THE USE OF GROWTH KINETICS IN THE DEVELOPMENT OF A PREDICTIVE MODEL FOR THE GROWTH OF EICHHORNIA CRASSIPES (MART.) SOLMS IN THE FIELD

by

Charles Frank Musil

Volume 2 (Tables and Figures)

LIST OF TABLES AND FIGURES

Page

CHAPTER 2 METHODS

DEVELOPMENT OF MODEL IN CULTURE

Table 2.1	Criteria used by various researchers for selecting	
	uniform E. crassipes plants for culture.	1
Table 2.2	Summary of methods used by various researchers for	
	measuring growth of E. crassipes in culture.	2
Table 2.3	Estimates of the numbers of plants (sample sizes)	
	required to give a standard error in measurement	
	of mass of 10% of the mean.	3
Table 2.4	Types of vessels used by various researchers for	
	culturing E. crassipes.	4
Table 2.5	Types of culture solutions used by various research=	
	ers for growing E. crassipes.	5
Table 2.6	Chemical composition and ionic concentration of	
	culture solution used for growing E. crassipes in	
	this study.	6
Table 2.7	Ionic concentrations of culture solutions used by	
	various researchers for growing E. crassipes.	7
Table 2.8	Air and water temperatures used by various research=	
	ers for growing E. crassipes in culture.	8
Table 2.9	Light intensities and daily photoperiods used by	
	various researchers for growing E. crassines in	
	culture.	0
		/

Table 2.10	Treatment differences between experiments designed to determine kinetic coefficients for E. crassipes growing under N and P growth rate limitation in	
	culture.	10
COLLECTION	OF FIELD DATA TO TEST THE MODEL	
Table 2.11	Criteria used by various researchers for selecting uniform E. crassipes plants for field investigations.	11
Table 2.12	Types of enclosures used by various researchers for containing E. crassipes plants in the field.	12
Table 2.13	Summary of methods used by various researchers for measuring growth of E. crassipes in the field.	13
Figure 2.1	Location of field sites.	14
Chapter 3	EXPERIMENTAL DETERMINATION OF KINETIC COEFFICIEN	NTS
NITROGEN GR	OWTH RATE LIMITATION	
Table 3.1	Average daily air and water temperatures and relative humidities recorded in the greenhouse during growth	
	of E. crassipes in N deficient cultures.	15
Table 3.2	Mean fresh masses, excluding dead mass, and standard deviations of groups of E. crassipes plants to	
	comprise each treatment in each experiment at sniking	16

Table 3.3Experiment 1, treatment 4.Specific growth rates
determined for E. crassipes between each weighing
interval after the addition of N.

17

ii

Table 3.4	Statistical analysis of regressions of 1/U against 1/N for E. crassices grown under N growth rate	
	limitation in culture.	18
Table 3.5	Maximum specific growth rate (Umax) and half satu= ration coefficients (Ksn) determined for E. crassipes under N growth rate limitation in culture.	18
Table 3.6	Quantities of N analyzed in 3 culture solution samples taken at random from each treatment in 3 experiments after fresh mass recordings had been terminated.	19
Table 3.7	Statistical analysis of regressions relating total fresh mass yields of E. crassipes to quantities	
	of N supplied in culture.	20
Table 3.8	Yield coefficients, Ycn, (fresh and dry mass basis) and mean water contents determined for E. crassipes under N growth rate limitation in	
	culture.	20
Table 3.9	Minimum N concentrations (% dry mass) analyzed in E. crassipes harvested from culture.	21
Figure 3.1	Experiment 1. Change in fresh mass of E. crassipes grown under varying conditions of N supply.	22
Figure 3.2	Experiment 2. Change in fresh mass of E. crassipes grown under varying conditions of N supply.	23
Figure 3.3	Experiment 3. Change in fresh mass of E. crassipes grown under varying conditions of N supply.	24
Figure 3.4	Experiment 4. Change in fresh mass of E. crassipes grown under varying conditions of N supply.	25

Figure 3.5 Experiment 5. Change in fresh mass of E. crassipes grown under varying conditions of N supply. 26 Figure 3.6 Experiment 1. A Lineweaver-Burk plot of the speci= ic growth rates of E. crassipes against the levels 27 of N supplied in culture. Figure 3.7 Experiment 2. A Lineweaver-Burk plot of the speci= ic growth rates of E. crassipes against the levels 27 of N supplied in culture. Figure 3.8 Experiment 3. A Lineweaver-Burk plot of the speci= ic growth rates of E. crassipes against the levels 28 of N supplied in culture. Figure 3.9 Experiment 4. A Lineweaver-Burk plot of the speci= ic growth rates of E. crassipes against the levels of N supplied in culture. 28 Figure 3.10 Experiment 5. A Lineweaver-Burk plot of the speci= fic growth rates of E. crassipes against the levels of N supplied in culture. 29 Figure 3.11 Experiment 1. The relationship between the total fresh mass yields of E. crassipes and the quantities of N supplied in culture. 29 Figure 3.12 Experiment 2. The relationship between the total fresh mass yields of E. crassipes and the quantities of N supplied in culture. 30 Figure 3.13 Experiment 3. The relationship between the total fresh mass yields of E. crassipes and the quantities of N supplied in culture. 30

iv

PHOSPHORUS GROWTH RATE LIMITATION

Table 3.10	Average daily air and water temperatures and rela=	
	growth of E. crassipes in P deficient cultures.	31
Table 3.11	Mean fresh masses and standard deviations of groups of E. crassipes plants to comprise each treatment in each experiment at spiking.	31
Table 3.12	Experiment 7, treatment 6. Specific growth rates determined for E. crassipes between each weighing interval after the addition of P.	32
Table 3.13	Statistical analysis of regressions of 1/U against 1/P for E. c rassipes grown under P growth rate limitation in culture.	33
Table 3.14	Maximum specific growth rate (Umax) and half saturation coefficients (Ksp) determined for E. crassipes under P growth rate limitation in culture.	33
Table 3.15	Quantities of P analyzed in 3 culture solution samples taken at random from each treatment in 3 experiments after fresh mass recordings had been terminated.	34
Table 3.16	Statistical analysis of regressions relating total fresh mass yields of E. crassipes to quantities of P supplied in culture.	35
Table 3.17	Yield coefficients, Ycp, (fresh and dry mass basis) and mean water contents determined for E. crassipes	
	under P growth rate limitation in culture.	35

Table 3.18	Minimum P concentrations (% dry mass) analyzed	
	in E. crassipes harvested from culture.	36
Figure 3.14	Experiment 6. Change in fresh mass of E. crassipes	
	grown under varying conditions of P supply.	37
Figure 3.15	Experiment 7. Change in fresh mass of E. crassipes	
	grown under varying conditions of P supply.	38
Figure 3.16	Experiment 8. Change in fresh mass of E. crassines	
	arown under varying conditions of P supply	39
		55
Figure 3.17	Experiment 6. A Lineweaver-Burk plot of the	
- iguro 2117	specific growth rates of E crassines against the	
	levels of P supplied in culture	40
	icvers of a supplied in culture.	40
Figure 3 18	Experiment 7 A Lipeweaver Burk plat of the	
riguie 2.10	specific growth rates of E grossings against the	
	lowels of B supplied is sulture	
	revers of P suppried in curture.	40
Figure 7 10	Experiment 9 A Linguage Durk alst of th	
rigule J.19	experiment 8. A Lineweaver-Burk plot of the	
	specific growth rates of E. crassipes against the	
	levels of P supplied in culture.	41
Figure 7 20	Europierent C. The set bird is a low of the	
Figure 5.20	Experiment 6. The relationship between the total	
	Fresh mass yields of E. crassipes and the quantities	
	of P supplied in culture.	41
Figure 7 21	Eveneniment 7. The selection of the selection of the	
TIGOLE 7.21	froch mana wields of E amaging wields at the	
	of R supplied is sulture	
	or a supprised in curture.	42
Figure 3 22	Experiment 8 The relationship between the but	
. 19010 7.22	fresh mass vields of E areasing and the	
	of P supplied in culture	- 51
	or i suppried in culture.	42

vi

DISCUSSION

- Table 3.19 The error with which the specific growth rate (U) of E. crassipes would be predicted as estimated from the highest and lowest maximum specific growth rates (Umax) determined in culture.
- Table 3.20 The error with which the specific growth rate (U) of E. crassipes would be predicted as estimated from the highest and lowest half saturation coeffi= cients (Ks) determined in culture.
- Table 3.21 Half saturation coefficients (Ksn) reported for various species of algae compared with those determined for E. crassipes.
- Table 3.22 Half saturation coefficients (Ksp) reported for various species of algae compared with those determined for E. crassipes.
- Table 3.23 Yield coefficients, Ycp, (dry mass basis) reported for various species of diatoms and other algae compared with those determined for E. crassipes.
- Table 3.24 Yield coefficients, Ycn, (dry mass basis) reported for various species of diatoms and other algae compared with those determined for E. crassipes.
- Table 3.25 Minimum N concentrations in E. crassipes estimated from the yield coefficients (Ycn) compared with the minimum N concentrations analyzed in plants harvested from culture.
- Table 3.26 Minimum P concentrations in E. crassipes estimated from the yield coefficients (Ycp) compared with the minimum P concentrations analyzed in plants harvested from culture.

49

49

45

44

43

46

47

CHAPTER 4 TESTING THE MODEL UNDER FIELD CONDITIONS

FIELD DATA

- Table 4.1 A statistical comparison of specific growth rates measured for marginal plants at the Botanic Gardens Lake and Maturation Pond 3 sites.
- Table 4.2 A statistical comparison of specific growth rates measured for marginal and central plants at the Discharge Canal and Maturation Pond 3 sites.
- Table 4.3 Correlation coefficients and Q₁₀ values calculated from the regressions relating the specific growth rates of marginal and central plants (Log_e) to the reciprocals of the Absolute mean daily air and water temperatures at 2 sites.
- Table 4.4 Estimates of the percentage of the maximum specific growth rate (% Umax) that E. crassipes would achieve at the average total N and total P concentrations in the water at 6 field sites.
- Figure 4.1 Average specific growth rates measured for E. crassipes (marginal and central plants), over each growing interval, at 2 sites.
- Figure 4.2 Average daily air temperatures recorded over each growing interval of marginal plants at 2 sites.
- Figure 4.3 Average daily water temperatures recorded over each growing interval of marginal plants at 2 sites.
- Figure 4.4 An Arrhenius plot of the specific growth rates (Log_e) of marginal plants against the reciprocals of the Absolute mean daily air temperatures at the Maturation Pond 3 site.

56

51

50

53

54

55

55

- Figure 4.5 An Arrhenius plot of the specific growth rates (Log_e) of marginal plants against the reciprocals of the Absolute mean daily air temperatures at the Botanic Gardens Lake site.
- Figure 4.6 An Arrhenius plot of the specific growth rates (Log_e) of marginal plants against the reciprocals of the Absolute mean daily water temperatures at the Maturation Pond 3 site.
- Figure 4.7 An Arrhenius plot of the specific growth rates (Log_e) of marginal plants against the reciprocals of the Absolute mean daily water temperatures at the Botanic Gardens Lake site.
- Figure 4.8 An Arrhenius plot of the specific growth rates (Log_e) of central plants against the reciprocals of the Absolute mean daily air temperatures at the Maturation Pond 3 site.
- Figure 4.9 An Arrhenius plot of the specific growth rates (Log_e) of central plants against the reciprocals of the Absolute mean daily water temperatures at the Maturation Pond 3 site.
- Figure 4.10 Average nitrogen (NO₃-N, NH₄-N and total N) concentrations analyzed in the water, over each growing interval, from the vicinity of the marginal plant populations enclosed at 2 sites.
- Figure 4.11 Average phosphorus (SRP and total P) concentrations analyzed in the water, over each growing interval, from the vicinity of the marginal plant populations enclosed at 2 sites.
- Figure 4.12 Average dissolved oxygen concentrations recorded in the water, over each growing interval, from the vicinity of the marginal plant populations enclosed at 2 sites.

63

57

58

59

60

61

62

COMPARISON OF PREDICTED AND MEASURED SPECIFIC GROWTH RATES

- Table 4.5 Maximum specific growth rates (Umax) predicted for E. crassipes for various temperatures according to the van't Hoff rule using a Umax value generated under N growth rate limitation in culture.
- Table 4.6 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Maturation Pond 3 site.
- Table 4.7 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Isipingo Lake, Discharge Canal and Isipingo Canal sites.
- Table 4.8 Predicted specific growth rates and those measured for central plants, over each growing interval, at the Discharge Canal and Maturation Pond 3 sites.
- Table 4.9 Maximum specific growth rates (Umax) predicted for E. crassipes for various temperatures according to the van't Hoff rule using a Umax value generated under P growth rate limitation in culture.
- Table 4.10 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Botanic Gardens Lake site.
- Table 4.11 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Hartbeespoort Dam site.
- Figure 4.13 Predicted specific growth rates and those measured for marginal and central plants, over each growing interval, at the Maturation Pond 3 site.

71

64

65

66

67

68

69

Figure 4.14 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Botanic Gardens Lake site.

CHAPTER 5 REFINING THE MODEL UNDER FIELD CONDITIONS

GENERATING U MAX IN THE FIELD

- Table 5.1 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Botanic Gardens Lake site.
- Table 5.2 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Hartbeespoort Dam site.
- Table 5.3 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Isipingo Lake, Discharge Canal and Isipingo Canal sites.
- Figure 5.1 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the the Botanic Gardens Lake.

CORRECTION OF U MAX FOR RADIANT FLUX DENSITY

- Table 5.4 Measured and predicted specific growth rates (U) of marginal plants and those normalized to 15°C (U15°C) at the Maturation Pond 3 site.
- Table 5.5 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Botanic Gardens Lake site.

72

73

74

75

76

77

- Table 5.6 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Hartbeespoort Dam site.
- Table 5.7 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Isipingo Lake, Discharge Canal and Isipingo Canal sites.
- Table 5.8 A comparison of the differences between measured and predicted specific growth rates at the Botanic Gardens Lake, Isipingo Lake and Discharge Canal sites.
- Figure 5.2 Average diffuse radiant fluxes recorded over each growing interval of marginal plants at 2 sites.
- Figure 5.3 A Lineweaver-Burk plot of the specific growth rates (assumed Umax's) of marginal plants norma= lized to 15°C (U_{15°C}) against the diffuse radiant fluxes at the Maturation Pond 3 site.
- Figure 5.4 An Arrhenius plot of the specific growth rates (assumed Umax's) of marginal plants (Log_e) against the products of the reciprocals of the Absolute mean daily air temperatures and diffuse radiant fluxes at the Maturation Pond 3 site.
- Figure 5.5 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the the Botanic Gardens Lake.

CORRECTION OF U MAX FOR RELATIVE HUMIDITY

Table 5.9 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Botanic Gardens Lake. 79

80

81

82

82

83

- Table 5.10 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Hartbeespoort Dam site.
- Table 5.11 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Isipingo Lake, Discharge Canal and Isipingo Canal sites.
- Table 5.12 A comparison of the differences between measured and predicted specific growth rates at the Botanic Gardens Lake, Isipingo Lake and Discharge Canal sites.
- Table 5.13 A comparison of the differences between measured and predicted specific growth rates at the Hartbees= poort Dam site.
- Figure 5.6 Average daily relative humidities recorded over each growing interval of marginal plants at 2 sites.
- Figure 5.7 An Arrhenius plot of the specific growth rates (assumed Umax's) of marginal plants (Log_e) against the products of the reciprocals of the Absolute mean daily air temperatures, diffuse radiant fluxes and mean daily relative humidities at the Maturation Pond 3 site.
- Figure 5.8 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Botanic Gardens Lake.
- Figure 5.9 Average pH values recorded in the water, over each growing interval, from the vicinity of the marginal plant populations enclosed at 2 sites.

87

86

88

90

89

90

91

CHAPTER 6 PREDICTING GROWTH RATES FROM THE NUTRIENT

CONCENTRATIONS IN THE PLANTS

FIELD DATA

- Table 6.1 A statistical comparison of the N and P concentra= tions analyzed in marginal plants at the Botanic Gardens Lake and Maturation Pond 3 sites.
- Table 6.2 Correlation coefficients calculated between the N and P concentrations in marginal and central plants and the various N and P fractions in the water at 2 sites.
- Table 6.3 A statistical comparison of the N and P concentra= tions analyzed in marginal and central plants at the Maturation Pond 3 site.
- Table 6.4 Estimates of the percentage of the maximum specific growth rate (% Umax) that marginal and central plants would achieve at the average N and P concen= trations in the plants at 6 field sites.
- Figure 6.1 Nitrogen concentrations analyzed in E. crassipes (marginal and central plants) harvested after each growing interval at 2 sites.
- Figure 6.2 Phosphorus concentrations analyzed in E. crassipes (marginal and central plants) harvested after each growing interval at 2 sites.
- Figure 6.3 The relationship between the N concentrations in marginal plants and the NH₄-N concentrations in the water at the Maturation Pond 3 site.

93

95

96

97

97

98

Figure 6.4	The relationship between the N concentrations in	
	marginal plants and the total N concentrations in	
	the water at the Maturation Pond 3 site.	98
Figure 6.5	The relationship between the P concentrations in	
	marginal plants and the SRP concentrations in	
	the water at the Maturation Pond 3 site.	99
Figure 6.6	The relationship between the N concentrations in	
	central plants and the NH4-N and total N concen=	
	trations in the water at the Maturation Pond 3 site.	100
Figure 6.7	The relationship between the P concentrations in	
	central plants and the SRP concentrations in the	
	water at the Maturation Pond 3 site.	100
COMPARISON	OF PREDICTED AND MEASURED SPECIFIC GROWTH RATES	
Table 6.5	Predicted specific growth rates and those measured	
	for marginal plants, over each growing interval,	
	at the Botanic Gardens Lake.	101
	and the state of the	
Table 6.6	Predicted specific growth rates and those measured	
	for marginal plants, over each growing interval,	
	at the Isipingo Lake, Discharge Canal and Hartbees=	
	poort Dam sites.	102
Table 6 7	Prodicted coocific crouth actes and the	
TADIE 0.7	for marginal plants and those measured	
	at the Isining Capal site	107
	at the isipingo canar site.	103
Table 6.8	A comparison of the differences between monoured	
	specific growth rates and those predicted from the	
	growth rate limiting putrient concentrations is the	
	water and in the plants at 3 sites	104
	and the promotion at y stres.	104

Figure 6.8 Predicted specific growth rates and those measured for marginal plants, over each growing interval, at the Botanic Gardens Lake site.

CHAPTER 7 GENERAL CONCLUSIONS AND APPLICATION

OF REFINED MODEL

- Table 7.1Application of the refined model for predicting
yields, growth rates and harvesting frequencies
for E. crassipes.106
- Table 7.2Stand densities (dry mass basis) reported forE. crassipes growing in loosely crowded and
densely crowded field populations.107

APPENDIX I PILOT STUDIES

Table	I	Average specific growth rates of E. crassipes grown over a 4 week growth period at different N concentra=	
		tions in culture.	108
Table	II	Chemical composition and ionic concentrations of	
		cation stock solutions.	109
Table	III	Relative proportions at which stock solutions were	
		combined to give 28 cation combination treatments.	110
Table	IV	Average specific growth rates of E. crassipes	
		grown over a 4 week growth period at various cation	
		combination treatments in culture.	110
Table	۷	Specific growth rates of E. crassipes grown over 3	

week growth period in aerated and unaerated cultures.

105

Table VI	Nutrient concentrations analyzed in water samples	
	taken from the vicinity of marginal and central plant populations at 3 sites.	112
Table VII	Nutrient concentrations analyzed in whole E. crassipes plants.	112
Table VIII	Variance ratios (F values) for data on chemical analysis of E. crassipes plant tissue.	113
Table IX	Nutrient concentrations analyzed in various plant parts of E. crassipes.	113
Table X	Nutrient concentrations analyzed in whole mar= ginal and central plants.	114
Table XI	Nutrient concentrations analyzed in various parts of marginal and central plants.	114
Figure I	Sites of collection of E. crassipes.	115
APPENDIX II	FIELD DATA	
Table I	Field data collected during growth of marginal plants: Maturation Pond site.	116-117
Table II	Field data collected during growth of marginal plants: Botanic Gardens Lake site.	118-119
Table III	Field data collected during growth of marginal plants: Isipingo Lake, Isipingo Canal, Discharge Canal and Hartbeespoort Dam sites.	120-121
Table IV	Field data collected during growth of central plants: Maturation Pond 3 and Discharge Canal sites.	122-123

CHAPTER 2

METHODS

Table 2.1 Criteria used by various researchers for selecting uniform E. crassipes plants for culture.

Growth in preliminary culture	No of pseudo– laminae	dry mass	height	Reference
weeks	per plant	g	CM	
-	-		-	Minshall and Scarth (1952)
-	-	-	-	Bock (1969)
-	-	-	1.0	Chadwick and Obeid (1966)
-	-	-		Gosset and Norris (1971)
1	4 or 5	-	-	Sutton and Blackburn (1971)
-	-	-	10 to 18	Haller and Sutton (1973)
	-	7,5	1	Haller et al. (1974)
-	-	_	-	Dunigan et al. (1975a)
4	-	2,75	-	Wolverton and McKown (1976)
-	-	-	-	Pieterse et al. (1976)
-	-	-	-	Freidel et al. (1978)
-	-	-		Tag El Seed (1978)
0	2	10,20 to 0,60	-	This study

Table 2.2 Summary of methods used by various researchers for measuring growth of E. crassipes in culture.

Parameter used for measuring growth	Growth period or measuring interval (days)	No replicates per treatment	Statistical treatment	Reference
Total dry mass Log _{lO}	28	4	Analysis of	Chadwick and
<pre>mean dry mass off= sets Log₁₀, numbers of offsets</pre>			variance	Obeid (1966)
% wet mass increase	21	3	-	Bock (1969)
Total dry mass	7	4	Duncans	Sutton and
			multiple	Blackburn
			range test	(1971)
Total dry mass	28	3	Duncans	Haller and '
			multiple	Sutton (1973)
			range test	
Total dry mass	28	4	Duncans	Haller et al.
			multiple	(1974)
			range test	
Number of offsets	28	4	-	Freidel et al.
				(1978)
Total dry mass	140	3	-	Tag El Seed
				(1978)
Change in fresh	2 to 4	16 to 20	Analysis of	This study
mass			variance	

Table 2.3 Numbers of plants (sample sizes) required to give a standard error in measurement of mass of 10% of the mean (n = SE 0,1 \bar{x}) as estimated from the fresh and dry masses of 20 marginal plants possessing 2 pseudolaminae sampled from a loosely crowded population in the field.

Plant No.	dry mass/g	fresh mass/g
1	0,30	5,4
2	0,33	6,0
3	0,44	10,8
4	0,41	9,7
5	0,35	7,0
6	0,27	4,2
7	0,39	8,6
8	0,34	6,8
9	0,28	4,3
10	0,38	8,3
11	0,23	4,6
12	0,52	11,3
13	0,35	7,4
14	0,34	6,0
. 15	0,65	13,2
16	0,37	7,1
17	0,23	4,0
18	0,48	10,8
19	0,42	9,3
20	0,24	4,1
Mean	0,37	7,44
Standard deviation	0,1039	2,7314
n = SE 0,1 x	8	14

Туре	Capacity litres	Composition	Reference
Museum jar	6	glass	Minshall and Scarth (1952)
7 lb. tinned vessels	3	lined with poly= ethylene bags	Chadwick and Obeid (1966)
Beakers	0,5	glass	Bock (1969)
- (-	2	-	Gosset and Norris (1971)
Jar	0,9	glass	Sutton and Blackburn (1971)
Container	11	polyethylene	Haller and Sutton (1973)
Container	11,4	glass	Haller et al. (1974)
Pots	6	glazed clay	Dunigan et al. (1975a)
Beakers	1	glass	Wolverton and McKown (1976)
Trays	108	polyethylene	Pieterse et al. (1976)
(45 x 30 x 80 cm)			
Container (25 x 25 x 25 cm)	15,6	metal	Freidel et al. (1978)
Container	3	plastic	Tag El Seed (1978)
Buckets	5	polyethylene	This study

Table 2.4 Types of vessels used by various researchers for culturing E. crassipes.

Table 2.5 Types of culture solutions used by various researchers for growing E. crassipes.

Culture solution	Reference		
20% Shives R ₄ C ₂ solution	Minshall and Scarth (1952)		
20% Standard Long Ashton solution	Chadwick and Obeid (1966)		
20% Hoaglands solution	- Bock (1969)		
100% Hoaglands solution	Gosset and Norris (1971)		
50% Hoaglands solution	Sutton and Blackburn (1971)		
50% Hoaglands solution	Haller and Sutton (1973)		
Pond water + 3 mg NO ₃ 1^{-1} ;			
1 mg P ₂ 0 ₅ 1 ⁻¹ ; 1 mg K ₂ 0 1 ⁻¹	Haller et al. (1974)		
20% Standard Long Ashton solution	Pieterse et al. (1976)		
Tap water + "OrthoGro" plant solution			
containing 480 mg N l ^{-l} ;			
240 mg P 1 ⁻¹ ; 250 mg K 1 ⁻¹	Wolverton and McKown (1976)		
20% Standard Long Ashton solution	Tag El Seed (1978)		
-	Freidel et al. (1978)		
Modified culture solution based on Hamner,			
Lyon and Hamner (1942)	This study		

Solution	Salt	Ionic concentration							
No			Cations			Anions			
		×10 ³		×103	× 10 ³		×10 ³		
		ugl-	1	ueq 1-1	ug 1-1		ueg 1-1		
1	K NO3	к	8,41	0,215	NO3	13,33	0,215		
	Ca(NO ₃) ₂ .4H ₂ O	Са	4,31 .	0,215	NO3	13,33	0,215		
	Mg(NO ₃) ₂ .6H ₂ O	Mg	2,61	0,215	NO3	13,33	0,215		
2	KH ₂ PO ₄	к	8,05	0,206	PO ₄	20,00	0,206		
3	K ₂ S0 ₄	к	8,14	0,208	S04	10,00	0,208		
	Mg SO ₄ .7H ₂ O	Mg	2,53	0,208	S04	10,00	0,208		
4	KCl	K	15,40	0,394	C1	13,97	0,394		
5	CaCl2	Ca	35,69	1,781	Cl	63,15	1,781		
6	Mg Cl ₂ 6H ₂ O	Mg	34,86	2,867	Cl	101,63	2,867		
7	NaCl	Na	20,00	0,869	C1	30,84	0,869		
		Tota	1	7,718			7,718		
8	Fe EDTA	Fe	0,40						
9	Cu S0 ₄ .5H ₂ 0	Cu	0,03						
	Mn 504.H20	Mn	0,27						
	Zn S04.7H20	Zn	0,13						
	H3 B03	в	0,27						
	(NH4)6M07024.4H20	Мо	0,01						

Table 2.6 Chemical composition and ionic concentration of culture solution used for growing E. crassipes in this study.

					the second se						
Ion	1.1	Ionic concentration x 10 ³ ug 1 ⁻¹									
	1	2	3	4	5						
NO3	40,0	20,0	42,0	28,0 - 5 <mark>6,8</mark>	28,0						
P04	20,0	9,5	6,2	8,2	37,0						
S04	20,0	40,0	12,8	9,6	96,0						
			5.4.5								
Na	20,0	-	-	6,0	9,0 - 25,0						
К	40,0	22,0	46,8	26,0 - 59,0	140,0						
Са	40,0	30,0	40,0	26,8 - 6 <mark>0,0</mark>	40,0						
Mg	40,0	7,4	9,6	7,2	72,0						
Fe	0,40	-	-	0,56 - 1,12	0,56						
Mn	0,27	-	0,10 ·	0,56	0,50						
Cu	0,03	-	0,014	0,064	0,02						
Zn	0,13	-	0,01	0,065	0,05						
В	0,27	-	0,10	0,50	0,15						
Мо	0,01	-	0,016	0,05	0,01						

Table 2.7 Ionic concentrations of culture solutions used by various researchers for growing E. crassipes.

- absent or not reported.

- 1 = modified culture solution based on Hamner, Lyon and Hamner (1942) used in this study.
- 2 = 20% Standard Long Ashton solution according to Chadwick and Obeid (1966).
- 3 = 20% Hoaglands solution used by Bock (1969); ionic concentration as reported by Hewitt (1966).
- 4 = 20% Standard Long Ashton solution used by Pieterse et al. (1976); Tag El Seed (1978); ionic concentration as reported by Hewitt (1966).
- 5 = 20% Shives R₄ C₂ solution used by Minshall and Scarth (1952); ionic concentration as reported by Hewitt (1966).

Table 2.8 Air and water temperatures used by various researchers for growing E. crassipes in culture.

Temperature °C		Reference
Day	Night	all alliant
-	_	Minshall and Scarth (1952)
-	-	Chadwick and Obeid (1966)
,4 to 26,7	4,4 to 26,7	Bock (1969)
-	- '	Gosset and Norris (1971)
-	-	Sutton and Blackburn (1971)
-	-	Haller and Sutton (1973)
-	-	Haller et al. (1974)
7 <u>+</u> 2	27 <u>+</u> 2	Pieterse et al. (1976)
4 to 25	24 to 25	Wolverton and McKown (1976)
5 to 40	20 to 25	Freidel et al. (1978)
-	-	Tag El Seed (1978)
5 to 31	21 to 25	This study.

Table 2.9 Light intensities and daily photoperiods used by various researchers for growing E. crassipes in culture.

Growth situation	Light source	Light intensity	Daily photoperiod hours	Reference
Greenhouse	Daylight and artificial	- Artificial source: 300 Watt incandes= cent lamps		Minshall & Scarth (1952)
Rakouba Growth chamber	Daylight Artificial	1	8 and 16	Chadwick & Ob <mark>eid (1966)</mark> Bock (1969)
Greenhouse	Daylight	-	. –	Gosset & Norris (1971)
Gr eenhouse	Daylight	- 1	-	Sutton & Blackburn (1971)
Greenhouse	Daylight	- ^	-	Haller & Sutton (1973)
Screened shade house	Daylight	-	-	Haller et al. (1974)
Greenhouse	Daylight and artificial	Artificial source: white fluo= rescent tubes 12 000 ergs cm ⁻² sec ⁻¹	24	Pieterse et al. (1976)
Greenhouse	Daylight	-	-	Wolverton & McKown (1976)
Growth chamber	Artificial	30 000 to 60 000 lux	12	Freidel et al. (1978)
Greenhouse	Daylight	-		Tag El Seed (1978)
Greenhouse	Daylight	1.80	12 to 14	This study.

Table 2.10 Treatment differences between experiments designed to determine kinetic coefficients for E. crassipes growing under N and P growth rate limitation in culture.

Ex=	N grow	wth rate limita	ation	Ex=	P growth rate limitation			
peri= ment	No of plants	N added x 10 ³	No of replica=	peri= ment	No of plants	P added x 10 ³	No of replica=	
No	as inoculum	ug N 51-1	tes per treatment	No	as inoculum	ug P 51-1	tes per treatment	
1	2	0; 11,29; 22,58; 33,87; 45,16; 56,45	20	6	2	0; 1,30; 2,61; 3,91; 5,22	20	
2	1	0; 4,52; 9,03 18,06; 27,10; 36,13	; 16	7	1	0; 0,65; 1,63; 2,61; 3,91; 5,22	16	
3	1	0; 4,52; 9,03 18,06; 27,10; 36,13	; 16	8	1	0; 1,30; 3,26; 5,22; 7,83; 10,44	18	
4	1	0, 9,03; 18,06; 28,10; 36,13; 45,16	18					
5	1	0; 9,03; 18,06; 28,10; 36,13; 45,16	18					

Table 2.11 Criteria used by various researchers for selecting uniform E. crassipes plants for field investigations.

Mean m ²	area	Mean	<mark>dry ma</mark> ss g	Other	Reference
	-	-		Free-floating healthy plants possessing no offsets	Bock (1969)
	-	-	-	-	Scarsbrook & Davis (1971)
	-	-	-	Plants of uniform size	Wahlquist (1972)
	-	-		Individual plants without stolons or offsets	Rushing (1974)
	18			Young plants	Ornes & Sutton (1975)
	-	8,	,8	-	Boyd & Scarsbrook (1975)
	-	-	-	· - 4	Wooten & Dodd (1976)
	-	1,7	79		Boyd (1976)
	-	0,4 t	:0 1,20	Marginal plants pos= sessing 3 pseudolaminae	This study
	-	2,5 t	:0 6,0	Central plants possess= ing 3 pseudolaminae	This study

Table 2.12 Types of enclosures used by various researchers for containing E. crassipes plants in the field.

Туре	Area m ²	Construction	Reference
Enclosure formed by other water	-		Bock (1969)
Wooden rafts (floating)	46	12,54 x 15,24 cm pine boards nailed together to form a square $(6,7 \times 6,7 \text{ m})$; held stationary by pine boards driven into the sediment and nailed to rafts	Wahlquist (1972)
Bamboo frame (floating)	4	Side of frame 2 bamboo rungs deep, each rung with diam. of 10 cm. Rungs laced together with nylon chord and nailed at joints. Frames anchored to concrete blocks	Rushing (1974)
Polyvinylchloride frames (floating)	4	PVC pipe (5,08 cm in diam.) used to construct 2,0 x 2,0 m frames, tied to metal posts anchored in sediment	Boyd & Scarsbrook (1975)
Bottomless barrels	-	Barrels painted with inert epoxy paint and set firmly in sediment	Dunigan et al. (1975a)
Polyvinylchloride rafts (floating)	20	PVC pipe (5,08 cm in diam.) used to construct 3,2 x 6,4 m enclosures, tied to metal posts anchored in sediment	
Cylindrical enclosure	ca 0,8 to 6,0	Plastic coated wire mesh ca 1,5m high held in place by metal fencing posts driven into the sediment	This study

Table	2.13	Summary	of	methods	used	by	various	researchers	for	measuring
		growth a	of E.	crassip	es in	the	field.			••
										1

Parameters used for measuring growth	No replicates per treatment	Growth period or measuring interval	Reference
Increase in fresh and	_	2	Bock (1969)
dry mass and plant		-	
numbers			
Increase in fresh and	3	11	Scarsbrook & Davis
dry masses	-		(1971)
Mean fresh mass in=	3	2	Wahlquist (1972)
crease			
Increase in mean fresh	3	1 to 2	Rushing (1974)
mass and plant numbers			,
Dry mass yield on half	8	1	Ornes & Sutton
surface area produced		•	(1975)
Increase in fresh mass,	1	2 to 2,5	Boyd & Scarsbrook
plant nos; shoot height;			(1975)
root length, based on			
0,25 m ² quadrat samples.			
Dry mass estimated on			
subsamples of 500 to			
700 g			
Increase in fresh and	5	14,5	Wooten & Dodd (1976)
dry masses based on			
1 m ² quadrat samples			
Increase in fresh mass	3	2 to 4	Boyd (1976)
based on 0,25 m ²			
quadrat samples. Dry			
mass estimated on			
subsamples			
Change in fresh mass	30 to 40	ca 2	This study.

Figure 2.1 Location of field sites. 1. Maturation pond, Northern sewage treatment works. 2 Discharge Canal, Northern sewage treat= ment works. 3. Botanic Gardens Lake. 4. Isipingo Lake. 5. Isipingo Canal. The Hartbeespoort Dam site in the Transvaal is shown in the inset.

CHAPTER 3

EXPERIMENTAL DETERMINATION OF KINETIC COEFFICIENTS

Table 3.1 Average daily air and water temperatures and relative humidi= ties recorded in the greenhouse during growth of E. crassipes in N deficient cultures.

Experiment No	Growth in N deficient culture	Air and water temperature °C			Relative humidity %			
	(days)	Max	Mean	Min	Max	Mean	Min	
1	18	25	24	23	80	67	55	
2.	39	30	28	26	72	62	53	
3	57	28	25	22	76	66	56	
4	21	24	21	19	81	70	59	
5	17	30	25	21	72	63	55	

Table 3.2	Mean fresh masses (g),	excluding dead mass	, and standard	devia=
	tions of groups of E.	crassipes plants to	comprise each	treat=
	ment in each experiment	at spiking.		

Treatment No	Experiment No							
	1	2	3	4	5			
1	17,25+4,45	32,43 <u>+</u> 13,94	35,81 <u>+</u> 8,71	17,92+5,21	25,05+5,77			
2	20,51+6,43	38,60 <u>+</u> 10,14	43,26+11,75	25,92+9,40	24, 43+7, 43			
3	22,83+6,48	35,06+ 8,09	39,60+10,99	25,41+7,02	22,39+6,12			
4	18,07+5,93	34,26+ 8,23	38,51+10,41	22,96+6,59	25,86+9,02			
5	19,50+6,51	39,35+ 6,48	34,90+ 5,72	20,56+6,79	24,23+8,20			
6 17, 33+6, 72		37, 55 <u>+</u> 13, 62 34, 31 <u>+</u> 10,		20,14+7,15	27,02+7,10			
Analysis of Var	iance							
•								
Variance								
ratio (F value)	2,47	1,07	1,91	3,53	0,82			
Degrees of								
freedom (n-l)	119	95	95	107	107			
Significance	NS	NS	NS	NS	NS			
level %	(P = 0,05)	(P = 0, 05)	(P = 0, 05)	(P = 0,05)	(P = 0, 05)			
NS = not signif.	icant							

Table 3.3 Experiment 1, treatment 4. Specific growth rates (g fresh mass $g^{-1} d^{-1}$) determined for E. crassipes between each weighing interval after the addition of N at a concentration of 6,77 x 10^3 ug N 1^{-1} .

Plant		Number of	days after	after the addition of N			
No	2	5	7	10	12	15	
1	0.0181	0.0459	0.0723*	0.0416	0.0292	0,0356	
2	0,0202	0,0411	0.0932*	0.0444	0.0148	0.0147	
3	0,0337	0.0380	0.0796*	0.0312	0.0276	0.0408	
4	0,0541	0.0421	0.0633*	0.0396	0.0214	0.0357	
5	0.0583	0.0348	0.0702*	0.0496	0.0376	0.0028	
6	0,0548	0,0478	0.0559*	0.0458	0.0053	0.0194	
7	0,0885*	0,0342	0,0383	0,0488	0,0270	0.0253	
8	0,0522	0,0361	0,0716*	0,0463	0,0291	0.0237	
9	0,0216	0,0866*	0,0669	0,0322	0.0135	0.0228	
10	, 0,0391	0.0433	0.0713*	0.0399	0.0268	0,0309	
11	0,0267	0,0347	0,0758*	0.0329	0.0389	0.0083	
12	0,0657	0,0525	0.0945*	0.0050	0.0351	0.0237	
13	0,0485	0,0409	0.0731*	0.0422	0.0355	0.0131	
14	0,0581	0,0467	0,0793*	0.0344	0.0250	0,0381	
15	0,0386	0,0547	0,0759*	0,0357	0.0377	0.0188	
16	0,0686	0,0402	0,0744*	0,0544	0.0319	0,0206	
17	0,0711*	0,0520	0,0699	0,0485	0.0368	0.0198	
18	0,0709*	0,0521	0,0605	0.0195	0.0306	0.0238	
19	0,0523	0,0504	0,0744*	0,0339	0,0213	0,0492	
20	0,0599	0,0339	0,0689*	0,0582	0,0159	0,0414	
	-	·		_	-,	-,+	

* Highest specific growth rate (maximum growth rate) attained by each plant after the addition of N.

Expe:	ci=			Analysis of Variance			
ment	No Correlation coefficient (r)	Degrees of freedom (n-1)	Significance level %	Variance ratio (F value)	Significance level %		
1	0,6877	99	0,1	78,19	0,1		
2	0,4258	79	0,1	9,49	1,0		
3	0,7018	79	0,1	79,06	0,1		
4	0,5697	89	0,1	22,37	0,1		
5	0,5578	89	0,1	20,51	0,1		

Table 3.4 Statistical analysis of regressions of 1/U against 1/N for E. crassipes grown under N growth rate limitation in culture.

Table 3.5 Maximum specific growth rates (Umax) and half saturation coef= ficients (Ksn) determined for E. crassipes under N growth rate limitation in culture.

Experi= ment No	Growth in N defi= cient	Umax g fresh 95% mass confidence	Ksn ug N 1-1	Air and water temperature °C			Relative humidity %			
	culture (days)	g ⁻¹ d ⁻¹	limits		Max	Mean	Min	Max	Mean	Min
1	18	0,0886	± 0,0064	1 505,6	25	24	23	80	67	55
2	39	0,0537	± 0,0028	399,8	31	28	25	71	62	53
3	57	0,0613	± 0,0089	1 085,3	30	26	23	73	63	54
4	21	0,0713	± 0,0042	914,0	28	24	21	76	66	56
5	17	0,0812	± 0,0050	975,5	30	26	22	72	63	55
Table 3.6 Quantities of N analyzed in 3 culture solution samples taken at random from each treatment in 3 experiments after fresh mass recordings had been terminated. A. Quantity of N (ug N 51^{-1}) remaining in culture solution. B. Quantity of N remaining in culture solution. B. Quantity of N remaining in culture solution as % of that initially added. ND = not deter= minable, N content < 5ug N 51^{-1} .

Treatment No		_		Exp	periment N	10	R.R.R.		
				1		2		3	
_				А	В	А	В	А	В
Ν	added	ug	N 51-1	0		0		0	
				ND	-	ND	-	ND	-
		1		ND	-	ND	-	ND	
				ND	1.0	ND	-	ND	-
N	added	ug	N 51-1	11 2	90	4 5	520	· 4	520
				ND	-	ND		ND	-
		2		5	0,04	ND	-	ND	-
				5	0,04	ND	-	ND	-
N	added	ug	N 51-1	22 5	80	9 (9	030
				10	0,04	5	0,05	ND	-
		3		5	0,02	ND	-	ND	-
				ND	-	[.] 5	0,05	5	0,05
N	added	ug	N 51-1	33 8	570	18 060		18	060
				15	0,04	5	0,03	10	0,05
		4		5	0,01	10	0,05	10	0,05
				10	0,03	ND	-	5	0,03
N	added	ug	N 51-1	45 1	.60	27]	LOO	27	100
				20	0,04	5	0,02	10	0,04
		5		30	0,07	15	0,05	10	0,04
				15	0,03	5	0,02	15	0,05
N	added	ug	N 51-1	56 4	50	36]	130	36	130
				25	0,04	25	0,07	20	0,05
		6		15	0,03	10	0,03	5	0,01
				40	0,07	10	0,03	25	0,07

Exper	ri=			Analysis	of Variance
ment	No Correlation coefficient (r)	Degrees of freedom (n-1)	Significance level %	Variance ratio (F value)	Significance level %
1	0,7636	59	0,1	81,16	0,1
2	0,8141	95	0,1	184,72	0,1
3	0,7954	95	0,1	161,91	0,1

Table 3.7 Statistical analysis of regressions relating total fresh mass yields of E. crassipes to quantities of N supplied in culture.

Table 3.8 Yield coefficients, Ycn, (g of fresh mass yield of plant mate= rial per g of N absorbed by plants) determined for E. crassipes under N growth rate limitation in culture. Yield coefficients (dry mass basis) are estimated from the mean water contents of plants determined in each experiment.

Experi=	Growth in	Ycn	Mean water co	ontent, plants	Ycn	
ment No	N defi=	(fresh mass	11-0		(dry mass	
	cient	basis)	%	Standard	basis)	
	culture			deviation		
	(days)					
			in the second	1		
1	18	1 981,1	95,05	± 0,85	98,1	
2	39	1 664,9	94,78	± 0,93	86,9	
3	57	1 659,6	94,72	± 0,83	87,6	
Analysis	of Varianc	e				
Variance	ratio					
(F value)		3,26			
Degrees	of freedom					
(n-1)			311			
Signific	ance level		NS			
%			(P = 0, 05)			
NS = not	significan	t				

Treatment No	Experiment No					
	1	2	3			
1	0,94	0,98	1,08			
2	1,02	1,07	1,00			
3	1,01	1,27	1,07			
4	1,08	1,09	1,11			
5	1,28	1,10	1,08			
6	1,20	1,18	1,03			
Means	1,091	1,117	1,063			
Analysis of Va	riance					

Table 3.9	Minimum N concentrations,	% dry mass,	(means	of 3	batches)	ana=
	lyzed in E. crassipes har	vested from c	ulture.			

Variance ratio	
(F value)	0,48
Degrees of freedom	
(n-1)	53
Significance level	NS
%	(P = 0, 05)

NS = not significant

Figure 3.5 Experiment 5. Change in fresh mass (means of 18 plants/ treatment) of E. crassipes grown under varying conditions of N supply. All treatments were grown under N deficient con= ditions for 17 days before N was added. A. No N; B. 9 030 ug N (1 810 ug N 1⁻¹); C. 18 060 ug N (3 610 ug N 1⁻¹); D. 28 100 ug N (5 420 ug N 1⁻¹); E. 36 130 ug N (7 220 ug N 1⁻¹); F. 45 160 ug N (9 030 ug N 1⁻¹). Standard deviations of means are shown by bars: a = lag phase of growth; b = period of maximum growth rate; c = termination of fresh mass recordings; d = projected growth in the absence of N.

Figure 3.6 Experiment 1. A Lineweaver-Burk plot of the specific growth rates of E. crassipes (means of 20 plants/treatment) against the levels of N supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars. $\hat{U} = Umax$.

Figure 3.7 Experiment 2. A Lineweaver-Burk plot of the specific growth rates of E. crassipes (means of 16 plants/treatment) against the levels of N supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars. U = Umax.

Figure 3.8 Experiment 3. A Lineweaver-Burk plot of the specific growth rates of E. crassipes (means of 16 plants/treatment) against the levels of N supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars. $\hat{U} = Umax$.

Figure 3.9 Experiment 4. A Lineweaver-Burk plot of the specific growth rates of E. crassipes (means of 18 plants/treatment) against the levels of N supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars. U = Umax.

Figure 3.10 Experiment 5. A Lineweaver-Burk plot of the specific growth rates of E. crassipes (means of 18 plants/treatment) against the levels of N supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars. U = Umax.

Figure 3.11 Experiment 1. The relationship between the total fresh mass yields of **E. crassipes** (means of 20 plants/treatment) and the quantities of N supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars.

Figure 3.12 Experiment 2. The relationship between the total fresh mass yields of E. crassipes (means of 16 plants/treatment) and the quantities of N supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars.

Figure 3.13 Experiment 3. The relationship between the total fresh mass yields of **E. crassipes** (means of 16 plants/treatment) and the quantities of N supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars.

Table 3.10 Average daily air and water temperatures and relative humidi= ties recorded in the greenhouse during growth of E. crassipes in P deficient cultures.

Experiment No	Nent Growth in P Air and water temperatu deficient °C culture		temperature	e Relative humidity %			
	(days)	Max	Mean	Min	Max	Mean	Min
6	17	31	28	25	70	60	55
7	39	30	28	26	71	62	54
8	38	30	25	21	72	64	56

Table 3.11 Mean fresh masses (g), and standard deviations of groups of E. crassipes plants to comprise each treatment in each experiment at spiking.

Treatment No		Experiment No						
	6	7	8					
1	17,71+ 5,64	43,33+ 8,21	69,03+20,92					
2	23,50+10,58	38,48+14,49	84,92+15,47					
3	19,37 <u>+</u> 7,79	43,48+ 8,09	80,28+19,98					
4	20,17 <u>+</u> 6,74	41,58+ 8,84	89,82+18,52					
5	24,44 <u>+</u> 8,39	42,93+ 6,51	81,12+22,79					
6	-	41,18+11,62	80,32+20,83					
Analysis of Vari	ance							
Variance ratio								
(F value)	1,26	0,57	2,16					
Degrees of freed	OM							
(n-1)	99	95	107					
Significance lev	el							
%	NS	NS	NS					
	(P = 0,05)	(P = 0, 05)	(P = 0.05)					
NS = not signific	cant							

Table 3.12 Experiment 7, treatment 6. Specific growth rates (g fresh mass g^{-1} d^{-1}) determined for **E. crassipes** between each weighing interval after the addition of P at a concentration of 1,04 x 10^3 ug P 1^{-1} .

Plant		Number of	days after	the addit	ion of P	-
No	3	7	10	14	17	21
1	0.0116	0.0296	0.0531*	0.0508	0.0150	0.0388
2	0.0049	0,0317	0,0451	0,0555*	0,0529	0,0393
-	0,0010	0,0372	0,0420	0,0473*	0,0125	0,0325
4	0,0071	0,0153	0,0679*	0,0404	0,0356	0,0269
5	0,0184	0,0178	0,0209	0,0257*	0,0233	0,0078
6	0,0057	0,0020	0,0533*	0,0529	0,0010	0,0219
7	0,0010	0,0308	0,0415	0,0570*	0,0207	0,0407
8	0,0162	0,0127	0,0423*	0,0395	0,0282	0,0359
9	0,0291	0,0357	0,0544	0,0605*	0,0575	0,0556
10	0,0010	0,0280	0,0495*	0,0490	0,0213	0,0327
11	0,0010	0,0305	0,0401	0,0540*	0,0241	0,0312
12	0,0049	0,0355	0,0343	0,0454*	0,0209	0,0334
13	0,0088	0,0147	0,0579	0,0632*	0,0545	0,0369
14	0,0161	0,0283	0,0262	0,0331*	0,0187	0,0281
15	.0,0056	0,0166	0,0526*	0,0386	0,0285	0,0295
16	0,0145	0,0127	0,0299	0,0484*	0,0436	0,0377

* Highest specific growth rate (maximum growth rate) attained by each plant after the addition of P.

Exper	ri=			Analysis	of Variance
ment	No Correlation coefficient (r)	Degrees of freedom (n-1)	Significance level %	Variance ratio (F value)	Significance level %
6	0,3463	79	1	4,57	• 5
7	0,3799	79	0,1	9,73	1
8	0,4769	89	0,1	13,51	0,1

Table 3.13 Statistical analysis of regressions of 1/U against 1/P for E. crassipes grown under P growth rate limitation in culture.

Table 3.14 Maximum specific growth rates (Umax) and half saturation coefficients (Ksp) determined for E. crassipes under P growth rate limitation in culture.

Experi= ment No	Growth i P defi= cient	n <u>l</u> g fresh mass	max 95% confidence	Ksp ug P 1-1	Air tem	and wa perate	ater ure	Rela	tive idity %	
	culture (days)	g-1 d-1	limits		Max	Mean	Min	Max	Mean	Min
6	17	0,1089	± 0,0045	79,5	31	28	25	70	61	52
7	39	0,0453	± 0,0016	41,1	30	27	25	72	62	53
8	38	0,0451	± 0,0030	161,8	30	26	22	73	64	55

Table 3.15 Quantities of P analyzed in 3 culture solution samples taken at random from each treatment in 3 experiments after fresh mass recordings had been terminated. A. Quantity of P (ug P 51-1) remaining in culture solution. B. Quantity of P remaining in culture solution as % of that initially added. ND = not deter= minable, P content < 5ug P 51-1.</p>

Treatment N	No	_		E	Exper	iment I	No	
		6			7		8	
		A	В	А		в	Α .	В
P added ug	P 51-1	0			0		0	
		ND	-	ND		-	ND	- 5
1		ND	-	ND		-	ND	
		ND	-	ND		-	ND	-
P added ug	P 51-1	1 300	-	1	650		1 30	0
		ND	-	ND		-	ND	-
2		ND	_	ND		-	ND	-
		ND	-	ND		-	ND	-
P added ug	P 51-1	2 610	19-7	1	630		3 26)
		ND	-	ND		-	ND	-
3		ND	-	ND		-	ND	-
		ND	-	ND		-	ND	-
P added ug	P 51-1	3 910		2	610		5 220)
		ND	-	ND		-	5	0,09
4		ND	-	ND		22	ND	-
		ND	-	ND		4	ND	-
P added ug	P 51-1	5 220		3	910		7 830)
		5	0, <mark>09</mark>	ND		-	5	0,06
5		ND	-	ND		-	ND	- 2
		ND	-	ND		-	5	0,06
P added ug	P 51-1		198	5	220		10 440)
				ND		-	5	0,05
6				5		0,09	10	0,09
				5		0,09	10	0,09

Expe	ri=				Analysis	of Variance
ment	No	Correlation coefficient (r)	Degrees of freedom (n-1)	Significance level %	Variance ratio (F value)	Significance level %
6		0,8259	49	0,1	49,34	0,1
7		0,8224	95	0,1	192,20	0,1
8		0,8458	107	0,1	196,25	0,1

Table 3.16 Statistical analysis of regressions relating total fresh mass yields of E. crassipes to quantities of P supplied in culture.

Table 3.17 Yield coefficients, Ycp, (g of fresh mass yield of plant mate= rial per g of P absorbed by plants) determined for **E. crassipes** under P growth rate limitation in culture. Yield coefficients (dry mass basis) are estimated from the mean water contents of plants determined in each experiment.

Experi=	Growth in	Үср	Mean water co	ontent, plants	Уср
ment No	P defi=	(fresh mass			(dry mass
	cient	basis)	%	Standard	basis)
	culture			deviation	
	(days)				
			and the second		
6	17	18 670,6	94,75	<u>+</u> 0,87	980,2
7	39	16 431,2	94,72	± 0,96	867,6
8	38	16 642,2	94,79	± 0,92	867,1
Analysis	of Varianc	æ			
Variance	ratio				
(F value)		2,72		
Degrees	of freedom				
(n-1)			303		
Signific	ance level		NS		
%			(P = 0,05)		
NS = not	significan	t			

Treatment No		Experiment No				
	6	7	8			
1	0,10	0,09	0,10			
2	0,11	0,10	0,11			
3	0,10	0,11	0,12			
4	0,12	0,12	0,12			
5	0,13	0,12	0,14			
6		0,13	0,12			
Means	0,11	0,11	0,12			
Analysis of \	/ariance					
Variance rati	lo					
(F value)		0,73				
Degrees of freedom						
(n-1)		50				
Significance	level	NS				
%		(P = 0,05)				

Table 3.18 Minimum P concentrations, % dry mass, (means of 3 batches) ana= lyzed in E. crassipes harvested from culture.

NS = not significant

nt sgr anlera

E. S 22 Means ave subla

1777 OS

Figure 3.17 Experiment 6. A Lineweaver-Burk plot of the specific growth rates of **E. crassipes** (means of 20 plants/treatment) against the levels of P supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars. U = Umax.

Figure 3.18 Experiment 7. A Lineweaver-Burk plot of the specific growth rates of E. crassipes (means of 16 plants/treatment) against the levels of P supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars. U = Umax.

Figure 3.19 Experiment 8. A Lineweaver-Burk plot of the specific growth rates of **E. crassipes** (means of 18 plants/treatment) against the levels of P supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars. U = Umax.

Figure 3.20 Experiment 6. The relationship between the total fresh mass yields of E. crassipes (means of 20 plants/treatment) and the quantities of P supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars.

Figure 3.21 Experiment 7. The relationship between the total fresh mass yields of E. crassipes (means of 16 plants/treatment) and the quantities of P supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars.

Figure 3.22 Experiment 8. The relationship between the total fresh mass yields of E. crassipes (means of 18 plants/treatment) and the quantities of P supplied in culture. Broken lines show 95% confidence limits on either side of the regression line. Standard deviations of means are shown by bars.

Table 3.19 The error with which the specific growth rate (U) of E. crassipes would be predicted as estimated from the highest and lowest maximum specific growth rates (Umax) determined for this plant under N and P growth rate limitation respectively in culture. The differences between the predicted specific growth rates estimate the error.

Growth rate limit=	Umax	S/(Ks + S)	U	Difference
ing nutrient	(measured)		(predicted)	
	* % d-1		* % d-l	* % d - 1
Ν	8,86	0,95	8,42	2,60
Ν	6,13	0,95	5,82	
Ν	8,86	0,50	4,43	1,37
Ν	6,13	0,50	3,06	
Ν	8,86	0,20	1,77	0,54
N	6,13	0,20	1,23	
P	10,89	0,95	10,34	6,06
Р	4,51	0,95	4,28	-
Р	10,89	0,50	5,44	3,19
Р	4,51	0,50	2,25	,
	-	-		
Ρ	10,89	0,20	2,18	1,28
P	4,51	0,20	0,90	,
		-		
* % d ⁻¹ = g fresh	mass g ⁻¹ d ⁻¹	X 100		
-	J			

· ·

Table 3.20 The error with which the specific growth rate (U) of E. crassipes would be predicted as estimated from the highest and lowest half saturation coefficients (Ks) determined for this plant under N and P growth rate limitation respectively in culture. Estimates are based on the highest maximum specific growth rates (Umax) determined in culture. The differences between the predicted specific growth rates estimate the error.

Growth rate	Concentrati	on Ks	Umax	U	Difference
limiting	in water		(measure	d) (predicte	d)
nutrient	ug 1-1	ug 1 - 1	* % d-1	* % d-1	* % d-1
N	20 000	399,8	8,86	8,69	0,45
N	20 000	1 505,6	8,86	8,24	
N	200	399,8	8,86	2,95	1,91
Ν	200	1 505,6	8,86	1,04	
Ρ	2 000	41,1	10,89	10,67	0,60
Р	2 000	161,8	10,89	10,07	
Р	20	41,1	10,89	3,56	2,36
Р	20	161,8	10,89	1,20	- ,

* % $d^{-1} = g$ fresh mass $g^{-1} d^{-1} \times 100$

Table 3.21 Half saturation coefficients (Ksn) reported for various species of algae compared with those determined for E. crassipes.

Organism	Growth rate limiting nutrient	e Ksn ug N 1-1	Reference
Chlorella pyrenoidosa*	Ν	1 400 - 3 000	Shelef e t al. (1968)
Chlorella pyrenoidosa**	Ν	700 - 14 000	Shelef et al. (1968)
Mixed algae	Ν	450	Shelef e t al. (1968)
Selenastrum gracile	Ν	150	Middlebrooks et al. (1971)
Eichhornia crassipes	N	399,8 - 1 505,6 (mean : 976)	This study
 * High temperature s 	train		
** Emersion Strain			

Organism	Growth rate	Ksp	Reference
-	limiting	ug P 1-1	
	nutrient	5	
Chlorella pyrenoidosa*	Р	55	Zabat et al. (1970)
Chlorella pyrenoidosa**	Р	21 - 29	Zabat et al. (1970)
Selenastrum gracile	Р	10	Middlebrooks et al.
			(1971)
Selenastrum	Р	3,7 - 5,7	Toerien et al. (1971)
capricornutum			
Eichhornia crassipes	Р	41,1 - 161,8	This study
		(mean : 94,1)	
* High temperature s	train		
** Emersion strain			

.

Table 3.22 Half saturation coefficients (Ksp) reported for various species of algae compared with those determined for **E. cras**si**pes**.

Table 3.23 Yield coefficients, Ycp, (g of dry mass yield of plant material per g of P absorbed by plants) reported for various species diatoms and other algae compared with those determined for E. crassipes.

	Our the second		D - 6
Urganism	Growth rate	Ycp	Keterence
	limiting	(dry mass basis)	
	nutrient		
	_		
Selenastrum	Р	805	Toerien et al. (1971)
capricornutum			
Microcystis aeruginosa	Р	833 - 909	Gerloff and Skoog
			(1954)
Chlorella pyrenoidosa	Р	312 - 374	Zabat et al. (1970)
Nitzchia elliptica	Р	845	Coetzer et al. (1977)
Nitzchia perpusilla	Р	455	Coetzer et al. (1977)
Nitzchia pelliculosa	Р	177	Coetzer et al. (1977)
Nitzchia palea	P	171	Coetzer et al. (1977)
Eichhornia crassipes	P	867,1 - 980,2	This study
·		(mean : 904,9)	
		, .	

Table 3.24 Yield coefficients, Ycn, (g of dry mass yield of plant material per g of N absorbed by plants) reported for various species diatoms and other algae compared with those determined for **E. crassipes.**

Organism	Growth rate limiting nutrient	Ycn (dry mass basis)	Reference
Selenastrum	N	35,0	Steyn (1973)
capricornutum Microcystis aeruginosa	Ν	31,7	Gerloff and Skoog (1954)
Chlorella pyrenoidosa	Ν	20,0	Shelef et al. (1968)
Chlorella sorokiniana	Ν	17,9	Richardson et al. (1969)
Nitzchia perpusilla	Ν	23,6	Coetzer et al. (1977)
Nitzchia elliptica	Ν	20,0	Coetzer et al. (1977)
Nitzchia pelliculosa	Ν	15,6	Coetzer et al. (1977)
Nitzchia palea	Ν	15,0	Coetzer et al. (1977)
Eichhornia crassipes	N	86,9 - 98,1 (mean : 90,9)	This study

Table 3.25 Minimum N concentrations in **E. crassipes** estimated from the yield coefficients (Ycn), determined under N growth rate limi= tation in culture, compared with the minimum N concentrations analyzed in plants harvested from culture.

Experiment No	Ycn (dry mass) basis)	Minimum N concentration (1/Ycn x 100) % dry mass	Minimum N concentrations in plants harvested from culture (means of 6 treatments) % dry mass
1	98,1	1,02	1,09
2	86,9	1,15	1,11
3	87,6	1,14	1,06
Mean	90,9	1,10	1,09

Table 3.26 Minimum P concentrations in E. crassipes estimated from the yield coefficients (Ycp), determined under P growth rate limi= tation in culture, compared with the minimum P concentrations analyzed in plants harvested from culture.

Experiment No	Ycp (dry mass) basis)	Minimum P concentration (1/Ycp x 100) % dry mass	Minimum P concentrations in plants harvested from culture (means of 6 treatments) % dry mass
6	980,2	0,10	0,11
7	867,6	0,11	0,11
8	867,1	0,11	0,12
Mean	904,9	0,11	0,11

CHAPTER 4

TESTING THE MODEL UNDER FIELD CONDITIONS

Table 4.1 A statistical comparison of specific growth rates measured for marginal plants at the Botanic Gardens Lake (BGL) and Matura= tion Pond 3 (MP3) sites during 1978.

Growing	Specific	growth rate	F value	Significance level			
interval	g fresh «	nass g-l d-l	for 79 degrees				
Dates	BGL	MP3	of freedom	%			
	<u>_</u> _						
1978							
1/2 - 16/2	0,1158	0,1498	68,03	0,1			
17/2 - 1/3	0,1227	0,1698	106,74	0,1			
2/3 - 14/3	0,0996	0,1534	102,52	0,1			
16/3 - 29/3	0,0675	0,1481	89,22	0,1			
31/3 - 12/4	0,0689	0,1146	62,31	0,1			
14/4 - 26/4	0,0601	0,0936	16,01	0,1			
28/4 - 9/5	0,0645	-	-	-			
12/5 - 24/5	0,0478	0,1084	109,35	0,1			
26/5 - 7/6	0,0493	0,0987	262,13	0,1			
9/6 - 21/6	0,0305	0,0693	98,67	0,1			
23/6 - 5/7	0,0313	0,0526	37,39	0,1			
7/7 - 19/7	0,0527	0,0859	114,19	0,1			
20/7 - 2/8	0,0443	0,1041	184,19	0,1			
4/8 - 16/8	0,0635	0,1082	238,13	0,1			
18/8 - 30/8	0,0651	0,0981	100,61	0,1			
1/9 - 13/9	0,0615	0,1036	125,02	0,1			
15/9 - 27/9	0,0867	0,1179	45,09	0,1			
29/9 - 12/10	0,0843	0,1239	89,46	0,1			
13/10 - 24/10	0,1162	0 , 1358	12,62	0,1			
25/10 - 8/11	0,1064	0,1223	9,89	1,0			
10/11 - 22/11	0,0963	0,1147	7,62	1,0			
24/11 - 6/12	0,1207	0,1292	1,60	NS (P=0,05)			
NS = not significant							

Table 4.2 A statistical comparison of specific growth rates measured for marginal and central plants at the Discharge Canal (DC) and Maturation Pond 3 (MP3) sites during 1977 and 1978.

Growin	ng	Site	Specific g	growth rate	F value	Significance
interv	val		g fresh ma	ass g ^{-l} d ^{-l}	for 69 degrees	level
Dates			Marginal	Central	of freedom	%
197	7					•
3/11	- 16/11	DC	0,0965	0,0379	49,42	0,1
18/11	- 30/11	DC	0,1035	0,0526	46,06	0.1
1/12	- 14/12	DC	0,0940	0,0338	63,96	0,1
197	7		·	,	,	-,-
3/11	- 16/11	MP3	0,1668	0,0559	238,48	0,1
18/11	- 30/11	MP3	0,1544	0,0573	235,16	0,1
1/12	- 14/12	MP3	0,1214	0,0659	15,36	0,1
1978	В				-	-
1/2	- 16/2	MP3	0,1498	0,0324	443,01	0,1
17/2	- 1/3	MP3	0,1698	0,0357	650,7 9	0,1
2/3	- 14/3	MP3	0,1534	0,0259	317,35	0,1
16/3	- 29/3	MP3	0,1481	0,0312	184,33	0,1
31/3	- 11/4	MP3	0,1146	0,0403	156,91	0,1
14/4	- 26/4	MP3	0,0936	0,0231	57,12	0,1
28/4	- 10/5	MP3	-	0,0202	-	-
12/5	- 24/5	MP3	0,1084	0,0203	224,85	0,1
26/5	- 7/6	MP3	0,0987	0,0242	366,64	0,1
15/9	- 27/9	MP3	0,1179	0,0248	421,91	0,1
29/9	- 12/10	MP3	0,1239	0,0262	508,72	0,1
13/10	- 24/10	MP3	0,1358	0,0299	611,03	0,1
25/10	- 8/11	MP3	0,1223	0,0268	292,59	0,1
10/11	- 22/11	MP3	0,1147	0,0255	195,76	0,1
24/11	- 6/12	MP3	0,1292	0,0271	123,84	0,1

Table 4.3 Correlation coefficients and Q_{10} values calculated from the regressions relating the specific growth rates (U) of marginal and central plants (Log_e) to the reciprocals of the Absolute mean daily air and water temperatures at the Maturation Pond 3 (MP3) and Botanic Gardens Lake (BGL) sites over the period February to December, 1978.

Site	Environmental factor	Correlatio coefficien (r)	on Degrees of nt freedom (n - 1)	Significance level %	Q ₁₀ 15°C - 25°C
MARGI	NAL PLANTS				
MP3	U vs. Air temp	0,8089	20	0,1	2,14
MP3	Water temp	0.0,8469	20	0,1	1,80
BGL	U vs. Air temp	0. 0,7442	21	0,1	2,95
BGL	Water temp	. 0,8629	21	0,1	2,58
CENTR	AL PLANTS				i.
MP3	U vs. Air temp	. 0,6531	14	1	1,71
MP3	Water temp	. 0,5479	14	5	1,42

Table 4.4 The percentage of the maximum specific growth rate (% Umax) that E. crassipes would achieve at the average total N and total P concentrations in the water at 6 field sites. Estimates are based on the mean Ks concentrations of 976 ug N 1^{-1} and 94,1 ug P 1^{-1} determined for this plant under N and P growth rate limitation respectively in culture.

Dates		Site	Water			% Umax		
				total N ug N 1-1	total P ug P 1 - 1	<u>total N</u> total P	N	Ρ
197	7							
11/8	-	7/9	IL	2248	586	3,8	69,7*	86,2
8/9	-	26/10	IC	2071	315	6,6	67 , 9*	76,9
3/11	-	14/12	DC	5884	2483	2,4	85,8*	96,3
28/9	-	22/12	HD	3099	171	18,1	76,0	64,5*
1/9	-	14/12	MP3	17979	7921	2,3	94,8*	98,8
197	8							
1/2	-	6/12	MP3	20746	6569	3,1	95,5*	98,6
1/2	-	6/12	BGL	10206	150	68,0	91,3	61,4*
* G:	row	th rat	e limi	ting nutrie	ent			
IL = Isipingo LakeHD = HartbeesIC = Isipingo CanalMP3 = MaturatiDC = Discharge CanalBGL = Botanic					tbeespoor uration Po anic Garde	t Dam ond 3 ens Lake		

Figure 4.1 Average specific growth rates measured for E. crassipes, over each growing interval at 2 sites. Solid line = marginal plants growing in loosely crowded field populations (means of 40 replicates). Broken line = central plants growing in densely crowded field populations (means of 30 replicates). No plants of the central growth form were produced during June, July and August. Standard deviations of means are shown by bars.

Figure 4.2 Average daily air temperatures recorded over each growing interval of marginal plants at 2 sites.

Figure 4.3 Average daily water temperatures recorded over each growing interval of marginal plants at 2 sites.

Figure 4.4 An Arrhenius plot of the specific growth rates (Log_e) of marginal plants against the reciprocals of the Absolute mean daily air temperatures at the Maturation Pond 3 site.

Figure 4.5 An Arrhenius plot of the specific growth rates (Log_e) of marginal plants against the reciprocals of the Absolute mean daily air temperatures at the Botanic Gardens Lake site.

Figure 4.6 An Arrhenius plot of the specific growth rates (Log_e) of marginal plants against the reciprocals of the Absolute mean daily water temperatures at the Maturation Pond 3 site.

Figure 4.7 An Arrhenius plot of the specific growth rates (Log_e) of marginal plants against the reciprocals of the Absolute mean daily water temperatures at the Botanic Gardens Lake site.

Figure 4.8 An Arrhenius plot of the specific growth rates (Log_e) of central plants against the reciprocals of the Absolute mean daily air temperatures at the Maturation Pond 3 site.

Figure 4.9 An Arrhenius plot of the specific growth rates (Log_e) of central plants against the reciprocals of the Absolute mean daily water temperatures at the Maturation Pond 3 site.

Figure 4.10 Average nitrogen (NO3-N, NH4-N and total N) concentrations analyzed in the water, over each growing interval, from the vicinity of the marginal plant populations enclosed at 2 sites.

Figure 4.11 Average phosphorus (SRP and total P) concentrations analyzed in the water, over each growing interval, from the vicinity of the marginal plant populations enclosed at 2 sites.

Figure 4.12 Average dissolved oxygen concentrations recorded in the water, over each growing interval, from the vicinity of the marginal plant populations enclosed at 2 sites.

Table 4.5 Maximum specific growth rates (Umax) predicted for E. crassipes for various temperatures according to the van't Hoff rule. Predictions were based on the Umax value of 0,0886 g fresh mass $g^{-1} d^{-1}$ determined for this plant at a mean daily air and water temperature of 24°C under N growth rate limitation in culture.

Mean daily temperature °C	1/Т × 10 ⁴ °К	Umax g fresh mass g ⁻¹ d ⁻¹
24	33,6473	0,0886
21	33,9904	0,0723
19	34,2231	0,0630
17	34,4589	0,0548
14	34,8189	0,0443

Table 4.6 Specific growth rates (U) predicted for E. crassipes from the N (NO₃-N, NH₄-N and total N) concentrations in the water, over each growing interval, at the Maturation Pond 3 site compared with those measured for marginal plants, growing in loosely crowded populations at this site. Maximum specific growth rates (Umax) predicted for E. crassipes, over each growing interval, according to the van't Hoff rule using a Umax value determined for this plant under N growth rate limitation in culture.

Growi	ng		Predicted values				Measured va	lues
interv	val		Umax	U	g fresh m	ass g ^{-l} d ^{-l}	U	Standard
			g fresh	Ì			g fresh ma	ss deviation
			mass				a-1 d-1	
Datas				NO- N	N∐ / _N	total N	3 -	
Dates	_		<u>y</u> - u -	1103-11		LULAI N		
197	/	7/0	0 0471	0 0500	0 0472	0.0644	0 1001	+0 0267
1/9 8/9	_	21/9	0,0671	0,0000	0,0652	0,0644	0,1991	+0,0265
23/9	_	4/10	0,0666	0.0617	0,0595	0.0635	0,1542	± 0.0163
28/10	-	2/11	0,0759	0,0590	0,0696	0,0710	0,1662	±0,0491
3/11	-	16/11	0,0699	0,0354	0,0656	0,0658	0,1668	±0,0211
18/11	-	30/11	0,0801	0,0664	0,0734	0,0753	0,1544	±0,0221
1/12	-	14/12	0,0880	0,0729	0,0816	0,0833	0,1214	±0,0236
197	8							
1/2	-	16/2	0,0941	0,0780	0,0866	0,0887	0,1498	±0,0227
17/2	-	1/3	0,0857	0,0586	0,0799	0,0806	0,1698	<u>+</u> 0,0214
2/3	-	14/3	0,0960	0,0776	0,0831	0,0878	0,1534	±0,0312
$\frac{16}{3}$	-	29/3	0,0947	0,0806	0,0745	0,0856	0,1481	±0,0395
) 1///	-	11/4 26//	0,0857	+0 0637	0,0811	U, U824	0,1146	±0,0191
28/4	_	20/4 9/5	0,0709	0,0657	0,0539	^0,0657	0,0936	-0,0314
12/5	-	24/5	0.0630	0.0550	0,0578	0,0597	_ 0.1084	- +0 0249
26/5	-	7/6	0,0617	0,0491	0,0583	0,0589	0,0987	±0,0128
9/6	-	21/6	0,0522	0,0450	*0,0497	*0,0503	0,0693	±0,0196
23/6	-	5/7	0,0514	*0,0413	*0,0488	*0,0492	0,0526	<u>+</u> 0,0126
20/7	-	19/7	0,0564	0,0476	0,0528	0,0537	0,0859	±0,0155
2077	-	2/0	0,0092	0,0474	0,0566	0,0570	0,1041	±0,0220
18/8	_	30/8	0.0613	0,0451 0.0358	0,0576	0,0577	0,1082	$\pm 0,0125$
1/9	-	13/9	0,0564	0,0514	0.0533	0,0544	0,1036	+0.0129
15/9	- 1	27/9	0,0685	0,0249	0,0658	0,0659	0,1179	± 0.0198
29/9	-	12/10	0,0622	0,0580	0,0588	0,0603	0,1239	±0,0186
13/10	- :	24/10	0,0680	0,0569	0,0641	0,0650	0,1358	±0,0194
25/10	-	11/8	0,0718	0,0608	0,0673	0,0685	0,1223	±0,0241
12/11	_	6/12	0,0769	U,U661 0 0447	0,0/2/	0,0738	0,1147	<u>+</u> 0,0261
- - / - / - / - /	-	0/12	0,0020	0,000/	0,0780	0,0790	0,1292	<u>±</u> 0,0357

 Predicted specific growth rates falling within standard deviations of measured specific growth rates Table 4.7 Specific growth rates (U) predicted for E. crassipes from the N (NO₃-N, NH₄-N and total N) concentrations in the water, over each growing interval, at 3 sites compared with those measured for marginal plants, growing in loosely crowded populations, at these sites. Maximum specific growth rates (Umax) predicted for E. crassipes, over each growing interval, according to the van't Hoff rule using a Umax value determined for this plant under N growth rate limitation in culture.

Growi	ng	Pre	dicted v	alues		Measured valu	Jes
inter	val	Umax	Ug	fresh mas	s g-1 d-1	U	Standard
		g fresh	ì			g fresh mass	deviation
		mass				g-l d-l	
Dates		g-l d-l	N03-N	NH4-N	total N		
Isipi	ngo Lake						
197	7						
11/8	- 17/8	0,0592	0,0259	*0,0422	*0,0453	0,0641	<u>±</u> 0,0227
17/8	- 25/8	0,0556	0,0098	*0,0362	*0,0375	0,0506	<u>+</u> 0,0195
25/8	- 1/9	0,0592	0,0021	0,0368	0,0371	0,0745	±0,0222
1/9	- 17/9	0,0671	0,0003	0,0461	0,0461	0,1247	±0,0314
Disch	arge Can	al					
197	7						
3/11	- 16/11	0,0699	0,0578	0,0419	0,0603	0,0965	±0,0236
18/11	- 30/11	0,0801	0,0667	0,0386	0,0685	0,1035	±0,0269
1/12	- 14/12	0,0880	*0,0731	0,0432	*0,0752	0,0940	±0,0280
Isipi	ngo Canal	1					
197	7						
8/9	- 23/9	0,0704	0,0298	0,0408	0,0478	0,1201	±0,0197
23/9	- 4/10	0,0666	0,0231	0,0424	0,0460	0,1115	<u>+</u> 0,0155
5/10	- 26/10	0 , 0704	0,0293	0,0399	0,0471	0,1167	±0,0132

 Predicted specific growth rates falling within standard deviations of measured specific growth rates. Table 4.8 Specific growth rates (U) predicted for E. crassipes from the N (NO₃-N, NH₄-N and total N) concentrations in the water, over each growing interval, at 2 sites compared with those measured for central plants, growing in densely crowded populations, at these sites. Maximum specific growth rates (Umax) predicted for E. crassipes, over each growing interval, according to the van't Hoff rule using a Umax value determined for this plant under N growth rate limitation in culture.

Growing		Prec	licted va	lues		Measured valu	les
interval	L	Umax	Ugf	resh mass	g-1 d-1	U	Standard
		g fresh				g fresh mass	deviation
		mass				g-1 d-1	
Dates		g-1 d-1	N03-N	NH <u>4</u> -N	total N		
Discharg 1977	je Cana	al					
3/11 - 18/11 - 1/12 -	16/11 30/11 14/12	0,0699 0,0801 0,0880	0,0578 *0,0667 0,0731	*0,0419 *0,0386 *0,0432	0,0603 *0,0685 0,0752	0,0379 0,0526 0,0338	±0,0170 ±0,0174 ±0,0124
Maturati 1977	ion Poi	nd 3					
3/11 - 18/11 - 1/12 -	16/11 30/11 14/12	0,0699 0,0801 0,0880	0,0354 *0,0664 *0,0729	*0,0656 0,0734 *0,0816	*0,0658 0,0753 *0,0833	0,0559 0,0573 0,0659	±0,0190 ±0,0116 ±0,0353
1978							
3/2 - 17/2 - 2/3 - 16/3 - 31/3 - 14/4 - 28/4 - 12/5 - 26/5 - 15/9 - 29/9 - 13/10 - 25/10 - 10/11 - 24/11 -	16/2 1/3 14/3 29/3 11/4 26/4 10/5 24/5 7/6 27/9 12/10 24/10 8/11 22/11 16/12	0,0941 0,0857 0,0960 0,0947 0,0857 0,0709 0,0639 0,0630 0,0617 0,0685 0,0622 0,0680 0,0718 0,0769 0,0828	0,0780 0,0586 0,0776 0,0806 0,0751 0,0637 0,0555 0,0555 0,0550 0,0491 *0,0249 0,0580 0,0569 0,0608 0,0661 0,0667	0,0866 0,0799 0,0831 0,0745 0,0811 0,0559 0,0589 0,0583 0,0583 0,0658 0,0588 0,0641 0,0673 0,0727 0,0780	0,0887 0,0806 0,0878 0,0856 0,0824 0,0657 0,0606 0,0597 0,0589 0,0659 0,0603 0,0650 0,0650 0,0685 0,0738 0,0790	0,0324 0,0357 0,0259 0,0312 0,0403 0,0231 0,0202 0,0203 0,0242 0,0248 0,0248 0,0248 0,0262 0,0299 0,0268 0,0255 0,0271	$\pm 0,0121$ $\pm 0,0184$ $\pm 0,0139$ $\pm 0,0137$ $\pm 0,0203$ $\pm 0,0088$ $\pm 0,0079$ $\pm 0,0089$ $\pm 0,0144$ $\pm 0,0108$ $\pm 0,0101$ $\pm 0,0101$ $\pm 0,0083$ $\pm 0,0101$

Predicted specific growth rates falling within standard deviations of measured specific growth rates.

Table 4.9 Maximum specific growth rates (Umax) predicted for E. crassipes for various temperatures according to the van't Hoff rule. Predictions were based on the Umax value of 0,1089 g fresh mass $g^{-1} d^{-1}$ determined for this plant at a mean daily air and water temperature of 28°C under P growth rate limitation in culture.

Mean daily temperature	1/T × 10 ⁴	Umax
°C	°K g	fresh mass g-l d-l
28	33,2005	0,1089
25	33,5345	0,0889
23.	33,7609	0,0774
21	33,9904	0,0673
18	33,3406	0,0544

Table 4.10 Specific growth rates (U) predicted for E. crassipes from the P (SRP and total P) concentrations in the water, over each growing interval, at the Botanic Gardens Lake site compared with those measured for marginal plants, growing in loosely crowded populations, at this site. Maximum specific growth rates (Umax) predicted for E. crassipes, over each growing interval, according to the van't Hoff rule using a Umax value determined for this plant under P growth rate limitation in culture.

Growing	Predi	cted value	S	Measured valu	les
interval	Umax.	U g fres	h mass g ⁻¹ d ⁻¹	_ U	Standard
	g fresh			g fresh mass	deviation
	mass			g-1 d-1	
Dates	g-1 d-1	SRP	total P		

1978

$18/8 - 29/8$ $0,0568$ $0,0091$ $0,0266$ $0,0655$ $\pm 0,0126$ $1/9 - 13/9$ $0,0521$ $0,0123$ $0,0315$ $0,0615$ $\pm 0,0132$ $15/9 - 27/9$ $0,0636$ $0,0169$ $0,0366$ $0,0867$ $\pm 0,0157$ $29/9 - 11/10$ $0,0589$ $0,0392$ $0,0431$ $0,0843$ $\pm 0,0131$ $13/10 - 23/10$ $0,0659$ $0,0240$ $0,0445$ $0,1162$ $\pm 0,0229$	1/2 - 17/2 2/3 16/3 31/3 14/4 28/4 12/5 26/5 9/6 23/6 7/7 20/7 4/8 18/8 1/9 15/9 29/9 13/10	- 15/2 - 1/3 - 14/3 - 28/3 - 12/4 - 25/4 - 9/5 - 23/5 - 6/6 - 20/6 - 4/7 - 18/7 - 2/8 - 15/8 - 29/8 - 13/9 - 27/9 - 11/10 - 23/10	0,0883 0,0802 0,0901 0,0895 0,0790 0,0669 0,0593 0,0593 0,0572 0,0481 0,0467 0,0517 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548 0,0559	0,0044 0,0017 0,0158 0,0276 0,0176 0,0014 0,0211 0,0024 0,0145 0,0098 0,0082 0,0071 0,0136 0,0185 0,0091 0,0123 0,0169 0,0392 0,0240	0,0583 0,0468 0,0609 *0,0494 *0,0506 *0,0413 0,0355 0,0299 0,0295 *0,0269 *0,0261 0,0270 *0,0355 0,0355 0,0355 0,0395 0,0266 0,0315 0,0366 0,0431 0,0445	0,1158 0,1227 0,0996 0,0675 0,0689 0,0601 0,0645 0,0478 0,0493 0,0305 0,0313 0,0527 0,0443 0,0635 0,0635 0,0651 0,0615 0,0867 0,0843 0,1162	$\pm 0,0130$ $\pm 0,0187$ $\pm 0,0155$ $\pm 0,0208$ $\pm 0,0220$ $\pm 0,0254$ $\pm 0,0257$ $\pm 0,0147$ $\pm 0,0147$ $\pm 0,0104$ $\pm 0,0121$ $\pm 0,0156$ $\pm 0,0080$ $\pm 0,0109$ $\pm 0,0130$ $\pm 0,0131$ $\pm 0,0229$
13/10- 23/100,06590,02400,04450,1162±0,022925/10- 7/110,06690,01120,04090,1064±0,013910/11- 22/110,07170,01040,04510,0963±0,020624/11- 6/120,07740,00740,04640,1207±0,0138	13/10	- 23/10	0,0659	0,0240	0,0445	0,1162	±0,0229
	25/10	- 7/11	0,0669	0,0112	0,0409	0,1064	±0,0139
	10/11	- 22/11	0,0717	0,0104	0,0451	0,0963	±0,0206
	24/11	- 6/12	0,0774	0,0074	0,0464	0,1207	±0,0138

 Predicted specific growth rates falling within standard deviations of measured specific growth rates. Table 4.11 Specific growth rates (U) predicted for E. crassipes from the P (SRP and total P) concentrations in the water, over each growing interval, at the Hartbeespoort Dam site compared with those measured for marginal plants, growing in loosely crowded populations, at this site. Maximum specific growth rates (Umax) predicted for E. crassipes, over each growing interval, according to the van't Hoff rule using a Umax value determined for this plant under P growth rate limitation in culture.

Growing	Predi	cted values		Measured va	lues
interval	Umax	U g fresh	mass g-1 d-	1U	Standard
	g fresh			g fresh mas	s deviation
	mass			g-1 d-1	
Dates	g-1 d-1	SRP	total P		-
1977					
28/9 - 11/10	0,0589	*0,0303	*0,0311	0,0313	<u>+</u> 0,0209
14/10 - 27/10	0,0619	0,0323	0,0339	0,0207	±0,0070
3/11 - 11/11	0,0678	*0,0467	*0,0477	0,0375	±0,0149
18/11 - 25/11	0,0717	*0,0463	*0,0484	0,0672	±0,0362
14/12 - 22/12	0,0702	*0,0478	*0,0488	0,0410	±0,0157
*	Predict	ed specific	c growth ra	ates falling	within standar

deviations of measured specific growth rates.

Figure 4.13 Specific growth rates predicted for E. crassipes from 2. the total N, 3. the NH₄-N and 4. the NO₃-N concentrations in the water, over each growing interval, at the Maturation Pond 3 site compared with those measured for 1. marginal plants, growing in loosely crowded populations and 5. central plants, growing in densely crowded populations. Standard deviations of measured specific growth rates are shown by bars. The predicted specific growth rates were calculated using kinetic coefficients, generated for this plant under N growth rate limitation in culture, in the Monod model.

Figure 4.14 Specific growth rates predicted for E. crassipes from 2. the total P and 3. the SRP concentrations in the water, over each growing interval, at the Botanic Gardens Lake site compared with those measured for 1. marginal plants, growing in loosely crowded populations. Standard deviations of measured specific growth rates are shown by bars. The predicted specific growth were calculated rates using kinetic coefficients, generated for this plant under P growth rate limitation in culture, in the Monod model.

CHAPTER 5

REFINING THE MODEL UNDER FIELD CONDITIONS

Table 5.1 Specific growth rates (U) predicted for marginal plants from the P (SRP and total P) concentrations in the water, over each growing interval, at the Botanic Gardens Lake site compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the reciprocals of the Absolute mean daily air temperatures.

Growin	ng	Predi	cted values		Measured valu	ies
interv	val	Umax	U g fres	n mass g-l d-l	U	Standard
•		g fresh			g fresh mass	deviation
		mass			g-l d-l	
Dates		g-1 d-1	SRP	total P		
107						
1/2	- 15/2	0.1560	0,0079	*0.1030	0 1158	+0 0130
17/2	- 1/3	0,1407	0,0029	0,0821	0.1227	+0.0190
2/3	- 14/3	0,1595	0,0279	*0,1078	0,0996	±0,0155
16/3	- 28/3	0,1584	*0,0489	*0,0874	0,0675	±0,0208
31/3	- 12/4	0,1386	0,0309	*0,0888	0,0689	±0,0220
14/4	- 25/4	0,1158	0,0024	*0,0715	0,0601	±0,0254
28/4	- 9/5	0,1017	0,0362	*0,0608	0,0645	±0,0257
12/5	- 23/5	0,1017	0,0041	*0,0513	0,0478	±0,0147
26/5	- 6/6	0,0979	0,0248	*0,0504	0,0493	±0,0104
9/6	- 20/6	0,0813	0,0165	0,0456	0,0305	<u>+</u> 0,0121
22/0 7/7	- 4//	0,0788	0,0128	*0,0440 *0.0450	0,0313	±0,0156
20/7	- 10//	0,0079	0,0121	*0,0459	0,0527	±0,0080
4/8	- 15/8	0,0777	0,0272	*0 0675	0,0445	+0.0109
18/8	- 29/8	0.0972	0,0156	0,0455	0,0855	$\pm 0,0110$
1/9	- 13/9	0,0886	0,0209	*0.0536	0.0615	+0 01/6
15/9	- 27/9	0,1098	0,0291	0.0633	0,0867	+0.0157
29/9	- 11/10	0,1010	0,0673	*0,0738	0,0843	+0.0131
13/10	- 23/10	0,1141	0,0416	0,0771	0.1162	+0.0229
25/10	- 7/11	0,1158	0,0194	0,0708	0,1064	±0,0139
10/11	- 22/11	0,1249	0,0181	*0,0786	0,0963	±0,0206
24/11	- 6/12	0,1356	0,0130	0,0813	0,1207	±0,0138

* Predicted specific growth rates falling within standard deviations of measured specific growth rates.

Table 5.2 Specific growth rates (U) predicted for marginal plants from the P (SRP and total P) concentrations in the water, over each growing interval, at the Hartbeespoort Dam site compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the reciprocals of the Absolute mean daily air temperatures.

Growing	Predi	cted values		Measured v	values
interval	Umax	U g fres	h mass g ⁻¹ d ⁻¹	U	Standard
	g fresh			g fresh mass	deviation
	mass			g-1 d-1	
Dates	g-1 d-1	SRP	total P	•	
1977					
28/9 - 11/10	0,1010	*0,0520	0.0533	0.0313	+0,0209
14/10 - 27/10	0,1065	0,0556	0,0583	0,0207	±0,0070
3/11 - 11/11	0,1175	0,0810	0,0826	0,0375	±0,0149
18/11 - 25/11	0,1248	*0,0807	*0,0843	0,0672	±0,0362
14/12 - 22/12	2 0,1221	0,0832	0,0849	0,0410	±0,0157
* F	redicted	specific g	rowth rates	falling withi	in standard
c	leviations	of measured	specific grow	th rates.	

Table 5.3 Specific growth rates (U) predicted for marginal plants from the N (NO_3 -N, NH_4 -N and total N) concentrations in the water, over each growing interval, at 3 sites compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the reciprocals of the Absolute mean daily air temperatures.

Growing Predicted values			ues		Measured valu	es
interval	Umax	Ugf	resh mass	s g-1 d-1	U	Standard
	g fresh mass				g fresh mass g ⁻¹ d ⁻¹	deviation
Dates	g-1 d-1	N03-N	NH4-N	total N		
Teiningo Laka						
1977						
2011						
11/8 - 17/8	0,0935	0,0409	*0,0667	*0,0716	0,0641	<u>+</u> 0,0227
17/8 - 25/8	0,0872	0,0154	*0,0567	* 0,0588	0,0506	<u>+</u> 0,0195
25/8 - 1/9	0,0935	0,0032	*0,0581	*0,0586	0,0745	<u>+</u> 0,0222
1/9 - 7/9	0,1073	0,0005	0,0736	0,0737	0,1247	. <u>+</u> 0,0314
Discharge Can	al					
1977						
3/11 - 16/11	0,1123	*0,0929	0,0673	*0,0969	0,0965	±0,0236
18/11 - 30/11	0,1306	*0,1088	0,0630	*0,1118	0,1035	±0,0269
1/12 - 14/12	0,1449	* 0,1203	*0,0711	0,1238	0,0940	±0,0280
Isipingo Cana	1					
1977						
8/9 - 23/9	0,1132	0,0479	0,0657	0.0769	0,1201	+0 0107
23/9 - 4/10	0,1065	0,0340	0,0679	0,0735	0.1115	+0.0155
5/10 - 26/10	0,1132	0,0471	0,0642	0,0757	0,1167	±0,0132

* Predicted specific growth rates falling within standard deviations of measured specific growth rates.

Figure 5.1 Specific growth rates predicted for marginal plants from 2. the total P and 3. the SRP concentrations in the water, over each growing interval, at the Botanic Gardens Lake site compared with 1. the measured specific growth rates. Standard deviations of measured specific growth rates are shown by bars. The predicted values were calculated using Umax values corrected for the mean daily air temperature, derived for marginal plants in the field, and the mean Ksp concentration of 94,1 ug P 1-1, generated for E. crassipes under P growth rate limitation in culture, in the Monod model.

Table 5.4 Measured and predicted specific growth rates (U) of marginal plants and those normalized to $15^{\circ}C$ ($U_{15^{\circ}C}$) at the Maturation Pond 3 site. The predicted specific growth rates were calculated from the regression equation relating the specific growth rates of marginal plants exponentially to the reciprocals of the Absolute mean daily air temperatures. The normalized specific growth rates were calculated from a formula incorporating the measured and predicted specific growth rates.

Growing	Mean daily air	Measured	Predicted	Normalized
interval	temperature	U	U	U _{15°C}
Dates	°C	g fresh mass g-l d-l	g fresh mass g ^{-l} d ^{-l}	g fresh mass g ^{-l} d ^{-l}

1/2	- 16/2	24,9	0,1498	0,1559	0,0704
17/2	- 1/3	23,5	0,1698	0,1405	0,0886
21/3	- 14/3	25,2	0,1534	0,1593	0,0706
16/3	- 29/3	25,0	0,1481	0,1570	0,0691
31/3	- 11/4	23,5	0,1146	0,1405	0,0598
14/4	- 26/4	20,7	0,0936	0,1139	0,0602
12/5	- 24/5	19,0	0,1084	0,1001	0,0794
26/5	- 7/6	18,7	0,0987	0,0978	0,0740
9/6	- 21/6	16,3	0,0693	0,0812	0,0625
23/6	- 5/7	16,1	0,0526	0,0800	0,0482
7/7	- 19/7	17,4	0,0859	0,0885	0,0711
20/7	- 2/8	18,1	0,1041	0,0934	0,0817
4/8	- 16/8	18,2	0,1082	0,0941	0,0843
18/8	- 30/8	18,6	0,0981	0,0970	0,0741
1/9	- 13/9	17,4	0,1036	0,0885	0,0858
15/9	- 27/9	20,2	0,1179	0,1097	0,0788
29/9	- 12/10	18,8	0,1239	0,0986	0,0921
13/10	- 24/10	20,1	0,1358	0,1088	0,0915
25/10	- 8/11	20,9	0,1223	0,1156	0,0775
10/11	- 22/11	21,9	0,1147	0,1247	0.0674
24/11	- 6/12	23,0	0,1292	0,1354	0,0699
		15,0	-	0,0733	
				•	

Table 5.5 Specific growth rates (U) predicted for marginal plants from the P (SRP and total P) concentrations in the water, over each growing interval, at the Botanic Gardens Lake site compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the products of the reciprocals of the Absolute mean daily air temperatures and diffuse radiant fluxes.

interval Umax U g fresh mass $g^{-1} d^{-1}$ U Standard g fresh g fresh mass deviation mass $g^{-1} d^{-1}$ Dates $g^{-1} d^{-1}$ SRP total P 1978 1/2 - 15/2 0,1433 0,0072 0,0946 0,1158 ±0,0130 17/2 - 1/3 0,1561 0,0032 0,0911 0,1227 ±0,0187 2/3 - 14/3 0,1378 0,0241 *0,0931 0,0996 ±0,0155 16/3 - 28/3 0,1189 0,0367 *0,0656 0,0675 ±0,0208 31/3 - 12/4 0,1019 0,0227 *0,0653 0,0689 ±0,0220 14/4 - 25/4 0,1151 0,0024 *0,0711 0,0601 ±0,0254 28/4 - 9/5 0,0767 0,0273 *0,0459 0,0645 ±0,0257 12/5 - 23/5 0,0940 0,0038 *0,0475 0,0478 ±0,0147 26/5 - 6/6 0,0806 0,0204 *0,0415 0,0493 ±0,0104 9/6 - 20/6 0,0807 0,0164 0,0452 0,0305 ±0,0121 23/6 - 4/7 0,0799 0,0140 *0,0466 0,0313 ±0,0156 7/7 - 18/7 0,0901 0,0124 *0,0471 0,0527 ±0,0080 20/7 - 2/8 0,0958 0,0237 0,0620 0,0443 ±0,0109 4/8 - 15/8 0,0921 0,0131 *0,0665 0,0635 ±0,0121 28/8 - 29/8 0,1046 0,0168 0,0490 0,0651 ±0,0132 1/9 - 13/9 0,1010 0,0238 *0,0611 0,0615 ±0,0146 15/9 - 27/9 0,1309 0,0347 *0,0754 0,0867 ±0,0132 1/9 - 13/9 0,1010 0,0238 *0,0611 0,0615 ±0,0146 15/9 - 27/9 0,1309 0,0347 *0,0754 0,0867 ±0,0132 1/9 - 13/9 0,1010 0,0223 *0,0611 0,0615 ±0,0131 13/10 - 23/10 0,1526 0,056 *0,1031 0,1162 ±0,0131 13/10 - 23/10 0,1526 0,0556 *0,1031 0,1162 ±0,0229 20/11 - 22/11 0,1226 0,0179 *0,0778 0,0963 ±0,0206	Growin	ng		Pred	icted values	3	Measured va	alues
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	interv	val		Umax	U g fresh	mass g-l d-l	U	Standard
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				g fresh			g fresh mass	deviation
Dates $q^{-1} d^{-1}$ SRPtotal P19781/2 - 15/2 0,14330,0072 0,09460,1158 ±0,013017/2 - 1/3 0,15610,0032 0,09110,1227 ±0,01872/3 - 14/3 0,13780,0241 *0,09310,0996 ±0,015516/3 - 28/3 0,11890,0367 *0,06560,0675 ±0,020831/3 - 12/4 0,10190,0227 *0,06530,0689 ±0,022014/4 - 25/4 0,11510,0024 *0,07110,0601 ±0,025428/4 - 9/5 0,07670,0273 *0,04590,0645 ±0,025712/5 - 23/5 0,09400,0038 *0,04750,0478 ±0,014726/5 - 6/6 0,08060,0204 *0,04150,0493 ±0,01049/6 - 20/6 0,08070,01640,04520,0305 ±0,012123/6 - 4/7 0,07990,0140 *0,04460,0313 ±0,01567/7 - 18/7 0,09010,0124 *0,04710,0527 ±0,008020/7 - 2/8 0,09580,02370,66250,6635 ±0,012118/8 - 29/8 0,10460,01680,04900,0651 ±0,01321/9 - 13/9 0,10100,0238 *0,06110,0615 ±0,013719/9 - 27/9 0,13090,0347 *0,07540,0867 ±0,013719/1 - 22/10 0,15260,0556 *0,10310,1162 ±0,022925/10 - 7/11 0,13280,02230,08120,1064 ±0,013910/11 - 22/11 0,12360,02730,07780,0963 ±0,0206				mass	-		a-1 d-1	
1978 $1/2 = 15/2 = 0,1433 = 0,0072 = 0,0946 = 0,1158 = \pm 0,0130 = 0,0032 = 0,0911 = 0,1227 = \pm 0,0187 = 0,0137 = 0,0322 = 0,0911 = 0,1227 = \pm 0,0187 = 0,0137 = 0,0241 = 0,0931 = 0,0996 = \pm 0,0155 = 16/3 = 28/3 = 0,1189 = 0,0367 = 0,0656 = 0,0675 = \pm 0,0208 = 31/3 = 12/4 = 0,1019 = 0,0227 = 0,0653 = 0,0689 = \pm 0,0220 = 14/4 = 25/4 = 0,1151 = 0,0024 = 0,0711 = 0,0601 = \pm 0,0254 = 28/4 = 9/5 = 0,0767 = 0,0273 = 0,0459 = 0,0645 = \pm 0,0257 = 12/5 = 23/5 = 0,0940 = 0,0038 = 0,0475 = 0,0478 = \pm 0,0147 = 26/5 = 6/6 = 0,0806 = 0,0204 = 0,0415 = 0,0478 = \pm 0,0147 = 26/5 = 6/6 = 0,0807 = 0,0164 = 0,0452 = 0,0305 = \pm 0,0121 = 23/6 = 4/7 = 0,0799 = 0,0140 = 0,0446 = 0,0313 = \pm 0,0156 = 7/7 = 18/7 = 0,0958 = 0,0237 = 0,0645 = \pm 0,0121 = 20/7 = 2/8 = 0,0958 = 0,0237 = 0,0665 = 0,0635 = \pm 0,0121 = 20/7 = 2/8 = 0,0958 = 0,0237 = 0,0665 = 0,0635 = \pm 0,0121 = 15/8 = 29/8 = 0,1046 = 0,0168 = 0,0490 = 0,0651 = \pm 0,0132 = 1/9 = 13/9 = 0,1046 = 0,0168 = 0,0490 = 0,0651 = \pm 0,0132 = 1/9 = 13/9 = 0,1010 = 0,0238 = 0,0611 = 0,0615 = \pm 0,0136 = 15/9 = 27/9 = 0,1309 = 0,0347 = 0,0754 = 0,0867 = \pm 0,0137 = 29/9 = 11/10 = 0,0238 = 0,0611 = 0,0131 = 0,0131 = 13/10 = 23/10 = 0,1226 = 0,0556 = 0,1031 = 0,1162 = \pm 0,0229 = 25/10 = 7/11 = 0,1236 = 0,0179 = 0,0778 = 0,0963 = \pm 0,0206 = 10,0139 = 10/11 = 22/11 = 0,1236 = 0,0179 = 0,0778 = 0,0963 = \pm 0,0206 = 10,0139 = 10/11 = 22/11 = 0,1236 = 0,0179 = 0,0778 = 0,0963 = \pm 0,0206 = 0,0146 = 0,0168 = 0,0179 = 0,0778 = 0,0963 = \pm 0,0206 = 0,0179 = 0,0778 = 0,0963 = \pm 0,0206 = 0,0179 = 0,0778 = 0,0963 = \pm 0,0206 = 0,0160 = 0,0160 = 0,0160 = 0,0160 = 0,0160 = 0,0160 = 0,0160 = 0,0160 = 0,0160 = 0,0170 = 0,0228 = 0,0843 = \pm 0,0131 = 0,0146 = 0,0139 = 0,0141 = 22/11 = 0,1236 = 0,0179 = 0,0778 = 0,0963 = \pm 0,0206 = 0,0179 = 0,0778 = 0,0963 = \pm 0,0206 = 0,0179 = 0,0778 = 0,0963 = \pm 0,0206 = 0,0170 = 0,0208 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,0040 = 0,004 $	Dates			<u>d-1</u> d-1	SRP	total P	3 -	
1978 $1/2 - 15/2 0, 1433 0, 0072 0, 0946 0, 1158 \pm 0, 0130$ $17/2 - 1/3 0, 1561 0, 0032 0, 0911 0, 1227 \pm 0, 0187$ $2/3 - 14/3 0, 1378 0, 0241 *0, 0931 0, 0996 \pm 0, 0155$ $16/3 - 28/3 0, 1189 0, 0367 *0, 0656 0, 0675 \pm 0, 0208$ $31/3 - 12/4 0, 1019 0, 0227 *0, 0653 0, 0689 \pm 0, 0220$ $14/4 - 25/4 0, 1151 0, 0024 *0, 0711 0, 0601 \pm 0, 0254$ $28/4 - 9/5 0, 0767 0, 0273 *0, 0459 0, 0645 \pm 0, 01257$ $12/5 - 23/5 0, 0940 0, 0038 *0, 0475 0, 0478 \pm 0, 0147$ $26/5 - 6/6 0, 0806 0, 0204 *0, 0415 0, 0493 \pm 0, 0104$ $9/6 - 20/6 0, 0807 0, 0164 0, 0452 0, 0305 \pm 0, 0121$ $23/6 - 4/7 0, 0799 0, 0140 *0, 0446 0, 0313 \pm 0, 0156$ $7/7 - 18/7 0, 0901 0, 0124 *0, 0471 0, 0527 \pm 0, 0080$ $20/7 - 2/8 0, 0958 0, 0237 0, 0620 0, 0443 \pm 0, 0109$ $4/8 - 15/8 0, 0921 0, 0311 *0, 0665 0, 0635 \pm 0, 0116$ $18/8 - 29/8 0, 1046 0, 0168 0, 0490 0, 0651 \pm 0, 0132$ $1/9 - 13/9 0, 1010 0, 0238 *0, 0611 0, 0615 \pm 0, 0132$ $1/9 - 13/9 0, 1010 0, 0238 *0, 0611 0, 0615 \pm 0, 0131$ $13/10 - 23/10 0, 1526 0, 0556 *0, 1031 0, 1162 \pm 0, 0229$ $25/10 - 7/11 0, 1328 0, 0223 0, 0812 0, 1064 \pm 0, 0139$ $10/11 - 22/11 0, 1236 0, 0179 *0, 0778 0, 0963 \pm 0, 0206$				9 0	0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1978	B						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	- 1	15/2	0,1433	0,0072	0,0946	0,1158	±0,0130
$2/3$ $-14/3$ $0,13/8$ $0,0241$ $*0,0931$ $0,0996$ $\pm 0,0155$ $16/3$ $-28/3$ $0,1189$ $0,0367$ $*0,0656$ $0,0675$ $\pm 0,0208$ $31/3$ $-12/4$ $0,1019$ $0,0227$ $*0,0653$ $0,0689$ $\pm 0,0220$ $14/4$ $-25/4$ $0,1151$ $0,0024$ $*0,0711$ $0,0601$ $\pm 0,0254$ $28/4$ $-9/5$ $0,0767$ $0,0273$ $*0,0459$ $0,0645$ $\pm 0,0147$ $26/5$ $-6/6$ $0,0806$ $0,0204$ $*0,0415$ $0,0493$ $\pm 0,0147$ $26/5$ $-6/6$ $0,0807$ $0,0164$ $0,0452$ $0,0305$ $\pm 0,0121$ $23/6$ $-4/7$ $0,0799$ $0,0140$ $*0,0446$ $0,0313$ $\pm 0,0156$ $7/7$ $-18/7$ $0,0901$ $0,0124$ $*0,0471$ $0,0527$ $\pm 0,0080$ $20/7$ $-2/8$ $0,0958$ $0,0237$ $0,0620$ $0,0443$ $\pm 0,0109$ $4/8$ $-15/8$ $0,0921$ $0,0311$ $*0,0665$ $0,0635$ $\pm 0,0132$ $1/9$ $-13/9$ $0,1010$ $0,0238$ $*0,0611$ $0,0615$ $\pm 0,0132$ $1/9$ $-13/9$ $0,1010$ $0,0238$ $*0,0611$ $0,0667$ $\pm 0,0157$ $29/9$ $-11/10$ $0,1207$ $*0,0804$ $*0,0882$ $0,0843$ $\pm 0,0131$ $1/10$ $-23/10$ $0,1526$ $0,0556$ $*0,1031$ $0,1162$ $\pm 0,0229$ $25/10$ $-7/11$ $0,1236$ $0,0273$ $0,0778$ $0,0963$ $\pm 0,0206$ <td>17/2</td> <td>- ,</td> <td>1/3</td> <td>0,1561</td> <td>0,0032</td> <td>0,0911</td> <td>0,1227</td> <td><u>+</u>0,0187</td>	17/2	- ,	1/3	0,1561	0,0032	0,0911	0,1227	<u>+</u> 0,0187
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2/3	- 1	14/3	0,13/8	0,0241	*0,0931	0,0996	±0,0155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16/ <i>2</i>	- 2	28/2	0,1189	0,0267	*U,U656 *0.0≤53	0,0675	±0,0208
$14/4$ $= 23/4$ $0,1131$ $0,0024$ $*0,0711$ $0,0601$ $\pm 0,0254$ $28/4$ $= 9/5$ $0,0767$ $0,0273$ $*0,0459$ $0,0645$ $\pm 0,0257$ $12/5$ $= 23/5$ $0,0940$ $0,0038$ $*0,0475$ $0,0478$ $\pm 0,0147$ $26/5$ $= 6/6$ $0,0806$ $0,0204$ $*0,0415$ $0,0493$ $\pm 0,0104$ $9/6$ $= 20/6$ $0,0807$ $0,0164$ $0,0452$ $0,0305$ $\pm 0,0121$ $23/6$ $= 4/7$ $0,0799$ $0,0140$ $*0,0446$ $0,0313$ $\pm 0,0156$ $7/7$ $= 18/7$ $0,0901$ $0,0124$ $*0,0471$ $0,0527$ $\pm 0,0080$ $20/7$ $= 2/8$ $0,0958$ $0,0237$ $0,0620$ $0,0443$ $\pm 0,0109$ $4/8$ $= 15/8$ $0,0921$ $0,0311$ $*0,0665$ $0,0635$ $\pm 0,0116$ $18/8$ $= 29/8$ $0,1046$ $0,0168$ $0,0490$ $0,0651$ $\pm 0,0132$ $1/9$ $= 13/9$ $0,1010$ $0,0238$ $*0,0611$ $0,0615$ $\pm 0,0146$ $15/9$ $= 27/9$ $0,1309$ $0,0347$ $*0,0754$ $0,0867$ $\pm 0,0131$ $13/10$ $= 23/10$ $0,1526$ $0,0556$ $*0,1031$ $0,1162$ $\pm 0,0229$ $25/10$ $7/11$ $0,1236$ $0,0233$ $0,0812$ $0,1064$ $\pm 0,0139$ $10/11$ $= 22/110$ $0,1236$ $0,0179$ $*0,0778$ $0,0963$ $\pm 0,0206$)] / / /	- 1	LZ/4	0,1019	0,0227	*U,U622	· U,U689	<u>±</u> 0,0220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14/4 28//	- 2	2 <i>)</i> /4 0/5	0,1101	0,0024	*U,U/II *0 0459	U,U6UI	±0,0254
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12/5	20	272 23/5	0,0707	0,0275	*0,0433 *0.0475	0,0645	±0,0257
$9/6$ $-20/6$ $0,0807$ $0,0164$ $0,0452$ $0,0305$ $\pm 0,0104$ $23/6$ $-4/7$ $0,0799$ $0,0140$ $*0,0446$ $0,0313$ $\pm 0,0156$ $7/7$ $-18/7$ $0,0901$ $0,0124$ $*0,0471$ $0,0527$ $\pm 0,0080$ $20/7$ $-2/8$ $0,0958$ $0,0237$ $0,0620$ $0,0443$ $\pm 0,0109$ $4/8$ $-15/8$ $0,0921$ $0,0311$ $*0,0665$ $0,0635$ $\pm 0,0116$ $18/8$ $-29/8$ $0,1046$ $0,0168$ $0,0490$ $0,0651$ $\pm 0,0132$ $1/9$ $-13/9$ $0,1010$ $0,0238$ $*0,0611$ $0,0615$ $\pm 0,0132$ $1/9$ $-13/9$ $0,1010$ $0,0238$ $*0,0611$ $0,0651$ $\pm 0,0132$ $1/9$ $-13/9$ $0,1010$ $0,0238$ $*0,0754$ $0,0867$ $\pm 0,0157$ $29/9$ $-11/10$ $0,1207$ $*0,0804$ $*0,0882$ $0,0843$ $\pm 0,0131$ $13/10$ $-23/10$ $0,1526$ $0,0556$ $*0,1031$ $0,1162$ $\pm 0,0229$ $25/10$ $7/11$ $0,1236$ $0,0223$ $0,0812$ $0,1064$ $\pm 0,0139$ $10/11$ $-22/11$ $0,1236$ $0,0179$ $*0,0778$ $0,0963$ $\pm 0,0206$	26/5		6/6	0,0740	0,0008	*0,0475 *0 0/15	0,0470	+0.0104
$23/6$ $4/7$ $0,0799$ $0,0140$ $*0,0446$ $0,0313$ $\pm 0,0156$ $23/6$ $4/7$ $0,0799$ $0,0140$ $*0,0446$ $0,0313$ $\pm 0,0156$ $7/7$ $18/7$ $0,0901$ $0,0124$ $*0,0471$ $0,0527$ $\pm 0,0080$ $20/7$ $2/8$ $0,0958$ $0,0237$ $0,0620$ $0,0443$ $\pm 0,0109$ $4/8$ $15/8$ $0,0921$ $0,0311$ $*0,0665$ $0,0635$ $\pm 0,0116$ $18/8$ $29/8$ $0,1046$ $0,0168$ $0,0490$ $0,0651$ $\pm 0,0132$ $1/9$ $13/9$ $0,1010$ $0,0238$ $*0,0611$ $0,0615$ $\pm 0,0132$ $1/9$ $-13/9$ $0,1010$ $0,0238$ $*0,0754$ $0,0867$ $\pm 0,0132$ $1/9$ $-11/10$ $0,1207$ $*0,0804$ $*0,0882$ $0,0843$ $\pm 0,0131$ $13/10$ $-23/10$ $0,1526$ $0,0556$ $*0,1031$ $0,1162$ $\pm 0,0229$ $25/10$ $7/11$ $0,1236$ $0,0223$ $0,0812$ $0,1064$ $\pm 0,0139$ $10/11$ $-22/11$ $0,1236$ $0,0179$ $*0,0778$ $0,0963$ $\pm 0,0206$	9/6	- 2	20/6	0,0000	0,0204	0,0412	0,0499	$\pm 0,0104$
$7/7$ $18/7$ $0,0901$ $0,0124$ $*0,0471$ $0,0527$ $\pm 0,0080$ $20/7$ $2/8$ $0,0958$ $0,0237$ $0,0620$ $0,0443$ $\pm 0,0109$ $4/8$ $15/8$ $0,0921$ $0,0311$ $*0,0665$ $0,0635$ $\pm 0,0116$ $18/8$ $29/8$ $0,1046$ $0,0168$ $0,0490$ $0,0651$ $\pm 0,0132$ $1/9$ $13/9$ $0,1010$ $0,0238$ $*0,0611$ $0,0615$ $\pm 0,0132$ $1/9$ $27/9$ $0,1309$ $0,0347$ $*0,0754$ $0,0867$ $\pm 0,0157$ $29/9$ $11/10$ $0,1207$ $*0,0804$ $*0,0882$ $0,0843$ $\pm 0,0131$ $13/10$ $23/10$ $0,1526$ $0,0556$ $*0,1031$ $0,1162$ $\pm 0,0229$ $25/10$ $7/11$ $0,1236$ $0,0223$ $0,0812$ $0,1064$ $\pm 0,0139$ $10/11$ $22/11$ $0,1236$ $0,0179$ $*0,0778$ $0,0963$ $\pm 0,0206$	23/6	_ `	4/7	0.0799	0,0140	*0.0446	0,0313	$\pm 0,0121$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7/7	- 1	L8/7	0,0901	0,0124	*0.0471	0,0527	+0.0080
$4/8$ $=$ $15/8$ $0,0921$ $0,0311$ $*0,0665$ $0,0635$ $\pm 0,0116$ $18/8$ $=$ $29/8$ $0,1046$ $0,0168$ $0,0490$ $0,0651$ $\pm 0,0132$ $1/9$ $=$ $13/9$ $0,1010$ $0,0238$ $*0,0611$ $0,0615$ $\pm 0,0146$ $15/9$ $=$ $27/9$ $0,1309$ $0,0347$ $*0,0754$ $0,0867$ $\pm 0,0157$ $29/9$ $=$ $11/10$ $0,1207$ $*0,0804$ $*0,0882$ $0,0843$ $\pm 0,0131$ $13/10$ $=$ $23/10$ $0,1526$ $0,0556$ $*0,1031$ $0,1162$ $\pm 0,0229$ $25/10$ $-7/11$ $0,1236$ $0,0223$ $0,0812$ $0,1064$ $\pm 0,0139$ $10/11$ $=$ $22/11$ $0,1236$ $0,0179$ $*0,0778$ $0,0963$ $\pm 0,0206$	20/7	-	2/8	0,0958	0,0237	0,0620	0,0443	±0.0109
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4/8	- 1	L5/8	0,0921	0,0311	*0,0665	0,0635	±0,0116
$1/9 - 13/9$ $0,1010$ $0,0238$ $*0,0611$ $0,0615$ $\pm 0,0146$ $15/9 - 27/9$ $0,1309$ $0,0347$ $*0,0754$ $0,0867$ $\pm 0,0157$ $29/9 - 11/10$ $0,1207$ $*0,0804$ $*0,0882$ $0,0843$ $\pm 0,0131$ $13/10 - 23/10$ $0,1526$ $0,0556$ $*0,1031$ $0,1162$ $\pm 0,0229$ $25/10 - 7/11$ $0,1236$ $0,0223$ $0,0812$ $0,1064$ $\pm 0,0139$ $10/11 - 22/11$ $0,1236$ $0,0179$ $*0,0778$ $0,0963$ $\pm 0,0206$	18/8	- 2	29/8	0,1046	0,0168	0,0490	0,0651	±0,0132
15/9 - 27/9 0,1309 0,0347 *0,0754 0,0867 ±0,0157 29/9 - 11/10 0,1207 *0,0804 *0,0882 0,0843 ±0,0131 13/10 - 23/10 0,1526 0,0556 *0,1031 0,1162 ±0,0229 25/10 - 7/11 0,1328 0,0223 0,0812 0,1064 ±0,0139 10/11 - 22/11 0,1236 0,0179 *0,0778 0,0963 ±0,0206	1/9	- 1	13/9	0,1010	0,0238	*0,0611	0,0615	±0,0146
29/9 - 11/10 0,120/ *0,0804 *0,0882 0,0843 ±0,0131 13/10 - 23/10 0,1526 0,0556 *0,1031 0,1162 ±0,0229 25/10 - 7/11 0,1328 0,0223 0,0812 0,1064 ±0,0139 10/11 - 22/11 0,1236 0,0179 *0,0778 0,0963 ±0,0206	15/9	- 2	27/9	0,1309	0,0347	*0,0754	0,0867	±0,0157
13/10 - 23/10 0, 1526 $0,0556 + 0,1031$ $0,1162 + 0,0229$ $25/10 - 7/11 0,1328$ $0,0223 0,0812$ $0,1064 + 0,0139$ $10/11 - 22/11 0,1236$ $0,0179 + 0,0778$ $0,0963 + 0,0206$	29/9	- 1		0,1207	*0,0804	*0,0882	0,0843	±0,0131
$\frac{10}{10} - \frac{11}{10}, \frac{1528}{10}, \frac{10225}{10}, \frac{10812}{10}, \frac{1064}{10}, \frac{\pm 0,0139}{10,0206}$	12/10	- 2	22/1U	0,1526	0,0556	*U,1U31	0,1162	±0,0229
-22/11 - 22/11 - 0,1226 - 0,0173 - 0,078 - 0,0963 + 0,0206	10/11		22/11	0,1220	0,0223	U,U&LZ +0.0779	U,1U64	<u>+</u> 0,0139
24/11 - 6/12 0.1432 0.0137 0.0859 0.1207 +0.0170	24/11	- 2	6/12	0,1432	0,0179	n 0,0770	U,UY62 0 1207	±U,U2U6 +0.0139

* Predicted specific growth rates falling within standard deviations of measured specific growth rates.

Table 5.6 Specific growth rates (U) predicted for marginal plants from the P (SRP and total P) concentrations in the water, over each growing interval, at the Hartbeespoort Dam site compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the products of the reciprocals of the Absolute mean daily air temperatures and diffuse radiant fluxes.

Growing	Pred:	icted value	!S	Measured va	lues
interval	Umax	U g fresh	n mass g ⁻¹ d-1	Û	Standard
	g fresh			g fresh mass	deviation
	mass	. •		g-1 d-1	
Dates	g-1 d-1	SRP	total P		
1977					
00/0 11/10	0.105/				
28/9 - 11/10	0,1254	0,0646	0,0661	0,0313	<u>+</u> 0,0209
14/10 - 27/10	0,1023	0,0534	0,0560	0,0207	<u>+</u> 0,0070
3/11 - 11/11	0,1121	0,0773	0,0788	0,0375	±0,0149_
18/11 - 25/11	0,1317	* 0,0851	*0,0889	0,0672	<u>+</u> 0,0362
14/12 - 22/12	0,1477	0,1006	0,1027	0,0410	±0,0157
* P	redicted	specific	growth rates	falling withi	n standard
d	eviations	of measure	d specific gro	wth rates.	

Table 5.7 Specific growth rates (U) predicted for marginal plants from the N (NO₃-N, NH₄-N and total N) concentrations in the water, over each growing interval, at 3 sites compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the products of the reciprocals of the Absolute mean daily air temperatures and diffuse radiant fluxes.

	_							
Growin	g		Pre	edicted va	alues		Measured va	lues
interv	al	-	Umax	Ug f:	resh mass	g-1 d-1	U	Standard
			g fresh	ı			g fresh mass	deviation
			mass				g-l d-l	
Dates			g-1 d-1	- NO3-N	NH4-N	total N		
Isipin	go	Lake						
1977	7							
11/8	-	17/8	0,0841	0,0368	*0,0600	*0,0644	0,0641	±0,0227
17/8	-	25/8	0,0947	0,0167	*0,0616	*0,0639	0,0506	<u>+</u> 0,0195
25/8	-	1/9	0,1153	0,0040	*0,0716	*0,0722	0,0745	±0,0222
1/9	-	7/9	0,1108	0,0006	0,0761	0,0761	0,1247	<u>+</u> 0,0314
Discha	זדר	ne Cana	al					
1977	, 1							
3/11	_	16/11	0.1391	*0.1151	* 0.0834	*0.12 0 0	0.0965	+0 0236
18/11	_	30/11	0.1362	*0.1135	0,0657	*0.1165	0,1035	+0 0269
1/12	-	14/12	0,1410	*0,1171	*0,0692	*0,1204	0,0940	±0,0280
Isipin		o Cana	1					
1977	,		_					
8/9	_	23/9	0,1270	0,0537	0.0737	0.0862	0,1201	+N N197
23/9	-	4/10	0,1315	0,0420	0,0838	0.0907	0,1115	+0 0155
5/10	-	26/10	0,1323	0,0551	0,0750	0,0885	0,1167	±0,0132

* Predicted specific growth rates falling within standard deviations of measured specific growth rates.

Table 5.8 A comparison of the differences between measured specific growth rates and those predicted for marginal plants from the growth rate limiting total N or total P concentrations in the water at 3 sites, where the predicted values were calculated using Umax values, in the Monod model, corrected for: A the mean daily air temperature,

В	the	mean	daily	air	temperature	and	diffuse	radiant	flux.
---	-----	------	-------	-----	-------------	-----	---------	---------	-------

Growi	ng		Differenc	ces	Growing	Differer	ices
inter	va	1	g fresh n	nass g ⁻¹ d ⁻¹	interval	g fresh	mass g ^{-l} d ^{-l}
Dates			А	В	Dates	А	В
Botan	ic 's	Garde	ns Lake		Isipingo Lak	e	
1/2	<u> </u>	15/2	*0.0128	0.0212	11/8 - 17/8	0.0075	*0.0003
17/2	_	1/3	0,0406	*0,0316	17/8 - 25/8	*0,0082	0,0005
2/3	-	14/3	0,0082	*0,0065	25/8 - 1/9	0.0159	*0,0023
16/3	-	28/3	, 0,0199	*0,0019	1/9 - 7/9	0.0510	*0.0486
31/3	-	12/4	0,0199	*0,0036		-,	.,
14/4	-	25/4	0,0114	*0,0110			_
28/4	-	9/5	* 0,0037	0,0186	Discharge Ca	nal	-
12/5	-	23/5	0,0035	*0,0003	-		
26/5	-	6/6	*0,0011	0,0078	1977		
9/6	-	20/6	0,0151	*0,0147	3/11 - 16/1	1 *0,0004	0,0235
23/6	-	4/7	*0,0127	0,0133	18/11 - 30/1	1 *0,0083	0,0130
7/7	-	18/7	0,0068	*0,0056	1/12 - 14/1	2 0,0298	*0,0264
20/7	-	2/8	*0,0162	0,0177			·
4/8	-	15/8	0,0040	*0,0030			
18/8	-	29/8	0,0196	*0,0161			
1/9	-	13/9	0,0079	*0,0004			
15/9	-	27/9	0,0234	*0,0113	* smallest	difference	
29/9	-	11/10	0,0105	*0,0039			
13/10	-	23/10	0,0391	*0,0131			
25/10	-	7/11	0,0356	*0,0252			
10/11	-	22/11	*0,0177	0,0185			
24/11	-	6/12	0,0394	*0,0348			

Figure 5.2 Average diffuse radiant fluxes recorded over each growing interval of marginal plants at 2 sites.

Figure 5.3 A Lineweaver-Burk plot of the specific growth rates (assumed Umax's) of marginal plants normalized to $15^{\circ}C$ ($U_{15^{\circ}C}$) against the diffuse radiant fluxes at the Maturation Pond 3 site over the period February to December, 1978. U = Umax.

Figure 5.4 An Arrhenius plot of the specific growth rates (assumed Umax's) of marginal plants (Log_e) against the products of the reciprocals of the Absolute mean daily air temperatures and diffuse radiant fluxes at the Maturation Pond 3 site over the period February to December, 1978.

Specific growth rates predicted for marginal plants from 2. Figure 5.5 the total P and 3. the SRP concentrations in the water, over each growing interval, at the Botanic Gardens Lake site compared with 1. the measured specific growth rates. Standard deviations of measured specific growth rates are shown by bars. The predicted values were calculated using Umax values corrected for the mean daily air temperature and diffuse radiant flux, derived for marginal plants in the field, and the mean Ksp concentration of 94,1 ug P 1^{-1} , generated for E. crassipes under P growth rate limitation in culture, in the Monod model.

Table 5.9 Specific growth rates (U) predicted for marginal plants from the P (SRP and total P) concentrations in the water, over each growing interval, at the Botanic Gardens Lake site compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the products of the reciprocals of the Absolute mean daily air temperatures, diffuse radiant fluxes and mean daily relative humidities.

Growi	ng		Predi	cted values		Measured valu	les
inter	interval		Umax _	U g fresh (mass g ⁻¹ d ⁻¹	U	Standard
			g fresh			g fresh mass	deviation
			mass			g-1 d-1	
Dates			a-1 d-1	SRP	total P	5	
						· ·	
197	8						
177	0						
1/2	-	15/2	0,1416	0.0071	0.0935	0,1158	+0.0130
17/2	-	1/3	0,1501	0,0031	0,0876	0,1227	±0,0187
2/3	-	14/3	0,1365	0,0239	*0,0922	0,0996	±0,0155
16/3	-	28/3	0,1222	0,0377	* 0,0675	0,0675	±0,0208
31/3	-	12/4	0,1012	0,0226	*0,0649	0,0689	±0,0220
14/4	-	25/4	0,1134	0,0024	* 0,0700	0,0601	±0,0254
28/4	-	9/5	0,0748	0,0266	*0,0447	0,0645	±0,0257
12/5	-	23/5	0,0933	0,0038	*0,0471	0,0478	<u>+</u> 0,0147
26/5	-	6/6	0,0827	0,0210	*0,0426	0,0493	<u>+</u> 0,0104
9/6	-	20/6	0,0686	0,0139	* 0,0384	0,0305	<u>+</u> 0,0121
23/6	-	4/7	0,0776	0,0136	*0,0433	0,0313	±0,0156
7/7	-	18/7	0,0899	0,0124	* 0,0470	0,0527	±0,0080
20/7	-	2/8	0,0981	0,0243	0,0635	0,0443	±0,0109
4/8	-	15/8	0,1019	0,0344	*0,0735	0,0635	±0,0116
18/8	-	29/8	0,1133	0,0182	*0,0531	0,0651	±0,0132
1/9	-	13/9	0,0983	0,0231	*0,0594	0,0615	<u>+</u> 0,0146
15/9	-	27/9	0,1319	0,0350	*0, 0760	0,0867	±0,0157
29/9	-		0,1191	*0,0794	*0,0871	0,0843	±0,0131
13/10	-	23/10	0,1503	0,0548	* 0,1015	0,1162	±0,0229
25/10	-		0,1334	0,0224	0,0815	0,1064	±0,0139
	-	22/11	U,1242	0,0180	* 0,0782	0,0963	±0,0206
24/11	-	6/12	U , 1407	0,0135	0,0844	0,1207	±0,0138

* Predicted specific growth rates falling within standard deviations of measured specific growth rates.

±0,0138

Table 5.10 Specific growth rates (U) predicted for marginal plants from the P (SRP and total P) concentrations in the water, over each growing interval, at the Hartbeespoort Dam site compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the products of the reciprocals of the Absolute mean daily air temperatures, diffuse radiant fluxes and mean daily relative humidities.

Growing	Pred	icted valu	es	Measured	values
interval	Umax	Ug fre	sh mass g-l d-l	U	Standard
	g fresh			g fresh mass	deviation
	mass			g-l d-l	
Dates	g-l d-l	SRP	total P		
1977					
28/9 - 11/10	0,0940	*0,0484	*0,0496	0,0313	<u>+</u> 0,0209
14/10 - 27/10	0,0780	0,0408	0,0427	0,0207	±0,0070
3/11 - 11/11	0,0724	*0,0499	*0,0509	0,0375	±0,0149
18/11 - 25/11	0,1108	*0,0716	*0,0748	0,0672	<u>+</u> 0,0362
14/12 - 22/12	2 0,1306	0,0889	0,0908	0,0410	±0,0157
* F	redicted	specific	growth rates	falling with	in standard
c	leviations	of measur	ed specific aro	wth rates	

Table 5.11 Specific growth rates (U) predicted for marginal plants from the N (NO₃-N, NH₄-N and total N) concentrations in the water, over each growing interval, at 3 sites compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the products of the reciprocals of the Absolute mean daily air temperatures, diffuse radiant fluxes and mean daily relative humidities.

Growi	ng		Pred	icted valu	les		Measured	values
inter	val		Umax	Ugfi	resh mass	_g-1 d-1	U	Standard
			g fresh				g fresh mass	deviation
			mass				g-1 d-1	
Dates			g-l d-l	NO 3-N	NH4-N	total N		
Isini	nao L	ake						
1977								
11/8	- 17	7/8	0,0900	0,0394	*0,0642	*0,0689	0,0641	±0,0227
17/8	- 25	8/8	0,0961	0,0169	*0,0625	*0,0648	0,0506	±0,0195
25/8	- 1	./9	0,1156	0,0040	*0,0718	*0,0724	0,0745	<u>+</u> 0,0222
1/9	- 7	/9	0,1128	0,0006	0,0774	0,0775	0,1247	<u>+</u> 0,0314
Disch	arge	Can	al					
1977	-							
3/11	- 16	5/11	0,1349	*0,1116	*0,0809	*0,1164	0,0965	±0,0236
18/11	- 30)/11	0,1344	*0,1119	0,0648	*0,1150	0,1035	<u>+</u> 0,0269
1/12	- 14	/12	0,1357	*0,1127	*0,0666	*0,1159	0,0940	±0,0280
Isipi	ngo C	ana	1					
1977								
8/9	- 23	5/9	0,1261	0,0534	0,0732	0,0856	0,1201	±0,0197
23/9	- 4	/10	0,1306	0,0417	0,0832	0,0901	0,1115	±0,0155
5/10	- 26	/10	0,1321	0,0549	0,0749	0,0884	0,1167	±0,0132
	*	P	redicted	specific	growth	rates	falling with	in standard
		de	eviations	of measur	ed speci	fic growth	rates.	

Table	5.12	A compa	arison of	° the	difference	s between	measured	specif	ic
	1	growth :	rates and	those	predicted	for margin	nal plants	; from th	he
		growth :	rate limi	ting to	tal N or t	total P co	ncentratio	ons in th	he
		water a	t 3 site	s, when	re the pre	dicted valu	les were	calculate	ed
		using Um	nax values	, in th	e Monod mod	lel, correct	ted for:		
		A the	e mean dai	ly air	temperature	and diffu	se radiant	flux,	

B the mean daily air temperature, diffuse radiant flux and mean daily relative humidity.

Growing	Differences		Growing	Difference	s
interval	g fresh mass	g-1 d-1	interval	g fresh ma	ss g ^{-l} d ^{-l}
Dates	А	В	Dates	A	В

Botan	nic Gardens Lake				Isipingo Lake
1970	5				13//
1/2	-	15/2	*0,0212	0,0223	11/8 - 17/8 *0,0003 0,0048
17/2	-	1/3	*0,0316	0,0351	17/8 - 25/8 *0,0133 0,0142
2/3	-	14/3	*0,0065	0,0074	25/8 - 1/9 0,0023 *0,0021
16/3	-	28/3	0,0019	*0,0000	1/9 - 7/9 0,0486 *0,0472
31/3	-	12/4	*0,0036	_ 0,0040	
14/4	-	25/4	0,0110	*0,0099	
28/4	-	9/5	*0,0186	0,0198	Discharge Canal
12/5	-	23/5	*0,0003	0,0007	
26/5	-	6/6	0,0078	*0,0067	1977
9/6	-	20/6	0,0147	*0,0079	3/11 - 16/11 0,0235 *0,0199
23/6	-	4/7	0,0133	*0,0120	18/11 - 30/11 0,0130 *0,0115
7/7	-	18/7	*0,0056	0,0057	1/12 - 14/12 0,0264 *0,0219
20/7	-	2/8	*0,0177	0,0192	
4/8	-	15/8	*0,0030	0,0100	
18/8	-	29/8	0,0161	*0,0120	
1/9	-	13/9	*0,0004	0,0021	
15/9	-	27/9	0,0113	*0,0107	* smallest difference
29/9	-	11/10	0,0039	*0,0028	
13/10	-	23/10	*0,0131	0,0147	
25/10		7/11	0,0252	*0, 0249	
10/11	-	22/11	0,0185	*0,0181	
24/11	-	6/12	*0,0348	0,0363	

- Table 5.13 A comparison of the differences between measured specific growth rates and those predicted for marginal plants from the growth rate limiting total P concentrations in the water at the Hartbeespoort Dam site, where the predicted values were calculated using Umax values, in the Monod model, corrected for:
 - A the mean daily air temperature,
 - B the mean daily air temperature and diffuse radiant flux,
 - C the mean daily air temperature, diffuse radiant flux and mean daily relative humidity.

Growing interval	Differences q fresh mass q-1 d-1		
Dates	А	В	C
1977			
28/9 - 11/10	0,0220	0,0348	*0,0183
14/10 - 27/10	0,0376	0,0353	*0,0220
3/11 - 11/11	0,0451	0,0413	*0,0134
18/11 - 25/11	0,0171	0,0217	*0,0076
14/12 - 22/12	*0,0439	0,0617	0,0498
* smalles	t difference		

Figure 5.6 Average daily relative humidities recorded over each growing interval of marginal plants at 2 sites.

Figure 5.7 An Arrhenius plot of the specific growth rates (assumed Umax's) of marginal plants (Log_e) against the products of the reciprocals of the Absolute mean daily air temperatures, diffuse radiant fluxes and mean daily relative humidities at the Maturation Pond 3 site over the period February to December, 1978.

Specific growth rates predicted for marginal plants from 2. Figure 5.8 the total P and 3. the SRP concentrations in the water, over each growing interval, at the Botanic Gardens Lake site with 1. the measured specific growth compared rates. Standard deviations of measured specific growth rates are shown by bars. The predicted values were calculated using Umax values corrected for the mean daily air temperature, diffuse radiant flux and mean daily relative humidity, derived for marginal plants in the field, and the mean Ksp concentration of 94,1 ug P 1-1, generated for E. crassipes under P growth rate limitation in culture, in the Monod model.

Figure 5.9 Average pH values recorded in the water, over each growing interval, from the vicinity of the marginal plant populations enclosed at 2 sites.

CHAPTER 6

PREDICTING GROWTH RATES FROM THE NUTRIENT

CONCENTRATIONS IN THE PLANTS

Table 6.1 A statistical comparison of the N and P concentrations analyzed in marginal plants at the Botanic Gardens Lake (BGL) and Maturation Pond 3 (MP3) sites (means over the period 1/2/78 to 6/12/78).

Site	Nutrient concentratio		
	% dry mass		
	Ν	Р	
MP3	4,72	1,19	
BGL	3,34	0,51	
Analysis of Variance			
(F value)	46,90	55,93	
Degrees of freedom (n-l)	128	128	
Significance level %	0,1	0,1	

Table 6.2 Correlation coefficients calculated between the N and P concentrations in marginal and central plants and the various N and P fractions in the water at the Maturation Pond 3 (MP3) and Botanic Gardens Lake (BGL) sites over the period February to December, 1978.

Chemical	Correlation	Degrees of	Significance
factor	coefficient	freedom	level
	(r)	(n - 1)	%
	Chemical factor	Chemical Correlation factor coefficient (r)	Chemical Correlation Degrees of factor coefficient freedom (r) (n - 1)

MARGINAL PLANTS

MP3	N content	plants vs.	N03-N	0,1136	20	NS ($P = 0,05$)
MP3			NH4-N	0,6859	20	0,1
MP3			total N	0,6544	20	0,1
MP3	P content	plants vs.	SRP	0,4507	20	5,0
MP3			total P	0,3724	20	NS (P = 0,05)
BGL	N content	plants vs.	N03-N	0,1943	21	NS ($P = 0,05$)
BGL			NH4-N	0,1784	21	NS ($P = 0,05$)
BGL			total N	0,2309	21	NS ($P = 0,05$)
BGL	P content	plants vs.	SRP	0,0184	21	NS ($P = 0,05$)
BGL			total P	0,1739	21	NS ($P = 0,05$)
CENTRAL	PLANTS					
MP3	N content	plants vs.	N03-N	0,1556	14	NS ($P = 0,05$)
MP3			NH4-N	0,7612	14	0,1
MP3			total N	0,6615	14	1,0
MP3	P content	plants vs.	SRP	0,8395	14	0,1
MP3			total P	0,4873	14	NS ($P = 0,05$)

NS = not significant

94

Table 6.3 A statistical comparison of the N and P concentrations analyzed in marginal and central plants at the Maturation Pond 3 (MP3) site (means over the period 3/11/77 to 6/12/78, but excluding the winter period 7/6/78 to 15/9/78 when no plants of the central growth form were produced).

Growth form	Nutrient concentration % dry mass		
	N	Р	
Marginal	4,61	1,15	
Central	3,47	0,99	
Analysis of Variance Variance ratio (F value)	19,41	4,26	
Degrees of freedom (n-l)	104	104	
Significance level %	0,1	5,0	

Table 6.4 The percentage of the maximum specific growth rate (% Umax) that marginal and central plants would achieve at the average N and P concentrations in the plants at 6 field sites. Estimates are based on the average minimum N and P concentrations of 1,10% N and 0,11% P in E. crassipes, derived from the mean Yc values (dry mass basis) determined for this plant under N and P growth rate limitation respectively in culture.

Dates	Site	Plant	tissue		% Uma	ax —
		Ν	Р	<u>N</u>	Ν	Р
		% dry	mass	Р		
				······································	<u></u>	
MARGINAL PLANTS						
1977						
11/8 - 7/9	IL	2,40	0,40	6,0	54 , 2*	72,5
8/9 - 26/10	IC	2,75	0,22	12,5	60,0	50,0 *
3/11 - 14/12	DC	3,02	0,70	4,3	63,6 *	84,3
28/9 - 22/12	HD	2,89	0,49	5,9	61,9*	77,5
1/9 - 14/12	MP3	4,79	1,20	4,0	77,0*	90,8
1978						
1/2 - 6/12	MP3	4,72	1,19	4,0	76,7 *	90,8
1/2 - 6/12	BGL	3,34	0,51	6,5	67,1*	78,4
Central plants						
1977						
3/11 - 14/12	DĊ	2,53	0,47	5,4	56,5*	76,6
3/11 - 14/12	MP3	3,63	1,22	3,0	69,7*	91,0
1978						
1/2 - 6/12	MP3	3,44	0,94	3,6	68,0 *	88,3
*	growth rat	e limiting	, nutrie	nt		
IL =	Isipingo L	.ake		HD = Hartbees	spoort Dan	n
IC =	Isipingo C	anal		MP3 = Matural	ion Pond	3
DC =	Discharge	Canal		BGL = Botanic	Gardens	Lake

Figure 6.1 Nitrogen concentrations (means of 3 batches) analyzed in E. crassipes harvested after each growing interval at 2 sites. Solid line = marginal plants growing in loosely crowded field populations. Broken line = central plants growing in densely crowded field populations. No plants of the central growth form produced during June, July and August.

Figure 6.2 Phosphorus concentrations (means of 3 batches) analyzed in E. crassipes harvested after each growing interval at 2 sites. Solid line = marginal plants growing in loosely crowded field populations. Broken line = central plants growing in densely crowded field populations. No plants of the central growth form produced during June, July and August.

97

Figure 6.3 The relationship between the N concentrations in marginal plants and the NH₄-N concentrations in the water at the Maturation Pond 3 site over the period February to December, 1978. Broken lines show 95% confidence limits on either side of the regression line.

Figure 6.4 The relationship between the N concentrations in marginal plants and the total N concentrations in the water at the Maturation Pond 3 site over the period February to December, 1978. Broken lines show 95% confidence limits on either side of the regression line.

Figure 6.5 The relationship between the P concentrations in marginal plants and the SRP concentrations in the water at the Maturation Pond 3 site over the period February to December, 1978. Broken lines show 95% confidence limits on either side of the regression line.

Figure 6.6 The relationship between the N concentrations in central plants and the NH₄-N and total N concentrations in the water at the Maturation Pond 3 site over the period February to December, 1978. Broken lines show 95% confidence limits on either side of the regression line.

Figure 6.7 The relationship between the P concentrations in central plants and the SRP concentrations in the water at the Maturation Pond 3 site over the period February to December, 1978. Broken lines show 95% confidence limits on either side of the regression line.

Table 6.5 Specific growth rates (U) predicted for marginal plants from the N concentrations in the plants, over each growing interval, at the Botanic Gardens Lake site compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the products of the reciprocals of the Absolute mean daily air temperatures, diffuse radiant fluxes and mean daily relative humidities.

Growing	Predicted	values	Measured	values
interval	Umax	U	U .	Standard
	g fresh mass	g fresh mass	g fresh mass	deviation
Dates	g-1 d-1	g-1 d-1	g-1 d-1	
1978				
1/2 - 15/2	0,1416	0,0747	0,1158	±0,0130
17/2 - 1/3	0,1501	0,0816	0,1227	±0,0187
2/3 - 14/3	0,1365	*0,0879	0,0996	±0,0155
16/3 - 28/3	0,1222	*0,0771	0,0675	±0,0208
31/3 - 12/4	0,1012	*0,0698	0,0689	±0,0220
14/4 - 25/4	0,1134	*0,0692	0,0601	±0,0254
28/4 - 9/5	0,0748	* 0,0524	0,0645	±0,0257
12/5 - 23/5	0,0933	*0,0583	0,0478	±0,0147
26/5 - 6/6	0,0827	*0, 0533	0,0493	±0,0104
9/6 - 20/6	0,0686	0,0468	0,0305	±0,0121
23/6 - 4/7	0,0776	0,0582	0,0313	±0,0156
7/7 - 18/7	0,0899	0,0654	0,0527	±0,0080
20/7 - 2/8	0,0981	0,0649	0,0443	±0,0109
4/8 - 15/8	0,1019	* 0,0743	0,0635	±0,0116
18/8 - 29/8	0,1133	0,0813	0,0651	± 0.0132
1/9 - 13/9	0,0983	*0,0653	0,0615	± 0.0146
15/9 - 27/9	0,1319	*0,0912	0,0867	±0.0157
29/9 - 11/10	0,1191	*0,0750	0,0843	±0.0131
13/10 - 23/10	0,1503	*0,1018	0,1162	±0,0229
25/10 - 7/11	0,1334	0,0881	0,1064	±0,0139
10/11 - 22/11	0,1242	*0,0859	0,0963	+0,0206
24/11 - 6/12	0,1407	0,0948	0,1207	±0,0138
* Drad				

Predicted specific growth rates falling within standard deviations of measured specific growth rates.

Table 6.6 Specific growth rates (U) predicted for marginal plants from the N concentrations in the plants, over each growing interval, at 3 sites compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the products of the reciprocals of the Absolute mean daily air temperatures, diffuse radiant fluxes and mean daily relative humidities.

Growing	Predicted	values	Measured values	
interval	Umax	U	U	Standard
	g fresh mass	g fresh mass	g fresh mass	deviation
Dates	g-1 d-1	g-1 d-1	g-1 d-1	
Is ipingo Lake 1977				
11/8 - 17/8 17/8 - 25/8 25/8 - 1/9 1/9 - 7/9	0,0900 0,0961 0,1156 0,1128	*0,0529 *0,0536 *0,0553 0,0593	0,0641 0,0506 0,0745 0,1247	±0,0227 ±0,0195 ±0,0222 ±0,0314
Discharge Cana 1977	1			
3/11 - 16/11 18/11 - 30/11 1/12 - 14/12	0,1349 0,1344 0,1357	*0,0772 *0,0876 *0,0910	0,0965 0,1035 0,0940	±0,0236 ±0,0269 ±0,0280
Hartbeespoort 1977	Dam			
28/9 - 11/10 14/10 - 27/10 3/11 - 11/11 18/11 - 25/11 14/12 - 22/12	0,0940 0,0780 0,0724 0,1108 0,1306	0,0563 0,0503 *0,0464 *0,0671 0,0787	0,0313 0,0207 0,0375 0,0672 0,0410	$\pm 0,0209$ $\pm 0,0070$ $\pm 0,0149$ $\pm 0,0362$ $\pm 0,0157$
* Pred. devia	icted specific ations of measu	c growth rates ured specific gro	falling within wth rates.	standard

Table 6.7 Specific growth rates (U) predicted for marginal plants from the P concentrations in the plants, over each growing interval, at the Isipingo Canal site, compared with the measured specific growth rates. Maximum specific growth rates (Umax) predicted for marginal plants, over each growing interval, using the regression equation relating the assumed Umax's of marginal plants in the field exponentially to the products of the reciprocals of the Absolute mean daily air temperatures, diffuse radiant fluxes and mean daily relative humidities.

Growing	Predicted values		Measured	values
interval	Umax	U	U	Standard
	g fresh mass	g fresh mass	g fresh mass	deviation
Dates	g-1 d-1	g-1 d-1	g-1 d-1	
1977				
8/9 - 23/9	0,1261	0,0683	0,1201	±0,0197
23/9 - 4/10	0,1306	0,0508	0,1115	±0,0155
5/10 - 26/10	0,1321	0,0715	0,1167	±0,0132

- Table 6.8 A comparison of the differences between measured specific growth rates and those predicted for marginal plants from:
 - A the growth rate limiting nutrient (total N or total P) concentrations in the water,
 - B the growth rate limiting nutrient (N or P) concentrations in the plants,

at 3 sites. In both cases, the predicted values were calculated using Umax values, in either the Monod model or Droop's simplified hyperbolic equation, corrected for the mean daily air temperature, diffuse radiant flux and mean daily relative humidity.

Growing	Differenc	es	Growing	Differen	ces
interval	g fresh m	ass g ⁻¹ d ⁻¹	interval	g fresh r	nass g-l d-l
Dates	А	В	Dates	А	В
Botanic Garde	ns Lake		Tsiningo Lake		
1978			1977	,	
1/2 - 15/2 17/2 - 1/3 2/3 - 14/3 16/3 - 28/3 31/3 - 12/4 14/4 - 25/4 28/4 - 9/5 12/5 - 23/5 26/5 - 6/6 9/6 - 20/6 23/6 - 4/7 7/7 - 18/7 20/7 - 2/8 4/8 - 15/8 18/8 - 29/8 1/9 - 13/9 15/9 - 27/9 29/9 - 11/10 13/10 - 23/10 25/10 - 7/11 10/11 - 22/11	*0,0223 *0,0351 *0,0074 *0,0000 0,0099 0,0198 *0,0007 0,0067 *0,0007 *0,0120 *0,0120 *0,0120 *0,0120 *0,0120 *0,0120 *0,0120 *0,0120 *0,0120 *0,0120 *0,0120 *0,0120 *0,0120	0,0411 0,0117 0,0096 *0,0009 *0,0091 *0,0121 0,0105 *0,0040 0,0163 0,0269 0,0127 0,0206 0,0127 0,0206 0,0127 0,0206 0,0108 *0,0162 0,0038 *0,0045 0,0093 *0,0144 *0,0183 *0,0104	11/8 - 17/8 17/8 - 25/8 25/8 - 1/9 1/9 - 7/9 Discharge Can 1977 3/11 - 16/11 18/11 - 30/11 1/12 - 14/12 * smallest d	*0,0048 0,0142 *0,0021 *0,0472 al 0,0199 *0,0115 0,0219	0,0112 *0,0030 0,0192 0,0654 *0,0193 0,0159 *0,0030

Specific growth rates predicted for marginal plants from 2. Figure 6.8 N concentrations in the plants, over each growing the interval, at the Botanic Gardens Lake site compared with 1. the measured specific growth rates . Standard deviations of specific growth rates are shown measured by bars. The predicted values were calculated using Umax values corrected for the mean daily air temperature, diffuse radiant flux and mean daily relative humidity, derived for marginal plants in the field, and the average minimum N concentration of 1,10% N in E. crassipes, derived from the mean Yc value for this nutrient, in Droop's simplified hyperbolic equation.

CHAPTER 7

GENERAL CONCLUSIONS AND APPLICATION

OF REFINED MODEL

Table 7.1 Application of the refined model for predicting yields, growth rates and harvesting frequencies for **E. crassipes** growing in loosely crowded field populations in a hypothetical culturally eutrophied water body in the Durban area of Natal in which N is the growth rate limiting nutrient.

N concentration of effluent ug N 1 ⁻¹		2 000	4 000	6 000	8 000	10 000
Annual growth poten= tial of effluent metric tonnes		282,96	565,92	848,88	1131,84	1414,80
Average daily growth potential of effluent metric tonnes		0,7752	1,5505	2,3257	3,1009	3,8762
Specific growth rate g fresh mass g ⁻¹ d ⁻¹	Summer Winter	0,0894 0,0626	0,1069 0,0749	0,1144 0,0802	0,1185 0,0831	0,1212 0,0849
Minimum standing crop to produce average daily growth poten= tial of effluent metric tonnes	Summer Winter	8,2891 12,0000	13,7431 19,9344	19,1889 27,8527	24,6475 35,7865	30,0830 43,7445
Area of minimum standing crop ha (x10 ⁴ m ²)	Summer Winter	0,2658 0,3848	0,4407 0,6392	0,6153 0,8931	0,7903 1,1475	0,9646 1,4027
Harvesting interval days i.e. number of days for each minimum standing crop to pro= duce an additional 47 metric tonnes	Summer Winter	21,2 25,4	13,9 16,2	10,8 12,3	9,0 10,1	7,8 8,6

106

Table 7.2 Stand densities (dry mass basis) reported for E. crassipes growing in loosely and densely crowded field populations.

Loosely crowded populations		Densely c	rowded populations
Stand dens g m ⁻²	ity Reference	Stand dens g m-2	ity Reference
221	Boyd and Scarsbrook (1975)	2130	Boyd and Scarsbrook (1975)
224	Steward (1970)	2500	Knipling et al. (1970)

•

APPENDIX I

PILOT STUDIES

Table I Average specific growth rates (U), means of 6 replicates, of E. crassipes grown over a 4 week growth period at different N concentrations in culture at a mean daily air temperature of 25°C day and 23°C night and a 12 hour daily photoperiod.

N concent	ration NO ₃ co	ncentration	U
in cultur	e in cul	ture	g fresh mass g ⁻¹ d ⁻¹
x 10 ³ ug	N 1 ⁻¹ × 10 ³	ug NO3 1 ⁻¹	
3,61	1	6	0,0319
5,42	2	4	0,0391
6,32	2	8	0,0471
7,22	3	2	0,0484
8,13	3	6	0,0544
9,03	4	0.	0,0573
9,93	- 4	4	0,0567
10,84	4	8	0,0569
11,74	5	2	0,0567
12,64	5	6	0,0563
			LSD (0,05) = 0,0075
			LSD = least significant
			difference

Solution	Salt _		Ionic	concentration	
No		Ca	tions	Anions	
		x 10	3 _{ug 1} –1	x 10 ³ ug	1-1
				_	
1 K stock	solution				
	KN03	к	25,26	NO3	40,00
	KH2PO4	к	8,05	P04	20,00
	K ₂ S0 ₄	к	8,13	S04	10,00
2 Ca stock	solution				
	Ca (NO ₃) ₂ .4H ₂ O	Ca	12,94	NO3	40,00
	Ca HPO ₄	Ca	8,35	P0 ₄	20,00
	Ca SO ₄	Ca	4,17	S04	10,00
	Ca Cl ₂	Ca	14,54	Cl	25,72
3 Mg stock	solution				
	Mg (NO ₃) ₂ .6H ₂ O	Mg	7,86	NO3	40,00
	Mg HPO ₄	Mg	5,07	P0 ₄	20,00
	Mg SO ₄	Mg	2,53	SO4	10,00
	Mg Cl ₂ .6H ₂ O	Mg	24,54	Cl	71,54
4 Trace el	ement solution				
	Na Cl	Na	20,00	Cl	30,84
	Fe EDTA	Fe	0,40		
	Cu SO ₄ . 5H ₂ O	Cu	0,03		
	Mn S0 ₄ . H ₂ 0	Mn	0,27		
	Zn SO ₄ . 7H ₂ O	Zn	0,13		
	H3 B03	в	0,27		
	$(NH_4)_6 Mo_70_{24}.4H_20$	Мо	0,01		

Table II Chemical composition and ionic concentrations of cation stock solutions.

Trace element stock solution was prepared at 1000 times the concentration of the final solution. One ml of trace element stock solution was added to each litre of final culture solution derived from combining the cation stock solutions.

Table III Relative proportions at which stock solutions were combined to give 28 cation combination treatments (One unit = 4,4 x 10^3 ug 1^{-1}).

17

$$\begin{array}{c} \mathbf{k} \\ 0,9,0 \\ 1,7,1 \\ 3,6,0 \\ 3,5,1 \\ 2,5,2 \\ 1,5,3 \\ 3,4,2 \\ 2,4,3 \\ 6,3,0 \\ 5,3,1 \\ 4,3,2 \\ 3,3,3 \\ 2,3,4 \\ 1,3,5 \\ 0,3,6 \\ 5,2,2 \\ 4,2,3 \\ 3,2,4 \\ 2,2,5 \\ 7,1,1 \\ 5,1,3 \\ 3,1,5 \\ 1,1,7 \\ 9,0,0 \\ 6,0,3 \\ 3,0,6 \\ 0,0,9 \\ \mathbf{Ca} \\ \mathbf{Mg} \end{array}$$

Table IV Average specific growth rates (g fresh mass $g^{-1} d^{-1}$), means of 6 replicates, of E. crassipes grown over a 4 week growth period at various cation combination treatments in culture at a mean daily air temperature of 25°C day and 23°C night and a 12 hour daily photoperiod.

К 0,0394

0,0594 0,0581 0,0409 0,0547 0,0632 0,0613 0,0595 0,0586 0,0561 0,0633 0,0606 0,0575 0,0596 0,0540 0,0217 0,0599 0,0606 0,0587 0,0546 0,0585 0,0589 0,0541 0,0515 0,0448 0,0485 0,0515 0,0224 Са Mg LSD (0,05) = 0,0071 LSD = least significant difference

Table V Specific growth rates (U) of E. crassipes grown over 3 week growth period in aerated and unaerated cultures at a mean daily air temperature of 25°C day and 23°C night and a 12 hour daily photoperiod.

Aerate	ed cultur	res 10 mir	n hr−l		Unaerated cultures					
Plant	U	Plar	nt U	-	Plant	U		Plant	U	
No	g fresh g-l d-l	mass No	g fresh g-l d-l	mass	No	g fresh g-l _d -l	mass	No	g fresh g ^{_l} d ^{_l}	mass
1	0,0539	16	0,0602		1	0,0685		16	0,0765	
2	0,0650	17	0,0623		2	0,0733		17	0,0776	
3	0,0624	18	0,0604		3	0,0790		18	0,0742	
4	0,0591	19	0,0560		4	0,0687		19	0,0664	
5	0,0572	20	0,0595		5	0,0696		20	0,0684	
6	-	21	0,0573		6	0,0682		21	0,0662	
7	-	22	0,0596		7 .	0,0681		22	0,0632	
8	0,0506	23	0,0622		8	0,0669		23	0,0688	
9	0,0569	24	0,0482		9	0,0759		24	0,0705	
10	0,0527	25	0,0543		10	0,0608		25	0,0641	
11	0,0531	26	0,0520		11	0,0649		26	0,0673	
12	0,0510	27	0,0597		12	0,0653		27	0,0712	
13	0,0586	28	0,0561		13	0,0677		28	0,0673	
14	0,0571	29	0,0592		14	0,0649		29	0,0538	
15	0,0476	30	0,0625		15	0,0720		30	0,0671	
Means			0,0569						0,0685	
Analy	sis of Va	ariance								
Varia	nce ratio)								
(F ۱	value)					82,46				
Degi	rees of f	reedom				57				
(1	n – 1)									
Sigr	nificance	level				0,1				
%										

Table VI Nutrient concentrations analyzed in water samples taken from the vicinity of marginal and central plant populations at 3 sites (means of 3 replicates).

Growth form	Sites	Nutrient concentrations ug l ^{-l}										
				К		Ca		Mg		N03-N	NH4-N	SRP
	Isipingo Canal	120	000	10	700	29	000	25	000	550	862	537
Marginal	Umlaas River	64	500	2	600	16	000	14	000	337	162	2
	Enseleni River	26	500	3	900	8	000	3	000	812	212	4
	Isipingo Canal	130	000	11	500	28	000	24	000	400	1 500	800
Central	Umlaas River	66	000	2	200	16	000	14	000	250	250	4
	Enseleni River	28	000	3	500	6	000	2	000	800	312	7

Table VII Nutrient concentrations analyzed in whole E. crassipes plants (means of 3 batches).

Sites		Nutrient concentrations									
	Na	K	Ca	Mg	Ρ	N					
Isipingo Canal Umlaas River Enseleni River	0,395 0,189 0,251	3,633 2,861 2,811	1,032 1,085 1,167	0,524 0,526 0,736	0,729 0,355 0,215	- 2,957 -					

lutrient	1		2	3	4	Interactions			
		Batches	Sites	Plants	Growth			÷	
				parts	form	3/4	2/4	2/3	
Na		0.35	**23.29	**63.9]	**50.06	**10.89	*3,85	*5.53	
K		0,35	1,40	**22,47	**12,04	** 7,18	1,32	1,68	
Са		1,60	1,39	**27,69	0,00	1,08	1,36	2,01	
Mg		0,39	**13,58	**24,89	**19,78	** 7,76	0,01	0,29	
P		1,02	**68,81	**16,19	* 4,74	2,99	1,44	1,07	
Ν		0,19	-	**58,23	**16,30	* 5,07	-	-	
	¥	Signifi	cant at F	9 = 0,05					
	**	Signifi	cant at F	9 = 0,01					
	-	no data	obtained	l					

Table VIII Variance ratios (F values) for data on chemical analysis of **E. crassipes** plant tissue.

c .

Table IX Nutrient concentrations analyzed in various plant parts of **E. crassipes** (means of 3 batches).

Plant part		Nutrient concentrations % dry mass											
	Na	ĸ	Ca	Mg	P	N							
Roots Petioles Pseudolaminae	0,178 0,479 0,178	1,417 5,072 2,817	0,767 1,368 1,149	0,481 0,784 0,521	0,309 0,423 0,567	1,789 2,171 4,911							

Table X Nutrient concentrations analyzed in whole marginal and central plants (means of 3 sites).

Growth form	Nutrient concentrations % dry mass								
	Na	K	Ca	Mg	Р	N			
Marginal	0,368	2,322	1,094	0,680	0,393	3,122			
Central	0,189	3,881	1,095	0,511	0,474	2,793			

Table XI Nutrient concentrations (% dry mass) analyzed in various parts of marginal and central plants (means of 3 sites).

Nutrient	Growth form		Plant_part	
	~	Roots	Petioles	Pseudolaminae
Na	Marginal	0,197	0,642	0,264
	Central	0,159	0,318	0,091
К	Marginal	1,222	3,089	2,655
	Central	1,611	7,055	2,978
Са	Marginal	0,831	1,357	1,095
	Central	0,702	1,379	1,204
Mg	Marginal	0,641	0,897	0,503
	Central	0,321	0,672	0 ,539
Р	Marginal	0,311	0,321	0,547
	Central	0,308	0,525	0,588
N	Marginal	1,806	2,503	5,057
	Central	1,774	1,839	4,765

Figure I Sites of collection of E. crassipes. 1. Enseleni River 2. Umlaas River 3. Isipingo Canal.

FIELD DATA

Table I	Field data	a collected	during g	growth	of margi	nal plant	ts.
	PL	ANTS		CHEM	ICAL ANA	_YSES	
Growing	*SGR	Standard	Plar	nts		Water	
interval	g fresh	deviation	% dry	mass		ug 1 - 1	
	mass	*n = 40	N	Р	NO3-N	NH4-N	total N
Dates	g-l d-l				-	•	
MATURATION PON	D 3						
19 77							
1/9 - 7/9 8/9 - 21/9 23/9 - 4/10 28/10 - 2/11 3/11 - 16/11 18/11 - 30/11 1/12 - 14/12	0,1991 0,1450 0,1542 0,1662 0,1668 0,1544 0,1214	$\begin{array}{c} \pm \ 0,0263 \\ \pm \ 0,0165 \\ \pm \ 0,0163 \\ \pm \ 0,0491 \\ \pm \ 0,0211 \\ \pm \ 0,0221 \\ \pm \ 0,0236 \end{array}$	5,13 5,16 4,97 4,08 3,23 5,28 5,66	0,94 0,94 1,47 1,32 1,25 1,18 1,33	6894 2377 12249 3422 1000 4730 4735	16024 17510 8150 10806 14840 10620 12500	22918 19887 20399 14228 15840 15350 17235
Means	0,1581	± 0,0250	4,79	1,20	5058	12921	17979
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,1498 0,1698 0,1534 0,1481 0,1146 0,0936 - 0,1084 0,0987 0,0693 0,0526 0,0859 0,1041 0,1082 0,0981 0,1036 0,1179 0,1239 0,1358 0,1223 0,1147 0,1292 0,1144 0,0526	$\begin{array}{r} \pm 0,0227 \\ \pm 0,0312 \\ \pm 0,0395 \\ \pm 0,0395 \\ \pm 0,0191 \\ \pm 0,0314 \\ \hline \\ \pm 0,0128 \\ \pm 0,0128 \\ \pm 0,0128 \\ \pm 0,0128 \\ \pm 0,0126 \\ \pm 0,0125 \\ \pm 0,0125 \\ \pm 0,0125 \\ \pm 0,0125 \\ \pm 0,0129 \\ \pm 0,0126 \\ \pm 0,0194 \\ \pm 0,0241 \\ \pm 0,0257 \\ \pm 0,0217 \\ \pm 0,0125 \end{array}$	2,55 4,66 3,12 5,18 3,- 4,54 4,54 4,54 5,74 5,74 5,03 5,01 5,02 4,72 2,55	1,15 1,20 1,20 1,04 1,00 1,12 - 0,89 2,13 1,17 0,90 1,47 1,62 1,44 1,65 0,96 0,89 0,68 1,22 1,21 0,96 1,12 1,19 0,68	4740 2116 4120 5580 6919 8640 6480 6700 3796 6150 4000 5280 3914 2549 1369 13600 4990 5372 5980 4050 5318 559	11230 13360 6320 3600 17313 3652 11520 10974 16830 19382 18391 14560 21173 27786 21389 16980 24035 17155 15890 14900 16973 16000 15428 3600	15970 15476 10440 9180 24232 12292 18000 17674 20626 25532 22391 19840 25087 30335 22758 27068 24594 30755 20880 20272 22953 20050 20746 9180
	to	to	to	to	to	to	to
	0,1698	± 0,0395	5 , 74	2,13	13600	27786	30755
*SGR = s	pecific gro	owth rate	*ก = กเ	umber o	f replica	ates	

Table I (continued)

.

CHEM.	AN. (co	nt.)				PHY	SICAL	ANAL	YSES	-		
Water	(cont.)		Wate	er			Atmos	sphere	9			
ug l	-1	рН	*D0	Temp	Те	mp. °(2	Rel.	humid:	ity %	Photo-	*DRF
SRP	total		mg	°C	Mean	Max	Min	Mean	Max	Min	period	megajoules
	Р		1 - 1								(hrs)	m-2 hr-1
MATUR	ATION P	ond 3	3									
19 77												
6403	7096	7,7	6,8	21,5	19,9	25,3	14,3	80	98	55	12,0	0,4333
6344	7183	7,4	1,8	21,0	20,4	24,8	15,6	79	95	57	12,0	0,5126
5272	7435	7,4	1,1	22,5	19,8	24,1	15,9	81	96	60	11,9	0,5440
5286	7627	7,4	1,3	24,0	21,7	24,9	19,0	86	97	70	12,8	0,6400
6995	7210	7,5	1,6	23,5	20,5	24,3	16,4	79	93	63	13,8	0,5918
6300	/200	7,3	1,2	24,5	22,5	26,1	18,8	81	93	66	13,8	0,5685
5720	11680	/,4	2,/	26,0	23,9	27,3	20,6	78	93	62	13,7	0,5987
6046	7 921	7,4	2,3	23,3	21, 2	25,2	1 7, 2	80	95	62	12,8	0,555 5
1 9 78												
5140	6700	7,4	2,9	27,5	24,9	28,3	21,8	83	94	66	13,3	0,6243
4712	9435	7,4	4,5	27,0	23,5	27,3	20,2	81	94	63	12,8	0,7215
3648	4552	7,4	4,2	27,8	25,2	28,8	22,1	82	93	66	11,9	0,5741
2770	4288	7,3	5,9	26,0	25,0	28,8	21,4	83	95	66	12,0	0,4686
<u>4</u> 970	6298	7,4	5,1	23,0	23,5	26,6	18,9	76	90	58	11,7	0,4039
3830	4832	7,5	4,4	23,0	20,7	25,9	17,0	77	91	57	11,5	0,4592
4270	5449	7,4	6,8	19,0	19,2	24,3	14,3	72	89	49	11,0	0,3024
4880	5523	7,3	4,0	20,0	19,0	25,2	13,7	75	91	49	10,2	0,3548
7532	7821	7,4	3,0	19,0	18,7	23,9	13,8	77	93	53	10,1	0,3105
7055	7281	7,4	1,2	15,1	16,3	22,4	10,3	64	87	38	10,0	0,3074
6404	6986	7,6	6,1	15,5	16,1	22,1	10,3	72	89	48	10,0	0,3101
7246	8565	7,4	1,3	17,5	17,4	22,7	12,0	75	92	53	10,0	0,3467
66/3	8587	7,3	0,4	18,0	18,1	23,3	13,1	78	94	53	9,9	0,3716
6100	8609	1,3	0,7	19,5	18,2	22,6	13,5	85	97	62	10,7	0,3610
5129	/2 <i>3</i> U	7,2	ر, U	10,5	18,6	22,2	16,4	86	98	66	11,1	0,3977
565/J	8533	7,5	7,1	22 0	17,4	21,8	12,2	/4	97	51	11,8	0,3936
6030	6/196	75	7,2	22,0	10 0	22,2	15,7	8 <i>2</i>	96 07	64	11,9	0,5393
4800	5088	7 4	<i>A</i> 1	20,0	20,0	21,0	17,7	8U 95	97	62	11,9	0,4/4/
4860	5012	7.7	6.1	25.0	20,1	22,0	17.9	83	99	65	12.0	0,6685
5210	5590	7.3	2.5	23.5	21,9	25.5	18 5	81	96	63	17.7	0,2741
4300	4910	7,5	6,7	26,2	23,0	26,5	19,9	82	98	61	13,8	0,4942
541 4	65 69	7,4	3,8	21,5	20,3	24,6	1 6,2	79	94	58	11,5	0,4579
2770	4288	7,2	0,3	15,1	16 , 1	21,8	10,3	64	87	3 8	9,9	0,3024
to	to	to	to	to	to	to	to	to	to	to	to	to
7532	9435	7,7	7,2	27,8	25,2	2 8, 8	2 2, 1	8 6	98	66	13.8	0,7215
	*D0 = 0	disso	lved	d oxyg	jen	*DRF	= dif	fuse	compor	nent d	of radia	ant flux

Table II	Field	Field data collected during growth of marginal plants.								
	PL	ANTS	CHEMICAL ANALYSES							
Growing	*SGR	Standard	Plants		Water					
interval	g fresh	deviation	% dry mass		ug 1 - 1					
	mass	* n = 40	Ν	Р	N03-N	NH4-N	total N			
Dates	g-1 d-1									

BOTANIC GARDENS LAKE

1978

*SGR = specific growth rate *n = number of replicates

Table II (continued)

CHEM	AN. (<u>c</u>	ont.))			PHY	SICAL	ANALY	(SES					
Water	c(cont.))	W	later.		Atmosphere								
ug 1 - 1 p		рΗ	*D0	Temp	Те	Temp. °C		Rel.	Rel. humidity % Photo-			*DRF		
SRP	total		шâ	°C	Mean	Max	Min	Mean	Max	Min	period	megajoules		
	P		1-1								(hrs)	m-2 hr-1		

BOTANIC GARDENS LAKE

1**9**78

5	183	7,1	8,1	27,0	24,9	28,4	21,8	83	94	66	13,3	0,6127
2	132	7,1	9,8	27,8	23,5	27,3	20,2	81	94	63	12,8	0,7215
20	196	7,1	9,3	27,0	25,2	28,8	22,1	82	93	66	11,9	0,5741
42	116	7,2	10,8	25,0	25,1	28,7	21,5	83	95	66	12,0	0,4643
27	168	7,2	6,3	23,0	23,3	26,5	18,6	76	90	57	11,7	0,3896
2	152	7,1	6,8	22,0	20,9	26,1	17,1	77	92	57	11,4	0,4522
52	140	7,0	4,8	19,5	19,2	24,3	14,3	72	89	49	11,0	0,3024
4	96	7,1	9,0	20,0	19,2	25,4	14,0	75	90	50	10,2	0,3632
32	100	7,1	4,1	19,0	18,7	23,9	13,7	76	93	53	10,1	0,3156
24	120	7,2	7,1	15,5	16,3	22,4	10,3	64	86	40	10,0	0,3186
20	119	7,1	8,3	15,5	15,9	22,1	10,1	72	88	47	10,0	0,3165
15	103	7,0	6,5	17,0	17,3	22,6	11,9	75	91	53	10,0	0,3510
31	173	7,2	10,2	17,5	18,1	23,3	13,1	78	94	53	9,9	0,3716
48	244	7,1	8,1	19,0	18,1	22,5	13,4	85	97	61	10,7	0,3575
18	83	7,1	8,0	18,5	18,6	22,3	16,3	86	98	67	11,0	0,4072
29	144	7,1	5,3	18,2	17,4	21,8	12,2	74	97	51	11,8	0,3936
34	128	7,2	5,8	22,0	20,2	23,5	16,7	83	96	64	11,9	0,5393
188	256	7,3	7,1	20,5	19,1	22,2	16,1	78	97	60	11,9	0,4835
54	196	7,1	7,6	22,0	20,7	24,4	17,5	85	99	64	12,6	0,6964
19	148	7,1	4,8	25,5	20,9	24,7	19,3	83	98	64	12,8	0,5498
16	160	7,1	6,9	23,0	21,9	25,5	18,5	81	96	63	13,3	0,4942
10	141	7,2	9,3	26,0	23,0	26,5	19,9	82	98	61	13,8	0,6158
31	150	7,1	7,4	21,4	20,3	24,7	16,3	79	94	58	11,5	0,4587
2	83	7,0	4, l	15,5	15,9	21,8	10,1	64	86	40	9, 9	0, 3024
to	to	to	to	to	to	to	to	to	to	to	to	to
188	256	7,3	10,8	27,8	25,2	28,8	2 2, 1	8 6	9 9	6 6	13,8	0,7215

*DO = dissolved oxygen *DRF = diffuse component of radiant flux

Table III	Field dat	a collected	during growth of marginal plants.						
	PL	ANTS	0.8	CHEM	ICAL ANA	LYSES			
Growing	*SGR	Standard	Plar	nts		Water			
interval	g fresh	deviation	% dry	mass		ug 1-1			
	mass	* n = 40	N	Р	N03-N	NH4-N	total N		
Dates	g-1 d-1								
ISIPINGO LAKE									
1977					•				
11/8 - 17/8 17/8 - 25/8 25/8 - 1/9 1/9 - 7/9	0,0641 0,0506 0,0745 0,1247	± 0,0227 ± 0,0195 ± 0,0222 ± 0,0314	2,67 2,49 2,11 2,32	0,39 0,43 0,42 0,36	759 209 35 5	2432 1816 1601 2137	3191 2025 1636 2142		
Means	0,0785	± 0,0239	2,40	0,40	252	1996	2248		
ISIPINGO CANAL	-								
1977									
8/9 - 23/9 23/9 - 4/10 5/10 - 26/10	0,1201 0,1115 0,1167	± 0,0197 ± 0,0155 ± 0,0132	2,78 2,74 2,74	0,24 0,18 0,24	716 458 696	1350 1716 1277	2066 2174 1973		
Means	0,1161	± 0,0161	2,75	0,22	623	1448	20 71		
DISCHARGE CANA	NL.								
1977									
3/11 - 16/11 18/11 - 30/11 1/12 - 14/12	0,0965 0,1035 0,0940	± 0,0236 ± 0,0269 ± 0,0280	2,57 3,16 3,34	0,69 0,81 0,61	4680 4880 4780	1461 910 940	6141 5790 5720		
Means	0,0980	± 0,0262	3,02	0,70	4780	1104	5884		
HARTBEESPOORT	DAM		·						
1977									
28/9 - 11/10 14/10 - 27/10 3/11 - 11/11 18/11 - 25/11 14/12 - 22/12	0,0313 0,0207 0,0375 0,0672 0,0410	± 0,0209 ± 0,0070 ± 0,0149 ± 0,0362 ± 0,0157	2,74 3,10 3,07 2,79 2,77	0,46 0,54 0,47 0,46 0,50	2360 2090 4300 2390 2680	253 605 350 360 250	2613 2695 4650 2750 2930		
Means	0 , 0395	± 0,0177	2,89	0, 49	27 64	335	30 99		
*SGR = s	pecific gro	owth rate	*n = nu	umber of	replica	ates			

Table III (continued)

CHEM	. AN. (c	ont.)			PHYSICAL ANALYSES							
Wate	r(cont.) .	٧	Water				Atr	nosphe	re			
ug 1 - 1		pН	*D0	Temp	Те	Temp. °C		Rel.	humidity %		Photo-	*DRF	
SRP	total		mg	°C	Mean	Max	Min	Mean	Max	Min	period	megajoules	
	Р		1-1								(hrs)	m-2 hr-1	

ISIPINGO LAKE

1977

27	750	7,4	5,4 17,5 18,1	23,1 12,5 80	99	52	11,4	0,3285
22	912	7,4	5,8 17,7 17,2	21,9 12,1 77	98	51	11,5	0,3686
39	352	7,2	6,2 19,5 18,1	22,8 12,4 79	98	56	12,0	0,4575
43	330	7,3	5,2 21,0 19,9	25,3 14,3 80	98	55	12,0	0,4333
33	5 86	7,3	5,6 18,9 18,3	23,3 12,8 79	98	5 3	11,7	0 ,3 969

ISIPINGO CANAL

1977

118 18 117	404 216 324	7,6 7,6 7,6	6,0 21,8 20,6 6,4 22,0 19,8 6,2 27,3 20,6	24,9 16,0 80 24,1 15,9 81 24,6 16,8 82	96 96 97	58 60 64	12,0 11,9 12,5	0,5158 0,5440 0,5471
84	315	7,6	6,2 23,7 20,3	24,5 16,2 81	96	61	12,1	0,5356
DISCHA	rge c	ANAL						

1977

2037	2483	7,7	8,2 24,9 22,3	25,9 18,6 79	94	64	13,8	0,5863
2000	2380	7,7	9,6 23,7 20,5	24,3 16,4 79	96	63	13,8	0,5918
2220	2910	7,6	8,4 25,3 22,5	26,1 18,8 81	93	66	13,8	0,5685
1890	2160	7,7	6,6 25,7 23,9	27,3 20,6 78	93	62	13,7	0,5987

HARTBEESPOORT DAM

1977

100 103 209 172 201	105 114 223 196 215	7,3 7,3 7,1 7,3 7,5	7,0 6,0 6,0 5,0 10,0	21,0 19,1 24,0 19,8 24,0 21,1 26,0 21,9 27,0 21,6	25,6 13,5 54 26,3 14,2 57 27,4 15,8 48 28,2 16,9 62 27,2 17,8 67	79 89 78 88 92	35 30 25 40 45	12,0 12,1 13,7 13,7 13,9	0,5091 0,3960 0,4376 0,5413 0,6535
157	171	7,3	6,8	2 4, 4 20,7	26,9 15,6 58	85	35	13,1	0,5075
	*D0 =	disso	lved	oxygen	*DRF = diffuse	сотро	nent	of radi	ant flux

Table I	<u>/</u>	Field dat	a collected	during	growth	of centi	ral plant	s
		PLA	NTS		CHEM	ICAL ANAL	YSES	
Growing	-	*SGR	Standard	Plar	nts		Water	
interva	1	g fresh	deviation	% dry	mass		ug 1 - 1	
		mass	*n = 40	Ν	Ρ	N03-N	NH4-N	total N
Dates		g-l d-l						
MATURATIO	on pond	3						
1 9 77								
3/11 - 1 18/11 - 1 1/12 - 1	16/11 30/11 14/12	0,0559 0,0573 0,0659	± 0,0190 ± 0,0116 ± 0,0353	3,26 4,29 3,34	1,17 1,23 1,25	1000 4730 4735	14840 10620 12500	15840 15350 17235
Means		0,0597	± 0,0219	3,63	1,22	3488	12653	1 61 42
1 9 78								
3/2 - 1 17/2 - 2/3 - 1 16/3 - 2 31/3 - 14/4 - 2 28/4 - 12/5 - 2 26/5 -	16/2 1/3 14/3 29/3 11/4 26/4 10/5 24/5 7/6	0,0324 0,0357 0,0259 0,0312 0,0403 0,0231 0,0202 0,0203 0,0242	$\begin{array}{c} \pm \ 0,0121 \\ \pm \ 0,0184 \\ \pm \ 0,0139 \\ \pm \ 0,0137 \\ \pm \ 0,0203 \\ \pm \ 0,0088 \\ \pm \ 0,0079 \\ \pm \ 0,0089 \\ \pm \ 0,0144 \end{array}$	3,60 3,43 2,54 2,50 3,63 3,05 2,49 3,14 4,78	1,00 0,88 0,77 0,81 0,91 0,98 0,89 0,98 1,08	4740 2116 4120 5580 6919 8640 6480 6700 3796	11230 13360 6320 3600 17313 3652 11520 10974 16830	15970 15476 10440 9180 24232 12292 18000 17674 20626
13/9 - 2 29/9 - 2 13/10 - 2 25/10 - 1 10/11 - 2 24/11 -	2//9 12/10 24/10 8/11 22/11 6/12	0,0248 0,0262 0,0299 0,0268 0,0255 0,0271	\pm 0,0108 \pm 0,0115 \pm 0,0101 \pm 0,0077 \pm 0,0083 \pm 0,0101	4,22 3,84 3,79 3,69 3,49 3,35	1,07 1,10 0,94 0,94 0,93 0,89	559 13600 4990 5372 5980 4050	24035 17155 15890 14900 16973 16000	24594 30755 20880 20272 22953 20050
Means		0,0276	± 0,0118	3,44	0,94	5576	13317	18893
Range		0 ,0 202	± 0 ,0 077	2,49	0,77	55 9	3600	9180
		to	to	to	to	to	to	to
		0,0403	± 0,0203	4,78	1,10	13600	24035	30755
D ISCHARGE 1977	e canal							
3/11 - 1 18/11 - 3 1/12 - 1	L6/11 30/11 L4/12	0,0379 0,0526 0,0338	± 0,0170 ± 0,0174 ± 0,0124	2,71 2,69 2,18	0,37 0,48 0,55	4680 4880 4780	1461 910 940	6141 5790 5720
Means *SC	GR = sp	0,041 4 ecific gro	± 0,0156 wth rate	2,53 *n = nu	0, 47 mber of	4 780 f replica	1 104 tes	58 84

CHEM. AN.(cont.) PHYSICA									(SES			
Wate	r(cont.))	W	later				Atn	nosphe	re		
ug 1-1 pH		рН	*D0	Temp	Temp. °C		Rel. humidity %			Photo-	*DRF	
SRP	total		mg	°C	Mean	Max	Min	Mean	Max	Min	period	megajoules
	Р		1-1								(hrs)	m-2 hr-1

MATURATION POND 3

1977

6995 6300 5720	7210 7200 11680	7,5 7,3 7,4	1,6 1,2 2,7	23,5 24,5 26,0	20,5 22,5 23,9	24,3 26,1 27,3	16,4 18,8 20,6	79 81 78	96 93 93	63 66 62	13,8 13,8 13,7	0,5918 0,5685 0,5987
6338	8703	7,4	1,8	24,7	22,3	25,9	18 , 6	79	94	64	13,8	0, 5863
1978												
5140 4712 3648 2770 4970 3830 4270 4880 7532	6700 9435 4552 4288 6298 4832 5449 5523 7821	7,4 7,4 7,3 7,4 7,5 7,4 7,3 7,4	2,9 4,5 4,2 5,9 5,1 4,4 6,8 4,0 3,0	27,5 27,0 27,8 26,0 23,0 23,0 19,0 20,0 19,0	24,6 23,5 25,2 25,0 23,5 20,7 19,2 19,0 18,7	28,0 27,3 28,8 28,8 26,6 25,9 24,8 25,2 23,9	21,9 20,2 22,1 21,4 18,9 17,0 14,2 13,7 13,8	83 81 82 83 76 77 72 75 77	94 93 95 90 91 89 91 93	67 63 66 58 57 49 49 53	13,3 12,8 11,9 12,0 11,7 11,5 11,0 10,2 10,1	0,6699 0,7215 0,5741 0,4686 0,4039 0,4592 0,2925 0,2925 0,3548 0,3105
6654 6030 4800 4860 5210 4300	8533 6496 5088 5012 5590 4910	7,5 7,5 7,4 7,7 7,3 7,5	7,2 3,0 4,1 6,1 2,5 6,7	22,0 20,0 21,3 25,0 23,5 26,2	20,2 18,8 20,1 20,9 21,9 23,0	23,5 21,8 23,8 24,7 25,5 26,5	16,7 15,9 17,1 17,9 18,5 19,9	83 80 85 83 81 82	96 97 99 98 96 98	64 62 65 63 63 61	11,9 11,9 12,6 12,8 13,3 13,8	0,5393 0,4747 0,6685 0,5741 0,4942 0,6158
4907 2770	6035 4288	7,4 7,3	4,7 2,5	23,3 19,0	21,6 18,7	25,7 21,8	17,9 13,7	80 72	94 89	60 49	12,0 10,1	0, 5081 0 ,29 25
το 7532	00 0435	to 77	to	to	to	to	to	to	to	to	to	to
גנו	7455	/,/	/,2	2/,8	25,2	28,8	72,1	85	99	67	13,8	0,7215

DISCHARGE CANAL

1977

7,7 9,6 23,7 20,5 24,3 16,4 79 7,6 8,4 25,3 22,5 26,1 18,8 81 7,7 6,6 25,7 23,9 27,3 20,6 78 2000 2380 96 63 13,8 0,5918 2220 2910 93 66 13,8 0,5685 1890 2160 93 62 13,7 0,5987 2037 2483 7,7 8,2 24,9 22,3 25,9 18,6 79 94 64 13,8 0,5863 *DO = dissolved oxygen *DRF = diffuse component of radiant flux