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ABSTRACT 

In this study, a series of imidazolium and pyridinium-based ionic liquids (ILs), polymeric ionic 

liquids (PILs), and their carbon nanotubes-functionalized composites were synthesized, 

characterized and applied as potential adsorbents for hexavalent Cr(VI). Polymeric ionic liquids 

of different polymerizable moieties (vinyl and styrenic moieties) were studied. Furthermore, 

multi-walled carbon nanotubes (MWCNTs) were synthesized, characterized and dispersed on 

both imidazolium and pyridinium-based ILs and PILs, respectively. Thermal studies revealed 

that vinyl pyridinium PILs possess good thermal stability than the vinyl imidazolium 

counterparts. The size of the counter-anions bromide (Br-), hexafluorophosphate (PF6-), and 

bis(trifluoromethanesulfonyl) imide (TFSI-) and the charge delocalization in cationic rings 

greatly influenced the glass transition temperatures of PILs. Expectedly, pyridinium and 

imidazolium-based PILs with hexafluorophosphate ions showed poor solubility in polar protic 

solvents (water, methanol) and good solubility in polar aprotic solvents (DMSO, DMF, THF) 

except acetone (a dipolar aprotic solvent).  

 

The as-synthesized ILs/MWCNT composites were characterized using FTIR spectroscopy, 

scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray 

diffraction (XRD), and thermal analysis. The results obtained indicate that the pyridinium-based 

ILs exhibited higher decomposition temperatures (above 400 °C) compared to imidazolium-



xx 
 

based ILs counterparts (onset decomposition at 250 °C) with poor water-solubility and their glass 

transition temperatures were dependent on ion mobility. The effect of the alkyl lateral chain 

(propyl and isopropyl) at the first and third position of imidazolium and N-position of pyridinium 

cationic rings towards their thermal stability, conductivity, and solubility of the ionic liquids was 

investigated. Their solubilities in different polar and non-polar solvents were also investigated. 

Spectroscopic and microscopic analyses confirmed the formation of the ILs/MWCNT 

composites with new functionalities and unaltered surface morphology of carbon nanotubes. 

Pyridinium and imidazolium-based PILs/MWCNT composites were characterized by thermal, 

spectroscopic, and electron microscopy techniques. It was observed that the composites were 

thermally stable compared to the corresponding precursors and were insoluble in polar aprotic 

solvents.  

 

For application, solid-liquid adsorption process was used in the adsorption of Cr(VI) from 

aqueous solution using the as-synthesized ILs/MWCNT and PILs/MWCNT composites as 

adsorbents. Under batch adsorption experiments, the effect of solution pH, contact time and 

initial concentration of Cr(VI) were investigated. It was established that the adsorption of Cr(VI) 

took place under acidic conditions (pH=2-3), thereby confirming significant adsorption of 

dichromate (Cr2O7
-
) and hydrochromate (HCrO4

-
) anions. At lower pH values, the ionic and π-

anionic electrostatic interactions between the positively-charged regions of the composites and 
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Cr(VI) were believed to have facilitated the adsorption of anionic (Cr2O7
-
) and (HCrO4

-
). 

Adsorption results obtained based on contact time showed that increase in contact time gradually 

increases the adsorption of Cr(VI) within 2 h. However, further increase in experimental contact 

time above 2 h insignificantly affected the adsorption of Cr(VI) due to early or quick 

oversaturation of the surface active sites on the adsorbents.  

 

The adsorption of Cr(VI) onto  ILs/MWCNT and PILs/MWCNT composites fitted well into both 

Langmuir and Freundlich adsorption isotherms. However, the homogeneity/heterogeneity nature 

of the adsorbents relied on the diversified nature of the composites, which includes bulky 

pyridinium and imidazolium organic cations with delocalized charges, some large counter anions 

and the graphitic functional carbon groups. In order to understand the mechanisms of the 

adsorption of Cr(VI) onto ILs/MWCNT and PILs/MWCNT composites, pseudo-second-order 

kinetic model was employed. The results obtained showed that the calculated maximum 

adsorption capacities (qecal) and experimental maximum adsorption capacities (qe.exp) depict high 

correlation co-efficiencies (R
2
>0.99) confirming the applicability and feasibility of pseudo-

second-order model on the adsorption of Cr(VI) in this study. 
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Chapter 1 

 

1.1 Introduction 

The general increase of industrialization and urbanization have directly and/or indirectly 

contributed to high levels of surface and ground water contamination and existence of other toxic 

substances in potable water sources [1-2]. Almost all water contaminants are toxic towards both 

biotic and abiotic ecosystem [3]. Inorganic substances such as chromium, arsenic, cadmium, 

lead, mercury, and other organic contaminants continue to pollute both surface and underground 

water and render them unusable [4]. Several organic and inorganic pollutants are emitted from 

industrial operations such as mining and road construction [5]. Several quantities of solid 

inorganic waste or by-product materials are produced every year [5]. However, inorganic and/or 

some organic materials normally accumulate through metal production operations into the 

surface and underground water bodies [5-6]. A reliable and cost-effective method to remove the 

above-mentioned water-pollutants must be introduced and widely used to combat the growing 

negative effect of these pollutants.  

 

Carbon nanotubes (CNTs) are one of the carbon-based materials that have been investigated in 

wastewater treatment, and they possess large surface area, high conductivity, low dispersibility 
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and limited solubility [7-8]. However, two main strategies being utilized to improve the 

characteristics of CNTs are: the non-covalent and covalent functionalization [8]. Covalent 

functionalization produces materials with surface structural defects and relatively stable 

materials [9]. Recently, ionic liquids and their polyelectrolyte derivatives have been utilized as 

innovative class of carbon material modifiers [10-11]. Li et al. [12] reported the wrapping of 

single-walled carbon nanotubes with PILs and the application of the resulting nanocomposites in 

chemiresistive CO2 sensors.  Free radical graft polymerization and non-covalent modification by 

direct mixing of PILs and CNTs using ultrasonication were reported as the leading methods to 

produce polymer-modified carbon materials [9, 13]. Functionalization with polymer materials 

increased thermal stability, surface area, dispersibility, and reduced water solubility of CNTs 

[14-17]. 

 

Ionic liquids (ILs) have been associated with green chemistry as substitutes for volatile and 

flammable organic solvents [18]. ILs, together with their polymerized derivatives have found 

applications in organic and polymer chemistry [18], catalysis [19], electrochemistry [20], 

analytical chemistry [21], nanotechnology [22], energy [23], CO2 separation/sorption [24], and 

biotechnology [25]. ILs are also used as plasticizers, additives, components of polymer 

electrolytes, and porogenic agents to polymers [26]. However, there is a very limited literature 
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on the application of ionic liquids and polymeric ionic liquids (PILs) in wastewater treatment and 

as potential adsorbents for metal ions. Therefore, the use of carbon nanotubes-functionalized 

with the ionic liquids derivatives must be considered and thoroughly investigated.  

1.2 Literature review on ionic liquids derivatives 

Polymeric ionic liquids (PILs) are polyelectrolyte-forms of ionic liquids (ILs) produced by a 

direct and/or indirect polymerization of ionic liquids (ILs) monomers, or by modification of the 

existing polymers [27-28]. PILs are non-covalently bonded subclass of polyelectrolytes, 

comprised of organic cations such as imidazolium, pyrrolidinium, pyridinium, 

tetraalkylammonium, tetraalkyl-phosphonium, piperidinium, and quinolinium, and organic/ 

inorganic anions such as halide ions (Cl
-
, Br

-
), polyatomic inorganics such as tetrafluoroborate 

(BF4
-
), hexafluorophosphate (PF6

-
), and pure organic anions such as 

bis(trifluoromethanesulfonyl)imide (TFSI
-
) and dicyanamide [N(CN)2

-
] [29]. Polymeric ionic 

liquids normally combine the special properties of ILs species in each of the repeating units with 

those of macromolecular architectures [28, 30-31]. The first discovery of polymeric ionic liquids 

was reported in 1970, wherein a monomer containing cationic-vinyl group was polymerized via 

free radical polymerization [28].  
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Polymerization of ionic liquids to prepare polymerized ionic liquid (PILs) is regarded as the 

earliest chemical transformation of ILs and have received a considerable interest from 

researchers. Polymeric ionic liquids usually combines the novel attributes of ILs monomers with 

well improved durability, processibility, enhanced mechanical and thermal stability, dynamic 

chains and spatial controllability of resultant PILs [32-36]. It has been reported that most 

synthesized PILs are solids at room or ambient temperature [30]. Numerous types of polymeric 

ionic liquids have been reported in the literature and varied with the position of the 

polymerizable units [33]. As presented in Fig. 1.1, some PILs are poly cations (polymerizable 

unit located on the cation), poly anions (polymerizable unit on the anion), copolymers (two or 

more monomers held together by either cationic or anionic backbone), and some are network 

polymers or polyzwitterion (both cation and anion parts of polymer backbone) [27, 34]. 
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(A) Polycation-type PILs (B) Polyanion-type PILs (C) Copolymer -type PILs

(C) Network Polymers (D) Poly(zwitterion) PILs  

Figure 1.1 Different types of PILs [27, 34] 

  Polymerizable units used in polymerization processes includes vinyl, (meth)acryloyl, and vinyl 

benzyl (styrene) groups [27]. In most PILs, the polymerizable groups are normally attached to 

the cationic part of the ionic liquid monomer. Fig. 1.2 shows common polymerizable groups.  

O

O

H2C

Vinyl
Vinyl Benzyl(Meth)acryloyl

 

Figure 1.2 Common polymerizable groups [27] 
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Schemes 1.1 and 1.2 illustrates the synthesis of ILs monomers with vinyl benzyl (styrenic) and 

(meth)acryloyl polymerizable groups, respectively [27]. For example, 1-methylimidazole reacts 

with 4-vinylbenzyl chloride to form the polymerizable ILs monomer, 1-methyl-3-(4-vinylbenzyl) 

imidazolium chloride as shown (Scheme 1.1). In Scheme 1.2, 1-methylimidazole reacts with 

halide (meth)acrylate species to produce polymerizable ILs monomer with (meth)acrylate group 

[27].  

N N
H3C

+

Cl

N N

H3C

Cl-

 

Scheme 1.1 Synthesis of 1-methy-3-(4-vinylbenzyl) imidazolium chloride with vinyl benzyl 

polymerizable group 

N N
H3C

+
O

O

Br

n

N N

H3C

Cl-

O

O

n

 

Scheme 1.2 Synthesis of methacrylate-containing polymerizable ILs monomer 
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1.2.1 Properties of PILs 

Physicochemical properties of polymeric ionic liquids can be tuned by changing the ions 

involved [36-38]. Some PILs are normally soluble in water (imidazolium-based PILs with 

halides as counter anions), and some are only soluble in organic polar aprotic solvents such as 

dimethyl form amide (DMF), dimethyl sulfoxide (DMSO) and acetonitrile [30]. This is so 

because the properties of PILs depends on the types of counter anions and/or counter cations 

involved, the alkyl chain length, and the chemical architecture of the polymer backbone [39]. 

The most common PILs properties are: ionic conductivity, glass transition temperature and 

amphiphilic behaviour [39]. 

 

1.2.1.1 Ionic conductivity 

The fundamental aspect of PILs in electrochemical science lies on the availability of mobile ions 

in the system and therefore the ion conductivity of PILs depends on the delocalization and 

movement of ions in it [39]. Eftekhari and Saito [40] reported that the ionic conductivity of PILs 

is greatly influenced by the mobility of cations if the polymer backbone is anionic (polyanion), 

and vice-versa. When the polymer backbone is the polycation, only anions are moving and 

impact the conductivity. The ion conductivity of polymeric ionic liquids is also influenced by the 

impurities, moisture, and environmental humidity [31, 39-40].  Thus, the ionic conductivity of 
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PILs will be smaller than that of their corresponding counter ILs [40]. This is due to the limited 

movement of ions in the polymer structure compared to ILs moieties. High thermal stability of 

PILs usually leads to strong ionic conductivities at high temperature [40-43]. Dynamic viscosity 

and glass transition temperature inversely impacts the ionic conductivity of PILs [41, 43-44].  

 

1.2.1.2 Glass transition temperature (Tg) 

This is a temperature region where polymer materials transitions from a hard, glassy materials to 

a soft, rubber-like materials [45-46]. Tg is the temperature below which a solid remain in glassy 

state and above which it becomes viscous liquid [45]. It has been observed that molecules or 

atoms at glassy state are subject only to vibrational and not transitional and rotational motions 

[45-49]. The process of solid melting (Tm) occurs at a temperature above Tg [50].  Polymers 

below Tg usually behave brittle, whereas above Tg they become more rubber-like material. Glass 

transition temperature of polymers can be affected by different factors such as molecular weight 

[49], molecular structure [50], length of side group(s) [50], double bond in polymer backbone 

[49-50], chemical cross-linked [51], backbone flexibility [52], branching [53], and alkyl chain 

length [54]. Glass transition temperature of PILs is effectively controlled by the structure of the 

polymer, the sizes of counter cations and counter anions used [41, 44].  
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Differential scanning calorimeter (DSC) can be used to determine glass transition temperature in 

polymer materials [45, 49-55]. Elabd and Ye [56] probed the effect of anion exchange on ionic 

conductivity, chemical and thermal stability of poly(1-[(2-methacryloxy)ethyl]-3-

butylimidazolium-based poly(ionic liquid)s. The glass transition temperatures of the series of 

polymers they synthesized were investigated using DSC and decreases in the following trends 

based on the anions: Br
-
>PF6

-
>BF4

-
>CF3SO3

-
>TFSI

-
 [83]. The trends showed approximately 95 

°C difference from Br
-
 salt (Tg =102 °C) to the TFSI

-
 salt with Tg = 7 °C. In the study done by 

Smith et al. [47], DSC was employed to determine glass transition temperatures of various salts 

of poly(1-ethyl-3-methyl-4-vinylimidazolium) and poly(3-ethyl-1-vinylimidazolium) with BF4
-
, 

PF6
-
, AsF6

-
, CF3SO4

-
, [CF3SO2]2N

-
, and C2N3

-
 as counter anions. Their intrinsic interest was on 

the comparison between the polymers of imidazolium with vinyl polymerizable group on the 1
st
 

and 4
th

-positions of the five-membered rings of imidazolium salts. Fig.1.3 shows the polymer 

structures of poly(1-ethyl-3-methyl-4-vinylimidazolium) and poly(3-ethyl-1-vinylimidazolium) 

salts studied by Smith et al. [47].  
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Figure 1.3 Poly(1-ethyl-3methyl-4-vinylimidazolium) (A), poly(3-ethyl-1-vinylimidazolium) 

(B) salts [47] 

1.2.1.3 Amphiphilic behaviour 

The hydrophobicity-hydrophilicity of PILs can be controlled or reversibly switched by 

interchanging the polyanions involved [57-58]. This depends on the type of the polymer 

architecture required, potential application, and poly ions used [59]. Hydrophobic polymers 

comprising of hydrophobic anions such as hexafluorophosphate (PF6
-
) or 

bis(trifluoromethanesulfonyl)imide (TFSI
-
) always precipitate in aqueous solution, without 

altering the chemical structure of the cationic polymer backbone [59-60]. These types of 

polymers are useful in water purification and gas separation [61]. Zhang and Yuan [62] reported 

the synthesis of 1-vinyl-1,2,4-triazolium PILs with  PF6
-
 and TFSI

-
 as hydrophobic counter 

anions via radical polymerization of corresponding ILs monomers and anion metathesis of 

already existing polymers (Scheme 1.3). 
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Scheme 1. 3 Synthesis of hydrophobic poly(4-alkyl-1-vinyl-1,2,4-triazolium) [62] 

 

 

1.2.2 Synthesis of PILs 

Synthesis of PILs depends on the required PILs structure, properties, and intended application(s) 

[28-29, 38, 58, 65-70]. Polymeric ionic liquids can be synthesized by either direct free radical 

polymerization of ILs monomers [33], and/or via modification of existing polymers [70-75]. The 

advantage of post-polymerization is the flexibility and specific reactivity of the synthesized PILs 

[76]. Kuzmicz et al. [77] discovered that the specific surface area (1000 m
2
/g) of polymer 

materials can be obtained by copolymerization of PILs through cross-linking. This well-defined 

surface area is predominantly important for adsorption applications.  
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Nakabayashi et al. [78] reported the synthesis of poly(N-viny-1,2,4-triazolium bromide) 

polymers via RAFT polymerization. The synthesized polymers were utilized as polymer 

precursors to synthesize two series of 1,2,4-triazolium-amphiphilic block copolymers by RAFT 

polymerization. High ionic conductivities of 3.1 x 10
-4

 mS/cm at 90 °C, 1.1 x 10
-4

 mS/cm at 55 

°C, and 3.4 x 10
-5

 mS/cm at 25 °C were obtained respectively. Isik et al. [59] also reported the 

synthesis of imidazolium–based PILs via RAFT polymerization of methacrylamido monomer 

with different alkyl chains such as ethyl, isopropyl, butyl, (1-phenyl ethyl), and dodecyl. The 

morphologies of the synthesized PILs were found to range from spherical to rod-like micelles.  

Scheme 1.4 illustrates the synthetic procedure for amphiphilic PILs via RAFT [36]. 
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Scheme 1.4 Synthetic procedure for amphiphilic PILs via RAFT [36] 
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1.2.3 Applications of PILs 

The present literature review paid specific focus on the application of polymer materials on the 

removal of metal ions, sometimes referred to as heavy metals from industrial and aqueous 

solution. 

1.2.3.1 Polymer materials on metal ions removal 

Fresh potable water is a basic requirement and necessity for the sustainability of humanity and 

wild-life on earth [81]. However, the continuously contamination of different water bodies by 

numerous water contaminants renders them unusable and non-reliable for supporting humanity 

and aquatic ecosystems.  Different micro-to-nanopollutants and metal ions are found in almost 

all water bodies today, in both degradable and/or non-degradable forms. Therefore, the removal 

of such water pollutants together with metal ions has been at the centre of research today. As one 

of the most dominant and leading applicable method for the removal of water-pollutants, 

adsorption has been intensively studied and recommended. Among the key properties of the 

suitable and reliable adsorbents include low-cost production, easy to operate, recoverable and 

reusable. Several adsorbents having used so far includes silica [82], carbon materials [83], rice 

hush [84], natural adsorbents [85-86], activated carbon [87], polymers [88], and dendrimers [81, 

89-91].  
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Shen and co-workers [92] studied the adsorption of Cr(III), Zn(II), and Cd(II) onto the surface of 

micelle-like aggregates of polymer-surfactant system made up of poly(dialldimethyl ammonium 

chloride)-poly(ethyleneimine) as cationic polymer and sodium dodecyl sulfate as a surfactant on 

the polymer backbone. It was established that the removal of all the multivalent species reached 

99% efficiency at their respective optimum dosages during the first 20 minutes of contact 

interface time. The use of magnetoactive polymer networks and their applicability as adsorbents 

for U(VI) and Th(IV) radioactive metal ions removal have been reported and its gaining 

popularity [93, 94-95]. Al Hamouz et al. [96] reported the synthesis and the use of three novel 

cross-linked polymer hydrogels with amino and hydroxyl functional groups prepared via 

Mannich polycondensation reaction as adsorbents, as shown in Fig. 1.4.  
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Figure 1.4 Bisophenol-S paraformaldehyde 1.6-diaminohexane polymer (BSDF), bisophenol-S 

paraforldehyde piperazine polymer (BSPF), and melamine paraformaldehyde piperazime cross-

linked polymer (MPF) [96] 

 

Ligand-carrying polymeric nanoparticles (LC-NPs) were investigated and tested against the 

absorption of various metal ions from aqueous solution in the form of Ni(II), Co(II), Cu(II), and 

Cr(VI) [97]. The metal ion removal, recovery and efficacy of the designed nanomaterials were 

also investigated.  Chen and Huang [98] probed the in situ polymerization of 1-vinyl-3-

octylimidazolium tetraborate (VOI) and the use of two cross-linkers, (divinylbenzene and N,N-

methylene bisacrylamine). The as-synthesized PILs material (Fig. 1.5) was employed to co-
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extract acidic (phenols), basic (aromatic amines), and parabens (neutral) analytes. The as-

synthesized PILs materials were merged with stir cake sorptive extraction (SCSE) to produce 

SCSE/PIL as the potential adsorbent for acidic, basic, and neutral analytes.   

 

Figure 1.5 PIL material of 1-vinyl-3-octylimidazolium tetraborate (VOI) with two cross-linkers 

(Divinylbenzene and N,N-metheylene bisacrylamine) [98] 

 

1.2.3.2 Natural polymers on metal ions removal 

In one of the attempts to use natural and synthetic polymers, Lam et al. [99] reported the use of 

polymer-enhanced ultrafiltration (PEUF) made up of chitosan and carboxylmethyl cellulose 

(CMC). The PEUF system was designed to be used in urban or industrial wastewater treatment. 
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Among the important attributes of the system was its performance induced by the use of the 

natural polymers in different conditions, taking into account the effect of metal ion 

concentration, salt addition, and pH of the solution. The natural and synthetic polymers used by 

Lam and co-workers [99] are presented in Fig. 1.6. In another study, Huang and co-workers 

[100] probed the applicability of polyvinylamine (PVAm) as the chelating polymer agent for the 

removal of certain metal ions using ultrafiltration process. However, it was established that the 

coordination interactions between the polymer chelating agent and the metal ion relatively 

influenced the performance of the polymer-enhanced ultrafiltration (PEUF). The authors also 

concluded that due to the availability of –NH2 binding sites, the PVAm can be successfully used 

in flocculation/coagulation processes as flocculant to bind and remove metal ions from 

wastewater plants.  

 

Figure 1.6 Natural polymer (chitosan), and synthetic polymer (carboxylmethyl cellulose) [99] 
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Another study on the use of natural polymers for the removal of metal ions was conducted by 

Siahkamari and co-workers [101]. In this study, the adsorption of Pb(II) by chitosan and chitin 

nano-sorbents was investigated and it was established that the adsorption process reached 

equilibrium at 60 minutes of contact time interface [101]. The adsorption mechanism of Pb(II) 

on chitosan nanoparticles is shown in Fig. 1.7. In an attempt to study the adsorption behavior of 

chitin derivatives, Cao and co-workers [102] reported the adsorption of methylene blue (MB) 

onto the porous chitin. They achieved a removal efficiency of 79.8%, thanks to the lower 

crystallinity and more porous structure of chitin sorbents (PChs). Their conclusion was derived 

based on adsorption mechanisms involved which include heterogeneous mass transfer with 

multiple diffusion processes such as diffusion of MB from the liquid state to the external surface 

of the adsorbent, diffusion of MB from outer surface to the inner surface of the adsorbent, and 

finally the diffusion of MB from one pore to another pore of the adsorbent. 
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Figure 1.7 Adsorption mechanism of Pb(II) on Chitosan nanoparticles [101]. 

 

1.2.3.3 Synthetic polymers on metal ions removal 

 

Ceglowski and Schroeder [103] prepared two new chelating polysiloxane-based polymers by 

grafting pyridine-pyrazole ligands onto poly(methyl hydrosiloxane) (PMHS) and used them in 

selective extraction of Cu(II), Cd(II), Cr(III), Ni(II), and Co(II). The structures of the polymers 

obtained by hydrosilylation reaction of poly(methylhydrosiloxane) with pyridine-pyrazole 

ligands are shown in Fig. 1.8. It was established that the length or the nature of the linker have 

influenced the metal ion uptake of the synthesized chelating polysiloxane-based polymers. For 

example, the polymer structure with the shorter linker was found to be more selective towards 
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Cu(II) ion, whereas the other one with longer linker exhibited more flexibility and 

multifunctional behavior towards metal ions uptake [103]. 

 

Figure 1.8 Structures of chelating polysiloxane-based polymers after adsorption of metal ions 

[103] 

 

El-Said et al. [104] reported the synthesis of meso-sorbent silica polyaniline (MSNPs/MANI)) 

composite for the removal of chloridazon (n-CLZ) from aqueous solution. The polymeric 

composite was synthesized from mesoporous silica support together with polyaniline (in situ 

polymerization of polyaniline in MSNPs). The authors established that the removal of 

chloridazon increased sharply at low n-CLZ concentrations when using MSNPs/PANI meso-
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sorbent. It was also observed that the adsorption of n-CLZ pesticide by MSNPs/PANI followed 

Freundlich isotherm (assuming multilayer adsorption onto the heterogeneous surface).  

 

Hosseini et al. [105] reported the synthesis of polypyrrole via oxidative polymerization and the 

resultant available amine functional groups were used for selective co-ordination with Cu(II) 

ions. Both the ion-exchange property and porosity of the polypyrrole are believed to be the main 

properties that facilitated the interactions and possibly removal of Cu(II). The adsorption 

mechanism of Cu(II) by polypyrrole is shown in Fig. 1.9. Polyaniline (PANI), polypyrrole 

(PPY), and polythiophene (PT) conducting polymers have been synthesized and used in the 

removal of nitrate anions from water. Based on the properties of the polymeric chain, it was 

expected that the polymer chain fairly contributes to the reduction of nitrate without the use of a 

particular metal catalyst [106]. In PANI, the ion-exchange between Cl
-
 and SO4

2-
 counter-ions 

and NO3
-
 from water was considered as the possible interaction and mechanism behind the 

removal of nitrate. 
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Figure 1.9 Adsorption of mechanism of cu(II) by polypyrrole [105] 

 

The use of carbon-based materials grafted with polymers has been briefly investigated in metal 

ions removal. For example, Ko and co-workers [107] have recently reported the synthesis of 

disulfide-linked polymer grafted activated carbon (DiS-AC) (Fig. 1.10) and its applicability in 

heavy metals’ removal from storm water runoff. Comparing the sorption affinities of Cd(II) 

removal using conventional sorbents, it was observed that the distribution coefficient of Cd(II) 

bonding using DiS-AC was 89.10
3
 L/Kg at solution concentration of 0.35 mg/L. 
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Figure 1.10 Structure of disulfide-linked polymer grafted activated carbon [107]. 

 

1.2.3.4 Ion-imprinted polymers on metal ions removal 

 

The synthesis and study of magnetic ion-imprinted polymer systems (IIPs) have recently gained 

significant consideration in wastewater treatment and removal of metal ions. Yuan and co-

workers [108] synthesized cobalt ion-imprinted polymer systems based on metal-organic 

frameworks and employed them on the removal of cobalt(II). It was seen that the adsorption 

capacity of the synthesized Co-IIP adsorbent was 175 mg/g and the experimental data fitted well 

into the pseudo-second-order kinetic model. Another study on the use of ion-imprinted polymer 

systems was reported by Liang and co-workers [109]. They synthesized novel magnetic Cr(VI) 

ion-imprinted polymer systems via sol-gel process for the removal or retention of Cr(VI). 

However, the resultant Cr(VI) ion-imprinted polymer materials yielded high adsorption capacity 
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of about 311.95 mg/g for hexavalent chromium at low pH (optimal pH of 2.0). At low pH levels, 

the adsorption of Cr(VI) was observed to be high due to the presence of protonated nitrogen 

groups in the pyridine structure. Furthermore, the desorption and reusability of the adsorbent 

were investigated and it was discovered that the Cr(VI) ion-imprinted polymer systems were 

stable and reusable up to five repeatable cycles with less than 5% loss of adsorption capacity. 

Owing to the conversion or transformation of Cr(VI) to less toxic Cr(III), authors also concluded 

that the desorption method used decreased or minimized the toxicity of chromium.  

 

Xi et al. [110] reported a maximum adsorption capacity of 46.5 mg/g using cadmium imprinted 

polymers. Li and co-workers prepared inverse emulsion Cd(II) ion imprinted polymers (Cd(II)-

IEIIPs) and evaluated them on the selective removal of Cd(II) from aqueous solution. Their 

study achieved adsorption capacity of about 86.7 mg/g. Taking into consideration the selectivity 

coefficients k obtained for Cd(II)/Pb(II), Cd(II)/Zn(II),  and Cd(II)/Cu(II), which were 2.4998, 

1.2437, and 4.6882, respectively, they concluded that the synthesized Cd(II) ion imprinted 

polymer system could be used to selectively remove Cd(II) from other wastewater bodies. For 

the first time, So and co-workers [111] reported the selective ability of surface molecularly 

imprinted polymer (SMIP) in removing carbaryl (CBL) in competitive adsorptions with 

carbofuran (CBF) and metolcarb (MTC). An adsorption capacity of 41.14 mg/g for CBL was 
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achieved in the competitive environment against 8.12 and 4.15 mg/g of CBF and MTMC, 

respectively.  

 

He et al. [112] recently studied the surface modification of β-cyclodextrin (β-CD) by cross-

linking it with rigid aromatic compound like tetrafluoroterephthalonitrile, resulting to a β-CD 

polymer with high surface area. The competitive adsorption capacity of β-CD polymer was 

evaluated against Pb(II), Cu(II), and Cd(II) and it was discovered that certain structural and 

chemical properties such as large surface area, the presence of negative charge and H
+
 ions on 

hydroxyl groups played a significant role in facilitating and monitoring the adsorption of Pb(II), 

Cu(II), and Cd(II) onto the surface of β-CD polymer. Adsorption equilibrium was reached at 5 

min time and adsorption capacities of 196.42, 164.45, and 136.43 mg/g at initial concentration of 

200 mg/L for Pb(II), Cu(II), and Cd(II) were achieved, respectively.  

 

Fallah et al. [113] reported the synthesis and evaluation of new highly selective molybdenum 

(VI) ion-imprinted polymer (Mo(VI)-IIP) on selective adsorption of Mo(VI) from aqueous 

solution. Maximum adsorption capacity of 131.75 mg/g was achieved. In addition to high 

selectivity behavior, the Mo(VI) imprinted polymer was found to be thermally stable and 

reusable up to six cycles without losing its adsorption capacity. Furthermore, a wide variety of 
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adsorption capacities of some polymer systems that have been recently studied and reported for 

the removal of certain metal ions are presented in Table 1.1.  

     

Table 1.1 Adsorption capacities of some polymer materials. 

 

Polymer system 

type 

 

 

Targeted species Adsorption 

capacity (mg/g) 

 

 

pH/ contact time 

(min) 

 

 

Ref. 

Cd(II)-IIP Cd(II) 46.5 5.0/20 [110] 

Surface-grafted 

Cd(II)-IIP 

Cd(II) 46.8 6.0/35 [114] 

Cd(II)-IIP Cd(II) 45  [115] 

Cd(II)IP Cd(II) 40  [116] 

IEIIP Cd(II) 86.7 7/80 [117] 

IEIIP Pb(II) 27.95 6.0/10 [118] 

IIP Cu(II) 84  [119] 

SMIP CBL 41.14 7/40 [111] 

β-CD polymer Pb, Cu, & Cd 196.42, 164.45, 

136.43 

7-11/5 [112] 

Mo(II)-IIP Mo(VI) 126.06 10/10 [113] 

CSF/PDMAEMA Cr(VI) 145 3/10 [120] 

CS-Fe-SO4 complex dyes 249.22 4.6.5/10 [121] 

Cu(II)-IIP Cu(II) 48 - [122] 

Magnetic Hg(II)-

MIIP 

Hg(II) 78.3 6/5 [124] 

Ni(II)-IIPs Ni(II) 40 9/15 [124] 

Cd(II)-IIP Cd(II) 16.5 6.0/20 [125] 

Ni(II)-

IIPs/MWCNTs 

Ni(II) 19.86 6/30 [126] 

β-CD polymer Cd(II) 107 7/80 [127] 
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: Ion-imprinted polymer (IIP), inverse emulsion ion-imprinted polymer (IEIIP), surface molecularly imprinted 

polymer (SMIP), corn stalk fibers/poly(dimethylaminoethyl methacrylate (CSF/PDMAEMA)), multi-walled carbon 

nanotubes (MWCNTs). 

 

1.2.4 The effect of pH 

The effect of solution pH on the removal of metal ions from aqueous solution plays crucial role 

in understanding adsorption mechanism. The protonation of functional groups on the adsorbent 

and the solution-chemistry properties of the metal ions are among the most influential pH 

attributes [128]. In the study of Kang et al. [128], the precipitation of Co(OH)2 occurred at pH>7, 

signifying the increase of adsorption capacity of Co(II)-IIP and NIP for Co(II) with increasing 

pH of solution and decrease at low pH values (pH<6). Xu et al. [129] reported that sulfur-rich 

microporous polymer (SMP) exhibited excellent removal efficiency of greater than 98% on the 

removal of Hg(II) over a wide range of pH values (from acidic to alkaline conditions).  

 

Sanchez et al. [130] investigated the effect of pH on the removal of hexavalent chromium 

species using poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) in a polymer-enhanced 

ultrafiltration (PEUF). Their study showed that the retention of Cr(VI) reached maximum at 

pH=4 and 6, showing significant decrease around  acidic medium (pH<4) and neutral to basic 
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conditions (pH>6). The fundamental reason behind the retention of Cr(VI) at such pH values is 

the fact that PDMAEMA is protonated and enabled to electrostatically interact with dichromate 

and hydrochromate anions.  

 

In generally, the retention of chromium anions from aqueous solution depends on the degree of 

protonation of the adsorbent and the type of chromium species in solution [130]. It has been 

reported in the literature that the protonation of the nitrogen atom (or -NH2) of the amino-

containing polymer adsorbents usually facilitate the efficient removal of Cr(VI) in the form of 

dichromate (Cr2O7
2-

) [131-134]. It was also established that the adsorption mechanisms were 

prompted by the ionic electrostatic interaction between the protonated polymer parts and the 

negatively charged dichromate anion [131, 135].  

 

Literature have also reported that the adsorption of Cr(VI) reached equilibrium at low pH values 

(pH=2), and decreased at high pH values [131]. Poor electrostatic interactions (at high pH values 

due to the competition between CrO4
2-

 and OH
-
) and excellent electrostatic interactions (at low 

pH values due to the protonated adsorbent surface) are known to be the main attributes behind 

the adsorption of Cr(VI) [136-137]. Having mentioned the influence or existence of electrostatic 

interactions during the adsorption processes (i.e. the adsorption of Cr(VI)), it is also worthy to 
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mention the formation of electrostatic repulsion between the specific functional groups and 

certain species. When an adsorbent-functional group such as -NH2 is protonated to –NH3
+
 at low 

pH values, electrostatic repulsions are experienced in the case of divalent metal ions adsorption 

[138]. Electrostatic repulsions significantly reduce the adsorption or removal efficiency.  

 

Mishra and Verma [139] studied the binding affinity of Pb(II) with novel Pb(II) ion-imprinted 

/carbon nanofibers-grafted highly porous polymeric beads (CNF-IIP). High adsorption capacity 

(47.62 mg/g) was achieved at pH=6, and adsorption capacity decreased at high pH levels due to 

the precipitation of Pb(II) as hydroxides, i.e. Pb(OH)
+
, or Pb(OH)3

-
. Table 1.2 presents the 

summary of some studies reported in the literature based on the effect of pH in the adsorption of 

come metal ions.  
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Table 1.2 Some literature findings on the effect of pH. 

 

Polymer system Target species Adsorption 

capacity (mg/g) 

pH Ref. 

CNF/Pb(II)-IIP Pb(II) 47.02 6 [139] 

PDMAEMA-PEUF Cr(VI) 100 4-6 [130] 

Co(II)-IIP Co(II) 23.09 ≥7 [128] 

SMP Hg(II) RE>98.8% Acidic to basic [129] 

CSMA-MO Cu(II) RE>100% 6-8 [140] 

Poly(MAAcH)-cl-

DVB 

Cr(VI) 100 2.0 [131] 

CTS-PVA/APT Cu(II) 4.26 5.50-6.50 [141] 

Poly(AN-co-AA) Cd(II) RE>90% 9 [142] 

Poly(AN-co-AA) Pb(II) RE>98% 9 [142] 

PAMA Cr(VI) 192.2 4 [143] 

PAMA Ni(II) 243.2 6 [143] 

L-IIPs Pr, Nd, Sm, Eu, Gd 125.3, 126.5, 127.6, 

128.2, 129.1 

6 [144] 

Carbon nanofibers (CNF), chitosan-poly(vinyl alcohol)/attapulgite (CTS-PVA/APT), poly(acrylonitrile-co-acrylic 

acid) [poly(AN-co-AA), poly(acrylonitrile co maleic acid) (PAMA). 

 

1.2.5 Regeneration and reusability of polymer adsorbents 

The ability to regenerate and reuse the adsorbents is the most fundamental characteristic of an 

ideal adsorbent. Regenerative and reusable adsorbents are the most desirable materials in 

separation technology [145]. Owing to excellent elution solution, adsorbents are normally 

regenerated and reused multiple times with promising results and performance [146]. Tolessa et 

al. [147] probed and reported the reusability of magnetic chitosan microspheres (MCMs). They 
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discovered that after the first use, the adsorbent (MCM) maintained extraction efficiency of 

89.6%, then an average extraction efficiency of up to 77.2±22% after three consecutive cycles. 

Fe3O4 magnetic nanoparticles surface-modified with 2,4-diaminophenol and formaldehyde 

(DAPF) were investigated as potential adsorbent for anionic dyes [148]. The latter authors 

discovered that the adsorption-desorption efficiency of Fe3O4@DAPF was maintained up to 

three cycles. In the study of Sikdera et al. [149], the adsorption-desorption studies have been 

conducted and have proven the mechanically and chemically robustness of CS-β-CDP-CMβ-CD 

beads used in the removal of Cd(II) ions from aqueous solution. The latter material was reusable 

up to seven (7) times without exhibiting a loss in adsorption capacity [149].  

 

Maity and Ray [150] studied the regeneration and reusability of Cs-PMA/HNT on the 

removal/adsorption of Pb(II) and Cd(II).  Their results showed that the Cs-PMA/HNT can be 

reused up to 5 times with excellent adsorption capacities ranging from 60 to 98% recovery of 

both Pb(II) and Cd(II). The regeneration and reusability of adsorbents mainly depends on the 

number of parameters including, to mention the few, the interactions between the metal ion(s) 

and the adsorbent, the nature of the adsorbent sites, and the eluent used [151-152]. Ravi and Ahn 

[153] regenerated and tested IPOP-Ns adsorbent ten (10) consecutive times to determine its 

reusability and stability after so many adsorptions-desorption cycles. It was established that the 
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latter adsorbent was chemical and structural stable, producing similar sorption performance in all 

cycles. Taghizadeh and Hassanpour [154] also studied the use of magnetic multi-walled carbon 

nanotubes-ion imprinted polymers (mMWCNTs-IIPs) for the removal of Cr(VI). Regarding the 

reusability of the adsorbent, they discovered that the polymer-functionalized carbon nanotubes 

material could be regenerated and reused up to the fifth time with only less than 7% adsorption 

capacity loss. However, Table 1.3 shows some of the polymer-based materials that have been 

regenerated and reused in the literature recently.  

 

Table 1.3 Some regenerated and reused polymer-based materials 

Polymer adsorbent Target species Max. Adsorption 

capacity (%) 

No. adsorption-

desorption cycles 

Ref. 

Cs/WCGs MET, ASA, ACE, 

CAF 

>50 5 [155] 

mMWCNTs@PIL Cu, Zn-SOD >60 5 [156] 

Cu(II)-IIPs Cu(II) 99.9 5 [157] 

NFC-MAA-MA 

aerogel 

Pb, Cd, Zn, Ni >80 10 [158] 

TSP-NS Cu(II) >90 5 [159] 

CMC-g-

PAM/MMT 

Rb
+
 & Cs

+
 - 5 [160] 

Jule/PAA gel Cd(II) & Pb(II) 81 & 94 5 [161] 

Poly(methacrylic acid-co-maleic acid) grafted nanofibrillated cellulose (NFC-MAA-MA), chitosan/waste coffe-

grounds (Cs/WCGs), triazine and thiophene bifunctionalized task-specific porous organic polymer with N and S 

atoms (TSP/NS) ,  carboxymethylcellulose-g-poly(acrylamide)/montmorillonite (CMC-g-PAM/MMT), 

Jute/Polyacrylic acid (Jute/PAA). 
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1.3 Problem statement 

The environmental concern posed by the existence of toxic metal ions in drinking water and acid 

mine drainage from either abandoned and active coal and/or gold mines in the mining regions 

has drawn a serious attention of researchers and government institutions world-wide. For 

example, acid mine drainage posed a very negative–ecological impact on the ecosystem. This 

water threat is facilitated by the combination of factors such as low rainfall and high evaporation 

(high evapotranspiration than precipitation), expanding economy, and overpopulation. On the 

other hand, hexavalent chromium is known to be 100-fold more toxic than the trivalent moiety, 

especially in oxidized states. Presently, there is a growing need for a reliable, eco-friendly, and 

cost-effective method to remove toxic metal ions in drinking water. However, quite number of 

conventional methods such as coagulation, precipitation, reverse osmosis, and membrane 

filtration has been applied, yet showed high cost of operation. Recently, adsorption processes 

have been gaining moment as a potential metal ion remedial action and the fabrication of green 

chemistry materials as adsorbents is of importance.  

 

The use of ionic liquids, polymeric ionic liquids, and their carbon nanotubes-functionalized 

composites on metal ions adsorption still lacks in the literature and need to be thoroughly 

investigated. For example, the knowledge about the interactions between IL salts and metal ions 
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during liquid/liquid extraction is still in nascent stage in the literature. The reports on the 

synthesis and use of PILs from imidazolium-based IL monomers with halide anions and short–

alkyl chains have dominated the literature, however, their carbon nanotubes-functionalized 

derivatives and evaluation on metal ions removal are hardly reported so far. 

 

1.4 Rationale and motivation 

Imidazolium and pyridinium-based ILs and PILs with tunable hydrophobic anions offer several 

advantages such as water immiscibility, high thermal stability, and very low vapour pressure. 

Functionalized carbon nanotubes with hydrophobic ILs and PILs offer high thermal stability, 

large surface area, and dispersibility and hydrophobicity characteristics. Availability of poorly-

coordinated organic and/or inorganic ions in ILs and PILs derivatives may be favourable to 

Cr(VI) retention at variable pH levels. The synthesis and application of selected ILs and PILs 

with fluorinated anions such as hexafluorophosphate (PF6
-
) and bis(trifluoromethanesulfonyl) 

imide (TFSI
-
) offers the advantage of water immiscibility, high thermal stability, and solid at 

high temperatures.  Ionic liquids and polymeric ionic liquids with hydrophobic anions (PF6
-
 and 

TFSI
-
), aromatic cations and three or low-alkyl chain length substituents are hydrophobic and 

convenient for solid-liquid adsorption. For example, N-vinyl imidazolium–based ILs monomers 

with PF6
-
 usually precipitate out of aqueous solution. Carbon nanotubes tend to agglomerate, 
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therefore functionalising or dispersing them in ionic liquids derivatives will be necessary for the 

proposed use as adsorbent of metal ion. Hybrids of ILs/CNT and PILs/CNT provide high 

adhesion between CNT and metal ion. Functionalized carbon nanotubes with hydrophobic ILs 

and PILs possess high dispersibility and hydrophobicity. 

 

1.5 Aim and objectives 

This study has two major aims: 

Aim 1: To synthesize and characterize pyridinium and imidazolium based ionic liquids (ILs) and 

polymeric ionic liquids (PILs). 

To achieve aim 1, the objectives are: 

 To synthesize and characterize pyridinium and imidazolium based ILs with three 

carbons lateral chains. 

 To synthesize and characterize pyridinium based polymeric ionic liquids with 

vinyl polymerizable moiety. 

 To synthesize and characterize imidazolium based polymeric ionic liquids with 

vinyl and styrenic polymerizable moieties. 
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Aim 2: To synthesize and characterize ILs and PILs-functionalized MWCNT composites and 

apply on the adsorption of Cr(VI). 

To achieve aim 2, the objectives are: 

 To synthesize MWCNTs using facile chemical method. 

 To characterize MWCNTs using Infrared spectroscopy, thermal analysis, XRD, 

solubility, SEM/EDS and TEM microscopic analysis. 

 To synthesize and characterize ILs and PILs-modified MWCNT composites using 

direct mixing method. 

 To evaluate the as-synthesized ILs and PILs-functionalized composites potential 

as adsorbent for Cr(VI).  
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CHAPTER TWO 

 

 

 

SYNTHESIS AND CHARACTERIZATION OF IONIC LIQUIDS AND IONIC 

LIQUIDS/MULTIWALLED CARBON NANOTUBES COMPOSITES 

 

 

 

 

 

 

 

 

 

Part of Chapter two has been published: 

Matandabuzo, M.; Ajibade, P.A. Synthesis, characterization, and physicochemical 

properties of hydrophobic pyridinium-based ionic liquids with N-propyl and N-isopropyl. 

Z. Anorg. Allg. Chem. 2018, 644, 489–495.  

 

Matandabuzo, M; Peter A. Ajibade, Synthesis and surface 

functionalization of multi-walled carbon nanotubes with imidazolium and pyridinium based ionic 

liquids: Thermal stability, dispersibility and hydrophobicity characteristics. J. Mol. Liq.2018, 

286, 248-293. 
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Chapter 2 

 

2.1 Synthesis of ILs and IL/MWCNT composites 

 

2.1.1 Background into pyridinium and imidazolium-based ionic liquids 

Ionic liquids (ILs) are salts (organic and/or inorganic), with melting point relatively lower than 

(<100 °C) and are liquid at room temperature [162-163]. They were first discovered in 1914, 

when Weldon reported the physical properties of ethyl ammonium nitrate (C2H5NH3)NO3 with 

melting point of 12 °C [163]. Ionic liquids consist of an organic cation with delocalized charge, 

and organic or inorganic counter-ion [164-165]. The tunability of ionic liquids to give specific 

properties for a particular application is the reason for being given nickname “designer solvents” 

[162-166]. Ionic liquid salts possess special properties such as relatively non-volatile [167], good 

thermally stability [168], low melting point [167, 169], and high density [170]. Some of the 

properties of ionic liquids largely depend on the chosen cation and/or alkyl chain, and anion 

[171-172].  

 

Kubisa [166] reported that both the cation and anion contribute to the melting point of an ionic 

liquid. An ionic liquid salt has no measurable vapor pressure, which makes them good 

replacements for volatile organic solvents [173]. It has been reported that organic cation(s) with 
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low symmetry or branched chain relatively produce low melting point salts [149]. 

Hydrophobicity, viscosity, density, and solvation of ionic liquids can be changed or manipulated 

by changing the anion [175-176]. The most common procedure used to synthesize water-

immiscible ILs involves the preparation of aqueous solution of the halide salt with desired cation 

such as 1-ethly-3-methylimmidazolium halide followed by the anion-exchange process [177-

179]. The water solubility or miscibility of ionic liquids depends on the type of counter-ion used 

[176, 178]. A typical example is that of 1-butyl-3-methylimidazolium in which the ionic liquids 

of 1-butyl-3-methylimidazolium cation and PF6
-
 anion are immiscible in water, whereas that of 

1-butyl-3-methlyimmidazolium cation and BF4
-
 is soluble [176]. The functionality of ionic 

liquids can be tune by functionalizing the organic cation and anion molecular structure [177, 

180]. Ionic liquids are associated with green chemistry as substitutes for volatile and flammable 

solvents. However, these types of salts have recently drawn significant interests for application 

in organic and polymer chemistry, catalysis, electrochemistry, analytical chemistry, 

nanotechnology, energy, micellization, and biotechnology [181-183]. ILs are also used as 

plasticizers, additives, components of polymer electrolytes, and porogenic agents to polymers 

[193].  
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Papaiconomou et al. [184] synthesized and studied the physicochemical properties of four 

pyridinium-based ionic liquids namely: 1-butyl-4-methylpyridnium bis(trifluoromethylsulfonyl) 

imide [MBPYR]
+
[Tf2N]

-
, 1-butyl-4-methylpyridnium trifluoromethyl sulfonate 

[MBPYR]
+
[TfO]

-
, 1-butyl-4-methylpyridnium nonafluorobutyl sulfonate [MBPYR]

+
[NfO]

-
, and 

1-butyl-4-methylpyridnium dicyanamide [MBPYR]
+
[N(CN)2

-
], respectively. They discovered 

that two of the four pyridinium-based ionic liquids, [MBPYR]
+
[N(CN)2

-
] and [MBPYR]

+
[NfO]

-
  

were solid at room temperature, while [MBPYR]
+
[Tf2N]

-
 and  [MBPYR]

+
[TfO]

-
 were found to 

have densities higher than that of water at ambient temperature, which were 1.35 and 1.17 g∙mL
-

1
, respectively. Again, [MBPYR]

+
[NfO]

-
 and [MBPYR]

+
[Tf2N]

-
 were found to be insoluble in 

water at 25 °C. Their melting points increases as follows: [MBPYR]
+
[N(CN)2

-
]> 

[MBPYR]
+
[NfO]

-
> [MBPYR]

+
[TfO]

-
>> [MBPYR]

+
[Tf2N]

-
. They concluded that ionic liquids 

containing 1-butyl-4-methylpyridinium cations have considerable high melting points, high 

densities, but lower solubility’s in water than their imidazolium cation counterparts [184-186].  

 

Dzyuba [186] reported the synthesis of N-substituted pyridinium bromide ionic liquids. Although 

research into the synthesis of pyridinium-based ionic liquids has received considerable attention 

in recent years, the wide applicability of imidazolium–based ionic liquids makes the pyridinium-

based ionic liquids less attractive. N-substituted pyridinium halides are known to be solids, 
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which is in agreement with the findings of Papaiconomou and co-workers [184]. Dyzuba [186] 

also reported the novel synthesis of dicationic salts containing both pyridinium and ammonium 

cations. 

 

2.1.2 Background into pyridinium and imidazolium-based ILs/functionalized carbon 

nanotubes 

The incorporation and/or coating of carbon nanotubes with different salts, nanoparticles, 

polymers, and ionic liquids produces composites with enhanced physical, chemical and 

mechanical stability that can be easily processed and hydrophobic [187]. The formation of bulky 

gels is known as the first discovery of ionic liquids/carbon nanotubes composites [188-196]. 

However, due to the presence of highly polarizable π electrons in ionic liquids, the interactions 

between the carbon-based π-systems and ionic liquids are very complex [193]. Espejo et al. 

[197] reported the dispersion of multi-walled carbon nanotubes (MWCNTs) in imidazolium-

based ILs to produce stable and homogeneous dispersions with relatively new and unique 

properties. It was also reported that dispersion of CNTs in ILs produces composites with 

enhanced surface area [197]. Yang et al. [198] reported the functionalization of MWCNTs with 

2,2’-(ethylendioxy)-diethylamine, 1,8-diaminoctane, and pristine. They observed that MWCNTs 

functionalized with 2,2’-(ethylendioxy)-diethylamine were individually integrated into the epoxy 
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matrix, whereas MWCNTs with 1,8-diaminoctane were poorly dispersed with notable weak 

interface adhesion. Salam & Burk [199] reported the synthesis and functionalization of multi-

walled carbon nanotubes by octadecylamine (ODA) and polyethylene glycol (PEO). Their results 

revealed that only 16% (wt) of MWCNTs was covered by PEG, while 39% (wt) was covered by 

ODA. The dispersion of MWCNTs in polymer composites was reported by Pereira et al. [200], 

in their preliminary study of MWCNTs in poly(vinilydene fluoride), MWCNT/PVDF/ZrO2. 

Spectra studies of the synthesized nanocomposites confirmed the incorporation of the MWCNTs 

into poly(vinilydene fluoride) matrix [200].  

 

Ohba and Chaban [201] reported the structure and dynamics of imidazolium-based ILs confined 

inside carbon nanotubes. França [194] reported that CNTs covalently modified with 

imidazolium-based ILs are dispersible only in water when they contain Cl
-
 or Br

- 
counter

 
ions. 

Further studies indicate that fluorine-based anions such as BF4
-
, PF6

-
, and Tf2N

-
 permit the 

dispersion of imidazolium-modified CNTs only in organic solvents (CHCl3), forming black 

homogeneous solutions. In other study, Chaban and Prezhdo [202] suggested that highly viscous 

liquid composed of asymmetrical cations and small anions can penetrate inside the apolar CNTs 

at ambient pressure and high temperatures. Recently, Taherkhani and Minofar [203] studied the 

effect of impurity and radius of CNT on glass transition and electrical conductivity of 1-ethyl-3-
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methylimidazolium hexafluorophosphate [EMIM][PF6] encapsulated in CNT, using molecular 

dynamic simulations (MDS). Their findings indicate that the electrical conductivity of 

[EMIM][PF6]/CNT increases with increasing radius of CNT, whereas the electrical conductivity 

of [EMIM][PF6] decreases significantly when encapsulated in zigzag CNT.  

 

Chen et al. [204] reported the encapsulation of 1-butyl-3-methylimidazolium 

hexafluorophosphate in MWCNTs, and they observed that ILs coated in the hollow interior of 

MWCNTs produces ILs/MWCNT composites with high thermal stability due to the presence of 

van der Waals and hydrogen-bonding interactions. Ohba et al. [205] reported that cations adhere 

weakly to the sidewalls of CNTs, while anions move freely inside the interior of CNTs. Studies 

on the mechanisms of interactions between carbon nanotubes (CNTs) and ionic liquids suggested 

that ILs interact with CNTs via π-cation and/or π-π interactions [204, 206-207]. In other studies, 

weak van der Waals or electrostatic forces inferred as basic interactions behind the formation of 

CNTs-ILs composites [209-211]. For instance, Fileti and Chaban [211] conducted a study where 

they concluded that fullerene-ionic liquid binding forces were not exclusively of the van der 

Waals interactions. In this chapter, the synthesis, characterization, and physicochemical 

properties of some hydrophilic and hydrophobic pyridinium and imidazolium–based ionic liquids 

3-carbons isomeric alkyl chain lateral are presented.  
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2.1.3 Materials 

All chemicals were purchased from Sigma-Aldrich and BDH chemicals Ltd, and were used as 

received without further purification unless stated otherwise. Chemicals used to synthesize ionic 

liquids:   1-methylimidazole (≥99%, purified by redistillation), pyridine (ACS reagent, ≥99.0%), 

1-bromopropane (99%), 2-bromopropane (99%), and potassium hexafluorophosphate (≥99%, 

solid).  Chemicals used to synthesize polymeric ionic liquids: 4-vinylpyridine (containing 100 

ppm hydroquinone as inhibitor, 95%), bromoethane (98%), potassium persulfate (≤98%), 1-

vinylimidazole (≥99%), 4-vinyl benzyl chloride (90%), bis(trifluoromethanesulfonyl)imide 

lithium salt (99.95% trace metals basis), and 2,2'-Azobis(2-methypropionitrile) solution (AIBN, 

0.2 M in toluene). Solvents and other materials: Dimethyl sulfoxide (ACS, ≥99.9% for analysis), 

dichloromethane (ACS reagent, ISO, ≥99.9%, GC), N, N-Dimethyl formamide (DMF, ≥99.8%), 

diethyl ether (99%), acetone (≥99.8%), acetonitrile (≥99.9%, gradient analysis), methanol (ACS, 

ISO, reag. Ph Eur for analysis), ethanol (≥99.5%, A.R), graphite powder (<µm, synthetic, 

Switzerland), sulphuric acid (95-99%, A.R), nitric acid (70%, A.R), sodium nitrate (>98%, ex 

NO3), and potassium dichromate (K2Cr2O7).  

 



46 
 

2.1.4 Characterization techniques  

Infrared spectroscopic measurements were obtained from Fourier transform Infrared (Perkin-

Elmer, Universal ATR sampling Accessory 4000-600 cm
-1

). 
1
H, 

13
C,

 31
P, and 

19
F-nuclear 

magnetic resonance (NMR) spectra were obtained on a Bruker Avance III 400 at frequencies 500 

MHz or 400 MHz (
1
H). The mass spectrometry (MS) was recorded on a Waters Micro-mass 

LCT Premier spectrometer. Thermal stability of ILs, PILs, MWCNTs, and PILs-functionalized 

hybrids was determined by Thermogravimetric analyzer (Perkin-Elmer TGA 4000), with sample 

(10-30 mg) weight placed in a ceramic sample pan and heated above a temperature range of 50-

900 °C at a heating rate of 40 °C /min under nitrogen flow. Scanning electron microscopy (SEM) 

micrographs were obtained using Zeiss Evols 15 Scanning electron microscopy combined with 

energy dispersive X-ray spectroscopy (EDS). Samples were coated with gold before imagining. 

Transmission electron microscopy (TEM) images were obtained using JOEL JEM-1400 

transmission electron microscopy with Gatal microscopy Suit Software.  827 pH Lab Metrohm 

(Swiss made) pH meter was used for solution pH measurements. The crystallinity of all carbon 

containing samples was determined by Philips PW1710 X-ray diffraction spectrometer X-ray 

diffractometer (XRD) equipped with secondary monochromatized radiation source of Cu-Kα of 

1.79290Å. All samples were scanned in the range of 5 to 90° 2θ with a step size of 0.008° and 

step time of 8.25 Sec at room temperature (25 °C). 
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2.2 Experimental procedure for the synthesis of ionic liquids 

 

2.2.1 Synthesis of pyridinium-based ILs 

2.2.1.1 Synthesis of N-alkylpyridinium bromide 

 Into a vigorously stirred solution of pyridine (4.21 mL, 52.10 mmol) and (20 mL) toluene at 0 

°C, 1-bromopropane (4.09 mL, 45.0 mmol) or 2-bromopropane (4.91 mL, 45.0 mmol) was added 

slowly in three-neck round bottom flask. The mixture was heated to reflux at 100 °C for 24 h. 

Toluene was decanted and the remaining brown to gold viscous liquid was re-crystallized in 

dichloromethane (20 mL x 2). Dichloromethane was evaporated using vacuum rotary evaporator 

and the product was dried for 10 h to further remove any solvent residue. The product obtained 

was either N-propylpyridinium bromide [N-propylPyr]
+
[Br]

-
, or N-isopropyl pyridinium bromide 

[N-isopropylPyr]
+
[Br]

-
. 
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 [N-propylPyr]
+
: Anal. Calcd for C8H12N

+
 (122.19): C, 78.64%; H, 9.90; N, 11.46%. [N-

isopropylPyr]
+
: Anal. Calcd for C8H12N

+
 (122.19): C, 78.64%; H, 9.90; N, 11.46%. 

 

[N-propylPyr]
+
[Br]

-
: 

1
H NMR (400 MHz, ppm, DMSO-d

6
, δ): 9.27 (2H, d, pyr-CHo), 8.19 (2H, 

t, pyr-CHm), 8.66 (1H, t, pyr-CHp), 4.69 (2H, d, CH2), 1.95 (2H, m, CH2), 0.83 (3H, t, CH3). FT-

IR (ʋ/cm
-1

): 3348 (=C-H, w), 2870 (C-Hsp
3
, s), 1591 (C=Cpyr, s), 1417 (C=Npyr, m), 1145 (C-N, 

m). 

[N-isopropylPyr]
+
[Br]

-
: 

1
H NMR (400 MHz, ppm, DMSO-d

6
): 9.21 (2H, d, pyr-CHo), 8.62 (1H, 

m, pyr-CHp), 8.17 (2H, t, pyr-CHm), 5.08 (1H, m, CH), 1. 62 (6H, d, CH3x2). FT-IR (ʋ/cm
-1

): 

3374 (=C-H, s), 3150-3109 (C-Hsp
2
, s), 3091-2978 (C-Hsp

3
, s), 1635 (C=Cpyr, m), 1456 (C=Npyr, 

m), 1157-1110 (C-N, m). 

2.2.1.2 Synthesis of N-alkylpyridinium hexafluorophosphate 

 Viscous liquid of either [N-propylPyr]
+
[Br]

-
 or [N-isopropylPyr]

+
[Br]

-
 (1.0 mL), and 2.02 g (11 

mmol) of potassium hexafluorophosphate salt were mixed in a 100-mL round-bottomed flask 

containing water (10 mL) and stirred for 12 h at 50 °C. The resultant product was re-crystallized 

from dichloromethane (10 mL x 2) and dried with anhydrous magnesium sulphate to remove 

water residue. The solvent was evaporated by vacuum rotary evaporator at 40 °C. Light brown to 

gold and white solid products were obtained and further dried for 2 h. It was observed that the 

obtained products have a tendency to melt and become liquids when stored in an oven, although 

when stored in a fume hood at room temperature they tend to crystallized immediately.  
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 [N-propylPyr]
+
[PF6]

-
: 

1
H NMR (400 MHz, ppm, DMSO-d

6
, δ): 9.07 (2H, d, pyr-CHo), 8.62 

(1H, t, pyr-CHp), 8.17 (2H, t, pyr-CHm), 4.58 (2H, t, CH2), 1.99 (2H, m, CH2), 0.90 (3H, t, CH3).  

31
P NMR (DMSO-d

6
, δ): -144.179 ppm (m, PF6

-
, 

1
Jp-f = 709.24 Hz). 

19
F NMR (DMSO-d

6
, δ): -

69.240 to -71.129 ppm (d, PF6
-
). FT-IR (ʋ/cm

-1
): 3348 (=C-Hpyr, m), 3104 (C-Hsp

2
, s), 2978-

2885 (C-Hsp
3
, s), 1640 (C=Cpyr, m), 1566-1409 (C=Npyr, s), 1179 (C-N, s). 

[N-isopropylPyr]
+
[PF6]

-
: 

1
H NMR (400 MHz, ppm, DMSO-d

6
, δ): 9.17 (2H, d, pyr-CHo), 8.61 

(1H, m, pyr-CHp), 8.17 (2H, t, pyr-CHm), 5.03 (1H, m, CH), 1.62 (6H, d, CH3x2). 
31

P NMR 

(DMSO-d
6
, δ): -131.54 ppm (m, PF6

-
, 

1
Jp-f = 713.09 Hz). 

19
F NMR (DMSO-d

6
, δ): -69.25 ppm 

(d, PF6
-
). FT-IR (ʋ/cm

-1
): 3336 (=C-Hpyr, m), 3150-3109 (C-Hsp

2
, m), 2907 (C-Hsp

3
, m), 1635 

(C=Cpyr, s), 1486 (C=Npyr, s), 1156 (C-N). 

 

Scheme 2.1 Synthetic route of pyridinium-based ILs 

 

2.2.1 Synthesis of imidazolium-based ILs  
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2.2.1.1 Synthesis of 3-methyl-1-propylimidazolium bromide [MPIm
+
][Br

-
] 

Into a two-neck round bottom flask fitted with reflux condenser, 5 mL of 1-methylimidazole, 2 

mL of 1-bromopropane and acetonitrile (10 mL) were added. The mixture was heated to reflux 

for 12 h at 80-100 °C with stirring until the formation of two organic phases. The top layer which 

contained unreacted materials was discarded, and the colorless viscous lower layer was dissolved 

in two portions of 20 mL dichloromethane. Thereafter, the solvents were removed under 

vacuum. Colorless viscous liquid was obtained and dried for 5 h (Scheme 2.2A). 

 

Scheme 2.1 Synthetic route of imidazolium-based ILs 

 

 [MPIm
+
][Br

-
] 

1
H NMR (400 MHz, ppm, DMSO-d

6
, δ): 7.185 (1H, s, Im-Hf), 7.061 (1H, s, 

Im-Hg), 4.239 (2Hc, t, CH2), 3.963 (3Hd, s, CH3), 3.775 (1H, s, Im-He), 1.992 (2Hb, m, CH2), 

0.999 (3Ha, t, CH3).  
13

C NMR (400 MHz, ppm, D2O-d
6
, δ): 10.05 (C1), 22.94 (C2), 39.00 
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(C5), 51.34 (C3), 122.26 (C4), 123.55 (C7), 127.56 (C6). FT-IR (υ/cm
-1

): 3289-3110 (=C-H, & 

C-Hsp
2
, m), 2854 (C-Hsp

3
, m), 1648 (C=C, m), 1132 & 989 (C-N, s). 

 

2.2.1.2 Synthesis of 1-isopropyl-3-methylimidazolium bromide [IsopropylMIm
+
][Br

-
]  

Into a two-neck round bottom flask fitted with reflux condenser, 5 mL of 1-methylimidazole, 2 

mL of 2-bromopropane, and acetonitrile (10 mL) were added (Scheme 2.2A). The mixture was 

refluxed for 12 h at 80-100 °C while stirring until the formation of two organic phases. The top 

layer which contained unreacted materials was discarded, and the golden viscous lower layer was 

dissolved in two portions of 20 mL dichloromethane. Thereafter, the solvents were removed by 

vacuum. 

[IsopropylMIm
+
][Br

-
] 

1
H NMR (400 MHz, ppm, DMSO-d

6
, δ): 9.4798 (1H, s, Im-H), 7.9426 

(2H, t, 2Im-H), 4.3490 (2H, t, CH2), 4.0512 (3H, s, CH3), 1.9333 (2H, m, CH2), 0.9101 (3H, t, 

CH3). 
13

C NMR (400 MHz, ppm, D2O-d
6
, δ): 22.06 (C1, 2), 33.32 (C5), 35.92 (C3), 52.98 

(C4), 123.46 (C7), 127.55 (C6). FT-IR (υ/cm
-1

): 3391-3150 (=C-H, & C-Hsp
2
), 2891 (C-Hsp

3
, 

m), 1561 (C=C, s), 1101-998 (C-N,s). 
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2.2.1.3 Synthesis of 1-isopropyl-3-methylimidazolium hexafluorophosphate 

[IsopropylMIm+][PF6-]  

3.0 mL of [IsopropylMIm
+
][Br

-
] and 3.0 g of potassium hexafluorophosphate were mixed in a 50 

mL round bottom flask with 10 mL of distilled water (Scheme 2.2B). The reaction mixture was 

stirred for 12 h at room temperature. Then the resultant product was rinsed with several portions 

of water and dissolved in 20 mL dichloromethane and dried in anhydrous magnesium sulphate 

(MgSO4). The solvent was then removed by vacuum. The resultant golden liquid was dried for 

12 h under vacuum.  

[IsopropylMIm
+
][PF6

-
] 

1
H NMR (400 MHz, ppm, DMSO-d

6
, δ): 9.1536 (1H, s, Im-H), 7.8594 

(1H, t, Im-H), 7.7003 (1H, t, Im-H), 4.6473 (1H, m, CH), 3.8344 (3H, s, CH3), 1.4761 (6H, d, 

CH3X2). 
13

C NMR (400 MHz, ppm, DMSO-d
6
, δ): 22.79 (C1, 2), 36.19 (C5), 40.04 (C3), 

52.62 (C4), 120.92 (C7), 124.15 (C6). 
31

P NMR (DMSO-d
6
, δ): -130.94 ppm (m, PF6

-
, 

1
Jp-f = 

715.09 Hz). 
19

F NMR (DMSO-d
6
, δ): -69.35 ppm (d, PF6

-
). FT-IR (υ/cm

-1
): 3361 (=C-H, m), 

3091 (C-Hsp
2
, s), 2872 (C-Hsp

3
, m), 1591 (C=C, m), 1150-1110 (C-N, s). 

 

2.2.2 Synthesis of CNTs and MWCNTs 

2.2.2.1  Synthesis of carbon nanotubes (CNTs) 

Carbon nanotubes were synthesized using a chemical method according to Leo and Seo [212]. 

Briefly, a solution of graphite powder (5 g) in water (5 mL) and solution of nitric acid (25 
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mL)/sulphuric acid (50 mL) were prepared separately at low temperature (ice-bath) under 

constant stirring. The two solutions were mixed followed by the addition of sodium nitrate (25 g) 

at 0 °C. The mixture was stirred for 36 h at ambient temperature, and further refluxed for 12 h at 

90 °C. Thereafter, the mixture was centrifuged, neutralized with sodium hydroxide solution, and 

filtered to obtain the CNTs.  

 

2.2.2.2  Synthesis of MWCNTs 

MWCNTs were synthesized from as-synthesized CNTs, wherein 0.317 g of CNTs was 

ultrasonicated for 5 minutes in a mixture of concentrated sulphuric acid 15 mL (H2SO4, 65%)/5 

mL nitric acid (HNO3, 98%), 3:1 by volume. The solution was refluxed for 5h at 60 °C, and then 

washed with distilled water to neutralize acid residue, dried in air vacuum at 70 °C to obtain the 

MWCNTs. 

 

2.2.3 Synthesis of IL/MWCNTs composites 

ILs/MWCNT composites were synthesized according to the reported methods with minor 

modifications [171, 179, 188]. Briefly, a solution of 5 mg of MWCNTs and 10 mg of each ILs in 

10 mL of N, N-dimethylformamide (DMF) was ultrasonicated for 20 minutes. The mixture was 
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then vigorously stirred for 24 h at 50 °C. The unreacted MWCNTs residues were removed by 

centrifugation. Thereafter, ILs/MWCNT composites were filtered, thoroughly washed with 

DMF, ethanol, and water, respectively. 

 

2.3 Results and Discussion 

 

2.3.1 Nuclear magnetic resonance (NMR) spectroscopic studies 

2.3.1.1 NMR analyses of pyridinium-based ILs 

Pyridinium-based ionic liquids were synthesized as shown in Scheme 2.1. The synthesized ionic 

liquids comprise of pyridinium cation and a counter anion (halide or hexafluorophosphate). 

These ionic liquids were synthesized via two-step metathesis method that involves the 

quaternization of pyridine with three-carbon alkyl bromide (propyl and isopropyl bromides) 

followed by ion exchange with potassium hexafluorophosphate (KPF6). 
1
H, 

13
C, 

31
P and 

19
F-

NMR spectroscopy were used to characterize the as-synthesized pyridinium and imidazolium-

based ionic liquids. The 
1
H-NMR spectrum of [N-propylPyr]

+
[Br]

-
 showed signals at 9.27, 8.19, 

and 8.66 ppm due to the protons resonance at ortho-, meta-, and para-positions of pyridinium 

ring (APX 2-1).  Protons signals at 4.94-4.66 and 1.95 ppm were assigned to the two -CH2 

groups of the propyl lateral chain, while the protons signals at 0.83-0.78 ppm were assigned to 

the methyl (-CH3) group of the propyl functionality.  Relatively similar but less deshielded 
1
H-
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NMR signals were obtained for [N-propylPyr]
+
[PF6]

-
. For isopropyl-featuring ionic liquids, [N-

isopropylPyr]
+
[Br]

-
, 

1
H-NMR signals responsible for proton resonances at ortho-, para-, and 

meta-positions were observed at 9.22-9.21, 8.62-8.58, and 8.17-8.13 ppm, respectively (APX 2-

2). The multiplet at 5.08-5.04 ppm was assigned to the single-proton of the isopropyl carbon 

close to pyridinium-nitrogen atom. The doublet at 1.62-1.59 ppm was due to the six-protons of 

the two methyl groups (CH3x2) of isopropyl. The hydrophobic moiety, [N-isopropylPyr]
+
[PF6]

-
, 

shows similar but comparable less deshielded proton signals. The presence of bromide ion in 

hydrophilic ionic liquids have resulted in some proton resonances being deshielded. The electron 

density of substituents in a compound usually affects signal position in the 
1
H-NMR [220]. 

However, due to high electronegative behavior of the halogen, protons close or associated with 

halides are normally deshielded and appear at downfield. 

  

The hydrophobic [N-propylPyr]
+
[PF6]

-
 and [N-isopropylPyr]

+
[PF6]

-
 ionic liquids were further 

studied using 
31

P and 
19

F NMR spectroscopy (APX 2-3 and APX 2-4), respectively. For [N-

propylPyr]
+
[PF6]

-
, 

31
P was found to have a multiplet (m) around -144.179 ppm, which confirmed 

the presence of phosphorous atom coupled with six fluorine atoms.  
19

F was found to have a 

doublet (d) around -169.25 to -71.13 ppm, confirming the coupling of six fluorine atoms with 

one phosphorous atom. The coupling distances between the peaks in both 
31

P and 
19

F NMR 
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spectra were found to be approximately the same and constituted the coupling constant of 
1
Jp-f = 

709.24 Hz. For [N-isopropylPyr]
+
[PF6]

-
, 

31
P was found to have multiplet peaks around -131.54 

ppm, while 
19

F was found to have doublet around -69.25 to -71.13 ppm and with coupling 

constant of 
1
Jp-f = 713.09 Hz. Both 

31
P and 

19
F NMR confirmed the presence of fluorine and 

phosphorous atoms coupled together in the form of PF6
-
 in the as-synthesized ionic liquids. The 

close range of the obtained coupling constants for both hydrophobic ionic liquids is the clearest 

indication of the presence of counter anion. 

 

2.3.1.2 NMR analyses of imidazolium-based ILs 

The 
1
H-NMR spectra of imidazolium-based ionic liquids showed large frequency downshift and 

overlapping of three protons chemical shifts around the imidazole ring (APX 2-6 to APX 2-10). 

The protons at positions 4 and 5 were found to resonate or deshielded (downfield signal) around 

low field due to the presence of bromide ion in halide-containing ILs. However, after anion-

exchange, the protons at positions 4 and 5 show less deshielding due to the absence of the 

bromide ion. The 
13

C-NMR spectra of the ILs obtained showed direct information about the 

carbon skeleton and the number of equivalents/non-equivalents carbons in the ILs. The 

electronegative atoms and π-bonds tend to cause downfield chemical shifts. For example, C4, 

C6, and C7 of the imidazolium rings are deshielded (shifted downfield) due to the presence of 
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the π-electron systems in the imidazolium ring and the influence of the attached electronegative 

bromide counter-ion. As it was expected, C1 and C2 in all isopropyl-containing ILs are 

chemically equivalent and are assigned to one signal. However, the appearance of the peak at 

40.041 ppm corresponds to the overlap of the C3 carbon of the isopropyl group and the DMSO 

solvent. 
19

F NMR spectra were found to contain doublets (d) between -69 to -71.0 ppm that 

confirmed the coupling of six fluorine atoms with one phosphorous atom. On the other hand, the 

31
P NMR spectra of both hydrophobic ILs were found to have multiplet (m) between -130 to -

159 ppm confirming the presence of the phosphorous atom coupled with six fluorine atoms. In 

addition to the 
1
H, 

13
C, 

19
F, and 

31
P-NMR studies, single mass analysis data of the synthesized 

ILs compounds based on C, H, and N confirmed the accurate mass values (125.1075, 122.0966, 

and 122.0973 m/z for methyl-propyl imidazolium, isopropyl-methyl imidazolium, isopropyl 

pyridinium and propyl pyridinium, respectively). The results agree with the calculated masses 

based on their respective molecular formulas (APX 2-12 to 2-15). 

 

2.3.2 Fourier Transform Infrared (FTIR) spectroscopy of ILs 

 

2.3.2.1  FTIR spectra of pyridinium-based ILs 

The FTIR spectrum of pyridinium-based ionic liquids, [N-propylPyr]
+
[Br]

-
 shows the presence of 

a weak vibrational band around 3348 cm
-1

 attributed to =C-H stretch in ortho, meta, and para 
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positions on the pyridinium ring (APX 2-16). Strong vibrational bands at 2870 and 1579 cm
-1

 

can be assigned to the C-Hsp
3
 of propyl group, and C=C of pyridine, respectively. Medium 

absorption bands at 1417 and 1145 cm
-1

 are assigned to the C=N of pyridinium cation and C-N 

bonding between the nitrogen atom of pyridinium and first carbon of propyl, respectively. In the 

FTIR spectrum of [N-isopropylPyr]
+
[Br]

-
, similar vibrational bands to that of [N-

propylPyr]
+
[Br]

- 
were observed. For ionic liquids containing PF6

-
, vibrational bands were found 

to be similar to those obtained for ionic liquids containing bromide [204-205]. These results 

confirmed that ion-exchange was carried out successfully and the cationic components of the 

ionic liquids remained unaltered.  

 

2.3.2.2 FTIR Spectra of imidazolium-based ILs 

The FTIR spectrum of [MPIm
+
][Br

-
] shows well pronounced absorption bands in the range 

3390-3150 cm
-1

 assigned to the =C-H stretch and C-Hsp
2
 stretching vibrations. The shifts in the 

absorption bands could be attributed to the presence of halide counter ions and the bromide-

hydrogen interionic bonding. The absorption bands at 2891 and 1561 cm
-1

 are assigned to the C-

Hsp
3
 stretching vibrations of propyl and C=C of the imidazolium ring, respectively. The strong 

vibrational bands in the range 1101-998 cm
-1

 are due to the presence of the C-N functional group 

between the imidazolium ring and alkyl groups. The FTIR spectrum of hexafluorophosphate-



59 
 

containing ILs, [N-isopropylMIm
+
][PF6

-
], showed similar vibrational bands compared to that of 

[MPIm
+
][Br

-
] but shifted slightly due to the absence of the halide. The stretching vibrations of C-

Hsp
3
 of propyl and isopropyl were observed in relatively similar region [179].  

 

2.3.3 Thermogravimetric analyses (TGA) of ILs 

2.3.3.1 TGA analyses of pyridinium-based ILs 

Thermogravimetric analysis was used to obtain information about the thermal stability of the 

synthesized ILs. Pyridinium-based ionic liquids with halide counter anion, [N-propylPyr]
+
[Br]

-
 

and [N-isopropylPyr]
+
[Br]

-
 displayed minor weight losses less than 5% within 100 °C, which 

were due to the loss of moisture from the ILs indicating that they were slightly hygroscopic (Fig. 

2.1). Considerable weight loss between 18-35% was observed at temperatures above 290 °C for 

both pyridinium ionic liquids with halide due to the decomposition of the ionic liquid salts. [N-

propylPyr]
+
[Br]

-
 and [N-isopropylPyr]

+
[Br]

-
 were seen to be thermally stable below 400 °C and 

their total decompositions were recorded at 356 °C and 342 °C, respectively, showing unimodal 

decomposition character. 

The compounds, [N-propylPyr]
+
[PF6]

-
 and [N-isopropylPyr]

+
[PF6]

-
, which are the hydrophobic 

pyridinium-based ILs with PF6
-
 counter anion were observed to be thermally stable up to 400 °C. 

No moisture weight loss was observed for both hydrophobic ionic liquids. Significant 
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decomposition between 400-550 °C was observed for both hydrophobic ionic liquids. 

Interestingly, hydrophobic ionic liquids showed multimodal decomposition characteristics, due 

to the degradation of pyridinium-organic material followed by the inorganic counterion. Carbon 

loss for both [N-propylPyr]
+
[PF6]

-
 and [N-isopropylPyr]

+
[PF6]

-
 were also observed at 721°C and 

552 °C, respectively.  

 

 

Figure 2.1 TGA profiles of pyridinium-based ILs 

 

It can therefore be concluded that ionic liquids with hydrophobic counter anion such as PF6
-
 are 

more thermally stable than those with halide counter anion (hydrophilic). Papaiconomou et al. 

[184] in their study discovered that thermal stability of ionic liquids is related to the nature of the 
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counteranion involved. For the ionic liquids investigated in this study, it was evident that ILs 

with pyridinium cation containing isopropyl group on the N-position of pyridinium were more 

thermally stable than those with propyl counterpart in the following order: [N-

IsopropylPyr]
+
[Br]

-
> [N-propylPyr]

+
[Br]

-
, while [N-isopropylPyr]

+
[PF6]

-
> [N-propylPyr]

+
[PF6]

-
. 

Thus, the thermal stabilities of ionic liquids in this study are dependent on the counter anions 

involved and the isomeric alkyl groups on the N-position of pyridinium in the following order:  

[N-isopropylPyr][PF6]> [N-propylPyr][PF6]> [N-IsopropylPyr][Br]> [N-propylPyr][Br]. 

2.3.3.2 TGA analyses of imidazolium-based ILs 

Thermogravimetric analyses of the imidazolium-based ILs (Fig.2.2) exhibit weight loss at 

different temperatures. For instance, [MPIm
+
][Br

-
] showed a weight loss of  Td, <30% with onset 

of decomposition at 250 °C and complete second decomposition around 400 °C. The 

imidazolium-based ILs with hexafluorophosphate anion, [isopropylMIm
+
][PF6

-
] shows a 

considerable thermal stability with weight degradation recorded to be less than 15% at 400 °C. 

However, at 450 °C, a complete decomposition of [isopropylMIm
+
][PF6

-
]  ILs was observed.  
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Figure 2.2 TGA profiles of imidazolium-based ionic liquids. 

 

2.3.4 Glass transition temperatures and melting points of pyridinium and imidazolium-ILs 

Melting and glass transition temperatures of ILs were obtained using differential scanning 

calorimetry (DSC). Table 2.1 shows the melting point (Tm), glass transition (Tg), and 

decomposition (Td) temperatures in degrees Celsius (°C) at given temperatures. As presented in 

Table 2.1, the glass transition Tg of [N-propylPyr]Br] was found to be 28 °C and that of [N-

isopropylPyr][Br] to be 25 °C, which are the inflation point (endothermic direction) between the 

first peak onset temperature and offset temperature, respectively. Glass transitions of 

hydrophobic [N-propylPyr][PF6] and [N-isopropylPyr][PF6] ILs were observed to be slightly 

smaller in comparison to other corresponding pyridinium-ionic liquids containing halide ions. 
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Eftakhari and Saito [191] once concluded that larger counter anions lower the Tg due to their 

bulkiness and distributed charges.  As presented in Table 2.1, pyridinium ionic liquids with 

hexafluorophosphate counter anion exhibit high melting temperature than their halide 

counterparts in this study. These results are in agreement with the results obtained from the 

thermogravimetric analyses, which indicates that pyridinium ILs with hydrophobic counter anion 

are more thermally stable than those with halide counter anion. 

Table 2.1 Melting (Tm), glass transition (Tg) and decomposition (Td) temperatures (°C) 

 

Ionic liquids Tg Tm Td 

[N-propylPyr][Br] 28 67 291 

[N-IsopropylPyr][Br] 25 59 293 

[N-propylPyr][PF6] 26 92 289 

[N-isopropylPyr][PF6] 24 89 543 

[MPIm][Br] 26 42 180 

[EIsopropylIm][Br] 28 37 215 

[IsopropylMIm][Br] 27 52 204 

[IsopropylMIm][PF6] 25 68 399 

 

2.3.5 Solubility studies of ILs 

 

2.3.5.1 Solubility of pyridinium-based ILs 

The solubility of the as-synthesized pyridinium-based ILs was determined by dissolving equal 

amount of ILs in different aqueous and organic solvents. Owing to the type of counter anion, 
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and/or isomeric carbon lateral chain involved, these ILs showed varied solubility in different 

solvents. It has been established that a solvent or solute will only dissolve or be dissolved in a 

substance of similar polarity, respectively (“like dissolves likes”). However, [N-propylPyr]
+
[Br]

-
 

was soluble in polar protic and non-polar solvents, and slightly insoluble in polar aprotic 

solvents. This behaviour can be correctly linked to the formation of hydrogen bonding 

(intermolecular forces) between the polar protic or non-polar solvents and ILs. On the other 

hand, [N-IsopropylPyr]
+
[Br]

-
 behaved differently and showed significant miscibility only in non-

polar solvents. The hydrophilic character and the formation of hydrogen bonding are responsible 

for this latter ILs behaviour in aqueous and organic medium. One thing worthy to be mentioned 

which comparatively affected the solubility of ILs is the alkyl lateral chains. It is evident that 

pyridinium-ILs with straight-lateral alkyl chain (propyl) attached to pyridinium-nitrogen atom 

are more soluble in aqueous and organic medium than their corresponding isomeric counterparts. 

Hydrophobic [N-propylPyr]
+
[PF6]

-
 and [N-isopropylPyr]

+
[PF6]

- 
ionic liquids were observed to be 

insoluble in all polar protic and non-polar solvents, yet soluble in DMSO. The hydrophobicity of 

these ILs and large dielectric constant of DMSO played significantly role in the insolubility of 

the ILs in other solvents except DMSO. 

 

Table 2.2 Solubility test of pyridinium-based ILs in different solvents 
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Ionic liquids            Polar protic                     Non-polar                       Polar aprotic 

 

     H2O           MeOH            HEX          CHCl3          DMSO            DMF   

[N-propylPyr][Br] 

[N-

IsopropylPyr][Br] 

[N-

propylPyr][PF6] 

[N-

IsopropylPyr][PF6] 

       S 

 

       P.S 

 

Suspended 
 

 N.S 

       S 

 

       P.S 

 

       N.S 

 

      N.S 

         S  

 

      N.S 

 

      N.S  

 

      N.S 

        N.S 

 

        N.S 

 

        N.S 

 

       N.S 

       N.S 

 

          S 

 

         P.S 

 

         S 

        N.S 

 

           S 

 

          P.S 

 

          S 

:Soluble (S), Non-soluble (N.S) or Partial soluble (P.S) in polar protic, non-polar or polar aprotic 

solvents. 

2.4 Characterization of MWCNTs and IL/MWCNT composites 

2.4.1 Spectroscopic studies of MWCNTs and IL/MWCNT composites 

The FTIR spectrum of MWCNTs shows stretching vibrational band at 1734 cm
-1

 corresponding 

to the carboxylic and graphite groups on the surface of pure nanotubes. A weak OH
-
 stretching 

vibration around 3598 cm
-1

 is assigned to the moisture content absorbed by the carbon materials 

and was also confirmed by the thermogravimetric analysis [205, 213]. Other important 

vibrational bands found at 2323 and 1239 cm
-1

 are attributed to CO2, and C-O, respectively. 

After functionalization with ILs, the skeletal vibrational bands of graphitic and carboxylic groups 

at 1734 cm
-1

 corresponding to C=O disappeared in ILs/MWCNT composites spectra. The shift of 

the weak OH stretching vibration from 3619 cm
-1

 to 3789 cm
-1

 in the ILs/MWCNT composites 

with bromide ions indicates successful modification. The sharp peak at 3170 cm
-1

 is ascribed to 
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the stretching vibration of C-Hsp
2
 of the ILs heterocyclic rings in the ILs/MWCNTs composites.  

The introduction of ionic liquids on the surface of carbon nanotubes does change the functional 

groups or morphology of the nanotubes. It can also be stated that the disappearance or less 

intense stretching vibrational bands of pure ILs signify the total incorporation of ILs with carbon 

nanotubes and the formation of new functional composites with completely different properties. 

The vibrational bands around 798 and 788 cm
-1

 are ascribed to P-F bond stretching in 

hydrophobic ILs. The results obtained from the FTIR spectra studies indicate that the interactions 

between the ILs with MWCNTs occur via non-covalent interactions after functionalization. 

2.4.2 TGA analyses of MWCNTs and ILs/MWCNTs composites 

Pure MWCNTs TGA thermograms showed multi-step degradations, even though the weight loss 

is insignificant (onset of decomposition at Td, 5% around 250 °C, and final decomposition at Td, 

10% around 750 °C). The TGA results obtained for the MWCNTs are in agreement with the 

findings from other studies [193]. Comparison of the TGA curves of pure ILs, MWCNTs, and 

their ILs-functionalized composites clearly shows that ILs/MWCNT composites are more 

thermally stable with two major weight losses. The first small weight loss could be attributed to 

the degradation of ILs on the surface of nanotubes and the second decomposition corresponds to 

CNTs fragments.  It can thus be concluded that composites of ILs/MWCNT are effectively 

thermally stable in comparison to pure ILs and/or pristine MWCNTs [204]. The degree of 
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thermal stability of ILs/MWCNT hybrids can be associated with non-covalent (ionic-interactions 

or exchange), and strong van der Waals interactions between the ILs and MWCNTs. Another 

potential contributing factor to the stability of ILs/MWCNT hybrids could be differences in 

polarity of both the dispersing molecule (ILs) and the solute (MWCNTs). However, other studies 

suggested that the thermal stability of CNT-ILs depends on the type of the ILs counter-ions 

[199]. 

 

2.4.3 Solubility study of MWCNTs and ILs/MWCNTs composites 

Solubility studies of the MWCNTs and ILs/MWCNT were carried out in nine solvents (polar to 

non-polar) namely: water (H2O), ethanol (EtOH), acetonitrile (ACN), dimethyl sulfoxide 

(DMSO), acetone (Ace), tetrahydrofuran (THF), diethyl ether (DEE), toluene (TOL), and hexane 

(HEX). The results shows that some MWCNTs and/or ILs/MWCNT composites were not 

soluble (N.S), whilst some were partially soluble (P.S), and others were completely soluble (S) in 

different solvents depending on their polarities. Pure MWCNTs were completely insoluble in 

polar solvents such as water and ethanol, yet suspendable in other polar solvents (acetonitrile, 

dimethyl sulfoxide, acetone, and tetrahydrofuran). On the other hand, MWCNTs were insoluble 

in non-polar solvents (diethyl ether, toluene, and hexane). The solubility characteristics of 

MWCNTs can be attributed to its hydrophobicity character (non-polar substance). Another 
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important observation is the relative insolubility of MWCNTs in more non-polar solvents such as 

toluene and hexane. This indicates that differences in polarity between MWCNTs and other non-

polar solvents played an essential role. 

Furthermore, the solubility study of ILs/MWCNT composites was also conducted in different 

solvents. The solubility of [N-isopropylPyr
+
][PF6

-
]/MWCNT showed that the composite is 

insoluble in all solvents. On the other hand, the composite of MWCNTs with hydrophilic 

pyridinium-based ILs such as [N-propylPyr
+
][Br

-
]/MWCNT shows different solubility behavior. 

[N-propylPyr
+
][Br

-
]/MWCNT showed wide-ranging solubility profiles from insoluble to slightly 

soluble in polar solvents with varied polarity index, while showing better solubility in most non-

polar solvents. This suggests that non-polar and hydrophobicity character of the solute was 

maintained after functionalization. Solubility studies of the MWCNT composites with 

imidazolium-based ILs indicates that the solute was insoluble in water (a strong polar solvent), 

but soluble in ethanol (another strong polar solvent). Secondly, the same composite was soluble 

or partially suspended in non-polar solvents except hexane.  

 

However, the poor solubility of this composite in water and hexane brings the discussion of 

polarity level between the composite and the solvent. In this instance, strong polar solvent 

(water) molecules cannot be detached by relatively non-polar substance, and also strong non-



69 
 

polar solvent (hexane) cannot detach MWCNT (non-polar) molecules. This observation is in 

agreement with the study of Salam and Burk [199]. On the other hand, [isopropylPyr
+
][PF6

-
]/ 

MWCNT composite was soluble in hexane and not in water. This latter behavior confirmed the 

hydrophobicity of the synthesized material. Based on the solubility study conducted, it can be 

concluded that when the polarity of both the solvent and the compound are similar, then the 

solute and the solvent definitely separate (detach) each other leading to increase in solubility. 

 

2.4.4 Surface morphologies of MWCNTs and ILs/functionalized composites 

The surface morphology of MWCNTs and the ILs/functionalized composites (Fig. 2.3) showed 

highly twisted or tangled tubes of MWCNTs. Carbon nanotubes showed clustered or fused 

morphologies with limited surface area. However, ILs/functionalized MWCNT composites show 

different morphological orientations, well dispersed with uniformly structured and increased 

surface area. Some areas of the MWCNTs are restacked together inside ionic liquids producing 

flake-layers orientations [213]. It is also worth noting that the morphology of the MWCNTs is 

unaltered but shows improved dispersion (Fig. 2.4). Energy-dispersive X-ray spectroscopy 

(EDS) results confirmed the presence of (C, O, and S) in MWCNTs and ILs/MWCNT (C, O, N, 

Br, F, and P) composites (Figs. 2.3 C-D and 2.5). The intensity of the carbon peak (Fig. 2.4C-D) 

confirmed the presence of carbon material in the sample produced [205]. The presence of 
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bromide (Br), phosphorous (P) and fluorine (F) (Fig. 2.5 A-D) confirms the successfully 

dispersion of MWCNTs in hydrophilic and hydrophobic ILs [204]. 

 

Figure 2.3 SEM (A &B) images and EDS (C &D) spectra of MWCNTS. 
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Figure 2.4 SEM images of some ILs/MWCNT composites. [N-propylPyrBr]/MWCNT (A), [N-

IsopropylPyrPF6]/MWCNT (B), [MPIm-Br]/MWCNT (C), and [IsopMIm-PF6]/MWCNT (D). 

 

Figure 2.5 EDS mappings of ILs/MWCNT composites. [IsopMIm-PF6]/MWCNT (A), [MPIm-

Br]/MWCNT (B), [N-IsopPyrPF6]/MWCNT (C), and [N-propylPyrBr]/MWCNT (D). 
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2.4.5 Powder X-ray Diffraction studies of MWCNTs and ILs/MWCNTs 

The changes in the crystalline structure of the pristine MWCNTs upon functionalization with 

ionic liquids were carefully investigated with the aid of microscopic and spectroscopic 

techniques. However, the crystallinity phase and identification of MWCNTs and ILs/MWCNT 

samples were studied by powder X-ray diffraction (XRD). Fig. 2.6 showed the XRD patterns of 

pristine MWCNTs and some of the pyridinium and imidazolium-based ILs/MWCNTs 

composites. Generally, it can be observed that pristine MWCNTs exhibited two prominent 

peaks: One around 31.05° (002 in plane) confirming the highly graphitic structure of carbon 

nanotubes and the other broad and weak peak around 64.62° (100 in plane), corresponding to the 

interplanar d-spacing of 3.34408Å and 1.67610Å, respectively. The crystalline size of MWCNTs 

was found to be 12.537 nm, calculated from the Scherer equation (equation 2.1) [199], with the 

full width of diffraction peak at half maximum (FWHM) intensities, β=0.1338 and 0.960, 

respectively.  

D= 
𝑘𝜆

𝛽𝐶𝑜𝑠𝜃
                         Equation 2.1 [199] 

Where k is a constant ~0.9, λ is wavelength of X-ray (1.79290Å), β is a full width of diffraction 

peak at half maximum (FWHM) intensity, and θ is the Bragg angle (n°/2). 
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In this study, the XRD patterns of all ILs/MWCNTs composites (Fig. 2.6) showed diffraction 

peaks with varied intensities around 2θ values 30.9079-30.9148° (002 in plane) ascribed to the 

graphitic structure from MWCNTs, and a broad and weak characteristic peak around 64.8765° 

(100 in plane) ascribed to the semi-crystalline structure of the ILs derivatives, with interplanar d-

spacing of 3.35938, 3.35864, 3.36977, and 3.35622Å, respectively. However, the new diffraction 

peaks can be attributed to the formation of new crystalline functionalities between ILs and 

carbon materials after functionalization. The crystalline size of most ILs/MWCNTs studied was 

found to range between 6.7049-9.66 nm, suggesting a decrease in MWCNTs size due to 

encapsulation with ILs. Moreover, the XRD studies confirmed that the side-wall 

functionalization (non-covalent) of MWCNTs with ILs did not alter the crystallographic 

character of the MWCNTs [199].  
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Figure 2.6 XRD patterns of pristine MWCNTs and some pyridinium and imidazolium-based 

IL/MWCNTs composites. 

 

 

2.5 Chapter summary  

 

In this chapter, imidazolium and pyridinium-based ionic liquids (ILs) were successfully 

synthesized and characterized by FTIR, 
1
H, 

19
F, and 

31
P-NMR spectroscopy, and mass 

spectrometry. The effects of the alkyl lateral chain (propyl and isopropyl) at the first and third 

positions of imidazolium and N-position of pyridinium cations on the thermal stability, 

conductivity, and solubility of ionic liquids were investigated. The results obtained confirmed 

that the ionic liquids based on pyridinium cations exhibit higher decomposition temperature, low 

melting points, and poor water solubility. Furthermore, multi-walled carbon nanotubes 
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(MWCNTs) were synthesized by simple chemical method, and dispersed using imidazolium and 

pyridinium-based ionic liquids (ILs).  

 

The structures of the as-synthesized ILs/MWCNT composites were studied using FTIR 

spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy 

(EDS), thermogravimetric analysis (TGA) and solubility in different polar and non-polar 

solvents. Spectroscopic analyses confirmed graphitic and carboxylic groups in the pure 

MWCNTs and the formation of the ILs/MWCNT composites with new functionalities. On the 

other hand, SEM and TEM of MWCNTs showed entangled bundles, while ILs/MWCNTs 

showed debundled composites with increased diameter and unaltered MWCNTs morphology. 

TGA showed that the MWCNTs are thermally stable, owing to the van der Waals and non-

covalent interactions within the composites matrices. Solubility studies indicate that 

ILs/MWCNT composites are hydrophobic and insoluble in water and other polar solvents. 
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Chapter 3 

 

 

3.1 Synthesis of pyridinium-based PILs and PILs/MWCNT composites 

 

3.1.1 Background into pyridinium-based PILs 

 

Polymeric ionic liquids (PILs) are the polyelectrolytic-forms of ionic liquids (ILs) or electrolytes 

produced by a direct and/or indirect polymerization of ionic liquid (IL) monomers, or 

modification of the existing polymers [214-215]. PILs are non-covalently bonded subclass of 

polyelectrolytes, consisting of organic cations namely: imidazolium, pyrrolidinium, pyridinium, 

tetraalkylammonium, tetraalkyl-phosphonium, piperidinium, and quinolinium, and organic or 

inorganic anions such as halide ions (Cl
-
, Br

-
), polyatomic inorganics such as tetrafluoroborate 

(BF4
-
), hexafluorophosphate (PF6

-
), and pure organic anions including 

bis(trifluoromethanesulfonyl)imide (TFSI
-
) and dicyanamide [N(CN)2

-
] [216-218].  

 

Physicochemical properties of polymeric ionic liquids can be tuned by changing the ions 

involved [218-225]. Some PILs, depending on the type of polycation or polyanion involved are 

relatively soluble in water (e.g. imidazolium-based PILs with halides as counter anions), and 

some are only soluble in organic polar solvents such as dimethyl form amide (DMF), dimethyl 

sulfoxide (DMSO), and acetonitrile [217]. Polymeric ionic liquids are normally synthesized with 
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intended application and desired properties in place [221-222]. Henceforth, the polymer 

structure, size, amphiphilic behaviour, durability, and glass transition temperature are always 

optimized and monitored during synthesis.  

 

The application of PILs on removal and/or retention of chromium ions have recently gained 

significant attention from academia and industries. Industrial activities are the leading sources of 

chromium moiety-pollutions [227-228]. A numerous number of conventional methods have been 

developed and utilized to remove hexavalent chromium from industrial effluents. However, 

several demerits such as high operation cost, chemical sludge, and low output have prohibited 

and hindered the applicability of these conventional methods. On the other hand, adsorption 

process has been the subject of research and gained popularity due to its effectiveness, ease of 

generation and responsiveness economically [229]. Recently, the use of polymer materials as 

adsorbents to remediate metal ions from wastewater has been the subject of intense research. 

Kumar et al. [9-10] reported the use of polyaniline and aniline-formaldehyde condensation 

polymers to remove hexavalent chromium from wastewater. They discovered that the removal of 

chromium species from wastewater was due to the electrostatic interactions between the 

chromate species and protonated polymer systems via the reduction of Cr(VI) to Cr(III).  
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Tavengwa et al. [11] probed the use of N-propyl quaternized magnetic poly(4-vinylpyridine) to 

selectively remove hexavalent chromium from aqueous solution. They studied the effect of pH 

(4), time (40 min), and amount of the adsorbent (20 and 65 mg) and initial concentration (5 mgL
-

1
) on removal efficiency. In order to effectively probe the reusability of the adsorbent, Tavengwa 

et al. [11] also performed six adsorption-desorption cycles and they discovered that their 

magnetic polymers were still stable and able to attract chromium up to the sixth cycle with 

adsorption capacity of 98.5% and 89% for magnetic ion imprinted polymers and non-imprinted 

polymers, respectively. In a similar studied, Hara [216] probed the behaviuor of poly(4-

vinylpyridine) N-alkyl quaternized with short alkyl lateral chains (C2-C4) in water/chloroform 

interface. It was evident from the investigation that the polyelectrolyte systems prepared were 

soluble in water and inappropriate for adsorption processes. Moreover, poly(4-vinylpyridine) N-

alkyl quaternized polyelectrolyte systems with longer alkyl chains including hexyl, octyl, and 

decyl have been reported and are insoluble in water [212-216].  

 

Some poly(4-vinylpyridine) N-alkyl quaternized polyelectrolyte systems with shorter alkyl chain 

length have been reported and are water-soluble and inappropriate for metal ion removal. 

However, the current study proposes further investigation on the synthesis, physicochemical 

properties, and evaluation of poly(4-vinylpyridine) N-alkyl quaternized polymers with short 
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alkyl lateral chains (ethyl, propyl, and isopropyl) and hydrophobic counter ions for metal ions 

removal. Thus, the current work focuses on the synthesis of water-insoluble polyelectrolyte 

polymers of poly(4-vinylpyridine) with short alkyl chains.  

 

3.1.2 Synthesis of pyridinium-based PILs with vinyl moiety 

The starting material (monomer, 4-vinylpyridine) was distilled prior use at 65 °C to remove the 

hydroquinone (the inhibitor). Following the distillation of the starting material, the actual 

synthesis of hydrophilic and hydrophobic pyridinium-based PILs involved three-steps method: 

(I) polymerization of 4-vinylpyridine, (II) quaternization of the polymer, and (III) anion-

exchange with hydrophobic anion (hexafluorophosphate, PF6
-
) analogous to the method reported 

by Tavengwa et al. [11].  

 

3.1.2.1 Polymerization of 4-vinylpyridine (4-VP) 

4-vinylpyridine (15.0 mL, 110 mmol), and 50.0 mL distilled water were added into 100-mL 

three-necked flask equipped with a reflux condenser and nitrogen inlet. A solution of potassium 

persulfate (0.5 g, 1.8 mmol) in 5.0 mL distilled water was transferred into the flask, stirred and 

heated to 90 °C for 2 h. The resultant precipitate was filtered and washed with distilled water. 

The resultant plastic-like and sticky product was heated inside the oven and easily pulled out of 
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the reaction flask using a spatula and washed with several portions of DMF. The final polymer 

product, poly(4-vinylypyridine) (P4-VP) was dried at 40 °C under vacuum for 24 h. 

 

3.1.2.2 Quaternization of poly(4-vinylpyridine) (P4-VP): Poly(N-alkyl-4-

vinylpyridinium) 

Poly(4-vinylpyridine) (3.00 g, 0.04 mol) and alkyl halide 0.07 mol (6.45 mL, 6.67 mL, and 5.29 

mL 1-bromopropane, 2-bromopropane, and 1-bromoethane, respectively, in excess mole ratio) 

were dissolved in 20 mL DMF in a round-bottomed flask. The reaction mixtures were stirred at 

room temperature for 1h, and then refluxed under inert N2 conditions at 50 °C for 5 h.  The 

resultant solutions were added into diethyl ether to obtain solid polymer materials, rinsed with 

several portions of ether, dried under vacuum at room temperature to constant mass. The 

resultant polymer material(s), poly(N-alkyl-4-vinylpyridinium bromide) (PIL1-3) were stored in 

very tightly dark area (Scheme 3.1). 
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Scheme 3.1 Synthesis of hydrophilic pyridinium-based ILs 

 

3.1.2.3 Anion-exchange with hexafluorophosphate (PF6
-
) 

Final step involved the synthesis of water-insoluble (hydrophobic) PILs via the anion-exchange 

of bromide to hexafluorophosphate as presented in Scheme 3.2. Briefly, into 50 mL round-

bottomed flask (1.0 g, repeating units) of polymeric materials (PIL1-3) were prepared in 10-mL 

ultra-pure water, and another solution of potassium hexafluorophosphate (2.0 g, 10.87 mmol) in 

10 mL ultra-pure water were also prepared separately. The solution of the salt was added drop-

wise to the polymer solution upon stirring to yield colorful (green to brownish) precipitate. The 

final mixtures were stirred for 20h at room temperature. Resultant precipitates were rinsed with 

several portions of ultra-pure and dried in an oven at 40 °C for 12 h. 
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Scheme 3.2 Anion-exchange to prepare hydrophobic pyridinium-based PILs 

 

3.1.3 Synthesis of PIL/MWCNT composites 

PILs/MWCNT composites were synthesized according to previously reported work [237] with 

some minor modifications. Briefly, solution of 5.0 mg of MWCNTs in 17-mL DMF and 11.0 mg 

of each PIL in 10-mL DMF were placed into 100-mL round-bottomed flask. After 

ultrasonicating for 30 min at ambient temperature, the reaction mixture was vigorously stirred for 

24h at 50 °C. The unreacted MWCNT residues were removed by centrifugation, and the resultant 

PIL/MWCNT composites were filtered, thoroughly washed with DMF, ethanol, and ultrapure 

water, respectively. The composites were then dried in an oven at 90 °C for 12h.  
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3.2 Results and Discussion 

During the polymerization of 4-vinylpyridine with potassium persulfate, the initial formation of 

cream-white precipitate in less than 40 mins of the reaction was observed. The resultant poly(4-

vinylpyridine) material was elastic. In order to remove it from the reaction flask it had to be 

heated and pulled out. When P4-VP was stored in an oven between 80-100 °C it behaved like a 

heated-plastic and elastic, while at room temperature it was like hard-plastic material. Upon 

addition of alky-quaternizing agents, the solution became light-green after 30 mins heating. 

During drying of the resultant hydrophobic PILs 4-6, huge amount of water was removed from 

each polymer systems.  

As-synthesized PILs (PIL1-6): 

Poly(N-ethyl-4-vinylpyridinium bromide) (PIL1), Poly(N-propyl-4-vinylpyridinium bromide) 

(PIL2), Poly(N-isopropyl-4-vinylpyridinium bromide) (PIL3),Poly(N-ethyl-4-vinylpyridinium 

hexafluorophosphate) (PIL4), Poly(N-propyl-4-vinylpyridinium hexafluorophosphate) (PIL5), 

Poly(N-isopropyl-4-vinylpyridinium hexafluorophosphate) (PIL6). 

 

3.2.1 FTIR spectra studies of vinyl pyridinium-based PILs 

P4-VP and quaternized samples (PIL 1-3) were studied using FTIR spectroscopy (APX 3-5). In 

P4-VP spectrum, the vibrational band at 3380 cm
-1

 was ascribed to the presence of hydroxyl 

group from water residue. Vibrational bands at 949 and 1418 cm
-1

 corresponds to the vibrations 

of the vinyl polymerizable moiety. The most significant band was that of C=N in pyridine, which 
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is usually found at 1600 cm
-1

 in non-quaternized pyridine materials. In this present case, it was 

exactly located at 1600 cm
-1

 before quaternization, which agrees with the literature findings 

[227, 232, 235, 222]. To ascertain the successful quaternization, the most important FTIR 

vibrational band (C=N) is slightly shifted to higher regions. For instance, the characteristic 

absorption bands of the quaternized pyridinium group shifted to 1651, 1654 and 1657 cm
-1

 in 

PIL1, 2 and 3, respectively.  

 

Esma et al. [221] and Briones et al. [222] reported the shifting at 1640 cm
-1

, whereas Toral et al. 

[214] reported it at 1636 cm
-1

. The presence of positively charged nitrogen atoms or pyridinyl 

ring in the polymers can be observed by vibration bands at 1558, 1500, and 1557 cm
-1

 in PIL 1, 

2, and 3, respectively. The intensity of vibrations bands at 2934 cm
-1

 (PIL1), 2931 cm
-1

 (PIL2), 

and 2933 cm
-1

 (PIL3) can be ascribed to the valence oscillations of C-Hsp
3
 in –CH2- and CH3 

alkyl substituent’s attached on the pyridine-N and polycation  main chain. Consequently, the 

absence of C-Hsp
2
 vibration band around 3024 cm

-1
 signifies a complete polymerization of vinyl 

group. The presence of strong O-H stretching vibration around 3450-3400 cm
-1

 in quaternized 

pyridine-materials is due to the protonated carbonyl-oxygen of N, N-dimethyl formamide (DMF) 

solvent. FTIR results obtained in this current work were consistent with those in literature [228, 

235, and 222].  
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The FTIR spectra of the pyridinium PILs showed strong characteristic signals of the 

hexafluorophosphate species at 838, 822, and 821 cm
-1

 for PIL 4-6 (APX 3-6), respectively. The 

lower frequency shifting and low intensity of vibration bands around 1650-1600 cm
-1

 is due to 

the exchange of halide (Br
-
) to hydrophobic anion (PF6

-
). It has been discussed in the literature 

that halides normally shift the vibration bands towards higher regions of the FTIR. Therefore the 

low or backward shifting of the FTIR bands around 1650-1600 cm
-1

 in hydrophobic PILs 

compared to high-frequency shifting of the same bands around 1651-1657 cm
-1

 in hydrophilic 

PILs, confirms anion metathesis. The presence of the vibration band around 3350 cm
-1

 in 

hydrophobic PILs is due to the hydroxyl (O-H) of water used during synthesis.  

 

3.2.2 Thermogravimetric analysis (TGA) of vinyl pyridinium-based PILs 

TGA curves of P4-VP, PIL1-3 are presented in Fig. 3.1. Poly(4-vinylpyridine) (P4-VP) exhibits 

unimodal (one-step) degradation [203, 215]. A weight loss at the beginning of the TGA curve 

(<10%) in P4-VP between 50-100 °C corresponds to the removal of moisture content from the 

hygroscopic polymer material and the final weight loss of 95% at 420 °C corresponds to the 

degradation of vinyl pyridine moiety. Quaternized derivatives of P4-VP (PIL 1-3) exhibited 

multimodal (multi-step) degradation [203]. PIL 1-3 showed weight loss of about 30% between 

50-150 °C, second weight loss between 150-300 °C due to the degradation of alkyl chain 
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connecting the pyridinium ring (ethyl, propyl, and isopropyl) groups during the cleavage of C-N
+
 

bonds, and finally the degradation (>80%) due to polymer backbone(s) beginning from 300 to 

450 °C [214]. Poly(4-vinylpyridine) was observed to be far more thermally stable than all of its 

quaternized derivatives. The resultant polymer materials in this study showed thermal stability 

up to 150 °C. 

 

TGA curves of hydrophobic pyridinium-based PILs presented in Fig. 3.2 showed that 

pyridinium-based PILs with hydrophobic counter anions are more thermally stable than their 

halide-containing analogous. All the hydrophobic pyridinium PILs (PIL 4-6) remain thermally 

stable up to 350 °C. A weight loss (<30%) observed between 50-100 °C can be attributed to the 

minor degradation of alkyl side chains and breaking of C-N
+
 bonds in the polymer materials. The 

hydrophobic PILs appeared thermally stable in comparison to their halide-containing PILs 

counterparts in this study. This is attributed to the strong electrostatic interactions between 

pyridinium cation and hexafluorophosphate anions [222]. Briones et al. [222] in their recent 

study discovered that it was difficult to handle and characterize polymers with 

hexafluorophosphate counterion because of generated white vapours from the polymer materials. 

However, the results obtained in this study clearly confirmed the successful synthesis of poly(4-

vinylpyridine) compounds.  
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Figure 3.1 TGA profiles of poly(4-vinylpyridine) P4-VP, poly(N-ethyl-4-vinylpyridinium 

bromide) PIL1, poly(N-propyl-4-vinylpyridinium bromide) PIL2, and poly(N-isopropyl-4-

vinylpyridinium bromide) PIL3 

 

Figure 3.2 TGA profiles of hydrophobic poly(N-ethyl-4-vinylpyridinium hexafluorophosphate) 

PIL4, poly(N-propyl-4-vinylpyridinium hexafluorophosphate) PIL5, and poly(N-isopropyl-4-

vinylpyridinium hexafluorophosphate) PIL6. 
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3.2.3 Differential scanning calorimetry analysis (DSC) of vinyl pyridinium-based PILs 

Table 3.1 illustrates the glass transition temperature (Tg) values of P4-VP, PIL 1-6 discussed in 

this study. Tg of polymer materials usually depends on the size of the poly-anion and charge 

delocalization. Generally, an increase in counteranion size decreases the Tg of the polymer 

respectively [224]. The involvement of electrostatic interactions associated with hydrophobic 

anion tends to affect the movement of positively charged ions [239]. However, it has been 

reported that Tg values of polymer materials also varies with alkyl chain length involved [239]. 

In the present study, we discovered that polymers containing bromide ions showed high Tg 

values than their corresponding PF6
-
 containing counterparts. This may be ascribed to less steric 

hindrance exhibited by the short alkyl chains towards the mobility of positively charged ions in 

the polymer backbone, which also affect the glass transition temperature in the polymers [239]. 

Table 3.1 Glass transition temperatures of poly(4-vinylpyridine) P4-VP and vinyl pyridinium 

PILs 

Polymer material     Anion       Alkyl group                          Tg(
°C

) 

P4-VP                        -                    -                                         66 

PIL 1                           Br
-
               ethyl                                  60 

PIL 2                           Br
-
               propyl                                30 

PIL 3                           Br
-
               isopropyl                           55 

PIL 4                           PF6
-
             ethyl                                  75 

PIL 5                           PF6
-
             propyl                                57 

PIL 6                           PF6
-
             isopropyl                           65 
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3.2.4 Solubility studies of vinyl pyridinium-based PILs 

In order to test the hydrophobicity-hydrophilicity balance of the as-synthesized polymers, 

solubility studies were performed. Poly(N-ethyl-4-vinylpyridinium bromide) PIL1, poly(N-

propyl-4-vinylpyridinium bromide) PIL2, and poly(N-isopropyl-4-vinylpyridinium bromide) 

PIL3 were found to be soluble in most solvents including water, methanol, and acetone. On the 

other hand, polymer materials containing PF6
-
 were only soluble in polar aprotic solvents such as 

dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), and tetrahydrofuran (THF) including 

chloroform [239]. Thus, the successful anion-exchange resulted in hydrophobic polymers 

suitable for metal ion removal such as hexavalent chromium (Cr(VI)).  

 

3.2.5 Nuclear Magnetic Resonance (NMR) vinyl pyridinium-based PILs 

NMR was employed to study and confirm the purity and the successful synthesis of the PILs. 
1
H-

NMR spectra of poly(N-ethyl-4-vinylpyridinium bromide) PIL1, poly(N-propyl-4-vinylpyrinium 

bromide) PIL2, and poly(N-isopropyl-4-vinylpyrinium bromide) PIL3 were obtained. 

Deshielded Signals at 7.6-8.0 ppm can be attributed to the protons of quaternized pyridine rings 

(3-6 numbering) [222]. Signals at 3.41-5.0 ppm were due to the protons of methylene groups 

close to the pyridinium-nitrogen atom (7). Signals at 2.78-3.01 ppm were due to the protons of 

the repeating methylene units of the main chain (1-2). Low field signals at 1.0-1.98 ppm and 
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0.87-0.97 ppm were due to (-CH2-), and (-CH3-) units of the alkyl chains located far from the 

pyridinium-nitrogen atom (8-9). The presence of bromide ion has resultant in some protons being 

deshielded in various PIL systems [221-222]. It has been reported that the electron density of 

substituents in a compound usually affects peak position. However, due to high electronegative 

behavior of halogens, protons close or associated with halides are normally deshielded and 

appear at downfield [222].   

 

19
F and 

1
H-NMR spectra of poly(poly(N-ethyl-4-vinylpyridinium hexafluorophosphate), poly(N-

propyl-4-vinylpyridinium hexafluorophosphate), and poly(N-isopropyl-4-vinylpyridinium 

hexafluorophosphate) were collected and studied, respectively. One thing worthy to be 

mentioned is the fact that the protons are shielded in hydrophobic systems, confirming the 

absence of bromide ions [221]. The measured coupling constants (JHz) between the peaks of the 

19
F- and 

31
P-NMR in all polymer systems were 713.80, 703.99, and 708.14 Hz for PIL 4, 5, and 

6, respectively.  

 

3.3 Characterization of PIL/MWCNT composites 
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3.3.1 FTIR spectroscopy of vinyl pyridinium-based PILs/MWCNT composites 

As-synthesized PIL/MWCNT composites: 

Poly(N-isopropyl-4-vinylpyridinium bromide)/MWCNT (PIL/MWCNT3), Poly(N-propyl-4-

vinylpyridinium hexafluorophosphate)/MWCNT (PIL/MWCNT5), Poly(N-isopropyl-4-

vinylpyridinium hexafluorophosphate)/MWCNT (PIL/MWCNT6). 

 

Generally, integrated PILs/MWCNT composites introduce new electronic properties emanating 

from morphological modifications and electronic interactions between the two materials via 

either π-π stacking or cation-π and anion-π electronic interactions. The FTIR spectroscopy was 

therefore used to elucidate the type of interactions in PILs/MWCNT composites. MWCNTs 

showed very weak vibrational bands. Vibrational band around 1751 cm
-1

 was ascribed to 

aromatic ring stretching vibration (C=C). Vibrational band around 1239 cm
-1

 was assigned to the 

presence of carboxylic group (-COOH) and graphitic moieties on the surface of MWCNT. The 

FTIR results obtained for MWCNTs agreed with those obtained in the literature [240]. On the 

other hand, new vibrational bands were observed in PIL/MWCNT composites. Stretching 

vibrations around 3043 to 3854 cm
-1

 were ascribed to (-CH2-) rocking vibrations due to tail to 

tail addition in PILs and lateral alkyl chains (ethyl, propyl or isopropyl) attached on pyridinium-

nitrogen atom. The FTIR bands at 1638, 1637, and 1628 cm
-1

 in PILs/MWCNT composites were 

due to C=N stretching vibration in pyridinium-ring of the PILs.  
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3.3.2 TGA of vinyl pyridinium-based PILs/MWCNT composites 

Fig. 3.3 (A&B) showed the TGA thermograms of MWCNTs and PILs/MWCNT composites. A 

slight weight loss (<15%) around 120 °C for MWCNTs in both thermograms was due to the loss 

of moisture absorbed by MWCNTs [240]. A significant and common weight loss in both 

MWCNTs and its polymer-functionalized derivatives above 700 °C can be attributed to the 

decomposition of carbon materials released during temperature scan under airflow condition. A 

strong weight loss between 250 and 450 °C in polymer-functionalized MWCNTs was due to the 

decomposition of PILs moieties attached onto the surface of MWCNTs. For example, a weight 

loss of 65, 32, and 20% was observed for PIL3/MWCNT, PIL5/MWCNT, and PIL6/MWCNT, 

respectively. 
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Figure 3.3 TGA curves of MWCNTs and PIL3/MWCNT (A), PIL5/MWCNT and 

PIL6/MWCNT (B) composites 

 

3.3.3 Solubility of vinyl pyridinium-based PILs/MWCNT composites 

It is evident that the surface-modification of MWCNTs with PILs has significant effect on the 

solubility and functionality of MWCNTs and its functionalized derivatives. Carbon nanotubes 

are known to have low intrinsic solubility in both organic and aqueous medium [240]. MWCNT 

and its polymer-functionalized derivatives were dissolved in organic and aqueous solvents to test 

their solubility character. Pristine MWCNTs showed poor or no solubility in polar protic solvents 
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such as water, methanol, and ethanol and in non-polar solvents which includes diethyl ether, 

toluene, and hexane. However, the same carbon-based materials showed good solubility in polar 

and dipolar aprotic solvents such as acetonitrile, dimethyl sulfoxide, acetone, and 

tetrahydrofuran.  

 

On the other hand, polymer-functionalized MWCNT derivatives exhibited diversified solubility 

characteristics depending on the polymer systems involved. PIL3/MWCNT showed solubility in 

DMSO (polar aprotic), slight or suspended in water (polar protic). The slight suspension of the 

latter composites in water was due to the formation of hydrogen bond (intermolecular forces) 

between the composite and water molecules. It is also a clear indication of the presence of 

hydrophilic counterion (bromide) as part of the composite. Polar solvents are best to dissolve 

polar reactants, while non-polar solvents stand a good chance to dissolve non-polar materials 

(“like dissolves likes”). PIL5/MWCNT and PIL6/MWCNT composites are insoluble in all non-

polar solvents and only slightly soluble in DMSO (large dielectric constant polar aprotic 

solvent). This therefore confirmed the hydrophobicity of the latter composites and their possible 

capability to precipitate out of water during adsorption applications. 
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3.3.4 SEM and TEM of vinyl pyridinium-based PILs/MWCNT composites 

Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to study both 

the surface morphology and the composition of the nanocomposites synthesized. As presented in 

Fig. 2.3 (A-B), CNTs synthesized by chemical method showed curled and highly tangled tubes 

[241].  On the other hand, the EDS spectra (Figs. 3.4) showed high intensity carbon peak from 

the carbon material. In addition, SEM/EDS were also employed to further study the surface 

interaction between the amorphous polymer materials and MWCNTs. The structural size and 

shape of MWCNTs have been modified and re-structured by the functionalization [241]. It has 

also been reported in the literature that the stirring or contact time and the modification method 

can greatly affect the dispersion of CNTs into polymer [241]. However, the mechanism behind 

the dispersion process is very complex, owing to the primarily involved interactions which 

include van der Waals and electrostatic forces. The EDS spectra of the PIL/MWCNTs elucidated 

the appearance of elements such as N, Br, P, and F confirming the successful coating of 

amorphous polymers on the surface of CNTs. TEM analysis revealed that MWCNTs have 

relatively small diameter (≈18 nm) and long length (≈620.21 nm) (Fig. 3.5). After modification, 

it can be observed that the surface of MWCNTs was equally enveloped by the polymer materials 

resulting in an increase in surface area (Figs. 3.5 B-D) [240, 242]. TEM results complemented 

the SEM findings obtained and confirmed that the dispersion or functionalization method was 

facile and success. 
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Figure 3.4 SEM images and EDS spectra of PIL3/MWCNT (A1-A2), PIL5/MWCNT (B1-B2), 

and PIL5/MWCNT (C1-C2) composites 

. 
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Figure 3.5 TEM micrographs of MWCNTs (A), PIL3/MWCNT (B), PIL5/MWCNT (C), and 

PIL6/MWCNT (D) 

 

3.3.5 Power X-ray diffraction studies of PILs/MWCNT composite 

All pyridinium-based PILs/MWCNTs composites studied under XRD showed diffraction peaks 

around 2θ values 30.9372-36.1092° (002 in plane) based on graphitic structure derived from 

carbon nanotubes with interplanar d-spacing of 3.353884, 2.99183, and 1.67580Å, respectively 

(Fig. 3.6). However, the broad and weak diffraction peak around 64.7864° (100 in plane) belongs 

to the amorphous structure of the PIL derivatives, respectively. The calculated crystalline size of 
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all PIL/MWCNTs composites ranges between 12.4572-22.0981 nm. Normally, the sharpness and 

intensity of the XRD peak signify high crystalline samples, while broad peaks show amorphous 

structure. CNTs are known to be crystalline materials and they produce crystalline peaks in 

polymer nanocomposites [199] but in this study, the XRD patterns of PILs/MWCNTs 

composites shows relatively low intensity peaks (amorphous) compared to high intensity 

crystalline peaks of carbon materials, with unaltered crystalline structure. 

 

Figure 3.6 XRD patterns of pristine MWCNTs and some pyridinium-based PIL/MWCNTs 

composites 
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3.4 Chapter summary 

In this chapter, the synthesis of vinyl pyridinium PILs via radical polymerization of ILs 

monomers using potassium persulfate has been discussed. Six sticky and highly plasticizing PIL 

materials and several PILs/MWCNT composites were synthesized and characterized with 

thermal, spectroscopic and microscopic characterization techniques. Spectroscopic studies were 

used to confirm the synthesis of PILs materials. The FTIR characteristic bands due to C=N 

functional group appeared at 1600 cm
-1

, compared to 1640 and 1636 cm
-1

 reported in literature.  

Thermal studies have revealed that pyridinium-PILs containing hydrophobic counter anions (PF6
-

) are more thermally stable (>350 °C) than their halide-containing counterparts. High thermal 

stability values of PILs can be attributed to strong electrostatic interactions between pyridinium 

cations and hexafluorophosphate anions. The results shows that the delocalized charge in 

pyridinium cationic ring and the size of counter anions influenced the glass transition 

temperatures of PILs materials. Furthermore, the functionalization of carbon nanotubes with 

vinyl pyridinium-PILs resulted in 10-fold more thermally stable and relatively insoluble 

PILs/MWCNT composites, this characteristic is useful for solid-liquid adsorption process. SEM 

and TEM microscopic analyses confirmed the coating of PILs materials on the surface of carbon 

nanotubes and it can be concluded that the direct mixing-functionalization method did not alter 

the surface morphology of pristine carbon materials.  
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CHAPTER FOUR 

 

 

 

SYNTHESIS, CHARACTERIZATION, AND PHYSICOCHEMICAL PROPERTIES OF 

IMIDAZOLIUM-BASED POLYMERIC IONIC LIQUIDS (PILS) WITH VINYL AND 

STYRENIC MOIETIES: FUNCTIONALIZED CARBON NANOTUBES 
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Chapter 4 

4.1 Background into imidazolium-based PILs and PILs/MWCNT composites 

 The synthesis and the use of imidazolium-based PILs containing vinyl and/or vinyl benzyl 

(styrene) polymerizable moieties have since gained significant attention. Generally, vinyl-based 

imidazolium ILs monomer involves the quaternization of a starting material (1-vinyl imidazole) 

with an alkyl halide, followed by free radically polymerization [33]. However, the first and the 

earliest synthesis of vinyl ILs monomers and corresponding polymerized materials were reported 

in 1973 by Salamone et al. [243]. Many years later, Ohno’s group intensified the research and 

the use of imidazolium PILs in ion conductive materials [244]. On the other hand, the synthesis 

and the application of vinyl benzyl-based imidazolium PILs were also reported by [243]. The 

authors discussed the series of imidazolium PILs involving poly[1-(4-vinylbenzyl)-3-

butylimidazolium tetrafluoroborate (poly[VBBIm
+
][BF4

-
]) and poly[1-(4-vinylbenzyl)-3-

butylimidazolium hexafluorophosphate (poly[VBBIm
+
][PF6

-
]).  

 

Bacon et al. [245] reported the synthesis of imidazolium-based PILs for the absorption of n-

butanol and other hydrophilic fermentation products. The influence of both the aliphatic N-alkyl 

side chain length (C8 to C16) and the counter anions on the absorption performance and 

selectivity were investigated. It was observed that PILs with long N-alkyl chain were insoluble in 
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water and possessed improved absorptive performance. Generally, owing to the counter anion 

used, 1,3-dialkyl imidazolium PILs are hydrophilic and high acidic [246]. Imidazolium-based 

PILs have a tendency to homogeneously disperse CNTs and graphene derivatives with or 

without an aid of a particular solvent [247-250]. Relevant improvements in electrical, 

mechanical, and thermal properties of CNT/imidazolium-based polymer composites have been 

reported [247, 251]. In another study, Meyer et al. [252] discussed an imidazolium end-

functionalized poly(L-lactide) synthesized by ring-opening polymerization of L-lactide.  

 

4.2 Synthesis of imidazolium-based PILs 

 

4.2.1 Synthesis of imidazolium-PILs with vinyl moiety 

Vinyl imidazolium-based PILs were synthesized according to the method described by Green et 

al. [33], with some modifications. Generally, the procedure involves three-step processes as 

shown in Scheme 4.1. Unlike the other known procedures [33], herein the first step involve the 

quaternization of 1-vinylimidazole with active alkyl halides (1-bromopropane, and 2-

bromopropane) followed by the polymerization of the vinyl polymerizable moiety using 

potassium persulfate (K2S2O8) as a radical initiator. The final step involves the anion-exchange 

of bromide with hexafluorophosphate to produce hydrophobic PILs. 
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4.2.1.1 Quaternization of 1-vinylimidazole (1-VIm) 

In a typical procedure, 44.16 mmol (4 mL) of 1-vinyl imidazole and 75.50 mmol (6.86, and 7.09 

mL) of each of 1-bromopropane, and/or 2-bromopropane, respectively, were charged into a 100 

mL round-bottom flask equipped with reflux condenser and 30 mL DMF. The reaction masses 

were heated to reflux at 85 °C for 20 h. To remove DMF from the sample, each sample was 

charged into a beaker with ice. When the ice has melted, diethyl ether was added and the mixture 

was charged into a separating funnel without shaking much (just gently swirl). The bottom-water 

layer was collected and further washed with ice-cold water. The resultant mixture was dried over 

sodium sulfate and concentrated using rotary evaporator, and then stored in an oven at 70 °C for 

12 h. The monomers were 3-propyl-1-vinylimidazolium bromide (3P-VImBr) and 3-isopropyl-1-

vinylimidazolium bromide (3Isop-VImBr) as shown in Scheme 4.1(A).  

 

Scheme 4.1 Synthesis of hydrophilic imidazolium-based PILs 
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[3P-VImBr]: 
1
H NMR (400 MHz, ppm, D2O, δ): 8.07 (1H, s, Hd), 7.99 (1H, t, He), 7.80 (1H, t, 

Hf), 7.36 (1H, t, Hc), 6.00 (1H, split doublets, Ha), 5.58 (1H, split doublets, Hb), 4.39 (2H, t, 

Hg), 2.09 (2H, m, Hh), 1.07 (3H, t, Hi). FTIR (cm
-1

): 3359 (=C-H 2-position, m), 3123-3098 (C-

Hsp
2
, m), 2976-2879 (C-Hsp

3
, m), 1655 ( C=C and C=N, s/m), 1415 (methyl, m), 1479 

(methylene, s), 1102 (C-N, m). 

[3Isop-VImBr]: 
1
H NMR (400 MHz, ppm, D2O, δ): 9.16 (1H, s, Hd), 7.86 (1H, t, Hf), 7.76 (1H, 

t, He), 7.31 (1H, m, Hg), 5.90 (1H, d, Ha), 5.87 (1H, d, Hb), 5.54 (1H, m, Hc), 1.65 (6H, d, Hh, 

i). FTIR (cm
-1

): 3410 (C-H, 2-position, m), 3078 (C-Hsp
2
, m, vinyl), 2982 (C-Hsp

2
, isopropyl), 

1652 (C=C & C=N overlapped), 1084 (C-N). 

 

4.2.1.2 Polymerization of N-alkyl-1-vinylimidazolium bromide monomers 

Briefly, 6.0 mL of each monomer and a solution of 0.5 g (1.85 mol of K2S2O8) in 6.7 mL 

distilled water were charged into a 100 mL round bottom flask equipped with a reflux condenser, 

N2 gas inlet, and 40 mL of DMF. The mixture was refluxed for 24 h at 70 °C under N2 flow. The 

polymer product was precipitated into acetone and filtered to obtain the solid product. Resultant 

product was further dried in an oven at 50 °C for 5 h to remove solvent and unreacted materials.  

The prepared polymers were poly(3-propyl-1-vinylimidazolium bromide) P[3P-VImBr] and 

poly(3-isopropyl-1-vinylimidazolium bromide) P[3Isop-VImBr] as shown in Scheme 4.1(B).  
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P[3P-VImBr]: 
1
H NMR (400 MHz, ppm, D2O, δ): 9.10 (1H, s, Hc), 7.84 (1H, s, Hd), 7.64 (1H, 

s, Hc), 5.89 (2H, split doublets, He), 5.50 (2H, split doublets, Hd), 4.28 (2H, t, Hf), 2.79 (6H, m, 

Ha & Hb), 2.02-1.93 (2H, m, Hg), 1.01-0.97 (3H, t, Hh). FTIR (cm
-1

): 3347 (=C-H 2-position, 

m), 2940-2878 (C-Hsp
3
, m), 1654 (C=C & C=N, s), 1431 (methyl, m), 1039 (C-N, m). 

P[3Isop-VimPF6]: 
1
H NMR (400 MHz, ppm, DMSO, δ): 9.28 (1H, s, Hc), 8.14 (1H, 2, Hd), 

8.00 (1H, s, He), 4.64 (2H, s, Ha), 3.55 (>3H, m, Hb,f), 1.49 (>6H, m, Hh,g). FTIR (cm
-1

): 3426 

(=C-H 2-position, m), 3136 (C-Hsp
2
, imidazole ring), 2986 (C-Hsp

3
, isopropyl), 1655 (C=N, s), 

1099 (C-N, m), 839 (m, hexafluorophosphate species). 

 

Scheme 4.2 Synthesis of hydrophobic PILs via anion-exchange 
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4.2.2 Synthesis of imidazolium-based PILs with styrenic moiety 

 

4.2.2.1 Synthesis of IL-monomer 

Imidazolium-based PILs with styrenic polymerizable group were synthesized according to the 

methods reported in the literature with some modifications [219-221]. Briefly, 1-

methylimidazole (3607 mg, 43.94 mmol), 4-vinylbenzyl chloride (5959 mg, 39.05 mmol), and 

30 mL acetonitrile were added into a 100 mL round-bottomed flask with stir bar. The resultant 

mixture was heated to reflux at 60 °C for 45 h under N2 flow. The resultant viscous solution was 

concentrated in a vacuo to remove solvent and rinsed with acetone. Plastic-sticky material was 

produced with mouldable behaviour along the walls of the flask. Having rinsed with acetone 

several times, the monomer material was dried in a reduced pressure oven at 45 °C for 5 h 

(Scheme 4.3). The product formed was 3-methyl-1-(4-vinylbenzyl) imidazolium chloride 

[MVBIm-Cl] with % yield (7550 mg, 82.15%).  
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Scheme 4.3 Synthesis of ILs-monomer [MVBIm-Cl] 

 

 [MVBIm-Cl]
 1

H NMR (400 MHz, ppm, DMSO-d
6
, δ): 9.458 (1H, s, N=CH-N), 7.851 (2H, d, 

N-CH=CH-N), 7.520 (2H, split doublets, -vinyl CH2), 7.103 (1H, s, Ar-CH-vinyl), 6.874-6.778 

(2H, split doublets, Ar-Hortho), 6.74 (2H, split doublets, Ar-Hmeta), 5.88 (2H, s, N-CH2-Ar), 1.09 

(3H, s, N-CH3). 
13

C NMR (400 MHz, ppm, DMSO-d
6
, δ): 138.30 (C4 &5), 136.44 (C8), 134.89 

(C14), 129.24 (C13), 124.43 (C9 &10), 122.78 (C11 &12), 120.98 (C15), 115.72 (C2), 51.97 

(C7), 36.34 (C2).  

FT-IR (υ/cm
-1

): 3371 (intermolecular H-bonding stretching vibration), 3054-3012 (=C-Hsp
2
, 

aromatic & aliphatic), 2829 (N-CH3sp
3
), 1628-1408 (C=C &C=N), 1449-1333 (CH2 & CH3 

bending vibrations in the fingerprint region), 1159-1017 (C-N bending vibration). 
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4.2.2.2 Polymer synthesis 

[MVBIm-Cl] (3100 mg, 13.15 mmol), AIBN (4290 mg, 26.13 mmol), and 50/50 (v/v) solution 

of DMF/H2O (50 mL) were discharged into a 100 mL round-bottomed flask. The reaction 

mixture was purged with N2 gas for 20 mins and then heated to reflux at 60 °C for 24 h under 

continuous N2 flow. Goldish-solution was produced, dissolved in ethyl acetate and precipitated 

out from acetone to get hard-sticky plastic like solid polymer product. After precipitation the 

polymer product was dried in air vacuum at 70 °C for 4 h for complete removal of acetone 

(Scheme 4.4). The product produced poly[3-methyl-1-(4-vinylbenzyl) imidazolium chloride] 

P[MVBIm-Cl] (2650 mg, 76%). 

 

Scheme 4.4 Polymerization of ILs-monomers to prepare P[MVBIm-Cl] 
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P[MVBIm-Cl] 
1
H NMR (400 MHz, ppm, DMSO-d

6
, δ): 9.93 (1H, s, N=CH-N), 7.77 (2H, d, N-

CH=CH-N), 7.37 (2H, d, Ar-Hortho), 6.42 (2H, d, Ar-Hmeta), 5.55 (2H, s, N-CH2-Ar), 3.83 (3H, s, 

N-CH3), 1.97 (1H, d, Ar-CH-CH2, polymerized vinyl), 1.42-1.14 (2H, m, CH2sp
3
 polymerized 

vinyl). FT-IR (υ/cm
-1

): 3385 (O-H
-
 for water residue), 3140 (=C-Hsp

2
, aromatic & aliphatic), 

2928 (N-CH3sp
3
 & polymerized vinyl), 1658-1426 (C=C &C=N), 1409-1387 (CH2 & CH3 

bending vibrations in the fingerprint region), 1160-1093 (C-N bending vibration). 

 

4.2.2.3 Anion-metathesis with bis(trifluoromethanesulfonyl)imide lithium salt 

Poly[MVBIm-Cl] (460 mg, 1.73 mmol) was dissolved in 10 mL of ultrapure water, and then two 

separate salt solutions of bis(trifluoromethanesulfonyl)imide lithium salt (LiTFSI 3000 mg, 

10.45 mmol) and potassium hexafluorophosphate (KPF6 3000 mg, 16.29 mmol) were also 

prepared in 10 mL ultrapure water aliquots. The resulting polymer solution was added drop-wise 

into each salt to yield a white precipitate. The reaction mixture was then stirred for 16 h at 25 °C 

and the white precipitate formed in each reaction flask was rinsed with several portions of 

distilled water until the filtrate was chloride free determined using a silver nitrate test (Scheme 

4.5). The products formed were poly[3-methyl-1-(4-vinylbenzyl) imidazolium 

bis(trifluoromethane)sulfonamide] P[MVBIm-TFSI] (450 mg, 49.44%) and poly[3-methyl-1-(4-

vinylbenzyl) imidazolium hexafluorophosphate] P[MVBIm-PF6] (570 mg, 84.19%). 
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Scheme 4.5 Anion-exchange to prepare P[MVBIm-TFSI] and P[MVBIm-PF6] 

 

P[MVBIm-TFSI] 
1
H NMR (400 MHz, ppm, DMSO-d

6
, δ): 9.15 (1H, N-CH=N), 7.68 (1H, N-

CH
4
=CH-N), 7.54 (1H, N-CH=CH

5
-N), 6.98 (2H, Ar-Hortho), 6.42 (2H, Ar-Hmeta), 5.22 (2H, N-

CH2-Ar), 3.86 (1H, Ar-RCH-CH2), 1.44 (2H, Ar-RCH-CH2 & 3H, N-CH3). 

P[MVBIm-PF6] 
1
H NMR (400 MHz, ppm, DMSO-d

6
, δ): 9.17 (1H, N-CH=N), 7.61 (1H, N-

CH
4
=CH-N), 7.43 (1H, N-CH=CH

5
-N), 7.02 (2H, Ar-Hortho), 6.43 (2H, Ar-Hmeta), 5.40 (2H, N-

CH2-Ar), 3.86 (1H, Ar-RCH-CH2), 1.44 (2H, Ar-RCH-CH2 & 3H, N-CH3). 

 



112 
 

4.2.2.4 Anion-exchange with hexafluorophosphate (PF6
-
) 

Water insoluble (hydrophobic) PILs were prepared via an anion-exchange of bromide with 

hexafluorophosphate ion. Briefly, into 50 mL round-bottomed flasks (1.5 g of each repeating 

polymer units) were prepared in 15 mL ultra-pure water. Another solution of potassium 

hexafluorophosphate (2.0 g, 10.87 mmol) in 15 mL ultra-pure water was prepared separately. 

Thereafter the solution of the salt was added drop-wise to the polymer solution upon stirring, and 

then vigorously stirred for 20 h at room temperature. The resultant product was then rinsed with 

portions of ultra-pure water to remove all the unreacted species, and then dried in an oven at 40 

°C for 5 h. The resulted hydrophobic polymeric materials were; poly(3-propyl-1-

vinylimidazolium hexafluorophosphate) P[3P-VImPF6]and poly(3-isopropyl-1-vinylimidazolium 

hexafluorophosphate) P[3Isop-VImPF6]. 

 

[3Isop-VImPF6]: 
1
H NMR (400 MHz, ppm, DMSO, δ): 9.49 (1H, t, Hd), 8.19 (1H, t, Hf), 8.0 

(1H, t, He), 7.22 (1H, q, Hc), 5.97 and 5.44 (split doublets of Ha & Hb, respectively), 4.68 (1H, 

m, Hg), 1.51 (7H, d, Hh, i). FTIR (cm
-1

): 3404 (C-H, 2-position), 3043 (C-Hsp
2
 of imidazole), 

2990-2783 (C-Hsp
3
, isopropyl), 1653 (C=N), 1079 (C-N). 

P[3P-VImPF6]: 
1
H NMR (400 MHz, ppm, DMSO, δ): 8.97 (1H, s, Hc), 7.86 (1H, t, Hd), 7.52 

(1H, t, He), 4.10 (2H, t, Hf), 3.33 (7H, m, Ha, b), 1.82 (2H, m, Hg), 0.98 (3H, t, Hb). FTIR (cm
-



113 
 

1
): 3237 (=C-H 2-position, m), 2910-2818 (C-Hsp

3
, m), 1564 (C=C & C=N, s), 1331 (methyl, m), 

678 (C-N, m). 

 

4.2.3 Synthesis of PILs/MWCNT composites: Functionalized with imidazolium-PILs 

PILs/MWCNT composites were synthesized according to previously reported work with minor 

modifications [222-223]. Briefly, a solution of MWCNTs (200.0 mg) in 17.0 mL DMF and 

100.0 mg of each of P[3P-VImBr
-
], [3Isop-VImPF6], P[3P-VImPF6], or P[3Isop-VImPF6] PILs 

in DMF (20 mL) were placed in 100 mL round-bottomed flask. After ultrasonicating for 30 mins 

at ambient temperature, the reaction mixture was vigorously stirred for 24 h at 50 °C. The 

unreacted MWCNT residues were removed by centrifugation, and the resultant PIL/MWCNT 

composites were filtered, thoroughly washed with DMF, ethanol, and ultrapure water, 

respectively. The composites were then dried in an oven at 90 °C for 12 h before 

characterization. 

 

4.3 Results and discussion 

The synthesis of PILs was carried out via a three-step process which involves the quaternization 

of 1-vinylimidazole first, polymerization of ILs monomer, and finally the metathesis. 

Specifically, 3-isopropyl-1-vinylimidazolium-containing PILs were polymerized after anion-
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exchange. Resultant polymer systems in this study were very hard sticky-plastic and gel like 

materials.  

4.3.1 Nuclear magnetic resonance of vinyl imidazolium PILs 

It was observed that the three protons on the vinyl group were in different chemical 

environments, resulting in each other having split doublets from coupling with each other [224]. 

The proton at the second position of imidazolium ring was found to be more deshielded and 

appeared at downfield as singlet around 8.07 ppm. The presence of bromide halide anion was 

somewhat extent responsible for some deshielding of protons. It has been reported that bromide 

counterion normally cause a strong shifts to the 
1
H atom at the 2-position of imidazolium ring 

[225]. The protons at the fourth and fifth positions also appeared at downfield as doublets around 

7.99 and 7.79 ppm. The protons on the first carbon of the propyl chain appeared as triplet due to 

coupling with the nearby protons. Multiplets around 2.09-2.00 ppm corresponded to the protons 

on the second carbon of propyl alkyl chain. Protons on the last carbon of propyl appeared at 

upfield and shielded around 1.07 ppm. Sharp signals around 2.90-3.01 ppm may be assigned to 

the DMF residue, which was used as solvent during the synthesis. The 
1
H NMR results obtained 

for [3-propyl-1-vinylimidazolium bromide] (APX 4-2) fully agreed with the results obtained by 

Yang [226]. 
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The polymerized derivative of [3-propyl-1-vinylimidazolium bromide] showed similar but less 

shielded peaks and some extra-signals due to the absence of vinyl cone π-cloud after 

polymerization. The proton at the 2-position of imidazolium ring in the polymerized derivative 

have been deshielded to 9.09 ppm compared to 8.07 ppm of the same proton in the non-

polymerized monomer. This 2-position proton was initially shielded by the cone of the π-cloud 

exhibited from vinyl group in the counter monomer. Owing to polymerization, second-position 

proton also produces another split doublets around 7.25-7.19 ppm. The individually protons at 

the fourth and fifth positions of imidazolium ring have triplets around 7.85-7.82 ppm and 7.66-

7.63 ppm due to coupling with the proton on the second-position and each other. In addition, the 

fourth and fifth positions protons also produced extra-split doublets around 5.87-5.85 and 5.49-

5.47 ppm, respectively due to polymerization. In the polymer materials, the protons on the first 

and second carbons of the attached propyl group appeared around 4.28-4.24 ppm as triplet and as 

multiplet around 2.01-1.92 ppm, respectively.  

 

The important observation and prominent indication of the successful polymerization is the 

appearance of the polymerized vinyl protons upfield (shielded) around 1.00-0.96 ppm. Signal at 

2.78 ppm may be due to the DMF residue. The 
1
H NMR of hydrophobic poly(3-propyl-1-

vinylimidazolium hexafluorophosphate) showed proton signals relatively similar but less 
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deshielded than those of halide-containing polymer counterpart in this study. For example, signal 

for the single proton at the 2-position of imidazolium was found at 8.97 ppm, slightly lower than 

9.09 ppm observed in halide-containing polymer system. Single protons at 4-, and 5-position of 

imidazolium were found to have triplets around 7.86-7.84 and 7.52-7.49 ppm, coupled with 

second-position proton and each other, respectively. Signals corresponding to the two protons on 

the first propyl carbon were also observed to have triplet around 4.10-3.99 ppm due to coupling 

with two protons on the second carbon of propyl. Polymerized vinyl moiety protons appeared 

around 3.33-3.31 ppm due to the effect of aromaticity and deshielding exhibited by imidazolium-

nitrogen atom [227]. The 
19

F-NMR of poly(3-propyl-1-vinylimidazolium hexafluorophosphate) 

showed coupling constant of 
1
Jp-f = 707.65 Hz (APX 4-4). 

 

The 
1
H-NMR of 3-isopropyl-1-vinylimidazolium bromide, poly(3-isopropyl-1-vinylimidazolium 

bromide), and poly(3-isopropyl-1-vinylimidazolium hexafluorophosphate) compounds were 

obtained and proton signals were assigned and justified. However, the peak at 2.81 ppm in 3-

isopropyl-1-vinylimidazolium materials can be attributed to the DMF solvent residue. 3-

isopropyl-1-vinylimidazolium materials undergone anion-exchange of bromide to 

hexafluorophosphate before polymerization and the 
1
H-NMR of 3-isopropyl-1-vinylimidazolium 

hexafluorophosphate species and strange new single peak at 3.33 ppm was due to solvent 
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(DMSO-d6) residual peak accordingly. Furthermore, the 
1
H-, 

19
F-NMR spectra of poly(3-

isopropyl-1-vinylimidazolium hexafluorophosphate) were obtained and confirmed successful 

synthesis of the polymer material, respectively.  

4.3.2 FTIR spectra studies of vinyl imidazolium PILs 

The FTIR spectra of 3-propyl-1-vinylimidazolium bromide (3P-VImBr) and 3-isopropyl-1-

vinylimidazolium bromide (3Isop-VImBr) (APX 4-9), showed medium to weak stretching 

vibrations around 3412-3359 cm
-1 

corresponding to the (=C-H) bond of imidazolium rings 

resulting from the Fermi resonance effect of the C-H vibrations with the in-plane ring 

deformations [227]. C-Hsp
2
 stretching vibrations between 3123-3098 cm

-1
 can be ascribed to 

vinyl group methylene. The stretching vibrations around 2976-2879 cm
-1

 were assigned to the 

(C-Hsp
3
) of propyl and isopropyl groups’ components. Methyl and methylene bending vibrations 

in the region 1455-1415 and 1499-1496 cm
-1

 were assigned to propyl, isopropyl and vinyl 

moieties, respectively. Strong to medium stretching vibrations in the region 1655-1546 cm
-1

 were 

ascribed to be (-C=C-, C-N, and -C=N-) bands which overlapped with each other. Other 

important and strong bending vibrations around the fingerprint region (1108-1102 cm
-1

) can be 

ascribed to (C-N) and in-plane bending vibrations of (C-H) on the imidazolium ring [228]. 
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On the other hand, poly(3-propyl-1-vinylimidazolium bromide) P[3P-VImBr] and poly(3-

isopropyl-1-vinylimidazolium bromide) P[3Isop-VImBr] showed relatively similar bands 

compared to their corresponding non-polymerized monomers except for notable changes due to 

polymerization. For instance, well-pronounced C-Hsp
3
 stretching vibrations around 2940-2878 

cm
-1

 were ascribed to the propyl and isopropyl moieties and the polymerized vinyl group. 

Another important observation is the shifting of the (C-H) band at second-position to higher 

wavelength regions. In the polymer materials the (-C=C-) and (-C=N-) stretching vibration 

appeared to be stronger and sharp around 1655-1654 cm
-1

, signifying the absence of vinyl π-

bond. The disappearance of the stretching vibrations at 3098 cm
-1

 confirmed the polymerization 

and disappearance of π-bond in the vinyl group. In the hexafluorophosphate containing polymer 

materials, P[3P-VImPF6] and P[3Isop-VImPF6] shows relatively similar but lower-frequency 

shifted bands. Generally, the presence of bromide anion usually shifts the IR frequencies of 

functional groups towards the high region (away the fingerprint region). However, that shifting 

can be easily noticed on the bromide-containing imidazolium derivatives in this study. Moreover, 

after anion-exchange all the bands corresponding to P[3P-VImPF6] and P[3Isop-VImPF6] 

appeared in lower regions due to the absence of bromide anions. Hexafluorophosphate species in 

hydrophobic polymer systems appear around 839-847 cm
-1

, signifying successful anion-

metathesis.  
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4.3.3 Thermogravimetric analysis of vinyl imidazolium PILs 

TGA curves of vinyl imidazolium-PILs are presented in Fig. 4.1. Generally, thermal and glass 

transition temperatures of polyelectrolytes were influenced by both the cationic substituents, 

counterion changes and the alkyl lateral chain [227]. However, imidazolium-based 

polyelectrolytes containing halides (Br
-
 or Cl

-
) counter ions normally exhibited poor thermal 

stabilities compared to their hydrophobic counterion-containing analogues [245-246]. As shown 

in Fig. 4.1, bromide-containing PILs showed slight weight loss (<5%) below 100 °C which was 

due to the loss of moisture content from the hygroscopic PILs. However, beside the loss of 

moisture degradation, vinyl imidazolium-based PILs containing bromide counterion showed a 

unimodal degradation profile ranging from 300-350 °C. On the other hand, the 

hexafluorophosphate containing analogues showed onset of decomposition from 350-400 °C. To 

confirm the hydrophobicity and thermal stability of hexafluorophosphate analogues, no 

significant weight loss was observed below 100 °C [228] and all showed simple one-step 

degradation profile.  
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Figure 4.1 TGA profiles of vinyl imidazolium-based PILs 

. 

 

4.3.4 Characterization of styrenic imidazolium-PILs 

The imidazolium-based PILs with styrenic polymerizable moiety were prepared via the free 

radical polymerization of the corresponding ILs-monomer. The method used involved three (3) 

steps: (I) synthesis of the corresponding imidazolium-based ILs monomer by the reaction of 1-

alkylimidazole and vinyl benzyl chloride, (II) free radical polymerization of the resultant ILs-

monomer bearing styrenic polymerizable group, and lastly the anion-metathesis reaction 

involving the replacement of chloride with the large bulky anions 

[bis(trifluoromethane)sulfonamide or hexafluorophosphate]. Hard sticky-plastic like polymer 
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P[MVBIm-Cl] was produced and showed poor solubility in most solvents except DMSO. When 

P[MVBIm-Cl] was heated it showed moulded or plasticity character. P[MVBIm-PF6] and 

P[MVBIm-TFSI] were obtained by anion-exchange reaction at room temperature. The 

replacement of hydrophilic anion (Cl
-
) with more hydrophobic anions (PF6

-
 and TFSI

-
) resulted 

in imidazolium-based homopolymers with relatively high hydrophobicity and increased water-

insolubility.  

 

4.3.4.1 FTIR spectra studies of styrenic imidazolium-PILs 

In the FTIR spectrum of the ILs-monomer MVBIm-Cl, a broad stretching vibration at 3371 cm
-1

 

was ascribed to the possible intermolecular hydrogen bonding between chlorine and hydrogen 

atom of the imidazole ring (C-H----Cl, known as chlorine-hydrogen interionic bonding) [229-

230]. The vibrational bands in the region 3054-3012 cm
-1

 were ascribed to the unsaturated 

aromatic and alkene (=C-Hsp
2
) on the imidazole and styrenic components. The stretching 

vibration at 2829 cm
-1

 was ascribed to the saturated methyl (CH3sp
3
) attached to the imidazole 

ring at 3-position. Multiple bands (medium-weak) around 1628-1408 cm
-1

 were ascribed to the 

aromatic (-C=C- & -C=N-) of the imidazole ring and styrenic species. Other multiple vibrations 

in the region 1449-1333 cm
-1

 were attributed to the CH2 and CH3 bending vibrations in the 

fingerprint region. The absorption bands observed around 1159-1017 cm
-1

 were ascribed to (C-
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N) bending vibration. However, after polymerization of the styrenic moiety only few 

characteristic absorption bands have emerged which indicated successful polymerization. In the 

FTIR spectrum of P[MVBIm-Cl], the medium to weak vibrational bands around 2928-2856 cm
-1

 

were ascribed to the polymerized vinyl moiety on the styrene confirms polymerization and 

saturation of the vinyl moiety. Even though most of the vibrational bands were similar to those 

of the ILs-monomer beside the differences in relative intensity, the multiple bands (CH2 and 

CH3) observed shifted slightly after polymerization due to the absence of the vinyl cone-

shielding in the resultant polymer materials. After anion-exchange of Cl
-
 with TFSI

-
and PF6

-
, 

almost similar peaks were observed except the slightly shifting of the peaks due to the 

replacement of the halogen in both P[MVBIm-TFSI] and P[MVBIm-PF6], respectively. 

Additionally, the peak at 819 cm
-1

 was ascribed P-F bond stretching vibration in P[MVBIm-PF6] 

polymer confirming the successful anion-exchange with hexafluorophosphate [230].  

 

4.3.4.2 Nuclear magnetic resonance (NMR) spectroscopy analysis of styrenic imidazolium-PILs 

In the proton NMR of [MVBIm-Cl], protons feel different magnetic field strength owing to the 

location and the neighboring atoms directly attached. The protons attached directly to the 

aromatic rings and vinyl moieties were deshielded due to the less electron density caused by high 

electronegative atom, and the aromatic ring π-system. On the other hand, the high electron 
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density and weaker magnetic field environment of the third-position alkyl group resulted in the 

protons being shielded [220-221]. The proton NMR of P[MVBIm-Cl] showed similar chemical 

shifts except the protons on the vinyl portion of styrene which have been shifted upfield 

(shielded), owing to the absence of the vinyl π-systems due to polymerization of vinyl benzyl 

group [230]. The 
13

C NMR spectra were obtained for ILs-monomer and polymerized ILs. As it 

was expected, carbon atoms on the aromatic rings and alkene moiety in the ILs-monomer 

appeared downfield due to the reduced electron density and C=Csp
2
-hybridization. However, the 

sp
3
 hybridized carbon atoms at the first and third positions of the ILs-monomer appeared upfield 

owing to their C-Csp
3
 and N-Csp

3
 hybridizations. On the other hand, to corroborate the successful 

polymerization, the vinyl group carbon atoms in the polymerized system appeared upfield with 

C-Csp
3
 hybridizations [221, 230]. In addition, after anion-exchange of chloride with either TFSI

-
 

or PF6
-
, the 

1
H NMR spectra of hydrophobic polymer materials showed relatively less deshielded 

chemical shifts due to the absence of chloride ion, respectively. The 
31

P NMR spectrum of 

P[MVBIm-Cl] have multiplet (m) between -130 to -158 ppm confirming the presence of 

phosphorous atom coupled with six fluorine atoms. On the other hand, 
19

F NMR spectrum was 

found to contain doublets (d) between -69 to -71.0 ppm which also confirmed the coupling of six 

fluorine atoms with one phosphorous atom with similar average coupling constant of 
1
JP-F = 

704.43 Hz.  
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4.3.4.3 Thermogravimetric analysis of styrenic imidazolium-PILs 

Styrenic imidazolium-based PILs showed relatively varied degradation profiles owing to both 

the cationic poly(styrenic) backbone and counter ions involved. In the chloride-containing PILs, 

weight loss (<5%) below 150 °C was due to the loss of moisture content from hygroscopic 

polyelectrolytes (Fig. 4.2). However, a continuous degradation from 150 °C and total (final) 

decomposition around 450 °C in all chloride-containing PILs was observed and due to low 

thermal stability and hygroscopic character of these PILs. In comparison, PF6
-
 and TFSI

-
-

containing PILs showed no weight loss below 350 °C, which indicated their high thermal 

stability and hydrophobic character of the materials.  The styrenic imidazolium-PILs with PF6
-
 

and TFSI
-
 counter ions appeared more thermally stable and possibly decompose differently 

[227]. A two-steps (multimodal) degradation profile in PF6
-
-containing PILs corresponded to the 

removal of counterion (PF6
-
) first (onset of decomposition ~350 °C), followed by the removal of 

poly(styrenic) backbone (second decomposition ~450 °C) [228]. However, the unimodal (one-

step) decomposition of TFSI
-
-containing PILs indicated that they are thermally stable which 

could be attributed to only the decomposition of poly(vinyl benzyl) backbone [227-228].  

 

The nucleophilic character of Cl
-
 and the presence of N-alkylimidazole as a good leaving group 

seem to facilitate the SN
2
 displacement of the N-alkylimidazole via nucleophilic substitution 
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pathway [246]. Nucleophilic displacement of N-alkylimidazole by Cl
-
 nucleophilic attack revert 

back to poly(vinyl benzyl) chloride (PVBCl) and N-alkylimidazole, respectively. Thermal and 

glass transition temperatures are presented in Table 4.1. It showed that the glass transition 

temperatures (Tg) of polyelectrolytes studied were influenced by the type or size of counterion 

involved. For instance, the halide-containing PILs showed higher glass transition temperatures 

than their hydrophobic counter ion analogues, in the decreasing order Cl
- 

≥Br
- 

>PF6
- 

>TFSI
-
 

[228]. This therefore confirmed the general literature finding which suggestes that the larger the 

counterion size, the smaller the glass transition temperature [58, 228]. Generally, PILs anions act 

as plasticizers in plasticizing the PILs which normally depress the Tg [58]. 

 

Figure 4.2 TGA profiles of styrenic imidazolium-based PILs 
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Table 4.1 Thermal and glass transition temperatures of vinyl and styrenic imidazolium PILs 

 

Sample  Tdecomp (°C) Tg (°C) 

P[3P-VImBr] 345 125 

P[3Isop-VImBr] 320 138 

P[3P-VImPF6] 400 79 

P[3Isop-VImPF6] 350 57 

[MVBIm-Cl] 355, 450 146 

P[MVBIm-Cl] 270, 451 129 

P[MVBIm-PF6] 350, 450 53 

P[MVBIm-TFSI] 451 15 

 

4.3.4.4 Thermogravimetric analysis of vinyl imidazolium-PILs/MWCNT composites 

TGA curves of some vinyl imidazolium-based PILs/MWCNT composites are shown in Fig. 4.3. 

Though the composites showed good thermal stability and hydrophobic character, a slight onset 

of decomposition around 250-350 °C can be seen and it was attributed to the degradation of 

organic PIL materials from the composites [240]. Another significant and common weight loss in 

polymer-functionalized derivatives above 700 °C can be attributed to the decomposition of 

carbon materials released during temperature scan under airflow condition. Based on percentage 
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weight loss, only <15% of the composites was decomposed and was probably attributed to the 

PIL moieties in all composites, respectively [240]. 

 

Figure 4.3 TGA profiles of some vinyl imidazolium-based PIL/MWCNT composites 

 

4.3.4.5 FTIR spectroscopy of vinyl imidazolium-PIL/MWCNT composites 

The weak absorption bands around 1239 cm
-1

 were assigned to the C-O and carboxylic/graphitic 

(C=C) domains in MWCNTs. The medium stretching band at 1751 cm
-1

 can be attributed to 

C=O on the surface of MWCNTs. However, in the [3Isop-VIm
+
PF6

-
]/MWCNTs composite, the 

C=O stretching band was shifted to 1636 cm
-1

 suggesting the formation of amide bonds [232]. 

Beside in the corresponding ILs and [3Isop-Vim
+
PF6

-
]/MWCNTs, the PILs-based MWCNTs 

composites showed completely different and new functionalities after functionalization. The 



128 
 

appearance or emerging of new absorption bands around 2324-2307 and 1240-1074 cm
-1

 

ascribed to C-N and C=N is the complete evidence of the successful coating of polymer 

materials on the surface of MWCNTs.  

 

4.3.4.6 Scanning electron microscopy/Energy-dispersible X-ray spectroscopy (SEM/EDS) 

analysis of vinyl imidazolium-PILs/MWCNT composites 

In order to elucidate and study the surface morphology of the PILs/MWCNT composites, the 

samples were viewed under SEM using exceptionally low magnifications. It has been reported 

that MWCNTs usually showed tangled tubes with diameter range 100-200 nm (determined using 

TEM) [231]. However, some CNTs in this study revealed long and stripe-like nanostructures 

having the diameter of 17.23 nm with zigzag edges (Fig. 4.4). In addition, the MWCNTs 

produced were randomly mixed due to the synthetic method used, which makes their structural 

orientation different from those produced by growing them on a substrate by chemical vapor 

deposition (CVD) [232]. It can be observed from the SEM images that PILs were deposited on 

the surface of MWCNTs (Fig. 4.6A-B) [233]. Moreover, it was revealed that the surface 

functionalization of MWCNTs with PILs does not alter the surface morphology, but rather 

increased the diameter of the CNTs with cylindrical nanotubes were observed [234-235]. Due to 

the weak bond-formation between polymer materials and carbon nanotubes, the polymer/CNT 
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composites normally shows dispersion facilitated by weak van der Waals and electrostatic forces 

[235]. To elucidate the elemental composition of the composites, EDS spectra were obtained 

(Fig. 4.7).  The EDS mappings showed that the samples are mainly composed of carbon and 

bromide. The intensity of the carbon peak in the EDS spectra confirmed the successful synthesis 

of carbon materials [234]. However, the presence of phosphorous and fluorine in P[3P-VIm
+
PF6

-

], P[3Isop-VIm
+
PF6

-
], and [3Isop-VIm

+
PF6

-
] samples is as a results of counter-anion exchange. 

 

4.3.4.7 Transmission electron microscopy (TEM) analysis of vinyl imidazolium-PIL/MWCNT 

composites 

TEM micrographs of pure MWCNTs showed hollow tubular nanostructures [236]. However, 

some TEM micrographs (Fig. 4.8 and 4.9) showed PIL materials coated on the termini and 

insides of the elongated tubes. Complementary to the SEM results, the TEM micrographs 

showed that the surface of the MWCNTs was homogeneously covered by polymer materials, 

resulting in an increased surface (diameter) of the MWCNTs [236].  
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Figure 4.4 SEM (A & B) images and EDS (C & D) spectra of MWCNTs 

 

 

Figure 4.5 SEM images of P[3Isop-VImPF6]/MWCNT (A-B), and [3Isop-VImPF6]/MWCNT 

(C-D) composites 
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Figure 4.6 SEM images of P[3P-VImBr]/MWCNT (A-B), and P[3P-VImPF6]/MWCNT (C-D) 

composites 

 

Figure 4.7 EDS spectra of P[3Isop-VImPF6]/MWCNT (A), [3Isop-VImPF6]/MWCNT (B), 

P[3P-VImBr]/MWCNT (C), and P[3P-VImPF6]/MWCNT (D) composites 
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Figure 4.8 TEM micrographs of P[3P-VImBr]/MWCNT (A-B), and P[3P-VImPF6]/MWCNT 

(C-D) composites 

 

Figure 4.9 TEM micrographs of [3Isop-VImPF6]/MWCNT (A-B), and P[3Isop-

VImPF6]/MWCNT (C-D) composites 
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4.3.5 Characterization of styrenic imidazolium-PILs/MWCNT composites 

4.3.5.1 Thermogravimetric analysis of styrenic imidazolium-PILs/MWCNT composites  

Styrenic imidazolium-PIL/MWCNT composites showed very good thermally stable character 

throughout heating (Fig. 4.10). However, a thermal decomposition between 250 and 450 °C, 

particularly in P[MVBIm-Cl]/MWCNT, was due to degradation of less thermally stable 

hydrophilic PILs moieties attached onto the surface of MWCNTs. Comparatively, the 

PIL/MWCNT composites containing hydrophobic counter ions showed relatively good thermal 

stability and only ~10% was lost. Strong ionic electrostatic interactions between oppositely 

charged ions, anion-π and/or cation-π interactions were believed to have played a crucial role in 

thermal stability of PIL/MWCNT composites. 

 

Figure 4.10 TGA profiles of some styrenic imidazolium-based PIL/MWCNT composites 
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4.3.5.2 FTIR spectra studies of styrenic imidazolium-PILs/MWCNT composites  

Comparatively, the FTIR spectrum of MWCNTs showed absorption band around 1751 cm
-1

 

which was ascribed to aromatic ring stretching vibration. Vibrational band around 1239 cm
-1

 was 

due to the presence of carboxylic group (-COOH) and graphitic moieties on the surface of 

MWCNT. The obtained FTIR absorption bands of MWCNTs agreed with those obtained in the 

literature [237]. Furthermore, the FTIR data of PIL/MWCNT composites showed completely 

different functional groups due to the chemical interactions between polymers and graphitic 

moieties of carbon nanotubes. For example, though the FTIR functional peaks of pure MWCNTs 

and PIL-functionalized carbon material derivatives oscillate around similar regions, minor 

frequency distortions or shifting due to the possible PIL-carbon material interactions were 

observed. Additionally, the appearance of vibrational bands around 1635 cm
-1

 in some 

PIL/MWCNT composites also confirmed the presence of aromatic rings within the composites. 

 

4.3.5.3 SEM and EDS analysis of styrenic imidazolium-PILs/MWCNT composites 

The surface morphologies of imidazolium-styrenic based PILs were obtained and are shown in 

Fig. 4.11. The SEM images of PILs showed relatively smooth-rough surface of hardy plastic 

materials. The hardening behaviour of polymer materials caused by cooling could be the ultimate 

reason for this latter surface morphology. It has been observed in this work that polymer 
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materials to behave elastic or behave like a plastic at high temperatures, while hardening at lower 

or room temperature. Additionally, the EDS data showed the elemental composition of each 

polymer material (Fig. 4.11). For instance, the presence of certain elements such as C, N, Cl, F, 

O, S, and P assertion or confirmed the successful coordination of imidazolium counter cation 

together with the Cl
-
, TFSI

-
 or PF6

-
, respectively. On the other hand, the surface modification of 

carbon materials with polymers was further investigated by utilizing SEM/EDS technique. As 

shown in Fig. 4.12, SEM images revealed well-dispersed CNT flakes with curved-like 

morphology. Comparatively, some PIL/MWCNT composites showed fairly clustered-together 

carbon nanotubes due to the hardening of PIL materials right on the surface of carbon materials. 

As it was expected, the EDS spectra of PIL/MWCNT composites feature the elements such as C, 

N, Cl, F, O, S, and P, which therefore confirmed the successful incorporation of PILs and carbon 

nanotubes. The carbon content in all EDS spectra also confirmed the presence of carbon 

nanotubes and imidazolium-styrenic PIL systems.  

 

TEM micrographs of styrenic-imidazolium PIL/MWCNT composites are presented in Figs. 4. 

13-4.15. TEM analysis revealed that the surface of the MWCNTs was modified by amorphous 

polymer materials into various tubular, elongated and spherical orientations with cavities and 

voids [236]. Although some agglomerated carbon nanotubes are observed (Fig. 4.13), some 
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polymer materials were seen to be coated and debundling the surface of carbon nanotubes [236]. 

However, in this work, the possible agglomeration of carbon nanomaterials was minimized by 

covering of the carbon nanotubes surface with PIL materials. The rough and porous structural 

morphology of these PIL/MWCNT composites helps to enhance and facilitate solid-liquid 

adsorption process.  

 

Figure 4.11 SEM images/EDS spectra of styrenic-imidazolium based PILs. P[MVBIm-Cl] (A-

A1), P[MVBIm-TFSI] (B-B1), and P[MVBIm-PF6] (C-C1) 
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Figure 4.12 SEM images/EDS spectra  of styrenic-imidazolium based PILs. P[MVBIm-Cl] (A-

A1), P[MVBIm-TFSI] (B-B1), and P[MVBIm-PF6] (C-C1) 

 

 

Figure 4.13 TEM micrographs of P[MVBIm-Cl]/MWCNT composites 
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Figure 4.14 TEM micrographs of P[MVBIm-TFSI]/MWCNT composites 

 

 

Figure 4.15 TEM micrographs of P[MVBIm-PF6]/MWCNT composites 
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4.4 Chapter summary 

In this chapter, imidazolium-containing PILs possessing vinyl and styrenic polymerizable 

moieties were synthesized and discussed. NMR and mass spectrometry were collected and the 

results obtained confirmed successful synthesis and purity of PILs materials. The FTIR spectra 

studies of all PILs containing hydrophobic anions showed that the characteristic vibrational 

bands appeared in low frequency region, confirming successful replacement of halide with 

bulky-hydrophobic anions. On the other hand, microscopic analyses revealed that modification 

of CNTs with amorphous polymer materials did not alter the surface morphology of carbon 

nanotubes. TEM images showed tubular and spherical elongated orientations of PILs/MWCNT 

composites. The structural cavities and voids noticed are very important for solid-liquid 

adsorption of metal ions. 
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CHAPTER FIVE 

 

 

 

ADSORPTION STUDIES OF HEXAVALENT CHROMIUM SPECIES USING IONIC 

LIQUIDS AND POLYMER-FUNCTIONALIZED CARBON NANOTUBES AS 

ADSORBENTS 
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Chapter 5 

 

5.1 Background on adsorption of Cr(VI) using ILs and PILs/MWCNT composites 

Chromium exists in aqueous medium either as Cr(III) and/or as anionic Cr(VI) in the form of 

dichromate (Cr2O7
2-

), hydrochromate (HCrO4
-
), or chromate (CrO4

2-
) depending on the pH and 

concentration of the solution [215, 253]. It has been reported that hexavalent chromium is 100-

fold more toxic than the trivalent moiety (Cr (III)), especially in the oxidized forms [254]. 

Hexavalent chromium have been classified as carcinogenic towards humanity, and some 

worldwide organizations/countries including South Africa have recommended a maximum of 

0.005 mg·L
-1

 level as the Cr(VI) limit in potable waters [255]. However, long term exposure of 

hexavalent chromium levels over 0.1 ppm can also cause cell disorder, respiratory problems, 

liver and kidney damage [256]. 

 

Several conventional methods such as coagulation and precipitation, membrane filtration have 

been developed and used to remove hexavalent chromium from industrial effluents [7, 257]. 

However, these methods possess several limitations such as high operation cost, chemical 

sludge, and low output which hinder their applicability so far. [7]. On the other hand, adsorption 

process has received considerable attention due to its effectiveness, ease of generation, and 
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economic viability [8]. Recently, the use of polymer materials as adsorbents to remove various 

metal ions from wastewater has been the subject of review. Kumar et al. [9-10] reported the use 

of polyaniline and aniline-formaldehyde condensation polymers to remove hexavalent Cr(VI) 

from wastewater. They observed that the removal of chromium species from wastewater was due 

to the electrostatic interactions between the chromate species and protonated polymer materials 

via the reduction of Cr(VI) to Cr(III). Based on the current literature, poly(4-vinylpyridine) N-

alkyl quaternized polyelectrolyte materials with shorter alkyl chain length are water-soluble and 

inappropriate for removal of metal ions such as Cr(VI) from aqueous solution [216-217].  

 

Functionalization with polymer materials helps to increase the surface area, dispersibility, 

reduces water solubility of CNTs and makes them more thermally stable [16, 220, 258]. The 

efficiency and feasibility of an adsorbent to be utilized in metal ions adsorption depends on the 

morphological structure and characteristics of the material, which provides ability to attract 

metal ions. However, the coating of ILs and PILs on the surface of CNTs offers more thermally 

stable and insoluble composites with completely new functionalities. Furthermore, the presence 

of asymmetrically coordinated counter-ions of imidazolium and pyridinium as part of carbon 

nanotubes is believed to be very crucial in Cr(VI) adsorption efficiency of the composites via 

electrostatic interactions. Owing to the properties of ILs, PILs, and their CNTs composites, in 
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this chapter, Cr(VI) was removed from aqueous solution using the as-synthesized ILs and PILs-

CNTs composites.   

5.2 Experimental procedure 

The Cr(VI) adsorption experiments were performed according to the methods reported in the 

literature [240-241]. The parameters such as pH (2-10), contact time (10-120 mins), and initial 

Cr(VI) concentration (10-50 mg/L) were optimized. The optimization process was achieved by 

varying one parameter while keeping the others constant. In order to investigate the influence of 

these parameters on the retention of Cr(VI), the removal efficiency (R%) was determined using 

equation 5.1 [240-241]. 

𝑅% =  
𝐶0−𝐶𝑒

𝐶0 
 𝑥 100……………………5.1 

Where 𝐶0  and 𝐶𝑒  are the initial and final (equilibrium) concentrations of Cr(VI) (mg/L), 

respectively. Additionally, the adsorption capacity (metal uptake) 𝑞𝑒 (mg/g), that is, the mass of 

the adsorbate adsorbed per gram of adsorbent at equilibrium time was determined using equation 

5.2 [229-240]: 

𝑞𝑒 =  
(𝐶0−𝐶𝑒)𝑣

100 𝑤
…………………………..5.2 
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Where V is the volume of the aqueous solution (mL) and W is the adsorbent weight (g). The 

stock solution (1000 mg/L) of Cr(VI) was prepared by dissolving 2.835 g of 99.5% potassium 

dichromate (Cr2O7
2-

 ) in 1.0 L volumetric flask and filled to the mark. Then, appropriate dilutions 

or synthetic samples (10-50 mg/L) were prepared from the stock solution. The pH of aqueous 

solution was adjusted to the desired value by the addition of 0.1N HNO3 or 0.1N NaOH 

solutions.  

 

5.2.1  Batch Cr (VI) adsorption experiments 

Briefly, 20 mg of each composite (adsorbent) was added to 50 mL of a solution of Cr(VI) of 

known concentration (10-50 mg/L) in 100 mL Erlenmeyer flask. The solution was stirred for 10-

120 min at room temperature. Afterwards, the adsorbent was filtered and the residual 

concentration of Cr(VI) in solution was determined by the Varian 720-ES ICP Optical Emission 

Spectrometer at 267 nm. To complement the ICP-OES results retention of Cr(VI), SEM/EDS 

analysis was employed to analyse the adsorbent with adsorbed Cr(VI) post adsorption. 
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5.2.2 Sorption isotherm models 

Langmuir and Freundlich adsorption isotherms are among the most commonly used isotherms to 

study adsorption processes [240-241]. The Langmuir adsorption isotherm describes the 

qualitative formation of a monolayer adsorbate on the surface of the adsorbent with relatively 

equivalent adsorption site, which suggests that the metal ions (adsorbate) are equally distributed 

between the solid and liquid phases [240-241]. However, it has been reported that the validity of 

Langmuir adsorption assumes the monolayer-type surface adsorption with forward adsorption 

process decreasing as the available vacant adsorption sites are filled by adsorbate [241]. 

Subsequently applied in liquid phase systems, Langmuir adsorption isotherm (eqn. 5.3) was 

initially derived for gas phase adsorption processes [241]. However, Azizian et al. [241] recently 

revised the century-old Langmuir isotherm and consequently reported the modified Langmuir 

isotherm (eqn. 5.4) and its linear form (eqn. 5.5) [241]. 

      𝑞𝑒 =  
𝑞𝑚 𝐾𝐿

 𝑃

1+𝐾+𝑃
……………………………….5.3 

 

                  𝜃𝑒= 
𝐾𝑀𝐿 ·  𝐶𝑒

𝐶𝑠+(𝐾𝑀𝐿−1)𝐶𝑒 

 ……………………………5.4 

                 
𝐶𝑒

𝑞𝑒
 = 

𝐶𝑠

𝑞𝑚·𝐾𝑀𝐿 
 + 

(𝐾𝑀𝐿−1)𝐶𝑒

𝐾𝑀𝐿·𝑞𝑚
……………………....5.5 
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Where 𝜃𝑒  is the maximum surface coverage at equilibrium, 𝐶𝑒  is the solute concentration at 

equilibrium (mg/L), 𝐶𝑠 is the saturated solute concentration, 𝐾𝑀𝐿  is the modified Langmuir 

equilibrium constant, and 𝑞𝑒  is the amount of metal adsorbed per gram of the adsorbate at 

equilibrium (mg/g). The Langmuir plot of 
1

𝑞𝑒
 v 

1

𝐶𝑒
 was used to get the 𝑞𝑚  and the Langmuir 

isotherm constant (𝐾𝑀𝐿) form the slope and the intercept of the graph. On the other hand, the 

Freundlich adsorption isotherm usually describes the adsorption in terms of multilayer 

interactions with heterogeneous surface adsorption [242]. The linear form of Freundlich isotherm 

is shown in equation 5.6.  

                   log 𝑞𝑒 = log 𝐾𝑓 + 1 𝑛⁄ log 𝐶𝑒 …………………………….5.6 

Where 𝐾𝑓 is the approximate indicator of adsorption capacity (constant), 1 𝑛⁄  is a function of the 

strength of adsorption [242-244]. The Freundlich plot log 𝑞𝑒  𝑣  log 𝐶𝑒  was used to obtain the 

Freundlich constants and regression value (R
2
). 

 

5.3 Results and discussion 

The pH optimization showed that the adsorption of Cr(VI) species occurred in the pH range 2-3 

and all adsorption studies were performed at these pH. It has been clearly articulated in the 

literature that the pH of solution drastically influences the adsorption process of metal ions and 
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other species [259-260]. The influence of agitation time on Cr(VI) adsorption was also 

investigated. Some literature studies have reported that the effect of contact time is directly 

proportional to the adsorption of Cr(VI), while others have reported an opposite trend [242]. 

Furthermore, the effect of initial concentration of the metal ion solution was also studied. 

 

5.3.1 Effect of pH solution 

 The influence of solution pH on Cr(VI) adsorption was investigated to verify the type of Cr(VI) 

species adsorbed and the possible mechanism behind the adsorption process (Fig. 5.1). The 

acidity/basicity of the solution greatly influences the metal species ionization and the 

concentration or availability of counter H
+
 in the solution [261]. It has been reported that at low 

pH levels (≤3) Cr(VI) exist as dichromate (Cr2O7
-
) and/or hydrochromate (HCrO4

-
), while at 

higher pH values it exist as chromate (CrO4
2-

) [9]. As shown in Fig. 5.1, the removal of Cr(VI) 

decreased with increasing pH due to either the reduction of Cr(VI) to Cr(III) and/or the ionic 

electrostatic interactions between Cr(VI) and positive-end of the composites [261]. The pH was 

optimized to the range 2-3 for all the adsorption studies. A maximum percentage removal of 

Cr(VI) was found to be 20% for (PIL3/MWCNT), 40% for (PIL5/MWCNT), and 25% for 

(PIL6/MWCNT) within two hours of agitation time. Species such as dichromate and 

hydrochromate were adsorbed (at low pH), thanks to the presence of the pool of H
+
 ions in acidic 
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aqueous solution which acted to neutralize the negative-end of the adsorbent (composites) 

creating a conducive environment for electrostatic interactions between anionic Cr2O7
-
 or HCrO4

-
 

and the positive-end of the adsorbent(s) [262]. At pH<4, there were relatively strong electrostatic 

attractions between positively-charged composites and Cr(VI).  On the other hand, upon 

increasing pH (≥4), the competition between the anionic chromate (CrO4
2-

) and hydroxyl (OH
-
) 

to be adsorbed increases and consequently decrease the adsorption of Cr(VI) [261]. The surface-

active sites of the composites were either protonated or deprotonated depending on the pH of the 

solution. The presence of poorly coordinated counter-ions of vinyl pyridinium or imidazolium 

PILs as part of carbon nanotubes have played a significant role in the adsorption capacity of the 

composites.  

 

Figure 5.1 Effect of pH on the adsorption of Cr(VI) 
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5.3.2 Effect of contact time 

As shown in Fig. 5.2, the adsorption of Cr(VI) fairly increased with contact time (1-2 h) and 

there was no adsorption observed below 60 minutes of contact time. However, continuous 

increase in Cr(VI) adsorption occurred after 1 h up to 2 h of agitation time with removal 

efficiency of 30% for (PIL3/MWCNT), 60% for (PIL5/MWCNT), and 35% for 

(PIL6/MWCNT). The increase in Cr(VI) adsorption as function of time can be attributed to the 

continuous availability of surface active sites on the composites with increasing contact time, 

which greatly interact with the Cr(VI) species. To further study the influence of contact time, the 

agitation time was increased to 5 and 12 h. The removal efficiency of 19% for (PIL3/MWCNT), 

37% for (PIL5/MWCNT), and 19% for (PIL6/MWCNT) were observed after 12 h. As presented 

in Fig. 5.3, the increased agitation time have not exceptionally affected adsorption of Cr(VI). 

This is due to the early or quick oversaturation of the surface active sites of the adsorbents, 

indicating that the adsorbents could no longer adsorb an Cr(VI) beyond 2 h of agitation time. In 

addition, beyond 2 h of contact time, there is a limited number of available active sites and also 

increasing electrostatic repulsive forces among the Cr(VI) anions already adsorbed onto the 

composites. Long agitation time could also lead to the desorption of poorly coordinated Cr(VI) 

species to the solution.  Previous studies have reported different agitation time equilibriums 

depending on the type of polymer materials used as adsorbent [164, 222]. For example, Mi et al. 
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[164] obtained 98% Cr(VI) adsorption within 24 h of equilibrium, while Briones et al. [222] 

obtained 72.2% Cr(VI) adsorption within 24 min of agitation time. 

 

Figure 5.2 Effect of contact time on the adsorption of Cr(VI) 

 

 

5.3.3 Effect of initial concentrations of the adsorption of Cr(VI) 

 Fig. 5.4 showed that the concentration of the metal solution does not significantly impact the 

adsorption of Cr(VI) onto PILs/MWCNT composites. At higher initial concentrations, the 

mounting number of Cr(VI) anions fiercely compete for the available adsorption sites and 

consequently cause electrostatic repulsions [262].  
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Figure 5.3 Removal of Cr(VI) at initial concentration (50 mg/L) and increased contact time (h) 

 

Figure 5.4 Effect of initial concentrations on the adsorption of Cr(VI) onto PILs/MWCNT 

composites 
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When using imidazolium-PILs containing vinyl and styrenic moieties, similar Cr(VI) adsorption 

trend was observed. As shown in Figs. 5.5-5.8, the adsorption of Cr(VI) as a function of time 

showed a maximum removal efficiency of 35% after 12 h and it could be seen that there was no 

significant adsorption beyond 2-4 h of agitation time. With most adsorbents, the adsorption 

reached equilibrium at ≤4 h and beyond that, the rate of adsorption decreases as the number of 

vacant sites were already filled and saturated by the adsorbate. Although the initial concentration 

could not primarily impact the rate or the amount of adsorbate to be adsorbed, high removal 

efficiency for Cr(VI) could be observed when 10 mg/L concentration was used and the following 

adsorption order in terms of initial concentration (mg/L) was observed: 10>30>50. The latter 

order can be attributed to a number of physicochemical factors such as the oversaturation of 

Cr(VI) species at higher concentrations versus limited vacant adsorption sites on the surface of 

solid adsorbent 
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Figure 5.5 Adsorption of Cr(VI) onto P[3P-VImBr]/MWCNT composite 

 

 

Figure 5.6 Adsorption of Cr(VI) onto P[3P-VImPF6]/MWCNT composite 
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Figure 5.7 Adsorption of Cr(VI) onto [3Isop-VImPF6]/MWCNT composite 

 

 

Figure 5.8 Adsorption of Cr(VI) onto P[MVBIm-Cl]/MWCNT (P4), P[MVBIm-PF6]/MWCNT 

(P5), and P[MVBIm-TFSI]/MWCNT (P6) composites 
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5.3.4 Adsorption and kinetic models 

The adsorption data of Cr(VI) onto PILs/MWCNT composites also fitted well into both 

Langmuir and Freundlich isotherm models (Fig. 5.9). Interestingly, inasmuch as the data fitted 

well into Langmuir model with correlation co-efficient (0.98≤ R
2
<1) suggesting a monolayer 

adsorption process with equivalent adsorption sites, the multilayer adsorption process could not 

be ruled out. The latter appraise the heterogeneity contribution of PILs/MWCNT composites due 

to the nature of the composites such as the presence of bulky organic cations, some large counter 

anions and graphitic functional groups. To further understand the mechanism behind the 

adsorption of Cr(VI) onto PILs/MWCNT and ILs/MWCNT composites, the pseudo-second-

order kinetic model was used to analyse the solid-liquid adsorption process. The pseudo-second-

order kinetic model is expressed as follows [262]:  

 

   
𝑡

𝑞𝑡
 = 

1

𝑞𝑒
2𝐾2

 + 
𝑡

𝑞𝑒
 …………………………….5.7 

Where 𝑞𝑡(mg·g-1
) is the amount of Cr(VI) adsorbed per unit weight of the adsorbent (composite) 

at the time of t, 𝑞𝑒(mg·g-1
) is the maximum adsorption capacity, 𝐾2 (g·mg

-1·min
-1

) is the pseudo-

second-order rate constant. The values of 𝑞𝑒 and 𝐾2 were obtained from both the intercepts and 

slope of the plot of 𝑡 𝑞𝑡
⁄  versus t, respectively. The parameters which include 𝐾2 , calculated 
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maximum adsorption capacities (𝑞𝑒𝑐𝑎𝑙), experimental maximum adsorption capacities (𝑞𝑒·exp), 

and correlation coefficients (R
2
) obtained are listed in Table 5.1. As shown in both Fig. 5.9 (II) 

and Table 5.1, the plot of  𝑡 𝑞𝑡
⁄  versus t display straight lines with high correlation coefficients 

(R
2
>0.99), confirming the applicability and feasibility of the pseudo-second-order kinetic model 

on the adsorption of Cr(VI) onto PILs/MWCNT composites [261]. However, comparing the 

(𝑞𝑒𝑐𝑎𝑙 ) and (𝑞𝑒·exp ), it was observed that both values, particularly in most PILs/MWCNT 

composites showed close tolerance and therefore the kinetics of Cr(VI) adsorption onto 

PILs/MWCNT composites followed pseudo-second-order model.  
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Figure 5.9 (I) Langmuir and Freundlich adsorption isotherms of P[3P-VImBr]/MWCNT (A-B), 

P[3P-VImPF6]/MWCNT (C-D), and [3Isop-VImPF6]/MWCNT (E-F) composites 
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Figure 5.9 (II) Linear plots of t/qt vs t for the adsorption of Cr(VI) onto P[3P-VImBr]/MWCNT 

(A), P[3P-VImPF6]/MWCNT (B), [3Isop-VImPF6]/MWCNT (C), P[MVBIm-Cl]/MWCNT (D), 

P[MVBIm-PF6]/MWCNT (E) and P[MVBIm-TFSI]/MWCNT (F) composites 
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Table 5.1 Pseudo-second-order kinetic model parameters for Cr(VI) adsorption onto 

PIL/MWCNT composites 

PILs 𝒒
𝒆.𝐞𝐱𝐩(

𝒎𝒈
𝒈

)
 𝒒𝒆.𝒄𝒂𝒍(

𝒎𝒈

𝒈
) R

2 

 

K2 (g·mg·min) 

PIL/MWCNT 1 8.193 8.849 0.993 0.0017 

PIL/MWCNT 2 8.620 10.210 0.991 0.0012 

PIL/MWCNT 3 9.665 10.121 0.987 0.0022 

PIL/MWCNT 4 22.787 23.860 0.998 0.0045 

PIL/MWCNT 5 18.063 17.540 0.982 0.0014 

PIL 6/MWCNT 16.375 16.861 0.987 0.0025 

Note: P[3P-VIm][Br]/MWCNT (PIL/MWCNT 1), P[3P-VIm][PF6]/MWCNT (PIL/MWCNT 2), [3Isopropyl-

VIm][PF6]/MWCNT (PIL/MWCNT 3), P[MVBIm][Cl]/MWCNT (PIL/MWCNT 4), P[MVBIm][PF6]/MWCNT 

(PIL/MWCNT 5), and P[MVBIm][TFSI]/MWCNT (PIL/MWCNT 6). 

 

5.3.5 Adsorption of Cr(VI) onto ILs/MWCNT composites 

The influence of solution pH on the adsorption of Cr(VI) on ILs/MWCNT composites was 

studied. As already indicated, the adsorption of Cr(VI) occurred under acidic medium due to the 

interactions of anionic Cr(VI) species such as dichromate (Cr2O7
-
) and hydrochromate (HCrO4

-
) 

and the positively regions (pyridinium or imidazolium-cations) of the composites. For example, 

during the adsorption of Cr(VI) unto the pyridinium and imidazolium-based ILs/MWCNT 

composites, the availability of H
+
 ions from the acidic solution normally neutralizes the negative-

end of the adsorbent (which includes Br
-
 or PF6

-
 counter anions) creating a favourable 

environment for electrostatic interactions between anionic Cr2O7
-
 or HCrO4

-
 and the positive-end 
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of the adsorbent (pyridinium, imidazolium or graphitic groups) [261]. On the other hand, the 

minimal adsorption of Cr(VI) under basic conditions (pH≥4) can be attributed to the competition 

between the anionic chromate CrO4
2-

 in Cr(VI) solution, hydroxyl (OH
-
) group, and counter ions 

(Br
-
 and PF6

-
 on the adsorbent) [261].  

 

Figs. 5.10 to 5.13 shows the adsorption of Cr(VI) onto ILs/MWCNT composites as function of 

time, initial concentration and different adsorbent weight. In almost all the ILs-based composites, 

an increased agitation time beyond 3 h showed no significant effect on the adsorption of Cr(VI) 

due to early saturation of the active sites on the adsorbents. The active sites of the adsorbents 

were fully saturated or filled by Cr(VI) ions at early stages of agitation time, suggesting a very 

fast attraction of Cr(VI) in these adsorbents though there were limited active sites. In some cases, 

the adsorption of Cr(VI) onto ILs-based composites showed a decreasing adsorption order which 

suggested that after early stages (>2 h) of agitation time the adsorbate was probably released 

back to the solution. This was likely due to the physical and/or chemical parameters such as early 

saturation of active sites or the competition between poorly coordinated counter anions (Br
-
, PF6

-

) and metal ions (dichromate/hydrochromate) to be attached on the pyridinium or imidazolium 

cations. 
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The dependence of Cr(VI) adsorption on the initial concentration was also studied and it was 

observed that the effect of increasing solute concentration was negligible and insignificant in this 

study, rather resulted in excessive competition between Cr(VI) species themselves (Figs. 5.10 to 

5.13). Changing initial concentration from 10 mg/L to 50 mg/L did not affect the adsorption of 

Cr(VI) significantly. Additionally, the effect of adsorbent mass was also studied and two 

adsorbent dosages were compared (20 mg) [N-propylPyr
+
][Br

-
]/MWCNT  and [N-

IsopropylPyr
+
][PF6

-
]/MWCNT composites  and (50 mg) [MPIm

+
][Br

-
]/MWCNT and  

[IsopropylMIm
+
][PF6

-
]/MWCNT composites.  The results obtained showed that an increase in 

adsorbent weight did not affect the adsorption of Cr(VI), which therefore suggests that the lower  

adsorption of Cr(VI) in this study cannot be attributed to the limited adsorption active sites, but 

relatively to the competition between metal ions and ILs-counter anions in all the adsorbents.  

 

Figure 5.10 Adsorption of Cr(VI) onto [MPImBr]/MWCNT composite 
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Figure 5.11 Adsorption of Cr(VI) onto [IsopMIm-PF6]/MWCNT composite 

 

 

Figure 5.12 Adsorption of Cr(VI) onto [IsopMIm-PF6]/MWCNT composite 
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Figure 5.13 Adsorption of Cr(VI) onto [N-IsopPyrPF6]/MWCNT composite 

 

5.3.6 Adsorption and kinetic models of Cr(VI) adsorption on ILs/MWCNTs 

 

The sorption data fitted into both Langmuir (Fig. 5.14) and Freundlich (Fig. 5.15) isotherms and 

it was observed that the adsorption of Cr(VI) onto ILs/MWCNT composites best fitted well into 

Langmuir isotherm model, with highest correlation co-efficiencies (0.98≤R2<1). This therefore 

suggests that the adsorption of Cr(VI) onto ILs/MWCNT composites took place via monolayer 

adsorption process with equal number of uniform adsorption sites. However, based on the 

experimental data obtained (for example the amount of adsorbate on the surface of the 

adsorbent), the rate of adsorption as a function of agitation time and initial concentration 

observed, it can be concluded that the adsorption of Cr(VI) onto ILs/MWCNT composites is 

dependent on the number of available vacant sites and this also account to the decrease of Cr(VI) 
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adsorption with increasing agitation time. The available vacant sites are normally filled or 

saturated by Cr(VI) within early stages of contact time. 

 

Figure 5.14 Langmuir adsorption isotherms of [MPIm-Br]/MWCNT (A), [IsopMIm-

PF6]/MWCNT (B), [N-propylPyrBr]/MWCNT (C), and [N-IsopPyrPF6]/MWCNT (D) 

composites 
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Figure 5.15 Freundlich adsorption isotherms of [MPIm-Br]/MWCNT (A), [IsopMIm-

PF6]/MWCNT (B), [N-propylPyrBr]/MWCNT (C), and [N-IsopPyrPF6]/MWCNT (D) 

composites 

 

5.3.7 FTIR spectroscopy and SEM/EDS analysis of composites after Cr(VI) adsorption 

To further substantiate the results obtained from batch adsorption experiments, FTIR 

spectroscopic and SEM/EDS microscopic analysis were performed post adsorption. Generally, 

the infrared vibrational bands after Cr(VI) adsorption are always shifted either to higher or lower 

frequencies depending on the developed functional groups [262]. The FTIR spectra of some 
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PILs/MWCNT and ILs/MWCNT composites post adsorption were obtained and new changes in 

FTIR absorption bands were attributed to the interactions between the pyridinium/imidazolium 

cations or positive-end of the composites and the anionic chromium species at lower pH values 

[262].  

 

SEM images of the PILs/MWCNT and ILs/MWCNT composites post adsorption showed that the 

surface morphology of the composites have drastically changed and the initial visible pores were 

filled or saturated by Cr(VI) species. The changes in surface morphology and the emerging of 

new attachments on the sidewalls and termini of carbon tubes confirmed successful coordination 

of chromium species with the functional groups of the composites. EDS spectra were also 

collected post-adsorption (Figs. 5.16-18). All the EDS spectra displayed the presence of 

elemental Cr around 0.6 and between 5-6 KeV. However, the microscopic and spectroscopic 

microanalysis results provided comprehensive evidence for the physical attachment of Cr(VI) 

species on the surface of PILs/MWCNT composites [222, 262].  The presence of bulky 

asymmetric pyridinium and imidazolium cations was believed to have played a pivotal role in the 

adsorption of anionic Cr(VI) species in this study via the electrostatic interactions. However, in 

almost all batch adsorption experiments, PILs/MWCNT and ILs/MWCNT composites 

containing halide-counter ions showed very low adsorption performance and this can be 
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attributed to the anionic competition triggered by bromide and hydroxyl anions for the H
+
 ions in 

acidic medium, which led to possible electrostatic/steric repulsions inside the adsorption system. 

 

Figure 5.16 SEM images/EDS spectra of PIL3/MWCNT (A-A1), PIL5/MWCNT (B-B1), and 

PIL6/MWCNT (C-C1) composites after Cr(VI) adsorption 



168 
 

 

Figure 5.17 SEM images/EDS spectra of P[3P-VImBr]/MWCNT (A-A1), [3Isop-

VImPF6]/MWCNT (B-B1), and P[3P-VImPF6]/MWCNT (C-C1) composites after Cr(VI) 

adsorption 
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Figure 5.18 SEM images/EDS spectra of P[3P-VImBr]/MWCNT (A-A1), [3Isop-

VImPF6]/MWCNT (B-B1), and P[3P-VImPF6]/MWCNT (C-C1) composites after Cr(VI) 

adsorption 

 

5.4 Chapter summary 

In summary, Cr(VI) was adsorbed onto ILs/MWCNT and PILs/MWCNT composites via solid-

liquid adsorption process. Batch adsorption experiments showed that the adsorption of Cr(VI) 

was pH dependent and only took place under acidic conditions (optimized pH was 2-3). 

However, the cationic imidazolium and pyridinium-end functional groups of ILs and 

PIL/MWCNT composites are proposed to facilitate the possible Cr(VI) adsorption. The effect of 

contact time and initial concentrations were investigated, and it was revealed that contact time 
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and initial concentrations did not significantly influence the adsorption process. However, 

promising adsorptions were observed at 2 h of contact time and when the concentration of 

Cr(VI) solution was 10 mg•L
-1

. The adsorption of Cr(VI) onto ILs/MWCNT and PILs/MWCNT 

composites followed Langmuir adsorption isotherm and fitted well into pseudo-second-order 

kinetic model, suggesting  monolayer surface adsorption method which indicates one active site 

per species. Strong electrostatic interactions are believed to have facilitated the mechanism 

behind the adsorption of Cr(VI) onto PILs/MWCNT and ILs/MWCNT composites.  

 

 

 

 

 

 

 

 

 



171 
 

CHAPTER SIX 

 

 

 

SUMMARY OF RESULTS, CONCLUSION AND FUTURE PROSPECT 
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6.1 Summary of results 

In this study, imidazolium and pyridinium-based ionic liquids (ILs) were synthesized and 

characterized by FTIR, 
1
H, 

13
C,

 19
F, and 

31
P-NMR spectroscopy, thermal gravimetric analyses, 

solubility studies, and mass spectrometry. The influence of the propyl and isopropyl chain at the 

first and third positions of imidazolium and N-atom of pyridinium cations towards the thermal 

stability, conductivity, and solubility of the ionic liquids were investigated. It was observed that 

pyridinium-ILs decomposed at higher temperatures, displayed high melting points, and showed 

poor water solubility than the imidazolium counterparts and their conductivities are mainly 

influenced by mobility of ions.  

 

Furthermore, multi-walled carbon nanotubes (MWCNTs) were synthesized by simple chemical 

method, and dispersed using imidazolium and pyridinium-based ionic liquids (ILs). 

ILs/MWCNT composites were characterized using FTIR spectroscopy, scanning electron 

microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), thermogravimetric analysis 

(TGA) and solubility in different polar and non-polar solvents. Spectroscopic and microscopic 

studies showed graphitic and carboxylic groups in the pure MWCNTs. MWCNTs SEM images 

showed entangled bundles, while ILs/MWCNTs showed debundled composites with increased 

diameter and unaltered MWCNTs morphology. TGA analysis showed that the ILs/MWCNTs are 



173 
 

more thermally stable, owing to the van der Waals and non-covalent interactions within the 

composites matrices. Solubility studies indicate that ILs/MWCNT composites are hydrophobic 

and insoluble in water and other polar solvents. 

 

Vinyl pyridinium PILs were synthesized via radical polymerization of ILs monomers using 

potassium persulfate. Highly elastic PILs materials and several PILs/MWCNT composites were 

synthesized and characterized with thermal, spectroscopic and microscopy techniques. FTIR 

spectra studies showed vibrational bands due to (C=N) at 1600 cm
-1

, compared to 1640 and 1636 

cm
-1

 in the literature [200]. Thermal studies revealed that pyridinium-PILs containing 

hydrophobic counter anions (PF6
-
) were stable above 350 °C than their halide-containing 

counterparts. The observed thermal stability of PILs can be attributed to strong electrostatic 

interactions between pyridinium cations and hexafluorophosphate anions. The delocalized charge 

in pyridinium cationic ring and the size of counter anions influenced the glass transition 

temperatures of PILs materials. Functionalization of the carbon nanotubes with vinyl pyridinium-

PILs resulted in more thermally stable and relatively insoluble PILs/MWCNT composites. 

SEM/EDS and TEM microscopic analyses confirmed the coating of PILs materials on the 

surface of carbon nanotubes and it could be concluded that direct mixing-functionalization 

method did not alter the surface morphology of pristine carbon materials. 
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NMR and mass spectrometry results confirmed the synthesis of imidazolium-PILs materials. 

FTIR spectra of all imidazolium-PILs containing hydrophobic anions showed vibrational bands 

in low frequency region, confirming replacement of halide with bulky-hydrophobic anions. 

Interestingly, the microscopic analyses revealed that modification of CNTs with amorphous 

polymer materials did not alter the surface morphologies of carbon nanotubes. TEM micrographs 

showed tubular and spherical elongated orientations of PILs/MWCNT composites. The visible 

cavities and voids from the micrographs are very important for solid-liquid adsorption of metal 

ions.  

 

The as-synthesized ILs and PILs/MWCNT composites were used as adsorbents for the removal 

of Cr(VI) ions in aqueous solution. Batch adsorption experiments showed that the adsorption of 

Cr(VI) was pH dependent and occurred under acidic conditions. Results from the studies 

indicated that the cationic imidazolium and pyridinium-end functional groups of ILs and 

PILs/MWCNT composites are the functionalities for possible Cr(VI) adsorption. The effect of 

contact time and initial concentrations were investigated, and it was revealed that the influence 

of time and initial concentration was insignificant in this study. This may be ascribed to the 

physic-chemical factors of the materials being used as adsorbent. The adsorption of Cr(VI) onto 

ILs/MWCNT and PILs/MWCNT composites followed Langmuir adsorption isotherm and fitted 
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well into pseudo-second-order kinetic model. This indicated monolayer surface adsorption 

method with one active site per species.  

 

6.2 Conclusion 

The current study presents the synthesis, characterization and evaluation of ionic liquids, 

polymeric ionic liquids and their carbon nanotubes-functionalized composites as potential 

adsorbents for metal ions. NMR, accurate mass analysis, FTIR, solubility test, and TGA were 

used to confirm the synthesis of imidazolium and pyridinium based ILs and PILs The presence 

of high electronegative halogen (Br
-
) as counterion and the π-electron system in imidazolium and 

pyridinium counter cation rings resulted in deshielded 
1
H and 

13
C-NMR peaks. Single (accurate) 

mass analysis confirmed the purity of the as-synthesized ILs and PILs compounds based on CHN 

analysis.  

 

FTIR analysis of all hydrophilic and hydrophobic ILs showed relatively similar vibrational bands 

with slight frequency shifts due to anion-exchange. Comparatively, the vibrational bands around 

890-991 cm
-1

 corresponded to the P-F bonding in hydrophobic ILs. Thermal analysis showed 

that all ILs containing hydrophobic counter anion (PF6
-
) were more thermally stable than their 

corresponding hydrophilic counterparts. Pyridinium-based ILs with isopropyl isomer were more 
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thermally stable than those with propyl alkyl chain. The thermal stability trend for the 

pyridinium ILs was: [N-IsopropylPyrPF6]>[N-propylPyrPF6]>>[N-IsopropylPyrBr]>[N-

propylPyrBr]. DSC showed that the glass transition temperatures of ILs were dependent on the 

counter anion. There bigger the counter anion, the smaller the glass transition temperature. 

 

Vinyl pyridinium-based PILs/MWCNT composites were observed to be more times thermally 

stable and relatively insoluble in aqueous solution. This makes the compounds useful for solid-

liquid adsorption processes. Structural studies of the PILs/MWCNTs showed unaltered surface 

morphologies and decreased crystalline size in pristine carbon nanotubes. The ILs/MWCNT and 

PILs/MWCNT composites used as adsorbents for Cr(VI) in aqueous solutions indicated that the 

adsorption occurred at pH 2-3.  This only confirmed the adsorption of dichromate (Cr2O7
-
) and 

hydrochromate (HCrO4
-
). At lower pH values, the ionic and π-anionic electrostatic interactions 

between the positively-end of the composites and Cr(VI) were believed to have facilitated the 

adsorption of anionic (Cr2O7
-
) and (HCrO4

-
). Maximum removal efficiency of 60% was 

achieved. 

 

The adsorption data obtained on the adsorption of Cr(VI) onto ILs/MWCNT and PILs/MWCNT 

composites fitted well into both Langmuir and Freundlich adsorption isotherms. The 
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homogeneity and heterogeneity character of the adsorbents probably came into play significantly 

and that can be attributed to the diversified nature of the composites which includes the bulky 

pyridinium and imidazolium organic cations with delocalized charges, some large counter anions 

and the graphitic functional carbon groups. In order to understand the mechanism behind the 

adsorption of Cr(VI) onto ILs/MWCNT and PILs/MWCNT composites, pseudo-second-order 

kinetic model was employed. The results showed that the calculated maximum adsorption 

capacities (qecal) and experimental maximum adsorption capacities (qe.exp) were closely related, 

with higher correlation co-efficiencies (R
2
>0.99) confirming the applicability and feasibility of 

pseudo-second-order model on the adsorption of Cr(VI) in this study. It could therefore be 

concluded that ILs/MWCNT and PILs/MWCNT composites of imidazolium and pyridinium are 

thermally stable, water insoluble, hydrophobic and are relatively good as adsorbents for Cr(VI) 

ions.  

 

6.3 Future prospects 

There is a need to study the physicochemical properties of the composites; particularly the ILs 

and PILs functionalized carbon materials. This is necessary in order to understand the processes 

and mechanisms behind the solid-liquid adsorption. The coordination and/or interaction 

protocols between ionic liquids derivatives and carbon nanotubes should also be investigated. 

Although, results from this study suggested that possible interactions between ionic liquids 
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derivatives and carbon nanotubes could be van der Waals forces, π-anion, π-cation, and/or 

electrostatic interactions, however, more must be done to investigate the possible impact of the 

molecular weight of polymeric ionic liquids on adsorption. In order to get more insights on the 

mechanisms and kinetics facilitating the solid-liquid adsorption process of metal ions, additional 

properties of the composites such as definite chemical composition and structural orientation 

should also be probed. On solid-liquid adsorption process, the effect of adsorbent weight and 

temperature variations is of importance in further studies. There is also a need to understand the 

nature and the chemical behaviour of ions participating in solid-liquid adsorption system of ILs 

and PILs-functionalized carbon nanotubes composites. Further studies should be conducted on 

the removal of other toxic metal ions and acid mine drainage. The reusability of the composites 

is another important parameters and in future studies, it should be further investigated. 
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APPENDICES 

 

Appendix 1 

APX1-1 Nomenclature of Ionic liquids synthesized. 

Name of compound Code/formulae 

N-propylpyridinium bromide [N-propylPyr]
+
[Br]

- 

N-isopropylpyridinium bromide [N-isopropylPyr]
+
[Br]

-
 

N-propylpyridinium hexafluorophosphate [N-propylPyr]
+
[PF6]

-
 

N-isopropylpyridinium hexafluorophosphate [N-isopropylPyr]
+
[PF6]

-
 

3-methyl-1-propylimidazolium bromide [MPIm]
+
[Br]

- 

1-isopropyl-3-methylimidazolium bromide [IsopropylMIm]
+
[Br]

- 

1-isopropyl-3-methylimidazolium 

hexafluorophosphate 

[IsopropylMIm]
+
[PF6]

-
 

3-methyl-1-propylimidazolium 

hexafluorophosphate 

[MPIm]
+
[PF6]

- 

3-ethyl-1-isopropylimidazolium bromide [EisopropylIm]
+
[Br]

- 

 

APX 1-2 Nomenclature of ILs monomers and polymeric ionic liquids synthesized. 

Name of compound Code/formulae 

Poly[4-vinylpyridine] P4-VP 

Poly[N-ethyl-4-vinylpyridinium bromide] PIL1 

Poly[N-propyl-4-vinylpyridinium bromide] PIL2 

Poly[N-isopropyl-4-vinylpyridinium bromide] PIL3 

Poly[N-ethyl-4-vinylpyridinium 

hexafluorophosphate] 

PIL4 

Poly[N-propyl-4-vinylpyridinium 

hexafluorophosphate] 

PIL5 

Poly[N-isopropyl-4-vinylpyridinium 

hexafluorophosphate] 

PIL6 

1-vinylimidazole 1-VIm 

3-propyl-1-vinylimidazolium bromide [3P-VImBr] 

3-isopropyl-1-vinylimidazolium bromide [3Isop-VImBr] 

Poly[3-propyl-1-vinylimidazolium bromide] P[3P-VImBr] 

Poly[3-isopropyl-1-vinylimidazolium bromide] P[3Isop-VImBr] 

Poly[3-propyl-1-vinylimidazolium 

hexafluorophosphate] 

P[3P-VImPF6] 

Poly[3-isopropyl-1-vinylimidazolium 

hexafluorophosphate] 

P[3Isop-VImPF6] 

3-methyl-1-(4-vinyl benzyl)imidazolium 

chloride 

[MVBIm-Cl] 
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Poly[3-methyl-1-(4-vinyl benzyl)imidazolium 

chloride] 

P[MVBIm-Cl]  

Poly[3-methyl-1-(4-vinyl benzyl)imidazolium 

hexafluorophosphate] 

P[MVBIm-PF6] 

Poly[3-methyl-1-(4-vinyl benzyl)imidazolium 

bis(trifluoromethanesulfonyl)imide] 

P[MVBIm-TFSI] 

 

Appendix 2 

 

APX 2-1 
1
H NMR of [N-propylPyr]

+
[Br]

-
 (A), and [N-propylPyr]

+
[PF6]

-
 (B) 
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APX 2-2 
1
H NMR of [N-isopropylPyr]

+
[Br]

-
 (A), and [N-isopropylPyr]

+
[PF6]

-
 (B) 



218 
 

APX 2-3 
19

F NMR (A) and 
31

P NMR (B) for [N-propylPyr]
+
[PF6]

-
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APX 2-4 
19

F NMR (A) and 
31

P NMR (B) of [N-isopropylPyr]
+
[PF6]

-
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APX 2-5 
1
H NMR of [MPIm

+
][Br

-
], dissolved in H2O 

 

 

APX 2-6 
1
H NMR of [isopropylMIm

+
][Br

-
], dissolved in H2O 



221 
 

 

APX 2-7 
1
H NMR of [IsopropylMIm

+
][PF6

-
], dissolved in DMSO 

APX 2-8 
13

C-NMR of [MPIm
+
][Br

-
], dissolved in H2O 
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APX 2-9 
13

C-NMR of [isopropylMIm
+
][Br

-
], dissolved in H2O 

 

APX 2-10 
13

C-NMR of [IsopropylMIm
+
][PF6

-
], dissolved in DMSO 
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APX 2-11 19
F NMR (A) and 

31
P NMR (B) of [N-isopropylMIm

+
][PF6

-
] 
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APX 2-12 Accurate mass (Single Mass) Analysis of [MPIm
+
], C7H14N2

+
. Single mass analysis 

based on CHN 

 

APX 2-13 Accurate mass (Single Mass) Analysis of [IsopropylMIm
+
], C7H14N2

+
. Single mass 

analysis based on CHN 
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APX 2-14 Accurate mass (Single Mass) Analysis of [N-propylPyr
+
], C8H12N

+
. (A) Single mass 

analysis based on CHN, (B) TOF mass spectrometry ES of PF6 
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APX 2-15 Accurate (single Mass) Analysis of [N-isopropylPyr
+
], C8H12N

+
. (A) Single mass 

analysis based on CHN, (B) TOF mass spectrometry ES of PF6 
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APX 2-16 FTIR spectra of pyridinium-based ionic liquids 

 

 

APX 2-17 FTIR spectra of some imidazolium and pyridinium-based ILs 
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APX 2-18 Solubility of MWCNTs in different solvents 

 

 

APX 2-19 Solubility of some ILs/MWCNT composites; [MPIm
+
][Br

-
]/MWCNT(A),  [N-

propylPyr
+
][Br

-
]/MWCNT (B), [isopropylMIm

+
][PF6

-
]/ MWCNT (C), and [N-

isopropylPyr
+
][PF6

+
]/MWCNT (D): Where (S, N.S, and P.S) stands for soluble, non-soluble, and 

partial soluble, respectively 
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Appendix 3 

 

APX 3-1 
1
H-NMR spectra of poly(N-ethyl-4-vinylpyridinium bromide) PIL1 (A), poly(N-

propyl-4-vinylpyrinium bromide) PIL2 (B), and poly(N-isopropyl-4-vinylpyrinium bromide) 

PIL3 (C) 
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APX 3-2 
19

F (A) and 
1
H (B)-NMR spectra of poly(poly(N-ethyl-4-vinylpyridinium 

hexafluorophosphate) PIL 4 

 

APX 3-3 
19

F (A) and 
1
H (B)-NMR spectra of poly(N-propyl-4-vinylpyridinium 

hexafluorophosphate) PIL 5 
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APX 3-4 
19

F (A) and 
1
H (B)-NMR spectra of poly(N-isopropyl-4-vinylpyridinium 

hexafluorophosphate) PIL 6 

 

APX 3-5 FTIR spectra of poly(4-vinylpyridine) P4-VP, poly(N-ethyl-4-vinylpyrinium bromide) 

PIL1, poly(N-propyl-4-vinylpyrinium bromide) PIL2, and poly(N-isopropyl-4-vinylpyrinium 

bromide) PIL3. 
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APX 3-6 FTIR spectra of poly(N-ethyl-4-vinylpyrinium hexafluorophosphate) PIL4,  

 poly(N-propyl-4-vinylpyrinium hexafluorophosphate)  

 PIL5, poly(N-isopropyl-4-vinylpyrinium hexafluorophosphate) PIL6 

 

APX 3-7 FTIR spectrum of pristine MWCNTs 
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APX 3-8 FTIR spectrum of pure PIL3/MWCNT composites 

APX 3-9 FTIR spectrum of pure PIL5/MWCNT composites 
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APX 3-10 FTIR spectrum of pure PIL6/MWCNT composites 
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Appendix 4 

 

APX 4-1 
1
H-NMR of 3-propyl-1-vinylimidazolium bromide 

 

APX 4-2 
1
H NMR of poly(3-propyl-1-vinylimidazolium bromide). 
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APX 4-3 
1
H NMR of poly(3-propyl-1-vinylimidazolium hexafluorophosphate) 

 

APX 4-4 
19

F NMR of poly(3-propyl-1-vinylimidazolium hexafluorophosphate) 
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APX 4-5 
1
H NMR of 3-isopropyl-1-vinylimidazolium bromide 

 

APX 4-6 
1
H NMR of 3-isopropyl-1-vinylimidazolium hexafluorophosphate 
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APX 4-7 
1
H NMR of poly(3-isopropyl-1-vinylimidazolium hexafluorophosphate) 

 

APX4-8 
19

F NMR of poly(3-isopropyl-1-vinylimidazolium hexafluorophosphate) 
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APX 4-9 FTIR of 3-propyl-1-vinylimidazolium bromide (3P-VImBr), poly[3-propyl-1-

vinylimidazolium bromide] P[3P-VImBr], and poly[3-propyl-1-vinylimidazolium 

hexafluorophosphate] P[3P-VImPF6] 

 

APX 4-10 FTIR of 3-isopropyl-1-vinylimidazolium bromide [3Isop-VImBr], poly[3-isopropyl-
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1-vinylimidazolium bromide] P[3Isop-VImBr], and poly[3-isopropyl-1-vinylimidazolium 

hexafluorophosphate] P[3Isop-VImPF6] 

 

APX 4-11 
1
H NMR of [MVBIm-Cl] 
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APX 4-12 
13

C NMR of [MVBIm-Cl] 

 

APX 4-13 
1
H NMR of P[MVBIm-Cl] 
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APX 4-14 
13

C NMR of P[MVBIm-Cl] 

 

APX 4-15 
1
H NMR of P[MVBIm-TFSI] 

 

 

APX 4-16 
1
H NMR of P[MVBIm-PF6] 
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APX 4-17 
31

P NMR of P[MVBIm-PF6] 

 

 

APX4-18 
19

F NMR of P[MVBIm-PF6] 
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APX 4-19 Accurate (single Mass) Analysis of [MVBIm
+
], C13H16N2

+
 based on CHN and TOF 

mass spectrometry ES 
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APX 4-20 TOF mass spectrometry ES of P[MVBIm-Cl] 

 

APX 4-21 TOF mass spectrometry ES of P[MVBIm-TFSI] 
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APX 4-22 TOF mass spectrometry ES of P[MVBIm-PF6] 

APX 4-23 Possible interactions (electrostatic) between PIL/MWCNT composites and Cr(VI) 




