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ABSTRACT 

 

Relatively little was known about the effectiveness of St Lucia Marine Reserve within the 

iSimangaliso Wetland Park in protecting the surf-zone fish community. In order to address this 

question, a monitoring project incorporating catch-and-release research fishing using a trained team of 

volunteer anglers was implemented from November 2001 to November 2013 (12 years). A stratified 

sampling design was developed whereby an equal amount of standardised fishing effort was applied 

both in the no-take sanctuary area between Leven Point and Red Cliffs and in the adjacent previously 

exploited area between Cape Vidal and Leven Point. Trends in catch-per-unit-effort (CPUE) and 

mean fish size over the first 10 years provided evidence of recovery of four of the most common 

angling fish populations in the previously exploited area following the implementation of the beach 

vehicle ban and consequent cessation of shore angling in January 2002. Use of conventional tag and 

recapture methods revealed that the majority of surf-zone angling fish species displayed station-

keeping behaviour and occupied relatively small home ranges, seldom exceeding more than one 

kilometre of suitable habitat along the coast. However, four of the five most recaptured species also 

showed evidence of ranging behaviour as some individuals abandoned their home range and travelled 

distances of up to 125 km. The dominance of station-keeping behaviour suggests that the St Lucia 

Marine Reserve sanctuary zone provides an important refuge for these species, with some export to 

adjacent areas. Growth rate of speckled snapper (Lutjanus rivulatus), was assessed using tag-recapture 

data and revealed that this is a very slow growing species. Slow growth, coupled with high site 

fidelity, suggests that this species is vulnerable to exploitation and that a precautionary approach 

towards its future management is appropriate. Based on home range size and a literature review of the 

area required to protect a viable population of resident surf-zone fish species, minimum effective size 

of no-take areas (NTAs) was estimated. To ensure adequate connectivity between protected fish 

populations, optimal spacing of NTAs was estimated based on movement patterns of fish species 

displaying ranging type behaviour, as well as best available information on the distribution of eggs 

and larvae. This revealed that NTAs of 3-6 km (linear distance) of suitable surf-zone reef habitat, 

spaced every 15-20 km apart, could provide sufficient protection and connectivity for surf-zone fish 

populations.  The implications of these results are considered with respect to the availability of 

suitable surf-zone reef habitat, existing patterns of human use and the current zonation of the inshore 

zone within the iSimangaliso Wetland Park and recommendations for improvements are made.  
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CHAPTER 1: GENERAL INTRODUCTION 

 

Traditional methods of managing linefish
1
 stocks in South Africa such as minimum size limits and 

daily bag limits have proved inadequate to sustain stocks of certain species and are difficult to enforce 

effectively (Attwood and Bennett 1995a; Brouwer et al. 1997; Sauer et al. 1997; Dunlop and Mann 

2012a; 2013a). Consequently, the use of no-take marine protected areas (MPAs) as an additional 

management option to ensure sustainable use of some linefish species, particularly slow-growing and 

more resident species, has received considerable research attention (Buxton and Smale 1989; Bennett 

and Attwood 1991; 1993; Attwood and Bennett 1995b; Cowley et al. 2002; Götz et al. 2008; Kerwath 

et al. 2013; Maggs et al. 2013a, 2013b). In addition to overall biodiversity protection, MPAs in which 

no fishing is allowed enable resident fish populations to recover to natural levels of carrying capacity 

and to seed adjacent exploited areas either through emigration of juvenile and/or adult fish (i.e. 

spillover) or by dispersal of eggs and larvae (i.e. seeding) (Russ and Alcala 1996; McClanahan and 

Mangi 2000; Roberts et al. 2001; Russ et al. 2003; Gell and Roberts 2003; Halpern 2003; Harrison et 

al. 2012; Kerwath et al. 2013; Maggs et al. 2013b). The large sizes that adult reef fish attain in 

suitably protected areas also enhance reproductive output (i.e. more eggs produced and better survival 

of offspring) and ensure maintenance of genetic integrity of exploited stocks (Berkeley et al. 2004; 

Palumbi 2004; Field et al. 2008). While there is some debate in the literature as to whether MPAs can 

increase yield of fished stocks due to the resultant loss of fishing area (for protection) and the 

concentration of fishing effort in the remaining area (Hilborn et al. 2004; Botsford et al. 2009; 

Kearney et al. 2012), there is increasing evidence that under the right circumstances they can 

(Harrison et al. 2012; Kerwath et al. 2013) but each MPA requires a case-by-case evaluation with 

appropriate monitoring (Hilborn et al. 2004; Sale et al. 2005). 

 

The St Lucia Marine Reserve was proclaimed in 1979 (Mann et al. 1998) and extends from one 

kilometre south of Cape Vidal (28
0
 07’ S; 32

0
 33’ E) to White Sands (27

0
 27’ S; 32

0
 41’ E) 11 km 

north of Sodwana Bay, and extends three nautical miles (5.6 km) out to sea (see Figure 1.1 below and 

Figure 2.1 in Chapter 2). This MPA now forms part of the iSimangaliso Wetland Park, a World 

Heritage Site established in 1999. The central part of the MPA between Leven Point and Red Sands, a 

distance of ~25 km, was proclaimed as a no-take sanctuary area and has been effectively policed by 

Ezemvelo KwaZulu-Natal Wildlife (EKZNW, previously Natal Parks Board) since its proclamation in 

1979. However, it is increasingly evident in South Africa and elsewhere, that without convincing 

                                                           
 

1
 The term “linefish” refers to fish caught by means of hook and line but excludes industrial 

longlining (Mann 2013) 
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evidence of their conservation value, no-take MPAs run the risk of being re-opened to exploitation 

(Russ and Alcala 1996; McClanahan and Mangi 2000; Venter and Mann 2012). It is thus surprising 

that relatively little work has been done to evaluate the management effectiveness of this MPA.  

 

Within the offshore environment, Garratt (1993) investigated the effectiveness of this MPA in the 

protection of an adult spawning population of the endemic slinger (Chrysoblephus puniceus) and the 

Oceanographic Research Institute (ORI) undertook an annual underwater visual census (UVC) inside 

and outside the sanctuary area between 1987 and 1992 using a number of indicator fish species 

(Chater et al. 1995). More recently, Floros (2010) undertook an UVC study to investigate the 

effectiveness of different levels of protection (i.e. zonation) on coral reef fish communities in both the 

St Lucia and the adjacent Maputaland Marine Reserves.  The only study that has focussed on surf-

zone linefish species involved two brief, informal catch-and-release fishing experiments conducted on 

25-27 October 1985 and again on 17-19 November 1988, which revealed substantial differences in 

catch and size composition of fishes caught inside and adjacent to the sanctuary area (Junor 1989).  

 

It was therefore deemed important to evaluate the effectiveness of the St Lucia Marine Reserve 

Sanctuary in terms of its ability to provide a refuge for resident surf-zone angling fish species, to 

maintain some spawner biomass of these species and to sustain or increase yield in the adjacent 

exploited areas through spillover. This could be done by means of a carefully designed and 

standardised  research fishing project to measure catch composition, catch-per-unit-effort (CPUE) and 

fish population size structure both inside and adjacent to the no-take sanctuary area (i.e. by using the 

sanctuary area as a benchmark). Furthermore, by simultaneously using conventional dart tagging 

(Dunlop et al. 2013), information could be gleaned on the movement patterns and growth rate of 

important surf-zone angling fish species. This information could then be used to estimate the optimal 

size that no-take MPAs need to be in order to effectively protect viable populations of surf-zone fishes 

(Attwood and Bennett 1995b; Attwood 2002) within the Delagoa Bioregion (Sink et al. 2012).  

 

The concept of evaluating MPA effectiveness in the protection of shore angling fish communities is 

not new in South Africa and the establishment of this project benefitted greatly from two other similar 

projects, one in the De Hoop MPA started in 1984 (Bennett and Attwood 1991; Bennett and Attwood 

1993; Attwood and Bennett 1994; Attwood and Bennett 1995b; Attwood 2002; 2003) and the other in 

the Tsitsikamma MPA started in 1993 (Cowley et al. 2002; Attwood and Cowley 2005; Götz et al. 

2008). While the techniques used were similar, this project differed in the sense that the fish 

communities being sampled were representative of the Delagoa Bioregion and more typical of an 

Indo-Pacific ichthyofauna whereas the species sampled in the De Hoop and Tsitsikamma MPAs were 

typical of the Agulhas Bioregion with a higher level of endemicity (Solano-Fernández et al. 2012). 

These long-term monitoring projects have generated extremely useful data including information on 
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catch trends, changes in species composition, spatial and temporal changes in fish population size 

structure, estimation of fishing mortality rates, growth rate estimates, etc. This highlights the need for, 

and outcomes from, this type of monitoring project.   

 

The overarching goal of this project was to address the question of whether the St Lucia Marine 

Reserve Sanctuary was providing a refuge for surf-zone angling fish species and whether the adjacent 

exploited areas were benefitting from spillover. The project started in November 2001 but in January 

2002 legislation was promulgated under the National Environmental Management Act (Act No. 107 

of 1998) to limit the use of off-road vehicles in the coastal zone (Government Gazette No. 22960). 

This resulted in shore anglers, who were now restricted to walking, being unable to fish more than ~5 

km (i.e. beyond reasonable walking distance) north and south of the beach access point at Cape Vidal. 

Consequently, the primary goal of this study was modified to assess the potential recovery of a fish 

community in a previously exploited area using the no-take sanctuary area as a benchmark. Specific 

objectives of this study were: 1) To compare the species composition, CPUE and size composition of 

surf-zone fishes within the St Lucia Marine Reserve Sanctuary with that of an adjacent, previously 

exploited area south of Leven Point by means of research angling from the shore and to monitor the 

response of the fish community over time; 2) To determine movement patterns of important shore-

angling species on a fine spatial scale (< 100 m) by means of dart tagging and to describe patterns of 

residency and dispersal by tagged fish and to investigate the potential occurrence of spillover from the 

no-take sanctuary; 3) To use tag-recapture data to investigate the growth rate of speckled snapper 

Lutjanus rivulatus; 4) To use fish movement patterns (residency and dispersal patterns) to investigate 

the minimum size and spacing of no-take MPAs required to protect viable populations of surf-zone 

angling species within the Delagoa Bioregion. 

  

This thesis is presented as a set of papers that have been published in peer-reviewed scientific 

journals. As a consequence there is some overlap and repetition, especially in terms of methods, in the 

various chapters. Chapter 1 (this chapter) presents a brief overview of the rationale for the study. 

Chapter 2 covers the study site and a general description of the methods used. The following four 

chapters respectively address each of the above objectives. Chapter 3 provides a comparison of 

catches between the St Lucia Marine Reserve sanctuary area and the adjacent previously exploited 

area south of Leven Point over a period of 10 years (2002-2010) (Mann et al. 2016a). Chapter 4 

investigates the movement behaviour of the dominant fish species caught based on a tag-recapture 

study with a focus on five of the most commonly recaptured species (Mann et al. 2015). Chapter 5 

focuses on estimating growth rate of the most commonly recaptured species in this study namely 

speckled snapper (Lutjanus rivulatus) using tag-recapture data (Mann et al. 2016b). Chapter 6 

examines effective size and spacing of no-take MPAs within the iSimangaliso Wetland Park, 

specifically with regard to surf-zone angling fish species (Mann et al. 2016c). Finally, Chapter 7 
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provides a general conclusion to the study and some recommendations for improved monitoring and 

management of the iSimangaliso Wetland Park and other MPAs in South Africa.  

 

 

Figure 1.1a: An aerial photograph of the St Lucia Marine Reserve Sanctuary looking southwards 

towards Leven Point (Photo:  B. Mann).  

 

 

Figure 1.1b: Research fishing in the St Lucia Marine Reserve north of Cape Vidal on a calm, clear 

day (Photo: P. Cowley). 
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CHAPTER 2: STUDY SITE AND DATA COLLECTION 

 

2.1 Study site 

The St Lucia Marine Reserve was proclaimed in 1979 and extends from one kilometre south of Cape 

Vidal (28
0
 07’ S; 32

0
 33’ E) to White Sands (27

0
 27’ S; 32

0
 41’ E) 11 km north of Sodwana Bay, and 

extends three nautical miles (5.6 km) out to sea (Figure 2.1). This marine protected area (MPA) now 

forms part of the iSimangaliso Wetland Park, a World Heritage Site established in 1999 in northern 

KwaZulu-Natal (KZN), South Africa. The central part of the MPA between Leven Point and Red 

Cliffs, a distance of ~25 km, was proclaimed as a no-take sanctuary area.  

 

 

Figure 2.1: Map of the St Lucia Marine Reserve and Sanctuary showing the sampling areas used in 

this study (denoted by short, bold vertical lines, EA and EB are in the previously exploited area, while 

SA and SB are within the no-take sanctuary area). Note that the new sampling areas (as of November 

2011, with their boundaries indicated by horizontal lines) simply represent northward and southward 

extensions of the original EA, EB, SA and SB sampling areas.  
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2.2 Data collection 

Data collection for this long-term monitoring project relied on the assistance of volunteer anglers. 

Anglers belonging to the Oceanographic Research Institute’s Cooperative Fish Tagging Project (ORI-

CFTP) (Dunlop et al. 2013) who resided in KZN and who had tagged 100 or more fish were contacted 

and asked whether they would be interested in being involved in the St Lucia Marine Reserve surf-

zone fish monitoring and tagging project. A total of 32 anglers were selected in this manner and given 

an introductory presentation on the aims of the project and the methods to be used. These anglers 

were then trained how to record the relevant data and how to handle and tag fish correctly. The 32 

selected anglers were used on a rotational basis for each field trip. The rationale behind using the 

same pool of anglers was to keep fishing effort as consistent as possible. However, in order to reach a 

wider spectrum of anglers to enable more people to learn and benefit from the experience of fishing in 

an MPA, one or two guest anglers were invited along on each field trip. 

  

From November 2001 to November 2006, six field trips were carried out per year (Jan, Mar, May, Jul, 

Sep & Nov) with accommodation based at Cape Vidal which provided the most convenient base. This 

frequency was reduced to four trips per year (February, May, August, November) from February 2007 

to November 2013 due to financial constraints. During each field trip, research fishing was conducted 

by eight anglers in four selected two-kilometre areas (EA, EB, SA and SB). Each of these areas was 

divided into 100 m sections using a Geographic Positioning System (GPS) that were distinguishable 

by numbered marker poles. Two of the 2 km areas (SA and SB) were inside the no-take sanctuary 

area (between Leven Point and Red Cliffs) and two (EA and EB) were in the previously exploited 

area (between Leven Point and Cape Vidal) (Figure 2.1). On each day, one team of four anglers fished 

in one of the previously exploited areas (EA or EB) and the other team of four anglers fished in one of 

the sanctuary areas (SA or SB). This was rotated each day so that at the end of the four-day field trip 

each area had been fished by each one of the two teams providing a robust approach for comparing 

catches between the sanctuary and the previously exploited area south of Leven Point. Daily fishing 

localities (pole number) within each sampling area were selected based on which areas were the most 

likely to produce fish given the prevailing conditions. However, a maximum of two hours of 

continuous fishing effort was spent at a site to ensure that fishing effort was not all concentrated at the 

same locality and was more evenly dispersed throughout the sampling area. Similarly, if a fishing 

locality was selected and it proved to be unproductive, a minimum of 15 minutes had to be spent 

fishing at that locality before moving. 

 

Two four-wheel drive (4x4) vehicles were used to transport the two groups of anglers along the beach 

from Cape Vidal to their respective fishing areas each day. Fishing was conducted on the four days 

around spring tide (or as near to this as logistically possible) and all beach driving was restricted to 
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the low shore three hours before and after low tide (which is around 09h40 on spring low days). 

Hence, the daily fishing expeditions, including driving to the fishing areas, were around 12 hours in 

duration.  All four sample areas were similar in terms of surf-zone habitat (i.e. all contained both 

sandy and rocky shores with some patchy sub-tidal reef habitat).  

 

While the sampling strategy was kept as consistent as possible, a few important changes were made 

over the 12-year duration of the project (November 2001 to November 2013). The first of these was a 

southward shift of the SA sampling area by 1.2 km after the first three years (January 2005) to include 

more suitable rocky habitat (i.e. the northern 1.2 km of this zone consisted primarily of sand and was 

thus not directly comparable to the other three selected zones). A second change that took place was 

that initially (2002-2003) fishing was largely confined to daylight hours. However, it soon became 

apparent that this was not practical as departure from the sampling areas at the end of each day had to 

take place within three hours of low tide, which meant that as the tide got progressively later each day 

during the fieldtrip, the research team wasted considerable time after dark waiting for the tide to 

subside. Consequently, the sampling strategy was modified to allow anglers to fish after dark using 

headlights.  A third major change was made to the sampling strategy after 10 years in November 

2011. Each of the four 2 km sampling areas was enlarged to cover approximately 10 km of coastline 

(Figure 2.1). Instead of using numbered poles, a GPS unit was used to determine the exact fishing 

locality within each ~10 km area and the original system of positions every 100 m was simply 

extended north and south using a Geographical Information System (GIS). The purpose of this change 

was two-fold, namely; 1) to reduce the inevitable habitat bias associated with the use of the smaller, 2 

km areas and 2) to reduce the bias in determining fish movement patterns based on recaptured tagged 

fish only caught within the initial four 2 km sampling areas (i.e. there was no fishing in between the 

originally selected sampling areas). 

 

Standardised rock-and-surf fishing gear (i.e. 3-4.5 m graphite surf rods, multiple or fixed spool reels 

with braid or monofilament line ranging between 9-23 kg breaking strain) was used and anglers were 

only allowed to use one rod at a time. A maximum of two hooks per trace was allowed and hook sizes 

could range between 1/0 and 7/0. However, if anglers decided to target big fish such as giant kingfish 

(Caranx ignobilis), blacktip sharks (Carcharhinus limbatus) or giant sandsharks (Rhynchobatus 

djiddensis) using specialized techniques (e.g. sliding large baits using non-return clips, use of wire 

traces, or hooks >7/0, etc.), such fishing effort was recorded separately. Use of barbless hooks was 

strictly enforced (barb on the hook crimped using long-nose pliers) as this inflicted less damage and 

made release of the fish considerably quicker and easier (Casselman 2005). If the fish was gut-hooked 

(hook lodged in the oesophagus) no attempt was made to remove the hook and the trace was simply 

cut as near to the eye of the hook as possible (Casselman 2005). A note was made by the angler if the 

fish was released with the hook still ingested. Use of circle hooks was encouraged (Cooke and Suski 
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2004) but not enforced due to the higher price of these hooks and the preferences of some anglers. 

Hook size and type of hook used (i.e. J-hook or circle hook) was recorded for every fish caught from 

July 2008 onwards. A range of bait types was used including sardines (Sardinops sagax), chokka 

squid (Loligo reynaudi), Indian Ocean squid (Uroteuthis duvaucelii) and pink prawn (Haliporoides 

triarthrus). When available, additional baits such as chub mackerel (Scomber japonicus), redeye 

sardine (Etrumeus spp.), East Coast rock lobster (Panulirus homarus) and octopus (Octopus vulgaris) 

were also used. Bait type used for every fish caught was recorded for the first six years of the project 

(i.e. November 2001 to May 2008).  

 

All fish caught were covered with a wet cloth and quickly measured by the angler on a wet plastic 

stretcher with a sheathed stainless steel ruler down the centre (Figure 2.2) before being returned 

unharmed to the water. Emphasis was placed on keeping the fish out of water for as short a time as 

possible and all surfaces were kept moist to reduce injury and stress (Casselman 2005). A bucket of 

seawater was kept close by to immerse the fish prior to and following measuring and tagging. 

Selected species greater than 300 mm fork length (FL) were tagged using plastic dart tags (Hallprint) 

supplied by the Oceanographic Research Institute’s Cooperative Fish Tagging Project (ORI-CFTP) 

(Dunlop et al. 2013). D-tags (85 mm in length by 1.6 mm in diameter) were used on smaller fish (300-

600 mm) while A-tags (114 mm long by 1.6 mm diameter) were used on larger fish and sharks (> 600 

mm). The only exception to this rule was for speckled snapper (Lutjanus rivulatus) that were tagged 

from 280 mm FL due to their suitability for tagging at a relatively small size. All catch, effort and 

tagging data were recorded by each angler on a slate on a daily basis. Effort data recorded included 

date, angler name, sampling area (i.e. EA, EB, SA or SB), time fished at each 100 m locality (pole 

number), targeting (i.e. small or big fish) and tackle lost (i.e. number of hooks, swivels and sinkers 

lost while fishing). Catch data recorded included tag number (if the fish was tagged or recaptured), 

species, length in millimetres (fork length [FL], total length [TL] or pre-caudal length [PCL] 

depending on the species), locality (pole number = GPS position), time the fish was caught and any 

relevant comments. Comments recorded included bait type, hook type and size, whether the fish had 

swallowed the hook, whether the fish was a recapture or whether the fish had a tagging scar (i.e. had 

previously been tagged but the tag had been shed). Note was also made of the condition of the fish on 

release (i.e. if it was bleeding badly, if it was weak or if it died). During each fishing day sea 

temperature was recorded at high tide using a thermometer, maximum wind strength and direction 

was recorded using a handheld anemometer, while swell height and cloud cover were estimated. Sea 

temperature data were augmented by data retrieved from an underwater temperature recorder (UTR) 

moored off Leven Point in 16 m of water (Jennifer Olbers, Ezemvelo KwaZulu-Natal Wildlife, pers. 

comm.).  
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At the end of each day’s fishing, each angler read out his catch and effort data to the project leader 

(BQ Mann) who recorded all the data onto specially prepared data sheets. These data were 

subsequently captured onto an MS-Access database in the office for later analysis. Following each 

field trip a brief report was prepared and circulated to funding and management agencies, as well as to 

all anglers that had previously participated in the project. At the end of each calendar year an annual 

report was compiled on the overall results of the project. Analyses for these reports and for much of 

this thesis (except where indicated otherwise) were undertaken using MS Access queries and MS 

Excel. All tag and recapture data were also captured onto the ORI-CFTP database (Dunlop et al. 

2013) to assist with obtaining recapture data of fish that were recaptured by members of the public 

(i.e. fish tagged in the MPA by the research team but recaptured by members of the public elsewhere 

along the coast). 

 

 

Figure 2.2: The project leader (BQ Mann) tags a Natal stumpnose (Rhabdosargus sarba) on a plastic 

landing stretcher (note the stainless steel ruler down the centre of the stretcher, a wet cloth over the 

head of the fish and the “tagging box” where all relevant data were recorded). 
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CHAPTER 3: MONITORING THE RECOVERY OF A PREVIOUSLY EXPLOITED 

SURF-ZONE FISH COMMUNITY IN THE ST LUCIA MARINE RESERVE, SOUTH 

AFRICA, USING A NO-TAKE SANCTUARY AREA AS A BENCHMARK 

 

Mann BQ, Winker H, Maggs JQ, Porter SN. 2016. African Journal of Marine Science 38(3): 423-441. 

 

3.1 Introduction 

It is increasingly being recognised that recreational fishing can have a negative impact on fish 

populations largely because of the cumulative effect of anglers that may number in the thousands 

(Coleman et al. 2004; Lewin et al. 2006). Intensive angling over a long period of time can result in 

changes to the exploited fish community and a reduction in abundance and size of target species 

(Lewin et al. 2006). Examples of such changes have been widely documented, including in the 

KwaZulu-Natal (KZN), South Africa, recreational shore fishery (Dunlop and Mann 2012a). No-take 

marine protected areas (MPAs) where no fishing or extractive use is allowed have been recognised as 

an important addition to conventional fisheries management tools such as size limits, bag limits and 

closed seasons (Griffiths et al. 1999; Botsford et al. 2009a). In this respect, well enforced no-take 

MPAs enable resident fish populations to recover to natural carrying capacity and to seed adjacent 

exploited areas either through emigration of post-larval fish (i.e. density dependent spillover) or by 

dispersal of eggs and larvae (i.e. seeding)  (Gell and Roberts 2003; Halpern et al. 2010a; Aburto-

Oropeza et al. 2011; Harrison et al. 2012;Edgar et al. 2014). The large sizes that adult reef fish attain 

in suitably protected areas can also enhance reproductive output (i.e. greater egg production and 

improved survival of offspring) and ensures maintenance of genetic integrity of adjacent exploited 

fish stocks (Berkeley et al. 2004; Palumbi 2004). There is still some debate in the literature as to 

whether MPAs can increase yield of adjacent fished stocks sufficiently to compensate for the resultant 

loss of fishing area (for protection) and the concentration of fishing effort in the remaining area 

(Hilborn et al. 2004; Botsford et al. 2009a; Kearney et al. 2012). However, there is increasing 

evidence that under the right circumstances they can (Harrison et al. 2012; Kerwath et al. 2013) but 

this requires a case-by-case evaluation with appropriate monitoring (Hilborn et al. 2004; Sale et al. 

2005). 

 

The St Lucia Marine Reserve on the east coast of South Africa was proclaimed in 1979 (Mann et al. 

1998) and extends from one kilometre south of Cape Vidal (28º 08’S; 32º 33’E) to White Sands (27º 

26’S; 32º 42’E), 11 km north of Sodwana Bay, a distance of ~80 km, and three nautical miles (5.6 

km) out to sea (Figure 3.1). This MPA now forms part of the iSimangaliso Wetland Park, South 

Africa’s first World Heritage Site established in 1999. The centre of the MPA between Leven Point 

(27º 55’S; 32º 35’E) and Red Cliffs (27º 43’S; 32º 37’E), a distance of ~25 km (Figure 3.1), was 

proclaimed as a no-take sanctuary area and has been effectively policed by Ezemvelo KwaZulu-Natal 
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Wildlife (previously Natal Parks Board) since the reserve’s proclamation in 1979. Considering the 

relatively low level of recreational shore fishing effort that existed in the sanctuary region prior to 

proclamation, and that it is adjacent to a terrestrial wilderness area, it is likely that fish populations 

and the surf-zone habitat in general have recovered to near pristine conditions. Surprisingly, relatively 

little has been published on the effectiveness of this MPA in the protection of linefish species. 

Offshore, Garratt (1993) investigated an adult spawning population of slinger (Chrysoblephus 

puniceus) and the Oceanographic Research Institute undertook an annual underwater visual census 

(UVC) inside and outside the sanctuary area for several years using a variety of indicator fish species 

(Chater et al. 1995). More recently, Floros et al. (2013) undertook an UVC to investigate the 

effectiveness of different levels of protection (i.e. zonation) on coral reef fish communities in both the 

St Lucia and adjacent Maputaland Marine Reserves.   Therefore, there was an urgent need to evaluate 

the effectiveness of the St Lucia Marine Reserve Sanctuary in terms of its function of providing a 

refuge for surf-zone angling species.  This was addressed in November 2001 through the 

implementation of a monitoring project based on research angling, similar to the studies undertaken 

elsewhere on the South African coast in the De Hoop (Bennett and Attwood 1991; 1993; Attwood and 

Bennett 1995b; Attwood 2003), Tsitsikamma (Cowley et al. 2002) and Dwesa-Cwebe MPAs (Venter 

and Mann 2012).  

 

In January 2002, a ban on beach driving in South Africa was implemented (Government Gazette No. 

22960, promulgated in terms of the National Environmental Management Act No. 107 of 1998) 

(Celliers et al. 2004). While unpopular with more affluent recreational shore anglers that owned off-

road vehicles (Dunlop and Mann 2012a), this legislation effectively reduced shore angler access to 

large areas of the coast, particularly in less developed areas along the KwaZulu-Natal (KZN) north 

coast, such as within the St Lucia Marine Reserve between Cape Vidal and Leven Point (Mann et al. 

2008). Fortuitously the project to monitor the effectiveness of the St Lucia Marine Reserve Sanctuary 

had just started in November 2001. This provided a means to determine whether there was any 

recovery in surf-zone angling fish populations in the previously exploited area between Cape Vidal 

(beyond a reasonable walking distance of ~5 km) and Leven Point, following the implementation of 

the beach driving ban. Hence the implementation of the ban led to an adjustment of the original aim of 

the study, but this did not require a change in study design. The primary aim of this study therefore 

became to use established stock status indicators including trends in species composition, catch-per-

unit-effort (CPUE) and population size structure (Mace 1994; Caddy and Mahon 1995; Shin et al. 

2005) to compare populations of surf-zone angling fish species within the St Lucia Marine Reserve 

Sanctuary (an unexploited benchmark) with those in the previously exploited area between Cape 

Vidal and Leven Point and to monitor if there was any recovery over a 10-year period (i.e. November 

2001 to July 2011).  
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3.2 Material and methods  

 

3.2.1 Data collection 

Although a range of different types of community and population indicators can be used in a study of 

this type (Murawski 2000; Aburto-Oropeza et al. 2011), the three indicators selected (i.e. trends in 

species composition, CPUE and population size structure) were simple to collect using volunteer 

anglers and are frequently used in monitoring the South African linefishery (Griffiths et al. 1999). 

Thirty two volunteer anglers were selected and trained in recording catch-and-effort data. The 

selected anglers were used on a rotational basis for each field trip (eight anglers per trip). The 

rationale behind using the same pool of anglers was to keep fishing effort as consistent as possible and 

after 10 years 56% of the effort was accounted for by only 13 anglers. However, in order to reach a 

wider spectrum of anglers to enable more people to learn and benefit from the experience of fishing in 

a MPA, one or two guest anglers were invited on each field trip.  

 

From November 2001 to November 2006, six field trips were conducted per year (Jan, Mar, May, Jul, 

Sep & Nov). This was reduced to four trips per year (Feb, May, Jul/Aug & Nov) from February 2007 

to July 2011 due to financial and logistical constraints. During each four-day field trip, research 

fishing was conducted by eight trained anglers in four selected 2 km areas (hereafter referred to as 

sampling blocks in this chapter) demarcated at 100 m intervals using numbered poles, the position of 

which was determined using a Geographic Positioning System (GPS). Two of these blocks (SA and 

SB) were inside the no-take sanctuary area (between Leven Point and Red Cliffs) and two were in the 

previously exploited area (EA and EB) south of Leven Point (Figure 3.1). Further detail on the 

sampling design is provided in Chapter 4 (Mann et al. 2015). 

 

Standardised rock-and-surf fishing gear (i.e. 3-4.5 m graphite surf rods, multiplier or fixed spool reels 

with braid or monofilament line ranging between 9-23 kg breaking strain) was used and anglers were 

restricted to using one rod at a time. A maximum of two hooks per trace was allowed and hook sizes 

could range between 1/0 and 7/0. However, if anglers decided to target big fish such as giant kingfish 

(Caranx ignobilis), blacktip sharks (Carcharhinus limbatus) or giant guitarfish (Rhynchobatus 

djiddensis) using specialized techniques (e.g. large throw baits or sliding baits using non-return clips, 

wire traces, large hooks > 7/0, big plugs, etc.), such fishing effort was recorded separately. A standard 

selection of baits was used including sardines (Sardinops sagax), chokka squid (Loligo reynaudi), 

Indian Ocean squid (Uroteuthis duvaucelii) and pink prawn (Haliporoides triarthrus).  

 

All catch-and-effort data were recorded daily by each angler on a slate. Effort data included date, 

angler name, sampling block (i.e. EA, EB, SA or SB), time (hours) fished at each 100 m marker and 

target (i.e. small or big fish). In order to ensure that fishing effort was evenly distributed throughout 
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each 2 km fishing block, a rule was applied whereby a minimum of 15 minutes and a maximum of 

two hours could be spent at each fishing location (i.e. at each 100 m marker). Catch data included tag 

number (if the fish was tagged or recaptured), species, length in millimetres (fork, total or pre-caudal 

length depending on the species), location (100 m marker number), time the fish was caught and any 

other relevant comments.  

 

3.2.2 Data analysis 

Trends in catch composition  

Percentage composition of all fish species caught by number was calculated for each sampling block 

and compared on an annual basis. Data from 2002 to 2011 were used to compare variation in fish 

community composition between the sanctuary and the previously exploited area, by means of a three 

factor repeated-measures PERMANOVA based on the Bray-Curtis similarity measure using 

percentage composition by number and incorporating all 87 species (Anderson 2001). The treatment 

effect of sanctuary area versus previously exploited area was treated as a fixed factor, with sampling 

blocks nested within this factor treated as random, and the year considered orthogonal and treated as a 

fixed factor. The analysis was run using 9999 permutations of residuals under a reduced model with 

type III sums of squares and Monte-Carlo simulations employed to derive probability values based on 

the appropriate number of permutations. Post-hoc tests were carried out where applicable. A non-

metric multidimensional scaling (nMDS) ordination was used to visualise changes in the fish 

community through time for each block (Kruskal and Wish 1978). Analyses were performed with the 

software programme PRIMER 6.1.5 and PERMANOVA+ for PRIMER (Clarke and Gorley 2006; 

Anderson et al. 2008). 

 

Trends in catch-per-unit-effort (CPUE) 

It is generally assumed that CPUE or catch rate is directly related to abundance and takes the form: 

CPUE = Nq, where N is abundance and q is the fraction of the abundance captured by one unit of 

effort, also known as the catchability coefficient (Maunder and Punt 2004). CPUE is commonly 

assumed to be linearly proportionate to abundance as long as q remains constant, but in reality this is 

rarely the case as it may change both spatially and temporally (Beverton and Holt 1957; Campbell 

2004; Maunder and Punt 2004). Therefore, it is essential to standardise CPUE data in order to remove 

most of the annual variation not attributable to changes in fish abundance (Maunder and Punt 2004; 

Winker et al. 2013). Targeting of big fish as described above was therefore excluded from the 

analysis. The remaining data (January 2002 - July 2011) were analysed to estimate indices of relative 

abundance and the dataset contained 1608 catch-per-angler-per-day records for 87 species (data from 

the first field trip in November 2001 was excluded from the analysis as it was found to be an outlier 

due to the field methods still being refined).  
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Standardisation models 

Abundance indices for the four most commonly caught species, Pomadasys furcatus, Trachinotus 

botla, Lutjanus rivulatus and Diplodus capensis were standardised using Generalized Additive Mixed 

Models (GAMMs), which included the covariates year, hours fished (Hours), sampling block (Block), 

month, an interaction term (year × block) and angler as a random effect. In an attempt to account for 

variation in fishing tactics and targeting, an additional factor (FT) was derived from a cluster analysis 

of the catch composition (He et al. 1997; Winker et al. 2013) (see below). CPUE was modelled as 

catch in number per species per angler per day. The CPUE records of the four most abundant species 

(in terms of catch frequency) were fitted by assuming either a Poisson or Quasi-Poisson error model 

with a log-link function. A Quasi-Poisson was chosen if the dispersion parameter ϕ > 1.1 (Zuur et al. 

2009). All GAMMs were fitted using the ‘mgcv’ and ‘nlme’ libraries in the R statistical environment, 

as described in Wood (2006).   

 

Clustering of the catch composition data was conducted by applying the non-hierarchical clustering 

technique ‘CLARA’ (Struyf et al. 1996), also in the R environment, to the catch composition matrix. 

For this purpose, a data matrix comprising CPUE records for each species was constructed. The data 

were normalized into relative proportions by weight and square-root-transformed. Subsequently, the 

identified cluster for each catch composition record was aligned with the original dataset and treated 

as a categorical variable (FT) in the GAMM (Winker et al. 2013). To select the number of meaningful 

clusters to be included as predictors in the GAMMs, the approach outlined in Winker et al. (2014) was 

followed. Accordingly, a Principal Component Analysis (PCA) was applied to the square-root-

transformed species composition matrix. The retained principle components (PCs) are those selected 

as non-trivial based on non-graphical solutions for Catell’s Scree test in association with the Kaiser-

Guttman rule (eigen value > 1), called the Optimal Coordinate test, which is available in the R 

package as ‘nFactors’ (Raîche et al. 2013). The total number of clusters considered was taken as the 

number of retained PCs plus one (Winker et al. 2014). This approach resulted in the selection of the 

first three PCs and correspondingly four clusters were selected as optimal for the CLARA clustering 

technique.  

 

The full GAMM, evaluated for each species i independently, included a thin plate regression for hours 

and a cyclic cubic smoothing function for month, such that: 

 

  
jFTblockyearblockhourssmonthsyear

i eCPUE
 


)()(0

      (1)  

 

where s() denotes the smoothing functions, FT is the vector of cluster numbers treated as a categorical 

variable and αj is the random effect for angler j (Helser et al. 2004; Weltz et al. 2013). The inclusion 
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of individual anglers as a random effect provides an efficient way to combine CPUE recorded from 

various anglers in a single continuous CPUE time-series, despite discontinuity of individual anglers 

over the sampling period (Helser et al. 2004).The main reason for treating angler as a random effect 

was because of concerns that multiple CPUE records produced by the same angler may violate the 

assumption of independence caused by variation in angling skill, which can result in overestimated 

precision and significance levels of the predicted CPUE trends if not accounted for (Thorson and 

Minto 2015). The significance of the random-effects structure was supported for all species by 

Akaike’s Information Criterion (AIC). Sequential F-tests were used to determine the covariates that 

contributed significantly (p < 0.05) to the deviance explained. 

 

Trends in length frequency 

Length frequency data were used to investigate the size structure of fish populations over time. 

Although use of a single size-based indicator can result in certain biases due to variations in year-class 

strength (Shin et al. 2005), mean length was considered in addition to species composition and 

relative abundance as another widely used indicator (Froese et al. 2008). Changes in mean length 

were modelled for the four most commonly caught species, P. furcatus, T. botla, L. rivulatus and D. 

capensis, using the GAMM framework described for the CPUE standardisation, but excluding the 

effort and targeting covariates hours fished (Hours) and FT, respectively:  

 

jblockyearblockmonthsyear

i eLength
 


)(0

       (2) 

 

The standardised species-specific length data were fitted by assuming a Gamma error model with a 

log-link function. The significance of including angler as a random effect was supported for all 

species by AIC. As for CPUE, sequential F-tests were used to determine the covariates that 

contributed significantly (p < 0.05) to the deviance explained in the length data. All reference to 

CPUE and mean length presented in the results refers to standardised data. 
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Figure 3.1: Map of the St Lucia Marine Reserve and Sanctuary showing the four 2 km sampling 

blocks used in this study. EA and EB are in the previously exploited area, SA and SB are in the no-

take sanctuary area. Inset shows the iSimangaliso Wetland Park that incorporates the marine reserve. 
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3.3 Results 

A total of 50 field trips (1608 angler days involving a total of 92 anglers) were undertaken between 

November 2001 and July 2011during which 12 367 fish were caught comprising 87 species from 37 

families (Appendix 3.1).  

 

3.3.1 Trends in catch composition 

The species composition was similar in each of the four sampling blocks being dominated by three 

species namely Lutjanus rivulatus, Trachinotus botla and Pomadasys furcatus (Figure 3.2a-d). EA 

had the lowest proportion of L. rivulatus (7%) and the highest proportion of T. botla (27%), whereas 

SB had a substantially higher proportion of L. rivulatus (29%) and a lower proportion of T. botla 

(7%). Overall, considerably more fish were caught in SB than in the other three blocks (Figure 3.2).  

 

 

Figure 3.2a-d: Species composition recorded at the four sampling blocks from January 2002 to July 

2011 in the St Lucia Marine Reserve. EA and EB were in the previously exploited area, while SA and 

SB were in the sanctuary area (SSNP=Lutjanus rivulatus; GGRN=Pomadasys furcatus; 

LPMP=Trachinotus botla; CRCD=Epinephelus andersoni; NSTM=Rhabdosargus sarba; 

BLTL=Diplodus capensis; LPFS=Dinoperca petersi; BSTM=Rhabdosargus thorpei; 

YRCD=Epinephelus marginatus). 

 

Analysis of species composition over the 10-year study period revealed subtle differences and 

changes in each of the four sampling blocks (Figures 3.3 & 3.4). In addition to the above mentioned 

three dominant species, Diplodus capensis and Epinephelus andersoni comprised the top five species 
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in EA (Figure 3.3a). An increase in the percentage contribution of P. furcatus was observed from 

2008-2011 and a decrease in the percentage composition of E. andersoni during 2010-2011 were the 

only discernible changes in species composition in EA over the 10-year period (Figure 3.3a). In EB, 

Dinoperca petersi replaced E. andersoni as one of the top five species (Figure 3.3b). An increasing 

trend in percentage composition of both L. rivulatus and P. furcatus was apparent in EB (Figure 3.3b). 

E. andersoni and Rhabdosargus sarba combined with the aforementioned three species, dominated 

catches in SA (Figure 3.3c). Species composition fluctuated widely in SA over the 10-year period. In 

2005 catches of T. botla increased substantially while the percentage composition of reef-associated 

fish species such as P. furcatus and L. rivulatus decreased. This pattern was reversed in 2009 with an 

increase in reef species and a decrease in T. botla (Figure 3.3c). Percentage composition of R. sarba in 

SA was progressively smaller throughout the sampling period. Rhabdosargus thorpei and D. capensis 

combined with the top three species, dominated catches in SB (Figure 3.3d). An increase in the 

percentage composition of L. rivulatus from 2008-2011 was the most evident trend in SB over the 10-

year period.  
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Figure 3.3a-d: Trends in fish species composition at the four sampling blocks in the St Lucia Marine 

Reserve between 2002 and 2011 (SSNP=Lutjanus rivulatus; GGRN=Pomadasys furcatus; 

LPMP=Trachinotus botla; CRCD=Epinephelus andersoni; NSTM=Rhabdosargus sarba; 

BLTL=Diplodus capensis; LPFS=Dinoperca petersi; BSTM=Rhabdosargus thorpei). 

 

The nMDS ordination indicated that community composition at EA, EB and SA was similar and 

overlapped during most years (Figure 3.4). SB however, was generally more distinct from the other 

communities and showed little overlap throughout the study. Analysis of overall trends in Bray-Curtis 

similarities among the previously exploited (EA & EB) and sanctuary (SA & SB) blocks revealed that 

three out of the four comparisons showed convergence in community composition, whilst 

communities within sanctuary block SB showed a trend of divergence. Average ± SD Bray-Curtis 

similarities between sanctuary blocks and previously exploited blocks for each year ranged from 48.9 

± 11.3 to 62.7 ± 7.1%. 
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Figure 3.4: An nMDS ordination based on percentage catch composition for the four 2 km sampling 

blocks in the St Lucia Marine Reserve between 2002 and 2011. 

 

The PERMANOVA found no significant difference in the treatment effect of fish community 

composition between the sanctuary and previously exploited areas nor in the interaction of this term 

with year (time) (P(Monte-Carlo) >0.1) (Table 3.1). However, the analysis did reveal significant 

differences according to year, block nested within treatment and the interaction of blocks nested 

within treatment with year (P(Monte-Carlo) <0.05). Post-hoc pairwise tests between different years were 

not significantly different for 62% of the comparisons (P(Monte-Carlo) <0.05). 

 

Table 3.1: Results of PERMANOVA to investigate variation in fish community composition 

according to the treatment effect of sanctuary area versus previously exploited area, year (time) and 

sampling block using percentage composition data and the Bray-Curtis similarity distance measure. 

Significant differences are indicated by an * (α = 0.05). 

 

Source of variation Df MS FPseudo P(Monte-Carlo) 

Treatment 1 21266 0.9592 0.4866 

Year 9 4321 2.8244 0.0001* 

Block(treatment) 2 22172 18.2760 0.0001* 

Treatment x year 9 1856 1.2131 0.1505 

Block(treatment) x year 18 1530 1.2612 0.0210* 

Residual 156 1213   

Total 195    
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3.3.2 Trends in catch-per-unit-effort (CPUE) 

Standardised abundance trends 

Summary statistics for covariates tested in the GAMMs fitted to CPUE data for P. furcatus, T. botla, 

L. rivulatus and D. capensis are shown in Table 3.2. All four species showed significant variation in 

CPUE over the 10-year period (year) and three of the four species, excluding P. furcatus, showed 

significant seasonal variation in abundance [s(month)]. Annual trends in CPUE were significantly 

different among the sampling blocks (block × year) and only D. capensis did not show a significant 

effect of targeting effort (FT).   

 

Table 3.2: Summary statistics for covariates tested in the GAMMs fitted to CPUE data for 

Pomadasys furcatus, Trachinotus botla, Lutjanus rivulatus and Diplodus capensis (significant results 

shown in bold). 

 

  P. furcatus T. botla L. rivulatus D. capensis 

Predictor F-Test P F-Test p F-Test p F-Test p 

Year 3.282 < 0.001 3.548 < 0.001 3.650 < 0.001 3.361 < 0.001 

s(Month) 0.001 0.321 19.26 < 0.001 16.86 < 0.001 8.875 < 0.001 

s(Hours) 10.94 < 0.001 21.36 < 0.001 16.08 < 0.001 10.455 < 0.001 

Block 1.417 0.236 2.723 < 0.05 8.178 < 0.05 1.826 0.140 

Block x year 2.585 < 0.001 2.139 < 0.001 3.159 < 0.001 2.822 < 0.001 

FT 40.911 < 0.001 108.348 < 0.001 98.74 < 0.001 0.489 0.689 

 

There was an increase in CPUE for P. furcatus from 2002–2008 in the previously exploited areas (EA 

and EB) after which CPUE fluctuated around the mean of the initially higher sanctuary areas (SA and 

SB) (Figure 3.5a, b). In contrast to the sanctuary blocks, there were distinct increases in CPUE 

between 2002 and 2011 in both previously exploited blocks. The difference was strongest in EA with 

no overlap in 95% CI’s (Figure 3.5c). Seasonality revealed no significant variation in CPUE (Table 

3.2; Figure 3.5d).  
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Figure 3.5: Standardised CPUE trends based on the targeting-adjusted GAMM for Pomadasys 

furcatus caught in the St Lucia Marine Reserve from January 2002 to July 2011. Standardised CPUE 

is shown (a) for the previously exploited area (EA and EB), (b) for the sanctuary area (SA and SB), 

(c) by sampling block (EA, EB, SA and SB) in 2002 and 2011, and (d) by month. Solid lines in (a) 

and (b) represent loess smoother fits highlighting the underlying trend. Dashed lines in (a) and (b) 

indicate the mean CPUE from the sanctuary area. The 95% CI’s are denoted by error bars. 

 

The CPUE for T. botla in the previously exploited area remained below the average attained in the 

sanctuary area until 2009-2011 when it increased, whereas CPUE fluctuated in the sanctuary area with 

a peak in 2004 (Figure 3.6a, b). Increases in CPUE between 2002 and 2011 were noticeable in both 

the previously exploited blocks (EA and EB) (Figure 3.6c). Catch rates were highly seasonal with 

highest CPUE predicted for the warmer summer months from November to May (Figure 3.6d).  
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Figure 3.6: Standardised CPUE trends based on the targeting-adjusted GAMM for Trachinotus botla 

caught in the St Lucia Marine Reserve from January 2002 to July 2011. Standardised CPUE is shown 

(a) for the previously exploited area (EA and EB), (b) for the sanctuary area (SA and SB), (c) by 

sampling block (EA, EB, SA and SB) in 2002 and 2011, and (d) by month. Solid lines in (a) and (b) 

represent loess smoother fits highlighting the underlying trend. Dashed lines in (a) and (b) indicate the 

mean CPUE from the sanctuary area. The 95% CI’s are denoted by error bars. 

 

Lutjanus rivulatus showed a gradually increasing trend in CPUE in both the previously exploited and 

sanctuary areas but catch rates were consistently higher in the sanctuary areas. This increase was 

particularly noticeable in both areas from 2008 onwards (Figure 3.7a, b). Catch rates were lowest in 

the EA block and highest in the SB block with increases between 2002 and 2011 being similar in all 

four blocks (Figure 3.7c). Catch rates were seasonal with highest CPUE predicted for the summer 

months from November to May (Figure 3.7d).  
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Figure 3.7: Standardised CPUE trends based on the targeting-adjusted GAMM for Lutjanus rivulatus 

caught in the St Lucia Marine Reserve from January 2002 to July 2011. Standardised CPUE is shown 

(a) for the previously exploited area (EA and EB), (b) for the sanctuary area (SA and SB), (c) by 

sampling block (EA, EB, SA and SB) in 2002 and 2011, and (d) by month. Solid lines in (a) and (b) 

represent loess smoother fits highlighting the underlying trend and dashed lines in (a) and (b) indicate 

the mean CPUE from the sanctuary area. The 95% CI’s are denoted by error bars. 

 

The CPUE for D. capensis increased rapidly from 2002 to 2004 in the previously exploited areas and 

then remained stable around the mean CPUE recorded in the sanctuary areas (Figure 3.8a). An 

increase in CPUE in the sanctuary area was also recorded between 2009 and 2011 (Figure 3.8b). 

These increases were most apparent in the EA and SB blocks between 2002 and 2011 (Figure 3.8c). 

Some evidence of seasonality was apparent with higher catch rates being predicted for the cooler 

winter months from April to September (Figure 3.8d).  
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Figure 3.8: Standardised CPUE trends based on the targeting-adjusted GAMM for Diplodus capensis 

caught in the St Lucia Marine Reserve from January 2002 to July 2011. Standardised CPUE is shown 

(a) for the previously exploited area (EA and EB), (b) for the sanctuary area (SA and SB), (c) by 

sampling block (EA, EB, SA and SB) in 2002 and 2011, and (d) by month. Solid lines in (a) and (b) 

represent loess smoother fits highlighting the underlying trend. Dashed lines in (a) and (b) indicate the 

mean CPUE from the sanctuary area. The 95% CI’s are denoted by error bars. 

 

3.3.3 Trends in mean size 

Summary statistics for covariates tested in the GAMMs fitted to length data for P. furcatus, T. botla, 

L. rivulatus and D. capensis are shown in Table 3.3. Three of the four species, excluding T. botla, 

showed significant variation in mean length over the 10-year period (Year) and three of the four 

species, excluding P. furcatus, showed significant seasonal variation in mean length [s(Month)]. All 

species except D. capensis showed significant differences in mean length between sampling blocks 

(Block). Similarly, annual trends in mean length were significantly different among the sampling 

blocks (block × year) with the exception of D. capensis. 

  

 

 

0
.0

0
.5

1
.0

1
.5

2
.0

Year

C
P

U
E

2002 2004 2006 2008 2010

(a)

0
.0

0
.5

1
.0

1
.5

2
.0

Year

C
P

U
E

2002 2004 2006 2008 2010

(b)

0
.0

0
.5

1
.0

1
.5

Sampling Block

C
P

U
E

EA EB SA SB

(c) 2002

2011

0
.0

0
.5

1
.0

1
.5

Month

C
P

U
E

1 2 3 4 5 6 7 8 9 10 12

(d)



26 
 

Table 3.3: Summary statistics for covariates tested in the GAMMs fitted to length data for 

Pomadasys furcatus, Trachinotus botla, Lutjanus rivulatus and Diplodus capensis. Significant 

differences are shown in bold. 

 

  P. furcatus T. botla L. rivulatus D. capensis 

Predictor F-Test P F-Test p F-Test P F-Test P 

Year 6.97 < 0.001 1.862 0.053 4.262 < 0.001 2.356 < 0.05 

s(Month) 0.001 0.628 14.50 < 0.001 2.842 < 0.01 2.011 < 0.05 

Block 8.776 < 0.001 5.583 < 0.001 8.977 < 0.001 1.315 0.268 

Block x year 2.525 < 0.001 2.212 < 0.001 4.191 < 0.001 1.412 0.081 

 

In 2002 and 2003, the mean length of P. furcatus was smaller in the previously exploited areas than in 

the sanctuary areas (< 260 mm FL), but by 2005 the mean length had increased to above the overall 

mean recorded in the sanctuary areas and remained relatively stable thereafter (Figure 3.9a). There 

was no significant trend in mean length of P. furcatus within the sanctuary areas (Figure 3.9b). The 

increase in mean length between 2002 and 2011 was most evident in the EA block (Figure 3.9c). 

There was no change in the predicted mean length of P. fucatus seasonally (Figure 3.9d).  

 

 



27 
 

 

Figure 3.9: Standardised trends in mean length based on the full GAMM for Pomadasys furcatus 

caught in the St Lucia Marine Reserve from January 2002 to July 2011. Standardised mean length is 

shown (a) for the previously exploited area (EA and EB), (b) for the sanctuary area (SA and SB), (c) 

by sampling block (EA, EB, SA and SB) in 2002 and 2011, and (d) by month. Solid lines in (a) and 

(b) represent loess smoother fits highlighting the underlying trend. Dashed lines in (a) and (b) indicate 

the overall mean length recorded in the sanctuary area. The 95% CI’s are denoted by error bars. 

 

The mean length of T. botla was predicted to be consistently smaller in the previously exploited area 

than in the sanctuary area between 2002 and 2007 (~280 mm FL). Thereafter  the size increased and 

became more similar to the overall mean length of T. botla caught in the sanctuary area (~320 mm 

FL) between 2008 and 2010 but decreased slightly again in 2011 (Figure 3.10a). The mean length of 

T. botla in the sanctuary area fluctuated with no clear trend (Figure 3.10b). Mean length of T. botla 

caught in the SB block was significantly larger than that of fish caught in the other three blocks but 

there was little difference in mean length in any of the four sampling blocks between 2002 and 2011 

(Figure 3.10c). Strong seasonality was evident in the mean length with larger fish caught during the 

summer months (November to May) (Figure 3.10d).  
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Figure 3.10: Standardised trends in mean length based on the full GAMM for Trachinotus botla 

caught in the St Lucia Marine Reserve from January 2002 to July 2011. Standardised mean length is 

shown (a) for the previously exploited area (EA and EB), (b) for the sanctuary area (SA and SB), (c) 

by sampling block (EA, EB, SA and SB) in 2002 and 2011, and (d) by month. Solid lines in (a) and 

(b) represent loess smoother fits highlighting the underlying trend. Dashed lines in (a) and (b) indicate 

the overall mean length recorded in the sanctuary area. The 95% CI’s are denoted by error bars. 

 

Lutjanus rivulatus showed a steady increase in mean length between 2002 (278 mm FL) and 2011 

(339 mm FL) in the previously exploited area, being substantially smaller in 2002-2004 than the 

overall mean length recorded in the sanctuary area (Figure 3.11a). The mean length of L. rivulatus in 

the sanctuary area initially declined between 2002 and 2007 whereafter it increased (Figure 3.11b). 

The increase in mean length between 2002 and 2011was clearly evident in both the EA and EB 

sampling blocks (Figure 3.11c). There was evidence of slightly larger fish being caught during spring 

(August to October) and in mid-summer (January) (Figure 3.11d). 
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Figure 3.11: Standardised trends in mean length based on the full GAMM for Lutjanus rivulatus 

caught in the St Lucia Marine Reserve from January 2002 to July 2011. Standardised mean length is 

shown (a) for the previously exploited area (EA and EB), (b) for the sanctuary area (SA and SB), (c) 

by sampling block (EA, EB, SA and SB) in 2002 and 2011, and (d) by month. Solid lines in (a) and 

(b) represent loess smoother fits highlighting the underlying trend. Dashed lines in (a) and (b) indicate 

the overall mean length recorded in the sanctuary area. The 95% CI’s are denoted by error bars. 

 

Diplodus capensis showed a gradual but significant increase in mean length between 2002 and 2011 

in the previously exploited area, eventually passing the overall mean size (228 mm FL) recorded in 

the sanctuary area (Figure 3.12a). There was no clear trend in mean length recorded in the sanctuary 

area (Figure 3.12b). The significant increases in mean size between 2002 and 2011 were equally 

noticeble in both the EA and EB blocks (Figure 3.12c). Slightly larger fish were caught during the 

winter months between May and October (Figure 3.12d). 
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Figure 3.12: Standardised trends in mean length based on the full GAMM for Diplodus capensis 

caught in the St Lucia Marine Reserve from January 2002 to July 2011. Standardised mean length is 

shown (a) for the previously exploited area (EA and EB), (b) for the sanctuary area (SA and SB), (c) 

by sampling block (EA, EB, SA and SB) in 2002 and 2011, and (d) by month. Solid lines in (a) and 

(b) represent loess smoothers fits highlighting the underlying trend. Dashed lines in (a) and (b) 

indicate the overall mean length recorded in the sanctuary area. The 95% CI’s are denoted by error 

bars. 

 

3.4 Discussion 

The life history of exploited species has direct implications for resilience to fishing and recovery time 

(Jennings et al. 1999). Slow growing, late maturing species are likely to take much longer to recover 

than fast growing, early maturing species. The four most abundant species considered in this study 

have contrasting life history strategies (Mann 2013) and it was anticipated that fast growing, mobile 

species such as T. botla (Parker et al. 2013) would respond more quickly to the cessation in shore 

fishing effort than L. rivulatus which has been shown to be a highly resident, slow growing species 

(Mann et al. 2015; Mann et al. 2016b). This would, however, also depend on the initial depletion 

level. While such difference in response was not clearly evident, the data collected during this study 

found evidence of recovery for all four of the most common surf-zone fishes in the previously 

exploited area south of Leven Point following the implementation of the beach driving ban in January 
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2002. This evidence was strengthened by using the sanctuary area as a benchmark which improved 

the ability to differentiate between recovery signals and natural population fluctuation. However, 

despite a concerted effort to standardise the fishing protocol and to ensure that the selected 2 km 

sampling blocks were as similar as possible, factors such as high natural variability in fish 

populations, subtle changes in angler behaviour and slight differences in habitat among each of the 

four sampling blocks, complicated interpretation of the results. No two sites were identical which 

highlights the importance of adequate replication when comparing sites with different levels of 

exploitation (Attwood 2003). Furthermore, although the area south of Leven Point was fished by 

shore anglers using beach vehicles prior to the implementation of the beach vehicle ban, the intensity 

of fishing declined with distance from the beach access points at Cape Vidal and Sodwana Bay 

(Figure 3.1; Mann et al. 1997). The contrast  in exploitation history between surf-zone fish 

populations in the no-take sanctuary with those in the previously exploited area was therefore likely to 

have been less pronounced than might have been the case in more heavily fished areas, and also 

would have represented something of an exploitation gradient. 

 

Overall, species diversity and catch rates were lowest in the EA block closest to Cape Vidal and 

highest in SB near the centre of the sanctuary area (Mann and Tyldesley 2013). This supports the 

observation of a gradient in fish population densities and highlights the value of no-take MPAs in 

protecting a greater biomass of fishery species (Aburto-Oropeza et al. 2011; Maggs et al. 2013a; 

Edgar et al. 2014). Trends in stock status indicators used in this study suggested a fairly rapid initial 

recovery (3-4 years) of all four of the main fishery species (P. furcatus, T. botla, L. rivulatus and D. 

capensis), in the previously exploited sampling area (EA & EB), similar to the findings after the 

closure to angling of the De Hoop Marine Reserve in South Africa’s Western Cape province (Bennett 

and Attwood 1991; 1993). However, the recovery observed in EB was generally more apparent and 

sustained (Figure 3.3b). The proximity of EB to the sanctuary (4 km) suggests that this area probably 

received greater benefit from spillover and larval export than EA which is further away (12 km). Such 

recoveries in fish density and associated fishery benefits close to the boundaries of no-take MPAs 

have been well documented in the literature (Gell and Roberts 2003; Russ et al. 2003; Halpern et al. 

2010a).  

 

3.4.1 Trends in catch composition 

The annual variation in catch composition and fish abundance may have been linked to various 

environmental parameters that potentially masked the evidence of community recovery. These 

included aspects such as recruitment variability and habitat changes. For example, the increase in 

percentage contribution of L.rivulatus in both the sanctuary blocks from 2007 to 2009 (Figure 3.3c-d) 

may have been linked to a good recruitment event. This suggestion is supported by the higher catch 

rates (Figure 3.7b) and lower mean size of fish caught in the sanctuary area during this period (Figure 
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3.11b). This recruitment event is also likely to have affected the increases in species contribution and 

catch rate of L. rivulatus observed in the previously exploited areas. Another example is the sudden 

increase in the percentage composition of T. botla in 2005 in SA and the simultaneous decline in reef-

associated species such as P. furcatus and L. rivulatus (Figure 3.3c). A sand inundation event took 

place during 2005 which covered many of the surf-zone reefs in the SA block and which led to a 

resultant change in species composition. This situation was reversed in 2009 when a scouring event 

exposed many of the surf-zone reefs resulting in an influx of reef-associated species. The dynamic 

nature of surf-zone reefs with regard to regular sand inundation is thus an important factor that needs 

to be considered when comparing surf-zone fish populations. 

 

Analysis of catch composition (Figure 3.4) highlighted the fact that while the four sampling blocks 

were similar in terms of the fish communities present (Table 3.2), SB was significantly different from 

the other three blocks. SB contained the most extensive reef structure of the four blocks and it is likely 

that this availability of reef habitat resulted in some of the differences observed. In addition, the 

relatively close proximity (~400 m) of SB  to Leadsman Shoal (an offshore reef of 7.3km
2
 in size) 

may have influenced the species composition because fish from this large offshore reef complex may 

move into the surf-zone and vice versa. This highlights the importance of habitat quality and 

connectivity when selecting no-take MPAs to maximize their effectiveness (Green et al. 2014). Most 

importantly, there was an indication of convergence in the other three sampling blocks (Figure 3.4) 

suggesting that the fish community was becoming more similar and stable as would be expected after 

a period of 10 years with no fishing mortality (Jennings and Kaiser 1998; Lester et al. 2009; Aburto-

Oropeza et al. 2011).   

  

3.4.2 Trends in catch-per-unit-effort (CPUE) 

 A comprehensive approach was used to standardise CPUE data in an attempt to remove most of the 

variation not attributable to annual changes in fish abundance, building on the methods in Winker et 

al. (2013; 2014). The potentially confounding sources of variation that were accounted for included 

month, block, targeting effects and variations in individual angler CPUE.  Significant variation in 

CPUE could be attributed to persistent differences in individual angler skill and behaviour, which was 

incorporated in the standardisation in the form of a random effects term (Helser et al. 2004; Weltz et 

al. 2013). Of the fixed effects, the categorical predictor derived from clustering of catch composition 

explained much of the observed deviance, indicating that substantial variation in the CPUE data was 

removed by including the targeting effect. However, given that CPUE was aggregated by angler and 

day, but that anglers typically employed multiple fishing tactics in terms of the choice of hook sizes, 

bait, and target species, it was not possible to infer distinct, species-specific fishing tactics from the 

aggregated daily angler catch composition data. Therefore, it is likely that some bias remained due to 

optimising the choice of fishing tactics during the course of the fishing day. A standard rig frequently 
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used by anglers on this project consisted of a two-hook trace with the top hook being smaller (1/0 or 

2/0) baited with prawn or squid, and the bottom hook being larger (4/0 or 5/0) baited with sardine. 

This trace effectively targeted species such as T. botla and P. furcatus on the top hook and species 

such as L. rivulatus and E. marginatus on the bottom hook. Depending on the type of surf-zone 

habitat such a baited trace was cast into (i.e. reef or sand), a large variety of species could be expected 

to take the bait. Identifying precise species targets is thus extremely difficult using this method of 

fishing. 

 

Another aspect that was difficult to account for in the CPUE analysis was the improved fishing skill 

of the team over time. After 10 years of fishing the same 2 km blocks, anglers gained local knowledge 

and learnt where the most productive areas were and fishing effort became more focused in these 

areas (despite the application of the two-hour rule per 100 m locality). Anglers also learnt how best to 

target certain species. For example, L. rivulatus and D. petersi feed more prolifically in the first few 

hours of darkness which resulted in improved targeting at this time. An  example of this behaviour 

was the increase in fishing effort expended at dusk and during the first few hours of darkness at 

localities such as SB2 and SB20. Both these localities consist of extensive reef habitat with large 

numbers of L. rivulatus and the observed increase in CPUE for this species in SB from 2007 onwards 

(Figure 3.7a, b) was possibly related to this learnt angler behaviour.  Although anglers had equal 

opportunity to learn at all sites, such behaviour changes  potentially improved catch rates but were not 

necessarily related to an increase in fish abundance. The influence of improved fishing skill (often 

referred to as effort creep) is frequently acknowledged in studies evaluating long-term catch and effort 

data series but is difficult to factor into such analyses (Griffiths 2000; Attwood 2003), particularly 

when stocks show a positive trend rather than a negative one as is often the case in exploited fisheries. 

Monitoring programmes such as this should therefore attempt to standardise the methods used 

beforehand in order to reduce this type of variablity. 

    

Despite these challenges, analysis of trends in standardised CPUE provided useful indicators of 

relative abundance of the dominant surf-zone angling species (Figures 3.5-3.8), which are considered 

to be relatively unbiased compared to any alternative fisheries-dependent data sources. Of the four 

most common species analysed (P. furcatus, T. botla, L. rivulatus and D. capensis), all showed 

increases in abundance in the previously exploited area. Somewhat surprisingly, two of the species (L. 

rivulatus and D. capensis), also showed similar increases in abundance in the sanctuary area. This was 

not anticipated as it was assumed that species protected in the sanctuary for >30 years would have 

reached levels close to their  carrying capacity and should thus have revealed more stable trends in 

abundance (Lester et al. 2009). The reasons for the observed increases are probably related to factors 

such as successful recruitment events as has been described above for L. rivulatus, as well as 

improved angling skill. The decrease in T. botla CPUE in the sanctuary areas could have been related 
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to insufficient resolution in the catch composition data to account for a gradual switch in targeting 

with more effort being focused on catching reef fish species, particularly in SB.  

 

3.4.3 Trends in mean size 

Some studies have suggested that monitoring of mean length in fish populations can be a relatively 

weak indicator of stock status especially when only one such size-based indicator is used. This is 

because there are a variety of spatial and temporal factors which can affect this such as sampling 

within nursery areas, periodic recruitment events, gear selectivity, etc. (Griffiths et al. 1999; Attwood 

2003; Shin et al. 2005; Froese et al. 2008). However, the monitoring of fish length in this study 

provided a particularly useful indicator, largely because it was used in combination with the other two 

methods. Annual tracking of mean length of target species such as P. furcatus, L. rivulatus and D. 

capensis showed convincing evidence of recovery in the previously exploited area within the first 2-4 

years (Figures 3.9, 3.11, 3.12). These increases were expected as resident fish species are generally 

able to increase in size (and number as shown above) with a cessation in fishing mortality. The trend 

in mean length of T. botla in the previously exploited area was more difficult to interpret although it 

too eventually showed an increase in mean length between 2008-2010 (Figure 3.10). Time series of T. 

botla, both in terms of abundance and mean length, were highly seasonal with more and bigger fish 

being caught during the summer months. This seasonality coupled with the wider ranging movement 

behaviour of this species (Chapter 4, Mann et al. 2015), may have compromised the ability to clearly 

track changes in its mean size compared to that of more resident species.    

 

Complex inter-specific interactions such as competition between species may affect the time taken for 

fish communities to return to a “climax” state (Lester et al. 2009) and this state may never be reached 

if the ecosystem is irrepairably damaged (Jennings and Kaiser 1998). While the surf-zone habitat in 

both the no-take sanctuary and previously exploited area was believed to be in a relatively healthy 

condition, studies of this nature need to be conducted over a long period, especially in the case of 

monitoring slow growing, long-lived fish species (Abesamis et al. 2014). An important  observation 

made during the study was the small mean size of some of the fish species caught, especially the 

serranids, supporting the suggesting that the surf-zone provides an important nursery habitat for these 

species, with adults moving out into deeper water with increasing size/age (Chapter 4, Mann et al. 

2015). Another important point to emphasize with regard to monitoring of fish size structure in no-

take MPAs is that it provides information that is extremely useful for the calculation of reliable 

estimates of natural mortality for comparison with exploited populations as was done during this 

study for R. sarba (James et al. 2004) and T.botla (Parker et al. 2013). 
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3.5 Conclusion 

Evidence provided by this study suggests that areas of the South African coastline that were 

previously only accessible by means of beach vehicles prior to 2002, are likely to have had some 

recovery of resident surf-zone fish populations. However, such recovery may have greatly benefitted 

from the close proximity of a no-take MPA or other natural refuge from which an element of adult 

spillover and/or larval export would have occurred (Halpern et al. 2010a). This highlights the 

importance of having a network of no-take MPAs to increase resilience of exploited fish populations 

(Gaines et al. 2010).  In contrast to the many environmental benefits associated with the beach driving 

ban, there are also a few negative aspects. Shore-angling is now more concentrated at beach access 

points along the coast, resulting  in areas of local depletion of some resident fish populations (Mann et 

al. 2008; Parker et al. 2013). In addition, in some areas of the Eastern Cape this spatial shift in fishing 

effort has also resulted in greater effort being placed on other more accessible fishing areas such as 

estuaries (Cowley et al. 2013), which are vulnerable nursery areas for estuarine-dependent marine fish 

species.   

 

With regard to future monitoring of MPAs, several important points learnt during this study need to 

be highlighted: 1) The use of no-take MPAs as a benchmark is highly desirable in long-term 

monitoring programmes to enable distinction to be made between natural variability and human-

induced changes. 2)  Monitoring programmes of this nature must be carefully designed, rigidly 

implemented and be run for a long time period (>10 years). 3) Sampling areas must have similar 

habitat to reduce any confounding effects of the environment and increase confidence in  the detection 

of fishing related inter-annual changes. 4) Sampling must cover the seasons systematically because of 

strong seasonal variation in abundance of some fish species. 5) It is important to monitor different 

attributes of fish populations and communities to strengthen results (e.g. species composition, relative 

abundance and population size structure). 6) The consequences of any changes to the sampling design 

in such programmes must be carefully evaluated before being implemented. 7) The use of volunteers 

in such programmes requires careful management and training but has important spin-offs in terms of 

costs and angler awareness. 

 

Appendix 3.1: Number of fish species caught, tagged and recaptured in the St Lucia Marine Reserve 

from November 2001 to July 2011 (species arranged according to the classification of Smith and 

Heemstra [1991] except in the case of species names subsequently revised).  

 
Family Species Common name Number 

caught 

Number 

tagged 

Number 

recaptured 

Carcharhinidae Carcharhinus brevipinna Spinner shark 1 1 0 

Carcharhinidae Carcharhinus limbatus Blacktip shark 13 13 0 

Carcharhinidae Rhizoprionodon acutus Milkshark 3 3 0 
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Sphyrnidae Sphyrna zygaena Smooth hammerhead 1 1 0 

Odontaspididae Carcharias taurus Spotted ragged-tooth 2 2 0 

Rhinobatidae Rhinobatos annulatus Lesser guitarfish 10 8 0 

Rhinobatidae Rhinobatos leucospilus Greyspot guitarfish 3 3 0 

Rhinobatidae Rhynchobatus djiddensis Giant guitarfish 52 47 5 

Dasyatidae Himantura fai Roundnose stingray 7 7 0 

Dasyatidae Himantura gerrardi Sharpnose stingray 43 42 0 

Dasyatidae Himantura leopard Honeycomb stingray 24 24 0 

Elopidae Elops machnata Ladyfish 1 1 0 

Albulidae Albula oligolepis Bonefish 214 154 0 

Muraenidae Echidna nebulosi Floral moray 1 0 0 

Muraenidae Gymnothorax undulates Leopard moray 118 0 0 

Muraenidae Uropterygius tigrinus Tiger reef-eel 3 0 0 

Plotosidae Plotosus nkunga Eel-catfish 29 1 0 

Belonidae Strongylura leiura Yellowfin needlefish 2 0 0 

Belonidae Tylosurus crocodilus Crocodile needlefish 1 0 0 

Hemiramphidae Hyporhamphus affinis Tropical halfbeak 1 0 0 

Serranidae Epinephelus andersoni Catface rockcod 577 268 49 

Serranidae Epinephelus macrospilos Bigspot rockcod 27 9 0 

Serranidae Epinephelus marginatus Yellowbelly rockcod 335 231 50 

Serranidae Epinephelus malabaricus Malabar rockcod 7 5 0 

Serranidae Epinephelus tukula Potato bass 205 191 8 

Teraponidae Terapon jarbua Thornfish 2 0 0 

Pomatomidae Pomatomus saltatrix Elf 118 34 0 

Haemulidae Plectorhinchus chubbi Dusky rubberlip 2 2 0 

Haemulidae Plectorhinchus flavomaculatus Lemonfish 132 118 8 

Haemulidae Plectorhinchus gibbosus Harry hotlips 9 9 0 

Haemulidae Plectorhinchus playfairi Whitebarred rubberlip 42 35 1 

Haemulidae Plectorhinchus schotaf Minstrel rubberlip 18 14 0 

Haemulidae Plectorhinchus sordidus Redlip rubberlip 2 2 0 

Haemulidae Pomadasys commersonnii Spotted grunter 2 1 0 

Haemulidae Pomadasys furcatus Grey grunter 2733 646 48 

Haemulidae Pomadasys kaakan Javelin grunter 1 1 0 

Haemulidae Pomadasys multimaculatum Cock grunter 4 4 0 

Haemulidae Pomadasys olivaceus Pinky 2 0 0 

Dinopercidae Dinoperca petersi Cave bass 611 384 78 

Lutjanidae Lutjanus argentimaculatus River snapper 15 13 2 

Lutjanidae Lutjanus fulviflamma Dory snapper 1 0 0 

Lutjanidae Lutjanus gibbus Humpback snapper 1 1 0 

Lutjanidae Lutjanus rivulatus Speckled snapper 2250 972 419 

Lutjanidae Lutjanus russellii Russell's snapper 171 18 0 

Sparidae Diplodus hottentotus Zebra 24 14 1 

Sparidae Diplodus capensis Blacktail 731 4 0 

Sparidae Lithognathus mormyrus Sand steenbras 8 0 0 

Sparidae Rhabdosargus sarba Natal stumpnose 549 438 12 

Sparidae Rhabdosargus thorpei Bigeye stumpnose 383 36 0 
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Dichistidae Dichistius multifasciatus Banded galjoen 12 4 0 

Kyphosidae Kyphosus bigibbus Grey chub 1 1 0 

Kyphosidae Neoscorpis lithophilus Stone bream 165 92 0 

Ephippidae Tripterodon orbis Spadefish 3 3 0 

Gerreidae Gerres acinaces Smallscale pursemouth 2 0 0 

Gerreidae Gerres methueni Evenfin pursemouth 1 1 0 

Drepanidae Drepane longimanus Concertina-fish 3 3 0 

Mullidae Parupeneus indicus Indian goatfish 17 4 0 

Sciaenidae Argyrosomus japonicus Dusky kob 27 25 2 

Sciaenidae Umbrina robinsoni Baardman 18 18 0 

Carangidae Carangoides armatus Longfin kingfish 5 4 0 

Carangidae Carangoides ferdau Blue kingfish 15 12 0 

Carangidae Carangoides fulvoguttatus Yellowspotted kingfish 9 8 0 

Carangidae Caranx heberi Blacktip kingfish 166 118 5 

Carangidae Caranx ignobilis Giant kingfish 61 59 0 

Carangidae Caranx melampygus Bluefin kingfish 30 20 2 

Carangidae Caranx papuensis Brassy kingfish 28 24 0 

Carangidae Caranx sexfasciatus Bigeye kingfish 10 4 0 

Carangidae Gnathanodon speciosus Golden kingfish 2 2 0 

Carangidae Scomberoides commersonnianus Talang queenfish 2 2 0 

Carangidae Scomberoides lysan Doublespotted queenfish 3 0 0 

Carangidae Scomberoides tol Needlescaled queenfish 2 1 0 

Carangidae Trachinotus africanus Southern pompano 25 24 0 

Carangidae Trachinotus baillonii Smallspotted pompano 2 1 1 

Carangidae Trachinotus botla Largespotted pompano 2119 1030 10 

Rachycentridae Rachycentron canadum Prodigal son 3 3 0 

Echeneidae Echeneis naucrates Shark remora 9 1 0 

Cirrhitidae Cirrhitus pinnulatus Marbled hawkfish 11 1 0 

Pomacentridae Abudefduf sordidus Spot damsel 100 0 0 

Labridae Thalassoma purpureum Surge wrasse 2 1 0 

Polynemidae Polydactylus plebeius Striped threadfin 13 3 0 

Blenniidae Istiblennius edentulus Rippled rockskipper 1 0 0 

Blenniidae Scartella emarginata Maned blenny 2 0 0 

Acanthuridae Acanthurus leucosternon Powder-blue surgeon 1 0 0 

Scombridae Scomberomorus commerson King mackerel 3 3 0 

Tetraodontidae Amblyrhynchotes honckenii Evileye puffer 1 0 0 

Tetraodontidae Lagocephalus inermis Smooth puffer 1 0 0 

Diodontidae Diodon hystrix Porcupinefish 1 0 0 

37 Families 87 Species   12367 5229 701 
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CHAPTER 4: MOVEMENT PATTERNS OF SURF-ZONE FISH SPECIES IN A 

SUBTROPICAL MARINE PROTECTED AREA ON THE EAST COAST OF SOUTH 

AFRICA 

 

Mann BQ, Cowley PD, Fennessy ST. 2015. African Journal of Marine Science 37(1): 99-114. 

 

4.1 Introduction 

The world’s oceans are experiencing biological change at an unprecedented rate through the depletion 

of fish populations and the degradation of marine habitats (Pauly et al. 2002; Myers and Worm 2003; 

Hutchings and Reynolds 2004). Recent analyses of fishery catches indicate that 70% of all the world’s 

harvested fish populations are overexploited (FAO 2012; Pitcher and Cheung 2013). As a 

consequence, traditional methods of fisheries management have been criticised heavily and there has 

been a call for more effective management and conservation of marine fish populations (Mora et al. 

2009). Among the alternative approaches advocated is the development of more holistic management 

strategies, such as an ecosystem-based approach to management, and the establishment of no-take 

marine protected areas (MPAs) (Halpern et al. 2010b).  

 

Over the past 25 years, MPAs have increasingly been promoted to complement conventional fisheries 

management of surf-zone angling fish species in South Africa (Bennett and Attwood 1991, 1993; 

Attwood and Bennett 1994; Attwood et al. 1997b; Brouwer et al. 1997; Cowley et al. 2002; Mann et 

al. 2003; Attwood and Cowley 2005; Götz et al. 2008; Dunlop and Mann 2012a; Venter and Mann 

2012). This is because, on their own, the fisheries management approaches of using daily bag limits, 

minimum size limits and closed seasons have been unable to arrest a decline in abundance of many 

important linefish species (Griffiths 2000; Mann 2013). Fully protected no-take MPAs displace 

fishing effort from an area, thereby providing resident marine species with a refuge from fishing 

(Sobel and Dahlgren 2004). In South Africa, as in many other parts of the world, overexploited fish 

species have often been found to be more abundant and of a larger mean size in areas where they are 

protected from fishing (Buxton and Smale 1989; Bennett and Attwood 1991, 1993; Buxton 1993a; 

Garratt 1993; Cowley et al. 2002; Halpern and Warner 2002; Götz et al. 2009; Maggs et al. 2013a). 

Population recovery within the boundaries of a no-take protected area can provide insurance against 

management failure in fished areas (Bohnsack 1990, 1996) and, from a fisheries perspective, can lead 

to replenishment of nearby fished areas through density-dependent spillover of post-settlement fishes 

and seeding of eggs and larvae (Bohnsack 1996; Russ 2002; Sale et al. 2005; Harrison et al. 2012). 

 

South Africa’s growing MPA network is providing an important conservation tool for biodiversity 

protection and a valuable complementary measure for the management of fish stocks (Sink et al. 

2012). However, MPAs can displace fishers from their fishing grounds, which can result in discontent 
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within fishing communities (Sowman et al. 2011; Venter and Mann 2012). Worldwide, opposition 

from local fishing communities is one of the principal impediments to MPA establishment and their 

long-term success (Gell and Roberts 2003). However, support may be gained from an affected fishing 

community by providing robust evidence of enhanced fish abundance adjacent to a no-take area. 

Increases in catch per unit effort (CPUE) and fish density close to MPA boundaries have provided 

circumstantial evidence that no-take areas can enhance adjacent fished areas (McClanahan and 

Kaunda-Arara 1996; Russ and Alcala 1996; McClanahan and Mangi 2000; Roberts et al. 2001; 

Maypa et al. 2002; Russ et al. 2003; Abesamis and Russ 2005; Maggs et al. 2013a; Mann and 

Tyldesley 2013). However, demonstrating empirically that a no-take area is exporting fishes to 

adjacent fished areas requires knowledge about fish movement patterns (Attwood and Bennett 1994; 

Attwood and Cowley 2005; Grüss et al. 2011; Maggs et al. 2013b) and dispersal of fish eggs and 

larvae (Harrison et al. 2012), which is often lacking in the understanding of fish ecology (Sale et al. 

2005).  

 

Levels of residency within a no-take zone and dispersal of subadult and adult fish into adjacent 

exploited areas can be assessed using tag-recapture methods, which provide valuable information on 

fish movement behaviour. In South Africa, a long history of tag-recapture research (Dunlop et al. 

2013) has shown that most heavily exploited linefish species are typically resident (Attwood and 

Bennett 1994; Cowley et al. 2002; Griffiths and Wilke 2002; Brouwer et al. 2003; Attwood and 

Cowley 2005; Kerwath et al. 2007a, 2013; Götz et al. 2008; Maggs et al. 2013b). However, many of 

these studies also reported some dispersal from MPAs into adjacent fished areas. 

 

Using the results of an on-going tag-recapture project, this study evaluated conservation and fisheries 

management effectiveness of the St Lucia Marine Reserve, an MPA within the iSimangaliso Wetland 

Park, a World Heritage Site on the northern KwaZulu-Natal coast of South Africa. The aim of the 

study was to investigate the movement behaviour of common surf-zone fish species found in the 

MPA. Key questions included: i) does the no-take sanctuary area within the St Lucia Marine Reserve 

maintain resident populations of surf-zone fish species; and ii) is there potential for spillover of these 

fishes to adjacent fished areas? In order to answer these questions, a wide variety of surf-zone fish 

species, which are locally representative of targeted shore-angling species, were tagged with 

conventional plastic dart tags (Dunlop et al. 2013). Based on the number of recaptures, the general 

movement behaviour of these species was described and the five most-commonly recaptured species 

were investigated in greater detail. 

 

4.2 Material and methods 

4.2.1 Study area 
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The St Lucia Marine Reserve forms part of the iSimangaliso Wetland Park and stretches from 1 km 

south of Cape Vidal (28º08’ S, 32º33’ E) to White Sands (27º26’ S, 32º42’ E) 11 km north of 

Sodwana Bay, a distance of ~80 km, and extends three nautical miles (5.6 km) out to sea (Mann et al. 

1998). The no-take St Lucia Marine Reserve sanctuary area is situated centrally between Leven Point 

(27º55’ S, 32º35’ E) and Red Cliffs (27º43’ S, 32º37’ E), a distance of ~25 km (Figure 4.1). The 

shoreline is predominantly sandy and is backed by high vegetated dunes, but the surf zone itself 

consists of both sand and scattered low-relief reefs comprised of sedimentary beach rock (Ramsay 

1996). The MPA was established in 1979 and compliance has been well-enforced by the conservation 

authority Ezemvelo KwaZulu-Natal Wildlife (Ezemvelo), primarily because it is adjacent to a 

terrestrial protected area and there are only two public access points (i.e. Cape Vidal and Sodwana 

Bay), both of which are within the iSimangaliso Wetland Park. The MPA is zoned so that no fishing 

is allowed by the public in the no-take sanctuary area, but shore fishing is allowed south of Leven 

Point and north of Red Cliffs. However, the proclamation of a beach driving ban in December 2001 

(RSA 2001) has effectively precluded shore anglers from fishing further than walking distance (~5 

km) north of Cape Vidal and south of Sodwana Bay, thus effectively increasing the size of the no-take 

area with regard to shore-angling. Recreational boat-based angling and spearfishing are still permitted 

south of Leven Point and north of Red Cliffs, but only pelagic gamefish species may be caught. No 

commercial linefishing, trawling or longlining is permitted anywhere within the MPA (iSimangaliso 

Wetland Park Authority 2011).  

 

4.2.2 Data collection 

From November 2001 to November 2006 six field trips were carried out per year (January, March, 

May, July, September and November). From February 2007 to November 2013 this was reduced to 

four trips per year (February, May, August and November) as a result of financial and logistical 

constraints. During each field trip, research linefishing was conducted by eight anglers in four 

selected 2 km areas marked off at 100 m intervals using numbered poles, the positions of which were 

determined using a Global Positioning System (GPS) device. Two of the 2 km areas (SA and SB) 

were inside the no-take sanctuary area (between Leven Point and Red Cliffs) and two (EA and EB) 

were in the previously exploited area south of Leven Point (Figure 4.1).  
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Figure 4.1: Map of the St Lucia Marine Reserve and Sanctuary within the iSimangaliso Wetland Park 

showing the sampling areas in this study (EA and EB are in the previously exploited area, while SA 

and SB are within the no-take sanctuary area). Note that the extended sampling areas (as of November 

2011) simply consisted of northward and southward extensions (shown by horizontal lines) of the 

original 2 km sampling areas.  

 

On each day, one team of four anglers fished in one of the previously exploited areas (EA or EB) and 

the other team of four anglers fished in one of the sanctuary areas (SA or SB). This was rotated each 

day so that, at the end of four days, each area had been fished by each of the two teams, providing a 
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statistically robust sampling protocol that enabled comparison of catches between the sanctuary zone 

and the previously exploited area (Mann and Tyldesley 2013). Two 4×4 vehicles were used to 

transport the anglers daily between the sampling areas, with the overnight base at Cape Vidal. Fishing 

was conducted during the day and into the first few hours of darkness, over the semi-diurnal spring 

tides (or as near to them as logistically possible) and all beach driving was restricted to the low shore 

three hours before and after low tide. All four sampling areas were selected to be as similar as 

possible in terms of surf-zone habitat (i.e. all contained both sandy and patchy reef habitat subtidally), 

but some areas inevitably had more complex reef structure than others. 

 

Although it was understood that the sampling strategy needed to be kept as consistent as possible, an 

important change was made after the first 10 years of the project, in November 2011. Each of the four 

2-km sampling areas was enlarged to cover ~10 km of coastline. Instead of using numbered poles to 

indicate fishing locality, a GPS device was used to determine the exact fishing localities within each 

~10-km sampling area (i.e. the original system of numbered localities every 100 m was simply 

extended north and south using a GIS). The purpose of this change was two-fold, namely: (i) to 

reduce inherent sampling bias whereby anglers exerted more effort at certain favoured localities 

within the 2-km sampling areas based on the complexity of reef habitat present; and (ii) to increase 

the scope for detecting fish movements over a wider area (i.e. between the original 2-km sampling 

areas). 

 

Standardised rock-and-surf fishing gear (i.e. 3–4.5 m graphite surf rods, multiplier or fixed-spool reels 

with braided or monofilament line ranging between 9 and 23 kg breaking strain) was used and anglers 

were allowed to use only one rod at a time. A maximum of two hooks per trace was allowed and hook 

sizes ranged between 1/0 and 7/0 (unless targeting big fish [see Chapter 2] in which case larger hooks 

could be used). Use of barbless hooks was strictly enforced (the barb on the hook being crimped using 

long-nose pliers) as this inflicted less damage on the fish and made their release considerably quicker 

and easier (Casselman 2005). If a fish was ‘gut-hooked’ (i.e. with the hook lodged in the oesophagus) 

no attempt was made to remove the hook and the snood was simply cut as near to the eye of the hook 

as possible (Schaeffer and Hoffman 2002; Butcher et al. 2010). Use of circle hooks was encouraged 

(Cooke and Suski 2004) but not enforced due to the higher price of these hooks and the gear 

preferences of some anglers. 

 

All fish caught were covered with a wet cloth and quickly measured on a wet plastic stretcher with a 

sheathed stainless steel ruler along the centre, before being returned to the water. Emphasis was 

placed on keeping the fish out of the water for as short a time as possible and all surfaces were kept 

moist to reduce injury and stress (Casselman 2005). Selected species >300 mm fork length (FL) - or 

total length (TL) in the case of serranids and sciaenids - were tagged using plastic dart tags 
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(Hallprint
©
) supplied by the Oceanographic Research Institute’s Cooperative Fish Tagging Project 

(ORI-CFTP) (Dunlop et al. 2013). D-tags (85 mm in length and 1.6 mm in diameter) were used on 

smaller fish (300–600 mm) whereas A-tags (114 mm long and 1.6 mm diameter) were used on larger 

fish and sharks (>600 mm). The only exception to this rule was for Lutjanus rivulatus, which were 

tagged from lengths of >280 mm FL, on account of their suitability for tagging at a relatively small 

size. 

 

Each time a fish was tagged or recaptured, the tag number, species, length (mm FL, TL or PCL), date, 

time and locality (determined using the numbered poles or, subsequently, the GPS position) was 

recorded. A note was made if the hook had been cut off and left in the fish or if there was a tagging 

scar present on the fish, indicating that it had been previously tagged but the tag had been shed. Aside 

from fish recaptured by the research team, members of the angling public also reported recaptures 

from adjacent exploited areas north-east and south-west of the study site. Fish recaptured by members 

of the angling public were reported through the ORI-CFTP, which uses locality codes along the coast 

with a resolution of approximately one kilometre (Dunlop et al. 2013). 

 

4.2.3 Data analysis 

Dingle (1996) provided a simple classification of animal movement, which was used as broad 

categories for assessing the movement patterns of fishes in the current study (Table 4.1). Station-

keeping generally refers to movements within a home range and is usually linked to foraging. This 

type of movement is characteristically meandering and repetitive on short time scales and small 

spatial scales, with the animal frequently changing course as it finds and moves between items 

(Dingle and Drake 2007). In this study, because of the size of the sampling areas, a fish was 

considered to be station-keeping if it was recaptured within 2 km of its release site. Ranging implies 

an exploratory component that takes an individual permanently beyond its home range to settle 

eventually into a new one. This movement behaviour often ceases once a suitable new home range is 

found (Dingle and Drake 2007). In this study, fish that had moved >2 km and did not return to their 

original tagging location were considered to have displayed ranging behaviour. Migration, on the 

other hand, is generally characterised by persistent directed movements between habitat regions and is 

normally a round-trip movement that often occurs seasonally (Dingle and Drake 2007).  
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Table 4.1: Classification of animal movement behaviour proposed by Dingle (1996). 

Movement type Characteristics 

Station-keeping: 

 

 

Kinesis Movements that serve to keep an animal stationary 

 

Foraging Movements within a home-range 

 

Commuting Diel movements between day and night locations 

 

Territoriality Territorial defence and aggression, non-overlapping home-ranges 

Ranging: Exploratory movements over wide areas in search of resources 

Migration: Persistent, directed, non-exploratory, predictable, physiological 

adaption 

 

Station-keeping is a good indicator of the potential for fish retention within a protected area, and was 

used to quantify the degree of residency (phylopatry). Ranging or migratory behaviour indicates the 

potential for export of subadult or adult fish to adjacent fisheries.  

 

Station-keeping 

A method for quantifying station-keeping behaviour was adapted from Griffiths and Wilke (2002), 

who used all recorded movements to calculate ‘travel range lengths’ for five sparid fishes. In the 

current study, station-keeping behaviour was quantified for each species by taking the 95
th
 percentile 

of intra-study site movement distances only (Maggs et al. 2013b), and excluded all long-distance (>2 

km) movements (Attwood and Cowley 2005). The resulting value is referred to as ‘single linear 

distance’ (SLD) in the current study. Assuming that a fish is randomly drawn from within the 

boundaries of its home range at first capture (tag-release) and then redrawn from that same home 

range at a later stage (recapture), the Euclidean distance between the two points (SLD) can be 

considered to represent some unknown proportion of the length of the home range. Repeating this 

several times, with different individuals of the same species, provides a good reflection of the degree 

of residency for that species. To prevent pseudoreplication, the calculation of SLD used only the 

distance between the original tagging site and the first recapture location. The assumption of all 

movements <2 km being indicative of station-keeping behaviour was tested (two-tailed t-test for 

unequal variances) by comparing SLD movements of L. rivulatus before and following the extension 

of the 2 km sampling areas in November 2011. 

 

Multiple recaptures, having three or more capture points, provide stronger evidence of the type of area 

utilisation by an individual fish. In this case, an alternative method for quantifying station-keeping 

behaviour was applied by taking the ‘greatest linear distance’ (GLD) between all the recapture 
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locations from the original tagging location (provided that all recaptures were within 2 km of the 

original tagging location). The resulting estimate was used to compare with the SLD calculated above. 

Note that in some cases the GLD could be less than the SLD as only multiple recaptures were used to 

calculate the GLD. 

 

Ranging 

The potential of the no-take sanctuary to export fish was evaluated using records of long-distance 

movements for each species (i.e. tagged fish leaving the sanctuary zone). Whereas most of the 

recaptures of ranging fish were recorded by the research team within the previously exploited areas 

(EA and EB) south of the no-take sanctuary area, some recaptures were also reported by members of 

the angling public through the ORI-CFTP to the north of the sampling areas. Although relatively few 

long-distance movements were reported, there was potential for non-reporting by members of the 

public (Dunlop et al. 2013). 

 

Data were tested for normality using a Kolmogorov-Smirnov test. A Chi-square test was used to test 

the hypothesis that the number of fish that moved north did not differ from the number that moved 

south. As data were not normally distributed, a non-parametric Mann-Whitney test was used to 

determine if the distance moved north or south was significantly different. Statistical tests were 

conducted using MS Excel 2010. 

 

4.3 Results 

From November 2001 to November 2013 a total of 59 field trips were conducted, during which 6 613 

fish from 71 species were tagged and released. Of these, a total of 1 004 (15.2%) fish from 17 species 

were recaptured (Table 4.2).  

 

Table 4.2: Species composition of fish tagged and recaptured in the St Lucia Marine Reserve from 

November 2001 to November 2013 (species arranged according to classification of Smith and 

Heemstra 1991). 

 
Family 

 

Species Common name No. caught No. tagged No. recap % recap 

Carcharhinidae Carcharhinus brevipinna Spinner shark 1 1 0 0 

Carcharhinidae Carcharhinus limbatus Blacktip shark 13 13 0 0 

Carcharhinidae Rhizoprionodon acutus Milk shark 3 3 0 0 

Sphyrnidae Sphyrna zygaena Smooth hammerhead shark 1 1 0 0 

Odontaspididae Carcharias taurus Spotted ragged-tooth shark 2 2 0 0 

Rhinobatidae Rhinobatos annulatus Lesser guitarfish 10 8 0 0 

Rhinobatidae Rhinobatos leucospilus Greyspot guitarfish 4 4 0 0 

Rhinobatidae Rhynchobatus djiddensis Giant guitarfish 60 55 5 9.09 

Dasyatidae Himantura gerrardi Sharpnose stingray 45 44 0 0 

Dasyatidae Himantura leoparda Honeycomb stingray 28 28 0 0 
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Dasyatidae Himantura fai Roundnose stingray 9 9 0 0 

Dasyatidae Taeniura lymma Bluespotted ribbontail ray 2 1 0 0 

Elopidae Elops machnata Ladyfish 1 1 0 0 

Albulidae Albula oligolepis Bonefish 223 159 0 0 

Plotosidae Plotosus nkunga Eel-catfish 37 2 0 0 

Serranidae Epinephelus andersoni Catface rockcod 684 325 57 17.54 

Serranidae Epinephelus macrospilos Bigspot rockcod 31 11 0 0 

Serranidae Epinephelus marginatus Yellowbelly rockcod 436 295 73 24.75 

Serranidae Epinephelus malabaricus Malabar rockcod 8 6 0 0 

Serranidae Epinephelus tukula Potato bass 255 236 11 4.66 

Pomatomidae Pomatomus saltatrix Elf 122 35 0 0 

Haemulidae Plectorhinchus chubbi Dusky rubberlip 4 4 0 0 

Haemulidae Plectorhinchus flavomaculatus Lemonfish 174 158 10 6.33 

Haemulidae Plectorhinchus gibbosus Harry hotlips 12 12 0 0 

Haemulidae Plectorhinchus playfairi Whitebarred rubberlip 53 46 1 2.17 

Haemulidae Plectorhinchus schotaf Minstrel rubberlip 27 23 0 0 

Haemulidae Plectorhinchus sordidus Redlip rubberlip 2 2 0 0 

Haemulidae Pomadasys commersonnii Spotted grunter 2 1 0 0 

Haemulidae Pomadasys furcatus Grey grunter 3224 817 57 6.98 

Haemulidae Pomadasys kaakan Javelin grunter 1 1 0 0 

Haemulidae Pomadasys multimaculatum Cock grunter 4 4 0 0 

Dinopercidae Dinoperca petersi Cave bass 762 479 96 20.04 

Lutjanidae Lutjanus argentimaculatus River snapper 22 20 2 10 

Lutjanidae Lutjanus gibbus Humpback snapper 1 1 0 0 

Lutjanidae Lutjanus rivulatus Speckled snapper 3118 1308 652 49.85 

Lutjanidae Lutjanus russellii Russell's snapper 241 27 0 0 

Sparidae Diplodus hottentotus Zebra 28 16 1 6.25 

Sparidae Diplodus capensis Blacktail 861 4 0 0 

Sparidae Rhabdosargus sarba Natal stumpnose 664 529 16 3.02 

Sparidae Rhabdosargus thorpei Bigeye stumpnose 495 43 0 0 

Dichistiidae Dichistius multifasciatus Banded galjoen 12 4 0 0 

Kyphosidae Kyphosus bigibbus Grey chub 1 1 0 0 

Kyphosidae Neoscorpis lithophilus Stone bream 188 106 0 0 

Ephippidae Tripterodon orbis Spadefish 5 5 0 0 

Gerreidae Gerres methueni Evenfin pursemouth 1 1 0 0 

Drepanidae Drepane longimanus Concertina-fish 3 3 0 0 

Mullidae Parupeneus indicus Indian goatfish 23 7 0 0 

Sciaenidae Argyrosomus japonicus Dusky kob 31 29 2 6.90 

Sciaenidae Umbrina robinsoni Tasslefish 22 22 0 0 

Carangidae Carangoides armatus Longfin kingfish 5 4 0 0 

Carangidae Carangoides ferdau Blue kingfish 17 14 0 0 

Carangidae Carangoides fulvoguttatus Yellowspotted kingfish 9 8 0 0 

Carangidae Caranx ignobilis Giant kingfish 90 88 0 0 

Carangidae Caranx melampygus Bluefin kingfish 44 30 3 10 

Carangidae Caranx papuensis Brassy kingfish 30 26 0 0 

Carangidae Caranx heberi Blacktip kingfish 201 141 5 3.55 

Carangidae Caranx sexfasciatus Bigeye kingfish 24 15 0 0 

Carangidae Gnathanodon speciosus Golden kingfish 2 2 0 0 

Carangidae Lichia amia Garrick 1 1 0 0 
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Carangidae Scomberoides commersonnianus Largemouth queenfish 3 3 0 0 

Carangidae Scomberoides tol Needlescaled queenfish 2 1 0 0 

Carangidae Trachinotus africanus Southern pompano 27 26 0 0 

Carangidae Trachinotus baillonii Smallspotted pompano 2 1 1 100 

Carangidae Trachinotus botla Largespotted pompano 2555 1327 12 0.90 

Rachycentridae Rachycentron canadum Prodigal son 3 3 0 0 

Echeneidae Echeneis naucrates Shark remora 9 1 0 0 

Cirrhitidae Cirrhitus pinnulatus Marbled hawkfish 21 1 0 0 

Labridae Thalassoma purpureum Surge wrasse 5 2 0 0 

Polynemidae Polydactylus plebeius Striped threadfin 18 3 0 0 

Sphyraenidae Sphyraena putnamiae Sawtooth barracuda 1 1 0 0 

Scombridae Scomberomorus commerson King mackerel 3 3 0 0 

29 Families 71 Species   15028 6613 1004 15.18 

 

A summary of the movement behaviour of the 17 recaptured species is shown in Table 4.3. Based on 

the average distance moved, the percentage of individuals of a species that moved >2 km, and any 

additional supporting evidence from the literature, 14 species could broadly be described as resident 

station-keepers while the remaining three species displayed movements more typical of nomadic 

ranging behaviour; however, none could be considered migratory in terms of the definitions used in 

this study (Table 4.3). Clearly, with the low number of recaptures attained for 12 of the 17 species, 

these descriptions of movement behaviour should at best be considered preliminary. 

 

The five most-commonly recaptured species were Pomadasys furcatus, Epinephelus andersoni, E. 

marginatus, Dinoperca petersi and Lutjanus rivulatus. Overall, 3 224 individuals of these five species 

were tagged in the four sampling areas and 632 were recaptured at least once (Table 4.4). The species-

specific recapture rate, including individuals recaptured more than once, ranged from 7.0% for P. 

furcatus to 49.8% for L. rivulatus. Of the 3 224 fishes tagged, 1 958 (60.7%) were tagged at the two 

no-take areas (SA and SB) and 1 266 (39.3%) at the two previously exploited areas (EA and EB). 
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Table 4.3: Movement behaviour of 17 fish species recaptured in the St Lucia Marine Reserve 

between November 2001 and December 2013 (variation is expressed as one standard deviation). 

Movement type followed by a question mark indicates some uncertainty. 

 

Species No. of 

recaps 

% 

recap 

Ave distance 

moved (m) 

Max 

distance 

moved (m) 

% 

that moved 

>2 km 

Movement 

type 

Supporting 

literature 

Rhynchobatus djiddensis 5 9.09 2 520 +  2 567 5 200 40% Nomadic? Dunlop and Mann 

(2013b) 

Epinephelus andersoni 57 17.54 726 + 4 536 34 300 1.8% Resident Maggs et al. (2013b) 

Epinephelus marginatus 73 24.75 262 + 1 049 6 800 4.1% Resident Maggs et al. (2013b) 

Epinephelus tukula 11 4.66 182 + 322 1 100 0% Resident Floros and Fennessy 

(2013) 

Plectorhinchus flavomaculatus 10 6.33 90 + 129 400 0% Resident Kaunda-Arara and Rose 

(2004) 

Plectorhinchus playfairi 1 2.17 100 100 0% Resident? None 

Pomadasys furcatus 57 6.98 137 + 240 1 100 0% Resident This study 

Dinoperca petersi 96 20.04 2 259 + 12 144 90 000 5.2% Resident This study 

Lutjanus argentimaculatus 2 10 0 0 0% Resident Russell and McDougall 

(2005) 

Lutjanus rivulatus 652 49.85 1 141 + 7 480 125 000 5.8% Resident This study 

Diplodus hottentotus 1 6.25 0 0 0% Resident Cowley et al. (2002) 

Rhabdosargus sarba 16 3.02 15 450 + 57 259 230 000 18.8% Resident Mann and Dunlop 

(2013a) 

Argyrosomus japonicus 2 6.90 20 500 + 9 192 27 000 100% Resident/ 

migratory 

Griffiths (1996) 

Caranx melampygus 3 10 433 + 513 1 000 0% Resident Holland et al. (1996) 

Caranx heberi 5 3.55 7 620 + 10 808 26 000 60% Nomadic? None 

Trachinotus baillonii 1 100 200 200 0% Resident? None 

Trachinotus botla 12 0.90 19 317 + 42 656 114 000 25% Resident Parker et al. (2013) 
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Table 4.4: Tag and recapture details of the five most commonly recaptured species tagged in the St 

Lucia Marine Reserve from November 2001 to November 2013. 

 
Species Pomadasys 

furcatus 

Epinephelus 

andersoni 

Epinephelus 

marginatus 

Dinoperca 

petersi 

Lutjanus 

rivulatus 

Total 

No. tagged 817 325 295 479 1308 3224 

No. recaptured (% recaptured) 57 (7.0%) 57 (17.5%) 73 (24.8%) 96 (20.0%) 652 (49.9%) 935 (28.0%) 

No. of single recaptures 51 49 49 71 412 632 

No. of multiple recaptures 6 8 24 25 240 303 

No. tagged and recaptured in EA* 131 (12) 141(22) 51(4) 67(5) 95(29) 485(72) 

No. tagged and recaptured in EB* 246 (20) 76(9) 57(2) 122(36) 280(147) 781(214) 

No. tagged and recaptured in SA* 179 (14) 76(17) 36(4) 91(13) 182(97) 564(145) 

No. tagged and recaptured in SB* 261 (11) 32(9) 151(63) 199(39) 751(373) 1 394(495) 

No. recaptured outside sampling 

areas** 

0 0 0 3 6 9 

* Number recaptured (in parenthesis) includes multiple recaptures 

** Reported by members of the angling public outside the four sampling areas 

 

4.3.1 Movement patterns 

The average distance moved for the five main study species ranged from 137 m for P. furcatus to 

2 259 m for D. petersi, whereas maximum distance moved ranged from 1.1 km for P. furcatus to 125 

km for L. rivulatus (Table 4.5). Average time at liberty varied from 58 days for E. andersoni to 375 

days for L. rivulatus, and maximum time at liberty ranged from 287 days for E. andersoni to 3 163 

days (8.7 years) for L. rivulatus (Table 4.5). While most recaptures were made at the same location 

where the fish was originally tagged, for those fish that did move away from the tagging locality, none 

of the five study species showed a persistent trend in the direction of movement (north or south); 

neither were there significant differences between distances moved in either a northerly or southerly 

direction for any of the five species (Table 4.5, Figure 4.2). 
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Table 4.5: General movement patterns of the five study species tagged and recaptured in the St Lucia 

Marine Reserve from November 2001 to November 2013 (variation shown is standard deviation).  

 

Species Pomadasys 

furcatus 

Epinephelus 

andersoni 

Epinephelus 

marginatus 

Dinoperca 

petersi 

Lutjanus 

rivulatus 

Average distance 

moved (m) 

137 + 240 726 + 4 536 262 + 1 049 2 259 + 12 144 1 141 + 7 480 

Maximum distance 

moved (m) 

1100 34 300 6 800 90 000 125 000 

Average time at 

liberty (days) 

233 + 217 58 + 71 226 + 245 350 + 300 375 + 394 

Maximum time at 

liberty (days) 

1 099 287 819 1 367 3 163 

Number moved 

north 

14 (25%) 13 (23%) 12 (16%) 23 (24%) 167 (26%) 

Number not moved 27 (47%) 32 (56%) 55 (75%) 55 (57%) 334 (51%) 

Number moved 

south 

16 (28%) 12 (21%) 6 (8%) 18 (19%) 151 (23%) 

Significance of 

persistence in 

direction moved 

(Chi-test) 

P = 0.715 P = 0.841 P = 0.157 P = 0.435 P = 0.37 

Significance of 

difference between 

distances moved in a 

specific direction 

(Mann-Whitney test) 

P = 0.203 P = 0.51 P = 0.522 P = 0.234 P = 0.477 
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Figure 4.2: General movement patterns of the five main study species tagged and recaptured in the St 

Lucia Marine Reserve from November 2001 to November 2013 (positive values indicate fish that 

moved in a northerly direction while negative values indicate those that moved in a southerly 

direction). 

 

Most individuals of the five main study species (P. furcatus 87.7%, E. andersoni 84.2%, E. 

marginatus 91.8%, D. petersi 87.5% and L. rivulatus 78.8%) were recaptured within 200 m of their 

original release site (Figure 4.3). A test conducted on the distances moved by L. rivulatus in the 

original 2 km sampling areas (n = 271) compared to those in the extended ~10 km sampling areas 

from November 2011 onwards (n = 141) showed no significant difference (p = 0.5, df = 196). The 

assumption that fish movements within 2 km were reflective of station-keeping behaviour was 
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therefore considered to be valid. There was little association between fish length and distance moved 

(Figure 4.4). Similarly, there was no correlation between time at liberty and distance moved (Figure 

4.5). Some individuals remained resident for extended periods, while others moved relatively long 

distances shortly after being released.  

 

 

Figure 4.3: Displacement shown by the five main study species in the St Lucia Marine Reserve from 

November 2001 to November 2013 (bar on the extreme right of each graph represents the percentage 

of fish that had moved a distance greater than two kilometres). 
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Figure 4.4: Comparison between the length of fish recaptured and the distance moved (m) for each of 

the five study species tagged and recaptured in the St Lucia Marine Reserve from November 2001 to 

November 2013. 

 

 

 

 

 

 

 

 

 



54 
 

 

Figure 4.5: Comparison between the time at liberty (days) and the distance moved (m) for each of the 

five study species tagged and recaptured in the St Lucia Marine Reserve from November 2001 to 

November 2013.   

 

Most recaptures of the five main study species were taken within the same sampling area where they 

were originally tagged (i.e. they generally did not move >2 km). Of the remaining fish that did move 

>2 km, average distances ranged between 4 867 m for E. marginatus and 41 920 m for D. petersi. 

Pomadasys furcatus did not show any movements >2 km (Table 4.6). The two abovementioned 

movement patterns were indicative of station-keeping and ranging behaviour, respectively, and the 

latter was recorded in four of the five main study species.  
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Table 4.6: Average and maximum distances moved by fish showing ranging behaviour (moved >2 

km) by four of the five study species (variation shown is standard deviation). 

 

Species Epinephelus 

andersoni 

Epinephelus 

marginatus 

Dinoperca 

petersi 

Lutjanus 

rivulatus 

No. of ranging fish n=1 n=3 n=5 n=38 

Average distance of ranging 

movements (m) 

34 300 4 867 + 2 060 41 920 + 37 791 17 079 + 26 569 

Maximum distance of ranging 

movements (m) 

34 300 6 800 90 000 125 000 

 

Station-keeping 

For each species within each of the four sampling areas, recorded movements were generally small, 

indicating station-keeping behaviour, resulting in SLD and GLD values in the order of a few hundred 

meters (Table 4.7). SLD and GLD values varied among the study species and the SLD for P. furcatus 

was greater than the GLD value, whereas the GLD for the remaining four species was greater than the 

SLD. All SLD and GLD estimates were considerably smaller than the size of the no-take zone (i.e. 

~25 km). 

 

Table 4.7: Single linear distance (SLD) and greatest linear distance (GLD) determined for recaptures 

of the five main study species that moved two kilometres or less. 

 

Species Pomadasys 

furcatus 

Epinephelus 

andersoni 

Epinephelus 

marginatus 

Dinoperca 

petersi 

Lutjanus 

rivulatus 

SLD (m) 700 (n=51) 465 (n=48) 200 (n=46) 365 (n=68) 995 (n=382) 

GLD (m) 200 (n=6) 525 (n=8) 740 (n=24) 470 (n=23) 1025 (n=222) 

  

Ranging 

Of the 47 individuals that showed ranging behaviour (i.e. moved >2 km), 16 (34%) moved out of the 

sanctuary area and covered linear distances between 3.5 km and 90 km, whereas six (12.8%) moved 

from the previously exploited area into the sanctuary area and covered linear distances between 3.5 

km and 34.3 km. A further four fish (8.5%) moved from the previously exploited area through the 

sanctuary area and were recaptured to the north of the sanctuary area, having moved distances of 49–

125 km. The remaining 21 fish (44.7%) showed intermediate movements within the sanctuary area or 

previously exploited area with distances ranging from 2.3 to 12.4 km (Table 4.8). L. rivulatus had the 

greatest proportion of ranging individuals (5.8%) of the five species. Of the fish that showed ranging 

movements, 53.2% moved in a northerly direction and 46.8% moved in a southerly direction.  
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Table 4.8: Ranging movements (>2 km) recorded in four of the five study species tagged and 

recaptured in the St Lucia Marine Reserve from November 2001 to November 2013. 

 

Species Epinephelus 

andersoni 

Epinephelus 

marginatus 

Dinoperca 

petersi 

Lutjanus 

rivulatus 

No. and range  that moved out 

of the sanctuary 

0 0 3 (3.5-90 km) 13 (4.9-63 km) 

No. and range that moved into 

the sanctuary 

1 (34.3 km) 1 (5.1 km) 0 4 (3.5-17.3 km) 

No. and range that moved 

through the sanctuary  

0 0 1 (49 km) 3 (49-125 km) 

No. and range of intermediate 

movements in the sanctuary 

0 2 (2.7-6.8 km) 1 (4.1 km) 15 (2.3-11.8 km) 

No. and range of intermediate 

movements in the previously 

exploited area 

0 0 0 3 (3-12.4 km) 

Total 1 3 5 38 

  

 

4.4 Discussion 

4.4.1 General movement behaviour  

Although 12 of the 17 species recaptured in this study did not have enough recapture data to make a 

definitive assessment of their movement behaviour, there was strong circumstantial evidence to 

suggest that the bulk of the species (n = 14) exhibited station-keeping behaviour. This suggests that 

the St Lucia Marine Reserve sanctuary area provides an effective refuge for many of the important 

surf-zone fishery species found in this general area. However, there is some evidence of ranging 

behaviour, indicating that there is some dispersal to adjacent areas which appears to take place during 

the subadult and adult life history stages. Despite the high average distance moved by Trachinotus 

botla (19.3 km), Parker et al. (2013) classified this species as a surf-zone resident, based on the fact 

that 78% of recaptures (including those from this study) were caught within 1 km of their original 

tagging locality. Three individuals in the current study undertook long distance movements ranging 

from 6.6 to 114 km. Similar results were shown for the congeneric species T. coppingeri along the 

Queensland coast of eastern Australia (McPhee et al. 1999) and T. carolinus along the North Carolina 

coast in the eastern United States (Ross and Lancaster 2002).  

 

Rhabdosargus sarba showed similar movement behaviour, with most (81%) recaptures being taken 

within 2 km of their original tagging locality. Three fish (19%) undertook longer distance movements 

ranging from 2.2 to 230 km. These results, coupled with those from the ORI-CFTP, led Mann and 

Dunlop (2013a) to describe R. sarba as a surf-zone resident, with a home range size of approximately 

1.1 km (linear distance). Species with a relatively higher proportion of ranging individuals were more 

difficult to classify. Rhynchobatus djiddensis was classified as a nomadic species by Dunlop and 

Mann (2013b), based on the mean distance of 33 km moved by 194 recaptures extracted from the 

ORI-CFTP. Caranx heberi showed interesting movement behaviour, with three of the five recaptures 
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moving distances of 3–26 km. Although preliminary, this suggests that this species may be more 

mobile than some congeneric species such as C. melampygus (Holland et al. 1996). Argyrosomus 

japonicus has been the subject of extensive study using both conventional tagging (Griffiths 1996) 

and acoustic telemetry (Cowley et al. 2008). These authors have confirmed that juvenile A. japonicus 

<1 000 mm TL remain fairly resident in estuarine and surf-zone habitats, whereas adults may 

undertake seasonal long-distance spawning migrations. The two A. japonicus recaptured in this study 

were both juvenile fish that were recaptured south of the St Lucia Marine Reserve, having moved 

distances of 14 and 27 km, respectively. Given that this species is uncommon in the St Lucia Marine 

Reserve and more abundant in the turbid surf-zone off the Mfolozi River and St Lucia Estuary to the 

south, these recaptures were likely to have represented return movements following the passing of a 

large cold front and the extension of turbid water from the Mfolozi River northward (pers. obs.), 

allowing these fish to forage farther north than normal.  

 

The overall lack of migratory fish species such as adult Pomatomus saltatrix and Lichia amia in 

catches taken in the St Lucia Marine Reserve highlights the fact that Cape Vidal forms the northern 

distribution limit for many warm–temperate fish species and acts as a clear biogeographic break (Sink 

et al. 2012). It is possible that several species of the subtropical fish fauna exhibit migratory behaviour 

but they are either not well represented in the surf-zone catches (e.g. certain elasmobranch species and 

pelagic offshore species such as Scomberomorus commerson), or to date have yielded insufficient 

recaptures to reveal distinct migratory behaviour (e.g. Caranx ignobilis). 

 

4.4.2 Behaviour of the five main species studied in detail 

Two general types of movement behaviour were apparent in four of the five main species that were 

investigated in detail. Station-keeping was the most commonly recorded movement behaviour, with 

95% of recaptured fish falling into this category. Whereas the original project design limited the 

length of each sampling area to 2 km of shoreline, most recaptures (~86%) were taken within 200 m 

of their original tagging locality. Thus, even with the subsequent extension of the four sampling sites 

(EA, EB, SA and SB) to ~10 km of shoreline in November 2011, the distance moved by most 

recaptures did not change substantially. A test of SLD movements made by L. rivulatus before and 

after the extension of the sampling areas showed that, although the mean distance moved increased 

from 1 093 m to 1 654 m, there was no significant difference between the two samples (p > 0.05). 

Based on Dingle’s (1996) definition of station-keeping (Table 4.1), most of the movements shown by 

the St Lucia Marine Reserve fishes were of a foraging nature within a relatively small home range 

size. Ranging behaviour was also apparent, although to a much smaller extent, and accounted for 

about 5% of the movement behaviour observed in four of the five main study species (no ranging 

behaviour was observed in P. furcatus). Ranging movements varied considerably and ranged  from 

relatively small movements of slightly more than 2 km to substantial movements exceeding 100 km. 
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Intermediate movements of 2–12 km were more difficult to classify, but fitted well with Dingle's 

(1996) definition for ranging, described as ‘exploratory movements over wide areas in search of 

resources’. Based on personal observations frequent sand inundation of low profile reefs in the surf-

zone may have forced fish to move to a new reef habitat, which could have contributed to some of the 

intermediate movements observed.  

 

Several tag-recapture studies undertaken along the Eastern and Western Cape coasts of South Africa 

(Attwood and Bennett 1994; Attwood 2002; Brouwer 2002; Cowley et al. 2002; Griffiths and Wilke 

2002; Brouwer et al. 2003; Attwood and Cowley 2005; Kerwath et al. 2007b; Maggs et al. 2013b) and 

in Australia (Gillanders et al. 2001; Russell and McDougall 2005) have noted similar variation in fish 

movement behaviour. On a smaller scale, acoustic telemetry studies have also reported similar 

variation in movement behaviour among individuals within a local population, with a high degree of 

station-keeping and a smaller component of ranging behaviour (Egli and Babcock 2004; Childs et al. 

2008; Kerwath et al. 2008; Hedger et al. 2010).  

 

4.4.3 Reasons for variation in behaviour and relevance to exploitation 

Attwood and Cowley (2005) suggested two models to explain similar movement behaviours (i.e. 

station-keeping and ranging) of Dichistius capensis, a warm-temperate surf-zone fish in South Africa. 

Firstly, these authors proposed polymorphism to explain, that within a species, some individuals 

remain resident whereas others are nomadic and may move continuously (Attwood and Bennett 

1994). Reasons for the differentiation may be either genetic or dependent on social or environmental 

cues (Swingland 1984; Dingle 1996) and the variation could be used as a hedge against inbreeding in 

geographically isolated reef fish populations. Their other alternative, the “tourist” model (Craig and 

Hulley 1994), predicts that individuals of a given species will spend part of their time exhibiting 

resident behaviour, but will temporarily abandon their home range to feed elsewhere before returning 

later. Despite the large number of multiple recaptures, this latter behaviour was not observed in L. 

rivulatus (or any of the other four main study species). Many fish were recaptured moving back and 

forth within their respective home ranges (i.e. moving distances <2 km) but once they had left their 

home range (i.e. moved distances >2 km), there were no examples of fish returning to their original 

home range. Although this may have partly been a result of the original, spatially constrained 

sampling design, the extension of the sampling areas in November 2011 should have effectively 

overcome this constraint. Based on these observations it is proposed that polymorphism is the more 

likely model to explain the movement behaviour in L. rivulatus and D. petersi, but on-going 

monitoring and/or an acoustic telemetry study would be necessary to test this. 

 

The relevance of these two models to fisheries is that in the case of polymorphism only certain 

individuals may become available to an adjacent fishery, whereas in the tourist model all individuals 
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may at some time become available to the fishery (Attwood and Cowley 2005; Maggs et al. 2013b). 

The possibility of both behaviours being present in a population should also not be discounted; some 

individuals could be highly resident, with some ranging, whereas others might maintain temporary 

home ranges. Should the differentiation be due to polymorphism, the effect of differential selection on 

different movement behaviours could favour one type above another with area-based management 

(Attwood 2002; Parsons et al. 2010). In addition to removing resident fishes, fishing in an open-

access area would also opportunistically remove nomadic (or ranging) individuals that leave a no-take 

area. This would select for residency in the no-take area, which, although potentially important from a 

conservation perspective, may have unforeseen ecological consequences for the population as a 

whole. With the tourist model, in which all individuals move, the population should not suffer from 

differential selection in the same way (Maggs et al. 2013b).  

 

4.4.4 Station-keeping 

Estimates of SLD and GLD calculated in this study varied from 200–700 m for P. furcatus to 995–

1025 m for L. rivulatus (Table 4.7). Such site fidelity can lead to localised depletion of the species in 

exploited areas, but can be of benefit to the species in protected areas. Compared to the size of the St 

Lucia Marine Reserve sanctuary zone, which is ~25 km long and 5.6 km wide, these movements are 

small. In other words, retention of fishes within the no-take sanctuary area is likely to be high. This is 

supported by the findings of Mann and Tyldesley (2013), who found a greater abundance and mean 

length of P. furcatus and L. rivulatus in the St Lucia Marine Reserve sanctuary zone compared to the 

adjacent previously exploited area south of Leven Point, particularly in the early years of the study 

soon after shore angling had ceased there (2002–2005). The no-take sanctuary area therefore 

undoubtedly provides some insurance against fishing pressure in adjacent fished areas by acting as a 

refuge for resident surf-zone fish species. There is also the potential for these resident fish to spawn 

within the sanctuary area and provide a source of eggs and larvae that could be dispersed to adjacent 

fished areas (Brouwer et al. 2003; Harrison et al. 2012), but this aspect was beyond the scope of this 

study. 

 

4.4.5 Dispersal to fished areas 

In this study, 34% of the movements of the five main study species that were classified as ranging 

were between 3.5 and 90 km, and included three D. petersi and 13 L. rivulatus individuals that left the 

sanctuary zone and moved either in a southerly or a northerly direction into the adjacent previously 

exploited areas. In addition to this, one D. petersi and three L. rivulatus moved in a northerly 

direction, passing through the sanctuary zone over distances of 49–125 km (Table 4.8). Movements of 

these ranging fish were undoubtedly under-sampled, particularly to the north of the sanctuary because, 

owing to the beach driving ban, very little shore angling takes place between Red Cliffs and ~5 km 

south of Sodwana (Figure 4.1). In addition, Dunlop (2011) estimated a non-reporting rate of 42% by 
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members of the angling public, which would further hamper data collection on ranging fishes that had 

been recaptured. Despite these biases, it can be concluded that the adjacent previously exploited areas 

were supplied with a limited number of subadult and adult fishes, which had been under temporary 

protection within the St Lucia Marine Reserve sanctuary zone. 

 

4.4.6 Reasons for dispersal 

Many studies have failed to discriminate between spillover and variability in individual movement 

patterns (Zeller et al. 2003). Spillover, which is the net export of adult fish from a no-take area 

(Abesamis and Russ 2005), implies that fishes will move from a no-take area, where there is a high 

concentration of individuals, to areas where fishing has reduced the number and size of fish (Kramer 

and Chapman 1999). Whereas there may have been some true density-dependent spillover when the 

areas to the north and south of the St Lucia Marine Reserve sanctuary zone were being fished prior to 

2002, Mann and Tyldesley (2013) reported a rapid recovery in the abundance of shore-angling fishes 

in the adjacent previously exploited areas (as sampled in EA and EB) south of Leven Point following 

the implementation of the beach vehicle ban and the consequent cessation of shore angling there. This 

would have quickly reduced the gradient in fish density between the two areas, with the result that 

much of the dispersal observed in this study is more likely to have been as a consequence of 

variability in individual movement patterns. This observation is supported by the fact that ranging 

movements were undertaken by six fish tagged in the previously exploited area that moved into the 

sanctuary zone.  

 

4.4.7 Unique characteristics of individual species 

Pomadasys furcatus 

This is a relatively small reef fish species that grows to a maximum size of 50 cm TL (van der Elst 

1993), but with few individuals exceeding 40 cm TL (Mann and Dunlop 2013b). It is abundant in the 

St Lucia Marine Reserve and occurs in large shoals over scattered reef in the surf zone. Because of the 

minimum tagging size of 300 mm FL stipulated for the project, relatively few (22%) of the P. furcatus 

caught were large enough to tag. Although the recapture rate was the lowest of the five main study 

species (7%), a large number of fish with tag scars were recaptured (50 fish, or 6.1%), suggesting that 

tags were relatively quickly shed by this species. If fish with tag scars are included, the recapture rate 

increases to 13.1%. It is likely that, as a consequence of tagging only the larger fish in the population 

and the fact that these fish were probably dominant in a given shoal and were likely to feed first at the 

bait, the proportion of larger adult fish recaptured was artificially elevated. In addition to factors such 

as hook selectivity, such biases may frequently be overlooked when conducting population 

assessments using tag-recapture methods. 
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Epinephelus andersoni 

Of the five main study species, the South-East African endemic E. andersoni exhibited the shortest 

time at liberty (58 days + 71 SD), and although recapture data suggested a relatively small home-

range size (465–525 m), it is believed that this species may display unusual movement behaviour. 

Mann (2012) found a larger mean size of E. andersoni in the previously exploited area (EA and EB) 

compared to the no-take sanctuary area (SA and SB). Similarly, Maggs et al. (2013a) found a greater 

abundance of E. andersoni in the adjacent exploited area compared to the no-take zone of the 

Pondoland MPA some 400 km to the south. Whereas this may simply reflect subtle habitat 

preferences in both studies, anecdotal evidence has shown that adult E. andersoni are often among the 

first species to arrive on newly created artificial reefs or shipwrecks (S. Chater, uShaka Marine 

World, pers. comm.; S. Bailey, South African Environmental Observation Network, pers. comm.). 

This has led to speculation that E. andersoni may be a nomadic pioneer species capable of rapidly 

colonising niche space previously occupied by more-resident species such as L. rivulatus and E. 

marginatus that have been removed by fishing (Mann 2012; Maggs et al. 2013b). A well-designed 

acoustic telemetry project would probably be necessary to clarify this. Furthermore, as E. andersoni 

are not common on deeper reefs farther offshore in both the St Lucia and Maputaland MPAs (Floros 

2010), the shallow subtidal reefs within the surf-zone provide an important habitat for the 

conservation of this endemic species. This is particularly relevant because Fennessy and Sadovy 

(2002) found that most spawning occurs on reefs off northern KwaZulu-Natal and southern 

Mozambique and they speculated that there may be a northward spawning migration coupled with the 

possibility of the formation of spawning aggregations.  

 

Epinephelus marginatus 

Fennessy (2006) showed that E. marginatus are protogynous hermaphrodites with females maturing at 

622 mm TL and sex change occurring after reaching a length of 800 mm TL. All the E. marginatus 

individuals tagged in this study, except one fish, were below the size at maturity (size range 300–659 

mm TL). This demonstrates that, after moving out of intertidal rockpools where post-larval 

recruitment occurs (Beckley 2000), E. marginatus utilise shallow subtidal reefs in the surf-zone as 

important nursery habitats where they remain resident for >2 years in relatively small home ranges 

(200–740 m linear distance). Maggs et al. (2013b) reported similar results in the Pondoland MPA 

where E. marginatus showed extremely high site fidelity and a home range size of 118–154 m in 

depths of 10–30 m. However, Maggs et al. (2013b) and subsequent monitoring (JQ Maggs, ORI, 

unpublished data) have recorded a number of ranging movements >100 km undertaken by mature 

specimens of E. marginatus. Maggs et al. (2013b) hypothesised that this may be linked to a north-

eastward spawning migration. In the St Lucia Marine Reserve, offshore research fishing has shown 

that adult E. marginatus are relatively common on deeper reefs at depths of 40–120 m (BQM, ORI, 

unpublished data) and it is likely that juvenile E. marginatus move farther offshore onto deeper reefs 
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with increasing size (Lembo et al. 1999). Given that Fennessy (2006) recorded most reproductive 

activity for this species in northern KwaZulu-Natal and southern Mozambique, it is likely that the St 

Lucia and adjacent Maputaland MPAs play an important role in the protection both of juveniles and 

adults of this species and that a proportion of the adult population spawn within the MPA boundaries, 

thereby contributing to adjacent fished areas through the south-westerly dispersal of eggs and larvae 

facilitated by the Agulhas Current (Beckley 1993; Hutchings et al. 2002). 

 

Dinoperca petersi 

Surprisingly little is known about the biology of this relatively common species, which is widely 

distributed in the Western Indian Ocean and which is caught both from the shore and on offshore reefs 

down to 75 m (Fennessy and Mann 2013). During this study, catches of D. petersi were considerably 

higher after dark, which is consistent with the species’ nocturnal behaviour and its tendency to remain 

in caves and under ledges during the day (van der Elst 1993). Not surprisingly, this species showed 

extremely high site fidelity, with home range size ranging from 365 to 470 m. Individuals probably 

remain resident in specific caves or overhangs during the day and move out to forage at night, before 

returning to the same cave in the morning. The two intermediate ranging movements recorded (3.5 

and 4.1 km) were probably instances where the home cave or overhang of an individual had become 

sanded up, forcing it to relocate to a new reef habitat. The three long-range movements (49, 63 and 90 

km) are considered likely to represent examples of the polymorphic behaviour discussed above.  

 

Lutjanus rivulatus 

The exceptionally high recapture rate (49.9%) and the large number of multiple recaptures (n = 222), 

with four individual fish being recaptured as many as six times, highlights not only the residency of 

this species but also its potential susceptibility to overfishing. The species has a tropical Indo-Pacific 

distribution (Mann and Maggs 2013) and catches south of the boundary of the St Lucia Marine 

Reserve at Cape Vidal become increasingly rare (JQ Maggs, National Marine Linefish System, ORI, 

unpublished data). However, it is not known whether this is due to the biogeographic break at Cape 

Vidal (Sink et al. 2012), with less-suitable habitat to the south, or whether it is a result of overfishing 

and other anthropogenic influences. There is anecdotal evidence (B Wareham, South African Shore 

Angling Association, pers. comm.) that suggests that, historically, this species was considerably more 

abundant in rocky areas along much of the KwaZulu-Natal coast but was depleted rapidly by 

overfishing.  

 

A large number (1 146 fish or 37%) of the L. rivulatus caught in this study were smaller than the 

stipulated minimum tagging size of 280 mm FL, which highlights the importance of the surf-zone 

habitat as a nursery area for juveniles of this species. However, many larger fish (790 fish or 25%) 

that were greater than the reported size at maturity of 370 mm FL (Lau and Li 2000) were also 
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captured, suggesting that the surf-zone is also an important habitat for adults. Adult L. rivulatus have 

been observed on offshore reefs in the St Lucia and Maputaland Marine Reserves down to a depth of 

at least 30 m, but they are seldom abundant and are often solitary at this depth (pers. obs.).  

 

An obvious limitation of this study was that only fish movements along the coast within the surf-zone 

could be monitored and the proportion of fish that moved offshore could not be established. Despite 

these limitations, it is clear that the St Lucia Marine Reserve Sanctuary provides an extremely 

important refuge for both juvenile and adult L. rivulatus, and although there is a high degree of site 

fidelity and residency, there is some dispersion into adjacent areas. As this species has a wide Indo-

Pacific distribution, these results have important implications for other MPAs within its range. 

 

4.5 Conclusion 

The dominance of station-keeping behaviour and maintenance of small home ranges by the five main 

species investigated in detail indicates that the St Lucia Marine Reserve sanctuary zone affords 

sufficient protection to potentially allow their populations to reach their carrying capacity within the 

available habitat. Although some fishes crossed the no-take boundaries into adjacent previously 

exploited areas, having taken temporary refuge in the no-take sanctuary zone, these movements were 

not related to fish size or the time at liberty. Similarly, these fish did not swim persistently in a 

particular direction. Whereas the ranging movements observed were unlikely to have been as a result 

of density-dependent spillover per se, the no-take sanctuary undoubtedly has the ability to contribute 

to adjacent fisheries via the export of pelagic eggs and larvae spawned within the sanctuary and to a 

lesser extent through the movement of larger individuals.  
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CHAPTER 5: GROWTH RATE OF SPECKLED SNAPPER LUTJANUS RIVULATUS 

(TELEOSTEI: LUTJANIDAE) BASED ON TAG-RECAPTURE DATA FROM THE 

ISIMANGALISO WETLAND PARK, SOUTH AFRICA 

 

Mann BQ, Lee B, Cowley PD. 2016. African Journal of Marine Science 38(1): 111-118
 

 

5.1 Introduction 

Lutjanus rivulatus, commonly known as speckled or blubberlip snapper, is a beautifully coloured and 

robust reef fish with a tropical Indo-Pacific distribution (Heemstra and Heemstra 2004). It is found on 

coral and rocky reefs from the surf-zone out to depths of 100 m and is often associated with caves and 

ledges on high-profile reef (van der Elst 1993). It reaches a maximum size of about 80 cm total length 

(Randall 1995) and a weight of at least 12.3 kg (SAUFF 2015). It is an important reef predator 

feeding on a variety of small reef fish, molluscs, crustaceans, polychaetes and other benthic 

invertebrates (Allen 1985; van der Elst 1993). Despite its wide distribution, relatively little is known 

about the biology of this species (Mann and Maggs 2013) probably due to low catch contribution in 

fisheries throughout much of its distribution (Everett et al. 2013). It is likely that high site fidelity 

(Chapter 4, Mann et al. 2015), coupled with aggressive feeding behaviour (pers. obs.) has resulted in 

the depletion of local populations. This is particularly true in tropical regions of the western Indian 

Ocean where high artisanal fishing pressure using a range of gear types would actively target high 

value species such as L. rivulatus and other lutjanid and serranid species (Samoilys et al. 2011). 

 

Given the apparent low abundance and vulnerable nature of L. rivulatus, information on growth rate is 

critical to improving the understanding of the biology of the species, which can then be used to inform 

better management practises and ensure sound conservation (Gulland 1988). Following an extensive 

literature search, the only information available on growth rate of L. rivulatus was from a study 

conducted by Munro and Williams (1985) in Papua New Guinea. Given that the study was conducted 

30 years ago and that fish growth rates can vary spatially, it was considered important to assess 

growth rate of a population of L. rivulatus in the western Indian Ocean. 

 

The collection of tag-recapture information is expensive and time-consuming (McFarlane and 

Beamish 1990) and prone to measurement error (Francis 1995), and the growth increment of 

recovered fish may be biased due to the effect of the tagging procedure or of the tag itself on 

subsequent growth (Attwood and Swart 2000). However, tag-recapture data can provide an accurate 

measure of individual fish growth over the period between tagging and recapture events which do not 

require knowledge of a fish’s actual age (Baker et al. 1991). A number of methods have been 

developed that utilise tag-recapture data to estimate growth model parameters (e.g. McCaughran 

1981; Kirkwood 1983; Francis 1988a, 1988b; Baker et al. 1991; Francis 1995). Francis (1988a) 
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presented a maximum likelihood approach for the analysis of growth increment data derived from 

tagging experiments. This method describes improved parameters for the von Bertalanffy growth 

curve that have better statistical properties, and that represent the growth information obtained in 

tagging data better than do conventional parameters (Cerrato 1990). 

 

This study made use of data collected from a research-based tag-recapture study conducted in the St 

Lucia Marine Reserve within the iSimangaliso Wetland Park, a World Heritage Site in northern 

KwaZulu-Natal, South Africa, between November 2001 and November 2014 (see Chapter 4, Mann et 

al. 2015). While this tag-recapture study was focused primarily on determining fish movement 

patterns (Chapter 4, Mann et al. 2015), it also provided information on the growth of individual fish 

recaptured during the study. Furthermore, since the majority of fish were tagged and recaptured by a 

team of trained research anglers, measurement error that is common in tagging programmes 

conducted by voluntary members of the angling public (Dunlop et al. 2013) was considered to be 

minimal. The aim of this study was to estimate the growth rate of L. rivulatus through non-destructive 

sampling in a marine protected area (MPA), using tag-recapture data and the maximum likelihood 

approach developed by Francis (1988a). 

 

5.2 Material and methods 

The general methods adopted in the long-term fish tagging project in the St Lucia Marine Reserve 

(SLMR) are described in detail by Mann et al. (2015). Shore-based research fishing took place bi-

monthly in four designated areas in the SLMR. Fish were caught using barbless hooks, immediately 

covered with a wet cloth, carefully measured to the nearest mm fork length (FL) on purpose-made 

PVC stretchers  and tagged using external dart tags (D-tags, Hallprint©, Australia) supplied through 

the Oceanographic Research Institute’s Cooperative Fish Tagging Project (Dunlop et al. 2013). Fish 

were tagged in the dorsal musculature below the posterior dorsal fin spines and the barb of the tag was 

locked behind a pterygiophore. Care was taken while handling each fish. For example, a bucket of 

fresh seawater was kept at the tagging station to minimise the period of air exposure while performing 

the tagging and measuring procedures (Cooke and Sneddon 2007). Generally, only fish greater than 

280 mm FL were tagged. The occasions when a fish ingested the hook were noted but no attempt was 

made to remove the hook and the trace was simply cut as short as possible (Casselman 2005; Cooke 

and Suski 2005; Wilde and Sawynok 2009). The same process of handling and measuring applied to 

recaptured fish. With recaptured fish, the tag itself was often covered by a film of biofouling (mainly 

red algae), which was scraped off with a thumbnail to enable recording of the unique tag number. In 

instances where the tag had been damaged and the number could not be seen clearly (i.e. rubbed or 

bitten off), the tag was removed from the fish by making a small incision using a scalpel to dislodge 

the barb. This enabled the unique number, which was also inscribed near the barb of the tag, to be 
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read and the fish was then re-tagged using a new tag on the side opposite to that of the original tag. 

Data on all subsequent recaptures of such fish were linked to the original tag number. Recaptured fish 

that had shed their tags were often recognised by the presence of tagging scars and were recorded as 

such.  

 

5.2.1 Data analysis 

The tag-recapture data were represented by T1, T2, L1 and L2 where T denotes time (date) and L length 

(mm, FL). The subscripts 1 and 2 refer to the dates of tagging and recapture, respectively. Increments 

in length and time are given as ∆L and ∆T, respectively. Growth rates were modelled from the tag-

recapture data using the maximum-likelihood approach described by Francis (1988a, 1988b) using the 

Fish Methods package (Nelson 2014) on the R statistical platform (R Core Team 2015). The usual 

form of the von Bertalanffy growth function, as used with tag-recapture data, may be written as: 
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Francis (1988a) described a re-parameterisation and extension of the Faben’s (1965) growth model for 

tag-recapture data that incorporates seasonal growth: 
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The parameters gα and gβ are the estimated mean annual growth (mm y
–1

) of fish of initial lengths α 

mm and β mm, respectively, where α< β. The reference lengths α (300 mm) and β (600 mm) were 

chosen such that the majority of values of L1, the length at tagging, fell between them. Seasonal 

growth is parameterised as w (reflecting the portion of the year in relation to 1 January when growth 

is at its maximum) and u (with u = 0 indicating no seasonal growth through to u = 1 indicating 

maximum seasonal growth effect). 

 

The measured growth increment of the ith fish, ∆Li, has a corresponding expected mean growth 

increment ui, where ui is normally distributed with standard deviation σi. In this study, σi was assumed 

to be a function of the expected growth increment ui: 
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  i i          (4) 

 

where v is estimated as a scaling factor of individual growth variability. 

 

The model was fitted by minimizing the negative log-likelihood function . For each dataset, made up 

of i=1 to n growth increments: 
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When the model is fully parameterised, the likelihood function estimates the population measurement 

error in ∆L as being normally distributed, with a mean m and standard deviation s. The proportion of 

outliers was identified by the parameter p, the probability that the growth increment for any individual 

could exist erroneously in the dataset as any value, within the observed range of growth increments R. 

 

The optimal model parameterisation was determined by following a step-wise fitting procedure. 

Initially, a simple 3-parameter model was fitted and then parameters were added in the order 

determined by selecting the parameter that gave the greatest reduction in the Akaike Information 

Criterion (AIC) value, with unfitted parameters held at zero. When the introduction of an additional 

parameter did not result in a significantly better model fit, these results were excluded from the 

analyses. 

 

Growth rates were modelled separately for fish that had been recaptured on single and multiple 

occasions. Only the initial and final recapture lengths were included in the dataset used to estimate 

growth rates for multiple recaptures. This was done in order to avoid repeated measurements of 

individual fish resulting in a lack of independence of the data. The growth rates of single and multiple 

recaptured L. rivulatus were compared using a likelihood ratio test. Similarly, growth rates were 

modelled separately for fish that had ingested the hook and for those from which the hook was 

removed. The growth rates associated with deep-hooking and no-hooking treatments were also 

compared using a likelihood ratio test. The final model using all recapture data was bootstrapped  

1 000 times and 95% confidence intervals were calculated for parameter estimates. 
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5.3 Results 

During the 13-year period from November 2001 to November 2014 a total of 1 429 L. rivulatus were 

tagged and 453 (31.7%) individual fish were recaptured one or more times (i.e. a total of 727 

recaptures [50.9%], including multiple recaptures). Of the fish recaptured, 291 were recaptured only 

once, whereas 162 fish were recaptured multiple times (Table 5.1). Of the fish recaptured, 357 had the 

hook removed whereas 75 had swallowed the hook (note that this was not recorded in 21 of the 453 

recaptured fish). In addition, 34 fish (2.4%) were recaptured with tagging scars (i.e. having shed their 

tags). Time-at-liberty for recaptures ranged from 0 days (i.e. recaptured on the same day) to 3 214 

days (8.8 years). Length-at-tagging or recapture ranged from 262 to 597 mm FL (Figure 5.1). 

 

Table 5.1: Number of individual Lutjanus rivulatus tagged and recaptured in the St Lucia Marine 

Reserve between November 2001 and November 2014. 

 

Number of 

fish tagged 

Number of recapture events per fish Total number of 

fish recaptured 1 2 3 4 5 6 7 

1 429 291 97 33 24 3 3 2 453 

 

 

 
Figure 5.1: Length frequency distribution of 453 Lutjanus rivulatus tagged (shaded bars) and 

recaptured (open bars) in the St Lucia Marine Reserve between 2001 and 2014. 

 

5.3.1 Effects of fishing and tagging on growth 

Growth was modelled for each treatment individually (i.e. single recaptures [n = 291], multiple 

recaptures [n = 162], hook removed [n = 357] and deep-hooked [n = 75]). Single-and multiple-

recapture datasets were optimally parameterised under the most complex model incorporating 
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seasonal growth and measurement error estimates. Likelihood ratio tests (Table 5.2) indicated no 

significant differences in growth between fish that had been recaptured once and those that had been 

recaptured multiple times (
2
 = 6.27, p = 0.099). Similarly, likelihood ratio tests indicated no 

significant differences in growth between fish that had ingested the hook and those in which the hook 

had been removed (
2
 = 2.34, p = 0.504) (Table 5.2). As such, growth was modelled for the combined 

dataset. 

 

5.3.2 Growth model 

To better understand the importance and interpretation of the parameters, a step-wise fitting procedure 

was followed, starting with the most simple 3-parameter model. The five models for the total dataset 

(n = 453 recaptures) were for all the combinations that improved the fitted model best (Table 5.3). 

The remaining combinations that improved the fit to a lesser extent or did not improve the fit were 

excluded.  

 

Table 5.2: Comparison between growth parameters estimated for single and multiple recaptures and 

for deep-hooked and unhooked Lutjanus rivulatus using a likelihood ratio test. The terms g300 and 

g600 refer to fish of reference lengths 300 mm and 600 mm, respectively 

 

Treatment 
Sample size 

(n) 

Mean growth rate 

(mm y
–1

) 


2
 df p 

Single recapture 291 
g300 = 35.08 

g600 = 17.58 
6.27 3 0.099 

Multiple recapture 162 
g300 = 35.42 

g600 = 16.51 

Hook ingested 75 
g300 = 34.58 

g600 = 17.32 
2.34 3 0.504 

Hook removed 357 
g300 = 35.16 

g600 = 18.88 
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Table 5.3: Parameters estimated for the growth rate of Lutjanus rivulatus in the St Lucia Marine 

Reserve using five different tag-recapture growth models (after Francis 1988a). Final and best 

estimates are shown in bold. See methods section for explanation of parameters  

*0 parameter held fixed (see explanation in text) 

 

Model 1 is equivalent to the Faben’s (1965) method (standard least-squares fit), although the 

parameters were estimated by minimising the negative log-likelihood. It is necessary to start with this 

more-complicated fitting method from the outset for comparative purposes (using the AIC), because 

increasing numbers of parameters are added with the more complex models (Haddon 2011).  

Model 1 included only the following essential parameters for the model to run: 

 gα – the mean annual growth rate of fish at length α (300 mm was chosen – reflecting the 

smaller size range of the sample);  

 gβ – the mean annual growth rate of fish at length β (600 mm was chosen – reflecting the 

larger size range of the sampled fish);  

 s – the root mean square error, which comprises possible measurement error during sampling, 

individual growth variability and lack of fit of the model. 

 

Model 2 included the growth variability parameter (v). This improved the model fit, as reflected by a 

reduced negative log-likelihood value and consequently lower AIC value (Table 5.3). The resultant 

estimate of L∞ was slighter greater while the growth rate (K) was reduced. 

 

   Model 

  1 2 3 4 5 

     

Parameter Symbol (unit) Estimate  Error Estimate Error Estimate Error Estimate Error Estimate Error 

Mean growth rate g300 (mm y-1) 35.620 0.800 34.350 0.920 34.920 0.890 36.430 1.100 35.350 1.100 

Mean growth rate g600 (mm y-1) 13.100 1.870 15.310 2.330 15.130 2.240 15.720 2.240 18.190 2.320 

Seasonal variation u (year) *0 0.000 *0 0.000 1.000 0.120 1.000 0.114 1.000 0.108 

 w (year) *0 0.000 *0 0.000 0.108 0.017 0.108 0.016 0.100 0.014 

Growth variability v *0 0.000 0.203 0.025 0.218 0.023 0.208 0.022 0.239 0.026 

Measurement error s (mm) 14.588 0.485 11.082 0.590 9.177 0.558 9.124 0.553 7.577 0.691 

 m (mm) *0 0.000 *0 0.000 *0 0.000 –1.747 0.750 -1.502 0.680 

Outliers p *0 0.000 *0 0.000 *0 0.000 *0 0.000 0.009 0.006 

            

Negative log likelihood  1 856.90  1 826.30  1 776.40  1 773.70  1 765.200  

AIC  3 719.80  3 660.60  3 564.90  3 561.30  3 546.400  

            

Maximum theoretical  

length 

L∞ (mm FL) 772.56  841.23  829.45  827.72  918.174  

 
Growth rate parameter 

 
k (year–1) 

 
0.078 

  
0.066 

  
0.068 

  
0.072 

  

0.0588 
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Model 3 ran all possible combinations for the addition of a 5
th
 parameter, namely seasonal variability. 

Similar to Model 2, the negative log-likelihood and AIC values were lower (Table 5.3), indicative of 

an improved fit of the observed data in Model 3. The additional parameters are explained as follows: 

 u (year) – where a value of 0 would reflect no seasonal growth variability and 1 reflects 

strong seasonal variability. The resultant value indicated that there is strong seasonal variation 

in growth for L. rivulatus; 

 w (year) – a value reflecting the time (date) as a fraction of the year when growth rate is at a 

maximum. The value of 0.1 indicated that growth peaked in early February. 

 

Despite attempts to measure fish as accurately as possible, data were prone to a degree of 

measurement error. The inclusion of two additional parameters, namely measurement error (m) and 

outlier probability (p), further improved the model. These parameters are explained as follows: 

 m – the combined mean measurement error (mm) at tagging and recapture; 

 p – the probability that the growth increment for any individual could exist erroneously in the 

dataset as any value within the observed range of growth increments R. 

 

As with many reef fish species, growth rate declined with increase in length, although there was a 

high degree of variability in individual growth rates (Figure 5.2). Relatively fast growth (35.35 mm y
–

1
) was recorded in smaller fish compared to larger fish (18.19 mm y

–1
). There was a strong seasonal 

influence with fastest growth rate recorded in early February. The mean measurement error in ∆L was 

low and estimated at –1.502 mm (+ 7.577 SD). The probability of outliers detected in the model fit 

was low (0.009).  

 

 

Figure 5.2: Observed and predicted growth rate for all Lutjanus rivulatus tagged and recaptured in 

the St Lucia Marine Reserve between 2001 and 2014 (n=453). (Note that observed data points for 

recaptures < 1 year at liberty were excluded from the figure for clarity). 
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5.4 Discussion 

The high recapture rate observed in this study (32% when considering individual fish and 51% when 

including multiple recaptures) is seldom achieved in conventional tagging studies (Ortiz et al. 2003; 

Wild and Sawynok 2009; Dunlop et al. 2013). It exceeds the highest reported recapture rate of 22.9% 

for L. sebae from the Australian National Sportfishing Association’s Suntag database (Wild and 

Sawynok 2009). The exceptionally high recapture rate of L. rivulatus can be ascribed to a 

combination of factors including good fish handling and tagging, suitability of the species for tagging, 

and the high level of residency and site fidelity displayed by this species (Chapter 4, Mann et al. 

2015). The low number of fish observed with tag scars also suggests that this species takes and retains 

the tag well. Although the effects on growth rate of the tagging procedure and/or the physiological 

burden of carrying the tag could not be assessed, L. rivulatus nevertheless appears to be an ideal 

species for calculation of growth rate using tag-recapture methods. 

 

5.4.1 Growth model 

A complete model of growth for ectothermic fishes must unify both length- and age-based approaches 

(Francis 1988a; Eveson et al. 2004). Therefore, tag-recapture models, as used in this study, do not 

provide a complete model of growth due to the absence of age information (Francis 1988a, 1988b, 

1995; Gillanders et al. 1999; Attwood and Swart 2000; Welsford and Lyle 2005; Ofstad et al. 2013). 

When using the VBGF for age-based data, L∞ represents the asymptotic mean length-at-age for the 

population. Hence there may be many individuals with lengths greater (and less) than L∞ in the 

modelled population. However, L∞ is inadequate as a growth descriptor when data are not sufficiently 

extensive to demonstrate asymptotic growth (Lee 2013). By comparison, using tag-recapture data (i.e. 

length increment data), L∞ represents maximum length and is not appropriate as a descriptor even if 

individual growth of fish is asymptotic. The reason is that when L∞ is estimated from tagging data 

there will be few, if any, individuals with lengths greater than L∞ as this would imply negative growth. 

As such, the L∞ parameter derived from tag-recapture data has a fundamentally different meaning to 

the L∞ parameter obtained from length-at-age data (Francis 1988b). Consequently, due to the 

correlation between L∞ and K (as discussed above), the K parameter also has a different 

meaning/interpretation. Although the L∞ value obtained in this study was particularly high (L∞ = 918 

mm FL) and the K value was very low (K = 0.06), the above explanation has reference. The largest 

fish captured and tagged in this study was 692 mm FL and larger specimens have been caught by 

members of the public within the iSimangaliso Wetland Park (D Nisbet, KwaZulu-Natal Coast 

Anglers’ Union, pers. comm.).  

 

It is for these reasons that tag-recapture growth modelling primarily solves two parameters, namely gα 

and gβ (i.e. annual growth rate at length α and β). These parameters are also easily obtained from 
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growth models derived from length-at-age data (including VBGF) and have been shown to be 

mathematically comparable (Francis 1995). Therefore, the results of growth studies utilising these 

different types of data are comparable, highlighting the value of growth information that can be 

extracted from tag-recapture datasets. Wang et al. (1995) and Laslett et al. (2002) described similar 

maximum likelihood approaches for fitting growth curves to tag-recapture data that have overcome 

many of the limitations of the traditional Fabens (1965) approach. However, the method described by 

Francis (1988a) (maximum likelihood estimation of growth and growth variability) remains the most 

consistently used for describing growth in fish using tag-recapture data (Gillanders et al. 1999; 

Welsford and Lyle 2005; Haddon 2011). 

 

Acknowledging the above limitations, the present results suggest that L. rivulatus is a relatively slow-

growing species with an average growth rate of 35.35 mm y
–1

 for smaller fish (gα = 300) and 18.19 

mm y
–1

 for larger fish (gβ = 600). Growth rate at 300 mm FL was significantly faster compared to that 

of larger fish at 600 mm FL. In order to compare this growth rate to other lutjanid species, the index 

phi-prime (Ø) developed for this purpose by Pauly and Munro (1984), was used. This suggests that 

the growth rate of L. rivulatus in northern KwaZulu-Natal is slower than that estimated for many 

congeneric species (Table 5.4).  

 

Table 5.4: Published growth parameters for a number of similar congeneric (Lutjanus) species based 

on the median record of phi-prime (Ø) obtained from FishBase (Froese and Pauly n.d.) (TL = total 

length; FL = fork length; SL = standard length) 

 

Species L∞ k Ø Region References 

L. analis 86.9 cm TL 0.16 3.08 USA Burton (2002) 

L. argentimaculatus 105 cm TL 0.19 3.32 Malaysia  Ambak et al. (1986)  

L. bohar 66 cm FL 0.27 3.07 Kenya Talbot (1957) 

L. campechanus 93.8 cm TL 0.18 3.19 USA Patterson et al. (2001) 

L. erythropterus 60 cm FL 0.41 3.17 Australia McPherson and Squire (1990) 

L. griseus 60 cm FL 0.22 2.9 Cuba Valle et al. (1997) 

L. guttatus 64.2 cm SL 0.19 2.89 Mexico Cruz-Romero et al. (1996) 

L. malabaricus 86 cm SL 0.25 3.27 Australia McPherson et al. (1985) 

L. peru 87 cm TL 0.26 3.29 Mexico Santamaria and Chavez (1999) 

L. rivulatus 91.8 cm FL 0.06 2.69 South Africa This study 

L. sanguineus 89 cm TL 0.24 3.27 Red Sea Sanders and Morgan (1989) 

L. sebae 85.1 cm FL 0.16 3.06 Gulf of Aden Druzhinin and Filatova (1980) 

 

The growth model also suggested seasonal differences in the growth rate of L. rivulatus with fastest 

growth in early February. This period is associated with the highest annual seawater temperatures 

recorded in the St Lucia Marine Reserve, averaging around 26 ºC (unpublished data). Higher ambient 

temperatures likely result in an increase in metabolic activity. This is supported by the fact that catch 

rates for L. rivulatus were highest during summer (see Chapter 3, Mann et al. 2016a), suggesting an 

increase in foraging behaviour that would link directly with increased growth rates. 
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Life-history parameters such as slow growth, high trophic level and high residency result in fish 

species being more vulnerable to overexploitation (Smale and Punt 1991; Buxton 1993b). Lutjanus 

rivulatus displays all of these characteristics and a conservative approach is thus required for its 

management. Although L. rivulatus receives some protection from shore-angling within the  ~25 km 

long no-take sanctuary area of the St Lucia Marine Reserve between Leven Point and Red Cliffs 

(Chapter 4, Mann et al. 2015), it is not currently listed in the suite of fish species regulated by species-

specific minimum size and bag limits in South African fisheries legislation (Mann and Maggs 2013). 

As such, and based on the results of this study, a minimum size limit of 40 cm TL (estimated size-at-

maturity is 37 cm FL [Lau and Li 2000]) and a daily bag limit of one fish per person per day is 

recommended as a precautionary approach for the future management of this species in South African 

waters. 

 

5.4.2 Effects of fishing and tagging on growth 

The use of growth data from tag-recapture studies has often been criticised because of factors such as 

measurement error and the effects of tagging on growth rate (Attwood and Swart 2000; Brouwer and 

Griffiths 2004; Griffiths and Attwood 2005; Kerwath et al. 2006). In this study an attempt was made 

to minimise these factors by using a trained team of anglers who were taught to handle, measure and 

tag fish correctly. Small D-tags (85 mm x 1.6 mm) were used, applicators were cleaned regularly in 

alcohol and a minimum tagging size of 280 mm FL was set to prevent tagging stress on smaller fish. 

Although all fish measurements were taken from the tip of the snout to the fork of the tail, with the 

fish lying on its side with the mouth closed and touching the head of the steel measuring board (which 

was encased in a clear plastic sheath down the centre of the stretcher), error occurred if the fish 

measured was tense rather than relaxed or if the fish was pushed firmly up against the headboard as 

opposed to just touching it. A degree of measurement error is therefore acknowledged, which was 

estimated as a mean of only –1.502 mm (SD 7.577 mm).  

 

It has been suggested that discrepancies between tag-recapture growth rates and predictions from 

other data sources, such as length-at-age data derived from otoliths, are a result of either the capture 

event itself or the subsequent effect of external tags retarding growth (Attwood and Swart 2000). 

However, research undertaken on a fast-growing carangid, Lichia amia, along the South African 

coastline revealed similar results when comparing growth rates from tag-recapture and length-at-age 

data from otoliths (Smith 2008). This was attributed to L. amia being a relatively large, robust species 

where tagging had limited effect in terms of depressing growth. Comparisons of growth rates derived 

from length-frequency, age-at-length and tagging data on another fast-growing carangid Seriola 

lalandi, in New South Wales, Australia, showed agreement for fish aged 2–4 years, but varied largely 

for fish with one growth zone (Gillanders et al. 1999). The large differences in growth for younger 

fish compared to older fish may have been caused by inaccuracies in ageing, the influence of tagging 
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on growth, within- or between-year differences, and variations in year-class strength (Gillanders et al. 

1999). In another example, the growth rates estimated for tagged Scomberomorus commerson, 

although initially slower, portrayed significantly faster growth compared to the growth rates estimated 

using length-at-age data for larger fish (Lee 2013). This suggests that although external tags may 

depress growth of younger (smaller) S. commerson, this was not the case for fish older than two years 

(Lee 2013). Unfortunately, it was not possible to determine the length-at-age of L. rivulatus in this 

study, due to the fact that the work was conducted in an MPA where only non-destructive sampling 

was permitted. 

 

Importantly, there appeared to be no significant effect on growth of L. rivulatus through cutting off a 

barbless hook that had been ingested (Table 5.2). This positive result suggests that deep-hooked fish 

will often lose the barbless hook after release and that this does not supress growth substantially. 

Interestingly, four recaptured individuals had the barbless hook, coated with a hardened white 

substance, protruding from the anus, having passed right through the alimentary canal. This may 

represent a mechanism whereby fish can manage sharp objects that are difficult to digest. This result 

has important implications for catch-and-release fishing, and the use of barbless hooks should 

therefore be strongly encouraged (Cooke and Suski 2005; Butcher et al. 2010). Similarly, it was 

shown that the growth rate of fish that had been recaptured more than once was not significantly 

slower than that of those recaptured only once (Table 5.2). Considering the stress that a fish 

undergoes during a capture event (Cooke et al. 2006), this is an important result because it suggests 

that growth rate in an individual of this species will not be suppressed if it is handled well and if the 

time that it is out of the water is limited to the bare minimum. This finding may well apply more 

generally. 
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CHAPTER 6: ESTIMATING THE OPTIMUM SIZE FOR INSHORE NO-TAKE 

AREAS BASED ON MOVEMENT PATTERNS OF SURF-ZONE FISHES AND 

RECOMMENDATIONS FOR REZONING OF A WORLD HERITAGE SITE IN 

SOUTH AFRICA 

 

Mann BQ, Cowley PD, Kyle R. 2016. Ocean and Coastal Management 125: 8-19. 

 

6.1 Introduction 

Over the past 50 years there has been much discussion globally around the subject of the optimum 

size of marine protected areas (MPAs) for both biodiversity conservation and fisheries management. 

In the 1980s this was centred on the “SLOSS” (single large or several small) debate with many 

authors highlighting the benefits and disadvantages of both options (e.g. Siberloff 1988; Demartini 

1993; Attwood et al. 1997a). From a conservation perspective, many previous recommendations for 

MPA design have conveyed the message “bigger is better” (Sale et al. 2005; McLeod et al. 2009; 

Wilhelm et al. 2014) as larger MPAs provide protection for a broader range of habitats and species. 

However, smaller reserves can also be effective for sedentary or range restricted species (Kerwath et 

al. 2007; Afonso et al. 2011; Green et al. 2015), especially where levels of marine resource utilisation 

is high (Ban et al. 2011). Current wisdom emphasizes the need for well-designed networks of MPAs 

(Almany et al. 2009; Botsford et al. 2009b; Lester et al. 2009; Christie et al. 2010; Gaines et al. 2010), 

which may include a combination of large and small areas to provide protection for everything from 

seascapes and multiple habitats to individual species or features of important ecological, cultural or 

even aesthetic value (Kellerher and Kenchington 1992, Attwood et al. 1997a).  

 

There has also been considerable emphasis placed on the value of no-take areas (NTAs) as being 

fundamental to MPA effectiveness (Kerwath et al. 2013; Buxton et al. 2014; Edgar et al. 2014). This 

is largely because MPAs where various forms of extractive use are allowed have been shown to be 

less effective at achieving biodiversity and fisheries objectives than those zoned for no-take (Denny 

and Babcock 2004; Edgar et al. 2014). Well designed and effectively managed networks of MPAs 

(including NTAs) are important tools for both fisheries management and biodiversity conservation 

(Green et al. 2015), with the added benefit of increasing resilience against climate change (McLeod et 

al. 2009; Green et al. 2014). Based on the deliberations of scientists and MPA practitioners at the 

recent IUCN World Parks Congress held in Sydney, Australia in November 2014, recommendations 

were made to increase the global no-take protection target to 30% of marine habitats; a vast increase 

from the Convention for Biological Diversity’s Aichi Target 11 which was set at 10% in 2010 (MPA 

News 2014; Thomas et al. 2014). 
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In South Africa, relatively good progress has been made with the establishment of coastal MPAs since 

the proclamation of the 336 km
2
 no-take Tsitsikamma National Park in 1964 (Hockey and Buxton 

1989; Attwood et al. 1997b). Today, 23 formally proclaimed MPAs have been established in South 

Africa (excluding the Prince Edward Islands) covering approximately 785 km (21.5%) of the ~3200 

km coastline (linear distance), 334 km (9.1%) of which are NTAs (NPAES 2008; Sink et al. 2012). 

However, in terms of surface area, only 0.4% of South Africa’s Exclusive Economic Zone (EEZ) is 

formally protected (NPAES 2008), leaving much work still to be done. 

 

The St Lucia and Maputaland Marine Reserves (large contiguous MPAs zoned for multiple use) were 

proclaimed in northern KwaZulu-Natal in 1979 and 1986, respectively, to protect the country’s only 

shallow water coral reef ecosystems (Mann et al. 1998). Boat-based bottom or reef fishing is 

prohibited throughout both MPAs, while scuba diving, shore angling and boat-based pelagic game-

fishing were developed as important tourism attractions (note that no commercial fishing of any type 

is allowed in either of these MPAs). Both the St Lucia and the Maputaland Marine Reserves were 

zoned to include large NTAs (locally known as sanctuary areas) where no form of human use was 

allowed, except that shore-based subsistence linefishing and invertebrate harvesting by local rural 

communities continued to be allowed in the Maputaland MPA Sanctuary due to their dependence on 

these resources (Kyle et al. 1997). In December 1999, both these marine reserves were included into 

the iSimangaliso Wetland Park to become part of South Africa’s first World Heritage Site (IMP 

2011). 

  

Surprisingly, relatively little work has been undertaken on the surf-zone fish communities found 

within the St Lucia Marine Reserve and little was known about the effectiveness of the NTA in 

providing a refuge for these species. This formed the primary motivation for a study initiated in 

November 2001 aimed at comparing surf-zone fish communities in the NTA with those in an adjacent 

area exploited by recreational shore anglers between Cape Vidal and Leven Point (Mann and 

Tyldesley 2013; Mann et al. 2016a). In order to evaluate the effectiveness of this NTA, one of the 

objectives of the study was to determine the movement patterns and potential spillover of surf-zone 

angling fish species using conventional tag-recapture methods (see Chapter 4, Mann et al. 2015).  

 

Connectivity of local fish populations through the dispersal of individuals as eggs, larvae, juveniles or 

adults is a key ecological factor to consider in MPA design (Sale et al. 2005), since it has important 

implications for persistence of meta-populations and their recovery from disturbance (Botsford et al. 

2003; Green et al. 2015). Where movement patterns of fishery species are known, this information 

can be used to inform decisions taken about the configuration of NTAs to maximize benefits for 

biodiversity conservation, fisheries management and improving resilience against climate change 

(Attwood and Bennett 1995b; Kramer and Chapman 1999; Griffiths and Wilke 2002; Botsford et al. 
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2003; Gaines et al. 2010; Green et al. 2014; 2015). For example, movement studies were used to 

develop guidelines for sizes of MPAs in a temperate system in California (Gleason et al. 2013; 

Saarman et al. 2013). More recently Green et al. (2015) provided a detailed review of knowledge on 

larval dispersal and movement patterns of coral reef fishes and the implications of this for the design 

of MPA networks. In South Africa, Attwood and Bennett (1995b); Griffiths and Wilke (2002) and 

Kerwath et al. (2007b) used fish movement patterns determined through conventional tag-recapture 

and acoustic telemetry studies to estimate effective size of no-take MPAs.  The primary aim of this 

study was to use the movement patterns of important shore-angling fish species in the St Lucia 

Marine Reserve to determine the minimum size and spacing of surf-zone NTAs throughout the 

iSimangaliso Wetland Park. In this regard some of the recommendations made by Green et al. (2015) 

were adopted namely: to design shore-based NTA networks to maximise benefits for local fisheries 

(i.e. important surf-zone angling fish species); to review the configuration of existing NTAs along the 

shore to ensure that they are adequate for focal species; and to integrate NTAs with other fisheries 

management tools where necessary.      

 

6.2 Material and methods 

6.2.1 Study Area 

The St Lucia Marine Reserve was proclaimed with a NTA extending from Leven Point (27º 55’S; 32º 

35’E) to Red Cliffs (27º 43’S; 32º 37’E) a distance of ~24 km and extending three nautical miles (5.6 

km) out to sea (Figure 6.1). This area was selected as a no-take zone because of the existence of two 

large off-shore reef complexes, namely Red Sands Reef (5.5 km
2
) and Leadsman Shoal (7.3 km

2
), as 

well as the importance of the beaches in this area as nesting sites for loggerhead and leatherback 

turtles. The shoreline and surf-zone in this NTA and adjacent areas comprise large stretches of sandy 

beaches with scattered outcrops of beach rock and are backed by some of the highest vegetated dunes 

in the world. The terrestrial area inland of the St Lucia Marine Reserve Sanctuary is a protected 

Wilderness Area (IMP 2011), which has resulted in limited human access, except along the beach 

itself. Prior to 2002, a limited number of beach vehicles were allowed to traverse through the 

sanctuary area during low tide but no stopping was allowed. In January 2002, all beach driving by the 

public was banned in South Africa (Celliers et al. 2004).  
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Figure 6.1: Map of the St Lucia Marine Reserve and no-take Sanctuary within the iSimangaliso 

Wetland Park showing the sampling areas used in this study.  

 

 



80 
 

6.2.2 Data collection and interpretation 

A long-term tag-recapture study was conducted by the team of trained shore anglers in the St Lucia 

Marine Reserve between November 2001 and November 2013 using conventional plastic dart tags 

(Hallprint
©
, Australia) supplied through the Oceanographic Research Institute’s Cooperative Fish 

Tagging Project (Dunlop et al. 2013). All research fishing was conducted from the shore and 

recaptures were caught either by the research team themselves or by members of the angling public in 

accessible areas outside the NTA. The field methods are described in further detail in Chapter 4 

(Mann et al. 2015). In this study we distinguished between station-keeping behaviour within a home 

range and ranging movements, in which individuals abandon their home range and do not return 

(Dingle and Drake 2007). Station-keeping behaviour is a good indicator of the potential for fish 

retention within a protected area, whereas ranging or migratory behaviour indicates the potential for 

export of sub-adult or adult fish to adjacent fisheries. The home range of a fish is the area in which an 

individual spends the majority of its time and engages in most of its routine activities including 

foraging and resting (Kramer and Chapman 1999; Gruss et al. 2011; Green et al. 2015). In this study, 

home range size was quantified for each species by taking the 95
th
 percentile of intra-study site 

movement distances only (Chapter 4, Mann et al. 2015), and excluded all long-distance  movements 

(> 2 km) where fish abandoned their home range (Attwood and Cowley 2005; Maggs et al. 2013b). 

These estimates of home range size, coupled with movements of wider ranging individuals and 

estimates of passive dispersal of eggs and larvae from the literature, were used to estimate the 

minimum size of NTAs and their optimal spacing within the iSimangaliso Wetland Park. As the study 

was limited to surf-zone fish species, only one-dimensional movement (i.e. linear movement along the 

coast) was considered with distances given in kilometres. Furthermore, as the species tagged are 

sympatric with overlapping habitats (i.e. all caught within the surf-zone), results obtained for all 

species with sufficient recapture data were considered.  

 

To estimate the minimum size of NTAs, home range size was doubled in all directions (Green et al. 

2015), which effectively meant tripling of home range length along the coast. Ranging movements 

(i.e. fish that left their home range and did not return) were used to estimate the distance apart that 

NTAs needed to be in order to ensure connectivity between protected reef fish populations. This was 

coupled with the best available estimates of larval fish dispersal in the recent literature (Jones et al. 

2009; Berumen et al. 2012; Harrison et al. 2012; Almany et al. 2013; Green et al. 2015).  

 

In order to relate the findings of this study conducted in the St Lucia Marine Reserve to the 

availability of surf-zone reef habitat throughout the iSimangaliso Wetland Park, a habitat mapping 

exercise was conducted using information collected by Harris et al. (2011) on the occurrence of rocky 

shores and adjacent surf-zone reef habitat, assigned to 100 m bins, along the entire length of the 

coastline within the Park. This was verified using aerial photographs, satellite images on Google 
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Earth
©
, as well as an intimate knowledge of the coast by myself. To cater for fish species displaying 

ontogenetic shifts in habitat use (i.e. moving offshore out of the surf-zone into deeper water habitats 

with an increase in size/age), the occurrence of deeper reef habitat further offshore was also mapped 

using data obtained from SeaPLAN (Harris et al. 2011). The locality of surf-zone reef habitat in 

relation to existing beach access points along the coast was then compared using a Geographical 

Information System (ArcGIS). The mean distribution of shore-angling effort along the coast was 

estimated using Ezemvelo KZN Wildlife (Ezemvelo) shore patrol data collected between 2002-2013 

(i.e. post beach vehicle ban) from five patrol zones (i.e. Maphelane, St Lucia, Cape Vidal, Sodwana 

Bay and Bhanga Nek; see Figure 6.3) within the iSimangaliso Wetland Park (Maggs et al. 2014). 

Current park zonation (IMP 2011) was then overlaid onto this map to identify gaps in the protection 

of suitable surf-zone reefs and to determine the best options for improved conservation planning.  

 

6.3 Results     

6.3.1 Fish home ranges and minimum NTA size  

A total of 6 613 fish representing 71 species from 29 families were tagged in this study, of which 

1004 fish comprising 17 species from eight families were recaptured (see Chapter 4, Mann et al. 

2015). Five resident reef fish species namely Lutjanus rivulatus, Dinoperca petersi, Epinephelus 

marginatus, Pomadasys furcatus and Epinephelus andersoni dominated recaptures. A large 

proportion of the movement behaviour shown by the recaptured species consisted of station-keeping 

behaviour within relatively small home ranges of 0.1 – 1.9 km (Table 6.1). The remaining individuals 

undertook ranging type movements of >2 km up to 230 km (except for those species where no ranging 

behaviour was evident).  Migratory-type movement behaviour was not evident amongst any of the 

species recaptured as no fish showed long-distance movements of a seasonal nature. However, certain 

species, especially E. marginatus, E. andersoni and E. tukula, displayed ontogenetic habitat shifts, 

with individuals moving from their nursery surf-zone reefs out to deeper offshore reef habitats with an 

increase in size/age (Chapter 4, Mann et al. 2015). Some of these larger tagged fish were observed on 

offshore reefs while scuba diving in the vicinity (pers. obs.). Similarly, no evidence of seasonal 

movement to spawning aggregation sites was found, although such movements may have been missed 

due to the spatially and temporarily limited nature of the sampling methods (Chapter 4, Mann et al. 

2015). Species associated with sandy habitat in the surf-zone (e.g. Trachinotus botla, Rhabdosargus 

sarba and Rhynchobatus djidenensis) generally showed larger home range sizes than reef-associated 

species such as D. petersi, E. marginatus and P. furcatus (Table 6.1). The outcome of this study was 

influenced by the dominance of L. rivulatus with a remarkable 652 recaptures (i.e. 50% recapture 

rate).  
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Table 6.1: Home range length and ranging movements determined for 17 fish species recaptured in 

the St Lucia Marine Reserve between November 2001 and December 2013, with an estimate of 

minimum no-take area (NTA) length. NTA estimates and supporting literature used by Green et al. 

(2015) is also shown. 

 

Based on the home range lengths determined from the tag-recapture study, estimates for minimum 

NTA lengths ranged between 0.9 and 5.7 km (Table 6.1). These were generally much smaller than 

those made by Green et al. (2015) (Table 6.1) as these authors did not clearly differentiate between 

station-keeping and ranging type movements, as was done in this study. Because most of the surf-

zone reef is scattered, low relief reef exposed to frequent sand inundation, these estimates would also 

be effective for surf-zone fish species preferring a sandier habitat (e.g. R. sarba and T. botla). An 

exception to this would be species such as Caranx melampygus (and other more mobile fish species) 

where minimum NTA size would need to be considerably larger (i.e. ~10-20 km in length) (Holland 

et al. 1996; Meyer and Honebrink 2005). 

 

 

Species No. 

tagged 

No. of 

recaps 

% 

Recap 

Home range 

length (km) 

Ranging 

Movements 

(km) 

 

Minimum 

NTA length 

(km) estimate 

(this study) 

NTA 

estimate by 

Green et al. 

(2015) 

Supporting literature 

used by Green et al. (2015) 

Rhynchobatus  

djiddensis 

55 5 9.09 1.8 (n=3) 5.2 (n=2) 5.4 N/A  

Epinephelus  

andersoni 

325 57 17.54 0.5 (n=56) 34.3 (n=1) 1.5 N/A  

Epinephelus  

marginatus 

295 73 24.75 0.7 (n=70) 2.7-6.8 (n=3) 2.1 6 km Afonso et al. (2011) 
Pillans et al. (2011) 

Epinephelus 

tukula 

236 11 4.66 0.7 (n=11) None 2.1 6 km Dunlop and Mann (2012b) 

Plectorhinchus  

flavomaculatus 

158 10 6.33 0.3 (n=10) None 0.9 6 km Kaunda-Arara and Rose (2004) 

Dunlop and Mann (2012b) 

Plectorhinchus  

playfairi 

46 1 2.17 0.1 (n=1) None N/A N/A  

Pomadasys  

furcatus 

817 57 6.98 0.7 (n=57) None 2.1 6 km Dunlop and Mann (2012b) 

Dinoperca  

petersi 

479 96 20.04 0.5 (n=91) 3.5-90 (n=5) 1.5 N/A  

Lutjanus  

argentimaculatus 

20 2 10 0 (n=2) None N/A 6 km Sawnok (2004) 

Dunlop and Mann (2012b) 

Lutjanus  

rivulatus 

1308 652 49.85 1.0 (n=614) 2.1-125 (n=38) 3.0 6 km Dunlop and Mann (2012b) 

Diplodus  

hottentotus 

16 1 6.25 0 (n=1) N/A N/A N/A  

Rhabdosargus  

sarba 

529 16 3.02 1.9 (n=14) 9.4-230 (n=2) 5.7 N/A  

Argyrosomus  

japonicus 

29 2 6.90 N/A 14-17 (n=2) N/A N/A  

Caranx  

melampygus 

30 3 10 0.9 (n=3) None 2.7 20 km Holland et al. (1996) 
Meyer and Honebrink (2005) 

Tagawa and Tam (2006) 
Dunlop and Mann (2012b) 

Caranx  

heberi 

141 5 3.55 0.6 (n=2) 3-26 (n=3) 1.8 N/A  

Trachinotus  

baillonii 

1 1 100 0.2 (n=1) None N/A N/A  

Trachinotus  

botla 

1327 12 0.90 1.2 (n=9) 6.6-114 (n=3) 3.6 N/A  
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6.3.2 Distance required between NTAs 

In a review of larval dispersal distances of coral reef fish, Green et al. (2015) recommended a 

maximum distance of 15 km between NTAs to ensure effective connectivity of coral reef fish 

populations. The average distance moved by 38 L. rivulatus displaying ranging behaviour was 17.1 

km, and similar to the 15 km spacing between NTAs recommended by Green et al. (2015), to 

facilitate larval dispersal and effective connectivity of coral reef fish populations. While these ranging 

individuals may be subject to capture by shore fishers while moving between NTAs, this distance (i.e. 

15-20 km) will ensure some connectivity between protected fish populations. Based on these 

observations, NTAs of 3-6 km in length with suitable surf-zone reef habitat and spaced 15-20 km 

apart, should provide suitable protection for populations of surf-zone reef fish species and allow for 

sufficient connectivity between populations. The application of these findings to the iSimangaliso 

Wetland Park will also ensure that the proposed target of 20-30% of surf-zone reef habitat is 

effectively protected (MPA News 2014). While the above suggestion may be simplistic and species-

specific because of the large range of factors that need to be taken into consideration (e.g. variation in 

home range size between resident and more mobile species, ontogenetic shifts to deeper reef, 

migrations to specific spawning areas, surf-zone reef habitat characteristics, etc.), it nevertheless 

follows best practise guidelines (Green et al. 2015).  

 

6.3.3 Habitat mapping, distribution of shore fishing effort and zonation 

A GIS map of the iSimangaliso Wetland Park was created using available data on all rocky shores, 

surf-zone reefs and offshore reefs along the entire coastline of the park. The map also took into 

consideration current beach access points, distribution of shore fishing effort and existing park zoning. 

This exercise revealed the occurrence of surf-zone reef habitat along much of the park’s ~185 km 

coastline, interspersed between sandy bays (Figure 6.2). However, a substantial proportion of this 

surf-zone reef habitat was limited to a beach-rock ledge, some of which is exposed at spring low tide. 

The most surf-zone reef habitat was primarily concentrated in the vicinity of points and rocky 

headlands and was normally found in close association with rocky shores (Figure 6.2).  
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Figure 6.2: A map of the iSimangaliso Wetland Park from Ponta do Ouro to Cape St Lucia showing 

the locality of rocky shores, surf-zone reefs and offshore reef habitats. 
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Eleven major public access points were associated with existing roads and park tourism infrastructure 

and located at (from south to north): Maphelane, St Lucia, Mission Rocks, Cape Vidal, Sodwana Bay, 

Mabibi, Manzingwenya (Island Rock), Lala Nek, Rocktail Bay, Black Rock and Bhanga Nek (Figure 

6.3). Shore angling effort was calculated as a spatial density (anglers.km
-1

) based on 453 815 shore 

anglers counted during 40 593 patrols covering 214 551 km, conducted in the iSimangaliso Wetland 

Park between January 2002 and December 2013 (National Marine Linefish System, unpublished 

data).  Shore angling effort was concentrated in the vicinity (i.e. walking distance of ~5 km) of major 

access nodes (e.g. Maphelane, St Lucia, Mission Rocks, Cape Vidal, Sodwana Bay and Bhanga Nek). 

In areas where there was limited road access and the adjacent terrestrial area was protected and not 

inhabited (e.g. north of Cape Vidal and south of Sodwana), shore fishing effort was very low and non-

existent in the NTA between Leven Point and Red Cliffs (Figure 6.3). However, in areas where local 

communities live adjacent to the coast, such as in the extreme southern and northern areas of the park, 

shore fishing effort was higher, being primarily of a subsistence nature (Figure 6.3).  

 

The shore and surf-zone (inshore zone) within the iSimangaliso Wetland Park is currently zoned as 

follows: i) Wilderness zone (no-take area adjacent to a terrestrial wilderness area); ii) No-take 

sanctuary zone (no-take area); iii) Restricted zone (limited consumptive use allowed but shore-fishing 

is permitted); iv) Controlled zone (high use area where controlled consumptive use is allowed). The 

current NTAs (n=6) within the iSimangaliso Wetland Park range in length from 2.2 to 24 km (Figure 

6.4), suggesting that ~57 km (31%) of the  coastline comprises NTAs and thus achieves the 

recommended level of no-take protection for shore and surf-zone habitats. In reality however, only the 

single 24 km NTA between Leven Point and Red Cliffs is effectively managed as a true no-take zone 

(see Chapters 3 and 4). Consequently, the effective conservation of surf-zone fish species within the 

iSimangaliso Wetland Park may be compromised. The five other smaller areas zoned as NTAs are 

either fished by local communities for subsistence purposes (i.e. NTAs north of Sodwana Bay and 

south of Maphelane) or are not recognised by recreational anglers (i.e. non-compliance) and/or are not 

enforced by the conservation authorities (e.g. the 10 km NTA north of Mission Rocks) (see Figure 

6.4). 

 

Considering the appropriate 15-20 km spacing of NTAs suggested by this study, there are large areas 

of shoreline that require NTA consideration within the iSimangaliso Wetland Park, such as the area 

between Red Cliffs and Dog Point (~72 km). Although this area has limited surf-zone reef habitat and 

is exposed to shore fishing effort, in order to ensure effective connectivity between protected surf-

zone fish populations within the iSimangaliso Wetland Park, the implementation of two new NTAs is 

recommended. The optimal placement of these NTAs would be in the vicinity of Nine-mile Reef 

north of White Sands and the area near Lala Nek (Figure 6.4).  
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Figure 6.3: Map showing major public access points and the distribution of shore fishing effort along 

the coast of the iSimangaliso Wetland Park. 
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Figure 6.4: Current inshore zonation within the iSimangaliso Wetland Park and the new no-take 

sanctuary areas and catch-and-release areas proposed by this study.  
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6.4 Discussion 

Green et al. (2015) recommended doubling the home range size (in all directions) to afford sufficient 

protection for resident coral reef fish species in a no-take area (NTA), while Griffiths and Wilke, 

(2002) recommended tripling what they called a travel range length (TRL), which included 95% of all 

displacement from long-term mark-recapture experiments. In essence these concepts are similar, 

except that Green et al. (2015) used home range size while Griffiths and Wilke (2002) took all 

movements into consideration, including ranging type movements. Griffiths and Wilke (2002) showed 

that for typical temperate reef fish, an area equivalent to three TRLs would protect 97.5% of the 

movement of fish with travel ranges centred within the central TRL. Clearly there are a number of 

conditions implicit to the approach they used namely: (1) quality and quantity of habitat is more or 

less the same throughout the area to be protected, (2) juveniles are protected within the NTA, (3) 

adults inhabiting the core area spawn within the NTA and (4) NTA length is based on the travel 

ranges of the most mobile representative of the reef ecosystem to be protected (Griffiths and Wilke 

2002). A modification of Griffiths and Wilke’s (2002) TRL was used in this study in that only station-

keeping behaviour (i.e. movements within a home range) was considered, as this made up 94% of the 

observed movement behaviour (see Chapter 4, Mann et al. 2015). For this reason Point 4 above was 

not taken into consideration for the estimation of reserve size but rather these ranging movements 

were used to estimate the distance apart that NTAs needed to be to ensure connectivity. 

 

Another important point for consideration is that Green et al. (2015) primarily used recapture data 

provided by the ORI-CFTP (Dunlop and Mann 2012 – which included data from this study) to 

estimate home range size (and thus NTA size) for many of the species under consideration. Locality 

data on the ORI-CFTP are captured with a much lower spatial resolution (1-5 km) (Dunlop et al. 

2013) compared to the 0.1 km resolution used in the current study. Nevertheless, it was clear that 

relatively small NTAs with a minimum length of 3-6 km of suitable surf-zone reef habitat may 

provide sufficient protection for a viable population of most surf-zone reef fish species in the 

iSimangaliso Wetland Park. 

 

While there is increasing evidence of larval retention in localised water circulation patterns (Jones et 

al. 2009; White et al. 2010; Berumen et al. 2012), considering the average velocity (>1 m.s
-1

) and 

close proximity (<5 km offshore) of the Agulhas Current to the coastline in the Maputaland region 

(Shannon 1989; Beckley 1993; Hutchings et al. 2002), it is considered likely that egg and larval 

dispersal in this region may be considerably greater than 15 km (Christie et al. 2010). Relatively little 

work of this nature has been conducted in this area, with the exception of work conducted on the 

dispersal of barnacle and mussel larvae in the Maputaland Marine Reserve (Reaugh 2006) which 

showed mean dispersal distances ranging from 30-122 km southwards along the coast. However, in 
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absence of better information for fish larvae, the Green et al. (2015) recommendation was used as best 

practise in this study. 

 

Attwood and Bennett (1995b) found that a range of reserve size and spacing combinations satisfied 

management criteria for the sustainable use of three sympatric surf-zone fish species in the south-

western Cape (i.e. Lithognathus lithognathus, Dichistius capensis and Diplodus capensis). While their 

results were too general to be of specific value (i.e. optimum reserve size of 10-20 km in length with 

an optimum distance between reserves of 20-40 km), they did suggest that NTAs are a viable option 

for the management of multispecies shore fisheries. Griffiths and Wilke (2002) found that optimum 

reserve size for five species of warm-temperate reef fish in the south-western Cape would be about 45 

km reserve length, an estimate that was used by Mann et al. (2006) in the establishment of the large 

offshore NTA in the Pondoland MPA. Kerwath et al. (2007b) predicted that relatively small NTAs of 

just a few kilometres in extent would be effective in protecting populations of Chrysoblephus laticeps, 

a highly resident reef fish species. Examples of estimating optimum reserve size abound in the 

literature and a thorough review by Green et al. (2015) suggests that the estimates made in this study 

(i.e. a NTA of 3-6 km coastline length spaced every 15-20 km) are well within the optimum range. 

Furthermore, it is likely that this would also be equally important and applicable to a range of 

intertidal invertebrate species such as Perna perna, Pyura stolonifera, Patella spp. etc. which are 

harvested by subsistence communities on rocky shores within the Maputaland MPA (Kyle et al. 1997; 

Tomalin and Kyle 1998; Sink 2001) and in the Sokhulu area south of Maphelane (Harris et al. 2003). 

 

The history of marine zonation within the iSimangaliso Wetland Park stems back to when these 

MPAs were first proclaimed. The St Lucia Marine Reserve was proclaimed in 1979 (Mann et al. 

1998) and the NTA between Leven Point and Red Cliffs was established primarily to protect the 

offshore reefs in this area (i.e. Red Sands Reef and Leadsman Shoal) (Rudy van der Elst, 

Oceanographic Research Institute, pers. comm.). This area was equidistant from the two main beach 

access nodes and boat launch sites at Sodwana Bay and Cape Vidal thus enabling shore anglers (with 

beach vehicles) and ski-boat anglers to fish 23 km south of Sodwana and 22 km north of Cape Vidal. 

For many years access for beach vehicles was allowed through the sanctuary at low tide but no 

stopping or fishing was permitted. Similarly, boats could traverse through the sanctuary but no fishing 

was allowed and fishing gear had to be stowed. Ski-boat fishing was and still is limited to pelagic 

game fishing (i.e. no bottom or reef fishing) throughout the remainder of the MPA to ensure 

protection of resident reef fish (Garratt 1993). Similarly, the adjacent Maputaland MPA was 

established in 1986 (Mann et al. 1998) and the NTA between Dog Point and Boteler Point was 

established primarily to protect the important offshore reef complexes in this area (e.g. Rabbit Rock 

reef complex). While much of the zonation was similar, an important difference between the St Lucia 

and Maputaland MPAs was that shore fishing and invertebrate harvesting by local communities was 
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allowed in the Maputaland NTA as it was recognized that fish and marine invertebrates were an 

important source of protein for the poor rural communities living adjacent to the coast in this area 

(Kyle et al. 1997). As turtle nesting sites were protected along the entire length of coastline in both 

these contiguous MPAs, little further attention was initially given to establishing additional NTAs 

along the shore (Hughes 2012). 

 

A major change to marine zonation occurred after the proclamation of the iSimangaliso Wetland Park 

(formerly known as the Greater St Lucia Wetland Park) as South Africa’s first World Heritage Site in 

1999 (IMP 2011). Firstly, the marine area protected within the Park was extended 42 km southwards 

from 1 km south of Cape Vidal to just north of Cape St Lucia (Mann and van der Elst 2005; IMP 

2011). This was done in terms of the World Heritage Convention Act (Act 49 of 1999) and while no 

new restrictions were placed on user groups initially, stricter controls were gradually phased in by 

means of internal Park rules. 

 

During the late 1990s a detailed intertidal biodiversity survey of the iSimangaliso Wetland Park was 

conducted (Sink 2001, Harris et al. 2011), which provided new insights into the location and 

ecological status of intertidal resources within the park. An important finding of the survey was the 

existence of a major biogeographic break at Cape Vidal with biota to the north (Delagoa Bioregion) 

being distinctly more tropical in nature, while that to the south (Natal Bioregion) was sub-tropical and 

more tolerant of higher turbidity (Sink 2001). 

 

A further change in management was the implementation of the ban on beach driving in 2002 

(Government Gazette No. 22960 promulgated under the National Environmental Management Act 

[Act 107 of 1998]). Based on these governance changes and new insights obtained from spatial 

planning (Harris et al. 2011), a new zonation plan was proposed and included in the Integrated 

Management Plan for the iSimangaliso Wetland Park (IMP 2011). These included all the additional 

NTAs along the coast as shown in Figure 6.4 and were primarily driven by the need to set aside 

greater areas of rocky shore habitat to protect intertidal rocky shore communities and limit 

invertebrate harvesting and recreational shore angling. However, most of these shore-based NTAs 

have not been effective in reducing intertidal invertebrate harvesting and shore fishing, with the 

exception of the Sokhulu area south of Maphelane (Harris et al. 2003; Harris et al. 2007). 

 

In order to overcome these challenges, the following recommendations are proposed:  

1. Existing NTAs in the iSimangaliso Wetland Park need to be clearly demarcated (i.e. 

signposted) and their position and purpose needs to be effectively communicated to both 

recreational anglers and subsistence shore fishers and intertidal invertebrate harvesters.  
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2. While this will inevitably result in initial resistance, demonstration projects should be 

established to convince resource users of the need for NTAs and ultimately to obtain their 

support and compliance (e.g. Sokhulu mussel harvesting project [Harris et al. 2007]).  

3. If local communities are unwilling to cease harvesting and fishing in existing NTAs, efforts 

should be made with the affected communities to try and decide on a minimum of 3 km of the 

best available habitat within existing NTAs where they will agree to stop fishing and 

harvesting.   

4. Gaps in the network of NTAs along the shore should be identified and implemented in 

consultation with local communities, recreational fishing associations and the general public.  

5. Once agreed to by relevant user groups, compliance with NTAs needs to be effectively 

enforced by the conservation authority (Ezemvelo).  

6. Effective monitoring of both recreational shore angling catch and effort (Maggs et al. 2014) and 

subsistence use of marine living resources (Mann et al. 2014) needs to be continued, as should 

research monitoring within the NTAs themselves.  

 

With regard to Point 4 above, it is proposed that a 3-6 km stretch of shoreline and adjacent surf-zone 

reef habitat is protected as an inshore NTA in the vicinity of Nine-Mile Reef. A second 3-6 km 

inshore NTA area should be established in the vicinity of Lala Nek (Figure 6.4). These two additional 

NTAs will improve connectivity between existing NTAs both with regard to surf-zone fish species 

and harvested intertidal invertebrates. 

 

Other gaps include the two large stretches of coastline between Cape Vidal and Leven Point and Red 

Cliffs and Sodwana Bay which are currently zoned to allow shore fishing (Restricted Zone) but are 

beyond reasonable walking distance and there is no or limited vehicular access. Unlike the areas to the 

north of Sodwana Bay, the land adjacent to these areas is unoccupied and much of it falls into a 

terrestrial Wilderness Area (Figure 6.4). While these areas may currently be functioning as effective 

NTAs due to limited shore angler access (especially the southern area – see Chapter 3, Mann et al. 

2016a), it is suggested that consideration should be given to the establishment of  approximately 10 

km buffer zones south of Leven Point and north of Red Cliffs as “catch-and-release” areas and that a 

concession is provided whereby a limited number of anglers, using trained guides, are allowed to 

access these areas in a strictly controlled manner (Cooke et al. 2006). Although it is understood that 

there will be a degree of fishing mortality even with good catch-and-release angling practises (Cooke 

et al. 2006; Danylchuk et al. 2007), with appropriate regulation and angler education, catch-and-

release angling could help to enhance the goals of this World Heritage Site. In this respect, a limited 

number of anglers would be allowed to access this otherwise undisturbed stretch of coastline and 

experience high quality angling. This would enhance tourism attraction and increase revenue income 
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to the park but have minimal  impact on surf-zone fish populations and this could be considered to be 

an example of good contemporary conservation practice. 

 

As intertidal rockpools, subtidal gullies and surf-zone reefs form important nursery areas for a number 

of fish species which move out onto deeper reefs with growth (Beckley 1985; 2000; Smale and 

Buxton 1989), an important consideration for the establishment of surf-zone NTAs must be 

connectivity with deeper offshore reefs. Fortunately this linkage is available in all of the inshore 

NTAs zoned in the iSimangaliso Wetland Park and those proposed in this study (Table 6.2). The fact 

that no boat-based bottom fishing is allowed throughout the Park will ensure that reef fish that move 

out on to these deeper reefs will receive protection regardless of whether they fall into zoned offshore 

NTAs or not. 

 

Some fish species such as E. marginatus, E. tukula, E. andersoni and L. rivulatus may undertake 

seasonal spawning migrations to specific spawning aggregation sites similar to that observed in other 

serranid and lutjanid species (Sadovy de Mitcheson and Colin 2012), although this type of movement 

behaviour has not yet been observed in the iSimangaliso Wetland Park. Provision thus needs to be 

made to allow for this type of movement behaviour and protection of fish spawning aggregations 

(FSA) should be considered as a high priority (Sadovy and Domeier 2005; Sadovy de Mitcheson and 

Colin 2012). With the current protection afforded to all bottom/reef fish species throughout the 

iSimangaliso Wetland Park (because of the prohibition on boat-based bottom fishing), it is believed 

that protection of existing FSAs for reef fish has already largely been catered for. However, this is not 

the case with regard to pelagic gamefish species (see Appendix 6.1). 

 

Carangid species such as Caranx ignobilis, C. melampygus, C. heberi, C. sexfasciatus and C. 

papuensis are frequently caught by both shore and boat-based anglers (and spearfishers) within the 

iSimangaliso Wetland Park (National Marine Linefish System, unpublished data). While some of 

these species have been shown to exhibit strong site fidelity e.g. C. ignobilis (Wetherbee et al. 2004; 

Meyer et al. 2007; Ledee et al. 2015) and C. melampygus (Holland et al. 1996; Meyer and Honebrink 

2005), they are also known to undertake movements in excess of 10 km (Dunlop and Mann 2012b) 

and some are known to form spatially and temporally predictable spawning aggregations (e.g. C. 

ignobilis) (R. Daly, Rhodes University, pers. comm.). While these species will likely receive some 

protection in the larger NTAs such as the St Lucia and Maputaland Marine Reserve sanctuaries, it is 

proposed that additional species-specific regulations (e.g. reduced daily bag limits, increased 

minimum size limits and spawning closure management measures) are implemented in the 

iSimangaliso Wetland Park and in the adjacent Ponta do Ouro Partial Marine Reserve in Mozambique 

to ensure more effective conservation of these popular gamefish species.    
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Table 6.2: Linkages between existing or proposed surf-zone NTAs and catch-and-release buffer areas 

and the occurrence of nearby offshore reefs within the iSimangaliso Wetland Park (from south to 

north). 

 

Surf-zone NTA Current inshore 

zonation 

Comments Adjacent offshore 

reef 

Current offshore 

zonation 

Comments 

Mid-railway 

ledges (2.2 km) 

NTA but not 

enforced 

Fished by 

subsistence 

shore fishers 

from Sokhulu 

Reef off Cape St 

Lucia and Jolly 

Rubino wreck 

Restricted (pelagic 

game-fishing only) 

Fished by boats 

from Maphelane 

and Richards Bay 

Mission Rocks 

north (10 km) 

NTA but not 

enforced 

Fished by 

recreational 

shore anglers 

Extensive backline 

reef 

Restricted (pelagic 

game-fishing only) 

Fished by boats 

from St Lucia and 

Cape Vidal 

Leven Point 

south buffer area 

(10 km) 

Restricted 

(Proposed catch-

and-release area) 

Not fished (no 

access) 

Leven Reef  Restricted (pelagic 

game-fishing only) 

Fished by boats 

from Cape Vidal 

St Lucia Marine 

Reserve 

Sanctuary (24 

km) 

NTA (sanctuary) Not fished and 

effectively 

enforced 

Leadsman Shoal 

and Red Sands 

Reefs 

NTA (sanctuary) Well enforced, 

limited boundary 

encroachment 

Red Cliffs north 

buffer area (10 

km) 

Restricted 

(Proposed catch-

and-release area) 

Fished by 

subsistence 

shore fishers 

from 

KwaMbila 

Northern part of 

Red Sands Reef 

and scattered 

backline reef 

Restricted (pelagic 

game-fishing only) 

Fished by boats 

from Sodwana 

Bay 

Nine-mile surf-

zone (5 km) 

Restricted 

(Proposed NTA) 

Fished by 

subsistence 

shore fishers 

from 

KwaMbila and 

recreationals 

Nine-mile Reef Restricted (pelagic 

game-fishing only) 

Fished by boats 

from Sodwana 

Bay 

Lala Nek surf-

zone 

(5 km) 

Restricted 

(Proposed NTA) 

Fished by 

subsistence 

shore fishers 

from 

KwaDapha 

and 

recreationals 

Scattered deep 

reefs >40m 

Restricted (pelagic 

game-fishing only) 

Limited boat-

based fishing 

Maputaland 

Marine Reserve 

Sanctuary 

(11 km) 

NTA but 

subsistence 

harvesting allowed 

Fished by 

subsistence 

shore fishers 

from 

KwaDapha  

Rabbit Rock Reef 

complex 

NTA (sanctuary) No fishing allowed 

but limited 

enforcement 

capacity 

Beacon 13 north 

(7 km) 

NTA but 

subsistence 

harvesting allowed 

Fished by 

subsistence 

shore fishers 

from 

eNkovukeni  

Saxon Reef NTA (sanctuary) Boat-based 

poaching from 

Ponta do Ouro 

(Mozambique) 

Kosi Mouth 

north (3.2 km) 

NTA but 

subsistence 

harvesting allowed 

Fished by 

subsistence 

shore fishers 

from 

eNkovukeni  

and Ponta do 

Ouro and 

recreationals 

Kosi Reef 

complex 

NTA (sanctuary) Boat-based 

poaching from 

Ponta do Ouro 

(Mozambique) 
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6.5 Conclusion 

An obvious weakness of this study was the lack of recaptures from some of the more mobile species, 

such as carangids, which may have home ranges considerably greater than two kilometres (Holland et 

al. 1996; Wetherbee et al. 2004; Meyer and Honebrink 2005; Meyer et al. 2007). For this reason 

estimates provided in this study should be considered as minimum estimates for NTA size and are 

generally more applicable to resident reef fish species found in the surf-zone. Based on the home 

range sizes of these latter species, the minimum effective length of NTAs in the iSimangaliso Wetland 

Park was estimated to be 3-6 km of coastline consisting of suitable surf-zone reef habitat. Taking into 

account both ranging movements of adult and sub-adult fish, as well as passive drift of fish eggs and 

larvae, the distance required between NTAs was estimated to be 15-20 km in order to retain sufficient 

connectivity. Using these estimates and considering the availability of suitable habitat, existing 

distribution of shore fishing effort and the current zonation applied in the park, two new NTAs are 

proposed at Nine-mile Reef and Lala Nek. Furthermore, two ~10 km catch-and-release buffer areas 

are proposed for the area north of Red Cliffs and south of Leven Point to enhance tourism but limit 

impact on surf-zone fish communities. If supported by the relevant authorities, implementation of 

these recommendations should be subject to a thorough stakeholder participation process to achieve 

effective buy-in. It is believed that the zonation plan proposed by this study will greatly improve both 

biodiversity conservation and fisheries management in and adjacent to the iSimangaliso Wetland Park 

and ensure better compliance with international guidelines and best practice.       

  



95 
 

Appendix 6.1: A list of pelagic gamefish and baitfish species which may be captured and retained by 

boat-based anglers fishing in the iSimangaliso Wetland Park. Family names are given as all species in 

these families may be caught. Note that these species are also subject to species-specific daily bag 

limits, minimum size limits and closed seasons (see current regulations [Government Gazette No. 

27453] in terms of South Africa’s Marine Living Resources Act [Act 18 of 1998]). 

 

Pelagic gamefish species* 

Carangidae (Kingfishes/Jacks/Trevallys)  

Coryphaenidae (Dolphinfish/Dorados) 

Istiophoridae (Sailfish, Spearfish, Marlins)  

Pomatomidae (Elf/Shad/Bluefish/Tailor) 

Rachycentridae (Cobia/Prodigal son) 

Scombridae (Tunas, Mackerels, Bonitos) 

Sphyraenidae (Barracudas) 

Xiphiidae (Swordfish) 

 

Pelagic baitfish species (includes carangids and scombrids as indicated above) 

Atherinidae (Silversides) 

Belonidae (Needlefishes/Garfish) 

Chirocentridae (Wolf herrings) 

Clupeidae (Herrings, Sardines, Pilchards) 

Engraulidae (Anchovies) 

Exocoetidae (Flyingfishes) 

Hemiramphidae (Halfbeaks) 

Scomberesocidae (Sauries) 

*Note that all elasmobranchs (i.e. shark and ray species) caught within the iSimangaliso Wetland Park 

must be released unharmed. 
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CHAPTER 7: GENERAL CONCLUSION 

 

7.1 Introduction 

The overarching goal of this project was to address the question of whether the St Lucia Marine 

Reserve Sanctuary is providing a refuge for surf-zone angling fish species and whether the adjacent 

exploited areas are benefitting in terms of spillover. However, following a national ban on the use of 

vehicles on South African beaches in January 2002, this study also aimed to assess the potential 

recovery of a fish community in a previously exploited area using the no-take sanctuary area as a 

benchmark. Specific objectives of this study were: 1) To compare the species composition, catch-per-

unit-effort (CPUE) and size composition of surf-zone fishes within the St Lucia Marine Reserve 

Sanctuary with that of an adjacent, previously exploited area south of Leven Point by means of 

research angling and to monitor the response of the fish community over time; 2) To determine 

movement patterns of important shore angling species on a fine spatial scale (< 100 m) by means of 

conventional dart tagging and to describe patterns of residency and dispersal by tagged fish and to 

investigate the potential occurrence of spillover from the no-take sanctuary; 3) To use tag-recapture 

data to investigate the growth rate of speckled snapper Lutjanus rivulatus; 4) To use fish movement 

patterns (residency and dispersal patterns) to investigate the minimum size and spacing of no-take 

MPAs needed to protect viable populations of shore angling species within the Delagoa Bioregion. 

These objectives were addressed in Chapters 3-6 of this thesis and a brief summary of the 

achievements is provided below: 

 

Objective 1 (Chapter 3) 

In November 2001, a project was established in the St Lucia Marine Reserve to compare surf-zone 

fish populations inside the no-take sanctuary zone with those in the adjacent exploited area. Surf-zone 

fish populations were monitored for potential recovery in the area north of Cape Vidal, as anglers 

could no longer easily access this area because of the prohibition of beach driving.  Standardised 

research fishing was conducted at two sites in the previously exploited area and two sites in the no-

take sanctuary. Conventional stock status indicators including trends in species composition, CPUE 

and size composition showed evidence of recovery in the four most common species caught in the 

previously exploited area, both in terms of abundance and biomass (i.e. Pomadasys furcatus, 

Trachinotus botla, Lutjanus rivulatus and Diplodus capensis). Generalized Additive Mixed Models 

(GAMMs) were used to account for the influence of targeting specific species; however, subtle 

differences in habitat between the sampling sites, improved angling skill over time, variability in 

recruitment and differential species-specific responses, complicated interpretation of results. 

 

 



97 
 

Objective 2 (Chapter 4) 

Between 2001 and 2013, 6 613 fishes from 71 species, caught by hook and line, were tagged at four 

sites within and adjacent to the St Lucia Marine Reserve no-take sanctuary area. A total of 1 004 

(15.2%) recaptures were made from 17 species. The majority (82.4%) of these species displayed 

station-keeping behaviour, whereas only three were classified as wider-ranging species and no species 

with discernible migratory behaviour was observed. Findings for five species with the highest 

recapture rates, namely P. furcatus, Epinephelus andersoni, E. marginatus, Dinoperca petersi and L. 

rivulatus, were further analysed. Recapture rates ranged from 7 to 50% and time at liberty from 0 to 

3163 days. Individuals of all five species displayed station-keeping behaviour, with the 95
th
 percentile 

of intra-study site movements varying between 200 and 1 025 m (linear distance). However, four of 

the five species also displayed some ranging behaviour and made exploratory excursions ranging from 

3.5 to 125 km, in both northerly and southerly directions. The dominance of station-keeping 

behaviour suggests that the St Lucia Marine Reserve sanctuary zone provides an important refuge for 

these species, with some export to adjacent areas. 

 

Objective 3 (Chapter 5) 

The growth rate of L. rivulatus was investigated using data from a long-term tag-recapture study 

conducted in the St Lucia Marine Reserve. A total of 1 429 L. rivulatus were tagged and 453 (31.7%) 

individual fish were recaptured one or more times. Growth rates were modelled from the tag-recapture 

data using a maximum-likelihood approach. It was shown that L. rivulatus is a slow-growing species 

with mean growth rates of 35.4 mm.y
-1

 at 300 mm FL and 18.2 mm.y
-1

 at 600 mm FL, respectively. 

The von Bertalanffy growth parameters were calculated as L∞ = 918 mm FL and K = 0.06 y
-1

 and the 

growth index phi-prime (Ø) was equal to 2.69. The effects of deep-hooking and multiple captures 

were tested and revealed that there was no significant impact on the growth of L. rivulatus. The 

growth index was lower than that recorded in many other similar congeneric species. Slow growth, 

coupled with high levels of residency and site fidelity, suggest that this species is vulnerable to 

exploitation and that a precautionary approach towards future management is appropriate.  

 

Objective 4 (Chapter 6) 

Based on the results of the tag-recapture study conducted in the St Lucia Marine Reserve, home range 

size was estimated for species with sufficient recapture data. This indicated that home range size was 

relatively small for most surf-zone fish species, seldom exceeding 2 km, and indicated high levels of 

residency and site fidelity. Using home range size and best practise guidelines on the area required to 

protect a viable population of resident surf-zone fish species, minimum size of no-take areas (NTAs) 

was estimated. To ensure adequate connectivity between protected fish populations, the distance apart 

that such NTAs needed to be was estimated based on movement patterns of fish species displaying 

ranging-type behaviour, as well as best available information on the distribution of eggs and larvae. 
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This revealed that NTAs of 3-6 km (linear distance) with suitable surf-zone reef habitat, spaced every 

15-20 km apart could provide sufficient protection and connectivity for surf-zone fish populations.  

The implications of these results were considered with respect to the availability of suitable surf-zone 

reef habitat, existing patterns of human use and the current zonation of the inshore zone within the 

iSimangaliso Wetland Park and recommendations for improvements were made. 

 

7.2 Limitations and recommendations 

The methods used in this project were adapted from those developed in other similar MPA monitoring 

projects such as De Hoop (Attwood 2002) and Tsitsikamma (Cowley et al. 2002) but were refined to 

enable a comparison between a no-take sanctuary area and a previously exploited area. One of the 

most important lessons learnt in this regard was that areas selected for comparison must be as similar 

as possible in terms of available habitat (Attwood 2003). As discussed in Chapter 3, the SB area in the 

middle of the sanctuary had the most extensive surf-zone reef habitat of the four selected sampling 

blocks and was also immediately inshore of a large offshore reef complex (Leadsman Shoal). 

Therefore, the selection of this area as a sampling block for this study complicated comparisons with 

other areas where surf-zone reef habitat was less prolific (see Figure 3.4). 

  

Another important lesson learned in this study was that despite careful standardisation of the sampling 

protocol, the pool of research anglers gained increased local knowledge resulting in improved 

effective fishing effort over time (effort creep). Analytical methods for standardising catch and effort 

data have improved considerably over the past few years (Winker et al. 2013; 2014) and were 

employed in this study to remove such sources of variation not directly linked to fish abundance. 

However, it was difficult to account for improvement in individual angler skill. Future studies of this 

nature should take the phenomenon of effort creep into consideration and ensure that such variation is 

minimised. 

 

Targeting of specific fish species was another difficult aspect of this project to account for in terms of 

directed angler effort. Effort targeting of “large fish” (e.g. Caranx ignobilis, Carcharhinus limbatus, 

Rhynchobatus djiddensis) and “small fish” (e.g. Lutjanus rivulatus, Trachinotus botla, Pomadasys 

furcatum), was split by using hook size > 7/0 as the threshold criterion. However, it was not possible 

to further quantify deliberate targeting of certain species or species groups, even in terms of the 

cluster analysis undertaken (He et al. 1997; Winker et al. 2013).  The large diversity of fish species 

found in the study area and the ability of anglers to “read” the water and target species likely to occur 

in that particular area, meant that anglers could change their target species on every cast simply by 

changing the hook size, bait type and/or the habitat type they cast into. The practice of allowing two 

hooks per trace was used to target different species. For example, by using a smaller top hook (1/0 or 
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2/0) baited with squid or prawn and a larger bottom hook (4/0 or 5/0) baited with fish bait, different 

species could be targeted on an individual trace (e.g. T. botla or P. furcatus) on the top hook and L. 

rivulatus or E. marginatus on the bottom hook. To better define targeting in future studies of this 

nature, it is recommended that the trace should be limited to only one hook. Since the tagging study 

(movement data) was of more interest to participating anglers, it motivated them to target larger fish 

suitable for tagging (i.e. fish ≥ 30 cm FL). This was a potential bias as considerably more fish could 

have been caught if anglers had only targeted smaller fish using smaller hooks. While such practice 

was discouraged in terms of standardising the project protocols, consideration should be given to 

limiting hook sizes to a narrower range (e.g. 2/0 to 6/0) in future projects of this nature. 

 

It was hypothesised that the surf-zone fish communities within the previously exploited area between 

Cape Vidal and Leven Point would recover over time once fishing had ceased. While this study 

provided strong evidence for the recovery of at least four of the most commonly caught shore-angling 

fish species, it was not unequivocal. The complex patterns of natural variation driven by processes 

such as recruitment success, competition and succession between species, seasonal fluctuations in fish 

abundance, and subtle differences in habitat availability between sampling sites, masked clear signals 

of recovery in both fish abundance and mean size. Furthermore, many of the species concerned are 

slow growing and require a long time to recover after exploitation (Jennings et al. 1999). Again this 

emphasises the need for careful project design and implementation. It also speaks to the importance of 

conducting such studies over a long period of time (at least 10 years). Sampling should also be 

conducted throughout the year (or at least seasonally) to enable such natural variability to be 

accounted for. The use of a variety of indicators such as those used in this study (species composition, 

CPUE, size composition and fish movement data) is also recommended to enable the detection of 

other masking factors in such long-term monitoring programmes.  

 

The gradation in shore fishing effort exerted by members of the angling public, being highest in close 

proximity to the beach access point at Cape Vidal and gradually decreasing further away, made 

detection of clear differences between the sanctuary area and the previously exploited area less 

conspicuous, especially in the EB  sampling block (4 km from the sanctuary). Lower historical 

angling effort and spillover from the proximate sanctuary area (edge effect) made signals of recovery 

less easy to detect in the EB sampling block in comparison to EA (12 km from the sanctuary). Such 

phenomena also need to be taken into account when designing projects that aim to assess recovery in 

fish populations and communities in different areas over time, especially when using a sanctuary area 

as a benchmark. 

   

Somewhat surprisingly, there have been very few projects implemented to monitor the recovery of 

shore-angling fish populations after the introduction of the beach vehicle ban in South Africa in 
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January 2002. As such this project provided some important insights into the recovery that may have 

taken place in other resident surf-zone angling fish populations in areas that were previously only 

accessible to shore anglers by means of driving along the beach. While the introduction of this 

legislation has undoubtedly been beneficial to many such remote fish populations by providing a 

natural refuge, cognisance needs to be taken of the resultant shift in shore angling effort (Mann et al. 

2008; Dunlop and Mann 2012, Parker et al. 2013) which is now focused with greater intensity at 

beach access points. It has also resulted in fishing effort shifting to more accessible areas such as 

estuaries (Cowley et al. 2013), which provide important nursery areas to many marine fish species and 

are vulnerable to overfishing. Furthermore, considering the degree of coastal development along the 

South African coast, particularly in KZN, and the associated network of roads and vehicle tracks that 

have been developed within the coastal zone, there are in fact relatively few areas (outside terrestrial 

protected areas or private land) that are not accessible to shore anglers. Implementation of the 

legislation banning driving on the beach should thus not be seen as a substitute or replacement for the 

implementation of a well-designed network of no-take MPAs along the South African coast. 

 

The tagging study provided new insights into the movement patterns of surf-zone angling fish species 

found in the Delagoa Bioregion. The dominance of station-keeping behaviour and the high degree of 

site fidelity, even for species which are less reef-associated, such as T. botla and Rhabdosargus sarba, 

was surprising given the dynamic nature of the surf-zone environment. The original decision to limit 

the four sampling areas to two kilometres in length was potentially restrictive as for the first 10 years 

virtually no research fishing was conducted between the four sampling blocks and, other than fish 

caught and reported by members of the angling public, there was no possibility of the research team 

recapturing fish that had moved greater distances (unless the fish had moved into another sampling 

block). However, home range size was later validated when the size of the sampling blocks was 

increased from 2 km to approximately 10 km in November 2011. This meant that the entire length of 

coastline between Cape Vidal and the middle of the sanctuary area was being sampled. Subsequent 

testing of home range size estimates for species such as L. rivulatus in the larger sampling blocks 

found no significant difference compared to the original 2 km sampling blocks. While angling effort 

of four anglers fishing along a 10 km stretch of coast on one day is understandably greatly diluted 

compared to fishing in a 2 km stretch, the same highly-productive fishing areas (areas with good surf-

zone reef structure) were frequently selected within each 10 km sampling area. Although such 

changes in sampling strategy would understandably reduce the random nature of sampling and 

increase bias, after 10 years (November 2001 to July 2011) and 50 sampling trips, it was decided that 

the objectives of this project needed to shift away from the original focus on recovery of the 

previously exploited area and concentrate more on the movement behaviour of surf-zone fish 

communities, particularly to investigate the potential for spillover from the sanctuary area. It is 

believed that this change in sampling strategy was therefore justified. 
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The lack of research fishing effort north of the middle of the sanctuary area (SB22) and the paucity of 

tag returns from members of the angling public in areas open to shore-fishing both north and south of 

the sanctuary area (Dunlop et al. 2013) was a weakness of the tagging study. This was despite 

attempts to create greater awareness among recreational and subsistence fishers of the importance of 

reporting the capture of tagged fish through the erection of posters at Cape Vidal and Sodwana Bay, 

placing articles in angling magazines and through direct communication with subsistence fishery 

monitors working in the area during dedicated training courses. It is anticipated that more ranging-

type movements of fish moving out of the sanctuary area will be documented in time by the 

subsequent extension of the current project. Since February 2015, four areas namely Cape St Lucia to 

Maphelane, Cape Vidal to the middle of the sanctuary, middle of the sanctuary to Sodwana Bay and 

Dog Point to Kosi Bay have been sampled using the same methods and the same team of anglers. 

While limited to one field trip to each site per year, this extended sampling design along a greater 

stretch of the coastline of the iSimangaliso Wetland Park should provide better information on 

ranging movement behaviour and enable better quantification of the export of sub-adult and adult fish 

from the sanctuary area. It will also provide better information regarding latitudinal changes in surf-

zone fish species composition, especially south of the known biogeographic break at Cape Vidal (Sink 

et al. 2012).  

 

Determination of the growth rate of L. rivulatus using tag-recapture methods was an important 

achievement in this study as no fish were deliberately killed. Such non-destructive methods of fish 

sampling should generally be encouraged in MPAs. However, the effect of tagging on growth rate 

(Attwood and Swart 2000) could not be quantitatively assessed. In this regard, it is only through 

sacrificial sampling and removal of fish otoliths that more empirical age estimates can be made. It is 

therefore recommended that a future study should be conducted whereby a limited number of L. 

rivulatus from a representative range of size classes are sacrificed to enable completion of an age and 

growth study using otoliths. This will enable direct comparison with growth rates determined from the 

tagging study.  

 

While growth rates of the majority of important surf-zone angling fish species sampled during this 

study have already been determined in previous ageing studies using otoliths [e.g. T. botla (Parker and 

Booth 2014); R. sarba (Radebe et al. 2002); D. capensis (Mann and Buxton 1997); E. marginatus 

(Fennessy 2006); E. andersoni (Fennessy 2000)], the growth rates of two important surf-zone fish 

species have not yet been determined, namely P. furcatus and D. petersi (Mann 2013). Given the high 

recapture rate (20%), a future study on the growth rate of D. petersi using a similar tag-recapture 

approach to that used for L. rivulatus in this study is recommended. However, with regard to P. 

furcatus, the fact that only specimens ≥ 30 cm FL were tagged which represents the upper size range 
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of this species, and the fact that they showed a relatively high degree of tag shedding, it is believed 

that a tag-recapture growth study on this species would not provide useful data as at this size, growth 

rate has already likely reached an asymptote. As they are locally abundant, an age and growth study 

using otoliths would therefore be a better approach for this species.  

 

This thesis has literally only “skimmed the surface” in terms of the amount of data collected over the 

past 12 years. Opportunity therefore still exists to investigate a wide range of interesting phenomena 

including time of catches related to fish foraging behaviour (e.g. Watt-Pringle 2009), the effects of 

bait type and hook size on catches, correlating physical parameters (e.g. water temperature, swell 

height, wind speed and direction, etc.) with catches and estimating mortality rates of key species 

caught in the no-take sanctuary area (e.g. Götz et al. 2008). In addition, linking the results of this 

study with those from similar studies conducted in other MPAs around the South African coast (e.g. 

Solano-Fernández et al. 2012), provides an opportunity to showcase the magnitude of MPA research 

conducted locally compared to many other parts of the world.  

 

7.3 Contributions towards improved conservation 

Perhaps the most useful product of this study from a conservation perspective was the finding with 

regard to optimal reserve size and spacing based on fish movement data. The findings suggested that 

relatively small no-take areas (NTAs) of suitable surf-zone reef habitat of 3-6 km in length should be 

sufficient to protect viable populations of resident fish species. Placing such NTAs every 15-20 km 

along the coast would ensure sufficient connectivity between protected fish communities through egg 

and larval dispersal and by ranging movement behaviour of sub-adult and adult fish. This assumes 

that spawning occurs within these NTAs and/or that they are connected with protected deeper-

spawning habitat for those species which move offshore as they mature. Being a rough guideline, this 

configuration of NTAs (i.e. 20-30% full habitat protection) agrees well with that recommended by 

other local and international studies (Attwood and Bennett 1995; Botsford et al. 2003; Gaines et al. 

2010; Green et al. 2015). The proposed implementation of a surf-zone NTA network along the entire 

length of the iSimangaliso Wetland Park was presented in Chapter 6. The optimal network included 

the existing NTAs and identified the need for including two additional areas (i.e. in the vicinity of 

Nine-Mile Reef and Lala Nek) based on identified gaps (see Figure 6.4). Notwithstanding that the 

three NTAs in the extreme north (i.e. Dog Point to Boteler Point, Beacon 13 to Beacon 30, north of 

Kosi Mouth to the RSA/Mozambique border) and the one in the extreme south of the Park (i.e. 

Railway Ledges) are not fully-fledged because subsistence linefishing by members of the local 

community occurs in the surf-zone, the conceptual layout of the proposed NTA network requires 

attention by the local management authority.  
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An exciting and relatively novel idea introduced in this study with regard to MPA management in 

South Africa is the concept of having catch-and-release areas (CARAs) as buffer zones on either side 

of NTAs (see Chapter 6). While catch-and-release fishing can incur species-specific fishing mortality 

(Bartholomew and Bohnsack 2005; Cooke and Wild 2007), the success of this project in 

demonstrating the recovery of fish populations in the previously exploited area south of Leven Point 

using catch-and-release fishing provides testimony of the feasibility of introducing CARAs (also see 

Cooke et al. 2006). Furthermore, the results of the growth study on Lutjanus rivulatus (Chapter 5) 

provided strong evidence to suggest that deep-hooking and multiple captures did not significantly 

affect the growth rate of this species. It is therefore believed that with the development of suitable 

guidelines and training in fish handling and responsible fishing (Cooke and Suski 2005), introduction 

of CARAs for shore-based recreational angling within the iSimangaliso Wetland Park would be an 

important development in terms of improved fisheries conservation, increasing angler opportunities 

and awareness, and securing additional visitor revenue for the Park.  

 

Based on the ideas advocated in Chapter 6, a more comprehensive system of inshore zonation for the 

iSimangaliso Wetland Park (Figure 7.1) was recently (May 2016) proposed to the iSimangaliso 

Wetland Park Authority and the Department of Environmental Affairs in response to the call for 

public comment on the proposed offshore and southward extension of the Park (Government Gazette 

No. 39646, Regulation No. 118, p. 196-221). This proposal recommended the implementation of four 

Controlled Zones at major beach access points within the Park namely at Bhanga Nek between 

Beacon 13 and Boteler Point (IICZ1), 5 km north and south of Sodwana Bay (IICZ2), 5 km north and 

south of Cape Vidal (IICZ3) and between 5 km north of St Lucia and 3 km south of Mapelane 

(IICZ4). Permitted recreational shore anglers and subsistence shore fishers would be able to harvest 

fish caught from the shore within these controlled zones according to existing fisheries regulations 

(i.e. size limits, daily bag limits and closed seasons). This effectively provides consumptive access to 

most shore anglers within reasonable walking distance of major beach access points.  

 

The recommendation then proposes the implementation of 10 Restricted Zones (CARAs) within the 

Park namely 0.5 km north and south of Kosi Mouth (IIRZ1), Dog Point to Lala Nek (IIRZ2), 3 km 

south of Lala Nek to 2 km north of Nine-Mile beach (IIRZ3), 2 km south of Nine-Mile Beach to 5 km 

north of Sodwana Bay (IIRZ4), 5 km south of Sodwana Bay to Red Cliffs (IIRZ5), Leven Point to 5 

km north of Cape Vidal (IIRZ6), 5 km south of Cape Vidal to just north of South Ledges (IICZ7), 

Mziki Path to First Rocks (IIRZ8), 3 km south of Mapelane to Railway Ledges (IIRZ9) and from the 

wreck of the Jolly Rubino to Cape St Lucia (IIRZ10). These Restricted Zones would essentially act as 

CARAs for recreational shore anglers and all fish caught would have to be released. They would have 

access to these areas either on foot or bicycle but the potential also exists for permitted 

concessionaires with vehicles to offer catch-and-release fishing in these areas. In these areas strict 
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guidelines would need to be developed to control catch-and-release shore angling (Cooke and Suski 

2005). However, local permitted subsistence fishers who live in close proximity to these Restricted 

Zones would still be allowed to harvest fish in these areas in order to sustain their livelihoods.   

 

Six existing and two new no-take Sanctuary Zones (NTAs) are then proposed namely from the 

RSA/Mozambique border to 0.5 km north of Kosi Mouth (IISZ1), 0.5 km south of Kosi Mouth to 

Beacon 13 (IISZ2), Boteler Point to Dog Point (IISZ3), Lala Nek to 3 km south (IISZ4), 2 km north 

and 2 km south of Nine-Mile Beach (IISZ5), Red Cliffs to Leven Point (IIWZ1)
2
, north of South 

Ledges to Mziki Path (IISZ6) and from Railway Ledges to the wreck of the Jolly Rubino (IISZ7). 

Implementation and effective enforcement of these NTAs would make a significant contribution 

towards the improved conservation and sustainable use (through spillover) of the surf-zone fish 

communities and associated marine biodiversity found within the iSimangaliso Wetland Park.  

 

 

                                                           
 

2
 For the purposes of marine zonation a Wilderness Zone (WZ) is the same as a no-take Sanctuary 

Zone but is simply immediately adjacent to a terrestrial Wilderness Area. 
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Figure 7.1. Recently proposed inshore (shore-based) zonation for the iSimangaliso Wetland Park 

(IICZ = iSimangaliso Inshore Controlled Zone; IIRZ = iSimangaliso Inshore Restricted Zone; IISZ = 

iSimangaliso Inshore Sanctuary Zone; IIWZ = iSimangaliso Inshore Wilderness Zone).   
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Finally, the 12-year duration of this project has been a real adventure. Every one of the 59 field trips 

was eagerly awaited, from the precooking of meals to the collection of bait and preparation of tagging 

equipment and fishing tackle. The excitement and camaraderie associated with giving a team of 

volunteer anglers the opportunity to fish in a no-take sanctuary area that has been protected for the 

past 30 plus years is unsurpassed (Figure 7.2). As a consequence it is my belief that one of the most 

important achievements of this project was proving to anglers that MPAs work. As the cliché states 

“seeing is believing”. Many of the anglers that have participated in this and other similar projects have 

gone on to become “ambassadors” for MPAs within their own communities and circles of friends. 

The distribution of field trip reports to all participants, presentation of talks to fishing clubs and other 

interest groups, publication of popular articles in fishing magazines and screening of a number of 

documentaries about this project on television have also helped to explain the value of MPAs to a 

wider audience. Communicating the conservation value of protected areas has been an extremely 

important component of this project that should ultimately benefit future attempts to establish a more 

comprehensive MPA network around the South African coast. 

 

 

 

Figure 7.2: The author (left) fishing with two good friends Pat Garratt (middle) and Simon Chater 

(right) in the St Lucia Marine Reserve Sanctuary (November 2010) (Photo: M. Karon).  
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