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ABSTRACT 
Maintaining fruit and vegetables’ (F&V) quality requires optimal environmental conditions during 

transportation, storage and marketing. High ambient in excess of 30oC and low relative humidity 

(RH) below 50% characterise most agro-ecological zones of Sub-Saharan Africa (SSA), which 

conditions create negative effect on F&V quality.  Modern technologies like mechanical 

refrigeration, hydro and vacuum cooling have been widely adopted for the modification and control 

of the storage environment of high value-quality fresh produce in developed countries. Small-scale 

farmers (SSF) in SSA cannot afford the high installation and maintenance costs associated with 

such facilities. Low-cost evaporative cooling systems (EC) alone or combined with indirect air-

cooling (IAC) provides alternative solutions to minimize postharvest losses (PHL) in small-scale 

farming.  

The effectiveness of EC in providing optimum storage conditions of temperature and RH in dry 

and arid climates has been investigated and is well reported in published papers worldwide. 

However, the effectiveness of EC in hot and sub-humid to humid areas where the air needs sensible 

cooling before contact with water through indirect air cooling has not been well investigated and 

reported. Recent literature reviewed concludes that evaporative cooling coupled indirect air-

cooling (IAC+EC) should be of particular research focus because of high potential thermal 

performance. Further, documented scientific information on performance of commercial scale 

IAC+EC of F&V storage systems is limited. IAC+EC requires incorporation of a suitable 

desiccation media as an indirect heat exchanger where electrical power is required. SSF in SSA 

could access this cheaper technology if solar energy can be utilised through solar photovoltaics 

(SPV) and dearth of information exists in actual performance of SPV powering IAC+EC which 

factors promoted this study. Thus, the primary aim of this study was to design and evaluate the 

effects of solar powered IAC+EC storage conditions on the physical, chemical and sensory quality 

parameters of the star 9037 tomato variety over the 28-day experimental period. Comparisons 

between tomatoes stored IAC+EC to those stored under ambient conditions was done. 

A low cost SPV powered IAC+EC system with a storage chamber with a capacity 3.8 tonnes of 

tomatoes was designed and fabricated in Pietermaritzburg for study under a sample tomato load. 

The experimental set up consisted of SPV system, battery bank, electrical appliances, indirect heat 

exchanger, psychrometric unit, and 3.8 tonne storage chamber constructed and assembled on site. 
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In optimizing power from the SPV systems and battery bank to meet the demand load a three series-

three strings solar panels rated 330 W with short circuit current and open circuit voltage of 8.69 A 

and 44.8 V, respectively, were used with a 48 V battery bank of twelve 230 AH batteries.  

Based on the experiment data the SPV system produced 2639 W that is 90% of the calculated 

theoretical power output. The energy yield of 2639 W was 11% higher than the power required in 

running the electrical appliances for IAC+EC system. Tracking the SPV system under ambient 

conditions with an average daily generation during the period of the experiment, the power and PV 

array efficiencies were 81.2% and 15.1% respectively.  The power output of modules increased 

with temperature of the module to 25℃ and declined thereafter. It was found that the solar array 

system can be used to power the IAC+EC at daytime during summer season, and the excess power, 

stored in the battery ran the system until 22h00 at night when temperatures are low enough for 

storage of tomatoes and SPV system was then switched off.  

There were significant variations (P<0.001) between storage and ambient conditions. The 

temperature inside the cooler was on average 7℃-16℃ lower and the average RH was 28% to 47% 

higher than ambient conditions. The cooler efficiency varied from 86.8% to 96.7%. The IAC+EC 

tested in Pietermaritzburg was found to perform at the same level as EC under dry and arid 

conditions. The solar powered IAC+EC tested in this study has benefits in providing optimum 

conditions for fresh produce and in reducing losses as well as being a low-cost technology that can 

be a candidate for implementation in hot and to humid areas in SSA. The effect of two storage 

conditions on total soluble solids, tomato firmness, colour, physiological weight loss (PWL) and 

marketability of tomatoes was investigated. The storage conditions and the storage period 

significantly (P≤0.001) affected the evaluated quality parameters. Low temperature IAC+EC 

storage offered the greatest benefit in maintaining high marketability, reduced PWL and delayed 

the peak in respiration, compared to ambient conditions. Tomatoes stored under ambient conditions 

exhibited increased rates of ripening, which was evident in increased PWL, reduced firmness, 

redness in skin colour, rapid increase in TSS. The green harvested tomatoes combined with 

IAC+EC provided favourable conditions in maintaining lower PWL, higher marketability, higher 

moisture content which are indicative of delayed ripening. The findings show that cold storage 

improved the shelf life to three weeks and preserving the quality of tomatoes during short and 

extended storage durations compared to storage under ambient conditions. 
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1 INTRODUCTION 

1.1 Introduction to Postharvest Factors and Cooling Technologies 
 
Agriculture is the mainstay of Sub-Saharan African (SSA) economies with about 80% of the 

population directly or indirectly dependent on agriculture for employment and livelihood (Shah et 

al., 2008; AGRA, 2017; Taylor, 2017). Commercial agriculture in South Africa contributes 2.5% 

to the gross domestic product and another 12% through value addition from related manufacturing 

and processing and 7% to formal employment (SAYB, 2017). The crops grown in tropical and sub-

tropical climates of SSA include field and horticultural crops. 

Small-scale farmers (SSF) have an increased interest in the production of fresh produce because of 

a shift in consumer demand to fruit and vegetables (F&V) and higher returns (Njaya, 2014; Pereira, 

2014; Miller et al., 2017). South Africa’s F&V export prices and quantities have increased 

tremendously and continue to maintain an upward trend since 2010 and contributing R76 967 

million by the 2017/18 farming season (SAYB, 2018). Statistics in South Africa indicate that fresh 

produce like tomatoes and onions have the highest annual yield quantity of 560 418 t, 689 777 t 

respectively (Shabalala and Mosima, 2002; SAYB, 2016; SAYB, 2017). The downward side of 

fresh produce production in SSA is the huge postharvest losses (PHL), which can be as high as 30-

50% (Kitinoja et al., 2011; van Gogh et al., 2013; FAO, 2014; Victor, 2014; Affognon et al., 2015). 

In countries like South Africa, PHL are estimated at 30-50% for F&V depending on commodity 

(Mashau et al., 2012). For example, losses in tomatoes are 10-30% of the total production (Etebu 

et al., 2013; Sibomana et al., 2016). The sustainable development goal (SDG 12.3) requires that 

by 2030 countries should halve per capita global food waste at the retail and consumer levels and 

reduce food losses along production and supply chains, including PHL. Therefore, research on 

postharvest interventions through development of innovative technologies that reduce PHL in SSA 

are a priority (Kitinoja et al., 2011; Stathers, 2017). 

SSF in SSA could potentially produce 80% of the F&V if the PHL experienced before the fresh 

produce reaches the consumer were mitigated (Murthy, 2009; Arah et al., 2015). Reducing PHL of 

fresh produce as sustainable way of growing the horticultural industry in SSA involves the 

development of technologies for manipulation of storage environmental factors of temperature and 
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relative humidity (RH) (Thompson et al., 2002; Alamu et al., 2010; Awole et al., 2011; Azene et 

al., 2011; Arah et al., 2015; Misra and Ghosh, 2018). Decreasing temperature and increasing RH 

helps maintain high quality in fresh produce by providing optimal storage conditions that delay the 

onset of ripening and senescence (Yahia, 2002; Kader, 2003; Perez et al., 2004; Workneh and 

Woldetsadik 2004; Mashau et al., 2012; Pereira, 2014; Chijioke, 2017; Sibomana et al., 2017). 

Fresh produce has high moisture content which makesF&V liable to spoilage and as living entities 

continue to transpire, respire and further ripen after harvest (Wills et al., 1989; Workneh, 2010; 

Seweh et al, 2016; Gupta and Dubey, 2018; Sitorus et al., 2018). 

When temperature is too low and RH is too high, fresh produce can suffer from chilling injury or 

the proliferation of microorganisms (Maftoonazad and Ramaswamy, 2008; Okanlawon and 

Olorunnisola, 2017). When the converse occurs, promotion of excessive water loss from produce 

occurs, firmness reduces and an undesirable shriveling appears (Paull, 1999; Singh et al., 2014). 

To avoid these two scenarios, immediate cooling of F&V is required after harvest especially when 

harvesting fresh produce at high temperatures or at an advanced stage of maturity (Rudnick and 

Nowak, 1990; Paull, 1999; Brosnan and Sun, 2001; Gupta and Dubey, 2018). Cooling of fresh 

produce allows for market rescheduling and improves the export conditions by allowing continuous 

supply of quality product during off-season (Chopra et al., 2003; Jain, 2007; Nunes, et al., 2009; 

Paul et al., 2010; Shitanda et al., 2011; Okanlawon and Olorunnisola, 2017). 

Sub-optimal environmental conditions during temporary storage and transportation are prevalent 

for SSF in SSA because of unavailability of cooling facilities (Jain, 2007; Etebu et al., 2013; 

Sibomana et al., 2016; Cherono et al., 2018). Because of lack of investment in postharvest 

infrastructure SSF are compelled to immediately sale their fresh produce in some instances at 

distressed prices to the local market soon after harvest to avoid any spoilage (Kebede, 1991; Verna 

and Josh, 2000; Rayaguru et al., 2010; Obura et al., 2015; Cherono and Workneh, 2018). None 

ownership of cooling facilities relates to the fact that SSF in SSA own land holdings which are no 

more than 1.5 ha resulting in smaller output that does not justify investment in capital-intensive 

postharvest technological interventions (Makeham and Malcolm, 1986; Du Plessis et al., 2002; 

Backeberg, 2006; Denison and Manona, 2007; Seweh et al., 2016). 

There is a need to search for appropriate methods for SSF to reduce PHL during temporary storage 

and transportation so that the produce can reach better-priced markets at relatively suitable 
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environmental conditions (Wills et al., 1998; Mandal et al., 2010; Gustavsson et al., 2011; Seweh 

et al., 2016). Modern cooling technologies such as mechanical refrigeration, forced air cooling, 

hydro-cooling and vacuum cooling can be utilised to reduce the temperature of the micro-

environment of F&V to between -1 and 13℃ (Thompson et al., 2002; Paull and Duarte, 2011; 

Yahia, 2011). These modern cooling technologies are utilised in developed countries to extend 

shelf life and to minimise PHL (Tefera et al., 2007; ASHRAE, 2011; Ambaw et al., 2013; 

Sibomana et al., 2016). However, the capital cost involved, expertise of operation required, energy 

requirements to operate modern cooling technologies are a serious constraint for SSF in SSA 

making unfeasible their adoption (Roy and Pal, 1994; Samira et al., 2011; Seweh et al., 2016).  

Some SSF in SSA are located in remote rural areas with no access to grid electricity in contrast to 

large-scale commercial farmers that have economies of scale, financial muscle and access to grid 

electricity (Backeberg, 2006; Kim and Ferreira, 2008; Korir et al., 2017). Studies have revealed 

that conventional electric-powered mechanical cooling systems could not be of much use in rural 

areas of SSA because of non-availability of energy sources (Jain 2007; Tefera et al., 2007; Kim 

and Ferreira, 2008; Basediya et al., 2013; Korir et al., 2017). This, therefore, renders it difficult to 

install and operate mechanical modern-day cooling technologies for SSF; implying alternative low-

cost cooling systems need to be sought (Workneh and Woldetsadik, 2004; Okanlawon and 

Olorunnisola, 2017). Therefore, the focus of this study ensures use of low-cost cooling technologies 

with no or less energy demand in the preservation of fresh produce for extended periods in a 

marketable state (Quick, 1998; Prusky, 2011; Basediya et al., 2013; Manaf et al., 2018).  

Evaporative cooling systems (EC) could be the solution to SSF challenges of PHL as a short to 

medium term storage facility of F&V. It is reliable, efficient and economical for temperature 

reduction and increasing RH (Jha and Chopra, 2006; Vala et al., 2014), is a tried and tested method 

(Odesola and Onyebuchi, 2009; Liberty et al., 2013), is environmentally friendly (Camargo, 2007; 

Okanlawon and Olorunnisola, 2017) and does not require special skills to operate (Vala et al., 

2014; Chijioke, 2017). EC is an appropriate low-cost cooling system; has a potential energy saving 

of 75% compared to mechanical refrigeration; and can be assembled from local available material 

in South Africa or any country (Datta et al., 1987; Jain, 2007; Odesola and Onyebuchi, 2009; 

Deoraj et al., 2015; Yahaya and Akande, 2018). Therefore, evaporative cooling (EC) can address 

PHL in fresh produce suffered by SSF in SSA if affordable energy sources can be accessed to 
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power the cooling system can be utilised. Understanding the performance of EC in controlling the 

microenvironment is critical for its characterization as a low-cost cooling technology with potential 

utilization at a commercial scale.  

EC is a physical phenomenon where evaporation of a liquid, into surrounding air, cools an object 

or a liquid with which it is in contact (Kitinoja and Thompson, 2010; Workneh, 2010; Olosunde et 

al., 2016). Evaporation of water produces a considerable cooling effect and the faster the 

evaporation the greater is the cooling (Basediya et al., 2013; Shahzad et al., 2018).  The results of 

the research done to date demonstrates that EC can reduce temperatures below ambient with a depression 

reaching 12℃ and RH above 90% and thus showing potential for preservation of fresh produce (Tolesa and 

Workneh, 2017).  Two types of EC methods exist, direct evaporative cooling (EC) and indirect air-

cooling (IAC). In IAC, the air first passes through the heat exchanger as opposed to passing straight 

to the humidifier as is the case with direct EC (Chaudhari et al., 2015; Gómez-Castro et al., 2018). 

EC system adds moisture to the cool air and is effective in hot and dry conditions of arid or semi-

arid climates like in SSA (Thompson et al., 2002; Samira et al., 2011; Xuan et al., 2012; Hao et 

al., 2013; Chijioke, 2017; Fong and Lee, 2018). Most of the work done to date on EC in SSA are 

prototypes and has been limited to testing the technology on cooling small quantities of produce 

(Ndukwu and Manuwa, 2014; Yahaya and Akande, 2018). The research work on EC in developed 

countries and Asia has focused on cooling buildings (comfort cooling) and most research 

publications are from temperate regions that markedly differ from tropical climates found in SSA 

(Manuwa and Odey, 2012; Yahaya and Akande, 2018).  EC is ideally for hot and dry conditions 

and cannot be applied in hot and sub-humid to humid areas. Therefore, its use has been limited to 

conditions in which it is applicable. In SSA work on EC has been limited to West Africa, North 

Africa and East Africa with little or no work done in Southern Africa (Anyanwu, 2004; Ahmed et al., 2011; 

Samira et al., 2011; Ndukwu et al., 2013).  Performance of EC varies with agro-climatic conditions 

(regions) as evidenced by a report by Thipe et al. (2017) and therefore, performance of EC with a focus in 

Southern Africa needs investigation. Further, the studies done to date have been with miniature 

structures of less than 0.2 tonnes that do not mimic the SSF conditions in SSA where up to 4 tonnes 

storage chamber might needed (Mashau et al., 2012; Ndukwu and Manuwa, 2014). Because of 

requirements of high temperature and low RH, EC has limitations in humid conditions and 

therefore, there is a need to seek an alternative for such conditions. IAC as a principle has been 

https://www.sciencedirect.com/science/article/pii/S1364032117313096?via%3Dihub#!
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proposed by researchers working on green-houses and this potentially can be extended to 

preservation of F&V. 

IAC system sensible cools the air without any moisture addition and the expectation is it should 

work better in hot and humid regions if coupled with EC (Kapilan et al., 2016). The literature 

review by Misra and Ghosh (2018) showed that IAC alone had not been applied in a greenhouse 

and it has not been used for cooling the microenvironment in storage of fresh produce under 

practical conditions. There is no literature on IAC coupled with EC i.e. IAC+EC for the 

preservation of F&V; many of the work on this technology are for comfort cooling, production 

process in metallurgical shops, cooling automobile engines and tractor cabins (Ndukwu and 

Manuwa, 2014). There is currently dearth of information on the performance of IAC+EC for the 

preservation of F&V and this study proposes that it be investigated. This potentially, provides an 

opportunity to develop and characterise an IAC+EC for hot and sub-humid to humid conditions 

that are subject to high temperature and RH prevalent in coastal areas of SSA, which is innovation 

in terms of developing cooling facilities for fresh produce. The review by Manaf et al. (2018) 

identified IAC+EC as an encouraging system, yet research into its use is still at an initial stage and 

needs further investigation. Manaf et al. (2018) also alluded that IAC+EC have high potential for 

use in hot and humid weather. 

As a cheap and convenient key measure to decreasing the deterioration of fresh produce, IAC + 

EC integrated with alternative sources of energy other than grid, electricity would be critical in 

reducing energy consumption during the cooling process as alluded to by Mahmood et al. (2016). 

Possible options are the clean energy sources like solar energy that have no pressure of concerns 

on global warming with significant carbon emissions (James and James, 2011). Misra and Ghosh 

(2018) in their recommendations for further research on EC allude to the application of renewable 

energy (solar and geothermal) for IAC+EC. From the literature available, there is no evidence of 

background work in SSA of application of renewable energy as a power source for IAC+EC. Since 

the majority of areas in SSA, receive an average of 5.5 kWh.m-2 of solar irradiation then it implies 

that the use of solar energy is feasible (Fluri, 2009).  The research gap in SA is that there is limited 

investigation on SSF producing F&V research, development and performance characterization on 

utilisation of solar energy and IAC+EC of fresh produce. This could assist in improving the 

marketability of F&V.  
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1.2 Summary for the Introduction 
 
F&V production in the sub-tropical regions occur where the air is dry and warm and fresh produce 

has high moisture content (Sitorus et al., 2018). Such environmental conditions result in SSF in 

SSA experiencing high PHL. There is therefore, a need to ensure a significant percentage of this 

production does not spoil through sub-optimal environment but reaches both the domestic and 

international market in a palatable state. High air temperature and low RH negatively affects the 

physiologically state of F&V. Optimum storage conditions are key and to maintain fruit quality 

during storage and transportation. Studies need to be conducted to develop low cost appropriate 

cooling technologies that ensure optimal conditions are maintained inside storage containers 

especially for use by SSF. Mechanical refrigeration already exists but is expensive and has high-

energy demands and hence the need to develop technologies that have low energy requirements 

(Okanlawon and Olorunnisola, 2017).  

It is therefore necessary to develop and test a simple low energy input technology powered by solar 

energy, appropriate, in-expensive cooling method like EC to attain optimum storage conditions for 

F&V. EC is well researched and documented and is applicable in dry and hot conditions but has 

functional limitations in hot and humid conditions. For EC to be extended to hot and humid areas 

IAC has to be combined with EC. Literature shows that a lot of work relating to IAC+EC is yet to 

be done. More scope of further research remains, to characterise IAC+EC in hot and sub-humid to 

humid tropics. The design specifications of the energy source of IAC+EC system will introduce 

fans for ventilation and water pump for water reticulation and an indirect heat exchanger to increase 

efficacy of the cooling system.  Introduction of air and water circulation systems will require 

determination of storage size, sizing of the psychrometric unit and water reticulation and ventilation 

systems. Hence, this study was devoted to characterization and performance evaluation of a solar 

photovoltaic IAC+EC in terms of microenvironment temperature reduction and increasing RH in 

the storage chamber towards the optimal recommended storage conditions. The study evaluated 

the influence of the low-cost IAC+EC storage system on the tomato fruit in coastal areas with a 

sub-humid to humid climate and compared temperature and RH variations within the cooling unit, 

storage chamber and ambient air conditions. The overall aim of this study was to to design, 

construct and evaluate the performance of a solar powered IAC+EC unit; to evaluate the changes 

in the quality of IAC+EC stored tomatoes under sub-humid to humid conditions. 
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The specific objectives of this study were to: 

1. To develop and evaluate a solar energy powered IAC+EC system for storage of tomato 

fruit. 

2. To evaluate the performance of IAC+EC in terms of cooling efficiency, an increase in RH 

and a decrease in temperature under hot and sub-humid conditions. 

3. To assess the physical, chemical and quality changes of tomato fruit stored in the IAC+EC 

system compared to ambient conditions. 

1.3 Outline of Dissertation 
 
This dissertation is organised into six chapters.  

Chapter 1 Provides a general overview of the study detailing its justification and the 

objectives. The chapter discusses challenges faced by small-scale farmers in 

preservation of fresh produce after harvest. Evaporative cooling is identified as an 

ideally cooling method for small-scale farmers with no capital to invest in expensive 

systems that also require intensive energy supply. Evaporative cooling has been 

limited to dry and arid areas and its efficacy in sub-humid to humid areas need to 

be investigated. In hot and humid areas, indirect air-cooling is required in 

combination with evaporative cooling. Indirect air-cooling coupled with 

evaporative has not been well investigated. Therefore, this study proposes 

characterisation of indirect air-cooling coupled with evaporative for fruit and 

vegetables storage in hot and sub-humid to humid regions. 

Chapter 2 Details an overview of the horticultural industry and its challenges. It reviews the 

factors influencing the shelf life of fruit and vegetables. It discusses the factors 

affecting postharvest losses in fruit and vegetables. This chapter considers available 

modern-day cooling technologies and their inherent challenges as to why small-

scale farmers cannot adopt them and finally presents fresh produce cooling options 

for small-scale farmers. The chapter considers evaporative cooling as an option for 

fresh produce storage and further considers combination of indirect air-cooling and 

evaporative cooling. Indirect air-cooling coupled with evaporative cooling is 



 

8 
 

identified as an option for hot and sub-humid to humid areas requiring extensive 

investigation as it provides a potential of high thermal performance. The chapter 

concludes by considering renewable energy options available to power indirect air-

cooling with evaporative cooling options for remote and scattered farmers that 

cannot be connected to the national greed. 

Chapter 3 Focuses on development of a solar photovoltaic array system powering an indirect 

air-cooling in combination with evaporative cooling system for fresh produce. The 

chapter considers the design requirements to set up a solar photovoltaic system for 

indirect air-cooling, cooling load and energy requirements for electrical appliances 

like water pump and fans, battery bank capacity and sizing and optimisation of solar 

modules, charge controller and inverter. The chapter evaluates the performance of 

the solar photovoltaic system, determines and compares the theoretical power 

output to the actual power output. Variation of current and voltage with time of the 

day and ambient and module temperatures are considered. The chapter provides 

information on the charging and discharging curves of the bank facility. The chapter 

concludes by looking at the systems efficiencies and the economic evaluation of the 

solar photovoltaic system. 

Chapter 4 This chapter overall investigated the performance of a combination indirect air 

cooling with evaporative cooling system in temperature reduction and RH increase 

in the storage for provision of optimal storage conditions for fruit and vegetables. 

The theoretical design of the system was derived from the design considerations 

that sized the storage chamber and cooling unit, cooling pad size and design, sizing 

and selection of water pump, determination of cooling load and the ventilation rate, 

sizing of fan. The chapter compares the results obtained in this study for indirect 

air-cooling combined with evaporative cooling under sub-humid conditions with 

results from literature of evaporative cooling systems in dry and arid conditions. 

The chapter concludes by providing evidence that indirect air-cooling is effective 

in areas with high humidity. 

Chapter 5 Presents the effect on indirect air-cooling combined with evaporative cooling on the 

physical, chemical and sensory properties of tomatoes. The effects of this system 
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on the quality of stored tomatoes are evaluated. The influence of storage 

environment on different factors, such as the fruit maturity stage, the storage period 

and storage conditions were investigated on tomato fruit quality during summer in 

KwaZulu-Natal, South Africa. The chapter compares the physical, chemical and 

sensory fresh produce results obtained in this study under sub-humid conditions 

with results from literature of evaporative cooling systems in dry and arid conditions 

of similar produce. 

Chapter 6 This is the conclusion and recommendation chapter of this study. It highlights the 

major findings of this work and makes recommendations arising from the study.  
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2 LITERATURE REVIEW  

2.1 Introduction 
 
The aim of this review is to identify the causes of postharvest losses (PHL) in fruit and vegetables 

(F&V) in relation to small-scale farming in sub-Saharan Africa (SSA). The reduction of PHL can 

improve food security at household level. Farmers involved in small-scale production of fresh 

produce experience high PHL due to physiological deterioration associated with technical, 

biological and environmental factors. If these factors could be contained, then sufficient supplies 

of fresh produce would reach the consumer thus improving both household income and nutritional 

status. This article details the PHL experienced by farmers during harvesting and packaging, on-

farm temporary storage and transportation, and then considers research into cold chain 

technologies; their benefits and costs. There are existing and available modern cooling technologies 

but these are capital intensive and require electricity, which is not always available to small-scale 

farmers (SSF). This review explores several cooling technologies and recommends direct 

evaporative cooling (EC) for dry and arid climates and EC combined with indirect air-cooling 

(IAC+EC) for hot and sub-humid to humid conditions. Many research studies are required on 

IAC+EC for preservation of F&V as there is dearth of performance information. The review also 

considers alternative power sources for cooling technologies and their integration with IAC+EC in 

a bid to minimise losses experienced by SSF in SSA. Low-cost and adequate cooling technologies 

are unavailable to the average SSF. However, there is scope for EC, which is simple and cheaper 

technology. Solar and wind energy can be used to power fan, if forced air IAC+EC is required. 

2.2 Potential of Fruit and Vegetables in SSA 
 
SSA has potential for tropical F&V production, which is further supported by the annual increases 

in price and quantities produced in the last five to ten years (Ruel et al., 2005; DAFF, 2017). Two 

distinct farming production levels, large-scale commercial agriculture and small-scale farming 

characterize the horticultural sector in SSA. In large-scale commercial farming, farmers own large 

tracts of land and have the financial capability to invest in irrigation, agricultural inputs, skilled 

management, and agricultural infrastructure for crop production including postharvest operations 
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(Schalkwyk et al., 2012). SSF on the other hand on average own land holdings of less than 1.5 ha 

and are characterized by low output and very little investment in infrastructure for production 

(Baloyi, 2010; Salami et al., 2010; Tscharntke et al., 2015; Rahiel et al., 2018). Despite these 

setbacks, SSF contribute approximately 80% of all F&V all fresh produce in SSA including South 

Africa (OECD/FAO, 2016; SAYB, 2017). The challenges faced by SSF in SSA according to 

Salami et al. (2010), Mpandeli and Maponya (2014) and Arah et al. (2016) relate to:  

i. Security of tenure as the land is in most instances state owned; 

ii. Limited access to credit because of lack of collateral and/or credit history; 

iii. Farmers having to fund agricultural activities from either money generated from off-farm 

activities, or remittances from family members from off-farm employment; 

iv. Spending on agriculture by most African countries is less than 6% of total expenditure since 

1980 and less than 1% of commercial lending goes to agriculture with most of this funding 

large-scale commercial farming. 

 Furthermore, the fact that most SSF are located in remote areas with no access to grid electricity 

compounded by poor road infrastructure connecting them to major towns hinders growth and 

productivity (Kim and Ferreira, 2008; Korir et al., 2017). SSF in many instances are forced to sale 

their produce at the farm gate at depressed prices or to intermediaries that offer them low prices 

rendering their enterprises unprofitable (Obura et al., 2015; Seweh et al., 2016). 

High PHL in F&V characterise small-scale farming, which reduce the amount of farm fresh 

produce for both household consumption and sale (Baloyi, 2010; Kader, 2010; Rahiel et al., 2018). 

As a result, the horticultural industry has not been significantly contributing to the economies of 

the SSA countries. Appropriate post-harvest technologies for SSF in SSA have not been developed 

or adopted for the handling of perishable commodities (Baloyi, 2010; Saran et al., 2012; Kasso and 

Bekele, 2018). The unavailability of appropriate postharvest facilities for SSF in South Africa for 

packaging, temporary storage and transportation, threatens food security in the country (Cherono 

and Workneh, 2018; Rahiel et al., 2018). The traditional peddling of fresh produce at farm gate at 

low prices to avoid PHL is not a lasting solution as it ultimately undermines sustenance (Sibomana 

et al., 2017). Figure 2.1 shows the supply chain process of fresh produce for SSF and large-scale 

growers. SSF harvest their fresh produce and sale directly at farm gate for local consumption or 

intermediatories while large scale growers transport harvested fresh produce first for washing and 
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packaging in packing houses before distribution to processing industries and fresh produce markets 

(Sibomana et al. 2016) 

 

Figure 2.1 The supply value chain in South Africa for fresh produce (adapted from 
Directorate Marketing 2013).  

Although there are a number of modern cooling technologies developed and imported into the 

region, SSF have not been able to adopt and utilise such facilities as they are both capital and 

energy intensive (Workneh and Woldetsadik, 2004; Ejeta, 2009; Baloyi, 2010; Rayaguru et al., 

2010; Seweh et al., 2016). The adoption of these cooling technologies, however, has largely relied 

on the scale of production (Caleb et al., 2011; Prusky, 2011).  For instance, large-scale farmers in 

SSA have access to various cooling technologies, thus have maintained their dominance on national 

fresh producers’ market (Tigist et al., 2011; Sibomana et al., 2016). Despite the numerous 

researches on both production and postharvest handling of commodities in the region, there is less 

adoption or application of the research results to solve the post-harvest handling problems under 

SSA conditions particularly for small scale farming (Saran et al., 2012).  Therefore, to discuss low 

cost cooling technologies this review has found it necessary to explore causes mainly related to 

postharvest physiology of crops since cooling applies to slowing down respiration and ethylene 

production and extent of losses. This will lead to consideration of cooling technologies as a major 
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issue of this review. The review also explores alternative renewable energy options available for 

possible integration with low-cost technologies to preserve F&V that SSF can access. 

2.3 Overview of the Horticultural Industry in SSA 
 
Over a thousand species of F&V, consisting of different morphology and composition, are known 

to exist within the region (Obura et al., 2015). In excess of 950 million people consume F&V as 

food in SSA (Husain et al., 2016). Recently, there has been an expansion in fruit production that 

include mangoes, bananas, citrus, avocado, papaya, pineapple, grape, apple, pear, guava and peach. 

Another area of high production growth has been in vegetables, that include tomatoes, cabbages, 

onions, sweet pepper; French beans, pea, lentil, leek, chilies, okra, garlic, ginger, carrot, turnip, 

mushroom, lettuce, spinach and other local leafy vegetables (Ngowi et al., 2007; Banjaw, 2017). 

In South Africa most F&V are grown in Limpopo province while most tropical and sub-tropical 

fruits are grown in Mpumalanga province (SAYB, 2018). The humid low-lying coastal belt of 

KwaZulu-Natal province is suitable for banana production while vegetables like tomatoes, 

cauliflower, cabbage, carrots, etc are found in the high-lying areas of the province. The climate of 

most of KwaZulu-Natal province is not really suitable for large-scale commercial production of 

onions (Katundu et al., 2010; DAFF, 2016). 

F&V provide the much-needed nutritional value to the population and a number of countries within 

the region heavily rely on this primary commodity for revenue through the bulk export of raw or 

processed fresh produce (OECD/FAO, 2016; Cherono and Workneh, 2018). Involvement in 

production of F&V is an important source of income for SSF and this sub-sector provides rural 

households with job opportunities throughout the value chain. There exist competing needs for 

local country consumption and export of fresh produce that needs to be satisfied (Banjaw, 2017). 

Moreover, the population in SSA is likely to double by the year 2045, so a more sustainable 

approach to preserving fresh produce will be required to meet future food demand (UNDP, 2012). 

The increasing population and shifts in consumer demand have resulted in an exponential demand 

and price hikes for fresh F&V in SSA (Workneh, 2007; Ntombela, 2012; Pereira, 2014; SAYB, 

2015). For example, the demand has seen annual price increases in F&V of 7% in South Africa 

(SAYB, 2016) and increased fresh produce production quantities from 2010 to 2015 as shown in 
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Table 2.1. Such a scenario improves farmers’ living conditions including health and income and 

improves food security at household level in the villages (Workneh, 2007; Bourne, 2009). An 

increasing demand for fresh produce at the right prices is likely to move SSF from subsistence to 

commercial scale production (Workneh, 2010). 

Table 2.1 Vegetable production per (1000 ton) in South Africa and the average prices at major 

fresh produce markets for 2010 and 2015 (adopted from DAFF 2016) 

 
 

Vegetables production 
(1000 t) 

Average price at major fresh 
produce market (R/tonne) 

2010 2015  2010 2015 
Potatoes 1 955 2 423 2 598 3 222 
Tomatoes 575 539 4 233 8 310 
Pumpkins 234 256 1 737 1 805 
Green 
mealies  

339 373 8 260 13 726 

Onions  489 675 2 573 2 802 
Sweet 
potatoes 

60 63 1 977 3 699 

Green peas 17 9 17 960 37 012 
Beetroot 67 78 2 763 3 050 
Caiuliflower 25 13 3 777 7 752 
Cabbage 141 146 2 573 1 963 
Carrots  151 201 3 251 2 132 
Green 
Beans  

23 25 5 634 1 917 

Lettuce   - - 3 338 5 950 
 

One of the major challenges constraining rural households from attaining commercial farming 

status is the quality deterioration that result in PHL experienced in the production cycle of fresh 

produce (Sibomana et al., 2016). It is essential that the quality of fresh produce be maintained 

throughout the value chain as quality has a significant relationship with customer satisfaction 

(Ngcobo, 2013; Senthikumar et al., 2015). The quality of fresh produce can be maintained 

through provision of optimum storage conditions, which varies with crop type and depends on 

intended use, the level of quality required for the purpose, distance and time to market (Watkins, 

2006; Toivonen, 2007; James and Zikankuba, 2017; Kyriacou and Rouphel, 2018). 
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2.4 Postharvest Losses 
 
PHL are the qualitative and quantitave losses in a given produce during harvest or along the value 

chain of a post-harvest system. Although a recent report by the World Bank (World Bank, 2011) 

indicated that an estimated US$ 4 billion worthy of grains alone is lost through PHL in SSA, the 

entire F&V supply chain might be facing similar challenges (Affognon et al., 2015). Since F&V 

are categorised as perishable commodities, which are susceptibility to physiological deterioration 

in the supply chain (Ngcobo et al., 2012; Pathare et al., 2012; Deoraj et al., 2015; Macheka et al., 

2017). Physiological deterioration is the main root cause of PHL in the tropical and sub-tropical 

regions SSA (Macheka et al., 2017). PHL have the potential to discourage farmers venturing into 

production and marketing of fresh produce, and thus affecting the availability and consumption of 

F&V in urban areas (Workneh, 2007; Azene et al., 2011; Affognon et al., 2015). Efforts to reduce 

PHL are paramount, particularly if economically feasible as this is of great significance to farmers 

and consumers alike (Johnson and Sangchote, 1994; Saquet et al., 2016; Rahiel et al., 2018). 

Reducing PHL, as an important component of food security, has potential to lower food prices to 

vulnerable communities in the region (Ogbuagu et al., 2017).  In this food-scarce part of the world, 

F&V that do not reach the intended market are a significant waste of resources (Ngcobo et al. 2012; 

Kasso and Bekele, 2018). A survey carried out by Mashau et al. (2012) in the Tshakuma fruit 

market, in Limpopo province of South Africa showed that fresh fruit like bananas, oranges, 

avocados, paw-paws and tomatoes, experience deterioration in both quality and quantity of 43.3% 

mainly due to over-ripening. This means sellers at this market lose almost half of their potential 

income. In the 2011 production of tomatoes the supply chain experienced loss of produce estimated 

at 10.2% (US$22.03m) in South Africa, 13.4% (US$180.9m) in Nigeria and 10.1% (US$19.99m) 

in Kenya because of inadequate storage or transportation (Sibomana et al., 2017). 

PHL in the supply chain of fresh produce in SSA, are difficult to estimate as there is limited official 

data from different countries and there is no standard methodology to estimate them (Adeoye et 

al., 2009; Affognon et al., 2015; Sibomana et al., 2016; Sheahan and Barrett, 2017). PHL in F&V 

in the region are estimated to be over 50% though there are varying estimates from crop to crop 

and country to country (Kader, 2005; FAO, 2008; Kader, 2010; Mashau et al., 2012; Deoraj et al., 
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2015; Niewiara, 2016). Table 2.2 provides examples of estimated percentage PHL for F&V for 

selected countries in East Africa, Central Africa, West Africa and Southern Africa.   

Table 2.2 Postharvest losses in fruits and vegetables for selected countries in Sub-Saharan 

Africa  

Sub-region Country Estimated 
Postharvest Losses 

(%) 

References 
 

East Africa Ethiopia 50 FAO 2005 

Central Africa Rwanda 30-80 depending on 
product 

Kitinoja et al. (2010) 

West Africa Ghana 30-80 depending on 
product 

Kitinoja et al. (2010) 

Southern 
Africa 

Swaziland 20-50 depending on 
product 

Masarirambi et al. (2010); 
Mashau et al. (2012) 

    
 

These high losses shown in the Table 2.2 are a precursor to food insecurity for Sub-Saharan 

communities. Small scale farming exporters of F&V in region have complained of PHL 

experienced during short periods of storage before (i.e. awaiting transportation) and during 

transportation to markets and proposes that reduction of these should be a research priority 

(Workneh and Woldetsadik, 2004; Tigist et al., 2011; Kenghe et al., 2017; Sibomana et al., 2016).  

2.5 Causes of Postharvest Losses 
 
Maintenance of fresh produce quality requires precise application of optimum cold chain 

conditions from harvest, grading, packaging, storage and transportation to the consumer (Tanner 

and Smale, 2005; Zude, 2009; Sibomana et al., 2016).  The optimum fresh produce conditions vary 

according to the intended use and the targeted market; either consumption at household level, local 

country consumption or export and the distance to the destination (Brosnan and Sun, 2001; 

Toivonen, 2007; Sood et al., 2011; Kyriacou and Rouphel, 2018). It is important, therefore, to 

understand the correlation between PHL and increased fresh produce prices resultant from a 

constraint output market because of spoilage. 
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PHL may occur due to factors like environmental (Mandal et al., 2010; Rayaguru et al., 2010; 

Workneh, 2010; Tyagi et al., 2017), biological and chemical, physiological (Joas and Lechaudel, 

2008; Tyagi et al., 2017), as well as technical factors (Kader, 2010; Gebru and Belew, 2015). The 

main environmental factors that result in significant PHL in F&V are temperature and RH (Getinet 

et al., 2008; Workneh and Osthoff, 2010; Prusky, 2011; Misra and Ghosh. 2018). The biological 

and chemical factors arise because F&V are prone to microbial contamination during growth, 

harvest and postharvest operations (Ambaw et al., 2013a; Kasso and Bekele, 2018). Three main 

types of microorganisms that affect quality of fresh produce during transportation and storage are 

bacteria, yeast and mould (Alexandre et al., 2011; Marriott et al., 2018).  

Physiological deterioration of fresh produce happens since F&V are living tissues that continue to 

transpire, respire and further ripen even after detachment from the mother plant during harvesting 

(Brosnan and Sun, 2001; Ngcobo et al., 2012; Hagos, 2014; Jedermann et al., 2017; Misra and 

Ghosh, 2018). This process continues throughout the life of fresh produce. As the anaerobic process 

continues, respiration increases further with more heat generation either inside or outside the fruit 

(Irtwange, 2006; Rahiel et al., 2018). This sustained respiration in fresh produce means decreased 

food value, associated with loss of flavor, loss of salable weight (through loss of moisture) and 

more rapid deterioration (Paull and Duarte, 2011; Ait-Oubahou, 2013; Sitorus et al., 2018). 

The technical factors that affect fresh produce quality are mainly associated with mechanical 

damage or injury to F&V, lack of skilled labour in handling of fresh commodities and prolonged 

storage time (Wilson et al., 1999; Parfitt et al., 2010; Prusky, 2011; Paull and Duarte, 2011; 

Beckles, 2012; Gebru and Belew, 2015).  Controlling these factors provides improved efficiency 

of broader value chains and systems in fresh produce. On the other hand, social factors relate to 

trends such as urbanization, where many people from rural areas move to large cities causing a 

high demand for F&V in urban centres, thus increasing the need for more efficient supply-chain 

systems (Parfitt et al., 2010; Kasso and Bekele, 2018). The critical issue in all this is that, the effects 

of the mentioned factors are not receiving the required attention at various control points such as 

harvesting, packaging, on-farm temporary storage and transportation to the market resulting in high 

PHL in the fresh produce supply chain. 
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2.5.1 Losses during Harvesting and Packaging 
 
Harvest-labour especially for SSF should be skilled to know when to harvest the produce, as it is 

an essential requirement of industrial postharvest handling (Beckles, 2012; Banjaw, 2017). Fresh 

produce should be harvested during the coolest part of the day, either very early in the morning or 

late afternoon (Botondi et al., 2003; Bachmann and Earles 2014; Arah et al., 2015; Tyagi et al., 

2017). In developing labour skills, harvesters should be trained in handling the crop carefully to 

avoid injury; harvesting dry whenever possible and at proper maturity; handling each produce no 

more than is necessary and avoiding careless handling e.g. dropping F&V (Tijskens, 2007; Kitinoja 

et al., 2010; Prusky 2011; Mulualem et al., 2015; Cherono et al., 2018). To mitigate losses due to 

technical factors of wrong timing of harvest and improper handling during harvesting, farmers must 

practice good harvesting practices that will not result in injury to fresh produce (Zenebe et al., 

2015; Sibomana et al., 2016). 

van Zeebroeck et al. (2007) and Banjaw (2017) describe mechanical damage as pausing a challenge 

to the quality of fresh produce and having a potential to reduce the value of F&V. According to 

Basediya et al. (2013), mechanical injury due to impact resultant from dropping or tossing fresh 

produce during harvesting can cause splitting of fruit and internal bruising. Impact damage is 

detrimental and its effect is not just limited to visual aspects but can also cause a risk of fungal and 

bacterial contamination (Aba et al., 2012; Fadiji et al., 2016). Inappropriate packaging or 

containers and over or under packaging of containers also can result in mechanical injury to F&V 

(Wilson et al., 1999; Aharoni, 2004; Adeoye et al., 2009; Prusky, 2011; Mashau et al., 2012; 

Ngcobo et al., 2012; Kasso and Bekele, 2018).  Packaging should ensure produce is loaded into 

convenient units for handling during distribution, storage and marketing (Wills et al., 1998; Kasso 

and Bekele, 2018). However, many SSF in production of tomatoes utilise traditional baskets as 

packaging material (Kereth et al., 2013; Ugonna et al., 2015). For SSF in South Africa and Ethiopia 

producing fresh produce for urban markets are using plastic crates (Mashau et al., 2012; Kasso and 

Bekele, 2018).   

Whenever fresh produce is loaded in baskets or plastic crates, it applies a static load on itself 

(Adeoye et al., 2009; Arah et al., 2015). The static load result in excessive pressure applied in the 

lower part of the packaging material thus causing deformation of the produce at the bottom, which 
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may result in bruising and breakage leading to decay development (Sirisomboon et al., 2012; 

Ugonna et al., 2015). This scenario obtains when baskets are used or there is over-packaging 

(Sibomana et al., 2016). In under-packaging, the movement of fresh produce in the container is 

high resulting in collision/friction that damages the fruit (Çakmak et al., 2010; Arah et al., 2015). 

In some instances, these plastic crates have rough internal surfaces, which can injure fruit or 

vegetables by contact (Sibomana et al., 2016).  

Another cause of losses during harvesting and packaging is due to physiological deterioration of 

fresh produce since F&V are living tissues that transpire, respire and further ripen during the period 

of harvesting and packaging. The respiration rate of a product strongly determines its transit and 

postharvest life (Sinha et al., 2011; Yahia, 2011; Tyagi et al., 2017). The higher the temperature at 

harvest, the higher the respiration rate will be hence fresh produce in the tropical and sub-tropical 

regions in SSA have a reduced shelf life (Workneh and Woldetsadik, 2004; Tefera et al., 2007; 

Sandhya, 2010; Gupta and Dubey, 2018). 

2.5.2 Losses during on-Farm Storage and Transportation 
 
Although not ideal for perishable produce quality, sometimes F&V are stored at the farm gate for 

some period until either transport to the market is available or local buyers purchase the produce 

for consumption or resale (Singh et al., 2010; Kasso and Bekele, 2018). Losses during on-farm 

storage and transportation is a major contributor to the total PHL encountered by SSF in SSA fresh 

produce supply chain (Emana and Gebremedhim, 2007; Buzby et al., 2014; Kiaya, 2014; Cherono 

and Workneh, 2018). Often the transport and local markets are without temperature-controlled 

environmental conditions (Kitinoja and Thompson, 2010; FAO, 2016; Cherono et al, 2018).  

In circumstances where storage (on-farm) and transportation facilities have sub-optimum 

environmental conditions, the ripening of F&V continues resulting in further physiological 

deterioration (Opara et al., 2011; Yahia, 2011; Maliwichi et al., 2014; Saltveit, 2018).  

Physiological, chemical and enzymatic changes are speeded when fresh produce is subjected to 

high ambient temperature and low RH during temporary storage and transportation at the back of 

trucks (Choudhury, 2005; Nunes et al., 2009; Fadeyibi and Osunde, 2011; Paull and Duarte, 2011; 
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Ogbuagu et al., 2017). The ambient temperatures in SSA can be 7℃ - 20℃ higher than the 

recommended 15℃ for tomatoes (Kitinoja and AlHassan, 2012; Sibomana et al., 2017). 

When temperature and RH are unregulated, fruit physiological deterioration and senescence 

accelerates as fruit rot organisms spread rapidly at warm storage temperatures and low RH (Gharezi 

et al., 2012; Ambaw et al., 2013a; Chijioke, 2017). High temperature and low RH can result in a 

significant loss of nutritional value, decreased returns due to poor produce quality (wilting, 

shriveling), loss of saleable weight and in many cases the whole fruit or vegetable is lost (Joas and 

Lechaudel, 2008; Odesola and Onyebuchi, 2009; Gupta and Dubey, 2018). 

Temperature management after harvest is fundamental in minimizing PHL and maintaining 

nutrients like vitamins of F&V (Prusky, 2011; Pathare et al., 2012; Misra and Ghosh, 2018). The 

sub-tropical climate obtaining in most countries in East and Southern Africa which is characterized 

by high temperature, increases the rate of microbial changes and in turn activates enzymatic 

reactions in produce (Brosnan and Sun, 2001; Workneh, 2010; James and Zikankuba, 2017). 

Respiration rate, metabolic processes and ethylene biosynthesis of some fruit increase with room 

temperature within a given range (Workneh, 2010; Wills and Golding, 2016).  Respiration rates 

can double, triple or even quadruple with every increase in temperature (Zagory and Kader, 1988; 

Mansuri, 2015; Saltveit, 2018). 

Therefore, the storage of F&V at low temperature immediately after harvesting will reduce the rate 

of decomposition and microbial spoilage (Ito et al., 1988; Workneh and Osthoff, 2010; 

Senthilkumar et al., 2015; Saltveit, 2018). Fresh produce shelf life can double by reducing 

temperature from 10℃ to 5℃ (Sun and Zheng, 2006). Typically, the storage temperature of F&V 

is 0℃ to 12℃ and most tropical and subtropical fruits require high temperatures of 5℃ to 13℃ 

according to (FAO, 2003; Paull and Duarte, 2011) and as shown in Table 2.3. 

RH is another important aspect considered during storage and transportation of F&V (Paull and 

Duarte, 2011; Prusky, 2011; Seweh et al., 2016). Occurrence of higher humidity during temporary 

storage and transportation of fresh produce reduces water loss, thus maintaining produce weight, 

appearance, nutritional quality and flavour, while wilting, softening and juiciness are reduced 

(Kobiler et al., 2010; Basediya et al., 2013; Laguerre et al., 2013; James and Zikankuba, 2017; 

Yousuf et al., 2018). According to Cantwell et al. (2009) and Nabi et al. (2017), the recommended 
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storage RH for most horticultural crops is between 70 to 95%.  Table 2.3 provides a summary of 

recommended storage RH for selected F&V. Most fresh produce under smallholder production is 

stored at RH levels lower than recommended resulting in excessive moisture loss (Singh et al., 

2014; Banjaw, 2017). Subsequently, the F&V suffer wilting, shriveling and dryness resulting from 

small moisture losses of 3-6% (Nunes et al., 2009). These changes in the produce affect 

marketability or economic value especially if F&V are sold by weight (Paull and Duarte, 2011; 

Yahia, 2011; Rahman et al., 2016). 

Table 2.3 Optimum temperatures and relative humidity of selected vegetables 

Product Optimum 
Temperature 

Optimum 
Relative 
Humidity (%) 

References 

Broccoli 0 ℃ 90-95 Snowdon, (1992); Flores Gutiérrez, (2000) 

Cabbage 0 ℃ 90-95 FAO (1989) 

Lettuce 0 ℃ 90-95 Flores Gutiérrez, (2000) 

Carrots 0 ℃ 90-95 Prusky, (2011) 

Tomatoes 12-15 ℃ ≥ 85 Beckles, (2012) 

Guava 5-10 ℃ 90 Basediya et al., (2013) 

Mango 12 ℃ 85-90 Shitanda et al., (2011) 

Potatoes 5-15 ℃ 90 Wilson et al., (1999) 

Onions  1-2 ℃ 70-75 Byczynski (1997);  

Garlic 0 ℃ 70-75 Byczynski (1997);  

Banana 
(green) 

13-14 ℃ 90-95 Hardenburg et al., (1986) 

Cucumber 10-13 ℃ 95 Flores Gutiérrez, (2000) 

 

The other important moist air property closely linked to RH is the vapour pressure. The difference 

in vapour pressure between the ambient air and the intercellular spaces of living plant tissue 

governs the migration of moisture and the rate of moisture transfer in fresh commodity storage 

(Deirdre, 2015). Weight loss from perishable commodities is high if surrounding air temperature, 

flesh moisture content and temperature are high as vapour pressure increases as flesh temperature 

and moisture content increases. Moisture movements either in the form of vapour or liquid takes 
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place within the product to a surface and evaporates from a surface provided the humidity ratio is 

high around the stored product (Becker and Fricke, 1996; Wills and Golding, 2016). Thus, under 

poor postharvest management conditions of storage or in transit perishable commodities lose 

excessively large weight due to existence of large vapour pressure deficit (Workneh, 2010; 

Kritzinger et al., 2018). 

Among other key contributors to high PHL in fresh produce is demographic and socio-economic 

characteristics of smallholder F&V producers (Affognon et al., 2015). SSF have to travel to cities 

to sell their fresh produce and due to lack of transport; farmers keep F&V over long periods at the 

farm gate awaiting transportation to markets resulting in further mechanical damage (Kader, 2003; 

Wakholi et al., 2015; Nabi et al., 2017).  When this waiting period at the farm gate is prolonged, 

there is further mechanical damage to produce due to over handling (Knee and Miller, 2002; 

Sibomana et al., 2016; Cherono et al., 2018). The damaged F&V allow easy penetration of 

microbial population into the tissue (Fadeyibi and Osunde, 2011; El-Ramady et al., 2015). This 

increases chances of decay and growth of micro-organisms (Johnson et al., 1997; Pinto et al., 2004; 

Rajan and Anandan, 2018). As packaged produce applies static load on itself the degree of 

deformation on F&V will depend on the period the static load is applied (Idah et al 2007; 

Sirisomboon et al., 2012). The longer the period the greater the deformation and stress effected on 

the produce. The stress effected on the produce will also depend on the ripeness of produce, as it 

ripens the same static load will inflict more internal flesh damage (Mashau et al., 2012; Sibomana 

et al., 2016).  The injury to produce increases if it is loaded at the back of trucks in rough road 

conditions because of vibration forces experienced (Fadeyibi and Osunde, 2011; Kereth et al., 

2013; Bradbury et al., 2017). For SSF in SSA trucks that pick-up produce is not regular and if a 

farmer misses the truck on a certain day it can take up to a week before there is transport to pick 

up his F&V to the market (Mashau et al., 2012).  To eliminate this challenge, it is required that the 

duration between harvest and arrival at the markets be minimized. 

If mechanical damage took place during harvesting and packaging, the F&V will be prone to 

microbial contamination during storage and transportation (Ambaw et al., 2013b; Tzia et al., 2016). 

Microbial decay accounts for about 15% of the postharvest decay in F&V (Workneh and Osthoff, 

2010; Wills and Golding, 2016). Microbial decay is influenced by air, soil, poor sanitation, 

environmental factors and moisture content of crops (Rahiel et al., 2018). Although Workneh and 
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Osthoff (2010) alluded to the fact that most microorganisms cannot grow under acidic conditions 

of pH values less than 4.5, fungal growth still causes about two thirds of spoilage of F&V. This is 

because fungi are much more tolerant to pH values below 4.5. Vegetables have pH values above 

4.5 and near neutrality, and such levels create favourable conditions for many microorganisms such 

as bacteria, yeast and fungi. Often, bacteria would have a competitive advantage in vegetables 

because it grows faster than the fungi or yeast. Microbiological effect should be minimized to avoid 

consumer’s risks as fresh produce can be eaten uncooked or minimally processed (Sagoo et al., 

2003; Beckles, 2012; Arah et al., 2015). 

2.6 Research into Cold Chain Technologies: Costs and Benefits 
 
The maintenance of market quality of fresh produce through management of a cold chain is key to 

the success of the horticultural industry, it is therefore, not only necessary to cool the product down 

but to do so as quickly as possible after harvest (Paull, 1999; Senthilkumar et al., 2015; Saltveit, 

2018). A cold chain is a temperature-controlled supply chain, which consists of uninterrupted range 

of systems that monitor or maintain produce at a given temperature and keeps history (Wills and 

Golding, 2016). According to Prusky (2011), the requirements for maintaining quality and safety 

of horticultural perishables through the supply chain from harvest to consumption are the same in 

developing and developed countries. For SSF in F&V production in SSA, the challenges are 

beyond whether cooling technologies exist or not as there are other factors like volume to be cooled 

per day, harvest temperature versus recommended storage temperature, capital and operating costs 

come into play (Kitinoja and Thompson, 2010; Azene et al., 2011; Vala et al., 2014). To invest in 

modern cooling technologies, SSF have to consider the cost-benefit analysis as to whether there 

will be an increased financial benefit associated with the chosen technology (Ejeta, 2009; Faris, 

2016).  Availability of electricity is one of the critical factors to consider as an energy input to 

power cooling technologies (Kitinoja et al., 2011; Seweh et al., 2016).    

Possible areas of consideration should allow low energy cool storage facilities so that fresh produce 

reaches markets at recommended storage conditions (Kader, 2005; Chaudhari et al., 2015; Sekyere 

et al., 2016). Achieving this would ensure that both the supply of fresh produce and the shelf life 

would improve significantly in SSA. 
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Kitinoja and Thompson (2010) have previously reviewed pre-cooling systems for small-scale 

producers. These authors and broader literature have described various methods for preservation 

of fresh F&V immediately after harvest. These cooling methods include among others, mechanical 

refrigeration, hydro-cooling, vacuum cooling, forced air-cooling and evaporative cooling (EC) 

(Senthilkumar et al., 2015).  Mechanical refrigeration, forced air-cooling, vacuum cooling, hydro-

cooling and EC of fresh produce have previously been described in detail by reviews that include 

Brosnan and Sun (2001); Thompson et al. (1998) and Senthilkumar et al. (2015), who placed 

emphasis to the different performance parameters of various cooling methods.  The following 

publications discuss the different pre-cooling methods, Boyette et al. 1994; Singh-Negi and 

Kumar-Roy, 2000; Brosnan and Sun, 2001; Wang and Sun, 2001; Jiro, 2002; Zhang and Sun, 2006; 

Zheng and Sun, 2006; James et al. 2009; ASHRAE, 2011; James and James, 2011; Ambaw et al. 

2013a, b; Senthilkumar et al. 2015; Misra and Ghosh, 2018.   

2.6.1 Mechanical Refrigeration  
 
Mechanical refrigeration refers to the process where heat absorption takes place at one point 

and heat dispersion at the other (Zou et al., 2006; Moureh et al., 2009; Sunmonu et al., 2014).  

This is achieved through circulation of a refrigerant through the system by a compressor picking 

heat through the evaporator inside the fresh produce space and dissipating it through the 

condenser on the outside (Zou et al., 2006; Hera et al., 2007a; Vala et al., 2014; Rajan and 

Anandan, 2018. The compressor can be powered through an electric motor. The refrigeration 

system is energy intensive as electricity power is consumed throughout the whole cold chain 

(Hera et al., 2007b; Fernandes et al., 2018). This in turn leads to high product cost since unit 

energy costs make part of the unit cost for production of a given produce (Swain et al., 2009; 

Seweh et al., 2016).  However, where there is a ready and cheaper supply of electricity 

mechanical refrigeration is the most reliable cooling technology (Kitinoja and Thompson, 2010; 

Sekyere et al., 2016). 

2.6.2 Hydro-Cooling 
 
Hydro-cooling is a fast, uniform cooling process of removing field heat from freshly harvested 

F&V by bathing them in chilled water or running cold water over it (Vigneault et al., 2009; 
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Prusky, 2011; Gomez-Lopez, 2012; Senthilkumar et al, 2015; Chen et al., 2016). Since the 

produce will be at higher temperature immediately after harvest the heat movement takes place 

from the produce to the water and hence leading to cooling of produce (Rennie et al., 2003; 

Wills and Golding, 2016). This process is an efficient way to remove heat as it uses water which 

removes heat at least five times faster than air (Bachmann and Earles, 2014). The use of water 

also provides another benefit as water serves as a means of cleaning at the same time. Hydro-

cooling reduces water loss, the rates of microbiological and biochemical changes in order to 

prevent spoilage and maintain quality and increase shelf life (Gustavsson et al., 2011; Fernandes 

et al., 2018). Hydro-cooling has limitations as it is only appropriate for commodities that 

tolerate wetting like carrots, peaches, asparagus, cherries etc. and is not appropriate for berries, 

potatoes to be stored, sweet potatoes, bulb onions, garlic, or other commodities that cannot 

tolerate wetting (Kitinoja and Thompson, 2010; Bachmann and Earles, 2014; Chen et al., 2016). 

2.6.3 Vacuum Cooling 
 
Vacuum cooling is a rapid EC method for porous and moist foods to meet the special cooling 

requirements (Zhang and Sun, 2006; Senthilkumar et al., 2015; Chen et al., 2016). It is achieved 

by the evaporation of moisture from the surface and within the produce (Sun and Zheng, 2006; 

Deng et al., 2011). The evaporation is encouraged and made more efficient by reducing the pressure 

to the point where boiling of water takes place at low temperature (Rennie et al., 2001; Vonasek 

and Nitin, 2016.). The difference between vacuum cooling and conventional refrigeration is that 

for the former, the effect is achieved by blowing cold air or other cold medium over the product 

and the later describes direct transfer of heat from a produce (Rennie et al., 2003; Wills and 

Golding, 2016). Speed and efficiency are the two features of vacuum cooling, which are 

unsurpassed by any conventional cooling method, especially when cooling boxed or palletised 

products (Sun and Wang, 2004; Rajan and Anandan, 2018). The speed and efficiency of vacuum 

cooling relate to the ratio between its evaporation surface and the mass of produce (Prusky, 2011). 

Cooling time, in order of 30 minutes ensures that strict cooling requirements for safety and quality 

of foods can be met (Brosnan and Sun, 2001). Vacuum cooling is ideally for any product, which 

has free water, and the product structure is not be damaged by the removal of such water. 
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2.6.4 Evaporative Cooling 
 
EC or humidification of surrounding air in F&V storage involves the use of principles of moist air 

properties or psychometrics (Workneh, 2007; Chijioke, 2017). In EC, temperature drops 

considerably and humidity increases to the suitable level for short–term on farm storage or 

transportation of perishables (Jha and Kudas Aleskha, 2006; Misra and Ghosh, 2018). EC provide 

cool air with a temperature 1-2℃ above wet bulb temperature of ambient air by forcing hot dry air 

over a wetted pad (Chaudhari et al., 2015). The water in the pad evaporates, removing heat 

(sensible heat) from the air while adding moisture and thus producing a considerable cooling effect 

(La Roche, 2012; Basediya et al., 2013; Kapilan et al., 2017). The heat in fresh produce transfers 

to the surrounding cool air.  The air rises by natural convection in the process giving off the 

absorbed heat.  As a result, EC can provide a storage environment for most tropical and sub-tropical 

F&V. Figure 2.2 illustrates the process of EC where the ambient temperature reduces from t1 to t2.  

The evaporation and addition of moisture utilises energy from the air thus increasing its water 

content from w1 to w2.  A constant wet bulb line represents the process (Xichun et al., 2008). 

 

Figure 2.2 Illustration of evaporative cooling (Adopted from Akton, 2009) 

EC is regarded as a low-cost system requiring no electricity input in a passive system or just an 

electric fan in a forced air system (Kitinoja and Thompson, 2010; Tigist et al., 2011; Chijioke, 

2017). EC has achieved a favourable environment in storage structures for F&V where shelf life 

of some fresh produce like apples, tomatoes, bananas, mangoes, potatoes and pumpkins has been 

increased by factors of 1.3-5 at the same time exhibiting good appearance (Xuan et al., 2012; Hao 
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et al., 2013; Chaudhari et al., 2015; Tolesa and Workneh, 2017). In the work done by Anyanwu 

(2004) the evaporative cooler increased the shelf life of tomatoes by a factor of three above open-

air storage values. Figure 2.3 shows visual observation of tomatoes stored under EC when 

compared to those stored under ambient conditions after three weeks.  

Figure 2.3 Visual observation of tomatoes stored under EC (A) versus tomatoes under 

ambient conditions (B) after three weeks.   

There are two types of evaporative coolers, direct and indirect air-cooling (Duan et al., 2012; Xuan 

et al., 2012; Ahmad and Rahman, 2017). The two are similar except that in the indirect air-cooling, 

the air first passes through the heat exchanger as opposed to passing straight to the humidifier as is 

the case with direct cooling (Chaudhari et al., 2015). In direct EC systems, there are two types i.e. 

natural ventilated (passive) and forced air-cooling (active). A natural or passive ventilated system 

uses natural air circulation to drive air into the cooling chamber while in a forced air system fans 

or blowers drive the ambient air through the wet pad (Ndukwu et al., 2013; Ahmad and Rahman, 

2017). The fans or blowers increase the airflow rate over the wet surface improving the cooling 

efficiency. In passive system, a lot of water is lost, as this system does not incorporate water 

recirculation mechanism. A passive system results in poor air circulation and compromised heat 

and mass transfer systems. Therefore, an active system involving fans and pump for water 

circulation is preferred. 

Modern cooling technologies like, mechanical refrigeration, vacuum cooling and hydro-cooling 

could be used in SSA depending on, the type of fresh produce, the rate of cooling required, energy 

consumption requirements, level of production, availability of funds to purchase the technology 

and availability of energy (James and Zikankuba, 2017). Regrettable most SSF in SSA are located 

in areas where there is no grid electricity for driving these modern cooling technologies. There are 

A B 
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also issues related to, the cost of modern cooling technologies, performance of modern cooling 

technologies, economies of scale and relevance to small-scale production under SSA conditions as 

discussed in the next section. 

2.7 Selection of Suitable Cooling Technology for Different Fruit and Vegetables 
 
Where there is, uninterrupted electricity supply, investment capital is not limited to cover purchase 

and cost of installation, availability of technical skills to maintain and run the facility, mechanical 

refrigeration would be the ideally cooling system (Basediya et al., 2013; Okanlawon and 

Olorunnisola, 2017). However, mechanical refrigeration is not suitable for several F&V; for 

example, banana, plantain, tomato etc. cannot be stored in the domestic refrigerator for a long 

period as these fruits are susceptible to chilling injury (Ndukwu, 2011; Banjaw, 2017). The 

selection of suitable cooling technologies for specific crop usually depend on the different 

performance characteristics and parameters as described in Table 2.4.   

Hydro-cooling, is achieved in a short space of time and the method is suitable for leafy produce 

and because the produce is bathed in water, prevention of loss of moisture from the product is 

ensured (Wang and Sun 2001; Thompson et al., 1998; Elansari and Siddiqui, 2016). The limitations 

with hydro-cooling are its low energy efficiency and that requirement of containers that are water 

resistant which otherwise might cause cross decay contamination (Vigneault et al., 2000; 

Senthilkumar et al., 2015). The application of hydro-cooling by SSF is limited by its unsuitability 

to cooling of root and grass crops and vegetables like tomatoes, apples and pepper as they have a 

thick cuticle (Wang and Sun, 2001).  

Forced air-cooling could be applicable to SSF but its limitation is that it requires a definite stacking 

pattern, hence use of skilled operators to achieve the required loading pattern to ensure satisfactory 

cooling rates (Arfin and Chau, 1988; Han et al., 2017).  
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Table 2.4 Summary of advantages, disadvantages and characteristics of different cooling technologies. 

Cooling 
technology 

Advantages Disadvantages Performance of cooling 
technology 

References 

Evaporative 
cooling 

Low capital cost; high 
energy efficient; 
environmental benign; low 
weight loss; slow 
deterioration in quality; 
suitable for rural 
application; requires no 
special skill to operate; 
can be made from locally 
available materials; and 
easy to maintain. 

Requires a constant 
water supply; no 
humidification, and 
high dew point; 
condition decreases 
the cooling 
capability; mineral 
deposits leading to 
pad and interior 
damage 

Can maintain temperatures 
at 10-15℃ below ambient; 
Can achieve relative 
humidity of 90%; Can 
increase shelf life from 3 
days to 15 days. Typical 
cooling time is 40-100 
hours in passive cooling 
and 20-100 hours in fan-
ventilated systems. 

 

Anyanwu (2004) 
Dadhich et al. (2008) 
Tigist et al (2011) 
Basediya et al. (2013) 
Chaudhari et al. (2015) 
Chijioke (2017) 
Adewale & Olorunnisola, 
(2017) 
Puran and Isaac (2017) 
Rajan and Anandan (2018) 
 

Hydro-
cooling 

Rapid cooling; prevents 
loss of moisture during 
cooling; cools and cleans 
the produce at the same 
time; and simple and 
effective pre-cooling 
method; High energy 
efficient. 

Not uniform may leave 
“hot spots”; not suitable 
for: leafy produce; 
products that do not 
tolerate wetting; 
products that can be 
damaged by falling 
water; water left on 
surface can lead to 
fungus growth or 
discoloration; capital 
cost is relatively high; 

Cooling can be achieved 
in 20-30 minutes; Water 
removes heat about 15 
times faster than air at 
typical flow rates and 
temperature difference; 
Refrigeration capacity of 
1.4 kW cool 500 kg 
produce per hour to 
achieve 11℃ depression;  

 

Boyette et al. (1994) 
Lambrinos et al. (1997) 
Brosnan and Sun (2001) 
Rennie et al. (2001) 
Rennie et al. (2003) 
Prusky (2011) 
Senthilkumar et al. 2015; 
Puran & Isaac, 2017 
Rajan & Anandan 2018 
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Cooling 
technology 

Advantages Disadvantages Performance of cooling 
technology 

References 

the equipment is not 
portable. 

Forced-air 
cooling 

Faster cooling than 
conventional cooling; 
most common for cooling 
of flowers; and most 
common cooling method 
for produce sensitive to 
exposure to water; the 
potential for produce 
decay contamination is 
low; the equipment is 
portable depending on 
size; Capital cost is low. 

Lowest energy 
efficiency; rapid cooling 
is required; forced air 
cooling is costlier when 
rapid cooling is 
required; and stacking 
pattern requires skilled 
operators  

Doubling air velocity 
reduces pre-cooling time 
2- 6-fold; Doubling air-
flow rate from can shorten 
pre-cooling time by 30-
40%; typical cooling times 
1-10 hours 

 

Baird et al. (1988) 
Han et al. (2017) 
Thompson and Chen 
(1988) 
Rudnicki and Nowak 
(1990) 
Brosnan and Sun (2001) 
Kader (2002), 
Tassou et al. (2010) 
Ambaw et al. (2013a) 
Takayuki et al. (2014) 
Senthilkumar et al. (2015) 
Zhao et al. (2016) 
Puran and Isaac (2017)  
Rajan and Anandan (2018) 
 

Vacuum 
cooling 

Rapid cooling achievable; 
distinct advantage over 
other cooling methods; 
cooling can achieve 
uniform cooling; gives 
highest energy efficiency; 
and hygienic since air only 
goes to the vacuum 
chamber; No potential for 

Very capital cost; 
limited application to 
large growers; causes 
weight loss in the 
produce; only suited for 
produce with a high 
surface to volume ratio; 
works best only for 
produce like lettuce; 
cabbage, mushroom 

Rapid cooling; method 
and can achieve 
temperatures of 1℃; Can 
increase shelf life from 3-5 
days at ambient 
temperature to 14 days 
when combined with cold 
storage at 1℃; For every 
5.5℃ reduction in 

Kim et al. (1995) 
Artes and Martinez (1996) 
Ito et al. (1998) 
Brosnan and Sun (2001) 
Rennie et al. (2001) 
Rennie et al. (2003), 
Sun and Zheng (2006) 
Feng et al. (2012) 
Ambaw et al. (2013b) 
Senthilkumar et al. (2015)  
Puran and Isaac (2017)  
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Cooling 
technology 

Advantages Disadvantages Performance of cooling 
technology 

References 

decay contamination; 
equipment is portable. 

temperature there is 1% 
weight loss;  

 

Rajan and Anandan (2018) 
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While vacuum cooling is a rapid cooling technology, it is only suitable for fresh produce with a 

high ratio of surface to volume and is unsuitable for oranges, tomatoes and apples (McDonald and 

Sun, 2000; Senthilkumar et al., 2015). Any cooling method unsuitable for tomatoes would be 

unattractive as this fruit is a major commodity grown by SSF in a number of countries in the region 

(Mashau et al., 2012). Another limiting factor of the use of hydro-cooling and vacuum cooling by 

SSF is that both are pre-cooling methods, refrigeration is still required thereafter between the farm 

and the market.  

The construction and operating costs of different cooling technologies vary from relatively low to 

high depending on the level of farm management (Kitinoja et al., 2011; Siddiqi and Ali, 2016).  

Sometimes farmers ignore the cost of cooling technique during selection of technology as they 

transfer the cost to consumers making selling price of the produce higher especially in developed 

countries where there are good marketing systems (Boyette et al., 1994; Rahiel et al., 2018).  

In developing countries where intermediaries set prices at farm gate, SSF may find themselves 

selling their produce below the production costs. Both vacuum cooling and hydro-cooling are 

regarded as expensive methods (Table 2.5) and therefore need to be operated for relatively longer 

periods in a year to justify an investment (Ryall and Pentzer, 1982; Boyette et al., 1994; Deoraj et 

al., 2015). Brosnan and Sun (2001) concluded that since vacuum chamber system for vacuum 

cooling is expensive then this technology is only feasible for large growers that produce large 

volumes of fresh produce throughout the year. Unfortunately, SSF in SSA do not have sufficient 

volumes of fresh produce to warrant the use of vacuum and hydro cooling throughout the year 

(Kitinoja et al., 2011). As a result, these two cooling methods are limited for products for which 

they are much faster and more convenient (Ryall and Pentzer, 1982; Senthilkumar et al., 2015). 

A small scale commercial mechanical refrigeration system with a capacity of one tonne complete 

and ready for use in the USA will costs about US$7 000 for 3.5 kW (Kitinoja and Thompson, 

2010). This cost is way above what most SSF in region can afford for a cooling capacity of one 

tonne. From Table 2.5 it is possible to construct an EC system of 1-2 MT at US$1 300 at an energy 

use per MT of 0.7 kWh compared to hydro-cooling whose costs while it varies is still higher than 

EC and would require more than 100 kWh per MT.  The energy costs to cool 1 MT of tropical 

F&V using EC is $0.14 compared to $22-30 per MT to pre-cool cherries. 
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Table 2.5 Properties and costs of selected pre-cooling technologies 

Cooling 
Technology  

Purchase 
Price 
(USD) 

Suitable crops  Typical 
Size or 
capacity  

Energy User 
per MT 
(kWh) 

Cost per MT at 
an electricity 
rate of $/kWh 

References 

Evaporative 
forced-air cooling 
(0.1 HP fan) to 
13℃ 

$400 Tropical fruits 
and vegetables  

0.5 MT 0.7 $0.14 Kitinoja & Thompson (2010) 

Rayaguru et al. (2010) 

Basediya et al. (2013) 

Chijioke (2017) 

Evaporative 
forced-air cooling 
(0.5 HP fan to 
13℃ 

$1 300 Tropical fruits 
and vegetables 

1 to 2 MT  0.7 $0.14 Kitinoja & Thompson (2010) 

Rayaguru et al. (2010) 

Basediya et al. (2013) 

Rajan & Anandan (2018) 

Vacuum cooling to 
1 ℃ 

Varies Produce with 
high surface to 
volume ratio 

Suitable for 
large 
growers 

 

* 

 

* 

Kim et al. (1995) 

Brosnan and Sun (2001) 

Elansari & Siddiqui (2016) 

Hydro-cooling 
immersion type to 
0 to 2℃ 

Varies  Cherries  3 MT 
cooled in 1 
hour  

110 to 150 $22 to 30 Thompson et al. (1998) 

Brosnan and Sun (2001)  

Kitinoja & Thompson (2010) 

Siddiqi & Ali (2016) 
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Cooling 
Technology  

Purchase 
Price 
(USD) 

Suitable crops  Typical 
Size or 
capacity  

Energy User 
per MT 
(kWh) 

Cost per MT at 
an electricity 
rate of $/kWh 

References 

Portable forced-air 
cooling (1 HP) fan 
in existing cold 
room to 2℃ 

$1 600 All crops  3 MT 
cooled in 4 
to 6 hours  

55 $11.00 Kitinoja and Thompson 
(2010) 

Zhao et al. (2016) 

Rajan & Anandan (2018) 

Portable forced-air 
cooling (1 HP) fan 
in existing cold 
room to 13℃ 

$1 600 All crops  3 MT 
cooled in 2 
to 4 hours  

35 $7.00 Zhang and Sun (2006) 

Zhao et al. (2016) 

Rajan & Anandan (2018) 

*Values not found in literature 
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EC provides a solution, as the technology has low initial investment, low installation and 

maintenance costs and in a passive system can be established without electricity (Sahdev et al., 

2016). EC presents itself as an appropriate cooling technology for small-scale farming of fresh 

produce in SSA as it is appropriate for sub-tropical and tropical F&V, the volumes for cooling per 

farmer per unit time are not huge and the storage temperature is around 15℃. Chaudhari et al. 

(2015) reviewed the work done on EC from 1987 to 2010 and concluded that since this system is 

not harmful to environment, has low initial costs, can be constructed from local available material 

what is left is finding relevant and cheap energy sources for its upscaling.   

2.8 Relevance of Evaporative Cooling to SSF in SSA 
 
EC is an adiabatic cooling process where the air temperature decreases without change in its total heat 

content when dry air passes over or through wet surfaces (Chijioke, 2017). During adiabatic cooling of air, 

its temperature decreases while the air absorbs moisture from wet surface (Olosunde et al., 2016). The 

humidity ratio of the air increases also increases. The heat content of the air remains the same even after 

passing a wet EC pad, although the air temperature decreases. The main aim of EC is to increase humidity 

ratio, vapour pressure and RH and decrease temperature. EC is relevant to SSF as the principle of operation 

is simple, can be easily constructed from local available materials (storage, cooling chamber, water tank, 

cooling pad media) and the components that require maintenance like the motor, extraction fan and heat 

exchanger can be repaired at low cost (Deoraj et al., 2015; Ogbuagu et al., 2017). The system uses a cheap 

and environment friendly refrigerant water (Okanlawon and Olorunnisola, 2017).  

Literature shows studies on EC in SSA Dzivama, 2000; Anyanwu, 2004; Olosunde, 2006; Olosunde 

et al. 2009; Ahmed et al. 2011; Taye and Olorunisola, 2011; Samira et al. 2011; Liberty et al. 2013; 

Ndukwu et al. 2013; Deoraj et al. 2015 and Adewela and Olorunnisola, 2017.  A number of studies 

have shown the attractiveness in the use of evaporative coolers by SSF in Africa as unveiled by the increased 

research productivity through publications from authors in different countries: Anyanwu (2004) in Nigeria; 

Ahmed et al. (2011) in Sudan, Samira et al. (2011) in Ethiopia. The results of use of EC have demonstrated 

that coolers can maintain cooling spaces at temperatures below ambient with a depression reaching 12℃ 

(Anyanwu, 2004).  In EC cooling, lies the solution for SSF in finding a method appropriate that could 

alleviate storage challenges, reduce losses and improve food security at household level (Mordi and 

Olorunda, 2003; Ogbuagu et al., 2017).  
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Therefore, EC is as an appropriate cooling technology for small-scale farming of fresh produce in 

SSA in alleviating storage challenges and reducing fresh PHL as; 

i. it is appropriate for sub-tropical and tropical F&V, 

ii. the volumes for cooling per farmer per unit time are not huge normal less than 5 tonnes, 

iii. the storage temperature for tropical and sub-tropical F&V is around 15℃ and RH is 85-

95%.  

As EC only removes room sensible heat, it works best in hot and dry climate prevalent in SSA and 

is not suited for sub-humid to humid areas like coastal regions with moderate to high RH of 70-

85% (Ahmed et al., 2011; Basediya et al., 2013; Cuce and Riffat, 2016; Ahmad and Rahman, 2017; 

Chijioke, 2017). The efficiency of an evaporative cooler depends on the original humidity of the 

surrounding air and the efficiency of evaporative surface (Jradi and Riffat, 2014).  Therefore, the 

extension of EC to such areas by incorporating suitable desiccation media i.e. indirect heat 

exchanger where indirect air-cooling will take place before evaporative cooling (IAC+EC) is a 

possible research area. Despite perceived favourable results so far, the IAC+EC technology 

remains at development stage (Buker and Riffat, 2015). 

Therefore, more focused research and contribution needs investigation for the development of this 

technology. Literature studied and confirmation by Misra and Ghosh (2018) reveals that indirect 

air cooling has not been used in both greenhouse cooling of fresh produce storage. Incorporation 

of heat exchanger will require additional accessories like a water pump for water reticulation and 

fans for ventilating the storage chamber. The review by Manaf et al. (2018) identified IAC+EC is 

an encouraging system, yet research into its use is still at an initial stage and needs further 

investigation. Manaf et al. (2018) also alluded that IAC+EC have high potential for use in hot and 

humid weather. 

The use of an indirect heat exchanger, water pump and fan(s) will require energy. Should IAC+EC 

be required the energy requirements are low and the cooling technology is energy efficient. Therefore, a 

possibility exists to integrate IAC+EC with use of alternative energy for example wind or solar energy 

(Manaf et al., 2018). Fossil fuels could power the cooling methods but these contribute to greenhouse gas 

emissions (Best et al., 2012; Goel and Sharma, 2017).  
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2.9 Renewable Energy Use in Postharvest Handling of Fresh Produce 
 
Renewable energy technologies have a high adaptation rate in many industries due to climate 

mitigation, ability to enter foreign markets because of green processes, green consumer 

requirements and improved corporate images of industries that use clean energy (OECD/IEA and 

IRENA, 2017). Besides conventional energy sources there is an option of energy provision from 

natural energy sources that include among others solar and wind energy (Szabo et al., 2011; Tyagi 

et al., 2012; Mentis et al., 2015; Oliveira and Trindade, 2018). The role of renewable energy along 

the different stages of food supply chain by providing requisite energy supplies especially for 

powering the fresh produce cold chain is important (Toshwinal and Karale, 2013; Chaudhari et al., 

2015; Damerau et al., 2016). The role is more pronounced for remote, dispersed populations with 

low and scattered energy demands (Cecelski, 2000). Both solar and wind energy represents the 

largest source of renewable energy supply compared to solid biomass, biogas, hydro and 

geothermal sources (Tyagi et al., 2012; Goel and Sharma, 2017).  

The consumption of fossil fuel is the major contributor to the greenhouse gases emitted to the 

atmosphere thus causing global warming (Schneider et al., 2000; Demirbas, 2006; Hassan and 

Mohamad, 2012; Nakumuryango and  Inglesi-Lotz, 2016; Goel and Sharma, 2017). Biomass is 

combusted for heating and cooking and is convertible into electricity (David et al., 2002; Nunes et 

al., 2016). Direct combustion of biomass produces steam, which turns turbines that drive 

generators, producing electricity (Ayhan, 2006; Rolin and Porte-Agel, 2018). The cost of 

producing 1 kW of electricity from wood biomass is US$0,058. Biomass combustion releases 

different chemical pollutants, including fourteen carcinogens into the atmosphere (Alfheim and 

Ramdahl, 1986; Godish, 1991; Nunes et al., 2016). Grid electrification is expensive and yet other 

sources of energy can meet all the energy requirements (Deveci et al., 2015; Khare et al., 2016). 

Senol (2012) and Lewis (2016) recognises the need to promote alternative energy supply especially 

for increased productivity and for income generation.   

Wind energy or power is the production of electricity by turning blades on a wind turbine (Ayhan, 

2006; Foxon, 2018; Rolin and Porte-Agel, 2018). An advantage of wind turbines over other 

renewable energy sources is that they can produce electricity whenever the wind blows (both during 

the day and at night). Wind energy can be utilised if the annual energy available is at an average 

https://www.sciencedirect.com/science/article/pii/S1364032115013969#!
https://www.sciencedirect.com/science/article/pii/S1364032115013969#!
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speed of 5 m.s-1, and is 490 MJ.m-2 of surface perpendicular to the wind flux (Mentis, 2013). 

According to Archer and Jacobson (2005) and Mentis et al. (2015), while Africa has an abundance 

of wind energy, in some areas it is seasonally while in coastal regions is available throughout the 

year. Solar energy seems to be the most viable alternative to fossil fuels as it is clean and renewable 

since it comes from the sun (Sontake and Kalamkar, 2016; Goel and Sharma, 2017). Solar energy 

is the largest source of renewable energy supply, compared to solid biomass, biogas, hydro, wind 

etc. and is available in most areas of SSA throughout the year with values in excess of 2 000 kWh 

m-2 (Heimiller, 2005; Best et al., 2012; Davis and MacKay, 2013; Kabir et al., 2018). In this region, 

the average solar radiation ranges between 4.5 kWh.m-2 – 6.5 kWh.m-2   for an average of 6 -7 

hours (Fluri, 2009; Baurzhan and Jenkins, 2016). This according to Saïdou et al. (2013) and Saxena 

et al. (2013) is enough solar radiation that is convertible to electricity.  

2.9.1 Solar Power 
 
There has been application of solar energy in generating solar thermal or directly conversion to 

electricity through photovoltaic cells (Hassan and Mohamad, 2012; Foxon, 2018).  According to 

Best et al. (2012), the use of solar energy for refrigeration purposes in the Agro-industry has a 

potential in developing countries. Abu-Hamdeh and Al-Muhtaseb (2010) stressed that there is a 

potential energy saving of 40-50% when using solar driven air conditioning systems instead of 

conventional systems. Feasibility studies of this technology when carried out in Mexico and the 

Mediterranean area showed that it is possible to obtain temperatures as low as -2℃ for air-cooled 

systems using solar energy as a source (Ayadi et al., 2008). There has been application of solar 

energy in solar refrigeration technologies i.e. solar electric and solar thermal (Kim and Ferreira, 

2008). In the solar electric system, conversion of solar energy to electricity is by use of solar 

photovoltaic (SPV) cells that operate a vapour-compression refrigeration technology. 

There is a lot of research work currently being carried out for absorption-based refrigeration and 

air conditioning systems that use solar energy (Liu and Wang, 2004; Balaras et al., 2007; Helm et 

al., 2009; Said et al., 2012; Shirazi et al., 2016).  The numerous reviews found in literature is 

evidence in support of solar-based refrigeration (Wang et al., 2011; Best et al., 2012; Khan and 

Arsalan, 2016). Solar energy has also been integrated with EC by many researchers for cooling of 

buildings (Tiwari and Jain, 2001; Maerefat and Haghighi, 2010; Naticchia et al., 2010; Finocchiaro 
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et al., 2012; Hands et al., 2016; Sahlot and Riffat 2016; Manaf et al., 2018). Naticchia et al. (2010) 

exploited both air ventilation and heat exchange by use of porous insulating material as an 

absorption matrix. Maerefat and Haghighi (2010) integrated a solar system employing a solar 

chimney with EC cavity. This integrated system enhanced passive cooling and natural ventilation 

in a solar house, and the numerical experiments showed that daytime temperatures significantly 

reduced at a poor solar intensity of 200 W.m-2 and high ambient temperature of 40℃. Finocchiaro 

et al. (2012) employed a solar energy assisted desiccant and EC system for building air 

conditioning. In this system, solar energy regenerated a desiccant material that dehumidifies moist 

air by vapour adsorption. The resultant dry and warm air was then cooled in a sensible heat 

exchange and then in an evaporative cooler. Hands et al. (2016) used a two-rotor intercooled 

desiccant arrangement to maximize dehumidification and provided solar energy for precooling and 

preheating only. When the ambient conditions were suitable, the solar driven desiccant cooling 

system met 35% of the total building cooling load. 

Because of research work, there have been reasons for focusing on the potential of converting solar 

energy through photovoltaic systems for use in agriculture production (Ekren et al., 2011; Mujahid 

et al., 2015). This could be a basis for sustainable agricultural production at village level in SSA 

The challenge is for researchers to find means of dramatically reducing the cost per solar panel to 

deliver cheaper energy to SSF.  It is believed that this has been achieved to a certain extent as the 

price of renewable energy from solar has dropped in the last decade from US$0,18 kWh to just 

US$0,03 kWh (OECD/IEA and IRENA 2017). 

2.9.2 Wind Energy  
 
Wind power has versatility of uses worldwide that include home power, water-pumping 

applications, running mills and other machines (Twidell and Weir, 1986; Goudarzi and Zhu, 2013). 

There is scope also to extend the use of wind power to agricultural produce processing and energy 

driven farming activities (Crawford et al., 2009; Hossain et al., 2016). A wind turbine operating at 

an ideal location can run at maximum 30% efficiency. A 500-kW turbine at this efficiency can 

yield an energy output of 1,3 million kW (e) per year at an estimated cost of US$0,007 per kWh 

(e) (David et al., 2002). To date, there is no available literature showing harnessing of wind energy 

for cooling purposes of fresh produce. As a result, there exists a research scope in the utilisation of 
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wind energy to support cheaper and less energy intensive cooling methods for fresh produce like 

EC (Chaudhari et al., 2015; Hossain et al., 2016). Integration of wind energy with EC could be the 

panacea in the reduction of PHL experienced by SSF producing F&V in SSA. When envisaging a 

wind-powered system for cooling fresh produce, batteries are required for backup storage of 

electricity, as wind does not blow all the times.  

2.9.3 Relevance of Solar Energy in Cooling of Fresh Produce. 
 
Best et al. (2012) estimates that energy demand for cooling processes and greenhouse gas emissions will 

increase by 60% by 2030 compared to 2000 levels. Kim and Ferriera (2008) have recognised that there are 

energy requirements for agriculture in rural areas addressed by using alternative sources of energy other 

than grid electricity. Efforts in planning and provision of the additional power requirements with clean 

energy need to be in place. In Africa, there are more opportunities to use solar energy because much of the 

continent has limited access to electricity (Szabo et al., 2011; Power et al., 2016).  

Therefore, the high-energy demands on existing power sources and global warming threats 

provides impetus for research towards technological alternatives (Hassan and Mohamad, 2012).  

Among these technologies, solar energy is the most appropriate for adaptation with cooling 

methods for fresh produce, as the resource is available throughout the year (Best et al., 2012). A 

lot of research in this regard has been taking place. 

Fan et al. (2007) and Bataineh and Taamneh (2016) reviewed the research on solar absorption and 

adsorption refrigeration technologies. From this review, there is a conclusion that solar power 

sorption technologies may possible be used for refrigeration, air-conditioning applications and ice 

making. Other solar sorption’s are still at research study level and are not fully developed. Other 

issues that still need addressing with sorption refrigeration systems regards enhancement of the 

heat and mass transfer to improve performance (Chindambaram et al., 2011). As a result, most of 

the systems are at the stage of demonstration and prototyping (Fan et al., 2007; Chindambaram et 

al., 2011; Ahmad and Rahman, 2017). While the prospect of developing an environmentally 

friendly and low energy demand, solar power sorption systems are good the cost of the refrigeration 

system represents a large percentage of the cost, which will limit its use among SSF (Otanicar et 

al., 2012; Zhai et al., 2011; Faris, 2016). 
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The use of solar energy for EC in all the cases has been limited to buildings and this provides an 

opportunity for the extension of the same principles to the preservation of fresh produce (Ahmad 

and Rahman, 2017). The use of solar energy to power electrical appliances for EC like heat 

exchanger, water pump and fan is very limited and literature was not found providing evidence that 

solar energy has been used for IAC+EC for fresh produce. This confirmed by Jani et al. (2018) 

who alludes that there is no wide historical background for commercial application of solar energy 

for in IAC+EC. 

EC technology if used with forced air requires lower energy to operate water pump and fans while 

it is effective in providing cold and humid air to the storage chamber. The use of SPV energy to 

operate low-cost cooling technologies for F&V has a high potential. Hence, an integrated approach 

of IAC+EC and solar energy as a source of power could be highly suitable for SSF that are engaged 

on production of F&V in SSA.  This will play a pivotal role in ensuring food security at household 

level and a reliable family sustenance through income obtained from sales. With the advent of re-

distribution of land in South Africa, there will be emerging SSF in F&V production with no access 

cooling facilities and integrated approach of EC and solar energy will fill the gap.  

2.10 Discussions 
 
All categories of farmers’ experience high PHL in SSA, but for SSF as they lack appropriate low-

cost post-harvest cooling technologies the challenge is more pronounced. The deterioration in 

quality of F&V is largely due to factors such as technical, biological and chemical, and as well as 

environmental aspects. These factors affect fresh produce quality from harvesting, packaging, 

temporary storage at the farm through to transportation to markets. 

Training of harvesters, use of appropriate packaging material like plastic crates and ensuring that 

appropriate transportation containers are used addresses issues related to technical factors. This 

would significantly eliminate the exposure to mechanical damage, which is the main cause of 

physiological deterioration and bacterial contamination. Biological process of metabolism such as 

respiration, transpiration and biosynthesis cause fresh produce deterioration through moisture loss, 

which may lead to senescence. The physiological deterioration due to biological processes is 

compounded by environmental factors that can result in a significant loss of nutritional value. 
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Harnessing of biological process is through the control and management of environmental factors 

of temperature and RH.  

This review identified a number of conventional cooling technologies available in the market such 

as forced-air cooling, vacuum cooling, hydro-cooling and mechanical refrigeration. The different 

conventional cooling technologies have inherent challenges in their application by SSF in SSA. 

Hydro-cooling is not suited for leafy produce and SSF require a technology that is able to cool all 

vegetable types, leafy, root and grass. Forced-air cooling is a specialized technology, requiring 

skilled operators who SSF do not always have. Forced air-cooling is more expensive than other 

cooling methods when rapid cooling is required. In the case of vacuum cooling beside the cost, 

requires sustained higher volumes throughout the year, which demand only large-scale growers 

with economies of scale of growing high cash value crops can satisfy. Literature also revealed that 

the conventional cooling technologies are both capital and energy intensive. SSF have no access to 

capital to purchase and install conventional cooling technologies and even if they did, they would 

still need to surmount the challenge of energy required for these technologies, as most of these 

farmers are in remote areas with no access to grid electricity.  

Further, this review also recognizes that EC is a simple and cheap method compared to 

conventional cooling technologies. EC is regarded as economical and does not necessarily need 

external power source as it relies on velocity of natural wind through wetted pads. EC is ideally, 

for both pre-cooling and cooling and its use increases shelf life of fresh produce. EC has had a big 

impact in cooling of buildings in Asia and has been practiced by some SSF in SSA. EC premises 

on removal of sensible heat, which makes it relatively efficient under hot and dry climates obtaining 

in SSA but has limitations in hot and sub-humid to humid areas obtaining in coastal regions. EC 

has been tested at laboratory scale in dry and arid areas and the results are encouraging. For sub-

humid to humid areas, IAC coupled with EC could work, but no work-studies on such a cooling 

system has been done for either greenhouse cooling or storage of fresh produce.  

Conventional cooling technologies are energy intensive. Grid electricity is not available in remote 

and isolated areas in SSA, while use of fossil fuels has limitation in that they emit greenhouse 

gases. The alternative then is the use of renewable energy sources like solar, which is abundant in 

SSA. As a result, there exists a research scope in the utilisation of solar energy to support IAC+EC 

of fresh produce for hot and sub-humid to humid areas. This integrated system could be very useful 
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to SSF in SSA producing F&V in ensuring that they rise from high PHL incurring farmers to 

profitable farmers who are able obtain returns enough to sustain their families. 

2.11 Conclusions 
 
Literature shows that the introduction of appropriate cooling technologies for SSF will ensure 

provision of cold chain systems that minimize PHL from harvesting to consumption by end user 

of fresh produce. The training of harvesters and ensuring the use of appropriate transportation 

containers are important to reduce the effect of technical factors on PHL. Biological processes play 

a key role in aggravating PHL if not properly controlled by maintaining environmental factors of 

temperature and RH at recommended storage levels as per specific requirement of each crop. 

However, this review showed that in developing countries like SSA there is lack of proper cold 

chain storage facilities. Hence, there is need to develop or adopt appropriate low-cost cold chain 

facilities aiming at cooling of fresh produce for SSF. This is the only way SSF can rise from 

subsistence farming to commercial fresh produce production. The two most limiting factors for the 

adoption of advanced cooling by SSF is the initial capital cost and the energy demands, since 

conventional cooling technologies are energy intensive. The alternative, then, is the use of an 

integrated system that involves solar energy source combined with a low-cost cooling technology.  

Based on the brief survey of literature, it is observed that a lot of research has been done on EC for 

comfort cooling at prototype scale for fresh produce preservation. EC is suitable for hot and dry 

regions where it is very much effective in providing a suitable microclimate inside buildings or 

storages as the process relies on removal of sensible heat. The application of EC in sub-humid to 

humid areas has limitation as presence of high RH leads to low dry bulb temperature. Selection of 

appropriate EC system depends mainly on local environmental conditions and performance varies 

from one to the other. More scope of research remains to be carried out in the hot and humid tropic 

and subtropics. Extension of EC as a principle to humid areas requires inclusion of a heat exchanger 

for IAC, which is a concept that is not previously documented for cooling the microenvironment 

in storage of fresh produce. The incorporation of heat exchanger and other electrical appliances for 

IAC require energy, which can be supplied by solar energy for SSF with no access to grid 

electricity. This provides an opportunity for the use of solar energy to power a heat exchanger for 

sensible cooling of air; water pump for water reticulation; fan to ventilate the IAC+EC.  
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The availability of literature pertaining to the integration of solar energy and IAC+EC, particularly 

in South Africa, is limited. Innovative and convenient technologies of provision of a cold chain for 

F&V after harvest are required to reduce losses that occur when fresh produce is stored under 

ambient conditions. It is envisaged that by developing a low-cost cooling technology for hot and 

humid areas in coastal regions a larger export market can be created, as well as providing small-

scale farmers with a niche in this export arena. The integrated system of IAC+EC with solar energy 

will reduce PHL thus increasing the quantity of fresh produce that will reach the consumer. 

IAC+EC systems still need development and characterization especially in Southern Africa where minimal 

research has been done on EC in general. IAC+EC systems have shown great potential of development 

and research opportunity for their perceived improved efficiency, high thermal performance and 

low energy use. From the conclusions made above, the proposition is carrying out a study to 

develop and characterise a solar powered IAC+EC system for temporary storage and transportation 

of F&V with a specific focus on sub-humid to humid areas in Southern Africa.  

In conclusion, there is still a lack of available research in IAC+EC systems and their performance 

under hot and sub-humid to humid weather. The use of renewable energy in IAC+EC system 

powered by solar still needs investigation in hot and humid country where solar power can be 

harvested year-round.    
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3 ASSESSMENT OF SOLAR ENERGY SYSTEM INTEGRATED 

WITH INDIRECT AIR COOLING COMBINED WITH 

DIRECT EVAPORATIVE COOLING 
Abstract 

In this study, a solar photovoltaic (SPV) system generating power to run a 53 m3 storage for indirect 

air-cooling combined with evaporating cooling (IAC+EC) for providing a cool environment for 

storage of tomatoes was evaluated based on actual performance. The experimental set up consisted 

of nine 330 W solar modules, twelve 230 AH batteries for battery bank facility, 145 VDC (60 A) 

solar charge controller, 5 kW (125A) inverter, electrical appliances of 290 W ventilation fan and 

260 W water pump, psychrometric unit, and 3.8 tonne tomato storage chamber constructed and 

assembled on site. The psychrometric unit consisted of three-cooling pad layer and 1 760 W 

indirect heat exchanger. The modules had a short circuit current (Isc) and open circuit voltage (Voc) 

of 8.69 A and 44.8 V respectively and were arranged in a three series-three strings and were used 

in conjunction with a three string-48V system bank facility. The performance evaluation of the 

system was done under no-load and sample-load, with full recirculation of air inside the cold 

storage chamber using solar array module yield and efficiencies of the photovoltaic array, inverter, 

battery and solar charge controller. Based on the experiment data the SPV system produced 2639 

W that is 90% of the calculated theoretical power output. The energy yield of 2 639 W was 11% 

higher than the power required in running the electrical appliances for IAC+EC system. Tracking 

the SPV system under ambient conditions with an average daily generation during the period of 

the experiment, the power and photovoltaic (PV) array efficiencies were 81.2% and 15.1% 

respectively.  The power output of modules increased with temperature of the module to 24℃ and 

declined thereafter. The power generated by the SPV system depended on the climatic variables, 

such as solar irradiance availability and ambient temperature at the site and the time of the day.  It 

was found that the solar array system can be used to power the IAC+EC at daytime during summer 

season, and the excess power, which was stored in the battery, could run the system until 22h00 at 

night when temperatures were low enough for storage of tomatoes and SPV system was then 

switched off. SPV systems can run IAC+EC, which is ideally for small-scale farmers that are not 

connected to the national grid as it has low initial capital investment of R 130 190 with a payback 

period of 1.9 years for a 53 m3 storage structure. 
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3.1 Introduction 
 
Small-scale farmers (SSF) in South Africa have identified the need to access appropriate small-

scale low-cost postharvest technologies for long-term storage of fresh produce to maintain quality 

and extend shelf life (Baiphethi and Jacobs, 2009; Mashau et al., 2012; NDP, 2012; IPAP, 2013; 

DAFF, 2016; SAYB, 2016). Facilities like mechanical refrigeration, hydro-cooling, forced air-

cooling and vacuum cooling exists but are expensive to SSF because of high initial capital 

investments, high energy input, higher production volumes for economies of scale (Tefera et al., 

2007; Baloyi, 2010; Paull and Duarte, 2011; Prusky, 2011; Yahaya and Akande, 2018). Literature 

reveals that there is currently no available modernized cooling technology accessible to SSF in 

SSA for storage of their fresh produce (Ntombela, 2012; Mashau et al., 2012; Manaf et al., 2018). 

This study considers adoption of evaporative cooling system (EC) which is best suited for SSF as 

the initial capital and running costs are low and the technology is efficient, economical and has a 

potential energy saving of about 75% (Workneh, 2010; Ndukwu et al., 2013; Rajan and Anandan, 

2018).  EC functions by the removal of sensible heat and therefore works best in hot and dry climate 

prevalent in SSA. For EC to be extended to areas, which are hot and sub-humid to humid indirect 

air cooling (IAC) has to be considered to be able considerable reduce air temperature before the air 

enters the evaporative cooling unit. IAC in addition to EC will be referred as IAC+EC in this 

chapter. For IAC to be feasible an indirect heat exchanger is incorporated and the energy 

requirements can be supplied by solar energy. Misra and Ghosh (2018) in their recommendations 

for further research on EC allude to further investigation on the use of solar and geothermal for 

IAC. Therefore, the integration of IAC+EC with solar energy is a new research focus whose results 

will provide a cooling facility to SSF in remote areas of SSA with no access to grid electricity.  

Use of solar energy has increased in importance in the recent past as an alternative energy source 

as prices of grid electricity and fossil fuels escalate (Young, 2013; Damerau et al., 2016; Yahyaoui 

et al., 2016; Goel and Sharma, 2017). The use of solar energy in SSA has been limited for domestic 

(Chow, 2010) with limited extension to water pumping systems as documented by publications of 

Chandel et al. (2015) and Sontake and Kalamkar (2016). The use of solar energy for commercial 

fresh produce cooling and storage is still unutilized and undocumented, even though there could 

be clear advantages, of low generating costs, suitability for remote areas and being environmentally 

friendly (Rehman and Al-Hadhrami, 2010; Parida et al., 2011; Deveci et al., 2015; Sontake and 
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Kalamkar, 2016). In literature, there is no information on the integration of IAC+EC with solar 

energy that provides the energy requirements derived from actual performance data for a specific 

size of a cooler of storage chamber. In South Africa, the average solar radiation is 4.5–6.5 kWh.m-

2 for 6 -7 hours (Heimiller, 2005; Fluri, 2009; Best et al., 2012; Davis and MacKay, 2013). This 

according to Saxena et al. (2013) is enough solar radiation to run a Photovoltaic (PV) system for 

rural applications. Solar Photovoltaic (SPV) is an attractive solution providing autonomous fruit 

and vegetables (F&V) storage system in remote areas or dispersed populations. The SPV system 

provides the autonomous installation with the needed energy, optimal sized in relation to 

intermittent climatic parameters of solar radiation and the ambient temperature (Yahyaoui, 2016; 

Yahyaoui et al., 2016). For F&V cooling, the removal of heat to achieve optimum storage 

conditions, the size of PV modules surface and accessories like charge controller and inverter, the 

battery bank capacity are critical (Khatib et al., 2013a; Chandel et al., 2015; Kazem et al., 2017). 

The battery bank is to import/export energy depending on need for applications that operate during 

both day and night as this study proposes (Kazem et al., 2014).  

Though there are arguments that SPV systems are expensive, such systems should find application 

for SSF in remote, isolated, dispersed populations or in rugged terrain where it is un-economical 

to stretch the utility grid (Shaahid and El-Amin, 2009; Khatib et al., 2013b; Khare et al., 2016). 

SPV systems are modular, low maintenance, easy and quick to install. It is easy to expand SPV 

systems, as demand increase to generate power where it is required without the need for 

transmission line (Olomiyesan et al., 2015). In South Africa with the pending land re-distribution 

exercises, new commercial SSF will emerge with an additional burden on the national grid for 

more energy requirements that can be met by use of solar energy. The prices of solar panels and 

batteries is decreasing year after year (Gopal et al., 2013; GSES, 2015; Foxon, 2018). As prices 

fall, farmers will afford to buy more solar panels and batteries thus motivating farmers to migrate 

to high value fresh produce and adopt solar powered EC systems. The expected decline in prices 

of accessories, the non-availability of studies in energy requirements, and performance assessment 

of SPV powered IAC+EC systems under South Africa conditions have motivated this study. If the 

installation of solar powered IAC+EC is successful, this will feel the gap in South Africa that could 

be created by the land re-distribution with no supporting fresh produce cooling infrastructure. 
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There has been testing of SPV in powering miniature-evaporating coolers of capacities less than a 

0.2 tonnes in other countries (Eltawil and Samuel, 2007; Razak et al., 2007; Duffie and Beckman, 

2013; Foxon, 2018). There is need to conduct studies that will fully mimic the temporary storage 

requirements of SSF and provide evidence of the efficacy of solar energy in such instances. 

Currently, there is no literature and data of a cooperation, which used solar energy to power any 

IAC+EC system for small-scale cold storage of F&V in SSA. For this to happen, one can consider 

a stand-alone solar powered system with a battery storage facility as SPV systems have a sunshine 

dependent output that does not necessarily match with the load on a 24-hour cycle. There is no 

study on the use of solar energy–battery hybrid to power a water pump, indirect heat exchanger 

and fan for IAC+EC. As a result, a hybrid system of solar/battery system is recommended by this 

study. To solve this problem and encourage commercial SSF to adopt solar energy as their main 

source of power, a demonstration unit was designed and constructed in order to motivate them to 

adopt solar power, as it is a sustainable and renewable. This study also will provide data on the 

performance of SPV in powering a 3.8 tonne sized storage chamber for tomatoes. 

The objective of this study is to: 

1. Construction of a small-scale IAC+EC system of 3.8 tonnes storage capacity for tomatoes. 

2. Designing, installation and performance evaluation of solar-battery system. 

3. Evaluating the performance of SPV-battery based IAC+EC system. 

3.2 Materials and Methods 
 
This section presents the methodology followed in design, fabrication of solar photovoltaic 

(SPV) powered IAC+EC system to attain favourable conditions for tomato storage under 

different operating conditions. 

3.2.1 Design Specifications 
 
The design of the cooling unit provides the optimum storage temperature and relative humidity 

(RH) for tomatoes in Pietermaritzburg (PMB) in KwaZulu Natal province. The design and 
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construction of the evaporative cooler premises on the PMB environmental requirements and 

considerations with the following specifications:  

(a) The SPV should provide energy to drive water pump, heat exchanger and fans. The 

following will be considered: 

• The design-cooling load to produce the required power for the IAC+EC system will 

be determined. The cooling load will determine the ventilation rate (fan rating and 

size) for the storage chamber.  

• The electrical load considering all appliances (pump, heat exchanger and fans) will be 

calculated and this will determine the amount of power required per hour to run the 

SPV system. 

•  Solar panel configurations will be obtained from the total energy required. 

• From the amount of power required per hour to run the system, the battery bank 

facility will be determined.  

• A short-circuit configurations from the solar panels will be used to calculate the solar 

charge controller rating and also taking into considerations the numbers of strings. 

The solar charge controller will be rated at or above the amperage and voltage 

requirements of the solar array system. 

(b) The input rating of the inverter size will be at least 25% greater than the cooling and 

application loads as the inverter size should be larger than the load size.  

(c) The IAC+EC unit had to be able to maintain the temperature inside the storage chamber at 

the wet bulb temperature of the prevailing ambient air conditions. 

3.2.2 Factors Affecting Performance of the SPV 
 
The efficiency factor of PV modules influences the performance ratio of the PV system. The higher 

the efficiency of PV modules, the higher the performance value (with corresponding higher solar 

irradiation at the location). The efficiency of solar energy conversion for solar cells is 15-19% and 

is dependent on whether the solar module is monocrystalline, polycrystalline or thin-films type 

(Huang et al., 2013). Monocrystalline modules have the highest energy conversion efficiency; 
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polycrystalline modules are in between, whilst thin-films are least expensive and least efficient in 

comparison (GSES, 2015; Bai et al., 2016). Monocrystalline modules were chosen for this study 

to ensure we get the highest possible amount of energy from the available solar radiation, the 

highest efficiency and least cost from the permutations of the solar array system. 

Factors affecting module output 

For solar arrays to produce maximum power output, they must be at an optimal tilt angle to trap 

maximum radiation (Gunerhan and Hepbasli, 2007; Tripathy et al., 2017). According to Morales 

(2010) the optimum tilt angle correlates with latitude and is considered being equal to the latitude 

or latitude ± 15o (+ for winter and – for summer). Asowata et al. (2012) and Stanciu and Stanciu 

(2014) in their work in nine locations in South Africa recommend that the optimum tilt angle for 

a fixed solar collector should be the same as the latitude of the location. The optimal tilt angle 

depends on the season and the latitude of the area (Kaddoura et al., 2016).  For higher power 

output, incorporation of solar trackers allows automatic adjusting of the collector tilt angle of solar 

arrays to, follow the sun’s change in elevation during the day and always face the sun (GSES, 

2015; Pedro et al., 2016). In this study, no solar tracking device was available and to determine, 

the optimum tilt angle historical data for the selected area will be used as provided by Schulze et 

al. (1999). 

The other factors of consideration are power dissipation, stagnation, conduction losses, efficiency 

factors of the inverter and controller and differences in solar cell technologies of the modules (Sun 

et al., 2016). The aggregate sun-oriented radiation received at a given geographical location varies 

depending on the length of the insolation on a specific day and the power of sunlight-based vitality 

(Honsberg and Bowden, 2016; See Appendix 7.2 and Figure 7.4). Variations also arise because of 

latitude and the day or time of the year (Morales, 2010; Tripathy et al., 2017). All the factors are 

considered in Appendix 7.3 and for this study; the solar radiation values recorded by over 50 years 

and captured in the South African Atlas 18 of Agro-hydrology will be used. 

3.2.3 Installation of SPV System 
 
The experiments were carried out at Ukulinga research station which is a research station for the 

University of KwaZulu Natal in PMB in South Africa (30º24’S, 29º24’E). The experimental set up 
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consisted of SPV panels, battery bank facility, charge controller and inverter, and evaporative 

cooling unit, storage chamber constructed and assembled on site (Eltawil and Samuel, 2007). The 

cooling unit consisted of indirect heat exchanger (M14-20, 8874 BTU/Hr) (see Appendix 7.1 and 

Appendix 7.9) with performance rating of 1760 W and three-layer charcoal granules cooling pads. 

A 31/33 W (UF25GC12, AC 115 V, 50/60 Hz) constant speed positive pressure fan was connected 

to the indirect heat exchanger to facilitate airflow across the heat exchanger. A 290 W fan was 

directly mounted at the entrance of the storage chamber 0.5 m above the floor to ventilate the 

storage chamber 3.6 m. s-1. 

The solar array system consisted of 9 x 330 W modules (2.01 m x 1.02 m, SETSOLAR 

manufacturer) installed and fixed on one rectangular metal manual tilt-frame and mounted facing 

south on an inclined angle of tilt = -15o as recommended by Strnadel et al (2013) and Ronoh (2017).   

Inclining modules prevents accumulation of dust on their surface and contributes to a natural 

cooling effect according Li et al. (2005). To avoid shading on the PV modules, panels were 

positioned away from trees and buildings that could throw shadows resulting in modules absorbing 

less solar irradiation than normal and thus affecting the efficiency of the system (Ramaprabha and 

Mathur, 2009). The panels were dusted and dirty was removed from the surface to ensure no soiling 

according to Sun et al. (2016).  

 

Figure 3.1 Schematic diagram of the solar energy process flow 
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The manually operated frame allowed tilting to angle of tilt = -15o that resulted in optimum power 

output. The modules were at 2 m distance from the storage chamber. The circuit output voltage of 

each module at the point of peak power output is 44.80 V and short circuit current is about 8.69 A. 

The above values were at the specified standard test conditions (STC) of 1000 W.m-2 solar radiation 

at 25℃ cell operating temperature and an air mass of 1.5. Under field conditions, the output power 

is normally less than the rated peak power. The power generated from the SPV modules was 

transmitted to the solar charge controller prior to charging the solar batteries and the inverter 

converted DC to AC. Figure 3.1 is a schematic layout of the solar system and also shows how the 

rest of the components were connected. 

The solar charge controller (SANTAKUPS, PC16-6015F) ensured constant voltage and current to 

the load from the batteries according to Deveci et al. (2015). The solar charge controller had 

maximum input ratings of 60 A current and DC voltage of 145 VDC. A 5-kW inverter (125 A 

Sinowave, P11-LW5000NC48-C) with rated efficiency of 85% was chosen as its characteristics 

match the system in terms of voltage input, AC power output, efficiency, frequency and voltage 

regulation as described by Chandel et al. (2015). Twelve fully charged 230 AH batteries (Gel) with 

a 90% efficiency arranged as a three-string 48V system were utilised to start the experiments and 

this temporarily stored energy generated by solar panels for overnight use. The distance between 

the battery and the inverter was made as short as possible. The wiring chosen ensured that the 

voltage loss of the PV system and batteries was less than 0.5% (Eltawil and Samuel, 2007; Saxena 

et al., 2013).  Cable wiring and sizing kept loss of energy as minimal as possible and prevented 

overheating. A multi-meter (Fluke 381) measured both open circuit voltage and current, voltage 

and current under location and at different positions. Thermocouples connected to data loggers 

measured the PV module temperatures at hour intervals as module temperature influences the 

performance of solar systems (Sun et al., 2016). The solar radiation data from the South African 

Weather Services was used. The various heat load in the storage chamber were calculated using 

the standard equations as discussed in section 3.2.4 and the cooling capacity together with the load 

from electrical appliances (fan, heat exchanger and water pump) was used to size the solar array 

system. The solar array system was sized and modules arranged to produce sufficient voltage and 

current to power the electrical appliances and ventilate the storage chamber to the required 

environmental conditions. 
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3.2.4 Determination of the Cooling Load 
 
The cooled and humidified air from the cooling pads is required to remove the total heat load in 

the evaporative cooler and is proportional to the mass of produce that is loaded at a time (Studman, 

1990). The cooling load is made of the following critical heat sources from the cooler (i) heat of 

respiration (ii) sensible heat of containers (iii) field heat load (ASHRAE, 1998; Prasad, 1999; 

Eltawil and Samuel, 2007). The other heat losses important but smaller in magnitude are (i) heat 

gain through the wall (ii) air-change heat load during the opening of the storage chamber door and 

(iii) miscellaneous heat load gains from lights, fan and labourers during stacking and removal of 

tomatoes from the storage chamber (Arora, 2000; Thompson, 2004; Eltawil and Samuel, 2007).   

A cooler packed to its maximum capacity takes longer to reduce the temperature of the stored 

products. Loading a cold storage in batches allows the batches to reach the recommended target 

temperature in a shorter period. Three loading capacities of the storage chamber of filling the 

storage chamber to, full capacity, half-capacity and one-third capacity was considered in this study. 

This was in consideration of the amount of tomatoes that a SSF in SSA might be harvesting daily. 

The various heat load above was calculated using the standard equations in literature as obtaining 

in Table 3.1.  

Table 3.1 Formulae used to calculate the cooling load 

Heat Type  kJ. Kg-1 1 Equation 

Heat of 

respiration 

𝑄𝑄 = 𝑚𝑚 × ℎ     m = mass of tomatoes to be cooled [kg];  

h = heat transfer coefficient of product [J. 𝑘𝑘𝑘𝑘−1 = 543 

J. 𝑘𝑘𝑘𝑘−1]; (Fellows, 2000; ASHRAE, 2002). 

Field heat  Q

=
m × cp(T2 − T1)

3600 × 𝑛𝑛
       

 

 

m = mass of tomatoes to be cooled, kg; 

cp = Specific heat of  tomatoe , k J. 𝑘𝑘𝑘𝑘−1; 

𝑛𝑛  = operation time, [hours]; 

 T2 =   Storage temperature of products ℃;  

  𝑇𝑇1  = Initial product in crates temperature, ℃; 

(Arora and Domkundwar, 1999; ASHRAE, 2001) 
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Heat Type  kJ. Kg-1 1 Equation 

Sensible 

heat from 

containers 

Q

=
m × cp(T2 − T1)

3600 × 𝑛𝑛
    

m = mass of product to be cooled [kg]; 

 cp = Specific heat of crates[KJ. 𝑘𝑘𝑘𝑘−1]; 

𝑛𝑛   = operation time [hours]; 

 T2 =   Storage temperature of tomatoes[℃ ];   

 𝑇𝑇1  = Initial tomatoes temperature [℃]. 

(ASHRAE, 2001 and Fellows, 2000). 

Heat 

leakages 

through 

walls, roofs  

Q =
𝑘𝑘 × A(T2 − T1)

x
    

 

(Fellows, 2000; 

ASHRAE, 2002) 

m = mass of product to be cooled, [kg]; 

cp = Specific heat of  tomatoe  [kJ. 𝑘𝑘𝑘𝑘−1]; 

𝑛𝑛   = operation time [hours]; 

 T2 =   Storage temperature of products [℃] and 

  𝑇𝑇1  = Initial product in crates temperature [℃]. 

Heat loss 

through the 

floor 

     𝑄𝑄𝑓𝑓 = 𝐹𝐹𝐹𝐹(𝑇𝑇𝑜𝑜 −  𝑇𝑇𝑖𝑖) F = perimeter heat loss factor [W.m-1. K-1] and 

 P = storage chamber perimeter [m]. 

(Albright, 1990). 

Air-change 

load 

  𝑃𝑃𝑎𝑎
= 𝑚𝑚𝑎𝑎(ℎ𝑎𝑎 − ℎ)

+ 𝑚𝑚𝑤𝑤𝐶𝐶𝑝𝑝𝑝𝑝(𝑇𝑇𝑎𝑎 − 𝑇𝑇) 

 

(ASHRAE, 2002) 

 Pa = air change load [W]; 

ma = mass of air entering the chamber/hr [kg. s-1]; 

ha = enthalpy of ambient air [kJ.kg-1]; 

mw = mass of water condensing in chamber/hr 

[kg]; 

h = enthalpy of air in the storage chamber [kJ.kg-1]; 

Cpw = specific heat capacity of water [kJ.kg-1. ºC-1]; 

Ta = ambient air temperature [°C] and 

T = air temperature inside the chamber [°C].  

Operators 

and lights 

𝑄𝑄𝑂𝑂&𝐿𝐿

=
𝑄𝑄

        3600 × 𝑛𝑛
        

Q = Total amount of heat that lights and operators 

release in the chamber [kW], and   

 n = number of hours per day [hours]. 

(Fellows, 2000) 
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Using the formulae, the amount of heat load to be removed when the storage chamber is filled with 

tomatoes to full capacity is 8 220 W and when filled to one-third capacity is 4 252 W (see Table 

7.5 and Table 7.6 in Appendix 7.5). When the tomatoes have cooled to the required storage 

temperature, part of the cooling is no longer necessary. Less cooling is required to maintain the 

required temperature in the store and the cooling system can operate for a shorter period or the 

cooling capacity can be reduced.   

According to Thompson (2004), the design load is calculated as:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1.1 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙        (3.1) 

Therefore, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1.1 × 4252 𝑊𝑊 = 4677 𝑊𝑊 

From the cooling load of 4677 W the required ventilation rate for the storage chamber is 0.234 m-

3. s-1 requiring a 308,7/6-6/P3HL/25/PA @1.440 min-1 fan which provides an air-flow rate of 0.278 

m-3. s-1 at static pressure of 68.27 Pa with a power rating of 290 W and air velocity of 3.6 m. s-1 

(Appendix 7.6). 

3.2.5 Design Load Including Appliances 
 
The designed solar array system accommodates the cooling load in the storage chamber and the 

appliances that include a heat exchanger with fan, second fan ventilating the storage chamber and 

water pump and operates for 5 hours into the night. 

Total load (w) = 1760 + 290 + 260 = 2310 𝑊𝑊  

The power required in a day here referred to as the daily (w-h) is calculated from the equation 

Daily (w − h) = Total Power Consumption × Operating Hours × Loss factor  (3.2) 

Therefore, Daily (w − h) = 2310 × 5 × 1.2 = 13860 𝑊𝑊  

The allowable battery discharge is limited at a minimum of 50% to prolong their shelf life. 

Therefore, the daily watt-hours at 50 % discharge doubles to obtain the system capacity using the 

following equation that divides the daily (w-h) by 0.5.   

50% depth of depletion of the battery = Watt Hours/day 
0.5

      (3.3) 
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50% depth of depletion of the battery =
13860

0.5
= 27720 Wh 

Power produced/h = Total Power Consumption×Operating Hours×Loss factor 
Sunshine hours

    (3.4) 

Power produced
hour

=
27720 

6.7
= 4137.3 W. h − 1  

Therefore, this system will produce 4 137.3 W. h-1 to cool 3 825 kg of tomatoes. 

3.2.6 Determination of Bank Capacity 
 
The battery capacity was determined with reference to the electrical appliances’ specifications for 

the daily watt-hours at 50% discharge and this is in accordance with Linden (2002) as given in 

equation (3.5). The required battery size bank to store / supply required amp-hours is; 

Battery Bank Capacity = System Capacity 
System Voltage

        (3.5) 

Therefore, the battery bank capacity using a 48V system = 27720
48

= 577 𝐴𝐴𝐴𝐴 

The battery bank capacity is 577 AH using a 48-V system and available battery in the market is a 

230 AH with a 90% efficiency. The number of batteries required to run the system with 3 825 kg 

of tomatoes is 

Number of strings of 48V system =
Battery Bank Capacity

AH of battery
=

527
230

= 2.5~3 

Therefore, the total number of batteries is 4 × 3 = 12 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

3.2.7 Determination of Charging Battery to Full Capacity 
 
The time required to fully charge the batteries is important as it helps understand how long it takes 

to fully-charge the batteries to run the system during non-effective sunlight periods. The charging 

time to fully-charge the batteries is defined by equation 3.6:  

𝑄𝑄𝑡𝑡 = 𝐶𝐶′

𝐼𝐼𝐶𝐶
           (3.6) 
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Where, Qt = charging time (hours); C′ = battery capacity (AH) and C′ = 1.4 × C;  

 IC = charge current of the battery (A) and,  

𝐼𝐼 𝐶𝐶 = 10% × 𝐶𝐶; Where, C = rated capacity of the battery (Ah) = 230 AH;   

• 𝐼𝐼 𝐶𝐶 = 10% × 230𝐴𝐴 = 23𝐴𝐴 and Cˈ = 1.4 × 230 = 322 𝐴𝐴𝐴𝐴 

• 𝑄𝑄𝑡𝑡 = 322
23

 = 14 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

Therefore, the charging time to full capacity when the battery has been discharged to 50% depletion 

is 14 hours.  

3.2.8 Design of the Charge Controller 
 
The solar array system should produce sufficient current and voltage to the cooling load and 

associated applications and according to Eltawil and Samuel (2007). To achieve this the system 

can be connected either in parallel or in series or a combination of both. When solar panels are in 

series, the voltage is increased and when in parallel the current is increased (Smith, 1976).  The 

best option to achieve the power requirements for this study is having three solar panels in series 

of three strings, considering the inverter and charge controller sizes. The charge controller controls 

the charging and discharging of the battery by providing a constant current and voltage to the load 

from batteries (Deveci et al., 2015).  For the power requirements of this study the available charge 

controller is a TriStar solar charge controller (t 60) with a maximum rated input current of 60 A 

and DC voltage of 145 VDC.  

The input power to the solar charge controller is given by equation 3.7 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = ƞ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑃𝑃𝑖𝑖𝑖𝑖         (3.7) 

Where 

Pout = power output from inverter (W); 

ƞc = efficiency of the charge controller from the supplier (90%) and 

Pin = power input to the charge controller. 
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3.2.9 Design of the Inverter 
 
The inverter powers the equipment (pump, fans and heat exchanger) that may require 2-3 times the 

running wattage power; therefore, the inverter of the system was sized to be more than the actual 

power requirement of the whole system. An inverter of 5 kW, 48 V with a 125 A-fuse was used. 

The input power to the inverter system is output power from the charge controller (equation 3.8). 

The output power can be calculated by incorporating the efficiency of the inverter. 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = ƞ𝐼𝐼 × 𝑃𝑃𝑖𝑖𝑖𝑖          (3.8) 

Where 

Pout = power output from inverter (W); ȠI = efficiency of the inverter from the supplier (90%) and 

Pin = power input to the inverter. 

3.2.10 Solar Panels Specifications 
 
The solar panels available in the market that were used are monocrystalline solar modules with the 

specifications summarized in Table 3.2.  

Table 3.2 Electrical characteristic of the solar modules 

Description  Measurement  Units  

Nominal Power (Pmax)  350   W  

Rated Voltage (Vmpp)  36.6 V  

Rated Current (Impp)  8.2   A  

Short Circuit Current (Isc)  8.7 A  

Open Circuit Voltage (Voc)  44.8 V  

Minimum Power  330 W  

Quantity  9 -  
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The specifications are from the manufacturer at nominal operating cell temperature with an 

insolation of 1000 W. m−2, the cell temperature at 25℃ and air mass at 1.5.  

3.2.11 Optimisation of the Number of Modules for the SPV System 
 
The optimization of the hybrid SPV system considering the number and sizes of modules and 

batteries will require a balance between the system voltage and current that will supply the required 

power (Erdinc and Uzunoglu, 2012). A number of combinations need to considered, series, parallel 

and combination of both in different permutations as recommended by Goel and Sharma (2017). 

A parallel connection with two panels in series will provide the following scenario; 

The output voltage will be: 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 3 × 44.8 𝑉𝑉𝑉𝑉𝑉𝑉 = 134.4 𝑉𝑉𝑉𝑉𝑉𝑉 

The output current will be: 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 3 × 8.7 𝐴𝐴 = 26.1 𝐴𝐴 

Total power output: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 134.4 × 26.1 = 3507.8 𝑊𝑊 

Hence, the solar array system was a three-series-three-strings i.e. consisting of three solar modules 

in series and parallel to other two sets (Figure 3.2). In each set, the modules were connected in 

series and the sets were connected in parallel to each other. This arrangement was ideally for the 

system, as it did not overload the available solar charge controller.  

𝐼𝐼𝐼𝐼 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑁𝑁 × 𝐼𝐼𝐼𝐼𝐼𝐼 

𝐼𝐼𝐼𝐼 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 3 × 8.7 = 26.1 𝐴𝐴 

The average monthly power output (Pout) from the optimal solar radiation was calculated using 

equation 3.9.  

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = ƞ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐺𝐺 × 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝       (3.9) 

Where  

 Pout = average monthly power output (W);  

ηpanel = overall PV module efficiency (=0.1522); 

Npanels = number of PV modules (9); 

Apanel = area of the module, m2 = 2.01m x 1.02m = 2.0502 m2 and 
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G = solar radiation (W.m-2). 

The energy produced at the minimum solar radiation was calculated from Equation 3.10.  

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜×𝐷𝐷1
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

        (3.10) 

Eproduced = energy produce on a day length Dl (Wh. m−2) and   

  Dl = average monthly day length (hours); 

 

Figure 3.2 Solar Photovoltaic system for the evaporative cooling system 

3.2.12 Optimisation of Power Output from the Solar Panels 
 
Tilt angle of a solar panel impacts on the solar radiation incident on a surface. To optimize the 

power output from the solar panels, different tilt angles of the panels were taken into consideration 

in this study. Solar insolation is a function of latitude and tilt angle of the panel according to 

Honsberg and Bowden (2016) and equation 3.11 shows the relationship.  
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𝑆𝑆ℎ = 𝑆𝑆𝑖𝑖 × Sinα          (3.11) 

Where  

  Sh = horizontal solar radiation (W. m−2);  

   Si = incident solar radiation (W. m−2) and; 

   α = elevation angle (0).  

The solar radiation on the module at the module tilt angle (𝛽𝛽) was calculated from the incident 

solar radiation (Honsberg and Bowden, 2016).   

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑆𝑆𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆(𝛼𝛼 + 𝛽𝛽)         (3.12) 

Where β = solar module tilt angle (0) and Smodule = solar module radiation (W. m−2). 

To optimize the power output from the solar panels, different tilt angles of the panels were taken 

into consideration in this study. Solar insolation is calculated from equation 3.11  

𝑆𝑆ℎ = 𝑆𝑆𝑖𝑖 × Sinα 

Therefore,  

𝑆𝑆𝑖𝑖 =
𝑆𝑆ℎ

Sinα
 

In order to optimise solar radiation the tilt angle was varied with ± 460 to the latitude of PMB. For 

the months of June and September considering tilt angles of (i) tilt = horizontal plane (ii) tilt =+150, 

tilt = latitude and tilt = -150. The experiments in this study were conducted during the last week of 

August into the third week of September, however solar radiation data for June was also considered 

as it is the month that PMB receives the least radiation. 

3.2.13 Performance Evaluation 
 
The solar radiation values recorded by Schulze et al. (1999) over 50 years’ and captured in the 

South African Atlas 18 of Agro-hydrology and climatology for PMB were extracted to obtain the 

average solar radiation for each month at different tilt angles. The solar radiation data at Ukulinga 

Research Station for selected 11 days during the experiment where the maximum temperatures 
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were above 27℃ was obtained from the South African Weather Services (SAWS). On the first day 

of the experiment, the battery bank facility powered the SPV system under load conditions while 

connected to the charge controller until the system cut off. The following day the batteries were 

charged under load conditions from 08h00 to 17h00 and the system was then discharged from 

17h00 until 10h00 under load conditions. As the batteries were charging, the voltage was recorded 

from the charge controller at 30 minutes’ intervals from 08h00 to 17h00 during the charging period 

and during the discharge period when the SPV was using power stored in the battery bank facility. 

On the days of the experiment, the solar modules supplied the energy requirements during the day 

from 08h00 to 17h00 and thereafter the battery bank supplied energy until 22h00 when the system 

was switched off. By 22h00, the temperature had fallen below 20℃. A voltage greater than the 

battery voltage was applied to the system causing current to flow through the battery in the reverse 

direction to that when the battery is supplying current and in this way the battery was charged. The 

rate of charge or current that flowed depended on the difference between the battery voltage and 

the voltage that the solar panels supplied. The series voltage of the system of 44.8 V was capable 

of producing over 50 volts in the 48V-battery system thus ensuring that the batteries fully charge. 

The charge controller ensured that the batteries were not over charged otherwise they would be 

damaged.  

During evaluation, there were five positions (Figure 3.3) identified to evaluate the performance of 

the solar array system. A Fluke 381 multi-meter measured both open circuit voltage and current, 

voltage and current under location and different positions. 

For position 1, the simultaneous readings of current and voltage were measured using a multi-meter 

at the exit point of the panels and at the entrance point of the solar charge controller.  

The test procedures to be followed are:  

The power output tests were done by measuring both the voltage and current at different points 

and these values were used to calculate the power output using the Ohm’s Law.  

(a) Measurements at position 1 of the system (the input side of the solar charge controller). 

The voltage and current measured at this point were used to calculate solar modules 

power output and was compared with the theoretical calculation of the power output 

from the solar modules;  
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(b) Position 2 measures both voltage and current at the exit of the charge controller and the 

input of the inverter. The difference in the readings obtained from position 1 and 2 

determines the efficiency of the charge controller; 

(c) Position 3 read voltage and current to and from the batteries, and  

(d) Position 4 read current and voltage between the inverter and heat exchanger, pump and 

fans. The power difference between position 2 and 4 determines the inverter efficiency, 

which will be compared to the manufacturer’s efficiency. Measurements at this point 

also provides how much power the appliances draw.  

 

 

Figure 3.3 Schematic diagram showing points of measurements of current and voltage 

3.2.14 Payback Evaluation 
 
The costs of establishing storage facilities should be determined prior to choosing the storage 

facility unless there are no options because of extenuating circumstances like choice of renewable 

energy because SSF are located in remote, dispersed areas with no access to grid electricity. The 

predominant costs for storage facilities are construction, operation and maintenance (Emily et al., 

2015; Sahdev et al., 2016). The installation costs were obtained from enumerating the material 

used and labour to construct the IAC+EC system i.e. psychrometric unit, storage chamber and SPV 

system. The cost analysis of choosing a facility involves considering the payback which Newnan 

(2002) defined as the investment of time required for the project of an investment to equal the cost 

of the investment period. The payback period for this study was calculated using the equation by 

Workneh (2010) and Wang et al. (2015):  
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
                              3.11 

The operating costs are zero rated for comparison as the same farm workers will be used to operate 

the IAC+EC and are therefore no additional labour is required. The maintenance costs are assumed 

as 10% of the initial costs per annum according to Emana and Nigussie (2011).  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.10 𝑥𝑥 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                 3.12 

3.3 Results and Discussions 

3.3.1 Theoretical Power and Energy 
 
The performance of SPV systems depends on the tilt angle and orientation of the array. In studying, 

the effect of insolation on modules a solar tracking device helps in adjusting the position of the 

solar panels so that the highest possible energy output obtains compared to a fixed PV system. 

This necessitates that installations of the modules be at an optimal tilt angle that maximizes the 

solar radiation captured by PV panels. In the absence of a tracker for this study, data obtained by 

Schulze et al. (1999) over 50 years who used four positions of solar radiation at horizontal, tilt = 

+150, tilt =latitude and tilt =-150 to measure solar radiation received in different areas in South 

Africa was used. The solar radiation data at different tilt angles data for PMB is summarised in 

Tables 7.1 to Table 7.4 in Appendix 7.3. This data is utilised for calculating the optimum power 

and energy output from the SPV in Ukulinga research station (in PMB). Table 3.3 is a summary 

of the solar radiation at different tilt angles and the solar radiation at optimised solar radiation 

taken over a period of 50 years extracted from Schulze et al. (1999). The average optimum solar 

radiation received in PMB in June and September are 539.93 W.m-2 at tilt = +150 and 1 168.66 

W.m-2 at tilt = -150 respectively as shown in Table 3.3. A fixed optimum tilt angle equal to -150 

latitude for September was used for PMB as provided by Schulze et al. (1999) as he did a more 

detailed work covering the whole of South Africa than Asowata et al. (2012) and Stanciu and 

Stanciu (2014) who recommended one fixed tilt angle equal to the latitude of the area. Table 3.3 

shows that the value for tilt =-150 is higher than the value for tilt =latitude for the month of 

September in PMB. 
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Table 3.3 Summary of solar radiation at different tilt angles (Adopted from Schulze et al., 

1999). 

Radiation in W. m-2 at different tilts 

Month  Horizontal  Tilt = +15  Tilt = Lat  Tilt = -15  Optimal 

radiation  

Optimal 

power  

Jan  1 032.41  1 032.59  1 127.00  1 144.61  1 144.61  3 214.48  

Feb  873.02  897.27  928.93  897.27  928.93  2 608.77 

Mar  807.69  725.68  711.03  647.93 807.69  2 268.29  

Apr  692.43  545.70  513.90  447.07  692.43  1 944.60  

May  540.94  402.29  373.12  318.52  540.94  1 519.16  

June  485.23  539.93  508.72  442.83  539.93  1 516.32  

July  534.98  631.07  619.84  566.36  631.07  1 772.27  

Aug  600.69  840.92  873.06  845.70  873.06  2 451.87  

Sept 754.56  1 041.68  1 144.16  1 168.66  1 168.66  3 282.02  

Oct  873.66  1 487.48  1 712.79  1 821.37  1 821.37  5 115.06  

Nov  1 170.63  1 646.56  1 928.77  2 079.54  2 079.54  5 840.11 

Dec 1 263.89  1 318.96  1 524.50  1 626.15  1 626.15  4 566.82  

 

Probability of exceedance is the chance of an event occurring in a given period. In this case, the 

probability shows the percentage of the working period in which a given solar irradiance is 

exceeded and this helps assess the viability of stand-alone SPV systems at a particular location. At 

20% of the time in each month there is a higher radiation received in PMB than in 50% and 80% 

of the time i.e. in September there is a 50% chance to receive 1 092.71 W.m-2 and 80% chance to 

receive 998.94 W.m-2. As the exceedance probability increases, the amount of radiation received 

decreases.  Relatively lower percentages are recorded at high irradiance levels and the converse is 

true. The high irradiance levels, which are associated with a direct beam component, that is spread 

more widely with very small individual frequency percentages. For the purpose of calculation of a 
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50%, exceedance probability is used as it was closer to the values obtained during the period of the 

experiment. 

Table 3.4 Probability of exceedance of a monthly solar radiation (Adopted from Schulze et 

al., 1999). 

 Month  CV  Exceedance Probability Solar radiation (W.m-2)  

      20%  50%  80%  

Jan 7.00  1 365.74  1 296.30  1 203.70  

Feb 6.00  1 212.52  1 150.79  1 080.25  

Mar 6.00  1 051.28  1 004.27  957.26  

April  5.00  845.41  809.18  764.90  

May  5.00  646.93  614.04  570.18  

June  15.10  559.07  530.94  502.81  

July  6.00  579.56  548.70  517.83  

August  6.00  798.33  756.67  715.00  

September  8.00  1 149.90  1 092.71  998.94  

October  8.00  1 241.04  1 173.84  1 075.27  

November  8.00  1 453.37  1 369.05  1 254.96  

December  7.00  1 416.67  1 337.96  1 240.74  
 

From equation 3.9 and solar radiation data from Table 3.4, the theoretical power output is; 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 0.1522 × 530.94 × 2.0502 × 9 = 1491.1 𝑊𝑊, for the month of June and for the month of 

September, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 0.1522 × 1092.71 × 2.0502 × 9 = 3068.7 𝑊𝑊 

Therefore, the incident solar radiation calculated for June 2017 and September 2017 where 530.94 

W. m−2 producing a module power of 1 491W at tilt = +150 and 1 092.71 W. m−2 producing a 

module power of 3 068.7 W at tilt = -150.  The theoretical power output in September is very 
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significant and from Table 3.4 the theoretical power output for November will even be higher as 

the area receives more solar irradiation in the month. In November, the theoretical power output is 

high and coincides with higher cooling loads as the ambient temperature is also relatively higher. 

This is the reason why most of the large-scale SPV systems are built in arid and semi-arid areas, 

where the solar insolation levels are high (Sayyah et al., 2014). However, caution has to be taken 

as high ambient temperature affects performance of the SPV system due to high cell temperature 

(Rao et al., 2014; Ronoh, 2017). 

From equation 3.10 and Table 3.4, the theoretical energy output is given as: 

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1491×7.90
9×2.0502

= 638.4 Wh. m−2 for June and 

 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 3068.7×6.70
9×2.0502

= 1098.9 Wh. m−2 for September. 

The design shows that the expected power output is 638.4 Wh. m−2 and 1 114.39 Wh. m−2 

respectively for the months of June and September at 50% probability of exceedance for PMB. The 

theoretical power and energy are low in June because solar insolation levels are low. To generate 

adequate energy under such circumstances would require more solar modules and this would 

increase the cost of installation of SPV. The sizing of stand-alone SPV considers meeting electrical 

loads requirements with lowest average daily solar insolation on the array surface usually during 

winter months. To ensure optimization of the solar insolation a switch could be incorporated to the 

system coupling the electrical load (pump, fans and heat exchanger) to the PV array directly when 

the storage battery is fully charged. Optimising the system is important, as the cost of installation 

is reduced allowing utilisation of SPV by emerging farmers in low cost cooling technologies like 

IAC+EC (Chandel et al., 2015; Goel and Sharma, 2017). However, the temperatures are also 

generally low in winter (June), and in most cases, the maximum temperatures are 16℃-20℃. Under 

such conditions for tomatoes and many tropical and sub-tropical F&V in SSA, either no cooling or 

minimal cooling will be required during short periods as alluded to by Kitinoja and AlHassan 

(2012) and Punja et al. (2016). 

From equation 3.7 the output power from the charge controller is: 

Therefore, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 0.9 × 1491 = 1341.9 𝑊𝑊  in June and  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 0.9 × 3068.7 = 2761.8 𝑊𝑊  in 

September. From equation 3.8 the output power of the inverter is: 
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Therefore, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 0.9 × 1341.9 = 1207.71 𝑊𝑊 in June and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 0.9 × 2761.8 = 2485.6 𝑊𝑊  in 

September. 

This means that the power available to run the electrical components during the period of the 

experiment is 2 485.6 W. The inverter converts VDC to 220 Volts, hence, the current that should 

flow to the electrical components can be obtained from Ohm’s law:  

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
2485.6

220
= 11.3 A 

3.3.2 PV Module and Theoretical Power Output 
 
Ambient air temperature and solar radiation outside the IAC+EC system around the SPV system 

was studied, clear and, sunny days were selected for the experiment. It was observed that ambient 

temperatures and solar radiation were low in the morning and increased from 08h00 to between 

12h00 to 14h00 and thereafter decreased towards 18h00 (Figure 3.4). 

 

Figure 3.4 Variation of solar radiation and ambient temperature at Ukulinga research station in 

Pietermartitzburg. 
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Ambient temperature increased due to increasing incident solar radiation from morning until 

afternoon 13h00-14h00 and then decreasing from then onwards towards evening and sunset as also 

confirmed by Madhava et al. (2017). The average insolation values rose from 293.4 W.m-2 at 08h00 

in the morning to 1 037.6 W.m-2 at mid-day. A similar trend was observed by Eltawil and Samuel 

(2007). At any location like PMB, the length of the path the radiation takes from source to ground 

level varies with time of the day as the spectrum of the radiation changes through each day because 

of the changing absorption and scattering path length (Ronoh, 2017). The graph relates to data 

obtained on a clear day where the solar insolation increases from early morning to a peak at midday 

and then decreases to zero at night. The peak is achieved at midday as the sun is overhead and its 

path length is shortened. At midday, less solar radiation is scattered or absorbed by atmospheric 

mediums, and more direct radiation reaches the modules compared to any other time of the day 

and Olomiyesan et al. (2015) complements these results. 

Figure 3.5 shows the variation of the practical PV and the theoretical solar irradiance with solar 

radiation during the period of study from 08h00 to 18h00. The practical PV module output Pmodule 

and the theoretical power output from the solar irradiance Pirridance increased with solar radiation 

to a peak between 12h00 and 14h00 and decreased thereafter as shown in Figure 3.5. The measured 

results from the present study agree with findings of Li et al. (2005). The solar irradiance received 

and practical power output had very similar trends with the maximum and minimum values at the 

same hours during the selected 11 clear and sunny days. This shows that the amount of electricity 

generated by SPV system is largely depended on the availability of the solar energy at a particular 

location as corroborated by Li et al. (2005).  From Table 3.3 the highest average solar radiation 

received in PMB over 50 years in the month of September is 1 168.66 W.m-2 providing an optimal 

power of 3 282 W compared to 1 092.7 W.m-2 (Table 3.4) producing 3 068.7 W at 50% probability 

of exceedance. The average peak solar radiation during the period of the experiment in August and 

September was 1 037.6 W.m-2 providing an optimal power of 2 639.1 W.  

The practical power output of 2 639.1 W when using equations 3.2–3.4 translates 4 726.7 W.h-1 

actual energy produced by the solar modules and to be stored by batteries in order to cool the 3.8 

tonnes of tomatoes from 17h00 to 22h00. To cool one tonne of tomatoes, using IAC+EC requires 

1 200 W.h-1. The value of 1 200 W.h-1 compares to the value of 700 W.h-1 for forced air evaporative 

cooling of tropical F&V using a 0.1 HP mentioned by Kitinoja and Thompson (2010). The 
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difference in power requirements can be attributable to the additional indirect heat exchanger that 

was incorporated in this experiment. The power requirements a solar powered IAC+EC system are 

low when compared hydro-cooling (immersion type) to 0 to 2℃ or hydro-cooling (shower type) to 

7℃ where the energy required to cool 1 metric tonne of produce is 35-150 kWh. 

 

Figure 3.5 Variation of module power and solar radiation with time for SPV system at 

Ulukinga Research Station in Pietermaritzburg. 

The theoretical power output from the solar irradiance Pirridance was determined and compared with 

the actual power output to establish how much power SPV Pmodule can produce in the month of 

September in PMB. Figure 3.5 shows that the practical power output (Pmodule) from the solar 

panels of a peak of 2 639 W was 10% less than the theoretical power output (Pirridance) of 2 914 W 

during the period of the experiment. However, the practical power output of 2 639 W is 11% higher 

the design load for electrical appliances of 2 310 W. The difference between the theoretical and 

the practical power output is attributable to the efficiency of the solar panels of 15.4%, which was 

lower end of the rated solar panel efficiency of 15-19%.  The other contributors are environmental 
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factors of module temperature, soiling material accumulating on the module surfaces, resistance 

in the wiring and connections and in some instances, modules of the same type have slight 

differences in electrical characteristics. The solar modules need regular cleaning as soiling, is 

regarded as one of the significant contributors to reduction of the power output of SPV systems as 

it reduces the solar radiation reaching the surface of modules as alluded to by Ghazi et al. (2014). 

When modules are soiled, the dust particles deposited on the surface absorb and scatter the 

incoming incident light and this might have contributed to the reduction of the Pmodule value 

(Sayyah et al., 2014).  

The power output increased with module temperature (Figure 3.6) until about 25℃, which 

coincided with the highest ambient temperature at midday.  

 

Figure 3.6 Variation of power output with temperature of the solar panels at Ukulinga Research 

Station in Pietermaritzburg. 

The power output declined after 25℃ module temperature. This corroborates the work done by 

Bai et al. (2016) which showed that though solar panels are designed to operate in the presence of 
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temperature increases beyond a certain level, the atoms in the material vibrate resulting in a 

reduction in the conductance of the electron traveling through the electrical component (Olcan, 

2015). Many standard grade solar panels may produce 1% less electricity for every 9.44℃ 

temperature above 25℃  (Bai et al., 2016). 

The maximum power of the solar array system was achieved at 31℃-33℃ ambient temperature, 

which coincided with optimum solar panel temperature of 25℃. Similar results were obtained by 

Ya’acob et al. (2014) who had the highest generated power data at 32.5℃–34.5℃ ambient 

temperature. The PV module output voltage remained static with ambient temperature (Table 3.5), 

which indirectly affected the temperature of solar panels. The PV module output voltage also did 

not change with changes in insolation on the selected days, as the weather was sunny and clear.  

Table 3.5 Variation of current and voltage with time of the day, ambient and module 

temperature. 

Time of the day Panel 

Temp℃ 

Ambient 

Temp℃ 

Voltage 

(V) 

Current (A) Irradiance 

W. m-2 

08h00 18.82 23.41 130.09 5.73 293.4 

09h00 19.88 25.23 130.83 10.83 557.4 

10h00 21.70 27.68 131.01 15.47 796.9 

11h00 23.92 29.66 131.62 18.25 944.5 

12h00 25.03 31.34 131.67 20.04 1 037.6 

13h00 25.11 31.98 131.33 20.08 1 036.9 

14h00 25.05 31.84 131.16 17.90 922.9 

15h00 22.98 30.39 130.85 14.08 724.4 

16h00 21.99 28.42 130.64 9.47 486.3 

17h00 20.94 25.45 130.21 5.11 261.6 

18h00 20.22 23.11 129.38 2.61 132.6 
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This could be attributable to the fact that module output voltage cannot increase beyond certain 

limit of photons equivalent to energy gap as explained by Shaltout et al. (1995). On the selected 

days, the short circuit current increased with insolation due to the increase in the number of photons 

generating the current. Increased solar panel temperature increases the kinetic energy of the 

photons resulting in increased current. The increased PV module temperature arose from high 

insolation heating and high ambient temperature. Ramamurthy et al. (1992) made similar 

observations.   

Solar energy is one of the major sources of renewable energies available in SSA and SPV are 

currently utilised in many agricultural applications. For this study the SPV system of 9 modules 

(3-series 3 string) of 330 W each and a battery bank (12 x 230 AH) was able to supply the 

appliances with the needed electrical power and provided sufficient energy to charge the battery 

bank. Optimal sizing of SPV systems in order to supply load demand is important because of high 

capital investment costs and benefits of preservation of fresh produce in the case of solar energy 

powered IAC+EC systems. 

3.3.3 Charging and Discharging of the Battery Bank Facility 
 
Figure 3.7 shows the charging-discharging curve for the battery bank for the SPV powering the 

IAC+EC system. The system voltage rose from 43.8 V at 08h00 to peak at just above 50 V on both 

days. On the selected days, the system voltage increased from 08h00 to 14h00 with increase in 

module power output and increase in insolation. The batteries began to discharge from 17h00 when 

insolation was lower as the sun approached the west to set. The batteries powered the IAC+EC unit 

with all appliances from 17h00 to 22h00. The SPV system powering the IAC+EC was switched 

off from this time, as the temperatures were on average lower than 20℃, which is temporarily fine 

for storage of tomatoes.  

The energy supply from the solar panel charged the batteries for overnight operation of the 

IAC+EC system. The battery bank facility was rightly sized and provided enough power for the 

electrical appliances until 22h00. The battery bank reliability to supply the required energy 

depended on accommodating fluctuations, which are considered as independent, then the energy 
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requirements of discharge and charge events can be considered independently. The achieved 

components’ size allowed the load to be supplied during the requested cooling duration, the battery 

bank to operate safely, and provided energy for the next five hours into the night during which 

period the temperatures will have dropped to 20℃ and lower. The power was switched off at 22h00, 

as the ambient temperature by this time was 20℃ and below and fresh produce such as tomatoes 

can tolerate temperatures of 13-21℃ for short periods (Kitinoja and AlHassan, 2012; Punja et al., 

2016).  This implies that the IAC+EC system can be designed to operate five hours into the night 

and then be switched off until 09h00 when ambient temperatures begin to rise above 20℃ (section 

4.3.3). Such an approach allowed reduction of the number of solar panels and batteries required to 

power the IAC+EC systems and thus in turn reduced the capital investment in the facility.  

 

Figure 3.7 Charging and discharging curve for SPV battery bank 
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3.3.4 Performance Evaluation of the Electrical Components of the Design 
 
During evaluation, there were four major tests to evaluate the performance and assess the electrical 

components of the design for the 3-string 3-series solar module system and three-string 48 V 

battery system. At point 1 (refer to Figure 3.3), voltage and current were measured at the exit point 

of the solar modules and at the entrance point of the solar charge controller to determine the voltage 

drop through the PV cables.  

For measurements taken at the exit point of solar modules, the voltage was 129.1V while the 

reading at the entrance point of the charge controller were 127.3V. Therefore,  

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (%) =
129.1 − 127.3

127.3
× 100% = 1.4% 

This practical voltage drops as calculated provides reasonable efficiency of operation occurrence 

as the voltage drop is less than 3% as defined by Early et al. (2014).  

For the measurements taken at position 1 (Figure 3.3), the input side of the solar charge controller 

the voltage was 127.3V and the current was 20.1 A and using Ohms law  

𝑃𝑃 = 𝑉𝑉𝑉𝑉 = 127.3𝑉𝑉 × 20.1𝐴𝐴 = 2558.7 𝑊𝑊 

Therefore, the power input to the charge controller was 2 558.7 W. 

For the measurements at position 3, the average current supplied by the solar to the batteries was 

measured to be 18.01 A and the voltage was 127.3 Vdc.  

For the measurements at position 2, the exit of the charge controller and the input of the inverter 

the measured current and voltage were 19.5 A and 125.4 V 

𝑃𝑃 = 𝑉𝑉𝑉𝑉 = 125.4𝑉𝑉 × 19.5𝐴𝐴 = 2445.3 𝑊𝑊 

The inverter converted DC to AC, the AC current and voltage measured between the inverter and 

the load at position 4 was 19.87 AAC and 205 VAC respectively. And from Ohms law 

𝑃𝑃 = 𝑉𝑉𝑉𝑉 = 205𝑉𝑉 × 19.2𝐴𝐴 = 3936 𝑊𝑊 

To convert the AC power to DC power to compare with supplied power we use the formula  

𝑉𝑉𝑉𝑉𝑉𝑉 = 0.636𝑉𝑉𝑉𝑉𝑉𝑉 = 3936 × 0.636 = 2503.3 𝑊𝑊 
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Hence, the power supplied is enough to run the electrical appliances that include the heat 

exchanger, water pump and fan. 

The current drawn by the load from the batteries through the inverter was measured to be 19.4 

ADC and the voltage was also measured to be 129.1 VDC.    

 𝑃𝑃 = 𝑉𝑉𝑉𝑉 = 129𝑉𝑉 × 22.8𝐴𝐴 = 2941.2 𝑊𝑊 

Therefore, the DC power of 2 941.2 W.  

3.3.5 Efficiencies of the Designed System 
 
The solar panel efficiency is calculated from the relationship between current and the voltage 

measured between the solar panels and the charge controller and theoretical power output of the 

solar panels. 

ƞ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺 × 𝐴𝐴 × 𝑁𝑁

× 100% =
2941

1037.6 × 2.0502 × 9
× 100% = 15.4% 

The efficiency of the solar panels was 15.4% as solar cells have a threshold photon energy 

corresponding to the particular energy band gap below which electricity conversion does not take 

place. Photons of longer wavelength do not generate electron–hole pairs but only dissipate their 

energy as heat in the cell. However, most common PV module converts 4–17% as explained by 

Chow (2010) of the incoming solar radiation into electricity. The efficiency of 15.4% is within the 

monocrystalline efficiency of 15-19%. The reasons why a low-end efficiency was obtained could 

be that solar modules work best when module temperature is below 25℃. Higher ambient 

temperatures of above 32℃ increase the module temperatures and that could cause a slight increase 

in current as the semiconductor properties of solar cells to shift, resulting in a much larger decrease 

in voltage as alluded to by Bai et al. (2016). Some solar panels may produce as much as 1% less 

electricity for every -9.44℃ temperature above 25℃. The other reason why there is a variation 

could be that the annual peak accumulated output is calculated using the PV module efficiency 

under a reference sunlight of irradiance 1 000 W.m-2 with a solar cell temperature of 25℃.  In 

reality, solar radiation at a location varies with the weather condition; season and time of day, as a 

result the technical information provided for STC might not occur in practice. 
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The efficiency of the charge controller is obtained from the relationship of input and output power 

into and out of the charge controller.  

ƞ𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
18.01 × 127.3
127.3 × 20.1

× 100 = 89.6% 

The efficiency of the inverter is obtained from the relationship of input and output power into and 

out of the inverter. 

ƞ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
19.2 × 205 × 0.636

129 × 22.8
× 100 = 85.1% 

The inverter efficiency of 85.1% corresponds to the manufacturer’s specification of 85% under 

STC and small variations are expected as explained by Early et al (2014). 

The relation of the voltage and current to and from the batteries determine the efficiency of the 

batteries. 

ƞ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
2941.2
3282.6

× 100 = 89.6% 

The battery efficiency of 89.6% corresponds to the manufacturer’s specification of 90% under STC 

and small variations are expected as explained by Early et al. (2014). For the charge controller, 

inverter and battery variations are expected due to stochastic conditions of the area as alluded to 

by Ya’acob et al. (2014). 

ƞ𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
2558.7
2941

× 100 = 87% 

The value of an overall system efficiency of 87% is comparable to the value of 85% obtained by 

Ya’acob et al. (2014) in their work where they carried out a comparative study of three types of 

grid connected photovoltaic systems based on actual performance.  

3.3.6 Economic Evaluation 
 
The cost of a SPV powered IAC+EC system depends on the initial capital investment, operating 

and maintenance costs as alluded to by Sahdev et al. (2016) for green house drying. The installation 

costs derived from the cost of material for construction are summarised in the Tables 3.6. The cost 
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of installing a solar powered IAC+EC system are enumerated and summed in Table 3.6. The 

operating costs are zero rated for comparison as the same farm workers will be used to operate the 

IAC+EC and are therefore no additional labour. The maintenance costs are assumed as 10% of the 

initial costs per annum according to Emana and Nigussie (2011).  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.10𝑥𝑥𝑥𝑥130190 = 𝑅𝑅13,019 

Payback period was calculated using equation 3.11. The capital cost of the cooler was R 130 190 

and assuming that each SSF in PMB invests in one IAC+EC and that there are no risks of losses in 

the evaporative cooled storage. 

Table 3.6 Costs associated with establishment of SPV and IAC+EC systems 

Direct Costs  Unit price (R) Total costs (R) 

Solar panels (9 x 330 W) 3 800 34 200 

Solar batteries (230 AH x 12) 4 250 51 000 

Charge controller 4 490 4 490 

Inverter 10 500 10 500 

Heat exchanger (1) 4 650 4 650 

Water pump (0.26 kW) 1 200  1 200 

Fan (x2) 2 200  4 400 

Water tank and Float (250 litres) 1 250 1 250 

Water circulation system  950  950 

Charcoal for pads  650  650 

Insulating material  900  900 

Storage chamber  6 000 6 000 

Labour 10 000 10 000 
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Grand Total  R130 190 

 

The storage chamber accommodates 3 825 kg of tomatoes and the marketability of the fruit within 

14 days is good at 64% and 39% for pink harvested tomatoes in the IAC+EC and under ambient 

respectively; 78% and 47% for green harvested tomatoes in the IAC+EC and under ambient 

respectively (section 5.3.2). There is an average difference of 28% in marketability of tomatoes in 

IAC+EC and ambient conditions. If the 3 825 kg stored in the IAC+EC are sold in 14 days, then 

the farmer is able to store two batches per month totaling 7 625 kg. In 12 months, a farmer can 

store 91 500 kg under continuous production and are available for sale under 100% marketability. 

The difference for tomatoes available for sale in per year as result of the use of cooler if the price 

of tomatoes is R 3 per kg.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 0.28𝑥𝑥91500𝑥𝑥3 = 𝑅𝑅76,860 

The payback period is calculated from Workneh (2010) equation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) =
143209
76860

= 1.86 

SSF can adopt IAC+EC technology in hot and sub-humid to humid areas, as this should be viable 

as it takes 1.9 years to recoup the initial capital investment. Workneh (2010) and Wayua et al. 

(2012) found payback periods of 1.2 years and 1.3 years in their research activities for EC. The 

most important economic benefit of use of IAC+EC is safeguarding against high PHL incurred by 

SSF if the produce is stored under ambient environmental conditions. In addition, the materials 

used for construction were locally sourced and are inexpensive. Therefore, the use of IAC+EC in 

F&V production in hot and humid areas should be promoted as an alternative technology for SSF 

and emerging farmers.  While mechanical refrigerators of the same capacity could be cheaper but 

they require electricity, which is not available.  

3.4 Conclusion 
 
The use of SPV systems is increasing as installations costs are decreasing and the application is 

finding expression in remote and isolated communities and in new farming setting ups of small-

scale farmers with no access to cooling facilities. Electricity supply is of great concern, as it is 
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inadequate and in SSA, not everyone is connected to the national grid in the near future. This has 

turned interest to renewable energy sources like solar as a means of bridging the energy gap and 

providing environmentally friendly energy. In this study, a SPV system IAC+EC is evaluated based 

on actual performance. This experiment explored the possibility of integrating of solar energy to 

power IAC+EC targeting SFF in remote areas with no access to grid electricity. 

Most of the literature does not give actual figures of energy required by different cooling systems, 

it mostly states which cooling systems are more energy intensive to others. Energy required to 

operate modern cooling systems are greater than the energy required to operate IAC+EC. The SPV 

systems used in the study supplied energy during the critical period of the day when temperatures 

are high from 08h00 to 22h00. To cool one tonne of tomatoes, using IAC+EC requires 1 200 W.h-

1 and the batteries had to store 4 726.7 W.h-1 to provide energy for the 3.8 tonne storage chamber 

to cool tomatoes from 17h00 to 22h00 when the IAC+EC system was switched off. The efficiency 

of the solar panels was 15.4% and the overall systems efficiency was 88%. The energy to power 

an IAC+EC system relates to the size of the solar array required to provide the energy and the cost 

of the system. The study also concludes that combinations of the solar array system can be used to 

power the cooling system at daytime during summer season and the excess energy can be stored in 

the battery to run the system for another five hours into the night. A bigger and expensive system 

is required to run all-nighttime. The cost to construct an IAC+EC system integrated with a SPV 

system were R 130 190 with a 10% annual maintenance costs and the payback period was observed 

to be 1.9 years. A payback period of 1.9 years is regarded as economically viable as the SPV 

powered IAC+EC safeguards SSF reliance on ambient storage environment to mitigate PHL. 

Therefore, where grid electricity or other commercial energy sources are unavailable and solar 

energy is available, IAC+EC is a viable alternative to these more complex and costlier modern-

day cooling systems. This shows that stand alone SPV systems have an expression in rural, 

dispersed and remote areas where grid electricity supply may not be readily accessible. Integrated 

solar and indirect EC is an attractive alternative for SSF with no access to cooling technologies in 

developing countries especially African countries, where issues of land re-distribution are topical 

and there will be a significant small-scale commercial in these remote areas, which require cooling 

facilities for their fresh produce. 
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4 PERFOMANCE OF INDIRECT AIR COOLING COMBINED 

WITH DIRECT EVAPORATIVE COOLING SYSTEMS 
Abstract 

The aim of this study was to explore influence of indirect air-cooling (IAC) through a heat 

exchanger before air enters the evaporative cooling unit (IAC+EC) for cooling the 

microenvironment and increasing relative humidity (RH) in the storage chamber for hot and sub-

humid to humid regions. The other objective was to carry out a quantitative performance evaluation 

study of small-scale farmer sized temporary storage for fresh produce in terms of provision of an 

optimum microenvironment of temperature and RH. A low cost solar photovoltaic (SPV) powered 

IAC+EC system consisting of SPV system, battery bank, electrical appliances, IAC unit, 

evaporative cooling unit, and 3.8 tonne storage chamber (53 m3) was constructed and assembled at 

Ukulinga research center at the University of KwaZulu Natal in Pietermaritzburg. The EC system 

incorporated a suitable desiccation media (heat exchanger) for IAC. Performance evaluation was 

conducted under conditions storage of 150 kg sample tomatoes. The performance of the IAC+EC 

was evaluated based on the temperature and the RH measured hourly from 05h00 to 22h00. 

Temperature and RH were measured in various positions in the storage chamber, at the entrance to 

the storage chamber and outside the storage structure to give the ambient conditions. There were 

significant variations (P<0.001) in temperature and RH between storage and ambient conditions. 

The temperature inside the storage chamber was on average 7℃-16℃ lower while the average RH 

was 13%-41% higher than ambient conditions. Temperature and RH at the exhaust end of the 

IAC+EC storage chamber were 16.40 ℃ and 88.9% compared to 30.9℃ and 47.6% under ambient 

conditions, which can enhance the shelf life of fruit and vegetables (F&V) of moderate respiration 

rates. The temperature after the last cooling pad rose by 0.75℃ at the fan to 15.73℃ at the entrance 

to the storage chamber while RH decreased by 2% to 93.8%. Inside the storage chamber, the 

temperature varied between 15.7℃ and 16.4℃ and the RH varied between 93.8% and 89.6% at 

different locations respectively. The cooler efficiency varied from 88.04% to 95.6%. The IAC+EC 

was found to perform at the same level as evaporative cooling under dry and arid conditions. The 

solar powered IAC+EC tested in this study has benefits in providing optimum conditions for fresh 

produce and in reducing losses as well as being a low-cost technology that can be utilised in hot in 

sub-humid to humid areas in sub-Saharan Africa. 
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4.1 Introduction 
 
The World Bank (World Bank, 2011) reports grains and fresh produce worth more than US$ 4 

billion of is lost through postharvest losses (PHL) in Sub-Saharan Africa (SSA). The entire fruit 

and vegetables (F&V) supply chain faces even more dire challenges resultant from high PHL 

estimated at 26.4% (FAO, 2013; Affognon et al., 2015). In SSA during the period of glut, F&V 

not immediately consumed or sold rot away in the farms or else small-scale farmers (SSF) dispose 

of to intermediaries at low and unprofitable prices (Kiggundu et al., 2016; Korir et al., 2017).   

SSF in the Embo area of KwaZulu-Natal in South Africa claim to miss premium market prices 

for their organic potatoes due to amongst other factors lack of proper storage facilities (Katundu 

et al., 2010).  Modern cooling technologies like mechanical refrigeration, hydro and vacuum 

cooling have been widely adopted for the modification and control of the storage environment of 

high value-quality fresh produce in developed countries (Jensen, 2002; Waaijenberg, 2004; van 

Henten et al., 2006; Okanlawon and Olorunnisola, 2017). Availing such facilities to SSF could 

assist in the reduction of PHL through control of temperature and RH, which are the two most 

important environmental factors that affect shelf life of F&V (Tyagi et al., 2017; Saltveit, 2018). 

SSF in SSA cannot afford the high installation and maintenance costs of modern storage facilities 

available in the market (Adebisi et al., 2009; Ndukwu and Manuwa, 2014). Furthermore, modern 

cooling technologies are energy intensive limiting availability to SSF located in remote areas with 

no access to grid electricity (Kim and Ferreira, 2008; Chaudhari et al., 2015; Korir et al., 2017). 

However, evaporative cooling (EC) has low initial investment, installation and maintenance costs 

compared to modern technologies and can be set up without a power grid source (Tigist et al., 

2011; Okanlawon and Olorunnisola, 2017). EC has a potential energy saving of about 75% and 

relies on velocity of natural wind through wetted pads to provide a cooling effect for preservation 

of organoleptic properties of food (Amer et al., 2015; Misra and Ghosh, 2018). EC is a technology 

that can succeed in use by SSF in SSA as it can easily be constructed using available materials, 

comes at an appropriate scale in operation and economics, can have more than one use (year-round 

utility) (Liberty et al., 2014; Tabrez and Chaurasia, 2014; Chijioke, 2017). These are the critical 

reasons why this study is focusing on EC as a panacea to reducing PHL for SSF in SSA.  
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Most of the research in EC in developed countries and Asia has focused on EC of buildings as 

opposed to cooling fresh agricultural produce. Literature shows many laboratory scale studies on EC in 

SSA as summarised by Ndukwu and Manuwa (2014) where the technology has achieved maintaining 

cooling spaces at temperatures below ambient with a depression reaching 12℃ and RH above 90%.  The 

EC systems studied so far are prototypes; with low storage capacity and environment specific and their 

effectiveness at a commercial scale and in other regions in SSA needs investigation (Abbouda and 

Almuhanna, 2012; Zakari et al., 2016). 

The current research has been limited to east Africa, West Africa and North Africa with few studies done 

in the Southern African (Ndukwu et al., 2013). EC removes room sensible heat, is effective in hot 

and arid areas, and has limitations in hot and humid areas because of the inherent high RH of local 

air, which leads to low dry bulb temperature (Deoraj et al., 2015). The extension of EC to such 

areas requires incorporating a suitable desiccation media (heat exchanger) or indirect air-cooling 

(IAC) before EC, which is a research focus for this study. Performance of EC systems varies with 

climatic conditions (regions) as evidenced by a report by Thipe et al. (2017) where in greenhouse EC, fan-

pad ventilation performed better than natural ventilation in Southern African regions, while in the tropical 

and Mediterranean climates, the reverse was true. There is need to develop and test and characterise IAC 

coupled with evaporative cooling system (IAC+EC) in southern Africa sized big enough to mimic the 

quantities of fresh produce that a SSF requires to cool per unit time. Literature review done for EC for 

preservation of fresh produce and greenhouse application shows that IAC+EC has not been applied 

for such purposes as corroborated by Misra and Ghosh (2018). Ogbuagu et al. (2017) alludes that 

IAC+EC systems have shown great potential of development and research opportunity for their 

perceived improved efficiency, high thermal performance and low energy use. Therefore, this study 

proposes use of an IAC+EC with three-layer charcoal granule cooling pads. The IAC+EC system 

will require an energy source to power the heat exchanger, fans and water pump for air and water 

circulation (Razak et al., 2007; Shaahid and El-Amin 2009). 

Integrating IAC+EC with solar energy is critical for SSF with no access to grid electricity in remote 

areas or in rugged terrain where it is un-economical to stretch the utility grid (Kim and Ferriera, 

2008; Szabo et al., 2011; Parida et al., 2011; Hassan and Mohamad, 2012; Chaudhari et al., 2015; 

Kazem et al., 2017).  Solar energy is available in quantities of 2 000 kWh m-2 per year with solar 

radiation of 4.5 – 6.5 kWh.m-2   for 6 -7 hours per day in SSA which is enough for conversion to 
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electricity for applications like EC needs (Rehman and Al-Hadhrami, 2010; Best et al., 2012; Davis 

and MacKay, 2013; Saxena et al., 2013; Olomiyesan et al., 2015). To ensure energy is available at 

night a solar/battery hybrid system can be utilised where the battery bank stores energy during the 

day (GSES, 2015). Integration of solar/battery facilities and provision of SSF sized IAC+EC 

system is a new phenomenon proposed in this study for use in areas without access to grid 

electricity and along coastal areas with hot and sub-humid to humid conditions.  

The phenomenon of commercial exploitation of IAC+EC system for storage of fresh produce under 

hot and sub-humid to humid conditions is untapped in Southern Africa and requires profiling and 

evaluation. To solve this problem and encourage adaptation of low-cost cooling methods a SSF 

sized demonstration able to store about 4 tonnes of tomatoes was designed and constructed. 

Therefore, the objective of this study is to evaluate the performance of SSF sized IAC+EC system 

for storage of fresh produce under hot and sub-humid to humid conditions in South Africa. 

4.2 Materials and Methods 

4.2.1 Design Information and Specifications 
 
The cooling unit design provided the optimum storage temperature and RH for the selected fresh 

produce for KwaZulu Natal province and specifically PMB, which is predominantly hot and sub-

humid. The average long-term minimum and maximum temperatures in September range from 

10.0 - 17.1 oC and 12 - 27 oC respectively, while the relative humidity ranges from 61.1 – 68.1 % 

(Schulze and Maharaj, 2007).  The following factors should be taken into cognisance: 

• in the IAC+EC system, the ambient air conditions limit the lowest temperature attained and 

that; 

• the IAC+EC system can only cool to the wet bulb temperature of the ambient air 

temperature (ASHRAE Handbook, 2004). 

• mature green (breaker stage) and pink tomatoes require a storage temperature varying 

between 13℃ and 21℃  and RH of 90 to 95% (Thompson et al., 1998).   
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4.2.2 Design Considerations and Specifications for the Cooler 
 
The following design considerations were made: 

1. The IAC+EC storage chamber size to mimic quantities of fresh produce that a SSF’ in SSA 

requires to cold store at a unit time. 

2. The IAC+EC constructed from local available material. 

3. Incorporation of a water re-circulation system supplying a constant water flow rate.  

4. Incorporation of forced air-circulation system to supply a constant ventilation rate. 

5. Incorporation of a desiccation media system for indirect cooling of air before EC. 

Based on the above-mentioned considerations, the design and construction of IAC+EC system had 

the following specifications: 

1. The IAC+EC unit to maintain the temperature inside the storage chamber at the wet bulb 

temperature of the prevailing ambient air conditions. 

2.  The IAC+EC unit to maintain the RH in the storage chamber at 80 - 95%.  

3. The cooling pads had to be available in South Africa and made from relatively cheap 

material.  

4. The fan attached to the indirect heat exchanger to provide airflow velocities of 2.0 -2.2 m.s-

1 across the cooling pads. 

5. The fan at the entrance to the storage chamber to provide airflow velocities ranging between 

3 - 4.0 m. s-1 to maximize the efficiency of the IAC+EC.   

6. The solar array system to power the heat exchanger, fans and the pump. 

4.2.3 Sizing of the Storage Chamber 
 
The sizing of the storage chamber was based on the requirement to store about 3.8 tonnes of 

tomatoes using packing crates found in PMB of sizes 500 mm long × 300 mm wide × 230 mm 

high with each crate holding about 12.5 kg of tomatoes. The packing of crates left at least 5% 

venting with a spacing of 100 mm between the tomato layers to allow adequate airflow according 

to Schuur (1988) and Sarvacos and Kostaropolous (2002). A provision of 0.9-metre walkways in 

between the crates for ease of packing and unpacking. The vertical stacking of tomatoes in the 

crates inside the storage chamber ensured a spacing of 25 mm between the crates according to 

Kim and Ferreira (2008). This arrangement accommodated 3 825 kg of tomatoes assuming a bulk 
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density of tomatoes is 694 kg.m-3 according to Sharan and Rawale (2009) as detailed in Appendix 

7.3. Three hundred and six crates (51 stacked to 6) of 12.5 kg tomatoes can packed in the storage 

chamber as shown in Figure 4.1. Appendix 7.3 provides a pictorial image of the storage chamber.  

 

Figure 4.1 Storage chamber floor plan showing arrangement of crates 

4.2.4 Sizing of the Psychrometric Unit 
 
Heat exchanger 

A heat exchanger was chosen according to Holman (1989) in Appendix 7.9 for substantial 

temperature reduction effect and a minimal increase in RH for hot and sub-humid to humid climatic 

regions. 

Air circulation 

The required ventilation rate ensured that a continuous heat removal process obtains as described 

by Hellickson and Walker (1983) and Grubinger and Sanford (2015) to produce airflow across the 

indirect heat exchanger and cooling pads and to enhance evaporation in the chamber. Two fans 

were used, one fan attached to the heat exchanger to facilitate airflow in the psychrometric unit and 

another at the entrance to the chamber to ventilate the chamber as proposed by Babaremu et al. 

(2018). 
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Air circulation across the cooling unit 

A 31/33 W (UF25GC12, AC 115 V, 50/60 Hz) constant speed positive pressure fan with a flow 

rate of 0.25 m3. s-1 was bought with the heat exchanger and supplied air across the psychrometric 

unit consisting of the heat exchanger and cooling pads at constant speed of 2.1 m. s-1 (Table 7.8 

and Appendix 7.9). This fan was able to overcome a maximum pressure drop of 50 Pa across the 

heat exchanger and 130 Pa across each cooling pad as prescribed by Thompson et al. (1998) and 

Gunhan et al. (2007).  

Air circulation across the storage chamber 

Introduction of cold air into the storage chamber facilitates warm air to escape from the storage 

chamber through exhaust holes and for this to happen a 290 W (308,7/6-6/P3HL/25/PA) fan was 

installed at the inlet/entrance to the storage chamber just after the cooling pads. The selection of 

the fan derived from the required ventilation rate of 0.234 m³. s-1 (Appendix 7.6) calculated from 

the total cooling load (Appendix 7.5). The selected fan was the closest found in PMB with an 

airflow rate of 0.278 m³. s-1 and air velocity of 3.6 m. s-1 at a static pressure of 68.27 Pa and Figure 

7.5 shows its performance curve.  

 

Pad design  

The cooling pad was made of charcoal granules to provide a very porous structure able to hold 

water (Obura et al., 2015). Charcoal is locally available, relatively cheap and achieves cooling 

efficiency of up to 92% (Workneh and Woldetsadik, 2004; Getinet et al., 2008). Standard equations 

were used in calculating the pad area, thickness and volume as determined by Gupta et al. (1995) 

as shown in Appendix 7.7. The charcoal cooling pads were vertically mounted to allow uniform 

flow of water, free flow of air and achievement of maximum capillarity and evaporation (Gunhan 

et al., 2007). Based on literature from Gunhan et al. (2007) and Liao et al. (1998) a design air 

velocity of 2.1 m. s-1 from the fan attached to the heat exchanger facilitated air velocity across the 

cooling pads. 
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4.2.5 Water Distribution System 
Selection of pump 

A water pump is required to deliver water to the EC pads. Centrifugal pumps handle small 

discharges and small heads (Hamill, 1995) such as required for this IAC+EC unit of 0.115 m3.hr-

1and 2.5 m total head (Table 7.7 in Appendix 7.8). The net positive suction head at which cavitation 

was likely to be avoided in the pump was determined. These values were incorporated in the 

determination of the pump power requirements as described by Burger et al. (2003). Subsequently, 

the selected pump from the local market was a Pedrollo PVm 55 centrifugal pump supplied 

complete with a 260 W pump, this was the smallest available pump that could supply the small 

flow rate required, and Figure 7.6 shows its performance curve.   

Water distribution bath 

The distribution bath is a small reservoir that serve the purpose of wetting the EC pads, which was 

determined based on the dimensions of the cooling pads. The distribution bath of 1mm galvanized 

iron sheet had dimensions of 0.390 m × 0.160 m × 0.05 m. The required mass flow rate of water 

to be evaporated in each 1.2 mm hole was also determined. This velocity was low enough to allow 

water to drip down the pad by gravity and enhance capillary action, which allow for the maximum 

wetted area. 

4.2.6 Description of the storage chamber and psychrometric unit 
 
The IAC+EC system consisted of a storage chamber, indirect heat exchanger, multiple cooling 

pads, buried water tank, a water pump and two fans (Figure 4.2 and Appendix 7.1) as described by 

Chen et al. (2010). Figure 4.2 shows a schematic diagram of the IAC+EC. The evaporative cooler 

storage chamber had double-jacket walls and roof of 1mm zintec (mild steel) on the outside and on 

the inside to reduce heat transfer by conduction. The flooring of the storage chamber was concrete 

mortar. 

The inner dimensions of the unit were 2 340 mm high x 5 880 mm long x 3 880 mm wide to hold 

a capacity of 3.8 tonnes of tomatoes in a 53 m3 storage volume. The cooler was a cuboid to provide 

a wider surface for circulation of air (Ndukwu et al., 2013). The cooler had a 60 mm zinc wall 

thickness with 58 mm polyurethane insulation in between the zintec layers to prevent heat exchange 
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(Babaremu et al., 2018).  The door (90cm wide) to the storage chamber was made of the same 

material and had the same height and thickness as the rest of the storage chamber.  The outside of 

the walls and roof were white colored to increase the reflectivity of the material and decrease the 

rate of absorption of heat (Babaremu et al., 2018). Figure 4.2 is a schematic diagram of 

psychometric unit and in summary the Fan on the left blows ambient air through indirect heat 

exchanger and three pads while the fan on the right forces the air through the room. 

 

Figure 4.2 Schematic diagram of the psychrometric unit and the storage chamber 

Incorporation of an indirect heat exchanger brought the temperature as close to the wet bulb 

temperature by indirect cooling of the air before coming into contact with water. After the heat 

exchanger, were three layers of vertically mounted charcoal granules cooling pads primarily 

mounted so, as the area in Ukulinga research station is not dusty. Through forced convection, a 

31/33 W (UF25GC12, AC 115 V, 50/60 Hz) constant speed positive pressure fan purchased 

mounted next to the indirect heat exchanger facilitated optimum airflow at 2.1 m. s-1 velocity by 

forcing air through the heat exchanger and the three layers of cooling pads into the storage chamber. 

A 290 W (308,7/6-6/P3HL/25/PA) fan pushed the air coming from the cooling unit into the storage 

chamber at an airflow rate of 0.278 m³. s-1 and air velocity of 3.6 m. s-1. Inside this storage chamber, 

the air picked up heat from the tomatoes and the warm air escaped from the storage chamber 

through six (100 mm-diameter) air (exhaust) vents.  These air vents were opposite the inlet, three 
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at the bottom and three at the top and they facilitated continuous heat removal as described by 

Seweh et al. (2016).   

The water distribution system was designed so that, water continuously pumped from an 

underground storage (supplied from the mains) using a 260 W Pedrollo PVm 55 centrifugal pump 

placed at the surface as recommended by Nkolisa et al. (2018). An underground tank maintained 

the water temperature as low as possible and created a temperature gradient between the air stream 

and the water stream in the heat exchanger thus facilitating heat transfer. The circulation system 

pushed water from the underground storage tank, through the indirect heat exchanger and sprinkled 

water continuously over the vertical mounted IAC+EC pads into the storage chamber, and thus 

increasing RH and decreasing temperature (Babaremu et al., 2018). From the chamber, the water 

returned to the underground storage tank and ball valve float prevented the tank from over filling 

and flowing over. A collecting bath below the EC pads sloping at 5% allowed water to flow freely 

to the bottom and return to the tank (von Zabeltitz and Baudoin, 1999). The pump, fans and indirect 

heat exchanger were connected to SPV array system consisting of a 3 string-3 series 330W 

(SETSOLAR, PC 16-6015F) solar modules with 44.80 V rated voltage and 8.69 A current, solar 

charge controller (SANTAKUPS PC16-6015F) of ratings 60 A and 145 VDC, inverter (5 kW 

(60A), P11-LW5000NC48-C), twelve 230 AH battery recharged.  

4.2.7 Harvesting of Tomatoes and Cooling Times 
 
Tomato Star 9037 cultivar was harvested into plastic crates from a nearby farm in PMB. Harvesting 

of the tomatoes was done before 11h00 (field temperature of 31.5℃) and the tomatoes were 

immediately loaded in a car and transported to Ukulinga research station located 31 km away 

(29.67° S and 30.40° E, 840 m above sea level). The tomatoes were prepared on arrival for the 

experiment at room temperature. Visual inspection helped discard tomatoes with bruises and signs 

of infection from the fruits used as samples (Getinet et al., 2011). The selected tomatoes were 

packed and kept in crates under ambient conditions until the start of the experiment on the same 

day at 14h00 (ambient temperature of 31℃). The half-cooling time and seven-eighths cooling time 

were used for the determination of cooling time of tomatoes from the field temperature to the 

optimum storage temperature as in Equation 4.1 to 4.4. The seven-eighths cooling time is more 
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practical as the temperature of the produce at seven-eighths is close enough to the target storage 

temperature according to Brosnan and Sun (2001).  

              𝑍𝑍 =  𝑙𝑙𝑙𝑙 �
0.5
𝐶𝐶
�                                                                                                                      (4.1) 

              𝑆𝑆 = ln �
8𝑗𝑗
𝐶𝐶
�                                                                                                                          (4.2) 

 

Where Z = half cooling time [hours]; S = seven eighths cooling time [hours], 

C = cooling coefficient [dimensionless], and J = lag factor [dimensionless], 

(Brosnan and Sun, 2001). 

             𝐶𝐶 = ln �
𝑌𝑌
𝜃𝜃
�                                                                                                                            (4.3)  

 

              𝑌𝑌 =
𝑇𝑇 − 𝑇𝑇𝑚𝑚
𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑚𝑚

                                                                                                                        (4.4) 

 

Where Y = temperature ratio [℃]; T = temperature at any point in the product [℃]; 

Tm = temperature of cooling medium (air) [℃]; Ti = initial temperature [℃] and 

C = cooling time or operating time [hours]  (Brosnan and Sun, 2001). 

At the start of the experiment, the crated tomatoes were placed on wooden pallets to keep produce 

off the ground, reducing the likelihood of infection of tomatoes with soil borne diseases and mould 

as described by Obura et al. (2015). The tomatoes were then kept under ambient conditions and 

cooling environment.  
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4.2.8 Temperature and Relative Humidity Measurements  
 
The procedure by Ho et al. (2010) and Akdemir et al. (2013) was followed to select nine 

positions (Figure 4.3) including centre and boundary environmental conditions of temperature 

and RH in the storage chamber to determine the performance of the IAC+EC system. The 

boundary conditions were:  

• Temperature and RH at inlet and exhaust ends of the storage chamber.   

• Temperature and RH on the ground floor and ceiling of the storage chamber:   

• Temperature and RH on the surface of left and right walls of the storage chamber.   

 

Figure 4.3 Position of the data loggers 

Digital HOBOs (HOBO Prov2 Part No. U23-001) were located in nine different positions in 

the storage chamber capturing the different cooler environments as shown in Figure 4.3. One 



 

130 
 

HOBO was located inside the psychrometric unit after the last cooling pad to capture the 

condition of the air going into the storage chamber. Another HOBO captured the ambient 

conditions. 

 

The digital HOBOs measured air temperature and RH at different positions in the storage stage, 

after the cooling pads in psychrometric unit of air supplied to the storage chamber and ambient 

conditions. The door of the storage chamber was closed and readings recorded hourly throughout 

the day from day0 to day 28 i.e. from 25 August 2017 to 22 September 2017. The average 

psychrometric unit, storage chamber and ambient temperature and RH were calculated from the 28 

days’ data separately for each time. Ambient air temperature data was obtained from ARC-SAWS 

weather station located within Ukulinga research station. The air velocity measurements were taken 

inside the psychrometric unit, at the inlet to the storage chamber and along the same symmetry line 

in equal distances at the centre, exit side of the storage and were recorded every hour using an 

anemometer (Lutran 4201) for one day from 08h00 to 16h00. Experiments were carried out 

throughout the period with the daytime powered by the solar array and the nighttime by the 

batteries. Days where the maximum temperature was above 26℃  were isolated for analysis.  

4.2.9 Cooling Efficiency  
 
The cooling efficiency (η) of the cooler, indicating the extent to which the dry bulb temperature of 

the cooled air approaches the wet bulb temperature of the ambient air was calculated as defined in 

Equation 4.5 (Olosunde et al., 2016). The cooling efficiency (η) equation is a widely used index 

for evaluating the performance of direct EC media (Xuan et al., 2012). The cooling efficiency of 

the IAC+EC system indicates the extent to which the dry bulb temperature of the cooled air 

approaches the wet bulb temperature of the ambient air as calculated using Equation 4.5 (ASHRAE 

Handbook, 2004; Lertsatitthanakorn et al., 2006; Olosunde et al., 2016). 

 

𝜂𝜂 = 100 ×  𝑇𝑇𝑑𝑑𝑑𝑑− 𝑇𝑇𝑑𝑑𝑑𝑑
𝑇𝑇𝑑𝑑𝑑𝑑− 𝑇𝑇𝑤𝑤𝑤𝑤

           (4.5) 

Where η = cooling efficiency of EC unit (%); 



 

131 
 

 Tda = dry bulb temperature of ambient air entering the cooling unit (°C); 

 Tdc = dry bulb temperature of cooled air-cooling leaving unit (°C) and 

 Twa = wet bulb temperature of ambient air entering the cooling unit (°C). 

4.2.10 Data Collection 
 
The experiment consisted of two cooling approaches, IAC+EC and the control, which was ambient 

conditions. A comparison of storage and outside temperatures and RH was done. The experimental 

data collection involved the hourly measurement throughout the day of environmental parameters 

of temperature and RH for the 28 days of the experiment. However, data for 11 hot days with 

temperature above 26℃  were selected and used for analysis. In the selected 11 days there was a 

significant temperature and relative humidity gradient between ambient and cold storage 

conditions that would affect the metabolism rate between the two storage conditions. Of the 

selected days, data collated between 05h00 to 22h00 of each day was used for analysis. From 22h00 

to 05h00, the average ambient temperatures in PMB is below 20℃ and the IAC+EC system was 

switch off during this period as tomatoes can tolerate temperatures between 13-21 ℃. The data 

obtained at the centre inlet, centre of the storage chamber and the centre of wall on the exhaust side 

was used for analysis and discussions. The experiment was mainly concerned with evaluating the 

cooling performance, in terms of the temperature reduction, RH change and efficiency of cooling 

of the two cooling approaches. GenStat Version 18 was used for the statistical analysis. Analysis 

of variance (ANOVA) by means of the GENSTAT statistical software, 18th edition determined the 

differences. Duncan’s Multiple Range Test, with a significance level of 0.05 separated the means.  

4.3 Results and Discussions 

4.3.1 Cooling Time of Tomatoes Loaded at Ambient Temperature 
 
According to Thompson et al. (2001), cooling of tomatoes should take place within 16 hours 

otherwise, a marked deterioration in quality occurs after this period. The IAC+EC system for this 

study used a hybrid of solar module and a battery bank facility to provide energy for the water 

pump, heat exchanger and fans. The battery bank facility provided energy for five hours after the 
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sunshine period as it takes some time for the ambient air temperature to decrease substantially after 

sunset.  As a result, the cooler was switched off 5-hours into the night time to allow the ambient 

temperature to cool down to 20℃ and below. 

In determining the time required to cool tomatoes from the field temperature to the optimum 

storage temperature, half-cooling time and seven-eighths cooling time methods as defined by 

equations 4.1 to 4.4 were used with the following assumptions made that θ = 16 hours; T = 15℃; 

Tm = 14℃; Ti = 32℃; and j = 1. From these assumptions and equations for half and seventh-eighth 

cooling times, the cooling time and the corresponding cooling temperature were calculated and are 

presented in Figure 4.4, which shows the cooling time graph for tomatoes harvested at an ambient 

air temperature of 32℃. From Figure 4.4, it took 33 hours for tomatoes to cool from 32℃ to 13℃, 

which is the lowest optimum storage condition.  This provided a temperature gradient of 19℃.  

 

Figure 4.4 Cooling time graph for harvested tomatoes in the IAC+EC storage chamber at Ukulinga  

     Research Station in Pietermaritzburg. 
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On the first day the freshly harvested tomatoes are placed in the storage chamber and within 16 

hours, the fruit flesh temperature drops from 32℃  to 14℃ , which is within the optimum storage 

for tomatoes of 13℃ . In the next 16 hours temperature dropped by a further 1℃. The initial tomato 

temperature dropped rapidly especially for the first four hours of cooling and slowed down as the 

product temperature approached the target optimum recommended temperature. This is in line with 

observation by Thompson et al. (1998) that the rate of heat removed from fresh produce like 

tomatoes is directly influenced by the temperature gradient of the product and the cooling medium. 

This means when packing tomatoes in the IAC+EC storage chamber in batches, it is possible that 

on the first day of stacking the tomato fruit’ temperature drops from 32℃  to 14℃  within 16 hours 

and to 13℃  on the next day within the next sixteen hours after which the next batch can be placed. 

This means that IAC+EC is a viable cooling facility option for the immediate reduction of flesh 

temperature of harvested fresh produce for SSF in SSA. In the calculations the seven-eighths 

cooling time gave more practical values as the temperature of the tomatoes at seven-eighths was 

close enough to the target storage temperature as corroborated by Brosnan and Sun (2001). 

4.3.2 Variation of Temperature 
 
Temperature inside the psychometric unit and storage chamber were studied on eleven clear, sunny 

days during the period end-August to end-September 2017 where the maximum temperature was 

above 26℃. Temperature is one of the most important factors that needing management at optimum 

conditions in the storage life of fresh produce like tomatoes (Arah et al., 2015; Seweh et al, 2016). 

Temperature was recorded from eleven positions as shown in Figure 4.5.  

The initial results and discussions consider all the nine positions in the chamber but there is then a 

special focus on environmental conditions pertaining to the inlet to the chamber, centre of the 

chamber and the centre of the exhaust end. Figure 4.5 provides information on the average 

temperature recorded over the eleven days from the eleven data logger positions that includes 

ambient obtained from SAWS station (D-1), one psychometrics unit position after the last cooling 

pad (D-2) and nine storage positions (D-3 to D-11). There was a significant variation (P<0.001) 

between ambient and the psychometrics unit position and the nine storage chamber temperatures. 

The ambient temperature was on average 10.5℃ and 9.5℃ higher than the last cooling pad 

temperature and the average storage temperature respectively. A significant temperature gradient 
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between the storage temperature and ambient temperature provides an effective heat transfer of the 

stored produce, cooling pad and a cold room. There was also a significant variation (P<0.001) in 

temperature between the psychometric unit and the storage chamber temperature. The lowest 

average temperature was obtained at the outlet of the psychometric unit (15.77℃), while the highest 

average temperature was observed at the left (16.92℃: D-9) and right side (16.93℃: D-10) of the 

roof at the exhaust end of the storage chamber.  

 

Figure 4.5 Average temperature for the sensors over the 11 hottest days at Ukulinga Research 

Station in Pietermaritzburg. 

When considering the conditions in storage chamber only, there was significant variation in 

temperature (P<0.001) between the different data logger positions at the entrance, centre and 

exhaust end. The lowest temperature was recorded near the inlet to the storage chamber (16.2℃) 

while the highest temperature was observed at the exhaust end (16.9℃). The significant differences 

in temperature in relation to the position of sensor in the storage chamber could influence the 

quality of F&V stored inside the IAC+EC storage chamber. Determining the ventilation rate to 

maintain a uniform air distribution throughout the storage chamber is important as it ensures that 

optimal storage environment is provided to maintain the physiological condition of fresh produce 

(Jradi and Riffat, 2014; Tolesa and Workneh, 2017). The average temperature distribution inside 

the storage chamber varied from 16.2℃ to 16.9 ℃, implying that the IAC+EC provided optimum 
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temperature condition for the storage of most of the tropical and sub-tropical F&V. The results 

show that IAC+EC under hot and sub-humid conditions of PMB can reduce the temperature to the 

same extend as EC alone in hot and arid conditions as evidenced by the work of Ndukwu et al. 

(2013). In their work at an ambient temperature of 32℃, the EC system provided the storage 

conditions of 19.2 ℃. Zakari et al. (2016) obtained similar results where temperature drop of up 

10℃ was achieved when evaluating EC system of capacity of 0.6 m3 under hot and dry conditions 

where they used jute bag as pad material.  

Figure 4.6 depicts a similar scenario when observing the variation of average temperature per day 

in the 11 selected days for the four strategic data logger positions; in the psychometrics unit just 

after the last cooling pad and storage chamber (at inlet, centre and exhaust end). The cold air 

coming from the last cooling pad in the psychrometric unit was forced into the chamber by the 

ventilating fan at the entrance to the chamber. 

 

Figure 4.6 Average temperature per day over the 11 hot days at Ukulinga research station in 

Pietermaritzburg. 

12

16

20

24

28

32

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Day10 Day11

Te
m

pe
ra

tu
re

 o C

Average daily temperature for selected days with maximum 
temperature above 26 oC

after pads ambient centre exhaust inlet

CV = 14.3%
LSD (0.05) = 1.30



 

136 
 

A 1℃ temperature rise was observed inside the storage chamber between the air entering the 

storage chamber and the temperature recorded immediately after the inlet to the chamber. This 

could have possibly resulted due to air leaks into the storage chamber and air picking heat from the 

stored tomato fruit. There is less than 1℃ difference in temperature between the air entering storage 

chamber and the air exiting the storage chamber at the exhaust end. This is attributable to the 

appropriate ventilation rate applied that provides a quick steady distribution of air throughout the 

storage chamber and the fact that the storage chamber was filled with sample tomatoes of 150 kg 

instead of 3 825 kg. It is possible that the temperature at the exhaust end can be high when the 

storage chamber is filled to capacity as the air picks heat from stored produce. 

Figure 4.7 shows the hourly characteristics of ambient air and exit to the psychometric unit, cooler 

air at the inlet, centre and exhaust positions of the cooler.  

 

Figure 4.7 The effect of IAC+EC on temperature during daytime at Ukulinga research station 

in Pietermaritzburg. 
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by Ndukwu et al. (2013) of gradients of up to 13℃ during the same period of the day. It was 

observed that psychometric unit, storage chamber and the ambient temperatures increased from 

05h00 until between 13h00 to 14h00 and thereafter starting decreasing to about 26℃ at 17h00. The 

temperature decreased due to increasing incident solar radiation from morning until afternoon 

13h00-14h00 and then decreasing from then onwards towards evening and sunset as also confirmed 

by Madhava et al. (2017).  The period from 05h00 to 17h00-18h00 is the time during which cooling 

is important for F&V to reduce physiological activities and to maintain freshness (Getinet et al., 

2008). This implies that the EC technology in general and IAC+EC in particular is highly suitable 

for fresh produce pre-cooling and for short-term storage in hot and sub-humid to humid areas. The 

maximum temperature gradient between the storage chamber and ambient was found between 

09h00 and 17h00 and this is the period that cooling for fresh produce is required. Anyanwu (2004) 

and Tolesa and Workneh (2017) made similar observations. 

The ambient temperature flattened out from 19h00 and reached 20℃ by 22h00 implying that the 

IAC+EC system can be designed to operate five hours into the night and be switched off until 

05h00 of the following day as fresh produce like tomatoes can tolerate for short periods 

temperatures of 13-21℃. Such an approach will reduce the number of solar panels and batteries 

required to power the IAC+EC systems and thus will in turn reduce the capital investment in the 

facility and encourage a lot of SSF to venture into the lucrative fresh produce market. 

From the Figure 3.4 in section 3.3.2 at 13h00, the ambient air temperature could be significantly 

(P<0.001) dropped down by 11-13℃ by the effect of IAC+EC at the inlet, centre and exhaust 

positions of the cooler. The IAC+EC system maintained an average temperature between 16℃ and 

21℃ during the hottest time of the day (11h00 am to 14h00) where ambient temperatures ranged 

from 29℃ and 32℃. The midday period is the critical time in which cooling of fresh produce is 

important to maintain quality (Tolesa and Workneh, 2017).  Controlling temperature within 

optimum levels is necessary especially in the sub-tropical climate obtaining in most countries in 

East and Southern Africa characterized by high temperature, to reduce the rate of microbial changes 

and in turn activates enzymatic reactions in produce (Brosnan and Sun 2001). The average hourly 

ambient air temperature rose significantly from 18℃ at 05h00 to a maximum average of 30 ℃ and 

32℃ between midday and 14h00 and dropped to 20℃ and below after 19h00 while the storage 

chamber conditions were maintained at 13 to 16℃ during the same period, which agrees with 
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Tolesa and Workneh (2017). The IAC+EC system achieved temperature of 13 to 16 ℃ and this 

agrees with that reported, by ASHRAE (1982) and Zakari et al. (2016) that obtained 13 to 21℃ 

and 13.75 to 14.75℃ respectively. This is moderately acceptable. However, the ambient 

temperature greater than 23℃  are well above that recommended by ASHRAE (1982) of 13 to 21℃ 

lead to deterioration and thereby reduce the shelf life of fresh F&V storage.  

By design, cooling systems like EC significantly reduce ambient air temperature to a safe storage 

temperature range for tomatoes according Thompson et al. (1998).  The temperature inside the 

storage chamber was lower than ambient at any period of the day while temperatures in the storage 

chamber varied in a narrow range. Therefore, the mean air properties of temperature in the 

evaporative cooler are more suitable for storage of tomatoes than the mean ambient air properties. 

It is critical that there is no deviation in provision of optimum storage temperature either too low 

or too high as such conditions can result in either chilling injury or physiological disorders for fresh 

produce stored in cold storage (de Castro et al 2005; El-Refaie and Kaseb, 2009; Rajan and 

Anandan, 2018). 

Thus, it is clear that the IAC+EC is able to reduce temperature to appropriate storage level for a 

number of tropical and sub-tropical F&V and therefore such facilities need to be installed for SSF 

throughout the humid and sub-humid tropical regions in order to promote F&V production. EC 

would be used to solve the problem associated with cooling F&V. 

4.3.3 Variation of Relative Humidity 
 
RH of the IAC+EC system were studied on eleven clear, sunny days where the maximum 

temperature was above 26℃. RH was recorded from eleven positions as shown in Figure 4.8. The 

initial results and discussions consider all the nine positions in the chamber but there is then a 

special focus on environmental conditions pertaining to the inlet to the storage chamber, centre of 

the chamber and the centre of the exhaust end.  

Figure 4.8 shows that there was a significant variation (P<0.001) in ambient, exit point of the 

psychrometric unit and the storage chamber RH at various positions at entrance, centre and exhaust. 

The highest average RH was obtained at the outlet of the psychometric unit (D-2), the lowest 
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average RH was at the ambient (D-1) and inside the storage chamber the lowest average RH was 

at the exhaust end (D-10). The average ambient RH was 65.37%. 

 

Figure 4.8 Variation of relative humidity in the IAC+EC unit and storage chamber at Ukulinga 

research station in Pietermaritzburg 

It was also observed that there was significant variation in RH (P<0.001) between the different data 

logger positions at the entrance, centre and exhaust end of the storage chamber. The highest RH of 

93.8% was recorded near the inlet to the chamber while the lowest RH inside the storage chamber 

was observed at the exhaust end. The RH in the storage chamber ranged from 89.6% – 93.8%, 

which was the maximum possible level of saturation of air by humidification for IAC+EC as 100% 

RH is not achievable because 100% saturation is impossible as alluded to by Xuan et al. (2012) in 

a direct evaporative cooling experiment. To achieve 100% will require a cooling pad with a 100% 

efficiency and the contact time between air and water should be long enough to allow for 100% 

heat and mass transfer, which in reality does not happen (Manuwa and Odey, 2012).  

Figure 4.9 depicts a similar scenario when observing the variation of RH in the eleven selected 

days for the four strategic data logger positions; in the psychometrics unit just after the last cooling 

pad and storage chamber (at inlet, centre and exhaust end). The cold air coming from the last 
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cooling pad, next to the storage chamber inlet, centre of the chamber and centre of the exhaust end. 

A two percent RH drop was recorded inside the storage chamber between the air entering the 

storage chamber and the RH recorded immediately after the inlet to the chamber. This resulted 

from air picking heat from the stored tomato fruit causing an increase in temperature. The IAC+EC 

system maintained the RH in the storage chamber constant and within the recommended levels of 

85-95% throughout the period of observation. This is in sharp contrast with the ambient RH that 

fluctuated throughout the period well below the recommended storage levels. 

 

Figure 4.9 Average relative humidity per day over the 11 hot days at Ukulinga research station 

in Pietermaritzburg. 

At the same time from Figure 4.10 at 14h00, the ambient RH of 46.6% could be significantly 
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was due to increase in temperature inside and outside the cooler, resulting in increased water 

holding capacity of the air in the cooler. Madhava et al. (2017) had a similar observation in their 

study in evaluating the performance of a photovoltaic ventilated greenhouse. During the period 

after 14h00, the RH increased as the ambient and storage temperatures decreased. 

 

Figure 4.10 Average relative humidity per day over the 11 hot days at Ukulinga research 

station in Pietermaritzburg. 

The RH inside the storage chamber was higher than ambient at any period of the day as the 

temperature inside the chamber was lower than the ambient at any period of the day. The general 

low ambient RH results in faster removal moisture from the wet surface of the F&V (Awole et al., 

2011). This implies that during this period of the day, cooling of fresh produce under ambient RH 

conditions leads to physiological deterioration of fresh produce quality. In the same period, for the 

IAC+EC system the RH inside the storage chamber was high due to humidification resultant from 

the indirect heat exchanger and the cooling pads providing a conducive environment suitable for 

extending the shelf life of F&V. 
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The RH at entrance was always higher than the corresponding times at the centre and exhaust end. 

This was due to increasing temperatures at corresponding points due to cold air picking up heat 

from the tomatoes. The RH followed the same pattern at all four positions along the length of the 

day with a minimum of 87% at the exhaust end at 14h00. The maintenance of RH above 85% is 

important in maintaining weight, appearance, nutritional quality and flavour, while softening and 

juiciness of tomatoes are reduced (Basediya et al., 2013).  The values of 85>RH<95 are ideally 

storage conditions for produce like avocados, bananas, cucumbers, mangoes, oranges, papaya, 

sweet potatoes and tomatoes (ASHRAE, 1982; Cantwell et al., 2009). The IAC+EC system 

increased ambient RH from 47% to 87 to 93%, which closely agrees with that reported by 

ASHRAE (1982) and Zakari et al. (2016) that obtained 75 to 88%. However, the result of average 

ambient RH ranging from 44 to 65% between 10h00 and 17h00 was below that recommended by 

ASHRAE (1982) and hence this will reduce the shelf life of fresh F&V storage. 

With such RH levels in the storage chamber, there will be minimal water loss from the tomatoes 

thus maintenance of saleable weight, appearance, nutritional quality and reduction in softening and 

juiciness as alluded to by Kobiler et al. (2010) and Laguerre et al. (2013). This demonstrates that 

the use of IAC+EC significantly increases the storage chamber RH and thus prolonging the shelf 

life of tomatoes and many other fresh produces.  

4.3.4 Cooling Efficiency 
 
The period from 05h00 to 19h00 during the evaluation period was considered to determine cooling 

efficiency. The cooler efficiencies for 05h00 to 19h00 are shown in Table 4.1. From Table 4.1 the 

cooler efficiency ranged between 86.8% and 97%. Between 05h00 and 09h00, the efficiency was 

about 92-95% and was rising in the period achieving highest efficiencies between 09h00 to 14h00, 

then declining thereafter to 86.8% by 18h00, and started rising from there. The cooling curve 

efficiency shows that higher cooling efficiency obtains with higher temperature and lower RH of 

ambient air in the afternoon when the solar irradiation is highest. This is desirable state as the 

cooling load is highest at the time that the solar photovoltaic is providing the highest power as 

corroborated by Ndukwu et al. (2013). The decline in efficiency is linkable to the increase in 

ambient dry bulb temperature as the solar radiation increased during the day and the results are 

within the findings by the study of Seweh et al. (2016) on direct evaporative cooling under hot and 
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dry conditions. The cooling efficiency of IAC+EC is affected by factors such as, type of cooling 

pad, pad design, thickness of pad, airflow rates and outside air temperature and RH 

(Lertsatitthanakorn et al., 2006).  

Table 4.1 Temperature and cooler efficiencies 

Time of 

the day 

Dry bulb 

ambient air 

(℃) 

Ambient relative 

humidity (%) 

Wet bulb 

ambient air 

(℃) 

Dry bulb 

cooled air 

(℃) 

Cooler 

efficiency (%) 

05h00 18.82 80.69 12.60 13.06 92.6 

06h00 20.30 78.27 13.21 13.62 94.3 

07h00 21.74 76.55 14.68 15.19 94.2 

08h00 23.41 73.93 15.30 15.81 94.9 

09h00 25.23 68.13 16.61 17.01 96.4 

10h00 27.68 64.34 17.58 17.98 97.0 

11h00 29.66 59.21 16.72 17.41 95.3 

12h00 31.34 54.14 19.63 20.11 96.6 

13h00 31.98 48.77 19.90 20.42 96.7 

14h00 31.84 46.55 19.30 19.94 95.7 

15h00 30.39 48.73 17.92 18.77 93.8 

16h00 28.42 52.71 18.02 18.83 93.3 

17h00 25.45 58.78 16.31 17.61 86.8 

18h00 23.11 63.39 14.60 15.82 86.8 

19h00 20.75 68.31 13.33 14.35 87.2 
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Average 26.0 41.0 16.38 16.99 93.5 

 
The efficiency of the cooling for IAC+EC systems as shown in Table 4.1 indicates that the 

Psychrometric unit was on average 93.5% efficient in reducing the ambient temperature as it 

entered the indirect heat exchanger and the three-layer cooling pads. These results are comparable 

to the direct evaporative cooling experiments done by Zakari et al. (2016) and Babaremu et al. 

(2018) who obtained efficiencies of 83% and 86% respectively. The results imply that the 

combination of the indirect heat exchanger for indirect air-cooling and the evaporative cooling 

produces reasonable reduction in ambient air temperature to a minimum temperature approaching 

ambient air wet bulb temperature. At these prevailing hot and sub-humid conditions, the cooler was 

able to preserve freshly harvested tomatoes for more than 21 days. The results obtained in this 

experiment shows that IAC+EC can be utilised in coastal areas providing cooling efficiencies 

similar to those obtained in direct evaporative cooling under dry and hot conditions. 

4.4 Conclusions 
 
The lack of cooling facilities and knowledge by SSF in SSA postharvest handling of fresh produce 

results in a significant amount of harvested F&V decaying between the farmers’ field and the 

market. To alleviate this challenge, a low-cost, IAC+EC storage system was developed for SSF in 

hot and sub-humid to humid areas. The environmental conditions provided by IAC+EC system 

significantly (P<0.001) increased RH and decreased temperature which conditions are requisites 

for transportation and temporary storage of fresh produce. EC offers an advantage over mechanical 

refrigerating systems, which decrease both temperature and RH at the same time with high-energy 

consumption while IAC+ EC decrease temperature by 7-16℃ and increased RH by 13-41% with a 

considerable low amount of energy. In addition, IAC+ EC is more suitable for storage of F&V that 

do not require very low temperature (below 12℃) . The storage chamber environmental conditions 

were hardly influenced by external solar radiation conditions whilst the ambient conditions were. 

The IAC+EC was able to maintain temperatures of 20℃ and below during the midday hours which 

is the hottest part of the day where cooling is required. The ambient air temperature increased from 

an average of 18.8 ℃ at 05h00 in response to increasing solar radiation and the peak of 32.0 

℃ coincided with peak solar radiation at mid-day (13h00). The temperature gradient ranged from 
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7℃ to 16℃ between the IAC+EC system and the ambient conditions. Low temperature inhibits 

ethylene production through reducing the enzymatic activities of the tomato fruit and thus 

prolonging the shelf life. Similarly, RH reduced with increasing solar radiation. The lowest RH 

levels were in the middle of the day, coinciding with peak solar radiation. The RH gradient ranged 

from 13% to 43% between the IAC+EC storage chamber and ambient conditions. The increase in 

the temperature and reduction in RH under ambient conditions increases the water holding capacity 

of the ambient air hence would increase moisture loss from fresh produce resulting in wilting and 

shriveling. It is therefore important to reduce temperature and increase RH from midday to late 

afternoon. 

In the IAC+EC system, the indirect heat exchanger helped significantly reduce the air temperature 

in the storage chamber while the EC unit increased the RH i.e. the moisture content of the air thus 

providing thermal comfort to fresh produce. Controlling the environmental factors within 

recommended levels in the storage chamber helps prevent the physiological weight loss in fresh 

produce and thus extending shelf life. The RH in for the IAC+EC was within the recommended 

range of most tropical and sub-tropical F&V for the storage. The benefit of the indirect heat 

exchanger and multiple charcoal cooling pads in the reduction of temperature was exploited in 

helping to maintain the high RH.  

The IAC+EC system under the hot and sub-humid to humid conditions performed to the same extent 

as the EC under dry and arid conditions where temperature is high and RH is low. This has tended 

to limit the application of EC but with the incorporation of an indirect heat exchanger, it can be 

extended to sub-humid to humid conditions. These results clearly demonstrate that the IAC+EC 

system is useful in the study area of hot and sub-humid to humid climate for preservation of F&V, 

especially during the hottest time of the day when cooling is most needed. The results are more 

interesting as the study is a deviation from the norm where most studies have been carried out on 

miniature structures of less than 0.2 tonnes and in this experiment, the structure is 53 m3 with a 3.8 

tonne carrying capacity of tomatoes. The results on IAC+EC system recommends and pave way for 

adaptation by SSF as the system’s energy requirements were supplied by SPV systems thus availing 

a suitable cooling structure for farmers in isolated, dispersed and remote areas. It is expected that 

EC in general and IAC+EC in particular will provide relief to SSF in coastal areas that will emerge 
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from the pending land re-distribution in South Africa as the current facilities and available grid 

electricity might not suffice curter for new needs. 

The work presented in this chapter is important because there is a scarcity of quantitative 

characterization of the performance of low-cost IAC+EC technology for cooling the 

microenvironment in the storage in order to maintain the quality of fresh produce, which can be 

used by SSF, emerging farmers’ and cooperatives. This work has also contributed to improving the 

understanding of the effect of low-cost IAC+EC technology in provision of a microenvironment 

for storage of F&V under hot and sub-humid to humid conditions in Southern Africa.  This study 

characterised IAC+EC and clearly demonstrated that the cooling system could maintain the inside 

environmental conditions of air temperature and RH approximately constant and at recommended 

levels for tomatoes and most tropical and sub-tropical F&V. This work has therefore, contributed 

to improving the understanding of the effect of low-cost IAC+EC technology on temperature 

reduction and RH increase under hot and sub-humid to humid conditions in Southern Africa. 

IAC+EC is therefore, recommended for storage tropical and sub-tropical F&V as it can increase 

their shelf life. 
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5 EFFECTS OF INDIRECT AIR COOLING COMBINED WITH 

DIRECT EVAPORATIVE COOLING ON THE QUALITY OF 

STORED TOMATO FRUIT 
 
Abstract 
 
Low-cost cooling systems either as direct evaporative cooling for dry and arid climates or 

combined indirect air cooling and evaporative cooling (IAC+EC) for hot and sub-humid to humid 

climates can provide an optimum storage environment in small-scale farming. A 53 m3 solar 

powered evaporative cooler for temporary storage of tomato fruit was developed to improve the 

shelf life of tomatoes for small-scale farmers (SSF) in Southern Africa by reducing indoor 

temperature and increasing RH. This study aimed at investigating the effect of IAC+EC, maturity 

stage at harvesting and period of storage on the quality of tomatoes. The effect of these factors on 

total soluble solids (TTS), tomato firmness, colour, physiological weight loss (PWL) and 

marketability of tomatoes (star 9037) was investigated by monitoring the storage of green and pink 

maturity stage harvested fruit over 28 days under both IAC+EC and ambient conditions with data 

collated every seven days. Storage condition, maturity stage at harvesting and the storage period 

had significant effect (<0.001) on the overall quality of tomatoes. The tomatoes stored in the 

IAC+EC system were 18.9% firmer, maintained 10.5% lower concentration of sugars, increased 

the hue angle by 3%, had 6.31% lower PWL and were 24.8% more marketability than tomatoes 

stored under ambient conditions. The tomatoes harvested at the green stage were 20.2% firmer, 

had 6.6% lower TSS content, increased the hue angle by 4.9%, had a 3.1% lower PWL and were 

11.6% more marketable than the pink harvested tomatoes. As the period of storage of tomatoes 

increased from zero to 28 days’ firmness decreased from 11.2 N to 4.3 N, TSS content increased 

from 4.0 to 4.7%, the hue angle decreased by 27.2%, PWL increased from zero to 10.4% and 

marketability decreased to 29.5%. The testing of the IAC+EC shows that the fresh tomato fruit can 

be stored under hot and sub-humid environment for an average of 21 days with negligible changes 

in weight, color, firmness and rotting as compared to ambient condition. SSF and farmers that will 

emerge from land re-distribution in South Africa can adopt the use IAC+EC system for the storage 

of fresh tomatoes as this increases the shelf life of tomatoes.   
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5.1 Introduction 
 
Tomato is a widely consumed vegetable in the world with a global annual production estimated at 

1.60 million metric tonnes (Tigist et al., 2011; Bergougnox, 2014). In South Africa, the tomato is 

the second most important vegetable after potatoes grown by both small and large-scale farmers 

with a gross income of over USD 210 million (Directorate Marketing 2013; FAOSTAT 2014).  

Limpopo province grows 75% of the total production (DAFF, 2014a, b; Sibomana et al., 2016).  

Tomato fruit is climacteric with a short shelf life of 2 to 3 weeks and exhibits high postharvest 

losses (PHL) of 20-50% and requires immediate cooling after harvesting to slow the ripening 

process and maintain quality (FAOSTAT 2014; Affognon et al., 2015; Wang et al, 2016; Macheka 

et al., 2017; Saltveit, 2018). Hence, the selection of the tomato as experimental fruit for this study. 

A reduction in PHL is crucial for increasing market participation, improving the welfare of tomato 

growers and increasing food availability (DAFF, 2013; Adepoju, 2014; Sibomana et al., 2016). 

Appropriate postharvest technologies for fresh tomato fruit that provide optimum conditions of low 

temperature of 10 ℃ to 15℃  and high relative humidity (RH) of 85-95% from the time of 

harvesting, storage and transportation to the market are indispensable (Tshiala and Olwoch, 2012; 

Ait-Oubahou, 2013; Chijioke, 2017; Babaremu et al., 2018).  

The quality of fresh tomatoes is determined by considering parameters classified into physical, 

chemical, biochemical and sensory properties (Garg and Cheema, 2011; Baldwin et al., 2015). The 

physical properties are firmness (Pinheiro et al., 2013; Vinha et al., 2013; Thipe, 2014), skin colour 

(Gonçalves et al., 2007) and physiological moisture loss (Shahnawaz et al., 2012). The main 

chemical properties are total soluble solids (Beckles, 2012), citric acid and pH (Babitha and 

Kiranmayi, 2010). The sensory properties of tomatoes include flavour and marketability (Beckles, 

2012; Haile, 2018). The balance of sugar content and acidity influences the flavour of tomatoes 

(Garcia and Barrett, 2006). TSS are a measure for tomato quality (Anthon et al., 2011). The TSS 

is a refractometric index that indicates the percentage proportion of dissolved solids in a solution 

expressed as oBrix (Abd Allah et al., 2011; Anthon et al., 2011; Saad et al., 2016). TSS (ºBrix) are 

one of physical and chemical parameters used as an index of determining tomato ripening.  The 

colour of the tomato is the first external characteristic that determines both consumer acceptance 
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and ripeness (Goncalves et al., 2007; Pinheiro et al., 2015). The determination of skin colour of 

produce assists in determining the maturity stage of produce immediately after harvest.  

Modern day cooling systems like mechanical refrigeration, hydro-cooling and vacuum cooling 

delay or halt the deterioration in F&V qualities of colour, firmness, soluble sugar content and pH 

(Brosnan and Sun, 2001; Wang and Sun, 2001; Zheng and Sun, 2006; James et al., 2009). However, 

modern cooling technologies require high throughput operations and besides have high installation 

and maintenance costs and high energy input normally from the grid which SSF in most remote 

areas in SSA have no access to (Cecelski, 2000; Kim and Ferreira, 2008; Ejeta, 2009; Katundu et 

al., 2010; Rayaguru et al., 2010; Ndukwu and Manuwa, 2014; Wills and Golding, 2016).   

Evaporative cooling (EC) has a potential of adoption by SSF because of low, initial investment 

requirements, installation and maintenance costs, and energy requirements (Kitinoja and 

Thompson, 2010; Tigist et al., 2011; Fernandes et al., 2018). Most of the research in EC in the 

developed countries has focused on cooling buildings as opposed to cooling fresh agricultural 

produce (Ndukwu et al., 2013; Deoraj et al., 2015). The evaporative cooling systems studied so far in 

sub-Saharan Africa (SSA) for preservation of F&V are prototypes with low storage capacity. A lot of this 

work has been having been limited to west and east Africa; the technology might not perform accordingly 

if extended southern Africa as alluded by Thipe et al. (2017). EC works best in hot and dry conditions as it 

relies on removal of sensible heat and for it to be extended to hot and humid regions will require that the air 

be indirectly cooled by incorporation of desiccation medium before evaporative cooling (Misra and Ghosh, 

2018). Use of indirect air-cooling combined with evaporative cooling (IAC+EC) in for provision of cool 

environment for storage of fresh produce is undocumented and a new research focus (Manaf et al., 2018). 

Use of IAC+EC would require an indirect heat exchanger, water pump for water circulation, fans to blow 

the ambient air into the system and this requires energy that can be supplied by solar (Ndukwu et 

al., 2013; Rahiel et al., 2018). An investigation into the efficacy of IAC+EC on the ability to 

maintain quality or extend shelf life of tomatoes is required as recommended by Ogbuagu et al. 

(2017). The performance of the IAC+EC is putting to test the recommendations of Amer et al. 

(2015); Deoraj et al. (2015); Ogbuagu et al. (2017) and Misra and Ghosh (2018) who realised the 

potential of the system. This study seeks to provide performance data on the efficacy of solar-

powered IAC+EC for preservation of F&V quality under hot and humid conditions. Therefore, the 

objective of this study was to determine the quality and shelf life extension of tomatoes through 
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evaluation of changes in physical, chemical changes and sensory qualities of tomato variety 

harvested at two maturity stages and stored under a IAC+EC and ambient conditions. 

5.2 Materials and Methods 

5.2.1 Design Information and Specifications 
 
The design of the IAC+EC provided the optimum storage temperature and RH for the tomato fruit 

for KwaZulu Natal province. Ambient air conditions limited the lowest temperature attained in the 

IAC+EC as it can only cool to the wet bulb temperature of the ambient air temperature (ASHRAE 

Handbook, 2004). The IAC+EC had to be able to maintain the temperature inside the storage 

chamber at the wet bulb temperature of the prevailing ambient air conditions and maintain the RH 

in the storage chamber at 80 - 95%.  

5.2.2 Description of IAC+EC system 
 
The IAC+EC consisted of a storage chamber, indirect heat exchanger, multiple charcoal cooling 

pads, buried water tank, a pump and two fans and Figure 5.1 shows a schematic diagram of the 

system. The evaporative cooler storage chamber had white double-jacket walls and roof of 1 mm 

zintec (mild steel) on the outside and on the inside and a floor of concrete mortar. The inner 

dimensions of the unit were 2 340 mm high x 5 880 mm long x 3 880 mm wide to hold a capacity 

of 3.8 tonnes. The cooler had a 60mm zinc wall thickness with 58 mm polyurethane insulation in 

between the zintec layers.  The door for access into the storage chamber was made of the same 

material as the rest of the storage chamber. It had the same height as the storage chamber with a 

thickness of 900 mm and thickness of 60 mm. The indirect heat exchanger was included for 

sensible cooling of the air before coming into contact with water as it passes through the pads for 

adiabatic cooling. The material selected for cooling pad was charcoal and the pads were vertically 

mounted.  Six exhaust vents opposite the inlet, three at the bottom and three at the top, provided 

for air outlet from the system into the atmosphere.  The water continuously pumped from an 

underground storage using a 0.26 kW Pedrollo PVm 55 centrifugal pump placed at the surface. 

The water circulated throughout the cooling system (through the heat exchanger and sprinkled 

water on the EC pads) and a return valve released it back to the storage tank. 
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Figure 5.1 Schematic diagram of the evaporative cooling unit 
 

A 0.29 kW (308,7/6-6/P3HL/25/PA) drove air into the storage chamber at an airflow rate of 0,278 

m³. s-1 and air velocity of 3.6 m. s-1. Connected to a SPV system consisting of a 145 VDC (60 A) 

charge controller, 5 kW (60 A) inverter, 12 x 230 AH batteries recharged by 9 x 330 W solar panels 

were water pump, fans and 1,8 kW indirect heat exchanger. 

5.2.3 Performance Assessment 
 
Evaluation of the cooler performance through determination of physical and chemical properties 

and marketability of the tomatoes in storage over a 28-day period was undertaken. The warm and 

dry season is the period when cooling intervention are most useful and experiments were therefore 

done during this time. For the fullest advantage of harnessing the IAC+EC effect, the cooler was 

located in an area with good ventilation. The experimental procedures focused on the IAC+EC 

performance within 7 days’ cycle period over a 28-days duration. Investigations of patterns of 

tomato quality changes in both the storage chamber and under ambient conditions were undertaken. 

The shelf lives and quality attributes of the tomato fruit i.e. firmness; physiological weight loss and 

colour were evaluated between the fruit stored in the IAC+EC storage chamber against ambient 

conditions. 
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5.2.4 Sample Preparation 
 
Tomato Star 9037 cultivar was harvested into plastic crates at physiologically matured and ripen 

stage with half at green and the other at pink mature stage from a nearby farm in PMB. Harvesting 

of the tomatoes was done early in morning before 10h00 and the tomatoes were immediately loaded 

in a vehicle and transported to Ukulinga research station located 31 km away (29.67° S and 30.40° 

E, at an altitude of 721). The tomatoes were visual inspected to discard those with bruises and signs 

of infection from the fruit used as samples (Getinet et al., 2011; Saad et al., 2016). Selection of 

tomatoes which were uniform, unblemished, having similar size and colour was done and these 

were washed under a running tap to remove any dirt or soil particles and to reduce microbial 

population on the surface (Nath et al., 2012). After washing, the tomatoes were surface dried with 

a soft clean cloth, which was free from contaminating materials and then the fruit was subdivided 

into plastic crates.  The crates were then stored under room temperature in food processing 

laboratory and under IAC+EC conditions in the storage chamber in three replications. The crates 

were stacked on a 200 mm stand to prevent any transfer of desease from the ground to the tomatoes 

(FAO, 2011). A sample from each treatment and replication was analyzed periodical for physical 

and chemical properties, and sensory qualities as summarized in the Table 5.1. 

Table 5.1 Summarised produce quality attributes that were measured 

Quality attributes Reference 

Physical properties 
Texture or firmness Kassim et al. (2013) 

Colour Batu, 2004; Kassim et al. (2013) 

Chemical 

properties 

Physiological weight loss Workneh et al. (2009); Kassim (2013) 

Total soluble solids Beckles (2012) 

Sensory qualities Percentage marketability  Nath et al. (2012) 

5.2.5 Research Methodology 
 
The experimental design used in the study consisted of a factorial combination of one tomato 

variety, two storage conditions (IAC+EC storage chamber and ambient), two maturity stages at 

harvesting (green-breaker stage and pink). Figure 5.2 shows the experimental design. Each storage 

condition-maturity stage was replicated three times (three crates). In each replica, 25 tomatoes were 
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marked and five were selected for physical and chemical measurements over five-storage periods 

of day0, day7, day14, day21 and day28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Experimental design 

 

A total of 150 kg (12.5 kg of tomatoes per crate x 12 crates) of tomatoes were prepared for storage 

under IAC combined three-layer charcoal granules pads EC conditions and ambient conditions. 

The 150 kg tomatoes consisted of 75 kg of pink colour stage and 75 kg green colour stage harvested 

fruits. Each one of the two-maturity stage harvested tomatoes of 75 kg were subdivided into two 

lots of 37.5 kg (12.5 kg of three replications of each storage condition and maturity stage at 

harvesting) in preparation for storage IAC+EC and ambient conditions. Assessment of five 

sampled tomatoes for quality attributes of physical properties (firmness and colour), chemical 

properties (physiological weight loss and TSS) and marketability on days 0, 7, 14, 21 and 28 of 

storage was undertaken.  
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5.2.6 Physical Properties 

5.2.6.1 Firmness (Puncture force) 
 
In fruit and vegetables, firmness can be defined as the resistance to puncture, which is a mechanical 

property of the fruit according to Singh and Reddy (2006). The texture characteristics of tomato 

fruit in terms of firmness was determined through puncturing the surface using an Instron Universal 

Testing Machine (Model 3345) in combination with the Instron Bluehill 2 Version 2.25 software 

as described by Sirisomboon et al. (2012). A probe of diameter 2 mm punched tomatoes mounted 

horizontal on a curved platform (to ensure stability during the compression test). The probe 

attached to a load cell drove into the tomato at a crosshead speed of 3 mm.s-1 to travel to a depth 

of 7.5 mm according to the procedure used by Tolesa and Workneh (2017). The maximum force 

required to puncture the fruit is the exterior fruit firmness as described by Aguilar-Mendez et al. 

(2008). 

5.2.6.2 Colour 
 
Changes in colour are a criterion for quality determination and are associated with chlorophyll 

degradation and biosynthesis of lycopene (Nino-Medina et al., 2013). The tomato colour indicators 

were determined, using a digital CR-400 Chroma meter during the storage period. The CR-400 and 

estimated Hunter value L, a and b where according to Nath et al. (2012), ‘a’ (‘+’ value indicated 

redness and ‘−’ value indicated greenness), ‘b’ (‘+’ value indicated yellowness and ‘−’ value 

indicated blueness) and ‘L’ (varies from 0 to 100 where ‘100’ indicated white and ‘0’ indicated 

black). The chromo meter was calibrated with a white paper before measurements were taken at 

day0, day7, day14, day21 and day28. Each sampled tomato was measured for L*, a* and b* at 

three equatorial positions (blossom end, stem-end and mid-way), which were averaged to 

determine the overall values for L*, a* and b* using the procedure by Cherono et al. (2018). The 

changes in the colour of tomatoes were measured in terms of the L* value and the hue angle (h°), 

as these are important quality parameters used as a measure for market value of produce. Using a* 

and b*, the hue angle (ho) for each tomato fruit was calculated from the equation (Saad et al., 2016)  

𝐻𝐻𝐻𝐻𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �𝑏𝑏
𝑎𝑎
�                                                                                                                (5.2)  
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5.2.7 Chemical Properties 

5.2.7.1 Physiological weight loss 
 
PWL is one method amongst others that determines the quality of stored tomatoes (Islam and 

Morimoto, 2016). Weighed five samples of the stored tomatoes from each treatment using a scale 

(Teraoka, DIGI SM 300) at the start of the experiment and on seven-day intervals at days 7, 14, 21 

and 28. PWL was calculated as cumulative percentage weight loss based on the initial tomato 

sample weight (before storage) and loss in weight recorded at the time of sampling at 7, 14, 21 and 

28 days during storage (Nath et al., 2012; Caron et al., 2013). The following formula used by Islam 

and Morimoto (2016) computed the percentage differential weight loss for each sample per each 

interval as percentage weight loss of the initial weight.  

 

%Weight loss = Weight(t=0)−Weight(t=t)

Weight(t=0)
x100                                                              (5.3) 

Where 𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔ℎ𝑡𝑡(𝑡𝑡=0)= average weight of sample at the start of experiment /interval and 
           𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑡𝑡=𝑡𝑡)= average weight of the same sample of produce at t = t 

 

The percentage cumulative weight loss was determined by summing the respective physiological 

weight losses (Getinet et al., 2008; Awole et al., 2011). 

5.2.7.2 Total Soluble Solids  
 
After harvesting and during storage, the tomato fruit continues to ripen. During the ripening 

process, stored starch in the fruit transforms to sugars. As the ripening process, progresses further 

the sugar levels in the fruit increases (Ross et al., 2010). Cleaning, cutting into smaller slices using 

a knife and crushing (using a blender) each sample tomato from each treatment produced a blended 

and homogenized tomato puree (Ranganna, 1995). A clean cloth then sieved the puree into a small 

container and the puree was used for estimation of TSS. The TSS were determined using an RFM 

340+ digital refractometer (± 0.1% Brix) by placing a few drops of the puree on the prism (Getinet 

et al., 2008; Maftoonazad and Ramaswamy, 2008). TSS measurements were taken at day0, day7, 

day14, day21 and day28. Between samples, the prism was cleaned with distilled water using a soft 

clean cloth according to Saad et al. (2016)  
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5.2.8 Percentage Marketability  
 
The marketability of tomatoes, which is a descriptive quality attribute, was evaluated according to 

the scoring method used by Mohammed et al. (1999) and Awole et al. (2011). Descriptive quality 

attributes were determined subjectively, based on observing the level of visible mould, colour, 

surface defects, decay, shriveling (dehydration) and shine (Tefera et al., 2007; Workneh et al., 

2012). On the sampling day, five tomatoes were randomly selected from each treatment and visual 

assessed. Based on a rating, with 1 being ‘unusable’, 3 being ‘unsalable’, 5 being ‘fair’, 7 being 

‘good’ and 9 being ‘excellent’, fruits were evaluated. Tomatoes that received a rating of ‘5’ and 

above were considered marketable, while those receiving a rating less than ‘5’ were considered 

unmarketable. Damaged, decayed or overripe tomatoes which were considered unmarketable were 

removed from the stored samples (Cherono et al., 2018). The percentage of the marketable fruit 

was calculated from the relationship between the number of fruits receiving a rating of five and 

above over the total number of fruits.   

% Marketability

=
Total no. of tomatoes receiving a rating of five and above𝑡𝑡=0

Total no. of tomatoes at start of experiment𝑡𝑡=0
x100%  (5.4) 

5.2.9 Data Collection and Analysis 
 
Data were recorded on days 0, 7, 14, 21 and 28 from the start of the experiment (after storage), in 

order to determine the change in the tomato quality (Arzate-Vazquez et al., 2011). On each 

sampling date, samples from the marked tomatoes were selected randomly from each treatment for 

quality analysis. The following parameters evaluated the change in the quality of the tomatoes: 

physical properties; texture/firmness and skin colour: chemical properties; PWL and TSS:  sensory 

qualities; marketability. Analysis of variance (ANOVA) by means of the GENSTAT statistical 

software, 18th edition determined the differences between treatments. Duncan’s Multiple Range 

Test operated by the Least Significant Difference test (L.S.D.) with a significance level of 0.05 

separated the means.  
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5.3 Results and Discussions 

5.3.1 Tomato Firmness 
 
Firmness is the ultimate quality index influencing consumers’ in decision making at the time of 

selection of tomatoes to purchase or not (Thipe, 2014; Salveit, 2018). For tomatoes in transit or 

under storage, the increase in temperature may lead to the loss of firmness due to the activation of 

enzymes responsible for cell wall degradation (Tolesa and Workneh, 2017). Hence, the control of 

temperature during storage of fresh produce is very important. The firmness of tomatoes is 

determined by using a deformation test (Batu, 2004). The effects of storage conditions, maturity 

stage at harvesting and storage period on the firmness of the tomatoes were significant (P<0.001) 

as shown in Figure 5.3.  

 

Figure 5.3. Tomato firmness under ambient conditions and IAC+EC 

The tomatoes stored in the IAC+EC storage chamber were 18.9% more resistant to puncture, with 

8.84 N, compared to those stored under ambient conditions with 7.17 N, which are averages over 

the 28-day period. A firmness value of greater than 8.46 N mm.-1 indicates that tomatoes are very 

firm and suitable for supermarket shelves (Batu, 2004). The result indicates that IAC+EC kept the 

tomato structure intact and firm under the hot and humid conditions, which might contribute to the 
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preservation of F&V quality leading to an extended shelf life and this agrees with findings of Zakari 

et al. (2016) using EC under dry and arid conditions. Higher ambient temperatures and lower RH 

encourage increased tomato physiological activity resulting loss of fruit firmness due to the 

breakdown of cellulose, pectin and lignin by pectinesterases (PE), polygalacturonase (PG) and β-

galacturose (β-gal) in the cell wall (Tigist et al., 2013). It is based on this background that the use 

of IAC+EC performs as effectively as EC in dry and arid conditions for storing fresh tomatoes is 

significant and cannot be over emphasized. 

Comparison of the firmness between the two harvesting maturity stages showed that the overall 

average firmness for the green-harvested tomatoes was 20.2% higher, with 8.74 N, than that of 

pink-harvested, which had an overall average of 7.27 N. The reduced firmness in pink harvested 

tomatoes is attributable to a physiological breakdown of the fruit cell wall as the fruit ripened from 

green to pink (Viskelis et al., 2008). The average firmness of tomatoes decreased significantly with 

storage period from 11.16 N-day0, 9.76 N-day7, 7.81 N-day14, 7.03 N-day21 and 4.28 N-day28. 

The decline over the 28-day period is 61.6%.  The longer the storage period, the longer enzymatic 

activity continues causing more tissue softening and affecting firmness (Pinheiro et al., 2013). 

Tolesa and Workneh (2017) obtained a similar pattern in their study where they observed a decline 

in tomato firmness over storage period.  The decrease in firmness is attributable to physiological 

deterioration in tomato as the fruit continues to transpire, respire and further ripen (Ngcobo et al., 

2012; Salveit, 2018). By day 21, the firmness of green-harvested tomatoes stored under IAC+EC 

was 8.86 N. The maturity stage at harvesting affects the firmness of the tomato fruit (Vinha et al., 

2013). 

There were significant effects due to the interaction of storage conditions × harvesting maturity 

stage (P<0.05), storage conditions × storage period (P<0.001) and maturity stage x storage period 

(P<0.005) on the firmness of tomatoes as shown in Figure 5.4 and Figure 5.5. From Figure 5.4 

tomatoes stored under IAC+EC maintained firmness for long periods than sampled tomatoes stored 

under ambient conditions. By day14, sampled tomatoes under ambient conditions had a firmness 

6.32 N a value lower than 8.46 N, which is the recommended firmness for tomatoes suitable for 

supermarket shelves (Batu, 2004). By day21 tomatoes, stored IAC+EC had a firmness of 8.45 N a 

value almost equal the firmness for tomatoes suitable for supermarket shelves. 
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Figure 5.4. Storage condition x storage period 

From Figure 5.5 the green harvested tomatoes were firmer than the pink harvested tomatoes over 

the storage period. By day 21 green harvested tomatoes had a firmness of 8.86 N which was higher 

than 7.38 N for pink harvested tomatoes at day14.  

 

Figure 5.5. Maturity stage x storage period 

0

2

4

6

8

10

12

0 7 14 21 28

Fr
ui

t F
irm

ne
ss

 (N
)

Storage period (days)

ambient cooler

CV = 3.6%
LSD(0.05) = 0.65

0

2

4

6

8

10

12

14

0 7 14 21 28

Fr
ui

t F
irm

ne
ss

 (N
)

Storage period (days

green pink

CV = 3.6%
LSD(0.05) = 1.03



 

168 
 

The green stage harvested tomatoes when subjected to IAC+EC conditions gave the highest 

average firmness of 9.82 N followed by the pink harvested tomatoes with a breaking force of 7.86 

N while the green and pink harvested fruits under ambient conditions had 7.66 N and 6.68 N 

breaking force respectively. The indication from the results is that storage of less mature tomatoes 

under IAC+EC provides firmer tomatoes over the storage period compared to all other 

combinations. A lower firmness of tomatoes regardless of stage of maturity at harvesting is 

indicating a weaker flesh skin often associated with ripe and soft fruit resultant of physiological 

deteriorations because of more rapid metabolism as confirmed by Sirisomboon et al. (2012). 

The combinations of storage condition x storage period and maturity stage x storage period show 

green breaker stage tomatoes stored under IAC+EC conditions retained firmness (above 8.76 N) 

for an extended period of 21 days while the pink harvested retained firmness up to 14 days. 

According to Batu (2004), a firmness of 8.76 N is the minimum firmness requirement for very 

marketable fruit in supermarkets. Tomatoes in cold storage maintained higher firmness over the 

storage period than ambient air stored tomatoes.   

5.3.2 Colour 
 
Table 5.2 shows that both the h° and L* value was significantly (P≤0.05) influenced by storage 

condition, maturity stage at harvesting and the storage period. The tomatoes stored in the IAC+EC 

storage chamber had an overall 1% higher L* value and 3% higher h° value for the 28 days of 

storage, compared to those stored under ambient conditions. The h° and L* values decreased 

progressively over the period of storage from 76.61% at day0 to 49.45% at day28 and 53.47% at 

day0 to 35.36% at day28 respectively and the minimum values were reached on the last day of 

observation. A decrease in both h° and L* values with storage period indicates progression of 

colour change from green or pink to red as the fruit ripens. Cherono et al. (2018) had similar 

observation of colour changes with storage time. There are three colour changes of tomatoes during 

various stages of development, namely a green colour (chlorophyll), an orange colour (β-carotene) 

and a red colour (lycopene) according to Pinheiro et al. (2013). As a tomato ripens, there is colour 

change from green to white through chlorophyll degradation, then white to red by carotenoid 

biosynthesis (Hahn, 2002).  
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Table 5.2. Changes in L values and hue angle of tomatoes subjected to treatments of storage conditions, 

maturity stages and storage period. 

 L values 

Treatment Day0 Day7 Day14 Day21 Day28 

Green, ambient 57.49k 46.16h 41.52fg 39.16cdef 34.12a 

Pink, ambient 49.95j 45.16h 41.38 dfg 37.95bc 35.12a 

Green, cooler 57.08k 46.71h 47.13hi 38.96cde 36.12ab 

Pink, cooler 49.35ij 46.77h 42.47g 38.95cd 36.07ab 

Significance level      

Storage (A)   <0.05   

Maturity (B)   <0.001   

Day (C)   <0.001   

A x B   NS   

A x C   <0.05   

B x C   <0.001   

A x B x C   <0.05   

LSD0.05 = 1.168, CV (%) = 4.2, SE = 0.812 

H values 

Treatment Day0 Day7 Day14 Day21 Day28 

Green, ambient 84.68d 56.31abc 51.55a 52.91a 48.31a 

Pink, ambient 69.33c 53.83a 53.74a 52.14a 49.43a 

Green, cooler 84.78d 58.10abc 68.53bc 55.73ab 50.43a 

Pink, cooler 67.64bc 59.35abc 53.13a 54.38a 49.64a 

Significance level      

Storage (A)   <0.05   

Maturity (B)   <0.001   

Day (C)   <0.001   

A x B   NS   

A x C   NS   
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B x C   <0.001   

A x B x C   <0.05   

LSD0.05 = 6.803, CV (%) = 9.2, SE = 3.416 

 

 

The lowest values coincide with time when the tomatoes have attained a deep red colour. Saltveit 

(2003) and Zakari et al. (2016) on their work on EC made similar observations. The average L 

values over the 28 days of observation for green tomatoes was 44.44% and 42.36% for pink 

tomatoes while the average h° values were 61.13% and 56.26% respectively. 

The interactions of maturity stage × period of storage had significant (P<0.05) effects on the h° 

and the L* values of the tomatoes over the 28-day storage period. Further, the two-way interaction 

of storage conditions × period of storage significantly (P<0.05) influenced the changes in the L 

values of sampled tomatoes. The 3-way interaction of storage conditions x maturity stage x period 

of storage had a significant (P<0.05) effect on the values of h° and the L* of the sampled tomatoes 

under IAC+EC (Table 5.2). The green harvested tomatoes had the highest values of h° and the L* 

when storage in the IAC+EC storage chamber when observed over the period of storage. Therefore, 

the combination of green harvested tomatoes and IAC+EC environment is ideal for maintaining 

quality of tomatoes under sub-humid conditions an observation also made by Tolesa and Workneh 

(2017). Therefore, storage temperature,  variety, storage period and maturity stage at harvesting 

factors influence the skin colour of fresh produce as alluded to by Baltazar et al. (2008). 

5.3.3 Total Soluble Solids Content 
 
Table 5.3 presents the TSS of green and pink harvested tomatoes subjected to either ambient 

conditions or IAC+EC storage conditions over 28 days. The storage conditions, the stage of 

maturity at harvesting and the storage period significantly (P≤0.001) had an influence the TSS.  A 

general increasing trend in the TSS was observed but was most evident at ambient conditions, 

compared to the IAC+EC storage conditions. The tomatoes stored in the IAC+EC storage chamber 

had on average TSS values of 4.10 compared to 4.58 for ambient conditions while on average green 

harvested and pink harvested tomatoes had TSS values of 4.19 and 4.49 over the storage period. 
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Lower TSS values imply a lower concentration of sugar. Similar findings were observed by Tefera 

et al. (2007) and Maftoonazad and Ramaswamy (2008) on the storage of mangoes. 

Table 5.3. Changes in TSS (%) of tomatoes subjected to treatments of storage conditions, two 

maturity stages and storage period. 

 Total Soluble Solids (%) 

Treatment Day0 Day7 Day14 Day21 Day28 

Green, ambient 3.848ab   4.446bcdef 4.472cdef 4.538def 4.980fg 

Pink, ambient 4.194abcd  4.604def 4.610def 4.816efg 5.294g 

Green, cooler 3.832a   4.068abcd 4.140abcd 4.162abcd 4.402cde 

Pink, cooler 4.174abcd  4.336abcde 4.368abcde 4.421cdef 4.564def 

      

Significance level      

Storage (A)   <0.001   

Maturity (B)   <0.001   

Day (C)    <0.001   

A x B   NS   

A x C   <0.05   

B x C   NS   

A x B x C   NS   

LSD0.05 = 0.0.163, CV (%) = 1.9, SE = 0.135 

 

• The means separation was carried out by the Duncan’s multiple range test (p<0.05) and the 

column means with similar superscripted letter(s) are not significantly different. 

• A-storage environments; B-maturity stages; C-days of storage. 

ºBrix tends to increase as the ripening proceeds (Sammi and Masud, 2007). At low temperature 

and high RH storage conditions, the rate of increase was slower, compared to storage at ambient 

conditions. The increased temperature and reduced RH at ambient conditions is attributed to 
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the increased hydrolysis of carbohydrates stored within the tomatoes into soluble sugars. This, 

therefore, resulted in a higher TSS content and a reduced tomato shelf life, which is undesirable.  

 

Figure 5.6. Percentage total soluble solids of green and pink harvested tomatoes.  

The two-way interactions between storage conditions and storage period significantly (P≤0.05) 

influenced the TSS accumulation (Figure 5.6). The tomatoes that were stored in the IAC+EC 

storage chamber regardless of maturity stage at harvest had lower TSS than those stored under 

ambient conditions. This agrees with Young et al. (1993) that concluded changes that occur in 

sugar content during the development of tomato fruit increases progressively throughout the 

storage period as the fruit matures and ripens associated with the first appearance of yellow pigment 

in the walls of the fruit at the breaker stage through to red. 

Soluble solids determine the sweetness of tomatoes, but there are other compounds responsible for 

flavour characteristics, such as acids and volatiles (Bumgarner and Kleinhenz, 2012). When 

tomatoes mature, the sugar levels increase, due to the metabolism of stored carbohydrates, lipids 

and proteins (Garcia and Barrett, 2006). At a later stage, these sugars are utilised for maintenance 

during growth, thus resulting in senescence (Beckles, 2012). TSS are a good index for the quality 

control of tomatoes. It is therefore very critical that for adoption postharvest cooling technologies, 
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such as IAC+EC to slow down respiration and ethylene production and to thus retard ripening and 

senescence. 

5.3.4 Physiological Weight Loss 
 
The large proportion of water tomatoes contain, which constitutes up to 90% of the fresh weight 

largely influences the fruit size (Babitha and Kiranmayi, 2010; Zakari et al., 2016). The perishable 

nature of tomatoes is a function of this large amount of water (Shahnawaz et al., 2012). The 

physiological moisture loss varies and is dependent on the magnitude of the surrounding air-

temperature and RH (Workneh and Osthoff, 2010). High temperature and low RH induce high 

respiration rate, which is the main cause of PWL (loss in saleable weight) and wilting (Mhina and 

Lyimo, 2013; Arah et al., 2015; Jedermann et al., 2017). The PWL of tomatoes harvested at the 

green-breaker stage and pink maturity stages, subjected to storage conditions of either IAC+EC or 

ambient conditions, and stored over 28 days are here presented. During the period of observation, 

the storage conditions, the maturity stage and the storage period were found to be highly significant 

(P≤0.001) with regard to the tomato PWL (Figure 5.7). The highest PWL was found in tomatoes 

stored under ambient conditions (9.5%) due to the considerably higher temperatures (± 26℃) and 

lower RH (< 60%), compared to the IAC+EC storage conditions (3.2%) over the 28 days storage 

period. Pink harvested tomatoes exhibited a higher PWL (7.9%) compared to green harvested 

tomatoes (4.8%) over the 28-day storage period. Sampled tomatoes stored under ambient 

conditions had PWL of 9.4% by day7 and 14.5% by day28 compared to 2.2% and 6.4% for 

IAC+EC for the same period. These conditions induced a larger vapour pressure deficit between 

the fruit and the surrounding external environment, as a result creating a driving force for moisture 

loss from the fruit (Getinet et al., 2008; Thompson et al., 2018). The rate at which the moisture 

was lost by the tomatoes under ambient conditions occurred at a faster rate than under IAC+EC 

consequently contributing to a higher increase in the PWL. These findings are consistent with 

reported observations by Islam and Morimoto (2016). 

PWL increased progressively over the period of storage and the highest values were reached on the 

last day of observation. There was continuous loss of moisture over time due to transpiration from 

the tomatoes and respiration under ambient conditions. This is the reason was PWL increased with 

storage period as the tomato fruit continues to ripen. The PWL was more pronounced under 
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ambient conditions implying that senescence may occur earlier and, therefore, result in a shorter 

shelf life. Cherono et al. (2018) in their research study had similar observations. Therefore, the use 

of IAC+EC system for preserving and improving the shelf life of tomatoes cannot be avoided.  

 

Figure 5.7. Physiological weight loss during storage period 

FAO (1989) and Zakari et al. (2016) reported that water constitutes a large portion of most F&V 

and when lost from fresh produce translates to reduction in weight results in wilting and less 

marketability; hence, it is important to maintain the weight of fresh tomatoes to maximize profit. 

The two-way interactions between (a) storage condition x maturity stage (b) storage condition x 

storage period and (c) maturity stage x storage period was found to be significant at P≤0.001. Green 

harvested tomatoes stored under IAC+EC conditions resulted in the lower PWL of 2.59% 

compared to pink under ambient at 11.79%. The variations are attributable to lower physiological 

activity in green tomatoes and the vital role of lower temperature under IAC+EC conditions that 

reduce rate of moisture loss and the amount of PWL in the tomatoes. The delay in harvesting of 

tomatoes may increase their susceptibility of decay and PWL as alluded to by Adewoyin (2017). 

The PWL increased progressively with storage period for tomatoes stored under ambient 
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conditions and IAC+EC conditions and at the same increased progressively for tomatoes harvested 

either at the green-breaker stage or at pink stage.  

The three-way interaction between storage conditions x stage of maturity x storage period were 

found to have a significant (P≤0.05) effect on the tomato PWL. Pink tomatoes stored under ambient 

had a PWL of 12.45% over a 7 day-storage period while the green-breaker stage harvested tomatoes 

had a PWL of 13.86% by day14 of storage. The green-breaker stage and pink harvested tomatoes 

subjected to the IAC+EC conditions had a PWL of 3.61% and 4.97% respectively by day21 of 

storage. This implies that by day21 the tomatoes under IAC+EC had not lost freshness and had no 

wilting appearance as such characteristics only exhibit after 5% PWL according to Sondi and 

Salopek-Sondi (2004). The PWL of green harvested tomatoes and stored in the IAC+EC storage 

chamber was 4.99% by day-28, exhibiting the lowest decrease. The green harvested and pink 

harvested tomatoes stored under IAC+EC stored over 28 days had a PWL below 8%, which in 

within the region that sustain good quality of tomatoes. According to Getinet et al. (2008), a 10% 

PWL corresponds to the threshold level for the termination of shelf life of fresh produce.  

The results obtained mean that the rate at which the moisture was lost by the tomatoes occurred at 

a faster rate, when the fruit was subjected to ambient storage conditions and thus translating to an 

increase in the PWL. The implications are that senescence may occur earlier resulting in a shorter 

shelf life for both stages of tomato maturity. The physiological moisture loss from tomatoes varies 

and is dependent on the magnitude of the surrounding air-temperature and RH. High temperature 

and low RH induce high respiration rate, which is the main cause of PWL (loss in saleable weight) 

and wilting. The physiological nature of tomato that includes high moisture content, high 

respiration rate, and soft texture make it more vulnerable to post harvest qualitative changes and 

losses and therefore requires storage facility systems like IAC+EC. The IAC+EC conditions 

provide a low temperature-high RH environment that inactivated the enzymes responsible for the 

ripening process.  

5.3.5 Marketability 
 
Visual signs in fresh fruit are the first quality attributes that consumers consider when making 

decisions to buy and these largely influence marketability (USDA, 2011; Siddiqui et al., 2015). 
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The storage conditions, maturity stage at harvesting and the storage period significantly (P≤0.001) 

influenced the marketability (Figure 5.8).  

 

Figure 5.8. Percentage marketability of tomatoes during storage period 

The percentage of marketability of tomatoes was at 100% on Day 0 and decreased with storage 

period for all treatments. Tomatoes stored in the IAC+EC storage chamber had on average a higher 

percentage marketability (70.38%) than those under ambient conditions (48.61%). Furthermore, 

green stage of maturity harvested tomatoes had a higher marketability of 38.4% by day28 compared 

pink harvested tomatoes of 20.6%. The higher percentage of marketability of tomatoes under 

IAC+EC is attributable to the low temperature storage conditions of the storage chamber, which 

resulted in lower moisture losses. The results are in conformity with the work done by Getinet et 

al. (2008) and Awole et al. (2011) and Rahman et al. (2016) for results obtained on strawberries. 

Higher ambient temperatures translate to higher moisture loss in fresh produce causing loss of 

marketable weight and inadvertently affecting appearance (wilting and shriveling) resulting in less 

marketability. As moisture is lost, the textural quality of tomatoes reduces thereby enhancing 

softening, loss of crispness and juiciness, and reduction in nutritional quality. 

Marketability drastically decreased at ambient conditions from 100% to 42.9% by day14 and could 

have decreased further if there were more days with high temperatures during the period of 

0
10
20
30
40
50
60
70
80
90

100

0 7 14 21 28

Pe
rc

en
ta

ge
 m

ar
ke

ta
bi

lit
y 

of
 fr

ui
ts

Storage period (days)

amb-green amb-pink EC-green EC-pink

CV = 8.3%
LSD (0.05) = 0.94



 

177 
 

observation. The sharp decline in marketability is because of excessive softening and shriveling 

caused by moisture loss, which is one of the factors leading to the PWL. Several tomatoes subjected 

to ambient conditions by day21 experienced decay, shriveling and extreme softness and were 

discarded while those still in good condition were retained to be observed again in day28. Under 

IAC+EC, the green harvested tomatoes were at 63.5% and 57.5% marketability at day21 and day28 

while for pink harvested tomatoes there was a sharp decline from 50.1% marketability at day21 to 

28.1% at day28. Therefore, IAC+EC preserved the organoleptic properties of the tomatoes. 

5.4 Conclusion 
 
This study was undertaken to determine the effects of postharvest storage environment, as well as 

tomato maturity stage at harvest and storage period on the postharvest quality of stored tomatoes. 

The deductions from the study is that the physical, chemical and subjective sensory quality 

parameters of tomatoes are largely dependent on maturity stage at harvest and storage environment 

as well as storage period. The storage conditions, stage of tomato fruit harvesting and the storage 

period consistently significantly (P>0.001) affected all of the analyzed tomato-fruit quality 

parameters. The IAC and EC systems ran at the same time to bring cumulative effect on air 

temperature and RH inside the storage chamber compared to ambient conditions. The IAC+EC 

system had a positive effect on the quality parameters and this extended the shelf life of tomatoes 

compared to samples that were stored under ambient conditions. The unbridled ambient conditions 

accelerated the tomato fruit ripening process, which was most evident in the conversion of the skin 

colour from green/pink to pink/red and the rapid reduction in firmness. This was more evident for 

pink harvested tomatoes, which on average were 20.2% softer, had 6.6% higher concentration of 

sugars, 3.1% higher PWL, 4.9% increase in hue angle and were 11.6% less marketable. The rapid 

ripening process under ambient conditions resulted in 18.9% reduced firmness, 10.5% increased 

TSS, 6.31% increased PWL, 3% reduction in hue angle and 24.8% reduced marketability. 

Compared to ambient storage, IAC+EC storage limited the PWL to 8% over 28 days, while ambient 

storage took 14 days to get to the same. The IAC+EC system increased shelf life of green-harvested 

tomatoes to 28 days with an improved marketability of 57.5% with PWL of 5%. The IAC+EC 

system inhibited ethylene production through reduction of enzymatic activities of tomatoes and 

thus prolonged shelf life and increasing the quality of fresh produce.   
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The objective of the current study was different from the previous research studies, which focused 

on prototype sized EC, since it considered low-cost IAC+EC technology tested on SSF sized, as 

well as the maturity stage of the tomato fruit on the quality during the storage period. The findings 

of this study showed that all green and pink tomatoes suffered a decrease in firmness and 

marketability, increase in PWL, TSS and hue angle, over 28 days. The tomatoes stored in IAC+EC 

storage chamber showed a higher firmness and marketability, a decrease in PWL, TSS and hue 

angle, when compared to the ambient conditions over the storage period. The green stage harvested 

tomatoes stored in the IAC+EC storage conclusively improved the shelf life and marketability of 

tomatoes. Therefore, a farmer in hot and humid areas can use a combination of tomatoes harvested 

at the green stage and IAC+EC to maintain a better quality of tomatoes and to extend their shelf 

life.  

The work presented in this chapter is important because there is a scarcity of both quantitative and 

qualitative characterization of the performance of low-cost IAC+EC technology for cooling the 

microenvironment in the storage in order to maintain the quality of the tomato fruit, which can be 

used by small-scale and emerging farmers’ cooperatives. This work has also contributed to 

improving the understanding of the effect of low-cost IAC+EC technology on the quality 

characteristics of fresh tomato fruit preserved under hot and sub-humid to humid conditions in 

Southern Africa.  This study characterised the performance of IAC+EC and clearly demonstrated 

that the cooling system could maintain the physical, chemical and sensory characteristics of fresh 

tomatoes and most tropical and sub-tropical F&V. This study on IAC+EC has shown the 

considerable potential towards enhancing the performance and cooling capacity of the system for 

preservation of F&V. IAC+EC is therefore, recommended for storage of tropical and sub-tropical 

F&V as it can increase their shelf life.  
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6 GENERAL DISCUSSIONS, CONCLUSIONS AND 

RECOMMENDATIONS 

6.1 General discussions 
 
The overall aim of this study was to design, construct and evaluate an integrated solar powered- 

postharvest cooling technology for storage of fruit and vegetables (F&V) in Southern Africa and 

specifically under hot and sub-humid to humid conditions. The study addressed the challenge of 

huge postharvest losses (PHL) experienced in F&V especially during the glut period for small-

scale farmers (SSF) in sub-Saharan Africa (SSA). The delay between one harvest and the next as 

SSF await transport to the market, requires cooling for fresh produce to maintain quality and extend 

shelf life. Many SSF lose a significant portion of their fresh produce harvest because of lack of 

access to postharvest handling facilities. Cooling facilities remove field heat, which 

consequentially reduces physiological deterioration. A number of modern cooling facilities like 

mechanical refrigeration, hydro-cooling and vacuum cooling exists and are mainly exploited by 

large scale growers who can finance the high initial investment costs, maintenance costs, 

throughput and energy requirements.  

 

Several research studies focusing on SSF in remote and isolated areas with no access to grid 

electricity, recommend low-cost cooling technologies, such as the evaporative cooling (EC) which 

work best in arid and semi-arid climatic regions for short-term storage of fresh produce. EC systems 

preserve fresh produce by the removal of sensible heat. EC systems encountered in literature 

reviews were very small direct evaporative coolers and for experimental purposes only, tested 

under hot and dry conditions mostly in North, East and West Africa. Literature also revealed that 

it is possible for EC systems for both greenhouse application and fresh produce preservation to 

work under one climatic condition and fail in another. Hence, the importance of developing and 

testing EC systems for specific climates and regions is necessary. Work on EC in SSA has been 

limited to other regions and there is dearth of information on the performance of EC systems in the 

Southern African sub-region.  
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EC has limitations in hot and sub-humid to humid areas because of inherent high humidity of the 

local air, which leads to low dry bulb temperature drops. Literature review proposes exploration of 

a combination of indirect air cooling and evaporative cooing (IAC+EC) for hot and humid areas 

like coastal regions in Sub-Saharan Africa. Despite the forecasted favourable results, the indirect 

air-cooling assisted EC is still an undeveloped technology and more focused research and 

investigation needs carrying out, a focus of this study. The novelty of such research is the 

introduction of indirect heat exchanger for sensible cooling of air before reaching the cooling pads 

for small-scale farmer sized storage structures. This study proposed investigation of an IAC+EC 

of fresh produce under hot and sub-humid to humidity conditions in Southern Africa. Literature 

reveals that to date EC has been done either direct or a combination of direct and indirect cooling 

for both greenhouse application and for cooling the microenvironment in fresh produce storage. 

There is little literature showing some attention to miniature IAC+EC experiments for comfort 

cooling, production process in metallurgical shops, cooling automobile engines and tractor cabins. 

Otherwise this area of research remains untaaped there is currently dearth of information on the 

performance of such a system for preservation of F&V. This has provided an opportunity to 

develop and characterise an IAC+EC for hot and sub-humid to humid conditions prevalent in 

coastal areas of SSA, which is innovation in terms of developing cooling facilities. 

Because of coupling IAC unit on the EC system, additional electrical appliances of heat exchanger, 

fans for ventilation and water pump for reticulation are required and these need energy provision. 

As the study addresses SSF in remote areas with no access to electricity, use of solar energy was 

is the immediate option as it is abundant in most parts of SSA. Solar photovoltaic (SPV) systems 

can run IAC+EC and provide other advantages of low initial capital investment, and can be 

installed as an autonomous system to serve farmers that cannot be connected to the national grid. 

The amount of energy required to power an IAC+EC system is related to the size of the air 

ventilation system, water reticulations system, and desiccating media, which is the focus of this 

study. There exists a dearth of information regarding the actual performance and energy 

requirements of solar powered IAC+EC system under hot and sub-humid to humid conditions in 

Southern Africa.This study sought to provide data on the actual energy requirements for the cooling 

load and the performance of solar photovoltaics (SPV) in powering a small-scale farme sized 
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storage chamber for tomatoes. As a result, an IAC+EC system with a 3.8-ton storage chamber was 

constructed. 

A nine solar module SPV systems (3-strings- 3 –series) was designed and coupled with a battery 

bank facility to store energy for overnight use to power IAC+EC during the day and into the night 

until temperatures drop below 20oC. From this system the practical power output was 2 639.1 W 

translating to 4 726.7 W.h-1 actual energy produced by the solar modules and to be stored by 

batteries in order to cool the 3.8 tons of tomatoes from 17h00 to 22h00. To cool one ton of tomatoes, 

using IAC+EC requires 1 200 W.h-1. The value of 1 200 W.h-1 compares to the value of 700 W.h-

1 for forced air EC of tropical F&V using a 0.1 HP. The difference in power requirements can be 

attributable to the additional indirect heat exchanger that was incorporated in this experiment. The 

overall system efficiency was 87% which is comparable to the values obtained in a comparative 

study of three types of grid connected photovoltaic systems based on actual performance. The SPV 

powered IAC+EC where 150 kg of tomatoes were stored while a similar quantity was stored under 

ambient conditions. 

There is scarcity of information on the quantitative performance characterization of low-cost 

IAC+EC technology for cooling the microenvironment in order to maintain the quality and 

marketability of the tomato fruit. The aim of the current study was different from any previous 

research work as it sought to extend the principle of EC to hot and humid areas by addition of an 

IAC unit through incorporation of a heat exchanger for sensible cooling of air before EC. 

Suscequently, to provide information on the performance of the IAC+EC system, variation in 

temperature, relative humidity (RH) and efficiency of cooling the cold air inside the IAC+EC cold 

storage chambers and under ambient conditions were studied.  

There was a significant variation (P<0.001) in temperature between ambient, psychometrics unit, 

and storage chamber. The ambient temperature was on average 10.5℃ and 9.5℃ higher than the 

last cooling pad temperature and the average storage temperature respectively. A significant 

temperature gradient between the storage temperature and ambient temperature provides an 

effective heat transfer of the stored produce, cooling pad and a cold room. There was a significant 

variation (P<0.001) in ambient, exit point of the psychrometric unit and the storage chamber RH 

at various positions at entrance, centre and exhaust. The highest average RH was obtained at the 

outlet of the psychometric unit into the storage chamber (95.6%) the lowest average RH was at the 
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ambient (65.4%). The cooler efficiency ranged between 86.8% and 97%. Between 05h00 and 

09h00 of each day, the efficiency was about 92-95% and the values increased from 05h00 to 14h00, 

then declining thereafter to 86.8% by 18h00. The cooling curve efficiency shows that higher 

cooling efficiency obtain with higher temperature and lower RH of ambient air in the afternoon 

when the solar irradiation is highest. This is a desirable state as the cooling load is highest at the 

time that the SPV is providing the highest power. 

There is scarcity of information on the qualitative performance of stored fresh produce under 

IAC+EC technology. In response, an analysis of low-cost cooling technologies (IAC+EC) under 

hot and sub-humid areas, tomatoes harvested at different maturity stage and storage periods on the 

quality and marketability was carried out. The study determined the best storage conditions for 

maintaining the quality and marketability of tomatoes during the storage period. There were 

significant effects due to the interaction of storage conditions × harvesting maturity stage (P<0.05), 

storage conditions × storage period (P<0.001) and maturity stage x storage period (P<0.005) on the 

firmness of tomatoes. Tomatoes stored under IAC+EC maintained firmness for long periods than 

sampled tomatoes stored under ambient conditions. By day14, sampled tomatoes under ambient 

conditions had a firmness 6.32 N a value lower than 8.46 N, which is the recommended firmness 

for tomatoes suitable for supermarket shelves. By day21 tomatoes, stored IAC+EC had a firmness 

of 8.45 N a value almost equal the firmness for tomatoes suitable for supermarket shelves. The 3-

way interaction of storage conditions x maturity stage x period of storage had a significant (P<0.05) 

effect on the values of h° and the L* of the sampled tomatoes under IAC+EC. The green harvested 

tomatoes had the highest values of h° and the L* when storage in the IAC+EC storage chamber 

when observed over the period of storage. The two-way interactions between storage conditions 

and storage period significantly (P≤0.05) influenced the TSS accumulation. The tomatoes that were 

stored in the IAC+EC storage chamber regardless of maturity stage at harvest had lower TSS than 

those stored under ambient conditions as changes occur in sugar content during the development 

of tomato fruit increases progressively throughout the storage period as the fruit matures and ripens 

associated with the first appearance of yellow pigment in the walls of the fruit at the breaker stage 

through to red. The highest PWL was found in tomatoes stored under ambient conditions (9.5%) 

due to the considerably higher temperatures (± 26℃) and lower RH (< 60%), compared to the 

IAC+EC storage conditions (3.2%) over the 28 days storage period. Pink harvested tomatoes 
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exhibited a higher PWL (7.9%) compared to green harvested tomatoes (4.8%) over the 28-day 

storage period. Sampled tomatoes stored under ambient conditions had PWL of 9.4% by day7 and 

14.5% by day28 compared to 2.2% and 6.4% for IAC+EC for the same period. Marketability 

drastically decreased at ambient conditions from 100% to 42.9% by day14 and could have 

decreased further if there were more days with high temperatures during the period of observation. 

Under IAC+EC, the green harvested tomatoes were at 63.5% and 57.5% marketability at day21 

and day28 while for pink harvested tomatoes there was a sharp decline from 50.1% marketability 

at day21 to 28.1% at day28. Therefore, IAC+EC preserved the organoleptic properties of the 

tomatoes. 

6.2 Conclusions 
Modern cooling facilities like mechanical refrigeration, hydro-cooling and vacuum cooling were 

found to be unaffordable by SSF because of high initial investment costs, maintenance costs, 

throughput and energy requirements. From literature reviewed it is concluded that low-cost 

(material and energy) cooling technologies are vital for reduction of PHL in fresh produce under 

SSF in SSA. Selection of appropriate EC system depends mainly on local environmental conditions 

and performance varies from one to the other. Literature also concluded that more scope of research 

remains to be carried out to extent EC to hot and humid areas and this study proposes an additional 

unit of IAC for EC to be extended to such places. Recent literature concludes that IAC+EC should 

be of particular research interest because of potential high thermal performance. The inclusion of 

a heat exchanger for IAC is a concept that is not previously documented for cooling the 

microenvironment in storage of fresh produce and energy provision is required to power it. This 

provides an opportunity for the use of solar energy to power a heat exchanger for sensible cooling 

of air; water pump for water reticulation; fan to ventilate the storage chamber. From literature there 

is dearth of information on the performance of EC systems in the Southern African sub-region. 

From the literature evaluated this study proposes a different approach from the tradition of use of 

prototypes and laboratory scale set ups by constructing a 3.8-ton (53 m3) storage chamber that 

mimics the amount of tomatoes a SSF needed to provide a cool environment for fresh produce 

between periods of one truckload and the next.  

The energy supply from the solar panels was able to meet energy needs of powering the IAC+EC 

system during daytime and charging the battery bank for overnight operation of the cooling system 
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until the temperatures were low enough. To cool one tonne of tomatoes, using IAC+EC requires 1 

200 W.h-1 and the batteries had to store 4 726.7 W.h-1 to provide energy for the 3.8-ton storage 

chamber to cool tomatoes from 17h00 to 22h00 when the IAC+EC system was switched off. 

Therefore, the SPV systems used in the study supplied the energy during the critical period of the 

day when temperatures are high from 08h00 to 22h00 of each day. The study clearly showed that 

combinations of the solar array system can be used to power the cooling system at daytime during 

summer season and the excess power can be stored in a battery bank for use during the night hours. 

The energy of 2 639 W which can be supplied by 9 x 330 W solar panels, is enough to power a 

3.8-ton storage chamber for tomatoes. The cost to establish this size of cooling system were R 190 

190 with a payback period of 1.9 years to recoup the initial capital investment. Therefore, where 

grid electricity or other commercial energy sources are unavailable and solar energy is available, 

IAC+EC is a viable alternative to these more complex and costlier modern-day cooling systems. 

This shows that stand alone SPV systems have an expression in rural, dispersed and remote areas 

where grid electricity supply may not be readily accessible. Based on the results it is recommended 

that solar energy be integrated with IAC+EC for more effective reduction of decay and maintaining 

the F&V quality in areas that cannot be connected to the national grid. 

The IAC+EC maintained a 13-41% higher RH and achieved 7-16℃ temperature gradient with 

ambient temperature and the microenvironment created was within the optimum range for the 

short-term storage of tomatoes. The cooler efficiency was 86.8-96.7% indicating that the 

combination of IAC and direct EC system was efficient in reducing the ambient temperature 

towards the wet bulb temperature. The IAC+EC system obtained similar results attained for EC 

system in hot and dry regions as temperature was reduced to 14-16℃ and RH raised to over 96% 

in the storage chamber. This work has contributed to improving the understanding of the effect of 

low-cost IAC+EC technology in provision of a microenvironment for storage of F&V under hot 

and sub-humid to humid conditions in Southern Africa. This study clearly demonstrated that the 

IAC+EC system could maintain the inside environmental conditions of air temperature and RH 

approximately constant and at recommended levels for tomatoes and most tropical and sub-tropical 

F&V. This work has therefore, contributed to improving the understanding of the effect of low-

cost IAC+EC technology on temperature reduction and RH increase under hot and sub-humid to 

humid conditions in Southern Africa. IAC+EC is therefore, recommended for storage tropical and 

sub-tropical F&V as it can increase their shelf life. 
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On the qualitative performance of stored fresh produce under IAC+EC technology the findings of 

this study showed that all green and pink tomatoes experienced a decrease in firmness and hue 

angle over 28 days’ experimental period. The tomatoes stored in the IAC+EC storage showed an 

18.9% higher firmness, 10.5% lower concentration of sugars, 3% reduction in physiological weight 

loss, 3% higher hue angle and 24.8% increase in marketability, when compared to the ambient 

conditions of the stored tomatoes. IAC+EC storage reduced the PWL by 5% over 28 days, while 

by day21 the tomatoes stored under ambient conditions experienced decay, shriveling and extreme 

softness and were discarded. From the experiment, deductions are that the IAC+EC system 

increased shelf life of green-harvested tomatoes to 28 days with a 57.5% marketability. The 

combinations of green maturity stage at harvesting and IAC+EC storage greatly extended the shelf 

life and improved the marketability of tomatoes. Therefore, a farmer can use a combination of 

tomatoes harvested at the green stage and IAC+EC to maintain a better quality of tomatoes and to 

extend their shelf life. Based on the results the IAC+EC system can be recommended for use by 

SSF. Therefore, the characterisation of the performance of IAC+EC has clearly demonstrated that 

the cooling system could maintain the physical, chemical and sensory characteristics of fresh 

tomatoes and most tropical and sub-tropical F&V.  This work has contributed to improving the 

understanding of the effect of low-cost IAC+EC technology on the quality characteristics of fresh 

tomato fruit preserved under hot and sub-humid to humid conditions in Southern Africa. 

Finally, the work presented in this thesis is important because there is a scarcity of both quantitative 

and qualitative information on the performance of solar powered low-cost IAC+EC systems on the 

quality of the tomato fruit stored for extended storage periods under hot and humid conditions. The 

thesis has provided critical data for decision making by SSF and potential emerging farmers under 

the land re-distribution program in South Africa. This work has contributed to improved 

understanding of the effect of low-cost IAC+EC systems on the quality characteristics of fresh the 

tomato fruit subjected to this technology.   

6.3 Recommendations for Future Research 
 
It is expected that ongoing research will be conducted on the unit in terms of testing it on other 

F&V such as bananas, spinach, carrots or even on other horticultural commodities under full load 

(53 m3 of fresh produce). The unit is immobile which limits its use between farms and market. 
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Some of the modifications and recommendations relating to the IAC+EC systems are as follows:  

1. To automate the power provision system so that once the temperature in the storage 

chamber falls below 20℃, power supply is disconnected.   

2. The storage chamber to be mobile for cold storage transportation of F&V from the source 

to the market.   

3. Use of surrounding air kinetic energy from a mobile storage transportation as a source of 

power for operation of the IAC+EC when in transit.  

6.4 Practical Relevance of the Research Study  
 
This research study addresses the following practical issues relating to F&V:  

1. The implementation of low cost and environmentally friendly cooling system in addressing 

the challenge of PHL in F&V.  

2. The storage chamber and psychrometric unit constructed from locally sourced materials.  

3. Solar energy used a power source to drive the electrical appliances of the water reticulation 

and ventilation systems of the IAC+EC system. 

4. The psychrometric unit of the IAC+EC system reduced temperature to 14-16℃  and 

increased RH of the storage chamber to 90-93%, which are optimum storage conditions for 

most tropical and sub-tropical F&V. 

5. The IAC+EC increased the shelf life of green-harvested tomatoes to 28 days with a 57.5% 

marketability.  

6. There is now a greater understanding of the performance of IAC+EC for preservation of 

F&V in Southern Africa under humid conditions.  

7. This IAC+EC principle can be extended to other F&V.   

8. The implementation of the SSF sized EC system means farmers could reduce their lack of 

storage facilities by direct adoption.  

9. Small-scale farmers in remote, isolated, dispersed populations with no access to grid 

electricity can now access, a low-cost appropriate EC system for most tropical and sub-

tropical F&V. 
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It is anticipated that the findings of this study will be applied to suit the postharvest handling of 

F&V in South Africa for both local and export markets. 
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7 APPENDICEES 

7.1 APPENDIX 7.1: Drawings and images of the IAC+EC system 
 

 

 

 

(a) 

(b) 
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Figure 7.1. Drawings for IAC+EC system (a) Temp-RH sensor positions (b) Top View (Front 
View) 

 

 

Figure 7.2. The skeleton of the psychometrics unit tunnel constructed from one heat exchanger and 

three direct cooling pads (Pad 1, 2 and 3) (a) structural schematic. 

 

(c) 



 

200 
 

 

Figure 7.3. Pictorial image of the storage chamber in Ukulinga Research Station in 

Pietermaritzburg 

7.2 APPENDIX 7.2: Day of the year and angles of elevation and declination 
 
The other factors of consideration are power dissipation, stagnation, conduction losses, efficiency 

factors of the inverter and controller and differences in solar cell technologies of the modules. The 

aggregate sun-oriented radiation received at a given area on earth varies depending on t©he length 

of the insolation on a specific day and the power of sunlight-based vitality. Variations also arise 

because of latitude and the day or time of the year. Equation 7.1 calculates the day of the year.  

𝑑𝑑 = 𝑖𝑖 + 𝐷𝐷           (7.1) 

Where, d= day of the year (days); D = day of the month (days), and  

i = total number of days of the previous months of the same year (days).  

The number of days is obtained from equation 7.1 𝑑𝑑 = 𝑖𝑖 + 𝐷𝐷    

 For 22 June 2017, 𝑑𝑑 = 151 + 22 = 173 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

For 22 September 2017, 𝑑𝑑 = 243 + 22 = 265 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
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The incident power on a PV module varies with power contained in the sunlight and the angle 

between the module and the sun. This implies that the power density is maximum when the PV 

module is perpendicular to the sun. However, as the angle between the sun and a fixed surface 

changes continuously, the incident sunlight is more than the power density on a fixed PV module. 

Figure 7.2 shows solar radiation received by any surface at different angles. In this study, the solar 

radiation values recorded over 50 years’ and captured in the South African Atlas 18 of Agro-

hydrology and climatology will be used.  

From Figure 7.4 several useful angles are derived: 

1. The tilt angle of the solar panel determines the optimum energy yield and is defined as the 

angle at which the solar panel is oriented against the horizontal plane.  

2. δ is the declination angle and varies with the day of the year.  It is the angle made between 

the plane of the equator and the line joining the two centres of the earth and the sun and the 

value lies between -23.45 ≤ δ ≤ 23.45.  

3. The elevation angle (α) is the angle between the horizontal plane and the incident solar 

radiation.  

 

 

Figure 7.4. Tilting the module to the incoming light (Adopted from Honsberg and Bowden, S. 

2016) 
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The equator of the earth is tilted at 23.45 degrees with respect to the plane of the earth’s orbit 

around the sun and the declination varies from 23.45 degrees north to 23.45 degrees south at various 

times of the year as the earth orbits the sun. The declination angle 𝛿𝛿 shown in Figure 7.1 is 

determined through equation 7.2  

  𝛿𝛿 = −23.45 sin �360
365

(284 + 𝑑𝑑)�       (7.2) 

Where δ = declination angle (0) and d = day of the year (days).  

The declination angle for this study is calculated from equation 7.2 and on 22 June 2017 the 

declination  

𝛿𝛿 = −23.45 sin �360
365

(284 + 173)� = −  23.45˚and on the 22nd of September 2017 which is at 

equinoxes, declination is:  

𝛿𝛿 = −23.45 sin�
360
365

(284 + 265)� = 0˚ 

The elevation angle (α) (see Figure 7.1) is the angle between the horizontal plane and the incident 

solar radiation and is calculated by the equation: 

   𝛼𝛼 = 90 + 𝛿𝛿 − φ           (7.3) 

Where α = elevation angle (0);  δ = declination angle (0), where φ = 29.6006o in PMB.  

Therefore, on 22 June declination 𝛿𝛿 is (-23.450) and 22 September 00 and PMB latitude (φ) of -

29.6006 o, the elevation angle (α) are 96.15060 and 119.60060 respectively. 
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7.3 APPENDIX 7.3: Solar radiation at various tilt angles 
 
Table 7.1 Solar radiation at horizontal tilt angle 

  Horizontal  
Solar 
hours  Horizontal  

Tilt 
angle  Latitude  

Declination 
angle  

Elevation 
angle  Day  Incident  Module  

  MJ.m-2  hours  W.m-2  β  φ  δ  α  days  W.m-2  W.m-2  

January  22.3  6.00  1 032.41  0.00  -29.60  19.93  139.53  22.00  1 590.61  1 032.41  

February  19.8  6.30  873.02  0.00  -29.60  10.87  130.47  53.00  1 147.59  873.02  

March  18.9  6.50  807.69  0.00  -29.60  0.00  119.60  81.00  928.93  807.69  

April  17.2  6.90  692.43  0.00  -29.60  -11.93  107.67  112.00  726.73  692.43  

May  14.8  7.60  540.94  0.00  -29.60  -20.34  99.26  142.00  548.08  540.94  

June  13.8  7.90  485.23  0.00  -29.60  -23.45  96.15  173.00  488.04  485.23  

July  15.6  8.10  534.98  0.00  -29.60  -20.24  99.36  203.00  542.20  534.98  

August  17.3  8.00  600.69  0.00  -29.60  -11.40  108.20  234.00  632.32  600.69  

September  18.2  6.70  754.56  0.00  -29.60  0.61  120.21  265.00  873.11  754.56  

October  19.5  6.20  873.66  0.00  -29.60  12.10  131.70  295.00  1 170.16  873.66  

November  23.6  5.60  1 170.63  0.00  -29.60  20.64  140.24  326.00  1 830.22  1 170.63  

December  27.3  6.00  1 263.89  0.00  -29.60  23.44  143.05  356.00  2 102.33  1 263.89  
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Table 7.2 Solar radiation at tilt angle = latitude + 150 

  Horizontal  
Solar 
hours  Horizontal  

Tilt angle  
Latitude  

Declinatio 
n angle  

Elevation 
angle  Day  Incident  Module  

  MJ.m-2  hours  W.m-2  β  φ  δ  α  days  W.m-2  W.m-2  

January  22.30  6.00  1 032.41  -14.60  -29.60  21.27  140.87  15.00  1 635.93  1 318.96  

February  19.80  6.30  873.02  -14.60  -29.60  10.87  130.47  53.00  1 147.59  1 032.59  

March  18.90  6.50  807.69  -14.60  -29.60  0.00  119.60  81.00  928.93  897.27  

April  17.20  6.90  692.43  -14.60  -29.60  -11.93  107.67  112.00  726.73  725.68  

May  14.80  7.60  540.94  -14.60  -29.60  -20.34  99.26  142.00  548.08  545.70  

June  11.50  7.90  404.36  -14.60  -29.60  -23.45  96.15  173.00  406.70  402.29  

July  15.60  8.10  534.98  -14.60  -29.60  -20.24  99.36  203.00  542.20  539.93  

August  17.30  8.00  600.69  -14.60  -29.60  -11.40  108.20  234.00  632.32  631.07  

September  18.20  6.70  754.56  -14.60  -29.60  0.61  120.21  265.00  873.11  840.92  

October  19.50  6.20  873.66  -14.60  -29.60  12.10  131.70  295.00  1 170.16  1 041.68  

November  23.60  5.60  1 170.63  -14.60  -29.60  20.64  140.24  326.00  1 830.22  1 487.48  

December  27.30  6.00  1 263.89  -14.60  -29.60  23.44  143.05  356.00  2 102.33  1 646.56  
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Table 7.3 Solar radiation at tilt angle = latitude  

  Horizontal  
Solar 
hours  Horizontal  

Tilt 
angle  Latitude  

Declination 
angle  

Elevation 
angle  Day  Incident  Module  

  MJ.m-2  hours  W.m-2  β  φ  δ  α  days  W.m-2  W.m-2  

January  22.30  6.00  1 032.41  -29.60  -29.60  21.27  140.87  15.00  1 635.93  1 524.50  

February  19.80  6.30  873.02  -29.60  -29.60  10.87  130.47  53.00  1 147.59  1 127.00  

March  18.90  6.50  807.69  -29.60  -29.60  0.00  119.60  81.00  928.93  928.93  

April  17.20  6.90  692.43  -29.60  -29.60  -11.93  107.67  112.00  726.73  711.03  

May  14.80  7.60  540.94  -29.60  -29.60  -20.34  99.26  142.00  548.08  513.90  

June  11.50  7.90  404.36  -29.60  -29.60  -23.45  96.15  173.00  406.70  373.12  

July  15.60  8.10  534.98  -29.60  -29.60  -20.24  99.36  203.00  542.20  508.72  

August  17.30  8.00  600.69  -29.60  -29.60  -11.40  108.20  234.00  632.32  619.84  

September  18.20  6.70  754.56  -29.60  -29.60  0.61  120.21  265.00  873.11  873.06  

October  19.50  6.20  873.66  -29.60  -29.60  12.10  131.70  295.00  1 170.16  1 144.16  

November  23.60  5.60  1 170.63  -29.60  -29.60  20.64  140.24  326.00  1 830.22  1 712.79  

December  27.30  6.00  1 263.89  -29.60  -29.60  23.44  143.05  356.00  2 102.33  1 928.77  
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Table 7.4 Solar radiation at tilt angle = latitude – 150  

   Horizontal  
Solar 
hours  Horizontal  

Tilt 
angle  Latitude  

Declination 
angle  

Elevation 
angle  Day  Incident  Module  

   MJ.m-2  hours  W.m-2  β  φ  δ  α  days  W.m-2  W.m-2  

January  22.30  6.00  1 032.41  -44.60  -29.60  21.27  140.87  15.00  1 635.93  1 626.15  

February  19.80  6.30  873.02  -44.60  -29.60  10.87  130.47  53.00  1 147.59  1 144.61  

March  18.90  6.50  807.69  -44.60  -29.60  0.00  119.60  81.00  928.93  897.27  

April  17.20  6.90  692.43  -44.60  -29.60  -11.93  107.67  112.00  726.73  647.93  

May  14.80  221.00  540.94  -44.60  -29.60  -20.34  99.26  142.00  548.08  447.07  

June  11.50  7.90  404.36  -44.60  -29.60  -23.45  96.15  173.00  406.70  318.52  

July  15.60  8.10  534.98  -44.60  -29.60  -20.24  99.36  203.00  542.20  442.83  

August  17.30  8.00  600.69  -44.60  -29.60  -11.40  108.20  234.00  632.32  566.36  

September  18.20  6.70  754.56  -44.60  -29.60  0.61  120.21  265.00  873.11  845.70  

October  19.50  6.20  873.66  -44.60  -29.60  12.10  131.70  295.00  1 170.16  1 168.66  

November  23.60  5.60  1 170.63  -44.60  -29.60  20.64  140.24  326.00  1 830.22  1 821.37  

December  27.30  6.00  1 263.89  -44.60  -29.60  23.44  143.05  356.00  2 102.33  2 079.54  
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7.4 APPENDIX 7.4 Packing of tomatoes in the chamber 
 
500 mm long x 300 mm wide x 230 mm high plastic packing crates were selected as ideally for 

storage of tomatoes, which also farmers in KZN are using. The packing crates had at least 5% 

venting spacing of 100 mm allowed between packed crates for adequate airflow between 

tomatoes. The number of crates that the cooler could contain was determined by considering the 

dimensions for the storage chamber as follows. 

In determining, the number of crates that could be stacked horizontally the following was 

accommodated: 

(i) packing space of 100 mm was accommodated according to the procedure. 

(ii) 0.9 m walkways were left in between the crates for ease of packing and unpacking. 

(iii) 500 mm long x 300 mm wide x 230 mm high crates are used 

  

The following image shows the storage chamber looks like. 

 

Horizontal stacking 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
5.88 𝑚𝑚
0.30 𝑚𝑚

= 19  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

= 2 ×
5.88 𝑚𝑚 − 0.90 𝑚𝑚

0.30 𝑚𝑚
= 32  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 19 + 32

= 51 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Vertical stacking of crates 

In considering, the vertical stacking of the crates in the chamber a spacing between crates of 25 

mm was left between the crates. Therefore, 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 0.025 𝑚𝑚 = 0.255 𝑚𝑚 
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The bottom crates were stacked on a 200 mm stand and a minimum distance of 500 mm was left 

between the roof and the stacked crates. Therefore,  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
2.340 𝑚𝑚 − (0.2 𝑚𝑚 + 0.5 𝑚𝑚)

0.255 𝑚𝑚
= 6 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   

Therefore, a maximum of six crates can be stacked vertically. 

Total capacity of the storage chamber 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 6 × 51 = 306 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

The mass of tomatoes that can be stored in crate is used to calculate the total mass that can be 

stored in the chamber. In packing tomatoes in a crate, there is a space of 0.12 m left in between 

the tomato layers. 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.51 𝑚𝑚 × 0.28 𝑚𝑚 × (0.38 − 0.12) 

= 0.018 𝑚𝑚3 

 Assuming that the bulk density of tomatoes is 694 kg.m-3, mass of tomatoes per crate was 

calculated as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 694 𝑘𝑘𝑘𝑘.𝑚𝑚−3  × 0.018 𝑚𝑚3 = 12.5 𝑘𝑘𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 12.5 𝑘𝑘𝑘𝑘 × 306 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

≈ 3825 𝑘𝑘𝑘𝑘  

Three hundred and six (306) crates could be packed in the storage chamber. Each crate can hold 

12.5 kg of tomatoes and based on this computation, the storage capacity of the chamber was found 

to be approximately 3 825 kg as shown in the following section. 

7.5 APPENDIX 7.5: Cooling loads 
 
The cooling loads to be removed from the storage chamber for cooling purposes are respiration 

heat, field heat, heat gain through the wall, air change heat load every time the storage chamber 

door is opened and miscellaneous heat gains from lights, fan and labourers during stacking and 

removal of tomatoes from the storage chamber. 
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DESIGN COOLING LOADS 

The amount of heat removed for cooling purposes from any cold storage room is proportional to 

the mass that is loaded at a time. A cold storage room packed to its maximum capacity takes a long 

time to reduce the temperature of the stored products than when loaded to half or one-third capacity. 

For a cold storage area filled in batches, the target temperature of the product is reached in a shorter 

time. While small-scale farmers will not fill a 3.8 tonnes in one day for the purposes of calculating 

the cooling load a worst-case scenario where the storage chamber is filled to capacity is considered. 

Heat of respiration 

Respiration load is the heat load that results due to metabolic activity of the produce. Fruit respires 

at a higher rate at higher temperatures producing more heat and hence more heat load has to be 

removed from warm products that have just been introduced into the cold store. Heat of respiration, 

therefore, is the amount of respiration heat, which has to be removed in the storage chamber. The 

mass of tomatoes to be cooled is 3 825 kg. The heat transfer coefficient of mature green tomatoes 

is 543 J. 𝑘𝑘𝑘𝑘−1. 

𝑄𝑄 = 𝑚𝑚 × ℎ                                                                                                                                   (7.1)                 

Whereby: m = mass of product to be cooled [kg], and 

                 h = heat transfer coefficient of product [J. 𝑘𝑘𝑘𝑘−1 = 543 J. 𝑘𝑘𝑘𝑘−1], 

On the first day the heat of respiration is: 

𝑄𝑄 = 3825 𝑘𝑘𝑘𝑘 × 543
J

kg
×

1ℎ𝑟𝑟
3600𝑠𝑠

= 577  𝑊𝑊  

= 0.577 𝑘𝑘𝑘𝑘   𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                                                                            

On the second day the heat of respiration is: 

𝑄𝑄 = 3825 𝑘𝑘𝑘𝑘 × 300
J

kg
×

1ℎ𝑟𝑟
3600𝑠𝑠

= 319  𝑊𝑊  

= 0.319 𝑘𝑘𝑘𝑘   𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                                                                            
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Sensible heat of containers 

Crates, which are inside the storage chamber increase the amount of heat circulating inside the 

storage room causing deviations in the storage room temperature. The containers used for storage 

of the tomatoes are 500 mm long × 300 mm wide × 230 mm high and each weigh approximately 

1.8 kg with specific heat of 1.67 kJ. 𝑘𝑘𝑘𝑘−1. The containers in this study are packed with fresh 

tomatoes at the farm at ambient temperature of 32℃ and brought to the storage chamber for cooling 

12-14 ℃ . Three hundred and six crates can fit inside the storage chamber. 

Q =
m × cp(T2 − T1)

3600 × 𝑛𝑛
                                                                                                                 (7.2)            

Where: m = mass of product to be cooled [kg], 

           cp = Specific heat of crates[KJ. 𝑘𝑘𝑘𝑘−1], 

           𝑛𝑛   = operation time [hrs], 

          T2 =   Storage temperature of products in crates [℃ ], and                                        

           𝑇𝑇1  = Initial crates temperature [℃], 

On the first day, the temperature will decrease from 32℃  to 15℃  and therefore the sensible heat 

of containers will be: 

Q =
306 × 1.8 × 1.67(32 − 15)

3600 × 16
= 0.271 kW  is the sensible heat of containers                              

On the second day, the temperature will decline to 14℃  from 15℃  and therefore the sensible heat 

of containers will be: 

Q =
306 × 1.8 × 1.67(15 − 14)

3600 × 16
= 0.016 kW 

Field heat 

Field heat is the heat removed from the freshly harvested tomatoes by introducing into the cold 

store by reducing the field temperature of the tomatoes to the desired storage temperature. Field 

heat in the case of this study, therefore, is the amount of heat removed from the tomatoes as they 
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cool from initial harvest temperature to final storage temperature. The mass of the tomatoes is 3 

825 kg and the operating time is assumed at 16 hours. The specific heat of tomatoes is 4.02 

kJ. 𝑘𝑘𝑘𝑘−1) and the field heat is calculated as from the equation: 

Q =
m × cp(T2 − T1)

3600 × 𝑛𝑛
                                                                                                              

 Where: 

m = mass of product to be cooled, kg 

cp = Specific heat of  tomatoe , k J. 𝑘𝑘𝑘𝑘−1 

𝑛𝑛   = operation time, hrs 

 T2 =   Storage temperature of products in crates,℃                                                                     

  𝑇𝑇1  = Initial product in crates temperature, ℃ 

On the first day, the temperature will decline from 32℃  to 15℃  and therefore the field heat of 

containers will be: 

Q =
3825 × 4.02(32 − 15)

3600 × 16
= 4.504 kW                                                                                      

On the second day, the temperature will decline to 14℃  from 15℃  and therefore the field heat of 

containers will be: 

Q =
3825 × 3.99(15 − 14)

3600 × 16
= 0.265 kW                                                                                      

Heat loss through walls and roofs 

In a storage chamber, there is heat transfer because of leakages between the outside air and inside 

air through the walls and the roof as a result of the temperature gradient between the outside and 

inside temperature and is computed from the equation:  

Q =
𝑘𝑘 × A(T2 − T1)

x
                                                                                                                 (7.3)                  

   Where: k = Thermal conductivity [W.𝑚𝑚−1.𝐾𝐾−1], 
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               A = Surface area [ 𝑚𝑚2], 

               𝑥𝑥   = Thickness of insulation material [m], 

             T2 =   Storage temperature of products in crates[℃ ], and                                        

              𝑇𝑇1  = Initial product in crates temperature [℃], 

The walls are 2.0 m high and × 1.98m wide and 1.825m high x 1.98m long the roof is 1.98 m wide 

× 2.0 m length. The insulation material is polyurethane with thermal conductivity of 0.026 

W.𝑚𝑚−1. 𝐾𝐾−1 and the thickness of the insulation is 60 mm. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = (6𝑚𝑚 × 4𝑚𝑚) + (6𝑚𝑚 × 2.4 𝑚𝑚 × 2) + (4𝑚𝑚 × 2.4𝑚𝑚 × 2 ) = 72 𝑚𝑚2 

Q =
0.026 × 72(32 − 15)

0.05
= 0.637 kW                                                                              

Heat loss through floor area  

The heat loss through the floor is given by the formula according to Albright (1990). 

     𝑄𝑄𝑓𝑓 = 𝐹𝐹𝐹𝐹(𝑇𝑇𝑜𝑜 −  𝑇𝑇𝑖𝑖)                                                                                                        (7.4) 

Where F = perimeter heat loss factor [W.m-1. K-1], and 

           P = storage chamber perimeter [m], (Albright, 1990).  

The perimeter heat loss factor of 1.6 W.m-1. K-1 is used. The perimeter, P of the floor is obtained 

by the summation of the dimensions of the rectangular storage chamber as: 

𝑃𝑃 = (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑚𝑚) × 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ(𝑚𝑚)) × 2 = (6 𝑚𝑚 × 2  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) +  (4 𝑚𝑚 × 2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 20 𝑚𝑚 

With values F = 1.6 W.m-1. K-1 and P = 20m 

𝑄𝑄𝑓𝑓 = 1.6 𝑊𝑊.𝑚𝑚−1.𝐾𝐾−1  × 20 𝑚𝑚 × (32 − 15) = 0.544 𝑘𝑘𝑘𝑘 

Air infiltration 

Air-change heat load rises from warm air entering the storage chamber every time the door is 

opened. The temperature of such air has to be reduced to the storage temperature and any water 

that condenses has to be compensated. The infiltration (air-change load) is the heat gain through 
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doorways from air exchange. In this study, the width of the door is 0.55 m and the height are 1.8 

m. PVC will cover the door entrance. 

Air change load: 

𝑃𝑃𝑎𝑎 = 𝑚𝑚𝑎𝑎(ℎ𝑎𝑎 − ℎ) + 𝑚𝑚𝑤𝑤𝐶𝐶𝑝𝑝𝑝𝑝(𝑇𝑇𝑎𝑎 − 𝑇𝑇)                                                                                        (7.5)   

Where Pa = air change load [W], 

ma = mass of air entering the chamber every hour [kg. s-1], 

ha = enthalpy of ambient air [kJ.kg-1], 

mw = mass of water condensing in the chamber every hour [kg], 

h = enthalpy of air in the storage chamber [kJ.kg-1], 

Cpw = specific heat capacity of water [kJ.kg-1. ºC-1], 

Ta = ambient air temperature [°C], and 

T = air temperature inside the chamber [°C]   

Assuming that ha = 50 kJ.kg-1,                                                                    

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑚𝑚𝑎𝑎) =
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴𝐴𝐴𝐴𝐴 × 3600𝑠𝑠
                                     (7.6)                 

=
53.4 𝑚𝑚3

0.874 𝑚𝑚3.𝑘𝑘𝑘𝑘−1 × 3600𝑠𝑠
=

61.098 𝑘𝑘𝑘𝑘
3600𝑠𝑠

 

(𝑚𝑚𝑤𝑤) = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤                                                                                    (7.7) 

 

Maximum condensation occurs when temperature drops to wet bulb temperature of outside ambient 

air at 17.7℃. 

 𝑚𝑚𝑤𝑤 =
(12.7 − 7)𝑔𝑔.𝑘𝑘𝑘𝑘−1

3600 𝑠𝑠
× 61.098 𝑘𝑘𝑘𝑘 = 0.0967 𝑔𝑔. 𝑠𝑠−1 =  9.67 × 10−5 𝑘𝑘𝑘𝑘. 𝑠𝑠−1 

𝑚𝑚𝑎𝑎(ℎ𝑎𝑎 − ℎ)  = 0.01697 𝑘𝑘𝑘𝑘. 𝑠𝑠−1(50 − 20.5)𝑘𝑘𝑘𝑘.𝑘𝑘𝑘𝑘−1 = 0.5006 𝑘𝑘𝑘𝑘 
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 𝑚𝑚𝑤𝑤𝑐𝑐𝑝𝑝𝑝𝑝(𝑇𝑇𝑎𝑎 − 𝑇𝑇) = 9.67 × 10−5 𝑘𝑘𝑘𝑘. 𝑠𝑠−1 × 4.18 𝑘𝑘𝑘𝑘.𝑘𝑘𝑘𝑘−1℃−1(32 − 12)℃ = 0.0081 𝑘𝑘𝑘𝑘 

𝑃𝑃𝑎𝑎 = 0.5087𝑘𝑘𝑘𝑘 ≈ 0.51 𝑘𝑘𝑘𝑘 

Heat from operators and lights 

The operators or people who pack and unpack tomatoes in the storage chamber release heat and 

the lights, which are switched on during packing and unpacking of product. Miscellaneous heat 

loads are the heat loads generated by labour, equipment such as fans, electric motor and lights. 

Heat evolved by operators and lights is obtained by assuming that two operators will enter the 

cooling chamber at a time as it is relatively small and the chamber will only have one light of 60 

W. Each operator will spend four hours loading and unloading crates and one person produces 

about 1000 kJ.hr-1. 

𝑄𝑄𝑂𝑂&𝐿𝐿 = 𝑄𝑄
        3600 ×𝑛𝑛

                                                                                                                (7.8)                       

Q = Total amount of heat that lights and operators release in the chamber [kW], and   

 n = number of hours per day [hours], 

 Heat evolved by operators and lights is determined as: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 2 × 1000 × 4

= 8000 𝑘𝑘𝑘𝑘 

𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
8000𝑘𝑘𝑘𝑘

        16 × 3600
= 0.14 𝑘𝑘𝑘𝑘 

In addition, the heat due to lighting 

 

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 60𝑊𝑊 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 60 𝑊𝑊 = 0.006 𝑘𝑘𝑘𝑘 

 

Total heat due to lights and operators is: 

Total heat due to lights and operators = 0.14 + 0.006 = 0.20 𝑘𝑘𝑘𝑘 
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Table 7.5 Maximum design cooling load 

Heat source  Day 1  Day 2 Total 

Sensible heat 

(containers) 

0.27 kW 0.016 kW 0.287 kW 

Field heat (tomatoes) 4.504 kW 0.265 kW 4.769 kW 

Heat of respiration 0.577 kW 0.319 kW 0.896 kW 

Wall and roof heat gain 0. 637 kW 0. 637 kW 

Floor heat gain 0. 544 kW 0. 544 kW 

Air-change load 0.509 kW 0.509 kW 

Lights 0.06 kW 0.06 kW 

Labour 0.14 kW 0.14 kW 

Fan 0.38 kW 0.38 kW 

Total 8.22 kW 

 

The same procedure was used to calculate the heat load when the storage chamber is filled to one 

third of its capacity on the first day. Table 7.6 shows the cooling loads for one-third capacity. 

Table 7.6 Cooling load at one-third capacity 

Heat source  Day 1  Day 2 Total 

Sensible heat (containers) 0.090 kW 0.005 kW 0.095 Kw 

Field heat (tomatoes) 1.501 kW 0.088 kW 1.589 kW 

Heat of respiration 0.192 kW 0.106 kW 0.298 kW 

Wall and roof heat gain 0. 637 kW 0. 637 kW 
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Floor heat gain 0. 544 kW 0. 544 kW 

Air-change load 0.509 kW 0.509 kW 

Lights 0.06 Kw 0.06 kW 

Labour 0.14 Kw 0.14 kW 

Fan 0.38 Kw 0.38 kW 

Total 4.252 kW 

 

Design load = 1.1 × Actual load (Thompson, 2004), therefore design load is calculated as: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1.1 × 4.252 𝑘𝑘𝑘𝑘 = 4.677 𝑘𝑘𝑘𝑘 

7.6 APPENDIX 7.6: Determination of ventilation rate and fan selection 
 
Mechanical ventilation systems using fans and air inlets and outlets are required for temperature 

regulation in the storage chamber. In the psychrometric unit, the fan attached to the indirect heat 

exchanger evaporates water from the cooling pads by blowing air across the pads thus creating an 

evaporative cooling effect. The second ventilation fan at the inlet of the storage chamber blows out 

warm and wet air whilst introducing cool and dry fresh air. The ventilation rate 𝑉𝑉 is calculated 

from equation 7.9. 

             𝑉𝑉 =
 𝑞𝑞𝑠𝑠

1006𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑖𝑖)
                                                                                                (7.9)   

Where V = ventilation rate required [m3. s-1], 

ρair = density of air [kg.m-3], 

To = outside air temperature [°C], and 

Ti = inside air temperature [°C],  

𝑉𝑉 =
4677 𝑊𝑊

1006 × 1.105 × (32 − 14) = 0.234 𝑚𝑚3. 𝑠𝑠−1 
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Fan selection for storage chamber 

Using a ventilation rate of 0.234 m3. s-1 a 308,7/6-6/P3HL/25/PA @1.440min-1 @ 100% 

Immersion fan was selected that provides an air-flow rate of 0.278 m-3s-1 at static pressure of 68.27 

Pa with a power rating of 0.290 kW and air velocity of 3.6 m. s-1. Its performance curve is shown 

in Figure 7.5 below. 

 

Figure 7.5 Performance curve for evaporative cooling fan  

7.7 APPENDIX 7.7: Evaporative cooling pads design 
 
The amount of cooling required, the required airflow rate and the air velocity have already been 

determined in Appendix 7.4 and Appendix 7.5 and face velocity was obtained from literature. To 

size the cooling pads equation 7.10 determines the area of cooling pads: 

              𝐴𝐴𝑝𝑝 =  
𝑄𝑄   
𝑣𝑣   

                                                                                                                            (7.10) 

Where Ap = cooling pad area [m2], 

Q = volumetric flow rate [m3. s-1], and 

            v = recommended face velocity [m.s-1]. 
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Assuming a face velocity of 1.5 m. s-1 and a cooling pad thickness is 0.15 m. In Appendix 7.5, Q 

was determined as 0.234 m3. s-1.        

𝐴𝐴 =
0.234 𝑚𝑚3. 𝑠𝑠−1

1.5 𝑚𝑚. 𝑠𝑠−1
= 0.156  𝑚𝑚2 

The available cooling pads are size standardized with options of choosing from: Height: (500 mm, 

600 mm, 900 mm,1000 mm) +(30 mm height Water distribution pad), Width: (300 mm, 600 mm) 

and Thickness: (50 mm, 75 mm, 100 mm, 150 mm). From the available cooling pad sizes the 

smallest option will provide 0.5 m x 0.3 m = 0.15 m2 which is very close to what is required. 

Alternatively using coal that was readily available 

𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑎𝑎𝑎𝑎  𝐴𝐴 =  𝐿𝐿 × 𝑊𝑊                                                                7.11   

Where L = length of cooling pad [m], and  

 W = width of cooling pad [m]. 

 In choosing square shaped cooling pads implies that the length and width are the same 

𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝐿𝐿 = 𝑊𝑊 = �0.156  𝑚𝑚2 = 0.395 𝑚𝑚 ~0.40 𝑚𝑚 

The pad volume and amount of charcoal required, assuming a bulk density of charcoal of 200 
kg.m-3 are derived from equations 7.12 and 7.13:  

              𝑉𝑉 =  𝐴𝐴 × 𝑡𝑡                                                                                                                        (7.12) 

Where V = volume of each cooling pads [m3], 

 A = air flow area [m2], and 

 t = thickness of the cooling pads [m]. 

𝑉𝑉 = 0.156 𝑚𝑚2  ×  0.15 𝑚𝑚 =  0.0234 𝑚𝑚3 

Mass of charcoal per cooling pad is given by equation 7.13: 

              𝑚𝑚 =  𝑉𝑉 ×  𝜌𝜌                                                                                                           (7.13) 

Where m = mass of charcoal per cooling pad [kg] 

 V = volume per cooling pad [m3] 

 ρ = bulk density of charcoal [kg.m-3] 

 𝑚𝑚  = 0.0234 𝑚𝑚3 × 200 𝑘𝑘𝑘𝑘.𝑚𝑚−3 = 4.68 kg 
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7.8 APPENDIX 7.8: Determination of head losses and pump selection  
 
Centrifugal pumps deliver water to the cooling pads. Centrifugal pumps handle small discharges 

and small heads such as the discharge found for this evaporative cooling unit. The required 

discharge was 0.115 m3.hr-1 and the total head against which the pump must discharge was 3.33 m 

and a net positive suction head of 8.31 m. The power requirement for the pump was determined as 

0.072 kW. From these specifications, the smallest pump in the local market satisifying the 

requirements were Pedrollo PVm 55 centrifugal pump supplied complete with a 0.26 kW motor.  

 The total head against which the pump must discharge 

             𝐻𝐻𝑇𝑇 =  𝐻𝐻𝑆𝑆 +  𝐻𝐻𝐹𝐹𝐹𝐹 +  𝐻𝐻𝐷𝐷 + ℎ𝐹𝐹𝐹𝐹 +  𝐻𝐻𝐸𝐸𝐸𝐸                                                                          (7.14) 

 Where HT = total head against which the pump must discharge [m], 

HS = static suction lift [m], 

hFS = head loss due to friction in the suction pipe [m], 

HD = static delivery lift to the discharge point into the water distribution bath at the top of 
the cooling pads [m], 

hFD = friction losses in the delivery pipe [m], and 

HEX = Pressure loss in the heat exchanger [m] 

Discharge = 0.117 m3.hr-1, 

HS = 0.72 m, 

HD = 1.1 m (maximum), 

 

hFD = 50 Pa. m-1 for a 15 mm pipe delivering 0.117 m3.hr-1 (Figure 7.3) and delivery pipe length 
is 3.3 m. 

ℎ𝐹𝐹𝐹𝐹 =  50 𝑃𝑃𝑃𝑃.𝑚𝑚−1  × 3.3 𝑚𝑚 ×
10 𝑚𝑚

100 000
= 0.0165 𝑚𝑚 

hFS = 50 Pa. m-1 (from Figure 7.3) and suction pipe length is 0.7 m 

ℎ𝐹𝐹𝐹𝐹 =  50 𝑃𝑃𝑃𝑃.𝑚𝑚−1  × 0.7 𝑚𝑚 ×
10 𝑚𝑚

100 000
= 0.0035 𝑚𝑚 

 

HEX = 0.7 m (From Table 7.3) Specifications for Lytron Heat Exchangers)  
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The pump head losses are summarized in Table 7.7. 

 

 

 Table 7.7 Pump head losses 

Component Head loss (m) 

Heat exchanger  0.7 

Delivery pipe friction 0.0165 

Static delivery lift   1 

Suction pipe friction 0.035 

Suction pipe lift 0.7 

Total head loss 2.5 m 

 

Net positive suction head for the pump (NPSH) available: 

              𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  ℎ𝑑𝑑− ℎ𝑓𝑓  − ℎ𝑣𝑣𝑣𝑣−ℎ𝑠𝑠                                                                            (7.15) 

Where hd = atmospheric pressure [m], 

hf = suction line losses [m], 

hvp = vapour pressure of water [m], and 

hs = static suction head [m] 

At Pietermaritzburg elevation of 750 m, hd = 9.4 m and hvp = 0.32 m for water at 25 °C. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 9.4 𝑚𝑚 − 0.075 𝑚𝑚− 0.32 𝑚𝑚 − 0.7 𝑚𝑚 = 8.31 𝑚𝑚 

 

Pump Power Requirements 

             𝑃𝑃 =
𝜌𝜌 ×  𝑔𝑔 ×  𝐻𝐻 × 𝑄𝑄

36 000 ×  𝜂𝜂
                                                                                                       (7.16) 

Where P = pump power requirement 
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 ρ = density of water (kg.m-3) 

 g = acceleration due to gravity (kg.m. s-2) 

H = head required (m) 

 Q = flow discharge (m3.hr-1) 

η = pump efficiency, 

η = 0.84 

𝑃𝑃 =  
1000 ×  9.81 ×  2.3 × 0.115

36 000 × 0.84
= 0.086 𝑘𝑘𝑘𝑘  

 

The pump selected was a Pedrollo PVm 55. 



 

222 
 

Figure 7.6 Pump characteristic curves and performance data 
 

 

 

7.9 APPENDIX 7.9: Primary fan specifications  
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A fan with the specifications shown in Table 7.8 was mounted on the storage chamber with the 

centre at 492.5 mm above the floor and 2.252 m from the far-left end corner. 

Table 7.8 Primary Fan Specifications 

Economy Code 
Power Rating 

(kW) 

Flow Rate 

(m3. s-1) 

Size (mm) 

 H × W × Ø 
Grill Code 

OW354 0.12 0.25 340 × 340 × 260 OW595 

Unlike the rest of the psychrometric unit components, the fan was directly mounted on the storage 

chamber after which the psychrometric unit was aligned and attached to the side of the storage 

chamber. The primary fan was working on the South African standard frequency and voltage (50 

Hz, 220 volts) while a transformer was necessary for the secondary fan to drop the voltage from 

240 V to 220 V.  

7.10 APPENDIX 7.9: Heat exchanger design calculations 
The following image shows the enclosure for the heat exchanger and the cooling pads. 

 

The psychometrics unit tunnel constructed from M14-20 indirect heat exchanger and three direct 

cooling pads (Pad 1, 2 and 3) (a) structural schematic, (b) arrangements 

 
             𝑄𝑄 = 𝑈𝑈𝑈𝑈∆𝑇𝑇 =  ṁ𝐶𝐶𝑝𝑝(𝑇𝑇𝑎𝑎𝑎𝑎 −  𝑇𝑇𝑎𝑎𝑎𝑎)                                                                                       (7.17) 

             ṁ =
𝑉𝑉
𝜌𝜌

                                                                                                                                    (7.18) 

Where V = required ventilation rate [m3. s-1], 

ρ = density of air [kg.m-3], 

Cp = specific heat capacity of air at inlet [kJ.kg-1. ℃-1], 

Tai = temperature of air at the inlet section of the heat exchanger [℃], 

Tao = desired temperature of exiting air [℃], and 
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ṁ = mass flow rate of air [kg. s-1]  

ρ = 1.020 kg.m-3 

Cp= 1.006 kJ.kg-1. ℃-1 

V = 0.234 m3. s-1  

Tai-Tao = 32℃ - 25℃ = 7℃ 

Q =  0.234 m3s−1 ×  1.020 kg. m−3 × 1006 J. kg−1.℃−1  × 7 ℃ 

=  1681 W 

The heat exchanger was selected according to the heat exchanger selection procedure for Lytron 

heat exchangers (Figure 7.6). 

𝑄𝑄
𝐼𝐼𝐼𝐼𝐼𝐼

=  
1342 𝑊𝑊

(32 − 25)℃
= 192 𝑊𝑊.℃−1 

Where ITD = initial temperature difference (inlet air temperature – inlet water temperature). From 

Lytron heat exchanger catalogue specifications in Figure 7.6, model number M14–120 was 

selected.  From the performance graphs for M14 - 120 in Figure 7.6, the pressure drop of water 

flowing in the heat exchanger was found to be 0.7 m. 
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Figure 7.7 Selection procedure for Lytron heat exchanger 
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