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ABSTRACT

Two approaches to measure the BAOs (baryon acoustic oscillations) with optical and radio
telescopes, namely; galaxy redshift and intensity mapping (IM) surveys have been introduced
and discussed in the literature. Among the two methods, the galaxy redshift survey has been
used to great effect and is based on the detection and survey of millions of individual galaxies and
measuring their redshifts by comparing templates of the spectral energy distributions of the light
emitted from the galaxies with optical lines. IM is novel but a robust approach that focuses on
surveys of extremely large volumes of galaxies without resolving each individual galaxy and can
efficiently probe scales over redshift ranges inaccessible to the current galaxy redshift surveys.
However, the IM survey has promisingly shown to have better overall sensitivity to the BAOs
than the galaxy redshift survey but has a number of serious issues to be quantified. The most
obvious of these issues is the presence of foreground contaminants from the Milky Way galaxy
and extragalactic point sources which strongly dominate the neutral hydrogen (HI) signal of our

interest.

Under this study, we are interested to realize the IM approach, pave the pathway, and opti-
mize the scientific outputs of future radio experiments. We, therefore, carry out simulations
and present forecasts of the cosmological constraints by employing Hi IM technique with three
near-term radio telescopes by assuming 1 year of observational time. The telescopes consid-
ered here are Five-hundred-meter Aperture Spherical radio Telescope (FAST), BAOs In Neutral
Gas Observations (BINGO), and Square Kilometre Array Phase I (SKA-I) single-dish experi-
ments. We further forecast the combined constraints of the three radio telescopes with Planck

measurements.

In order to tackle the foreground challenge, we develop strategies to model various sky compo-
nents and employ an approach to clean them from our Milky Way galaxy and extragalactic point
sources by considering a typical single-dish radio telescope. Particularly, the Principal Compo-
nent Analysis foreground separation approach considered can indeed recover the cosmological
Hr1 signal to high precision. We show that, although the approach may face some challenges, it

can be fully realized on the selected range of angular scales.
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INTRODUCTION

1.1 THE ISOTROPIC AND HOMOGENEOUS UNIVERSE

Cosmological studies are very ancient and have largely been propelled by the human inquisitive
mind to understand the Universe. But, only around the 1920s and increasingly, in recent years,
the study of cosmology has progressively received its due attention, when rigorous theoretical
developments, scientific observations, and experiments started to be employed to study the
Universe as a whole. Today, cosmology continues steadily to be an active study and research
area, marked with spectacular discoveries and breakthroughs. The study of this fascinating field
has gone through many reformations at different epochs, often influenced by culture, religion, and
philosophy. Steady theoretical framework developments pushed to the state-of-the-art cosmology
which started with Einstein’s advancement of the general relativity (GR) theory around 1915.
Out of GR, Einstein developed field equations about the cosmos which implied the Universe was

evolving.

It was not until 1929 when Hubble made a paradigm shift by observationally convincing the
community of astronomers that the Universe was actually expanding. This discovery marked
the beginning of modern cosmology and was followed by a myriad theoretical and observational
advancements to study the Universe. Cosmic propositions such as the Big Bang theory and
steady-state Universe were born, their perspectives rigorously challenged and have since then
been very hot topics in cosmology. Countless debates due to different cosmological perspectives
continued to streamline and fashion the study of cosmology, increasing its precision. As a
result, two antagonistic schools of thought emerged, one a proponent of the static universe, and
another one supporting the evolutionary state of the universe. These contentious ideas continued
to revolve, until 1965, when to a great extent the dispute was resolved following a serendipitous
discovery of the Cosmic Microwave Background (CMB). Thus, CMB discovery was seen as
another good evidence to support the evolution of cosmic structure. The observed redshifted
wavelengths of primordial photons in the electromagnetic spectrum is believed to be the effect
of the cosmic expansion as these photons travel through space. This observation cemented and

favoured the proposition that the past very hot and dense universe originated from the Big
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Bang, has been expanding, reasonably marking the beginning of physical cosmology. What
followed then was a parade of studies attempting to answer numerous cosmological questions,
such as how possible the clumpy and highly structured Universe we see today was remarkably
smooth as evidenced by the CMB that formed few thousand hundred years from the Big Bang,
what forces drive the expansion of the cosmic structure, and the possibility that the Universe
could have undergone rapid expansion (inflation) in the past, just a minute fraction of a second
after the Big Bang, and how all these processes independently and collectively account for the
structure formation and the dynamics of the evolving Universe. The cosmological studies thus
attempt to provide a scientific account of the history and prospects of the Universe since its
inception and predict its future trends. Cosmology is an evolutionary field of study, it continues
to grow perpetually, battling to answer many fundamental questions of nature, and in doing so
it opens avenues for the new scope of exciting ideas. Nevertheless, the power of observational
techniques boosted by revolutionary cosmological experiments, such as a large number of galaxy
redshift surveys, cosmic microwave background, and 21-cm experiments have opened doors to
test many cosmological theories and models, and the degree of agreement between models and

data is greatly astonishing.

Cosmology is thus a scientific investigation and analysis of the origin, history, structures, and
dynamics of the Universe, and its ultimate fate, and it deals with the Universe as a whole and its
phenomena at largest scales. Due to very large-scales, cosmological observations are generally
very challenging because the majority of the vast cosmos of spacetime we are observing is very
far from us. However, distant sources used to probe the cosmic are very dim. For this reason, the
study of the Universe is paralleled by the development and advancement of the new generation
of instruments, usually large optical telescopes with more sensitive detectors. The discipline of
cosmology has progressively matured over decades, and today, many of its theoretical predictions
are no longer speculations but have been diversely tested experimentally and confirmed to be
true. For decades, enormous advancements have been made in studying and understanding our
Universe, and today increasingly, numerous observations and experiments are being developed
and/or commissioned to survey the Universe. This is the era of high fidelity cosmology, and
we can now provide solutions to long-standing puzzles with high precision and unprecedented

accuracy.

Large-scale Universe structures contain predominantly a collection of galaxies. Each of these
galaxies, for example, our Milky Way galaxy, contains gravitationally bound large number of
stars spanning up to ~ 10!, Galaxies naturally occur in groups called clusters, with each cluster
containing up to a few thousand galaxies. Rarely, clusters group to form clusters of clusters.
There is however little possibility for the existence of high hierarchies such as clusters of clusters
of clusters. The Universe also contains empty regions, which together with superclusters have

recently been one of the major research focus in cosmology.

Studies have shown that on sufficiently large scale, that is much larger than the typical

clustering scale (which is also much larger than the typical distance between any two nearest
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galaxies), galaxies are not randomly cluttered but their distribution on average uniformly spread
throughout the cosmic structure at any given time. Thus, different patches of the Universe with
the same volume however on sufficiently large scale contain roughly the same number of galaxies
at any given time, which changes accordingly with time following the dynamic state of the

Universe.

Edwin Hubble discovered around 1930s that distant galaxies were moving further away from us
(the Milky Way galaxy) and from each other. He further found that such galaxies were receding
from each other with recession velocities roughly proportional to their distances apart at any

given time. This discovery is called Hubble’s Law and we quantitatively describe it below.

Let r(t) denote the radius of the balloon at any given time ¢, and consider an angle 645 at the
center of the balloon subtended by two dots denoted by A and B. Then dap = 04p7(t) is the
distance between the dots on a great circle. Furthermore, as dots A and B move relative to each
other, their speed is given by vap = dap = 04p7(t) = dap(#(t)/r(t)), where 7+ = dr(t)/dt. This
implies that vap o dap, with 7/r being the proportionality factor. If distances change between
A and B by some factor at any time ¢, in that period of time, the distances between any pairs

of dots change by the same factor.

We can conclude that any two pairs of dots A and B around a great circle will move with
a relative speed that increases with their distance of separation as the balloon expands. The
uniform expansion of this spherically perfect uniformly dotted balloon gives us an approximate
analogy of a relative distribution and motions of galaxies in an expanding cosmological principle
universe model. If we denote the proportionality constant, 7/r by H and generalize the notion
for any two arbitrary objects (in this case galaxies), that recede with a speed v proportional to
the distance d between them, we can write v = Hd, and this equality applied at the present

time tg is
v = Hod, (1.1.1)

known as the Hubble’s Law, where Hy is the Hubble constant given by Hy = 100hkms~! Mpc™!,
and h is the dimensionless constant. The Hubble constant has a close relationship with other
two concepts, namely; the Hubble time and the Hubble radius. Hubble time, t;y = 1/Hj, is the
measure of the time for which the expanding universe at the present rate, doubles its size; and
Hubble radius, approximated by ¢/Hy ~ 4300 Mpc (where c¢ is the speed of light) is the radius

of the presently observable universe.

There has been an ongoing dispute regarding the exact measurement of the Hubble constant;
this, in turn, has constantly led to its improvements over time, as astronomers advance their
knowledge and instruments to constrain the parameter with an ever-increasing precision in
measurements and data acquisition. Several measurements have determined the Hubble constant
in the range 65 — 75 kms~! Mpc~!.

The most recent measurement of Hubble constant was carried out through calibration of the Tip
of the Red Giant Branch (TRGB) applied to Type Ia Supernovae (SNela) which estimated the
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Hubble constant to be Hy = 69.8 + 0.8 kms~! Mpc ™!, from observations made by NASA/ESA
Hubble Space Telescope (Freedman et al., 2019). This measurement is relatively lower compared
to the value of 74.03 + 1.42km s~ Mpc~! recently reported by the Hubble SHOES (Supernovae
Hj for the Equation of State), carried out by observing pulsating stars called Cepheid variables
in a neighbouring satellite galaxy known as the Large Magellanic Cloud (Riess et al., 2019).
The pre-existed Hubble constant estimation from the more distant background universe by the
European Space Agency’s Planck satellite constrained the parameter from CMB measurements
(by assuming the standard ACDM model) to be 67.440.5kms™! Mpc™! (Planck Collaboration
et al., 2018). Other significant earlier reports on the Hubble constant measurements in a series
can be found in various references mentioned in Planck Collaboration et al. (2018); Riess et al.
(2019); Freedman et al. (2019).

Although, currently, there is no agreement on the exact value of Hubble constant between
different measurements, such disparity in no way contradicts the observed phenomenon that the
Universe is expanding. Therefore, it turns out that, in the distant past, at a later stage of their
development, galaxies must have been very close to each other, about one billion years after a
universal explosion at some initial point of the Universe which violently threw the matter, the

assumed phenomenon for the origin of the Universe, commonly known as the Big Bang.

1.1.1 FRIEDMANN EQUATIONS

General Relativity (Quigg, 2013; Bernstein, 1988; Peacock, 1998; Coles and Lucchin, 1995) is
the modern treatment of gravity and has become one of the prominent tools for studying the
late-time physical cosmology, providing us with the most suitable approach to describing the
geometry of curved spacetime. What follows, we present a schema for obtaining the Friedman

equations from Einstein’s field equations adopted from Mo et al. (2010); Carroll (2003).

In the ACDM cosmology, the Universe’s matter-energy content can be used to determine the
geometry of spacetime via Einstein’s field equations. The metric that relates the geometry of

spacetime and mass-energy distribution evolves according to Einstein’s field equations

8rG

G = G = =5 Ty, (1.1.2)

where
1
G;w = R;w - iRg,u,l/ (113)

is called the Einstein tensor, R,, and R are, respectively, called Ricci tensor and Ricci scalar
(curvature scalar), and g, is the metric tensor. Here, A is the usual cosmological constant,
currently believed to be responsible for the accelerated cosmic expansion. Einstein introduced
this constant when he was solving the field equations with an intention to yield a static universe.
T}, is the energy-momentum tensor or sometimes referred to as the stress-energy tensor of the
matter content of the Universe, G is Newton’s constant of gravitation and c is the light speed.

The Ricci tensor, Ry, tells us about the local curvature of spacetime, and the Ricci scalar,
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R is responsible for determining the effect of mass and energy distribution on the curvature
of spacetime. The momentum and energy of the matter fields are a source of gravity, and all

information regarding them are encoded in the energy-momentum tensor.

The metric, g,,,,, is very important in cosmology, it contains all information about the geometry of
spacetime. Metric tensors generally depend on the location and the geometry of space/spacetime
for a given coordinate system z®, and can be described by the metric g, = gu (). Such
a metric is general, and the information it encodes regarding the topology and geometry of
spacetime is not known a priori, and thus can only be discovered by careful analysis. In the
ACDM cosmology, we have assumed our Universe to be homogeneous, so the metric associated
with such universe is independent of location, and hence g,,(z“) = gu . The choice of the
coordinate system determines numerical values for metric tensors. Ricci scalar can be deduced

from the trace of Ricci tensor
R =R} =g"Ry, (1.1.4)

and both the Ricci and the energy-momentum tensors are symmetric, that is R, = R,,, T, =
T,,. We see how components of the Einstein’s field equations (1.1.2) have different characteriza-
tion, as a result they are split into components which either measure the curvature of spacetime

or the energy contained in it.

We can contract (1.1.2) with a contravariant metric g"” to obtain the trace of the field equations,

R+ 4A = —8:—4GT (1.1.5)

where T' = T;\\. This enables us to re-write the field equations as

8tG 1
RNV + gMyA = CT (TNV — 2guyT) . (116)

For a perfect fluid — the fluid in which there is no heat flow or viscosity, but entirely specified by

both the rest-frames, energy density and (isotropic) pressure, the energy-momentum becomes
T — <p + C’;) Uktu” — g"p, (1.1.7)

where pc? is the energy density, U* and U” are the four-velocities of the fluid, with

dx*
Ut =c—. 1.1.8
S (1.1.8)
Note that
. b
Ty = (,0 + C2> U.Uy — guuwp. (1.1.9)

The density and pressure solely depend on the cosmic time in an isotropic and homogeneous

universe. That means there is no peculiar motion, and so the four-velocity is given by

U* = (c,0,0,0). (1.1.10)
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This further yields

T = (1.1.11)

with T = pc® — 3p.

The constituents of the metric tensor g,,, can be obtained from the Friedmann-Robertson-Walker
metric (FRWM) for a homogeneous and isotropic universe. The FRWM enables us to re-write
using the scale factor a(t) and the curvature signature k, the Ricci tensor R and the Ricci
scalar R,,. Now, if we plug the results obtained above into Equation (1.1.6) and apply the

energy-momentum tensor (1.1.7) we obtain equations

a 4G P Ac?
- —— 35 — 1.1.12
a 3 (p—i— 02> + 3 ( )
and
I K L :47rG( —Z) + A (1.1.13)
a a a C

Equations (1.1.12) and (1.1.13), are, respectively, from the time-time (00) and the space-space
(74) components of the Einstein’s field equations. Substituting Equation (1.1.12) into Equa-
tion (1.1.13) we obtain the Friedmann equation:
-\ 2 2 2
a 8rG ke Ac
-] =—p—-—+ —. 1.1.14
(a) 3 P72 + 3 ( )
The cosmological constant A can be thought of an energy component of mass density pp =
Ac?/87G and pressure py = —pac?; these terms can then be incorporated on the right-hand

side of Equation (1.1.2) as part of energy-momentum tensor, T, = (¢*A/87G) g, see Mo et al.
(2010).

Next, we introduce the FRW universe metric that takes the form (Kiefer and Polarski (2008))

dx

(ds)2 = (cdt)? — a2(t) [(m

>2 + (zdf)? + (xsin@dqb)Q] : (1.1.15)

which can also be re-written as

(ds)? = (cdt)? — a*(t) Lfiﬂ +1? (a0% + sin2ed¢2)] . (1.1.16)

It is conventional and standard in cosmology to introduce new units such that the speed of light,
¢ = 1; to require that speeds are measured in units of the light speed, and the Equation (1.1.16)

translates into

dr?

1 — kr?

ds® = dt% — a2(t) [ + 1% (d6? + sinzedqb?)] : (1.1.17)
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the Friedmann-Robertson-Walker (FRW) metric.

Here, (1,0,¢) are the time-independent dimensionless comoving coordinates, with r € [0, 1],
hence do not change as the Universe expands or contracts. These coordinates label a fundamental
observer. In an unperturbed (homogeneous) FRW metric, a fundamental observer will always
observe the Universe to be isotropic. The parameter ¢ (in units of time) is called proper time — the
time on a fundamental observer’s standard clock. The parameter k is responsible for determining

the global curvature of spacetime, and it is restricted to only take the values —1, 0 and + 1.

1.1.2 THE REDSHIFT, SCALE FACTOR, AND GALAXY VELOCITY MEASUREMENTS

Velocity measurements of the distant galaxies divided by the respective galaxy distances from
us can be used to determine the expansion rate and consequently enable us to infer how rapid
the cosmic is expanding. Such expansion determines how fast the distant galaxy recedes from us
according to Hubble’s law. A receding object such as galaxy will emit sound or light wavelength
that is stretched out at the time it reaches an observer. As a result, the wavelength of sound or

light as measured by an observer will be longer compared to the emitted one.

Let us formally derive the scale factor, redshift, and the line emission relationships and see how
we can use the results to estimate the recession velocities of the distant galaxies. We consider the
constant coordinates x’ for which in the FRW universe are the comoving coordinates (r,, ¢)
(see Subsection 1.1.1). Suppose that an arbitrary galaxy G, each defined in terms of this
coordinate frame, that is G(r,0,¢), called the cosmological rest-frame is a basic unit in the
cosmos. Similarly, an observer in our Galaxy (Milky Way) will have his/her own comoving
coordinates, here denoted by O(r,0,¢). Let us assume no preferred position for an observer,
and place him/her at the center of the Universe (r = 0) for convenience. Suppose further that
a sample distant galaxy G(r,0, ¢) emits light towards us, such that tep;; is the time when the
emitted light leaves the galaxy G and t = t,ps is the present epoch time corresponding to the

light reaching an observer at r = 0.

Light path is a null geodesic according to the theory of general relativity, which means ds? = 0.
f and ¢ remains constant as there is no spatial distortion along the null geodesic, and hence the
FRW metric (1.1.16) becomes

2

232 2
0 =c°dt” — a(t) A=)

+0+0, (1.1.18)

which implies

dr

cdt = +a(t) —;
()\/171457“2

(1.1.19)

we will consider

dt d
o & (1.1.20)

at) Ik
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Since as time ¢ increases, r decreases, we have

J - (L T, 1121
temic @(t) remit V1 —kr2  Jr=0 /1 — kr?

Proper knowledge of the parameters a and k is required to solve (1.1.21), but we can in our
case apply some approximations for such a solution. Suppose two successive peaks of the light
wave emitted by the galaxy G are separated by a(t) intervals, that is the two successive peaks
emitted by G at times temis and temit + dfemit are respectively received by an observer O at times

tobs and tops + dtops, SO that Equation (1.1.21) becomes

tobs+Atobs dt r d
/ <2 / . — (1.1.22)
temit‘i‘Atemit a(t) ]. — k'f‘z

We further assume that the scale factor a(t) varies slowly with time, and hence in the time
intervals, Atemis and Atops, a(t) practically remains unchanged, thus upon subtracting (1.1.21)
from (1.1.22), we have

cDtobs _a (tobs)

= . 1.1.23
CAtemit a(temit) ( )
The factor at which the wavelength is stretched is called the redshift and is defined by
» = 2obs = Aemit. (1.1.24)
)\emit

This is the factor by which the wavelength of light increases as it traverses space from the galaxy
G to the observer Q. Since

CAtobs )\obs

= ’ 1.1.25
cAtemit Aemit ( )
the redshift is then related to the expansion factor as
A t
|4z = Dobs _ lfobs) (1.1.26)

>\emit a(temit)

where respectively, Aops and Aenit are the observed and emitted wavelengths of the sound or
light from a receding object, z = zemit is the redshift of an object at the time it emits light of
photon wavelength Agmit. Redshift is simply a fractional change in the A between an object and

an observer. For present-day observation, a(fobs) = Gobs = ao = 1, and so

1

—_— 1.1.27
1+ zemit ( )

Gemit =

where aemit and aqpg are respectively, the scale factors corresponding to the time a photon was

emitted and the time it reaches an observer.

The integral on the right-hand side of (1.1.22) is called the co-moving distance, 7¢com. The
multiplication of the comoving distance with the expansion factor a is called physical/proper
distance, i.e. 7 = ar¢om. Presently, the expansion factor is usually normalized to 1, making

the proper distance and the co-moving distance the same. The proper distance progressively
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decreases with the scale factor from the present moving back in time, but the co-moving distance

does not change.

Growth of the structures in the Universe, set forth by small inhomogeneities in the background
energy density induced velocities that deviate from the systematic expansion of the Universe.
Such velocities are called peculiar and are relative to the fundamental observers’ cosmological
rest-frame. With respect to the fundamental observer (situated at the origin), the proper ve-
locity of a particle (object) is defined by v = dl/dt, where (t) (see Eq. (1.1.38)) is the proper
length between an observer and the object. For the component of the velocity due to univer-
sal systematic expansion, vexp = H(t)/l(t) and the peculiar velocity vpec, we can write (using
Eq. (1.1.38))

v(t) = a(t)x(t) + a(t)X(t) = vexp + Vpec- (1.1.28)

Now, suppose a particle at the same location as a fundamental observer has a peculiar velocity
Upec Telative to the fundamental observer. The geometry at the fundamental observer is locally
a Minkowski space, and the fundamental observer will observe from a particle, a light with a

Doppler redshift, z,ec given by
1+ 2pec = 7. (1.1.29)

Assuming that two observers are separated by some proper distance from each other, and suppose
further that a particle moves with a peculiar velocity along the geodesic connecting the two

fundamental observers, we can write (using the redshift definition Eq. (1.1.26))

Ne Ah
1 obs — T —
T Robs = 3= N

(1.1.30)

where ), is the particle-emitted wavelength; A1 and Ay are the wavelengths observed respectively

by the first and the second fundamental observers. The relation (1.1.30) above reduces to
1+ Zobs = (1 + 2pec) (1 + zexp), (1.1.31)

which implies that the observed redshift of any object, zohs is a contribution of redshift due
to the universal systematic expansion zexp and the redshift due to the peculiar velocity of the
object zpec along the line-of-sight. Equation (1.1.29) can be approximated by zpec & Upec/c in a

non-relativistic case, and Equation (1.1.31) reduces to

v
Zobs = Zexp + pcec (1+ Zexp)- (1.1.32)
For galaxies cluster at redshift z,
- (1.1.33)
g =0 P
v z (1 + Z) Y

for which o, is the peculiar velocity dispersion of galaxies, and o, is the observed dispersion in
the redshift.
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It can be shown that for a free, non-relativistic particle with peculiar velocity vpec and a mo-

mentum p,

Upec ¢ a1 (t), implying p(t) oc a1 (¢). (1.1.34)

Again, since pc = E = hpc for photons with rest mass, then v o a~! and the decay law p oc ¢~}

is true for both photons and massive particles.

The standard Doppler formula z ~ v/c is applied at low redshifts, and using the Hubble’s law
v = Hyd, where the constant of proportionality, Hy is the Hubble constant, and d is the distance
of separation between the galaxy and an observer, we can write

LMo, (1.1.35)

c

Hubble’s constant has units of time inverse (s~!), usually written as Hy = 100h kms™'Mpc™!,
where the dimensionless parameter h, with a more often chosen fiducial value of h = 0.7 is
introduced to account for uncertainties in the measurements of the Hubble constant, since various

probes came up with varying values of this constant.

The Hubble rate tells us how rapidly the scale factor changes and the change in the scale factor
describes the evolution of various Universe mass-energy contents. Therefore, measuring the
amount of redshift in the emission or absorption lines, can inform us about the rate of recession

from us (our own galaxy) of the structures in which they reside.

1.1.3 THE ANGULAR-DIAMETER AND THE LUMINOSITY DISTANCES, VOLUMES AND
REDSHIFT RELATIONS

The Friedmann-Robertson-Walker (FRW) four-metric of spacetime, for a line element (met-
ric), di? (see proof Weinberg (1972)) of a homogeneous and isotropic three-dimensional (3-D)

hypersurface is given by (we adopt materials from Mo et al. (2010))

ds? = 2de? — di?
a2 (1.1.36)

1— kr2

= 2dt? — a(t) [ + 77 (62 + sin?0do? ) 1 ,

where t is the constant cosmic time and c is the speed of light. Here, the cosmic time ¢ becomes
the proper time of all fundamental observers, if we define as the observer’s proper time, the
time recorded by the standard clock at rest with the observer. At any given time ¢, for any two

fundamental observers, a proper distance [ is defined as

- /dl. (1.1.37)

We label fundamental observers by the comoving coordinates (r,6,¢) and assume that one
observer is placed at the origin (r = 0) and the other at (r1,0,¢). We can then write a proper

distance as

I = a(t) /0 \/fw — a(t)x(r) (1.1.38)
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where x is the proper distance [ measured in units of the scale factor, called the co-moving
distance between the two observers, and is defined as
sin~lr, for k=41
x(r) =9, for k=0 (1.1.39)
sinh~'r, for k= —1.

It follows that the rate of change of proper distance [ at time ¢ between any two fundamental

observers in units of [ is given by

di
— =H(¢)l 1.1.4
=2 (1.1.40)
where H(t) is the Hubble rate (a function of cosmic time t):
Al a(t)
H(t) = —=—+%. 1.1.41
®) It a(t) ( )

Usually, time variables are changed from proper time to conformal time

() = /Ot ;?;/) (1.1.42)

We can use 7 and x to write the FRW metric in the form that is more handy for gaining insights

of the spacetime causal properties:
ds? = a?(7) [dr? — dx® — f2(x) (d6? + sin®0dg?) | (1.1.43)
where

siny, for k=41
) =1 x, for k=0 p=r (1.1.44)

sinhy, for k= -1

We will now derive the relationships between the angular-diameter and the luminosity distances,
following this argument: the light we observe at the present time was emitted at an earlier time
from a distant source, as a result, the proper and the co-moving distances cannot be observed
directly. We, therefore, have to consider other cosmological distances that we can directly

measure from astronomical observations.

Let the observable properties of the object with known physical (proper) size D, intrinsic lumi-
nosity L at some distance d be the object’s angular extent 6’ subtended by the object and the
flux F'. The angular-diameter and the luminosity distances, d4 and dy,, are, respectively given
by

D
da=7 (1.1.45)
for small values of €', and
4 F
a2 =" (1.1.46)
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In a static space, dg = dj, = d, but these values differ when we consider cosmic distances in an
expanding universe. By the definition of the angular-diameter distance, the angular extent of
the object decreases by the same factor that will decrease the d4. Suppose at a given cosmic
time temit, there exist two points with the same radial coordinate remit (where in FRW metric
df = d¢ = 0), such that two light signals reaching us today at time ¢, originate from the two
points, and the distance between the two light signals equals the proper size D of an object.
In FRW metric, the proper size of an object is then given by the integral over the transverse
direction of dl (Eq. (1.1.36))

a(tobs ) Temit

e (1.1.47)

D= aemitremit/del =
and can be thought as the distance between the two signals. This means

a(tobs ) Temi
A= g:_ierzr:lt = a(temit)remita (1148)

where a(tops)Temit 1S interpreted as the proper distance from an observer at the time of observa-

tion to the object, for flat universe.

Following the arguments given in Mo et al. (2010), the flux and the luminosity distance defined

in Equation (1.1.46), can respectively, be written as

F= L (1.1.49)

A7 [a(tobs)remit(l + Z)} i

and
dr, = a(tops)Temit(1 + 2). (1.1.50)

It can further be shown that the luminosity distance and the apparent surface brightness (SB)

of an object are related as

_AF L .

and that if the Universe is not expanding,
dr, = a(tobs)Temit(1 + 2) = da(1 + 2)2. (1.1.52)

The apparent surface brightness (Eq. (1.1.51)), unlike d4 and dr,, is independent of the relation-
ships involving a(fobs)Temits Zemit and a dynamical evolution of the expansion factor a(t), it only
relies on the radiation field local thermodynamics conditions, a fact that follows directly from
SB o< T4,

It is necessary to transform an unobservable coordinate r into a function of redshift z so that
we can express the luminosity and the angular-diameter distances, dy, and d4 in terms of the
quantities that we can observe. However, understanding the propagation of light signals in

an isotropic and homogeneous universe is equally important because almost all astronomical
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object observations are facilitated by light signals. We know that photons propagate along null
geodesics for which ds = 0, and thus if we consider photon signals traveling towards the origin

along the radial direction (df = d¢ = 0), we can write their trajectories as
dr =dy; (1.1.53)

this follows from Equation (1.1.43). If from a fundamental observer (Temit, femit, Pemit) at time

temit & Wave crest is emitted, it will reach us in the origin at time ¢, given by

T (tobs) — T(temit) = X(Temit) — X(Tobs) = X(Temit) = X (), (1.1.54)

where rops = 0, and x(r) is the comoving distance (that traverses between the fundamental
observer and the observer at the origin (us)). We see that between the fundamental observer

and the origin, the comoving distance does not change with time.

Now, suppose a light signal (an event) that originates at cosmic time temi, and reaching an
observer at the origin at the present time t.,s has a comoving coordinate r(t). It follows from
(1.1.54) (and making use of the conformal time (Eq. (1.1.42)) and the fact dt = da/a) that

a(tobs) da

o 28 (1.1.55)

X(r) = T(tobs) — T(temit) = C/a

is the comoving distance corresponding to r. Speaking in more general terms, by setting a(tops) =
ap — the present time scale factor, and a(t) = a, we can write Equation (1.1.55) as
_c Z dz

H[)ao 0 E(Z) ’

x(r) (1.1.56)

where we have employed the fact that a(z) = ag/(1 + z) and Equation (1.1.133), such that E(z)
is given by Equation (1.1.138). In general, if provided with the required set of cosmological
parameters, the equation above can be integrated numerically. Using Equation (1.1.39) and

Equation (1.1.44), we obtain the angular-diameter distance in the comoving units, r, given by

c Z dz
r= fi lHOaO/O E(Z)] (1.1.57)

For z << zeq and ) g we can derive from Equation (1.1.56) for all three values of k, that is,

k ={-1,0,+1}, an analytical expression known as Mattig’s formula (Mo et al. (2010)):

2¢ Q07+ (2= Q) [1 = (Qoz + 1)
Hy Q2(1+ 2) '

(1.1.58)

agr =

When z << zeq for flat universe (mo+ Qp o =1), r = X,

c [* dz
apr = Ho/o 75 (1.1.59)
[0+ Qmo(1+2)?]

From Equation (1.1.56), we can get the proper distance per unit redshift at redshift z,

e 11
dz  Ho(l1+2)E(z)

(1.1.60)
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where
dl = a(t)dx (1.1.61)

is the proper length/distance element at time ¢ (in the radial direction). We shall use these

results in a sequel.

For a measured flux Fips as observed by an observer, it can be shown that

Lemit
d? = ) 1.1.62
L 47 Fiops ( )

If an astronomical object has a known intrinsic luminosity (or equivalently proper size), its lumi-
nosity or angular-diameter distance can be measured directly from it. Such sources with known
or calibrated/intrinsic luminosities are called standard candles/rulers. Astrophysical objects
such as Type Ia Supernovae (SNela) and a class of pulsating stars known as Cepheid variables
are often used as standard candles due to characteristic qualities they possess. Supernovae re-
sults from stars, usually of mass at least 5 times to 20 times larger compared to that of the sun,
exhausting their nuclei fuel, suddenly collapsing and ejecting huge amounts of heavy elements
into interstellar space, the process known as supernovae explosion. SNela have been widely
deployed to probe the cosmic, and the most breakthrough record we have today is the study
carried by two independent teams, using a class of distant SNela, which led to the empirical
discovery that the Universe expansion is accelerating (Riess et al., 1998; Perlmutter et al., 1999).
Well-known relationships between distances and the intrinsic brightness of supernovae which are
almost the same, and the changes in their colors with redshift due to the cosmic expansion, can
be used to measure distances between them and us, and when these distances are compared to
the supernovae cosmological redshifts, they can tell us how much the Universe has expanded

since the occurrence of such supernovae.

Similarly, Cepheid variable stars have mean intrinsic luminosities that strongly correlate to their
pulsation periods, the more luminous the Cepheid star, the longer the pulsation period. Such
stars vary in brightness and temperature as they pulsate radially, and the variations produce
changes in their brightness with stable periods and amplitude that are well-defined. Thus
Cepheid variables luminosities have direct and strong relationships to their pulsation periods,
making them useful benchmarks of cosmological distance measures. By simply observing their
pulsation periods, one can establish their true luminosities, and by comparing their known

luminosities to their observed brightness, distances to these stars can be determined.

Using distance-redshift relations, estimates of cosmological parameters, e.g., Hy, {0, 0 and €2y

can be obtained through redshift measurements of properly calibrated standard candles.

The Hubble Space Telescope used Cepheids to successfully measure distances out to ~ 10 Mpc.
Linearity still applies for luminosity distance-redshift relations within such distances, where
d; =~ cz/Hy, and constraints can only be obtained for Hy. For example, Freedman et al.
(2001) reported estimates of Hy = 72 + 8 kms™'Mpc~!. SNela are usually employed to obtain

measurements of more distant objects.
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Let us now consider object populations. Suppose
n(z) =no(2)(1 + 2)3 (1.1.63)

is a proper number density of some objects population, where for conserved number of objects,
ng is constant; and o(z) is the average proper cross-section of such population, then (using

Eq. (1.1.60)), in a unit redshift interval around z,

dNen
dz

s dl
dz

C z 2
- no(z)a(z)%“;(z)) (1.1.64)

— ny(2)(1+2)

is the number of intersections between a line-of-sight and such population of objects (Mo et al.,

2010). For the objects intersection up to redshift z, the optical depth is calculated as

z c z (1 + 2)2

= dNen = — ——dz. 1.1.65

m(2) = [ Vo= g [ mol@)ole) g e (1.1.65)

Here, dNgy/dz is the expected number of absorption system per unit redshift. The two latter
equations have various applications, where the meanings of ng(z) and o(z) have different in-

terpretations depending on where they are applied, as summarized in the table below (see Mo
et al. (2010) for full details).

Quasi-stellar Interpretations of the observed Scattering of microwave
objects absorption | number of gravitational lensing background by ionized
line systems events caused by foreground objects | intergalactic gas

no(z) Comoving num- | Comoving number density of lenses | Comoving number den-
ber density sity of free electrons

Average absorption

cross-section of . . .
o(z) Average lensing cross-section Thomson cross-section

absorbers

Next we consider at a redshift z related to a depth dz and a solid angle dQ = d6?, the proper-

volume element given by

&2V, = d(tyrdyda = & L laor(z)]" 0
= —

B T2EE (12 (1160

where an angle element df subtends the proper distance a(t)rdf, and Equation (1.1.57) relates r
to z. The total objects number in a unit volume can be computed using this equation. However,

out to redshift z, the total, proper-volume given by
rz) 5 dr’

2ma’(t) (sinflr — rm), for k = +1 (1.1.67)
= 4?#@3(75)&, for k=0

2ma’(t) (7"\/1 +r? — sinh_lr), for k = —1,

Vio(2) =dma®(t)
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can be obtained using Equation (1.1.66). Assuming that at redshift z the proper number density
of objects is given by Equation (1.1.63), then we can compute per units of both redshift and

solid angle, the predicted count of objects

2
N ()d2vp ol i[aor(z)}
dzdQ - a0 T " H, B(z)

(1.1.68)

Just by counting sources as a function of z (for known value of ny at z), this equation can be

used to put bounds on the cosmological parameters.

Let us now consider in the FRW metric, a comoving distance between two objects. Suppose
an angle a on the sky separates two objects situated at redshifts z; and zs, then the Equa-
tion (1.1.55) gives the comoving distances, here denoted by x; and y2 of the two objects, as
seen by an observer who is at the origin. For k = 41, the distance between two points on the
unit sphere, where x1, x2 are the polar angles of the two points such that these points make
azimuthal angles that differ by «, is a measure of the comoving distance y12 between the two
objects, see Mo et al. (2010). In summary, the comoving distance equations corresponding to

k= +1,0,—1 are respectively:

COSXY12 = COSY1COSY2 + Sinxisinyscosa; (1.1.69)
2 _ 2 2 )
X12 = X1 + X2 — 2x1x2c080; (1.1.70)
and
coshy1s = coshyicoshys — sinhyysinhyscosa. (1.1.71)

In the case where the angle « is zero or very small, the angular-diameter distance measured

from the first to the second object is given by

aopr12
d = 1.1.72
A1z = T (1.1.72)
where
ri2 = fr(x12) = fe(x2 — x1) = 7(22)/1 — kr2(21) — r(21)4/1 — kr2(z2); (1.1.73)

and for the case when 2 g = 0,

q 2¢ V1+ Qoz1 (2 — Qo+ 9022) — V14 Q2 (2 — Qo — Qozl) (1.1.74)
AT, Q2(1+29)2(1 4 21) ' o

The role played by Equation (1.1.74) in gravitational lensing is important, with the source and
the lens redshifts respectively given by zo and z;. For z; = 0, Equation (1.1.74) reduces to
Mattig’s formula. Note that |da 12| # |da21]-
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1.1.4 Bic BaAng ACDM MOoODEL OF COSMOLOGY

It took astronomers several decades before they started to be convinced that the gravity of the
normal visible matter was not sufficiently strong to form and hold together the complex Universe
structures in existence today, such as galaxies and clusters of galaxies. Through decades, a
number of astrophysical problems have been identified, and with time, the predicted existence
of dark matter started to be seen as one possible candidate solution to such problems (Trimble,
1987). It was around the 1980s when most astronomers started to realize that an invisible form
of matter may exist around galaxies and clusters of galaxies (Faber and Gallagher, 1979). A
possible non-luminous matter detection through gravitational effects may go as far as 1840s
(Trimble, 1987). Early attempts hinted that galaxies behave strangely and the known amount
of visible matter content in the Universe could not account for the observed phenomena in which

motions of galaxies do not obey fundamental laws of physics.

These big cosmological puzzles, in particular, missing mass around galaxies and clusters of
galaxies, and the expansion of the Universe as was observed by Edwin Hubble through studying
motions of galaxies (Hubble, 1929), led to the proposition of the standard ACDM model of
cosmology around 2000s. The ACDM provides a reasonable account of large-scale structures
of the galaxy and matter distribution in the Universe, the existence and structure of the cos-
mic microwave background (CMB) radiation as observed today, the accelerated expansion of
the Universe, and the amount of hydrogen distributed throughout the cosmic; which are very
important cosmology phenomenological properties of the Universe. A spatially-flat ACDM uni-
verse model is derived from general relativity, where A stands for a cosmological constant that
was introduced by Einstein and has been associated to a special type of energy called dark
energy (Mannheim, 2006) (the energy which keeps the Universe accelerated expanding (Riess
et al., 1998)), and CDM is a shorthand for cold dark matter, a hypothetical type of non atomic

matter.

Dark matter is an unknown and invisible substance that is thought to make up a significantly
large fraction of the Universe’s matter-energy content budget. The first attempt to describe
the existence of this invisible form of matter that pervades most of the space in the Universe
points back to the 1930s. The disproportionate account on the visible mass and observed very
high velocities in galaxy clusters inspired Fritz Zwicky, a Swiss astronomer, who is one of the
pioneers of modern astronomy, to carry out real major galaxy surveys and first postulated
the existence of Dark matter (Andernach and Zwicky, 2017) (original paper was published
in German (Zwicky, 1933)). Using the Coma cluster of galaxies, Zwicky observed very fast
velocities of galaxies within the cluster, and realized that the amount of visible matter within
the cluster was not sufficient to account for the very high velocities he noticed. In particular, he
studied galaxy motions within the Coma cluster, and measured how fast with respect to us the
galaxies were moving, and discovered that galaxies motions were remarkably fast ~ 1000 km s~*
relative to each other, and concluded that such motions were too high for the galaxies to remain

confined by the gravitational field of other galaxies within the Coma cluster. This was a puzzle
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because the observed amount of matter would not be sufficient to hold together very fast-
moving galaxies, instead, they were expected to stream away from each other. Zwicky then
hypothesized that, in addition to the luminous galaxies that could be seen, the Coma cluster
was filled with a mysterious type of matter (dark matter) that bound the galaxies together by
exerting a gravitational pull and kept them from flying off into space. Zwicky was the first to
study the concept of dark matter in detail using the virial theorem of classical mechanics to
infer its existence (Andernach and Zwicky, 2017; Zwicky, 1937; de Swart et al., 2017).

Through studying the motion of stars within individual galaxies, M33 and Andromeda (M31),
several astronomers such as Vera Rubin and Kent Ford (Rubin and Ford, 1970) could ob-
serve/describe similar “missing mass” phenomenon. According to Newton’s Second Law of
motion, motions of stars were expected to decrease with an increase in their distances from the
center of the galaxy, since stars far away from the center would experience less gravitational pull
as compared to those close to the center. This expectation is in contrast to what has actually
been observed: the measured rotation speeds of orbiting stars as a function of the distance from
the center of the M33 galaxy observed to be increasing with distances (or stayed constant) from
the center to much high values than would be expected from the gravity of stars (contained
within the galaxy) at the far edges of the M33 galaxy. Just as Zwicky concluded, this was an-
other evidence that the bulk of matter within such galaxy was in fact contained as some broader
distribution of dark matter and not in the luminous stars that could be seen. Similar studies
were carried using two galaxies NGC 300 and M33 by Freeman where velocity maxima at a very
large radius than photometrically predicted values were observed, something that could hint for
the existence of a new form of undetected matter (Freeman, 1970; de Swart et al., 2017). A
number of other probes have been reported, that studied the gravitational systems in relation
to the stellar motions of galaxies and stars on very large length scales to affirm and/or address
the dark matter problem (de Swart et al., 2017).

The invention of the general theory of relativity by Albert Einstein has changed our notion
of how gravity works. It tells us that matter and energy curve spacetime and light rays bend
in a gravitational field due to the curvature of spacetime. For example, massive stars attract
nearby objects by distorting spacetime, causing other objects including light to move along the
curved spacetime. In summary, according to GR, any massive object warps the space and time
around it, and as a result, light rays will take an apparent turn around the object rather than
traveling in a straight line. This observation provides other means of describing the dark matter
phenomenon. By looking at a distant galaxy behind a foreground concentration of mass, for
example, a cluster of galaxies, the shape of that distant galaxy will look distorted because the
light rays from the distant galaxy coming towards us get bent by the gravitational field of the
background galaxy cluster, and warp to form a ring around it. This ring is a highly distorted
image of the distant galaxy behind the background cluster. The light bends because the mass
within the foreground galaxy is far more than that contained in the luminous stars. This
phenomenon is called gravitational lensing (Schneider et al., 1992) and has been studied using

the SDSS and Hubble Space Telescope and a number of ground-based probes. Gravitational
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lensing provides another evidence of dark matter existence and can be used to infer (using
distant galaxy images) the distribution of mass in the cluster of galaxies. These observations
have established that galaxies in the clusters are embedded within the dark matter distribution.
Gravitational lensing can as well be applied to infer the existence of dark matter within an

individual galaxy where also distant galaxies are used as lenses.

Weak lensing by galaxies or galaxy-galaxy lensing, a statistical approach in some sense is an-
other lensing technique, it allows imaging the shape of galaxies behind thousand of foreground
galaxies. The method probes the average mass of galaxy populations instead of probing indi-
vidual galaxies, by measuring a large sample of distant background galaxies, for which weakly
distorted distant galaxies images by the dark matter halos of a foreground population of galax-
ies are obtained. It was found through this approach that, extended massive dark matter halos

always surround luminous galaxies.

In summary, the discovery of dark matter is a result of the idea that forces we can see are not
sufficient to account for the existence of galaxies and other large-scale structures of the Universe.
This has been backed up by theoretical calculations which have shown that the gravity of normal
matter cannot generate enough gravity to form and hold the giant complex structures we see
today, such as galaxies, stars, quasars, supernovae, pulsars, clusters of galaxies, and so on.
Moreover, theoretical prospects show that dark matter influence can be detected by observing
how places assumed to have a high dark matter concentration (such as giant galaxy clusters)
curve the space, leading to bending and distortion of light from distant objects (e.g., galaxies)
as the light traveling towards us passes nearby or behind them. Furthermore, dark matter has
been contrasted to other types of matter such as a cloud of normal matter without stars and
antimatter (made up of antiparticles), although the most common view is that dark matter could
be made up of some foreign materials such as axions or WIMPS (weakly interacting massive

particles).

Several alternatives to dark matter theories have been projected, but the notable one is the
Modified Newtonian Dynamics (MOND) (Milgrom, 1983a,b,c; Famaey and McGaugh, 2012),
which suggests that different laws of gravity can explain the discrepancy between the matter
contents of the Universe and dynamics of galaxies. The theory asserts that, at regions where the
gravitational pull is weak, such as in the far edges of galaxies (or galaxy clusters), Newton’s law
of gravity becomes irregular, so modification can be made to explain the phenomena without
the need of dark matter. Recently, another approach has been suggested, it tries to modify
the laws of gravity under the assumption of the phenomenon known as Vainshtein Screening
(Platscher et al., 2018). Nevertheless, the dark matter theory has matured over time and plays

a very significant role in galaxy formation, see Subsection 1.2.2.

Dark energy is another strange but abundant component of the Universe, which can neither be
detected nor tested, but we can only see its effect. It is because of the dark energy that the
late-time universe has been observed to be accelerated expanding (Perlmutter et al., 1997; Riess

et al., 1998; Perlmutter et al., 1999), and the redshift in galaxies motions occur because the




Subsection 1.1.5. Cosmic Evolution and Expansion History Page 20

Universe stretches the light wavelengths as it expands. Dark energy seems to be a function of
empty space, as more space comes into existence this energy is not diluted, instead, the rate
of the Universe expansion increases, which means the energy proportionally increases with the
vacuum. This discovery is implied by Hubble’s law which also supports a theory that had been
projected by Georges LeMaitre in 1927. Understanding the late-time accelerated expansion of
the Universe has been one of the major challenges in cosmology for about two decades (Riess
et al., 1998; Perlmutter et al., 1999).

We can partly describe the fate of the Universe by measuring its density as the Universe’s
future expansion rate depends on it. But, there is more to consider than just the density of the
Universe to account for its expansion rate. To address this challenge dark energy represented by
the cosmological constant A, has been introduced in the FRW equations to describe the observed
geometrically spatially-flat infinitely expanding universe. The parameter A, together with other

parameters, constitute what is called the ACDM standard model of cosmology.

The ACDM model of cosmology is simply a dark matter and dark energy dominated spatially-
flat universe which started as an abrupt expanding spacetime from hot and dense Big Bang
singularity. The model assumes that the large structures that we observe today are a result
of Gaussian fluctuations which have been amplified by gravity. The term Concordance Model
is used for ACDM to mean it is the currently acceptable and the most commonly used model
of cosmology. The ACDM assumes a 13.8 billion years old Universe with compositions, 4%
baryonic (ordinary) matter — the matter that makes us, stars and planets; 23% dark matter,
and 73% dark energy; all these derived from CMB radiation observations by WMA P satellite.

The standard ACDM model is currently extended to six parameters which have been found to
successfully describe the Universe, namely, the present-day Hubble parameter,

Hy = 100hkms~! Mpc™?!, the cosmological constant energy-density, 2, the baryons density,
Qph?, the linear amplitude of density fluctuations, og, the index of the power spectrum of
primordial density fluctuations, ng, and the optical depth to last scattering, 7 (Spergel et al.,
2007). Here the cosmological constant density, 24 and the curvature parameter, Q are related
to the total matter density (Cold Dark Matter 4+ baryons) by Q,,, = 1 — Q) — Q,, see Subsection
1.1.5. A number of alternative models have been extrapolated from the standard ACDM, for

example by extending it with parameters such as wg, wg, 2, and the growth index, ~.

1.1.5 CosMmic EvOLUTION AND EXPANSION HISTORY

The dynamics of the Universe can be described well by the Friedmann equations which is the
subject of our discussion. However, two parameters, namely, the scale factor a(t) and the current
expansion rate, the Hubble constant, Hy = 100hkms~! Mpc~! with h = 0.7 (Freedman et al.,
2001) are in most cases able to describe the expansion of the Universe. Here, 100h kms~! Mpc~!
means at a distance of 1 Mpc from us, galaxies recede with a speed of 100h km per second. The
discussion in Chen et al. (2017) points out a number of reported deviations in the measurement
of the Hubble Parameter.
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The scale factor is set to unity today. The curvature of the Universe is determined by the
relationship between the total density of the cosmic and the critical density. The Universe
is spatially-flat if its total density, p is equal to the critical density per¢ (a function of time),
has negative curvature (open — hyperbolic universe) if p < pe, and positive curvature (closed
— elliptic universe) if p > pet. The scale factor a(t) is regulated by the different Universe
density components, and its evolution is modelled by the equation of state (EoS) w; = p;/pi,
with p; being the pressure of the i*" Universe density component, p;. Various Universe density
components today, are defined in terms of critical density. In general for different energy density
components of the Universe, Q = p/pc, where p is the total Universe density made up of
the mixture of different materials in the Universe. Each of the components (baryons, photons,
and so on) in the mixture has its own density usually normalized relative to pe, thus each
component has its own €2, with €2y being the current value. Below, we describe these concepts

quantitatively.

Consider the fluid Equation (1.1.82), in which density p and pressure p are functions of scale

factor a, and the EoS parameter w, given by

p(p) = wpc?. (1.1.75)

We can use these two equations, together with the Friedmann equation (FRW) (Eq. (1.1.14))
to determine the relationship between time and other properties of the Universe, such as scale

factor, density, and pressure and describe the cosmic evolution.

Applying approximations in Quasi-Newtonian fashion as described in Liddle and Lyth (2000),

we can recover the FRW equation

a\?> 8rGp k

which is basically the FRW Equation (1.1.14) without the A term.

To describe the dynamics of the isotropic and homogeneous universe, we need the fluid equa-
tion, so we adopt the approach by Liddle and Lyth (2000) and make use of the first law of

thermodynamics
dE + pdV =T4dS, (1.1.77)

applied to a unit co-moving radius volume V that is expanding, similar to applying thermody-
namics to a gas in a piston. Energy is transferred as work but not as heat in adiabatic process,
so the energy is given by

9 4

(=cp) = 77Ta3pa3 (m=V X p), (1.1.78)

E =
mc 3

where a is the physical radius of the volume. Using the chain rule, change of energy in a time

dt is given by

d d
— = 4mwa“pc S84 Srde —, (1.1.79)
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and the volume change is
— = dra®=—. (1.1.80)
We assume a reversible expansion, and thus,
4ma’pcta + §Wa3c2p' + p4ra’*a = 0, (1.1.81)
and finally obtain the fluid equation
p+3% (p+§) = 0. (1.1.82)

p/c? signifies the loss of energy as a result of work done by pressure due to the increase in the
Universe volume. p is the dilution in the density following volume increase. The conservation of
energy applies, since energy equivalent to the amount of work done has been lost from the fluid

and transferred into gravitational potential.

Next we consider the acceleration equation. Using the FRW Equation (1.1.76) and the fluid
Equation (1.1.82) we can obtain another equation

a 4G 3p

—=—"—(p+=], 1.1.83

a 3 (p (32) ( )
which describes the acceleration of the scale factor. This equation is called acceleration equation
and it implies an increase in pressure will increase gravitational force resulting in decelerated

expansion.

The compositions of the density (p) parameter that appears in the Friedmann (FRW) equation
can be a non-relativistic matter component, a radiation component, and a plausible vacuum
energy or cosmological constant component. These components change with a scale factor a in
different ways as the Universe expands, depending on the dominance of a certain component in

a particular regime, as discussed below.

We first consider a matter-dominated universe by approximating the Universe as an ideal
gas during this epoch in order to describe the evolution of p (and possibly pressure p and
temperature 7"). For an ideal gas with N number of atoms (derivation adopted from Mo et al.
(2010)) in a volume V/,

pV = NkpT, (1.1.84)

where kg is the Boltzmann constant. Then we have

N

m — gt 1.1.85
pm = ( )

as an equation for (ideal) monatomic gas (atoms are not bound together), consisting of particles
of mass m. Using relations ( 1.1.84 & 1.1.85) above, we get

kT
Pm = —— . (1.1.86)
m
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Note that p,, and py, are, respectively, the energy density and pressure of cold dust in the

matter-dominated universe, and are different from p and p.

As a function of adiabatic index +, the EoS can be written as (Mo et al., 2010)

Pm= (7= 1)(p = pm)c?, (1.1.87)

where v = 5/3 for monatomic gas. This equation is useful for determining the true EoS param-
eter w. We can then write
-1
kgT 1 kT
=w(T)=—7—|14+ ——— 1.1.88

w=w(T) m02<+’y—1m02> ( )
by using (1.1.86) and (1.1.87). Then, we see that w(7T") << 1 immediately follows from kpT <<
mc?. Clearly, the rest-mass energy does not contribute to the gas pressure in the non-relativistic
limit.
Therefore, a zero pressure (w = 0, the dimensionless number) well approximates a non-relativistic

matter/gas, often referred to as cold dust fluid.

This means we can now model a non-relativistic matter-dominated universe for a cold dust,
where p = 0; py, >> pr; A = 0 (the rate of expansion increases with a positive A term), and

hence Equation (1.1.12) becomes

a 4rG

- —p= 1.1.
St —5 =0 (1.1.89)
—a 4G
—H? <H2a> +—=r=0, (1.1.90)
An@
—H%q+ %p —0, (1.1.91)
3H?
o 1.1.92
= p=ad (1.1.92)

Substituting (1.1.92) into Equation (1.1.76), we have

k
H? - 2H?q = - = a®’H?*(1 - 2q) = —k. (1.1.93)

Since for spatially-flat universe k£ = 0, and both H, a #0 = 1 —2¢ =0 and so ¢ = % For

closed universe, k =1, = ¢ > %, and for open universe, k = —1, = ¢ < %
From the relation (1.1.92), we get the critical density,

3H?

—_— 1.1.94
&rG (1.1.94)

Pert =

Critical density is defined as the density required to make the Universe flat. As a consequence
of this density to the cosmic, the kinetic energy and the gravitational potential in the Universe

would balance if it uniformly self-gravitates and isotropically expands at a rate H as if it is a
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sphere of density pet. Furthermore, the Universe and the critical densities are related by the
parameter g as p/pert = 1/2q, which implies ¢ = p/2pc. A universe with a density, p = pert and
an expansion rate H is called an Einstein de Sitter universe. This universe model has 2 =1 at

all times.

Continuing with our derivation, the fluid Equation (1.1.82) for the matter-dominated universe

becomes
) a
p+3—p=0; (1.1.95)
a
multiplying by a3,
3. .2
a’p+ 3aa”p = 0. (1.1.96)
In differential form,
d (3
= (a p) -0, (1.1.97)
implying
ap = constant = a3 po. (1.1.98)

We can model the radiation-dominated universe as perfect/ideal fluid approximation with

p= %p. Substituting p = %p into the fluid Equation (1.1.82),

dp a
we obtain
d 4 4 4
—(a*p) =0 = a”p = agpo = constant. (1.1.100)

dt

According to the Hubble’s expansion law, the galaxy’s recession velocity increases with the
distance from the observer. This means at the present time, Hy = dp/ag, where Hy (Hubble’s

constant) is the current value of Hubble’s parameter H.

Next, we model the A-dominated universe by introducing the parameter Q(a) = pr(a)/pert(a)
(curvature density, defined in terms of a) and consider the Friedmann equation at the present

time
H§ = HF (o + Qo + Qo) — ke, (1.1.101)
from which we can write the curvature
kc® = HE(Qmo + Qo + Qo — 1). (1.1.102)

Introducing the curvature parameter, o (see also Equation (1.1.130)), we have

kc?

Qo=——5 =
k,0 Hg

1-— (Qm,o + Qr’o + QA,O)- (1.1.103)
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Various energy densities scale differently with a scale factor a, in which the matter density
scales as 1/a®, radiation as 1/a*, Q as 1/a® — according to the Equation (1.1.103), and Q4

stays constant. Thus, we can write

Qo | Q
H? = H} ( R AR UV

at a?

) = H3E%(a), (1.1.104)

where we have defined F(a) = H(a)/Hp to be the dimensionless Hubble function, and at the
present time, a = 1. If Qy9 = 1 and Qo = o = Qo = 0, then the Equation (1.1.104)

becomes
%~ H,, (1.1.105)
a

and we see that the resulting equation above has no solution for ¢ = 0 at ¢t = 0, instead it yields

a Universe that expands exponentially:
a(t) = efot, (1.1.106)

If we take ¢ = 0 to be the present day time, the equation above implies the Universe’s age is

infinite in this case.

The recent measurements by Planck satellite shows that the spatial curvature is very small,
therefore, the k term in the FRW Equation (1.1.76) can be neglected (or equivalently neglect-
ing both the k and A terms in Equation (1.1.14)), and using the resulting equation together
with the EoS (1.1.75) which accounts for the pressure in mass-density, we can solve the fluid
Equation (1.1.82) to have

In(p) = In(c/a)>M+?)  — p o a 30+, (1.1.107)

We see that, for radiation, matter and A dominated universes, respectively, density varies with

the scale factor as p oc a™* (w = 1/3), px a™3 (w = 0),and p x a® (w = —1) == p = constant.

Substituting the relation (1.1.107) into Equation (1.1.76) (without the k term), we have

N\ 2
<a> B SZGP = % -ca30HW) = o 30Hw) (1.1.108)
a

where solving this equation and applying initial conditions, at the Big Bang (¢t = 0, a = 0),

results into

3 2

Again, for radiation, matter and A dominated universes, we have respectively,

a? = (1/2)ct, implying a o t(1/2); a(3/2) = (2/3)ct, implying a x t3/3); and a o efo! (see
arguments that results into Equation (1.1.106) above). Since the universe is homogeneous and
isotropic, we can generalize these derivations to the Universe as a whole although they originate

from applying thermodynamics to a small patch of the Universe. Let us summarize our results
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obtained so far in the table below.

Radiation-dominated universe Matter-dominated universe A-dominated universe
_ 1 _ _
w=3 w=0 w=—1
proxa? P X a3 pa o a’
1 2
aoxt2 a X t3 a ~ eHot
H ~ 71 H~ 271 H ~ Hy

Taking an example of the matter-dominated universe such that the redshift to a galaxy at some

distance D is given by

1
= 1.1.11
alt) = 1. (1.1.110)
a(to) _a(t) _ (1+2)" ¢ ~3/2
Tt Rl — = (14 2)73/2, (1.1.111)
0

since the present day value of a(t) is a(tp) = 1. This implies the Einstein de Sitter universe in
the past at some redshift z was equivalent to the universe when its age was a fraction ¢/tg =
(1+2) —3/2 where tg is the today’s age of the Universe. The matter-dominated universe expands
as t2/3, and thus

a 2
H=-=_ 1.1.112
- =3 ( )

where t is the approximate age of the Universe. This means as a — 0, t = 0, p — oo.

Therefore, the Universe was in an extremely dense condition in the beginning.

Next, we briefly describe a photon energy denoted by FE, so that

1
E =hpr = hp§ = EFx v (hp, c are constants). (1.1.113)

Here h;, is the Planck’s constant, v is the frequency, A is the photon wavelength and c is the
speed of light. The photon wavelength expands with the Universe. Therefore, as the Universe
expands, each photon energy in the Universe (analogous to a 3-D cube), FE o ¢/a, and the total

energy density oc ¢/aa® = c¢/a*. We can then conclude as follows:

e As a increases, A increases, energy decreases.
e As the Universe expands, photon energy scales as 1/a.

e As the Universe expands, energy of all photons in it varies as 1/a*.

As we have already seen, for radiation-dominated universe, a o t!/2, thus when an object is

slow, its energy and rest-mass are the same.
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The energy densities, contained in p that appears in the Friedmann equation are usually ex-
pressed in terms of mass densities, and we can, respectively, denote matter, radiation and
cosmological constant compositions at any time ¢ by pn, pr, pa- This allows us to re-write the

Friedmann Equation (1.1.14) for a scale factor ag = a(tp) with

pm(t) = pmoa 3(t); pe(t) = proa=*(t); and py(t) = pa = constant, (1.1.114)

at the present time as
2\ 2 3 4 2
a 8tG a a kc
() = 0= s (2) 4 () o] - (1119

where the index “0” denotes the current time, t = #g.

Since the Universe is in present time expanding, it is obvious that the Hubble constant today,
Hy = ap/ap > 0, and we see that by looking at the equation above, we can without necessarily
solving the Friedmann equation explicitly, examine the different cases of the behaviours of a(t)
(see Mo et al. (2010)).

From the Friedmann Equation (1.1.14),

2 _87TG< +AC2>_I€62

Pt ) T
3 nG)  a (1.1.116)
- 3 P T PA a2’

where H = a/a and py = Ac?/87G. We can write the density p = pm + pr, where pp is
the contribution from matter (baryons and cold dark matter), and p, is the contribution from

radiation.

We can think of matter density as composed of baryons matter py, and cold dark matter p, and

write

Pm = P + Pe, (1.1.117)

and further write the radiation density as constituted of photons p, and neutrinos p,, thus

pr = py+ pu. (1.1.118)

In consideration of their scaling with a scale factor a(t), the baryons density and the cold dark
matter density behave identically; similarly, photons and neutrinos densities behave in a similar
manner, so instead of splitting p,, and p, into components, we retain p,, and p, and re-write the

Friedmann Equation (1.1.116) as

81G kc?
H? = 5 (mFprto0) =5 (1.1.119)

If the total density pm + pr + pa equals the critical density (1.1.94), then k = 0, implying that

the Universe is spatially-flat. This also implies the Universe expands critically, following the
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equivalence of the expansion rate and the curvature, k. Therefore, at the critical density, the
Universe expands critically for a given value of H. Usually, Hy and pert,0 denote the Hubble
constant and the critical density at the present time, such that Qi(a) = pi(a)/pert(a) represents
the values of different Universe mass-density quantities with respect to critical density, and the

matter, radiation and A values at the present time are respectively; 0, 0 and Qp g.

It is conventional to express the non-relativistic matter total rest-mass density in the Universe

today as
Pm0 = Qm operto ~ 1.88 x 1072y, oh?gem ™, (1.1.120)

such that €, is the non-relativistic matter dimensionless cosmic density parameter at the

present time, and h is the reduced Hubble parameter given by

H
h= o . (1.1.121)
100kms—!Mpc
Some recent observational constraints estimate
Qmo = 0.27£0.05; h =0.72 4+ 0.05. (1.1.122)
The total relativistic component (CMB radiation, neutrinos) density is given by
pro = 7.8 x 1073 gem™3; = O, 0 ~ 1.68QcMB ~ 4.2 x 1079172, (1.1.123)

where Qcvp ~ 2.4 x 10752, CMB, a blackbody radiation at a temperature T, = 2.725K

seems to dominate the present day non-relativistic component density.

We can express the redshift variation of the non-relativistic and relativistic energy densities ratio

as

Pm o 2.4 % 10* QU oh2(1 + 2) 7Y, (1.1.124)
Pr

and at the matter-radiation equality, pm = pr, the corresponding redshift, z¢q is given by
1+ Zoq & 2.4 x 10*Qy, oh?. (1.1.125)

It turns out that the Universe had been matter-dominated since the epoch corresponding to
Zeq, assuming that the Universe did not bounce in the recent past, for example, due to large

cosmological constant, A.

The radiation density p; evolves faster with the scale factor ¢ than py,, and similarly, at an
epoch where the scale factor was

(oq = g— ~ 4.2 x 1075 (Quh?) 71, (1.1.126)

m
matter and radiation had the same energy density. The redshift z.q, a scale factor acq and
their corresponding epochs have important roles to play in the cosmic history of the Universe’s

structure evolution as we shall see later.
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Let us now re-write Equation (1.1.115) for any cosmic time ¢ as

Q Q kc?
H2(t) = Hi | — = — 0 1.1.127
( ) 0 [a4(t) + ag(t) HgaQ(t) + A, ( )
and then substitute the equation (see Schneider (2006)),
2 2
H H
ko= (;) (Q—1) = (;’) (n +Qp + Q2 — 1)
e (1.1.128)
~ (;) (Qn + Q) — 1),
into Equation (1.1.127) above to yield
1\ 2 Qr Qm 1—Qn—9Q
(a> EHZ(t):Hg[ - + - +( . A)+QA
a a(t)  a’(t) a?(t) (1.1.129)
= H2E(t).
We can equivalently use the curvature equation
kc?
Qo=—55=1—-0 1.1.130
k,0 Hg(l% 0 ( )
for Qo = Qm70 + Qr,O + QA,O and write
Qo Qmo Qo
H?(a) = H3< Tttt = H2FE?(a). (1.1.131)

From above, we see explicitly how each term on the right-hand side of Equation (1.1.129) variably

depends on the scale factor a; this enables us to draw the following remarks:

e The first term becomes dominant for very small values of a, and the Universe is then

radiation-dominated during that particular epochs.

e For slightly larger a > ae¢q the Universe is matter-dominated, since during such epoch the

pressureless term dominates.

e Universe can be curvature-dominated if k # 0 for larger values of a, since under such

conditions, the third (the curvature) term dominates.

e The Universe will be vacuum energy (or cosmological constant)-dominated for very large

values of a, since A dominates provided that it is not zero.

Again, we can draw a number of conclusions on the evolution and the expansion history of the
cosmic by qualitatively analyzing and relating the different behaviours of the function a(t) to

the spatial/spacetime curvature k and various energy densities of the Universe.
Furthermore, upon substituting (1.1.130) into Equation (1.1.115), we get
(a)Q_Hg&rG (a0)3+ (a0>4+
o) = 3H3 Pm,0 a Pr,0 a PA0

a

+ H2(1 - Qo) <“°>2. (1.1.132)
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Making the use of a(z) = 1/(1 + z) and considering the fact that at present time a = ay = 1,

the equation above gives

a 2 3 1)1/2
H(z)= (=) (2)  =Ho[Qn0+ (1= Q0)(1+2) + Qo1+ 2)° + Quo(1 +2)"]
a (1.1.133)
We can further define the cosmic density parameters at cosmic time ¢ as
t
) = 2 (1.1.134)

B Pert (t) ’

and since H?(z) = H(z)E?(z), by also considering how different energy densities scale with a

scale factor, a, we have

pa(t)  8nG 8rG Q40
Q = = ——=pPA = 5PN = = 1.1.135
A(z) pcrt(t> 3H2 PA SHSEQ(Z) PA EQ(Z)’ ( )
similarly,
Quo(1 + 2)3 Qo1 +2)*
On(2) = —————, and A (2) = —————. 1.1.1
() = s and () = S (1.1.136)

We can use Equations (1.1.133) - (1.1.136) to calculate at any given redshift, values of the

parameters H, Qp, Q and €, once we know their values at the present time.

However, we can write

Q(z) (00 + Qo1+ 2)° + 1+ 2)*], (1.1.137)

1
- E%(2)

and from (1.1.133),
E?(2) = Qp o+ (1 — Q)1+ 2)* + Qo1+ 2)* + Qo1 + 2)*, (1.1.138)

where we finally arrive at

F*(2)(1-Q(2)) =(1-Q)(1+2)?
(QO _ 1)(1 + Z)2 (1.1.139)
E* '

= Q(z) =

It can be shown that Q(z) tends close to unity at high redshifts provided that Qo or €, are
not zero, and this behaviour of )(z) approaching unity at high redshifts does not depend at
all on the present day values of Hp, 240, €m0, and Q,¢. This suggests that, a total density
parameter, g ~ 1 must had characterized in the beginning any non-zero matter or radiation

content FRW universe, as we shall see under Subsection (1.1.6).

1.1.6 INFLATION, THE HORIZON AND THE FLATNESS PROBLEMS

Inflation (Linde, 1982; Hawking, 1993; Kofman et al., 2002; Linde, 2005b,a) is a radical extension

of the standard Big Bang model of the origin, evolutionary state and the fate of the Universe
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hypothesized by a physicist Alan Guth in early 1980s (Guth, 1981). Inflation matches the time
when the size of the Universe expansion actually accelerated, i.e., it quickly grew exponentially.

Inflation lasted within the amount of time required to satisfy the observable universe conditions.

Inflation is currently seen and commonly considered as part or extension of the Big Bang, de-
picted as the period during which establishment of the preceding dynamics for the Big Bang,
especially, the conditions of the hot tightly coupled early plasma of ions came into play (Tsu-
jikawa, 2003). It was already accepted in the standard Big Bang cosmology, that the Universe
expands uniformly (Freedman et al., 2001). But, in 1981 Guth proposed that when the Universe
was about 107305 old, it inflated by a factor of 10?6 — beyond the current size of the observable
universe in a mere duration of about 10732 to 10732 seconds. This perplexing hypothetical

radical expansion of the Universe phenomenon is famously known as cosmic inflation.

Inflation was purposefully introduced to address the problems found in the Big Bang cosmol-
ogy, including, but not limited to the horizon and flatness problems (Guth, 1981; Linde, 1982;
Hawking, 1993; East et al., 2016).

Light has a finite speed, this means our ability to observe the Universe is limited to a finite
volume of the cosmos called the observable universe. Observable universe is thus comprised of
the regions from which light originating from them can reach us after it travels a finite amount
of time ty3. On average, the light that reaches us after traveling for time up to to ~ 13.8 Gyr
would be coming from the visible region of the Universe. This roughly marks the radius of the
observable universe to be around 13.8 billion light-years. As a result, we will not be able to
observe the part of the Universe which is more distant beyond this limit, i.e., from regions for
which light emitted will never reach us. This region of the Universe beyond our observance
experience is called a horizon. This scenario introduces some crucial problems in the Big Bang
cosmology, and for this reason, inflation was introduced to rectify some of these overarching
problems as we shall see subsequently. One of such problems is a horizon problem which we

explain quantitatively (we adopt the approach by Schneider (2006); Mo et al. (2010)) as follows.
Light will travel a distance cdt, where dt is a time interval and c is the speed of light. This

distance is equivalent to a comoving distance

dy = 4 (1.1.140)
a

where a is a scale factor. Now, suppose that from the Big Bang to some redshift z equivalent
to a physical time ¢, the comoving distance corresponding to a horizon distance H, that a light

traverses is given by

TH,com (%) = /Ot ;?tt)- (1.1.141)

Since

a
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we re-write the integral above as
@ cda 1+ cda
r z) = - = —_—. 1.1.143
Hcom (2) /0 a’H(a) /0 a’H(a) ( )
At some cosmic epoch where zeq >> 2z >> 0, the expansion rate H was dominated by the energy
density corresponding to such regime, which is pressureless matter energy, and as a result, the
integral (1.1.143) will have much of its contribution from times or equivalently values of a when

matter dominates the Universe. It follows from Equation (1.1.131) that
H(a) ~ Hy/Qma™>/?, (1.1.144)

and upon substituting this into (1.1.143), we get

c 1
- N2 0. 1.1.145
TH,co (Z) H, (1 i Z)Qm Zeq >> 2 >> ( )

In a like manner, expansion rate H is radiation-dominated at earlier times corresponding to

Z >> Zeq, and hence during the time when the Universe is dominated by radiation,

H(a) ~ Ho¥ 5, (1.1.146)
and thus the integral (1.1.143) yields
c 1
TH,com (%) =~ mm; 2 >> Zeq- (1.1.147)

We should notice that during very earlier times corresponding to large values of z, the comoving

horizon distance was smaller compared to that at later times.

Now, let us consider a physical proper length 7y prop corresponding to the comoving distance
T'H,com, for which at recombination (z = z.) the physical proper distance (horizon length at
recombination) is given by
c _
T prop(Zree) = A7 com (Zrec) = 2Fogm1/ 2(1 + zpee) /2. (1.1.148)
We want to calculate the sky angular size, 0y rec corresponding to the proper length rH,prop(zreC),

before we do so, let us lay down the underlying formalism.

We establish that, the angular-diameter distance of a distant object whose radius is R and

covering a solid angle 2 is given by (Schneider, 2006)

Da(z) = ,/Rg?r. (1.1.149)

The angular-diameter distance and other distance-redshift measurements are cosmological pa-
rameters dependent, and we can use this fact to determine the angular-diameter distance specif-
ically for a particular model of the Universe. For a Universe model without a cosmological
constant (A = 0) (Schneider, 2006),

Da(z) = ;{)M [z + (2 = 2) (VIF 00 —1)]. (1.1.150)
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For the angular-diameter distance (1.1.149), in which here Dj is taken to the CMB surface
of last scattering (recombination), the horizon length at recombination will correspond to the

angular size on the sky given by

TH,prop(zrec)
O0H roc = —2———2. 1.1.151
Hrec DA(Zrec) ( )

Using (1.1.150) for the case in which ) = 0 results to

Cc

2
m

and therefore at the recombination epoch, z.e. ~ 1000, we have

Om Qm

HH,rec ~

This means at recombination, the angle subtended by the horizon length on the sky is about 1°.
It implies that, at early times, before recombination, many regions of the presently observable
universe may not have been in causal contact. By causal contact, we mean these regions did not
know each other, and hence there was no information exchange between them that could have
influenced onto them similar conditions. We see that two regions that were able to exchange
information before recombination, had spatially very smaller radius of separation compared to
the region of space at recombination. Interestingly, during the time when the CMB photons
lastly had interaction with matter, there was no exchange of information, for example, about
temperatures, between the regions that were spatially separated by much larger radius, but
surprisingly, the CMB temperature anisotropies measured today from these regions show the
same fluctuations AT/T ~ 1075, see more in Schneider (2006). This scenario is known as the

horizon problem.

To address the horizon problem, we consider the inflationary theory which assumes that the
vacuum energy density dominated the Hubble expansion during early epochs and it was very
much larger compared to today. Thus, during such time when the vacuum energy and the

Hubble expansion dominated the Universe, we obtain

N2
<a> :Aj (1.1.154)

from the Friedmann Equation (1.1.14), which implies the Universe is exponentially expanding,

a(t) = Aexp <C\/§t>, (1.1.155)

where A is some constant. It is assumed that the phase transition (reheating) occurred at some
epoch in the distant past where there was a transformation from vacuum energy to radiation and
normal matter, ending the exponential expansion of the Universe, and marking the inception of

the FRW universe evolution.
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Next we consider the flatness problem (adopted from Schneider (2006)). We can generalize the
definition of the cosmic density (1.1.134) parameter for different time epochs corresponding to
an arbitrary redshift z,
Qp(z) = Pml2) +pel2) + P (1.1.156)
Pert(2)
where at various epochs we would assume different values of the Hubble expansion rate and the

energy densities. Note that the critical density
3H?(z2)

8w
is also a function of redshift z. Substituting the scale factor-energy densities relations (1.1.114)
into (1.1.156), we obtain

Pert = (1.1.157)

Ho\? (2 Onm
Qo(z) = (H> <a4+a3+QA>, (1.1.158)
where using (1.1.129) we finally get
1—Q(z) = F[1 —Q(0)], (1.1.159)
such that
2
Hy
F = 1.1.160
(ae) (1.1.160)

and Q0 (0) is the total cosmic density parameter today.

Close examination of (1.1.159) suggests that for all values of a, F' > 0, and consequently,
for all cosmic epochs up to today, the sign of the quantity (29 — 1) will be the same and
preserved throughout the cosmic evolution. It then follows from (1.1.128) that the sign of
(0 — 1) determines the sign of curvature which is also preserved throughout the cosmic history.
It can be established from the analysis of F' that at early times, for example, 2 >> z¢q to
radiation-dominated universe, the Universe will be flat, however, the curvature of the closed
universe for which k& > 0 will always remain positive. As as result F' becomes extremely small
at early epochs, evidenced by (1.1.129) which yields

1
FP=_—+. 1.1.161
Qe (1 + 2)? ( 61)

Therefore, very small values of F' at high redshifts, require the condition that Qq(z) was very
close to unity at early times to hold. At z ~ 10'°, for example, the condition |Qg — 1|< 10710
must hold. Flatness problem therefore calls for a fine tuning of the cosmic density parameter,

for which at earlier ages it must had been very close to 1 if its order today has to be unity.

Inflation solves the flatness problem as well since any initial curvature will be flattened due to

the radical expansion of the Universe. We thus have
A

"~ 3H?
during the inflationary phase. For complete dominance of the vacuum energy during such epoch,

O =1 (1.1.162)

it is assumed that the inflation had to last long enough, where g = 1 by the time it halts, hence

making the Universe flat as expected.
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1.2 LARGE-SCALE STRUCTURES OF THE UNIVERSE

A spatially-flat universe is largely composed of dark matter and dark energy, with a little amount
of baryonic matter. The Universe’s rich structure formation is a result of generation and am-
plified evolution of gravitational instability seeded by quantum mechanical perturbations when

the Universe’s age was a tiny fraction of a second old (Kiefer and Polarski, 2008).

Although today’s description of structure formation is classical fluctuations, the primordial in-
flationary perturbations are assumed to be quantum. This is seemingly a contradictory scenario,
but the paradigm shift in view of the structure formation from the physics that set forth in-
credibly small fluctuations to classical treatment of the subject has been explained in Kiefer
and Polarski (2008). The inflationary model is an attempt to provide solutions to a number of

fundamental problems arising from the Big Bang cosmology (Liddle and Lyth, 2000).

The inflationary theory prediction is somewhat supported by current observations, and yet to
be vigorously tested observationally by future experiments. A well-established gravity theory
of general relativity expounds how the present observable universe structures: galaxies, galaxy
groups, galaxy clusters, and galaxy superclusters emanated from small inhomogeneities. The
clearly inhomogeneous Universe as seen today is evidenced by among other things, the presence
of uneven distribution and clustering of galaxies. However, lack of knowledge of the true nature
of the major Universe energy density compositions, namely dark energy and dark matter makes
this theory uncertain. The gravitational amplification of the structure depends on the dark en-
ergy EoS, (dark) matter content, and their properties such as the pressure forces. The discovery
of nonluminous constituents in the Universe energy density composition such as the dark energy
candidate follows an assertion that the Universe contains more components than the baryonic
matter that we can see as probed by the distant supernovae measurements of accelerated ex-
pansion of the Universe (Riess et al., 1998; Perlmutter et al., 1999) and redshifted galaxies as
seen by Edwin Hubble in 1929. The best candidate that explains the structure growth is the
linear perturbation theory (Mukhanov et al., 1992; Bernardeau et al., 2002).

Most of the cosmological tests are conducted based on the geometry and growth of the structure.
These prominent approaches use luminosity distances and angular diameter distances. Major
probes include Type Ia Supernovae and CMB which rely on the geometry of the Universe; and
baryonic acoustic oscillations (BAOs) (the imprints of the oscillatory patterns (fluctuations) of
the acoustic waves on both CMB and the galaxy distribution), secondary anisotropies, cluster
counts and clustering, relativistic effects such as redshift space distortions (RSDs), and weak
gravitational lensing which are based on the structure growth, although some of these approaches
include geometry implicitly. RSDs use information on how galaxies move. See galaxy formation
and evolution by Mo et al. (2010).

A nearly perfect Gaussian spectrum of primordial fluctuations has been predicted by standard
inflationary models with a single inflaton potential (Guth and Pi, 1982; Starobinsky, 1982;
Bardeen et al., 1983; Mukhanov et al., 1992). Therefore, a complete description of the Gaussian
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random fields can be given by the statistics of the two-point correlation function in real space
and power spectrum in Fourier space, which have been widely applied to study the early universe

physics from the CMB measurements and large-scale structures (Yoo et al., 2009).

Let us now consider a random field f(Z), where ¥ denotes comoving spatial positions, in which at

—

each point f(Z), (f(Z)) = 0 is some random number whose ensemble average is zero. If P[f(Z)]
is a functional probability of some field configuration realization, we can define the two-point

correlator as follows:

§@.3) = (1@)I@) = [ DPINIEIE). (1.2.1)

where on the right-hand side of (1.2.1) we have applied over field configuration a functional
(path) integral. Statistical homogeneity implies invariance under spatial translation, so the
translated field

(@) = f(@ - a) (12.2)
and the original field have the same statistical properties, that is
PIf(@)] = PIT. /(@) (1.2.3)
Such statistical properties are also preserved for the two-point correlation function, thus
E(Z,75) = (% —a, @5 —a) for all a; = &(2,7;) = (& — Z5). (1.2.4)

Similarly, statistical invariance to spatial rotation applies, where the rotated field (R is a rotation

matrix)
Rf(Z) = f(R %) (1.2.5)
has the same statistical properties as the original field, that is
PIf(@)] = PIRf(Z)], (1.2.6)
and the two point correlator becomes
(2, ;) = 5(3—1@, R—lfj) VR. (1.2.7)
Finally, combining statistical invariance under spatial translation and spatial rotation, we have
£(@, ) = ¢(R71@, 7)) VB, = &(&, 7)) = &(& — 7). (1.2.8)

This means the two-point correlation function will only depend on the separation distance be-

tween the two points.

The power spectrum (in Fourier space) or power spectral density and the two-point correlation
(in real space) function are the quadratic statistics that can be used to measure the spatial

clustering of galaxies (see early advancements on spatial clustering (Neyman and Scott, 1952)).
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Spatial £(r) or angular w(f) galaxies distribution as the degree of clustering is measured by a
galaxy correlation function (Postman et al., 1998; Alexander et al., 2012). We will see in a sequel
that the matter (angular) power spectrum is the Fourier transform of this correlation function or
equally, the correlation function is the inverse Fourier transform of the matter power spectrum
(Mo et al., 2010). The spatial two-point correlation or autocorrelation function, £(r) is defined
as the probability over the expected unclustered random Poisson probability distribution, of
finding a pair of galaxies, one in an element of volume V] and another in an element of volume
OV where 6V; and §V; are separated by a physical distance r (Coil et al., 2004; Alexander et al.,
2012). To quantitatively grasp the concept of galaxy clustering correlation function, suppose
that two small regions, dV1, dV5 separated by a physical distance r12, each contains one galaxy

in them, then the excess probability over the expected number of galaxy pairs is given
(npain) = 0P = 7?1+ £(r12)| 6V20Va, (1.2.9)

where 7 is the mean number of galaxies per unit volume. Galaxies are clustered if £(r) = 0,
and on such scale, 0P (expected number of pairs) simply becomes the product of the expected
number of galaxies in the two regions, dV; and dV,. Galaxy strong clustering and anti-clustering,
respectively, correspond to £(r) > 0 and &(r) < 0, see Coil et al. (2004); Alexander et al. (2012);
Coil (2013) and the references therein.

The spatial correlation function can be described in terms of a simple power law

£(r) = (T‘))_v, (1.2.10)

r

on small scales ~ 0.1h~! Mpc < r < 10h~! Mpc, where the slope v ~ 1.8 and correlation length
ro ~ 5h~! Mpc (Zehavi et al., 2005; Alexander et al., 2012).

Angular galaxy distribution and clustering is measured by the two-point angular correlation
function, w(f). For the solid angle elements §€2; and d€2y separated by an angle 6, Georgakakis
et al. (2000) defines the two-point angular correlation function as the joint probability 6P of

finding sources within such solid angle elements, given by
0P = N2(1+w(0)) 00160, (1.2.11)

where N is the galaxies’” mean surface density. Similar to the two-point spatial correlation
function, the angular correlation function measures the excess probability of the galaxy density
over that expected for a random distribution (Georgakakis et al., 2000). w(#) = 0, implies sources
are randomly distributed. Where an amplitude A, depends on the galaxy sample depth, the
two-point angular correlation function can also be described by variants of a power law (Maddox

et al., 1990; Postman et al., 1998; Georgakakis et al., 2000), more or less similar to
w(f) = A0, (1.2.12)

See also calculations of the angular autocorrelation function w(f) using the Landy & Szalay
(1993) estimator (Postman et al., 1998; Georgakakis et al., 2000; Coil et al., 2004; Alexander
et al., 2012).
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Next, we adopt the discussion presented in Mo et al. (2010) to derive/devise a way of describing
the cosmological overdensity field p(Z) at some particular (random) epoch of time. Let us

translate the observed galaxy density field p(Z) to dimensionless overdensity

where p(Z) is the background mean (the expected mean density). The idea is to find an approach

(1.2.13)

to describing the cosmological overdensity field 6(Z,t) without going through a labourers work
of determining the actual value of § at each spatial location in the spacetime (x,t). Therefore,

we can describe the density field §(Z,t) by using the probability distribution
P(61,01,...,0Nn)dd1dds ... doN, (1.2.14)

such that & = 6(Z1), 62 = 6(Z2), ...,0n = 6(Zn).

The rather complicated probability distribution function (1.2.14) — bearing in mind N is in-

finitely very large, can describe the random processes underlying the density field §(Z).

This is especially possible because the cosmological (over)density field §(&) is assumed to be a
result of some random processes in the early universe, the most viable candidate being quantum
fluctuations during inflation. Instead of directly using the probability distribution, a simple
approach would then be to equivalently use the moments of this probability distribution function
to describe the density field. In a statistical sense, we can therefore completely specify the

distribution function (1.2.14) using infinitely many number of moments
S, 8, ..ok (1.2.15)
of the probability distribution P by applying the relation
(dhslz . sly = /551552 6 P(61, 62, ..., 6x)d61dbs, ... db. (1.2.16)

We could describe the probability distribution for the average overdensity at each spatial location
d(&) of this field over which such random process realizations occurred if we had many universes.
But, we only have one Universe realization of the random process. So, in the context of the
Ergodic hypothesis, the ensemble average is equivalent to spatially averaging over one random
field realization. This ensemble average as stipulated by the Ergodic hypothesis can be thought
of as an average over independent sub-volumes of the same Universe. We can think of the
ensemble average, (§) as an expectation value, quantum expectation value or an average over a

classical ensemble.

Now, the first moment that specifies the probability distribution function above in regard to
the Ergodic hypothesis which requires sufficiently rapidly decaying in spatial correlations as the
separation increases so that many volumes V' that are statistically independent may exist in one

realization of the Universe (Mo et al., 2010) is given by

() = / 5P(5)d5 = % /V 5(%)d7 = 0. (1.2.17)
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As stated above, this hypothesis simply allows for the existence of many statistically independent
volumes in one realization. However, we would in principle require infinitely many moments to
completely describe the probability distribution function of the cosmological density field ().
To make this requirement less tedious, we will adopt a somewhat scientifically substantiated
belief that the initial cosmological density field was a random Gaussian field. This assumption

takes us to the next step about explaining this field.

A Gaussian random field 0(Z) values are distributed at an arbitrary set of N points as a multi-
variate (an N-variate) Gaussian. We can define a Gaussian random field as
e_Q

P18y ) = o (1.2.18)

where Q@ =1/237, ; 6;(C71);;60, is computed as a sum over all possible pairs of points 4, j, and C
is just a covariance matrix, which is basically a second moment, and is related to the two-point

correlation function as
Cij = (0:i0;) = &(rij), (1.2.19)

where the two-point correlation function has been defined as &(7) = (§(Z)d(Z + 7)), and for
isotropic and homogeneous field, 719 = |71 — 2|, meaning that the correlation function only relies
on separation between two points, and not the absolute positions in the coordinate system. This
correlation function only holds for a continuous field §(Z). In practice, galaxy distribution which
is of our interest, is to a large extent a discrete field (rather than continuous), thus the two-
point correlation function for the galaxy pointwise distribution is given by (recall the previous

discussion under this Section),

Nepair (7 £ d7)
Nrandom (T + d?”) ’

1+&(r) = (1.2.20)

where npair and nrandom, respectively, denotes the expected number of galaxy pair distribution

and the expected random distribution of galaxy pairs.

We see that the covariance matrix is simply given another name, the two-point correlation
function. So the N-point probability distribution function, P(d1,d9,...,dx) that would need to
be represented by an infinite number of moments is now completely replaced by only a second

moment, which is the two-point correlation function.

Let us under this Section, finally consider the matter power spectrum. The matter power
spectrum (Kolb and Turner, 1990; Dodelson, 2003) is a prominent tool for describing the density
contrast field of the Universe in terms of scale (such as angular scale). As previously pointed,
this is the Fourier transform of the matter correlation function which we can use to model the

amplitudes of the primordial fluctuations.

On large scales, there is a trade-off between gravity and the cosmic expansion, and structures
growth seem to follow a linear theory, the density contrast field is assumed to be Gaussian and

can be correctly described by the matter power spectrum. Description of the full field at small
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scales requires higher-order statistics. CMB Planck spectrum, for example, carries primordial
fluctuation information that informs us about matter density perturbations at z ~ 1100.

In general, statistical properties such as the power spectrum can be used to describe the matter
density fluctuations. These fluctuations can be the matter-energy density of the Universe, p(¥),

the temperature, T" or the gravitational potential, ®.

Let the Fourier transform of the mass-energy distribution density field f(#) be defined by

—

; 37 -
F(k) —/(;T)?’/Zf(f)e_m'“”. (1.2.21)

Here, F(k) has dimensions of Length®, and for real fields, F(k) = F*(—k). Let us also define

the corresponding Fourier inverse transform as

Bk
£(@) :/WF(k)e”“'m, (1.2.22)

where f(Z) is dimensionless. Then the Fourier transform for the two-point correlation function
is given by

Bk BE s,

U@ = [ s g FEE E) e (1.2.23)

One can admit that, the power spectrum P(k) of a rotational invariant and a translational

invariant Universe’s mass-energy distribution density field, f(Z) is defined by the relation

_ 272

(F(E)F* (k")) = FP(maD(/}’ — K, (1.2.24)

where the Dirac delta function, 62 (k — k') is expressed as

L 1 N
Pk — k') = / Hilk=kK)Z 437, 1.2.25
(F-F) = G [ @ 7 (1.2.25)
From the power spectrum definition (1.2.24), k-modes are uncorrelated, the normalization factor

272 /k3 is conventional, and has a role of making P(k) dimensionless, just as the field f ().
It can further be deduced that

£r) = (@7@) = [ arp TE, (1.2.20

,
where jo(kr) = sin(kr)/kr is the spherical Bessel function of the first kind of order zero.

We conclude that, in general, the coefficient P(k) in the Fourier transform of the two-point
correlation function to k-space (kK = 27/X), with r = 0 or equivalently & = ¢ is called power
spectrum. That is, the two-point correlation function is the Fourier transform of the matter

power spectrum.

— —

In cosmology, the notation £(r) = (§(Z)d(y)) is commonly favored instead of £(r) = (f(Z) f(¥)).

Thus, for density field 0(%,t), it is often convenient to work with Fourier components, denoted
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by . Using this preferred convention, it can be equivalently shown that, the matter power

spectrum is the Fourier transform of the two-point correlation function:

= /é(f)e‘“z'fdgf (1.2.27)

= 477/5(7") Sink(fT)Ter,

6= — [ 8(@)e *FTa3z, (1.2.28)

such that the perturbed density field written as a sum of plane waves (of different wave numbers

k, called modes) is given by

5(#) =3 5zt (1.2.29)
k

As we have already assumed, we see that, at early times or equivalently on large Universe scales,
the density field 6(Z,t) has a distribution that has been predicted to be Gaussian random, and
thus it can completely be described by either, the power spectrum P(k) (has units of volume)

or in the same manner by the two-point correlation function £(r), see Einasto et al. (1993).

Let us now use the standard conventions used in cosmology to describe the matter density
field, 6(Z) at any epoch of time, ¢, or equivalently, z or a. We can always express the Universe
matter density fluctuation in terms of the average density and the local density, given by p(Z) =

p(1+ 0(%)), where p is the mean density, and the density contrast

5(@) = P& =P (1.2.30)
p
can be expanded in Fourier modes as
5(7) = — / 5(R)e~*Fd3E (1.2.31)
N (27T)3 vol ’ o
such that
- 1 o
S(k)== | adzs(z)et* T, (1.2.32)
V' Jvol

and Z are the co-moving coordinates. We can then define the power spectrum using the auto-

correlation function §(F) via the relation

. dk K)9%(F)
G@) = / = (1.2.33)

— A?(k), (1.2.34)

/ dk‘ k:3P dk
Y 27r2 V k




Section 1.2. Large-Scale Structures of the Universe Page 42

where A%(k) is called the dimensionless power spectrum. In the theory of structure forma-
tion, the dimensionless power spectrum has a virtue of measuring perturbations contribution
to the fractional variance in the matter density fluctuations, per unit logarithmic interval at

wavenumber k (see Peacock and Nicholson (1991)).

Instead of using Fourier transform conventions to work with infinite space, we can consider a
finitely large volume V' of the Universe with periodic boundary conditions and then decompose

0(#,t) in terms of plane waves

5(Z,t) 27r S (1.2.35)

Thus the matter density field in Fourier space is given by

S(k,t) = / AB3Ts(T, t)e"* T = (2‘;)3 S 65 (1) / dB3zeiF —F)E, (1.2.36)
!

Using the Dirac delta function

1 -
§P(p) = oL /d?’fe*’ T (1.2.37)
we get the Fourier transform of the density contrast,

O(t) = 3 /5 e~ iREq3z, (1.2.38)

where the density contrast power spectrum is
P(k,t) = [6:(t)]%, (1.2.39)

and since we have assumed a homogeneous universe, the power spectrum is a function of k. For
a wavelength Ay matching the size of horizon at the matter-radiation equality time toq, the

power spectrum is expected to have a peak at keq = 27/ Aeq.

Under the assumption of homogeneity, the equivalent two-point correlation function as for the

power spectrum P(k) is a function of 7 (not 7) and is given by

- % / d356* (7 — 7)o (). (1.2.40)

The two-point correlation function as we have previously seen is the inverse Fourier transform

of the power spectrum:

1.2.41
Note that both §(¥) and 6; are unitless. Furthermore, the cosmological matter density field
becomes a discrete sum over Fourier modes d; = aj + ib; = |5,;|ei9’€; |0z| are amplitudes, 0y are
phases which make the field Gaussian if they are uncorrelated, where k=2r [L(ig,iy,15), © =

k
that we can fully describe the cosmological density field 6(Z) by only using Fourier modes in the

1,2,..., N. Since §(Z) is real, it follows that (5;5 = 0, and thus ap = a_g, by = —b_g, implying

upper-half of the space, [0, 00). Note also that, 5;1;» is a complex conjugate of ;..
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The power spectrum models the density field fluctuations root mean square (rms), (5p/p)? as a
function of scale, making it a tool that measures directly how different scales contribute to the
(0p/p). P(k) is fundamental, and in a Gaussian random fluctuation field, it can describe any

statistical quantity. For example, the one-point distribution of the density field 6(¥) is Gaussian,
P(s) = (27r02>71/2 e0%/20% (1.2.42)

where the variance of the density perturbation field is given by
o2 = (%) = /O T 4nk2P(k)dk = £(0), (1.2.43)

We can determine whether and when perturbations started to grow into non-linear stage by
monitoring the evolution of the density field via power spectrum. For example, the analysis
of the Jeans equations (Bonnor, 1957) in the expanding universe indicates that perturbations
started to grow into structures when \6E]2> 1. It can be found that, growing modes solutions
exist for k < kj which offer the possibility of describing the large-scale structures of the Universe
observed today (Breton et al., 2004).

For a particular perturbation mode A related to a co-moving wavenumber k = 27/, the rms

for the density fluctuation dp/p can be written as

5p k367 |2dk
0(Z)6(X) — 1.2.44
(%2) = w@on = & [P (12.49)
and corresponding to the density contrast is a mass fluctuation, dy; whose rms
(SM 2 1 1 213
— | = —=—— [ P(k)\W(k)|*d°k 1.2.45
(57), = mrv [ POV @REE (1245

where we define the window function (in most cases Gaussian), W (k) = Vive ¥*r*/2 for a radius

7 within which the mass M is enclosed, and Vi = (27)%/2r3 is its volume.

Without specified overall normalization amplitude for A, rms mass perturbation at a given A,
5M 2 3 3+ns
— ) ~k°P(k) ~ ko, (1.2.46)
M)\

Here, ng is a constant, called spectra index. For more detailed discussion, see Kolb and Turner

(1990); Bretén et al. (2004).

On the largest scales (see Einasto et al. (1993); Kashlinsky (1992)), the power spectrum has

theoretically been assumed to have the form (mostly shape and not the amplitude)
P(k) = Ak" (1.2.47)

for the primordial fluctuations; predicted independently by Harrison (Harrison, 1970) and Zel-
dovich (Zeldovich, 1972). Here, A is constant, and with the popular choice of the spectra index
ns = 1, the Harrison-Zeldovich P(k) o« k. ns = 1 reflects a scale-invariant primordial power
spectrum. However, P(k) o k on large scales (small k) and P(k) oc k=3 on small scales (large k)
from the theoretical point of view, see some discussion on small scale power spectrum in Widrow
et al. (2009). Figure 1.1 shows linear and non-linear matter density power spectra at redshifts
z=0.0 and z = 0.8.
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Matter power spectra at z=0.0 and z= 0.8
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Figure 1.1: Linear and non-linear matter power spectra versus wavenumber at z = 0 (higher

amplitude) and z = 0.8 (lower amplitude).

1.2.1 THE CosMIC MICROWAVE BACKGROUND RADIATION

The early universe was hot and dense, and thus neutral hydrogen atom could not exist. The
temperature was so high and it could ionize any material that filled the universe. As a result,
the early universe was opaque due to big plasma, mostly composed of tightly coupled nuclei,
photons, and electrons. At this time there was a very high number density of free electrons
causing extremely short photons’ Thomson scattering mean free path. As the Universe expanded,
it cooled down, causing the average photon energy to decrease; then primordial photons and
electrons started to coalesce to form hydrogen and helium atoms (recombination), and the
Universe became transparent. The Universe transitioned from radiation to matter-dominated,
and the process took place at a time when the Universe temperature was about 3000 K. As a
consequence of recombination, photons were no longer tightly held together with the charged
particles, and were thus able to free-stream, and their mean free path quickly increased to
approximately the size of the observable universe. These photons cooled off from 3000K to
2.73K as they traveled through space, and we see such photons today as Cosmic Microwave
Background (CMB). The surface where the transition from opaque to transparent occurred is

called the Surface of Last Scattering.

CMB is thus the oldest light that traveled towards us on its 13.8 billion years journey. We can,
therefore, capture the history of the Universe by using this light. When looking at CMB, we see
the Universe when it was just 380,000 years old. Following recombination in a cosmic history
is Dark Ages. We call such period Dark Ages because during that time luminous objects were

not yet formed. Figure 1.2 depicts different phases of the Universe evolution history.

Therefore, the information encoded in the CMB spectrum which was discovered serendipitously
by Bell Labs radio astronomers Arno Penzias and Robert Wilson in 1964 (Wilson and Penzias,

1965) provides a wealthy amount of imprints on the origin, evolution and expansion history of the
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Present

Figure 1.2: ACDM model of cosmology showing a Universe evolution timeline from quantum

fluctuations and inflation to the present time. The figure is taken from NASA web page.

Universe. The CMB imprints have radiation nature that survived ages since the early universe,
dating back to recombination (z ~ 1100). This radiation points back to the time when the
Universe became transparent to CMB photons, and photons mainly free streamed. We can thus
use the CMB light to trace signatures of small fluctuations (growth of small inhomogeneities)
that set forth both dynamics and geometry of the expanding universe, which then triggered
formation of the large-scale structures (LSSs). Before recombination when the Universe was
very hot — above 3000 K, and opaque, these packets of light (photons) could not get far because
they kept bouncing off all the free electrons.

This CMB momentous discovery was later followed by observations using FIRAS instruments on
the Cosmic Background Explorer (COBE, 1992) satellite, which confirmed its radiation as having
a characteristic continuous position and temperature dependent frequency spectrum, namely,
Planck spectrum with an approximate temperature, 7' = 2.726 K (White et al., 1994; Mather
et al., 1994). For the baryonic matter dominated universe, about 4 - 5 decades ago and more
recently, sophisticated theoretical calculations, backed up by advanced sensitive experiments
implied fluctuations in remote CMB of the order of 1 part out of 10* (i.e., AT/T = 107%)
(Peebles and Yu, 1970; Doroshkevich et al., 1978; Wilson and Silk, 1981). Later on, COBE
DMR certainly detected CMB temperature fluctuations of order 10~° across the sky (Smoot
et al., 1992). These fluctuations give us information about density perturbations at z ~ 1000
(close to the Big Bang). Wilkinson Microwave Anisotropy Probe (WMAP, 2003), from NASA
improved sensitivity after COBFE and detected CMB temperature of 2.725 K with variation of
1 part in 100,000, see the WMAP CMB temperature fluctuation sky map Figure 1.3. Such
variation in the temperature of the Universe and hence its density at 1 part in 10° is a property
of the Universe at a very early time, just when it was only 380,000 years old. It turns out that
the angular power spectrum (Cy) of the temperature fluctuations is an important observable for
the Universe’s LSSs study.
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Figure 1.3: CMB temperature anisotropies/fluctuations (top) determined from five years of
WMAP satellite data, with an approximate average temperature of 2.725 K, and the CMB an-
gular power spectra (bottom) as measured by various probes. The map is taken from Ref. Hin-
shaw et al. (2009) and the power spectra figure is taken from Ref. D’Onofrio and Burigana
(November, 2014).
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More recently, rigorous dark-matter aided theoretical predictions certainly confirm relic fluctu-
ations, AT/T, that precursored the largest structures of the Universe to have the magnitude of
1 part in 10°. Today, CMB can be used as a look-back probe to study the early universe, and
the subsequent epochs. As experiments progressively advanced, Planck (2013) measured CMB
with extreme sensitivity and resolution, however, providing rigorous predictions of parameter
composition densities and quantities of our ACDM, the standard model of cosmology. The evo-
lution of the Universe has given us clues that can be expressed mathematically and transformed

into the data that we can obtain by looking out into space.

The CMB temperature fluctuations are Gaussian random fluctuations of the first order, with
a temperature AT = 100 uK. For the photons, temperature fluctuations are simply a CMB
intensity characterizing different sky positions/directions. CMB spectrum has nearly constant
temperature across the sky and is a good blackbody (Fixsen et al., 1996). This observable can
generally, precisely and quantitatively be described by temperature fluctuations AT/T.

In order to describe quantitatively the CMB power spectrum, we need the knowledge of mathe-
matics over the sphere. The CMB anisotropy (temperature fluctuations) is defined as AT /T €
S?, and is a function that should depend on spatial position, Z, time ¢ and a unit vector de-
picting photon direction, fi. Since we are dealing with fields that are statistically homogeneous
and statistically isotropic, we can safely assume that the statistical distribution of the CMB

anisotropy AT/T (1) is the same in all positions and directions.

Assuming Gaussian fluctuations, we can make a spherical harmonic decomposition, i.e., Fourier
decomposition in 2-dimension of these multipole moments of temperature field over a sphere

characterized by the angular position (6, ¢) as

AT [e'¢] +4
{=1m=—¢
where we have neglected spatial position and time in our expression.

Here, Yy, are the spherical harmonics (for angular position (6, ¢)),
Yim (0, ¢) = Net™? P (cosh), (1.2.49)

such that

N = (—1)m\/(2£;(12(f 1)!7”)! (1.2.50)

is a constant which ensures the orthonormality of the spherical harmonics:

/ Y (8, 6) Vi (8, $)dQ = / A0 (R) Y, () = 4G and (1.2.51)
P/ are associated Legendre functions, given by

Im|/2 dlml

Wpe(x)’ (1.2.52)

PP (@) = (1 - 2?)
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where

¢
Py(z) = ﬁ% <(g;2 - 1)€> (1.2.53)

are Legendre polynomials. To put them into spherical harmonics, we need 0 < 6 < 7.

Note that dQ = dcosfd¢, n - i’ = cosh, such that f is a notation for the unit vector specifying

a direction.

fs are multipole moments running from ¢ > 1, but in practice, especially for data analysis
purposes, the dipole moment ¢ = 1 is often excluded. The reason is that CMB has the largest
temperature variation at this dipole, believed to be influenced by its linear dependence on
the motion of the observer (Challinor and Peiris, 2009). Since the temperature field is real,

Ty, = (=1)"™T} _,, this implies that we can adopt the convention Y, = (=1)"Y, _p,.

The expansion coefficient Ty, can be found by inversion,
AT N
T = / AR (8) Y, () (1.2.54)

Note that, as for the case of Fourier transform of the random field in space, the harmonic
transformation of AT/T is diagonal, which means off-diagonal correlators of the expansion

coefficients Ty, vanish.

Statistical isotropy for the correlators of Ty, means

(TomTy, ) =040,/ CF, (1.2.55)

20 Y mm
where CeT is CMB temperature anisotropy angular power spectrum.

This equation signifies that for different values of ¢ and m, there is no correlation between
the expansion coefficients, Ty,,, and if they are Gaussian, they are also independent. C, can
completely statistically describe the temperature anisotropies. This means we can compute
the temperature power spectrum as the squared amplitude of these temperature fluctuations.
Mathematically, the temperature power spectrum, CET, is a function of angular scale in the sky
or multipole moments, ¢ and is independent for a given realization. This characteristic enables

modelling and analysis of the power spectrum in harmonic space.

Let us find how C) is related to the two-point correlation function. We compute the two-point
correlation functions of these spherical harmonics coefficients as

<ATT(f1)ATT(ﬁ’)> = > ATumTom) Yo (8)Y,,, (B')
Im £'m’

0
ST Vo8V () (1:2:50
l

m=—{

= % 2(26 + 1)CyPy(cosh) = C(6).
¢

To get the last equality above, we have applied additional theorem on spherical harmonics:

47 ¢

> Yo (0)Yy, (R), (1.2.57)

Py(cosh) = 1
m=—/
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where P, = PZO are Legendre polynomials. The angle brackets denote the average over an
ensemble of realizations of the fluctuations (expected values). It is now clear that the two-point
correction function (1.2.56) satisfies a statistical isotropy condition, as it only depends on the
angle between the two points. The variance of the temperature field is given by

Z 26+ 10 /dl Ee;mog (1.2.58)
™

Usually, people conventionally plot the quantity

L0+ 1)
2

T, = Cy (1.2.59)

interpreted as the contribution to the variance per logarithmic range in /.

By using the orthogonality of the Legendre polynomials, inversion of the correlation function

(1.2.56) gives us the power spectrum:
1
Cy = 27r/ dcosfC(0) Py(cosb). (1.2.60)
-1

If we have full sky noise-free measurements of temperature fluctuations, we can estimate the
CMB power spectrum by averaging over m for every ¢ as

N 1 ~
CT = — N1y, 1.2.61

where m ranges from —¢ to ¢; ¢ is the angular wavenumber, and there are 2¢ + 1 modes for
each £. This power spectrum can estimate true ensemble C;f without bias; but, since we can
only observe finite number 2¢ + 1 of modes, it has cosmic variance that is irremovable. CA'ZT
distribution is a x? with 2¢ + 1 degrees of freedom, and the cosmic variance is given by

Var (C7) = %il (C’@T)2 (1.2.62)
for Gaussian distribution of the temperature anisotropies (Knox (1995); Challinor and Peiris
(2009)).

From observational point of view, telescopes in practice observe CMB anisotropies assumed to
follow a Gaussian beam function

B(6) = exp l — 29;2)1 , (1.2.63)

where the full-width at half-maximum, pwmy ~ A/d with d being the aperture size of a telescope
such that o, = 2+/2log20pwnm. In this case, a telescope observes temperature anisotropies given
by

oo m=+~

ATons(0,0) => > BiTumYem(9,9), (1.2.64)
{=2m=—¢

where

B, = 27‘(’/ dsinf Py(cosf)B(6) (1.2.65)
0
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is the beam profile function (B(#)) Legendre transform. If the beam profile is Gaussian, the

corresponding Legendre transform is given by
1 2

For observed map, the power spectrum CYy is normally convolved with the beam, so (in Fourier

space)
Cces = B2C,. (1.2.67)

Conventional plotting of (1.2.59) can follow from neglecting the sky curvature by limiting our-
selves to small sections of the sky and transform the spherical harmonic analysis into ordinary
two-dimensional Fourier analysis. This limit renders ¢ as the Fourier wavenumber with angular
wavelength given by 6 = 27 /¢, which means small angular scales correspond to large multipole

moments. The variance of the field is

/ a2¢ (2(7’})2 (1.2.68)

in this limit, with the power spectrum given by

(AT)? = W;l) (CZ)2 (1.2.69)

™

for wavenumber ¢ >> 1, in practice computed as the power per logarithmic interval which is
a representation of the rms difference in temperature between two sky positions with angular

separation of § = 7/¢ measured in radians.

In summary, the CMB temperature power spectrum has been predicted and measured with great
precision over the last decade, see Figure 1.3. The power spectrum is an important result as it
contains all the information about the Gaussian isotropic field and we can use measurements
of its statistical properties to infer the physics that seeded the first structures in the Universe.
Temperature anisotropies in CMB are now one of the powerful cosmological probes in studies of
the early universe and its cosmic evolution (Planck Collaboration et al., 2018). What we see in
the CMB today helps us to infer the initial conditions of the Universe and constrain some of its
very early phenomena. Power spectrum calculations are challenged by a number of real-world
complexities; see Efstathiou (2004) for reviews on some practical methods on temperature power

spectrum estimation.

1.2.2 HALO FORMATION AND DISTRIBUTION

Dark matter halo is a theorized component considered to permeate and surround LSSs such
as individual galaxies, groups, and clusters of galaxies. The existence of dark matter was first
detected through studying the velocities of galaxies in the Coma cluster (see Subsection 1.1.4).
Similar dark matter inference was achieved through observations of the velocities of stars and

gas in galaxies. Through such studies, it was noted that the amount of ordinary luminous matter
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available within disk galaxies was not enough to account for the observed rotation curves. In
sum, after a number of observations, it was then concluded that the aforementioned effects could
not be reasonably produced by the luminous matter, implying a presence in a significant amount

of a mysterious form of an invisible matter-energy called dark matter.

Halos can be thought of as gravitationally bound regions of matter that have decoupled from
the Hubble expansion and collapsed (Wechsler and Tinker, 2018). The gravitational instabil-
ity is responsible for structure collapse that leads to dark matter halos formation. After they
are formed, halos can merge with other halos or accrete the neighbouring materials, and thus
continue to grow in mass (and size). When halos merge into bigger halos and live as bound
objects and survive instabilities, they populate subhalos (Mo et al., 2010). Subhalos may also
be remnants of their host halos which survived merging/accretion into big host halos. Subhalos
are usually subjected to various forces that try to dissolve them, such as dynamical frictions,
impulsive encounters, and tidal forces as they orbit their host halos. Halos develop complex pat-
terns, such as substructures, which seem to be the function of their formation history. Numerous
simulations following the advent of fast computers that can handle very large dark matter halo
mass and force resolutions have shown that halos that assembled later are both more massive,
and have on average a wealthy of substructures than those which formed earlier in the cosmic

history.

Galaxies are thought to form through the cooling of gas (baryonic matter) in the centers of
collapsed, virialized dark matter halos (White and Rees, 1978), and hence these parent halos
are responsible for determining the physical properties of galaxies within them. Descriptions
of dark matter gravitational clustering seeded by Gaussian initial fluctuations using linear and
higher-order perturbation theory have been provided in Bernardeau et al. (2002). This mass
initially thought to be smoothly distributed has evolved into complex structures such as networks
of sheets, filaments, and knots. The phrase dark matter halos is often used in place of dense
knots (Cooray and Sheth, 2002).

N-body simulations have been frontier approaches to studying the properties of dark matter
halos for different cosmological models, such as their evolution with time. Theoretically, high-
resolution simulations for relatively small volumes of the Universe have been used to study
details of the mass distribution around and inside halos (Navarro et al., 1996; Moore et al.,
1999), whereas, low resolution, large volume simulations have been used to study details of
their spatial distribution and abundance or dark matter halo mass function (Tinker et al., 2008;
Jenkins et al., 2001; Sheth et al., 2001). Therefore, studies in relation to dark matter halos
have been conducted, geared to investigating their clustering and evolution, and more attention
is now given to using approaches based on virialized halos to understand the properties of
dark matter and galaxy power spectrum, mostly, the formation, evolution, and the number and
distribution of galaxies that reside within dark matter halos as a function of mass (White et al.,
2001). There are other numerous dark matter halo simulations, such as high resolution N-body

simulations focusing on halo density profiles (Jing and Suto, 2002), BOLSHOI simulation to
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study various halo properties, for example, halo mass function, the halo and subhalo abundances
and concentrations, the velocity functions, and the number density profiles of subhalos (Klypin
et al., 2011), and halos large-scale bias fitting function numerical calibrations (Tinker et al.,
2010).

Although the efficiency of galaxy formation depends on the physics of baryons, the masses and
spatial distribution of their host dark matter halos have been found to only rely on dark matter
properties and the expansion history of the Universe. These allow for a simple galaxy clustering
cosmological model which is clearly separate from the complex physics of baryons. Analytical
models for dark matter halos large-scale spatial clustering amplitude as a function of halo mass
have been studied by Mo and White (1996); Sheth et al. (2001). These models can then be used
to study as a function of scale, both clustering of galaxies and dark matter particles (Seljak,
2000; Peacock and Smith, 2000; Ma and Fry, 2000). For a given cosmological model, a galaxy
population clustering can be used to predict the average mass of dark matter halo hosts on some

large linear scales.

It has generally been shown through N-body simulations that the statistical clustering of galax-
ies has an intrinsic connection to the clustering of dark matter halos (Peacock and Smith, 2000).
Similarly, galaxy formation efficiency and evolution are correlated to the halo occupation dis-
tribution (HOD) and can be a function of a number of properties of galaxy, such as stellar
mass, morphology, color, and luminosity (Zehavi et al., 2011). The current understanding of
galaxy formation established through high-resolution N-body simulations in conjunction with
large surveys of galaxies, such as SDSS, is that each galaxy form inside the dark matter halo
and the formation efficiency is strongly a function of halo mass (Mo et al., 2010; Wechsler and
Tinker, 2018).

Let us now briefly discuss the halo virial relations. Halos have deep hierarchical structures,
where each halo has thousands of subhalos and each subhalo contains small subhalos. It is a
standard convention to use respectively, a relation between the mass, radius and the circular
velocity of the dark matter halo, called the virial mass, My, virial radius (the virial radius is
defined as the radius of a sphere containing a mean mass overdensity of 200 with respect to
the global value (Moore et al., 1998)), Ryiy, and the virial velocity, Vii,. A usual practice for
numerical simulators is to define halo relations between masses and radii specified by a given
overdensity
2

DI — A=) (2) 2 (2),

vir

Avirpm = (1.2.70)

where for the ACDM model of cosmology, overdensity for the dark matter halos is fitted by

_ 187% 4 82z — 392

Air
M r+1

, (1.2.71)

and x = Q,(2) — 1.
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The virial mass, virial radius and virial velocity are related as

GMvir
Viir = . 1.2.72
Rvir ( )

The definition of A varies, and is usually chosen; depending on how it is motivated in the
respective literature (Wechsler and Tinker, 2018; Mo et al., 2010). In what follows, we discuss

some of the structural properties of the dark matter halos, starting with the halo density profile.

For simplicity, we discuss the modeling of dark matter halo as an approximate spherical object.
Neyman, Scot and Shane (1953) (Peacock and Smith, 2000), asserted that a Universe is frag-
mented into non-linear halos, whose internal density structures determine the observed galaxy
correlations. Being non-linear objects, it is possible that halo non-linear collapse has destroyed
their primordial historical formation imprints. However, various halo density profiles may have
more close connection to the violent relaxation process during a phase of rapid mergers than to
initial conditions (Mo et al., 2010). Navarro et al. (1996, 1997) used a suite of simulations for
different cosmological models and showed that the density profiles (the internal mass distribu-
tions) of dark matter halos for the ACDM cosmology can be described by a fitting function (the
NFW profile)

5char

p(R) = Pert (R/RS)(I—FR/RS)?

(1.2.73)

Here, R is the radius of the halo mass shell, pchay is the characteristic overdensity, and Ry is the

characteristic scale radius.

The halo virial mass My, and the concentration parameter defined as ¢ = Ryi/Rs or equiv-
alently dchar and Rs (Mo et al., 2010), completely characterize the NFW profile, where Ry;,
is the limiting (bounding) radius of the dark matter halo. These quantities are related to the

characteristic overdensity as

Ayir o
Ochar = . 1.2.74
cha 3 In(1+4+¢)—c(l+¢) ( )

The corresponding enclosed mass (mass within the mass shell), M(R), of the NFW profile by a
shell of radius R is given by

cy
1+cyl’

M(R) = 47penar RS |In(1 + cy) — (1.2.75)

where p is the mean matter density of the Universe, and y = R/ Ry;;.

Depending on the chosen definition for Ryi,, we can recover the total mass My of the halo by

evaluating Equation (1.2.75) at y = 1.
Furthermore, the circular velocity of the NF'W profile is given by

Vo(R) = Vair (1.2.76)
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There were other proposed halo mass density profile alternatives to NFW profile, see for example
Moore et al. (1998); Fukushige and Makino (2001). Navarro and his colleagues established that
halos which assembled earlier (they assembled earlier when the Universe was denser) were more
concentrated than those which formed later. This relation is in detail surveyed in the literature
Wechsler et al. (2002); Zhao et al. (2003). Their findings imply that the characteristic overdensity
is closely correlated to the time when the halo formed. They further showed, on average more
massive halos form earlier, and are expected to be less concentrated, that is, their masses are
inversely proportional to their concentrations. Duffy et al., Duffy et al. (2008); Ma et al. (2015)
reported consensus findings, for which through using three cosmological N-body simulations and
WMAPS5 cosmology, they obtained results which established that dark matter halo concentration

parameter ¢ can be well fit by the formula

—0.081
oo T2 Mo (1.2.77)
(1 + Z)O.?l 104h_1M@ ’

where Mg is the solar mass.

However, it was shown earlier through simulations, that concentration is a weakly decreasing
function of halo mass (Duffy et al., 2008). A number of researchers were motivated by this and
such other findings, and have since then developed an interest to find best estimators of the
mean concentration as a function of halo mass through simple models, see for example Bullock
et al. (2001); Zhao et al. (2009). Moreover, Duffy et al. (2008) reported discrepancies in the
dark matter halo concentrations between the two types of results which respectively, assumed
WMAP1 and WMAP5 cosmologies. More recently, Klypin et al. (2016) reports significant dark
matter halo concentration evolution deviations from previously established results, especially

for massive halos.

1.2.3 THE HALO MODEL

We adapt materials presented by Cooray and Sheth (2002); Mo et al. (2010) to describe the
halo model. The halo model can be used to describe analytically the cosmological dark matter
density distribution, (as we now know, dark matter is distributed over halos) in the non-linear
regime in terms of halo building blocks. In this formalism, we can think of matter field as

fragmented, and thus it is a discrete sum of dark matter halos.

We assume sphericity for all dark matter halos, and that their density distribution only depends

on halo mass
p(r|M) = Mu(r|M), (1.2.78)
where u(r|M) is the normalized halo density profile:
/ B Fu(F M) = 1. (1.2.79)

Let us imagine a vast space split into volumes, AV; which are very small compared to the whole

space and that each of these volumes can only contain a maximum of one halo center. We
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currently understand that each galaxy forms within a dark matter halo (Wechsler et al., 2002),
so galaxies formation and growth over time are connected to the growth of their host halos. The
advent of large-scale high-resolution cosmological simulations and large galaxy surveys have
opened a new window that has given us insights on statistical relationships between galaxies,
halos and their evolution with time. We have also learned that the efficiency of galaxy formation

is highly correlated to the dark matter halo mass of the halo within which they form.

Suppose N; is the occupation number of dark matter halos in each of these volumes, AV;. Then,
we have that N; is either 0 or 1, and so N; = N? = ... = N/, This formalism provides a way

of writing the matter density field as a discrete sum of its components:
p(Z) = NiMu(¥ — &|M;). (1.2.80)
i

This definition denotes the sum of all possible spacial partitions, with and without halos, each

multiplied by its respective occupation number, ;.

The two-point correlation function for the matter density field can then be computed as

§om(r) = (0(Z)6(T + 7))

1 (1.2.81)
= 0@E+) ~ 1,

where 6(Z) is the matter field overdensity.
Using (1.2.80), we can expand the correlation function (1.2.81) as

(D@0 +7) = (3 NeMyu(@ — & Mi) 3 Ny Myu(ds — 5| M), (1.2.82)

i J

where Ty = 71 + 7.
Taking summation outside the ensemble average allows us to write (1.2.82) as

<(5(f)(5(f+ 7?» = Z Z <NiNjMiMju(fl - fZ|Ml)u(i”2 - fj’Mj)> (1.2.83)

g

Here, the role of correlation function is simply to count the number of pairs of particles in halos,
so we can split the RHS of (1.2.82) into two parties, namely; the one-halo (i = j) term, and
the two-halo (i # j) term. The one-halo term basically correlates pairs of particles (galaxies)
resulting from the same halo, while the two-halo term, as its name suggests, relates pairs of

particles belonging to two different halos.

Considering the one-halo term, N; = N?, so we have

UGHCEGITEDY <N¢Mz2u(f1 — | My)u(Fs — a?i|Mi)>. (1.2.84)

)

Ensemble average can be expressed as an integral over the halo mass function, n(M), and so

the above equation becomes,

(@6 + )i = Y / AMM2n(M)AViu(# — 3| M)u(@s — | M). (1.2.85)
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Furthermore, the latter equation can be interpreted as the probability that the halo occupation
in the spatial cell of volume AV; will have the mass M multiplied by the respective volume of that
cell. Now, summing these probabilities over all possible spatial volumes, is simply integrating
Equation (1.2.85) to have

((F)8(F + 7)) = / dMM2n(M) / Biju(@) — §IM)u(Es — JIM). (1.2.86)
The term
[ gt — gpyu(@ - ) (1.2.87)

from Equation (1.2.86) above is called convolution integral. Thus, Equation (1.2.86) is a con-
volution of the halo profile (mass function) with itself. This is the probability that tells the
number of halos of mass M, since one-halo term is a representation of dark matter halo particle

pairs distribution within the halo itself.

Now, for the two-halo term, we have

(O(F)3(F + Pan = (D0 D (NN MMyu(Fy — & | My)u(@s — 5[ M5)). (1.2.88)
i iAj

Making similar analogy as with the one-halo term, we arrive at

((@)0E + M =35 / AM, Min(M, / AMyMyn(Ma) AV AV
i i) (1.2.89)

u(fl — fZ|M1)u(fg - fj|M2)

Equation (1.2.89) cannot correctly describe the two halo-term in its current state, it would only
hold if dark matter halos are Poisson distributed (i.e., independent from each other). But dark
matter halos are instead have non-zero two-point correlation function, which means they are
clustered, so we have to take into account dark matter clustering. Thus, on large (linear) scales,

dark matter halos clustering is characterized by halo-halo correlation function

Enn(r| Ma, Ma) = b(M1)b(Ma)Ern (1), (1.2.90)

mm

which is the number of pairs in excess of the expected number of pairs that would have Poisson
distribution. Here, b(M) is the halo bias function and ¢ (r) is a linear matter correlation

function. So, Equation (1.2.89) can then be modified by the halo-halo correlation function
(1.2.90) to have the two-halo term as

B@OE+ N =3 / AM, Min(M, / ANy Man(My) AV; AV x
i it (1.2.91)
[1 + fhh(fi - fj‘Ml, MQ)] u(fl - a‘:’z\Ml)u(fg — fj’Mg).

On small/medium scales, we will need to consider non-linear correlation functions and other

correction terms.
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Analogously to the one-halo term, we can further write Equation (1.2.91) as
BD)SE + 7)oy = 5 + / My Myn(My) / My Man(My)x
/d3371 /dgﬁzu(fl — | M)u(Z2 — §2)| M2) x (1.2.92)
&on (Y1 — G| Ma, M).
By introducing bias and redefining the halo-halo correlation function, we finally have
S@SF+ ) =72+ / AM, Myb(My)n(My) / AM Mab(My)n(Ms) x
/d3gl /d?’gj’gu(fl My )u(Es — )| Ma) X (1.2.93)
(1 — 172)-
From the above equation, we can again recognize

/d3371 /d37j2u(3?1 — 1| My)u(Zy — i2)|Ma) (1.2.94)

as convolution function.

Therefore, in a non-linear regime, the correlation function for the halo model in terms of dark

matter halos building blocks is expressed as a sum of one-halo term and two-halo term:
§(r) =€) + (), (1.2.95)
where
M (r) = p12 /dMMQn(M) / Bgu(@ — M)z + 7 — §|M), (1.2.96)
and
&)y = [)12 / dMy Mib(My)n(My) / A My Mab(Ma)n(Ma)x
/d3?71 /d?’ﬁzu(f — 1| M)u(Z 4 7 — )| M) % (1.2.97)
Enm (F1. — 12)-

Halo model parameter values are usually calibrated through N-body numerical simulations, see
for example, Tinker et al. (2010).

Next, we consider the halo model in Fourier space. We introduce the notion of convolution,
and find how we can transform from real space to Fourier space, and see what advantages this
transformation has. The convolution, ¢(t) of the two functions of ¢, f and g is a linear function
defined by

c(t) = f(t) = g(t) /Oo f(z)g(t — z)dz. (1.2.98)

—0o0
We see that, as is the case with our one-halo and two-halo terms above, convolved functions

may involve a considerable degree of tedious computations. Luckily, the convolution theorem
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tells us that, the convolution of the two functions f and ¢ in real space becomes a product in

Fourier space:
f@t)xg(t) «— F(s)G(s) = C(s), (1.2.99)

where F' and G are respectively, the Fourier transforms of functions f and g.

However, we know that the linear correlation function of the matter is a Fourier transform of the
matter power spectrum. More specifically, the Fourier transform of the matter autocorrelation
function is the power spectrum, and equivalently, the autocorrelation is the inverse Fourier
transform of the matter power spectrum. Therefore, instead of computing the matter linear
correlation functions for the one-halo term and the two-halo term of the dark matter halo
model, i.e., Equations (1.2.96) and (1.2.97), directly, it is simpler to compute P(k) of the halo
model, and then apply Fourier transformation to obtain the linear matter correlation function
&(r). In this way, we transform the convolution integrals in real space into multiplications in

Fourier space.

Therefore, we can write the halo model matter power spectrum as a sum of one-halo term and

two-halo term:

P(k) = P™(k) + P™(k), (1.2.100)
where
Pk = p12 / AM Mn(M)[a(k|M)[2, (1.2.101)
. 1 2
P (k) = P (k) {ﬁ / dMMb(M)n(M)a(k:]M)} , (1.2.102)
such that
P = [ i@ s = ax [ ein ) R 2ar (1.2.103)
and

ink
ST 24 (1.2.104)
.

a(k|M) = / W(F|M)e FEPE = ax / w(r|M)
0

1.3 21-cMm COSMOLOGY

1.3.1 Hi1 SPIN-FLIP TRANSITION

The hyperfine spin-flip transition in neutral hydrogen atom (Hr) (Furlanetto et al., 2006b)
gives rise to the 21-cm spectral line that can be seen by radio telescopes. Hyperfine spin-flip
transition results from the interaction between magnetic moments of electrons and protons. This

then leads to the configuration in which the proton and electron spins are in opposite directions;
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a configuration with total lower energy than the state in which the two spins are parallel. Thus,
a photon having an energy of 5.9 x 107 %eV equals to the difference in the energies of the two
configurations is emitted when the atom flips from the parallel configuration to the antiparallel
one. This photon energy corresponds to a wavelength of 21 cm. Modern cosmology large-scale
structure surveys of the Universe heavily rely on the analyses of the frequency and the redshifted
primordial photon wavelengths to the radio part of the electromagnetic spectrum, and hence

the phrase 21-cm cosmology.

1.3.2 Hi1 INTENSITY MAPPING

21-cm cosmology has opened a new window of studying our Universe structure, and together
with the potential availability of an enormous amount of data and a promising consistent devel-
opment of data testable theoretical frameworks underpinning the study, the field of cosmology
is progressively becoming more exciting than ever before. As of today, probing the cosmos with
21-cm cosmology is regarded a modern approach (Dodelson, 2003), and undoubtedly presents

overwhelming future science prospects.

As opposed to the traditional galaxy redshift survey which focuses to resolve individual galaxies,
21-cm cosmology aims to map out galaxy distribution over large, potentially containing galaxies
Universe volumes with 21-cm signal intensity. In particular, the phrase 21-cm cosmology arises
from the fact an approach uses the redshifted 21-cm emission line of the neutral hydrogen atom
whose wavelength at rest-frame is 21 cm to survey very large cosmic structures. The Hi IM
(Peterson et al., 2009) survey arguably can collect primordial cosmic information that is several
orders of magnitude richer than what CMB measurements could offer (Harper et al., 2018).
Direct observations of galaxies to very large distances corresponding to around a billion years
Universe age have been carried out by both ground-based optical telescopes such as VLT, Subaru
and Keck, and a well known Hubble Space Telescope. These telescopes, however, can only see
individual galaxies at a time and are limited to observe only the brightest sources since most of
the objects of our interest are extremely distant from us. In contrast, 21-cm relies on the analyses
of the information encoded in the measurements of the total HI intensity over comparatively
large angular scales to efficiently survey extremely large volumes of galaxies. Looking at the
advancement trends in the field, we can indisputably predict that Hi IM is potentially an

extremely important ingredient for imaging the evolving LSSs of our Universe.

From the Big Bang phase to about 400, 000 years later, the initially very hot and dense universe
expanded to a size for which the pressure of the gas that filled it dropped significantly. This
led to the cooling of the cosmic gas below an order of magnitude from 3000 K. The cooling was
sufficient for protons and electrons to detach from a tightly coupled gaseous plasma and combined
to form Hi. The CMB in the form of minute energy packets of electromagnetic radiation called
photons also decoupled from the cosmic gas during this time and free streamed. Thus, the
CMB radiation temperature anisotropies of order ~ 10~° can be used to image the primordial

universe at distances corresponding to the age of the Universe at recombination (¢ ~ 400,000
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years). Similarly, the light emitted by the H1 due to the hyperfine spin-flip transition as a
result of interaction between magnetic moments of electrons and protons is sufficiently rich in
information that we can employ to probe the snapshot of the primordial universe and study
how it evolved from such distant past to its current state. At late times, most of the neutral
hydrogen content is expected to be confined within galaxies (Visbal et al., 2009; Bull et al.,
2015b), and hence this makes it an excellent tracer of galaxy distribution and a probe of the
evolutionary Universe since its first stars and galaxies, about the first billion years after the Big
Bang. Just as the CMB anisotropies used to probe the cosmos over large scales, the redshifted
Hi1 fluctuations will be used to detect all galaxies with HI content. Variations in the intensity
of HI can approximate the galaxy power spectrum over sufficiently large angular scales as a
function of redshift and cosmic time. Observations with the radio part of the electromagnetic
spectrum thus open a new window to the very high redshift universe which is otherwise invisible
to traditional optical galaxy redshift surveys (Hall et al., 2013). Optical galaxy redshift surveys
can only resolve individual most bright sources and the task becomes extremely challenging at

high redshifts since the objects of interest are very far and appear fainter.

By the time the Universe reionized, significant amounts of Hi atoms were prevented from reioniz-
ing ultraviolet photons since they resided within comparatively large dense clouds (damped Ly«
systems) embedded in galaxies (with some of the signal emanating from optically-thin Ly« ab-
sorbers in regions of low-density) (Furlanetto et al., 2006b; Morales and Wyithe, 2010; Pritchard
and Loeb, 2012; Bull et al., 2015b). Therefore, after the EoR, large amount of hydrogen in the
IGM was ionized, but the majority of the HI residing within galaxies was left intact and it is
currently the most abundant and ubiquitous element in the Universe (Barkana and Loeb, 2007)
mass gas content. Our forecast with the Hi IM will illuminate the post-reionization epoch at low
redshifts which has some advantages. In contrast to the Epoch of reionization (EoR (Morales
and Wyithe, 2010)) observations, the post reionization physics of the 21-cm power spectrum is
less complicated in the linear theory and can be well measured (Wyithe and Loeb, 2008, 2009).
Due to its sensitivity to the reionization process details (Furlanetto et al., 2006a), modeling of
the power spectrum in the EoR is somewhat complicated. However, contaminants such as emis-
sion from Galactic synchrotron are significantly suppressed at the post reionization epoch (low
redshift) compared to EoR (Battye et al., 2012). Although the foreground will still be several
orders of magnitude higher than Hi signal, reduced contaminants make the application of any

standard algorithm to strip them off a bit easier.

In general, observing using the radio window of the electromagnetic spectrum is thus essen-
tially suitable for HI intensity mapping technique which has a number of advantages over the

traditional galaxy redshift survey, as we summarize them below:

e Hi IM approach is robust since it allows efficient surveys of extremely large volumes of

galaxies without resolving each individual galaxy.

e It produces bright tomographic maps of the HI emission distribution present in the Uni-

verse over a large range of angular scales.
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e It provides sensitivity to the BAO feature over redshift ranges inaccessible to current

galaxy redshift surveys.

e Hi IM converts sources redshifts and makes their information readily obtainable via the
corresponding observing frequencies. This allows very narrow redshift bins (see advantages
Nan et al. (2011); Hall et al. (2013); Xu et al. (2018) of using thin redshift bins) to be used
to obtain 3-dimensional tomographic maps, and thus study matter density field evolution
and its scale dependence (Hall et al., 2013).

e Furthermore, the significance of the redshift-space distortion (RSD) term is enhanced due
to precise redshift information, as opposed to photometric redshifts only optical surveys, in
which the RSD term is suppressed due to redshift measurement uncertainties (Hall et al.,
2013).

Hi1 IM deploys single-dish telescopes or interferometry arrays which can be cheaply constructed
compared to the cost of galaxy redshift survey instruments (Seo et al., 2010; Battye et al., 2012).
Large-scale redshifted H1 observations will be attainable through the future and near-term Hi IM
experiments; some of which aim to map out H1 at relatively low angular resolution (~ 1°) within
the Hr1 brightness of galaxies beam fluctuations. With little sacrifice in source resolution, the
HI1 survey technique does not just focus to only resolve individual galaxies or brightest sources
but maximizes surveys by efficiently integrating the HI signal from all galaxies at various redshift
sliced volumes of the Universe. This is because such telescopes require resolution and sensitivity
which can measure large-scale structures of the Universe, such as BAOs wavelengths sufficiently
but need no resolution and sensitivity for individual galaxies detection (Peterson et al., 2009).
IM is thus an economical and effective strategy to map very large volumes of the Universe

efficiently by integrating total emission from many galaxies.

However, 21-cm observations do not only enable us to study the first stars and galaxies, their
distribution across the cosmic history, but also provide us with the potential to infer the funda-
mental physics such as initial conditions of the Big Bang and the various astrophysical effects
(Pritchard and Loeb, 2012); carry out forecasts of the cosmological parameters constraints such
as dark energy properties to make cosmological inferences (Chang et al., 2008; Visbal et al.,
2009), measure BAOs (Masui et al., 2010a; Mao, 2012), and even constrain modified gravity
models (Masui et al., 2010b; Brax et al., 2013). Apart from using HI emission line, cumulative
emission of other atomic and molecular lines from galaxies can be mapped out using the IM
technique provided such spectra lines can be identified and detected (Pritchard and Loeb, 2012).
Hi IM techniques from radio astronomy surveys thus provide a revolutionary approach to the
problem of dark energy and will help to unveil how the Universe evolved since the Big Bang,
consequently, giving us the ability to probe and constrain the n