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ABSTRACT 

The risk-return relationship is a fundamental concept in finance and economic theory 

and is also known as the “first fundamental law” in finance. Traditionally, the risk-return 

relationship is known to help assist individuals in the construction of an efficient 

portfolio where a desired risk and return profile is tailored to their needs. However, it 

is a source of much more valuable information to various market participants such as 

bankers, investors, policy makers and researchers alike. There are a number of 

investment strategies, policy frameworks, theories and asset pricing models built on 

the empirical result of the risk-return relationship. Hence, the topic of the risk-return 

relationship is of broad importance. It has been widely investigated on an international 

scale, especially by developed markets from as early as the 1950's, with the primary 

motive being to help market participants optimise their chance to earn higher returns.  

According to conventional economic theory, the relationship between risk and return 

is a positive and linear relationship – the higher the risk, the higher the return. 

However, there are many studies documented in literature which show a positive or 

negative or no relationship at all. As a result, due to the magnitude of conflicting results 

over the years, this has caused an international and local debate to arise regarding 

the risk-return relationship. International studies have explored a number of theories 

and models to attempt resolving the inconclusive empirical backing of the risk-return 

relationship. On the other hand, the methods employed by South African studies and 

the volume of literature on the topic is relatively limited.  

South Africa is becoming increasingly more recognised, liberalised, interactive and 

integrated into the international economy. Therefore, this study makes a significant 

contribution from a South African market perspective. This study identifies volatility 

feedback, a stronger measure of regular volatility, as an important source of 

asymmetry to take into account when investigating the risk-return relationship. Given 

that South Africa is an emerging market which is subject to higher levels of volatility, 

one would expect the presence of this mechanism to be more pronounced. Thus, this 

study investigates the risk-return relationship once volatility feedback is taken into 

account by its magnitude in the South African market.  

A valuable contribution of this study is the introduction of the novel concept 

“asymmetric returns exposure” which refers to the risk that arises from the asymmetric 
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nature of returns. This measure has a certain level of uncertainty attached to it due to 

its latent and stochastic nature. As a result, it may be ineffectively accounted for by 

existing parametric methods such as regression analysis and GARCH type models 

which are prone to model misspecification.  

The results of this study are presented according to the robustness of the approaches 

in the build up to the final result. First, the GARCH approach is employed and consists 

of a symmetric and asymmetric GARCH type models. The GARCH approach is treated 

as a preliminary test to investigate the presence of risk-return relationship and volatility 

feedback, respectively. While the GARCH type models have the ability to take into 

account the volatile nature of returns, asymmetries and nonlinearities remain 

uncaptured by the probability distributions governing the model innovations. Thus, the 

results of the GARCH type models are inconsistent and not statistically sound.  

This motivates the use of a more robust method, namely, the Bayesian approach 

which consists of a parametric and nonparametric Bayesian model. The Bayesian 

approach has the ability to average out sources of uncertainty and measurement 

errors and thus effectively account for “asymmetric returns exposure”. The test results 

of both the parametric and nonparametric Bayesian model find that volatility feedback 

has an insignificant effect in the South African market. Consequently, the risk-return 

relationship is estimated free from empirical distortions that result from volatility 

feedback. The result of the parametric Bayesian model is a positive and linear 

relationship, in line with traditional theoretical expectations.  

However, it is noteworthy that in the context of this study that the nonparametric 

approach is highlighted over the parametric approach. The nonparametric approach 

has the ability to adjust for model misspecifications and effectively account for 

stochastic, asymmetric and latent properties. It has the ability to take into account an 

infinite number of higher moment asymmetric forms of the risk-return relationship. 

Thus, the nonparametric Bayesian model estimates the actual fundamental nature of 

the data free from any predetermined assumptions or bias. According to the 

nonparametric Bayesian model, the final result of this study is no relationship between 

risk and return, in line with early South African studies.  
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CHAPTER 1 

1. INTRODUCTION 

The introduction describes the rationale and motivation of this research topic. The 

overview captures the essence of what this research sets out to do while the 

background provides a more detailed discussion. The research problem narrows down 

the importance of this study with respect to South Africa. Thereafter, the research 

aims, questions and hypotheses guide the route of this research and the contribution 

shows the novel significance this study has to offer. Finally, the chapter concludes the 

structure of this study. 

1.1 Overview  

Although fundamental economic theory establishes a linear and positive risk-return 

relationship, many studies show a positive or negative, nonlinear or linear, significant 

or insignificant relationship (Savva and Theodossiou, 2018). Hence, there exists an 

inconclusive empirical backing to the theoretical risk-return relationship (Maneemaroj, 

Lonkani and Chingchayanurak, 2019). As a result, there is an ongoing international 

and local debate about the magnitude of conflicting results regarding the risk-return 

relationship (Savva and Theodossiou, 2018). The magnitude of the empirical risk-

return relationship differs due to various factors (Maneemaroj et al., 2019).  

In the investigation of the risk-return relationship, it is found that there is always some 

dynamic component to account for variability or asymmetry that arises from price data, 

in order to address the omitted variable bias (Kim and Kim, 2018). That’s because the 

assumption that price data of an entire financial system follows a normal and 

symmetric distribution cannot be accepted (Li, 2018). Share prices are dynamic as 

they constantly change over time, thus, are stochastic or random in nature which 

means that they can be statistically analysed but not with certain precision (Harris, 

2017). Therefore, it follows that the return distribution, which is derived from price data, 

follows an asymmetric distribution (Gyldberg and Bark, 2019). 

This research makes a significant contribution to the ongoing debate about the 

magnitude of the risk-return relationship by introducing the novel concept “asymmetric 

returns exposure” which refers to the risk that arises from the asymmetric nature of 

returns. The return inherent risk may be ineffectively accounted for by existing 

parametric methods due to its latent and stochastic nature (Jin, 2017). This is mainly 
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due to the model’s limitations and misspecifications to effectively estimate risk (Jensen 

and Maheu, 2018). For example, the Generalised Autoregressive Conditional 

Heteroskedasticity (GARCH) model is one of the foremost methods to investigate the 

risk-return relationship (Madaleno and Vieira, 2018).  

There has been a number of extensions of the standard GARCH model and various 

sources of price data variability to take into account (Cenesizoglu and Reeves, 2018). 

Extensions of the standard GARCH model include the EGARCH, GJR-GARCH and 

APARCH models among others which account for the asymmetric nature of volatility 

(Savva and Theodossiou, 2018). Further, sources of price data variability include 

volatility feedback, the leverage effect, skewness and behavioural biases (Yu, Kang 

and Park, 2018). However, if a model can effectively estimate risk, there is no need 

for such model extensions, specifications and omitted variables biases (Demirer, 

Gupta, Lv and Wong, 2019).   

A model that satisfies these conditions is the nonparametric Bayesian approach by 

Jensen and Maheu (2018). The nonparametric Bayesian approach is unique to 

existing literature that typically uses conventional parametric methods such as the 

GARCH approach and regression analysis (Jensen and Maheu, 2018). The 

application of the Bayesian approach in practical real-life situations demonstrates its 

usefulness and effectiveness (Karabatsos, 2016). Given the recent pandemic of the 

Coronavirus disease (COVID-19), a number of studies applied the Bayesian approach 

and methods to contribute uncovering its properties (Linton, Kobayashi, Yang, 

Hayashi, Akhmetzhanov, Jung, Yuan, Kinoshita and Nishiura, 2020; Jung, Kinoshita, 

Thompson, Linton, Yang, Akhmetzhanov, Nishiura, 2020).  

The Bayesian approach is suitable for models that understand the complexity of 

financial data, especially the nature of returns which is nonlinear, asymmetric, volatile, 

stochastic and latent (Wagenmakers, Marsman, Jamil, Ly, Verhagen, Love, Selker, 

Gronau, Smira, Epskamp, Matzke, Rouder and Morey, 2018). Thus, the use of a 

model such as the nonparametric Bayesian approach, that can fit nonlinear and 

asymmetric properties effectively, ensures a robust result (Demirer et al., 2019). In 

turn, a reliable result ensures a significant contribution and progression of research, 

especially in a case where a problem does exist which causes an international debate 

to arise due to the magnitude of conflicting results (Savva and Theodossiou, 2018).  
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Therefore, a central theme of this study emphasises and recommends the use of 

nonparametric Bayesian models (Karabatsos, 2016). More so, for emerging markets 

which has unique market return characteristics such as heavy tails and high levels of 

volatility as pointed out by Herbert, Ugwuanyi and Nwaocha (2018). Volatility feedback 

is a measure of volatility that is persistent over time and stochastic in nature (Inkaya 

and Okur, 2014). This mechanism is characterised by tendencies to get stronger over 

time and take longer to die out, in comparison to regular volatility (Harris, Nguyen and 

Stoja, 2019).  

In the context of the risk-return relationship, volatility feedback is driven by volatility 

(Chakrabarti and Kumar, 2020). Hence, it is a source of risk and poses a greater threat 

to an emerging market which is characterised by higher levels of volatility (Herbert et 

al., 2018). As a result, this study specifically takes into account volatility feedback as 

an important source of asymmetry following the studies by Jensen and Maheu (2018), 

Kim and Kim (2018) and Harris et al., (2019). The focus of this study is a South African 

market perspective since it is becoming increasingly more integrated into the 

international economy. This leads to the background of this study which provides a 

more detailed discussion.    

1.2 Background 

The condition of a country’s financial system is a key indicator of a country’s stability 

(Asuming, Osei-Agyei and Mohammed, 2018). This is because it forms the foundation 

for progression in terms of sustainable economic growth, development and job 

creation (SARB, 2019). While contributing to the overall stability of a country, it can 

also affect local and foreign investment decisions (Asuming et al., 2018). In other 

words, the state of the financial market can either attract or repel investors, affecting 

the growth of the nation (Hung, 2019). Therefore, by understanding the status of a 

financial market, an investors decision making process and investment strategies can 

be assisted and molded accordingly (Nahil and Lyhyaoui, 2018). That is, in terms of 

what level of risk they should take with regards to an investment venture in order to 

optimise their chance to earn a superior return (Marozva, 2019). However, the volatile 

nature of a market causes forecasting key indicators such as risk and return to be 

difficult and more importantly, unreliable if inadequate models are used (Nahil and 

Lyhyaoui, 2018). Thus, forecasting risk and returns still remains a fundamental 

problem in any financial market (Liu, 2019). This is especially the case for an emerging 
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market such as South Africa which is characterised by higher levels of volatility and 

turbulent market conditions (Herbert et al., 2018).  

The Johannesburg Stock Exchange (JSE) is the largest market in Africa and is the 

financial powerhouse of the nation (SARB, 2019). The JSE is ranked amongst the top 

twenty stock exchanges in the world and consists of almost 400 listed companies 

which are made up of a wide array of sectors (JSE, 2020). This makes South Africa 

highly interconnected to the global economy by various channels such as financial, 

trade and investment (Asuming et al., 2018). In 2017, South Africa’s export value 

amounted to $108 billion, making the nation the 34th largest exporter in the world 

(OEC, 2019). The Morgan Stanley Capital International (MSCI) emerging markets 

index consists of twenty-four countries (MSCI, 2019). Figure 1 shows the 2019 

contributing weights. 

 

Figure 1: Weightings of MSCI Emerging Markets 

Source: MSCI (2019) 

From Figure 1, it can be seen that South Africa is ranked sixth out of the twenty-four 

countries, making it a significant contributor on an international scale. According to the 

Economic Development in Africa Report (2019), the nation redresses the African 

Continental Free Trade Area to improve the current domestic and international trading 

conditions. Thus, making South Africa an active participant to global and regional trade 

agreements with other continents and nations (Melis and Bonga-Bonga, 2019). South 

Africa’s interactive nature is especially prevalent in its partnership with the five major 

emerging markets consisting of Brazil, Russia, India, China and South Africa (BRICS). 

According to Melis and Bonga-Bonga (2019), BRICS received the highest portion of 
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the total $900 billion global corporate debt issued to the Emerging Market Economies 

in 2016. As a result, the high capital inflow led to accelerated development and growth 

among these nations (Melis and Bonga-Bonga, 2019). However, despite cash inflows 

and strengthened partnerships with respect to trade, there still exists a high degree of 

variation in economic activity in the South African market. The economic activity of 

South Africa is measured by the Gross Domestic Product (GDP).  

According to the National Treasury (2020), the GDP growth rate had an estimated 

value of 0.3% for 2019 and an expected value of 0.9% for 2020. In contrast, the 

forecasted values in the previous year expected figures of 1.5% for 2019 and 1.7% for 

2020 (National Treasury, 2019). The variation in GDP can be attributed to the volatile 

nature of the South African market which is a given characteristic of emerging markets 

(Herbert et al., 2018). However, there are a specific number of factors that contribute 

to the volatile nature of the South African market which poses a risk to GDP growth. 

This includes consistent levels of corruption in the public and private sectors, power 

shortages as a result of Eskom, as well as policy and political uncertainty (National 

Treasury, 2019). This is an issue because South Africa relies heavily on foreign 

investment due to a low rate of local savings (National Treasury, 2018). Private 

investment contributes to approximately 60% of total investment and has been 

decreasing since 2015 (National Treasury, 2018). Figure 2 shows the index of private 

investment and business confidence in South Africa. 

    

Figure 2: Index representing private investment and business confidence 

Source: National Treasury (2020) 
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From Figure 2, over the years it can be seen that there has been a general greater 

decline in business and investor confidence as well as private investment. When a 

market is subject to volatility, which is a persistent level of risk, investors become risk 

averse because expected returns may mismatch with realised returns (Hussain, 

Murthy and Singh, 2019). Consequently, discouraging an investor’s business 

confidence and corresponding private investment (Industrial Development 

Corporation, 2019). Thus, lead to low levels of economic activity and unfavourable 

conditions for investment ventures and exporting products as well as financial losses 

for the economy as a whole (Hussain et al., 2019). This is because the fall in one 

country cannot easily be contained as a domestic event as it affects the rest of the 

world (Mancino and Sanfelici, 2019).  

The world economy is interlinked by various markets, from emerging markets such as 

South Africa to advanced markets such as the United States (US). The 

interconnectedness of the markets allows for easy transmission of volatility known as 

the spillover effect (Newaz and Park, 2018). Spillover effects can lead to economic 

instability, major cash outflows and a potential financial crisis (Gulzar, Kayani, 

Xiaofeng, Ayub and Rafique, 2019). Financial crises are documented as one of the 

greatest sources for strong persistent levels of volatility and have a significant impact 

on market returns (Harris et al., 2019). According to Marozva (2019), the 2007/2008 

financial crisis amounted to an estimated $30 trillion worth of total losses in the equity 

market worldwide. The largest stock markets suffered losses around 40% to 60% in 

the period September 2008 to March 2009 alone (Marozva, 2019).  

According to Gulzar et al., (2019), the well-known Lehman Brothers, an international 

investment banking firm, suffered a great deal from the 2008 financial crisis. One of 

the accelerators for the firm’s downward spiral was the impact of the transmission of 

bad news, a source of volatility. On 9th September 2008, there was a possibility of the 

Lehman Brothers being saved by the Korean Development Bank, but when talks were 

put on hold, the bad news spread. Consequently, there was a 45% drop in the share 

market, hedge fund investors pulled out and creditors ended their credit lines. As a 

result, the Lehman Brothers filed for bankruptcy on the 15th September 2008 and by 

then, the crisis had spread worldwide (Sehgal and Pandey, 2018; Gulzar et al., 2019).  
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Emerging markets are more prone to negative effects since their markets may be 

underdeveloped and they do not have the sufficient funds to withstand financial losses 

(Gulzar et al., 2019). This makes a country such as South Africa susceptible due to 

the low rate of local savings as well as being highly integrated with the rest of the world 

(National Treasury, 2018). Figure 3 shows the relative GDP growth over the years. 

 

Figure 3: Relative GDP growth over the years 

Source: Antelme (2018) 

From Figure 3, South Africa appears to gain the least growth on a consistent basis. In 

contrast, the developed economies gain the most till after 2014 where they then 

overtake the emerging markets. The conditions of the South African market are due 

to its volatile nature and variation in GDP growth (National Treasury, 2019).  However, 

it is noteworthy that an economies volatile nature can either be a source of 

development or stunt the growth of the economy (Hung, 2019). While persistent levels 

of volatility can deteriorate a market, on the other hand, it can attract investors to the 

possibility of earning superior returns due to fluctuations in market prices (Hussain et 

al., 2019). In other words, mispricing's in the market are seen as an opportunity for 

arbitrage and to capitalise on (Gulzar et al., 2019). This is because it is well known 

that investors often seek opportunities for arbitrage and diversification benefits based 

on the volatile nature of emerging markets (Hung, 2019).  
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Either way, the prediction of risk and return are key indicators to assist an investor’s 

decision making process (Marozva, 2019). By forecasting these measures, investors 

are able to determine and establish their strategy before official announcements by 

rating agencies such as Moody’s (Huang and Startz, 2019). Meaning, a forecast of the 

risk-return relationship provides an investor with a safe environment to strategise their 

investment ventures in order to optimise their chance to earn a superior return 

(Hussain et al., 2019). By understanding risk, an investor's risk tolerance can be met 

where they can have an idea as to how they are compensated for the level of risk 

undertaken (Kempers, Leittersorf and Kammerlander, 2019). The actual realised 

returns earned then allows an investor to confirm the profitability of their investment 

venture (Gyldberg and Bark, 2019).  

Based on fundamental economic and finance theory, one would expect the investor 

that takes on a higher level of risk to expect and realise a higher rate of return. 

According to the trade-off theory by Markowitz (1952), an investor only takes on a high 

level of risk if compensated by a high level of return. Further developments by Sharpe 

(1964), Lintner (1965) and Mossin (1966), led to the Capital Asset Pricing Model 

(CAPM) where the risk-return relationship originated. According to the trade-off theory 

and CAPM framework, the risk-return relationship is positive and linear. However, 

documented studies in literature show a magnitude of conflicting results regarding the 

risk-return relationship (Savva and Theodossiou, 2018).  

The magnitude of conflicting results can be explained by the asymmetric nature of 

returns and volatility as follows. The assumption that price data of an entire financial 

system follows a symmetric bell-shaped curve cannot be accepted (Li, 2018). This is 

because share prices are dynamic as they constantly change over time; thus, price 

data are stochastic or random in nature which means that they can be statistically 

analysed but not with certain precision (Harris, 2017). Therefore, it follows that the 

return distribution, which is derived from price data, follows an asymmetric distribution 

(Gyldberg and Bark, 2019). An underlying cause is because the market is subject to 

asymmetric volatility which is an empirical regularity that has been systematically 

proven over time (Yu et al., 2018).  

Asymmetric volatility refers to the tendency where volatility increases more for 

negative returns than positive returns, or vice versa, for the same magnitude (Yu et 
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al., 2018). There are two theories that can further explain this phenomenon, namely, 

the volatility feedback (effect) and the leverage effect (Umutlu, 2019; Harris et al., 

2019, Chakrabarti and Kumar, 2020). The asymmetric volatility phenomenon is often 

treated synonymously with the leverage effect by the GARCH school of models 

(Mandimika and Chinzara, 2012). However, asymmetric volatility is strongly 

associated to a time varying risk premium which is linked to volatility feedback 

(Horpestad, Lyocsab, Molnara and Olsen, 2019). The risk premium refers to the 

excess or abnormal returns earned due to taking on a higher level of risk and is often 

used to investigate the risk-return relationship (He, He and Wen, 2018). 

Despite the two theories being closely related, it is important to understand the 

difference between volatility feedback and the leverage effect (Mandimika and 

Chinzara, 2012). Both hold a relationship between price movements and volatility, 

where the leverage effect is negative by Black (1976) and volatility feedback is positive 

by Pindyck (1984). Volatility feedback is empirically favoured, in comparison to the 

leverage effect, mainly due to not being associated to the amount of debt a firm has 

(Cao, Chen and Hull 2018). Volatility feedback is a measure of volatility that is 

characterised by tendencies to get stronger over time and take longer to die out, in 

comparison to regular volatility (Harris et al., 2019). According to Mancino and 

Sanfelici (2019), volatility feedback is a useful tool in understanding market conditions 

and can indicate the level of liquidity of individual securities and the market. Hence, it 

can be used as an indicator of market stability and assist investor decisions (Inkaya 

and Okur, 2014; Mancino and Sanfelici, 2019).  

In the context of the risk-return relationship, the leverage effect is driven by returns, 

whereas volatility feedback is driven by volatility (Chakrabarti and Kumar, 2020). Thus, 

volatility feedback is a source of risk and poses a greater threat to an emerging market 

which is characterised by higher levels of volatility (Herbert et al., 2018). In recent 

studies, it has been noted that the risk-return relationship is positive, in line with 

theoretical expectations when volatility feedback is taken into account. Specifically, 

when Kim and Kim (2018) apply a unified framework and Jensen and Maheu (2018) 

apply a nonparametric Bayesian approach. Therefore, this study takes into account 

volatility feedback as an important source of asymmetry following the studies by 

Jensen and Maheu (2018), Kim and Kim (2018) and Harris et al., (2019). 
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The volatility feedback mechanism, risk and return variables are all nonlinear, 

inconstant and stochastic in nature (Harris, 2017). In order to observe these variables 

directly, previous studies impose economic restrictions or assumptions on the data 

(Jin, 2017). According to Karabatsos (2016), parametric methods are often based on 

a number of assumptions. Basic regression modelling consists of a number of different 

types of analyses such as prediction, causal and time series. In most research, the 

problems and questions are framed in terms of the dependent variable as a linear 

function of the independent variable/s. Additionally, the innovations are assumed to 

follow a normal distribution. If the data properties are in violation of such assumptions 

then the parameter estimates are going to be misleading. However, in the context of 

time series analysis, the violation of assumptions is most likely to occur because 

financial data has a volatile, asymmetric and nonlinear nature (Jensen and Maheu, 

2018; Karabatsos, 2016).  

For example, in the study by Kim and Kim (2018), returns are modelled as a linear 

function of volatility. However, this does not empirically hold true for both volatility and 

returns given the asymmetric volatility phenomenon and asymmetric returns exposure. 

Further, the GARCH approach has a number of nonnegativity constraints and 

assumptions to satisfy in order to validate the model which is tedious in nature (Jin, 

2017). This school of models also limits the possibility of nonlinear and asymmetric 

properties due to essentially being parametric which means that it has a set number 

of parameters with respect to the sample size (Jin, 2017). Therefore, it has the inability 

to account for every possible risk-return relationship that can hold (Demirer et al., 

2019). As a result, this should lead researchers to use more robust methods that are 

available to effectively model complex data (Karabatsos, 2016).    

A model that satisfies these conditions is the nonparametric Bayesian approach by 

Jensen and Maheu (2018). Bayesian statistics is an extensive field of study built on 

Bayes (1763) theorem which is defined as the probability estimation of a relationship 

given prior information. In this case, the relationship is between risk and return and the 

prior information refers to volatility feedback which is modelled from historical price 

data. The novelty and effectiveness of the Bayesian approach are demonstrated in its 

current use. Given the recent pandemic of COVID-19, a number of studies applied 

Bayes theorem and methods to contribute uncovering its properties (Linton et al., 

2020; Jung et al., 2020). For example, a Bayesian regression model was used to 
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confirm that the disease is transferrable by surfaces (van Doremalen, Bushmaker, 

Morris, Holbrook, Gamble, Williamson, Tamin, Harcourt, Thornburg, Gerber, Lloyd-

Smith, de Wit and Munster, 2020).   

The nonparametric approach is a “model free” approach where the data is estimated 

free from assumptions, nonnegativity or economic restraints (Jin, 2017). Studies 

highlight that the nonparametric approach relaxes the normality assumption, 

effectively accounting for asymmetric properties such as skewness, kurtosis and 

multiple modes (Apergis, Bonato, Gupta and Kyei, 2018). By modelling data in a 

nonparametric framework, this allows “the data to speak for itself” solely based on its 

nature and not any predetermined assumptions or bias (Jensen and Maheu, 2018). 

The combination of the Bayesian approach and nonparametric approach addresses 

the issues presented by the parametric methods effectively (Wagenmakers et al., 

2018). This ensures a powerful method of data estimation, a more robust result and 

significant contribution and progression of research, with respect to the magnitude of 

conflicting results regarding the risk-return relationship (Karabtsos, 2016; Jin, 2017). 

There exists a rich amount of literature documented, regarding the risk-return 

relationship, especially in developed countries as highlighted in the study by Savva 

and Theodossiou (2018). However, the use of unconventional methods is still 

somewhat limited since the study itself employs a GARCH approach. This is mainly 

because the GARCH approach is one of the foremost methods used when 

investigating the risk-return relationship (Madaleno and Vieira, 2018; Savva and 

Theodossiou, 2018). While most documented studies highlight the advantages of the 

GARCH school of modelling based on its conventional use, they fail to investigate the 

model’s limitations and shortcomings. Therefore, this study highlights the superiority 

of the nonparametric and Bayesian approach which is effective in modelling real world 

data (Karabatsos, 2016; Jensen and Maheu, 2018; Wagenmakers et al., 2018).  

To conclude the background, Griffin, Kalli and Steel (2018), note that nonparametric 

Bayesian modelling is a relatively unconventional approach in the fields of economics 

and finance. In the Bayesian approach, the theory and empirical model are closely 

related by means of prior information (Herath, 2019). This is the main drawback of the 

Bayesian approach because prior information can be modelled from a source of 

subjectivity such as prior beliefs or experience (Bartlett and Keogh, 2016). However, 



12 
 

this limitation can easily be overcome by taking into account relatively mathematically 

convenient mechanisms such as volatility feedback as in this study. Additionally, by 

using objective prior model specifications in the model implementation stage 

(Karabatsos, 2016; Waldmann, 2018).  

Essentially, one drawback should not be the reason for the lack of use of such a robust 

approach that is most likely to provide more accurate results. This is especially so, in 

comparison to the conventional quantitative finance methods, such as regression 

analysis and the GARCH approach, which has a number of limitations that the 

Bayesian and nonparametric approach easily overcomes (Karabatsos, 2016; Griffin et 

al., 2018; Wagenmakers et al., 2018). Thus, this study aims to resolve the ongoing 

risk-return relationship debate by highlighting and applying the novel nonparametric 

Bayesian approach. This leads to the research problem of this study which narrows 

its focus on a South African market perspective.   

1.3 Research Problem 

In a financial market, volatility arises from changes in price data as a result of the 

reaction and response of investors to information in the form of news (Hussain et al., 

2019). Strong levels of volatility over a long period of time are considered undesirable 

as it can result in severe market instability and major cash outflows (Gulzar et al., 

2019). However, a fair amount can attract both local and foreign investors, increase 

overall investment activity and stimulate economic growth (Mancino and Sanfelici, 

2019). In other words, volatility is a source of mispricing's from which investors can 

identify and capitalise on in order to make a profit (Hussain et al., 2019). Volatility 

feedback is a measure of volatility and is of key interest because it takes longer to die 

out, in comparison to regular volatility (Mancino and Sanfelici, 2019).  

Typically, higher levels of volatility and turbulent conditions are found in an emerging 

market (Herbert et al., 2018). The returns of an emerging market are characterised by 

higher levels of volatility, heavy tails and better forecast ability (Herbert et al., 2018). 

Hence, the presence of volatility feedback in an emerging market such as South Africa 

can be expected to be more pronounced. The presence of the volatility feedback 

mechanism can pose a serious threat to the South African market and have negative 

financial implications (Hussain et al., 2019). This is because private investment 
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contributes to around 60% of total investment and South Africa relies heavily on 

foreign investment because of a low rate of local savings (National Treasury, 2018).  

Thus, volatility feedback is not only a useful market characteristic but also an important 

source of asymmetry to take into account when investigating the risk-return 

relationship (Jensen and Maheu, 2018). By taking volatility feedback into account, this 

assists the estimation of the risk-return relationship which is of paramount importance 

as it forms the basis of a number of strategies (Vo, Pham, Pham, Truong and Nguyen, 

2019). There are a number of theories and asset pricing models built upon the 

empirical result of the risk-return relationship (Liu, 2019). Therefore, a more robust 

result can contribute to model developments in stochastic volatility modelling and 

efficient risk estimation in the fields of portfolio and risk management (Jin, 2017).  

A holistic view of the risk-return relationship and volatility feedback provides useful 

information to various market participants. Specifically, this includes investors, 

financial analysts, portfolio managers and arbitrageurs when setting up an investment 

venture or strategy. It can assist their decision making with respect to the following: 

When to go long (buy) or short (sell), whether to invest, trade or hedge, decide the 

optimal time of entry or exit of the market, the level of risk to undertake and the amount 

to invest in. Therefore, the research problem of this study can be summarised in a 

statement as follows: Volatility feedback is an important source of asymmetry that 

should be taken into account when investigating the risk-return relationship. This leads 

to the following research aims and questions of this study.   

1.4 Research Aims 

• To investigate the magnitude of volatility feedback in the market.  

The presence of volatility feedback is determined by its magnitude where it is 

characterised by tendencies to get stronger over time and take longer to die out (Harris 

et al., 2019). On the other hand, the absence of volatility feedback can be shown to 

get weaker and die out over time (Jensen and Maheu, 2018).  

• To investigate the risk-return relationship provided volatility feedback is taken 

into account by its magnitude. 

The risk-return relationship is investigated once volatility feedback is taken into 

account by either its presence or absence based on its magnitude.  
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1.5 Research Questions 

The research aims lead to the following research questions to arise which is addressed 

by the methodology: 

• What is the magnitude of volatility feedback? 

• What is the risk-return relationship provided volatility feedback is taken into 

account by its magnitude?  

1.6 Research Hypotheses 

From the research aims and questions, the research hypotheses are set up:  

The null hypothesis that volatility feedback is evident in the market is tested against 

an alternative hypothesis of no evidence of volatility feedback in the market.  

Should evidence of volatility feedback exist, the secondary hypothesis that volatility 

feedback has no effect on the risk-return relationship is tested against an alternative 

hypothesis that volatility feedback affects the relationship.  

In the case of the alternative hypothesis, the magnitude of this effect is assessed. In 

a case where there is no significant evidence of volatility feedback in the market, the 

risk-return relationship is analysed free from empirical distortions that result from 

volatility feedback.   

1.7 Contribution  

This study is of importance as it has a valuable contribution in a number of ways: 

It provides guidance to investors in their decision making which leads to more efficient 

and effective strategies (Nahil and Lyhyaoui, 2018). Investors can have a more 

accurate idea of the type of returns they can gain for their given level of risk undertaken 

(Gyldberg and Bark, 2019). This can be in terms of investing in the JSE or in a positive 

net present value project (Hussain et al., 2019). Essentially, they can forecast their 

compensation for risk with greater accuracy and mould their investment strategy 

accordingly (Nahil and Lyhyaoui, 2018). The improved forecasting efficiency can lead 

to improved economic growth on a macroeconomic level (Liu, 2019).  

The nonparametric Bayesian approach by Jensen and Maheu (2018), is the first study 

applied to the US market with respect to the risk-return relationship, to the best of the 

authors knowledge. Applying the proposed method to the South African market can 
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allow for a comparative analysis of results. This is due to the unique market 

characteristics of an emerging market relative to a developed market as pointed out 

by Herbert et al., (2018).  

This study highlights the limitations and shortcomings of the GARCH family (Jin, 

2017). Thus, stating that it can be considered as irrelevant and obsolete along with 

other conventional methods with regards to estimating the risk-return relationship 

(Jensen and Maheu, 2018). In turn, this study highlights the improvements of the 

Bayesian and nonparametric approach over the simple GARCH models in order to 

prove its superiority (Jensen and Maheu, 2018). Thus, encouraging the use of 

unconventional nonparametric Bayesian models (Karabatsos, 2016).  

This study makes a significant and novel contribution to the local and international 

ongoing debate about the magnitude of the risk-return relationship. That is, by the 

introduction of the novel concept of “asymmetric returns exposure” which refers to the 

risk that arises from the asymmetric nature of returns.  

Finally, this study addresses a gap in existing literature with respect to the risk-return 

relationship and the effects of volatility feedback. The lack of existing literature in South 

Africa over the years, with respect to the risk-return relationship topic, is highlighted in 

the studies by Mandimika and Chinzara (2012) and Savva and Theodossiou (2018). 

1.8 Structure 

The structure of this research is organised into five chapters:  

Chapter 1 introduces the background and motivation for this research study.  

Chapter 2 highlights the disparity in existing literature and points out the existing gaps 

which are then addressed in the form of a critical analysis. 

Chapter 3 refers to the methodology employed. 

Chapter 4 presents the empirical results and related discussion from the model output.  

Chapter 5 concludes the study with a discussion of the results in the context of the 

research objectives. Further, the limitations of this study are noted and 

recommendations for future research purposes are proposed.      
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CHAPTER 2 

2. LITERATURE REVIEW 

The literature review consists of a theoretical framework, an empirical review and a 

summary of critical analysis. The overview captures the essence of what this literature 

sets out to achieve. The theoretical framework provides an overall understanding, by 

the review of various strands of literature and theories, to convey the importance of 

the risk-return relationship and volatility feedback. The empirical review shows 

previous empirical evidence, that has made use of alternative approaches from basic 

regression analysis to the GARCH approach, in the investigation of the risk-return 

relationship. Finally, the chapter concludes with a critical analysis to consolidate the 

literature review. 

2.1 Overview 

Both the theoretical framework and empirical evidence of the literature review 

discusses the risk-return relationship from the onset before introducing the volatility 

feedback mechanism. The different risk-return relationships are backed up by various 

theories (Chari, David, Duru and Zhao, 2018). However, this study focuses on the 

reason for the magnitude of varying results. From the empirical evidence, the results 

of the risk-return relationship are reviewed, listing the conventional methods typically 

used such as regression analysis, the VAR model, causality tests and the GARCH 

approach (Madaleno and Vieira, 2018). The gap in literature is highlighted which is the 

inconclusive empirical backing of the theoretical risk-return relationship as well as the 

model’s limitations, shortcomings and misspecifications. However, this review also 

highlights recent unconventional methods which are nonlinear and nonparametric, 

particularly the nonparametric Bayesian approach by Jensen and Maheu (2018).  

The theories from the theoretical framework by Maneemaroj et al., (2019) and Jensen 

and Maheu (2018), are noted and critiqued from the results and the limitations of the 

models. Thus, the limitations of the models, in conjunction with the response to the 

above theories, allow for a critical analysis and a significant contribution to the ongoing 

debate about the magnitude of the risk-return relationship. It does this by narrowing 

down the causal factors contributing the inconclusive results to a single theoretically 

focused research question and a single empirical research problem. The theoretical 

research question refers to why existing studies are misestimating the risk-return 
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relationship, contributing to the inconclusive results. The empirical research problem 

focuses on the cause and how it can be solved practically. This is done by a critical 

analysis which consolidates the literature and explains the novel concept “asymmetric 

returns exposure” to address the empirical research problem. 

2.2 Theoretical Framework 

The theoretical framework defines, links and discusses the main concepts and 

theories such as risk, return, their relationship, trade-off theory and volatility feedback.  

2.2.1 Risk and Return  

Risk is defined as the possibility of a future event deviating from an expected outcome 

where the greater the possibility of deviation implies a greater level of risk (Kempers 

et al., 2019). For an investor, this is the possibility of failing to realise an expected rate 

of return for an investment venture (Hussain et al., 2019). Further, the probabilities of 

possible future outcomes can be estimated given prior information (Aliu, Pavelkova 

and Dehning, 2017). This means that risk allows an individual to have some probability 

of knowledge, whereas in contrast, uncertainty does not (Aliu et al., 2017). An 

understanding of risk is vital to all market participants in a financial system, especially 

in the decision making process (Kempers et al., 2019).   

According to the CAPM framework by Sharpe (1964), there are two types of risk, 

namely, systematic and unsystematic risk, which makes up total risk. Systematic risk 

is also known as undiversifiable risk, market risk or volatility and is a market inherent 

risk (Charles and Okoro, 2019). This means that the entire market and all the securities 

within it are exposed to risk factors that arise from the market such as the interest rate, 

currency rate and monetary policy (Gyldberg and Bark, 2019). Although an investor 

may not completely keep clear of systematic risk by means of diversification, it can be 

managed by hedging or by a proper security allocation strategy (Aliu et al., 2017). On 

the other hand, unsystematic risk is also known as diversifiable risk, specific risk or 

residual risk and is a company or industry inherent risk (Charles and Okoro, 2019). 

This means that the securities that an individual invests in are exposed to risk factors 

associated with the firm or industry such as a change in management or regulation, 

respectively (Gyldberg and Bark, 2019). However, unsystematic risk can be reduced 

by means of diversification (Aliu et al., 2017).   
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The standard measures used to quantify risk are often captured by beta for total 

systematic risk, which is specifically characterised by the CAPM, and standard 

deviation or variance for total risk (Charles and Okoro, 2019). Theoretically, variance 

is an appropriate risk estimator only when the return distribution is normal; however, 

empirically this is not always the case (Sehgal and Pandey, 2018). Thus, the 

quantification of risk can pose a challenge to researchers (Chiang and Zhang, 2018). 

As a result, a certain criterion is often set to support their approach or why studies 

tailor a risk estimator to cater for such statistical conditions which may be stochastic 

in nature (Vo et al., 2019). For example, in the context of the risk-return relationship, 

the four standard types of risk measures that are typically used are historical, implied, 

conditional and realised variance (Jin, 2017). Historical and realised variance which 

are computed from historical data are considered to be inflexible, have limited forecast 

ability and low explanatory power (Park, Ryu and Song, 2017). Implied variance is 

proposed as a better risk measure due to its ability to capture investor behaviour and 

future firm prospects (Bekiros, Jlassi, Naoui and Uddin, 2017). 

However, from a financial perspective, implied variance is limited in that it does not 

account for the risk that arises from macroeconomic fundamentals (Khan, Rehman, 

Khan and Xu, 2016). On the other hand, many studies document conditional variance 

as their risk measure as characterised by the GARCH approach (Madaleno and Vieira, 

2018). However, the use of conditional variance may require certain assumptions and 

constraints to be imposed to the data (Kim and Kim, 2018). In contrast, realised 

variance is a data driven measure due to its random, stochastic nature and better 

forecast ability (Maneemaroj et al., 2019; Noguchi, Aue and Burman, 2016; Zhang and 

Lan, 2014). Hence, the realised variance risk measure is used in models that are able 

to incorporate such properties, unlike a normal-type GARCH model (Chiang and 

Zhang, 2018). Realised variance is also a popular choice in nonparametric Bayesian 

modelling due to being in line with a model free approach (Jensen and Maheu, 2018).  

Financial market returns are used to determine whether or not a trading strategy is 

profitable (Gyldberg and Bark, 2019). Investors often use CAPM to determine a rate 

of return to compensate for a level of risk taken which originates from the trade-off 

theory, the idea of higher the risk the higher the return (He et al., 2018). Under the 

framework of the CAPM, there exists a direct relationship between expected returns 

and systematic risk (Sharpe, 1964). Financial securities that do not correspond to this 



19 
 

relationship act as a source of price data variability (Gyldberg and Bark, 2019). 

Further, returns are subject to risk often as a result of uncertainty in the market 

(Apergis et al., 2018). This calls the validity of the Efficient Market Hypothesis (EMH) 

by Fama (1970) into question. The EMH states that in an efficient market, prices 

contain all available information (Fama, 1970). Consequently, no securities are 

mispriced under the EMH, making excess returns impossible to realise consistently 

(Lehoczky and Schervish, 2018). As a result, this causes a more realistic approach to 

strategies and models in the estimation of risk and return (Apergis et al., 2018).  

According to Li (2018), returns of the entire financial market follow a normal distribution 

for two reasons. First, the Central Limit Theorem by de Moivre (1733), states that for 

a sample drawn from a distribution with a finite mean and variance, for a sufficiently 

large sample, tends to a normal distribution. Second, market stability arises from 

investor sentiment and individual risk preferences, which follow a positively skewed 

distribution (Li, 2018). This area of the distribution is favoured by investors due to being 

able to achieve higher payoffs (Yao, Wang, Cui and Fang, 2019). According to Casella 

and Gulen (2018), there exists a substantial amount of evidence in literature that 

financial market returns can be forecast. However, forecasting returns by time series 

and behavioural models are subject to a number of factors that cause returns to 

deviate from a normal distribution (Cenesizoglu and Reeves, 2018; Casella and Gulen, 

2018). Contributing factors that affect returns include volatility feedback, the leverage 

effect, inefficient information, behavioural biases and different investor sentiment (Yu 

et al., 2018). All of which, in turn, affect the risk-return relationship.  

2.2.2 The Risk-Return Relationship 

The risk-return relationship is a fundamental concept in finance and economic theory 

(Vo et al., 2019). It is also known as the “first fundamental law of finance” (Liu, 2019). 

According to Modern Portfolio Theory (MPT) by Markowitz (1952), the variables of the 

risk-return relationship explain the construction of an efficient portfolio. Steyn and 

Theart (2019) emphasises the importance of MPT in portfolio and risk management 

where it provides a framework to quantify and understand the variables, risk and return 

as well as their relationship. Specifically, that risk can be reduced by means of 

diversification and higher returns can only be attained by higher risk (Steyn and Theart, 

2019). Further developments of MPT by Sharpe (1964), Lintner (1965) and Mossin 

(1966), led to CAPM which provides a simplified explanation of MPT. First, CAPM 



20 
 

introduced the two types of risk, systematic and unsystematic risk, as discussed, to 

provide a practical understanding of risk. Second, following MPT, unsystematic risk 

should be diversified away, leaving an investor with an opportunity to a higher return 

from systematic risk (Rutterford and Sotiropoulos, 2016).  

According to Steyn and Theart (2019), CAPM explains the risk-return relationship by 

an equilibrium in which there is a linear relationship. According to the CAPM, the 

expectation of excess returns in a portfolio is a function of systematic risk and market 

excess returns. That is, by understanding the risk-return relationship in a market, an 

investor has insight as to whether they have an opportunity to optimise their chance 

of earning a superior rate of return. Essentially, from both MPT and CAPM, the risk-

return relationship demonstrates the traditional risk-return trade-off in which an 

investor can only earn a superior return if they undertake a higher level of risk. By 

following this theory and understanding the empirical risk-return relationship in the 

market, an investor can construct an efficient portfolio in order to meet their desired 

risk profile and expected rate of return (Rutterford and Sotiropoulos, 2016; Steyn and 

Theart, 2019).  

Forecasting the risk-return relationship is of paramount importance as it forms the 

basis of a number of strategies by investors, financial institutions, asset pricing models 

and policy frameworks (Vo et al., 2019). There are a number of theories and models 

built upon it (Liu, 2019). Such theories include the underlying idea that the risk-return 

relationship is a requirement in the modelling of valuation techniques such as the 

Discounted Cashflow Model and the Contingency Claims Approach to name a few 

(Sehgal and Pandey, 2018). Financial institutions are able to determine and implement 

proper cash flow strategies in terms of borrowing and lending (Liu, 2019). When 

predicted for a specific market, it can help determine profitable strategies and curb 

market risk (Vo et al., 2019). It assists policy makers in the construction of regulatory 

and policy frameworks (Mandimika and Chinzara, 2012). Further, it can also be used 

as an indicator of investor behaviour in terms of risk profiling (Dicle, 2018). Finally, the 

estimation of the risk-return relationship can assist in the prediction of a potential 

financial crisis according to Sehgal and Pandey (2018).  

Based on literature, there are four existing types of the empirical risk-return 

relationship which are positive, nonlinear or curvilinear, negative and none (Savva and 
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Theodossiou, 2018). The underlying theories and graphs are briefly explained for each 

type of relationship: 

For a positive risk-return relationship, a rational investor has the ability to choose their 

risk-return preference based on a wide array of investment choices (Dicle, 2018). The 

trade-off theory suggests that an investor is risk averse whereby a low level of risk 

undertaken results in a corresponding level of return and vice versa for a risk taking 

investor (Chari et al., 2018). This is supported by the expected utility theory which 

states that an investor makes a choice that maximises utility, which is similar to a 

measure of satisfaction, and minimises loss (Rutterford and Sotiropoulos, 2016). 

Figure 4 shows the expected utility function.  

 

Figure 4: Expected utility function 

Source: du Preez (2011) 

From Figure 4, the conventional utility function has a concave shape which has a 

positive slope. The shape of the function demonstrates an investor’s preference to a 

higher rate of returns, in comparison to a lower rate (Chari et al., 2018). However, 

there is also a diminishing marginal utility which means that an investor’s preference 

for higher returns increases but at a decreasing rate (Rutterford and Sotiropoulos, 

2016). Since the graph is measured over total wealth, this suggests an investor’s risk 

averse behaviour is symmetric for both gains and losses (Dicle, 2018).  

On the other hand, a nonlinear risk-return relationship is explained by the prospect 

theory. The prospect theory by Kahneman and Tversky (1979), states that investors 

are risk seeking in unstable market conditions but risk averse in stable conditions. This 

is because the prospect of gain outweighs the prospect of loss and an investor makes 
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a decision to ensure maximum gain and minimum loss. The prospect theory is 

essentially where an investor is more likely to take on a higher level of risk to avoid 

losses and ensure gains (He et al., 2018; Kahneman and Tversky, 1979). Figure 5 

shows a utility function. 

 

Figure 5: Utility function 

Source: Phillips and Pohl (2017) 

From Figure 5, the utility function is s-shaped and the positive part of the function is 

concave in the region of gains. This is similar to the expected utility function in Figure 

4 above. From Figure 5, the negative part of the function is convex in the region of 

losses reflecting risk averse behaviour of an investor. Since the graph is measured 

over both losses and gains, this suggests an investor’s risk averse behaviour is 

asymmetric where gains are favoured over losses (Dicle, 2018).  

Chari et al., (2018) highlights that a negative risk-return relationship is considered as 

paradoxical based on traditional theoretical literature. This is because a negative risk-

return relationship is contrary to expectations founded on conventional economic 

theory and traditional literature (Chari et al., 2018). Thus, it is also known as Bowman’s 

(1980) Paradox which is explained by the prospect, behavioural and agency theory.  

According to Patel, Shamsi and Asim (2018), in a firm setting, managers take on 

projects that do not match their risk profiles. Specifically, they take on risky projects 
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when the firm is performing negatively, to advance their careers by improving their 

reputation in the labour market. Their actions are not necessarily in the interest of 

improving the value of the firm and increasing the wealth of the shareholders. But 

rather in line with their own self-interest because their actions suggest the ability to 

take on risks which can lead to a positive effect on their careers. Managers could 

simply pay out dividends if they cannot find profitable projects or investments. 

However, if they take on risky projects and if such risky projects consistently fail to 

meet expected returns, the value of the firm is negatively affected. Thus, problems 

arise between managers and shareholders if actual returns fail to meet the expected 

returns of shareholders (Chari et al., 2018; Patel et al., 2018). It consequently leads to 

a conflict of interest known as the agency theory developed by Mitnick (1973) and 

Ross (1973). Figure 6 explains Bowman’s paradox by testing hypotheses that 

consolidate the theory of the negative risk-return relationship. 

 

Figure 6: Theoretical model 

Source: Chari et al., (2018) 

From Figure 6, Hypothesis 1 (H1-) states that the negative risk-return relationship is 

intensified by a manager’s risk-taking behaviour. This is in order to improve his 

professional reputation and not add value to the firm or enhance the wealth of 

shareholders (Patel et al., 2018). Hypothesis 2 (H2+) encapsulates a number of 

solutions to counteract the negative risk-return relationship and align the interests of 
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managers and shareholders by means of governance. Hence, the risk-return paradox 

can be resolved by the establishment of governance mechanisms such as the market 

monitoring corporate control, establishing incentives and having organisational 

owners (Chari et al., 2018).  

When there is no risk-return relationship, this indicates that the risk-return relationship 

is insignificant (Apergis et al., 2018). This often occurs in international studies that 

incorporate a number of countries which have different market return characteristics 

that can affect the final result of the risk-return relationship (Savva and Theodossiou, 

2018). The returns of emerging markets are characterised as having higher levels of 

volatility, heavy tails and better forecast ability, in comparison to developed markets 

(Herbert et al., 2018). Therefore, it is more useful in the context of this study to 

investigate countries with similar market return characteristics such as BRICS which 

consists of emerging markets only (Adu, Alagidede and Karimu, 2015). The analysis 

of similar markets allows for better statistical inference and comparative analysis 

between them (Sultan, 2018). Similarly, when investigating the risk-return relationship 

on an aggregate market level, it is important to consider the sectors within the market 

(Khan et al., 2016). This is because the heterogeneity among firms, in terms of firm 

characteristics such as leverage and capital structure, can affect risk estimation 

(Horpestad et al., 2019).   

According to existing documented literature, studies show a magnitude of conflicting 

results with respect to the risk-return relationship (Chari et al., 2018). From a broad 

perspective, results vary from study to study as a result of different choices such as 

data frequency, sample period and model specification (Savva and Theodossiou, 

2018). To narrow it down, the magnitude of the empirical risk-relationship can be 

explained by two respective theories by Maneemaroj et al., (2019) and Jensen and 

Maheu (2018).  

Maneemaroj et al., (2019) notes that there are five areas of concern that give rise to 

the different empirical outcomes regarding the risk-return relationship. The first is the 

type of frequency of return data, particularly high frequency data which is a source of 

unaccountable noise (Khan et al., 2016). Second, the proxy for expected returns 

cannot be equivalent to historical returns (Koutmos, 2012). Third, the use of historical 

returns to represent expected returns should contain a sample period that is at least 
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200 years (Maneemaroj et al., 2019). Fourth, the risk associated with return is due to 

information, and the reaction of investors in response to good and bad news are not 

the same (Yu et al., 2018). Finally, the return distribution is asymmetric and heavy 

tailed (Herbert et al., 2018). The first three factors surround the returns variable and 

the latter two are with respect to model specifications in capturing risk (Maneemaroj 

et al., 2019).  

According to Jensen and Maheu (2018), conventional methods found in existing 

literature that typically use the GARCH approach and regression analysis may be 

misestimating risk, contributing to the problem of inconclusive results. The novel 

nonparametric Bayesian approach overcomes the problems presented by the 

parametric methods. Further, there are a number of factors that contribute to price 

data variability such as volatility feedback, the leverage effect, inefficient information, 

behavioural biases and different investor sentiment (Yu et al., 2018). However, this 

study accounts specifically for volatility feedback, which has been identified as an 

important source of asymmetry to take into account, in determining a positive risk-

return relationship. That is, in line with the theoretical expectations, following the 

studies by Jensen and Maheu (2018), Kim and Kim (2018) and Harris et al. (2019).   

2.2.3 Volatility Feedback and the Risk-Return Relationship 

The assumption that price data of an entire financial system follows a normal and 

symmetric bell-shaped curve by Li (2018) cannot be accepted. This is because the 

market is subject to volatility which is a strong persistence of risk and has an 

asymmetric nature (Yu et al., 2018). The phenomenon of asymmetric volatility is an 

empirical regularity that has been systematically proven over time (Yu et al., 2018). 

Two traditional theories that aim to explain this phenomenon are the leverage effect 

and volatility feedback (Jin, 2017; Umutlu, 2019; Harris et al., 2019). The GARCH 

school of models treat the leverage effect synonymously with asymmetric volatility 

(Mandimika and Chinzara, 2012). However, asymmetric volatility is strongly 

associated to the time varying nature of the risk premium which is strongly associated 

with volatility feedback (Horpestad et al., 2019). It is important to understand the 

difference between the two theories since they are closely related (Mandimika and 

Chinzara, 2012). Both describe a relationship between volatility and price movements, 

but the leverage effect describes a nonlinear relationship, whereas volatility feedback 

describes a positive and linear relationship (Jensen and Maheu, 2018). There is also 
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a difference in terms of the direction of causality for both effects. For the leverage 

effect, price movements lead to changes in volatility, whereas for volatility feedback, 

volatility leads to changes in price movements (Chakrabarti and Kumar, 2020).    

Both theories are further discussed before volatility feedback is linked to the risk-return 

relationship. For the leverage effect in a firm, an increase in risk (debt to equity ratio) 

results in a decrease in return (equity value) and a drop in share price (Cao et al., 

2018). According to Herbert et al., (2018), there exists a substantial amount of 

literature documented on the leverage effect in various types of markets and countries. 

However, there is still no agreement as to what are the driving forces that affect the 

magnitude of the leverage effect. Research suggests the triggers of the leverage effect 

are trading volumes and behavioural biases, herding behaviour in particular, but this 

is still questionable (Ong, 2015; Newaz and Park, 2018; Herbert et al., 2018).  

According to Chakrabarti and Kumar (2020), the leverage effect and volatility feedback 

are based on the fundamental factors of the firm. Although the underlying theory caters 

for leverage, there is no indication as to whether the leverage effect is really associated 

to the amount of debt a firm has (Carr and Wu, 2017). The leverage effect may also 

contribute more strongly to the magnitude of the risk-return relationship due to the 

heterogeneity among firms found on a sectoral level, affecting the outcome on a 

market level (Khan et al., 2016). However, capital structure and expected returns may 

have a negligible effect on volatility as opposed to a negative effect (Horpestad et al., 

2019; Aboura and Chevallier, 2018). One of the main reason’s volatility feedback is 

empirically favoured, in comparison to the leverage effect, is that it is not associated 

to the amount of debt a firm has (Cao et al., 2018). Moreover, this study specifically 

treats volatility feedback as a measure of volatility and asymmetry, in line with Jensen 

and Maheu (2018), Kim and Kim (2018) and Harris et al. (2019).  

For volatility feedback, a volatility shock in the market causes an increase in expected 

risk, a rise in return and a drop in share price (Pindyck, 1984). Volatility feedback is 

defined as a measure of volatility that is persistent over time and stochastic in nature 

(Inkaya and Okur, 2014). It is characterised by tendencies to get stronger over time 

and take longer to die out relative to regular volatility (Harris et al., 2019). Volatility 

feedback is also described as a predictor of unanticipated errors as a result of 

macroeconomic fundamentals which affects returns (Kim and Kim, 2018). The volatility 
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feedback mechanism is a positive relationship between price movements and 

volatility, in line with the theoretical risk-return relationship (Jensen and Maheu, 2018).  

According to Umutlu (2019), volatility feedback is based on two assumptions, 

asymmetric volatility and the trade-off theory. The first assumption is asymmetric 

volatility which refers to the tendency of volatility to increase more for negative returns 

than positive returns, or vice versa, for the same magnitude (Yu et al., 2018). 

Assumption two refers to the trade-off theory where an investor only takes on a high 

level of risk if compensated by a high level of return; hence, a positive risk-return 

relationship (Markowitz, 1952). Now, given that volatility is a priced factor in the 

market, meaning, for a price movement in shares there is a relation to risk (Khan et 

al., 2016).  

For a volatility shock in the market, that is, for a strong persistence of risk, actual 

volatility persists and signals future volatility by asymmetric volatility (Umutlu, 2019). 

Asymmetric volatility refers to the tendency of volatility to increase more for negative 

returns than positive returns, or vice versa, for the same magnitude (Yu et al., 2018). 

From that increase in volatility, results an increase in return by the trade-off theory 

which refers to the idea – the higher the risk, the higher the return (Jensen and Maheu, 

2018). Hence, volatility feedback closely reflects the risk-return relationship by 

definition (Horpestad et al., 2019). This is why the volatility feedback mechanism can 

also be described as a risk premium that is an increasing function of volatility in the 

market (Apergis, Barunik and Lau, 2017). 

Triggers of volatility feedback include good and bad news which leads to the 

persistence of actual volatility (Ong, 2015). It is said that the more liberalised a nation 

becomes the greater the ease of information and volatility transmission (Toraman, 

iGde, Bugan and Kilic, 2016). This contributes to the volatility spillover effect which 

refers to the transmission of volatility shocks (Newaz and Park, 2018). The volatility 

spillover phenomenon plays a role across markets on an international scale and can 

provide useful information since volatility is associated with portfolio and diversification 

risk (Toraman et al., 2016). Therefore, volatility feedback plays an important role in the 

field of risk management as well as the allocation, pricing and diversification of asset 

securities in portfolio management (Herbert et al., 2018).  
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Mancino and Sanfelici (2019) note that volatility feedback is a useful tool in 

understanding market conditions and can indicate the level of liquidity of individual 

securities and the market. Hence, it can be used as an indicator of market stability and 

assist investor decisions. The presence of strong volatility feedback suggests 

recessionary market conditions, whereas a weak presence indicates expansionary 

market conditions (Inkaya and Okur, 2014; Mancino and Sanfelici, 2019). This affects 

price movements and suggests the rising or falling of market prices, respectively 

(Aboura and Wagner, 2016). Forecasting this measure allows an investor to strategise 

their investment to improve the probability of realising a profitable return (Huang and 

Startz, 2019). For example, in the presence of strong volatility feedback which 

indicates recessionary market conditions, prices are expected to fall (Aboura and 

Wagner, 2016). Therefore, an investor may immediately short sell their shares to 

minimise their future potential loss (Khan et al., 2016).  

In the context of the risk-return relationship, the leverage effect is driven by returns 

(Chakrabarti and Kumar, 2020). On the other hand, volatility feedback is driven by 

volatility and is, therefore, a greater source of risk (Mancino and Sanfelici, 2019). 

Volatility feedback is a positive and linear relationship between price movements and 

volatility by definition and the assumptions by Umutlu (2019). This is in line with the 

theoretical risk-return relationship by Markowitz (1952), Sharpe (1964), Lintner (1965) 

and Mossin (1966). The volatility feedback mechanism has the ability to counteract 

cumulative price movements, such as an increase or decrease in price, and thus 

accounts for asymmetry (Yu et al., 2018). Hence, volatility feedback has been 

identified as an important source of asymmetry to take into account in determining a 

positive risk-return relationship, in line with the theoretical expectations (Jensen and 

Maheu, 2018; Kim and Kim, 2018 and Harris et al., 2019).  

2.2.4 Summary of Theoretical Framework 

The asymmetric nature of volatility is an underlying cause for the inconclusive risk-

return relationship results (Maneemaroj et al., 2019). The two foremost theories in 

explaining the asymmetric volatility phenomenon are the leverage effect and volatility 

feedback (Yu et al., 2018). However, from the above theory, volatility feedback is more 

closely linked to the risk-return relationship by definition (Umutlu, 2019). It is a greater 

source of risk and is empirically favoured, in comparison to the leverage effect 

(Mancino and Sanfelici, 2019). This is because it is in line with the theoretical risk-
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return relationship and it is not associated to the amount of debt a firm has (Cao et al., 

2018). Volatility feedback is not just a useful market characteristic but also an 

important source of asymmetry when investigating the risk-return relationship (Jensen 

and Maheu, 2018). Although the documented theoretical framework of volatility 

feedback is limited, the empirical section provides more insight to the importance of 

accounting for this measure when investigating the risk-return relationship.  

2.3 Empirical Review 

The empirical review demonstrates the gap in existing literature, motivation for this 

study and describes the rationale of the proposed data and methodology. International 

literature is reviewed then local South African literature followed by a critical analysis 

to consolidate the literature review. 

2.3.1 International Evidence  

According to Chou (1988), the US market is the largest market in the world from which 

market participants have been seeking various ways to earn superior returns from as 

early as the 1950’s. From 1958 onwards, the nature of the share market became a 

central focus due to the negative impact on returns earned by investors (Liu, 2019). 

To investigate volatility, the procedure used by previous studies at the time was a two-

stage Ordinary Least Squares (OLS) method as documented by French, Schwert and 

Stambaugh (1987), Pindyck (1984) and Pagan and Ullah (1988). However, this is 

essentially a linear parametric model which does not adequately account for higher 

moment asymmetric properties (Madaleno and Vieira, 2018). Thus, the GARCH-M 

model in conjunction with maximum likelihood estimation (MLE) instead proves to be 

a more robust method as it addresses the drawback of OLS (Chou, 1988). The MLE 

method estimates parameters from the actual data allowing for nonlinear parameters 

(Madaleno and Vieira, 2018).    

In an early US study conducted by Chou (1988), the returns from the New York Stock 

Exchange (NYSE) index for the sample period July 1962 to December 1985 is 

analysed at a weekly frequency. A GARCH (1, 1) MLE and linear AR (1) method is 

used, where the correlation coefficient in AR (1) acts as the parameter (α +  β) found 

in the standard GARCH model, to capture the persistence of volatility. A plot of the 

NYSE returns shows the clustering nature of volatility where high returns follow high 

returns and low return follow low returns. The AR (1) method explicitly captures 
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volatility clustering; however, the GARCH method provides more robust parameter 

estimates. The AR (1) method gives less robust parameter estimates due to its inability 

to capture a high level of volatility persistence over time. Chou (1988) concludes that 

the relationship between risk and return is time varying whereby the relationship 

changes over time.  

More importantly, the study by Chou (1988), highlights the importance of using 

nonlinear models to capture market return characteristics since variance does have 

implications on returns earned. Specifically, the parameters reflect a strong impact of 

variance on the market resulting in negative returns earned (Chou, 1988). This finding 

is in contrast to Poterba and Summers (1986), who states that volatility is temporary 

and has a negligible effect. Chou (1988) further states the parameter estimates are 

found to be sensitive to data frequency. That is, the reason for the finding by Poterba 

and Summers (1986), is because of the use of monthly data instead of weekly which 

holds stronger for persistent levels of volatility. This is essentially due to the MLE 

method which has an improved ability to capture volatile properties, in comparison to 

the previous documented studies by French et al., (1987) and Pindyck (1984) and 

Pagan and Ullah (1988).  

The OLS method has been shown to be inadequate in capturing nonlinear properties 

by the model parameters, in contrast to MLE which is a nonlinear method by Chou 

(1988). Likewise, the AR (1) and VAR model which are parametric models are not 

designed to fit higher moment properties effectively (Demirer et al., 2019). A 

parametric model has a set number of parameters with respect to the sample size (Jin, 

2017). Consequently, it is limited in its ability to account for every possible risk-return 

relationship that can hold (Demirer et al., 2019). This includes asymmetric forms with 

properties such as skewness, kurtosis and multiple modes (Apergis et al., 2018). A 

model cannot be effective in modelling data with properties it is not designed or 

specified to take into account (Jensen and Maheu, 2018). This is especially relevant 

to the OLS since higher moment properties lie outside of its design parameters which 

can lead to biased parameter estimates (William and Ligori, 2016). 

However, the drawbacks of the OLS method can mainly be attributed to the 

assumptions that they are based on. According to Conradt, Finger and Bokusheva 

(2015), the dependent variables are assumed to be constant and normally distributed. 
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Additionally, the innovations are assumed to be normally distributed as well as have a 

constant variance (Conradt et al., 2015). According to William and Ligori (2016), while 

improvements have been made, such improvements still involve imposing constraints 

to the parameters or omitting some of the parameters. It is further noted that a more 

favourable approach would be to retain all the parameters without omission but such 

an approach has not been explored as yet (William and Ligori, 2016). While William 

and Ligori (2016) notes such an unexplored approach in the context of OLS, Conradt 

et al., (2015) highlights that the nonparametric approach overcomes these issues. The 

nonparametric approach is a model free approach and models the data free from 

assumptions and restrictions (Jin, 2017; Conradt et al., 2015). 

Thus, Umutlu (2019) employs a parametric and nonparametric VAR model to 

investigate the relationship between market returns and idiosyncratic volatility. 

Idiosyncratic volatility is similar to unsystematic risk where risk exposure arises from 

the firm or industry such as a change in management or regulation, respectively 

(Gyldberg and Bark, 2019). Umutlu (2019) analyses monthly data consisting of 

nineteen local indexes of thirty-seven nations on an international aggregate level for 

the period 1973 to 2015, a sample of 42 years. Measures of volatility are model 

dependent and independent as well as a further four sub samples are analysed to 

investigate the possibility of a nonlinear risk-return relationship. Despite the use of 

subsamples, a parametric and nonparametric approach, results still reveal no risk-

return relationship with the VAR model. However, the study did conclude strong 

support for the presence of volatility feedback during recessionary and high volatility 

periods (Umutlu, 2019).  

Accordingly, one would expect a strong risk-return relationship during periods of 

extreme volatility (Umutlu, 2019). However, in contrast, Harris et al., (2019), shows 

that the risk-return relationship dissipates due to the persistent effects of volatility 

feedback and the leverage effect. UK monthly data for the sample of July 1962 - 

December 2005 are analysed using a Value at Risk (VaR) model. A VaR model 

focuses on the tails of a distribution where extreme events such as the 2008 financial 

crises are likely to occur. A Markov switching model is further applied to account for 

the changing nature of volatility over time, for an extended period of July 1962 to 

December 2016. This is to account for the original period, the 2008 financial crisis and 
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the remaining subsequent years. The addition of the Markov switching model is often 

used to account for the different regimes of volatility (Harris et al., 2019).  

However, according to Chang, Choi and Park (2017), the Markov switching model is 

considered impractical and unrealistic for two reasons. One, because the forecast of 

the model is based on the current state and not the underlying time series. Two, the 

Markov chain estimates the regimes in isolation of other parts of the model (Chang et 

al., 2017). This implies a frequentist approach by Herath (2019), where theory is either 

accepted or rejected based on empirical results. In contrast, to the Bayesian approach 

which has the ability to account for prior information before making an estimation. In 

particular, where the theory and empirical model are closely related by means of prior 

information (Karabatsos, 2016; Herath, 2019). Hence, the Markov switching model is 

considered more effective when it is used in conjunction with the Bayesian approach 

according to Chang et al., (2017) and Kang (2014).  

Harris et al., (2019) finds that there is a strong presence of volatility feedback and the 

leverage effect due to the persistent volatile periods. After accounting for both effects, 

a positive risk-return relationship is found at all states of volatility (Harris et al., 2019). 

This finding supports the theory by Jensen and Maheu (2018) and Kim and Kim (2018), 

that when accounting for a source of asymmetry such as volatility feedback, this can 

result in a positive risk-return relationship. Chakrabarti and Kumar (2017) specifically 

investigates which theory is foremost in explaining the risk-return relationship of the 

Indian share market. The theories include behavioural theory, volatility feedback and 

the leverage effect (Chakrabarti and Kumar, 2017).  

Chakrabarti and Kumar (2017) analyse daily data sets for the period 3 March 2008 - 

31 August 2015, an approximate sample of 7 and a half years. The risk and return 

variables are obtained from the National Stock Exchange (NSE). Returns are obtained 

from Nifty which is the Indian share market index and consists of over twenty-three 

sectors. Implied volatility is the risk measure used due to its popularity in recent studies 

based on developed markets according to Chakrabarti and Kumar (2017). This risk 

measure is a forward-looking value that captures investor behaviour and future 

prospects of a firm (Bekiros et al., 2017). It is in contrast to realised variance which is 

a recent preferred risk measure due to its ability to capture the stochastic nature of 

risk (Maneemaroj et al., 2019).  
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Chakrabarti and Kumar (2017) employ a VAR model and Granger causality tests 

where volatility feedback is found to have the strongest explanatory power, in 

comparison to the other two theories. However, the VAR result and model is concluded 

to be ineffective because of its inability to account for extreme values and asymmetric 

properties. The Granger causality test is supported by a nonparametric framework 

where results reveal weak evidence for volatility feedback explaining the risk-return 

relationship (Chakrabarti and Kumar, 2017). Thus, a quantile regression analysis is 

applied which is effective in accounting for extreme values, in comparison to the VAR 

model and OLS method, according to Chakrabarti and Kumar (2017). The quantile 

regression finds the behavioural theory to be the dominant factor in explaining the risk-

return relationship.  

However, according to Waldmann (2018), the determination of the parameters for 

quantile regression is more difficult, in comparison to other regression types such as 

normal or generalised. In the context of model implementation, specific to the R 

software, the number of iterations has to be chosen in order to have optimal parameter 

estimates. This refers to the process of repetitive resampling by trial and error which 

can be tedious in nature (Karabatsos, 2016; Waldmann, 2018). Waldmann (2018) 

further recommends a Bayesian approach to enhance the method of interest; 

however, the priors should be as noninformative as possible. In other words, the prior 

should be objective and not guided by a source of subjectivity which overcomes the 

main limitation of the Bayesian approach (Bartlett and Keogh, 2016). The Bayesian 

method is often recommended to aid other methods because it has the ability to 

average out uncertainty affecting parameters (Kang 2014; Chang et al., 2017; 

Waldmann, 2018).  

The Granger causality test is another parametric model that is often employed to 

investigate the risk-return relationship (Apergis et al., 2018). Similar to the Bayesian 

approach, the nonparametric framework is often used in conjunction with other 

methods such as the VAR model in order to aid capturing nonlinear properties 

(Umutlu, 2018; Demirer et al., 2019). This is shown in the previous study by 

Chakrabarti and Kumar (2017), who applies the nonparametric approach in the context 

of Granger causality tests. Similarly, Apergis et al., (2018), employs the same method 

of nonparametric Granger causality tests to the monthly data sets of twenty-four 

international defense firms. The variables analysed are the geopolitical risk index, 
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realised variance and returns (Apergis et al., 2018). Realised variance is used since it 

is line with the nonparametric approach in being model free, thus, aiding capturing 

asymmetric properties (Noguchi et al., 2016).  According to Apergis et al., (2018), the 

nonparametric approach is used to account for nonlinearity in price data before 

applying the causality test. However, despite the application of the nonparametric 

approach, the results indicate no risk-return relationship. The study concludes the 

causality approach is unreliable and highlights the importance of accounting for 

nonlinearity before establishing the risk-return relationship to avoid model 

misspecification (Apergis et al., 2018).  

In contrast, to the result found by Apergis et al., (2018), Demirer et al., (2019) finds a 

significant relationship between risk and return in the US market. Demirer et al., (2019) 

applies a number of models in order to investigate the relationship between equity 

return dispersion and share market volatility. Linear and nonlinear as well as bivariate 

and multivariate causality tests are employed to the sample July 1963 - February 2017. 

The share and market returns are obtained from the Center for Research in Security 

Prices (CRSP) value-weighted index return. The one-month Treasury bill (T-bill) rate 

is used to proxy the risk-free rate for calculating excess returns. The nonlinear 

bivariate and multivariate tests are found to be more robust as these models were able 

to account for the causal impact of return variance on returns and volatility. The study 

concludes that by accounting for the variance in returns, this improves risk estimation 

and contributes to the improvement of volatility models in predicting the risk-return 

relationship. However, this can only be performed by nonlinear models with the 

necessary model specifications to account for asymmetry (Demirer et al., 2019).  

This finding is supported by Madaleno and Vieira (2018), where the results are model-

sensitive of which the volatility model, namely, the GARCH approach is the most 

robust. Madaleno and Vieira (2018) employ a number of models when investigating 

the risk-return relationship of Portugal. The daily price data of thirty-three enterprises 

listed on the Portuguese stock exchange for the sample period 31 December 2007 to 

28 April 2017 are analysed. The methodology consists of regression analysis by OLS, 

the GARCH approach, VAR analysis and Granger causality tests. With respect to 

regression analysis by OLS, most of the results revealed no relationship between risk 

and return (Madaleno and Vieira, 2018). This result supports the theory of the 

inadequacy of regression analysis by Jensen and Maheu (2018) and the inadequacy 
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of the linear OLS method by Chou (1988). Regression analysis is a basic parametric 

method which is inadequate in fitting financial data which is volatile in nature (Jin, 

2017). Overall, the nonlinear GARCH-M model finds a positive risk-return relationship 

and is supported by the VAR model and Granger causality test.  

Findings such as those by Madaleno and Vieira (2018), which are found to be limited 

advocate the use of nonlinear models such as the GARCH approach. According to 

Khan et al., (2016) and Savva and Theodossiou (2018), the nonlinear GARCH models 

are regarded as a more suitable approach when investigating the risk-return 

relationship. The GARCH type models have the ability to account for a number of 

market characteristics which can explain the asymmetry shown in price data (Savva 

and Theodossiou, 2018). Such market characteristics include heavy tails, the 

clustering nature of volatility and asymmetric effects (Khan et al., 2016). As a result, 

the GARCH approach is one of the foremost methods documented in previous existing 

literature when investigating the risk-return relationship (Madaleno and Vieira, 2018).  

Khan et al., (2016) employs the three most common GARCH type models – GARCH 

(1, 1), EGARCH and GARCH-M to the period June 1998 to June 2012, a sample of 

14 years. Monthly returns are obtained from the Karachi Stock Exchange (KSE) 100 

Index and twenty-three sectors of the Pakistani equity market. The choice of using 

monthly data is mainly to prevent the effects of time lags in price movements which 

usually has a greater impact for high frequency data. The study aims to analyse 

volatility and the risk-return relationship, on an aggregate market level and 

disaggregate sectorial level where the sectors are selected based on accessibility 

(Khan et al., 2016).   

The GARCH (1, 1) model has the ability to capture the clustering nature of volatility 

found in price data by capturing its persistence (Savva and Theodossiou, 2018). Khan 

et al., (2016) finds that the GARCH (1, 1) model reveals persistent volatility but at 

different levels across the sectors. In order to capture further market characteristics, 

there have been a number of extensions of the standard GARCH model (Feng and 

Shi, 2017). The first of these is the EGARCH model, modified to capture the 

asymmetric nature of volatility and the leverage effect (Adu et al., 2015). According to 

Khan et al., (2016), the presence of asymmetry and the leverage effect is found to be 

weak by the EGARCH model, on both an aggregate and disaggregate level. 
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Specifically, only six sectors out of the total twenty-three reveal a presence of the 

leverage effect (Khan et al., 2016).  

The GARCH-M model is used for the pricing of risk which reveals whether return has 

a relation to risk (Savva and Theodossiou, 2018). Khan et al., (2016) finds that the 

GARCH-M model reveals that risk is priced and that there exists a positive risk-return 

relationship, particularly at the sectoral level. Ten sectors are found to be positive and 

three are negative, with the remaining ten having no relationship. However, the 

GARCH-M model is limited because it does not account for asymmetric volatility 

(Maneemaroj et al., 2019). Therefore, the risk premium remains constant for a 

specified period of time according to He et al., (2018). Khan et al., (2016) recommends 

the analysis of economic fundamentals, when investigating the risk-return relationship, 

since these are driving forces of asymmetric volatility and may affect returns 

differently.  

Park et al., (2017) applies a DCC-MGARCH model to the daily data sets of the Korean 

market for the period 2004 to 2013. The study analyses the variables KOSPI200 

returns, VKOSPI implied volatility measure and four macroeconomic variables - risk-

free rates, term spreads, credit spreads and exchange rates. The use of the 

asymmetric GARCH type model is confirmed by a sign and size bias which shows that 

the standard GARCH model has not adequately captured risk. The final findings of the 

study by Park et al., (2017), reveal mixed results where return in relation to the 

macroeconomic factors vary based on the type of regression analysis and 

specifications. Further, the high correlation between the macroeconomic variables can 

also result in the problem of multicollinearity (Park et al., 2017). Multicollinearity refers 

to a state in which several independent variables exhibit a high level of linear 

correlation, which can affect model fit and results (Khan et al., 2016). Additionally, the 

choice of macroeconomic variables analysed are often guided by an underlying 

subjective approach (Messis, Alexandridis and Zapranis, 2019). This suggests a bias 

in the chosen macroeconomic fundamentals in explaining the risk-return relationship 

(Park et al., 2017).   

With respect to the DCC-MGARCH model, it is a complex model which forms part of 

the multivariate GARCH family to detect transmissions of volatility from one market or 

sector to another (Savva and Theodossiou, 2018). However, it is still a parametric 
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model which is subject to the limitations of the univariate GARCH approach (Jin, 

2017). This includes the nonnegativity constraints and the inability to effectively 

account for asymmetric properties (Demirer et al., 2019). Another extension of the 

standard GARCH model is the GJR-GARCH model which has an additional term to 

capture possible asymmetries (Maneemaroj et al., 2019). Specifically, in response to 

news which is a source of volatility and where the type of news has an asymmetric 

effect on volatility (Hussain et al., 2019). However, this asymmetric effect is a given 

empirical regularity that has been systematically proven over time (Yu et al., 2018). 

Maneemaroj et al., (2019) applies the GJR-GARCH model to a sample of ten years 

for twenty-four stocks of the Thailand market. The study highlights the importance of 

variable choice in leading to the final result of the risk-return relationship (Maneemaroj 

et al., 2019). The risk measure is realised variance because it is found to increase the 

predictive power of the test according to Zhang and Lan (2014). 

Following the theory of Koutmos (2012), Maneemaroj et al., (2019), argues the proxy 

for the return variable, where expected returns cannot equal historical returns. 

Therefore, a CAPM model is used to generate the expected return values. However, 

like capital structure, expected returns might have a negligible effect on volatility as 

opposed to a negative effect (Horpestad et al., 2019; Aboura and Chevallier, 2018). 

Nonetheless, Maneemaroj et al., (2019) finds a negative risk-return relationship when 

historical returns are used and a positive relationship when expected returns are used. 

However, this study does not account for a source of price data variability, creating an 

omitted variable bias as pointed out by Kim and Kim (2018). On the other hand, Savva 

and Theodossiou (2018) accounts for the omitted variable bias by taking into account 

skewness in their study, a measure of asymmetry found in price data. Skewness is 

found to be the main reason for the varying results regarding the risk-return 

relationship found in the US market (Savva and Theodossiou, 2018).  

Due to the magnitude of risk-return relationship results, Savva and Theodossiou 

(2018) documents an international review of existing literature in an attempt to explain 

the ongoing debate. The Q-GARCH, GJR-GARCH and EGARCH type models are 

applied to the data sets of forty-eight global share markets at varying frequencies - 

daily, weekly and monthly. Standard returns are analysed against time varying 

volatility, instead of excess returns due to the inaccessibility and unavailability of a 

high frequency risk-free rate. Since the results of QGARCH and EGARCH are similar, 
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the results focus on the GJR-GARCH model. The total risk-return relationship is 

estimated by the combined effect of a pure and skewed risk premium. For the total 

forty-eight markets included in their sample, the following majority of markets show no 

risk-return relationship at their corresponding data frequency, respectively: Forty-three 

markets at daily frequency, forty-two at weekly and thirty-seven at monthly. Overall 

results indicate no relationship between risk and return; however, the risk-return 

relationship is shown to be stronger for monthly data (Savva and Theodossiou, 2018).  

In contrast, the study by Liu (2019) finds daily data to be the most effective in capturing 

the risk-return relationship. Liu (2019) uses a GARCH-M model along with in-sampling 

and out-sampling to investigate the risk-return relationship of the Chinese market. The 

in-sample refers to a forecast made based on the same set of data from which the 

parameters are estimated. Whereas, an out-sample refers to using a smaller dataset 

by excluding some of the observations. Liu (2019) took into account lagged returns 

since returns are subject to delays in response to new information. Both the Shanghai 

and Shenzen Stock Exchange indices of the aggregate Chinese stock market are 

analysed for the sample period 4 January 2000 to 21 May 2018. Varying data set 

frequencies are taken into account, namely, intraday, 2-day, 3-day, 5-day,10-day,15-

day and 20-days. Results reveal a risk-return relationship that changes over time and 

concludes intraday data as the most robust, in comparison to the other frequencies.  

A comparative analysis reveals the model taking into account the lagged returns is 

more robust than the one without. However, this not the only means to account for the 

lagged nature of returns since Khan et al., (2016) uses monthly data to overcome this 

problem. Liu (2019) further concludes that although out-sampling improves prediction 

precision, this method is not better than using historical price data. Liu (2019) uses a 

standard GARCH model which is limited in its ability to account for asymmetric effects. 

Thus, a hybrid GARCH model which is a combination of some or all the GARCH type 

models is more useful to capture a number of volatility characteristics at a time (He et 

al., 2018). More complex models can also be tailored, such as ADCC-EGARCH, which 

forms part of the multivariate GARCH family to detect transmissions of volatility from 

one market or sector to another (Sultan, 2018). However, the use of hybrid and/or 

complex models may be time consuming, computationally intensive and complicated 

(Chakraborty and Lozano, 2019).  
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According to the study by Sultan (2018), a univariate EGARCH and multivariate 

ADCC-EGARCH model are applied to the Finnish market. Sultan (2018) specifically 

investigates the asymmetric nature of volatility in the context of volatility feedback for 

twenty-four shares listed on the Finnish market. The study analyses an updated 

sample period where the 2008 financial crisis and any newly listed companies within 

the time period are excluded. Data sets of daily market price data are obtained for the 

sample 1 January 2009 - 31 December 2017, an approximate period of 9 years. The 

variables analysed are returns from the OMX Helsinki 25 stock index against 

conditional volatility and covariance. It is found that the presence of the leverage effect 

is high and that of volatility feedback is low. Moreover, that negative returns affect the 

risk premium more than positive returns, in line with the asymmetric volatility 

phenomenon. The study concluded that it could only be comparable to emerging 

markets similar to the Finnish market (Sultan, 2018). 

According to Sultan (2018), the presence of volatility feedback is more pronounced 

when using daily data. The choice of daily data is in contrast to the theory of 

Maneemaroj et al., (2019), who states it is a source of unnecessary noise. In addition, 

Savva and Theodossiou (2018), show a stronger risk-return relationship when using 

monthly data. The use of monthly instead of daily data reduces the effects of time lags 

in price movements according to Khan et al., (2016). However, this study centres on 

the risk estimation of a sensitive measure of volatility which is stochastic and persistent 

in nature (Harris et al., 2019). According to Inkaya and Okur (2014), the use of high 

frequency data has become popular given the rise in high frequency trading. Thus, 

daily data provides a more precise estimate of variables (Jin, 2017; Inkaya and Okur, 

2014). Additionally, the study by Liu (2019), finds daily data as the robust choice 

relative to the other frequencies.   

Kim and Kim (2018) investigates volatility feedback by employing a unified framework 

which is a generalisation of a number of sub models to the US market. The data sets 

analysed are monthly for a sample period January 1959 to May 2014. The variables 

of interest are excess returns and macroeconomic fundamentals to account for risk. 

The excess returns are measured as the difference of the market return from the 

CRSP value-weighted portfolio and 1-month US T-bill rate over the sample period. 

The unified framework consists of expected returns which are modelled as a linear 

function of expected variance, a probit model and a tailored factor called “volatility 
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feedback news”. The study explicitly takes into account that volatility feedback is 

driven by news as a result of changes in macroeconomic fundamentals (Kim and Kim, 

2018).  However, triggers of volatility feedback also include good and bad news which 

leads to the persistence of actual volatility (Umutlu, 2019). Kim and Kim (2018) 

conclude a positive risk-return relationship for their study. With respect to their model, 

the main advantage of a unified model is the complete generalisation of a number of 

sub models (Kim and Kim, 2018). 

However, the main problem in the study by Kim and Kim (2018), is the linear function 

of volatility. It presents an issue which is similar to one of the main drawbacks of the 

parametric GARCH approach where the parameters are subject to a constraint of 

nonnegativity (Jin, 2017). Thus, if the parameters do not meet this restriction some 

adjustment has to be imposed to the data (Demirer et al., 2019). Returns cannot be a 

linear function of volatility because empirically, both volatility and returns are not linear 

in nature (Gyldberg and Bark, 2019). The phenomenon asymmetric volatility describes 

the asymmetric nature of volatility where volatility has the tendency to increase more 

for negative returns than positive returns, or vice versa, for the same magnitude (Yu 

et al., 2018). “Asymmetric returns exposure” describes the risk that arises from the 

asymmetric nature of returns. The asymmetric nature of returns is due to the dynamic 

nature of price data which constantly changes over time (Harris, 2017). Hence, it 

follows that a return distribution is asymmetric since returns are derived from price 

data (Gyldberg and Bark, 2019).  

This is further in line with Maneemaroj et al., (2019), who states that returns follow an 

asymmetric and heavy tailed distribution. The heavy tailed distribution is a 

characteristic of an emerging market due to being subject to higher levels of volatility 

(Herbert et al., 2018). In parametric approaches, it is common practice to impose 

assumptions and constraints on data (Apergis et al., 2017). In contrast, a Bayesian 

approach is where parameters are treated as random variables with no constraints 

imposed when introduced into the model (Agilan and Umamahesh, 2017). This means 

that the parameters are treated in accordance to the probability of an outcome based 

on the method used and not adjusted to fit a certain or fixed result (Kim and Kim, 

2018). Random sampling methods are the most effective in producing unbiased 

estimates since the outcome is based on equal chance (Alvi, 2016). Essentially, a 
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model free approach allows for more flexibility in the estimation of complex data with 

nonlinear and asymmetric properties (Demirer et al., 2019). 

Jensen and Maheu (2018) apply a nonparametric Bayesian approach to the US 

market for a period January 1885 – December 2011, a sample of 126 years. In 

contrast, Maneemaroj et al., (2019) advocates a sample of at least 200 years to 

represent the expected returns variable when, to the best of the authors knowledge, 

the longest sample used in a study of this nature has been the data set of 126 years 

used by Jensen and Maheu (2018). Further, the choice of sample size is also 

dependent on the availability of data, which can be overly restrictive in most cases, 

especially for international studies. Thus, the 200-year sample advocated by 

Maneemaroj et al., (2019), can be considered impractical in reality.  

Jensen and Maheu (2018) analyse monthly excess returns, calculated as the 

difference between the S&P500 returns and risk-free rate for a specified sample of 

forty years followed by a 1-month US T-bill rate. A bias adjusted realised variance is 

calculated following Hansen and Lunde (2006), where the bias adjustment accounts 

for microstructure noise. Microstructure noise refers to the micro price movements in 

the market due to changes in supply and demand, and stale prices which are when 

prices do not update to recent information (Hansen and Lunde, 2006). Jensen and 

Maheu (2018) account for volatility feedback which is considered as an important 

source of asymmetry which affects risk estimation. Like Demirer et al., (2019), the 

study recommends moving away from linearity to include densities with higher moment 

properties such as skewness, kurtosis and multiple modes.  

According to the study by Jensen and Maheu (2018), results are graphically presented 

by plots of density estimation over a 90% credible interval. Volatility feedback is found 

to get stronger over time and shift outwards and rightwards. Once it is taken into 

account, the study finds a positive and nonlinear risk-return relationship. Results are 

further supported by quantile regression and contour plots, which confirms the 

asymmetric properties being effectively captured. Finally, the study by Jensen and 

Maheu (2018), recommends using high frequency for future research purposes.   

2.3.2 Summary of International Literature 

From the review of international empirical literature, it can be seen that the risk-return 

relationship is investigated widely by a number of studies (Savva and Theodossiou, 
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2018). However, the results vary a great deal since many studies show a positive or 

negative, nonlinear or linear, significant or insignificant relationship (Chari et al., 2018). 

This confirms the inconclusive empirical backing to the theoretical risk-return 

relationship (Maneemaroj et al., 2019). It can further be seen that despite the twenty-

year gap, from 1988 to 2018, the same line of conventional quantitative finance 

methods and econometric models have been typically used in the investigation of the 

risk-return relationship (Savva and Theodossiou, 2018). However, recently there has 

been an inclination toward more nonlinear and nonparametric approaches, particularly 

an inclination to more mathematical and statistical based models according to the 

studies by Demirer et al., (2019), Jensen and Maheu (2018) and Kim and Kim (2018). 

This is in line with Zitske (2019), who states that the fundamentals of mathematics and 

statistics remain the same but the application changes.     

That is, complex mathematical and statistical theories are transformed into relatively 

simple and practical computational methods where one can easily obtain results 

(Bartlett and Keogh, 2016). This is made possible as a result of technological 

advancements and relevant up to date software (Karabatsos, 2016). Take the 

Bayesian method which originated by Bayes (1763) for example; this method consists 

of intense mathematical integration which refers to the process of averaging out the 

uncertainty surrounding a variable. In nonparametric Bayesian modelling, this is 

considered as a golden standard method and is increasingly being used in different 

fields, mainly because of computational ease (Karabatsos, 2016). During the 

investigation of the risk-return relationship, it is noted that there is always some source 

of variability to take into account as this affects risk estimation (Cenesizoglu and 

Reeves, 2018). Hence, this study has identified volatility feedback as an important 

source of asymmetry to take into account when investigating the risk-return 

relationship following Jensen and Maheu (2018), Kim and Kim (2018) and Harris et 

al., (2019).  

2.3.3 Local Evidence 

Mandimika and Chinzara (2012) highlights the fact that although South Africa is the 

largest market in Africa, yet studies on the topic of the risk-return relationship are 

limited. The first relevant study is by Mangani (2008), who investigates the weekly data 

sets of forty-two shares of the All Share Index (ALSI) and the corresponding equally 

weighted portfolios. Mangani (2008) employs the GARCH (1, 1), EGARCH and 
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DGARCH (GJR-GARCH) models to the sample 23 February 1973 - 5 April 2002. 

Results reveal that risk is an unpriced factor, meaning, there is no risk-return 

relationship, as well as weak evidence for asymmetric volatility and the leverage effect 

in the South African market. Mangani (2008) concludes the GARCH (1, 1) model is 

the most effective. However, the study finds that the innovations demonstrate random 

behaviour by a randomness test, suggesting that nonlinearities remain uncaptured 

within the innovations of the model (Mangani, 2008). 

Similarly, Ilupeju (2016) investigates a number of GARCH models and innovation 

distributions to the daily data of the JSE for the sample 20 May 2005 – 31 May 2016. 

The GARCH type models include GARCH (1, 1), EGARCH, TGARCH (GJR-GARCH) 

and APARCH. The innovation distributions are a skewed student-t distribution, 

Pearson Type IV distribution (PIVD), Generalised Pareto distribution (GPD), 

Generalised Extreme Value distribution (GEVD) and stable distribution. Sign and size 

bias tests reveal the presence of volatility clustering and the leverage effect in the 

South African market. For the best model, the study identifies the APARCH model 

along with PIVD and GPD for the short run while with the stable innovation distribution 

for the long run. However, a number of randomness tests applied to the APARCH 

model find nonlinearities remains uncaptured, in line with Mangani (2008). 

Following Mangani (2008), Mandimika and Chinzara (2012) employ three innovation 

distributions with respect to the EGARCH-M, TARCH-M (GJR-GARCH-M) and 

GARCH-M models to improve results. The three innovation distributions are the 

normal, student-t and the generalised error distribution (GED). The analysis is made 

from the JSE daily data for the sample 1995 to 2009. Dummy variables are employed 

to account for extreme events such as the 2007/2008 financial crisis and the 9/11 

September political shock. Results reveal the trending pattern of volatility as 

asymmetric, strongly persistent over time and unpriced, hence no relation between 

risk and return. The study concludes the TARCH-M to be the most robust model and 

GED to be the best innovation distribution from the diagnostic testing of information 

criteria. The TARCH-M model is in contrast to Mangani (2008), who finds GARCH (1, 

1) to be the most effective and Ilupeju (2016), who finds APARCH to be the best. 

Mandimika and Chinzara (2012) concludes by the recommendation of taking into 

account skewness and kurtosis when results are inconclusive regarding the risk-return 

relationship.   
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The GARCH type models can account for high levels of volatility and heavy tails 

through model specification (Adu et al., 2015). However, a certain level of risk is still 

left behind uncaptured in the innovations as highlighted by Mangani (2008) and Ilupeju 

(2016). It is important to account for the innovation distribution as it may affect 

parameter estimation and final results (Mandimika and Chinzara, 2012). This is in 

contrast to Spierdijk (2016), who states that the distribution of model innovations does 

not affect parameter estimation. With respect to model implementation in the EVIEWS 

software, according to Brooks (2014), there exists a coefficient covariance option to 

specify whether innovations are assumed to follow nonnormality. However, this has 

no impact on the parameter estimates (Brooks, 2014). Focusing on the study by 

Mandimika and Chinzara (2012), a normal innovation distribution is unrealistic as 

financial data is volatile in nature. According to Feng and Shi (2017), when fitting the 

nonnormal innovation distributions, results are consistent but inefficient. If fitted 

incorrectly, results are then biased (Feng and Shi, 2017). 

On the other hand, although the innovations follow asymmetry for a GED, the 

distribution itself is still symmetric according to Brooks (2014). For the student-t 

distribution, the magnitude of the heavy tails is captured in the parameter containing 

the degrees of freedom which remains constant. Thus, both the innovation 

distributions governed by GED and student-t, suggests that the parameters are limited 

to change (Brooks, 2014). According to Feng and Shi (2017), both the innovation 

distributions governed by GED and student-t lack stability under aggregation. This 

means that the combination of two variables, such as for the risk-return relationship, 

results in a distribution that is not in line with what was originally used. Hence, the 

underlying problem regarding the innovation distribution can lead to inefficient risk 

estimation since the parameters are limited to change and fitting distributions with 

higher moment properties (Feng and Shi, 2016, 2017).  

Due to the developments of the South African market over time, du Toit (2015) revisits 

a study by Brummer and Wolmarans (1995). Du Toit (2015) applies multiple 

regression of the CAPM and an analysis of t-tests, p-values and R squared. The risk-

return relationship is investigated by the analysis of 107 JSE-listed firms for a sample 

2002 - 2012, a period of 10 years. The study focuses on whether a positive relationship 

exists between returns and a number of risk factors such as levered beta, unlevered 

beta, the debt to equity ratio and in particular, leverage. Results reveal no normality, 
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linearity or any relationship between the return and risk variables, in line with Brummer 

and Wolmarans (1995). As a result, this finding indicates that basic regression analysis 

is limited and not a feasible method in establishing the risk-return relationship 

according to du Toit (2015). Thus, in support of the theory of the inadequacy of basic 

regression analysis by Jensen and Maheu (2018). According to Brummer and 

Wolmarans (1995), the outcome of the study by du Toit (2015) is twofold. Firstly, 

market participants are too risk averse and secondly, that there may be too many 

factors affecting the variable returns in the JSE (du Toit, 2015).  

The latter is in line with Herbert et al., (2018), who states that the return characteristics 

of an emerging market shows higher levels of volatility. It is further in line with the 

theory by Maneemaroj et al., (2019), who states the return distribution is asymmetric 

and heavy tailed. A BRICS study by Adu et al., (2015), confirms the market return 

characteristics of an emerging market being heavy and longer tailed. The study by 

Adu et al., (2015), analyses the MSCI index for the sample January 1995 - May 2014 

at a daily, weekly and monthly frequency. However, focus is mainly placed on the latter 

two because the normality assumption is more likely to be in violation for daily data. 

The models applied are an AR (1), MA (1) and ARMA-EGARCH-M model. The AR (1) 

and MA (1) model results suggest that past shocks can forecast future returns allowing 

for opportunities of arbitrage (Adu et al., 2015). Hence, given this information, it is 

possible that volatility feedback could be present since it follows the theory of Pindyck 

(1984).  

However, the AR (1) and MA (1) models are essentially linear parametric models 

which are not designed to effectively fit data with higher moment properties (Brooks, 

2014; Jin, 2017). Therefore, the study employs a more complex GARCH model, 

ARMA-EGARCH-M. Accordingly, results reveal a leverage effect for all the emerging 

markets except South Africa. The ARMA-EGARCH-M model indicates no risk-return 

relationship for South Africa, in line with the results of the previous South African 

studies by Mangani (2008), Mandimika and Chinzara (2012) and du Toit (2015). 

However, despite the model specifications for asymmetric effects offered by the hybrid 

EGARCH-M, a certain level of risk remains uncaptured in the innovations (Feng and 

Shi, 2017). In other words, the GARCH approach does not provide the best estimation 

of risk for the investigation of the risk-return relationship (Jensen and Maheu, 2018). 
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For an international study, with respect to South Africa, Bekiros et al., (2017), 

investigates the risk-return relationship for eleven developed and nine developing 

global markets. Bekiros et al., (2017) analyses the sample 2000 to 2014, a period of 

14 years. The indices used are a US implied variance measure, as well as implied 

variance and market prices for the respective markets based on access and availability 

(Bekiros et al., 2017). A quantile regression approach is employed due to its ability to 

capture asymmetry and extreme values which are often missed by simple OLS and 

GARCH-M (Chakrabarti and Kumar, 2017). The results reveal that the magnitude of 

the nonlinear risk-return relationship differs in level of significance and size (Bekiros 

et al., 2017).  

The return coefficient maintains a negative and insignificant value at a 1% level of 

significance, especially at the ends of the distribution (Bekiros et al., 2017). In 

particular, for South Africa, Bekiros et al., (2017) finds a negative and significant risk-

return relationship across the global markets. Overall, the study concludes that 

behavioural theory is foremost, in comparison to volatility feedback and the leverage 

effect, in explaining the results of the risk-return relationship (Bekiros et al., 2017). The 

behavioural theory result by quantile regression is in line with the study by Chakrabarti 

and Kumar (2017), for the Indian share market. However, using quantile regression 

without a nonparametric framework questions its validity in accounting for every 

possible risk-return relationship that can hold as well as adjusting for any model 

misspecifications (Demirer et al., 2019).  

In an international study by Jin (2017), a negative risk-return relationship is found for 

the majority of markets in its sample, including the JSE of South Africa. The study 

analyses the respective daily returns and variance for the sample January 2001 – 

October 2014 of sixteen stock markets. Jin (2017) highlights the GARCH approach as 

being prone to model misspecification as well as having a number of underlying 

assumptions and constraints due to being parametric. The study by Jin (2017) then 

makes use of a nonparametric approach to address the limitations of the parametric 

approach. The nonparametric approach is a “model free” approach that estimates data 

free from any predetermined assumptions. Thus, effectively allowing for and 

accounting for higher moment asymmetric properties. Jin (2017) applies the Hurst 

exponent to measure the long-term memory which refers to the persistence of risk 

over a long period of time. A detrended cross-correlation coefficient (DCCA) is then 
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applied which has the ability to account for data on the verge of nonstationarity as well 

as different scales (Jin, 2017).  

According to Jin (2017), results reveal a strong presence of long-term volatility and a 

negative risk-return relationship that gets stronger over time. With respect to the 2008 

financial crisis, it has a significant impact on the negative risk-return relationship of the 

majority of the markets, except South Africa, China, France and the USA. The study 

further investigates whether the result of the negative risk-return relationship is due to 

the leverage effect or volatility feedback. The majority of the markets show very weak 

evidence of volatility feedback with the exception of South Africa, Brazil, India and 

Indonesia which are all emerging markets. Although both volatility feedback and the 

leverage effect are present, the negative risk-return relationship is found to be more 

return driven by the leverage effect for the majority of markets, including South Africa. 

This finding is in contrast to the result of the BRICS study by Adu et al., (2015), who 

found the leverage effect present for all the markets except South Africa.  

In line with the result of a negative risk-return relationship by Bekiros et al., (2017) and 

Jin (2017), is a more recent study by Steyn and Theart (2019). A negative risk-return 

relationship is found where high risk earns low returns in the South African market. 

Steyn and Theart (2019) apply basic regression analysis of Jensen’s alpha, the 

Sharpe ratio and paired t-tests. The aim of their study is to investigate whether South 

African investors are being compensated for taking on a higher level of risk. All the 

shares on the JSE are analysed for the sample July 2004 to September 2018, an 

approximate period of 14 years. Two risk measures are constructed, standard 

deviation a metric of total risk and beta which is a risk metric of the market (Charles 

and Okoro, 2019). With respect to the model, regression analysis consists of basic 

statistical tests based on parametric models, which are inadequate in fitting financial 

data that is volatile in nature (Jensen and Maheu, 2018).  

To clarify, according to Karabatsos (2016), parametric methods are often based on a 

number of assumptions. In the context of basic regression analysis, most research 

problems and questions are framed in terms of the dependent variable as a linear 

function of the independent variable/s. Additionally, the innovations are assumed to 

follow a normal distribution. If the data properties are in violation of such assumptions 

then the parameter estimates are going to be misleading. In the context of time series 
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analysis, this violation of assumptions is most likely to occur because financial data 

has a volatile, asymmetric and nonlinear nature (Jensen and Maheu, 2018; 

Karabatsos, 2016). As a result, the regression analysis method is unreliable, in line 

with du Toit (2015) and Jensen and Maheu (2018), in estimating risk and contributes 

to inconclusive results regarding the risk-return relationship. Consequently, this should 

lead researchers to use more robust methods that are available to effectively model 

complex data such as Bayesian nonparametric models (Karabatsos, 2016).    

2.3.4 Summary of Local Literature 

From the review of local empirical evidence, although South Africa is the largest 

market in Africa, the investigation of the risk-return relationship is limited (Savva and 

Theodossiou, 2018). This is in terms of volume over the years as highlighted by 

Mandimika and Chinzara (2012), and the methods employed by Steyn and Theart 

(2019). In contrast, the international empirical literature, particularly for the developed 

countries, have more literature as documented in the study by Savva and Theodossiou 

(2018). Additionally, recent studies use more unconventional sophisticated methods 

such as the unified framework by Kim and Kim (2018) and the nonparametric Bayesian 

approach by Jensen and Maheu (2018). The risk-return relationship topic is popular in 

the US due to the size of the market and the fact that investors have been seeking a 

superior return from as early as the 1950’s (Liu, 2019). In contrast, according to 

Mandimika and Chinzara (2012), the first study relevant to South Africa that 

investigated the risk-return relationship was conducted far later in the publication by 

Mangani (2008). 

There is no risk-return relationship according to the early South African studies such 

as Mangani (2008), Mandimika and Chinzara (2012), du Toit (2015) and Adu et al., 

(2015). However, recent studies by Bekiros et al., (2017), Jin (2017) and Steyn and 

Theart (2019), find a negative risk-return relationship. This is in contrast to the recent 

studies by international literature which reveal a positive risk-return relationship 

(Jensen and Maheu, 2018; Kim and Kim, 2018; Harris et al., 2019). A reason for this 

could be due to the failure to account for volatility feedback when investigating the risk-

return relationship or the choice of model (Kim and Kim, 2018). Given the results of 

the studies by Mangani (2008), Mandimika and Chinzara (2012), Adu et al., (2015) 

and Jin (2017), this suggests the presence of volatility feedback. Further, given the 

unique market return characteristics of an emerging market by Herbert et al., (2018), 
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the risk-return relationship and volatility feedback are worth investigating in South 

Africa. 

2.4 Critical Analysis 

According to Savva and Theodossiou (2018), the magnitude of the empirical risk-

return relationship is as a result of different choices of data frequency, sample period 

and model specification. However, this is a given and comes from a broad perspective. 

To narrow it down, the theories by Maneemaroj et al., (2019) and Jensen and Maheu 

(2018), are highlighted to the extent of relevance on the area of concern in the 

empirical review. The limitations of the models in conjunction with the two theories 

allow for a single problem to be highlighted which is "asymmetric returns exposure”.  

Volatility arises from changes in price data as a result of the reaction and response of 

investors to news (Hussain et al., 2019). Price movements usually occur due to 

volatility feedback, the leverage effect, inefficient information, behavioural biases and 

different investor sentiment (Yu et al., 2018). Essentially, resulting in a nonlinear and 

asymmetric return distribution since returns are derived from the price data which 

deviate from their fundamental value (Gyldberg and Bark, 2019). Since the return 

distribution is strongly linked to risk, the variability found in price data can lead to 

misestimating risk. Therefore, although various studies investigate various sources of 

risk arising from macroeconomic and financial factors, the “asymmetric returns 

exposure” may be overlooked. That is, the risk that arises from the asymmetric nature 

of returns. This can be a major contributor to misestimating risk, contributing to the 

inconclusive results of the empirical risk-return relationship. Figure 7 illustrates the 

asymmetric nature of a return’s distribution. 
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Figure 7: Asymmetric nature of returns 

Source: Authors own 

From Figure 7, the symmetric and bell-shaped curve represents the fundamental 

values of price data. The arrows represent the respective increase and decrease 

movements in price data as a result of various factors. This includes volatility, volatility 

feedback, the leverage effect, inefficient information, behavioural biases and different 

investor sentiment (Yu et al., 2018). Consequently, this results in an asymmetric 

distribution of price data as shown by the broken grey line due to the random price 

movements. Hence, an asymmetric return distribution since returns is derived from 

price data (Gyldberg and Bark, 2019). By accounting for this risk, due to the 

asymmetric nature of returns, this provides a more efficient measure of risk and 

fundamentally addresses the omitted variable bias by Kim and Kim (2018).   

The relationship between a return distribution and risk distribution may be linear or 

nonlinear as well as positive or negative, in relation to one another (Aboura and 

Chevallier, 2018). However, the very nature of a return distribution on its own is 

nonlinear, more so when taking on a higher level of risk which yields greater price 

movements (Hussain et al., 2019). Therefore, a major contrast in this study is the 

investigation of the conditional mean of excess returns, instead of the traditional 

conditional variance typically used by the GARCH approach (Jensen and Maheu, 

2018). Although excess returns are a source of risk, emphasis is placed on the 

asymmetric nature of returns. That is, the “asymmetric returns exposure” independent 

or dependent, due to taking on a higher level of risk. A greater risk, by the excess 
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returns measure, simply lends greater exposure due to greater price movements 

(Hussain et al., 2019). 

Most importantly, this measure is latent and stochastic or random in nature and cannot 

be observed directly (Harris, 2017). Thus, a certain level of uncertainty is attached to 

this measure (Jensen and Maheu, 2018). Consequently, certain models that do not 

have the appropriate model specification/s heavily contributes to misleading results 

due to not accounting for this measure of risk (Jin, 2017). Specifically, regression 

analysis, the VAR framework, causality tests and GARCH approach are regarded as 

irrelevant in estimating the risk-return relationship (Jensen and Maheu, 2018). Due to 

these methods shortcomings, limitations and model misspecifications, they are prone 

to misestimating risk, heavily contributing to misleading results (Savva and 

Theodossiou, 2018). The ongoing debate regarding the risk-return relationship can 

benefit by recognising that these methods are limited and that advancements have 

been made in literature to deal with such issues. At the same time, encourage 

unconventional Bayesian and nonparametric methods that are robust, efficient and 

effective in risk estimation (Demirer et al., 2019; Jensen and Maheu, 2018; Jin, 2017; 

Karabatsos, 2016).   

This Bayesian approach has the ability to average out uncertainty affecting parameters 

and the nonparametric approach has the ability to account for every possible risk-

return relationship (Waldmann, 2018). This provides improved risk estimation which 

ensures a credible estimation of risk and risk-return relationship (Demirer et al., 2019). 

Further, in a nonparametric framework, the robustness of any model is enhanced as 

model misspecifications are corrected (Apergis et al., 2017). As a result, there is no 

need for model extensions, specifications and accounting for different sources of 

variability to address the omitted variable bias (Kim and Kim, 2018). The actual nature 

of the data is modelled, thus, allowing “the data to speak for itself” and state the 

relationship held (Jensen and Maheu, 2018). This is in line with Bekiros et al., (2017), 

who finds that the “actual returns are the most important factors” in the context of 

investigating the risk-return relationship. Thus, to account for these risks, the present 

study applies the Bayesian approach by Jensen and Maheu (2018), with emphasis on 

the nonparametric approach.    
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2.5 Conclusion of Literature Review 

The Bayesian model has the ability to effectively account for “asymmetric returns 

exposure" from excess returns and risk exposure from realised variance. In the 

nonparametric framework, the Bayesian approach effectively accounts for nonlinear 

and asymmetric properties but also latent stochastic measures (Jin, 2017). Variance 

is often the choice of risk measure when the return distribution is normal which 

empirically does not hold (Gyldberg and Bark, 2019). By using realised variance which 

has a random and stochastic nature, this further enhances risk estimation 

(Maneemaroj et al., 2019). The realised variance measure is more empirically in line 

with the volatile nature of financial price data and returns (Harris, 2017). The 

nonparametric framework enhances the Bayesian model by taking into account every 

possible relationship that can hold as well as asymmetric properties such as 

skewness, kurtosis and multiple modes (Demirer et al., 2019). Hence, the 

nonparametric Bayesian approach has the ability to effectively account for higher 

moment properties (Jin, 2017).  

This is in line with the recommendation by Mandimika and Chinzara (2012), to account 

for higher moment asymmetric properties when results are inconclusive with regards 

to the risk-return relationship. In conclusion, the gap in literature is highlighted which 

is the inconclusive empirical backing of the theoretical risk-return relationship 

(Maneemaroj et al., 2019). Many studies show a positive or negative relationship or 

no relationship at all (Savva and Theodossiou, 2018). The theories from the theoretical 

framework by Maneemaroj et al., (2019) and Jensen and Maheu (2018), are critiqued 

from the results and the limitations of the models. Thus, the limitations of the models 

in conjunction with the response to the above theories allow for a single problem to be 

highlighted which is “asymmetric returns exposure”. The gap in empirical literature is 

highlighted by demonstrating the superiority of the nonparametric Bayesian approach 

in addressing the other models’ limitations, shortcomings and misspecifications 

(Waldmann, 2018). This provides a strong foundation for the data and methodology 

as follows in the subsequent chapter. 
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CHAPTER 3 

3. Data and Methodology 

The data and methodology show how the aims of this study are met by listing the 

various tests and describing the modelling techniques to be implemented. It consists 

of five parts, each of which is summarised in the overview. First, the dataset 

information is discussed followed by second, the standard preliminary tests that the 

data undergoes before analysis. Third, is a review of the GARCH school of models 

and fourth, the Bayesian approach is introduced. Finally, the chapter concludes the 

method and strategy of model implementation. 

3.1 Overview 

The data details the collection method and dataset information such as the sample 

period choice of ten years, frequency of daily data and variables of interest – excess 

returns and realised variance. The data then undergoes a number of preliminary tests, 

including tests for stationarity, normality, autocorrelation and heteroskedasticity. A 

review of the GARCH school of models begins with the basic univariate ARCH model 

then the GARCH type models – GARCH (1, 1), EGARCH (1, 1), GJR-GARCH (1, 1) 

and APARCH (1, 1) – ending with a brief explanation of the multivariate GARCH 

models.  

The model’s limitations are highlighted and the gap is addressed by the use of the 

Bayesian approach. The basic definitions of the Bayesian approach are introduced 

and explained in the research design. Thereafter, the Bayesian econometric model is 

outlined followed by the method procedure of a parametric Bayesian model and then 

a nonparametric Bayesian model. The parametric Bayesian model serves as a 

preliminary test and for the purpose of a comparative analysis with the nonparametric 

Bayesian model. The chapter concludes with information about model implementation 

as well as how to interpret the results given in the next chapter. 

3.2 Data  

The data outlines the collection method of the secondary price data, frequency choice 

of daily data and the sample period of ten years.  
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3.2.1 Dataset 

This study focuses on the largest South African financial market, the JSE, following 

the documented local literature; therefore, the FTSE/JSE ALSI data is analysed. The 

secondary daily price data of the ALSI is obtained from the IRESS database for the 

sample 15 October 2009 - 15 October 2019, a period of ten years.  

3.2.1.1 Frequency 

Monthly data shows a stronger risk-return relationship, in comparison to daily and 

weekly data, as documented in the international study by Savva and Theodossiou 

(2018). In contrast, an emerging market study by Liu (2019), finds that daily data is the 

more robust choice. This study uses daily data in line with Sultan (2018), who states 

that the presence of volatility feedback is stronger when using daily data. Additionally, 

given the rise in high frequency trading, there has been an increase in using high 

frequency data analysis which provides a more precise estimate of variables (Inkaya 

and Okur, 2014; Jin, 2017).  

3.2.1.2 Sample Period    

With respect to the South African evidence from the empirical review, the study by 

Mangani (2008) includes both the financial crisis and apartheid era in the sample. 

However, the rest of the studies analyse the post-apartheid period and include the 

2008 financial crisis. This study chooses its sample period along the lines of the recent 

emerging market study by Sultan (2018). An updated period of ten years is chosen, 

excluding both the financial crisis and apartheid era. The selection of this period is to 

limit the potential effects of structural breaks in the analysis (Herbert et al., 2018). 

While it could be extended, it would become more susceptible to the influences of 

exogenous economic shocks (Wang and Tsay, 2018). Additionally, the sample 

includes only listed companies; thus, newly listed and delisted companies are 

excluded, in line with Sultan (2018).  

3.2.2 Variables  

The variables of interest are defined, motivated and then quantified. The choice of the 

risk and return variables are excess returns and realised variance, in line with the 

studies by Jensen and Maheu (2018) and Kim and Kim (2018). 
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3.2.2.1 Return 

Excess returns are represented by 𝑟𝑡 and are defined as the returns obtained due to 

taking on a higher level of risk by definition. Excess returns are synonymous with 

abnormal returns and the risk premium which refers to the risk-return relationship (He 

et al., 2018). The choice of excess returns over standard returns is motivated by the 

application of Bayes (1763) theorem to the risk-return relationship. Equation 1 is 

statistically defined as the conditional mean probability of 𝑟 given 𝑅, which is equal to 

the joint probability of 𝑟 and 𝑅, divided by the unconditional probability of 𝑅: 

P(r|R) = 
P(r ∩ R)

P(R)
                                                 (1) 

where: P(r|R) is the probability of r conditional on R 

P(r ∩ R) is the joint probability of r and R 

P(R) is the unconditional probability of R 

Equation 2 is derived from the cross multiplication of Equation 1: 

P(r ∩ R) = P(r|R) * P(R)                                   (2) 

Given that 𝑟 is defined as return and 𝑅 is defined as risk, Equation 2 is defined as the 

probability estimation of the relationship of risk and return which is equal to the risk 

premium (return given risk) and risk. In the context of this study, the probability 

estimation of the risk-return relationship is equal to the relationship between excess 

returns and realised variance. The use of a risk-based measure of returns, 

emphasises capturing asymmetric returns exposure.  

Excess returns refer to the returns earned due to taking on a higher level of risk (He 

et al., 2018). However, asymmetric returns exposure is a return inherent risk that 

arises from the fundamental nature of returns, independent or dependent, due to 

taking on a higher level of risk. A greater risk simply lends greater exposure due to 

greater price movements (Hussain et al., 2019). Essentially, in comparison to standard 

returns, excess returns lends greater return risk exposure to be captured, ultimately 

improving risk estimation, in line with Jensen and Maheu (2018).  

The daily ALSI closing price data, obtained from IRESS, are converted to ALSI market 

returns by the log transformation of Equation 3: 



56 
 

Rm = ln (
𝑃𝑡

𝑃𝑡−1
)                                                  (3) 

where 𝑅𝑚 is market returns and 𝑃𝑡 represents the share price for the current day 𝑡 and 

𝑃𝑡 − 1 is the share price for the previous day 𝑡 − 1, where 𝑡 = 1, … , 2499. This is a 

conventional method that follows a number of studies such as Mandimika and 

Chinzara (2012), Adu et al., (2015) and Khan et al., (2016). 

 

Thereafter, the calculation of excess returns is shown by Equation 4: 

rt = Rm − Rf                                                  (4) 

where 𝑟𝑡 is the market risk premium which is equal to the difference between the 

market return 𝑅𝑚 and the risk-free rate 𝑅𝑓. This is by definition and follows the studies 

by Jensen and Maheu (2018), Kim and Kim (2018) and Demirer et al., (2019). The 

South African T-bill is the proxy for the risk-free rate, primarily based on accessibility 

and availability, in line with Savva and Theodossiou (2018).  

 

The annual risk-free rate is obtained from the South African Reserve Bank (SARB) 

and converted to a daily value from Equation 5 by Brooks (2014):  

Daily Rf = (1 + yearly Rf)
(

1

365
)                          (5) 

This approach is taken due to the unavailability of a daily risk-free rate as highlighted 

in the international study by Savva and Theodossiou (2018). 

3.2.2.2 Risk 

Realised variance is represented by  𝑅𝑉𝑡  and is a data driven measure with a random 

and stochastic nature, in comparison to other measures of variance (Noguchi et al., 

2016). The conventional computation of realised variance is the summation of returns 

squared (Maneemaroj et al., 2019). However, this study uses a bias adjusted realised 

variance measure, by Hansen and Lunde (2006), in line with Jensen and Maheu 

(2018). The bias adjustment accounts for the micro price movements in the market 

due to changes in supply and demand, and stale prices which are when prices do not 

update to recent information. This accounts for the unnecessary noise associated with 

the choice of daily data as pointed out by Maneemaroj et al., (2019). 
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The calculation of the bias adjusted realised variance by Hansen and Lunde (2006), 

is shown by Equation 6:   

RVt
q

=  γ̂0 + 2 ∑ (
1−j

(q+1)
)

q
j=1  γ̂𝑗, where γ̂𝑗 =  ∑ rt,irt,i+j

Nt−j

t=1                   (6) 

where 𝑅𝑉t
q
 is equal to daily realised variance 𝑅𝑉𝑡 where the bias adjustment 𝑞 is set 

to one by Hansen and Lunde (2006). Realised variance is equal to term one  γ̂0 which 

is equal to the first order of autocorrelation. Term two is the product of the bias 

adjustment and  γ̂𝑗 which is realised variance by definition. The latter is equal to the 

summation of returns squared 𝑟𝑡
2 where 𝑁𝑡 represents the number of daily returns in 

day 𝑡 and 𝑗 = 0, … , 𝑞. The addition of kernel weights, not shown in Equation 6, ensures 

a positive bias adjusted realised variance (Jensen and Maheu, 2018). In 

nonparametric Bayesian estimation, the application of kernels is often used which is a 

type of weighting function (Fouedjio, Desassis and Rivoirard, 2016). There are a 

number of different kernels; however, this study specifies the Bartlett kernel, in line 

with Hansen and Lunde (2006).    

3.3 Preliminary Tests 

The ALSI market returns undergo a number of preliminary tests to ensure they meet 

the necessary criteria for model estimation. These are standard methods, in line with 

Mandimika and Chinzara (2012), Adu et al., (2015), Khan et al., (2016) and Liu (2019).  

3.3.1 Stationarity 

Stationarity is an important requirement in financial modelling in order to justify the 

validity of time series analysis, in the context of certain methods such as GARCH 

modelling (Liu et al., 2020). In order to investigate stationarity, a time series probability 

plot and stationarity tests are employed.  

3.3.1.1 Probability Plot  

Price data is dynamic because it is constantly changing over time; thus, a time series 

plot of ALSI price data is expected to show an irregular pattern over time because of 

the dynamic behaviour of the price data (Harris, 2017). There would also be an upward 

trend representing the explosive nature of the price data (Liu, 2019). This is because 

if there is a change in the variable, such as a volatility shock, it is expected to persist 

and not die out (Nahil and Lyhyaoui, 2018). The analysis of this type of data leads to 
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what is known as a spurious regression, which is when the data appears statistically 

sound under a conventional model measure such as 𝑅2, but provides meaningless 

results (Gulzar et al., 2019).  

As a result, price data is converted to market returns by the natural log transformation 

of the difference between the current and previous values of price data (Kim and Kim, 

2018). A time series plot of ALSI returns is expected to reflect no visible trending 

pattern as it crosses its constant mean value of zero (Liu, 2019). As a result, the 

statistical properties of ALSI returns is valid for time series analysis, in the context of 

GARCH modelling (Gulzar et al., 2019). To support whether the ALSI data are 

stationary, the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), Kwiatkowski, 

Phillips, Schmidt and Shin (KPSS) tests are employed. The ADF, PP and KPSS are 

unit root tests that determine the order of integration of the variables (Chakrabarti and 

Kumar, 2017). If a series contains a unit root, the process is nonstationary and the first 

difference would lead to stationary series (Liu, 2019). 

3.3.1.2 Augmented Dickey-Fuller  

For the Augmented Dickey-Fuller (ADF) test by Dickey and Fuller (1981), the 

regression equation is Equation 7: 

  ∆𝑦𝑡 =  𝜓𝑦𝑡−1 +  ∑ 𝛼𝑖Δ𝑦𝑡−1
𝑝
𝑖=1  + 𝑢𝑡                           (7) 

where for in a change ∆ of the series 𝑦𝑡, the coefficient 𝜓 =  ∅ − 1 is the difference of 

the unit root ∅ and one, 𝛼𝑖 is a constant, Δ𝑦𝑡−1 is the change of the lagged series and 

𝑢𝑡 is the innovation term for 𝑡 =  1, … , 𝑛. In this case, the innovation term is assumed 

to be constant.  

The ADF test statistic is Equation 8: 

𝐴𝐷𝐹 =  
𝜓̂

𝑆𝐸̂(𝜓̂)
                                           (8) 

where 𝜓̂ is the estimated difference of the unit root and one divided by the estimated 

standard error of 𝜓̂.  

The calculated ADF test statistic is compared to the relevant critical value (CV). The 

CV is selected with respect to the sample size, level of significance as well as if it has 

an intercept and/or deterministic trend in the regression Equation 7. If the ADF test 
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statistic is less than the CV, the null hypothesis that the ALSI series has a unit root 

(∅ = 1) can be rejected. Thus, it can be concluded the alternative hypothesis that the 

ALSI series is stationary (Dickey and Fuller, 1981). 

3.3.1.3 Phillips-Perron  

For the Phillips-Perron (PP) test by Phillips and Perron (1988), the regression equation 

is Equation 9: 

  𝑦𝑡 =  ∅𝑦𝑡−1 + 𝑢𝑡                                             (9) 

where the series 𝑦𝑡 is equal to the sum of the product of the unit root ∅ and the lagged 

series 𝑦𝑡−1, and innovation term 𝑢𝑡 for 𝑡 = 1, … , 𝑛. In this case, the innovation term is 

assumed to be inconstant and stationary. 

The PP test statistics are Equations 10.1 and 10.2: 

𝑃𝑃𝑡 =  (
𝜎̂1

2

𝜎̂2
2)

1
2⁄

𝑡∅=1 −
1

2
= (

𝜎̂2
2− 𝜎̂1

2

𝜎̂2
2 )(

𝑇−𝑆𝐸(∅̂−1)

𝜎̂1
2 )                        (10.1) 

𝑃𝑃∅̂ =  𝑇∅̂ −
1

2

𝑇2𝑆𝐸(∅̂−1)

𝜎̂1
2 (𝜎̂2

2 −  𝜎̂1
2)                            (10.2) 

where 𝑇 is the sample size and 𝜎̂1
2 and 𝜎̂2

2 are variance parameters defined, 

respectively as Equations 11.1 and 11.2: 

𝜎̂1
2 =  lim

𝑇 → ∞

1

𝑇
∑ 𝐸(𝑢𝑡

2)𝑇
𝑡=1                                     (11.1) 

𝜎̂2
2 =  ∑ 𝐸 (

𝑆𝑇
2

𝑇
)𝑇

𝑡=1                                            (11.2) 

where 𝑆𝑡
2 is equal to the sum of innovations 𝑆𝑡

2 =  ∑ 𝑢𝑡
𝑡
𝑖=1 .  

The comparison of the calculated PP test statistic to the relevant CV follows the same 

procedure of the ADF test. If the PP test statistic is less than the CV, the null 

hypothesis that the ALSI series has a unit root can be rejected. Thus, it can be 

concluded the alternative hypothesis that the ALSI series is stationary (Phillips and 

Perron, 1988). 
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3.3.1.4 Kwiatkowski, Phillips, Schmidt and Shin 

For the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test by Kwiatkowski, Phillips, 

Schmidt and Shin (1992), the regression equation is Equation 12: 

  𝑦𝑡 =  𝛽𝑡 +  𝜀𝑡 +  𝑢𝑡                                           (12) 

where 𝛽𝑡 is a deterministic trend, 𝜀𝑡 is a random walk and 𝑢𝑡 is an innovation term for 

𝑡 = 1, … , 𝑛. In this case, the innovation term is assumed to be inconstant and 

stationary.  

𝜀𝑡 =  𝜀𝑡−1 + 𝑣𝑡                                              (13) 

From Equation 12, the random walk 𝜀𝑡 is defined as Equation 13, the sum of its lagged 

value 𝜀𝑡−1 and innovation term 𝑣𝑡 that is assumed to be independent and identically 

distributed with a mean zero and variance 𝜎̂𝑣
2.  

The KPSS test statistic is Equation 14: 

𝐾𝑃𝑆𝑆 =  ∑
𝑆𝑡

2

𝜎̂𝑡
2

𝑇
𝑖=1                                            (14) 

where 𝑆𝑡
2 is equal to the sum of innovations and 𝜎̂𝑡

2 is the estimated variance. 

The calculated KPSS test statistic is often one-sided and is compared to the relevant 

CV. The CV is selected with respect to the level of significance as well as if it has an 

intercept or linear trend. If the KPSS test statistic is greater than the CV, the null 

hypothesis that the ALSI series is stationary can be rejected. Thus, it can be concluded 

the alternative hypothesis that the ALSI series has a unit root (Kwiatkowski et al., 

1992). 

3.3.2 Normality 

In order to investigate normality, basic descriptive statistics, a quantile-quantile plot 

and normality tests are employed.  

3.3.2.1 Basic Descriptive Statistics 

The basic descriptive statistics provide a general overview of statistical properties of 

the ALSI returns distribution such as the mean, standard deviation, skewness and 

excess kurtosis. 
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By Gyldberg and Bark (2019), the average of the ALSI returns indicates a 

corresponding rate of return and is given as Equation 15:  

𝑟̅ =  
∑ 𝑟𝑖

𝑁
𝑖=1

𝑁
                                                (15) 

A positive mean value indicates gains from a profitable trading strategy, whereas a 

negative mean value indicates losses (Gyldberg and Bark, 2019). 

By Steyn and Theart (2019), standard deviation is a measure of total risk which 

comprises of both systematic and unsystematic risk and is given as Equation 16: 

𝜎 =  √∑ (𝑟𝑖− 𝑟̅)2𝑁
𝑖=1

𝑁
                                              (16) 

The higher the standard deviation, the higher the risk which means the greater the 

deviation from an expected outcome (Charles and Okoro, 2019). 

By Altinay (2016), skewness is the standardised third moment of a series which 

indicates whether or not a distribution is symmetrical around its mean value and is 

given as Equation 17: 

𝑆(𝑟𝑡) = 𝐸 [(
𝑟𝑡− 𝑟̅

𝜎
)

3

] =  
𝐸[(𝑟𝑡− 𝑟̅)3]

(𝐸[(𝑟𝑡− 𝑟̅)2])3 2⁄ =  
𝜇3

𝜎3                            (17) 

A positive value for skewness indicates the distribution of returns are skewed to the 

left and a negative value indicates the distribution of returns are skewed to the right 

(Adu et al., 2015). According to Li (2018), the skewness of a distribution indicates the 

payoff of an investor. A positive value indicates gains and a negative value indicates 

losses (Yao et al., 2019).   

By McAlevey and Stent (2017), kurtosis is the standardised fourth moment of a series 

and measures whether or not a distribution has heavy tails and is given as Equation 

18: 

𝐾(𝑟𝑡) = 𝐸 [(
𝑟𝑡− 𝑟̅

𝜎
)

4

] =  
𝐸[(𝑟𝑡− 𝑟̅)4]

(𝐸[(𝑟𝑡− 𝑟̅)2])2
=  

𝜇4

𝜎4
                             (18) 

A positive value for excess kurtosis indicates a distribution with heavy tails, known as 

a leptokurtic distribution, in line with the return characteristics of an emerging market 

by Herbert et al., (2018). On the other hand, a negative value for excess kurtosis 
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indicates a distribution with thin tails, known as platykurtic distribution (Adu et al., 

2015).    

3.3.2.2 Quantile-Quantile Plot 

According to Brooks (2014), a quantile-quantile (Q-Q) plot determines normality by the 

comparison of an empirical distribution and theoretical normal distribution. The 

theoretical distribution is represented by a bold dark diagonal line. A QQ-line is a line 

of reference and is 45 degrees. This line indicates normality by a perfect fit between 

the empirical and theoretical distribution. However, deviation indicates a mismatch 

between the empirical and theoretical distribution, indicating nonnormality (Brooks, 

2014). To support whether the ALSI data are normally distributed, the Shapiro-Wilk 

(SW), Jarque-Bera (JB) and Anderson-Darling (AD) tests are employed.  

3.3.2.3 Shapiro-Wilk 

For the Shapiro-Wilk (SW) test by Shapiro and Wilk (1965), the SW test statistic is 

Equation 19: 

𝑆𝑊 =  
(∑ 𝛼𝑖𝑥(𝑖)

𝑛
𝑖=1 )

∑ (𝑥𝑖− 𝑥̅)𝑛
𝑖=1

                                        (19) 

where 𝑥(𝑖) are the sample statistics for order 𝑖 = 1, … , 𝑛, of which the sample size 𝑛 is 

normally distributed, the sample mean 𝑥̅ and 𝛼𝑖 are the constants. The latter is 

obtained from the statistical properties, such as the mean and variance, of the order 

statistics from the sample 𝑛.   

The calculated SW test statistic follows a normal distribution and is compared to the 

relevant CV which is selected based on the sample size. If the SW test statistic is 

greater than the CV, the null hypothesis that the ALSI series is normally distributed 

can be rejected. Thus, it can be concluded the alternative hypothesis that the ALSI 

series is nonnormally distributed (Shapiro and Wilk, 1965). 

3.3.2.4 Jarque-Bera 

For the Jarque-Bera (JB) test by Jarque and Bera (1987), the JB test statistic is 

Equation 20: 

𝐽𝐵 = 𝑛 [
𝑆2

6
+ 

𝐾2

24
]                                       (20) 
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where 𝑛 is the sample size and 𝑆 and 𝐾 are parameters given and defined as 

skewness and kurtosis, respectively by Equations 21.1 and 21.2: 

𝑆 =  
1

𝑛
 
∑ (𝑟𝑡− 𝑟𝑡̅)3𝑛

𝑖=1

(𝜎̂2)
3

2⁄
                                      (21.1) 

𝐾 =  
1

𝑛
 
∑ (𝑟𝑡− 𝑟𝑡̅)4𝑛

𝑖=1

(𝜎̂2)2
− 3                                 (21.2) 

The calculated JB test statistic follows a chi-square distribution with two degrees of 

freedom and is compared against the relevant CV which is selected with respect to 

the level of significance 𝛼. If the JB test statistic is greater than the CV (𝑋𝛼,2
2 ), the null 

hypothesis that the ALSI series is normally distributed can be rejected. Thus, it can be 

concluded the alternative hypothesis that the ALSI series is nonnormally distributed 

(Jarque and Bera, 1987). 

3.3.2.5 Anderson-Darling 

Nonnormal behaviour is mainly shown at the tails of a distribution, especially for 

emerging markets since they are characterised as having longer and heavier tails 

(Herbert et al., 2018). The Anderson-Darling (AD) test by Anderson and Darling 

(1954), is particularly useful since it is sensitive to the behaviour of the tails.  

The AD test statistic is Equation 22:  

𝐴𝐷2 =  −𝑁 − 
1

𝑁
 ∑ (2𝑖 − 1){ln 𝐹(𝑌𝑖)  + ln(1 − 𝐹(𝑌𝑁+1−𝑖))}𝑁

𝑖=1            (22) 

where 𝐹 is the cumulative distribution function of the specified distribution of the 

ordered data 𝑌𝑖 for 𝑖 =  1, … , 𝑁 of which 𝑁 is the sample size.  

The calculated AD test is a one-sided test and follows a specified distribution, and is 

compared to the relevant CV which is selected with respect to the level of significance. 

If the AD test statistic is greater than the CV, the null hypothesis that the ALSI series 

is normally distributed can be rejected. Thus, it can be concluded the alternative 

hypothesis that the ALSI the series is nonnormally distributed (Anderson and Darling, 

1954). 

3.3.3 Autocorrelation 

Autocorrelation or serial correlation refers to the extent to which the current values of 

the ALSI return series is related to its previous values (Khan et al., 2016). In order to 
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investigate autocorrelation, a plot of an autocorrelation function and autocorrelation 

tests are employed.   

3.3.3.1 Autocorrelation Function Plot 

According to Chakrabarti and Kumar (2020), an ACF plot shows the lags from a 

horizontal zero reference band. If the majority of lags touch or pass over the 95% 

conditional interval, this indicates that the lags are significant and the presence of 

autocorrelation within the ALSI returns (Chakrabarti and Kumar, 202). To support 

whether the ALSI data are serially correlated, the Ljung-Box (LB) or Box Pierce and 

the Durbin Watson (DW) tests are employed.  

3.3.3.2 Ljung-Box 

For the Ljung-Box (LB) test by Ljung and Box (1978), the LB test statistic is Equation 

23: 

𝐿𝐵 = 𝑁 (𝑁 + 2) ∑
𝜌̂𝑘

2(𝑟𝑡)

𝑁−𝑘

𝑄
𝑘=1                                  (23) 

where 𝑁 is the sample size, 𝑄 is the maximum length of lag 𝑘 and 𝜌̂𝑘
2 is the correlation 

coefficients squared of the ALSI returns 𝑟𝑡.  

The calculated test statistic LB follows a chi-square distribution with 𝑄 degrees of 

freedom and is compared to the relevant CV with respect to the level of significance. 

If LB is greater than the CV (𝑋1− 𝛼
2 ) where 1 −  𝛼 is the level of significance, the null 

hypothesis that autocorrelation is absent within the ALSI series can be rejected. Thus, 

it can be concluded the alternative hypothesis that autocorrelation is present within the 

ALSI series (Ljung and Box, 1978).    

3.3.3.3 Durbin Watson  

For the Durbin Watson (DW) test by Durbin and Watson (1951), the DW test statistic 

is given as Equation 24: 

𝐷𝑊 =  
∑ (𝑟𝑖−𝑟𝑖−1)2𝑁

𝑖=2

∑ 𝑟𝑖
2𝑁

𝑖=1

                                             (24) 

According to Brooks (2014), if the calculated DW test statistic lies between the values 

of 1.5 and 2.5, the null hypothesis that autocorrelation is absent within the ALSI series 

is not rejected. Thus, it can be concluded that autocorrelation is present within the 

ALSI series. This is a rule of thumb that is often used. If the calculated DW test statistic 
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lies outside the interval of 1.5 and 2.5, the diagram below can be used. Figure 8 shows 

the regions of rejection and non-rejection for the DW test.  

 

Figure 8: Regions of rejection and non-rejection for the DW test 

Source: Brooks (2014) 

The calculated DW test statistic is compared to the relevant CV. The DW tests have 

two CV’s, an upper bound CV 𝑑𝐿 and lower bound CV 𝑑𝑢. These are selected with 

respect to the sample size and number of independent variables excluding the 

constant of a regression equation. For exact values from Figure 8, the conclusions can 

be given as follows: If DW = 0, it can be concluded that there is a perfect positive serial 

correlation within the ASLI series. If DW = 2, it can be concluded that serial correlation 

is absent within the ASLI series. If DW = 4, it can be concluded that there is a perfect 

negative serial correlation within the ASLI series (Brooks, 2014).  

3.3.4 Heteroskedasticity   

Heteroskedasticity refers to the statistical property of variance being inconstant over 

time (Hung, 2019). Conditional heteroskedasticity refers to when the inconstant 

variance can be established during unidentified periods of low and high volatility (Khan 

et al., 2016). In order to investigate conditional heteroskedasticity, a plot of an 

autocorrelation function and autocorrelation tests are employed to higher order 

autocorrelation where the ALSI data are squared. To support whether the ALSI data 

are heteroskedastic, the Ljung-Box (LB2) and Autoregressive Conditional 

Heteroskedastic Lagrange multiplier (ARCH-LM) tests are employed.   

3.3.4.1 Ljung-Box   

For the Ljung-Box (LB2) test by Ljung and Box (1978), the LB2 test statistic is Equation 

25: 
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𝐿𝐵2  = 𝑁 (𝑁 + 2) ∑
𝜌̂𝑘

2(𝑟𝑡
2)

𝑁−𝑘

𝑄
𝑘=1                                    (25) 

where 𝑁 is the sample size, 𝑄 is the maximum length of lag 𝑘 and 𝜌̂𝑘
2 is the correlation 

coefficients squared of the ALSI returns squared 𝑟𝑡
2.  

The calculated test statistic LB2 follows a chi-square distribution with 𝑄 degrees of 

freedom and is compared to the relevant critical value with respect to the level of 

significance. If LB2 is greater than the CV (𝑋1− 𝛼
2 ), the null hypothesis that the ARCH 

effect is absent can be rejected. Thus, it can be concluded the alternative hypothesis 

that the ARCH effect is present (Ljung and Box, 1978) 

3.3.4.2 Autoregressive Conditional Heteroskedastic Lagrange Multiplier  

The purpose of the Autoregressive Conditional Heteroskedastic Lagrange Multiplier 

(ARCH-LM) test by Engle (1982), is to detect the presence of heteroskedasticity within 

the ASLI data. The latter is also known as the ARCH effect and is based on the linear 

regression equation Equation 26: 

𝑦𝑡 =  𝛽0 +  𝛽𝑖𝑥𝑖𝑡 + 𝑢𝑡                                    (26) 

where 𝛽0 is a constant 𝛽 is a coefficient for 𝑖 =  1, … , 𝑛 and 𝑢𝑡 is an innovation term. 

The LM test statistic is Equation 27: 

𝐿𝑀 = 𝑇𝑅2                                             (27) 

where the product is the sample size 𝑇 and the coefficient of multiple correlation 𝑅2 

obtained from the linear regression Equation 26. 

The calculated test statistic LM follows a chi-square distribution with 𝑚 degrees of 

freedom and is compared to the relevant critical value with respect to the level of 

significance. If LM is greater than the CV (𝑋𝑚
2 ), the null hypothesis that the ARCH effect 

is absent can be rejected. Thus, it can be concluded the alternative hypothesis that 

the ARCH effect is present (Engle, 1982). The presence of the ARCH effect, hence, 

conditional heteroskedasticity motivates the use of the GARCH models (Khan et al., 

2016). 
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3.4 GARCH Approach 

According to Savva and Theodossiou (2018), the GARCH approach is one of the 

foremost methods used in the investigation of the risk-return relationship. This school 

of models are briefly reviewed since these are standard methods in finance literature. 

While most documented studies highlight the advantages of the GARCH school of 

models, based on its conventional use, they fail to investigate the limitations and 

shortcomings.  

Therefore, the aim of this section is to highlight the shortcomings and limitations of the 

GARCH type models, their inability to capture asymmetric return exposure and fully 

capture risk (Jin, 2017). Hence, making the GARCH approach an inefficient choice in 

estimating the risk-return relationship and contributing to inconclusive results (Jensen 

and Maheu, 2018). The employment of GARCH type models follow the studies by 

Mandimika and Chinzara (2012), Adu et al., (2015), Khan et al., (2016) and Savva and 

Theodossiou (2018). 

3.4.1 Symmetric GARCH Models 

The symmetric GARCH models are the ARCH and GARCH (1, 1) models.  

3.4.1.1 ARCH (1, 1) 

The ARCH model introduced by Engle (1982), is the first method to capture volatility 

dynamics, particularly the market return characteristics, volatility clustering and heavy 

tails. The ARCH model has the ability to allow the conditional variance to be a time 

varying function of past innovations. The conditional mean is given by Equation 28.1: 

 𝑦𝑡 =  𝛽0 + 𝛽𝑖𝑥𝑖,𝑡 + ⋯ + 𝛽𝑛𝑥𝑛𝑡 + 𝑢𝑡                         (28.1) 

From Equation 28.1 by Engle (1982), 𝑦𝑡 is the conditional mean, 𝛽𝑖 is a coefficient for 

𝑖 = 0, … , 𝑁 and 𝑥𝑖,𝑡 are the exogenous and endogenous variables for order 𝑖 at time 𝑡.  

𝑢𝑡 =  𝜎𝑡 . 𝑧𝑡, 𝑧𝑡 ~ 𝑁 (0,1)                                  (28.2) 

From Equation 28.1, the innovation term 𝑢𝑡 is equal to Equation 28.2 which is the 

product of the conditional standard deviation 𝜎 of the innovations and the standardised 

innovation 𝑧𝑡. The standardised innovation 𝑧𝑡 is normally distributed with a mean of 

zero and unit variance so that the innovation 𝑢𝑡 also follows a normal distribution.   
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𝜎𝑡
2 =  𝛼0 + 𝛼1𝑢2

𝑡−1                                    (28.3) 

From Equation 28.3, 𝜎𝑡
2 is the conditional variance where 𝛼0 is a constant, 𝛼1 is a co-

efficient and 𝑢2
𝑡−1 is the lagged innovation term squared (Engle, 1982).   

The nonnegativity constraint, 𝛼0, 𝛼1 ≥ 0, is imposed to ensure a positive conditional 

variance; therefore, the model only accounts for the squared shocks (Hretski and 

Karachun, 2018). Consequently, it does not take into account negative shocks; hence, 

the asymmetric volatility phenomenon (Liu, Yao and Zhao, 2020). In this context, 

asymmetric volatility refers to when the conditional variance increases more for 

negative shocks than positive shocks, or vice versa, for the same magnitude (Savva 

and Theodossiou, 2018). Essentially, the ARCH model is a linear parametric model 

which cannot effectively account for asymmetric effects (Liu et al., 2020). 

According to Brooks (2014), determining the appropriate number of lags can pose a 

problem in two ways. Firstly, Equation 28.1 is an ARCH (1) model, but more lags can 

be added, as specified by q for an ARCH (q) model. While the optimal number of lags 

can be determined by means of a likelihood ratio test, this test has not been confirmed 

as being a credible choice. Secondly, the number of lags in Equation 28.3 can take on 

an infinite, or rather at least a very high number of parameters, in order to allow the 

conditional mean to fully capture the conditional variance. Consequently, in turn, this 

can result in the overparameterisation of the conditional variance. In other words, the 

conditional variance is being described by a very high number of parameters which 

can be computationally intensive (Al-Najjar, 2016; Brooks, 2014). Although this study 

does not include an empirical analysis of an ARCH model, it forms the basis upon 

which the other GARCH models are built on.   

3.4.1.2 GARCH (1, 1) 

Due to the limitations that arise from the ARCH model, Bollerslev (1986) introduced 

the standard GARCH (1, 1) model. GARCH is an extension of the ARCH model where 

the current conditional variance is a function of past volatility as well as the innovation 

terms (Hretski and Karachun, 2018).  

𝜎𝑡
2 =  𝛼0 + ∑ 𝛼𝑖𝑢

2
𝑡−1

𝑞
𝑖=1  +  ∑ 𝛽𝑗𝜎2

𝑡−𝑗
𝑝
𝑗=1                            (29) 
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From Equation 29 by Bollerslev (1986), the conditional variance 𝜎𝑡
2 is time varying 

and dependent on the past lagged innovation terms squared 𝑢2
𝑡−1. The nonnegativity 

constraints, 𝛼0 > 0 and 𝛼𝑖 ≥ 0, are applied to satisfy a positive conditional variance by 

Bollerslev (1986). 

According to Al-Najjar (2016), the GARCH model is a parsimonious model, whereas 

the ARCH model is not. A parsimonious model refers to a model that can describe 

data precisely using the minimum number of parameters. As noted, the ARCH model 

can result in having an infinite number of parameters in order to fully capture 

conditional variance. However, the GARCH model, on the other hand, uses only two 

parameters 𝛼1 and 𝛽1 as shown in Equation 29 (Liu, 2019; Apergis et al., 2018; Al-

Najjar, 2016). 

Volatility clustering describes the clustering nature of volatility, heavy tails and excess 

kurtosis (Adu et al., 2015). This can be measured by their persistence in which the 

ARCH and GARCH effects are designed to capture (Savva and Theodossiou, 2018). 

The ARCH effect captured by 𝛼1 which represents the persistence of risk over a short 

period of time and the GARCH effect is captured by 𝛽1 which represents the 

persistence of risk over the long-term (Khan et al., 2016). 

According to Khan et al., (2016), the conditional variance is subject to change but the 

unconditional variance of the innovation terms is constant. Therefore, the assumption 

of stationarity for the innovation terms only holds when ∑ 𝛼𝑖
𝑞
𝑖=1  +  ∑ 𝛽𝑗  < 1𝑝

𝑗=1  (Khan 

et al., 2016).  If this constraint is satisfied, the assumption of stationarity holds and the 

long run mean variance converges to unconditional variance given as Equation 30 by 

Bollerslev (1986):  

𝜎𝑡
2 =  𝑣𝑎𝑟(𝑢𝑡) =  

𝛼0

1−(∑ 𝛼𝑖
𝑞
𝑖=1

 + ∑ 𝛽𝑗 
𝑝
𝑗=1

)
                          (30) 

From Equation 30, if ∑ 𝛼𝑖
𝑞
𝑖=1  +  ∑ 𝛽𝑗  < 1𝑝

𝑗=1 , the unconditional variance for the 

innovation terms are undefined and non-stationary (Khan et al., 2016). Then the 

GARCH (p, q) model can be seen as a regular linear ARMA model which is essentially 

a linear parametric model (Brooks, 2014; Jin, 2017). 

According to Khan et al., (2016), for ∑ 𝛼𝑖
𝑞
𝑖=1  +  ∑ 𝛽𝑗 = 1𝑝

𝑗=1 , the unconditional variance 

is nonstationary and the above convergence does not occur. However, if ∑ 𝛼𝑖
𝑞
𝑖=1  +



70 
 

 ∑ 𝛽𝑗  > 1𝑝
𝑗=1 , the forecast of conditional variance increases to infinity as the sample 

period increases (Khan et al., 2016).  

According to Hretski and Karachun (2018), while both the ARCH and GARCH models 

can accommodate the time-varying nature of volatility, they have an inability to capture 

asymmetric properties. This is because of their underlying assumptions by Engle 

(1982). For example, both the ARCH and GARCH models are based on the 

assumption that volatility has a symmetric effect, meaning, all shocks on volatility are 

the same. This is because the conditional variance of the ARCH and GARCH models 

is determined by squared shocks and not their signs (Al-Najjar, 2016; Hretski and 

Karachun, 2018). As a result, the models do not take into account the market 

characteristic and empirical regularity asymmetric volatility (Yu et al., 2018).  

Consequently, other market characteristics that are not taken into account by the 

ARCH and GARCH models are volatility feedback and the leverage effect which can 

further explain asymmetric volatility (Yu et al., 2018). Essentially, the ARCH and 

GARCH models are symmetric parametric models which makes them an inefficient 

choice to model ALSI returns which is subject to asymmetric returns exposure. To 

confirm that the GARCH (1, 1) model is an inefficient choice to model the ALSI returns, 

asymmetry tests are applied to determine whether the ALSI returns has been 

adequately captured following Park et al., (2017) and Ilupeju (2016). 

3.4.1.3 Asymmetry Tests 

The asymmetry tests consist of the sign and size bias tests as well as joint effect test 

by Engle and Ng (1993). These tests are applied to the GARCH (1, 1) model to 

investigate the presence of asymmetry where the presence of asymmetry would 

indicate that the GARCH (1, 1) has not adequately captured the ALSI returns (Park et 

al., 2017).  

3.4.1.3.1 Sign Bias Test 

For the sign and size bias test by Engle and Ng (1993), the regression equation is 

Equation 31.1: 

𝑢̂𝑡
2 =  𝛽0 +  𝛽1𝑆𝑡−1

− + 𝛽2𝑆𝑡−1
−  +  𝛽3𝑆𝑡−1

+ +  𝑒𝑡                       (31.1) 

where the indicator variable 𝑆𝑡−1
+ = 1 − 𝑆𝑡−1

−  and 𝑆𝑡−1
−  is given as Equation 31.2: 
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𝑆𝑡−1
− = {

1, 𝑢𝑡−1 < 0
   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                       (31.2) 

From Equation 31.1, the coefficients 𝛽𝑖 for 𝑖 = 1, 2, 3 follow a student-t distribution 

(Engle and Ng, 1993).  

According to Park et al., (2017), if 𝛽1 is found to be significant, it can be concluded that 

the sign bias is present. The sign bias test investigates the size of innovation which 

indicates the effect of the type of shock on future volatility. If 𝛽2 or 𝛽3 is found to be 

significant, it can be concluded that the size bias is present. The positive sign bias 

represents the impact of a positive shock and the negative sign bias represents the 

impact of a negative shock on future volatility (Ilupeju, 2016; Park et al., 2017). 

3.4.1.3.2 Joint Effect Test 

The joint effect (JE) test statistic is given as Equation 32: 

𝐽𝐸 = 𝑇𝑅2                                               (32) 

where 𝑇 is the sample size and 𝑅2 is the coefficient of multiple correlation obtained 

from the linear regression Equation 31.1.  

According to Park et al., (2017), the joint effect test investigates the combined impact 

of both the sign and size bias on future volatility. If the JE test statistic is significant, it 

can be concluded that asymmetry is present and the GARCH (1, 1) model has not 

adequately captured asymmetric returns exposure. The presence of the joint effect, 

hence, asymmetry then motivates the use of the asymmetric GARCH models (Ilupeju, 

2016; Park et al., 2017). 

According to Liu et al., (2020), the ARCH model always has the least credible forecast 

ability, in comparison to the asymmetric GARCH type models such as GJR and 

EGARCH. Therefore, the accommodation of the asymmetry parameter in the 

asymmetric GARCH type models enhances the models forecast ability of empirical 

market return characteristics (Liu et al., 2020). This is especially important for 

emerging markets which are characterised by heavy tails and higher levels of volatility 

by Herbert et al., (2018). 

While the ARCH and GARCH models can capture heavy tails and volatility clustering, 

they fail to capture asymmetric volatility as well as volatility feedback and the leverage 
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effect (Hretski and Karachun, 2018). Therefore, various extensions have been made 

to the standard GARCH model to address this shortcoming and incorporate the 

asymmetric effects (Harris et al., 2019). This refers to the addition of the asymmetric 

parameter to the standard GARCH model resulting in the asymmetric GARCH type 

models GJR-GARCH, EGARCH and APARCH (Savva and Theodossiou, 2018).  

3.4.2 Asymmetric GARCH Models 

In this section, the asymmetric GARCH type models reviewed are the GJR-GARCH, 

EGARCH and APARCH.  

3.4.2.1 GJR-GARCH (1, 1)  

The GJR model is a simple extension of the standard GARCH model by the addition 

of the term 𝛾 𝑢2
𝑡−1𝐼𝑡−1 by Glosten, Jagannathan and Runkle (1993). The GJR model 

accommodates both time varying and asymmetric volatility and is also known as 

DGARCH, TGARCH or TARCH (Mangani, 2008; Mandimika and Chinzara, 2012; 

Ilupeju, 2016). 

𝜎𝑡
2 =  𝛼0 + ∑ 𝛼𝑖𝑢

2
𝑡−1

𝑞
𝑖=1  +  ∑ 𝛽𝑗𝜎2

𝑡−𝑗
𝑝
𝑗=1  + 𝛾 𝑢2

𝑡−1𝐼𝑡−1                   (33.1) 

From Equation 33.1 by Glosten et al., (1993), 𝛼0 is a constant term, 𝛼1 is the parameter 

of the squared lagged innovation term 𝑢2
𝑡−1. The parameter 𝛼1 and 𝛽𝑗 capture short 

and long-term volatility persistence, respectively following the standard GARCH 

model. The asymmetry parameter of interest 𝛾 captures the asymmetric effects, 

namely, asymmetric volatility and the leverage effect.  

𝐼𝑡−1 =  {
1,   𝑖f 𝑢𝑡−1 < 1
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                        (33.2)  

From Equation 33.1, the interaction variable 𝐼𝑡−1 is given by Equation 33.2 which 

distinguishes the effects of positive and negative volatility. The nonnegativity 

constraints are 𝛼0, 𝛼𝑖 > 0,  𝛾 ≥ 0 and 𝛼𝑖 +  𝛾 ≥ 0 and the model is still valid if 𝛾 <  0 

provided 𝛼𝑖 +  𝛾 ≥ 0 (Glosten et al., 1993).  

From Equation 33.1, for 𝛾 ≠  0, asymmetric volatility is present where positive and 

negative volatility shocks or news impact volatility differently (Adu et al., 2015). 

According to Mandimika and Chinzara (2012), asymmetric volatility and the leverage 

effect are often treated synonymously by the asymmetric GARCH type models. The 
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volatility shock or type of news is represented by the sign of 𝛼1. For a positive sign of 

𝛼1, good news has a greater impact on volatility than bad news of the same magnitude 

in the South African market. If 𝛾 > 0, this indicates the presence of asymmetric 

volatility and the leverage effect. For a positive volatility shock, volatility decreases and 

results in an increase in prices, indicating the leverage effect. If 𝛾 < 0, this indicates 

the presence of asymmetric volatility but the absence of the leverage effect 

(Maneemaroj et al., 2019; Adu et al., 2015; Mandimika and Chinzara, 2012).  

Like the rest of the asymmetric GARCH type models, the GJR-GARCH model can 

account for asymmetric volatility and the leverage effect, unlike the symmetric GARCH 

type models such as the ARCH and GARCH models (Hretski and Karachun, 2018). 

This is because of the asymmetry parameter and in the case of the GJR model, the 

interaction variable can take into account negative shocks (Glosten et al., 1993). 

However, one of the main drawbacks of the GJR and other GARCH models is the 

nonnegativity constraint which is addressed by the EGARCH model (Adu et al., 2015).  

3.4.2.2 EGARCH (1, 1) 

The exponential GARCH, EGARCH model by Nelson (1991), is specially designed to 

capture asymmetric volatility and the leverage effect by the asymmetry parameter 𝛾.  

ln(𝜎𝑡
2) = 𝛼0 + ∑ 𝛼𝑖

𝑞
𝑖=1 [|𝑧𝑡−1| − 𝐸|𝑧𝑡|] +  ∑ 𝛽𝑗

𝑝
𝑗=1  (𝜎𝑡𝑡−𝑗

2 )  +  𝛾 𝑧𝑡−1         (34) 

From Equation 34 by Nelson (1991), the terms 𝛼1 and 𝛽1 follow the standard GARCH 

model. Conditional variance is able to respond in a nonlinear manner to positive and 

negative returns by the magnitude of the innovation 𝛼1 [|𝑧𝑡−1| − 𝐸|𝑧𝑡|] and the sign 

effect 𝛾 𝑧𝑡−1. Like the GJR has the interaction variable, EGARCH has the sign effect 

to take into account negative shocks as well as positive shocks (Nelson, 1991). This 

property is effective since it allows for asymmetric effects - asymmetric volatility and 

the leverage effect (Hretski and Karachun, 2018).  

Equation 34 contains a logarithmic transformation which means that there is no need 

to impose nonnegativity constraints (Nelson, 1991). In contrast, to all the other 

GARCH type models such as GARCH (1, 1) GJR-GARCH and APARCH among 

others (Savva and Theodossiou, 2018). The asymmetry parameter of interest 𝛾 

indicates the asymmetric effects where the interpretation for 𝛾 follows the GJR-

GARCH (Ilupeju, 2016). 
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3.4.3.3 APARCH (1, 1) 

Following the asymmetric GARCH type models is the asymmetric power ARCH, 

APARCH model by Ding, Granger and Engle (1993), which includes the parameter 𝛾 

for asymmetric effects.   

𝜎𝑡
𝛿 =  𝛼0 +  ∑ 𝛼𝑖  (|𝑒𝑡−𝑖| −  𝛾𝑖 𝑒𝑡−𝑖)

𝛿 +  ∑ 𝛽𝑗  𝜎𝑡−𝑗
𝛿𝑞

𝑗−1
𝑝
𝑖=1                    (35) 

From Equation 35 by Ding et al., (1993), the terms 𝛼1 and 𝛽1 follow the standard 

GARCH (1, 1) model. The 𝛾 indicates the asymmetric effects where a positive value 

means that negative volatility shocks or news have a greater impact than positive 

(Ding et al., 1993).  

An underlying assumption for GARCH modelling by Engle (1982), is that asset returns 

follow a normal distribution. Since this does not hold true, as noted by asymmetric 

returns exposure, forecast performance is not statistically sound for GARCH type 

models that follow a standard normal innovation distribution. Therefore, in order to 

capture the heavy tails, a common characteristic by emerging markets, the innovation 

distributions student-t and skewed student-t was introduced. The APARCH model with 

the student-t and skewed student-t innovation distributions is noted to show superior 

model performance and is considered a credible choice when modelling asymmetry 

and heavy tails (Hretski and Karachun, 2018; Ilupeju, 2016). 

The additional parameter of 𝛿, shown as the exponent of Equation 35, is what makes 

the APARCH model unique (Ding et al., 1993). It enhances the model, allowing for 

flexibility of the APARCH model, to the extent that it can take on a number of ARCH 

and GARCH models (Hretski and Karachun, 2018). Specifically, it has the ability to 

take on seven extensions of the GARCH type models. Table 1 shows the GARCH type 

models the APARCH model can be set to by the given conditions. 
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Table 1: GARCH type models APARCH can be set to by the following conditions 

Model By Conditions 

ARCH Engle (1982) 𝛿 → 0 

Log-ARCH Geweke (1986) and Pantula (1986) 𝛿 → 0 

NARCH Higgins and Bera (1992) 𝛾𝑖 = 0, where 𝑖 = 1, … , 𝑞 

𝛽𝑗 = 0, where 𝑗 = 1, … , 𝑞 

GARCH Bollerslev (1986) 𝛿 = 2 

𝛾𝑖 = 0, where 𝑖 = 1, … , 𝑞 

TS-GARCH Taylor (1986) and Schwert (1990) 𝛿 = 1 

𝛾𝑖 = 0, where 𝑖 = 1, … , 𝑞 

GJR-GARCH Glosten et al., (1993) 𝛿 = 2 

TARCH Zakoian (1994) 𝛿 = 1 

 

This study implements GJR-GARCH by setting 𝛿 = 2 of the APARCH model (Tsay, 

2013). Like the rest of the GARCH family models, this model is subject to a number of 

nonnegativity constraints. This includes 𝛼0 > 0, 𝛼𝑖, 𝛽𝑗  ≥ 0 and 0 ≤  ∑ 𝛼𝑖 +𝑝
𝑖=1

 ∑ 𝛽𝑗 𝜎𝑡−𝑗
𝛿𝑞

𝑗−1  ≤ 1 (Ding et al., 1993). Despite the flexibility of the APARCH model, the 

risk within the innovations of any GARCH type model still remains uncaptured (Feng 

and Shi, 2017; Ilupeju, 2016). Thus, this suggests that the GARCH approach is an 

efficient choice in the estimation of risk and the risk-return relationship (Jensen and 

Maheu, 2018). 

3.4.3 GARCH-in-Mean  

According to Al-Najjar (2016), due to the risk-return relationship being a fundamental 

concept in financial and economic theory, the risk premium parameter was introduced 

to quantify the pricing of risk - the relation between risk and return. Engle, Lilien and 

Robins (1987) introduced the ARCH-in-mean model which was then extended to the 
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GARCH-in-mean model since the GARCH type models became more popular. The 

‘in-mean’ of the GARCH-in-mean or GARCH-M model refers to the fact that the 

conditional mean contains the conditional variance as well as the risk premium 

parameter. Like the asymmetry parameter in the asymmetric GARCH type models 

which captures asymmetric effects, the risk premium parameter is another useful 

feature in the GARCH type models which captures the risk-return relationship (Hretski 

and Karachun, 2018; Al-Najjar, 2016).  

The ‘in-mean’ of a GARCH type model can further be understood by the 

implementation stage using the R software. According to Tsay (2013), during the 

implementation stage of the GARCH models, if the parameter estimates are 

insignificant, the process of demeaning is used in order to improve the significance of 

the parameter estimates. Meaning, if the parameter estimates were insignificant, the 

constant 𝛼0 and/or mean 𝜇 can be dropped since it is not the parameter of interest or 

required for model adequacy. However, this procedure with respect to the mean 

cannot be followed for the GARCH (1, 1)-M and EGARCH (1, 1)-M models. This is 

because the risk premium parameter is embedded within the mean. Thus, the mean 

cannot be dropped because it contains the risk premium parameter of interest (Sultan, 

2018; Tsay, 2013). 

3.4.3.1 GARCH-M 

GARCH-M is a popular model used to price risk and determine the risk-return 

relationship through the risk premium parameter (Savva and Theodossiou, 2018).  

   𝑦𝑡 =  𝜇 + ∑ 𝛿𝑗𝜎2
𝑡−𝑗

𝑝
𝑗=1 + 𝑢𝑡 , 𝑢𝑡  ~ 𝑁 (0,1)                         (36.1) 

From Equation 36.1 𝑦𝑡 is the conditional mean, 𝜇 is the constant, 𝜎2
𝑡−𝑗 is the variance 

and 𝑢𝑡 is the innovation term that is normally distributed (Engle, 1982; Bollerslev, 

1986). Specifically, Equation 36.1 contains an ARCH-M specification by Engle et al., 

(1987), which is the risk premium 𝛿𝑗. 

𝜎2 =  𝛼0  +  ∑ 𝛼𝑖𝑢2
𝑡−1

𝑞
𝑖=1  +  ∑ 𝛽𝑗𝜎2

𝑡−𝑗
𝑝
𝑗=1                         (36.2) 

Equation 36.2 is the conditional variance 𝜎2 which follows the standard GARCH model 

by Bollerslev (1986).  
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The risk premium parameter 𝛿𝑗 is of interest for the GARCH-M model, which is used 

to price risk and determine the risk-return relationship, following a number of previous 

studies such as Mandimika and Chinzara (2012), Adu et al., (2015) and Khan et al., 

(2016). Additionally, given that risk is priced, this signifies the presence of volatility 

feedback by Umutlu (2019) and Jensen and Maheu (2018).  

However, analysing the risk premium alone to investigate the risk-return relationship 

is limited (Jin, 2017). The GARCH-M model cannot account for either volatility 

feedback or the leverage effect (Chakrabarti and Kumar, 2020). In other words, the 

GARCH-M model is limited in accounting for nonlinear and asymmetric properties 

(Maneemaroj et al., 2019). The GARCH-M model can be used to price risk, simply 

state if there exists a relation between risk and return in the market, but cannot be 

used to estimate an actual risk-return relationship (Jensen and Maheu, 2018).  

The GARCH-M model is heavily mispecified, according to Jin (2017), and unable to 

effectively account for risk and asymmetric returns exposure as previously discussed. 

Hence, the results are most likely to be misleading due to misestimating risk (Jensen 

and Maheu, 2018). The risk premium parameter can be used in conjunction with other 

GARCH type models, such as EGARCH or a hybrid GARCH model, which can 

account for asymmetry and other features (Park et al., 2017). Thus, the asymmetric 

and hybrid GARCH type models are a more practical choice in determining the 

presence of the risk-return relationship and volatility feedback, respectively 

(Maneemaroj et al., 2019).  

3.4.3.2 EGARCH-M 

In comparison, to the GARCH-M model, the EGARCH-M model is a more practical 

choice in the investigation of the risk-return relationship because EGARCH has the 

ability to account for asymmetric effects (Adu et al., 2015; Hretski and Karachun, 

2018).  

The EGARCH-M model follows the mean model of the standard GARCH-M model 

shown by Equation 37.1: 

𝑦𝑡 =  𝜇 +  ∑ 𝛿𝑗𝜎2
𝑡−𝑗

𝑝
𝑗=1 + 𝑢𝑡 , 𝑢𝑡 ~ 𝑁 (0,1)                               (37.1) 

and the conditional variance of EGARCH is shown by Equation 37.2: 
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ln(𝜎𝑡
2) = 𝛼0 +  ∑ 𝛼𝑖

𝑞
𝑖=1 [|𝑧𝑡−1| − 𝐸|𝑧𝑡|] + ∑ 𝛽𝑗

𝑝
𝑗=1  ln (𝜎2

𝑡−𝑗
)  +  𝛾 𝑧𝑡−1        (37.2) 

where the interpretation of the constants, coefficients and parameters are as above. 

From the standard GARCH model, various further extensions, modifications and 

hybrid models have been introduced, such as the EGARCH-M (Park et al., 2017). 

However, all the models arise from similar parametric assumptions and model 

constraints and are thus limited in fully capturing risk (Feng and Shi, 2016, 2017; Jin, 

2017; Jensen and Maheu, 2018; Demirer et al., 2019).  

3.4.4 Multivariate GARCH (1, 1) 

In order to estimate a high number of parameters, multivariate GARCH models were 

introduced to solve the problem of overparameterisation which is computationally 

intensive (Aboura and Chevallier, 2018). According to Savva and Theodossiou (2018), 

this family of GARCH type models are used to investigate a correlation between 

shares and/or markets. It is often used to detect transmissions or spillover effects of 

volatility. However, this method is no better than a univariate GARCH approach since 

the conditional mean of returns are modelled in linear relation to the current and past 

return variance (Sultan, 2018; Savva and Theodossiou, 2018). It is still a parametric 

approach where constraints are imposed on the data, limiting the possibility of a 

nonlinear risk-return relationship (Demirer et al., 2019). Since this study is based on 

an aggregate market level, the multivariate GARCH family is not reviewed. Essentially, 

the GARCH school of models are considered an inefficient choice in risk estimation 

since it does not fully capture the asymmetric nature of risk (Mangani, 2008; Feng and 

Shi, 2016; Feng and Shi, 2017; Jin, 2017; Jensen and Maheu, 2018).  

3.4.5 Information Criteria  

According to Feng and Shi (2017), risk remains uncaptured within the innovations of 

the GARCH models. In order to confirm the uncaptured risk, the best fitting GARCH 

type model and probability distribution governing the innovations are first selected. 

This selection is made by information criteria which is a type of model testing used to 

determine if an econometric model specification/s and estimation is statistically sound 

(Harris et al., 2019). This study employs Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC), following a number of studies such as 

Mandimika and Chinzara (2012), Adu et al., (2015), Khan et al., (2016) and Liu (2019).  



79 
 

3.4.5.1 Akaike Information Criterion 

The choice of AIC is inconsistent but efficient and preferable for a small sample since 

it has the least strict penalty (Apergis et al., 2018).  

The Akaike Information Criterion (AIC) by Akaike (1973), is given as Equation 38: 

𝐴𝐼𝐶 =  − 
2

𝑘
 log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) +  

2

𝑘
 (𝑝 + 𝑞)                              (38) 

where 𝑘 is the sample size and 𝑝 + 𝑞 is the number of parameters in the model. 

The addition of more parameters improves the model fit but strengthens the penalty 

imposed on increasing the number of parameters (Pham, 2020). 

3.4.5.2 Bayesian Information Criterion 

The choice of BIC is consistent but inefficient and preferable for a large sample since 

it has a strict penalty (Apergis et al., 2018).   

The Bayesian Information Criterion (BIC) by Schwarz (1978), is given as Equation 39: 

𝐵𝐼𝐶 =  −2 log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) +  [(𝑝 + 𝑞) +  (𝑝 + 𝑞) log (𝑘)]                  (39) 

where 𝑘 is the sample size and 𝑝 + 𝑞 is the number of parameters in the model. 

In contrast, to AIC which is not dependent on the number of observations, the penalty 

for BIC is affected by the sample size (Pham, 2020). By Apergis et al., (2018), overall, 

there is no better information criterion; thus, both AIC and BIC are used in this study.  

Hence, the best GARCH model is determined by the smallest AIC and BIC information 

criteria values following Mandimika and Chinzara (2012), Adu et al., (2015), Khan et 

al., (2016) and Liu (2019). Thereafter, the innovations of the selected GARCH model 

are investigated to determine if risk has been fully captured. 

3.4.6 Uncaptured Risk Within Innovations  

In order to confirm the uncaptured risk within the innovations by Feng and Shi (2017), 

the preliminary tests from section 3.3 are applied to the innovations. Additionally, so 

are randomness tests following Mangani (2008) and Ilupeju (2016). Drawn from 

Mangani (2008) and Feng and Shi (2017), the innovations are expected to show 

nonnormality, heteroskedasticity and random behaviour to prove that risk remains 

uncaptured. 
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3.4.6.1 Randomness Tests 

The random behaviour of the innovations is investigated by independent and 

identically distributed (IID) tests. The Brock, Dechert and Scheinkman (BDS), Bartels 

rank and, Cox- Stuart tests are employed following the studies by Mangani (2008) and 

Ilupeju (2016). All three randomness tests are nonparametric tests which means that 

the innovations are tested free from any assumptions or knowledge (Luo, Bai, Zheng 

and Hui, 2020). The BDS test is not only a test for random behaviour but also detects 

for nonlinearities. Random behaviour is further investigated by a Bartels test by means 

of a ranking method, whereas the Cox and Stuart test analyses the shape of the trend 

exhibited by the innovations. 

3.4.6.1.1 Brock, Dechert and Scheinkman 

According to Luo et al., (2020), the Brock, Dechert and Scheinkman (BDS) test is 

widely used in the field of economics and finance for a number of reasons. One of the 

popular reasons being, the time series sequence tested does not have to contain 

higher moment properties such as kurtosis or skewness. However, in the context of 

time series analysis, this can be viewed as a limitation for two reasons.  

First, returns are subject to asymmetric returns exposure and second, asymmetry 

remains uncaptured within the innovations of GARCH type models according to Feng 

and Shi (2017). The limitation is addressed by the fact that another important feature 

of the BDS test is that it is not only a randomness test but also detects whether 

nonlinearities are present within the innovations. This is because the test is essentially 

a nonparametric test which means that it accounts for asymmetry whether it is known 

or unknown to be present within the series (Mangani, 2008; Luo et al., 2020). 

For the BDS test by Brock, Scheinkman, Dechert and LeBaron (1996), the BDS test 

statistic is Equation 40: 

𝐵𝐷𝑆𝑚,𝑒 =  
√𝑁(𝐶𝑚,𝑒−|𝐶1,𝑒|

𝑚
)

√𝑉𝑚,𝑒
                                               (40) 

where 𝑁 is the sample size, 𝐶𝑚,𝑒 is a correlation integral and 𝑉 is a consistent estimator 

of standard deviation of the numerator for dimensions 𝑚 and distance 𝑒. 

The calculated BDS test statistic follows a normal distribution with mean one and a 

unit variance and is compared to the relevant CV which is selected with respect to the 
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level of significance. For the two-sided test and a 5% level of significance, if the BDS 

< -1.960 and BDS > 1.960, the null hypothesis of randomness in the innovations can 

be rejected. Thus, it can be concluded the alternative hypothesis of nonrandomness 

in the innovations (Brock et al., 1996).  

3.4.6.1.2 Bartels Rank 

Like the BDS test, the test by Bartels (1982), is unaffected by the presence or absence 

of higher moment properties due to being nonparametric. Therefore, in the context of 

the probability distribution governing the innovations, this suggests that the test is 

unaffected by the choice of distribution being normal, student-t or skewed student-t 

(Luo et al., 2020). 

For the Bartels rank test by Bartels (1982), the RVN test statistic is Equation 41: 

𝑅𝑉𝑁 =  
∑ [𝑅(𝑧𝑖 )−𝑅(𝑧𝑖+1)]2𝑛−1

𝑖=1  

𝑛(𝑛2−1) 12⁄
                                 (41) 

where R is the rank of the standardised innovations 𝑧𝑖 and 𝑧𝑖+1 for 𝑖 = 1, … , 𝑛 − 1 and 

𝑛 is the sample size 

The calculated RVM test statistic follows a normal distribution with mean one and a 

unit variance. It is compared to the relevant CV which is selected with respect to the 

level of significance. For the two-sided test, if RVM < 𝑧𝛼
2⁄  and RVM > 𝑧1− 𝛼 2⁄  where 𝛼 

is the level of significance, the null hypothesis of randomness in the innovations can 

be rejected. Thus, it can be concluded the alternative hypothesis of nonrandomness 

in the innovations (Bartels 1982). 

3.4.6.1.3 Cox and Stuart 

The Cox-Stuart test by Cox and Stuart (1955), uses the process of detecting a trend 

of the standardised innovations. According to Rutkowska (2015), the test does not 

assume the shape of the trend. Hence, it is a credible test when asymmetry is present 

within the probability distribution governing the innovations such as a student-t or 

skewed student-t. Like the BDS and Bartels rank test, the Cox-Stuart test include not 

being influenced by the type of probability distribution as well as the size of the sample 

(Luo et al., 2020; Rutkowska, 2015). 



82 
 

Given the set of innovations 𝑧1, … , 𝑧𝑡 they are arranged in grouped pairs as shown by 

Equation 42: 

(𝑧1, 𝑧1+𝑘), (𝑧1, 𝑧2+𝑘), … , (𝑧𝑡−𝑘, 𝑧𝑡)                               (42) 

where 𝑘 =  {
              

𝑡

2
,     𝑖𝑓 𝑡 𝑖𝑠 𝑒𝑣𝑒𝑛  

𝑡+1

2
,    𝑡 𝑖𝑠 𝑜𝑑𝑑

                                       

Then a sign test from the grouped pairs in Equation 42 is given as Equation 43: 

𝑠𝑖𝑔𝑛( 𝑧𝑖, 𝑧𝑖+𝑘) =  {

+, 𝑖𝑓 𝑧𝑖 < 𝑧𝑖+𝑘

0, 𝑖𝑓 𝑧𝑖 = 𝑧𝑖+𝑘

−, 𝑖𝑓 𝑧𝑖 > 𝑧𝑖+𝑘

                                          (43) 

where the test statistic is defined as T the number of positives and N is defined as the 

number of negatives. 

The test statistic T is compared to the relevant CV for the selected level of significance 

𝛼. If 𝑇 ≤  
1

2
 −  𝑍𝛼 2⁄  √

1

4 𝑁
  or  𝑇 ≥  

1

2
 + 𝑍𝛼 2⁄  √

1

4 𝑁
, the null hypothesis of no trend can be 

rejected. Thus, it can be concluded the alternative hypothesis of an upward or 

downward trending behaviour (Cox and Stuart, 1955). 

3.4.7 Summary of the GARCH Approach 

According to Hretski and Karachun (2018), the GARCH family shows a progression of 

model extensions to incorporate the market characteristics of financial data. The 

ARCH model is a function of past innovations, whereas the GARCH model is a function 

of past innovations and volatility. Both the ARCH and GARCH models are time 

varying, have the ability to capture volatility clustering and heavy tails. However, these 

models are essentially linear functions and cannot account for asymmetry, particularly 

the market characteristics, asymmetric volatility and the leverage effect. Extensions of 

the original GARCH model has led to the flexible APARCH and GJR-GARCH model 

which accounts for asymmetric effects. However, the EGARCH model accounts for 

both asymmetric volatility and the leverage effect more effectively by a sign and 

magnitude innovation without nonnegativity constraints (Adu et al., 2015; Khan et al., 

2016; Hretski and Karachun, 2018).  
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The GARCH-M is used to price risk but this study limits the model from estimating and 

explaining the risk-return relationship due to its inability to account for asymmetric 

returns exposure. This return inherent risk is latent and stochastic in nature and cannot 

be observed directly; thus, it has a certain level of uncertainty attached to it (Jin, 2017). 

The GARCH family is ineffective in fully accounting for risk due to essentially being 

parametric and not fully capturing risk by their innovations (Feng and Shi, 2017). 

Despite this finding, studies still extensively apply the GARCH approach in the 

investigation of risk-return relationship as documented in the study by Savva and 

Theodossiou (2018). Theoretical and empirical literature indicates that the GARCH 

approach can be considered as irrelevant and obsolete given the existence of more 

robust methods such as the nonparametric Bayesian approach by Jensen and Maheu 

(2018). 

3.5 Bayesian Approach 

Bayesian statistics is introduced to give a brief background of this school of thinking. 

The research design provides a framework for which a problem, such as the risk-return 

relationship and volatility feedback topic, can be solved within the Bayesian approach. 

The econometric model then shows how the Bayesian school of thinking is applied to 

the investigation of the risk-return relationship and volatility feedback. This is followed 

by the method procedure of a parametric Bayesian model and then nonparametric 

Bayesian model which is the main method of investigation for this study.  

3.5.1 Background 

According to Herath (2019), classical or frequentist statistics is often used in the 

conventional approaches of quantitative finance where theory is either accepted or 

rejected based on the empirical results. On the other end of the spectrum, is Bayesian 

statistics which is used for estimation, inference and modelling of data where the 

theory and empirical model are closely related. This is made possible by accounting 

for prior information (Herath, 2019). Bayesian statistics is an extensive field of study 

built on Bayes (1763) theorem which is the probability estimation of a relationship 

given prior information. Although most researchers may not use Bayes theorem 

directly, the underlying idea of the concept is fundamental to aid one's understanding. 

That is, in terms of conditioning variables, how the probability of one variable, 

representing a relationship, theory or event, affects the probability of another 
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(Hatjispyros, Nicoleris and Walker, 2019). In addition, the updating of existing theories 

as additional data becomes available (Cai, 2018).  

The inability of the classical or frequentist approach to take into account prior 

information suggests an inflexible approach (Herath, 2019). The empirical results of a 

classical approach are often presented in the form of p-values or confidence intervals, 

whereas the Bayesian approach presents a posterior parameter estimate 

(Wagenmakers et al., 2018). According to Brooks (2014), a conventional 95% 

confidence interval defines a range of values that one can be 95% certain contains a 

parameter estimate. Wagenmakers et al., (2018) notes that the confidence interval 

procedure is limited as one cannot specify the interval bounds and then find out the 

probability or confidence that the parameter estimate lies within that specified interval.  

In contrast, to a regular confidence interval, is a Bayesian interval which is also known 

as a credible or density interval (Karabatsos, 2016; Jensen and Maheu, 2018). A 

credible interval has two advantages by Wagenmakers et al., (2018). First, a credible 

interval accounts for conditional prior information. This leads to the second advantage, 

which means that the parameter estimate is a posterior parameter estimate where the 

data has updated to given information. To aid understanding this critical difference in 

data estimation, a classical approach can be thought of as “pre-data”, whereas a 

Bayesian approach is more of a “post-data” estimate due to taking into account prior 

information including uncertainty (Wagenmakers et al., 2018). 

One of the main advantages of a Bayesian approach over a frequentist approach is 

the ability to average out uncertainty surrounding a parameter (Waldmann, 2018). In 

the context of risk estimation, according to Aliu et al., (2017), the probabilities of 

possible future outcomes can be estimated given prior information. Meaning, risk 

allows an individual to have some probability of knowledge, whereas in contrast, 

uncertainty does not (Aliu et al., 2017). Therefore, a method that has the ability to 

account for uncertainty immediately suggests a more robust and informative measure 

of risk (Herath, 2019).  

This is made possible by the fact that a Bayesian approach introduces parameters as 

random variables instead of a number or fixed value, such as returns as a linear 

function of volatility, in a parametric model (Kim and Kim, 2018). Structural breaks are 

treated the same way, allowing for the parameters to change in relation to these breaks 
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in a quantitative rather than qualitative manner (Wang and Tsay, 2018). In contrast, 

the traditional approach by the GARCH school of modelling is to use dummy variables 

to account for extreme events (Mandimika and Chinzara, 2012). Thus, not only does 

the Bayesian approach has a greater ability to capture extreme events but accounts 

for the uncertainty associated with the random stochastic nature of the variables (Cai, 

2018; Gong, Liu, Xiong and Zhuang, 2019). 

Literature highlights the Bayesian approach as a novel approach used in a number of 

fields and real-life practical situations such as the medical field, psychology and 

economics (Karabatsos, 2016; Wagenmakers et al., 2018; Herath, 2019). The 

fundamentals of a Bayesian approach remain the same whether the model is simple 

or complex because the common important feature is the posterior estimate 

(Wagenmakers et al., 2018). When the posterior estimate cannot be determined 

analytically, it can be drawn from computational sampling techniques such as Markov 

Chain Monte Carlo (MCMC) methods (Herath, 2019). MCMC is often used to derive a 

probability estimation of a density given limited information about the distribution 

(Martino, Elvira and Camps-Valls, 2018; Gu, Zhang, Liu, Zhang and Ye, 2019; Griffin 

et al., 2018).  

This development of MCMC methods has been made possible as a result of 

technological advancements and relevant up to date software (Herath, 2019). 

According to Karabatsos (2016), MCMC has been specifically designed to fit Bayesian 

models which are uniquely beneficial from conventional quantitative finance methods 

which address a number of shortcomings. This includes parametric models such as 

regression analysis, the VAR model, causality tests and the GARCH approach, as 

highlighted in the empirical review. The application of Bayesian and MCMC methods 

in the fields of psychology and medicine demonstrates its level of usefulness in the 

real world due to its practicality and effectiveness (Jung et al., 2020; van Doremalen 

et al., 2020; Wagenmakers et al., 2018; Karabatsos, 2016).   

In conclusion, the Bayesian approach is suitable for models that understand the 

complexity of financial data, especially the nature of returns which has a nonlinear, 

asymmetric, volatile, stochastic and latent nature (Wagenmakers et al., 2018). Thus, 

it is only fair to apply this method to the field of finance to improve conclusive findings. 
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3.5.2 Research Design 

There are three specific reasons by Ferson (2005), where one can use the Bayesian 

method for a scientific analysis which is applicable to the context of this study. Firstly, 

it provides a framework to structure a problem where there could exist the following 

three sub challenges:   

• First, there is a lack of existing literature regarding the subject of interest 

(Ferson, 2005). In this case, it is applicable to volatility feedback and the risk-

return relationship topic in South Africa relative to other countries, respectively 

(Savva and Theodossiou, 2018).   

• Second, there may be a need to incorporate a probabilistic approach rather 

than a deterministic one (Ferson, 2005). Asymmetric returns exposure has a 

stochastic and latent nature which means that it can be statistically analysed 

but not necessarily forecasted with certain precision (Harris, 2017; Jin, 2017).  

• Third, there exists a substantial amount of uncertainty surrounding the 

parameters and model (Ferson, 2005). With respect to the parameters, due to 

the nature of asymmetric returns exposure, there is a certain level of uncertainty 

attached to the variable returns. In terms of the model, this can be shown by 

previous risk-return empirical studies that use methods that do not effectively 

account for asymmetric returns exposure. Specifically, the conventional 

parametric models that are not designed to handle the asymmetric nature of 

returns and the uncertainty associated to the variable (Jin, 2017). Thus, 

affecting the estimation of risk and contributing to inconclusive results (Jensen 

and Maheu, 2018).  

Secondly, the ability to estimate probability distributions which are made up of two 

parts, namely, priors and posteriors (Hatjispyros et al., 2019). A prior is an initial 

probability estimation based on existing information (Goudarzi, Jafari and Khazaei, 

2019). A prior has the ability to update given the availability of more data by means of 

a likelihood function which consists of new observed data (Karabatsos, 2016). The 

combination of a prior and likelihood by means of model estimation results in the 

posterior which is an updated probability estimation (Cai, 2018).  

With respect to the nonparametric Bayesian approach in this study, the prior is 

estimated by the Bayesian Dirichlet Process by Ferguson (1973), derived by the stick-
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breaking process by Sethuram (1994). The posterior is estimated by a slice sampler 

by Kalli, Griffin and Walker (2011) and a Gibbs sampling technique. This follows 

Jensen and Maheu (2018), which is the first and only study to apply the nonparametric 

Bayesian approach to the risk-return relationship and volatility feedback topic, to the 

best of the authors knowledge. These are golden standard nonparametric Bayesian 

methods (Dirichlet Process, slice and Gibbs sampler) which involve random sampling 

methods whereby every distribution has an equal chance of being drawn (Alvi, 2016). 

These methods suggest low levels of bias and systematic error, and a high level of 

reliability, validity and viability (Etikan and Bala, 2017). Thus, ensuring accurate 

estimates and reliable results (Karabatsos, 2016).  

Thirdly, choosing and estimating the parametric or nonparametric approach to 

accompany the Bayesian model (Demirer et al., 2019). By definition, a parametric 

model refers to a set number of parameters with respect to the sample size (Jin, 2017). 

This is in contrast to a nonparametric model where the number of parameters 

increases as the sample size increases (Apergis et al., 2018). In other words, this 

means that as more data becomes available, the number of parameters increases, 

allowing for a greater number of possibilities (Demirer et al., 2019). Further, the 

likelihood function of new observations can be captured due to the access or 

availability of additional data (Cai, 2018). Essentially, the nonparametric approach 

implies a model free approach, where this study highlights the normality assumption 

being relaxed, allowing for an array of asymmetric properties (Jensen and Maheu, 

2018).  

In the context of this study, according to Karabatsos (2016), a nonparametric Bayesian 

model is often referred to as being an infinite-mixture model. An infinite-mixture model 

describes a model that takes into account an infinite number of clusters. The cluster 

is a component of a mixture of, in this case, weights and parameters. The 

nonparametric Bayesian model assumes an infinite number of clusters, whereas the 

parametric Bayesian model assumes a finite number of clusters. As a result, the 

nonparametric Bayesian model is the more robust model, due to having greater 

flexibility in effectively accounting for higher moment asymmetric forms of the risk-

return relationship, in an infinite sample space. A sample space refers to the number 

of possible outcomes of a random variable. The nonparametric approach is designed 

to effectively account for an infinite sample space, whereas a parametric approach is 
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limited to a finite sample space by definition (Jensen and Maheu, 2018; Karabatsos, 

2016). The property of the clustering mixture of parameters is further highlighted in the 

method procedure, after the motivation for the econometric model, as follows.  

3.5.3 Motivation for Econometric Model 

The risk premium is a source of risk and is synonymous with excess returns, investors 

risk compensation and is often used to investigate the risk-return relationship (He et 

al., 2018). The prediction of excess returns is of wide interest to academics and market 

participants (Herbert et al., 2018). From a finance perspective, forecasting power of 

returns is determined by an appropriate measure of a firm’s prospects and systematic 

risk (Kim and Kim, 2018). In contrast, from an economic perspective, macroeconomic 

factors such as credit spreads, term spreads and exchange rates are more closely 

related (Park et al., 2017).  

However, according to Kim and Kim (2018), volatility feedback can be described as a 

predictor of unanticipated errors, as a result of macroeconomic variables, which affects 

returns. Consequently, by definition this mechanism suggests the ability to capture 

volatility which arises from an economic and financial perspective. Additionally, this 

allows volatility feedback to be treated as is and not tailor it to a factor such as “volatility 

feedback news” to explicitly state that this mechanism is driven by information or 

macroeconomic fundamentals (Kim and Kim, 2018). Volatility feedback is an important 

factor to take into account when predicting excess returns which can be 

mathematically shown.  

According to Jensen and Maheu (2018), there are two specific opposing effects that 

act on excess returns. These effects are shown by the trade-off theory by Markowitz 

(1952), and the volatility feedback effect by Pindyck (1984). The econometric model 

by French et al., (1987), shows how volatility feedback obscures any risk-return 

relationship. The application of Bayes (1763) theorem, in terms of conditioning 

variables, shows how excess returns, the risk-return relationship and volatility 

feedback are all related. The Bayesian econometric model by French et al., (1987), is 

given as Equation 44. Note, throughout this study, the information set 𝐼𝑡−1 refers to all 

the possible values made up from the dataset, excess returns 𝑟𝑡 and realised variance 

𝑅𝑉𝑇, and is represented by 𝐼𝑡−1 = {𝑟1, 𝑅𝑉1, … , 𝑟𝑡, 𝑅𝑉𝑡} where 𝑡 = 1, … , 𝑇.  
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rt = E[rt| It − 1] +  α1(RVt −  E[RVt| It − 1]) + et                          (44) 

From Equation 44 by Jensen and Maheu (2018), E[rt| It − 1] is defined as the expected 

conditional mean of excess returns, given the information set which is made up of 

excess returns and realised variance. This is an ex ante (future) term and captures the 

positive risk-return relationship. The coefficient α1 of α1(RVt −  E[RVt| It − 1]) is a 

measure of the persistence of risk or a volatility shock on (RVt −  E[RVt| It − 1]). The 

latter is the difference between observed realised variance and expected realised 

variance. This is an ex post (actual) term and captures the volatility feedback effect. 

Finally, et is the innovation term of the model which captures the possible deviations 

between the observed and expected values (Jegadeesh, Noh, Pukthuanthong, Roll 

and Wang, 2019; Jensen and Maheu, 2018). 

Provided volatility is a priced risk factor by Jensen and Maheu (2018), for a positive 

volatility shock α1, that is for a strong persistence in risk; actual volatility persists and 

signals future volatility on expected returns. This results in a positive risk-return 

relationship by the trade-off theory which is captured by E[rt| It − 1] (Markowitz, 1952). 

In turn, there is a demand for higher expected returns and in order to raise the 

expected returns; share prices decrease by the volatility feedback effect which is 

captured by the volatility innovation α1(RVt −  E[RVt| It − 1]) (Pindyck, 1984). In 

summary, for a positive volatility shock, there is an increase in E[rt| It − 1] capturing the 

risk-return relationship and a decrease in α1(RVt −  E[RVt| It − 1]) capturing volatility 

feedback (Jensen and Maheu, 2018).  

 According to Jensen and Maheu (2018), this model mathematically shows the two 

opposing effects that act on excess returns. This is captured by a nonparametric joint 

distribution between excess returns and realised variance. Once volatility feedback is 

established, by its presence or absence in the market based on its magnitude, the risk-

return relationship is investigated. Note, this only occurs when the volatility shock is 

zero as shown by Equation 45 which shows a pure trade-off between risk and return, 

once the presence of volatility feedback has been taken into account (Jensen and 

Maheu, 2018).  

RVt = E[RVt|It−1]                                                          (45) 
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To clarify, from Equation 45 by Jensen and Maheu (2018), in order for the volatility 

shock α1 of α1(RVt −  E[RVt| It − 1]) to be zero, the observed realised variance RVt 

needs to be equivalent to the expected realised variance E[RVt|It−1]. To aid 

understanding, this can be graphically represented as the intersection of the density 

lines of the observed and expected realised variance. Thereafter, to account for the 

presence of volatility feedback, a method of interpolation is applied which refers to 

where the specified points of intersection are constructed within all the existing data 

points (Jensen and Maheu, 2018).    

3.6 Method Procedure  

The econometric model follows the method procedure outlined below from which the 

parametric Bayesian model and then nonparametric Bayesian model are derived. Both 

models are under the Bayesian approach since they both have the ability to account 

for the uncertainty associated with the nature of asymmetric returns exposure (Agilan 

and Umamahesh, 2017). However, note that the nonparametric Bayesian model is the 

main method of investigation in this study since it has the greater ability to account for 

asymmetry (Jensen and Maheu, 2018).  

The parametric Bayesian model is outlined first because it follows the order of the 

study by Jensen and Maheu (2018), where its purpose is twofold. In this case, first to 

serve as a preliminary test to provide an overall idea of the effects of volatility feedback 

and the risk-return relationship. Second, to allow for a meaningful comparative 

analysis with the final results of the nonparametric Bayesian model. The two variables 

of interest, excess returns and realised variance, are treated and modelled as 

continuous random variables due to their stochastic nature and ability to take on an 

infinite number of values (Demirer et al., 2019) 

3.6.1 Parametric Bayesian Model  

The parametric Bayesian model follows the method procedure of the nonparametric 

Bayesian model with one exception - the model becomes a finite model and is further 

simplified by the author for computational ease. To recap, according to Karabatsos 

(2016), a nonparametric Bayesian model is often referred to being an infinite-mixture 

model. Essentially, a nonparametric Bayesian model assumes an infinite number of 

clusters, whereas a parametric Bayesian model assumes a finite number of clusters 

(Jensen and Maheu, 2018; Karabatsos, 2016). The parametric Bayesian model is a 
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finite model because by definition a parametric model has a set number of parameters 

with respect to its sample size (Jin, 2017).   

Therefore, although the parametric Bayesian model takes into account asymmetric 

properties, it does so to a limited extent because the model is essentially parametric 

(Jin, 2017). Hence, the parametric model does not have the capacity to take into 

account an infinite number of possibilities and account for every possible risk-return 

relationship that could exist (Demirer et al., 2019). Consequently, there is no need to 

apply a prior to reduce an infinite model to a finite model since it is already finite 

(Karabatsos, 2016). However, in order to derive the posterior parameter estimates, 

the posterior methods, the slice sampler by Kalli et al., (2011) and Gibbs sampler are 

still applied. 

3.6.1.1 Joint   

Following Jensen and Maheu (2018), in this studies procedure in uncovering the risk-

return relationship, the first step is to model a joint distribution of excess returns and 

realised variance. This results in a number of bivariate density functions which are the 

consequent possible densities of the joint model of the two variables shown in 

Equation 46: 

p(rt, log(RVt) |It−1, Ω, Θ) =  ∑ wj ∗ f (rt, log(RVt)|θj, It−1)∞
j=1                    (46) 

where the probability of excess returns and log realised variance is conditional on the 

following: The information set, the mixture weights Ω =  𝑤𝑗 where ∑ 𝑤𝑗 = 1∞
𝑗=1  and 

mixture parameters Θ =  𝜃𝑗 where 𝑗 = 1, … , ∞ which refers to the number of clusters 

of mixture parameters. This is equivalent to the sum of all the weights and functions 

of excess returns and log realised variance, given the parameters and information set.  

The next step involves deriving a parametric version of the risk-return relationship by 

reducing the notation of Equation 46 to only the necessary components and rewriting 

Equation 46 as Equation 47:  

f (rt, log(RVt)|θj, It−1) ≡  f (rt| log(RVt), θj, It−1) ∗ f (log(RVt)|θj, It−1)         (47) 

where the latter is simply the product of the conditional distribution (term 1) and 

marginal distribution (term 2) by the law of total probability (Chan, Guo, Lee and Li, 

2018; Jensen and Maheu, 2018). Since excess returns and log realised variance 
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theoretically tends to a normal distribution, Equation 47 allows for the representation 

of Equation 48 and 49, respectively (Jensen and Maheu, 2018).  

Equations 48 and 49 follow a functional form of normality like conventional parametric 

methods such as the GARCH approach (Madaleno and Vieira, 2018). However, the 

mixing of the finite number of cluster parameters allows for a wider array of joint 

densities, including asymmetric densities, in a finite sample space (Karabatsos, 2016). 

Therefore, suggesting that the parametric Bayesian model is more robust than other 

conventional parametric models such as the GARCH approach (Jensen and Maheu, 

2018). 

f (rt| log(RVt) , θj, It−1) = fN(rt|α0 + α1RVt, η1
2RVt)                       (48) 

From Equation 48 by Jensen and Maheu (2018), the conditional mean function of 

excess returns given log realised variance, the parameter and information set, is 

equivalent to the normal conditional mean function of excess returns. The latter is 

conditional on the following: The coefficient 𝛼1 on 𝑅𝑉𝑡 represents the persistence of 

risk on realised variance and this term represents volatility feedback. The  𝜂1
2 on 𝑅𝑉𝑡 

indicates the systematic error on realised variance. This term refers to the error 

surrounding the stochastic measure of realised variance which is unavoidable 

regardless of the number of times the model is run (Beyhaghi, Alimo and Bewley, 

2018; Jensen and Maheu, 2018).    

f (log(RVt) |θj, It−1)                                                                                                        (49) 

= fN((log(RVt) | γ0 + γ1 log(RVt−1) +  𝛾2log (RVt−i) + γ3

rt−1

√RVt−1

+ γ4 |
rt−1

√RVt−1

| , η2
2)  

From Equation 49 by Jensen and Maheu (2018), the conditional mean function of log 

realised variance, given the parameters and information set, is equivalent to the 

normal conditional mean function of log realised variance. The latter is conditional on 

the following: The coefficients 𝛾1, 𝛾2, 𝛾3 and 𝛾4 which refer to the persistence of the 

variables. The first two terms cater for volatility feedback but the last two terms cater 

for the leverage effect. Although the latter two variables are taken into account, it is 

not within the scope of this study; thus, it is ignored (Jensen and Maheu, 2018).  
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Equations 48 and 49 are the main equations of interest for the parametric Bayesian 

model. Conditioning has been dropped for convenience following Jensen and Maheu 

(2018). The addition of the innovation terms 𝜀𝑡 and 𝜐t shown in both equations is to 

aid understanding. Further simplifications made by the author for computational ease 

are discussed. 

rt = α0 + α1RVt  + 𝜀𝑡                                             (50) 

log(RVt)                                                                                                                    (51) 

=  γ0 + γ1  log(RVt−1) + 𝛾2  
1

2488
∑ log(RVt+1−i)

2488
𝑖=1 +  + γ3

rt−1

√RVt−1
+  γ4 |

rt−1

√RVt−1
| + 𝜐t                

In Equation 50, the realised variance measure is not introduced into the innovation 

term. This is because the error variance in the model accounts for all unexplained 

variance that arises from sources such as uncertainty and measurement errors 

(Chakraborty and Lozano, 2019). This includes the systematic error on the realised 

variance measure which refers to the error surrounding the stochastic nature of the 

risk measure (Beyhaghi et al., 2018). Hence, both the innovation terms 𝜀t and 𝜐t of 

Equation 50 and 51 capture the possible deviations between the observed and 

expected values (Jegadeesh et al., 2019).  

It is accounted for and reflected through the 𝜎1
2 and 𝜎2

2 of both models (Karabatsos, 

2016). Further, according to Jensen and Maheu (2018), in Equation 49, the coefficient 

𝛾2 is supposed to cater for volatility feedback over a six-month period. However, it is 

not shown because in this study, the entire sample period is taken into account as 

shown by Equation 51. This is in order to essentially determine the presence and 

persistence of volatility over time in the South African market to provide an overall 

state and condition of the market (Jensen and Maheu, 2018).  

3.6.1.2 Posterior   

The posterior procedure consists of a number of steps. Initially, random samples are 

drawn from a joint distribution by means of a slice sampling technique by Kalli et al., 

(2011). The slice sampler is applied to Equation 46, except an additional random 

variable represented by 𝑢𝑡 is introduced, as shown in Equation 52 by Jensen and 

Maheu (2018):  
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p(rt, log(RVt) , ut|Ω, Θ, It−1) =  ∑ 𝟏 (ut <  wj) ∗ f (rt, log(RVt)|θj, It−1)∞
j=1        (52) 

where the aim of adding this variable 𝑢𝑡 is to ensure that only positive weights are 

retained and all weights of zero are “sliced away” (Karabatsos, 2016; Liu and Luger, 

2018; Jensen and Maheu, 2018). Thereafter, the following iteration method by Jensen 

and Maheu (2018), is applied which refers to the repetitive resampling process of a 

collection of steps.  

Firstly, a Gibbs sampling technique is applied which is often used when the joint 

distribution is unknown and it is simpler to draw samples from the known conditional 

distribution (Merel, Shababo, Naka, Adesnik and Paninski, 2016). In this case, the 

conditional distribution contains the cluster mixture parameters and weights (Jensen 

and Maheu, 2018). Secondly, since the priors are strong, this allows for the formation 

of a conjugate conditional posterior, meaning, a conditional posterior that shares 

similar model properties to the prior (Gu et al., 2019). Thirdly, consequently, each of 

the random variables tends to form a homogenous distribution provided the given 

weights and parametric space (Jensen and Maheu, 2018). Finally, if the cluster count 

is amended, there may be further prior draws (Merel et al., 2016).   

This procedure will continue; however, the Gibbs sampling process is subject to a 

burn-in period in which samples in the earlier stages that are no longer accurately 

representative of the required distribution are discarded (Merel et al., 2016). The 

original base distribution is then updated to the posterior distribution (Cai, Mitzemacher 

and Adams, 2018). Hence, so are the coefficients and parameter estimates of 

Equation 50 and 51, from which conclusive results can be drawn with respect to the 

risk-return relationship and volatility feedback (Jensen and Maheu, 2018).     

3.6.2 Nonparametric Bayesian Model 

According to Jensen and Maheu (2018), the nonparametric Bayesian model follows 

the derivation of the joint model in 3.6.1.1, with one exception. The nonparametric 

model simply takes on a second subscript j which represents the cluster mixture 

parameters in an infinite sample space. It is this component j, the cluster mixture of 

parameters, which allows for the infinite asymmetric properties in the model. Hence, 

a greater number of possibilities, as in asymmetric densities, of the risk-return 

relationship in an infinite sample space. Without component j, the model is 
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consequently limited and does not take into account the higher moment asymmetric 

properties such as skewness, kurtosis and multiple modes as effectively (Demirer et 

al., 2019; Jensen and Maheu, 2018). While the derivation and interpretation of the 

variables are identical to the parametric Bayesian model, they are recapped for 

convenience. 

3.6.2.1 Joint 

Following Jensen and Maheu (2018), in this studies procedure in uncovering the risk-

return relationship, the first step is to model a joint distribution of excess returns and 

realised variance. This results in a number of bivariate density functions which are the 

consequent possible densities of the joint model of the two variables shown in 

Equation 53: 

p(rt, log(RVt) |It−1, Ω, Θ) =  ∑ wj ∗ f (rt, log(RVt)|θj, It−1)∞
j=1                    (53) 

where the probability of excess returns and log realised variance is conditional on the 

following: The information set, the mixture weights Ω =  𝑤𝑗 where ∑ 𝑤𝑗 = 1∞
𝑗=1  and 

mixture parameters Θ =  𝜃𝑗 where 𝑗 = 1, … , ∞ which refers to the number of clusters 

of mixture parameters. This is equivalent to the sum of all the weights and functions 

of excess returns and log realised variance, given the parameters and information set 

(Jensen and Maheu, 2018).   

The next step involves deriving a nonparametric version of the risk-return relationship 

by reducing the notation of Equation 53 to only the necessary components and 

rewriting Equation 53 as Equation 54:  

f (rt, log(RVt)|θj, It−1) ≡  f (rt| log(RVt), θj, It−1) ∗ f (log(RVt)|θj, It−1)         (54) 

where the latter is simply the product of the conditional distribution (term 1) and 

marginal distribution (term 2) by the law of total probability (Chan et al., 2018; Jensen 

and Maheu, 2018). Since excess returns and log realised variance theoretically tends 

to a normal distribution, Equation 54 allows for the representation of Equation 55 and 

56, respectively (Jensen and Maheu, 2018).  

Equation 55 and 56 follows a functional form of normality like conventional methods 

such as the GARCH approach (Madaleno and Vieira, 2018). However, the mixing of 

the infinite number of cluster parameters allows for a wide array of joint distributions, 
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effectively including asymmetric densities, in an infinite sample space (Karabatsos, 

2016). 

Equations 55 and 56 are the main equations of interest for the nonparametric Bayesian 

model. As discussed, the only difference between the parametric and nonparametric 

Bayesian model specifications is that the nonparametric Bayesian model has 

component j as the second subscript of Equations 55 and 56. It is this component j, 

the cluster mixture of the parameters, which allows for an infinite number of 

asymmetric properties in an infinite sample space (Jensen and Maheu, 2018).  

The component j is in contrast to the conventional parametric models, such as the 

GARCH approach, which is already limited to a range of asymmetric possibilities 

(Apergis et al., 2018). The nonparametric approach allows for moving away from 

linearity and effectively includes densities with higher moment properties such as 

skewness, kurtosis and multiple modes in an infinite sample space (Demirer et al., 

2019). The thinking behind the j component and Equations 55 and 56 following a form 

of normality is further explained after the model specifications are noted.  

f (rt| log(RVt) , θj, It−1) = fN(rt|α0, j + α1, jRVt, η1
2,j RVt)                       (55) 

From Equation 55 by Jensen and Maheu (2018), the conditional mean function of 

excess returns given log realised variance, the parameter and information set, is 

equivalent to the normal conditional mean function of excess returns. The latter is 

conditional on the following: The coefficient 𝛼1,𝑗 on 𝑅𝑉𝑡 represents the persistence of 

risk on realised variance and this term represents volatility feedback. The  𝜂1
2,𝑗 on 𝑅𝑉𝑡 

indicates the systematic error on realised variance (Jensen and Maheu, 2018). This 

term refers to the error surrounding the stochastic measure of realised variance which 

is unavoidable regardless of the number of times the model is run (Beyhaghi et al., 

2018).    

f (log(RVt) |θj, It−1)                                                                                                        (56) 

=  fN(log(RVt) |γ0,j + γ1,j log(RVt−1) + 𝛾2,𝑗 log(RVt−i) +  γ3,j

rt−1

√RVt−1

 

     + γ4,j |
rt−1

√RVt−1
| , η2,j

2 )  
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From Equation 56, by Jensen and Maheu (2018), the conditional mean function of log 

realised variance, given the parameters and information set, is equivalent to the 

normal conditional mean function of log realised variance. The latter is conditional on 

the following: The coefficients 𝛾1,𝑗, 𝛾2,𝑗, 𝛾3,𝑗 and 𝛾4,𝑗 which refers to the persistence of 

the variables. The first two terms cater for volatility feedback but the last two terms 

cater for the leverage effect. Following Jensen and Maheu (2018), although the latter 

two variables are taken into account, it is not within the scope of this study; thus, it is 

ignored. Further, with respect to model implementation, conditioning is dropped for 

convenience for the equations of interest - Equation 55 and 56, and realised variance 

is not introduced into the error term by the author for computational ease. 

The thinking behind Equations 55 and 56 following a linear form of normality but 

allowing for asymmetric properties is illustrated. Figure 9 shows a density estimation 

which represents the form and shape of an unknown distribution. 

 

Figure 9: Mixture of normals 

Source: Authors own 

From Figure 9, the density estimation is represented by the broken grey lines. This is 

made up of a number of normal distributions with various cluster mixture parameters. 

The second subscript j in Equation 55 and 56 represent the cluster mixture parameters 

which allows for the infinite asymmetric properties (Jensen and Maheu, 2018). As a 

result, the distributions show a number of higher moment properties such as skewness 

(orange line), kurtosis (green line) and multiple modes (blue lines). Thus, for an infinite 

mixture model, it follows that every possible risk-return relationship that could hold is 
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taken into account, allowing for an infinite number of possibilities (Demirer et al., 2019). 

However, from an infinite number of possibilities arises a certain level of uncertainty 

attached to the variables due to their stochastic nature (Jensen and Maheu, 2018). 

Therefore, the Bayesian Dirichlet Process is applied to reduce the uncertainty 

associated with an infinite model by effectively reducing it to a finite means.  

3.6.2.2 Prior  

The Bayesian Dirichlet Process (DP) is defined as a probability estimation made up of 

a number of densities for a given sample space (Lawless and Arbel, 2019). According 

to Ferguson (1973), in the context of nonparametric Bayesian problems, there are two 

conditions that need to be met in order to ensure strong priors. One, the prior is large, 

provided an infinite sample space to allow for conjugacy, that is, to allow for the sharing 

of model properties. Two, the shape of the prior is adequate. This is because both 

conditions affect the form of the posterior since a sufficient prior in combination with 

the likelihood determines the posterior. The Bayesian DP prior model addresses both 

conditions (Goudarzi et al., 2019; Cai, 2018; Ferguson, 1973). 

Conjugacy is a property of the DP for the prior as well as one of the steps in the Gibbs 

sampling technique for the posterior (Jensen and Maheu, 2018). This property is 

highlighted as one of importance because conjugacy refers to the sharing of model 

properties which affects the density form of the posterior (Goudarzi et al., 2019). 

Meaning, if a prior had a density with asymmetric higher moment properties, then by 

conjugacy the posterior is subject to those asymmetric higher moment properties while 

updating its parameters (Phadia, 2016). Without the property of conjugacy, this can 

affect the model’s convergence which describes the model’s tendency to a statistically 

sound result (Phadia, 2016).  

This is in contrast to a limitation found in the innovations of the GARCH approach. 

According to Feng and Shi (2017), both the innovation distributions governed by the 

student-t and GED lack stability under aggregation. This means that the combination 

of two variables, such as for risk and return, results in a relationship represented by a 

density that is not in line with what was originally used. Therefore, a nonparametric 

Bayesian model is more effective in fitting an unknown distribution as well as 

automatically account for measurement errors and uncertainty (Chakraborty and 

Lozano, 2019; Feng and Shi, 2016, 2017).  
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The DP can be derived by a number of ways; however, the stick-breaking process is 

foremost for practical application (Lawless and Arbel, 2019). The stick-breaking 

process by Sethuram (1994), involves the mixture weights being randomly drawn 

(from the joint distribution in this case) by the successive breaking of intervals for a 

point of positive mass. Figure 10 shows a graphical representation of the stick-

breaking process. 

 

Figure 10: Stick-breaking process 

Source: Ghahramani (2009) 

From Figure 10, each weight is represented as 𝜋 for every jth cluster mixture and the 

𝜇 represents the corresponding mean values of the joint densities. This is shown by 

Equation 57 by Sethuram (1994): 

πj =  wj  ∏  (1 −  wj),
𝑗−1
𝑖=1  wj ~ IID Beta(1, k)                               (57) 

where the stick-breaking weights πj is equal to the weights represented as wj for every 

jth cluster mixture, where wj is independent and identically distributed for a beta 

distribution with a mean of one and variance of 𝑘. The mean of one refers to the sum 

of cluster weights in order to represent the probability base distribution (Cai et al., 

2018). The precision parameter, also known as the concentration parameter, given as 

k determines the extent of clustering and variance, in relation to the base distribution 

(Karabatsos, 2016). As the concentration parameter increases, the spread of the 

positive cluster weights increases and there is no parameter mixing which leads to a 

continuous prior base distribution (Hennig, Meila, Murtagh and Rocci, 2016). On the 

other hand, if the concentration parameter decreases to zero, the spread decreases 

and the cluster weights concentrate at a single point. Therefore, a positive 

concentration parameter accompanied by a sufficient sample is desirable (Hennig et 

al., 2016).  
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There are two noteworthy aspects of the DP method that need to be mentioned which 

are the mixture model and the hierarchical representation (Jensen and Maheu, 2018). 

The DP mixture model is able to analytically adapt and manage complex data such as 

the joint distribution of infinite mixture weights and parameters (Karabatsos, 2016). 

The hierarchical representation has the ability to represent a number of different 

distributions but most importantly, produces links across the distributions to induce a 

"shrinking" property (Camerlenghi, Lijoi, Orbanz and Prunster, 2019). This solves the 

many challenges associated with a nonparametric approach when analysing a large 

dataset which may affect the model fit, sensitivity and results (Chen and Yang, 2016). 

Although price data has useful information and indicators, a large trading volume may 

contain some variables that are redundant (Nahil and Lyhyaoui, 2018). According to 

Chen and Yang (2016), there may be a high number of variables which may impact 

the model’s density and thus affect its form. Moreover, this may induce model 

sensitivity and/or overfitting which is the fitting of a larger model than necessary to 

capture the data dynamics. Further, the problem of multicollinearity may arise which 

is when several independent variables become correlated to each other. In turn, this 

can affect model fit and results (Khan et al., 2016; Chen and Yang, 2016). The 

application of the DP reduces the uncertainty attached to a high number of unknowns 

as well as asymmetric returns exposure; thus, ultimately improving the predictive 

ability of the model (Camerlenghi et al., 2019). 

3.6.3.3 Posterior   

The posterior procedure consists of a number of steps. Initially, random samples are 

drawn from a joint distribution by means of a slice sampling technique by Kalli et al., 

(2011). The slice sampler is applied to Equation 53, except an additional random 

variable represented by 𝑢𝑡 is introduced, as shown in Equation 58 by Jensen and 

Maheu (2018):  

p(rt, log(RVt) , ut|Ω, Θ, It−1) =  ∑ 𝟏 (ut <  wj) ∗ f (rt, log(RVt)|θj, It−1)∞
j=1        (58) 

where the aim of adding this variable 𝑢𝑡 is to ensure that only positive weights are 

retained and all weights of zero are “sliced away” (Karabatsos, 2016; Liu and Luger, 

2018; Jensen and Maheu, 2018). Thereafter, the following iteration method by Jensen 
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and Maheu (2018), is applied which refers to the repetitive resampling process of a 

collection of steps.  

Firstly, a Gibbs sampling technique is applied which is often used when the joint 

distribution is unknown and it is simpler to draw samples from the known conditional 

distribution (Merel et al., 2016). In this case, the conditional distribution contains the 

cluster mixture parameters and weights (Jensen and Maheu, 2018). Secondly, since 

the priors are strong, this allows for the formation of a conjugate conditional posterior, 

meaning, a conditional posterior that shares similar model properties to the prior (Gu 

et al., 2019). Thirdly, consequently, each of the random variables tends to form a 

homogenous distribution provided the given weights and parametric space (Jensen 

and Maheu, 2018). Finally, if the cluster count is amended, there may be further prior 

draws (Merel et al., 2016).   

This procedure will continue; however, the Gibbs sampling process is subject to a 

burn-in period in which samples in the earlier stages that are no longer accurately 

representative of the required distribution are discarded (Merel et al., 2016). The prior 

base distribution is then updated to the posterior distribution (Cai et al., 2018). In this 

case, so are the coefficients and parameter estimates of Equation 55 and 56, from 

which conclusive results can be drawn with respect to the risk-return relationship and 

volatility feedback (Jensen and Maheu, 2018).   

3.7 Summary of Bayesian Approach 

Bayesian modelling is a popular and credible method, in a number of fields, mainly 

due to technological advancements by means of MCMC methods (Martino et al., 

2018). The modelling of the risk-return relationship and volatility feedback fits the 

Bayesian framework established by Ferson (2005). In turn, this confirms the choice 

and appropriateness of implementing Bayesian modelling, particularly the 

nonparametric Bayesian model, step by step to the topic on hand (Jensen and Maheu, 

2018). The econometric model demonstrates the application of Bayes (1763) 

fundamental theorem which shows the link between excess returns, realised variance, 

the trade-off theory and volatility feedback. It highlights the effect of volatility feedback 

and how it has the ability to obscure any risk-return relationship (Jensen and Maheu, 

2018). Due to the ability of the nonparametric Bayesian model to account for 

asymmetric returns exposure and asymmetric properties, the result of the risk-return 
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relationship is more reliable (Jin, 2017). This is in line with improving risk estimation 

by Mandimika and Chinzara (2012) and Jensen and Maheu (2018). 

3.8 Model Implementation  

The methodology this study follows is reintroduced in order to briefly outline the 

method and strategy of model implementation.  

3.8.1 Preliminary Tests and GARCH Approach 

The conventional preliminary tests describing the data dynamics and GARCH 

approach draw on the methodology of a number of studies such as Mangani (2008), 

Mandimika and Chinzara (2012), Adu et al., (2015), Khan et al., (2016), Ilupeju (2016), 

Savva and Theodossiou (2018) and Liu (2019). 

3.8.1.1 Software 

The test results for the preliminary tests and the parameter estimates for the GARCH 

approach are determined by the R software.  

3.8.1.2 Lag Order 

The lag order for p and q are both set to one as this is considered appropriate to 

capture volatility dynamics based on information criteria. During model 

implementation, this choice was confirmed for all the GARCH type models.  

3.8.1.3 Estimation Method 

The parameters are estimated by the maximum likelihood (ML) method due to its 

ability to account for nonlinearity, in comparison to OLS, following the early and recent 

recommendation by Chou (1988) and Madaleno and Vieira (2018).  

3.8.1.4 Innovation Distributions  

Following the study by Mandimika and Chinzara (2012), all the GARCH (1, 1) type 

models are estimated for four probability distributions governing the innovations - 

standard normal (NORM), student-t (Std-t), skewed student-t (Skew-t) and the 

generalised error distribution (GED).  

3.8.1.5 Interpretation of Results 

For the preliminary tests and GARCH approach, the results are drawn from the p-

value which is the conventional approach with respect to the R software and majority 

of studies reviewed studies such as Mangani (2008), Mandimika and Chinzara (2012), 
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Adu et al., (2015), Ilupeju (2016), Savva and Theodossiou (2018) and Liu (2019). If 

the p-value is less than the standard 5% level of significance, the null hypothesis can 

be rejected; thus, the alternative hypothesis is concluded. If the p-value is greater than 

the standard 5% level of significance, the null hypothesis is not rejected and the null 

hypothesis is concluded.  

For the preliminary tests, this approach is in contrast to the EVIEWS software which 

provides in its output, the p-value, the calculated test statistic as well as the relevant 

critical values (Brooks, 2014). However, the EVIEWS software is considered to be 

limited in its functionality, whereas R is the leading software by econometricians due 

to the high level of flexibility it has to offer (Liashenko, Kravets and Krytsun, 2018).  

According to Trapletti, Hornik and LeBarron (2019), the p-value in R is determined by 

the method of interpolation with respect to the relevant table of critical values. 

Interpolation refers to an estimation made within a set of data and in this case, the set 

of data refers to the relevant table of critical values. Hence, the conclusions of the p-

values are drawn from the comparison between the test statistics and relevant critical 

values. Thus, whether the test statistic is compared with the relevant critical value or 

by the p-value, the same conclusion is reached. In other words, if the null hypothesis 

is rejected, based on the decision from the comparison of the test statistic and critical 

value at a five percent level of significance, the null hypothesis would be rejected, 

based on the p-value at a five percent level of significance (Trapletti et al., 2019). 

3.8.2 Bayesian Approach 

The parametric and nonparametric Bayesian model follows the methodology by 

Jensen and Maheu (2018), in terms of the choice of the prior and posteriors 

implemented in this study. The Dirichlet prior process by Ferguson (1973), is derived 

by the stick-breaking process by Sethuram (1994). The posterior MCMC methods are 

based on the slice sampler by Kalli et al., (2011) and Gibbs sampling technique.  

3.8.2.1 Software 

The test results of both the parametric and nonparametric Bayesian models are 

estimated by a specialised MATLAB software, ‘Bayesian Regression: Nonparametric 

and Parametric Models’ designed by George Karabatsos. This menu-driven software 

is used mainly due to its computational ease and efficiency (Karabatsos, 2016).    
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3.8.2.2 Density Estimation 

According to the study by Jensen and Maheu (2018), the results of the nonparametric 

Bayesian approach are presented by graphical plots of density estimation over a 90% 

credible interval. A density estimation refers to a probability estimation of an unknown 

distribution based on the given data (Damnjanovic and Reinschmidt, 2020). A credible 

or density interval is a Bayesian interval that accounts for conditional prior information, 

in contrast to a regular confidence interval (Karabatsos, 2016). This study performs 

density estimation by means of a probability density function (pdf) plot over a 95% 

credible interval (Karabatsos, 2016). The densities are plotted against the mean to 

essentially give the average form of the distribution (Karabatsos, 2016).  

Graphically, the peak of the density represents the mean value since it is a measure 

of central tendency (Gulzar et al., 2019). The magnitude and form of the density 

estimation are what is important and is further supported by the posterior parameter 

estimates (Karabatsos, 2016). These posterior parameter estimates are determined 

over a 75% and 95% credible interval in the form of numerical analysis (Karabatsos, 

2016). With respect to the investigation of volatility feedback, a line graph is also used 

to make a comparative analysis with the actual and expected result drawn from the 

study by Jensen and Maheu (2018) and Harris et al., (2019).   

3.8.2.3 Interpretation of Results 

For both the parametric and nonparametric Bayesian models, the posterior point 

estimates of the parameters are analysed over a 75% and 95% credible interval. 

Additionally, their robustness is determined by the Monte Carlo mixing value.  

According to Karabatsos (2016), for a 75% credible interval, if zero is excluded then 

the parameter estimate is statistically significant. If zero is included then the parameter 

estimate is statistically insignificant (Karabatsos, 2016).  

According to Jensen and Maheu (2018), for a 95% credible interval, if the point 

estimate lies within the interval, it is concluded as statistically significant. The negative 

or positive signs indicate the direction in which the variable moves. If the point estimate 

does not lie within the interval, it is concluded as statistically insignificant (Jensen and 

Maheu, 2018).  
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According to Karabatsos (2016), the Monte Carlo (MC) mixing value refers to how well 

all the parameters mix where the value lies between an interval of zero and one. A 

small value of 0.1 or 0.01 confirms adequate mixing, whereas an approximate value 

of 0.5 indicates optimal mixing. If the MC mixing value is inadequate, this indicates the 

number of iterations, that is the number of repetitive sampling, is to be increased 

(Karabatsos, 2016). 

3.8.2.4 Model Specifications 

Although not within the scope of this study, both the parametric and nonparametric 

Bayesian models require a number of prior and posterior specifications in order for 

model implementation (Karabatsos, 2016). The specification details of the parametric 

and nonparametric Bayesian models are briefly listed with their respective references. 

Table 2 shows the prior and posterior model specifications for model implementation. 
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Table 2: Model specifications 

Prior specifications 

Model Specification Value Author 

Parametric 

Bayesian 

Prior variance of the slope parameters 1000 Karabatsos (2016) 

Prior gamma distribution of the error 

variance 

0.001 

2
 

Karabatsos (2016) 

Nonparametric 

Bayesian 

Prior gamma distribution of the error 

variance 

5 

2
 

Jensen and Maheu (2018) 

Intercept variance of the base 

distribution for the Dirichlet Process 

5 Karabatsos (2016) 

Prior gamma distribution, shape and 

rate, of the concentration parameter 

1 Karabatsos (2016) 

Posterior specifications 

Parametric & 

Nonparametric 

Bayesian 

MCMC 20 000 Jensen and Maheu (2018) 

Burn-in 5 000 Jensen and Maheu (2018) 

Thin 5 Karabatsos (2016) 

 

From Table 2, values were modified in accordance with the procedure of Jensen and 

Maheu (2018), in combination with model optimisation tests. Specifically, for the 

parametric Bayesian model, the choice of the selected values was considered optimal 

due to resulting in a zero error variance. The error variance refers to the unexplained 

variance that arises from sources such as uncertainty and measurement errors of 

which a Bayesian model can automatically adjust and take into account (Chakraborty 

and Lozano, 2019).  

For both the parametric and nonparametric Bayesian models, with respect to the 

posterior MCMC methods, slice sampling technique and Gibbs sampler are employed. 
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First, the slice sampler ensures that only positive weights are retained and all weights 

of zero are “sliced away” (Jensen and Maheu, 2018). Then, the Gibbs sampler ensures 

the property of conjugacy, that is the sharing of properties between the prior and 

posterior, for a more robust posterior (Gu et al., 2019).  

The posterior estimates are determined by following Jensen and Maheu (2018), 20 

000 MCMC sampling iterations and a burn-in period of 5000. The MCMC sampling 

iterations refers to the repetitive resampling process used to determine the posterior 

parameter estimates of the parametric and nonparametric Bayesian model 

(Waldmann, 2018). The burn-in period refers to samples in the earlier stages that are 

discarded when no longer accurately representative of the required distribution (Merel 

et al., 2016). Additionally, a thin number of 5 is used which is based on the default 

value by Karabatsos (2016). In this case, it means that every fifth sampling iterate of 

the total 20 000 MCMC sampling iterations is collected or retained to determine the 

posterior parameter estimates (Agilan and Umamahesh, 2017). 

3.9 Chapter Summary 

The GARCH approach can contribute as a preliminary test, particularly to the basic 

pricing of risk which refers to whether return has a relation to risk. However, not on the 

actual basis of estimating the risk-return relationship (Jensen and Maheu, 2018). The 

nonparametric Bayesian model is a combination of the two most recommended 

methods found in existing literature, respectively for robust parameter estimation by 

Kang (2014), Chang et al., (2017), Demirer et al., (2019) and Waldmann (2018). The 

nonparametric framework has the ability to effectively account for every possible risk-

return relationship, allowing for an infinite number of possibilities according to Demirer 

et al., (2019). Consequently, this allows for higher moment asymmetric properties 

which cannot be effectively accounted for by parametric models. Further, it has the 

ability to adjust for model misspecifications (Apergis et al., 2018; Demirer et al., 2019). 

Similarly, the Bayesian method has the ability to adjust to uncertainty and 

measurement errors surrounding parameters (Walmann, 2018; Chakraborty and 

Lozano, 2019). Whereas in contrast, the GARCH approach caters more for the 

confirmation of the presence of market characteristics such as volatility clustering, 

heavy tails and pricing of risk. The nonparametric Bayesian methods (Bayesian 

Dirichlet Process, slice sampler and Gibbs sampler) fundamentally involves random 
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sampling methods whereby every distribution has an equal chance of being drawn 

(Alvi, 2016). These methods suggest low levels of bias and systematic error, and a 

high level of reliability, validity and viability (Etikan and Bala, 2017). Thus, ensuring 

robust results, the best possible estimation of parameters and drawing of conclusions 

(Alvi, 2016).   
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CHAPTER 4 

4. Empirical Results and Discussion 

The analysis for the graphical and numerical test results are presented in this section 

which consists of three parts. First, the basic data analysis of the JSE ALSI data is 

shown then the nature and properties of the ALSI returns are described by the 

preliminary tests. Second, the volatility dynamics and pricing of risk in the South 

African market is determined by the GARCH type models. Third, is the test results of 

volatility feedback and the risk-return relationship from the parametric Bayesian model 

followed by the nonparametric Bayesian model. Finally, the chapter concludes the 

main findings and implications of the results.  

4.1 Data Dynamics 

The dataset used in this study is recapped and then tested for stationarity which forms 

the basis of time series analysis for further investigation. The ALSI returns are then 

described by basic descriptive statistics to provide an overview of its distribution in the 

South African market. Thereafter, the nature of the ALSI returns is investigated by 

means of normality, autocorrelation and heteroskedasticity tests. These tests are 

undertaken in order to motivate the use of nonlinear models, the GARCH approach, 

for further analysis.  

4.1.1 Stationarity 

Stationarity is investigated in order to determine if the ALSI returns form a valid time 

series for further analysis to substantiate the use of the GARCH approach. 

4.1.1.1 Index Price Data 

The daily closing prices of the ALSI index are obtained from IRESS for the sample 15 

October 2009 to 15 October 2019, a period of ten years. The stationarity and nature 

of the ALSI price data are investigated by the analysis of a time series plot and 

stationarity tests. Figure 11 shows a time series plot of the ALSI price data. 
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Figure 11: Time series plot of the ALSI closing prices 

From Figure 11, the time series plot of the ALSI price data shows an upward trend 

over time and nonstationarity due to the inconstant mean. The ALSI price data shows 

an asymmetric and nonlinear pattern; however, the market characteristic volatility 

clustering is not shown in Figure 11. This refers to the tendency of volatility to appear 

in clusters where high returns follow high returns and low returns follow low returns 

(Yu et al., 2018). To support the presence of nonstationarity, the Augmented Dickey-

Fuller (ADF), Phillips-Perron (PP), Kwiatkowski, Phillips, Schmidt and Shin (KPSS) 

tests are employed. Table 3 shows the results for the stationarity tests. 

Table 3: Stationarity tests for the ALSI price data 

Test Test Statistics p-value 

ADF -2.151 0.514 

PP -16.433 0.193 

KPSS 25.949 0.010 

 

From Table 3, since the p-values of both the ADF and PP tests are greater than 0.05, 

the null hypothesis that the ALSI price data has a unit root is not rejected at a 5% level 

of significance. Since the p-value for the KPSS test is less than 0.05, the null 
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hypothesis that the ALSI price data is stationary is rejected at a 5% level of 

significance. Thus, the ADF, PP and KPSS tests confirm that the ALSI price data are 

nonstationary. Hence, from the time series plot and stationarity tests, it can be 

concluded that the ALSI price data has an asymmetric nature and is nonstationary. 

4.1.1.2 Index Returns 

The closing ALSI price data is then transformed into market returns by taking the 

natural log form of the difference between the current and previous closing prices. The 

market returns are then subtracted by the T-bill risk-free rate obtained from the SARB 

to compute the ALSI excess returns (ALSI returns). These steps are in line with the 

studies by Jensen and Maheu (2018), Demirer et al., (2019) and Kim and Kim (2018). 

Figure 12 shows the time series plot of the ALSI returns.  

 

Figure 12: Time series plot of the ALSI returns 

Figure 12 shows a constant mean where there is no distinctive trending behaviour 

such as upward as in the case of Figure 11. However, since the movements are 

inconstant and nonlinear, this suggests the presence of heteroskedasticity. 

Heteroskedasticity refers to the inconstant nature of variance over time (Hung, 2019). 

Additionally, volatility clustering is now noted, where high returns follow high returns 

and low returns follow low returns. In particular, volatility clustering is shown just after 

2010 and before 2015 and 2018, where there are relatively higher than lower price 

movements. To support the presence of stationarity, the Augmented Dickey-Fuller 
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(ADF), Phillips-Perron (PP), Kwiatkowski, Phillips, Schmidt and Shin (KPSS) tests are 

employed. Table 4 shows the results for the stationarity tests.  

Table 4: Stationarity tests for the ALSI returns 

Test Test Statistics p-value 

ADF -14.561 0.010 

PP -50.775 0.010 

KPSS 0.140 0.100 

 

From Table 4, since the p-values of both the ADF and PP tests are less than 0.05, the 

null hypothesis that the ALSI returns have a unit root is rejected at a 5% level of 

significance. Since the p-value for the KPSS test is greater than 0.05, the null 

hypothesis that ALSI returns are stationary is not rejected at a 5% level of significance.  

Thus, the ADF, PP and KPSS tests confirm that the time series of the ALSI returns 

are stationary. Hence, from the time series plot and stationarity tests, it can be 

concluded that the ALSI returns are valid in forming a time series for further analysis.  

4.1.2 Descriptive Statistics 

The distribution of the ALSI returns in the South African market is investigated by basic 

descriptive statistics. Table 5 shows the basic descriptive statistics of the ALSI returns. 
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Table 5: Descriptive statistics of the ALSI returns 

Number of observations 2498 

Minimum -0.037 

Maximum 0.042 

Mean 0.000 

Standard deviation 0.010 

Skewness -0.167 

Excess kurtosis 1.277 

 

From Table 5, there are a total of 2498 observations from a range of -0.037 to 0.042 

and has an average value of 0.000. The average indicates a corresponding rate of 

return according to Gyldberg and Bark (2019). In this case, there is no profitable 

trading strategy for an investor in the South African market. The standard deviation of 

0.010 is relatively low, in comparison to the studies that reported a standard deviation 

value for standard returns. For example, Mandimika and Chinzara (2012) reported a 

value of 0.568, whereas Adu et al., (2015) reported a value of 1.253. This is 

unexpected since ALSI excess returns are supposed to reflect a riskier value as a 

result of a higher level of risk undertaken. The negative skew value of -0.167 describes 

a distribution that tends to the left. This indicates losses for investors since the left tail 

is associated to a negative payoff according to Yao et al., (2019). Excess kurtosis of 

1.277 is a positive value which means that the ALSI returns follow a leptokurtic 

distribution which is a peaked distribution that has heavy tails. This finding is in line 

with the return characteristics of an emerging market by Herbert et al., (2018) and Adu 

et al., (2015). Thus, the results from the basic descriptive statistics indicate that the 

ALSI returns follow an asymmetric distribution.  

4.1.3 Normality 

The normality of ALSI returns is investigated by the analysis of a normal Q-Q plot and 

normality tests. Figure 13 shows a Q-Q plot for the ALSI returns. 
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Figure 13: Q-Q plot for ALSI returns 

From Figure 13, the deviation from the 45-degree line of reference indicates a 

mismatch between the empirical and theoretical distribution, indicating nonnormality. 

To support the presence of nonnormality, the Shapiro-Wilk (SW), Jarque-Bera (JB) 

and Anderson-Darling (AD) tests are employed. Table 6 shows the results for the 

normality tests.  

Table 6: Normality tests for the ALSI returns 

Test Test Statistics p-value 

SW 0.986 < 0.0001 

JB 182.260 < 0.0001 

AD 8.006 < 0.0001 

 

From Table 6, since the p-values of the SW, JB and AD tests are all less than 0.05, 

the null hypothesis that ALSI returns are normally distributed is rejected at a 5% level 

of significance. Thus, from the basic descriptive statistics, the Q-Q plot and normality 

tests, ALSI returns follow a nonnormal and asymmetric distribution. This finding is in 

contrast to the theory of Li (2018), where financial price data assumes a symmetric 

and normal distribution. However, it is in line with the concept of asymmetric returns 

exposure which refers to the fundamental nature of returns which is asymmetric and 

nonnormal. It is further supported by Herbert et al., (2018) and Maneemaroj et al., 

(2019), who state that the return distribution is asymmetric and heavy tailed. 
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4.1.4 Autocorrelation  

The autocorrelation or serial correlation of ALSI returns is investigated by the analysis 

of an ACF plot and autocorrelation tests. Figure 14 shows an ACF plot of ALSI returns. 

 

Figure 14: ACF plot of the ALSI returns 

From Figure 14, since the majority of lags do not touch or pass over the 95% 

conditional interval, this indicates the lags are insignificant. This means that 

autocorrelation within the ALSI returns is absent. To support the absence of 

autocorrelation, the Ljung-Box (LB) and Durbin Watson (DW) tests are employed. 

Table 7 shows the results for the autocorrelation tests.  

 Table 7: Autocorrelation tests for the ALSI returns 

Test Test Statistics p-value 

LB 26.463 0.151 

DW 2.024 0.727 

 

From Table 7, since the p-values of both the LB and DW tests are greater than 0.05, 

the null hypothesis that autocorrelation is absent within the ASLI return series is not 

rejected at a 5% level of significance. According to Khan et al., (2016), the absence of 

autocorrelation means that the current ALSI returns does not impact future returns. 
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4.1.5 Heteroskedasticity   

Heteroskedasticity of the ALSI returns is investigated by the analysis of an ACF plot 

and heteroskedasticity tests. Figure 15 shows an ACF plot of the ALSI returns 

squared. 

 

Figure 15: ACF plot of the ALSI returns squared 

From Figure 15, since the majority of lags touch or pass over the 95% conditional 

interval, this indicates the lags are significant. This means that autocorrelation within 

the ALSI returns is present. To investigate the presence of heteroskedasticity, the 

Ljung-Box (LB2) and Autoregressive Conditional Heteroskedastic Lagrange Multiplier 

(ARCH-LM) tests are employed. Table 8 shows the results for the heteroskedasticity 

tests. 

Table 8: Heteroskedasticity tests for the ALSI returns squared 

Test Test Statistics p-value 

LB2 567.920 < 0.0001 

ARCH-LM 213.370 < 0.0001 

 

From Table 8, since the p-values of both the LB2 and ARCH-LM tests are less than 

0.05, the null hypothesis that the ARCH effect is absent within the ALSI return series 

is rejected at a 5% level of significance. Thus, it can be concluded that 

heteroskedasticity is present within the ALSI returns series.  
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4.1.6 Summary of the Data Dynamics 

From the preliminary tests based on the data dynamics, the ALSI closing price data is 

found to be nonstationary over time and asymmetric in nature. Hence, the ALSI price 

data is then transformed to returns and is confirmed to be stationary in order to form 

a valid time series for further analysis. From the basic descriptive statistics and 

normality tests, the ALSI returns follow an asymmetric and nonnormal distribution. The 

presence of heteroskedasticity, inconstant variance, confirms the volatile nature of the 

data since variance is a measure of volatility. The nonnormal, asymmetric and volatile 

nature of the ALSI data is in line with the return inherent risk, asymmetric returns 

exposure. Since the data shows the market characteristic volatility clustering, the 

clustering nature of volatility, this motivates the employment of the GARCH approach 

for further investigation by Khan et al., (2016).  

4.2 GARCH Approach 

The GARCH approach contains a number of GARCH (1, 1) type models that serve as 

preliminary tests to confirm the existence of market return characteristics in the South 

African market. This includes volatility clustering, heavy tails, asymmetric effects and 

the pricing of risk which refers to whether return has a relation to risk.  

The GARCH type model parameter estimates are determined by the maximum 

likelihood (ML) method for the four innovation distributions, standard normal (NORM), 

student-t (Std-t), skewed student-t (Skew-t) and the generalised error distribution 

(GED). The results are presented and then discussed in summary.  

4.2.1 Volatility Dynamics 

The volatility dynamics of the South African market is first investigated by a simple 

GARCH (1, 1) model then by the asymmetric GARCH type models.  

4.2.1.1 Symmetric GARCH Model Test Results 

Table 9 shows the significant ML parameter estimates of GARCH (1, 1) with different 

probability distributions governing the innovations. 
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Table 9: ML parameter estimates of GARCH (1, 1)  

Parameter Estimates NORM Std-t Skew-t GED 

𝜇̂ - 0.021 ** - 0.000 *** 

𝛼̂1 0.057 *** 0.059 *** 0.060 *** 0.059 *** 

𝛽̂1 0.942 *** 0.940 *** 0.939 *** 0.940 *** 

𝛼̂1 +  𝛽̂1 0,999 0,999 0,999 0,999 

AIC -6.557 -6.575 -6.583 -6.573 

BIC -6.552 -6.565 -6.574 -6.564 

NOTE: *, **, *** means the p-value is significant at a 10%, 5% and 1% level of significance, 

respectively 

The parameter estimates of the GARCH (1, 1) model are discussed in summary with 

the rest of the results under discussion with respect to volatility dynamics. To 

investigate whether the GARCH (1, 1) model has adequately captured the ALSI 

returns, the sign and size bias tests are employed as recommended by Park et al., 

(2017). Table 10 shows the results of the sign and size bias tests. 

Table 10: Sign and size bias tests of GARCH (1, 1)  

Innovation Distributions Sign Bias Negative Positive Joint Effect 

NORM 1.243 *** 1.066 *** 2.793 *** 34.524 *** 

Std-t 0.985 *** 1.062 *** 2.932 *** 32.760 *** 

Skew-t 1.276 *** 0.931 *** 2.867 *** 34.694 *** 

GED 1.006 *** 1.069 *** 2.909 *** 32.841 *** 

NOTE: *, **, *** means the p-value is significant at a 10%, 5% and 1% level of significance, 

respectively 

From Table 10, for the sign bias test, since the p-values are less than 5%, the null 

hypothesis of the sign bias being absent is rejected at a 5% level of significance. Thus, 
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it can be concluded that positive and negative shocks have a different impact on future 

volatility. For the negative sign bias test, since the p-values are less than 5%, the null 

hypothesis of the negative sign bias being absent is rejected at a 5% level of 

significance. Similarly, for the positive sign bias test, since the p-values are less than 

5%, the null hypothesis of the positive sign bias being absent is also rejected at a 5% 

level of significance. Thus, from both the positive and negative sign bias tests, it can 

be concluded that the magnitude of the positive and negative shocks affects volatility 

asymmetrically. This is in line with the phenomenon of asymmetric volatility, which has 

been systematically proven over time, according to Yu et al., (2018).  

For the joint effect test, since the p-values are less than 5%, the null hypothesis of 

asymmetry being absent is rejected at a 5% level of significance. Thus, it can be 

concluded that asymmetry is present and has not been adequately captured by the 

GARCH (1, 1) model. This finding is consistent with studies by Mangani (2008), 

Mandimika and Chinzara (2012), Ilupeju (2016) and Park et al., (2017). In order to 

capture further characteristics of the ALSI returns, such as asymmetric effects, there 

have been a number of extensions of the GARCH (1, 1) model. This includes the GJR-

GARCH (1, 1), EGARCH (1, 1) and APARCH (1, 1) models as recommended by Savva 

and Theodossiou (2018). 

4.2.1.2 Summary of GARCH (1, 1)  

From the sign and size bias tests, it can be concluded that there exists an asymmetric 

impact on volatility where positive shocks affect volatility more than negative shocks 

of the same magnitude. The GARCH (1, 1) model does not adequately capture the 

asymmetric effects in the ALSI returns since the joint effect confirms the presence of 

asymmetry. As a result, this motivates further testing by the use of asymmetric 

GARCH type models such as the GJR-GARCH (1, 1), EGARCH (1, 1) and APARCH 

(1, 1). These models are more credible in capturing the emerging markets return 

characteristics and follow a number of studies such as Adu et al., (2015), Khan et al., 

(2016), Savva and Theodossiou (2018) and Maneemaroj et al., (2019). 

4.2.2 Asymmetric Effects 

The asymmetric GARCH type models have model specifications to capture further 

market characteristics such as asymmetric volatility and the leverage effect. The 

results are presented and then discussed in summary. 
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4.2.2.1 Asymmetric GARCH Models Test Results 

Table 11 to 14 shows the results for the asymmetric GARCH (1, 1) type models 

governing the four innovation distributions. The results are discussed in summary 

thereafter.    

Table 11: ML parameter estimates of the asymmetric GARCH (1, 1) type models for 

the NORM probability distribution governing the innovations 

Parameter Estimates GJR-GARCH (1, 1) EGARCH (1, 1) APARCH (1, 1) 

𝛼̂0 - -0.234 *** - 

𝛼̂1 0.038 *** -0.127 *** 0.060 *** 

𝛽̂1 0.951 *** 0.975 *** 0.951 *** 

𝛾 0.517 *** 0.0780 *** 0.622 *** 

𝛿 2 - 1 

𝛼̂1 +  𝛽̂1 0.989 0.848 1.011 

AIC -6.581 -6.618 -6.576 

BIC -6.574 -6.608 -6.569 

NOTE: *, **, *** means the p-value is significant at a 10%, 5% and 1% level of significance, 

respectively 
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Table 12: ML parameter estimates of the asymmetric GARCH (1, 1) type models for 

the Std-t probability distribution governing the innovations 

Parameter Estimates GJR-GARCH (1, 1) EGARCH (1, 1) APARCH (1, 1) 

𝛼̂0 - -0.227 *** 0.000 ***   

𝛼̂1 0.0348 *** -0.131 ***   0.064 ***  

𝛽̂1 0.952 *** 0.976 *** 0.926 *** 

𝛾 0.603 *** 0.077 *** 1.000 ***  

𝛿 2 - 1 

𝛼̂1 +  𝛽̂1 0.986 0.845 0.990 

AIC -6.595 -6.624 -6.621 

BIC -6.586 -6.613 -6.610 

NOTE: *, **, *** means the p-value is significant at a 10%, 5% and 1% level of significance, 

respectively 
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Table 13: ML parameter estimates of the asymmetric GARCH (1, 1) type models for 

the Skew-t probability distribution governing the innovations 

Parameter Estimates GJR-GARCH (1, 1) EGARCH (1, 1) APARCH (1, 1) 

𝛼̂0 - -0.219 *** 0.000 ***   

𝛼̂1 0.038 ***   -0.132 *** 0.064 ***   

𝛽̂1 0.950 *** 0.977 *** 0.927 *** 

𝛾 0.482 ***  0.074*** 1.000 *** 

𝛿 2 - 1 

𝛼̂1 +  𝛽̂1 0.988 0.845 0.991 

AIC -6.602 -6.637 -6.634 

BIC -6.590 -6.623 -6.620 

NOTE: *, **, *** means the p-value significant at a 10%, 5% and 1% level of significance, 

respectively 
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Table 14: ML parameter estimates of the asymmetric GARCH (1, 1) type models for 

the GED probability distribution governing the innovations 

Parameter Estimates GJR-GARCH (1, 1) EGARCH (1, 1) APARCH (1, 1) 

𝛼̂0 - -0.235 *** 0.000 ***    

𝛼̂1 0.037 ***   -0.129 *** 0.063 ***   

𝛽̂1 0.951 ***  0.975 *** 0.926 *** 

𝛾 0.546 ***   0.079 *** 1.000 *** 

𝛿 2 - 1 

𝛼̂1 +  𝛽̂1 0.988 0.846 0.989 

AIC -6.592 -6.623 -6.620 

BIC -6.583 -6.611 -6.608 

NOTE: *, **, *** means the p-value is significant at a 10%, 5% and 1% level of significance, 

respectively 

4.2.2.2 Discussion of GARCH Test Results  

The ARCH effect 𝛼̂1 represents the persistence of risk over a short period of time and 

the GARCH effect  𝛽̂1 over the long-term (Khan et al., 2016). The ARCH and GARCH 

effects are statistically significant for all the GARCH (1, 1) type models – GARCH (1, 

1), GJR-GARCH (1, 1), EGARCH (1, 1) and APARCH (1, 1) – at the conventional 5% 

level of significance. However, it is noteworthy that volatility is mainly driven by the 

GARCH effect which dominates the ARCH effect for all the models. This means that 

long-term volatility is more persistent in the South African market than on a short-term 

basis. The volatility can be further described by the sum of the ARCH and GARCH 

effects (𝛼̂1 +  𝛽̂1). All the GARCH type models have a sum of the ARCH and GARCH 

effects being close but less than one, with the exception of the standard APARCH (1, 

1) model. The former finding is twofold: Firstly, the assumption of stationarity holds 

and secondly, the volatility present in the South African market can be further 

described.  
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According to Khan et al., (2016), if the assumption of stationarity holds, this implies 

that the long run mean variance converges to unconditional variance. If the 

unconditional variance for the innovation terms is less than one, as in this case for the 

majority of the results, then the innovation terms are undefined and nonstationary. 

Consequently, the GARCH (1, 1) models can be seen as a regular linear ARMA model, 

which is essentially a simpler linear parametric model, according to Brooks (2014) and 

Jin (2017). Thus, limited in its ability to fully capture asymmetric properties. Secondly, 

volatility is present and persistent over a short and long period of time. For the majority 

of the GARCH (1, 1) models, the sum of the ARCH and GARCH effects is equal to 0.9 

which is close to one, confirming the presence and persistence of long-term volatility.  

The only exception is for the APARCH (1, 1) model for a normal innovation distribution 

where the sum is greater than one. In this case, the forecast of unconditional variance 

increases to infinity as the number of observations increases according to Khan et al., 

(2018). The ARMA, standard GARCH and the asymmetric GARCH type models which 

are essentially parametric models has a set number of parameters with respect to the 

finite sample size. Consequently, the models design cannot make an appropriate 

forecast of an infinite number of observations, in line with Brooks (2014) and Jin 

(2017). On the other hand, for a nonparametric Bayesian approach, the conditional 

variance can be reduced by a prior process into a finite and a quantifiable value 

(Karabatsos, 2016). Hence, there is a greater ease in updating a probability estimation 

as additional data becomes available (Cai, 2018).  

Thus, the parameter estimates from the above analysis confirm the presence of high 

and persistent levels of volatility mainly in the long run, volatility clustering and heavy 

tails in the ASLI returns. This finding is in line with previous studies on the South 

African market by Mangani (2008), Mandimika and Chinzara (2012), Adu et al., (2015), 

Ilupeju (2016), Bekiros et al., (2017) and Jin (2017). Additionally, the high persistence 

of volatility, where shocks are less likely to die out over time, suggests the presence 

of volatility feedback in the South African market by Harris et al., (2019). Specifically, 

for the asymmetric GARCH (1, 1) type models - GJR-GARCH (1, 1), EGARCH (1, 1) 

and APARCH (1, 1) – the asymmetry parameter 𝛾  is of main interest. The asymmetry 

parameter captures asymmetric effects according to Khan et al., (2016).  
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For all the asymmetric GARCH (1, 1) type models, 𝛾  is statistically significant at a 5% 

level of significance and positive. This finding is twofold: Firstly, for a positive volatility 

shock, volatility decreases and results in an increase in prices, indicating the leverage 

effect by Adu et al., (2015). The presence of the leverage effect is in contrast to the 

BRICS study by Adu et al., (2015), who found an insignificant asymmetry parameter 

and consequent absent leverage effect for the South African market. However, the 

evidence of the leverage effect in the South African market is in line with the studies 

by Mangani (2008), Mandimika and Chinzara (2012), Ilupeju (2016) and Jin (2017). 

Similarly, the leverage effect is present in the emerging Finnish market by Sultan 

(2018) as well as in the US market by Harris et al., (2019).  

Secondly, due to the presence of asymmetric volatility, this suggests that the type of 

volatility shocks impacts volatility differently. That is, positive and negative shocks 

have an asymmetric effect on volatility. In contrast, to the BRICS study by Adu et al., 

(2015), who found an insignificant asymmetry parameter and absence of asymmetric 

volatility for the South African market. However, evidence of asymmetric volatility is in 

line with the South African studies by Mangani (2008), Mandimika and Chinzara (2012) 

and Ilupeju (2016). For the GJR-GARCH (1, 1) and EGARCH (1, 1) models, positive 

volatility shocks have a greater impact on volatility than negative shocks of the same 

magnitude in the South African market. However, in direct contrast for the APARCH 

model, the negative volatility shocks have a greater impact than positive. In order to 

settle this inconsistency, the best fitting GARCH model is determined by model testing.  

Taking into account all the GARCH models, the best fitting GARCH model and 

innovation distribution is selected by information criteria following Mandimika and 

Chinzara (2012). The model testing is performed by the analysis of AIC and BIC where 

the minimum values indicate the best fitting model. From the above analysis, the best 

fitting GARCH type model is EGARCH (1, 1) followed by APARCH (1, 1) and then 

GJR-GARCH (1, 1) model. The result of the EGARCH (1, 1) being foremost is in 

contrast to previous South African studies. This includes the standard GARCH (1, 1) 

by Mangani (2008), GJR-GARCH (1, 1) by Mandimika and Chinzrara (2012) and 

APARCH by Ilupeju (2016). Given this finding, the result regarding which type of 

volatility shocks have a greater impact is not statistically sound. This is because the 

two foremost models, EGARCH (1, 1) and APARCH (1, 1), give contradictory results 



126 
 

to one another. A possible reason for this is that a certain level of risk remains 

uncaptured in the innovations according to Feng and Shi (2017).  

From information criteria for the best fitting innovation distribution, first is the skewed 

student-t (Skew-t) followed by student-t (Std-t), the generalised error distribution 

(GED) and lastly the normal innovation distribution (NORM). Since the normal 

innovation distribution is the least good fit, this confirms the inadequacy of fitting a 

normal innovation distribution to volatile financial data. The fitting of a normal or linear 

model to nonlinear and asymmetric data is not adequate. This is because it is not 

essentially designed to capture the higher moment properties, in line with Jin (2017) 

and Jensen and Maheu (2018). To clarify, according to Karabatsos (2016), parametric 

methods are often based on a number of assumptions. In this case, the innovations 

are assumed to follow a normal distribution.  

If the data properties are in violation of such assumptions then the parameter 

estimates are going to be misleading (Karabatsos, 2016). In the context of time series 

analysis, this violation of assumptions is most likely to occur because financial data 

has a volatile, asymmetric and nonlinear nature (Jensen and Maheu, 2018). As a 

result, the use of the NORM innovation distribution is unreliable in the estimation of 

risk and contributes to inconclusive results regarding the risk-return relationship, in line 

with Jensen and Maheu (2018). Thus, the model adequacy of the selected best fitting 

asymmetric GARCH model, the standard EGARCH (1, 1) models standardised 

innovation terms are assessed following Mangani (2008).  

4.2.3 EGARCH (1, 1) standardised innovation terms 

The standardised innovations of the EGARCH (1, 1) model are investigated by 

normality, autocorrelation and randomness tests to establish if they have adequately 

captured risk. 

4.2.3.1 Descriptive Statistics 

The distribution of the innovations of the EGARCH (1, 1) model is investigated by basic 

descriptive statistics. Table 15 shows the basic descriptive statistics of the innovations. 
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Table 15: Descriptive statistics of the innovations 

Minimum -3.976 

Maximum 3.987 

Median -0.047 

Mean 0.003 

Standard deviation 1.001 

Skewness 0.310 

Excess kurtosis 0.505 

 

From Table 15, the standard deviation of 1.001 is relatively high which reflects the high 

level of risk present in the innovations. The positive skew value of 0.310 describes a 

distribution that tends to the right which is not symmetrically bell-shaped. Excess 

kurtosis is 0.505 which is positive means that the standardised innovations follow a 

leptokurtic distribution which refers to a heavy tailed distribution. Thus, from the 

standard deviation, skewness and kurtosis values, it can be concluded that the 

innovations follow a distribution that is heavy tailed and asymmetric in nature. This 

means that the innovations still contain uncaptured risk as suggested by Feng and Shi 

(2017) and Mangani (2008).  

4.2.3.2 Normality 

The normality of the innovations is investigated by a Q-Q plot and normality tests. 

Figure 16 shows a Q-Q plot for the innovations. 
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Figure 16: Q-Q plot of innovations 

From Figure 16, the deviation from the 45-degree line of reference indicates a 

mismatch between the empirical and theoretical distribution, indicating nonnormality. 

To support the presence of nonnormality, the Shapiro-Wilk (SW), Jarque-Bera (JB) 

and Anderson-Darling (AD) tests are employed. Table 16 shows the results of the 

normality tests. 

Table 16: Normality tests for the innovations 

Test Test Statistics p-value 

SW 0.993 < 0,0001 

JB 66.782 < 0,0001 

AD 4.118 < 0,0001 

 

From Table 16, since the p-values of the SW, JB and AD tests are all less than 0.05, 

the null hypothesis that the innovations are normally distributed is rejected at a 5% 

level of significance. Thus, the results of the basic descriptive statistics, Q-Q plot and 

normality tests confirm that the innovations follow an asymmetric and nonnormal 

distribution.  

4.2.3.3 Autocorrelation  

The autocorrelation of the innovations is investigated by the analysis of an ACF plot 

and autocorrelation tests. Figure 17 shows an ACF plot for the innovations. 
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Figure 17: ACF plot for the innovations 

From Figure 17, since the majority of lags do not touch or pass over the 95% 

conditional interval, this indicates the lags are insignificant. This means that 

autocorrelation within the innovations is absent. To support the absence of 

autocorrelation, the Ljung-Box (LB) and Durbin Watson (DW) tests are employed. 

Table 17 shows the results for the autocorrelation tests.  

Table 17: Autocorrelation tests for the innovations 

Test Test Statistics p-value 

LB 26.336 0.155 

DW 1.984 0.346 

 

From Table 17, since the p-values of both the LB and DW tests are greater than 0.05, 

the null hypothesis that autocorrelation is absent within the innovation is not rejected 

at a 5% level of significance. According to Khan et al., (2016), the absence of 

autocorrelation means that there is no relationship between the current and future 

innovations. 

4.2.3.4 Heteroskedasticity  

Heteroskedasticity of the innovations is investigated by the analysis of an ACF plot 

and heteroskedasticity tests. Figure 18 shows an ACF plot of the innovations squared. 
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Figure 18: ACF plot for the innovations squared 

From Figure 18, since the majority of lags do not touch or pass over the 95% 

conditional interval, this indicates the lags are insignificant. This means that 

autocorrelation within the innovations is absent. To investigate the presence of 

heteroskedasticity, the Ljung-Box (LB2) and Autoregressive Conditional 

Heteroskedastic Lagrange Multiplier (ARCH-LM) tests are employed. Table 18 shows 

the results for the heteroskedasticity tests. 

Table 18: Autocorrelation tests for the squared innovations 

Test Test Statistics p-value 

LB2 19.084 0.516 

ARCH-LM 19.062 0.518 

 

From Table 18, since the p-values of both the LB2 and ARCH-LM tests are greater 

than 0.05, the null hypothesis that the ARCH effect is absent in the innovations is not 

rejected at a 5% level of significance. Thus, it can be concluded that heteroskedasticity 

is absent within the innovations. This means that the EGARCH model has adequately 

captured the volatile nature of the innovations. 

4.2.3.5 Randomness 

The random behaviour of the innovations is investigated by independent and 

identically distributed (IID) tests, namely, Bartels rank, Cox-Stuart and Brock, Dechert 

and Scheinkman (BDS). Table 19 shows the results for the random behaviour tests. 
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Table 19: Random behaviour tests of innovations 

Test Test Statistics p-value 

Bartels rank -0.095 0.925 

Cox-Stuart 602.000 0.213 

BDS 2.000 0.500 

 

From Table 19, since the p-values of all three IID tests are greater than 0.05, the null 

hypothesis that the innovations are IID is not rejected at a 5% level of significance. 

Thus, the innovations of the EGARCH (1, 1) model show random behaviour. Hence, 

from the descriptive statistics, normality and IID tests, it can be concluded that the 

innovations have a nonnormal, asymmetric and random nature. These findings are in 

line with Mangani (2008) and Ilupeju (2016), confirming the uncaptured risk within the 

innovations by Feng and Shi (2017). 

4.2.4 Summary of GARCH Approach 

A noteworthy property of the GARCH model is that the probability distribution 

governing the model innovations does not affect parameter estimation according to 

Spierdijk (2016). From the analysis of the GARCH type models discussed in 4.2.2.2, 

this theory can be supported. This is because the majority of the parameter estimates 

remain unaffected by the innovation distribution and asymmetric GARCH type model. 

However, although the asymmetric GARCH (1, 1) type models can account for a 

certain level of volatility, heavy tails and asymmetric properties, a certain level of risk 

remains uncaptured in the innovations. This is because of an inconsistency found 

between the EGARCH and APARCH model with regards to which type of shocks has 

a greater impact in the South African market. Since EGARCH is selected to be the 

best fitting model by information criteria, the standardised innovations are investigated 

to determine if they can fully capture risk.   

From the above results, the innovations support the presence of nonnormality, 

asymmetry and random behaviour within the innovations of the EGARCH (1, 1) model. 

The absence of heteroskedasticity means that EGARCH has adequately captured the 

volatile nature of the innovations, in line with Ilupeju (2016). However, the model has 
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failed to capture asymmetry and nonnormality which is the fundamental nature of 

returns, in line with the novel concept of asymmetric returns exposure. Thus, the 

GARCH approach is inadequate in fully capturing risk, making it an inefficient choice 

in estimating the risk-return relationship. This is in line with recent studies by Mangani 

(2008), Mandimika and Chinzara (2012), Feng and Shi (2017), Jin (2017), Apergis et 

al., (2018), Demirer et al., (2019) and Jensen and Maheu (2018). All of which advocate 

the use of nonlinear and nonparametric methods.  

4.2.5 Risk-Return Relationship 

The risk-return relationship is investigated by the symmetric GARCH (1, 1)-M and 

asymmetric EGARCH (1, 1)-M model. 

4.2.5.1 GARCH (1, 1)-M and EGARCH (1, 1)-M 

Table 20 and 21 shows the results for the GARCH (1, 1)-M and EGARCH (1, 1)-M 

models with different probability distributions governing the innovations.  

Table 20: ML parameter estimates for GARCH (1, 1)-M  

Parameter Estimates NORM Std-t Skew-t GED 

𝜇̂ -0.000 -0.000 -0.000 -0.000 

𝛼̂1 0.059 *** 0.060 *** 0.062 *** 0.060 *** 

𝛽̂1 0.940 *** 0.939 *** 0.937 *** 0.939 *** 

𝛼̂1 +  𝛽̂1 0.999 0.999 0.999 0.999 

𝛿 0.143 * 0.133 * 0.091 0.149 * 

AIC -6.557 -6.575 -6.596 -6.574 

BIC -6.548 -6.564 -6.580 -6.562 

 NOTE: *, **, *** means the p-value is significant at a 10%, 5% and 1% level of significance, 

respectively 
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Table 21: ML parameter estimates for EGARCH (1, 1)-M  

Parameter Estimates NORM Std-t Skew-t GED 

𝜇̂  -0.002 ***      0.002 *** 0.002 *** -0.001*** 

𝛼̂0 -    - -  -0.345 ***     

𝛼̂1 -0.119 ***    -0.119 ***    -0.126 ***   -0.127 ***    

𝛽̂1 1.000 ***     1.000 ***     1.000 ***   0.964 ***     

𝛼̂1 +  𝛽̂1 0.880 0.881 0.874 0.836 

𝛿 -0.242 ***     -0.206 *** -0.204 ***    0.184 ***    

𝛾 0.063 *** 0.060 ***     0.062 *** 0.080 ***    

AIC -6.603 -6.610 -6.624 -6.623 

BIC -6.591 -6.596 -6.608 -6.607 

NOTE: *, **, *** means the p-value is significant at a 10%, 5% and 1% level of significance, 

respectively 

4.2.5.2 Discussion of GARCH-M Test Results 

The ARCH and GARCH effects represented by 𝛼̂1 and 𝛽̂1, respectively are significant 

at a 5% level of significance for both the GARCH (1, 1)-M and EGARCH (1, 1)-M 

models. Given the GARCH-M models are adequate for analysis by the significance of 

the ARCH and GARCH effects, focus is placed on the prime parameter of interest, the 

risk premium parameter 𝛿. From Table 20, the risk premium parameter is statistically 

insignificant at a 5% level of significance for all the innovation distributions. However, 

the risk premium is statistically significant at a 10% level of significance for the 

remaining three innovation distributions (NORM, Std-t and GED) except Skew-t. The 

latter finding is in contrast to the model testing based on SIC and BIC by the prior 

findings of the GARCH type models where the Skew-t innovation distribution was 

determined to be the best fitting and in capturing risk. This point emphasises the 

importance of efficient risk estimation in order to estimate a robust risk-return 

relationship by Demier et al., (2018) and Jensen and Maheu (2018). Specifically, the 
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choice of probability distribution governing the innovations, in line with Mandimika and 

Chinzara (2012).   

From Table 21, all the risk premium parameters are statistically significant at a 5% 

level of significance for all the innovation distributions. This is in direct contrast to the 

GARCH (1, 1)-M model, particularly for the Skew-t innovation distribution. The 

EGARCH (1, 1) model is asymmetric and Skew-t assumes the innovations are 

asymmetric, implying a more robust combination in estimating the risk-return 

relationship. However, the combination of the GARCH (1, 1)-M with Skew-t results in 

an insignificant risk premium. This is because the GARCH (1, 1) model is not designed 

to account for the asymmetry and is mispecified, in line with Jin (2017). Since 

EGARCH (1, 1) provides a more robust risk estimation than GARCH (1, 1) due to 

being asymmetric, the overall EGARCH (1, 1)-M results are favoured. Thus, according 

to the innovation distributions, NORM, Skew-t, Std-t and GED, the presence of risk-

return relationship and volatility feedback is confirmed by the EGARCH (1, 1)-M model. 

The risk premium parameter is significant, indicating the presence of the risk-return 

relationship. The significant risk premium parameter is in contrast with the early South 

African studies by Mangani (2008), Mandimika and Chinzara (2012), du Toit (2015) 

and Adu et al., (2015). The positive risk premium parameter means that an investor is 

being compensated for taking on a higher level of risk in the South African market. The 

significant risk premium parameter of this study is in contrast to the recent studies by 

Bekiros et al., (2017), Jin (2017) and Steyn and Theart (2019), who find a negative 

risk-return relationship in the South African market. That is, where an investor is being 

negatively compensated, by earning low returns for taking on a higher level of risk. 

The positive risk-return relationship is more in line with recent studies from 

international literature such as Madaleno and Vieira (2018), Kim and Kim (2018), 

Jensen and Maheu (2018) and Harris et al., (2019).  

From Table 20 and 21, according to AIC and BIC for the GARCH (1, 1)-M and 

EGARCH (1, 1)-M model, the best innovation distribution is Skew-t in line with findings 

for the linear and asymmetric GARCH (1, 1) type models. This is followed by the Std-

t, GED and NORM innovation distribution. Once again, it can be can be concluded 

that the NORM innovation distribution is the least best fitting innovation distribution. 

This is because a NORM innovation distribution is unrealistic, given financial data is 
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volatile and nonlinear in nature, in line with Jensen and Maheu (2018). This is further 

supported by the insignificant risk premium parameter found by the GARCH (1, 1)-M 

and Skew-t innovation distribution.  

Although the Skew-t is the best fitting innovation distribution, the finding of GARCH (1, 

1)-M and EGARCH (1, 1)-M reveal an inconsistency in results. This could essentially 

be because GARCH (1, 1)-M is symmetric in nature and EGARCH (1, 1)-M is 

asymmetric. The underlying problem regarding the innovation distribution with respect 

to the GARCH approach confirms inefficient risk estimation in the investigation of the 

risk-return relationship. The inefficiency of GARCH (1, 1) misestimating risk is in line 

with Mangani (2008), Ilupeju (2016) and Feng and Shi (2017). Nonetheless, the 

presence of risk-return relationship and volatility feedback, respectively is confirmed 

by the EGARCH (1, 1)-M model. Since risk remains uncaptured within the innovations 

of the EGARCH (1, 1) model, in turn, this makes the EGARCH-M results not 

statistically sound. Hence, this motivates further investigation of the risk-return 

relationship. 

4.2.6 Summary of Risk-Return Relationship 

The GARCH (1, 1)-M model finds an insignificant risk premium parameter only for the 

Skew-t innovation distribution. In contrast, the EGARCH (1, 1)-M model finds the 

opposite result for all four innovation distributions, at all three levels of significance. 

The theory by Spierdijk (2016), where the distribution of model innovations does not 

affect parameter estimation can now be unsupported in the context of estimating the 

risk-return relationship. This is because the significance of the parameter estimates 

changes for the innovation distribution Skew-t for the asymmetric EGARCH (1, 1) 

model. Due to this inconsistency, it is reaffirmed that the results of the GARCH 

approach are not strictly adhered to and simply regarded as preliminary tests to 

motivate further testing.  

The finding of the presence of the risk-return relationship is not statistically sound by 

the GARCH approach and this is essentially due to three reasons. First, the GARCH 

(1, 1) model is a symmetric parametric model which cannot effectively account for 

asymmetric volatility (Hretski and Karachun, 2018). In this study, the sign and size 

bias tests showed that asymmetry remains uncaptured by the GARCH (1, 1) model, 

in line with Park et al., (2017) and Ilupeju (2016). Thus, according to He et al., (2018), 
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the risk premium remains constant for a specified period of time. In order to address 

this limitation, various extensions have been made to the standard GARCH model in 

order to accommodate the market characteristics - asymmetric volatility, the leverage 

effect and volatility feedback (Harris et al., 2019). While these extensions have been 

made, resulting in the EGARCH, GJR and APARCH, the model is still not free from 

being limited (Jin, 2017).  

Second, the GARCH type models are essentially parametric which limits its ability to 

account for higher moment asymmetric forms of the risk-return relationship (Demirer 

et al., 2019). Therefore, the use of a nonparametric approach, in order to effectively 

account for asymmetry as well as account for model misspecifications, is highlighted 

in a number of studies such as Jin (2017), Apergis et al., (2018), Jensen and Maheu 

(2018) and Demirer et al., (2019).  

Third, risk remains uncaptured by the probability distributions governing the 

innovations of the GARCH type models (Feng and Shi, 2017). While the innovations 

have shown to capture volatility in this study, nonlinearities and asymmetries; 

however, still remain uncaptured in line with Ilupeju (2016) and Mangani (2008). 

Hence, asymmetric returns exposure remains uncaptured, leading to misestimating 

risk and contributing to inconclusive results regarding the risk-return relationship. 

Thus, the GARCH approach is not an efficient choice for estimating risk when 

investigating the risk-return relationship, in line with Jensen and Maheu (2018); Feng 

and Shi (2017) and Jin (2017).  

Ultimately, while GARCH type models can account for volatility, more robust 

predictions can be made by models that can effectively account for measures with 

nonlinearity, asymmetry as well as latent and stochastic properties (Karabatsos, 2016; 

Jin, 2017; Jensen and Maheu, 2018; Wagenmakers et al., 2018). Therefore, this study 

applies the Bayesian approach, which accounts for the uncertainty associated to 

asymmetric returns exposure due to being latent and stochastic in nature.  

The Bayesian approach consists of a parametric Bayesian model and a nonparametric 

Bayesian model. The parametric approach takes on a finite number of possibilities, in 

terms of higher moment asymmetric forms of the risk-return relationship (Jin; 2017). 

On the other hand, the nonparametric approach takes on an infinite number of 

possibilities, being more effective in accommodating higher moment asymmetric 
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properties such as skewness, kurtosis and multiple modes (Demirer et al., 2019). 

Essentially, a parametric Bayesian model or nonparametric Bayesian model both 

provide more robust results, in comparison to the conventional quantitative finance 

methods such as regression analysis, the VAR model, causality tests and the GARCH 

approach. This is because the Bayesian approach, as a parametric or nonparametric 

model, can account for uncertainty and asymmetry more effectively (Karabatsos, 

2016). However, the nonparametric Bayesian model by Jensen and Maheu (2018), is 

more robust than any parametric model, including a parametric Bayesian model, 

mainly because by definition, it can account for an infinite number of possibilities. In 

other words, it is more effective in accounting for higher moment asymmetric forms of 

the risk-return relationship in an infinite sample space (Demirer et al., 2019; Jensen 

and Maheu, 2018; Karabatsos, 2016; Jin, 2017). 

4.3 Bayesian Approach 

The Bayesian approach consists of four parts. Firstly, the data exploration gives a brief 

overview and comparative analysis to substantiate the choice of the selected risk and 

return variables. Secondly, the model specifications for the priors and posteriors are 

noted. Thirdly, the test results of the parametric Bayesian model are presented 

followed by the test results of the nonparametric Bayesian model. Finally, the Bayesian 

test results and their implications are discussed in summary.  

4.3.1 Data Exploration 

Table 22 shows the basic descriptive statistics of the risk and return variables. 
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Table 22: Basic descriptive statistics of excess returns and realised variance 

Variables Mean Variance Kurtosis Skewness Minimum Maximum 

𝑟𝑡 0.0001 0.0001 1.277 -0.167 -0.037 0.042 

𝑟𝑡
2 0.118 0.004 -1.131 -0.043 0.000 0.227 

𝑅𝑉𝑡 0.981 0.000 3.185 -1.567 0.946 0.988 

log (𝑅𝑉𝑡) -0.019 0.000 3.323 -1.593 -0.056 -0.012 

𝑧 =
𝑟𝑡

√𝑅𝑉𝑡

 0.000 0.000 1.350 -0.168 -0.038 0.043 

 

From Table 22, the summation of returns squared 𝑟𝑡
2 is realised variance by definition 

(Maneemaroj et al., 2019). The 𝑅𝑉𝑡 is a bias adjusted measure of realised variance 

where the realised variance 𝑅𝑉𝑡
𝑞
 is equivalent to 𝑅𝑉𝑡 since q is set to one by Hansen 

and Lunde (2006). From the variance column, the realised variance by definition 𝑟𝑡
2 

contains more risk than the bias adjusted realised variance 𝑅𝑉𝑡. Additionally, the sum 

of squared returns 𝑟𝑡
2 has negative excess kurtosis which indicates a thin tailed 

distribution. In contrast, to the characteristics of an emerging market which is heavy 

tailed and has higher levels of volatility (Herbert et al., 2018).   

The bias adjusted realised variance 𝑅𝑉𝑡 is heavy tailed, as indicated by the positive 

excess kurtosis, implying that it contains more risk. However, it has a lower variance, 

in comparison to the realised variance by definition. This means that the bias adjusted 

realised variance 𝑅𝑉𝑡 is less risky because it has the ability to account for 

microstructure noise. The bias adjustment accounts for the micro price movements in 

the market due to changes in supply and demand, and stale prices which are when 

prices do not update to recent information (Hansen and Lunde, 2006). Thus, the bias 

adjusted realised variance 𝑅𝑉𝑡 provides a better estimate of risk, in line with Jensen 

and Maheu (2018).  

On the other hand, returns 𝑟𝑡 has a positive excess kurtosis indicating a heavy tailed 

distribution. This finding is in line with the return characteristics of an emerging market 
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by Herbert et al., (2018) and Adu et al., (2015). With respect to skewness, all the 

variables reflect a negative value where for returns, this indicates losses for investors. 

This is because negative skewness is associated to a negative payoff by Yao et al., 

(2019). It can be concluded that returns have an asymmetric nature since it follows an 

asymmetric distribution, in line with the concept of asymmetric returns exposure. 

Figure 19 shows a general relationship between excess returns and log realised 

variance by a basic scatter plot.   

 

Figure 19: Scatter plot for excess returns and log realised variance 

From Figure 19, the data of excess returns and log realised variance shows a 

nonlinear and asymmetric pattern. This result is in line with the South African studies 

by du Toit (2015) and Steyn and Theart (2019). The ends, in particular, show a number 

of outliers, in line with Jensen and Maheu (2018). Thus, in conclusion from Figure 19, 

the asymmetric properties and outliers shown by the data can effectively be accounted 

for by an asymmetric model. This is in line with the recommendations by Demirer et 

al., (2019) and Jensen and Maheu (2018).  

4.3.2 Model Specifications 

Volatility feedback and the risk-return relationship is investigated by a parametric and 

nonparametric Bayesian model guided by the methodology of Jensen and Maheu 

(2018). The majority of the prior specifications follow the values suggested by 

Karabatsos (2016), which are noninformative. A noninformative prior is an objective 

prior since it is not guided by a source of subjectivity which overcomes the main 

limitation of the Bayesian approach (Bartlett and Keogh, 2016).  
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For the parametric Bayesian model, the prior variance of the slope parameters is 

specified as 1000 and the prior inverse gamma distribution of the error variance is 

specified as 
0.001

2
.  

For the nonparametric Bayesian model, the prior is the Dirichlet Process by Ferguson 

(1973), derived by the stick-breaking process by Sethuram (1994). The prior inverse 

gamma distribution of the error variance is specified as 
5

2
. For the Dirichlet Process, 

the intercept variance of the base distribution is specified as five. The prior gamma 

distribution, shape and rate, of the concentration parameter are both specified as one.  

For both the parametric and nonparametric Bayesian model, the MCMC methods used 

to compute the posterior parameter estimates are the slice sampler by Kalli et al., 

(2011) and the Gibbs sampling technique. The posterior parameter estimates are 

determined by 20 000 MCMC sampling iterations, a burn-in period of 5000 and a thin 

number of 5.   

4.3.3 Parametric Bayesian Test Results 

The test results of the parametric Bayesian model serve as a preliminary test with 

regards to the presence of asymmetric effects in the South African market. It also 

allows for a comparative analysis between the final test results of the parametric 

Bayesian model and nonparametric Bayesian model.  

4.3.3.1 Summary Statistics 

The summary statistics serve as a preliminary test to provide an overview of the 

parametric Bayesian model. Table 23 shows the results of the parameter estimates. 
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Table 23: Posterior parameter estimates 

Parameter 

Estimates 

75% Credible 

Interval 

Mean          

Value 

95% Credible 

Interval 

MC Mixing 

Value 

𝛼̂0 (-0.118, -0.077) -0.098    (-0.156, -0.037) 0.499 

𝛼̂1 (0.078, 0.121) 0.100 (0.038, 0.159) 0.499 

𝜎̂1
2 (0.000, 0.000) 0.000 (0.000, 0.000) 0.492 

𝛾0 (-0.019, -0.018) -0.019 (-0.019, -0.018) 0.518 

𝛾1 (-0.000, 0.000) 0.000 (-0.000, 0.000) 0.512 

𝛾2 (-0.096, 0.186) 0.047 (-0.370, 0.460) 0.523 

𝛾3 (0.062, 0.080) 0.070 (0.044, 0.098) 0.490 

𝛾4 (-0.126, -0.099) -0.113 (-0.152, -0.073) 0.499 

𝜎̂2
2 (0.000, 0.000)    0.000 (0.000, 0.000) 0.500 

 

From Table 23, the coefficient 𝛼̂1 on 𝑅𝑉𝑡 represents the persistence of risk on realised 

variance and this term represents volatility feedback (Jensen and Maheu, 2018). The 

value is positive and statistically significant, confirming the presence of volatility 

feedback in the South African market, by both the 75% and 95% credible intervals. On 

the other hand, for the 95% credible interval, 𝛾1 has a mean value of zero which 

suggests an absence of volatility feedback. Further, 𝛾2 which in this case accounts for 

volatility feedback over the entire sample period is positive, has a high mean value 

and is statistically significant. However, for the 75% credible interval, both 𝛾1 and 𝛾2 

are statistically insignificant, indicating no volatility feedback. Overall, these results 

indicate a weak presence of volatility feedback in the South African market. 

According to the 75% and 95% credible intervals, the leverage effect is present in the 

South African market as indicated by the significance of 𝛾3 and 𝛾4. The presence of 

the leverage effect in the South African market is in line with Mandimika and Chinzara 

(2012), Ilupeju (2016) and Jin (2017) but in contrast to Adu et al., (2015). However, 



142 
 

their mean values of 0.070 and -0.113 are weak, in comparison to volatility feedback 

which has a mean value of 0.100 as shown by 𝛼̂1. The weak presence of the leverage 

effect in the South African market is in line with Mangani (2008). It can be concluded 

that volatility is weakly persistent, resulting in volatility feedback being weakly present 

or close to being absent, in the South African market. This result is in contrast to the 

international study by Jin (2017), who found the presence of volatility feedback in the 

South African market. As a result, this motivates further testing of the volatility 

feedback mechanism.   

The values of 𝜎̂1
2 and  𝜎̂2

2 are both zero which indicates that there is no error variance. 

The error variance refers to the unexplained variance that arises from sources such 

as uncertainty and measurement errors of which a Bayesian model can automatically 

adjust to (Chakraborty and Lozano, 2019). This includes the systematic error on the 

realised variance measure according to Jensen and Maheu (2018). The systematic 

error refers to the error surrounding the stochastic measure of realised variance which 

is unavoidable regardless of the number of times the model is run (Beyhaghi et al., 

2018). Finally, since all the MC mixing values are an approximate value of 0.5, this 

indicates optimal mixing of the parameters. Hence, this confirms the robustness of the 

posterior parameter estimates as suggested by Karabatsos (2016). 

4.3.3.2 Volatility Feedback 

Following Jensen and Maheu (2018), in order to truly capture the volatility feedback 

mechanism, log realised variance is determined in relation to three levels, namely, 

low, average and high volatility. Since this study analyses daily data, the three periods 

are daily low, average and high volatility. The three periods are defined as 10 May 

2010, 24 February 2011 and 16 March 2012, which are calculated as the minimum, 

average and maximum log realised variance values, respectively. Drawn from theory, 

log realised is expected to get stronger over time in relation to the three levels of 

volatility (Harris et al., 2019; Jensen and Maheu, 2018). Table 24 shows the results of 

the parametric Bayesian model. 
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Table 24: Posterior parameter estimates 

Parameter 

Estimates 

75% Credible 

Interval 

Mean          

Value 

95% Credible 

Interval 

MC Mixing 

Value 

𝛽̂0 (-0.028, -0.012) -0.020 (-0.044, 0.004) 0.484 

𝛽̂𝑙𝑜𝑤 (-0.137, 0.127) -0.005 (-0.412, 0.381) 0.489 

𝛽̂𝑎𝑣𝑔 (-0.144, 0.142) 0.001 (-0.394, 0.410) 0.497 

𝛽̂ℎ𝑖𝑔ℎ (-0.140, 0.140) -0.004 (-0.409, 0.387) 0.502 

𝜎̂2
 (0.000, 0.000) 0.000 (0.000, 0.000) 0.506 

 

From Table 24, for a low level of volatility, the mean value is negative and statistically 

significant. The mean value then increases and reflects a positive value for an average 

level volatility. However, although the mean value is significant for a high level of 

volatility, it decreases from an average level of volatility, indicating a dissipation of 

volatility. This finding is in direct contrast to its expected magnitude of volatility 

feedback where it is characterised by tendencies to get stronger over time by Jensen 

and Maheu (2018) and Harris et al., (2019). Further, for the 75% credible interval, all 

the mean values are found to be statistically insignificant. Thus, from the overall results 

of the parametric Bayesian model, it can be concluded that volatility feedback is absent 

in the South African market.  

4.3.3.3 Risk-Return Relationship 

Since there is no significant evidence of volatility feedback in the market, the risk-

return relationship is analysed free from empirical distortions that result from volatility 

feedback. If only the risk premium is captured, it should theoretically be positive and 

linear over time, as suggested by traditional theoretical expectations. Table 25 shows 

the results of the parametric Bayesian model. 
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Table 25: Posterior parameter estimates 

Parameter 

Estimates 

75% Credible 

Interval 

Mean          

Value 

95% Credible 

Interval 

MC Mixing  

Value 

𝛽̂0 (0.002, 0.002) 0.002 (0.001, 0.003) 0.494 

𝛽̂log (𝑟𝑣) (0.078, 0.117) 0.098 (0.040, 0.157) 0.498 

𝜎̂2
 (0.000, 0.000) 0.000 (0.000, 0.000) 0.494 

 

From Table 25, for the 75% credible interval, the relationship between risk and return 

is significant. This result is supported by the 95% credible interval which indicates a 

positive and significant risk-return relationship. Since all the MC mixing values are an 

approximate value of 0.5, this indicates optimal mixing of the parameters, hence, 

robust results as suggested by Karabatsos (2016). Figure 20 is a plot that shows the 

mean (M) and 95% quantiles of returns as a function of log realised variance.  

 

 

Figure 20: Relationship between risk and return 

From Figure 20, a positive and linear relationship between risk and return is shown 

over time, in line with expectations from conventional theory by Markowitz (1952), 

Sharpe (1964), Lintner (1965) and Mossin (1966). However, this result is in contrast 

-0.055 -0.05 -0.045 -0.04 -0.035 -0.03 -0.025 -0.02 -0.015

-5

-4

-3

-2

-1

0

1

x 10
-3

  M

log:rv

rt
 (

--
 9

5
%

)



145 
 

to the majority of the South African studies who found a negative or no risk-return 

relationship at all. The positive and linear risk-return relationship result is more in line 

with recent studies from international literature by Madaleno and Vieira (2018), Kim 

and Kim (2018), Jensen and Maheu (2018) and Harris et al., (2019).  

However, the positive and linear test result of the risk-return relationship is from the 

parametric Bayesian model. Meaning, a model that is essentially a parametric finite 

model that is limited to accounting for every possible higher moment asymmetric form 

of the risk-return relationship (Karabatsos, 2016). Therefore, a nonparametric 

Bayesian model would be more effective in capturing the risk-return relationship, in 

line with recommendations from literature by Mandimika and Chinzara (2012), Kang 

(2014), Chang et al., (2017), Jin (2017), Waldmann (2018), Jensen and Maheu (2018) 

Demirer et al., (2019). 

4.3.4 Nonparametric Bayesian Test Results 

The nonparametric Bayesian model is the main method of investigation for this study 

with respect to the investigation risk-return relationship and volatility feedback in the 

South African market.  

4.3.4.1 Volatility Feedback 

The analysis of volatility feedback for the nonparametric Bayesian approach consists 

of a comparative analysis of how the form of density estimation with respect to the 

different levels of volatility changes. The graphical analysis is then concluded by a 

brief comparative analysis of the expected and actual result. 

To recap, following Jensen and Maheu (2018), in order to truly capture the volatility 

feedback mechanism, log realised variance is determined in relation to three levels of 

volatility which are low, average and high volatility. Since this study analyses daily 

data, the three periods are daily low, average and high volatility. The three periods are 

defined as 10 May 2010, 24 February 2011 and 16 March 2012, which are calculated 

as the minimum, average and maximum log realised variance values, respectively. 

Drawn from theory, log realised is expected to get stronger over time in relation to the 

three levels of volatility (Harris et al., 2019; Jensen and Maheu, 2018).  

In the context of this study, for the probability density functions (pdfs), the plots display 

the spread and probability of occurrence of the log realised variance in relation to the 
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specified level of volatility. Graphically, the peak of the density represents the mean 

value since it is a measure of central tendency (Gulzar et al., 2019). Figure 21, 22 and 

23 are density estimations of log realised variance for low, average and high levels of 

log realised variance, respectively. All three figures show a distinct form for each plot. 

Figure 21 shows the density estimation for a period of low volatility.  

 

Figure 21: Density estimation of log(rv) in relation to a low level of log(rv) 

From Figure 21, the spread is relatively high and the peak of the pdf is the highest, in 

comparison to the plots for average and high levels of volatility. Specifically, the peak 

of the pdf is approximately 900. Meaning, the probability of occurrence of log realised 

variance is exceptionally high within the market conditions of low volatility. Thus, the 

South African market is subject to relatively low volatility conditions. This finding is in 

contrast to the high levels of volatility characterised by an emerging market by Herbert 

et al., (2018).  

This is further in contrast to the studies that find persistent levels of volatility in the 

South African market by Mangani (2008), Mandimika and Chinzara (2012), Adu et al., 

(2015), Ilupeju (2016) and Jin (2017). As a result, suggesting the presence of a 

stronger form of volatility, volatility feedback (Harris et al., 2019). This period of low 

volatility is representative of unusually stable conditions that does not necessarily 

facilitate an investor to achieve a higher return from taking on a higher level of risk. 

However, the result of low volatility is in line with the recent South African study by 
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Steyn and Theart (2019). Figure 22 shows the density estimation for a period of 

average volatility.  

 

Figure 22: Density estimation of log(rv) in relation to an average level of log(rv) 

In direct contrast to Figure 21, Figure 22 reflects a density estimation that has a very 

constricted spread. The form of Figure 22 strongly reflects a horizontal and uniform 

shape along the y-axis. This relatively flat form suggests that volatility in relation to an 

average level of volatility is linear. The positive uniform and linear shape can be 

interpreted as a reflection of the trade-off theory by Markowitz (1952), where an 

investor only takes on a high level of risk if compensated by a high level of return. This 

is in contrast to the recent documented South African studies which finds a negative 

relationship and would expect a nonlinear shape (Bekiros et al., 2017; Jin, 2017; Steyn 

and Theart, 2019). On that note, if the earlier South African studies were taken into 
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2012; Adu et al., 2015). 
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of volatility is unexpected as one would expect a higher probability estimation within 

this period. This is because it resembles the conditions of a typical market that 
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Jensen and Maheu (2018) and Harris et al., (2019). All of which found investors are 

being compensated in their respective markets. Figure 23 shows the density 

estimation for a period of high volatility. 

 

Figure 23: Density estimation of log(rv) in relation to a high level of log(rv) 

Figure 23 is the most unique density estimation as it reflects the asymmetric property 

of multiple modes of which a nonparametric model can capture according to Jensen 

and Maheu (2018) and Karabatsos (2016). The spread is constricted in two distinct 

areas which could be as a result of the high level of volatility, thus, causing a distinct 

dispersion in the spread of the data. The probability estimation for log-realised 

variance in relation to the highest level of volatility has the lowest value 11. Meaning, 

the probability of log realised variance in relation to a high level of volatility has the 

lowest chance of occurring in the South African market.  

Specifically, its value is approximately about eighty times smaller than the pdf of the 

low specified level of volatility of 900. This means that the probability of occurrence of 

log realised variance within a period of high volatility is very small, smaller than that 

for the low volatility period. Thus, log realised variance is strongly dissipating with 

respect to an increase in the level of volatility over time. The finding is threefold. Firstly, 

it is in contrast to the high levels of volatility characterised by an emerging market by 

Herbert et al., (2018). Secondly, it is further in contrast to South African studies who 

find persistent levels of volatility in the South African market by Mangani (2008), 
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is in contrast to the expected theoretical result of volatility feedback which is 

characterised by tendencies to get stronger over time and take longer to die out by 

Harris et al., (2019) and Jensen and Maheu (2018).  

Looking at the data alone, focus is placed on the probability estimation indicated by 

the peak of the pdf on the vertical axis which represents the mean value. The mean 

value represents the probability estimation of obtaining the value of log realised 

variance in relation to the specified level of volatility. The approximate values are 

derived from Figure 21, 22 and 23, and are 900, 13 and 11, respectively. These values 

are plotted as a simple line graph for the purpose of a comparative analysis, with the 

expected theoretical and empirical result, drawn from Harris et al., (2019) and Jensen 

and Maheu (2018). Figure 24 shows the point estimates of the pdfs of log-realised 

variance in relation to low, average and high levels of volatility.   

 

Figure 24: Line graphs of the mean values of log-realised variance 

From Figure 24, the blue line is the actual finding and the orange line is an expected 

result drawn from the study by Jensen and Maheu (2018). According to the expected 

result (orange line), log realised is expected to shift rightwards and upwards in relation 

to the three levels of volatility, whereas the actual finding is the opposite result. More 

importantly, the slope of the actual result (blue line) distinctly flattens over the latter 

period, reaffirming the dissipation of volatility over time. Table 26 shows the results of 

the nonparametric Bayesian model. 
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Table 26: Posterior parameter estimates 

Parameter 

Estimates 

75% Credible 

Interval 

Mean          

Value 

95% Credible 

Interval 

MC Mixing 

Value 

𝑑̂𝑙𝑜𝑤 (-0.093, 0.066) -0.311      (-24.503, 26.842) 0.496 

𝑑̂𝑎𝑣𝑔 (-0.144, 0.127) 0.406 (-28.389, 37.115) 0.499 

𝑑̂ℎ𝑖𝑔ℎ (-0.091, 0.064) 4.480 (-35.850, 28.768) 0.487 

 

From Table 26, the mean values of the density estimations increase from a low, to 

average, to a high level of volatility. This finding is in line to the volatility feedback 

definition by Harris et al., (2019) and expected result by Jensen and Maheu (2018). 

However, the density estimation of log realised variance in relation to the three levels 

of volatility are all insignificant for the 75% credible interval, but significant for the 95% 

credible interval. Overall, the test results suggest an absence of the volatility feedback 

mechanism, in line with the results of the parametric Bayesian model. Thus, from the 

graphical analysis as well as numerical analysis of both the parametric and 

nonparametric Bayesian models, it can be concluded that volatility feedback is absent 

in the South African market.  

This finding is in contrast to a number of studies. First, Jin (2017) who found the 

presence of volatility feedback for South Africa and the emerging markets Brazil, India 

and Indonesia. Further, studies who found a strong presence of volatility feedback 

such as Kim and Kim (2018) and Jensen and Maheu (2018) for the US market and 

Harris et al., (2019) for the UK. One would expect volatility feedback to be strongly 

prevalent in emerging markets since they are characterised by high levels of volatility 

(Herbert et al., 2018). However, the study by Sultan (2018), found a weak presence of 

volatility feedback in the emerging Finnish market. This study follows the sample 

period of Sultan (2018), which does not account for the 2008 financial crisis. As a 

result, this choice could be the main reason for the absence of volatility feedback in 

the South African market.  
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According to theory, volatility feedback is a useful tool in understanding market 

conditions by acting as an indicator of market stability (Mancino and Sanfelici, 2019). 

The presence of strong volatility feedback suggests recessionary market conditions, 

whereas a weak presence indicates expansionary market conditions (Inkaya and 

Okur, 2014). In this case, the absence of volatility feedback suggests the market 

conditions of an economic recovery. Hence, the result of absent volatility feedback is 

theoretically and empirically expected since this study analyses the post 2008 financial 

crisis period. The actual risk-return relationship of South Africa was also unaffected by 

the 2008 financial crisis in the study by Jin (2017), in support of its exclusion in this 

study. Thus, from the results of the parametric and nonparametric Bayesian models it 

can be concluded that the volatility feedback mechanism has a negligible effect in the 

investigation of the risk-return relationship in the South African market. 

4.3.4.2 Risk-Return Relationship  

According to literature, the nonparametric approach has been found to be effective, in 

accounting for asymmetric and nonlinear properties, in the investigation of the risk-

return relationship (Demirer et al., 2019; Apergis et al., 2018; Jensen and Maheu, 

2018). Thus, the risk-return relationship is determined nonparametrically following 

Jensen and Maheu (2018), by means of density estimation in the form of a graphical 

and numerical analysis as follows. The density of the risk-return relationship is plotted 

against the mean to essentially give the average form of the distribution. Figure 25 is 

a plot of the density estimation for the risk-return relationship.  

 

Figure 25: Density estimation of return in relation to risk 

-1.5
-1

-0.5
0

0.5
1

1.5

x 10
4

-300

-200

-100

0

100

200

300
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
-6

meandensity

p
d
f



152 
 

On the flat surface of Figure 25 encompassing the x and y-axes, a distinct nonlinear 

relationship between risk and return is exhibited by the pdf. In distinct contrast to the 

linear positive straight line from the parametric Bayesian model. A reason for this 

difference could be because the nonparametric approach is more robust in accounting 

for asymmetric properties as suggested by Jensen and Maheu (2018), Apergis et al., 

(2018) and Demirer et al., (2019). Thus, this suggests the relationship between risk 

and return is nonlinear in the South African market. However, according to the pdf, the 

probability estimation of this occurrence is exceptionally low, specifically 0.000004 ≈ 

0. Meaning, the risk-return relationship is insignificant as it has a zero probability which 

translates to an event that would never happen. The numerical result of the density 

estimation provides more insight to this result. Table 27 shows the results for the 

nonparametric Bayesian model. 

Table 27: Posterior parameter estimates 

Parameter 

Estimates 

75% Credible 

Interval 

Mean          

Value 

95% Credible 

Interval 

MC Mixing          

Value 

𝑑̂𝑟𝑟 (-0.229, 0.215) 3.540 (-1.892, 1.371) 0.510 

 

From Table 27, according to the 75% and 95% credible interval, the risk-return 

relationship is insignificant in the South African market. Hence, the final result is that 

there is no relationship between risk and return in the South African market. The 

insignificant risk-return relationship is in direct contrast to the results of the parametric 

Bayesian model which shows a significant positive and linear risk-return relationship. 

However, it does support the pdf plot in Figure 25 which has a probability estimation 

of zero which means that the event of a nonlinear risk-return relationship has no 

chance of occurrence.  

Therefore, an investor does not earn a higher compensation, in the form of return, 

when taking on any level of risk in the South African market. This finding is in line with 

the early South African studies by Mangani (2008), Mandimika and Chinzara (2012), 

du Toit (2015) and Adu et al., (2015). This includes recent international studies such 

as Savva and Theodossiou (2018), who applies the GARCH approach, Umutlu (2019) 
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and Apergis et al., (2018), who apply the nonparametric approach to VAR and Granger 

causality tests, respectively. However, this is in contrast to the significant positive risk-

return relationship found in the recent studies from international literature by Madaleno 

and Vieira (2018), Kim and Kim (2018), Jensen and Maheu (2018) and Harris et al., 

(2019).  

4.3.5 Discussion of Bayesian Test Results  

The absence of volatility feedback from the Bayesian test results of both the 

parametric and nonparametric models is possibly expected since this study analyses 

the post 2008 financial crisis period. In turn, this result does not significantly impact 

the rising or falling of market prices, in line with Aboura and Wagner (2016). Since 

volatility feedback does not affect the dynamics of the South African financial market, 

it has a lesser impact with respect to an investor’s decision making and investment 

strategies. That is, in terms of identifying and capitalising from arbitrage opportunities 

and mispricing's in the South African market.  

In the context of this study, volatility feedback has been identified as a source of 

asymmetry that needs to be taken into account when investigating the risk-return 

relationship. This is guided by the studies of Jensen and Maheu (2018), Kim and Kim 

(2018) and Harris et al., (2019). Since emerging markets such as South Africa are 

characterised by higher levels of volatility, this suggests that the presence of volatility 

feedback is expected to be more pronounced. However, the Bayesian test results 

found the effects of volatility feedback to get weaker over time as well as have a 

statistically insignificant effect. Hence, it was confirmed that that volatility feedback 

mechanism is absent in the South African market. As a result, the risk-return 

relationship was investigated free from empirical distortions that result from volatility 

feedback.  

The result of the parametric Bayesian model was a statistically significant positive and 

linear relationship between risk and return, in line with the theoretical expectations by 

Markowitz (1952), Sharpe (1964), Lintner (1965) and Mossin (1966). In contrast, the 

result of the nonparametric Bayesian model was found to be statistically insignificant. 

Hence, the final result of no relationship between risk and return, in line with the early 

South African studies by Mangani (2008), Mandimika and Chinzara (2012) and Adu et 

al., (2015). All of which applied the GARCH approach to the South African market.  
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The absence of volatility feedback and no relationship between risk and return in the 

South African market is still a source of useful information. This is with respect to 

investors, policy makers and researchers. Although investors and arbitrageurs cannot 

capitalise on mispricing's, they can still be guided in terms of their investment 

strategies and decisions (Hussain et al., 2019). An investor can include South Africa 

in their investment portfolio with higher risk countries in order to spread their risk and 

derive diversification benefits. Risk averse investors can find a safe environment within 

the market of South Africa and earn a return in accordance to their risk tolerance 

(Huang and Startz, 2019).   

Policy makers are able to understand the behaviour of their market participants and 

create policies that promote economic growth on a macroeconomic level (Liu, 2019). 

Although volatility feedback is absent, volatility itself is present as guided by the 

GARCH results which motivated the investigation of volatility feedback. This is 

reinforced by the analysis of density estimation where the highest probability 

estimation is with respect to low volatility levels. The low persistent levels of volatility 

can still pose a challenge for policy makers (Vo et al., 2019). It has the potential to 

slowly deteriorate market stability along with macroeconomic and political shocks, in 

line with Marozva (2019). Given global interconnectedness, this makes markets prone 

to volatility spillover effects which can lead to economic instability, major cash outflows 

and a potential financial crisis (Gulzar et al., 2019). This can be avoided by export 

diversification and the maintenance of macroeconomic and political regulatory 

frameworks according to Mandimika and Chinzara (2012).     

While the risk-return relationship varies from study to study, a common theme of 

differences arises from data frequency, sample period and model specification (Savva 

and Theodossiou, 2018). However, given that a parametric model such as the GARCH 

approach is subject to a number of drawbacks, it is still extensively used (Maneemaroj 

et al., 2019). The drawbacks include the nonnegativity constraints, model 

misspecifications, measurement errors and choice of the underlying innovation 

distribution (Feng and Shi, 2017). All of which contribute to misestimating risk and 

inconclusive results (Apergis et al., 2018). Instead of focusing on the inconclusive 

results of the risk-return relationship, focus should be extended to more robust 

methods in existing literature to help solve the problem (Demirer et al., 2019). By 



155 
 

providing a practical means to solve the ongoing debate, progression can be made on 

a local and international level (Jensen and Maheu, 2018).       

4.3.6 Summary of Bayesian Approach 

According to the parametric Bayesian model, volatility feedback is suggested to be 

absent in the South African market. However, this finding is regarded as a preliminary 

test since volatility feedback is further investigated. This is by means of the relationship 

between log realised variance in relation to three levels of volatility following Jensen 

and Maheu (2018). The numerical and graphical output, from the parametric and 

nonparametric Bayesian test results, found volatility feedback to be statistically 

insignificant. Thus, the risk-return relationship is investigated free from empirical 

distortions that result from the volatility feedback mechanism. The parametric 

Bayesian test result finds a significant risk-return relationship that is positive and linear 

in nature. In contrast, the nonparametric Bayesian test result reveals the risk-return 

relationship is insignificant. Hence, the final result of this study is that there is no 

relationship between risk and return in the South African market.  

4.4 Chapter Summary 

According to Li (2018), financial price data of an entire financial system assumes a 

symmetric and normal distribution. However, financial data is intuitively and empirically 

known to have a volatile nature, in line with Harris (2017). From the empirical test 

results that describe the data dynamics, it is confirmed that the ALSI returns has an 

asymmetric and volatile nature by the basic descriptive statistics, normality and 

heteroskedasticity tests. Given the nature of the ALSI returns and the presence of 

volatility clustering, the application of the GARCH approach is motivated, in line with 

the recommendation by Khan et al., (2016).  

According to Spierdijk (2016), the probability distribution governing the model 

innovations does not affect parameter estimation. Thus, the GARCH (1, 1) models are 

estimated for four innovation distributions, NORM, Std-t, Skew-t and GED, following 

Mandimika and Chinzara (2012). The GARCH (1, 1) model has an inability to capture 

asymmetric volatility (Park et al., 2017; Hretski and Karachun, 2018). From the sign 

and size bias tests, the presence of asymmetric volatility is confirmed. Further, the 

GARCH (1, 1) model does not adequately capture asymmetric effects within the ALSI 

returns as shown by the joint effect test. Given the nature of the data and the inability 
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of GARCH (1, 1) capturing the asymmetric effects, the employment of asymmetric 

GARCH type models are motivated. The asymmetric GARCH type models are GJR-

GARCH (1, 1), EGARCH (1, 1) and APARCH (1, 1), in line with a number of studies 

such as Mandimika and Chinzara (2012), Adu et al., (2015), Khan et al., (2016) and 

Savva and Theodossiou (2018).  

The GJR-GARCH (1, 1), EGARCH (1, 1) and APARCH (1, 1) models confirm the 

presence and persistence of volatility by the ARCH and GARCH effects. From the 

model testing, information criteria, the EGARCH (1, 1) model is the best fitting 

asymmetric GARCH type model. However, a certain level of risk is left behind in the 

innovations and remains uncaptured (Feng and Shi, 2017). From the normality, 

randomness and heteroskedasticity tests, it is found that asymmetry remains 

uncaptured within the innovations of the EGARCH (1, 1) model, in line with Managni 

(2008), Ilupeju (2016) and Feng and Shi (2017). Consequently, asymmetric returns 

exposure is not being effectively captured. Thus, the GARCH approach can be 

concluded as an inefficient choice in estimating the risk-return relationship, in line with 

Jensen and Maheu (2018) and Jin (2017).  

The GARCH (1, 1)-M and EGARCH (1, 1)-M model is used to price risk to establish 

the presence of the risk-return relationship and volatility feedback, respectively. The 

GARCH (1, 1)-M model finds an insignificant risk premium for the Skew-t innovation 

distributions at all three levels of significance. On the other hand, the risk premium 

parameter is significant for NORM, Std-t and GED. In contrast, the EGARCH (1, 1)-M 

model finds a significant risk premium for all the innovation distributions. Thus, due to 

the mixed results, the theory by Spierdijk (2016), where the distribution of model 

innovations does not affect parameter estimation is unsupported, in the context of the 

risk-return relationship. Overall, the GARCH approach does not provide statistically 

sound results regarding the presence of the risk-return which motivates further testing.  

Therefore, this study applies the Bayesian approach by Jensen and Maheu (2018). 

This is in line with the early recommendation of effectively accounting for asymmetric 

and nonlinear properties when the results of the risk-return relationship are 

inconclusive by Mandimika and Chinzara (2012). Volatility feedback is investigated by 

determining the relationship between log realised variance in relation to three levels 

of volatility. The Bayesian test results, consisting of both the parametric and 
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nonparametric Bayesian models, indicate that volatility feedback is insignificant in the 

South African market. In contrast, to a number of studies such as Jin (2017), Kim and 

Kim (2018), Jensen and Maheu (2018) and Harris et al., (2019), who found a strong 

presence of volatility feedback in other markets. However, the study by Sultan (2018), 

found a weak presence of volatility feedback in the emerging Finnish market. This 

study follows the sample period of Sultan (2018), which does not account for the 2008 

financial crisis. As a result, this choice could be the main reason for the absence of 

volatility feedback in the South African market.  

The risk-return relationship is investigated free from empirical distortions that result 

from volatility feedback. The test results of the parametric Bayesian model found a 

significant positive and linear risk-return relationship. This finding is in line with recent 

studies from international literature such as Madaleno and Vieira (2018), Kim and Kim 

(2018), Jensen and Maheu (2018) and Harris et al., (2019). In contrast, the result of 

the nonparametric Bayesian model found no relationship between risk and return in 

the South African market, in line with early South African studies by Mangani (2008), 

Mandimika and Chinzara (2012), du Toit (2015) and Adu et al., (2015).  
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CHAPTER 5 

5. Conclusion 

This chapter sets out to conclude this study with a discussion of the findings and final 

test results in the context of the research objectives. First, is a summarised overview 

then second, are the limitations and finally, a number of recommendations are made 

for future research purposes.  

5.1 Summary of Study 

The risk-return relationship holds fundamental importance to the fields of finance and 

economics as well as useful information to various market participants. Due to 

conflicting results over the years, this has caused an ongoing local and international 

debate to arise. There are a number of factors and theories that attempt to explain the 

magnitude of varying results which motivated the pursuit of this research. From a 

broad analysis, results can easily vary, from study to study, as a result of different 

choices such as data frequency, sample period and model specification as noted by 

Savva and Theodossiou (2018). However, this study identified a trend in the use of 

conventional methods over a twenty-year gap, despite the drawbacks of the models 

being highlighted in literature. The foremost being the parametric GARCH approach 

which is subject to a number of nonnegativity constraints, limited in its ability to capture 

asymmetric properties and fully capture risk. This heavily contributes to the problem 

of inconclusive results regarding the risk-return relationship, thus, offering no 

conclusive solution to the ongoing debate.  

With respect to South African literature, the earliest studies found an insignificant risk-

return relationship, whereas recent studies found a negative result. More importantly, 

the methods employed showed no real progression over the years, in comparison to 

international literature. Most of the studies applied the GARCH approach such as 

Mangani (2008), Mandimika and Chizara (2012), Adu et al., (2015) and Ilupeju (2016). 

On the other hand, the most recent study by Steyn and Theart (2019), applied 

regression analysis which is a basic parametric method that is limited in its ability to 

capture asymmetric properties. In contrast, although international literature had 

significantly more conflicting results, recent studies had two distinct differences relative 

to local literature.  

 



159 
 

Firstly, there was a progression in the methods applied to the risk-return relationship. 

At first, the majority of studies applied the GARCH approach based on its conventional 

use such as Chou (1988), Park et al., (2017) Sultan (2018) and Savva and 

Theodossiou (2018). Then in recent years, a number of studies began using the 

nonparametric approach in conjunction with conventional methods. This was in order 

to derive the benefits of a nonparametric approach such as accounting for asymmetry 

and model misspecifications (Apergis et al., 2018; Demirer et al., 2019). The 

nonparametric approach was applied to methods of interest such as the VAR model 

by Umutlu (2019) and causality tests by Apergis et al., (2018). Additionally, more 

unconventional methods were introduced such as the unified framework by Kim and 

Kim (2018) and the nonparametric Bayesian approach by Jensen and Maheu (2018). 

Secondly, following these studies that used the more robust unconventional methods, 

volatility feedback was taken into account and a positive risk-return relationship was 

found, in line with theoretical expectations. Volatility feedback, which is a stronger 

measure of volatility, was treated as an important source of asymmetry by Jensen and 

Maheu (2018), Kim and Kim (2018) and Harris et al., (2019). This ultimately led to the 

main aim of this study which was to investigate the risk-return relationship provided 

volatility feedback was taken into account by its magnitude.  

In the build up to this research’s objective, the limitations of conventional methods 

such as regression analysis, VAR, causality tests and the GARCH approach was 

highlighted. It was noted that a number of studies individually recommended the 

nonparametric approach and Bayesian approach, respectively for more robust data 

estimation (Karabatsos, 2016; Jin 2017; Chang et al., 2017; Waldmann, 2018; 

Wagenmakers et al., 2018; Apergis et al., 2018; Jensen and Maheu, 2018; Demirer et 

al., 2019).  

The Bayesian approach has the ability to automatically adjust for sources of 

uncertainty and measurement errors surrounding parameters; thus, ensuring an 

efficient estimation of risk. The nonparametric approach has the ability to effectively 

account for asymmetric properties such as skewness, kurtosis and multiple modes in 

an infinite sample space. In direct contrast, to the design of the conventional 

parametric approach where the number of parameters is restricted to the sample size. 

Hence, the parametric model has an inability to account for every possible risk-return 
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relationship that can hold, particularly higher moment asymmetric forms of the risk-

return relationship.  

The nonparametric framework is a “model free” approach where there are no 

assumptions or constraints imposed on the data. Model misspecifications are adjusted 

for and as a result, there is no need for model extensions, specifications and 

accounting for various sources of asymmetry. In contrast, to the GARCH family where 

a number of modifications have been made over the years to the standard GARCH (1, 

1) model. However, despite these modifications, the drawbacks of the parametric 

approach essentially still hold such as the assumptions and nonnegativity constraints 

imposed on the data as well as the risk that remains uncaptured within the innovations. 

This is because data analysis of real world data often requires a method that relaxes 

parametric assumptions. Thus, allow for flexibility that enables the actual fundamental 

nature of data to be captured.  

A model that satisfies these conditions is the nonparametric Bayesian approach by 

Jensen and Maheu (2018). The nonparametric Bayesian approach is a combination 

of the two most robust methods recommended by literature, respectively in the 

estimation of data with nonlinear, asymmetric, latent and stochastic properties 

(Karabatsos, 2016; Wagenmakers et al., 2018). Consequently, this produced a 

powerful method for the estimation of the risk-return relationship. Hence, the 

methodology of this study followed Jensen and Maheu (2018), who made use of 

golden standard nonparametric Bayesian methods, namely, the Dirichlet Process, the 

slice sampler and Gibbs sampling technique. The study by Jensen and Maheu (2018), 

was the first and only study to apply the nonparametric Bayesian approach to the risk-

return relationship and volatility feedback topic, to the best of the authors knowledge.  

In order for the main aim to be addressed, the presence of the risk-return relationship 

and volatility feedback were both investigated by the GARCH approach. The results 

of the GARCH approach were not statistically sound as they were inconsistent due to 

the risk being uncaptured by the innovations, in line with Mangani (2008), Ilupeju 

(2016) and Feng and Shi (2017). The inconsistent results were also in contrast to 

Spierdijk (2016), who stated that the probability distributions governing the model 

innovations does not affect parameter estimation. As a result, this reaffirmed the 

decision of regarding the GARCH approach as a preliminary test. Since the GARCH 
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approach was an inefficient choice to estimate the actual risk-return relationship, the 

application of the novel Bayesian approach was motivated.  

In this study, the Bayesian approach consisted of a parametric Bayesian model and 

nonparametric Bayesian model. Both models have the ability to effectively account for 

the uncertainty associated to “asymmetric returns exposure”. However, the 

nonparametric Bayesian model is more robust because it has the ability to effectively 

account for every possible asymmetric higher moment form of the risk-return 

relationship in an infinite sample space.  

Given that South Africa is an emerging market which is subject to higher levels of 

volatility, the presence of volatility feedback was expected to be more pronounced. 

However, contrary to expectations, the test results from both the parametric and 

nonparametric Bayesian model showed that volatility feedback had an insignificant 

effect in the South African market. The result of absent volatility feedback was in 

contrast to a number of studies that found volatility feedback present in emerging and 

developed markets such as Jin (2017), Harris et al., (2019), Kim and Kim (2018) and 

Jensen and Maheu (2018). However, the result was in line with theory drawn from 

literature by Inkaya and Okur (2014), where the absence of volatility feedback 

suggests the market conditions of an economic recovery. This was further in line with 

the sample period analysed in this study - 2009 to 2019 - which was the post 2008 

financial crisis period.  

The risk-return relationship was investigated free from empirical distortions that 

resulted from volatility feedback. The test results of the parametric Bayesian model 

found a significant and positive risk-return relationship, in line with traditional 

theoretical expectations as well as recent studies by Madaleno and Vieira (2018), Kim 

and Kim (2018) and Harris et al., (2019). In the context of the nonparametric Bayesian 

model, the absence of volatility feedback enhanced the approach as not only was the 

risk-return relationship estimated free from empirical distortions but the parametric 

assumptions were relaxed. The estimation of the actual fundamental nature of the data 

essentially allowed “the data to speak for itself” and model its own robust result free 

from any predetermined assumptions or bias. This was in line with Bekiros et al., 

(2017), who found that the “actual returns are the most important factors” in the context 

of investigating the risk-return relationship.   
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In contrast, to the test results of the parametric Bayesian model, the nonparametric 

Bayesian model found an insignificant risk-return relationship. The insignificant risk-

return relationship was in line with the early South African studies that applied the 

GARCH approach such as Mangani (2008), Mandimika and Chinzara (2012) and Adu 

et al., (2015), as well as international studies by Savva and Theodossiou (2018), 

Umutlu (2019) and Apergis et al., (2018).  

In summary, the absence of volatility feedback and no relationship between risk and 

return in the South African market is still a source of useful information with respect to 

investors, policy makers and researchers. Although investors and arbitrageurs cannot 

capitalise on mispricing's, they can still be guided in terms of their investment 

strategies and decisions (Hussain et al., 2019).  

An investor can include South Africa in their investment portfolio with higher risk 

countries in order to spread their risk and derive diversification benefits. Policy makers 

are able to understand the behaviour of their market participants and create policies 

that promote economic growth on a macroeconomic level (Liu, 2019). Although 

volatility feedback is absent, particularly high levels of volatility, volatility itself is still 

present at low persistence levels. Thus, pose a challenge for policy makers (Vo et al., 

2019). It has the potential to slowly deteriorate market stability along with 

macroeconomic and political shocks, in line with Marozva (2019). Given global 

interconnectedness, this makes markets prone to volatility spillover effects of which 

can lead to economic instability, major cash outflows and a potential financial crisis 

(Gulzar et al., 2019). This can be avoided by export diversification and the 

maintenance of macroeconomic and political regulatory frameworks according to 

Mandimika and Chinzara (2012).     

To conclude, if a model can effectively estimate risk, there is no need for model 

extensions, specifications and omitted variables biases. This includes accounting for 

sources of asymmetry that seem manifold, considering there are so many factors and 

theories. This includes volatility feedback, the leverage effect, skewness, 

macroeconomic fundamentals, inefficient information, behavioural biases and different 

investor sentiment (Yu et al., 2018). Moreover, a model designed to capture nonlinear 

and asymmetric properties is more likely to effectively capture these properties and 

estimate a nonlinear risk-return relationship. Given the magnitude of international 
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literature, the importance and ongoing debate regarding the risk-return relationship, 

this study offers a contribution from a South African market perspective.  

In order to make a meaningful contribution, a study should not employ methods that 

can be considered irrelevant and obsolete, given the existence of more robust 

methods such as the nonparametric Bayesian approach by Jensen and Maheu (2018).  

According to Thomson (1994), “Experience with real world data, however, soon 

convinces one that both stationarity and Gaussianity are fairy tales invented for the 

amusement of undergraduates”. Thus, sophisticated and unconventional methods are 

encouraged as it can inspire a new perspective, a way of thinking and an approach to 

a problem. Additionally, a robust method is more likely to give a reliable result paving 

the way for progression in any field and topic. 

5.2 Limitations of Study 

Although the nonparametric and parametric Bayesian model accounts for the leverage 

effect, it was not the focus of this study and was thus ignored (Jensen and Maheu, 

2018). This is because volatility feedback is empirically favoured, in comparison to the 

leverage effect for a number of reasons briefly given: First, it reflects the risk-return 

relationship based on its assumptions by Umutlu (2019) and second, it is in line with 

the theoretical risk-return relationship by Jensen and Maheu (2018). Third, the main 

reason is that it is not associated to the amount of debt a firm has (Cao et al., 2018). 

The amount of debt a firm has is associated to capital structure which may have a 

negligible effect on volatility as opposed to a negative effect (Horpestad et al., 2019; 

Aboura and Chevallier, 2018). 

In the Bayesian approach, the theory and empirical model are closely related by 

means of prior information (Herath, 2019). This is also the main drawback of the 

Bayesian approach because prior information can be modelled from a source of 

subjectivity such as prior beliefs or experience (Bartlett and Keogh, 2016). However, 

this is addressed by incorporating a relatively mathematically convenient mechanism 

in this study - volatility feedback as well as objective prior specifications in the model 

implementation stage (Karabatsos, 2016). 

5.3 Extensions for Future Research 

According to Inkaya and Okur (2014), the use of high frequency data has become 

popular given the rise in high frequency trading. Thus, daily data provides a more 
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precise estimate of variables (Liu, 2019; Jin, 2017; Inkaya and Okur, 2014). Further, 

the presence of volatility feedback is more pronounced when using daily data 

according to Sultan (2018). Consequently, this may increase the magnitude of the 

volatility feedback mechanism and improve the estimation of the risk-return 

relationship once it is taken into account. Therefore, this study recommends using 

higher frequency data such as tick data, in line with Jensen and Maheu (2018), 

provided its availability and accessibility.  

According to Inkaya and Okur (2014), the presence of strong volatility feedback 

suggests recessionary market conditions, whereas a weak presence indicates 

expansionary market conditions. In this study, the absence of volatility feedback 

indicates the conditions of an economic recovery which makes sense because the 

sample period analysed was the post financial crisis period. Therefore, this study 

recommends analysing a sample period before, including and excluding the 

2007/2008 financial crisis because it can provide useful information to researchers 

and investors alike. First, to investigate if the result of volatility feedback lines up with 

theory drawn from Inkaya and Okur (2014) as it did in this study. Second, the different 

levels of volatility in each period is likely to affect risk estimation; thus, the empirical 

result of the risk-return relationship. Third, information on the magnitude volatility 

feedback alone or in relation to the risk-return relationship can assist an investor in 

strategising their investment to improve their probability of realising a superior return 

(Huang and Startz, 2019). 
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