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ABSTRACT 

Thermocouples are probably the most widely used temperature sensing devices in industrial 

applications. This is due to their relatively high accuracy. Thermocouples sense temperature using 

thermoelectric voltages arising due to temperature differences between the hot and cold junctions of the 

thermocouple. The generated thermoelectric voltage is nonlinear in form. Linear approximations in the 

conversion of thermoelectric voltages into temperature readings compromise the accuracy of the derived 

temperature values: requiring further processing of the thermocouple voltage for improved temperature 

measurements. Moreover, undetected variations in the cold junction temperature could further worsen 

the accuracy of the temperature sensor. The current study researched the enhancement of the accuracy 

of thermocouple temperature measurement subjected to both random variations in the reference junction 

temperature and nonlinearities, with a validation of the design process using T, R, E, and J, 

thermocouples. To this end, the ITS-90 thermocouple tables based on a fixed 0°C reference junction 

temperature were not adequate for use in the study, so the thermocouple polynomial equations for the 

T, R, E, and J thermocouples were simulated in MATLAB, with randomly generated cold-junction 

temperature values, to produce augmented ITS-90 tables for the four thermocouples studied. Results 

show that the augmented thermocouple tables accurately compared with the ITS-90 tables when the 

reference junction temperature was set to 0°C. Data samples were generated from each of the augmented 

thermocouple tables for neural network studies. Half of the data samples for each of the thermocouples 

was used to train ‘table-lookup’ Multilayer Perceptron (MLP) neural networks in MATLAB. Each 

neural network used the cold-junction temperatures and thermoelectric voltages as inputs, while the 

corresponding hot-junction temperatures were used as the target outputs. The validation process for the 

augmented ITS-90 thermocouple tables showed that the E, T, R, and J thermocouples could all reproduce 

the hot junction temperature within 0.01% of the results found on the ITS-90 tables. The performance 

results for the neural networks showed that the E-type thermocouple neural network has a worst-case 

error within 0.2% in reproducing the hot junction temperature. The J-type thermocouple neural network 

showed a worst-case error within 0.1%, while the T and R-type thermocouple neural network produced 

worst error case within 0.04% of the results generated by the augmented ITS-90 tables. For the practical 

validation of the development presented in this thesis, the structure of each of the trained MLP neural 

networks was coded as a subroutine within an Arduino Uno microprocessor. The hot junction of the 

thermocouple was placed in a TTM-004 controller or oven. The cold junction of the thermocouple was 

located in the ambient of the used laboratory and monitored by an LM 35 temperature sensor connected 

to one of the inputs of the microcontroller. The experimental results showed that temperature of the 

TTM-004 controller or oven was evaluated to within 2%, 4% and 3% by the signal conditioning unit 

using T-type, J-type and E-type thermocouple respectively.  
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1. INTRODUCTION 

A number of processes in nature involve energy flow or energy exchange, whether the process is a 

biological process in living organisms, a chemical process, power generation, or a mechanical process. 

Subsequently, energy changes are accompanied by temperature changes due to that temperature is the 

most measured quantity in this era. However, this quantity has a significant influence on industrial 

applications or processes. The introduction chapter outlines the motivation for the current study, the 

significance of the study, the aim and objectives of the study, as well as the methodology. 

1.1 Motivation 

A thermocouple is defined as a temperature-sensing device with a number of industrial applications. A 

thermocouple is made by joining the ends of two dissimilar metals (conductors) to form two junctions, 

known as the cold (reference) junction and the hot (measuring) junction, respectively [8]. The 

commonly used thermocouples are listed in Table 1-1 below, with the composition of the metals used. 

 

Table 1-1 Typical Thermocouple types [22] 

Type Positive Material Negative Material Accuracy Range °C 

R Pt, 13%Rh Pt 0.25% or 1.5°C -50 to 1768 

T Cu Cu, 45%Ni 0.75% or 1.0°C -270 to 400 

E Ni, 10%Cr Cu, 45%Ni 0.5% or 1.7°C -270 to 1000 

J Fe Cu, 45%Ni 0.75% or 2.2°C -210 to 1200 

B Pt, 30%Rh Pt, 6%Rh 0.5%, >800°C 50 to 1820 

P Platinel II Platinel II 1.0% 0 to 1395 

K Ni, 10%Cr Ni,2%Al,2%Mn 1%Si 0.75% or 2.2°C -270 to 1372 

S Pt, 10%Rh Pt 0.25% or 1.5°C -50 to 1768 
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Once the two junctions (cold and hot) are at different temperatures, current flows through the circuit 

resulting in electromotive force (EMF) produced in the circuit. The resulting EMF is a nonlinear 

function of the temperature difference between the hot junction and cold junction temperatures. The 

EMF can be represented in the form [20]; 

 

𝑉 = 𝑎0 + 𝑎1(𝑇𝐻 − 𝑇𝑟𝑒𝑓) + 𝑎2(𝑇𝐻
2 − 𝑇𝑟𝑒𝑓

2 ) + ⋯ + 𝑎𝑛(𝑇𝐻
𝑛 − 𝑇𝑟𝑒𝑓

𝑛 )                      (1.1) 

Where 𝑎0, 𝑎1, … , 𝑎𝑛;  are thermocouple constant of type T, E, J, B, R or S, etc. 

𝑇𝐻; the hot/measuring junction temperature and 

𝑇𝑟𝑒𝑓; the reference/cold junction temperature. 

Thermocouple devices generate a small dc voltage in millivolts and microvolts [10]. For purposes of 

sensitivity enhancement and accuracy improvement, this voltage must be amplified to a level beyond 

that produced by white noise so that the output of the thermocouple could be processed by 

microcontrollers or microprocessors with fidelity. Thermocouples have limitations arising from 

unwanted variations in the cold junction temperature [13], which can affect both the accuracy and 

sensitivity of the thermocouple. Thermocouple output voltages are also affected by hysteresis and 

parameter drift with time.  

1.2 Significance of the study and scope 

Earlier industrial solutions to the problem of variable cold- junction temperature involved keeping the 

reference junction temperature in ice, regulated at 0°C. The other critical limitation is the nonlinearity 

of thermocouple output voltage with respect to temperature [2-3]; there has been research on both 

software and hardware thermocouple linearization methods, including the use of neural networks [12-

20]. Thermocouples have issues of drift voltage and pressure-induced errors. This study will only focus 

on cold junction compensation, dc offset, and nonlinearity. In this research work, the proposed solution 

will be to design a system that will solve all three problems, namely, dc bias, cold junction 

compensation, and nonlinearity, to improve the accuracy of thermocouples. Solving the three problems 

will significantly improve thermocouple temperature measurement as these three problems contribute 

greatly to measurement accuracy. Moreover, the cost of using thermocouples in industrial applications 

will reduce as there will be no need for reference junction temperature monitoring systems. 
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1.3 Study approach, aim & objective of the study  

Aim and Study Approach 

The main aim of this study is to approach the enhancement of the accuracy of thermocouple temperature 

measurement in a manner that is independent of the particular type of thermocouple used. In this 

approach, a temperature-to-voltage sensor located in proximity to the thermocouple reference junction 

will be used to monitor variations in the temperature of the reference junction. This sensor shall generate 

proportional voltage outputs. An instrumentation amplifier with a negligible dc bias/offset will be used 

to amplify the microvolts or millivolts output voltage of the thermocouple. A microcontroller will be 

used to read off the output voltages from both the thermocouple and the sensor monitoring reference 

junction. The voltage reading from the sensor will be converted to temperature (°C), and the voltage 

from the thermocouple will be divided by the gain of the instrumentation amplifier to normalize the 

reading. Both the converted sensor and thermocouple readings will be used as input to the neural 

network. The standard ITS-90 tables for thermocouple types show thermoelectric voltage in mV at 

various measured/hot junction temperature(s) with reference junction at 0°C. Thereof, the thermocouple 

polynomial equation; 

𝑉 = 𝑎0 + 𝑎1(𝑇𝐻 − 𝑇𝑟𝑒𝑓) + 𝑎2(𝑇𝐻
2 − 𝑇𝑟𝑒𝑓

2 ) + ⋯ + 𝑎𝑛(𝑇𝐻
𝑛 − 𝑇𝑟𝑒𝑓

𝑛 )                      (1.2) 

 

 Will be used to generate augmented ITS-90 tables with variations in the reference junction temperature 

[21]. Thereafter, one neural network will be designed, trained, and tested for each thermocouple type 

to approximate the measured temperature of a thermocouple given sensor (°C) and thermocouple 

voltage (mV) readings. The neural network will be trained and tested using data from the augmented 

ITS-90 table(s) as training data (inputs and target). The process will be repeated for the other 

thermocouple types sampled for this study, namely: T, R, E, and J thermocouples.  

 

Objectives 

The aim of this study will be achieved by pursuing the objectives as outlined by the following points: 

1. Generate new ITS-90 tables referred to as augmented ITS-90 tables in this study for each 

thermocouple type with random variations in reference junction temperature using the 

thermocouple polynomial equation in MATLAB: 

𝑉 = 𝑎0 + 𝑎1(𝑇𝐻 − 𝑇𝑟𝑒𝑓) + 𝑎2(𝑇𝐻
2 − 𝑇𝑟𝑒𝑓

2 ) + ⋯ + 𝑎𝑛(𝑇𝐻
𝑛 − 𝑇𝑟𝑒𝑓

𝑛 )                          (1.3) 
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2. Design and test an instrumentation amplifier with negligible dc offset to amplify the mV 

reading of thermocouples. 

3. Design and train Neural Network; to explore a neural network for function approximation to 

linearize thermocouple characteristics and compensate the variation in reference junction 

temperature. The augmented ITS-90 tables are used as inputs (thermoelectric voltage and 

reference junction temperature) and targets (measured temperature) during the training.  

4. Test Neural Network for generalization with data not used for training from the augmented 

ITS-90 tables. Suppose targeted performance is not reached, redesign, train, and test the neural 

network until performance target is met. 

5. Repeat steps 2 – 4 for T, R, E, and J type thermocouples. 

6. Write a microcontroller program; for reading off both the output voltage of the thermocouple 

and temperature sensor. Convert the output voltage of the sensor into temperature (°C) and 

divide the voltage of the thermocouple by the gain of the instrumentation amplifier. Select 

thermocouple type connected; as a result, call the neural network for that specific thermocouple 

to compute the measured temperature and display it on LCD/PC. 

1.4 Thesis outline 

This thesis is divided into six chapters as follows; Chapter 1 of the thesis gives a general introduction 

of the principle and characteristics of thermocouple and cold junction compensation methods. 

Moreover, it introduces the topic of the research and outlines the objectives, methodology, and scope 

of the research. Chapter 2 is a literature review of thermocouple cold junction compensation methods 

used in the past and currently for measuring temperature using thermocouples and present literature on 

artificial neural networks for cold junction compensation and function approximation. Chapter 3 gives 

the research theory employed in this study and all the instruments used in this research. Chapter 4 is 

devoted to the presentation of methodology employed in the proposed thermocouple signal conditioning 

using neural networks. Chapter 5 presents experimental results and analysis of this study with a focus 

on the ANN performance in function approximation/linearization of thermocouple characteristics and 

the overall performance of the signal condition system. Chapter 6 concludes the thesis by giving the 

conclusions based on the performance of the designed ANN and the overall performance of the 

embedded controller for thermocouple signal conditioning, and the evaluation of the proposed method 

on accuracy enhancement in temperature measurement using thermocouples. 
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1.5 Conclusion 

In conclusion, thermocouples have challenges with reference junction temperature variations, dc offset, 

and nonlinearity that give rise to measurement errors. The following chapters of this study will address 

the aforementioned challenge by designing and implementing a technique for reference junction 

compensation, dc offset correction, and thermocouple linearization using neural networks, using the 

literature review presented in chapter 2 of this thesis. 
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2. LITERATURE REVIEW 

2.1 Introduction 

A thermocouple is defined as a thermoelectric device that is used for measuring temperature, consisting 

of two wires of different metals connected at two points and a voltage being developed between the two 

junctions in proportion to the temperature difference [1]. This chapter seeks to present a review of the 

literature undertaken to clarify the research problem and the methodology used in solving the 

thermocouple conditioning problem. This chapter will discuss thermocouple drift errors, the 

nonlinearity of thermocouple(s), as well as variation in thermocouple junction temperature.  

Thermocouples are used in many temperature-sensing applications, including the control of deposition 

process for thin films [1], measurement of a plant, and water potential [2] – [4]. Furthermore, 

thermocouples are used for monitoring temperature in gas turbines for jet engines [5] and measuring 

the temperature of power electronics components [7] – [9]. There are favorable factors that attribute to 

the extensive use of thermocouple temperature sensors in the industry, that includes the vast temperature 

range of operation of thermocouples, their fast response time, durability or resistance to corrosion, small 

dimensions, relatively cheap pricing, high accuracy, and stability [10] – [12]. 

A thermocouple consists of two dissimilar metals joined together by two junctions. The principle of 

operation of thermocouples is based on the thermoelectric effects between these two dissimilar metals 

[13]. Due to this effect, a thermoelectric EMF or voltage is generated at the connected ends (junctions) 

of the two metals when their junctions are kept at different temperatures. This thermoelectric is known 

to be related to the difference in temperature between the two junctions in a generally nonlinear manner 

[14]. The sensitivity and calibration of a thermocouple are determined by the thermo-elements 

(thermoelectric junction). The thermoelectric effect leads to a thermocouple voltage of the form: 

       

𝑉 = 𝑎0 + 𝑎1(𝑇𝐻 − 𝑇𝑟𝑒𝑓) + 𝑎2(𝑇𝐻
2  − 𝑇𝑟𝑒𝑓

2 ) + ⋯ + 𝑎𝑛(𝑇𝐻
𝑛 − 𝑇𝑟𝑒𝑓

𝑛 )                             (2.1) 

Where:𝑎0, 𝑎1, … , 𝑎𝑛; are the thermocouple coefficients of type K, J, B, R, or S. 

𝑇𝐻 is hot junction temperature and 

𝑇𝑟𝑒𝑓 the reference/cold junction temperature (junction temperatures measured in degree 

centigrade) 

Typical thermocouple nonlinearities can be seen from the characteristics shown in Figure 2-1. The 

nonlinear relationship between the thermoelectric voltage and the junction temperatures leads to three 

challenges in the utilization of thermocouple devices as temperature sensors. These challenges are 
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nonlinearity [14] – [18], low drift voltages [19, 21], variation of the output voltage with changes in the 

reference junction temperature [20] – [26], and pressure dependence of the EMF of thermocouples [37] 

– [39].  

 

Figure 2-1 Type K Thermocouple drift with time [14] 

  

2.2 Thermocouple drift errors 

Thermocouples have a challenge of drift errors. In a method of minimizing temperature drift errors of 

conditioning circuits through the use of artificial neural networks, in the current study, an ANN is 

proposed to overcome the problem of temperature drift errors associated with temperature variation 

[19]. An AD595 temperature sensor is used to generate a voltage proportional to the temperature of the 

conditioning circuit, and a type K thermocouple is used to measure the temperature of the quantity of 

interest. The limitation of this method is that it does not account for drift errors at high temperatures, 

which may be a result of long-time in service. The present study is focusing only on thermocouple cold 

junction compensation and linearization, but the low drift is not considered [19]. Thermocouple stability 

when measuring temperatures above 1000 degrees’ centigrade results in drift velocities that can impact 

the measurement accuracy of the measured temperature. Thermocouples are the most used sensors for 

temperature measurement in nuclear applications, and they are affected by the intense neutron fluxes 

due to interaction with neutrons. The thermo-elements of the thermocouples undergo composition 

resulting in a time-dependent drift of the thermocouple signals [20]. Metallurgical changes of the 

thermos-elements during the operation of the thermocouple at high-temperature causes drift (change in 

voltage from expected value), which results in an error in the measured thermocouple signal. Figure 2-
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1 displays type K thermocouple exposed at 500 degrees centigrade and drift as a function of the 

exposure with time. Thermocouples used in high-temperature applications experience atomic 

displacements and transmutation. Atomic displacement is defined as the displacement of atoms from 

their mean position in the crystal structure, which may be the result of temperature-dependent atomic 

vibrations or static disorder in a crystal lattice [41]. In thermocouples, atomic displacement generates 

dislocation loops and voids into the irradiated thermo-elements, thus leading to very significant drift. 

In [20], Cambridge type N thermocouples are compared with conventional Inconel 600 sheathed type 

N thermocouples during an out-of-pile test undertaken at INL has proved that the Cambridge sheath 

can provide a significant drift reduction of about 60%. The Cambridge sheath allows for the removal of 

contaminants that reduce the change in the composition of the thermo-elements during operation, so 

thus minimizing drift. Contamination can be built-in, acquired in service, or originate from the 

thermocouple’s alloy combination. 

Hygiene is essential in the use of thermocouples, and the user must ensure that a thermocouple is not 

contaminated before or during the service. It is critical not to build in contamination such as metal swarf 

derived from end caps. Burning out ceramics and wiping wires with industrial methylated spirits are 

both essential practices to follow. The upper operating temperatures of Pt thermocouples are sufficiently 

high to destabilize lower grade ceramics, releasing metallic elements from their oxides. Thus, the 

preferred insulation for both twin-bore and outer sheaths is high purity recrystallized alumina. Another 

source of contamination is the furnace load; metallic vapour in vacuum brazing furnaces can condense 

on the thermocouple and cause damage. It is vital that the design of the installation protects the 

thermocouple with suitable physical barrier layers of metallic and ceramic closed-end tubes. However, 

while additional layers prolong the life of the couple, they do this to the detriment of the response rate 

and accuracy. Thick metal cladding, which conducts heat to the furnace wall, can act as a heat sink, 

attracting and condensing contamination. 

In order to improve the accuracy of thermocouple measurement and prolong the usage of 

thermocouples, one should ensure that: 

 The environment is clean. 

 The thermocouples are not stressed. 

 They are annealed before use. 

 High-quality ceramics are used, and mechanical damage is avoided. 

The disadvantage of thermocouples is their relatively low output signal in the millivolts range, therefore 

making thermocouple reading sensitive to corruption from electrical noise. Due to the low drift and low 
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output signal, it is essential that the thermocouple output signal is amplified using an amplifier with a 

low offset. Therefore, in this study, an instrumentation amplifier will be used for the amplification of a 

thermocouple signal as it has a low offset and low common rejection ratio. 

2.3 Nonlinearity of thermocouple 

There exist a number of temperature measuring devices such as pressure transducers, strain gauges, and 

resistance temperature devices (RTDs). Nonetheless, thermocouples are the most popular temperature 

sensors. Thermocouples operate under the principle of the Seebeck Effect (thermoelectric effect); their 

outputs are nonlinear to the measured temperature. Thermocouple types exhibit distinctive nonlinearity, 

moreover results in increased error over a wide temperature range. A solution of thermocouple 

nonlinearity correction using a neural network is presented in [18], whereby a Backpropagation (BP) 

neural network is employed. The thermoelectric potential of a K-type thermocouple is used as the neural 

network inputs and the equivalent temperature used as target (output) value; thereafter, the BP neural 

network is trained. The reduction in nonlinearity is seen by the deviation between the results of the 

training and the target values, with the suitable measurement error being small, nonlinear correction is 

finished [18]. The limitation with this proposed solution is that the network is trained with 0°C reference 

temperature, which in an industrial application, the reference temperature may vary, leading to error 

measurements. Moreover, it is expensive to maintain a reference temperature at 0°C in industrial 

applications where thermocouples are most used. 

A multilayer neural network-based system for processing thermocouple signals and performing 

linearization of the sensor output exists [19]. The reference junction of the thermocouple is at ambient 

temperate, and it is allowed to vary in order to remove the contribution of reference junction to the 

measured voltage a thermocouple is used. The thermistor is placed in series with a known resistance; 

the voltage drop across the constant resistance is measured and as temperature increases [42]. The 

resistance of the thermistor decreases; therefore, the contribution of the ambient temperature block can 

be subtracted from the measured thermoelectric voltage. The effectiveness of this solution for 

linearization lies in the selection of the constant resistor. The infirmity of the proposed solution is that 

it can only work on a single thermocouple type, and if another thermocouple type is used, a new constant 

resistance must be selected since thermocouple types have different characteristics. Zhang and Dai [20] 

presented a nonlinear calibration of a thermocouple sensor using least squares support vector regression 

(LS-SVR). The proposed method of LS-SVR takes the output voltage of the thermocouple sensor as 

input and measured temperature output to eliminate the nonlinear errors in the detection process. The 

calibration process of a thermocouple sensor is based on system identification and the numerical 

algorithm. 
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Thermocouples require signal conditioning for linearization and error compensation to achieve better 

performance. Furthermore, the low voltage outputs of thermocouples must be compensated by 

amplification. Conversion and transmission of the sensor output process have an influence on the 

accuracy of measurement, so these processes must be taken into consideration when developing a signal 

conditioning system for thermocouples. This proposed thermocouple signal conditioning using the 

neural network will incorporate all the challenges nonlinearity exploited in this section through a neural 

network. All the limitations with thermocouple nonlinearity correction using the neural network will be 

addressed, and neural networks will be used due to their capability to approximate any nonlinear 

function. 

2.4 Variation in thermocouple junction temperature 

The most significant disadvantage of thermocouples is dependent on the variation of reference/cold 

junction thermoelectric that contribute to the measured temperature according to the polynomial 

equation given by: 

𝑉 = 𝑎0 + 𝑎1(𝑇𝐻 − 𝑇𝑟𝑒𝑓) + 𝑎2(𝑇𝐻
2 − 𝑇𝑟𝑒𝑓

2 ) + ⋯ + 𝑎𝑛(𝑇𝐻
𝑛 − 𝑇𝑟𝑒𝑓

𝑛 )                               (2.2) 

  Where: 𝑉= thermocouple EMF/thermoelectric voltage. 

A thermocouple measurement accuracy is only determined by accurate measurement of the reference 

junction temperature. Therefore, in order to improve thermocouple accuracy, effort must be directed in 

solving the concern of reference junction variations. When thermocouples were first used in temperature 

measurement, reference junction was placed in an ice bath and kept constant at 0°C [22]. Temperature 

measurement was carried out since reference temperature is known, and from the polynomial equation, 

it can be solved. This method is not feasible for use as maintaining the ice bath is costly; therefore, the 

solution to this problem is a technique called cold (reference) Junction Compensation (CJC). A solution 

of cold junction compensation for a K-type thermocouple based on the AD8495 thermocouple amplifier 

was presented [22]. The AD8495 amplifier has a gain of 122 that is used to amplify the thermocouple 

signal, resulting in the system having a 5mV/°C output with a sensitivity of 200°C/V. However, 

challenges associated with this solution exist, and the challenges are that it is thermocouple type-

specific (K-type). Therefore, it does not accommodate other thermocouple types. In [23], a proposed 

solution for thermocouple reference junction compensation using operational amplifiers is presented. 

Thermocouple linearization is through a method called polynomial linearization, where a thermocouple 

polynomial equation is used [23]. 

Li-Hui [24] presents a thermocouple signal conditioning the Radial Basics function (RBF) neural 

network to compensate for thermocouple nonlinearity and cold junction offset. Radial Basis Function 
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Neural Network (RBFNN) was selected due to that it has robust nonlinear parallel processing and fault-

tolerant capability [51] – [53]. The RBFNN was designed for the compensation of an S-type 

thermocouple in the range of 0 to 1600 degrees centigrade; the error of the neural network was found 

to be 0.00013. The shortcomings in [24] the method of cold junction compensation is that the reference 

junction temperature was set to 0°C, which may result in the error of the measured temperature to 

increase if the reference junction temperature changes significantly. In [25], a study of thermocouple 

reference junction compensation and nonlinearity correcting is presented, where a microcontroller is 

used for its computation capabilities to compute the measured temperature with the use of a K-type 

thermocouple in the range zero up to 250 degrees Celsius with one °C resolution. Reference junction 

compensation is achieved by using a DS18B20 digital thermometer integrated circuit (IC) to measure 

the reference temperature on the cold junction formed when connecting K-type thermocouple to the 

Printed Circuit Board (PCB) connector (copper metals). The measured temperature (DS18B20) is 

converted into its equivalent K-type thermocouple EMF using the calculations in [26]. The challenge 

with this method with a resolution of 1-degree centigrade is that the system cannot perform temperature 

measurement above 50 degrees Celsius and that the method presented in that study uses a thermocouple 

look-up table. 

In [27], a solution is proposed to overcome the problem of temperature drift errors using a two-sensor 

system. With the two sensors, the first is used to measure the temperature of the object of interest, and 

the other is used to measure temperature drift errors. The cold junction compensation sensor used is the 

AD595 which generates a voltage proportional to the temperature of the conditioning circuit. Moreover, 

the system uses a trained neural network to compensate for external disturbances affecting the 

thermocouple. Engin et al. [29] presented a compensation of thermocouple nonlinearities using an 

embedded system, in which a microcontroller is used for measuring the temperature of the isothermal 

block by the use of a thermistor or RTD sensor, moreover to measure the voltage of the thermocouple. 

The voltage from the isothermal temperature is subtracted from the measured voltage of the 

thermocouple, giving the hot junction thermocouple voltage. Using the standard thermocouple table 

[28], the temperature value corresponding to the obtained voltage can be read [29]. The challenge with 

this method of thermocouple compensation is that the resulting voltage may not be in the standard tables 

in such a case; the accuracy of the results will be compromised as either chooses the closest one to the 

results or perform the interpolation. A new scheme for cold junction compensation and linearization is 

presented in [30], Differential Evolution (DE) algorithm for neural network training. The circuit for 

cold junction compensation uses a low-cost thermistor with a negative temperature coefficient (NTC), 

and linearization is through an artificial neural network. The scheme has been simulated in MATLAB, 

and it showed excellent performance in linearization and compensation of the cold junction of the 

thermocouple [30]. 



14 

 

 

 

Haruyama and Ryozo Yoshizaki [28] conducted a study of 0°C baths for the reference junctions of 

thermocouples using a solid-state heat pump, which is a system consisting of a thermoelectric heat 

pump module clamped between the copper block and an aluminum heat sink. This system uses an 

electronic system to regulate the temperature, and the pre-set temperature is compared with that of a 

thermistor (13k Ohms at 0°C) [31]. 

 

2.5 Summary and conclusion 

There are many challenges with the current methods used, mainly on thermocouple cold junction 

compensation and linearization. The proposed study aims to address all the shortcomings discussed and 

produce a thermocouple signal condition unit that can cater to several thermocouple types without the 

need for new hardware. The signal conditioning system using the neural network will ensure high 

accuracy and cost-effectiveness in the measurement of temperature by using the capability of the neural 

network to approximate any nonlinear function. Linearization of thermocouples has presented a 

challenge in the past, but we believe that this proposed method will effectively solve the challenges 

with thermocouple linearization. Since thermocouples have a low drift, an amplifier will be designed 

with good linearity, low offset, high sensitivity, low drift, and high common-mode rejection ratio to 

address some of the challenges discussed. 
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3. THEORETICAL FRAMEWORK 

3.1 Introduction 

In the current chapter, we present a review of the theory on thermocouples, information on techniques 

that will be used to solve the problems identified in the literature review, and the methodology used in 

solving the thermocouple conditioning problem. 

3.2 Thermocouple: Physics of thermoelectric energy conversion 

In 1821, a German Physicist by the name of Thomas Seebeck discovered that when two dissimilar metal 

wires are joined at both ends to form a loop, a voltage is developed when the two junctions are kept at 

different temperatures. The so-called “Seebeck Effect” creates the theoretical basis for the operation of 

thermocouples. The Seebeck Effect itself is due to the conversion of thermal energy to electrical energy 

[30] – [34]. The open-circuit electrical potential difference in the circuit with two junctions maintained 

at temperatures 𝑇𝑟𝑒𝑓 /𝑇𝑐 and 𝑇𝐻 (>𝑇𝑟𝑒𝑓) is given by 

 

𝑉 = 𝑆𝐴𝐵(𝑇𝐻
𝑛 − 𝑇𝑟𝑒𝑓

𝑛 )                                                                                      (3.1) 

Where the coefficient of proportionality (𝑆𝐴𝐵) is known as thermoelectric power or the Seebeck 

coefficient. 

The Seebeck coefficient depends on factors such as work functions of the metals, electron densities of 

the two components, and scattering mechanism within each solid. [33,36,44]. Seebeck Effect is set upon 

the assumption that if two points in a conductor (or a semiconductor) are maintained at different 

temperatures, the charged carriers (electrons or holes) in the hotter region, being more energetic (having 

higher velocities), will diffuse towards the region of lower temperature [37,44]. The diffusion stops 

when the electric field is generated because of the movement of charges that has established a strong 

enough field to stop further movement of charges. For a metal carrier being negatively charged 

electrons, the colder end would become negative in order for the Seebeck coefficient to be negative. 

For a p-type semiconductor, on the other hand, holes diffuse towards the lower temperature resulting in 

a positive Seebeck coefficient [33, 36, and 37]. 
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Figure 3-1 Thermocouple Seebeck Coefficient vs. temperature [40] 

 

Mathematically expressed, the Seebeck coefficient or thermoelectric sensitivity is the change in EMF 

with respect to a change in temperature, and it is a nonlinear function of temperature. The nonlinearity 

of the Seebeck coefficients for typical thermocouple systems is shown in Figure 3-1. Seebeck 

coefficient (volts per unit of temperature) can be given by: 

𝜎(𝑇) = lim
∆𝑇→0

∆𝐸

∆𝑇
=

𝑑𝐸

𝑑𝑇
                                                                         (3.2) 

 

Two other related thermo-electric effects in metals, the Peltier [42] and Thomson [43] effects, are 

current dependent and also could cause a voltage potential to exist in the circuit due to temperature 

when two dissimilar metals are joined together. According to the Peltier effect, when two dissimilar 

metals are connected, there will be an EMF developed in that circuit due to different temperatures in 

the junctions created. On the other hand, according to the Thomson effect, when two different metals 

are connected, making two junctions, a potential or voltage exists in the circuit due to the temperature 

gradient along the whole length of the thermocouple conductor. In general, the EMF due to Peltier and 

Thomson effects is very small and can be neglected [39]. 
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Figure 3-2 Simple Thermocouple [13] 

 

 

Figure 3-3 Thermocouple with hot and cold junction [13] 

 

Thermoelectric voltage cannot be directly measured since a voltmeter must be used. Moreover, 

voltmeter leads also create a thermoelectric circuit. The most common combination of metals used in 

the design of thermocouples is Iron, Platinum, Rhodium, Rhenium, Tungsten, Copper, Alumel 

(composed of Nickel and Aluminium), Chromel (composed of Nickel and Chromium), and Constantan 

(composed of Copper and Nickel). Commonly used types of thermocouples are presented in chapter 1; 

each type has characteristics that can be matched with its industrial application [2, 3, 4, and 38]. 

 

                                                        𝑉 = 𝑆𝛼𝑏(𝑇𝐻 − 𝑇𝑟𝑒𝑓)                                                  (3.3) 

Where:𝑆𝛼𝑏, is the Seebeck coefficient, is the constant of proportionality 

Thermocouple output voltages are highly nonlinear, resulting in the Seebeck coefficient varying by a 

factor of three or more over the operating temperature range of some thermocouples. For this reason, 

thermocouple voltages can be approximated using the thermocouple-versus-temperature curve using 

the look-up table or the polynomials. Thermocouple Seebeck voltage can also be expressed as a 

polynomial function of temperature as: 

 

      𝑉 = 𝑎0 + 𝑎1(𝑇𝐻 − 𝑇𝑟𝑒𝑓) + 𝑎2(𝑇𝐻
2 − 𝑇𝑟𝑒𝑓

2 ) + ⋯ + 𝑎𝑛(𝑇𝐻
𝑛 − 𝑇𝑟𝑒𝑓

𝑛 )                        (3.4) 

Where V is the thermocouple voltage in volts, 𝑎0 to 𝑎𝑛; are coefficients that are specific for each 

thermocouple type; these coefficients can be found on the NIST tables for thermocouple types. 
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3.3 Thermocouple linearization 

Thermocouple voltage is a nonlinear function of temperature; therefore, they require some form of 

temperature reference to compensate for the contribution of the cold or reference junction in the 

measured voltage. The NIST standard tables for thermocouples were created using the practice of 

holding the reference junction at 0°C in an ice bath. Thermocouple cold junction is kept at 0°C or very 

close to zero due to the contribution that the cold junction has on the total EMF produced by the 

thermocouple when the two junctions are placed at different temperatures. From the Equation 3.3, when 

reference junction temperature is kept at zero degrees centigrade, Equation 3.3 is simply given as; 

𝑉 = 𝑆𝛼𝑏(𝑇𝐻)                                                               (3.5) 

Although thermocouple linearization using the ice bath technique is accurate, it is not always practical 

in application. A more practical approach is through the process called cold junction compensation by 

merely taking advantage of the thermocouple characteristics. Linearization with the process of cold 

junction compensation is by measuring the reference junction temperature or voltage and subtracting it 

from the measured temperature or voltage as thermocouple equation can be reduced to: 

 

                𝑉𝑚𝑒𝑎𝑠 = 𝑉𝐻(𝑇𝐻) − 𝑉𝑟𝑒𝑓(𝑇𝑟𝑒𝑓)                                     (3.6) 

Where: 𝑉𝑚𝑒𝑎𝑠, is the voltage measured, 𝑉𝐻(𝑇𝐻) is hot junction voltage, and 𝑉𝑟𝑒𝑓(𝑇𝑟𝑒𝑓)𝐶old junction 

voltage. 

There are two theoretical methods for cold junction compensation, hardware compensation, and 

software compensation. With hardware compensation, a variable voltage source is inserted into the 

circuit to cancel the contribution of the reference junction in the measured voltage. This variable voltage 

source generates a compensation voltage according to the ambient temperature, thus adds the correct 

voltage to cancel the reference junction voltage. The resulting voltage measured at the output is used to 

compute thermocouple temperature using the ITS-90 tables. The major disadvantage of hardware 

compensation is that it is expensive as each thermocouple type must have a separate compensation 

circuit that can add correct compensation voltages, as each thermocouple type has different 

characteristics to the other. 

Software cold compensation has better accuracy than hardware compensation. It requires a direct 

reading sensor to measure the reference junction temperature; thereafter, the software can add the 

correct compensation voltage to the measured voltage of the thermocouple. Software cold compensation 

generally follows the steps below: 
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1. Compute the reference junction temperature. 

2. Convert this temperature into an equivalent voltage for the thermocouple type undergoing 

testing/ in use by either using the ITS-90 reference tables or polynomials. 

3. Add this equivalent voltage to the measured voltage to obtain the open0circuit voltage that 

the thermocouple would produce at 0°C reference junction. 

Software systems used for thermocouple compensation are widely available and the common one being 

the National Instrument SCXI product line which includes a variety of signal conditioning modules for 

various types of signals. 

3.4 Artificial Neural networks 

An artificial neural network is composed of a large number of interconnected units called neurons that 

have a certain natural tendency for learning information from the outside world. Neural networks are 

best at estimating functions that may depend on many variables [49], nonlinear function approximation. 

Thermocouples are nonlinear temperature measuring devices; therefore, neural networks will be used 

to linearize thermocouples in this cold junction compensation mechanism presented in this study. 

Thermocouple linearization is critical to the successful development of signal conditioning, the neural 

network trained to understand the relationship between the thermoelectric voltages produced by 

thermocouples with temperature. The theory of artificial neural network design is presented in this 

section, and the focus is on the Back propagation algorithm as it is the best algorithm for linearization 

and has excellent generalization. 

3.4.1 Perceptron 

Perception is the most straightforward neural “connectionist” network possible that consists of one or 

more inputs, a processor, and a single output. A perceptron is a feed-forward network, where there are 

no loops and the inputs sent into the neuron for processing and result in an output. 

 

Figure 3-4 Perceptron 
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Inputs of a perceptron are each multiplied by weights (between -1 and 1) before being passed to the 

neuron. The weights of a perceptron are randomly assigned at the beginning of the training, and then 

the weighted inputs are summed and passed through the network activation function to generate the 

output of the perceptron. The perceptron algorithm can be summarized as follows: 

 For every input, multiply it by its weight. 

 Sum all the weighted inputs. 

 Compute the output of the perceptron based on that sum passed through an activation 

function. 

 

                                              𝑦 = 𝑄(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1 ) = 𝑄(𝑊𝑇𝑋 + 𝑏)                             (3.7) 

Where W denotes the vector of weights, X is the vector of inputs, b is the bias, and Q is the activation 

function. 

When a problem is complicated, then a complex network of perceptron can be used for complex 

decision-making. The complex network is called a neural network. Figure 3-5 below depicts a neural 

network structure. 

 

Figure 3-5 Neural Network Structure 

 

The neural network creates a relation between its units (e.g., neurons) through a series of trials to learn 

the characteristics of the task to be performed, and once the network has learned the type of relations 

that are appropriate among its units, then it can learn another task like the ones it has already learned. 

The activation function of a neural network is the core of the network as they decide whether a neuron 

should be activated or not. They are essential in neural network learning and making sense of the given 
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information. Without activation function, weighted inputs and the bias would simply be passed to the 

next layer, which would simply be a linear transformation. The linear transformation would not solve 

complex problems; the activation function does nonlinear transformation making the neural network 

capable of learning and performing complex tasks. Back propagation is only possible with activation 

functions in the network since the gradients are supplied along with errors to update the weights and 

biases [49]. Neural networks are considered universal function approximations, meaning they can 

compute and learn any function that exists, thus the need for the network to perform the nonlinear 

transformation. Below are the plots of popular activation functions. 

 

 

Figure 3-7 Hyperbolic tangent activation function 

 

 

 

Figure 3-9 Inverse tangent function 

Figure 3-6 Sigmoid activation function 

Figure 3-8 Rectified linear units (ReLU) 
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The sigmoid activation function is widely used, and it is of the form: 

                                        𝑓(𝑛𝑒𝑡𝑖) =
1

1+𝑒−𝑛𝑒𝑡𝑖
                                                          (3.8) 

This is a smooth function and is continuously differentiable, and it is bounded in the range (0, 1). The 

advantage of the activation function is its non-linearity, which allows the network with sigmoid 

activation to learn and perform complex tasks. As neural networks are regarded as universal function 

approximations, the sigmoid function can be used to approximate almost any function due to its non-

linearity property. 

 

3.4.2 Back propagation 

Back propagation: An algorithm for supervised learning of artificial networks using gradient descent. 

This algorithm is currently the most widely used algorithm for connectionist learning, and this algorithm 

is used for learning in the feed-forward networks using mean squared error and gradient descent. The 

objective of this algorithm is to minimize the error between the output y computed by the network and 

the designed output (target). Back propagation makes it easy to find the network’s weight 

gradient,𝛻𝑜(𝑊). The updating of neural network weights by a small step to form new weights given 

by: 

                                      𝑊∗ = 𝑊 − 𝜌𝛻𝑜(𝑊)                                                          (3.9) 

Where the parameter ρ controls the step size. 

Given an artificial neural network and an error function, the algorithm calculates the gradient of the 

error function with respect to the neural network’s weights. The "backward" part of the name comes 

from the fact that the calculation of the gradient proceeds backward through the network, with the 

gradient of the final layer of weights being calculated first and the gradient of the first layer of weights 

being calculated last. Partial computations of the gradient from one layer are reused in the computation 

of the gradient for the previous layer [48]. This backward flow of the error information allows for 

efficient computation of the gradient at each layer versus the naive approach of calculating the gradient 

of each layer separately. 

To perform gradient descent, we need a differentiable error function; therefore, Back propagation 

accomplishes this by using mean squared error and by using continuous-valued cells with activations 

given by 

                                                  𝐸𝑀𝑆𝐸 = 𝐸 = ∑ (𝑑𝑘 − 𝑎𝑘)2
𝑘=1                                        (3.10) 
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                                                                    𝑛𝑒𝑡𝑖 = ∑ 𝑤𝑖.𝑗𝑦𝑗   𝐽
𝑗=0                                 (3.11) 

                                                 𝑎𝑖 = 𝑓(𝑛𝑒𝑡𝑖) =
1

1+𝑒−𝑛𝑒𝑡𝑖
                                  (3.12) 

The sigmoid function f is sometimes called a squashing function because it monotonically maps its 

inputs into [0, 1]. The aim of the Back propagation algorithm is to find weights and biases for the 

network that will minimize the mean squared error. The derivative of the activation function can be 

evaluated as follows 𝑓′(𝑛𝑒𝑡𝑖) =
𝑑

𝑑𝑛𝑒𝑡𝑖
(1 + 𝑒−𝑛𝑒𝑡𝑖)−1                                                    (3.13) 

= −(1 + 𝑒−𝑛𝑒𝑡)−2𝑒−𝑛𝑒𝑡𝑖(−) 

 =
1

1 + 𝑒−𝑛𝑒𝑡𝑖
(1 −

1

1 + 𝑒−𝑛𝑒𝑡𝑖
) 

 

Therefore, the result of the derivation of the activation function leads to 

                                    𝑓′(𝑛𝑒𝑡𝑖) = 𝑎𝑖(1 − 𝑎𝑖)                                                     (3.14) 

In order to break symmetry so that various intermediate cells take on different roles, the algorithm 

begins by randomly assigning small initial weights in the range [-0.1, 0.1]. Computing the gradient 

involves a forward pass over the network to compute cell activations, followed by a backward pass that 

computes gradients. Once we know the gradient, we can take a small step to update the weights. This 

process continues until changes become sufficiently small, i.e., the algorithm converges. 

When computing the gradient, it is necessary to compute 𝜹𝑖 defined by: 

                                        𝜹𝑖 = −
𝜕𝐸

𝜕𝑛𝑒𝑡𝑖
                                                             (3.15) 

Then the weights can be updated as follows 

                                     𝑤𝑖,𝑗
∗ = 𝑤𝑖,𝑗 + 𝛼𝜹𝑖𝑢𝑗                                                    (3.16) 

Artificial neural network forms a more significant part of the proposed solution to thermocouple 

nonlinearity correction; a feed-forward neural network using Back propagation with a sigmoid 

activation function will be utilized to realize the linearization of thermocouples. 

 

3.5 Instrumentation amplifiers 

Thermocouples produce a thermoelectric voltage in the millivolts range and are affected by drift 

voltages. Based on the voltage produced and drift voltages, it is necessary to amplifier the signal 
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produced by thermocouples before the signal can be sent to the neural network for processing. An 

instrumentation amplifier is a closed-loop gain block that has a differential input and output that may 

be differential or single-ended with respect to a reference terminal. An in-amp differs from an 

operational amplifier as the in-amp uses an internal feedback resistor network that is isolated from its 

signal input terminals. The primary reason for choosing an instrumentation amplifier to amplifier the 

difference between two input signals is that a single operational amplifier(op-amp) has a lower rejection 

(CMRR) and the impedances of the inverting and non-inverting inputs are relatively low and unequal. 

The common-mode rejection ratio (CMRR) is the property of the in-amp in canceling out any signals 

that are common (the same potential on both inputs). The instrumentation amplifier consists of several 

operational amplifiers (op-amps) with a high CMRR. 

 

Figure 3-10 Instrumentation amplifier 

 

The most common in-amps usually consist of three operational amplifiers in a two-stage configuration, 

namely buffering and a differential stage, with the two op-amps serving as a buffer for the two input 

circuits and the third as a differential operational amplifier. The input signals are applied to each non-

inverting terminal of the op-amps in the buffering stage for the device to see a large resistance and 

reduce current drawn. In the configuration in Figure 3-10, a single gain resistor (𝑅𝑔𝑎𝑖𝑛) is connected 

between the summing junctions of the two input buffers. The full differential input voltage will appear 

across 𝑅𝑔𝑎𝑖𝑛 since the voltage at the summing junction of each amplifier is equal to the voltage applied 

to its positive input. The amplifier input voltage at the output (at the U1A, U2A) appears differentially 

across the three resistors, 𝑅5, 𝑅6, 𝑅𝑔𝑎𝑖𝑛, the differential gain can be varied by just changing 𝑅𝑔𝑎𝑖𝑛. If 

the resistors are matched as  𝑅5= 𝑅6, 𝑅1 =  𝑅3, and  𝑅2 =  𝑅4 then there is no further resistor matching 

required as the gain of the in-amp will be controlled by varying 𝑅𝑔𝑎𝑖𝑛, then the output voltage of the 

in-amp is as follows: 
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                         𝑉𝑜𝑢𝑡 = (𝑉𝑖𝑛2 − 𝑉𝑖𝑛1) (1 +
2 𝑅5

𝑅𝑔𝑎𝑖𝑛
 ) (

 𝑅2

 𝑅1
)                                    (3.17) 

 

Then the gain of the instrumentation amplifier is represented by: 

                     𝐴 =
𝑉𝑜𝑢𝑡

(𝑉𝑖𝑛2−𝑉𝑖𝑛1)
= (1 +

2 𝑅5

𝑅𝑔𝑎𝑖𝑛
 ) (

 𝑅2

 𝑅1
)                                           (3.18) 

 

Common-mode rejection (CMR) is the property of an operational amplifier that quantifies the ability 

of the device to reject or canceling out signals that are common (same potential and in-phase on both 

inputs). CMRR is simply the ratio of the differential gain to the common-mode gain; this property is 

essential as it indicates how much of the common-mode signal will appear in the measurements. The 

mathematical representation of CMRR is as follows: 

                                               𝐶𝑀𝑅𝑅 = 𝐴𝐷 (
𝑉𝐶𝑀

𝑉𝑂𝑈𝑇
)                                                    (3.19) 

Where: 

𝐴𝐷  is the differential gain of the amplifier; 

𝑉𝐶𝑀 is the common-mode voltage present at the amplifier inputs; 

𝑉𝑂𝑈𝑇  is the output voltage present when a common-mode input signal is applied to the amplifier.

  

3.5.1 Merits of using instrumentation amplifiers in signal conditioning 

Thermocouples have thermoelectric signals that are very low in ranges of millivolts; therefore, signal 

amplification is required to measure the voltage by a processing instrument (microcontroller). 

Instrumentation amplifiers are ideal for amplification of low signals as they have low drift errors and 

they have a high CMRR. For best resolution and noise performance, instrumentation amplifiers produce 

great results compare with other amplifiers. Therefore, an instrumentation amplifier will be used in this 

proposed solution for the amplification of thermocouple signals. 

 

3.6 Microcontroller 

Thermocouples are analog devices, it is necessary for the system to have a processor that will run the 

neural network, and such a processor must be capable of processing the voltage of the thermocouple 

and reference junction sensor. A microcontroller is a small computer on a single integrated circuit 
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containing a processor core, memory, and programmable input/output peripherals, and it can be used as 

an embedded system. Microcontrollers are designed for embedded applications, in contrast to 

microprocessors used in personal computers or other general-purpose applications processors. 

Microcontrollers are embedded in our everyday consumer products, including phones, automobiles, and 

computer systems. The microcontroller has input/output devices for interfacing sensors, Liquid Crystal 

Display (LCD), and other devices. The biggest advantage of microcontrollers is the design and hardware 

costs, and it is cheap to replace. The typical architecture of a microcontroller may include the following: 

• CPU, ranging from simple 4-bit to complex 64-bit processors. 

• Peripherals such as timers and watchdogs. 

• RAM (Volatile memory) for data storage. 

• ROM, EPROM, or flash memory for program and operating parameter storage. 

• Serial input/output such as serial ports. 

• A clock generator for the resonator, quartz timing crystal, or Resistor-Capacitor (RC) circuit. 

• Analog to digital converters. 

• Serial Ports. 

• Database to carry information. 

 

Figure 3-11 Atmega32 microcontroller [36] 

 

A button that is pushed to operate an electrical device, such a signal can be low or high. In this project, 

pushbuttons may be used to implement a mouse selection of thermocouple types; when a push button 

is clicked, an electrical signal can be sent to the microcontroller for computation. 
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Figure 3-12 Pushbutton [38] 

 

 

3.6.1 Merits of microcontrollers 

A microcontroller is needed in this study as the system needs a controller for processing data from the 

thermocouple, cold junction compensation sensor, and selection push buttons. Moreover, for the system 

to be complete, it is recommended that the artificial neural network be programmed in a chip so that the 

system does not depend on many peripherals such as PC. Microcontrollers have the capability of 

measuring data from sensors, this functionality will be used in this proposed method of thermocouple 

signal conditioning using the neural network, and the microcontroller is capable of running the ANN 

program. 

3.7 Conclusion 

The artificial neural network has been identified as the best approach in solving this problem; thus, an 

introduction to back propagation is presented in this study as it is an algorithm chosen to implement the 

neural network. 
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4. METHODOLOGY 

4.1 Introduction 

The theoretical basis for the project implementation has been presented in chapter three of the thesis. 

The methodology chapter focuses on the translation of the theoretical concepts of chapter three through 

MATLAB simulations, neural network training, implementation, testing of the instrumentation 

amplifier, and the deployment of the final system on an ARDUINO UNO. An augmented thermocouple 

table for a given neural network, in the context of the current study, is a polynomial function 

implementation of the nonlinear millivolt or micro-volt output produced by the thermocouple 

polynomial equation using a combination of non-standard values of the hot junction and reference 

junction temperatures of the thermocouple. The nonlinear polynomial equations for the J, T, E, and R 

are found in existing literature [1] – [3] and have been discussed earlier in the current study. The most 

significant contribution of this study is the training of a form of a ‘look-up’ neural network that makes 

use of the reference temperature measurement and the thermocouple output voltage to look up the value 

of an unknown hot junction temperature from the augmented thermocouple table. Section three of this 

chapter presents the training of the look-up neural networks for each of the thermocouples studied in 

the current work. Figure 4-1 summarizes the implementations of the activities in both sections two and 

three. The actual implementation of the instrumentation amplifier for amplifying thermocouple output 

voltages and the test results obtained from the performance of the amplifier. In section four, the neural 

network design, training, and selection of neural networks for the proposed thermocouple signal 

conditioning are presented. 
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Figure 4-1 Block diagram of the proposed thermocouple signal conditioning system 
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In Figure 4-1 above is the overall thermocouple signal conditioning system block diagram, which 

consists of a microcontroller that is performing the computation for the system. The microcontroller is 

interfaced with an instrumentation amplifier with voltage gain G to amplify the thermocouple 

thermoelectric voltage readings produced. Furthermore, the measured reference temperature using a 

temperature measuring device (LM35) is read off by the microcontroller. The microcontroller will be 

running neural network(s) designed for conditioning of thermocouple signal. The output of the neural 

network is the measured thermocouple temperature (°C) and will be displayed on an LCD/PC. 

4.2 Thermocouple ITS-90 table augmentation 

Data available from the National Institute of Standards and Technology (NIST) thermocouple ITS-90 

tables is limited by the fact that the International Temperature Scale of 1990 (ITS-90) tables were 

calibrated only for reference junction temperature of 0°C. For the approach used in this research, where 

the thermocouple reference junction temperature is assumed variable beyond the 0oC value, augmented 

ITS-90 thermocouple tables are required. In this thesis, these augmented tables are required for the J, 

T, E, and R thermocouples used in the experimental validation of the signal conditioning approach used 

in this thesis. The approach of this thesis was to start with the thermocouple polynomial equation (with 

the polynomial coefficients for each of the studied thermocouples), then using MATLAB, evaluate 

several values of the thermocouple output voltage V, using randomly generated values of 𝑇𝐻 and 𝑇𝑟𝑒𝑓 

(within pre-defined ranges) to form new, expanded thermocouple tables with varying reference junction 

temperatures can be generated. This expanded thermocouple table is referred to as an augmented table 

for the given thermocouple. A neural network is then trained using the set of 𝑉, 𝑇𝐻 , 𝑇𝑟𝑒𝑓 Entries from 

the expanded table so that it is able to accurately generate the millivolt or micro-volt output of the 

thermocouple beyond the data available in the ITS-90 table. A typical thermocouple polynomial 

equation is shown in equation 4.1; 

          𝑉 = 𝑎0 + 𝑎1(𝑇𝐻 − 𝑇𝑟𝑒𝑓) + 𝑎2(𝑇𝐻
2 − 𝑇𝑟𝑒𝑓

2 ) + ⋯ + 𝑎𝑛(𝑇𝐻
𝑛 − 𝑇𝑟𝑒𝑓

𝑛 )                       (4.1) 

 

Where V is the thermocouple voltage in volts, 𝑎0 to 𝑎𝑛 be coefficients that are specific for each 

thermocouple type; these coefficients can be found on the NIST website for thermocouple types. 

Since the reference temperature of the thermocouple cannot be at the extreme, to train the artificial 

neural network (ANN), the reference temperature was set to vary between -10°C and 30°C in the 

generated table using the equation above. Appendix C contains tables for J, T, E, and R thermocouples, 

generated using the MATLAB script in Appendix B using the polynomial equation of the thermocouple. 
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In the study [2], a J-type and T-type thermocouple were used in calculating thermoelectric voltage using 

the thermocouple coefficient in the thermocouple equation. Therefore, the thermocouple equation has 

been used in this study to generate a thermocouple table at the varying reference temperature, and the 

accuracy of the results has been verified by the findings in [2] and thermocouple standard tables [3] at 

a reference temperature of 0°C. The ITS-90 standard tables were generated with reference junction kept 

at 0°C, to verify the accuracy of the new tables generated using the MATLAB program, a random 

sample of hot junction temperature are generated at zero reference junction temperature, and the 

resulting thermoelectric voltages are compared with that from the ITS-90 tables. 

 

4.2.1 Thermocouple polynomial function 

ITS-90 thermocouple tables are generated at 0°C reference junction temperature; in this study, we 

explore a technique for measuring the hot junction temperature without maintaining the reference 

temperature at 0°C as such, it is required that the ITS-90 table be augmented to include thermoelectric 

voltage as a function of measured (hot junction) temperature (°C) with varying reference junction 

temperature. Therefore, to achieve this, an augmented ITS-90 table is generated using a thermocouples 

polynomial equation. Below is the MATLAB code for generating the augmented table for type J 

thermocouple. Each thermocouple type and range has different thermocouple functional coefficients, 

which can be found in [3] represented by array C in the program below. MATLAB “randi” function 

was used to generate random values for reference junction temperature and measured or hot junction 

temperature for each specific range of thermocouple coefficients. The reference junction temperature 

was varied between -10 to 30°C, due to average room/open-space temperature and application-specific 

temperature. Thereafter, MATLAB “polyval” function was used to calculate the thermoelectric voltage 

of the thermocouple pair of hot and cold junction temperatures (°C). Then the pair of thermoelectric 

voltage (mV), reference (cold) junction, and measured (hot) junction temperature (°C) is stored in 

“Dataset”, thereafter stored in the augmented ITS-90 table. This process is repeated for all the sample 

thermocouple types (J, T, E, and R) used in this study to generate a thermocouple augmented ITS-90 

table with varying reference junction temperature. 

 

%--=========-Type J Thermocouples Coefficients in mV-------------- 
%------------- Type J -210 to 760 
C= [0.15631725697E-22 -0.12538395336E-18 0.20948090697E-15 -0.17052958337E-

12... 

0.13228195295E-9 -0.8568106572E-7 0.3047583693E-4 0.50381187815E-1 0]; 
% %--------------Type J 760 to 1200-------------- 
%C= [-0.306913690560E-12 0.157208190040E-8 -0.318476867010E-5... 
% 0.317871039240E-2 -0.149761277860E1 0.296456256810E3]; 
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Th=randi ([-210 760], [1 1500]); 
Tc=randi ([-10 30], [1 1500]); 
% Th=randi ([760 1200], [1 500]); 
% Tc=randi ([-10 30], [1 500]); 

 
Vm= polyval(C,Th)- polyval(C,Tc); 
C_Set=C'; 
Dataset= [Vm’, Tc’, Th']; 

 

4.2.2 Testing of thermocouple augmented ITS-90 table 

The augmented ITS-90 table generated in section 4.2.1 using MATLAB for thermocouple type (J, T, 

E, R) is tested in this section to verify the accuracy of reproducing the standard ITS-90 tables for 0°C 

reference junction temperature. Appendix C shows an augmented ITS-90 table of thermoelectric 

voltage as a function of temperature (°C) with varying reference junctions, and Appendix C was filtered 

for 0°C reference junction temperature to produce the table of thermoelectric voltage as a function of 

temperature (°C) with reference junctions at 0 °C that can be found in Appendix D. To verify the 

accuracy of the augmented ITS-90 tables, thermoelectric voltage from the standard ITS-90 tables 

corresponding to the hot junction temperature in Appendix D was collected for each thermocouple type 

to produce table in Appendix E. Figures 4-2 to 4-5 below shows the thermocouple thermoelectric 

voltage sample comparisons between the standard ITS-90 table and the augmented ITS-90 table at 0°C 

reference junction temperature. 

 

 

Figure 4-3 Type R Thermoelectric voltage at 0°C 

reference temperature 

 

Figure 4-2 Type T Thermoelectric voltage at 0°C 

reference temperature 
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Figure 4-5 Type E Thermoelectric voltage at 0°C 

reference temperature 

 

The results are shown in the graphs above support the hypothesis that the ITS-90 tables can be 

reproduced by using the polynomial equation of thermocouple with the functional coefficients for each 

thermocouple type per temperature range. Therefore, it can be concluded that the augmented ITS-90 

tables (Appendix C) produced in this study are accurate and sufficient for the proposed study of 

thermocouple signal conditioning using a neural network. 

4.3 Implementation of the instrumentation amplifier circuit 

The instrumentation conditioning circuit amplifies the low output voltage of the thermocouple to 

enhance thermocouple sensitivity. The complete implementation of the instrumentation amplifier is 

shown in Figure 4-6. 

 

Figure 4-6 Instrumentation amplifier 

Based on the equation below, as discussed in chapter 3.6, the gain of the instrumentation amplifier 

can be computed using the formulae: 

Figure 4-4 Type J Thermoelectric voltage at 0°C 

reference temperature 
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                               𝐴 =
𝑉𝑜𝑢𝑡

(𝑉𝑖𝑛2−𝑉𝑖𝑛1)
= (1 +

2 𝑅5

𝑅𝑔𝑎𝑖𝑛
 ) (

 𝑅2

 𝑅1
)                                              (4.2) 

Where 𝑉𝑖𝑛1, represent the positive end/leg of thermocouple, and 𝑉𝑖𝑛2, represent the negative end of 

the thermocouple. Therefore, minimum instrumentation amplifier gain with thermocouple outputs 

in millivolts: 

                                   𝐴 =
𝑉𝑜𝑢𝑡

(𝑉𝑖𝑛2−𝑉𝑖𝑛1)
= (1 +

2 𝑅5

𝑅𝑔𝑎𝑖𝑛
 ) (

 𝑅2

 𝑅1
)                                        (4.3) 

A= (1 +
2∗100𝑘

5𝑘
 ) (

100𝑘

100𝑘
) ` = 41 

Maximum instrumentation amplifier gain with thermocouple outputs in microvolts; 

 𝑅6 = 𝑅5 = 𝑅4 =  𝑅3 =  𝑅2 =  𝑅1 = 10𝑀Ω 

𝐴 =
𝑉𝑜𝑢𝑡

(𝑉𝑖𝑛2 − 𝑉𝑖𝑛1)
= (1 +

2 𝑅5

𝑅𝑔𝑎𝑖𝑛
 ) (

 𝑅2

 𝑅1
) 

A= (1 +
2∗10𝑀

5𝑘
 ) (

100𝑘

100𝑘
) = 4001 

The overall voltage gain of the instrumentation amplifier is 41. It was concluded upon based on the 

minimum and maximum thermoelectric voltage produced by the thermocouples used in the study. The 

maximum thermoelectric voltage produced by a thermocouple at high temperatures can go up to 100mV 

and 10µV for low temperatures when the reference junction is variable based on the tables generated in 

chapter 4.2 for J, T, R, and E using the polynomial equation of thermocouples. 

The amplified voltage measurements of the thermocouple can be interpreted by the microcontroller 

through Analog to Digital Conversion (ADC), and the maximum output of the amplifier of 4.1V will 

not saturate the microcontroller as it operates at 𝑉𝐶𝐶  equals to 5V. 

 

 

 

 

 

 

 

 

 



43 

 

 

 

4.3.1 Performance of the instrumentation amplifier. 

The performance of the design instrumentation amplifier is presented below. Thermocouple signals are 

amplified by the instrumentation amplifier with a voltage gain of 41. 

 

Figure 4-7  Instrumentation amplifier with Gain =41 

 

Table 4-1 Instrumentation Amplifier Measurements Gain= 41 

Measured on a Fluke 179 DMM multimeter on 

In- Amp input 

Measured on a Fluke 179 DMM 

multimeter on In-Amp Output 

1,84 75,716135 

1,84 75,69666 

2,92 119,782812 

5,69 233,532638 

5,74 235,538645 

5,91 242,442963 

6,79 277,910013 

9,01 369,134193 

9,62 394,483878 

9,74 399,343157 

14,66 601,36053 

17,12 702,05653 

18,04 739,73553 

18,81 771,31127 

19,14 785,99542 
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Figure 4-8 In-Amp performance with Gain of 41 

In Figure 4-8 and Table 4-1, it can be seen that the resulting graph has a slow or gradient of 41, which 

is the desired gain of the instrumentation amplifier for high-temperature measurements. This gain is 

sufficient for temperature measurement for J, T, R, and E thermocouples that are used in this study to 

test the proposed thermocouple signal conditioning system. 

 

4.4 Neural Network design: thermocouple linearization and compensation using a 

neural network 

The proposed study of thermocouple signal conditioning using neural networks involves the design and 

training of neural networks for each of the studied thermocouples using the MATLAB neural network 

toolbox. The selection of the particular neural network structure for use in linearization and 

compensation for the J, T, R, and E-type thermocouples were decided after comparing the generalization 

capability of three different neural types or structures when trained to compensate and linearize the J, 

T, R and E-type thermocouple. Accordingly, subsection 4.4.1 presents results from the MATLAB 

training, and generalization tests carried out during the linearization of the J, T, R, and E-type 

thermocouple using the radial basis function neural network (RBFNN), the Multilayer Perceptron 

(MLP), and the generalized regression neural network (GRNN). The MLP was found to have superior 

accuracy in the generalization of the augmented ITS-90 table of thermocouple types. Consequently, 

subsection 4.4.2 presents results on the MLP augmentation of the J, T, R, and E thermocouple table; 
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and the subsequent pruning of the resulting MLP into a more straightforward neural network 

configuration that retains the initial generalization accuracy. 

A neural network model for thermocouple nonlinear calibration or correction was designed, and this 

section of the report is based on the performance of the trained MLP neural network. To test the neural 

network performance and generalization capability, the network must be tested with unknown input 

vector(s), data that was not used to train the network in order to check the network capability to 

approximate network output based on a given input vector. The neural networks are based on the 

sigmoid symmetric activation function expressed as: 

 

                                              𝑎 =
2

 (1+𝑒𝑥𝑝(−2∗𝑛))−1
                                                          (4.4) 

 

The subsections below will show the resulting performance of the trained neural networks for different 

thermocouple types. The ability of the neural network to predict the unknown data given input data will 

be explored. It is to be noted that all the neural networks RBFN, GRNN, and MLP in this study will use 

be using the sigmoid symmetric activation function. 
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Figure 4-9 Block diagram of ANN design, train, and testing process 
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Figure 4-9 is the block diagram for the ANN design process. AN augmented ITS-90 table is used to get 

neural network training data (inputs and targets). The proposed method of thermocouple signal 

conditioning using a neural network is such that reference junction temperature 𝑇𝑟𝑒𝑓 and thermoelectric 

voltage 𝑉 of thermocouple are used as inputs to the neural network. The neural network will therefore 

approximate the measured junction temperature of the thermocouple. The neural network is given 

vector of input pair: 𝑇𝑟𝑒𝑓, 𝑉 and corresponding output (targets) vector as training data, when the resulted 

performance of the network does not meet the minimum required generalization capability, the neural 

network is redesigned by changing its structure until the desired performance is meet. The neural 

networks are tested for generalization by using a new input pair and output vector that was not used 

during training. Once the performance is met, the network is pruned to optimize the structure but 

keeping the desired generalization and approximation capability of the network. Thereafter the network 

is saved for that particular thermocouple type, and the process is repeated for the next thermocouple 

type. 

4.4.1 Neural network design and training 

A neural network with sufficient nodes can approximate any function, either linear or nonlinear. 

Therefore, due to this property, neural networks are favorites in a variety of applications such as pattern 

recognition, classification, forecasting, process control, and image compression [4]. There are varieties 

of artificial neural network models that are used in function approximation, but the widely used method 

is the MLP [5]. The investigation for the best neural network for thermocouples function approximation 

was conducted with a variety of ANN models. ANN models (MLP, Radial Basis Function Network 

(RBFN), and GRNN) were tested as they all have advantages different from the other; moreover, they 

are all capable of approximating nonlinear functions. All the ANN models as stated above were used in 

this study to get the neural network model suitable for this proposed thermocouple signal conditioning 

system in terms of performance, generalization capability with minimal structure. The neural network 

training on J, T, E, and K-type thermocouple using augmented ITS-90 table showed that both RBFN 

and GRNN have excellent performance but poor generalization (performance on unknown inputs). 

MLP has shown great performance and generalization, and this was consistent with similar conclusions 

reached in reference [6], where it was indicated out that a Multilayer Perceptron is the best in 

approximating nonlinear function relationship between input and output and requires no prior 

knowledge of the nature of the relationship. Therefore, below is the resulting MLP neural network 

structures and their performance for all the sampled thermocouple types in this study. Note the neural 

network structure for thermocouple types J, R, and K is the same, but the performance was acceptable. 
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Figure 4-10 Type E Thermocouple Neural Network structure 

 

 

Figure 4-11 Type J, R, T Thermocouple Neural Network structure 
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The training error of the MLP was significantly better when compared with the other models, and the 

structure of the neural network was less complex in terms of the weights, biases, and hidden layers. 

After trying different parameters of the neural network structure, the above structures were selected 

based on their capability to approximate nonlinear thermocouple behavior. The functions represented 

by xp1, a1, a2, a3, a4, y1, can be found in Appendix G. All the activation functions of the hidden 

layer neurons are using the sigmoid function as discussed in the literature. Figures 4-12 to 4-15 show 

the MLP neural network performance validation. 

 

 

Figure 4-13 Type R: NN training error 

 

 

Figure 4-15 Type T: NN training error 

 

 

 

Figure 4-12 Type J: NN training error 

Figure 4-14 Type E: NN training error 
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4.4.2 MLP neural network pruning 

The results from the comparison showed that the MLP neural network is better than the other models. 

The selection of an MLP was based on its ability to predict future variables given an input vector 

containing earlier observations [6]. The next step involved finding the smallest MLP architecture that 

had sufficient generalization capability without a significant loss of accuracy of generalization. Such 

pruning of the MLP neural network is required to reduce the requisite computational efforts during the 

microcontroller implementation of the conditioning system. The architecture of the MLP can be 

assessed by changing the ANN parameters (weights and biases) by using the pruning methods presented 

in [7]. Through pruning the size of the neural network, a neural network with excellent generalization 

capability was found. Below is the final neural network structure designed for approximating 

thermocouples characteristics. After a few try-and-error-based adjustments to the structure of the 

original MLP, the resulting MLP is shown below. It is to be noted that the pruned MLP has one less 

hidden layer and fewer neurons compared to the previous structure. The four neural networks designed 

and trained for each of the sampled thermocouple types are shown below, and the neural network code 

can be found in Appendix F.1 – F.4. 

 

 

Figure 4-16 Type J Thermocouple neural network Structure with weights and biases 
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Table 4-2 Type J Thermocouple weights and biases 

Neural 

Network 

structure 

Weights & bias 

J-type thermocouple 

Layer 

1 

IW1_1 [8.4116059433555943 0.24998504166793462;7.7618821407004583 

0.23574223459283775;-0.14035704796217244 -

0.0054324299249743366;0.82730426660487533 

0.032056168605518416;-1.2435151945493277 -

0.048195510008488311]; 

 b1 [-3.1957204495991407;-

2.9561682397139184;0.72406991335542414;1.4764589964920209;-

1.0684648875328424]; 

Layer 

2 

IW2_1 [-3.2592248341409715 2.2017835885621695 -2.5112480782549529 

-0.67782740082033965 4.235815603877473;-

0.0044378596620069837 0.0052114000124296733 -

1.8138312924548463 4.8301396746704075 

0.86805536390299598;1.1797553923805919 -6.2642707212977484 

-6.3061012104616241 0.71269149372791518 

12.067872446705174]; 

 b2 [0.42584797930671148;-3.2422037231362473;-

5.0079814593219369]; 

Layer 

3 

IW3_2 [-0.10316553920758917 3.0758300748226701 -

1.9743852642515622]; 

 b3 -0.12383316880726142; 

 

 

 

Figure 4-17 Type J Thermocouple: Neural Network training error with two hidden neurons 
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Figure 4-18 Type R Thermocouple neural network Structure with weights and biases 

 

Table 4-3 Type R Thermocouple weights and biases 

Neural 

Network 

structure 

Weights & bias 

R-type thermocouple 

Laye

r 1 

IW1_

1 

[0.84287323136030500859 0.018122242071165511196;-

1.5415819211474286465 -

0.036442845611267996042;0.51893150481563621312 

0.55958547186916840488;12.097791892917229006 

0.24256080078522010424;-2.0424636603055312811 -

0.81343565318491573013]; 

 b1 [-0.62816907211633221664;-

2.1566234336574550134;0.5854215255023416109;14.546105422277856

078;-2.5510536779032659815]; 

Laye

r 2 

IW2_

1 

[0.18866786531833457108 -2.6137795170890916197 -

0.6818915461680221668 0.19300126142076115543 -

1.3860379609952582225;1.0028383660661703836 -

0.52310283060785423004 -0.0031308887678929671686 

1.3331204748236777924 0.0016872909765237359327;-

0.60297543489860916388 4.6106816087297932683 

0.0073486507975941443502 2.7213707630366901213 -

0.017263229932570837988]; 

 b2 [1.7463276861943701768;0.15812302407012029937;2.99977030914976

51684]; 

Laye

r 3 

IW3_

2 

[-1.3274451226999677278 4.8451543390231632813 -

2.871573546832763224]; 

 b3 -0.19421675529770310309; 
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Figure 4-19 Type R Thermocouple: Neural Network training error with two hidden neurons 

 

 

Figure 4-20 Type T Thermocouple neural network Structure with weights and biases 
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Table 4-4 Type T Thermocouple weights and biases 

Neural Network 

structure 

Weights & bias 

T -Type thermocouple 

Layer 1 IW1_1 [-1.5586173768715507748 -3.7040889002138772668;-

0.3750257030376670242 -

0.024954342663195065721;2.5849882613984238589 

2.5003595047438778032;0.97733814772277016747 

0.065662195869926803793;-0.18957122958990110795 

0.28721656119632360538]; 

 b1 [2.3695910760103582327;0.36978754244053091416;-

0.85569827983045865238;2.7819030466314016437;-

3.0197540598338892259]; 

Layer 2 IW2_1 [-0.00017855947179871590872 -1.1502730738210269479 -

2.7086743883620576406e-05 -1.2287381804824089038 

1.3239839141695035618;-0.00030133687465747565444 

1.6449737756686595436 -0.00016034916663146178131 -

2.2243481202138939423 -0.30197205981002112063;-

2.7975767060876730596 -1.4293430186634754619 

2.3294233919455429316 0.16572495894353161949 

2.7799778295614858692]; 

 b2 [2.2060719753030353374;0.27278875960066123474;-

3.0178356737378679853]; 

Layer 3 IW3_2 [1.6553222656154626957 -2.9687339126940814893 -

0.00033993104445808800364]; 

 b3 -1.1688218164800976417; 

 

 

 

Figure 4-21 Type T Thermocouple: Neural Network training error with two hidden neurons 
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Figure 4-22 Type E Thermocouple neural network Structure with weights and biases 

 

Table 4-5 Type E Thermocouple weights and biases 

Neural 

Network 

structure 

Weights & bias 

E -Type thermocouple 

Layer 

1 

IW1_

1 
[-0.082718985387574398005 -0.0017797274698325242764; 

0.20307244842051216938 -

0.68564276033515336728;0.11342447437015074074 

0.0042783761702323858805;0.44844206616140036559 -

0.62857019254671364639;2.1093442743122237104 

0.053246869763761577043]; 

 b1 [-0.31720603283965898012;2.1743939450111993139;-

0.18750284754824272926;2.6346429925536472005;4.07722354248546459

13]; 

Laye

r 2 

IW2_

1 
[-0.90309850188499263268 -0.16546676903881518683 

1.3156174168202814379 0.36692737126083313504 -

0.44380467096548142925; 

-1.5397599934107104591 0.087035532084973707412 

0.64518315821542837618 -0.28230905642625969687 -

0.056434885334206902341;-5.223420270828670553 

0.54886124833387295308 2.9166625646602191146 -

0.69794018270488922262 1.6839783587996524084]; 

 b2 [-0.79485331974848705272;-0.70391048004113487835;-

0.46256252123350632965]; 

Laye

r 3 

IW3_

2 
[2.8737621175139338447 4.3652518920400620317 

3.6850914744647327304]; 

 b3 0.99012204847402307539; 
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Figure 4-23 Type E Thermocouple: Neural Network training error with two hidden neurons 

 

4.4.3 Generalization of neural networks testing 

The designed neural networks in section 4.4.2 above showed great performance with very low training 

errors with the least error of 0.0083315 for type E thermocouple neural network. In this section, we 

look at the performance of the neural networks given unknown data. The performance indicates the 

accuracy of the neural networks to produce the measured temperature when the error-free reference 

temperature and thermoelectric voltage of the thermocouple is feed as input pair to the network. Data 

from the augmented ITS-90 table that was not used during the training of these neural networks are 

used to test the performance of the neural networks; Appendix H shows the table extracted from the 

augmented ITS-90 and the resulting measured temperature produced by the neural networks. 
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Figure 4-25 Type J: NN generalization error 

 

 

Figures 4-24 to 4-27 show the performance of the designed neural networks for each thermocouple type 

sampled for this study, namely, J, T, R, and E. The neural networks were tested for their generalization 

capabilities using data from the augmented ITS-90 tables not used during the training of the neural 

networks. Each thermocouple type (J, E, T, and R) has one neural network that evaluates thermocouple 

temperature given reference junction temperature from the LM 35 temperature reading and 

thermoelectric voltage of the thermocouple as the neural network input vector. The validation for the 

augmented ITS-90 thermocouple tables showed that the E, T, R, and J thermocouples could all 

reproduce the hot junction temperature within 0.01% of the results found on the ITS-90 tables. The E-

Figure 4-24 Type E: NN generalization error 

Figure 4-26 Type R: NN generalization error Figure 4-27 Type T: NN generalization error 
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type thermocouple neural network has a worst-case error within 0.2% in reproducing the hot junction 

temperature, while the neural network for the type J thermocouple produced a worse case measurement 

error within 0.1% in reproducing the measured junction temperature of the thermocouple. Neural 

networks for type T and R thermocouple showed worse case error within 0.04% in reproducing the hot 

or measured junction temperature, as can be seen from Figures 4-26 and 4-27. 
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5. EXPERIMENTAL WORK, RESULTS AND DISCUSSIONS 

5.1 Introduction 

In this Chapter, all the experimental results from the experiments conducted at the Department of 

Chemical Engineering at the University of Kwa-Zulu Natal using temperature controller or Oven TTM-

004 are presented and examined in detail. 

5.2 Circuit implementation 

In this system, an Atmega32/Arduino Uno microcontroller receives two analog inputs, namely the 

reference temperature and the hot junction temperatures. The amplification of thermocouple voltage(s) 

is achieved through the use of an instrumentation amplifier due to the characteristics of the amplifier 

such as low drift, low DC offset, low noise, very high open-loop gain, etc., as discussed in the amplifier 

section. The microcontroller is programmed with an MLP ANN for thermocouple function 

approximation designed in section 4.4.3 of this study. The code is written in the C programming 

language. The microcontroller program running the MLP neural network computes measured 

temperature given an input vector (reference temperature (°C) and thermocouple voltage (millivolts)), 

the measured temperature is displayed on an LCD or viewed on a PC monitor. 

 

 

Figure 5-1 Flow Chart of the Proposed Software Design 
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Figure 5-1 is the flow chart of the complete software design for computing temperature using a 

thermocouple through artificial intelligence. The system collects data, namely thermocouple reference 

temperature and voltage, check the type of neural network selected through a “select push button “as 

the system has ANN (weights and bias) for each thermocouple type (J, R, E, and T) and runs the correct 

neural network. The controller of the application has an inbuilt ADC that is used to measure reference 

temperature, thermocouple EMF. In the microcontroller, Digital to analog conversion is done to 

compute reference temperature (°C) and get thermoelectric voltage (millivolts), send the input vector 

to the neural network for processing. 

 

 

Figure 5-2 Instrumentation amplifier PCB 

 

Figure 5-2 represents the printed circuit board for the thermocouple thermoelectric voltage (EMF) 

amplifier used in the signal conditioning hardware circuitry. The complete signal conditioning system 

hardware design consists of a power regulator, thermocouple type selection push button(s), and 

amplifier board. 
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5.3 Experimental results 

In this section of the report, experimental results for type T, J, and E thermocouples are presented. This 

experiment was conducted at the University of KwaZulu-Natal Chemical Engineering Laboratory to 

evaluate the theoretical findings/results of this study. In the Chemical Engineering laboratory, there is 

Temperature controller TTM-004 that was used for temperature set points in the measurement. A 

thermocouple is placed inside and through the small opening on the TTM-004 oven/controller, and the 

other ends of the thermocouple are put on the input stage of the instrumentation amplifier for 

amplification of the signal. The output of the instrumentation amplifier is sent to the Arduino Uno. An 

LM35 temperature sensor measures the reference temperature of the thermocouple or surrounding area, 

and for verification purposes, a Fluke infrared thermometer (Infrared Thermometer (IR)-561) was used 

to measure the reference junction temperature and the measured thermocouple temperature inside the 

TTM-004. Fluke IR thermometer was used to compare the result of the signal condition system with a 

well-recognized temperature measuring device which is available in the market. To quantify the 

performance of the designed signal conditioning system, a Fluke IR thermometer is used for data 

collection to formulate facts and uncover patterns in the analysis of the designed system. Figure 5-3 

below shows the experimental setup of the overall system testing. 

 

Figure 5-3 Experimental setups at Chemical Engineering Laboratory 

In this setup, a PC was used to display reference temperature measured by the LM35 and the measured 

thermocouple voltage inside the TTM oven. First, the temperature of the oven is set; once the 

temperature of the TTM oven has reached the set-point, the reference temperature displayed on the PC 

is captured and verified by using Fluke 561 IR thermometer. The measured thermocouple temperature 

is captured from the PC, and simultaneously TTM oven temperature is measured using the IR 

thermometer. The temperature of the TTM-004 controller/oven is varied from 100°C to 350°C for both 

heating and cooling conditions of the controller or oven. After every thermocouple type testing has been 
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conducted, the thermocouple is changed to the next thermocouple type, and the neural network changes 

to the neural network of that thermocouple type. 

5.3.1 Type T thermocouple experimental results and analysis 

The data in Table 5-1 shows temperature measurement evaluated by the signal conditioning system 

when the experiment was conducted. The temperature of the oven was adjusted between 100°C to 

300°C, and the signal conditioning neural network was selected or set for a T-type thermocouple. In 

Table 5-1, the LM 35 reference junction temperature is the temperature reading evaluated by the 

microcontroller subroutine used together with thermocouple thermoelectric voltage readings as input 

vector for the neural network subroutine. 

Table 5-1 Experimental results for TTM-004 temperature (°C) measurement using type T thermocouple 

TTM – 

004 

Signal Conditioning: Neural 

Network 

Infrared (IR) 

Thermometer 

TTM-004 

and NN 

TTM-004 

and IR-561 

Set 

temperature 

LM35 

reference 

temperature 

Temperature 

evaluated by 

neural network 

Reference 

temperature 

Measured 

temperature  

Percentage 

error 

Percentage 

error 

100 23.587 100.755 23.2 99 0,75% 1,00% 

125 24.206 125.627 23.6 122 0,50% 2,40% 

150 24.375 150.168 23.8 145 0,11% 3,33% 

175 24.15 176.994 23.9 168 1,14% 4,00% 

200 24.506 202.23 24.1 192 1,11% 4,00% 

225 24.806 223.343 24.2 236 0,74% 4,89% 

250 24.694 250.438 24.6 252.7 0,18% 1,08% 

275 24.994 277.323 24.9 260 0,84% 5,45% 

300 24.9 297.049 25.1 314 0,98% 4,67% 

275 24.812 276.045 25 266 0,38% 3,27% 

250 24.711 255.084 24.8 251 2,03% 0,40% 

200 24.543 201.044 24.4 199 0,52% 0,50% 

140 24.075 139.934 23.5 141 0,05% 0,71% 

162 24.113 162.38 23.9 155 0,23% 4,32% 
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Figure 5-4 Type T: Temperature evaluated by neural network and TTM-004 Oven 

   

Figure 5-4 shows the plot of temperature evaluated by signal conditioning system neural network 

subroutine and temperature of the TTM-004 temperature controller. As can be seen in Table 5-1, the 

designed thermocouple signal condition system using a neural network accurately evaluates the 

temperature of the TTM-004 controller within 2% of the temperature of the TTM-004. Temperature 

measurement using Fluke IR thermometer shows an error within 5% of the readings recorded by the 

TTM-004 controller. It appears that the measurement of TTM-004 controller temperature using the 

designed neural network has high-quality results as compared to the commercial Fluke 561 IR 

thermometer. 
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5.3.2 Type J thermocouple experimental results and analysis 

In this section, the experimental results obtained during the evaluation of the thermocouple-designed 

signal conditioning system using neural networks for type J thermocouples are presented and discussed. 

The temperature of the oven or TTM-004 controller was adjusted from 150°C to 300°C, and the neural 

network for type J thermocouple was selected. 

 

Table 5-2 Experimental results for TTM-004 temperature (°C) measurement using type J thermocouple 

TTM – 004 Signal Conditioning: 

Neural Network (NN) 

Infrared (IR) Thermometer TTM-004 

and NN 

TTM-004 and 

IR-561 

Set 

temperature 

LM35 

reference 

temperature 

Temperature 

evaluated by 

neural 

network 

Reference 

temperature 

Measured 

temperature  

Percentage 

error 

Percentage 

error 

150 22.701 151.823 22.7 149 1,22% 0,67% 

175 22.83 172.078 23 164.5 1,67% 6,00% 

200 23.06 192.789 22.9 187 3,61% 6,50% 

225 23.006 219.801 23.3 230 2,31% 2,22% 

250 23 246.845 23.3 262 1,26% 4,80% 

275 20.925 273.183 20.4 280 0,66% 1,82% 

300 21.337 295.852 20.6 323 1,38% 7,67% 

275 21.769 282.864 21 279 2,86% 1,45% 

250 22.106 256.12 21.3 253 2,45% 1,20% 

225 22.086 226.7 22.2 229 0,76% 1,78% 

200 22.612 195.806 22.4 202 2,10% 1,00% 

175 21.113 174.242 21.8 162 0,43% 7,43% 

150 21.433 152.369 22.9 151 1,58% 0,67% 
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Figure 5-5 Type J: Temperature evaluated by neural network and TTM-004 Oven 

 

Table 5-2 shows data recorded during the experimental test of the type J thermocouple signal 

conditioning using a neural network. The data shown in the table is the temperature measurement of the 

TTM-004 controller using the designed signal conditioning neural network for type J thermocouple and 

Fluke IR 561 thermometer. A plot of temperature evaluated by the designed type J neural network and 

TTM-004 temperature controller is shown in Figure 5-5. Moreover, Table 5-2 shows the percentage 

error of the temperature evaluated by TTM-004 and neural network and the error between TTM-004 

and IR thermometer. From Table 5-2, it can be seen that temperature measurements evaluated by the 

signal conditioning system for type J thermocouple are within 4% of the readings from the TTM-004 

oven. While the measurements evaluated using the Fluke IR thermometer are within 8% of the TTM-

004 controller. The results above indicate that the designed signal conditioning system using a neural 

network has improved accuracy as compared to the Fluke 561 IR. 

 

 

 

 

 

 

 

 

 

 

 



67 

 

 

 

5.3.3 Type E thermocouple experimental results and analysis 

Experimental work was undertaken using standard ovens at the Department of Chemical Engineering 

of the University of Kwa-Zulu Natal to validate the theoretical results for the E-type thermocouple 

signal conditioning system using neural networks.  

 

Table 5-3 Experimental results for TTM-004 temperature (°C) measurement using type E thermocouple 

TTM – 004 Signal Conditioning: Neural 

Network (NN) 

Infrared (IR) 

Thermometer 

TTM-004 

and NN 

TTM-004 

and IR-561 

Set 

temperature 

LM35 

reference 

temperature 

Temperature 

evaluated by 

neural network 

Reference 

temperature 

Measured 

temperature  

Percentage 

error 

Percentage 

error 

150 22.316 148.779 22.4 158 0,81% 5,33% 

175 23.309 176.877 22.9 181 1,07% 3,43% 

200 23.212 200.317 23.1 199.5 0,16% 0,25% 

225 23.88 223.309 23.9 215 0,75% 4,44% 

250 23.719 247.761 23.4 238 0,90% 4,80% 

275 24.056 271.328 23.7 262 1,34% 4,73% 

300 24.15 291.061 23.8 282 2,98% 6,00% 

350 24.169 347.22 23.6 335 0,79% 4,29% 

275 24.023 277.309 24.1 286 0,84% 4,00% 

250 23.911 252.744 24.3 243 1,10% 2,80% 

200 23.946 201.123 24.1 208 0,56% 4,00% 

175 24.104 174.485 24.3 169 0,29% 3,43% 

150 23.122 151.286 23.4 144 0,86% 4,00% 
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Figure 5-6 Type E: Temperature evaluated by neural network and TTM-004 Oven 

 

Figure 5-6 shows the plot of the temperature of the TTM-004 evaluated by the signal 

conditioning neural network for the type E thermocouple. Table 5-3 shows temperature 

measurement results obtained during the experimental test conducted to test the study of enhancing 

measurement accuracy of thermocouples using neural networks. The TTM-004 temperature controller 

was varied from 150°C to 350°C, and the table shows the recorded data during the experiment. From 

Table 5-3, it can be seen that the TTM-004 controller temperature was evaluated to be within 3% by 

the neural network for the E-type thermocouple. The measurement of the TTM-004 oven temperature 

was evaluated to be within 6% by the Fluke IR 561. Therefore, it is evident that the neural network for 

the type T thermocouple produced high measurement accuracy compared to the Fluke 561 IR 

thermometer. 

 

5.4 Results analysis and conclusion 

The use of the neural network in thermocouple temperature measurement accuracy enhancement was 

explored by designing and testing a microcontroller-based thermocouple signal conditioning system 

using neural networks.  The results of the experimental study indicated that neural networks could be 

used in thermocouple measurement accuracy enhancement with the thermocouple subjected to both 

random variations in the reference junction temperature and nonlinearities. From the experimental 

results, the neural networks for each thermocouple type (T, J, and E) all had better performance 

compared to a commercially available infrared thermometer (Fluke 561 IR) with 2%, 4%, and 3%, 

respectively. Therefore, it is evident from the results that the designed thermocouple signal conditioning 

system is capable of enhancing temperature measurement accuracy. 
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6. CONCLUSION AND RECOMMANDATIONS 

6.1 Introduction  

The closing comments on the study are presented in this chapter, providing an overview and conclusion 

of the research. The study is examined in terms of both its contribution to the field and its limitations. 

Recommendations are made with regard to aspects that could be explored in future research, especially 

within the context of thermocouple cold junction compensation in enhancing temperature measurement 

using thermocouples.  

 

6.2 Conclusion 

The purpose of this research was to study the enhancement of the accuracy of thermocouple temperature 

measurement subjected to both random variations in the reference junction temperature and 

nonlinearities. Based on the analysis conveyed, it can be concluded that a neural network-based signal 

conditioning system is capable of enhancing the accuracy of thermocouple temperature measurement 

subjected to variations in the reference junction of the thermocouple. The microcontroller-based 

thermocouple signal conditioning system using a neural network showed high-quality measurement 

accuracy compared to a commercially available Fluke 561 thermometer for the three thermocouples 

sampled for this study. The temperature adjustments for the oven often took several hours to reach their 

steady-state values. Steady-state oven, hence thermocouple hot junction temperatures, were 

simultaneously monitored using the existing oven temperature sensor, one commercially available 

infrared thermometer, and the thermoelectric output voltage of the thermocouple. The settings on the 

external switch provided the information used by the microcontroller to select the neural network 

subroutine for the thermocouple being tested. By calling the appropriate subroutine with thermoelectric 

voltage produced by the corresponding thermocouple, together with the LM 35 cold junction readings, 

the microcontroller returns the hot junction temperature reading corresponding to the measured 

thermoelectric voltage. The experimental results showed that the temperature of the TTM-004 

controller or oven was evaluated to within 2% by type T neural network and within 5% of the readings 

recorded using Fluke IR 561. Similarly, the experimental results for the J-type thermocouple neural 

network showed that the temperature readings for the evaluated temperature of the TTM-004 oven were 

within 4%, and the readings by the Fluke IR 561 were within 8% of the TTM-004 controller 

temperature. Lastly, the experimental results showed that, for the E-type thermocouple neural network, 

temperature readings of TTM-004 temperature were evaluated by the designed neural network to within 

3% and within 6% of the readings recorded by the Fluke 561 IR thermometer. 
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6.3 Recommendations for further study 

Further studies and investigations can be conducted in the following areas: 

 Development of high accuracy instrumentation amplifier to improve the accuracy of 

thermocouple thermoelectric voltage readings by the microcontroller. 

 Selection of cold or reference junction voltage to temperature sensor used for reading the 

reference junction temperature of the thermocouple.  
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Appendix A 

 

 

 

 

 

 

 

 

 

Range coefficients Range coefficients Range coefficients Range coefficients

-2.81038625251000e-27 -2.75129016730000e-20 -3.46578420130000e-29 1.56317256970000e-23

1.57716482367000e-23 4.54791352900000e-17 -5.58273287210000e-26 -1.25383953360000e-19

-3.73105886191000e-20 -3.08157587720000e-14 -3.96736195160000e-23 2.09480906970000e-16

5.00777441034000e-17 1.09968809280000e-11 -1.64147763550000e-20 -1.70529583370000e-13

-4.62347666298000e-14 -2.18822568460000e-09 -4.39794973910000e-18 1.32281952950000e-10

3.56916001063000e-11 2.06182434040000e-07 -8.03701236210000e-16 -8.56810657200000e-08

-2.38855693017000e-08 3.32922278800000e-05 -1.02876055340000e-13 3.04758369300000e-05

1.39166589782000e-05 0.0387481063640000 -9.32140586670000e-12 0.0503811878150000

0.00528961729765000 0 -5.94525830570000e-10 0

0 7.97951539270000e-31 -2.58001608430000e-08 -3.06913690560000e-13

-2.93359668173000e-16 1.39450270620000e-27 -7.79980486860000e-07 1.57208190040000e-09

2.05305291024000e-12 1.07955392700000e-24 4.54109771240000e-05 -3.18476867010000e-06

-7.64085947576000e-09 4.87686622860000e-22 0.0586655087080000 0.00317871039240000

1.59564501865000e-05 1.42515947790000e-19 0 -1.49761277860000

-0.00252061251332000 2.82135219250000e-17 3.59608994810000e-28 296.456256810000

2.95157925316000 3.84939398830000e-15 -1.43880417820000e-24

3.60711542050000e-13 2.14892175690000e-21

2.26511565930000e-11 -1.25366004970000e-18

9.01380195590000e-10 -1.91974955040000e-16

2.00329735540000e-08 6.50244032700000e-13

1.18443231050000e-07 -3.30568966520000e-10

4.41944343470000e-05 2.89084072120000e-08

0.0387481063640000 4.50322755820000e-05

0 0.0586655087100000

0

Thermocouple functional Coefficeints - reference function on ITS-90 

Type R Type T Type E Type J

  1064.18 to 1664.5

-210 to 7600 to 400

-270 to 0

760 to 1200

0 to 1000

-270 to 0

 -50 to 1064
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Appendix B 

 

%=========-Type K Thermocouples Coefficients in mV-------------- 
% % %------------- Type K -270 to 0--------------------- 
% C=[-0.163226974860E-22 -0.198892668780E-19 -0.104516093650E-16 -0.310888728940E-14 

-0.574103274280E-12 -0.675090591730E-10... 
% -0.499048287770E-8 -0.328589067840E-6 0.236223735980E-4 0.394501280250E-1 

0.000000000000E0]; 
% Th=randi([-270 0],[1 500]); 
% Tc=randi([-10 20],[1 500]); 
% %------------- Type K 0 to 1372------------------- 
% C=[-0.121047212750E-25 0.971511471520E-22 -0.320207200030E-18... 
% 0.560750590590E-15 -0.560728448890E-12 0.318409457190E-9... 
% -0.994575928740E-7 0.185587700320E-4 0.389212049750E-1 -0.176004136860E-1]; 
% Th=randi([0 1372],[1 2000]); 
% Tc=randi([-10 30],[1 2000]); 
% 
% a0 = 0.118597600000E+00; a1= -0.118343200000E-03; a2=0.126968600000E+03; 
%End-=========-Type K Thermocouples Coefficients in mV-------------- 
%--=========-Type J Thermocouples Coefficients in mV-------------- 
%------------- Type J -210 to 760 
% C=[ 0.15631725697E-22 -0.12538395336E-18 0.20948090697E-15 -0.17052958337E-12... 
% 0.13228195295E-9 -0.8568106572E-7 0.3047583693E-4 0.50381187815E-1 0 ]; 
% Th=randi([-210 760],[1 1500]); 
% Tc=randi([-10 20],[1 1500]); 
% %--------------Type J 760 to 1200-------------- 
% C=[-0.306913690560E-12 0.157208190040E-8 -0.318476867010E-5... 
% 0.317871039240E-2 -0.149761277860E1 0.296456256810E3]; 
% Th=randi([760 1200],[1 500]); 
% Tc=randi([-10 20],[1 500]); 
%-End-=========-Type J Thermocouples Coefficients in mV-------------- 
%-----------Type T Thermocouples Coefficients in mV-------------- 
% %------------ Type T 0.00 to 400--------- 
% C=[-0.275129016730E-19 0.454791352900E-16 -0.308157587720E-13 0.109968809280E-10 -

0.218822568460E-08... 
% 0.206182434040E-06 0.332922278800E-04 0.387481063640E-01 0.000000000000E+00]; 
% Th=randi([0 400],[1 2000]); 
% Tc=randi([-10 30],[1 2000]); 
%--------------Type T -270 to 0 ---------- 
% C=[ 0.797951539270E-30 0.139450270620E-26 0.107955392700E-23 0.487686622860E-21... 
% 0.142515947790E-18 0.282135219250E-16 0.384939398830E-14 0.360711542050E-12... 
% 0.226511565930E-10 0.901380195590E-9 0.200329735540E-7 0.118443231050E-6... 
% 0.441944343470E-4 0.387481063640E-1 0.000000000000E0]; 
% Th=randi([-270 0],[1 500]); 
% Tc=randi([-10 20],[1 500]); 
%End=====--------Type T Thermocouples Coefficients in mV-------------- 
%-----------Type B Thermocouples Coefficients in mV-------------- 
% %--------------- Type B 0 to 630-------------------- 
% C=[0.629903470940E-18 -0.169445292400E-14 0.156682919010E-11 -0.132579316360E-08 

0.590404211710E-05... 
% -0.246508183460E-03 0.000000000000E+00]; 
% Th=randi([0 630],[1 2000]); 
% Tc=randi([-10 30],[1 2000]); 
%%-------------------Type B 630 to 1820-------------------- 
% C=[-0.937913302890E-24 0.989756408210E-20 -0.445154310330E-16 0.111097940130E-

12... 
% -0.168353448640E-09 0.157852801640E-06 -0.848851047850E-04 0.285717474700E-01 -

0.389381686210E+01]; 
% Th=randi([630 1820],[1 500]); 
% Tc=randi([-10 20],[1 500]); 
%End-----------Type B Thermocouples Coefficients in mV-------------- 
%-----------Type R Thermocouples Coefficients in mV-------------- 
% %--------------- Type R -50 to 1064-------------------- 
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% C=[-0.281038625251E-26 0.157716482367E-22 -0.373105886191E-19 0.500777441034E-

16... 
% -0.462347666298E-13 0.356916001063E-10 -0.238855693017E-07 0.139166589782E-04 

0.528961729765E-02 0]; 
% Th=randi([-50 1063],[1 2000]); 
% Tc=randi([-10 30],[1 2000]); 
% %--------------- Type R 1064 to 1664-------------------- 
% C=[-0.293359668173E-15 0.205305291024E-11 -0.764085947576E-08 0.159564501865E-

04... 
% -0.252061251332E-02 0.295157925316E+01]; 
% Th=randi([1063 1664],[1 250]); 
% Tc=randi([-10 20],[1 250]); 
% %--------------- Type R 1664.5 to 1768-------------------- 
% C=[ -0.934633971046E-14 -0.345895706453E-07 0.171280280471E-03... 
% -0.268819888545E+00 0.152232118209E+03]; 
% Th=randi([1665 1768],[1 250]); 
% Tc=randi([-10 20],[1 250]); 
%End-----------Type R Thermocouples Coefficients in mV-------------- 
% Th=randi([0 300],[1 10]); 
% Tc=[0,0,0,0,0,0,0,0,0,0]; 

 
%_______________________________________________________ 
%-----------Type E Thermocouples Coefficients in mV-------------- 
%--------Type E -270 to 0 ----------------------- 
% C =[-0.346578420130E-28 -0.558273287210E-25 -0.396736195160E-22 -0.164147763550E-

19 -0.439794973910E-17... 
% -0.803701236210E-15 -0.102876055340E-12 -0.932140586670E-11 -0.594525830570E-09 -

0.258001608430E-07... 
% -0.779980486860E-06 0.454109771240E-04 0.586655087080E-01 0.000000000000E+00]; 
% Th=randi([-270 0],[1 500]); 
% Tc=randi([-10 30],[1 500]); 
%--------Type E 0 to 1000 ----------------------- 
C=[ 0.359608994810E-27 -0.143880417820E-23 0.214892175690E-20 -0.125366004970E-17 -

0.191974955040E-15 0.650244032700E-12... 
  -0.330568966520E-09 0.289084072120E-07 0.450322755820E-04 0.586655087100E-01 

0.000000000000E+00]; 
  Th=randi([0 1000],[1 1500]); 
  Tc=randi([-10 30],[1 1500]); 
%Data=xlsread('TC_Data','R'); 
%Th=Data(:,1); 
%Tc=zeros(33,1); 
%Vm = c1*((Th).^(1) - (Tc).^(1)) + c2*((Th).^(2) - (Tc).^(2)) + c3*((Th).^(3) - 

(Tc).^(3))+c4*((Th).^(4) - (Tc).^(4))+c5*((Th).^(5) - (Tc).^(5))+c6*((Th).^(6) - 

(Tc).^(6))+c7*((Th).^(7) - (Tc).^(7))+c8*((Th).^(8) - (Tc).^(8))+c9*((Th).^(9) - 

(Tc).^(9))+c10*((Th).^(10) - (Tc).^(10))+c11*((Th).^(11) - 

(Tc).^(11))+c12*((Th).^(12) - (Tc).^(12))+c13*((Th).^(13) - 

(Tc).^(13))+c14*((Th).^(14) - (Tc).^(14)); 

 
%Th=Th'; 
%Tc=Tc'; 
Vm= polyval(C,Th)- polyval(C,Tc); 
C_Set=C'; 
Data_set=[Vm',Tc',Th']; 
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Appendix C 

Thermocouple Measurement with varying cold junction temperature 

Type R Type T Type E Type J 

EMF (mV) T_ref T_hot EMF 

(mV) 

T_ref T_hot EMF 

(mV) 

T_ref T_hot EMF 

(mV) 

T_ref T_hot 

6,8347 -4 706 13,6620 10 286 -10,2771 17 -220 30,4656 12 565 

4,1981 29 490 1,3361 6 39 -1,1561 2 -18 25,0432 -2 456 

-0,2020 25 -12 18,5916 5 366 -4,5785 -5 -92 -7,9445 -3 -210 

0,4258 10 77 14,6466 26 314 -6,0805 29 -82 15,3597 -5 278 

0,1690 6 35 1,7188 19 60 -3,7120 13 -53 41,6846 8 747 

5,9179 -5 627 6,7871 21 168 -7,7815 -2 -168 -8,4316 9 -204 

1,4050 27 210 19,3723 10 382 -8,8988 0 -203 -8,0680 18 -171 

0,7592 -10 108 2,8986 6 75 -7,8950 -7 -181 -6,0043 19 -110 

4,9262 -3 540 3,7105 25 109 -1,2954 17 -5 19,7584 14 375 

10,3052 3 986 0,8299 0 21 -10,5518 28 -204 -7,4097 8 -166 

6,0483 -8 637 2,8089 -10 59 -7,5329 -4 -164 9,8584 17 199 

6,9825 -5 718 1,5485 -7 32 -10,8159 17 -263 6,8802 6 135 

1,4611 19 211 13,0847 23 285 -4,6001 22 -60 25,3509 4 467 

1,2452 9 180 -0,0820 30 28 -8,7989 26 -150 7,7197 -3 142 

-0,0625 3 -9 9,4314 10 210 -10,1807 10 -239 4,8811 13 105 

6,6064 -1 688 15,2891 7 312 -0,2943 5 0 24,0390 8 447 

4,5919 8 515 0,4052 18 28 -5,7675 20 -86 19,9222 -10 356 

4,3892 -3 491 12,9332 -2 265 -7,7872 8 -151 0,6671 10 23 

9,3041 3 909 8,1954 -7 174 -10,2059 13 -229 7,2078 19 153 

10,8381 0 1025 6,7951 8 158 -8,6251 3 -186 -0,8527 5 -12 

7,7660 24 796 11,3740 5 242 -6,4136 1 -126 1,7064 8 41 

1,5843 18 224 20,8489 -1 399 -8,5430 19 -154 33,1979 12 612 

6,7622 3 703 1,2487 21 51 -1,0727 -10 -29 11,4517 -9 204 

7,8173 13 795 2,1571 29 79 -10,3829 16 -229 23,5892 -5 427 

5,6122 1 603 18,3896 -7 355 -6,5185 -2 -133 15,7391 17 305 

8,7729 0 866 0,1214 21 24 -4,9539 16 -74 38,3586 14 699 

10,2685 0 982 1,4361 -3 33 -4,0187 1 -73 5,0098 19 113 

6,1795 17 660 11,5114 -10 234 -4,3560 25 -52 7,5090 -1 140 

-0,2009 11 -29 0,3556 6 15 -4,7996 6 -83 27,3646 16 514 
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1,1187 -7 155 1,8467 -5 41 -7,3934 19 -124 33,9913 15 628 

-0,0633 -8 -21 6,7783 11 160 -9,5924 1 -235 -8,3967 15 -189 

10,3871 0 991 9,6216 12 215 -7,6328 6 -150 33,7732 3 614 

4,3086 8 489 2,9215 18 86 -6,8507 1 -137 31,2890 6 574 

8,3784 1 835 5,9132 25 154 -5,1177 13 -81 16,3514 18 317 

3,9245 17 458 19,1706 -10 366 -6,7304 5 -128 10,9845 8 211 

4,3127 28 500 5,7448 18 145 -8,7481 -5 -209 20,9150 -10 374 

3,5412 21 424 9,0033 30 217 -6,7115 -4 -141 6,1874 -2 115 

9,6708 16 943 1,8463 30 73 -10,9108 19 -259 30,2325 -6 545 

9,3890 20 923 5,6959 8 136 -2,7872 0 -50 -5,8689 11 -117 

6,1040 20 655 17,1233 4 341 -10,6006 24 -216 12,7845 -9 228 

2,0827 14 275 18,8125 30 386 -6,2424 -4 -129 28,8724 3 529 

2,0329 21 274 9,7401 9 215 -4,9634 17 -73 21,1248 11 397 

1,6425 6 223 18,0423 2 355 -9,7035 -1 -255 -8,4303 7 -209 

7,0710 14 734 14,6673 5 300 -8,4377 16 -156 -7,5035 -5 -194 

8,0979 0 812 2,6786 -10 56 -9,8849 3 -249 13,0123 -8 233 

8,7676 1 866 -0,3522 10 1 -7,0280 8 -131 0,5038 -5 5 

8,5978 -10 848 16,0485 -5 317 -7,0430 18 -117 7,9595 1 150 

1,7355 4 232 9,5304 2 206 -8,8237 4 -191 10,8619 18 218 

8,4848 -5 841 3,9066 0 92 -2,1012 2 -35 -7,1234 11 -152 

6,1365 6 651 14,2078 -10 282 -5,0395 20 -71 7,8751 -5 143 

1,5517 -4 207 11,7439 21 260 -6,1179 22 -91 7,6260 13 155 

3,0111 23 374 17,0292 17 348 -1,2308 11 -10 4,1935 2 82 

3,8645 20 454 5,9225 6 139 -1,5923 -2 -30 37,3998 11 681 

4,5788 -6 507 5,4206 10 132 -1,3895 5 -19 13,7217 0 253 

4,9150 23 552 4,4949 15 117 -4,9830 14 -77 -2,0763 7 -35 

2,7410 -1 334 0,3875 -5 5 -11,0493 23 -248 3,0598 20 78 

2,1812 -6 274 4,8063 1 112 -8,4661 -7 -202 32,3036 10 595 

7,0419 17 733 16,4472 24 343 -9,3883 21 -176 20,4317 17 390 

10,2093 29 990 1,4762 25 60 -3,0628 25 -28 23,6745 1 434 

5,5799 23 611 10,7245 -8 221 -5,5151 24 -76 21,0349 3 388 

5,6149 15 610 0,5603 10 24 -10,3991 27 -200 1,6075 12 43 

7,5910 3 772 16,2080 24 339 -9,9018 6 -236 34,2711 20 637 

3,0428 1 365 18,9354 27 386 -5,0801 26 -65 -8,1984 4 -205 

3,9380 7 454 4,3581 22 120 -3,4230 9 -52 7,6790 0 144 
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4,6356 4 517 2,7564 30 93 -8,2754 -9 -199 19,4579 8 364 

10,1542 25 984 18,7639 13 374 -4,6787 29 -54 37,7287 13 688 

4,0059 -10 452 17,3480 -8 337 -8,1311 12 -154 12,6164 1 234 

6,1737 18 660 15,8317 -7 312 -1,7682 1 -30 11,0353 -4 201 

4,0344 3 461 8,2514 30 203 -3,6596 6 -60 23,1772 1 425 

5,1894 2 566 10,7598 8 233 -8,9757 3 -199 29,5946 -8 532 

-0,1142 16 -5 10,1493 26 235 -10,4445 22 -214 8,3003 3 158 

8,3312 27 843 6,5435 27 168 -7,3496 -10 -169 11,8869 11 230 

6,5725 26 698 15,7059 29 334 -4,1749 20 -54 22,4229 5 415 

1,0633 30 173 1,7257 21 62 -9,7737 14 -205 26,9519 12 503 

-0,1214 -8 -34 0,6237 28 43 -4,2583 17 -59 22,1742 -1 405 

7,9759 -5 800 9,0995 17 209 -10,1035 24 -195 29,6583 11 550 

5,2092 30 582 9,6671 19 221 -6,1082 -7 -130 -8,2372 18 -177 

6,5199 -7 678 2,8804 -5 65 -9,8613 18 -199 -5,7129 11 -113 

6,1388 18 657 2,6942 -7 59 -5,6073 4 -103 -6,8217 -6 -170 

7,3998 28 768 1,1827 -6 24 -8,7412 20 -158 -3,1700 10 -55 

9,7201 -5 938 7,6795 5 173 -8,0991 -5 -184 33,0520 1 600 

6,4899 26 691 7,9206 29 196 -9,6535 19 -189 17,8992 5 333 

0,5814 -10 84 -0,0779 4 2 -6,5719 -9 -145 -2,2036 2 -43 
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Appendix D 

Thermocouple Measurement with reference junctions at 0 °C 

Type R Type T Type E Type J 

EMF (mV) T_ref T_hot EMF (mV) T_ref T_hot EMF (mV) T_ref T_hot EMF (mV) T_ref T_hot 

10,8381 0 1025 0,8299 0 21 -8,8988 0 -203 13,7217 0 253 

8,7729 0 866 3,9066 0 92 -2,7872 0 -50 7,6790 0 144 

10,2685 0 982 3,4484 0 82 -9,3314 0 -223 -2,9384 0 -61 

10,3871 0 991 20,1934 0 389 -3,1520 0 -57 5,0517 0 96 

8,0979 0 812 7,5146 0 166 -7,8987 0 -168 34,0426 0 616 

1,0410 0 150 3,9066 0 92 -7,6996 0 -162 -1,0437 0 -21 

1,4157 0 194 14,1680 0 288 -5,1919 0 -99 35,2903 0 637 

2,3908 0 299 0,3516 0 9 -9,2135 0 -217 5,2146 0 99 

-0,0906 0 -18 14,0529 0 286 -8,5609 0 -190 -0,7486 0 -15 

1,0990 0 157 11,2922 0 237 -8,3328 0 -182 41,5180 0 738 

2,6066 0 321 3,8604 0 91 73,8886 0 967 14,7204 0 271 

0,0268 0 5 20,0704 0 387 53,3513 0 703 22,7308 0 416 

7,6679 0 777 13,7661 0 281 8,1007 0 126 -2,8013 0 -58 

0,0654 0 12 0,5495 0 14 5,7145 0 91 22,0135 0 403 

8,0979 0 812 0,0776 0 2 69,1705 0 905 36,3726 0 655 

10,1110 0 970 20,0704 0 387 49,0355 0 649 2,4269 0 47 

5,2449 0 570 20,5015 0 394 51,3573 0 678 -0,3012 0 -6 

1,7752 0 234 16,1501 0 322 25,4397 0 356 -3,4779 0 -73 

0,7692 0 116 10,0916 0 215 4,6565 0 75 -2,0081 0 -41 

3,0990 0 370 19,4570 0 377 5,5145 0 88 1,0191 0 20 

5,5154 0 594 4,5133 0 105 23,7007 0 334 -3,0294 0 -63 

6,9922 0 721 2,4682 0 60 25,5983 0 358 0,0504 0 1 

7,3765 0 753 3,4939 0 83 41,5383 0 556 22,8964 0 419 

9,8238 0 948 14,5720 0 295 71,5394 0 936 41,2014 0 733 

0,3030 0 51 20,5015 0 394 62,1924 0 815 28,3469 0 517 

2,0834 0 267 3,9991 0 94 64,9995 0 851 23,7249 0 434 

1,9141 0 249 3,4030 0 81 24,4898 0 344 37,8961 0 680 
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3,7530 0 433 4,3722 0 102 25,3604 0 355 38,3269 0 687 

1,4421 0 197 19,8861 0 384 53,7492 0 708 13,0000 0 240 

9,6163 0 932 6,2552 0 141 37,0863 0 501 13,0000 0 240 

1,1661 0 165 15,9733 0 319 70,8537 0 927 42,7270 0 757 

-0,0906 0 -18 7,3105 0 162 25,2812 0 354 37,7121 0 677 

10,8114 0 1023 6,6540 0 149 66,7824 0 874 -2,7553 0 -57 

8,6468 0 856 12,8559 0 265 48,4737 0 642 2,6382 0 51 

2,9872 0 359 1,6538 0 41 42,7514 0 571 0,9677 0 19 

5,2449 0 570 19,2737 0 374 49,1959 0 651 -3,6104 0 -76 

5,0994 0 557 7,3614 0 163 37,4100 0 505 4,0252 0 77 

9,7589 0 943 4,9405 0 114 7,7541 0 121 35,4698 0 640 

6,6247 0 690 11,7350 0 245 3,3013 0 54 40,3190 0 719 

5,7087 0 611 17,3387 0 342 54,8618 0 722 27,1688 0 496 

7,4612 0 760 12,4614 0 258 47,7507 0 633 -0,6000 0 -12 

1,0990 0 157 16,3274 0 325 11,4418 0 173 3,6495 0 70 

2,3714 0 297 2,4245 0 59 12,3167 0 185 42,4717 0 753 

10,7847 0 1021 3,0875 0 74 65,2326 0 854 33,8656 0 613 
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Appendix E 

Thermocouple Measurement with varying cold junction temperature 

Type R Type T Type E Type J 

EMF 

(mV) 

ITS-90 

(mV) 

T_hot EMF 

(mV) 

ITS-90 

(mV) 

T_hot EMF 

(mV) 

ITS-90 

(mV) 

T_hot EMF 

(mV) 

ITS-90 

(mV) 

T_hot 

10,8381 10,838 1025 0,8299 0,83 21 -8,8988 -8,899 -203 13,7217 13,722 253 

8,7729 8,773 866 3,9066 3,907 92 -2,7872 -2,787 -50 7,6790 7,679 144 

10,2685 10,268 982 3,4484 3,448 82 -9,3314 -9,331 -223 -2,9384 -2,938 -61 

10,3871 10,387 991 20,1934 20,193 389 -3,1520 -3,152 -57 5,0517 5,052 96 

8,0979 8,098 812 7,5146 7,515 166 -7,8987 -7,899 -168 34,0426 34,043 616 

1,0410 1,041 150 3,9066 3,907 92 -7,6996 -7,7 -162 -1,0437 -1,044 -21 

1,4157 1,416 194 14,1680 14,168 288 -5,1919 -5,192 -99 35,2903 35,29 637 

2,3908 2,391 299 0,3516 0,352 9 -9,2135 -9,214 -217 5,2146 5,215 99 

-0,0906 -0,091 -18 14,0529 14,053 286 -8,5609 -8,561 -190 -0,7486 -0,749 -15 

1,0990 1,099 157 11,2922 11,292 237 -8,3328 -8,333 -182 41,5180 41,518 738 

2,6066 2,607 321 3,8604 3,86 91 73,8886 73,889 967 14,7204 14,72 271 

0,0268 0,027 5 20,0704 20,07 387 53,3513 53,351 703 22,7308 22,731 416 

7,6679 7,668 777 13,7661 13,766 281 8,1007 8,101 126 -2,8013 -2,801 -58 

0,0654 0,065 12 0,5495 0,549 14 5,7145 5,714 91 22,0135 22,014 403 

8,0979 8,098 812 0,0776 0,078 2 69,1705 69,171 905 36,3726 36,373 655 

10,1110 10,111 970 20,0704 20,07 387 49,0355 49,035 649 2,4269 2,427 47 

5,2449 5,245 570 20,5015 20,502 394 51,3573 51,357 678 -0,3012 -0,301 -6 

1,7752 1,775 234 16,1501 16,15 322 25,4397 25,44 356 -3,4779 -3,478 -73 

0,7692 0,769 116 10,0916 10,092 215 4,6565 4,656 75 -2,0081 -2,008 -41 

3,0990 3,099 370 19,4570 19,457 377 5,5145 5,514 88 1,0191 1,019 20 

5,5154 5,515 594 4,5133 4,513 105 23,7007 23,701 334 -3,0294 -3,029 -63 

6,9922 6,992 721 2,4682 2,468 60 25,5983 25,598 358 0,0504 0,05 1 

7,3765 7,376 753 3,4939 3,494 83 41,5383 41,538 556 22,8964 22,896 419 

9,8238 9,824 948 14,5720 14,572 295 71,5394 71,539 936 41,2014 41,201 733 

0,3030 0,303 51 20,5015 20,502 394 62,1924 62,192 815 28,3469 28,347 517 

2,0834 2,083 267 3,9991 3,999 94 64,9995 65 851 23,7249 23,725 434 

1,9141 1,914 249 3,4030 3,403 81 24,4898 24,49 344 37,8961 37,896 680 
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3,7530 3,753 433 4,3722 4,372 102 25,3604 25,36 355 38,3269 38,327 687 

1,4421 1,442 197 19,8861 19,886 384 53,7492 53,749 708 13,0000 13 240 

9,6163 9,616 932 6,2552 6,255 141 37,0863 37,086 501 13,0000 13 240 

1,1661 1,166 165 15,9733 15,973 319 70,8537 70,854 927 42,7270 42,727 757 

-0,0906 -0,091 -18 7,3105 7,31 162 25,2812 25,281 354 37,7121 37,712 677 

10,8114 10,811 1023 6,6540 6,654 149 66,7824 66,782 874 -2,7553 -2,755 -57 

8,6468 8,647 856 12,8559 12,856 265 48,4737 48,474 642 2,6382 2,638 51 

2,9872 2,987 359 1,6538 1,654 41 42,7514 42,751 571 0,9677 0,968 19 

5,2449 5,245 570 19,2737 19,274 374 49,1959 49,196 651 -3,6104 -3,61 -76 

5,0994 5,099 557 7,3614 7,361 163 37,4100 37,41 505 4,0252 4,025 77 

9,7589 9,759 943 4,9405 4,941 114 7,7541 7,754 121 35,4698 35,47 640 

6,6247 6,625 690 11,7350 11,735 245 3,3013 3,301 54 40,3190 40,319 719 

5,7087 5,709 611 17,3387 17,339 342 54,8618 54,862 722 27,1688 27,169 496 

7,4612 7,461 760 12,4614 12,461 258 47,7507 47,751 633 -0,6000 -0,6 -12 

1,0990 1,099 157 16,3274 16,327 325 11,4418 11,442 173 3,6495 3,65 70 

2,3714 2,371 297 2,4245 2,425 59 12,3167 12,317 185 42,4717 42,472 753 

10,7847 10,785 1021 3,0875 3,087 74 65,2326 65,233 854 33,8656 33,866 613 

-0,1628 -0,163 -34 13,7661 13,766 281 10,5035 10,503 160 0,4050 0,405 8 
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Appendix F.1 

function [y1] = Type_J_ThermoFcn(x1) 
%TYPE_J_THERMOFCN neural network simulation function. 
% 
% 30-Aug-2018 23:34:44.% 
% [y1] = Type_J_ThermoFcn(x1) takes these arguments: 
% x = 2xQ matrix, input #1 
% and returns: 
% y = 1xQ matrix, output #1 
% where Q is the number of samples. 

 
%#ok<*RPMT0> 

 
% ===== NEURAL NETWORK CONSTANTS ===== 

 
% Input 1 
x1_step1.xoffset = [-9.35318363143181;-10]; 
x1_step1.gain = [0.0380062164930972;0.05]; 
x1_step1.ymin = -1; 

 
% Layer 1 
b1 = [-3.1957204495991407;-

2.9561682397139184;0.72406991335542414;1.4764589964920209;-

1.0684648875328424]; 
IW1_1 = [8.4116059433555943 0.24998504166793462;7.7618821407004583 

0.23574223459283775;-0.14035704796217244 -

0.0054324299249743366;0.82730426660487533 0.032056168605518416;-

1.2435151945493277 -0.048195510008488311]; 

 
% Layer 2 
b2 = [0.42584797930671148;-3.2422037231362473;-5.0079814593219369]; 
LW2_1 = [-3.2592248341409715 2.2017835885621695 -2.5112480782549529 -

0.67782740082033965 4.235815603877473;-0.0044378596620069837 

0.0052114000124296733 -1.8138312924548463 4.8301396746704075 

0.86805536390299598;1.1797553923805919 -6.2642707212977484 -

6.3061012104616241 0.71269149372791518 12.067872446705174]; 

 
% Layer 3 
b3 = -0.12383316880726142; 
LW3_2 = [-0.10316553920758917 3.0758300748226701 -1.9743852642515622]; 

 
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = 0.00206185567010309; 
y1_step1.xoffset = -210; 

 
% ===== SIMULATION ======== 

 
% Dimensions 
Q = size(x1,2); % samples 

 
% Input 1 
xp1 = mapminmax_apply(x1,x1_step1); 
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% Layer 1 
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 

 
% Layer 2 
a2 = tansig_apply(repmat(b2,1,Q) + LW2_1*a1); 

 
% Layer 3 
a3 = repmat(b3,1,Q) + LW3_2*a2; 

 
% Output 1 
y1 = mapminmax_reverse(a3,y1_step1); 
end 

 
% ===== MODULE FUNCTIONS ======== 

 
% Map Minimum and Maximum Input Processing Function 
function y = mapminmax_apply(x,settings) y = 

bsxfun(@minus,x,settings.xoffset); 
  y = bsxfun(@times,y,settings.gain); 
  y = bsxfun(@plus,y,settings.ymin); 
end 

 
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n,~) 
  a = 2./ (1 + exp(-2*n)) - 1; 
end 

 
% Map Minimum and Maximum Output Reverse-Processing Function 
function x = mapminmax_reverse(y,settings) 
  x = bsxfun(@minus,y,settings.ymin); 
  x = bsxfun(@rdivide,x,settings.gain); 
  x = bsxfun(@plus,x,settings.xoffset); 
end 
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Appendix F.2 

 

function [y1] = Type_R_ThermoFcn(x1) 
%TYPE_R_THERMOFCN neural network simulation function. 
% 
% 30-Aug-2018 20:10:09.% 
% [y1] = Type_R_ThermoFcn(x1) takes these arguments: 
% x = 2xQ matrix, input #1 
% and returns: 
% y = 1xQ matrix, output #1 
% where Q is the number of samples. 

 
%#ok<*RPMT0> 

 
% ===== NEURAL NETWORK CONSTANTS ===== 

 
% Input 1 
x1_step1.xoffset = [-9.35318363143181;-10]; 
x1_step1.gain = [0.0380062164930972;0.05]; 
x1_step1.ymin = -1; 

 
% Layer 1 
b1 = [0.49110613148313864;-4.0707722788709537;1.9797028855858321;-

2.3165560518494255;-2.2055564599678346]; 
IW1_1 = [0.31756876627275338 0.01216907736405304;-3.6797725027626158 -

0.14185490933283307;1.1785736977275978 -4.9090941640648795;-

1.4819669703057956 5.9633719976856225;-3.7576298845825868 -

0.14612140978604474]; 

 
% Layer 2 
b2 = [0.71924886413673217;-1.5759933848585985;-0.07306204948841391]; 
LW2_1 = [1.3495705439189611 -0.75386232300268097 -0.98800277306787065 

1.1646431325674504 -3.3222629615457904;1.7747436964417933 -

0.31393552275786507 -0.0011326026167509586 -0.00096054874905617893 -

0.011937529858994116;1.9013329012609581 -3.8441975310260439 -

0.030751405385407653 -0.026987787597518954 0.017389523966172531]; 

 
% Layer 3 
b3 = -0.59529427355521891; 
LW3_2 = [4.7285274175129939e-05 2.6393798712208327 1.7880404997411612]; 

 
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = 0.00206185567010309; 
y1_step1.xoffset = -210; 

 
% ===== SIMULATION ======== 

 
% Dimensions 
Q = size(x1,2); % samples 
% Input 1 
xp1 = mapminmax_apply(x1,x1_step1); 
% Layer 1 
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 
% Layer 2 
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a2 = tansig_apply(repmat(b2,1,Q) + LW2_1*a1); 
% Layer 3 
a3 = repmat(b3,1,Q) + LW3_2*a2; 
% Output 1 
y1 = mapminmax_reverse(a3,y1_step1); 
end 
% ===== MODULE FUNCTIONS ======== 
% Map Minimum and Maximum Input Processing Function 
function y = mapminmax_apply(x,settings) y = 

bsxfun(@minus,x,settings.xoffset); 
  y = bsxfun(@times,y,settings.gain); 
  y = bsxfun(@plus,y,settings.ymin); 
end 
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n,~) 
  a =2./ (1 + exp(-2*n)) - 1; 
end 
% Map Minimum and Maximum Output Reverse-Processing Function 
function x = mapminmax_reverse(y,settings) 
  x = bsxfun(@minus,y,settings.ymin); 
  x = bsxfun(@rdivide,x,settings.gain); 
  x = bsxfun(@plus,x,settings.xoffset); 
end 
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Appendix F.3 

function [y1] = Type_T_ThermoFcn(x1) 
%TYPE_T_THERMOFCN neural network simulation function. 
% 
% 03-November-2018 20:10:09.% 
% [y1] = Type_R_ThermoFcn(x1) takes these arguments: 
% x = 2xQ matrix, input #1 
% and returns: 
% y = 1xQ matrix, output #1 
% where Q is the number of samples. 

 
%#ok<*RPMT0> 

 
% ===== NEURAL NETWORK CONSTANTS ===== 

 
% Input 1 
x1_step1.xoffset = [-0.914346271382696;-10]; 
x1_step1.gain = [0.0904612998867249;0.05]; 
x1_step1.ymin = -1; 

 
% Layer 1 
b1 = [2.3695910760103582327;0.36978754244053091416;-

0.85569827983045865238;2.7819030466314016437;-3.0197540598338892259]; 
IW1_1 = [-1.5586173768715507748 -3.7040889002138772668;-

0.3750257030376670242 -0.024954342663195065721;2.5849882613984238589 

2.5003595047438778032;0.97733814772277016747 0.065662195869926803793;-

0.18957122958990110795 0.28721656119632360538]; 

 
% Layer 2 
b2 = [2.2060719753030353374;0.27278875960066123474;-3.0178356737378679853]; 
LW2_1 = [-0.00017855947179871590872 -1.1502730738210269479 -

2.7086743883620576406e-05 -1.2287381804824089038 1.3239839141695035618;-

0.00030133687465747565444 1.6449737756686595436 -0.00016034916663146178131 

-2.2243481202138939423 -0.30197205981002112063;-2.7975767060876730596 -

1.4293430186634754619 2.3294233919455429316 0.16572495894353161949 

2.7799778295614858692]; 

 
% Layer 3 
b3 = -1.1688218164800976417; 
LW3_2 = [1.6553222656154626957 -2.9687339126940814893 -

0.00033993104445808800364]; 

 
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = 0.005; 
y1_step1.xoffset = 0; 

 
% ===== SIMULATION ======== 

 
% Dimensions 
Q = size(x1,2); % samples 
% Input 1 
xp1 = mapminmax_apply(x1,x1_step1); 
% Layer 1 
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 
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% Layer 2 
a2 = tansig_apply(repmat(b2,1,Q) + LW2_1*a1); 
% Layer 3 
a3 = repmat(b3,1,Q) + LW3_2*a2; 
% Output 1 
y1 = mapminmax_reverse(a3,y1_step1); 
end 
% ===== MODULE FUNCTIONS ======== 
% Map Minimum and Maximum Input Processing Function 
function y = mapminmax_apply(x,settings) y = 

bsxfun(@minus,x,settings.xoffset); 
  y = bsxfun(@times,y,settings.gain); 
  y = bsxfun(@plus,y,settings.ymin); 
end 
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n,~) 
  a =2./ (1 + exp(-2*n)) - 1; 
end 
% Map Minimum and Maximum Output Reverse-Processing Function 
function x = mapminmax_reverse(y,settings) 
  x = bsxfun(@minus,y,settings.ymin); 
  x = bsxfun(@rdivide,x,settings.gain); 
  x = bsxfun(@plus,x,settings.xoffset); 
end 
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Appendix F.4 

function [y1] = Type_E_ThermoFcn(x1) 
%TYPE_E_THERMOFCN neural network simulation function. 
% 
% 03-November-2018 20:10:09.% 
% [y1] = Type_R_ThermoFcn(x1) takes these arguments: 
% x = 2xQ matrix, input #1 
% and returns: 
% y = 1xQ matrix, output #1 
% where Q is the number of samples. 

 
%#ok<*RPMT0> 

 
% ===== NEURAL NETWORK CONSTANTS ===== 

 
% Input 1 
x1_step1.xoffset = [-0.914346271382696;-10]; 
x1_step1.gain = [0.0904612998867249;0.05]; 
x1_step1.ymin = -1; 

 
% Layer 1 
b1 = [-0.31720603283965898012;2.1743939450111993139;-

0.18750284754824272926;2.6346429925536472005;4.0772235424854645913]; 

IW1_1 = [-0.082718985387574398005 -0.0017797274698325242764; 

0.20307244842051216938 -0.68564276033515336728;0.11342447437015074074 

0.0042783761702323858805;0.44844206616140036559 -

0.62857019254671364639;2.1093442743122237104 0.053246869763761577043]; 

% Layer 2 
b2 = [-0.79485331974848705272;-0.70391048004113487835;-

0.46256252123350632965]; 

IW2_1 = [-0.90309850188499263268 -0.16546676903881518683 

1.3156174168202814379 0.36692737126083313504 -0.44380467096548142925; 

-1.5397599934107104591 0.087035532084973707412 0.64518315821542837618 -

0.28230905642625969687 -0.056434885334206902341;-5.223420270828670553 

0.54886124833387295308 2.9166625646602191146 -0.69794018270488922262 

1.6839783587996524084]; 

 
% Layer 3 
b3 = 0.99012204847402307539; 

IW3_2 = [2.8737621175139338447 4.3652518920400620317 

3.6850914744647327304]; 

 

 

% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = 0.005; 
y1_step1.xoffset = 0; 

 
% ===== SIMULATION ======== 

 
% Dimensions 
Q = size(x1,2); % samples 
% Input 1 
xp1 = mapminmax_apply(x1,x1_step1); 
% Layer 1 
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a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 
% Layer 2 
a2 = tansig_apply(repmat(b2,1,Q) + LW2_1*a1); 
% Layer 3 
a3 = repmat(b3,1,Q) + LW3_2*a2; 
% Output 1 
y1 = mapminmax_reverse(a3,y1_step1); 
end 
% ===== MODULE FUNCTIONS ======== 
% Map Minimum and Maximum Input Processing Function 
function y = mapminmax_apply(x,settings) y = 

bsxfun(@minus,x,settings.xoffset); 
  y = bsxfun(@times,y,settings.gain); 
  y = bsxfun(@plus,y,settings.ymin); 
end 
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n,~) 
  a =2./ (1 + exp(-2*n)) - 1; 
end 
% Map Minimum and Maximum Output Reverse-Processing Function 
function x = mapminmax_reverse(y,settings) 
  x = bsxfun(@minus,y,settings.ymin); 
  x = bsxfun(@rdivide,x,settings.gain); 
  x = bsxfun(@plus,x,settings.xoffset); 

 
end 
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Appendix G 

 

Neural Network 

Layer 

Function 

Input 1 xp1 = mapminmax_apply(x1,x1_step1); 

Layer 1 a1 = tansig_apply(repmat(b1,1,Q) + 

IW1_1*xp1); 

Layer 2 a2 = tansig_apply(repmat(b2,1,Q) + 

LW2_1*a1); 

Layer 3 a3 = repmat(b3,1,Q) + LW3_2*a2; 

Layer 4 a4 = repmat(b4,1,Q) + LW4_3*a3; 

 

Output 1 y1 = mapminmax_reverse(a3,y1_step1); 

 

 

% ===== MODULE FUNCTIONS ======== 
% Map Minimum and Maximum Input Processing Function 
function y = mapminmax_apply(x,settings) 
  y = bsxfun(@minus,x,settings.xoffset); 
  y = bsxfun(@times,y,settings.gain); 
  y = bsxfun(@plus,y,settings.ymin); 
end 
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n,~) 
  a =2./ (1 + exp(-2*n)) - 1; 
end 
% Map Minimum and Maximum Output Reverse-Processing Function 
function x = mapminmax_reverse(y,settings) 
  x = bsxfun(@minus,y,settings.ymin); 
  x = bsxfun(@rdivide,x,settings.gain); 
  x = bsxfun(@plus,x,settings.xoffset); 
end 
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Appendix H 

 

EMF (mV) Tref

Augmented 

ITS-90 

T_hot

Neural 

Network 

T_hot

EMF (mV) Tref

Augmented 

ITS-90 

T_hot

Neural 

Network 

T_hot

EMF (mV) Tref

Augmented 

ITS-90 

T_hot

Neural Network 

T_hot
EMF (mV) Tref

Augmented 

ITS-90 

T_hot

Neural 

Network 

T_hot

6,3952 -1 670 669,99 13,2139 1 272 272,01 35,3660 14 490 489,97 23,3708 7 434 434,03

6,3686 4 670 669,99 12,3582 24 273 273,00 35,8264 9 492 491,97 23,1671 11 434 434,03

6,3245 12 670 669,99 13,0366 7 273 273,01 35,4285 17 493 492,97 24,2808 -10 435 435,05

6,2787 24 672 671,99 12,6003 18 273 273,01 36,8120 -5 494 493,99 23,5321 6 436 436,03

6,4446 -6 672 671,98 12,6803 16 273 273,01 36,5784 -1 494 493,99 23,5366 7 437 437,03

6,2904 24 673 672,99 12,1541 29 273 273,01 35,5696 16 494 493,97 23,3840 10 437 437,03

6,2959 27 675 674,99 12,3175 25 273 273,00 35,1056 25 495 494,98 23,5455 9 439 439,02

6,4863 -5 676 675,99 12,2929 27 274 274,01 36,8929 -5 495 494,99 23,9052 3 440 440,03

6,4225 7 676 675,99 12,2929 27 274 274,01 35,0033 28 496 496,00 24,5683 -8 442 442,03

6,4772 -1 677 676,99 12,2111 29 274 274,01 35,0229 29 497 497,01 23,3024 17 442 442,04

6,5184 -9 677 676,97 13,4052 -1 274 274,01 36,3118 9 498 497,98 23,3024 17 442 442,04

6,5199 -7 678 677,98 12,6973 17 274 274,01 36,0342 15 499 498,97 24,6236 -8 443 443,03

6,3608 22 678 678,00 12,2111 29 274 274,01 35,7329 20 499 498,97 24,1217 2 443 443,03

6,3724 20 678 678,00 13,5209 -4 274 274,01 35,2043 30 500 500,02 24,0206 4 443 443,02

6,3548 25 679 679,00 13,8078 -10 275 275,00 37,0863 0 501 500,99 24,6844 -7 445 445,03

6,4132 17 680 680,00 12,6740 19 275 275,01 37,5527 -8 501 500,99 24,6344 -6 445 445,03

6,5317 2 683 683,00 12,2680 29 275 275,01 37,0497 2 502 501,99 23,6733 13 445 445,03

6,4599 15 683 683,00 12,2680 29 275 275,01 36,9755 6 504 503,99 23,4684 17 445 445,04

6,5763 -2 685 684,99 13,6163 -5 275 275,01 35,8340 25 504 503,99 24,4893 -2 446 446,03

6,6123 -9 685 684,98 13,0499 11 276 276,01 37,4100 0 505 505,00 24,0390 8 447 447,02

6,6290 -10 686 685,97 13,6733 -5 276 276,01 36,3599 19 506 505,98 24,5948 -3 447 447,03

6,4070 30 686 685,98 13,3249 4 276 276,01 37,7832 -5 506 506,00 23,6858 16 448 448,03

6,5680 4 687 687,00 12,9707 13 276 276,01 36,0357 27 508 508,00 24,7557 -4 449 449,02

6,6064 -1 688 688,00 13,3037 6 277 277,01 38,0842 -6 509 509,00 24,2560 7 450 450,01

6,6272 -5 688 687,99 13,1070 11 277 277,01 36,6837 19 510 509,98 24,7158 -1 451 451,02

6,6033 4 690 690,00 12,5048 26 277 277,00 37,2449 11 511 510,98 23,6463 20 451 451,01

6,6247 0 690 690,00 12,5861 24 277 277,00 38,5589 -10 512 511,99 23,8560 17 452 452,03

6,4899 26 691 691,00 13,4000 5 278 278,01 38,1748 -2 513 513,00 24,4175 6 452 452,01

6,5136 24 692 692,00 12,7646 21 278 278,01 37,7257 7 514 513,99 23,7017 20 452 452,01

6,6547 1 693 693,00 13,7490 -4 278 278,01 37,2484 15 514 513,98 23,8086 19 453 453,02

6,6706 -2 693 693,00 12,8452 19 278 278,01 37,6284 10 515 514,99 25,0774 -6 453 453,02

6,6450 5 694 694,00 13,4390 4 278 278,01 37,6879 9 515 514,99 25,0774 -6 453 453,02

6,6069 14 695 695,01 13,8642 -7 278 278,01 37,4703 14 516 515,98 25,1883 -6 455 455,02

6,6073 16 696 696,01 13,5741 2 279 279,01 37,6497 11 516 515,99 24,4821 8 455 455,01

6,6577 7 696 696,00 13,9597 -8 279 279,00 37,7307 11 517 516,99 24,0735 16 455 455,03

6,5725 26 698 698,00 13,2212 11 279 279,01 38,2051 3 517 517,00 25,0432 -2 456 456,02

6,6489 17 700 700,01 13,8062 -4 279 279,01 38,6380 -3 518 518,01 24,8417 2 456 456,01

6,7622 3 703 703,00 13,9214 -7 279 279,01 38,8356 -5 519 519,00 24,5930 8 457 457,01

6,7888 -2 703 703,00 13,9402 -6 280 280,01 38,0757 12 522 521,99 24,6485 8 458 458,01

6,6612 21 703 703,01 13,9018 -5 280 280,01 39,1238 -3 524 524,01 24,2440 17 459 459,02

6,6197 28 703 703,00 13,4752 6 280 280,01 39,0878 -1 525 525,01 25,5654 -8 460 460,01

6,6197 28 703 703,00 13,3751 10 281 281,01 37,4317 28 526 526,03 25,3654 -4 460 460,01

6,6905 18 704 704,01 13,7661 0 281 281,01 37,6133 29 529 529,04 25,4763 -4 462 462,01

6,6791 22 705 705,01 13,8435 -2 281 281,01 39,7843 -6 530 530,01 24,7730 11 463 463,00

6,8484 -9 705 704,99 13,9206 -4 281 281,01 37,9388 25 530 530,01 24,7220 12 463 463,01

6,8347 -4 706 706,00 13,2564 13 281 281,01 37,9568 30 534 534,06 24,9814 8 464 464,00

6,7658 11 707 707,01 12,5697 30 281 281,01 40,0368 -2 536 536,02 25,6930 -5 465 465,00

6,7783 13 709 709,01 13,7661 0 281 281,01 38,4644 27 538 538,03 25,3509 4 467 467,00

6,8014 11 710 710,01 14,2078 -10 282 282,00 39,2932 16 540 540,00 25,2495 6 467 467,00

6,8518 4 711 711,01 13,9008 -2 282 282,01 40,7678 -9 540 540,01 25,2495 6 467 467,00

6,7736 18 711 711,02 13,5685 8 283 283,01 40,3099 3 543 543,02 24,6408 19 468 468,00

6,8992 -5 711 711,00 14,1121 -6 283 283,00 40,4276 1 543 543,02 24,5893 20 468 467,99

6,8039 23 716 716,02 14,2651 -10 283 283,00 38,8276 29 544 544,05 25,4718 6 471 470,99

6,8791 12 717 717,01 13,5291 9 283 283,01 40,2728 5 544 544,02 26,2758 -10 471 471,01

6,8099 24 717 717,02 13,0508 21 283 283,00 41,2304 -10 545 545,01 25,5322 7 473 472,99

6,8735 13 717 717,02 12,8480 26 283 283,00 41,1146 -8 545 545,02 26,3870 -10 473 473,01

6,9825 -5 718 718,00 13,9768 -1 284 284,00 40,6925 2 547 547,03 25,3331 12 474 474,00

6,8099 26 718 718,01 14,0154 -2 284 284,00 40,3593 9 548 548,02 25,1454 20 478 477,98

6,9922 0 721 721,01 12,9867 24 284 284,00 40,2436 15 551 551,01 26,4714 -5 479 478,99

6,9816 2 721 721,01 13,0678 22 284 284,00 40,8393 5 551 551,02 26,3209 -2 479 478,99

6,8754 23 722 722,02 13,0847 23 285 285,00 41,5383 0 556 556,03 25,3553 17 479 479,00

6,8636 27 723 723,01 13,1656 21 285 285,00 41,9923 -5 558 558,03 25,8661 7 479 478,98

6,9903 7 724 724,01 13,6620 10 286 286,01 41,6635 2 559 559,03 25,8710 8 480 479,98

6,9052 22 724 724,02 14,0529 0 286 286,00 41,3088 8 559 559,03 25,3597 18 480 479,99

6,9913 9 725 725,01 14,0142 1 286 286,00 41,4490 7 560 560,03 26,0282 6 481 480,98

6,9872 14 727 727,02 13,2230 21 286 286,00 40,7513 20 561 561,02 26,0332 7 482 481,98

7,0652 2 728 728,01 13,8584 5 286 286,00 40,5286 25 562 562,03 26,3873 0 482 481,99

Neural Network Signal Conditioing of Thermocouples

Type R Type T Type E Type J




