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Abstract

The main gravitational theory in which we develop this work is general relativity. We

study the role of the Weyl tensor in general relativistic fluid motion including the e↵ects

of spacetime shear. Firstly we consider conformally flat perturbations on the Friedmann

Lemaitre RobertsonWalker (FLRW) spacetime containing a general matter field. Working

with the linearised field equations, we find some important geometrical properties of

matter shear and vorticity, and show how they interact with the thermodynamic quantities

in the absence of any free gravity powered by the Weyl curvature. We demonstrate that

the matter shear obeys a transverse traceless tensor wave equation and the vorticity obeys

a vector wave equation in this linearised regime. These shear and vorticity waves replace

the gravitational waves in the sense that they causally carry information about local

change in the curvature of these spacetimes. We also study the heat transport equation

in this case, and show how this varies from the Newtonian case. Secondly we show that a

general but shear-free perturbation of homogeneous and isotropic universes are necessarily

silent, without any gravitational waves. We prove this in two steps. First, we establish

that a shear-free perturbation of these universes are acceleration-free and the fluid flow

geodesics of the background universe map onto themselves in the perturbed universe.

This e↵ect then decouples the evolution equations of the electric and magnetic part of the

Weyl tensor in the perturbed spacetimes and the magnetic part no longer contains any

tensor modes. Although the electric part, that drives the tidal forces, does have tensor

modes sourced by the anisotropic stress, these modes have homogeneous oscillations at

every point on a time slice without any wave propagation. This analysis shows the critical

role of the shear tensor in generating cosmological gravitational waves.
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Conventions, important formulas and abbreviations

For sign conventions we follow Ellis (1971) and Ellis and van Elst (1998).

Unless otherwise specified, we use natural units (c = 8⇡G = 1) throughout this disserta-

tion.

Latin indices run from 0 to 3.

We use the (�, + , + , +) signature.

The symmetrisation and the antisymmetrisation over the indexes of a tensor are defined

respectively as

T(ab) =
1

2
(Tab + Tba) , T[ab] =

1

2
(Tab � Tba) . (1)

The symbol r represents covariant derivative and @ corresponds to partial di↵erentiation.

The Riemann tensor is defined by

R
a
bcd = �a

bd,c � �a
bc,d + �e

bd�
a
ce � �e

bc�
a
de , (2)

and �a
bd are the Christo↵el symbols (i.e. symmetric in the lower indices) defined by

�a
bd =

1

2
g
ae(gbe,d + ged,b � gbd,e). (3)

The Ricci tensor is obtained by contracting the first and the third indices of the Riemann

tensor

Rab = g
cd
Rcadb . (4)

The Hilbert–Einstein action in the presence of matter is given by

S =
1

2

Z
d
4
x
p
�g [R� 2Lm] , (5)

variation of which gives the Einstein’s field equations as

Gab = Tab . (6)

viii



The abbreviations below are used in this dissertation

CDM Cold dark matter

EFEs Einstein field equations

FLRW Friedmann-Lemaitre-Robertson-Walker

GR General relativity

LRS Local rotational symmetry

PSTF Projected symmetric and trace-free.
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Chapter 1

Introduction

- Brief introduction of general relativity

General relativity (GR) is the theory of space, time and gravitation formulated by Albert

Einstein in 1915 and published in 1916, eleven years after publishing his special theory

of relativity. It has been considerably studied since the late 1950s. Furthermore, in the

mid 1960s, the modern theory of gravitational collapse, singularities, and black holes have

been developed. General relativity is a beautiful physical theory, invented for describing

the gravitational field and the equations it obeys. General relativity is phrased in the lan-

guage of mathematical theory of manifolds, i.e. di↵erential geometry (Boonserm (2006)).

General relativity is essentially special relativity on manifolds M instead of R4 together

with Einstein’s field equations.

In general relativity the collection of all events is given by the pair (M, g), where M
is a connected, four-dimensional Hausdor↵ C

1 manifold and g is a Lorentz metric on M
(Hawking and Ellis (1973)). Together with the existence of a Lorentz metric, the Hausdor↵

condition implies that M is also paracompact (Geroch (1968)). All pairs (M0, g0), which

are di↵eomorphic to (M, g), are regarded as equivalent and we study (M, g) which

represents the entire equivalence class of spacetimes with equivalent physical properties.

The spacetime is postulated to follow local causality, i.e. the equations governing the

matter field must be such that if U ⇢ M is a convex normal neighborhood and if p, q are

points in U , then a signal can be sent in U between p and q, if and only if, there exists

a C
1 curve in U between p and q, whose tangent is everywhere nonzero and is either

timelike or null (Goswami (2005)). It is this postulate which sets the metric g apart from

other fields in M, and gives it’s distinctive geometrical character. Also, for any matter

field on the spacetime, local conservation of energy and momentum is postulated to hold.
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The equations governing the matter fields are such that there exists a symmetric tensor

Tab, called the energy momentum tensor, which depends upon the fields, their covariant

derivatives and the metric tensor. This matter tensor also has important properties, e.g.

it vanishes in an open set U ⇢ M, if and only if all matter fields vanish on U . Also we

must have T ab
;b = 0, which depicts the conservation of energy and momentum of the field.

The geometrical action is derived from a suitable scalar Lagrangian constructed from

the metric tensor, and its first and second derivatives. The most abvious choice of such

a scalar is the Ricci scalar (Landau and Lifshitz (1975)). The relationship of matter and

spacetime geometry is then given via the principle of least action

�(Sg + Sm) = �

Z
dV

p
�g(R + Lm) = 0, (1.1)

where Sg and Sm are the gravitational and matter field actions respectively, obtained by

integrating over a four volume, R is the Ricci scalar of the spacetime and Lm is the matter

Lagrangian. Simplification of the above equation (1.1) gives the Einstein field equations

(in units 8⇡G = c = 1) as

Gab ⌘ Rab �
1

2
Rgab = Tab, (1.2)

where Rab is the Ricci tensor contracted from the four dimensional Riemann curvature

tensor R
a
bcd of the spacetime. The tensor Gab is called the Einstein tensor. The third

postulate of general relativity is that the Einstein equations hold on M.

Solutions result from solving the Einstein field equations (EFE) of general relativity.

Solutions are broadly classed as exact or non-exact. Exact solutions are Lorentz metrics

that are conformable to a physically realistic matter tensor and are obtained exactly in

closed form. Exact solutions in general relativity are hard to come by. Almost all known

solutions depend on assuming symmetries of the spacetime. Those solutions that are not

exact arise due to the di�culty of solving the EFE in closed form and often take the

form of approximations to ideal systems. Many non-exact solutions may be devoid of

physical content, but serve as useful counterexamples to theoretical conjectures. Exact

solutions are our main way of acquiring intuition about the behaviour of generic solutions

to the Einstein field equations. Some important exact solutions are: Schwarzschild and

Kerr solutions, the Friedmann-Lemâıtre-Robertson-Walker (FLRW) solutions, Lemâıtre-

Tolman-Bondi (LTB) solutions, plane waves solutions, and the Taub-NUT family. Apart

from these, there are a large number of exact solutions to the Einstein equations which

are obtained under various symmetry considerations. The FLRW spacetime and LTB
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metrics are examples of cosmological exact solutions. Exact solutions of the Einstein field

equations were among the first approaches used in studying general relativistic spacetimes.

In this dissertation, we focus on the FLRW solutions.

The Schwarzschild solutions. Soon after Einstein proposed the field equations, Schwarz-

schild gave an exact solution to these equations in 1916, which represents the spherically

symmetric empty spacetime outside a massive body (Schwarzschild (1916) and Goswami

(2005)). In (t,r,✓,�) coordinates, the Schwarzschild solution takes the form

ds
2 = �

✓
1� 2m

r

◆
dt

2 +

✓
1� 2m

r

◆�1

dr
2 + r

2(d✓2 + sin2
✓d�

2), (1.3)

where r > 2m, m is the mass of the central object.

The FLRW solutions. These solutions give the geometry of the “standard model” in

modern cosmology. These are the solutions with the metric

ds
2 = �dt

2 + a
2(t)[dr2 + ⌃2(r, k)(d✓2 + sin2

✓d�
2)] (1.4)

where ⌃2(r, k) = sin r, r, or sin kr, respectively, when k = 1, 0 or �1. Here k

a2
is the

curvature scalar of the three-dimensional surfaces t = constant. The major assumptions

in the Robertson-Walker geometry are the large scale homogeneity and isotropy of the

universe. With these symmetry assumptions, the metric for the space time can also be

shown to have the following form

ds
2 = �dt

2 + a
2(t)


dr

2

1� kr2
+ r

2(d✓2 + sin2
✓d�

2)

�
, (1.5)

where k is a constant which denotes the spatial curvature of the three-space.

Lemâıtre, Tolman and Bondi relaxed the constrain of homogeneity in the above geo-

metry and discovered an exact cosmological solution to the Einstein’s equations for spher-

ically symmetric dust-like matter. The metric, commonly known as LTB metric, can be

written as

ds
2 = �dt

2 +
R

02

1 + r2b0(r)
dr

2 +R
2(d✓2 + sin2

✓d�
2), (1.6)

where R(t, r) is the area radius of the collapsing shells of dust.
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For further details refer to Born (1962), Brassel (2017), Burgess (2004), D’Inverno

(2008), Dirac (1996), Shutz (2009), Ryder (2009) and Wald (1984).

- Cosmological models in general relativity

The application of general relativity theory to the study of cosmology gave rise to the

first quantitative cosmological models in 1917. A cosmological model is a mathematical

representation of the universe at some averaging scale. It describes the geometry of space

and time, the distribution and properties of matter in the universe within the framework of

some physical theory (most commonly Newtonian or Einsteinian theories of gravity). The

cosmological (standard) model is based on the cosmological principle, i.e. a homogeneous

and isotropic universe, as well as the assumed existence of a cosmic standard time. This

time is intimately connected to the evolution of the universe.

In a relativistic cosmological model space and time is described by a four-dimensional

di↵erential manifold M with a Lorentzian metric g, and matter is given by a symmetric

tensor T - the energy momentum tensor. There are various physical cosmological models

classified as follows (Ellis and Elst (1998))

The Homogeneous and Isopropic models : FLRW model and the Einstein static

model. The FLRW model will be discussed in the following sections.

The Homogeneous and anisopropic models : The family of orthogonal and tilted

Bianchi models,

The Homogeneous and Local Rotational Symmetry (LRS) models : The family of

Kantowski-Sachs and LRS Bianchi models.

The Inhomogeneous and LRS models : LTB models. The LTB models are a class

of spherically symmetric, time-dependent solutions with the right hand side of the

Einstein field equations specified by a pressureless fluid, i.e, dust.

The Inhomogeneous and anisotropic models. The Szekeres’ quasi-spherical models,

the Stephani’s conformally flat models and the Oleson’s type N solutions. Another

interesting family of inhomogeneous models is the Swiss-Cheese family of models

made by cutting and pasting segments of spherically symmetric models.

15



- FLRW models

The set of four scientists: Alexander Friedmann, Georges Lemâıtre, Howard P. Robertson

and Arthur Geo↵reyWalker are customarily grouped as Friedmann–Lemâıtre-Robertson–Walker

(FLRW). This model is sometimes called the Standard Model of (modern) Cosmology

(Bergström and Goobar (2006)). The FLRW model was developed independently by the

named authors in the 1920s and 1930s.

The FLRW models are established on the basis of the assumption that the universe is

homogeneous and isotropic in all epochs. These models play an important role in Cosmo-

logy, and are among the most popular backgrounds in gravitational physics. The current

observations give a strong motivation for the adoption of the cosmological principle stat-

ing that the Universe at large scales is homogeneous (has spatial translation symmetry)

and isotropic (has spatial rotation symmetry) and, hence, its large scale structure is well

described by the FLRW metric. We assume that at any given time, the Universe looks

exactly the same at every single point in space. Such a spacetime is dubbed to be ho-

mogeneous. The homogeneous models are the major models of theoretical cosmology,

because they express mathematically the idea of the above cosmological principle. There

is another assumption that takes into account the extreme regularity of the Universe and

that is the fact that, at any given point in space, the Universe looks very much the same in

whatever direction we look. Such a space time is dubbed to be isotropic. In this case, the

Weyl curvature tensor vanishes, the kinematical quantities vanish except the expansion

⇥. All observations (at every point) are isotropic. Universes satisfying the cosmological

principle are described by the FLRW metric (1.5).

- Conformal flatness

Let M be a (pseudo-) Riemannian manifold. Then M is conformally flat if it can be

covered by neighborhoods {Ux} such that there exists a conformal map �x : Ux ! Rn,

where Ux is a neighborhood U of x, and U ⇢ M (Kulkarni (1972)). In other words, M
is called conformally flat if each point x in M has a neighborhood that can be mapped

to flat space by a conformal transformation. And when referred to just some point x on

M, we use the definition of locally conformally flat. From the point of view of conformal

geometry, conformally flat manifolds are the core manifolds. Primary examples of con-

formally flat manifolds are manifolds with constant sectional curvature. Recall also that

every 2-dimensional pseudo-Riemannian manifold is conformally flat. In general relativ-

ity, conformally flat manifolds are often used to describe FLRW metrics. Other examples

of conformally flat manifolds:
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A 3-dimensional pseudo-Riemannian manifold is conformally flat if and only if the

Cotton tensor vanishes. For n < 3 the Cotton tensor is identically zero.

An n-dimensional pseudo-Riemannian manifold for n � 4 is conformally flat if and

only if the Weyl tensor vanishes. In di↵erential geometry, the Weyl curvature tensor

is a measure of the curvature of spacetime in a pseudo-Riemannian manifold. Part of

the Riemann curvature tensor, the Weyl tensor expresses the tidal force that a body

feels when moving along a geodesic. In general relativity, the Weyl tensor is the only

part of the curvature that exists in free space, a solution of the vacuum Einstein

equations, and it governs the propagation of gravitational waves through regions of

space devoid of matter. In dimensions 2 and 3 the Weyl curvature tensor vanishes

identically. In dimensions � 4, the Weyl curvature is generally nonzero. If the Weyl

tensor vanishes in dimension � 4, then the metric is locally conformally flat: there

exists a local coordinate system in which the metric tensor is proportional to the

Minkowski metric. In the theory of general relativity, one can split the Weyl tensor

into the electric part and the magnetic part, the so-called gravitoelectric-magnetic

fields, with some similarity to electrodynamical counterparts (Danehkar (2009)).

A number of conformally flat physically significant spacetimes are known like the

Schwarzschild interior solution and the Lemâıtre cosmological universe. Buchdahl (1959)

obtained the conformal flatness of the Schwarzschild interior solution. Singh and Roy

(1966) discussed the possibility of existence of electromagnetic fields conformal to some

empty spacetime. Singh and Abdussattar (1974) obtained a non-static generalization of

Schwarzschild interior solution which is conformal to flat spacetime. Roy and Bali (1978)

have obtained the solution of Einstein’s field equations representing non-static spherically

symmetric perfect fluid distribution which is conformally flat. Pandey and Tiwari (1981)

have discussed a conformally flat spherically symmetric charged perfect fluid distribution.

Reddy (1979), and Rao and Reddy (1982) discussed static conformally flat solutions in the

Brans-Dicke and Nordtvedt-Barker scalar-tensor theories. Shanthi (1989) has shown that

the most general conformally flat static vacuum solution in the Nordtvedt-Barker scalar-

tensor theory is simply the empty flat spacetime of general relativity. There has been

literature from Melfo and Rago (1992), Mannheim (1992), Yadav and Prasad (1993), En-

dean (1997), Endean (1998), Visser (2015), Obukhov et al (1999), Mak and Harko (2000))

which shows significant interest in the study of conformally flat spacetimes. Several other

classes of conformally flat spacetimes have been applied in cosmology, including gener-

alized Friedmann models, generalized Schwarzschild interior models, Bertotti-Robinson

models, and radiation fields (Stephani et al (2003)).

Conformal flatness is a condition that is often applied in the study of gravitational

17



interactions, since many of these models characterize spacetimes of physical importance.

In a conformally flat spacetime the Weyl tensor vanishes identically (Hawking and Ellis

(1973)), and the technique of embedding has proved to be a useful tool in generating a

variety of exact solutions (Krasinski (1997), Ellis et al (2007)), with perfect fluids, pure

radiation and electromagnetic fields. Conformal flatness is also widely used in studying

gravitational collapse for various matter fields. Collapse in the presence of scalar fields

was studied in Chakrabarti and Banerjee (2017), with dissipative matter giving rise to

radiating stellar configurations (Herrera et al (2004), Herrera et al (2006), Misthry et al

(2008), Maharaj and Govender (2005), Sharma et al (2015)). Conformal flatness has also

proven to be useful in constructing static anisotropic stars that can represent real pulsars

(Ivanov (2018)). In addition to this, vanishing of the Weyl tensor helps to solve the field

equations in modified gravity theories, see for example in Chakrabarti et al (2018) for

f(R)-theories of gravity, and in Hansraj and Moodly (2020) for Einstein-Gauss-Bonnet

gravity.

Although a lot of work has been done on conformal symmetries in these spacetimes, and

also numerous solutions have been found, most of these studies consider to spacetimes with

specific symmetries (for example, spherical or cylindrical symmetries) and very specific

types of matter fields. The main reason behind this is that the field equations still remain

extremely complicated for any general treatment. To overcome this hurdle, we start by

taking baby steps. We consider a general, but conformally flat perturbations on FLRW

spacetime, and work with linearised field equations up to first order. In other words,

the Weyl tensor vanishes identically in the perturbed spacetime. Nevertheless, all the

other quantities, that were zero in the background become first order quantities in the

perturbed scenario, and we deal with a general form of matter with anisotropic stresses

and heat flux to the first order of smallness. The main aim of this investigation is to track

the behaviour of geometrical quantities, like matter shear or vorticity in the perturbed

conformally flat scenarios. This will definitely give an indication as how these quantities

will behave in the most general treatment of the field equations.
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- Shear-free models

As is well known, shear plays an important role in general relativistic and cosmological

models (Collins and Wainwright (1983), Glass (1979), Herrera and Santos (2003) and

references therein). The di↵erential properties of families of geodesics are described by

their expansion, rotation and shear in the timelike case (Ehlers (1993), (Ehlers (2009)

and Ellis (2009)), and by the null expansion and shear in the case of the irrotational null

geodesic congruences that underlie observations (Ehlers and Sachs (1961), Ellis (2011)).

For a given fundamental observer moving with 4-velocity u
a, spacetime decomposes into

space and time (Ehlers (1993) and Ellis (2009)). When the shear is zero, the expansion

is isotropic; we expect vorticity to tend to generate anisotropy that would break this

condition. However a nonzero Weyl tensor could balance this tendency (Ellis (2011)).

From the evolution equations for the shear

�̇<ab> +
2

3
⇥�ab + �c<a�

c

b>
+ !<a!b> + Eab = 0, (1.7)

and for the magnetic part of the Weyl tensor

H
ab = �D

<a
!
b> + (curl �)ab, (1.8)

on setting the shear to be zero (�ab = 0), (1.7) becomes a new constraint equation, along

with the old constraint (1.8) determining E and H in terms of !:

Eab = �!<a!b>, H
ab = �D

<a
!
b>
. (1.9)

Let us now take time derivatives of these constraints and see if the shear-free equations

(1.9) are consistent for some non-trivial special cases. Gödel (1952) showed that in this

case, a shear-free universe could either expand or rotate, but not both; he did not show

how he had obtained the result. In 1957, Schücking derived the Gödel result in detail

(Schücking (1957)). Ellis (1967) used an orthonormal tetrad formalism to show that the

restriction of special homogeneity was unnecessary:

Dust shear-free theorem: If a dust solution of EFEs (possibly with a cosmological

constant) is shear-free in a domain U , it cannot both expand and rotate in U :

{u̇a = 0, �ab = 0} =) !⇥ = 0. (1.10)
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Applying the above dust shear-free theorem in the cosmological context, (1.10) shows

!ab = 0. So from the above equations

{�ab = 0, ⇥ > 0} =) Eab = 0, Hab = 0, Da⇥ = 0. (1.11)

The spacetime is conformally flat and the universe is a FLRW universe (Ellis (2009)).

These are thus the only expanding shear-free baryonic plus CDM cosmological solutions,

provided both components move with the same 4-velocity (Ellis (2011)). Note that the

result (1.11) does not require the energy density to be positive (⇢ > 0). Further generaliza-

tions considered perfect fluids rather than pressure-free matter, so the timelike congruence

acceleration was allowed; the result (1.10) remains true in all cases considered so far. In

fact Collins (1986) surmised that all shear-free perfect fluids obeying a barotropic equa-

tion of state must have either zero expansion or zero vorticity. Senovilla et al (1998)

obtained results towards proving this conjecture. Van den Bergh (1999) gave a tetrad

based approach for two particular cases require special treatment: p + 1/3⇢ = constant,

p�1/9⇢ = constant, also the equation of state p = (��1)⇢+constant. Van Den Bergh et

al (2007) showed that the result is generically true for shear-free perfect fluid solutions of

the Einstein field equations where the fluid pressure satisfies a barotropic equation of state

and the spatial divergence of the magnetic part of the Weyl tensor is zero. Is it possible

that we can obtain models other than FLRW in these cases? Collins (1985) showed that

for irrotational shear-free perfect fluids obeying a barotropic equation of state p = p(µ)

and with nonzero acceleration, we get spherically symmetric Wyman solutions, or models

that are plane symmetric, which are spatially or temporally homogeneous. In all cases,

when the spacetime is su�ciently extended, the fluid exhibits unphysical properties. Con-

sequently shear-free expanding barotropic perfect fluids must either be FLRW, or must

be restricted to local regions where these conditions hold. Thus it turns out that the

FLRW models are the only shear-free barotropic perfect fluid models in which the matter

is physically reasonable globally (Collins (1986), Ellis (2011)). Generally speaking, these

results show clearly how restrictive the shear-free result is for plausible fluid models. It

will of course not be true for imperfect fluids with arbitrary equations of state. It is of

considerable interest whether the result (1.10) holds in the case of linearised perturbations

of FLRW universe models. It has recently been shown that it holds in this case too: if a

perfect fluid with equation of state p = k⇢ in an almost FLRW universe is shear-free, then

it must be either expansion-free or rotation-free. Thus linearization does not lose this

property. Nzioki et al (2011) deals with a number of interesting properties of shear-free

perfect fluids (i.e. qa = ⇡ = 0) in general relativity. On our part, we consider the case of

imperfect fluids (i.e. 0 6= q
a 6= ⇡ 6= 0).
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In this work we analyse the role of spacetime shear in generating cosmological gravit-

ational waves in a universe constructed via a general perturbation of homogeneous and

isotropic FLRW universe. This is important, as the corresponding Newtonian or quasi

Newtonian description of cosmologies do not permit the existence of gravitational waves.

It has been well known for some time that we can describe the cosmology in a quasi-

Newtonian way (the silent models that are devoid of any gravitational waves), for observ-

ers which move along geodesics which are both shear-free and irrotational (Matarrese et

al (1994)). The key di↵erence between Newtonian and general relativistic cosmologies, in

the absence of shear, emerges from the surprising exact result: Shear-free dust cannot ro-

tate and expand simultaneously (Gödel (1952), Ellis (1967) and Ellis et al (2007)), which

was also shown to hold in the case of barotropic perfect fluid solutions linearised about a

FLRW geometry (Nzioki et al (2011)). Since this result is not true for Newtonian or quasi

Newtonian cosmologies, it is not always obvious which behaviour of a perturbed universe

(linearised about FLRW geometry) will have a Newtonian counterpart. Further to this,

most of the previous results have assumed the form of matter in the perturbed universe to

be barotropic (as in the background scenario). Hence the e↵ect of introducing heat flux

or anisotropic stress perturbatively in the energy momentum tensor of the matter field

still remains the subject of further investigations.

- Gravitational waves

In Einstein’s theory of general relativity the geometry of spacetime is a dynamic phys-

ical observable that supports wave-like excitations, propagating at the speed of light.

These are known as gravitational waves. One of the general relativity principles is that

nothing travels faster than light. This means that changes in the gravitational field can-

not be felt everywhere instantaneously: they must propagate. In general relativity they

propagate at exactly the same speed as vacuum electromagnetic waves: the speed of light.

These propagating changes are called gravitational waves, and they actually represent a

hot topic, which plays a central role in astrophysics, cosmology and theoretical physics

(Ciufolini et al (2001)).

To discuss the generation of gravitational waves on a given background, the covariant

way is to consider the Weyl tensor as the free gravitational field and the metric tensor as

it’s second order potential field. Given a family of timelike observers, one can then split

the Weyl tensor into its electric and magnetic parts, which are projected symmetric trace

free tensors of rank 2, and this is absolutely analogous to splitting the electromagnetic

field tensor into the electric field vector and magnetic field vector. The once-contracted

Bianchi identities then gives the evolution equations of these tensors and one can easily see
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that the evolution of the electric part is coupled to the curl of the magnetic part and vice

versa, exactly analogous to the source-free Maxwell equations for electric and magnetic

fields. Using these evolution equations and the tensor identities, we can then find closed

wave equations for the electric and magnetic part of the Weyl tensor (see Goswami and

Ellis (2021) for a detailed explanation). These are the equations for gravitational (tensor)

waves containing the tensorial modes of oscillations. Apparently, it may seem that the

spacetime shear plays no direct role in generating these waves. However, as we shall see

in this work, the shear has a pivotal role in coupling the evolution equations for electric

and magnetic components of Weyl. Absence of shear completely destroys this structure

and makes the perturbed spacetime silent.

- Outline

This dissertation is organised as follows:

Chapter 1: In this chapter we discuss general relativity and some exact solutions.

We provide a brief overview of the mathematical tools needed to formulate gen-

eral relativity. These mathematical tools had been developed earlier by Riemann

and Gauss. We discuss conformally flat and shear-free models, and why they are

important.

Chapter 2: In this chapter we present the relevant theoretical concepts inherent with

the 1 + 3 covariant formalism. We use the socalled 1 + 3 covariant description of

general relativity which has been developed for use in spacetimes in which there is a

preferred timelike congruence u. The “1 + 3” refers to the fact that one performs a

“time+space” decomposition relative to u by projecting tensors and tensorial equa-

tions parallel to u and orthogonal to u. The second aspect of the 1 + 3 description

is to write a tensor as a sum of algebraically simpler parts.

Chapter 3: We study the conformally flat perturbations of FLRW spacetimes, to see

the e↵ects the of Weyl tensor in a general spacetime. We adapt the 1 + 3 covariant

approach based on Ellis and van Elst (1998) to conformally flat spacetimes, i.e

the Weyl curvature tensor is equal to zero, so the “electric” and “magnetic” Weyl

curvature parts respectively are equal to zero. We state and prove several important

geometrical properties for matter shear and vorticity in the perturbed, conformally

flat spacetime. We use a local semitetrad covariant formalism, and hence all the

perturbation results are frame invariant and gauge invariant in general. A pioneering

work in this regard was done by Bruni et al (1992), where the scalar, vector and

tensor modes of the perturbations were treated in a covariant and gauge invariant
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way. Further works on cosmological gravitational waves were studied in Dunsby et

al (1997) and Maartens et al (1999). Similar techniques were used in Nzioki et al

(2011) and Abebe et al (2011), to show that in a shear-free perturbation of FLRW

spacetime, matter cannot expand and rotate simultaneously even in the linearized

regime. An interesting parallel emerges between our work and the results presented

in Herrera et al (2014) and Herrera et al (2016), where the authors performed

a general study of dissipative fluids with anisotropic stresses. These works are

more restricted in the sense that they assume axial and reflection symmetries. it

is important to remember that our study emphasizes the e↵ects of the Weyl tensor

on spacetime geometry via negation. This understanding helps us in recognizing

the e↵ects of free gravity with better clarity, as changes involving the appearance of

vorticity and shear are highly dependent on the Weyl tensor. It is important to note

that the work in this chapter has been published in Physical Review D (Mayala et

al (2021))

Chapter 4: In this chapter we study the shear-free perturbations on FLRW space-

times, to see the e↵ect of the shear tensor in general spacetimes. We adapt the 1+3

covariant approach based on Ellis and van Elst (1998) so that the shear tensor is

equal to zero. This work deals with a number of interesting properties of shear-free

imperfect fluids. We use a semi tetrad covariant and gauge invariant formalism to

obtain frame invariant and gauge invariant results. As we know, in perturbation

theory the gauge choice becomes important while mapping the zeroth order quant-

ities from the background manifold to the perturbed one. However, it is also well

known that any covariantly defined geometric and thermodynamic quantity, that

vanishes in the background, is automatically gauge invariant in the perturbed mani-

fold (Stewart (1991)). Since in the FLRW background the Weyl tensor is identically

zero, in the perturbed manifold this will be a first order quantity and naturally

gauge invariant. Therefore any result concerning the existence or non-existence of

gravitational waves will naturally be gauge invariant in this formalism.

Chapter 5: We briefly summarise the work done in this thesis.
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Chapter 2

The 1+3 covariant formalism

2.1 Introduction

In this chapter we provide some basic notions regarding the 1 + 3 covariant formalism

which will be required for this thesis. For further details refer to Ellis and van Elst (1998),

Ellis et al (2011), van Elst (1996), Nzioki (2013), Betschart (2005), Bertschinger (1999),

Islam (2006) and Mongwane (2014). The 1 + 3 covariant approach provides a covariant

description of spacetime in terms of scalars, 3�vectors and projected symmetric trace-

free (PSTF) 3�tensors, and equations governing their dynamics, based on the Ricci and

Bianchi identities. These quantities have a physical or direct geometrical meaning, which

have a natural interpretation for comoving observers. This formalism is based on a local

1+3 threading of the spacetime manifold and has been a very handy tool for understanding

many geometrical and physical aspects of relativistic fluid flows, both in general relativity

or in the gauge invariant, covariant perturbation formalism (Ellis et al (2011)). We first

define a timelike congruence with a unit tangent vector ua along the fluid flow lines. Then

the spacetime is split locally in the form R⌦ V where R denotes the world line along u
a

and V is the 3-space perpendicular to u
a. Any vector Xa can then be projected on the

3-space by the projection tensor ha
b = g

a
b + u

a
ub. The choice of ua naturally defines two

derivatives: the covariant time derivative along the observers’ worldlines (denoted by a

dot), and the fully orthogonally projected covariant derivative D on the three dimensional

space.
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2.2 Projection and di↵erentiation

The non-intersecting timelike family of wordlines (associated with fundamental observers

comoving with the cosmological fluid) form a congruence in spacetime (M, g) representing

the average motion of matter at each point. In each case their 4-velocity is

u
a =

dx
a

d⌧
, with uau

a = �1, (2.1)

where ⌧ is the proper time along the world line of any fundamental observer. Given the

4-velocity u
a, there are uniquely defined projection tensors

U
a

b
= �u

a
ub, (2.2)

h
a

b
= �

a

b
+ u

a
ub, (2.3)

where (2.2) projects parallel to u
a and (2.3) projects onto the rest space orthogonal to

u
a
. It follows that

U
a

c
U

c

b
= U

a

b
, U

a

b
u
b = u

a, U
a

a
= 1, (2.4)

h
a

c
h
c

b
= h

a

b
, h

a

b
u
b = 0, h

a

a
= 3, (2.5)

0 = U̇
<ab> = ḣ

<ab>, 0 = DaUbc = Dahbc.

The choice of the timelike vector naturally defines two derivatives: the vector ua is used

to define the covariant time derivative along the observers’ worldline (denoted by dot) for

any tensor Za..b

c..d
, given by

Ż
a..b

c..d
= u

ereZ
a..b

c..d
, (2.6)

and the tensor hab is used to define the fully orthogonally projected covariant derivative

D for any tensor Za..b

c..d
by

DeZ
a..b

c..d
= h

a

f
h
p

c
...h

b

g
h
q

d
h
r

e
rrZ

f..g

p..q
, (2.7)
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with total projection on all the free indices.

Following Maartens (1997), we use angle brackets to denote the orthogonal projections

of vectors, the orthogonally projected symmetric trace-free (PSTF) part of tensors, and

their time derivatives, i.e.

V
<a> = h

a

b
V

b, Z
<ab> =

✓
h
(a
c
h
b)
d
� 1

3
h
ab
hcd

◆
Z

cd, (2.8)

V̇
<a> = h

a

b
V̇

b, Ż
<ab> =

✓
h
(a
c
h
b)
d
� 1

3
h
ab
hcd

◆
Ż

cd
. (2.9)

Volume element

The e↵ective volume element for the rest space of the comoving observer is given as follows

✏abc = ⌘abcdu
d = �✏defgh

d

a
h
e

b
h
f

c
u
g = u

g
✏gdefh

d

a
h
e

b
h
f

c
, (2.10)

where

✏abc = ✏[abc] and ✏abcu
c = 0,

0 = ✏̇<abc>, 0 = Da✏bcd.

(2.11)

Here ⌘abcd is the four-dimensional volume element (⌘abcd =
p
|det g|�0[a�1b �2c�3d]) so that

⌘abcd = 2u[a✏b]cd � 2✏ab[cud]. (2.12)
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Since ⌘abcd is totally skew-symmetric ⌘abcd = ⌘[abcd], it follows that the following contrac-

tions hold

✏abc✏
def = 3!hd

[ah
e

b
h
f

c],

✏abc✏
dec = 2hd

[ah
e

b],

✏abc✏
dbc = 2hd

a
,

✏abc✏
abc = 6.

(2.13)

Covariant derivative of u (kinematical variables):

The covariant derivative of the timelike vector ua can now be decomposed into the irre-

ducible part as

raub = �uau̇b +Daub =
1

3
⇥hab + �ab + ✏abc!

c � uau̇b, (2.14)

where u̇b is the acceleration, ⇥ is the expansion, �ab is the shear tensor and !
a is the

vorticity vector, they are all defined respectively as

u̇ = u
brbu

a,

⇥ = Dau
a,

�ab = D<aub>,

!
a = ✏

abc
Dbuc.

(2.15)

Weyl curvature variables:

The Weyl curvature tensor can be decomposed irreducibly into the gravito-electric and

gravito-magnetic parts as
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Eab = Cabcdu
c
u
d = E<ab>,

Hab =
1

2
✏acdC

cd
beu

e = H<ab>,

(2.16)

which allow for a covariant description of tidal forces and gravitational radiation.

Matter variables:

The energy momentum tensor for a general matter field can be similarly decomposed as

follows

Tab = µuaub + qaub + qbua + phab + ⇡ab (2.17)

where µ is the energy density, qa = q<a> is the 3-vector defining the heat flux, p is the

isotropic pressure and ⇡ab = ⇡<ab> is the anisotropic stress. And all defined respectively

as follows

µ = Tabu
a
u
b,

q
a = �h

ca
Tcbu

b,

p =
1

3
h
ab
Tab,

⇡ab = h
c

<a
h
d

b>
Tcd.

(2.18)

Riemann curvature tensor

In the geometric description of gravity, spacetime curvature is encoded in the Riemann

tensor Rabcd. This tensor is defined through the Ricci identity (Mongwane 2014) by

r[arb]uc = Rabcdu
d
. (2.19)
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A useful 1 + 3 decomposition of Riemann curvature tensor Rabcd is given as follows (Ellis

and van Elst (1998))

R
ab

cd = R
ab

E cd
+R

ab

I cd
+R

ab

H cd
+R

ab

Pcd
,

R
ab

E cd
= 4u[a

u[cE
b]
d] + 4h[a

[cE
b]
d],

R
ab

I cd
= �2u[a

h
b]
[cqd] � 2u[ch

[a
d]q

b] � 2u[a
u[c⇡

b]
d] + 2h[a

[c⇡
b]
d],

R
ab

H cd
= 2✏abeu[cHd]e + 2✏cdeu

[a
H

b]e,

R
ab

Pcd
=

2

3
(µ+ 3p)u[a

u[ch
b]
d] +

2

3
µh

a

[ch
b

d],

(2.20)

where I represents the imperfect fluid part, P the perfect fluid part; E and H are parts

due to the electric and magnetic Weyl tensor, respectively.

Therefore we can write the Riemann curvature tensor as

R
ab

cd = 4u[a
u[cE

b]
d] + 4h[a

[cE
b]
d] � 2u[a

h
b]
[cqd] � 2u[ch

[a
d]q

b] � 2u[a
u[c⇡

b]
d] + 2h[a

[c⇡
b]
d]

+ 2✏abeu[cHd]e + 2✏cdeu
[a
H

b]e +
2

3
(µ+ 3p)u[a

u[ch
b]
d] +

2

3
µh

a

[ch
b

d].

(2.21)

2.3 The field equations

An arbitrary spacetime, in the 1+3 formulation, may be completely characterised by the

following irreductible set of geometrical quantities:

{⇥, u̇a, �ab, !ab, Eab, Hab}, (2.22)

together with the irreductible set of matter variables

{µ, p, qa, ⇡ab}, (2.23)

provided an equation of state is prescribed.
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2.3.1 Ricci identities

Time derivative equations

Evolution equations for the kinematic variables {⇥, !a, �ab} are obtained by separating

out the parallel projected part of the Ricci identity (2.19) into its irreducible components.

For an outline of the derivation we refer the reader to Ellis (1971). The results are given

as follows

1. The Raychaudhuri equation (Raychaudhuri (1955))

⇥̇�Dau̇
a = �1

3
⇥2 + u̇au̇

a � �ab�
ab + 2!a!

a � 1

2
(µ+ 3p), (2.24)

2. The shear propagation equation

�̇
<ab> �D

<a
u̇
b> = �2

3
⇥�

ab + u̇
<a
u̇
b> � �

<a

c
�
b>c � !

<a
!
b> � (Eab � 1

2
⇡
ab), (2.25)

3. The vorticity propagation equation

!̇
<a> � 1

2
✏
abc

Dbu̇c = �2

3
⇥!

a + �
a

b
!
b
. (2.26)

Constraint equations

The following constraint equations are obtained by first projecting the Ricci identities

(2.19) orthogonal to the 4�velocity u
a, and we find

4. The (0↵)�equation

0 = (C1)
a = Db�

ab � 2

3
D

a⇥+ ✏
abc(Db!c + 2u̇b!c) + q

a, (2.27)

5. The vorticity divergence identity

0 = (C2) = Da!
a � u̇a!

a, (2.28)

6. The Hab�equation

0 = (C3)
ab = H

ab + 2u̇<a
!
b> +D

<a
!
b> � ✏

cd<a
Dc�

b>

d
. (2.29)
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2.3.2 (Contracted) Second Bianchi identities

The following equations (2.31) and (2.32) arise from the Bianchi identities (Ellis and van

Elst (1998))

r[aRbc]de = 0. (2.30)

Time derivative equations

From the Bianchi identities, one recovers the following propagation equations for the

electric and magnetic parts of the Weyl tensor

(Ė<ab> +
1

2
⇡̇
<ab>)� ✏

cd<a
DcH

b>

d
+

1

2
D

<a
q
b> =� 1

2
(µ+ p)�ab �⇥(Eab +

1

6
⇡
ab)

+ 3�<a

c
(Eb>c � 1

6
⇡
b>c)� u̇

<a
q
b>

+ ✏
cd<a[2u̇cH

b>

d
+ !c(E

b> +
1

2
⇡
b>

d
)],

(2.31)

and

Ḣ
<ab> + ✏

cd<a
Dc(E

b>

d
� 1

2
⇡
b>

d
) =�⇥H

ab + 3�<a

c
H

b>c +
3

2
!
<a
q
b>

� ✏
cd<a(2u̇cE

b>

d
� 1

2
�
b>

c
qd � !cH

b>

d
),

(2.32)

respectively.

The propagation equations for the matter variables are derived from the conservation of

matter raZ
ab = 0. Projecting along and orthogonal to the 4�velocity u

a results in

the energy conservation equation

µ̇+Daq
a = �⇥(µ+ p)� 2(µ̇aq

a)� �ab⇡
ab, (2.33)

and
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the momentum conservation equation

q̇
<a> +D

a
p+Db⇡

ab = �4

3
⇥q

a � �
a

b
q
b � (µ+ p)u̇a � u̇b⇡

ab � ✏
abc

!bqc. (2.34)

Constraint equations

The constraint equations are

0 = (C4)
a = Db(E

ab +
1

2
⇡
ab)� 1

3
D

a
µ+

1

3
⇥q

a � 1

2
�
a

b
q
b

�3!bH
ab � ✏

abc

✓
�bdH

d

c
� 3

2
!bqc

◆
,

(2.35)

0 = (C5)
a = DbH

ab + (µ+ p)!a + 3!b

✓
E

ab � 1

6
⇡
ab

◆

+✏
abc


1

2
Dbqc + �bd

✓
E

d

c
+

1

2
⇡
d

c

◆�
.

(2.36)

2.3.3 Propagation of constraints along timelike congruence

Propagating the constraints (2.27)-(2.29), (2.35) and (2.36) along u
a (Maartens (1997)

and van Elst (1996)), we get the following system of equations

( ˙C1)
<a>

= �⇥(C1)
a � 3

2
�
a

b
(C1)

b +
1

2
✏
abc

!b(C1)c �
8

3
!
a(C2)

�✏
abc

�bd(C3)
d

c
� 3!b(C3)

ab � (C4)
a,

(2.37)

( ˙C2) = �⇥(C2), (2.38)

( ˙C3)
<ab>

= �⇥(C3)
ab + 3�<a

c
(C3)

b>c + ✏
cd<a

!c(C3)
b>

d
+

1

2
✏
cd<a

�
b>

c
(C1)d

+
3

2
!
<a(C1)

b>,

(2.39)
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( ˙C4)
<a>

� 1

2
✏
abc

Db(C5)c = �4

3
⇥(C4)

a +
1

2
�
a

b
(C4)

b � 1

2
✏
abc

!b(C4)c �
1

2
(µ+ p)(C1)

a

�1

2
⇡
a

b
(C1)

b + 2✏abcEbd(C3)
d

c
+

3

2
✏
abc

u̇b(C5)c,

(2.40)

( ˙C5)
<a>

+
1

2
✏
abc

Db(C4)c = �4

3
⇥(C5)

a +
1

2
�
a

b
(C5)

b � 1

2
✏
abc

!b(C5)c �
1

2
✏
abc

qb(C1)c

+
2

3
q
a(C2) + 2✏abcHbd(C3)

d

c
� 3

2
✏
abc

u̇b(C4)c.

(2.41)

2.4 Commutation relations and notations

In general the two derivatives ‘ ˙ ’ and ‘D’ introduced in 2.2 do not commute and therefore

give rise to various commutator relations which play an integral part in all partial frame

formalisms. This is a manifestation of spacetime curvature which is derived from the

Ricci identities for spacetime scalars f, 3-vectors V a and rank-2 tensors Aab, respectively

(Betschart (2005)):

r[arb]f = 0, (2.42)

2r[arb]Vc = RabcdV
d, (2.43)

2r[arb]fcd = �RabecA
e

d
�RabedA

e

c
. (2.44)

Below we have the commutation relations given by van Elst (1998).

2.4.1 3-scalar derivatives

For scalar function f one obtains

- Time-space derivative commutator:

[D<a>
f ]̇ ⌘ h

a

b
[Db

f ]̇ = [Da + u̇
a][ḟ ]�


1

3
⇥h

ab + �
ab + ✏

abc
!c

�
Dbf , (2.45)
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- Space-space derivative commutator:

D[aDb]f = ✏abc!
c
ḟ () ✏

abc
DbDcf = 2!a

ḟ . (2.46)

2.4.2 3-vector derivatives

For the 3-vectors V a, the following holds

- Time-space derivative commutator:

[D<a
V

b> ]̇ ⌘ h
a

c
h
b

d
[Dc

V
d ]̇ = [Da + u̇

a][V̇ <b>]

� [
1

3
⇥h

ac + �
ac + ✏

acd
!d]⇥ [DcV

b � 2h[b
c
h
e]
f
u̇
f
Ve]

[Ha

c
� (C3)

a

c
]✏bcdVd �

1

2
[qb � (C1)

b]V a +
1

2
h
ab[qc � (C1)c]V

c
.

(2.47)

- Space-space derivative commutator:

D[aDb]Vc =


(Ec[a +

1

2
⇡c[a)�

1

3
⇥�c[a +

1

3
⇥!

d
✏dc[a + !c![a +

1

3
(µ� 1

3
⇥2 � 3!d!

d)hc[a

�
Vb]

+ [hc[a(Eb]d +
1

2
⇡b]d)�

1

3
⇥hc[a�b]d � �c[a�b]d �

1

3
⇥hc[a✏b]de!

e � �c[a✏b]de!
e

+ �d[a✏b]ce!
e + hc[a!b]!d]V

d + ✏abd!
d
V̇<c>.

(2.48)

- Evolution of spatial divergence terms:

[DaV
a ]̇ = [Da + u̇a][V̇

<a>]� 1

3
⇥DaV

a � �
a

b
DaV

b + !a✏
abc

DbVc +
2

3
⇥u̇aV

a

� �abu̇
a
V

b + ✏abcu̇
a
!
b
V

c + [qa � (C1)a]V
a
.

(2.49)
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2.4.3 3-tensor derivatives

For the second-rank 3-tensors Aab, the following holds:

- Space-space derivative commutator:

D[aDb]A
cd = 2

✓
E

(c
[a +

1

2
⇡
(c
[a

◆
� 1

3
⇥�

(c
[a �

1

3
⇥!

e
✏
(c
e[a + !

(c
![a

�
A

d)
b]

+ 2


1

3
(µ� 1

3
⇥2 � 3!e!

e)h(c
[a

�
A

d)
b] + 2[h(c

[a

✓
Eb]e +

1

2
⇡b]e

◆

� 1

3
⇥h

(c
[a�b]e � �

(c
[a�b]e �

1

3
⇥h

(c
[a✏b]ef!

f � �
(c
[a✏b]ef!

f

� !
f
✏
(c
f [a�b]e + h

(c)
[a !b]!e]A

d)e + ✏abe!
e
Ȧ

<cd>
.

(2.50)

- Evolution of spacial rotation terms:

h
a

c
h
b

d
[✏ef<c

DeA
d>

f
]̇ = ✏

dc<a[Dc + u̇c][hdeȦ
<b>e>]� 1

3
⇥✏

cd<a
DcA

b>

d
� ✏

cd<a
�
|e|
c
(DeA

b>

d
)

+ !cD
<a
A

b>c � !
<a
DcA

b>c +
1

3
⇥✏

cd<a
u̇cA

b>

d
+ ✏

cd<a
�
b>
u̇eA

e

d

� ✏
cd<a

�
|e|
c
u̇dA

b>

e
� ✏

cd<a
u̇
b>
�ceA

e

d
+ (u̇c!

c)Aab

+ 2u̇c!
<a
A

b>c + u̇
<a
!cA

b>c + 3[H<a

c
� (C3)

<a

c
]Ab>c

+
1

2
✏
cd<a[qc � (C1)c]A

b>

d
.

(2.51)

In terms of the fully projected spatial derivatives, we can define the usual di↵erential

operators of vector calculus as follows: For any projected 3-vector V and second rank

3-tensor Aab, we write
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div V = DaV
a, (2.52)

(curlV )a = ✏abcD
b
V

c, (2.53)

(divA)a = D
b
Aab, (2.54)

(curlA)ab = ✏cdhaD
c
A

d

bi. (2.55)
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Chapter 3

Conformally flat perturbations of

FLRW universe

3.1 Introduction

In this chapter we consider conformally flat perturbations on FLRW spacetimes containing

a general matter field. Working with the linearised field equations, we unearth some

important geometrical properties for the matter shear and vorticity, and show how they

interact with the thermodynamic quantities in the absence of any free gravity powered

by the Weyl curvature. Most interestingly, we demonstrate that the matter shear obeys a

transverse traceless tensor wave equation and the vorticity obeys a vector wave equation

in this linearised regime. These shear and vorticity waves replace the gravitational waves

in the sense that they causally carry the information about local change in the curvature

of these spacetimes. We also look at the heat transport equation in this case, and indicate

how this varies from the Newtonian case.

3.2 Perturbations of FLRW universe

To see in a transparent manner how the absence of the Weyl tensor a↵ects other geomet-

rical and thermodynamical quantities, we consider a conformally flat perturbation of the

FLRW manifold. In other words, the background metric is given as

ds
2 = �dt

2 +
a
2(t)

1� kr2
dr

2 + r
2
a
2(t)(d✓2 + sin2

✓d�
2) . (3.1)
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One can easily see that the nonzero geometric and thermodynamic quantities for the

background are

D0 = {⇥, µ, p} . (3.2)

We now perturb this background spacetime in such a way that the perturbed spacetime

still remains conformally flat, that is the Weyl tensor remains identically zero. In that

case the quantities that are of first order smallness in the perturbed spacetime is given as

D1 = {u̇hai, !hai, �habi, qhai, ⇡habi} . (3.3)

The Riemann tensor of the perturbed spacetime can now be completely specified in terms

of the matter variables as follows

R
ab

cd = �2
⇣
u
[a
h
b]
[cqd] + u[ch

[a
d]q

b] + u
[a
u[c⇡

b]
d] � h

[a
[c⇡

b]
d]

⌘

+
2

3

h
(µ+ 3p)u[a

u[ch
b]
d] + µh

a

[ch
b

d]

i
. (3.4)

We now use this form of the Riemann tensor to get the Ricci identities of the vector ua

and doubly contracted Bianchi identities (linearised by setting any higher power of the

first order quantities to zero). These equations can be further classified into evolution

(time derivative) equations and constraints on 3-space. Solutions to these equation will

then completely specify the dynamics of the perturbed spacetimes to linear order, and

furthermore all these equations remain gauge invariant by the Stewart and Walker (1974)

lemma.

3.2.1 Linearised field equations about FLRW backround

In the linearisation procedure, we neglect all products of first order quantities in (2.24)-

(2.29), (2.31)-(2.36) and (2.45)-(2.51), and since we consider conformally flat perturba-

tions, the Weyl tensor vanishes identically (Eab = 0 and Hab = 0).

Evolution equations

The evolution equations (2.24)-(2.26), (2.31), (2.33) and (2.34) take the following form

⇥̇�Dau̇
a = �1

3
⇥2 � 1

2
(µ+ 3p), (3.5)

�̇
habi �D

ha
u̇
bi =

1

2
⇡
ab � 2

3
⇥�

ab, (3.6)
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!̇
hai � 1

2
✏
abc

Dbu̇c = �2

3
⇥!

a, (3.7)

⇡̇
<ab> +D

<a
q
b> = �(µ+ p)�ab � ⇥

3
⇡
ab, (3.8)

q̇
hai +D

a
p+Db⇡

ab = �4

3
⇥q

a � (µ+ p)u̇a, (3.9)

µ̇+Daq
a = �⇥(µ+ p). (3.10)

Constraint equations

The constraint equatons, (2.23)-(2.29), (2.35) and (2.36), on a given spatial 3�surface

can be written as

(C1)
a = Db�

ab � 2

3
D

a⇥+ ✏
abc

Db!c + q
a = 0, (3.11)

(C2) = Da!
a = 0, (3.12)

(C3)
ab = D

<a
!
b> � ✏

cd<a
Dc�

b>

d
= 0,

(C3)
ab ⌘ D

<a
!
b> = ✏

cd<a
Dc�

b>

d
= 0,

(3.13)

(C4)
a =

1

2
Db⇡

ab � 1

3
D

a
µ+

1

3
⇥q

a = 0, (3.14)

(C5)
a = (µ+ p)!a +

1

2
✏
abc

Dbqc = 0, (3.15)

(C6)
ab = ✏

cd<a
Dc⇡

b>

d
= 0. (3.16)

We note that the last constraint (3.16) is not an original constraint of the field equations.

We get this constraint by forcing the perturbed spacetime to be conformally flat. A

consistent evolution of this constraint (so that this is valid at all epochs) will give further

restrictions on di↵erent geometrical and thermodynamic quantities as we shall see in the

next sections.
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Commutation relations

For a linearised model about an FLRW spacetime, we have the following commutation

relations between the derivative operators. For any scalar function f ,

D[aDb]f = ✏abc!
c
ḟ , (3.17)

✏
abc

DbDcf = 2!a
ḟ , (3.18)

h
a

b
[Db

f ]̇ = D
a
ḟ � 1

3
⇥D

a
f. (3.19)

Also for any first order 3-vector V a, we have

[D<a
V

b> ]̇ ⌘ h
a

c
h
b

d
[Dc

V
d ]̇ = D

a
V̇

<b> � 1

3
⇥D

a
V

b, (3.20)

(DaV
a)̇ = DaV̇

<a> � 1

3
⇥DaV

a, (3.21)

D[aDb]Vc =
1

3

✓
µ� 1

3
⇥2

◆
hc[aVb], (3.22)

h
a

b
(✏bcdDcVd)̇ = ✏

abc
DbV̇<c> � 1

3
⇥✏

abc
DbVc, (3.23)

Da[✏
abc

DbVc] = 2!aV̇
<a>

. (3.24)

Similarly, for any first order second rank 3-tensor Aab, we have

D[aDb]A
cd =

2

3

✓
µ� 1

3
⇥2

◆
h
(c
[aA

d)
b] , (3.25)

h
a

c
h
b

d
[✏ef<c

DeA
d>

f
]̇ = ✏

dc<a
DcȦ

<b>e>
hde

�1

3
⇥✏

cd<a
DcA

b>

d
. (3.26)

Further to the above, and relations (2.52)-(2.55), there are some important identities

of first order vectors and tensors in perturbed FLRW spacetime, which we list below

(Maartens and Bassett (1998))

D
a(curlV )a = 0, (3.27)
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D
b(curlA)ab =

1

2
curl (Db

Aab), (3.28)

(curl curlV )a = �D
2
Va +Da(D

b
Vb)

+
2

3

✓
µ� 1

3
⇥2

◆
Va, (3.29)

(curl curlA)ab = �D
2
Aab +

3

2
DhaD

c
Abic

+

✓
µ� 1

3
⇥2

◆
Aab. (3.30)

3.2.2 Consistency of the new constraints

By imposition of Ca
bcd = 0 we get a few new constraints that have to be obeyed at all

epochs. We check the consistancy by time evolving these new constraints.

From relation (3.16), we know

(Ċ6) = 0,

[✏cd<a
Dc⇡

b>

d
]̇ = 0,

h
a

c
h
b

d
[✏ef<c

De⇡
d>

f
]̇ = 0.

By relation (3.26) we have

✏
dc<a

Dc⇡̇
<b>e>

hde �
1

3
⇥✏

cd<a
Dc⇡

b>

d
= 0 ) ✏

dc<a
Dc⇡̇

<b>e>
hde = 0,

and relation (3.8) gives

✏
dc<a

Dc[�D
e
q
b> � (µ+ p)�be � ⇥

3
⇡
be]hde = 0,

or

✏
dc<a

DcD
e
q
b>
hde + (µ+ p)✏dc<a

Dc�
b>e

hde +
⇥

3
✏
dc<a

Dc⇡
b>e

hde = 0,
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or else

✏
dc<a

DcDdq
b> + (µ+ p)✏dc<a

Dc�
b>

d
+

⇥

3
✏
dc<a

Dc⇡
b>

d
= 0

) ✏
dc<a

DcDdq
b> + (µ+ p)✏dc<a

Dc�
b>

d
= 0.

Using relation (3.13) we can write

✏
dc<a

DcDdq
b> + (µ+ p)D<a

!
b> = 0.

Finally we obtain

✏
dc<a

DcDdq
b> = �(µ+ p)D<a

!
b> = 0. (3.31)

From relation (3.22), we know that

D[cDd]Vb =
1

3

✓
µ� 1

3
⇥2

◆
hb[cVd],

which implies

1

2
(DcDd �DdDc)Vb =

1

3

✓
µ� 1

3
⇥2

◆
1

2
(hbcVd � hbdVc),

or

(DcDd �DdDc)Vb =
1

3

✓
µ� 1

3
⇥2

◆
(hbcVd � hbdVc). (3.32)

Acting with ✏
abc on both sides of equation (3.32) above, we have

✏
adc(DcDd �DdDc)Vb =

1

3

✓
µ� 1

3
⇥2

◆
✏
adc(hbcVd � hbdVc),

or

2✏adcDcDdVb =
1

3

✓
µ� 1

3
⇥2

◆
(✏adchbcVd � ✏

adc
hbdVc),

or

✏
adc

DcDdVb =
1

6

✓
µ� 1

3
⇥2

◆
(✏adchbcVd � ✏

adc
hbdVc),
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which implies

✏
adc

DcDdV
b =

1

6

✓
µ� 1

3
⇥2

◆
(✏adc�b

c
Vd � ✏

adc
�
b

d
Vc)

=
1

6

✓
µ� 1

3
⇥2

◆
(✏adbVd � ✏

abc
Vc)

=
1

6

✓
µ� 1

3
⇥2

◆
(✏adbVd � ✏

abd
Vd) =

1

6

✓
µ� 1

3
⇥2

◆
(�✏

abd
Vd � ✏

abd
Vd).

Finally we obtain

✏
adc

DcDdV
b = �1

3

✓
µ� 1

3
⇥2

◆
✏
abd

Vd.

Therefore we find

✏
dc<a

DcDdV
b> = �1

3

✓
µ� 1

3
⇥2

◆
✏
<ab>d

Vd, (3.33)

✏
dc<a

DcDdq
b> = �1

3

✓
µ� 1

3
⇥2

◆
✏
<ab>d

qd. (3.34)

From relations (3.31) and (3.34) we have

(µ+ p)D<a
!
b> =

1

3

✓
µ� 1

3
⇥2

◆
✏
<ab>d

qd, (3.35)

so that

✏
dc<a

Dc(Ddq
b>) = �(µ+ p)D<a

!
b> = �1

3

✓
µ� 1

3
⇥2

◆
✏
<ab>d

qd = 0. (3.36)

From relation (3.13) we have

[✏cd<a
Dc�

b>

d
]̇ = 0,

h
a

c
h
b

d
[✏ef<c

De�
d>

f
]̇ = 0.
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Using relations (3.26) and (3.6) respectively, we get

✏
dc<a

Dc�̇
<b>e

hde �
1

3
⇥✏

dc<a
Dc�

b>

d
= 0 ) ✏

dc<a
Dc�̇

<b>e
hde = 0,

✏
dc<a

Dc(D
e
u̇
b> +

1

2
⇡
b>e � 2

3
⇥�

b>e)hde = 0,

) ✏
dc<a

DcD
e
u̇
b>
hde +

1

2
✏
dc<a

Dc⇡
b>e

hde �
2

3
✏
dc<a

Dc⇥�
b>e

hde = 0,

) ✏
dc<a

DcDdu̇
b> +

1

2
✏
dc<a

Dc⇡
b>

d
� 2

3
✏
dc<a

Dc⇥�
b>

d
= 0 ) ✏

dc<a
DcDdu̇

b> = 0.

Therefore

✏
dc<a

DcDdu̇
b> = 0. (3.37)

From (3.9), we have

q̇
<b> +D

b
p+Df⇡

bf +
3

4
⇥q

b = �(µ+ p)u̇b,

and acting with ✏
cd<a

DcDd on both sides, we get

✏
cd<a

DcDdq̇
b> + ✏

cd<a
DcDdD

b>
p+ ✏

cd<a
DcDdDf⇡

b>f +
3

4
✏
cd<a

DcDd⇥q
b>

= �✏
cd<a

DcDd(µ+ p)u̇b>
.

(3.38)

In (3.38), using (3.31) and (3.37), we have

✏
cd<a

DcDdq̇
b> = 0, ✏cd<a

DcDd⇥q
b> = 0 and ✏

cd<a
DcDd(µ+ p)u̇b> = 0.

This gives

✏
cd<a

DcDdD
b>
p+ ✏

cd<a
DcDdDf⇡

b>f = 0. (3.39)
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From (3.14) we get

Df⇡
bf =

2

3
(Db

µ�⇥q
b), (3.40)

and

✏
cd<a

DcDdDf⇡
b>f =

2

3
✏
cd<a

DcDdD
b>
µ� 2

3
✏
cd<a

DcDd⇥q
b>, (3.41)

on using (3.31), ✏cd<a
DcDd⇥q

b> = 0, so that

✏
cd<a

DcDdDf⇡
b>f =

2

3
✏
cd<a

DcDdD
b>
µ. (3.42)

Substituting (3.42) in (3.39) we get

✏
cd<a

DcDd(D
b>
p+

2

3
D

b>
µ) = 0. (3.43)

Now, by (3.14) we have

Db⇡
ab =

2

3
(Da

µ�⇥q
a), (3.44)

and

[Db⇡
ab ]̇� 2

3
[Da

µ]̇ +
2

3
[⇥q

a ]̇ = 0. (3.45)
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From relation (3.21), we have

[Db⇡
ab ]̇ = Db⇡̇

<ab> � 1

3
⇥Db⇡

ab,

using (3.8) we write

[Db⇡
ab ]̇ = Db[�D

<a
q
b> � (µ+ p)�ab � 1

3
⇥⇡

ab]� 1

3
⇥Db⇡

ab

= �DbD
<a
q
b> �Db[(µ+ p)�ab]� 1

3
Db(⇥⇡

ab)� 1

3
⇥Db⇡

ab

= �DbD
<a
q
b> � (µ+ p)Db�

ab � �
ab
Db(µ+ p)

� 1

3
⇥Db⇡

ab � 1

3
⇡
ab
Db⇥� 1

3
⇥Db⇡

ab

= �DbD
<a
q
b> � (µ+ p)Db�

ab � 2

3
⇥Db⇡

ab

(because �
ab
Db(µ+ p) = 0 and ⇡

ab
Db⇥ = 0),

and using relation (3.44) we get

[Db⇡
ab ]̇ = �DbD

<a
q
b> � (µ+ p)Db�

ab � 2

3
⇥.

2

3
(Da

µ�⇥q
a).

Therefore we have

[Db⇡
ab ]̇ = �DbD

<a
q
b> � (µ+ p)Db�

ab � 4

9
⇥D

a
µ+

4

9
⇥2

q
a
. (3.46)

From relation (3.19) we have

[Da
µ]̇ = D

a
µ̇� 1

3
⇥D

a
µ

(3.10)
= D

a[�Dbq
b �⇥(µ+ p)]� 1

3
⇥D

a
µ

= �D
a
Dbq

b �D
a[⇥(µ+ p)]� 1

3
⇥D

a
µ,

and this implies

[Da
µ]̇ = �D

a
Dbq

b �⇥D
a(µ+ p)� (µ+ p)Da⇥� 1

3
⇥D

a
µ. (3.47)
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Now we have

[⇥q
a ]̇ = ⇥q̇

a + ⇥̇q
a
.

Using relations (4.2) and (3.9) the above becomes

[⇥q
a ]̇ = ⇥[�D

a
p�Db⇡

ab � 4

3
⇥q

a � (µ+ p)u̇a] + [Dau̇
a � 1

3
⇥2 � 1

2
(µ+ 3p)]qa

= �⇥D
a
p�⇥Db⇡

ab � 4

3
⇥2

q
a �⇥(µ+ p)u̇a + q

adiv u̇� 1

3
⇥2

q
a � 1

2
(µ+ 3p)qa,

and using (3.44) we have

[⇥q
a ]̇ = �⇥D

a
p�⇥.

2

3
(Da

µ�⇥q
a)� 5

3
⇥2

q
a �⇥(µ+ p)u̇a + q

adiv u̇� 1

2
(µ+ 3p)qa

= �⇥D
a
p� 2

3
⇥D

a
µ+

2

3
⇥2

q
a � 5

3
⇥2

q
a �⇥(µ+ p)u̇a + q

adiv u̇� 1

2
(µ+ 3p)qa

= �⇥D
a
p� 2

3
⇥D

a
µ�⇥2

q
a �⇥(µ+ p)u̇a � 1

2
(µ+ 3p)qa because q

adiv u̇ = 0.

Therefore we obtain

[⇥q
a ]̇ = �⇥D

a
p� 2

3
⇥D

a
µ�⇥2

q
a �⇥(µ+ p)u̇a � 1

2
(µ+ 3p)qa. (3.48)
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Substituting relations (3.46), (3.47) and (3.48) into relation (3.45) we have

�DbD
<a
q
b> � (µ+ p)Db�

ab � 4

9
⇥D

a
µ+

4

9
⇥2

q
a � 2

3
[�D

a
Dbq

b �⇥D
a(µ+ p)

� (µ+ p)Da⇥� 1

3
⇥D

a
µ] +

2

3
[�⇥D

a
p� 2

3
⇥D

a
µ�⇥2

q
a �⇥(µ+ p)u̇a

� 1

2
(µ+ 3p)qa] = 0,

) �DbD
<a
q
b> � (µ+ p)Db�

ab � 4

9
⇥D

a
µ+

4

9
⇥2

q
a +

2

3
D

a
Dbq

b

+
2

3
⇥D

a(µ+ p) +
2

3
(µ+ p)Da⇥+

2

9
⇥D

a
µ� 2

3
⇥D

a
p

� 4

9
⇥D

a
µ� 2

3
⇥2

q
a � 2

3
⇥(µ+ p)u̇a � 1

3
(µ+ 3p)qa = 0,

) 2

3
D

a
Dbq

b �DbD
<a
q
b> � (µ+ p)Db�

ab � 2

3
⇥D

a
µ� 2

9
⇥2

q
a +

2

3
⇥D

a
µ+

2

3
⇥D

a
p

+
2

3
(µ+ p)Da⇥� 2

3
⇥D

a
p� 2

3
⇥(µ+ p)u̇a � 1

3
(µ+ 3p)qa = 0,

) 2

3
D

a
Dbq

b �DbD
<a
q
b> � (µ+ p)Db�

ab � 2

9
⇥2

q
a +

2

3
(µ+ p)Da⇥

� 2

3
⇥(µ+ p)u̇a � 1

3
(µ+ 3p)qa = 0,

Now using relation (3.11) we have

DbD
<a
q
b> � 2

3
D

a
Dbq

b + (µ+ p)[
2

3
D

a⇥� ✏
abc

Db!c � q
a] +

2

9
⇥2

q
a � 2

3
(µ+ p)Da⇥

+
2

3
⇥(µ+ p)u̇a +

1

3
(µ+ 3p)qa = 0,

) DbD
<a
q
b> � 2

3
D

a
Dbq

b +
2

3
(µ+ p)Da⇥� (µ+ p)✏abcDb!c � (µ+ p)qa

+
2

9
⇥2

q
a � 2

3
(µ+ p)Da⇥+

2

3
⇥(µ+ p)u̇a +

1

3
(µ+ 3p)qa = 0,
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) DbD
<a
q
b> � 2

3
D

a
Dbq

b � (µ+ p)✏abcDb!c � µq
a � pq

a +
2

9
⇥2

q
a

+
2

3
⇥(µ+ p)u̇a +

1

3
µq

a + pq
a = 0,

) DbD
<a
q
b> � 2

3
D

a
Dbq

b � (µ+ p)✏abcDb!c �
2

3
µq

a +
2

9
⇥2

q
a +

2

3
⇥(µ+ p)u̇a = 0.

It follows that

DbD
<a
q
b> � 2

3
D

a
Dbq

b � (µ+ p)✏abcDb!c �
2

3
(µ� 1

3
⇥2)qa +

2

3
⇥(µ+ p)u̇a = 0,

and finally,

2Da
Dbq

b � 3DbD
<a
q
b> = 2⇥(µ+ p)u̇a � 3(µ+ p)✏abcDb!c � 2(µ� 1

3
⇥2)qa. (3.49)

Now let us compute D
<a
q
b> and then DbD

<a
q
b> so that

D
<a
q
b> = (h(a

c
h
b)
d
� 1

3
h
ab
hcd)D

c
q
d

=


1

2
(ha

c
h
b

d
+ h

b

c
h
a

d
)� 1

3
h
ab
hcd

�
D

c
q
d

=
1

2
h
a

c
h
b

d
D

c
q
d +

1

2
h
b

c
h
a

d
D

c
q
d � 1

3
h
ab
hcdD

c
q
d

=
1

2
h
b

d
D

a
q
d +

1

2
h
a

d
D

b
q
d � 1

3
h
ab
Ddq

d,
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therefore

DbD
<a
q
b> =

1

2
Dbh

b

d
D

a
q
d +

1

2
Dbh

a

d
D

b
q
d � 1

3
Dbh

abdiv q

=
1

2
DdD

a
q
d +

1

2
Dbh

a

d
D

b
q
d � 1

3
D

adiv q

=
1

2
DbD

a
q
b +

1

2
D

b
h
a

b
div q � 1

3
D

a
Dbq

b

=
1

2
DbD

a
q
b +

1

2
DbD

a
q
b � 1

3
D

a
Dbq

b
.

Therefore we find

DbD
<a
q
b> = DbD

a
q
b � 1

3
D

a
Dbq

b
. (3.50)

Substituting (3.50) into (3.49), we get

2Da
Dbq

b � 3DbD
a
q
b +D

a
Dbq

b = 2⇥(µ+ p)u̇a � 3(µ+ p)✏abcDb!c � 2(µ� 1

3
⇥2)qa,

and

3(DaDb �DbDa)q
b = 2⇥(µ+ p)u̇a � 3(µ+ p)✏bc

a
Db!c � 2(µ� 1

3
⇥2)qa. (3.51)

From relation (3.32), we know that

(DaDb �DbDa)Vc =
1

3

✓
µ� 1

3
⇥2

◆
(hcaVb � hcbVa),

) (DaDb �DbDa)V
c =

1

3

✓
µ� 1

3
⇥2

◆
(hc

a
Vb � h

c

b
Va),

) (DaDb �DbDa)V
b =

1

3

✓
µ� 1

3
⇥2

◆
(hb

a
Vb � h

b

b
Va) =

1

3

✓
µ� 1

3
⇥2

◆
(Va � 3Va)

= �2

3

✓
µ� 1

3
⇥2

◆
Va.
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Therefore we find

(DaDb �DbDa)V
b = �2

3

✓
µ� 1

3
⇥2

◆
Va, (3.52)

(DaDb �DbDa)q
b = �2

3

✓
µ� 1

3
⇥2

◆
qa. (3.53)

Substituting (3.53) into (3.51) we have

� 2(µ� 1

3
⇥2)qa = 2⇥(µ+ p)u̇a � 3(µ+ p)✏bc

a
Db!c � 2(µ� 1

3
⇥2)qa

) 2⇥(µ+ p)u̇a � 3(µ+ p)✏abcDb!c = 0.

This gives

✏
abc

Db!c =
2

3
⇥u̇

a
. (3.54)

Now from equation (3.15) we have

✏
abc

Dbqc = �2(µ+ p)!a

) Da[✏
abc

Dbqc] = �2[(µ+ p)Da!
a + !

a
Da(µ+ p)]

(46)
= �2!a

Da(µ+ p),

so that

Da[✏
abc

Dbqc] = �2!a
Da(µ+ p). (3.55)
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And from relation (3.24) we have

Da[✏
abc

Dbqc] = 2!aq̇
<a>,

and using (3.9)

Da[✏
abc

Dbqc] = 2!a[�D
a
p�Db⇡

ab � 4

3
⇥q

a � (µ+ p)u̇a]

= �2!aD
a
p� 2!aDb⇡

ab � 8

3
⇥!aq

a � 2!a(µ+ p)u̇a

= �2!aD
a
p� 2!aDb⇡

ab, (because
8

3
⇥!aq

a = 0 and 2!a(µ+ p)u̇a = 0),

(3.44)
= �2!aD

a
p� 2!a.

2

3
(Da

µ�⇥q
a)

= �2!aD
a
p� 4

3
!aD

a
µ+

4

3
!a⇥q

a

= �2!aD
a(p+

2

3
µ) (knowing that !a⇥q

a = 0).

Hence we have

Da[✏
abc

Dbqc] = �2!aD
a(
2

3
µ+ p). (3.56)

From (3.55) and (3.56) we have

� 2!a
Da(µ+ p) = �2!aD

a(
2

3
µ+ p),

) !
a
Da(µ+ p) = !

a
Da(

2

3
µ+ p),

) !
a
Da[(µ+ p)� (

2

3
µ+ p)] = 0,

so that

!
a
Daµ = 0. (3.57)
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From relation (3.12) we have

[Da!
a ]̇ = 0,

using relations (3.21), (3.12) and (3.7) we have respectively

Da!̇
<a> � 1

3
⇥Da!

a = 0,

Da!̇
<a> = 0,

Da[
1

2
✏
abc

Dbu̇c �
2

3
⇥!

a] = 0.

This gives

1

2
Da[✏

abc
Dbu̇c] =

2

3
Da(⇥!

a) =
2

3
!
a
Da⇥+

2

3
⇥Da!

a = 0,

so that

Da[✏
abc

Dbu̇c] = 0. (3.58)

Now from (3.11) we have

[Db�
ab ]̇� 2

3
[Da⇥]̇ + [✏abcDb!c ]̇ + q̇

a = 0.

Using relations (3.9), (3.19) and (3.21) we have

Db�̇
<ab>� 1

3
⇥Db�

ab� 2

3
(Da⇥̇� 1

3
⇥D

a⇥)+[✏abcDb!c ]̇�D
a
p�Db⇡

ab� 4

3
⇥q

a�(µ+p)u̇a = 0,

using (3.6) and (4.2) we get respectively

Db(D
<a
u̇
b> +

1

2
⇡
ab � 2

3
⇥�

ab)� 1

3
⇥Db�

ab � 2

3
D

a⇥̇+
2

9
⇥D

a⇥+ [✏abcDb!c ]̇

�D
a
p�Db⇡

ab � 4

3
⇥q

a � (µ+ p)u̇a = 0,
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and

DbD
<a
u̇
b> +

1

2
Db⇡

ab � 2

3
Db(⇥�

ab)� 1

3
⇥Db�

ab � 2

3
D

a[Dbu̇
b � 1

3
⇥2 � 1

2
(µ+ 3p)]

+
2

9
⇥D

a⇥+ [✏abcDb!c ]̇�D
a
p�Db⇡

ab � 4

3
⇥q

a � (µ+ p)u̇a = 0.

This gives

DbD
<a
u̇
b> � 1

2
Db⇡

ab � 2

3
⇥Db�

ab � 2

3
�
ab
Db⇥� 1

3
⇥Db�

ab � 2

3
D

a
Dbu̇

b +
4

9
⇥D

a⇥

+
1

3
D

a(µ+ 3p) +
2

9
⇥D

a⇥+ [✏abcDb!c ]̇�D
a
p� 4

3
⇥q

a � (µ+ p)u̇a = 0,

or

DbD
<a
u̇
b> � 1

2
Db⇡

ab �⇥Db�
ab � 2

3
D

a
Dbu̇

b +
2

3
⇥D

a⇥

+
1

3
D

a(µ+ 3p) + [✏abcDb!c ]̇�D
a
p� 4

3
⇥q

a � (µ+ p)u̇a = 0 (because
2

3
�
ab
Db⇥ = 0),

or, using (3.14)

DbD
<a
u̇
b> � 1

3
(Da

µ�⇥q
a)�⇥Db�

ab � 2

3
D

a
Dbu̇

b +
2

3
⇥D

a⇥

+
1

3
D

a(µ+ 3p) + [✏abcDb!c ]̇�D
a
p� 4

3
⇥q

a � (µ+ p)u̇a = 0.

This gives

DbD
<a
u̇
b> � 2

3
D

a
Dbu̇

b + [✏abcDb!c ]̇�⇥Db�
ab +

2

3
⇥D

a⇥�⇥q
a � (µ+ p)u̇a = 0,

using relation (3.11) the above becomes

DbD
<a
u̇
b> � 2

3
D

a
Dbu̇

b + [✏abcDb!c ]̇�⇥(
2

3
D

a⇥� ✏
abc

Db!c � q
a) +

2

3
⇥D

a⇥�⇥q
a

� (µ+ p)u̇a = 0,

or

DbD
<a
u̇
b> � 2

3
D

a
Dbu̇

b + [✏abcDb!c ]̇ +⇥✏
abc

Db!c � (µ+ p)u̇a = 0.
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Using (3.50) we have

DbD
a
u̇
b � 1

3
D

a
Dbu̇

b � 2

3
D

a
Dbu̇

b + [✏abcDb!c ]̇ +⇥✏
abc

Db!c � (µ+ p)u̇a = 0,

or

DbD
a
u̇
b �D

a
Dbu̇

b + [✏abcDb!c ]̇ +⇥✏
abc

Db!c � (µ+ p)u̇a = 0,

and using relation (3.53) we get

2

3
(µ� 1

3
⇥2)u̇a + [✏abcDb!c ]̇ +⇥✏

abc
Db!c � (µ+ p)u̇a = 0.

It follows that

[✏abcDb!c ]̇ = (µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a �⇥✏

abc
Db!c,

we have

[✏bcdDc!d ]̇ = (µ+ p)u̇b � 2

3
(µ� 1

3
⇥2)u̇b �⇥✏

bcd
Dc!d.

Acting with h
a

b
on both sides of the above equation we get

h
a

b
[✏bcdDc!d ]̇ = (µ+ p)ha

b
u̇
b � 2

3
(µ� 1

3
⇥2)ha

b
u̇
b �⇥h

a

b
✏
bcd

Dc!d,

and using (3.23) we have

✏
abc

Db!̇<c> � 1

3
⇥✏

abc
Db!c = (µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a �⇥✏

acd
Dc!d,

or

✏
abc

Db!̇<c> +
2

3
⇥✏

abc
Db!c = (µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a

.

Now using equation (3.7) we get

✏
abc

Db(
1

2
✏cdeD

d
u̇
e � 2

3
⇥!c) +

2

3
⇥✏

abc
Db!c = (µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a,

or

1

2
✏
abc

Db[✏cdeD
d
u̇
e]� 2

3
✏
abc

Db(⇥!c) +
2

3
⇥✏

abc
Db!c = (µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a,
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which gives

1

2
✏
abc

Db[✏cdeD
d
u̇
e]� 2

3
✏
abc

!cDb⇥� 2

3
✏
abc⇥Db!c +

2

3
⇥✏

abc
Db!c

= (µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a,

or
1

2
✏
abc

Db[✏cdeD
d
u̇
e] = (µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a (because !cDb⇥ = 0).

This implies

✏
abc

✏decDb[D
d
u̇
e] = 2[(µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a],

or

2ha

[dh
b

e]Db[D
d
u̇
e] = 2[(µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a],

or

(ha

d
h
b

e
� h

a

e
h
b

d
)Db[D

d
u̇
e] = 2[(µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a],

we find

h
a

d
h
b

e
Db[D

d
u̇
e]� h

a

e
h
b

d
Db[D

d
u̇
e] = 2[(µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a],

or

h
a

d
De[D

d
u̇
e]� h

a

e
Dd[D

d
u̇
e] = 2[(µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a],

or

3De[D
a
u̇
e]�De[D

a
u̇
e] = 2[(µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a],

or

Db[D
a
u̇
b] = (µ+ p)u̇a � 2

3
(µ� 1

3
⇥2)u̇a

.

And this implies that

Db[Dau̇
b] = (µ+ p)u̇a �

2

3
(µ� 1

3
⇥2)u̇a.

Using relation (3.53) we get

DbDau̇
b = (µ+ p)u̇a +DaDbu̇

b �DbDau̇
b,

giving the result

(2DbDa �DaDb)u̇
b = (µ+ p)u̇a. (3.59)

56



We would like to point out that the relations (3.31), (3.36), (3.37), (3.43),(3.54), (3.57)

and (3.59) are the results we found from in consistency of the new constraints.

3.3 Some geometrical results on shear and vorticity

In this section we will state and prove several important geometrical properties of matter

shear and vorticity in the perturbed, conformally flat spacetime. We would like to em-

phasise that throughout this work we consider the matter field satisfying the weak energy

conditions, and that would imply (µ+p) is strictly greater than zero. We start by proving

a lemma for a general perturbed FLRW spacetime, which will be used for other results.

Lemma 1 For a perturbed FLRW spacetime, the spatial variation tensor DaVb for any

first order 3-vector V
a is curl free in the linearised regime.

Proof From the commutation relation (3.22), we know that

(DcDd �DdDc)Vb =
1

3

✓
µ� 1

3
⇥2

◆
(hbcVd � hbdVc). (3.60)

Acting with ✏
adc on both sides of the above equation, symmetrising on the indices a, b

and subtracting the trace, we get

✏
dc<a

DcDdV
b> = �1

3

✓
µ� 1

3
⇥2

◆
✏
<ab>d

Vd. (3.61)

The right hand side of the above equation is identically zero as ✏abd is completely antisym-

metric. Hence we get the required result, (curlDaVb) = 0. ⇤

We note that although the above result is a constraint on a given hypersurface, it is

consistently time propagated. To show this, we note that if V a is a first order 3-vector,

then so is V̇
hai. Then using the commutation relation (3.23), we see that (curlDaVb)̇

vanishes identically.

Proposition 1 For a linear and conformally flat perturbation of FLRW spacetime, the

shear tensor is curl free.

Proof To prove this, we demand that the new constraint (3.16), due to the absence

of the Weyl tensor, be consistently time propagated. In other words, we must have

(curl ⇡)̇habi = 0. Using the commutation relation (3.26), we then see that (curl ⇡)̇habi must

vanish identically. Now we use the evolution equation (3.8), to get

(curlDhaqbi) + (µ+ p)(curl �)habi = 0. (3.62)

57



The first term in the left hand side is zero by Lemma 1. Since the weak energy condition

demands that (µ+p) is strictly greater than zero, we see that the shear tensor must be curl

free. Again, this is a result on a given hypersurface. We time propagate this constraint and

using (3.26) and (3.6), we see that (curl�)̇habi = 0 is identically satisfied. Hence the shear

tensor being curl free is true at all epochs. ⇤

Proposition 2 For a linear and conformally flat perturbation of FLRW spacetime

1. For non-vanishing vorticity, the heat flux vector is purely axial on a given hypersur-

face, and consistent time propagation of this constraint gives an implicit equation of

state relating the density and isotropic pressure.

2. The vorticity is purely generated by the curl of the heat flux vector for all epochs.

Proof To prove the first point, we take the curl of constraint (3.14) to get

1

2
(curl div ⇡)a � 1

3
(curlDa

µ) +
1

3
⇥(curl q)a = 0 . (3.63)

The first term of the above equation can be written as 2Db(curl ⇡)ab (by commutation

(3.28)), which vanishes because of the new constraint (3.16) . Hence the above equation

becomes
1

3
(curlDa

µ)� 1

3
⇥(curl q)a = 0 . (3.64)

Now by the relation (3.18) we see that (curlDa
µ) = 2!a

µ̇. Further, using (3.15), we get

(curl q)a = �2(µ + p)!a. Putting all of these in the above equation, and noting that the

vorticity is not vanishing, we get

µ̇+⇥(µ+ p) = 0 . (3.65)

Comparing this with the evolution equation (3.10), we can easily see that

Daq
a = 0 . (3.66)

In other words the heat flux vector has vanishing divergence and hence it is purely axial.

To check that this constraint is consistently time propagated, we impose the condition

(Daq
a)̇ = 0 . (3.67)

Using the commutation relation (3.21), we see that this gives Daq̇
hai = 0. Now using the

evolution equation (3.9) we get

D
2
p+DaDb⇡

ab + (µ+ p)Dau̇
a = 0 . (3.68)

58



Now if we take the divergence of the constraint (3.14), we get

DaDb⇡
ab =

2

3
D

2
µ . (3.69)

Substituting the above in equation (3.68) we get the implicit equation of state as a second

order di↵erential equation

D
2

✓
p+

2

3
µ

◆
+ (µ+ p)Dau̇

a = 0 . (3.70)

In other words, for the vorticity to remain nonzero at all epochs, the above equation of

state relating the energy density and isotropic pressure must be satisfied.

The proof of the second point is obvious from the constraint equation (3.15). To see

whether this constraint is identically satisfied at all epochs, we take a dot of this constraint

and use the density evolution equation (3.10), vorticity evolution equation (3.7) and heat

flux evolution equation (3.9). One can then easily check that this constraint is consistently

time propagated and hence the vorticity is purely generated by the curl of heat flux vector

for all epochs. ⇤

Proposition 3 If the spacetime is perturbed in a conformally flat way about the FLRW

background, the spatial variation tensor of the vorticity is purely antisymmetric at all

epochs and the curl of the vorticity is generated by the heat flux vector and it’s Laplacian.

Proof From the constraint equations (3.12), (3.13) and using the result from Proposition

1, we can immediately see that Da!
a and D

<a
!
b> vanish identically on a given epoch.

These relations can then be time propagated to check that they remain true for all epochs.

Since both the trace and the trace-free symmetric part of the spatial variation tensor of

the vorticity vanish at all epochs, this tensor must be purely antisymmetric.

We now take the curl of the constraint equation (3.15), to get

(µ+ p)(curl!)a = �1

2
(curl curl q)a. (3.71)

Now using the identity (3.29) and the result from Proposition 2, we get

(µ+ p)(curl!)a =
1

2
D

2
q
a � 1

3

✓
µ� 1

3
⇥2

◆
q
a
. (3.72)

⇤
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It is interesting to see that there exists a class of spacetime with nonzero heat flux, which

are solutions of the following second order di↵erential equation

1

2
D

2
q
a � 1

3

✓
µ� 1

3
⇥2

◆
q
a = 0, (3.73)

for which the vorticity can be nonzero but curl-free.

3.4 Alternatives to gravitational waves

We note that for gravitational waves to exist in a given spacetime, both the electric and

magnetic parts of the Weyl tensor, Eab and Hab must be nonzero with nonzero curl. These

quantities generate a tensor wave with a closed wave equation, in a similar fashion as the

electric field and the magnetic field with nonzero curl generating electromagnetic vector

waves in electromagnetism. Therefore in any spacetime where either of Eab or Hab, or

their curl vanishes identically, will be devoid of any gravitational waves. Such cosmologies

are commonly termed as silent universes (Ellis et al (2011)), as any information about

change in local curvature of the manifold cannot causally travel via gravitational waves.

Obviously, conformally flat spacetimes fall in the category of silent universes, as in this

case the complete Weyl tensor is identically zero, and the Riemann tensor is entirely spe-

cified by the matter variables. Therefore any information about local change of curvature

must causally travel via propagation of matter disturbances. The question is: Can we

quantify the process via which any information about local change of spacetime curvature

causally travels in conformally flat models? In this section we transparently demonstrate

two such processes, a closed tensor wave equation for matter shear and a closed vector

wave equation for vorticity, that carries such information causally.

Proposition 4 In a conformally flat perturbation of FLRW spacetime, the shear tensor

obeys a closed and transverse-traceless tensor wave equation, which is given by

⇤�
habi ⌘ �̈

habi �D
2
�
habi = �⇥�̇

habi

+

✓
1

3
⇥2 � 7

6
µ+

1

2
p

◆
�
habi

. (3.74)

Proof Since in this case we are only concerned with the tensor modes, we use the stand-

ard procedure of neglecting all first order vector perturbations, namely the gradient of

background scalars together with the acceleration, heat flux and vorticity. Since the shear
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tensor is curl free, (curl curl �)ab = 0, and equation (3.30) becomes

D
2
�ab =

3

2
DhaD

c
�bic +

✓
µ� 1

3
⇥2

◆
�ab . (3.75)

Now the first term in right hand side is linked to vorticity, heat flux and gradient of

expansion by constraint (3.11). Neglecting that term we have

D
2
�ab =

✓
µ� 1

3
⇥2

◆
�ab . (3.76)

Furthermore, taking the dot of shear evolution equation (3.6) and neglecting the acceler-

ation term, we get

�̈
habi =

1

2
⇡̇
habi � 2

3
⇥̇�

ab � 2

3
⇥

✓
1

2
⇡
ab � 2

3
⇥�

ab

◆
. (3.77)

Using evolution equation (3.8) and neglecting the heat flux term, we have

⇡̇
<ab> = �(µ+ p)�ab � ⇥

3
⇡
ab
. (3.78)

Plugging this in (3.77), and noting that ⇡ab = 2�̇habi + 4
3⇥�

ab, we get

�̈
habi = �1

6
(µ� 3p)�ab �⇥�̇

habi
. (3.79)

Subtracting equation (3.76) from (3.79), we get the required tensor wave equation (5.1).

⇤

It is interesting to note that a similar shear wave exists, even when the perturbations are

not conformally flat, but the matter is taken to be perfect fluid, as proved in Dunsby et

al (1997). What we showed here is that these waves do not go away, when we take a

general form of matter perturbation and restrict the Weyl tensor to be identically zero.

Also, when the expansion of the spacetime is positive, these waves gets damped as they

move towards the causal future.

Proposition 5 In a conformally flat perturbation of FLRW spacetime, if the acceleration

is curl free, then the vorticity vector obeys a closed vorticity wave equation, given as

⇤!
hai ⌘ !̈

hai �D
2
!
hai =

✓
µ+ p+

4

9
⇥2

◆
w

a
. (3.80)

Proof The proof of this proposition crucially depends on the result of Proposition 1, that
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is the shear tensor is curl-free. In that case we can use (3.28) to write

0 = D
b(curl �)ab =

1

2
curl (Db

�ab) , (3.81)

which can be further simplified using the constraint (3.11), and we get

1

3
(curlDa⇥)� 1

2
(curl curl!)a �

1

2
(curl q)a = 0. (3.82)

Now using the commutation (3.18) for the first term in the left hand side, the identity

(3.29) for the second term and the constraint (3.15) for the third term, we get

D
2
!
a =

✓
2

9
⇥2 � 2

3
µ

◆
!
a
. (3.83)

Furthermore when the curl of the acceleration term vanishes we have

!̇
hai = �2

3
⇥!

a
. (3.84)

Taking the dot of the above equation and using the evolution equation (4.2), we get

!̈
hai =

1

3

�
2⇥2 + µ+ 2p

�
!
a
. (3.85)

Subtracting (3.83) from (3.85), we get the required result. ⇤

3.5 Heat transport equation modification

Until now, we discussed in detail how the heat flux and the aniosotropic stress gets a↵ected

by the absence of the Weyl tensor in an almost FLRW but conformally flat spacetime.

However, it is well understood that the inclusion of the heat flux term in the system of

field equations is devoid of any physical meaning until a specific heat transport equation

is assumed. This is indeed a tricky issue as when we use the standard Eckart theory,

that makes the simplest possible assumption about the entropy being a linear function

of the dissipative quantities, we get the usual form of the heat conduction equation,

which is a parabolic second order partial di↵erential equation. As any parabolic equation,

this corresponds to infinite speed of prapagation of heat flow. Apart from this causality

violation, the Eckart theory has in addition the pathology of unstable equilibrium states.
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Hence we require a heat transport equation that is derived from a causal dissipative

theory (Herrera et al (2014), and all the references therein). The basic idea here is to

obtain a hyperbolic equation that obeys the causality condition, and also the relaxation

time required for the system to come back to a steady state cannot be neglected. Therefore

we use the hyperbolic Cattaneo-type equation for heat transfer, which is given as

⌧ q̇
<a> = �k(Da

T + T u̇
a)� 1

2
kT

2rb

✓
⌧u

b

kT 2

◆
q
a, (3.86)

where ⌧ , k and T are the relaxation time, thermal conductivity and the temperature re-

spectively. Using the equation (3.9), we get for a conformally flat almost FLRW spacetime

D
a
p+Db⇡

ab +
4

3
⇥q

a +

✓
µ+ p� k

⌧
T

◆
u̇
a =

k

⌧
D

a
T +

1

2

k

⌧
T

2rb

✓
⌧u

b

kT 2

◆
q
a
. (3.87)

We are now in the position to state and prove the following important proposition:

Proposition 6 In a conformally flat perturbation of FLRW spacetime, if the vorticity is

strictly nonzero, then on the small enough neighbourhood (where the relaxation time and

heat conductivity can be taken to be constants) in constant time 3-spaces, the temperature

obeys Poisson’s equation

D
2
T + (Dau̇

a)T = 0. (3.88)

Proof We note that for a small enough neighbourhood on a constant time slice, where

the relaxation time and heat conductivity can be taken to be constants, the last term in

the heat transport equation can be simplified as

1

2

k

⌧
T

2rb

✓
⌧u

b

kT 2

◆
q
a =

1

2
⇥q

a � Ṫ

T
q
a
. (3.89)

Furthermore, since the background spacetime is homogeneous and isotropic we have T

and Ṫ as the zeroth order quantities while D
a
T and D

a
Ṫ are the first order quantities.

Now since the vorticity is strictly nonzero, the heat flux vector and also it’s time derivative

projected onto the 3�surface are purely axial (by Proposition 2), that is

Daq
a = Daq̇

<a>
. (3.90)

Hence we can take the divergence of the heat transport equation (3.86), and neglect-
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ing the second order quantities we obtain the required Poisson’s equation (3.88) for the

temperature variation on the time slice. ⇤

It is interesting to note that, if the acceleration vector is also purely axial (divergence

free) on this neighbourhood, then the temperature variation follows the Laplace equation

D
2 = 0, just like the non-relativistic case.

3.6 Discussion

We illustrated the features of the 1+3 covariant approach by considering conformally flat

perturbations of FLRW universes to see the e↵ect of the Weyl tensor in general space-

times. By imposition of Ca
bcd = 0 we obtained new constraints that have to be obeyed

at all epochs. We checked the consistency by time evolving these new constraints. We

found that the vorticity must be perpendicular to the gradient of the energy density.
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Chapter 4

Shear-free perturbations of FLRW

universe

4.1 Introduction

We show that a general but shear-free perturbation of homogeneous and isotropic uni-

verses are necessarily silent, without any gravitational waves. We prove this in two steps.

First, we establish that a shear-free perturbation of these universes are acceleration-free

and the fluid flow geodesics of the background universe map onto themselves in the per-

turbed universe. This e↵ect then decouples the evolution equations of the electric and

magnetic parts of the Weyl tensor in the perturbed spacetimes, and the magnetic part no

longer contains any tensor modes. Although the electric part, that drives the tidal forces,

do have tensor modes sourced by the anisotropic stress, these modes have homogeneous

oscillations at every point on a time slice without any wave propagation. This analysis

shows the critical role of the shear tensor in generating cosmological gravitational waves.

4.2 Shear free perturbation around FLRW spacetime:

Linearised field equations

Our background spacetime is homogeneous and isotropic FLRW universe. Therefore the

only nonzero (zeroth order) geometric and thermodynamic quantities in the background

are

D0 = {⇥, µ, p} . (4.1)

Since the background spacetime is homogeneous and isotropic, the projected spatial de-

rivatives of the above quantities will vanish identically, and the evolution equations that
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govern the temporal evolution of these quantities are given by

⇥̇ = �1

3
⇥2 � 1

2
(µ+ 3p), (4.2)

µ̇ = �⇥(µ+ p) . (4.3)

The above two equations, with a given equation of state of the form p = p(µ), will

then completely solve the background system. Let us now perturb the above system by

considering all the quantities that vanish in the background be of first order smallness

in the perturbed spacetime. Along with perturbing the geometrical quantities, we also

perturb the energy momentum tensor of the matter by introducing a small amount of

heat flux and anisotropic stress. In other words the matter in the perturbed spacetime

is no longer barotropic. However, we take the shear tensor to be identically zero in the

perturbed manifold. That is, we would like to show the importance of shear by the

method of negation. In that case the quantities, of first order smallness in the perturbed

spacetime, are given as

D1 = {Ehabi, Hhabi, u̇hai, !hai, qhai, ⇡habi} . (4.4)

Apart from the above set, any spatial derivative of zeroth order background quantities are

also first order. As mentioned earlier, all these first order quantities will be gauge invariant.

The Riemann tensor of the perturbed spacetime can now be completely specified in terms

of the matter variables and the Weyl variables as follows

R
ab

cd = 2
⇣
2u[a

u [cE
b]
d] + 2h[a

[cE
b]
d] � u

[a
h
b]
[cqd] � u[ch

[a
d]q

b]
⌘

� 2
⇣
u
[a
u[c⇡

b]
d] � h

[a
[c⇡

b]
d] � ✏

abe
u[cHd]e � ✏cdeu

[a
H

b]e
⌘

+
2

3

h
(µ+ 3p)u[a

u[ch
b]
d] + µh

a

[ch
b

d]

i
.

(4.5)

Using the above, we can write the Ricci identities of the vector u
a, and once and twice

contracted Bianchi identities, project them along u
a and on the instantaneous spatial 3-

surface of the observer, and finally linearize them by keeping the terms only to first order

smallness, to get the following set of linearised evolution equations and constraints.
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4.2.1 Evolution equations

⇥̇� div u̇ = �1

3
⇥2 � 1

2
(µ+ 3p), (4.6)

!̇
<a> � 1

2
(curl u̇)a = �2

3
⇥!

a, (4.7)

Ė
<ab> = (curl H)ab �⇥

✓
E

ab +
1

6
⇡
ab

◆

� 1

2

�
⇡̇
<ab> +D

<a
q
b>
�
,

(4.8)

Ḣ
<ab> = �(curl E)ab +

1

2
(curl ⇡)ab �⇥H

ab, (4.9)

q̇
hai +D

a
p+Db⇡

ab = �4

3
⇥q

a � (µ+ p)u̇a, (4.10)

µ̇+Daq
a = �⇥(µ+ p). (4.11)

4.2.2 Constraints

(C0)
ab ⌘ D

<a
u̇
b> � E

ab +
1

2
⇡
ab = 0, (4.12)

(C1)
a ⌘ q

a � 2

3
D

a⇥+ ✏
abc

Db!c = 0, (4.13)

(C2) ⌘ Da!
a = 0, (4.14)

(C3)
ab ⌘ H

ab +D
<a
!
b> = 0, (4.15)

(C4)
a ⌘ Db

✓
E

ab +
1

2
⇡
ab

◆
� 1

3
D

a
µ+

1

3
⇥q

a = 0, (4.16)

(C5)
a ⌘ DbH

ab + (µ+ p)!a +
1

2
(curl q)a = 0. (4.17)

We note here three important points:

1. First of all, the above system of equations is not closed. To close the system we must

supply a thermodynamic relation between isotropic pressure, fluid energy density,

heat flux and anisotropic stress in the form of F (µ, p, qa, ⇡ab) = 0.
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2. Secondly, the constraints C1, C2, · · · , C5 are the constraint equations for general

matter motion, which are known to be consistently time propagated along u
a loc-

ally. However the absence of shear gives a new constraint C0, which was the shear

evolution equation in the original system. This new constraint must be spatially

compatible with the original constraints, and furthermore it should be consistently

time propagated locally.

3. And finally, although the spatial derivative operators Da are orthogonal to u
a (that

is u
a
Da = 0), if the vorticity is nonvanishing then these operators do not span a

three dimensional surface as the commutators of these spatial directional derivatives

acting on a scalar do not vanish. In that case the instantaneous rest frame of an

observer is not a genuine 3-surface but rather a collection of tangent planes.

4.2.3 Commutations

We note that unlike the partial derivatives, the projected covariant derivatives on the

3-space do not commute with each other, and neither do they commute with the time

derivative. Given any scalar function f , we have

D[aDb]f = ✏abc!
c
ḟ , (4.18)

✏
abc

DbDcf = 2!a
ḟ , (4.19)

[D<a>
f ]˙⌘ h

a

b
[Db

f ]̇ = D
a
ḟ � 1

3
⇥D

a
f. (4.20)

Further to this, if V a is a projected first order 3-vector on the perturbed manifold, about

a FLRW background, then the linearised commutation relations are given as

⇥
D

<a
V

b>
⇤
˙= D

a
V̇

<b> � 1

3
⇥D

a
V

b, (4.21)

(div V )̇ = div V̇ � 1

3
⇥(div V ), (4.22)

D[aDb]Vc =
1

3

✓
µ� 1

3
⇥2

◆
hc[aVb], (4.23)

[(curlV )a]˙= (curl V̇ )a �
1

3
⇥(curlV )a. (4.24)
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Similarly, for any first order second rank 3-tensor A
ab, the following linearised relation

holds

D[aDb]A
cd =

2

3

✓
µ� 1

3
⇥2

◆
h
(c
[aA

d)
b], (4.25)

[(curlA)ab] ˙ = (curl Ȧ)ab �
1

3
⇥(curlA)ab. (4.26)

Apart from these there are several other linearised relations for first order vectors and

tensors in a perturbed spacetime about a FLRW background, that we list here (Maartens

and Bassett (1998))

D
a(curlV )a = 0 , (4.27)

D
b(curlA)ab =

1

2
curl (Db

Aab) , (4.28)

(curl curlV )a = DbD
a
V

b �D
2
V

a, (4.29)

(curl curlA)ab = �D
2
Aab +

3

2
Dha(divA)bi

+

✓
µ� 1

3
⇥2

◆
Aab. (4.30)

In what follows, we will be using these relations repeatedly to extract the results for a

shear-free perturbation of the FLRW universe.

4.3 Spatial consistency of the new constraint: An

important theorem

In this section, we will state and prove the following important theorem on the 4-

acceleration of matter for a perturbed spacetime linearised about a FLRW background.

Theorem 1. If a homogeneous and isotropic spacetime is perturbed in a shear-free way,

then the 4-acceleration of matter in the perturbed spacetime is necessarily zero, if the

matter obeys the strong energy condition. In other words, the geodesics of matter flow

line in the background map onto themselves in the perturbed manifold.

Proof. This theorem can be proved by checking the spatial consistency of the new

constraint (4.12), that is, if this constraint is consistent with the existing constraints of
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the field equations. Contracting the commutation relation (4.23) we get

DbD
a
V

b = D
a(div V) +

2

3

✓
µ� 1

3
⇥2

◆
V

a, (4.31)

and by definition we know

D
<a
V

b> =
1

2

�
D

a
V

b +D
b
V

a
�
� 1

3
h
ab(div V). (4.32)

Now, from our new constraint (4.12), we see that

DbE
ab = Db(D

<a
u̇
b>) +

1

2
Db⇡

ab
. (4.33)

Using relation (4.32) we get

DbE
ab =

1

2
DbD

a
u̇
b +

1

2
D

2
u̇
a � 1

3
D

a(div u̇) +
1

2
Db⇡

ab
. (4.34)

But by relation (4.29) we have

1

2
D

2
u̇
a =

1

2
DbD

a
u̇
b � 1

2
(curl curl u̇)a. (4.35)

Substituting relation (4.35) into (4.34) and using (4.31) we finally have

DbE
ab =

2

3
D

a(div u̇) +
2

3
(µ� 1

3
⇥2)u̇a � 1

2
(curl curl u̇)a +

1

2
Db⇡

ab
. (4.36)

To calculate (curl curl u̇)a, we note that the field equation (4.7) gives

1

2
(curl u̇)a = !̇

<a> +
2

3
⇥!

a
. (4.37)

Taking curl on both sides and using the commutation relation (4.24) we have

1

2
(curl curl u̇)a = [(curl !)a ]̇ +⇥(curl !)a. (4.38)

To find the expression for [(curl !)a ]̇, we use the field equation (4.13) yielding

(curl !)a =
2

3
D

a⇥� q
a
. (4.39)
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Taking the dot of the above equation and using relation (4.20) we get

[(curl !)a ]̇ =
2

3
D

a⇥̇� 1

9
D

a⇥2 � q̇
a
. (4.40)

We now use the field equation (4.6) and the above gets simplified to

[(curl !)a ]̇ =
2

3
D

a(div u̇)� 1

3
D

a⇥2 � 1

3
D

a(µ+ 3p)� q̇
a
. (4.41)

Substituting relations (4.39) and (4.41) into (4.38), we obtain

1

2
(curl curl u̇)a =

2

3
D

a(div u̇)� 1

3
D

a(µ+ 3p)� q̇
a �⇥q

a
. (4.42)

Using (4.42) in (4.36) we get

DbE
ab =

2

3
(µ� 1

3
⇥2)u̇a +

1

3
D

a(µ+ 3p) + q̇
a +⇥q

a +
1

2
Db⇡

ab
. (4.43)

From the field equation (4.16) we know

DbE
ab +

1

2
Db⇡

ab � 1

3
D

a
µ+

1

3
⇥q

a = 0. (4.44)

Using (4.43) we get

2

3

✓
µ� 1

3
⇥2

◆
u̇
a +D

a
p+ q̇

a +
4

3
⇥q

a +Db⇡
ab = 0. (4.45)

Again from the field equation (4.10) we have

q̇
a +

4

3
⇥q

a +D
a
p+Db⇡

ab = �(µ+ p)u̇a
. (4.46)

Therefore the relation (4.45) becomes

2

3

✓
µ� 1

3
⇥2

◆
u̇
a � (µ+ p)u̇a = 0 (4.47)

or 
1

3
⇥2 +

1

2
(µ+ 3p)

�
u̇
a = 0. (4.48)

If the matter obeys the strong energy conditions then we have

(µ+ 3p) � 0 and ⇥2 � 0.

Therefore the term in the square bracket of the above equation is strictly non-negative, and
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only vanishes for the non-interesting case of a Minkowski spacetime which we exclude here.

Therefore the matter acceleration must identically vanish for the perturbed spacetime and

the geodesics of matter flow lines in the background, mapping onto themselves in the per-

turbed manifold. ⇤

A direct corollary of the above result is given below

Corollary 1 If a homogeneous and isotropic spacetime is perturbed in a shear-free way

and the matter obeys the strong energy conditions, then the electric part of the Weyl tensor

is half of the anisotropic stress.

Another straightforward corollary of this theorem is

Corollary 2 If a homogeneous and isotropic spacetime is perturbed in a shear-free way

with the matter obeying the strong energy conditions and the vorticity is zero at any given

instant on a observer’s worldline, then it continues to be zero in the entire worl line (as

!
a = 0 ) !̇

a = 0).

Thus we showed that if the new constraint emerging due to vanishing of shear has to be

spatially consistent with the original constraints, the matter acceleration must identically

vanish, and the electric part of the Weyl is completely specified by the anisotropic stress.

However this does not interfere with the definition of magnetic part of Weyl, given by

constraint (4.15). This can be shown in the following way: Using relation (4.32) in (4.15)

we have

H
ab = �1

2
D

a
!
b � 1

2
D

b
!
a +

1

3
h
ab(div !), (4.49)

and

DbH
ab = �1

2
DbD

a
!
b � 1

2
D

2
!
a +

1

3
h
ab(div !). (4.50)

But by (4.14) the above becomes

DbH
ab = �1

2
DbD

a
!
b � 1

2
D

2
!
a
. (4.51)

Now using (4.29) we know

�1

2
D

2
!
a = �1

2
(curl curl !)a � 1

2
DbD

a
!
b
. (4.52)
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And (4.51) becomes

DbH
ab = �DbD

a
!
b +

1

2
(curl curl !)a. (4.53)

But using (4.31) and (4.14) gives

DbD
a
!
b =

2

3
(µ� 1

3
⇥2)!a, (4.54)

and equation (4.53) becomes

DbH
ab =

1

2
(curl curl !)a � 2

3
(µ� 1

3
⇥2)!a

. (4.55)

To find the expression for (curl curl !)a we use the field equation (4.13) that gives

(curl !)a =
2

3
D

a⇥� q
a
. (4.56)

Taking the curl on both sides, and simplifying using (4.19), we then have

(curl curl !)a =
4

3
!
a⇥̇� (curl q)a. (4.57)

Substituting (4.57) into (4.55) we get

DbH
ab =

2

3
!
a⇥̇� 1

2
(curl q)a � 2

3
(µ� 1

3
⇥2)!a

. (4.58)

But from the field equation (4.17) we have

DbH
ab + (µ+ p)!a +

1

2
(curl q)a = 0. (4.59)

Plugging in the value of DbH
ab from (4.58) and simplifying we finally get the constraint

2

3
!
a(div u̇) = 0. (4.60)

We see that the above constraint is identically satisfied if the matter acceleration vanishes.

4.4 Non existence of gravitational waves

As discussed in detail in Goswami and Ellis (2021), Maartens and Bassett (1998) and

Dunsby et al (1997), the general way to look for the close form wave equation for the

electric or magnetic part of the Weyl tensor, is to take the curl of the evolution equation

(4.8) and dot of (4.9) and then use the commutation relations (4.23) and (4.30). However
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for this to happen, the equations (4.8) and (4.9) must be coupled to each other, just like

their electromagnetic Maxwell equation analogue. Interestingly, when the shear tensor

is identically zero in the perturbed spacetime, we see by Corollary 1, the magnetic Weyl

evolution decouples itself from the electric Weyl evolution, and (4.9) now becomes

Ḣ
<ab> = �⇥H

ab, (4.61)

and on any given world line the magnetic Weyl has an oscillatory nature given by

Ḧ
<ab> = �(⇥̇H

ab +⇥Ḣ
ab) = �[⇥̇H

ab +⇥(�⇥H
ab)]. (4.62)

Using (4.6) the above equation becomes

Ḧ
<ab> =


4

3
⇥2 +

1

2
(µ+ 3p)

�
H

ab
. (4.63)

which is very similar to the vorticity vector. This is hardly surprising, as the magnetic

Weyl doesn’t contain any tensor modes anymore, and it is purely driven by the vector

mode of the vorticity vector. The electric Weyl, however, still contains tensor modes due

to the presence of anisotropic stress. To see how these tensor modes behave, we use the

usual technique of making all the scalar and the vector modes vanish. That is, we take

the vorticity, heat flux and the gradient of all the scalars to be zero. In that case we see

that the magnetic part of the Weyl vanishes and we get

Ė
<ab> = �⇥(Eab +

1

6
⇡
ab)� 1

2
⇡̇
<ab>, (4.64)

and

⇡
ab = 2Eab

. (4.65)

This then implies

⇡̇
ab = 2Ėab

. (4.66)

So (4.64) becomes

Ė
<ab> = �2

3
⇥E

<ab>, (4.67)

Ë
<ab> = �2

3
⇥̇E

<ab> � 2

3
⇥Ė

<ab>
. (4.68)
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Finally using relations (4.6) and (4.67) in (4.68) above we can show that the electric part

of the Weyl obeys the following tensor oscillatory equation

Ë
<ab> =

1

3

⇥
2⇥2 + (µ+ 3p)

⇤
E

ab
. (4.69)

We see that this is just a homogeneous oscillation of all points at a given time slice and

hence there is no gravitational wave propagations. It is interesting to note that, although

there is no tensor wave propagation, there exists a vector wave as described in the following

proposition.

Proposition 7 In a general but shear free perturbation of homogeneous and isotropic

universes the vorticity vector obeys a wave equation, that is sourced by the curl of the heat

flux and is given by

⇤!
a ⌘ !̈

<a> �D
2
!
a =

1

3
!
a(µ� 3p)� (curl q)a. (4.70)

Proof. By (4.7) we have

!̇
<a> = �2

3
⇥!

a, (4.71)

and

!̈
<a> =

1

3
!
a[2⇥2 + (µ+ 3p)]. (4.72)

By (4.29) we have

D
2
!
a = DbD

a
!
b � (curl curl !)a. (4.73)

We know by (4.57) that

(curl curl !)a =
4

3
!
a⇥̇� (curl q)a, (4.74)

or using (4.6) we find

(curl curl !)a = �1

3
!
a


4

3
⇥2 + 2(µ+ 3p)

�
� (curl q)a. (4.75)

Substituting (4.75) into (4.73) we obtain

D
2
!
a = DbD

a
!
b +

1

3
!
a


4

3
⇥2 + 2(µ+ 3p)

�
+ (curl q)a. (4.76)

Subtracting (4.76) from (4.72) we obtain the result. ⇤
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4.5 Discussion

We used the 1+3 covariant approach based on Ellis and van Elst (1998) considering shear

tensor to be equal to zero. Therefore in the linearisation procedure, we got the following

new constraint

D
<a
u̇
b> � E

ab +
1

2
⇡
ab = 0.

In respect of consistency of the new constraints we found the following relations


1

3
⇥2 +

1

2
(µ+ 3p)

�
u̇
a = 0,

or h
(div u̇)� ⇥̇

i
u̇
a = 0,

and
2

3
!
a(div u̇) = 0.

These situations pointed out to us that, for shear-free perturbation of FLRW spacetime,

either the acceleration vanishes (i.e u̇ = 0) or , ⇥̇ = div u̇ and either the vorticity vanishes

(i.e !
a = 0) or, div u̇ = 0.
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Chapter 5

Conclusion

This thesis was based on work first started by Ellis and van Elst (1998). We considered

two cases, namely conformally flat, and shear-free spacetimes. In this dissertation we

have studied the role of the Weyl tensor in general relativistic fluid motion, including

spacetime shear. Since the framework of our thesis was focussed in general relativity, we

have started by providing a brief overview of the mathematical tools needed to formulate

general relativity. We discussed conformally flat and shear-free models, and showed why

they are important. We now provide an overview of the main results obtained during the

course of our investigations:

In chapter 2, we presented the relevant theoretical concepts inherent with the 1 + 3

covariant formalism. We used the socalled 1+3 covariant description of general relativity

which has been developed for use in spacetimes in which there is a preferred timelike con-

gruence u. The “1+3” refers to the fact that one performs a “time+space” decomposition

relative to u by projecting tensors and tensorial equations parallel to u and orthogonal to

u. The second aspect of the 1+3 description is to write a tensor as a sum of algebraically

simpler parts, i.e. to give an algebraic decomposition.

In chapter 3 we studied conformally flat perturbations of FLRW spacetimes, to see

the e↵ect of Weyl tensor in general spacetimes. Since we considered conformally flat

perturbation, the Weyl tensor vanishes identically. In the linearisation procedure, we

neglected all products of first order quantities in Ricci and (contracted) second Bianchi

identities giving the following new constraint

(curl ⇡)ab = 0.
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The following relations are the results we found in respect of consistency of the new

constraints:

✏
dc<a

DcDdq
b> = �(µ+ p)D<a

!
b> = 0,

✏
dc<a

Dc(Ddq
b>) = �(µ+ p)D<a

!
b> = �1

3

✓
µ� 1

3
⇥2

◆
✏
<ab>d

qd = 0,

✏
dc<a

DcDdu̇
b> = 0,

✏
cd<a

DcDd(D
b>
p+

2

3
D

b>
µ) = 0,

✏
abc

Db!c =
2

3
⇥u̇

a, or (curl !)a =
2

3
⇥u̇

a,

!
a
Daµ = 0,

(2DbDa �DaDb)u̇
b = (µ+ p)u̇a.

We stated and proved the following important geometrical properties of matter shear and

vorticity in the perturbed, conformally flat spacetime:

For a perturbed FLRW spacetime, the spatial variation tensor DaVb for any first

order 3-vector V a is curl free in the linearised regime, i.e (curlDaVb) = 0.

For a linear and conformally flat perturbation of FLRW spacetime, the shear tensor

is curl free, i.e. (curl �)habi = 0.

For a linear and conformally flat perturbation of FLRW spacetime,

1. For nonvanishing vorticity, the heat flux vector is purely axial on a given hy-

persurface, and consistent time propagation of this constraint gives an implicit

equation of state relating the density and isotropic pressure.

2. The vorticity is generated purely by the curl of heat flux vector for all epochs.

If the spacetime is perturbed in a conformally flat way about the FLRW background,

the spatial variation tensor of the vorticity is purely antisymmetric at all epochs,

and the curl of the vorticity is generated by the heat flux vector and it’s Laplacian.
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In a conformally flat perturbation of FLRW spacetime, the shear tensor obeys a

closed and transverse-traceless tensor wave equation, which is given by

⇤�
habi ⌘ �̈

habi �D
2
�
habi = �⇥�̇

habi

+

✓
1

3
⇥2 � 7

6
µ+

1

2
p

◆
�
habi

.

In a conformally flat perturbation of FLRW spacetime, if the acceleration is curl-

free, then the vorticity vector obeys a closed vorticity wave equation

⇤!
hai ⌘ !̈

hai �D
2
!
hai =

✓
µ+ p+

4

9
⇥2

◆
w

a
.

In a conformally flat perturbation of FLRW spacetime, if the vorticity is strictly

nonzero, then on the small enough neighbourhood (where the relaxation time and

heat conductivity can be taken to be constants) in constant time 3-spaces, the

temperature obeys Poisson’s equation

D
2
T + (Dau̇

a)T = 0.

Geometrical properties of general conformally flat spacetimes are still under active in-

vestigations, to understand transparently how di↵erent geometrical and thermodynamic

quantities of the spacetime interact in the absence of free gravity. This understanding

will definitely help us to recognise the e↵ects of free gravity with better clarity.

Working in the linearised regime, we demonstrated some interesting features of matter

shear and vorticity and how they are powered by di↵erent thermodynamic quantities of

matter, like energy density, heat flux, isotropic pressure and anisotropic stress. Although

these results are only valid in the linearised regime, they give an indication as to how these

quantities behave in a more general setting of conformally flat spacetimes. The most im-

portant point that emerged from this investigation, is that both the matter shear and

the vorticity obey a transverse traceless tensor wave equation and a vector wave equation

respectively. These shear and vorticity waves actually replaces the gravitational waves,

that these spacetimes are devoid of, in the sense that any information about local change

in the curvature of the spacetime can be propagated causally via these waves. Presence of

these waves makes the dynamics of relativistic and conformally flat fluid flows extremely

interesting and can shed new light on the general conformally flat solutions of Einstein
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field equations. Furthermore, we worked out explicity, how the causal Cattaneo-type

heat transport equation gets modified in this scenario of conformally flat almost FLRW

spacetimes, and showed that in small enough neighbourhoods of constant time slices, the

temperature obeys a Poisson’s equation.

In chapter 4 we stated and demonstrated the following property:

In a general but shear-free perturbation of homogeneous and isotropic universes the vor-

ticity vector obeys a wave equation, that is sourced by the curl of the heat flux and is

given as

⇤!
a ⌘ !̈

<a> �D
2
!
a =

1

3
!
a(µ� 3p)� (curl q)a.

We established the important e↵ects of spacetime shear via the method of negation, by

perturbing a homogeneous and isotropic universe in a shear-free fashion. The key points

that emerged from our analysis are as follows

1. Our analysis once again emphasised the relation of spacetime shear with inhomo-

geneity and anisotropy that was initially pointed out in Joshi et al (2004). Inhomo-

geneity and anisotropy in a spacetime is directly manifested via pressure gradients,

anisotropic stresses and heat flux, which in turn generates the matter acceleration.

We showed that vanishing of shear necessarily makes the acceleration vanish in the

perturbed spacetimes, that makes the matter geodesics in the background to map

onto themselves in the perturbed manifold.

2. We further proved the crucial role of shear in coupling the evolution of electric and

magnetic parts of the Weyl tensor, that puts the gravito-electromagnetism on the

same footing as normal electromagnetism. The absence of shear breaks this coupling

and furthermore the magnetic part of the Weyl ceases to have any tensor modes

(that are generated purely by the shear). Hence the spacetime does not contain

any tensorial waves. It is interesting to note that in general, the shear tensor itself

obeys a wave equation in a perturbed FLRW background (Dunsby et al (1997)),

and it is very clear that shear waves mediate the interction between the electric and

magnetic Weyl, to produce gravitational waves.

3. Although the shear free perturbation of FLRW universes, do not contain any grav-

itational waves, it was shown that these contain vorticity waves sourced by the curl

of the heat flux. If the matter in the perturbed universe continues to be a perfect

fluid, then these waves will die down. However if a heat flux with non-zero curl

is present in the perturbed manifold, then this will act as a forcing term and the
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vector waves can grow indefinitely resulting in structure formation.

Thus we established the validity of the results obtained in Matarrese et al (1994), even

when we allow for the general matter perturbation.
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