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Abstract 

Drought is one of the least understood and hazardous natural disasters that leave many parts of the 

world devastated. To improve understanding and detection of drought onset, remote sensing 

technology is required to map drought affected areas as it covers large geographical areas. The 

study aimed to evaluate the utility of a cost-effective Landsat 8 imagery in mapping the spatial 

extent of drought prone Eucalyptus dunnii plantations. The first objective was to compare the 

utility of Landsat spectra with a combination of vegetation indices to detect drought affected 

plantations using the Stochastic gradient boosting algorithm. The test datasets showed that using 

Landsat 8 spectra only produced an overall accuracy of 74.70% and a kappa value of 0.59. The 

integration of Landsat 8 spectra with vegetation indices produced an overall accuracy of 83.13% 

and a kappa of 0.76.  The second objective of this study was to do a trend analysis of vegetation 

health during drought. The normalized difference vegetation index (NDVI) values fluctuated over 

the years where 2013 had the highest value of 0.68 and 2015 the lowest NDVI of 0.55 and the 

normalized difference water index (NDWI) had the lowest value in 2015. Most indices showed a 

similar trend where 2013 had the highest index value and 2015 the lowest. The third objective was 

to do a trend analysis of rainfall and temperature during drought. The rainfall trend analysis from 

2013 to 2017 indicated that the month of February 2017 received the highest rainfall of 154 mm. 

In addition, July of 2016 received the highest rainfall compared to 2013, 2014, 2015 and 2017 with 

rainfalls of 6.4 mm, 0.6 mm, 28 mm, and 1 mm, respectively. The temperature trend analysis from 

2013 to 2017 indicated that December 2015 had the highest temperature of 28 ° C compared to 

December of 2013 2014, 2016 and 2017 with temperatures of 24°C, 25°C, 27°C, 24°C, 

respectively. Furthermore, it was also noted that June 2017 had the highest temperature of 23°C 

while June 2015 had the lowest at 20°C.  The fourth objective of this study was to compare the 

utility of topographical variables with a combination of Landsat vegetation indices to detect 

drought affected plantations using the One class support vector machine algorithm. The multiclass 

support vector machine using Landsat vegetation indices and topographical variables produced an 

overall accuracy of 73.86% and a kappa value of 0.71 with user’s and producer’s accuracies 

ranging between 61% to 69% for drought damaged trees, while for healthy trees ranged from 84% 

to 90%. The one class support vector machine using Landsat vegetation indices and topographical 

variables produced an overall accuracy of 82.35% and a kappa value of 0.73. The one class support 
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vector machine produced the highest overall accuracy compared to the multiclass SVM and 

stochastic gradient boosting algorithm. The use of topographical variables further improved the 

accuracies compared to the combination of Landsat spectra with vegetation indices. 

 

Keywords: Drought, remote sensing, vegetation indices, Multiclass support vector machine, One 

class support vector machine. 
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1     General Introduction 

1.1 Introduction  

Eucalyptus is one of the most commonly grown hardwood genus worldwide, covering more than 

19 million hectares of land (Albaugh et al., 2013). These species can be grown under varying 

climatic environments for products that include, among others; pulp and paper, charcoal, 

fuelwood, and solid wood products. In South Africa, forest plantations cover 1.2% of the countries 

land area of which 515 000 hectares are planted to Eucalyptus (Albaugh et al., 2013; García et al., 

2017). These plantations are grown in a wide range of environments particularly those that are 

situated in the subtropical and humid warmer temperate regions. Commercial plantations are 

threatened by adverse weather conditions, particularly in developing countries, which are most 

vulnerable to drought events. During drought, there is generally a significant decline in rainfall 

over more extended periods of time. About 5% of Africa’s total cultivated land is said to be under 

irrigation therefore, making the continent extremely vulnerable to drought (Belal et al., 2014). 

Severe drought events negatively impact agriculture, especially in large geographical areas in 

Africa where people rely on rainfed agriculture (Masih et al., 2014). During the last decade, the 

frequency and impact of adverse weather in the agricultural community in southern Africa have 

increased and the most common type of adverse weather is drought. Hydrological, meteorological, 

agricultural and socioeconomic droughts are the four drought categories characterised in literature. 

Hydrological drought occurs when there is a deficiency of water in the hydrological system, this 

is usually experienced when there are extremely reduced stream flows in rivers and reduced levels 

in lakes, reservoirs, and ground water. This type of drought has a huge impact on agricultural 

productivity and the economy of many countries in the world (Van loon, 2015). Meteorological 

droughts occur when there is a lack of rainfall over an extended temporal period and often 

exacerbated by other meteorological surroundings such as increased temperatures, increased 

evapotranspiration rates and dehydrating winds (Spinoni et al., 2020). Furthermore, 

meteorological droughts influence hydrological droughts as they significantly reduce the 

availability of water. This affects the quality of water in rivers as the assimilative or dilution 

capacity is significantly reduced (Wolff and Van vliet, 2021). This may result in domestic and 

industrial waters being rationed to manage the limited supply of water (Mosley, 2015).  
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 Agricultural droughts, on the other hand, are caused by a shortage of rainfall and inadequate soil 

water supply, this results in crop failure, pasture and economic loss and may expand the incidence 

of pests and disease that affect crops, livestock and forage (Cao et al., 2019; Meza et al.,2021). 

Lastly, socioeconomic droughts refer to a situation where water supply from a regional water 

source system cannot meet water demand (Liu et al., 2020). However, this study will focus on 

agricultural drought and its impact on valuable commercial forest timber resources.  

The recent 2015-2016 drought in South Africa was attributed to the El Niño southern oscillation 

(ENSO) (Monyela et al., 2017). This was regarded as the worst drought in 23 years, affecting the 

country’s water reserves, which resulted in certain parts of the country been declared as drought 

disaster areas (Schreiner et al., 2018).  A study by Ngaka, (2012) indicated that drought is a major 

disaster in South Africa in terms of its impact on people and total economic loss. This was also 

evident during the recent drought as it resulted in South Africa moving from exporting 

approximately 1 million tons of agricultural products to neighbouring countries to becoming a 

net importer of crops (Baudoin et al., 2017). Furthermore, this also had serious socioeconomic 

impacts as it left thousands of people unemployed.  One particular sector threatened by drought 

and its subsequent impact is forestry, as it is heavily reliant on water resources both, above and 

below ground (Hais et al., 2019; Idris and Mahrup, 2017).  

The South African commercial forest industry is highly sensitive to adverse weather as about 

1.5% of the country’s land is suitable for tree crops under the current climate (García et al., 2017). 

Forest plantations are concentrated in areas that receive higher rainfall and contribute a large 

share of total streamflow (García et al., 2017). South Africa is regarded as a semi-arid country 

with an average yearly precipitation of approximately 460 mm (Dallas et al., 2014). With the 

country’s limited water resources forest plantations are under threat, as drought significantly 

affects the production of forest plantations. For example, Xulu et al., (2018) found that the recent 

2015-2016 drought resulted in the decline of eucalyptus productivity in the east-coast of the 

South African Zululand forestry region. Furthermore, the study suggested that some commercial 

forest plantations in this region were projected to be affected by frequent and severe droughts, 

bringing new challenges to the commercial plantation production. Considering the recent drought 

events, understanding and monitoring of ENSO related droughts is of great importance as it 

informs decision making for adapting to drought hazards. In this regard, remote sensing is a 

useful tool for studying temporal evolution and drivers of drought due to limited access and 
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inconsistency of drought related in-situ data (Lausch et al., 2018). Conventional methods of 

assessing and monitoring drought events often depend on readily available rainfall data, which 

is limited in most parts of the African continent and may also be, inaccurate and challenging to 

obtain in near real-time (Aghakouchak et al., 2015). In contrast, remote sensing satellite sensors 

are always accessible and can be utilized for detecting drought onset episodes, its magnitude and 

duration (Dash et al., 2017). For instance, Nasilowska et al., (2019) used vegetation indices 

computed from Landsat 8 OLI imagery (0.43-1.38) covering the 2014 and 2015 growing period. 

The study attempted to establish the most important factors that affect drought resistance by 

testing the biophysical and physical parameters of trees, including forest habitat characteristics. 

The study found that mid-infrared based indices such as the Normalized difference moisture 

index (NDMI) and Moisture stress index were useful for monitoring water shortage in forests. It 

also found that ground water and rainfall shortfalls affect forest conditions differently and is 

dependent on the type of soil. Furthermore, this study utilized algorithms such as index 

differences, PCA analysis and ANOVA statistical analysis. The index difference approach was 

found to be simple and functions effectively without extensive in situ field data. Similarly, Rousta 

et al., (2020) utilized MODIS derived Normalized Difference Vegetation Index (NDVI), 

Tropical Rainfall Measuring Mission (TRMM) data, Vegetation Condition Index (VCI) and Land 

Surface Temperature (LST) indices with a 1km resolution to determine the impacts of drought 

on vegetation from 2001 to 2018 in Afghanistan. Based on VCI data, in 2009 and 2010 the area 

experienced 28% and 21% drought, respectively. In addition, it also found a relatively high 

correlation between NDVI and VCI, but lower between NDVI and precipitation. Furthermore, 

LST played an important role in inducing the NDVI values, therefore, LST and precipitation 

were recommended for effectively capturing the correlation between drought and NDVI. The 

study successfully used NDVI, VCI, LST and rainfall indices to investigate the impact of drought 

on vegetation and showed that these indicators are a reliable method of drought monitoring. 

Lastly, Richman et al., (2016) examined the roles of temperature, precipitation and El Niño in 

characterizing both current and previous drought events. The logistic regression and primal 

estimated sub gradient solver were utilized to determine drought. The logistic regression 

produced an overall accuracy of 81.14%. The use of remote sensing is imperative in regions that 

lack continuous in-situ data monitoring however, there have been further developments in remote 

sensing technology involving the utilization of algorithms and remote sensing data to map 
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drought prone areas. To predict drought, Kuswanto and Naufal (2019) derived a 3-month 

standardized precipitation index (SPI) from TRMM and the Modern-ERA Retrospective 

Analysis for Research and Applications (MERRA-2). The classification methods used were 

Classification and Regression Trees (CART) and Random Forest (RF). However, 

using multiple predictor analyses, several predictors showed CART to be less predictive than 

RF. The accuracy of the prediction using RF was 100% with an average Area Under the Curve 

(AUC) of about 0.8 whereas the AUC for CART was 0.75 with an accuracy of over 80%. The 

analysis showed that using MERRA-2 dataset predicted by RF is effective in predicting drought. 

Furthermore, Das et al., (2021) used Landsat OLI/TIRS images (10.6 - 11.19) to measure LST 

and soil moisture index (SMI) to examine drought conditions in tea plantations. Sentinel-

2 satellite images were used to develop maps for NDMI, NDVI, Leaf Area Index (LAI), as well 

as yield maps. A Pearson’s correlation and simple linear regression analyses were run to 

determine the relationship between soil moisture and vegetation canopy moisture as well as to 

illustrate the relationship of LAI and time-series information for predicting yield during a drought 

season. Based on this study, the frequency for the Sylhet station was 38.46% during near-normal 

conditions, 35.90% during normal conditions, and 25.64 % during moderately dry conditions. 

Similarly, the Sreemangal station illustrated frequencies of 28.21%, 41.02%, and 30.77% for 

near-normal, normal, and moderately dry months, respectively. For the drought periods 2018-

2019, 2019-2020 and 2020-2021, correlation coefficients between SMI and NDMI were 0.84, 

0.77 and 0.79, respectively. This illustrated a robust association between soil and plant canopy 

moisture. In this study, satellite remote sensing with SPI was shown to be valuable for land use 

planners, policy makers, and scientists to determine drought stress in tea estates. The use of 

remote sensing data is very useful in developing countries for planning and undertaking drought 

risk assessments. This can be used to drive positive change through formulating drought policies 

that focus on adapting to drought rather than on providing relief to the people affected. The 

commercial forestry sector can also benefit from this through early detection and to critically 

assess the impacts before more profound structural changes occur.  
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1.2 Research Problem 

The recent 2015-2016 drought affected many parts of the country leaving many people devastated 

and the agricultural sector taking a huge knock due to declining agricultural yields. The 

commercial forestry sector was affected by this phenomenon resulting in reduced Eucalyptus 

growth and productivity. The High flats region in KwaZulu-Natal is predominantly an agricultural 

area with commercially grown Eucalyptus dunnii plantations. Certain forest stands within the 

plantation were found to be affected by drought with visible tree diebacks. The impacts of the 

2015-2016 drought on forests have not been studied in detail and are uncertain. While a few studies 

by (Xulu et al.,2018; Xulu et al.,2019) have looked at drought influence on commercial plantations 

using MODIS. None of the studies  conducted in the country have studied the impacts of drought 

using multiple variables such as Landsat 8 spectra, vegetation indices and climatic data.  This has 

prompted a study to be conducted in the area to better understand the impacts of drought by 

mapping drought prone parts of the plantation. This has enabled remote sensing technology to be 

used to allow for supervised and unsupervised classification of drought. 

1.3 Aim and Objectives 

The study aims to evaluate the utility of a cost-effective Landsat 8 (0.43 – 1.38µm) imagery in 

mapping the spatial extent of drought prone Eucalyptus dunnii plantations and to contribute in 

improving techniques for drought analysis. This will be achieved through the subsequent 

objectives: 

1. Comparing the utility of Landsat spectra with vegetation indices to classify drought affected 

plantations using the Stochastic gradient boosting.  

2. To assess the trend of vegetation health, rainfall and temperature over the duration of this study 

3. Compare the utility of topographical variables and vegetation indices as input data sources for 

one class and multiclass support vector machines analysis. 

1.4   Key research questions: 

1. Is the use of spectral bands only sufficient as input data for stochastic gradient boosting to 

classify drought in forest plantations? 

2. Will the integration of spectral bands and drought indices improve the overall accuracy of 

drought classification using the Stochastic gradient boosting? 
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3. Will the integration of environmental variables, spectral bands and vegetation indices further 

improve the overall accuracy of drought classification using the one class support vector 

machine algorithm? 

 

1.5  General Structure of the Thesis 

This thesis is made up of four chapters. The first chapter is made up of the general introduction 

which includes the aim and objectives. The second and third chapters consist of two publishable 

standalone research papers and Chapter four comprises of a brief summary of the study, conclusion 

and a review of  the aim and objectives. Below is a brief summary of both chapters two and three. 

Chapter 2 is the first publishable paper where drought stress on commercial Eucalyptus was 

detected using satellite remote sensing and stochastic gradient boosting. This includes a trend 

analysis of temperature, rainfall as well as the classification of drought affected compartments 

using remote sensing algorithms.    

Chapter 3 is the second publishable paper and focuses on improving drought classification using 

local environmental variables and the one class support vector machine algorithm. Landsat 8 

spectral information and drought indices were also used as input data sources. 
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2 Chapter Two: Detecting drought stress in Commercial Eucalyptus 

plantations using satellite remote sensing and the stochastic gradient 

boosting algorithm 

Abstract 

Eucalyptus species are one of the most significant forest species that are commercially grown 

worldwide, covering area of about 20 million ha. This study compared the utility of Landsat spectra 

with a combination of vegetation indices to detect drought affected plantations using the Stochastic 

gradient boosting algorithm. Using Landsat spectra only produced an overall accuracy of 74.70% 

and a kappa statistic of 0.59. The combination of Landsat spectra with vegetation indices produced 

an overall accuracy of 83.13% and a kappa statistic of 0.59. The study then conducted a trend 

analysis of vegetation health using key indices over the duration of this study. NDVI values 

fluctuated over the years where 2013 had the highest NDVI value of 0.7 and 2015 the lowest NDVI 

value of 0.55. The normalized difference water index (NDWI) in 2013 had the highest value of 

0.68 and NDWI in 2015 had the lowest value which was 0.50. Most indices showed a similar trend 

where 2013 had the highest index value and 2015 the lowest. Finally, a trend analysis of rainfall 

and temperature during drought was undertaken. The years 2013 to 2017 monthly rainfall trend 

analysis indicated that February 2017 received the highest rainfall of 154 mm. July of 2016 

received the highest rainfall of 55 mm compared to 2013 (6.4 mm), 2014 (0.6 mm), 2015 (28 mm) 

and 2017 (1 mm). It was also observed that in June 2017 no rainfall was recorded. The monthly 

temperature trend showed that December 2015 had the highest temperature of 28°C compared to 

December 2013 (24°C), 2014 (25°C), 2016 (27°C) and 2017 (24°C).  June 2017 had the highest 

temperature of 23°C while June 2015 had the lowest at 20°C.  The research undertaken showed 

that it is possible to classify drought prone plantations using a blend of remote vegetation indices 

and Landsat spectral bands. The year 2015 was deemed a drought year and this was attributed to 

below average rainfall and high temperatures for a long period of time. Using remote sensing tools 

and the stochastic gradient boosting algorithm, early mapping at the onset of drought on forest 

resources may allow for effective mitigation and protection management strategies. 
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2.1      Introduction 

Eucalyptus species are one of the most vital forest species that are commercially grown worldwide, 

covering a global surface of roughly 20 million ha (Barradas et al., 2018). In South Africa, 

commercial forests cover about 1.27 million ha of which 515 000 ha are planted to Eucalyptus 

(Albaugh et al., 2013; DAFF ,2017). The forest sector contributes approximately 1% to the gross 

domestic product (GDP) and employs around 165 900 workers and provides about  62 700 jobs 

directly  and 30 000  jobs indirectly (DAFF, 2017). Furthermore, the sector provides biomass for 

fuel and raw materials for pulp and paper manufacturing, timber mining, pole manufacturing, saw 

milling and composite board manufacturing (du Toit et al., 2017; Foli et al., 2014). Although 

forests are commercially exploited, they are vital sources of livelihoods to millions of people 

particularly those residing in rural  areas (Köhl et al., 2015). The majority of commercial forests 

in South Africa are located adjacent to rural areas where rural communities benefit through 

employment opportunities, access to grazing and harvesting of non-woody products (Bojang and 

Ndeso-Atanga, 2011). However, the forestry sector is identified as extremely vulnerable to 

climatic events, since they directly affect the productivity of forests thereby threatening the 

livelihoods of its dependents as well as stakeholder profits (Bottero et al., 2017; Law, 2014). 

Among the threatening natural impacts experienced in South African forestry such as wind, fire, 

hail and snow damage lies a much more lethal and widespread threat to forest productivity in 

general. Drought stress on forests, caused by prolonged periods of no rainfall has become a serious 

concern within the industry due to irregularity in occurrences and intensity of damage to forest 

resources. More specifically, the impact of drought to forest trees requires immediate response 

mechanisms to detect, diagnose and quantify affected regions for effective management solutions. 

However, determining such impacts using conventional approaches may prove challenging. 

Frequent monitoring of drought across all scales is important for the forest industry as it is used to 

influence decision making and reduce the risk of damage to forests (Xulu et al., 2018). Such 

practices may also improve our understanding of what triggers drought, so that useful forest 

management strategies can be continuously developed.  

During severe drought conditions, forest trees experience water stress (Hope et al., 2014). This 

poses a serious threat to the functioning, structure, and ecological value of forest ecosystems 

(Archaux and Wolters, 2006). However, forest trees react to water stress through the closure of 

stomata and a reduction in LAI to prevent further water loss (Assal et al., 2016). A decline in LAI 
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results in a reduction in photosynthetic ability and alters canopy structure (Zhang et al., 2017). 

This further leads to a reduced chlorophyll and water content in plant leaves (Clark et al., 2016). 

The closure of the stomata minimizes the ability of forest trees to take up carbon and this could 

result in tree mortality and forest dieback (Pasho et al., 2011). Since severe drought reduces forest 

productivity and tree growth and often weakens trees by decreasing their vigor, the impact of 

drought on forests may last for several years, which incurs high economic costs to the forest 

industry (Peltier et al., 2016). Droughts are complex natural hazards, and this is partly because 

their impacts spread over large geographical areas (Chopra, 2006). Although conventional in situ 

measurements have been used to monitor drought damage, they may not cover large areas as they 

require intense field observations which is labour intensive. However, remote sensing techniques 

provide high density data and improve in situ derived data. 

Remote sensing tools are very useful in detecting drought stress in forests, which is challenging to 

observe using conventional methods (Xie et al., 2008).  The two most common multispectral 

sensors that are used in drought studies are MODIS and Landsat satellites (Assal et al., 2016; 

Bastos et al., 2014; Hope et al., 2014; Huang and Anderegg, 2012). These remote sensing 

platforms are both suited for drought studies as they cover large geographical areas where access 

to ground measurements may be impossible, data is repeatable, cost effective and are reliable (Byer 

and Jin, 2017). In remote sensing studies, canopy water content can be used as an indicator of 

drought impact on forests (Ustin et al., 2012). For example, Asner et al., (2016) used a High-

fidelity imaging spectroscopy (HIFIS) (980 – 1160 nm) to estimate forest canopy water content 

during the 2011-2015 drought event in California. The HIFIS data was combined with 3D forest 

images derived from Light detection and ranging (LIDAR) to exclude non-forest canopy 

measurements and to allow for estimation of canopy water content. This data infusion method 

called laser-guided high-fidelity imaging spectroscopy permits establishing the quantity and 

forecast of forest canopy water content in three dimensions. A statewide supervised machine 

learning algorithm was used to scale up the aircraft-based canopy water content imagery to the full 

state level. Both the HIFIS and LIDAR data were acquired utilizing the Carnegie airborne 

observatory (CAO). The study found that during the drought about 10.6 Ha of forest experienced 

a significant decline in canopy water content. It was also found that a 30% canopy water loss 

occurred over 1 million hectares of forest affecting approximately 58 million trees. Although both 

MODIS and Landsat satellites were not utilized in this study, it is important to point out that using 
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CAO sensors can be costly as opposed to remote sensing platforms that have long-term data and, 

are open access. Therefore, this method may not be applicable in southern Africa due to cost 

constraints. Other methods used to monitor drought impact on forests are the application of 

vegetation indices (Breshears et al., 2005).  

Vegetation indices (VI) are calculated from simple formulas that include two or more reflective 

wavebands derived from satellite data (Sonobe et al., 2017). VI’s are widely used to assess 

differences in the physiological state and biophysical properties of vegetation (Maselli ,2004; 

Mohd Razali et al., 2016; Sruthi and Aslam, 2015). Several remote sensing indices have been 

developed and used in drought studies (Dennison et al., 2005; Dutta et al., 2015; Amalo and 

Hidayat, 2017; Potter, 2015). For example, Potter, (2015) successfully used Landsat derived 

NDWI and NDVI to detect changes during the 2013-2014 drought along a 100km transect of the 

central California coast. Grasslands showed signs of more significant drought stress than forests 

or shrub lands. A study by Dennison et al., (2005) compared the effectiveness of using MODIS 

NDVI and NDWI in monitoring fuel moisture content in shrub land ecosystems. These indices 

were both correlated with live moisture data obtained from the Los Angeles county fire 

department. Using linear regression models the relationship between indices and live fuel moisture 

were established. The study found that the NDWI was more significant in monitoring fuel moisture 

in shrub land ecosystems when compared to NDVI. NDWI could hypothetically be used to 

determine canopy water content in forests, as it is highly sensitive to canopy water content and 

spongy mesophyll of vegetation canopies (Ceccato et al., 2001).  Although both remote sensing 

platforms and vegetation indices have the potential to monitor drought in forests, a combination 

of a suitable sensor and vegetation indices as well as a good algorithm could help in classifying 

and mapping the spatial extent of drought-affected areas (Lewińska et al., 2016).  For instance, 

Barradas et al., (2021) compared machine learning methods for classifying plant drought stress. 

Where a combination of artificial intelligence with reflective spectroscopy was tested and an entire 

dataset of reflective spectra was used as input to machine learning algorithms namely decision 

trees, random forest and extreme gradient boosting. Random forest, extreme gradient boosting, 

and decision trees produced accuracies of 94 %, 92 % and 88 %, respectively. These classification 

methods are a promising tool to detect plant physiological responses to drought. Dao et al., (2021) 

used RF, support vector machine (SVM) and deep neural networks (DNN) to analyze full spectra 
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and first order derivative detecting drought impact at various stages for Bromus inermis grass. 

SVM produced the overall accuracy of 97.5% followed by DNN (94.6%) and RF (90.4%). 

In summary, drought stress has been causing grave concerns towards the productivity of 

commercial forestry and the need to monitor drought using remote sensing techniques has the 

potential to detect drought stress. However, the cost is a major limiting factor and we need to 

exploit freely available sensors. Therefore, this study seeks to evaluate the utility of a cost-effective 

Landsat 8 image in mapping the spatial extent of drought-prone Eucalyptus dunnii plantations in 

KwaZulu-Natal, South Africa. Specifically, the study compares the utility of Landsat spectra only 

with vegetation indices and Landsat spectra to detect drought -affected plantations. The study also 

adopted a stochastic gradient boosting approach due its low sensitivity to outlier, capacity to utilize 

inaccurate training and unbalanced datasets and its robustness in dealing with interaction effects 

between variables (Li et al., 2019).   

 

2.2   Materials and Methods 

2.2.1 Study area 

Eucalyptus dunnii is one of the fastest-growing wood plants, growing at a mean rate of up to 30 

m3/ha. About 20 million hectares have been planted worldwide due to their adaptability and fast 

growth rates (Delgado and Pukkala, 2011). This study area (Figure 2.1) is located in the High flats 

forest plantations in KwaZulu-Natal, which is situated along the eastern-half of the country on a 

crest of a hill with a very gentle slope. The site is managed by SAPPI forests and lies between 30o 

16’ 00” S; 30o 12’ 00” E and has a total area of 10380 hectares. The area experiences cold, dry 

winters with average monthly temperatures ranging from 6.1°C in July to 25°C in January (Schulze 

et al., 2007). The area generally falls within the summer rainfall region. The mean annual 

precipitation ranges between 800-1000mm with much rainfall occurring from October to March 

(Schulze et al., 2007). The elevation of the area is 950 m above sea level and is underlain by mainly 

coarse-textured sandstone and tillite which give rise to different soil types (Crous et al., 2013). 
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Figure 2.1 Study area showing drought affected and unaffected forest compartments in the Sappi high-flats 

plantations. Where (A) shows South Africa, (B) KwaZulu-Natal and (C) the study area. 
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2.2.2  Field data collection 

Field data collection and verification was done monthly at the SAPPI (South African Pulp and 

Paper Industry) plantation in the High flats region of KwaZulu-Natal near Ixopo from the 8th of 

August 2015 to the 15th of December 2015. Forest compartments were physically observed for 

drought stress with data collected on the absence and presence of drought damaged trees and the 

number of trees damaged, which was expressed as the number of drought damaged trees over the 

total number of assessed trees. Compartments displaying over 50% drought induced stress were 

categorized as damaged stands, while compartments displaying 0% of drought damage were 

categorized as undamaged. Stands between 1% and 49% were removed from the analysis to avoid 

underestimating the occurrence of drought damage. Furthermore, trees that showed physical signs 

of stunted growth, leaf dropping and discoloration as well as embolism formation were categorized 

as drought damaged trees. GPS points were collected using a differentially corrected Trimble 

GeoXT handheld GPS receiver with an accuracy of < 1m. The GPS data were used for ground 

verification of each forest compartment, which was then later extracted for statistical analysis 

using each image dataset. This dataset was used to extract image spectra and vegetation indices 

for statistical and classification analysis as well as for deriving   trend analysis for drought affected 

and unaffected stands .  The final dataset contained 450 stands with over 50% drought damage, 

while the remaining 380 stands displayed no signs of drought stress. These compartment means 

were extracted to assess trends over time using satellite imagery and rainfall from a nearby 

plantation weather station. 

 

2.2.3  Landsat-8 OLI image acquisition and pre-processing 

Cloud free Landsat-8 OLI (Operation land imager) multispectral images with path/row:168/81 

were acquired from August 2015 to December 2015 from the United States Geological Survey 

(USGS) Earth Resources Observation and Science (https://earthexplorer.usgs.gov) and covered 

the entire study area. The images were acquired during clear skies, sunny conditions with an 

average azimuth angle of 38.25° and sun elevation angle of 31.66°. The image dates were 

specifically chosen to match the period from when trees first began to show signs of stress due 

to drought occurrence in this region. Landsat-8 OLI has two modes of capturing images which 

are spectral and panchromatic. Landsat 8 OLI consists of seven spectral bands spread across the 
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visible (433 nm – 680 nm), near-infrared (845 nm - 885 nm) to short wave infrared (1560 nm – 

2300 nm) regions with a spatial resolution of 30-m. The Landsat-8 OLI sensor has a temporal 

resolution of 16 days. Landsat-8 OLI image spectral bands were converted from digital numbers 

format (DN) to reflectance using ENVI 5.1 software following the approach described on the 

USGS website (http://landsat.usgs.gov). MODTRAN was used to correct the acquired images 

based on the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercube (FLAASH) 

radiative transfer algorithm. (Shao and Zhang, 2016; Dube and Mutanga, 2015). Monthly images 

succeeding December 2015 were unavailable due to heavy cloud cover of the region and was 

therefore not considered in this study. The Landsat-8 OLI spectral bands from each monthly 

image were used to calculate vegetation indices shown in Table 2.1. The vegetation indices were 

selected based on key studies that were successful in monitoring drought stress on vegetation 

using remotely sensed data (Zhang et al., 2013; Ghaleb et al., 2015, Amalo and Hidayat, 2017). 

Furthermore, image data from 2013 to 2017 for each year was collected monthly to analyze 

vegetation index trends along with rainfall data. 

 

Table 2.1 Vegetation indices used in this study. 

 

Vegetation indices Formula References 

Normalized difference 

vegetation index (NDVI) 
𝑁𝐷𝑉𝐼 =

𝑁𝑖𝑟 − 𝑅𝑒𝑑

𝑁𝑖𝑟 + 𝑅𝑒𝑑
 

(Rouse Jr et al. 1974) 

Normalized difference water 

index (NDWI) 
𝑁𝐷𝑊𝐼 =

𝑁𝑖𝑟 − 𝑆𝑤𝑖𝑟

𝑁𝑖𝑟 + 𝑆𝑤𝑖𝑟
 

(Gao 1996) 

Enhanced vegetation index 

(EVI) 
𝐸𝑉𝐼 =

𝑁𝑖𝑟 − 𝑅𝑒𝑑

(𝑁𝑖𝑟 + 6𝑅𝑒𝑑 − 7.5𝐵𝑙𝑢𝑒 + 1)
 

(Huete et al. 2002) 

Vegetation condition index 

(VCI) 
𝑉𝐶𝐼 = 100

𝐸𝑣𝑖𝑖 − 𝐸𝑣𝑖𝑚𝑖𝑛

𝐸𝑣𝑖𝑚𝑎𝑥 − 𝐸𝑣𝑖𝑚𝑖𝑛

 
(Kogan 1995) 

Temperature condition 

index (TCI) 
𝑇𝐶𝐼 = 100

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑖
𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛

 
(Kogan 1995) 

Vegetation health index 

(VHI) 

𝑉𝐻𝐼 = 0.5𝑉𝑐𝑖 + 0.5𝑇𝐶𝐼 (Kogan 1995) 
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2.2.4  Climatic data 

Monthly rainfall data for High-flats was obtained from the South African Weather Services 

(SAWS). The data was collected from a nearby weather station (0210099A7) in Ixopo. Monthly 

temperature data was also obtained from SAWS, and a monthly temperature graph was produced. 

 

2.2.5 Statistical analysis 

2.2.5.1 Stochastic gradient boosting 

The stochastic gradient boosting algorithm (SGB) is an innovative machine learning technique 

associated with "bagging" and "boosting" established to enhance overall classification accuracy of 

analysis (Freeman et al., 2015). Classification trees are derived from boosting and bagging 

methods where boosting methods are founded on prior classification trees while bagging methods 

are founded on subsets of the training data (Dube et al., 2015). The SGB algorithm follows a 

specific procedure where at every phase of the boosting method, a subset of data is randomly 

selected. Selected subsets are separated using the steepest gradient algorithm, where the gradient 

is defined by deviance (twice the binary negative log likelihood), which is a replacement for 

misclassification rates. This results in fairly small trees at each repetition, rather than generating 

complete classification trees at each phase. The last phase involves stacking all trees together, of 

which there are usually between 100 and 200, and classifying each observation based on the most 

prevalent classification among the trees. The SGB uses three user-defined parameters that direct 

its output which are the learning rate (r1), the number of regression trees (Ntree) and tree complexity 

(Ct) (Chirici et al., 2013). Two parameters are considered most significant, which are r1 and ct 

where r1 governs the influence of each tree to the developing model, and Ct is the number of 

samples utilized in the last node. The SGB model was run in the R statistical software version 3.5.1 

where r1 was set between 0.0001 and 0.1 and ct was set between 1 and 5. The bagging fraction 

was set to 0.3 in this study.  
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2.2.5.2 Variable importance 

SGB variable importance uses variable selection to eliminate redundant predictor variables which 

don't improve the model's accuracy. The model scales the relative contribution of each variable 

and a high number indicates a robust impact of the response variable. In this study, relative variable 

importance was determined utilizing the average decrease in accuracy (Han et al., 2016). 

 

2.2.5.3 Accuracy assessment 

The study utilized a confusion matrix which summarizes the performance of the stochastic gradient 

boosting method (Novaković et al., 2017). The final dataset was split into 70% training data and 

30% test data. The kappa coefficient was utilized to determine the performance of the SGB 

method. Where a kappa statistic was calculated and values closer to 1 indicate a perfect 

classification. The producer’s accuracy is a measure of how well the real features on the ground 

are represented on the classified map. It also includes error of omission which is part of the 

observed features not represented on the map. High errors of omission results in low producer’s 

accuracy.  The user’s accuracy is a measure of the reliability of the map and indicates to the user 

how well the map represents what’s on the ground (Patil and Taillie, 2003). This is also inclusive 

of the error of commission where a high error of commission results in a lower user’s accuracy 

(Patel and Kaushal, 2010). 

2.3   Results 

2.3.1 High flats rainfall 

The monthly total rainfall from the year 2013 to 2017 was seasonally variable and varied across 

the five years. The high summer rainfall months were generally around October to March while 

the lowest rainfall months were around April to September (Figure 2.2). Over the period of 2013 

to 2017, February 2017 received the highest rainfall of 154 mm compared to February 2013, 2014, 

2015, 2016 with rainfalls of 111 mm, 43 mm, 136 mm and 118 mm, respectively. July of 2016 

received the highest monthly rainfall of 55 mm compared to 2013, 2014, 2015 and 2017 with 

rainfalls of 6.4 mm ,0.6 mm, 28 mm and 1 mm. It is also observed that in June 2017 no rainfall 

was recorded. 
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2.3.3  Mapping drought-affected compartments using Landsat 8 spectral variables 

Table 2.2 displays the accuracy results when using individual Landsat 8 bands to detect drought 

affected compartments between August to December 2015. From the table it is noticeable that the 

highest accuracy was obtained in the month of August. 

Table 2.2 Showing Overall accuracy, Kappa and Error rate. 

 

 

 

 

Using the best dataset, the test results for August, indicated that using Landsat 8 spectral bands 

and the SGB algorithm produced high producer’s and user’s accuracies ranging from 76% to 71% 

for healthy trees and 73% to 79% for drought-affected trees. The results show that 290 healthy 

compartments (non-drought affected) were correctly classified as healthy, and only 90 

compartments were incorrectly classified as drought affected. In the drought-affected column 120 

compartments were correctly classified as drought-affected, while 330 compartments were 

incorrectly classified as healthy (Table 2.3). 

 

Table 2.3  Confusion matrix using stochastic gradient boosting with Landsat 8 spectra for 

mapping drought affected forest compartments using the best monthly results obtained in August 

2015. 

 

Dataset Overall accuracy (%) Kappa (K) Error rate (%) 

August 2015 

September 2015 

October 2015 

November 2015 

December 2015 

74.70 

74.30 

70.44 

69.78 

64.45 

0.59 

0.59 

0.58 

0.58 

0.57 

25.3 

25.7 

          29.56 

30.22 

35.55 

 Healthy Stands Drought Affected 

Stands 

Total 

Healthy 290 120 410 

Drought Affected 90 330 330 

Total 380 450 830 
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2.3.4 Mapping drought-affected compartments using Landsat 8 derived vegetation 

indices 

Table 2.4 displays the accuracy results when using individual Landsat 8 bands combined with the 

derived vegetation drought indices to detect drought affected compartments between August to 

December 2015. August produced the best overall accuracy and kappa statistic compared to the 

rest of the months under investigation. 

Table 2.4 Showing Overall accuracy, Kappa and Error rate. 

Dataset Overall accuracy (%) Kappa (K) Error rate (%) 

August 2015 

September 2015 

October 2015 

November 2015 

December 2015 

83.13 

82.14 

79.87 

77.90 

76.56 

0.76 

0.75 

0.73 

0.72 

0.72 

         16.87 

         17.86 

         20.13 

          22.1 

         23.44 

 

Using the best results of August, test dataset results indicated that using an integration of vegetation 

indices with Landsat 8 spectra produced high producer’s and user’s accuracies of 82% for healthy 

trees and 84 % for drought-affected trees.  The confusion matrix shows that 310 healthy (non- 

drought affected) forest compartments were correctly classified and 70 compartments were 

incorrectly classified as being drought affected. In the drought affected column, 70 compartments 

were correctly classified as drought-affected while 380 compartments were incorrectly classified 

as healthy (Table 2.5). 

Table 2.5 Stochastic gradient boosting using Landsat 8 spectra and drought indices for detecting 

healthy and drought affected forest compartments. 

 Healthy Stands Drought Affected Stands Total 

Healthy stands 310 70 380 

Drought affected stands 70 380 450 

Total 380 450 830 
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2.3.5 Vegetation indices and trends between drought affected and healthy forest 

stands 

For comparison purposes, Figure 2.4 shows a five-year vegetation index trend from 2013 to 2017 

between healthy and drought affected forest compartments during the month of August. NDVI 

values steadily declined from 2013 which had the highest NDVI value of 0.7 to the lowest in 2015 

with an NDVI value of 0.55. The NDVI value in 2016 slightly increased and then later dropped in 

2017, by 0.03. The Normalized difference water index (NDWI) in 2013 had the highest value of 

0.68 while in 2015 had the lowest value, which was 0.50. It was observed that most of the indices 

showed a similar trend where 2013 had the highest index value and 2015 the lowest with a slight 

distinction between healthy and drought affected stands. Nonetheless, indices such as the 

vegetation health index (VHI), VCI and the enhanced vegetation index (EVI) displayed this trend 

with greater distinction between drought affected and those healthy forest compartments.  
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Figure 2.4 Vegetation indices highlighting the trends between drought affected and unaffected compartments based on monthly data for August from 2013 to 

2017 using Landsat 8 datasets. 
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Figure 2.5 Variable importance showing most effective variables used in final prediction of the model. 

2.3.6 Variable importance 

Figure 2.5 shows the most important variables utilized in the final prediction model using Landsat 

8 bands combined with derived vegetation indices. The results are shown for the best month of 

August 2015 where variable importance was measured using the mean decrease in accuracy 

(MDA).  

 

 

 

 

 

 

 

 

 

 

 

2.3.7  Mapping drought distribution  

There are noticeable differences between the maps classified using Landsat 8 spectra  variables 

(Figure 2.6a) and those classified with Landsat 8 derived vegetation indices (Figure 2.6b). The 

August 2015 map (Figure 2.6a) contained less trees that were not affected by drought  compared 

to the August 2015 map (Figure 2.6b). 
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Figure 2.6 illustration of classification maps based on Landsat 8 spectra and Landsat 8 derived vegetation indices . 

 

(a) (b) 
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2.4  Discussion 

Drought is considered as one of the most catastrophic natural events that threatens production in 

the forestry sector. Severe drought impacts forests by reducing their productivity and triggers 

stomatal closure which may result in tree mortality causing huge and widespread economic losses.  

The main essence of this study was to evaluate the utility of cost-effective Landsat 8 imagery in 

mapping the spatial extent of drought-prone Eucalyptus dunnii plantations in KwaZulu Natal. This 

was achieved using a combination of remote sensing vegetation indices and Landsat 8 spectral 

bands, whereby drought-prone plantations were successfully classified and mapped. 

2.4.1 Classification using Landsat 8 and stochastic gradient boosting 

The integration of vegetation indices and Landsat spectral bands produced a higher overall 

accuracy and kappa as well as higher user and producer accuracies compared to Landsat spectral 

bands only. Vegetation indices improve the accuracy of algorithms and enhances spectral 

information as well as separability of classes of interest (Fajji et al., 2017). They discriminate 

landscape features better whereas spectral bands only provide spectral signatures of a particular 

surface or object. For instance, Godinho et al., (2016) mapped the montado ecosystem using 

Landsat 8 multispectral data (0.43 -1.38), vegetation indices such as the enhanced vegetation 

index, shortwave index, carotenoid reflectance index 1, green chlorophyll index, normalized 

multiband index and soil adjusted total vegetation index as well as the stochastic gradient boosting 

algorithm. This study found that the integration of vegetation indices resulted in a significant 

improvement in the overall classification accuracy. This led to a difference of 4.90% overall 

accuracy and 0.06 in kappa value. A similar trend was also observed in the producer and user 

accuracies with an increment of 3.64% and 6.26%, respectively. Xie et al. (2019) identified 

suitable variables and algorithms for identifying land cover, forests and tree species based on land 

cover and forest types. The results indicated that multiple variables, such as vegetation indices, 

textures and topographic factors enhanced land cover and forest classification accuracy compared 

to using spectral bands exclusively. A combination of multiple variables improved forest 

classification by 1% to 12.7 % and land cover classification by 3.7% to 15.5% compared to spectral 

bands only. The study also analyzed climatic data measured over five-years from 2013 - 2017 

indicated that 2015 received the lowest rainfall and highest temperatures, particularly during the 
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summer rainfall months of between October – March. The year 2015 was therefore called a drought 

year as below-average rainfall and high temperatures were recorded.  According to Botai et al., 

(2016) the Free State and North West provinces were declared drought disaster areas in the 

2015/2016 hydrological year. KwaZulu-Natal was later declared as severely drought-stricken in 

the same year (Schreiner et al., 2018). The results of this study therefore advocate for regular 

drought monitoring and for-repeated mapping exercises rather than a one snapshot in time analysis. 

One of the major drawbacks of this study was obtaining cloud-free imagery between the summer 

rainfall months of October to March. These months are very crucial as they positively affect 

agricultural productivity. Due to difficulties in the availability of cloud free imagery between this 

period, the months of August 2015 to December 2015 allowed for a fixed window to conduct this 

study. Another shortfall was experienced when obtaining rainfall data within the study area due to 

sparse rainfall monitoring networks in the country since there are not many rainfall stations 

available. A nearby rainfall station in Ixopo was used to represent rainfall patterns of the High-

flats region.   

2.4.2  Variable importance and drought classification 

The SGB algorithm selected a few variables that were useful in classifying drought-prone 

compartments. One of the variables that were selected was the near infrared band (NIR) (0.85 – 

0.88 nm). The NIR bands are very useful in monitoring vegetation health (Wang et al., 2012).  

Plant leaves generally absorb most of the radiance in the visible band pigments such as chlorophyll 

and xanthophylls and reflect most radiance in the NIR (Kim et al., 2011). When plants are stressed 

the reflectance, pattern is altered due to a decrease in photosynthetic absorbance, this results in the 

increase of reflectance in the visible band and decrease in the NIR (Gerhards et al., 2016).  The 

NIR bands are integrated with Red bands to enhance vegetation health monitoring and provide 

more detail for stress detection (Mushtaq and Asima, 2016). These bands are used to derive the 

Normalized difference vegetation index. Zhang et al., (2017) studied the effects of the 2009/2010 

drought in south western China by determining the standardized anomalies of NDVI, enhanced 

vegetation index (EVI), normalized difference water index (NDWI) and LST. The results indicated 

that the NDVI, EVI and NDWI reduced while LST increased in the 2009/2010 drought stricken 

vegetated areas. Other bands such as the short-wave infrared (SWIR) are widely used to detect 

plant water stress. The NIR and SWIR bands are used to derive indices such as the normalized 
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difference water index. Mashaba et al., (2016) revealed that NDWI better determined water stress 

in winter when compared to NDMI. This was also consistent with the findings of Gulacsi and 

Kovacs, (2015). Other indices such as the vegetation health index (VHI) and temperature condition 

index (TCI) were also selected by the model. The VHI is based on the average of VCI and TCI. 

The TCI is based on thermal emission to measure surface temperature. However, Andujar et al 

(2017) suggested that TCI may be best suited for detecting incipient drought than VCI. VHI was 

also found to have a high correlation with the standardized precipitation evapotranspiration index 

(SPEI) which suggested that it may be most suitable for monitoring effects of long-term droughts. 

Most vegetation indices were selected by the model as they enhance spectral detail and improve 

classification accuracy. 

 

2.4.3  Recommendations for future research 

Rainfall monitoring stations in the country are limited, therefore obtaining accurate and reliable 

data is a challenge. Future studies can utilize the TRMM satellite. This sensor provides important 

rainfall information covering the tropical and sub-tropical parts of the earth. Future studies can 

also look into incorporating climatic and environmental variables into algorithms. Future research 

may also aim to improve accuracies using higher-resolution imagery with spatial resolutions below 

5m, for example IKONOS and Quick bird imagery for mapping drought prone areas using spectral 

bands or strategically derived indices. The methodology developed would be suitable using higher-

resolution datasets for detailed analysis of drought stress mapping at a sub-compartment level. 

Finally, the utilization of one class classifiers such as SVM may be investigated for the detection 

of drought stress in forest compartments and compared to contemporary multi-class approaches 

such as when using SGB.   
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2.4.4  Conclusion 

This study aimed to evaluate the utility of cost-effective Landsat 8 imagery in mapping the spatial 

extent of drought-prone Eucalyptus dunnii plantations located in the High-flats region of 

KwaZulu-Natal. The research undertaken showed that it is possible to classify drought-prone 

plantations using a combination of vegetation indices and Landsat spectral bands. The vegetation 

indices were also capable of detecting drought-affected parts of the plantation as lower values 

indicated a presence of drought. The most important variables for classifying drought affected 

forests using multispectral image data were prevalent in the NIR (0.85 – 0.88) , red (0.64 – 0.67) 

and SWIR (1.57 – 1.65) regions of the electromagnetic spectrum. The year 2015 was deemed a 

drought year and this was attributed to below-average rainfall and high temperatures for a long 

period of time. Using remote sensing tools and the stochastic gradient boosting algorithm, early 

mapping of drought impact on forest resources may allow for effective mitigation and protection 

management strategies. While this study was successful in classifying drought prone plantations 

in the high-flats region, the next chapter will highlight issues related to sampling of training data 

and apply techniques such as the one class support vector machine to address this challenge. 
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3 Chapter Three: Mapping of Drought stress in commercial forest 

plantations using one-class and multi-class Supervised Learning 

Approaches and remotely sensed techniques 

Abstract 

Forest ecosystems are recognized as vital sources of livelihoods to millions of people worldwide. 

This study seeks to test the utility of both one class and multiclass support vector machines to 

classify drought prone Eucalyptus dunnii forest compartments. Using a combination of Landsat 8 

vegetation indices and local topographical variables, the one class SVM produced an overall 

accuracy of 82.35% and a kappa value of 0.73. The user’s and producer’s accuracies ranged from 

68% - 88% for drought affected compartments while for the other class the producer’s and user’s 

accuracies ranged from 79% - 93%. The multiclass SVM produced an overall accuracy of 73.86% 

and a kappa value of 0.71. The user’s and producer’s accuracies ranged from 61% to 69% for 

drought affected compartments and for the other compartment classes, ranged from 84% - 90%. 

The study showed that using a one class SVM can be utilized to accurately map classes of interest 

and the use of topographical variables can be utilized to enhance the overall classification accuracy 

of classifiers.  

 

Keywords: One class support vector machine, Multiclass support vector machine, topographical 

variables, Landsat 8, vegetation indices. 
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3.1 Introduction 

Forest ecosystems are recognized as vital sources of livelihoods to millions of people around the 

world (Köhl et al., 2015). They offer a wide range of ecosystem services which include carbon 

sequestration, contribution to soil formation, water and climate regulation (Foli et al., 2014; Mori 

et al., 2017; Aznar sanchez et al., 2018). In South Africa, commercial forest plantations cover 1% 

of the total land area and directly supports the economic, social and environmental needs of 

communities, particularly in rural poor areas (Bojang and Atanga, 2011). The community at large 

benefit through employment opportunities, access to grazing and harvesting of non-woody 

products. Nonetheless, the forestry sector is identified as extremely vulnerable to climatic events 

such as the impact of drought, since they alter the functioning and structure of forest ecosystems 

(Law, 2014; Assal et al., 2016).  

Drought is defined as a lack of precipitation over a region for an extended period and can be 

classified into meteorological, economical, agricultural and socioeconomic droughts (Edossa et 

al., 2014; Wanders and Wada, 2015).  Agricultural droughts are most common and occur when 

there is a significant decline in soil moisture, resulting in crop or forest mortality (Yu et al., 2018, 

Cao et al., 2019). Severe drought events contribute to tree stress and mortality through the direct 

impacts of decreased soil moisture and high air temperatures (Reyer et al., 2015). Many studies 

have found that an increase in drought frequency and intensity may affect forests through impeding 

tree recruitment, reducing growth, a reduction in leaf area index (LAI) and increasing tree mortality 

(Archaux and Wolters, 2006; Matusick et al., 2012; Hope et al., 2014; Assal et al., 2016). Severe 

drought events usually affect large geographical areas and conventional methods for monitoring 

drought may not be ideal, as they are time consuming and field intensive (Naumann et al., 2018). 

Remote sensing tools are therefore useful in drought assessments as the technology can detect 

changes that may not be readily observed, especially when over a wide landscape such as a 

commercial forest plantation (Anderson et al., 2010).  The detection of drought events is further 

enhanced by the application of remote sensing indices (Tuvdendorj et al., 2019). 

Several remote sensing indices have been established and tested in detecting drought. For instance, 

the normalized difference vegetation index (NDVI) has been widely used to monitor the effect of 

drought on vegetation by quantifying the amount of greenness or vigor from the radiometric 

properties of plants (Maselli et al., 2004; Breshears et al., 2005; Mohd Razali et al., 2016) For 
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example, Sruthi and Aslam, (2015) used MODIS derived NDVI and land surface temperature 

(LST) to analyze vegetation stress in India. The combination of NDVI and LST provided important 

data for monitoring agricultural drought and served as an early warning detection for farmers. 

NDVI was successfully correlated with LST and yielded better results when combined with LST 

to detect agricultural drought. Furthermore, Sholihah et al., (2016) identified agricultural drought 

extent using the vegetation health index (VHI). The outputs illustrated that VHI decreased more 

than 50% from 30.86 (mild) in 2000 to 14.66 (severe) in 2015. This was attributed to a sharp 

increase in LST from 27°C to 40°C in 2015.  Lastly, Dutta et al., (2015) attempted to establish the 

effectiveness of remote sensing and GIS methods in monitoring the spatio-temporal degree of 

agricultural drought. The National oceanic and atmospheric administration advanced very high-

resolution radiometer (NOAA – AVHRR) data was used through NDVI based vegetation 

condition index (VCI). The VCI values of normal (2003) and drought (2002) were compared with 

the meteorological based standardized precipitation index, rainfall anomaly index and yield 

anomaly index and were found to be in agreement. The correlation between VCI and yield of major 

rainfed crops (R> 0.75) supports the effectiveness of remote sensing computed indices for 

evaluating agricultural drought. It is evident that vegetation indices have been widely used in 

drought studies. Recent studies successfully mapped drought sensitivity in areas using various 

algorithms (Roodposhti et al., 2017).  

Remotely sensed data has become an important tool for the derivation of landcover maps. In most 

cases, users are not interested in a complete map of the landscape, but rather in a subset of the 

classes found in the area. The problem usually occurs when using multiclass classifiers where there 

are numerous labels in a category. This is called multiclass classification. One of the drawbacks 

of this approach is that it is time consuming and costly. For instance, in order to map a region for 

a user interested in urban landcover, all training data points must be collected not only on the urban 

class but also on secondary classes not relevant to the user, such as forest, water, and crops, if they 

are present in the study. If these classes are not included in the training data set this may result in 

misclassifications where the classifier will assign pixels of untrained classes into trained classes. 

For example, if the forest class was not incorporated in the training data, pixels of forests may have 

been classified as a shrub or crop, which will greatly overestimate the real extent of those shrub 

and crop classes (Silva-Palacious et al., 2017). In such instances, one class classifiers may be 

promising. One class classifiers, consider only the class of interest (positive class) and the main 
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difference between these two methods is in their training data and the amount of time and effort 

needed to produce it. According to Brereton (2011), the fact that one class classifiers consider only 

the positive class can be a major limitation, since only data about a single class is available, 

therefore only one side of the discriminative boundary can be established. Furthermore, in a feature 

space it is challenging to establish how closely a boundary should fit around a class of interest. To 

deal with this challenge, some one class classifiers such as the one class support vector machine 

(OC-SVM) assumes that the non-interest classes have a specific distribution around the class of 

interest (Ao et al., 2017; Chaitra and Kumar, 2018).   

Against this background, droughts threaten the productivity of commercial forests and places the 

economy of many countries at risk. Therefore, there is a need to develop efficient methods to detect 

the onset, magnitude and to quantify the impacts of drought. This study seeks to test the utility of 

both one class and multiclass support vector machine algorithms for classifying drought prone 

Eucalyptus dunnii plantations in the Highflats region of KwaZulu-Natal. The occurrence of 

drought is a one class problem that is widespread and surveying non- drought compartments for 

mapping purposes may prove unnecessary.  
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3.2 Methodology  

3.2.1  Study Area  

Eucalyptus dunnii plantations are valuable and are the most widely cultivated commercial 

plantation tree species in the world. Approximately 20 million hectares are planted due to its 

adaptability, rapid growth rate, good shape and excellent wood and fiber properties (Delgado and 

Pukkala, 2011). Eucalyptus dunnii is very good for producing kraft pulp and dissolving wood pulp. 

They are considered to be amongst the fastest growing wood plants in the world with mean growth 

rates up to 20 – 30 m3/ha. The study area is located in the Sappi High-flats forest plantations in 

KwaZulu-Natal situated at a latitude of 30o 16’ 00’’ S and longitude 30o 12’ 00’’ E and has a total 

area of 10380 hectares (Figure 3.1). The area is rural and consists mainly of agricultural 

plantations, traditional authority land and natural vegetation. The region has an average annual 

precipitation that ranges between 800-1000 mm and rainfall occurs between October – March. The 

mean annual temperature is 17oC with a lithology consisting mainly of coarse textured sandstone 

and tillite resulting in different soils present in the area. The forest plantation is dominated mainly 

by Eucalyptus dunnii. 
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Figure 3.1 Study area showing drought affected and unaffected forest compartments in the Sappi High-flats plantation. 

Where (A) shows  South Africa, (B) KwaZulu-Natal and (C) the study area. 
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3.2.2 Field verification data 

Field verification was done monthly at SAPPI (South African Pulp and Paper Industry) plantation 

in the High-flats region of KwaZulu-Natal near Ixopo from 8th of August 2015 to 15th of December 

2015. Forest compartments were physically observed for drought stress with data collected on the 

absence and presence of drought damaged trees and the number of trees damaged, which was 

expressed as the number of trees damaged over the total number of trees assessed. Compartments 

displaying drought induced stress of more than 50% were categorized as damaged stands, while 

compartments displaying 0% of damage were categorized as undamaged. Stands between 1% and 

49% were removed from the analysis to avoid underestimating the occurrence of drought damage. 

In addition, trees that showed physical signs of stunted growth, leaf dropping and discoloration as 

well as embolism formation were categorized as drought damaged trees. GPS points were collected 

using a differentially corrected Trimble GeoXT handheld GPS receiver with an accuracy of < 1m. 

The GPS points data was used for ground verification of each forest compartment which was then 

later extracted for statistical analysis using each image dataset. For multiclass analysis, 51 stands 

were fire burnt, followed by 51 stands affected by drought and 51 unaffected stands to maintain a 

balanced dataset i.e. 51 x 100 = 5100 (Peerbhay et al., 2013). The dataset was divided into one 

class and multiclass where for one class it was drought damaged versus all other data while the 

multiclass dataset consisted of all 3 classes i.e. burnt, drought damaged and unaffected stands. 

3.2.3 Image Acquisition and Pre-processing 

A cloud free Landsat-8 OLI (Operation land imager) multispectral image with 

path/row:168/81 was acquired from August 2015 covering the study area and was attained 

from the United States Geological Survey (USGS) Earth Resources Observation and Science 

(https://earthexplorer.usgs.gov). The image was acquired during a clear sky, sunny condition 

with azimuth angle of 38.06o and sun elevation angle of 31.92o. The image date was 

specifically selected to match the date at which drought damage was observed on the ground. 

Landsat-8 OLI has two modes of capturing images which are spectral and panchromatic. 

Landsat 8 OLI consists of seven spectral bands spread across the visible (433 nm – 680 nm), 

near infrared (845 nm - 885 nm) to short wave infrared (1560 nm – 2300 nm) regions with a 

spatial resolution of 30-m. The Landsat-8 OLI sensor has a temporal resolution of 16 days. 

Landsat-8 OLI image spectral bands were converted from digital numbers format (DN) to 
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reflectance using ENVI 5.1 software following the approach described on the USGS website 

(http://landsat.usgs.gov). The acquired images were atmospherically corrected  using the 

MODTRAN method based on the Fast Line- of-sight  Atmospheric analysis of Spectral 

hypercube (FLAASH) radiative transfer algorithm (Shao and Zhang, 2016; Dube and 

Mutanga, 2015). 

3.4 Environmental variables 

3.4.1 Topographic metrics 

Spatial topographic metrics are categorized into three groups which are; non- local, local and 

combined topographical variables. Non-local attributes are relative positions of designated points, 

namely, catchment area, openness, and flow buildup (Li and McCarty, 2018).  Local topographical 

variables are defined as the surface geometry at a particular point on the land surface such as 

elevation, curvatures and slope, while combined topographical variables are a combination of both 

local and non-local variables which are namely slope length factor, stream power index and 

topographical variables (Nunes et al., 2019). These variables were generated from a 30 m 

resolution Digital Elevation Model (DEM) created from shuttle radar topography mission (SRTM) 

data in SAGA GIS (2.3.2) and ArcGIS 10.4 packages. 

3.4.2 Bioclimatic data 

Bioclimatic data such as temperature and rainfall are important indicators of drought. This study 

used rainfall bio-climatic variables and mean temperature in conjunction with topographic 

variables to classify drought affected areas (Table 3.1). The bio- climatic variables were acquired 

from a one square kilometer (1 km2) 30 arc seconds spatial resolution worldclim datasets 

(http:www.worldclim.org/). The worldclim datasets consists of long term mean annual data (30-

year period) with grids including temperature, rainfall and other climatic data such as driest, 

wettest, coldest and hottest periods of the year. The generated rainfall and temperature bioclimatic 

variables were resampled to match the SRTM derived DEM spatial resolution (30 m). 
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Table 3.1 Topo-graphic variables used to assess the drought impact on commercial forestry. 

N.o Variables Description unit Reference 

1 Aspect Slope direction radian (Vico and 

Porporato, 

2009) 

2 Catchment area Runoff velocity and 

volume 

m2 (Gericke and 

Duplesis, 2012) 

3 Convergence index Indicates structure of 

relief as a set of 

converging(channels) 

and diverging areas 

(ridges) 

m (Adams et 

al., 2016) 

4 Cross sectional 

curvature 

Morphometric features degree m-1 (Ehsani and Queil, 

2009) 

5 Direct insolation Potential Incoming 

insolation 

kw/m2 (Saad et al, 2014) 

6 General curvature Horizontal and vertical 

curvature 

degree m-1 (Rosenberg et al., 

2010) 

7 Elevation Ground height m (Kellner et al., 2009) 

8 Longitudinal curvature Morphometric features degree m-1 (Ehsani and 

Malekian, 2011) 

9 Mass balance index 

(MBI) 

Mass balance index m (Christian et al, 

2016) 

10 Maximum curvature Highest curvature degree m-1 (Ehsani, 2008) 

11 Minimum curvature Lowest curvature degree m-1 (Rana, 2006) 

12 Negative openness Drainage features, soil 

water content 

 (Cavalli et al., 2013) 

13 Normalized height Relative height and slope 

position 

m (Adhikari et al., 

2018) 

14 Positive openness Drainage features, soil 

water content 

 (Li et al., 2018) 

15 Plan curvature Horizontal (contour) 

curvature 

degree m-1 (Nanomura et al., 

2020) 
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16 Profile curvature Vertical rate of change of 

slope 

degree m-1 (Krebs et al., 2015) 

17 Skyview factor Visibility kw/m2 (Bernard et al., 

2018) 

18 Slope Steepness of 

the ground 

radian (Nakil and Khire, 

2016) 

19 Standardized height Relative height and 

slope position 

m (sovilla et al., 2010) 

20 Terrain ruggedness 

Index (TRI) 

Quantifies topographic 

heterogeneity 

 (Skentos and 

qurania, 2017) 

21 Topographic 

wetness Index 

(TWI) 

Steady state wetness 

index 

 (Hojati and 

Mokarram et 

al., 2018) 

22 Valley depth Relative heights m (Tsai et al., 2012) 

23 Wind effect Effect of wind on the 

surface 

m/s (Li et al., 2019) 

24 Temperature (mean 

annual) 

Temperature o c (Taha et al., 2018) 

25 Precipitation (mean 

annual) 

Rainfall mm (Yacoob and Taylor, 

2009) 

 

3.4.3 Statistical analysis 

3.4.3.1 One class support vector machine 

The OC-SVM was developed by Scholkopf et al., (2001) and is an addition of the novel two-class 

algorithm, which allows training of classifiers in the absence of negative data (Senf et al., 2006). 

Training is conducted by making a certain number of positive data points as if they belong to the 

negative class (Xu et al., 2018). The aim is to establish a boundary between the bulk of positive data 

points and outliers. The OC-SVM utilizes the parameter v to outline the tradeoff between the number 

of data points treated as positive and negative class. There are two approaches to generate a separating 

boundary (Pereira et al., 2017). The first approach involves training the OC-SVM in such a way to 

define a classification function that adapts to a hypersphere boundary among the positive class and the 

outliers founded on a distribution function. The v parameter establishes the shape of the boundary. The 
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second method involves fitting a hyperplane between the origin and the data points. This method has 

been found to be equal to the decision hypersphere and is utilized in several OC-SVM implementations 

due to its simplicity (An et al., 2015). The requirements for a separation boundary are represented 

mathematically: 

 

F(z) = I(d(z)<Θd ) or  F(z) =F(z) I(p(z)>Θd) ……(1) 

 

where F(z) is a measure of the distance d(z) to the positive class or of the probability P(z) belonging to 

the positive class (Chen et al., 2019), and a threshold Θ to describe the difference between the positive 

class and the outliers. I is a function representing the positive or negative class. One class classifiers 

learn by optimizing d(z) or p(z). Some approaches may further optimize the parameter Θ. In this study 

the parameters of the SVM were tuned in R statistical version 3.5.1 software. 

 

3.5 Accuracy assessment 

3.5.1 Confusion matrix 

The confusion matrix summarizes the performance of the one class support vector machine and   

consists of the kappa value, error rate, overall accuracy, user’s and producer’s accuracy as well as the 

number of forest compartments that are correctly and incorrectly classified. The final dataset was split 

into 70% training data and 30% test data. The producer’s accuracy is a measure of how well the real 

features on the ground are represented on the classified map. It also includes error of omission which 

is part of the observed features not represented on the map. High errors of omission results in low 

producer’s accuracy.  The user’s accuracy is a measure of the reliability of the map and indicates to the 

user how well the map represents what’s on the ground (Mas et al., 2014). This is also inclusive of the 

error of commission where a high error of commission results in a lower user’s accuracy (Salk et al., 

2018). According to Visa et al., (2011) a confusion matrix includes data about actual and predicted 

classifications. For instance, a confusion matrix of size n × n related to a classifier showing the 

predicted and actual classification where n is a number of different classes. Table 3.2 shows a confusion 

matrix with n = 2 and consist of entries with the following meanings: 
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• A is the amount of correct negative classifications 

• B is the amount of incorrect positive classifications 

• C is the amount of in correct positive classifications 

• D is the amount of correct positive classifications 

The classification accuracy can be deduced from this matrix as follows: 

Accuracy =  
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
       ………………………… (2) 

Error =    
𝑏+𝑐

𝑎+𝑏+𝑐+𝑑
        …………………………    (3) 

𝐷 = ∫
⌊𝑏−𝑐⌋

𝑀𝐴𝑋{𝐵|𝐶}   if B = C= 0   ……………          (4) 

3.5.2 Overall accuracy  

 

The overall accuracy is regarded as one of the most basic metrics and is defined as the amount of pixels 

or points that are correctly classified (Salk et al., 2018). Which is the total confusion matrix diagonal 

divided by the total of the entire confusion matrix. In this study the dataset was split to 70% training 

and 30% test and the Kappa coefficient was used to measure the performance of the OC-SVM 

approach. A K (KHAT) correlation between predicted and observed values was obtained and values 

closer to one show a perfect classification. A producer’s accuracy measures errors of omission and how 

well real-world land cover types can be classified (Rwanga and Ndaambuki, 2017). High errors of 

omission results in low producer’s accuracy. While user’s accuracy measures errors of commission 

and informs the user how well the map represents what’s actually on the ground (Pierce, 2015). High 

errors of commission results in a lower user’s accuracy. 

Table 3.2 Confusion matrix with two classes 

  

 

 

 

 Predicted Negative Predicted Positive 

Actual Negative A B 

Actual positive C D 
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3.6.3  Classifying drought affected compartments using Landsat vegetation indices 

and topographical variables using a multiclass SVM     

 

 A multiclass SVM mapper was initially utilized in the study with a combination of Landsat vegetation 

indices and the selected topographical variables. An overall accuracy of 73.86% was obtained and a 

kappa value of 0.71. The user’s and producer’s accuracies ranged from 61% to 69% for drought 

affected compartments. While for the unaffected, the producers and users accuracy ranged from 84% 

to 90% and the error rate was 26.14% (Table 3.3).  

  

Table 3.3 Multiclass support vector machine with Landsat 8 vegetation indices.

 Drought affected Unaffected Fire damage Total 

Drought affected 

 

3500 700 1500 5700 

unaffected 

 

Fire                                            

 

400 

 

                1200                       

4300 

 

100 

100 

 

3500 

4800 

 

4800 

Total 5100 5100 5100 15300 
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3.6.4 Mapping drought affected compartments using Landsat vegetation indices and 

topographical variables using a one class SVM 

A one class mapper was utilized in the study with a combination of Landsat vegetation indices and 

topographical indices. Table 3.4 shows an overall accuracy of 82.35% was obtained and a kappa 

value of 0.73. The users and producers accuracies range from 68% to 88% for drought-affected 

compartments. While for the other column the producers and users accuracy range from 79% to 

93%.  

Table 3.4 One class support vector machine with Landsat 8 vegetation indices. 

 

 

 

3.6.5  Variable importance 

Figure 3.4 indicates the most significant variables that were selected by the model. Valley depth, 

VCI, VHI, and longitudinal curvature had the highest Mean decrease accuracy (MDA). While mean 

rainfall, cross sectional curvature and positive openness had the lowest MDA. The model selected 

a total of 31 variables that successfully contributed in classifying drought-stricken areas within the 

forest plantations. 

 

 

 

 

 

 

 

 

 

 

 

 Drought affected Other Total 

Drought affected 4500 2100 6600 

Other 600 8100 8700 

Total 5100 10200 15300 
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3.6.6  Drought distribution 

There are detectable changes between the maps classified based on  Landsat vegetation  indices 

and topographical variables using one class support vector machine (Figure 3.5a) and those 

based on Landsat vegetation indices and topographical variables using a multiclass support 

vector machine (Figure 3.5b). The map in (Figure 3.5a) contained more trees that were affected 

by drought compared to (Figure 3.5b). 

 

Figure 3.4 Variable importance showing contribution of each variable using the One class and multiclass support vector 

machine. 
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Figure 3.5 illustration of derived classification maps with one class and multiclass support vector machines. 

(a)                                                                                                                          (b) 
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3.7 Discussion 

To improve the knowledge and understanding of drought classification, a OC-SVM was used 

and compared to utilizing a MC-SVM. Both Landsat vegetation indices and environmental 

variables were also used in this study. These variables were selected as they improved the 

overall accuracy compared to the previous study where Landsat spectral bands and drought 

indices were used.  This study seeks to test the utility of a one class support vector machine for 

mapping drought prone Eucalyptus dunnii plantations in the KwaZulu-Natal High-flats region.  

3.7.1 Multiclass classification using Landsat vegetation indices and topographical 

variables 

The integration of Landsat vegetation indices and topographical variables using a MC-SVM 

was explored. The overall accuracy and Khat statistic (Kappa) was lower compared to that of 

the OC-SVM. This may be attributed to the number of training samples which tend to be 

exhaustive and time consuming in a multiclass classification. For instance, the class of interest 

for this study are those that are affected by drought and the secondary classes are those 

compartments that are unaffected and those damaged by fire. This required a collection of many 

training points including those deemed unnecessary to prevent the classifier from 

underestimating the class of interest. Silva et al., (2017) pointed out that the MC-SVM 

classifiers may correctly discriminate secondary classes to the disadvantage of the class of 

interest, which may lead to a high probability of error. A study by Hasan et al., (2019) utilized 

machine learning methods including SVM, artificial neural networks (ANN) and convolutional 

neural network (CNN) to classify thirteen vegetation species. The performance was evaluated 

based on their overall accuracy and each classifier was tested for the advantage associated with 

an increase in training samples. The accuracy obtained by CNN, ANN and SVM was 99%, 

94% and 91%, respectively. It is important to note that although an increase in training samples 

improved the performance of the classifiers, SVM obtained a lower overall accuracy. 

Furthermore, Raczko and Zagajewski, (2017) compared three classification algorithms 

including Support vector machines (SVM), RF and ANN for tree species classification. The 

overall accuracies for ANN, SVM and RF was 77%, 68% and 52%, respectively. Similarly, 

Wang et al., (2019) classified landcover of wetlands using RF, support vector machines (SVM) 

and K-nearest neighbor (KNN). The classification accuracies of RF, SVM and KNN were 

86.61%, 79.96% and 77.23%, respectively. The studies clearly illustrated that a multiclass 
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SVM may not perform efficiently when a high number of training samples are used and 

therefore, a one class approach may be preferred, as in the findings of this study. Moughal, 

(2013) pointed out that as the number of classes increases, the number of parameters to be 

estimated increases and that in turn affects the classification performance in terms of accuracy.  

3.7.2 One class classification using Landsat vegetation indices and topographical 

variables  

The integration of Landsat vegetation indices and topographical variables produced a higher 

overall accuracy for OC-SVM compared to MC-SVM. This may be attributed to the fact which 

Deng et al., (2018) points out that the OC-SVM only requires manually labelled samples of the 

class of interest known as the positive class and therefore it is less likely to suffer from the 

problem of incomplete training data. A study by Xu et al., (2018) used OC-SVM to extract rice 

cultivated using Landsat optical land imager. Instead of sampling and training all land cover 

types as done by multiclass classification methods, the OC-SVM only used training samples 

of the target class (rice) for rice mapping. The performance of OC-SVM was evaluated in terms 

of the overall classification accuracy and was compared to the MC-SVM approach, decision 

tree classification (DTC) and vegetation index-based thresholding (VIT). The overall accuracy 

of OC-SVM was 91.15% which was comparable to that of DTC with 91.53%. While overall 

accuracy for MC-SVM was 83.85% and VIT, 57.63%.  Zhao et al., (2020) further utilized the 

biased support vector machine, a one class type- classifier that also requires labelled data for 

the class of interest and unlabeled data for the other classes to classify fallows in dryland 

cropping systems. The study found that this classifier allowed in-situ observations to be 

extrapolated throughout the flowering period to the rest of the growing season to create large 

training data sets, therefore reducing data collection requirements. The same approach was 

tested to monitor fallows in the northern grains of Australia and illustrated that the seasonal 

fallow extent could be mapped with an accuracy of over 92%, both during summer and winter 

seasons. In addition, Roodposhti et al., (2017) attempted to produce a drought sensitivity map 

for vegetation cover using two OC-SVM algorithms. To attain promising results, a combination 

of 30 years statistical data of synoptic stations and 10 years MODIS imagery were used for 

extraction of SPI and EVI. For drought sensitivity mapping four variables were considered 

which included elevation, slope, aspect and geomorphic classes. The results of the investigation 

showed spatio-temporal patterns of drought impacts on vegetation cover. The Area under the 

curve method was used to evaluate accuracy of the output map which produced a value of 0.8. 
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This study showed that topographical variables such as slope, aspect elevation to name a few 

can be used in OC-SVM to derive effective drought sensitivity maps.  

 

3.8 Conclusion 

The study aimed to test the utility of both one class (OC-SVM) and multiclass support vector 

machines (MC-SVM) for classifying drought prone Eucalyptus dunnii plantations. Using both 

vegetation indices and topographical variables and a high amount of training samples for the 

MC-SVM produced a lower overall accuracy. It was therefore concluded that OC-SVM 

performs better when using a few training samples that are labelled accurately. Additionally, 

the results demonstrated that: 

• The ability of OC-SVM to perform drought damage classifications accurately 

• OC-SVM was more superior in mapping drought compared to MC-SVM 

• The onset of 2015-2016 drought was before 2015 

• Labelling multiple classes reduces the overall accuracy of the classifier 

 

 

The results obtained in this study are promising, however, more research is still required to 

improve these results and to determine how good the OC-SVM can be for drought classification 

and analysis. Research into drought damage classification shouldn’t be limited to forest cover, 

it should also be aimed at other environmental issues such as mapping invasive species and 

grasslands to name a few. 
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4 CHAPTER FOUR: SUMMARY OF STUDY FINDINGS 

 

This study aimed to evaluate the utility of a cost-effective Landsat 8 imagery in mapping the 

spatial extent of drought prone Eucalyptus dunnii plantations while exploring the effectiveness 

of one class classification approach against multiclass algorithms. These algorithms were 

investigated at a forest catchment scale using vegetation indices and topographical variables. 

The obtained results demonstrated the capabilities of classification algorithms and advantages 

they present in analysing drought. The study is one of the very few studies to utilize OC-SVM 

and MC-SVM for the classification of drought damage on commercial forests. The study also 

highlighted the advantages of integrating Landsat spectra with vegetation indices over Landsat 

spectra only when analysing drought damage on commercial forests. In this chapter the 

conditions set in chapter 1 will be reviewed against the findings.  

4.1  Mapping drought affected forest compartments using multispectral data and 

Stochastic gradient boosting 

In chapter 2 of the study the stochastic gradient boosting classifier was utilized to classify 

drought prone Eucalyptus dunnii plantations. Where Landsat spectra only and an integration 

of Landsat spectra and vegetation indices were used. The combination of Landsat spectra and 

vegetation indices produced a higher overall accuracy compared Landsat spectra only. This 

was attributed to the fact that multiple variables such spectral bands and vegetation indices 

improves the accuracy of algorithms. This improved the overall accuracy by over 8.43% and 

this significant improvement highlights the importance of vegetation indices in drought 

analysis studies. The results are comparable to Godinho et al., (2016) where the study found 

that an integration of Landsat 8 multispectral data (0.43 – 1.38), vegetation indices and the 

stochastic gradient boosting resulted in a significant improvement of 4.9 % in the overall 

accuracy.  Furthermore Xie et al., (2019) identified suitable variables for classifying land cover, 

forest and tree species. The study found that a combination of multiple variables improved 

forest classification by 1% to 12.7% and land cover classification by 3.7% to 15.5% compared 

to spectral bands only. These studies highlight the importance of integrating variables to 

improve the overall accuracy. It also is worth noting that the overall accuracy improvement in 

this study was significantly higher compared to Godinho et al., (2016) and Xie et al., (2019).   

One of the objectives of the study was to do a trend analysis of vegetation health using 

vegetation indices. The key finding related to this objective was the correlation of indices with 
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drought occurrence in 2015. This finding highlighted the importance of vegetation indices in 

analysing drought impacts on vegetation. Other vegetation indices such as the EVI, TCI and 

VHI detected drought occurrence from 2015 and continued into 2016. These indices proved to 

be useful for drought analysis.  

A trend analysis of monthly rainfall and temperature was done for a period of five years. The 

analysis indicated that monthly rainfall was seasonally variable. Monthly rainfall prior to 

drought occurrence were higher compared to the drought year 2015 and pre-drought years 2013 

and 2014. The analysis for temperature indicated that December 2015 was the highest 

compared to December 2013, 2014, 2016 and 2017. The highest annual temperature was 

measured in 2015 and the lowest in 2013. Both temperature and rainfall results indicated that 

2015 was a drought year.   

4.2  Mapping drought affected forest compartments using multispectral data combined 

with topographical variables using a one class classification approach  

The combination of topographical variables, Landsat spectra and drought indices produced a 

higher overall accuracy (82.35%) for the OC-SVM compared to MC-SVM (73.86%). This was 

attributed to a low number of training samples that required labelling. Whereas MC-SVM 

requires all training samples to be labelled including those that are of no interest to the user. 

This objective highlighted the importance of one class mapping in studies that are interested 

mapping a class of interest. OC-SVM allows for this to be done accurately and in a timely 

manner. The results were comparable to Xu et al., (2018) who used OC-SVM to extract rice 

cultivated area using Landsat optical land imager. The OC-SVM used training samples of the 

target class (rice) for rice mapping. The performance of OC-SVM was evaluated and was 

compared to the MC-SVM approach, decision tree classification (DTC) and vegetation index-

based thresholding (VIT). The overall accuracy of OC-SVM was 91.15% which was 

comparable to that of DTC with 91.53%. While overall accuracy for MC-SVM was 83.85% 

and VIT, 57.63%.  Zhao et al., (2020) utilized the biased support vector machine one-class type 

classifier that also requires labelled data for the class of interest and unlabeled data for the other 

classes, to classify fallows in dryland cropping systems. The results showed that the seasonal 

fallow extent can be mapped with over 92% accuracy, both during summer and winter seasons. 

This study indicated the effectiveness of one class classifiers in accurately mapping drought 

affected plantations.  
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4.3 Implications of this study 

The approaches derived in this study should not only be applied to forestry but also extended 

to other agricultural mapping exercises for key economic crops that may be at risk of being 

impacted by drought. Other adverse climate conditions such as frost and hail should also be 

examined as they pose a serious risk on agriculture.  

One of the main advantages of this study is the use of a cost-effective Landsat 8 OLI imagery 

along with a OC-SVM and drought indices which produced good results. However, there is 

a need to test other one class classifiers such as the presence and background learning 

algorithm (PBL) and ensemble one class classification (EOCC) algorithm. For example, Ao 

et al., (2017) successfully investigated the possibility of using a novel one class classification 

algorithm the PBL to classify LIDAR in an urban scenario. Whereas Liu et al., (2020) used 

the EOCC in combination with NDVI time series analysis to detect Spartina alterniflora 

encroachment. 

Lastly this study could be expanded throughout the forest industry across South Africa or 

expanded over larger areas using big datasets given the fact that this approach is 

advantageous over multiclass techniques as it is quick and cost effective. 

4.4 Future research recommendations 

Future research should focus on improving methods of decomposing multiclass training 

samples to one or binary class to ensure that all data used for training is complete and accurate.  

The study utilized supervised classifiers and future studies should utilize more of these 

classifiers to determine their efficiency compared to the ones used in this study.  Also, OC-

SVM can be compared to other proposed one class classifiers such as the biased support vector 

machine (BSVM) and maxent.    

The study focused on classifying forested areas and future research can focus on different land 

covers such as grasslands and areas that grow important agricultural crops. It was also found 

that Eucalyptus dunnii forest species were affected by drought in certain plantations and this 

should be investigated thoroughly. Future research can also focus on higher-resolution remote 

sensing imagery to conduct drought analysis on forested catchments. Droughts are complex 

and affect large geographical areas therefore new methods should be developed in addition to 

algorithms that can investigate the extent, magnitude and duration of a drought event. In 

addition, studies could consider real-time analysis using a time series of images for change 

detection. The rate of change and stand age can help distinguish drought from other damage 
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types such as frost, snow, fire, pest and disease. Summer and winter baselines for various 

indices such as NDVI and NDWI can be set and using this information thresholds below which 

fall into levels of drought impact can be detected. Future studies could also use a soil deficit 

model to determine a single value of the number of water deficit days using temperature, 

rainfall and soil data. Furthermore research could look at recovery after drought to understand 

if, where and at what rate trees are recovering after drought and the type of recovery healthy 

canopy vs epicormic shoot production. Lastly, the application of Sentinel-2, which has a greater 

swath width of 290 km, 12 bands and spatial resolution of 10 m, would be suitable to accurately 

map drought prone areas. 

5 Conclusion 

Droughts threaten the livelihoods of people and have a devastating impact on developing 

countries that heavily rely on rainfed agriculture. Therefore, drought analysis is necessary to 

develop measures to mitigate its impacts. Drought is a complex phenomenon and requires a 

holistic approach of all its facets which include duration, severity and extent. This study 

explored the use of classification algorithms to map drought prone Eucalyptus dunnii 

plantations. The results from the study demonstrated that classification algorithms are capable 

of mapping and visualizing the extent of drought damage on forest plantations. 

This conclusion is based on the findings from this thesis and covers research questions 

established in the first chapter of the thesis: 

Are the use of spectral bands only sufficient as input data for stochastic gradient boosting to 

classify drought damage in forest plantations? 

• The use of Landsat 8 spectral bands only produced a fairly good overall accuracy 

however the results could still be improved by using multiple variables. 

Will the integration of spectral bands and vegetation indices improve the overall accuracy of 

drought classification using stochastic gradient boosting?  

• The use of spectral bands and vegetation indices improved the overall accuracy 

significantly and this was attributed to the fact that vegetation indices enhances spectral 

information and improve the accuracy of algorithms. 

Will the integration of topographical variables, and vegetation indices improve the overall 

accuracy of OC-SVM and MC-SVM? 
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• The use of topographical variables and vegetation indices produced a higher overall 

accuracy for OC-SVM compared to MC-SVM. This was attributed to the low amount 

of training data samples that are required to be labelled which is results in high accuracy 

and is less time consuming.  

 

Overall, this study provided insight into three classification algorithms namely SGB, OC-SVM 

and MC-SVM. The OC-SVM and MC-SVM produced lower overall accuracies compared to 

SGB. However, the results were comparable although both OC-SVM and MC-SVM didn’t 

utilise Landsat 8 spectra as input data. Researchers should utilize this study as a base for future 

drought analysis using classification algorithms. 
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