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Abstract 
 

Estuaries are amongst the most productive and important ecosystems on the planet but are 

vulnerable to physico-chemical alterations within their waters. Water quality and health 

monitoring therefore requires the timely retrieval of physico-chemical concentrations. Whilst 

accurate, water quality retrieval performed through field sampling is often expensive, time 

consuming and unsuitable across larger spatial scales. remote sensing offers a possible solution 

to these problems. This study therefore assessed the ability of Landsat 8 and Sentinel-2 remotely 

sensed imagery in estimating physico-chemical health within the Umdloti Estuary, South 

Africa. Sampling of the Umdloti Estuary was conducted over winter and spring where the in 

situ conditions of temperature, turbidity, secchi disk depth (SDD), salinity, electrical 

conductivity (EC), total dissolved solids (TDS), chlorophyll-a (chl-a), dissolved oxygen (DO) 

and pH were retrieved through field and lab testing. Remote sensing algorithms were thereafter 

used to estimate the values of these parameters. Results from the comparison of the two 

approaches showed that temperature and turbidity were able to be accurately retrieved with best 

respective coefficients of determination (R2) of 0.96 and 0.97 and root mean squared error 

(RMSE) of 2.648 °C and 2.944 NTU. Chl-a, TDS and EC had respective inaccurate R2 values of 

0.031, 0.576 and 0.037 but accurate RMSE of 0.902 µg/l, 638.159 mg/l and 1.801 µS/cm. These 

parameters were poorly modelled but accurate absolute concentrations could be estimated. 

Salinity, DO, pH and SDD estimation was poor. These parameters had a respective R2 values of 

0.45, 0.53, 0.23 and 0.0007 as well as RMSE of 5.84, 1.91 ppm, 2.15 and 1.43 m. The optical 

inactivity of these physico-chemical parameters and unique complexity of estuarine waters were 

likely culprits in failed estimation. Positively, algorithms modified by this study showed greatly 

increased accuracy and future promise in the estimation of every parameter except secchi disk 

depth and pH. The estuary was determined to be in poor health due to a lack of improvements in 

physico-chemical conditions since it was last classified as poor. In future, studies should 

continue to refine algorithms for use in Umdloti Estuary and its health should be safeguarded. 
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CHAPTER ONE: INTRODUCTION 
 

1.1) Background 
 

Water is the Earth’s most precious resource. Comprising around 70% of the planet, life without 

water would not be possible as it is so today. It is therefore natural that water-based 

environments comprise some of the most ecologically important features on Earth. Wetlands are 

a broad and significantly important sub-grouping of these water-based environments. Wetlands 

are defined by Ramsar as: “areas of marsh, fen, peatland or water, whether natural or artificial, 

permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including 

areas of marine water the depth of which at low tide does not exceed six metres” (Medwet, 

2017). These wetlands form some of the most ecologically important and productive landscapes 

on the planet (McLusky and Elliot, 2004). The importance of these areas is so great that though 

they occupy less than 3% of the globe, they provide around 40% of all renewable ecosystem 

services (Zedler and Kercher, 2005). Some of the globally significant services provided include 

biodiversity support, water quality improvement, flood abatement and carbon management 

(Zedler and Kercher, 2005). 

 

Estuaries fall within the wetland grouping and form on the transition zones between river and 

seawater. Estuaries differ from other wetlands in that they often display larger variations in 

environmental variables. These variables, such as salinity, temperature and water levels, vary 

throughout the day or seasonally and are influenced by factors such as the state of the estuarine 

mouth, waves, tides and riverine input. The variation of these factors largely control the 

functioning of the estuary and the quality of ecosystem services the estuary may provide. 

Essential estuarine services include the provision of nursing grounds and highly productive 

habitats for a variety of fish, plants and birds amongst other types of wildlife (Klemas, 2011); 

the acting as a buffer against destructive coastal threats such as tsunamis and storm waves 

(Morris et al., 2002) and direct use values in the form of aquaculture, recreational, cultural and 

water storage purposes (Clarkson et al., 2013). Estuaries therefore form an essential ecosystem 

to a great many organisms. The importance of estuaries to humans is no different. In South 

Africa alone the revenue generated through fishing in and around estuaries was estimated to be 

around R1.2 billion in 2011 (Van Niekerk and Turpie, 2012). It is therefore of paramount 

importance to maintain the healthy functioning of estuaries. 

 

 

https://en.wikipedia.org/wiki/Fen
https://en.wikipedia.org/wiki/Peatland
https://en.wikipedia.org/wiki/Fresh_water
https://en.wikipedia.org/wiki/Brackish_water
https://en.wikipedia.org/wiki/Saline_water
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1.2) Problem contextualisation and justification 
 

Despite this need to maintain the health of estuaries, they are highly vulnerable environments. 

This vulnerability has led to estuaries and their surrounding wetlands being considered amongst 

the most threatened ecosystems on the planet (Butchart et al., 2005).  In South Africa this story 

is no different. Discounting the large St Lucia Estuary, only around 10 - 14% of the area 

comprising South African estuaries are sufficiently protected (Driver et al., 2012). Within the 

eThekwini municipality itself, the River Health Programme (RHP) found that only two estuaries 

could be considered as experiencing normal natural conditions while around seventeen were 

considered to be in poor condition (Forbes and Demetriades, 2008). Marshes and other wetlands 

types that often form around estuaries are faring no better. Large amounts of these areas have 

already been devastated in the past as they were often associated with being rich farming and 

grazing lands. This lead to their subsequent draining and over utilisation, resulting in over 50% 

disappearing (Driver et al., 2012). 

 

The factors leading to the disappearance of estuaries are called stressors. These stressors are 

mostly anthropogenic in origin and come from three main sources: 1) introduced by activities 

that take place in and around the estuary 2) through changes in the riverine flow to the estuary 

and 3) through land use changes in the catchment areas that feed the estuary disappearing 

(Driver et al., 2012). These may take on forms such as local dredging, pollution, 

overexploitation and agricultural or residential land use change. This all ultimately results in 

fragmentation and habitat destruction (Klemas, 2011; Driver et al., 2012). In future, these 

dangers to estuarine health are only likely to increase. Massive changes associated with 

continued climate change such as alterations in temperature, precipitation and rising sea levels 

may eventually to lead to catastrophic habitat destruction (Titus et al., 2009).   

 

Due to these dangers faced by estuaries, there is now a great drive towards the protection of 

these areas within South Africa. Historically, South Africa has often being regarded as one of 

the forefront nations concerned with water reform and management as shown by its Integrated 

Water Resources Management (IWRM) program (Movik et al., 2016). Proper water quality 

assessments and monitoring form some of the most important methods in the management of 

water resources and water-based ecosystems (Fichot et al., 2015). Monitoring allows for 

protection plans to be put in place to safeguard these important environments (Klemas, 2011).  

This monitoring of estuaries has traditionally been done through on the ground measurements 

and the collection of water samples. However, these methods are often time consuming and 
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study areas may be far or otherwise difficult to access. Costs are also usually very high and this 

especially has limited the ability of monitoring systems across Africa and many other nations 

(IWRMPJVN, 2010). Finally, monitoring projects are severely limited in scale as costs often 

increase exponentially as area increases, often leading to a lack of testing being done to suitably 

check water quality. 

 

One way to overcome these monitoring disadvantages is through the use of remote sensing 

imagery. Important water quality indicators such as chlorophyll-a (chl-a), turbidity, temperature 

and nutrients all directly change the optical properties of water bodies (Fichot et al., 2015). This 

apparent change allows for the development of remote sensing techniques to aid in the 

estimation of these various physico-chemical parameters. Using remote sensing methods is both 

faster and allows the estimation of these parameters over a continuous area unlimited in size on 

a repetitive basis (Hellweger et al., 2004; Somvanshi et al., 2012). It may also end up being 

much cheaper as it eliminates expensive testing and transport costs. Despite the great potential 

for remote sensing methods to form the perfect monitoring systems, they are not without their 

own issues.  The fact that accuracy of water quality estimation through remote sensing is often 

not sufficiently precise and needs to be used together with in situ sampling is one of these issues 

(Gholizadeh et al., 2016). 

 

With South Africa already having many estuaries in poor condition and at risk of getting worse, 

it is important to determine the ability of free and easily accessible remote sensors in obtaining 

data relating to the health of these systems. Kwazulu-Natal is home to 76 different well studied 

and researched estuaries. These include the St. Lucia (the largest in southern Africa), Durban 

Bay and Mpenjati estuaries amongst others (Mann et al., 2002).  Many are threatened. The 

Umdloti Estuary is one such threatened estuary. Here, the mouth of the Mdloti River forms an 

estuarine environment near the town of La Mercy, with patches of wetland supported directly up 

river. The estuary has had a poor history with regard to ecosystem health and has often been 

classified as being in a poor-fair condition (Van Niekerk and Turpie, 2012). The Mdloti river 

itself also passes several residential areas along the way and in the past has been particularly 

vulnerable to pollution from plastics and industrial effluents which all flow into the Umdloti 

Estuary (Naidoo et al., 2015). 

 

The vulnerable Umdloti Estuary in South Africa therefore presented the perfect opportunity in 

assessing the ability of remote sensing methods for the estimation of water quality and health. 

This study aimed to compare the reliability of remote sensing imageries and algorithms in their 
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ability to accurately estimate physico-chemical parameters within the Umdloti Estuary. 

Algorithms were also modified in this study to try and improve on this estimation. This allowed 

for a determination as to whether the convenience and accuracy provided by remote sensing 

imagery could be considered superior and as a suitable replacement for in situ methods. 

Through determination of these parameters, the water quality and health of the estuary was 

inferred and possible solutions as to what actions may be necessary to ensure its continued 

health given. 

 

1.3) Aims and objectives  

 
Aim: To determine the accuracy of using Landsat 8 and Sentinel-2 remote sensors in 

determining water quality over winter and spring in the Umdloti Estuary. 

 

Objectives:   

1. To determine in situ the physico-chemical parameters in the Umdloti Estuary during winter 

and spring seasons 

2. To assess physico-chemical parameters using Landsat 8 and Sentinel-2 in the Umdloti 

Estuary during the spring and winter seasons. 

3. To determine the overall water quality health of the estuary based on the retrieved physico-

chemical parameters. 

 

1.4) Chapter sequence and summation 
 
Chapter 1 - The first chapter provides a basic introduction relating to estuaries as well as the 

major threats that are faced by them. The potential of remote sensing and its applications for the 

monitoring the health of estuaries is also provided. Finally, the overall aims and objectives to be 

accomplished and investigated by this study are given. 

 

Chapter 2 - Chapter 2 provides a literature review that focuses on various aspects associated 

with the study. This includes an in-depth analysis on what estuaries are and some of their 

characteristics, how they are classified, their importance to both nature and humanity and finally 

threats to their survival.  Also explored are the various physico-chemical parameters and how 

they are collected both traditionally and using remote sensing, along with what effects they have 

on water quality.  
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Chapter 3 - Chapter 3 covers detailed descriptions of the study area. This includes a general 

overview of the climatic, biological, geological, hydrological and other general aspects relating 

to the Umdloti Estuary. A map of the study area was also provided.  

 

Chapter 4 - Chapter 4 covers the various methodologies used for both the Landsat 8 and 

Sentinel-2 estimation of physico-chemical parameters. This includes detailed descriptions of the 

in situ, laboratory and remote sensing methods and processes used in physico-chemical retrieval 

and estimation. Finally, the steps taken during accuracy assessment are also given. 

 

Chapter 5 - Chapter 5 consists of the displaying and describing of the results that were obtained 

from the following of methodology. This chapter includes tables on the physico-chemical data 

that were retrieved in situ and those estimated through remote sensing algorithms. This chapter 

also includes accuracy assessments as well as distributional maps for each parameter.   

 

Chapter 6 - The final chapter involves a discussion of the findings that had been obtained over 

the course of the study. This discussion is supported by relevant literature. This chapter also 

identified constraints experienced by this current study and provided recommendations on 

actions to be taken. Finally, this chapter also provides a suitable conclusion for the study. 
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CHAPTER TWO: LITERATURE REVIEW 
 

2.1) Introduction 
 

This chapter provided a concise theoretical review and background of the concepts that were 

related to the core focus of this study. This began with a review on the general information, 

classification, importance and threats relating to estuaries both globally and in South Africa. 

Thereafter, the review focused on the various physico-chemical parameters and how these 

parameters affected the water quality health as well as how they had been extracted both 

traditionally and through remote sensing methods. 

 

2.2) Estuaries 
 

2.2.1 General characteristics 
 

Estuaries were defined in a South African context by Day (1980), as: “a coastal body of water in 

intermittent contact with the open sea and within which sea water is measurably diluted with 

fresh water from land drainage”. Estuaries are found worldwide at places where both rivers and 

seas meet. As a result they share a mixture of characteristics with both of these adjoining water 

bodies (Savenije, 2006). These include mixtures of flow direction (both towards and away from 

the ocean), water storage (estuaries both transport and store water) and salinity (usually a 

mixture of salty and fresh water called brackish water). This mixing of two usually completely 

segregated environments, along with their direct connections with the sea, land and rivers, result 

in estuaries forming highly dynamic and ecologically unique ecosystems. In fact, estuaries form 

some of the most ecologically important features on the planet (NOAA, 2017). These 

environments present homes to a variety of unique floral and faunal communities, all specially 

adapted to thriving in the highly dynamic brackish habitat (NOAA, 2017). They also provide an 

array of essential ecosystem services such as nurseries or breeding grounds.  

 

Estuarine dynamics are highly influenced by their neighbouring water bodies. Influences 

include riverine influences, the influx of salt water and oceanic tides and waves (Savenije, 

2006). Freshwater is obtained through land drainage which flows into rivers and eventually into 

estuarine systems. This dilutes salinity whilst also providing nutrients and sediments. All 

oceanic influences are heavily regulated by the state of the estuarine mouth, which helps 

determines whether estuarine water will be more riverine, brackish or salty (van Niekerk, 2007). 
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The presence of the estuarine mouth is a unique characteristic of estuaries. The mouths of 

estuaries with large adjoining rivers usually form the site of important commercial ports such as 

those found in New York, Tokyo, San Francisco, London and Buenos Aires (Trujillo and 

Thurman, 2011).  

 

Due to all these influences, estuaries often display a larger variation with regard to physico-

chemical parameter concentrations than most other environments. The variations within these 

physico-chemical parameters act as strong selective pressures as to what organisms are able to 

survive and thrive within estuarine systems, therefore dictating estuarine “health”. One such 

variation characteristic of almost any estuary are the large variations that may be found in their 

salinity (Trujillo and Thurman, 2011). Salinity may range from 0 practical salinity units (PSU) 

at the point where the river runs into the estuary to well over 35 PSU at the estuarine mouth 

where the boundary of the ocean and estuarine waters are found (NOAA, 2017). However, 

salinity may massively decrease or increase depending on whether the mouth is open and on the 

flow of fresh water into the estuary. Maintaining these dynamic physico-chemical parameter 

ranges is therefore paramount to maintaining estuarine health. 

 

2.2.2 Classifications of various estuary types 
 

Estuaries are classified in several ways. One method of classifying estuaries is through their 

geomorphological origin (NOAA, 2008). The majority of estuaries that are present today were 

formed around 18 000 ago due to the massive 120 m sea level rise that accompanied the end of 

the last ice age (Trujillo and Thurman, 2011). The most common type of estuary are those that 

form as a result of the drowning of river valleys (Trujillo and Thurman, 2011). Here, the sea 

level has risen much higher when relative to the lands rise. Fjord-type estuaries form when 

glaciers that were present during Pleistocene times created deep and wide U-shaped valleys 

(Savenije, 2006). In present times these glaciers have all already been melted and the resulting 

low valleys allow for the flow of the sea into it. This allows for the salt water to be able to move 

into river valleys, resulting in an estuary. These types of estuaries are also sometime called 

coastal plain estuaries (Trujillo and Thurman, 2011). Bar-built estuaries on the other hand are 

estuaries that form as a result of where the deposition of sediment has separated shallow 

estuaries from the sea (NOAA, 2008). These sand bars are deposited through wave action and 

occur parallel to shore. They are also called lagoon-type estuaries. Finally, tectonically 

produced estuaries are those which are formed by the subsistence of land due to faulting, 
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landslides and volcanoes (NOAA, 2017). These are only found in areas with tectonic activity. 

Various examples of geomorphological estuaries are displayed in Figure 2.1. 

 

 

Figure 2.1: Generalised morphology for estuaries classified through various 

geomorphological methods (Trujillo and Thurman, 2011). 
 

It is also possible to classify estuaries based not only on their origin but also through how water 

circulates through them. The method of mixing of both the fresh and salt estuarine water can 

result in greater variation of physico-chemical parameters across the estuary (Trujillo and 

Thurman, 2011). This is because salinity plays a major role in controlling the density of water 

and therefore the functioning of the estuary (Ohrel and Register, 2006). Major or minor 

differences in density between two groups of water may result in the development of a cline or 

allow for the free mixing of water respectively, greatly affecting the distribution of substances 

dissolved within water such as oxygen or nutrients. Trujillo and Thurman (2011), notes that 

there are four types of estuaries that can be classified based on water circulation. These include 

vertically mixed estuaries, slightly stratified estuaries, highly stratified estuaries and salt wedge 

estuaries. A vertically mixed estuary is an estuary that is shallow, low-volume estuary and 

where water flows directly from the river head to estuarine mouth (Trujillo and Thurman, 2011). 

In this type of estuary, salinity increases as one travels from the river head to estuarine mouth 

(due to the influx of salty sea water). Salt water and fresh water mix evenly and this results in 

salinity being the same as top water through all depths. A slightly stratified estuary is a 

generally deeper estuary where salinity increases as one travels from the head toward the mouth 
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(NOAA, 2008; Trujillo and Thurman, 2011). The difference here is that the water separates into 

two layers, with one is the less-salty and dense (forming upper water and originating from the 

river), whilst the other layer is the both salty and dense (forms lower water and originates from 

the ocean). This results in a net surface flow of low salinity water towards the mouth and a net 

surface flow of higher salinity water towards the head. A highly stratified estuary consists of 

deep estuary where the water salinity of the upper layers increases until about the same as sea 

water from head to mouth (NOAA, 2008; Trujillo and Thurman, 2011). The deep water layer on 

the other hand remains at roughly uniform salinity through the estuarine area. This results in the 

formation of a halocline and prevents much mixing of denser bottom waters and less dense top 

water. Finally, a salt wedge occurs when salt water from the ocean penetrates deep into the 

estuary towards the river mouth (forming a wedge) (NOAA, 2008; Trujillo and Thurman, 

2011). This type of estuary is characteristic of deep and high volume rivers. Top water is the 

same salinity as river water from head to mouth. However, a strong halocline develops in the 

lower waters, with it being more developed nearest to the mouth of the estuary.  

 

 
 

Figure 2.2: Generalised morphology for estuaries classified through various water 

circulatory methods (Trujillo and Thurman, 2011). 
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2.2.3 Importance of estuaries 
 

Estuaries are amongst the most productive features on the planet and provide a variety of 

ecosystem services that benefit the world culturally, economically and ecologically (NOAA, 

2008; Pinto et al., 2016). The productivity of these environments is mostly due to the way in 

which the oceanic and riverine environments interact. This interaction comprised of the inflow 

of oceanic salt water and riverine fresh water contribute an abundance of productivity boosting 

sediments and nutrients (McLusky and Elliott, 2004; Savenije, 2006). Outputs of this 

productivity are expressed in the form of ecosystem services. Fisher and Turner (2008), 

described ecosystem services as the elements within an ecosystem which are used either 

actively or passively and are considered beneficial to humans or other organisms. Ecologically, 

many life forms such as fish, birds and marine mammals greatly rely on the estuarine 

environment for the provision of these services such as habitat, nutrition, breeding, nurseries 

and for migratory stop overs (Savenije, 2006; NOAA, 2017). This in turn also aids in their 

ability to support a high level of biodiversity (Trujillo and Thurman, 2011). Costanza et al. 

(1998), estimated that the value of services estuaries provided worldwide amounted to over 4.1 

trillion dollars. 

 

One of the most significant services estuaries provide is in the form of important breeding 

grounds and nurseries. Estuaries are therefore essential to the well-being of both fisheries and to 

the greater surrounding coastal areas (Trujillo and Thurman, 2011). The popularity of estuaries 

as nurseries is thought to be due to the sheltered protection of marine young from large 

predators or due to the provision of more abundant, varied sources of food and general good 

conditions that are required for growth (Beck et al., 2001; Sheridan and Hays, 2003; Cabral et 

al., 2007; Muller, 2017). Moore et al. (2016), noted the importance of estuaries in providing a 

nursery, nutrition and as a migration stopover point within the juvenile Pacific salmon life 

cycle. In the study, the Skeena River Estuary provided an important stop over as the juvenile 

salmon make their way out to the ocean from upriver. Some species spent as long as thirty days 

feeding within the estuary and grew between 0.2 - 0.5 mm a day (Moore et al., 2016). This was 

a considerable size increase before venturing on into the ocean. The reliance of flatfish on 

estuaries as nursery sites has already being well established in literature (Riou et al., 2001; Able 

et al., 2005; Cabral et al., 2007). Here, estuaries provided the usual benefits to juveniles whilst 

also offering beneficial biotic and abiotic factors such as reduced predation and suitable 

temperature and salinity levels (Cabral et al., 2007). Juveniles of species that use the estuary as 
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a nursery such as the Pacific salmon are often later of great economic value as they recruit into 

adults on whom fisheries are based (Baran and Hambrey, 1999). 

 

Estuaries play a vital role in maintaining fisheries around the world due to their unique habitat 

(Jordan and Peterson, 2012). Within the United States alone, over 50% of commercial fisheries 

landings were estuarine-dependent species, resulting in the creation of two million jobs and over 

$117 billion contribution to the United States economy (U.S Commission on Ocean Policy, 

2004). Jordan and Peterson (2012), determined that popular types of fish caught include salmon, 

pearch, sturgeons, herrings, seatrout and eels. In addition Jordan and Peterson (2012), also 

identified that most of the world commercial crustaceans such as crabs, shrimp and oysters 

spend most, if not all of their life based within an estuary. 

 

Wetland features such as salt marshes and mangroves are also closely linked to the presence of 

estuaries. These act to purify the water through the removal of sediments, nutrients and 

pollutants such as pesticides and herbicides before their entrance into estuaries (Mitsch and 

Gosselink, 2007). This is due to the fact that as water passes through these wetlands, the friction 

from upright vegetation aid to slow down the flow of water, allowing for settlement of 

sediments (Morgan et al., 2009). This positively impacts on both human health and the health of 

surrounding ecosystems. Breaux et al. (1995), determined that the savings generated through the 

filtering of wastewater by the American southern Louisiana marsh swamps was estimated to be 

around $1962 ha-1 to $37500 ha-1. These wetlands also form some of the most biodiversity rich 

ecosystems on the planet (USEPA, 1997; Trujillo and Thurman, 2011). 

 

Estuaries may even play a substantial role in ecoengineering and recreating environments that 

have been damaged and degraded through human activities. Elliott et al. (2016), examined 

several cases where ecoengineering was taking place. Whilst some environments were not able 

to be created at all or at least sustainably, it was noted that sustainable successes were possible 

and would play important future roles in both wetland and estuarine management. 

 

In addition they help combat global warming through their carbon sequestration. Accelerated 

rates of global warming through the emission of greenhouse gases may also be partially 

mitigated through the safekeeping of estuaries. Calculations performed by Campbell (2010), 

show that on average, estuaries sequester around 180 000 tonnes of atmospheric carbon per 

year. In addition, estuaries and their associated wetlands do not substantially release the 

greenhouse gas methane as is often the case with other types of wetlands (Campbell, 2010). 
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Estuaries provide important areas for recreation and tourism (Barbier et al., 2011). This is often 

due to the natural beauty displayed by estuarine environments and activities available (de Sousa 

et al., 2014).  Fishing, swimming, bird watching, diving and water skiing are just some of the 

popular activities that may take place (Harris et al., 2016; Pinto et al., 2016). Activities such as 

dolphin watching and feeding within estuaries also provide an important source of income to 

local communities (Garrod and Wilson, 2004). This is evidenced in the Cananéia estuary in 

Brazil with estuarine tourism displaying an increasing trend in popularity (Filla and Monteiro‐

Filho, 2009). Higher pollution levels within estuaries often discourage its recreational usage. 

Pinto et al. (2016), found the Mondego Estuary in Portugal was swum in more often by non-

locals who generally had little knowledge of pollution levels within the estuary. The study also 

found that as knowledge of the true extent of pollution within the estuary increased, less people 

considered visiting the estuary for recreational purposes. 

 

Barbier (2014), also mentions the value attached to estuarine areas in the mitigation of storm 

damage. When there are instances of flooding, estuaries act to absorb and store a large amount 

of excess water (USEPA, 1997).  In the wake of the devastation from the 2004 Indian Ocean 

tsunami and the 2005 Hurricane Katrina, the loss of estuarine buffers protecting vulnerable 

coasts against destructive storms was first highlighted (Arkema et al., 2013). There has since 

being a considerable collection of evidence supporting the ability of coastal estuaries, 

mangroves and marshes amongst others in attenuating waves and buffering winds (Barbier et 

al., 2008, 2011; Gedan et al., 2011; Shepard et al., 2012). This is due to their ability to attenuate 

or reduce the height of waves and storm surges as they approach shore (Barbier, 2014). This can 

be put down mainly due to their reticulated structures that act as barriers or through the presence 

of vegetation that provides friction against waves and winds (Gedan et al., 2011; Shepard et al., 

2012). Although difficult to put a precise value on the protection offered, hurricane simulations 

run by Barbier (2014), on the United States Gulf Coast gave an estimated $23 ha-1 to $463,730 

ha-1 of savings in damage through the presence of estuaries and other natural protective coastal 

features during storms. 

 

2.2.4 Threats to estuaries 
 

Since the dawn of the earliest civilisations, humanity has shared a special relationship with 

coasts. In 1998, it was estimated that around 61% of the world’s population lived within coastal 

zones or near estuaries (Alongi, 1998). More recently Bianchi (2007), speculated that by 2025, 

this figure could be expected to rise to around 75%, with the vast remainder of people living 
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around major rivers. Estuaries in particular are popular sites for human settlement. Of the 

world’s 32 largest cities, 22 are located on estuaries (Ross, 1995). It is therefore unsurprising 

that human activities greatly impact on estuarine health, leaving them one of the most 

threatened ecosystems on the planet (NOAA, 2017). With the world’s population expected to 

exceed over nine billion by 2050, this will only likely lead to increases in the already significant 

pressures experienced by estuaries due to subsequent increases in economic activities, pollution 

and demand for water (WHO/UNICEF, 2010). 

 

In order to determine what constitutes an unhealthy estuary, there needs to be a definition of a 

healthy one. Attempting to define what constitutes a healthy estuary is difficult but can be 

visualised through what characteristics an estuary should ideally possess. Harris et al. (2016), 

provides and overview of what many of these characteristics should be. A healthy estuary 

should be one that maintains water quality that is beneficial to both people and other organisms 

that live within an estuary. It should also provide a natural buffer against storms and floods 

whilst maintaining high levels of biodiversity through the provision of unique habitats. Finally, 

any animal species that require the use of estuaries as breeding or nursery grounds should have 

access and be able to prosper within the estuary. Estuaries exposed to conditions that negatively 

alter its ability to meet these criterions can be considered to be experiencing a health decline. 

 

The most significant threats facing estuaries are those that are anthropogenic in origin.  

Anthropogenic activities within estuaries lead to major decreases in water quality, the loss of 

habitat or its alteration and the diminishment of natural resources (Kennish, 2002). Activities 

that cause issues include tourism related activities, urban land development and reclamation, 

waste disposal and pollution, agriculture and aquaculture, shipping, invasive aliens and both 

recreational and commercial fishing (USEPA, 1997; Kennish, 2002).  

 

One of the biggest threats remains inappropriate land usages such as the conversion of estuaries 

and surrounding wetlands into agricultural lands. This results in immediate habitat destruction 

and fragmentation and leads to its unsuitability for supporting plant and animal life. Further, the 

damage done through these actions is often irreparable. Good et al. (1998), found that in the 

United States, around 38% of estuaries were lost to these activities alone. In some areas, the 

habitat loss due to these activities was as high as 60% (NOAA, 2017). Besides the habitat loss, 

these activities may lead to increases in sediment, nutrient and pollution levels resulting in 

possible eutrophication, hypoxia and anoxia (Robb, 2014). This in turn alters estuarine 

productivity and trophic structure (Crossland et al., 2005). 
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The construction of dams often do not consider the downstream economic and environmental 

consequences of this construction (Harris et al., 2016). Once built, these dams often lead great 

reductions in the nutrient loads carried by rivers (Ochiewo et al., 2002). This could clearly be 

seen from the reduced landings by commercial fisheries based in the Sofala Bank fishery off of 

Mozambique. The alteration of freshwater flow here resulted in an estimated loss of between 10 

to 20 million dollars in fish catches (Harris et al., 2016). The construction water or waste 

carrying pipes may also lead to significant removals of vegetation and the degradation of 

riparian areas. 

 

The large scale use of river water for farming or forestry plantations may lead to significant 

reductions in the volume of water received by the estuary. This decreased flow may result in the 

alteration of mouth functioning (resulting in a commonly closed state). This in turn can lead to 

decreased salinities, increased sedimentation and back-flooding (Driver et al., 2012).  

 

Commercial and recreational fishing has also been shown to alter the composition of species 

living within the estuary due to the preferential removal of targeted species (Kennish, 2002; 

Robb, 2014). This is especially harmful when the estuaries serve as important breeding or 

nursery grounds. The collection of usually resilient “bait organisms” (used by fisherman to lure 

fish into biting their hooks) is also harmful as through the use of tools such as spades, the 

introduction of sediment into the suspended water and habitat destruction may become a 

problem (Wooldridge, 2007). The removal of popular bait species such as the sand and mud 

prawns in South African estuaries may also impact on the higher trophic levels. This was shown 

in the Swartkops estuary where consumption by predators such as local bird life exceeded levels 

removed through bait collectors (Hanekom, 1992). 

 

Pollution is another worldwide major threat to estuaries, with it being especially damaging to 

their water quality. Traditionally, humanity has viewed estuaries and waterways as dumping 

sites for wastes. Despite increasing public awareness and legislations, this pollution continues to 

pose a large and growing problem (Driver et al., 2012). Pollution sources include agricultural 

products that enter streams though runoff or irrigation (such as pesticides, herbicides and 

fertilisers), waste water treatment works (WWTW) that end up discharging effluents directly 

into the river, factories and industries that discharge industrial effluent such as oils and heavy 

metals and storm water runoff which often carries contaminants such as litter, toxins and 

untreated sewage (Robb, 2014). Pollution may also negatively alter the nutrient loadings, allow 

for the introduction of chemical contaminants and facilitate the spread of pathogens within the 
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estuary (Kennish, 2002). The Umdloti Estuary has itself being a victim of pollution with many 

plastic contaminants plaguing the water body (Naidoo et al., 2015). 

 

Sea level rise and climate change are major long term threats to estuaries (Harris et al., 2016). 

Scavia et al. (2002), points out some of the ways in which climate change and accelerated levels 

of global warming are impacting on estuarine health. Already one of the greatest threats to 

estuaries, increased levels of eutrophication are likely to occur due to an increase in nitrates 

from an altered nitrogen cycle and increased temperatures. Just before the turn of the 

millennium, Bricker et al. (1999), found that around half of all estuaries in the United States 

showed signs of excessive eutrophication levels. Increases in temperature will lead to the 

increased acidification of oceans and estuarine waters, inhibiting the growth of shelled 

organisms and increasing the susceptibility of organisms to pollution via trace metals (Feely et 

al., 2010; Okey et al., 2012).  

 

Due to sea level rises associated with the global warming phenomenon, large portions 

comprising coastal zones will in future end up flooded. This will result in increased salt water 

intrusion into estuaries and rivers and the forced retreat of these coastal environments 

(Donnelley and Bertness, 2001). Even estuaries with surrounding salt marshes (which allow for 

the accumulation of sediment resulting in an elevation buffer against sea level rise) are likely to 

be thrown out of equilibrium as sea level rise accelerates (Morris et al., 2002). Li et al. (2014), 

found this to already be presenting a problem to one of Shanghai’s most important water storage 

estuaries, predicting future problems with obtaining freshwater as the system becomes more 

saline. Rises in both temperatures and salinity are likely to affect the productivity of estuarine 

ecosystems as a result of changes in the distribution of sensitive suspension feeders such as 

oysters, mussels and clams (Scavia et al., 2002). The increase or decrease of these important 

organisms will results in massive changes to phytoplankton abundance as well as the water 

clarity (Scavia et al., 2002). A change in precipitation patterns and associated reduced 

freshwater inflow may also lead to a decrease in the areas covered by estuaries or the increased 

influx of salinity into the system (Moore et al., 1997). 

 

The introduction of aquaculture and mariculture to both estuarine and riverine areas present 

their own unique threats. Runoff and effluents carrying both the excrement and nutrients used to 

raise aquacultural species often end up in rivers and estuaries. These often lead to negative 

impacts. Glibert and Terlizzi (1999), found that elevated urea levels due to the presence of 

aquaculturally grown striped bass led to increases in the blooms of dinoflagellates within east 
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coast American estuaries. These present a potential danger in the forms of eutrophication and 

red tides. Estuarine habitat structures are also impacted upon through the introduction of 

aquaculture. Sea grasses, salt marshes and other local structures have been on a worldwide 

decline with aquaculture thought to play a role (Waycott et al,. 2009; Dumbauld et al., 2015). 

Oyster based aquaculture has been shown to induce steep declines of over 50% in Willapa Bay 

seagrass density and size, impacting heavily on these structures (Wagner et al., 2012). 

Aquaculture may not always necessarily lead to a decrease in local fish species. Dumbauld et al. 

(2015), found little difference within Willapa Bay in juvenile salmon distribution in modified 

and natural estuarine areas. 

 

Finally, the threats posed by alien invasive species are itself significant. Species that are farmed 

and able to escape may lead to the competitive extinction of many local species as well as the 

introduction of new diseases and genetic combination, leading again to population reductions or 

species local extinction.  The Kowie Estuary faced such an alien invasion from Largemouth 

bass in South Africa (Murray et al., 2015). Due to its popularity as a sports fish, largemouth 

bass are common alien invasive to waters around the world, prompting much scientific study 

(Taylor et al., 2015). Murray et al. (2015), found that the invasion of bass into the estuary and 

river put significant predatory pressures on the juveniles of marine fish species, leading to 

impairments in fish recruitment and possible future local extinction. Alien species may also be 

introduced through the release of ships ballast water, through their attachment on ships hull’s 

and the illegal release of invasive species directly by humans (Zibrowius, 1991). Brackish water 

(such as that found in estuaries) has been shown to offer the highest probability of survival for 

aquatic invasive aliens (Paavola et al., 2005). Gruszka (1999), found that estuaries are not only 

susceptible to alien invasions but may also provide stepping stones to the expansion of alien 

invasive along coastlines. Gruszka (1999), further added that the eradication of marine invasive 

aliens is often near impossible and comes at a high cost, further adding to the long turn 

problems that will be faced by the estuaries. It is not only fish species that may invade estuaries. 

Tong et al. (2012), found that Spartina alterniflora, an alien invasive seagrass from North 

America was widespread amongst many Chinese estuaries and contributed to significantly 

increased levels of methane found within the estuaries. Methane is a greenhouse gas that may 

lead to increasing rates of global warming if entering the atmosphere. 
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2.2.5. South African estuaries 
 

South Africa has 291 estuaries spread across the countries coastline, totalling a combined area 

of 171 046 ha (Nel et al., 2011; Driver et al., 2012; van Niekerk and Turpie, 2012). This area 

constitutes all that is needed for an estuary to maintain its functionality, including areas of open 

water, floodplains and salt marshes (Cilliers and Adams, 2016). These 291 estuaries were 

classified into 46 different types of estuarine ecosystems as determined by the National 

Biodiversity Assessment (NBA) (van Niekerk and Turpie, 2012). South African estuaries all fall 

within one of three biogeographical regions: cool temperate (16%), warm temperate (24%) and 

subtropical (60%) (Whitfield and Baliwe, 2013; Cilliers and Adams, 2016). Biogeographical 

regions differ greatly in both amounts and variability of rainfall received (van Niekerk and 

Turpie, 2012). Further secondary influences of the biogeographical regions include differences 

in river inflow, catchment sizes and shape (van Niekerk and Turpie, 2012). Of all the estuaries 

in South Africa, St Lucia Estuary is the largest and accounts for more than half of all the 

estuarine land (Driver et al., 2012). This area was declared South Africa’s first world heritage 

site and is home to a wide array of floral and faunal species. Similar to the ecological 

importance of St Lucia, other estuaries also positively contribute to South Africa. These 

estuaries play a major role in providing areas for fishing, recreation, animal breeding and 

nursery grounds as well as in the delivery of sediments used to build up beaches and nutrients 

important to food webs. However, anthropogenic pressures have for the past four decades had 

significant impacts on their health and functioning (Cilliers and Adams, 2016). Despite their 

importance and following a trend common globally, estuaries constitute one of the most 

vulnerable and threatened ecosystems within South Africa (Turpie et al., 2002; Cilliers and 

Adams, 2016). 

 

South African estuaries differ from one another due to several factors. These factors that 

contribute towards estuarine variability within South Africa include catchment sizes, gradients, 

riverine and marine sediments, different types of climates and the fluvial discharge from rivers 

(Cooper, 2001). Forbes and Demetriades (2008), placed South African estuaries in one of five 

types. Estuarine lakes are estuaries that exceed a water area of 1200 ha and usually form from 

drowned river valleys. These are usually separated from the sea by vegetated dunes. These areas 

may eventually become completely cut off from the ocean and lose all estuarine characteristics 

(such as in Lake Sibaya). However, they may also have temporary access to the ocean. St Lucia 

is one such example of an estuarine lake. Estuarine bays also exceed a water area of 1200 ha 

and are permanently linked to the oceans. These are characterised by the dominance of marine 
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species, high salinity and the presence of wetlands such as mangroves forming around the 

estuary. Durban bay is one such example. River mouths are estuaries that are dominated by 

riverine influences. These estuaries are characterised by low salinities, are usually permanently 

opened but have a small tidal prism and are dominated by riverine organisms. An example of 

this type of estuary is the uMkhomazi river mouth. 

 

However, within South Africa there are two broad types of estuaries that dominate the country’s 

coasts: Temporary open-closed estuaries (TOCEs) and Permanently open estuaries (POEs) (van 

Niekerk, 2007; Forbes and Demetriades, 2008). POEs generally require large catchment areas as 

well as a relatively high runoff that occurs throughout the year (van Niekerk, 2007). The volume 

of water within the estuary is also usually large enough for tidal influxes to maintain the open 

mouth conditions (van Niekerk, 2007). TOCEs on the other hand are identified through the 

isolation of estuarine and sea water through the formation of a sandy berm across the estuary 

mouth during certain periods of no or insufficient river inflow (van Niekerk, 2007). These 

estuaries stay closed off, until the period where their basins have been filled with sufficient 

water to breach through the berm. This breaching results in a flushing out of the water and 

sediments that have been collecting since mouth closure. Eventually an equilibrium between 

river inflow and tidal influxes is achieved. The major forces required to that maintain the 

conditions that are required for an open mouth can be reduced to river and tidal flow, whilst 

major closing forces can be considered to be due to sediment inflow as well as oceanic waves 

(van Niekerk, 2007). During periods of high intensity precipitation or storms, estuaries are 

usually opened whilst in other conditions they remain closed. Around 70% of South African 

estuaries have temporarily open-closed access between the river and sea systems (Whitfield, 

1992).  

 

Estuaries are recognised as being amongst the most productive ecosystems within South Africa 

(van Niekerk and Turpie, 2012). South African estuaries play a major role to both the economy 

and ecosystem through the provision of various ecosystem services and goods (Cooper et al., 

2003; Lamberth and Turpie, 2003; Turpie and Clark, 2007). Estuaries are considered places of 

beauty and are desirable locations for homes or visits. Areas surrounding estuaries often benefit 

financially from substantially higher rates and property values along estuarine shores (Breen and 

McKenzie, 2001). Economic activities related to estuary-based tourism may as well provide a 

considerable source of income to local communities (Breen and McKenzie, 2001).  
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One of the most significant functions South African estuaries perform is that of a nursery. It was 

estimated by Lamberth and Turpie (2003), that about 80 of the 160 fish that are found within 

estuaries are used by fisheries. Further, at least 60% of these fish are either entirely or partially 

dependent on the nursery functions provided by estuaries. Although significantly larger catches 

were made in the inshore waters when compared to estuarine catches (28 000 vs. 2 480 tons per 

annum), up to 83% of those catches are heavily dependent on estuaries (Van Niekerk and 

Turpie, 2012). The revenue generated through fishing these species provided a significant 

income estimated at R1.2 billion in 2011 (Van Niekerk and Turpie, 2012). Examples of popular 

estuarine dependent species include Argyrosomus japonicas (dusky kob), Lithognathus 

lithognathus (white steenbras) and Carcharhinus leucas (Zambezi/Bull sharks).  

 

These estuaries also support the formation of around 90 000 ha of adjacent wetland habitat such 

as salt marshes and mangroves (Lamberth and Turpie, 2003). Areas such as these provide a 

wealth of raw materials to local peoples with it being estimated that vegetation harvesting from 

the St Lucia system alone generates over R4.7 million annually (Turpie et al., 2005). These 

wetlands further serve as important areas for carbon sequestration. Within estuaries and 

wetlands, carbon is sequestered into the biomass making up these areas and into its soils 

(Crooks et al., 2011). Wetlands surrounding estuaries have the added advantage of emitting 

negligible methane into the atmosphere (Van Niekerk and Turpie, 2012). This means estuaries 

and associated wetlands are important entities in mitigating the higher levels of greenhouse 

gases contributing towards global warming. South Africa possesses over 27 300 ha of salt 

marshes, mangroves, swamp forest, submerged macrophytes and sand and mud banks (Van 

Niekerk and Turpie, 2012). These all contribute towards carbon sequestration and produce 

comparatively negligible to low levels of methane in the process.  

 

Estuaries may also serve as important buffers against both flooding and storm damage. South 

African estuaries provide around 61 000 ha of open water storage which function to collect 

water during flood events (Van Niekerk and Turpie, 2012). These perform significantly better at 

containing of floodwaters than ordinary river mouths. Evidence of these protective effects could 

be seen during the 2011 August floods near Slang Estuary, Oesterbaai (Van Niekerk and Turpie, 

2012). Here, anthropogenic alterations to the estuary removed base flows and allowed erosion 

of surrounding sand dunes and reduction in water storage capacity of estuary. During the 

subsequent rainfalls, adjacent low-lying developments were flooded. Sandy berms that develop 

in front of over 75% of South African estuaries also protect coastlines from storm damage (Van 

Niekerk and Turpie, 2012). If any storm water has sufficient enough force to pass these 
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protective berms, they usually enter into the estuary and cause negligible damage to coastal 

developments. 

 

The livelihoods of local communities may also be highly influenced through estuaries as 

explored by Van Niekerk and Turpie (2012). Sarcocornia and Salicornia are halophytes found 

within estuaries that may be utilised as either a food or fuel source. In South Africa, they are 

still underutilised but are fast becoming more popular. Juncus kraussii and Phragmites australis 

are local reeds that are used by local communities in the creation of baskets and mats. 

Mangroves that form around estuaries are also intensively harvested for either firewood or 

construction purposes, although this is done mostly illegally. 

 

Despite the many significant benefits that estuaries provide in South Africa, they face a great 

number of threats. Flow modification is one of these threats and refers to either the increase or 

decrease in freshwater flow to estuaries. South African examples of decreased inflows include 

from direct abstractions (such as in Keurbooms Estuary), construction of dams (such as in the 

Orange and Palmiet Estuaries) and through the cumulative effects of small dams found within 

farms and local communities (such as in the Bushmans Estuary) (Van Niekerk and Turpie, 

2012). Increases in the volume of inflow may be due to transfers between basins (such as in the 

Sundays estuary), through the addition of water from WWTW (such as in Mhlanga Estuary) and 

finally through the hardening of a catchment (such as that found within the Kuils Estuary) (Van 

Niekerk and Turpie, 2012). Reductions or increases in baseflows by as much as 50% may have 

significant impacts on the functioning of estuaries. 

 

Another major threat is that of pollution and its impacts within South African estuaries. 

Municipal and industrial waste waters as well as storm and agricultural runoff’s are through to 

be the largest land based contributors to estuarine pollution. These introduce excessive amounts 

of nutrients and toxins into the estuarine system, leading to negative impacts on estuarine life. 

Driver et al. (2012), identifies in particular the threat of future desalinisation plants as a 

particular problem in South Africa due to the brine effluents produced.  

 

The overutilisation and exploitation of estuarine resources is another major threat. The 

overexploitation of fish species in particular may lead to changes in population size, biomass, 

sex ratios and the eventual recruitment collapse of a species from which there is little chance of 

recovery (Van Niekerk and Turpie, 2012). Around 18% of estuaries in South Africa currently 

face significant threats from extreme to moderate overfishing (Van Niekerk and Turpie, 2012). 
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Only around 14% of estuaries have no fishing pressures being placed on them (Van Niekerk and 

Turpie, 2012). In addition the collection of bait organisms within estuaries for the purpose of 

fishing may further add to its overexploitation. Over 84% of estuaries have bait collection 

pressure placed on them (Van Niekerk and Turpie, 2012). This is currently not a problem as bait 

populations have proven themselves to be resilient in the face of these pressures so far (Van 

Niekerk and Turpie, 2012). 

 

Inappropriate land use developments have had a detrimental impact on many an estuary. In 

South Africa, there have been a substantial number of issues created through the building of 

bridges across estuaries. This may lead to stabilisation of the usually dynamic estuarine 

channels. During times of heavy flooding, this may lead to the concentrated erosion of 

sediments under the bridge, leading to changes in flow, habitat and biota. This was evident in 

the Uilkraals Estuary where the local bloodworm Arenicola loveni has disappeared from the 

upper reaches of the estuary after the construction of a bridge (Heydorn and Bickerton, 1982). 

Sand mining activities are also a particular problem, leading to high suspended loads and habitat 

destruction (Van Niekerk and Turpie, 2012). In Kwazulu-Natal, Van Niekerk and Turpie 

(2012), found that 18 estuaries supported sand mining operations and were vulnerable to these 

impacts. In total, only less than 10% of all estuaries found within South Africa appear to have 

no developmental pressures placed on them (Van Niekerk and Turpie, 2012). 

 

The statistics generated in the 2011 National Biodiversity Assessment do not paint a pretty 

picture of estuarine health for South Africa (Driver et al., 2012). Van Niekerk and Turpie 

(2012), reported a 10% reduction in the number of estuaries in an excellent condition over the 

course of 2004 to 2011. However, when considering estuarine area itself, the situation becomes 

more distressing. In 2011, it was estimated by Van Niekerk and Turpie (2012), that 85% of 

estuarine habitat could be considered to be in a poor to fair state. Although providing a 

substantial income to local government, estuaries are seldom considered to be a governmental 

asset due to the underappreciation of its goods and services provided (Van Niekerk and Turpie, 

2012). This leaves little investment towards its sustainable management and protection 

(Lamberth and Turpie, 2003; Van Niekerk and Turpie, 2012). Only around 14% of South 

Africa’s different estuary types are protected (Driver et al., 2012). Despite a reasonably good 

value of over 60% of the total estuarine area in South Africa being protected, the vast majority 

of this area is found in the St Lucia estuary. Considering the area protected without the addition 

of St Lucia leaves only around 10% of the total area of South African estuaries are protected 

(Driver et al., 2012). Further, even though the St Lucia estuary can be considered reasonably 
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well protected, it is still considered to be in an ecologically poor state. This is due to the 

separation of the Umfolozi River from Lake St Lucia as well as the other aspects such as 

droughts (Driver et al., 2012). Due to its importance, much emphasis has been put on restoring 

St Lucia back to a good condition. 

 

2.3) The physico-chemical components of estuarine health 
 

2.3.1 Role of Temperature in estuaries 
 

Physico-chemical parameters refer to both the physical and chemical components that make up 

a water body. Commonly measured physico-chemical parameters include dissolved oxygen, pH, 

temperature, salinity, chlorophyll-a and various nutrients amongst many others. These 

parameters play significant roles in the functioning of estuaries and other water bodies.  

 

Temperature refers to the amount of heat the water within an estuarine body, mainly introduced 

through incoming solar radiation. Temperature within estuaries generally increases throughout 

the day as more solar radiation is received and decrease at night once the sun sets. Although it 

mostly follows this general pattern, larger variations in temperature may be caused by tidal 

actions and the open state of the mouth (Abowei, 2010). During high tides and open mouth 

condition, warm estuarine water is flushed out the estuary whilst colder ocean water enters 

(Abowei, 2010). Other sources increasing the temperature within estuaries include effluents 

entering into the water which may be introduced by industry. Temperature is the single most 

important abiotic factor as it controls the various biological, chemical and physical processes 

that occur within the water and surrounding air (Beitinger and Fitzpatrick, 1979; Gholizadeh et 

al., 2016). As a result, simply determining the temperature of an estuary helps in understanding 

the state of health of the system as it greatly influences how fish utilise estuaries (Thiel et al., 

1995; Abowei, 2010; NOAA, 2012).  The most important parameter temperature controls is the 

amount of oxygen that can be stored within water. An example of how this may affect the 

concentration is that water at 0 °C can contain up to 14.6 mg of oxygen per litre of water, but at 

20 °C, it holds 9.2 mg of oxygen per litre (NOAA, 2012). This is a substantial difference in 

oxygen levels and affects the size and abundance of organisms that may inhabit the estuary. 

Temperature is also essential in determining what types of organisms are able to survive in the 

water as each organism has optimal ranges in which it thrives. A change of more than 1 ºC to 2 

ºC may cause massive thermal stress to animals and plants. Due to its importance in controlling 

water density, temperature also plays a major role in the mixing distribution of contaminants, 
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oxygen and nutrients throughout the water column (Trujillo and Thurman, 2011). Temperature 

may also lead to a decline in the health state of estuaries. As well as limiting both oxygen and 

nutrient distribution, depending on the type of fish inhabiting the estuary lower temperatures 

may likely lead to lower rates of growth and metabolism (Abowei, 2010). Nowicki (1994), also 

found that temperature exponentially increases the rate of denitrification, increasing the 

availability of nitrogen to estuarine systems. This may lead to potentially fatal algal blooms and 

subsequent eutrophication. Kurobe et al. (2018), found an interesting linkage with global 

warming and future increased temperatures and its effects on possible biotic life. In their study, 

it was found that during drought seasons and periods of high temperature in San Francisco 

estuary, cyanobacterial blooms and the subsequent release of toxins resulted in a significantly 

high mortality rate in fish embryos. The rate of photosynthesis, metabolic rate and susceptibility 

of organisms to disease is also influenced by temperature (USEPA, 1997). The optimal 

temperature within an estuary depends on the species and life stages of organisms inhabiting the 

estuary, but generally extreme lows and highs lead to decreased health within these systems 

(Ohrel and Register, 2006).  

 

2.3.2 Role of Turbidity and secchi disk depth (SDD) in estuaries 
 

Turbidity may refer to the clearness of water, with turbid waters more likely to have passing 

light rays scattered or absorbed. Secchi disk depth is very similar to turbidity as both indicate a 

waters clarity. A waters clarity or turbidity is determined by sediments from mud, silt, sand and 

clay, dead plant and animal remains, microorganisms such as bacteria or algae and chemical 

precipitates (Ohrel and Register, 2006). These greatly affect how much light is able to penetrate 

and move through the water. Turbidity can therefore be an important parameter when studying 

the health of estuaries as they affect the depth at which photosynthesis can take place as well as 

affecting the colour of the water (Gholizadeh et al., 2016). Organisms such as algae and plants 

are therefore heavily dependent on the water turbidity. By monitoring turbidity, it may also 

indicate other problems such as excessive shoreline erosion or riverine erosion. Sediments 

making up turbidity may also clog the gills of fish, smother basal organisms such as oysters 

(usually killing them) and reduce growth rates as well as resistance to disease amongst estuarine 

organisms (Ohrel and Register, 2006). Turbidity may also impact on the amount of DO within 

the estuary. Generally, higher turbidity blocks out sunlight from reaching phytoplankton, 

increase the temperature of the water through solar absorption and indicate the presence of a 

large amount of detritus (Ohrel and Register, 2006). All these factors lead to reductions in the 

amount of stored DO. Turbidity’s generally considered healthy are low, with acceptable 



24 
 

 
 

drinking water having turbidity’s below 1 Nephelometric turbidity unit (NTU) (Fundamentals of 

environmental measurements, 2016). 

 

2.3.3 Role of Salinity, Total dissolved solids (TDS) and Electrical conductivity (EC) in 

estuaries 
 

Salinity is one of the most important parameters in any oceanic environment. Whilst the general 

standard for measuring salinity was in parts per thousand (ppt), it is now considered unitless and 

measured according to the Practical Salinity Scale. Salinity is sometimes represented by units of 

PSU (Fundamentals of environmental measurements, 2016). Due to the various important 

influences, the impacts of salinity on environments has warranted much study over the years 

(Trujillo and Thurman, 2011). Both temperature and salinity are the main factors controlling the 

density of water. This leads them to play an essential role in global thermohaline circulation and 

greatly impacting on the ability of water to mix (Trujillo and Thurman, 2011). Salinity is 

equally important within estuaries. Here, salinity is often highest at the river mouth (~30 PSU) 

where ocean water is able to easily flow into the estuary and lowest in the highest reaches where 

oceanic influence is more limited (~0.5 PSU) (Ohrel and Register, 2006). This may lead to 

dynamic rises and falls in salinity due to waves and higher tides contributing saline water and 

precipitation and run off diluting the water. Salinity most importantly directly impacts on the 

ability of water to dissolve gases and affects what organisms are able to live within the water. 

One of the most important of these is oxygen. High salinity waters such as ocean water usually 

hold 20% less oxygen than freshwater under similar conditions (NOAA, 2012). Salinity can be 

considered as one of the most important parameters in influencing the usage of estuaries by 

organisms (Marshall and Elliot, 1998). An example of this may be found in phytoplankton, 

which form the basis of any estuarine food web. Phytoplankton have for a long time been 

known to be particularly susceptible to the influence of salinity as most possess stenohaline 

characteristics and suffer osmotic stress with the introduction of salinity (Kirst, 1990; Flameling 

and Kromkamp, 1994; Bisson and Kirst, 1995). Lionard et al. (2005), showed that within 

Schelde estuary increases or decreases in salinity may lead to reductions in the amounts of 

phytoplankton present within estuaries. This may even lead to changes in community 

composition as freshwater phytoplankton get replaced by marine phytoplankton as salinity 

increases and vice versa (Lionard et al., 2005). Flocculation (the process by which particle 

aggregate together to form larger objects) is also influenced by salinity (Ohrel and Register, 

2006). This may lead to increased turbidity as dissolved particles collide with salt water and 

begin to precipitate. The salinity also determines how suitable estuarine water would prove for 



25 
 

 
 

consumption by humans or animals. Salinity increases or decreases may therefore lead to 

negative health changes within estuaries. 

 

2.3.4 Role of Chlorophyll-a (Chl-a) in estuaries 
 

Chlorophyll-a are pigments found within photosynthetic organisms, such as algae, that are 

essential for photosynthesis (Lim and Choi, 2015). These organisms form the base of the food 

chain and are thus essential to understanding the trophic state that an estuarine environment is 

currently experiencing. Surface waters with high chl-a content may also indicate the presence of 

high levels of nutrients such as phosphorus and nitrogen. An excess of nutrients within an 

estuary may lead to rapid population rises in phytoplankton. An overproduction of these 

primary producers may lead to negative effects such as eutrophication (Gholizadeh et al., 2016). 

An overview of the eutrophication process can be seen in Figure 2.3. This can lead to massive 

fish kills and the loss of estuarine vegetation (Bricker et al., 2008). Determining the chl-a 

content of a water body is therefore also used as a potential indicator in determining whether an 

eutrophication event is currently happening or is likely to in future happen (Angela and Nikos, 

2010). This may also be used as an indirect indicator of pollution levels within an estuary as 

often external sources contribute towards this high nutrient content (Bricker et al., 2008). 

Healthy levels of chl-a can be considered to be estuary specific as they usually differ from 

estuary to estuary based on climate and nutrient amounts amongst others.  

 

 
Figure 2.3: Overview of the relationship between the overall eutrophication process, the 

symptoms and influence factors such as nutrient loads (adapted from Bricker et al., 

2008). 
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2.3.5 Role of Dissolved oxygen (DO) in estuaries 
 

This forms one of the most important physico-chemical parameters within any waterbody due to 

the fact that all respiring organisms need this to live. Oxygen dissolves through direct diffusion 

into the water or its production by photosynthetic organisms. The main sources of dissolved 

oxygen is through photosynthesis from aquatic plants (Abowei, 2010). Further, the actions of 

both waves and winds may aid in the rate at which oxygen dissolves into the water body. 

Besides temperature and salinity, the levels of oxygen may change as decomposers use it up in 

breaking down organic matter. However, if waters are polluted with high biological oxygen 

demand (BOD) contaminants such as sewage, dissolved oxygen may fall to unhealthy levels 

(Clark, 1997). This is also a potential indicator that an eutrophication event is currently or will 

happen (Angela and Nikos, 2010). The prevalence of hypoxic and anoxic conditions may lead 

to a suppression of respiration and feeding and subsequently cause the death of fish and other 

organisms. A lack of oxygen may also lead to impaired embryonic development and lowered 

hatching success (Clark, 1997). This may result in both reproductive and stock-recruitment 

failures leading to collapses in species richness and abundance and a general unhealthy state 

within estuaries (Abowei, 2010). UNESCO/WHO (1978), determined that coastal and estuarine 

waters often require at least 4 mg/l of dissolved oxygen to support a healthy ecosystem. 

However, for both optimum carrying capacities and optimum estuarine functioning, dissolved 

oxygen of at least 5 mg/l is preferred. 

 

2.3.6 Role of pH in estuaries 
 

pH is a measure of how basic or acidic the waters within an estuary are (Ohrel and Register, 

2006). Factors affecting the pH value within estuaries include minerals dissolved within the 

water, aerosols and dust, human wastes and photosynthesis and respiration by estuarine 

inhabitants (Ohrel and Register, 2006). Most aquatic organisms prefer to live in water of pH’s 

between 5 and 9 but many estuarine inhabitants are able to survive within waters where pH 

ranges from 5.5 to 10  (Moyle, 1993; NOAA, 2012). The typical pH levels within an estuary 

range from 7 to 7.5 for the more freshwater parts and 8 to 8.6 for more saline parts (Ohrel and 

Register, 2006). Estuaries with pH values that are lower than 6 are usually characterised by 

significantly decreased fish egg fertility, hatchability and growth of fry (Matthews, 2012). 

Despite these severe consequences to aquatic life, Matthews (2012), determined that most fish 

species fail to differentiate pH’s between 5.5 to 10. In general, pH’s around 6.5-8 are though to 

support the most productive estuaries (Ohrel and Register, 2006). Biological processes may 
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greatly influence the acidity of estuarine water. Photosynthesis may result in waters becoming 

more acidic as it removes CO2 which acts as a buffer against high pH’s and makes water more 

alkaline (Ohrel and Register, 2006). As such, algal blooms are often lethal to aquatic organisms 

partly due to risen pH levels. Changes in pH may also alter how metals such as copper are able 

to dissolve within estuarine water. At lower pH’s, toxic sediments within the estuary usually 

resuspend and lead to the poisoning of local organisms. 

 

2.4) Estimation of the physico-chemical components of estuarine health 
 

2.4.1 Traditional and Remote sensing based methods of physico-chemical parameter 

estimation 
 

If the health of estuarine systems are to be maintained, important physico-chemical parameters 

such as those mentioned in the previous section need to be monitored and controlled (NOAA, 

2012). This monitoring has traditionally been done through on the ground field campaigns 

involving sampling and lab tests. Over time, these methods have become significantly more 

advanced. Today, advanced hardware such as water quality sensors are able to instantaneously 

and accurately obtain measurements of multiple physico-chemical parameters within any body 

of water. Despite their accuracy, the traditional methods for physico-chemical estimation are not 

without their drawbacks (Gholizadeh et al., 2016). As the number of water samples taken and 

parameters tested increase, the costs and effort required to complete such testing often grows 

considerably. The collecting of water samples may also prove time consuming and tedious, 

whilst travel to sampling grounds may be difficult or the area inaccessible. The use of 

traditional in situ methods for the obtaining physico-chemical data may therefore substantially 

limit studies. This is where remote sensing offers a possible solution. 

 

Due to its synoptic coverage and versatility, remote sensors such as those based on satellites can 

provide physical and geographical data over large scales and aid in the study of many 

phenomena. These sensors may therefore serve as powerful tools towards the monitoring of 

water quality and health of estuarine system. One method of doing this involves the estimation 

of physico-chemical characteristics from features such as air, water and soils within estuarine 

bodies for the purpose of water quality assessments (Gholizadeh et al., 2016). The various 

physico-chemical parameters, how they impact estuarine health and their collection through 

both field and remote sensing methods are essential to understand if a comprehensive water 

quality assessment is to be carried out. 
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2.4.2 Traditional and remote sensing based temperature retrieval 
 

Field based measurements for temperature are usually easy and cheap to perform. A standard 

thermometer placed within the water is sufficient for the accurate determination of temperature. 

The thermometer should be placed at least 10 cm beneath the surface of the water and remain 

there for around 3 - 5 minutes for an accurate reading (Ohrel and Register, 2006). If greater 

accuracies or speed are required, temperature may also be retrieved through the use of handheld 

sensors. Lab tests to determine temperature are usually discouraged as due to the time passing 

between sampling and testing, temperature would change (Ohrel and Register, 2006). 

 

Temperature is usually measured by the thermal infrared bands present on some remote sensors 

such as bands 10 and 11 for Landsat 8. There have already been a large number of studies that 

have been able to successfully retrieve both land surface temperatures (LST) and sea surface 

temperatures (SST) from the Earth’s surface (Becker and Li, 1990; Ustin, 2004; Kang et al., 

2014; Rajeshwari and Mani, 2014; Brando et al., 2015; Wang et al., 2015). Besides the use of 

Landsat 8, radar and other passive remote sensors may also be used to determine temperature. 

Avdan and Jovanoska (2016), devised an equation for temperature estimation using parameters 

that could be calculated entirely from a Landsat 8 image without the need for other data. The 

idea behind the development of this method included that current methods require the addition 

of atmospheric data or complex tools and were both tedious and prone to human errors (Avdan 

and Jovanoska, 2016). Tested over Ontario and Quebec in Canada, the algorithm achieved 

acceptable accuracies considering its ease of use with standard deviations ranging between 2.4 

ºC - 2.7 ºC. Khattab and Merkel (2014), similarly made use of the thermal infrared band (band 

8) and band 7 on Landsat 5 in order to determine temperature. Accuracies achieved included 

and R2 (coefficient of determination) of 0.72 and an SEE (standard error of estimate) of 0.25 

when tested over Mosul dam. Khattab and Merkel (2014), also tested the ability of Landsat 

ETM+ in retrieving temperature and achieved better accuracies of R2 = 0.97 and SEE = 0.119. 

Abdullah (2015), attempted to determine temperature using Landsat 8 without the use of the 

thermal infrared bands on Dokan lake, Iraq. A model developed for spring achieved a high R2 = 

0.86 but otherwise suffered from poorer accuracy, with other developed algorithms also 

recording R2 = 0.52 and R2 = 0.49 for other seasons. 
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2.4.3 Traditional and remote sensing based Turbidity and secchi disk depth (SDD) 

retrieval 
 

Turbidity may be measured in a number of ways. The most basic of these involves inferring 

turbidity through determining water clarity. The simplest of these involves the use of a secchi 

disk. This involves the use of a generally black and white chequered weighted disk that is 

lowered into the water column until the pattern is no longer visible (Fundamentals of 

environmental measurements, 2016). A reading is taken at this depth and can be used as a 

measure of water clarity.  Another simple, accurate and easy to use method involves the use of a 

turbidity tube. Sensors may also be used to determine the turbidity content of water and come in 

many forms (Fundamentals of environmental measurements, 2016). This may come in the form 

of Nephelometric, backscatter and attenuation sensors. Nephelometric sensors are those sensors 

which have the light source and photodetector at 90º to each other. This angle is considered the 

best in determining light scatter for any particle size. However, drawbacks include that it can 

only be used for low turbidity water (below 40 NTU) and is vulnerable to interference from 

coloured dissolved material. Backscatter sensors have their light source and photodetectors at a 

greater than 90º angle to one another. This allows for improved turbidity determination at higher 

turbidities, especially around 1000 - 4000 NTU. In lower turbidity waters however, they are less 

accurate and are susceptible to error when dark particles are present. Attenuation sensors 

measure the light intensity decrease as it travels through sample water in order to determine 

turbidity. However, these sensors are very vulnerable to interference from the presence of 

coloured matter within water and are not recommended for surface water sampling. 

 

Turbidity is most commonly measured in nephelometric turbidity units or Jackson turbidity 

units (JTU). However, both these units (and in fact a great many other units used) are roughly 

equivalent and therefore interchangeable (Myre and Shaw, 2006). The human eye can detect 

turbidity’s of around 5 NTU and above. Waters that are considered relatively clear may have 

turbidity up to 25 NTU, muddy waters begin once has reached at least 100 NTU and finally at 

2,000 NTU water becomes opaque and little light may travel through (Joyce et al., 1996; 

Nathanson, 2003). Suspended sediments are the particles responsible for most of the scattering 

while absorption is mainly controlled by the amount of chlorophyll-a present in the water 

column (Myint and Walker, 2002).  

 

Remote sensing techniques often involve the use of an appropriately selected single band along 

with a total suspended matters (TSM) algorithm (Nechad, 2010). However, certain substances 
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present in the water (such as dark coloured humus) may affect the water colour and therefore 

reflectance (Feng et al., 2014). It is therefore more efficient to use signal bands or band ratio’s 

to achieve a higher accuracy when determining turbidity. The ratio between green and red and 

blue and red have both been used previously for Landsat 5 to determine turbidity and TSS and 

the same algorithm should be applicable to Landsat 8 and Sentinel-2 (Cox et al., 1998; Wang et 

al., 2006). Lim and Choi (2015), found that suspended sediments levels were related to Landsat 

8 band 2 to 5 through regression and have developed band specific algorithms for their 

calculation. Kapalanga (2015), used Landsat 8 over Olushandja Dam, Namibia in their turbidity 

estimation. Accuracies of R2 = 0.98 were found for this study indicating strong estimation 

ability. Garaba and Zielinski (2015), attempted this over the Wadden Sea using Landsat 8. 

Accuracies of R2 = 0.73 were found for this study amongst others. Khattab and Merkel (2014), 

used Landsat 5 and obtained a R2 = 0.99 and SEE = 0.802 respectively. Abdullah (2015), 

attempted to retrieve turbidity over Dokan Lake using Landsat 8. A R2 = 0.99 and R2 = 0.46 

were obtained for autumn and spring models respectively. Song et al. (2011), made use of 

Landsat 5 and bands 5 and 2 to determine turbidity over Lake Changa, China. Results showed 

an R2 = 0.88 and SEE = 17.65. Finally, Dogliotti et al. (2015), achieved good accuracy testing 

out the 645 nm and 859 nm wavelength bands that are found on many remote sensors over seas 

and estuaries around the world. With regard to determining SDD’s, Hancock (2015), used 

Landsat 8 to determine SDD in three different American reservoirs: Brookeville, Geist, and 

Eagle Creek. Using bands 3 and 4, she achieved an accuracy of R2 = 0.58. This moderate 

accuracy was thought to be due to differences in band wavelengths between Landsat 8 and 

Landsat 7 (for which the original equation was based off of). Through a ratio of the blue and 

green band, Giardino et al. (2001)m used Landsat 5 over Lake Iseo, Italy and achieved SDD 

estimation accuracies of R2 = 0.85. Nas et al. (2010). retrieved SDD using the blue and red 

Landsat 5 bands with a R2 = 0.71. Alparslan et al. (2007), made use of the Landsat 7 remote 

sensor in their estimation of SDD for Darlik Dam just outside of Istanbul, Turkey. This used 

bands 1 to 5 and achieved an accuracy of R2 = 0.88. Deutsch et al. (2014), also made use of the 

blue and red bands aboard Landsat 7 and 8 in Qaraoun Reservoir, Lebanon. This achieved 

accuracies of R2 = 0.82 and R2 = 0.47 for each sensor respectively. Baban (1993), was an earlier 

study that made use of Landsat TM and the blue band in order to determine SDD. This was 

achieved with an accuracy of R2 = 0.83. 

 

 



31 
 

 
 

2.4.4 Traditional and remote sensing based salinity, total dissolved solids (TDS) and 

electrical conductivity (EC) retrieval 
 

The collection of salinity traditionally has progressed much over time. Today there are two main 

popular ways in measuring salinity. Salinity can either be measured through electrical 

conductivity (EC) or through determining the amount of salt that is dissolved within a solution. 

This is also known as total dissolved solids (TDS) (Watling, 2007). These results can either be 

recorded directly as salinity in ppt or as EC/TDS. Electrical conductivity is measured using an 

electrical conductivity meter which determines how easily electricity passes through a solution 

(Ohrel and Register, 2006). The more saline the solution, the larger the EC reading becomes. 

This can be measured either in the lab or during the field campaign. This works based on the 

amounts of positively and negatively charged ions within the water. Important positively 

charged ions include sodium, magnesium, calcium and potassium. Although negatively charged 

ions such as chloride, nitrates and sulphates do not have much of an impact on EC, they play 

important biological roles (Fundamentals of environmental measurements, 2016). Besides just 

the measuring of salinity, EC can further it can indicate some of the ionic composition of the 

water. An example of how this can be important can be seen with cladocerans, who are more 

sensitive to potassium chloride than sodium chloride (CWT, 2004). Finally, the EC may 

indicate an external leakage (such as sewage) entering the water. 

 

TDS can be measured in the same way as EC and multiplying by an empirical factor or through 

gravimetric analysis. Gravimetric analysis involves using an evaporation disk and dissolving all 

water in order to measure the salt (Fundamentals of environmental measurements, 2016). The 

term TDS is often more preferred than directly stating the salinity in freshwater situation where 

salinity values are often very low. TDS, salinity and EC are all highly interlinked and similar. 

Instead of setting up conductivity standards for water, some governments set up TDS standards 

(Fundamentals of environmental measurements, 2016). EC and TDS are measured in μS/cm and 

mg/l respectively. EC ranges for fresh, brackish and sea water range from 0 - 1500 μS/cm, 1500 

- 15 000 μS/cm and above 55 000 μS/cm respectively. For TDS, ranges for fresh, brackish and 

sea water range from 0 - 1000 mg/l, 1000 - 10 050 mg/l and above 36 850 mg/l respectively. A 

refractometer can be used to measure salinity values either in the field or in a lab. Salinity 

ranges from 0 - 0.5 for freshwater, 0.5 - 30 for brackish water and 30 onwards for sea water 

(Ohrel and Register, 2006).  
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Salinity has obvious optical properties within water and has been measured by microwave based 

sensors since the 1970’s and 80’s, remaining popular to the current day (Gholizadeh et al., 

2016). Aquarius is one such NASA launched microwave radiometer sensor used for this 

purpose. However, salinity cannot often be measured directly by sensors such as Landsat 8. 

These sensors therefore rely on the relationship between salinity and temperature (that is 

measurable with TIRS bands) or coloured dissolved organic matter (CDOM) in order to obtain 

salinity values (Bai et al., 2013). A recent study by Zhao et al. (2017), has also found a 

relationship between reflectance from bands 1 to 4 and the surface salinity of water. Garaba and 

Zielinski (2015), used Landsat 8 in an attempt to retrieve water quality parameters such as 

salinity across the Wadden Sea. They made use of Remote sensing reflectance (Rrs) in an 

attempt to reduce atmospheric influences. The study was mildly successful with R2 = 0.84 and 

R2 = 0.54 being recorded for the two algorithms developed. The study did support the fact that 

water colour may be used as a proxy for measuring salinity. However, it was mentioned that 

there is a large belief within the scientific community that retrieving salinity by use of ocean 

colour varies on a case to case basis and is especially challenging in the near-shore environment. 

Lavery et al. (1993), was an earlier study that attempted to retrieve salinity using Landsat TM. 

This was done across the Harvey Estuary in Western Australia and is one of the rarer attempts at 

determining salinity in optically complex estuaries. The study achieved accuracies of R2 = 0.75 

and R2 = 0.78 as well as SEE = 1.14 and SEE = 1.75 for the two equations derived, proving 

itself successful in estimation. Dewidar and Khedr (2001), also made use of Landsat TM in their 

salinity estimation in Manzala lagoon. Here, TM bands 2, 3 and 4 were used to derive a salinity 

algorithm whose accuracy was not tested. Wang and Xu (2008), derived salinity in an estuarine 

lake based in the Gulf of Mexico also making use of the Landsat TM bands. The models 

formulated using TM bands 1 to 5 achieved a successful R2 = 0.89 and RMSE (root mean 

squared error) of 0.27. Instead of only focusing on measuring the salinity, many studies also 

focused on or included determining the EC and TDS. Khattab and Merkel (2014), used Landsat 

5 to retrieve EC and obtained a coefficient of determination and SEE = 0.84 and SEE = 0.007. 

Likewise the same study attempted estimation with Landsat 7 and obtained R2 and SEE 

accuracies of R2 = 0.95 and SEE = 0.033. Abdullah (2015), used Landsat 8 in his calculation of 

EC and achieved accuracies of R2 = 0.49 and R2 = 0.41 when calculated in autumn and spring. 

Khattab and Merkel (2014), used Landsat 5 to retrieve TDS and obtained a R2 = 0.99 and SEE = 

0.0004. Likewise the same study attempted estimation with Landsat 7 and obtained a R2 = 0.96 

and SEE = 0.009 respectively. Abdelmalik (2018), used ASTER and calculated TDS with 

accuracies with a R2 = 0.99 and RMSE of 0.89 in Qaroun Lake, Egypt. Abdullah (2015), used 
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Landsat 8 in his calculation of TDS and achieved accuracies of R2 = 0.49 and R2 = 0.41 when 

calculated in autumn and spring. 

 

2.4.5 Traditional and remote sensing based Chlorophyll-a (Chl-a) retrieval 
 

Chl-a can be measured in a two broad ways. Classically, this has been done through 

spectrophotometry (Fundamentals of environmental measurements, 2016). This involves the 

collection of fairly large water samples, which are then filtered and placed in acetone to extract 

the chl-a. This solution then undergoes a spectrophotometry-based method such as absorbance 

or fluorescence which use chlorophyll’s known optical properties to determine a final chl-a 

value. High performance liquid chromatography (HPLC) is another method used and has been 

shown to provide reliably accurate results (Fundamentals of environmental measurements, 

2016). The extraction phase is the same that is followed with spectrophotometry but then uses a 

fluorometer to determine molecular chlorophyll fluorescence. However, this method is known 

to be both time consuming and requiring a trained analyst for accurate results. Chl-a can be 

measured in ug/l or mg/m3, both of which are essentially the same measurement. 

 

Photosynthetic organisms absorb light from around red and blue wavelengths and reflect in the 

green wavelength (Gholizadeh et al., 2016). The addition of chlorophyll-b monitoring allows 

for a broader range of wavelengths to be used, however, it is chlorophyll-a that is usually most 

favoured.  There are many methods of determining the chlorophyll-a content of water bodies. 

This includes many of which have been developed for Landsat 7 and which would be applicable 

for use in Landsat 8 and Sentinel-2. Simple methods involve using the ratio between the green 

and red bands (Allan et al., 2007); The ratio between green and blue as well as between red and 

infrared (Turner, 2010); and the use of single colour bands (Hadjimitsis and Clayton, 2009). The 

ASTER remote sensor was used by Nas et al. (2007), in their estimation of Chl-a from Beysehir 

Lake in Turkey. Chl-a was successfully retrieved with an R2 = 0.86 whilst using bands 1 to 4. 

Tenjo et al. (2015), derived estimation algorithms for use by Landsat 8 using algorithms first 

developed by Bernstein et al. (2005). An excellent accuracy of R2 = 0.97 was achieved through 

the use of bands 1 and 3. Cândido et al. (2016), performed an extensive study and used various 

methods in the estimation of Chl-a. The Landsat 8 remote sensor was used for this purpose 

across São Gabriel do Oeste, Brazil. Generally, high R2 values above 0.9 were found using all 

methods with many independent tests done. Two Landsat 8 images were used to test two 

algorithms each derived from Normalized ratio aquatic vegetation index (NRAVI), ratio aquatic 

vegetation index (RAVI), Excess green (ExG) and Normalized difference vegetation index 
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(NDVI). These equations developed generally strong accuracies. Equations based on NRAVI’s 

achieved highs of R2 = 0.99; RAVI achieved highs of R2 = 0.99; ExG of R2 = 0.98 and NDVI 

achieved accuracies of R2 = 0.98. El-Magd and Ali (2008), made use of Landsat ETM+ to 

determine chl-a across Lake Manzala. Various band ratios were used, with the most successful 

being those based on blue and red bands. R2 = 0.75 and R2 = 0.70 were achieved through 

developed algorithms, indicating success. Toming et al. (2016), used the more modern Sentinel-

2 in their estimation of chl-a over eleven Estonian lakes. Here, bands 4 to 6 achieved R2 = 0.8 

and R2 = 0.83 when tested across the lakes. Watanabe et al. (2015), made use of Landsat 8 in 

their estimation across the Barra Bonita hydroelectric reservoir, Brazil. R2 = 0.75 were found 

using bands 4 and 5. Lower R2 values were found for many of the other bands and proved 

inaccurate. Forrer (2012), used Landsat 5 in her chl-a estimation in Bankhead lake, United 

States. Here, poor accuracies with R2 values well below 0.61 and SEE’s ranging from 1.14 - 

3.73 were found for all algorithms developed. Jaelani et al. (2016), tested their Landsat 8 

models over two oceanic islands in East Java.  Very poor accuracies were recorded for their 

models, with R2 = 0.41 and R2 = 0.09 indicating major issues with chl-a estimation. The 

suspected cause of the low accuracy was thought to be due to on the poor atmospheric 

correction algorithms used by the USGS. Finally, Lim and Choi (2015), used Landsat 8 as well 

for their estimation. The Nakdong River in South Korea played host to their tests which 

achieved success rates of R = -0.71. 

 

2.4.6 Traditional and remote sensing based Dissolved oxygen (DO) retrieval 
 

There are three general methods in measuring DO in estuarine waters (Fundamentals of 

environmental measurements, 2016). Traditionally this was done through a Winkler titration. 

Inskip (1982), provides many informative aspects regarding this method. However, whilst 

accurate, this method is prone to human error and is considered the most difficult to perform. 

There are multiple variants for Winkler titrations. The colorimetric method is another type of 

method used to measure DO. These are both quick and inexpensive but prone to errors due to 

redoxing agents present within water (Inskip, 1982). Finally, DO can be measured through the 

use of a handheld sensor. Today this is the most popular method, allowing readings to be taken 

in the field or lab both cheaply and easily. These sensors take into account pressure, temperature 

and salinity, which all affect the amounts of DO (USEPA, 2012). Sensors may either be optical 

or electrochemical in nature. Optical sensors use the relationship between oxygen and blue light 

once special dyes have been added. The blue light excites these dyes and interacts with the DO, 
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indicating how much is present. Dissolved oxygen can be measured in either parts per million 

(ppm) or mg/l, both of which are essentially the same measurement. 

 

Dissolved oxygen is an important component of water based systems and heavily influences the 

distribution of all oxygen consuming organisms. Oxygen contents are influenced by many 

factors. This includes the water temperature, anthropogenic sources, the amount of oxygen 

taken in by respiring organisms, the amount used in decomposition, the amount bought into the 

system by plants and photosynthetic organisms and the amount that dissolves into the water 

from the air (Gholizadeh et al., 2016). Biological oxygen demand is the amount of oxygen that 

is required by bacteria to decompose organic matter. This may include detritus and organic 

wastes. Currently there has been no sensor that has been identified as being able to accurately 

determine the oxygen levels within water bodies. These measurements are usually only 

confidently accurate with the help of in situ data that is collected and used to model a 

relationship. Landsat sensors have been the most popular sensors used in trying to model DO.  

Landsat 5 is one of the more popular sensors in modelling attempts (Miao-fen et al., 2007; He et 

al., 2008). Theologou et al. (2015), and Khalil et al. (2016), both attempted to retrieve dissolved 

oxygen through the use of Landsat 8. These were both performed through the use of a ratio 

between the blue and red bands (bands 2 and 4 respectively). Theologou et al. (2015), tested 

their algorithms over the Mediterranean sea and a lake near the city of Larissa, Greece. An 

acceptable and accurate R2 = 0.80 was obtained for this study. Theologou et al. (2015), also 

made use of Landsat 7 in determining the DO in the same study. Here, R2 = 0.88 were found. 

Accuracies of R2 = 0.36 and R2 = 0.56 as well as RMSE = 0.39 and RMSE = 0.24 were found 

for equations developed by Khalil et al. (2016), over Bardawil Lagoon, indicating poor 

accuracy. Abdullah (2015), too made an attempt to retrieve DO over Dokan Lake using Landsat 

8. A R2 = 0.73 provides the method with moderate to good accuracy. 

 

2.4.7 Traditional and remote sensing based pH retrieval 
 

pH can easily be measured in the field or lab using the colorimetric method. Here, reagents are 

added to the water sample which thereafter react according to the pH and produce a colour 

change. This can be measured visually or electronically and indicates the pH level within the 

estuary (Ohrel and Register, 2006; Fundamentals of environmental measurements, 2016). 

However, it does not have the best accuracy in waters which are coloured. pH meters are a more 

expensive method than using the colorimetric method but can be used even if the water sample 
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itself is coloured and are extremely accurate (Ohrel and Register, 2006; Fundamentals of 

environmental measurements, 2016). 

 

Perivolioti et al. (2016), tested the ability of Landsat 7 in pH estimation over Lake Koronia, 

northern Greece. Through using only the infrared band, they retrieved pH but failed to check for 

accuracy. Theologou et al. (2015), used Landsat 8 and ratios of bands 5 and 6 as well as bands 1 

and 4 to accuracies of R2 = 0.86 and R2 = 0.81 respectively. Theologou et al. (2015), also made 

use of Landsat 7 and its bands 2 and 7 in to retrieve pH with a R2 = 0.87. Khattab and Merkel 

(2014), used Landsat 5 in their study and obtained a R2 = 0.75 and SEE = 0.087 respectively. 

Abdullah (2015), similarly made use of Landsat 8 in his calculation of pH and achieved 

accuracies of R2 = 0.64 and R2 = 0.47 when calculated in autumn and spring. 
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CHAPTER THREE: STUDY AREA 
 

 
Umdloti Estuary during winter sampling 
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3.1) Introduction 
 

This chapter provides a comprehensive review of a multitude of aspects relating to the study 

site, the Umdloti Estuary. This includes an overview of its general characteristics, source, 

climate, geology, biology, physico-chemical characteristics and finally its state of health. 

Images of both the study area itself and its location are provided in Figure 3.1. 

 

3.2) Description of the study area 
 

The eThekwini municipality in KwaZulu-Natal province, South Africa includes around 98 km’s 

of coastline and contains 16 estuaries (Forbes and Demetriades, 2008). These estuaries play 

significant ecological and economic roles within the province and are amongst the highest value 

ecosystems found included in the Durban open space system (Forbes and Demetriades, 2008). 

The Umdloti/Mdloti Estuary forms one of these 16 estuaries and was the area in which this 

current study was based. According to Begg (1978), the Zulu name, uMdloti, from which the 

name of the estuary and adjoining river is derived, could be interpreted in three ways. It could 

mean: the plough; the violent river or the river of the wild tobacco plant. This estuary is one of 

the larger estuaries found within the municipality and is roughly 140 hectares in size and located 

around 25 kilometres north of Durban, sandwiched between the small towns of Umdloti and La 

Mercy (Figure 3.1) (Forbes and Demetriades, 2008). The M4 road bridge runs across the upper 

reaches of the estuary whilst the lower reaches are bordered by the Umdloti beach and Indian 

Ocean. The estuary is surrounded by steep hills, packed with indigenous vegetation and access 

can be obtained through the adjoining beaches. The Umdloti Estuary and surrounding beaches 

form a popular site for many water based activities. This acts to attract locals and holiday goers 

who engage in activities such as fishing, swimming and kite surfing. 

 

Common to many South African estuaries, Umdloti itself is a temporarily open-closed estuary 

with intermittent periods of access to the sea (Forbes and Demetriades, 2008). Although 

temporarily open-closed, it goes through prolonged periods of closure. The state of the mouth 

was in closed phase throughout the period of the study. The sand bar that covers the estuarine 

mouth is sometimes artificially breached throughout the year by upstream sugarcane farmers to 

prevent flooding of their fields upstream and allow for access over some roads (Forbes and 

Demetriades, 2008; Pather, 2014). The estuarine mouth sand bar is also occasionally overtopped 

during high tides, introducing small amounts of seawater into the estuary (Pather, 2014). Closed 

mouth conditions lead to the estuarine waters being primarily composed of low salinities, which 
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strongly influence the biological life found within and around the Estuary (Forbes and 

Demetriades, 2008). Closed mouth conditions may also result the estuary being warmer in 

general due to the cut off of cooler oceanic water into the estuary. Warmer temperatures may 

result also in lower amounts of dissolved oxygen as warmer water hold less oxygen. It is rarely 

breached naturally but was breached in March, 1980 through a combination high equinox tides 

and rough sea conditions (Pather, 2014). When the Estuary is breached and open to the ocean, it 

generally brings large changes. If riverine flow is strong enough, it may result in the flushing 

out of phytoplankton and sediments. This leads to a large reduction in these primary producers 

(and chlorophyll-a) and turbidity (Forbes and Demetriades, 2008). Salinity is introduced into the 

estuary during these periods and the water becomes brackish. This tends to increase the amount 

of fish species diversity with open mouth conditions, due to greater recruitment from previously 

inaccessible marine species (Forbes and Demetriades, 2008). The Umdloti Estuary becomes 

essentially empty when the mouth opens as water levels fall (Forbes and Demetriades, 2008). 

 

The source of the estuary is the 90 km Umdloti River. This river rises from around 823 m in the 

Noodsberg area (Govender, 2009). It flows perennially at a mean annual flow rate of 2 m3.S-1 

(WCW, 2002; Olaniran et al., 2014). Along its course, the river flows through a major 

concreted dam (Hazelmere) and past the town of Verulam, all located within 20 kilometres 

upstream of the estuary (Olaniran et al., 2014). The middle courses of this river passes 

numerous residential and industrial areas (Govender, 2009). Agricultural activities conducted 

along the length of the Mdloti River include sugarcane, banana and citrus fruit farming and is 

the location for many cattle pastures (Govender, 2009). There is also a WWTW based upstream 

of the Umdloti Estuary that has an estimated effluent flow rate of 400 m3/day into the river (Van 

Niekerk and Turpie, 2012). The river eventually cuts across the coastal plain and enters into the 

Indian Ocean, with the point of entry forming the Umdloti Estuary (Govender, 2009).  

 

The estuary experiences a subtropical climate with cool winters and rainy warm summers 

(Ngetar, 2002). The influence of the warm Aghulus current contributes to the warm to mild 

conditions experienced by the local climate (Pather, 2014). The average temperatures of 

summer days are usually hot and range from around 25 ºC to 38 ºC (Govender, 2009). Winter 

temperatures are usually moderate, often ranging from around 9 ºC - 19 ºC (Govender, 2009). 

Average rainfalls of around 800 mm to 1125 mm are experienced annually (Govender, 2009). 

Over 80% of all rainfall is received during these summer months (Cooper, 1993). Winter 

rainfall is considerably lower and usually occurs through the presence of northward moving 

coastal lows (Pather, 2014). Occasionally the area upriver experiences large amounts of 
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province-wide flooding. This may eventually lead to the erosion of sediments which find their 

way into the Umdloti River. The river therefore may receive high sediment loads which may be 

transported to, and in rarer cases out of, the estuary (Cooper, 1993; Ngetar, 2002). 

 

Geologically, the Umdloti Estuary was identified by Begg (1978), as being composed of an 

assemblage of tillite, shale and sandstone. The first two metres of deposits within the estuary 

consists of fine sand, coarse fluvial sand as well as mud and clay lenses (Begg, 1978; Pather, 

2014). Sediments in 2007 were found to be composed mainly of coarse and medium sand with 

the middle to upper reaches being proportionally composed of a greater amount of coarse 

sediments (Forbes and Demetriades, 2008; Pather, 2014).  

 

Biologically, the type of life found within the estuary has been heavily influenced through the 

state of the usually closed estuarine mouth. The estuary itself is flanked by the presence of 

freshwater mangroves that have formed as a result of the low salinities experienced within the 

estuary (Forbes and Demetriades, 2008). Due to the long periods of mouth closure there is a 

notable lack of marine species recruitment. The Umdloti Estuary is therefore dominated by 

freshwater species, particularly by Gilchristella aestuaria, the estuarine roundherring (Forbes 

and Demetriades, 2008). The estuary also boasts a diverse array of fish and bird life. According 

to Govender (2009), organisms found within the estuary include: 28 different types of fish 

species; 8 different types of prawn species; 6 different species of crab and over 200 species of 

bird. 

 

The Umdloti Estuary experiences temperatures typical of a subtropical estuary, where average 

water temperatures ranged from around 19 ºC - 20 ºC during winter and 24 ºC - 25 ºC in spring 

(Forbes and Demetriades, 2008). Turbidity within the Umdloti Estuary has a long history of 

being usually low. This is common to closed systems subjected only to wind induced turbulence 

(Forbes and Demetriades, 2008).  As a result, estuarine waters are usually clear. This allows for 

greater levels of photosynthesis to occur throughout the water column, increasing productivity 

and indicating no health problems (Forbes and Demetriades, 2008). Turbidity within the 

Umdloti Estuary has been shown to increase and the waters becoming cloudier during rainfall 

and runoff events. Salinity, TDS and EC have all historically being recorded to be very low 

(usually barely considered brackish) within the Umdloti Estuary (Forbes and Demetriades, 

2008; Govender, 2009; Olaniran et al., 2014). This is due to prolong periods of mouth closure 

which cut off the estuary from the ocean and its supply of salty water (Forbes and Demetriades, 

2008). In addition, fresh water from upstream further dilutes the estuarine water. Chlorophyll-a 



41 
 

 
 

is usually average to high across the Umdloti Estuary, historically ranging from 19 μg/l to 75 

μg/l (Perissinotto et al., 2004; Forbes and Demetriades, 2008). The estuary therefore supports a 

high number of phytoplankton both within the water column and its sediments. However, when 

high amounts of chl-a are recorded they are usually a result of pollutants such as nitrates 

entering into the estuary (Forbes and Demetriades, 2008). This usually results in an algal bloom 

events occurring and crashes in phytoplankton numbers when anoxic conditions begin to persist 

(Forbes and Demetriades, 2008). The amounts of DO within the Umdloti Estuary has in the past 

been of issue (Forbes and Demetriades, 2008). The UNESCO/WHO (1978), minimum 

recommendation of 4 ppm, of DO has often not being met. When DO levels are high 

(sometimes reaching over 13 ppm), this is usually due to algal bloom which soon destabilise 

and result in hypoxic/anoxic conditions and fish kills (Forbes and Demetriades, 2008). pH of the 

water is around 7.6 and has little negative impact on estuarine life (Forbes and Demetriades, 

2008). 

 

The health status of the Umdloti Estuary is one that has been considered troubling for a long 

time. Whitfield and Baliwe (2013), reported that the NBA considered the estuary to be in poor 

to fair state of health and well-studied. Forbes and Demetriades (2008), compiled an extensive 

report on the various estuaries found within the eThekwini municipality. All were found to be 

displaying a varying degree of health, ranging from being considered in good condition to 

highly degraded. Distressingly, many can be considered to be highly degraded and damaged. 

Some of this damage was so extensive that they can no longer be considered an estuarine 

environment. Forbes and Demetriades (2008), reported that Umdloti Estuary could be 

considered as being in a poor condition and suffering habitat loss. Evidence supporting the poor 

state included the visibly impoverished macrobenthic communities as shown by the lack of 

amphipods and isopods (Forbes and Demetriades, 2008). There are many factors which 

negatively impact on the health of this estuary. It was noted that siltation and sediment loss due 

to the construction of the Hazelmere Dam, pollution, both subsistence and commercial 

agriculture (especially sugar cane encroachment), and recreational usage were significant 

problems with regard to the health of the estuary (Forbes and Demetriades, 2008; Govender, 

2009; Whitfield and Baliwe, 2013). Pollutants come in many forms and include an abundance 

of washed down general rubbish such as plastics. Govender (2009), also found that the health of 

the middle and lower courses of the Umdloti River were highly impacted upon through human 

activities such farming. This may negatively affect the amounts of DO and chl-a within the 

estuary, leading to dramatic drops. Carnie (2014), reported that eutrophication, likely caused 

through the introduction of agricultural products into the water led to over a thousand fish 



42 
 

 
 

deaths in 2014 within the estuary. The WWTW was also considered a potential pollutant, 

although Forbes and Demetriades (2008), reported that there was a sediment removal program 

in place to better purify effluents.  
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Figure 3.1: The location of Umdloti with respect to (A) South Africa, (B) the province of Kwazulu-Natal, (C) and the eThekwini 

municipality. A Sentinel-2 image of the Umdloti Estuary (29° 39' 07" S; 31° 07' 43" E) is also included (D).  

A B 
D 
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CHAPTER FOUR: METHODOLOGY 
 

4.1) Introduction 
 

This chapter and its subsections provides information on the materials and methods employed in 

this study in order to achieve the stipulated objectives. This includes details on how the in situ 

collection of physico-chemical parameters is conducted and details of the instruments involved 

with this. All workings with remote sensing including the acquisition of remote sensing imagery 

and the estimation of physico-chemical parameters from the remotely sensed images are also 

discussed. Finally, an overview of the methods used for accuracy assessment are given. All 

results that are generated following this methodology for this study are presented in the results 

chapter. The overall methodological process followed over the course of the study is simplified 

in Figure 4.1. 

 

4.2) Methodology 
 

4.2.1 Data collection 
 

4.2.1.1 Field campaign and laboratory data collection 
 

The field campaign consisted of the collection of Umdloti estuarine water samples as well as the 

performing of tests to retrieve some physico-chemical parameters conditions in the field. Field 

campaigns were conducted during the winter (July) and spring (November) periods. For the 

purpose of sampling, fifteen sampling points that spanned the length and breadth of the estuary 

were chosen (Figure 4.2). They were all roughly similar distances apart from each other and 

followed a systematic sampling pattern. This sampling pattern was chosen as it could equally 

cover the majority of the estuary, without oversampling or under sampling certain areas. This 

was important as the estuarine parameters are expected to change as one moves away from the 

mouth. Fifteen samples were done for winter sampling and another fifteen were done for spring 

sampling. This meant a total of thirty combined samples were therefore collected for Landsat 8 

and Sentinel-2 use. A handheld Trimble Juno handheld GPS was used to guide the researcher to 

the sampling locations and ensured that locations remained accurate. At each sampling point, 

triplicate samples of estuarine water were taken just below the water surface using 0.5 L plastic 

bottles. These bottles were uncapped once completely submerged and allowed to fill with water. 

Once all air pockets were eliminated and the bottle was full, it was again capped whilst 
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Figure 4.1: Flow diagram displaying basic outline of steps taken to obtain results over 

course of the study. 

Field collection of water 
samples and field tests 

Obtaining Landsat 8 and 
Sentinel-2 imagery 

Laboratory testing for retrieval of physico-
chemical variables from water samples  

Run remote sensing physico-
chemical estimation algorithms  

Extract results from tests 
at sample points (predicted 

values) 

Determine accuracy through R2 and RMSE comparison of predicted and 
observed values 

Consolidate test values 
according to sampling site 

(observed values) 

Create own algorithms for 
parameter estimation  

Determine estuarine water 
quality  

Study concluded  
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underwater. The bottles were then taken out of the water and were immediately stored in a 

cooler box to keep them cool and away from sunlight. At each sample site, temperature, 

turbidity and SDD were all measured in situ at the same time as water samples were collected. 

All sampling took place shortly after the remote sensors passed over the sampling area from 

9am to 10am. 

 

At each sampling point, an alcohol-based thermometer was used to measure this temperature. 

The thermometer was placed below a depth of 10 cm at each sampling point and remained there 

for around 3 to 5 minutes in order to get an accurate reading as suggested by Ohrel and Register 

(2006). After this, temperature readings were then recorded and the process was repeated at 

each sampling point. The method used for the measurement of turbidity was through the use of 

a turbidity tube. Though simplistic in design, the method has been shown to be both accurate 

and easy to use (Myre and Shaw, 2006). These tubes also have the advantage of being able to be 

used onsite (as water turbidity may change with travel or improper storage) and may reveal 

more information about that turbidity situation within the water than a computer read out may 

(Myre and Shaw, 2006). The construction of this device is clearly outlined in Myre and Shaw 

(2006), and involves assembling together a transparent clear plastic pipe, PVC cap, plastic bag, 

cardboard and the use of a permanent marker. In addition, a wax candle was rubbed over the 

tube markings and cardboard for waterproofing. In the field, water was slowly added into the 

tube until the viewing disk could no longer be seen. This depth of water was recorded and 

Equation 1 was thereafter used to determine the NTU. This equation was shown by Myre and 

Shaw (2006), to have an R2 of 0.996. Turbidity values obtained were rounded up to the next 

whole number. 

 

Depth in Centimetres = 244.13 * (Turbidity in NTU)-0.662                                           (Equation 1) 

 

Another simple way of measuring water turbidity involves the use of a secchi disk. This is a 

usually 20 cm diameter chequered weighted disk attached to a rope that is lowered into the 

water until it can no longer be seen. The depth at which the disk disappears from sight is 

referred to as the secchi disk depth. A large secchi disk depth indicates water of low turbidity 

whilst a low value indicates that the water is highly turbid which may indicate pollution or an 

excess of suspended particles. This disk was simply lowered into the water at each sampling 

location until it disappeared from sight, after which its depth was recorded. The disk was then 

raised until it could be seen again and the depth recorded. The average of these depth recordings 

was used for the SDD. 
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Salinity, TDS, EC, chl-a, DO and pH on the other hand were all measured in a laboratory within 

a short time period of their collection. Samples of estuarine water were collected in field and 

bought back to a lab for testing of these parameters. A conductivity meter (WTW inoLab Cond 

Level 1 precision) was used in this retrieval. The conductivity measuring cell was simply placed 

into each sample and their salinity, TDS and EC obtained. Accuracy reported by the 

manufacturer for the purpose of estimation is around 99.5% (WTW, 2018). In order to 

determine the levels of chl-a at the various sampling points, lab tests would have to be 

performed on the sampled water. Within a couple of hours of their sampling, 250 ml of this 

water was then vacuum filtered through Whatman glass-fibre filters (GF/F). The filters were 

folded twice and put into polyethylene test tubes containing 10 ml of 90% acetone, forming a 

solution. 2000 ul of this solution along with 60 ul of 0.1 N HCL were added to a small glass vial 

(which had been rinsed with acetone before and after use). A fluorometer (Turner Designs 

Trilogy Laboratory Fluorometer) was then used on the solution to calculate the chlorophyll-a 

concentrations. This provided instant chlorophyll-a readings. Equation 2 (Arar and Collins, 

1997) was used by the flourometer to calculate the amounts of chlorophyll-a with errors less 

than 0.05 μg/l. 

 

Chl-a (μg/l) = fluorescence * (acetone volume (ml) / water volume (ml))                  (Equation 2) 

 

Dissolved oxygen was likewise collected via laboratory analysis. Samples of estuarine water 

were then immediately bought back to a lab and analysed using an oxygen sensor (WTW Oxi 

320/SET). This sensor has an accuracy of within 99.5% (WTW, 2018). pH was measured in the 

lab from collected water samples, just as was done with many other parameters. These samples 

were analysed using a Metrohm 827 pH lab probe. This instantly provided the pH value of the 

water. Accuracy obtained through use of this method is around ±0.003 pH (Metrohm, n.d). 
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Figure 4.2: Google Earth image showing the sampling points (1 – 15) at which water samples were collected and used for physico-

chemical parameter estimation (Source: “Umdloti Estuary” 29° 39' 07" S; 31° 07' 43" E.  Google Earth. 16 December 2017. 2 February 

2018).
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4.2.1.2 Remote sensing data acquisition 
 

Due to its synoptic coverage and high spatial resolution, remote sensing satellites can provide 

physical and geographical data over large scales and aid in the study of many phenomena 

(Gholizadeh et al., 2016). Remote sensing is therefore perfectly suited to meet the needs of 

monitoring the health of estuarine systems. In this study, two popular optical remote sensors, 

Landsat 8 and Sentinel-2, were used to extract water quality parameters within the Umdloti 

estuary. The Landsat 8 sensor is a multispectral sensor and is run by the United States 

Geological Survey (USGS). Originally called the Landsat data continuity mission (LDCM), it 

was launched with the purpose of continuing the unbroken data acquisition started by the launch 

of the first Landsat in 1972 (Roy et al., 2014). Roy et al. (2014), go into detail regarding the 

various specifics of the sensor. Landsat 8 operates as a pushbroom sensor with a 185 kilometer 

swath width. It comprises of eleven bands that are recorded by two sensors aboard the satellite. 

The operational land imager (OLI) consists of nine bands that range from the visible to 

shortwave infrared. Seven of these bands are consistent with previous Landsat sensors bands 

whilst an additional two are new. These are the deep blue coastal/aerosol band and the 

shortwave infrared cirrus band. The thermal infrared sensor (TIRS) is the other sensor aboard 

Landsat 8. This is mainly used to record thermal energy using the infrared bands 10 and 11. The 

addition of two thermal bands is also new to Landsat and has created a wide range of 

opportunities for new thermal applications. 

 

Sentinel-2 on the other hand is run by the European Space Agency (ESA). It was part of the 

Copernicus program, which aims to launch earth observation satellites to aid in services such as 

agriculture and forestry monitoring (Drusch et al., 2012). Sentinel-2 was launched as two 

satellites with the same characteristics (Sentinel-2A in 2015 and Sentinel-2B in 2017) (Bergin, 

2017). These two sensors allow for a revisit time of only five days. Both Landsat 8 and 

Sentinel-2 are similar with regard to many of their characteristics, especially in spectral 

resolutions. Sentinel-2 is itself a multispectral pushbroom sensor just like Landsat 8 (Drusch et 

al., 2012). It also images the earth similar to Landsat 8’s local time, allowing for historical 

comparisons. However, unlike Landsat 8, Sentinel-2 records information via its thirteen bands. 

These bands have similar designations to their Landsat 8 counterparts but thermal infrared 

bands are not present. These were instead launched with the Sentinel-3 sensor. A comparison of 

both Landsat 8 and Sentinl-2 can be found in Table 4.1. A visual comparison of these sensors 

and Landsat 7 ETM+ may be found in Figure 4.3. 
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Table 4.1: Differences in specifications between Landsat 8 and Sentinel-2 remote 

sensors (adapted from Roy et al., 2014 and Drusch et al., 2012). 

 

Specification being 
compared Landsat 8 Sentinel-2 

Spatial resolution range 15 - 100 m 10 - 60m 

Radiometric resolution 12 bits per pixel 12 bits per pixel 

Temporal resolution 16 days 5 days 

Band designation 
(Band number, central 

wavelength, spatial 
resolution) 

Band 1, 0.443, 30 
Band 2, 0.482, 30 
Band 3, 0.562, 30 
Band 4, 0.665, 30 
Band 5, 0.865, 30 
Band 6, 1.610, 30 
Band 7, 2.200, 30 
Band 8, 0.590, 15 
Band 9, 1.375, 30 

Band 10, 10.900, 100 
Band 11, 12.000, 100 

      
 

Band 1, 0.443, 60 
Band 2, 0.490, 10 
Band 3, 0.560, 10 
Band 4, 0.665, 10 
Band 5, 0.705, 20 
Band 6, 0.740, 20 
Band 7, 0.783, 20 
Band 8, 0.842, 10 

Band 8A, 0.865, 20 
Band  9, 0.945, 60 
Band 10, 1.375, 60 
Band 11, 1.610, 20 
Band 12, 2.190, 20 

 

Altitude of orbit 705 km 786 km 

Launched 2013 2015 (A); 2017 (B) 

Owned by USGS ESA 
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Figure 4.3: Comparison of Landsat 7 ETM+, Landsat 8 and Sentine-2 band numbers 

and the wavelengths they cover against a backdrop of atmospheric transmission 

(NASA, 2015). 

 

The next step towards the estimation of physico-chemical parameters involved the downloading 

of remote sensing images of the Umdloti Estuary for use in the study. Landsat 8 and Sentinel-2 

imagery used in the study was respectively obtained free of charge from the USGS 

EarthExplorer website (http://earthexplorer.usgs.gov/) and the ESA Copernicus Open Access 

Hub (https://scihub.copernicus.eu/) respectively. These images previously could only be 

accessed from the respective sites but now both Sentinel-2 and Landsat 8 have been made 

available on the USGS EarthExplorer webpage. Images taken on the dates of July 5th 2018 

(Landsat 8 winter), July 18th 2018 (Sentinel-2 winter) and November 10th 2018 (both Landsat 8 

and Sentinel-2 spring) were downloaded and used. These dates were primarily chosen to 

coincide with the pass over of remote sensors and because they were good representatives of 

both winter and spring conditions. In addition, cloud cover over the study area was negligible. 

The November 10th sampling date also had sensors pass over within a short time period of each 

other. The same would have been done for the winter sampling date but poor weather conditions 

restricted this. Full sampling was done on July 5th whilst only temperature, turbidity and SDD 

were sampled on July 18th. The images were thereafter ready for analysis for which the GIS 

software ARC Map 10.4 and remote sensing software ACOLITE was used. 

 

 

http://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
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4.2.2 Physico-chemical parameter estimation from remote sensing images 
 

4.2.2.1 Pre-processing and Remote sensing reflectance calculation 

 

Estimation algorithms were those remote sensing algorithms used to retrieve physico-chemical 

values through remote sensing methods. Not all algorithms required the same levels of pre-

processing. In the simplest cases, an algorithm would simply require the conversion of its digital 

numbers (DN) into top of atmosphere (TOA) reflectance. This was the case when using many 

algorithms with Landsat 8. Here, bands were converted into top of atmosphere reflectance using 

an equation supplied from the USGS (Equation 3). This may then further be corrected for sun 

angle through the use of Equation 4. Sentinel-2 products are downloaded as a Level 1C product, 

which means they have already been corrected into top of atmosphere reflectance and do not 

require the steps used by Landsat 8. The quantification value merely need be accounted for in 

order to make Sentinel-2 images comparable to the TOA reflectance found with Landsat 8. This 

quantification value can be found in the files that come with the Sentinel-2 image and involves 

multiplying all bands by 0.0001.  

 

R’ = MρQcal + Aρ                                                                                                            (Equation 

3) 

Where:  

R’ = Band- specific TOA reflectance, without correction done for the solar angle; Mρ = Band-

specific multiplicative rescaling factor which is retrieved from the metadata 

(REFLECTANCE_MULT_BAND_x, where x is the band number; Aρ = Band-specific additive 

rescaling factor which is retrieved from the metadata (REFLECTANCE_ADD_BAND_x, 

where x is the band number); Qcal = Standard unaltered digital number (DN) pixel values. 

 

𝑅𝑅 = 𝑅𝑅′ 
cos(𝜃𝜃𝑆𝑆𝑆𝑆)

 = 𝑅𝑅′ 
sin(𝜃𝜃𝑆𝑆𝑆𝑆)

                                                                                         (Equation 4) 

Where:  

R = Final corrected TOA reflectance; θSE  = Local sun elevation angle, provided in the metadata 

(SUN_ELEVATION); θSZ  = Local solar zenith angle  (θSZ = 90° - θSE). 

 

More complex algorithms made use of remote sensing reflectance in their estimation of 

physico-chemical parameters concentrations. Rrs is an inherent component of all optically 

active features within water bodies (such as algae or seawater itself) and is the reflectance 

measured after atmospherically correcting both Rayleigh scattering by air molecules and an 
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aerosol correction (Vanhellemont and Ruddick, 2016). This is usually quite a complex process 

but may be simplified through the use of remote sensing image processing software. One such 

software is ACOLITE, developed by the Royal Belgian Institute of Natural Sciences, can be 

used to automatically extract Rrs. This free of charge, publically available software allows for 

the development of atmospherically corrected Level 2 Landsat 8 and Sentinel-2 aquatic products 

based primarily on works by Vanhellemont and Ruddick (2014; 2015; 2016). The calculation of 

Rrs over the course of this study used the short wave infrared (SWIR) atmospheric correction 

and per pixel parameter epsilons in order to correct for atmospheric aerosol. These options were 

selected as the SWIR bands are generally always black across any water type which leads to 

greater reliability and accuracy in Rrs (Vanhellemont and Ruddick, 2016).  Both TOA 

reflectance and Rrs form the basis of the vast majority of estimation algorithms. Other 

parameters that were calculated for specific estimation algorithms were discussed in the 

forthcoming sections. 

 

4.2.2.2 Temperature 

 

Unfortunately, the Sentinel-2 sensors do not possess the thermal infrared bands capable of 

recording temperature. These bands are present in Sentinel-3 which in turn lacks most of the 

bands present in Sentinel-2. This could be considered to be a severe limitation on Sentinel-2’s 

ability to retrieve temperature. Despite this Abdullah (2015), did attempt to utilise the coastal 

blue and red band in an attempt to determine temperature without the use of thermal bands. 

Temperature could on the other hand be quite simply calculated using Landsat 8 as it contained 

the Thermal Infrared (TIRS) bands 10 and 11. Khattab and Merkel (2014), used these bands in 

their calculation of temperature. Temperature was also determined using an adapted sea surface 

temperature (SST) algorithm developed by Avdan and Jovanoska (2016). This algorithm was 

used as it was simple to implement and achieved reasonable accuracies (Avdan and Jovanoska, 

2016). 

 

The algorithm itself required various sub steps to first be completed before temperature could be 

retrieved.The first of these steps required the calculation of at-satellite brightness temperatures 

whilst using Landsat 8. Since Satellite sensors measure the reflectance of the Earth’s surfaces as 

digital numbers, the original imagery was first converted to radiance through algorithms 

generated by the USGS. Here, the DN of band 10 data were converted to TOA spectral radiance 

using Equation 5. 
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L10λ = MLQcal + AL                                                                                         (Equation 5) 

Where:  

L10λ = TOA spectral radiance for band 10; ML = Band-specific multiplicative rescaling factor 

found in the metadata file (RADIANCE_MULT_BAND_x, where x is the band number 10 in 

this case) AL  = Band-specific additive rescaling factor found in the metadata file 

(RADIANCE_ADD_BAND_x, where x is the band number 10 in this case); Qcal  = Original 

standard pixel values (DN) of band 10 

 

Thereafter the TOA radiance for band 10 was converted from spectral radiance to at-satellite 

brightness temperature. At-satellite brightness temperature refers to the temperature recorded by 

the satellite without any corrections being performed. This was done using the Equation 6. 

 

BT =  𝐾𝐾2
ln�1+ 𝐾𝐾1𝐿𝐿10𝜆𝜆 �

                                                                                              (Equation 6) 

Where:  

BT = At-satellite brightness temperature for band 10 (Kelvin (K)); L10 λ = TOA spectral 

radiance calculated in equation 2 file (RADIANCE_MULT_BAND_x, where x is the band 

number 10 in this case); K1 = Band-specific thermal conversion constant found in the metadata 

file (K1_CONSTANT_BAND_x, where x is the thermal band 10); K2 = Band-specific thermal 

conversion constant found in the metadata file (K2_CONSTANT_BAND_x, where x is the 

thermal band 10. 

 

Next the water emissivities were calculated. The emissivity of objects is mainly determined by 

its thermo-physical characteristics. For surfaces, the main determinant of these properties are the 

components that make up that surface (Wang et al., 2015). Normalized Difference Vegetation 

Index (NDVI) was used to calculate this land surface emissivity as suggested by Zhang et al, 

(2006). NDVI was calculated using Equation 7. 

                     

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  (𝑁𝑁𝑁𝑁𝑅𝑅 − 𝑉𝑉𝑁𝑁𝑆𝑆)
(𝑁𝑁𝑁𝑁𝑅𝑅 + 𝑉𝑉𝑁𝑁𝑆𝑆)                                                                                    (Equation 7) 

Where:  

NIR = spectral reflectance measurements in the Near Infrared region (Band 5); VIS  = spectral 

reflectance measurements in the visible red region (Band 4). 
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Thereafter emissivity values were assumed based on the NDVI values that had been calculated 

in Equation 7. Table 4.2 gives the emissivity values used for the different NDVI’s. Water 

NDVI’s over the study area does not go above 0, therefore only the first two rows of Table 4.2 

are relevant for the study. 

 

Table 4.2: Surface emissivities calculated from NDVI adapted from Zhang et al., 

(2006). 
 

NDVI Surface emissivity (Ɛi) 
NDVI < -0.185 0.995 

-0.185 ≤ NDVI < 0.157 0.970 
0.157 ≤ NDVI ≤ 0.727 1.0094+0.0047 * Ln(NDVI) 

NDVI > 0.727 0.990 
 

The SST for the Landsat 8 images could now be calculated. The emissivity corrected land 

surface temperature equation was first proposed by Artis and Carnahan (1982). A more modern 

version adapted for Landsat 8 was used by Avdan and Jovanovska (2016), in their calculation of 

temperature and used for this study, represented by Equation 8. 

 

Ts = BT

(1+�λ ∗ BT𝜌𝜌  � ∗ (ln(Ɛ))) 
− 273.15                                    (Equation 8) 

Where:  

Ts = land surface temperature in Celsius; BT = At-satellite brightness temperature in Kelvin 

(calculated in Equation 6); λ  = The wavelength of emitted radiance for band 10 (10.895 μm); ρ 

= h * c/σ = 1.438 * 10-2 m.K . Here: σ =Boltzmann constant (1.38 * 1023 J/K); h = Planck’s 

constant (6.626 * 1034 J.s) and c = velocity of light (2.998 * 108 m/s; Ɛ = The emissivities 

determined by Table 4.2. 

 

The value of 273.15 was the constant used in order to convert Kelvin to Celsius for the final 

LST result. The λ value was suggested by Avdan and Jovanovska (2016), when using band 10 

of the Landsat 8 remote sensor.  
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Table 4.3: Temperature estimation equations adapted for Landsat 8 and Sentinel-2. 
 

Reference Adapted Equation (Landsat 8) Adapted Equation 
(Sentinel-2) 

Equation 

Avdan and 
Jovanoska (2016) 

BT

(1+�λ ∗ BT𝜌𝜌  � ∗ (ln(Ɛ))) 
 - 273.15 None (Sentinel-2 lacks 

thermal bands) 
Equation 8 

Khattab and Merkel  
(2014) 

25.16 + 19.272 (R7 / (R10 + 
R11)/2)) 

None (Sentinel-2 lacks 
thermal bands) 

Equation 9 

Abdullah (2015) 21.765 - 0.001 (R1+ R4) 21.765 - 0.001 (R1+ R4) Equation 10 
R: TOA reflectance for band number; BT, Ts; λ, Ɛ, ρ see Equation 8 

 

4.2.4.3 Turbidity and secchi disk depth 

 

Turbidity could be calculated by various methods, many of which were available within the 

ACOLITE program itself. The method used for this study involved an algorithm developed by 

Dogliotti et al. (2015), that utilised the red band. This band was favoured due to the wider range 

of turbidity’s that can be found in estuaries and to avoid the expected reduced sensitivity of 

other bands at low turbidity’s (Dogliotti et al., 2015). This method of turbidity estimation is 

calculated via Equation 11. Marine reflectance can be calculated through ACOLITE and is very 

similar to Rrs. Other turbidity estimation algorithms used are displayed in Table 4.4. All 

algorithms were chosen based on their accurate R2 in the retrieval of turbidy in the studies in 

which they were developed, The Kapalanga (2015), algorithm was selected due to its success 

estimating turbidity closer to home in an African (Namibian) dam. This relied on a combination 

reflectance of  bands 2 to 5. The Garaba and Zielinski (2015), algorithm was selected due to its 

simplicity as it was based on a single band (band 4) and was designed to use remote sensing 

reflectance which has been corrected. Khattab and Merkel (2014), based their algorithm on a 

ratio of green to red bands in addition to using the near infrared band to estimate turbidity. This 

was selected as the Khattab and Merkel (2014), study was well grounded scientifically and 

many of many other algorithms from the study were used to estimate other parameters in this 

current study. The two Abdullah (2015), equations were chosen for this same reason. Equation 

16 was based on a ratio of the reflectance in the coastal blue to red bands in addition to the 

reflectance in the near infrared band. Equation 17 used a ratio of the blue to red and green to 

coastal blue reflectance. The Nas et al. (2010), made use of the blue, green and red band 

reflectance and was selected due to its extensive refinement and high accuracy in the Nas et al. 

(2010), study. Song et al. (2011), used a ratio of near infrared to blue reflectance and was 

selected due to its simplicity and effectiveness. The various algorithms used for the estimation 
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of SDD are recorded in Table 4.5. Hancock (2015), made use of band 3 and 4 reflectance’s to 

estimate SDD. This algorithm was used as it was designed for Landsat and because of its 

acceptable accuracy across several lakes and reservoirs. Giardino et al. (2001), made use of a 

ratio of blue to green, band reflectance. This algorithm was selected for this current study due to 

its exceptional accuracy when estimating SDD over lakes. The Nas et al. (2010), algorithm used 

a ratio of blue to red and blue band reflectance, It was selected due to its extensive refinement 

and high accuracy in the Nas et al. (2010), study. The two Alparslan et al. (2007), algorithms 

were based on the reflectance of a combination of bands from blue to near infrared. These 

algorithms were used to estimate SDD by this current study as they showed good accuracy in 

the Alparslan et al. (2010), study and were the best performing algorithms for that study. The 

two Deutsch et al. (2014), algorithms both made use of a ratio of red (band 4) and blue (band 2) 

reflectance. These bands were used by this current study as they were simple to use. Finally, 

Baban (1993), used only the blue band it his algorithm for estimating SDD. This was likewise 

selected to be used by this current study as it was simple to use, was designed for Landsat and 

showed good accuracy in determining SDD over clear and no longer clear lakes in the Baban 

(1993), study. 
 

Table 4.4: Turbidity estimation equations adapted for Landsat 8 and Sentinel-2. 
 

Reference 
Adapted Equation (Landsat 

8) 
Adapted Equation (Sentinel-

2) Equation 

Dogliotti et al. 
(2015) 

AT
645* Pw (645) / (1- Pw 

(645) / C645) 
AT

645* Pw (645) / (1- Pw 
(645) / C645) Equation 11 

Kapalanga (2015) 

 
15.31856 - 956.806 (R2) 

-747.376 (R3) + 1742.455 
(R4) + 165.173 (R5) 

 

15.31856 - 956.806 
(R2) -747.376 (R3) + 

1742.455 (R4) + 
165.173 (R8a) 

 

Equation 12 

Garaba and 
Zielinski (2015) 1155.60 (Rrs4) -1.27 1155.60 (Rrs4) -1.27 Equation 13 

Khattab and 
Merkel (2014) 

 

35.121 - 14.489 ((R3)/(R4)) - 
0.911 (R5) 

35.121 - 14.489 ((R3)/(R4)) - 
0.911 (R8a) 

Equation 14 

Nas et al. (2010) - 0.221 - 0.463 (R2) + 0.722 
(R3) + 0.841 (R4) 

- 0.221 - 0.463 (R2) + 0.722 
(R3) + 0.841 (R4) Equation 15 

Abdullah (2015) - 42.564 + 0.052 ((R4)+(R5)) 
+ 13.923 ((R1)/(R4)) 

- 42.564 + 0.052 
((R4)+(R8a)) + 13.923 

((R1)/(R4)) 
Equation 16 

Abdullah (2015) - 4.223 + 1.412 ((R2)/(R4)) + 
2.957 ((R3)/(R1)) 

- 4.223 + 1.412 ((R2)/(R4)) + 
2.957 ((R3)/(R1)) Equation 17 

Song et al. (2011) (R5)/(R2) (R8a)/(R2) Equation 18 
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R: TOA reflectance for band number; Rrs: Remote sensing reflectance for band number; AT : is a 

wavelength dependent coefficient ( for red = 228.1); CT: is a wavelength dependent coefficient( for red = 

0.1641); Pw: Marine reflectance 

Table 4.5: SDD estimation equations adapted for Landsat 8 and Sentinel-2. 
 

Reference Adapted Equation 
(Landsat 8) 

Adapted Equation 
(Sentinel-2) 

Equation 

Hancock (2015) 
- 10.4643 (R4/ R3) - 

0.0026 (R4) + 
24.9021 

 

- 10.4643 (R4/ R3) - 
0.0026 (R4) + 

24.9021 
 

Equation 19 

Giardino et al. (2001) 
8.01 * (R2)/ (R3)  - 

8.27 8.01 * (R2)/ (R3)  - 8.27 Equation 20 

Nas et al. (2010) 
- 16.89 + 93.84 (R2/R4) 

- 2.162 (R2) 
- 16.89 + 93.84 (R2/R4) 

- 2.162 (R2) 
Equation 21 

Alparslan et al. (2007) 
- 10.408 + 0.0542 (R2) 
+ 0.2703 (R3) + 0.01 

(R4) - 0.3093 (R5) 

- 10.408 + 0.0542 (R2) 
+ 0.2703 (R3) + 0.01 
(R4) - 0.3093 (R8a) 

Equation 22 

Alparslan et al. (2010) 

- 13.438 + 495.487 
(R2) - 347.095 (R3) -

192.402 (R4) - 125.433 
(R5) 

- 13.438 + 495.487 (R2) 
- 347.095 (R3) -192.402 

(R4) - 125.433 (R8a) 
Equation 23 

Deutsch et al. (2014) -1.3 + 2.7 ln (R2/R4) -1.3 + 2.7 ln (R2/R4) Equation 24 

Deutsch et al. (2014) 0.2 + 1.4 ln (R2/R4) 0.2 + 1.4 ln (R2/R4) Equation 25 

Baban (1993) 5.41 - 0.0748 (R2) 5.41 - 0.0748 (R2) Equation 26 
R: TOA reflectance for band number; Rrs: Remote sensing reflectance for band number 

 

4.2.4.4 Salinity, TDS and EC 
 

Studies have shown that sea surface salinity can be derived using multispectral remote sensing 

in both coastal and estuarine environments (Urquhart et al., 2012; Geiger et al., 2013; Garaba 

and Zielinski, 2015). Salinity can be measured in several ways, including from inferring the 

relationship between temperature and salinity. Estimation algorithms used for the purpose of 

obtaining salinity, TDS and EC are displayed by Tables 4.6, 4.7 and 4.8 respectively. 

 

A large number of salinity estimation algorithms were designed for use in oceans. Garaba and 

Zielinski (2015), used the remote sensing reflectance of the coastal blue band in an attempt to 

determine salinity. This algorithm was selected to be used by this current study as it was 

designed for Landsat 8, was simple to use and proved very effective at estimating coastal 

salinity in the Garaba and Zielinski (2015), study. The Lavery et al. (1993), algorithms made 
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use of the near infrared (Equation 28) or shortwave infrared (Equation 29) band reflectance to 

estimate salinity. They were selected for estimating salinity by this current study due to their 

simplicity of use. Dewidar and Khedr (2001), made use of red band reflectance in combination 

with a ratio of green and near infrared band reflectance. This algorithm was used to estimate 

salinity by this current study as it was designed for use by Landsat in estuary like environments. 

Wang and Xu (2008), made use of a combination of the remote sensing reflectance’s of the 

coastal blue through to the near infrared band. This algorithm was selected for use by this 

current study to estimate salinity as it was designed for use in an estuarine lake. Zhao et al. 

(2017), likewise made use of the remote sensing reflectance’s of the coastal blue through to the 

red band to determine salinity. It was used by this current study as it was designed for use by 

Landsat 8 and showed exceptional accuracy in determining oceanic salinity in the Zhao et al. 

(2017), study. 

 

Khattab and Merkel (2014), developed two algorithms for the estimation of TDS. Equation 33 

used a ratio of the reflectance of green to red and blue to red. Equation 34 made use of the green 

and near infrared band reflectance. In addition, both algorithms made use the reflectance 

captured by the thermal infrared bands aboard Landsat and could therefore not be used for 

modelling with Sentinel-2 as it lacked these bands. These algorithms were used by this current 

study as they achieved exception accuracy in estimating TDS in lakes. This was hoped to be 

translated into success at estimating TDS in an estuary. Abdelmalik (2018), used the reflectance 

from the near infrared band to determine TDS. This was selected for use by the study as the 

algorithm showed exceptional accuracy in TDS estimation in the Abdelmalik (2018), study. 

Abdullah (2015), made use of a simple ratio of the reflectance of the near infrared to coastal 

blue band to determine TDS. This algorithm was selected for use as it was designed and tested 

for Landsat 8 freshwater TDS estimation. 

 

Just as was done with TDS, two Khattab and Merkel (2014), algorithms were selected to try 

estimate EC. Equation 37 used a ratio of the reflectance’s of the green to red bands (bands 3 and 

4). Equation 38 was more complex and incorporated the reflectance from the thermal and near 

infrared bands and a ratio of red to green reflectance. Both these algorithms were selected for 

use as they were designed for Landsat use and were the best perfroming algorithms in the 

Khattab and Merkel (2014), study. Abdelmalik (2018), used a ratio of the shortwave infrared to 

near infrared. This algorithm was selected for use as it also showed exceptional accuracy in 

estimating EC in the Abdelmalik (2018), study. Finally, two algorithms developed by Abdullah 

(2015), were selected for use by this current study. Equation 40 made use of a ratio of 
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shortwave infrared 1 to coastal blue band reflectance. Equation 41 made use of only the 

shortwave infrared 2 band reflectance. Both these algorithms were selected for use by this 

current study as they were developed and tested for Landsat 8 EC extraction. 

Table 4.6:  Salinity estimation equations adapted for Landsat 8 and Sentinel-2. 

 

Reference 
Adapted Equation 

(Landsat 8) 
Adapted Equation 

(Sentinel-2) 
Equation 

Garaba and 
Zielinski (2015) 

96.72 (Rrs1) + 30.31 96.72 (Rrs1)  + 30.31 Equation 27 

Lavery et al. (1993)   36.72 - 0.27 (R5) 36.72 - 0.27 (R8a) Equation 28 
Lavery et al. (1993) 35.55 - 0.92 (R7) 35.55 - 0.92 (R12) Equation 29 
Dewidar and Khedr 

(2001) 
-18.357 + 222.102 (R4) 

+ 47.124 (R3/R5) 
-18.357 + 222.102 (R4) 

+ 47.124 (R3/R8a) 
Equation 30 

Wang and Xu 
(2008) 

4.7648 + 65.242 (R1) + 
122.614 (R2) -150.068 
(R3) + 61.054 (R4) - 

91.404 (R5) 

4.7648 + 65.242 (R1) + 
122.614 (R2) -150.068 
(R3) + 61.054 (R4) - 

91.404 (R8a) 

Equation 31 

Zhao et al. (2017) 

39.664 - 39.664 (Rrs1)+ 
1067.5 (Rrs2) - 189.58 

(Rrs3) + 
1640.8 (Rrs4) + 23823 

(Rrs1)2 - 17844 (Rrs2)2 + 
1944.7 (Rrs3)2 -  94613 

(Rrs4)2 

39.664 - 39.664 (Rrs1)+ 
1067.5 (Rrs2) - 189.58 

(Rrs3) + 
1640.8 (Rrs4) + 23823 

(Rrs1)2 - 17844 (Rrs2)2 + 
1944.7 (Rrs3)2 -  94613 

(Rrs4)2 

Equation 32 

R: TOA reflectance for band number; Rrs: Remote sensing reflectance for band number 
 

Table 4.7: TDS estimation equations adapted for Landsat 8 and Sentinel-2. 
 

Reference 
Adapted Equation 

(Landsat 8) 
Adapted Equation 

(Sentinel-2) 
Equation 

Khattab and Merkel 
(2014) 

- 0.149 + 0.104 
(R3/R4) - 0.025 
(R2/R4) + 0.004 
((R10 +R11)/2) 

 

None (Sentinel-2 lacks 
thermal bands) 

Equation 33 

Khattab and Merkel 
(2014) 

- 0.920 - 0.002(R3) + 
0.01 ((R10+R11)/2) + 

0.001(R5) 

None (Sentinel-2 lacks 
thermal bands) 

Equation 34 

Abdelmalik (2018) - 0.1204 (R5)2 + 
10.663 (R5) - 207.21 

- 0.1204 (R8a)2 + 10.663 
(R8a) - 207.21 

Equation 35 

Abdullah (2015) 120.750 + 264.752 120.750 + 264.752 Equation 36 
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(R5/R1) (R8a/R1) 
R: TOA reflectance for band number; Rrs: Remote sensing reflectance for band number 
 

Table 4.8: EC estimation equations adapted for Landsat 8 and Sentinel-2. 

 

Reference Adapted Equation  
(Landsat 8) 

Adapted Equation  
(Sentinel-2) 

Equation 

Khattab and 
Merkel (2014) 

0.5185 - 0.3679 / ((R3)/(R4)) 0.5185 - 0.3679 / (R3/R4) 
Equation 

37 

Khattab and 
Merkel (2014) 

- 0.585 + 0.002(R5) + 0.008 
((R10+R11)/2) + 0.322 

((R4)/(R3)) 

None (Sentinel-2 lacks 
thermal bands) 

Equation 
38 

Abdelmalik 
(2018) 

- 0.1252 ((R6) /(R5) * R7))2 + 
4.1531 ((R6) /(R5) * R7)) + 

10.527 

- 0.1252 ((R11) /(R8a) * R12))2+ 
4.1531 ((R11) /(R8a) * R12)) + 

10.527 

Equation 
39 

Abdullah (2015) 241.500 + 529.504 ((R5)/(R1)) 
241.500 + 529.504 

((R8a)/(R1)) 
Equation 

40 

Abdullah (2015) 422.034 - 1080.365 (R6) 422.034 - 1080.365 (R11) 
Equation 

41 
R: TOA reflectance for band number; Rrs: Remote sensing reflectance for band number 

 

4.2.2.4 Chlorophyll-a 

 

The estimation of chlorophyll-a content through the use of remote sensing methods is one of the 

most popular objectives when it comes to remotely sensed water quality assessments. These 

estimation algorithms are often more diverse than those of other water parameters and may 

include using single bands, rationing or indexes such as NDVI. Therefore a large number of 

algorithms were tested to determine their efficiency within the Umdloti Estuary. All algorithms 

used in the study to estimate chl-a were recorded in Table 4.9. Several estimation algorithms 

were discussed below in order to highlight the different forms these equations may come in. 

Sometimes other physico-chemical parameters are used to aid in the determination of chl-a, 

such as the use of water temperature by Bonansea et al. (2015), However, these were not tested 

in this study as it relied on other parameters that we aimed to retrieve. 

 

Nas et al. (2007), and Lim and Choi (2015), algorithms made use of a combination of the blue, 

greed, red and near infrared band reflectance’s in estimating chl-a. These algorithms was 

selected for use as it was designed for Landsat usage and previously had performed well in 

estimating chl-a in freshwater lakes. Tenjo et al. (2015), and Ruiz-Verdú et al. (2016), both 

used a ratio of green to coastal blue band remote sensing reflectance to estimate chl-a. This 
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algorithm was selected for use due to its simplicity and the fact that it was designed to use 

remote sensing reflectance (which has been atmospherically corrected). One of the more unique 

methods of its calculation was done by Cândido et al. (2016). Cândido et al. (2016), used 

several popular vegetation indices in order to estimate the content of Chl-a. These indices 

include NDVI (NIR - RED / NIR + RED); Ratio aquatic vegetation index (RAVI = GREEN / 

RED); Normalised Ratio aquatic vegetation index (NRAVI = GREEN - RED / GREEN + RED) 

and excess green (ExG = 2*GREEN - RED - BLUE) which make use of the near-infrared 

(NIR), Red (RED), Green (GREEN) and Blue (BLUE) bands. These generally had good 

accuracy in predicting the amounts of Chl-a in the Cândido et al. (2016), study and were 

selected for that reason to be used in this study. El-Magd and Ali (2008), developed two 

algorithms that were selected for use by this current study as they were simple and easy to use. 

Both Equation 51 and 52 made use of a ratio of band 2 to band 4 reflectance. The Toming et al. 

(2016), algorithm used a combination of the red, near infrared and shortwave infrared band 

reflectance’s to estimate chl-a. This was used to estimate chl-a by this current study as the 

algorithm was designed and tested for Sentinel-2 usage and showed good accuracy in the 

original study. The Watanabe et al. (2015), algorithm used a ratio of near infrared to red 

reflectance to estimate chl-a. this algorithm was selected for use by this current study as it was 

designed and tested for Landsat 8 and was simplest and most accurate algorithm tested in the 

Watanabe et al. (2015), study. Forrer (2012), used a simple ratio of blue to near infrared band 

reflectance to estimate chl-a. This was used in this current study as algorithm showed high 

accuracy and was tested over several freshwater bodies by Forrer (2012). Jaelani et al. (2016), 

used a log ratio of the green to red band reflectance in determining chl-a. The fact that it was 

designed for Landsat 8 usage and was shown to be reliable by Jaelani et al. (2016), supported its 

use by this current study to estimate chl-a. 
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Table 4.9: Chl-a estimation equations adapted for Landsat 8 and Sentinel-2. 
 

Reference Adapted Equation (Landsat 8) Adapted Equation (Sentinel-
2) 

Equation 

Nas et al. (2007) - 1.024 + 00086 (R2) -0.013 
(R3) - 0.096 (R4) +0.367 (R5) 

- 1.024 + 00086 (R2) -0.013 
(R3) - 0.096 (R4) +0.367 

(R8a) 

Equation 
42 

Tenjo et al. (2015) 
and Ruiz-Verdú et 

al. (2016) 
4.46 (Rrs3/Rrs1) - 0.55 4.46 (Rrs3/Rrs1) - 0.55 

Equation 
43 

Cândido et al. 
(2016) 

2.723 - 1.406 (RAVI) 2.723 - 1.406 (RAVI) 
Equation 

44 
Cândido et al. 

(2016) 
1.318 - 3.036 (NRAVI) 1.318 - 3.036 (NRAVI) Equation 

45 
Cândido et al. 

(2016) 
1.274231 - 0.009154 (ExG) 1.274231 - 0.009154 (ExG) 

Equation 
46 

Cândido et al. 
(2016) 

39.88 - 32.85 (RAVI) 39.88 - 32.85 (RAVI) Equation 
47 

Cândido et al. 
(2016) 

4.712 - 34.578 (NRAVI) 4.712 - 34.578 (NRAVI) Equation 
48 

Cândido et al. 
(2016) 0.3855 - 0.1790 (ExG) 0.3855 - 0.1790 (ExG) 

Equation 
49 

Cândido et al. 
(2016) 

4.079 + 17.218 (NDVI) 4.079 + 17.218 (NDVI) Equation 
50 

El-Magd and Ali 
(2008) (R2) / (R4) (R2) / (R4) 

Equation 
51 

El-Magd and Ali 
(2008) 

Log (R2 / R4) Log (R2 / R4) Equation 
52 

Toming et al. 
(2016) (R5) - ((R4 + R6)/2) (R8a) - ((R4 + R11)/2) 

Equation 
53 

Watanabe et al. 
(2015) 

(Rrs5) / (Rrs4) (Rrs8a) / (Rrs4) 
Equation 

54 

Forrer (2012) (R2) / (R5) (R2) / (R8a) 
Equation 

55 
Jaelani et al. 

(2016) 
1.613 ((log𝑅𝑅𝑟𝑟𝑟𝑟2)/(log𝑅𝑅rs4)) + 

1.0718 
1.613 (log𝑅𝑅𝑟𝑟𝑟𝑟2)/(log𝑅𝑅rs4) + 

1.0718 
Equation 

56 

Lim and Choi 
(2015) 

54.658 + 520.451 (R2) -
1221.89 (R3) + 611.115 (R4) - 

198.199 (R5) 

54.658 + 520.451 (R2) -
1221.89 (R3) + 611.115 (R4) 

- 198.199 (R8a) 

Equation 
57 

R: TOA reflectance for band number; Rrs: Remote sensing reflectance for band number; RAVI: Ratio 

aquatic vegetation index; NRAVI: Normalised Ratio aquatic vegetation index; ExG: Excess green; NDVI: 

Normalised difference vegetation index. 
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4.2.2.6 Dissolved oxygen 
 

DO has traditionally been a difficult to retrieve physico-chemical parameter using remote 

sensing. As a result, not many studies have managed to develop effective estimation algorithms. 

This was evidenced in Table 4.10, which included only three algorithms for use in DO 

estimation. The Theologou et al. (2015), and Khalil et al. (2016), used a simple ratio of blue to 

red band reflectance in estimating DO. Theologou et al. (2015), used an average of the green 

and red band reflectance’s in their estimation. Abdullah (2015), used a combination of band 

reflectance’s from the coastal blue, blue and near infrared bands. All three algorithms were 

selected for usage by this study as DO estimation algorithms were difficult to find in literature 

and all showed success in their respective studies in estimating DO. 

 

Table 4.10: DO estimation equations adapted for Landsat 8 and Sentinel-2. 

 

Reference 
Adapted Equation 

(Landsat 8) 
Adapted Equation 

(Sentinel-2) Equation 

Theologou et al. 
(2015) ; Khalil et al. 

(2016) 
(R2) / (R4) (R2) / (R4) Equation 58 

Theologou et al. 
(2015) 

((R3) + (R4)) /2 ((R3) + (R4)) /2 Equation 59 

Abdullah (2015) 
10.841 - 0.682 ((R1) / 
(R5)) - 0.002 ((R2) / 

(R5) + (B2)) 

10.841 - 0.682 ((R1) / 
(R8a)) - 0.002 ((R2) / 

(R8a) + (B2)) 
Equation 60 

R: TOA reflectance for band number; Rrs: Remote sensing reflectance for band number 

 

4.2.2.7 pH 
 
The estimation of water pH using remote sensing methods is often left out in many studies. This 

is because most studies focus on optically active parameters such as those so far mentioned 

(Gholizadeh et al., 2016). pH has weak optical characteristics and has a low signal to noise 

ratio, resulting in it usually being ignored. However this has not stopped attempts at their 

estimation. Khattab and Merkel (2014), used both Landsat 7 and 5 to determine the pH of water. 

Since Landsat 7’s method made use of bands 61 and 62 (the low and high gain thermal bands) 

which are not present in Landsat 8, these methodologies were not used.  Algorithms used for pH 

estimation are displayed in Table 4.11. 
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The Perivolioti et al. (2016), algorithm used the remote sensing reflectance of the near infrared 

band to estimate pH. This was used by this current study as algorithms designed using remote 

sensing reflectance are usually more accurate. Three Theologou et al. (2015), algorithms were 

used to estimate pH by the current study. These used simple ratios of the near infrared to 

shortwave infrared 1 band reflectance (Equation 62), coastal blue to red band reflectance’s 

(Equation 63) and a ratio of the blue to shortwave infrared 2 bands (Equation 65). These 

algorithms were all chosen for their simplicity and because they were the best performing 

algorithms developed by the Theologou et al. (2015), study. Khattab and Merkel (2014), used a 

simple equation using the shortwave infrared 1 band to estimate pH. This was likewise selected 

for its simplicity and accuracy in the original study. Finally, the Abdullah (2015), algorithm was 

slightly more complex and used the shortwave infrared 1 and a ratio of green to red band 

reflectance’s to estimate pH. An overall reason why all algorithms pH estimation algorithms 

were selected for use by this current study was due to their rarity in literature. 

 

Table 4.11: pH estimation equations adapted for Landsat 8 and Sentinel-2. 

 

Reference 
Adapted Equation 

(Landsat 8) 
Adapted Equation 

(Sentinel-2) Equation 

Perivolioti et al. 
(2016) 

 
9.738 - 0.084(Rrs5) 9.738 - 0.084 (Rrs8a) Equation 61 

Theologou et al. 
(2015) 

(R5)/ (R6) (R8a)/ (R11) Equation 62 

Theologou et al. 
(2015) 

(Rrs1)/ (Rrs4) (Rrs1)/ (Rrs4) Equation 63 

Khattab and Merkel 
(2014) 

 
9.738 - 0.084 (R6) 9.738 - 0.084 (R11) Equation 64 

Theologou et al.  
(2015) 

(R  2) / (R 7) (R2) / (R12) Equation 65 

Abdullah (2015) 
8.790 + 0.141 (R6) - 

0.228 (R3/R4) 
8.790 + 0.141 (R11) - 

0.228 (R3/R4) 
Equation 66 

R: TOA reflectance for band number; Rrs: Remote sensing reflectance for band number 

 

4.2.3 Accuracy assessment 
 

Accuracy assessment formed an important component towards checking whether the two 

remote sensors were able to accurately retrieve physico-chemical parameter concentrations. 

This first required the in situ collection and testing of water samples. For this, fifteen samples 
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each were collected during both winter and spring. This cumulatively came up to thirty samples 

for both seasons. Sampling was done during differing seasons to get a more complete picture of 

the health state the estuary was in by trying to incorporate seasonal variation and to test the 

model algorithms under differing seasonal conditions. The comparison of physico-chemical 

parameters found in these samples with their remotely sensed predicted values allowed for a 

determination of how accurate remote sensing is at retrieving these parameters.  

 

Accuracy assessment made use of two methods. The regressional coefficient of determination 

(R2) was used to assess the relative fitness of a estimation algorithm in modelling a particular 

parameter. This was given in Equation 67. Higher R2 values indicated that the estimation 

algorithm in question were good predictors for that particular physico-chemical parameter. Root 

mean squared error (RMSE) was also used as a form of accuracy assessment and was defined as 

the square root of the residual variance. The equation to calculate RMSE is given in Equation 

68. This essentially measured how closely observed values match up with their respective 

predicted values. Smaller RMSE values indicate a better ability of the model at determining the 

absolute concentrations of physical-chemical parameters. These two accuracy assessment 

checks were used on the data retrieved for both sensors winter, spring and combined seasonal 

sampling. The combined seasonal dataset represented a combination of both winter and spring 

data in an attempt to determine if the parameter estimation algorithms are able to accurately 

perform estimation throughout the year. All collected water samples were used in the generation 

and calibration of new algorithms as well the quality assessment for all models.  

 

R2 = 𝛴𝛴(𝑥𝑥−𝑥𝑥′)(𝑦𝑦−𝑦𝑦′)
𝛴𝛴(𝑥𝑥−𝑥𝑥′)2(𝑦𝑦−𝑦𝑦′)2

                                                                                            (Equation 67) 

Where:  

R2 = Coefficient of determination; X = The x-value observed at a particular sampling point; X’ = 

The x-value predicted at a particular sampling point; Y = The y-value predicted at a particular 

sampling point; Y’ = The y-value predicted at a particular sampling point. 

 

RMSE = �∑ (𝑃𝑃𝑃𝑃−𝑂𝑂𝑃𝑃)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                                                (Equation 68) 

Where:  

RMSE = Root mean squared error; Pi = Predicted value at a particular sampling point; Oi = 

Observed value at a particular sampling point; n = Number of observed and predicted pairs. 
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4.2.4 Modified algorithms and distribution maps 
 

In an attempt to improve on remote sensing physico-chemical estimation, new estimation 

algorithms were formulated. New algorithms were modelled using Microsoft Excel and based 

on the band combinations of the most successful algorithms (in terms of R2 and RMSE) tested 

over the course of this study. This modelling involved developing a trend between in situ 

physico-chemical parameter values and the band combination reflectance values obtained by 

satellite. Once completed, this allowed for the prediction of these same parameters. These 

“new” estimation algorithms were thereafter tested for their physico-chemical estimation 

accuracy. The new equations are represented in Table 4.12. The distribution of each physico-

chemical parameter across the estuary was modelled using the new equations in ArcMap 10.4. 

 

Temperature was based off of the Abdullah (2015), algorithm. A combination of bands 1 and 4 

were compared with in situ temperature and used to model a 2nd degree polynomial equation 

Turbidity was based off of the Dogliotti et al. (2015), equation. This used the marine reflectance 

of band 4 to model a 2nd degree polynomial to retrieve turbidity. Deutsch et al. (2014), 

(Equation 27) was used as a base to model SDD. For this, bands 2 and 4 were incorporated into 

a 2nd degree polynomial. El-Magd and Ali (2008), was used to model chl-a using a log of 

combined bands 2 and 4. This was thereafter incorporated into a 4th degree polynomial. DO 

algorithms were based on those developed by Theologou et al. (2015). Again bands 2 and 4 

were used to formulate a 2nd degree polynomial to model DO.  The derivation of pH was based 

off of the work of Khattab and Merkel (2014). The original equation formulated using Landsat 5 

and Landsat 7 utilised band 5 which was represented in Landsat 8 by band 6 and Sentinel-2 by 

band 11.  This resulted in a 3rd degree polynomial equation for the estimation of pH. 
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Table 4.12: Newly generated physico-chemical estimation algorithms  
 

Parameter Adapted Equation Equation 

Temperature -17477 (Rrs1 +  Rrs4)2 + 1139.7 (Rrs1 +  Rrs4) + 6.3866 
Equation 

69 

Turbidity -80.791(Pw4)2 + 9.8557 (Pw4) + 4.8009 Equation 
70 

SDD 
 

-1.0914 (ln (Rrs2/ Rrs4))2 + 0.5892 (ln (Rrs2/ Rrs4)) + 1.8502 
 

Equation 
71 

 

Salinity 35.608 (Rrs1+ Rrs2 + Rrs3 + Rrs4 + Rrs5)2 - 6.8298 (Rrs1+ Rrs2 + Rrs3 + Rrs4 
+ Rrs5) + 1.1792 

Equation 
72 

TDS 31.976 (Rrs5 / Rrs1)3 - 188.19(Rrs5 / Rrs1)2 + 197.58(Rrs5 / Rrs1)  + 897.62 
Equation 

73 

EC 0.1425 (Rrs3/ Rrs4)3 - 1.7136 (Rrs3/ Rrs4)2 + 3.6271 (Rrs3/ Rrs4)+ 0.0967 Equation 
74 

Chl-a 
14033 (log (Rrs2 / Rrs4))4 - 6251.4 (log (Rrs2 / Rrs4))3  + 763.8 (log (Rrs2 / 

Rrs4))2 - 17.395 (log (Rrs2 / Rrs4))  + 0.7519 
Equation 

75 

DO 2.7317 (Rrs2 / Rrs4)2 - 8.6415 (Rrs2 / Rrs4) + 9.3987 
Equation 

76 

pH 9.738 - 0.084 (R11) 
Equation 

77 
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CHAPTER FIVE: RESULTS 
 

5.1) Introduction 
 

This chapter and its subsections serve as a collection for all the results produced throughout the 

course of this study. This starts with the inclusion of all variables descriptive statistical results 

that are extracted from in situ water sampling and lab testing. The results of the remote sensing 

estimation algorithms for each physico-chemical parameter are also given. Included along with 

this information are maps of the spatial distribution of these parameters throughout the Umdloti 

Estuary. 

 

5.2) Descriptive statistics 
 

A summary of the descriptive statistics generated for physico-chemical parameters from in situ 

water sampling and testing is displayed in Table 5.1. This provides an insight on the seasonal 

conditions the estuary was experiencing. Temperature within the estuary was generally warmish 

throughout but considerably colder and extending over a greater range in winter. Turbidity and 

SDD retrieval indicate that water clarity and sunlight penetration was good. Salinity, TDS and 

EC retrieval indicated that estuarine water was of low salinity. Chl-a retrieved indicates a 

generally small population of chlorophyll based organisms were present. DO levels indicate 

moderate to low oxygen contents across the estuary and the retrieved pH indicates that the 

estuary was slightly alkaline. 

 

Overall, the vast majority of parameters lacked intraseasonal variability and range. Salinity for 

example did not range by more than 0.1 for winter and 0.3 for spring and have standard 

deviations below 0.06. Only two parameters (TDS and chl-a) possess standard deviations 

greater than a whole unit and were the only parameters that showed a relatively larger 

distributional range. This indicated that most parameters (turbidity, SDD, salinity, TDS and EC) 

were highly spatially homogenous across the estuary.  

 

A similar lack of variability is found when comparing the parameter interseasonal parameter 

changes between winter and spring. In general, the majority of parameters differed by relatively 

small amounts in their range of values between seasons. This is again evidenced best by salinity 

whose means differed by 0.14 between winter and spring. Exceptions to this included 

temperature (means of 18.81 ºC in winter and 24.70 ºC in spring) and to a smaller degree chl-a 
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(means of 0.61 μg/l in winter and 0.96 μg/l in spring) and dissolved oxygen (means of 2.64 ppm 

in winter and 3.48 ppm in spring). The low variability and narrow ranges indicate that many 

physico-chemical parameters remained similarly distributed between seasons.  

 

It should also be noted that many physico-chemical parameters found within the estuary were 

low in value. The is best evidenced by salinities not larger than 1, turbidity not larger than 5.10 

NTU and chl-a not larger than 4.46 μg/l. Estuaries normally have values for these parameters 

that range much higher than what was found in Umdloti. pH, temperature and SDD could be 

considered to be displaying a normal, expected range. 

 
 

Table 5.1: Descriptive statistics from parameters retrieved from in situ sampling. 

 

Parameter Season Sample points 

  Minimum Maximum Mean 
Standard 
deviation 

Temperature (ºC) 
Winter 17.50 21.00 18.81 0.79 
Spring 24.60 24.80 24.70 0.10 

Turbidity (NTU) 
Winter 5.00 5.00 5.00 0.00 
Spring 5.10 5.10 5.10 0.00 

Secchi disk depth 
(m) 

Winter 2.33 1.47 1.85 0.23 
Spring 2.33 1.47 1.85 0.23 

Salinity  
Winter 0.90 1.00 0.99 0.03 
Spring 0.7.0 1.00 0.85 0.06 

TDS (mg/l) Winter 933.00 982.00 955.07 15.09 
Spring 904.00 929.00 921.00 6.14 

EC(μS/cm) 
Winter 2.13 2.30 2.23 0.04 
Spring 2.13 2.15 2.14 0.01 

Chl-a (μg/l) Winter 0.13 4.46 0.61 1.10 
Spring 0.38 3.00 0.96 0.65 

DO (ppm) 
Winter 2.00 3.12 2.64 0.32 
Spring 2.80 4.10 3.48 0.46 

pH Winter 7.34 8.64 7.62 0.33 
Spring 7.06 7.46 7.33 0.12 
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5.3) Statistical analyses 
 
5.3.1 Temperature estimation 
 
5.3.1.1 Using Landsat 8 

 
Landsat 8 temperature estimation is moderately successful. Landsat 8 did a poor job of 

modelling temperature across the estuary intraseasonally (Table 5.2). This is evidenced by the 

majority of algorithms attaining R2 values below 0.182. This indicated almost negligible 

accuracy. However, this poor ability to model temperature changed once R2 was calculated for 

the combined winter and spring dataset (represented in the combined column). Algorithms 

developed by Khattab and Merkel (2014), (Equation 9) and Abdullah (2015), (Equation 10) and 

used by this study saw R2 rise from almost negligible to near perfect accuracies over 0.96. The 

Avdan and Jovanovska (2016), algorithm (Equation 8) saw a similar large rise in R2. These 

increases indicated that Landsat 8 was effective at more generalised year round modelling. 

RMSE saw large seasonal changes when using Khattab and Merkel (2014), and Avdan and 

Jovanovska (2016), algorithms. RMSE for the Abdullah (2015), developed algorithm remained 

consistent and achieved a stronger average of around 2.996 ºC. 

 

Table 5.2: Accuracy of the estimated temperature (ºC) using Landsat 8 for Umdloti 

Estuary. 
 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 8 0.311 1.586 0.182 4.020 0.707 3.056 
Equation 9 0.124 7.443 0.131 0.483 0.964 5.274 
Equation 10 0.032 3.054 0.094 2.937 0.963 2.996 

 

5.3.1.2 Using Sentinel-2 

 

Only one algorithm, developed by Abdullah (2015), can be considered to be appropriate for 

temperature calculation using Sentinel-2 remote sensing imagery (Table 5.3). The Avdan and 

Jovanovska (2016), and Khattab and Merkel (2014), equations required the use of thermal 

bands.  Sentinel-2 does not possess thermal bands and therefore would not be able to model 

temperature using those two equations. Similar to the results for Landsat 8, low R2 values can be 

found for individual winter and spring datasets. When seasonal data is combined, Sentinel-2 
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displayed a much better ability at modelling overall temperature. RMSE calculated were 

relatively inconsistent but strong and indicated a generally good ability for determining absolute 

temperature. 

 

Table 5.3: Accuracy of the estimated temperature (ºC) using Sentinel-2 for Umdloti 

Estuary. 
 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 10 0.073 1.397 0.281 2.936 0.950 2.299 
 

Overall, temperature estimation algorithms show a moderate to good ability at determining 

temperature across the estuary. Intraseasonal modelling indicates a poor relative accuracy. The 

algorithms developed by Khattab and Merkel (2014), and Avdan and Jovanovska (2016), and 

used by this study are generally inconsistent and restricted to Landsat 8. The Abdullah (2015), 

algorithm appears to be the better algorithm overall as it can be used with both sensors and has 

the second highest recorded R2 (0.963 and 0.950) and best RMSE (2.996 ºC and 2.299 ºC). 

Although difficult to compare with only one comparable equation, Sentinel-2 would appear to 

be the more accurate, albeit less flexible, sensor with lower RMSE but with a slight decrease in 

ability to model variability. 

 

5.3.1.3 Using newly modified algorithm 
 

The new algorithm (Table 5.4) was based on an Rrs combination of bands 1 and 4 as used by 

Abdullah (2015). Overall this algorithm was efficient at determining temperature and achieved a 

high R2 and low RMSE that showed considerable improvement over those previously used. The 

algorithm could be considered suitable for temperature estimation during both these seasons but 

suffers from a poor ability to relatively model temperature intraseasonally. 

 

Table 5.4: Accuracy of the estimated temperature (ºC) using newly generated estimation 

algorithms for Umdloti Estuary. 

 

Equation 
Winter 

R2 
Spring 

R2 
Combined 

R2 
Winter 
RMSE 

Spring 
RMSE 

Combined 
RMSE 

Equation 
69 

0.03 0.032 0.96 0.827 0.22 0.605 
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5.3.1.4 Scatterplots of temperature models. 

 

Figure 5.2 illustrates the graphical relationship between the actual measured temperatures and 

those predicted by the algorithms. A theme common to all scatterplots is the formation of two 

distinct clusters of points. These clusters are clearly defined by season (winter being a lower 

temperature value cluster and spring a higher temperature value cluster). This is to be expected 

due to the seasonal nature of temperature, where temperature would tend to rise and remain 

much higher in spring than winter. All models achieved high R2 values which indicates the 

successful modelling of temperature. 

 

5.3.1.5 Map of estimated temperature 

 

Finally, the estimation algorithm modified by this study are used to map the seasonal 

distribution of temperature across the Umdloti Estuary (Figure 5.1). This map and future 

distribution maps are created using only Sentinel-2 imagery. Temperature was generally lower 

across the estuary in winter (~18.8 to 19.4 ºC) than in spring (~24 to 28 ºC). In winter the 

middle of estuary appears to be at a higher temperature than water in other parts. In spring the 

warmest portions of the estuary are those closest to the sea (eastern border). 

 

 

Figure 5.1: Temperature distribution across the Umdloti Estuary for winter (A) and 

spring (B)

B A 
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Figure 5.2: Scatterplots of observed vs. calculated values for all temperature estimation 

algorithms. 
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5.3.2 Turbidity estimation 
 

5.3.2.1 Using Landsat 8 

 

Turbidity estimation results for Landsat 8 were recorded in Table 5.5. Due to the lack of 

variability in in situ turbidity across the estuary, R2 values were not able to be recorded for 

winter or spring seasons. Only once the datasets are combined and compared overall is R2 able 

to be retrieved. R2 values were very high, with six of the eight algorithms recording values 

above 0.95.The Khattab and Merkel (2014), algorithm (Equation 15) are the only algorithms 

that failed to register a R2 above 0.312. RMSE values were also accurately low on average, with 

half of the algorithms achieving a RMSE below 10 NTU. This indicates a strong ability by 

Landsat 8 at relatively modelling and absolutely determining turbidity. 

 

Table 5.5: Accuracy of the estimated turbidity (NTU) using Landsat 8 for Umdloti 

Estuary. 

 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 11 Not Derived 3.932 Not Derived 2.057 0.989 3.133 
Equation 12 Not Derived 8.822 Not Derived 14.631 0.953 12.083 
Equation 13 Not Derived 1.003 Not Derived 23.933 0.991 16.938 
Equation 14 Not Derived 16.184 Not Derived 15.581 0.312 15.889 
Equation 15 Not Derived 5.224 Not Derived 5.292 0.991 5.255 
Equation 16 Not Derived 25.510 Not Derived 33.046 0.958 29.517 
Equation 17 Not Derived 5.179 Not Derived 5.026 0.719 5.099 
Equation 18 Not Derived 4.334 Not Derived 4.072 0.965 4.202 
 

5.3.2.2 Using Sentinel-2 
 

Similar to what is found for Landsat 8, Sentinel-2 (Table 5.6) RMSE is low throughout whilst 

R2 values are high. RMSE retrieved during spring were on average substantially higher than 

retrieved during winter. This indicates the Sentinel-2 based estimation algorithm works better 

during winter conditions. The Abdullah (2015), algorithm (Equation 17) is the only algorithm to 

achieve a high and inaccurate RMSE (23.741 NTU). 
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Table 5.6: Accuracy of the estimated turbidity (NTU) using Sentinel-2 for Umdloti 

Estuary. 

 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 11 Not Derived 3.744 Not Derived 13.963 0.955 2.755 
Equation 12 Not Derived 3.744 Not Derived 13.963 0.995 10.221 
Equation 13 Not Derived 3.934 Not Derived 13.996 0.973 10.279 
Equation 14 Not Derived 3.980 Not Derived 15.269 0.998 11.156 
Equation 15 Not Derived 3.630 Not Derived 5.301 0.999 4.541 
Equation 16 Not Derived 4.127 Not Derived 33.319 0.998 23.741 
Equation 17 Not Derived 0.943 Not Derived 4.979 0.994 3.582 
Equation 18 Not Derived 1.788 Not Derived 3.759 0.728 2.941 
 

5.3.2.3 Using newly modified algorithm 

 

The turbidity estimation equation modified by this study is based on Dogliotti et al. (2015), and 

the use of band 4 marine reflectance (Table 5.7). This algorithm displayed almost perfect 

accuracy in modelling turbidity as shown by a very strong overall R2 and RMSE. This algorithm 

is suitable for use both intraseasonally and throughout the year without issue. 

 

Table 5.7: Accuracy of the estimated turbidity (NTU) using newly generated estimation 

algorithms for Umdloti Estuary. 
 

Equation Winter R2 Spring R2 
Combined 

R2 
Winter 
RMSE 

Spring 
RMSE 

Combined 
RMSE 

Equation 
70 

Not 
Derived 

Not 
Derived 0.99 0.006 0.004 0.005 

 

5.3.2.4 Scatterplots of turbidity models. 

 

Figures 5.3 to 5.5 illustrate the graphical relationship between the actual measured turbidity and 

those predicted by the algorithms. Again, all algorithms gathered into two distinct clusters 

dictated by the winter and spring. The majority of models experienced an almost straight 

vertical line of best fit from winter to spring. Others (Landsat Equation 14, 15 and 70) clustered 

around a single spot. R2 values for the majority of models are good, indicating the successful 

modelling of turbidity. Equation 14 and 17 are the only algorithms that suffered from poor R2.  
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Figure 5.3: Scatterplots of observed vs. calculated values for turbidity estimation 

algorithms11 to 13. 
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Figure 5.4: Scatterplots of observed vs. calculated values for turbidity estimation 

algorithms 14 to 16. 
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Figure 5.5: Scatterplots of observed vs. calculated values for turbidity estimation 

algorithms 17, 18 and 70. 

R² = 0.2657
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6

Ca
lc

ul
at

ed
  t

ur
bi

di
ty

 (N
TU

)

Observed turbidity (NTU)

Equation 17 (Landsat 8)

R² = 0.8714

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 1 2 3 4 5 6

Ca
lc

ul
at

ed
  t

ur
bi

di
ty

 (N
TU

)

Observed turbidity (NTU)

Equation 17 (Sentinel-2)

R² = 0.8437

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6

Ca
lc

ul
at

ed
  t

ur
bi

di
ty

 (N
TU

)

Observed turbidity (NTU)

Equation 18 (Landsat 8)

R² = 0.6363

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 1 2 3 4 5 6

Ca
lc

ul
at

ed
  t

ur
bi

di
ty

 (N
TU

)

Observed turbidity (NTU)

Equation 18 (Sentinel-2)

R² = 0.9881

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1 2 3 4 5 6

Ca
lc

ul
at

ed
  t

ur
bi

di
ty

 (N
TU

)

Observed turbidity (NTU)

Equation 70



80 
 

 
 

5.3.2.5 Map of estimated turbidity 
 

The difference in Turbidity between winter and spring seasons is basically negligible. This is 

evidenced by the small range displayed in both seasons turbidity distribution maps (Figure 5.6). 

Turbidity in winter is roughly the same throughout the estuary whilst in spring it is slightly 

higher closest to the ocean and decreasing as one moves towards the estuarine and river banks. 

However, these differences are unlikely to have a profound impact on the estuary since they are 

so miniscule. 

 

 
Figure 5.6: Turbidity distribution across the Umdloti Estuary for winter (A) and spring 

(B) 

 
5.3.3 SDD estimation 
 

5.3.3.1 Using Landsat 8 

 

The estimation of SDD using Landsat 8 (Table 5.8) could be considered to be poor. The 

estimation algorithms suffers from extreme low R2 values throughout. This is compounded 

through the obtaining of RMSE values that are often double to many times the depth of the 

actual estuary.  There is no clear algorithm that could be considered accurate and therefore no 

best algorithm. 

 

B A 
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Table 5.8: Accuracy of the estimated SDD (m) using Landsat 8 for Umdloti Estuary. 
 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 19 0.045 12.162 0.0188 12.518 0.005 12.341 
Equation 20 0.256 3.207 0.230 1.618 0.002 2.540 
Equation 21 0.039 131.253 0.143 80.386 0.001 108.833 
Equation 22 0.231 12.263 0.085 12.263 0.0657 12.263 
Equation 23 0.024 14.695 0.063 19.153 0.0008 17.070 
Equation 24 0.038 1.903 0.146 3.012 0.001 2.519 
Equation 25 0.038 1.021 0.146 1.590 0.001 1.336 
Equation 26 0.127 3.563 0.096 3.561 0.0007 3.562 

 

5.3.3.2 Using Sentinel-2 
 

Sentinel-2 SDD estimation (Table 5.9) is similar to that found by Landsat 8 and suffered from a 

complete lack of accuracy. R2 values ware very low throughout and indicated the algorithms 

relatively modelled SDD incredibly poorly across the Umdloti Estuary. RMSE values recorded 

are also larger and inaccurate. Whilst still inaccurate, algorithms are better at retrieving absolute 

values in winter. Here, many of the RMSE values obtained are below 1 m. However, these are 

subsequently poorly retrieved in spring, bringing down the overall RMSE.  

 

Table 5.9: Accuracy of the estimated SDD (m) using Sentinel-2 for Umdloti Estuary. 
 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 19 0.000006 0.631 0.124 12.762 0.0008 9.035 
Equation 20 0.00006 0.856 0.033 2.269 0.0007 1.715 
Equation 21 0.131 0.807 0.035 75.244 0.0007 53.208 
Equation 22 0.026 0.526 0.099 12.264 0.0002 8.680 
Equation 23 0.270 7.282 0.029 18.760 0.0001 14.230 
Equation 24 0.056 2.224 0.037 3.160 0.0001 2.732 
Equation 25 0.056 1.384 0.037 1.667 0.0001 1.532 
Equation 26 0.056 0.702 0.019 3.562 0.0001 2.567 

 

SSD, as was evidenced by both remote sensors, is very poorly retrieved. Around half of all 

RMSE’s calculated using Sentinel-2 ranged well over 3 m. This is almost double the actual 

depth of the estuarine floor at some locations. These algorithms can therefore be considered to 

have poor accuracy. In addition to this, no combined R2 value was obtained above 0.15. Deutsch 
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et al. (2014), (Equation 25) is the relative best algorithm, albeit with a highly inaccurate RMSE 

(1.336 m and 1.532 m) and similarly poor R2 (0.001 and 0.0001). Sentinel-2 was the slightly 

better sensor in retrieving SDD, although this was done much too poorly to be considered for 

use. 

 

5.3.3.3 Using newly modified algorithm 

 

The newly modified algorithm based on the Deutsch et al. (2014), ratio of bands 2 and 4 

unfortunately suffers from the same lack of accuracy found using all other algorithms tested 

(Table 5.10). Whilst RMSE was brought down to just 0.220 m, this still presented a relatively 

large inability to determine depth. The ability of the algorithm to relatively model SDD is also 

extremely poor at R2 = 0.02. 

 

Table 5.10: Accuracy of the estimated SDD (m) using newly generated estimation 

algorithms for Umdloti Estuary. 

 

Equation Winter R2 Spring R2 Combined 
R2 

Winter 
RMSE 

Spring 
RMSE 

Combined 
RMSE 

Equation 
71 

0.014 0.047 0.02 0.221 0.219 0.220 

 

5.3.3.4 Scatterplots of SDD models. 

 

Figures 5.7 to 5.9 illustrate the graphical relationship between the actual measured SDD and 

those predicted by the algorithms. The majority of SDD estimation equations show distinct 

winter and spring clusters as seen with previous parameters. However, these clusters are much 

more visible and far apart than what is found with previous parameters and formed a straight flat 

line tightly centred along a single y-axis value. As a result, even as the x-axis increased, the y-

axis remained the same. This results in R2 values that are universally poor as the very distinct 

clusters form a line of best fit that does not pass through a single point on the scatterplot. As a 

result, SDD estimation could be considered poor. Equations 19, 20, 22, 26 and 72 did not 

display this clustering when using Landsat (19, 22 and 26) or Sentinel-2 (20 and 72). Their 

accuracy proved no better as they also tended to form a straight, flat y-asymptote and failed to 

register any change as x- increased. 



83 
 

 
 

R² = 0.0013

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0

0 0.5 1 1.5 2 2.5

Ca
lc

ul
at

ed
  S

DD
  (

m
)

Observed SDD (m)

Equation 21 (Landsat 8)

R² = 8E-05

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

0 0.5 1 1.5 2 2.5

Ca
lc

ul
at

ed
  S

DD
  (

m
)

Observed SDD (m)

Equation 21 (Sentinel-2)

 

 

 

 

 

 

 

 

 

Figure 5.7: Scatterplots of observed vs. calculated values for SDD estimation algorithms 

19 to 21. 
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Figure 5.8: Scatterplots of observed vs. calculated values for SDD estimation algorithms 

22 to 24. 
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Figure 5.9: Scatterplots of observed vs. calculated values for SDD estimation algorithms 

25, 26 and 71. 
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5.3.3.5 Map of estimated SDD 
 

SDD is the most similar in distribution of all the parameters (Figure 5.10). The scales between 

winter and spring differed by only mere decimal points. The winter distribution of SDD 

appeared speckled. However, the lack of SDD range predicted means that the speckled 

appearance does not indicate large differences in SDD. Similarly, spring has a homogenous 

distribution of SDD throughout with very little variability modelled. Overall, SDD is poorly 

predicated and mapped across the estuary. 

 

 

Figure 5.10: SDD distribution across the Umdloti Estuary for winter (A) and spring (B). 
 

5.3.4 Salinity estimation 
 

5.3.4.1 Using Landsat 8 
 

The results of the salinity estimation performed for Landsat 8 are displayed in Table 5.11. 

Salinity estimation for Landsat 8 overall is very poor. Algorithms showed a poor ability to 

model variation across the estuary as shown by R2 values. The exception to this can be found 

when considering the overall R2, with some algorithms receiving acceptable results above   R2 = 

0.7. RMSE is also retrieved very poorly, with most values retrieved ranging into the 30’s and 

above. Considering that this is as saline as the ocean and many times higher than what was 

observed, accuracy could be considered poor. The algorithm developed by Wang and Xu 

(2008), (Equation 31) appeared to achieve the only relatively strong RMSE and an accurate R2. 

 

B A 
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Table 5.11: Accuracy of the estimated salinity using Landsat 8 for Umdloti Estuary. 
 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 27 0.119 30.019 0.233 32.111 0.708 30.904 
Equation 28 0.107 35.719 0.203 35.859 0.543 46.530 
Equation 29 0.002 34.554 0.207 34.657 0.723 41.971 
Equation 30 0.119 24.036 0.058 29.820 0.493 28.992 
Equation 31 0.089 10.094 0.012 4.189 0.691 5.846 
Equation 32 0.001 52.871 0.243 105.305 0.718 76.291 

 

5.3.4.2 Using Sentinel-2 
 

The results for the salinity retrieved using Sentinel-2 (Table 5.12) is similar to those found for 

Landsat 8. As has been the case with most parameters, winter and spring R2 values range into 

very low values whilst when combined, the R2 shows a significant improvement in modelling 

relative salinity. RMSE values are exceptionally high and inaccurate throughout, excepting for 

the algorithm (Equation 31) developed by Wang and Xu (2008), which achieved a relatively 

low overall RMSE. 

 

Table 5.12: Accuracy of the estimated salinity using Sentinel-2 for Umdloti Estuary. 

 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 27 0.034 30.251 0.048 31.194 0.645 30.726 
Equation 28 0.843 72.623 0.044 35.860 0.662 57.271 
Equation 29 0.752 60.540 0.190 34.690 0.478 49.338 
Equation 30 0.708 36.888 0.112 23.432 0.323 30.901 
Equation 31 0.098 4.384 0.059 3.496 0.211 3.964 
Equation 32 0.097 53.234 0.185 82.226 0.736 69.263 

 

Overall the accuracy results obtained for retrieving salinity are very poor. Both sensors are 

capable of using the algorithms to retrieve it but did so poorly. Most RMSE differs by over 30 

units and R2 values calculated are of moderate to low accuracy in both winter and spring. The 

most accurate of these algorithms was developed by Wang and Xu (2008), with the lowest 

RMSE by far (5.846 and 3.964) although suffering one of the worst Sentinel-2 R2 values 

(0.211). The worst performing algorithm was developed by Zhao et al. (2017), which saw an 

RMSE of 76.291 and 69.263. Both sensors are roughly equally poor at retrieving salinity. 

 



88 
 

 
 

5.3.4.3 Using newly modified algorithm 
 
Salinity retrieved using an algorithm modelled after Wang and Xu (2008), (Table 5.13) achieves 

reasonable accuracies. Whilst it suffered from low intraseasonal accuracy, a combined R2 of 

around 0.7 is better than the majority of algorithms modified by other studies. The RMSE of 

0.046 is unsurpassed. The algorithm is therefore considered suitable for salinity modelling and 

estimation during both seasons. 

 

Table 5.13: Accuracy of the estimated salinity using newly generated estimation 

algorithms for Umdloti Estuary. 
 

Equation Winter R2 Spring R2 
Combined 

R2 
Winter 
RMSE 

Spring 
RMSE 

Combined 
RMSE 

Equation 
72 0.192 0.096 0.70 0.025 0.061 0.046 

 

5.3.4.4 Scatterplots of salinity models. 

 

Figures 5.11 to 5.13 illustrate the graphical relationship between the actual measured salinity 

and those predicted by the algorithms. The seasonal clustering of points seen in the previous 

parameters is not expressed as strongly during the sampling of salinity. The distribution of 

calculated vs. actual salinity points however was not smooth and gradual. These points appear 

to ‘jump’ from one x-value to another for most algorithms across small x-axis ranges (such as 

around 30 to 35 and 0.5 to 1 in Equation 27). This ‘jumping’ is undoubtedly caused by the small 

variability in observed salinity, which ranged from 0.7 to 1. The distribution of these results 

indicate that the estimation of salinity by the algorithms is fairly successful with only four 

models (Equation 30 for both Landsat 8 and Sentinel-2 and Equation 29 and 31 for Sentinel-2) 

achieving results lower than R2 = 0.5.  
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Figure 5.11: Scatterplots of observed vs. calculated values for salinity estimation 

algorithms 27 to 29. 
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Figure 5.12: Scatterplots of observed vs. calculated values for salinity estimation 

algorithms 29 to 31. 
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Figure 5.13: Scatterplot of observed vs. calculated values for salinity estimation 

algorithm 72. 

 

5.3.4.5 Map of estimated salinity 

 

Salinity (Figure 5.14) shared a similar distribution across the estuary in both spring and winter. 

In winter, salinity was roughly equal throughout, even within the river portions. In spring, 

salinity was highest closest to the estuarine mouth and generally decreased as one moves away 

from the mouth.   

 

 

Figure 5.14: Salinity distribution across the Umdloti Estuary for winter (A) and spring 

(B). 
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5.3.5 TDS estimation 
 

5.3.5.1 Using Landsat 8 

 

Accuracy assessments performed on TDS values retrieved using Landsat 8 are recorded in 

Table 5.14. Landsat 8 showed some success in TDS estimation. As has been seen with other 

parameters, R2 values calculated are low when considering only winter and spring data 

individually but reached substantially higher accuracies when a combined dataset is used. 

Interseasonal RMSE is also very similar, indicating a good ability at determining TDS absolute 

values. Overall Abdulla, (2015) (Equation 36) achieves the best R2 (0.739) and RMSE (594.268 

mg/l) accuracies. 

 
 

Table 5.14: Accuracy of the estimated TDS (mg/l) using Landsat 8 for Umdloti Estuary. 

 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 33 0.026 955.217 0.002 921.058 0.021 938.293 

Equation 34 0.007 956.017 0.108 921.858 0.517 939.093 

Equation 35 0.033 1162.316 0.0167 1127.923 0.701 1145.248 
Equation 36 0.160 655.199 0.059 526.329 0.739 594.268 

 

5.3.5.2 Using Sentinel-2 
 
Similar to temperature, algorithms developed by Khattab and Merkel (2014), (Equation 33 and 

Equation 34) utilised the TIRS bands 10 and 11 which are unavailable on Sentinel-2. This 

meant that results for the Abdulla (2015), (Equation 35) and Abdelmalik (2018), (Equation 36) 

equations are only calculated for Sentinel-2 (Table 5.15). Sentinel-2 achieves similar results to 

those achieved by Landsat 8. The most obvious similarity is the low winter and spring and high 

combined data R2 values that are again found. RMSE differs greatly between winter and spring 

for both algorithms and overall values RMSE values wre large compared to in situ retrieved 

parameters. 
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Table 5.15: Accuracy of the estimated TDS (mg/l) using Sentinel-2 for Umdloti 

Estuary. 

 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 35 0.037 3116.583 0.002 1127.97 0.686 2343.651 
Equation 36 0.206 834.436 0.001 483.838 0.413 682.050 

 

Many of the calculated algorithms RMSE are almost double what the observed values are. 

Algorithms achieved moderate accuracy in the attempt to model the relationship as detailed by 

their R2. However, despite the large RMSE’s and moderate coefficient of determinations, the 

TDS values still efficiently identify water salinity. This is because a unit increase in TDS is less 

significant than a unit increase in many other parameters such as salinity due to its much larger 

scale range. The best algorithm for TDS estimation is developed by Abdullah (2015), due to its 

relative best RMSE (594.268 mg/l and 682.050 mg/l) and good to moderate R2 (0.739 and 

0.413). Landsat 8 appears to be the better sensor overall to calculate TDS. 

 

5.3.5.3 Using newly modified algorithm 

 
The algorithms modified by this study provide a comfortable balance between R2 and RMSE. 

The R2 value of 0.69 is by no means the most accurate retrieved but provides acceptable 

accuracy. The RMSE of 11.369 mg/l is superior to those developed by other studies and used 

for TDS estimation. 

 

Table 5.16: Accuracy of the estimated TDS (mg/l) using newly generated estimation 

algorithms for Umdloti Estuary. 

 

Equation Winter R2 Spring R2 
Combined 

R2 
Winter 
RMSE 

Spring 
RMSE 

Combined 
RMSE 

Equation 
73 

0.0158 0.00002 0.69 14.481 6.986 11.369 
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5.3.5.4 Scatterplots of TDS models. 
 

Figures 5.15 to 5.16 illustrates the graphical relationship between the actual measured TDS and 

those predicted by the algorithms. The formation of two separate clusters of points due to the 

season is expressed most by Equation 36 and the Sentinel-2 usage of Equation 35. The rest of 

the algorithms did not form distinct separate clusters and instead occupied small x and y axis 

ranges. With the majority of retrieval algorithms achieving R2 values above 0.6, the estimation 

of TDS could be considered good.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R² = 0.0219

0.000

0.010

0.020

0.030

0.040

0.050

0 200 400 600 800 1000 1200

Ca
lc

ul
at

ed
  T

DS
 (m

g/
l)

Observed TDS (mg/l)

Equation 33 (Landsat 8)



95 
 

 
 

R² = 0.6878

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

0 200 400 600 800 1000 1200

Ca
lc

ul
at

ed
  T

DS
 (m

g/
l)

Observed TDS (mg/l)

Equation 73

Figure 5.15: Scatterplots of observed vs. calculated values for TDS estimation 

algorithms 33, 34 and 35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Scatterplots of observed vs. calculated values for TDS estimation 

algorithms 36 and 73. 

 

5.3.5.5 Map of estimated TDS 
 
Just as with salinity, the distribution of TDS throughout the estuary is similar in both the winter 

and spring seasons (Figure 5.17). This is to be expected as both measure the salt content of 

waters. TDS is distributed relatively uniformly across the estuary. In winter these concentrations 

spiked near river banks but otherwise was homogenous. TDS is also slightly higher towards the 

estuarine mouth. 
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Figure 5.17: TDS distribution across the Umdloti Estuary for winter (A) and spring (B). 

 
5.3.6 EC estimation 
 

5.3.6.1 Using Landsat 8 

 

The accuracy of the Landsat 8 estimation algorithms associated with EC were recorded in 

Tables 5.17. R2 values for EC estimation using Landsat 8 are low in winter but comparably 

much higher than they are in spring. Following the pattern found within previous parameters, 

overall R2 is much higher for EC estimation and suggests average to good accuracy when it 

comes to modelling algorithm variability. RMSE ranges from good (those calculated below 2.5 

μS/cm) to astronomically high and inaccurate. 

 

Table 5.17: Accuracy of the estimated EC (μS/cm) using Landsat-8 algorithms for 

Umdloti Estuary. 

 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 37 0.146 2.091 0.140 1.991 0.082 2.042 
Equation 38 0.154 2.412 0.001 2.383 0.529 2.398 
Equation 39 0.057 8.304 0.030 8.510 0.639 8.408 
Equation 40 0.306 598.819 0.027 787.599 0.732 699.606 
Equation 41 0.152 413.872 0.037 357.69 0.657 386.802 

 

B A 
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5.3.6.2 Using Sentinel-2 
 
Another equation by Khattab and Merkel (2014), (Equation 38) made use of the Landsat TIRS 

bands and could unfortunately not be used for accuracy assessment for Sentinel-2. However, 

Sentinel-2 estimation of EC went off better than it did for Landsat 8 (Table 5.17). R2 values are 

much lower during the winter and spring periods but achieve an average to good accuracy when 

using a combined dataset. RMSE is poorly determined by Abdullah (2015), (Equation 40) but 

quite accurate when using by Khattab and Merkel (2014), (Equation 37) and Abdelmalik 

(2018), (Equation 39). 

 

 

Table 5.18: Accuracy of the estimated EC (μS/cm) using Sentinel-2 algorithms for 

Umdloti Estuary. 
 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 37 0.010 0.965 0.008 1.983 0.670 1.560 
Equation 39 0.0005 1.155 0.031 8.627 0.670 6.154 
Equation 40 0.004 0.851 0.00004 1079.687 0.474 763.454 
Equation 41 0.001 6.907 0.017 318.580 0.670 225.323 

 

As is the situation with both salinity and TDS, the apparent estimation accuracy for EC can be 

considered poor. Even the best RMSE values obtained are nearly double the in situ values found 

with astronomically high inaccurate values obtained for both Abdullah (2015), algorithms 

(Equation 40 and Equation 41). R2 values are likewise ranging from good to average/low. 

However, it should be noted that just as with TDS, the differences between in situ and predicted 

values are relatively small when considering how EC scales. The Khattab and Merkel (2014), 

algorithm can be considered the relative best with an accurate RMSE (2.042 μS/cm and 1.560 

μS/cm) but inconsistent R2 (0.082 and 0.67). The Abdelmalik (2018), algorithm also does a 

satisfactory job of retrieving EC. Sentinel-2 appears to be the more suitable sensor for 

determining EC. 

 

5.3.6.3 Using newly modified algorithm 

 

The algorithms modified by this study for EC estimation (Table 5.19) is based on a ratio of band 

3 and 4 remote sensing reflectance as performed by Khattab and Merkel (2014). The algorithm 



98 
 

 
 

achieved a disappointing low R2 very strong and accurate RMSE. The lack of relative modelling 

ability shown by the low R2 values throughout may indicate future issues with EC estimation 

using this algorithm. 

 

Table 5.19: Accuracy of the estimated EC (μS/cm) using newly generated estimation 

algorithms for Umdloti Estuary. 
 

Equation Winter R2 Spring R2 
Combined 

R2 
Winter 
RMSE 

Spring 
RMSE 

Combined 
RMSE 

Equation 
74 0.171 0.010 0.44 0.046 0.031 0.039 

 

5.3.6.4 Scatterplots of EC models. 
 

Figure 5.18 to 5.20 illustrate the graphical relationship between the actual measured EC and 

those predicted by the algorithms. The majority of algorithms (with the exception of Landsat 8 

Equation 37 and Sentinel-2 Equation 39 and 74) show the distinctive seasonal clusters seen in 

other parameters. Despite this, the algorithms achieved mildly successful R2 values, indicating 

some success at estimating EC. 

 

 

Figure 5.18: Scatterplots of observed vs. calculated values for EC estimation algorithms 

37. 
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Figure 5.19: Scatterplots of observed vs. calculated values for EC estimation algorithms 

38 to 41. 
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Figure 5.20: Scatterplots of observed vs. calculated values for turbidity estimation 

algorithms 41 and 74. 

 

5.3.6.5 Map of estimated EC 
 

The distribution of EC (Figure 5.21) is substantially speckled in appearance in winter. This 

indicated a high variability of EC throughout the estuary. These spikes are likely the inability of 

the estimation algorithms to model a smoother, more likely distribution. The spring distribution 

of EC displayed a more homogenous appearance. Despite this, there are incidences of EC spikes 

along river banks. The maps show a moderate ability in modelling the EC. 

 

 

Figure 5.21: EC distribution across the Umdloti Estuary for winter (A) and spring (B). 
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5.3.7 Chl-a  estimation 
 

5.3.7.1 Using Landsat 8 

 

Landsat 8 appears to have mixed success in estimating chl-a with the accuracy results recorded 

over the course of this study recorded in Table 5.20. All Landsat-8 algorithms recorded a very 

low R2 throughout all datasets without a single algorithm showing any substantial ability to 

model chl-a. In contrast to the trend that has been observed with all other parameters, the overall 

R2 for most chl-a algorithms is much lower when compared to those calculated for the seasons 

individually. Positively, the majority of Landsat 8 algorithms achieved low RMSE values (with 

at least five algorithms below 1 μg/l). This signified that Landsat 8 was proficient at 

determining absolute concentrations of chl-a. Despite this generally improved accuracy, some 

algorithms such as Equation 59, Equation 56 and Equation 57 have very high RMSE’s, 

indicating low accuracy. 

 
 

Table 5.20: Accuracy of the estimated chl-a (μg/l) using Landsat 8 for Umdloti Estuary. 
 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 42 0.0003 50.355 0.415 2.799 0.003 35.661 
Equation 43 0.176 2.354 0.065 2.076 0.004 2.220 
Equation 44 0.120 3.167 0.158 6.262 0.0004 4.962 
Equation 45 0.120 2.389 0.160 3.880 0.0003 3.222 
Equation 46 0.120 1.071 0.158 2.735 0.004 2.077 
Equation 47 0.085 2.625 0.008 3.889 0.004 3.318 
Equation 48 0.006 4.612 0.351 0.696 0.004 3.298 
Equation 49 0.120 1.072 0.158 0.714 0.0004 0.911 
Equation 50 0.006 83.265 0.355 0.851 0.005 57.880 
Equation 51 0.195 1.209 0.436 0.615 0.0008 0.960 
Equation 52 0.194 1.161 0.432 0.628 0.023 0.933 
Equation 53 0.0007 1.515 0.018 1.134 0.0008 1.339 
Equation 54 0.038 1.057 0.005 0.639 0.013 0.873 
Equation 55 0.227 1.182 0.022 0.620 0.0003 0.944 
Equation 56 0.0002 88.964 0.028 4.132 0.004 62.975 
Equation 57 0.006 53.844 0.286 46.640 0.007 50.375 
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5.3.7.2 Using Sentinel-2 
 

The Sentinel-2 chl-a estimation (Table 5.21) displays similar mixed successes to what is found 

for Landsat 8. R2 values are generally inaccurately low throughout and found to be even lower 

when seasonal data is used. Again, RMSE is found to generally be low with a large number of 

algorithms again achieving RMSE values under or around 1 μg/l. This indicates that whilst 

Sentinel-2 failed to relatively model chl-a across the estuary, it satisfactorily attempted to 

estimate the actual values of chl-a. 

 

Table 5.21: Accuracy of the estimated chl-a (μg/l) using Sentinel-2 for Umdloti Estuary. 

 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 42 0.006 1.781 0.090 2.966 0.00008 2.446 
Equation 43 0.010 2.354 0.021 2.077 0.00001 2.220 
Equation 44 0.120 3.167 0.050 5.701 0.012 4.611 
Equation 45 0.120 2.389 0.052 3.599 0.0127 3.055 
Equation 46 0.120 1.071 0.050 2.813 0.003 2.129 
Equation 47 0.085 2.625 0.012 5.933 0.00009 4.588 
Equation 48 0.006 4.612 0.225 0.696 0.004 3.298 
Equation 49 0.120 1.072 0.050 0.717 0.012 0.912 
Equation 50 0.006 83.265 0.224 0.851 0.003 59.880 
Equation 51 0.283 1.168 0.080 0.653 0.025 0.946 
Equation 52 0.265 1.066 0.088 0.619 0.039 0.872 
Equation 53 0.002 1.515 0.009 1.135 0.005 1.338 
Equation 54 0.059 1.049 0.016 1.113 0.003 1.082 
Equation 55 0.003 1.237 0.0412 0.645 0.004 0.987 
Equation 56 0.020 87.627 0.001 5.143 0.004 62.068 
Equation 57 0.190 53.058 0.075 47.102 0.0008 50.169 

 

In general, Landsat 8 and Sentinel-2 display mixed but promising success in the estimation of 

chl-a. The absolute values of chl-a across the estuary were very satisfactorily estimated. This is 

supported by the fact that five different algorithms obtained overall RMSE’s below 1 μg/l for 

both sensors with a great many other recording values slightly above 1 μg/l. However, both 

sensors are poor at modelling the variation of chl-a within the estuary. The relative best 

algorithm is developed by El-Magd and Ali (2008), (Equation 52) with best performing RMSE 

below 1 μg/l (0.933 μg/l and 0.872 μg/l) albeit with a very poor R2 (0.023 and 0.039). Both 

sensors are very similar in results with Landsat 8 having a slightly better accuracy on average. 
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5.3.7.3 Using newly modified algorithm 
 

The chl-a estimation algorithm modified by this study achieves a moderate to good accuracy 

(Table 5.22). This algorithm (based on a log ratio of bands 2 and 4) performs far better in 

Umdloti Estuary than other algorithms used. An R2 of 0.64, whilst not perfect, was good 

considering that the vast majority of estimation algorithms tested by this study barely surpassed 

an R2 of 0.01. RMSE recorded is also relatively good throughout. This modified algorithm 

displayed the most consistent results found over the course of the study, which further adds to 

its reliability. 

 

Table 5.22: Accuracy of the estimated chl-a (μg/l) using newly generated estimation 

algorithms for Umdloti Estuary. 
 

Equation 
Winter 

R2 
Spring R2 

Combined 
R2 

Winter 
RMSE 

Spring RMSE 
Combined 

RMSE 
Equation 

75 0.649 0.627 0.64 0.632 0.390 0.525 

 

5.3.7.4 Scatterplots of Chl-a models. 
 

Figures 5.22 to 5.27 illustrates the graphical relationship between the actual measured chl-a and 

that predicted by algorithms. The seasonal clustering of points that has been seen in previous  

parameters is again found for most chl-a estimation algorithms. The distribution of chl-a points 

took on one of three patterns. They either form seasonal based clusters, similar to SDD (as seen 

with Equation 42,44, 45, 46, 50, 55 and 56), form a horizontal line across the y-axis (as seen 

with Equations 43 and 54), or form a randomly dispersed pattern (Equation 51 and 52). 

However, none of these patterns show any modelling promise. As a result, no algorithms show 

any ability at modelling chl-a. The only exception to this is Equation 75 which provides an R2 of 

0.64 and proved relatively good at modelling chl-a.  
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Figure 5.22: Scatterplots of observed vs. calculated values for chl-a estimation 

algorithms 42 to 44. 
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Figure 5.23: Scatterplots of observed vs. calculated values for chl-a estimation 

algorithms 45 to 47. 
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Figure 5.24: Scatterplots of observed vs. calculated values for chl-a estimation 

algorithms 48 to 50. 
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Figure 5.25: Scatterplots of observed vs. calculated values for chl-a estimation 

algorithms 51 to 53. 
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Figure 5.26: Scatterplots of observed vs. calculated values for chl-a estimation 

algorithms 54 to 56. 
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Figure 5.27: Scatterplots of observed vs. calculated values for chl-a estimation 

algorithms 57 and 75. 
 

5.3.7.5 Map of estimated chl-a 

 

The distribution of chl-a is recorded in Figure 5.28. The winter distribution of chl-a took on a 

speckled appearance. Recorded chl-a is also generally higher in winter. These are mainly found 

to feature around ~2.5 to 4 (μg/l). In comparison, the chl-a values in spring are generally lower. 

There can be found to be some high value spikes in chl-a towards the banks of the estuary as 

well as towards the western end of the river.  
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Figure 5.28: Chl-a distribution across the Umdloti Estuary for winter (A) and spring 
(B). 
 

5.3.8 DO estimation 
 

5.3.8.1 Using Landsat 8 

 

The estimation of DO using Landsat 8 images is recorded in Table 5.23. Landsat 8 had 

relatively poor success in the modelling and absolute estimation of DO. R2 values are again very 

low seasonally, but achieve higher (albeit still poor) combined seasonal average accuracies 

above 0.50 when using an overall dataset. Obtained RMSE is also high, indicating a low 

accuracy in retrieving absolute values of DO. 

 

Table 5.23: Accuracy of the estimated DO (ppm) using Landsat 8 for Umdloti Estuary. 
 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 58 0.354 1.093 0.065 2.462 0.569 1.905 
Equation 59 0.003 2.649 0.00003 3.482 0.542 3.094 
Equation 60 0.257 7.195 0.304 6.715 0.545 6.959 

 

5.3.8.2 Using Sentinel-2 

 

A similar situation to what is found with Landsat 8 can be found for Sentinel-2 DO estimation 

(Table 2.24). The R2 determined for each algorithm is again negligibly low. R2 values rose once 

B A 
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a combined seasonal dataset is used to model DO. However, these increases are still not large 

enough to indicate algorithm reliability. RMSE’s obtained are also relatively large for DO. This 

indicates an overall poor ability of the algorithms to both model and predict DO. 

 

Table 5.24: Accuracy of the estimated DO (ppm) using Sentinel-2 for Umdloti Estuary. 

 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 58 0.024 1.009 0.062 2.518 0.498 1.918 
Equation 59 0.050 2.648 0.228 3.491 0.598 3.098 
Equation 60 0.002 8.209 0.163 6.826 0.597 7.550 

 

Dissolved oxygen is poorly retrieved by both sensors. Overall, RMSE is high (ranging from 

1.90 μg/l to 7.55 μg/l) and R2 values achieved mostly poor results (none above 60). The best 

algorithm at estimating DO over the course of this study is developed by Theologou et al. 

(2015), and Khalil et al. (2016), (Equation 58). These algorithms achieved an RMSE of 1.905 

and 1.918 and R2 of 0.569 and 0.498. However, even this algorithm have poor accuracy and are 

not suitable for estimation. Both sensors are very similar with respect to results generated, with 

Sentinel-2 being slightly more accurate throughout. 

 

5.3.8.3 Using newly modified algorithm 

 

The algorithm modified by this study to estimate DO was shown in Table 5.25. Even though the 

algorithm is based on a ratio of bands 2 and 4, DO proved difficult to estimate. The R2  values 

are relatively better when considering those achieved by the other DO algorithms. However, this 

is still not large enough to consider the model reliable and good at modelling DO. The RMSE of 

this new algorithm shows considerable improvement over algorithms and suggests a better 

ability at determining absolute DO concentrations. 

 

Table 5.25: Accuracy of the estimated DO (ppm) using newly generated estimation 

algorithms for Umdloti Estuary. 

 

Equation 
Winter 

R2 Spring R2 
Combined 

R2 
Winter 
RMSE Spring RMSE 

Overall 
RMSE 

Equation 
76 

0.091 0.060 0.58 0.291 0.435 0.370 
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5.3.8.4 Scatterplots of DO models. 
 

Figures 5.29 to 5.30 illustrate the graphical relationship between the actual measured DO and 

those predicted by the algorithms. As is found with all previous parameters, there are very 

distinct seasonal clusters of points for Equations 58 and 59. This is also observed to a smaller 

degree in Equations 60 and 76. However, these clusters show more variability and were more 

spread out than is seen for other parameters. As a result, DO is modelled moderately well but 

never achieves more than an R2 above 0.6 for any algorithm. 

 

 

Figure 5.29: Scatterplots of observed vs. calculated values for DO estimation algorithms 

58 and 59. 
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Figure 5.30: Scatterplots of observed vs. calculated values for DO estimation algorithms 

60 and 76. 

 

5.3.8.5 Map of estimated DO 
 

The distribution of DO (Figure 5.31) takes on a speckled distribution for winter. Concentrations 

of DO are generally higher towards the edges of the estuary and lowest towards the mid 

portions. Spring values are quite different in distribution. The overall DO in spring is much 

higher and the estuary has a generally constant concentration across its length and breadth. 
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Figure 5.31: DO distribution across the Umdloti Estuary for winter (A) and spring (B). 
 

5.3.9 pH estimation 
 

5.3.9.1 Using Landsat 8 

 

The estimation of pH using Landsat 8 is difficult as evidenced by Table 5.26. R2 values 

calculated were all below 0.01 for winter and spring and below 0.34 when using the overall 

combined dataset for estimation. RMSE values are also consistently poor with only one RMSE 

below 1 (which is still not adequate considering pH ranges from 0 to 14). This indicates a non-

existing ability at modelling pH. 

 

Table 5.26: Accuracy of the estimated pH using Landsat 8 for Umdloti Estuary. 
 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 61 0.032 2.145 0.004 2.411 0.273 2.282 
Equation 62 0.038 4.287 0.031 5.868 0.283 5.139 
Equation 63 0.033 6.036 0.006 6.278 0.341 6.158 
Equation 64 0.037 2.145 0.004 2.409 0.260 2.281 
Equation 65 0.091 6.082 0.003 5.804 0.059 5.945 
Equation 66 0.045 0.906 0.004 1.211 0.278 1.070 
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5.3.9.2 Using Sentinel-2. 
 

Similar to what was observed with the Landsat 8 results, pH is very poorly retrieved by 

Sentinel-2 (Table 5.27). R2 values are all below 0.1 for individual winter and spring seasons 

whilst using an overall seasonal dataset they did not rise above 0.27. RMSE’s found are 

similarly poor in accuracy, with the lowest recorded sitting at 2.022. 

 

Table 5.27: Accuracy of the estimated pH using Sentinel-2 for Umdloti Estuary. 
 

 Winter Spring Combined 
Equation R2 RMSE R2 RMSE R2 RMSE 

Equation 61 0.031 6.361 0.079 2.412 0.268 4.810 
Equation 62 0.001 6.549 0.001 6.063 0.177 6.311 
Equation 63 0.030 6.247 0.010 6.297 0.229 6.272 
Equation 64 0.015 1.546 0.004 2.406 0.200 2.022 
Equation 65 0.033 6.436 0.234 5.394 0.260 5.938 
Equation 66 0.032 4.408 0.077 1.235 0.270 3.237 

 

With RMSE’s of over 1 for even the best algorithms, pH could be considered to be poorly 

retrieved. R2 values obtained during regression are also very poor, with none passing 0.341. The 

best estimation attempt is developed by Khattab and Merkel (2014), with consistent RMSE’s of 

2.281 and 2.022 and R2’s of 0.260 and 0.200. Overall, Landsat 8 appears to be the better sensor 

but still produces inaccurate results. 

 

5.3.9.3 Using newly modified algorithm 

 

The pH estimation algorithm modified by this study suffer from the same poor accuracy 

experienced by other algorithms (Table 5.28). The R2 of 0.29 indicate a complete inability of the 

algorithm to model pH. However, the RMSE indicates a stronger ability at retrieving absolute 

values. If the model is able to consistently achieve RMSE values around 0.234 then it may 

prove relatively useful in determining pH. 
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Table 5.28: Accuracy of the estimated pH using newly generated estimation algorithms 

for Umdloti Estuary. 

 

Equation Winter R2 Spring R2 
Combined 

R2 
Winter 
RMSE 

Spring 
RMSE 

Combined 
RMSE 

Equation 
77 

0.021 0.110 0.29 0.311 0.113 0.234 

 

5.3.9.4 Scatterplots of pH  models. 

 

Figures 5.32 to 5.34 illustrates the graphical relationship between the actual measured pH and 

those predicted by the algorithms. As seen with almost every other parameter, pH forms distinct 

seasonal clusters that are spaced very far apart (as seen in the Sentinel-2 Equation 61). If not 

seasonally clustered, the points take on a flat, straight line across the y-axis appearance, with 

points distributed across many different x-values. These patterns prove difficult to model and as 

a result, a universally poor R2 values for all algorithms indicates that pH is not well modelled. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32: Scatterplots of observed vs. calculated values for pH estimation algorithms 

61. 
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Figure 5.33: Scatterplots of observed vs. calculated values for pH estimation algorithms 
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Figure 5.34: Scatterplots of observed vs. calculated values for pH estimation algorithms 

65, 66 and 77 
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5.3.9.5 Map of estimated pH 
 

pH differs little between seasons (Figure 5.35). Winter has a pH around 7.6 and is constant 

throughout the majority of the estuary. Spring on the other hand has a pH of around 7.2 and 

differs by small amounts across the majority of the estuary. These distribution maps efficiently 

map the pH found within the estuary. 

 

 

Figure 5.35: pH distribution across the Umdloti Estuary for winter (A) and spring (B). 
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CHAPTER SIX: DISCUSSION AND CONCLUSION 
 
6.1) Introduction 
 
This final chapter provides a critical discussion of the results in relation to the current body of 

knowledge of physio-chemical parameter estimation using remote sensing. Following this, the 

recommendations and limitations found by this study are then given. The study thereafter 

concludes and gives closing statements. 

 

6.2) Discussion 
 
6.2.1 Temperature estimation using remote sensing 
 
The spaceborne Landsat 8 and Sentinel-2 remote sensors that were set the task of estimating 

water quality physico-chemical parameters from the Umdloti Estuary met with mixed levels of 

success. These sensors experienced difficulty in modelling certain parameters in the slightly 

brackish estuarine water whilst others were efficiently and accurately retrieved. This was 

despite the fact that many of the estimation algorithms were not designed for estuarine use 

which should have negatively impacted on the ability of the sensors to model parameters. 

 

Temperature over the Umdloti Estuary was estimated with a moderate to good accuracy by this 

study. With R2 values above R2 = 0.95, the Abdullah (2015), algorithm (Equation 10) displayed 

an exceptional temperature modelling ability over the Umdloti Estuary. However, the RMSE 

results were poorer (just below 3 ºC) and displayed a weakness in the ability of Landsat 8 and 

Sentinel-2 in retrieving absolute values. The generally strong R2 values obtained are similar to 

those that may be found in literature (Khattab and Merkel, 2013; Syariz et al., 2015). In their 

own study over Dokan Lake, Abdullah (2015), managed to initially develop algorithms with a 

similar accurate R2 (around 0.72 to 0.86) but when applied to actually estimate temperature 

suffered weaker R2 accuracies dropping to around R2 = 0.5. RMSE values found by this current 

study are higher than what may be found in literature. Khattab and Merkel (2013), for example 

found RMSE for their temperature estimation algorithm to reach around 0.4 ºC in their study. 

Despite this, sea surface temperature estimation algorithms with the help of in situ data 

generally generate accuracies that range between 0.2 to 3.4 ºC (Thomas et al., 2002; Syariz et 

al., 2015). The estimated temperature found by this study was well within in the range without 

the added help of in situ data. The modified temperature estimation algorithm managed to 

reduce this RMSE down to 0.6 whilst keeping the accurate R2. Since only algorithm coefficients 
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were changed, this greatly improved accuracy is due to the Abdullah (2015), algorithm being 

fine-tuned to local estuarine conditions experienced in Umdloti Estuary. The best performing 

algorithm modified by Abdullah (2015), unconventionally did not rely on the use of the already 

well established practise of using thermal infrared radiation (3 to 14 μm) for the estimation of 

temperature (Gholizadeh et al., 2016). The Abdullah (2015), study based it’s algorithm on a 

correlation of temperature to the coastal blue and red Landsat 8 bands. However, determining 

the general effectiveness of this combination is hard as there is a lack of literature which has 

supported or also made use of these bands in temperature estimation. Regardless, the 

combination of coastal blue and red appeared to work well in both the Abdullah (2015), and this 

current study and has the added advantage of flexibility as it may be used for both Landsat 8 

and Sentinel-2. Future studies attempting temperature estimation in estuaries may want to 

further verify the efficiency of this algorithm or improve on the use of the Avdan and 

Jovanovska (2016), algorithm. Although tested as a land surface temperature algorithm, it has 

the capability to be used for sea surface temperature estimation. This algorithm relies on thermal 

infrared bands and inbuilt environmental corrections such as for surface emissivity and is 

therefore more theoretically grounded. 

 

6.2.2 Turbidity estimation using remote sensing 
 

One of the most successful parameters retrieved over the course of the study was that of 

turbidity. Whilst many of the turbidity estimation algorithms modelled turbidity well, the 

Dogliotti et al. (2015), algorithm (Equation 11) came closest to a performing a perfect 

estimation. Considering that turbidity levels retrieved from water may easily range into the 

hundreds and thousands, a low RMSE value of 2.94 NTU and an R2 = 0.97 could be considered 

exceptional accuracy. Similar good accuracy for turbidity estimation was found by a multitude 

of other studies (Al-Fahdawi et al., 2015; Dogliotti et al., 2015; Garaba and Zielinski, 2015; 

Kapalanga, 2015; Lim and Choi, 2015).  The results found by the current study also closely 

mirrored those found by Dogliotti et al. (2015). Whilst testing their algorithm in a multiple 

estuaries and across a wide range of turbidity conditions, Dogliotti et al. (2015), achieved the 

same accuracy as found by the current study (R2 = 0.97). In their study Dogliotti et al. (2015), 

also found that turbidity retrieved was between 12% and 22% of the observed in situ value. In 

comparison, the majority of this current study’s RMSE ranged between 55% to 61% of the 

observed in situ values. Whilst this was less accurate than that found by in the Dogliotti et al. 

(2015), study, these values did not represent large changes in turbidity and still correctly 

identified the estuary as experiencing low turbidity. The use of a modified Dogliotti et al. 
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(2015), algorithm by this current study resulted in a near perfect estimation with R2 = 0.99 and 

RMSE achieving an accurate value of 0.005 NTU. Again, since there was no change in the 

bands used, this improved accuracy could be put down to the fine-tuning of band coefficients to 

conditions experienced by Umdloti Estuary. Possible future complications impacting on the 

accuracy of this current study’s turbidity estimation algorithm may arise due to several factors. 

One factor involves the complete lack of intraseasonal variation found during in situ sampling. 

Due to this, a respective R2 was unable to be calculated for seasonal data. This would leave 

some doubt as to the reliability of turbidity estimation during these seasons as only a combined 

seasonal dataset could be used. Further, in situ turbidity found during both seasons ranged 

between only 5 to 5.1 NTU.  Remote sensing estimation of turbidity would likely differ in 

ability under differing turbidity conditions (Gholizadeh et al., 2016). Future studies attempting 

to estimate turbidity should ensure that turbidity estimation algorithms are tested over different 

ranges of turbidity. 

 

6.2.3 SDD estimation using remote sensing 
 

Whilst turbidity was one of the best estimated parameters, SDD was the worst estimated. 

Despite being the relative best algorithm, Deutsch et al. (2014), (Equation 25) only managed to 

achieve an inaccurate average R2 below R2 = 0.001 and RMSE of 1.434 m (almost double the 

depth of the estuary in certain parts). Whilst usually not as poor as was found in this current 

study, poor accuracy associated with SDD retrieval may be found in literature (Wang et al., 

2006; Deutsch et al., 2014; Hancock, 2015). This inaccuracy would be unexpected considering 

that both turbidity and SDD are linked to water clarity and therefore should achieve roughly 

similar accuracies. A possible reason given by Giardino et al. (2001), suggested that chl-a, 

dissolved organics and inorganic suspended sediments as well as the bottom effects from the 

shallow parts of the estuary may greatly interfere with a remote sensors ability to determine 

SDD. In their study, Deutsch et al. (2014), achieved a much stronger accuracy with an R2 = 

0.87. However, other algorithms they had developed to estimate SDD suffered from low R2 

values ranging between 0.38 to 0.47. Deutsch et al. (2014), noted SDD algorithms are not 

always accurate if used by remote sensors other than those they were developed for. Even using 

a modified algorithm, an R2 = 0.02 and RMSE of 0.220 m does little to establish a suitable 

relationship between reflectance and in situ SDD. A recommendation suggested by Hancock 

(2015), was that in order to accurately retrieve SDD, algorithms would have to be validated and 

modified for use in the water bodies they would be needed in. Future studies may want to 

develop algorithms from scratch for SDD retrieval in the Umdloti Estuary. 
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6.2.4 Salinity, TDS and EC estimation using remote sensing 
 

Salinity was initially poorly estimated but this changed once a modified algorithm was used. 

The initial poor accuracy was evidenced best in this current study by the relative strongest 

Wang and Xu (2008), algorithm (Equation 31) achieving an average R2 = 0.41 and an RMSE of 

4.8. This poor accuracy is generally rare as the majority of studies find better estimated salinity 

(Lavery et al., 1993; Wang and Xu, 2008; Zhao et al., 2017). Wang and Xu (2008), for example 

estimated salinity with an R2 = 0.89 and RMSE of 0.49. Possible reasons for this poor accuracy 

include that nearly all salinity estimation algorithms were designed for use over oceanic 

environments. Salinity, TDS and EC are all measures that are used to relate the amount of salt 

present within water. Whilst TDS and EC are popular for use in estuaries and freshwater, 

salinity algorithms are generally not. The Lavery et al. (1993), study is an exception to this as 

they successfully estimated salinity in an estuary with an R2 above R2 = 0.7. They cautioned that 

the success in their salinity retrieval may not necessarily make their algorithm suitable for use in 

other estuaries due to the unique constituents that make up estuarine water. The unique water 

composition of the Umdloti Estuary may therefore impact on salinity retrieval. The use of a 

modified Wang and Xu (2008), algorithm by this study saw a greatly improved accuracy with 

an R2 = 0.70 and RMSE of 0.046 being obtained. The use of this new algorithm therefore 

suggests a strong potential for future salinity estimation in Umdloti Estuary. However, future 

testing of this algorithm is advised to determine if this accuracy would be consistent. 

 

TDS and EC were two variables that along with salinity were used to measure the salt content of 

the Umdloti Estuary. The estimation of both TDS and EC using Landsat 8 and Sentinel-2 could 

be considered to have been moderately successful. This was despite the fact that both 

parameters achieved a poor to moderate R2 and their RMSE was almost double the actual in situ 

values. The Abdulla (2015), algorithm (Equation 36) for example was used by this current study 

to determine TDS and achieved an average R2 = 0.57 and RMSE of 638 mg/l. EC was 

determined using the Khattab and Merkel (2014), algorithm (Equation 37) and achieved average 

accuracies of R2 = 0.38 and a RMSE of 1.8 μS/cm. One of the reasons why both TDS and EC 

could have been considered to have been reasonably well estimated was because of their strong 

and accurate RMSE. Within estuarine water both TDS and EC are commonly able to scale into 

units numbering tens of thousands. These parameters can therefore scale very high and often do 

so rapidly. The fact that their recorded RMSE was so relatively low leaves them with a strong 

absolute accuracy. This is supported by the fact that both TDS and EC correctly record the 

estuary as having a more freshwater composition than just brackish water. Still, this accuracy is 
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generally poorer than those found in literature. This is especially true for the R2. Al-Fahdawi et 

al. (2015), and Khattab and Merkel (2014), found TDS and EC estimation accuracies above R2 

= 0.84. Once algorithms were modified and used by this current study, accuracy improved. The 

modified Abdulla (2015), algorithm further improved on TDS accuracy achieving an R2 = 0.69 

and RMSE of 11.369 mg/l. The modified Khattab and Merkel (2014), algorithm also achieved 

improved EC accuracies of R2 = 0.44 and an RMSE of 0.039 μS/cm. The algorithms modified 

by this study therefore made good inroads in improving these parameters R2 (excepting EC) and 

increasing RMSE accuracy, leading to greatly increased reliability that are comparable with 

other studies (Khattab and Merkel, 2013; Abdullah, 2015; Al-Fahdawi et al., 2015; Mushtaq 

and Nee Lala, 2017). Therefore TDS could be considered to have been successfully estimated. 

Caution should continue to be attached to the use of the modified EC algorithm due to its poor 

relative modelling ability. 

 

6.2.5 Chl-a estimation using remote sensing 
 

Chlorophyll-a was a particularly interesting parameter over the course of this study. El-Magd 

and Ali (2008), (Equation 52) was the relative best estimation algorithm and achieved an 

average R2 = 0.02 and RMSE of 0.9 μg/l. Chl-a contained some of the lowest R2 values recorded 

over the course of the study. This lack of ability to record variability within estuaries has been 

found in other studies such as those by Harding et al. (2005); Koponen (2006); Werdell et al. 

(2009), and Wang et al. (2011). As a result, all used algorithms completely failed to efficiently 

model the distribution using remote sensing imagery. A possible reason for this was that in situ 

sampling showed that chl-a was highly heterogeneous in distribution across the estuary, with 

random spikes of highs and lows. This made it difficult to compare in situ and remote sensing 

data as Koponen (2006), proposed that remote sensors greatly average pixel values, resulting in 

the masking of these spikes. El-Magd and Ali (2008), explained that the low accuracy in chl-a 

retrieval could be reduced due to the presence and interference by inorganic suspended 

sediments and dissolved organic matter to reflectance. Despite this, chl-a algorithms generally 

were good at obtaining absolute values as shown by their low RMSE. The majority of 

algorithms therefore suitably and accurately identified the estuary as possessing low levels of 

chl-a even if R2 was negligibly low. El-Magd and Ali (2008), in their own study achieved a 

combination of both negligible strong accuracies, with R2 ranging from R2 = 0.02 to R2 = 0.75. 

The algorithm modified by this study for chl-a estimation was by far the most consistent on a 

seasonal basis and provided reasonably good and reliable accuracy (R2 = 0.64 and RMSE of 

0.525 μg/l). In these ways it may be considered one of the best successes of this study. Due to 
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the averaging of pixel values, future studies should take note that spatial resolution (in addition 

to spectral resolution) should be considered a particularly important component when 

attempting chl-a estimation (Koponen, 2006). Sentinel-2 with its superior spatial resolution 

performed better in mapping these spikes.  

 

6.2.6 DO estimation using remote sensing 
 

DO could be considered to have been poorly retrieved. The relative best algorithm by 

Theologou et al. (2015), and Khalil et al. (2016), (Equation 58), could only achieve an average 

R2 = 0.53 and RMSE of around 1.91 μg/l. This poor accuracy for DO retrieval is not uncommon 

in literature (Abdulla, 2015; Khalil et al., 2016; Mushtaq and Nee Lala, 2017). Theologou et al., 

(2015) and Khalil et al. (2016), found higher accuracies for their studies with R2 retrieved 

usually above R2 = 0.75. However, Khalil et al. (2016), also obtained DO estimation accuracy 

similar to this study for one of their algorithms using bands 2 and 4. Modified algorithms did 

little to improve this accuracy and achieved a R2 = 0.58 and RMSE of 0.370 μg/l. 

 

6.2.7 pH estimation using remote sensing 
 

Similarly to what was found when estimating DO, pH could also be considered to have been 

one of the most poorly estimated parameters. The relative best algorithm by Khattab and Merkel 

(2014), (Equation 64), recorded an average R2 = 0.23 and RMSE of around 2.15. This poor 

accuracy has been found in other studies (Abdulla, 2015; Mushtaq and Nee Lala, 2017). Khattab 

and Merkel (2014), found better accuracies in their own study with R2 values reaching above R2 

= 0.75. The use of modified algorithms did little to improve this accuracy (except with respect 

to RMSE) resulting in a R2 = 0.29 and RMSE of 0.234. 

 

6.2.8 Reasons for the success and failure of remote sensing estimation 
 

There are some general reasons why some parameters were better estimated. Amongst the most 

successfully estimated parameters found over the course of this study are those of turbidity, 

temperature and chl-a. A possible reason for the high accuracy could be attributed to these 

parameters popularity. Turbidity, temperature and chl-a are easily among some of the most 

popular water-based parameters studied and retrieved through remote sensing (Abdullah, 2015; 

Gholizadeh et al., 2016). This popularity is partly due the large role of these parameters with 

regard to environmental health. Temperature for example controls many essential water borne 
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processes and as such is considered important to record whenever water samples are taken 

(Abdullah, 2015). However, a better explanation of their popularity is due to the fact that remote 

sensing physico-chemical estimation relies heavily on the optical properties of an entity and all 

three parameters are considered highly optically reactive (Gholizadeh et al., 2016). This strong 

optical reactivity, long term study and continuous refinement have resulted in the development 

of many accurate and reliable algorithms. Chl-a for example has also been accurately retrieved 

for years through use of broadband sensors such as Landsat (Dekker and Peters, 1993).  

 

Despite the successes, the remote sensors also performed poorly in the estimation of some water 

quality parameters. Examples of poorly estimated variables found by this current study include 

SDD, pH and initially salinity estimation. Their retrieval all resulted in a weak to negligible 

relationship being established between the Landsat 8 and Sentinel-2 reflectance and actual in 

situ values. The lack of accurate estimation success could be put down to a several factors. An 

estuary is a dynamic and complex water body, receiving constant influxes such as salty water 

from the oceans or sedimentation from rivers (Le et al., 2013). This leads estuaries containing 

water that is often more optically complex than other water bodies (El Magd and Ali, 2008). 

This optical complexity is due to a mix of optically reactive water constituents such as coloured 

dissolved organic matter, sediments and detritus particles (Le et al., 2013). This makes 

estimation difficult as all estuaries have their own unique and dynamic optical complexity. 

Algorithms that were formulated for use in either marine or fresh water environments usually 

experience lower retrieval accuracies when used in estuaries. One such example found by this 

current study was salinity retrieval using the Zhao et al. (2017), algorithm. During the Zhao et 

al, (2017), salinity estimation, it was noted that on the same images in which estuarine salinity 

was poorly retrieved, marine pixels neighbouring the Umdloti Estuary had salinities that were 

more in line with what would normally be expected of salinities in the ocean. Ultimately, to 

ensure a greater reliability when using parameter estimation algorithms for estuaries, these 

algorithms should be refined and tested over time and different conditions (Lavery et al., 1993; 

Abdulla, 2015; Mushtaq and Nee Lala, 2017).  

 

Some parameters were also just not as popular in remote sensing literature. These parameters, 

such as pH and DO, had far fewer studies being based on their estimation. The main reasons for 

the literature absence could be explained by their weaker optical properties and low signal to 

noise ratio (Gholizadeh et al., 2016). This often increased the difficulty in attempting to model 

these parameters (as also found by this current study). Despite this, these parameters play 
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essential roles in maintaining water body environmental health and this has not stopped 

scientists attempting to develop algorithms for their estimation. 

 

For every single parameter besides chl-a, the R2 calculated intraseasonally for the winter and 

spring seasons were found to be substantially lower than those calculated for a combined dataset 

for both seasons. This may be caused by a number of issues. One of the main possible causes is 

that the majority of estimation algorithms failed to register any substantial variability in 

modelling across the estuary. The vast majority of algorithms were unable to transform the 

small differences in band reflectance into meaningful values and therefore estimated parameters 

did not differ across the estuary in value except in the lowest of decimal points. This gave 

seasonal data very small variability tightly centred around the parameter mean.  In addition, 

values retrieved in situ displayed a greater variability, albeit still small. When R2 was calculated, 

the lack of variability made the assessment very susceptible to any variability and registered this 

as a low R2. A combined seasonal dataset greatly expanded on the variability and allowed 

greater R2 values to be calculated. This phenomenon can be seen in other studies (Syariz et al., 

2015; Ligi et al., 2017). 

 

A possible cause for this lack of variability is the fact that the estuarine area is much smaller 

than most other water bodies used in physico-chemical parameter estimation studies. The 

Umdloti Estuary is around 1.4 km2 in size with all sample sites located within this area (Forbes 

and Demetriades, 2008). In comparison, literature reviewed over the course of this study all 

made use of substantially larger waterbodies. These water bodies often ranged tens of 

kilometres in length and width with sampling points distributed kilometres apart throughout.  

Sampling points in this study sometimes differed by less than 100 m. The small size of the 

Umdloti Estuary would therefore likely geographically limit the amount of parameter variability 

that might be found across it (in accordance with Tobler’s first law) (Tobler, 1970). In addition, 

the estuary has been closed off from the ocean over the course of the study, keeping many 

parameters homogenous in distribution. Therefore, even seemingly small changes in parameter 

values (such as small seasonal changes or random chance) may greatly affect the R2 equation as 

it would be very sensitive to these changes. 

 

Another possible reason is that low R2 is not uncommon in seasonal comparisons and when 

using algorithms modified for different sites (Kowalczuk et al., 2010; Ligi et al., 2017). 

Differences in conditions such as the amount of CDOM, sun glint and haze all contribute to 

these differences (Ligi et al., 2017). Ligi et al. (2017), tested 58 algorithms meant to retrieve 
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chl-a, CDOM and total suspended matter in the Baltic Sea over spring and summer. The results 

for their chl-a estimation as well as the other parameters were similar to the distributions and 

results found by this study. They concluded that while there were some algorithms that could be 

used seasonally, many others had low accuracy and were unsuitable for use. Algorithms 

specifically modified for those sites and seasons could therefore be considered the most accurate 

and best used. Difficulties associated with empirical estimation algorithms such as those used in 

this study include that they often need to be specifically tailored to local waters, seasonal 

conditions and remote sensors (Metsamaa et al., 2006; Ligi et al., 2017). This was impossible to 

do over Umdloti Estuary as no studies have been previously been performed to remotely 

retrieve physico-chemical parameters.  

 

Two (temperature and turbidity) out of the nine parameters could be considered to have been 

successfully retrieved by Landsat 8 and Sentinel-2 with their best estimation algorithms 

achieving R2 values above 0.95 using a combined seasonal dataset. The rest of the parameters 

met with a mixed moderate (R2 above 0.5) and/or outright poor (R2 below 0.5) accuracy. Chl-a, 

TDS and EC algorithms displayed good absolute accuracy but suffered from a poor ability to 

relatively model their distributions. Absolute accuracy (indicated by RMSE) was generally 

better estimated by the remote sensors. With the exception of salinity, DO and pH, the remote 

sensors estimated absolute values of physico-chemical parameters satisfactorily. This accuracy 

improved once existing algorithms were modified. Once modified, most of the parameters 

achieved satisfactory average accuracies above R2 = 0.58 and strong RMSE values. The 

modified algorithms of chl-a, TDS and salinity improved accuracy enough to be considered 

reliable. EC and DO estimation algorithms proved good at determining absolute values but 

otherwise suffered from a poor ability to relatively model EC. Despite the stronger accuracies, 

algorithms modified by this current study are otherwise untested and caution should be attached 

to their use. SDD and pH were poorly estimated and were the only parameters which could not 

be successfully obtained from the Umdloti Estuary using Landsat 8 and Sentinel-2. 

 

6.2.9 Comparison of performance between Landsat 8 and Sentinel-2 
 

One of the main questions to be answered by the study was which sensor was better suited 

towards retrieving water based parameters? Through the observation of both R2 and RMSE, it 

can be seen that Landsat 8 and Sentinel-2 estimations were mostly similar, differing by usually 

small amounts for the majority of algorithms. In the end it is more a matter of preference. This 

seems to be supported by an absence in the comparison of these two sensors in literature. Not a 
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single study was found that competitively compared the two sensors ability in water quality 

estimation.  Sentinel-2 has far superior spatial and temporal resolutions (Drusch et al., 2012; 

Roy et al., 2014). The spatial resolutions of 10 m and 20 m for most bands allow areas to be 

imaged in greater detail. The ability of Sentinel-2 to image an area at least three times before the 

next Landsat 8 sensor is able to image that same area allow for the greater monitoring of change 

within areas. However, Landsat 8 has been around for a longer period of time, has used similar 

bands to previous Landsat’s and has always been free and easily accessible. As a result, there 

have had many more studies that have made use of either Landsat 8 or previous Landsat sensor 

for water parameter estimation. While many of the imaging bands remain roughly the same 

between the two sensors, some differ in the wavelength range covered and therefore using an 

algorithm modified for Landsat may be prone to accuracies when used for Sentinel-2 

estimation. This problem proved to not have been a major issue over the course of the study as 

many Sentinel-2 algorithms generated similar accuracies to those produced and used for Landsat 

8. Exceptions can be found for salinity, TDS and EC estimations where large differences 

existed. However, these were already very inaccurately retrieved. Landsat 8 also possessed 

TIRS bands, which Sentinel-2 did not. This significantly limits the ability of Sentinel-2 in 

measuring temperature. Despite this, studies excluding temperature will find Sentinel-2 the 

better sensor to use once more studies have accurately adapted algorithms for use by the sensor. 

A better plan still would be to use both sensors in the estimation of water based parameters as 

both are sufficiently suited for the job. Many other sensors, such as those that are hyperspectral 

or possess superior spatial resolutions may be more suited for such estimations. Despite this, the 

high cost of acquiring images from these sensors is likely to leave both Sentinel-2 and Landsat 8 

as the most accessible remote sensors for environmental management. 

 

6.2.10 Assessment of estuarine health 
 
Estuaries have generated much scientific interest as a result of their high productivity, provision 

of ecosystem services and their status as unique habitats (Meng and Liu, 2010). These areas also 

show extreme vulnerability and are increasingly threatened. Rapid risk identification and 

estuary protection is therefore of paramount importance. As a result, indicators of estuarine 

health have begun to form essential components in evaluating the health of estuarine systems 

(Carrasco et al., 2007). Water quality studies make use of these indicators to assess health. 

These studies are defined by Usali and Ismail (2010), as the process of determining the various 

chemical, physical and biological characteristics of waterbodies as well as identifying potential 

contamination sources that degrade the quality of water.  
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The samples collected and analysed by this current study provided an insight into the water 

quality present within the estuary. This may provide clues as to the health state of the Umdloti 

Estuary. The Umdloti Estuary and Mdloti River have been popular areas of study and this 

allows direct comparisons to be made between current conditions and those experienced in the 

past. However, what comprises a healthy estuary is sometimes ambiguous as estuaries are 

highly dynamic in conditions that may be present. Forbes and Demetriades (2008), define a 

healthy estuary as one where. These includes that all important physical processes maintaining 

estuarine habitats are functioning, that biological diversity expected from such a trophic state is 

present and where anthropogenic activities are not resulting in the degradation or changes in 

habitats and loss of goods and services.  

 

Seasonally, the physico-chemical water quality did not differ much between winter and spring 

in Umdloti Estuary. The only obvious but expected increase was the seasonal change in water 

temperature. Average water temperatures ranged from around 19 ºC - 20 ºC during winter and 

24 ºC - 25 ºC in spring. This is roughly an average increase of 5 ºC but could easily be 

explained by the increased intensity of solar radiation experienced during the spring season 

(Abdulla, 2011). The greater range of temperature in winter may also be explained by the sun 

rising later in the morning than it does in spring. Similar temperatures from spring/summer time 

were found by other studies (Forbes and Demetriades, 2008; Deale, 2010; Olaniran et al., 2014). 

Temperature falls within the normally expected levels required for an estuary to be considered 

productive and are not biologically significant or impacting negatively on the estuary (Ohrel and 

Register, 2006; Forbes and Demetriades, 2008). 

 

Turbidity and SDD distributions were very similar during both winter and spring seasons. 

Turbidity saw a slight increase in spring whilst SDD remained the same. This indicated that 

water clarity was very high over the course of the study. High water clarity in the form of low 

turbidity and larger SDD values are expected to be found in normally closed systems which end 

up only being subject to wind induced turbulence (Forbes and Demetriades, 2008). Other 

studies conducted within the Umdloti Estuary found similar low turbidity’s (Forbes and 

Demetriades, 2008; Olaniran et al., 2014). Olaniran et al. (2014), did once find higher turbidity 

values over the seasons of spring and summer which they attributed to the increased rainfall and 

runoff that would be experienced during those seasons. The were no significant precipitation 

around this current study’s sampling dates. Umdloti did experience some rainfall weeks before 

the spring sampling day (November 10th) but this was relatively insignificant and likely did not 
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impact on clarity. The turbidity and SDD readings suggests the estuary is composed of clear 

water where light is able to penetrate through to the bottom reaches. This would allow greater 

levels of photosynthesis to occur throughout the water column, increasing productivity and 

indicating no health problems (Forbes and Demetriades, 2008). 

 

Salinity, TDS and EC all remained relatively the same between seasons. These levels were 

generally low, staying around 0.93, 940 mg/l and 1.80 μS/cm for each parameter respectively. 

The water within estuaries is usually characteristically brackish as water from the sea and rivers 

interact and mix. However, the mouth of the Umdloti Estuary has been well known to undergo 

prolonged phases of staying closed, limiting saltwater intrusion (Forbes and Demetriades, 

2008). During the study, the state of the estuarine mouth has been closed for some time and 

experienced limited saline influences. Salinities, TDS and EC concentrations recorded are so 

low that water across the estuary can be considered approaching or slightly brackish (Ohrel and 

Register, 2006). This is especially true for TDS and EC whose values are well below the 

brackish threshold (1500 and 1000 respectively). These low values for all three parameters are 

commonly reported in studies focusing on the Umdloti Estuary (Forbes and Demetriades, 2008; 

Govender, 2009; Olaniran et al., 2014). Forbes and Demetriades (2008), suggest that this could 

be a limiting factor to possible marine fish and benthic fauna as they would be unable to survive 

within the estuary. 

 

Just as with temperature, chl-a saw a mean increase during the spring season (0.61 μg/l in winter 

vs. 0.9646 μg/l in spring). However, these increases were usually quite small and each sample 

site differed by usually less than a single unit. Generally, chl-a concentrations were quite low 

within the estuary. This is in contrast to what has been found in some of the previous studies 

conducted within Umdloti Estuary where chl-a values were found to be much higher 

(Perissinotto et al., 2004; Forbes and Demetriades, 2008). Perissinotto et al. (2004), previously 

estimated that chl-a levels should average at around 19 μg/l across the estuary. Forbes and 

Demetriades (2008), found concentrations averaging around 70 to 75 μg/l in their 2008 study. 

However, both these studies occurred within the Umdloti Estuary during a period of high 

nutrient loadings caused by anthropogenic activities such as the introduction of wastewater 

effluent (Forbes and Demetriades, 2008). The high values of chl-a found in these studies could 

therefore be attributed to algal blooms that would have followed. The low chl-a values obtained 

during the study could indicate a reduction of nutrients from these anthropogenic sources into 

the estuary.  In general, subtropical estuaries such as Umdloti characteristically support large 

amounts of phytoplankton (Perissinotto et al., 2002; Forbes and Demetriades, 2008). However, 
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these may not always be present within the water column. Perissinotto et al. (2002), found 

similar low chl-values to this study within Mpenjati during its closed phase. They hypothesised 

that during the stagnant and calm conditions experienced during a closed phase, the majority of 

the phytoplankton simply sunk down in estuarine bed, vastly depopulating the water column 

(Perissinotto et al., 2002). This was supported by samples taken from the estuarine bed, which 

showed some of the highest recorded chl-a values in literature.  Nozais et al. (2001), in their 

own study within Umdloti Estuary likewise found extremely high levels of chl-a within 

sediments (also of the highest reported in literature) whilst in the water column chl-a levels were 

very low (similar to those found in this study). Adams et al. (1999), also reported this 

phenomenon as common in Great Brak Estuary and obtained values similar to this study. Gama 

et al. (2005), suggests that phytoplankton numbers are ultimately linked to both the rate of flow 

and sedimentation. Low turbidity found in Umdloti may suggest low sedimentation inputs. Chl-

a concentrations within the water body itself was also very low. Chl-a serves as an important 

indicator of the trophic state of a water body due to its strong linkages with nutrient 

concentration and algal production (Gholizadeh et al., 2016). Although the low concentrations 

should negatively impact on the trophic state of the estuary, this reading is ambiguous as 

subtropical estuaries often display this phenomenon but have some of the highest levels of chl-a 

within their sediments. However, Umdloti Estuary has been known to go through devastating 

eutrophic events caused by the introduction of nutrients and subsequent growth in algae. Carnie 

(2014), reported that a eutrophic event caused by the introduction of agricultural products into 

the water led to over a thousand fish deaths in 2014 within the estuary. Chl-a values for Umdloti 

could therefore be considered normal but should be monitored. 

 

DO levels within the estuary were slightly higher in the spring months than they were during 

winter (2.63 ppm in winter vs. 3.48 ppm in spring). However, just as was the case with chl-a, 

this increase was not a large one and may just be due to chance. UNESCO/WHO (1978), 

determined that in order to be healthy and fulfil its function estuaries need at least 4 ppm, with 5 

ppm being ideal. The estimations of DO from the estuary fall short of that which may lead to 

problems being experienced. A study done by Forbes and Demetriades (2008), found low DO 

contents within the Umdloti Estuary over summer 2008. However, during winter 2007, the same 

study recorded DO concentrations well above 6 ppm. Forbes and Demetriades (2008), reasoned 

that the large increases and then crashes in DO were due to the algal blooms that occurred 

during that year. This was not likely occurring during this study due to the low amounts of chl-a 

recorded. No other studies that measured DO within the Umdloti Estuary were found. An 

alternative explanation is that the low number of phytoplankton and chl-a would likely lead to 
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low outputs of oxygen and is a possible reason for the lower values found. A similar limiting 

factor was the low concentrations of DO found within the estuary (Forbes and Demetriades, 

2008). These are below the standard set by UNESCO/WHO (1978), and could indicate the 

presence of hypoxic conditions. If the situation further deteriorates, it is possible these may lead 

to anoxia and future fish kills 

 

pH was again very similar in distribution during both winter and spring. Although slightly 

higher in winter (7.615) than spring (7.326), this would not impact on the functioning of the 

estuary. When compared to literature, the pH are within the normally expected levels required 

for the Umdloti Estuary to be considered productive and are not biologically significant or 

impacting negatively on the estuary (Ohrel and Register, 2006; Forbes and Demetriades, 2008; 

Govender, 2009; Olaniran et al., 2014). 

 

Although not directly measured, there were other types of pollution affecting the estuary. Some 

could be directly observed, such as the presence of general plastic and paper waste (seen in 

Figure 6.1). There were many plastics and papers found within the estuary and it was also the 

site for a small dumping spot. Naidoo et al. (2015), determined that although not as large a 

problem within Umdloti Estuary as it is in other eThekwini based estuaries, there were 

significant levels of plastic within the estuary. These plastics pose a particular threat to filter 

feeding organisms and may reduce chl-a levels within sediment as it blocks out sunlight 

(Naidoo et al., 2015). It was also observed by this current study that some locals used the 

estuary to wash clothes (with chemicals) and as an ablution facility. The lack of testing done 

during these studies is not able to tell whether these activities are having a significant impact on 

the estuary. However, Umdloti Estuary has had a disturbing eutrophication history due to 

contaminants and high nutrient loadings in the past (Forbes and Demetriades, 2008; Olaniran et 

al., 2014).  

 

The sampling of physico-chemical parameters revealed that the Umdloti Estuary is currently 

experiencing a poor state of health. Comparisons with other studies that attempted to determine 

the Umdloti Estuary health supports this theory. Forbes and Demetriades (2008), found very 

similar conditions to those found by this study and assessed Umdloti as being in a poor state of 

health.  Olaniran et al. (2012), found that many of the physico-chemical parameters measured in 

the Umdloti River were not in compliance with standards set by the WHO. Since this river 

solely flows directly into Umdloti Estuary, it supports the idea that the Umdloti Estuary can be 

considered to be in a poor condition. Whitfield and Baliwe (2013), concluded that the estuary is 
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in a fair state but faces massive pressures. Overall, this indicates that a cause for concern for the 

health of the Umdloti Estuary. 

 

 

Figure 6.1: Image taken during winter sampling showing large amounts of plastic 

pollution present. 

 

6.2.11 Limitations and Recommendations 
 
Possibly the biggest limitation faced by this study was the fact that only thirty samples were 

able to be used to both test and generate algorithms. This meant that only two days of sampling 

for each remote sensor was able to be conducted. These two days of sampling were used to 

generalise the conditions experienced by winter and spring. Therefore, the full seasonal 

variability of physico-chemical parameters may not have been fully captured and left the 

seasonal samples that were collected highly susceptible to the impacts of any undiscovered 

confounding factors that may have been present on these days. This was evident when looking 

at scatterplots of the data. Most of the data formed distinct winter and spring seasonal clusters 

that were often centred around values that were very different from each other. This occurred 

despite the fact that for the vast majority of physico-chemical parameters, the in situ variability 

remained small. This indicated that season had a strong impact on the estimation algorithms 

ability to estimate physico-chemical conditions. Studies like Abdulla (2011), in fact develop 

their estimation algorithms with season in mind. In future, more sampling should be conducted 
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to ensure that the whole range of variability is collected and avoid the clustering of data 

according to season. 

 

As mentioned earlier in the discussion, another limitation was the small size of the estuary. The 

Umdloti Estuary was by far the smallest estuary when compared to other remote sensing studies 

found in all literature reviewed by this study. This limited the amount of physico-chemical 

variability that would be found in situ and therefore limited the range of values the estimation 

algorithms could be tested across. The small size of the estuary also restricted the amount of 

sampling that could be done. Finally, the small size of the Umdloti Estuary meant that remote 

sensors would be expected to suffer accuracy issues. This is due to the impacts from edge pixels 

and the fact that any confounding factors will have a greater impact if present within a smaller 

area. In future, estimation algorithms should be tested across larger estuaries and a larger 

amount of physico-chemical variability to refine them. 

 

Whilst full sampling was done on July 5th and November 10th, only temperature, turbidity and 

SDD were sampled on July 18th. This was due to unforeseen circumstances and meant that 

within the thirteen days between the 5th and 18th of July, some of the physico-chemical 

parameters may have differed. SDD is linked to turbidity and since turbidity remained the same 

on the 18th, SDD would have likewise remained the same. Salinity, TDS and EC are also almost 

guaranteed to have remained the same as the estuary had not been breached and no significant 

rainfalls occurred in the nearly two week timeframe. pH is also likely to have remained 

unchanged or at  least very similar. This is supported by sampling that occurred in spring, where 

pH values recorded were very similar  Only chl-a and DO may have possibly changed over that 

period. However, no significant events that may affect these numbers (such as large rainfalls, 

breaching of the estuarine mouth or algal blooms) were observed. In future, full sampling would 

be recommended to better prepare the models for physico-chemical estimation. 

 

Although the use of remote sensing methods provides many advantages in the monitoring of 

estuarine systems and the assessment of water quality parameters, it is not without its own 

limitations. Some parameters over the course of this study were not at all reliably retrieved, 

SDD and pH being the most obvious. Many important physico-chemical components such as 

pH, various nitrogen based compounds and dissolved phosphorus are not usually measured in 

remote sensing water studies as they have weak optical properties (Gholizadeh et al., 2016). 

Estuarine waters themselves are quite complex and impact on the sensors ability to retrieve 

parameters. For some physico-chemical parameters the accuracy that is obtained will therefore 
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always be of questionable quality (Gholizadeh et al., 2016). Water complexity may also affect 

optically reactive parameters. Kutser (2009), found that remote sensing was rendered useless in 

the measuring of the densest areas of phytoplankton booms in the Baltic Sea due to atmospheric 

and processing errors. A cause of this may be the limitation in the amounts of bands and 

bandwidths found within Landsat 8 and Sentinel-2 (Kutser, 2009). The use of sensors with 

higher spectral resolutions (such as hyperspectral sensors) may provide the accuracy needed for 

these parameters estimation. However, the cost to acquire the images may in fact be as 

expensive as collecting the data in the field and present some of the greatest obstacles to 

determining the health of the system (Gholizadeh et al., 2016). Remote sensing is also usually 

only able to measure the conditions present on the very top of the water and is not able to 

determine what conditions are like with depth (Gholizadeh et al., 2016). These factors should be 

considered for future sampling. 

 

As with all remote sensing studies, the atmospheric conditions heavily influence the quality of 

the results that were achieved. Conditions such as cloud cover and haze will always limit the 

ability of sensors to receive accurate, instant results if they are present. However, remote 

sensing software such as the ACOLITE program developed by the royal Belgium institute of 

technology are increasing in ability in accounting for the effects of atmosphere. Remote sensing 

reflectance refers to the actual reflectance of light when interacting with the water after 

eliminating atmospheric effects. Its calculation is therefore an important step in achieving 

accurate results, but this is both complex and tedious. The ACOLITE program is able to 

instantly and easily calculate this parameter (amongst others) for both the Sentinel-2 and 

Landsat 8 remote sensors. This leads to significantly more accurate results, as seen with many 

of the algorithms modified from this study. A recommendation is that software programmes 

such as these are improved upon and used in more studies to evaluate their usefulness.  

 

There has been a general push towards estimation algorithms that make use of band ratioing (El 

Magd and Ali, 2008). This is due to several advantages that ratioing offers such as the reduced 

influence of atmospheric illumination (Han and Jordan 2005; Jensen 2005; El Magd and Ali, 

2008). Gin et al. (2002), for example proposed the use of a ratio of bands for the estimation of 

chl-a which worked very well in this current study. Over the course of this study five out of the 

nine most successful algorithms for each parameter made use of this ratioing. Future studies 

may concentrate more on the use of band ratioing in the development of future estimation 

algorithms. 
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Finally, there is considerable evidence both from this study and past studies that the Umdloti 

Estuary is in a poor state of health (Forbes and Demetriades, 2008; Olaniran et al., 2014). The 

estuary should continue to be monitored and legislations and actions taken to reduce the impacts 

of these entities on the health of the Umdloti Estuary. The estuary is known to be susceptible to 

eutrophication due to chemical loads. The construction of the Hazelmere Dam and a WWTW 

upstream have contributed significantly toward this poor health and resulted in a highly 

modified estuary (Forbes and Demetriades, 2008). The correction of these issues should 

therefore be a priority. 

 

6.3) Conclusion 
 
Sentinel-2 and Landsat 8 showed good promise in the estimation of physico-chemical 

parameters but are unlikely to ever successfully estimate every physico-chemical parameter. 

Despite this, these sensors will have a continued important role to play in the assessment and 

management of estuarine health. Their accessibility, cost, advanced specifications and program 

continuity will undoubtedly see to these sensors continued popularity. This study provided 

strong evidence for their success. The estimation algorithms for parameters such as SDD and 

pH require greater development, refinement and testing if they are to be useful in an estuarine 

environment. As it stands, turbidity and temperature may be relatively easily and accurately 

retrieved from the Umdloti Estuary. Salinity, TDS, EC and chl-a were at times poorly modelled 

but their respective RMSE indicated that their absolute values could still be accurately retrieved. 

In future the algorithms tested and modified by this study will aid in the estimation of 

parameters not only from the Umdloti Estuary but in similar estuaries as well. The continued 

use of water quality estimation algorithms in retrieving these parameters will lead to decreased 

costs, time spent in the field and allows for estimation in difficult to reach areas. This may lead 

to the more efficient monitoring of estuarine systems. The state of the Umdloti Estuary as found 

by this study can be considered to be poor. Low levels of salinity, chl-a and DO suggest a low 

productivity environment that would limit intrusion by marine organisms (even if the mouth 

opened) and is at risk of hypoxia. However, values of turbidity and SDD retrieved suggested 

that water clarity is not an issue within the estuary. Suggestions proposed by this study include 

the continued use and refinement of algorithms (especially within estuarine environments) to 

achieve greater accuracy and greater efforts put in to limit the impacts of human pollution 

within the estuary. In conclusion, this study strongly shows off the ability of both these popular 

sensors in forming an important component of any estuarine health assessment and pushes for 

these sensors to begin to play greater roles in providing geographical information. 
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