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Abstract 

 
The wide utilization and popularity of medicinal plants in African Traditional Medicine 

(ATM) has been recognized and attributed to the effectiveness, affordability and 

accessibility of these medicinal plants. However, the extensive exploitation of medicinal 

plants has exacerbated the strain on the wild populations. In vitro 

propagation/micropropagation is an effective method which allows for mass production 

or multiplication of pathogen-free plants that are morphologically and genetically 

identical to the parent plant. In addition, the technique is contributing to the 

understanding of metabolic pathways and regulating the production of plant secondary 

products.  

Eucomis autumnalis (Mill.) Chitt. subspecies autumnalis (Hyacinthaceae) is a valuable 

medicinal species in ATM and commonly traded in the urban street markets of South 

Africa. Currently, the conservation status of this species has not been evaluated. 

However, as with most bulbous plants, the wild population is continuously under threat 

due to over-harvesting and habitat loss via various anthropogenic factors. Thus, in vitro 

propagation is a viable means of ensuring conservation of the plant species. However, 

mass propagation of medicinal plants should be accompanied with increased secondary 

metabolite production to guarantee their therapeutic efficacy. Therefore, the current 

study was aimed at understanding the different factors that affect the growth and 

secondary metabolite production in micropropagated E. autumnalis subspecies 

autumnalis. 
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The influence of the type of gelling agent (gelrite versus agar) and source of 

initial/primary explant source (LDL = leaf explant derived from primary leaf regenerants 

and LDB = leaf explant derived from primary bulb regenerants) were evaluated. Gelrite-

solidified medium significantly improved shoot proliferation when compared to the use of 

agar as a solidifying medium. In contrast, quantified phytochemicals such as flavonoids 

and phenolics were more enhanced in agar-supplemented media. On the basis of the 

explant source, shoot proliferation and secondary metabolites in regenerants from LDB 

were similar to those from LDL in most cases. Overall, the type of gelling agents and 

primary explant source individually or/and interactively significantly influenced the 

growth parameters as well as the production of iridoid, condensed tannin, flavonoid and 

phenolic content.  

 

The influence of different types of plant growth regulators (PGRs) on growth, 

phytochemical and antioxidant properties were evaluated. The PGRs were BA 

(benzyladenine); mT (meta-topolin); mTTHP [meta-topolin tetrahydropyran-2-yl or 6-(3-

hydroxybenzylamino)-9-tetrahydropyran-2-ylpurine]; MemT [meta-methoxytopolin or 6-

(3-methoxybenzylamino)purine]; MemTTHP [meta-methoxy 9-tetrahydropyran-2-yl 

topolin or 2-[6-(3-Methoxybenzylamino)-9-(tetrahydropyran-2-yl)purine] and NAA (α-

naphthalene acetic acid). Five cytokinins (CKs) at 2 µM in combination with varying (0, 

2.5, 5, 10, 15 µM) concentrations of NAA were tested. After 10 weeks of in vitro growth, 

the regenerants were acclimatized in the greenhouse for four months. Growth, 

phytochemical content and antioxidant activity of in vitro regenerants and ex vitro-

acclimatized plants were evaluated. The highest number of shoots (approximately 9 

shoots/explant) were observed with 15 µM NAA alone or with BA treatment. 
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Acclimatized plants derived from the 15 µM NAA treatment had the highest number of 

roots, largest leaf area and widest bulb diameter. While applied PGRs increased the 

iridoids and condensed tannins in the in vitro regenerants, total phenolics and 

flavonoids were higher in the PGR-free treatment. In contrast to the PGR-free 

regenerants, 5 µM NAA and 2 µM BA treatments produced the highest antioxidant 

activity in the DPPH (55%) and beta-carotene (87%) test systems, respectively. A 

remarkable carry-over effect of the PGRs was noticeable on the phytochemical levels 

and antioxidant activity of the 4-month-old plants. In addition to the development of an 

optimized micropropagation protocol, manipulating the type and concentration of 

applied PGRs may serve as an alternative approach to regulate phytochemical 

production in Eucomis autumnalis subspecies autumnalis. 

 
The influence of smoke-water (SW), karrikinolide (KAR1) and CK analogues (PI-55 = 6-

(2-hydroxy-3-methylbenzylamino)purine and INCYDE= inhibitor of cytokinin 

dehydrogenase or 2-chloro-6-(3-methoxyphenyl)aminopurine) individually or in 

combination with some selected PGRs [BA (4 µM), NAA (5 µM) and both] for in vitro 

propagated E. autumnalis subspecies autumnalis was evaluated. While these 

compounds had no significant stimulatory effect on shoot proliferation, they influenced 

root length at varying concentrations and when interacted with applied PGRs. The 

longest roots were observed in SW (1:1500), PI-55 and INCYDE (0.01 µM) treatments. 

There was an increase in the concentration of quantified phytochemicals (especially 

condensed tannins, flavonoids and phenolics) with the use of these compounds alone 

or when combined with PGRs. In the presence of BA, an increase in the concentration 

of PI-55 significantly enhanced the condensed tannin, flavonoid and phenolic contents 



xxv 

 

in the regenerants. Both phenolic and flavonoid content in E. autumnalis subspecies 

autumnalis were significantly enhanced with 0.01 µM INCYDE. Condensed tannins was 

about 8-fold higher in 10-7 M KAR1 with BA and NAA treatment when compared to the 

control. To some varying degree, the effect of the tested compounds on the antioxidant 

activity of the in vitro regenerants was also noticeable. In most cases, there was no 

direct relationship between the level of phytochemicals and antioxidant activity 

recorded. The current findings indicate the array of physiological processes influenced 

by SW and KAR1 during micropropagation. In addition, targeting or manipulation of 

phytohormone metabolic pathways using CK analogues demonstrated some noteworthy 

effects. Perhaps, it may offer other potential practical applications in plant biotechnology 

and agriculture. Thus, more studies such as quantification of endogenous hormones 

and identification of specific phytochemicals responsible for the bioactivity in this 

species will provide better insights on the mechanism of action for CK analogues as well 

as SW and KAR1.  
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Chapter 1: General introduction 

 

1.1. Importance of plants in African Traditional Medicine 

 

Globally, there is increasing demand for plant species due to their medicinal, 

horticultural and ornamental values. The wide utilization and popularity of plants in 

traditional medicine is often attributed to their affordability, accessibility and perceived 

efficacy (MANDER 1998). In South Africa alone, approximately 3000 plant species are 

utilized for various ailments (VAN WYK et al. 1997) with more than 25% of these 

medicinal plants used by Zulu traditional healers in KwaZulu-Natal province 

(HUTCHINGS et al. 1996). From these, approximately 350 species are extensively 

traded in large quantities at informal markets (VAN WYK et al. 1997). An estimated 35 

000 to 70 000 tonnes (worth approximately US$ 75 to 150 million) of plant materials are 

consumed annually (MANDER and LE BRETON 2006). The excessive exploitation of 

medicinal plants has put a strain on the wild populations and caused about 200 species 

to be listed as threatened in the South African Red Data List (RAIMONDO et al. 2009). 

This indiscriminate harvesting and over-exploitation of the natural flora has become of 

great concern particularly because it frequently involves the destructive harvesting of 

the non-renewable parts such as bulbs, rhizomes and bark in 85% of the medicinal 

plants (MANDER 1998; JÄGER and VAN STADEN 2000). Therefore, without an 

effective conservation mechanism, intense harvesting of slow-growing plants can 

potentially lead to their extinction.  
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1.2. Application of micropropagation in conservation of medicinal plants 

In addition to its role in the advancement of basic plant science research, 

micropropagation is contributing enormously to food security, crop improvement, 

production of secondary products for the pharmaceutical industry and conservation of 

endangered species (DiCOSMO and MISAWA 1995; TAYLOR and VAN STADEN 

2002a; MOYO et al. 2011; AREMU et al. 2012a; AMOO and VAN STADEN 2013a; b). 

As a key aspect of pant biotechnology, micropropagation techniques have evolved 

significantly over the last few decades (VASIL 2008). Some of the techniques includes 

direct and indirect organogenesis, suspension culture and somatic embryogenesis 

(STEWARD et al. 1958; PIERIK 1987; THORPE 1990). Generally, micropropagation 

involves the aseptic manipulation of excised plant tissues (explants) which are cultured 

under heterotrophic conditions on artificial basal media with supplements such as plant 

growth regulators (PGRs) and vitamins (GEORGE 1993). However, the success of 

micropropagation of plant species depends on the intricate and often complex 

interactions of several factors (GEORGE 1993; WERBROUCK 2010). According to 

MURASHIGE (1974), these factors are divided into the chemical composition and 

physical qualities of the medium as well as the culture environment. As important 

chemical components, PGRs are required in culture media to stimulate and regulate 

various physiological and developmental processes (NORDSTRÖM et al. 2004). The 

most commonly used PGR in micropropagation are auxins and cytokinins (CKs). The 

function of these aforementioned PGRs are essential and well-known (BAJGUZ and 

PIOTROWSKA 2009). Although it is often a complex web of signal interactions, the 
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existence of synergistic, antagonistic and additive interactions between these groups of 

PGRs are well-recognized (COENEN and LOMAX 1997). 

In micropropagation, shoot proliferation largely depends on the type and concentration 

of exogenously applied CKs. Even though benzyladenine (BA) is usually the most 

commonly used CK in micropropagation due to its low-cost, hydroxylated analogues of 

BA named 6-(3-hydroxybenzyl)adenine (meta-Topolin, mT) and its derivatives have 

been demonstrated as (better) alternative CKs in recent times (AREMU et al. 2012b). 

As highlighted by the authors, mT and its derivatives are effective growth regulators and 

play a significant role in the alleviation of various physiological disorders in several 

species.  

Lately, the potential of some compounds such as 2-chloro-6-(3-methoxyphenyl) 

aminopurine (inhibitor of cytokinin degradation = INCYDE), 6-(2-hydroxy-3-

methylbenzylamino) purine (PI-55), smoke-water (SW) and karrikinolide (KAR1) in 

improving growth and phytochemical content during plant propagation have been 

reported (AREMU et al. 2012a; GEMROTOVÁ et al. 2013). Inhibitors of cytokinin 

degradation regulate endogenous CK levels in plants as demonstrated in a recent study 

(AREMU et al. 2012d). Being a CK antagonist, PI-55 compounds mimic the 

consequences of decreased cytokinin levels in plants which validate its competency in 

the inhibition of CK perception in plants (SPÍCHAL et al. 2009). While smoke-

technology has been widely utilized in traditional farming for decades (KULKARNI et al. 

2011), the recently isolated KAR1 has shown potential in micropropagation as a PGR 

(AREMU et al 2012a). 



4 

 

 

1.3. Therapeutic value of secondary metabolites in plants 

 

Plants contain a variety of secondary metabolites which might be unique to a particular 

species or family. These secondary metabolites serve as taxonomic markers within 

species contributing to plant odour, taste and colour (VERPOORTE et al. 2002) as well 

as serving as sources of agrochemicals and biopesticides (RAMACHANDRA RAO and 

RAVISHANKAR 2002). Besides being utilized as plant defence mechanisms, 

secondary metabolites have been exploited in the treatment of a wide variety of human 

ailments for centuries (VAN WYK and WINK 2004). These natural products belong to 

diverse groups such as phenolics, terpenes, steroids and alkaloids (BOURGAUD et al. 

2001). Up to 40 000 terpenes, 20 000 phenolics and 5000 alkaloids have been identified 

(CROTEAUS et al. 2000). Phenolics are distinguished by their involvement in lignin 

synthesis in all higher plants. Phenolic compounds include tannins (hydrolysable and 

condensed tannins) and flavonoids (ROBARDS et al. 1999). Tannins and flavonoids 

possess diverse pharmacological activities such as immunomodulating effects, 

antimicrobial, anti-inflammatory, anti-diarrhoeal, antiviral, anti-tumor, antioxidant, 

antiallergic, free radical scavenging, vasodilatory and lipid peroxidation inhibition 

properties (COOK and SAMMA 1996; OKUDA 2005; TOMCZYK and LATTÉ 2009). 

On the other hand, the distribution and synthesis of alkaloids is genus and species-

specific (BOURGAUD et al. 2001). Alkaloids have been implicated in a wide variety of 

activities including antibacterial, antimalarial (YAMAMOTO et al. 1993; IWASA et al. 

1998), anti-inflammatory (DELLA LOGGIA et al. 1989) anti-histaminic, anti-allergenic, 

anti-mutagenic angioprotective properties (AMSCHLER et al. 1996). Even though 
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secondary metabolites are synthesized in low concentrations, their diversity and 

abundance in the plant kingdom contribute to their high importance. Consequently, it 

becomes pertinent to up-regulate their production in plants. 

 

Micropropagation offers an effective tool to increase the production of secondary 

metabolites in target cells or tissues, this can be achieved by manipulating the chemical 

and physical conditions of the in vitro environment (DiCOSMO and MISAWA 1995). As 

such, there is a rapid increase in the number of studies focusing on the enhancement of 

secondary metabolites in medicinal plant species globally (MATKOWSKI 2008; COSTE 

et al. 2011; PAVARINI et al. 2012; AMOO and VAN STADEN 2013a). Most 

importantly, in vitro manipulation for the production of secondary metabolites remain a 

potential source which can guarantee a steady supply for pharmaceutical or 

nutraceutical industries (VERPOORTE et al. 2002). 

 

1.4. Eucomis autumnalis subspecies autumnalis  

 

Eucomis (Hyacinthaceae) is a relatively small genus and widely distributed in several 

African countries including South Africa. Eucomis autumnalis subspecies autumnalis is 

widely exploited for its medicinal values and has been reported to possess anti-

inflammatory properties (TAYLOR and VAN STADEN 2001a; TAYLOR and VAN 

STADEN 2002a). Furthermore, the plant is in high demand in the horticultural industry 

due to its long lasting ‘eye-catching’ flowers resembling a pineapple. In an effort to 

conserve the species, micropropagation protocols have been documented (TAYLOR 
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and VAN STADEN 2001b). However, a thorough understanding of the different factors 

affecting growth and phytochemical content of the regenerants is insufficient. 

1.4. Aims and objectives 

 

The current study was aimed at better understanding the different factors essential for 

improving growth and secondary metabolite production in micropropagated E. 

autumnalis subspecies autumnalis. 

 
The main objectives of the project were to evaluate: 

 The effect of gelling agents (GA) and explant source (ES) on growth and 

secondary metabolite content in tissue culture regenerants; 

 The effect of CKs [topolins in comparison with benzyladenine (BA)] in 

combination with auxin on growth and secondary metabolite content in tissue 

culture regenerants; and 

 The effect of SW, KAR1, PI-55 and INCYDE on growth and secondary metabolite 

content in tissue culture regenerants. 

 

1.5. General overview of the thesis 

 

Chapter 2 highlights the extensive use of the genus Eucomis in African Traditional 

medicine (ATM) and its pharmacological potential. It further critically reviews the 

different propagation techniques utilized in the conservation of the genus. 
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Chapter 3 describes the influence of GA, ES and their interaction with PGRs in the 

enhancement of growth and development as well as secondary metabolite production 

on E. autumnalis subspecies autumnalis. 

 
Chapter 4 evaluates the influence of CKs and auxins on shoot proliferation. In addition, 

the recently identified CKs (meta-topolins) were compared to the widely used BA in 

terms of improved growth, secondary metabolite production and antioxidant activity. The 

study involve both in vitro culture stage and after 4 month of acclimatization in the 

greenhouse 

 

Chapter 5 describes the potential of recently identified CK analogues and smoke 

compound (INCYDE, PI-55, KAR1) as well as SW in enhancing growth, secondary 

metabolite content and antioxidant activity. 

 

Chapter 6 presents a summary of the main findings of the study. 

 

The section ‘References’ provides a list of all the literature and materials cited in the 

thesis. 

 

Appendix 1 represents the Murashige and Skoog (MS) basal medium protocol. 

 

Appendix 2 shows the chemical structures of the auxin and cytokinins tested. 
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Chapter 2: Pharmacological potential and conservation 
prospects of the genus Eucomis (Hyacinthaceae) endemic to 

southern Africa 
 

2.1. Introduction 
 

The genus Eucomis is a member of the Hyacinthaceae (formerly included in the 

Liliaceae) comprising of 41 genera distributed in Europe, South America and Africa. In 

southern Africa, there are 27 genera and approximately 200 species of Hyacinthaceae 

found in the Cape Floristic Region, South Africa (POOLEY 2005). Among the genera in 

southern Africa Eucomis is endemic to the region. The genus is relatively small 

consisting of 10 species (POOLEY 2005). Although Eucomis species are generally 

summer blooming, E. regia is winter blooming. The species comprise of deciduous 

geophytes with long and narrow leaves topped with densely packed flowers 

(COMPTON 1990). The characteristic leaf-like bracts at the tip of the flower spikes 

earned this genus its Greek name ‘eukomes’ which refers to ‘beautiful headed’ (BRYAN 

1989). Eucomis is commonly called the ‘pineapple lily’ because of the flower spikes that 

resemble pineapples (PIENAAR 1984).  

 

In African traditional medicine (ATM), Eucomis species are widely utilized against 

various ailments including respiratory, venereal diseases and rheumatism 

(HUTCHINGS et al. 1996). Consequently, Eucomis species have been evaluated in 

both in vitro and in vivo bioassays for anti-inflammatory, antibacterial, antihistaminic and 

angioprotective potential (RABE and VAN STADEN 1997; TAYLOR and VAN 

STADEN 2002a). The extensive biological activities of Eucomis species have been 



9 

 

mainly attributed to phytochemicals such as the homoisoflavanones commonly present 

in the plant. An in-depth review on the phytochemistry of the genus Eucomis is 

documented (KOORBANALLY et al. 2006a). The extensive exploitation of Eucomis 

species in ATM together with its slow propagation rate has inevitably resulted in the 

decline of the majority of species, some of which are endangered/threatened 

(RAIMONDO et al. 2009). The current Chapter focuses on the pharmacological 

characteristics of the genus Eucomis. A critical evaluation of available propagation 

protocols as a possible means of enhancing their conservation status is also discussed. 

Even though members of the genus Eucomis are widely utilized globally, the current 

Chapter is presented from a South African perspective. 

 

2.2. Distribution and general morphology of Eucomis species 

 

2.2.1. Distribution  
 

Eucomis is widely exploited for its medicinal and horticultural value in southern African 

countries such as South Africa, Botswana, Lesotho, Swaziland, Zimbabwe and Malawi 

(PIENAAR 1984; DU PLESSIS and DUNCAN 1989). In South Africa, Eucomis species 

are distributed across all nine provinces. In terms of species richness, the Eastern Cape 

with nine species is best represented, followed by KwaZulu-Natal with seven species 

while Northern Cape is the least endowed province with only one species (Table 2.1). 

The distribution pattern of the genus Eucomis across the provinces varies depending on 

the species. While some species occur in two or more provinces, other species such as 

E. humilis, E. montana, E. pallidiflora subspecies pole-evansii and E. zambesiaca are 

found only in one province. This is a demonstration of their specificity to particular 
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climatic conditions in South Africa (Table 2.1). Their growth and development depend 

on certain factors such as climatic regions and environmental conditions. For instance, 

E. bicolor is commonly found at the base of the Drakensberg cliffs along moist slopes 

ranging from 1800 - 2600 m while E. humilis is found on slopes that range from 2400 - 

2900 m. Eucomis autumnalis is distributed in damp craters in grasslands that range 

from 2100 - 2400 m (TRAUSELD 1969). The specificity of Eucomis species to certain 

environmental and climatic conditions are amongst the contributing factors that have 

resulted in the excessive decline and vulnerable status of the species in South Africa 

(RAIMONDO et al. 2009). 
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Table 2.1: Distribution and ethnobotanical uses of members of the genus Eucomis found in South Africa. 

Species Province(s) Plant part(s) Traditional uses References 

E. autumnalis (Mill.) Chitt. 
(synonym E. undulate) 

FS, KZN, 
EC, M, G 

Leaves, bulbs, 
roots 

Colic, flatulence, kidney and bladder 
problems, nausea, coughs syphilis, 
abdominal distension  

BISI-JOHNSON et al. (2010); 
HUTCHINGS et al. (1996); ROBERTS 
(1990); WATT and BREYER-
BRANDWIJK (1962) 

E. autumnalis (Mill.) Chitt. 
subspecies amaryllidifolia 
(Baker) Reyneke 

L, FS, EC NA NA NA 

E. autumnalis (Mill.) Chitt. 
subspecies autumnalis 

EC, L Leaves, bulbs Administered as enemas to treat lower 
backache, biliousness, urinary diseases, 
post-operative recovery, fevers and fractures 

HUTCHINGS et al. (1996) 

E. autumnalis (Mill.) Chitt. 
subspecies clavata 
(Baker) Reyneke 

KZN, FS, 
M, G, L, 
NW 

Bulbs Administered as enemas to treat lower 
backache, biliousness, urinary diseases, 
post-operative recovery, fevers and fractures 

HUTCHINGS et al. (1996)  

E. bicolor Baker EC, KZN Bulbs Colic and purgative  WATT and BREYER-BRANDWIJK 
(1962); HUTCHINGS et al. (1996) 

E. comosa (Houtt.)Wehrh. 
(synonym E. punctate) 

EC, KZN Bulbs, roots For rheumatism, teething infants and 
purgative  

CUNNINGHAM (1988); HUTCHINGS et 
al. (1996); WATT and BREYER-
BRANDWIJK (1962) 

E. comosa (Houtt.)Wehrh. 
variety comosa  

WC, EC, 
KZN 

Bulbs, roots Rheumatism and teething in infants  WATT and BREYER-BRANDWIJK 
(1962) 

E. comosa (Houtt.)Wehrh. 
variety striata (Don) Willd. 

EC, L NA NA NA 

E. humilis Baker KZN NA NA NA 
E. montana Compton M NA NA NA 
E. pallidiflora Baker 
subspecies pallidiflora  

EC, M Bulbs Mental diseases WATT and BREYER-BRANDWIJK 
(1962) 

E. pallidiflora subspecies 
pole-evansii (N.E.Br.) 
Reyneke ex J. C. Manning 

M Bulbs Erectile dysfunction, tuberculosis, blood 
clotting, cough 

SEMENYA and POTGIETER (2013); 
SEMENYA et al. (2013) 

E. regia L'Hér. NC, WC Bulbs, roots Venereal diseases, diarrhoea, cough, 
biliousness and  prevent premature childbirth  

WATT and BREYER-BRANDWIJK 
(1962) 

E. schijffii Reyneke EC, KZN Bulbs Venereal diseases, diarrhoea, coughs and 
used as enema for biliousness, prevention of 
pre-mature birth, lower back pains  

WATT and BREYER-BRANDWIJK 
(1962) 

E. vandermerwei I. Verd. M, L NA NA NA 
E. zambesiaca Baker L NA NA NA 

NA- Not Available, EC- Eastern Cape, FS- Free State, G- Gauteng, KZN- KwaZulu-Natal, L- Limpopo, M- Mpumalanga, NC- Northern Cape,  
NW- North West, WC- Western Cape 
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2.2.2. General morphology 

 

Eucomis species are geophytes with ovoid or globose shaped bulbs comprising of hard 

cortices (BRYAN 1989; DE HERTOGH and LE NARD 1993). The bulb size ranges 

from 50 - 150 mm in diameter and has a perceptible horizontal striped base with brown 

to black scales (Fig. 2.1A). The inner part of the bulb is yellow-white and turns black 

when exposed to air (MANDER et al. 1995). The bulbs have branched perennial fleshy 

contractile roots with root hairs (Fig. 2.1B). They are characterized by a rosette of 

smooth often shiny leaves that are lanceolate, elliptic or ovate and bend backwards 

(Fig. 2.1C). 

 

The stem ranges from 30 - 100 cm in height depending on the species. A straight 

cylindrical inflorescence with a pale lime-green flower raceme is located at the top of the 

flowering stem (DE HERTOGH and LE NARD 1993). The flower colour varies from 

yellowish-green or white with margins varying from pale to dark purple. Flower colour 

turns green on maturity (Fig. 2.1D). After pollination and fertilization, green or brown 

fruits appear containing dull blackish-brown seeds (BRYAN 1989; DU PLESSIS and 

DUNCAN 1989). 

 

The most common feature used for plant identification is flower morphology. However, 

the aforementioned method is difficult with the genus Eucomis because the flowers are 

morphologically similar. Therefore, features such as fragrance, plant size and leaf 

colour allows for better differentiation among species. Members of the genus emit 
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distinct floral scents. Sweet aroma species include E. amaryllidifolia, E. autumnalis, E. 

comosa, E. grimshawii, E. pallidiflora and E. zambesiaca while E. bicolor, E. humilis, E. 

montana, E. regia, E. schijffii and E. vandermerwei emit an unpleasant scent 

(ZONNEVELD and DUNCAN 2010). The presence or absence of a purple colour at the 

leaf base or flower and the cylindrical shape of the scape are used to distinguish 

Eucomis species. Taken together, these characteristics become more difficult for 

identification and differentiation among closely-related species or subspecies. Therefore 

the use of genome size together with nuclear DNA content provides a better tool to 

distinguish species (ZONNEVELD and DUNCAN 2010). 

 

Fig. 2.1: Typical Eucomis morphology. A - bulb; B - roots; C - whole plants and D – inflorescence. 
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According to REYNEKE and LIEBENBERG (1980), Eucomis species have 15 

chromosomes which exist either in diploid (small species) or tetraploid (larger species) 

states. The diploid species (2n=2x=30) are E. amaryllidifolia, E. bicolor, E. grimshawii, 

E. regia, E. schijffii, E. vandermerwei and E. zambesiaca while the tetraploid species 

(2n=4x=60) include E. autumnalis, E. comosa, E. humilis, E. montana and E. pallidiflora 

(ZONNEVELD and DUNCAN 2010). However, based on the variation in chromosome 

number of individual tetraploid species, REYNEKE and LIEBENBERG (1980) 

concluded that tetraploids are in fact allotetraploids. A detailed review focusing on the 

genome size of the different Eucomis species is available (ZONNEVELD and DUNCAN 

2010). 

 

2.3. Horticultural potential of Eucomis 

 

Since the middle 18th century, international interest in South African indigenous 

floriculture has intensified. The industry is known for its high economic value and 

potential job creation opportunities (TAYLOR and VAN STADEN 2001b; REINTEN et 

al. 2011). Globally, the floriculture industry is worth an estimated US$9 billion annually 

(BESTER et al. 2009). In 2011, with a turnover of approximately €18 million, the South 

Africa based Multiflora company in Johannesburg was ranked among the top 15 flora 

companies globally (KRAS 2011). As an indication of their great potential especially for 

the international market, Eucomis species are in high demand in floriculture (REINTEN 

et al. 2011).  
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Eucomis species are endowed with long lasting ‘eye-catching’ flowers, this attractive 

feature has inevitably intensified the demand for the species in the floriculture industry. 

Furthermore, longevity and wide adaptability to different environmental conditions are 

well-desired traits in Eucomis that have exacerbated the utilization of the genus as a cut 

flower. In addition to the floriculture industry, the sub-division known as the flower bulb 

industry facilitates the marketing of dry bulbs and potted plants in a controlled 

environment (NIEDERWIESER et al. 1998). Thus far, Eucomis has shown great 

potential to be traded as dry bulbs and pot plants in the floriculture industry. Within the 

genus, small plants such as E. zambesiaca and E. humilis can be cultivated as pot 

plants whereas the larger species are better suited as garden plants. 

 

2.4. Documented uses in African traditional medicine 

 

As highlighted in Table 2.1, several Eucomis species are utilized as remedies against 

various ailments in ATM. In South Africa, plant materials are often prepared as 

decoctions, infusions and enemas. The Zulu, Tswana, Sotho and Xhosa people 

commonly use either water or milk for the preparing of these decoctions. 

 

Evidence show that bulbs of Eucomis species are the most utilized plant part when 

compared to other organs such as roots, stems and leaves (Table 2.1). However, bulbs 

and roots are occasionally combined as ingredients in infusions for alleviation of pain 

and fever (HUTCHINGS et al. 1996). It has also been documented that the Zulu tribe 

use bulb infusions for the relief of biliousness, enhancing sexual prowess and cleansing 

of blood (MANDER et al. 1995). Based on documented uses as summarized in Table 
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2.1, it is apparent that the majority of the Eucomis species are highly valued in ATM as 

demonstrated by their numerous uses e.g. treating kidney and bladder ailments as well 

as nausea and coughs. In folk medicine, it is believed that bulbs possess mysterious 

powers and they are used as protective charms (WATT and BREYER-BRANDWIJK 

1962). 

 

Different plant species are combined and used together as a common practice in ATM. 

Along this line, Eucomis with Crinum, Bowiea, Xanthoxylum and Becium are combined 

and used as a form of treatment against cancer (FENNELL and VAN STADEN 2001). 

The leaves are used as a poultice for sores and boils and are wrapped around the 

wrists to reduce fever. Apart from the excessive use of the plant in the treatment of 

human diseases, Eucomis species also serve as a remedy for animal ailments. The 

leaves and bulbs of Eucomis are combined with Medicago sativa or Zea mays leaves to 

treat gall sickness and other diseases in cattle (ROBERTS 1990). Moreover, the plant is 

used for the treatment of venereal diseases in livestock (WATT and BREYER-

BRANDWIJK 1962; HUTCHINGS et al. 1996). 

 

2.5. Phytochemistry and pharmacology of Eucomis species 

 

The extensive traditional use of Eucomis species has led to several pharmacological 

properties being evaluated. The increasing number of ethnopharmacological studies 

has shown the potential substitution and supplementation of synthetic drugs with 

extracts and/or isolated compounds from medicinal plants (RATES 2001; NEWMAN et 



17 

 

al. 2003). The phytochemical diversity in higher plants accounts for their promising 

pharmacological potential. 

 

2.5.1. Phytochemistry 

 

Several classes of phytochemicals have been isolated from Eucomis species including 

homoisoflavanones, spiocyclic nortriterpenes, benzopyranones amongst others. 

Approximately 39 constituents commonly found in the Hyacinthoideae genera have 

been isolated from six Eucomis species (POHL et al. 2000). However, eight species 

including E. autumnalis subspecies amaryllidiflolia, E. autumnalis subspecies clavata, E. 

comosa subspecies striata, E. pallidiflora subspecies pallidiflora, E. regia, E. humilis, E. 

vandermerwei and E. zambesiaca require more studies for possible isolation of novel 

compound(s). Recently, the phytochemical content of members of Eucomis has been 

extensively reviewed by KOORBANALLY et al. (2006a and b). 

 

The presence and wide diversity of flavonoids in Eucomis species has been associated 

with their pharmacological properties for example, anti-inflammatory activity (HELLER 

and TAMM 1981). Often, pain and inflammation are common underlying symptoms in 

the majority of ailments treated with Eucomis species (KOORBANALLY et al. 2005). 

The large number of isolated compounds from Eucomis plants is an indication of the 

value of the genus as a potential candidate for new possible drugs in the 

pharmaceutical industry for pain related ailments and bacterial/fungal infections. 
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2.5.2. Pharmacology 

 

In an attempt to rationalise the wide usage and validate the efficacy of medicinal plants, 

researchers often evaluate bioactivities under laboratory conditions. Eucomis species 

have been mainly screened for bioactivities such as anti-inflammatory (Table 2.2) and 

antimicrobial (Table 2.3) properties. Based on the numerous benefits associated with in 

vitro test systems, such bioassays remain popular and a widely-used approach by 

researchers (HOUGHTON et al. 2007). As evident in the current Chapter, the majority 

of documented studies were conducted using in vitro methods. 

 

2.5.2.1. Anti-inflammatory screening 

 

Inflammation processes involve the production of prostaglandins which are highly active 

pro-inflammatory mediators (ZSCHOCKE et al. 2002). The biosynthesis of 

prostaglandin is regulated by cyclooxygenase (COX) enzymes (JÄGER and VAN 

STADEN 2005). The enzymes occur in two major isoforms namely COX-1 and COX-2. 

While COX-1 contribute to the homeostasis of numerous physiological functions in 

different tissues, COX-2 is involved in several inflammatory reactions caused by 

inflammatory stimuli such as mitogens and cytokinesis (KUJUBU et al. 1991; 

O’BANION et al. 1991). In an effort to alleviate inflammation, several plant extracts 

have been screened in vitro for prostaglandin synthesis inhibition. In ATM, Eucomis 

species are commonly utilized for inflammation and pain related ailments (Table 2.1). 

As such, the majority of the pharmacological screenings have focused on their anti-

inflammatory potential (Table 2.2). Varying levels of anti-inflammatory activity have 
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been detected in several Eucomis species. Even though the majority of species 

exhibited high COX-1 or COX-2 enzyme inhibition, E. autumnalis, E. autumnalis 

subspecies autumnalis, E. autumnalis subspecies amaryllidiflolia and E. humilis were 

the most active. Among researchers, there are concerted efforts at discovering COX-2 

preferential inhibitors as a result of the numerous side effects associated with COX-1 

inhibitors (WALLACE and CHIN 1997). Therefore, the selective inhibition of COX-2 by 

E. autumnalis subspecies autumnalis extract is worth pursuing for possible isolation of 

such desired bioactive compound(s). 

 

In addition to the well-known effects of species-type on the anti-inflammatory activity, 

stringent studies aimed at the better understanding of other crucial factors affecting 

Eucomis species inhibition of COX have been conducted. In relation to extracting 

solvent, many of the evaluated Eucomis species exhibited high COX-1 and COX-2 

activity when extracted with ethanol or 70% acetone as compared to water extracts 

(Table 2.2). Generally water extracts are known to exhibit lower bioactivity when 

compared to non-polar extracts in various pharmacological studies. However, JÄGER 

et al. (1996) showed that extracting solvents had no significant effect on the anti-

inflammatory activity of E. autumnalis. This was observed from the high activity of 

prostaglandin-synthesis inhibition in water (73%) and ethanol (90%) extracts of E. 

autumnalis at 0.5 mg/ml. Furthermore, the majority of the anti-inflammatory studies on 

the Eucomis genus have shown the potency of bulb extracts against both COX-1 and 

COX-2 enzymes (Table 2.2). However, leaf extracts of species such as E. bicolor 

(TAYLOR and VAN STADEN 2001a) and E. autumnalis subspecies autumnalis 

(TAYLOR and VAN STADEN 2002a) showed higher enzyme inhibitory activity 
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compared to the bulb extracts. In addition, COX-2/COX-1 ratio for leaves, bulbs and 

root showed that leaf extracts (1.9) were more effective against COX-1 while bulbs and 

roots were effective against COX-2 enzyme (0.8 and 0.7 respectively). The high COX-1 

activities depicted by leaf extracts of E. autumnalis subspecies autumnalis create an 

awareness of the efficacy in other plant parts besides the vulnerable bulbs. The 

preferential COX-2 inhibition by bulb and root extracts of E. autumnalis subspecies 

autumnalis is an indication of its pharmaceutical potential (TAYLOR and VAN STADEN 

2002a).  

 

The increased demand for Eucomis plants in both formal and informal markets has 

exacerbated harvesting from wild populations. In order to prevent plant pathogens from 

attacking fresh plant materials, plants are dried, stored and sold later. Due to such 

practices, there is increasing concern on the pharmacological potency of dried 

medicinal plants as compared to fresh plant materials (ELOFF 1999; STAFFORD et al. 

2005; LAHER et al. 2013). Several authors have reported variation in anti-inflammatory 

activity among stored and fresh plant material (FENNELL et al. 2004). STAFFORD et 

al. (2005) showed the effectiveness of both stored (90 days) and fresh E. autumnalis 

extracts with 100% inhibition. Furthermore, TAYLOR and VAN STADEN (2002b) 

reported high COX-1 activity (approximately 70%) from E. autumnalis subspecies 

autumnalis stored (dormant) in cold conditions (10 °C) compared to those maintained at 

15 - 24 °C (55%). 
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Table 2.2: Examples of in vitro studies screening different Eucomis species for anti-inflammatory activity. 

Species 
Extracting 
solvent 

Finding(s) and extract concentration 
Indomethacin inhibition 
(concentration)  

Reference(s) 

E. autumnalis Ethanol, water High COX enzyme inhibition in bulb extracts from 
ethanol (90%) at 0.5 mg/ml and water (73%) at 0.5 
mg/ml 

66. 5% inhibition (0.5 
µg)  

JÄGER et al. (1996) 

E. autumnalis NR Bulb extract showed 88% inhibition NR GAIDAMASHVILI and 
VAN STADEN (2006) 

E. autumnalis 70% acetone, 
water 

70% acetone extracts at 250 µg/ml had ≥ 75% enzyme 
inhibition except for smoke-water (COX-1), the control 
and light exposure treatment (COX-2) 

64.2% inhibition (5µM) NDHLALA et al. (2012) 

E. autumnalis 
subspecies 
amaryllidifolia 

Ethanol, water COX-1 activity from ethanol at 250 µg/ml and water 
extract at 500 µg/ml was moderate (40 - 70%)  

Inhibition NR (5 µM) TAYLOR and VAN 
STADEN (2001a) 

E. autumnalis 
subspecies 
amaryllidifolia 

Ethanol Ethanol bulb extract at 250 µg/ml exhibited high activity 
against COX-1 and COX-2 inhibitors (70 - 100%) 

Inhibition 
NR (COX-1= 5 µM) 
NR (COX-2=200 µM) 

TAYLOR and VAN 
STADEN (2002a) 

E. autumnalis 
subspecies 
autumnalis 

Ethanol, water IC50 values COX-1 from ethanol extracts at 250 µg/ml 
were evaluated. IC50 value for leaf extract was 15, for 
bulb extract was 72 and for root extract was 27 µg/ml  

Inhibition NR (5 µM) TAYLOR and VAN 
STADEN (2001a) 

E. autumnalis 
subspecies 
autumnalis 

Ethanol Ethanol bulb extracts at 250 µg/ml exhibited high COX-1 
and COX-2 activity (70 - 100%). IC50 ratio for COX-1 to 
COX-2 was 1.9 (leaf), 0.8 (bulb) and 0.7 (root) 

Inhibition  
NR (COX-1= 5 µM) 
NR (COX-2= 200 µM) 

TAYLOR and VAN 
STADEN (2002a) 

E. autumnalis 
subspecies 
autumnalis 

Ethyl acetate, 
hexane  

Bulb and root extracts at 250 µg/ml had higher inhibitory 
activity ( > 90%) than leaf extract (65%) against COX-1 

80% inhibition (20 µM) ZSCHOCKE et al. 
(2000) 

E. autumnalis 
subspecies 
autumnalis 

Ethanol, water Both ethanol extracts at 50 mg/ml of fresh and stored 
plant materials exhibited 100% COX-1 inhibition while 
water extracts showed ≤ 37% inhibition 

64% inhibition (50 
µg/ml) 

STAFFORD et al. 
(2005) 

E. autumnalis 
subspecies 
clavata 

Ethanol, water  COX-1 activity from ethanol at 250 µg/ml and water 
extract at 500 µg/ml was moderate (40 - 70%) 

Inhibition NR (5 µM) TAYLOR and VAN 
STADEN (2001a) 

E. autumnalis 
subspecies 
clavata 

Ethanol Ethanol bulb extract at 250 µg/ml exhibited high activity 
against COX-1 and COX-2 inhibitors (70 - 100%) 

Inhibition  
NR (COX-1= 5 µM) 
NR (COX-2= 200 µM) 

TAYLOR and VAN 
STADEN (2002a) 

E. bicolor Ethanol, water COX-1 activity from leaf ethanol at 250 µg/ml and water 
extracts at 500 µg/ml, ethanol bulb extract was high (70 - 
100%) 

Activity NR (5 µM) TAYLOR and VAN 
STADEN (2001a) 

E. comosa Ethanol Ethanol bulb extract at 250 µg/ml exhibited high activity 
against COX-1 and COX-2 inhibitors (70-100%) 

Inhibition  
NR (COX-1= 5 µM) 

TAYLOR and VAN 
STADEN (2002a) 



22 

 

Species 
Extracting 
solvent 

Finding(s) and extract concentration 
Indomethacin inhibition 
(concentration)  

Reference(s) 

NR (COX-2= 200 µM) 

E. comosa 
subspecies 
comosa  

Ethanol, water COX-1 activity from ethanol at 250 µg/ml and water 
extract at 500 µg/ml was moderate (40 - 70%) 

Inhibition NR (5 µM) TAYLOR and VAN 
STADEN (2001a) 

E. comosa 
subspecies 
comosa 

Ethanol Ethanol bulb and root extract at 250 µg/ml exhibited high 
activity against COX-1 inhibitors (70 - 100%) 

Inhibition  
NR (COX-1= 5 µM) 
NR (COX-2= 200 µM) 

TAYLOR and VAN 
STADEN (2002a) 

E. comosa 
subspecies 
striata 

Ethanol, water COX-1 activity from ethanol 250 µg/ml and water extract 
500 µg/ml was moderate (40 - 70%) 

Inhibition NR (5 µM) TAYLOR and VAN 
STADEN (2001a) 

E. comosa 
subspecies 
striata 

Ethanol Ethanol bulb extract 250 µg/ml exhibited high activity 
against COX-1 and COX-2 inhibitors (70 - 100%) 

Inhibition  
NR (COX-1= 5 µM) 
NR (COX-2= 200 µM) 

TAYLOR and VAN 
STADEN (2002a) 

E. humilis Ethanol, water COX-1 and COX-2 activity from ethanol 250 µg/ml and 
water bulb extracts 500 µg/ml was high (70 - 100%) 

Inhibition  
NR (COX-1= 5 µM) 
NR (COX-2= 200 µM) 

TAYLOR and VAN 
STADEN (2002a) 

E. zambesiaca Ethanol, water COX-1 activity from ethanol at 250 µg/ml and water 
extract 500 µg/ml was moderate (40 - 70%)  

Inhibition NR (5 µM) TAYLOR and VAN 
STADEN (2001a) 

E. zambesiaca Ethanol Ethanol bulb and root extract at 250 µg/ml exhibited high 
COX-1 activity (70 - 100%) 

Inhibition  
NR (COX-1= 5 µM) 
NR (COX-2= 200 µM) 

TAYLOR and VAN 
STADEN (2002a) 

NR- Not reported; COX = cyclooxygenase 
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2.5.2.2. Antimicrobial screening 

 

The increase in drug resistance and side effects with the frequently used medications 

(mainly antibiotics) are well-known. Consequently, enormous efforts have been geared 

towards the screening of medicinal plants as a potential source of novel leads in the 

treatments of microbial infections (RATES 2001). Different plant parts and extracting 

solvents have been used in the in vitro and in vivo screening of several Eucomis 

species. The effect of Eucomis extracts on diverse microbes such as Staphylococcus 

aureus, S. epidermis, Bacillus subtilis, Klebsiella pneumonia, Escherichia coli, Botrytis 

cinerea, Fusarium oxysporum, Mycosphaerella pinodes, Sclerotium rolfsii, Rhizoctonia 

solani, Vericillium dahlia, Brotryosphaeria dothidea, Pythium ultimum and Candida 

albicans have been investigated (Table 2.3). Eucomis extracts inhibited only a few 

bacterial strains such as B. subtilis, E. coli and S. aureus. In a recent study (BISI-

JOHNSON et al. 2011), ethyl acetate extracts of E. autumnalis showed remarkable 

minimum inhibitory concentration (MIC) activity (0.27 mg/ml) against E. coli. 

Furthermore, NDHLALA et al. (2012) showed the activity of E. autumnalis against  

B. subtilis and S. aureus with an MIC value of 0.78 mg/ml. Generally, compounds are 

often isolated from crude extracts with antimicrobial potential. Five compounds isolated 

from E. comosa and E. schijffii showed significant MIC values (0.52 and 0.24 mM) 

against S. aureus DU TOIT et al. (2007). Some of the compounds isolated by the 

authors include (1) = 1, 7-hydroxy-5-methoxy-3-(4′-hydroxybenzyl)-4-chromanone; (2) =  

5,7-dihydroxy-8-methoxy-3 (4′ hydroxybenzyl)-4-chromanone (3,9-dihydropunctatin); (8) 
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= scillascillin and (9) = 23S-17α,23-epoxy-3β,28,29-trihydroxy-27-norlanost-8-en-24-

one. 

 

When Eucomis was tested against C. albicans the extracts showed a MIC value of ≥ 

1.56 µg/ml (MOTSEI et al. 2003; NDHLALA et al. 2012). In other studies,  

E. autumnalis extracts were not effective against C. albicans strain (MOHLAKOANA 

2010). Although Eucomis species were not very effective against C. albicans, the plants 

may be effective against other fungal strains. Therefore further research needs to be 

conducted on the antifungal properties of Eucomis species using other fungal strains, 

which if effective, can then be further tested in vivo. As a potential biocontrol agent,  

E. autumnalis subspecies clavata exhibited significantly high antifungal activity against 

seven plant pathogens (EKSTEEN et al. 2001). In addition, E. autumnalis subspecies 

clavata extracts had ≥73% inhibition against six plant pathogens in a field trial 

(PRETORIUS et al. 2002). The potential of E. autumnalis subspecies clavata against 

plant pathogens is noteworthy as it could provide an affordable and accessible means 

of controlling plant pathogens in agriculture. 
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Table 2.3: Examples of studies screening different South African Eucomis species for antimicrobial activity. 

Species 
Extracting 
solvents 

Test system and 
organism(s) 

Finding(s) Positive control activity References 

E. autumnalis Methanol, 
water 

In vitro - five 
bacterial strains 

Methanol bulb extract at 1 mg/ml 
extract exhibited a ratio of 0.13 
zone of inhibition against Bacillus 
subtilis when compared to the 
positive control 

10 µl of neomycin (200-500 
µg/ml) was used in each petri-
dish in the agar diffusion 
assay 

RABE and VAN 
STADEN (1997) 

E. autumnalis Ethanol, ethyl 
acetate, 
hexane, water 

In vitro - two 
clinical and one 
standard 
Candida 
albicans  

Bulb extracts had minimum 
inhibitory concentration (MIC) ˃ 
8.35 mg/ml 

Amphotericin B MIC  
activity 1.56 µg/ml 

MOTSEI et al. (2003) 

E. autumnalis Methanol, 
ethyl acetate, 
butanol, water 

In vitro - two 
Escherichia coli 
strains 

Ethyl acetate extract had an MIC 
of 0.27 mg/ml 

Kanamycin with an MIC  
of 0.195 mg/ml 

BISI-JOHNSON et al. 
(2011) 

E. autumnalis 70% acetone, 
water 

In vitro - four 
bacterial strains 
and Candida 
albicans 

Acetone bulb extracts had an 
MIC of 0. 78 mg/ml against B. 
subtilis and S. aureus 

Neomycin MIC activity 
B. subtilis 1.531×10

-3 

Staphylococcus aureus  
6.125×10

-3
 

NDHLALA et al. 
(2012) 

E. autumnalis Acetone, 
methanol, 
water 

In vitro - 94 
microbial strains 

The leaf extracts were not active 
at the highest tested 
concentration (20 mg/ml) 

27 different antibiotic were  
used for the assay 

MOHLAKOANA 
(2010) 

E. autumnalis 
subspecies 
clavata 

Methanol In vitro - seven 
plant fungal 
strains 

Whole plant extract at 100 mg/ml 
had high inhibition against 
Brotryosphaeria dothidea (85%) 
and Pythium ultimum fungicide 
(95.4%) 

Carbendazim/difenoconazole 
(Eria

@ 
- 187.5 g/l EC)  

About 100% inhibition  
against three of the strains 
(1 µg/ml) 

EKSTEEN et al. 
(2001) 

E. autumnalis 
subspecies 
clavata 

Methanol 
 
 

In vitro - eight 
plant fungal 
strains 

Bulb extracts at 1 mg/ml had a 
significant (≥73%) growth 
inhibition against six of tested 
fungal strains  

Carbendazim/difenoconazole 
 (Eria

@ 
- 187.5 g/l EC) 

About 100% inhibition  
against two of the strains 
(1 µg/ml) 

PRETORIUS et al. 
(2002) 
 

E. autumnalis 

subspecies 
clavata 

Methanol In vivo - one 
plant fungal 
strain 

Extract concentration of 1 mg/ml 
prevented spore infection 
(Mycosphaerella pinodes) in pea 
plant 

Carbendazim/difenoconazole 
(Eria

@ 
- 187.5 g/l EC)  

1 µg/ml prevented spore  
infection (1 µg/ml) 

PRETORIUS et al. 
(2002) 

E. comosa Methanol In vitro - one 
bacterial strain 

Compounds 1 and 2 had high 
inhibitory activity against S. 

Neomycin MIC activity  
0.0025 mM 

DU TOIT et al. (2007) 
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Species 
Extracting 
solvents 

Test system and 
organism(s) 

Finding(s) Positive control activity References 

aureus with MIC value ≤ 0.52 
mM. Compound 9 (0.98 mM) had 
better inhibitory activity 
compared to compound 8 (4.15 
mM). Compound 8 showed 
bacteriostatic activity (2.07 mM) 

 

MIC - minimum inhibitory concentration, NR - Not reported, Compounds (1) = 1, 7-hydroxy-5-methoxy-3-(4′-hydroxybenzyl)-4-chromanone; 
Compounds (2) =  5,7-dihydroxy-8-methoxy-3 (4′ hydroxybenzyl)-4-chromanone (3,9-dihydropunctatin) Compounds (8) = scillascillin; (9) = 23S-
17α,23-epoxy-3β,28,29-trihydroxy-27- 
norlanost-8-en-24-one 
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2.5.2.3. Other pharmacological properties 

 

Besides the aforementioned pharmacological properties, Eucomis has been tested for 

cytotoxicity, phytotoxicity, anticancer and anti-plasmodial activities (Table 2.4). Eucomis 

had noteworthy antitumor and cytotoxicity activity. Eucomis autumnalis was evaluated 

for anticancer cell activity and the methanol extracts showed good activity (IC50 7.8 

µg/ml) against the human hepatoma cell line (Huh-7) compared to the positive control 

with an IC50 of 9.8 µg/ml (BISI-JOHNSON et al. 2011). When Eucomis was screened 

for antitumor activity (MIMAKI et al. 1994), eucosterol glycoside isolated from E. bicolor 

showed 44% inhibition of 12-O-tetradecanoylphorbol 13-acetate (TPA)-stimulated 32P 

incorporation into phospholipids of HeLa against tumor-promoters. In vivo tests are 

essential for further validation of Eucomis extracts as anti-cancer agents. This may be 

of great value in the search for anticancer drugs with potential lesser side effects as 

compared to other synthetic drug treatments. Furthermore, when E. autumnalis were 

evaluated for phytotoxicity the bulb extract (up to 2 mg/ml) were not toxic to pea leaves 

(PRETORIUS et al. 2002) and 1 mg/ml inhibited spore germination. 
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Table 2.4: Additional in vitro activities of South African Eucomis species. 

Species Extracting solution Bioactivity Report on the activity Positive control activity  
(concentration) 

References 

E. autumnalis Dichloromethane, 
Dichloromethane: 
Methanol (1:1) 
and water 

Antiplasmodial 
activity  
 

The bulb extracts from 
dichloromethane extract (70 µg/ml), 
Dichloromethane:Methanol (9.5 
µg/ml) and water (100 µg/ml) IC50 
value against Plasmodium 
falciparum 

Chloroquine diphosphate 
(NR) 

CLARKSON et al. 
(2004) 

E. autumnalis Methanol Cytotoxicity 
activity 

The methanol extracts were 
cytotoxic with an IC50 value of 7.8 
µg/ml 

Berberine IC50 = 9.8 µg/ml BISI-JOHNSON et 
al. (2011) 

E. autumnalis 
subspecies 
clavata 

Methanol Phytotoxicity Up to 2mg/ml of bulb extract 
showed no phytotoxic effect  

Carbendazim/difenoconazole 
(Eria

@ 
- 187.5 g/l EC) NR 

(1µg/ml) 

PRETORIUS et al. 
(2002) 

NR- Not Reported 
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2.6. Safety and toxicity of Eucomis 

 

The issues of quality control and safety of conventional drugs are important aspects 

for the pharmaceutical industry. In ATM however, there is limited information on the 

safety of plant extracts or herbal products because of the presumed safety of natural 

products. Even though the Eucomis genus is extensively utilized in traditional 

medicine it has been implicated in human poisoning and death in sheep (WATT and 

BREYER-BRANDWIJK 1962). According to HUTCHINGS et al. (1996) abdominal 

pain, diarrhoea and renal failure are some of the symptoms caused by Eucomis 

poisoning in humans. Poisoning may be due to the haemolytic toxin contained in the 

plants (MANDER et al. 1995). Although the plant is a member of the Hyacinthaceae 

family, cardiac glycosides which are widely distributed in the family have not been 

detected in Eucomis species (WATT and BREYER-BRANDWIJK 1962). As recently 

reviewed by KOORBANALLY et al. (2006a), there is increasing evidence on the 

toxicity of crude extracts and isolated compounds from a number of Eucomis 

species. Nevertheless, the limited (if any) information on safety evaluation remain 

worrisome. Therefore, it would be pertinent to subject the various Eucomis species 

especially the ones demonstrating potent bioactivity to a sequence of toxicological 

and mutagenic (both in vitro and in vivo) evaluations. The effect of mode of 

administration, dosage and age as well as gender on incidences of toxicity requires 

investigation. Such valuable information will be vital in ATM as well as from scientific 

and commercialization perspectives. 
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2.7. Conservation status 

 

Although legislation protecting medicinal plants including Eucomis has been 

established (MANDER et al. 1995), harvesting of plants from their natural habitats 

continue unabated (TAYLOR and VAN STADEN 2001b). Amongst the Eucomis 

species, E. autumnalis is the most widely used species (WATT and BREYER-

BRANDWIJK 1962; HUTCHINGS 1989; ROBERTS 1990; HUTCHINGS et al. 

1996). As indicated by street traders, E. autumnalis and E. bicolor are amongst the 

most popular and widely traded species in Durban, South Africa (CUNNINGHAM 

1988; MANDER 1998). According to CUNNINGHAM (1990), E. autumnalis is the 

second most widely traded species in KwaZulu-Natal, South Africa. As a result,  

E. autumnalis populations have been reported as declining (MANDER 1998). 

Recently, E. autumnalis was listed as endangered by the International Union for the 

Conservation of Nature (IUCN) (VICTOR 2000). Increased harvesting of E. 

autumnalis has significantly contributed to the shortage of the species in informal 

medicinal markets in South Africa (GOVENDER et al. 2001). Table 2.5 provides a 

summary of the conservational status of members of the genus Eucomis. Apart from 

the medicinal uses of Eucomis, potential of the species as an 

ornamental/horticultural plant due to their ‘eye-catching’ flowers has exerted more 

strain on wild populations. Therefore, the propagation of Eucomis species especially 

the widely utilized E. autumnalis and the vulnerable E. vandermerwei remains of 

outmost importance for the conservation of members of the genus. 
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2.7.1. Conventional propagation 
 

Eucomis species can be propagated conventionally as offsets and by seeds. 

However, the propagation process is very slow (VERDOORN 1973). On average, 

they reach maturity within approximately 3 - 4 years, and a bulb diameter of around 

12 cm is required for floral initiation. Generally, the plant requires sunny or partially 

shaded areas/habitats for improved growth. Seed propagation is an effective method 

in conserving Eucomis species but knowledge of its seed biology is very limited. A 

germination rate of approximately 65% had been reported (DIEDERICHS et al. 

2002). 

 

2.7.1.1. Response of Eucomis to conventional propagation  

 

In a systematic approach to enhance conservation of Eucomis, stringent 

experiments on factors that influence its seed biology were conducted (KULKARNI 

et al. 2006). The study showed that E. autumnalis subspecies autumnalis seed 

germination was inhibited by light, which implies the importance of dark conditions 

for seed germination. Furthermore, the authors discovered that cold-stratification (5 

°C) for 45 days inactivates the inhibitory effect caused by light. Additives such as 

smoke-water (SW) and its isolated compound (butenolide = 3-methyl-2H-furo[2,3-

c]pyran-2-one, otherwise known as karrikinolide  = KAR1) at varying concentrations 

were found to stimulate germination of E. autumnalis subspecies autumnalis 

(KULKARNI et al. 2006). Enhanced germination refers to a new family of plant 

growth regulator‟s (PGR‟s) identified in smoke from burning plant material (Dixon et 

al., 2009). 
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NDHLALA et al. (2012) reported on the essential and optimum environmental 

conditions required for E. autumnalis seedlings. For instance, the level of light 

exposure was vital for E. autumnalis seedling growth. Upon testing three light 

exposure (50, 75 and 100%), 50% light proved to be optimal resulting in superior 

shoot and root growth as well as the highest fresh weight in seedlings. In terms of 

the temperature, 25 °C and alternating 30/15 °C were the most preferred for better 

seedling growth. Application of SW (1:250 v/v) dilution significantly enhanced the 

seedling growth. VAN LEEUWEN and VAN DER WEIJDEN (1997) showed that E. 

comosa responded better when kept for 12 weeks in vermiculite at 17, 20 or 23 °C. 

However, there was no significant difference with E. bicolor when placed in 

vermiculite for 12 weeks at different temperatures. Furthermore, KNIPPELS (2000) 

showed that a period of 13 weeks in vermiculite was best for bulb growth and 

prevented premature death of bulbs. Moreover, temperatures ranging from 20 - 22 

°C were suitable for better bulb growth especially E. bicolor. Despite the increasing 

number of studies focusing on the conventional propagation, it is evident that 

modern approaches such as micropropagation are necessary in order to alleviate the 

increasing strains on the wild population. 
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Table 2.5: Conservation status and micropropagation protocols for different Eucomis species.  

Species  Conservation 
status 

Explants used Type of plant 
growth regulator(s) 

Results/observations References 

E. autumnalis  Declining Bulb twin-scale, 
bulb-scale, shoots, 
leaf 

BA, NAA, NAA:BA, 
IAA, IBA 

BA, BA and NAA showed significant 
shoot regeneration 

TAYLOR and VAN 
STADEN (2001b); 
AULT (1995) 

E. autumnalis 
subspecies 
amaryllidifolia 

Not evaluated Bulb, root, leaf NAA:BA, IAA, IBA Optimum shoot initiation was obtained 
from 1:1 mg/l (NAA:BA) with no shoots 
initiated from 1:2 mg/l media. Root 
initiation was achieved from 1 mg/l 
NAA 

TAYLOR and VAN 
STADEN (2001b) 

E. autumnalis 
subspecies 
autumnalis 

Not evaluated Bulb, root, leaf NAA:BA, IAA, IBA Optimum shoot initiation obtained from 
1:1 mg/l (NAA:BA). Root initiation was 
achieved from 1 mg/l NAA 

TAYLOR and VAN 
STADEN (2001b) 
 

E. autumnalis 
subspecies clavata 

Not evaluated Bulb, root, leaf NAA:BA, IAA, IBA Optimum shoot initiation was obtained 
from 1:1 mg/l (NAA:BA) with no shoots 
initiated from 1:2 mg/l. Root initiation 
was achieved from 1 mg/l NAA 

TAYLOR and VAN 
STADEN (2001b) 

E. bicolor  Near 
threatened 

Bulb, root, leaf NAA:BA, IAA, IBA Optimum shoot initiation was obtained 
from 1:2 mg/l (NAA:BA) Root initiation 
was achieved from 1 mg/l IBA 

TAYLOR and VAN 
STADEN (2001b) 
 

E. comosa  Declining Bulb twin-scale, 
bulb-scale, root, 
leaf 

BA, NAA Optimum shoot initiation was obtained 
from 1:1 mg/l (NAA:BA). 
BA and NAA had significant shoot 
regeneration 

AULT (1995);  
TAYLOR and VAN 
STADEN (2001b) 

E. comosa 
subspecies comosa 

Not evaluated Bulb, root, leaf NAA:BA, IAA, IBA Optimum shoot initiation was obtained 
from 1:2 mg/l (NAA:BA). Root initiation 
was achieved from 1 mg/l IBA 

TAYLOR and VAN 
STADEN (2001b) 

E. comosa 
subspecies striata 

Not evaluated Bulb, root, leaf NAA:BA, IAA, IBA Optimum shoot initiation was obtained 
from 1:1 mg/l (NAA:BA). Root initiation 
was achieved from 1 mg/l NAA  

TAYLOR and VAN 
STADEN (2001b) 

E. humilis Least concern Bulb, root, leaf NAA:BA, IAA, IBA Optimum shoot initiation was obtained 
from 1:1 mg/l (NAA:BA). Root initiation 
was achieved from 1 mg/l IBA  

TAYLOR and VAN 
STADEN (2001b) 
 

E. montana Declining NR NR NR NR 
E. pallidiflora 
subspecies 
pallidiflora 

Least concern NR NR NR NR 

E. pallidiflora Near NR NR NR NR 
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Species  Conservation 
status 

Explants used Type of plant 
growth regulator(s) 

Results/observations References 

subspecies pole-
evansii 

threatened 

E. regia Least concern NR NR NR NR 
E. schijffii Least concern NR NR NR NR 
E. vandermerwei Vulnerable Shoots, leaf  BA, IAA Successful shoot initiation was obtain 

from explants propagated at 1 to 2 mg/ 
l
 
of BA and 1 mg/l IAA 

McCARTAN et al. 
(1999) 

E. zambesiaca Least concern Bulb twin-scale, 
bulb-scale, root, 
leaf  

BA, NAA, NAA:BA, 
IAA, IBA, PBZ, 2,4-
D, BA, iP, Zeatin, 
mT, GA3, GA4+7, 
ABA, MeJA, PAA 

Significant shoot regeneration was 
obtained from NAA at 5,4 µM  
Induction of bulblets was obtained from 
4.90 µM IBA 
Optimum shoot initiation was obtained 
from 1:1 mg/l (NAA:BA). Root initiation 
was achieved from 1 mg/l IAA 

AULT (1995); 
CHEESMAN et al. 
(2010); 
TAYLOR and VAN 
STADEN (2001b) 
 

NR- Not Reported; Conservation status according to RAIMONDO et al. (2009) 
2,4-D = 2,4 – Dichlorophenoxy acetic acid; iP = N

6
-Isopentenyladenine; BA = Benzyladenine; GA3 = Gibberellic acid; GA4+7 = GA4 and  

GA7 gibberellin mixture; IAA = Indole acetic acid; IBA = Indole butyric acid; MeJa = Methyl jasmonate; mT = meta-Topolin;  
NAA = α-Naphthalene acetic acid; PAA = Phenylacetic acid; PBZ = Paclobutrazol  
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2.7.2. Micropropagation of Eucomis 

 

Although efforts geared towards improving conventional propagation is commendable, 

the slow growth of Eucomis species which may take as long as 3 - 4 years for bulb 

maturation remains a major concern. Inevitably, the application of valuable techniques 

such as micropropagation (known for its numerous benefits) has been embraced. The 

technique is useful for the conservation of species as it increases the production turn-

over rate and reduces the growth duration significantly. The success of hybridization in 

Eucomis flowers has been partly attributed to the fact that the hybrids can be further 

micropropagated and remain true-to-type. 

 

As an evident of the success and increasing application of micropropagation for the 

genus Eucomis, Table 2.5 shows members of the genus that have been 

micropropagated. For instance, the micropropagation of E. autumnalis and  

E. zambesiaca using twin-scales has been successfully conducted (AULT 1995). 

McCARTAN and VAN STADEN (1995) focused on the tissue culture of E. pole-evansii 

with the use of seedling explants while McCARTAN et al. (1999) devised a protocol for 

E. vandermerwei, one of the most vulnerable species within the genus. 

Micropropagation of 11 Eucomis species was conducted by TAYLOR and VAN 

STADEN (2001b). An improved micropropagation protocol for E. zambesiaca was 

described by CHEESMAN et al. (2010). No doubt, these protocols are valuable for the 

mass propagation of Eucomis species. Therefore, it will be pertinent to provide 

protocols for the other Eucomis species which have not received much attention. Using 
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the new group of cytokinin (CK) (topolins) which have been demonstrated to be 

valuable in micropropagation (AREMU et al. 2012b), efforts aimed at improving shoot 

proliferation in E. autumnalis subspecies autumnalis remain important and forms the 

basis of the subsequent Chapters. 

 

2.7.2.1. Effect of plant growth regulators on the micropropagation of Eucomis  

 

Plant growth regulators (PGRs) are involved in the enhancement of cell division. For 

instance, addition of exogenous CK stimulate cell division thereby enhancing shoot 

proliferation (BAYLISS 1985). In plants, CKs are involved in numerous developmental 

stages including seed germination, de-etiolation, chloroplast differentiation, apical 

dominance, flower and fruit development (HABERER and KIEBER 2002). On the other 

hand, auxins play a crucial role in cell enlargement, elongation, root initiation, stem 

growth and cell division (GASPAR et al. 1996).  

 

Micropropagation of Eucomis species showed that combination of CKs and auxins 

significantly improve shoot regeneration. According to AULT (1995), the combination of 

benzyladenine (BA) and naphthalene (NAA) resulted in the optimum number (2.8) of 

shoots per bulb explant for E. zambesiaca and E. comosa. When 11 of the Eucomis 

species were evaluated (TAYLOR and VAN STADEN 2001b), optimum shoot initiation 

was obtained from a BA:NAA (1:1) combination. For leaf explants, 8 shoots were 

regenerated per explant with 2 - 3 shoots regenerated per bulb explant. The shoot 

explants regeneration from bulb explants show a similar trend (AULT 1995; TAYLOR 

and VAN STADEN 2001b). Although auxins function in cell elongation and root 
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formation, indole butyric acid (IBA) treatment induced optimum bulblets on E. 

zambesiaca (CHEESMAN et al. 2010). According to GASPAR et al. (1996), addition of 

IBA to the media causes the auxin to be broken down and further metabolized in plant 

tissues. Further studies showed that IBA resulted in optimum shoot initiation and growth 

responses in bulblets when compared to indole acetic acid (IAA) in Hyacinthus orientalis 

(YI et al. 2002). 

 

2.8. Conclusions 

 

The continuous exploitation of the genus in southern Africa and especially in South 

Africa is an indication of its pharmacological potential. In view of the potential of the 

genus in anti-inflammatory therapy, the high COX inhibitory activity of crude extracts of 

active species such as E. autumnalis subspecies autumnalis and E. bicolor in vitro 

should be further investigated through in vivo bioassays. In order to achieve any 

pharmaceutical potential, it will be necessary to eliminate false positive results by 

removal of compounds such as polyphenols, saponins and fatty acids in plant extracts 

which are known to affect enzyme-based bioassays. In terms of the antimicrobial 

potential, the genus Eucomis is reported to be effective against B. subtilis, E. coli and S. 

aureus as well as several plant fungal strains (Table 2.3). In fact, crude extracts of 

Eucomis species were more potent than the positive control against plant pathogens 

such as S. rolfsii, R. solani and P. ultimum (Table 2.3). Hence, Eucomis species can be 

potentially useful in the agricultural sector as a fungicide or biocontrol agent. Based on 

the inadequate evidence on the general safety of members of the genus, the need for 

detailed toxicological and mutagenic evaluation is recommended. From a 
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conservational perspective, renewed efforts aimed at cultivation and application of 

micropropagation techniques will definitely help alleviate the declining status of many of 

these heavily harvested species, particularly E. autumnalis. Consequently, more studies 

geared towards understanding the basic requirements of improving their cultivation and 

micropropagation processes are encouraged. 

  



39 

 

Chapter 3: Influence of gelling agents, explant source and 
plant growth regulators in micropropagated Eucomis 

autumnalis subspecies autumnalis 

 

3.1. Introduction 

 

Globally, the increasing population, anthropogenic activities, and deteriorating natural 

ecosystems have caused several plant species (especially medicinal plants) to become 

threatened and even extinct (SHARMA et al. 2010). As one of the most common and 

widely used medicinal plants in African Traditional Medicine (ATM), anecdotal evidence 

of the uses and pharmacological efficacy of Eucomis species are well-documented 

(Chapter 2). In an attempt to meet and sustain the increasing demand for medicinal 

species including E. autumnalis subspecies autumnalis, the application of 

micropropagation has become an accepted viable option for their conservation. The 

technique allows for mass propagation and genetic improvement as well as the 

enhancement of secondary metabolite levels in several plant species (TRIPATHI and 

TRIPATHI 2003). In addition, the biosynthetic pathways of desired phytochemicals can 

be manipulated to increase the level of these chemicals which are easily extractable 

from the in vitro regenerants (DiCOSMO and MISAWA 1995). The quantity and quality 

of phytochemicals in micropropagated medicinal plants remain crucial especially in 

terms of their pharmacological potential and general acceptability (DÖRNENBURG and 

KNORR 1995). Despite the numerous advantages associated with micropropagation, 

several factors such as gelling agents, explant source, type and concentration of plant 

growth regulators (PGRs) are known to affect the overall success of the technique 



40 

 

(GEORGE 1993). As such, it often becomes necessary to manipulate these factors in 

order to optimize micropropagation protocols. 

 

Agar and gellan gum (GelriteTM) are natural polysaccharides with the ability to gel at 

room temperature and remain the most popular gelling agents used in 

micropropagation. Agar is a neutral linear, molecule free of sulphates with alternative 

chain units of β-1,3-linked-D-galactose and α-1,4-linked 3,6-anhydro-L-galactose. The 

gel is a derivative of red-purple seaweeds also known as agarophytes (MARIHNO-

SORIANO and BOURRET 2003) and has remained the most widely utilized solidifying 

agent in tissue culture media for years (PUCHOOA et al. 1999). The extensive use of 

agar is attributed to its high gel clarity, stability and ability to prevent plant enzyme 

digestion. Nevertheless, several reports on its adverse side effects have been 

documented (DEBERGH 1983; ARTHUR et al. 2004). It has been postulated that when 

agar chelates or adsorb nutrient ions, explant growth is retarded due to the 

unavailability of the essential elements in the media (DEBERGH 1983; BORNMAN and 

VOGELMAN 1984; CONNER and MEREDITH 1984),  

 

In contrast, gelrite is a linear polysaccharide composed of two residues of D-glucose 

and one residue of D-glucuronic acid and L-rhamnose. Gelrite readily gels in the 

presence of monovalent or divalent cations. It is considered as a more economical 

alternative to agar because approximately half the amount of gelrite is required to attain 

the equivalent gelling strength as agar (PIERIK 1987). As a product of Pseudomonas 

alodea, it is characterized by consistent high quality and purity. Gelrite produces a firm 

and very clear gel in the absence of contaminants (PIERIK 1987). However, the use of 
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gelrite has often been associated with the occurrence of hyperhydric shoots in several 

species (FRANCK et al. 2004; ROJAS-MARTÍNEZ et al. 2010). 

 

TAYLOR and VAN STADEN (2001b) have reported the importance of the 

micropropagation protocol as well as the role of factors affecting regeneration in  

E. autumnalis subspecies autumnalis. For instance, the influence of explants and PGRs 

on the species has been investigated. Nevertheless, the role of other intricate factors 

such as gelling agent (in the presence of different PGR combinations and explant 

source) known to contribute significantly to the quality and quantity of regenerants have 

received less attention. The current Chapter evaluated the effect of two gelling agents 

on shoot proliferation and secondary metabolite production in micropropagated E. 

autumnalis subspecies autumnalis. In addition, the response of in vitro regenerants to 

individual gelling agents in the presence of different PGR combinations and explant 

source (leaf or bulb) used for the initiation stage was investigated. 

 

3.2. Materials and methods 

 

3.2.1. Sources of plant growth regulators 

 

Benzyladenine (BA) and α-naphthalene acetic acid (NAA) were purchased from Sigma-

Aldrich (Steinheim, Germany). Meta-topolin (mT) was prepared as previously described 

by DOLEŽAL et al. (2006). 
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3.2.2. Explant source, decontamination regime and culture initiation 

 

Explants were obtained from stock plants of E. autumnalis subspecies autumnalis 

maintained at the University of KwaZulu-Natal (UKZN) Botanical Garden, 

Pietermaritzburg, South Africa. After identification by Dr C. Potgieter a voucher 

specimen (Masondo 2) was prepared and deposited in the Bews Herbarium of the 

UKZN, Pietermaritzburg, South Africa. 

 

Leaves and bulbs (Fig. 3.1) were excised from the stock plants and decontaminated 

according to a procedure described by TAYLOR and VAN STADEN (2001b). Briefly, 

leaves were surface decontaminated using 70% ethanol for 5 min followed by 0.2% 

Benlate® (Du Pont de Nemour Int., South Africa) with a few drops of Tween 20 

(polyoxyethylene sorbitan monolaurate, Saarchem, Krugersdorp, South Africa) for 10 

min then sterilized in 1.75% sodium hypochlorite for 20 min. The explants were 

subsequently rinsed three times with sterile distilled water. On the other hand, bulbs 

were immersed in sterile distilled water for 30 min and decontaminated with 100% 

ethanol for 60 s followed by 0.2% Benlate® with a few drops of Tween 20 for 5 min and 

3% sodium hypochlorite for 20 min. The plant materials were rinsed three times with 

sterile distilled water to remove all traces of sterilants. 
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Fig. 3.1: Illustration on how the explants were obtained and experimental design indicating the three factors (rectangular shape) evaluated in the 
current study. RS = regenerated shoots; LDL = leaf explant derived from primary leaf regenerants; LDB = leaf explant derived from 
primary bulb regenerants; GA = gelling agent; PGRs = plant growth regulators. The PGR concentrations tested were (I) 4 µM BA (II) 4 
µM mT (III) 4 µM BA + 5 µM NAA (IV) 4 µM mT + 5 µM NAA and (V) PGR-free (control). BA = 6-Benzyladenine; mT = meta-Topolin; 
NAA = Naphthalene acetic acid. 
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Decontaminated plant materials (leaves and bulbs) were inoculated in culture tubes 

(100 x 25 mm, 40 ml) containing 10 ml Murashige and Skoog (MS) medium 

(MURASHIGE and SKOOG 1962). Appendix 1 shows the chemical composition of the 

MS medium used for the current study. The PGR-medium was supplemented with 30 g/l 

of sucrose, 0.1 g/l myo-inositol and the pH adjusted to 5.8 with 1M KOH or HCl as 

required. The medium was solidified with 3 g/l gelrite (Labretoria, Pretoria, South Africa), 

then autoclaved at 121 °C and 103 kPa for 20 min. The cultures were incubated in 16/8 

h light/dark conditions with a photosynthetic photon flux (PPF) of 45 µmol m-2 s-1 at 25 ± 

2 °C. After shoot regeneration (from primary bulb and leaf explants), the resultant leaf 

materials were used as explants for subsequent experiments. Leaves derived from 

primary bulb regenerants were denoted as LDB while those from the primary leaf 

regenerants were coded as LDL (Fig. 3.1).  

 

3.2.3. In vitro shoot proliferation using different gelling agents, explant source 

and plant growth regulators 

 

A 2×2×5 factorial experiment involving gelling agents (agar versus gelrite), explant 

source (LDB = from primary bulb versus LDL = primary leaf regenerants) and five PGR 

combinations (including the control) were designed in a randomized manner (Fig. 3.1). 

Based on trials and previous studies (BERRIOS et al. 1999; TAYLOR and VAN 

STADEN 2001b), gelrite and agar (Bacteriological agar–Oxoid Ltd., Basingstoke, 

Hampshire, England) were tested at 3 and 8 g/l, respectively. Both LDB and LDL 

explants measuring approximately 1 × 1 cm were used for the experiments. The 
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explants were placed abaxial side down on the medium (TAYLOR and VAN STADEN 

2001b). 

 

Media were supplemented with different combinations of cytokinins (CKs) and NAA as 

follows (I) 4 µM BA (II) 4 µM mT (III) 4 µM BA + 5 µM NAA and (IV) 4 µM mT + 5 µM 

NAA. Media solidified with agar or gelrite without any PGR served as a control. One leaf 

explant was inoculated per culture tube. There were 25 replicates per treatment and the 

experiment was done twice. The same pH range and growth conditions as described in 

the preceding section were also applicable during the shoot proliferation experiment. 

After 10 weeks, growth parameters such as shoot number, shoot length, root number, 

root length, shoots longer than 5 mm and fresh weight were measured and recorded. 

 

3.2.4. Preparation of extracts for phytochemical quantification 

 

Regenerants from the different treatments described above were oven-dried at 50 °C for 

five days and ground into fine powders. Ground plant materials were extracted using 

50% methanol (MeOH) at 0.1 g per 10 ml in a sonication bath (Julabo GmbH, West 

Germany) containing ice-cold water for 20 min. The extracts were centrifuged using a 

Benchtop centrifuge (Hettich Universal, Germany) at 5000 rpm to obtain the 

supernatant required for the phytochemical content quantification. 
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3.2.4.1. Determination of iridoid content 

 

Iridoid content was determined using the colourimetric method described by LEVIEILLE 

and WILSON (2002). In triplicate test tubes, 150 µl of 50% MeOH plant extract were 

added to 1.35 ml of reagent 1 (82 ml methanol, 8 ml concentrated sulphuric acid and 

100 mg vanillin). For the blank, 150 µl of 50% MeOH plant extract was added to 1.35 ml 

reagent 2 (82 ml methanol and 8 ml concentrated sulphuric acid). The reaction occurred 

at room temperature and absorbance was read at 538 nm using a UV-visible 

spectrophotometer. Harpagoside (Extrasynthèse, France) was used as a standard for 

the calibration curve. Iridoid content in the plant extracts was expressed as mg 

harpagoside equivalents (HE) per gram DW. Extracts were tested in triplicate and 

experiment was repeated twice. 

 

3.2.4.2. Determination of condensed tannin content 

 

Condensed tannins were determined using the butanol-HCl assay as described by 

MAKKAR et al. (2007). Five hundred microlitres of 50% MeOH plant extract were 

added to 3 ml of the butanol-HCl reagent (95:5, v/v) followed by 100 µl of the ferric 

reagent (2% ferric ammonium sulphate in 2N HCl). The blank contained 500 µl of 50% 

MeOH in place of the extract. The reaction solution was mixed using a vortex and left in 

a water bath at 100 °C for 1 h. The absorbance was measured at 550 nm using a UV-

visible spectrophotometer. Cyanidin chloride (Carl Roth GmbH, Germany) was used as 

a standard for the calibration curve. Condensed tannins were expressed as mg cyanidin 
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chloride equivalents (CCE) per gram DW. Extracts were tested in triplicate and 

experiment was repeated twice. 

 

3.2.4.3. Determination of flavonoid content 

 

Flavonoid content was evaluated using the aluminium chloride (AlCl3) colourimetric 

assay as described by ZHISHEN et al. (1999) with modifications (MARINOVA et al. 

2005). In triplicate test tubes, 250 µl of 50% MeOH extract were added to 1 ml of 

distilled water followed by 75 µl of 5% sodium nitrite (NaNO2). After 5 min, 75 μl of 10% 

AlCl3 and 500 μl of 1 M sodium hydroxide (NaOH) were added sequentially. The 

reaction mixture was adjusted to 2.5 ml with 600 μl of distilled water. The reaction 

solution was thoroughly mixed and absorbance measured at 510 nm using a UV-visible 

spectrophotometer. Catechin (Sigma-Aldrich, USA) was used for calibration and a 

mixture containing 50% MeOH instead of plant extract was included as a blank. 

Flavonoid content was presented as mg catechin equivalents (CE) per gram DW. 

Extracts were tested in triplicate and experiment was repeated twice. 

 

3.2.4.4. Determination of total phenolic content 

 

Total phenolics in the plant extracts were determined using the Folin-Ciocalteu (Folin-C) 

assay (MAKKAR et al. 2007). In triplicate test tubes, 50 μl of 50% MeOH extracts were 

added to 950 μl distilled water, followed by the addition of 500 μl Folin-C reagent (1 N) 

and 2.5 ml of 2% sodium carbonate (Na2CO3). A blank consisting of 50% MeOH in 

place of plant extract was included. The mixture was incubated at room temperature for 
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40 min and absorbance was recorded at 725 nm using a UV-visible spectrophotometer 

(Varian Cary 50, Australia). Gallic acid (Sigma-Aldrich, USA) was used for standard 

curve calibration. Total phenolic levels were presented as mg gallic acid equivalents 

(GAE) per gram dry weight (DW). Extracts were tested in triplicate and experiment was 

repeated twice. 

 

3.2.5. Data analysis  

 

Experiments were conducted in completely randomized designs. The statistical 

differences between the mean values of agar and gelrite-solidified treatments were 

determined by subjecting the data to the Student’s t-test. The analysis was done using 

SigmaPlot software (version 8.0). Using SPSS (version 16.0) software, mean values of 

the various treatments were further subjected to analysis of variance (ANOVA). The 

significance level was determined at P   0.05 (*), P   0.01(**) and P   0.001 (***). 

 

3.3. Results and discussion 

 

3.3.1. Explant decontamination and regeneration frequency 

 

For decontamination frequency from the stock plant, the use of leaves as initial explant 

source was slightly higher (70 - 75%) than that obtained from primary bulb explants (40 

- 50%). Similar lower decontamination frequencies from bulb explants have been 

documented among members of the Hyacinthaceae (McCARTAN and VAN STADEN 

1998; TAYLOR and VAN STADEN 2001b). High frequencies of contamination arising 
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from using bulbs are often associated with their high load of soil-borne microbes. 

Following the use of sterile leaf material as the (secondary) explant type, a regeneration 

frequency ≥ 80% was observed in both LDB and LDL (data not shown). The 

regenerants from gelrite-solidified media were bigger, more vigorous and healthier than 

when using agar treatment (Fig. 3.2). 

 

 

Fig. 3.2: Eucomis autumnalis subspecies autumnalis regenerants supplemented with diffferent plant 
growth regulators on either gelrite or agar solidified media after 10 weeks. BA = 6-
Benzyladenine; mT = meta-Topolin; NAA = Naphthalene acetic acid. 

 

Control BA BA+NAA mT mT+NAA 

Gelrite 

Agar 
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3.3.2. Effect of gelling agents on shoot proliferation  

 

Gelrite solidified media generally (apart from BA with NAA treatment for LDB) had a 

significantly higher number of total and bigger shoots when compared to agar treatment 

(Fig. 3.3A and C). The highest mean shoot number (c.a 8.5) was observed in gelrite 

(BA with NAA treatment) while the lowest number (c.a 1.8) of shoots were recorded in 

agar containing media (LDL in PGR-free and BA as well as LDB in PGR-free 

treatments). In 7 out of the 10 comparisons, shoot length was consistently higher in 

gelrite than with agar treatment (Fig. 3.3B). Similar positive effects of gelrite were 

observed in root (number and length) and fresh weight of E. autumnalis subspecies 

autumnalis (Fig. 3.4). The current findings reveal the role of applied gelling agents on 

shoot proliferation in E. autumnalis subspecies autumnalis. Both gelrite and agar have 

been reported to produce different responses in terms of number of regenerated shoots 

in micropropagated species. While gelrite was better in some studies (BARBAS et al. 

1993; VERAMENDI et al. 1997; EBRAHIM and IBRAHIM 2000; TSAY et al. 2006; 

AASIM et al. 2009), agar was the preferred choice in other situations (CORCHETE et 

al. 1993; BERGER and SCHAFFNER 1995; FATIMA and KHAN 2010; IVANOVA and 

VAN STADEN 2011). In the current study, more shoots were obtained from gelrite 

compared to agar-containing media. Often, the variation in shoot production between 

the gelling agents has been partly attributed to the differences in their physicochemical 

properties. ARTHUR et al. (2004) established that numerous gelling agents contain 

water-soluble root-stimulating (auxin-like) substances which potentially affect growth 

and development in vitro. Agar and gelrite solidified media are known to exhibit different 

water availability which is primarily due to variation in gel matric potential (OWNES and 
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WOZNIAK 1991). However, it does not necessarily account and fully explain the 

observed differences in shoot proliferation (VERAMENDI et al. 1997). Perhaps the 

discrepancies between agar and gelrite media in plant development might result from 

growth inhibitor effects of agar-inherent impurities (SCHOLTEN and PIERIK 1998). 

These properties are known to directly affect the availability of water and nutrients that 

stimulate regeneration of new shoots during micropropagation. Individually, gelling 

agents and PGRs exhibited the highest levels of significance (P ≤ 0.001) for all the 

evaluated growth parameters (Table 3.1). 
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.  

Fig. 3.3: Effect of gelling agents, explant source (LDL = leaf explant derived from primary leaf 
regenerants; LDB = leaf explant derived from primary bulb regenerants) and plant growth 
regulators on (A) shoot number, (B) shoot length and (C) shoot greater than 5 mm in 
micropropagated Eucomis autumnalis subspecies autumnalis after 10 weeks of culture. Bars 
represent mean values ± standard error and n = 50. The levels of significant difference 
between the mean values of gelling agents were determined using the student’s t-test. Ns = 
not significant, P ≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***). BA = 6-Benzyladenine; mT = meta-
Topolin; NAA = Naphthalene acetic acid. Concentrations of BA and mT = 4 µM while NAA = 5 
µM.  
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Fig. 3.4: Effect of gelling agents, explant source (LDL = leaf explant derived from primary leaf 
regenerants; LDB = leaf explant derived from primary bulb regenerants) and plant growth 
regulators on (A) root number, (B) root length and (C) fresh weight in micropropagated Eucomis 
autumnalis subspecies autumnalis after 10 weeks of culture. Bars represent mean values (± 
standard error) and n = 50. The levels of significant difference between the mean values of 
gelling agents were determined using the student’s t-test. Ns = not significant, P ≤ 0.05 (*), P ≤ 
0.01 (**), P ≤ 0.001 (***). BA = 6-Benzyladenine; mT = meta-Topolin; NAA = Naphthalene acetic 
acid. Concentrations of BA and mT = 4 µM while NAA = 5 µM. 
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Table 3.1: Analysis of variance (ANOVA) on the effect of gelling agents (GA), explant source (ES) and plant growth regulators (PGRs) as well as 
their interactions on growth parameters of micropropagated Eucomis autumnalis subspecies autumnalis after 10 weeks of culture.  

 
Ns = Not significant, P ≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***). 

 

F-value p -value F-value p -value F-value p -value F-value p -value F-value p -value F-value p -value

GA 83.36 0.000 *** 69.77 0.000 *** 50.00 0.000 *** 87.88 0.000 *** 104.32 0.000 *** 179.79 0.000 ***

ES 4.26 0.040 * 1.19 0.277 ns 50.00 0.000 *** 70.16 0.000 *** 0.35 0.556 ns 11.92 0.001 ***

PGR 40.14 0.000 *** 24.26 0.000 *** 42.06 0.000 *** 104.29 0.000 *** 35.63 0.000 *** 17.55 0.000 ***

GA × ES  4.89 0.027 * 0.19 0.665 ns 14.76 0.000 *** 13.40 0.000 *** 8.46 0.004 ** 13.01 0.000 ***

GA × PGR  3.45 0.009 ** 4.61 0.001 *** 7.58 0.000 *** 15.65 0.000 *** 1.95 0.102 ns 2.37 0.052 ns

ES × PGR 2.32 0.056 ns 2.09 0.081 ns 10.12 0.000 *** 16.65 0.000 *** 3.10 0.015 * 4.87 0.001 ***

GA × ES × PGR 2.73 0.029 * 0.54 0.708 ns 3.95 0.004 ** 1.89 0.111 ns 2.67 0.032 * 1.52 0.196 ns

Shoot length Root number Root length Shoot ˃ 5 mm Fresh weight
Source  of variation

Shoot number
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3.3.3. Effect of explant source on shoot proliferation  

 

The importance of the right choice of explant type/source for shoot proliferation in 

micropropagated plants is well recognized (IBRAHIM 1994; ISLAM et al. 2005; 

FIUK and RYBCZYŃSKI 2008). In Eucomis species, TAYLOR and VAN STADEN 

(2001b) have clearly established that leaf material was most suitable for multiple 

shoot production compared to bulb material. However, the consequences of using 

leaf material from different initial explant sources have not been studied until now. 

With the use of leaf material as a secondary explant type in the current study, the 

(initial/primary) explant source (LDL and LDB) significantly influenced all the 

parameters with the exception of shoot length and number of larger shoots (Table 

3.1). McCARTAN and VAN STADEN (1998) have highlighted the vital role of 

explant choice as demonstrated in Merwilla plumbea (formerly Scilla natalensis), 

another member of the Hyacinthaceae. When comparing agar and gelrite solidified 

media without PGRs, there was no significant difference in number of shoots from 

either LDL or LDB explant. In the presence of BA with NAA (agar treatment), there 

was approximately 2-fold more shoots in LDB compared to LDL regenerants (Fig. 

3.3A). The use of leaves as explant source was more effective than the root explant 

in four Dieffenbachia cultivars (SHEN et al. 2008). As postulated by the authors, the 

differences in responses between the explants may be related to their totipotency. In 

the absence of PGRs (both agar and gelrite treatments), LDL-derived plantlets had 

higher number of roots which were significantly longer than LDB regenerants (Table 

3.1; Fig. 3.4A and B). Although LDL-derived plantlets were significantly bigger than 

LDB from PGR-free media (gelrite treatment), the fresh weights were generally 

similar between LDL and LDB in all the remaining treatments (Fig. 3.4C). 
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3.3.4. Effect of plant growth regulators on shoot proliferation  

 

As an important component of micropropagation, the use of PGRs is often directly 

associated with an increase in the number of regenerated shoots (GEORGE 1993). 

Regardless of the gelling agent and explant source, the application of PGRs 

significantly affected the growth of micropropagated E. autumnalis subspecies 

autumnalis (Table 3.1). As depicted in Fig. 3.3A and C, BA with NAA treatment had 

the highest shoot proliferation and number of larger (˃ 5 mm) shoots in LDL (gelrite) 

and LDB (agar and gelrite) regenerants. In these cases, the mean number of shoots 

was approximately 4-fold higher in BA with NAA treatment than PGR-free media. 

Generally, plantlets from PGR-free treatment were either similar or significantly 

longer (LDL and LDB) than PGR-treated regenerants in both agar and gelrite 

solidified media (Fig. 3.3B). As evident in both LDL and LDB plantlets (Fig. 3.4A 

and B), rooting parameters were higher in mT and mT with NAA treatments than in 

BA and BA with NAA agar and gelrite solidified media. The better root-stimulating 

ability of topolins (mT in this case) over BA has been observed in several species 

and partly associated with structural advantages of topolins over BA (AREMU et al. 

2012b). Fresh weight was higher when auxins were combined with BA or mT 

compared to the CKs alone for both agar and gelrite solidified media in LDB 

regenerants (Fig. 3.4C). Although CKs are primarily responsible for shoot 

production, their (synergistic or antagonistic) interactions with auxins may influence 

the outcome (COENEN and LOMAX 1997). In the current study, shoot production 

was enhanced when NAA was combined with CKs (BA or mT) compared to the use 

of CKs alone. In both LDL and LDB regenerants, the number of shoots produced in 

BA with NAA treatment was approximately 2-fold more than with BA treatment (agar 

and gelrite) while it was about 1.5-fold more with mT with NAA compared to mT 
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treatment from gelrite solidified media (Fig. 3.3A). Similar additive/synergistic effects 

of auxins have been documented by other researchers (McCARTAN and VAN 

STADEN 1998; KOETLE et al. 2010; AMOO and VAN STADEN 2013a). As 

postulated by NORDSTRÖM et al. (2004), the level of active CKs in plants can be 

regulated by auxins (a more rapid effect) and vice versa, thereby resulting in diverse 

physiological responses. In addition, post-translational modifications and hormone 

transport may play important roles in the interactions between auxin and CK 

(COENEN and LOMAX 1997). However, the underlying mechanism of the 

interaction remains to be fully elucidated. 

 

3.3.5. Effect of gelling agents on secondary metabolite content 

 

Different in vitro factors such as media type and PGRs influence the phytochemicals 

in regenerated plants (BAQUE et al. 2010; QUIALA et al. 2012; AMOO and VAN 

STADEN 2013a). The iridoids, condensed tannins, flavonoids and phenolics of E. 

autumnalis subspecies autumnalis from agar and gelrite solidified media are 

presented in Fig. 3.5. The comparison of agar and gelrite treatments indicates that 

the iridoid content was generally higher in agar compared to gelrite (Fig. 3.5A). 

Similarly, the flavonoids were generally higher in E. autumnalis subspecies 

autumnalis cultured on agar (Fig. 3.5C). There was approximately 3-fold more 

flavonoids with agar (mT treatment derived from LDB) than the gelrite (mT treatment 

derived from LDB) regenerants. In most cases, the levels of condensed tannins and 

phenolics were generally non-significant between the agar and gelrite treatments. 

Although studies focusing on the role of gelling agent on phytochemicals are not 

common, HENDERSON and KINNERSLEY (1988) observed lower quantities of 

anthocyanin in Daucus carota grown on media gelled with agar when compared to 
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corn starch. The varying responses are partly due to the physicochemical properties 

of the gelling agent used (DEBERGH 1983), which may in turn directly or indirectly 

affect metabolic pathways of the phytochemicals. During stress, the phenylpropanoid 

pathway is of critical importance as its products (phenolic compounds) protect the 

plant against abiotic and biotic factors (DIXON and PAIVA 1995). Thus, the 

likelihood that gelling agents exerted certain levels of stress in the regenerated 

plantlets could account for the levels of phytochemicals. Overall, the interaction 

among gelling agents, explant source and PGRs significantly (in most cases) 

affected the concentration of the quantified secondary metabolites, with the 

exception of total phenolics whereby it had relatively lower influences (Table 3.2). 

 

Table 3.2: Analysis of variance (ANOVA) on the effect of gelling agents (GA), explant source (ES) 
and plant growth regulators (PGR) as well as their interactions on secondary metabolite 
content in micropropagated Eucomis autumnalis subspecies autumnalis after 10 weeks of 
culture.  

 
Ns = Not significant, P ≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***). 

 

F-value p -value F-value p -value F-value p -value F-value p -value

GA 16.54 0.000 *** 25.35 0.000 *** 13.74 0.001 *** 2.02 0.163 ns

ES 22.48 0.000 *** 7.15 0.000 *** 2.97 0.031 * 1.36 0.265 ns

PGR 3.78 0.059 ns 50.59 0.000 *** 0.69 0.412 ns 1.94 0.171 ns

GA × ES 7.20 0.000 *** 12.88 0.000 *** 2.23 0.083 ns 2.98 0.030 *

GA × PGR 0.74 0.394 ns 0.84 0.364 ns 10.01 0.003 ** 0.01 0.908 ns

ES × PGR 2.75 0.041 ** 19.70 0.000 *** 2.27 0.078 ns 4.33 0.005 **

GA × ES × PGR 7.56 0.000 *** 6.71 0.000 *** 6.04 0.001 *** 4.75 0.003 **

Flavonoids Iridoids Phenolics
Source  of variation

Condensed tannins
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Fig. 3.5: Effect of gelling agents, explant source (LDL = leaf explant derived from primary leaf 
regenerants; LDB = leaf explant derived from primary bulb regenerants) and plant growth 
regulators on (A) iridoids, (B) condensed tannins, (C) total flavonoids and (D) total phenolics 
in micropropagated Eucomis autumnalis subspecies autumnalis after 10 weeks of culture. 
Bars represent mean values ± standard error and n = 6. HE = Harpagoside equivalents; 
CCE = Cyanide chloride equivalents; CE = Catechin equivalents; GAE = Gallic acid 
equivalents. The levels of significant difference between the mean values of gelling agents 
were determined using the student’s t-test. Ns = not significant, P ≤ 0.05 (*), P ≤ 0.01 (**), P 
≤ 0.001 (***). BA = 6-Benzyladenine; mT = meta-Topolin; NAA = Naphthalene acetic acid. 
Concentrations of BA and mT =  4 µM while NAA = 5 µM. 
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3.3.6. Effect of explant source on secondary metabolite content 

 

Globally, there is a steady increase in number of studies evaluating the potential of in 

vitro plant culture systems for the production of desired phytochemicals (DiCOSMO 

and MISAWA 1995; RAMACHANDRA RAO and RAVISHANKAR 2002). Despite 

the therapeutic potential of E. autumnalis subspecies autumnalis, there is limited (if 

any) evidence demonstrating the role of intricate factors such as explant source on 

levels of accumulated phytochemicals. Based on the current findings, it is logical to 

expect differences in phytochemical levels due to the observed growth variations 

from the two explant sources. Figure 3.5 shows the phytochemical contents in both 

LDL- and LDB-derived E. autumnalis subspecies autumnalis. Apart from phenolic 

content (non-significant), the concentration of the quantified secondary metabolites 

in micropropagated plantlets were significantly affected by the explant source (Table 

3.2). From agar solidified media, plantlets derived from LDB (control, BA and mT 

treatments) had remarkably higher iridoids than identical treatments from LDL (Fig. 

3.5A). In fact, there was an approximately 6.4-fold (BA) and 9-fold (mT) higher iridoid 

content in plantlets from LDB than from LDL. On the contrary, higher quantity of 

condensed tannins (3-fold) and flavonoids (2-fold) were quantified in mT with NAA 

regenerants from LDL when compared to LDB in agar solidified media (Fig. 3.5B 

and C).  

 

3.3.7. Effect of plant growth regulators on secondary metabolite content 

 

While the flavonoid content in plantlets was significantly enhanced by the type of 

applied PGRs, the phenolic, condensed tannin and iridoid contents were unaffected 

(Table 3.2). When compared to the control (PGR-free), BA and mT (LDB-derived) 
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treatments significantly (approximately 2-fold) enhanced the level of flavonoids in 

micropropagated E. autumnalis subspecies autumnalis cultured on agar (Fig. 3.5C). 

Among the tested PGRs, plantlets (LDB) cultured on agar and supplemented with 

mT had the highest flavonoid content. In addition to the individual effects of the 

PGRs, the combination of NAA and CKs (BA and mT) had both antagonistic (24 out 

of 32 comparisons) and synergistic (8 out of 32 comparisons) effects on secondary 

metabolite content in E. autumnalis subspecies autumnalis (Fig. 3.5). In 

micropropagation, PGRs especially CKs play a vital role in the production of 

secondary metabolites (COSTE et al. 2011; SAW et al. 2012). The stimulatory effect 

of CKs has been ascribed to their direct/indirect role on important secondary 

metabolite biosynthetic pathways (SAKAKIBARA et al. 2006). As highlighted by 

RAMACHANDRA RAO and RAVISHANKAR (2002), stimulatory and inhibitory 

effects of auxin on secondary metabolites have been demonstrated in different plant 

species. The combination of BA and indole-3-butyric acid (IBA) increased phenolic 

content in Thymus vulgaris (KARALIJA and PARIĆ 2011) while lower levels of 

flavonoid content were reported at low concentration of NAA and CKs (mT or BA) in 

Huernia hystrix (AMOO and VAN STADEN 2013a). However, combination of IBA 

and BA in Mentha piperita did not enhance secondary metabolite production 

(SANTORO et al. 2013).  

 

3.4. Concluding remarks 
 

In an attempt to improve growth and phytochemical production, factors affecting 

micropropagation of E. autumnalis subspecies autumnalis were examined. In 

addition to the individual effects of gelling agents, explant source and PGRs, these 

factors interacted in different ways producing various responses. The two gelling 
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agents responded differently in trade-offs between shoot and secondary metabolite 

production. There was generally higher shoot production with gelrite while the 

quantified phytochemicals such as flavonoids and phenolics were more enhanced in 

agar-supplemented media. In terms of explant source, shoot proliferation and 

secondary metabolites in regenerants from LDB were better than those from LDL. 

The importance of PGRs in shoot production was clearly-demonstrated, especially in 

the presence of a BA with NAA treatment which had the highest shoot production. 

The levels of secondary metabolites in regenerants were higher with the use of 

either BA or mT compared to their combination with NAA. However, it will be 

valuable to establish how these aforementioned factors contribute to the overall 

quality and quantity of the plant after acclimatization. In addition, experiments 

focusing on approaches that enhance secondary metabolites in gelrite solidified 

media without drastic reduction in number of shoots will be vital for conservation of 

the species. The current study articulated the need to fully examine and better 

understand how in vitro culture conditions affect the outcome of micropropagation 

endeavours. 
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Chapter 4: The role of plant growth regulators on growth, 
phytochemical content and antioxidant activity of Eucomis 

autumnalis subspecies autumnalis 

 

4. 1. Introduction 

 

Micropropagation involves mass production of somaclones which are genetically and 

physiologically similar to the mother plant and are easily acclimatized within a 

relatively short period (KOZAI et al. 1997; DOBRÁNSZKI and TEIXEIRA DA SILVA 

2010). The success of micropropagation endeavours is influenced by several 

intricate physical (e.g. light and temperature) and chemical factors. As a vital 

chemical component, plant growth regulators (PGRs) regulate various physiological 

and developmental processes during micropropagation (GEORGE 1993; GEORGE 

et al. 2008). In an attempt to stimulate or enhance growth in vitro, the media are 

often supplemented with exogenous PGRs, which in turn interact with the 

endogenous PGRs to produce diverse responses (GEORGE et al. 2008). The 

regulatory impact of endogenous PGRs is dependent on several factors including (I) 

the quantity of the available PGRs which is controlled by biosynthesis, degradation 

and conjugation processes, (II) the location of PGR as mediated by 

transportation/movement, and (III) receptivity of the receptors and signal-

transduction tissues (DAVIES 2004; GEORGE et al. 2008). 

 

Even though a number of growth stimulating substances are used in 

micropropagation, cytokinins (CKs) and auxins (acting either individually or in 

combination) are the most important and popular PGRs (GASPAR et al. 1996; 

GEORGE et al. 2008). Evidently, many aspects of cell growth and cell differentiation 

as well as organogenesis in micropropagated plants are regulated by an interaction 
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between exogenously applied CKs and auxins (KOETLE et al. 2010; AMOO and 

VAN STADEN 2013a). Furthermore, interaction of exogenously applied CKs and 

auxins has been implicated in the up-regulation of secondary metabolite content in 

plants (MEYER and VAN STADEN 1995; AMIT et al. 2005; KARALIJA and PARIĆ 

2011).  

 

The occurrence of undesired events such as shoot-tip necrosis, hyperhydricity and 

somaclonal variation is partly associated to the applied PGRs (BAIRU et al. 2009; 

ROJAS-MARTÍNEZ et al. 2010; BAIRU et al. 2011). In addition, some of the PGRs 

especially at high concentrations are known to be toxic to the regenerants. In view of 

the aforementioned limitations of the existing PGRs, there is a continuous effort 

aimed at identifying new compounds with the ability to stimulate better growth and 

alleviate in vitro-induced physiological disorders (TARKOWSKÁ et al. 2003). The 

recent biotechnological advances in the field of phytohormones have significantly 

facilitated the search for new compounds (STRNAD et al. 1997; TARKOWSKI et al. 

2010). Thus, a new group of aromatic CKs commonly referred to as topolins has 

been identified (STRNAD et al. 1997). Topolins have been demonstrated to enhance 

shoot proliferation, maintain histogenic stability, improve rooting efficiency and 

alleviate various physiological disorders in micropropagation (AREMU et al. 2012b). 

Although the positive role of topolins have been reported in a number of 

micropropagated species, their influence in micropropagated E. autumnalis 

subspecies autumnalis remains unknown. Furthermore, the effect of combining 

topolins with auxins in micropropagation remains poorly documented (AREMU et al. 

2012b). It is well-known that the optimal environmental and chemical conditions for 

plant growth and development often vary among species and even genotypes. The 
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benefits and need for further research especially to optimize the PGR concentrations 

for shoot proliferation in Eucomis species have been highlighted (AULT 1995; 

TAYLOR and VAN STADEN 2001b). Therefore, the current Chapter evaluated the 

effect of five CKs individually and in combination with an auxin on growth, 

phytochemical content and antioxidant potential in micropropagated E. autumnalis 

subspecies autumnalis. Furthermore, the carry-over effect of the applied PGRs on 

acclimatization competence in in vitro-derived E. autumnalis subspecies autumnalis 

was evaluated. 

 

4.2. Materials and methods 

 

4.2.1. Plant growth regulators and explant source 

 

Apart from the three PGRs (BA, mT = meta-topolin and NAA = α-naphthalene acetic 

acid) listed in Section 3.2.1, the current experiment included three additional 

topolins. These were mTTHP [meta-topolin tetrahydropyran-2-yl or 6-(3-

hydroxybenzylamino)-9-tetrahydropyran-2-ylpurine]; MemT [meta-methoxytopolin or 

6-(3-methoxybenzylamino)purine] and MemTTHP [meta-methoxy 9- 

tetrahydropyran-2-yl topolin or 2- [6-(3-Methoxybenzylamino)-9-(tetrahydropyran-2-

yl)purine] (see Appendix 2). Details of the preparation of the topolins have been 

described previously (DOLEŽAL et al. 2006; 2007; SZÜCOVÁ et al. 2009). Two of 

the tested CKs (mTTHP and MemTTHP) are recently synthesized topolin derivatives 

and have been tested in only a few plant species prior to the current study (AREMU 

et al. 2012b; PODLEŠÁKOVÁ et al. 2012; AMOO et al. 2014). Aseptically-obtained 

leaves derived from primary bulb regenerants as described in Section 3.2.2 were 
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subcultured on PGR-free Murashige and Skoog (MS) medium and used for all the 

experiments in this Chapter. 

 

4.2.2. In vitro shoot proliferation using different cytokinins 

 

The effect of five CKs (BA, mT, MemT, mTTHP and MemTTHP) on in vitro shoot 

proliferation was evaluated. Each CK was tested at three concentrations (2, 4 and 6 

µM) while the control was CK-free. All the MS (CK-free and CK-treated) media were 

supplemented with myo-inositol (0.1 mg/ml). Based on the results from shoot 

proliferation (agar versus gelrite) experiments in Chapter 3, media were solidified 

with gelrite (3 g/l). Three leaf explants (1 × 1 cm) were inoculated in each culture jar 

(110 x 60 mm, 300 ml volume) containing 30 ml of CK-free or CK-supplemented MS 

medium. Each treatment had 24 replicates and the experiment was done twice. The 

cultures were incubated in 16/8 h light/dark conditions with a photosynthetic photon 

flux (PPF) of 45 µmol m-2 s-1 at 25 ± 2 °C. After 10 weeks in culture, growth 

parameters including shoot number, shoot length, root number and root length were 

measured. 

 

4.2.3. In vitro shoot proliferation using different cytokinins and varying 

concentrations of α-naphthalene acetic acid  

 

Based on the shoot proliferation results from the preceding Section, the effect of 

interaction of CK and NAA was evaluated. Due to the absence of a significant 

increase in shoot proliferation with an increase in CK concentration, 2 µM CK was 

used for the current experiment. Using a completely randomized pattern, the 

experiment was conducted in a 6 × 5 factorial design involving six PGR treatments 
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(CK-free, BA, mT, MemT, mTTHP and MemTTHP) and five concentrations of NAA 

(0, 2.5, 5, 10 and 15 µM). Each treatment had 24 explants and the experiment was 

done twice. Cultures were grown under the same conditions as stated in Section 

4.2.2. Similar growth parameters highlighted in Section 4.2.2 were measured after 

10 weeks. 

 

4.2.4. Acclimatization of in vitro-derived Eucomis autumnalis subspecies 

autumnalis 

 

For comparison purpose, regenerants (n = 15) from PGR-free, CK as well as the 

combination of CK with NAA at 2.5 and 15 µM were acclimatized. These regenerants 

were washed free of gelrite and transferred to 7.5 cm diameter pots containing 

sand:soil:vermiculite (1:1:1, v/v/v) mixture, treated with 1% Benlate® (Du Pont de 

Nemour Int., South Africa). The regenerants had 2 weeks transition in the mist-house 

with a misting duration of 10 s at 15 min (80 - 90% relative humidity), day/night 

temperature of 30/12 ºC and midday PPF of 30 - 90 µmol m-2 s-1 under natural 

photoperiod conditions. For a further 14 weeks, the regenerants were maintained in 

the greenhouse with a day/night temperature of approximately 30/15 ºC, average 

PPF of 450 µmol m-2 s-1 and 30 - 40% relative humidity under natural photoperiod 

conditions. After 4 months, growth parameters including acclimatization survival (%), 

leaf number, leaf length, root number, root length, bulb diameter and fresh weight 

were measured. The leaf area was determined using an L1-3100 area meter (Li-Cor 

Inc., Lincoln, Nebraska, USA). 
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4.2.5. Phytochemical evaluation of in vitro and greenhouse-acclimatized 

Eucomis autumnalis subspecies autumnalis 

 

Plant materials from the 10 week-old-in vitro (Section 4.2.3) and 4 month-old-

acclimatized (Section 4.2.4) E. autumnalis subspecies autumnalis were harvested. 

In vitro regenerants were assayed as whole plants while the greenhouse grown in 

vitro-derived plants was separated into aerial (leaves) and underground parts (bulbs 

and roots). The plant materials were oven-dried at 50 ± 2 ºC for 7 days and milled 

into powder form. Preparation of the extract for phytochemical quantification was 

done as outlined in Section 3.2.4. Iridoid, condensed tannin, flavonoid and phenolic 

content were expressed as mg harpagoside equivalents (HE), cyanidin chloride 

equivalents (CCE), catechin equivalents (CE) and gallic acid equivalents (GAE) per 

g dry weight (DW), respectively. For each experiment, six replicates were evaluated. 

 

4.2.6. Antioxidant evaluation of in vitro and greenhouse-acclimatized Eucomis 

autumnalis subspecies autumnalis 

 

In vitro (whole plant) and greenhouse (aerial and underground) plant materials were 

extracted as described in Section 3.2.4. The dried extracts were re-suspended in 

50% MeOH at 50 mg/ml for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 12.5 

mg/ml for the βeta-carotene/linoleic acid antioxidant model systems. 

4.2.6.1. DPPH free radical scavenging activity 

 

The DPPH free radical scavenging activity (RSA) of the extract was evaluated as 

described by KARIOTI et al. (2004) with slight modifications (SHARMA and BHAT 
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2009). In Eppendorf tubes, 15 µl plant extract were added to 735 µl of MeOH and 

750 µl of DPPH (100 μM) solution. A background solution containing 15 µl of plant 

extract and 1485 µl of MeOH was used in order to remove absorbance due to extract 

colour. Ascorbic acid and MeOH were used as positive and negative controls, 

respectively. The solution was incubated at room temperature for 30 min in the dark 

and absorbance read at 517 nm using a UV-visible spectrophotometer (Varian Cary 

50, Australia). The extracts and ascorbic acid were tested at a final concentration of 

0.5 mg/ml. Extracts were tested in triplicate and experiment was repeated twice. The 

free RSA was calculated using the following equation: 

RSA (%) = [1 (
Aextract Abackground

Acontrol

)]   100 

where Аextract, Abackground, and Acontrol are the absorbance values of the extract, 

background and negative control, respectively. 

 

4.2.6.2. βeta-carotene/linoleic acid antioxidant model system 

 

βeta-carotene/linoleic acid oxidation inhibitory activity was evaluated as described by 

AMAROWICZ et al. (2004) with slight modification (MOYO et al. 2010). In a brown 

Schott bottle, 10 mg of β-carotene was dissolved in 10 ml chloroform and excess 

chloroform was evaporated under vacuum leaving a thin film of β-carotene. Linoleic 

acid (200 µl) and Tween 20 (2 ml) were added to the β-carotene solution and made 

to 500 ml with distilled water. The mixture was shaken to form an orange-coloured 

emulsion. In test tubes, 2.4 ml of the emulsion was added to 100 µl of 50% MeOH 

extract. The absorbance of the reaction mixture was read at 470 nm immediately and 

after 1 h incubation at 50 °C. Butylated hydroxytoluene (BHT) and 50% MeOH were 

used as positive and negative controls, respectively. The extracts and BHT were 
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tested at a final concentration of 0.5 mg/ml. Extracts were tested in triplicate and 

experiment was repeated twice. The rate of β-carotene bleaching was calculated as 

follows:  

Rate of β carotene = [ln (
At = 0

At = t
)]   

1

t
 

where At = 0 absorbance at 0 h, and At = t absorbance at 1 h. The calculated average 

rates are used to evaluate the extract antioxidant activity (ANT) and expressed as β-

carotene bleaching percentage inhibition using the following formula:  

ANT (%) = (
Rcontrol   Rextract

Rcontrol

)   100 

where Rcontrol and Rextract are the average β-carotene bleaching rates for negative 

control and plant extract, respectively. 

 

4.2.7. Data analysis 

 

Experiments were conducted in completely randomized designs. The growth, 

phytochemical contents and antioxidant activity data were subjected to analysis of 

variance (ANOVA) using SPSS software package for Windows (SPSS®, version 

16.0 Chicago, USA). Where there was statistical significance (P ≤ 0.05), the mean 

values were further separated using Duncan’s multiple range test. 
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4.3. Results and discussion 

 

4.3.1. Effect of plant growth regulators on in vitro shoot proliferation and 

greenhouse growth 

 

As shown in Table 4.1, mean shoot proliferation was lowest in CK-free (2 

shoots/explant) and highest (5.4 shoots/explant) in 4 µM MemTTHP treatments. The 

observed shoot proliferation range was approximately 2.5-fold higher than values 

reported for E. autumnalis subspecies autumnalis by TAYLOR and VAN STADEN 

(2001b). The slight increase in shoot number in CK treatments when compared to 

CK-free medium suggest that exogenous application of CK is neither a vital 

requirement for shoot induction nor for proliferation of E. autumnalis subspecies 

autumnalis. Apart from 2 µM mT treatment which is similar to CK-free, the root 

number of all CK treatments (at the three tested concentrations) was significantly 

lower than the CK-free regenerants (Table 4.1). Furthermore, the number of roots 

produced and root length decreased with an increase in the concentration of applied 

CKs, with exception for mTTHP treatment with an increase at 4 µM. Even though it is 

mostly severe with BA-treated regenerants, high CK concentrations (regardless of 

the type) can become inhibitory to root growth in micropropagated plants 

(WERBROUCK et al. 1996; BAIRU et al. 2008; VALERO-ARACAMA et al. 2010; 

AMOO et al. 2011). As suggested by these authors, exogenous CKs especially 

when in high concentrations are converted to the irreversible N7- and N9-glucoside 

conjugates, which are biologically inhibitory and cannot be hydrolysed to the active 

free base form when required for plant growth. In the current study, to an extent, 

rooting parameters (number and length) were higher with mT and mTTHP 

treatments than in BA, MemT and MemTTHP. Unlike BA, the presence of hydroxyl  
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(-OH) group in topolins allows for formation of O-glucosides which are considered to 

be CK storage forms and rapidly converted to active cytokinin bases when required 

(WERBROUCK et al. 1996). The presence of methyl (-CH3) group in the structure of 

MemT and MemTTHP differentiate them from the other tested topolins (mT and 

mTTHP). These structural differences may partly explain the reduced rooting in 

MemT and MemTTHP treatments. 
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Table 4.1: Effect of different cytokinin types and concentrations on growth of Eucomis autumnalis subspecies autumnalis after 10 weeks of culture. 

 
In each column, mean values ± standard error (n = 48) with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s Multiple Range Test 
(DMRT). Conc = concentration; BA = 6-Benzyladenine; mT = meta-Topolin; mTTHP = meta-Topolin tetrahydropyran-2-yl; MemT = meta-Methoxytopolin; 
MemTTHP = meta-Methoxytopolin tetrahydropyran-2-yl. 

 

Cytokinin Conc (µM)

Control 0 2.0 ± 0.18 g 42.7 ± 4.94 a 2.7 ± 0.49 a 31.6 ± 3.83 ab 0.196 ± 0.0317 b

BA 2 4.8 ± 0.48 a-e 9.5 ± 0.80 ef 0.2 ± 0.16 g 0.6 ± 0.46 e 0.119 ± 0.0293 b

4 5.3 ± 0.51 ab 12.0 ± 1.41 c-f 0.1 ± 0.07 g 1.3 ± 0.78 e 0.225 ± 0.0523 b

6 4.6 ± 0.37 a-f 7.1 ± 0.55 f 0.0 ± 0.00 g 0.0 ± 0.00 e 0.089 ± 0.0094 b

m T 2 3.9 ± 0.49 a-g 19.7 ± 2.60 b 2.2 ± 0.33 ab 34.3 ± 4.87 a 0.111 ± 0.0136 b

4 3.9 ± 0.40 a-g 15.3 ± 1.74 b-e 1.2 ± 0.28 c-e 16.2 ± 3.83 cd 0.109 ± 0.0122 b

6 3.4 ± 0.26 e-g 17.4 ± 1.82 bc 1.5 ± 0.23 b-d 17.1 ± 3.17 cd 0.121 ± 0.0325 b

m TTHP 2 3.7 ± 0.53 d-g 15.7 ± 1.57 b-e 1.9 ± 0.24 bc 21.4 ± 3.77 c 0.158 ± 0.0541 b

4 3.2 ± 0.23 e-g 20.9 ± 1.61 b 2.0 ± 0.26 bc 24.4 ± 3.74 bc 0.105 ± 0.0125 b

6 3.0 ± 0.47 f g 14.1 ± 2.44 b-e 1.5 ± 0.25 b-d 16.2 ± 2.90 cd 0.081 ± 0.0112 b

Mem T 2 3.8 ± 0.26 b-f 17.2 ± 2.22 b-d 1.0 ± 0.18 d-f 8.6 ± 2.17 de 0.187 ± 0.0587 b

4 4.4 ± 0.38 a-g 9.9 ± 0.79 ef 0.6 ± 0.16 e-g 5.2 ± 1.47 e 0.097 ± 0.0100 b

6 4.4 ± 0.37 a-g 14.4 ± 2.29 b-e 0.2 ± 0.07 g 1.3 ± 0.71 e 0.206 ± 0.0761 b

Mem TTHP 2 4.0 ± 0.47 a-g 20.0 ± 2.23 b 1.4 ± 0.24 cd 16.5 ± 3.35 cd 0.122 ± 0.0131 b

4 5.4 ± 0.70 a 10.3 ± 1.31 d-f 0.5 ± 0.16 f g 6.4 ± 2.23 e 0.124 ± 0.0432 b

6 5.2 ± 0.87 a-c 17.6 ± 2.54 bc 0.2 ± 0.08 g 2.8 ± 1.32 e 0.457 ± 0.1220 a

Shoot no (#) Shoot length (mm) Root no (#) Root length (mm) Fresh weight (g)
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The absence of any significant effect with an increase in CK concentration on shoot 

proliferation necessitated the need to evaluate the interaction of CKs with auxin. The 

interaction between auxin and CK influences several aspects of cellular 

differentiation and organogenesis in tissue and organ cultures (COENEN and 

LOMAX 1997; GEORGE et al. 2008). Among auxins, NAA is known to easily move 

across the cell membrane resulting into its rapid accumulation in the plant cells 

(NORDSTRÖM et al. 2004). Figure 4.1 depicts the effect of interaction of different 

CKs with five concentrations of NAA on shoot and root proliferation in E. autumnalis 

subspecies autumnalis. When compared to the use of MemT, mTTHP and 

MemTTHP alone, their combination with 5 µM NAA stimulated a higher number of 

shoots. Although AULT (1995) reported an increase in shoot production with the 

interaction of BA and NAA for E. autumnalis and E. zambesiaca, similar interaction 

had no significant effect on the number of shoots produced in E. autumnalis 

subspecies autumnalis. These contrasting effects of auxin and CK interaction on 

members of the genus Eucomis may be due to the uniqueness of each plant species 

and differences in the applied PGR concentrations as well as the endogenous 

hormone levels.  

 

Although auxins are primarily associated with rooting effects (GASPAR et al. 1996), 

treatments with NAA (5 - 15 µM) alone yielded significantly higher numbers of shoots 

than PGR-free treatments (Fig. 4.1A). The ability of NAA (alone) to stimulate shoot 

production in this species indicates the presence of substantial endogenous CK level 

which ensured an optimum balance between auxin and CK. Similarly, CHEESMAN 

et al. (2010) reported a significant stimulatory effect of indole-3-butyric acid (IBA) 

and NAA on bulb production in E. zambasica. 
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Fig. 4.1: Effect of combining different cytokinins with naphthalene acetic acid (NAA) concentrations on (A) shoot number, (B) shoot length, (C) root number 
and (D) root length in Eucomis autumnalis subspecies autumnalis after 10 weeks of culture. In each graph, bars represent mean values ± standard 
error (n = 48) and bars with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s Multiple Range Test (DMRT). BA = 6-
Benzyladenine; mT = meta-Topolin; mTTHP = meta-Topolin tetrahydropyran-2-yl; MemT = meta-Methoxytopolin; MemTTHP = meta-Methoxytopolin 
tetrahydropyran-2-yl; NAA = Naphthalene acetic acid. The cytokinins were tested at 2 µM. 
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While the 5 µM NAA treatment produced the longest shoots, 2 µM MemTTHP 

regenerants were the shortest (Fig. 4.1B). The highest number of roots, 

approximately 17 roots/explant was obtained in the treatment containing 10 µM NAA 

alone or in combination with mT (Fig. 4.1C). From 2.5 to 10 µM NAA, an increase in 

root number was observed with CK-free, mT and mTTHP treatments. Similar 

enhanced rooting following application of topolins have been reported for several 

species (AREMU et al. 2012b) and ascribed to the increases in acropetal transport 

of a CK resulting in less accumulation of non-active CK metabolites that could 

impede rooting (PODLEŠÁKOVÁ et al. 2012). However, increasing concentrations 

of NAA (particularly at 15 µM) had an inhibitory effect on the root length of the 

regenerants (Fig. 4.1D). This may be due to an over-production or accumulation of 

the metabolic products resulting from the high concentration of the exogenously 

applied auxin (GEORGE et al. 2008). 

 

The overall success of micropropagation lies not only in the production of large 

numbers of in vitro plantlets but also on their survival in field conditions (HAZARIKA 

2006; POSPÍŠILOVÁ et al. 2007). Often, tissue culture regenerants may manifest 

some structural and physiological changes which make them vulnerable to 

transplantation shock (KOZAI et al. 1997; AMÂNCIO et al. 1999). Even though 

several intricate factors determine the survival ability of in vitro regenerants, the 

‘carry-over’ or ‘residual’ effect of exogenously applied PGRs has been recognized to 

be fundamental (WERBROUCK et al. 1995; VALERO-ARACAMA et al. 2010; 

AREMU et al. 2012c). Figure 4.2 represents the 4-month-old acclimatized E. 

autumnalis subspecies autumnalis derived from cultures containing 15 µM NAA with 

or without CK. In mT and CK-free treatments, there was an estimated 75 - 100% 
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acclimatization success regardless of the concentration of NAA applied (Fig. 4.3A). 

Photosynthetic competence which is directly related to the morphology of the leaf is 

among the crucial factors which affect ex vitro survival (VAN HUYLENBROECK et 

al. 2000; HAZARIKA 2006; POSPÍŠILOVÁ et al. 2007). In this study, the lowest 

and highest number of leaves was observed in 2.5 µM NAA with mTTHP and 

MemTTHP treatments, respectively (Fig. 4.3B). In terms of the leaf length and area 

(Fig. 4.3C and D), the most significant effect was obtained with the 15 µM NAA (CK-

free) treatment. Addition of NAA especially at 15 µM improved the root growth in 

most cases (Fig. 4.4A and B). 

 

Fig. 4.2: Four-month-old acclimatized Eucomis autumnalis subspecies autumnalis derived from in 
vitro regenerants supplemented with 15 µM naphthalene acetic acid (NAA) and different 
cytokinins at 2 µM. BA = 6-Benzyladenine; mT = meta-Topolin; mTTHP = meta-Topolin 
tetrahydropyran-2-yl; MemT = meta-Methoxytopolin; MemTTHP = meta-Methoxytopolin 
tetrahydropyran-2-yl. Scale bar = 20 mm.        
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Fig. 4.3: Effect of combining different cytokinins with naphthalene acetic acid (NAA) concentrations on (A) frequency of acclimatization survival, (B) leaf 
number, (C) leaf length and (D) leaf area in 4-month-old acclimatized Eucomis autumnalis subspecies autumnalis. In each graph, bars represent 
mean values ± standard error (n = 15) and bars with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s Multiple Range Test 
(DMRT). BA = 6-Benzyladenine; mT = meta-Topolin; mTTHP = meta-Topolin tetrahydropyran-2-yl; MemT = meta-Methoxytopolin; MemTTHP = 
meta-Methoxytopolin tetrahydropyran-2-yl; NAA = Naphthalene acetic acid. All the cytokinins were tested at 2 µM. 
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Fig. 4.4: Effect of combining different cytokinins with naphthalene acetic acid (NAA) concentrations on (A) root number, (B) root length, (C) bulb diameter and 
(D) fresh weight of 4-month-old greenhouse acclimatized Eucomis autumnalis subspecies autumnalis. In each graph, bars represent mean values ± 
standard error (n = 15) and bars with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s Multiple Range Test (DMRT). BA = 6-
Benzyladenine; mT = meta-Topolin; mTTHP = meta-Topolin tetrahydropyran-2-yl; MemT = meta-Methoxytopolin; MemTTHP = meta-Methoxytopolin 
tetrahydropyran-2-yl; NAA = Naphthalene acetic acid. All the cytokinins were tested at 2 µM. 
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Furthermore, a similar stimulatory ‘carry-over’ effect of NAA was demonstrated in 

bulb diameter and fresh weight (Fig. 4.4C and D) whereby plants derived from a 

treatment containing 15 µM NAA alone had the biggest bulb and highest fresh 

weight. The presence and functionality of roots significantly contribute to survival of 

micropropagated plants (HAZARIKA 2006). While PGRs such as CK and ethylene 

are partly associated with rooting, auxins remain the primary signalling PGR (MALÁ 

et al. 2009). It was evident that NAA enhance rooting in vitro (Fig. 4.1), thus allowing 

for easier establishment and acclimatization upon transferal to the greenhouse, 

which inevitably explains the enhanced ex vitro growth of NAA-derived E. autumnalis 

subspecies autumnalis.  

 

Although BA is the most commonly used CK for micropropagation of Eucomis 

species (AULT 1995; McCARTAN and VAN STADEN 1995; TAYLOR and VAN 

STADEN 2001b), there is increasing evidence of its negative (carry-over) effects 

during acclimatization for several micropropagated species (AREMU et al. 2012b). 

At equimolar CK concentration without NAA, BA-derived plants were similar to 

topolins and CK-free treatments in most cases (Fig. 4.3 and 4.4). An exception was 

the better survival (%) and longer leaf in mT, MemTTHP and CK-free plants when 

compared to BA treatment (Fig. 4.3A and C). Thus, the use of topolins had minimal 

acclimatization benefits when compared to BA treatment in this species. The 

observed reduced survival and growth (Fig.4.3 and 4.4) in MemT-treated plants 

when compared to CK-free plants suggests potential inhibitory effects of the applied 

CK on subsequent ex vitro growth and survival.  
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When compared to mT and mTTHP, application of BA with NAA was less effective 

for some of the growth parameters of E. autumnalis subspecies autumnalis. For 

instance, BA with 15 µM NAA treatment had lower survival, smaller leaves (length), 

reduced roots number, smaller bulbs and fresh weight (Fig. 4.3 and 4.4). However, 

not all the topolin interactions with NAA was superior to BA as MemT and MemTTHP 

with 15 µM NAA treatments were mostly identical to the BA-derived plants. Based on 

the current findings, it appears as if exogenous application of NAA is more important 

than CKs (regardless of the types) during micropropagation and subsequent 

acclimatization of E. autumnalis subspecies autumnalis. 

 

4.3.2. Effect of plant growth regulators on phytochemical contents of in vitro 

regenerants and acclimatized Eucomis autumnalis subspecies autumnalis 

plants 

 

The importance of the quality and quantity of phytochemicals in micropropagated 

medicinal plant species has become well-recognised globally (DÖRNENBURG and 

KNORR 1995; SAVIO et al. 2012; SZOPA et al. 2013; SZOPA and EKIERT 2014). 

One of the factors known to influence phytochemical levels in plants is the type and 

concentration of exogenously supplied PGRs (RAMACHANDRA RAO and 

RAVISHANKAR 2002; MATKOWSKI 2008). The effect of applied PGRs on the 

concentrations of secondary metabolites in the micropropagated E. autumnalis 

subspecies autumnalis is presented in Fig. 4.5. Regenerants derived from 5 µM NAA 

with mT had the highest (1.886 mg HE/g DW) iridoid content while all the other 

treatments were generally low (≤ 1 mg HE/g DW) (Fig. 4.5A). Although NAA alone 

had no remarkable influence on iridoid content, its combination (at 2.5 to 10 µM) with 
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MemT significantly increased the level of iridoids in the regenerants. The highest 

condensed tannin concentration (0.435 mg CCE/g DW) was elicited with 2.5 µM 

NAA and mTTHP treatment (Fig. 4.5B). Shoots regenerated from CK (mT, mTTHP) 

alone or in combination with NAA (2.5 and 5 µM) had a significantly increased 

condensed tannin content in comparison to PGR-free medium. These findings 

suggest a possible synergetic interaction of NAA (2.5 to 5 µM) with CKs on 

accumulated iridoids and condensed tannins in regenerated E. autumnalis 

subspecies autumnalis. As demonstrated in the current study, the observed 

variations in phytochemical levels from different CK treatments and interaction with 

auxins have been reported by other researchers (LIU et al. 2007; COSTE et al. 

2011; BASKARAN et al. 2012; AMOO and VAN STADEN 2013a). An explanation 

for these diverse effects may have resulted from inherent differences in the structure 

of the PGRs and how they influence the phytochemical biosynthetic pathways.  

 

Addition of NAA had low or no stimulatory effect on the level of flavonoids and total 

phenolics in the majority of the treatments (Fig. 4.5C and D). In both cases, PGR-

free regenerants accumulated the highest level of flavonoids and total phenolics. 

These reductions in phytochemical (phenolics in this case) in the presence of PGRs 

have been documented in some micropropagated plants. For example, CK-free 

Tectona grandis and Aloe arborescens had a significantly higher concentration of 

phenolics when compared to BA-treated T. grandis (QUIALA et al. 2012) and 

mTTHP- or benzyladenine riboside-treated A. arborescens (AMOO et al. 2014). As 

postulated by the authors, the presence of PGRs (especially at higher concentration) 

may have exerted some inhibitory effect on the phenolic biosynthetic pathways. 
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Fig. 4.5: Effect of different cytokinins with naphthalene acetic acid (NAA) concentrations on (A) 
iridoids, (B) condensed tannins, (C) flavonoids and (D) total phenolics in Eucomis 
autumnalis subspecies autumnalis after 10 weeks of culture. In each graph, bars represent 
mean values ± standard error (n = 6) and bars with different letter(s) are significantly 
different (P ≤ 0.05) based on Duncan’s Multiple Range Test (DMRT). BA = 6-Benzyladenine; 
mT = meta-Topolin; mTTHP = meta-Topolin tetrahydropyran-2-yl; MemT = meta-
Methoxytopolin; MemTTHP = meta-Methoxytopolin tetrahydropyran-2-yl; NAA = 
Naphthalene acetic acid. The cytokinins were tested at 2 µM. 
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Although there is an ever increasing number of studies evaluating the role of in vitro 

culture systems on the production of phytochemicals, information pertaining to the 

possibility of changes in the chemical content/composition of micropropagated plants 

after acclimatization are scarce. Nevertheless, such studies allow for elucidation and 

manipulation of phytochemicals of interest especially at harvest stage (LIU et al. 

2004; NUNES et al. 2009; AREMU et al. 2013). Secondary metabolites in the 

acclimatized E. autumnalis subspecies autumnalis were quantified and compared on 

the basis of aerial (leaves) and underground (bulbs and roots) parts (Fig. 4.6). It is 

noteworthy that the acclimatized plants had several fold more secondary metabolites 

(with exception to the condensed tannins) when compared to similar treatments from 

the in vitro regenerants (Fig. 4.5 and 4.6). In a similar manner, LIU et al. (2004) 

observed a significantly higher flavonoid contents in the tissues of mature 

greenhouse-grown Artemisia judaica than the in vitro regenerants. As hypothesized 

by some researchers (AHMAD et al. 2013; AREMU et al. 2013), age effect may 

have been the main contributing factor to these observations. Higher levels of 

iridoids were observed in the aerial parts compared to the underground parts, with 

the exception of the BA treatment having higher iridoid contents in the underground 

parts (Fig. 4.6A and B). From a conservation perspective, these findings are 

valuable as it implies that the aerial parts can serve as alternative sources of 

(bioactive) phytochemicals mainly sourced from the underground parts (VAN 

STADEN et al. 2008). Although mTTHP treatment had the highest level of 

condensed tannins, increasing concentrations of NAA significantly reduced the 

condensed tannins in the aerial parts (Fig. 4.6C). In the underground parts, the 

highest (0.374 mg CCE/g DW) condensed tannin content was produced in 2.5 µM 

NAA with MemTTHP treatment (Fig. 4.6D). In both plant parts evaluated, the highest 
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level (c.a 6 mg CE/g DW) of flavonoids was observed in 2.5 µM NAA with mTTHP 

treatment (Fig. 4.6E and F). Apart from the 2.5 µM NAA with mT treatment with 

higher total phenolics in the underground parts, the aerial parts generally had higher 

or similar phenolic levels as compared to those quantified in the underground parts 

(Fig. 4.6G and H). As established in the current study, CK and auxin treatments 

have been reported to individually and interactively have a significant carry-over 

effect on phytochemical production in Aloe arborescens (AMOO et al. 2013) and 

Merwilla plumbea (AREMU et al. 2013). 
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Fig. 4.6: Effect of combining different cytokinins with naphthalene acetic acid (NAA) concentrations 
on (A and B) iridoids, (C and D) condensed tannins, (E and F) flavonoids and (G and H) 
total phenolics of 4-month-old greenhouse-acclimatized Eucomis autumnalis subspecies 
autumnalis. In each graph, bar represents mean values ± standard error (n = 6) and bars 
with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s Multiple Range 
Test (DMRT). BA = 6-Benzyladenine; mT = meta-Topolin; mTTHP = meta-Topolin 
tetrahydropyran-2-yl; MemT = meta-Methoxytopolin; MemTTHP = meta-Methoxytopolin 
tetrahydropyran-2-yl; NAA = Naphthalene acetic acid, * = not tested. All the cytokinins were 
tested at 2 µM. 
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4.3.3. Effect of plant growth regulators on antioxidant potential of in vitro 

regenerants and acclimatized Eucomis autumnalis subspecies autumnalis 

plants 

 

The potential of in vitro plant culture systems for the production of an enormous 

variety of antioxidant compounds has been recognized (MATKOWSKI 2008). Most in 

vitro antioxidant tests are easy, affordable and allows for high throughput screening, 

providing a motivation for the evaluation of antioxidant activity in E. autumnalis 

subspecies autumnalis. Two test systems with different antioxidant mechanisms 

were used in order to accommodate for complexities involved in antioxidant 

processes (HUANG et al. 2005). Using extracts from the in vitro regenerants, 

treatment with 5 µM NAA (DPPH assay) and BA (β-carotene assays) treatments 

elicited the highest antioxidant activity (Table 4.2). Generally, the extracts 

demonstrated better antioxidant activity in the β-carotene test system compared to 

the DPPH free-radical assay. For instance, plant extracts from 15 µM NAA as well as 

2.5 or 15 µM NAA with MemTTHP had approximately 4-fold higher antioxidant 

activity in the β-carotene test system compared to the DPPH assay. Conversely, 

three of the treatments (2.5 µM NAA, 5 µM NAA and 5 µM NAA with BA) had better 

antioxidant activity in DPPH compared to the β-carotene assay. Based on the 

mechanisms of antioxidant test systems (AMAROWICZ et al. 2004; HUANG et al. 

2005), the current findings suggest that the antioxidant principles in in vitro 

regenerated E. autumnalis subspecies autumnalis are more favourable towards 

hydrogen atom transfer reactions (β-carotene assay which involves inhibition of lipid 

peroxidation) than single electron transfer reactions (DPPH assay). 
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In the absence of NAA, CK-derived regenerants had a significant higher antioxidant 

activity (β-carotene assay) compared to the PGR-free treatment (Table 4.2). 

Although NAA treatments (especially 2.5 to 10 µM) had similar antioxidant activity as 

the PGR-free, combination of NAA (10 and 15 µM) and topolins (mTTHP and MemT) 

significantly improved the antioxidant activity (β-carotene assay) when compared to 

the use of the CK or NAA alone. As demonstrated in other studies (UCHENDU et al. 

2011; HAZARIKA and CHATURVEDI 2013; AMOO et al. 2014), the current 

findings further emphasized the vital role of exogenously applied PGRs (types and 

concentration) on the resultant antioxidant potential of in vitro regenerants. 
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Table 4.2: Effect of combining different cytokinins with naphthalene acetic acid (NAA) concentrations 
on the antioxidant activity of Eucomis autumnalis subspecies autumnalis after 10 weeks of 
culture.  

 
Mean values ± standard error (n = 6) in the same column with different letter(s) are significantly 
different (P ≤ 0.05) based on Duncan’s multiple range test (DMRT). BA = 6-Benzyladenine; mT = 
meta-Topolin; mTTHP = meta-Topolin tetrahydropyran-2-yl; MemT = meta-Methoxytopolin; 
MemTTHP = meta-Methoxytopolin tetrahydropyran-2-yl; NAA = Naphthalene acetic acid. All extracts 
and positive controls were evaluated at final concentration of 0.5 mg/ml. 

 

Cytokinin (2 µM) NAA Conc (µM)

Cytokinin-free 0 26.4 ± 2.41
d-h

38.6 ± 3.01
mn

2.5 37.5 ± 0.20
b

33.5 ± 2.46
no

5 55.2 ± 4.28
a

45.0 ± 0.73
j-n

10 34.5 ± 1.89
b-d

40.4 ± 3.29
l-n

15 15.2 ± 0.86
ij

52.7 ± 2.19
g-k

BA 0 30.2 ± 2.48
b-f

87.5 ± 2.96
a

2.5 32.3 ± 5.02
b-e

79.9 ± 9.46
a-c

5 26.4 ± 3.66
d-h

18.6 ± 0.93
p

10 27.4 ± 4.17
c-g

73.3 ± 6.06
b-d

15 36.8 ± 3.18
b

61.4 ± 0.04
e-h

m T 0 23.2 ± 3.02
e-i

57.5 ± 0.91
f-i

2.5 37.4 ± 1.80
b

54.9 ± 2.34
f-k

5 20.2 ± 0.97
g-j

26.0 ± 1.59
op

10 23.7 ± 1.88
e-i

56.2 ± 4.70
f-j

15 27.8 ± 2.39
c-g

57.1 ± 1.53
f-j

m TTHP 0 52.1 ± 5.61
a

66.4 ± 6.59
d-f

2.5 24.9 ± 1.90
e-h

43.5 ± 3.81
k-n

5 18.4 ± 1.24
g-j

39.9 ± 0.75
mn

10 49.2 ± 0.68
a

80.5 ± 6.07
a-c

15 50.0 ± 2.26
a

83.3 ± 2.17
ab

Mem T 0 27.0 ± 3.33
d-h

47.0 ± 6.32
i-m

2.5 17.6 ± 0.78
h-j

55.6 ± 2.59
f-j

5 21.7 ± 1.62
f-j

39.6 ± 0.50
mn

10 21.5 ± 2.32
f-j

59.8 ± 0.92
e-h

15 46.7 ± 4.00
a

64.2 ± 1.06
d-g

Mem TTHP 0 31.3 ± 2.81
b-e

55.3 ± 2.49
f-k

2.5 12.8 ± 0.63
j

51.7 ± 4.88
h-l

5 36.3 ± 3.36
bc

49.8 ± 0.49
h-m

10 25.3 ± 2.68
d-h

71.4 ± 2.02
c-e

15 15.2 ± 1.81
i-j

56.0 ± 2.44 f-j

Positive controls Ascorbic acid = 97.6 ± 1.88 Butylated hydroxytoluene = 98.8 ±0.98

Antioxidant activity (%)Treatment

DPPH free radical scavenging Beta -carotene linoleic acid model
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Despite the increase in number of recent studies (GARCÍA-PÉREZ et al. 2012; 

ZAYOVA et al. 2012; AMOO et al. 2013; AREMU et al. 2013), the importance of 

better understanding the general physiology and series of events involved during 

and after micropropagation of valuable medicinal plants cannot be over-emphasized. 

Such information especially the pharmacological activity of acclimatized plant is vital 

from a conservation perspective. Table 4.3 shows the antioxidant activity of extracts 

from aerial and underground parts of the acclimatized E. autumnalis subspecies 

autumnalis. It is noteworthy that the antioxidant activity (mainly DPPH assay) elicited 

in the 4-month-old acclimatized material were higher (in the aerial part) when 

compared to similar treatments from in vitro regenerants. In contrast, GARCÍA-

PÉREZ et al. (2012) reported a 28% increase in antioxidant activity of in vitro 

Poliomintha glabrescens when compared to the wild type and acclimatized plants. It 

was shown that 5 month-old greenhouse-grown Artemisia judaica had a significantly 

higher antioxidant activity when compared to the 3 month-old in vitro regenerants 

(LIU et al. 2004). The type of CK and plant parts investigated significantly influenced 

the level of antioxidant activity in in vitro and acclimatized Merwilla plumbea 

(AREMU et al. 2013). In the current study, extracts from the aerial parts had better 

DPPH free-radical scavenging activity than the underground parts in all the 

treatments. Although PGR carry-over effects had no significant influence (when 

comparing any of the treatments to the control) on DPPH free-radical scavenging 

activity in aerial parts, 15 µM NAA with MemTTHP treatment had about 2.4-fold 

higher antioxidant activity than the control (PGR-free) in underground parts. In the β-

carotene test system, the highest antioxidant activity was observed in 2.5 µM NAA 

and 15 µM NAA with MemT treatments for the aerial and underground parts, 

respectively (Table 4.3). 
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Even though in vitro plants possess the possibility of producing standardized 

phytochemicals (with pharmacological properties), independent from environmental 

factors, the dynamics and accumulation of these compounds may be tilted under ex 

vitro conditions. According to AMOO et al. (2013), the type of PGR had a significant 

effect on antioxidant activity in tissue culture-derived A. arborescens after 2 months 

ex vitro growth. As a quality control measure, when compared to naturally-grown 

Pelargonium sidoides, 1-year-old greenhouse (in vitro-derived regenerants) plants 

exhibited similar antioxidant activity (MOYO et al. 2013). Based on this evidence, it 

therefore, follows that the acclimatized E. autumnalis subspecies autumnalis have 

the potential to exhibit similar pharmacological activities as the wild population. 

 



 

92 

 

Table 4.3: Effect of combining different cytokinins with naphthalene acetic acid (NAA) concentrations on the antioxidant activity in 4-month-old acclimatized 
Eucomis autumnalis subspecies autumnalis.  

 
Mean values ± standard error (n = 6) in the same column with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s multiple range test 
(DMRT). BA = 6-Benzyladenine; mT = meta-Topolin; mTTHP = meta-Topolin tetrahydropyran-2-yl; MemT = meta-Methoxytopolin; MemTTHP = meta-
Methoxytopolin tetrahydropyran-2-yl; NAA = α-Naphthalene acetic acid; nd = not determined. All extracts and positive controls were evaluated at final 
concentration of 0.5 mg/ml 

Cytokinin (2 µM) NAA Conc (µM)

Cytokinin-free 0 95.8 ± 1.46
a

23.1 ± 1.59
hi

83.5 ± 0.49
a-c

65.9 ± 3.20
b-e

2.5 90.6 ± 0.54
ab

22.8 ± 1.64
hi

87.5 ± 1.56
a

66.2 ± 1.23
a-e

15 96.1 ± 1.01
a

21.5 ± 3.20
i

83.7 ± 6.21
a-c

59.8 ± 2.86
d-f

BA 0 90.8 ± 1.49
ab

36.0 ± 2.31
ef

54.5 ± 2.24
e

70.8 ± 3.38
a-d

2.5 95.2 ± 1.37
a

29.4 ± 0.52
f-h

59.7 ± 1.37
e

67.6 ± 2.81
a-e

15 88.8 ± 1.43
ab

44.1 ± 1.88
cd

78.3 ± 2.93
b-d

64.8 ± 1.38
b-e

m T 0 91.5 ± 0.54
ab

27.1 ± 2.59
g-i

86.4 ± 1.17
ab

60.0 ± 2.55
d-f

2.5 97.1 ± 0.88
a

20.9 ± 1.77
i

76.0 ± 3.96
cd

56.8 ± 5.32
ef
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4.4. Concluding remarks 

 

The current findings provide an improved micropropagation protocol for E. 

autumnalis subspecies autumnalis with emphasis on the exogenously applied PGRs. 

Depending on the overall objectives, topolins can serve as suitable alternatives for 

conventional/commonly used BA for the species. Even though CKs are required for 

enhanced shoot proliferation, there was generally no significant effect based on the 

type (BA or topolins) and concentration of applied CKs. However, evidence of the 

vital influence of NAA (either alone or in combination with CKs) on morphological 

growth and development during micropropagation and subsequent ex vitro 

acclimatization was established. The influence of the applied PGRs on secondary 

metabolites and antioxidant activity of E. autumnalis subspecies autumnalis was 

highlighted. In addition, when the in vitro regenerants were acclimatized, there was a 

steady (several-fold higher) accumulation of quantified phytochemicals and 

antioxidant activity in the 4-month-old plants. Nevertheless, a detailed phytochemical 

profiling will be necessary to provide further insights on the identity of specific 

bioactive compounds in E. autumnalis subspecies autumnalis. Overall, the current 

findings highlight the need for an appropriate choice of PGR is as it remains critical 

to enhance the micropropagation of E. autumnalis subspecies autumnalis. 
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Chapter 5: Influence of smoke-water, karrikinolide and 
cytokinin analogues on shoot proliferation, phytochemical 

and antioxidant content of in vitro derived Eucomis 
autumnalis subspecies autumnalis 

 

5. 1. Introduction 

 

Plant productivity remains a research priority for sustaining the increasing 

population. In an attempt to meet the global increasing demand for plants and 

associated products, the vital role of plant growth regulators (PGRs) or 

stimulants/substances for regulating plant growth and development is well-

documented (SANTNER et al. 2009; ZALABÁK et al. 2013). Generally, PGRs 

including the naturally-occurring phytohormones, synthetic compounds and 

analogues modify plant growth and developmental patterns as well as exert a 

profound influence on many physiological processes (GASPAR et al. 1996; JALEEL 

et al. 2009). Recently, the use of non-conventional PGRs including bio-stimulants 

has gained more attention and has demonstrated significant potential in propagation 

of several plant species (MISRA and SRIVASTAVA 1991; GIRIDHAR et al. 2005; 

JALEEL et al. 2009; KULKARNI et al. 2011; AREMU et al. 2012a). As highlighted 

by these aforementioned authors, compounds such as smoke-water (SW), 

karrikinolide (KAR1), triazole and triacontanol significantly improve growth and 

phytochemical levels in a number of plant species. 

 

Humans have utilized smoke and fire (smoke-technology) for various agricultural 

purposes for centuries (KULKARNI et al. 2011). Furthermore, scientific evidence on 

the positive role of SW on several plant species has been widely recognized (VAN 

STADEN et al. 2000). With the isolation of the active compound (FLEMATTI et al. 
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2004; VAN STADEN et al. 2004), the field has generated great interest and 

witnessed an exponential growth in terms of the number of papers appearing in the 

literature. One of the benefits arising from the isolation of the active compound is that 

it has eliminated disparity and ambiguity often associated with SW (LIGHT et al. 

2009). While no two batches of SW contain exactly the same balance or 

concentration of compounds, the use of KAR1 allows for a valid comparison of 

biological activities during experiments. Presently, karrikins (including karrikinolide 

KAR1 and 3-methyl-2H-furo[2,3-c]pyran-2-one previously termed butenolide) are 

referred to as a new family of PGRs (CHIWOCHA et al. 2009; DIXON et al. 2009). 

In addition to the high possibility of the interaction with other PGRs (CHIWOCHA et 

al. 2009), SW and KAR1 exhibited cytokinin (CK) and auxin-like activity in the 

mungbean bioassay (JAIN et al. 2008). Both SW and KAR1 have demonstrated 

potential as useful tools for enhancing plant productivity via their influence on plant 

growth and development but remain highly unexplored in micropropagation protocols 

(LIGHT et al. 2009; KULKARNI et al. 2011). 

 

Another approach to improve plant growth and development is via regulation of the 

metabolic pathways of PGRs. On this basis, it is generally known that CK 

homeostasis and signalling components have emerged as engineered targets for 

manipulating plant growth and development (SANTNER and ESTELLE 2009; 

ZALABÁK et al. 2013; ŠMEHILOVÁ and SPÍCHAL 2014). For instance, modulating 

the CK status with inhibitors of CK perception and/or degradation may influence 

general plant growth and development. Based on this concept, SPÍCHAL et al. 

(2009) identified the first known molecule antagonizing the activity of the CK at the 

receptor level. The compound, 6-(2-hydroxy-3-methylbenzylamino)purine was 
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designated as PI-55 and recently tested in two medicinal plant species 

(GEMROTOVÁ et al. 2013). The inhibition of CK oxidase/dehydrogenase also offers 

a target to modulate CK levels in plants. Among the compounds which have been 

identified as a potent inhibitor of this enzyme is 2-chloro-6-(3-

methoxyphenyl)aminopurine, designated as INCYDE (inhibitor of CK 

oxidase/dehydrogenase) (ZATLOUKAL et al. 2008). Recently, evidence on the 

potential of INCYDE in different aspects of plant growth and development has been 

documented (AREMU et al. 2012d; GEMROTOVÁ et al. 2013; REUSCHE et al. 

2013). 

 

Although the application of these aforementioned compounds are steadily gaining 

interest by researchers, their use in micropropagation protocols especially, for 

valuable and highly utilized plant species (MOYO et al. 2011) have not been fully 

explored. In the current study, the influence of SW, KAR1 and CK analogues (PI-55 

and INCYDE) alone or interactions with the commonly used PGRs during 

micropropagation of Eucomis autumnalis subspecies autumnalis was evaluated. The 

value of cultivated medicinal plants is often a function of the quantity and quality of 

accumulated phytochemicals which inevitably determines its bioactivities (CANTER 

et al. 2005). Thus, phytochemical levels and antioxidant activity in the regenerated 

E. autumnalis subspecies autumnalis were evaluated. 
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5.2. Materials and methods 

 

5.2.1. Sources of chemicals 

 

Smoke-water and KAR1 (Fig. 5.1) were obtained from laboratory stock as described 

by BAXTER et al. (1994) and VAN STADEN et al. (2004), respectively. The 

Laboratory of Growth Regulators, Palacký University & Institute of Experimental 

Botany AS CR (Olomouc, Czech Republic) provided the PI-55 and INCYDE (Fig. 

5.1). The compounds PI-55 and INCYDE were prepared as described by SPÍCHAL 

et al. (2009) and ZATLOUKAL et al. (2008), respectively. Benzyladenine (BA) and 

α-naphthalene acetic acid (NAA) were purchased from Sigma-Aldrich (Steinheim, 

Germany). 
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   KAR1                                                 PI-55                                   INCYDE 

Fig. 5.1: Chemical structures of three compounds tested in the current study. KAR1 = karrikinolide, PI-
55 = 6-(2-hydroxy-3-methylbenzylamino)purine, INCYDE (inhibitor of cytokinin 
dehydrogenase) = 2-chloro-6-(3-methoxyphenyl)aminopurine.  
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5.2.2. Explant source and in vitro shoot proliferation experimental design 

 

Aseptically-obtained leaves derived from primary bulb regenerants as in Section 

3.2.2 and subcultured on PGR-free medium were used for all experiments in the 

current Chapter. Three leaf explants, each measuring approximately 1 × 1 cm were 

inoculated in screw-cap jars (110 x 60 mm, 300 ml volume) each containing 30 ml 

Murashige and Skoog (MS) medium (MURASHIGE and SKOOG 1962). The 

medium was supplemented with varying concentrations of the tested compounds, 

combined with BA, NAA or both (Table 5.1). The choice of BA and NAA 

concentration used was based on a previous study (TAYLOR and VAN STADEN 

2001b). Each treatment had 15 explants and the experiments were conducted twice. 

The cultures were incubated in 16/8 h light/dark conditions with a photosynthetic 

photon flux (PPF) of 45 µmol m-2 s-1 at 25 ± 2 °C for 10 weeks. Thereafter, 

parameters including the shoot (number and length) and root (number and length) 

growth as well as plant fresh weight were measured.  

 

Table 5.1: Summary of the different treatments used for in vitro shoot proliferation experiment. 

Plant growth 
regulators 

Tested compounds 

SW (dilution) KAR1 (M) PI-55 (µM) INCYDE (µM) 

PGR-free 

0
 

1
:5

0
0

 

1
:1

0
0
0

 

1
:1

5
0
0

 

0
 

1
0

-7
 

1
0

-8
 

1
0

-9
 

0
 

0
.0

1
 

0
.1

 

1
0

 

0
 

0
.0

1
 

0
.1

 

1
0

 4 µM BA  

5 µM NAA  

4 µM BA + 5 µM NAA  

BA = Benzyladenine, NAA = Naphthalene acetic acid, SW = Smoke-water, KAR1 = Karrikinolide, PI-
55 = 6-(2-hydroxy-3-methylbenzylamino)purine, INCYDE = 2-chloro-6-(3-methoxyphenyl)aminopurine 
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5.2.3. Phytochemical and antioxidant evaluation of in vitro regenerants  

 

In vitro regenerants from the PGR-free and different treatments (SW, KAR1, PI-55 

and INCYDE) harvested after 10 weeks of culture as described above were 

evaluated for phytochemical content. The plant materials were oven-dried at 50 ± 2 

ºC for 7 days and milled into powder form. Ground samples were extracted in 50% 

methanol (MeOH) at 0.1 g per 10 ml in an ultrasonic sonicator (Julabo GmbH, West 

Germany) containing ice-cold water for 20 min. The extracts were centrifuged and 

the resultant filtrate used for phytochemical quantification as outlined in Section 

3.2.4. Iridoid, condensed tannin, flavonoid and phenolic content was expressed as 

mg harpagoside equivalents (HE), cyanidin chloride equivalents (CCE), catechin 

equivalents (CE) and gallic acid equivalents (GAE) per g dry weight (DW), 

respectively. Each sample had six replicates. 

 

For antioxidant activity, ground plant materials from the different treatments were 

extracted as described in Section 3.2.4. The dried extracts were re-suspended in 

50% MeOH and evaluated at a final concentration of 0.5 mg/ml in the 2,2-diphenyl-1-

picrylhydrazyl (DPPH) and β-carotene acid model system bioassays. Ascorbic acid 

and butylated hydroxytoluene were used as positive controls in DPPH and β-

carotene assays respectively, while 50% MeOH was included as the solvent control. 

Details of DPPH and β-carotene antioxidant assays are described in Section 4.2.6.1 

and 4.2.6.2, respectively. Each sample had six replicates. 
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5.2.4. Data analysis 

 

Experiments were conducted in completely randomized designs. The growth, 

phytochemical contents and antioxidant activity data were subjected to analysis of 

variance (ANOVA) using SPSS software package for Windows (SPSS®, version 

16.0 Chicago, USA). Where there was statistical significance (P ≤ 0.05), the mean 

values were further separated using the Duncan’s Multiple Range Test (DMRT). 

 

5.3. Results and discussion 

 

5.3.1. Effect of SW, KAR1 and plant growth regulators on in vitro shoot and 

root production 

 

The ability of SW and its derived compounds to interact with various hormones and 

to even mimic some hormonal activities has been recognized (CHIWOCHA et al. 

2009). The effect of the different dilutions of SW and KAR1 concentrations with or 

without PGRs on shoot and root proliferation is presented in Fig. 5.2. The highest 

shoot number (c.a 8 shoots/explant) was observed in the treatment containing NAA 

alone. However, addition of either SW or KAR1 with NAA resulted in a reduction of 

shoot number in E. autumnalis subspecies autumnalis (Fig. 5.2A and B). Despite 

the closely interwoven relationship in function among phytohormones, evidence has 

shown that some developmental processes are unique to some type of 

phytohormones (DEPUYDT and HARDTKE 2011). As shown in the current study, 

the decrease in shoot proliferation with the application of SW or KAR1 has been 

reported during the micropropagation of ‘Williams’ bananas (AREMU et al. 2012a). 

MA et al. (2006) also observed that KAR1 had no significant stimulatory effect during 
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the earlier induction phase of somatic embryogenesis in Baloskion tetraphyllum. 

Nonetheless, positive effects of SW and KAR1 in other aspects of micropropagation 

have been observed. For instance, SW and KAR1 enhanced maturation and root 

formation of somatic embryos of some plant species (SENARATNA et al. 1999; MA 

et al. 2006; GHAZANFARIA et al. 2012) and improved callus biomass in the 

soyabean callus bioassay (JAIN et al. 2008). In PGR-free regenerants, SW (1:1000) 

treatment significantly increased shoot length while KAR1 (regardless of the 

concentration) had no positive effect when compared to the PGR-free without SW 

and KAR1 (Fig. 5.2C and D). Smoke-water and KAR1 had an inhibitory effect on BA 

alone and BA with NAA regenerants on the number and length of the roots (Fig. 

5.2E - H). However, with the PGR-free regenerants, there was more roots in KAR1 

(10-8 M) treatment than in the control (Fig. 5.2F). Similarly, the root length in 

regenerants derived from SW (1:1500) treatment was significantly longer than the 

control (Fig. 5.2G). 

 

It is known that various growth and developmental processes can be modulated by 

phytohormones occasionally in synergistic or antagonistic manners, an indication of 

a cross talk between different pathways (DEPUYDT and HARDTKE 2011). Yet, it is 

not clear whether phytohormones target common or different transcriptome modules. 

Notwithstanding, both additive (e.g. Fig. 5.2D) and antagonistic (e.g. Fig. 5.2A and 

B) effects resulting from the interaction of the PGR with SW or KAR1 were evident in 

the current study. Based on the findings using mungbean and soyabean callus 

bioassays, JAIN et al. (2008) suggested an interaction between KAR1 and 

exogenous CK (kinetin) and auxin (IBA) resulting in enhanced  physiological 

responses in both bioassays. In a similar manner, NELSON et al. (2009) discovered 
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the ability of KAR1 to enhance germination of Arabidopsis seed mediated by a partial 

up-regulation of gibberellic acid biosynthesis. 

 

 

Fig. 5.2: Effect of smoke-water, karrikinolide and plant growth regulators (PGR) on (A and B) shoot 
number, (C and D) shoot length, (E and F) root number and (G and H) root length in 
micropropagated Eucomis autumnalis subspecies autumnalis after 10 weeks of culture. 
Bars represent mean value ± standard error (n = 30) and bars with different letter(s) are 
significantly different (P ≤ 0.05) based on Duncan’s Multiple Range Test (DMRT). BA = 

Benzyladenine; NAA = Naphthalene acetic acid; NS = Not significant , P ≤ 0.05 (*), P ≤ 0.01 
(**), P ≤ 0.001 (***). 

 

 

0

2

4

6

8

10

12
(A)

a a

e
f e
f

f e
f

c
-f

d
-f d

-f

b
-e

a

b
-d b

d
-f

b
-f

b
c

SW**; PGR***; SWPGR***

Smoke-water

S
h

o
o

t 
n

u
m

b
e

r 
(#

)

0

2

4

6

8

10

12
(B) PGR-free

BA
NAA
BA+NAA

a
ba

g

e
-g

e
-g

f-
gd

-g c
-g

c
-eb

-d

d
-g

a
-c

b
-d

b
-g

c
-e

c
-f

KAR1*; PGR***; KAR 1PGR**

Karrikinolide

S
h

o
o

t 
n

u
m

b
e

r 
(#

)

0

10

20

30

40

50

60

70

80 (C)

a

d

b
c

b
-d

e e

e

e

a
b

e

e

e e

b
c

c
d

a
SW

ns
; PGR***; SWPGR***

S
h

o
o

t 
le

n
g

th
 (

m
m

)

0

10

20

30

40

50

60

70

80 (D)

a

d

d c
d b
-d

e

e e e

e

e

e

e

b
c

a
-c a

b

KAR1
ns

; PGR***; KAR 1PGR
ns

S
h

o
o

t 
le

n
g

h
t 

(m
m

)

0.0

2.5

5.0

7.5

10.0

12.5

15.0
(E)

a

c c

c

c
d

d
e

d
e d
e

ee

e

e

d
e

b

a

b

SW**; PGR***; SWPGR***

R
o

o
t 

n
u

m
b

e
r 

(#
)

0.0

2.5

5.0

7.5

10.0

12.5

15.0
(F)

e

a

e

e

d
e

e

c
d

b
c

e

e

a
-c

ee e

d
e

a
b

KAR1
ns

; PGR***; KAR 1PGR*

R
o

o
t 

n
u

m
b

e
r 

(#
)

0 1:500 1:1000 1:1500
0

10

20

30

40

50
(G)

a

b
c a

b

a
b

e

e

e

e

e e

e e

b

c
d

d

b
c

SW
ns

; PGR***; SWPGR*

Smoke-water dilution

R
o

o
t 

le
n

g
th

 (
m

m
)

0 10-7 10-8 10-9
0

10

20

30

40

50
(H)

a

a
b a a

d

d

d

d

a
b

c

b
c b

c

d

d

d d

KAR1
ns

; PGR***; KAR1PGR
ns

Karrikinolide concentration (M)

R
o

o
t 

le
n

g
th

 (
m

m
)



 

103 

 

5.3.2. Effect of PI-55 and plant growth regulators on in vitro shoot and root 

production 

 

The concentration of PI-55, type of PGR and their interaction had a significant effect 

on the number of regenerated E. autumnalis subspecies autumnalis shoots (Fig. 

5.3A). Mean shoot proliferation was lowest (c.a 2 shoots/explant) in PGR-free and 

highest (c.a 8 shoots/explant) in 0.01 µM PI-55 with BA and NAA treatment. In the 

absence of PGRs, application of PI-55 (at all concentrations) had no significant 

stimulatory effect on the number of shoots. Structurally, PI-55 is closely related to 

BA, but substitutions at meta (CH3) and ortho (OH) positions of the aromatic side 

chain strongly diminished its CK activity which is responsible for its antagonistic 

property (SPÍCHAL et al. 2009). Considering that PI-55 is an inhibitor of CK activity, 

the non-stimulatory effect on shoot proliferation implies that a substantial level of 

(endogenous) CK is essential for shoot induction during micropropagation of E. 

autumnalis subspecies autumnalis. Similarly, PI-55 with the different PGR treatments 

produced either equal or lower numbers of shoots when compared to the treatments 

lacking PI-55. The longest shoots were observed in 0.1 µM PI-55 with NAA treatment 

while regenerants from BA with or without varying concentration of PI-55 had the 

shortest shoots (Fig. 5.3B). On the other hand, root production in E. autumnalis 

subspecies autumnalis was significantly affected by PI-55 concentration and PGR 

type as well as their interaction (Fig. 5.3C). At similar PI-55 concentration (with 

exception of 0.01 and 10 µM), the number of roots in the regenerants from medium 

supplemented with NAA were significantly higher than those from PGR-free, BA and 

BA with NAA. Root length was enhanced with varying concentrations (0.01 and 0.1 

10 µM) of PI-55 in PGR-free regenerants (Fig. 5.3D). As an indication of reduced CK 

perceptions, positive effects on rooting parameters have been demonstrated by 
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other researchers. For instance, CK-deficient Arabidopsis plants initiated more 

lateral root primordia, which elongated more rapidly than those of wild-type plants 

(WERNER et al. 2003). SPÍCHAL et al. (2009) also showed that PI-55 accelerated 

the germination of Arabidopsis seeds and promoted root growth and formation of 

lateral roots. Using two important medicinal plants grown under cadmium stress, PI-

55 treatment effectively stimulated root development in the seedlings (GEMROTOVÁ 

et al. 2013). Together with other newly discovered CK antagonists such as (2,5-

dihydroxybenzylamino)purine (LRG-1) (NISLER et al. 2010) and 6-

(benzyloxymethyl)adenosine (BOMA) (KRIVOSHEEV et al. 2012), PI-55 may serve 

as a valuable chemical for better understanding of plant response during 

micropropagation. In addition, these compounds may be helpful for the manipulation 

and regulation of micropropagation protocols as well as elucidation of the 

physiological basis for the in vitro-induced physiological disorders. A classic example 

is the potential application for possible induction and enhancement of in vitro rooting 

for recalcitrant species as reported for Eucalyptus globulus (FOGAÇA and FETT-

NETO 2005), Uniola paniculata (VALERO-ARACAMA et al. 2010) and Barleria 

argillicola (AMOO and VAN STADEN 2013b). It has long been established that the 

nature and type of the exogenous CK may be responsible for root inhibition in some 

species (WERBROUCK et al. 1995). Thus, the importance of rooting in 

micropropagated plants cannot be over-emphasized as it remains fundamental to ex 

vitro establishment of the regenerants. 



 

105 

 

 

Fig. 5.3: Effect of PI-55 and plant growth regulators (PGR) on (A) shoot number, (B) shoot length, (C) 
root number and (D) root length in micropropagated Eucomis autumnalis subspecies 
autumnalis after 10 weeks of culture. Bars represent mean value ± standard error (n = 30) 
and bars with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s 
Multiple Range Test (DMRT). BA = Benzyladenine; NAA = Naphthalene acetic acid; NS = 
Not significant , P ≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***). 

 

5.3.3. Effect of INCYDE and plant growth regulators on in vitro shoot and root 

production 

 

The ability to alter CK metabolic pathways has been postulated to portray interesting 

potential and application in plant biotechnology (ŠMEHILOVÁ and SPÍCHAL 2014). 
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As alluded by these authors, INCYDE is one of such compounds which allows for the 

manipulating of endogenous CK levels in plants. The potential of INCYDE stems 

from its ability to inhibit CK oxidase/dehydrogenase, an enzyme that is responsible 

for most of the CK catabolism and inactivation (mainly isoprenoid type) in a single 

enzymatic step (SCHMÜLLING et al. 2003). Even though the different 

concentrations of INCYDE had no remarkable effect, the type of applied PGR and 

their interaction with INCYDE had a significant influence on shoot proliferation in E. 

autumnalis subspecies autumnalis (Fig. 5.4A). The highest number of shoots (9 

shoot/explants) was observed in a treatment containing 0.1 µM INCYDE with BA and 

NAA. In addition, a significant increase in number of shoots was observed in 

treatment containing 0.1 µM INCYDE and BA when compared to the treatment with 

BA alone. This observed increase in shoot number suggests the possibility of 

achieving additive effects at optimum concentrations of INCYDE. While their 

interaction had no effect, the concentration of INCYDE or type of PGR individually 

had a significant influence on the shoot length of the in vitro regenerants (Fig. 5.4B). 

At 10 µM INCYDE, the shoot length in all the regenerants (except BA alone) was 

reduced when compared to those obtained from INCYDE-free treatments. In vitro 

regenerants from 0.01 µM INCYDE with NAA produced the highest number of roots 

(Fig. 5.4C). Although there is no previous evidence on interaction between INCYDE 

and auxins, the current findings suggest a possible additive interaction (albeit at low 

concentrations of INCYDE and NAA) which stimulated increased root production in 

E. autumnalis subspecies autumnalis. In terms of root length, PGR-free treatment 

with 0.01 µM INCYDE produced the longest roots (Fig. 5.4D). In treatments 

containing NAA alone with INCYDE, the regenerants had reduced root length with an 

increase in INCYDE concentration. Given the substantial evidence on the role of 
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INCYDE on endogenous CK levels (AREMU et al. 2012d; REUSCHE et al. 2013), it 

is conceivable to attribute the observed reduction in rooting at higher INCYDE 

concentrations to elevated endogenous CK pools. However, it will be necessary to 

quantify these CKs in E. autumnalis subspecies autumnalis in order to reach a 

logical conclusion on how the influence is being exerted. 

 

Fig. 5.4: Effect of INCYDE and plant growth regulators (PGR) on (A) shoot number, (B) shoot length, 
(C) root number and (D) root length in micropropagated Eucomis autumnalis subspecies 
autumnalis after 10 weeks of culture. Bars represent mean value ± standard error (n = 30) 
and bars with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s 
Multiple Range Test (DMRT). BA = Benzyladenine; NAA = Naphthalene acetic acid; NS = 
Not significant , P ≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***). 
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5.3.4. Effect of SW, KAR1 and plant growth regulators on phytochemical 

content of in vitro regenerants 

 

The effects of SW, KAR1 and PGR types on phytochemical contents of in vitro E. 

autumnalis subspecies autumnalis is depicted in Fig. 5.5. Among plant secondary 

metabolites, the iridoid biosynthesis pathway is more closely related to that of 

alkaloids and are known to be susceptible to a number of regulatory mechanisms 

(VERPOORTE et al. 2002). Although the use of either SW or KAR1 alone had no 

significant stimulatory effect on levels of iridoid in E. autumnalis subspecies 

autumnalis, combination of SW (1:1000) or KAR1 (10-7 and 10-8 M) with NAA 

treatment stimulated the highest iridoids in the regenerants (Fig. 5.5A and B). A 

stimulatory effect of SW (with a variety of CKs) on iridoid levels was observed in Aloe 

arborescens (AMOO et al. 2013). The authors suggested a potential synergistic or 

additive interaction of the CKs with SW on iridoid biosynthesis and accumulation in 

plants. While the additive effect was pronounced between auxin (NAA) and SW in 

the present study, it was evident that SW (1:500) with CK (BA) caused a decline in 

the level of iridoids in the regenerants (Fig. 5.5A). The observed differences in 

response suggest that biosynthesis and production of iridoids in E. autumnalis 

subspecies autumnalis were differentially affected depending on the type of PGR.  

 

When compared to treatments lacking SW, BA or BA with NAA in combination with 

SW (1:500 and 1:1500) induced a significantly higher level of condensed tannins in 

the regenerated E. autumnalis subspecies autumnalis SW (Fig. 5.5C). Conversely, 

regenerants from BA with various dilutions of SW had remarkable lower condensed 

tannins than the treatment with BA alone. About 8-fold higher condensed tannins 

was accumulated in 10-7 M KAR1 (BA with NAA treatment) when compared to the 
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control without KAR1 (Fig. 5.5D). A similar stimulatory effect was observed with 

PGR-free regenerants cultured on media supplemented with 10-7 and 10-9 M KAR1. 

Unlike BA alone, KAR1 at all concentrations with BA caused a significant reduction in 

concentration of condensed tannin in the regenerants. Among the diverse secondary 

metabolites, the therapeutic value of condensed tannins cannot be over-emphasized 

(XIE and DIXON 2005). The phenomenal increase in condensed tannins may 

inevitably enhance the biological activity of the regenerants. 

 

The highest flavonoid content was observed in PGR-free regenerants containing SW 

(1:1000) (Fig. 5.5E). Among the tested PGRs, BA or NAA treatments accumulated 

higher levels of flavonoids in the presence of SW (1:500 and 1:1500) than the SW-

free regenerants. Relative to the PGR-free E. autumnalis subspecies autumnalis 

regenerants, an approximately 3-fold increase in flavonoid content was recorded with 

10-7 M KAR1 (either alone or when combined with BA and NAA) (Fig. 5.5F). Among 

the PGR-free treatments, the addition of SW (all dilutions) and KAR1 (all 

concentrations) significantly improved the phenolic content in E. autumnalis 

subspecies autumnalis compared to treatments lacking SW or KAR1 (Fig. 5.5G and 

H). Eucomis autumnalis subspecies autumnalis obtained from media containing SW 

with BA (1:500) or NAA (1:1500) had higher phenolic content than regenerants from 

BA or NAA alone (Fig. 5.5G). Likewise, there was a higher phenolic content with 

KAR1 at 10-7 M (BA and NAA) or 10-8 M (NAA) when compared to regenerants with 

similar PGR without KAR1 (Fig. 5.5H). Recently, there has been an increase in the 

number of studies demonstrating the stimulatory role of SW and KAR1 on 

phytochemical levels in plants both under in vitro (AREMU et al. 2012a; 2014) and 

ex vitro (ZHOU et al. 2011; KULKARNI et al. 2013) conditions. Based on molecular 
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evidence, the stimulatory effects of SW and KAR1 have been attributed to the 

modulation of the phenylpropanoid pathway and up-regulation of flavonoid-related 

genes (SOÓS et al. 2010). 

 

 

Fig. 5.5: Effect of smoke-water, karrikinolide and plant growth regulators (PGR) on (A and B) Iridoids, 
(C and D) condensed tannins, (E and F) flavonoids and (G and H) phenolics in 
micropropagated Eucomis autumnalis subspecies autumnalis after 10 weeks of culture. 
Bars represent mean value ± standard error (n = 6) and bars with different letter(s) are 
significantly different (P ≤ 0.05) based on Duncan’s Multiple Range Test (DMRT). BA = 

Benzyladenine; NAA = Naphthalene acetic acid; NS = Not significant , P ≤ 0.05 (*), P ≤ 0.01 
(**), P ≤ 0.001 (***). 
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5.3.5. Effect of PI-55 and plant growth regulators on phytochemical content of 

in vitro regenerants 

 

Based on the vital role of CKs on the growth cycle, the presence of CK analogues 

could influence the production of essential plant secondary metabolites 

(PLANCHAIS et al. 2000). Overall, PI-55 concentrations, PGRs and their interaction 

significantly influenced the quantified phytochemical content in E. autumnalis 

subspecies autumnalis (Fig. 5.6). In PGR-free medium, regenerants with 0.1 and 10 

µM PI-55 had significantly higher iridoid content than the lower (0 and 0.01 µM) 

concentrations (Fig 5.6A). In contrast, BA (with 10 µM PI-55) and NAA (with 0.01 

and 0.1 µM PI-55) treatments had lower concentrations of iridoids than the similar 

PGR treatments lacking PI-55. With respect to the PGR-free treatments, the 2-fold 

increase in iridoid content with regenerants from 0.1 µM PI-55 media when 

compared to media without PI-55 may offer a potential useful elicitor for iridoids in 

micropropagated species. As shown in Fig 5.6B, PGR-treated (NAA and BA + NAA) 

E. autumnalis subspecies autumnalis with 10 µM PI-55 and without PI-55 treatments 

had the highest condensed tannin content. Among the PGR-free regenerants, 0.1 

µM PI-55 treatments yielded higher flavonoid and phenolic contents than other 

concentration of PI-55 (Fig 5.6C and D). Furthermore, a significant increase in 

flavonoid and phenolic content with an increase in PI-55 concentration was observed 

in BA-derived regenerants. While the influence of PGRs such as NAA and BA on 

secondary metabolite production in micropropagated plants is common 

(RAMACHANDRA RAO and RAVISHANKAR 2002; KARUPPUSAMY 2009), the 

current findings provide an indication on the significant influence of PI-55 alone and 

its interaction with PGRs on phytochemical levels. This hypothesis is based on 

evidence that exogenous BA induced the expression of phenylalanine ammonia-
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lyase (key enzyme in cinnamate biosynthesis and accumulation of anthocyanins) in 

Arabidopsis thalina (DEIKMAN and HAMMER 1995). 

 

 

Fig. 5.6: Effect of PI-55 and plant growth regulators (PGR) on (A) Iridoids, (B) condensed tannins, (C) 
flavonoids and (D) phenolics in micropropagated Eucomis autumnalis subspecies 
autumnalis after 10 weeks of culture. Bars represent mean value ± standard error (n = 6) 
and bars with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s 
Multiple Range Test (DMRT). BA = Benzyladenine; NAA = Naphthalene acetic acid; NS = 
Not significant , P ≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***). 
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5.3.6. Effect of INCYDE and plant growth regulators on phytochemical content 

of in vitro regenerants 

 

Apart from iridoid content which was not affected by INCYDE concentration and 

PGR types, the condensed tannins, flavonoids and phenolics were significantly 

influenced (Fig. 5.7). In addition, the interaction of INCYDE and PGRs influence the 

levels of all the four types of phytochemicals quantified in E. autumnalis subspecies 

autumnalis. While iridoid content was reduced by 4-fold in the presence of 0.01 µM 

INCYDE with NAA, the same concentration of INCYDE significantly increased iridoid 

content in the PGR-free regenerants when compared to media without INCYDE and 

PGR-free (Fig. 5.7A). Application of higher levels of INCYDE (0.1 and 10 µM) 

reduced the level of condensed tannins in PGR-treated (BA regenerants) compared 

to 0.01 µM INCYDE treatment (Fig. 5.7B). On the other hand, PGR-free treatment 

with 0.01 µM INCYDE had more condensed tannins than similar treatments with or 

without INCYDE (Fig. 5.7B). The interaction of BA or mT with a high concentration 

(100 µM) of INCYDE significantly reduced the level of condensed tannins in 

micropropagated Musa species (AREMU et al. 2012d). It is possible that higher 

concentrations of INCYDE exert inhibitory effects on the production of condensed 

tannins in micropropagated plants. Regenerants from PGR-free with 0.1 µM INCYDE 

treatment had the most abundant (c.a 2.5 mg CE/g DW) flavonoid content (Fig. 

5.7C). When PGRs were added to the media, both BA and NAA treatments with 0.01 

µM INCYDE were superior to other concentrations of INCYDE with BA or NAA. 

Among the INCYDE concentrations tested (0 - 10 µM), the highest levels of 

phenolics were recorded at 0.01 µM INCYDE with or without PGRs (Fig 5.7D). While 

the therapeutic values of these quantified phytochemicals are well-recognized 
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(VERPOORTE et al. 2002; MATKOWSKI 2008), new approaches to increase their 

concentration in plants are also desirable. On this basis, the enhanced flavonoid and 

phenolic content in E. autumnalis subspecies autumnalis mediated with the use of 

0.01 µM INCYDE is noteworthy. Even though the underlying mechanism of INCYDE 

regulating plant secondary metabolic biosynthesis pathway is yet to be elucidated, 

the influence may be related to its modulatory effect on CK homeostasis 

(ŠMEHILOVÁ and SPÍCHAL 2014). Even though the molecular basis is not fully 

understood, it is widely acknowledged that CKs are often directly or indirectly 

involved in plant response to different types of stress (ZALABÁK et al. 2013). Based 

on this hypothesis, stabilization of CK levels due to treatment with INCYDE confers 

enhanced resistance to the pathogen Verticillium longisporum in Arabidopsis species 

(REUSCHE et al. 2013). Although there is no doubt that the accumulation of 

secondary metabolites in plants is part of the defense mechanism against 

pathogenic attack (DIXON and PAIVA 1995), the relationship of CK as well as 

INCYDE in the secondary metabolite biosynthesis pathway need further studies in 

order to decipher the complex interactions. 
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Fig. 5.7: Effect of INCYDE and plant growth regulators (PGR) on (A) Iridoids, (B) condensed tannins, 
(C) flavonoids and (D) phenolics in micropropagated Eucomis autumnalis subspecies 
autumnalis after 10 weeks of culture. Bars represent mean value ± standard error (n = 6) 
and bars with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s 
Multiple Range Test (DMRT). BA = Benzyladenine; NAA = Naphthalene acetic acid; NS = 
Not significant , P ≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***). 
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Table 5.2 shows the effects of SW, KAR1 and PGR types on antioxidant activity of in 
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1:1500) with NAA, as well as BA and NAA (1:1000) gave significantly higher 

antioxidant (β-carotene assay) activity than either their respective control (SW-free) 

treatments. Eucomis autumnalis subspecies autumnalis derived from PGR-free 

media with KAR1 at 10-9 and 10-7 M had the highest antioxidant activity in the DPPH 

and β-carotene assays, respectively. Despite the numerous in vitro approaches that 

have been used to enhance the biosynthesis and accumulation of antioxidant 

compounds in plant cells, the use of SW and KAR1 have rarely been documented. 

Evidence of the vital role of PGRs on antioxidant potential in in vitro regenerants has 

been extensively reviewed (RAMACHANDRA RAO and RAVISHANKAR 2002; 

MATKOWSKI 2008). Furthermore, AREMU et al. (2013) reported that some specific 

phenolic acids (e.g. caffeic acid, protocatechuic acid, p-coumaric acid) known for 

their antioxidant potential were several fold higher in Merwilla plumbea regenerated 

from CK supplemented media compared to the control. The current findings provide 

a clear indication that SW and KAR1 have the ability to improve antioxidant activity in 

medicinal plants. Particularly, the use of SW affords a cheaper alternative to 

enhancing the antioxidant activity (and possibly other pharmacological activities) in 

medicinal species.  
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Table 5.2: Effect of smoke-water, karrikinolide and plant growth regulators on the antioxidant activity of Eucomis autumnalis subspecies autumnalis after 10 
weeks of culture.  

 

Mean values ± standard error (n = 6) in the same column with different letter(s) are significantly different (P ≤ 0.05) based on Duncan’s Multiple Range Test 
(DMRT). DPPH = 2,2-diphenyl-1-picrylhydrazyl; BA = 6-Benzyladenine; NAA = Naphthalene acetic acid; SW = smoke-water; KAR1 = karrikinolide; PGR = 
plant growth regulator. All extracts and positive controls were evaluated at final concentration of 0.5 mg/ml. Positive controls were ascorbic acid for DPPH 
(97.6 ± 1.88%) and butylated hydroxytoluene for beta-carotene (98.8 ± 0.98%) assays. 
 

Antioxidant activity (%) of KAR1 regenerants

PGR SW dilution PGR KAR1 conc. (M)

PGR-free 0 26.3 ± 2.48 d-g 41.9 ± 3.84 g PGR-free 0 26.3 ± 2.48 fg 41.9 ± 3.84 f

SW 1:500 34.0 ± 3.91 b-d 58.3 ± 1.68 ef 10-7
46.9 ± 4.36 b 97.5 ± 1.02 a

SW 1:1000 54.8 ± 0.62 a 44.5 ± 5.34 g 10-8
37.9 ± 1.05 de 35.0 ± 4.28 f

SW 1:1500 50.5 ± 7.00 a 43.9 ± 1.85 g 10-9
55.1 ± 1.14 a 92.9 ± 3.60 ab

BA 0 19.6 ± 1.07 fg 93.9 ± 2.55 ab BA 0 19.6 ± 1.07 hi 93.9 ± 2.55 ab

SW 1:500 18.2 ± 1.37 g 60.4 ± 4.19 ef 10-7
28.2 ± 4.68 f 93.3 ± 4.79 ab

SW 1:1000 27.8 ± 1.61 d-f 43.8 ± 1.01 g 10-8
23.2 ± 0.20 f-h 82.8 ± 4.90 bc

SW 1:1500 27.0 ± 1.64 d-f 48.1 ± 3.81 fg 10-9
44.5 ± 2.58 b-d 91.9 ± 0.81 ab

NAA 0 36.2 ± 2.41 bc 67.9 ± 6.35 de NAA 0 36.2 ± 2.41 e 67.9 ± 6.35 de

SW 1:500 57.0 ± 1.04 a 76.9 ± 6.33 cd 10-7
45.8 ± 1.91 bc 62.3 ± 1.14 e

SW 1:1000 41.6 ± 0.18 b 85.9 ± 3.17 a-c 10-8
23.3 ± 0.36 f-h 41.5 ± 0.45 f

SW 1:1500 52.0 ± 3.17 a 83.8 ± 4.73 bc 10-9
39.5 ± 0.41 c-e 63.9 ± 4.18 de

BA+NAA 0 22.7 ± 1.79 e-g 61.4 ± 5.21 e BA+NAA 0 22.7 ± 1.79 f-h 61.4 ± 5.21 e

SW 1:500 32.4 ± 2.35 cd 45.2 ± 3.92 g 10-7
36.1 ± 2.13 e 87.6 ± 0.89 a-c

SW 1:1000 28.5 ± 1.53 c-e 96.9 ± 1.96 a 10-8
17.6 ± 0.88 hi 82.0 ± 4.22 bc

SW 1:1500 23.0 ± 0.76 e-g 67.3 ± 5.35 de 10-9
13.5 ± 1.05 i 75.7 ± 6.45 cd

KAR1

PGR

KAR1 × PGRSW × PGR P  ˂ 0.001 P  ˂ 0.001 P  ˂ 0.001 P  ˂ 0.001

SW P  ˂ 0.001 P  = 0.029 P  ˂ 0.001 P  ˂ 0.001

PGR P  ˂ 0.001 P  ˂ 0.001 P  ˂ 0.001 P  ˂ 0.001

Treatment Antioxidant activity (%) of SW regenerants

DPPH Beta -carotene DPPH Beta -carotene 
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5.3.8. Effect of PI-55 and plant growth regulators on antioxidant activity of in vitro 

regenerants  

 

The antioxidant activity of the regenerants from the PI-55 and PGR treatments is shown 

in Table 5.3. Although PGR-free treatment with 0.1 µM PI-55 had the highest 

antioxidant activity in both test systems used, the β-carotene antioxidant activity was 

higher than DPPH free radical scavenging power. Similarly, β-carotene antioxidant 

activity was higher than the DPPH scavenging powers for all the treatments. As 

reviewed by HUANG et al. (2005), the well-established differences in the mechanism of 

action in the two assays possibly account for the variations in antioxidant activity. In the 

DPPH assay, BA with 10 µM PI-55 treatment increased the antioxidant activity in the 

regenerants while lower concentrations of PI-55 had no positive effect. Conversely, 

NAA with 0.01 µM PI-55 had better antioxidant activity than the higher concentrations of 

PI-55. Regenerants cultured on 10 µM PI-55 with or without PGR had a lower β-

carotene antioxidant activity when compared to other concentrations of PI-55. 

Presumably, the application of PI-55 at 10 µM was inhibitory to production of antioxidant 

compounds in E. autumnalis subspecies autumnalis for this test only. Although 

flavonoids and phenolics are often associated with antioxidant activity (GÜLÇIN 2012), 

there was direct relationship between the phytochemical content and antioxidant activity 

in the micropropagated E. autumnalis subspecies autumnalis. Such absence of or poor 

direct relationship between phenolics and antioxidant capacity in different plant species 

has been reported by other researchers (WOJDYŁO et al. 2007; SABEENA FARVIN 

and JACOBSEN 2013; AMOO et al. 2014) and often attributed to the quality of the 
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phytochemicals detected. Furthermore, antioxidant activity of phenolics depends on the 

structure and substitution pattern of hydroxyl groups (GÜLÇIN 2012). 

Table 5.3: Effect of PI-55 and plant growth regulators on the antioxidant activity of  
Eucomis autumnalis subspecies autumnalis after 10 weeks of culture.  

 
Mean values ± standard error (n = 6) in the same column with different letter(s) are significantly different 
(P ≤ 0.05) based on Duncan’s multiple range test (DMRT). BA = 6-Benzyladenine; NAA = Naphthalene 
acetic acid; PI-55 = 6-(2-hydroxy-3-methylbenzylamino)purine; PGR = plant growth regulator. All extracts 
and positive controls were evaluated at final concentration of 0.5 mg/ml. Positive controls were ascorbic 
acid for DPPH (97.6 ± 1.88%) and butylated hydroxytoluene for beta-carotene (98.8 ± 0.98%) assays. 

 

5.3.9. Effect of INCYDE and plant growth regulators on antioxidant activity of in 

vitro regenerants  

 

The effect of INCYDE concentrations and PGR types on antioxidant activity of in vitro 

regenerants is presented in Table 5.4. The highest antioxidant activity was recorded in 

PGR-free treatment supplemented with 0.01 and 10 µM INCYDE in DPPH and β-

PGR PI-55 conc. (µM)

Control 0 26.3 ± 2.48 cd 68.5 ± 2.10 c-e

0.01 23.8 ± 1.48 c-e 83.8 ± 4.73 ab

0.1 43.4 ± 3.10 a 93.6 ± 0.56 a

10 36.2 ± 0.72 b 64.7 ± 2.90 de

BA 0 15.7 ± 1.70 f 84.4 ± 6.69 ab

0.01 15.5 ± 0.76 f 92.6 ± 3.58 a

0.1 14.6 ± 0.97 f 88.6 ± 0.29 a

10 23.5 ± 0.35 c-e 82.0 ± 5.29 a-c

NAA 0 24.8 ± 1.23 c-e 57.4 ± 6.63 d-f

0.01 27.7 ± 3.22 cd 71.6 ± 0.86 b-d

0.1 18.4 ± 0.47 ef 81.6 ± 7.10 a-c

10 20.4 ± 0.38 d-f 44.9 ± 3.89 f

BA+NAA 0 27.9 ± 2.44 c 56.7 ± 1.69 ef

0.01 16.0 ± 2.97 f 80.3 ± 7.65 a-c

0.1 35.7 ± 4.80 b 59.2 ± 1.29 de

10 26.8 ± 2.79 cd 44.4 ± 5.66 f

P  ˂ 0.001 P  ˂ 0.001

Treatment Antioxidant activity (%)

DPPH Beta -carotene 

PI-55

PGR

PI-55 × PGR

P  ˂ 0.001

P  ˂ 0.001

P  ˂ 0.001

P  ˂ 0.001
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carotene antioxidant assays, respectively. Considering that INCYDE is a relatively new 

compound, there are limited studies demonstrating its effect on antioxidant activity in 

plants. While there is no direct evidence on the influence of INCYDE in 

micropropagated plants, the ability of INCYDE to significantly improve the antioxidant 

activity in field-grown lettuce was reported by GRUZ and SPICHAL (2011). In addition 

to the fact that INCYDE influences the antioxidant activity in the E. autumnalis 

subspecies autumnalis regenerants, there was a remarkable additive effect resulting 

from INCYDE and BA treatment than BA alone in the DPPH assay (Table 5.4). On the 

other hand, reduced antioxidant activity was observed when INCYDE was combined 

with NAA as well as BA and NAA treatments at all concentrations of INCYDE when 

compared to these PGR treatments lacking INCYDE. Studies demonstrating the vital 

role of exogenously supplied PGR on resultant bioactivities in in vitro-derived 

regenerants are well documented (UCHENDU et al. 2011; AMOO et al. 2012; 2014; 

BASKARAN et al. 2014). In the PGR-free treatment, regenerants had a lower 

antioxidant activity with increasing INCYDE concentrations in the DPPH test system 

while an increased antioxidant activity was observed in β-carotene antioxidant assay. 

Thus, INCYDE has the potential to influence the antioxidant activity of E. autumnalis 

subspecies autumnalis plants regardless of the antioxidant test systems. Given that 

antioxidants are known to exert antimicrobial, anti-inflammatory, anti-aging and health-

promoting effects on the human body (BECKER et al. 2014), it is possible that INCYDE 

treatment may also influence other biological activities of E. autumnalis subspecies 

autumnalis.  
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Table 5.4: Effect of INCYDE and plant growth regulators on the antioxidant activity of Eucomis 
autumnalis subspecies autumnalis after 10 weeks of culture.  

 
Mean values ± standard error (n = 6) in the same column with different letter(s) are significantly different 
(P ≤ 0.05) based on Duncan’s Multiple Range Test (DMRT). BA = 6-Benzyladenine; NAA = α-
Naphthalene acetic acid; INCYDE = 2-chloro-6-(3-methoxyphenyl)aminopurine; PGR = plant growth 
regulator. All extracts and positive controls were evaluated at final concentration of 0.5 mg/ml. Positive 
controls were ascorbic acid for DPPH (97.6 ± 1.88%) and butylated hydroxytoluene for beta-carotene 

(98.8 ± 0.98%) assays. 

 

5.4. Concluding remarks 
 

The current findings explored the potential of SW, KAR1 and two CK analogues (PI-55 

and INCYDE) on growth, phytochemical and antioxidant activity in micropropagated E. 

autumnalis subspecies autumnalis. While these compounds had no significant 

stimulatory effect on shoot proliferation, they influenced various parameters (root 

number and length) at varying concentrations when applied alone and combined  with 

applied PGRs. The current evidence indicates the array of potential processes 

PGR INCYDE conc. (µM)

Control 0 26.3 ± 2.48 b-d 68.5 ± 2.10 de

0.01 43.9 ± 2.18 a 68.4 ± 7.86 de

0.1 30.0 ± 0.46 b 88.9 ± 2.89 a

10 17.4 ± 2.34 f-h 94.9 ± 4.08 a

BA 0 15.7 ± 1.70 gh 84.4 ± 6.69 a-c

0.01 31.3 ± 0.69 b 85.7 ± 0.98 ab

0.1 20.4 ± 2.04 e-g 67.2 ± 7.52 d-f

10 22.3 ± 2.22 d-f 84.5 ± 1.41 a-c

NAA 0 24.8 ± 1.23 c-e 57.4 ± 6.63 d-f

0.01 16.6 ± 0.61 gh 70.8 ± 3.72 c-e

0.1 17.5 ± 0.50 f-h 52.8 ± 1.30 f

10 14.7 ± 1.22 h 61.9 ± 4.13 d-f

BA+NAA 0 27.9 ± 2.44 bc 56.7 ± 1.69 ef

0.01 23.1 ± 0.14 c-e 71.5 ± 2.41 b-e

0.1 15.7 ± 1.03 gh 38.1 ± 3.96 g

10 14.7 ± 0.79 h 72.3 ± 6.26 b-d

PGR

INCYDE × PGR

P < 0.001

P < 0.001

P < 0.001

P < 0.001

P < 0.001

P < 0.001

DPPH Beta -carotene 

Antioxidant activity (%)Treatment

INCYDE
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influenced by SW and KAR1 in micropropagation protocols. Thus, more studies such as 

quantification of endogenous PGR and identification of specific phytochemicals 

responsible for the antioxidant activity in this species will provide better insights on the 

mechanism of action for both CK analogues. Overall, these findings show the potential 

practical use of the tested compounds in the quest to conserve and exploit valuable 

medicinal species. 
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Chapter 6: General conclusions 

 

Eucomis autumnalis subspecies autumnalis is a widely used species in African 

Traditional Medicine (ATM) and scientific evidence to support some of the traditional 

claims have been documented. In view of the increasing strains on the wild populations, 

an existing micropropagation protocol was optimized by examining the role of physical 

(gelling agent) and chemical factors (e.g PGR = plant growth regulator) that influence 

the growth, phytochemical content and antioxidant activity of E. autumnalis subspecies 

autumnalis. Regenerants from gelrite solidified-medium had a higher shoot proliferation 

than agar solidified-medium. The highest shoot proliferation was approximately 9 shoots 

per explant. Regardless of the source of initial/primary explant source (LDL = leaf 

explant derived from primary leaf regenerants and LDB = leaf explant derived from 

primary bulb regenerants), shoot proliferation from PGR-free media were similar. 

 

The low shoot proliferation observed with some of the tested cytokinins (CKs) was 

significantly improved with the addition of α-naphthalene acetic acid (NAA). In addition, 

evidence of the critical influence of NAA (either alone or in combination with tested CKs) 

on morphological growth and development during micropropagation and subsequent ex 

vitro acclimatization was established. Regenerated plants treated with NAA, mT (meta-

topolin) and mTTHP [meta-topolin tetrahydropyran-2-yl or 6-(3-hydroxybenzylamino)-9-

tetrahydropyran-2-ylpurine] showed improved ex vitro growth due to the carry-over 

effect attained from in vitro micropropagation. Even though rooting was enhanced in 

some cases, the application of smoke-water (SW), karrikinolide (KAR1), PI-55, and 

INCYDE had minimal positive effects on shoot proliferation. 
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The significant influence of the applied plant growth regulators (PGRs) on 

phytochemical levels and antioxidant activity of E. autumnalis subspecies autumnalis 

was noticeable in the current study. There was no distinct direct relationship between 

the type of applied PGR and resultant phytochemicals quantified or antioxidant activity 

of the regenerants. Perhaps, the phytochemicals of interest will determine the choice of 

PGRs. When the in vitro regenerants were acclimatized, there was a gradual (several-

fold higher) accumulation of quantified phytochemicals and antioxidant activity in the 4-

month-old plants. As an indication of their regulatory role on secondary metabolite 

biosynthesis pathways, SW, KAR1, PI-55, and INCYDE demonstrated a strong influence 

on phytochemical content such as flavonoids and phenolics in micropropagated E. 

autumnalis subspecies autumnalis. Inevitably, the antixodant activity of the regenerants 

was enhanced with the use of the PGRs, CK analogues, SW and KAR1. On the basis of 

differences in the antioxidant reaction mechanism, the current findings show that 

antioxidant principle(s) in E. autumnalis subspecies autumnalis is/are more potent in β-

carotene (hydrogen atom transer mechanism) than in the DPPH free radical scavenging 

assay (electron transfer mechanism). Based on the preliminarly nature of the 

phytochemical assays used in the current study, a detailed phytochemical profiling will 

be necessary to provide further insights on the identity of specific bioactive compounds 

in E. autumnalis subspecies autumnalis. 

 

Apart from unravelling the potential application of SW, KAR1, PI-55 and INCYDE in 

micropropagation protocols, the current findings emphasized the need for an 

appropriate choice of PGR as it remains critical to enhance the micropropagation of E. 
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autumnalis subspecies autumnalis. Considering the effectiveness of NAA for shoot 

proliferation in the micropropagation of this species, an endogenous phytohormone 

profile is pertinent as this will possibly provide a basis for the exceptional (shoot 

proliferation) response observed with the use of an auxin. Furthermore, it was clearly 

established that the effect of the PGRs are long-lasting as they not only influence the ex 

vitro growth but affect the phytochemical levels and antioxidant activity. Taken together, 

an improved protocol which incorporated the importance of the levels of phytochemical 

and antioxidant activity in E. autumnalis subspecies autumnalis was developed. As a 

conservation strategy, it is possible to adapt the current findings to other valuable 

medicinal species within the Eucomis genus with minimal effort.  
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APPENDIX 1: Protocol for Murashige and Skoog basal medium 
 

Component of stock solution 

Stock Salt component Mass/500 ml 

stock (g) 

Mass/1000 ml Volume stock (ml/l) 

final medium 

1 NH3NO3 82.5 165.0 10 

2 KNO3 47.5 95.0 20 

3 CaCl2.2H2O 22.0 44.0 10 

4 MgSO4.7H2O 18.5 37.0 10 

5 NaFeEDTA 2.0 4.0 10 

6 KH2PO4 8.5 17.0 10 

7a 

H3BO4 0.31 0.62 10 

ZnSO4.7H2O 0.430 0.860 10 

Kl 0.0415 0.083 10 

7b MnSO4.4H2O 1.115 2.230 10 

8 

NaMoO4.2H2O 0.0125 0.025 10 

CuSO4.5H2O 0.00125 0.0025 10 

CoCl2.6H2O 0.00125 0.0025 10 

9 

Thiamin HCl (B1/Aneurine) 0.005 0.01 10 

Niacine (Nicotinic acid) 0.025 0.05 10 

Pyridoxine HCl (B6) 0.025 0.05 10 

Glycine 0.1 0.2 10 

Other additives 
Sugar: 30 g/l 

Gelrite: 3 g/l 
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APPENDIX 2: Chemical structures of auxin and cytokinins used in the current study 
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