


ABSTRACT 

The problems of optimal as well as suboptimal detection for COMA 
transmissions over an additive white Gaussian noise (A WGN) channel, have 
been the focus of study in the recent past. However, COMA transmissions 
are frequently made over channels which exhibit fading and/or dispersion; 
hence receivers need to be designed which take into account this behaviour. 

In spite of the major research effort invested in multiuser demodulation 
techniques, several practical as well as theoretical open problems still exist. 
Some of them are considered in more detail in this thesis. The aim of the 
thesis is to develop multiuser demodulation algorithms for mobile 
communication systems in frequency-selective fading channels, and to 
analyze their implementation complexity. The emphasis is restricted to the 
uplink of an asynchronous OS-COMA system where the users transmit in an 
uncoordinated manner and are received by one centralized receiver. 

The original work that is undertaken for the MScEng study is the evaluation 
of a multiuser receiver structure for a frequency-selective fading channel, 
where there exists a steady specular path and two fading paths. 
Furthermore, the effect of using selection diversity is investigated by 
examining the bit error rate, asymptotic multi user efficiency and near-far 
resistance of the proposed detector structure. These resu lts are confirmed 
both analytically and by simulation in the thesis . An investigation is also 
conducted into the application of neural networks to the problem of 
multiuser detection in code division multiple access systems. The neura l 
network will be used as a classifier in an adaptive receiver which 
incorporates an extended Kalman filter for joint amplitude and delay 
estimation. Finally, some open problems for future research will be pointed 
out in the thesis. 

Keywords: A WGN channel , OS-COMA system, frequency-selective, 
multi user demodu lation, asymptotic multiuser efficiency, near-far resistance, 
neural network, Kalman filter. 
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PREFACE 

The research detailed in this thesis was carried out at the University of Natal 
in the School of Electrical and Electronic Engineering. I became involved 
with COMA research while working at the RF and Microwave department at 
the previous company I was employed at, KENTRON. Returning to 
University on a part-time basis at the beginning of 1996, had given me the 
opportunity to concentrate more on academic research. 

The first year of the research included mostly literature study. During this 
part of the studies, I have had the pleasure of working with Prof. F Takawira 
at the University of Natal on the subject of using a neural network and 
extended Ka lman Filter based adaptive multi user receiver for COMA 
systems. The reader is referred to the original publication of [138) in this 
regard. The subsequent years consisted of writing simu lation and analytical 
software, conducting extensive simu lations that finally culminating In the 
compilation of this thesis. I have had the pleasure to be involved in the 
study of a subject matter that is very current, interesting and practical. 
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Chapter 1: Introduction 

The goal of wi re less communications is to allow the user access to the 
capabilities of the global network at any time without restrictions imposed 
by location or mobility. Cellular systems are currently limited to voice and 
low-speed data communications within areas covered by base stations. 
Wider commercial applications are developing in terrestrial wireless voice 
telephony and interactive data transmission between personal computers and 
portable digital assistants. At present, there are over 30 million cellu lar 
subscribers worldwide most of wh ich use analogue techniques. 

1.1. Historical Background 

Cellular systems were pioneered during the 70 ' s by Bell Laboratories in the 
United States and the earliest systems were called Advanced Mobile Phone 
Service (AMPS) . All of these "first generation" cellular systems used 
analogue frequency modulation for speech transmission and frequency shift 
keying for signaling. Users were separated in frequency and adjacent cel ls 
were a ll ocated different parts of the spectrum. This resulted in a resource 
sharing mechanism known as frequency division multiple access. AMPS 
cellular service has been available to the public since 1983, and there are 
currently 20 million subscribers in the United States, Canada, Central and 
South America and Australia. 

In Europe, several first-generation systems similar to AMPS were 
establi shed. This included Total Access Communications Systems (TACS) 
in Britain, Spain, Austria and Italy; Nordic Mobile Telephone (NMT) in 
severa l countries, C-450 in Germany and Portugal. Similar to AMPS, these 
systems were based on FDMA for speech and FSK for signaling. 

Apart from the TACS system, the European Community established a digital 
standard "Group Speciale Mobile" in 1982 based on time-division multiple 
access (TDMA). The work from this group became known as the Global 
System for Mobile Communications (GSM). The GSM system was 
deployed in 1993 and has experienced spectacular growth since then. 
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The UK Department of Trade and Industry started an initiative which led to 
assignment of 150MHz near 1.8GHz for personal communications networks 
(PCN) in Europe and the choice of GSM as a standard for that application. 
This system is known as DCS 1800. In North America, second generation 
systems based on TDMA have been proposed in order to cope with the 
growing demand for mobile communications access and is known as IS-54. 
This system is able to offer triple the capacity (users per cell) of AMPS. A 
complication however is that the IS-54 standard must operate using the same 
spectrum as the existing AMPS systems, resulting in a "dual-mode" digital­
analogue operation. 

In Japan, a second generation TDMA based cellular system was established 
in 1991 called Personal Digital Cellular (PDC) which also offers advantages 
over analogue systems in terms of increased system capacity and reduced 
transmit power requirements. 

From August 1995, CDMA based lS-95 has also been in operation in 
selected areas in the United States and other trial areas in non-US countries. 
The IS-95 CDMA system approach offers advantages over other digital 
standards in increased capacity, reduction of the need for planning frequency 
assignments to cells and the ability to accommodate different transmission 
rates. It is for this reason that CDMA has been chosen as the protocol for 
the 3'" generation systems [6]. 

1.2. Multiple-access techniques 

Multiple-access refers to a technique to share a common communications 
channel between multiple users. When designing multiuser communication 
systems, one has the option of using space, time or frequency domain 
designs. 

The oldest multiple-access technique is frequency-division multiple access 
(FDMA). Here, each user's signature waveform occupies its own frequency 
band and the receiver can separate the user 's signals by simple bandpass 
filtering. FDMA is a simple scheme and is applicable to both analog and 
digital modulation. It is not, however, very flexible for providing variable 
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bit rates, which IS an important requirement In future communication 
services. 

The introduction of digital modulations enabled the appearance of time­
division multiple-access (TOM A), in which each user's transmitted signa l is 
limited to a predetertnined time interval. TOMA is relatively simple to 
implement and it is very flexible for providing variable bit rates. Increasing 
the bit rate can be implemented by assigning to a user more transmission 
intervals. However, the transmissions of all the users must be exact ly 
synchronized to each other. 

The invention of spread-spectrum techniques for communication systems 
with anti-jamming and low probability of undesired interception capabi lities 
lead to the idea of code-division multiple-access (COMA). COMA 
protocols do not achieve their multiple access property by a division of the 
transmissions of different users in either time or frequency. It instead 
assigns to each user a different code. This code is used to transform a user ' s 
s ignal into a wideband (spread-spectrum) signal. The COMA protocol is 
c lassified according to the modulation method used to obtain the wideband 
signal. There are four protocol types: direct-sequence COMA, frequency 
hopping COMA, time hopping COMA and hybrid COMA. In direct­
sequence COMA, the original signal is modulated on a carrier and then 
further modulated by a binary code sequence with a bandwidth much larger 
than the origina l bandwidth. In the frequency hopping COMA protocols, the 
wideband channel is divided into frequency bands. Ouring the transmission 
of a user's signal , the carrier frequency is changed periodically resulting in a 
periodic change of the frequency band occupied by the user. In time hopping 
COMA protoco ls, a user ' s s ignal is not transmitted continuously, but instead 
in short intervals. The start of each burst is decided by the code assigned to 
the user. The hybrid COMA protoco ls use a combination of the modulation 
methods of direct sequence, frequency hopping or time hopping protocols to 
obtain the wideband signal. Combining the modulation methods uses the 
speci fic advantages that each modulation method offers. 
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1.3. COMA System concepts 

Section 1.3.1 gives the theory on the transmission and generation of a direct­
sequence COMA signal. This is followed in Section 1.3.2 by a description 
of the reception of this COMA signal. 

1.3.1. OS-COMA transmitter structure 

In the OS-COMA protocols the data signal is directly modulated by a digital 
code signal. The data signal can be either an analog signal or a digital one. 
In most cases, it will be a digital signal. In the case of a digital signal , the 
data signal is directly multiplied by the code signal and the resulting signal 
modulates the wideband carrier. 

L /.J 

Wide-band 
Data code Data mOdulato 

modulation 

code generato 
carrier 

generator 

Figure 1.1 
Transmitter block diagram 

A block diagram of a OS-COMA transmitter is shown in Figure 1. 1. The 
binary data signal modulates a RF carrier. The modulated carrier is then 
modulated by the code signal. This code signal consists of a number of code 
bits or "chips" that can be e ither + I or - I. To obtain the desired spreading 
of the signal, the chip rate of the code signal must be much higher than the 
data rate of the information signal. For the code modulation, various 
modulation techniques can be used but usually some form of phase shi ft 
keying (PSK) like binary phase shift keying (BPSK), differential binary 
phase shift keying (O-BPSK), quadrature phase shift keying (QPSK) or 
minimum shift keying (MSK) is employed. 
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1.3.2. CDMA receiver structure 

After transmission of the signal, the receiver as shown in Figure 1.2, uses 
coherent demodulation to despread the spread spectrum signal, using a 
locally generated code sequence. To be able to perform the despreading 
operation, the receiver must not only know the code sequence used to spread 
the signal, but the codes of the received signal and the locally generated 
code must a lso be synchronized. This synchronization must be 
accomplished at the beginning of the reception and maintained until the 
whole signal has been received. The synchronization/tracking block 
performs this operation. After despreading, a data modulated signal results 
and after demodulation the original data can be recovered . 

L ~ 

Code 
synchr.1 
tracking 

Figure 1.2 
Receiver structure 

/""" ~,> 

Data Code 
demodulator demodulator Data 

Carrier Code 
generator generator 

The typical receiver consists of a bank of matched filters which are matched 
to the users spreading codes. The output of the matched filter bank goes into 
a detector. One of the distinguishing factors between CD MA receiver 
architectures is the way the output of the matched filter bank is processed. A 
number of structures have been proposed. 

The first receiver structure is the simple matched filter receiver or 
conventional detector. For this receiver, the outputs of the matched filter 
bank are sampled at the symbol intervals and the data demodulation is 
accomplished by considering the sign of the output of the respective 
matched filter. This receiver will be discussed in detail in Chapter 2. At 
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this point, it will suffice to say that the conventional receiver is not optimal 
for demodulation. This receiver suffers from the near-far problem. Strong 
signals may completely bury the weak ones if the conventiona l receiver is 
applied. Therefore, the design of the conventional COMA systems relies on 
accurate power control [5,7] to alleviate the near-far problem, and spreading 
sequence design [5,8,9, 10] to reduce the cross-correlations between the 
signature waveforms of the users. I f the number of users is large, the 
performance of the conventional receiver is poor even in the absence of the 
near-far problem due to the large level of MAl. This conventional signal 
separation method was originally designed for synchronous transmission 
with orthogonal COMA codes over ideal channels without multipath 
propagation. However, when this method is applied to the case of 
transmission over multipath channels, it is no longer optimum. This is due 
to the fact that the general principle is to detect the one user signal of interest 
and to treat all the other user -signa ls as noise. This method of signal 
detection is termed sing le user detection. In the cellular mobile radio 
systems, the nature of the interfering signals whidt produce multiple-access 
interference (MAl) is not like noise because they are produced by other 
users with known COMA codes. Information about the COMA codes and 
channel impulse responses is avail ab le to both the desired and interfering 
users. 

To overcome this suboptimali ty of the single user detection approach, the a 
priori knowledge about MAl has to be taken into account in the detection 
process. In this way, the decision of all the data symbols of all users 
becomes an interdependent process termed multi-user detection (MUD). An 
alternat ive to the conventional receiver is to apply a receiver designed to 
take the multiple-access interference into consideration, that is multiuser 
demodulation. The multiuser demodulation is related to co-channe l 
interference rejection [11]. Co-channel interference is caused by signals of 
users transmitting in the same frequency band, and is usually rejected by 
adaptive filtering [12,13]. This can be seen as a special case of multiuser 
demodulation. A multi user detector can also make a joint detection of the 
data of all users. 

MUD utilises the MAl as redundant information which multiple access users 
are sharing in a common channel. MUD principles can be divided into 
interference cancellation (IC) and joint detection (JO) principles. 
The idea of IC, which is closely related to decision feedback (OF) is: 

to detect part of the transmitted data symbols 
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to reconstruct the contribution of these transmitted data symbols to the 
compound received signal and 
to subtract this contribution from the compound received 
signal 

Hence, for signals not yet detected, interference is reduced and their signal­
to-noise ratio is improved provided that most of the previously detected data 
symbols are detected correctly. Once the contribution of these data symbols 
is cancelled, the next part of the transmitted data symbols is detected and the 
contribution of this next part of the transmitted data symbols is cancelled 
from the compound received signal. By this principle, the effect of intracell 
interference is eliminated. However, the approach of IC is not optimum, as 
when detecting part of the transmitted data symbols, all the other 
contributions that have not yet been cancelled, are still treated as noise. 

The idea of 10 is to detect the data symbols of all users jointly in one step, 
using all the a priori knowledge about MAl. By 10, intracell interference is 
eliminated since no contribution of any user to the compound received signal 
is treated as noise. Hence, the principle of 10 is optimum. 

For two reasons, MUD is an obvious detection principle for the uplink. 
Firstly, it is the task of the base station receiver to detect the data symbols of 
all active users within the cell. Secondly, the knowledge required for MUD 
about all user-specific COMA codes is available at the base station. Hence, 
intracell interference, which is a major component of the total interference, 
can be eliminated by applying MUD to the uplink. In the case of the 
downlink, at an individual mobile station receiver the spreading sequences 
used for transmission from the base station to other mobile stations are not 
known a priori. Furthermore, only the data symbols addressed to that 
individual mobile station have to be detected. Hence, the obvious data 
detection principle for the downlink is single user detection (SO). However, 
the application of MUD is also conceivable for the downlink. As in the 
uplink, also in the downlink MUD leads to a performance enhancement over 
SO due to the elimination of intracell interference. The application of MUD 
to the downlink requires that the spreading sequences of all active users are 
known at each mobile station. The applied spreading sequences of all 
presently active users can either be communicated from the base station to 
all mobile stations or can be estimated at the mobile stations. 



8 

The detector performance improves in the order SO, IC, JO. In the same 
order, the potential of interference elimination and therefore system capacity 
enhancement increases. JO has the potential to perfectly combat intracell 
interference, which is the main problem of COMA. However, this 
substantial improvement has to be paid for by an increased receiver 
complexity. 

The first publication on multiuser detection was presented by Schneider 
[14], who studied the zero-forcing decorrelating detector. Later, Kashihara 
[15] and Kohno et a!. [16] stud ied multiple-access interference cancell ation 
receivers. Both Schneider and Kohno also suggested the use of the Viterbi 
algorithm for optimal detection in asynchronous multiuser communications. 
The real trigger to the increasing interest in multiuser detection was Verdu's 
work on multiuser detection [17,18], where the application of the Viterbi 
algorithm for optimal maximum likelihood sequence (MLS) detection was 
developed. and its performance was analyzed. Verdu showed that the 
COMA systems are neither interference nor near-far limited. However, 
these are the actual limitations of the conventional single-user receiver. 

Since the optimal multiuser detection is prohibitively complex to implement 
for many practical applications, numerous suboptimal schemes have been 
investigated. A review of multiuser demodulation literature will be 
presented in Chapter 2. The work on multi user receivers has demonstrated 
that even suboptimal detectors with a significant ly lower implementation 
complex ity than the optimal detector can greatly improve the detection 
performance and capacity of multi user communication systems. 
Furthennore, robust detection in the presence near-far interference was 
shown to be possible. 

1.4. Aim and outline of the thesis 

In spite of the major research effort invested in multiuser demodulation 
techniques, several practical as well as theoretical open problems still ex ist 
in the field of multi user receivers. Some of them are considered in more 
detail in thi s thesis. The aim of the thesis is to develop practical multiuser 
demodulation algorithms for mobile communication systems with 
frequency-se lective fading channels, and to analyze their implimentation 
complexity. The emphas is is restricted to the uplink of asynchronous OS-
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COMA systems where users transmit In an uncoordinated manner and are 
received by one centralized receiver. 

The work undertaken for this thesis is an extension of the work of [96 ,97) 
where a 2-path time dispersive fading channel was considered and a receiver 
structure was derived using maximal ratio combining. In this thesis, a 3-
path time dispersive fading channel is considered. Furthermore, selection 
diversity is incorporated into the receiver structure. 

The remainder of this chapter outlines the subsequent chapters in the thesis. 

Chapter 2: The fundamentals of direct sequence spread spectrum are 
introduced in thi s chapter. The notations and mathematical model for the 
COMA system to be utili zed in the later chapters are introduced. The 
relevant literature on single-user fading channels as well as on multiuser 
demodulation is reviewed. Furthermore, this chapter deals with the 
di scussion of detector structures for the additive-white Gaussian noise 
channel. 

Chapter 3: This chapter deals with the theory behind fading . This 
background knowledge is required for th e deve lopment of the system model 
for the channel for use in later chapters. 

Chapter 4: This chapter deals with multiuser receiver structures for the 
fading channel , which is analogous to their counterp3l1s for the Gaussian 
channel. 

Chapter 5: This chapter is the original work that has been undertaken for the 
MSc study. This is the evaluat ion of a multiuser receiver structure for a 
frequency-se lective fading channel, where there exists a steady specular path 
and two fading paths. 

Chapter 6: This chapter is an extension of the work done in the Chapter 5. 
Here the effect of select ion diversity is investigated by examining the bit 
error rate (BER) results. These results are confirmed both analytically and 
by simu lation. 

Chapter 7: This chapter is based on the research conducted in (138). The 
application of neural networks to the demodulation of spread spectrum 
signals is examined. The proposed multiuser detector for COMA systems 
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incorporates an extended Kalman filter and a neural network. The BER 
results for this receiver are obtained and compared with those in [60]. 

Chapter 8: This chapter concludes the thesis. The results and contributions 
of the previous chapters are summarized and discussed. Furthermore, some 
open problems for future research are pointed out. 

1.5. Original contributions of this thesis 

A number of original contributions in the theory of MUD have been made 
in this thesis. These are listed below. 

• A MUD, incorporating maximal ratio combining (M RC), for a three path 
fad ing channel is derived. The BER and asymptotic multiuser efficiency 
CAME) of this detector are characterised. It is shown that the 
performance of this detector is good. 

• A MUD for selection diversity is derived. The performance of this 
detector is characterised in terms of the BER and AME. It is shown that 
the results of the analytical and simulation models for this detector are in 
agreement with each other. 

• An adapt ive MUD based on the neural network is derived. The 
performance of this detector is stud ied via computer simulations 
showing that it performs favourably compared with others that have 
appeared in the literature. 
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Chapter 2: Detectors for the A WGN channel 

2.1. Introduction 

The emphasis in this chapter is on centralized multiuser detectors that 
process the matched filter output to provide statistics for both channel 
amplitude estimation and data detection in the A WGN channel. 

Multiple access interference (MAl) is the factor which limits the capacity 
and performance of OS-COMA systems. The conventional detector does 
not take into account the existence of MAl. It follows a single-user 
detection strategy in which each user is detected separately without regard 
for others. Because of the interference among users, it will be shown in 
Section 2.3. that the better detection strategy is one of multi-user detection. 
Here, information about multiple users is used jointly to better detect each 
individual user. It will be shown in thi s chapter that the utili zation of 
multiuser detection algorithms has the potential to provide significant 
additional benefits for the OS-COMA systems [6] . 

The organisation of thi s chapter is as follows: The COMA system model is 
discussed in Section 2.2. Single user detectors are di scussed in Section 2.3 
while an investigation into multiuser detectors is conducted in Section 2.4. 

2.2. CD MA system model 

In Section 2.2.1. the COMA signal model is first defined mathematically. In 
Section 2.2.2. the COMA channel and receiver model are thereafter 
mathematically defined. 

2.2.1. CD MA Signal model 

One needs to consider a COMA channel that is shared by K simultaneous 
users. Each user is assigned a signature waveform ak(t) of duration T, where 
T is the symbol interval. A signature waveform may be expressed as [6] : 



/1"- 1 

a,(t)='Ia,(II)p(l-n7; ), oSlsr ..................................................................... (2.1) 
1/=0 

where: 

ak(n) , OsnsN-I} is a PN code sequence consisting ofN chips that take 
values 1 ± I } 
pet) is a pulse of duration T, . where T, is the chip interval 
T is defined as the symbol duration 
There are N chips per symbol and T = N*T, 

Assume that all K signature waveforms have unit energy per bit, hence 

T J a,' (I)dl = 1 ... ... .. .. ..... ... ... .. ... ................................................................................... (2.2) 
o 

12 

The cross-correlations between pairs of signature waveforms are defined as 
foll ows: 

1 T 

p" .(T) = rJ a,(I)a,(t-T)dl, II'herei S k ................... ....................... ... .. .. .. ... .... (2.3) 
o 

,. 
p" (T) = ~Ja, (I)a, (I + r - T)dl, where i S k ....................................................... (2.4) . r 

o 

Note that i and k are the respective users. 
Assuming that BPSK signaling is used , then the information sequence of the 
k th user is denoted by {bk(x)), where the value of each information bit may 
be ± I in the x'" symbol interval. 

In purely asynchronous COMA systems the data packet length are very 
large. Each user activates and deactivates its terminal independently from 
each other. Thus, it is not practical to assume that the whole received signal 
or the matched filter output vector would be processed in a receiver. The .. 
received signal can be processed in processing windows of length 2M+ I 
where M is a positive integer and the window length is measured in symbol 
durations T. The detection problem in an asynchronous channel is more 
complicated than in a synchronous channel. In a synchronous channel, the 
bits of each user are aligned in time. Detection can focus on one bit interval 
independent of the others. In most realistic applications, the channel is 
asynchronous and there is overlap between bits of different intervals. Any 
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decision made on a particular bit ideally needs to take into account the 
deci sions on the two overlapping bits of each user; the decisions on these 
overlapping bits must then further take into account decisions on bits that 
overlap them and so on. Hence, the detection problem must optimally be 
framed over the whole message. More information on this model will be 
provided in Chapter 6 of this thesis. 

Hence, consider the transmission of a block of bits of length 2M+ I. 
Then, the data block from the k'" user is: 

b, ~[b,(-M) ..... b,(M)]T ...... .............................................................. ......... .... (2.5) 

The data symbols bk(x), x=-M ... M, may be obtained after the steps of source 
and channel coding and interleaving. 

The signal, before spreading, is given by [6]: 

S,(I) ~ ~E, (l)b, (t)coS(Wol + 0, ) ........................................... , ................................ (2.6) 

where: 

Ek is the energy of the signal of user k 
Wo is the carrier frequency 
9k is the phase of the signal of user k 

Spreading is accompli shed by the multiplying (2 .6) by (2.1). Generation of 
the transmitted signal has been shown in Figure 1.1 and it is given by: 

s, (t) ~ ~ E, (I)a, (I)b, (I) COS(Wol + 0,) ......................... ............................................ (2.7) 

The bandwidth expansion factor or the processing gain, is defined as: 

8 ~!... ~ ~ ........................................................................................... (2.8) 
(" T R , , 

where: 

Rb is the data rate 
R, is the chip rate 
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The correspo nding equivalent lowpass, transmitted waveform may be 
expressed as [6] 

M 

s, (/) = JE, Lb,.(x )a , (/ -xT)cosO, ............................................... ................. ....... (2.9) 
.f ~· M 

where: 

- E, is the signal energy per bit. 

The composite transmitted signal for the K users may be expressed as 

, 
S(/) = L S, (t - e, ) 

" , 
= L Lb,(x)jE;a, U - xT - e,)cosO, ................................. .. ...... .. .. .... ...... .. (2.10) 

!'.- 1/ A .. , 

where: 

- 1, are the transmission delays, which satisfy the condition that 0 '; 1,<T 
for l ,; k ,; K 

Th is is the model for the multiuser transmitted sig nal in an asynchronous 
mode. In the case of synchronous transmission, 1, =0 for I ,; k ,; K 

2.2.2. COMA channel and receiver model 

The s ignal s,(t) is transmitted over a time-variant linear radio channel with 
impulse response h,(1,t) , where 1 denotes the delay time, and t denotes the 
absolute time. This is shown in Figure 2.1. 
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n{t) 

,.(1) 

'i. (I ) 

Figure 2.1 . 
Continuous-time transmission model for multiple access 

The index k in h,(I,t) designates the link between the mobile station 
transmitter k and the base station receiver. 

- The delay time 1 is the delay in excess of the minimum propagation time 
between transmitter k and receiver, and characterizes the time spread 
introduced by multipath propagation when a Dirac impu lse is transmitted 
over the channel. 

- The minimum delay time is zero. 
The maximum delay time resulting from multipath propagation IS 
denoted by 't rn:u . 

The signal contributions appearing at the receiver and resulting from the 
signal Sk(t) transmitted by user k, is given by the convolution product 

'_. 
' , (r) = fs, (, - r)h, (r ,,)dr ......... ...... ............................................................. .. .... .. (2 . 11) 

o 

The compound received signal observed at the receiver is the superposition 
of the K contributions r,(t), k= I .. ... K of all K users and is disturbed by an 
additive noise signal n(t) . 
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K 

,,(1) = L,, (I)+n(t) ............................................................. .. ...... ...... ... ..... ... ... ........ (2 . 12) ,-, 

Adjacent cell intracell interference and thermal noise contribute to n(t). [n 
the case of CDMA, the K signals rk(t), k= l. .... K, are neither disjoint in the 
frequency domain nor in the time domain, but are only separable by means 
of the different user-speci fie spreading sequences. It is assumed that the 
time duration of the signal Sk(t) is so short, that the channel impulse response 
hk(T,t) may be considered time-invariant during the transmission of Sk(t) ie. 
hk(T) = hk(T,t). 

2.3. Single user detection 

The conventional detector is considered in Section 2.3.1 while methods of 
overcoming MAl are di scussed in Section 2.3.2. 

2.3.1. Conventional Detection 

Herein a more detailed look is taken at the conventional detector and the 
effect of multiple access interference. In a synchronous channel , all bits of 
all users are aligned in time. To simplifY the discussion , the assumption is 
made that the channel is synchronous and all carrier phases are equal to zero. 
This enables one to use baseband notation while working only with real 
signals. Further simplifications are that each transmitted signal arrives at the 
receiver over a single path (no multipath), and that the data modulation is 
binary phase-shift keying (BPSK). Using the results of (2 .7) to (2.12), the 
received signal is given as (2.13). 

A 

,.(1) = L,j E, (l)b, (I)a, (I) + 11(1) ............................................................................... (2.13) .. , 
- As defined in Section 2.2.1,.JE: (t), ak(t) and bk(t) are the amplitude, 

signature code waveform and modulation of the k'h user respectively. 
- n(t) is additive white Gaussian noise, with a two-sided power spectral 

density ofNoI2 W/Hz. 
- The power of the k'h user is assumed to be constant over a bit interval. As 
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explained in Section 2.2.1, a total of 2M+ I transmitted bits is assumed. 

The conventional detector for the received signal described in (2.13) is a 
bank of K correlators as shown in Figure 2.2. 

I ' 
,. . , 

yJ Decision b, 
1= T 

rUl (Jl(r) 
, .1': 

~J Decision b~ 
( = T 

0. (1) 

, . . , 
'--+----+1 Decision 

r "'" T 

Matched filter bank 

Figure 2.2. 
The conventional detector 

Each code waveform is regenerated and correlated with the received signal 
in a separate detector branch. The correlation detector can be equivalently 
implemented through what is known as simple matched filtering, hence the 
conventional detector is often referred to as the simple matched filter 
detector. The outputs of the correlators (or matched filters) are sampled at 
the bit times, which yields "soft" estimates of the transmitted data. The final 
± I "hard" data decisions are made according to the signs of the soft 
estimates. 
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It is evident from Figure 2.2 that the conventional detector follows a single­
user detector strategy, in that each branch detects one user without regard to 
the existence of the other users . Thus, there is no multi-user detection. The 
success of this detector depends on the properties of the correlations between 
codes. The requirement is that the correlations between the same code 
waveforms (autocorrelations) must be larger than the correlations between 
different codes (cross-correlations). The correlation va lue has been defined 
in (2.3) and is obtained by setting T to 0 for the synchronous case, to yield: 

T 

P, .• = ; . J ", (t)a, (I)dl ................................................................ .. ........... .. ...... ....... (2.14) 
o 

Note that if i=k, p",=I , and if i* k, O:O;Pk.k< 1. The output of the k'" user's 
correlator for a particular bit interval is [6] 

1 T 

I', = T J 1'(I)a, (I)dl 
o 

A 1 T 

= .jE;b, + I p" j£.b, +:-J 1I(t)a, (I)dl 
i "' I .I"~ T l) 

= .jE;b, +MAJ, +z, ......................................................................................... (2.15) 

Correlation with the kth user itself gives rise to the recovered data term, 
correlat ion with all the other users gives ri se to multiple access 
interference(MAI} , and correlation with the thermal noise yields the noise 
term Zk. 

The conventional detector has a complexity that grows linearly with the 
number of users and its vu lnerability to the near-far problem requires some 
type of power contro l. One needs to consider other types of detectors that 
also have a linear computational complex ity but does not suffer from the 
near-far problem. 

2.3.2. Overcoming the effect of MAl 

In thi s section, various methods are suggested on overcoming the 
detrimental effects of MAl. Some of these solutions entail opt imal code 
waveform design , power control, FEC coding and sectored/adaptive 
antennas. Each of these solutions will be briefly discussed in this sect ion . 
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al code waveform design 

This approach is aimed at the design of spreading codes with good cross­
correlation properties. Ideally, if the codes were orthogonal , then Pi.k=O, and 
there would be no MAl term. However, since in practice most channels 
contain some degree of asynchronism, it is not possible to design codes that 
maintain orthogonality over all possible delays. So instead, one looks for 
codes that are nearly orthogonal , so that they have as Iowa cross-correlation 
as possible. 

bl power control 

The use of power control ensures that all users arrive at about the same 
power, and therefore no user is unfairly disadvantaged relative to the others. 
The mobiles adjust their power through two methods. One method is for the 
mobiles to adjust their transmitted power to be inversely proportional to the 
power level it receives from the base station (open loop power control). The 
other method is for the base station to send power control instructions to the 
mobiles based on the power level it receives from the mobiles (closed loop 
power control). 

cl FEC Codes 

The design of more powerful forward error correction (FEC) codes allows 
acceptable error rate performance at lower signal-to-interference ratio levels. 

ill Sectoredl Adaptive antennas 

Directed antennas are used that focus reception over a narrow desired angle 
range. Hence, the desired signal and some fraction of the MAl are enhanced 
(through antenna gain), while the interfering signals that arrive from the 
remaining angles are attenuated. The direction of the antenna can be fixed , 
as is the case for sectored antennas, or adjusted dynamically. In the latter 
case, adaptive signal processing is used to focus the antenna in the direction 
corresponding to a particular desired user(s). 
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2.4. Multi-user detection 

In multi-user detection, code and timing (and possibly amplitude and phase) 
information of multiple users are jointly used to better detect each individual 
user. The important assumption is that the codes of the multiple users are 
known to the receiver a priori. 

Verdu's work [17, 18] , proposed and analyzed the optimal multiuser 
detector, or the maximum likelihood sequence detector. Unfortunately, this 
detector is too complex for practical OS-COMA systems. Subsequently, 
most of the research has focused on finding suboptimal multi user detector 
solutions which are more feasible to implement. 

Most of the proposed detectors can be classified in one of two categories: 
linear multi-user detectors and subtractive interference cancellation 
detectors. In linear multi-user detection, a linear mapping is applied to the 
soft outputs of the conventional detector to produce a new set of outputs, 
which should ideally provide better performance. In subtractive interference 
cancellation detection, estimates of the interference are generated and 
subtracted out. 

The organisation of this section is as follows: The matrix-vector notation is 
first introduced in Section 2.4.1 . Some background information is given on 
the asynchronous channel in Section 2.4.2. A brief discussion on multiuser 
receiver performance is given in Section 2.4.3. In Section 2.4.4, MLS 
detection is considered while linear detectors are considered in Section 2.4.5. 
Subtractive interference detectors are considered in Section 2.4.6 while other 
detectors are considered in Section 2.4.7. 

2.4.1. Matrix-Vector notation 

In discussing multi-user detection, it is convenient to introduce a matrix­
vector system model to describe the output of the conventional detector. 

Consider a case with 3 users in a synchronous system. Let the amplitude of 

the signal for the kth user be given by Ak = ..fE;. Using (2.15), the outputs 
of the matched filter banks for each of the 3 users for one bit are given as: 
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J 1 T 

y, = A,b, + LP, .• JE,b, +-fn(t)a, (/)dl ........................................................... (2.16) 
;=1.".* T 0 

J 1 T 
y , = A, b, + LP, .• /E), + - f n(t)a , (t)dl ........................................................... (2.17) 

, .. I .;",j T 0 

J 1 T 

y, =AJb, + L P,.,JE,b, +--; fn(t) aJ(/)d' ........................................................... (2.18) 
,=1., .. * 1 0 

This can be written in the matrix-vector form as: 

or 

y = RA b + z ..... ... .. ...... ............................................................................................. ( 2.20) 

For a K user system, the vectors b,z and y are the K-vectors that hold the 
data, noise and matched filter outputs of all K users, respectively; 
the matrix A is a diagonal matrix containing the corresponding received 
amplitudes; the matrix R is KxK correlation matrix, whose entries 
contain the values of the correlations between every pair of codes. 
Note that since Pi.' = p,-" the matrix R is symmetric. 

R can be split up into two matrices: one representing the autocorrelations, 
the other the crosscorrelations. Similar to (2.15), the conventional matched 
filter detector output can be expressed as three terms: 
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y=Ab+QAb +z ................................................................................. ...................... (2.2 1) 

Q contains the off-diagonal elements (crosscorrelations) of R, ie. R=I + Q (I 
is the identity matrix). The first term Ab, is the decoupled data weighted by 
the recei ved amplitudes. The second term, QAb, represents the MAl 
interference. 

2.4.2. Asynchronous Channel 

The continuous-time model expressed in (2.13) can easily be modified for 
asynchronous channel s by including the relative time delays between 
signals, as explained in Seclion 2.2. 1. The received signal is now written as 

, 
r(t) = 2: J E, (I)b, (I - T, la, (I - T, ) + I/(r) .............................................................. (2.22) ,., 

where 

- T k is the delay for user k. 

The di screte-time matrix-vector model describing the asynchronous channel 
takes the same form as (2.20). However, now the equation must encompass 
the entire message, thus assuming there are 2M+ I bits per user, the size of 
the vectors and the order of the matrices are (2M+ I )K. The vectors b, z and 
y hold the data, noise and matched filter outputs of all K users for all 
(2M+ I) bit intervals , and the matrix A contains the corresponding received 
ampl itudes. The matrix R now contains the partial correlations that exist 
between every pair of the 2M+ I code words and is of size [(2M+ I) x 
(2M+ I)J. Hence, (2.22) can now be rewritten as: 

M 1\ 

r(I) = 2: 2:b, (x),jE;a , (I - xT - T, )+n(l) .............................................................. (2.23) 
, ,,,-.1/ k .. 1 
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2.4.3. Multi-user receiver performance 

The perfonnance of multiuser receivers can be measured by the bit error 
rate (BER), as well as by mean squared error (MSE) of the detector output or 
channel estimates. Furthennore, other perfonnance criteria yielding simpler 
analysis than the bit error probability have also been considered. They 
include the asymptotic multiuser efficiency (AM E) [17, 18], and the near-far 
resi stance (NFR) [21 , 22]. The AME describes the asymptotic limit of the 
loss in the signal-to-noise ratio (SNR) as the power spectral density of the 
noise approaches zero. For coherent BPSK modulation in A WGN channels, 
AME is defined as 

1], : pS,~J', , ~i,:,:,o Q(J:; ) < 00 ...................... .......... ...................................................... (2.24) 

where sup denotes the smallest upper bound and p E [0, I] , 

I 's _ I
l 

2 Q(d) : )0 e dl ......................... ....................................................................... (2.25) 
_IT d 

is the nonnalized and sca led Gaussian complementary error function and Pk 

is the bit error probability of user k with the particular mu ltiuser detector. 
The near-far resistance is the value of the AME for the worst possible 
interfering energy combination and is defined as 

'7, : . inf 'h .................................................... ..................... .... ..... .... ...... .. ............ (2.26) 
f., ;w .. ,,,,. 

Note that inf denotes the infimum in (2.26). 
-

The detector for user k is said to be near-far resistant if TJk > O. The optimal 
multi-user receiver is considered in Section 2.4.4 and suboptimal ones in the 
Sections 2.4.5,2.4.6 and 2.4.7. 

2.4.4. Maximum-likelihood sequence detection 

T!,e detector which yields the most Iik~ly transmitted sequence, b , chooses 
b to maximize the probability that b was transmitted given that r(t) was 

received, where r(t) extends over the whole message. This probability is 
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referred to as the joint a posteriori probability. Under the assumption that all 
possible transmitted sequences are equally probable, this detector is known 
as the maximum-likelihood sequence (MLS) detector. 

The derivation of the MLS detector can be found in [6] and will not be 
duplicated here. However, it wi ll suffice to say that the optimum multiuser 

- - -
(MLS) detector selects the most like ly hypothesi s b = ( b

" 
... . .. , bK) given 

the observations, which corresponds to selecting the noise reali zation with 
minimum energy (considering the synchronous case), that is: 

r , 

bE arg mm J [,.(1) - L .jE;b,a, (t)] ' dl ......... ... ......... .. .................. ....... ........... (2.27) 
o ~ .. , 

The problem with the MLS approach is that there are 2 12M+ I IK possible b 
vectors; an exhaustive sea rch is impractical for typical message sizes and 
numbers of users. However, MLS detection can be implemented for OS­
C OMA by following the matched filter bank with a Viterbi algorithm [6, 75-
76]. However, the required Viterbi algorithm has a complexity that is still 
exponential in the number of users. 

Another disadvantage of the MLS detector is that it requires knowledge of 
the received amplitudes and phases. These values, however, are not known 
a priori , and must be est imated. One would need to use some of the 
parameter estimation techniques as discussed in Appendix I. 

The asymptotic multiuser efficiency of the MLS detector has been analyzed 
in [18 , 77-78]. MLS detector for trellis-coded modulated COMA 
transmissions in A WGN channels has been stud ied in [79], and for 
convolutionally encoded transmissions in [80]. The effect of delay 
estimation errors of MLS detector has been considered in [45]. Joint 
maximum like lihood sequence detection and amplitude estimation in 
A WGN channe ls has been analyzed in [63]. In [20] a recursive, additive 
metric for complexity-constrained maximum likelihood detection using 
breadth-first detection algorithms was proposed. The metric required linear 
filtering of the matched-filtered received signal vector. However, for this 
method to wo rk, perfect power control was required and the complexity of 
the receiver had not been substantia ll y reduced. The performance of the 
MLS detector was analyzed in [17, 18]. It turned out to be impossible to 
derive a closed fornl bit error probability expression for the MLS detector. 
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Upper and lower bounds, most of which are comp li cated to calcu late, were 
found. The simplest lower bound is the single-user bound (or matched filter 
bound) which is the performance of a communication system with one active 
user. 

Despite the huge performance and capacity gains over conventional 
detection, the MLS detector is not practical. A realistic direct-sequence 
system has a relatively large number of active users; thus, the exponential 
complexity in the number of users makes the cost of this detector too high. 

Various other suboptimal multiuser detectors are now examined in the 
following sections, which are simpler to implement. For the remainder of 
the chapter, an asynchronous channel is assumed unless otherwise stated. 

2.4.5. Linear Detectors 

It was shown that the conventional detector has a complexity that grows 
linearly with the number of users, but its vulnerabi lity to the near-far 
problem requires some type of power control. In this section, detectors that 
also have a linear computational complexity but do not exhibit the 
vulnerabi lity to other-user interference, are examined. 

An important group of multi-user detectors are linear multi-user detectors. 
These detectors apply a linear mapping, P, to the soft output of the 
conventional detector to reduce the MAl seen by each user. The two most 
popular of the linear detectors are the decorrelating and minimum mean­
squared error (MMSE) detectors. A polynomial expansion detector is 
considered in Section 2.4.5.3 , which can efficiently implement both the 
decorrelator and MMSE detectors. 

The decorrelating and MMSE detectors are discussed in Sections 2.4.5.1 and 
2.4 .5.2, respectively. The polynomial expansion detector is discussed in 
Section 2.4.5.3. 
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2.4.5.1. Decorrelating Detector 

The decorrelating detector applies the inverse of the correlation matrix 

fJ ~ w' ...................................................................................................................... (2.28) 

to the conventional detector output of Figure 2.2, in order to decouple the 
data. From (2.20), the soft estimate of this detector is given by: 

= Ab + Zd,,,. .............. ..................................... ........ ............ .. .......... .. ... ... (2.29) 

which is just the decoupled data plus a noise term. It is evident that the 
decorrelating detector completely eliminates the MAl. Thi s detector is very 
si milar to the zero-forcing equalizer (6) that is used to completely eliminate 
ISI. 

The decorrelating detector was initially proposed in (23). It was extensively 
analyzed by Lupas & Verdu in [21 , 22) and is shown to have many attractive 
properties. Further justification for its study is provided by the fact that it is a 
so lution to the maximum likelihood detector when the energies are not 
known by the receiver. The only requirement for the signal of a user to be 
detected reliably by the decorrelating detector regardless of the level of 
multiple-access interference, is that it does not belong to the subspace 
spanned by the other signals. Foremost among the advantages of the 
decorrelator are [21 ,22,24) that it: 

a) provides substantial performance/capacity gains over the conventional 
detector under most conditions. 

b) Does not need to estimate the received amplitudes. In contrast, detectors 
that require amplitude estimation are often quite sensitive to estimation 
error. 

c) Has a computational complexity significantly lower than that of the 
maximum likelihood sequence detector - the per-bit complexity is linear 
in the number of users. 
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d) Corresponds to the maximum likelihood sequence detector when the 
energies of all users are not known at the receiver - it yields the joint 
maximum likelihood sequence estimation of the transmitted bits and their 
received amplitudes. 

e) Has a probability of error independent of the signal energies - this 
simplifies the probability of error analysis, and makes the decorrelating 
detector resistant to the near-far problem. 

f) Yields the optimal val ue of the near-far resistance performance metric 

g) Can decorrelate one bit at a time - for bit I, one only needs to apply the 
Ith row of R" to the matched filter bank outputs. 

A disadvantage of thi s detector is that it causes noise enhancement which is 
similar to the zero-forcing equalizer [6] . The power associated with the 
noi se teml R" z at the output of the decorrelating detector in (3.14) is a lways 
greater than or equal to the power associated with the noi se term at the 
output of the conventional detector in (3.6) for each bit. This has been 
proven in [25]. Desp ite this drawback, the decorrelating detector generally 
provides significant improvements over the conventional detector. A more 
significant di sadvantage of the decorrelating detector is that the 
computations needed to invert the matrix R are difficult to perform in real 
time. For synchronous systems, the problem is somewhat simplifi ed: one bit 
at a time can be decorrelated. The inverse of a KxK correlation matrix can 
be applied. For asynchronous systems, R is of order (2M+ I )K, which is 
quite large for a typical message length (2M+ I) . 

There have been numerous suboptimal approaches to implementing the 
decorrelating detector [24, 26]. Many of them entail breaking up the 
detection problem into more manageable blocks [27-32] and possibly even 
to one transmission interval [24, 29]. The inverse matrix can then be exactly 
computed. A K-input K-output linear filter implementation is also possible 
as in [21] , where the filter coefficients are a function of the cross­
correlations. 

Whichever suboptimal decorrelating detector technique is used, the 
computation required is substanti al. The use of codes that repeat each bit is 
generally assumed so that the partial correlations between all signals are the 
same for each bit. This minimizes the need for recomputation of the matrix 
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inverse or the filter coefficients from one bit interval to the next. Where 
recomputation cannot be avoided, research has been directed at trying to 
simplify the cost of recomputation. The processing burden stil l appea rs to 
present implementation difficulties. 

The estimate of the data given by (2.29), which is obtained by processing a 
block of 2M+ I bits, can also be computed sequentially. In [27], it has been 
demonstrated that the transmitted bits may be recovered sequential ly from 
the received signal, by employing a form of decision-feedback eq ualizer 
with finite delay. Thus, there is a simi larity between the detection of signals 
corrupted by ISI in a single-user communicat ion system and the detection of 
signals in a multi user system with asynchronous transmission [6]. 

Decorrelating detectors are ideally infinite memory-length detectors. This is 
because their memory lengt h equa ls the number of users times the data 
packet length, which often can be assumed to approach infinity. To obtain 
practical detectors, which have low implementation complexity and are 
suitable for CDMA systems with time-variant system parameters (such as 
the number of users, delays of users and the signature waveforms), linea r 
finite-memory length multi user detectors have been studied in [37]. The 
infinite memory length also has been one motivation to introduce adaptive, 
decentralized, one-shot multi user detectors [38-41]. The drawbacks of these 
detectors is that they may require long adaptation times, and the adaptati on 
must be repeated freque ntl y. The training sequences required in most 
adaptive detectors degrade the bandwidth efficiency, especiall y if the 
adaptation must occur frequently. Furthermore, the one-shot approach is 
inherently suboptimal, even in the class of linear detectors. 

In [37], it was shown that the infinite-memory length decorrelating detector 
can be accurately approximated by detectors with finite and relatively short 
memory lengths. It is shown that the near-far resistance to a high degree can 
be obtained by moderate memory lengths. This result provides a mechanism 
to implement near-far resistant linear multi user detectors in systems in 
which the number of users or their propagation delays change over time. 
This prob lem was detected in [27] and [42], but only the special case of the 
MMSE and noise-whitening detectors was considered. 

The decorre lator can be characterized as the inverse of some form of 
correlation matrices. The correlation values depend on the number of users, 
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the signature waveforms and the delays of the users. A change in one of 
these parameters, results in a change in the correlations, and an update of the 
decorrelator is required. This is a computationa ll y complex task due to the 
correlation matrix inversion. In [36] , implementation algorithms for linear 
multiuser detectors were considered for systems where the detectors must be 
updated frequently. Iterative decorrelating and MMSE detectors were 
proposed. These iterative detectors used the steepest descent, conjugate 
gradient and preconditioned conjugate gradient a lgorithms. The 
implementation complexity of these detectors was alleviated as there was no 
need to invert or Cholesky factorize the matrix R. The performance of the 
iterative detectors was highly dependent on the number of iterations [36]. 
These iterative detectors provide a tradeoff between the implementation 
complexity and the performance. The simulation results in [36] showed that 
moderate nllmbers of iterations give the same performance as the ideal 
detectors. 

Although the decorrelator presented in [21] did not require knowledge of 
s ignal amplitudes, the decorrelating method stil l required knowledge of the 
s ignature sequence arrival times. Similarly, the noncoherent differential 
phase shift keying (OPSK) decorrelator-based detector developed in [33] , 
while not requiring knowledge of the received phase, still assumed known 
arri val ti mes. 

In [34) , a linear decorrelator detector was proposed for a quasisynchronous 
code-div ision multiple-access (QS-COMA) cellular system. The COMA 
system is quasisynchronous if the delays are small compared to the symbol 
interval. It was assumed that each of the users had a global positioning 
system generated local clock and that they attempted to transmit 
synchronously with the other users in its cell. By using GPS, the mobiles 
could compensate for the path delays, thereby reducing the timing error. If 
the timing uncertainty occupi ed a sufficiently small region, it was possible to 
obtain exce ll ent bit-error rate performance, without power control , using a 
relatively simple decorrelating detector. The decorrelator output cou ld then 
be detected noncoherently, eliminating the need for phase estimation. 

Optimum single-user decorrelating receivers, correlate the received signal 
with a sequence of (infinite precision) real numbers. In [35), designing 
optimum finite-precision decorrelators for COMA networks was considered. 
When using these finite-precision decorrelators, multiplications can be 
performed with s imple combinatorial logic circuits. From a practica l view-
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point, this problem is important because fixed-point implementations are 
cheaper, faster and more energy efficient than designs with floating point 
processing units. It was shown in [35] that the use of optimum finite­
precision decorrelators in networks with rapidly time-varying multiuser 
interference is not feasible. However, in networks which allow for pre­
computation of the decorrelator sequences, the proposed approach in [35] 
was feasible because of the low demodulation complexity of the resulting 
receivers. The results of [35] show that the optimum finite-precision 
receivers closely match the performance of infinite-precision decorrelators 
up to moderately high channel occupancies. 

The principle of the decorrelating receiver has been extended to receivers 
utili zing antenna arrays [32, 82-83], multiple base stations [84-85] or 
multiple data rates [86-87] . Adaptive implementations of the decorrelating 
detector for synchronous COMA systems have been considered in [74, 88]. 
The decorrelating receiver for convo lutionally encoded COMA 
transmissions in A WGN channels has been studied in [89] . Oecorrelating 
receivers for quasi-synchronous COMA systems in A WGN channels 
without precise delay estimation has been proposed in [29, 34, 90] and for 
code acquisition in quasi-synchronous COMA in [9 J]. The effect of delay 
estimation errors to the decorrelating performance has been analyzed in [92-
93]. 

2.4.5.2. Minimum Mean-squared error (MM SE) detector 

The minimum mean-squared error (MMSE) detector [27] is a linear detector 
which takes into account the background noise and utilizes knowledge of the 
received signal powers. This detector implements the linear mapping which 
minimizes E[ 1 b - J3y I'], the mean-squared error between the actual data and 
the so ft output of the conventional detector. This results in [27 , 41] 

PMMsr = [R +(No / 2)A-' r ' ................................................................. ... ..... .. .. .. ...... (2.30) 

The soft estimate of the MM SE detector is simply 
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b~""SF. = fJ"'MSEY ........ ............ .... .. ........ ........ ........ .. ... .... ........ ... ........... .... .. . ..... ........ .. (2.3 \) 

It is evident that the MMSE detector implements a partial or modified 
inverse of the correlation matrix. The amount of modification is directly 
proportional to the background noise; the higher the noise level , the less 
complete an inversion of R can be done without noise enhancement causing 
performance degradation. When the noise level is large compared with the 
signal level in the diagonal elements of R, I3MMSE approaches the identity 
matrix. In this low-SNR case, the detector basically ignores the interference 
from other users, because the additive noise is the dominant tenn. It should 
also be noted that the MMSE criterion produces a biased estimate of bMM sE. 
As a result, there is some residual multiuser interference. The MMSE 
detector balances the function of decoupling the users (and completely 
eliminate MAl) with the function of not enhancing the background noise. 
This multi-user detector is exactly analogous to the MMSE linear equalizer 
used to combat ISI [6]. 

Because it takes the background noise into account, the MMSE detector 
generally provides better probability of error performance than the 
decorrelating detector. As the background noise goes to zero, the MMSE 
detector converges in performance to the decorrelating detector. 

An important disadvantage of this detector is that, unlike the decorrelating 
detector, it requires estimation of the received amplitudes. Another 
disadvantage is that its performance depends on the powers of the interfering 
users [27]. 

Hence, there is some loss of resistance to the near-far problem as compared 
to the decorrelating detector. Like the decorrelating detector, the MMSE 
detector faces the task of implementing matrix inversion. Thus, most of the 
suboptimal techniques for implementing the decorrelating detector are 
applicable to this detector as well. 

An adaptive multiuser detector based on a mmimum mean-square error 
(MMSE) criterion was presented in [38]. Although this detector did not 
require parameter estimates, a training sequence was necessary to provide a 
data reference. Several interference suppression schemes based on the 
MMSE criterion were considered in [38]. Explicit knowledge of the 
interference parameters was not required. The scheme considered in [38] 
was a finite complexity approximation of the MMSE linear detector, and its 
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performance was not as good as the performance of the decorrelating 
detector. 

[36] dealt with implementation algorithms for linear multiuser detectors for 
systems where the detectors must be updated frequentl y and iterative MMSE 
detectors were proposed. In [37], it was shown that the infinite-memory 
length detectors such as the MMSE detector cou ld be accurately 
approximated by detectors with finite and relatively short memory lengths. 

MMSE multiuser detection can be implemented by employing a tapped­
delay-line filter with adjustable coefficients for each user and selecting the 
filter coefficients to minimize the mean square error for each user signal [6] . 
The recei ved information bits are estimated sequentiall y with finite delay, 
instead of as a block. 

2.4.5.3. Polynomial Expansion Detector 

The polynomial expansion (PE) detector applies a polynomial expansion in 
R to the matched filter bank output, y. The linear mapping for the PE 
detector is 

'" fl",; ~ :t ,,·, 11' ...................... ..... .............................................................................. (2.32) 
, =0 

and the soft estimates of the data are given by 

bl'E ~ fl",:y .................................. ............................................ ........ ....... ..... ............ . (2.33) 

For a given Rand N, (no. of stages), the weights (polynomial coefficients) 
Wi, i=O, 1 '" .... ,Ns can be chosen to optimize some performance measure. 

The structure which implements the matrix R is shown in Figure 2.3, and the 
fu ll detector (w ith 2 stages) is shown in Figure 2.4. In Figure 2.3 the input is 
the matched filter bank output vector y, and the output is Ry. A diagram of 
the matched fi Iter bank was shown in Figure 2.2. Each stage implements R 
by recreating the overall modulation (spread ing), noiseless channel 
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(summing), and demodulation (matched filtering) process. From the 
expression for the noiseless conventional detector output, y = RAb, it is clear 
that R is implemented in the Figure 2.3. Cascading these stages produces 
higher-order terms of the polynomial. The detector in Figure 2.4 is a two­
stage PE detector, while the detector corresponding to (2.32) requires N, 
stages. 
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Figure 2.3. 
One stage of the polynomial expansion detector 
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Figure 2.4. 
OS COMA polynomial expansion detector with 2 stages 

It can be shown (by the Cayley-Ham ilton Theorem) that the PE detector 
structure can exact ly implement the decorrelating detector for finite message 
length [43]. However, for a typical message length this would require a 
large number of stages, which is not feasible. As the message length 
approaches infinity, infinite stages would be needed, with one bit delay 
required per stage. However, good approximations can be obtained with a 
relatively small number of stages. Hence, one can choose the polynomial 
coefficients w = [wo w, ... WN,] so that 

N. 

p(R) = 2: w,R' ~ R -' ........................................... .. .................................................. (2.34) 
1=0 

The resulting weights are used in the structure of Figure 2.4 to yield a K­
input K-output finite memory-length detector, which approximates the 
decorrelating detector. The PE detector structure can also be used to 
approximate the MMSE detector, as described in [43] . 
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The polynomial expansion detector has a number of attractive features [43], 
in that it: 

a) Can approximate the decorrelating and MMSE detectors. As such, it has 
the desirable features of these two detectors, which has already been 
discussed in Sections 2.4.5.1. and 2.4.5.2. 

b) Has a low computational complexity. In approximating the decorrelating 
(or MMSE) detector, there is no need to calculate the matrix R nor its 
inverse. Everything can be implimented on-line, using analog hardware 
or DSP chips. 

c) Does not need to estimate the received amplitudes or phases. This 
important feature of the decorrelating detector, also holds for the PE 
detector in approximating the decorrelating detector. If the PE detector is 
approximating the MMSE detector, amplitude estimation will still be 
necessary. 

d) Can be implimented just as easily using long codes as short codes 
e) Can use weights that work well over a large variation of system 

parameters. As shown in [43], the use of additional stages in the PE 
detector allows more flexibility to use pre-computed weights that work 
well over a broad operating range. This eliminates the need to adapt the 
weights to changes in the operating environment. 

f) Has a relatively simple structure. The types of system components used 
are the same as those of the conventional detector. The amount of system 
components increases linearly with the product of the number of users 
and the number of stages. The structure is very similar to that of the 
parallel interference cancellation detector (Section 2.4.6.2). 

2.4.6. Subtractive interference cancellation 

The basic operating principle for these detectors is the creation at the 
receiver of separate estimates of the MAl contributed by each user in order 
to subtract out some or all of the MAl seen by each user. Such detectors are 
often implemented with multiple stages, where the aim is that the decisions 
will improve at the output of successive stages. 

These detectors are similar to feedback equalizers [6] used to combat IS!. In 
feedback equalization, decisions on previously detected symbols are fed 
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back in order to cancel part of the ISI. Thus, a number of these types of 
multiuser detectors are also referred to as decision-feedback detectors. 
The bit decisions used to estimate MAl can be hard or soft. The soft­
decision approach uses soft data estimates for the joint estimation of the data 
and amplitudes, and is easier to implement. The hard-decision approach 
feeds back a bit decision and is nonlinear; it requires reliable estimates of the 
received amplitudes in order to generate estimates of the MAl. If reliable 
amplitude estimation is possible, hard-decision subtractive interference 
cancellation detectors generally outperform their soft-decision counterparts. 
Studies such as [44,45] indicate that the need for amplitude estimation is a 
significant liability of the hard-decision techniques as imperfect amplitude 
estimation may significantly reduce or even reverse the performance gains 
available. 

A major disadvantage of non linear detectors is their dependence on reliable 
estimates of the received amplitudes. Studies such as [44, 45] indicate that 
imperfect amplitude estimation may significantly reduce or even reverse the 
gains to be had from using these detectors. 

In Section 2.4.6.1 , successive interference cancellation is discussed while 
parallel interference cancellation is discussed in Section 2.4.6.2. The zero­
forcing decision-feedback (ZF-DF) detector is discussed in Section 2.4.6.3. 

2.4.6.1. Successive interference cancellation (SIC) 

The successive interference cancellation (SIC) detector [46, 47] uses a serial 
approach to canceling interference. Each stage of this detector forms 
decisions, regenerates and cancels out one additional direct-sequence user 
from the received signal , so that the remaining users see less MAl in the next 
stage. A simplified diagram of the first stage of this detector is shown In 

Figure 2.5 where a hard-decision approach is assumed. 
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Prior to the first stage is an operation which ranks the signals in descending 
order of received powers. The first stage is responsible for implementing the 
following steps: 

I) To detect with the conventional detector the strongest signal, q,. 
2) Make a hard data decision on q, _ 
A) Regenerate an estimate of the received signal for user one, q,(t), using: 

• Data decision from step 2 
• Knowledge of its PN sequence 
• Estimate,:; of its timing, amplitude and phase 

3) Subtract out q,(t) from the total received signal , r(t), yielding a partially 
cleaned version of the received signal, r(l)( t). 

-
Assuming that the estimation of q ,(t) in step 3 above was accurate, the 
outputs of the first stage are: 

a) A data decision on the strongest user 
b) A modified received signal without the MAl caused by the strongest user 
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This process can be repeated in a multistage structure where stage Ns takes 
as its input the partially cleaned received signal output of the previous stage, 
r( N,. ,)(t), and outputs one additional data decision and a cleaner received 
signal r(N,)(t) . 

The reasons for canceling the signals in descending order of signal strength 
is outlined in [26, 47]. Firstly, it is easiest to achieve acquisition and 
demodulation on the strongest users that offer the best chance for a correct 
data decision. Secondly, the removal of the strongest users gives the most 
benefit for the remaining users. The result of this algorithm is that the 
strongest user will not benefit from any MAl reduction but the weakest users 
will see a huge reduction in their MAl. 

The SIC detector requires little additiona l hardware to the conventiona l 
detector, and it has the potential to provide signi ficant improvement over the 
conventional detector. 

Some of the implementation problems posed by the SIC detector are now 
listed. First, one additional bit delay is required per stage of cancellation 
[48]. Hence a trade-off needs to be made between the number of users that 
are cancelled and the amount of delay that can be tolerated. Secondly, there 
is a need to reorder the signals whenever the power profile changes. A 
trade-off must be made between the precision of the power ordering and the 
acceptable processing complexity . 

A potential problem with the SIC detector occurs if the initial data estimates 
are not reliable. In this case, even if the timing, amp litude and phase 
estimates are perfect, if the bit estimate is wrong, the interfering effect of 
that bit on the signal-to-noise ratio is quadrupled in power. This is because 
if the amp litude doubles, the power quadruples. Hence, a certain minimum 
performance level of the conventional detector is required for the SIC 
detector to yield improvements. It is crucial that the data estimates of at 
least the strong users that are cancelled first be reliable. 

By using a simple successive IC scheme, one can effectively estimate and 
cancel a CDMA signal and thus substantia ll y reduce nearlfar effects from a 
CDMA system and increase the system capacity [48]. 
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2.4.6.2. Parallel interference cancellation 

In contrast to the SIC detector, the parallel interference (PlC) detector 
estimates and subtracts out all of the MAl for each user in parallel. The 
muitistage PlC structure was introduced in [49]. A basic one stage PlC 
structure was assumed in [47, 50]. 

The first stage of this detector is shown in Figure ~.6 where a hard-decision 
approach is assumed. The initial bit estimates, b;(O), are derived from the 
matched filter detector, which is referred to as stage 0 of this detector. 
These bits are then scaled by the amplitude estimates and respread by the 
codes, _which produces a delayed estimate of the received signal for each 
user, q,(t-T). The partial summer sums up a ll but one input signal at each 
of the outputs, which creates the complete MAl estimate for each user. 
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Figure 2.6. 
One stage of the PlC detector 



40 

Assuming perfect amplitude and delay estimation, the result after subtracting 
the MAl estimate for user k is 

K _ 

r(t - 1') - ~>,(I - T) = b, (I - r, - TjA,(I - r , - 1')a,(t - r, - Tj+I1(I - Tj .. , 
+ ± (b,(1 - r, - Tj - /,,(1 - r, - Tj I A,(I - r, - 1')a, (I - r, - Tj ....................... (2.35) 

I~* J' 

As can be seen in Figure 2.6, the result of (2.35), for k= I .. .. K, is passed on 
to a second bank of matched filters to produce a new and better set of data 
estimates. 

This process can be repeated for multiple stages. Each stage takes as its 
input the data estimates of the previous stage and produces a new set of 
estimates at its output. A matrix-vector formulation can be used to describe 
the soft output of stage Ns+ I of the PlC detector for all (2M+ I ) bits of al l K 
users as [51] 

b( Ns + I) = \ . - QA b( Ns) 

= Ab+QA(b-b(Ns»+z .................... ....... ....... .......... .... .. .. .. ................ ..... .... (2.36) 

The term QA b (Ns) represents an estimate of the MAl [52]. For BPSK, the 
hllTd data decisions are obtained by taking the signs of the soft data outputs, 

b(Ns). Perfect data estimates, together with the assumption of perfect 
amplitude and delay estimation, result in the total elimination of MAl. 

A number of studies have investigated PlC detection which utilizes soft 
decisions, such as [53 , 54, 55]. In [53] soft-decision PlC and SIC detectors 
were compared and since soft-dec ision SIC exploits power variation by 
cance ling in order of the signal strength, it is found to be superior in a fading 
channel. On the other hand , soft-deci sion PlC is found to be superior in a 
well-power-controlled channel. The PlC detector requires more hardware 
than the SIC which faces the problems of power reordering and large delays 
[53]. 
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A number of variatIOns on the PlC detector have been proposed for 
improved performance. Some of these variations are listed and explained 
below. 

a) The decorrelating detector can be used as the first stage [51]. The 
performance of the PlC detector depends heavily on the initial data 
estimates [49]. As was pointed out for the SIC detector, the subtraction 
of an interfering bit based on an incorrect bit estimate causes a 
quadrupling in the interfering power for that bit. Hence, too many 
incorrect initial data estimates may cause performance to degrade relative 
to the conventional detector. Therefore, using the decorrelating detector 
as the first stage significantly improves performance of the PlC detector. 

It was shown in [51] that the multistage detector based on a decorrelating 
first stage, performed significantly better than the decorrelating and 
optimum linear detectors, in a number of situations of practical interest 
such as in high bandwidth utility and in near-far situations. Note 
however, that the detectors of [49, 51] had been developed for the case of 
known user energies. 

The decorrelator is an excellent choice for the first stage due to its 
performance invariance to interfering signal energies. However, its 
implementation in asynchronous systems may involve large storage and 
long decoding delays. While the conventional first stage is inferior to the 
decorrelator, its use in the multi stage detector in an asynchronous system 
results in an easily implementable detector with a small storage 
requirement and a short decoding delay. 

b) One may use the already detected bits at the output of the current stage to 
improve detection of the remaining bits in the same stage [56]. As a 
result of this, the most up-to-date bit decisions available are always used. 
This contrasts with the standard PlC detector, which only uses the 
previous stage' s decisions. This detector is referred to as a multistage 
decision feedback detector [56]. Proposals for the initial stage of this 
detector include a decision-feedback detector [56], the conventional 
detector [27], and the decorrelating detector [31]. 

c) One may also linearly combine the soft-decision outputs of different 
stages of the PlC detector [43] - This simple modification yields very 
large gains in performance over the standard soft-decision PlC detector. 
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The reason for this has to do with the extensive noise correlations that 
exist between outputs of different stages. The linear combination is made 
in a way as to capitalize on the noise correlations and cause cancellation 
among noise terms. 

d) One can also do a partial MAl cancellation at each stage, with the amount 
of cancellation increasing for each succesive stage [54]. Similar to [49, 
51] , the basic idea is that at each stage of the iteration, an attempt is made 
for each user to completely cancel the interference caused by all the other 
users. It was shown in [54] that this is not necessarily the best 
philosophy. When the interference estimate is poor (as in the early stages 
of interference cancell ation), it is preferable not to cancel the entire 
amount of estimated multiuser interference. As the interference 
cancellation operation progresses, the estimates of the multiuser 
interference improve. The MAl estimate is first scaled by a fraction 
before cancellation and the value of the fraction increases for successive 
stages. This takes into account the fact that the decisions of the earlier 
stages are less reliable than those of the later stages. Huge gains 10 

performance and capacity are reported over the standard PlC detector. 

2.4.6.3. Zero-forcing decision-feedback (ZF-DF) detector 

The zero-forc ing decision-feedback detector [31- 32, 57- 58] performs two 
operations: linear preprocessing followed by a form of SIC detection. The 
linear operation partially decorrelates the users (without enhancing the 
noise), and the SIC operation provides decisions and subtracts out the 
interference from one additional user at a time, in descending order of signa l 
strength. The initial partial decorrelation enables the SIC operation to be 
much more powerful. 

The ZF-DF detector is based on a white noise channel model. A noise­
whitening filter is obtained by facto ring R by the Cholesky decomposition 
[59], R=FTF, where F is a lower triangular matrix. Applying (FT)" to the 
matched filter bank outputs in (2.20) yields the white noise model [57] 
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Y. ~ FAb+z, .......................................................................................................... (2.37) 

The covariance matrix of the noise term, Zw is (No/2)1. (This is simi lar to the 
white noise model that is derived for ISI channels [6].) 

In the white noise model of (2.37), the data bits are partially decorrelated. 
This can be shown to arise from the fact that the matrix F is lower triangular 
[57]. The output for bit one of the first user contains no MAl , the output for 
bit one of the second user contains MAl only from bit one of the first user, 
and is completely decorrelated from all other users; similarly, the output for 
user k at bit interval i is completely decorrelated from users k + I, k + 
2, ... K, at time i, and from all bits at future time intervals. 

The ZF-DF detector uses SIC detection to exp loit the partial decorrelation of 
the bits in the white noi se model. The soft output of bit one of the first user, 
which is completely free of MAl , is used to regenerate and cancel out the 
MAl it causes, thereby leaving the soft output of bit one of the second user 
also free of MAl. This process continues: for each iteration, the MAl 
contributed by one additiona l bit (the previously decorrelated bit) 's 
regenerated and canceled, thereby yielding one additional decorrelated bit. 

Prior to forming and applying (F'Y' to create the white noise model , the 
users are ordered according to their signal strength, thus ensuring that 
interference cancellation takes place in descending order of signal strength. 
This maximises the gains to be had from SIC detection, as discussed earlier. 
The ZF-DF detector is shown in Figure 2.7, where a synchronous channel is 
shown for clarity. 
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Figure 2.7. 
The ZF-DF detector 

For the zero-forcing decision-feedback detector, the forward and feedback 
filters of this detector are chosen to eliminate multiuser interference at the 
inputs to the decision devices. In addition, the objective of the detector is to 
maximize the ideal signal-to-noise ratio at the input to each decision device. 

Assuming perfect estimates of F and the received amplitudes, the soft output 
for the kth user is [57] 

~ A- I 

b, = Y •. , - L F,,,A, b, .. ......... .... ............. ... ...... .. .. .. ... .... ..... .. .. ....... .. ....................... (2.38) 
i"U 

Where b,= sign [ b,] are the previously detected bits (of the stronger users), 
A, is the received amplitude of this bit, and Fkj is the (k,i)th element of F. 

Under the assumption that all past decisions are correct, the ZF-DF detector 
eliminates all MAl and maximizes the signal-to-noise ratio [31]. It is 
analogous to the ZF-DF equalizer used to combat ISI [6]. 
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An important measure of the performance for a decision-feedback detector is 
the signal-to-noise ratio at the input to the decision device under the 
assumption of correct previous decisions. The signal-to-noise ratio for the 
decision feedback detector is [57) 

/" A 
SNR, = ' .', , ... ... ........... .... ...... ............ .................................. .. .. .... ... ... .... ............ . (2.39) 

rr -

Given the same order of making decisions, this SNR is the largest achievable 
by any decision-feedback detector which attempts to cancel all multi-user 
interference. 

An important difficulty with the ZF-OF detector is the need to compute the 
Cholesky decomposition and the whitening filter (FTr ' . Attempts to 
simplify its implementation are similar to those of the decorrelating detector. 
The ZF-OF detector, like the other nonlinear detectors, has the disadvantage 
of needing to estimate the received signal amplitudes. If the soft outputs of 
the decorrelating detector are used to estimate the amplitudes, the ZF-OF 
detector is equivalent to the decorrelating detector [31). If the amplitude 
estimates are more reliable than those produced by the decorrelating 
detector, the ZF-OF detector performs better than the decorrelating detector; 
and if less reliable, the ZF-OF detector performs worse than the 
decorrelati ng detector. 

2A.7. Other detector types 

Finally, in this section, some of the detector structures for COMA reception 
which have not been considered in the previous sections, will be discussed 
here. 

Application of the expectation maximization (EM) based algorithms to the 
problem of data detection in the Gaussian multiple-access channel leads to a 
variety of convergent receiver structures that incorporated soft-decision 
feedback for interference cancellation and sequential updating of iterative bit 
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estimates. In [62] new iterative multiuser receivers based on the EM 
algorithm were considered. The EM algorithm provided an iterative 
approach to the likelihood-based parameter estimation when direct 
maximization of the likelihood function was not feasible. Although 
convergence of the algorithm to the maximum-likelihood estimator was not 
always guaranteed, EM did produce estimates that monotonically increased 
in likelihood. The resulting receivers had multi-stage-Iike structures that 
used sequential bit-estimate updates and intermediate soft-decisions for 
interference cancellation. 

In [29] , a receiver-based synchronous COMA system with a linear multiuser 
interference canceller had been proposed, and its performance in a 
microcellular environment was investigated theoretically . The multiuser 
interference was removed on a symbol -by-symbol basis by a deterministic 
matrix operation. The receiver structure of the receiver based synchronous 
COMA system was composed of a bank of matched-filters corresponding to 
all the mobile users in the cell , a correlation peak position detector and a 
matrix calculator. The linear canceller of [29] did not require knowledge of 
the received power levels of active users, and hence resulted in a high 
capac ity and near-far resistance. 

An adaptive receiver was considered for use in combating the near-far 
problem in direct-sequence COMA in [39]. The receiver used a chip 
matched filter followed by an adaptive equalizer structure to perform the 
despreading operation. This adaptive structure allowed the receiver to adjust 
to the prevailing interference and noi se environment. The receiver was 
shown to be immune to the near-far problem in the sense that the 
performance without any power control was nearly identical to the 
performance with perfect power control. The receiver was also shown to 
offer a two-fold increase in capacity relative to a conventional receiver with 
perfect power control. With the adaptive receiver, no information about the 
interference was needed, only a known data preamble was needed for the 
equalizer to converge on the form of the optimum receiver filter. The 
equalizer did not even need to know the desired code sequence in order to 
converge. As a result, after the equalizer had converged close to a steady 
state value, the value of the tap weights could be used to extract timing 
information and thus provide code acquisition and tracking. In [39] it was 
also shown that this receiver had the ability to overcome multipath and 
narrowband interference. A practical limitation of the receiver is that the 
number of taps must be equal to the number of chips per bit. Hence, this 
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receiver cannot be used in a direct sequence system with a large processing 
gain. Also the adaptive equalizers have a difficult time in channels that are 
rapidly changing. This wi 11 present a problem in situations where the fading 
rate of the channel is substantial. 

Optimal decentralized multi user detectors for A WGN channels have been 
considered in [81] , where the multiple-access interference was modeled as 
non-Gaussian noise. The optimal decentralized multiuser detectors can also 
allow for the utilization of the knowledge of a subset of the K-I interfering 
signature waveforms. However, the optimal decentrali zed multiuser 
detector also has a computational complexity which depends exponentially 
on the number of users. 

The highly structured nature of MAl suggests that a neural network should 
be able to learn how to remove the MAl effectively. A multi-user receiver is 
essentially a decision making device, hence a neural network is a natural 
architecture for implementing this device. Due to their highly parallel 
structure and adaptability to system parameters, receivers employing neural 
networks prove to be a desirable alternative to the optimum and 
conventional receivers for multipl e-access communications. Neural network 
detectors will be examined in more detail in Chapter 7. 

2.5. Conclusion 

The emphasis of this chapter has been on centralized multi user detectors that 
process the matched filter output to provide the statistics for both the 
estimation of the signal amplitudes as well as for data detection in the 
A WGN channel. 

The model s for the transmitter, receiver and COMA channel have been 
derived in this chapter. The performance of multi user receivers can be 
measured by the bit error rate, asymptotic multiuser efficiency and near· far 
resistance. 

The conventional detector follows a single user detection strategy, has a 
computational complexity that grows linearly with the number of users and 
is vulnerable to the near far problem. Maximum likelihood sequence 
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detection can be implemented for DS-CDMA by following the matched 
filter bank with a Viterbi algorithm. However, the required Viterbi 
algorithm has a complexity that is still exponential in the number of users. 

Detectors which have a linear computational complexity but do not exhibit 
the vulnerability to other-user interference, were also examined. The two 
most popular of the linear detectors are the decorrelating and minimum 
mean-squared error detectors. A polynomial expansion detector can 
efficiently implement both the decorrelating and MMSE detectors. 

The basic operating principle for successive interference cancellation 
detectors is the creation at the receiver of separate estimates of the MAl 
contributed by each user in order to subtract out some or all of the MAl seen 
by each user. Such detectors are often implemented with multiple stages, 
where the aim is that the decisions will improve at the output of successive 
stages. Three categories of subtractive interference cancellation detectors 
can be identified , and these are the SIC, PlC and ZF-DF detectors. 

Neural network and other detectors were also considered. Since MAl has a 
highly structured nature, a neural network should be able to learn how to 
remove the MAl effectively. 

The detectors presented in this chapter serve as a basis for more advanced 
detectors which are used in fading channels. In particular, the decorrelator, 
discussed in Section 2.4.5.1, will fornl the basis of the discussions in 
Chapters 5 and 6. 
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Chapter 3: Fading models 

3.1. Introduction 

COMA transmissions are frequently made over channels which exhibit 
fading and dispersion, hence it is important to design receivers which take 
this behaviour of the channels into account. Section 3.2. will discuss 
some of the propagation problems experienced in COMA transmissions. 
In Section 3.3, the fading multipath channel will be characterized, while 
the selection of the channel model will be discussed in Section 3.4. 
Diversity techniques for fading multipath channels are considered in 
Section 3.5, while combining technology will be considered in Section 
3.6. Finally, in Section 3.7, the model of a frequency selective fading 
channel will be provided. 

3.2. Propagation Problems 

Some of the di fferent propagation problems experienced are: 

a) propagation loss 
b) scattering 
c) doppler shift 
d) time dispersion 
e) loss due to rain and fog 
f) nOlse 
g) fading 

A brief explanation of each of the above phenomena follows: 

a) Propagation loss 

The amount of energy received by an antenna is inversely proportiona l to 
the fourth power of the distance from the transmitter. These electro­
magnetic waves are susceptible to absorption, reflection, diffraction and 
scattering by the earth's surface as well as obstacles in their path. 
However, accommodation can be made for the propagation loss by using 
some form of power control at the receiver. 



50 

b 1 Scatteri ng 

This is caused by obstacles along the propagation path such as buildings, 
and trees, etc. They produce reflected waves of the same frequency, but 
at an attenuated amplitude and a phase which is dependant on the angle of 
incidence. Figure 3.1. illustrates the principle of reflection. 

cl Doppler shift 

The doppler shi ft effect is only applicable to a receiver in motion. The 
time variations of the channel are evidenced as a Doppler spread in the 
frequency domain, which is determined as the width of the spectrum 
when a single sinusoid is transmitted. 

dl Time dispersion 

Many reflected waves are received at the receiver, each with a different 
path length , and hence a different propagation time delay. For example, 
if a short pulse was to be transmitted , it may be received as a train of 
pulses at the receiver, and this effect is called time dispersion. This 
distortion causes inter-symbol interference. 

el Loss due to rain and fog 

The drop lets in clouds and fog cause attenuation of the transmitted signal 
due to absorption and scattering 

D Noise 

The received signal is affected by thermal nOIse, man-made noise and 
interference noise 

gl Fading 

The mobile receives many reflected waves, and one direct wave. They 
either interact constructively or destructively, producing variations in the 
received signal amplitude. This effect is termed multipath fading and is 
illustrated in Figure 3.2. 



Figure 3.1 
Illustrati on of the principle of reflection 
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With reference to Figures 3.1 and 3.2, in open areas most of the energy is 
in the direct wave. The remaining power is received by the ground 
ref1ected wave and the other scattered waves. 

It is possible to distinguish two fading components in the signal. They 
are referred to as short term fading and long term fading. Short term 
fading is also known as fast fading, and it manifests itself as fast 
f1uctuations of the signal. Short term fading is caused by ref1ected signals 
when the receiver moves. Long-term fading is caused by attenuation of 
the direct wave due to obstructions like buildings, trees or poles along the 
road. 

3.3. Characterization offading multipath channels 

The characteristics of a fading channel are introduced in Section 3.3 . 1. In 
Section 3.3.2, a number of useful correlation functions and power spectral 
density functions that define the characteristics of a fading multipath 
channel, are introduced. In Section 3.3.3, several probability 
distributions are cons idered in an attempt to" model the statistical 
characteristics of the fading channel. The description that follows is very 
s imilar to that covered in [6] . 

3.3.1. Characteristics of fading channels 

Ifan extremely short pu lse, idea ll y an impu lse, is transmitted over a time­
varying multipath channel, the received signal might appear as a train of 
pulses [6]. 

One characteristic of a multi path medium is the time spread introduced in 
the signal that is transmitted through the channel. A second 
characteristic is due to the time variations in the structure of the medium. 
As a result of such time variations, the nature of the multipath varies with 
time. These time variations a lso appear to be unpredictable to the user of 
the channel·. Hence, it is reasonable to characterize the time-variant 
multi path channel statistically. 

One needs to examine the effects of the channel on a transmitted signal 
that is represented in genera l as: 

S( I) = Re[s/p( l)exp(j2Jrfol)] ...................................................................................... (3. t) 
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where: 

S'r(t) is the equivalent lowpass transmitted signal. 

One needs to assume that there are multiple propagation paths. 
Associated with each path is a propagation delay and an attenuation 
factor. Both the propagation delays and the attenuation factors are time­
variant as a result of changes in the structure of the medium. Thus, the 
received bandpass signal may be expressed in the form 

V(I) = IA"(I)S(I - r"(I)) .................................................................... (3.2) 

" 

where: 

J..." (t) is the attenuation factor for the signal received on the nth path 
,"(t) is the propagation delay for the nth path . 

Substitution for s(t) from (3.1) into (3.2) yields the result: 

V(I) = Re {I A" (I) exp( - j2Jif;r" (I))s, (I - r" (l))]exp(j2nt;1)} ............................... (3.3) 

It will be observed from (3.3) that the equivalent lowpass received signal 
IS: 

1'(1) = I A" (I) exp( - j 2JTf. r " (I)) S '" (I - r" (I)) .......... .... ...... ..... ............ (3.4) 

" 

Since r(t) is the response of an equivalent lowpass channel to the 
equivalent lowpass signal slr(1), it follows that the equivalent lowpass 
channel is described by the time-variant impulse response 

lI(r,l) = I A"(r)exp(- j2nt;r"(r))/5(r - r"(r)) ....................... ....... .. ........................ (3.5) 

" 

Referring to (3.4), considering the case of an unmodulated carrier at 
frequency fe, then s,(t)=l for all t, and hence the received signal for the 
case of di screte mUltipath, given in (3.4) reduces to 

r(r) = IA"(I)exp(- j2nt;r"(r)) ....................................................................... (3.6) 

" 
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Defining 8"(t)=2rrf, T"(t) , then the received signal consists of the sum of a 
number of time-variant vectors having amp litudes ,,-"(t) and phases 8"(t). 
One can expect the delays T"(t) associated with the different signa l paths 
to change at different rates and in a random manner. This implies that the 
received signa l r(t) can be modeled as a random process. When there are 
a large number of paths, the central limit theorem can be applied. In that 
case, r(t) may be modeled as a complex-valued gaussian random process. 
This also means that the time-variant impulse response h(T,t) is a 
complex-valued gaussian random process in the t variable. 

The multi path propagation model for the channel embodied in the 
received signa l r(t) , given in (3.6) results in signa l fading. The fading 
phenomena is primarily as a result of the time variations in the phases 
8"(t). The amplitude variations in the received signal are due to the time­
variant multi path characteristics of the channel. 

When the impulse response h(T,t) is modeled as a zero-mean complex 
va lued gaussian process, the envelope I h(T,t)1 at any instant t is Rayleigh 
distributed. In thi s case, the channel is sa id to be a Rayleigh fading 
channel. If there are fixed scatterers in the medium, in add ition to 
randomly moving scatterers, h(T,t) can no longer be modeled as having 
zero mean. In that case, the envelope I h(T,t)1 has a Rice distribution and 
the channel is said to be a Ricean fading channel. Common alternatives 
to these two fading distributions are the Nakagami and Lognormal 
distributions which will be discussed further in Section 3.3.3. 

3.3.2. Channel Correlation Functions and Power Spectra 

The equiva lent low-pass impulse response h(T,t) is characterized as a 
complex-valued random process in the t variable. It is assumed that h(T,t) 
is wide-sense stationary. The autocorrelation function of h(T,t) is defined 
as [6]: 

I 1/>, (" ' " ;"'1) ="2 E[II * (,, ;1)11(,, ;1 + "'I)] .......... ............................................. .. ... .. .. (3.7) 

In most radio transmiss ion media, the attenuation and phase shift of the 
channel associated with path delay T, is uncorrelated with the attenuation 
and phase shift associated with path delay T,. Thi s is ca ll ed uncorrelated 
scattering. The assumption is made that the scattering at two di fferent 
delays is uncorrelated and is incorporated into (3.7) to obtain: 
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I "2 E[h • (f, ;/ )h( f,;/ + il/)] ~ ¥le( f, ;ill)5( f, - f , ) ..................................................... (3.8) 

If "'t is set to 0, the resulting autocorrelation function <p,(~;0)= <p, (,) is the 
average power output of the channel as a function of the time delay 1. 

<p,(,) is called the multipath intensity profile of the channel. 

In practice, the function <p,(T;"'t) is measured by transmitting very narrow 
pulses and cross-correlating the received signal with a delayed version of 
itself. Typically, the measured function <p,(T) may appear as shown in 
Figure 3.3. 

u .. 

Figure 3.3 
A typical multi path intensity profile 

The range of va lues of T over which <p,(,) is nonzero IS called the 
multipath spread of the channel and is denoted by T",. 

An analogous characterization of the time-variant multi path channels can 
a lso be done in the frequency domain. By taking the Fourier transform of 
h(,;t), one obtains the time-variant transfer function H(f;t) where f is the 
frequency variable. 

H(r;t) has the same statIstIcs as h(T;t), which has been modeled as a 
complex-valued zero-mean gaussian random process in the t variab le. 
Under the assumption that the channel is wide-sense stationary, the 
autocorrelation function is defined as: 

I 
q) e U;, I , ;il/) ="2 E[H' Cr, ;/)HU, ; 1 + ill)] ........................................................... (3.9) 
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<I),(f"f,;llt) is related to ,I>c{,;llt) by the Fourier transform; 

ro 

cD , (f" I , ; "") = f rfi, (r,; "") exp( - j2Jr"'Ir , ) dc , "t/J, ("'I; "'I) .................................. (3.10) 

where: 

- M = f,- f, 

<I),(llf; llt) is the spaced-frequency, spaced-time correlation function of 
the channel. In practice, it can be measured by transmitting a pair of 
sinusoids separated by llf and cross-correlating the two separately 
received s igna ls with a relative delay llt. 

If in (3.10) llt is set to zero, then with <I),(M;O)= <I),(M) and '1>c(,;0)= 
<V,('), the transform relationship simply is: 

, 
~) , (4f) = frfi , ( r)exp(-j21f",(r) dr ..................................................... .... ..... ....... .... (3.11) 

- < 

This relationship is depicted grap hi ca ll y in Figure 3.4. 
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Figure 3.4 
Relationship between CI),.(llD and '!>cC,) 
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As a result of the Fourier transfonn relationship between <]),(t.f) and 
q,,(T), the reciprocal of the multipath spread is a measure of the coherence 
bandwidth of the channel. This relationship is given by: 

1 
(t!.[)c ~ T .............................................................................................................. (3.12) 

'" 

(t.f), denotes the coherence bandwidth. Two sinusoids with a frequency 
separation greater than (t.f), are affected independently by the channel. 
When an infonnation-bearing signal is transmitted through the channel, if 
(t.f), is small in comparison to the bandwidth of the transmitted signal, 
the channel is said to be frequency-selective. In this case, the signa l is 
severely distorted by the channel. However, if (t.f), is large in 
comparison with the bandwidth of the transmitted signal, the channel IS 

said to be frequency-nonselective. 

The time variations in the channel are evidenced as a Doppler 
broadening. In order to relate the Doppler effects to the time variations of 
the channel, the Fourier transform of q,,(t.f;t.t) with respect to the 
variable t.t is defined to be the function S,(t.f;o.). 

With t.fset to zero and S,(O;o.)= S,(o.), the equation is 

'. 
S, (a) = J rp, (t!.f) exp( - j2Trat!.f) dt!.f ........................................................................ (3.13) 

The funct ion S,( 0.) is called the Doppler power spectrum of the channe l, 
and it gives the signal intensity as a function of the Doppler frequency 0.. 

From (3.13), it is noted that if the channel is time-variant, then q,,(t.t)=1 
and S,(o.) becomes equa l to the delta function li(o.). Hence, when there 
are no time variat ions in the channel, there is no spectral broadening 
observed in the transmission of a pure frequency tone. 

The range of values of 0. over which S,(o.) is non zero is called the 
Doppler spread Bd of the channel. Since S,(o.) is related to q,,(t.t) by the 
Fourier transform, the reciprocal of Bd is a measure of the coherence time 
of the channe l and the relationship is given by: 

1 
(t!.f) ~ - ..................................................................................... ....................... (3. 14) , B 

d 
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(~t), denotes the coherence time. From (3.14), it can be seen that a 
slowly changing channel has a large coherence time, or equivalently, a 
small Doppler spread. Figure 3.4 illustrates the relationship between 
'M~t) and S,(a). 

3.3.3. Statistical Models for Fading Channels 

Several probability distributions can be considered in attempting to model 
the statistical characteristics of the fading channel. When there are a 
large number of scatterers in the channel that contribute to the signal at 
the receiver, as is the case in ionospheric or tropospheric signal 
propagation , application of the central limit theorem leads to a gaussian 
process model for the channel impulse response. The probability density 
function (PDF) of the Gaussian distribution is defined by [6]: 

p(x) = I e - ( ~:'/ .. ... .. .... ..... ... ...... .................... ...... .... .. .. .. .. .. .... .......... ..... ... ...... ( 3.1 5) 
a-!2;r 

where: 

- T) is the mean and a is the standard deviation 

The PDF for the Gaussian distribution with zero mean and unit variance 
is shown in Figure 3.5 . 

p(x) 

0.4 
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Figure 3.5 . 
PDF for a Gaussian distribution 
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The amplitude distribution for a complex valued Gaussian process is 
described by a Rayleigh random variable. I f the process is zero-mean, 
then the envelope of the channel response at any time instant has a 
Rayleigh probability distribution and the phase is uniforml y distributed in 
the interval (0,2rc) . In urban areas, due to the congestion of buildings, etc. 
most of the received energy is in the scattered components, with the 
specular component having the least energy. This fading scenario is best 
described by a Rayleigh distribution function , where the probability 
density function (PDF) is given by: 

r 1 I 

() 
" ( - r 2... ) p X= - , e . for x 2: 0, alld 0 utherwise .................. ... ... .... ..... ... .. ....... (3 . 16) 

u , 

where: 
cr, is the Rayleigh parameter 

The mean and variance of tQe distribution are related to those of the 
complex Gaussian distribution by: 

/11 , =..r; 2u, .................................................................. .. .............. .. ...................... ( 3. 1 7) 

, 
1 2 JrCfs ! ff 

U = 2u , - -- = u , (2 - - ) .... ... ................................................................. ( 3. 1 8) 
2 2 

The mean square or the mean power is equa l to 

, Ill, = 2u , .. ... .. ... ...... .. .......... ...................... ...... ..... .. .... .. ......... .. .. ... ... ... ... ... ... ... ....... (3. 19) 

The PDF for a Rayleigh distribution is shown in Figure 3.6 for cr,=0.5. 
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Figure 3.6 
PDF for a Rayleigh distribution 
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If the unresolved paths are partially correlated, then the resultant 
amplitudes may be defined by a Nakagami distribution. The Nakagami 
distribution is given by: 

. , 
2rn"'x2m-le -or 

p(x) ~ f(m)Q '" ....................................... ............ ............ ............................ (3.20) 

where: 

x denotes the received signal strength in volts 
n~E(X2) 
m is the mean va lue, and it is the parameter that determines the fading 
characteristics of the signals 

The mean value is defined as: 

Q ' 
m~x'_Q ........................................................................................................ (3.21) 

The gamma function, r(m), is defined as: 

~ 

r(m) ~ f z"He-' dz .............................................................................................. (3.22) 
o 

In contrast to the Rayleigh distribution, which has a single parameter that 
can be used to match the fading channel statistics, the Nakagami 
distribution is a two-parameter distribution . As a consequence, this 
distribution provides more flexibility and accuracy in matching the 
observed signal statistics. The Nakagami di stribution can be used to 
model fading channel conditions that are either more or less severe than 
the Rayleigh distribution, and it includes the Rayleigh distribution as a 
special case for m= I. 

One of the main advantages of the Nakagami distribution is its wide 
applicability. In addition to its attractive mathematical properties, it has 
a lso been shown in [6] that the Nakagami model can be used to 
accurately describe the fading behaviour of multipath signals. 
Specifically it was shown that the Nakagami distribution can be used to 
describe varying physica l scattering processes. 
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For satellite reception in open-fields such as in rural areas where there is 
line of s ight communications, most of the energy is in the specular 
received component rather than in the scattered components. This fading 
has a Rician distribution which has a power spectral density given by: 

x ~ 0 ... .. ......... ... .......................... ... ... ... .... ........... (3.23) 

x < o 

where: 

10(.) is the Bessel function o f order zero 
cr, is as before 
D' is the power of the s ignal o f the fi xed path 

The Ri cian factor for the branch is given by : 

K = D ' 
b 2 ' ", 

................ ... .... ....... ...... .. ... ... ... ... .. .. ... ... .. .. .... ........... ............. ... ......... ... (3.24) 

The mean of thi s di stribution is given by: 

where : 

1,(.) is the first order modified Bessel function 

The variance is g iven by: 

,, ' = I - Ill,' .... .. ..... ... ....... .. ........... .... ....... ....... ... .. .. ....... ..... .......... ...................... (3.26) 

The PDF for a Ric ian distribution is shown in Figure 3.7. 
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p{x) 

x 

Figure 3.7 
PDF of a Rician distribution 

I f the line-of-sight component in the first branch, or the fixed path in later 
branches, is affected by shadowing or intermittent short-term fading due 
to moving obstructions, then the simple path loss exponent model is not 
adequate and a log-normal distribution is used for that branch. The log­
normal distribution is defined by: 

( ) - I {- [In x - 'I" l' } j ' . . > 0 dOl' ,. (3 ? P x - I Cxp ~ 0/ .x _ , all O/ICI H Ise .................... ._7) 
G,,(2;rr)l 20",, · 

The distribution of Inx is normal with mean TJ " and variance 0-,.'. The 
mean and variance of the log-normal distribution are given by: 

" ' 
ni, ~ e" "'T .............................................................. .. .... ..... .. ......... .................... {3.28) 

1 ' 1 1 
a ~ e"""'· · (e O" - I) ....................................................................................... {3.29) 

The PDF of the Lognormal distribution is shown in Figure 3.8, for TJ " set 
to 0, and 0-" set to I. 
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Figure 3.8. 
PDF of a Lognonnal Distribution 

3.4. Selection of the channel model 

When the transmitted signal slr(f) has a bandwidth B greater than the 
coherence bandwidth (~f), of the channel, S'r(f) is subjected to different 
gai ns and phase shifts across the band. In such a case, the channel is sa id 
to be frequency selective. Additional distortion is caused by the time 
variations in the channel impu lse response H(f;t) . Th is type of distortion 
shows itself as a variation in the received signa l strength, and is termed 
fading. It should be noted that frequency selectivity and fading are 
viewed as two different types of distortion. The fanner depends on the 
multipath spread or, equ ivalently, on the coherence bandwidth of the 
channel relative to the transmitted signal bandwidth. The latter depends 
on the time variations of the channel, wh ich are characterized by the 
coherence time «~t), or, equivalently, by the Doppler spread Bd. 

The effect of the channel on the transmitted signal slr(t) is a function of 
the choice of signal bandwidth and signal duration . When the signal 
bandwidth B is much smaller than the coherence bandwidth (~f), of the 
channel, the received signal is simply the transmitted signal multiplied by 
a complex-va lued random process C(O;t), which represents the time­
variant characteristics of the channel. In this case, the multipath 
components in the received signal are not reso lvable because B« (~f),. 
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Suppose it is possible to select a signal bandwidth B to satisfy the 
condition 8 « (1'>1), and the signaling interval T to satisfy the condition 
T « (I'>t),. Since T is smaller than the coherence time of the channel, the 
channel attenuation and phase shift are essentially fixed for the duration 
of at least one signaling interval. When this condition holds, this channel 
is called a slowly fading channel. Furthermore, when B",lff, the 
conditions that the channel be frequency-nonselective and slowly fading 
imply that the product of T", and Bd must satisfy the condition T", B,,< I. 
The product T", Bd is called the spread factor of the channel. 1fT", B,,< I, 
the channel is said to be underspread; otherwise, it is overspread. 

The multipath spread, Doppler spread , and the spread factor are listed in 
Table I [6]. 

Type of channel Multipath Doppler Spread 
Duration Isecl Spread Isec·'1 factor 

Shortwave 10.0 _10.' 10· -I 10· - 10· 
ionospheric 
propagation (HF) 

Ionospheric 10· -10· 10-100 10· - I 
propagation 
conditions (HF) 

Ionospheric forward to· 10 10-
scatler (VHF) 

Mobile COITIITIS 10 -10·' 10 10- -10 

Tropospheric scatter 10·' 10 IQ"" 
(SHF) 

Orbital scatter (X 10· 10 10· 

band) 

Moon at max. 10·' 10 10· 

libration 
(ftl ~ OAkmc) 

Table I 
Listing of the multipath spread, dopp ler spread and spread factor for 
several time-variant multi path channels 
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3.5. Model of a frequency selective fading channel 

The model of a frequency selective fading channel is derived in 
Appendix 2. The form for the rece ived s ignal in (A2.6) implies that the 
time-variant frequency-selective channel can be mode led as a tapped 
delay line with tap spacing 118 and tap weight coefficients h"(t). 

The truncated tapped delay line model of the frequency selective fading 
channel is depicted in Figure 3.9. The time-variant tap weights h"(t) are 
complex-valued stationary random processes. In the special case of 
Rayleigh fading, the magnitudes Ih"(t)I=A"(t) are Rayleigh distributed and 
the phases <I>"(t) are uniforml y di stributed. In urban areas, the tap 
coefficients are modeled as independent Rayleigh random variables with 
individual Doppler shifts [6]. 

I 
11 

· "---------...JI :, f- ----b 

Figure 3.9 
Tapped delay line model of a frequency selective channel 

h i (I) 

Additive 
noise nU) 
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3.6. Diversity techniques for fading muItipath channels 

Diversity techniques are based on the conception that errors occur in 
reception when the channel attenuation is large, such as when the channel 
is in a deep fade [6]. If the receiver can be suppli ed with several replicas 
of the same information signa l transmitted over independently fading 
channels, the probability that all the signal components will fade 
simultaneously is reduced considerably. The effect of fading caused by 
terrain obstructions can be reduced by diversity techniques. These 
technique~ can be applied either at the base station or the mobile. This 
technique requires that a number of independent signa ls, carrying the 
same information are availab le. The underlying idea is that the 
probability of a number of independent signals being below a given level 
is much less than the probabi lity of any individual sample being below 
that level. There are several ways In which diversity can be achieved, 
and these are now discussed: 

a) Frequency diversity 

In this method, a number of different frequencies can be used to transmit 
the same message, where the separation between successive frequencies 
equals or exceeds the coherence bandwidth (t.f), of the channel. The 
frequencies need to be separated enough to ensure independent fading 
associated with each frequency . A frequency separation of the order of 
several times the coherence bandwidth will guarantee that the fading 
statistics for different frequencies will be essentiall y uncorrelated. 

bl Time diversity 

A second method for achieving a number of independently fading 
versions of the same information·bearing signal is to transmit the signal 
in different time slots, where the separation between successive time slots 
equals or exceeds the coherence time (t.t), of the channel. This results in 
uncorrelated fading signa ls at the receiver. 

cl Space diversity 

Another commonly used method for achievi ng diversity employs multiple 
antennas. One may employ a single transmitting antenna and multiple 
receiving antennas. The receiving antennas must be spaced sufficiently 
far apart that the multipath components in the signal have different 
propagation delays at the antennas. Usually a separation of at least 10 
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wavelengths is required between two antennas in order to obtain signals 
that fade independently. 

d) Angle diversity 

I f the received signa l arrives at the antenna via several paths, each with a 
different angle of arrival , the signal components can be isolated by means 
of directive antennas. Each directive antenna will isolate a different 
angular component. Directive mobile antennas pointing in different 
directions can receive scattered waves at the mobile site from all 
directions and can provide a less severe fading signa l. If directional 
antennas are mounted on the mobile unit, the signals received from 
different directive antennas pointing at different angles are uncorrelated. 

e) Other diversity methods 

A more sophisticated method for obtaini ng diversity is based on the use 
of a signal having a bandwidth much greater than the coherence 
bandwidth ("'f), of the channel [6]. Such a signal with bandwidth B will 
resolve the multi path components and , hence, provide the receiver with 
severa l independently fading signa l paths. The time resolution is l i B. 
The use of a wideband signa l may be viewed as another method for 
obtaining frequency diversity of order L",B/("'f), . 

3.7. Combining technology 

Signal performance that is degraded by severe fading can be improved by 
increasing transmitter power, antenna size and height but these solutions 
are costly in mobile-radio communications and sometimes impractical. 
In this sect ion, combining techn iques for macroscopic and microscopic 
diversity are analyzed. Note that macroscopic diversity deals with long­
term fading, while microscopic diversity deals with short-term fading. 
The macroscopic diversity scheme is used for combining two or more 
long-term lognormal signa ls, which are obta ined via independently fading 
paths received from two or more different antennas at different base­
station sites. The microscopic diversity scheme is used for combi ning 
two or more short-term Rayleigh signa ls, which are obtained via 
independently fading paths received from two or more different antennas 
but at the same base-station site. 



68 

Combining techniques for macroscop ic diversity will be addressed in 
Section 3.7.1, whil e combining techniques for microscopic diversity will 
be discussed in Section 3.7.2. 

3.7.1. Combining techniques for macroscopic diversity 

Selective diversity combining is chosen primarily to reduce long-term 
fading. Reducing the effects of long-term fading by combining two 
signals received from two different transmitting antennas is possible 
because the local means of the two signa ls at any given time interval are 
se ldom the same. To effectively reduce fading requires the combining of 
two fading signa ls that have equal mean strengths. If two differently 
located base-station transmitters are not very stable, the phase jittering 
generated in each of the transmitters wi ll degrade the combined signal. 
Hence, the technique of selective di versity combining can be used 
effectively, as it is only a selection between two signals, rather than a 
combination of two signals. 

3.7.2. Combining techniques for microscopic diversity 

In microscopic diversity, the principle is to obtain a number of signals 
with equal mean power through the use of diversity schemes. I f the 
individual mean powers of the various signals are unequal , a degree of 
degradation that is proportional to the differences in mean power wi ll 
result. 

a) Selection diversity 

Selection diversity is based on selecting the strongest of a group of 
signals carrying the same information. With respect to a DS-CDMA 
system, the multiple resolvable paths can be used to accomplish selection 
diversity by selecting the path with the largest autocorrelation peak 
(output of the matched filter). This implies that the highest order of 
diversity that can be achi eved with one antenna is equal to the number of 
resol vable paths. If the order of diversity that can be achieved with one 
antenna is too low because there are too few resolvable paths, multiple 
antennas can be used to increase the maximum order of diversity. The 
process of selection diversity is depicted in Figure 3.9. 
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The traditional analysis of a selection diversity system specifies that of L 
diversity branches j= I,2, _____ ,L, the one providing the largest signal-to-
noise power ratio (SNR) must be selected for data recovery, and it 
assumes that the noi se power is constant across all the branches_ For 
practical implementations, however, the measurement of SNR may be 
difficult or expensive, especially for high s ignaling rates_ For this reason, 
many practical selection systems choose the branch based on the largest 
signal-plus-noise (S+N) selection sample of a filter output [19l_ 
Historical justification for the extensive use of an SNR analysis to 
describe the performance of S + N selection systems stems from the idea 
that any branch which has the largest SNR must also have the largest sum 
of signal power and noise power if the noise power is taken to be a 
constant on all branches_ When physically realizing S + N selection, 
though, by sampling the output of a matched fi Iter, the noise is a random 
variable_ Thus, it is inexact to specify the performance of S + N selection 
systems using a constant noise analysis_ 

b) Maximal ratio combining (MRC) 

Maximal ratio combining is a linear diversity combining technique and is 
accomplished by summing the demodulation results of a group of signals 
carrying the same information and using this result as a decision variable_ 
In MRC/BPSK of order J, the decision variable is the weighted sum of 
the demodulation results of J copies of the signal. The weights are taken 
equal to the corresponding channel gain_ The effect of this multiplication 
is to compensate for the phase shift in the channel and to weight the 
signal by a factor that is proportional to the signal strength_ Hence, a 
strong signal carries a larger weight than a weak signal. 
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cl Equal gain combining 

This is another linear combin ing technique that uses a simple phase­
locked summing circuit to sum all of the individual signa l branches. The 
equa l-gain combining technique still provides incoherent summing of the 
various noise e lements, but it also provides the required coherent 
summing of all the individual signal branches. 

3.8. Conclusion 

Because COMA transmissions are frequently made over channels which 
exhibit fading and/or dispersion, it is important to design receivers which 
take this behaviour of the channels into account. Various propagation 
problems are experienced in a COMA channel, and these have been listed 
and discussed in this chapter. 

One characteristic of a multipath medium is the time spread introduced in 
a signal that is transmitted through the channel. A second characteristic 
is due to time variations in the structure of the medium, where as a result 
of such time variations, the nature of the mUltipath varies with time. The 
multipath propagation model for the channel which results in signal 
fading, has been derived in thi s chapter. Several probability distributions 
can be considered in attempting to model the statistical characteristics of 
the fading channel. The distributions that have been discussed in this 
chapter are the Rayleigh, Nakagami , Rician and Lognormal distributions. 
The fading phenomena is primarily as a result of time variations in the 
phases, and the amplitude variations in the received signal are due to the 
time-variant mUltipath characteristics of the channel. 

By supplying the receiver with several replicas of the same information 
signal transmitted over independently fading channels, the probability 
that all the signal components wil l fade simultaneously is considerab ly 
reduced. This is the principle used for diversity techniques, which can be 
used to reduce the effect of fading caused by terrain obstructions. The 
di fferent forms of diversity include frequency, time, space, and angle. 

Combining techniques for macroscopic and microscopic diversity were 
analyzed in this chapter. The macroscopic diversity scheme is used for 
combining two or more long-term lognormal signals, which are obtained 
via independently fading paths received from two or more different 
antennas at different base-station sites. On the other hand, the 
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microscopic diversity scheme is used for combining two or more short­
term Rayleigh s ignals. The combining techniques for microscopic 
diversity include selection diversity, maximal ratio combining and equal 
gain combining. 
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Chapter 4: Multiuser detectors for the fading channel 

4.1. Introduction 

Multipath fading often presents a major limitation on COMA system 
performance, as discussed in Chapter 3. A concise treatment was given 
to the characteristics of fading in Chapter 3. In Chapter 2, extensive 
information was given of detectors for the A WGN channel. In this 
chapter, an investigation is conducted to check if the detectors for the 
A WGN channel can also be used in the fading channel, and if not , 
whether modifications to them will facilitate their use in the fading 
channel. The main emphasis in thi s chapter is on multi-user demodulation 
techniques for OS-COMA fading systems in fading channels, which are 
most important either from a practical or theoretical point of view. 

This chapter is organised as follows: In Section 4.2, the signal model for 
the fading channel communications is introduced, while in Section 4 .3, a 
system overview is given . In Section 4.4, a discussion is given of 
receivers for the fading channel communications. Finally, in Section 4.5, 
concluding remarks are provided for this chapter. 

4.2. Signal model 

Note that (3.5) can be rewritten for a specific user for a specific time 
interval x as: 

,. 
", .,(t) = L -,('(x)ex p(jO(' (x))6(t- r,") ....................................................................... (4.1) 

where: 

L is the number of multi path components for the channel 
Tk" is the delay of the nth multi path component of user k during 
symbol interval x 
o(t) is the Dirac 's Delta function 
The tenn Ak"(X) exp(-j21lf,Tk") is the complex coefficient of the nth 
multipath component of the kth user during symbol interval x. 
8k"(x) is the time varying phase of the kth user for the nth path during 
the xth symbol interval 

The transmitted signal has already been described by (2.7). The time­
variant impulse response of the channel was described by (3.5). The 
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received signal at the receiver was described by (2.11), (2.12) and (2.23). 
With the aid of the above equations, the received signal through a fading 
channel can be expressed as: 

.11 " I. 

r(t) = L LLb,(x).l.,"(x)JE,(x)a,(t - xT - T,")e"""" +11(1) .. ... .................. (4.2) 
... - .11 k., 1 " " I 

This model will be used for the derivation of the detectors for the fading 
channel in the subsequent sections. 

As defined earlier, let A be the diagonal matrix of the amplitudes of the 
user' s signals. In addition, define A as the diagonal matrix of the channel 
coefficient vectors Ak"(X). Simi lar to (2.20), the matched filter output 
vector can be written as: 

y = RMb + z ... ........................................................................................................ (4.3) 

The elements of(4.3) have already been defined in Chapter 2 and wi ll not 
be repeated here. 

4.3. System overview 

Most centra li zed multi-user receivers, wh ich make a joint detection of the 
symbols of the different users, can be illustrated as in Figures 4.1 and 4.2. 

Note that the same notation used for detectors for the A WGN channel, 
are used here as well. T he matched filter output of the k'" user for the LI

" 

multipath component in the Xl" symbol interval is denoted by Yk L(X). For 
the purposes of clarity, the output of multiuser detector for the kl" user for 
the LI

" multipath component in the Xl" symbol interval is denoted by 
YIMUDlk L(X). Similarly, the maximal ratio combined matched filter bank 
output vector for the kl" user in the Xl" symbol interval is denoted by 
YIMRClk(X) . 
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As can be seen from Figures 4.1 and 4.2, the multiuser signal processing 
can be performed either before multipath combining, by processing the 
matched filter bank output vector, y, or after mUltipath combining by 
processing the maximal ratio combined matched filter bank output vector 
YlMRq. It shou ld however be noted that the block diagrams in Figures 4.1. 
and 4.2 are simplified and cannot fit all multi-user receivers into their 
framework . Most multi-user receivers can also be implemented before 
matched filtering, that is, by processing the received spread-spectrum 
signal samples r. 

The AME for multiuser detectors for the A WGN channel have already 
been discussed in Section 2.4.3. Note that the AME for multiuser 
detectors in Rayleigh fading channels has been defined in [94, 95) . The 
Rician fad ing case has been considered in [96, 97). 

MF;' , .. 'I r) 

mullipalh YI "Rr]l t X ) b, (xl 
• combining 

MF,L ,--A,·',." 

1"( 1) 
multi user 
detector 

MF. ' '., 'Cd 

multi path ) 'I MRq ,, ( ·d h. ( .r) 

combining 

MFA ' 
.. l' ~ t.r \ 

Figure 4.1. 
Mu ltiuser signa l processing after multipath combining 
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Figure 4.2 
Multiuser signal processing before mu lt ipath combining 

4.4. Receivers for fading channel communications 

In this section a brief discussion will given of multi user receivers for the 
fad ing channel. In Section 4.4. 1, an overview of the receivers for the 
fading channel will be given, while the optimal multiuser demodulator for 
the fading channel will be discussed in Section 4.4.2. In Sect ion 4.4.3, a 
discussion will be given on suboptimal multi user demodulation schemes 
for the fading channel. 

4.4.1. Overview 

For slowly fading channels the channel impulse response can be 
estimated precisely and can be assumed to be known. In that case the 
optimal receiver which yields the lowest probability of symbol error for 
the sing le user k includes a filter matched to the convolution of the 
signature waveform ak.,(t) and the channel impulse response hk.,(t) for the 
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kth user in the xth symbol interval. In multipath channels such a matched 
filter is called a coherent RAKE receiver. The conventional approach to 
data detection is to employ an independent, single-user RAKE receiver 
for each user, which is optimal in the absence of MAl. However, the 
RAKE receiver suffers from the near-far effect in the presence of 
interfering signals received over independent fading channels. The 
RAKE receiver is discussed in Appendix 3. The output of the coherent 
RAKE receiver for user k in the X'h symbol interval is obtained by 
maximal ratio combining (MRC) the matched filter outputs for different 
propagation paths and is given by: 

I. 

Y''''CI'(x) = Lh,:" (x) y," (x) ..................................... ...... .. ..................................... (4.4) 
". 1 

If the delay spread is significantly smaller than the symbol interval 
(Tm<<T), the intersymbol interference (lSI) can be assumed to be 
negligible and a hard decision on the RAKE output Y[MRC)k(X) yields the 
optimal decision. If the channel introduces ISI , the receiver minimizing 
the error probability is significantly more complicated to implement. 
Thus, another optimization criterion , namely the minimum symbol 
sequence error probability, is se lected. The optimum receiver then 
performs maximum likelihood sequence detection [6) in the presence of 
ISI. Suboptimal recei vers, which are simpler than MLS detectors and do 
not require separate channel estimators for ISI channels include linear and 
decision-feedback equalizers (DFE) [6). These DFE's can be applied in 
frequency-selective channels [98) . Their overall impulse response should 
be such that the equalizer implicitly performs both maximal ratio 
combining and ISI reduction. The equalizers can be made adaptive so 
that they automatically tune their impulse response to approximate the 
desired one [6) or the impulse response can be computed by utiliz ing a 
channel impulse response estimate [99). 

In fast or relatively fast fading channels, the channel impulse response 
can not be assumed to be known. Thus, the optimal receiver is somewhat 
different from that in the slowly fading channels. The receiver 
minimizing the symbol error probability is again complex to implement 
and difficult to analyze [100). Therefore, the MLS detector is usually 
selected to be the optimal reference receiver. However, as discussed in 
Section 2.4.4, the MLS detector is not feasible in most practical 
app lications. Like in the A WGN channel, suboptimal receivers for the 
fading channel will also need to be investigated. 
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4.4.2. Optimal multi user demodulation 

The maximum likelihood detector incorporates the structure of the 
receiver in Figure 4.1. The theory for the MLS detector has already been 
presented in Section 2.4.4 for the A WGN and will not be repeated here. 

However, it is sufficient to state that the MLS detector minimises the 
probability of an erroneous decision on the bit vector b including the data 
symbols of all users in all symbol intervals. J f the channel is known , then 
using the results of (2.27) and [1 7, 94] , the data decision can be expressed 
as: 

b = arg mill l1(b) ................ ..... ... ... ... .... ... .. ..... ... ... .. .. .... .. ...... .. .. ... .. ... .. ... .. ..... ... ... ..... .. (4.5) 
h,,( - I.I) 

Where the log-likelihood function Q(b) is: 

l1(b ) = 2 ReW T A'T )(Ty) _ b'T A")(' RMb ... .... .. ............... ... .... .............. ................... ..... (4 .6) 

Note that in (4.6), T represents the transpose. 

MLS detectors for nat Rician fading channels with synchronous COMA 
have been considered in [96] and two path Rician fading channels with 
asynchronous COMA in [97]. MLS detectors in unknown slowly fading 
channels has been considered in [J 0 I]. 

The maximum likelihood sequence detection for relatively fast fading 
channels has also been analyzed. MLS detectors for synchronous COMA 
in Rayleigh fading channel s has been presented in [95 , 102]. The 
resulting MLS receiver consists of the received noiseless signal estimator 
for all possible data sequences and a correlator, which multiplies the 
received signal wit h the estimated received noiseless signal (estimator­
correlator receiver). The MLS detector allows for the structure of the 
receiver in Figure 4 .1 to be used. 

The optimal MLS receiver for channels with unknown user and multipath 
delays Tk and TU is significantly more difficult to derive. The reason for 
this is the fact that the received signal depends nonlinearly on the delays, 
and the MLS receiver does not allow for a simple estimator-correlator 
interpretation. One way to approximate the MLS detector for the 
reception of a signal with unknown delays is to perform joint maximum 
likelihood estimation on the data, the received complex amplitude and the 
delays [103] . The joint ML estimation has an extremely high 
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computational complexity, which is exponential in the product of the 
number of users K, the number of propagation paths L and the number of 
samples per symbol interval. 

4.4.3. Suboptimal multiuser demodulation 

As discussed in Section 2.4.4, due to the optimal MLS detector being 
computationally complex to implement, suboptimal so lutions have been 
studied extensively. These suboptimal receivers approximate the optimal 
MLS detector. Most receivers can process either the matched filter bank 
output (Figure 4 .2) or its maxima l ratio combined version (Figure 4.1). 
The latter receivers do not eliminate the effect of MAl on channel 
estimation. Therefore, the mu lti user detectors processing the M F bank 
output are often more desirable in practice. Section 4.3.3.1 concentrates 
on linear equalizer type receivers, whereas interference cancellation 
receivers are considered in Section 4.3 .3.2. 

4.4.3.1. Linear equalizer type multiuser demodulation 

The linear equalizer type multiuser receivers process the matched filter 
output vector y (or the maximal rati o combined vector YIMRC]) by a linear 
operation. In other words, the output YILlNJ of a linear mu ltiuser detector 
is given by: 

,-
Ylt.{,"1 =p y ................................................................................... ........................... (4.7) 

Different choices of the matrix j3 yield different multiuser receivers. If j3 
is equal to the identity matrix , then this receiver is equivalent to the 
conventional single-user receiver. The linear equali zer type receivers 
apply the principles of linear equalization, which has been used in [SI 
reduct ion [6] . 

4.4.3.1.1. The Decorrelator 

The decorrelator or zero-forcing receiver, which completely removes the 
MAl , has been described by (2.28) where it was given that j3=R·'. The 
decorrelator that was used in the A WGN channel can also be utilized in 
the fading channel. The performance of the decorrelator in known, 
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slowly fading channels has been analyzed in [104,94, 105, 106] and the 
differentially coherent case has been considered in [107]. The 
corresponding analysis for estimated, relatively fast fading channels has 
been presented in [95, 96, 97, 108, 109] . The performance of the 
decorrelator utilizing the matched filter bank output y or the maximal 
ratio combined MF bank output YIMRCJ has been compared in [110]. The 
principle of the decorrelating receiver has been extended to receivers 
utilizing antenna arrays [32, 82, 83], multiple base stations [84, 85], or 
multiple data rates [86, 87]. Adaptive implementations of the 
decorrelating receiver for synchronous CDMA systems have been 
considered in [74, 88] and for asynchronous CDMA systems in [Ill]. 

4.4.3.1.2. The LMMSE Detector 

If the information symbols are independenl and the channel is known , the 
linear recei ver which minimises the mean squared errors at the detector 
output is called the LMMSE detector [112] and is described by: 

fJ = [R + u ' (AAA" X " ) ~ ' r ' ...................................................................................... ( 4. 8) 

where, as previously defined: 

R is a matri x of cross correlations of signature waveforms for all 
multipath components of all users over all symbol intervals 
,,' is the two~sided power spectral density of the noise 

- A. is the matrix of the channel coefficient vectors of all users over all 
symbol intervals 

~ A is the diagonal matrix of transmitted complex amplitudes of all 
users over all symbol intervals 

The LMMSE receiver is equal to the linear receiver maxlmlzmg the 
signal-to~interference~plus~noise ratio (SINR) [38]. Centralized LMMSE 
receivers have been proposed for fading channels in [58 , 113] and for 
antenna array receivers [32, 114, 115]. The LMMS E receivers have 
attracted most interest due to their applicability to decentralized adaptive 
implementation. Decentralized LMMSE multiuser receivers for slowly 
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fading channels suitable for adaptive implementation based on training 
has been considered in [3S, 116, 117, liS]. 

The convergence of the adaptive algorithms for the LMMSE multiuser 
receivers has been considered in [119, 120, 121]. A modified multiuser 
receiver applicable to relatively fast fading frequency selective channels 
with channel state information has been proposed in [122]. 

4.4.3.1.3. Finite and infinite impulse response filters 

The linear multi user receivers process the complete received data block, 
the length of which approaches infinity in asynchronous COMA systems. 
In other words, the memory-length of the linear equalizer type receivers 
is infinite. In [21] it was shown that as the number of symbols in the data 
packet approaches infinity, the decorrelating detector approaches a time­
invariant, stable digital multichannel infinite impulse response (IIR) filter 
with z-domain transfer function 

D (z) = IR(2)z ' +R(t):-' +R(0)+R(- t)z+R(-2)z " r ' ..................... ................. (4.9) 

The input of O(z) is the matched filter bank output vector sequence y. 
Since the matrix algebraic structure of the LMMSE detector is similar to 
that of the decorrelating detector, (4.9) can be generalized for it. The 
detectors can be presented in the form of (4.9) in systems with time­
invariant signature waveforms only. The implementation of the 
multichannel lIR filter of the form (4.9) is not straightforward due to the 
symbolic computation of the inverse. Any multichannel llR filter of the 
form of (4.9) can also be represented in the form 

~ 

D(z) = ID (p)z - e ......................................................................................... (4. to) 

Note that O(p) are the matrix coefficients of the expansion which are 
functions of the auto and cross-correlations of the user 's spreading 
sequences. 

Truncation of(4.10) to obtain the finite impulse response (FIR) fi lters has 
been suggested in [21] for the decorrelating detector. However, the effect 
of such a truncation on the detector performance was not analyzed. 
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Several other ways to obtain finite memory-length multiuser detectors 
have been proposed. The most natural way is to leave symbol intervals 
regularly without transmission. This will result in finite blocks of 
transmitted symbols and the detectors would then have finite memory­
length [30, 43] . In [30] , such an approach was called " iso lation bit 
insertion". This, however, degrades the bandwidth efficiency and 
requires some fonn of the synchronism between users. Other approaches 
to obtaining finite memory-length multi-user detectors have already been 
outlined in Section 2.4.5.1. 

4.4.3.2. Interference cancellation 

For the fading channel, the aim of interference cancellation receivers is to 
estimate the multiple-access and multi path induced interference and then 
subtract the interference estimate from the MF bank (or MRC) output. 
The interference cancellation can be derived as an approximation of the 
MLS detector with the assumption that the data, amplitude and delays of 
the interfering users are known[47]. 

As discussed in Section 2.4.6, there are several principles of estimating 
the interference leading to different IC techniques. The interference can 
be canceled simultaneously from all users leading to parallel interference 
cancellation, or on a user by user basis leading to successive interference 
cancellation. Al so parallel interference cancell ation is possible. The 
interference estimation can utilize tentative data decisions. The scheme is 
called hard decision (HO) interference cancellation. If tentative data 
decisions are not used, the scheme is called soft deci sion (SO) 
interference cancell ation. The interference cancellation can a lso 
iteratively improve the interference estimates. Such a technique is 
utilized in multi stage receivers. 

Similar to the discussion in Section 2.4.6.2 and (2.36), the multistage 
hard-decision parallel interference (H O-PIC) output at the Ns+ I stage can 
be presented as: 

b""'- "WII"''''' = y - QJ.( Ns)Ab(Ns) ............................................................ (4 . 11) 



where: 

A (Ns) denotes the channel estimates provided by stage Ns of the 
multistage HO-PlC receiver. 
beNs) denotes the data estimates provided by the stage Ns of the 

mu!tistajie HO-PlC receiver. 
Q AA beNs) represents an estimate of the MAl [52] 
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The multistage PlC can be initialized by any linear equalizer type 
receiver. In the soft-decision parallel interference cancell ation (SO-PlC) 
the amplitude-data product is estimated linearly without making any 
explicit data decision, or a tentative data decision with a soft nonlinearity 
is made. The tentative estimates and decisions may be replaced by final 
ones at those symbol intervals for which they are avai lable. The result is 
decision-feedback HO-PlC receiver. 

The multistage HO-PlC receiver for s lowly fading channels has been 
studied in [47, 123, 124, 125, 126, 127, 128] and for relativel y fast fading 
channels in [129, 130, 131]. The appli cation of the HO-PlC to multiuser 
delay estimation in relatively fast fading channels has been considered in 
[132 , 133, 134] . The SO-PlC receivers with linear data-amplitude 
product estimation for s lowly fading channels have been considered in 
[ 135, 136] and for multicellular systems in [137]. 

The successive interference cancellation is performed on a user by user 
basis as discussed in Section 2.4.6. In the SIC case, the amplitude and 
data of user I are estimated first. Using the obtained est imates the MAl 
estimate of user I is subtracted from the matched fi Iter outputs of the rest 
of the users. Then the amplitude and data of user 2 are estimated and the 
MAl estimate of user 2 is subtracted from the matched filter outputs of 
the users k=3,4, .. . ,K etc. The cancellation should start with the user 
with the largest average power, the second powerful user should be 
canceled next, etc. For the SIC receiver, ordering of the users in order of 
their power is a problem in relative ly fast fading channels, since it must 
be updated frequently. 
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4.5. Conclusion 

An investigation was done in this chapter to check if the detectors for the 
A WGN channel can also be used in the fading channel, and whether any 
modifications to them were required. 

Multiuser signal processing can be perfonned either before multi path 
combining, by processing the matched filter bank output vector, or after 
multi path combining by processing the maximal ratio combined matched 
filter bank output vector. Most multi user receivers can also be 
implemented before matched filtering, by processing the received spread­
spectrum signal. 

The optimal receiver for the multi path channel is the coherent RAKE 
receiver. The conventional approach to data detection is to employ an 
independent, single-user RAKE receiver for each user, which is optimal 
in the absence of MAl. However, the RAKE receiver suffers from the 
near-far effect in the presence of interfering signals received over 
independent fading channels. MLS detectors for synchronous CDMA in 
Rayleigh fading channels have been presented in [95, 102]. The joint 
ML estimation has an extremely high computational complexity, which is 
exponential in the product of the number of users, the number of 
propagation paths and the number of samples per symbol interval. 

The linear equalizer type multi user receivers process the matched filter 
output vector using a linear operation. The linear operations that were 
considered were for the decorrelator and the LMMSE detector. The 
LMMSE detector minimises the mean squared errors at the detector 
output. These detectors have attracted most attention due to their 
applicability to decentralised adaptive implementation. It was shown in 
[21] that as the number of symbols in the data packet approaches infinity, 
the decorrelating detector approaches a time-invariant, stable digital 
multichannel infinite impulse response (IIR) filter. The purpose of 
interference cancellation receivers is to estimate the multiple-access and 
multipath induced interference and then subtract the interference estimate 
from the matched filter bank output. The interference can be cancelled 
simultaneously from all users as parallel interference cancel at ion, or on a 
user by user basis as successive interference cancellation. 
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Chapter 5: Multiuser demodulation in Rayleigh fading channels 

5.1. Introduction 

As stated in Chapter 2, the problem of optimal as well as sub-optimal detection 
for COMA transmission over an additive white Gaussian noise (A WGN) 
channel has been the focus of study in [17 , 18,22.27.33.51 ]. However. as 
discussed in Chapters 3 and 4, COMA transmissions are frequently made over 
channels that exhibit fading. Hence, an attempt will be made in this chapter to 

obtain receivers which take into account this behavior of the channels. 

The work in this chapter is an extension of the Chapter 4 and the research 
undertaken in [96, 97]. In this Chapter, a three-path Rician fading COMA 
channel will be considered instead of the two path model as in [96, 97]. With 
the aid of the information presented in the preceding chapters, multiuser 
receivers wi ll be derived for the three-path time-dispersive Rician fading 
COMA. 

The problem will be formulated in Section 5.2 and the relevant notation to be 
used for the derivation of the receivers, will be introduced in Section 5.3. In 
Section 5.4, under the assumption that the fading parameters are uncorrelated , 
this fading COMA channel will be shown to be equiva lent to a Gaussian COMA 
channel over which a modified signa l set is employed. This equivalence result 
is necessary in order to facilitate the use of some of the detectors for the 
Gaussian channel in Chapter 2, for this Rician fading channel. In Section 5.5, a 
discussion wi ll be given of the detectors for this fading channel. These 
detectors include the conventional detector, the optimum detector, and 
di scussion will be provided on suboptimal multiuser demodulation. In 
particular, the decorrelating detector for both the finite and infinite message 
length will be derived and their operation discussed. In Section 5.6, a brief 
discussion will be given on mismatched detectors over thi s fading channel. An 
attempt wil l be made in this section to quantify the loss in performance incurred 
by these mismatched detectors. Finally, in Section 5.7. concluding remarks will 
be provided for the work covered in thi s chapter 
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5.2. Problem formulation 

In this Chapter, the investigation of multiuser detection for asynchronous 
CDMA communication over the time-dispersive Rician fading channel wi ll be 
undertaken. For each user there exists a steady specular path and Rayleigh 
faded paths, all of them appearing asynchronously at the receiver. 

A detailed model is given of the three-path Rician fading CDMA channel and 
the underlying assumptions are specified in Section 5.2.1. Performance 
measures for the detection strategies over the three path Rician fading channel 
are discussed in Section 5.2.2. 

5.2.1. Received signal model 

The signal model that is assumed for the CDMA transmissions through this 
fading channel is given by: 

M " .If I.. 2 

r(l) ~ LLb, (x)s, (I) + L LLb, (x)i;" (I) + 1I(t) .................................................... (5.1) 

In (5. 1), the first term corresponds to the signal received along the spectral path. 
The second term corresponds to the signa l received along the two fading paths. 
The third term corresponds to the addi ti ve-white Gaussian noise. 
Note that (5. 1) is very sim i lar to (4.2), with the add ition of the un faded spectral 
signal path. 

The terms Sk(t) and fk"(t) are given by the expressions: 

S,(I) ~ ~E, (x)a,(I - xT - T," )e'o"" ................................................................ ................. (5.2) 

i ;" (I) ~ .-!," (x)a, (I - xT - T, " )e"'"") ................................................................................. (5.3) 
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Substitution of (5.2) and (5.3) into (5.1), results in the following definition of 
the received signal model for the CDMA transmission through the three-path 
Rician fading channel as: 

At K 

r{/) = L Lbk (x)( ~ Ek (x )ak (r - xT - T( o)e jO
, ( J) + ..1* 1 (x)a* (t - xT _ Tk 1 le);' '('T) 

+A, 2 (x)a, (I - xT - r, 2 )e'·." ") + 11(1) .................................................. . (5.4) 

where: 

The receiver observes the sum of the specular and fading transmissions of 
each of the K users corrupted by the complex zero mean, additive white 
Gaussian noise process net) . 

The noise variance is 0' and there are 2M+ I s ignaling intervals, each of 
duration T, in accordance with the stipulations of Section 2.4.2 

The signals of the K users are indexed in the order in which their specular 
components arrive at the receiver. Hence, T,O~ T iO for k ~ i. Note that T,O is 
the delay of the kth user for the spectral path. Similarly, T,' is the delay of 
the kth user for the first fading path and T.' is the delay of the kth user for 
the second fad ing path . 

BPSK signaling is assumed, where the data symbol b,(x) represents the bit 
transmitted by the kth user in the xth bit interval and is chosen from the set 
{I,-I }. 

The signal a,(t) which is time-limited to [O,T] , is the normalized low-pass 
signature signal of the kth user. 

E,(x) and ek(x) denote the energy and phase of the direct component of the 
signature s ignal of the (k,x)th user at the receiver - the kth user in the xth 
symbol interval. 

The (k,x)th fading parameters A,'(X) and <p,'(x) are the Ray leigh distributed 
attenuation and uniformly distributed phase shift that the (k,x)th user ' s signal 
undergoes along the first fading path. The (k,x)th fading parameters Ak 'ex) 
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and Q>k'(X) are the Rayleigh distributed attenuation and uniformly distributed 
phase shift that the (k,x)th user's signal undergoes along the second fading 
path. 

The specu lar component is associated with a clear path between the transmitter 
and receiver, while alternate paths along which the signal may be considerably 
weakened in strength give rise to the fading components. The assumpt ion is 
made that the fading parameters affect ing the various users are independent of 
each other, justified by the fact that the paths traveled by the signals of the users 
are most likely different. If the fading parameters over successive bit intervals 
are assumed independent, then all possible realizations of the transmitted 
vectors of data bits are considered equally likely a priori. 

The approach taken is similar to the one in [97] where the discrete-time fading 
amplitude process of each user is assumed to be memoryless, and these 
processes for different users and the additive Gauss ian noise net) are statist ically 
independent of one another. The assumption of the fading being memory less is 
an idea lization, but it does allow for an indepth mathematical analys is of the 
prob lem. Th is assumption of the absence of fad ing memory is va li d as the 
fading parameters such as the random attenuation and phase shifts, are likely to 
change relatively frequently. These changes could even occur over successive 
bit interva ls, and thi s would make it unfeasible to est imate them. Thi s lack of 
memory does not need the estimat ion of fading amplitudes and so the 
avai labili ty of on ly the fading variances is assumed, that stat istica ll y 
characterize the random variat ions of the faded signal amplitudes. Detectors 
designed for this model wo ul d be expected to be robust to such variations. 

5.2.2. Performance measures 

The asymptotic performance criteria for the detection strategies over the three­
path Rician fading channe l, are described in this section. An attempt will be 
made in this chapter to obtain detectors which are computationally feasible and 
which ach ieve performance levels that are as close as possible to those attained 
by the optimal detectors discussed in Chapter 2, under the AME criteria. The 
AME has already been defined in (2.24) for detectors for the A WGN channel in 
Chapter 2. This result is extended to the received signal model in (5.4). 
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Extending the result of (2.24), the AME for the (k,x)th user is defined as: 

'1, ( x ) = sup lim 
;U:!OdJ I (T 1 ...... 0 QC 

P, < 00 .... . .. . ... ... . .. .. ..... ...... ... ... .... . . .. .. •.. . . . ......... .. .. ... . ...... ... . (5.5) 
21'f:. , ., ) 

.' 
where: 

r is equal to the fading to additive noise variance ratio for a particular 
user in a particular symbol interval. 
The Q-function has already been defined in (2.25). 
Note that the other variables in (5 .5) have already been defined in Chapter 2 
for (2.24). 

In the definition of the AME in (5 .:5), the fading to additive noise variance ratios 
are held constant, and the fading variances are assumed to be independent of the 
specular component energies. Since the AME is parameterized by both specular 
energy and fading to additive noi se variance ratios, it quantifies the effects of 
both the specu lar energies and the fading on the detector performance. 

The AME defined in (5.5) compares the multiuser error probability to that of the 
corresponding single user in the AWGN. Furthermore, it captures the loss in 
performance due to the presence of the other users at fixed variance ratio levels 
in the high SNR and high signa l to fading noise ratio (SFNR) regions. 
Examini ng the definition of the AME in (5.5), it can be stated that '1k(x)Ek(x) is 
the transmitted energy required by the kth user in a single-user A WGN 
environment so that the logarithm of the resulting bit error probabi lity decays at 
the same rate as that for the user in the xth bit interval in a multi user 
environment in wh ich the same transmission is made with energy E,(x). 

The near-far resistance of a detector used in the A WGN channel has been 
defined in (2.26). The near-far resistance is a measure of the robustness of a 
detection scheme to variations in the specular energies of the users under the 
assumptions of constant fad ing to additive noise variance ratios. Furthermore, 
the fading variances must be independent of the specu lar energies. As 
explained in Section 2.4.3 , a detector with a nonzero near-far resistance is called 
near-far resistant. A near-far resistant detector achieves an exponential rate of 
decay in error probability as all the noise in the system vanishes irrespective of 
the interfering specu lar energies. This behaviour is similar to that of the 
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optimum detectors over single-user channels and IS desired In the multi user 
environment as well. 

5_3. Overview of notation used 

The notation required for the derivation of detectors for this fading channel are 
introduced in this section. Additionally, a vector and matrix notation is 
introduced to facilitate an easy description of the results for the subsequent 
sections. For a concise treatment of the detection strategies, the system 
parameters need to be organised in (2M+ I)K dimensional vectors and matrices. 

The presentation of this section is as follows: In Section 5.3.1, the equations for 
the matched filter output vectors are derived while the notation for the specular 
and fading diagonal matrices is discussed in Section 5.3.2. Finally, in Section 
5.3.3 , the notation for the signal correlation matrices is introduced. 

5.3.1. Matched filter bank output vectors 

Similar to C hapter 2, the output of the fi Iter banks matched to the signals of the 
users over the various paths is given by: 

O" .. 1) H r ' 

.1',' = fa , U - T - r,' )r·(t)dt ............ .................................................................. (5.6) 
T .. , ,. , 

where: 

p represents the relevanl user and pc( I ... . K) 

The asterix (*) denotes the complex conjugate 

The vector y' is composed of the matched filter bank outputs in (5.6) for all 
K users over the (2M+ I) signaling intervals and is of dimension [(2M+ I)K x 
I]. 

j c (O, I ,2) represents the specular, fading path I and fading path 2 signal 
components, respectively. The output of the filter banks matched to the 
specular signal of the users over the transmission interval, is defined by y" 
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while y' contains outputs of the filter banks matched to the signal from the 
first fading path . The outputs of the filter banks matched to the signal of the 
users from the second fading path over that transmission interval , is described 
by y'. 

5.3.2. Specular and fading diagonal matrices 

The diagonal matrices for the user's specul ar energies and phases are g iven by 
(5.7) and (5 .8), respecti vely. E and e are o f dimension [(2M+ I)K x (2M+ I )K] . 

£,, = £·6
p

. '1 ................................................................................... (5.7) 

0"., = e jlJ * IS p _q ••.••..••.••..•••••.••••.• . ....• .. .. . •..•.• . •• . .. . ... . ... . .. .. ... . ... . ..•. . ..•••.• . ••••.••.••..•••..••. (5.8) 

L' is the di agonal matri x of the fading-to-additive noise variance rat ios and is of 
dimension [(2 M+ I)K x (2M+ I )K]. It is defined as: 

1: 2
"'1 = r */Sp_q ................ ............. ....... ......... .. ... .. ... .... ........ ..................................... .. (5.9) 

The diagonal matri x of the fading parameters for the first fading path is given 
by F"d' and is of dimension [(2M+ I)K X (2M+ I )K] and is described as: 

F ,",,' =/'·6,., ............................................... ............... ....... .. .. .. ................................ (5. 10) 

=,.{ l ( x)e jt',,'(T 'o 
" f' - 'j 

where : 

Ap' (X) is the Ray leigh di stributed attenuation that the p'" user undergoes III 
the x'" bit interval along the first faded path . 

<l>p'(X ) is the uniforml y distributed phase shift that the p'" user undergoes in 
the X'h bit interval along the first faded path . 
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The diagonal matrix of the fading parameters for the second fading path is given 
by Ft',", and is of dimension [(2M+ I)K x (2M+ I )K] and is described as: 

F ,m,' ~f' .,},_, ........................................................................................................ (5. 11 ) 

= 1 2( .) };,/ «) t" 
.ll. p ,.\ e U,, _q 

where: 

"p'(x) is the Rayleigh distributed attenuation that the pi" user undergoes in 
the x'" bit interval along the second faded path. 

<l>r'(x) is the uniformly distributed phase shift that the p'" user undergoes in 
the x'" bit interval along the second faded path. 

5.3.3. Signal correlation matrices 

The normalised specu lar, faded and specul ar-to-faded s ignal correlation 
matrices are given by A'J which is of dimensi on [(2 M+ I)K x (2M+ I )K]. The 
definit ion of A'J is g iven as: 

K 

A/vl '= f al' ( /-xT-Tp' )Dq' (f - xT-r/ )dt ....................................................... ......... (5.12) 
p.q=O 

where: 

p,q are the respective users and p,q E (O .... K) 
ij are the respective paths and ij E (0, 1,2) 

From (5 .12), the following signal correlation matrices can be obtained: 

A 00 is the normali zed specu lar correlation matrix 
A 11 is the normalized faded correlation matrix for fading path I 
A 22 is the normalized faded corre lation matrix for fading path 2 
A 01 is the normalized specular-to-fading path I signal correlation matrix 
A 0' is the normali zed specu lar-to-fading path 2 signa l correlation matrix 
A 12 is the normalized fading path I-to-fading path 2 correlation matri x 
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5.4. Equivalence between fading and AGISI channel 

It would be preferable to be able to specify multiuser detectors for the fading 
channel for each multi user detector that is known for the Gaussian channel. In 
order to facilitate this, an equivalence will now be shown between the fading 
channel and the Gaussian channel, where the method followed will be similar to 
that presented in [96, 97]. It will be shown that the time·dispersive Rician 
fading asynchronous CDMA channel bears an equivalence to an asynchronous 
Gaussian intersymbol interference (AG ISI) channel. 

The detection problem formulation for the Gaussian channel is obtained using 
(2.27), (4.5) and (4.6) and is given by: 

T • T • 
2b (q , +q, ) - b (H , +H , )b ...................................................... (5.13) 

where: 

qR +q,!l ' = (H ~ +H ).! ')b+n !( +II ~ .......... ... ..................................................................... (5.14) 

, , ' 
11 , + 11 ~ [O,a (H + H )] ................. ...... ....... .......... .. ........ ........ ............................... (5.15) 

}I g .~ I.{ 

and: 

, , 
H ~£ ' 0A0'£ ' ........................................... .. ......... ... .......... ..... ................................... (5.16) , 

! 
q, ~ £ ' 0y .................................................... ............................ ......... .... ............... .......... (5. 17) 

Note that y is now the vector of normalised matched filter outputs obtained 
when fading is absent. The vector qg+q; is denoted as the vector of sufficient 
statistics for the Gaussian channel, whi le A and E are the normalised signal 
cross-correlation and energy matrices, respectively. One needs to now find the 
exact relationship between the faded and Gaussian channel. 
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Proposition 

The time-dispersive Rician fading asynchronous CDMA channel bears an 
eq ui valence to an asynchronous Gaussian intersymbol interference (AGISI) 
channel over which the users transmit data using signals whose cross­
correlation matrix is A ''1 with energies speci fied by the diagonal elements of the 
matrix Ecq

. 

The equations for the equivalent signa l cross-correlation matrix and the 
equivalent diagonal energy matrix are given as: 

.................................. ............. (5.1~ 

£"' = £ £ ... .... .............. ........ ............................................. .. ............. .. ................. ......... (5.19) 

where: 

The elements of E are chosen such that A,,'q = I for 
-MK+ I s xs (M+I)K. 
There are 2M+ I signaling intervals and K users 
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Illustration of the equivalence result 

T,a", 

r---1 I 1------0 a .{I ) 
I 

Faded ,.' (I) Linear 
1------0 Trail.! + Channel 

a.,(I) 
Transform 

" 

Tro, y a",(t ) 1------0 

J(E'V ) .'"" 
" 

Tran,' 
a ,'(t) 

J(Erq) !:{, lo: 

,.' (t ) 
, 

Gaussian r,,,u.,' + Channel 
a/II) 

J(E"l )H·eIIJ• q , 

Tra'\,' 
8,,'(1) 

Figure 5.1: Equivalence of faded and Gauss ian CDMA channels 

Figure 5.1 illustrates the equivalence result stated in (5.18) and (5 .19). The 
cross-correlation matrix of the signals {a, (t), ...... , ak (t)} used by the 
transmitters { Tran ,', ..... , TranK '} in the equivalent Gaussian channel is A '"<l and 
the transmissions are made with energies E'''. The complex conjugate of the 
channel output is r'(t) and it is correlated with the signals shown in Figure 5. 1. 
The decision statistics q, are obtained after the appropriate operations. 
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Proof 

One needs to first obtain the equations relating vector q,+q r' to the data vector, 
making use of the fact that the fading parameters are uncorrelated with each 
other, and with the noi se components produced at the receiver end by the 
additive white Gaussian noise processes. 

Using the definition of the matched filter bank output vector in (S.6) and 
substituting the expression for r(t} in (S.4) into the definition of the normalised 
filter bank outputs /, y' and y', it can be shown that: 

11 00 ' "" 01 " 0: ' : 1.1 y = A e E · h + (A F I~'I + A F /<1(/ )h + 11 . . .. . . . . . . . .. ..... ( 5.20) 

I 10 12 • ~ I1 ' I I 
Y = (A +A )0 E ' b+A F"" b+1I .......... .......... ................................................... (5.21) 

,1 _ 20 11 R· . 1 22 , ' 2 2 -' - (A + A )0 E b + A F ,,,,, b + 11 ..................................................................... (5.22) 

In (S.20), (S.2 1) and (S.22), the additive noi se components are described for 
each pathj E(O, I ,2} forusersp= 1 to K by: 

( 1"· n +t~ 

" " = fa" (I - T - T,' )11' (lld! .............................................................................. (5.23) 
T,u r 

Combining the fading and additive noise components In (S.20), (S.21) and 
(S.22), the following expressions are obtained: 

sO UL ' I 02 - ' 2 U 
11 = (A F ,,,,, + A f "",)b + 11 .......................................................................................... (5.24) 

n st =A1I F,:,;,b+1l 1 
............................................................................................................. (5.25) 

s2 22 ' } 2 
11 = A F t"" b + 11 ......... . ................................................................................................. (5.26) 
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Substituting (5.20), (5.2 I) and (5 .22) for y", y' and y' into (5. I 7) one obtains: 

'I , = fI , b + /I ............................................................................ .................................. (5.27) 

Finally, the real part of qr is related to the data vector and the associated noise 
vector is characterised as: 

'I , + q , ' =(H , + fI , ')b + /1 + /I ' .......................................................... .... ............ .. .. (5 .28) 

" ' 
/I + /I : [0, 0' (H , + H , )] .......... .... ...... .. .. .. .............................................................. . (5.29) 

Comparison of (5.28), (5. I 3), (5 .14), (5. I 5) and (5.29), one sees that from the 
point of view of optimal detection, the fading channel may be seen as an AGISI 
channel over which the users transmit data using signals whose cross­
correlation matrix is A'" with energies specified by the diagonal elements of the 
matrix E el!, 

This concludes the proof. This equivalence result al lows for the specification of 
a multi user detector for the fading channel for each multiuser detector that is 
known for the Gaussian CDMA channel. The suboptimal detectors such as the 
decorrelating and multistage detectors when specified for the equ ivalent 
Gaussian channel, give rise to the corresponding fading muitiuser detectors for 
the Rician fading channel. Furthermore, the bit-error probabilities of the fading 
detectors can be obtained by using the corresponding results for the equivalent 
Gaussian channel. 
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5.5. Detectors for the fading channel 

The organisation of this section is as follows: 

The conventional detector for the fading channel will be discussed in Section 
5.5.1 while the optimum detector will be discussed in Section 5.5 .2. In Section 
5.5.3, the vector of sufficient stat ist ics for the channel will be obtained, which 
will be used for the derivation of the detectors for suboptimal multiuser 
demodulation in Section 5.5.4. 

5.5.1. The Conventional detector 

As discussed in Section 2.3.1 , the optimum detection strategy for the single-user 
environment, when employed in the multiuser channel, has been defined as the 
conventional detector. This resu lted in the matched-filter detector of Figure 2.2, 
which had very little computational complexity. 

However, for the time-dispersive fading channel , the conventional detector 
definition leads to a sequence detector of the Yiterbi type since it recognises and 
takes into account the dispersion of the user ' s signal. This detector is also 
near/far limited when used over the corresponding multiuser channel because 
the presence of the interfering users is not taken into account [96]. 

The strategy followed here is the same as in [97] where an alternative single­
user strategy of less complexity was considered. This resulted from assuming 
not on ly the absence of the interfering users, but also that the desired user 
transmission was single-shot. The optimum detector under this assumption is a 
diversity combiner that accounts for the multipath resulting from the sing le 
transmission but unlike the Yiterbi detector ignores self-ISI. 

Simi lar to the method followed in [97] , the data estimate from the conventional 
detector is derived in this section. 
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The single user decision rule applied in the multiuser system constitutes the 
conventional detector. The conventional decision rule for each user is thus 
obta ined by assuming the absence of other users and is derived in the multiuser 
environment to be [97] : 

, 
1. ,. (x) I 

b,(x) ~sgn~Il{E i (x)e(x,x),,(y o (x), -,' A" (x,x)"y (x),. 
r, (x) + 1 . 

rl.,2(x) 02 2 
-, A (x,x),,) · ( x ) , ) } ...... ........... .... ... ... ...... ....... (5.30) 

r.- (x) + 1 . 

where: 

r,'(x) is the fading path I to additive noi se variance ratio for user k in symbol 
interval x 
r, ' (x) is the fading path 2 to additive noise variance ratio for user k in symbol 
interval x 

The definiti ons ofy" , y' and y' are obtained by expanding out (5.6) for the first 
user and are given by: 

tT.H+r i' 

.1' 0 ~ f a,( r - T - T, o)r ' (r)dr ....................................................................................... (5.31) 
7 +r," 

(1',!) -.r,' 

.r' ~ f a, (r - T - T,')r' (r)dr .............................. .. ....................................................... (5.32) 
7 ~ r,' 

(T ... I)_H, ' 

y ' ~ fa ,(r-T - T, ' )r ' (r)dr ...................................................................................... (5.33) 
rH': 

Note that in (5.31), (5.32) and (5.33), r(t) represents the received signal over the 
sing le-user faded channel. The existence of a faded signa l component does not 
change the form of the conventional detector in the single user fading 
environment from that in the Gauss ian channel. However, there is an increase 
in the associated probability of error. 

To simplify the equations that follow, define the variables w,'(x) and w/(x) for 
use in (5.30) as follows: 
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t rkl (x) 01 
"', (x) = , A (x, X), ., .................................................................................... (5.34) 

r, (x) + I 

, 
1 rA· (x) 0' 

W A· (X) = 2 A - (x,x) ,u .................................................................................... (5.35) 
r, (x)+ 1 

In the definitions of (5.34) and (5.35), r,'(x) is the fading path I to additive 
noise variance ratio for user k in symbol interval x. rk ' (x) is the fading path 2 to 
additive noi se variance ratio for user k in symbol interval x 

The next step is to obtain the conventiona l detector's .i'it error rate (BER). The 
terms in the BER to be evaluated are of the form P( bk(x)= 1 / bk(x)=-I). Note 
that the notation implies that the estimated data bit is + 1 when - I was 
transmitted. 

Using the method outlined in [97], the following resuJt is obtained: 

, [-JE,(X ) (r(x,.), +r·(x,.), )b J 
J (b, (x) = 11 b, (x) = -I) = Q . . .................. .... .... (5.36) 

0' In(x.x) ,, + n (x ,x)" 

where: 

(X " )k denotes the (k,x)th row of the matrix it indexes 
The defin it ion of r is as fo ll ows: 

".'.. 0() I 10 2 20 ' _ ,,1 r = E ' 0(A - IV, (x)A - "', (x)A )0 E ' ............................................................... (5.37) 

where: 

, 
II ! E i E ' = JE, (x) .............................................................................................................. (5.38) 

In (5.36), the definition of n(X,X)k.k is as fo ll ows: 

[

XI,I 

n(x,x) ... =[1 - w,'(x) - w/(x)]x X2,1 

X3,1 

X I,2 

X2,2 

X3,2 

;~"~][- w:; (X) ] ............................. (5.39) 

X 3,3 - IV, (x) 



In (5.39), the elements of the matrix X are defined as follows: 

X 1,1 = (A oo + A" l: ' A" + A02 l: ' AlO )(x , x ) ... 

Xl ,2 = (A D] + AOI ~ 2 A" + A 01 }: 2 A22 )(X,X) ,u 

Xl ,3 = (A D2 + A OI L l A ll + A02 L2 A21 )(x, X)k k 

X 2, l = (A IO + A":E 2 A IO + A22 :L 2 A2
0 )(x, X) ... k 

X2,2 = (A " + A" l: ' A" + A" l: ' A" )(x,x) ... 

X 2,3 = (A I2 + A 12:E 1 
A 21 + A 22 :L

2 
A 21 )(x,x)u 

X3,J = (A lo + A21:L 2 
A I2 + An !: 2 A22 )(X, X) LA 

X 3,2 = (A ll + A12 :L 2 All + A21 :L 2 A I2 )(X.X) ~.* 

X3,J = (A 22 + A12 :E 2 
A ll + A22!:2 A21 )(X, X) ... 
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The asymptotic efficiency of the kth user of the conventional detector may now 
be obtained by using the bit error probability expression (5.36) and the 
definition in (5 .5). The expression for the detector asymptotic efficiency 
fo llows by considering the worst-case error probability, and is given as: 

'lI, (x) = max 2 .. ... (540) 

With the aid of (5.30 - 5.35), the data estimate from the conventional detector 
can be simplified and written as: 

b, (x) = sgn 9!{Ei<x )0(x, x) u (Yo (x), - w,' (x) y' (x ) , - w,' (x )y' (x) , )} .... .. ...... (5.4 1) 

With reference to (5.34), (5.35) and (5.41), it will be observed that when the 
fading components are absent or when the spectral and faded signal components 
are coincident, ie. A01(x,X)kk =Ao2(x,x),,= I, or when they do not overlap at all, 
ie. A OI(X,X)kk =A O,(X,X)kk=O, then the faded signal component is useless and the 
rule becomes the matched-filter detector. 
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The perfonnance analysis of this single-user, single-shot, diversity-combining 
detector over the COMA channel is obtained by accounting for the presence of 
interfering users and data sequence transmissions in computing the relevant 
matched filter outputs in (5.41). The expression for the BER and AME for the 
conventional detector has been given in (5.36) and (5.40), respectively. In the 
expression for the AME in (5.40), only those interferers may contribute that are 
correlated with either the (k,x)th user specu lar or faded components. For an 
appropriate choice of specular energies for these users, the asymptotic 
efficiency may be set to zero. Hence, thi s conventional detector is near/far 
limited. 

Given the functiona l dependence of the AME on the interfering specular energy 
ratios, th e near-far resistance of thi s conventional detector is zero, except when 
the signal of the user in question is orthogonal to the subspace spanned by the 
signals of the K-I users. 

5.5.2. The Optimum detector for the channel 

In this section, the problem of optima lly detecting the 2M+ I length sequences 
transmitted by each of the K users is considered. In Section 2.4.4, under the 
assumption that all the poss ible transmissions by each user over the interval 
under consideration are equally likely, the MLS detection rul e was shown to be 
optimal. 

The MLS detection rule for detection of asynchronous COMA transmissions 
was discussed in Section 2.4.4 for the Gaussian channel and in Section 4.4.2 for 
the fading channel. The results of(2.27), (4.5) and (4.6) will be extended in this 
section and using the method followed in [97] , and the MLS detection rule for 
the fading channel will be determined . 

In thi s derivation , the problem of optimally detecting the 2M+ I length 
sequences transmitted by each of the K users is considered. Under the 
assumption that all the possible transmissions by each user over the interval 
under consideration are equally likely, the maximum likelihood sequence 
detection rule is optimal. The following proposition states the MLS rule for the 
three-path fading channel. 
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Proposition 

The MLS rule for the detection of asynchronous CDMA transmissions over a 
three-path Rician fading channel with uncorrelated fading is given by: 

b = arg but _U: max 291{b ' q , l - b ' II , b ......... .... .................. ... ... ......... .... ......... ... ......... (5.42) 

where: 

, 
E ' 0[ " (A " A" )(~ -l A") -' , (A " A " )(~ -l A" )-' ' ) (543) q , = My _ + ~ + Y _ + L. + Y ................. . 

and: 

, 
H , ~ E ' 0{A oo - [(A '" + A " )P: -' + A") -' (A " + A " ») 

02 12 2 22 - I 20 2 1 • f - [(A +A )(~ +A ) (A +A )]}0 E ............... .. ............. (5.44) 

Proof 

The method followed for the proof is similar to the method used in [97]. To 
obtain the maximum likelihood rule, the characterization of the vectors of 
normalized filter outputs are used, wh ich are sufficient statistics for b. 

[

AOO + A OI'L 2 AIO + A 02 'L 2 A20 AO' + A Ol 'L 2 A" + A 02 I: 2 An 

a ! A IU + A"'L 2 A IO + A12 'L 2 Alo A" + A1I :E 2 A" + A 22 'L 2 A 2l 

A20 + A22 ~} Alo + A"'Ll A" A l l + A21'L 2 Al l + A22'L2 An 

Note in (5.45) that A'O=(Ao')'T, A20=(Ao2)'T and AI2=(A2I)'T 
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Proof of the va lidity of (5.45) has already been covered in Section 5.4. Similar 
to [97] , the maximum likelihood rule, obtained from (5.45) after some 
simplification is given by: 

b = arg 
, 

max 2~H{bT£ le(y O ~(A o , +A 21 )«AI 1) -1 _(AI! +A":L 2Allrl/ ) 

" 
-(A" +A")«A" )-' _ (A " +A " L ' A" )-'y' )} 

, 
_ b T E ' 0{(A '" + (A oo + A")«A") -' - (A " + A"L' A" )-' A oo ) 

, 
+ (A " + A" )(A" )-' - (A " + A" L ' A" r' A lO )}0' E ' b ......................................................... (5.46) 

In (5.46), the elements in the diagonal matrix of variance ratios I' that 
correspond to non faded users are set to zero. When all the users are faded , 
(5.46) may be simplified using Woodbury 's Identity to obtain the likelihood 
rule given in (5.42). 

The Woodbury 's Identity can be expla ined mathematica ll y as follows: 

(A + BCD) -' = A -' - 11 - ' B(DII -' B + C' ) 'DII -' .......................................................................... (5 .47) 

Where: 

A and Care nonsingul ar 

This concludes the proof for the MLS detection rule for the fading channel. 

The structure of the optimum detector is illustrated in Figure 5.2. With 
reference to Figure 5.2, the ent ire system model has been depicted for clarity. 
The carrier signal is first modulated by the data steam and then spread by the 
code sequence. This CDMA signa l is then passed through a fading channel , and 
is further corru pted by the A WGN process. 

For the reception of the signal, carrier demodulation is first performed. The 
resulting lowpass input signal is called r(t). The complex conjugate of this 
lowpass input signal is passed through the filter bank with impulse responses 
{a,(T-t)}, and the outputs are sampled at t=T to yield the normalized output 
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vector y. The vectors q,+q,', defined by (5.43) are obtained by means of linear 
transformations on the real and imaginary parts of y, and then passed to the 
decision algorithm of(5.42), to produce estimates of the transmitted data vector. 

The combinatoria l maximization in (5.42) is NP hard and requires an 
exhaustive search through all 2K possible choices for the data vector [96, 97]. 
This follows from the fact that the functiona l form of the likelihood is the same 
as in [22]. Hence, the optimum multiuser detector described in this section IS 

unimplementable. 

Despite its unimplementability, the near-far resistance performance of the MLS 
detector needs to be considered. These results wi ll serve as a benchmark 
against which the suboptimal strategies for the fading channel will be 
considered. The equivalence of the fading channel to the AGISI channel 
discussed in Section 5.4 allows for a straightforward specification of the near­
far resistance of the optimal detection strategy. Using the results of (5.5) and 
(2.26), the near-far resistance for this detector can be derived, which is the 
highest achievable over this channel. This near-far resistance may be shown to 
be [96, 97]: 

~,(x) = • _, ......... ................................ ....................... .................. (5.48) 
2«R , +R , ) )( .t.x) " 

where: 

-1. _1. 
R , = E ' H , E ' ..... ... ... ................................................................................. ....... .. ... .... (5.49) 

The discussion in this section points to the fact that the optimum detector is 
unimplimentable. Hence, suboptimal detectors will be considered in Section 
5.5.4, which are feasible to implement. Their near-far resistance will be 
obtained and compared against (5.48). 
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5.5.3. Vector of sufficient statistics for the channel 

In this section, the derivation of the vector of sufficient statistics for the channel 
is undertaken . The vector 231 Iq,} in (5.42) may be referred to as the vector of 
sufficient statistics for the three-path fading channel. The derivation of the 
vector of sufficient statistics for the channel is important at this point, as this 
result will be used for the derivation of suboptimal detectors for the channel in 
Section 5.5.4. The vector of sufficient statistics may also be written as (qrtq(). 

It was shown in Section 5.4 that by using the definition of the matched filter 
bank output vector in (5.6) and substituting the expression for r(t) in (5.4) into 
this definition, the normalised filter bank outputs y", y' and y' could be written 
as (5.20), (5.21) and (5.22). 

Additionally, in (5.20), (5.21) and (5.22), the additive noise components could 
be described for each path j E (0, I ,2) for users p= I to K by (5.23) as: 

,r .I)+'r' 

11 ,/= JO p(t-T-r / )II'(I)dl 
rH/, 

where: 

np' is the noise for user p for path j. 
n' can be delined as a matrix of all the users ' noise for path j and its elements 

j are np . 
nj is of dimension [(2M+ I)Kx I] . 

Combining the fading and additive noise components In (5.20), (5.21) and 
(5.22), the following expressions are obtained: 

n SO = (A O
) F,:,~, + A 02 F!:~/)b + n O .... ..... .... . ............................................................................ (5.50) 

,,..1 = All F,:;,b + /1
1 ............... .. ........................ .................................................................... (5.51) 
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" s2 = A 22 F/:,:,b + 11 2 .......................................................................................................... (5 .52) 

Substituting (5.20), (5.21) and (5.22) for y", y' and y' into (5.43) one obtains: 

q , ~ H , b + n ........ ....... ....... ................. .. .. .... ...... . ............................................................... (5.53) 

It may be shown that n in (5.31) is a zero-mean Gaussian random vector with 
covariance matrix H r. This is because nSu, ns l and ns2 are zero-mean Gaussian 
random vectors with the respective covariance matrices g iven by (5.54), (5.55) 
and (5.56). 

a 2
(AII +A 11 :L 2

AII) Jor II
s l 

...................................................................................... .. (5.54) 

' (A OO A fIl ~ l A " A 02 ~ 2 A " ) r. ,0 a + L. + L. .I0r 11 .............. ... . ........................................ (5.55) 

O"(A" +A " r ' A " ) for n" ........... ........... .............. ......................... ... ........ .... .. ... ..... (5.56) 

By relating the rea l part of q,. in (5.53) to the data vector b, the following 
expression is obtained: 

29t(q,)~q, +q , 

= H , b+l1+ '-' , 'b+II' 

~ (H , + H , ')b+II+II ' .......................... ............. ........................................... (5.57) 

Furthermore, the noi se vector in (5.57) can be characterised as follows: 

" . 
n + 11 :[0,0' (H , + H , )] ........ ... ..... ... ... .. ... ... .... ....... .... ......................................... .. .. (5.58) 

Hence, the vector of sufficient statistics for the channel is given by (5.57), with 
all the variables of the equation having been defined in this section. 
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5.5.4. Suboptimal multi user demodulation 

It was shown in Section 5.5.1 that the conventional detector for this channel is 
near-far limi ted. It was also shown in Section 5.5.2 that the optimum detector is 
difficult to implement in practice. In thi s section, a linear detection strategy will 
be considered for the Rician channel that is computationally less expensive than 
the MLS detector yet achieves the same near-far resi stance as given by (5.48). 
The specification of thi s detector is induced from the equivalence shown 
between the faded and Gaussian COMA channel in Section 5.4. 
Since the vector of sufficient statistics for the channel in (5.57) can be seen as 
having been produced by a Gaussian ISI channel, the decorrelation strategy is 
the best choice for linear detector for the fading channel. This is because the 
previous results of Section 2.4.5 .1 showed the decorrelator to be a good choice 
for the Gaussian channel. 

The organisation of thi s section is as follows: 

In Section 5.5.4.1, the decorrelating detector for a finite message length will be 
derived, whi le the decorre lator for an infinite message length will be derived in 
Section 5.5.4.2. The operation of the decorrelator in thi s fading channel will be 
discussed in Section 5.5.4.3. 

5.5.4.1. The Decorrelating Detector for a finite sequence length 

The decorrelating strategy was di scussed in Sections 2.4.5.1 and 4.4.3 . 1.1 where 
it was also shown that this detector is independent of the specular energies. By 
rearranging (5.57), making the data the subject of the formula , neglecting the 
noise contribution and taking the sign of this estimate then the decorrelating 
strategy can be defined as: 

• - 1 • 
b = Sgll(H , +H , ) (q , +q , ) ...... ..... ...... ............................................. .... ............... (5.59) 

-
Defining the variable q and b as: 
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, 
q = E-' q, ................. ............. ...... .......... ............... ............. ....... ....... ....... .... ... .. .......... (5.60) 

-, 
b=E ' b .................................................... ................................................................ (5.61) 

- -
Making use of the definiti on of Rr in (5 .49), q in (5.60) and b in (5. 61 ), then 
(5 .59) can be re-written as: 

b=Sgll(R , + R , ' )-' (q+q) .... ... .. ... .... ... .... ... .... .. ... .... .... .. ......... ................. .... .. ... .... .. (5.62) 

For the matrix R,+R,.' in (5.62) to be invertible, the requirement is that [97]: 

[;: ~':': ~':: 1 > 0 ......... .. ... .. ... ... ... ... .... ..... ... .. .. ... .. .. ................ ....... ..... ................. .... (5.63) 

The proof for the invettibility of R,+Rr' will not be undettaken here as it was 
proven in [96,97] that the requirement in (5.63) is met and that the matrix 
R,+R,.' is invettible. 

Using the method followed in Section 5.5 .1 where the bit error rate of the 
conventiona l detector was derived, the probability of an error in detecting the 
(k ,x)th user's bit by the decorrelator is derived to be: 

P, (x ) = Q[ a ~«(I1 , + HI, . ) -' )(x, x) " J ........................................................................ (5.64) 

The asymptoti c effi ciency and near-far resistance of this decorrelating detector 
in the finite horizon case is given in (5.65) , which is obtained using the results 
of (5 .5), (2.26) and (5.40). 
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'7,(x) ~ 7],(x)~ • _, ......................... ............................................ (5.65) 
2«R , +R, ) )(x, x)" 

It can be seen in (S.6S) that the asymptotic efficiency and near-far resistance is 
independent of the specular energy. This is the highest achievable near-far 
resistance, since it is equal to the near-far resistance of the MLS detector that 
had been derived in (S.48). Hence, the decorrelator is near-far resistant and is 
suitable for use in the fading channel as the optimal linear detector. 
The implementation of the decorrelator in (S.62) involves the computation of qr 
given in (S.43) and the computation of the matrix inverse (R.+Rr'r' defined in 
(S.49). The size of the matrix Rr is (2M+ I )K, hence the size of the matrix 
(R.+R,') to be inverted is also (2M+ I )K. This is computationally impractical 
for large values of K and M. 

5.5.4.2. Decorrelating detector for an infinite sequence length 

In thi s section, the implementation of the decorrelator described by (S.62) wi ll 
be considered as the sequence length M -+ OC) . The discussion of the 
decorrelating detector in the infinite horizon case is almost identical to that for 
the finite horizon case, except that the z-transforrn notation is now required. 
Recall that some mathematical preliminaries were introduced with regards to 
the z-transforrn in (4.10), where the characterization of an infinite-dimensional 
block-toepl itz matrix in terms of its z-transforrn representation was considered. 

The infinite horizon case is now assumed, with the further assumption that the 
specular component phases and fading variances of the users do not change over 
successive bit intervals. In accordance with the di scussion in Section 4.4.3 . 1.3, 
the decorrelating detector of (S.62) can now be expressed as: 

b(z)~Sgn(R , (z)+R , ·(z·)r'(q(z)+q (z·)) ............... ....... ......... .. .... .. ..... ....... .... ......... ..... (5.66) 

where: 

- -
q(z) is the vector z-transform of the sequence q(x) 
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R,(z) is the matrix z-transform representation of the infinite dimensional 
block toeplitz matrix Rr. 

Using the definitions of Rr and q in (5.49) and (5.60) respectively, then (5.43) 
and (5.44) where qr and Hr were related to the system parameters, can now be 
re-written in terms of the z-transform as: 

q(z) = B(O)[y ' (z) - (A " (z) + A" (z ))(I: -, (0) + A" (z Jr' y' (z) 

_(A " (z) + A " (z ))(I: -, (0) + A" (z Jr' y' (z)] ........................................... .. .......... (5.67) 

R , (z) = 0(0){A "' (z) - [(A OI (z)+ A " (z))(I: -2 (0)+ A"(z)r'(A IO (z)+ A " (z))] 

_ [(A 02 (z)+ A " (z))(I: - 2 (0) + A " (zn-'(A 20 (z)+ A " (z))])0'(0) ....... ... .. (5.68) 

Recall that in Section 3.7 combining technology was discussed where the 
microscopic diversity scheme was used for combining two or more Rayleigh 
signals which were received via independent fading paths received from two or 
more different antennas at the same base-station site. Hence, (5.67) represents 
the optimum multiuser diversity combiner as it combines the signals from the 
different paths in an optimal manner. This is a linear time invariant (LTI) filter 
for which a graphical representation is given in Figure 5.3. With reference to 
Figure 5.3, it can be seen that this LTI filter linearly combines the matched filter 

U I 2 ~ 

output sequences y (x), y (x) and y (x) to produce q(x). It then retains only the 
- - , 

real pan of the output sequence to yield the vector sequence { q(x) + q (x») , 
which has a z-transform representation of { q(z) + q' (i)}. 

The output of the diversity combiner of Figure 5.3 torms the input to the K 
input! K output decorrelating filter for this fading channel. With reference to 
(5.66), it will be observed that the transfer function of this decorrelating filter is 
given by: 

C(z) = (R, (z) + R , · (z·))"' ............................................................. .................... ....... (5.69) 

By using the definition of Rr in (5.68), the decorrelating filter described by G(z) 
can be represented in a graphical format as shown in Figure 5.4. It will now be 
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proven that the output of the decorrelating filter is the sequence of estimates of 
the transmitted energy-bit vector. 

The vector of sufficient statistics for the channel given by (5 .57) is reproduced 
here for clarity, and is written in the z-domain as: 

291(q , ) =q , (z) +q,' (z) 

= H, (z)b(z) + II(Z) + H , ' (z )b(z) + ,,' (z) 

= (H , (z) + H , • (z • ))b(z) + ,,(z) + " . (z) .......................................................... (5. 70) 

The definition of (5.49) states that: 

, , 
R , (z) = E -' H , (z)e' .................................................................................................... (5.71) 

From (5.7 1), the expression for H,(z) can be written as: 

, , 
H , (z) = E ' R, (z)E ' ................................................................................... ................... (5.72) 

-
From (5.60), the expression for q is given by: 

-! 
q(z) = E ' q , (z) .............................................................................................................. (5.73) 

Rearranging the subject of(5.73), the following expression is obtained for q,{z): 

! 
q , (z) = E ' q(z) .............................................................................................................. (5.74) 

Solving for (5.70) results in: 
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q I (z) + q I ' (z' ) = H { (z )b(z) + II(Z) + H ,' (z ' )b(z) + 11 ' (z' ) 

= (1-/ , (z) + H , ' (z'))b( z )+II(z) +11' (z') ........ .. ...................................... (5.75) 

(S.7S) can be expanded by substituting (S .74) and (S.72) and can be expressed 
as: 

1. 1. •• 1. 1. 1. . , 1. • • 
E ' q(z)+E ' q (z )=(E ' R, (z)E ' +E ' R, (z )E ' )b+II(Z) + 1I (z ) .................. . .......... (5.76) 

By multiplying on both sides of the equality sign in (S.76) by E' ''', (S.76) can be 
simplified and rewritten as: 

• • 1. . • 1. ~ _1. _1. • • 
q(z) + q (= ) = (R , (z)E ' + R, (z )F: ' )h+E ' lI(z) + E ' 11 (z ) ................................... (5.77) 

(S.77) can still be simplified further as: 

• • • • 1. _1. _1. , . 
q(z)+q (= ) = (R , (z)+R, ( z ))E ' b+E ' lI( z ) + E ' 11 (z ) ............................................. (5.78) 

Defining the fOllowing: 

1 
,,~x) = E ' (x, x)b(x) .................................................................................................. (5. 79) 

, 
,,~z) = L ,<(x)= " ........ ............................................................................................ (5.80) 

'< , 

II "' (Z ' ) = LE ' (X, X)II(X)Z " ................................................................................ (5.8 1) 

, , 
II " (Z) = L E " (x,x)lI(x)z " ............. ... ....................................... ............................ (5.82) 

Substitution of(S.79)·(S.82) inlo (S.78) results in: 
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• • • d d" 
q(Z)+q (Z ) = (R , (z)+R, (z ))",(z)+" (z)+" (z) ........ ...... ............................ (5.83) 

By rearranging (5.83), making the energy-data vector the subject of the formu la, 
neglecting the noise contribution and taking the sign of this estimate, then the 
output of the decorrelator can be written as: 

• • - 1 - • 
w(z) = Sg,, ( R , (z)+ R , (z)) (q(z)+q (z) ......................................................... .. (5.84) 

where: 

w(z) is an estimate of the transmitted energy-bit vector, w(z) 

The data detection in (5.62) can be seen as a process that involves polarity 
detection at the output of the cascade of the opt imum diversity combiner and the 
decorrelating filter of Figures 5.3 and 5.4, respectively. 

The bit error-performance of the decorrelating detector in the infinite horizon 
case will now be described . Assuming that the specular phases are time 
invariant , the express ion for the bit error probability of the (k,x)th user in the 
infinite horizon case is the limiting form of (5.64) and is given by: 

)E(x,x)" 
~(x) = Q -,~==~~~~====~ 

I • . . _I dz 
U - .r((R , (z)+R , (z)) ),, -

2"] z 

............ ......................................... (5.85) 

In contrast to (5.65), in the infinite horizon case, the near-far resistance of the 
decorrelator loses its bit-interval dependence and is specified by: 
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'7, ~ Ih ~ ! f( (R , (z)+R ,' (z')f ' )" ': ........................................................... . (5.86) 

r"(z } + + 0) q(z) 2Re() (I(z)+q (z ' ) - «() 

+ >: ' (0) 

y' (zJ + 

Figure 5,3. 
The optimum multiuser diversity combiner 
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5.5.4.3. Operation of the diversity combiner and decorrelator 

A discussion will be undertaken of the operation of the multi user diversity 
combiner and decorrelating filter of Figures 5.3 and 5.4, respectively. 

The inputs to the multiuser diversity combiner are the matched filter bank 
output vectors l(z), y'(z) and /(z). The multiuser diversity combiner has to be 
designed such that noise variance at the output of the decorrelating filter is 
minimized. With reference to Figure 5.3, it will be seen that the multi user 
diversity combiner subtracts only as much of the fading as is beneficial to the 
overall detection process. When some of the users are heavily faded while the 
others are not, the diversity combiner subtracts mainly the fading associated 
with the former users. This is because the benefits of removing the light fading 
interference are outweighed by the loss incurred due to the increased noise 
variance at the output of the decorrelator. However, when all the users are 
heavily faded, the fading is subtracted off almost entirel?:- On the other hand , 
when none of the users are faded, the outputs y'(z) and y (z) are blocked out by 
the diversity combiner, and only l(z) is passed through. In that case, the output 
from the diversity combiner can be obtained from (5.67) by ignoring the 
contributions of the matched filter bank outputs y'(z) and /(z). The result is: 

q(=) = 0(0»"(z) ................................................................................................................. (5.87) 

The vector of sufficient statistics for the channel can then be written as: 

• () • 0" 
q(z) + q (z ) = 0(0).1' (z) + 0 (0).1' (z) ......... ............................................................... (5.88) 

In this scenario the decorrelating filter of Figure 5.4 will coincide with the 
decorrelator for the Gaussian channel as discussed in Section 2.4.5.1. 

With regards to the decorrelating filter in Figure 5.4, it will be noticed that this 
decorrelator is bui lt around the decorrelator for the Gaussian channel. 
Removing the feedback arms associated with the upper and lower main 
branches of Figure 5.3 results in the decorrelator for the Gaussian channel. The 
input to the decorrelator for the Gaussian channel is then given by (5.88), which 
is the vector of sufficient statistics for the Gaussian channel. (5.68) is then 
edited to remove the fading contributions and can be re-written as: 
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R, (z) = 0(0)Aoo (z)0'(0) .. ........................................................................ ....... ......... . (5.89) 

The estimated energy bit vector from the decorrelator for the Gaussian channel 
is obtained by substituting (5.88) and (5.89) into the definition of (5.84). 
Igoring the z-transform s, the result is: 

, , 
w(z) = Sgn(R , + R, r (q+q ) 

00' • 00' I r::c. 0 £:\' o· (5 90) = Sgn(0A 0 +0 A 0r (C'Y +-=- Y ) .......................................................... . 

With reference to Figure 5.4, as the fading dominates the additive white 
Gaussian noise, the decorrelator approaches a limiting form where no use is 
made of the fading statistics. This situation corresponds to the scenario where 
the diversity combiner in Figure 5.3 will subtract off all the fading interference 
in qO(z). 

It has been shown in Section 4.4.3.1.3 that in the infinite horizon case, the 
divers ity combiner and decorrelating filter can be implemented as linear time 
invariant filters. The pictorial forms of Figures 5.3 and 5.4 are only given to 
illustrate the mechanism of diversity combining and decorrelation and not the 
actual implementation. This is because the impulse responses that specify these 
fi Iters are noncausal [97]. The actual implementation is obtained by first 
computing the causal FIR approximations to the IIR diversity combining and 
decorrelating filters , which are parameterized by the phases, correlations and 
variance ratios. In practice, a single computation of the required filter 
coefficients is done using the phases, correlations and variance ratios in a single 
acquisition. 

5,6, Conclusion 

The purpose of this chapter was to derive multi user receiver structures for the 
time-dispersive, three-path Rician fading CDMA channel. For each user, there 
exists a steady specular path and Rayleigh faded paths, all of them appearing 
asynchronously at the receiver. The received signal model is given in (5.4) for 
CD MA transmission through the three-path Rician fading channel. 
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The AME for the detectors for this fading channel was given in (5.5), where the 
fading and additive noise variance ratios are held constant, and the fading 
variances are assumed to be independent of the specu lar component energies. 
This definition of AME quantifies the effects of both the specular energies and 
the fading on the detector performance. The near-far resistance of the detectors 
in this fading channel is defined as a measure of the robustness of the detection 
scheme to variations in the specular energies of the users under the assumptions 
of constant fading to additive noise variance ratios. 

It was shown that the time-dispersive Rician fading asynchronous COMA 
channel bears an equivalence to an asynchronous Gaussian intersymbol 
interference (AGISI) channel. This equivalence result allows for the 
specification of a multiuser detector for the fading channel for each multiuser 
detector that is known for the Gaussian COMA channel. 

For the time-di spersive fading channel , the conventiona l detector definition 
leads to a sequence detector of the Viterbi type since it recognises and takes into 
account the dispersion of the user's signal s. This detector is near-far limited 
when used over the multi user channel because the presence of the interfering 
users is not taken into account. The MLS detector for the channel was obtained 
and it could not be practically implemented. Despite its complexity, the near­
far resistance performance of the MLS detector was considered. This result 
served as a benchmark against which the suboptimal strategies for the fading 
channel were considered. 

The decorrelating strategy was considered for the Rician channel that was 
computationally less expensive than the MLS detector yet achieves the same 
near-far resistance. The specification of this detector was induced from the 
equivalence between the fading and Gaussian COMA channels. The 
decorrelators for both the finite and infinite sequence lengths were derived and 
their operat ion was explained. It was found that the asymptotic efficiency and 
near-far resistance of the decorrelator is independent of the specular energy, 
which made it suitab le for use in the fading channel as the optimal linear 
detector. 



120 

Chapter 6: Decorrelating detection employing selection diversity 

6.1. Introduction 

A discussion was given on suboptimal multi user demodulation in Section 5.5.4, 
where the decorrelator was found to be the best choice for linear detection over 
the fading channel. Furthermore, the optimum multi user diversity combiner for 
the channel was discussed in Section 5.5.4.2, where the signals from the 
different paths were first combined in an optimal manner. The output of this 
multiuser diversity combiner then served as an input to the decorrelating 
detector. 

In this chapter, selection diversity will be used by a path selector to first select 
the strongest path for the channel, which would then serve as the input to the 
decorrelating detector. Recall that an extensive discussion was given of 
diversity and combining techniques for fading channels in Sections 3.5 and 3.7, 
respecti vel y. 

The method to be followed here is in accordance with the theory of Section 3.7 
where multiple reso lvab le paths can be used to accomplish selection diversity 
by selecting the path with the largest autocorrelation peak at the output of 
matched filters. For example, assume that for user k, the corresponding outputs 
of the matched filters y,O, Yk' and y.' are such that: 
1 Yk U 1 > 1 Yk' 1 and 1 Yk ° 1 > 1 Yk'l , then in that case, selection diversity chooses the 
specu lar path as the strongest path for that user in that symbol interval. 

To facilitate an easy explanation and derivation, the assumption made in this 
section will be that the sequence length is not too large. This assumption will 
then facilitate the use of the results for the decorrelators for finite and infinite 
sequence lengths of Sections 5.5.4.1 and 5.5.4.2, but without the requirement of 
the z-transform notation. 

The organisation of this chapter is as follows: 

The problem will be formulated in Section 6.2 where the system model will be 
described both pictorially and mathematically. The operation of the path 
selector and decorrelator will also be di scussed in this section. A discussion 
will be given of the software algorithms used to obtain numerical results for the 
performance of the decorrelator, in Section 6.3. Both the analytical and 
simulation models will be discussed in this section. A numerical performance 
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evaluation will be undertaken in Section 6.4, with the aid of the results obtained 
using both the analytical and simulation software models of Section 6.3. 
Finally, a conclusion to this chapter will be provided in Section 6.5. 

6.2. Problem formulation 

In contrast to the method followed in Section 5.5.4, where MRC was used for 
the suboptimal multi user detectors that were derived, the aim here is to use 
selection diversity instead. A description will be given of the selection diversity 
system in Section 6.2.1 and the selection diversity system will be 
mathematically described in Section 6.2.2. The operation of the path selector 
and decorrelator will be discussed in Section 6.2.3. 

6.2.1. Selection diversity system description 

Selection diversity can be incorporated into the receiver structure that has 
already been given for the optimum detector in Figure 5.2 , but the data 
detection strategy is no longer the MLS detection rule, but corresponds to that 
for the decorrelating detector. With the incorporation of selection diversity into 
the receiver structure depicted in Figure 5.2, the resulting selection diversity 
system is obtained as shown in Figure 6.1 . 

The discussion of this selection diversity system is very sim ilar to that given tor 
the discussion of Figure 5.2, where the entire system model had been depicted 
for clarity. For the reception of the signal in Figure 6.2, carrier demodulation is 
first performed and the resulting lowpass input signal is r(t). The complex 
conjugate of this lowpass input signal is passed through the filter bank and the 
outputs are sampled at t=T to yield the normalised matched filter output vector 
q. For each user k, the outputs of the matched filter bank is qkO, qk' and qk'. qkO 
corresponds to the outrut of the filter bank for user k matched to the specu lar 
signal path. qk' and qk correspond to the output of the filter banks for user k 
matched to the first and second fading paths, respectively. Selection diversity is 
next performed where the path with the largest autocorrelation peak is chosen at 
the output of the matched filter bank for each user. 

Once the path selection has been accomplished for each user, linear 
transformations are then taken of these outputs to yield the vector q, . The 
vector of sufficient statistics for the channel is now defined as (q, + q,\ which 
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is then passed to the decorrelating data detection algorithm to produce estimates 
of the transmitted data vector. 
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6.2.2. Mathematical Preliminaries 

In order to incorporate selection diversity into the system model, as depicted in 
Figure 6.1, and to make use of the equations that have been derived in Chapter 
5, it is useful to introduce the diagonal matrices C, 0 and G. The dimension of 
these matrices is [(2M+ I)K x (2M+ I )K). These matrices will aid in the path 
selection process, where the C matrix will help in the selection of the specular 
path and the elimination of the other paths. The D matrix will aid in the 
selection of the first fading path and the elimination of the other paths. 
Similarly, the G matrix will help in the selection of the second fading path and 
the elimination of the other paths. 

Assume for example that for a particular symbol interval, the output from the 
filter bank matched to the specular path of the first user is stronger than the 
corresponding outputs from the filter banks matched to the first and second 
fading paths of the same user. In that case, the correct operation of the path 
selection function would be to select the specular path while eliminating the 
other two paths. In order to meet thi s end, the first element in the C matrix 
corresponding to the first user, CI.1, is set to I. Furthermore, the first elements 
in the 0 and G matrices corresponding to the first user, 01.1 and GI.1, are each 
set to O. This will ensure that when the output of the path selector is passed to 
the decorrelator, the contributions of the two fading paths have been removed . 
The same principle applies to all the other users in that particular symbol 
interval for the determination of their corresponding elements in the C, 0 and G 
matrices. 

With the incorporation of selection diversity into the system model as depicted 
in Figure 6.1 and in accordance with the discussion given above, (5.43) and 
(5.44) can be modified accordingly. These equations can be modified and re· 
written as: 

q, ~ Ete[Cy' - D(A" + A" )p:., + A") 'y' - CIA"' + A" )(L" + A" r' y ' ........... (6.1) 

H, ~ Et e{CAiJO - D[(A'" + A" )p: ., + A" r' (A" + A" )] 

02 12 ~2 22 - 1 20 21 . .:-- C[(A + A )(L + A ) (A + A )]}e E · .................................... ........ .... (6.2) 
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Note that all the equations with the subscript "f' in Chapter 5 where MRC was 
used, are now given the subscript "s" since selection diversity is being 
employed. 

Depending on the elements of the C, D and G matrices in (6.1) and (6.2), these 
equations are only left with either the contributions of the specular path, fading 
path I or fading path 2. Hence, selection diversity has been successfull y 
realised for the channel with the aid of the matrices C, D and G. 

Note that the definition of q in (5 .60) needs to be re-written as follows: 

, 
q, = E " q, .............................................................................................................. (6.3) 

With the aid of (6.3), the definition of q in (5.67) can be modified and 
rewritten for the selection diversity receiver as: 

q, =e[C:vo - D(A" +A" )(~ " +A")" y' -G(A" +A" )(~ " +A" ),' y ' ......... .. (6.4) 

Also the definition of Rr in (5.49) has to now be re-written as: 

_1 _1 
R, = E ' H ,E ' ............. ... .. .. ... .... .. .. .. ... .... .. ..... .... .. .. .......... ... ..... .... .. .. ...................... (6.5) 

With the aid of (6.5) the definition of Rr in (5 .68) can be modified for the 
selection diversity receiver and re,written as follows: 

R, = e{CAoo - D[(A OI + A" )(~ ,' + A" )" (A " + A")] 

- G[( AOl + A" )(~ ,' + A" )" (A lO + A" )]}e' ................................................ ( 6.6) 
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Since (6.4) now represents selection diversity instead of MRC, its structure now 
represents that of the path selector. With the aid of (6.4), the graphical form of 
the path selector is obtained and depicted in Figure 6.2. The output of thi s path 
selector now serves as the input to the decorrelating detector, which is depicted 
in Figure 6.3. 

Similar to the method followed in Section 5.5.4.2, it can be seen i.':' (6. 7) that 
the output of the decorrelating filter is the sequence of estimates w(x) of the 
transmitted energy-bit vector which is given by: 

• - I • 
lI'=Sgll(R, + R, ) (q ,+ q , ) ..... ... ........... ... ................ ..................................................... (6.7) 

The data detection in (6.7) can be seen as a process that involves polarity 
detection at the output of the cascade of the multi user path selector of Figure 6.2 
and the decorrelating filter of Figure 6.3. 

The near- far resistance of thi s modified decorrelator is almost identical to 
(5.65). The asymptotic efficiency and near-far resistance of thi s decorrelating 
detector is independent of the specular energies and can be expressed as: 

- I 
,,, (x) = " , (x) = • I ............................ .................. (6.8) 

2«R, + R, r )(x,x)k./ 

The di scussion and deri vation of the bit error performance of this decorrelating 
detector will be postponed until Section 6.2.4. 
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6.2.3. Operation of the multi user path selector and decorrelator 

Unlike the operation of the optimum multiuser diversity combiner of Figure 5.2. 
rather than combining the signals from the di fferent paths, the multi user path 
selector of Figure 6.2 selects only the strongest matched filter output for a user 
for that particular symbol interval. With reference to Figure 6.2, it can be seen 
that this multi user path selector simply selects the matched filter output 
sequences lex), y'(x) or y'(x), to produce q,(x). It then retains only the real 

- - , 
part of this output sequence to yield the vector sequence { q,(x) + q, (x)}. It is 
evident from Figure 6.2 that with the proper choice of the matrices C, D and G, 
when l is the strongest output of the bank of matched filters, then the 
contributions of y' and y' are blocked out. In that case, the decorrelator of 
Figure 6.3 will coincide with the decorrelator for the Gaussian channel. 

The matrices C, D and G can also be incorporated into the decorrelating 
structure of Figure 5.4, for the purposes of se lection diversity, to result in the 
modified decorrelator of Figure 6.3 , the inputs to which are the output of rhe 
path selector of Figure 6.2. It is evident from Figure 6.3 that in the case where 
y" is the strongest output of the bank of matched filters, then the feedback arms 
associated with the upper and lower branches of the decorrelator of Figure 6.3 
are removed due to the respective elements of the D and G matrices being set to 
zero. This results in the decorrelator for the Gaussian channel, as discussed in 
Section 5.5.4.3 . 

6.2.4. Bit error rate computation 

For each symbol interval, there are a number of combinations of the strongest 
paths for each of the k users. From this poim forth, for the discussion that 
follows, a specific user, assumed to be user I, is taken as the reference user and 
the bit error rate computat ion is carried out for this reference user. 

But first , some definitions will need to be given in order to facilitate the 
computation of the bit error rate. Let vi m) be a vector which refers to the 
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different combinations of the strongest paths of all the users, excluding the 
reference user. Let the variable Lm refer to the number of combinations of these 
strongest signal paths of all the users, with the reference user being excluded. 
Let the variable m index that specific combination of signal paths of all the 
users, with the reference user excluded, for that specific symbol interval. Let 
the variable I refer to the strongest signal path of the reference user in that 
symbol interval , where the specular signal path is denoted as path 0, the first 
faded signal path as path I and the second faded signal path as path 2. Hence, I 
can take on values of 0, I and 2, corresponding to each of the three signal paths. 

For example, for a specific symbol interval, assume that the strongest signal 
path for the reference user is its specular signal path , hence I is assigned the 
value ofO. For the purposes of the discuss ion, assume that there are three other 
users. Let the indexed value of m be 4, where for this value of m, the 
combinations of the other three user 's signal paths are as follows: 

The strongest signal path for user 2 is its path I, while user 3's strongest signal 
path is its path I as well. However, for user 4, its strongest signal path is its 
path O. Accordingly, the vector v/m) takes on the values of [I I 0] where the 
first e lement in v/m) denotes the fact that the user 2's strongest signal path is its 
path I, the second element denotes the fact that user 3' s strongest signal path is 
its path I and the third element denotes the fact that user 4' s strongest signal 
path is its path O. The variable Lm equates to 3 as the number of combinations 
of v/m) is 3 ie. v/m) can either be [I 10], [10 I] or [0 I I] . 

The bit error rate of this detector is conditioned on the vector v/m) and can be 
denoted as p.J v/ m). This conditional bit error performance of the decorrelator is 
almost identical to (5.64) and can be written as: 
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p.lv,''" ' (x) ~ Q( "hH, + H:' r')(x,x)" J .............................................................. (6.9) 

Note that (6.9) can be simplified and written as follows: 

p. v,''''' (x) ~ Q[ 29;:'1, ) J...... .................................................... ( 6.t 0) 

From [96, 97], the bit error rate for the reference user has been defined as: 

2 , . . "" I '" 1*' Pr obabtlay _ qf _ error = L.. L.. p,. v, p( v, ) ....... ................................................ ( 6.1 I) 
{"o h i 

where: 

there are a total of K users 

I represents the strongest signal path for the reference user 

In accordance with the discussion given thusfar, (6.11) can be simplified and re­
written as: 

1 Ill""" 

" " p lv''''' • L L..L- "I ," 

Probahilil)' of error = I",U "' '' I . . ..................................................••..•• (6.12) . -' - 3 .... 

where: 

K is the total number of users 

M indexes the different v/"" vectors and can range from I to m",", 
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Substitution of (6. I 0) into (6. I 2) for the definition of P,J v/ m) results in : 

iJ:q291(;I'l Lm 
Pr obabilil)' or error = 1=0 ", ,,, I ~ .. . .. . .......................... . ......... . ...... (6.1 3) _ 1 - 3 

6.3. Numerical and simulation models 

The aim of the numerical exercise is to analytically determine the bit-error rate 
for a particular user. This analytical value of bit-error rate is to be compared 
against that produced hy the actual simulation model , which will be developed 
for the users under different fading conditions, specular energies and delays. 
Ideall y, the bit-error rate value returned by the si mulation model software 
should be the same as that produced by the analytical model. 

The organisation of this section is as follows: 

In Section 6.3. I, some preliminary informat ion will be given together with the 
assumptions that have been made in developing both the ana lytica l and 
simulation models. The analytical model will be discussed in Section 6.3.2 
while the simu lation model will be discussed in Section 6.3.3. 

6.3.1. Preliminaries 

User I is taken as the reference user and all the other delays are with respect to 
the delay of the specular path s ignal of this user. It is further assumed that there 
are four users so that the matrices to be used in the software algorithms will not 
be too large and can be computed relatively easily. However the same 
qualitative result would be achieved by using only four users, as opposed to 
considering more users. 
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BPSK signaling is used, where the data bits for the users take on values of ± l. 
Gold sequences of length 31 are chosen for the code waveforms of the four 
users. The following codes are assigned to the respective user: 

a,= [-I ,-I , I ,-I ,-I ,-I ,-I , I,I , I , I ,- I , I ,-I , I ,- I ,- I ,-I,I,I,-1,1 ,- 1,-1 ,1,-1 ,- 1,1,1,1 , 1] 
a,= [ -1,-1,-1,-1, I ,- 1 ,- 1 ,- 1, I , I , I ,-1 , I ,- 1, I ,-1 ,-1 , I ,-1 , I, I , 1,1,- 1,- 1, I , I ,- 1, I , I ,-1] 
a3=[1 ,- 1 ,-1 , I , I, I ,- 1,1 , I , I ,-1 ,-1 ,-1 ,-1 ,-1, 1,1,- 1,1,-1,-1,-1, I ,- 1 ,-1 , I ,- 1,1, I , I ,-1] 
a4= [ - I , - I , - I , - I , - I , I , I , I , - I , I , - I , - I , I , - I , - I , - I , - I , I , - I , - I , I , I , I , I , I , I , I , I , - I , I , - I] 

Furthermore, it is assumed that the specular energies, phases and variance ratios 
are time invariant over that particular symbol interval , denoted as the x'" symbol 
interval. The assumption is also made that the phases of the users is zero, so 
there is no requirement for the complex operation in the 6.2. At all times it is 
assumed that the noi se is Gaussian with zero-mean and variance (J2 

Similar to (5.53), the vectors of suffi cient statistics for the selection diversity 
case, given in (6.1) can be written as: 

q, ~H,b+ " ........... ........................................................................................................ (6.14) 

Substilution of H, defined in (6.2) into (6.14), the system model in accordance 
with the assumptions made above, can be given for the synchronous case as 
(6.15). The outpul data estimates from the decorrelating detector is then 
obtained using (6.7). 
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6.3.2. The analytical model 

The aim of the analytical model is to analytically obtain the bit error rate of 
the reference user I, using (6.13). An attempt will be made in this section to 
s implity the expression in (6.13) and to obtain all the terms in this equation 
so that it can be solved analytically using mathematical software routines. 

As discussed in Section 6.2.1 , for each symbol interval , there are a number 
of combinations of the strongest paths for each of the four users. Recalling 
the discussion in Sections 6.2.2 and 6.2.4, the combinations of strongest 
paths for the four users can be tabulated as in Table 2. 

- v I'm, 
Strongest path Indexed strongest strongest strongest PATH VARIETY VALUE - -

for user 1 value of path for path for path fOT 

where (I E 0, t ,2) 
user 2 user 3 user 4 

(110 of combination,,-of v/"'); m 

I I 0 0 0 I 
I 2 I 0 0 3 
I 3 2 0 0 3 
I 4 I I 0 3 
J 5 2 I 0 6 
I 6 2 2 0 3 
I 7 I I I I 
I 8 2 I I 3 
I 9 2 2 I 3 
I 10 2 2 2 I 

TOTAL 27 

Table 2 
Combinations of the strongest paths for the different users for a particular 
symbol interval 
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As can be seen from Table 2, for a specific value of / for the reference user 
I, the total number of combinations of the other users' strongest paths for 
that symbol interval is 27. For all the three values that / can assume, in total 
the number of combinations of signal paths for any symbol interval is 
obtained by multiplying 27 by 3, with the result being 81 . 

The probability of bit error for any single user was given by (6.13). From 
the information from Table 2, the value of m",,, in (6.13) is 10. As there are 
4 users in total, the total number of strongest path combinations from the 
previous discussion is 81. Using this information, the solution in (6.13) can 
be simplified and rewritten as: 

, " (2 ~! ( H» ) l:l:Q " * L", 
P b b ./ . f · "Iec:.o-""'.:::" ----''--::':''_--'' __ rool/(1' 0 error = . _. - 8 1 .. ..... .............................. (6.16) 

From (6.16), it can be seen that the probability of error is found for the 
reference user for all the 81 combinations of the strongest signal paths. 

Corresponding to the combination of the user's strongest paths during that 
symbol interval, in accordance with the discussion in Section 6.2.2, the 
elements of the C, D and G matrices are chosen accordingly. For example, 
assume that the specular signal path is the strongest for users I and 4 during 
that symbol interval. Assume also that the second fading path signal is the 
strongest for user 2 and first fading path signal is the strongest for user 3. 
Hence, /=0 and v/ "') = [2 I 0] which corresponds to the case of 01=5 in Table 
2. 



Hence, C,.m = Co.s and its elements are given by: 

I 

CO.5 = 
0 
0 

0 

000 

000 
o 0 0 

o 0 

Likewise, D,.m = 0 0.5 and its elements are given by: 

0 0 0 0 

0 0 0 0 
Do.~ = 

0 0 I 0 
0 0 0 0 

Finally, G
'
.m = GO•5 and its e lements are given by: 

0 

0 
GO.5 = 

0 

0 

000 

o 0 

000 

000 
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From the definition in (5.9), the variable r was detined as the ratio of fading 
to additive noi se variances. Note that for even, light fading, the value of r is 
taken to be I. Hence, the 2: matrix in (6.15) evaluates to be a unit matrix . 

The signal-ta-noise ratio (SNR) is given by the ratio of the user 's energy to 
additive noise variance. For unit variance Gaussian noise, the SNR is 
simply the user's energy in decibels (dB's). 
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Assume for example that the noise has unit variance and that the SNR of the 
reference user I is 6 dB's. In that case, the energy of user I in the Xl" bit 
interval is so lved from: 

1010£ 10 £ 1., = 6 
~ 

Hence, E = 10 1
" = 4 walls I. ., 

Hence, the first e lement of the E matrix in (6.15) is set to 4. The energies of 
the other three users are obtained in a simi lar manner, and these values are 
insened into the respective elements of the E matrix in (6 .1 5) . 

All delays are with respect to the delay of the specular signal path of the first 
user, which is taken to be zero. With the assumption that the phase 
difference is zero between all the other signals relative to the specular path 
s igna l of the first user, from (5.8) the 0 matrix evai"uates to be a unity matrix 
in (6 .1 5). 

It is now possible to solve for H, that had been defined in (6.2), from the 
system model in (6. 15). The value of the H, matrix can then be substituted 
into the expression for the bit error rate, given in (6.16). 

Note that the standard definition of the Q function was given in (2 .25), In 

terms of the complementary error function. For completeness, the Q 
function definition of (2.25) can be rewritten as: 

Q(d) = i el/ c { Jz } ................................................................................................................. (6.17) 

where: 

erfe is the complementary error function 



139 

Substitution of (6.17) into (6.16), allows the expression for the bit error rate 
to be rewritten as: 

, '" 
L L (t e1fc(.jH,»· ~'" 

P b b ·,· f ,,'."'0-""''''. ' ______ _ ra a llty _ C? _ error = -
81 

.............................. ......... (6.18) 

The analytical model flowchart is given in Appendix 4, as Figure A4.1 , 
along with all the main software subroutines. The aim of the analytical 
model is to calculate the bit error rate using the definition in (6.18). 

The software for the analytical model was written in the C++ programming 
language and the routines for vector and matrix definitions, complementary 
error function, matrix inversion, etc. are not discussed here and may be 
found in any books on numerical recipes for mathematical functions. 

To test that the analytical model software routines were operational , it was 
necessary to set the contributions of the fading paths to zero in order to 
check if similar results were obtained as for the ideal BPSK case. For the 
ideal BPSK case, the probability of bit error for the kth user in the xth 
symbol interval is obtained from [6]: 

P, (BPSK) = ~ elfc{ ~ 2";' } ............................................................................................ (6.19) 

where: 

As before, Ek is the energy of kth user's signal 
0'2 is the noise variance 

In the analytical model, in order to negate the contributions from the fading 
paths in the determination of H" the fading variance is set to zero. In so 
doing, the L matrix in (6.2) and (6.15) evaluates to be a zero matrix . For 
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identical SNR' s, the probability of bit error for both the ideal BPSK case and 
from the analytical model were obtained and compared. The results of the 
comparison are shown in Table 3. 

SNR (dB's) P, (BPSK) Pe (analytical model) 

0 0.1535 0.158655 
3 0.0785 0.078650 
6 0.02385 0.022750 

7,5 0.00865 0.007153 
9 0.00219 0.002339 
10 0.00063 0.000783 
It 0.00023 0.000266 

Table 3 
Probability of error for BPSK in AWGN, and the analytical model 

As can be seen from Table 3, the results produced by the analytical model 
when the effect of fading is removed, produces bit error rate results similar 
to that of the ideal BPSK case. Hence, this confirms that the analytical 
model was working correctly. 
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6.3.3. The simulation model 

The aim of the simulation model is to transmit a known data sequence 
through the channel, and then to try and demodulate it. The composite 
transmitted signal for each user is generated by the software, and the 
detector of Figure 6.3 is tested in software to see if it can demodulate the 
transmitted data bits correctly. The demodulation of the data sequence is 
obtained by using the system model of (6.15) and the result of (6.7) . 

For a specific value ofSNR, a total of I million simulations were performed. 
The data bits were randomly generated by a random number generator with 
values of ± I for BPSK signaling. The entire flowchart for the simulation 
model is depicted in Appendix 4, as Figure A4.2. The routines for the 
generation of Rayleigh and Gaussian generated variables are not given and 
can be found in any books with mathematical so ftware subroutines . 

Assumptions made in the simulation model are that the noise is zero mean 
with variance a' , and there are four users with their spreading codes given in 
Section 6.3.2. A further assumption is that the phase difference is zero 
between all the other signals re lat ive to the specu lar signa l path of the first 
user. This a ll ev iates the need for any complex conjugate ca lcu lat ions in the 
system model of (6.15). As stated prev iously, all delays are with respect to 
the delay of the specu lar signal of the first user, which is taken to be zero. 
Furthermore, the assumption is that the specu lar energies, phases and 
variance ratios are time invariant over a bit interval. 

In the simulation model , for each bit that is incorrectly demodulated, an 
error counter is incremented. Once I million simulations have been done for 
that particular value of SNR, the value of the error counter is divided by a 
million to determine the bit error rate corresponding to that SNR. A total of 
twenty-four different SNR cases are considered in the simulation software. 
Once all twenty-four SNR cases have been completed, the execution of the 
software is complete. It must be noted that the s imu lations are conducted for 
various va lues of fading to additive noise variance ratios and user delays. 
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6.4. Performance Evaluation Results 

User I was chosen as the reference user, and its bit error rate was determined 
via simulation. These values of bit error rate were then plotted graphically. 
Similar conditions were set in the ana lytical model as in the simulation 
model in respect of delays, SNR's and fad ing parameters to check if both 
models produced similar if not identica l results. An attempt was also made 
to check if the decorrelator for the fading channel was near far resistant and 
thereafter to determine its asymptotic efficiency. 

In the first instance, an attempt had been made to obtain bit error rate results 
similar to that for the BPSK case, from the simulation model. In order to 
achieve this, the synchronous case was used by setting all delays to zero, 
and the fading variances were also set to zero so that the L matrix would 
evaluate to a zero matrix. This was to get rid of the contributions of the two 
fading paths and only to use the contribut ion of the specular path. 

In Table 4 and Figure 6.4, the results of the bit error rate for the simulation 
model are shown first in a tabular form and then graphica ll y, based on the 
above information. These results were compared to those of the ideal BPSK 
case in [6] and other references, and they were found to be very simi lar. The 
bit error rate results of Figure 6.4 will serve as a benchmark for all the other 
simulation results in this section. 
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SNR (dB's) P, 

0 0.1535 
3 0.07865 

3.5 0.06724 
4 0.05656 

4.5 0.04655 
5 0.03773 

5.5 0.02977 
6 0.02385 

6.5 0.01725 
7 0.01267 

7.5 0.00865 
8 0.006 

8.5 0.0039 
9 0.00219 

9.5 0.00142 
10 0.00063 

10.5 0.00041 
11 0.00023 

11 .5 0.000085 
12 0.000034 

12.5 0.0000 12 
13 0.000004 

13.5 0.000003 
14 0.000002 

Tab le 4 
Tabul ated results for bit error rate for the BPSK in A WGN case 

Pe VERSUS SNR FOR THE IDEAL BPSK CASE 

1 .OOE +00 

1 .00E-01 

1 .00E -02 .. 
1 .00E-03 Il-

1 .00E-04 

1 .00E-05 

1 .00E -06 
0 2 4 6 8 10 12 14 16 

SNR(dB's) 

Figure 6.4 
Simulation results for bit error rate for the BPSK in A WGN case 
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The perfonnance measure of asymptotic efficiency will be considered for 
the selection diversity decorrelator of Figure 6.3. Its bit error rate will also 
be illustrated which will make it possible to assess its relative perfonnance 
over a large set of operating conditions. 

In the following simulation results, various conditions were set in the 
simulation software in order to determine their effect on the bit error rate 
result. As a benchmark for all the results, the bit error rate for the ideal 
BPSK case of Figure 6.4 is shown. 

For the fo ll owing simulation results shown, Cases I to 6 are considered, 
corresponding to different simulation scenarios. These different cases are as 
follows: 

Case I: 

A bandwidth efficient, finite horizon case is considered for the four users 
where their spreading waveforms have been defined in Section 6.3.1. An 
even and light fading scenario is considered, where the va lue for r in (5.9) 
for each of the four users, evaluates as rI ~r2~r3=r4= I. 

The bit error rates for the ideal BPSK case of Figure 6.4, the single-user 
diversity combiner, discussed in Section 5.5.1, and for the MRC decorrelator 
discussed in Section 5.5.4.3 are displayed for the purposes of comparison. 
The bit error rate of the selection diversity decorrelator discussed in this 
chapter is obtained both analytica ll y and by simulation and is considered 
over the range of realistic channel conditions with moderate SNR values. 
The bit error rates are plotted against the first user's SNR, which is increased 
by holding the additive noise variance fixed and increasing its specular 
energy. The specular energies of the other users are all set to 4. 

The relative delays are arbitrarily chosen in multiples of the chip duration 
To. and are tabulated in Table 5. The results are shown in Figure 6.5 and a 
discussion of the results is given shortly thereafter. 



Specular path delay Fading path I delay 
User 1 0 9T, 
User 2 2T, 11 T, 
User 3 5T, 7T, 
User 4 3T, 14T, 

Table 5 
Tabu lat ion of the user's delays for Case I 

o 2 4 6 8 12 

. srgel..ffi"d\e'Styanbre­
-00aiimd\e'Styc:imT8cta - sm.Jcticn 
- 00aiimd\e'Styc:imT8cta -JEl)ticcj 
- . _. - rvR:;c:imT8cta 

. EJS< 

Figure 6.5 
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Fading path 2 delay 
lIT, 
15T, 
6T, 
9T, 

14 

Bit error rate results for even and light fading conditions of Case I 
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With reference to Figure 6.5, it wi ll be observed that the ideal BPSK case 
still has the best bit error rate results. The detector with the worst bit error 
rate performance is the single-user diversity combineI' and the selection 
diversity decorrelator performed far better than this detector. Furthermore, 
the simulation and analytical bit error rate results for the selection diversity 
decorrelator were very sim ilar. However, the bit error rate results for the 
selection diversity decorrelator were not as good as those for the MRC 
decorrelator. 

Case 2: 

In this si mulation run, the same parameters are used as for Case I, but it is 
conducted for various sets of delays for the asynchronous case as the main 
aim of the simulation is to verify the analytical performance. The relative 
delays are arbitrarily chosen in multiples of the chip duration T" and are 
tabulated in Table 6. Figure 6.6 consists of severa l plots of Pe versus SNR 
for the select ion diversity decorrelator for different delay sets. Once again, 
the bit error rate plot for the ideal BPSK case serves as a benchmark for all 
the results. A discussion of the results of Figure 6.6 is given shortly 
thereafter. The analytical results were found to be very simi lar to the 
simulation results, and are not shown in Figure 6.6 in order to prevent the 
plots in thi s figure from becoming too cluttered. 

First delay set Second delay set Third delay set 
Specular Fading Fading Specular Fad ing Fading Specular Fading Fading 
path path I path 2 path path I path 2 path path 1 path 2 
delay delay delay delay delay delay delay delay delay 

User 0 9T, lIT, 0 3T, 6T, 0 IT, ST, 
I 

User 2T, 11 T, 1ST, 7T, 6T, 6T, IT, 2T, 6T, 
2 

User 2T, 7T, 6T, 3T, ST, 4T, 2T, 3T, 7T, 
3 

User 3T, 14T, 9T, lOT, liT, IT, 4T, 8T, 8T, 
4 

Tab le 6 
Tabulation of the user' s delays for Case 2 
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Pe versus SNR 

o 2 4 6 8 10 12 14 
HBOO ,-_______________________ -, 

f=·:-:· -:·:-=·::::::::~~::~~~~~~ 
-.- ._- - . --- . 

1(E..{)1 -"" --- . 
. ". " . . C:'.:-.' -.~. '.~.'. 0-

I .CE-Q2 

. :.":'".'".... 
..... ',;-. ~ I,CE-OO 

, .~ L-_______________________ ---' 

Figure 6,6 

SNR(dB's) 

• BPSK plot 
.. ..... result for first delay set 
__ result for second delay set 
_ . _ . _ result for third delay set 

Bit error rate for the selection diversity decorrelator for different sets of 
delays 

With reference to Figure 6.6, it will be observed that the delays do not 
substantially affect the bit error rate of the selection diversity decorrelator, 
and that all the bit error rate plots are very similar. Hence, it can be stated 
that the bit error rate of the decorrelator is fairly independent of the 
asynchronous path delays of the users for the delay set chosen in Table 6. 

Case 3: 

The parameters used for this simulation are the same as for Case I, but 
instead of increasing the SNR by increasing the specular energy and keeping 
the noise variance fixed, the SNR is increasing by fixing the specular energy 
of the desired user and correspondingly decreasing the noise variance, 



148 

User I ' s energy is set to I and the other users energy are set to 4. The fading 
to additi ve noise variance ratio is still held fixed at rI =r2=r3=r4= I. The 
effect of this is that as the SNR is increased, the fad ing variances are 
correspondingly reduced because the noise variance has to be reduced to 
provide the higher SNR. The bit error rate results are shown in Figure 6.7 
and a brief discussion of the result is given thereafter. 
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With reference to Figure 6.7, it can be seen that the bit error rate plot of both 
the se lection diversity and MRC decorrelators decay much more rapidly than 
that of the si ngle user diversity com biner, even for medium SNR values. 
These plots are indicative of how th e near-far problem associated with the 
single-user diversity combiner manifests itself under this fading channel 
condition. Note that the simulation and analytical results of bit error rate for 
the selection diversity decorrelator are very similar. From Figure 6.7, one 
notices that as one approaches the high-SNR end, performance loss is 
mainly due to the interferer specular energy and is not due to the effects of 
the additive and fading noises which are very low for these high SNR. The 
bit error rate results for the ideal BPSK case have been given as reference 
and are the lowest achievab le for the CDMA case. It is clear that the results 
of Figures 6.5 and 6.7 are very similar, where irrespective of whether the 
user 's SNR was increased by increasing the specular energy and fixing the 
noise variance, or fixing the specular energy and reducing the noise 
variance, the bit error rate is a lmost the same for the corresponding value of 
SNR. 

Case 4: 

An attempt is made here to show the near-fa r resi stance of the MLS detector 
of Section 5.5.2, selection diversity and MRC decorrelators for the fading 
channel. Furthermore, the severe near-far limitations of the single user 
diversity combiner of Section 5.5.1 wi ll also be shown. 

Case 4.1. 

The delays of the signals from the different paths are as shown in Tab le 7. 

Specular path delay Fading path I delay Fading path 2 delay 
User I 0 9T, II T, 
User 2 2T, II T, 1ST, 
User 3 2T, 6T, 7T, 
User 4 3T, 9T, 14T, 

Table 7 
Tabulation of the user ' s delays for Case 4.1 
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The energy of the first user is set to 2. Even and light fading conditions are 
used with the variance ratios rl =r2=r3=r4= 1. Of the three interfering users, 
it is assumed that user 2 is the dominant interferer. The noise variance is 
kept fixed. The energy of users' 3 and 4 are both set to I . However, the 
energy of user 2 is varied. This is done to check whether an increase in the 
SNR of the interferer has a major impact on the bit error rate performance of 
the desired user (user I). This wou ld in turn reflcct the near-far resistance of 
the decorrelator. The bit error rate of user I for the selection diversity 
decorrelator is shown in Figure 6.8 for a fixed SNR, in response to the 
variation in the interferer' s SNR. Figure 6.8 depicts the bit error rate for 
user I as the ratio of the square root of user 2's energy to user I's energy is 
varied. 
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With reference to Figure 6.8, it can be seen that an increase in the SNR of 
the interferer has very little effect on the bit error rate results of the desired 
user. This indicates that the selection diversity decorrelator is near-far 
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resistant. It will also be observed that the simulation and analytical results 
for the selection diversity decorrelator are very similar. 

Case 4.2: 

To verify the near-far resistance of the selection diversity decorrelator that 
the results of Case 4.1 seem to point to, an attempt is made to determine its 
asymptotic efficiency via simulation. Figure 6.9 illustrates the asymptotic 
efficiency of the first user over the xth symbol interval of the MLSD, 
selection diversity and MRC decorrelators and the single-user diversity 
combiner as a function of the energy of the second user relative to the 
desired user, which was varied as in Case 4.1. The performance of these 
detectors is considered as the interfering specular energy of user 2 increases 
with respect to that of the desired user I, while the noise variance is kept 
fixed. Furthermore, even and light fading conditions are assumed, and the 
fading to additive nOise vanance ratios are accordingly set as 
r I =r2=r3=r4= 1. 
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The results of Figure 6.9 indicate that the MLS detector performs best with 
the MRC and selection diversity decorrelators performing almost as well. It 
is observed that the MRC decorrelator performs better than the selection 
diversity decorrelator. Both the simulation and analytical results for the 
selection diversity decorrelator are very similar. However, the selection 
diversity decorrelator performs significantly better than the single-user 
diversity combiner. It is observed that the asymptotic efficiency of the 
single user diversity combiner alone decays to zero with increasing values of 
the interfering energy. This is an illustration of the near-far problem of 
single user detectors as it applies to the fading channel. 

Case 5: 

For the previous four cases, simulation results were obtained tor even and 
light fading conditions. For this case, an attempt will be made to obtain 
simulation results for uneven fading conditions. 

Case 5.1: 

The simulation parameters are set the same as for Case 4.1 , with the 
exception that the fading levels which are now set for user 2 as r2=5 and for 
the other users as r I =r3=r4= I. The bit error rate of the first user is shown in 
Figure 6. 10 for the selection diversity decorrelator, as a function of the 
square root of the ratio ofuser2's energy to its own energy. 
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In the result of Figure 6.10 , there is now a higher interferer fading relative to 
the additive noise. Comparing the results of Figures 6.10 and 6.8, it will be 
observed that for the uneven fading case, the near-far resistance of the 
selection diversity decorrelator is reduced, but not substantially. Once again, 
the simulation and analytical results for the selection diversity decorrelator 
are almost identical. 

Case 5.2: 

The parameters are set the same as for Case 3, except for the fading levels 
which are now set for the interferer as r2=5 while for the other users it is set 
as r I =r3=r4= I. User I ' s energy is set to I and the other users' energy are set 
to 4. To increase the SNR of user I, the noise variance is reduced. The bit 
error rate performance for the uneven fading condition is shown in Figure 
6. I I. 
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From Figure 6.11 it is observed the bit error rate of the MRC and selection 
diversity decorrelators increase relative to the results for the light and even 
fading case, but not substantial ly. The sing le-user diversity combiner suffers 
further relative to its already poor perfonnance in Figure 6.7. The bit error 
rate of both the MRC and selection diversity decorrelators has increased 
relative to the results of Figure 6.7 due to the interferer fading level being so 
high. As the fading of the interferer increases further, the bit error rates of 
all these detectors will corresponding ly increase. Also note that both the 
simulation and analytical bit error rate resu lts for the selection diversity 
decorrelator are very simi lar. 
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Case 5.3: 

The parameters are the same as for Case I, except for the fading levels 
which are now set for the interferer as r2=5 while for the other users it is set 
as r I =r3=r4= 1. To increase the SNR of user I , its specular energy is 
increased while the noise variance is held fixed. The asymptotic efficiency 
performance of the various detectors under this condition is shown in Figure 
6.12. 
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In the results of Figure 6.12, the uneven fading case was considered in order 
to determine its effect on the asymptotic efficiency of the detectors already 
determined in Figure 6.9. The asymptotic efficiency of both the selection 
diversity and MRC decorrelators decreases relative to the results in Figure 
6.9 due to the interferer fading level being so high, as shown in Figure 6.12. 
As the fading of the interferer increases, the performance of all these 
detectors will correspondingly reduce. Once again, it is evident that the 
simulation and analytical resu lts for the selection diversity decorrelator are 
very similar. 
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Case 6: 

The four users are assigned gold signature sequences as before. The delays 
for the signa ls from the various paths are assigned as shown in Table 7. 

The fading variance ratios are set with rl =1 and the rest being equal to 2. 
A ll the interfering specular energies are equal to that of the desired user, 
wh ich is set to 2. Figure 6.13 is a plot of the bit error probability of the 
desired user using the MRC and selection diversity decorrelators and the 
s ing le-user diversity combiner with the ideal BPSK case shown for the 
purposes of comparison. 
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For the results shown in Figure 6.13, the fading to additive noise variance 
ratio for the first user is set to I and it is set to 2 for the other users. All the 
interfering specular energies are equal to that of the desired user which is set 
to 2. This is traditionally considered an ideal power-controlled, nonnear-far 
situation and is regarded as the most favorable condition for si ngle-user 
detectors such as the single user diversity combiner. In the results of Figure 
6. 13, it is observed that there is still an improvement in performance given 
by both the MRC and selection diversity decorrelators, over the single-user 
detector even in this ideal nonnear-far situation. Once again, the simulation 
and analytical resu lts for the selection diversity decorrelator are very similar. 
It is clear that the single-user receivers suffer from more than just the near­
far problem. The sing le-user receivers can support only bandwidth­
inefficient CDMA communications. On the other hand, mu lti user detection 
solves more than just the near-far problem. It supports CDMA 
communications for much higher bandwidth efficiencies than does single­
user detection, irrespective of the near-far conditions. 

6-5. Conclusion 

Selection diversity was used by a path selector to first select the strongest 
path for the channel , which then served as the input to the selection diversity 
decorrelating detector. Multiple resolvable paths can be used to accomplish 
se lection diversity by selecting the path with the largest autocorrelation peak 
at the output of the matched filters. The multiuser path selector selects only 
the strongest matched filter output for a user for a particular symbol interval. 
When the specular signal path is the strongest at the output of the bank of 
correlators, then the selection diversity decorrelator for the fading channel is 
transformed into the decorrelator for the Gaussian channel. 

The aim of the software exercise was to analytically determine the bit-error 
rate for a particular user using the selection diversity decorrelator. This 
analytical value of bit-error rate is to be compared against that produced by 
the actua l si mulation model. The assumption that had to be made was that 
the specular energies, phases and variance ratios are time invariant over a 
particular symbol interval. Furthermore, it was assumed that there were four 
users. 
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From the numerical results, it was evident that the BPSK in A WGN gave the 
best bit error rate results. The detector with the worst bit error rate 
performance was the single-user diversity combiner, and the selection 
diversity decorrelator performed much better than this detector. However, 
the MRC decorrelator sti ll gave better performance than the selection 
diversity decorrelator. The MLS detector has the best asymptotic efficiency 
with the selection di versity and MRC decorrelators performing almost as 
well. However, both these decorrelators perform significantly better than 
the sing le-user detector. The asymptotic efficiency of the si ngle user 
diversity combiner alone decays to zero with increasing values of the 
interfering energy. For the case of uneven fading , the near-far resistance of 
both the decorrelators is reduced, and their bit error rate increases, but not 
substantially. Even in the ideal nonnear-far situation, these decorrelators 
still give better performance than the sing le-user diversity combiner. This 
points to the fact that single-user receivers suffer from more than just the 
near-far problem, and that they can support only bandwidth-inefficient 
CDMA communications. For all the results in th is chapter, both the 
simulati on and analytica l results for the selection divers ity decorrelator were 
very similar, thereby confinning the correctness of the software model used. 
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Chapter 7: Neural Network based multiuser detector 

7.1. Introduction 

In this chapter a receiver is proposed which is an extension of that 
considered in (60). The Kalman filter based multiuser detector of litis 
and Mailaender (66) is combined with the neural network approach in 
[60]. The input set to the neural network is expanded to include estimates 
of the signal amplitudes. The signal amplitudes and user delays are 
estimated using an extended Kalman filter (EKF). 

The organisation of this chapter is as follows: 

Section 7.2 will g ive an overview of the research work conducted on 
multiuser receivers using neural networks. The system model for the 
receiver proposed in this chapter will be given in Section 7.3. Amplitude 
and delay estimation will be di scussed in Section 7.4, while the neural 
network c lassifier will be discussed in Section 7.5. The performance 
evaluation results will be provided in Section 7.6 whil e a conclusion to 
the chapter will be provided in Section 7.7. 

7.2. Overview of neural network receivers 

In this section, a brief discussion is given of neural network and their 
incorporation into detector structures for COMA. 

The hi ghly structured nature of MAl suggests that a neural network 
should be able to learn how to remove the MAl effectively. A multi-user 
receiver is essentially a decision making device, hence a neural network 
is a natural architecture for this problem. Artificial neural networks are 
highly interconnected networks of processing units (referred to as nodes 
or perceptrons) which operate in parallel. A perceptron is a non-linear 
decision device comprised of layers of non-linear nodes. Each non-linear 
node in a layer operates on a linear combination of the outputs of the 
previous layer. It is possible to have multi-layered and single layer 
perceptrons. The multi layer perceptron is capable of approximating 
arbitrary decision regions in the input space for most classification 
problems. Due to their highly parallel structure and adaptability to system 
parameters, receivers employing neural networks prove to be a desirable 
alternative to the optimum and conventional receivers for multiple-access 
communications_ 
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The most intriguing aspect of neural net design is the structure 
modification rule employed for learning. The learning problem can be 
formulated as an algorithm to modify the internal structure of the network 
to minimize an external criterion function that is relevant to the task. The 
multi layer perceptron is trained to demodulate spread spectrum signals. 
The training is an iterative process of modifying weights and thresholds 
to minimize the error function. The back-propagation algorithm is a 
typical example of training algorithms that have been successfull y 
applied to many classification problems. It is successfu l in training the 
neural net receiver for the single-user and multi user detection problems in 
multiple-access channels. 

Unlike the optimum detector, most computationa l needs of the neural 
network receiver come during the training period and prior to actual data 
transmIssIon. For demodulation of information bits, the neural net 
receiver relies on parallel computation in each layer, which implies 
constant demodulation time complexity and exponential hardware 
complexity in the number of users. 

In [60] , an artificial neural network was employed for the demodulation 
of spread-spectrum signals in a multiple-access environment. The neural 
networks were trained for the demodulation of signals via back­
propagation type algorithms. A modified back-propagation algorithm 
was introduced for single user and multi user detection with near-optimum 
performance. Even with the standard back-propagation algorithm, the 
multi layer perceptron was very successfu l in classifying signals in the 
presence of interfering users. In all the examples considered in [60], the 
proposed neural net receiver sign ifi cantly outperformed the conventional 
receiver. The performance of the neural net receivers, with reasonab le 
training periods, closely tracks that of the optimum receiver. The multi­
layered network was found in [60] to perform no better than a single layer 
one. 

The receiver in [60] required knowledge of the other user's bits, and the 
number of neurons in this receiver grew exponentially in the number of 
users. The work in [60] did not prove that the neural network will 
converge to an optimum set of weights. The neural network was not 
trained in the presence of noise beyond MAl, hence this is an unrealistic 
communication environment. Nevertheless, the work is valuable and 
achieves its goal in showing that the neural network can perform as a 
multi-user communications receiver. 
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In [61), a multi-user receiver was developed, which ex ploits knowledge 
of the desired user's spreading code while initially being ignorant of the 
codes of the interferers. These receivers are based on the use of both 
linear and non-linear adaptive al go rithms. 

In [61) , the work of [60) was extended by providing comparisons of the 
perceptron 's performance to that of a linear adaptive receiver as well as 
providing convergence analysis of the neural network in the multi-user 
context. Both analysis scenarios were considered, the multiuser signal in 
the absence of ambient channel noise and in the presence of ambient 
nOIse. 

Classical Lyapunov techniques were used to show that the single layer 
perceptron converges to optimal weights for the noi seless multi-user case 
[61). The adaptive algorithms that were studied in [61) are appropriate 
for multi-user communication scenario where it is expected that the 
spreading codes of the interfering users are unknown to the receiver. 

All of the multi-user detectors examined in [61) outperform the 
conventional matched filter detector. It was also observed in [61) that the 
neural network algorithm performance improves as the communication 
scenario becomes more hostil e for the desired user. 

7.3. System model 

The received signal is the sum of K simultaneous CDMA transmissions 
plus additive Gaussian noise. To obtain the baseband equivalent of the 
signal, the incoming signal is first down converted to baseband, then low­
pass filtered and sampled at the Nyquist rate. Thus the baseband 
equivalent of the signal transmitted by the k-th user represents a sequence 
of binary valued rectangular pulses of width T, 

N~l 

a , (t) = La,(Il)p(t-IlT, ), OS t S T ................................................................ ..... (7.1) 
1/=0 

where: 

ak(n), Os ns N-I) IS a PN code sequence consisting of N chips that 
take values {± I} 
pet) is a pulse of duration T, where T, is the chip interval 
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T is defined as the symbol duration 
There are N chips per symbo l and T = N*T, 

Ideal low-pass filtering to a bandwidth of 1fT', yields 

a" (1) ~ a , (I)'h(t) ................ ................................ .. ... .................. .. ...................... (7.2) 

where as before, h(t) is the impulse response of the ideal filter. It is easy 
to show that for 

Sin( 2rr ;, ) 
h(l) ~ ........................................................................................ (7.3) 

m 

. Ha, (11) [ (2rr(1 - nT, ) ( 2!T(1 - 1I 7~ -7;)] a , (t) ~ L--G . - G . . ......................... (7.4 ) 
,, _ll tr T, 7 ~ 

where: 

" sin x 
G(l/)~ J ---;- dx ............... ........ .. ........ ..... ... .... ... ...... ........ .. ........................ (7.5) 

o 

The composite CD MA signal which is received during the x-th symbol 
interval is 

I K 

r(xN, + m) ~ LLb, (x - I).A, .a,· (mT, + IT - r,)+lI(m) ........................ (7.6) 
r",Q *=1 

and m= 1 ,2----N, 

In (7.4) and (7.6), ' k is the delay that accounts for the asynchronous 
nature of the system. T is the symbol duration and T, = T/ 2 is the 
corresponding Nyquist sampling interval. Thus Ns = TfT', is the number 
of samples per bit. bk(x) is the x-th message bit of user k and Ak the 
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amplitude of user k's signal. Thus Ak = J2£,''' IT where Eb(k ) is the 
received energy per bit for user k. The additive noise n(m) is assumed 
circular Gaussian with correlation function 

2N 
£{I/(m)I/(j) = __ 0 8(ny) .... ..... ..... ... ........ .... .. ......... .. ... .... ............................ . (7.7) 

T, 

The receiver, a block diagram of which is given in Figure 7.1 consists of 
a bank of cor relators, a Kalman filter and a neural network classifier. The 
bank of correlators produce the sufficient statistics {y,} from which 
decisions are made. In this case 

'. 
Yk = Lr(xNs + m).a k' (mTs - T,,) ............. .. ..... ........... " ....... ...................... (7.8) 

The delays { Td needed in (7.8) are estimated through the Kalman filter. 
The Kalman filter also produces an estimate of the amplitudes {Ad. The 
neural network c1assi fier uses the K outputs {Ykl of the correlator bank 
and the K amplitudes {Ad as input . 



164 

received 

sigl/(// 
)' . , 

r(t) 

)'1 

sym bol 

,leei sians 
b, 

BANK OF , . . . 
CORRELATORS b, 

NEURAL b. 
NETWORK 

" " '. 

A, 

A, 

EXTENDED KALMAN 
FILTER 

A. 
(lmplitude 

esrilll(/(es 

Figure 7, I . 
The adaptive multiuser receiver 

7.4. Amplitude and Delay Estimation 

If one examines the form of r(xN, + m), it is evident that it is linear in the 
ampl itude {Ad but highly nonlinear in the delays {Td. If one assumes 
that the parameters comprise a first order Gauss-Markov process then it is 
well known that the Kalman filter provides the minimum variance 
estimate of the state vector [139]. In this case, because the measurement 
sequence is nonlinear in the state, the extended Kalman filter is used, 
The state vector is defined as: 
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x( m) ~ [A, (m) , A, (m ), .... A K (m) , r, (m ), ..... r ,. (m)] ............................................. (7.9) 

Then the process model is [66, 139] 

x(m + I) ~ Fx(m)+\>{m) ..................... .. .. ............ .. ............................................ (7.10) 

where: 

F is the transition matrix 
- w(m) is a circular white Gaussian sequence with covariance matrix 

E{IV(X)IVT (m)} ~ Q ........................................................................................ (7.1I) 

The measurement model is [139] 

r(m) ~ H(x(m))+I1(m) .................................... ... ........................................... (7.12) 

-
In the EKF, rem) is Iinearised around its one step prediction x(mlm-I) 
[ 139]. The Kalman filter measurement update is then given by: 

ag(m) 

A,(mlm) A, (mlm - I) 
aA, 

.... ..... ...... " ... ........... 
ag(m) 

A K(mlm) AA-(mlm - I) 
~ + 

r,(mlm) TI (mlm - 1) 

P(mlm - I) aA,. 

a(mlm - I) Bg(m) 

a r , 

[r(m) -g(m)] ................ (7. 13) 

........... ........... 
. ........ 

rdmlm ) TK(mlm - l) ag(m) 

a rK 

In J7. 13), gem) is the ~stimated signal based on the one step predictions 
{ Ak(mlm-I)} and { Tk(mlm- I)} , and is given by: 

K 

g(m)~ LA ,(mlm - I).a; (mT, - r , (mlm - I)) ............................................ (7. 14) ,., 
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Note that in (7.13), the correction term that is normally added [66, 139] 
has been ignored. 

The error covariance matrix {P(mlm-I)} and the innovations vanance 
{a(mlm-I)} are defined as follows [139]: 

P(mlm - I) ~ FP(m -llm _ I)F T + Q ...................................................................... (7.15) 

[ 

P(mlm - I) 
P(mm) ~ 1- I H 

a(mm - I) 
(m).H r (m) ]. p(m1m - I) ........................................ (7.16) 

a(m m - I) ~ H T (m)P(mlll - I)H 
2N (m) + __ 0 

T, 
............................................... (7.17) 

In (7.16) and (7.17), H'(m) represents the gradient of the estimated signal 
gem), and is given by: 

H (m) ~[ag(m) ... ag(m). ag (m) ... ag(m) ] ................................................. (7.18) 
aAI OAA" Of) ar A 

7.5. Neural Network Classifier 

The neural network recei ver proposed in thi s chapter is based on the 
Aazhang et al [60] design. The input set to the neural network is 
expanded by including the amp litude estimates of the system users as 
shown in Figure 7.1. This effectively makes the receiver robust to the 
near-far problem. The Neura l Works Professional 11 + development 
environment was used. The training was done using the standard back­
propagation algorithm. The sine transfer function was used since the 
desired output is bipo lar. Using the more common sigmoid function 
necess itates scaling the output values. 

To account for the asynchronous nature of the model , the training set 
takes into account all possib le permutations of previous bit, current bit 
and future bit. This provides the network with information concerning 
dependencies on past and future bits. The training sets are produced 
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ignoring channel noise, as it was observed from experimentation that the 
network produces better results when trained without noise. 

7.6. Performance evaluation results 

The multiuser detector was simulated for the case of three users. From 
experimentation, it was observed that a single hidden layer comprising 
six nodes was optimal for convergence. Fewer neurons took far longer to 
converge, whereas more neurons proved to be redundant. A 7 chip length 
Gold sequence was used as the spreading sequence. The delays of the 
three users were chosen as 0, 3T, and 5T, . The powers of the users were 
chosen such that Eb(J)/ Eb(l ) = E b(2)/ Eb( l ) = 6dB. 

The Kalman filter parameters were chosen as follows: 

F =- diag~,~Ebr2),~Eb!ll } 

=dia {JE,O' JE,'" ~E''''} 
Q g tOO ' 100 ' 100 

Figure 7.2 shows the performance of the receiver as the signal to noise 
ratio of user I was varied. This receiver was compared to the receiver of 
Aazhang et al in [60] showing that the expansion of the input set into the 
neural network improves performance. In Figure 7.3, the ratio EJNo for 
user I was fixed at 8dB and then the ratio of the received powers of users 
2 and 3 was varied relative to that of user one. The results of Figure 7.3 
indicates that this receiver is robust to the near far problem. 
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7.7. Conclusion 

In this chapter, an investigation was done into the application of 
multi layer perceptrons to the problem of multi user detection in code 
division multiple access systems. 

The neural network was used as a classifier in an adaptive receiver which 
incorporates an extended Kalman filter for joint amp litude and delay 
estimation. The performance was studied via computer simulations 
showing that the receiver performs favourably compared with others that 
have appeared in the literature. 
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Chapter 8: Conclusions 

8.1. Conclusion 

The aim of this thesis was to develop multi user demodulation algorithms for 
mobile communication systems in frequency-selective fading channels, as 
well as to analyze their implementation complexity. The emphasis was 
restricted to the uplink of an asynchronous OS-COMA system where the 
users transmit in an uncoordinated manner and are received by one 
centralized receiver. 

This thesis has attempted to fulfill this by investigating different receiver 
structures in an attempt to select one with moderate computationa I 
complexity and acceptable performance. Other areas have been dedicated to 
improving the accuracy of modelling COMA systems, principally through 
modeling the wide-band channels and interference structures, which enable 
the performance of more accurate and more rea'listic system evaluation 
simulations. 

Multiuser detection was considered for asynchronous COMA 
communication over a time-dispersive Rician fading channel, where for each 
user there exists a steady specular path and two Rayleigh faded paths, all of 
them appearing asynchronously at the receiver. The conventional detector 
for the fading channel evaluates to be a diversity combiner that accounts for 
the multipath resulting from a single transmission. Like the conventional 
detector for the Gaussian channel , it too was found to be near-far limited. 
The multi user maximum likelihood sequence detector was next derived. It 
estimates the received noiseless signal and correlates the received signal 
with the estimate. The estimation-correlation must be performed for all 
possible received data sequences. Oue to the prohibitive complexity of the 
optimal receiver, suboptimal demodulators were considered. 

In order to aid in this, an equivalence of the fading channel to an 
asynchronous Gaussian intersymbol interference COMA channel was 
established. This equivalence result allowed for the specification of a 
multiuser detector for the fading channel for each multi user detector that was 
known for the Gaussian channel. Since the decorrelator performed very 
well over the Gaussian channel, it was chosen as the detector to be utilised 
and investigated over the fading channel. This decorrelator was to be used 



171 

in conjunction with the multi user diversity combiner, which linearly 
combines the matched filter output sequence. This decorrelator was referred 
to as the MRC decorrelator. The data detection can be seen as a process that 
involves polarity detection at the output of the cascade of the diversity 
combiner and M RC decorrelator. An attempt was then made to incorporate 
selection diversity instead of MRC into the decorrelator structure. The 
decorrelator was then used in conjunction with a path selector, which selects 
the strongest signal path out of the bank of matched filters. Thi s 
decorrelator was referred to as the selection diversity decorrelator. Once 
again, the data detection could be seen as a process that in volves polarity 
detection at the output of the cascade of the path selector and selection 
diversity decorrelator. 

Both the MRC and selection diversity decorrelators investigated 111 this 
Thesis 

• are near-far resi stant, and their near-far resistance is the same as for the 
M LS detector 

• their asymptotic efficiencies and near-far resistances are independent of 
the specular energies 

• offer very high capacity compared to the conventional receiver 

• offer much better performance than the conventional receiver 

• have complexity of the same order as the conventional , single user 
receiver 
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The final detector to be derived was a neural network based multiuser 
detector. It incorporated an extended Kalman fi lter and a neural network. 

The neural network mulliuser detector presented in this thesis 

• showed a remarkable insensitivity to the near far problem 

• required a training time that was exponentially proportional to the 
number of users 

The decorrelator for the fading channel of course has limitations, and where 
possible improvements have been suggested and a lternatives or effects 
investigated. Furthermore, the advantages and disadvantages of the neural 
network based multiuser detector has been investigated and highlighted . 
The rema inder of thi s chapter summarises the contributions of each section 
of this thesis. 

Chapter 2 - Detectors for the A WGN channel 

The emphasis of this chapter has been on centralized multiuser detectors that 
process the matched filter output to provide the statistics for both the 
estimation of the signal amplitudes as well as for data detection in the 
A WGN channel. 

The models for the transmitter, receiver and COMA channel have been 
derived in this chapter and it was stated that the performance of multi user 
receivers can be measured by the bit error rate, asymptotic multiuser 
efficiency and near-far resistance. 

The conventional detector which follows a single user detection strategy, 
has a computational complexity that grows linearly with the number of users 
and is vu lnerable la the near-far problem. Next, maximum likelihood 
sequence detection was considered and implemented for OS-COMA by 
following the matched filter bank with a Vilerbi algorithm. However, the 
required Viterbi algorithm had a complexity that is sti ll exponential in the 
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number of users. It was pointed out that another drawback of the MLS 
detector is that it requires knowledge of the received amplitudes and phases. 

Oue to the prohibitive complexity of the optimal receiver and the near-far 
effects that the conventional detector is prone to, suboptimal detectors had to 
be considered. They decouple the data detection and complex channel 
coefficient estimation from each other, and estimate the channel coefficients 
and detect the data for all users separately. An examination was conducted 
of detectors that have a linear computational complexity but do not exhibit 
the vulnerability to other-user interference. The two most popular of the 
linear detectors are the decorrelating and minimum mean-squared error 
detectors which could be efficiently implemented using the polynomial 
expansion detector. 

Successive interference cancellation detectors were also considered where 
the basic operating principle was the creation at the receiver of separate 
estimates of the MAl contributed by each user in order to subtract out some 
or all of the MAl seen by each user. Such detectors are often implemented 
with multiple stages, where the aim is that the decisions will improve at the 
output of successive stages. Finally, since MAl has a highly structured 
nature, it was stated that a neural network should be able to learn how to 
remove the MAl effectively. 

This chapter served to highlight the advantages and disadvantages of 
conventional , optimal and suboptimal detectors for COMA reception in an 
A WGN channel. 

Chapter 3 - Fading models 

Because COMA transmissions are frequent ly made over channels which 
exhibit fading and/or dispersion, it is important to design receivers which 
take this behaviour of the channels into account. Various propagation 
problems are experienced in a COMA channel , and these have been 
highlighted and discussed in this chapter. 

It was explained that the fading phenomena is primarily as a result of time 
variations in the phases, and the amplitude variations in the received signal 
are due to the time-variant multipath characteristics of the channel. A 
discussion had been given of the channel correlation, autocorrelation and 
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power spectra functions. The coherence bandwidth was also defined and a 
discussion had been given of both frequency selective and non-selective 
channe ls in this regard. 

Several probability distributions can be considered in attempt ing to model 
the statistical characterist ics of the fading channel. The distributions that 
have been discussed in this chapter arc the Rayleigh, Nakagami, Rician and 
Lognormal distributions. The use of diversity techniques such as frequency, 
time, space and angle were discussed in trying to reduce the effect of fading 
caused by terrain obstructions. Finall y, combin ing techniques for 
macroscopic and microscopic diversity were discussed, which include 
selection diversity, maximal ratio and equal gain combining. 

Chapter 4 - Multiuser detectors for the fading channel 

An investigation was done in this chapter to check if the detectors for the 
A WGN channel can also be used in the fading channel , and whether any 
modifications to them were required. It was shown that multi user signal 
processing can be performed either before multipath combining, by 
processing the matched filter bank output vector, or after multipath 
combining by processing the maximal ratio combined matched filter bank 
output vector. 

The optimal receiver for the multipath channel is the coherent RAKE 
receiver. The convent ional approach to data detection is to employ an 
independent, single-user RAKE receiver for each user, wh ich is optimal in 
the absence of MAl. However, the RAKE receiver suffers from the near-far 
effect in the presence of interfering signals received over independent fading 
channels. MLS detectors for synchronous CDMA in Rayleigh fading 
channels have been presented in [95, 102]. The resulting MLS receiver 
consists of the received noiseless signal est imator for all possible data 
sequences and a corre lator, which multiplies the received signal with the 
estimated received noiseless signa l. The joint ML estimation has an 
extremely hi gh computational complex ity, which is exponential in the 
product of the number of users, the number of propagation paths and the 
number of samples per symbol interval. 

The linear detectors that were cons idered were the decorrelator and the 
LMMSE detector. The LMMSE detector minimises the mean squared errors 
at the detector output. It was shown in [21] that as the number of symbols in 
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the data packet approaches infinity, the decorrelating detector approaches a 
time-invariant, stable digital multichannel infinite impulse response (IIR) 
filter. The operation of the interference cancellation receivers was to 
estimate the mUltiple-access and multi path induced interference and then 
subtract the interference estimate from the matched filter bank output 

Chapter 5 - Multiuser demodulation in Rayleigh fading channels 

The purpose of thi s chapter was to derive multi user receiver structures for 
the time-dispersive, three-path Rician fading CDMA channel, where for 
each user, there ex ists a steady specular path and two Rayleigh faded paths, 
all of them appearing asynchronously at the receiver. 

The AME and near-far resistance for the detectors for this fading channel 
were deri ved. It was shown that the time-dispersive Rician fading 
asynchronous CDMA channel bears an equivalence to an asynchronous 
Gaussian intersymbol interference (AG ISI) channel. This equivalence result 
allows for the speci fication of a mu lt iuser detector for the fading channel for 
each multiuser detector that is known for the Gaussian CDMA channel. 

For the time-dispersive fading channel, the conventional detector definition 
leads to a sequence detector of the Viterbi type since it recognises and takes 
into account the dispersion of the user 's signals. This detector is near-far 
limited when used over the multi user channel because the presence of the 
interfering users is not taken into account. The MLS detector for the 
channel was obta ined and it cou ld not be practically implemented. Despite 
its complexity, the near-far resistance performance of the MLS detector was 
considered. Th is result served as a benchmark against which the suboptimal 
strategies for the fad ing channel was considered. 

The decorrelating strategy was considered for the Rician channel, in 
conjunct ion with the multiuser diversity combiner, that was computationa lly 
less expensive than the MLS detector yet achieves the same near-far 
resistance. It was found that the asymptotic effic iency and near-far 
resistance of this MRC decorrelator is independent of the specular energy, 
which made it suitable for use in the fading channel. 
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Chapter 6 - Decorrelating detection employing selection diversity 

The receiver in the previous chapter consisted of the cascade of a multiuser 
divesity combiner and the MRC decorrelator. In this chapter, instead of 
using MRC, selection diversity is utilised . Selection diversity is used by a 
path selector to first select the strongest path for the channel, which then 
served as the input to the selection diversity decorrelator. 

The aim of the software exercise was to analytically determine the bit-error 
rate for a particular user for the selection diversity decorrelator. This 
analytical value of bit-error rate is to be compared against that produced by 
the actual simulation model. The assumption that had to be made was that 
the specular energies, phases and variance ratios are time invariant over a 
particular symbol interval. Furthermore, it was assumed that there were four 
users. 

From the numerical results, it was evident that the BPSK in A WGN gave the 
best bit error rate results. The detector with the worst bit error rate 
performance was the single-user diversity combiner, and both the selection 
diversity and MRC decorrelators performed much better than this detector. 
The analytical and simulation results for the selection diversity decorrelator 
were almost identical. It was also noted that the delays of the signals from 
the various paths do not substantially affect the bit error rate of the selection 
diversity decorrelator. The MLS detector has the best asymptotic efficiency 
with both the MRC and selection diversity decorre lators performing almost 
as well. It was observed that both the MRC and selection diversity 
decorrelators performed significantly better than the single-user detector. 
The asymptotic efficiency of the single user diversity combiner alone decays 
to zero with increasing values of the interfering energy. For the case of 
uneven fading, the near-far resistance of both the MRC and selection 
diversity decorrelators was reduced, and their bit error rate increased, but not 
substantially. Even in the ideal nonnear-far situation, both these 
decorrelators still gave better performance than the single-user diversity 
combiner. This points to the fact that single-user receivers suffer from more 
than just the near-far problem, and that they can support only bandwidth­
inefficient CDMA communications. In all the simulation results, the MRC 
decorrelator gave better performance than the selection diversity 
decorrelator. This indicates that for the time-dispersive, three-path Rician 
fading channel, MRC shou ld be chosen instead of selection diversity. 
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Chapter 7 - Neural network based multiuser detector 

A receiver was proposed in this chapter wh ich was an extension of that 
considered in [60]. 

The hi ghly structured nature of MAl suggested that a neural network cou ld 
be able to learn how to remove the MAl effectively. Due to their hi ghly 
parall el structure and adaptabi li ty to system parameters, receivers employing 
neural networks prove to be a desirable a lternat ive to the optimum and 
conventional receivers for multiple-access communi cations. 

The neural network receiver proposed in this chapter was based on the work 
of [60]. The input set to the neural network was expanded by includ ing the 
ampli tude estimates of the system users. This effectively made the receiver 
robust to the near-far problem. The neural network was used as a classifier 
in the adaptive receiver whi ch incorporated an extended Kalman filter for 
joint amp litude and delay est imation. 

The performance evaluat ion results for this detector showed that it 
performed well compared to existing designs and it showed a remarkable 
insensitivity to the near far prob lem. However, the disadvantage of this 
detector was that it required a training time that was exponenti ally 
proportional to the number of users. 

8.2. Summary 

This thesis has set out to in vestigate various aspects of CDMA systems in 
order to improve the tota l system efficiency. The work has focussed in six 
main areas; detectors for the A WGN channel, fading channel modeling, 
detectors for the fading channel, decorrelators employing MRC and 
selection di vers ity and a neural network based multiuser detector. This 
Thesis has success full y addressed relevant and interesting issues related to 
CDMA systems. 

This thesis has been successful in developing multi user detectors for the 
fading channel , in particular, the decorrelator. An investigation was done on 
the feasibility of applying both MRC and se lecti on diversity to the 
decorrelating structure, to see which gave superi or performance. 
Ad itionally, an investigation was done into the feasibility of using a neural 



178 

network based multiuser detector to the problem of multiuser detection in 
code division multiple access systems. Finally, the Thesis has shed light on 
the importance of being aware of the presence of fading, when designing 
receivers for these channels, as the characteristics of the fading channel IS 

much different from that of the Gaussian channel. 

8.3. Suggestions for further work 

Centralized multi user receivers have been considered in this Thesis. There 
are, however, several applications (eg. the downlink receiver of a mobile 
communication system), where decentralized receivers need to be applied . 
Recently, there has been a considerable amount of interest in decentralized 
adaptive receivers . However, several open problems still exist. 

More work on the performance of different adaptive algorithms is required. 
In general , the impact of various practical nonidealities (eg. delay estimation 
errors and quantization in DSP hardware) to the performance of the receivers 
should be considered. The performance of the multi user receivers with more 
realistic channel models and system parameters should be studied. The 
analysis of al l real-life nonidealities is impossible, and computer simulation 
of nonidea lities are intractable due to long simulation times and incomplete 
models for nonidealities. Hence, it will be necessary to carry out hardware 
simulations and construct test beds and trial systems to determine the 
practical feasibility of multiuser demodulation for future communication 
systems. 
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APPENDICES 

APPENDIX 1: PARAMETER ESTIMATION TECHNIQUES 

Many suboptimal detectors had been proposed in Chapter 3, but these all 
assume knowledge at the receiver of all or some of the following parameters 
- received signal energies, carrier phase or propagation delays. Various 
algorithms have been proposed for amplitude estimation [63 , 64] , time-delay 
estimation [65] , and joint parameter tracking [66]. However, these methods 
are quite complicated and not well suited to practical implementation, except 
at narrow bandwidths. Of the three system parameters mentioned, time 
delay appears to be the hardest to estimate accurately because of the 
nonlinear dependence of the received signal on user delays. This is evident 
in the work on parameter estimation assuming time delays to be known in 
[63 , 64]. The difficulty with time-delay estimation in an asynchronous 
CDMA system, is the large uncertainty region involved. With a set of 
(2M+ I )- Iength codes and K users, the number of possible states to search is 
at least equa l to (2M + I)K 

In [67] , an attempt was made to jointly estimate the arrival times using a 
modified seria l-search correlator strategy. However, the resulting expected 
acquis ition times proved to be quite large. Although the above techniques 
produce excellent results, they can be computationall y intense since they 
involve solving a multidimensional optimization problem for a large number 
of parameters. Matters would be simplifi ed if the multidimensional problem 
could be reduced to a one-dimensional problem whil e retaining the near-far 
resistance. 

In [66], work was done on joint data detection and parameter estimation , but 
the resulting algo rithm was quite complex. The resulting algorithm of [66] 
was exponential in the number of users and is hence no better than Verdu's 
optimal detector [17, 18] in terms of practicality. In [66], an ML algorithm 
was proposed that involved detecting all K bits transmitted in a given bit 
interval by the K users at the same time. A number of extended Kalman 
filters (EKF ' s) were used to calcu late ampl itude and delay estimates for all 
possible bit combinations in a bit interval, and these were then used to 
update the ML metrics. This very complicated algorithm has a complexity 
that increases exponentially with the number of users and hence cannot be 
used in practice. 
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Sometimes one is only interested in the timing of a single user, or one needs 
to estimate the delays of several users, but to reduce complexity, this is done 
sequentially. In (68) the maximum-likelihood estimation of user's delay, 
amplitude and phase was considered. The multiuser estimation problem was 
decomposed into a series of single-user problems. In this method, the 
interfering users were treated as colored non-Gaussian noise. Once 
acquisition occured, the algorithm was well suited for tracking slowly 
changing parameters. The estimator required knowledge of the transmitted 
symbols, but this could be accomplished by feeding back decisions from the 
detector. The subspace method was also considered in (69), and required no 
decision feedback. By exploiting the eigenstructure of the received signal's 
sample correlation matrix, the observation space could be partitioned into a 
signal subspace and a noise subspace without prior knowledge of the 
unknown parameters. The channel estimate was formed by projecting a 
given user ' s spreading waveform into the estimated noise subspace and then 
either maximizing the likelihood or minimizing the Euclidean norm of this 
projection. Both of the approaches in [68, 69) yield algorithms which were 
near-far resistant and did not require a preamble or decision feedback. This 
made the algorithm very stable during tracking, since it was able to quickly 
reacquire the desired user it lost lock. The work of [68] was a significant 
advancement because the delay estimates were near-far resistant. This 
implied that changes in the multiple access interference level do not affect 
the variance of the estimates. However, the need to estimate the interference 
subs pace with each shift of the observation window did place a limit on the 
ability to track rapidly time-varying delays. The maximum-likelihood 
algorithm in [69] was able to achieve faster acquisition with lower 
complexity than the subspace-based algorithm in [68]. This is because the 
maximum-likelihood method is more optimal and there is less uncertainty in 
the received signal since the estimator knows the transmitted symbols. 

A joint data-sequence and parameter estimator was described in [63]. It 
combined a suboptimum tree-search algorithm with a recursive least-squares 
estimator of complex signal amplitude. A joint optimization over the 
transmitted bits and the complex amplitudes was performed. This receiver 
had the advantage that the transmitted signa l powers and phases were 
extracted from the received signal in an adaptive fashion without using a test 
sequence. The assumption made was that the carrier frequency, relative 
delays '" and the shape of the spreading waveform ak(t) were known. The 
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complexi ty of the tree-search algorithm was O(K' ) computations per 
decoded bit, and was further dependent on the number of nodes selected. It 
is most beneficial to use the tree-search algorithm of [63] in circumstances 
in which the optimum receiver is 100 complex to be implemented, while at 
the same time the performance of simpler suboptimum receivers is not 
acceptable. One of the shortcomings of the work of [63] was that the 
approach required knowledge of the time delay for each user. The problem 
of estimating these delays in a multi-user environment had not been fully 
addressed. It is important to be able to estimate the amplitudes and phases 
when the delays are not known. 

In [64] a method was presented for estimating the amplitudes and phases, 
both when the time delays were known and when the delays were unknown. 
The basic assumption was that the transmitted bits were independent and 
equiprobable. This assumption avoided the need for special training 
sequences for purposes of acquisition. This was because the sequences 
transmitted during acqu isition had the same statistics as the information­
bearing sequences transmitted after acquisition. Each of the estimators 
considered in [64] was based on the assumption that the parameters were 
constant. Thi s is a reasonable assumption over an acquisition period, but is 
restrictive when considering communication among mobile platforms. The 
estimator described in [64] could be appli ed equally well with any of the 
detectors described in Chapter 2, such as the maximum likelihood sequence 
detector, linear equa li zation detectors, decision feedback detectors, etc. 
After convergence of the estimator, the performance of any of these 
detectors should be nearly as good as if the amplitudes and phases were 
known a priori [64]. 

Us ing either an EKF or a recursive least squares formulation , adaptive 
algorithms which jointly estimate the transmitted bits of each user and 
individual amplitudes and time delays may be derived. In [70], the problem 
of delay estimation in the presence of multipath was considered. An 
extended Kalman filter was used to estimate both PN code delay and 
multipath coefficients for a SU system. Analogous to the extension of the 
single user matched filter or correlating detector to multi user systems using 
a bank of filters, a si mple extension of the delay-tracking single user EKF 
wou ld be a bank of EKF's, each using its own prediction error in the EKF 
equations. The EKF can be used to obtain joint estimates of arrival times 
and multipath coefficients for deterministic signals when the channel can be 
modeled by a tapped-delay line [70]. In [71] , a code tracking algorithm was 
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developed , and was based on the EKF which provided both code 
synchronization and joint estimates of interferer and channel parameters. A 
sing le EKF-based algorithm was used which provided estimates of the PN 
code delay, multipath channel coefficients and narrowband interference. 

In [73], an adaptive multiuscr COMA detector structure was introduced. 
A multi-user detector was derived wh ich performed joint data detection and 
parameter tracking after initi al acquisition. The detector structure resembled 
that of the synchronous detector in [74], but it was more versatile in that it 
considered the asynchronous, unknown delay case. Two adaptive mult i user 
asynchronous COMA detectors were implemented using the EKF and 
weighted recursive least squares(RLS). It was reasoned that the EKF 
detector should perform better than the RLS one because it was capable of 
incorporating prior knowledge about the system, and was therefore more 
nex ible. The multiuser EKF detector was outperformed a bank of single 
user EKF's in terms of near-far resistance. The proposed detector in [73] 
operated in a tracking mode, and relied on the availabi lity of accurate initial 
delay estimates. These delay est imates may perhaps be obtained using one 
of the subspace-based approaches of [68]. It is less complex to implement 
than the method in [68), which req uired the estimation of noise subspaces 
recursively. The adaptive EKF detector is a viable multi user COMA 
detector for the base station when paired with near-far resistant delay 
acquisit ion and phase-lock devices [70-73]. 
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APPENDIX 2: MODEL OF A FREQUENCY SELECTIVE 
FADING CHANNEL 

In order to obtain the same effect of multiple resolvable paths, a wideband 
signal is employed, covering a bandwidth B. The channel is still assumed to 
be slowly fading by virtue of the assumption that T« (~t), . Suppose that B 
is the bandwidth occupied by the rea l bandpass signa l. Then the band 
occupancy of the equivalent lowpass signa l s,,(t) is I n~lI2B, and application 
of the sampling theorem results in the signa l representation: 

s,p (l) ~ I: s", (~) sin[;rB(I - 1I 1 8)1 ................................................................ (A2 . 1) 
"'_ 8 Tr8(1 - Il l 8) 

The Fourier transform of s,,(t) is 

S,p (f) ~{~ I: S,p(lI l B)e""'" 8 (Irl ". 8) ..................................................... (A2.2 ) 
B ,,_ '. 

= O ...... otherwise 

The noiseless received signal from a frequency-selective channel was 
previously expressed in the form 

• 
,.(1) ~ J HU;I) S'p U )e""'C{1 ..................... .. .. ...... ....... ...... ........ .... .... .. ...... .. .. ..... (A2.3) 

-, 

where H(f;t) is the time-variant transfer function. Substitution for S,,(t) 
from (A2.2) into (A2.3) yields: 

I ~ 

,.(1) ~ - L s,p (I - 1I 1 8)"(11 1 8 ;1) .... .... .. .. ...................................................... .... . (/12.4) 
8 " .. _"" 

It is convenient to define a set of time-variable channel coefficients as 

t 11 
" (I) ~ - "(-;1) .. ... .. ......... ........................ .. ..... ... ........ ..... ..... ..... ... ... ..... ...... ....... (A2. 
" B B 

Then (A2.4) expressed in terms of these channel coefficients becomes 
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-. 
r(t) = L>"(t)S'P(t - Il l /J) ........ .............................................. .............................. (A2.6) 

(A2.6) implies that the time-variant frequency-selective channel can be 
modeled as a tapped delay line with tap spacing liB and tap weight 
coefficients {h"(t)} 

With an equivalent lowpass signal having a bandwidth 'hB, where B» (61), 
one achieves a resolution of liB in the multipath delay profile. Since the 
total multipath spread is Ton , the tapped delay line model for the channel can 
be truncated at L=[ T",BJ + I taps. Then the noiseless received signal can be 
expressed in the form 

I. 

r(t) = L""(t)s'P (t -Il l /J) ................. : ..................................................................... (A2.7) 
11 = 1 
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APPENDIX 3: THE RAKE DEMODULATOR 

The tapped delay line model with statistically independent tap weights 
provides one with L replicas of the same transmitted signal at the receiver. 
Hence, a receiver that processes the received signal in an optimum manner 
wi ll achieve the performance of an equ iva lent Lth-order diversity 
communications system. 

Consider binary signaling over the channel. Assume there are two equal 
energy signals s,,(t) and s,,(t), which are orthogonal. Their time duration T 
is selected to satisfy the condition T»T",. Thus, the intersymbol 
interference due to multi-path may be neglected. Since the bandwidth of the 
signal exceeds the coherence bandwidth of the channel , the received signal 
is expressed as: 

/. 

/'(1) = 'I/'" (I)S/, (I -Il l B) + 11(1) 

= v, (I) + 11(1), 0 <; I <; T , i = 1.2 .................................................................. (A3. 1) 

Note that r(t) is the low-pass version of the received signal. 

Assume that the channel tap weights are known. Then the optimum receiver 
consists of two filters matched to v,(t) and v,(t), fo llowed by samplers and a 
decision circu it that selects the signa l corresponding to the largest output. 
An equivalent optimum receiver employs cross corre lation instead of 
matched filtering. The decision variables for coherent detection of the 
binary signals can be expressed as 

l' 

U", = Re[fr(t)v,;(t)dlj 
o 

/ T 

= Re[tf r(I)II' ''5;,, (t - -"-)dl] .................................................. . 
"c lo B 

Note the (*) represents the complex conjugate. 

An alternative realization of the optimum receiver employs a single delay 
line through which is passed the received signal r(t). The signal at each tap 
is correlated with h"(t)s*,,,,(t), where n= I,2, ... ,L and m= I,2. This receiver 
structure is shown in Figure A3.1. 
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In effect, the tapped delay line receiver attempts to collect the s ignal energy 
from a ll the received signal paths that fall within the span of the delay line 
and carry the same information. Its action is somewhat analogous to an 
ordinary garden rake and, consequently, the name "RAKE receiver" has 
been given to thi s receiver structure. 

In [6], it was shown that the RAK E recei ver with perfect (noiseless) 
estimates of the channel tap weights is equiva lent to a maximal ratio 
combiner in a system with Lth-order divers ity. 

ItCCClI'ed slglwf 
I'(t) 

Figure A3 .1. 
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Optimum demodulator for wideband binary signa ls 



APPENDIX 4: SOFTWARE FLOWCHARTS 

=igure A4.1 
~omplete Flowchart for the analytical model 
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Figure A4.3 
The PATH VARIETY routine 

Define required local 
variables to be used 
only in this routine 

Consider the value of m 
that has been received by 

the PATH_VARIETY 
routine 

is m=1? 

NO 

else is m=2? 

NO 

else is m=3? 

NO 

else is m=4? 

NO 

YES 

YES 

YES 

YES 

RETURN with 
PATH_VARIETY_ 

VALUE=1 

RETURN with 
PATH_VARIETY_ 

VALUE=3 

RETURNwilh 
PATH_VARIETY_ 

VALUE=3 

RETURNwilh 
PATH_VARIETY _ 

VALUE=3 

else is m=5? 

NO 

else is m=6? 

NO 

else is m=7? 

NO 

else is m=8? 

NO 

else is m=9? 

NO 

RETURN wilh 
PATH_VARIETY_ 

VALUE=1 

END 

YES 

YES 

YES 

YES 

YES 

RETURN with 
PATH_VARIETY_ 

VALUE=6 

RETURN with 
PATH_VARIETY_ 

VALUE=3 

RETURN with 
PATH_VARIETY_ 

VALUE=1 

RETURN with 
PATH_VARIETY_ 

VALUE=3 

RETURNwilh 
PATH_VARIETY_ 

VALUE=3 



' igure A4.4 
'he BER and H I m routines 

BER routine 
flowchart 

( Define reqired local"' 
variables to be used 
only in this routine 

Call the H _ '_ m routine 
and pass to it the values 

of I and m 

Calculate 

iBER =Q( 2 Re ~H .}) 
eT" 

RETURN the BER 

END 

!:LJ m routine 
flowchart 

/ Oefine required loca"'i" 
variables to be used 

" only in this routine 

Depending on the value of I 
and m passed 10 H_I_m, 

choose the corresponding C, 0 
& G matrices for each of the 

four users during that 
particular symbol interval 

Call the CROSS, 
CORRELATION routine 

Using (6.2) , solve for Hs 

Save the Hs matrix as a global 
variable which is accessible to 

all software routines 

END 



=igure A4.5 
rhe CROSS CORRELATI ON and CALCULATI ON routines 

CROSS-CORRELATION 
routine flowchart 

/ "\ 
Define local variables to 
'-- be used only in this 

routine 

Call and pass 10 the 
CALCULATION routine 

the variables for the 
paths and reference 
numbers of the two 

users over their 
respective paths during 
that particular symbol 

interval 

Divide the cross-
correlation values 
returned from the 

CALCULATION routine 
by the length of the 

user's code waveforms 
10 normalise them 

Compose the Aoo, AI' , 
A22, A lo, AO', A12, A21, 

A02 and A20 matrices in 
(6 .15) using the 

respective normalised 
cross-correlation values 

Save the above nine 
matrices as global 

variables which are 
accessible to other 
software routines 

END 

CALCULATION 
routine flowchart 

/ "\ 
Define local variables to 

be used only in this ./ 
"- routine 

Using the variables of the two 
users paths and references 

that have been received by the 
CALCULATION routine, 

calculate the cross-correlation 
between them using the 

definition in (5.12) 

RETURN this value of the 
cross-correlation between the 

signature sequences of the 
two users 

END 


