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ABSTRACT 

 

Hybrid clones of Eucalyptus grandis and E. nitens (GN) have consistently been shown 

to be suitable for planting in cold, dry, marginal plantation sites, where they exhibit high 

yields and superior pulp properties. However, their clonal propagation is hindered by 

the very poor rooting success of cuttings. The present study aimed at assessing the 

effect of cutting type, time of year of setting cuttings and Seradix 2 application on 

rooting and development of cuttings of a commercially important Eucalyptus grandis x 

Eucalyptus nitens clone (GN107). 

 

Cuttings were prepared from clonal hedge coppice at the Mondi Business Paper, Trahar 

Technology Centre, Hilton. Three cutting types were used (cut at different distances 

from the node) for each terminal (situated below the apical bud) and non-terminal 

cuttings. The leaves were trimmed and, for half the cuttings, the base of the stem of 

cuttings were dipped in Seradix 2 rooting powder (3 g kg
-1

 4-(indole-3-yl)-butyric acid 

(IBA). They were then placed into rooting trays (128 inserts/ tray arranged as 8 rows x 

16 columns). Seradix 2-treated and Seradix 2-untreated terminal and non-terminal 

cuttings, cut at, above and below the node (twelve treatments in total) were set in trays 

with one treatment per column of eight replicates, per tray. There were nineteen trays 

overall. The trays were filled with peat, perlite and vermiculite (3:3:1) and were 

maintained in a Mondi greenhouse, with air temperature at 25°C to 27°C 

(thermostatically activated fans), root zone temperature at 28°C (bed heaters) and 20 

second misting at 10 minute intervals (automatic misters). The study was carried out in 

November 2005, April 2006 and June 2006. In the first experiment, both terminal and 

non-terminal cuttings were used; thereafter only non-terminal cuttings were used.  

 

The plantlet yield was very low, regardless of cutting type, Seradix 2 treatment and the 

time of year the cuttings were set. The highest plantlet production (12.5%) and rooting 

frequencies (13.8%) were achieved with non-terminal cuttings treated with Seradix 2. 

Although not statistically significant, Seradix 2 inhibited shoot production (31.4% for 

Seradix 2-untreated and 24.2% for treated cuttings). The position at which inserts were 

cut in relation to the node did not significantly affect the number of plantlets produced 
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and non-terminal cuttings appeared hardier and performed better than terminal cuttings. 

The time of year of setting cuttings did not have any significant effect on plantlet yield, 

nonetheless, plantlet yield was highest in cuttings set in November (9.2%) and lowest in 

April (0.4%). In addition, cuttings set in November (spring), had superior shoot 

development in terms of the number of cuttings that produced shoots (regardless of root 

production), shoot length and the mass of shoots relative to root mass. The highest 

percentages of cuttings that produced roots (regardless of shoot growth) (10%) and the 

highest number of roots per cutting (2) were part of the June trial. Therefore, cuttings 

set in June (winter) had superior root development as compared with cuttings set in 

November (spring) or April (autumn).   

  

In all of the studies, three rooting patterns were observed in cuttings: roots produced 

only from the cut area only (type 1), only from the sides of the stem (type 2) and from 

both sites (type 3). Non-terminal cuttings treated with Seradix 2 showed a higher 

incidence of types 2 and 3 rooting patterns than the terminal cuttings. Seradix 2 

application increased the prevalence of types 2 and 3 rooting patterns. Although not 

statistically different, cuttings dipped 2.5 cm into Seradix 2 produced more types 2 and 

3 rooting patterns than cuttings dipped at the abaxial end only. Light microscopy of 

stem sections of cuttings indicated that roots appeared to originate from the xylem archs 

as well as from the cambium.  

 

The collected data indicate that it is necessary to continue research towards improving 

the efficiency of plantlet production of GN107 via cuttings. It appears that cuttings of 

this clone may be set throughout the year and that terminal cuttings should be avoided. 

In addition, the present practice at the Mondi Hilton nursery of treating cuttings with 

Seradix 2 needs to be reconsidered as although it increases rooting, it does not increase 

plantlet production due to its apparent inhibitory effect on shoot development. 
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 1 

 1. INTRODUCTION & LITERATURE REVIEW 

 

1.1 Brief history and importance of Eucalyptus 

 

Eucalyptus (family Myrtaceae), with more than 450 species, is the most widely 

propagated tree genus throughout the world (Zacharin, 1978; Turnbull, 1991). 

According to a variety of authors (Zacharin, 1978; McComb and Bennett, 1986; 

Eldridge et al., 1994; Campinhos, 1999; Turnbull, 1999; Smit and Pitcher, 2003), since 

it was first discovered in Australia over 200 years ago, seed dispersal by travellers, 

traders, gold miners, soldiers, priests and botanists have spread various species to many 

parts of the world. Although indigenous to Australia and its northern neighbours, such 

as the Philippines, West Timor and New Guinea, many eucalypt species and its hybrids 

are extensively planted in temperate and subtropical regions in countries that include 

Argentina, Brazil, India, Morocco, Portugal, South Africa and Spain. At the time of 

their discovery, the potential utilisation of eucalypts as a major source of commercial 

forestry products was not recognised, and they were mainly used as a source of 

firewood. Since then, eucalypts have proved to be very versatile and are now utilised to 

produce industrial charcoal, sawn timber, mine props, railroad sleepers, fibreboard, 

furniture, firewood, essential oils, honey, tannins, pulp and paper.  

 

The genus Eucalyptus contains a wide range of species with respect to adaptation to 

sites, types of management systems and variety of uses, both as natural forests and 

plantation forests (Eldridge et al., 1994). According to Eldridge et al. (1994), the top 

ranking Eucalyptus species around the world in terms of mean annual increment of 

wood are E. grandis, E. camaldulensis, E. tereticornis, E. globulus, E. urophylla,  

E. saligna, E. viminalis, E. deglugpta, E. exserta, E. citriodora, E. paniculata and  

E. robusta. 

 

Eucalypts were first introduced into South Africa as early as 1803. Since then, critical 

timber shortages as a result of the discovery of gold (and the subsequent establishment 

of the mining industry) and the First World War, prompted the government to promote 
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and expand the forestry industry (King, 1951; Zacharin, 1978). As the over-utilised 

indigenous forest trees were unable to recover quickly enough to meet timber demands, 

exotic species, such as Eucalyptus were imported to South Africa and propagated via 

seeds and cuttings (King, 1951; Luckhoff, 1973; Smith, 1996).  

 

According to numerous authors (Zacharin, 1978; Blake, 1983; Gupta and Mascarenhas, 

1987; Turnbull, 1991; Bouillet et al., 2004; Pallett and Sale, 2004), eucalypts display a 

number of features that make them popular exotic plantation species. They are fast-

growing trees, with a short rotation period and they produce better quality wood and 

more uniform stands than most indigenous trees.  Part of their global success is due to 

their ability to adapt to a range of soil types and climatic conditions, including 

nutritionally poor soil and even acidic soil. Eucalypt seeds are classified as orthodox 

and can therefore be stored for long periods and are easily transported/distributed. In 

addition, eucalypt trees produce coppice readily, many are relatively easy to clone and 

pure species can be crossed to produce hybrids with desirable characteristics. 

Furthermore, a host of valuable end products can be produced from these trees, perhaps 

the most important of these in South Africa, are pulp and paper (Denison, 1999).  

 

In 1999, it was estimated that there were approximately 12 – 14 million hectares of 

eucalypt plantations around the world, of which the plantation area of eucalypts in 

South Africa comprised approximately 600 000 hectares (Turnbull, 1999). In the last  

three years, many plantations in countries around the Mediterranean coast, such as 

Spain, France, Portugal and most recently in Greece, have been destroyed by forest 

fires. In 2005, 1.1% of the total area of South Africa was reported to be used for 

forestry, which at the time comprised of 37.2% eucalypts, 54.1% pine, 8.1% wattle and 

0.5% other species (Godsmark, 2006). The majority of eucalypt plantations are made up 

of five commercial species and their hybrid clones, viz. Eucalyptus grandis, E. nitens, 

E. smithii, E. macarthurii and E. dunni (Pallett and Sale, 2004). Eucalypts are grown 

primarily along the east coast of South Africa in Kwazulu-Natal and Mpumalanga, but 

plantations have also been established in the Eastern and Western Cape and the 

Northern Province (Denison and Quaile, 1987; Godsmark, 2003; Smit and Pitcher, 

2003) (Figure 1.1).  



 3 

 

 

 

Figure 1.1: Geographic locations of commercial forestry plantations in South Africa 

(Adapted from Anon, 2004). 

 

1.2 The importance of the Forestry Industry to the South African economy 

 

Since its establishment in this country, the Forestry Industry has expanded rapidly and 

has become one of the fastest growing sectors of the South African economy (Denison 

and Kietzka, 1993a; Anon, 2004; Louw, 2004, Chamberlain et al., 2005). It supplies 

wood products both locally and internationally and this contributes to valuable foreign 

exchange (Cellier, 1993; Edwards, 2000; Smit and Pitcher, 2003). In 2001, the industry 

was valued at over R12 billion (Harvett, 2001). In addition, the forestry industry and 

related forestry products sector represents an important employer in South Africa; 

employing over 150 000 people in 2003 (Smit and Pitcher, 2003).  

 

Although eucalypt plantations were first established in this country predominantly for 

the production of mining timber, the common end products now also include pulp for 



 4 

the paper industry and industrial cellulose (Le Roux and van Staden, 1991; Denison and 

Kietzka, 1993a; Smit and Pitcher, 2003; Pallett and Sale, 2004; Anon, 2006). However, 

the pulpwood has emerged as being most prominent and profitable among the common 

end-products of eucalypts (Table 1.1). Eucalyptus makes excellent pulp suitable for 

printing, writing and tissue paper; this is attributable to its wood that produces uniform 

material with high brightness, good density and bulk (Turnbull, 1991). In 2002, the 

South African pulp and paper industry produced over R15 billion worth of pulp, and 

exported over R6 billion worth of product (Hunt, 2003). There are currently over 27 

pulp and paper mills in South Africa of which 13 are in KwaZulu-Natal. These 

represent 75% of the national pulp making capacity and 56% of the national paper 

making capacity (Hunt, 2003). South Africa manufactures around 2.2 million tons of 

pulp and 2.6 million tons of paper a year, making it the 14
th

 largest pulp producing 

nation in the world and the 24
th

 largest producer of paper in the world (Anon, 2004).  

 

Table 1.1: Sales of roundwood harvested from plantations in South Africa for the 

year 2004/2005 by quantity and value (Anon, 2006).  

 

Product Sales by quantity 
Sales by value 

(Rand million) 

Sawlogs & veneer logs 5,475,441 m
3
 1,131.9 

Pulpwood 11,757,666 Tons 3,568.2 

Mining timber 652,789 Tons 137.0 

Poles 504,611 m
3
 85.7 

Charcoal & Firewood 218,923 Tons 21.9 

 

In 1968, Mondi Forests (Mondi Business Paper since 2005) was established and since 

then it has been involved in tree research and the propagation of trees with improved 

quality. Over the years, the emphasis of the company has shifted from the production of 

softwood sawlogs (pine) hardwood fibre and pulp production, which consequently, 

resulted in the formation of a clonal eucalypt programme (Denison and Quaile, 1987; 

Denison and Kietzka, 1993a). The research collaboration between Mondi and the 
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University of KwaZulu-Natal has been in place for over 15 years and the present study 

was undertaken within that research programme.  

 

1.3 Hybrid forestry 

 

As mentioned previously, the Forestry Industry is one of the fastest growing industries 

of the South African economy, and afforestation, land purchases and expansion have 

exploded in recent years. However, as prime areas of good climate, rainfall and soil are 

also in great demand for agricultural crops and livestock, forestry expansions have 

occurred largely on marginal sites (cold, dry and often nutritionally-poor sites) (Denison 

and Kietzka, 1993a; Bouillet et al., 2004). In addition, the government’s Department of 

Water Affairs and Forestry has imposed strict policies controlling the use of land and 

water and minimising competition of productive land with the agricultural sector (Anon, 

2006). In order for the forestry industry to remain productive and to meet the ever-

increasing demands for forestry products, productivity on existing plantations and 

marginal sites needs to be maximised (Denison and Kietzka, 1993a; February et al., 

1995; Dye, 2000; Bouillet et al., 2004). This has lead to an increased focus on hybrid 

forestry. 

 

Hybridisation enables foresters to combine desired characteristics of two (or more) pure 

species in the hybrid individual. Hybrid forestry has provided the forestry industry with 

a means to match clones to sites and, in this manner, increase productivity on existing 

plantations sites. Often hybrid individuals exhibit greater vigour than the parents, 

known as hybrid vigour or heterosis. On marginal sites, hybrids can surpass the pure 

species in terms of growth and survival and are consistently more resistant to diseases, 

pests, cold, heat and drought (Denison and Quaile, 1987; Denison and Kietzka, 1993a; 

Jones and van Staden, 1994; Denison, 1999). However, several authors advise that care 

should be practised in the assessment of hybrid vigour, as it is affected by time and 

location (Zobel and Talbert, 1984; Martin, 1988; Denison and Kietzka, 1993a).  In 

South Africa, hybrid forestry has made it possible to extend tree planting to marginal 

areas previously considered unsuitable or “off-site” for plantation forestry (Denison and 

Kietzka, 1993a; Jones and van Staden, 1994; Wex and Denison, 1997). In this country, 
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E. grandis is prominent as a pure species or as a hybrid (Denison and Quaile, 1987; Van 

Wyk, 1990) and its climatic range and location has been extended significantly as a 

result of hybridisation (Aimers-Halliday et al., 1999).  In subtropical areas, the most 

commonly planted hybrids are E. grandis crossed with E. urophylla, E. camaldulensis 

or E. tereticornis and in temperate areas, are E. grandis crossed with either E. nitens or 

E. macarthurii (both cold-tolerant eucalypts) (Denison and Kietzka, 1993a). Darrow 

(1996) stated that E. nitens (pure species) is probably the most popular cold-tolerant 

eucalypt in South Africa as it is extremely frost-hardy and exhibits excellent qualities in 

terms of tree growth, height and survival. 

 

The benefits of hybrid forestry, as discussed by Denison and Quaile (1987) and Denison 

and Kietzka (1993a; 1993b), include hybrid vigour, resistance to diseases, higher wood 

density and adaptability of hybrids to marginal sites. Another benefit is increased 

nursery efficiency given that hybrids root more rapidly (and require less time in the 

nursery), are less sensitive to handling, heat and drought than pure species (Denison and 

Kietzka, 1993a). In the early 1990’s it was envisaged that the use of cold-tolerant 

hybrids, such as E. grandis x E. nitens (GN), would increase in South Africa as 

vegetative propagation techniques improved (Denison and Kietzka, 1993a).  Studies 

have shown that clones of E. grandis x E. nitens hybrid adapt to sites more readily than 

pure species and may even require less water and use water more efficiently for 

production than pure species (Denison and Kietzka, 1993a; February et al., 1995). In 

addition, this hybrid has been found to have good wood qualities ideal for the pulp and 

paper industry. For these reasons, this clone has been widely propagated in KwaZulu-

Natal and other parts of South Africa. In the 1990s clones of E. grandis x E. nitens 

gained status as replacement planting stock for sites that were previously planted with 

E. grandis (Denison and Kietzka, 1993a). 

 

1.4 Propagation of Eucalyptus 

 

Traditional methods of propagation of forest trees, including eucalypts, have depended 

upon the growth of bulked seed collected in nature or from seeds collected  

from randomly pollinated superior trees (Ahuja, 1993). However, those forests are 
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characterised by a large variation in growth, form and vigour. In terms of commercial 

forestry, these traits are considered undesirable where a uniform stand of superior trees 

ideally needs to be established (Lakshmi Sita, 1986; Schuch, 1991; Ahuja, 1993; Bell et 

al., 1993). In addition, seeds may be susceptible to genetic damage and rapid loss of 

viability (Ahuja, 1993). In the case of Eucalyptus, certain species are characterised by 

irregular seed set, as is the case for E. dunnii (Lakshmi Sita, 1986) and E. nitens 

(Eldridge et al., 1994; Maile and Nieuwenhuis, 1996) while other species such as E. 

dives, E. nipophila and E. pauciflora require stratification for improved germination 

(Hartmann et al., 1997). Jones et al. (2000) reported that irregular flowering and high 

abortion rates are characteristics of many eucalypts, which also contribute to limited 

seed supply. However, despite these setbacks, sexual reproduction of forest tree species 

is vital in breeding programmes, as it provides a diverse genetic base from which 

superior trees can be selected (Harvett, 2001). In the case of eucalypts, superior trees are 

pollinated and the resulting seed is collected and planted out in provenance trials 

(Denison and Kietzka, 1993a). 

  

The breeding of Eucalyptus requires maximising genetic gain while minimising genetic 

erosion (Burley, 1989). In light of their long maturation times (years or decades) and 

changes with time in growth rate and morphology (Hartney, 1980), the ideal approach 

to maximise genetic gain of eucalypts is through selection followed by asexual 

propagation (Watt et al., 2003). Asexual (vegetative) propagation enables the 

production of individuals that are genetically identical (clones) to the parent plant. Such 

clones can be derived from individual cells, calli, tissues, in vitro cultures, cuttings 

(conventional vegetative propagation) and specialised plant structures (e.g. bulbs and 

rhizomes) (George, 1993; Hartmann et al., 1997). Every cell of a plant has the ability to 

divide and regenerate into an entire new plant. This inherent ability of a plant cell is 

called totipotency and it has been manipulated to bring about various vegetative 

propagation techniques, which will be discussed in this section, with emphasis being 

placed on cutting propagation. Vegetative propagation of forest trees or clonal forestry, 

results in the production of genetically identical individuals thus overcoming the 

problem of variation observed in material derived from seed orchards (Ahuja, 1993). In 

addition, vegetative propagation allows superior material to be commercially 
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propagated more rapidly than through seed orchards and can be used as a tool to 

maintain hybrid vigour (Ahuja, 1993). 

 

There are various methods of vegetative propagation such as grafting, layering, 

micropropagation and propagation through cuttings (Hartmann et al., 1997). Grafting 

involves the attachment of scions from superior trees onto seedling stocks of the same 

species or different species (Konar and Nagmani, 1973; Biondi and Thorpe, 1981; 

Gardner, 1998). This technique is regarded as labour intensive and expensive and care 

must be taken to select the appropriate graft to prevent graft incompatibility (McComb 

and Bennett, 1986). In the case of eucalypts, Gardner (1995; 1996; 1998) reported that 

the size of the rootstock has an effect on the success of the graft procedure and 

rootstocks that are not fully developed may delay grafting. Graft incompatibility 

between the scion and the rootstock is a common problem in E. macurthii in the field 

and in the nursery (Gardner, 1996). Late grafting (later than August and September) of 

E. nitens may result in low survival rates (9.5%), as was the case for E. smithii (2.5%) 

(Gardner, 1998). Air layering is also considered expensive and is associated with a high 

failure rate and is therefore implemented in special purpose plantations only (Cresswell 

and de Fossard, 1974; Hartney, 1980; McComb and Bennett, 1986). 

 

In vitro techniques have been applied successfully to a number of plant species, 

including ornamentals, crops, horticultural plants and commercially important forest 

tree species (see George, 1993), including eucalypts (Watt et al., 2003). 

Biotechnological methods encompass a number of techniques that enhance existing tree 

improvement programmes (Cheliak and Rogers, 1990; Dvorak, 2001). This type of 

propagation has the major advantage over the other methods of enabling the mass 

production of genotypes (and clones) in a short period and it yields high multiplication 

rates (Bonga, 1977; Mascarenhas et al., 1981; Lakshmi Sita and Shoba Rani, 1985; Nel, 

1985; Lakshmi Sita, 1986; Ahuja, 1993; Zobel, 1993; Haines, 1994; Yang et al., 1995; 

Watt et al., 1999). While micropropagation techniques offer several advantages over 

conventional methods of propagation, there are drawbacks: a highly specialised and 

expensive facility is needed and the technique is labour-intensive and highly technical. 

Perhaps the most pertinent limitation to in vitro plant propagation is clonal specificity, 
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which means that fairly specific methods are required for optimum results with each 

species, variety and explant (George, 1993; Watt et al., 2003). For eucalypts, the 

variability of rooting among clones and the gradual decrease in rooting ability in aging 

parent plants creates drawbacks in its vegetative propagation. With some clones such as 

the cold-tolerant E. grandis x E. nitens, the problem of poor rooting persists in vitro and 

is often accompanied by large amounts of callus production, which may hinder the 

development of roots (Mokotedi et al., 2000).  

 

Micropropagation and particularly axillary bud proliferation is now used extensively to 

support Eucalyptus breeding and clonal programmes at Mondi Business Paper and by 

other international forestry industry companies (Watt et al., 2003). However, vegetative 

propagation by stem cuttings remains a prominent method for the production of material 

for plantations. As cutting propagation is the focus of the study reported here, it is 

discussed in detail in the ensuing section.  

 

1.5 Propagation by cuttings 

 

Vegetative propagation by the rooting of cuttings may be the most ancient form of 

asexual propagation (Hartmann, 1988). According to Haissig and Davis (1994), for 

some species evidence of cutting propagation exists in antiquity, as supported by the 

writings of Aristotle (384 – 322 BCE), Theophrastus (371- 287 BCE) and Pliny the 

Elder (23 – 79 CE). Considerable research efforts have since led to the discovery and 

use of auxins, mist and sterile tissue culture techniques in cutting propagation, among 

others, and the variety of plants that can be rooted and rooted more rapidly is 

remarkable (Hartmann, 1988). 

 

As previously mentioned, stem cuttings are the preferred method of commercial 

vegetative propagation of forest trees (including Eucalyptus) because a large number of 

cuttings can be obtained from a single tree, cuttings are generally cheaper to obtain than 

material for other methods of vegetative propagation such as grafting and air-layering, 

and the problem of graft incompatibility can be avoided (Hartney, 1980; McComb and 

Bennett, 1986, Van Wyk, 1997). Propagation through cuttings occurs when a portion of 
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a stem, root or leaf is cut from the parent plant, maintained under favourable 

environmental conditions and induced to form roots and shoots, thus producing a new 

independent and genetically identical plant (George, 1993; Hartmann et al., 1997). The 

propagation of elite genotypes through propagation by cuttings has become a major part 

of plantation forestry around the world (Zobel, 1993). Countries such as Brazil (Zobel, 

1993), France (Eldridge et al., 1994), Portugal (Cotterill and Brindbergs, 1997), Congo 

(Eldridge et al., 1994) and South Africa (Denison and Quaile, 1987; Denison and 

Kietzka, 1993a) have adopted successful cutting propagation programmes for eucalypt 

species and their hybrids.  

 

The main regenerative process required in most cutting propagation methods, including 

those for Eucalyptus, is adventitious root formation. Adventitious roots develop 

naturally in various plant species and arise form parts of the plant body other than the 

apex of the embryo and the pericycle of relatively mature roots. They can of two types, 

namely, pre-formed roots and (wound-) induced roots (Fahn, 1974; Haissig, 1974; 

Nemeth, 1986; Hartmann et al, 1997, Dickison, 2000). Pre-formed or latent roots lie 

dormant until the stems are made into cuttings and placed under favourable 

environmental conditions and then emerge as adventitious roots. Wound-induced roots 

develop de-novo after the cutting is made at the wound site (or cut end of the stem) and 

is preceded by callus production (Hartmann et al, 1997; Anon, 2005). Many 

economically important woody plants (species or specific genotypes) have a low genetic 

and physiological capacity for adventitious root formation (Hartmann et al., 1997). 

Consequently, as demonstrated by the present study, it is necessary to continue the 

efforts to improve rooting of the many genotypes (in forestry usually referred to as 

clones) deemed of commercial value. This, as discussed below, may involve research 

into the various parameters that affect successful cutting establishment.  
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1.5.1 Factors affecting and/or influencing the regeneration of plants from        

 cuttings 

 

1.5.1.1 Stock plant treatments and harvesting material 

Maintenance of parent (stock) plants is the first step to successful cutting propagation.  

Parent plants for cuttings may be maintained as hedges, in pots, as inserts in the nursery, 

as mini-gardens and in hydroponic systems (Hartney, 1980; Hartmann et al., 1997; 

Wilson, 1999a; McNabb et al., 2000). Clonal hedges form the source of material for 

most cutting propagation programmes (Hartmann et al., 1997; Williams, 2000). Hedge 

plants can be produced from improved seed or in the case of clonal programmes, from 

cuttings of coppice obtained from superior trees (Langman, 1993). Coppice is harvested 

from these hedges/clone banks to produce cuttings. To ensure healthy and productive 

ramets, the hedges are routinely de-weeded, irrigated and surveyed and controlled for 

pests and diseases (Hartmann et al., 1997; Pierce, 1997; Williams, 2000).  

 

The ease of adventitious root formation declines with age of the parent plant or hedge 

plant (Kester, 1976; Hackett, 1988; Hartmann et al., 1997; Mitchell, et al., 2004; Dick 

and Leakey, 2006). As the hedge plant ages, a natural loss of juvenility occurs, this is 

called maturation or meristem aging, and it has a significant effect on the rooting ability, 

root strike and root quality of the coppice material in the nursery (Adendorff and Schon, 

1991) and is associated with a reduction in tree survival, growth and form in the field 

(Mitchell et al., 2004). For eucalypts, the ontogenetic loss of cuttings to form 

adventitious roots varies with species (Hackett, 1988). Paton et al. (1970) found that the 

highest rooting (80%) in E. grandis stem cuttings were obtained when cuttings were 

derived from the epicotyl or second internode of the parent plant and poor rooting 

(10%) was obtained when cuttings were taken from the tenth internode. Furthermore, 

Paton (1984) reported that the rooting ability in cuttings of E. viminalis and E. paciflora 

seedlings was completely lost by the 4
th

 node, and by the 15
th

 node in E. grandis 

seedlings. However, 50% rooting was observed at the 100
th

 node in E.camaldulensis, 

and 100% rooting was obtained in cuttings taken from the 100
th

 node of E. deglupta 

(Paton, 1984).  
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Maile and Nieuwenhuis (1996) found that cuttings taken from 3 year old E. nitens stock 

plants rooted better than cuttings taken from 11 year old plants (56% and 7% rooting, 

respectively). In South Africa, eucalypts coppice on average every 2 months, but this 

varies between clones, between species and with season, fertigation and age of parent 

plant (Wallis, pers. comm.).  

 

There are various pre-conditioning techniques that may be used to treat stockplants and 

thereby improve rooting. These include light exclusion (etiolation, blanching or 

banding), winter pruning, girdling, raising stockplants through micropropagation, 

chemical treatment of stockplants and modifying light quality, photoperiod, CO2, water 

and mineral nutrition (Hartney, 1980; Blazich, 1988a; Blazich, 1988b; Hackett, 1988; 

Maynard and Bassuk, 1988; Schmidt, 1989; Howard, 1994; Hartmann et al., 1997). 

Rejuvenation of hedges to the juvenile phase can occur through the grafting of adult 

scions onto seedling rootstocks, from which basal epicormic shoots are then induced to 

form on the scion and these may be used as cuttings or to form a clone bank of hedges 

(Kester, 1976; Hartney, 1980; Hartmann et al., 1997). Rejuvenation can also occur 

through micropropagation (George, 1993; Hartmann et al., 1997). 

 

At the Mondi Business Paper production and research facilities, eucalypt clonal hedges 

are established in close proximity to the nursery; this ensures that the hedges are under 

close surveillance and cuttings arriving at the nursery are fresh and not in a condition of 

stress (personal observations and discussions with nursery staff). In addition, the 

eucalypt clonal hedges at are kept healthy through techniques such as drip irrigation, 

controlled fertilization, selective harvesting and the use of anti-oxidants during 

collection of the cuttings. These techniques minimise stress on the ramets and increase 

rooting of the cuttings harvested (Denison and Kietzka, 1993a, McAllister, pers. comm.; 

Wallis, pers. comm.).  

 

The general rule in harvesting coppice material is to take cuttings early in the morning 

when the plant material is in a turgid condition as water-stressed cuttings are more 

prone to diseases and pests (Hartmann et al., 1997). In the case of eucalypts, Langman 

(1993) suggested that coppice should be collected early in the morning, in misty 
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weather or following rain to minimise drying out. Bayley and Nixon (1998) 

recommended that once the eucalypt coppice material is harvested, it should 

immediately be placed in a bucket of water containing sugar or boric acid to keep the 

material supple, and boric acid minimises the exudation of phenolics from the cut 

surfaces. The latter is the general approach used at the Mondi Business Paper nurseries.  

 

The type of material harvested is also important to consider. In the literature and within 

the Forestry Industry, terms such as macrocuttings, microcuttings and minicuttings are 

used. For the purpose of this study, the terms terminal cuttings and non-terminal 

cuttings will be used. Terminal cuttings refer to cuttings taken from the stem just below 

the apical meristem, due to its location on the stem, they were termed terminal. Non-

terminal cuttings refer to cuttings taken from the stem approximately two to three nodes 

below the apical meristem and below terminal cuttings. Various reports indicate that 

there are many differences in the rooting responses of these two cutting types in 

different species. For example, Day and Loveys (1998) found that terminal and stem 

cuttings of Boronia megastigma were not significantly different in their rooting 

responses. However, stem cuttings of Hypcalymma angustifolium propagated better and 

had longer roots than terminal cuttings (Day and Loveys, 1998). Osyris lanceolata 

cuttings taken from the basal portion of the stem rooted better than cuttings originating 

form the terminal part of the stem (Teklehaimanot et al., 2004). Fillmore (1965) stated 

that the position from which the cutting is taken from the adult plant affects the ability 

to root and the stature of the resultant plant. For eucalypts, specific data are scarce as 

most studies are done ‘in-house’ and are regarded as confidential. 

 

1.5.1.2 Season/ timing of collection 

The season of harvesting coppice material from hedge plants is another factor to 

consider when propagating through stem cuttings (Fordham, 1965). Many plant species 

have an optimum rooting period in the year, although easy-to-root species may be 

harvested throughout the year (Hartmann et al, 1997). In a review by Barnes and 

Lewandowski (1991), the importance of identifying the appropriate stage of plant 

growth for cutting collection was highlighted and it was suggested that “the key to 

cuttings success is not only in knowing how to do it, but when”. For Eucalyptus, 
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coppice cuttings of E. resinifera displayed highest rooting between February and 

August, with the highest recorded in February (mean < 25%) (McComb and Wroth, 

1986). However, earlier studies on this species indicate rooting as high as 43% in the 

Congo with optimum rooting period between October and February (Chaperon and 

Quillet, 1977). Maile and Nieuwenhuis (1996) found that, cuttings taken from three-

year old E. nitens stock plants showed a 56% and 30% rooting in September and March, 

respectively.  

 

1.5.1.3 Placing of cuttings and propagation substrate  

Propagating cuttings in containers (inserts) is now a widely accepted commercial 

practice and under variable planting conditions in South Africa, plants in containers 

may yield better survival rates than open-rooted plants (Barnett and Brissette, 1986; 

Mitchell, et al., 2005). In a study by Mitchell et al. (2005) on pine cuttings, five 

container types were tested, each differing in root volume (as listed below within 

parenthesis): BCC 81
©

 (60ml
2
), Sappi 49 standard (80ml

2
), Sappi 49 deep (130ml

2
), 

Unigro 98
©

 (90ml
2
) and Unigro 72

©
 (125ml

2
). Root volume and the volume of growing 

media within the containers were found to significantly influence the growth of cuttings 

(height, diameter and volume) seven years after planting with the best results obtained 

with the Unigro 72
©

 tray (Mitchell et al., 2005). This is the same container type used for 

eucalypts at the Mondi Business Paper nursery and consequently, in the present study. 

As discussed in section 1.6, container volume also influences growth in eucalypt 

cuttings.  

 

The propagation mixture or rooting medium used in horticulture and forestry consists of 

organic and inorganic components; these include soil, peat, moss, softwood or 

hardwood bark, sand, coir, perlite and vermiculite, among others (Hartmann et al., 

1997). For E. nitens, Maile and Nieuwenhuis (1996) reported that a mixture of peat: 

sand: vermiculite (1:1:1) was found to be superior to each substrate on its own in terms 

of rooting success. Cuttings set in the mixture produced a 67% rooting success, while 

cuttings set in pure peat, sand and vermiculite showed 20%, 33% and 50% rooting 

respectively. For the present study, cuttings were set in peat: perlite: vermiculite (3:3:1), 

as this is the standard practice at Mondi for eucalypts. 
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The size of the cutting may also influence rooting and Langman (1993), Pierce (1997) 

and Williams (2000) have several recommendations for eucalypts. According to those 

authors, the thickness of cuttings should be between 2 and 8 mm and the length between 

2.5 and 12 cm with leaves halved. Langman (1993) states that the number of nodes per 

cutting is dependent on the growth of the tree, stock plant management and amount of 

material available.  

 

 1.5.1.4 Application of rooting enhancers to cuttings 

Before synthetic enhancers were used to improve rooting of cuttings, other chemicals 

were tried with limited success (Kefford, 1973; Blazich, 1988b). Synthetic auxins such 

as indole-butyric-acid (IBA), indole-3-acetic-acid (IAA) and naphthalene-acetic acid 

(NAA) are now regularly used in promoting the production of adventitious roots in 

cuttings of many species, including Eucalyptus. The response, however, is not universal, 

as cuttings of some difficult-to-root species show no rooting improvement with auxin 

application as demonstrated in a study on E. nitens by Maile and Nieuwenhuis, (1996) 

in which IBA application had no significant influence on adventitious root formation as 

compared with cuttings not treated with IBA. Fogaca and Fett-Neto (2005) showed that 

microcuttings of E. saligna rooted best with IBA and IAA as opposed to treatment with 

NAA or IAA with an aspartate conjugate. E.globulus microcuttings rooted best with 

exposure to IBA and showed an intermediate rooting response with exposure to IAA 

(Fogaca and Fett-Neto, 2005). To determine the best auxin and optimum concentration 

to use for a particular species under a given set of environmental conditions, a number 

of trials must be undertaken (Hartmann et al., 1997). Further, the method of auxin 

application also has an affect on rooting. There are several such methods of auxin 

application including foliar application or a basal dip into an auxin-containing solution 

or powder.   

 

As early as 1939, Hitchcock and Zimmerman (1939) investigated three methods of 

auxin application (various concentrations) in over sixty plant species. Basal ends of 

cuttings were immersed in an auxin-containing solution for 24 hours, dipped into a 

solution containing the auxin, or dipped into a powder incorporating the auxin. It was 

found that all three methods produced essentially the same rooting response and that the 
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powder preparation was more effective, if the basal end of the cutting was moistened 

before being dipped. In addition, it was shown that the concentration requirements for 

optimum rooting depended on the kind and form of rooting agent, the plant species, age 

of the shoot, time of year and the method of applying the rooting agent to the cutting 

(Hitchcock and Zimmerman, 1939). Several authors recommend dipping eucalypt 

cuttings in an IBA hormone powder to promote rooting (Shepherd, 1986; Pierce, 1997; 

Bayley and Nixon, 1998).  

 

  1.5.1.5 Intermittent mist application (and leaching of nutrients) 

In the 1940s and 1950s, it was discovered that mist application could prolong the life of 

cuttings; this knowledge has since revolutionised commercial and experimental 

propagation of cuttings and mist application became standard practice (Hartmann, 

1988). Since then, studies have shown that misting can severely leach nutrients such as 

N, P, K, Ca and Mg and this can further delay root initiation of cuttings of difficult-to-

root species (Good and Tukey, 1966; Blazich and Wright, 1979; Blazich, et al., 1983; 

Hartman, et al., 1997). Good and Tukey (1966) demonstrated that hardwood cuttings of 

several ornamental species grew less and lost greater quantities of metabolites through 

leaching than softwood cuttings. Loach (1992) suggested that to enhance the rooting of 

cuttings it is necessary to minimise water loss through transpiration and maintain a 

favourable tissue temperature. Transpiration can be minimised through shading of 

leaves or wetting the leaves (misting) (Loach, 1992). At the Mondi nurseries, mist is 

applied to cuttings for 20 seconds at 10 minute intervals (Wallis, pers. comm.). 

 

1.5.1.6 Environmental conditions 

It is widely believed that there is no other factor more critical than optimum temperature 

control for propagation (Loach, 1992; Eldridge et al., 1994; Hartmann et al., 1997). 

Seed germination, rooting of cuttings, growth of tissue culture plantlets, graft union 

development and specialised structure development are all temperature-driven plant 

responses (Hartmann et al., 1997). It is more cost effective to manipulate temperature at 

the propagation bench level or at the root zone, rather than at manipulating the 

temperature for the entire greenhouse. The most common way to achieve this is to heat 

the propagation bench itself on which the cutting trays are placed or through heated 
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solutions beneath the propagation bench. Landhauser (2003) reported that Balsam 

poplar cuttings grown in soil temperatures of 5°C did not produce roots after 6 weeks, 

but cuttings grown in soil with temperatures maintained at 15°C and 25°C showed 

100% rooting. In cuttings of Pinus patula and the hybrid Pinus elliotii x Pinus caribaea, 

the addition of bottom heat during the rooting period was shown to improve rooting; in 

addition, root dry mass was positively influenced by bottom heat, irrespective of season 

(Mitchell, 2002). Fett-Neto et al. (2001) found that the adventitious rooting of E. 

globulus microcuttings was delayed if cuttings were not exposed to light during the root 

initiation phase. The consensus with regard to the optimum temperature for propagation 

is between 18°C and 25°C for temperate species and 7°C higher for warm climate 

species (Hartmann et al., 1997). At Mondi Business Paper, the root zone temperature of 

Eucalyptus cuttings is maintained at 28°C and controlled by bed heaters. 

 

1.6 Studies on the propagation of E. grandis x E. nitens hybrid 

 

Vegetative propagation through stem cuttings has become commonplace in the forestry 

industry and clonal plantations of selected genotypes of Eucalyptus are routinely 

established this way (Yang et al., 1995). As mentioned previously, cold-tolerant clones 

of E. grandis x E. nitens (GN) have superior wood qualities and they can be matched to 

marginal sites and thereby increase productivity on existing plantations sites (Denison 

and Kietzka, 1993a). This is due to the natural qualities of both true species involved. 

Pure species of E. grandis and E. nitens are known for their rapid growth and superior 

wood qualities; however, E. grandis is inherently frost-sensitive and restricted to 

planting in areas with warmer climates while E. nitens is inherently cold tolerant and 

suitable for planting in temperate areas that are subject to frost attack, and in South 

Africa, is currently grown in the Mpumalanga Highveld region, where frost conditions 

are frequent (Purnell and Lundquist, 1986; Denison and Kietzka, 1993a; Eldridge et al., 

1994; Bandyopadhyay et al., 1999; Denison, 1999).  

 

Aimers-Halliday et al., (1999) found that cuttings from E. grandis x nitens clones 

behaved more like E. grandis with respect to its ability to coppice and produce rooted 

cuttings. In addition, those authors found that gradually cutting back and starving the 
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hybrid stock plants N, P, K (delivered via fertilizers), gave poorer coppicing results 

although this was necessary to obtain coppice in E. nitens plants.  

 

Observations from our laboratory on macropropagated plants indicate that the roots of 

these plants are often seen aboveground in close proximity to the stem, and this is 

thought to be as a result of abnormalities in root growth and development (Mokotedi, 

2006). In addition, eucalypt clones have been shown to produce roots nearly 180
o
 apart, 

and this may prove to be inadequate anchorage as entire eucalypt plantations have been 

known to collapse due to strong winds (McComb and Bennett 1986). 

 

In studies by Mokotedi et al. (2003) and Mokotedi (2006), micropropagated and 

macropropagated GN clones were compared. The results showed that there was no 

significant difference in terms of growth and physiological responses (such as water 

relations and photosynthesis) between both types of plants when grown in containers 

(1L and 25L pots) and in the field. However, the root and shoot dry masses increased 

with pot size. The most significant differences between young micro- and 

macropropagated trees were found belowground in their root anchorage and 

architecture. It was established that macropropagated plants produced better quality 

roots (in terms of anchorage) earlier during plant development than micropropagated 

plants. Furthermore, macropropagated plants developed what the author termed ‘tap 

sinkers’ (adventitious equivalent of a tap root) by 16 months of field growth, which 

notably improved their anchorage efficiency. In micropropagated plants the absence of 

‘tap-sinkers’ consequently contributed to the asymmetrical distribution of roots at the 

root-shoot junction. 

 

The anatomy and histology of eucalypt roots has received little attention. In anatomical 

studies on E. obliqua and E. st. johnii, roots were observed to be tetrarch and 

differences were noted in the cortex and the rate of polyphenol accumulation and these 

differences were thought to be related to the age and growth rates of the roots sampled 

(Tippett and O’ Brien, 1976). Although it is not clear how adventitious roots develop in 

eucalypt cuttings, or how cells respond to stimuli from the externally applied rooting 

hormones, observations from our laboratory on GN clones indicate that adventitious 
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roots of cold tolerant eucalypt hybrids develop from the archs of the xylem (Mokotedi, 

1999). Mokotedi (2006) suggests that it may be possible that fewer cells respond to the 

root promoting substance and that roots produced nearly 180
o
 apart may be a result of 

roots being produced from two archs on opposite sides of the stem.  

 

1.7 Aim 

 

Clones of the E. grandis x E. nitens hybrid that have been produced and selected 

through breeding programmes at the Mondi nurseries have consistently been shown to 

be suitable for planting in marginal plantation sites. These clones exhibit high yields and 

superior pulp properties, which makes them extremely valuable for commercial 

plantation propagation. However, many such clones are very poor rooters, in particular 

GN107. Apart from the above-mentioned studies and those done ‘in-house’ in the 

forestry industry, little is known about the basis for the rooting ability and performance 

of GN107 clones. Therefore, the aim of this work was to investigate parameters that 

may influence rooting of GN107 clones. Toward this end, the effects of cutting type, 

rooting powder application and the time of year of setting cuttings were assessed. 

Specifically, the growth and performance of terminal cuttings and non-terminal cuttings, 

the position at which cuttings were cut in the region of the node (at, above or below) 

and the effect of the application Seradix 2 powder on the performance of cuttings were 

assessed. Seradix 2 (containing IBA) is the rooting powder currently used for the cutting 

propagation of GN clones at Mondi Business Paper’s Hilton nursery. In addition, the 

effect of season or times of year cuttings were set on cuttings performance was 

assessed. Finally, the root ontogeny of GN107 cuttings was investigated.  
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2. MATERIALS & METHODS 

 

2.1 Plant material, growth conditions and cutting preparation 

 

Plant material of the hybrid clone E. grandis x E. nitens (GN107) used in this study was 

obtained from the Trahar Technology Centre, Mondi Business Paper, Hilton (KwaZulu-

Natal, South Africa). Cuttings of GN107 were prepared from the clonal hedges at the 

Trahar Technology Centre. Coppice was collected from these hedges and placed in 

buckets of water (no additives) and made into cuttings of approximately 5 to 10 cm in 

length. All cuttings contained two buds. The number of nodes in each cutting was 

dependent on the type of cutting made (see 2.2 and Figure 2.1 below). The leaves at the 

apex of the cutting were trimmed to about one third their original length and the cuttings 

were placed into black trays (65 cm x 33 cm x 10.5 cm) with 128 inserts per tray 

containing a mixture of peat: perlite: vermiculite, (3:3:1). Seradix 2 is the commercial 

rooting powder currently used at the Trahar Technology Centre nursery for the cutting 

propagation of GN clones. To test the effect of Seradix 2 (3 g kg
-1

 4-(indole-3-yl)-

butyric acid (IBA) (Bayer Crop Science, Germany) on the root development of cuttings, 

the cut ends (base) of cuttings were dipped into the powder. The trays were placed in 

the rooting greenhouse at the Trahar Technology Centre, Hilton. The air temperature 

within the greenhouse was maintained between 25°C and 27°C by thermostatically 

activated fans and the root zone temperature was maintained at 28°C by bed heaters. 

The cuttings were misted for 20 seconds at 10 minute intervals by automatic misters; no 

artificial light was provided in the greenhouse.  

 

Plant material for the root ontogeny studies was supplied by Mondi Business Paper’s 

Hilton nursery. Cuttings of GN107 were prepared at the Hilton nursery (128 inserts per 

tray containing peat: perlite: vermiculite, 3:3:1) and were placed in the greenhouse at 

the University of KwaZulu-Natal, Durban. The cuttings were placed in a mist tent at 

approximately 85% humidity.  
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2.2 The effect of cutting type on the performance of cuttings 

 

2.2.1 Experimental design  

 

This experiment was aimed at investigating the effects of cutting type, the position at 

which the cuttings were cut at the abaxial cut end in relation to the node, and Seradix 2 

treatment on cutting performance. At the Hilton nursery, non-terminal cuttings (cuttings 

that are located below the apical meristem) are the primary cutting type utilised. In the 

initial experiment, two types of cuttings were employed. Cuttings were made from the 

stem directly below the apical shoot (due to their position on the stem, they were termed 

terminal cuttings), and cuttings were made from the parent stem approximately 3 nodes 

below the apical shoot of that stem and below terminal cuttings (termed non-terminal 

cuttings) (Figure 2.1). Once the plant material was harvested from the clonal hedges at 

the Trahar Technology Centre, the cuttings were cut at various points on the stem: at the 

node, approximately 1 cm above the node and approximately 1 cm below the node, 

resulting in three cutting types each for terminal and non-terminal cuttings; designated 

as types one to six (Figure 2.1). The length and number of nodes per cutting ranged 

from 5 cm to 11 cm and 1 to 3 nodes, respectively, depending on the cutting type made. 

Half the cuttings were dipped into Seradix 2 rooting powder, while half remained 

untreated.  

 

Seradix 2-treated and -untreated terminal and non-terminal cuttings, cut at, above and 

below the node (twelve treatments in total) were set in trays with one treatment per 

column per tray, containing eight replicates (Figure 2.2). There were nineteen trays 

overall. Based on those results, thereafter, only non-terminal cuttings were used in 

subsequent studies. 
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Figure 2.1: Diagrammatic representation of the positions of terminal and non-terminal 

cutting types (1 to 6) and the points at which they were cut in the region of the 

node. Terminal cuttings (1, 2 and 3) and non-terminal cuttings (4, 5 and 6) were cut at 

the node, approximately 1 cm above the node or approximately 1 cm below the node, 

respectively. Each cutting contained two buds, the leaves on either side of the buds were 

trimmed to about one third their original size, and all other leaves and buds below the 

topmost buds were removed. The apical meristem was discarded. 

 

NB. Non-terminal cuttings are the standard cutting type utilised at Mondi Business 

Paper for GN107 and other clones.  

Non-terminal cuttings 

Terminal cuttings 

2

5 4 6

1 3
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16 inserts/ row 

 

 

X X 1T 1U 2T 2U 3T 3U 4T 4U 5T 5U 6T 6U X X 

                

                

                

                

                

                

                

 

Figure 2.2: Illustration of a cutting tray (8 x 16 cells) showing an example of a layout of the 

different treatments. Cutting types 1, 2, 3 = terminal cuttings, cut at the node, cut 1 cm 

above the node and cut 1 cm below the node, respectively; cutting types 4, 5, 6 = non 

terminal cuttings, cut at the node, cut 1 cm above the node and cut 1 cm below the node, 

respectively, T = treated with Seradix 2, U = untreated. X = cuttings not used. The 

twelve treatments were arranged in nineteen trays.  

 

2.3 The effect of the time of year of setting cuttings on cutting performance 

 

2.3.1 Experimental design  

 

To assess the influence of season and environmental temperature on GN107 hedge 

plants and the effect on the performance of cuttings, the experiment was repeated at 

different times of the year. As in the initial study, it was observed that non-terminal 

cuttings resulted in a greater plantlet yield than terminal cuttings, and that there were no 

significant differences amongst non-terminal cutting types 4, 5 and 6, subsequent 

studies employed only non-terminal cuttings (type 5).  

 

Plant materials from the GN107 hedges at the Mondi Business Paper nursery were 

harvested in October 2005, March 2006 and May 2006, and cutting results were 

recorded 4 weeks later in each study, in November 2005, April 2006 and June 2006, 
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respectively. Cuttings were prepared with and without Seradix 2 treatment and set in 

trays, as previously described.  

 

Table 2.1 illustrates the average daily temperature, amount of rain and average daily 

humidity by month experienced by hedge plants for the period of the study.  

 

 Table 2.1: Average daily temperature, amount of rain and average daily humidity by 

month at the Trahar Technology Centre, Hilton during the period of the study. 

 

2.4 The effect of Seradix 2 on rooting patterns 

 

 2.4.1 Experimental design and cutting preparation 

 

Dipping the abaxial cut ends of cuttings into the rooting powder is not a precise practise 

as the extent to which the cutting is dipped varies with cutting length and amongst 

nursery workers. To investigate any potential effect of this, an experiment was 

conducted in which only non-terminal cuttings were used. This study aimed at 

investigating if the depth the stem was placed into the rooting powder had any effect on 

rooting, callusing or the type of rooting pattern produced. The abaxial cut ends of 

cuttings were dipped into Seradix 2 approximately 0.5 cm and compared with cuttings 

that were dipped approximately 2.5 cm into the rooting powder. Cuttings were prepared 

at the Hilton nursery and all cuttings were dipped into Seradix 2 rooting powder and set 

in trays as described above. Non-terminal cuttings (type 5) were used in this study. The 

 
Temperature (

o
C) 

          Max.                      Min.  Rain (mm) Humidity (%) 

October 2005 26.7 14.3 2.2 68.6 

November 2005 26.6 16.1 2.4 71.9 

December 2005 26.7 15.4 3.4 70.1 

January 2006 28.4 18.8 5.9 78.2 

February 2006 28.3 19.4 2.3 80.5 

March 2006 25.9 15.1 3.3 74.9 

April 2006 25.2 13.5 3.6 73.4 

May 2006 21.5 7.2 2.3 68.9 

June 2006 21.6 4.8 0.1 62.6 
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trays were placed in the greenhouse at the Trahar Technology Centre, Hilton and 

environmental conditions maintained as previously described. Results were recorded 4 

weeks after cuttings were set. 

 

2.5 Root ontogeny of GN107 cuttings 

 

For all treatments and cutting types, the positions of root emergence (at the abaxial cut 

end or above the abaxial end) were recorded. In addition, after 4 weeks of setting 

cuttings, the root-shoot junctions (regions of root emergence) were excised trimmed to 

approximately 1.5 cm and fixed in 5 ml formalin/ acetic acid/ alcohol (FAA) for 24 

hours at room temperature. The mixture contained 10 ml formalin (37 - 40% v/v 

formaldehyde), 5 ml glacial acetic acid, 50 ml ethanol (95% v/v) and 35 ml distilled 

water. The samples were then dehydrated through a series of butanol/ ethanol/ water 

solutions after which they infiltrated with Paraplast paraffin wax (Lancer, Ireland) 

through a series of wax/ butanol solutions. The root-shoot junction samples were then 

incubated in pure Paraplast paraffin wax overnight and thereafter embedded in plastic 

peel away moulds (2.2 x 2.2 x 2.2 cm) (Polyscience, USA) using fresh paraffin wax and 

allowed to set overnight. Wax embedded samples were sectioned with a rotary 

microtome (AO 820, American Optical, Buffalo, New York, USA). Sections were 

adhered to slides pre-treated with Haupt’s Adhesive, which comprised of 1 g gelatin, 15 

ml glycerol, 2 g phenol crystals and 100 ml water. Sections were stained with 0.1% 

(w/v) Toluidene Blue and DPX mountant (Unilab Saarchem, South Africa) was used to 

mount coverslips to the slides. Slides were viewed using a Carl Zeiss light microscope 

and images were captured using a Nikon DXM 1200C digital camera.   

 

2.6 Data collection, statistical analysis & photography 

 

For the first two studies, the following parameters were measured: survival, percentage 

of plantlets produced, percentage of rooted and unrooted cuttings, percentage of cuttings 

that did and did not produce new shoots and the percentage of cuttings that produced 

callus. In addition, the number of roots per cutting, the length of longest root per 

cutting, average shoot length per cutting, site of root emergence and rooting pattern per 
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cutting were recorded. Sampling was performed 4 weeks after treatment as this is the 

standard practice at the Mondi nurseries, since roots are well established at this stage 

while not being overgrown in insert containers. 

 

To determine the fresh and dry mass, roots, shoots and callus were harvested and placed 

in brown paper bags to minimise water loss. These were promptly weighed using an 

electronic scale at the Mondi laboratory which is situated adjacent to the rooting 

greenhouse in which the trays were placed. The bags were then placed in an oven at 

80°C for 48 hours and the contents thereafter re-weighed to determine the dry weight. 

The shoot: root ratio based on the fresh mass and dry mass were also determined. 

 

Cuttings that produced roots were categorised by their site of root emergence, i.e. 

cuttings with roots from the abaxial end (1), cuttings with roots from above the abaxial 

end (2) and cuttings with roots from both (3) (see also section 3.3). The incidences 

(percentage) of these rooting patterns were assessed 4 weeks after cuttings were set. 

 

In the first study (November), nineteen trays were used, each with eight cuttings per 

each of the twelve treatments. In the April and June trials, eight trays and five trays 

were used, respectively, with 128 replicates in each tray. For the studies on the extent of 

dipping cuttings into Seradix 2, one tray was used with 128 replicates.  

 

Statistical analyses were carried out with the Statistical Package for Social Science 

(SPSS) software package version 13.0. All data were subjected to the Kolmogorov-

Smirnov’s test for normal distribution. Data that were normally distributed were 

analysed by a one-way analysis of variance test (ANOVA) and Tukey’s Honestly 

Significant Difference (HSD) test (p ≤ 0.05). Data that were not normally distributed 

even after log-transformation, were analysed by the Kruskal-Wallis and Mann-Whitney 

U tests (p ≤ 0.05). 

 

Images of root emergence and ontogeny were captured using a Nikon DXM 1200C 

digital camera. 
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3. RESULTS 
 

3.1 The effect of cutting type on the performance and outcome of cuttings 

 

In the initial investigation of this study, the effect of cutting type and rooting powder 

were investigated. Terminal cuttings and non-terminal cuttings were harvested from 

clonal hedges and their base was cut at different places along the internodes and at the 

node (Figure 2.1). Half of these were treated with Seradix 2 rooting powder, while the 

other half remained untreated. 

 

 3.1.1 Survival of cuttings 

 

At the time results were taken (4 weeks after cuttings were set), it was found that a large 

number of cuttings did not survive. The percentage of cuttings that did not survive and 

the summary of the comparisons made between the different cutting types and cuttings 

treated and untreated with Seradix 2 are presented in Tables 3.1 and 3.2. Wilted or 

desiccated cuttings were recorded as dead. Overall, mortality was very high with 65.2% 

of Seradix 2-untreated and 69.9% of Seradix 2-treated cuttings assessed as dead (Table 

3.1). Amongst Seradix 2-untreated cutting types 1 to 6, differences in mortality were not 

significantly different (Table 3.1). Further, differences were not significant between 

terminal and non-terminal cuttings (p = 0.061), within terminal cuttings (p = 0.330) and 

within non-terminal cuttings (p = 0.782) (Table 3.2).  

 

Amongst Seradix 2-treated cutting types, the highest mortality was observed in cutting 

type 2 (86.3%) (Table 3.1). Moreover, when the collective data for Seradix 2-treated 

terminal and non-terminal cuttings were compared (Table 3.2), terminal cuttings were 

observed to have a higher mortality than non-terminal cuttings (p = 0.029). Within 

terminal cuttings, type 2 was different from types 1 and 3 (p = 0.032), however no 

differences were found with respect to mortality amongst non-terminal cuttings (p = 

0.656) (Table 3.2). Furthermore, overall no significant differences were found between 

Seradix 2-untreated cuttings and -treated cuttings at the 0.05% level of significance (p = 

0.218).  
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Table 3.1: The effect of cutting type on % mortality of Seradix 2-untreated and Seradix 2-

treated cuttings. Cutting types 1, 2, 3 = terminal cuttings, cut at the node, cut 1 cm 

above the node and cut 1 cm below the node, respectively; cutting types 4, 5, 6 = non-

terminal cuttings, cut at the node, cut 1 cm above the node and cut 1 cm below the node, 

respectively. Seradix 2-untreated cuttings = cuttings not treated with Seradix 2, Seradix 

2-treated cuttings = cutting base dipped into Seradix 2. Results were recorded after 4 

weeks.   

 

%  Mortality 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 71.7 ± 0.37 
a 

71.1 ± 0.41 
a 

2 75.0 ± 0.46 
a 

86.3 ± 0.30 
b 

3 66.4 ± 0.43 
a 

70.4 ± 0.40 
a 

4 64.5 ± 0.46 
a 

64.5 ± 0.56 
a 

5 57.2 ± 0.70 
a 

67.8 ± 0.51 
a 

6 56.6 ± 0.60 
a 

59.2 ± 0.55 
a 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 152 for each cutting type). 
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Table 3.2: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

morality of cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained in Table 

3.1. ∑ represents the collective mean. Data from Table 3.1. 

 
Parameter p value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.061 

Terminal cuttings 1 vs. 2 vs. 3 0.330 

Non-terminal cuttings 4 vs. 5 vs. 6 0.782 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.029 

Terminal cuttings 1 vs. 2 vs. 3 0.032 

Non-terminal cuttings 4 vs. 5 vs. 6 0.656 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.218 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.964 

Cutting type 2 0.191 

Cutting type 3 0.654 

Cutting type 4 0.813 

Cutting type 5 0.311 

Cutting type 6 0.848 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 152 for each cutting type). 

 

3.1.1.1 Summary 

Overall, regardless of Seradix application, cutting mortality was high and non-terminal 

cuttings were more resilient and survived longer than terminal cuttings. 
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 3.1.2 Plantlet yield 

 

The plantlet production of cutting types 1 to 6 as a percentage of cuttings that were set 

is presented in Table 3.3, and a summary of the comparisons made between the different 

cutting types and cuttings treated and untreated with Seradix 2 is presented in Table 3.4. 

As discussed later, some cuttings produced new shoots and roots (plantlets), while some 

cuttings produced roots only or shoots only. Therefore, plantlet production (Table 3.3) 

was scored as those cuttings that produced new shoots and roots for each cutting type. 

 

In Seradix 2-untreated cuttings, the plantlet yield was generally low (< 5%), and no 

distinction in the frequency of plantlet yield was observed amongst the cutting types (1 

to 6). Cutting type did not have any effect on plantlet yield in Seradix 2-untreated 

cuttings (terminal vs. non-terminal cuttings, amongst terminal or amongst non-terminal 

cuttings) (Table 3.4).  

 

Table 3.3: The effect of cutting type on % plantlet production from Seradix 2-untreated 

and Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained 

in Table 3.1. Results were recorded after 4 weeks. 

 

%  Plantlet production 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 1.3 ± 0.07 
a
 5.3 ± 0.14 

ab
 

2 2.0 ± 0.09 
a
 2.0 ± 0.09 

a 

3 4.6 ± 0.14 
a
 7.2 ± 0.16 

bc
 

4 4.0 ± 0.13 
a
 9.9 ± 0.28 

bc
 

5 4.0 ± 0.11 
a
 9.2 ± 0.21 

bc
 

6 2.0 ± 0.09 
a
 12.5 ± 0.20 

c
 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 152 for each cutting type). 

 

For Seradix 2-treated cuttings (Table 3.3), a significant difference in plantlet yield was 

observed between cutting types 2 and 6, with type 6 producing the highest plantlet yield. 

Further, non-terminal cuttings (types 4, 5, 6) were higher yielding than terminal cuttings 
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(types 1, 2, 3) (p = 0.008). However, the improved yield from non-terminal cuttings was 

not affected by the position at which the cutting was cut, i.e. no difference was observed 

within non-terminal cutting types (4, 5, 6) (Table 3.4). There were also no significant 

differences observed in plantlet yield amongst terminal cuttings.  

 

Table 3.4: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

plantlets produced. Cutting types 1 - 6 and Seradix 2 treatment as explained in Table 

3.1. ∑ represents the collective mean. Data from Table 3.3. 

 
Parameter p  value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.508 

Terminal cuttings 1 vs. 2 vs. 3 0.216 

Non-terminal cuttings 4 vs. 5 vs. 6 0.520 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.008 

Terminal cuttings 1 vs. 2 vs. 3 0.094 

Non-terminal cuttings 4 vs. 5 vs. 6 0.405 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.000 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.055 

Cutting type 2 1.000 

Cutting type 3 0.311 

Cutting type 4 0.156 

Cutting type 5 0.173 

Cutting type 6 0.001 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 152 for each cutting type). 

 

Seradix 2 treatment significantly improved plantlet yield, irrespective of cutting type 

(terminal/ non-terminal and the layout of the cutting) (p = 0.000, Table 3.4). This was 

due to the marked difference in plantlet yield between Seradix 2-untreated and Seradix 
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2-treated cutting type 6 (1.97% and 12.5% respectively (Table 3.3) (p = 0.001, Table 

3.4).  

 

3.1.2.1 Summary 

In summary, Seradix 2 application was found to improve plantlet yield, with the highest 

plantlet production observed in non-terminal cuttings. 

 

 3.1.3 Root development 

 

Root development was assessed as the percentage of set cuttings that developed roots, 

the number of roots and the length of the longest root per cutting (Tables 3.5 to 3.10). 

Percentage rooting (Table 3.5) was scored after four weeks as the percentage of cuttings 

that produced roots of the total number of cuttings set for each cutting type, including 

plantlets (cuttings with new shoots and roots, Table 3.3) and cuttings that produced 

roots and no shoots (data presented later).  

 

Table 3.5: The effect of cutting type on % rooting in Seradix 2-untreated and Seradix 2-

treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained in Table 3.1 

Results were recorded after 4 weeks. 

%  Rooting 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 1.3 ± 0.07 
a
   7.2 ± 0.19 

ab
 

2 2.6 ± 0.09 
a
   3.3 ± 0.10 

a
 

3 4.6 ± 0.14 
a
   9.2 ± 0.18 

ab
 

4 3.9 ± 0.13 
a
 11.2 ± 0.29 

ab
 

5 4.0 ± 0.11 
a
   9.9 ± 0.22 

ab
 

6 2.0 ± 0.09 
a
 13.8 ± 0.23 

b
 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 152 for each cutting type).  
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The percentage rooting of cuttings (regardless of cutting type or Seradix 2 treatment) 

was generally low (< 14%, Table 3.5). The cutting type used (terminal or non-terminal 

and the position at which the cutting was cut) did not have any effects on rooting in 

Seradix 2-untreated cuttings (Table 3.5 and Tables 3.6). That is, cutting types 1, 2, 3 

were not significantly different from each other (p = 0.265, Table 3.6), as was the case 

for non-terminal cuttings 4, 5, 6 (p = 0.520, Table 3.6). 

 

Table 3.6: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

rooted cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained in Table 3.1.  

∑ represents the collective mean. Data from Table 3.5. 

 
Parameter p value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.663 

Terminal cuttings 1 vs. 2 vs. 3 0.265 

Non-terminal cuttings 4 vs. 5 vs. 6 0.520 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.035 

Terminal cuttings 1 vs. 2 vs. 3 0.170 

Non-terminal cuttings 4 vs. 5 vs. 6 0.480 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.000 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.043 

Cutting type 2 0.707 

Cutting type 3 0.137 

Cutting type 4 0.076 

Cutting type 5 0.145 

Cutting type 6 0.001 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 152 for each cutting type). 
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For Seradix 2-treated cuttings (Table 3.6), there was a significant difference in 

percentage rooting between terminal cuttings and non-terminal cuttings (particularly 

between types 2 and 6) (p = 0.035, Table 3.6). However, there were no differences in 

percentage rooting amongst terminal cuttings (p = 0.170) or amongst non-terminal 

cuttings (p = 0.480) (Table 3.6). 

 

In addition to percentage rooting, the effects of the treatments on the number of roots 

produced per cutting (Tables 3.7 and 3.8) and root length (Tables 3.9 and 3.10) were 

investigated. As can be seen from the data in Tables 3.7 and 3.8, there were significant 

differences in the average number of roots produced per cutting in Seradix 2-untreated 

cuttings. Overall, amongst those cuttings not treated with Seradix 2, the highest average 

number of roots was produced in cutting type 1 and the lowest in types 4 and 5. 

However, terminal cuttings were not significantly different from non-terminal cuttings 

(p = 0.142), and there were also no differences amongst terminal cuttings (p = 0.395) 

and amongst non-terminal cuttings (p = 0.135) (Table 3.8). 

 

Table 3.7: The effect of cutting type on number of roots per cutting in Seradix 2-untreated 

and Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained 

in Table 3.1. Results were recorded after 4 weeks. 

 

Number of roots 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 2 ± 0.00 
a 

2 ± 0.30 
a 

2 2 ± 0.50 
ab 

2 ± 0.77 
a 

3 1 ± 0.29 
ab 

2 ± 0.27 
a 

4 1 ± 0.00 
b 

2 ± 0.17 
a 

5 1 ± 0.00 
b 

2 ± 0.19 
a 

6 1 ± 0.33 
ab 

2 ± 0.20 
a 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 2 - 21). 
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For Seradix 2-treated cuttings (Table 3.8), there was no significant difference in the 

number of roots per cutting between all terminal cuttings and all non-terminal cuttings 

(p = 0.864). Further, there were no significant differences amongst cutting types 1, 2 

and 3 (p = 0.376), as well as amongst cutting types 4, 5 and 6 (p = 0.123). Therefore the 

position at which the base of the cutting was cut, did not affect the number of roots 

produced per cutting. Overall, Seradix 2-treated and -untreated cuttings were found to 

be significantly different with respect to the number of roots per cutting (p = 0.024, 

Table 3.8).  

 

Table 3.8: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

number of roots per cutting. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1. ∑ represents collective mean. Data from Table 3.7. 

 
Parameter p value 

Comparing Cuttings Preparation:  

Seradix 2-untreated:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.142 

Terminal cuttings 1 vs. 2 vs. 3 0.395 

Non-terminal cuttings 4 vs. 5 vs. 6 0.135 

Seradix 2-treated:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.864 

Terminal cuttings 1 vs. 2 vs. 3 0.376 

Non-terminal cuttings 4 vs. 5 vs. 6 0.123 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.024 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.923 

Cutting type 2 0.730 

Cutting type 3 0.938 

Cutting type 4 0.227 

Cutting type 5 0.267 

Cutting type 6 0.310 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 2 - 21). 
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The mean lengths of the longest root for Seradix 2-untreated cuttings were not 

significantly different (Table 3.9). Further analyses (Table 3.10), showed that there was 

no significant difference within Seradix 2-untreated terminal types (p = 0.644) and 

within non-terminal types (p = 0.509) and between these two groups (p = 0.576). 

Therefore the position at which the cutting was cut, and the point at which it was taken 

from the stem (terminal vs. non-terminal) had no effect on the length of the longest root 

in Seradix 2-untreated cuttings. 

 

Table 3.9: The effect of cutting- type on the length of the longest root in Seradix 2-

untreated and Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as 

explained in Table 3.1. Results were recorded after 4 weeks. 

 

Length of the longest root (mm) 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 113.0 ± 92.0 
a 

111.9 ± 15.72 
a 

2 61.5 ± 21.83 
a 

93.6 ± 26.02 
a 

3 92.3 ± 23.05 
a 

98.8 ± 17.45 
a 

4 58.7 ± 25.72 
a 

79.9 ± 9.31 
a 

5 75.5 ± 18.45 
a 

76.1 ± 8.19 
a 

6 101.0 ± 6.03 
a 

89.1 ± 7.24 
a 

a - b = mean separation within columns, Tukey’s HSD test, ± standard error (p ≤ 0.05,  

n = 2 - 21). 

 

In the case of Seradix 2-treated cuttings (Table 3.10), no significant differences were 

detected between all terminal and non-terminal cuttings (p = 0.085), amongst terminal 

cuttings (p = 0.798) or amongst non-terminal cuttings (p = 0.508). Further, no 

significant difference was observed between Seradix 2-untreated (1 to 6, collectively) 

and Seradix 2-treated cuttings (1 to 6, collectively) (p = 0.386, Table 3.10).  
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Table 3.10: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

the length of the longest root per cutting. Cutting types 1 - 6 and Seradix 2 treatment 

as explained in Table 3.1. ∑ represents collective mean. Data from Table 3.9.  

 
Parameter p  value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.576 

Terminal cuttings 1 vs. 2 vs. 3 0.644 

Non-terminal cuttings 4 vs. 5 vs. 6 0.509 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.085 

Terminal cuttings 1 vs. 2 vs. 3 0.798 

Non-terminal cuttings 4 vs. 5 vs. 6 0.508 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.386 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.983 

Cutting type 2 0.392 

Cutting type 3 0.827 

Cutting type 4 0.337 

Cutting type 5 0.971 

Cutting type 6 0.550 

Analyses were performed using ANOVA and T-test where applicable (p ≤ 0.05, n = 2 - 21). 

 

3.1.3.1 Summary 

In summary, Seradix 2 application significantly improved rooting (p = 0.000, Table 

3.6), and non-terminal Seradix 2-treated cuttings (types 4, 5 and 6) rooted better than 

terminal cuttings (types 1, 2 and 3) (Table 3.6). Regardless of the cutting type used, 

treatment of cuttings with Seradix 2, increased the number of roots produced as 

compared with cuttings not treated with Seradix 2 (Tables 3.7 and 3.8). Cutting type and 

Seradix 2 treatment had no effect on the length of the longest root in cuttings. 
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 3.1.4 Shoot development  

 

Shoot development was assessed as the percentage of cuttings that developed new 

shoots and length of new shoots (Tables 3.11 to 3.14). New shoot growth (Table 3.11) 

was scored as the percentage of cuttings that produced new shoots of the total number 

of cuttings set for each cutting type, including plantlets (cuttings with new shoots and 

roots, Table 3.3), cuttings that only produced shoots and cuttings that produced new 

shoots with callus at the base of the stem (data presented later).  

 

Of the number of cuttings that were set, 31.4% in Seradix 2-untreated cuttings and 

24.3% in Seradix 2-treated cuttings produced new shoots. For Seradix 2-untreated 

cuttings, a significant difference was observed amongst cutting types 1 to 6, with cutting 

type 2 yielding the lowest new shoot production, and types 5 and 6 the highest (Table 

3.11). In addition, terminal cuttings were different from non-terminal cuttings (p = 

0.013, Table 3.12). However, there were no differences in shoot yield amongst terminal 

cuttings (p = 0.210) or amongst non-terminal cuttings (p = 0.752) (Table 3.12). 

 

Table 3.11: The effect of cutting type on % new shoot growth in Seradix 2-untreated and 

Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1 Results were recorded after 4 weeks. 

 

%  New shoot growth 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 23.0 ± 0.40
 ab

  15.8 ± 0.31 
b
 

2 17.8 ± 0.40 
a
  4.6 ± 0.17 

a
 

3 29.6 ± 0.44 
ab

  23.7 ± 0.41 
bc

 

4 34.2 ± 0.49 
ab

 32.2 ± 0.44 
c
 

5 42.1 ± 0.69 
b
  30.9 ± 0.51 

bc
 

6 41.4 ± 0.61 
b
 38.2 ± 0.55 

c
 

a - c = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 152 for each cutting type).  
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With regards to Seradix 2-treated cuttings a significant difference was observed 

amongst cutting types 1 to 6 for new shoot growth, with type 2 producing the lowest 

shoot yield and types 4 and 6 producing the highest yield (Table 3.11). Non-terminal 

cuttings were significantly better than terminal cuttings in terms of shoot yield (p = 

0.000, Table 3.12). However, there were no significant differences in percentage new 

shoot growth amongst non-terminal types 4, 5 and 6 (p = 0.745, Table 3.12). 

 

Table 3.12: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

cuttings with new shoot growth. Cutting types 1 - 6 and Seradix 2 treatment as 

explained in Table 3.1. ∑ represents collective mean. Data from Table 3.11. 

 
Parameter p  value 

Comparing Cutting Preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.013 

Terminal cuttings 1 vs. 2 vs. 3 0.210 

Non-terminal cuttings 4 vs. 5 vs. 6 0.752 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.000 

Terminal cuttings 1 vs. 2 vs. 3 0.003 

Non-terminal cuttings 4 vs. 5 vs. 6 0.745 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.075 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.289 

Cutting type 2 0.073 

Cutting type 3 0.466 

Cutting type 4 0.870 

Cutting type 5 0.326 

Cutting type 6 0.825 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 152 for each cutting type). 
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Although Seradix 2-untreated cuttings had a higher frequency of new shoot production 

than cuttings treated with Seradix 2 (31.4% vs. 24.3%), Seradix application did not 

influence shoot yield overall (p = 0.075, Table 3.12).  

 

Shoot development was also assessed as length of new shoots (Table 3.13), which 

amongst Seradix 2-untreated cutting types 1 to 6 was significantly different, with the 

longest shoots produced by cutting type 3. There were no significant differences 

amongst types 4, 5 and 6 (non-terminal) (p = 0.595). However, amongst the terminal 

cuttings, type 3 produced significantly longer shoots than type 1 (p = 0.012) (Table 

3.14). Nevertheless, terminal cuttings were not different from non-terminal cuttings 

with respect to shoot length (p = 0.621, Table 3.14) 

 

Table 3.13: The effect of cutting type on length of new shoots in Seradix 2-untreated and 

Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1. Results were recorded after 4 weeks. 

 

 

 

 

 

 

a - c = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 7 -100). 

 

Amongst Seradix 2-treated cutting types 1 to 6, a significant difference was observed in 

the length of new shoots, with type 3 (terminal cutting, cut below the node) producing 

the longest shoots (20.5 mm) (Table 3.13). Terminal cuttings (types 1, 2 and 3) 

produced shoots that were significantly longer than non-terminal cuttings (types 4, 5 

Shoot length (mm) 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 14.4 ± 1.42 
a 

15.7 ± 2.11 
a 

2 15.9 ± 1.34 
ab 

16.5 ± 1.48 
abc 

3 19.4 ± 1.24 
b 

20.5 ± 1.36 
c 

4 17.3 ± 1.12 
ab 

16.9 ± 1.12 
ab 

5 18.2 ± 1.18 
ab 

14.2 ± 1.13 
ab 

6 18.5 ± 1.02 
b 

16.6 ± 1.04 
ab 
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and 6) (p = 0.017). There were no significant differences amongst terminal cuttings (p = 

0.095) or amongst non-terminal cuttings (p = 0.195) (Table 3.12). Seradix 2 treatment 

did not have any effect on the shoot length of cuttings (p = 0.292, Table 3.14).   

 

Table 3.14: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

length of new shoots of cuttings. Cutting types 1 - 6 and Seradix 2 treatment as 

explained in Table 3.1. ∑ represents collective mean. Data from Table 3.13. 

 
Parameter p value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.621 

Terminal cuttings 1 vs. 2 vs. 3 0.012 

Non-terminal cuttings 4 vs. 5 vs. 6 0.595 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.017 

Terminal cuttings 1 vs. 2 vs. 3 0.095 

Non-terminal cuttings 4 vs. 5 vs. 6 0.195 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.292 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.771 

Cutting type 2 0.665 

Cutting type 3 0.435 

Cutting type 4 0.992 

Cutting type 5 0.026 

Cutting type 6 0.231 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 7 - 100). 

 

 3.1.4.1 Summary 

As was the case for percentage plantlet production and percentage rooting, non-terminal 

treated cuttings were superior to terminal cuttings for new shoot growth. Although not 

statistically different, cuttings not treated with Seradix 2 produced more shoots than 
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those cuttings treated with Seradix 2 (Table 3.11 and 3.12). From the data in Tables 

3.13 and 3.14, it was observed that in Seradix 2-treated cuttings the point at which the 

cuttings were cut did not have any effect on shoot length but the choice of material did. 

Terminal cuttings produced longer shoots than non-terminal cuttings. Overall, Seradix 2 

treatment did not have any effect on the shoot length of cuttings (Table 3.14).   

 

 3.1.5 Other parameters and overview 

 

As previously mentioned, not all cuttings that rooted, produced shoots and not all 

cuttings in which shoot growth occurred, rooted. In addition, some cuttings (with and 

without new shoots) produced callus, while a number of cuttings were alive but 

unresponsive to the treatments, and the majority of cuttings did not survive. A summary 

of the above data and the comparisons made between the treatments are presented in 

Tables 3.15 and 3.16.  

 

Less than 1% of all Seradix 2-untreated cuttings produced roots exclusively (i.e. 

cuttings with roots and without new shoots) (Table 3.15), and in this regard no 

significant differences were observed amongst cutting types 1 to 6. Terminal cuttings 

were not significantly different from non-terminal cuttings with respect to the frequency 

of cuttings that produced roots only (p = 0.317) and there were no significant 

differences in the frequency of cuttings that produced roots exclusively amongst 

terminal cuttings (p = 0.368) and amongst non-terminal cuttings (p = 1.000) (Table 

3.16). 

 

Of those cuttings treated with Seradix 2, 1.4% produced roots only (Table 3.15), 

however, this result was not found to be significantly different amongst cutting types  

1 to 6. Similarly, there were no significant differences between terminal and non-

terminal cuttings (p = 0.241), amongst terminal cuttings (p = 0.867) and amongst non-

terminal cuttings (p = 0.788) (Table 3.16).  
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Table 3.15: Summary of the outcome of Seradix 2-untreated and Seradix 2-treated 

cuttings. The outcome of cuttings after 4 weeks were as follows: plantlets, cuttings that 

formed roots only, cuttings that formed basal callus only, cuttings that formed new shoots 

only, cuttings that formed new shoots with basal callus and cuttings that were 

unresponsive to the treatments and dead cuttings. Cutting types 1, 2, 3 = terminal 

cuttings, cut at the node, cut 1 cm above the node and cut 1 cm below the node 

respectively; cutting types 4, 5, 6 = non-terminal cuttings, cut at the node, cut 1 cm above 

the node and cut 1 cm below the node respectively. Seradix 2-untreated cuttings = 

cuttings not treated with Seradix 2, Seradix 2-treated cuttings = cutting base dipped into 

Seradix 2. 

  

% 

Cutting type Outcome of cuttings 

1 2 3 4 5 6 

 Seradix 2-untreated cuttings 

 Plantlets* 1.3 
a 

1.9 
a 

4.6 
a 

4.0 
a 

4.0 
a 

1.9 
a 

Roots only 0 
a 

0.7 
a 

0 
a 

0 
a 

0 
a 

0 
a 

Callus only 0 
a 

0 
a 

0.7 
a 

0 
a 

0.7 
a 

1.3 
a 

New shoots only 17.7 
ab 

14.5 
a 

21.7 
abc 

28.9 
abc 

36.2 
bc 

39.5 
c 

New shoots and callus 4.0 
a 

1.3 
ab 

3.3 
a 

1.3 
ab 

1.9 
ab 

0 
b 

Unresponsive 5.3 
ab 

6.6 
a 

3.3 
ab 

1.3 
ab 

0.0 
c 

0.7 
bc 

Dead* 71.7 
a 

75.0 
a 

66.4 
a 

64.5 
a 

57.2 
a 

56.6 
a 

 Seradix 2-treated cuttings 

Plantlets* 5.3 
ab 

1.9 
a 

7.2 
bc 

9.9 
bc 

9.2 
bc 

12.5 
c 

Roots only 1.9 
a 

1.3 
a 

1.9 
a 

1.3 
a 

0.7 
a 

1.3 
a 

Callus only 4.6 
b 

1.3 
ab 

0 
b 

0.7 
ab 

0 
b 

0 
b 

New shoots only 7.2 
ab 

1.9 
a 

11.2 
b 

19.0 
b 

19.0 
b 

25.0 
b 

New shoots and callus 3.3 
ab 

0.7 
a 

5.3 
b 

3.3 
ab 

2.6 
ab 

1.3 
a 

Unresponsive 6.6 
a 

6.6 
ab 

4.0 
ab 

1.3 
bc 

0.7 
c 

0.7 
bc 

Dead* 71.1 
a 

86.3 
b 

70.4 
a 

64.5 
a 

67.8 
a 

59.2 
a 

*Data for plantlets and dead cuttings as in Tables 3.3 and 3.1, respectively. 

a - c = mean separation across columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 152 for each cutting type).  
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Table 3.16: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, terminal (cutting types 1, 2, 3) and non-terminal 

cuttings (cutting types 4, 5, 6) for the outcome of cuttings. The outcome of cuttings, cutting types 1 - 6 and Seradix 2 treatment as explained 

in Table 3.15. ∑ represents collective mean. Data from Table 3.15. 

 

p value 

Outcome of cuttings 
Parameter 

Roots only Callus only 
New shoots 

only 

New shoots 

and callus 
Unresponsive Dead 

Seradix 2-untreated cuttings:       

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.317 0.311 0.003 0.056 0.002 0.061 

Terminal cuttings 1 vs. 2 vs. 3 0.368 0.368 0.348 0.439 0.692 0.330 

Non-terminal cuttings 4 vs. 5 vs. 6 1.000 0.355 0.609 0.171 0.355 0.782 

Seradix 2-treated cuttings:       

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.241 0.028 0.000 0.743 0.001 0.029 

Terminal cuttings 1 vs. 2 vs. 3 0.867 0.046 0.041 0.102 0.826 0.032 

Non-terminal cuttings 4 vs. 5 vs. 6 0.788 0.368 0.565 0.223 0.806 0.656 
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Table 3.16 (continued): 

 

p value 

Outcome of cuttings 
Parameter 

Roots only Callus only 
New shoots 

only 

New shoots 

and callus 
Unresponsive Dead 

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.002 0.232 0.000 0.453 0.352 0.218 

Seradix 2-untreated vs. Seradix 2-treated:       

Cutting type 1 0.075 0.018 0.038 0.472 0.569 0.964 

Cutting type 2 0.553 0.152 0.034 0.553 1.000 0.191 

Cutting type 3 0.075 0.317 0.064 0.449 0.542 0.654 

Cutting type 4 0.152 0.317 0.218 0.102 1.000 0.813 

Cutting type 5 0.317 0.317 0.151 0.945 0.317 0.311 

Cutting type 6 0.317 0.152 0.154 0.317 0.553 0.848 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable (p ≤ 0.05, n = 152 for each cutting type). 
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Treatment of cuttings with Seradix 2 increased the tendency of cuttings to produce roots 

only, as indicated by the significant difference between all Seradix 2-untreated and all 

Seradix 2-treated cuttings (p = 0.002, Table 3.16). Thus, although the type of cutting 

used (terminal vs. non-terminal and the position at which the cutting was cut) had no 

effect on the frequency of cuttings producing roots only for both Seradix 2-treated and 

Seradix 2-untreated cuttings, overall, Seradix 2 application increased the outcome of 

cuttings that produced roots only. 

 

As previously mentioned, some cuttings (with and without new shoots), produced 

callus. As seen from the data in Table 3.15, a small percentage of cuttings produced 

callus exclusively. Cuttings not treated with Seradix 2 showed a low prevalence for this 

type of outcome (≤ 1.3%) and no significant difference was observed amongst cutting 

types 1 to 6 (Table 3.15). Furthermore, there were no distinctions between terminal and 

non-terminal cuttings (p = 0.311), amongst terminal cuttings (p = 0.368) and amongst 

non-terminal one (p = 0.355) for this response (Table 3.16). 

 

With regard to callus production, a significant difference was observed in Seradix 2-

treated cutting types 1 to 6 for cuttings that produced callus only (Table 3.15). Type 1 

exhibited the highest incidence of callus production (4.6%), while types 3, 5 and 6 had 

no incidence of this response. Therefore, collectively, terminal cuttings had a higher 

occurrence of callus production than non-terminal cuttings (p = 0.028, Table 3.16). 

However, there were no significant differences observed amongst terminal types (p = 

0.046) or amongst non-terminal types (p = 0.368) with respect to the frequency of 

cuttings that produced callus only.  

 

The production of callus only in cutting type 1 (terminal cutting, cut at the node) was 

found to be affected by Seradix 2 application (0% vs. 4.6%, Table 3.15) (p = 0.018, 

Table 3.16). Nevertheless, when all Seradix 2-untreated were compared with all Seradix 

2-treated cuttings, they were found to be statistically similar in the prevalence of 

cuttings that formed callus only (p = 0.232, Table 3.16).  



 47 

As previously stated, 31.4% of Seradix 2-untreated cuttings and 24.3% of Seradix 2-

treated cuttings produced new shoots (Table 3.11). Of these, a considerable amount 

comprised of cuttings that produced shoots only (and no roots) (Table 3.15). There were 

significant differences amongst the cutting types that were not treated with Seradix 2. 

Cutting type 2 (terminal shoot, cut above the node) had the lowest frequency of cuttings 

that produced new shoots only (14.5%) and type 6 resulted in the highest incidence of 

this response (39.5%). A comparison of the different treatments (Table 3.16), revealed 

that terminal cuttings were different from non-terminal cuttings with respect to this 

response (p = 0.003). However, the frequency of cuttings that produced shoots only 

were not significantly different amongst terminal types 1, 2 and 3, (p = 0.348) and 

amongst non-terminal types 4, 5 and 6 (p = 0.609). 

 

Amongst Seradix 2-treated cutting types, again types 2 and 6 resulted in the lowest and 

highest incidence of cuttings with new shoots only (2% and 25%, respectively). A 

comparison of the different types of cuttings (Table 3.16) revealed that there was a 

significant difference between Seradix 2-treated terminal and non-terminal cuttings in 

the production shoots only (p = 0.000). While no significant difference was observed 

amongst types 4, 5 and 6 (p = 0.565), types 1, 2 and 3 did differ in this response (p = 

0.041) (Table 3.16).  

 

When the percentage of cuttings with new shoots only in all Seradix 2-treated cuttings 

was compared with all Seradix 2-untreated cuttings (i.e. regardless of cutting type), a 

significant difference was observed at the 95% level of confidence (p = 0.000, Table 

3.16). Therefore, Seradix 2-treated cuttings resulted in fewer cuttings with new shoots 

only than cuttings not treated with Seradix 2, which suggests that Seradix 2 treatment 

inhibits shoot growth in cuttings. 

 

A small percentage of cuttings produced shoots and basal callus (without roots) but this 

was less than 2% of all Seradix 2-untreated cuttings and less than 3% of all Seradix 2-

treated cuttings (Table 3.15). Amongst Seradix 2-untreated cutting types, although types 
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1 and 3 were significantly different from type 6 (Table 3.15), further statistical analysis 

(Table 3.16) revealed no differences for Seradix 2-untreated cuttings; this was probably 

a consequence of the large variation of the data. Similarly, in Seradix 2-treated cuttings, 

cutting types 2 and 6 were significantly different from type 3 for this response (Table 

3.15). However, statistically, there were no differences amongst Seradix 2-treated 

cutting types. Moreover, there was no significant difference observed when Seradix 2-

treated and -untreated cuttings were compared. Therefore, both cutting type and Seradix 

2 treatment did not influence the prevalence of cuttings that produced shoots and callus.  

 

As previously discussed, a large proportion of cuttings that were set were did not 

survive (Table 3.1). In addition, it was noticed that some cuttings were alive but 

completely unresponsive to the treatments (cuttings that survived but did not produce 

roots, shoots or callus). The proportions of cuttings that were unresponsive were 2.9% 

in Seradix 2-untreated and 3.4% in Seradix 2-treated cuttings. Amongst Seradix 2-

untreated cutting types, type 2 had the highest frequency of cuttings that were totally 

unresponsive to the treatments and type 5 had the lowest frequency of this response 

(Table 3.15). Terminal cuttings had a higher response of this outcome than non-terminal 

cuttings (p = 0.002), but there were no differences amongst terminal or amongst non-

terminal cutting types (Table 3.16).  

 

Amongst the cuttings that were treated with Seradix 2, type 5 had the lowest prevalence 

of cuttings that were unresponsive (Table 3.15). Furthermore, a significant difference 

was observed when terminal cuttings were compared with non-terminal cuttings, with a 

higher response of unresponsive cuttings observed amongst terminal cuttings (p = 

0.001, Table 3.16). However, cutting types 1, 2, 3 were not different from each other, as 

was the case for types 4, 5, and 6 (Table 3.16). ). Additionally, when all cuttings treated 

with Seradix 2 (regardless of type) were compared with all untreated cuttings, no 

significant difference was observed at the 95% level of confidence. Therefore, with 

respect to the frequency of unresponsive cuttings and the mortality of cuttings (Table 

3.15), non-terminal shoots were more resilient and survived longer than terminal 

cuttings, regardless of Seradix 2 treatment.   
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3.1.5.1 Summary 

In summary, non-terminal cuttings treated with Seradix 2 produced the most plantlets 

and there were no differences amongst types 4, 5 and 6. Root growth was enhanced by 

Seradix 2 application, however, shoot growth appeared to be inhibited in cuttings 

treated with Seradix 2. Terminal cuttings produced more cuttings that were 

unresponsive to the treatments than non-terminal cuttings. Regardless of Seradix 

application, the mortality of cuttings was very high.  

 

3.1.6 Fresh mass & dry mass 

 

 In addition to recording number of roots, root length and shoot length per cutting as 

growth measurements, the fresh and dry mass of roots, new shoots and callus were also 

determined (Tables 3.17 to 3.28). Although precautions were taken when measuring and 

recording fresh mass of roots, shoots and callus, inevitable water loss from the plant 

material may have occurred after excision of the plant material in the greenhouse and 

before weighing in the laboratory a few metres away.  

 

3.1.6.1 Roots 

The fresh mass of roots was not significantly different in Seradix 2-untreated cuttings  

(Table 3.17). Additionally, there were no significant differences in the root fresh mass 

between terminal and non-terminal types (p = 0.773), amongst terminal cuttings (types 

1, 2 and 3) (p = 0.764), and amongst non-terminal cuttings (types 4, 5 and 6) (p = 

0.707) (Table 3.18).  

 

With regards to Seradix 2-treated cuttings, although cutting types 1 to 6 were not 

significantly different with respect to their root fresh masses (Table 3.17), terminal 

cuttings were found to have a significantly higher root fresh mass than non-terminal 

cuttings (p = 0.018, Table 3.18). However, there were no differences in the fresh mass 

of roots amongst terminal types 1, 2 and 3 (p = 0.665) and amongst non-terminal type 4, 

5 and 6 (p = 0.275).  
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Treatment with Seradix 2 increased the root fresh mass (p = 0.014, Table 3.18). 

Therefore, while the cutting type and the position at which the cuttings were cut did not 

have any effect on root fresh mass, the application of Seradix 2 increased the root fresh 

mass of cuttings.  

 

Table 3.17: The effect of cutting type on the fresh mass of roots in Seradix 2-untreated and 

Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1. 

 

Root fresh mass (g) 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 0.17 ± 0.17 
a 

0.18 ± 0.07 
a 

2 0.04 ± 0.03 
a 

0.20 ± 0.10 
a 

3 0.05 ± 0.03 
a 

0.15 ± 0.06 
a 

4 0.03 ± 0.01 
a 

0.03 ± 0.01 
a 

5 0.02 ± 0.02 
a 

0.05 ± 0.02 
a 

6 0.02 ± 0.01 
a 

0.07 ± 0.02 
a 

a = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 2 - 21). 
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Table 3.18: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

the fresh mass of roots. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1 Results were recorded after 4 weeks. ∑ represents collective mean. Data from 

Table 3.17. 

 
Parameter p value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.773 

Terminal cuttings 1 vs. 2 vs. 3 0.764 

Non-terminal cuttings 4 vs. 5 vs. 6 0.707 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.018 

Terminal cuttings 1 vs. 2 vs. 3 0.665 

Non-terminal cuttings 4 vs. 5 vs. 6 0.275 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.014 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.739 

Cutting type 2 0.121 

Cutting type 3 0.157 

Cutting type 4 0.102 

Cutting type 5 0.306 

Cutting type 6 0.255 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 2 - 21). 

 

There were no differences in the root dry mass amongst cutting types 1 to 6 in Seradix 

2-untreated cuttings (Table 3.19). Similarly, as depicted in Table 3.20, there were no 

differences in root dry mass between terminal (types 1, 2 and 3) and non-terminal 

cuttings (types 4, 5 and 6) (p = 0.467), amongst terminal cuttings (p = 0.673) and 

amongst non-terminal cuttings (p = 0.854).  
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In Seradix 2-treated cuttings, the root dry mass of cutting type 1 was found to be 

significantly different from types 4, 5 and 6 (Table 3.19). This is supported by the data 

in Table 3.20, wherein a comparison between the root dry mass of terminal cuttings  

(1, 2 and 3) and non-terminal cuttings (4, 5 and 6) showed a statistical difference  

(p = 0.003) but no differences were observed amongst terminal cuttings (p = 0.420) or 

amongst non-terminal cuttings (p = 0.329).  

 

When the root dry mass of all Seradix 2-untreated cuttings were compared with Seradix 

2-treated cuttings, a statistical difference was observed (p = 0.032, Table 3.20). 

Therefore, as was the case for root fresh mass, the root dry mass of terminal cuttings 

appeared to be higher than non-terminal cuttings, and Seradix 2 application increased 

the dry mass of roots.   

 

Table 3.19: The effect of cutting type on the dry mass of roots in Seradix 2-untreated and 

Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1. 

 

Root dry mass (g) 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 0.025 ± 0.02 
a
 0.032 ± 0.01 

a
 

2 0.010 ± 0.01 
a
 0.016 ± 0.01 

ab
 

3 0.009 ± 0.00 
a
 0.025 ± 0.01 

ab
 

4 0.007 ± 0.00 
a
 0.007 ± 0.00 

b
 

5 0.004 ± 0.00 
a
 0.004 ± 0.00 

b
 

6 0.005 ± 0.00 
a
 0.012 ± 0.00 

b
 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 2 - 21). 
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Table 3.20: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

the dry mass of roots. Cutting types 1 - 6 and Seradix 2 treatment as explained in Table 

3.1. ∑ represents collective mean. Data from Table 3.19. 

 
Parameter p value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.467 

Terminal cuttings 1 vs. 2 vs. 3 0.673 

Non-terminal cuttings 4 vs. 5 vs. 6 0.854 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.003 

Terminal cuttings 1 vs. 2 vs. 3 0.420 

Non-terminal cuttings 4 vs. 5 vs. 6 0.329 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.032 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.737 

Cutting type 2 0.439 

Cutting type 3 0.257 

Cutting type 4 0.390 

Cutting type 5 0.307 

Cutting type 6 0.340 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 2 - 21). 

 

 3.1.6.2 Shoots 

 The fresh mass of shoots were significantly different in Seradix 2-untreated and -

treated cuttings (Table 3.21). For Seradix 2-untreated cuttings, types 2 and 5 had 

significantly lower shoot fresh masses than type 4. However, non-terminal cuttings were 

not significantly different from terminal cuttings (p = 0.248, Table 3.22). There were 

significant distinctions in the fresh mass of shoots amongst Seradix 2-treated cuttings 1 

to 6 (Table 3.21). However, terminal and non-terminal cuttings were not significantly 

different in this regard (p = 0.973, Table 3.22). Furthermore, when the fresh mass of 
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shoots of all Seradix 2-treated cuttings were compared with the Seradix 2-untreated 

cuttings, no significant difference was observed at the 95% level of confidence (p = 

0.221, Table 3.22); therefore, Seradix 2 application did not affect shoot fresh mass. 

 

Table 3.21: The effect of cutting type on the fresh mass of shoots in Seradix 2-untreated 

and Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained 

in Table 3.1. 

 

Shoot fresh mass (g) 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 0.03 ± 0.01 
ab 

0.03 ± 0.01 
abc 

2 0.02 ± 0.00 
a 

0.02 ± 0.00 
bc 

3 0.04 ± 0.00 
ab 

0.05 ± 0.01 
a 

4 0.06 ± 0.02 
b 

0.04 ± 0.00 
b 

5 0.03 ± 0.00 
a 

0.02 ± 0.00 
c 

6 0.05 ± 0.01 
ab 

0.05 ± 0.02 
bc 

a - c = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 7 - 64). 
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Table 3.22: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

the fresh mass of shoots. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1. ∑ represents collective mean. Data from Table 3.21. 

 
Parameter p value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.248 

Terminal cuttings 1 vs. 2 vs. 3 0.293 

Non-terminal cuttings 4 vs. 5 vs. 6 0.028 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.973 

Terminal cuttings 1 vs. 2 vs. 3 0.449 

Non-terminal cuttings 4 vs. 5 vs. 6 0.001 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.221 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.555 

Cutting type 2 0.485 

Cutting type 3 0.885 

Cutting type 4 0.846 

Cutting type 5 0.167 

Cutting type 6 0.263 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 7 - 64). 

 

 

Shoot dry mass was significantly different amongst Seradix 2-untreated cutting types 1 

to 6 (Table 3.23). Terminal cuttings (types 1, 2 and 3) were significantly different from 

non-terminal cuttings (types 4, 5 and 6), with non-terminal cuttings producing shoots 

with a higher dry mass (p = 0.004, Table 3.24). There were no significant differences 

amongst terminal cutting type 1, 2 and 3 (p = 0.254), as was the case amongst non-

terminal cuttings (p = 0.050) (Table 3.24). 
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For Seradix 2-treated cuttings, no significant difference was observed when the shoot 

dry mass data of terminal cuttings were compared with the non-terminal cuttings  

(p = 0.823, Table 3.24). However, significant differences in the shoot dry mass were 

observed amongst terminal cuttings and amongst non-terminal cuttings (Table 3.24). 

Therefore, in Seradix 2-treated cuttings, terminal cuttings cut below the node (type 3), 

exhibited a higher shoot dry mass than terminal cuttings cut at or above the node (type 1 

and 2, respectively). In addition, non-terminal cuttings cut at or below the node (types 4 

and 6) were observed to have a higher shoot dry mass than non-terminal cuttings cut 

above the node (type 5). Furthermore, a significant difference in shoot dry mass was 

observed when Seradix 2-treated cuttings were compared with Seradix 2-untreated 

cuttings, irrespective of cutting type (p = 0.002, Table 3.24). 

 

Table 3.23: The effect of cutting type on the dry mass of shoots in Seradix 2-untreated and 

Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1. 

 

Shoot dry mass (g) 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 0.011 ± 0.00 
a
 0.007 ± 0.00 

a
 

2 0.010 ± 0.00 
a
 0.006 ± 0.00 

a
 

3 0.015 ± 0.00 
abc 

0.013 ± 0.00 
c
 

4 0.016 ± 0.00 
b
 0.014 ± 0.00 

c 

5 0.013 ± 0.00 
ab 

0.008 ± 0.00 
abc

 

6 0.018 ± 0.00 
c
 0.012 ± 0.00 

c 

a - d = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 7 - 64). 

 

Therefore cutting type had an effect on the dry mass of shoots and cuttings not treated 

with Seradix 2 had higher shoot dry masses than those cuttings that were treated with 

Seradix 2 (Table 3.23 and 3.24). 
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Table 3.24: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

shoot dry mass of cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1. ∑ represents collective mean. Data from Table 3.23. 

 
Parameter p value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.004 

Terminal cuttings 1 vs. 2 vs. 3 0.254 

Non-terminal cuttings 4 vs. 5 vs. 6 0.050 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.823 

Terminal cuttings 1 vs. 2 vs. 3 0.028 

Non-terminal cuttings 4 vs. 5 vs. 6 0.000 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.002 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.202 

Cutting type 2 0.371 

Cutting type 3 0.975 

Cutting type 4 0.697 

Cutting type 5 0.001 

Cutting type 6 0.003 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 7 - 64). 

 

 3.1.6.3 Shoot: root mass ratios 

The data presented in Tables 3.17, 3.19, 3.21 and 3.23 were calculated as ratios of shoot 

mass to root mass and are presented in Table 3.25. For Seradix 2-untreated cuttings, 

shoot: root fresh mass and dry mass were higher in non-terminal cuttings than in 

terminal cuttings (p = 0.011 and p = 0.019, respectively). However, amongst Seradix 2-

treated cuttings, the ratios for fresh and dry mass were not significantly different (p = 

0.095 and p = 0.052 for the ratio of fresh mass and dry mass, respectively). Overall, 
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Seradix 2 application did not influence shoot: root fresh mass or dry mass ratios (p = 

0.105 and p = 0.122, respectively). Although not proven statistically, the results for 

shoot: root mass ratios indicate that Seradix 2 application enhanced rooting and 

inhibited shoot development.   

 

Table 3.25: The effect of cutting type on shoot: root fresh mass and dry mass ratios in 

Seradix 2-untreated and Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 

treatment as explained in Table 3.1. Significant differences are highlighted in the text. 

 

Shoot: root ratio 

Seradix 2-untreated cuttings Seradix 2-treated cuttings Cutting type 

Fresh mass Dry mass Fresh mass Dry mass 

1 0.2 0.4 0.2 0.2 

2 0.5 1.0 0.1 0.4 

3 0.8 1.7 0.3 0.5 

4 2.0 2.3 1.3 2.0 

5 1.5 3.3 0.4 2.0 

6 2.5 3.6 0.7 1.0 

 

 3.1.6.4 Callus 

As illustrated by the data presented in Table 3.26, no significant differences were 

observed in callus fresh mass in Seradix 2-untreated and Seradix 2-treated cuttings. In 

Seradix 2-untreated cuttings (Table 3.27), the fresh mass of callus was statistically 

similar. There were no significant differences observed for callus fresh mass amongst 

terminal cuttings (types 1, 2 and 3) (p = 0.393), amongst non-terminal cutting types 4, 5 

and 6) (p = 0.917) and when terminal cuttings were compared with non-terminal 

cuttings (p = 0.695). Similarly, for Seradix 2-treated cuttings (Table 3.27), no 

significant differences were observed for callus mass amongst terminal cuttings (p = 

0.965), amongst non-terminal cuttings (p = 0.487) and when terminal cuttings were 

compared with non-terminal cuttings (p = 0.406). Overall, the callus fresh mass of 
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Seradix 2-treated cuttings was higher than untreated cuttings (p = 0.006, Table 3.27). 

Therefore, Seradix 2 increased callus fresh mass.  

 

Table 3.26: The effect of cutting type on the fresh mass of callus in Seradix 2-untreated 

and Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained 

in Table 3.1. 

 

Callus fresh mass (g) 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 0.01 ± 0.00 
a 

0.12 ± 0.05 
a 

2 NR
 

NR
 

3 0.03 ± 0.02 
a 

0.12 ± 0.09 
a 

4 0.03 ± 0.02 
a 

0.10 ± 0.04 
a 

5 NR
 

0.08 ± 0.01 
a 

6 0.03 ± 0.00 
a 

0.01± 0.00 
a 

a = mean separation within columns, ANOVA, ± standard error (p ≤ 0.05, n = 2 - 12).  

NR = results not recorded.  
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Table 3.27: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

the fresh mass of callus. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1. ∑ represents collective mean. Data from Table 3.26. 

 
Parameter p value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.695 

Terminal cuttings 1 vs. 2 vs. 3 0.393 

Non-terminal cuttings 4 vs. 5 vs. 6 0.917 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.406 

Terminal cuttings 1 vs. 2 vs. 3 0.965 

Non-terminal cuttings 4 vs. 5 vs. 6 0.487 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.006 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.155 

Cutting type 2 NR 

Cutting type 3 0.485 

Cutting type 4 0.303 

Cutting type 5 NR 

Cutting type 6 0.001 

Analyses were performed using ANOVA and T-tests, where applicable (p ≤ 0.05, n = 2 - 12). 

NR = results not recorded. 

 

The dry mass of callus was not affected by cutting type amongst cuttings not treated 

with Seradix 2 (p = 0.859) or amongst cuttings treated with Seradix 2 (p = 0.775) 

(Table 3.28). For Seradix 2-untreated cuttings, there were no significant differences in 

callus dry mass amongst terminal cuttings (p = 0.617) or amongst non-terminal cuttings 

(p = 0.454) (Table 3.29). Similarly, in Seradix 2-treated cuttings, no significant 

differences were observed for callus dry mass amongst terminal cuttings (p = 0.559) or 

amongst non-terminal cuttings (p = 0.575) (Table 3.29). In addition, terminal cuttings 
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were not significantly different in callus dry mass to non-terminal cuttings irrespective 

of Seradix 2 treatment (Table 3.29). However, when all Seradix 2-treated cuttings were 

compared with all Seradix 2-untreated cuttings, a significant difference was found at the 

95% level of confidence (p = 0.010, Table 3.29). Therefore the effect of Seradix 2 

application recorded for callus fresh mass is reflected also in the dry mass data. 

 

Table 3.28: The effect of cutting type on the dry mass of callus in Seradix 2-untreated and 

Seradix 2-treated cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained in 

Table 3.1. 

 

Callus dry mass (g) 
Cutting type 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

1 0.005 ± 0.00 
a
 0.015 ± 0.00 

a
 

2 NR NR 

3 0.007 ± 0.01 
a 

0.022 ± 0.02 
a
 

4 0.004 ± 0.00 
a
 0.019 ± 0.01 

a 

5 NR
 

0.011 ± 0.00 
a
 

6 0.002 ± 0.00 
a
 0.003 ± 0.00 

a 

a = mean separation within columns, ANOVA, ± standard error (p ≤ 0.05, n = 2 - 12).  

NR = results not recorded. 
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Table 3.29: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

the dry mass of callus. Cutting types 1 - 6 and Seradix 2 treatment as explained in Table 

3.1. ∑ represents collective mean. Data from Table 3.28. 

 
Parameter p value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.539 

Terminal cuttings 1 vs. 2 vs. 3 0.617 

Non-terminal cuttings 4 vs. 5 vs. 6 0.454 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.774 

Terminal cuttings 1 vs. 2 vs. 3 0.559 

Non-terminal cuttings 4 vs. 5 vs. 6 0.575 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.010 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 0.139 

Cutting type 2 NR 

Cutting type 3 0.515 

Cutting type 4 0.334 

Cutting type 5 NR 

Cutting type 6 0.005 

Analyses were performed using ANOVA and T-tests, where applicable (p ≤ 0.05, n = 2 - 12). 

NR = results not recorded. 

 

3.1.6.5. Summary 

In summary, the fresh and dry masses of roots in Seradix 2-treated terminal cuttings 

were higher than those of non-terminal cuttings. The fresh and dry masses of shoots in 

Seradix 2-untreated non-terminal cuttings were higher than terminal cuttings. In 

addition, when all Seradix 2-untreated and -treated cuttings were compared, shoot dry 

mass was higher in the former. The fresh mass and dry mass of callus was observed to 

be significantly higher in Seradix 2-treated cuttings. In addition, when considering 
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shoot: root fresh and dry mass ratios, Seradix 2 application appears inhibit shoot 

development. Therefore, the results for root, shoot and callus fresh mass and dry mass, 

suggest that Seradix 2 application may increases root and callus growth but inhibits 

shoot growth. 
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3.2 The effect of season and time of year of setting cuttings on cutting performance 

and outcome 

  

Many plant species have an optimum rooting period in the year and seasonal effects on 

rooting have been reported in eucalypt cuttings. Knowing the optimum rooting period in 

the year of a plant species is of great value to the forestry industry so that propagation of 

that species can be exploited at that time. To test the seasonal effects on rooting in the 

commercially important clone GN107, cuttings from hedge plants were harvested and 

rooted at the end of November 2005, April 2006 and June 2006. Seradix 2 application 

was performed as before (see sections 2.3 and 3.1). In the initial study undertaken in 

November 2005, different cutting types (1 - 6) were used. From the data obtained from 

that study (section 3.1), it was observed that cutting types 4, 5 and 6 were statistically 

similar to each other and superior to types 1, 2 and 3. Therefore, only type 5 was 

subsequently used in the April and June trials and this was compared with type 5 of the 

November trial.  

 

 3.2.1 Survival of cuttings 

 

Regardless of the time of year at which the cuttings were set, a substantial amount of 

cuttings did not survive (Table 3.30). For cuttings not treated with Seradix 2, the 

mortality of cuttings was significantly different in cuttings set in November, April and 

June. For Seradix 2-untreated and -treated cuttings, the highest losses occurred in April 

(87.7% and 92.3%, respectively) and the lowest mortality in June (47.8% and 50%, 

respectively). In total, 64.3% and 70.1% of Seradix 2-untreated and Seradix 2-treated 

cuttings did not survive and these figures were not found to be significantly different 

from each other (p = 0.300, Table 3.31). Therefore, Seradix application did not affect 

the survival of cuttings.  
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Table 3.30: The effect of the time of year of setting cuttings on % mortality in Seradix 2-

untreated and Seradix 2-treated cuttings. Results were recorded after 4 weeks in each 

study in November 2005, April 2006 and June 2006, respectively. Seradix 2-untreated 

cuttings = cuttings not treated with Seradix 2, Seradix 2-treated cuttings = cutting base 

dipped into Seradix 2. 

%  Mortality 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 57.2 ± 8.67 
ab 

67.8 ± 6.43 
ab 

April 2006 87.7 ± 2.87 
b 

92.3 ± 3.17 
b 

June 2006 47.8 ± 4.4 
a 

50.0 ± 5.95 
a 

a - b = mean separation within columns, Tukey’s HSD test, ± standard error (p ≤ 0.05, n = 152, 

512 and 320 for November, April and June, respectively). 

 

Table 3.31: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

mortality of cuttings. The time of year of setting cuttings and Seradix 2 treatment as 

explained in Table 3.30. ∑ represents collective mean. Data from Table 3.30. 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.300 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.311 

April 2006 0.292 

June 2006 0.776 

Analyses were performed using T-tests (p ≤ 0.05, n = 152, 512 and 320 for November, April 

and June, respectively). 

 

 3.2.1.1 Summary 

The mortality of cuttings was influenced by the time of year of cuttings were set, with 

the best time to set cuttings (in terms survival) observed in June.  
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 3.2.2 Plantlet yield 

 

Regardless of Seradix 2 treatment, plantlet production was exceedingly low (Table 

3.32). For Seradix 2-untreated and -treated cuttings, the highest percentage of plantlets 

produced was in November 2005 (4% and 9.2%, respectively) and the lowest in April 

2006 (0.2% and 0.4%, respectively). However, for both Seradix 2-untreated and -treated 

cuttings there were no significant differences with respect to plantlet production and the 

time of year cuttings.  

 

There were no significant differences in plantlet yield between Seradix 2-untreated and 

Seradix 2-treated cuttings (p = 0.099, Table 3.33). Likewise, there were no significant 

differences in the percentage plantlet production for Seradix 2-untreated and treated 

cuttings within the November, April and June trials (p = 0.173, p = 0.535 and p = 

0.119, respectively).  

 

Table 3.32: The effect of the time of year of setting cuttings on % plantlet production from 

Seradix 2-untreated and Seradix 2-treated cuttings. The time of year of setting 

cuttings and Seradix 2 treatment as explained in Table 3.30. 

%  Plantlet production 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 4.0 ± 0.11 
a
 9.2 ± 0.21 

ab
 

April 2006 0.2 ± 0.13 
a
 0.4 ± 0.16 

a 

June 2006 0.6 ± 0.25 
a
 3.1 ± 1.05 

b 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 152, 512 and 320 for November, April and June, respectively). 
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Table 3.33: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

plantlet production. The time of year of setting cuttings and Seradix 2 treatment as 

explained in Table 3.30. ∑ represents the collective mean. Data from Table 3.32. 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.099 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.173 

April 2006 0.535 

June 2006 0.119 

Analyses were performed using Mann-Whitney U tests (p ≤ 0.05, n = 152, 512 and 320 for 

November, April and June, respectively). 

 

 3.2.2.1 Summary 

Although not shown statistically, there is an indication that plantlet yield in GN107 

cuttings is highest in November. The application of Seradix 2 to cuttings had no affect 

on plantlet yield. 

 

 3.2.3 Root development 

 

Root development was evaluated as the percentage of set cuttings that developed roots, 

the number of roots and the length of the longest root per cutting (Tables 3.34 to 3.39). 

As indicated by the data in Table 3.34, for Seradix 2-untreated cuttings, there were no 

significant differences in the percentage of cuttings that rooted amongst the three study 

periods. In Seradix 2-treated cuttings, the highest percentage of cuttings that developed 

roots were set in November (9.9%) and June (10%) and the lowest in April (1.4%). 

Overall, Seradix 2 application influenced the number of cuttings that produced roots  

(p = 0.046), with the most notable difference occurring in June (p = 0.015) (Table 

3.35).  
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Table 3.34: The effect of the time of year of setting cuttings on % rooting of Seradix 2-

untreated and Seradix 2-treated cuttings. The time of year of setting cuttings and 

Seradix 2 treatment as explained in Table 3.30. 

%  Rooting 

Time of year Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 4.0 ± 0.11 
a
 9.9 ± 0.22 

ab
 

April 2006 0.8 ± 0.38 
a
 1.4 ± 0.39 

a 

June 2006 1.9 ± 0.37 
a 

10.0 ± 1.81 
b 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 152, 512 and 320 for November, April and June, respectively). 

 

Table 3.35: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

rooted cuttings. The time of year of setting cuttings and Seradix 2 treatment as 

explained in Table 3.30. ∑ represents collective mean. Data from Table 3.34. 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.046 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.145 

April 2006 0.506 

June 2006 0.015 

Analyses were performed using Mann-Whitney U tests (p ≤ 0.05, n = 152, 512 and 320 for 

November, April and June, respectively). 

 

The average number of roots produced per cutting in Seradix 2-untreated cuttings was 

not significantly different for the three times, with 1 root per cutting being produced 

(Table 3.36). In Seradix 2-treated cuttings, statistically, cuttings set in June produced 

more roots per cutting than those set in November or April (Table 3.36). When all 

Seradix 2-untreated cuttings were compared to all Seradix 2-treated cuttings (Table 

3.37), a significant difference was observed (p = 0.007), with the most notable 

difference occurring in cuttings set in June (p = 0.034). 
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Table 3.36: The effect of the time of year of setting cuttings on the number of roots per 

cutting in Seradix 2-untreated and Seradix 2-treated cuttings. The time of year of 

setting cuttings and Seradix 2 treatment as explained in Table 3.30. 

Number of roots 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 1 ± 0.00 
a 

2 ± 0.19 
a 

April 2006 1 ± 0.00 
a 

1 ± 0.17 
a 

June 2006 1 ± 0.17 
a 

2 ± 0.22 
b 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 4 - 32). 

 

Table 3.37: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

the number of roots per cutting. The time of year of setting cuttings and Seradix 2 

treatment as explained in Table 3.30. ∑ represents collective mean. Data from Table 

3.36. 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.007 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.267 

April 2006 0.414 

June 2006 0.034 

Analyses were performed using Mann-Whitney U tests (p ≤ 0.05, n = 4 - 32). 

 

For Seradix 2-untreated cuttings, the average length of the longest root per cutting was 

highest in cuttings set in November (75.5 mm) and lowest in April (21.8 mm) (Table 

3.38). For Seradix 2-treated cuttings, the longest roots were produced in cuttings set in 

November 2005 and April (Table 3.38), however, these results were not found to be 

significantly different (Table 3.38). Furthermore, when all Seradix 2-untreated cuttings 

were compared with all the -treated cuttings, no difference was observed (p = 0.766, 

Table 3.39). Therefore, Seradix 2 treatment did not have any affect on the length of the 

longest roots in cuttings.  
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Table 3.38: The effect of the time of year of setting cuttings on the length of the longest 

root per cutting in Seradix 2-untreated and Seradix 2-treated cuttings. The time of 

year of setting cuttings and Seradix 2 treatment as explained in Table 3.30.  

Length of the longest root (mm) 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 75.5 ± 18.45 
a 

76.1 ± 8.19 
a 

April 2006 21.8 ± 7.89 
b 

68.0 ± 20.73 
a 

June 2006 67.2 ± 8.57 
ab 

46.4 ± 5.64 
a 

a - b = mean separation within columns, Tukey’s HSD test, ± standard error (p ≤ 0.05, n = 4 - 

32). 

 

Table 3.39: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

the length of the longest root per cutting. The time of year of settings cuttings and 

Seradix 2 treatment as explained in Table 3.30. ∑ represents collective mean. Data from 

Table 3.38. 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.766 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.971 

April 2006 0.080 

June 2006 0.115 

Analyses were performed using T-tests (p ≤ 0.05, n = 4 - 32). 

 

 3.2.3.1 Summary 

To summarize, the data (Tables 3.34 to 3.39) indicated that cuttings set in June 2006 

(winter) and treated with Seradix 2 had the highest percentage rooting and the highest 

number of roots per cutting but the shortest roots per cutting. 
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3.2.4 Shoot development 

 

Shoot development was measured after four weeks as the percentage of set cuttings with 

new shoot growth and shoot length (Tables 3.40 to 3.43). The percentage of cuttings 

with new shoot growth (Table 3.40) refers to those cuttings that produced new shoots, 

regardless of root production. Although not statistically different from the values 

obtained for the other times of the year, the highest incidence of new shoot production 

in Seradix 2-untreated cuttings was observed in November (42.1%) (Table 3.40). For 

Seradix 2-treated cuttings (Table 3.40), the percentage of cuttings that produced shoots 

in November (30.9%) was found to be higher than that for cuttings set in April (2.9%). 

 

Overall, when Seradix 2-untreated and -treated cuttings were compared, no significant 

difference in new shoot growth was observed (p = 0.654, Table 3.41). 

 

Table 3.40: The effect of the time of year of setting cuttings on % new shoot growth in 

Seradix 2-untreated and Seradix 2-treated cuttings. The time of year and Seradix 2 

treatment as explained in Table 3.30.  

%  New shoot growth 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 42.1 ± 0.69 
a 

30.9 ± 0.51 
b 

April 2006 8.6 ± 1.38 
a 

2.9 ± 0.95 
a 

June 2006 6.9 ± 1.50 
a 

10.0 ± 1.81 
b 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 152, 512 and 320 for November, April and June, respectively). 
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Table 3.41: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

cuttings with new shoot growth. Time of year and Seradix 2 treatment as explained in 

Table 3.30. ∑ represents collective mean. Data from Table 3.40. 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.654 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.326 

April 2006 0.061 

June 2006 0.338 

Analyses were performed using Mann-Whitney U tests (p ≤ 0.05, n = 152, 512 and 320 for 

November, April and June, respectively). 

 

The length of shoots of cuttings set in November, April and June were significantly 

different amongst Seradix 2-untreated cuttings (Table 3.42) and the longest shoots were 

produced in November (18.2 mm). In Seradix 2-treated cuttings, there was no effect of 

the time of year at which cuttings were set on shoot length (Table 3.42). With regard to 

shoot length of cuttings set in November, Seradix 2-untreated cuttings were 

significantly different from Seradix 2-treated cuttings (p = 0.026, Table 3.43). 

However, when the shoot length of all Seradix 2-treated cuttings was compared with 

those of Seradix 2-treated cuttings, no effect of Seradix 2 application on shoot length 

was found (p = 0.596, Table 3.43).  
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Table 3.42: The effect of the time of year of setting cuttings on shoot length in Seradix 2-

untreated and Seradix 2-treated cuttings. The time of year of setting cuttings and 

Seradix 2 treatment as explained in Table 3.30.                                    

Shoot length (mm) 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 18.2 ± 1.18 
b 

14.2 ± 1.13 
a 

April 2006 12.2 ± 0.92 
a 

12.6 ± 1.58 
a 

June 2006 12.8 ± 1.13 
a 

14.6 ± 1.14 
a 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 22 - 78). 

 

Table 3.43: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

length of new shoots of cuttings. The time of year of setting cuttings and Seradix 2 

treatment as explained in Table 3.30. ∑ represents collective mean. Data from Table 

3.42. 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.596 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.026 

April 2006 0.749 

June 2006 0.332 

Analyses were performed using Mann-Whitney U tests (p ≤ 0.05, n = 22 - 78). 

 

 3.2.4.1 Summary 

In summary, the highest new shoot growth (36.2%) and shoot length (18.2 mm) was 

observed in cuttings not treated with Seradix 2 set in November (Tables 3.40 and 3.42).  
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3.2.5 Other parameters and overview 

 

As reported earlier (section 3.1), a range of responses in cuttings was recorded. A 

summary of the outcome of cuttings for the studies conducted in November 2005, April 

2006 and June 2006 and the comparisons made between the treatments and the trials are 

presented in Tables 3.44 and 3.45, respectively. The outcomes of cuttings for the three 

studies were recorded four weeks after cuttings were set.  

 

To reiterate the previously presented results, the incidence of plantlet production (Table 

3.32) was relatively low (1.6% in Seradix 2-untreated cuttings and 4.2% in Seradix 2-

treated cuttings) and the highest frequency of plantlet production was observed in 

Seradix 2-treated cuttings set in November (9.2%).  

 

A small percentage of cuttings that were set produced roots only (without shoots or 

callus). This response was found to be significantly higher in cuttings in June in Seradix 

2-untreated cuttings (1.3%) and in Seradix 2-treated cuttings (6.9%) compared with 

cuttings set in November and April (Table 3.44). As seen in Table 3.45, there were no 

significant differences in the percent cuttings that produced roots only between Seradix 

2-untreated and Seradix 2-treated cuttings in November or April. However, there was a 

significant difference between Seradix 2-untreated and Seradix 2-treated cuttings in 

June (p = 0.011, Table 3.45). Despite this, when all Seradix 2-untreated cuttings were 

compared with Seradix 2-treated cuttings, no significant difference was observed  

(p = 0.145, Table 3.45). Therefore, cuttings set in June showed the highest production 

of roots only (without shoots).  
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Table 3.44: Summary of the outcome of Seradix 2-untreated and Seradix 2-treated 

cuttings at different times of the year. The outcome of cuttings after 4 weeks were as 

follows: plantlets, cuttings that formed roots only, cuttings that formed basal callus only, 

cuttings that formed new shoots only, cuttings that formed new shoots with basal callus 

and cuttings that were unresponsive to the treatment or dead. Results were recorded after 

4 weeks in each study in November 2005, April 2006 and June 2006, respectively. 

Seradix 2-untreated cuttings = cuttings not treated with Seradix 2, Seradix 2-treated 

cuttings = cutting base dipped into Seradix 2. 

 

% 

Nov 2005** Apr 2006 June 2006 Outcome of cuttings 

Seradix 2-untreated cuttings 

Plantlets* 4.0 
a 

0.2 
a 

0.6 
a 

Roots only 0 
a 

0.6 
b 

1.3 
b 

Callus only 0.7 
a 

0.6 
b 

3.5 
ab 

New shoots only 36.2 
a 

7.4
a 

5.6 
a 

New shoots and callus 1.9 
a 

1.0 
a 

0.6 
a 

Unresponsive 0.0
a 

2.5
b 

40.6
c 

Dead* 57.2
b 

87.7
b 

47.8
a 

 Seradix 2-treated cuttings
 

Plantlets* 9.2 
ab 

0.4 
a 

3.1 
b 

Roots only 0.7 
a 

1.0 
b 

6.9 
c 

Callus only 0 
a 

3.3 
b 

8.4 
b 

New shoots only 19.0 
a 

1.6 
a 

5.3 
a 

New shoots and callus 2.6 
a 

1.0 
a 

1.6 
a 

Unresponsive 0.7
ab 

0.4
a 

24.7
b 

Dead* 67.8
ab 

92.3
b 

50.0
a 

*Data for plantlets and dead cuttings as in Tables 3.32 and 3.30, respectively. 

** Data for November 2005 as for cutting type 5 in section 3.1. 

a - c = mean separation across columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 152, 512 and 320 for November, April and June respectively). 

 



 76

Table 3.45: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings at different times of the year for the outcome of 

cuttings. Time of year and Seradix 2 treatment as explained in Table 3.44. ∑ represents collective mean. Data from Table 3.44. 

 

p value 

Outcome of Cuttings 
Parameter 

Roots only Callus only 
New shoots 

only 

New shoots 

and callus 
Unresponsive Dead 

∑ Seradix 2-untreated cuttings vs.  

∑ Seradix 2-treated cuttings 

0.145 0.220 0.148 0.863 0.509 0.321 

Seradix 2-untreated cuttings vs.  

Seradix 2-treated cuttings in:       

November 2005 0.317 0.317 0.151 0.945 0.317 0.311 

April 2006 0.608 0.113 0.061 0.644 0.063 0.205 

June 2006 0.011 0.113 0.822 0.637 0.028 0.832 

Analyses were performed using Mann-Whitney U tests (p ≤ 0.05, n = 152, 512 and 320 for November, April and June respectively). 
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A fraction of all cuttings set in all three trials produced basal callus only after four 

weeks (2.8%) (cuttings with callus and without roots or shoots). For Seradix 2-untreated 

cuttings, the highest occurrence of this response was observed in cuttings set in June, 

however, this was not statistically different from cuttings set in November or April 

(Table 3.44). Amongst Seradix 2-treated cuttings, the percent cuttings with callus only 

was significantly higher in cuttings set in April (3.3%) and June (8.4%) than those set in 

November (0%) (Table 3.44). Treatment of cuttings with Seradix 2 did not have an 

effect on the percentage cuttings that produced callus only for each trial and overall (all 

cuttings compared) (Table3.45). Therefore, the percentage of cuttings that produced 

callus exclusively was significantly different amongst the three trials, and the highest 

incidence of this response was observed in cuttings set in June (Table 3.44). 

 

There were no significant distinctions in the percentage cuttings that produced new 

shoots only amongst the three trials for both Seradix 2-untreated and Seradix 2-treated 

cuttings (Table 3.44). Furthermore, although 16.4% of Seradix 2-untreated cuttings and 

8.6% of Seradix 2-treated cuttings produced shoots exclusively (Table 3.44), the use of 

Seradix 2 did not significantly increase the incidence of this response (p = 0.148, Table 

3.45). This could be attributed to the high accompanying standard errors (data not 

shown).  

 

Less than 2% of all cuttings that were set (regardless of Seradix 2 treatment) produced 

new shoots and callus at the basal cut end (Table 3.44). However, as depicted by the 

data in Tables 3.44 and 3.47, there were no significant differences in terms of the effect 

of season and Seradix 2 application on the percentage of cuttings that produced new 

shoots and callus. 

 

Regardless of the time of year at which the cuttings were set and Seradix 2 treatment, 

the majority of cuttings did not survive. As observed in the initial study (section 3.1), 

some cuttings set in November, April and June were unresponsive to the treatments and 

others were dead (Table 3.44). 
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For those cuttings not treated with Seradix 2, the percentages of cuttings that were 

unresponsive were significantly different in November, April and June, with the highest 

percentage of this response occurring in June (40.6%). Similarly, for Seradix 2-treated 

cuttings, the incidences of unresponsive cuttings were significantly different amongst 

the three times of the year, with the highest occurrence of this outcome observed in June 

(24.7%). Overall, Seradix 2 application did not influence the outcome of unresponsive 

cuttings (p = 0.509, Table 3.45).  

 

As discussed previously (Table 3.30), the mortality of cuttings was lowest in June. 

However, cuttings set in June had the highest prevalence of unresponsive cuttings. 

Therefore, it appears that the best time to set cuttings with the lowest mortality as well 

as the lowest number of unresponsive cuttings is in November.  

 

 3.2.5.1 Summary 

In summary, although the highest plantlet yield was produced in Seradix 2-treated 

cuttings set in November, Seradix 2 application had no effect on the percentage plantlet 

production. It appears that root and callus growth were enhanced when cuttings were set 

in June (winter) and shoot growth was enhanced when cuttings were set in November 

(spring). As indicated by the data in Table 3.45, Seradix 2 application did not influence 

any of the abovementioned responses; however, it appears as though cuttings treated 

with Seradix 2 show differences with respect to these responses and the time of year at 

which they were set (Table 3.44).  
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3.2.6 Fresh mass & dry mass 

 

The fresh mass and dry mass data of roots, shoots and callus of Seradix 2-untreated and 

Seradix 2-treated cuttings set in November, April and June, and the comparisons made 

between the treatments are presented below in Tables 3.46 to 3.49.  

 

3.2.6.1 Roots 

The fresh mass of roots of cuttings set in November, April and June were not 

significantly different for Seradix 2-untreated and Seradix 2-treated cuttings  

(Table 3.46). Although the highest root fresh mass was observed in Seradix 2-treated 

cuttings set in April (0.08 g), no statistical differences were found, probably as a 

consequence of the high standard error for this value. Furthermore, there was no 

significant difference in root fresh mass between Seradix 2-treated and Seradix 2-

untreated cuttings set in November, April and June (Table 3.47). Therefore, the time of 

year at which cuttings were set and Seradix 2 application did not affect root fresh mass. 

 

Table 3.46: The effect of the time of year of setting cuttings on the fresh mass of roots in 

Seradix 2-untreated and Seradix 2-treated cuttings. The time of year of setting 

cuttings and Seradix 2 treatment as explained in Table 3.30. 

 

Root fresh mass (g) 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 0.02 ± 0.02 
a 

0.05 ± 0.02 
a 

April 2006 0.02 ± 0.02 
a 

0.08 ± 0.04 
a 

June 2006 0.04 ± 0.01 
a 

0.05 ± 0.01 
a 

a = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 4 - 32). 
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Table 3.47: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

the fresh mass of roots. The time of year of setting cuttings and Seradix 2 treatment as 

explained in Table 3.30. ∑ represents collective mean. Data from Table 3.46. 

 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.262 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.306 

April 2006 0.493 

June 2006 0.837 

Analyses were performed using Mann-Whitney U tests (p ≤ 0.05, n = 4 - 32). 

 

The dry mass of roots for cuttings not treated with Seradix 2 was not statistically 

different as was the case for Seradix 2-treated cuttings (Table 3.48). Furthermore, when 

all Seradix 2-treated and all -untreated cuttings were compared, no difference was found 

in root dry mass (p = 0.063, Table 3.49). Thus, the time of year at which cuttings were 

set and Seradix 2 treatment did not have an effect on root dry mass. 

 

Table 3.48: The effect of the time of year of setting cuttings on the dry mass of roots in 

Seradix 2-untreated and Seradix 2-treated cuttings. The time of year of setting 

cuttings and Seradix 2 treatment as explained in Table 3.30. 

 

Root dry mass (g) 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 0.004 ± 0.002 
a 

0.01 ± 0.00 
a 

April 2006 0.003 ± 0.002 
a 

0.02 ± 0.01 
a 

June 2006 0.01 ± 0.002 
a 

0.01 ± 0.00 
a 

a = mean separation within columns, Tukey’s HSD test, ± standard error (p ≤ 0.05, n = 4 - 32). 
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Table 3.49: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

the dry mass of roots. The time of year of setting cuttings and Seradix 2 treatment as 

explained in Table 3.30. ∑ represents collective mean. Data from Table 3.48. 

 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.063 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.307 

April 2006 0.244 

June 2006 0.421 

Analyses were performed using T-tests (p ≤ 0.05, n = 4 - 32). 

 

3.2.6.2 Shoots 

Shoot fresh mass in Seradix 2-untreated cuttings was higher in cuttings set in November 

and June than those set in April (Table 3.50). For Seradix 2-treated cuttings, the shoot 

fresh mass of was highest in cuttings set in November (Table 3.50). Seradix 2-untreated 

shoots had a higher average shoot fresh mass than Seradix 2-treated cuttings (0.023 g 

vs. 0.017 g), and this difference was found to be statistically significant (p = 0.040, 

Table 3.51). Therefore, cuttings not treated with Seradix 2, performed better in terms of 

shoot growth and yielded a higher average shoot fresh mass than Seradix 2-treated 

cuttings.  
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Table 3.50: The effect of the time of year of setting cuttings on the fresh mass of shoots in 

Seradix 2-untreated and Seradix 2-treated cuttings. The time of year of setting 

cuttings and Seradix 2 treatment as explained in Table 3.30. 

 

Shoot fresh mass (g) 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 0.03 ± 0.00 
a 

0.02 ± 0.00 
a 

April 2006 0.01 ± 0.00 
b 

0.01 ± 0.01 
b 

June 2006 0.03 ± 0.01 
a 

0.02 ± 0.00 
b 

a = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 15 - 53). 

 

Table 3.51: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

the fresh mass of shoots. The time of year of setting cuttings and Seradix 2 treatment as 

explained in Table 3.30. ∑ represents collective mean. Data from Table 3.50. 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.040 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.167 

April 2006 0.053 

June 2006 0.056 

Analyses were performed using Mann-Whitney U tests (p ≤ 0.05, n = 15 - 53). 

 

The average shoot dry mass for cuttings not treated with Seradix 2 was 0.01g (Table 

3.25). Statistically, the shoot dry mass of cutting set in November was highest as 

compared with April or June (Table 3.52). For Seradix 2-treated cuttings, the time of 

year at which cuttings were set did not affect shoot dry mass (Table 3.52). Overall, the 

application of Seradix 2 to cuttings reduced the shoot dry mass (p = 0.000, Table 3.53). 

This is corroborated by the significant difference between Seradix 2-treated and  

-untreated cuttings set in November (p = 0.001, Table 3.53). Therefore, GN107 cuttings 

not treated with Seradix 2 had higher shoot dry masses than cuttings treated with 
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Seradix 2 as was the case for shoot fresh mass; supporting the idea that Seradix 2 

application may inhibit shoot growth.  

 

Table 3.52: The effect of the time of year of setting cuttings on the dry mass of shoots in 

Seradix 2-untreated and Seradix 2-treated cuttings. The time of year of setting 

cuttings and Seradix 2 treatment as explained in Table 3.30. 

Shoot dry mass (g) 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 0.01 ± 0.00 
a 

0.01 ± 0.00 
a 

April 2006 0.01 ± 0.00 
b 

0.01 ± 0.00 
a 

June 2006 0.01 ± 0.00 
b 

0.01 ± 0.00 
a 

a - b = mean separation within columns, Mann-Whitney U test, ± standard error (p ≤ 0.05,  

n = 15 - 53). 

 

Table 3.53: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

the dry mass of shoots. The time of year of setting cuttings and Seradix 2 treatment as 

explained in Table 3.30. ∑ represents collective mean. Data from Table 3.52. 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.000 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 0.001 

April 2006 0.441 

June 2006 0.178 

Analyses were performed using Mann-Whitney U tests (p ≤ 0.05, n = 15 - 53). 

 

3.2.6.3 Shoot: root mass ratios 

The shoot: root ratios for both fresh mass and dry mass were lower in Seradix 2-treated 

cuttings (Table 3.54). When the shoot: root ratios based on fresh mass of Seradix 2-

untreated and -treated cuttings were compared, no significant difference was found  

(p = 0.072). Similarly, no difference was apparent in the shoot: root ratio based on dry 

mass between Seradix 2-treated and untreated cuttings (p = 0.244). Therefore, although 
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there is an indication that Seradix 2 application increased root fresh and dry mass, 

statistically no difference was found between Seradix 2-untreated and -treated cuttings 

for shoot: root mass ratios.  

 

Table 3.54: The effect of the time of year of setting cuttings on shoot: root fresh mass and 

dry mass in Seradix 2-untreated and Seradix 2-treated cuttings. Time of year and 

Seradix 2 treatment as explained in Table 3.30. Significant differences are highlighted in 

the text. 

Shoot: root 

Seradix 2-untreated cuttings Seradix 2-treated cuttings Time of year 

Fresh mass Dry mass Fresh mass Dry mass 

November 2005 1.5 3.3 0.4 2.0 

April 2006 0.6 2.6 0.1 0.4 

June 2006 0.8 0.7 0.4 0.4 

 

 3.2.6.4 Callus 

Of those cuttings that were set in November, 2.6% of Seradix 2-untreated cuttings and 

2.6% of Seradix 2-treated cuttings produced callus (Table 3.44), however the mass of 

this callus was not recorded. There was no significant difference in callus fresh mass in 

cuttings not treated with Seradix 2 set in November, April or June (Table 3.55). Seradix 

2-treated cuttings set in April produced more callus per cutting (0.10 g) than those set in 

November (0.08 g) or June (0.05 g), however these figures were not statistically 

different from each other (Table 3.55). The fresh mass of callus was significantly higher 

in cuttings treated with Seradix 2 than untreated cuttings, regardless of the time of year 

at which the cuttings were set (p = 0.007, Table 3.56). Therefore, Seradix 2 application 

significantly increased the amount of callus per cutting, with the most callus produced 

per cutting in Seradix 2-treated cuttings set in April.  
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Table 3.55: The effect of the time of year of setting cuttings on the fresh mass of callus in 

Seradix 2-untreated and Seradix 2-treated cuttings. The time of year of setting 

cuttings and Seradix 2 treatment as explained in Table 3.30. 

 

Callus fresh mass (g) 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 NR
 

0.08 ± 0.01 
a 

April 2006 0.04 ± 0.02 
a 

0.10 ± 0.01 
a 

June 2006 0.04 ± 0.01 
a 

0.05 ± 0.01 
a 

a = mean separation within columns, Tukey’s HSD test, ± standard error (p ≤ 0.05,  

n = 4 - 32). 

 

Table 3.56: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

the fresh mass of callus. The time of year of setting cuttings and Seradix 2 treatment as 

explained in Table 3.30. ∑ represents collective mean. Data from Table 3.55. 

 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.007 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 NR 

April 2006 0.016 

June 2006 0.174 

Analyses were performed using T-tests (p ≤ 0.05, n = 4 - 32). NR = no result. 

 

With respect to callus dry mass, cuttings not treated with Seradix 2 set in November, 

April and June were not significantly different (Table 3.57). Similarly, the dry mass of 

callus for Seradix 2-treated cuttings was similar (Table 3.57). As was the case for callus 

fresh mass, callus dry mass was higher in Seradix 2-treated cuttings as compared with 

cuttings not treated with Seradix 2 (p = 0.016, Table 3.58). Hence, Seradix 2 application 

to the base of cuttings increased the dry mass of callus as compared with the callus 

produced in cuttings not treated with Seradix 2. 
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Table 3.57: The effect of the time of year of setting cuttings on the dry mass of callus in 

Seradix 2-untreated and Seradix 2-treated cuttings. The time of year of setting 

cuttings and Seradix 2 treatment as explained in Table 3.30. 

 

Callus dry mass (g) 

Time of year 

Seradix 2-untreated cuttings Seradix 2-treated cuttings 

November 2005 NR
 

0.01 ± 0.00 
a 

April 2006 0.01 ± 0.00 
a 

0.02 ± 0.00 
a 

June 2006 0.01 ± 0.00 
a 

0.01 ± 0.00 
a 

a = mean separation within columns, Tukey’s HSD test, ± standard error (p ≤ 0.05, n = 4 - 32). 

 

Table 3.58: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings for 

the dry mass of callus. The time of year of setting cuttings and Seradix 2 treatment as 

explained in Table 3.30. ∑ represents collective mean. Data from Table 3.57. 

 

Parameter p value 

∑ Seradix 2-untreated cuttings vs. ∑ Seradix 2-treated cuttings 0.016 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings in:  

November 2005 NR 

April 2006 0.006 

June 2006 0.355 

Analyses were performed using T-tests (p ≤ 0.05, n = 4 - 32). NR = no result. 

 

 3.2.6.5 Summary 

In summary, the fresh mass and dry mass of roots in Seradix 2-treated and Seradix 2-

untreated cuttings were not significantly affected by the time of year at which the 

cuttings were set and Seradix 2 application. However, both callus fresh and dry masses 

were highest in cuttings set in April (autumn) and Seradix 2 was found to increase 

callus mass. In contrast, shoot fresh mass and dry mass was highest in cuttings set in 

November (spring), and Seradix 2 was found to negatively affect shoot mass and 

possibly inhibit shoot growth. 
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3.3 Root development in GN107 cuttings 

 

From all the primary studies, it was apparent that roots emerged from different points of 

the cutting. Some roots emerged from the abaxial cut end of the cutting (base) and some 

emerged from above the abaxial end (sides of the stem just above the base) (Figure 3.1). 

These root emergence patterns were recorded as three categories of cuttings, i.e. 

cuttings with roots from the abaxial cut end only (1), cuttings with roots from above the 

abaxial end only (2) and cuttings with roots from both (3). As the significance, of these 

root emergence patterns is not known, the incidences of the different rooting categories 

in the six cutting types (Table 3.59), and throughout the year were investigated in this 

study (Table 3.61). In addition, a study was undertaken to investigate if the site of root 

emergence was affected by the extent of which cuttings were dipped into the rooting 

powder. Two application methods were utilised and the percentage rooting, percentage 

callusing and the rooting pattern of both methods were then compared (Tables 3.63 and 

3.64). 

 

    

      

 

Figure 3.1: Root emergence patterns in GN107 cuttings. (A) Cutting with root emerging 

from the abaxial cut end, bar = 1.8 cm and (B) cutting with root emerging from above the 

abaxial cut end, bar = 2.1 cm. 

 

 

B A 
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 3.3.1 The effect of Seradix 2 on rooting patterns 

 

In Seradix 2-untreated cuttings, regardless of cutting type, cuttings that produced roots 

showed a greater tendency to develop from the abaxial cut end of the cutting  

(category 1) (Table 3.59). However, there were no significant differences among the six 

cutting types in the percentages of cuttings in each rooting category (Table 3.59). There 

were also no differences between terminal and non-terminal cuttings, amongst terminal 

cuttings (types 1, 2 and 3) or amongst non-terminal cuttings (types 4, 5 and 6) (Table 

3.60).  

 

For Seradix 2-treated cuttings, there was a significant difference between terminal and 

non-terminal cuttings in the percentage of cuttings in each category, with non-terminal 

cuttings producing a higher incidence of roots emerging from the side or emerging from 

both the base and side of the cutting stem (categories 2 and 3, respectively) (p = 0.000, 

Table 3.60). In addition, Seradix 2 application influenced the percentages of cuttings in 

each category, as cuttings treated with Seradix 2 showed a significantly diverse 

response compared with cuttings not treated with Seradix 2 (p = 0.005, Table 3.60). 

Therefore, non-terminal cuttings showed a greater tendency to develop roots emerging 

from the side of the stem of the cutting, and this was further enhanced by Seradix 2 

application.  
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Table 3.59: Summary of the rooting categories in Seradix 2-untreated and Seradix 2-

treated cuttings. Rooting category 1 = roots emerging from the bottom only, rooting 

category 2 = roots emerging from the side only, and rooting category 3 = roots emerging 

from the bottom and the side. Cutting types 1, 2, 3 = terminal cuttings, cut at the node, 

cut 1 cm above the node and cut 1 cm below the node respectively; cutting types 4, 5, 6 = 

non terminal cuttings, cut at the node, cut 1 cm above the node and cut 1 cm below the 

node respectively. Seradix 2-untreated cuttings = cuttings not treated with Seradix 2, 

Seradix 2-treated cuttings = cutting base dipped into Seradix 2. Results were recorded 

after 4 weeks of setting in November 2005. 

 

% 

Cutting type Rooting category 

1 
A, a 

2 
A, ab 

3 
A, ab 

4 
A, bc 

5 
A, c 

6 
A, c 

 Seradix 2-untreated cuttings 

1 100 100 100 83.3 83.3 100 

2 0 0 0 16.7 16.7 0 

3 0 0 0 0 0 0 

 Seradix 2-treated cuttings 

1 100 100 84.6 64.7 46.6 42.8 

2 0 0 7.7 29.4 26.7 28.6 

3 0 0 7.7 5.9 26.7 28.6 

A = mean separation across columns for Seradix 2-untreated cuttings, a - c = mean separation 

across columns for Seradix 2-treated cuttings, Mann-Whitney U test (p ≤ 0.05, n =  2 - 21). 
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Table 3.60: Levels of significance in Seradix 2-untreated, Seradix 2-treated cuttings, 

terminal (cutting types 1, 2, 3) and non-terminal cuttings (cutting types 4, 5, 6) for 

the rooting categories cuttings. Cutting types 1 - 6 and Seradix 2 treatment as explained 

in Table 3.59. ∑ represents collective mean. Data from Table 3.59. 

 

Parameter p value 

Comparing Cutting preparation:  

Seradix 2-untreated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.180 

Terminal cuttings 1 vs. 2 vs. 3 1.000 

Non-terminal cuttings 4 vs. 5 vs. 6 0.764 

Seradix 2-treated cuttings:  

∑ Terminal cuttings (1, 2, 3) vs. ∑ Non-terminal (4, 5, 6) 0.000 

Terminal cuttings 1 vs. 2 vs. 3 0.280 

Non-terminal cuttings 4 vs. 5 vs. 6 0.227 

Comparing Seradix 2 treatment:  

∑ Seradix 2-untreated vs. ∑ Seradix 2-treated cuttings 0.005 

Seradix 2-untreated vs. Seradix 2-treated:  

Cutting type 1 1.000 

Cutting type 2 1.000 

Cutting type 3 0.287 

Cutting type 4 0.384 

Cutting type 5 0.106 

Cutting type 6 0.087 

Analyses were performed using Kruskal-Wallis and Mann-Whitney U tests, where applicable  

(p ≤ 0.05, n = 2 - 21). 
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The incidences of cuttings in the three rooting categories in November, April and June 

are presented in Table 3.61. There was no effect of the time of year cuttings were set on 

the percentage cuttings in each category in Seradix 2-untreated cuttings (Table 3.61). 

Cuttings treated with Seradix 2 showed a significant difference in the percentage 

cuttings in each category in November, April and June (Table 3.53). Cuttings set in 

November showed a more diverse response in terms of the type of root emergence 

pattern than cuttings set in April or June (Table 3.61). Overall, however, Seradix 2 

application did not significantly influence the prevalence of each rooting category  

(p = 0.075, Table 3.62). Therefore, the highest incidence of type 2 and type 3 categories 

was observed in cuttings set in November.  

 

Table 3.61: Summary of the rooting categories produced in Seradix 2-untreated and 

Seradix 2-treated cuttings at different times of the year. Seradix 2-untreated cuttings 

= cuttings not treated with Seradix 2, Seradix 2-treated cuttings = cutting base dipped 

into Seradix 2. Results were recorded after 4 weeks of setting in November 2005, April 

2006 and June 2006. Rooting category as explained in Table 3.59. 

 

% 

Nov 2005 
A, a 

Apr 2006 
A, b 

June 2006 
A, b Rooting category 

Seradix 2-untreated cuttings 

1 83.3 100 100 

2 16.7 0 0 

3 0 0 0 

 Seradix 2-treated cuttings
 

1 46.6 100 90.3 

2 26.7 0 3.2 

3 26.7 0 6.5 

Data for November 2005 as for cutting type 5 in section 3.1. 

A = mean separation across columns for Seradix 2-untreated cuttings, a - b = mean separation 

across columns for Seradix 2-treated cuttings, Mann-Whitney U test (p ≤ 0.05, n =  4 - 32). 
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Table 3.62: Levels of significance in Seradix 2-untreated and Seradix 2-treated cuttings at 

different times of the year for the rooting categories of cuttings. The time of year of 

setting cuttings and Seradix 2 treatment as explained in Table 3.61. ∑ represents 

collective mean. Data from Table 3.61. 

 

Parameter p value 

∑ Seradix 2-untreated cuttings  vs. ∑ Seradix 2-treated cuttings 0.164 

Seradix 2-untreated cuttings vs. Seradix 2-treated cuttings for:  

November 2005 0.106 

April 2006 1.000 

June 2006 0.441 

Analyses were performed using Mann-Whitney U tests (p ≤ 0.05, n = 4 - 32). 

  

 3.3.2 The effect of the method of Seradix 2 application on cuttings 

 

In the commercial propagation of cuttings, the practice of dipping cuttings into Seradix 

powder is not precise and the depth of Seradix application is not identical in each 

cutting. To investigate the effect of the application method of Seradix 2, cuttings were 

dipped into Seradix 2 powder at the surface of the cut abaxial end or cuttings were 

dipped into Seradix 2 powder to an approximate depth of 2.5 cm. The percentage 

rooting, percentage callusing and the rooting categories were recorded (Tables 3.63 and 

3.64). 

 

As illustrated by the data in Table 3.63, the percentage rooting was 25% for cuttings 

dipped at the abaxial end and 24.2% for cuttings dipped 2.5 cm into Seradix 2. There 

was no significant difference in the rooting frequency between the two methods of 

Seradix 2 application (p = 0.885). Cuttings dipped 2.5 cm into the rooting powder had a 

higher incidence of callus production (63.3%) than cuttings dipped at the base (46.9%) 

(p = 0.008, Table 3.63). Therefore the extent at which cuttings were dipped into Seradix 

2 did not affect the percentage rooting of cuttings but did influence the percentage 

callusing.   
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The percentage cuttings within each rooting category between cuttings dipped at the 

abaxial end and those dipped 2.5 cm are presented in Table 3.64. Although the 

percentage of cuttings with category 2 and 3 rooting was numerically highest in cuttings 

dipped 2.5 cm into Seradix 2, statistically, no significant difference was observed 

between the treatments (p = 0.348, Table 3.64). Therefore, the extent at which cuttings 

were dipped into Seradix 2 did not affect the percentage of cuttings in each rooting 

category (1, 2 or 3). 

 

Table 3.63: The effect of the extent at which cuttings were dipped into Seradix 2 on  

% rooting and % callusing. Cuttings were dipped into Seradix 2 powder at the abaxial 

(base) of the cutting only or cuttings were dipped into Seradix 2 powder up to 

approximately 2.5 cm above the abaxial end. Results were recorded after 4 weeks.  

%  

Parameter Cuttings dipped at  

abaxial end 
Cuttings dipped 2.5 cm 

Rooted cuttings 25.0 ± 0.38 
a 

24.2 ± 0.38 
a 

Cuttings with Callus 46.9 ± 0.44 
a 

63.3 ± 0.43 
b 

a - b = mean separation across columns, Mann-Whitney U tests, ± standard error (p ≤ 0.05,  

n = 128 each, for cuttings dipped at the abaxial end and cuttings dipped 2.5 cm). 

 

Table 3.64: The effect of the extent at which cuttings were dipped into Seradix 2 on  

% rooted cuttings in each rooting category. Cuttings were dipped into Seradix 2 

powder at the base of the cutting only or cuttings were dipped into Seradix 2 powder up 

to approximately 2.5 cm above the base. Rooting category as explained in Table 3.59. 

Results were recorded after 4 weeks.  

%  Rooted cuttings 

Rooting category Cuttings dipped at  

abaxial end 
a 

Cuttings dipped 2.5 cm
 a 

1 90.7 83.9 

2 9.4 3.2 

3 0 12.9 

a = mean separation across columns between treatments (p ≤ 0.05, n = 128 each, for cuttings 

dipped at the abaxial end and cuttings dipped 2.5 cm. 
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In summary, non-terminal cuttings were found to generate more diverse root emergence 

patterns than terminal cuttings and Seradix 2 treatment influenced the incidence of roots 

emerging from the bottom and sides of the stem. Furthermore, a higher incidence of 

roots emerging from the sides occurred in cuttings set in November and this was 

enhanced by Seradix 2 application. However, the method of Seradix 2 application, in 

particular the extent at which the bases of cuttings were dipped into the powder, did not 

affect the rooting pattern but influenced callus production.  

 

3.3.3 The anatomy and ontogeny of roots of GN107 cuttings 

 

As previously mentioned, 4 week old cuttings developed roots that emerged from the 

cutting stem at the abaxial cut end (base) or from above the abaxial end (sides of the 

stem). Anatomical studies were performed to investigate if roots that emerged from the 

abaxial end and from above the abaxial end of the cutting differed in their point of 

origin.  

 

Figure 3.2 illustrates the stems of GN107 cuttings prior to root development, showing 

tetrarch xylem. In cuttings in which roots emerged from the abaxial cut end of the stem, 

appear to have root primordia in the xylem arch as well as the cambium (Figure 3.3). 

Similarly, cuttings in which roots emerged from above the abaxial end of the stem also 

appear to have root primordia in the xylem arch as well as the cambium (Figure 3.4). In 

those cuttings in which roots were believed to develop from the xylem arch, a 

connection existed between the vascular bundle in the centre of the stem and the 

developing root (Figures 3.3 and 3.4 A and B). However, in those cuttings in which 

roots appeared to originate from the cambium, no such connection was present in the 

sections investigated (Figures 3.3 and 3.4 C and D).  
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Figure 3.2: Cross-section of a stem of a GN107 cutting. Cutting at 2 weeks, before root 

development. The vascular bundle is seen in the centre of the figure with tetrarch xylem. 

Samples were embedded with paraffin wax, sectioned and then stained with Toluidene 

Blue (0.1%). Bar = 0.44 mm. 
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Figure 3.3: Cross sections of stems of GN107 cuttings from which root emergence 

occurred at the abaxial cut end (Figure 3.1 A). (A) and (B) root primordia appear to 

originate in the xylem archs, bar = 0.40 mm and 0.39 mm, respectively; (C) and (D) root 

primordia appear to originate in the cambium, bar = 0.32 mm and 0.48 mm, respectively. 

Samples were embedded with paraffin wax, sectioned and then stained with Toluidene 

Blue (0.1%).  
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Figure 3.4: Cross sections of stems of GN107 cuttings from which root emergence occurred 

above the abaxial cut end (Figure 3.1 B). (A) and (B) root primordia appear to originate in the 

xylem archs, bar = 0.38 mm and 0.32 mm, respectively; (C) and (D) root primordia appear to 

originate in the cambium, bar = 0.45 mm and 0.40 mm, respectively. Samples were embedded 

with paraffin wax, sectioned and then stained with Toluidene Blue (0.1%). 

 

From the observations made in this study, there were no patterns to indicate that the 

different root emergence patterns (roots emerging from the abaxial cut end or from 

above the cut end) had different points of origin. Roots were observed to develop from 

the xylem archs as well as from the cambium. However, further investigation is 

necessary in order to eradicate the possibility that the root primordia and point of origin 

in the stem sections were somehow overlooked during the sectioning process. 

Furthermore, studies should be conducted on cuttings at different stages in their 

A 

C D 

B 
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development, and stem sections should be made at those different stages of growth so as 

to locate correctly the root primordia at the time that roots first develop. 
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4. DISCUSSION 

 

4.1 Overview 

 

In order for the South African forestry industry to remain productive and to meet the 

escalating demands for forestry goods, productivity on existing plantations and marginal 

sites needs to be maximised (Denison and Kietzka, 1993a; Dye, 2000). This has been 

achieved, in part, through hybrid forestry. One of the hybrids used is the E. grandis x  

E. nitens (GN), as many of its clones adapt to sites more readily and use water more 

efficiently than pure species (Denison and Kietzka 1993a; February et al., 1995). In 

addition, clones of E. grandis x E. nitens have been found to have superior wood 

qualities that make it ideal for use by the pulp and paper industry (Denison and Kietzka, 

1993a).  

 

As previously discussed, successful cutting propagation programmes are dependent on 

the root-ability of cuttings, and the capability of cuttings to perform as well as, or 

superior to seedlings (Sasse and Sands, 1997). Not only is successful cutting 

propagation species- and clone-dependent, but yield depends also on the type of 

material used, the position from which the material originates form the parent plant, the 

age of the parent plant, the time of year of harvesting plant material, the propagation 

substrate, the type of rooting enhancers used, container type, and the soil temperature, to 

name a few (Paton et al., 1970; Hartney, 1980; Paton, 1984; McComb and Wroth, 1986; 

Shepherd, 1986; Wilson, 1993; Maile and Nieuwenhuis, 1996; Tibbits et al., 1997; 

Bayley and Nixon, 1998; Wilson, 1999a).  

 

Studies have shown varying rooting percentages in eucalypt cuttings, with rooting 

percentages ranging from 0% to 100%, depending on the species and clone (McComb 

and Wroth, 1986; Wilson, 1994; Maile and Nieuwenhuis, 1996; Tibbits et al., 1997; 

Aimers-Halliday et al., 1999). The Hilton nursery reports an average root strike of  

30 - 40% for cold-tolerant clones (McAllister, pers. comm.; Wallis, pers. comm.). 

However there are many cold-tolerant species (notably E. grandis x nitens, including 

the clone GN107) with a much lower root strike, and for which little or no research into 
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the factors that affect rooting has been undertaken. At the Hilton nursery, propagation of  

E. grandis x nitens cuttings involves the utilisation of stem cuttings (below the apical 

shoot) and the application of the IBA-containing commercial rooting powder Seradix 2 

(3 g kg
-1

 IBA) to the base of the cutting. However, reports in the literature on eucalypt 

cuttings indicate that cuttings taken from different positions from the parent plant root 

differently (Paton et al., 1970; Wilson, 1993) and IBA treatment and concentration, as 

well as its method of application to cuttings (Carter and Slee, 1993; Maile and 

Nieuwenhuis, 1996) also affect root strike. Furthermore, a seasonal effect on cutting 

performance among eucalypt species has been documented (Hartney, 1980; McComb 

and Wroth, 1986; Maile and Nieuwenhuis, 1996; Tibbits et al., 1997). As such effects 

on rooting of cuttings of GN107 have not been reported, they were investigated in this 

study.  

 

Many plant species have an optimum rooting period in the year (Fordham, 1965; 

Hartmann et al, 1997). McComb and Wroth (1986) found that optimum rooting in E. 

resinifera cuttings was observed in February (< 25% rooting). Maile and Nieuwenhuis 

(1996) found that cuttings taken from three-year old E. nitens plants showed a 30% and 

56% rooting in March (spring) and September (autumn), respectively. Research has 

shown that the rate of rooting and root development of cuttings are improved when the 

root zone temperature and bottom heat are increased (Hartmann et al., 1997). Mitchell 

(2002) established that without the use of rooting hormones, root strike in Pinus patula 

and P. elliotii x P. caribaea cuttings could be improved by the addition of bottom heat 

(25 - 28ºC), and although pines (gymnosperms) are not directly comparable to 

eucalypts, that study indicates the importance of the relationship of the heat requirement 

during the rooting of cuttings. 

 

Throughout the present study, as rooting did not necessarily occur in conjunction with 

shoot growth, the percentage rooting was not equivalent to the plantlet yield. The 

highest percentages of cuttings that produced roots (regardless of shoot growth) were 

part of the June (10%) and November trials (9.9%) (Table 3.34). In addition, cuttings set 

in June and November produced the highest numbers of roots per cutting (Table 3.36). 

The proportion of cuttings that produced only roots and the proportion of cuttings that 
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produced only callus were highest amongst cuttings set in June as compared with those 

set in November or April (Table 3.44). Therefore, cuttings set in June (winter) had 

improved root development as compared with cuttings set in November (spring) or 

April (autumn). Similarly, Tibbits et al. (1997) found that E. nitens cuttings set in 

winter had a higher percentage rooting (average 27%) than cuttings set at other times of 

the year. On the other hand, in the present study, cuttings set in November (spring), had 

superior shoot development in terms of the number of cuttings that produced shoots, 

shoot length and the mass of shoots relative to root mass. The results indicate that high-

yielding shoot development in GN107 cuttings may have a seasonal influence and may 

depend on the quality of the hedge plant material at the time of setting cuttings. 

Furthermore, while shoot development appears to be enhanced in November (spring), 

root development was greater in June (winter). In terms of cutting success, although not 

shown statistically, there was an indication that plantlet yield was highest in cuttings set 

in November and lowest in April (Table 3.32).  

 

Reports in the literature indicate that the rooting ability of cuttings is affected by the 

position at which the cuttings are taken from the parent plant. Different species exhibit 

varying rooting success for cuttings taken from the apical, sub-apical, mid-position and 

basal region of the parent stem (Wilson, 1993). Bachelard and Stowe (1963) reported 

that mid-position and basal cuttings of E. camaldulensis rooted better than tip cuttings. 

Wilson (1993) demonstrated that the survival and rooting ability of E. globulus stem 

cuttings and the relation to the origin of the cuttings on the parent plant were clonally 

influenced. Survival percentages tended to be higher in apical and sub-apical cuttings in 

one clone but not in the other clone tested and rooting percentages decreased with 

increasing distance form the shoot apex (Wilson, 1993). Similarly, the rooting ability of 

conifers has been found to decrease as the node position from the apical bud increases 

(Mitchell, 2005). However, in species such as Cordia allidora and Osyris lanceolata, 

the relationship between rooting success and cutting origin was shown to be variable 

and influenced by season (Mesén et al., 1997; Teklehaimanot et al., 2004). Cuttings of 

O. lanceolata set in winter and spring showed basal cuttings rooting better than terminal 

cuttings and in cuttings set in summer the opposite effect was observed (Teklehaimanot 

et al., 2004). In the case of eucalypts, an increase in ontogenetic age of the cutting tissue 



 102 

is associated with a decline in rooting ability and has been found to be related to an 

increase in rooting inhibitor at the base of the cutting (Paton et al., 1970). 

 

In the initial investigation of this study, terminal cuttings (situated below the apical 

bud), and non-terminal cuttings were employed (for description see section 2.2). The 

abaxial ends of terminal and non-terminal cuttings were cut at different points on, above 

or below the lowest node, to examine the effect of this on rooting. Of the two types, 

terminal cuttings had the highest mortality of cuttings (Table 3.1), the lowest plantlet 

yield (Table 3.3), the lowest percentage of cuttings that produced roots (Table 3.5) and 

the lowest percentage of cuttings that produced new shoots (Table 3.11). This suggests 

that the juvenility of the cutting affects survival, rooting and plantlet yield negatively. 

Better results were obtained with the more mature and hardier non-terminal cuttings, in 

particular type 6 (non-terminal cutting, cut below the abaxial node). With regard to the 

point at which the abaxial end of the cuttings was cut in relation to the node, there were 

no significant differences amongst terminal cuttings types 1, 2 and 3 or amongst non-

terminal cutting types 4, 5 and 6.  

 

Although terminal cuttings had a higher mortality, they produced longer roots, slightly 

more roots per cutting and a higher root fresh mass and dry mass than non-terminal 

cuttings. However, the root strike and survival of non-terminal cuttings was superior to 

terminal cuttings. These differences could be related to the differences in the 

endogenous auxin content within terminal cuttings and non-terminal GN107 cuttings 

may differ. 

 

As discussed in section 1.5, the main regenerative process required in cutting 

propagation is adventitious root formation; however, the capacity to produce 

adventitious roots is low in many woody plant species and may be influenced by 

juvenility and season (Hartmann et al., 1997). Root development is characterized by the 

manufacture and change of levels of physiologically important substances such as 

rooting co-factors. However the ability to synthesize such substances may be lost or 

gained with ageing (juvenility) and over time (season) (Paton et al., 1970). In the 

present study, cuttings success (plantlet production) may have been influenced by the 
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presence or absence of rooting compounds in the plant tissue and the subsequent effects 

of this on adventitious root formation. 

 

It is well known that high concentrations of auxins are necessary for adventitious root 

formation, and endogenous auxins originate in the shoot apex and shoot axillary region 

(Haissig, 1986; Gaspar and Hofinger, 1988; Hartmann et al., 1997; De Klerk et al., 

1999). In cutting propagation, exogenous hormones applied to cuttings to promote 

rooting are commonly used. However their concentration and method of application 

influence the rooting of cuttings (Carter and Slee, 1993; Maile and Nieuwenhuis, 1996). 

Although Seradix 2 (3 g kg
-1

 IBA) is the commercial rooting powder most commonly 

used at the Mondi Hilton nursery for GN107 and other cold-tolerant clones, the effects 

of Seradix 2 application, cutting type and season on GN107 cuttings have not previously 

been reported.  

 

Regardless of the cutting type used or the time of year at which cuttings were set, 

cuttings treated with Seradix 2 had a higher plantlet yield (Table 3.3) and a higher 

percentage of cuttings that produced roots (Tables 3.5 and 3.34), as compared with 

untreated cuttings. In addition, the former had higher root and callus fresh and dry 

masses (Tables 3.17, 3.19, 3.55 - 3.58) than the latter. 

 

In contrast to the results obtained in this study, Aimers-Halliday et al. (1999) reported 

that the percentage rooting of E. grandis x nitens cuttings treated with a 3% (w/v) IBA 

in a gel base was not significantly different from that of cuttings not treated with the 

hormone (36.5% and 34.5%, respectively). Two points can be inferred from the findings 

of those authors in comparison with the results presented in this study. Firstly, a higher 

concentration of externally applied IBA (3% vs. 0.3% IBA in the present study) 

enhanced rooting. However, even without the IBA application, their reported rooting 

percentage was still above 30%, implying that the E. grandis x nitens clone used in that 

study may have been less difficult-to-root than the GN107 genotype.  

 

Reports in the literature on the pure species E. grandis and E. nitens indicate that each 

have their own auxin requirements for rooting. For example, the overall percentage 
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rooting in E. nitens cuttings increased from 30% to 56.3% when the IBA concentration 

was lowered from 0.8% to 0.2% (Maile and Nieuwenhuis, 1996). On the contrary, E. 

grandis cuttings exhibited similar rooting responses when treated with IBA 

concentrations ranging from 0.2% to 1%, and the magnitude of the response varied with 

season and the highest mean rooting percentage was observed in January (summer) 

(Carter and Slee, 1993). 

 

In the present study, although Seradix 2 application increased plantlet yield, it also 

increased the tendency of cuttings to form roots exclusively. Furthermore, although not 

statistically different from Seradix 2-untreated cuttings, cuttings treated with Seradix 2 

had the highest prevalence of callus formation at the bases of the cuttings (Table 3.15).  

The percentage new shoot growth amongst cuttings not treated with Seradix 2 was 

found to be higher than in treated cuttings (31.4% vs. 24.3%) (Table 3.11). Overall, 

when all three trials were compared, the shoot fresh and dry masses among Seradix 2-

untreated cuttings were found to be greater than in cuttings to which Seradix 2 was 

applied (Tables 3.50 to 3.54). The shoot: root fresh and dry mass ratios (Tables 3.25 and 

3.54) indicated that cuttings not treated with Seradix 2 had higher shoot fresh and dry 

masses. This suggests that Seradix 2 may have inhibited shoot development, but 

statistically there was no difference between Seradix 2-treated and -untreated cuttings.  

 

Therefore Seradix 2 promoted root growth and development but appears to have 

inhibited or delayed shoot growth in GN107 cuttings. This indicates that GN107 

requires auxin application for successful setting of cuttings but at a concentration other 

than that found in Seradix 2 (as IBA); such ‘optimal’ concentration still needs to be 

determined for GN107. In addition, it is suggested that other hormones (alone or in 

combination) be tested on the clone GN107, such as, IAA and NAA, which have also 

been shown to improve rooting of cuttings (Blazich, 1988b; Hartmann et al., 1997; 

Blythe and Sibley, 2003). Mixtures of rooting hormones have also been shown to be 

effective in rooting cuttings than either hormone alone (Fazio, 1964; Hartmann et al., 

1997; Blythe and Sibley, 2003). 
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Furthermore, Maile and Nieuwenhuis (1996) demonstrated that although Seradix (0.8% 

IBA) on its own did not significantly influence rooting in E. nitens cuttings, it improved 

rooting when used in combination with specific time of year of harvesting cuttings and 

propagation medium (Maile and Nieuwenhuis, 1996). Those authors also demonstrated 

that the percentage rooting in juvenile cuttings set in late summer was influenced by the 

time of year of harvesting cuttings, the propagation medium and Seradix application. 

They found significant differences in the percentage rooting between Seradix-untreated 

and Seradix-treated cuttings propagated in vermiculite (50% vs. 16.7%, respectively). 

When cuttings were set in a mixture of peat, sand and vermiculite (1:1:1), Seradix-

untreated cuttings yielded a higher percentage rooting (66.7%) than Seradix-treated 

cuttings (23.3%). However, they did not observe any differences in the percentage 

rooting between Seradix-treated and untreated woody cuttings set in mid-winter for the 

different propagation media that were tested in that study. The results obtained by those 

authors indicated that the propagation media utilised affected the rooting of cuttings of 

the pure species E. nitens. It is possible, therefore, that the propagation substrate used in 

the present study had an inhibitory effect on rooting of the hybrid clone, but this was not 

investigated.  

 

Tibbits et al. (1997) reported that the rooting ability in E. nitens cuttings appeared to be 

highly inherited and suggested that a selection program for E. nitens could identify 

superior rooting plants. Several years ago, it was determined that the E. grandis x nitens 

hybrid behaved more like the E. grandis parent than the E. nitens parent in its ability to 

coppice and produce rooted cuttings (Aimers-Halliday et al., 1999). Perhaps the low 

incidence of rooting obtained with the GN107 genotype in the present study may be a 

consequence of inherent, poor rooting traits and the poor plantlet yield for GN107  

(< 13%) may be an extreme and rare case.  

 

As stated by Sasse and Sands (1997) for cuttings to be considered successful in tree 

improvement programmes, their root systems must function as well as or better than 

those of seedlings. From personal observation, and those of researchers and forestry 

workers, abnormal root growth is often observed in cuttings, and this aberrant growth 

usually persists after cuttings have been established in the field (Lindström and Rune, 
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2000; Mokotedi, 2007). Eucalypt cuttings have been known to produce roots that grow 

180
o
 apart, which, are often seen above-ground in close proximity to the stem 

(Mokotedi, 2006). Furthermore, GN107 cuttings have been reported to produce ‘tap 

sinkers’ by 16 months of field growth that serve to improve the anchorage of the plants 

(Mokotedi, 2007). In the present study, as early as four weeks after cuttings were set, it 

was apparent that two types of root emergence patterns were evident amongst GN107 

cuttings. Roots emerged from the abaxial cut end of the cutting (base) while others 

emerged from the sides of the stem, just above the base. As the significance of these 

root emergence patterns on the development of the roots of macropropagated plants is 

not known, the incidence the rooting patterns and the origin of the roots in cuttings were 

investigated. 

 

Three rooting patterns amongst cuttings of GN107 were distinguished: cuttings that 

gave rise to roots emerging from the bottom only (abaxial end) (type 1), cuttings with 

roots emerging from the side (above the abaxial end) (type 2), and cuttings with both 

roots (type 3). A higher incidence of type 2 and 3 rooting was observed in non-terminal 

cuttings as compared with terminal cuttings, and the highest incidence of this response 

was observed amongst cuttings set in November. 

 

Blythe and Sibley (2003) highlighted that it is not only the rooting hormone used and its 

concentration, but also the duration of hormone application that affect the rooting ability 

of cuttings. However, E. grandis cuttings dipped into and IBA solution for 1 second was 

found to be equally effective in root formation than cuttings dipped for 5 or 10 seconds 

(Carter and Slee, 1993). In the commercial nursery, the practise of dipping cuttings into 

Seradix powder is not precise. As labourers set thousands of cuttings a day, the 

possibility exists that the depth of Seradix application is not identical in each cutting; 

the implications of this on subsequent root growth, rooting patterns and possible 

aberrant root growth in the nursery and in the field is not known. Therefore, the depth of 

Seradix 2 application was investigated in the present study. Although not statistically 

different, cuttings dipped 2.5 cm into Seradix 2 produced more roots that emerged from 

the side (type 2) and from both the bottom and side (type 3) of the stem than cuttings 

dipped at the abaxial end only (Table 3.64). 
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Anatomical investigations of roots that emerged from the abaxial end and roots that 

emerged from above the abaxial end, revealed that they appeared to develop from both 

the cambium as well as the xylem archs. However, although not statistically compared, 

there was no apparent relationship between the site of root emergence (root ontogeny) 

and the type of root emergence pattern (type 1, 2 or 3). Therefore, the type of cutting 

used and the time of year at which cuttings were set had an effect on the rooting pattern 

of GN107 cuttings, however, the depth of Seradix 2 application did not. The 

implications of the rooting patterns described in the present study on the long term 

development of roots and anchorage of cuttings in the field still need to be determined. 

  

4.2 Conclusions 

 

The plantlet yield for GN107 cuttings obtained in this study was poor (< 13%). Despite 

this, the results suggested that the rooting and plantlet yield were influenced by Seradix 

2 application, cutting type and season. Seradix 2 appeared to have an adverse affect on 

shoot growth as cuttings treated with Seradix 2 gave poorer results for shoot 

development than untreated cuttings. In addition, non-terminal cuttings outperform 

terminal cuttings when Seradix 2 is used, regardless of how they were cut (at, above or 

below the node). There appears to be a seasonal effect on root, callus and shoot growth 

in GN107 cuttings, with the best period for rooting observed in June (winter), while the 

best shoot development was exhibited in November (spring). Overall, the high mortality 

rate (regardless of the time of the year cuttings were set) and low plantlet yield emerges 

as the major concern. Treatments with the best rooting performance (highest percentage 

rooting and highest number of roots) were set in June. However, cuttings set in June had 

the lowest shoot: root ratio. These points emerge as another concern as the growth and 

competitiveness of plants in the field may be impeded in plants with shorter roots and a 

reduced shoot: root ratio. 

 

Based on the work of other researchers and as discussed, there are numerous parameters 

that influence cutting development. It is suggested that for the clone GN107, other 

concentrations of IBA, perhaps lower than that found in Seradix 2 powder (0.3% IBA), 

be tested. Since Seradix 2 appeared to have inhibited shoot growth in GN107, lower 
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concentrations of IBA should reduce callus production and increase shoot production, 

and thereby increase plantlet production. In addition, the effect of combinations of 

hormones (such as IBA and NAA) and the effect of a dipping the cutting into a solution 

containing the hormone (rather than the powder itself) on the rooting of GN107 should 

be investigated.  

 

Seeing that a substrate of peat, sand and vermiculite increased the rooting results 

obtained in E. nitens cuttings (Maile and Nieuwenhuis, 1996), it is suggested that other 

combinations of propagation substrates, such as those that include sand, be investigated 

for GN107. Moreover, increasing the temperature of propagation medium by the 

application of bottom heat may also improve the rooting percentages of GN107; 

however, further research into the optimum root zone temperature is necessary. 

 

Wilson (1999b) demonstrated that heavy and light pruning of mother plants, both 

weekly and fortnightly gave varying rooting percentages (35 - 46%) in E. globulus 

cuttings. Therefore, it is suggested that pruning and rejuvenation of hedge plants should 

be carried out at the Hilton nursery.  

 

This study established that cuttings of GN107 have an optimum rooting period and a 

separate optimum shoot development period in the year. This, together with the 

relationship with auxin treatment, needs to be investigated further. Since overall plantlet 

yield was very low (< 13%) and the mortality of GN107 was very high, it is suggested 

that the study be repeated with a bigger sample size. In addition, other statistical 

analyses should be performed (such as multivariate tests) so as to determine the 

relationships between the three parameters tested (i.e. cutting type, Seradix 2 treatment 

and season). Other parameters that may affect shoot development, such as, the use of 

other auxins (e.g. NAA) and different concentrations of auxins should be investigated 

for GN107. In addition, the effects of the pruning regime for hedge plants on shoot 

development should be investigated. As it appears that specific parameters and 

conditions are required for cutting propagation of the commercially important clone 

GN107, future research should concentrate on identifying and exploiting those 

parameters to improve plantlet yield.  
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