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ABSTRACT

In metropolitan and urban areas, the problems relating to rapid transformations that are taking

place in terms of land cover and land use are now very pronounced, e.g., the rapid increase and

unpredictable spread of formal and informal physical infrastructure. As a result, the availability

of detailed, timely information on urban areas is of considerable importance both to the man-

agement of current urban activities and to forward planning. Remote sensing sources can make

a vital contribution in this context, since they provide regular and recurring data from a single,

consistent source. Pattern recognition techniques have been demonstrated to be effective in dis-

tinguishing and classifying human settlements. However, these methods are not ideal as they

perform poorly when presented with imagery of the same area acquired at different dates. The

poor generalization ability is mainly caused by large off-nadir viewing angles which produce

image pairs with different viewing- and illumination-geometries. Classification performance is

also decreased by differences in shadow length and orientation.

The objective of this research is to improve the generalisation ability of the automated clas-

sification of human settlements using only remote sensing data over urban areas. The multires-

olution local binary patterns (LBPs) algorithm, extended with an orthogonal variance measure

for measuring local contrast features (i.e., the extended LBP) has been shown to excel at texture

classification tasks. To minimize the viewing- and illumination-geometry effects and improve

settlement classification, the extended LBP was applied to high spatial resolution panchromatic

aerial images. The addition of a contrast component to the LBP features does not directly affect

the desired invariance to shadow orientation and length, but it is expected that the richer features

will nevertheless improve settlement classification accuracy.

The extended LBP method was evaluated using a support vector machine (SVM) classifier

for cross-date (training and test images of the same area acquired at different dates) and same-

date analysis. For comparable results, LBPs without contrast features were also evaluated. The

results showed the extended LBP to have a strong spatial and temporal generalisation ability for

classifying settlements of aerial images, when compared to its counterpart. From this research,

we can conclude that the extended LBP’s additional contrast features can improve overall set-

tlement type classification accuracy and generalisation ability.
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Chapter 1

Introduction

According to the Oxford dictionaries, a slum is defined as “a house or building unfit for human

habitation”1 and depending on where you are located in the world, slums are also known as

shacks, squatter areas, shanty areas, or informal settlements. In 2001, about 32% of the world’s

population (924 million people, at that time) lived in informal settlements, with the majority

found in less developed countries where up to 78.2% lived in slums [40]. Since then, there has

been rapid increase of informal settlements, particularly in urban areas. The accelerated pace of

urbanisation is mainly due to:

1. migration for better prospects of employment, education and access to social infrastruc-

ture,

2. poverty and unequal distribution of wealth,

3. inability of government to define clear and long-term land and housing policy [58].

Major concerns of informal settlements (IS) are that they have the highest concentrations

of poor people, the worst shelter and unsafe physical environmental conditions with high pop-

ulation densities (i.e., building structures are unsafe, location is on hazardous land and usually

overcrowded). IS also lack basic and essential services such as water supply, sewerage and waste

disposal, health and education, and in addition, they are not in compliance with current planning

and building regulations thus are defined as unauthorised housing [41, 40, 88, 51]. High rates of

these types of settlements often results in an uncontrolled urban growth and increased consump-

tion of natural resources. If left unchecked, these may threaten the sustainable development of

urban areas in the long term, and may eventually cause environmental degradation and social

tension.

In this context, an effective settlement differentiation and monitoring system of the spread of

these settlements is essential. However, this is not a trivial task as informal settlements are highly

condensed, dynamic (erection and removal of structures happens over short time periods), and

difficult to access for surveys [82]. This makes traditional monitoring methods labour intensive,

expensive, time-consuming and therefore impractical and unsatisfactory for urban management
1Definition found at http://www.oxforddictionaries.com/definition/english/slum?q=Slums
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purposes. Thus, an automated effective and repetitive monitoring system for human settlements

is of the greater importance.

In an effort to develop an automated monitoring system that can be highly effective in set-

tlement differentiation/classification without the need for ancillary data, we considered the use

of remote sensing imaging sources and pattern recognition techniques. Remote sensing (RS)

imaging sources provide the opportunity to capture accurate, detailed historic data of settlement

at regular intervals and high details. This enables the opportunity to monitor small-scale land

use structures and dynamics in urban areas. RS and pattern recognition techniques also per-

mit a detailed analyses of informal settlements by assisting in identifying main driving factors

of informal settlements and hence the prediction of future informal patterns. Such a strategic

approach is essential for an automated, systematic and replicable urban monitoring system and

could be a key for future success in efficient management of informal settlements and other

related environmental impacts.

1.1 Problem statement

There are numerous geo-spatial and image processing methods that can be used to map and mon-

itor urban structures and/or objects from RS imagery. To find meaning in RS imagery, which

is an unstructured array of pixels, the first step is to extract efficient visual features from the

unstructured pixels [37]. This makes image feature extraction an essential step for an effective

automated settlement type classification system as an appropriate feature representation can sig-

nificantly improve the performance of the classification process. Using high spatial resolution

imagery of urban areas, texture feature extraction methods have been shown to be successful in

setting apart different settlement types [8]. Methods such as the Local Binary Patterns (LBPs)

have been shown to be the most effective algorithm when compared to other known algorithms,

such as, the Gray-level Co-occurrence Matrix (GLCM), Granulometrics and Discrete Wavelet

Transform (DWT) [30]. In spite of the good performance, the LBP and above mentioned meth-

ods are still far from being ideal due to viewing- and illumination-geometry effects [125].

These effects cannot be easily avoided as they may not be caused by poor image quality

but may be due to a pair of images of the same area acquired at different dates or time of the

day. The latter may introduce large off-nadir2 viewing angles which produces an image pair

with different viewing- and illumination geometries. Illumination effects alter the orientation

and length of the shadows between the image pair which results in decreased classification

2The nadir refers to the direction pointing directly below a particular point of observation
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accuracy. In addition, the seasonality and time of day during acquisition determine the sun

elevation and azimuth angles which may hinder classification performance further. Though no

real change has occurred on the ground, these effects produce an image-pair that may contain

a large number of spurious differences [70, 125]. A good image feature is one that is designed

to have a representation that is sensitive to change in the desired variables, e.g., settlement type,

while being insensitive to other types of change that may be present in the image [125]. If an

image feature has these properties, then it can be expected that the feature will lead to good

generalization performance in classification tasks.

1.2 Research objective

The objective of this research is to improve settlement type classification accuracy, using only

remote sensing imagery, by improving the feature extraction step. The work evaluates the gen-

eralization performance particularly for cross-date images (two scenes of the same area ac-

quired under different conditions, such as time of the year) as these contain large viewing- and

illumination-geometry effects. To achieve good generalization in classification accuracy, joint

distribution of gray-scale and rotational invariant LBP with rotational invariant variance mea-

sures (contrast), called extended LBPs are used. The gray-scale and rotational invariant LBP

part of the algorithm is only sensitive to the structure (pattern) whilst being insensitive to rota-

tion and contrast changes. Variance measures are invariant to pattern change and only sensitive

to contrast. RS images can be viewed as 2-D texture images characterised by spatial structures

and contrast thus making the extended LBP an ideal tool for the task.

In order to ascertain classification accuracy improvements and the significance of the vari-

ance measure in classifying settlement type, the extended LBP is compared with the original

LBP method (which omits the variance components).

1.3 Contribution

The main contribution of the study is to investigate the significance of contrast features for the

task of improving settlement type classification using cross-date aerial images.

1.4 Methodology and expected impact

To achieve the objectives mentioned above, aerial RS data was used for a semi-automated clas-

sification system to map settlement types. The methodology framework for this research was
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then carried out as following:

1. RS data was acquired using a Digital Mapping Camera (DMC) panchromatic airborne

sensor over the same area at different dates.

2. The process of extracting image features for distinguishing human settlements from the

input data was done using LBP and extended LBP (LBP/VAR) algorithms.

3. Support Vector Machine (SVM) classifier was used for training and testing the extracted

features.

4. To evaluate the general improvement and the significance of contrast measures in settle-

ment mapping, a comparison of the classification accuracies (LBP/VAR against the LBP)

was performed.

In light of the above, viewing- and illumination geometry effects have shown to be chal-

lenging problems in settlement type classification. The extended LBP is expected to aid in a

development of more robust system for classifying settlements. Though contrast measures may

not directly effect the desired invariance to shadow orientation and length, it is expected that the

richer features will nevertheless improve settlement classification accuracy.

1.5 Thesis layout

Chapter 1 is the introduction chapter, consisting of the background, description of the problem

statement, research objectives and methodology.

Chapter 2 presents a brief introduction to remote sensing history, fundamental concepts, gen-

eral use and interpretation. The chapter then discusses RS systems for urban landscape

mapping, in particular feature extraction and classification methods. The chapter ends

by presenting the study case: classifying human settlements. This section presents the

definitions of human settlements and a review of texture feature methods for settlement

analysis.

Chapter 3 is the methods chapter, presenting the theoretical development of the algorithms

used, namely, the extended LBP feature extraction algorithm and SVM classifier.

Chapter 4 is the experiment design chapter, presenting the dataset and implementation of the

extended LBP features for training and testing the SVM classifier.
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Chapter 5 provides the results from the evaluation (training and testing) of the SVM classifier

and a discussion section for analysis, using different parameters.

Chapter 6 presents conclusions and recommendations for future work.



Chapter 2

Literature Review

2.1 Introduction

The chapter is divided into three sections. The first section presents the remote sensing (RS)

field, discussing the field’s fundamental concepts and history. The next section presents the

use of remote sensing in automated or semi-automated classification tasks, particularly in ur-

ban areas. The last part of the chapter presents the use of RS for the classification of human

settlements, the section also presents current work, challenges and possible solutions.

2.2 Remote Sensing: History and fundamental concepts

There are many definitions of Remote Sensing, for our purpose, it is defined as the measurement

of objects on the earth’s land and water surfaces using data acquired from an airborne or a

spaceborne platform [14, 65, 111]. Data is acquired using electromagnetic (EM) sensors, in one

or more regions of the EM spectrum, that record electromagnetic energy variations reflected and

emitted by the Earth’s surface features. While the output can vary, it is usually in a form of a

two-dimensional spatial grid (image) representing the region of interest [65]. Data measurement

is required to derive useful information from the image for the purpose of generating products

(e.g., conventional maps and resources surveys) to be used in the fields of geography, geology,

oceanography, urban and regional planning, agriculture, and others [110, 16, 65, 22]. Remote

sensing systems such as aerial RS, satellite RS, thermal RS, radar RS and LiDAR have been used

in land, agriculture, forestry, geology, hydrology, land use, land cover, oceanography, weather

analysis and forecast applications [132, 66].

The use of remote sensing in mapping is the most apparent, as imaging sensors collect and

render information in the inherently spatial form of a map. The precise control and geometric

registration of modern imaging systems allows the geographic location of an individual image

pixel to be determined within metres from sensor altitudes of hundreds of kilometres [96]. This

enables accurate, reliable, timely, long-term and quality global data acquisitions that allows

better prediction of natural hazards, epidemics, impacts of energy choices, climate variations

and a combination of the past and present earth observations enables the detection, monitoring

6
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Figure 2.1: Remote Sensing global land cover product: 300-m global land
cover map produced from an automated classification of MERIS FR time
series for the year 20091.

2Source: Globcover from ESA, url: http : //due.esrin.esa.int/globcover/

and management of the Earth’s surface changes (e.g., urbanisation, industrialisation and glob-

alisation). These capabilities can assist in decision making for managing common environment

problems such as water shortages, desertification, soil depletion, greenhouse gases warming the

atmosphere, deforestation, elevated coastal waterway sediment and nutrient fluxes, and other

troubling consequences of human activities [64]. For an example of a RS global land cover

product using satellite RS, see figure (2.1).

2.2.1 History of Remote Sensing

Aerial photography : Remote sensing began with the development of photography in early

1800s by Louis Daguerre [23]. In attempts to view the Earth’s surface from a vertical

perspective, photography went from ground to the sky using balloons, kites and airplanes.

The first aerial photographs were taken in the 1860s by Felix Tournachon, known by the

pseudonym “Nadar”, in France using a camera mounted on a balloon tethered 80 m above

the Bievre Valley [53]. In 1909, Wilbur Wright took the first aerial photograph using

a plane. The manoeuvrability of the plane provided the capability of controlling speed,

altitude, and direction required for systematic use of the airborne camera [14].

Remote sensing: From then until the early 1960s, aerial photography remained the single stan-

dard tool for depicting the surface from a vertical or oblique perspective. In 1960, the
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U.S. launched the world’s first successful weather satellite called Television and Infrared

Observation Satellite (TIROS-1) [121]. As images were now collected from space and

outside the visible spectrum, the term “aerial photography” no longer described the col-

lected data. The term “remote sensing” coined in the mid 1960s by Evelyn Pruitt (a

scientist working with the U.S. Office of Naval Research) was then used to describe the

collected data [14].

Satellites: The focus of remote sensing research shifted from aerial photography to the use of

images acquired by Earth-orbiting satellite sensors [28]. The first satellite (known as the

Earth Resources Technology Satellite ERTS-1) that was dedicated to monitoring environ-

mental conditions on the Earth’s surface was launched in 1972 [86]. It was followed by

ERTS-2 (launched in 1975) and ERTS-3 (launched in 1978). Later, the names of these

satellites were changed to Landsat-1, -2, and -3, respectively [86]. as Ikonos and Quick-

Bird, were launched in the last decade and have stimulated the development of newer

detailed scale applications related to urban settlements.

2.2.2 Data acquisition

Remote sensing sensors collect electromagnetic radiation from the Earth’s surface by one of

two ways, i.e., active or passive. Active sensors have their own energy source and emit a signal

that travels through the atmosphere, reflects off the Earth’s surface and returns to the sensor,

which measures the signal’s travel time and strength. Synthetic Aperture Radar (SAR) sensor

is an example of an active sensor that uses long-wavelength signals and can penetrate clouds

or adverse weather conditions. Passive sensors, also known as optical sensors, do not have

their own energy source and usually record the reflected energy of electromagnetic radiation

or emitted energy from Earth where sunlight is the main source. Photographic cameras and

multispectral scanners are examples of passive sensors and often used in satellite remote sensing

[96].

Remote sensing systems have been designed to be sensitive to the visible and other portions

of the electromagnetic spectrum (see figure 2.2). This characteristic enables remote sensing

analysts to see portions of the spectrum that the human eye cannot detect, thereby enhancing

their ability to identify different surface materials.

For any given material, the amount of solar radiation that it reflects, absorbs, or transmits

varies with wavelength. This property of matter makes it possible to identify different substances

or features and separate them by their spectral signatures [65]. The spectral properties of a
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Figure 2.2: Electromagnetic spectrum.

sensor are defined by the number, placement and width of bands within the electromagnetic

spectrum that it is able to record.

2.2.2.1 Sensors

B. Linear array (Pushbroom)

platform
 motion

detectors per pixel 
across the swath

Signal out

swath width

C. Square detector array 

platform and sensor

band 1
band 2

band n

For multi- and hyperspectal
array each row samples
different bands   

Signal out

A. Mechanical line scanner 

swath width

Signal out

scan

scanning mirror

swath width

platform
 motion

platform
 motion

Figure 2.3: Remote Sensing devices used to collect aerial photography,
multispectral and hyperspectral imagery.

Image acquisition technologies used in satellite programs have ranged from traditional cam-

eras to line scanners. While a traditional camera is held fixed on the target of interest as it is

sensed in a very brief moment, a line scanner uses a satellite/aircraft to provide motion along

the track where the scanning motion across or along the target captures the scene over a time

interval. There are two broad categories of line scanners, namely, mechanical line scanner and

line detector array. A mechanical line scanner contains a mechanical component (e.g., a rotat-

ing mirror) that scans the surface across the swath. The forward motion of the vehicle and a

rotating mirror allows an image strip to be built up from the raster-scans, see figure (2.3-A).

Alternatively, a line detector array or “push-broom” provides scanning along the track and the

sensed radiation moves directly through the optics onto the array detectors. The scanner car-

ries sufficient detectors on the sensor platform such that each pixel can be recorded individually

(such that, the sensor sweeps across the sensed scene), see illustration in figure (2.3-B). Other

scanners include the square detector array which works like the “push broom”, but instead of
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the rectangular detector, a square detector array is used to capture a two dimensional image un-

derneath the satellite, as illustrated in (figure (2.3-C). To record many spectral channels of data

across track direction simultaneously (to the order of 10 bands), other dimensions are employed

and the acquired data is described as multispectral or hyperspectral data.

2.2.2.2 Platforms

During the last two decades, there has been a rapid increase in number of platforms for remote

sensing applications, these can be split into two categories: airborne and spaceborne.

• Airborne platform

Image Acquisition

Vertical

Image View
Oblique ShadowVertical

Oblique

Figure 2.4: The geometry of aerial photographs (vertical or
oblique) and tilt displacements on the acquired image.

Airborne platforms such as an aeroplane or helicopter mount cameras to capture an aerial

view of the target of interest, the acquired images are known as aerial photographs. Aerial

photography provides the longest available images history and have high spatial and ra-

diometric resolution [81]. The images can be acquired with any type of camera, however,

RS airborne cameras mainly use two types, namely, film-based and digital cameras. Both

cameras are quite similar in structure, but differ in the way they store data. A digital cam-

era records reflectance using an electronic sensor and stores it digitally while a film-based

stores it on a film [81]. Film-based photographs are scanned to create digital images,

which offer advantages in analysis [14]. Most optical aerial photographs commonly span

panchromatic (black and white), colour, or false-colour infrared bands. However, using

different emulsions and filters, photographs can be recorded in various types of elec-

tromagnetic wavelengths [65]. Aerial photography is not only limited to optical; SAR

imaging can also be carried out on airborne platforms [14].
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Data acquisition of aerial photographs can either be vertical or oblique, depending on the

orientation of the camera’s optical axis relative to the earth’s surface, see figure (2.4).

A vertical photograph is perpendicular to the surface with a slight tilt of no more than

3◦ and oblique aerial photographs are taken with an intentional inclination of the camera

axis. Aerial images may have some errors due to the platform stability, weather conditions

and time of acquisition (i.e., oblique objects appear longer and depending on the time of

day the image was acquired shadows appear at various lengths), see figure (2.4).

• Spaceborne platform

Sensors on space platforms offer broad spatial imagery, regular re-visit frequency and

are often a cost effective alternative to aerial photography. An example of a spaceborne

platform images is satellite imagery. RS satellites have unique characteristics which make

them particularly useful for remote sensing of the Earth’s surface. There are several RS

satellites currently available, however, depending on the orbit they can be divided into

two categories: geostationary or near polar satellites. A geostationary satellite revolves

at speeds which match the Earth’s rotation, making it seem to be stationary. This allows

the satellite to observe and collect information continuously over specific areas. These

satellites are commonly used for weather monitoring and communications. Near polar

orbits follow an inclined orbit relative to line running between the North and South poles.

In conjunction with the Earth’s rotation (west – east), near polar satellites are able to cover

most of the Earth’s surface over a certain period of time. Near polar orbiting satellites are

said to be sun–synchronous, i.e., at any given latitude, the position of the sun in the sky

as the satellite passes overhead will be the same within the same season [15].

Acquisition of spaceborne or airborne remote sensing images has some errors due to the

platform and digitisation of images. The most common are: geometric and radiometric errors.

Geometric errors occur due to problems regarding:

• variations in platform altitude, stability and velocity,

• topographic/relief displacement, tilt displacement,

• the rotation of the Earth during image acquisition.

Radiometric errors can be caused by atmospheric effects (e.g., refracted light, clouds and bad

weather) and the time and season of image acquisition (which can affect the clouds and the
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angle of the sun) [81, 109]. Geometric distortions are corrected using ortho-rectification pro-

cedure which corrects geometric displacement errors and provide spatial reference [135]. For

radiometric errors, correction procedures are specific to the nature of the distortion. The correc-

tions usually involves histogram2 manipulation procedures, e.g., histogram matching, histogram

equalisation and histogram normalisation procedures [102, 109].

2.2.2.3 Data resolutions

Data collected by RS systems can either be in analogue or digital format and these data are

primarily described by four types of resolutions:

1. Spatial resolution: a measure of the finest detail in an image. For digital images, this

refers to the ground area captured by a single pixel. Spatial resolution can be characterised

as: low (approx. 1 km or more), medium (approx. 100 m to 1 km), high (approx. 5 to 100

m) and very high spatial resolution systems (approx. 5 m or less).

2. Spectral resolution: represents the width of wavelength interval and/or number of spec-

tral channels (or bands) captured by a sensor. Optical imaging systems (visible, near

infrared, and shortwave infrared systems) can be classified, in terms of the spectral reso-

lution, according to the number of spectral bands used: a) Mono-spectral or panchromatic

(single wavelength band, black-and-white, gray-scale image systems), b) Multispectral,

(several spectral bands), c) Super-spectral (tens of spectral bands) and, d) Hyper-spectral

(hundreds of spectral bands).

3. Temporal resolution: the amount of time it takes a sensor to revisit a particular geo-

graphic location, possibly at a different viewing angle.

4. Radiometric resolution: the sensitivity of the sensor to brightness values. This metric is

usually articulated in terms of binary bit-depth, which refers to the number of gray-scale

levels at which data are recorded by a particular sensor. The binary bit-depth is typically

expressed in the following ranges of gray-scale levels: 8-bit (0 – 255), 10-bits (0 – 1,023),

11-bits (0 – 4,095) and 16-bit (0 – 65,535).

In order to detect, distinguish between, and identify objects of interest, it is first necessary

to appreciate the satellite remote sensing system’s trade-off in resolution. The trade-off in res-

olution is dependent on the user application, i.e., depending on the application the user can

2the distribution of the tonal and radiometric values of the entire image
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place the emphasise on the most important resolution. That is, emphasis on spectral resolution

sensors results to having a medium or low spatial resolution and vice-versa, see table (2.1). Al-

ternatively, the user may not place any particular emphasis on either high nor low resolution,

but can acquire medium spatial, spectral and temporal resolution simultaneously.

Table 2.1: Remote sensing space-borne sensors in-terms of resolution characteristics.

Attribute
Resolution

High Spectral High Spatial Medium

Organisation NASA (USA) GeoEye (USA) NASA (USA) and METI (Japan)

Sensor (Mission) Hyperion (EO-1) GeoEye-1 ASTER (EOS Terra)

Operation 2000– 2008– 1999–

Temporal Res 16 days <3 days 4-16 days

Spatial Res (m) 30 1.65 (MSa),0.41 (PANb) 15(VNIRc), 30(SWIRd), 90 (TIRe)

Swath Width (km) 7.5 15.2 60

Radiometric Res 12-bit 11-bit 8-bit(VNIR/SWIR), 12-bit(TIR)

Spectral Res (µ m) 0.353–2.577 0.45–0.92 0.52–0.86, 1.60–2.43, 8.125–11.65

Pan Band Res (m) N/A 0.45–0.80 N/A

Bands (Total) 220 5 14

aMS: Multispectral
bPAN: Panchromatic
cVNIR: Visible and Near-Infrared
dSWIR: Short Wave Infrared
eTIR: Thermal Infrared

2.3 Urban analysis RS systems

Remotely sensed data can be a useful source of data for mapping the composition of urban

settings and analysing changes over time that cannot be obtained from ground-level observa-

tions. It provide a more spatially complete representation of urban areas, using sensors onboard

airborne/spaceborne platforms that provide a unique overhead perspective on the diversity of

urban environments over a wide range of spatial and temporal scales. The geometric precision

of the images combined with repeated revisits provided by a satellite orbit extends spatial map-

ping into the time dimension and makes it possible to monitor subtle changes in urban areas.

For example, recently launched high-resolution sensors, like Quickbird, PLEIADES and World-

View, combined with archives of moderate-resolution Landsat and SPOT imagery, can provide

detailed multitemporal observations of every city on earth including cities in developing coun-

tries [96]. Using RS sensors at various wavelengths, e.g., thermal and microwave radar sensors,

RS data can reveal urban characteristics that are not visible to the eye.
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2.3.1 RS data selection

A wide variety of passive and active remote sensing systems with various spatial resolutions

have been useful for urban studies. As early as the 1970s, when the first Landsat was launched,

medium-resolution RS data has been used to examine urban phenomena or processes over large

areas. In an urban environment two major classes can be remotely sensed: land-cover types

(e.g., bare soil, water, vegetation) and land-uses (e.g., residential, commercial, industrial and

roads). Using RS multispectral sensors, diverse land-cover types can be accurately separated

to derive accurate thematic land-cover maps. For land-uses, however, as object identification

often responds in a strongly correlated manner to spatial resolution of the imagery, analysing

multispectral imagery with relatively coarse spatial resolution may not distinguish these urban

categories as accurate. Another problem with spectral data is due to the highly similar spec-

tral response of these areas of the urban land-cover mix, e.g., asphalt roads versus black tiled

roofs [46]. In this context, to effectively use RS data for urban landscape monitoring, the choice

of data should meet certain conditions in terms of spatial, spectral, radiometric, and temporal

characteristics [57].

To discern the inner-city structures, one requires remote sensing data with fine detail (very

high spatial resolutions) [57]. The availability of very high spatial resolution satellite imagery

and aerial photography (1 m and below) provides valuable information in various forms to detect

and differentiate inner-city structures, e.g., settlements in the urban environment [131, 57, 119].

However, there are disadvantages in using very high resolution imagery, i.e., they need more

storage and processing time. However, given the rapid and continuing improvements in com-

puter technology, the latter appears to be of secondary importance [28]. A notable disadvantage

about high spatial resolution sensors is that presently the majority of highest resolution images

are recorded in panchromatic mode only (multispectral images covering wavelengths from visi-

ble to near-infrared) with high geometric accuracies, are usually at lower spatial resolution than

the panchromatic band, see Table (2.1) on page 13. Regardless of this trade-off, the usefulness

of satellite remote sensing for distinguishing inner-city structures from its surrounding neigh-

bourhoods has been addressed in the last decade [7, 48, 62, 108, 118, 130]. The degree of

“slumness” of neighbourhoods and places within a city has also been estimated using remotely

sensed data from very high spatial resolution platforms such as QuickBird, IKONOS and SPOT

5 [96].

To understand temporal resolution requirements for monitoring urban areas, three urban

temporal scales must be considered [57]:
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1. The temporal development cycle of an urban phenomenon, i.e., how long formal infras-

tructure is developed from non-built to a fully developed residential area.

2. The revisit time for the remote sensor system to acquire data of the urban landscape (this

knowledge is critical for an up-to-date urban monitoring system).

3. How often the users (urban managers/planners) need a specific type of information.

Aerial or satellite-based sensor systems are sufficient, in terms of spatial and temporal reso-

lution, to monitor urban areas as the imagery can be detailed and is acquired at regular time

intervals. This ensures an up-to-date system and combined with the archived imagery, RS sys-

tems can provide detailed multi-temporal observations of urban phenomena. Airborne sensor’s

flexible revisit time makes them suitable for capturing specific type of information, e.g., urgent

information in emergency situations such as flooding and earthquakes.

2.3.2 Feature selection and extraction

To successfully monitor/classify urban objects, the choice of distinguishing features is a critical

task. Prior knowledge about the object features plays a major role in the design of the feature

extractor, where the knowledge may be about the form of the underlying categories or attributes

of the patterns. Using this prior knowledge, the object features/properties (i.e., the values of the

chosen features) can be are extracted/measured and passed for classification. However, due to

the composition of urban areas having many small objects composed of many different materials

in a spatial arrangement that does not produce many homogeneous pixels, extracting urban fea-

ture presents more challenging problems [79]. Further complicating the classification of urban

environments is the diversity of its elements (e.g., buildings, bare soil and vegetation), creating

a spectral diversity that far exceeds natural environments. This complexity, along with three-

dimensional surface heterogeneity, creates a particularly challenging mapping environment for

urban areas [46, 92, 57]. However, with recent improvements in RS imagery resolution, feature

extraction methods and computational power, a detailed physical analysis of characterisation of

urban landscape such as human settlements and other different urban materials is now possible.

For an effective classification system, the first and key step is having a powerful image

feature extraction technique as it can significantly improve the accuracy of the classification

process [37]. Image feature extraction techniques extract characteristics/features that capture

certain properties of an image either globally for the entire image or locally for regions or ob-

jects. There are two types of approaches for identifying and extracting features of interest in
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remotely sensed images, i.e, traditional/manual and semi/fully-automated approaches. Tradi-

tionally, information has been obtained from aerial photography through manual interpretation.

Analogue aerial photographs are usually analysed visually by experienced analysts whilst digital

images can be analysed and interpreted with the aid of a computer. In aerial photography (ana-

logue or digital), non-geometric image characteristics such as tone or colour, texture, pattern,

shape, shadow, size and situation normally give clues in recognition, identification and interpre-

tation [110, 81]. Manual interpretation can be useful as it requires limited image preparation,

can be fairly accurate and is a well-developed discipline. Although this is still the predomi-

nant approach, it is not efficient mainly because of the laborious, inconsistent, expensive and

time-consuming nature of manual feature identification process [96, 81].

a) Remote Sensing: Data Acquisition

b) Feature Generation

Digital Image

Feature Generator

Image Features 

c) Classification

Image Features 

Classification Rules
A

B C

D

Thematic Map

Earth Surface

SensorIllumination
Source

Digital Image

Figure 2.5: An overview of a classification system.

Alternatively, automated systems use unique characteristics (e.g., spatial, structural and con-

textual) to automatically detect and extract non-geometric image characteristics mentioned ear-

lier (i.e., tone, texture, size, ...) to identify and classify objects of interest. The system makes

use of digital RS data, where image interpretation is basically a classification process. This

entails the repetition of a number of different activities: data collection, feature selection or
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extraction, training/learning and evaluation, see illustrated in figure (2.5). Automated object

recognition and feature extraction approaches from imagery have been studied since the 1970s.

Depending on the task/information being extracted, three major approaches have been stud-

ied, namely spectral-, object- and textural-based methods. Spectral-based methods have been

studied to extract spectral informal, object-based method for extracting objects of interest (in-

dividual buildings for example) and textural method for extracting textural information. These

methods can be used individually or can also be combined depending on what information is

being extracted.

2.3.2.1 Spectral-based methods

Classifying urban landscapes, such as buildings and road networks, purely on spectral features

is a difficult task as some classes have a constant low reflectance over the whole spectral range

with no or only minor distinct absorption features, e.g., gray composite shingle and dark gray

tar roofs, asphalt roads and parking lots, etc. These features are important for land cover type

separability and should be included to obtain higher classification accuracy. Though spectral

methods have been criticised, there are a few studies that have and still focus on the spectral

properties of urban materials, for example, spectral techniques have been used in the mapping

of impervious urban surfaces and for predicting population [68, 69, 5].

Using spectral methods for urban classification can be useful, however, these methods do

not achieve high accuracies [46]. To successfully classify urban surface materials purely on

spectral analysis, RS hyperspectral data or advanced evaluation techniques are used. Heiden

et al. [45] successfully created a database for an area-wide identification of urban surface ma-

terials using hyperspectral (HyMap) data to systematically measure, analyse and store urban

surface material categories in a spectral library (for wavelengths between 0.35− 2.5µm in 2151

channels). Their work discussed the importance of different spectral regions in mapping urban

areas and found that urban objects do hold significant spectral fingerprints, in some spectral re-

gions. Even though the work showed reasonable spectral recognition, advanced techniques and

hyperspectral data are difficult to work with due to the dimensionality of the data sets. For a

simpler and effective classification system, authors have suggested the use of object-oriented or

other classification techniques using spatial, textural or contextual information might provide a

further significant improvement of land cover mapping accuracy and help to overcome spectral

similarities between specific classes.
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2.3.2.2 Object-based methods

Object-based image analysis (OBIA) analysis has also been shown to be a better approach when

compared to spectral based approaches in identifying urban land-cover classes using high reso-

lution imagery [85]. The discriminant analysis of spectra information received an overall accu-

racy of 63.33% whilst the object-based method produced a significantly higher overall accuracy

of 90.40%.

OBIA methods extract dwelling footprints and make estimates based on shape, size, and

spacing [9, 44, 67]. Some approaches require the analyst to proceed from the object centroid.

For example, Mayunga et al. [76] presented a new semi-automated approach for extracting

buildings, for informal settlement mapping, from high-resolution QuickBird imagery. Using

snake models to effectively extract building, a user is required to measure a single point at the

approximate centre of the building. The results obtained in the study were satisfactory in the

context of building extraction in a complex environment, but had some shortcomings. Problems

were not only experienced in identifying some small buildings, but also the proposed system

was not able to accurately delineate building corners. That is, using IKONOS imagery and in-

corporating digital surface models from specialised LiDAR data, Sohn et al. [115] was able to

automatically detect and delineate building objects and their boundaries. The technique used

consisted of a two step procedure: building detection and building description. The building de-

tection method reduced scene complexity in urban areas and simplified the building description

process. The results proved that terrain information extracted from LiDAR data and chromatic

cues provided by multispectral bands of IKONOS imagery is important information detecting

buildings. The results showed that OBIA can successfully classify an urban scene. However,

OBIA methods have several limitations in identifying informal settlements. Examples include:

continuous roof lines, improper pixelation of building outlines, and incorrect dwelling separa-

tion due to diverse materials on a single roof and they can be computationally expensive when

dealing with finer resolution data for a relatively large area [92].

2.3.2.3 Texture-based methods

Texture is one of the most important characteristics used in identifying objects or regions of

interest in an image as it can be used to differentiate features that may otherwise have similar re-

flectance and dimensional characteristics. Despite its importance, a formal definition of texture

does not exist. A collection of definitions compiled by [19] demonstrated that the “definition”

of texture varies (it is dependent on a person and on the particular application) and as a result
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there is no generally agreed upon definition [122]. Tuceryan et al. [122] defined image texture

as a function of the spatial variation in pixel intensities.

Table 2.2: Categories of texture feature extraction methods.

Category Description and examples

Statistical methods First-order, second-order and the higher-order statistics are used for texture dis-
crimination. Texture is described by a collection of statistics of selected fea-
tures [133]. Generally it is not possible to reconstruct the texture from the fea-
tures, so these types of methods are usually only used for classification purposes
[93]. There have been many surveys on various statistical approaches in the
image processing literature [42]. Spatial gray level co-occurrence estimates im-
age properties related to second-order statistics. The grey level co-occurrence
matrix (GLCM) [43] is one of the most well known statistical measure in RS
literature.

Structural methods Structural methods are texture analysis methods that characterize texture as be-
ing composed of “texture elements” or primitives, arranged according to some
placement rules [122, 75]. The method of analysis usually depends upon the
structural properties of these texture elements. Structural approaches to texture
analysis aim to discern the textural primitive and to determine the underlying
structure of the texture. These elements (texels) are organized into a string de-
scriptor, and syntactical pattern recognition techniques are used to measure the
similarity of two descriptors [133].

Model-based In model based techniques, image texture is modelled as a probability model or
as a linear combination of a set of basis functions [134]. The model parameters
captures the underlying texture property using stochastic or generative mod-
els [133]. Model based methods include: Gaussian Markov random fields [21],
Gibbs random fields [113], wavelet models [123], Fractal dimension [75], and
many other techniques. The Markov Random Field (MRF) model, or variations
of it, that is most often used in modelling texture [93].

Signal processing Various methods of texture analysis rely on signal processing techniques. Signal
processing based techniques try to compute certain texture features from filtered
images with specific filters which are then used in classification tasks [122].
In textured surfaces, different frequencies have their own textural properties.
Both spatial and frequency domain approaches can be used for filtering images
and capturing relevant information. Spatial domain filters [72], Fourier domain
filtering [20] and Gabor filters [32] are among the popular measures.

Different texture measures have been proposed to address the recognition of different spatial

textures. The analysis tends to be more driven by the desired application rather than any pure

fundamentals. A summary of possible approaches, generalised in terms of the domain from

which the texture feature is extracted, can be found in the following literature in [1, 42, 122, 134,

133, 80, 93]. These can be broadly divided into the following categories: statistical methods,

structural methods, model based methods and signal processing methods [122]. A description

of the variety of different texture categories are presented on table (2.2 pg. 19).

The most common applications found in the literature are the detection of urban deprivation

hot spots, quality of life index assessment, urban growth analysis, house value estimation, urban
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population estimation and urban social vulnerability assessment [96]. Examples include, urban

population estimation [2, 68, 69, 5], damage assessment [56], assessment of socio-economic

status by area [87], growth models and predictions [114, 129], extraction of informal enclaves

within the larger settlement fabric [48], and impacts of informal settlements on diminishing

natural resources [84].

2.3.3 Classification

Once the appropriate features for representing the input patterns have been measured and ex-

tracted from RS imagery, the next step is classification. Classification involves some general

model (classifier), using training patterns to classify an unknown/unlabelled pattern to a class/-

category. The classifier uses the feature vector provided by the feature extractor as training

patterns. A classification task is mainly accomplished in one of two ways: supervised or unsu-

pervised classification. Supervised classification/learning is the process of learning a set of rules

from examples (i.e., labelled instances in training data) defined by the system designer, to create

a classifier that can be used to generalize to new unlabelled instances. The training samples are

labelled to represent the category/class in which the sample belongs.

By contrast, unsupervised classification does not rely on a set of labelled examples. In su-

pervised classification then, the aim is to use training examples to design a classifier which

generalises well to new examples. Using the non-labelled examples, the classifier determines

the most appropriate group/cluster directly from the image data without referring to any pre-

defined classes. Clustering algorithms are examples of unsupervised classification as they seek

to identify groups of unlabelled examples directly within the overall body of data and features

which enable them to distinguish one group from another [116]. Since number of classes are

learnt along with the structure of each class, the user will likely have to make certain decisions

to guide the clustering algorithm, such as the number of desired output clusters or the number

of training iterations [59].

2.3.3.1 Choosing a classifier

Given a training set of patterns of known classes (labelled patterns), we seek to design a classifier

that is optimal for the classification of unknown pattern classes under consideration based on

the measured features. Numerous classification algorithms have been developed using different

techniques. However, they all aim to find the decision boundaries that can be used to separate

out different classes. That is, given the extracted features the classifier assigns the features to
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one of the classes under consideration based on the measured features. The choice of a classifier

is a difficult problem and is often based on which classifier(s) happen to be available, or best

known, to the user [54].

A large number of classifiers have been developed based on Artificial Intelligence (Logi-

cal/Symbolic techniques), Perceptron-based techniques and Statistics (Bayesian Networks, Instance-

based techniques) [63]. In remote sensing applications, the most popular learning techniques

are the maximum likelihood (ML) classifier, artificial neural network (ANN) classifiers [95] and

decision tree classifiers [106]. An alternative classification technique that is not as popular as the

above-mentioned is the support vector machines (SVM) classifier. The use of SVM classifier

has significantly increased in solving remote sensing problems (see, e.g., [50, 136, 10, 11, 128,

78, 83]). The SVMs are not only becoming popular in RS, they may possibly provide the best

classification performance when compared to other known classifiers [17].

2.4 Classifying human settlements

Individual urban objects (e.g., buildings, cars, streets, and vegetation) do not provide much

added information when identifying settlement types. Rather, human neighbourhoods are de-

fined by a combination of features of homogeneous zones containing a multitude of urban ob-

jects, such as formal or informal settlements. To achieve an ideal settlement classification and

monitoring system, a clear definition that defines human neighbourhoods such as formal or in-

formal settlements is critical. This may be difficult as a clear definition of what constitutes infor-

mal settlements does not exist as they can vary from country to country (e.g, they can be shacks,

slums, squatter areas and shanty areas). According to the UN, informal settlements are defined

as unplanned and unauthorised housing having inadequate basic services [41]. This definition

of informal settlements is not adequate as it only refers to the legality (authorised or unautho-

rised) of settlement types. Owen et al. [92] established a qualitative description of formal and

informal settlements, i.e., the author referred to “Informal” as poor, unplanned neighbourhoods

of low economic value while “formal” referred to higher economic value characteristics. These

definitions are to be used to differentiate between formal and informal settlements. Visually it

is easy to differentiate between formal and informal settlements as they often share unique spa-

tial, structural, and contextual characteristics. For instance, informal settlements characteristics

typically include, but are not limited to: 1) high heterogeneity in building orientation, 2) high

variance in building materials and density, 3) small building size, 4) irregular and narrow streets,

and 5) close spatial proximity to hazardous zones such as landfills, airports, rail roads, and steep
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slopes [88, 55]. We can use these characteristics to distinguish informal settlements from other

types of urban structures, e.g., formal residential, industrial, and commercial buildings. Unique

characteristics such as vegetation, roads, texture, and geomorphology have also shown to play

a role in describing the differences between informal and formal settlements [91]. Despite

the unique characteristics mentioned above, distinguishing settlement type from other types of

urban infrastructure is not a straightforward process due to the diversity of land features, mixed-

use settlements, terrain, and heterogeneity of building materials, and neighbourhood structure

in informal settlements and the heterogeneous landscape of urban areas [37]. However, using

remote sensing imagery, several image classification techniques have shown some success in

mapping several cities around the world.

For example, texture based classification has been extensively used in remotely sensed im-

agery. Texture features have been used to map and understand land-cover patterns in an urban

region and urbanisation in multiple cities and for other urban related studies, i.e., [124, 52, 21,

4, 3, 74, 107, 6, 61]. Importantly, they have been demonstrated to be an effective means of de-

scribing the extreme heterogeneity of urban surface materials at both inter-pixel and intra-pixel

scales that sets apart different urban settlement classes [97, 8, 30, 60, 125, 98, 117, 47].

2.4.1 Human settlements: Formal and informal settlements

As presented in section (2.3.2.3 pg. 18), texture classification involves deciding what texture cat-

egory an observed object/region of interest, in an image, belongs to. To achieve this, knowledge

of the classes/categories needs to be established, thereafter, texture features can be extracted

according to the classes. While other feature extraction methods are usually pixel based, tex-

ture can only be measured from a group of pixels which makes them ideal for detecting human

neighbourhoods. Different texture measures have been proposed to address the recognition

of different spatial textures. A summary of possible approaches, generalised in terms of the

domain from which the texture feature is extracted, can be found in the following literature

in [1, 42, 122, 134, 133, 80, 93]. These can be broadly divided into the following categories, as

illustrated in table (2.2 pg. 19).

Using just mono-spectral data and gray-level co-occurrence matrix (GLCM) textural fea-

tures, Pesaresi [98] and Benediktsson et al. [8] demonstrated empirically that it is possible to

obtain very good results in terms of automatic discrimination accuracy, even in applications

requiring detailed mapping of different built-up surfaces. Since then, numerous works have at-

tempted to improve urban land cover classification using GLCM algorithm to measure textural
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information [127, 119, 101, 37]. Using SPOT satellite imagery, Stasolla et al. [117] proposed a

semi-automatic procedure to detect human settlements (with emphasis on informal settlements)

in arid environments. GLCM homogeneity co-occurrence features with the K-Means unsuper-

vised algorithm were used repeatedly to discriminate formal from informal settlements. Their

findings showed that the introduction of textures can considerably improve the results of dif-

ferentiating settlements from arid areas. Based on the GLCM, Pesaresi et al. [100] proposed

the so-called anisotropic rotation invariant built-up presence index. The method is based on the

idea that built-up structures have a certain spatial dimension and can be discriminated from the

background by their known spatial relationships. The method calculates a compact built-up area

presence using rotational-invariant isotropic GLCM textural analysis on panchromatic satellite

data. The texture-derived index was tested under a realistic scenario including degraded and

non-calibrated data input and extensive validation exercise and obtained an overall accuracy

of 86.7%. The method overestimated the built-up areas in cases where scattered vegetation

had the same spatial pattern as settlements, to reduce the problem the method incorporated the

normalised difference vegetation index (NDVI), gaining +20.76% improvement over the basic

procedure [99].

Other than optical imagery, GLCM textural features have been used with other RS sensors

for urban analyses. For example, using SAR data, Dell et al. [27] used the GLCM texture

features to measure information on the difference in building densities inside a town structure.

The results showed that it is possible to extract some information on urban environments from

current satellite SAR images and classify them with respect to building density. SAR data has

also shown the potential for mapping human settlement extents in various parts of the world [35,

36, 34].

An alternative approach from the statistical approach (i.e., GLCM), is to measure texture

elements in urban areas using either structural, model-based and signal processing methods or

a combination. Using high resolution QuickBird imagery, Khumalo et al. [60] utilised rota-

tion invariant Gabor Filters (signal processing approach) along with the GLCM to perform the

identification of the different textural regions in urban areas. In order to select the most ap-

propriate texture algorithm for an automated informal settlement classification system, Abeigne

Ella et al. [30] performed an experiment to compare the performance of the GLCM with that

of nine other texture features. Some of the texture features were able to separate the different

urban settlement classes very well, these include, Lacunarity measures [105], Discrete Wavelet

Transform (DWT) [112, 13], Granulometric [18] , Local Binary Pattern (LBP) [90] and GLCM
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methods. In addition, it appeared that the LBP features are more powerful than the commonly

used GLCM features for this particular problem.

2.4.2 Challenges

Although some texture features, such as those generated by the LBP algorithm have been ap-

plied effectively in the settlement classification task, subsequent experiments have demonstrated

that the generalization performance of classifiers using these features are not ideal [125]. The

poor generalization performance is mainly caused by two dominant factors: viewing- and il-

lumination geometry. Data of the same area acquired under different dates (cross-date images)

may introduce large off-nadir viewing angles which produce two images with different viewing-

and illumination geometries. This also introduces spurious differences between the two images,

and is referred to as illumination geometry differences. Illumination geometry differences alters

the orientation and length of the shadows between the image pair, this results in decreased clas-

sification accuracy. In addition, the seasonality and time of day during acquisition determine

the sun elevation and azimuth angles of the landscape which may also hinder classification per-

formance. Even though no real change has occurred on the ground, these effects produce an

image-pair that may contain a large number of spurious differences [70, 125]. For multitem-

poral aerial imagery, the flight strips/paths can also have a negative impact in generalization

performance. This can be caused by the difference in the flight paths and altitude between the

different acquisition dates. A good image feature is one that is designed to have a representation

that is sensitive to change in the desired variables, e.g., settlement type, whilst being insensitive

to other types of change that may be present in the image [125]. If an image feature has these

properties, then it can be expected that the feature will lead to good generalization performance

in classification tasks.

2.4.3 Proposed solutions

A 2-dimensional surface texture has two properties, spatial structure (pattern) and contrast (in-

tensity of texture). The purpose of texture description is to derive some measurements that can

be used to classify a particular texture. Texture measurements are required to be in invariant

with respect to position, scale and rotation, and that texture extraction can apply equally. The

multiresolution LBP algorithm is invariant with respect to position, scale and rotation and by

definition is invariant to any monotonic changes in gray-scale. The multiresolution LBP algo-

rithm is thus an ideal measure for spatial structures such as human settlements [30]. However,
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due to viewing- and illumination-geometry effects, the LBP algorithm was shown to offer less

than ideal generalization performance [125]. Ojala et al. have demonstrated that combining

spatial structure with the gray-level contrast can improve discrimination ability of texture fea-

tures [89]. To improve performance, the multiresolution LBP algorithm was extended with a

contrast extension (here denoted as the extended LBP) as a joint distribution of gray-scale and

rotational invariant LBP with the rotational invariant Variance measure [90]. The addition of

contrast features in the extended LBP (LBP/VAR) algorithm is expected to improve settlement

classification accuracy.

2.5 Summary

We reviewed the fundamental concepts and history of the remote sensing field for a detailed

understanding of the acquisition of RS sources and available applications for monitoring the

Earth’s surface. We reviewed the pros and cons of either using satellite or aerial imagery or

the trade-offs in using low, medium or high resolutions. Aerial RS sources have a flexibility

advantage while satellites provide a more stable and repeatable RS source. Both airborne and

spaceborne RS sources are capable of achieving high temporal, spatial and spectral resolutions.

This makes the choice of RS data source for automated or semi-automated classification tasks,

particularly in urban areas, a matter of availability and cost. However, the literature showed that

the use of high spatial resolution data is more appropriate for urban and suburban classification

tasks. Following data acquisition, data analysis was reviewed.

Three major feature extraction methods were reviewed: Spectral-based, Object-based and

Texture-based methods. Spectral-based methods showed to be reasonable for distinguishing

urban features. However, in order to achieve good results, advanced techniques and high di-

mensional data (hyperspectral data) is used. This made the method expensive and difficult to

work with. When using high resolution imagery, other methods have been shown to be a better

approach when compared to spectral based approaches in identifying urban land-cover classes,

one such approach is known as object-based image analysis (OBIA). These methods identify in-

dividual objects, e.g., urban objects such as buildings and other materials. However, this is also

the method’s limitation when trying to identify regions or groups of objects. For example, when

identifying settlements instead of individual buildings, the diverse materials on a single roof

result in continuous roof lines, improper pixelation of building outlines, and incorrect dwelling

delineation. In addition, OBIA methods can be computationally expensive when dealing with

finer resolution data for a relatively large area.
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Texture-based methods were also reviewed for urban and suburban analysis. These methods

proved to be the most appropriate for classification of urban material, particularly at a region

scale. Numerous texture measures have been proposed to address the recognition of different

spatial textures found in urban areas. Examples include: the detection and monitoring of urban

deprivation hotspots, quality of life index assessment, urban growth analysis, and many other

applications. For this reason, texture-based methods were considered for the case study, which

is to improve classification of human settlements. A study comparing texture-based methods

for settlement classification using QuickBird imagery showed the GLCM and LBP algorithms

to be the better performing methods.

Although the GLCM and LBP methods showed to be effective at classifying settlements,

they performed poorly when presented with imagery acquired on different dates. The poor

generalization ability was mainly caused by two dominant factors: viewing- and illumination

geometry. In an attempt to improve generalization performance, a feature extraction method

that is robust to these effects is required. The proposed solution is a method that is invariant to

rotation which is expected to minimise the viewing geometry effects. To minimise illumination

differences, input images are normalised using histogram equalisation or histogram matching

techniques. However, this is not a general solution, as global histogram equalisation cannot

correct intra-image (local) gray-scale variations. Since the LBP is, by definition, invariant to

monotonic changes in gray scale, it was extended by supplementing it with an orthogonal mea-

sure of local contrast. This method, denoted as the extended LBP, is thus invariant with respect

to position, scale and rotation while at the same time sensitive to local contrast features.

Since feature extraction is the key step in classification tasks, an image feature with the

above-mentioned properties can be expected to yield good generalization performance in classi-

fying settlements. To learn these features a good classification algorithm or classifier is impor-

tant. The SVM has been showed to possibly provide the best classification performance when

compared to other known classifiers. The SVM was the chosen classifier as it has the ability to

find the right balance between accuracy attained on a given finite amount of training patterns,

and effectively generalize to unseen data.
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Methods

3.1 Introduction

This chapter presents a detailed description and derivation of feature extraction and classification

methods that are going to be used for the task of classifying human settlements. The extended

LBP (LBP/VAR) texture feature extraction method is presented first, followed by the Support

Vector Machine (SVM) classifier, used for the classification task.

3.2 Extended Local Binary Patterns

The extended LBP is a multiresolution LBP algorithm with a contrast extension presented as a

joint distribution of gray-scale and rotational invariant LBP with the rotational invariant Vari-

ance measure (LBP/VAR). In this section, the derivation of the extended LBP algorithm pro-

posed by Ojala et al. [90] is presented.

3.2.1 Gray-Scale Rotation Invariant Local Binary Patterns

Firstly, let us define texture T in a local neighbourhood of a gray-scale image as the joint distri-

bution of the gray-levels of P + 1 (P > 0) image pixels:

T = t(gc, gp), (3.1)

where gc is the gray-value of the centre pixel and gp(p = 0, . . . , P − 1) corresponds to the

gray-values of P pixels equally spaced on a circle of radius R(R > 0) that form a circularly

symmetric set of neighbours, see figure (3.1 pg. 28). The coordinates of the neighbours gp are

given by (yc−R sin (2πp/P )),(xc+R cos (2πp/P )), taking the centre as our origin gc(0, 0), the

coordinates of the gray-values gP are then (−R sin (2πp/P )),(R cos (2πp/P )). Gray-values

that do not fall exactly in the centre pixel are estimated by interpolation.

Without losing information, we can subtract the centre pixel gc from the values of the neigh-

bours gp:

T = t(gc, g0 − gc, . . . , gP−1 − gc). (3.2)

27
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Figure 3.1: Local circularly symmetric neighbourhood
set (P samples) of radius R.

Assuming gc is independent of (gp − gc), the distribution can factorised to:

T ≈ t(gc)t(g0 − gc, . . . , gP−1 − gc). (3.3)

We can ignore t(gc) as it describes the overall luminance of an image, which is unrelated to

local image texture:

T ≈ t(g0 − gc, . . . , gP−1 − gc). (3.4)

The above expression is invariant with respect to gray-scale shifts, but is affected by scaling.

To achieve invariance with respect to any monotonic transformation of the gray-scale, only the

signs of the differences are considered:

T ≈ t(s(g0 − gc), . . . , s(gP−1 − gc)), (3.5)

where

s(x) =

 1, x ≥ 0

0, x < 0.
(3.6)

By assigning binomial coefficient 2p to each sign s(gp − gc), the above is transformed into a

unique P-bit pattern code, that characterises the spatial structure of the local image texture:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p. (3.7)

That is, the threshold of local neighbourhood is at the gray-value of the centre pixel into a binary

pattern.
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Rotation Invariance

To remove the effect of rotation, each LBP code must be rotated back to a reference position,

effectively making all rotated versions of a binary code the same. This transformation can be

defined as

LBP ri
P,R = min{ROR(LBPP,R, i)|i = 0, 1, . . . , P − 1}, (3.8)

where ri stands for “rotation invariant”. The function ROR(x, i) performs a circular bit-wise

right shift on the P-bit number x i times.
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Figure 3.2: The Look Up Table (LUT): to achieve rotation invariance the
LUT stores all the possible uniform patterns i.e., for P = 8, nine “uniform”
patterns with the numbers (0 – 8) corresponding to their unique LBPriu2

8,R

codes.

In an attempt to improve the rotation invariant LBP ri features, Ojala et al. introduced

“uniform patterns” (uniform circular structures, as illustrated in figure 3.2). To formally define

the “uniform” patterns, a uniformity measure U (“pattern”), which corresponds to the number

of spatial transitions (bitwise 0/1 changes) in the “pattern” is needed. A pattern that has a value

of U that is at most 2 is labelled as “uniform” resulting in the following operator for gray-scale

and rotation invariant texture description:

LBPriu2
P,R =


∑P−1

p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise,
(3.9)
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where

U(LBPP,R) =
|s(gP−1 − gc)− s(g0 − gc)|
+
∑P−1

p=0 |s(gP − gc)− s(gP−1 − gc)|.
(3.10)

Superscript (riu2) is rotation invariant “uniform” binary patterns that have U value of at

most 2. By definition, exactly P + 1 “uniform” binary patterns can occur in a circularly sym-

metric neighbour set of P pixels. Equation (3.9) assigns a unique label to each of them corre-

sponding to the number of “1” bits in the pattern (0→ P ), while the “nonuniform” patterns are

grouped under the “miscellaneous” label (P + 1), see figure (3.3).

9

Figure 3.3: Examples of nonuniform patterns that are labelled as 9.

In practice, the mapping from LBPP,R to LBP riu2
P,R , which has P +2 distinct output values,

is best implemented with a lookup table of 2P elements. The final texture feature employed in

texture analysis is the histogram of the operator outputs (i.e., pattern labels) accumulated over a

texture sample.

3.2.2 Rotational Invariant Variance Measures (Contrast Extension)

To incorporate the contrast of local image texture, we measure it with a rotation invariant mea-

sure of local variance. Like the LBP, the rotation invariant local variance can be measured in a

circularly symmetric neighbour set as

VARP,R =
1

P

P−1∑
p=0

(gp − µ)2,where µ =
1

P

P−1∑
p=0

gp (3.11)

is the sample mean. VARP,R is, by definition, invariant against shifts in gray-scale and rotation

along the circular neighbourhood but it is not invariant to global contrast changes. A rotation

invariant description of texture in terms of texture patterns is obtained with the joint distribution

of LBP and local variance, denoted by LBP riu2
P,R /V ARP,R, as shown in figure (3.4).

3.2.3 Multiresolution

A general rotation-invariant operator for characterizing the spatial pattern and contrast of lo-

cal image texture using circular symmetric neighbour set of P pixels with radius R has been
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histogram

Figure 3.4: Example of extracted LBP and local variance (VAR) fea-
tures (1D histograms) for settlement type p7.214 used to calculate a
joint 2D histogram feature , denoted as LBP riu2

P,R /V ARP,R.

presented. Quantization of the angular space and spatial resolution can be realized by altering

parameters P and R. A simple method of enlarging the spatial support area is to combine the

information provided by multiple operators of varying (P,R), see figure (3.5). The resulting

multiresolution LBP and LBP/VAR feature vector is simply the concatenation of the component

LBP and LBP/VAR feature vectors corresponding to the choices of (P,R).

P,R = 8,1+16,2+24,3 

P,R = 8,1 

Multiresolution patterns and histograms

P,R = 8,1+16,2 

24,316,28,1

Patterns

generated histogram

generated histogram

generated histogram

Figure 3.5: Multiresolution features obtained by concatenating LBP fea-
tures extracted at multiple (P,R) parameters.

3.3 Support Vector Machines

A Support vector machine algorithm is a supervised non-parametric machine learning algo-

rithm. That is, the method is presented with a set of labelled data instances where there are
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no assumptions made on the underlying data distribution. Given the training data, the SVM

finds a separating hyperplane in some feature space induced by the kernel function while all

the computations are done in the original space [126]. An optimal separating hyperplane is the

one that separates the data with maximum margin, minimising misclassification obtained in the

training step. The description and specification of the separating hyperplane does not use all

the available training examples, selected training samples or support vectors near the decision

boundary are the only points that define the hyperplane of maximum margin. This can provide

good generalization performance in pattern classification problems [17].

SVMs are particularly appealing in the remote sensing field due to their ability to find the

right balance between accuracy attained on a given finite amount of training patterns, and the

ability to generalize to unseen data [83, 73]. Comparisons of the SVM with conventional classi-

fiers confirmed the good performance of the SVMs [33, 50, 94, 78]. In an assessment study by

Huang et al. [50], the SVM algorithm was found to be competitive when its performance was

compared with the best available classification methods, ML classifier, neural network classi-

fiers (NNC) and decision tree classifiers in land cover classification. The study also revealed that

the performance of the SVM classifier is influenced by the configurations of SVM kernel type

and kernel parameter. Pal et al. [94] investigated SVMs for classification in remote sensing and

suggested that the SVM can achieve higher accuracies than either of the ML or ANN classifiers.

The underlying principle that benefits SVMs is that, they minimise classification error on un-

seen data without prior assumptions made on the probability distribution of the data (structural

risk minimisation) while statistical techniques such as maximum likelihood estimation usually

assume that data distribution is known a priori [83]. SVMs have demonstrated impressive per-

formance in classifying hyperspectral data acquired from the Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) [39, 38], in classifying urban environments [136] and in spectral and

spatial classification of hyperspectral data [31]. As described above, SVMs have shown re-

markable abilities to deal with remote sensing data and have proved better suited to cope with

the extremely high dimensionality of the data (e.g. hyperspectral data), and with the limited

availability of training samples in remote sensing applications [104].

3.3.1 Theoretical development of SVMs

In this section we only give a very brief introduction to SVM’s, a well-organised SVM tu-

torial can be found in [12, 25]. The underlying principle behind SVM is the learning pro-

cess that follows what is known as structural risk minimisation (SRM). Consider training data
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S = {(xi, yi) ∈ P (x, y)}, i = 1, . . . , N , where for each sample, xi ∈ Rd, belongs to a class la-

belled by yi ∈ {+1,−1} and P (x, y) is some unknown probability distribution from which data

S is drawn, i.e., the data are assumed “iid” (independently drawn and identically distributed).

We need to find a deterministic mapping function, f(x, α) : xi 7→ yi based on a sample data

S, where functions f(x, α) themselves are labelled by the adjustable parameters α. A particular

choice of α generates what is called a “training machine”. As a result, the expected risk of a

learning machine (R) is

R(α) =

∫
1

2
|y − f(x, α)|dP (x, y). (3.12)

The quantity R(α) (known as the risk error) is the true mean error, but it is not useful unless

we can have an estimate of P (x, y). The empirical risk Remp(α) is a fixed number defined as

Remp(α) =
1

2l

l∑
i=l

|yi − f(xi, α)|, (3.13)

where the quantity 1
2 |yi − f(xi, α)| is the loss.

According to the SRM principal, the risk of a learning machine R(α) is bound by the sum

of the empirical risk estimated from training samples (Remp) and a confidence interval (Ψ):

R(α) ≤ Remp + Ψ [126]. The strategy of SRM is to keep the empirical risk (Remp) fixed and

to minimise the confidence interval (Ψ), or to maximise the margin between a separating hyper-

plane and closest data points. A separating hyperplane refers to a plane in a multidimensional

space that separates the data samples of two classes, see illustration in figure (3.6). Under this

scheme, SVMs minimise classification error on unseen data without prior assumptions made on

the probability distribution of the data.

3.3.2 Linear SVM: Optimal Separating Hyperplane (OSH).

In its simplest form, SVM is a linear binary classifier that assigns a given test sample a class

from one of the two possible labels.

3.3.2.1 Separable Case

Suppose we have some hyperplane which separates the positive from the negative examples

(i.e., a separating hyperplane), see figure 3.6-A. The points x which lie on the hyperplane satisfy
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A. Seperable Case B. Non-seperable Case

Figure 3.6: The optimal separating hyperplane between (A) separable
samples and (B) non-separable data samples.

w · x + b = 0, where w is normal to the hyperplane, |b|/||w|| is the perpendicular distance from

the hyperplane to the origin, and ||w|| is the Euclidean norm of w [12]. For the linearly separable

case, all the training data S satisfy the following constraints:

w · xi + b ≥ +1 for yi = +1, (3.14)

w · xi + b ≤ −1 for yi = −1. (3.15)

Linear discriminant and perceptron learning algorithms essentially do the same thing, they find

a linear separator by adjusting weights on misclassified examples. The above inequalities can

written in the form:

yi(w · xi + b) ≥ 1 ∀i. (3.16)

For linearly separable classes x+ and x− (see figure 3.6-A) it is easy to show that the maximum

margin is simply 2/||w|| (i.e., the margin is inversely proportional to the norm of w). Thus, the

pair of hyperplanes which gives the optimal separating hyperplane can be found by minimizing

the square of the norm w (i.e., minimize ||w||2), subject to constraints (3.16). This can be solved

by constructing a Lagrangian function

L(w, b, α) =
1

2
||w||2 +

N∑
i=1

αi −
N∑
i=1

αiyi(w · xi + b), (3.17)

where the coefficient αi is a Lagrange multiplier, and by transforming it into the corresponding

dual Lagrangian by imposing the optimal conditions,
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∂L

∂w
= w−

N∑
i=1

αiyixi = 0, (3.18)

∂L

∂b
=

N∑
i=1

αiyi = 0. (3.19)

The result is a quadratic programming problem with linear constraints

W (α) =
N∑
i=1

αi −
1

2

N∑
i=1

αiαjyiyj(xi · xi), (3.20)

αi ≥ 0, (3.21)
N∑
i=1

αiyi = 0, (3.22)

that presents just a global maximum and can always be exactly solved efficiently. The resulting

solution has the property that

w =
N∑
i=1

αiyixi (3.23)

and in fact, often most of the coefficients αi are equal to zero. The only positive coefficients

correspond to the points that lie closest to the hyperplane are the support vector points and the

solution is represented as a linear combination of only these points. The final decision function

can be written as

f(x) = w · x + b, (3.24)

f(x) = sign

(
s∑

i=1

αiyi(xi · x) + b

)
, (3.25)

where the index i runs only on the support vectors s. This property is known as sparseness [26].

3.3.2.2 Non-separable Case: Soft Margin Hyperplane

It is not always easy to classify patterns accurately using only linear separable decision bound-

aries, especially if the data points of different classes overlap one another. In this case the data
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is said to be inseparable, see figure 3.6-B. One way to separate the training data with a min-

imal number of errors is to introduce some non-negative variables (known as slack variables)

ξi ≥ 0, i = 1, . . . , N . We can now minimize the function

||w||2 + C

N∑
i=1

ξi, (3.26)

subjected to the constraints (known as Soft Margin constraints):

yi(w · xi + b) ≥ 1− ξi, i = 1, . . . , N, (3.27)

ξi ≥ 0, i = 1, . . . , N. (3.28)

The constant C controls the number of allowed training errors. The Lagrangian now be-

comes:

L(w, b, α, ξ, µ) =
1

2
||w||2 +

N∑
i=1

αi[1− ξi − yi(w · xi + b)]−
N∑
i=1

µiξi + C

N∑
i=1

ξi, (3.29)

where µi are Lagrange multipliers introduced to enforce positivity of the slack variables ξi. The

dual problem:

maximize: LD =
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyj(xi · xj), (3.30)

subjected to: 0 ≤ αi ≤ C, (3.31)
N∑
i=1

αiyi = 0. (3.32)

The solution is again given by

w =

s∑
j=1

αjyjxj , (3.33)

where s is the number of support vectors. Ultimately, the only difference from the optimal

hyperplane case is that the values αi now have an upper bound of C.
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3.3.3 Nonlinear SVM: Kernel Functions

To generalize the above method to nonlinear decision functions, the support vector machine

maps the input data onto a higher dimensional (Euclidean or Hilbert) space and defines a sep-

arating hyperplane there. The mapping of input data makes it possible to transform nonlinear

relations within the data into linear ones [26]. The input vector x is mapped into a higher feature

space H through a mapping function Φ,

Φ : Rd 7→ H. (3.34)

Notice in the training problem in equation (3.32), the data is in the form of dot products,

xi · xj . The training algorithm in the high dimensional space H would then only depend on

data through dot products in H , i.e. on functions of the form Φ(xi)Φ(xj). Φ(x) represents

the input vector x in the high-dimension space H . If there is a kernel function K such that

K(xi, xj) = Φ(xi)Φ(xj), we would only need to use K in the training algorithm without

knowing the explicit form of Φ. Replacing the inner product in (3.32) by the kernel function K:

maximize: LD =

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjK(xi, xj), (3.35)

subjected to: 0 ≤ αi ≤ C, (3.36)
N∑
i=1

αiyi = 0. (3.37)

The SVM is now a non-linear classifier, and the final decision function can be written as

f(x) = sign

(
s∑

i=1

αiyiK(xi, x) + b

)
. (3.38)

A kernel that can be used to construct a SVM must meet Mercer’s condition. The following

two types of kernels meet this condition [50]:

• The polynomial kernels,

K(xi, xj) = (xi · xj + 1)p, (3.39)
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• and the radial basis function (RBF) kernel,

K(xi, xj) = exp

(
−||xi − xj ||2

2σ2

)
. (3.40)

3.3.4 Multi-class SVM

In the above theoretical development, the SVM was developed as a binary classifier where

the class labels can only take two class labels, e.g., ±1. This is a problem for multiple class

problems, such as remote sensing problems. Various approaches have been proposed to address

this problem. The simple SVM binary classifier is adjusted to operate as a multi-class classifier

using methods such as one-against-all and pairwise method.

Consider N-class problems:

Pairwise method, constructs a machine for each pair of classes, resulting in N(N − 1)/2 ma-

chines. When applied to a test pixel each machine gives one vote to the winning class,

and the pixel is labelled with the class having most votes.

One-against-all method, breaks the N-class case into N two-class cases, in each of which a

machine is trained to classify one class against all others. When applied to a test pixel,

a value measuring the confidence that the pixel belongs to a class can be calculated from

equation (3.38) and the pixel is labelled with the class with the highest confidence value.

3.3.4.1 Performance evaluation

The main task of a classifier is to learn how to classify unseen data from a set of given examples,

it is common to evaluate classifiers performance as a number of correctly predicted instances

divided the total number of tested samples [63], that is:

Accuracy =
Number of correctly classified samples

Total number of samples
× 100%. (3.41)

The performance of a classifier depends on the number of available training samples and

the feature vectors. Depending on the available data, classification accuracy can be measured in

one of the following ways:

• either by splitting the data into two-thirds to be used for training and a third to be used for

testing,
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• by dividing the training set into mutually exclusive and equal-sized subsets and for each

subset the classifier is trained on the union of all the other subsets (which is known as

cross-validation)

If data is scarce, it is sensible to use cross validation in order not to waste any data, which

could be useful to enhance classifier performance; all data is used both for training the classifier

and for testing its performance. Classification accuracy may yield unsatisfactory performance

due to high dimensionality, not large enough training set, inappropriate features or algorithms. If

the evaluation of classifier shows poor generalization ability, various factors must be examined:

perhaps the number of features is too large relative to the number of training samples, relevant

features for the problem are not being used or the number of parameters associated with the

classifier is large, the dimensionality of the problem is too high, the classifier is too intensively

optimised on the training set (over-training), the selected algorithm is inappropriate. To fix

these, a larger training set may be needed or parameter tuning for algorithm is needed.

3.4 Summary

A detailed description and theoretical development of the extended LBP and SVM classifier for

the task of classifying settlements was presented. The extended LBP method was based on a

joint distribution of LBP and local variance (To incorporate the contrast of local image texture)

proposed by Ojala et al. [90]. The multiresolution gray-scale and rotational invariance of the

LBP, the rotational invariance of local variance and “uniform” patterns were the main properties

of the method. The theoretical development of the SVM was presented based on [12, 25]. The

main properties of the SVM theoretical development presented were the linear SVM optimal

separating hyperplane (for separable and non-separable cases), kernel functions for nonlinear

SVM and multi-class SVM. The design of the experiment and implementation of these methods

is presented in chapter 4.



Chapter 4

Experimental Design

4.1 Introduction

An investigation of whether the addition of contrast features to the normal LBP algorithm can

aid in improving the classification of settlement type of aerial images was conducted. To eval-

uate the classification accuracy improvements and the significance of the contrast features in

classifying settlement type, the extended LBP (LBP with local contrast features) was compared

with the original LBP method (which omits the local contrast components).

The design and implementation of this investigation is described in this chapter. The chapter

starts with a section presenting a detailed review of the data set, these include the study area,

data properties (e.g., sensor type) and the selection of training and testing set. The chapter ends

with several implementations, such as, the process of extracting image features from the input

data using LBP and LBP/VAR algorithms and the evaluation process (training and testing) of

the SVM classifier are presented. Figure 4.1 presents an illustration of the experimental design

and implementation.

a) Data set

Panchromatic image
date/time 2

Panchromatic image
date/time 1

LBP texture features

LBP/VAR texture features

b)Feature extraction c) Classification and evaluation

Evaluate generalisation
accuracy

Train the SVM classifier 
using SMO algorithm 

Semi-automated human settlements classification system.

Training
set

Testing
set

Testing
set

Training
set

Figure 4.1: A summary of the experiment layout.

40
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4.2 Data Preparation

High spatial resolution (panchromatic) aerial images were acquired over the same area at dif-

ferent dates. The difference in acquisition dates allowed the investigation of the robustness of

the LBP/VAR algorithm to large differences in viewing- and illumination geometries between

the images, and the generalization evaluation of the classifier. From the acquired urban scenes,

training and testing samples were labelled according to settlement types available in the study

area. This section presents the acquisition and selection of settlement classes in more detail.

4.2.1 Data Acquisition

4.2.1.1 RS sensor

The images were acquired using a Digital Mapping Camera (DMC), panchromatic airborne

sensor. The system consists of eight independent camera modules (units) that capture a central

perspective view. The combined image of the seperate lenses produce higher optical perfor-

mance than can be achieved in a single, larger-diameter lens. For the simultaneous collection

of colour and false colour infrared images, four multi-spectral (MS) camera heads (red, green,

blue and NIR) are incorporated in the camera base unit, see illustration in figure (4.2a). The

DMC captures a square pixel footprint where all camera heads are exposed simultaneously, the

image is thus frozen in one shot, see illustration in figure (4.2b). This minimizes unfavourable

influences due to airspeed fluctuation, sudden aircraft movement, or objects moving within the

frame [24].

PAN 4 PAN 1 

PAN 3 PAN 2 

MS 4 
(Green)

MS 1 
(NIR)

MS 2 
(Blue)

MS 3 
(Red)

PAN 1 

PAN 3 PAN 4 

PAN 4 

a) System Overview b) Image Overview (Pan Camera)

Flight direction

Figure 4.2: System and image overview of a Digital Mapping Camera.

Each camera offers a pixel size of 12× 12 µm and a 12-bit per pixel radiometric resolution
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for each of the panchromatic and colour channels with a 0.12 m focal length at a maximum aper-

ture of f/4. Detailed camera parameters of the data used for the study are reported in table 4.1.

Table 4.1: Camera Parameters for Virtual Image (High and Colour Resolutions).

Resolution Focal length (m) Sensor size (Pixel) Pixel size (µm) Principal point (mm)

PAN 0.12 13824× 7680 12 X = 0.0 Y = 0.0

MS (before PPS) 0.12/4.75 3075× 2048 12 X = -0.646 Y = 0.646

MS (after PPS1) 0.030 3456× 1920 12 X = 0.0 Y = 0.0

1The results of the Platform calibration were generated with DMC Postprocessing SW (PPS), Version 5.2,
from Intergraph Z/I Imaging photogrammetric product suite.

4.2.1.2 Study area

The Mamelodi area, part of the City of Tshwane Metropolitan Municipality, north-east of Preto-

ria (Gauteng, South Africa) shown in figure (4.3 pg 43) was chosen as the study area. The area

was suitable for our research as it has a high percentage of formal and informal areas within a

single square kilometre image scene and includes new estate developments and upgrades (i.e.,

informal to formal housing). Settlements in this area comprise several informal and formal

settlement characteristics (subclasses) ranging from housing being either dense or sparse, with-

/without backyard structures, ordered or unordered and having dirt or tarred roads. The area

was also chosen because of the lack of remote sensing and GIS-based research on informal

settlements in this particular area.

4.2.1.3 Cross-dates

To effectively evaluate the generalization ability of the SVM classifier, high spatial resolution

data was acquired over the same area (Mamelodi) on different dates (i.e., year 2010 and 2012,

denoted by d1 and d2 respectively). Each date of acquisition contained multiple “images”,

as shown in figure (4.4 pg 43). To reduce differences in image properties, the image pairs

were converted to 8-bit colour depth and histogram matched (to reduce brightness differences).

With the relevant data acquired, the next step is to select and extract sample classes, from the

Mamelodi scene, to be used as training and testing data sets.

4.2.2 Sample Selection

The study area contained a large variety of settlements, ranging from formal suburbs to very

informal settlements consisting of small shacks. A variety of key characteristics (tone, shape,
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Figure 4.3: Map showing Mamelodi area found in Gauteng, South Africa.
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Figure 4.4: Data acquisition scenes for 2010 (date 1) and 2012 (date 2).
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size, pattern, texture, site and context differences) were used to visually delineate and select

settlement types (classes/samples) into polygons to generate subclasses, see . The latter was

done manually, using visual interpretation to label the polygons into codes/categories, e.g. for-

mal and informal settlements were denoted by codes 7.1xx and 7.2xx respectively (xx denotes

the informal/formal respective subclasses/extensions) and non-built areas were denoted as code

20.100, see illustration in figure (4.5) and class descriptions in table (4.2 pg. 46).

0 1000 2000 3000

Legend
20.1
7.1

7.12
7.121
7.211
7.212
7.213
7.214
7.241

Mamelodi Area

7.11

Figure 4.5: Settlement type categories over the Mamelodi area.

4.2.2.1 Training and Testing datasets

On both data sets (date 1 and 2) the polygons were divided into non-overlapping subsets A and

B where these are used interchangeably for training and testing the classifier. This distinction is

important, because the samples within the training set may overlap, but the training and testing

sets do not overlap. From each polygon keeping the label (A or B) intact, square tiles (of

size 120 m × 120 m) were extracted from random locations entirely within the demarcated

polygons. Examples of the extracted square tiles for each settlement classes are presented in

figure (4.6 pg. 45).



45

(a) 7.100 (b) 7.110 (c) 7.120

(d) 7.121 (e) 7.211 (f) 7.212

(g) 7.213 (h) 7.214 (i) 7.241

(j) 20.100

Figure 4.6: Examples of the settlements classes found in the Mamelodi area.
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Table 4.2: Description of the extended land use codes to differentiate settlements found in
Mamelodi Area.

Class Description

7.100 Formal residential

7.110 Formal housing with backyard shacks

7.120 Low-income housing (RDPa)

7.121 Low-income housing (RDP ) with backyard structures

7.211 Informal housing (shacks with loose layout and dirt roads)

7.212 Unordered informal housing – typically dense

7.213 Ordered informal housing – typically sparse

7.214 Unordered informal housing – typically sparse with some ad hoc dirt roads

7.241 Dense low-income housing, tarred roads, gridded layout, typically no pitched roofs

20.100 Non-built-up area representing vegetation and bare areas.

aRDP housing is a South African low cost subsidy housing project
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4.3 Extended LBP design

In order to successfully characterize the effect of contrast (variance measures) on imagery ac-

quired at different dates from the chosen study area, a comparison was made between the normal

LBP (without variance measures) and the LBP/VAR (with variance measures) algorithms, see

illustration in figure (4.1 pg. 40). This section presents a detailed review of the image feature

extraction process, from the input data, using the LBP and LBP/VAR algorithm.

4.3.1 Extracting LBP features

Extracting LBP features involves two main processes:

1. Measuring the LBP code:

First construct regular circular neighbourhoods with P (P > 1) image pixels and radius

R(R > 0), with the coordinates of the gray values gP being (−R sin (2πp/P )),(R cos (2πp/P ))

at gc(0, 0) (gray values that do not fall exactly in the pixel centre are estimated by inter-

polation). The LBP code is measured from the pattern (circular neighbourhood) using

equation (3.7 pg. 28). Three patterns (P,R) were considered: for samples P = 8, 16, 24

having radius R = 1,2,3 respectively, see illustration in figure (4.7).

P=8, R=1.0 P=12, R=2.2 P=16, R=4.0

Figure 4.7: Local circularly symmetric neighbourhood sets, three cases.

2. Labelling LBP code:

A look-up table containing all the uniformity measures (LBP code labels) was constructed

for a given pattern (P,R), see illustration in figure (3.2 pg. 29). Using the look-up table,

uniformity measures U with a value of at most 2 are stored as uniform patterns with bin

labels [0, P − 1] while the non-uniform patterns are stored as bin label (P + 1), where

bins [0, P − 1] correspond to a texture feature from equation 3.10, see figure (3.3 pg. 30).

Examples of texture primitives captured by the uniform patterns of LBP are shown in

figure (4.8).
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Spot Spot/flat Line end Edge Corner

Figure 4.8: Different texture primitives detected by the uniform patterns of LBP.

An illustration showing the measurement of the LBP codes and labels (primitives detected)

for a pattern size P = 8 is presented in figure (4.9).

LBP code = 8

LBP code = 6

LBP code = 5 {EDGE}

LBP code = 8 {SPOT}

LBP code = 0 {FLAT}

LBP code = 6 {CORNER}

Figure 4.9: Extraction of LBP features for P = 8.

4.3.2 Extracting LBP/VAR features

Circular neighbourhoods used in extracting LBP features, are used to calculate Variance mea-

sures as illustrated in equation (3.11 pg. 30). Variance measures yield continuous values, thus

need to be quantized. To achieve this, the Variance measure distribution is calculated over the

entire dataset. Using R Project for Statistical Computing2, percentiles (bin breaks) are mea-

sured from the calculated Variance distribution, such that they are distributed according to the

Variance measures for different number-of-bins choices (which are 3→ 20 bins in this case). A

summary of the process is presented below:

1. For a given circular neighbourhood pattern size (P,R), we calculated LBP features and

(3→ 20) bin breaks from the quantized Variance distribution.

2. A 2D joint distribution histogram for a given pattern size P,R is then constructed by

incrementing the count in the bin corresponding to local Variance and the LBP code, as

shown in figure (4.10). For an illustration showing a 2D joint histogram distribution using

the LBP/VAR algorithm, please refer to figure (3.4 pg. 31).
2R is a free software environment for statistical computing and graphics (source: http://www.r-project.org).
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Figure 4.10: Calculation of the LBP/VAR features for a given pattern size P,R.

3. For a given pattern size (P,R), the process yields (P + 2) LBP features and (3→ 20) lo-

cal Variance features. For example, consider a 2D joint distribution histogram for pattern

size (P,R = 8,1) and number-of-bins = 3. This yields a 2D histogram of (8+2 LBP uni-

form features × number-of-bins = 3) features/elements. . These elements are converted

to a 1D list (where feature/element (f0) = LBP/VAR(0,0), f1 = LBP/VAR(0,1) to f29 =

LBP/VAR(8,3) in the 2D feature space) which form input to the classification step, see

illustration in table (4.3).

Table 4.3: An example of the feature sets for LBP/VAR (P,R = 8, 1 for 3 bins) which form
input to the classifier using three sample images, where attributes f0 to f29 are the calculated
features/elements.

f0 f1 f2 f3 f4 f5 · · · f29 f29 class

0.0349 0.0514 0.0353 0.0503 0.0645 0.0562 · · · 0.0499 0.0487 20.100

0.0347 0.0538 0.0360 0.0533 0.0738 0.0600 · · · 0.0520 0.0511 20.100

0.0329 0.0501 0.0355 0.0525 0.0696 0.0617 · · · 0.0517 0.0541 20.100

0.0283 0.0365 0.0296 0.0459 0.0766 0.0490 · · · 0.0367 0.0442 7.100

0.0275 0.0335 0.0258 0.0404 0.0574 0.0419 · · · 0.0320 0.0365 7.100

0.0296 0.0357 0.0286 0.0467 0.0828 0.0508 · · · 0.0358 0.0421 7.100

0.0328 0.0513 0.0512 0.0949 0.1146 0.0987 · · · 0.0483 0.0469 7.110

0.0325 0.0531 0.0497 0.1039 0.1335 0.1058 · · · 0.0521 0.0542 7.110

0.0326 0.0525 0.0502 0.1038 0.1316 0.1053 · · · 0.0532 0.0547 7.110
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4.4 Implementation

This section presents the evaluation process involving the training and testing of the SVM clas-

sifier, including statistical measures. The data of a specific date is divided into subsets A and B,

to provide spatially separate training and testing data. Generalization classification accuracy for

the different texture features algorithms was determined by evaluating the performance of the

true positive values of the Support Vector Machine classifier.

4.4.1 Training and testing SVM

The SVM was trained and tested using Weka’s3 implementation of John Platt’s [103] Sequential

Minimal Optimization (SMO) algorithm with a polynomial kernel (i.e, K(xi, xj) = (xi · xj +

1)p). Training (subset A) and testing (subset B) images acquired on the same and different

dates (denote as same- and across-date) were used interchabley to evaluate the classifier over

six combinations, see figure (4.11).

Subset A

Subset B

Date 1 Date 2

Subset A

Subset B

Figure 4.11: Training and test between same and cross date classes.

For simplicity, date-1 subset-A and date-2 subset-B are denoted asAd1 andBd2 respectively.

4.4.2 Statistics

To obtain the standard deviations on various classification results, the following procedure was

used to evaluate a given configuration using data sets X and Y (X = Ad1 and Y = Bd1

respectively):

1. Train the SVM using the whole of set X .

2. Partition set Y in 10 folds using stratified sampling to preserve relative class frequency.

3Weka is a collection of machine learning algorithms for data mining tasks (source:
http://www.cs.waikato.ac.nz/ml/weka).
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3. Evaluate the SVM (trained on X) on each of the 10 folds of Y , obtaining one accuracy

figure for each fold.

4. Exchange X and Y , and repeat 1–3.

The process described above, denoted by X 
 Y , produces 20 individual values for each accu-

racy metric, which are then used to calculate a mean and standard deviation for each metric. We

distinguish between two classes of test, namely same-date (when both training and test sets are

derived from the same-date aerial image) and cross-date (when two aerial images acquired at dif-

ferent times/dates are used). The difference in performance between these to classes highlights

the degree to which a particular classifier is invariant to viewing- and illumination geometry and

generalisation ability.

4.5 Summary

This chapter presented the design of the experiment, discussing the process of image feature

extraction from aerial images using the extended LBP algorithm for the training of the SVM

classifier for evaluation. The aerial images were acquired in the same area under different con-

ditions (date and season). The extraction of features from the images was achieved using LBP

and extended LBP methods. These features were used to train and evaluate the SVM classifier

using John Platt’s [103] SMO algorithm (using a polynomial kernel) over the six possible date

combinations. Results obtained from the experiment are presented in chapter 5.



Chapter 5

Results and Discussion

5.1 Introduction

This chapter presents the results obtained with the system described in Chapter 4. To recap, the

chapter starts with an overview of the experiment, including the parameters used. Results are

then presented in three parts; the first presents results of the SVM classifier overall accuracies

including same- and cross-dates evaluations and the effects of the number-of-bins parameter.

The second part presents the results of the SVM classifier per-class (i.e., per settlement type)

True Positive (TP) evaluations. Lastly, to investigate parameters that yield maximum perfor-

mance, the evaluation of the SVMs SMO algorithm parameters are presented. A discussion of

the results is presented in three parts according to the results sections mentioned above.

5.2 Experiment overview

In remote sensing, image textures can occur at arbitrary spatial resolutions and rotations, and

may be subjected to varying illumination conditions. Due to the variety of texture, an ideal

texture description is the one that can efficiently discriminate different types of textures (such

as distinguishing human settlements) and is robust to viewing- and illumination-geometry ef-

fects. The LBP algorithm with Variance measures (LBP/VAR) has the potential of being an

ideal texture description as it incorporates invariance with respect to spatial scale, orientation,

while considering gray scale variations. To investigate the LBP/VAR robustness to viewing- and

illumination-geometry effects and ability to efficiently discriminate different types of textures

the following experiment was conducted:

1. High resolution data was acquired at different date from an area containing a variety of

settlements.

2. The data set was prepared (i.e., it was labelled and class samples were collected).

3. The extended LBP (LBP/VAR) features were extracted over spatially non-overlapping

areas.

52



53

4. The SVM classifier was trained and evaluated for generalization performance of LBP and

LBP/VAR over both same-date and cross-date subsets.

5. To enhance classifier performance, the classifier was evaluated at various parameter set-

tings.

5.2.1 Experiment parameters

5.2.1.1 Input data

For detailed acquisition, processing and extraction of sample classes, please refer to section (4.2).

This section serves as a summary of the data set used for the experiment. Aerial imagery was

used for the experiment with imagery captured at different dates (2010 and 2012) in Mamelodi

area (South Africa). From a total of ten labelled polygon classes, square tiles (input data) of size

(120 m × 120 m) were extracted from random locations within the demarcated polygons. Each

class was divided into two subsets (subset A and B) for each date; for the number of extracted

square tile for each class and subset see table (5.1). The number of input data (square tiles)

are not equal for both dates (see table (5.1)) since more scenes were available from the 2012

acquisition campaign.

Table 5.1: The number of patterns in each class, for each subset.

2010 Data 2012 Data

Class Subset A Subset B Subset A Subset B

7.100 1926 1775 2158 2192

7.110 3183 3644 2834 3275

7.120 410 312 452 374

7.121 148 142 365 303

7.211 142 187 155 190

7.212 573 500 518 516

7.213 884 236 593 135

7.214 750 682 670 610

7.241 180 311 545 619

20.100 4241 2518 4607 3193

Total 12437 10307 12897 11407
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5.2.1.2 LBP, VAR and LBP/VAR parameters

A detailed LBP, VAR and LBP/VAR feature extraction process is presented in section (4.3 pg. 47).

To recap, the LBP, VAR and LBP/VAR requires two input variables that define the circular

neighbourhood: pattern size P, and radius R. For the task of classifying human settlements, the

LBP and extended LBP (local contrast extension) features were measured for a range of pattern

sizes (P,R): 8,1; 16,2; 24,3. The range of pattern sizes (P,R) parameter is important for the ex-

traction of both small and large settlement features. Each pattern generates P+2 features ([0, P ]

uniform patterns + 1 miscellaneous bin for non-uniform patterns), see illustration for P=8, R=1

example in figure (3.2 pg. 29).

Local contrast measures (VAR) have continuous outputs and need to be quantised first. This

is done by calculating the global contrast distribution and constructing bin breaks for a set

number-of-bins, see section (4.3.2 pg. 48). To determine the least-complex set of features that

yields optimal performance, the number of bins parameter is investigated from 3–20 bins. These

experiment parameters (P,R), including the number of bins for contrast measures (VAR) and the

total number of generated features for LBP, VAR and LBP/VAR are reported in table 5.2.

Table 5.2: Number of extracted features from each image.

Sample (P,R) LBPa LBP/VARb

8,1 10 10 × (3,...,20)

16,2 18 18 × (3,...,20)

24,3 26 26 × (3,...,20)

8,1+16,2 10 + 18 28 × (3,...,20)

8,1+16,2+24,3 10 + 18 + 26 54 × (3,...,20)

aLBP features = [0,P] (uniform patterns) + 1 miscellaneous bin.
bContrast bins (VAR) = 3,...,20 bins

5.2.1.3 SVMs SMO parameters

The effectiveness of SVM depends on the selection of kernel and the kernel’s parameters. Typ-

ically, each combination of parameter choices is checked using cross validation, and the param-

eters with best cross-validation accuracy are picked [49]. These are then trained on the whole

training set using the selected parameters to be tested in classifying new data. For a detailed im-

plementation of training and testing the SVM please refer to section (4.4.1 pg. 50). The chosen

SVM SMO algorithm used a polynomial kernel K(xi, xj) = (xi · xj + 1)p, which requires two
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parameters, denoted as SMO(C, p), where C is the complexity value and p is the polynomial

kernel exponent value. The best combination of C and p was investigated by a grid search with

exponentially growing sequences of C ∈ {20, 21, . . . , 27}; p ∈ {1, 2, 3} for each C value.

5.3 Experiment Results

This section presents the LBP and LBP/VAR results obtained from the experiment outlined in

chapter 4. The results are split in three subsections where the first section presents the classifica-

tion accuracies. Secondly, results investigating classification accuracies per class are presented

and lastly, results for various SMO parameters are presented.

5.3.1 SVM classifier overall accuracies

The SVM classifier was trained and evaluated for generalization performance of LBP and LBP/-

VAR for settlement type classification over images acquired on the same-date and at different

dates (cross-date). The classifier’s overall accuracy is defined as the number of correctly classi-

fied samples divided by the total number of samples multiplied by 100. The overall classification

accuracy values for both LBP and LBP/VAR features are presented on figure (5.1 pg. 56) and

table (5.3 pg.57). The highest overall classification accuracy value for each date configuration

is shown bold.

5.3.2 Per-Class evaluation

True positive rates for each class (settlement type) for a given numbers of bins (the lowest

number-of-bins that yields optimal performance: ≈ 6 bins) were evaluated and are presented in

table (5.4). Settlement class true positive rates of 80% or greater are shown in bold.

5.3.3 SVM’s SMO parameter test

Lastly, a test on the SMO algorithm for the optimal parameters for training the SVM classifier

over the six possible combinations was conducted and presented in table (5.5 pg. 59). The test

was done using the a pattern size (P,R = 8, 1 + 16, 2 + 24, 3) for number-of-bins = 6. Two

parameters were considered, SMO(C, p), where C is the complexity value and p is the polyno-

mial kernel exponent value (i.e, K(xi, xj) = (xi · xj + 1)p). The experiment tested the SMO

algorithm for C values [C = 2i, i = 0, 1, . . . , 7] with exponents [p = 1, 2, 3] for each C value.
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P,R/VARP,R (3-20 Bins) of same- and cross-date imagery.
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The default parameters, SMO(1, 1), which are parameters used on the experiments, are com-

pared with the classification accuracy averages obtained by the SMO with adapted parameters

and are presented in table (5.5 pg. 59).

Table 5.5: John Platt’s sequential minimal optimization algorithm optimal complexity parameter
(C) and exponent value (p) test for LBP/VAR pattern size (P,R = 8, 1 + 16, 2 + 24, 3) with
number-of-bins = 6. Evaluating overall classification accuracies (%) with standard deviation.

Data set C = 1 C = 2

p = 1 2 3 1 2 3

Ad1 
 Bd1 83.785 (0.628) 90.950 (9.117) 90.451 (9.613) 82.159 (2.759) 77.198 (4.490) 74.953 (4.525)

Ad2 
 Bd2 80.903 (5.265) 86.871 (10.338) 79.560 (6.547) 82.696 (3.044) 82.171 (11.398) 91.732 (8.509)

Ad1 
 Ad2 79.973 (2.511) 77.331 (1.350) 80.504 (7.001) 80.014 (2.656) 79.864 (11.151) 90.268 (11.646)

Ad1 
 Bd2 74.869 (3.460) 77.061 (4.729) 73.287 (5.102) 73.728 (1.709) 76.169 (5.196) 82.867 (12.027)

Bd1 
 Bd2 80.428 (2.289) 79.847 (1.999) 79.548 (1.720) 84.619 (9.179) 79.767 (1.931) 87.733 (12.616)

Ad2 
 Bd1 87.172 (10.171) 76.514 (4.157) 82.628 (5.475) 76.720 (5.750) 88.018 (11.766) 78.518 (8.622)

Average 81.188 (4.054) 81.429 (5.282) 80.996 (5.910) 79.989 (4.183) 80.531 (7.655) 84.345 (9.658)
C = 4 C = 8

Ad1 
 Bd1 79.367 (3.303) 79.159 (8.663) 78.626 (3.895) 83.150 (0.952) 83.161 (4.180) 93.041 (10.605)

Ad2 
 Bd2 88.030 (5.257) 80.093 (8.614) 79.970 (3.342) 79.353 (5.917) 78.253 (4.290) 74.808 (8.946)

Ad1 
 Ad2 82.571 (6.660) 78.567 (3.029) 79.202 (6.700) 87.426 (10.112) 75.519 (2.121) 77.869 (1.703)

Ad1 
 Bd2 74.406 (1.277) 72.272 (1.276) 78.476 (7.797) 73.744 (1.272) 76.423 (8.398) 76.709 (3.829)

Bd1 
 Bd2 80.056 (2.383) 75.191 (4.180) 86.208 (8.064) 79.497 (2.182) 84.641 (7.091) 74.638 (4.915)

Ad2 
 Bd1 74.362 (1.605) 78.595 (12.718) 88.057 (11.983) 73.312 (1.463) 88.419 (14.522) 75.760 (4.869)

Average 79.799 (3.414) 77.313 (6.413) 81.757 (6.964) 79.414 (3.650) 81.069 (6.767) 78.804 (5.811)
C = 16 C = 32

Ad1 
 Bd1 80.109 (3.851) 81.497 (0.836) 77.566 (4.860) 81.893 (0.898) 80.301 (2.963) 85.890 (14.332)

Ad2 
 Bd2 82.847 (5.148) 79.532 (7.074) 82.959 (13.165) 79.425 (5.453) 95.509 (10.042) 89.138 (10.257)

Ad1 
 Ad2 74.162 (2.178) 76.946 (1.141) 84.504 (12.917) 77.184 (1.987) 86.505 (14.506) 77.861 (1.713)

Ad1 
 Bd2 84.446 (11.835) 78.738 (12.370) 72.157 (1.078) 82.551 (13.224) 77.378 (10.131) 76.904 (6.778)

Bd1 
 Bd2 77.857 (3.755) 87.541 (13.947) 76.657 (4.463) 88.466 (11.300) 79.590 (1.738) 81.585 (6.415)

Ad2 
 Bd1 76.624 (4.904) 84.845 (13.630) 79.421 (4.688) 78.954 (8.530) 72.469 (1.503) 90.119 (10.476)

Average 79.341 (5.279) 81.517 (8.166) 78.877 (6.862) 81.412 (6.899) 81.959 (6.814) 83.583 (8.329)
C = 64 C = 128

Ad1 
 Bd1 81.556 (1.050) 76.216 (5.090) 74.392 (4.077) 79.598 (3.419) 89.803 (13.991) 85.982 (8.247)

Ad2 
 Bd2 82.317 (0.887) 82.981 (1.249) 86.855 (14.257) 82.047 (0.986) 86.184 (14.200) 82.972 (1.086)

Ad1 
 Ad2 76.433 (1.719) 80.160 (12.261) 87.896 (8.903) 75.813 (1.679) 79.095 (3.140) 77.869 (1.706)

Ad1 
 Bd2 74.452 (5.331) 86.184 (10.546) 85.704 (11.590) 74.240 (3.925) 96.011 (8.758) 72.154 (1.076)

Bd1 
 Bd2 78.771 (1.866) 75.170 (4.130) 79.657 (1.413) 83.643 (9.726) 78.919 (1.906) 79.673 (1.514)

Ad2 
 Bd1 79.766 (10.601) 77.241 (5.073) 87.790 (10.275) 72.259 (0.937) 71.172 (1.093) 87.066 (13.496)

Average 78.883 (3.576) 79.659 (6.392) 83.716 (8.419) 77.933 (3.445) 83.531 (7.181) 80.953 (4.521)
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5.4 Discussion

This section presents the discussion of the results presented on the previous section and is split

into three subsections. Discussions of the LBP and LBP/VAR classification accuracies, the

per-class true positive values and lastly the SVM’s SMO parameter test analysis are presented.

5.4.1 SVM classifier overall accuracies

To recap, table (5.6) shows the LBP and LBP/VAR overall classification average values over

all date combinations (Ad1/d2 
 Bd1/d2) calculated for different number-of-bins. For detailed

results refer to table (5.3 pg. 57).

Table 5.6: Overall classification accuracy averages (%) with standard deviations.

No. of bins P,R = 8,1 8,1+16,2 8,1+16,2+24,3

LBP1 67.88 (1.73) 71.63 (2.03) 74.43 (1.68)

3 72.25 (0.96) 75.33 (1.03) 77.27 (0.95)

6 75.39 (1.23) 79.17 (1.50) 79.96 (1.54)

8 75.74 (1.18) 79.00 (1.44) 79.94 (1.60)

10 75.75 (1.16) 78.97 (1.55) 79.79 (1.65)

12 75.84 (1.08) 79.06 (1.49) 79.77 (1.69)

14 75.75 (1.10) 79.18 (1.67) 79.37 (1.82)

16 75.76 (1.13) 79.08 (1.65) 79.37 (1.82)

19 75.89 (1.15) 78.98 (1.57) 79.24 (1.79)

1LBP features without Contrast measurements.

The overall classification accuracy averages showed that the LBP/VAR outperforms the nor-

mal LBP for any given pattern size (P,R), see table (5.6). The LBP/VAR that showed the lowest

overall classification accuracy averages (i.e., number-of-bins = 3) outperformed the normal LBP

by approximately 4%. The classification performance was dependent on the building sizes de-

tected on the images, that is, the overall classification increased when increasing pattern size

(P,R). When the LBP pattern size (P,R) was increased with a larger pattern size and a larger

radius (from P,R = 8, 1 to P,R = 8, 1 + 16, 2), see figure (5.1(b) pg. 56), both the perfor-

mance of the LBP and LBP/VAR increased, where the normal LBP ranged from 68% to 72%

and the LBP/VAR for number-of-bins = 3, was improved from 72% to 75%. Lastly, the settle-

ment classification accuracy for the largest LBP pattern size investigated (from P,R = 8, 1 to

P,R = 8, 1 + 16, 2 + 24, 3) with 54 LBP features and 54× (3, . . . , 20) LBP/VAR features, as
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shown in table (5.2 pg. 54), were measured and presented in figure (5.1(c) pg 56). The perfor-

mance of the LBP ranged from 68% to 74% while the LBP/VAR for number-of-bins = 3, ranged

from 72% to 77%. The LBP/VAR showed better performance over the LBP in all the pattern

sizes considered, however the LBP/VAR performance was also dependent the number-of-bins

parameter and was not consistent across all date combinations.

5.4.1.1 LBP/VAR number-of-bins parameter

The LBP/VAR classification accuracy showed a strong dependence on the number-of-bins pa-

rameter (i.e., contrast). Notable classification accuracy improvements were observed for number-

of-bins = (3 to 6 bins) throughout the considered pattern sizes (P,R). Subsequent number-of-bins

(6 to 20 bins) showed minor improvements in classification accuracies, see illustration in fig-

ure (5.1 pg. 56). For simplicity, the optimal number-of-bins parameter was the lowest number-

of-bins that yield acceptable classification accuracies. Therefore, the highest classification accu-

racies (the turning points) were not observed for the number-of-bins (3 to 20 bins) investigated

in the experiment. The optimal number-of-bins parameter for the experiment was observed (≈ 6

bins), where this was approximated visually from the boxplots and tables, see figure (5.1 pg. 56)

and overall classification accuracy averages in table (5.6). The results showed that the optimal

number-of-bins to be approximately the same for all pattern sizes considered. These results

showed that the LBP/VAR (for number-of-bins = 6) outperformed the LBP by ≈ 7% on aver-

age, see table (5.6).

5.4.1.2 Date effect

An experiment comparing classification accuracies of data acquired over the same area at dif-

ferent dates was done and reported in table (5.3 pg. 57). Averages of the same- and across-date

(images from different dates) were calculated and summarised in table (5.7).

Features that are calculated from the same-date scenery are expected to have greater sim-

ilarity than across-date features, and thus yield better classification accuracy than that of the

cross-date scenery. This difference in classification accuracy between the same-date images and

the cross-date images (denoted as cross-date effect) is mainly due to differences in viewing-

and illumination-geometry, see illustration in figure (5.2) where the brightness differences in

the roof sections (large highlighted building), shadow length and orientation are apparent.

Minor cross-date effects were observed for normal LBP with same-date classification ac-

curacies having better results. The same-date averages ranged from 69% to 76% while for
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Table 5.7: The same/cross -date overall classification accuracy averages (%) with standard de-
viations for various LBP/VAR configurations.

No. of Same-date Cross-date

Bins P,R = 8,1 8,1+16,2 8,1+16,2+24,3 8,1 8,1+16,2 8,1+16,2+24,3

LBP 68.96 (1.58) 72.90 (1.54) 76.21 (1.39) 67.34 (1.81) 70.99 (2.28) 73.54 (1.82)

3 74.73 (0.86) 78.38 (0.81) 80.73 (0.71) 71.01 (1.00) 73.81 (1.15) 75.55 (1.07)

6 78.79 (0.77) 82.26 (0.80) 83.73 (0.79) 73.68 (1.46) 77.62 (1.85) 78.08 (1.91)

8 79.63 (0.97) 82.95 (0.92) 84.19 (0.96) 73.79 (1.29) 77.02 (1.71) 77.82 (1.92)

10 79.89 (0.99) 83.21 (0.90) 84.21 (0.89) 73.68 (1.25) 76.84 (1.87) 77.58 (2.03)

12 80.42 (1.08) 83.51 (0.83) 84.19 (0.97) 73.56 (1.08) 76.83 (1.83) 77.56 (2.06)

14 80.58 (1.05) 83.62 (0.94) 83.92 (0.99) 73.33 (1.12) 76.97 (2.03) 77.10 (2.23)

16 80.69 (1.06) 83.49 (0.89) 83.91 (1.04) 73.29 (1.16) 76.88 (2.02) 77.09 (2.21)

19 80.98 (1.14) 83.46 (1.03) 83.63 (0.92) 73.35 (1.15) 76.74 (1.84) 77.04 (2.23)

20122010

Figure 5.2: Differences in viewing- and illumination-geometry found in the data set.
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cross-date evaluation they ranged from 67% to 74%, showing only a ±2% difference, see ta-

ble (5.7). The extended LBP (LBP/VAR) results showed noticeable cross-date effects compared

to the LBP, see figures (5.1(a), 5.1(b) and 5.1(c) pg. 56). The LBP/VAR same-date averages for

number-of-bins = 19 ranged from 81% to 84% while for cross-date evaluation they ranged from

73% to 77% which is a ±7% difference, see table (5.7). From these results it is clear settlement

classification accuracy benefits significantly from the addition of contrast measures. However,

the classification accuracies were improved more on the same-date images while on the cross-

date imagery only minor improvements were observed, thus increasing the gap between the two

accuracy measures, as illustrated in table (5.7). This trend was also observed in other similar

studies, where while they managed to improve classification accuracies for cross-date images,

the counterpart (same-date images) was also improved, resulting in cross-date effects being no-

ticeable [70, 125].

5.4.2 Per-Class Evaluation

In an attempt to identify the cause of the minor classification accuracy improvements for the

cross-date scenery we measured the true positive (TP) rates for each settlement type considered.

TP rates for each settlement type for the lowest number-of-bins that showed optimal perfor-

mance, which was a number-of-bins = 6, were evaluated and presented in table (5.4 pg. 58) and

summarised in table (5.8).

Table 5.8: Same/cross -date true positive rate value averages per-class (%) with standard devia-
tions of LBPriu2

P,R/VARP,R for number-of-bins = 6.

Class
P,R=8,1 P,R=8,1+16,2 P,R=8,1+16,2+24,3

Same-date Cross-date Same-date Cross-date Same-date Cross-date

7.100 81.30 (4.570) 76.21 (12.24) 85.39 (4.270) 82.59 (6.610) 86.45 (3.200) 82.73 (7.958)

7.110 85.52 (2.690) 78.88 (4.560) 87.95 (2.670) 83.41 (4.310) 89.49 (2.070) 83.66 (7.080)

7.120 84.73 (6.820) 63.80 (23.72) 90.21 (6.170) 69.26 (22.60) 92.51 (4.970) 69.79 (22.90)

7.121 8.640 (7.830) 10.05 (2.640) 45.79 (9.540) 24.54 (22.17) 53.56 (10.64) 37.55 (30.11)

7.211 42.51 (10.05) 26.91 (13.31) 44.41 (12.10) 33.23 (15.53) 48.08 (13.82) 35.74 (17.79)

7.212 60.49 (7.120) 50.95 (6.840) 62.11 (6.750) 54.95 (10.17) 65.63 (6.670) 56.91 (8.070)

7.213 25.35 (18.41) 28.57 (12.44) 43.28 (22.82) 40.53 (17.42) 48.88 (24.60) 42.71 (18.39)

7.214 62.99 (7.760) 57.04 (18.63) 68.56 (6.560) 61.81 (18.64) 70.95 (5.730) 64.88 (15.45)

7.241 66.62 (6.670) 39.78 (11.23) 76.98 (5.240) 42.56 (16.20) 81.86 (5.310) 40.01 (20.89)

20.100 97.04 (1.040) 97.07 (0.960) 96.53 (0.730) 96.66 (1.090) 96.17 (0.910) 96.37 (1.440)

Average 78.79 (0.77) 73.69 (1.47) 82.27 (0.80) 77.62 (1.850) 83.73 (0.790) 78.08 (1.910)

We have established that settlement type classification is not an easy task as settlements
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have many things in common, this becomes even more difficult task when the classes have few

differences. In particularly, informal settlements are the hardest to distinguish as they have

subtle differences between them, see illustration in figure (5.3) where the house materials are

similar but differ in the layout or in how they are ordered. This is made more apparent in

table (5.4), where the TP rates (%) differences between the formal (7.1xx excluding 7.121)

and non-built (20.100) classes performed fairly well when compared to informal (7.2xx) class

categories regardless of the LBP pattern size.

2010

N

Figure 5.3: Subtle differences in settlement classes found in the data set.

In some cases some of the classes (e.g., 7.121, 7.211, 7.212, 7.213 and 7.214) performed

poorly even on same-date imagery, the classes may be too similar to discern or may be biased

towards other classes, however, this may suggest a revision on the these particular classes. For

example, combining some of the classes (e.g., 7.211, 7.212, 7.213 and 7.214) may improve clas-

sification accuracy. Its was also noted that more structured classes (7.100 and 7.231) performed

better than the unordered ones, also, these classes proved to be more robust to the cross-date

effect. The decreased robustness of the classification of the unordered informal settlements is

not surprising since these classes exhibit greater internal heterogeneity, see figure (5.4).

The cross-date effects were more pronounced as per-class cross-date evaluation results were

lower when compared to the same-date TP values, see averages (shown in bold) in table (5.8).
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Visual difference between settlement type

Figure 5.4: Differences in internal heterogeneity found in the data set.

These results show that seasonal variations did not affect the cross-date accuracies in our ex-

periment, that is, the difference in the amount or colour or the structure of vegetation had no

effect on classification performance. The non-built class (20.100), representing vegetation and

bare areas, performed better than all the classes under consideration, where the class showed

TP values of over 95%. An example of the effects caused by vegetation/seasonal differences is

illustrated in figure (5.5), where the amount of trees, colour and structure are more apparent in

the 2012 scene than the 2010 scene.

20122010

Figure 5.5: An illustration of seasonal differences found in the data set.
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5.4.3 SVM’s SMO parameter test

A test of the SVM’s SMO parameters was done using the a pattern size (P,R = 8, 1 + 16, 2 +

24, 3) for number-of-bins = 6, see results in table (5.5 pg. 59). The results were summarised,

taking only the overall classification accuracy average values, as shown in table 5.9.

Table 5.9: John Platt’s SMO algorithm (C, p) parameter test for overall clas-
sification averages (%) with standard deviations using LBP/VAR pattern size
(P,R = 8, 1 + 16, 2 + 24, 3) with number-of-bins = 6.

C p = 1 2 3

1 81.188 (4.054) 81.429 (5.282) 80.996 (5.910)

2 79.989 (4.183) 80.531 (7.655) 84.345 (9.658)

4 79.799 (3.414) 77.313 (6.413) 81.757 (6.964)

8 79.414 (3.650) 81.069 (6.767) 78.804 (5.811)

16 79.341 (5.279) 81.517 (8.166) 78.877 (6.862)

32 81.412 (6.899) 81.959 (6.814) 83.583 (8.329)

64 78.883 (3.576) 79.659 (6.392) 83.716 (8.419)

128 77.933 (3.445) 83.531 (7.181) 80.953 (4.521)

Classification averages for SMO parameters, SMO(2, 3), SMO(32, 3), SMO(64, 3) and

SMO(128, 2), showed an improvement of approx 3% when compared to the default parameters

SMO(1, 1), see table (5.9 pg. 66). However, the default parameters SMO(1, 1) also showed half

the standard deviation, thus was regarded as the optimal parameters for the experiment. The

SVM’s SMO parameters were also evaluated for same- and cross-date effects, see table 5.10.

Table 5.10: John Platt’s SMO algorithm optimal complexity parameter (C) and exponent value
(p) test for LBP/VAR pattern size (P,R = 8, 1 + 16, 2 + 24, 3) with number-of-bins = 6. Same-
and cross- date overall classification averages (%) with standard deviations.

C
Same-date Cross-date

p = 1 2 3 1 2 3

1 82.34 (2.95) 88.91 (9.73) 85.01 (8.10) 80.61 (0.48) 77.69 (3.06) 78.99 (4.82)

2 82.43 (2.90) 79.69 (3.45) 83.34 (2.00) 78.77 (4.82) 80.95 (1.63) 84.85 (1.09)

4 83.70 (4.28) 79.63 (8.64) 79.30 (3.62) 77.85 (2.98) 76.16 (1.06) 82.99 (2.64)

8 81.25 (3.44) 80.71 (4.24) 83.92 (0.83) 78.49 (1.93) 81.25 (3.83) 76.24 (1.91)

16 81.48 (4.50) 80.51 (3.96) 80.26 (9.01) 78.27 (5.67) 82.02 (10.27) 78.18 (5.79)

32 80.66 (3.18) 87.91 (6.50) 87.51 (2.29) 81.79 (8.76) 78.99 (6.97) 81.62 (6.35)

64 81.94 (0.97) 79.60 (3.17) 80.62 (9.17) 77.36 (4.88) 79.69 (8.00) 85.26 (8.05)

128 80.82 (2.20) 87.99 (14.10) 84.48 (4.67) 76.49 (4.07) 81.30 (3.72) 79.19 (4.45)

The evaluation showed high sensitivity to cross-date evaluation, where a parameter that
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showed high classification accuracies on same-date conversely yields lower classification accu-

racies on cross-date data. For example, parameters SMO(1, 2) and SMO(32, 2) showed classi-

fication accuracies of (88.91±9.73 on same-date and SMO(1, 2) = 77.69±3.06 on cross-date)

and (87.91 ± 6.50 on same-date and 78.99 ± 6.97 on cross-date) respectively. Irrespective of

the evident cross-date effects, the results showed that the default parameters SMO(1, 1) were

sufficient for the experiment and were used to test and train the whole dataset to achieve optimal

classification accuracies with respect to the classifier.



Chapter 6

Conclusions

6.1 Introduction

This chapter presents an overview of the dissertation including the main findings and conclu-

sions. The chapter ends with recommendations for future work.

6.2 Thesis summary

In many parts of the developing world, census and socio-economic data is severely lacking,

outdated, or not collected at neighbourhood scales. For government official or town managers

to plan equitable solutions to improve living conditions and to be prepared in times of disaster,

settlement studies key requirements are to keep track of informal settlements. Using remotely

sensed data with pattern recognition techniques, these requirements can met in a timely, cost

effective and repeatable manner. However, the diversity of land features, mixed-use settlements,

terrain, and heterogeneity of building materials and neighbourhood structure in informal settle-

ments worldwide will always limit the universal applicability of using a fixed set of indicators

to identify these areas.

The main contribution of this work was to improve generalisation on settlement type clas-

sification of aerial imagery acquired at different dates. Such images (multi-temporal imagery)

tend to exhibit high viewing- and illumination geometry effects, which result in a poor general-

ization performance in settlement type classification tasks. The study investigated the influence

of contrast in settlement type classification tasks by measuring classification accuracies using

LBP without contrast measures and LBP with contrast measures (LBP/VAR). This was achieved

by recognizing fundamental properties of local image texture, i.e., a combination of structural

and statistical approaches: the local binary pattern detects micro structures (e.g., edges, lines,

spots, flat areas) while variance measures detects the underlying local contrast distribution. The

extended LBP algorithm is based on a circularly symmetric neighbour set of pattern size P on a

circle of radius R, denoted as LBPriu2
P,R/VARP,R. The parameter P controls the quantization of

the angular space, whereas R determines the spatial resolution of the operator. In addition, the

combination of multiple operators with different (P,R) allowed multiresolution evaluation.

68
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6.2.1 Summary of the findings and sub-conclusions:

Classification Accuracy, The results showed that adding contrast features can improve clas-

sification accuracies for both same-date and cross-date analysis by ±10% and ±5%, re-

spectively. The classification accuracies showed a strong spatial dependence, where these

were observed to increased with higher pattern sizes for both LBP and LBP/VAR.

Bin size parameter, The LBP/VAR classification accuracy showed a strong dependence on the

bin size parameter where an increase of the number of bins showed an increase in classifi-

cation accuracy. For simplicity, the small number-of-bins that showed good performance

was chosen as the optimal number-of-bins parameter (i.e., number-of-bins = 6 for this

study).

Cross-date effect, Even though the LBP/VAR was able to improve classification accuracies,

the improvements were not the same for both same-date and cross-date classification ac-

curacies (cross-date effect). The average classification accuracies for various pattern sizes

(P, R) improved more on the same-date experiments while showing lower improvements

on cross-date measures thus increasing the cross-date effect. The LBP was found to be

more robust to cross-date effects compared to LBP/VAR, as it showed a difference in clas-

sification accuracy for both same- and cross-date classification. However, the significant

increase in classification accuracy using LBP/VAR over LBP is large enough to overcome

this deficiency.

Per-class analysis, True positive (TP) rates (%) differences between the formal and non-built

classes performed fairly well when compared to the informal class categories. More struc-

tured classes (formal settlements) perform better than the unordered ones (Informal set-

tlements subclasses), in addition, these classes demonstrated to be more robust to the

cross-date effect. Informal classes, especially with backyard structures, were observed to

be more problematic as they exhibit higher internal heterogeneity in comparison to the

formal counterpart. The informal classes may have been too similar to discern or the clas-

sifier was biased to other classes. Unfortunately, the study was limited to TP values only,

thus we cannot conclude which class was confused which class. However, the results did

show the LBP/VAR was robust to seasonal differences between the two dates (non-built

class TP rates were 95%).

Classifier parameters, The optimal parameters for SMO algorithm used for training the SVM
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classifier were investigated and the default SMO(1, 1) was found to be sufficient for the

study. Thus the classification accuracies were obtained at an optimal configuration with

respect to the classifier.

6.3 Conclusions and further research

The extended LBP offered strong spatial and temporal generalisation. Our findings suggest that

adding the rotational invariant Variance measure to the rotational and gray-scale invariant Local

Binary Pattern (LBP) played an important role in improving the classification of settlement type

from aerial imagery. The experiments showed that optimal performance can be achieved with-

out being to complex (i.e., using a small number-of-bins and default SVM parameters). Though

cross-date effects were minimal on LBP with contrast features, while the added of contrast

features were not as robust, the study showed major improvements in overall classification ac-

curacies, especially under similar conditions (same-date images). There have been other studies

that have shown the local spatial patterns and contrast features to be important in texture clas-

sification [77, 90, 120]. In conclusion, the study suggests that an contrast properties can be a

useful feature in the implementation of an automated settlement monitoring system.

6.3.1 Suggestions for further research

1. Distinguishing formal from informal settlements using the extended LBP proved to be

successful. However, classifying human settlement subclasses, especially informal settle-

ment subclasses, was not as good and therefore needs further investigation. To improve

the overall classification accuracies of the settlement subclasses, in particular informal

settlements, a spatially explicit evaluation of informal settlement subclasses is required.

A combination of approaches such as spectral, texture, geomorphology and road networks

and dominant settlement materials (vegetation, soil, asphalt) has been shown to be a viable

method in developing the correct combination of indicators for differentiating settlements

[92]. The latter incorporated with the extended LBP method may significantly improve

classification of settlement subclasses, however, this is not a trivial task and the added

feature may quickly lead to large feature dimensions and result in a costly system.

2. Treating shadows prior to the extraction of features has been shown successful in dis-

tinguishing formal from informal settlements [71]. Used with the extended LBP, it is

expected to produce a more generalised classification system. The correct combination
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of indicators for the subclasses and prior shadow treatment, incorporated with the ex-

tended LBP generalisation classification accuracies can be expected to be more robust to

viewing- and illumination-geometry effects.
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