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Abstract

We study the evolution of shear-free spherically symmetric charged fluids

in general relativity. This requires the analysis of the coupled Einstein-Maxwell

system of equations. Within this framework, the master field equation to be

integrated is

yxx = f(x)y2 + g(x)y3

We undertake a comprehensive study of this equation using a variety of ap-

proaches. Initially, we find a first integral using elementary techniques (subject

to integrability conditions on the arbitrary functions f(x) and g(x)). As a re-

sult, we are able to generate a class of new solutions containing, as special

cases, the models of Maharaj et al (1996), Stephani (1983) and Srivastava

(1987). The integrability conditions on f(x) and g(x) are investigated in detail

for the purposes of reduction to quadratures in terms of elliptic integrals. We

also obtain a Noether first integral by performing a Noether symmetry analy-

sis of the master field equation. This provides a partial group theoretic basis

for the first integral found earlier. In addition, a comprehensive Lie symmetry

analysis is performed on the field equation. Here we show that the first integral

approach (and hence the Noether approach) is limited – more general results

are possible when the full Lie theory is used. We transform the field equation

to an autonomous equation and investigate the conditions for it to be reduced

to quadrature. For each case we recover particular results that were found pre-

viously for neutral fluids. Finally we show (for the first time) that the pivotal
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equation, governing the existence of a Lie symmetry, is actually a fifth order

purely differential equation, the solution of which generates solutions to the

master field equation.
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Chapter 1

Introduction

1.1 Outline

The Einstein field equations describing inhomogeneous processes in gravita-

tional systems, which can be extended to include the electromagnetic field to

comprise the Einstein-Maxwell equations, are a system of nonlinear coupled

partial differential equations. These systems are difficult to solve in closed

form for realistic matter distributions. As our understanding of the gravita-

tional behaviour of these models depends on exact solutions, we need to solve

the field equations. The simplest inhomogeneous models have vanishing shear

in spherical symmetry with neutral or charged matter. As the case of neutral

matter has been extensively studied over the years (Krasinski 1997, Stephani et

al 2003) we include the effects of the electric field. For this case the integration
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of the Einstein-Maxwell system reduces to a single master partial differential

equation, the condition of pressure isotropy generalised to include the electro-

magnetic field. The objective of this thesis is to investigate the integrability

properties of the governing partial differential equation that contains a term

corresponding to charge, for shear-free fluids. This investigation is performed

using several approaches.

In this chapter we give relevant background information. This will help

to generate solutions of the Einstein field equations which are significant for

general relativistic effects. We briefly discuss some of the basic ideas behind

the theory of Lie analysis. We also outline the theory of Noether symmetry

analysis and invariant solutions.

In chapter 2 we apply an elementary approach suggested by Srivastava

(1987). We reduce the Einstein-Maxwell field equations, generalising the trans-

formation due to Faulkes (1969), to a single nonlinear second order partial

differential equation that governs the behaviour of charged fluids. As in the

case of uncharged fluids, this equation can be treated as an ordinary differ-

ential equation. We also derive a first integral of the governing equation by

generalising the technique of Srivastava (1987) first used for uncharged fluids.

This first integral is subject to two integrability conditions expressed as non-

linear integral equations. We further transform the integrability conditions,

into a new system of differential equations which can be integrated in terms of

quadratures. We comprehensively investigate the nature of the factors of the
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quartic arising in the quadrature.

In chapter 3 we study the integrability properties of the underlying partial

differential equation for the Einstein-Maxwell system using symmetry meth-

ods. Both Noether and Lie point symmetries of the governing equation are

considered. Noether symmetries have the interesting property of being asso-

ciated with physically relevant conservation laws via the well-known Noether

theorem in a direct manner. The Lie symmetries are more general, providing a

larger set of symmetry generators in general, but do not guarantee integrabil-

ity and reduction to quadrature in a straight forward manner. We analyse the

governing equation for Noether symmetries and this analysis yields a Noether

first integral for this equation. We then establish the relationship between the

Noether first integral and the first integral obtained using an ad hoc approach

in chapter 2. We undertake a comprehensive Lie symmetry analysis of the

governing equation to investigate the conditions under which it can be reduced

to quadratures. In addition we perform a detailed analysis for group invariant

solutions.

In chapter 4 we derive a fifth order purely differential equation the so-

lutions of which yield solutions to the master field equation. This is the first

time that such an equation, necessary for the existence of the Lie symmetry,

has been derived. We then perform a Lie symmetry analysis of this equation.

The solution obtained contains the result obtained by Kweyama et al (2010b).

Furthermore we solve a fourth order integro-differential equation which was
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deduced by Kweyama et al (2010b). Note that the results obtained in this

chapter have not been obtained previously.

Finally, in chapter 5, we conclude by summarising the results obtained

in this study.

1.2 Lie theory of differential equations

1.2.1 Lie point symmetries of ordinary differential equa-

tions

A point symmetry is a symmetry in which the infinitesimals depend only on

coordinates (Cantwell 2002). We describe a Lie point symmetry as a point

symmetry that depends continuously on at least one parameter, i.e. the pa-

rameter(s) can vary continuously over a set of scalar nonzero measure. Lie

point symmetries of ordinary differential equations are of the form

G = ξ
∂

∂x
+ η

∂

∂y

where the coefficients ξ and η are functions of x and y only.

To be able to apply a point transformation to an nth order ordinary

differential equation

E
(
x, y, y′, y′′, ..., y(n)

)
= 0
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where

y′ ≡ dy

dx
, y′′ ≡ d2y

dx2
, · · ·

etc, we need to know how derivatives transform under the infinitesimal trans-

formation

x̄ = x + εξ(x, y)

ȳ = y + εη(x, y)

which has a generator given by

G = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

In terms of the quantities x̄ and ȳ we have, for the first derivative,

dȳ

dx̄
=

d(y + εη)

d(x + εξ)

=

dy

dx
+ ε

dη

dx

1 + ε
dξ

dx
= (y′ + εη′)

(
1− εξ′ + ε2ξ′2 − · · · )

= y′ + ε (η′ − y′ξ′)

which we have terminated at O(ε2). Note that primes refer to total differenti-

ation with respect to x. For the second derivative we have

d2ȳ

dx̄2
=

d

dx̄

(
dȳ

dx̄

)

=
d[y′ + ε (η′ − y′ξ′) ]

d (x + εξ)

=

dy′

dx
+ ε

d

dx
(η′ − y′ξ′)

1 + εξ′

= y′′ + ε (η′′ − 2y′′ξ′ − y′ξ′′)
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Similarly, we obtain

d3ȳ

dx̄3
= y′′′ + ε (η′′′ − 3y′′′ξ′ − 3y′′ξ′′ − y′ξ′′′)

d4ȳ

dx̄4
= yiv + ε

(
ηiv − 4yivξ′ − 6y′′′ξ′′ − 4y′′ξ′′′ − y′ξiv

)

and so on. In general we generate the formula (Leach 1995)

dnȳ

dx̄n
= y(n) + ε

(
η(n) −

n∑
i=1

Cn
i y(i+1)ξ(n−i)

)

where the superscript (i) denotes
di

dxi
and Cn

i is the number of combinations of

n objects taken i at a time.

To deal with the infinitesimal transformations of equations and functions

involving derivatives, we need the extensions of the generator G. We indicate

that a generator G has been extended by writing

G[1] = G + (η′ − y′ξ′)
∂

∂y′

G[2] = G[1] + (η′′ − 2y′′ξ′ − y′ξ′′)
∂

∂y′′

for the first and the second extensions respectively. When generating an ex-

tension of G we have to extend G such that all the derivatives appearing in the

equation or function are included in the extension. For an nth order differential

equation, the nth extension is of the form (Mahomed and Leach 1990)

G[n] = G +
n∑

i=1





η(i) −
i∑

j=1




i

j


 y(i+1−j)ξ(j)





∂

∂y(i)

The generator

G = ξ
∂

∂x
+ η

∂

∂y
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is a symmetry of the differential equation

E
(
x, y, y′, y′′, ..., y(n)

)
= 0

if and only if

G[n]E|E=0 = 0

which means that the action of the nth extension of G on E is zero when the

original equation is satisfied.

1.2.2 Hidden symmetries

Some equations do not admit the required number of point symmetries to

enable reduction to quadratures. In an attempt to overcome this limitation,

various extensions of the classical Lie approach have been devised. One such

extension is due to the observance of the so-called hidden symmetries - point

symmetries that arise unexpectedly due to decreasing and/or increasing the

order of a differential equation (Edelstein et al 2001).

Hidden symmetries have been shown to lead to the solutions of a num-

ber of equations that do not possess sufficient Lie point symmetries with the

appropriate Lie algebras. Increasing the order of an equation can give rise to

Type I hidden symmetries and the reduction of order can give rise to Type II

hidden symmetries (Abraham-Shrauner 1993).
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1.2.3 Reduction of order

If a differential equation

E
(
x, y, ......., y(n)

)
= 0 (1.1)

has a symmetry

G = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

we can obtain an equation of order (n − 1) in a systematic manner. This is

achieved by using the zeroth order and first order differential invariants which

are two characteristics associated with G[1]. The characteristics are obtained

by solving the following system of ordinary differential equations

dx

ξ
=

dy

η
=

dy′

η′ − y′ξ′

If we integrate the equation involving the first two terms we obtain the charac-

teristic u = f(x, y) and the equation involving the first and the third (equally

the second and the third) terms gives the characteristic v = g(x, y, y′). Since

Gu = 0 we call u the zeroth order invariant. Similarly v is called the first order

differential invariant since G[1]v = 0. A key feature of the Lie method is that

all higher derivatives can be expressed in terms of u, v and the derivatives of

v with respect to u. As a result equation (1.1) reduces to

F
(
u, v, ....., v(n−1)

)
= 0

i.e. it reduces to an equation of order one less than the original. If the reduced

equation has a symmetry, the order of the equation can be reduced again. The
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process can be repeated until the original differential equation is reduced to an

algebraic equation. This reduction of order reduces an nth order equation to a

set of n first order equations provided there is a sufficient number of symmetries

with the appropriate Lie algebra.

For further information we refer the reader to Bluman and Anco (2002),

Bluman and Kemei (1989), Cantwell (2002), Dresner (1999), Hydon (2000) and

Olver (1986).

1.3 Noether symmetries and integrals

If a second order ordinary differential equation

y′′ = N(x, y, y′) (1.2)

has a Lagrangian L(x, y, y′) then (1.2) is equivalent to the Euler-Lagrange

equation

d

dx

(
∂L
∂y′

)
− ∂L

∂y
= 0

The determining equation for a Noether point symmetry

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(1.3)

corresponding to a Lagrangian L(x, y, y′) of (1.2) is

X [1]L+

(
dξ

dx

)
L =

dF

dx

where F = F (x, y) is a gauge function. It is also known that if there is a

Noether symmetry corresponding to a Lagrangian of an equation (1.2), then
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(1.2) can be reduced to quadratures. This is a critical advantage of Noether

point symmetries as emphasised by Wafo Soh and Mahomed (2000). The

Noether first integral IN associated with the Noether point symmetry (1.3) is

given by

IN = ξ(x, y)L+ (η(x, y)− y′ξ(x, y))Ly′ − F (1.4)

in terms of L and F .

1.4 Invariant solutions

In general, if an nth order ordinary differential equation

F
(
x, y, y′, ......, y(n)

)
= 0 (1.5)

where

y(k) =
d(k)y

dx(k)
, k = 1, 2, 3, ......., n

admits a one parameter Lie group of point transformations with the infinites-

imal generator

G = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(1.6)

then the function y = φ(x) is an invariant solution of (1.5) resulting from its

invariance under the point symmetry (1.6) if and only if (Bluman 1990, Bluman

and Anco 2002):

1. y = φ(x) is a solution of the first order ordinary differential equation

y′ =
η(x, y)

ξ(x, y)

10



2. y = φ(x) is a solution of (1.5).

These invariant solutions, where they exist, correspond to singular solutions of

the original equation.
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Chapter 2

First integrals for charged

perfect fluid distributions

2.1 Introduction

Solutions of the Einstein-Maxwell system of equations are important in rela-

tivistic astrophysics as they may be used to describe charged compact objects

with strong gravitational fields such as dense neutron stars. Several recent

treatments, including the works of Ivanov (2002) and Sharma et al (2001),

demonstrate that the presence of the electromagnetic field affects the values of

redshifts, luminosities and maximum mass of a compact relativistic star. The

electromagnetic field cannot be ignored when considering the gravitational evo-

lution of stars composed of quark matter as pointed out by Mak and Harko
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(2004) and Komathiraj and Maharaj (2007). Therefore exact models describ-

ing the formation and evolution of charged stellar objects, within the context

of full general relativity, are necessary. Electromagnetic fields play a role in

gravitational collapse, the formation of naked singularities, and the collapse

of charged shells of matter onto existing black holes (as indicated by Lasky

and Lun (2007a, 2007b)). Significant electric fields are also present in phases

of intense dynamical activity, in collapsing configurations, with time scales of

the order of the hydrostatic time scale for which the usual stable equilibrium

configuration assumptions are not reliable (as shown in the treatments of Di

Prisco et al (2007) and Herrera et al (2009)). It is interesting to note that

Maxwell’s equations play a role in several other scenarios, including the evo-

lution of cosmological models in higher dimensions. De Felice and Ringeval

(2009) considered braneworld models, exhibiting Poincare symmetry in extra-

dimensions, which admit wormhole configurations.

Spherical symmetry and a shear-free matter distribution are simplifying

assumptions usually made when seeking exact solutions to the Einstein field

equations with neutral matter. The field equations may then be reduced to

a single partial differential equation. What is interesting about this equa-

tion is that it can be treated as an ordinary differential equation. A general

class of solutions was first found by Kustaanheimo and Qvist (1948). Com-

prehensive treatments of the uncharged case are provided by Srivastava (1987)

and Sussman (1989). The generalisation to include the electromagnetic field

13



is easily performed and is described by the Einstein-Maxwell system. The

field equations are again reducible to a single partial differential equation, now

containing a term corresponding to charge. A review of known charged solu-

tions, admitting a Friedmann limit, is contained in the treatment of Krasinski

(1997). A detailed investigation of the mathematical and physical features

of the Einstein-Maxwell system has been performed by Srivastava (1992) and

Sussman (1988a, 1988b) respectively.

The objective of this chapter is to investigate the integrability proper-

ties of the governing partial differential equation that contains a term corre-

sponding to charge, for shear-free fluids. This investigation is performed using

an elementary approach suggested by Srivastava (1987). In §2.2 we reduce

the Einstein-Maxwell field equations, generalising the transformation due to

Faulkes (1969), to a single nonlinear second order partial differential equation

that governs the behaviour of charged fluids. As in the uncharged case, this

equation can be treated as an ordinary differential equation. In §2.3 we de-

rive a first integral of the governing equation by generalising the technique of

Srivastava (1987) first used for uncharged fluids. This first integral is subject

to two integrability conditions expressed as nonlinear integral equations. We

transform the integrability conditions, in §2.4, into a new system of differential

equations which can be integrated in terms of quadratures. In §2.5 we com-

prehensively investigate the nature of the factors of the quartic arising in the

quadrature. Finally, in §2.6 we discuss the results obtained.
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2.2 Field equations

We consider the shear-free motion of a spherically symmetric perfect fluid in

the presence of the electromagnetic field. We choose a coordinate system xi =

(t, r, θ, φ) which is both comoving and isotropic. In this coordinate system the

metric can be written as

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]

where ν and λ are the gravitational potentials. We are investigating the gen-

eral case of a self-gravitating fluid in the presence of the electromagnetic field

without placing arbitrary restrictions on the potentials. For this model the

Einstein equations are supplemented with Maxwell equations. The Einstein

field equations for a charged perfect fluid can be written as the system

ρ = 3
λ2

t

e2ν
− 1

e2λ

(
2λrr + λ2

r +
4λr

r

)
− E2

r4e4λ
(2.1a)

p =
1

e2ν

(−3λ2
t − 2λtt + 2νtλt

)
+

1

e2λ

(
λ2

r + 2νrλr +
2νr

r
+

2λr

r

)

+
E2

r4e4λ
(2.1b)

p =
1

e2ν

(−3λ2
t − 2λtt + 2νtλt

)
+

1

e2λ

(
νrr + ν2

r +
νr

r
+

λr

r
+ λrr

)

− E2

r4e4λ
(2.1c)

0 = νrλt − λtr (2.1d)

Maxwell’s equations yield

E = r2eλ−νΦr, Er = σr2e3λ (2.2)
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In the above ρ is the energy density and p is the isotropic pressure which

are measured relative to the four-velocity ua = (e−ν , 0, 0, 0). Subscripts refer

to partial derivatives with respect to that variable. The quantity E = E(r)

is an arbitrary constant of integration and σ is the proper charge density of

the fluid. We interpret E as the total charge contained within the sphere

of radius r centred around the origin of the coordinate system. Note that

Φr = F10 is the only nonzero component of the electromagnetic field tensor

Fab = φb;a − φa;b where φa = (Φ(t, r), 0, 0, 0). The Einstein-Maxwell system

(2.1)-(2.2) is a coupled system of equations in the variables ρ, p, E, σ, ν and

λ.

The system of partial differential equations (2.1) can be simplified to

produce an underlying nonlinear second order equation. Equation (2.1d) can

be written as

νr = (ln λt)r

Then (2.1b) and (2.1c) imply

[
eλ

(
λrr − λ2

r −
λr

r

)
+

2E2e−λ

r4

]

t

= 0

and the potential ν has been eliminated. The Einstein field equations (2.1) can
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therefore be written in the equivalent form

ρ = 3e2h − e−2λ

(
2λrr + λ2

r +
4λr

r

)
− E2

r4e4λ
(2.3a)

p =
1

λte3λ

[
eλ

(
λ2

r +
2λr

r

)
− e3λ+2h − E2

r4eλ

]

t

(2.3b)

eν = λte
−h (2.3c)

eλ

(
λrr − λ2

r −
λr

r

)
= −F̃ − 2E2

r4eλ
(2.3d)

for a charged relativistic fluid. In the above h = h(t) and F̃ = F̃ (r) are

arbitrary constants of integration. Equation (2.3d) is the condition of pressure

isotropy generalised to include the electric field. To find an exact solution of

the field equations, we need to specify the functions h, F̃ and E and solve

equation (2.3d) for λ. We can then compute the quantities ρ and p from (2.3a)

and (2.3b), and σ follows from (2.2).

It is possible to write (2.3d) in a simpler form by eliminating the expo-

nential factor eλ. We use the transformation, first introduced by Faulkes (1969)

for neutral fluids, which has the adapted form

x = r2

y = e−λ

f(x) =
F̃

4r2

g(x) =
E2

2r6

Then (2.3d) becomes

yxx = f(x)y2 + g(x)y3 (2.4)
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which is the fundamental equation governing the behaviour of a shear-free

charged fluid. Observe that (2.4) is a nonlinear partial differential equation

since y = y(t, x). When g = 0 then yxx = f(x)y2 for a neutral fluid which has

been studied by Maharaj et al (1996) and others.

2.3 A charged first integral

It would appear that we need to specify the functions f(x) and g(x) to integrate

(2.4). However it is possible ab inito to generate a first integral without choos-

ing f(x) and g(x) if we generalise a technique first suggested by Srivastava

(1987), and extended by Maharaj et al (1996). The first integral generated

is subject to a system of integral equations in f(x) and g(x) which can be

rewritten as differential equations.

Rather than choose f(x) and g(x) we seek general conditions that reduce

the order of (2.4) to produce a first order differential equation. We can formally

integrate (2.4) to obtain

yx =

∫
f(x)y2dx +

∫
g(x)y3dx (2.5)

We consider
∫

fy2dx, the first term of (2.5) and then integrate by parts.

We let

u = y2, dv = fdx

18



then

du = 2yyxdx, v =

∫
fdx

For convenience we use the notation

∫
fdx = fI

and hence
∫

fy2dx = fIy
2 − 2

∫
fIyyxdx (2.6)

We also consider
∫

gy3dx, the second term of (2.5). Integrating by parts, we

let

u = y3, dv = gdx

then

du = 3y2yxdx, v =

∫
gdx = gI

Hence
∫

gy3dx = gIy
3 − 3

∫
gIy

2yxdx (2.7)

Using (2.6) and (2.7) in (2.5) yields

yx = fIy
2 + gIy

3 − 2

∫
fIyyxdx− 3

∫
gIy

2yxdx (2.8)

We now consider
∫

fIyyxdx, the integral in the third term of (2.8). We let

u = yyx, dv = fIdx

and use (2.4) to obtain

du = (yxyx + yyxx)dx = (y2
x + fy3 + gy4)dx, v =

∫
fIdx = fII
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Consequently we get

∫
fIyyxdx = fIIyyx −

∫
fIIy

2
xdx−

∫
ffIIy

3dx−
∫

gfIIy
4dx (2.9)

We then substitute (2.9) in (2.8) to obtain

yx = fIy
2 + gIy

3 − 2fIIyyx + 2

∫
fIIy

2
xdx + 2

∫
ffIIy

3dx

+2

∫
gfIIy

4dx− 3

∫
gIy

2yxdx (2.10)

On applying integration by parts on the fourth term of (2.10), we let

u = y2
x, dv = fIIdx

then

du = 2yxyxxdx =
(
2fy2yx + 2gy3yx

)
dx, v =

∫
fIIdx = fIII

Hence

∫
fIIy

2
xdx = fIIIy

2
x − 2

∫
ffIIIy

2yxdx− 2

∫
gfIIIy

3yxdx (2.11)

We now consider
∫

ffIIy
3dx, the integral in the fifth term of (2.10). We let

u = y3, dv = ffIIdx

then

du = 3y2yxdx, v =

∫
(ffII) dx = (ffII)I

and hence
∫

ffIIy
3dx = (ffII)I y3 − 3

∫
(ffII)I y2yxdx (2.12)
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Similarly the sixth term in (2.10) yields

∫
gfIIy

4dx = (gfII)I y4 − 4

∫
(gfII)I y3yxdx (2.13)

On substituting (2.11), (2.12) and (2.13) in (2.10) we obtain

yx = fIy
2 + gIy

3 − 2fIIyyx + 2fIIIy
2
x − 4

∫
ffIIIy

2yxdx− 4

∫
gfIIIy

3yxdx

+2 (ffII)I y3 − 6

∫
(ffII)I y2yxdx + 2 (gfII)I y4 − 8

∫
(gfII)I y3yxdx

−3

∫
gIy

2yxdx

= fIy
2 + gIy

3 − 2fIIyyx + 2fIIIy
2
x + 2 (ffII)I y3 + 2 (gfII)I y4 −

∫
{[4ffIII

+6 (ffII)I + 3gI ] y
2yx

}
dx−

∫ {
[4gfIII + 8 (gfII)I ] y

3yx

}
dx

= fIy
2 + gIy

3 − 2fIIyyx + 2fIIIy
2
x + 2 (ffII)I y3 + 2 (gfII)I y4 −

∫
{[4ffIII

+6 (ffII)I + 3gI ]

(
1

3

dy3

dx

)}
dx−

∫ {
[4gfIII + 8 (gfII)I ]

(
1

4

dy4

dx

)}
dx

= fIy
2 + gIy

3 − 2fIIyyx + 2fIIIy
2
x + 2 (ffII)I y3 + 2 (gfII)I y4 −

∫ {[
4

3
ffIII

+2 (ffII)I + gI ]

(
dy3

dx

)}
dx−

∫ {
[gfIII + 2 (gfII)I ]

(
dy4

dx

)}
dx (2.14)

For a meaningful result the integrals on the right hand side of (2.14) must be

eliminated.

We note that these integrals can be determined if 2ffIII +3 (ffII)I + 3
2
gI

and gfIII +2 (gfII)I are constants. This observation yields the following result

τ0(t) = −yx + fIy
2 + gIy

3 − 2fIIyyx + 2fIIIy
2
x + 2[(ffII)I −

1

3
K0]y

3

+[2 (gfII)I −K1]y
4 (2.15)
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subject to the integrability conditions

K0 = 2ffIII + 3 (ffII)I +
3

2
gI (2.16a)

K1 = gfIII + 2 (gfII)I (2.16b)

where K0 and K1 are constants, and the quantity τ0(t) is an arbitrary function

of integration. We have therefore established that a first integral of the field

equation (2.4) is given by (2.15) subject to conditions (2.16) which are integral

equations. We emphasise that we generated the first integral (2.15) without

choosing forms for the functions f(x) and g(x). The forms of f(x) and g(x)

are constrained by the integrability conditions (2.16).

The integral equations (2.16) may be simplified. On setting

fIII = a (2.17)

we can rewrite (2.16b) as

ga + 2 (gax)I = K1

which has the solution

g = g0a
−3 (2.18)

where a = a(x) and g0 is an arbitrary constant. Equation (2.16a) now becomes

4

3
axxxa + 2 (axxxax)I +

(
g0a

−3
)

I
= K0

or, if we want a purely differential equation,

aaxxxx +
5

2
axaxxx = −3

4
g0a

−3 (2.19)
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We have therefore established that the integrability conditions (2.16) can be

transformed into (2.18) and the fourth order ordinary differential equation

(2.19). Using (2.16) , (2.17) and (2.18) we rewrite the first integral (2.15) of

(2.4) as

τ0(t) = yx − axxy
2 + 2axyyx − 2ay2

x +
4

3
aaxxxy

3 + g0a
−2y4 (2.20)

subject to condition (2.19). A solution of (2.19) will give a, and then f and g

will be found from (2.17) and (2.18) respectively. A full analysis of this case

has been reported in Kweyama (2010a).

2.4 Integrability conditions

It is not easy to solve the nonlinear integral equations (2.16). However we can

transform these equations into an equivalent system comprising a first order

and a fourth order ordinary differential equations which are more convenient

to work with.

We let

fIII = F

so that fII = Fx, fI = Fxx and f = Fxxx. Then it is possible to rewrite (2.16b)

as

(gF)x + 2gFx = 0 (2.21)

Note that the integral equation (2.16b) has been transformed to a first order
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differential equation in F . Equation (2.21) is integrable and we obtain

g = K0F−3 (2.22)

where F = F(x) and K0 is an arbitrary constant.

Similarly we can eliminate g in (2.16a), with the help of (2.22), to get

the result

FFxxxx +
5

2
FxFxxx = −3

4
K0F−3 (2.23)

Therefore the integral equation (2.16a) has been transformed to a fourth order

differential equation in F . Equation (2.23) can be integrated to yield

Fxxx = −3

4
K0F−(5/2)

∫
F−(3/2)dx +K1F−(5/2) (2.24)

where K1 is an arbitrary constant of integration. Observe that (2.24) can be

written in the form

(Fxx)x −
1

2

(F2
x

)
x

= K1F−(3/2) − 3

4
K0F−(3/2)

∫
F−(3/2)dx

which gives

FFxx − 1

2
F2

x = −2K2 +K1

∫
F−(3/2)dx− 3

8
K0

(∫
F−(3/2)dx

)2

(2.25)

where −2K2 is a constant. Equation (2.25) can be written in the form

2
(F1/2

)
xx

= −2K2F−(3/2) +K1F−(3/2)

∫
F−(3/2)dx

−3

8
K0F−(3/2)

(∫
F−(3/2)dx

)2

which is integrated to give

2
(F1/2

)
x

= −K3 − 2K2

∫
F−(3/2)dx +

1

2
K1

(∫
F−(3/2)dx

)2

−1

8
K0

(∫
F−(3/2)dx

)3

(2.26)
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where K3 is a constant. We now rewrite (2.26) as

(F−1
)

x
= K3F−(3/2) + 2K2F−(3/2)

∫
F−(3/2)dx

−1

2
K1F−(3/2)

(∫
F−(3/2)dx

)2

+
1

8
K0F−(3/2)

(∫
F−(3/2)dx

)3

On integrating this first order differential equation we obtain

F−1 = K4 +K3

∫
F−(3/2)dx +K2

(∫
F−(3/2)dx

)2

−1

6
K1

(∫
F−(3/2)dx

)3

+
1

32
K0

(∫
F−(3/2)dx

)4

(2.27)

where K4 is an arbitrary constant.

We can rewrite (2.27) in a simpler form if we let

u =

∫
F−(3/2)dx (2.28)

so that

ux =
(F−1

)3/2

Then we can write (2.27) as

ux =

(
K4 +K3u +K2u

2 − 1

6
K1u

3 +
1

32
K0u

4

)3/2

which is a first order equation in u. The equivalent integral representation is

x− x0 =

∫
du

(K4 +K3u +K2u2 − (1/6)K1u3 + (1/32)K0u4)3/2
(2.29)

where x0 is a constant. The quadrature (2.29) can be evaluated in terms

of elliptic integrals. We can summarise our result as follows: the first integral

(2.20), with g = K0F−3, f = Fxxx and F given by (2.29) via (2.28), represents

a particular class of solutions of (2.4).
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To obtain solutions in closed form, satisfying the integrability conditions

(2.16), we need to evaluate the integral (2.29). Particular solutions in terms

of elementary functions are admitted. In general the solution will be given

in terms of special functions. We can express the solutions to (2.16) in the

parametric form as follows

f(x) = Fxxx (2.30a)

g(x) = K0F−3 (2.30b)

ux = F−3/2 = [G′(u)]−1 (2.30c)

x− x0 = G(u) (2.30d)

where we have set

G(u) =

∫
du

(K4 +K3u +K2u2 − (1/6)K1u3 + (1/32)K0u4)3/2
(2.31)

If we set g = 0 (which forces K0 = 0) then the charge vanishes and the

system (2.30) becomes

f(x) = Fxxx (2.32a)

ux = F−3/2 = [G′(u)]−1 (2.32b)

x− x0 = G(u) (2.32c)

where

G(u) =

∫
du

(K4 +K3u +K2u2 − (1/6)K1u3)3/2

This corresponds to the results found by Maharaj et al (1996) for a neutral

shear-free gravitating fluid. Thus their first integral is contained in our class
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of charged models (2.30)-(2.31).

2.5 Particular solutions

Nine cases arise from the solution (2.30)–(2.31) depending on the nature of the

factors of the polynomial K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4.

2.5.1 Case I: One order-four linear factor

If K4 + K3u + K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 has one repeated linear factor

then we have

K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 = (a + bu)4, b 6= 0

We evaluate the integral in (2.31) to obtain

G(u) = − 1

5b
(a + bu)−5 (2.33a)

f(x) =
24

75
(5b)4/5(x− x0)

−(11/5) (2.33b)

g(x) = K0(5b)
−(12/5)(x− x0)

−(12/5) (2.33c)
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In this case it is possible to invert the integral (2.29) and then write u = u(x).

The first integral (2.20) has the form

τ0(t) = −yx − 4

15
(5b)4/5 (x− x0)

−(6/5) y2 − 5

7
K0(5b)

−(12/5) (x− x0)
−(7/5) y3

−8

3
(5b)4/5 (x− x0)

−(1/5) yyx +
10

3
(5b)4/5 (x− x0)

4/5 y2
x

−2

[
3856

10815
(5b)8/5 (x− x0)

−(7/5) − 15

14
K0(5b) (x− x0)

−(7/5)

]
y3

−5

3
K0(5b)

−(8/5) (x− x0)
−(8/5) y4 (2.34)

where we have used the functional forms in (2.33). The first integral (2.34)

corresponds to a shear-free spherically symmetric charged fluid which does not

have an uncharged limit since K0 6= 0. If K0 = 0 then the polynomial becomes

cubic which is a contradiction. The charged integral (2.34) (E 6= 0,K0 6= 0, b 6=

0) is a new solution to the Einstein-Maxwell field equations.

2.5.2 Case II: One order-three linear factor

If K4 + K3u + K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 has two linear factors, one of

which is not repeated, then we have

K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 = (a + bu) (u + c)3

We use the computer package Mathematica (Wolfram 2007) to determine the

integral in (2.31) to obtain

G(u) =
2
√

(a + bu)(u + c)

35(a− bc)5

[
35b4

a + bu
+

93b3

u + c
− 29b2(a− bc)

(u + c)2
+

13b(a− bc)2

(u + c)3

− 5(a− bc)3

(u + c)4

]
(2.35)
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expressed completely in terms of elementary functions. In this case, if g = 0,

K0 = 0 and b = 0, then (2.35) becomes

G(u) = a−(3/2)

(
−2

7

)
(u + c)−(7/2)

and hence using (2.32) we find

f(x) = a2/7

(
48

343

)(
−7

2

)6/7

(x− x0)
−(15/7) (2.36)

Note that (2.36) is related to the result obtained by Maharaj et al (1996).

Again setting g = 0, K1 = 0, in (2.15) we get

ψ0(t) = −yx + fIy
2 + gIy

3 − 2fIIyyx + 2fIIIy
2
x + 2[(ffII)I −

1

3
K0]y

3

which was the first integral for uncharged matter found by Maharaj et al (1996).

Also observe that if g = 0, K1 = 0, f(x) = (ax + b)−(15/7) then (2.15) yields

φ0(t) = −6yx − 21

4a
(ax + b)−8/7y2 − 3

2

(
7

a

)2

(ax + b)−(1/7)yyx

+
1

4

(
7

a

)3

(ax + b)6/7y2
x −

1

6

(
7

a

)3

(ax + b)−(9/7)y3 (2.37)

which was found by Srivastava (1987). Also with g = 0, K1 = 0, f(x) = x−(15/7)

in (2.15) (or if we set a = 1, b = 0 in (2.37)) we have

ϕ0(t) = −6yx − 21

4
x−(8/7)y2 − 3

2
· 72x−(1/7)yyx +

1

4
· 73x6/7y2

x −
1

6
· 73x−(9/7)y3

which was established by Stephani (1983). Therefore the first integral (2.20)

is a charged generalisation of the particular Maharaj et al (1996), Srivastava

(1987) and Stephani (1983) neutral models.
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2.5.3 Case III: One order-two linear factor; one order-

one quadratic factor

If K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 has two factors, one linear and

repeated and the other is irreducible to linear factors, then we have

K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 =

(
a + bu + cu2

)
(u + d)2 ,

b2 − 4ac < 0

The function (2.31) is integrated to obtain

G(u) = −
{

1

(a− bd + cd2) u2
+

5(b− 2cd)

2(a− bd + cd2)u

−15(b− 2cd)4 − 62c(b− 2cd)2(a− bd + cd2) + 24c2(a− bd + cd2)2

2(a− bd + cd2) [4c(a− bd + cd2)− (b− 2cd)2]

−c(b− 2cd) [15(b− 2cd)2 − 52c(a− bd + cd2)] u

2(a− bd + cd2)∆

}
×

1

2
√

(a− bd + cd2) + (b− 2cd)u + cu2

+
15(b− 2cd)2 − 12c(a− bd + cd2)

8(a− bd + cd2)3
×

∫
du

u
√

a− bd + cd2 + (b− 2cd)u + cu2

where ∆ = 4(a − bd + cd2)c − (b − 2cd)2 and the integral on the right hand

side can be expressed in terms of elementary functions. The exact form of the

integral depends on the signs of a−bd+cd2 and ∆ (see Gradshteyn and Ryzhik

(1980), equations 2.266 and 2.269.6).
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2.5.4 Case IV: One order-two linear factor; two order-

one linear factors

With one repeated and two non-repeated linear factors we have

K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 = (a + bu)(cu + d)(u + e)2

In this case the expression for the integral in (2.31) can be evaluated with

the help of the computer package Mathematica (Wolfram 2007). The resulting

expression is expressible in terms of only elementary functions. This expression

is very lengthy and not illuminating, and is therefore not included in this work.

2.5.5 Case V: Two order-two linear factors

If K4 + K3u + K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 has two linear factors each of

which is repeated, then we have

K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 = (a + bu)2(u + c)2

The integral in (2.31) may be easily determined so that

G(u) =
1

(a− bc)5

[
6b2 ln

u + c

a + bu
+

3b2(a− bc)

a + bu
+

b2(a− bc)2

2(a + bu)2
+

3b(a− bc)

u + c

− (a− bc)2

2(u + c)2

]

Thus for the case of two order-two linear factors the integral can be expressed

completely in terms of elementary functions.
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2.5.6 Case VI: No repeated linear factors

If K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 has no repeated linear factors,

then we have

K4+K3u+K2u
2−(1/6)K1u

3+(1/32)K0u
4 = e(a+u)(b+u)(c+u)(d+u), e 6= 0

In this case we obtain, in terms of elementary functions and elliptic integrals,

the result (Dieckmann 2010)

G(u) =
2e−(3/2)

(a− b)
√

(a + u)(b + u)(c + u)(d + u)

[
(a + u)(b + u)

(b− c)(a− d)

[
2

(b− d)2

1

(b− d)(c− d)
+

1

(a− c)(c− d)+

]
+

b + u

a− c

[
2(d + u)

(a− b)(a− d)2

1

(b− c)(b− d)
− 1

(a− d)(b− d)

]
− 1

(b− c)(b− d)

]
− 4e−(3/2)

(a− b)
√

b− d
×

[
1

(a− d)2(c− d)
√

a− c
+

√
a− c

(a− b)(b− c)2(b− d)

+
a− b− c + d

(c− d)2(a− c)3/2(b− c)

]
E(α, p)

+
2e−(3/2)

(a− c)3/2(b− d)3/2(b− c)(a− d)
×

[
2(a + b− c− d)2

(b− c)(a− d)
+

(a− b− c + d)2

(a− b)(c− d)

]
F (α, p),

(0 < d < c < b < a) (2.38)

where we have let

α = arcsin

√
(a− c)(d + u)

(a− d)(c + u)
, p =

(b− c)(a− d)

(a− c)(b− d)

In (2.38), F (α, p) is the elliptic integral of the first kind and E(α, p) is the

elliptic integral of the second kind. This result is similar to one of the results

obtained by Maharaj et al (1996). However their uncharged model is not
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regainable from the expression above as the polynomial here is necessarily

quartic.

2.5.7 Case VII: One order-two quadratic factor

If K4 + K3u + K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 has one repeated quadratic

irreducible factor, then we have

K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 = (a + bu + cu2)2

In this case we obtain

G(u) =
b + 2cu

4ac− b2

[
1

2(a + bu + cu2)2
+

3c

(4ac− b2)(a + bu + cu2)

]

+
6c2

(4ac− b2)2

∫
du

a + bu + cu2

which can be expressed in terms of only elementary functions. The exact form

of the integral depends on the sign of 4ac − b2 (see Gradshteyn and Ryzhik

(1980), equations 2.172 and 2.173.2).

2.5.8 Case VIII: Two order-one quadratic factors

With two non-repeated quadratic factors we have

K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 = (a + bu + cu2)(d + eu + u2)

In this case the expression for the integral in (2.31), using the computer package

Mathematica (Wolfram 2007), is obtainable but is not included in this work as
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it is very lengthy. It may be expressed in terms of elementary functions and

elliptic integrals.

2.5.9 Case IX: One order-one cubic factor

If K4 +K3u+K2u
2− (1/6)K1u

3 +(1/32)K0u
4 has one irreducible cubic factor,

then we have

K4 +K3u +K2u
2 − (1/6)K1u

3 + (1/32)K0u
4 = (a + bu + cu2 + du3)(e + u)

The integral in (2.31) can again be found with the help of the computer package

Mathematica (Wolfram 2007). It is given in terms of elementary functions,

elliptic integrals and special functions. However it is so lengthy that it is also

not included in this work.

2.6 Discussion

In this chapter we have modelled the behaviour of shear-free charged fluids,

and reduced the solution of the Einstein-Maxwell system of field equations to

a single nonlinear partial differential equation. By treating this equation as

an ordinary differential equation, a first integral was found using elementary

methods. It is remarkable to note that the first integral is obtainable without

specifying the arbitrary functions contained in the governing equation. The

first integral is subject to a system of two integral equations which were replaced
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by a system of two differential equations which can be integrated up to a

quadrature. Consequently we have found a new class of parametric solutions

to the Einstein-Maxwell system for a charged gravitating shear-free fluid. The

new solution is given by the parametric equations (2.30)-(2.31).

A detailed analysis of the factors of the quartic arising in the quadrature

was performed. Two cases of interest arise. Firstly we are in a position to

explicitly invert the quadrature when there is one repeated linear factor and

explicitly write the first integral. Then the model has to be necessarily charged.

We believe that this is a new result. Secondly we can explicitly invert the

quadrature when there is one order-three linear factor. This case contains

that of vanishing charge and we regain the results of Maharaj et al (1996),

Srivastava (1987) and Stephani (1983).

A comprehensive mathematical analysis of the integrability properties of

(2.4) using the symmetry properties of the equation may provide further solu-

tions and insights. For example the treatment of Halburd (1999), for the un-

charged shear-free case, established an equivalence with the generalised Chazy

equation and provided a new class of integrable equations. The symmetry

analysis is presented in the next chapter.
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Chapter 3

Noether and Lie symmetries for

charged perfect fluids

3.1 Introduction

The Einstein-Maxwell system of equations plays a central role in relativistic

astrophysics when describing spherically symmetric gravitational fields in static

manifolds. In these situations we are modelling charged compact objects with

strong gravitational fields such as dense relativistic stars. Recent investigations

indicate that the electromagnetic field significantly affects physical quantities in

relativistic stellar systems: equations of state, redshifts, luminosities, stability

and maximum masses of compact relativistic stars. The presence of electric

charge is a necessary ingredient in the structure and gravitational evolution
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of stars composed of quark matter. Other applications include the role of

electromagnetic fields in gravitational collapse, formation of black holes and the

existence of naked singularities. Electric fields cannot be ignored in spherical

gravitational collapse with phases of intense dynamical activity and particle

interaction. Maxwell’s equations also play an important role in cosmological

models in higher dimensions, brane world models and wormhole configurations.

For a sample of these applications the reader is referred to Sharma et al (2001),

Ivanov (2002), Mak and Harko (2004), Lasky and Lun (2007a), Thirukkanesh

and Maharaj (2008), Herrera et al (2009) and De Felice and Ringeval (2009).

When solving the Einstein field equations with neutral matter distribu-

tions, we often make the assumption that the spacetime is shear-free and spher-

ically symmetric. Kustaanheimo and Qvist (1948) were the first to present a

general class of solutions. The generalisation to include the presence of the

electromagnetic field may be easily achieved. The field equations are reducible

to a single partial differential equation. A review of known charged solutions,

with a Friedmann limit, is given by Krasinski (1997). Srivastava (1987) and

Sussmann (1988a, 1988b) undertook a detailed study of the mathematical and

physical features of the Einstein-Maxwell system in spherical symmetry. Wafo

Soh and Mahomed (2000) used symmetry methods to systematically study

the underlying partial differential equation. They showed that all previously

known solutions can be related to a Noether point symmetry

The main aim of this chapter is to study the integrability properties of
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the underlying partial differential equation for the Einstein-Maxwell system

using symmetry methods. Both Noether and Lie point symmetries of the

governing equation are considered. Noether symmetries have the interesting

property of being associated with physically relevant conservation laws in a

direct manner via the well-known Noether theorem. The Lie symmetries are

more general, providing a larger set of symmetry generators in general, but do

not guarantee integrability and reduction to quadratures in a straight forward

manner. In §3.2, we give the single nonlinear second order partial differential

equation that governs the behaviour of charged fluids and the first integral

of the governing equation obtained earlier. This first integral is subject to

two integrability conditions expressed as nonlinear integral equations which, in

chapter 2, were transformed into a fourth order differential equation. In §3.3,

we analyse the governing equation for Noether symmetries via its Lagrangian

and this analysis yields a general Noether first integral for this equation. We

then establish the relationship between the Noether first integral and the first

integral obtained earlier using an ad hoc approach. In §3.4, we undertake a

comprehensive Lie symmetry analysis of the governing equation to investigate

the conditions under which it can be reduced to quadratures. We show how

the Noether results are a subset of the Lie analysis results. Lastly, in §3.5,

we discuss the results obtained and relate some invariant solutions to known

results.
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3.2 Background

We briefly summarise the relevant equations required for this chapter without

rederiving the results in chapter 2. We are analysing the shear-free motion of

a fluid distribution in the presence of an electric field. It is possible to choose

coordinates xi = (t, r, θ, φ) such that the line element can be written in the

form

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]

which is simultaneously comoving and isotropic. Since an electromagnetic field

is present, the Einstein field equations are supplemented with Maxwell’s equa-

tions to describe a self-gravitating charged fluid.

After considerable simplification the Einstein-Maxwell system produces

the differential equation

y′′ = f(x)y2 + g(x)y3 (3.1)

where primes denote differentiation with respect to the variable x and y =

y(t, x). Equation (3.1) is the fundamental nonlinear partial differential equa-

tion which determines the behaviour of the self-gravitating charged fluid in

general relativity. However, we can treat it as an ordinary differential equation

as only derivatives with respect to x appear. If g = 0 then we regain a neu-

tral fluid which has been studied by Maharaj et al (1996) and Wafo Soh and

Mahomed (1999), amongst others.

It is possible to find a first integral of (3.1) without choosing explicit
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forms of the functions f(x) and g(x). We use integration by parts, an approach

adopted by Maharaj et al (1996) in investigating the integrability properties

of the field equation y′′ = f(x)y2 of a neutral spherically symmetric shear-free

fluid. We can integrate (3.1) by parts to obtain

y′ = fIy
2 + gIy

3 − 2fIIyy′ + 2fIIIy
′2 + 2 (ffII)I y3 + 2 (gfII)I y4

−K0y
3 −K1y

4 + τ0(t) (3.2)

The result (3.2) is subject to the integrability conditions

K0 =
4

3
ffIII + 2 (ffII)I + gI (3.3a)

K1 = gfIII + 2 (gfII)I (3.3b)

where K0 and K1 are constants and τ0(t) is an arbitrary function of integration.

On setting fIII = a we can solve (3.3b) to get

g = g0a
−3 (3.4)

where a = a(x) and g0 is an arbitrary constant. Equation (3.3a) can now be

written as a purely differential equation,

aa(iv) +
5

2
a′a′′′ = −3

4
g0a

−3 (3.5)

We have therefore established that the integrability conditions (3.3) can be

transformed into (3.4) and the fourth order ordinary differential equation (3.5).

We rewrite the first integral (3.2) of (3.1) as

τ0(t) = y′ − a′′y2 + 2a′yy′ − 2ay′2 +
4

3
aa′′′y3 + g0a

−2y4 (3.6)

subject to condition (3.5). A solution of (3.5) will give a, and then f and g

follow.
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3.3 Noether symmetries and integration

Given that Noether’s theorem generates first integrals in a direct manner, we

now investigate (3.1) for Noether symmetries in order to generate first integrals.

For equation (3.1) a Lagrangian is

L =
1

2
y′2 +

1

3
f(x)y3 +

1

4
g(x)y4 (3.7)

The Lagrangian L admits the Noether point symmetry

G = a
∂

∂x
+ (by + c)

∂

∂y

provided

b =
1

2
a′ (3.8a)

g = g1a
−3 (3.8b)

f = a−5/2

(
f1 − 3g1

∫
ca−3/2dx

)
(3.8c)

a′′′ = 4a−5/2c

(
f1 − 3g1

∫
ca−3/2dx

)
(3.8d)

c = C0 + C1x (3.8e)

F =
1

4
a′′y2 + c′y (3.8f)

where a = a(x), b = b(x), c = c(x) and f1 and g1 are constants. From (3.8c)

and (3.8d) we have

f =
a′′′

4c

When we differentiate (3.8d) once with respect to x we obtain

caa(iv) +
5

2
ca′a′′′ − ac′a′′′ = −12g1c

3a−3 (3.9)
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Applying the transformation

X =
C1

C0 + C1x
, A =

aC2
1

(C0 + C1x)2 (3.10)

reduces (3.9) to

AA(iv) +
5

2
A′A′′′ = −12g1C

2
1A

−3

which is in the form of (3.5).

From (1.4), given by

IN = ξ(x, y)L+ (η(x, y)− y′ξ(x, y))Ly′ − F

we have that (3.1) admits the Noether first integral

IN = a

[
1

2
y′2 +

1

3
y3a−(5/2)

(
f1 − 3g1

∫
ca−(3/2)dx

)
+

1

4
g1a

−3y4

]

+

(
1

2
a′y + c− ay′

)
y′ − 1

4
a′′y2 − c′y (3.11)

Substituting (3.8d) in (3.11) yields

IN = cy′ − 1

4
a′′y2 +

1

2
a′yy′ − 1

2
ay′2 +

aa′′′

12c
y3 +

1

4
g1a

−2y4 − c′y (3.12)

On comparing our first integral (3.6) and the Noether first integral (3.12) we

observe that, with c = 1/4, g0 = g1 and primes denoting derivatives with

respect to x,

τ0(t) = 4IN

As a result, our earlier ad hoc approach yielded a first integral which is a special

case of that obtained via Noether’s theorem. This further implies that (3.6)

admits the Noether symmetry

Y = 4a
∂

∂x
+ (2a′y + 1)

∂

∂y
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thus supporting the results of our approach, and the fact that (3.1) could be

reduced to quadratures.

3.4 Lie analysis

As a final attempt at solving (3.1) we undertake a Lie symmetry analysis (Olver

1986). Lie symmetries are usually a larger set of symmetries for a problem as

opposed to the set of Noether symmetries. However, the disadvantage is that

no simple formula exists to find first integrals associated with Lie symmetries

– direct integration of (often difficult) equations is usually needed. However,

as we show here, this approach allows for a larger class of solutions than the

Noether approach.

It is a simple matter to verify that

G = a
∂

∂x
+ (by + c)

∂

∂y
(3.13)

is a symmetry of (3.1) and the relationship among the functions a(x), b(x),

c(x), f(x) and g(x) is given by the following system of ordinary differential
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equations

a′′ = 2b′ (3.14a)

b′′ = 2fc (3.14b)

c′′ = 0 (3.14c)

af ′ + (2a′ + b)f = −3cg (3.14d)

ag′ + (2a′ + 2b)g = 0 (3.14e)

From (3.14a)

2b = a′ + α (3.15)

where α is an arbitrary constant, from (3.14a) and (3.14b)

f =
a′′′

4c
(3.16)

from (3.14c)

c = C0 + C1x

where C0 and C1 are arbitrary constants, and finally from (3.14e)

g = g2a
−3 exp

(
−

∫
αdx

a

)
(3.17)

where g2 is an arbitrary constant. By integrating (3.14d) and using (3.17) we

obtain an alternative form of (3.16), and it is

f = a−5/2 exp

(
−

∫
αdx

2a

)[
f2 − 3g2

∫
ca−(3/2) exp

(∫
αdx

a

)
dx

]
(3.18)

where f2 is an arbitrary constant of integration. From (3.14d), (3.16) and

(3.17) we observe that a is a solution of the equation

caa(iv) +

[
c

(
5a′

2
+

α

2

)
− c′a

]
a′′′ = −12g2c

3a−3 exp

(
−

∫
αdx

a

)
(3.19)
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Alternatively (3.19) may be obtained by equating equations (3.16) and (3.18)

and differentiating once with respect to x.

Observe the similarity between the results obtained here in the case of

Lie analysis and those obtained in the previous section on Noether symmetries.

The main difference is the occurrence of the parameter α in the Lie analysis.

Thus, we have a more general result (as expected) in the Lie analysis as com-

pared to the Noether analysis. In addition, this result is even more general

than that obtained in Kweyama et al (2010a) as our c(x) is nonconstant.

The transformation which converts the symmetry (3.13) to
∂

∂X
makes

(3.1) autonomous. The simplest expression of this transformation is

X =

∫
dx

a
(3.20a)

Y = y exp

(
−

∫
bdx

a

)
−

∫
c

a
exp

(
−

∫
bdx

a

)
dx (3.20b)

From (3.20) we have

Y ′′ = exp

(
−

∫
bdx

a

) (
a2y′′ + aa′y′ − 2aby′ + b2y − ab′y + bc− ac′

)
(3.21)

We also have

y = a1/2 exp

(∫
αdx

2a

)
(Y + I) (3.22)

so that

y′ = a1/2 exp

(∫
αdx

2a

)(
Y ′

a
+

bY

a
+

bI

a
+ ca−(3/2) exp

(
−

∫
αdx

2a

))
(3.23)

where we let

I =

∫
ca−(3/2) exp

(
−

∫
αdx

2a

)
dx
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We substitute (3.17), (3.18), (3.22) and (3.23) in (3.1) and we obtain

y′′ = a−(3/2) exp

(∫
αdx

2a

) (
f2Y

2 + 2f2Y I + f2I
2 − 3g2Y I2

−2g2I
3 + g2Y

3
)

(3.24)

Now using (3.8a),(3.22), (3.23) and (3.24) in (3.21) yields

Y ′′ = f2Y
2 + g2Y

3 − αY ′ −
(

1

2
aa′′ − a′2

4
− 2f2I + 3g2I

2

)
Y − α2

4
Y

−
(

1

2
aa′′ − a′2

4

)
I + f2I

2 − 2g2I
3

−a−(1/2) exp

(
−

∫
αdx

2a

)(
ac′ − a′c

2
+

αc

2

)
− α2

4
I (3.25)

We substitute (3.18) in (3.16) and we get

1

2
a′′′ = 2ca−(5/2) exp

(
−

∫
αdx

2a

)[
f2 − 3g2

∫
ca−(3/2) ×

exp

(
−

∫
αdx

2a

)
dx

]
(3.26)

Note that (3.26) can be obtained by integrating (3.19). On multiplying (3.26)

by a and then integrating we get

1

2

∫
aa′′′dx = 2f2I − 6g2

∫ [
ca−(3/2) exp

(
−

∫
αdx

2a

) ∫
ca−(3/2) ×

exp

(
−

∫
αdx

2a

)
dx

]
dx + M (3.27)

From (3.27) we have

M =
1

2
aa′′ − 1

4
a′2 − 2f2I + 3g2I

2 (3.28)

Again we multiply (3.26) by aI and then integrate to obtain

1

2

∫
aa′′′Idx = 2f2

∫
ca−(3/2)exp

(
−

∫
αdx

2a

)
Idx

−6g2

∫
ca−(3/2)exp

(
−

∫
αdx

2a

)
I2dx−N
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and therefore

N = −a−(1/2) exp

(
−

∫
αdx

2a

)(
ac′ − 1

2
a′c +

1

2
αc

)

−
(

1

2
aa′′ − 1

4
a′2 +

α2

4

)
I + f2I

2 − 2g2I
3 (3.29)

Now substituting (3.28) and (3.29) in equation (3.25) yields

Y ′′ + αY ′ +
(

M +
α2

4

)
Y = f2Y

2 + g2Y
3 + N (3.30)

where f2 and g2 are arbitrary constants introduced in (3.17) and (3.18) respec-

tively. The quantities M and N are arbitrary constants that arise in integra-

tions of (3.19).

Note that in the neutral perfect fluid case we must have g2 = N = 0 and

(3.30) reduces to that of Maharaj et al (1996). However, it is difficult to make

direct comparison to the results therein as the full equations are not always

given, and the equation referencing is not always clear.

To proceed further, we need to analyse equation (3.19). We note that

the form of (3.19) was obtained under the assumption that c 6= 0. We consider

both nonzero c and vanishing c in turn in our subsequent analysis.

3.4.1 Case I: c 6= 0

When C0 6= 0 and C1 = 0, (3.19) may be written as

aa(iv) +
1

2
(5a′ + α) a′′′ = −12g2a

−3 exp

(
−

∫
αdx

a

)
(3.31)
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Rescaling a and x in (3.31) yields

aa(iv) +
1

2
(5a′ + α) a′′′ = a−3 exp

(
−

∫
αdx

a

)
(3.32)

when α 6= 0 and

aa(iv) +
5

2
a′a′′′ = a−3 (3.33)

when α = 0.

When C0 6= 0 and C1 6= 0, we apply transformation (3.10) to (3.19) and

we obtain (again with the rescaling of A and X)

AA(iv) +
1

2
(5A′ − α) A′′′ = A−3 exp

(∫
αdX

A

)
(3.34)

when α 6= 0 and

AA(iv) +
5

2
A′A′′′ = A−3

when α = 0. Changing the sign of α in (3.34) brings it to the form of (3.32),

and so the critical equations are (3.32) and (3.33).

Case I (a): α = 0

If α = 0 then (3.30) becomes

Y ′′ + MY = f2Y
2 + g2Y

3 + N (3.35)

To solve equation (3.35) we firstly multiply by Y ′ to obtain

d

dX

(
1

2
Y ′2 +

1

2
MY 2

)
=

d

dX

(
1

3
f2Y

3 +
1

4
g2Y

4 + NY

)
(3.36)
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When we integrate (3.36) we obtain

Y ′2 =
1

2
g2Y

4 +
2

3
f2Y

3 −MY 2 + 2NY + 2L (3.37)

Again we integrate (3.37) to obtain the solution of (3.35) expressed as the

quadrature

X −X0 =

∫
dY√

1
2
g2Y 4 + 2

3
f2Y 3 −MY 2 + 2NY + 2L

where L is an arbitrary constant introduced in the first integration of (3.35). A

full discussion of the evaluation of this quadrature can be found in Kweyama

et al (2010a).

Note that when α = 0 in the transformation (3.20) we have

y = a1/2 (Y + I) (3.38)

We substitute (3.38) in the Noether first integral (3.12) and we obtain

IN =
1

4
g1Y

4 +

(
g1I +

a5/2a′′′

12c

)
Y 3 +

[(
3

2
g1I +

a5/2a′′′

4c

)
I +

1

8
a′2

−1

4
aa′′

]
Y 2 +

[(
g1I +

a5/2a′′′

4c

)
I2 +

(
1

4
a′2 − 1

2
aa′′′

)
I

+a−(1/2)

(
a′c
2
− ac′

)]
Y − 1

2
Y ′2 +

(
1

4
g1I +

a5/2a′′′

12c

)
I3

+

(
1

8
a′2 − 1

4
aa′′

)
I2 + a−(1/2)

(
a′c
2
− ac′

)
I +

c2

2a
(3.39)

where

I =

∫
ca−(3/2)dx

We substitute (3.8d) given by (α = 0)

a′′′ = 4ca−(5/2) (f1 − 3g1I) (3.40)
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in (3.39) and we obtain

IN =
1

4
g1Y

4 +
1

3
f1Y

3 − 1

2

(
1

2
aa′′ − 1

4
a′2 − 2f1I + 3g1I

2

)
Y 2

+

[
a−(1/2)

(
a′c
2
− ac′

)
−

(
1

2
aa′′ − 1

4
a′2

)
I + f1I

2 − 2g1I
3

]
Y

−1

2
Y ′2 − 1

2

(
1

2
aa′′ − 1

4
a′2

)
I2 +

1

3
f1I

3 − 3

4
g1I

4

+a−(1/2)

(
a′c
2
− ac′

)
I +

c2

2a

=
1

4
g1Y

4 +
1

3
f1Y

3 − 1

2
MY 2 + NY +

1

2
Y ′2 − 1

2

(
1

2
aa′′ − 1

4
a′2

)
I2

+
1

3
f1I

3 − 3

4
g1I

4 + a−(1/2)

(
a′c
2
− ac′

)
I +

c2

2a
(3.41)

where (with α = 0)

M =
1

2
aa′′ − a′2

4
− 2f1I + 3g1I

2

and

N = −a−(1/2)

(
ac′ − a′c

2

)
−

(
1

2
aa′′ − a′2

4

)
I + f1I

2 − 2g1I
3

From (3.40) we have

1

2
a′′′ = 2ca−(5/2) (f1 − 3g1I) (3.42)

We multiply (3.42) by aI2 and then integrate to get

∫
1

2
aa′′′I2dx = 2f1

∫
ca−(3/2)I2dx− 6g1

∫
ca−(3/2)I3dx− 2L (3.43)

We determine the integrals in (3.43) using integration by parts and we obtain

L = −1

2

(
1

2
aa′′ − 1

4
a′2

)
I2 +

1

3
f1I

3 − 3

4
g1I

4 +

∫ [(
1

2
aa′′ − 1

4
a′2

)
×

ca−(3/2)

∫
ca−(3/2)dx

]
dx) (3.44)
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If we differentiate the last two terms in (3.41) we obtain

(
1

2
aa′′ − 1

4
a′2

)
ca−(3/2)

∫
ca−(3/2)dx

Hence

∫ [(
1

2
aa′′ − 1

4
a′2

)
ca−(3/2)

∫
ca−(3/2)dx

]
dx

= a−(1/2)

(
a′c
2
− ac′

)
I +

c2

2a
(3.45)

We substitute (3.45) in (3.44) to obtain

L = −1

2

(
1

2
aa′′ − 1

4
a′2

)
I2 +

1

3
f1I

3 − 3

4
g1I

4

+a−(1/2)

(
a′c
2
− ac′

)
I +

c2

2a
(3.46)

and on substituting (3.46) in (3.41) we get

IN =
1

4
g1Y

4 +
1

3
f1Y

3 − 1

2
MY 2 + NY +

1

2
Y ′2 + L

Hence we have

−L =
1

4
g1Y

4 +
1

3
f1Y

3 − 1

2
MY 2 + NY − 1

2
Y ′2

which is the result of the first integration (refer to (3.37)) in reducing (3.35)

to quadratures. This again indicates that the Noether results are a subset of

the Lie results.

We now have to determine a(x). We make the observation that if α = 0

in (3.31) and g0 = 16g2 and g1 = g2/C
2
1 , (3.5) and (??) become (3.31) which

reduces to (3.33). We therefore consider (3.33) which is given by

aa(iv) +
5

2
a′a′′′ = a−3 (3.47)
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for further analysis and reduction to quadratures. In carrying out the Lie

analysis of (3.47), using PROGRAM LIE, we find that it has two Lie point

symmetries, namely

G1 =
∂

∂x
(3.48a)

G2 = x
∂

∂x
+

4

5
a

∂

∂a
(3.48b)

Usually, when an nth order equation admits an m < n dimensional Lie algebra

of symmetries, there is little hope for the solution of the equation via those

symmetries. However, in this case we are able to reduce the equation due to

the presence of hidden symmetries (Abraham-Shrauner 1992).

The symmetry G1 determines the variables for reduction

u = a, v = a′

and the reduced equation is

u4v3v′′′ + 4u4v2v′v′′ +
5

2
u3v3v′′ + u4vv′3 +

5

2
u3v2v′2 − 1 = 0

This equation admits the following two symmetries

U1 = u
∂

∂u
− 1

4
v

∂

∂v

U2 = 2u2 ∂

∂u
+ uv

∂

∂v

The variables for reduction via U2 are

r = u−(1/2)v, s = u3/2v′ − 1

2
u1/2v
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and the reduced equation is

r3s2s′′ + r3ss′2 + 4r2s2s′ + rs3 − 1 = 0 (3.49)

The Lie symmetry analysis of (3.49) yields the following two symmetries

X1 = r
∂

∂r
− s

3

∂

∂s
(3.50a)

X2 =
∂

∂r
− s

r

∂

∂s
(3.50b)

The reduction variables generated by X2 are

p = rs, q = rs′ + s

and the reduced equation is

p2qq′ + pq2 − 1 = 0

with solution

q2 =
2

p
+

q0

p2

where q0 is a constant. We can now invert these transformations to find the

solution of (3.33). Alternatively, we can integrate (3.33) directly and write

down the solution as

ux = a−(3/2) = [G′(u)]−1

x− x0 = G(u)

where we have set

G(u) =

∫
du

(K4 +K3u +K2u2 − (1/6)K1u3 + (1/32)K0u4)3/2
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and the Ki, i = 0, . . . , 3 are constants of integration related to M, N, f2 and

g2 and K4 is arbitrary. As pointed out earlier, this result was obtained in

Kweyama et al (2010a), but for constant c(x). In the case of nonconstant c(x),

the solution is the same, except that we replace a and x in this solution with

A and X respectively. To obtain the solution to (3.19) (with α = 0) we need

to apply the inverse of (3.10).

Case I (b): α 6= 0

When α 6= 0, we cannot directly reduce (3.30) to quadratures. We need to

investigate the constraints under which it possesses a second point symmetry.

We find that if f2 6= 0, g2 6= 0 then (3.30) has the following two symmetries

G1 =
∂

∂X
(3.51a)

G2 = e(α/3)X ∂

∂X
− e(α/3)X

(
α

3
Y +

αf2

9g2

)
∂

∂Y
(3.51b)

provided the following conditions are satisfied

M = − f 2
2

3g2

− α2

36
, N =

f 3
2

27g2
2

− 2α2f2

27g2

Utilising (3.51b) we obtain the transformation

X = − 3

α
e−(α/3)X , Y = e(α/3)X

(
Y +

f2

3g2

)

and equation (3.30) becomes

Y ′′ = g2Y3
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with solution

X − X0 =

∫
dY√

g2

2
Y4 + C

When c 6= 0, g2 = 0, f2 6= 0 we find that g ≡ 0 (and so we are in the

neutral perfect fluid realm). Now (3.30) has the following two symmetries

Y1 =
∂

∂X
(3.52a)

Y2 = e(α/5)X ∂

∂X
+

(
α3

500f2

+
αM

5f2

− 2α

5
Y

)
e(α/5)X ∂

∂Y
(3.52b)

provided the following condition is satisfied

N =
M2

4f2

+
α2M

8f2

+
49α4

40000f2

=
1

4f2

(
M +

α2

4

)2

− 36α4

2500f2

(3.53)

This condition is equivalent to the one obtained by Mellin et al (1994) for the

case where n = 2 in their analysis of the generalised Emden-Fowler equation.

We use (3.52b) to obtain the following transformation

X = − 5

α
e(−α/5)X , Y =

(
Y − M

2f2

− α2

200f2

)
e(2α/5)X

which, together with (3.53) reduces equation (3.30) to

Y ′′ = f2Y2

with solution

X − X0 =

∫
dY√

2f2

3
Y3 + C1

We take this opportunity to make two minor corrections to the work of Mellin

et al (1994): While the expression for N given by their equation (7.11) is
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correct, it is obtained by multiplying their equation (7.9) by

a

∫
da−3/2 exp

[
1

2

∫
(p− 2C0/a) dx

]
dx

and then integrating, not multiplying by a
∫

da−3/2dx as indicated in their

paper. Also, the coefficient of C0 should be 2 in their equation (7.8).

3.4.2 Case II: c = 0

From (3.14a), (3.14b), (3.14d) and (3.14e) we have

b =
1

2
(a′ + α) (3.54a)

a = a0 + a1x + a2x
2 (3.54b)

f = f2a
−5/2 exp

(
−

∫
αdx

2a

)
(3.54c)

g = g2a
−3 exp

(
−

∫
αdx

a

)
(3.54d)

The symmetry (3.13) now takes the form

G = a
∂

∂x
+

1

2
(a′ + α) y

∂

∂y

Using the transformation

X =

∫
dx

a
, Y = ya−1/2 exp

(
−

∫
αdx

2a

)

equation (3.1) is transformed into the autonomous equation

Y ′′ + αY ′ + βY = f2Y
2 + g2Y

3 (3.55)

where

β =
1

4

(
α2 −∆

)
, ∆ = a2

1 − 4a0a2
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In carrying out the standard Lie point symmetry analysis on (3.55) we have

the following cases:

Case II (a):

If f2 6= 0, g2 6= 0, (3.55) has the following two symmetries

G1 =
∂

∂X
(3.56a)

G2 = e(α/3)X ∂

∂X
− e(α/3)X

(
α

3
Y +

2α3

9f2

)
∂

∂Y
(3.56b)

provided the following conditions apply

β = −4α2

9
, g2 =

f 2
2

2α2
(3.57)

We use (3.56b) to obtain the following transformation

X = − 3

α
e−(α/3)X , Y = e−(α/3)X

(
Y +

2α2

3f2

)
(3.58)

Using (3.57) and (3.58) the equation (3.55) becomes

Y ′′ = f 2
2

2α2
Y3 (3.59)

and the solution of (3.59) is

X − X0 =

∫
dY√

f2
2

4α2Y4 + C
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Case II (b):

If f2 = 0, g2 6= 0 (which implies that f = 0), then (3.55) has the following two

symmetries

G1 =
∂

∂X
(3.60a)

G2 = e(α/3)X ∂

∂X
− α

3
e(α/3)XY

∂

∂Y
(3.60b)

subject to the following condition

β =
2α2

9
(3.61)

Using (3.60b) we obtain the following transformation

X = − 3

α
e−(α/3)X , Y = e(α/3)XY (3.62)

Using (3.61) and (3.62) equation (3.55) is transformed to

Y ′′ = g2Y3 (3.63)

and the solution of (3.63) is

X − X0 =

∫
dY√

g2

2
Y4 + C

This is an intrinsically charged result - there is no uncharged analogue.

Case II (c):

If f2 6= 0, g2 = 0 (which implies g = 0), then (3.55) has two symmetries

provided

β = ±6α2

25
(3.64)
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and can be transformed to

Y ′′ = f2Y2

which has the solution

X − X0 =

∫
dY√

2f2

3
Y3 + C

This result was previously obtained in the neutral case by Maharaj et al (1996).

A consequence of (3.64) is that ∆ > 0 (Note that this is not imposed on (3.55)

as was done in Maharaj et al (1996).) and hence a in (3.54b) has real roots.

3.5 Discussion

We have undertaken a comprehensive analysis of (3.1) in order to determine

which forms of the functions f and g would lead to first integrals and/or solu-

tions of the equation. We reviewed our previous ad hoc approach, and showed

that those results were contained in the results obtained via Noether’s theo-

rem. This occurred when the funciton c obtained in the Noether analysis was

set to 1
4
. These latter results were then shown to be further contained with

those obtain via the Lie analysis. This occurs when α = 0. In this case (3.17)

and (3.18) take the forms of (3.8b) and (3.8c) respectively, and so (3.8b) and

(3.8c) are special cases of (3.17) and (3.18) respectively.

Usefully, the first two approaches, namely the ad hoc approach and the

Noether symmetry analysis, yielded first integrals directly. The final (Lie)
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approach needed two stages of analysis in order to reduce the equation to

quadratures.

We were able to completely analyse (3.1) for Lie point symmetries in an

exhaustive analysis. All possible cases for the functions f and g were analysed.

We showed that these results reduced to the neutral case results (g = 0) of

Maharaj et al (1996) in most cases. However, we were also able to find an

inherently charged case in §3.4.2 that has no uncharged analogue.

While a complete analysis was produced for the case of α = 0, only a

partial analysis could be performed when α 6= 0. Nonetheless, we were still

able to provide conditions under which (3.1) could be reduced to quadratures.

It still remains to solve (3.32). The main difficulty is that this equation is

an integro-differential equation and such equations are notoriously difficult

to solve. However, we can still reduce (3.32) to a first order equation by

eliminating a′′ from (3.28) and (3.29). Further work in this direction is ongoing.

Note that, in the case that c = 0, we were able to find constraints under

which we could reduce (3.1) to quadratures with f and g given explicitly and

α 6= 0. It is interesting to observe that the constraints we found in all subcases

of §3.4.2 forced the quadratic a in (3.54b) to have real roots.

To complete our analysis, we analyse equation (3.33) for invariant solu-

tions. We take the symmetries calculated in §3.4.1 and investigate the possibil-

ity of group invariant solutions of (3.33). The only two results of significance
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arise in the following cases: Firstly, we use the symmetry (3.48b) of the equa-

tion (3.33). This yields the invariant solution

a = −
(

625

24

)1/5

x4/5 (3.65)

of (3.33). Secondly, we use the symmetry (3.50a) of the equation (3.49). We

obtain

x− x0 = ±
∫

da[
− (

32
3

)1/3
a−(1/3) + Ka2/3

]3/4
(3.66)

as the invariant solution of (3.33). The second solution can only be given

implicitly and so is not of much practical use. However, if we let c = 1
4

in

(3.16), α = 0 in (3.17) and K = 0 in (3.66) and then substitute each solution

into (3.16) and (3.17) we obtain the explicit forms of f and g for which we can

solve (3.1). Substituting (3.66) into (3.16) and (3.17) yields

f(x) = ±
(

20000

768

)1/5 (
24

75

)
(x− x0)

−(11/5)

g(x) = ±
(

32

3

)−(3/5) (
5

4

)−(12/5)

g2 (x− x0)
−(12/5)

and if we substitute (3.65) into 3.16) and (3.17) we obtain

f(x) = −
(

625

24

)1/5 (
24

75

)
x−(11/5)

g(x) = −
(

625

24

)−(3/5)

g2x
−(12/5)

Note that in both cases we obtain the forms

f(x) ∝ (x− x0)
−(11/5) , g(x) ∝ (x− x0)

−(12/5)

These forms for f and g were earlier obtained by Kweyama (2010a) using an

ad hoc approach which yielded a new charged first integral to the Einstein-
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Maxwell field equations. In this case, (3.1) admits two Lie point symmetries

and can be reduced to quadratures.

We can also reuse (3.65) by invoking (3.10) to obtain

a = κ

(
c′

c

)−(6/5)

which is a solution to (3.19) provided

g2 = − 24κ5

625C2
1

This corresponds to the choice

f(x) ∝ (x− x0)
−(14/5) , g(x) ∝ (x− x0)

−(18/5)

for which (3.1) again has two Lie point symmetries and can be reduced to

quadratures.

In summary, we have given a complete Noether and Lie point symmetry

analysis of (3.1). For the Lagrangian (3.7) we were able to provide the most

general Noether point symmetry, the most general first integral associated with

this symmetry and indicated that this integral was equivalent to that found

via an ad hoc approach, i.e (3.2). Finally we determined the most general

Lie point symmetry admitted by (3.1) and gave conditions under which the

equation could be reduced either to a first order equation, or to quadratures.
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Chapter 4

A fifth order differential

equation for charged perfect

fluids

4.1 Introduction

We have demonstrated in previous chapters the value of elementary integra-

tion techniques, Noether symmetries and Lie point symmetries in providing

first integrals and solutions to the governing dynamical equation in charged

gravitating fluids. In this chapter we consider a different approach which we

believe is unique and has not been considered before for the governing equa-

tion in shear-free spherically symmetric spacetimes. For the existence of a Lie
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point symmetry we derive, in §4.2, a fifth order purely differential equation

that must be satisfied. A detailed analysis of this equation is performed. We

solve, for the first time, the relevant integro-differential equation arising from

the integration of the fifth order differential equation. A brief discussion of the

results is given in §4.3.

4.2 Lie analysis

We can verify that

G = a(x)
∂

∂x
+ (b(x)y + c(x))

∂

∂y

is a symmetry of

y′′ = f(x)y2 + g(x)y3 (4.1)

The relationship among the functions a(x), b(x), c(x), f(x) and g(x) is given

by the following system of ordinary differential equations

a′′ = 2b′ (4.2a)

b′′ = 2fc (4.2b)

c′′ = 0 (4.2c)

af ′ + (2a′ + b)f = −3cg (4.2d)

ag′ + (2a′ + 2b)g = 0 (4.2e)
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We now combine equations (4.2a)-(4.2e) into one fifth order ordinary differen-

tial equation. From (4.2a) we have

2b = a′ + α (4.3)

where α is an arbitrary constant, from (4.2b) we have

f =
a′′′

4c
(4.4)

and from (4.2c) we have

c = C0 + C1x (4.5)

Previous analyses (Maharaj et al (1996) and Kweyama et al (2010b) have then

solved (4.2d) and (4.2e) for f and g, respectively, and taking (4.4) into account,

obtained the fourth order integro–differential equation for a:

caa(iv) +

[
c

(
5a′

2
+

α

2

)
− c′a

]
a′′′ = −12g2c

3a−3 exp

(
−

∫
αdx

a

)
(4.6)

The nature of this particular equation has made it difficult to deduce much

information in general. Here we focus on obtaining a fifth order purely differ-

ential equation.

We substitute (4.3) and (4.4) into (4.2d) to obtain

g = −aa(iv)

12c2
+

aa′′′c′

12c3
− 5a′a′′′

24c2
− αa′′′

24c2
(4.7)

We then use (4.3) and (4.7) in (4.2e) to obtain the fifth order differential
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equation

−α2c2a′′′ − 8αc2a′a′′′ − 15c2a′2a′′′ + 4αacc′a′′′ + 18aca′c′a′′′

−6a2c′2a′′′ − 5ac2a′′a′′′ − 3αac2a(iv) − 13ac2a′a(iv)

+6a2cc′a(iv) − 2a2c2a(v) = 0 (4.8)

where c(x) is given by (4.5). This is the first time that the symmetry analysis of

(4.1) has reduced to solving a fifth order differential equation. Given that the

equation is purely differential, one can make recourse to numerical techniques

if analytic solutions are elusive.

The fifth order equation (4.8) can be transformed into autonomous form

via the transformation

X =
C1

C0 + C1x
, A =

aC2
1

(C0 + C1x)2
(4.9)

We end up with the following equation:

2A2A(v) + 13AA′A(iv) − 3αAA(iv) + 5AA′′A′′′ + 15A′2A′′′

−8αA′A′′′ + α2A′′′ = 0 (4.10)

Once we obtain solutions to this equation, we can find f and g through direct

substitution into (4.4) and (4.7) respectively, after inverting (4.9).

We thus have the result that the equation

y′′ =
a′′′

4c
y2 +

(
−aa(iv)

12c2
+

aa′′′c′

12c3
− 5a′a′′′

24c2
− αa′′′

24c2

)
y3

admits the Lie point symmetry

G = a(x)
∂

∂x
+ ((a′(x) + α)y/2 + c(x))

∂

∂y
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where

c(x) = C0 + C1x

and a(x) satisfies the fifth order ordinary differential equation

2A2A(v) + 13AA′A(iv) − 3αAA(iv) + 5AA′′A′′′ + 15A′2A′′′

−8αA′A′′′ + α2A′′′ = 0 (4.11)

with

X =
C1

C0 + C1x
, A =

aC2
1

(C0 + C1x)2

As observed previously (Kweyama et al, 2010b), this is a general result incor-

porating the ad hoc approach of Kweyama et al (2010a) and Wafo Soh and

Mahomed (2000). However, note that the fifth order equation (4.10) has not

been derived previously.

If we let α = 0 in (4.10) we obtain

2A2A(v) + 13AA′A(iv) + 5AA′′A′′′ + 15A′2A′′′ = 0 (4.12)

The Lie analysis of (4.12), using PROGRAM LIE, gives the following three

symmetries

V1 =
∂

∂X

V2 = X
∂

∂X

V3 = A
∂

∂A

The Lie bracket relationships are

[V1, V2] = V1, [V1, V3] = 0, [V2, V3] = 0
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We therefore use V1 to reduce the order of (4.12). The variables for reduction

are

u = A, v = A′

and the reduced equation is

2u2v4v(iv) + 14u2v3v′v′′′ + 13uv4v′′′ + 8u2v3v′′2 + 22u2v2v′2v′′ + 57uv3v′v′′

+15v4v′′ + 2u2vv′4 + 18uv2v′3 + 15v3v′2 = 0 (4.13)

We analyse (4.13) for symmetries, and obtain the following three symmetries

using PROGRAM LIE:

X1 = u
∂

∂u

X2 = v
∂

∂v

X3 = 2u2 ∂

∂u
+ uv

∂

∂v

We determine the Lie bracket relationships of the symmetries and we obtain

[X1, X2] = 0, [X1, X3] = X3, [X2, X3] = 0

We then use X3 to reduce the order of (4.13). The variables for reduction are

r = u−(1/2)v, s = u3/2v′ − 1

2
u1/2v

and the reduced equation in terms of new variables r and s is

2r4s3s′′′+8r4s2s′s′′+14r3s3s′′+2r4ss′3+22r3s2s′2+22r2s3s′+2rs4 = 0 (4.14)
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The Lie symmetry analysis of (4.14) gives three symmetries, namely

U1 = r
∂

∂r

U2 = s
∂

∂s

U3 =
∂

∂r
− s

r

∂

∂s

The Lie bracket relationships of the symmetries are

[U1, U2] = 0, [U1, U3] = U3, [U2, U3] = 0

We therefore use U3 to reduce the order of (4.14). The variables for reduction

are

p = rs, q = rs′ + s

and the reduced equation is

2p3q2q′′ + 2p3qq′2 + 8p2q2q′ + 2pq3 = 0

which simplifies to

p2qq′′ + p2q′2 + 4pqq′ + q2 = 0 (4.15)

Note that equation (4.15) is in fact

(
p2q2

)′′
= 0 (4.16)

and the solution of (4.16) is

q2 =
C2

p
+

C3

p2
(4.17)

Note that this result contains the result obtained by Kweyama et al (2010b)

in §3.4.1.
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We now return to (4.8) in the event that α 6= 0. Integrating the equation

(4.8) once yields the fourth order integro-differential equation

caa(iv) +

[
c

(
5a′

2
+

α

2

)
− c′a

]
a′′′ = −12g2c

3a−3 exp

(
−

∫
αdx

a

)
(4.18)

In chapter 3 we observed that (4.18) can be obtained by differentiating the

following equation once with respect to x

1

2
a′′′ = 2ca−(5/2) exp

(
−

∫
αdx

2a

)[
f2 − 3g2

∫
ca−(3/2) ×

exp

(
−

∫
αdx

2a

)
dx

]
(4.19)

We therefore deduce that integrating (4.18) yields (4.19). We multiply (4.19)

by a and then integrate to get

1

2

∫
aa′′′dx = 2f2I − 6g2

∫ [
ca−(3/2) exp

(
−

∫
αdx

2a

)
×

∫
ca−(3/2) exp

(
−

∫
αdx

2a

)
dx

]
dx + M (4.20)

where M is an arbitrary constant of integration. From (4.20) we have

M =
1

2
aa′′ − 1

4
a′2 − 2f2I + 3g2I

2 (4.21)

Again we multiply (4.19) by aI and then integrate to obtain

1

2

∫
aa′′′Idx = 2f2

∫
ca−(3/2) exp

(
−

∫
αdx

2a

)
Idx

−6g2

∫
ca−(3/2) exp

(
−

∫
αdx

2a

)
I2dx−N (4.22)

where N is an arbitrary constant of integration. After performing the integrals

in (4.22) we find that

N = −a−(1/2) exp

(
−

∫
αdx

2a

)(
ac′ − 1

2
a′c +

1

2
αc

)

−
(

1

2
aa′′ − 1

4
a′2 +

α2

4

)
I + f2I

2 − 2g2I
3 (4.23)
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From (4.21) we have

1

2
aa′′ − 1

4
a′2 = M + 2f2I − 3g2I

2 (4.24)

When substituting (4.24) in (4.23) we obtain the following equation

N = −a−(1/2) exp

(
−

∫
αdx

2a

)(
ac′ − 1

2
a′c +

1

2
α c

)
−MI − f2I

2

+g2I
3 − α2

4
I (4.25)

We thus have the result that the equation

y′′ =
a′′′

4c
y2 +

(
−aa(iv)

12c2
+

aa′′′c′

12c3
− 5a′a′′′

24c2
− αa′′′

24c2

)
y3

admits the Lie point symmetry

G = a(x)
∂

∂x
+ ((a′(x) + α)y/2 + c(x))

∂

∂y
(4.26)

where

c(x) = C0 + C1x

and a(x) is constrained by the first order integro–differential equation

N = −a−(1/2) exp

(
−

∫
αdx

2a

)(
ac′ − 1

2
a′c +

1

2
α c

)
−MI − f2I

2

+g2I
3 − α2

4
I

and M,N, f2 and g2 are all arbitrary constants of integration. This is the first

time that the admittance of symmetry by (4.1) has been reduced to solving

essentially a first order equation. This is a general result incorporating both

the ad hoc approach of Kweyama et al (2010a) and the Noether symmetry

results of Wafo Soh and Mahomed (2000).
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In the event that α = 0, we have that (4.25) reduces to

N = −a−(1/2)

(
ac′ − 1

2
a′c

)
−MI − f2I

2 + g2I
3 (4.27)

this time with

I =

∫
ca−(3/2)dx

We can now integrate (4.27) and obtain the same result as in (Wafo Soh and

Mahomed 2000). See Kweyama et al (2010b) for a full discussion of this case.

It remains to solve (4.25) when α 6= 0. If we set

X =
C1

C0 + C1x
, A =

aC2
1

(C0 + C1x)2
(4.28)

then (4.25) reduces to

N = C1

[
−A−(1/2) exp

(∫
αdX

2A

)(
A′

2
+

α

2

)]
+ C1

(
M +

α2

4

)
I

−C2
1f2I

2 − C3
1g2I

3

where

I =

∫
A−(3/2) exp

(∫
αdX

2A

)
dX

Hence

N

C1

= −A−(1/2) exp

(∫
αdX

2A

)(
A′

2
+

α

2

)
+

(
M +

α2

4

)
I

−C1f2I
2 − C2

1g2I
3

We therefore have the equation

A−(1/2) exp

(∫
αdX

2A

)(
A′

2
+

α

2

)
= −N

C1

+

(
M +

α2

4

)
I

−C1f2I
2 − C2

1g2I
3 (4.29)
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We can now integrate (4.29) further to obtain

A1/2 exp

(∫
αdX

2A

)
=

∫ [
−N

C1

+

(
M +

α2

4

)
I − C1f2I

2

−C2
1g2I

3
]
dX + P (4.30)

which is an implicit solution for (4.8) with α 6= 0. We note that no reductions

of (4.25) (or its fourth order counterpart (4.18)) have been previously found

for nonzero α.

Having found a via (4.30) and (4.28) we now focus on (4.1). Using (4.26)

we can transform (4.1) into the autonomous form

Y ′′ + αY ′ +
(

M +
α2

4

)
Y = f2Y

2 + g2Y
3 + N (4.31)

via the transformation

X =

∫
dx

a
, Y = y exp

(
−

∫
bdx

a

)
−

∫
c

a
exp

(
−

∫
bdx

a

)
dx

The form (4.31) can be more directly analysed. However, when α 6= 0, we find

that we cannot directly reduce (4.31) to quadratures. Further (Lie) analysis

yields that, when f2 6= 0, g2 6= 0 then (4.31) has the following two symmetries

G1 =
∂

∂X

G2 = e(α/3)X ∂

∂X
− e(α/3)X

(
α

3
Y +

αf2

9g2

)
∂

∂Y

provided the following conditions are satisfied

M = − f 2
2

3g2

− α2

36
, N =

f 3
2

27g2
2

− 2α2f2

27g2

(4.32)
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Here, G2 is a new symmetry – G1 is just the transformed form of (4.26). If we

further transform (4.31) using G2 we obtain

Y ′′ = g2Y3

with solution

X − X0 =

∫
dY√

g2

2
Y4 + C

where

X = − 3

α
e−(α/3)X , Y = e(α/3)X

(
Y +

f2

3g2

)

As noted previously (Kweyama et al(2010b)), the values in (4.32) correspond

directly to a simplification of the eigenvalue problem associated with a dynam-

ical systems analysis of (4.31).

4.3 Discussion

We derived (for the first time) a fifth order nonlinear differential equation, the

solutions of which generate the solutions to the governing Einstein-Maxwell

field equation. This equation was obtained by undertaking a Lie analysis of

the master equation (4.1). In the case of α = 0 we performed a Lie symme-

try analysis of the fifth order differential equation. This allowed us to solve

the equation. On letting C2 = 2 in (4.17) we regain the result obtained by

Kweyama et al (2010b). For the α 6= 0 case, we were not able to make progress

via a Lie symmetry analysis. However, we were able to integrate the fifth order
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differential equation directly. We obtained an implicit solution for this case - a

solution that has not been found previously. We also looked at the implications

of this reduction for the original equation.
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Chapter 5

Conclusion

The focus of this thesis was to perform an investigation of the integrability

conditions of the second order partial differential equation

yxx = f(x)y2 + g(x)y3

governing the evolution of shear-free spherically symmetric charged fluids in

general relativity. We presented an extensive analysis of this equation using

different approaches.

In chapter 1 we provided some relevant background information. A dis-

cussion of some concepts behind the theory of Lie analysis was given with the

aim of clarifying the approach. We also briefly outlined the theory of Noether

symmetry analysis and invariant solutions.

In chapter 2 we reduced the Einstein-Maxwell field equations to a sin-
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gle nonlinear second order partial differential equation. This was achieved by

generalising the transformation due to Faulkes (1969). The second order dif-

ferential equation is the master equation governing the behaviour of shear-free

spherically symmetric charged fluids. We also derived a first integral of the

governing equation. This was achieved by generalising the technique first used

by Srivastava (1987) for uncharged fluids. The first integral is subject to two

conditions in the form of integral equations. We transformed the integral equa-

tions into a system of purely differential equations which could be integrated up

to quadratures. This yielded a new class of solutions to the Einstein-Maxwell

system for a charged shear-free fluid. This new solution was given in the para-

metric form. A detailed analysis was performed based on the nature of the

factors of the quartic arising in the quadrature. In the case of one repeated

linear factor we were able to invert the quadrature and wrote the first integral

explicitly. As far as we know this is a new result. In the case of one order-

three linear factor we could also invert the quadrature and regain the results

of Maharaj et al (1996), Srivastava (1987) and Stephani (1983) for uncharged

fluids.

In chapter 3 we undertook a comprehensive analysis of the master equa-

tion using symmetry methods. We analysed the equation for Noether sym-

metries and this analysis yielded a Noether first integral for the equation. By

selecting a particular value of a parameter, we showed that the first integral ob-

tained in chapter 2 using an ad hoc approach was a special case of the Noether
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first integral. We also analysed the governing equation for Lie point symme-

tries. The results obtained using the Noether analysis were further shown to be

contained in those obtained via the Lie analysis. We considered all the possible

cases for the functions f and g which are in the master equation (5). We were

able to show that most of the results obtained in this analysis reduced to the

results obtained by Maharaj et al (1996) for the uncharged case (g = 0). It was

interesting to note that we were also able to find an inherently charged case

that has no uncharged analogue. For the case where α 6= 0 we only performed

a partial analysis. The complete analysis of the integro-differential equation

arising in this case was performed in chapter 4. In addition we investigated the

possibility of group invariant solutions of the master equation. We were able

to find conditions under which we could reduce the equation to quadratures

with f and g given explicitly.

In chapter 4 we derived a fifth order differential equation, and this equa-

tion had not been obtained before for the charged case. The solutions of this

equation can generate the solutions of the master equation. For α = 0 we

obtained a solution which is a generalisation of the result obtained in chapter

3. We also integrated the equation completely when α 6= 0 and c 6= 0. Again

this solution had not been obtained before. This is a remarkable result and

should lead to new solutions which is the object of ongoing investigations.

Exact solutions of the Einstein-Maxwell system are important for ap-

plications in general relativity theory but not many classes of solutions are
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known. Our new classes of solutions presented in this thesis may be useful in

this context, and could provide a deeper insight into the behaviour of the grav-

itational field. We have demonstrated in this thesis that applying the method

of Lie symmetries provides new insights into the Einstein-Maxwell system of

equations.
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