-CDMA system where the users transmit in an
uncoordinated manner and are received by one centralized receiver.

The orniginal work that is undertaken for the MScEng study is the evaluation
of a multiuser receiver structure for a frequency-selective fading channel,
where there exists a steady specular path and two fading paths.
Furthermore, the effect of using selection diversity 1s investigated by
examining the bit error rate, asymptotic multiuser efficiency and near-far
resistance of the proposed detector structure. These results are confirmed
both analytically and by simulation in the thesis. An investigation is also
conducted into the application of neural networks to the problem of
multiuser detection in code division multiple access systems. The neural
network will be used as a classifier in an adaptive receiver which
incorporates an extended Kalman filter for joint amplitude and delay
estimation. Finally, some open problems for future research will be pointed
out in the thesis.

Keywords:  AWGN channel, DS-CDMA system, frequency-selective,
multiuser demodulation, asymptotic multiuser efficiency, near-far resistance,
neural network, Kalman filter.
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PREFACE

The research detailed in this thesis was carried out at the University of Natal
in the School of Electrical and Electronic Engineering. [ became involved
with CDMA research while working at the RF and Microwave department at
the previous company 1 was employed at, KENTRON. Returning to
University on a part-time basis at the beginning of 1996, had given me the
opportunity to concentrate more on academic research.

The first year of the research included mostly literature study. During this
part of the studies, I have had the pleasure of working with Prof. F Takawira
at the University of Natal on the subject of using a neural network and
extended Kalman Filter based adaptive multiuser receiver for CDMA
systems. The reader is referred to the original publication of [138] in this
regard. The subsequent years consisted of writing simulation and analytical
software, conducting extensive simulations that finally culminating in the
comptlation of this thesis. [ have had the pleasure to be involved in the
study of a subject matter that i1s very current, interesting and practical.
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Chapter 1: Introduction

The goal of wireless communications 1s to allow the user access to the
capabilities of the global network at any time without restrictions imposed
by location or mobility. Cellular systems are currently limited to voice and
low-speed data communications within areas covered by base stations.
Wider commercial applications are developing in terrestrial wireless voice
telephony and interactive data transmission between personal computers and
portable digital assistants. At present, there are over 30 million cellular
subscribers worldwide most of which use analogue techniques.

1.1. Historical Background

Cellular systems were pioneered during the 70’s by Bell Laboratories 1n the
United States and the earliest systems were called Advanced Mobile Phone
Service (AMPS). All of these “first generation” cellular systems used
analogue frequency modulation for speech transmission and frequency shift
keying for signaling. Users were separated in frequency and adjacent cells
were allocated different parts of the spectrum. This resulted in a resource
sharing mechanism known as frequency division multiple access. AMPS
cellular service has been available to the public since 1983, and there are
currently 20 million subscribers in the United States, Canada, Central and
South America and Australia.

In Europe, several (first-generation systems similar to AMPS were
established. This included Total Access Communications Systems (TACS)
in Brnitain, Spain, Austria and ltaly; Nordic Mobile Telephone (NMT) 1n
several countries, C-450 in Germany and Portugal. Similar to AMPS, these
systems were based on FDMA for speech and FSK for signaling.

Apart from the TACS system, the European Community established a digital
standard “Group Speciale Mobile” in 1982 based on time-division multiple
access (TDMA). The work from this group became known as the Global
System for Mobile Communications (GSM). The GSM system was
deployed in 1993 and has experienced spectacular growth since then.



The UK Department of Trade and Industry started an initiative which led to
assignment of 150MHz near 1.8GHz for personal communications networks
(PCN) in Europe and the choice of GSM as a standard for that application.
This system is known as DCS1800. In North America, second generation
systems based on TDMA have been proposed in order to cope with the
growing demand for mobile communications access and is known as 1S-54.
This system is able to offer triple the capacity (users per cell) of AMPS. A
complication however is that the 1S-54 standard must operate using the same
spectrum as the existing AMPS systems, resulting in a “dual-mode” digital-
analogue operation.

[n Japan, a second generation TDMA based cellular system was established
in 1991 called Personal Digital Cellular (PDC) which also offers advantages
over analogue systems in terms of increased system capacity and reduced
transmit power requirements.

From August 1995, CDMA based 1S-95 has also been in operation in
selected areas in the United States and other trial areas in non-US countries.
The 1S-95 CDMA system approach offers advantages over other digital
standards in increased capacity, reduction of the need for planning frequency
assignments to cells and the ability to accommodate different transmission
rates. It s for this reason that CDMA has been chosen as the protocol for
the 3" generation systems [6].

1.2. Multiple-access techniques

Multiple-access refers to a technique to share a common communications
channel between multiple users. When designing multiuser communication
systems, one has the option of using space, time or frequency domain
designs.

The oldest multiple-access technique is frequency-division multiple access
(FDMA). Here, each user’s signature waveform occupies its own frequency
band and the receiver can separate the user’s signals by simple bandpass
filtering. FDMA 1s a simple scheme and is applicable to both analog and
digital modulation. It is not, however, very flexible for providing variable



bit rates, which 1s an 1mportant requirement in future communication
services.

The introduction of digital modulations enabled the appearance of time-
division multiple-access (TDMA), in which each user’s transmitted signal is
l[imited to a predetermined time interval. TDMA s relatively simple to
implement and 1t 15 very flexible for providing variable bit rates. Increasing
the bit rate can be implemented by assigning to a user more transmission
intervals. However, the transmissions of all the users must be exactly
synchronized to each other.

The invention of spread-spectrum techniques for communication systems
with anti-jamming and low probability of undesired interception capabilities
lead to the idea of code-division multiple-access (CDMA). CDMA
protocols do not achieve their multiple access property by a division of the
transmissions of different users in either time or frequency. It instead
assigns to each user a different code. This code is used to transform a user’s
signal into a wideband (spread-spectrum) signal. The CDMA protocol is
classified according to the modulation method used to obtain the wideband
signal. There are four protocol types: direct-sequence CDMA, frequency
hopping CDMA, time hopping CDMA and hybrid CDMA. In direct-
sequence CDMA, the original signal 1s modulated on a carrier and then
further modulated by a binary code sequence with a bandwidth much larger
than the original bandwidth. In the frequency hopping CDMA protocols, the
wideband channel is divided into frequency bands. During the transmission
of a user's signal, the carrier frequency 1s changed periodically resulting in a
periodic change of the frequency band occupied by the user. In time hopping
CDMA protocols, a user’s signal 1s not transmitted continuously, but instead
tn short intervals. The start of each burst is decided by the code assigned to
the user. The hybrid CDMA protocols use a combination of the modulation
methods of direct sequence, frequency hopping or time hopping protocols to
obtain the wideband signal. Combining the modulation methods uses the
specific advantages that each modulation method offers.



1.3. CDMA System concepts

Section 1.3.1gives the theory on the transmission and generation of a direct-
sequence CDMA signal. This i1s followed in Section 1.3.2 by a description
of the reception of this CDMA signal.

1.3.1. DS-CDMA transmitter structure

In the DS-CDMA protocols the data signal is directly modulated by a digital
code signal. The data signal can be either an analog signal or a digital one.
In most cases, 1t will be a digital signal. In the case of a digital signal, the
data signal is directly multiplied by the code signal and the resulting signal
modulates the wideband carrier.

Wide-band
Dala —P coge » Data modulato

modulalion
T \

carrier

code generato

generator
Figure ]|
Transmitter block diagram
A block diagram of a DS-CDMA transmitter is shown in Figure 1.1. The

binary data signal modulates a RF carmmer. The modulated carrier 1s then
modulated by the code signal. This code signal consists of a number of code
bits or “chips” that can be either +1 or —1. To obtain the desired spreading
of the signal, the chip rate of the code signal must be much higher than the
data rate of the information signal. For the code modulation, various
modulation techniques can be used but usually some form of phase shift
keying (PSK) like binary phase shift keying (BPSK), differential binary
phase shift keying (D-BPSK), quadrature phase shift keying (QPSK) or
minimum shift keying (MSK) is employed.



1.3.2. CDMA receiver structure

After transmission of the signal, the receiver as shown in Figure 1.2, uses
coherent demodulation to despread the spread spectrum signal, using a
locally generated code sequence. To be able to perform the despreading
operation, the receiver must not only know the code sequence used to spread
the signal, but the codes of the received signal and the locally generated
code must also be synchronized. This synchronization must be
accomplished at the beginning of the reception and maintained until the
whole signal has been received. The synchronization/tracking block
performs this operation. After despreading, a data modulated signal results
and after demodulation the original data can be recovered.

] ]

. I Data Code Data
‘ demodulator | demodulator‘
I | | g—— |

I R I

Code .
oy Cemer || Cote
tracking \r—,/ 9 9

Figure 1.2
Recelver structure

The typical receiver consists of a bank of matched filters which are matched
to the users spreading codes. The output of the matched filter bank goes into
a detector. One of the distinguishing factors between CDMA receiver
architectures is the way the output of the matched filter bank is processed. A
number of structures have been proposed.

The first receiver structure is the simple matched filter receiver or
conventional detector. For this recetver, the outputs of the matched filter
bank are sampled at the symbol intervals and the data demodulation is
accomplished by considering the sign of the output of the respective
matched filter. This receiver will be discussed in detail in Chapter 2. At



this point, it will suffice to say that the conventional receiver is not optimal
for demodulation. This receiver suffers from the near-far problem. Strong
signals may completely bury the weak ones if the conventional receiver is
applied. Therefore, the design of the conventional CDMA systems relies on
accurate power control [5,7] to alleviate the near-far problem, and spreading
sequence design [5,8,9, 10) to reduce the cross-correlations between the
signature waveforms of the users. If the number of users i1s large, the
performance of the conventional receiver 1s poor even in the absence of the
near-far problem due to the large level of MAI. This conventional signal
separation method was originally designed for synchronous transmission
with orthogonal CDMA codes over ideal channels without multipath
propagation. However, when this method is applied to the case of
transmission over multipath channels, it is no longer optimum. This 1s due
to the fact that the general principle is to detect the one user signal of interest
and to treat all the other user -signals as noise. This method of signal
detection 1s termed single user detection. In the cellular mobile radio
systems, the nature of the interfering signals which produce multiple-access
interference (MAI) is not like noise because they are produced by other
users with known CDMA codes. Information about the CDMA codes and
channel 1impuise responses is available to both the desired and interfering
users.

To overcome this suboptimality of the single user detection approach, the a
priort knowledge about MAL has to be taken into account in the detection
process. In this way, the decision of all the data symbols of all users
becomes an interdependent process termed multi-user detection (MUD). An
altemative to the conventional receiver is to apply a receiver designed to
take the multiple-access interference into consideration, that 1s multiuser
demodulation.  The multiuser demodulation s related to co-channel
interference rejection [11]. Co-channel interference is caused by signals of
users transmitting in the same frequency band, and is usually rejected by
adaptive filtering [12,13]. This can be seen as a special case of multiuser
demodulation. A multiuser detector can also make a joint detection of the
data of all users.

MUD utilises the MAJ as redundant information which multiple access users
are sharing in a common channel. MUD principles can be divided into
interference cancellation (IC) and joint detection (JD) principles.

The idea of IC, which is closely related to decision feedback (DF) is:

- to detect part of the transmitted data symbols



- to reconstruct the contribution of these transmitted data symbols to the
compound received signal and

- to subtract this contribution from the compound received
signal

Hence, for signals not yet detected, interference 1s reduced and their signal-
to-noise ratio is improved provided that most of the previously detected data
symbols are detected correctly. Once the contnbution of these data symbols
1s cancelled, the next part of the transmitted data symbols is detected and the
contribution of this next part of the transmitted data symbols is cancetled
from the compound received signal. By this principle, the effect of intracell
interference is eliminated. However, the approach of 1C 1s not optimum, as
when detecting part of the transmitted data symbols, all the other
contributions that have not yet been cancelled, are still treated as noise.

The 1dea of JD is to detect the data symbols of all users jointly in one step,
using all the a priori knowledge about MAI. By JD, intracell interference is
elimtnated since no contribution of any user to the compound received signal
1s treated as noise. Hence, the principle of JD is optimum.

For two reasons, MUD 1s an obvious detection principle for the uplink.
Firstly, it is the task of the base station receiver to detect the data symbols of
all active users within the cell. Secondly, the knowledge required for MUD
about all user-specific CDMA codes s available at the base station. Hence,
intracell interference, which is a major component of the total interference,
can be eliminated by applying MUD to the uplink. In the case of the
downlink, at an individual mobile station receiver the spreading sequences
used for transmission from the base station to other mobile stations are not
known a priori. Furthermore, only the data symbols addressed to that
individual mobile station have to be detected. Hence, the obvious data
detection principle for the downlink is single user detection (SD). However,
the application of MUD is also conceivable for the downlink. As in the
uplink, also in the downlink MUD leads to a performance enhancement over
SD due to the elimination of intracell interference. The application of MUD
to the downlink requires that the spreading sequences of all active users are
known at each mobile station. The applied spreading sequences of all
presently active users can either be communicated from the base station to
all mobile stations or can be estimated at the mobile stations.



The detector performance improves in the order SD, IC, JD. In the same
order, the potential of interference elimination and therefore system capacity
enhancement increases. JD has the potential to perfectly combat intracell
interference, which is the main problem of CDMA. However, this
substantial improvement has to be paid for by an increased receiver
complexity.

The first publication on multiuser detection was presented by Schneider
[14], who studied the zero-forcing decorrelating detector. Later, Kashihara
[15] and Kohno et al. [16] studied multiple-access interference cancellation
receivers. Both Schneider and Kohno also suggested the use of the Viterbi
algorithm for optimal detection in asynchronous multiuser communications.
The real trigger to the increasing interest in multiuser detection was Verdu’s
work on multiuser detection [17,18], where the application of the Viterbi
algorithm for optimal maximum likelihood sequence (MLS) detection was
developed, and its performance was analyzed. Verdu showed that the
CDMA systems are neither interference nor near-far Jimited. However,
these are the actual Iimitations of the conventional single-user receiver.

Since the optimal multiuser detection 1s prohibitively complex to implement
for many practical applications, numerous suboptimal schemes have been
investigated. A review of multiuser demodulation literature will be
presented in Chapter 2. The work on multiuser receivers has demonstrated
that even suboptimal detectors with a significantly lower implementation
complexity than the optimal detector can greatly improve the detection
performance and capacity of multiuser communication systems.
Furthermore, robust detection in the presence near-far interference was
shown to be possible.

1.4. Aim and outline of the thesis

In spite of the major research effort invested in multiuser demodulation
techniques, several practical as well as theoretical open problems still exist
in the field of multiuser receivers. Some of them are considered in more
detail In this thesis. The aim of the thesis 1s to develop practical multiuser
demodulation algorithms for mobile communication systems with
frequency-selective fading channels, and to analyze their implimentation
complexity. The emphasis is restricted to the uplink of asynchronous DS-



CDMA systems where users transmit in an uncoordinated manner and are
received by one centralized receiver.

The work undertaken for this thesis 1s an extension of the work of [96,97]
where a 2-path time dispersive fading channel was considered and a receiver
structure was derived using maximal ratio combining. In this thesis, a 3-
path time dispersive fading channel 1s considered. Furthermore, selection
diversity 1s incorporated into the receiver structure.

The remainder of this chapter outlines the subsequent chapters in the thesis.

Chapter 2: The fundamentals of direct sequence spread spectrum are
introduced in this chapter. The notations and mathematical model for the
CDMA system to be utilized in the later chapters are introduced. The
relevant literature on single-user fading channels as well as on multiuser
demodulation is reviewed. Furthermore, this chapter deals with the
discussion of detector structures for the additive-white Gaussian noise
channel.

Chapter 3. This chapter deals with the theory behind fading. This
background knowledge is required for the development of the system model
for the channel for use in later chapters.

Chapter 4. This chapter deals with multiuser receiver structures for the
fading channel, which Is analogous to their counterparts for the Gaussian
channel.

Chapter 5: This chapter is the original work that has been undertaken for the
MSc study. This is the evaluation of a multiuser receiver structure for a
frequency-selective fading channel, where there exists a steady specular path
and two fading paths.

Chapter 6: This chapter is an extension of the work done in the Chapter 5.
Here the effect of selection diversity is investigated by examining the bit
error rate (BER) results. These results are confirmed both analytically and
by simulation.

Chapter 7: This chapter is based on the research conducted in [138]. The
application of neural networks to the demodulation of spread spectrum
signals is examined. The proposed multiuser detector for CDMA systems
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incorporates an extended Kalman filter and a neural network. The BER
results for this receiver are obtained and compared with those 1n [60].

Chapter 8. This chapter concludes the thesis. The results and contnbutions
of the previous chapters are summarized and discussed. Furthermore, some
open problems for future research are pointed out.

1.5. Original contributions of this thesis

A number of original contributions in the theory of MUD have been made
in this thesis. These are listed below.

A MUD, incorporating maximal ratio combining (MRC), for a three path
fading channel is derived. The BER and asymptotic multiuser efficiency
(AME) of this detector are characterised. It 1s shown that the
performance of this detector 1s good.

A MUD for selection diversity is derived. The performance of this
detector 1s characterised in terms of the BER and AME. It is shown that
the results of the analytical and simulation models for this detector are in
agreement with each other.

An adaptive MUD based on the neural] network i1s derived. The
performance of this detector 1s studied via computer simulations
showing that 1t performs favourably compared with others that have
appeared in the literature.



Chapter 2: Detectors for the AWGN channel

2.1. Introduction

The emphasis in this chapter Is on centralized multiuser detectors that
process the matched filter output to prowvide statistics for both channel
amplitude estimation and data detection in the AWGN channel.

Multiple access interference (MAI) is the factor which limits the capacity
and performance of DS-CDMA systems. The conventional detector does
not take into account the existence of MAI It follows a single-user
detection strategy in which each user 1s detected separately without regard
for others. Because of the interference among users, it will be shown in
Section 2.3. that the better detection strategy is one of multi-user detection.
Here, information about multiple users is used jointly to better detect each
individual user. It will be shown in this chapter that the utilization of
multiuser detection algorithms has the potential to provide significant
additional benefits for the DS-CDMA systems [6].

The organisation of this chapter is as follows: The CDMA system model is
discussed in Section 2.2. Single user detectors are discussed in Section 2.3
while an investigation into multiuser detectors is conducted in Section 2.4.

2.2. CDMA system model

In Section 2.2.1. the CDMA signal model is first defined mathematically. In
Section 2.2.2. the CDMA channel and receiver mode] are thereafter
mathematically defined.

2.2.1. CDMA Signal model

One needs to consider a CDMA channel that js shared by K simultaneous
users. Each user 1s assigned a signature waveform a,(t) of duration T, where
T 1s the symbol interval. A signature waveform may be expressed as [6]:
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where:

- an), 0sn<N-1} 1s a PN code sequence consisting of N chips that take
values {* |}

- p(t) is a pulse of duration T, where T, 1s the chip interval

- T 1s defined as the symbol duration

- There are N chips per symbot and T = N*T,

Assume that all K signature waveforms have unit energy per bit, hence

The cross-correlations between pairs of signature waveforms are defined as
follows:

,
P, L.(f):%-fai(r)ak (r=1)dr, wherei <k ., (2.3)
]

;
o, (1) = ;—[a‘(r)ak(r +T —1)dr, where i <k oo (2.4)
0

Note that 1 and k are the respective users.

Assuming that BPSK signaling is used, then the information sequence of the
k th user is denoted by {by(x)}, where the value of each information bit may
be = | in the x" symbol interval.

In purely asynchronous CDMA systems the data packet length are very
large. Each user activates and deactivates its terminal independently from
each other. Thus, it is not practical to assume that the whole received signal
or the matched filter output vector would be processed in a receiver. The
received signal can be processed in processing windows of length 2M+]
where M is a positive integer and the window length ts measured in symbol
durations T. The detection problem in an asynchronous channel 1s more
complicated than in a synchronous channel. In a synchronous channel, the
bits of each user are aligned in time. Detection can focus on one bit interval
independent of the others. In most realistic applications, the channel s
asynchronous and there is overlap between bits of different intervals. Any
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decision made on a particular bit ideally needs to take into account the
decisions on the two overlapping bits of each user; the decisions on these
overlapping bits must then further take into account decisions on bits that
overlap them and so on. Hence, the detection problem must optimally be
framed over the whole message. More informatton on this model will be
provided 1n Chapter 6 of this thesis.

Hence, consider the transmissibn of a block of bits of length 2M+1.
Then, the data block from the k™ user is:

The data symbols by(x), x=-M...M, may be obtained after the steps of source
and channel coding and interleaving.

The signal, before spreading, is given by [6]:
S, ()= LD A1) COS(@pt +0,) i (2.6)

where;

- E\ is the energy of the signal of user k
-y 1S the carmer frequency
- Oy 1s the phase of the signal of user k

Spreading is accomplished by the multiplying (2.6) by (2.1). Generation of
the transmitted signal has been shown in Figure 1.1 and 1t is given by:

S () = JE (DA (DB, (1) COS(Wyl +F8,) woviiiiiiiiiieiiee i (2.7)

The bandwidth expansion factor or the processing gain, is defined as:

B e R (2.8)
T, R,
where;:

- Ry 1s the data rate
- R, 1s the chip rate
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The corresponding equivalent lowpass, transmitted waveform may be
expressed as [6]

s.(n=JE, ib‘. (), (1 = XTYCOS O, vt (2.9)

x==As
where;

- Ey 1s the signal energy per bit.

The composite transmitted signal for the K users may be expressed as

s()=p s, (t—1,)

pY K
= z Zb‘ (N)JE, @ (t =XT = T,)COSE, oo (2.10)

1=-\ k=l

where:

- 1 are the transmisston delays, which satjsty the condition that O0<t,<T
for 1<k<K

This 1s the model for the multiuser transmitted signal in an asynchronous
mode. In the case of synchronous transmission, t, =0 for [ <k<K

2.2.2. CDMA channel and receiver model

The signal s, (t) is transmitted over a time-variant linear radio channel with
impulse response hy(t,t), where t© denotes the delay time, and t denotes the
absolute time. This is shown in Figure 2.1.
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Figure 2.1.
Continuous-time transmission model for multiple access

- The index k in hg(t,t) designates the link between the mobile station
transmitter k and the base station receiver.

- The delay time t 1s the delay in excess of the minimum propagation time
between transmitter k and receiver, and characterizes the time spread
introduced by multipath propagation when a Dirac impulse is transmuitted
over the channel.

- The minimum delay time is zero.

- The maximum delay time resulting from multipath propagation is
denoted by T,ax.

The signal contributions appearing at the receiver and resulting from the
signal s, (t) transmitted by user k, is given by the convolution product

1 {7) = “JT;‘,(({-T)hk(T,I)dT .................................................................................... (2.11)
0

The compound received signal observed at the recetver 1s the superposition
of the K contributions ri(t), k=1.....K of all K users and is disturbed by an
additive noise signal n(t) .



Adjacent cell intracell interference and thermal noise contribute to n(t). In
the case of CDMA, the K signals r(t), k=1.....K, are neither disjoint in the
frequency domain nor in the time domain, but are only separable by means
of the different user-specific spreading sequences. It is assumed that the
time duration of the signal s.(t) 1s so short, that the channel impulse response
hi(t,t) may be considered time-invariant during the transmission of sy(t) ie.

hi(t) = he(z,t).

2.3. Single user detection

The conventional detector 1s considered in Section 2.3.1 while methods of
overcoming MALI are discussed in Section 2.3.2.

2.3.1. Conventional Detection

Herein a more detailed look 1s taken at the conventional detector and the
effect of multiple access interference. In a synchronous channel, all bits of
all users are aligned in time. To simplify the discussion, the assumption is
made that the channel 1s synchronous and all carrier phases are equal to zero.
This enables one to use baseband notation while working only with real
signals. Further simplifications are that each transmitted signal arrives at the
receiver over a single path (no multipath), and that the data modulation is
binary phase-shift keying (BPSK). Using the results of (2.7) to (2.12), the
received signal is given as (2.13).

i
7(0) = D JEADBANI@) HRE) oot (2.13)

k=1

- As defined in Section 2.2.1,/E, (t), ax(t) and by(t) are the amplitude,
signature code waveform and modulation of the k™ user respectively.

- n(t) is additive white Gaussian noise, with a two-sided power spectral
density of Nyo/2 W/Hz.

- The power of the k™ user is assumed to be constant over a bit interval. As
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explained in Section 2.2.1, a total of 2M+1 transmitted bits is assumed.

The conventional detector for the received signal described in (2.13) is a
bank of K correlators as shown in Figure 2.2.

r AY
! LI \{\ Decision —— p,
T t=T

Ay~ 0

Y

Decision — b,

' |
I N B X
i LI > ( : Decision — b,
T =T !,

a (1)

ﬂf;;///
e
L
Y

Matched filter bank

Figure 2.2.
The conventional detector

Each code waveform is regenerated and correlated with the received signal
in a separate detector branch. The correlation detector can be equivalently
implemented through what is known as simple matched filtering, hence the
conventional detector s often referred to as the simple matched filter
detector. The outputs of the correlators (or matched filters) are sampled at
the bit times, which yields “soft” estimates of the transmitted data. The final
+] “hard” data decisions are made according to the signs of the soft
estimates.
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[t is evident from Figure 2.2 that the conventional detector follows a single-
user detector strategy, in that each branch detects one user without regard to
the existence of the other users. Thus, there i1s no multi-user detection. The
success of this detector depends on the properties of the correlations between
codes. The requirement is that the correlations between the same code
waveforms (autocorrelations) must be larger than the correlations between
different codes (cross-correlations). The correlation value has been defined
in (2.3) and ts obtained by setting t to O for the synchronous case, to yield:

I
P, = FJa’ (000, (IYAT oo (2.14)
0

Note that if i=k, p=1, and if ik, 0<pex<1. The output of the k"™ user’s
correlator for a particular bit interval is [6]

I T
v, :7_[;'0)(1‘(1)(/1
{

A ?
= \/Eb‘ + Z £ \/E—b +%jn(/)a((z)dz

1<laxd

=AJE Dy A MAT, + 2] (2.15)

Correlation with the kth user itself gives rise to the recovered data term,
correlation with all the other users gives rise to multiple access
interference(MAI), and correlation with the thermal noise yields the noise
term z.

The conventional detector has a complexity that grows linearly with the
number of users and its vulnerability to the near-far problem requires some
type of power control. One needs to consider other types of detectors that
also have a linear computational complexity but does not suffer from the
near-far problem.

2.3.2. Overcoming the effect of MAI

In this section, various methods are suggested on overcoming the
detrimental effects of MAIL  Some of these solutions entail optimal code
waveform design, power control, FEC coding and sectored/adaptive
antennas. Each of these solutions will be briefly discussed in this section.
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a) code waveform design

This approach 1s aimed at the design of spreading codes with good cross-
correlation properties. ldeally, if the codes were orthogonal, then p;,=0, and
there would be no MAI term. However, since in practice most channels
contain some degree of asynchronism, it is not possible to design codes that
maintain orthogonality over all possible delays. So instead, one looks for
codes that are nearly orthogonal, so that they have as low a cross-correlation
as possible.

b) power control

The use of power contro] ensures that all users arrive at about the same
power, and therefore no user is unfairly disadvantaged relative to the others.
The mobiles adjust their power through two methods. One method is for the
mobiles to adjust their transmitted power to be inversely proportional to the
power level it receives from the base station (open loop power control). The
other method is for the base station to send power control instructions to the
mobiles based on the power level it receives from the mobiles (closed loop
power control).

¢) FEC Codes

The design of more powerful forward error correction (FEC) codes allows
acceptable error rate performance at lower signal-to-interference ratio levels.

d) Sectored/Adaptive antennas

Directed antennas are used that focus reception over a narrow desired angle
range. Hence, the desired signal and some fraction of the MAI are enhanced
(through antenna gain), while the interfering signals that armve from the
remaining angles are attenuated. The direction of the antenna can be fixed,
as 1s the case for sectored antennas, or adjusted dynamically. In the latter
case, adaptive signal processing is used to focus the antenna in the direction
corresponding to a particular desired user(s).
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2.4. Multi-user detection

In multi-user detection, code and timing (and possibly amplitude and phase)
information of multiple users are jointly used to better detect each individual
user. The important assumption is that the codes of the multiple users are
known to the recetver a priori.

Verdu’s work [17, 18] , proposed and analyzed the optimal multiuser
detector, or the maximum likelihood sequence detector. Unfortunately, this
detector 1s too complex for practical DS-CDMA systems. Subsequently,
most of the research has focused on finding suboptimal multiuser detector
solutions which are more feasible to implement.

Most of the proposed detectors can be classified 1n one of two categories:
linear multi-user detectors and subtractive interference cancellation
detectors. In linear multi-user detection, a linear mapping is applied to the
soft outputs of the conventional detector to produce a new set of outputs,
which should ideally provide better performance. In subtractive interference
cancellation detection, estimates of the interference are generated and
subtracted out.

The organisation of this section 1s as follows: The matrix-vector notation is
first introduced in Section 2.4.1. Some background information is given on
the asynchronous channel in Section 2.4.2. A brief discussion on multiuser
receiver performance 1s given in Section 2.4.3. In Section 2.4.4, MLS
detection 1s considered while Jinear detectors are considered in Section 2.4.5.
Subtractive interference detectors are considered in Section 2.4.6 while other
detectors are considered in Section 2.4.7.

2.4.1. Matrix-Vector notation

In discussing multi-user detection, it 1s convenient to introduce a matrix-
vector system model to describe the output of the conventional detector.

Consider a case with 3 users in a synchronous system. Let the amplitude of
the signal for the kth user be given by A, = JE, . Using (2.15), the outputs
of the matched filter banks for each of the 3 users for one bit are given as:
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3 l 7
yo=Ab+ Y pJEb, +7jn(z)a,(:)d: ........................................................... (2.16)
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|
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This can be written 1n the matrix-vector form as:

[y I py Py A4 0 0 |5 z,
v l={p, 1 Py O A, Of by 4]z ] i (2.19)
Yy Py Pay ] 00 A_\_ b, z,

or

P RAB F 2 oo ettt (2.20)

- For a K user system, the vectors b,z and y are the K-vectors that hold the
data, noise and matched filter outputs of all K users, respectively;

- the matrix A is a diagonal matrix containing the corresponding received
amplitudes; the matrix R is KxK correlation matrix, whose entries
contain the values of the correlations between every pair of codes.

- Note that since p;y = py., the matrix R ts symmetric.

R can be split up into two matrices: one representing the autocorrelations,
the other the crosscorrelations. Similar to (2.15), the conventional matched
filter detector output can be expressed as three terms:
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V= ABF QA F 2 oo (2.21)

Q contains the off-diagonal elements (crosscorrelations) of R, ie. R=I + Q (I
1s the identity matrix). The first term Ab, 1s the decoupled data weighted by
the received amplitudes. The second term, QAb, represents the MAI
interference.

2.4.2. Asynchronous Channel

The continuous-time model expressed in (2.13) can easily be modified for
asynchronous channels by including the relative time delays between
signals, as explained in Section 2.2.1. The received signal is now written as

.

(1) = D JE (O (1= 7))@ (1= T, )+ 1) oot (2.22)
L=1

where

- 1x 15 the delay for user k.

The discrete-time matrix-vector model describing the asynchronous channel
takes the same form as (2.20). However, now the equation must encompass
the entire message, thus assuming there are 2M+1 bits per user, the size of
the vectors and the order of the matrices are (2M+1)K. The vectors b, z and
y hold the data, noise and matched filter outputs of all K users for all
(2M+1) bit intervals , and the matrix A contains the corresponding received
amplitudes. The matrix R now contains the partial correlations that exist
between every pair of the 2M+1 code words and is of size [(ZM+]) x
(2M+1)]. Hence, (2.22) can now be rewritten as:

(1) = ‘Z’ ibk(x)\/E_ka,((t—x’l"~z'A,)-Hz(r) .............................................................. (2.23)

v==-\ L=t
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2.4.3. Multi-user receiver performance

The performance of multiuser receivers can be measured by the bit error
rate (BER), as well as by mean squared error (MSE) of the detector output or
channel estimates. Furthermore, other performance criteria yielding simpler
analysis than the bit error probability have also been considered. They
include the asymptotic multiuser efficiency (AME) [17,18], and the near-far
reststance (NFR) [21, 22]). The AME describes the asymptotic limit of the
loss in the signal-to-noise ratio (SNR) as the power spectral density of the
noise approaches zero. For coherent BPSK modulation in AWGN channels,
AME is defined as

17, = sup lim b 00 et e e (2.24)
peine” =0 ([

where sup denotes the smallest upper bound and p € [0,1],

1s the normalized and scaled Gaussian complementary error function and Py
is the bit error probability of user k with the particular multiuser detector.
The near-far resistance is the value of the AME for the worst possible
interfering energy combination and is defined as

D = AN 1 (2.26)

E,z20.0=k

Note that inf denotes the infimum in (2.26).

The detector for user k is said to be near-far resistant if 1> 0. The optimal
multi-user receiver 1s considered in Section 2.4.4 and suboptimal ones in the
Sections 2.4.5,2.4.6 and 2.4.7.

2.4.4. Maximum-likelihood sequence detection

The detector which yields the most likely transmitted sequence, b, chooses
b to maximize the probability that b was transmitted given that r(t) was
received, where r(t) extends over the whole message. This probability is
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referred to as the joint a posteriori probability. Under the assumption that all
possible transmitted sequences are equally probable, this detector is known
as the maximum-likelihood sequence (MLS) detector.

The derivation of the MLS detector can be found in [6] and will not be
duplicated here. However, it will suffice to say that the optimum multiuser
(MLS) detector selects the most likely hypothesis b=( by,...... , by) given
the observations, which corresponds to selecting the noise realization with
minimum energy (considering the synchronous case), that is:

T A
bearg min J‘[;-(/)—Z\/E_‘bka‘ (OTE oo (2.27)
0 k=1
The problem with the MLS approach is that there are 2™  possible b

vectors; an exhaustive search 1s impractical for typical message sizes and
numbers of users. However, MLS detection can be implemented for DS-
CDMA by following the matched filter bank with a Viterbi algonthm [6, 75-
76]. However, the required Viterbi algorithm has a complexity that is still
exponential in the number of users.

Another disadvantage of the MLS detector is that it requires knowledge of
the received amplitudes and phases. These values, however, are not known
a priori, and must be estimated. One would need to use some of the
parameter estimation techniques as discussed in Appendix 1.

The asymptotic multiuser efficiency of the MLS detector has been analyzed
in [18, 77-78]. MLS detector for trellis-coded modulated CDMA
transmissions 10 AWGN channels has been studied in [79], and for
convolutionally encoded transmissions in [80]. The effect of delay
estimation errors of MLS detector has been considered in [45]. Joint
maximum likelihood sequence detection and amplitude estimation in
AWGN channels has been analyzed in [63]. In [20] a recursive, additive
metric for complexity-constrained maximum likelthood detection using
breadth-first detection algorithms was proposed. The metric required linear
filtering of the matched-filtered received signal vector. However, for this
method to work, perfect power control was required and the complexity of
the receiver had not been substantially reduced. The performance of the
MLS detector was analyzed in [17, [8]. It turned out to be impossible to
derive a closed form bit error probability expression for the MLS detector.
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Upper and lower bounds, most of which are complicated to calculate, were
found. The simplest lower bound is the single-user bound (or matched filter
bound) which is the performance of a communication system with one active
user.

Despite the huge performance and capacity gains over conventional
detection, the MLS detector is not practical. A realistic direct-sequence
system has a relatively large number of active users; thus, the exponential
complexity in the number of users makes the cost of this detector too high.

Various other suboptimal multiuser detectors are now examined in the
following sections, which are simpler to implement. For the remainder of
the chapter, an asynchronous channel 1s assumed unless otherwise stated.

2.4.5. Linear Detectors

it was shown that the conventional detector has a complexity that grows
linearly with the number of users, but its vulnerability to the near-far
problem requires some type of power control. In this section, detectors that
also have a linear computational complexity but do not exhibit the
vulnerability to other-user interference, are examined.

An important group of multi-user detectors are linear multi-user detectors.
These detectors apply a linear mapping, [, to the soft output of the
conventional detector to reduce the MAI seen by each user. The two most
popular of the linear detectors are the decorrelating and minimum mean-
squared error (MMSE) detectors. A polynomial expansion detector is
considered in Section 2.4.5.3 | which can efficiently implement both the
decorrelator and MMSE detectors.

The decorrelating and MMSE detectors are discussed in Sections 2.4.5.1 and
2.4.5.2, respectively. The polynomial expansion detector is discussed in
Section 2.4.5.3.



26

2.4.5.1. Decorrelating Detector

The decorrelating detector applies the inverse of the correlation matrix

to the conventional detector output of Figure 2.2, in order to decouple the
data. From (2.20), the soft estimate of this detector is given by:

b,, =R 'v=Ab+R 'z
m AD 42, oo oo (2.29)

which is just the decoupled data plus a noise term. It is evident that the
decorrelating detector completely eliminates the MAIL. This detector 1s very
simtlar to the zero-forcing equalizer [6] that is used to completely eliminate
[SI.

The decorrelating detector was nitially proposed in [23]. It was extensively
analyzed by Lupas & Verdu in [21, 22] and 1s shown to have many attractive
properties. Further justification for its study is provided by the fact that it js a
solution to the maximum likelithood detector when the energies are not
known by the receiver. The only requirement for the signal of a user to be
detected reliably by the decorrelating detector regardless of the level of
multiple-access interference, is that it does not belong to the subspace
spanned by the other signals. Foremost among the advantages of the
decorrelator are [21, 22, 24] that it:

a) provides substantial performance/capacity gains over the conventional
detector under most conditions.

b) Does not need to estimate the received amplitudes. In contrast, detectors
that require amplitude estimation are often quite sensitive to estimation
error.

c) Has a computational complexity significantly lower than that of the
maximum likelihood sequence detector — the per-bit complexity i1s linear
in the number of users.



27

d) Corresponds to the maximum likelihood sequence detector when the
energies of all users are not known at the receiver — 1t yields the joint
maximum likelihood sequence estimation of the transmitted bits and their
received amplitudes.

e) Has a probability of error independent of the signal energies — this
simplifies the probability of error analysis, and makes the decorrelating
detector resistant to the near-far problem.

) Yields the optimal value of the near-far resistance performance metric

g) Can decorrelate one bit at a time — for bit /, one only needs to apply the
/th row of R to the matched filter bank outputs.

A disadvantage of this detector is that it causes noise enhancement which is
similar to the zero-forcing equalizer [6]. The power associated with the
noise term R™'z at the output of the decorrelating detector in (3.14) is always
greater than or equal to the power associated with the noise term at the
output of the conventional detector in (3.6) for each bit. This has been
proven in [25]. Despite this drawback, the decorrelating detector generally
provides significant improvements over the conventional detector. A more
significant disadvantage of the decorrelating detector is that the
computations needed to invert the matrix R are difficult to perform in real
time. For synchronous systems, the problem is somewhat simplified: one bit
at a time can be decorrelated. The inverse of a KxK correlation matrix can
be applied. For asynchronous systems, R is of order (ZM+1)K, which 1s
quite large for a typical message length (2M+1).

There have been numerous suboptimal approaches to implementing the
decorrelating detector [24, 26]. Many of them entail breaking up the
detection problem into more manageable blocks [27-32] and possibly even
to one transmission interval [24, 29]. The inverse matrix can then be exactly
computed. A K-input K-output Jinear filter timplementation is also possible
as in [21], where the filter coefficients are a function of the cross-
correlations.

Whichever suboptimal decorrelating detector technique 1s used, the
computation required is substantial. The use of codes that repeat each bit is
generally assumed so that the partial correlations between all signals are the
same for each bit. This minimizes the need for recomputation of the matrix
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inverse or the filter coefficients from one bit interval to the next. Where
recomputation cannot be avoided, research has been directed at trying to
simplify the cost of recomputation. The processing burden still appears to
present implementation difficulties.

The estimate of the data given by (2.29), which 1s obtained by processing a
block of 2M+1 bits, can also be computed sequentially. In [27], it has been
demonstrated that the transmitted bits may be recovered sequentially from
the received signal, by employing a form of decision-feedback equalizer
with finite delay. Thus, there 1s a similarity between the detection of signals
corrupted by IST in a single-user communication system and the detection of
signals in a multiuser system with asynchronous transmission [6].

Decorrelating detectors are 1deally infinite memory-length detectors. This 1s
because their memory length equals the number of users times the data
packet length, which often can be assumed to approach infinity. To obtain
practical detectors, which have low implementation complexity and are
suitable for CDMA systems with time-variant system parameters (such as
the number of users, delays of users and the signature waveforms), linear
finite-memory length multiuser detectors have been studied in [37]. The
infinite memory length also has been one motivation to introduce adaptive,
decentralized, one-shot multiuser detectors [38-41]. The drawbacks of these
detectors is that they may require Jong adaptation times, and the adaptation
must be repeated frequently. The training sequences required in most
adaptive detectors degrade the bandwidth efficiency, especially if the
adaptation must occur frequently. Furthermore, the one-shot approach 1s
inherently suboptimal, even in the class of linear detectors.

In [37], it was shown that the infinite-memory length decorrelating detector
can be accurately approximated by detectors with finite and relatively short
memory lengths. 1t is shown that the near-far resistance to a high degree can
be obtained by moderate memory lengths. This result provides a mechanism
to implement near-far resistant linear multiuser detectors in systems 1n
which the number of users or their propagation delays change over time.
This problem was detected in [27] and [42], but only the special case of the
MMSE and noise-whitening detectors was considered.

The decorrelator can be characterized as the inverse of some form of
correlation matrices. The correlation values depend on the number of users,
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the signature waveforms and the delays of the users. A change in one of
these parameters, results in a change in the correlations, and an update of the
decorrelator is required. This i1s a computationally complex task due to the
correlation matrix inversion. In [36], implementation algorithms for linear
multiuser detectors were considered for systems where the detectors must be
updated frequently. Iterative decorrelating and MMSE detectors were
proposed. These iterative detectors used the steepest descent, conjugate
gradient and preconditioned conjugate gradient algorithms. The
implementation complexity of these detectors was alleviated as there was no
need to invert or Cholesky factorize the matrix R. The performance of the
iterative detectors was highly dependent on the number of iterations [36].
These iterative detectors provide a tradeoff between the implementation
complexity and the performance. The simulatjon results in [36] showed that
moderate numbers of iterations give the same performance as the ideal
detectors.

Although the decorrelator presented in [21] did not require knowledge of
signal amplitudes, the decorrelating method still required knowledge of the
signature sequence arrival times. Similarly, the noncoherent differential
phase shift keying (DPSK) decorrelator-based detector developed in [33],
while not requiring knowledge of the received phase, still assumed known
arrival times.

In [34], a linear decorrelator detector was proposed for a quasisynchronous
code-division multiple-access (QS-CDMA) cellular system. The CDMA
system ts quasisynchronous if the delays are small compared to the symbol
interval. [t was assumed that each of the users had a global positioning
system generated local clock and that they attempted to transmit
synchronously with the other users in its cell. By using GPS, the mobiles
could compensate for the path delays, thereby reducing the timing error. 1f
the timing uncertainty occupied a sufficiently small region, it was possible to
obtain excellent bit-error rate performance, without power control, using a
relatively simple decorrelating detector. The decorrelator output could then
be detected noncoherently, eliminating the need for phase estimation.

Optimum single-user decorrelating receivers, correlate the received signal
with a sequence of (infimte precision) real numbers. In [35], designing
optimurn finite-precision decorrelators for CDMA networks was considered.
When using these finite-precision decorrelators, multiplications can be
performed with simple combinatorial logic circuits. From a practical view-
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point, this problem is important because fixed-point implementations are
cheaper, faster and more energy efficient than designs with floating point
processing units. It was shown in [35] that the use of optimum finite-
precision decorrelators in networks with rapidly time-varying multiuser
interference 1s not feasible. However, in networks which allow for pre-
computation of the decorrelator sequences, the proposed approach in [35]
was feasible because of the tow demodulation complexity of the resulting
receivers.  The results of [35] show that the optimum finite-precision
receivers closely match the performance of infinite-precision decorrelators
up to moderately high channel occupancies.

The pninciple of the decorrelating receiver has been extended to receivers
utilizing antenna arrays [32, 82-83], multiple base stations [84-85] or
multiple data rates [86-87]. Adaptive implementations of the decorrelating
detector for synchronous CDMA systems have been considered in [74, 88].
The decorrelating receiver for convolutionally encoded CDMA
transmissions iIn AWGN channels has been studied in [89]. Decorrelating
receivers for quasi-synchronous CDMA systems in AWGN channels
without precise delay estimation has been proposed in [29, 34, 90] and for
code acquisition in quasi-synchronous CDOMA in [91]. The effect of delay
estimation errors to the decorrelating performance has been analyzed in [92-
93].

2.4.5.2. Minimum Mean-squared error (MMSE) detector

The minimum mean-squared error (MMSE) detector [27] 1s a linear detector
which takes into account the background noise and utilizes knowledge of the
received signal powers. This detector implements the linear mapping which
minimizes E[|b - By |?], the mean-squared error between the actual data and
the soft output of the conventional detector. This results in [27, 41]

nise = LR F (NG 2) AT | e (2.30)

The soft estimate of the MMSE detector is simply
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It 1s evident that the MMSE detector implements a partial or modified
inverse of the correlation matrix. The amount of modification is directly
proportional to the background noise; the higher the noise level, the less
complete an inversion of R can be done without noise enhancement causing
performance degradation. When the noise level is large compared with the
signal level in the diagonal elements of R, Bumse approaches the identity
matrix. In this low-SNR case, the detector basically ignores the interference
from other users, because the additive noise 1s the dominant term. It should
also be noted that the MMSE criterion produces a biased estimate of bymse.
As a result, there 1s some residual multiuser interference.  The MMSE
detector balances the function of decoupling the users (and completely
eliminate MAI) with the function of not enhancing the background noise.
This multi-user detector 1s exactly analogous to the MMSE linear equalizer
used to combat IS] {6].

Because it takes the background noise into account, the MMSE detector
generally provides better probability of error performance than the
decorrelating detector. As the background noise goes to zero, the MMSE
detector converges in performance to the decorrelating detector.

An important disadvantage of this detector is that, unlike the decorrelating
detector, 1t requires estimation of the received amplitudes. Another
disadvantage is that its performance depends on the powers of the interfering
users [27].

Hence, there is some loss of resistance to the near-far problem as compared
to the decorrelating detector. Like the decorrelating detector, the MMSE
detector faces the task of implementing matrix inversion. Thus, most of the
suboptimal techniques for implementing the decorrelating detector are
applicable to this detector as well.

An adaptive multiuser detector based on a minimum mean-square error
(MMSE) criterion was presented in [38]. Although this detector did not
require parameter estimates, a training sequence was necessary to provide a
data reference. Several interference suppression schemes based on the
MMSE criterion were considered in [38]. Explicit knowledge of the
interference parameters was not required. The scheme considered in [38]
was a finite complexity approximation of the MMSE linear detector, and its
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performance was not as good as the performance of the decorrelating
detector.

[36] dealt with implementation algorithms for linear multiuser detectors for
systems where the detectors must be updated frequently and iterative MMSE
detectors were proposed. In [37], it was shown that the infinite-memory
length detectors such as the MMSE detector could be accurately
approximated by detectors with finite and relatively short memory lengths.

MMSE multiuser detection can be implemented by employing a tapped-
delay-line filter with adjustable coefficients for each user and selecting the
filter coefficients to minimize the mean square error for each user signal [6].
The received information bits are estimated sequentially with finite delay,
instead of as a block.

2.4.5.3. Polynomial Expansion Detector

The polynomial expansion (PE) detector applies a polynomial expanston in
R to the matched filter bank output, y. The linear mapping for the PE
detector is

1=

and the soft estimates of the data are given by

For a given R and N, (no. of stages), the weights (polynomial coefficients)
w;, 1=0,1,.....,N; can be chosen to optimize some performance measure.

The structure which implements the matrix R is shown in Figure 2.3, and the
full detector (with 2 stages) is shown in Figure 2.4. In Figure 2.3 the input is
the matched filter bank output vector y, and the output ts Ry. A diagram of
the matched filter bank was shown in Figure 2.2. Each stage implements R
by recreating the overall modulation (spreading), noiseless channel
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(summing), and demodulation (matched filtering) process. From the
expression for the noiseless conventional detector output, y = RADb, it 1s clear
that R 1s implemented in the Figure 2.3. Cascading these stages produces
higher-order terms of the polynomial. The detector in Figure 2.4 is a two-
stage PE detector, while the detector corresponding to (2.32) requires N
stages.
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Figure 2.3.
One stage of the polynomial expansion detector
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DS-CDMA polynomial expansion detector with 2 stages

It can be shown (by the Cayley-Hamilton Theorem) that the PE detector
structure can exactly implement the decorrelating detector for finite message
length [43]. However, for a typical message length this would require a
large number of stages, which is not feasible. As the message length
approaches infinity, infinite stages would be needed, with one bit delay
required per stage. However, good approximations can be obtained with a
relatively small number of stages. Hence, one can choose the polynomial
coefficients w = [wy, w; ... wy,] so that

The resulting weights are used in the structure of Figure 2.4 to yield a K-
input K-output finite memory-length detector, which approximates the
decorrelating detector. The PE detector structure can also be used to
approximate the MMSE detector, as described in [43].
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The polynomial expansion detector has a number of attractive features [43],
In that 1t:

a) Can approximate the decorrelating and MMSE detectors. As such, it has
the desirable features of these two detectors, which has already been
discussed 1o Sections 2.4.5.1. and 2.4.5.2.

b) Has a low computational complexity. In approximating the decorrelating
(or MMSE) detector, there is no need to calculate the matrix R nor its
inverse. Everything can be implimented on-line, using analog hardware
or DSP chips.

c) Does not need to estimate the received amplitudes or phases. This
important feature of the decorrelating detector, also holds for the PE
detector in approximating the decorrelating detector. If the PE detector 1s
approximating the MMSE detector, amplitude estimation will still be
necessary.

d) Can be implimented just as easily using long codes as short codes

e) Can use weights that work well over a Jarge variation of system
parameters. As shown in [43], the use of additional stages in the PE
detector allows more flexibility to use pre-computed weights that work
well over a broad operating range. This eliminates the need to adapt the
weights to changes in the operating environment.

f) Has a relatively simple structure. The types of system components used
are the same as those of the conventional detector. The amount of system
components increases linearly with the product of the number of users
and the number of stages. The structure is very similar to that of the
parallel interference cancellation detector (Section 2.4.6.2).

2.4.6. Subtractive interference cancellation

The basic operating principle for these detectors 1s the creation at the
receiver of separate estimates of the MAI contributed by each user in order
to subtract out some or all of the MAI seen by each user. Such detectors are
often implemented with multiple stages, where the aim 1s that the decisions
will improve at the output of successive stages.

These detectors are similar to feedback equalizers [6] used to combat ISI. In
feedback equalization, decisions on previously detected symbols are fed
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back in order to cancel part of the ISI. Thus, a number of these types of
multiuser detectors are also referred to as decision-feedback detectors.

The bit decisions used to estimate MAI can be hard or soft. The soft-
decision approach uses soft data estimates for the joint estimation of the data
and amplitudes, and 1s easier to implement. The hard-decision approach
feeds back a bit decision and is nonlinear; it requires reliable estimates of the
received amplitudes in order to generate estimates of the MAI. If reliable
amplitude estimation is possible, hard-decision subtractive interference
cancellation detectors generally outperform their soft-decision counterparts.
Studies such as [44, 45] indicate that the need for amplitude estimation is a
significant liability of the hard-decision techniques as tmperfect amplitude
estimation may significantly reduce or even reverse the performance gains
available.

A major disadvantage of nonlinear detectors 1s their dependence on reliable
estimates of the received amplitudes. Studies such as [44, 45] indicate that
imperfect amplitude estimation may significantly reduce or even reverse the
gains to be had from using these detectors.

In Section 2.4.6.1, successive interference cancellation is discussed while
parallel interference cancellation 1s discussed in Section 2.4.6.2. The zero-
forcing decision-feedback (ZF-DF) detector is discussed in Section 2.4.6.3.

2.4.6.1. Successive interference cancellation (SIC)

The successive interference cancellation (SIC) detector [46, 47] uses a serial
approach to canceling interference. Each stage of this detector forms
decisions, regenerates and cancels out one additional direct-sequence user
from the received signal, so that the remaining users see less MAI in the next
stage. A sumplified diagram of the first stage of this detector is shown in
Figure 2.5 where a hard-decision approach 1s assumed.
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Prior to the first stage is an operation which ranks the signals in descending
order of received powers. The first stage 1s responsible for implementing the
following steps:

) To detect with the conventional detector the strongest signal, q;.

2) Make a hard data decision on q, B

A) Regenerate an estimate of the received signal for user one, q(t), using:
« Data decision from step 2
. Knowledge of its PN sequence
» Estimates of its timing, amplitude and phase

3) Subtract out q,(t) from the total received signal, r(t), yielding a partially

cleaned version of the received signal, ry(t).

Assuming that the estimation of q)(t) in step 3 above was accurate, the
outputs of the first stage are:

a) A data decision on the strongest user
b) A modified received signal without the MAI caused by the strongest user
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This process can be repeated in a multistage structure where stage Ns takes
as its input the partially cleaned received signal output of the previous stage,
raws-1y(t), and outputs one additional data decision and a cleaner received

Signal [’(NS)(t).

The reasons for canceling the signals in descending order of signal strength
Is outlined in [26, 47]. Firstly, 1t 1s easiest to achieve acquisition and
demodulation on the strongest users that offer the best chance for a correct
data decision. Secondly, the removal of the strongest users gives the most
benefit for the remaining users. The result of this algorithm is that the
strongest user will not benefit from any MAT reduction but the weakest users
will see a huge reduction in their MAL

The SIC detector requires little additional hardware to the conventional
detector, and 1t has the potential to provide significant improvement over the
conventional detector.

Some of the implementation problems posed by the SIC detector are now
listed. First, one additional bit delay is required per stage of cancellation
[48]. Hence a trade-off needs to be made between the number of users that
are cancelled and the amount of delay that can be tolerated. Secondly, there
1s a need to reorder the signals whenever the power profile changes. A
trade-off must be made between the precision of the power ordering and the
acceptable processing complexity.

A potential problem with the SIC detector occurs if the initial data estimates
are not reliable. In this case, even if the timing, amplitude and phase
estimates are perfect, if the bit estimate i1s wrong, the interfering effect of
that bit on the signal-to-noise ratio is quadrupled in power. This is because
if the amplitude doubles, the power quadruples. Hence, a certain mumnimum
performance level of the conventional detector is required for the SIC
detector to yield improvements. It is crucial that the data estimates of at
least the strong users that are cancelled first be reliable.

By using a simple successive 1C scheme, one can effectively estimate and
cancel a CDMA signal and thus substantially reduce near/far effects from a
CDMA system and increase the system capacity [48].
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2.4.6.2. Parallel interference cancellation

In contrast to the SIC detector, the parallel interference (PIC) detector
estimates and subtracts out all of the MAI for each user in paratlel. The
multistage PIC structure was introduced in [49]. A basic one stage PIC
structure was assumed in [47, 50].

The first stage of this detector is shown in Figure 2.6 where a hard-decision
approach 1s assumed. The initial bit estimates, b;(0), are derived from the
matched filter detector, which 1s referred to as stage O of this detector.
These bits are then scaled by the amplitude estimates and respread by the
codes, which produces a delayed estimate of the received signal for each
user, qi(t-T). The partial summer sums up all but one input signal at each
of the outputs, which creates the complete MAI estimate for each user.
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One stage of the PIC detector




40

Assuming perfect amplitude and delay estimation, the result after subtracting
the MAI esttmate for user k 1s

AN -
r((=T)=> q(u~T)=b(t -1, - TVAU -1, =Ta(t =z, ~T)+ n(t=T)
izk

K _
+Z(b,(1 -7, =-T)=b.(t~71,— T))A,(t 7, =)a;(t =7, =T) e (2.35)
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As can be seen in Figure 2.6, the result of (2.35), for k=1....K, is passed on
to a second bank of matched filters to produce a new and better set of data
estimates.

This process can be repeated for multiple stages. Each stage takes as its
input the data estimates of the previous stage and produces a new set of
estimates at its output. A matrix-vector formulation can be used to describe
the soft output of stage Ns+1 of the PIC detector for all (2M+1) bits of all K
users as [51]

B(Ns +1) = v — OAb(Ns)
= AB 4 QA = BUNS)) + 2 oo (2.36)

The term QA b (Ns) represents an estimate of the MAI [52]. For BPSK, the

hard data decisions are obtained by taking the signs of the soft data outputs,
b(Ns). Perfect data estimates, together with the assumption of perfect

amplitude and delay estimation, result in the total elimination of MAI.

A number of studies have investigated PIC detection which utilizes soft
decisions, such as [53, 54, 55]. In [53] soft-decision PIC and SIC detectors
were compared and since soft-decision SIC exploits power variation by
canceling 1n order of the signal strength, 1t is found to be superior in a fading
channel. On the other hand, soft-decision PIC is found to be superior in a
well-power-controlled channel. The PIC detector requires more hardware
than the SIC which faces the problems of power reordering and large delays
[53].
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number of variations on the PIC detector have been proposed for

improved performance. Some of these variations are listed and explained
below.

a)

b)

The decorrelating detector can be used as the first stage [51]. The
performance of the PIC detector depends heavily on the initial data
estimates [49]. As was pointed out for the SIC detector, the subtraction
of an interfering bit based on an incorrect bit estimate causes a
quadrupling in the interfering power for that bit. Hence, too many
incorrect initial data estimates may cause performance to degrade relative
to the conventional detector. Therefore, using the decorrelating detector
as the first stage significantly improves performance of the PIC detector.

It was shown in [51] that the multistage detector based on a decorrelating
first stage, performed significantly better than the decorrelating and
optimum linear detectors, in a number of situations of practical interest
such as in high bandwidth utility and in near-far sttuations. Note
however, that the detectors of [49, 51] had been developed for the case of
known user energies.

The decorrelator is an excellent choice for the first stage due to its
performance invariance to interfering signal energies. However, its
implementation in asynchronous systems may involve large storage and
long decoding delays. While the conventional first stage is inferior to the
decorrelator, its use in the multistage detector in an asynchronous system
results in an easily implementable detector with a small storage
requirement and a short decoding delay.

One may use the already detected bits at the output of the current stage to
improve detection of the remaining bits in the same stage [56]. As a
result of this, the most up-to-date bit decisions available are always used.
This contrasts with the standard PIC detector, which only uses the
previous stage’s decisions. This detector is referred to as a multistage
dectsion feedback detector [56]. Proposals for the initial stage of this
detector include a decision-feedback detector [56], the conventional
detector [27], and the decorrelating detector [31].

One may also Jinearly combine the soft-decision outputs of different
stages of the PIC detector [43] — This simple modification yields very
large gains in performance over the standard soft-decision PIC detector.
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The reason for this has to do with the extensive noise correlations that
exist between outputs of different stages. The linear combination s made
in a way as to capitalize on the noise correlations and cause cancellation
among noise terms.

d) One can also do a partial MAI cancellation at each stage, with the amount
of cancellation increasing for each succesive stage [S4]. Similar to [49,
517, the basic i1dea is that at each stage of the iteration, an attempt is made
for each user to completely cance] the interference caused by all the other
users. It was shown in [54] that this is not necessarily the best
philosophy. When the interference estimate is poor (as in the early stages
of interference cancellation), it is preferable not to cancel the entire
amount of estimated multiuser interference. As the interference
cancellation operation progresses, the estimates of the multiuser
interference improve. The MALI estimate is first scaled by a fraction
before cancellation and the value of the fraction increases for successive
stages. This takes into account the fact that the decisions of the earlier
stages are less reliable than those of the later stages. Huge gatns in
performance and capactty are reported over the standard PIC detector.

2.4.6.3. Zero-forcing decision-feedback (ZF-DF) detector

The zero-forcing decision-feedback detector [31- 32, 57- 58] performs two
operations: linear preprocessing followed by a form of SIC detection. The
linear operation partially decorrelates the users (without enhancing the
noise), and the SIC operation provides decisions and subtracts out the
interference from one additional user at a time, in descending order of signal
strength. The initial partial decorrelation enables the SIC operation to be
much more powerful.

The ZF-DF detector is based on a white noise channel model. A noise-
whitening filter is obtained by factoring R by the Cholesky decomposition
[59], R=F'F, where F is a lower triangular matrix. Applying (E')" to the
matched filter bank outputs in (2.20) yields the white noise model [57]
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The covariance matrix of the noise term, z,, 18 (Ng/2)f. (This 1s similar to the
white notse model that is derived for ISI channels [6].)

In the white noise model of (2.37), the data bits are partially decorrelated.
This can be shown to arise from the fact that the matrix F is lower triangular
[57]. The output for bit one of the first user contains no MAI, the output for
bit one of the second user contains MAT only from bit one of the first user,
and 1s completely decorrelated from all other users; similarly, the output for
user k at bit interval 1 is completely decorrelated from users k + I, k +
2,...K, at time 1, and from all bits at future time intervals.

The ZF-DF detector uses SIC detection to exploit the partial decorrelation of
the bits in the white noise model. The soft output of bit one of the first user,
which 1s completely free of MAI, 15 used to regenerate and cancel out the
MAL it causes, thereby leaving the soft output of bit one of the second user
also free of MAIL.  This process continues: for each iteration, the MAI
contributed by one additional bit (the previously decorrelated bit) is
regenerated and canceled, thereby yielding one additional decorrelated bit.

Prior to forming and applying (F')"' to create the white noise model, the
users are ordered according to their signal strength, thus ensuring that
mterference cancellation takes place in descending order of signal strength.
This maximises the gains to be had from SIC detection, as discussed earlier.
The ZF-DF detector i1s shown in Figure 2.7, where a synchronous channel is
shown for clarity.
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The ZF-DF detector

For the zero-forcing decision-feedback detector, the forward and feedback
filters of this detector are chosen to eliminate multiuser interference at the
inputs to the decision devices. In addition, the objective of the detector is to
maximize the ideal signal-to-noise ratio at the input to each decision device.

Assuming perfect estimates of F and the received amplitudes, the soft output
for the kth user is [57]

- L~
Be =3y = D F AD,  e e (2.38)

ka2t ™y
i=0

Where b= sign [ Bi] are the previously detected bits (of the stronger users),
A; 1s the received amplitude of this bit, and Fy; 1s the (k,1)th element of F.

Under the assumption that all past decisions are correct, the ZF-DF detector
eliminates all MAIJ] and maximizes the signal-to-noise ratio [31]. It s
analogous to the ZF-DF equalizer used to combat [SI [6].
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An important measure of the performance for a decision-feedback detector 1s
the signal-to-noise ratio at the input to the decision device under the
assumption of correct previous decisions. The signal-to-noise ratio for the
decision feedback detector 1s [57]

Given the same order of making decisions, this SNR is the largest achievable
by any decision-feedback detector which attempts to cancel all multi-user
interference.

An important difficulty with the ZF-DF detector is the need to compute the
Cholesky decomposition and the whitening filter (F')'.  Attempts to
simplify 1ts implementation are similar to those of the decorrelating detector.
The ZF-DF detector, like the other nonlinear detectors, has the disadvantage
of needing to estimate the received signal amplitudes. If the soft outputs of
the decorrelating detector are used to estimate the amplitudes, the ZF-DF
detector 1s equivalent to the decorrelating detector [31]. If the amplitude
estimates are more reliable than those produced by the decorrelating
detector, the ZF-DF detector performs better than the decorrelating detector;
and 1if less reliable, the ZF-DF detector performs worse than the
decorrelating detector.

2.4.7. Other detector types

Finally, in this section, some of the detector structures for CDMA reception
which have not been considered in the previous sections, will be discussed
here.

Application of the expectation maximization (EM) based algorithms to the
problem of data detection in the Gaussian multiple-access channel leads to a
variety of convergent receiver structures that incorporated soft-decision
feedback for interference cancellation and sequential updating of iterative bit



46

estimates. In [62] new iterative multiuser receivers based on the EM
algorithm were considered. The EM algorithm provided an iterative
approach to the Ilikelihood-based parameter estimation when direct
maximization of the likelihood function was not feasible.  Although
convergence of the algorithm to the maximum-likelithood estimator was not
always guaranteed, EM did produce estimates that monotonically increased
in likelthood. The resulting receivers had multi-stage-like structures that
used sequential bit-estimate updates and intermediate soft-decisions for
interference cancellation.

[n [29], a receiver-based synchronous CDMA system with a linear multiuser
interference canceller had been proposed, and its performance tn a
microcellular environment was investigated theoretically. The multiuser
interference was removed on a symbol-by-symbol basis by a deterministic
matrix operation. The receiver structure of the receiver based synchronous
CDMA system was composed of a bank of matched-filters corresponding to
all the mobile users in the cell, a correlation peak position detector and a
matrix calculator. The hinear canceller of [29] did not require knowledge of
the received power levels of active users, and hence resulted in a high
capacity and near-far resistance.

An adaptive receiver was considered for use in combating the near-far
problem 1n direct-sequence CDMA in [39]. The receiver used a chip
matched filter followed by an adaptive equalizer structure to perform the
despreading operation. This adaptive structure allowed the receiver to adjust
to the prevailing interference and noise environment. The receiver was
shown to be immune to the near-far problem in the sense that the
performance without any power control was nearly identical to the
performance with perfect power control. The receiver was also shown to
offer a two-fold increase in capacity relative to a conventional receiver with
perfect power control. With the adaptive receiver, no information about the
interference was needed, only a known data preamble was needed for the
equalizer to converge on the form of the optunum receiver filter. The
equalizer did not even need to know the desired code sequence in order to
converge. As a result, after the equalizer had converged close to a steady
state value, the value of the tap weights could be used to extract timing
information and thus provide code acquisition and tracking. In [39] it was
also shown that thts receiver had the ability to overcome multipath and
narrowband interference. A practical [imitation of the receiver is that the
number of taps must be equal to the number of chips per bit. Hence, this
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receiver cannot be used in a direct sequence system with a large processing
gain. Also the adaptive equalizers have a difficult time in channels that are
rapidly changing. This will present a problem in situations where the fading
rate of the channel 1s substantial.

Optimal decentralized multtuser detectors for AWGN channels have been
considered in [8]], where the multiple-access interference was modeled as
non-Gaussian noise. The optimal decentralized multiuser detectors can also
allow for the utilization of the knowledge of a subset ot the K-] interfering
signature waveforms. However, the optimal decentralized multiuser
detector also has a computational complexity which depends exponentially
on the number of users.

The highly structured nature of MAI suggests that a neural network should
be able to learn how to remove the MAI effectively. A multi-user receiver is
essentially a decision making device, hence a neural network is a natural
architecture for implementing this device. Due to their highly parallel
structure and adaptability to system parameters, receivers employing neural
networks prove to be a desirable alternative to the optimum and
conventional receivers for multiple-access communications. Neural network
detectors will be examined in more detail in Chapter 7.

2.5. Conclusion

The emphasis of this chapter has been on centralized multiuser detectors that
process the matched filter output to provide the statistics for both the
estimation of the signal amplitudes as well as for data detection in the
AWGN channel.

The models for the transmitter, receiver and CDMA channel have been
derived in this chapter. The performance of multiuser receivers can be
measured by the bit error rate, asymptotic multiuser efficiency and near-far
resistance.

The conventional detector follows a single user detection strategy, has a
computational complexity that grows linearly with the number of users and
1s vulnerable to the near far problem. Maximum likelthood sequence
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detection can be implemented for DS-CDMA by following the matched
filter bank with a Viterbi algorithm. However, the required Viterb
algorithm has a complexity that is still exponential in the number of users.

Detectors which have a linear computational complexity but do not exhibit
the vulnerability to other-user interference, were also examined. The two
most popular of the linear detectors are the decorrelating and minimum
mean-squared error detectors. A polynomial expansion detector can
efficiently implement both the decorrelating and MMSE detectors.

The basic operating pnnciple for successive interference cancellation
detectors is the creation at the receiver of separate estimates of the MAI
contributed by each user in order to subtract out some or all of the MAI seen
by each user. Such detectors are often implemented with multiple stages,
where the aim is that the decisions will improve at the output of successive
stages. Three categories of subtractive interference cancellation detectors
can be 1dentified, and these are the SIC, PIC and ZF-DF detectors.

Neural network and other detectors were also considered. Since MAI has a
highly structured nature, a neural network should be able to learn how to
remove the MAI effectively.

The detectors presented in this chapter serve as a basis for more advanced
detectors which are used in fading channels. [n particular, the decorrelator,
discussed in Section 2.4.5.1, will form the basis of the discussions in
Chapters 5 and 6.
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Chapter 3: Fading models

3.1. Introduction

CDMA transmissions are frequently made over channels which exhibit
fading and dispersion, hence it 1s important to design receivers which take
this behaviour of the channels into account. Section 3.2. will discuss
some of the propagation problems experienced in CDMA transmissions.
In Section 3.3, the fading multipath channel will be characterized, while
the selection of the channel model will be discussed in Section 3.4.
Diversity techmques for fading multipath channels are considered in
Section 3.5, while combining technology will be considered in Section
3.6. Finally, in Section 3.7, the model of a frequency selective fading
channel will be provided.

3.2. Propagation Problems
Some of the different propagation problems experienced are:

a) propagation Joss

b) scattering

c) doppler shift

d) time dispersion

e) loss due to rain and fog
f) noise

g) fading

A brief explanation of each of the above phenomena follows:

a) Propagation loss

The amount of energy received by an antenna 1s inversely proportional to
the fourth power of the distance from the transmitter. These electro-
magnetic waves are susceptible to absorption, reflection, diffraction and
scattering by the earth’s surface as well as obstacles in their path.
However, accommodation can be made for the propagation loss by using
some form of power control at the receiver.
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b) Scattering

This is caused by obstacles along the propagation path such as buildings,
and trees, etc. They produce reflected waves of the same frequency, but
at an attenuated amplitude and a phase which is dependant on the angle of
incidence. Figure 3.1. illustrates the principle of reflection.

c) Doppler shift

The doppler shift etfect i1s only applicable to a receiver in motion. The
time variations of the channel are evidenced as a Doppler spread in the
frequency domain, which is determined as the width of the spectrum
when a single sinusoid is transmitted.

d) Time dispersion

Many reflected waves are received at the receiver, each with a different
path length, and hence a different propagation time delay. For example,
if a short pulse was to be transmitted, it may be received as a train of
pulses at the receiver, and this effect is called time dispersion. This
distortion causes inter-symbol interference.

e) Loss due to rain and fog

The droplets in clouds and fog cause attenuation of the transmitted signal
due to absorption and scattering

1) Noise

The received signal 1s affected by thermal noise, man-made noise and
interference noise

g) Fading

The mobile receives many reflected waves, and one direct wave. They
either interact constructively or destructively, producing variations in the
received signal amplitude. This effect 1s termed multipath fading and is
tllustrated in Figure 3.2.
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[llustration of the principle of reflection
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With reference to Figures 3.1 and 3.2, in open areas most of the energy 1s
in the direct wave. The remaining power is received by the ground
reflected wave and the other scattered waves.

It 1s possible to distinguish two fading components in the signal. They
are referred to as short term fading and long term fading. Short term
fading is also known as fast fading, and it manifests itself as fast
fluctuations of the signal. Short term fading 1s caused by reflected signals
when the receiver moves. Long-term fading is caused by attenuation of
the direct wave due to obstructions like buildings, trees or poles along the
road.

3.3. Characterization of fading multipath channels

The characteristics of a fading channel are introduced in Section 3.3.1. In
Section 3.3.2, a number of useful correlation functions and power spectral
density functions that define the characteristics of a fading multipath
channel, are introduced. [n Sectton 3.3.3, several probability
distributions are considered in an attempt to model the statistical
charactenstics of the fading channel. The description that follows is very
similar to that covered in [6].

3.3.1. Characteristics of fading channels

[f an extremely short pulse, 1deally an impulse, is transmitted over a time-
varying multipath channel, the received signal might appear as a train of
pulses [6].

One characteristic ot'a multipath medium is the time spread introduced In
the signal that 1s transmitted through the channel. A second
characteristic is due to the time variations in the structure of the medium.
As a result of such time varations, the nature of the multipath varies with
time. These time variations also appear to be unpredictable to the user of
the channel. Hence, it 1s reasonable to characterize the time-variant
multipath channel statistically.

One needs to examine the effects of the channel on a transmitted signal
that i1s represented in general as:

S(2) = Re[s5), (1) €XPJ2AF (1)) wrrriiriiirirririaiiis i (3.1)
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where:

- sip(t) 1s the equivalent lowpass transmitted signal.

One needs to assume that there are multiple propagation paths.
Associated with each path is a propagation delay and an attenuation
factor. Both the propagation delays and the attenuation factors are time-
variant as a result of changes in the structure of the medium. Thus, the

received bandpass signal may be expressed 1o the form

V(1) = D A (SU = T (F)) oo (3.2)

where:

- A" (1) is the attenuation factor for the signal received on the n"™ path
- 1(t) is the propagation delay for the n' path.

Substitution for s(t) from (3.1) into (3.2) yields the result:

V(1) = Re{Zﬂ"({)exp(—j2zz;f,7"(l))s,(/ ~ " (IN]exp(j2Af 1)} oo (3.3)

It will be observed from (3.3) that the equivalent lowpass received signal
IS:

r(1y =y A"(1)exp( —j2af.t" (1)), (1 = 7" (1)) ooiiics oot i e, (3.4)

Since r(t) is the response of an equivalent lowpass channel to the
equivalent Jlowpass signal s,(t), it follows that the equivalent lowpass
channel 1s described by the time-variant impulse response

Mz, ) =D A Xp(—f 2, 7" (NS = T"(1)). oo (3.5)

Referring to (3.4), considering the case of an unmodulated carrier at
frequency f, then s (t)=1 for all t, and hence the received signal for the
case of discrete multipath, given in (3.4) reduces to

() = DAY EXP(=J 27 T" (1)) ooeoiee e (3.6)



54

Defining 8"(t)=2nrf.1"(t), then the received signal consists of the sum of a
number of time-variant vectors having amplitudes A"(t) and phases 6"(t).
One can expect the delays t"(t) associated with the different signal paths
to change at different rates and in a random manner. This implies that the
received signal r(t) can be modeled as a random process. When there are
a large number of paths, the central limit theorem can be applied. In that
case, 1(t) may be modeled as a complex-valued gaussian random process.
This also means that the time-variant impuise response h(t,t) is a
complex-valued gaussian random process in the t variable.

The multipath propagation model for the channel embodied in the
received signal r(t), given in (3.6) results in signal fading. The fading
phenomena 1s primarily as a result of the time variations in the phases
0"(t). The amplitude variations in the received signal are due to the time-
variant mujtipath characteristics of the channel.

When the impulse response h(t,t) is modeled as a zero-mean complex
valued gaussian process, the envelope l h(r,t)| at any instant t is Rayleigh
distributed. In this case, the channel is said to be a Rayleigh fading
channel. [If there are fixed scatterers in the medium, in addition to
randomly moving scatterers, h(t,t) can no longer be modeled as having
zero mean. In that case, the envelope | h(z,t)] has a Rice distribution and
the channel 1s said to be a Ricean fading channel. Common alternatives
to these two fading distributions are the Nakagami and Lognormal
distributions which will be discussed further in Section 3.3.3.

3.3.2. Channel Correlation Functions and Power Spectra

The equivalent low-pass impulse response h(t,t) i1s characterized as a
complex-valued random process in the t variable. It 1s assumed that h(z,t)
is wide-sense stationary. The autocorrelation function of h(z,t) i1s defined
as [6]:

¢((T,,T_,_;At):%E[h*(r,;f)h(rz;l+At)] ................................................................ (3.7)

In most radio transmission media, the attenuation and phase shift of the
channel associated with path delay t, is uncorrelated with the attenuation
and phase shift associated with path delay 7,. This is called uncorrelated
scattering. The assumption is made that the scattering at two different
delays 1s uncorrelated and is incorporated into (3.7) to obtain:
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%E[h DTt + ALY = G ATSADS(T) = Ty) oo (3.8)

If At 15 set to 0, the resulting autocorrelation function ¢.(t;0)= ¢(7) is the
average power output of the channel as a function of the time delay T.
d.(7) 1s called the multipath intensity profile of the channel.

In practice, the function ¢.(1;At) is measured by transmitting very narrow
pulses and cross-correlating the received signal with a delayed version of
itself. Typically, the measured function ¢.(t) may appear as shown in
Figure 3.3.

Figure 3.3
A typical multipath intensity profile

The range of values of t over which ¢.(t) 1s nonzero 1s called the
multipath spread of the channel and is denoted by T,,.

An analogous characterization of the time-variant multipath channels can
also be done in the frequency domain. By taking the Fourier transform of
h(t;t), one obtains the time-vanant transfer function H(f;t) where f is the
frequency variable.

H(f;t) has the same statistics as h(t;t), which has been modeled as a
complex-valued zero-mean gaussian random process in the t variable.
Under the assumption that the channel is wide-sense stationary, the
autocorrelation function is defined as:

D_(f,, [ A1) = % ELH * (i3t H Sy 18+ AD] oo (3.9)
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D (f),f5;At) is related to ¢.(T;At) by the Fourier transform;

D (f,, [r:A)= _rgi:(,(rl;A()cxp(—j27rA_/'r,) AT, =@ (Af ;D) oo (3.10)
where:
- A= 61,

d(Af; At) 1s the spaced-frequency, spaced-time correlation function of
the channel. In practice, it can be measured by transmitting a pair of
sinusoids separated by Af and cross-correlating the two separately
received signals with a relative delay At.

If in (3.10) At 1s set to zero, then with @ (Af;0)= P (Af) and ¢(7;0)=
$(T), the transform relationship simply is:

D (A) = j¢,(r)exp(—j27rA/'T) AT e (3.11)

This relationship 1s depicted graphically in Figure 3.4.

IR
¢ (1)
D (Af) @, (1)
Fourier
.u‘anS{o“[n
S A) pair
« ] g o
(A7, == a4 =

Spuced — frequency correlation function : . . .
P Jreq ) / Multipath int ensity profile

Figure 3.4
Relationship between ® (Af) and ¢ (7}
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As a result of the Fourier transform relationship between ®.(Af) and
d.(T), the reciprocal of the multipath spread is a measure of the coherence
bandwidth of the channel. This relationship is given by:

I

B o e e e s 3.12
(A), T (3.12)

(Af), denotes the coherence bandwidth. Two sinusoids with a frequency
separation greater than (Af). are affected independently by the channel.
When an information-bearing signal 1s transmitted through the channel, if
(Af). 1s small in comparison to the bandwidth of the transmitted signat,
the channel 1s said to be frequency-selective. In this case, the signal js
severely distorted by the channel. However, if (Af). is large 1in
comparison with the bandwidth of the transmitted signal, the channel is
said to be frequency-nonselective.

The time varations in the channel are evidenced as a Doppler
broadening. In order to relate the Doppler effects to the time variations of
the channel, the Fourier transform of ¢.(Af;At) with respect to the
variable At 1s defined to be the function S(Af;a).

With Af set to zero and S.(0;a)= S.(a), the equation is
S (a)= I¢C(Al)exp(~j27mA1) AN oo (3.13)

The function S(at) 1s called the Doppler power spectrum of the channel,
and it gives the signal intensity as a function of the Doppler frequency a.

From (3.13), it i1s noted that 1f the channel 1s time-variant, then ¢ (At)=I
and S.(a) becomes equal to the delta function &(a). Hence, when there
are no time variations in the channel, there 1s no spectral broadening
observed in the transmission of a pure frequency tone.

The range of values of o over which S, (a) 15 nonzero 1s called 