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Abstract 

Liquid thermal conductivities, viscosities, thermal decomposition temperatures, electrical 

conductivities, normal boiling point temperatures, sublimation and vaporization enthalpies, 

saturated liquid speeds of sound, standard molar chemical exergies, refractive indices, and freezing 

point temperatures of pure organic compounds and ionic liquids are important thermophysical 

properties needed for the design and optimization of products and chemical processes. Since 

sufficiently purification of pure compounds as well as experimentally measuring their 

thermophysical properties are costly and time consuming, predictive models are of great 

importance in engineering.  

The liquid thermal conductivity of pure organic compounds was the first investigated property, in 

this study, for which, a general model, a quantitative structure property relationship, and a group 

contribution method were developed.  

The novel gene expression programming mathematical strategy [1, 2], firstly introduced by our 

group, for development of non-linear models for thermophysical properties, was successfully 

implemented to develop an explicit model for determination of the thermal conductivity of 

approximately 1600 liquids at different temperatures but atmospheric pressure. The statistical 

parameters of the obtained correlation show about 9% absolute average relative deviation of the 

results from the corresponding DIPPR 801 data [3]. It should be mentioned that the gene 

expression programing technique is a complicated mathematical algorithm and needs a significant 

computer power and this is the largest databases of thermophysical properties that have been 

successfully managed by this strategy. 
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The quantitative structure property relationship was developed using the sequential search 

algorithm and the same database used in previous step. The model shows the average absolute 

relative deviation (AARD %), standard deviation error, and root mean square error of 7.4%, 0.01, 

and 0.01 over the training, validation and test sets, respectively.   

The database used in previous sections was used to develop a group contribution model for liquid 

thermal conductivity. The statistical analysis of the performance of the obtained model shows 

approximately a 7.1% absolute average relative deviation of the results from the corresponding 

DIPPR 801 [4] data. 

In the next stage, an extensive database of viscosities of 443 ionic liquids was initially compiled 

from literature (more than 200 articles). Then, it was employed to develop a group contribution 

model. Using this model, a training set composed of 1336 experimental data was correlated with 

a low AARD% of about 6.3. A test set consists of 336 data point was used to validate this model. 

It shows an AARD% of 6.8 for the test set.  

In the next part of this study, an extensive database of thermal decomposition temperature of 586 

ionic liquids was compiled from literature. Then, it was used to develop a quantitative structure 

property relationship. The proposed quantitative structure property relationship produces an 

acceptable average absolute relative deviation (AARD) of less than 5.2 % taking into consideration 

all 586 experimental data values. 

The updated database of thermal decomposition temperature including 613 ionic liquids was 

subsequently used to develop a group contribution model. Using this model, a training set 

comprised of 489 data points was correlated with a low AARD of 4.5 %. A test set consisting of 
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124 data points was employed to test its capability. The model shows an AARD of 4.3 % for the 

test set.  

Electrical conductivity of ionic liquids was the next property investigated in this study. Initially, a 

database of electrical conductivities of 54 ionic liquids was collected from literature. Then, it was 

used to develop two models; a quantitative structure property relationship and a group contribution 

model. Since the electrical conductivities of ionic liquids has a complicated temperature- and  

chemical structure- dependency, the least square support vector machines strategy was used as a 

non-linear regression tool to correlate the electrical conductivity of ionic liquids. The deviation of 

the quantitative structure property relationship from the 783 experimental data used in its 

development (training set) is 1.8%. The validity of the model was then evaluated using another 

experimental data set comprising 97 experimental data (deviation: 2.5%). Finally, the 

reproducibility and reliability of the model was successfully assessed using the last experimental 

dataset of 97 experimental data (deviation: 2.7%).   

Using the group contribution model, a training set composed of 863 experimental data was 

correlated with a low AARD of about 3.1% from the corresponding experimental data. Then, the 

model was validated using a data set composed of 107 experimental data points with a low AARD 

of 3.6%. Finally, a test set consists of 107 data points was used for its validation. It shows an 

AARD of 4.9% for the test set.  

In the next stage, the most comprehensive database of normal boiling point temperatures of 

approximately 18000 pure organic compounds was provided and used to develop a quantitative 

structure property relationship. In order to develop the model, the sequential search algorithm was 

initially used to select the best subset of molecular descriptors. In the next step, a three-layer feed 
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forward artificial neural network was used as a regression tool to develop the final model. It seems 

that this is the first time that the quantitative structure property relationship technique has 

successfully been used to handle a large database as large as the one used for normal boiling point 

temperatures of pure organic compounds. Generally, handling large databases of compounds has 

always been a challenge in quantitative structure property relationship world due to the handling 

large number of chemical structures (particularly, the optimization of the chemical structures), the 

high demand of computational power and very high percentage of failures of the software 

packages. As a result, this study is regarded as a long step forward in quantitative structure property 

relationship world.  

A comprehensive database of sublimation enthalpies of 1269 pure organic compounds at 298.15 

K was successfully compiled from literature and used to develop an accurate group contribution. 

The model is capable of predicting the sublimation enthalpies of organic compounds at 298.15 K 

with an acceptable average absolute relative deviation between predicted and experimental values 

of 6.4%.  

Vaporization enthalpies of organic compounds at 298.15 K were also studied in this study. An 

extensive database of 2530 pure organic compounds was used to develop a comprehensive group 

contribution model. It demonstrates an acceptable %AARD of 3.7% from experimental data. 

Speeds of sound in saturated liquid phase was the next property investigated in this study. Initially, 

A collection of 1667 experimental data for 74 pure chemical compounds were extracted from the 

ThermoData Engine of National Institute of Standards and Technology [5]. Then, a least square 

support vector machines-group contribution model was developed. The model shows a low 

AARD% of 0.5% from the corresponding experimental data.   



v 

 

In the next part of this study, a simple group contribution model was presented for the prediction 

of the standard molar chemical exergy of pure organic compounds. It is capable of predicting the 

standard chemical exergy of pure organic compounds with an acceptable average absolute relative 

deviation of 1.6% from the literature data of 133 organic compounds.  

The largest ever reported databank for refractive indices of approximately 12 000 pure organic 

compounds was initially provided. A novel computational scheme based on coupling the 

sequential search strategy with the genetic function approximation (GFA) strategy was used to 

develop a model for refractive indices of pure organic compounds. It was determined that the 

strategy can have both the capabilities of handling large databases (the advantage of sequential 

search algorithm over other subset variable selection methods) and choosing most accurate subset 

of variables (the advantages of genetic algorithm-based subset variable selection methods such as 

GFA). The model shows a promising average absolute relative deviation of 0.9 % from the 

corresponding literature values.     

Subsequently, a group contribution model was developed based on the same database. The model 

shows an average absolute relative deviation of 0.83% from corresponding literature values. 

Freezing Point temperature of organic compounds was the last property investigated. Initially, the 

largest ever reported databank in open literature for freezing points of more than 16 500 pure 

organic compounds was provided. Then, the sequential search algorithm was successfully applied 

to derive a model.  The model shows an average absolute relative deviations of 12.6% from the 

corresponding literature values. 
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The same database was used to develop a group contribution model. The model demonstrated an 

average absolute relative deviation of 10.76%, which is of adequate accuracy for many practical 

applications. 



vii 

 

 

 



viii 

 

Declaration 

I, Farhad Gharagheizi, declare that:  

 

(i) The research reported in this dissertation, except where otherwise indicated and is my original work.  

(ii) This dissertation has not been submitted for any degree or examination at any university.  

(iii) This dissertation does not contain other person’s data, pictures, graphs or other information, unless 

specifically acknowledged as being sourced from other persons.  

(iv) This dissertation does not contain other person’s writing, unless specifically acknowledged as being 

sourced from other researchers. Where other written sources have been quoted then:  

a) Their words have been re-written but the general information attributed to them has been 

referenced;  

b) Where their exact words have been used, their writing has been placed inside quotation marks, 

and referenced.  

(v) Where I have reproduced a publication of which I am an author or co-author I have indicated in detail 

which part of the publication was actually written by myself alone and have fully referenced such 

publications:  

(vi) This dissertation does not contain text, graphics or tables copied and pasted from the internet, unless 

specifically acknowledged, and the source are detailed in the dissertation and in the References sections.  

 

________________________                                                                                     

F Gharagheizi (candidate)                                                                                                     

 

As the candidate’s supervisor/co-supervisor I agree/ do not agree to the submission of this dissertation. 

 

________________________                                                                                   

Prof. D Ramjugernath (supervisor) 

 

________________________                     

  Prof. A.H Mohammadi (co-supervisor)



 



ix 

 

 

Acknowledgements 

 

First of all, I thank God who gave me life and thinking ability, who helped me to learn what I 

didn’t know, who gave me diligence and patience to repeatedly try to solve problems, and who has 

accompanied me in my entire life.   

 I would like to sincerely thank my beloved family for all their supports in all steps of my life. I 

cordially thank my wife, Poorandokht, whose patience inspired me and encouraged me. Her 

contribution in the majority parts of this work are acknowledged.    

I would like to express my greatest acknowledgments to my dear thesis supervisors, Prof. Deresh 

Ramjugernath and Prof. Amir H. Mohammadi. I will never forget their help and support during 

my PhD studies. I would like to say that I have gained much during their supervisions, which 

would be of utmost significance in my future career. Also, I would like to thank the staff members 

of the University of KwaZulu-Natal.  

I wish to gratefully thank Prof. William E. Acree (University North Texas) for his significant 

contribution in providing the experimental database of sublimation and vaporization enthalpies.  

I would like to express my gratitude to Dr. Michael Frenkel, the director of National Institute of 

Standards and Technology (NIST), for providing the latest version of NIST ThermoData Engine 

for this work.    

The financial assistance of the National Research Foundation (NRF) and Pelchem under the 

Fluorochemical Expansion Initiative (FEI) toward my PhD thesis is highly acknowledged. 

Finally, I would like to thank the examiners for taking their valuable time to enhance the level of 

this thesis.    



x 

 

 

Durban, July 2014 

Farhad Gharagheizi 



xi 

 

 

List of Publications 

1- F. Gharagheizi, P. Ilani-Kashkouli, M. Sattari, A. H. Mohammadi, D. Ramjugernath, D. 

Richon, Development of a General Model for Determination of Thermal Conductivity of Liquid 

Chemical Compounds at Atmospheric Pressure, AIChE Journal. 59, 1702-1708, 2013. 

2- F. Gharagheizi, P. Ilani-Kashkouli, M. Sattari, A. H. Mohammadi, D. Ramjugernath, D. 

Richon, Quantitative Structure - Liquid Thermal Conductivity Relationship for Chemical 

Compounds, Fluid Phase Equilibria. 355, 52-80, 2013. 

3- F. Gharagheizi, P. Ilani-Kashkouli, M. Sattari, A. H. Mohammadi, D. Ramjugernath. D. 

Richon, A Group Contribution Method for Determination of Thermal Conductivity of Liquid 

Chemicals at Atmospheric Pressure, Journal of Molecular Liquids, 190, 223–230, 2013. 

4- F. Gharagheizi, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath. D. Richon, 

Development of a Group Contribution Method for Determination of Viscosity of Ionic Liquids at 

Atmospheric Pressure, Chemical Engineering Science. 80, 326-333, 2012. 

5- F. Gharagheizi, M. Sattari, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath. D. 

Richon, Quantitative Structure-Property Relationship for Thermal Decomposition Temperature of 

Ionic Liquids, Chemical Engineering Science. 84, 557-563, 2012. 

6- F. Gharagheizi, P. Ilani-Kashkouli, M. Sattari, A. H. Mohammadi, D. Ramjugernath, 

Development of a Group Contribution Method for Estimating the Thermal Decomposition 

Temperature of Ionic Liquids, Fluid Phase Equilibria. 355, 81-86, 2013. 

7- F. Gharagheizi, M. Sattari, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath. D. 

Richon, A “Non-Linear” Quantitative Structure - Property Relationship for the Prediction of 

Electrical Conductivity of Ionic Liquids, submitted to Chemical Engineering Science. 101, 478-

485, 2013. 



xii 

 

8- F. Gharagheizi, M. Sattari, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath. D. 

Richon, Development of a LSSVM-GC Model for Estimating the Electrical Conductivity of Ionic 

Liquids, Chemical Engineering Research and Design. 92, 66-79, 2014. 

9- F. Gharagheizi, S.A. Mirkhani, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath, 

D. Richon, Determination of the Normal Boiling Point of Chemical Compounds Using a 

Quantitative Structure–Property Relationship Strategy: Application to a very Large Dataset, Fluid 

Phase Equilibria. 354, 250-258, 2013. 

10- F. Gharagheizi, P. Ilani-Kashkouli, W.E. Acree, A. H. Mohammadi, D. Ramjugernath, A 

Group Contribution Model for Determining the Sublimation Enthalpy of Organic Compounds at 

the Standard Reference Temperature of 298 K, Fluid Phase Equilibria. 354, 265-285, 2013. 

11- F. Gharagheizi, P. Ilani-Kashkouli, W.E. Acree, A. H. Mohammadi, D. Ramjugernath, A 

Group Contribution Model for Determining the Vaporization Enthalpy of Organic Compounds at 

the Standard Reference Temperature of 298 K, Fluid Phase Equilibria. 360, 279–292, 2013. 

12- F. Gharagheizi, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath, Toward a 

Group Contribution Method for Determination of Speed of Sound in Saturated Liquids, submitted 

to Journal of Molecular Liquids, 194, 159-165, 2014. 

13- F. Gharagheizi, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath, Toward a 

Group Contribution Method for Determination of Speed of Sound in Saturated Liquids, submitted 

to Journal of Molecular Liquids, 194, 159-165, 2014. 

14- F. Gharagheizi, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath, A Group 

Contribution Method for Determination of the Standard Molar Chemical Exergy of Organic 

Compounds, Energy 70, 288-297, 2014. 



xiii 

 

15- P. Ilani-Kashkouli, Hashemi, H., F. Gharagheizi, Babaee, S., A. H. Mohammadi, D. 

Ramjugernath, Gas Hydrate phase Equilibrium in Porous Media: An Assessment Test for 

Experimental Data. Fluid Phase Equilibria. 360, 161–168, 2013. 

16- P. Ilani-Kashkouli, Babaee, S., F. Gharagheizi, Hashemi, H., A. H. Mohammadi, D. 

Ramjugernath, Assessment Test of Phase Equilibrium Data of Water Soluble and Insoluble 

Clathrate Hydrate Formers. Fluid Phase Equilibria. 360, 68-76, 2013. 

17- M. Sattari, F. Gharagheizi, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath. D. 

Richon, Toward a Group Contribution Method for Estimation of Heat Capacity of Ionic Liquids. 

Journal of Thermal Analysis and Calorimetry, 363, 27–31, 2013. 

18- M. Sattari, F. Gharagheizi, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath. D. 

Richon, Estimation of Heat Capacity of Ionic Liquids: A QSPR Approach. Industrial & 

Engineering Chemistry Research. 52, 13217–13221, 2013. 

19- M. Sattari, F. Gharagheizi, P. Ilani-Kashkouli, A. H. Mohammadi, D. Ramjugernath, Toward 

a Group Contribution Method for Determination of Speed of Sound in Saturated Liquids, Journal 

of Molecular Liquids, 196, 7-13, 2014. 

20- F. Gharagheizi, P. Ilani-Kashkouli, A. Kamari, A. H. Mohammadi, D. Ramjugernath, A 

Group Contribution Model for the Prediction of Refractive Indices of Organic Compounds, 

submitted to Journal of Chemical and Engineering Data, 59, 1930-1943, 2014.. 

Submitted Manuscripts 

21- F. Gharagheizi, P. Ilani-Kashkouli, A. Kamari, A. H. Mohammadi, D. Ramjugernath, A 

Chemical Structure based Model for the Estimation of Refractive Indices of Organic Compounds, 

submitted to Fluid Phase Equilibria. 



xiv 

 

22- F. Gharagheizi, P. Ilani-Kashkouli, A. Kamari, A. H. Mohammadi, D. Ramjugernath, 

Freezing Point of Organic Compounds: A Quantitative Structure-Property Relationship 

Approach, submitted to Journal of Molecular Liquids. 

23- F. Gharagheizi, P. Ilani-Kashkouli, A. Kamari, A. H. Mohammadi, D. Ramjugernath, A 

Group Contribution Model for the Prediction of Freezing Point of Organic Compounds, submitted 

to Fluid Phase Equilibria.  

24- P. Ilani-Kashkouli, Babaee, S., F. Gharagheizi, Hashemi, H., A. H. Mohammadi, D. 

Ramjugernath, Evaluation of Experimental Data for Gas Solubility in Liquid Water in Equilibrium 

with Gas Hydrates, submitted to Neural Computing and Applications. 

Congresses and Seminars 

25- F. Gharagheizi, P.Ilani-Kashkouli, A.H. Mohammadi, D. Ramjugernath, A Group 

Contribution Model for Determining the Vaporization Enthalpy of Organic Compounds at the 

Standard Reference Temperature of 298 K, South African Chemical Institute (SACI) Convention, 

1st -6th December, East London, South Africa, 2013.   

26- P. Ilani-Kashkouli, F. Gharagheizi,  A. H. Mohammadi, D. Ramjugernath, A Quantitative 

Structure-Property Relationship for the Prediction of the Enthalpy of Vaporization of the Pure 

Organic Fluorochemicals, South African Chemical Institute (SACI) Convention, 1st -6th 

December, East London, South Africa, 2013. 

 

 

 



xv 

 

Table of Contents 
Abstract .......................................................................................................................................................... i 

Declaration ................................................................................................................................................. viii 

Acknowledgements ...................................................................................................................................... ix 

List of Publications ...................................................................................................................................... xi 

List of Tables .............................................................................................................................................. xix 

Chapter 1 Introduction .............................................................................................................................. 1 

Chapter 2 Literature Survey ....................................................................................................................... 4 

2.1 Liquid Thermal Conductivity of Pure Chemical Compounds at Atmospheric Pressure ................ 6 

2.2 Viscosity of Ionic Liquids ............................................................................................................... 8 

2.3 Thermal Decomposition Temperature of Ionic Liquids .............................................................. 13 

2.4 Electrical Conductivity of Ionic Liquids ....................................................................................... 14 

2.5 Normal Boiling Point Temperature of Pure Organic Compounds............................................... 17 

2.6 Sublimation Enthalpy at the Standard Reference Temperature of 298 K .................................. 23 

2.7 Vaporization Enthalpy of Organic Compounds at the Standard Reference Temperature of 298 K

 27 

2.8 Speed of Sound in Saturated Liquids .......................................................................................... 29 

2.9 Standard Molar Chemical Exergy of Organic Compounds .......................................................... 31 

2.10 Refractive Indices of Organic Compounds .................................................................................. 35 

2.11 Freezing Point Temperature of Organic Compounds ................................................................. 37 

Chapter 3 Mathematical Methods & Techniques.................................................................................... 39 

3.1 Subset variable Selection Techniques ......................................................................................... 39 

3.1.1 The Genetic Function Approximation Technique (GFA) ..................................................... 40 

3.1.2 The Sequential Search Method (SS) .................................................................................... 42 

3.1.3 Artificial Neural Networks ................................................................................................... 43 

3.1.4 Least Square Support Vector Machines .............................................................................. 45 

3.2 The Gene Expression Programming Technique .......................................................................... 49 

Chapter 4 Databases ................................................................................................................................ 56 

4.1 Liquid Thermal Conductivity of Pure Chemical Compounds at Atmospheric Pressure .............. 56 

4.2 Viscosity of Ionic Liquids ............................................................................................................. 56 

4.3 Thermal Decomposition Temperature of Ionic Liquids .............................................................. 57 

4.4 Electrical Conductivity of Ionic Liquids ....................................................................................... 58 



xvi 

 

4.5 Normal Boiling Point Temperature of Pure Organic Compounds............................................... 59 

4.6 Sublimation Enthalpy at the Standard Reference Temperature of 298 K .................................. 59 

4.7 Vaporization Enthalpy at the Standard Reference Temperature of 298 K ................................. 60 

4.8 Speed of Sound in Saturated Liquids .......................................................................................... 61 

4.9 Standard Molar Chemical Exergy of Organic Compounds .......................................................... 61 

4.10 Refractive Indices of Organic Compounds .................................................................................. 62 

4.11 Freezing Point Temperature of Organic Compounds ................................................................. 65 

Chapter 5 Adaption & Modifications of the Algorithms ......................................................................... 67 

5.1 Liquid Thermal Conductivity of Pure Chemical Compounds at Atmospheric Pressure ............ 67 

5.1.1 Developing a General Model for Liquid Thermal Conductivity ......................................... 67 

5.1.2 Developing a Quantitative Structure-Property relationship ................................................ 69 

5.1.3 Developing a Group Contribution Model for Liquid Thermal Conductivity ...................... 70 

5.2 Viscosity of Ionic Liquids ............................................................................................................. 71 

5.3 Thermal Decomposition Temperature of Ionic Liquids .............................................................. 71 

5.3.1 Developing a Quantitative Structure- Property Relationship .............................................. 71 

5.3.2 Developing the Group Contribution method ....................................................................... 72 

5.4 Electrical Conductivity of Ionic Liquids ....................................................................................... 72 

5.4.1 Developing a Non-Linear QSPR ........................................................................................... 72 

5.4.2 Developing a Non-Linear GC Model .................................................................................... 73 

5.5 Normal Boiling Temperature of Pure Organic Compounds ....................................................... 74 

5.5.1 Developing a non-linear QSPR ........................................................................................... 74 

5.6 Sublimation Enthalpy at the Standard Reference Temperature of 298 K ................................... 75 

5.6.1 Developing a GC model ...................................................................................................... 75 

5.7 Vaporization Enthalpy at the Standard Reference Temperature of 298 K .................................. 76 

5.7.1 Developing a GC model ...................................................................................................... 76 

5.8 Speed of Sound in Saturated Liquids .......................................................................................... 76 

5.9 The GC model for Determination of the Standard Molar Chemical Exergy of Organic 

Compounds ............................................................................................................................................. 78 

5.10 Refractive Indices of Organic Compounds ................................................................................. 79 

5.10.1 The QSPR Model ................................................................................................................ 79 

5.10.2 The GC model ..................................................................................................................... 80 

5.11 Freezing Point Temperature of Organic Compounds ................................................................. 82 



xvii 

 

5.11.1 The QSPR Model ................................................................................................................. 82 

5.11.2 The GC Model ...................................................................................................................... 83 

Chapter 6 Results ..................................................................................................................................... 86 

6.1 Liquid Thermal Conductivity of Pure Chemical Compounds at Atmospheric Pressure .............. 86 

6.1.1 The General Model ............................................................................................................. 86 

6.1.2 The QSPR Model ................................................................................................................. 89 

6.1.3 The GC Model ...................................................................................................................... 92 

6.2 Viscosity of Ionic Liquids ............................................................................................................. 94 

6.3 Thermal Decomposition Temperature of Ionic Liquids .............................................................. 98 

6.3.1 The QSPR Model ................................................................................................................. 98 

6.3.2 The GC Model .................................................................................................................... 102 

6.4 Electrical Conductivity of Ionic Liquids ................................................................................... 104 

6.4.1 The Non-Linear QSPR Model .......................................................................................... 104 

6.4.2 The Non-Linear GC model ............................................................................................... 106 

6.5 The Non-Linear QSPR for Normal Boiling Point Temperature  ................................................. 108 

6.6 Sublimation Enthalpy at the Standard Reference Temperature of 298 K ................................ 112 

6.7 Vaporization Enthalpy of Organic Compounds at the Standard Reference Temperature of 298 K

 114 

6.8 Speed of Sound in Saturated Liquids  ....................................................................................... 120 

6.9 The Standard Molar Chemical Exergy of Organic Compounds ............................................... 122 

6.10 Refractive Indices of Organic Compounds ............................................................................... 135 

6.10.1 The QSPR model .............................................................................................................. 135 

6.10.2 The GC Model .................................................................................................................... 138 

6.11 Freezing Point Temperature of Organic compounds ............................................................... 139 

6.11.1 The QSPR Model ............................................................................................................... 139 

6.11.2 The GC Model .................................................................................................................... 141 

Chapter 7 Conclusions ........................................................................................................................... 144 

Chapter 8 Recommendations for Future works .................................................................................... 149 

References ................................................................................................................................................ 150 

Appendix ................................................................................................................................................... 202 

Statistical Parameters: Mathematical Definition ....................................................................................... 202 

 



 



xix 

 

 

 

 List of Tables 
Table 2.1. Comparison of the previous models proposed for liquid thermal conductivity of pure 

compounds. ..................................................................................................................................... 8 

Table 2.2. Comparison of the previous models proposed for viscosity of ILs. ............................. 10 

Table 2.3. Comparison of the previous models proposed for thermal decomposition temperature 

of ionic liquids............................................................................................................................... 14 

Table 2.4. Comparison of the previous models proposed for electrical conductivity of ionic 

liquids. ........................................................................................................................................... 15 

Table 2.5. Comparison of the previos models proposed for the normal boiling point temperature 

of pure organic compounds. ......................................................................................................... 19 

Table 2.6. Comparison of the pervious models proposed for sublimation enthalpy of pure 

organic compounds. ...................................................................................................................... 24 

Table 6.1 The statistical parameters of the general model proposed for the liquid thermal 

conductivity of pure organic compounds. ..................................................................................... 88 

Table 6.2 The molecular descriptors selected by sequential search algorithm to describe the 

thermal conductivity of pure organic compounds. ....................................................................... 90 

Table 6.3 The coefficients of the eq.6.4 ........................................................................................ 91 

Table 6.4 The statistical parameters of the model proposed for viscosity of ionic liquids........... 96 

Table 6.5. The average absolute relative deviation of the proposed model for viscosit of ionic 

liuquids from the corresponding experimental based on different classes of ionic liquids studied 

(In the table the units of T and η are respectively in K and) cP. .................................................. 97 



xx 

 

Table 6.6 The deviation of the predicted (the QSPR) thermal decomposition temperatures of 

ionic liquids from the corresponding experimental data based on different chemical families of 

ionic liquids. ................................................................................................................................ 101 

Table 6.7 The deviation of the predicted (the group contribution model) thermal decomposition 

temperatures of ionic liquids from the corresponding experimental data based on different 

chemical families of ionic liquids. .............................................................................................. 103 

Table 6.8 The optimal subset of molecular descriptors describing electrical conductivity of ionic 

liquids along with their definition. .............................................................................................. 105 

Table 6.9 The statistical parameters of the propsoed QSPR for electrical conductivity of ionic 

liquids .......................................................................................................................................... 106 

Table 6.10. Comparison of the sublimation enthalpy model and the model proposed by Ouvrard 

and Mitchell [106] ...................................................................................................................... 114 

Table 6.11. Comparison between the presented vaporization enthalpy model and the previous 

models suggested by Ducros et al. [141, 142], Guthrie and Taylor [145], Chickos et al. [137], 

Domalski and Hearing [439] , Constantinou and Gani [138], and Kolská et al. [146], using the 

data set comprised of 83 compounds used in Santos and Leal [154] studies. ............................ 117 

Table 6.12 The contribution of each chemical substructure to the standard molar chemical 

exergy pure organic compounds (parameters of equation 6.14) ................................................ 124 

Table 6.13. Comparison of the presented model and the previous model propsoed by 

Gharagheizi for the estimation of standard molar chemical exergy of pure organic compounds.

..................................................................................................................................................... 130 



 

 



xxi 

 

List of Figures 

Figure 2.1. The schematic stages of QSPR development................................................................ 5 

Figure 3.1 The schematics structure of the 3FFNNs used in this study ....................................... 43 

Figure 3.2 A typical computer LISP program in the genetic programming algorithm represented 

as a parse tree (expression tree), which represents the algebraic expression [a+(a/b)]× [b-

(a×b)] by a two-gene chromosome ............................................................................................... 52 

Figure 3.3. A typical Karva language program in the gene expression programming strategy, 

which represents the algebraic expression [(a / b)]+[( ca )] by a two-gene chromosome .... 54 

Figure 3.4. The  gene expresion programming algorithm main steps. ......................................... 55 

Figure 4.1 Distribution of refractive indices in the databank ...................................................... 63 

Figure 4.2 Distribution of molecular weights in the refractive index databank .......................... 64 

Figure 4.3 Distribution of atom numbers in the refractiuve index databank ............................... 64 

Figure 6.1 (Left) Predicted viscosities of ionic liquids by eq.1 versus the corresponding 

experimental values. (Right) Relative deviation of predicted viscosities of ionic liquids versus the 

corresponding experimental ones. (*) and (o) denote the training set and the test set. ............... 95 

Figure 6.2 (Left ) Comparison of the predicted viscosities of ionic liquids and their 

corresponding experimental values:  approximately 54 % of the viscosities are predicted within 

0-5 %, 26 % within 5-10 %, 10 % within 10-15 %, 6 % within 15-20 %, 2 % within 20-25 %, and 

the remaining 2 % within 25-31 %. (Right) Viscosity as function of temperature (The unit for ɳ is 

cP). ................................................................................................................................................ 97 

Figure 6.3 The normal boiling point temperatures distribution of error based on the training, the 

validation and the test sets .......................................................................................................... 110 

file:///C:/Users/Farhad%20Gharagheizi/Desktop/PhD%20Thesis_dr_edit1.docx%23_Toc390934332


 

 



 

1 

 

Chapter 1 Introduction 
 

One of the main obstacles of both the design and optimization of processes and products in 

chemical industries is that how the properties of the chemical compounds at the process conditions 

can be accurately estimated. As stated by Mackay et al. [6], there are approximately 50,000 to 

100,000 chemical compounds being manufactured commercially worldwide. Approximately, 

1000 new compounds are added each year. Despite of many significant efforts that have been 

undertaken to experimentally measure different properties of chemical compounds, few sets of the 

properties have been thus far measured and published in open literature. According to the most 

extensive databases like Dortmund Data Bank [2], NIST ThermoData Engine [7], and DIPPR 801 

[4], the number of pure compounds, for which at least a single property value has been measured 

is around 43,000 [2]. The issue rises more intensely when we deal with the properties of the 

mixtures. As a result, property estimation methods are of great importance. 

Recently, virtual screening of large databases of chemical compounds, mostly not synthesized, has 

been one of the main steps toward designing new chemical compounds majorly in pharmaceutical 

related industries. We can refer to the National Center for Biotechnology Information (NCBI) 

database which contains more than 10 million chemical compounds. As a result, development of 

new predictive models is critically required to expedite the process of development of new 

chemical compounds.  

As a consequence of the efforts on designing more advanced experimental techniques/apparatuses, 

the quality and accuracy of the recently measured data have been increased. Additionally, many 

extensive databases including almost all the published and most of confidential (unpublished) 

experimental data for various properties have been emerged, in which the uncertainties of 
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experimental data are reported. This latter issue makes it possible to rank the experimental datasets 

with respect to their quality. Thus, we may claim that the amount of available experimental data 

is much larger than those used to develop the existing models for determination of various 

properties of chemicals.  

Furthermore, some novel computational methods (such as Gene Expression Programming) have 

been recently appeared.  On the other hand, some of the currently mathematical algorithms (such 

as quantitative structure-property relationships) have been significantly improved employing the 

data mining algorithms (such as support vector machines, and artificial neural networks).  

As a result, a comprehensive attempt is required to develop some new accurate models and, indeed, 

renovate some of the currently available semi-empirical or theoretical models (such as 

corresponding states methods) using these advanced mathematical tools.  

Almost all of the existing methods for the estimation of different properties of pure compounds 

can be categorized into three main categories as follows:  

1. The models, which use other physico-chemical properties to correlate a property of 

interest (Type 1).  

2. The models, which apply chemical structure-based parameters to estimate a desired 

property (Type 2). 

3. The models, which apply both chemical structure-based parameters and other physical 

properties to estimate a desired property (Type 3).  

The main scope of this study has been to develop more comprehensive and more accurate models 

of first two categories particularly the second one which uses the chemical structure-based 
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parameters. Consequently, the following steps have been pursued in this thesis to develop new 

predictive models for several important properties of pure compounds; 

1- Choosing the appropriate properties of pure compounds to focus on; it should be mentioned 

that a literature survey was performed to enlist most important thermophysical properties 

for which there was no sufficiently accurate and comprehensive estimation method.     

2- Collecting the most comprehensive possible experimental dataset for each property 

3- Development of the new property prediction methods  

4- Validation of the models using several statistical methods 

5- Evaluation of the predictive power of the obtained models in each case 

6- Comparison between the obtained models and the previous methods in terms of accuracy, 

reliability, predictive power, and comprehensiveness of the model.  

 

A detailed literature review of the previous models for each property is presented in chapter 2 

Chapter 3 devoted to the mathematical techniques used implemented in this study. The 

modifications of the algorithms are discussed in the chapter 3. Chapter 4 includes a detailed 

information about the databases used to develop the models. The adaptation/modification of 

the mathematical techniques is discussed in chapter 5. Chapter 6 dedicated to the obtained 

models and their results. A brief conclusion is presented in chapter 7. General 

recommendations for future studies in chapters 8.  
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Chapter 2 Literature Survey 

Nowadays, most of pure compounds primary thermophysical properties such as critical properties, 

pitzer acentric factors, and normal boiling points have been tabulated in chemical engineering 

thermodynamics text books which can be used to correlate other properties. In this study, we 

present a novel computational technique that can be used to develop general models of this type. 

This method is called Gene Expression Programing and will be extensively discussed in 

section 3.2. This kind of models are much more popular because they usually have simple shapes 

and can be easily used in many practical applications. 

As mentioned in previous chapter, the number of compounds for which at least one experimental 

property reported in literature is far less than the nowadays science and engineering requirements. 

Thus, it is of great interests to develop chemical structure-based models which have predictive 

capabilities.  

Quantitative structure-property relationships strategy (QSPR) is one of the most widely used 

techniques to develop chemical structure-based models for the estimation of the thermophysical 

properties of pure compounds and their mixtures. The QSPR assumes that chemical structure of a 

molecule contains all the required information to describe its thermophysical properties. 

The major steps of the QSPR technique is schematically shown in Figure 2.1. Collection of a 

comprehensive database of experimental data for the desired property is regarded as the first step 

in QSPR. It sig nificantly affects the comprehensiveness of the final model; the larger database, 

the more comprehensive model. The next step is to transform the chemical knowledge encoded 

within a schematic representation of a molecule into useful parameters called “molecular 
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descriptors”. In other words, the term “molecular descriptor” is used for any chemical structure-

based parameter. A detailed explanations about the types of molecular descriptors are presented 

by Todeschini and Consoni [8]. The values of a significant types of molecular descriptors strongly 

depend on bond lengths and angles. Thus, the molecular structures geometries should initially be 

optimized so that all atoms lie in their right places.  

According to Todeschini and Consoni [8], a few thousands of molecular descriptors have so far 

been proposed [8]. Therefore, a computational approach should be implemented in the next step 

to select the optimal subset of molecular descriptors and develop the model.  The final stage of a 

QSPR study will be the evaluation of the predictive power of the obtained model.  A detailed 

information about the most commonly-used validation techniques are presented by Todeschini and 

Consoni [8]. 

Figure 2.1. The schematic stages of QSPR development 
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As mentioned earlier, molecular descriptors have different types. One of the most widely used and 

perhaps simplest types is “functional group counts”. Functional groups can be simply counted from 

chemical structure without any need to additional tools. These counts can then be used to correlate 

various properties.  

In this chapter, a literature review of the thermophysical properties investigated in this thesis is 

presented.        

2.1 Liquid Thermal Conductivity of Pure Chemical Compounds at 

Atmospheric Pressure 
In most chemical processes, it is needed to perform an energy balance on units, in order to calculate 

how much heat is either given off or absorbed in various equipment such as evaporators, furnaces, 

dryers, distillation units, reaction vessels, etc. [9]. Heat transfer can take place by three 

mechanisms, one of which is thermal conduction. In the mechanism, heat transfer takes place due 

to a temperature gradient [9] which is attributed to vibrational movements of molecules and 

expressed as Fourier's Law [10].  

One of the important transport properties is liquid thermal conductivity which is required for 

calculation of the thermal conduction. Accurate measurements of thermal conductivity is not 

straightforward and special attention should be made in experimental measurements due to the 

possible heat losses and presence of convective currents. Thus, the uncertainty in the reported 

experimental data is relatively large compared to other thermophysical properties reported [11-

15].  

The aspects of kinetic theories of thermal conductivity for mono-atomic liquids were initially 

presented in 1950 [16]. Since then, many researchers have attempted to develop models for the 

estimation of liquid thermal conductivities of pure compounds. Most of them are empirical in 



 

7 

 

nature and have been obtained for particular chemical families of compounds and cannot be used 

for other chemical groups. According to Sastri and Rao [17, 18], in most of the existing methods, 

thermal conductivity is correlated at a reference temperature such as the normal boiling point (for 

instance in the models proposed by Sato-Riedel [15, 19], and Sastri and Rao [17, 18]) or at 293.15 

K  (for instance in the models by Missenard [20] and API Technical Data Book [21]). Thus, the 

temperature dependency of the model is investigated.  

A detailed review of the existing models for the estimation of liquid thermal conductivity of pure 

compounds has been presented by Poling et al. [22] which is illustrated in Table 2.1. In this review 

[22], it has been mentioned that although the methods presented by Latini et al. and Baroncini et 

al.  [23-29] and Sastri et al. [30] are generally better than the others below the normal boiling 

temperature, the deviation of the models vary widely, typically less than 15%. Additionally, 

although the   [23-29] methods have been successfully applied for refrigerants up to reduced 

temperatures equal 0.9, it has been mentioned that there are few experimental liquid thermal 

conductivity data for reduced temperatures greater than 0.65. Therefore, it can be concluded that 

the models currently available may not accurately predict the liquid thermal conductivity for 

reduced temperatures greater than 0.65. Furthermore, the model suggested by Baroncini et al. and 

Latini et al. [23-29] is presented for several particular chemical families of compounds, viz. 

olefins, saturated hydrocarbons, cycloparafins, esters, aromatics, organic acids, alcohols, ketones, 

and refrigerants. These chemical families do not involve a significant number of important 

chemical families such as mercaptanes, amines, silanes/siloxanes, sulfides/thiophenes, inorganic 

compounds, epoxides, aldehydes, nitriles, elements, and peroxides. This issue significantly affects 

its applicability when using the model. As a result, the model cannot be regarded as a general 

model. 
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Table 2.1. Comparison of the previous models proposed for liquid thermal conductivity of pure 

compounds.  

Model Advantage Shortcomming 

Baroncini et al. and 

Latini et al. [23-29] 

 - Generally good results when T<NBP typically less 
than 15% deviation from experimental data 
 - Acceptable results for refrigerants up to Tr=0.9  

 - They are a series of models (It is not a general 
model). 
 - They have not been sufficiently evaluated for 
Tr>0.65 
 - They have been developed for particular 
chemical families of compounds which do not 
cover a significant number of important chemical 
families such as sulfides/thiophenes, amines, 
silanes/siloxanes, mercaptanes, inorganic 
compounds, nitriles, aldehydes, peroxides, 
elements, and epoxides    
 
        

Sastri et al. [30]  -It is a single model  

 - The temperature dependency of the model has 
not been well evaluated (The model has been 
evaluated just for 748 experimental data for 208 
compounds).  
 -Just 23 of 748 data points have T>NBP 

 

*NBP means normal boiling point temperature 

+ Tr means reduced temperature. 

 

Moreover, the model proposed by Sastri et al. [30]  is based on 748 data points for 208 compounds 

below the normal boiling point, and 186 data points for only 23 pure compounds above the normal 

boiling point. Therefore, it affirms that the model cannot be regarded as a general model.   

Moreover, Poling et al. [22] stated that none of the existing models can estimate the large changes 

of thermal conductivity in the critical point region. 

 

2.2 Viscosity of Ionic Liquids 

 



 

9 

 

Ionic liquids are a class of salts composed of ions which are usually liquids at ambient conditions 

with insignificant vapor pressure [31, 32]. There are a number of features which make them 

appropriate options for superseding the conventional solvents. Their chemical, physical, and 

biological features have the potential to be adjusted by the combination of appropriate anion-cation 

pairs. However, this is not a simple task due to the vast possible number of ionic liquids possible 

via the permutations of  anion-cation pairs [33]. As a result, it is required to develop predictive 

tools capable of contributing to enable tailoring new ionic liquids with desired properties. 

Viscosity is the internal resistance to flow or friction resulted from intermolecular interactions and 

is consequently very important in all chemical processes involving fluid movement or components 

dissolved in them. For that reason, any pharmaceutical or chemical unit operations dealing with 

the fluid or energy transfer needs knowledge of the viscosity. It is also regarded as the most 

important property when considering any scale-up of ILs applications [34, 35]. 

Prediction of viscosity is often difficult, and comprehensive predictive models will require further 

experimental data points. There are several models presented for the estimation of  viscosity of 

ILs. The main features of the models are presented in Table 2.2.  

Abbott [36] modified the “hoe theory” originally suggested by Fürth [37, 38] and developed a new 

model for the estimation of viscosity of ionic liquids. He used 11 imidazolium-based ILs viscosity 

data at three different temperatures (298, 303 and 364 K) to evaluate his model. In spite of good 

theoretical interpretation, the model could not estimate the viscosity with acceptable accuracy 

(average absolute relative deviation (AARD) = 122%). 
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 Table 2.2. Comparison of the previous models proposed for viscosity of ILs. 

Model R2 AARD% Comments Shortcomming 

Abbott [36]  122% 

 - It is a theoretical model. 

 -It is based on 11 imidazolium-

based ILs.  

 -Just three temperatures 298, 303, 

and 364 were studied 

 - Very primitive 

 - Primitive in temperature 

decency 

Matsuda et al. [39]  0.8971  

 - It is a polynomial expansion-QSPR 

model. 

 - 300 experimental data points were 

studied 

 -Just ILs based on pyrrole, 

alkylamine, pyridine, piperidine and 

imidazole were studied 

 - Temperature range was 263-353 K  

 - Limited to a few chemical 

families of ILs 

 - Insufficiently accurate 

Bini et al. [40] 
0.8755 at 293K 

0.9460 at 353 K 
 

 - It is a polynomial expansion-

QSPR. 

 -It is based on 33 ILs based on 

imidazolium, pyridinium, 

piperidinium and morpholinium 

cations, bearing linear alkyl or 

oxyalkyl chains 

 - Just two temperatures 293 and 353 

K were studied 

 -  Limited to a few chemical 

families of ILs 

 - Primitive in temperature 

decency 

Gardas and Coutinho [41]  8% 

 - It is a Group Contribution model. 

 -It is based on 498 experimental 

data for 29 ILs based on 

imidazolium, pyridinium, and 

pyrrolidinium  

 -  Temperature range was 293-393 

K 

 -  Limited to a few chemical 

families of ILs 

 - The model needs the 

density of ILs as well. 

Ghatee et al. [42, 43]   
 - It is power law empirical model 

 - It is based on 403 experimental 

data for 49 ILs. 

  - Lack of predictive power 

  - It is purely regression-

based model. 

Han et al. [44]   

 - It is a QSPR.  

 - It is based on  84 experimental 

data for Imidazolium-based ILs at 

298 K and 1 atm. 

 -Limited to a few chemical 

families of ILs 

 - Without temperature 

dependecy. 

Mirkhani et al. [45]   9% 

 - It is a QSPR. 

 -  it is based on 435 experimental 

data for 293 ILs. 

 - Linear temperature 

dependency assumption. 
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Matsuda et al. [39] presented a polynomial expansion-QSPR model for the prediction of viscosity 

of ionic liquids. It used terms related to temperature, cation, the side alkyl branch attached to cation 

and the other side chain except for the anion and alkyl chain. The model proposed was based on 

only 300 experimental viscosity data belonging to pyrrole, piperidine alkylamine, pyridine,  and 

imidazole chemical families. They data points includes the temperature range 263 to 353 K. The 

model shows inferior estimations for pyridine cation and ethylsulfate. The model also shows a 

squared correlation coefficient (R2) of 0.8971 compared with experimental data. As mentioned 

earlier, the model is based on a small number of anions and cations, and therefore the estimation 

of viscosity of ILs for which either their anion or cation were not part of the data set should be 

undertaken with caution. Regardless of this, relating the viscosity which has an intermolecular 

origin merely to the graph structure of the molecules is exceptionable. Additionally, for a new 

anion-cation pair, all calculations need to be repeated to calculate the proper correlation 

parameters.   

Bini et al.[40] proposed a QSPR for prediction of viscosity of ILs. They studied 33 ionic liquids 

based on pyridinium, imidazolium, morpholinium and piperidinium cations, bearing oxyalkyl or 

linear alkyl chains at two different temperatures (293 and 353 K). After eliminating all data points 

pertaining to nitrile-functionalized ILs as outliers, they developed a four-parameter model for the 

prediction of viscosity at 293 and 353 K with the R2 values of 0.876 and 0.946, respectively. Based 

on their results, the model could not well describe low-viscosity data. Furthermore, the absence of 

other ILs chemical families in addition to very limited temperature range, significantly confine its 

predictive capability.  

Gardas and Coutinho [41] proposed an Orrick–Erbar-based group contribution model for the 

estimation of viscosity of ILs. They studied a large data set of 498 experimental data related to 29 
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imidazolium-, pyridinium- and pyrrolidinium-based ILs. The data set covers a wide range of 

temperature from 293 to 393 K and viscosity from 4 to 21000 cP. The model estimates the viscosity 

of ionic liquids with an AARD of less than 8%. However, the suggested model needs the density 

of ILs as model parameter, which should be estimated prior to the prediction. On the other hand, 

they just investigated three classes of ionic liquids which confine the applicability domain of their 

model. As stated in previous studies, the cation and anion chemical structures profoundly affect 

the viscosity of ILs. Therefore, the predictive power of the model merely limits its applicability to 

just the three ILs chemical classes and any extrapolation for other classes of ionic liquids may 

result in erroneous predictions. Gardas and Coutinho [46] presented a new model based on the 

Vogel-Tammann-Fulcher equation without any density term. However, the model application still 

limited just top three classes of ILs. 

Ghatee et al. [42, 43] used the well-known power law equation of viscosity and suggested a three-

parameter model with two terms; characteristic exponent parameters and temperature dependent. 

They studied 403 experimental viscosity data for 49 ionic liquids. The major drawback of their 

model is that its parameters are solely obtained from statistical and regression computations. In 

other words, for ionic liquids not present in their study, experimental data are required to determine 

the model parameters. 

Han et al. [44] developed a QSPR for estimation of the viscosity of imidazolium-based ILs. First, 

they compiled a data set of 1731 experimental data for 255 ILs (comprising 79 cations and 71 

anions) at various pressures and temperatures from literature. Next, they derived some QSPRs for 

viscosity of ionic liquids at 298.15 K and 1 atm. For this purpose, they extracted a sub-data set 

containing 84 viscosity data from their data set.  They divided the data set into 4 subsets and 

derived a correlation for each one: [BF4]−, [Tf2N]−, [C4mim]+ and [C2mim]+. There are several 
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shortcomings associated with their models. Firstly, the obtained models are not temperature 

dependent, which limits their application to estimate viscosity merely at 298.15 K. Secondly, their 

study aimed just imidazolium-based ionic liquids; however, they did not develop a uinified model 

for all ionic liquids present in their study.    

Recently, Mirkhani and Gharagheizi [45] developed a QSPR for the prediction of viscosity of ionic 

liquids. The model shows an AARD of less than 9% from a data set comprised of 435 experimental 

data for 293 ILs.   

2.3 Thermal Decomposition Temperature of Ionic Liquids 

Thermal decomposition temperature of ionic liquids (Td) refers to the maximum temperature at 

which ILs can exist before undergoing chemical decomposing. In other words, it is a measure of 

the maximum processing temperature of ionic liquids.  

Very recently, two correlations have been proposed for prediction of Td of ionic liquids. 

Implementing a data set comprised of 198 experimental data to develop and validate his model 

(120 data points for developing the model and the remaining 78 for its validation), Lazuss [47] 

developed a group contribution model for the estimation of Td of ionic liquids. The model uses 58 

functional group counts (27 cation-based and 31 anion-based) for the prediction of Td of ionic 

liquids. In order to find the contribution of every functional group on Td, he used a genetic 

algorithm optimization technique to minimize the sum of least square errors as an objective 

function. The AARD of the model results from experimental data for the model and validations 

sets are 4.3 % and 4.2 %, respectively.  

Recently, Yan et al. [48] studied Td of ionic liquids. Having collected 158 experimental Td data, 

they developed a 25-parameter QSPR (they used 126 data points for developing and the remaining 
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32 ones for validating their model). The AARD of the model estimations from the corresponding 

experimental data were reported as 3.1 % (for the training set) and 3.5 % (for test set), respectively. 

 

Table 2.3. Comparison of the previous models proposed for thermal decomposition temperature of ionic 

liquids.   

Model Number of ILs AARD% Comment 

Lazuss [47] 198 
4.3 for the training 
4.2 for the validation set 

 - It is a Group Contribution model.   
 - The model has 58 parameters; 
27-cation based and 31-anion based 
 - The training and validations sets contain 120 and 78 
experimental data, respectively. 

Yan et al. [48] 158 
3.1 for the traing set 
3.5 for the test set 

 - It is a QSPR. 
 - The mode has 25 molecular descriptors. 
 - The traingin and test sets contain 126 and 32 
experimental data, respectively. 

 

2.4 Electrical Conductivity of Ionic Liquids 

The electrical conductivity of ionic liquids (σ) is one of the important thermophysical properties, 

which is difficult to estimate due to its non-linear chemical structure and temperature dependency. 

According to Coutinho et al. [49], four approaches have so far been suggested to correlate the 

electrical conductivity of ionic liquids. Shows a quick review of the models. Slattery et al. [50] 

employed the molecular volume (sum of the ionic volume of the ionic counterparts) to correlate 

the electrical conductivities of 20 ionic liquids based on [Tf2N], [MFn], and [N(CN)2]. The major 

shortcoming of the model is that it is anion-independent. In other words, different set of parameters 

is required for each anion. Furthermore, the model cannot be used for functionalized cations [49].  

In another attempt, Bogdanov et al. [51] proposed a model based on “residual volume” approach 

to estimate the electrical conductivity of ionic liquids. As respects, their temperature independent 
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model has the same shortcoming of the model presented by Slattery et al. In order to overcome the 

drawbacks of the previous methods, Eiden et al. [52] tried to develop different correlations to 

predict the electrical conductivity of ionic liquids. Their models showed root mean square error 

and squared correlation coefficient of 0.22 and 0.91 from the corresponding experimental data, 

respectively. 

Table 2.4. Comparison of the previous models proposed for electrical conductivity of ionic liquids. 

Model 
Statistical 
Parameters Comment Shortcomming 

Slattery et al. [50]  
 - 20 ILs based on [Tf2N], [MFn], and 
[N(CN)2] were studied. 

 -It is anion independent.  
 -Limited just to ILs based on 
[Tf2N], [MFn], and [N(CN)2]. 
- Several parameters are 
presented for each of ILs 
homologues series.  

Bogdanov et al. [51]  

 -61 ILs based on imidazolium, 
ammonium, pyrrolidinium, piperidinium,  
sulfonium, and phosphonium were 
evaluated. 

 - It is temperature 
independent. 
 - Several parameters are 
presented for each of ILs 
homologues series.  

Eiden et al. [52] 
RMSE= 0.22 
R2=0.91 

 - 69 ILs (596 experimental data) were 
studied. 

 - The correlation need viscosity 
of ILs. 

Gardas and Coutinho [46] AARD=5.4% 
 - 15 ILs (300 experimental data) were 
studied.  

 - Very primitive 

Matsuda et al. [39] R2= 0.91  - 206 experimental data were studied. 
 - It cannot predict low 
electrical conductivity values. 

Tochigi and Yamamoto [53] R2=0.9745 
 - 15 ILs (139 experimental data) were 
studied.  

 - Very Primitive 

Abbott [54] AARD=27.5%  
 - 30 ILs at room temperature were 
studied. 

 - Temperature independent 

Zhao et al. [55] AARD=2.2% 
 - 24 ILs at room temperature were 
studied. 

 - Temperature independent 

The second approach is to relate molar conductivity to viscosity through Walden rule [56]. 

Galinski et al. [57] reported that Walden rule is almost correct for a wide range of ionic liquids. 

Gardas and Coutinho [46] proposed a simple linear correlation between logarithms of electrical 

conductivity and viscosity of ILs. They used a data set comprised of 300 experimental data related 

to 15 ionic liquids. 
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The third approach that has been used to correlate the electrical conductivity of ILs is the QSPR. 

Matsuda et al. [39]  implemented the “polynomial expansion approach” to develop a model for the 

estimation of the electrical conductivity of ionic liquids. They used a data set including 206 

experimental data values for fitting of their correlation parameters. The model has several terms 

for cation, temperature, the alkyl chain of the side branch attached on the cation, the other side 

chain except for the alkyl chain and anion. The squared correlation coefficient of their model 

compared with the corresponding experimental data is reported as (R2) 0.91. Unfortunately, they 

have not reported the deviation of the model predictions from the corresponding experimental data. 

It appears that the deviation of their model predictions from experimental data is significantly high 

(several hundred percent) in low electrical conductivity regions.   

Tochigi and Yamamoto [53] proposed a complicated QSPR for the prediction of electrical 

conductivity of ILs. To develop their model, they used a data set comprised of 139 experimental 

electrical conductivity data points of 15 different anion families and 5 cation. They have stated 

that the model can predict the electrical conductivity of ILs with squared correlation coefficient, 

absolute average error, and standard deviation of 0.9745, 0.457, and 0.63, respectively.  

The “hole theory” is the fourth approach which have been used to estimate the electrical 

conductivity of ionic liquids. Abbott [54] was initially tried this approach on a data set of electrical 

conductivities for 30 ionic liquids at room temperature. He reported an average absolute relative 

deviation of 27.5% from the corresponding experimental data. Zhao et al. [55] modified the 

Abbott’s approach and developed another model. It shows 2.2% deviation from the corresponding 

experimental data.  
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2.5 Normal Boiling Point Temperature of Pure Organic Compounds 

The normal boiling point temperature (NBP) is defined as the temperature at which the vapor 

pressure of a saturated liquid equals to vapor pressure of 1 atm. Taking into consideration the zero 

changes of Gibbs free energy of a pure compound at vapor-liquid equilibrium condition, the  

Clausius-Clapeyron equation can be derived for the NBP: 

2.1 

 𝑁𝐵𝑃 =
ΔHvap

ΔSvap
 

where ΔSvap and ΔHvap are the entropy and enthalpy of vaporization, respectively. NBP is one of 

the few thermophysical properties available for most organic compounds. In addition, NBP is an 

indicator of the physical state of a pure organic compounds (liquid or solid). Having an accurate 

knowledge of the NBP is of great interest for design of chemical processes and equipment dealing 

with fluid phase equilibria; evaluation of environmental impacts; and hazard studies (HAZOP). 

The NBP has also been commonly implemented to estimate a number of important thermophysical 

properties for instance critical temperature [58], enthalpy of vaporization [59] and 

chromatographic retention indices [60]. 

Besides, the NBP is regarded as a measure of the strength of the intermolecular forces. The stronger 

the intermolecular forces, the more tightly packed the atoms and, as a result, the higher the normal 

boiling point. The NBP can therefore be directly correlated to the molecular structure of the 

molecule. 
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Chemical structure-based models are of great importance since synthesis and experimental 

measuring the NBP of new compounds are costly, and even dangerous if the compound under 

study is radioactive or has other hazardous characteristics.  

An exhaustive literature review of prior models are presented in Table 2.5. A careful consideration 

of the models reveals that they can be divided into three main categories from model point of view. 

The first category of models are originated from the well-known Clausius-Clapeyron equation. 

The models are based on either enthalpy or entropy of vaporization. The NBP is not directly 

predicted in this type of methods and therefore their validities are disputable.  

The second category of methods for the prediction of NBP is the group contribution models.  

The molecular basis of this approach root in the assumption that majority of intermolecular forces 

in the liquid phase are short-range [61]. In this methods, chemical structure are decomposed into 

predefined chemical substructures/segments, each of which adds a constant contribution to the 

value of the desired property of a compound. This method provides exceptional results for small 

and non-polar molecules.  

Third category of the correlations are QSPRs in which the NBP is correlated with molecular 

descriptors. 
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Table 2.5. Comparison of the previos models proposed for the normal boiling point temperature of pure organic compounds. 

 

Proposed by Chemical Family 
Number of data 

points 
𝑹𝟐 RMSE Comment Reference 

Hine and 
Ehrenson 

Halomethanes 46 - 2.4 K 

The model has correlates NBP to normal 
boiling point of methane. It has four 
correction parameters for halogens ( 

F,Br,Cl,I)  

[62] 

OgilVie and Abu-
Elgheit 

Alkane+N-
heterocyclic 
compounds 

50+40 0.99 2.3 K 

1. The model has 8 parameters. They 
account number of hydrogen types as well 
as the number of bonds between carbon 

atoms. The square and Cube of 
abovementioned factors are used in the 

model 
2.  The 10-parameter model using fragment 

and Bond features 

[63] 

White 
Polycyclic 
Aromatics 

40 0.994 8.59 K 
The model correlates NBP to First-Order 

Valence Molecular Connectivity 
[60] 

Hansen and Jurs Olefins 123 0.999 1.78 K 

The model correlates the NBP to 7 
molecular-based parameters: count of 

methyl groups, square root of the molecular 
weight, degree of alkene substitution, count 
of paths of length 2, 3xp,count of clusters of 
size 3, count of ring atoms path 3 molecular 

connectivity, count of ethyl groups 

[64] 

Lai Diverse 1169 - 
(1.29 %) average 
absolute percent 

error 

The model is a group contribution type. IT 
has several correction factors for branched 

side chains,  functional group positions, 
cyclic rings and Aromatic rings for both 
hydrogen and non-hydrogen bonding 

compounds 

[65] 

Rordorf 
halogenated 

dibenzo-p-dioxins 
 

29 - 15 K 
2nd order polynomial of degree of chlorine 

substitution 
[66] 

Smeeks and Jurs 
𝐶5 − 𝐶8 aliphatic 

alcohol 
120 0.993 2.24 K 

The model has 6 parameters; square root of 
molecular weight, absolute total sigma 

charge on molecule, count of  𝐶𝐻3 groups, 
path-two molecular connectivity, path-three 

valence molecular connectivity, 
cluster-three molecular connectivity, count 

of size five path-clusters 

[67] 
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Balaban et al. 
Halogenated 

Alkanes 𝐶1 − 𝐶4 
532 0.97 11.59 K 

The model has 6 p parameters involving the 
first molecular connectivity index and the 

number of H,F,Br,Cl,I 
[68] 

Balaban et al. 

Acyclic Ethers, 
Peroxides, Acetals, 

and Their Sulfur 
Analogues 

185 0.971 8.2 K 

The model has 3 parameters involving the 
number of methyl groups and 

electrotopological state of the O or S 
heteroatom, the valence molecular 

connectivity index order 0 

[69] 

Satou et al. 
hydrocarbons in a 

heavy oil 
238 0.993 13.6 K 

The model is based on the group 
contribution approach involving several 

parameters such as boiling point of an n-
paraffin with the same total carbon number, 
the increment of the atomic group and the 

number of the particular atomic group. 
Atomic group are considered as follows: 

Aromatic rings, Naphthenic  rings, Aromatic 
conjunction carbons, Aromatic inner 

carbons 

[70] 

Stanton et al. 
Pyrans and 

Pyrroles 
752 0.954 13.1 K 

The model has 11 parameters involving: 
number of of single bonds, valence 

corrected 1st order molecular connectivity,  
valence corrected 3rd order molecular 

connectivity, molecular ID/no. of atoms in 
molecule,  average distance sum molecule 

connectivity, radius of gyration, 
max positive partial atomic charge dipole 

moment and 3 charged partial surface 
area to account for hydrogen bonding 

[71] 

Simamora et al. 
Rigid Aromatic 

Compounds 
241 0.9994 13.66 A 22- parameter group-contribution model. [72] 

Egolf et al. 

Diverse 
(industrially 
important 

compounds) 

268 0.988 11.85 

The model has 8 parameters involving CPSA 
descriptors, 3 topological descriptors,2 

descriptors accounting for hydrogen 
bonding and dipole-dipole interactions 

[73] 

Stein and Brown Diverse 
4426 (model 

derivation)+6584 
(Test) 

- 
15.5 (model 

derivation)+20.4 
(Test set) 

A 85-parameter group contribution model 
The authors the model proposed Jobak et al. 

They categorized the original functional 
groups to smaller one for the sake of higher 

accuracy, introducing new groups by 
combining two or three original functional 

groups and introducing new groups not 
available in the original model proposed by 

Jobak et al. 

[74] 

Wang et al. Diverse 541 0.96 17.07 K A 49-parameter croup contribution model [75] 

Krzyzaniak et al. 
Diverse (non-

hydrogen bonding) 
870 0.999 14.4 K 

A 24-parameter group contribution model. 
The authors also use the thermodynamic 

definition of normal boiling point to 
[76] 
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correlate enthalpy of boiling and entropy of 
boiling, as well. 

Tsibanogiannis 
et al. 

Diverse 
(Medium/High 

Molecular weight 
compounds) 

126 - 
Average Error 

(1.7%) 
The model is based on molecular weight and 

density at 20 ◦C. 
[77] 

Wessel and Jurs Diverse 296 0.997 6.3 K 

The model has 6 parameters including 
charge on most negative atom partial 

positive minus partial negative surface area, 
fractional negative surface area,  total 

paths/total no. of atoms, path cluster 3 
molecular connectivity and 

square root of molecular weight 

[78] 

Katritzky et al 
O, N, Cl, and Br 

containing 
compounds 

298 0.9732 12.41 

The model has 4 parameters involving: AM1 
most negative atomic charge, bulk 

cohesiveness descriptor, area-weighted 
surface charge of the hydrogen-bonding 

donor atom and number of Cl atoms 

[79] 

Katritzky et al Diverse 584 0.965 15.5 

The model has 8 parameters involving: the 
cubic root of the gravitation index, the 

charged surface area of the hydrogen-donor 
atoms, (relative number of F atoms, Number 

of CN group, the surface area of hydrogen 
acceptors in the molecule, topographic 

electronic index, charged surface area of 
hydrogen and Cl atom 

[80] 

Balaban et al. 

Acyclic saturated 
and unsaturated 

carbonyl 
compounds 

200 0.964 6.93 

The model has 5 parameters involving: 
information content indices order 1 and 2, 

sum of square roots of 
vertex degrees, average distance based 

molecular connectivities index as well its 
modification for the presence of heteroatom 

and multiple bonds 

[81] 

Cholakov et al. 
Diverse 

hydrocarbons 
235 0.999 4.95 

The model has 8 parameters including: Total 
Energy, Van der Waals volume, Number of C 

atoms in aliphatic C groups, Number of C 
atoms in aliphatic CH=CH groups, 

Unsaturated Van der Waals surface, Bond 
energy, Number of C atoms in aliphatic 

CH2groups,total number of C atoms. 

[82] 

Chalk et al. Diverse 6000+629 0.947 
10.8 (Standard 

Deviation) 
The model is a QSPR based on artificial 

Neural Networks.  
[83] 

Cordes and 
Rarey 

Diverse 2550 - 8.9 K 
The model is a 96-parameter group 

contribution. 
[84] 

Ericksen et al. Diverse 
1141(test)+384 

(Train) 
- 7.75 K-13 K 

The model parameters include group 
contribution+Van der Waals 
volume+Molecular weight 

[85] 



 

22 

 

Toropov and 
Toropova 

Acyclic carbonyl 
compounds 

100 Test+100 (train) 0.972-0.975 6.12,6 
The model correlates NBP to Nearest 

Neighboring Code 
[86] 

Ren Oxo compounds 184 0.9977 
3.99 (Standard 

Error) 
The model correlates NBP to Atomic Index 

and Xu index 
[87] 

Nannoolal Diverse 2850 - 6.37  A 212-parameter group contribution model. [88] 

Tomas Öber 
Halogenated 

aliphatic 
compounds 

240 - 4.9 The model has 6 parameters. [89] 

Sanghvi and 
Yalkowsky 

Diverse 1322 0.98 9.3 
The model is based on the definition of the 

boiling point according to entropy and 
enthalpy of vaporization. 

[90] 
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2.6 Sublimation Enthalpy at the Standard Reference Temperature of 298 K 

The phase change enthalpy is of great interest in chemical and environmental engineering, 

chemistry, and physics since it represents interactions at molecular level [91].  

The sublimation enthalpy is a phase change enthalpy which is a measure of molecular interactions 

in solid phase [92]. It has many applications in crystal science since it is directly use to define the 

crystal lattice energy [93]. Consequently, the sublimation enthalpy is implemented to determine 

the solubility of molecules in solvents, particularly drug molecules [94-99].  

The sublimation enthalpy is also employed to assess the contaminants transport in the atmosphere; 

in modeling environmental fate; to calculate materials discolorations; and represent dispersion of 

dyes [100]. Moreover, crystalline compounds gas phase formation enthalpy can be determined 

from the sublimation and combustion enthalpies. Furthermore, it can be employed to predict other 

thermophysical properties such as vapor pressure through the well-known Clausius-Clapeyron 

equation [101].  

Several methods have so far been suggested for the prediction of sublimation enthalpies of pure 

organic compounds which are compared in Table 2.6.  Rice et al. [102] employed the quantum 

mechanically computed electrostatic potentials of isolated molecules to develop a model for the 

estimation of  the sublimation enthalpy. They used a data set of 35 pure organic compounds to 

validate their model. 
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Table 2.6. Comparison of the pervious models proposed for sublimation enthalpy of pure organic 

compounds. 

Model Accuracy N* Shortcoming 

 Sublimation enthalpy at 289.15 K  

Rice et al. [102] RMSE=15 kJ.mole-1 35 

 - Very primitive 
 - Complexity of its parameters; 
Density Functional Theory-based 
model. 

Politzer et al. [103] R2=0.95 34 

 - Very primitive 
 - Complexity of its parameters; 
Density Functional Theory-based 
model. 

Matheieu and Simonetti [104] RMSE=0.21 kJ.gr-1 34 

 - Very primitive 
 - Complexity of its parameters; 
Density Functional Theory-based 
model. 

Kim et al. [105] R2=0.9 34 

 - Very primitive 
 - Complexity of its parameters; 
Density Functional Theory-based 
model. 

Ouvrard  and Mitchell [106] 
R2=0.925 (training set) 
R2=0.937 (test set) 

 260  
(236 for training 

set and 35 for 
test set). 

 - Not sufficiently accurate 
 - Not sufficiently comprehensive 

Politzer et al. [107] AAE=11.7 kJ.mole-1 105 
 - Primitive 
 - Not sufficiently comprehensive 

Byrd and Rice [108] RMSE=12.5 kJ.mole-1 35 

 - Very primitive 
 - Complexity of its parameters; 
Density Functional Theory-based 
model. 

 Sublimation enthalpy at triple point  

Gharagheizi [109] R2=0.9746 
RMSE=27.56 kJ.mole-1 

1348 
 

Gharagheizi et al. [110] 
R2=0.9746 
AARD=3.54% 
RMSE=4.21 kJ.mole-1 

1384  

Mathieu [111] 

R2=0.986 
AARD=3.1% 

1300 
 

Salahinejd et al. [112] 

R2=0.96 
RMSE=7.9 kJ.mole-1 

1304 
  

* N denotes number of compounds studied. 
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The model shows a root mean square error (RMSE) and a maximum deviation 15 and 52            

kJ.mole-1 from the corresponding experimental data, respectively. Politzer et al. [103], Matheieu 

and Simonetti [104], and Kim et al. [105] independently developed several models based on the 

van der Waals  electrostatic surface potentials. They independently developed several parameters 

to determine the sublimation enthalpy. Although, their models shows low deviation from the 

corresponding experimental data for a small data set of 34 organic compounds, they are so 

primitive to be practically used for estimation of sublimation enthalpies of pure organic 

compounds. The major drawback of their model is that they have been developed just based on  

very small data sets.  Ouvrard  and Mitchell [106] developed for the prediction of the sublimation 

enthalpy. They used a training set of 226 compounds for generating their model and another dataset 

of 35 compounds as a test set for evaluating the model’s predictive power. A comparison between 

the models results and the corresponding experimental data reveals the squared correlation 

coefficients (R2) of 0.925 and 0.937, respectively.  Politzer et al. [107] developed a QSPR for the 

prediction of the sublimation enthalpies. They used the molecular surface area and surface 

electrostatic potential-based information as input parameters to correlate the sublimation enthalpy.  

The model predictions shows an average absolute deviation of 11.7 kJ mol-1 from the 

corresponding experimental data for 105 amino acids and small organic compounds.  Byrd and 

Rice [108] employed quantum mechanical information to correlate the sublimation enthalpy. They 

mentioned that their model is capable of predicting the sublimation enthalpies of 35 organic 

compounds with a RMSE and maximum error of 12.5 and 217.7 kJ.mole-1, respectively.  

So far, a few models have been developed for the prediction of sublimation enthalpy at the triple 

point. Gaharagheizi [109] suggested a 5-parameter QSPR for the prediction of the sublimation 
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enthalpies of 1348 pure mostly organic compounds. He compared his model results with DIPPR 

801 data and reported the R2, RMSE, and maximum absolute relative deviation of 0.9746, 5.46, 

and 27.56 kJ.mole-1, respectively. Gharagheizi et al. [110] proposed an artificial neural network-

group contribution model to predict the sublimation enthalpies of 1384 pure mostly organic 

chemical compounds. The model shows promising R2, average absolute relative deviation 

(AARD%), and root-mean square error  of 0.986, 3.54% and 4.21 kJ.mole-1, respectively. 

Employing a subset of the data set used by Gharagheizi [109] (1300 out of 1348 data), A model 

based on the fragment contributions was developed by  Mathieu [111]. The R2, RMSE, and AARD% 

of the model compared with DIPPR 801 are 0.986, 4 kJ.mole-1, and 3.1%, respectively. More  

recently, Salahinejd et al. [112] used another subset of the data set used by Gharagheizi [109] 

(1304 out of 1348 data) to develop a QSPR model for the estimation of the sublimation enthalpy. 

They compared their model results with the corresponding experimental data and reported values 

of 0.96 and 7.9 kJ.mole-1 for the R2 and the average absolute error, respectively. As simply found, 

the model proposed by Salahinejd et al.  predicts the sublimation enthalpy with a lower accuracy 

than the one suggested by Gharagheizi [109]. Neither  Mathieu [111], nor Salahinejd et al. [112] 

mentioned why they removed 48 and 44 compounds, respectively, from the complete data set used 

by Gharagheizi 20.  

A comprehensive comparison among the previous models suggested for the prediction of the 

sublimation enthalpy of pure compounds shows that: 

1- Majority of the correlations presented for the prediction of the sublimation enthalpy at 

298.15 K have been developed/evaluated for small chemical families of compounds. 
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Moreover, the most comprehensive data set was used by Ouvrard [106] (261 

compounds).  

The model developed by Gharagheizi et al. [110] shows better performance among the 

other methods proposed for the sublimation enthalpy at triple point.  

 

2.7 Vaporization Enthalpy of Organic Compounds at the Standard Reference 

Temperature of 298 K 
 

The vaporization enthalpy is defined as the difference between the enthalpies of a unit mole of the 

saturated vapor and the saturated liquid of a compound [22]. The vaporization enthalpy represent 

the strength of intermolecular interactions existed in vapor/liquid phase.  

The vaporization enthalpy is regarded as one of the important properties required in the design and 

the optimization of chemical processes in which vapor-liquid phase change takes place.  

So far, several models have been proposed for the estimation of the vaporization enthalpies of              

pure organic compounds at the standard temperature of 298.15 K. All the previous models, the can 

be divided into three major classes based on the type of parameters they use. 

The first class are those correlations which correlate the vaporization enthalpy to the other most 

widely used thermophysical properties, i.e. critical properties, normal boiling temperature, acentric 

factor, and vapor pressure. The models proposed by Fishtine [113-115], Wadsö [116], and Zhao 

et al. [117] originate from Trouton’s rule [118] which employs the normal boiling temperature to 

predict the vaporization enthalpy. The Clapeyron [22], Antoine [22], Reidel [119], Wagner [120, 

121], and Ambrose–Walton [122] equations implement vapor pressure and critical properties to 

correlate the vaporization enthalpy. The methods suggested by Pitzer [123], Wang–Shi [124], and 
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Morgan–Kobayashi [125] are corresponding states correlations which employs critical properties 

and the acentric factor to estimate the vaporization enthalpy. The models proposed by Giacalone 

[22], Kistiakowsky [22], Chen [126], Vetere [127, 128], and Liu [129] correlate the vaporization 

enthalpy to vapor pressure and the normal boiling temperature.  

The second class are chemical structure-based models. Several QSPRs have so far been developed 

by Ren [130], Zhokhova et al. [131], and Krasnykh et al. [132]. Lin et al. [133] and Wang et al. 

[134] developed a model based on the solvation free energy. To date, several group contribution 

models have been proposed for the prediction of the vaporization enthalpy [135-154]. Chen [155] 

developed an approach based on the quasi-chemical lattice theory to estimate the vaporization 

enthalpy. Stefanis et al. [156] developed a group contribution method based on the theory of non-

random hydrogen bonding equation of state.   

The third class involve those models in which both the chemical structure-based parameters and 

the thermophysical properties are employed to correlate the vaporization enthalpy. Screttas and 

Micha-Screttas [157] developed a model based on the normal boiling temperature and carbon 

number to correlate the vaporization enthalpy of homologous series of compounds. Greenshields 

and Rossini [158] proposed a model based on the normal boiling temperature and some parameters 

taking into account chain branching. So far, several group contribution-based models has been 

proposed which use other thermophysical properties to correlate the vaporization enthalpy [159-

167].   

To date several models have also been proposed for the prediction of the normal boiling 

vaporization enthalpy [168-171] . In this study, we do not review them because it is out of scope 

of this study  
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The models within the first and third group suffer from a general drawback. As stated above, they 

correlate the vaporization enthalpy to other thermophysical properties, namely, they are not 

applicable when one of the required thermophysical properties are not available. From this point 

of view, the second class, namely, chemical structure-based models, surpasses the others. 

Furthermore, the majority of the models presented so far for the correlation of the vaporization 

enthalpy have been proposed and assessed using relatively small number of experimental data sets. 

Therefore, there are some limitations in their applications.     

2.8  Speed of Sound in Saturated Liquids 

Speed of sound is in an important property in thermodynamics. Like density, it can be measured 

with a high level of experimental accuracy, typically at least one order of magnitude greater than 

other thermodynamic quantities. Density has been conventionally used for the development of 

models for saturated pure liquids, however recently greater attention has been given to speed of 

sound measurements for the development of rigorous models capable of describing fluid properties 

over a wide range of temperatures and pressures. Quick and highly accurate measurement 

capabilities for the speed of sound make it a reliable quantity to measure in order to represent other 

thermodynamic properties with high precision. Almost all observable thermodynamic properties 

of a fluid phase can be directly obtained from the speed of sound by integration of partial 

differential equations which relate it to the other thermodynamic properties. This procedure of 

indirect determination of thermodynamic properties via speed of sound offers promising 

predictions over conventional direct approaches.  

An important application of speed of sound is to determine the heat capacities of liquids along 

with 𝑝 − 𝜌 − 𝑇 data. This method may be a good alternative approach instead of the conventional 

calorimetric method. Furthermore, the heat-capacity ratio 𝛾 and the isentropic compressibility 
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𝜅𝑠 of pure liquids can be related to speed of sound. The latter offers a promising experimental route 

to measure these thermodynamic properties.  
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At high pressures where measuring 𝑝 − 𝜌 − 𝑇 data can generally be difficult, speed of sound 

measurements in liquids are probably of the greatest value [172]. 
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Although there are some models that can be used just to estimate the speed of sound of single 

compounds [173-181], there is no general method for the estimation of the speed of sound of 

saturated liquids for a wide range of temperatures. A few available estimation approaches for speed 

of sound for a wide range of temperatures are restricted to mixtures and are based on equation of 

states [182]. 

2.9 Standard Molar Chemical Exergy of Organic Compounds 

In many engineering systems, all the substances involved may be in stable equilibrium with each 

other; however, they may not be in mutual equilibrium with their surroundings. This lack of a 

mutual stable equilibrium may result in the production of shaft work. The second law of 

thermodynamics (SLT) provides information about the spontaneous direction in which a process 

proceeds. Thus, it can be used to evaluate how close a system is to stable equilibrium with its 

surrounding when all the system’s species are in equilibrium with each other. In other words, 

thermodynamic analysis methods based on the SLT are much more comprehensive than the 

analysis methods that are just based on the first law of thermodynamics, due to the fact that they 

consider the equilibrium state of a system both internally (between substances involved) and 

externally (between system and its surroundings).  

   One of the SLT-based analysis techniques that has attracted the attention of many researchers in 

various fields is the method of exergy analysis. Exergy is a very useful method for the evaluation 

of the thermodynamic and energy performance of various chemical processes such as study of 

auto-cascade Rankine cycles [183], evaluation of polygeneration energy systems [184], 

environmental impact assessment of turboprop engines [185], investigation of steam methane pre-

reforming systems [186], analysis of refrigeration shaft power in industrial clusters [187], analysis 

of thermosolar and heat pumps [188], utilizing of the criteria for decision making in energy systems 
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[189], improving the performance of natural gas fired combined cycle power plants by coupling 

Kalina cycles [190], assessment of silicon production processes [191], modifying pulp and paper 

mills [192], analysis of oil and gas processing platforms [193], analysis of coal systems [194], and 

bottoming rankine cycle for engine exhaust heat recovery [195]. In chemical processes, the 

components of process streams are changed as a result of different unit operations which occur in 

different unit operations such as distillation towers, reactors, etc. The application of exergy 

analysis in these systems is however in general limited due to the lack of chemical exergy data for 

components of interest.   

Chemical Exergy (CE) refers to the maximum work obtainable from a system at the temperature 

and pressure of the reference environment [196]. It is also defined as the minimum work required 

to synthesize a pure compound at the reference state of the environment from its constituents at 

the same state. In other words, chemical exergy has two parts; one that is related to the reaction 

needed to produce species that are not in their stable forms in the reference state, and another that 

is related to translating the species from the system state to the reference state. Therefore, the 

reference state should be introduced in terms of temperature and pressure so that the chemical 

exergy can be calculated. Generally, the reference environment is considered as 298.15 K and 1 

atm in terms of temperature and pressure, respectively. 

Naturally, there are several compounds that are in their most stable states at the reference 

environment conditions (e.g. CO2, O2, N2, H2O, noble gases). Therefore, one is not able to obtain 

more useful work from these kinds of compounds. Thus, their chemical exergy is equivalent to 0 

kJ·mol-1 [197, 198].  
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    From a thermodynamic point of view, the standard molar chemical exergy (SMCE) of a 

compound can be calculated from the appropriate Gibbs energy of formation and the values of the 

chemical exergy of its constituent chemical elements. Taking into account the reversible reaction 

for chemical formation of a compound, the SMCE may be written as follows: 

2.7 

𝜀° = ∆𝐺𝑓
° + ∑ 𝑛𝑗𝜀𝑗 °           

where ∆𝐺𝑓
°
, 𝑛𝑗 , and 𝜀𝑗 represent the standard Gibbs free energy of formation; the number of atoms 

of the constituent element j; and the SMCE of the constituent element j, respectively.  

Several models have, to date, been proposed for the estimation of chemical exergy. Probably the 

first attempt to correlate the chemical exergy is Rant’s work [199] in which a constant ratio of 

chemical exergy to calorific value for solid, and then for liquid fuels was proposed. Szargut and 

Styrylska [200] showed that Rant’s correlation constant depends on the composition of fuels and 

they developed a new correlation taking this fact into account.  

In another model developed by Shieh and Fan [201] a simple correlation for the estimation of the 

chemical exergy of materials was introduced that had complicated chemical structures. While 

developing their model, they assumed that the entropy of a fuel is equal to the entropies of its 

constituent elements. This assumption is far from the reality in many cases and therefore their 

correlation is not entirely correct.  

A modification of Shieh and Fan’s model [201] proposed by Stepanov [202] used the entropy 

model proposed by Ikumi et al. [203]. Using the same idea, Bilgen [204] implemented the entropy 

correlation proposed by Eisermann et al. [205] to modify Shieh and Fan’s model [201]. The final 
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models proposed by Stepanov [202] and Bilgen [204] are very complicated to use and have a 

limited applicability domain because both the models have been proposed for coal or coal liquids. 

 Song et al. [206] developed a model for the estimation of entropy of major constituents of biomass 

and then extended Shieh and Fan’s model [201] for major components of biomass. According to 

Szargut and Styrylska’s investigations [200], the model proposed by Song et al. [206] 

demonstrated a high level of accuracy for the estimation of biomass, however, its applicability 

domain was very narrow and limited to a few substances, as in the case of Stepanov’s [202] and 

Bilgen’s [204] models.   

Using a database of pure organic compounds, Gharagheizi and Mehrpooya [207] developed a 

quantitative structure-standard molar chemical exergy relationship. Their model was simple and 

has just three parameters; viz. molecular weight, sum of atomic polarizabilities (scaled on carbon 

atoms), and number of atoms in any compound. Although their model was simple, the secondary 

parameter of the model needed computation using a computer program and could not be simply 

calculated.  

Recently, Song et al. [208] developed a model for liquid and solid fuels on a dry basis. They 

considered the specific exergy of a dry fuel in two separate parts; one for organic matter and the 

other for inorganic matter. They subsequently developed a model for the estimation of entropy of 

organic matter for solid and liquid fuels. Implementing the ash analysis data, they also developed 

a model for the estimation of chemical exergy of inorganic compounds. They showed that the 

chemical exergy of both ash and inorganic compounds can be neglected when compared with the 

chemical exergy of dry solid and liquid fuels. 
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2.10 Refractive Indices of Organic Compounds 
 

The refractive index (RI), also called the index of refraction, is a measure of the change in velocity 

of a light wave as it travels from one medium to another [209]. It is also equal to the velocity c of 

light of a given wavelength in empty space divided by its velocity v in a substance, or n=c/v [210]. 

The refractive index (n) is frequently employed to characterize organic compounds [211] and it is 

also one of the most important properties in light scattering measurements of dilute polymer 

solutions which are applied for the estimation of molecular weight, size, and shape[212]. Values 

of refractive index can be measured experimentally and are normally used to correlate density 

and/or other physical properties of chemicals [213]. Information obtained from the RI 

measurements is therefore valuable in various chemical engineering calculations due to its 

application in the design of new optical materials. Moreover, RI measurements in combination 

with density, melting point, boiling point and other analytical data are very useful industrially for 

the specification and characterization of substances like oils, waxes, sugar syrups, etc [214]. 

As mentioned above, the refractive index is a measure of the change in velocity of a light wave 

and it is directly related to the molecular state of the material it traverses. RI can thus be related to 

the density of the material, and it is also directly related to the dielectric constant of the material 

[209]. Most theoretical treatments for the estimation of RI have been proposed in terms of molar 

refraction, which quantifies the intrinsic refractive power of the basic structural units of a material 

[215]. Alternative definitions of molar refraction (R) have been developed by Lorentz and Lorentz 

[216] (eq 1), Gladstone and Dale [217] (eq 2), and Vogel [218] (eq3) as follows [215]: 
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The calculation of the refractive index is based on the above equations, where the molecular 

refraction (R) is calculated as a sum of corresponding atom and bond contributions, and volume 

(V) is estimated as a van der Waals volume of the compound divided by the average coefficient of 

molecular packing [215]. Hence, it is relatively easy to calculate the refractive index using the 

molar refraction, the molecular volume (V), and molar weight (M). Two major approaches which 

include the group contribution (GC) strategy and the quantitative structure-property relationship 

(QSPR) approach have been applied for the estimation of the molar refraction [215]. Agrawal and 

Jenekhe [219] indicated that the refractive index of π-conjugated polymers estimated by existing 

group contribution methods can have deviations from experimental values as high as 22%. The 

source of these discrepancies is believed to be large optical dispersion and π-electron 

delocalization impacts in conjugated polymers. In order to solve this problem, Yang and Jenekhe 

[220] proposed new Lorentz and Lorentz [216]  molar refraction group contributions for 24 

functional groups commonly found in conjugated polymers. They successfully applied these new 

RLL data to calculate the refractive indices of 33 conjugated polymers (with an average absolute 

relative deviation average error of 0.9%) [220].  
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Kier and Hall [221] presented a good QSPR model (R2=0.998) for a dataset of 55 alkanes using 

four topological indices. The same authors proposed another good QSPR model (R2=0.998) for 24 

alkyl substituted benzenes containing six to ten carbon atoms with two topological indices. Brekke 

et al. [222] used the partial least squares (PLS) technique to relate physical properties, including 

the RF of 12 component mixtures of n-alkanes, iso-alkanes, cyclo-alkanes, and aromatics to the 

intensities and the chemical shifts of C NMR spectra. The dataset contained a total of 24 samples, 

and the average absolute relative deviation of the estimation was 2.5%. 

A thorough comparison of the previous models proposed for the estimation of the refractive index 

of pure chemical compounds reveals that most of the models have been developed/evaluated for 

small chemical groups/families of compounds. Therefore, it was decided to use a very large 

database in an attempt to develop a general group contribution relationship for the prediction of 

the refractive index. 

2.11 Freezing Point Temperature of Organic Compounds 

Freezing point temperature is regarded as a temperature at which solid phase is in equilibrium with 

liquids phase. The freezing point is always lower than the melting point for mixtures and for 

organic compounds such as fats [1].  

Freezing point and/or melting point (depending on some considerations in their descriptions) are 

fundamental physical property specifying the transition temperature between liquid and solid 

phases [2]. Furthermore, they have been used for the prediction of other physical properties such 

as aqueous solubility [3-5]. Hence, accurate prediction of this fundamental thermo-physical 

property seems an essential necessity. To date, there have been a few quantitative structure-

property relationships (QSPR) methods, such as the property-property relationships (PPR) [6], and 
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group contribution methods [7-9] applied in attempt to estimate freezing/melting point. There are 

some successful estimations of melting points, e.g. for 24 normal alkanes (R2=0.998) using 

topological indices like the carbon number, Wiener index, and the Balaban distance sum 

connectivity index [10]. Nevertheless, some models such as the QSPR models proposed by 

Needham et al. [11] indicate poor predictability (R2=0.570) for their use of 56 normal and branched 

alkanes. A QSPR model [12] for melting point using a dataset containing 443 mono- and di-

substituted benzenes which was correlated with a set of structural parameters, and a nine-parameter 

model showed a R2 of 0.837. Descriptors related to hydrogen bonding ability, molecular packing 

in crystals, and other intermolecular interactions such as charge transfer and dipole-dipole 

interactions contributed to the prediction of melting point.  

Burch et al. [13] recently proposed multi parameters models to estimate melting points of alkanes 

having 10-20 carbon atoms and only one methyl group, which are of special interest to petroleum 

engineers manufacturing synthetic diesel fuel. A nonlinear regression model with satisfactory 

predictability was acquired based on the Wiener path numbers, the number of carbon atoms, the 

methyl locant index, and the mean Wiener index. 

A comprehensive review on the previous methods developed for the prediction of the freezing 

point of chemical compounds demonstrates that most of them have been developed for small 

chemical groups/families of compounds using small databanks.     
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Chapter 3  Mathematical Methods & Techniques 

In this thesis, a collection of most advanced computational techniques was used to develop the 

models. As mentioned in chapter 1, the main aim of this thesis has been developing more accurate 

and more comprehensive models of Type 1, and Type 2.  

In order to develop the correlations of Type 1 (the models in which the property is correlated with 

other widely used physical properties), the Gene Expression Programming is successfully used. 

The computational details of the algorithm are discussed in this chapter.  

In order to develop the chemical structure-based models, the QSPR is used in which various 

computational algorithms such as Genetic Function Approximation (GFA), and Sequential Search 

(SS) are implemented. Also, several non-linear techniques such as Least Square Support Vector 

Machines (LSSVM) and Artificial Neural Networks (ANN) are used to develop more accurate 

models. The details of computational algorithms are discussed in this chapter.  

It should be mentioned that the Group Contribution method (GC) was also used to develop several 

models in this thesis. The GC approach is considered as one of the most widely used branches of 

QSPRs due to its simplicity. The computational algorithms used in this study are identical to those 

used in general QSPR.  

3.1 Subset variable Selection Techniques 

In many computational applications, it is required to select an optimal subset of variables from a 

larger set of variables. There are several mathematical methods for this purpose.  A review of the 

subset variable selection methods are presented elsewhere [8]. In majority of the suggested 

techniques, a multi-linear equation between the subset of variables and the desired property is 
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preliminary assumed. Next, the optimal subset of variables is chosen using appropriate 

mathematical strategies. 

In this work, the Genetic Function Approximation (GFA) technique which uses the genetic 

algorithm optimization technique to find the best subset of variables from a larger set of variables 

was used.  

It should be stated that the GFA method cannot be used when studying large databases of 

compounds due to two main obstacles as follows; 

1. The run-time dramatically goes up when the size of the dataset under consideration 

becomes larger. 

2. The amount of installed memory required on a PC rapidly increases when the size of the 

dataset under consideration increases.   

The sequential search (SS) algorithm was found the only algorithm which is capable of handling 

large databases of compounds.  

It should be mentioned that linear models may not be able to well describe many properties 

therefore; they can be used in couple with some network-based methods such as Artificial Neural 

Networks and Support Vector Machines. This idea lead to developing much more accurate model 

compared with linear models obtained using GFA and SS.  

 

3.1.1 The Genetic Function Approximation Technique (GFA) 

The Genetic Function Approximation (GFA) is used to select the optimal subset of variables. GFA 

is a genetic algorithm-based subset variable selection technique. It involves a multivariate adaptive 
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regression splines (MARS) algorithm [223] coupled with with a genetic algorithm [224] to develop 

a series of multi-linear equations that best fit the training set data. The strategy was originally 

suggested by Rogers and Hopfinger [225]. 

Generally, a QSPR model is presented as follows: 
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where 0a is the intercept, ka is the model coefficient and kX s are input molecular descriptors 

(model variables). The initial equations are generated by random selection of the number of 

molecular descriptors. In the next stage, the derived models are assessed using Friedman's LOF 

scoring function as follows: 
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where c is the number of non-constant basis functions, N is the number of compounds in the data 

set, d is a model smoothing factor to be adjusted by the user, and p is the total number of parameters 

in the equation and the LSE denotes the least square error of the model. LOF directs the 

computations to equations with better predictive capability without over-fitting. 

The genetic recombination or crossover operation should be repeatedly performed as follows: 

 Two good model equations are chosen based on their fitness as “parents”.  

 Each parent is randomly 'cut' into two parts and finally two new model equations emerges 

(children). 
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 The parents with the worst fitness is replaced by their children. 

 The process stops when no more improvement in the fitness functions is observed.   

The method has been successfully employed in our previous [21, 45, 226-233].  

In this study, the number of population and the number of maximum generations are set to 100 

and 5000, respectively. The  Mutation probability parameter is set 1.5 in this study. 

3.1.2 The Sequential Search Method (SS) 

The basic idea of the SS method is to replace each variable one at a time with all the remaining 

ones and see whether an improved model is obtained. The major steps of the algorithm are as 

follows: 

step 1- Introducing all the variables 

step 2- Considering all the one-variable linear correlations between the property 

under consideration and the variables 

step 3- The first optimal variable is the one which predict the property under 

consideration with lowest possible AARD% 
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step 4- Define number of variable(s) in the first step i=1 

step 5- Considering all the linear correlations between the desired property and i+1 

molecular descriptors including the i optimal variable(s) selected in the previous step(s) 
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step 6- The optimal subset of i+1 variables is the one whose linear correlation 

predicts the desired property the lowest AARD% 

step 7- Check if the difference between AARD% of the model obtained using the 

optimal subset of i+1 variables and the AARD% the model obtained using the optimal 

subset of i input variable is less than the stopping criteria. If not i=i+1 then go to step 

5. If yes the model is obtained.  

3.1.3 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are composed of simple elements working in a parallel 

computational strategy. These elements are called neurons and inspired by biological nervous 

systems [234].  

Several types of ANN strategies have been proposed in the literature. One of the most-widely used 

is called “Three-Layer Feed Forward Neural Networks (3FFNN) with Sigmoid (Hyperbolic 

Tangent) Transfer Function”. This type is used to generate a non-linear correlation between input 

and output parameters. In other word, this strategy is used as a regression tool. The schematic 

structure of the 3FFNNs is shown in Figure 3.1 [234]. 

 

 

Figure 3.1 The schematics structure of the 3FFNNs used in this study 
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 This type of ANN contains three layers. The first one is the input layer and the second one is the 

hidden layer of the 3FFNN. It consists of n neurons. The parameter n is one of the important 

parameters of the 3FFNN method and needs to be obtained by optimization just after generating 

the  main structure of the 3FFNN. The mathematic formulation of a 3FFNN is as follows: 

3.4 

 

where i denotes the data point, the parameter W1 represents the first layer weight, W2 denotes the 

second layer weight, b1 is the second layer bias, and b2 stands for third or output layer bias. W1, 

W2, b1, and b2 needs to be obtained by a process called “Training”.  

Generally, in many scientific and engineering problems, input and output parameters should be 

defined for solving the problem.  To generate a 3FFNN model, some parameters should be defined 

regarding the proposed problem. The parameters include the number of inputs (nip), number of 

outputs (nop), and the number of objects (nobj) i.e. number of data points with known input 

parameter (ip) and corresponding output parameter (op).  

The dimensions of each part in equation 3.4 can be determined using n neurons. The input (i) is a 

row containing nip input parameters of the ith object, so it is of dimension  and W1 is of 

dimension . Therefore, the should be of dimension . The b1 is of 

dimension .  Thus, the results of the second layer output are of dimension . It is easy to 

figure out the dimensions of W2 and B2. W2 should be of dimension , and b2 should be of 

dimension . As a result, the output(i) is of dimension .   

There are unknown parameters for a desired number of neurons n, which in a 3FFNN model are 

W1, W2, b1, and b2. These parameters should be obtained using the “Training” process. This process 
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applies an optimization method to minimize an objective function defined between output and the 

experimental values.  

The parameters W1, W2, b1, b2 are the most significant factors for selecting the optimization 

method. Firstly and perhaps most importantly, the method should be accurate enough to deal with 

the specified problem. Another point to consider is that the applied method should be robust when 

we have several tens or hundreds of parameters in a simple 3FFNN. The Levenberg - Marquart 

method is the most widely used technique for optimization of the ANNs which was implemented 

in this thesis.  

 

3.1.4 Least Square Support Vector Machines 

Artificial Neural Networks (ANN) approach have shown high accuracy [235]. One of their main 

drawbacks may be the  non-reproducibility of their results, partly as a result of random 

initialization of their structure and variation of the stopping criteria during optimization [236-238]. 

The support vector machines technique (SVM) is a popular strategy developed from the machine-

learning community. The advantages of the SVM methods in comparison with the traditional 

ANNs are generally as follows [235-238]: 

1. More probability for convergence to the global optimum;  

2. Normally find a solution that can be quickly obtained by a standard algorithm (quadratic 

programming);  

3. No need to determine the network topology in advance; which can be automatically determined 

as the training process ends;  
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4. There is generally a lower probability of the SVM strategy to be faced with the problem of over-

fitting or under-fitting due to a lower number of parameters required for its development than the 

ANN methods. 

The SVM has superior performance over the traditional empirical risk minimization principles. 

Furthermore, as a result of their specific formulation, sparse solutions can be found and both linear 

and nonlinear regression can be performed [235-238].  

Suykens et al. [235] have considered a modification to the original SVM [235]  to overcome the 

weakness of the previous algorithm in finding the final solution because it requires the solution of 

a set of nonlinear equations (quadratic programming). Their method, named as Least-Squares 

Support Vector Machines (LSSVM), encompasses advantages similar to those of SVM, but it 

requires the solving of a set of only linear equations (linear programming), which is much easier 

and more rapid compared to the traditional SVM method [235-238]. 

The cost function (penalized cost function) of the applied [235]  method has been defined as 

follows [235-238]:  
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subject to the following constraint: 
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In the two abovementioned equations, x is the input vector of parameters of the model (molecular 

descriptor), y denotes the outputs (the desired property), b is the intercept of the linear regression 

in LSSVM method, w is the regression weight (the linear regression slope), ek denotes the 

regression error for N training objects (the least-squares error approach), γ represents the relative 

weight of the regression errors summation compared to the regression weight (first right hand side 

of equation 3.5), and superscript T denotes the transpose matrix.  

Employing the Lagrange function [235-238], the weight coefficient (w) can be written as follows 

[235-238]:  
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Generally in LSSVM algorithm, a linear regression between the independent and dependent 

variables is assumed. Therefore, equation 3.6 can be re-written as [235-238]:  
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Therefore, the Lagrange multipliers are computed as [235-238]:  
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 The abovementioned linear regression can be well developed to a non-linear one using the 

Kernel function as follows [235-238]: 
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where K(x,xk) is the Kernel function obtained from the inner product of the two vectors x and xk in 

the feasible space built by the inner product of the vectors Ф(x) and Ф(xk) as follows [235-238]:  
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 In this work, the radial basis function (RBF) Kernel has been implemented as below 

[235-238]:  
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where 
2

  is reqarded to be a decision variable, which is optimized by an external optimization 

algorithm when developing the model. The mean square error (MSE) of the  LSSVM predictions 

[235]  is defined as: 
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where predA  and .Aexp  stand for the predicted, and experimental values of the desired property.  

3.2 The Gene Expression Programming Technique 

To date, several theoretical approaches have been used to develop models for the estimation of 

various thermophysical properties [22]. These models can then be used to predict the 

corresponding properties  other systems at specific conditions within their applicability domain. 

Nevertheless, the stated theromophysical properties may not be estimated merely using the basic 

thermodynamics. Although the promising advances that have been achieved in recent years,  the 

thermodynamic basic concepts bring about reduction in the complexity of the molecular-based 

theories. This can be done by correlating one physical property to another one.  As consequence 

of that two main categories of models emerge: the empirical models and the semi-empirical ones.  

The empirical models can estimate many thermophysical properties within the range of the 

conditions and the compounds and/or mixtures, which have been implemented for their 

development; however, any extra-polation cannot be recommended. The semi-empirical models 

employ theoretical concepts introducing some parameters to modify the empirical models. As 

results, coupling empirical models with theoretical relations generally leads to powerful reliable 

and predictive correlations. 

In any case, certain parameters of the abovementioned models should be regressed over selected 

experimental data sets. Many mathematical linear and nonlinear regression strategies have been so 
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far suggested for this purpose. A careful consideration of the techniques reveals that they should 

satisfy the following criteria [239-247]: 

1. Have the capability of converging to the global optimum;  

2. High probability of finding a mathematically-correct solution;  

3. No requirement for determination of the mathematical functionality in advance  

4. Low probability to be encountered with over-fitting/under-fitting problems; 

5. Satisfactory generalization performance; 

6. Lower number of adjustable parameters; 

7. Relying on the population-based initialization; 

8. Use of the stochastic evolutionary principles basis; 

9. Ability to handle non-differentiable, nonlinear, and multimodal cost functions; 

10. Few, robust, and easy to choose control parameters to steer the minimization of the 

objective function;  

11. No sensitivity to starting points i.e. starting decision variables or objective function 

values  

12. Consistent and consecutive improvement of the solutions in each generation.  

The abovementioned criteria would eventually contribute to developing reliable predictive models 

that yield satisfactory results in acceptable computational time.  



 

51 

 

The Genetic Algorithm (GA), initially introduced by Holland [248], is regarded as a heuristic 

optimization technique (among the evolutionary algorithms) that inspired by the process of natural 

evolution. Generally in biology, an organism involves a set of rules, explaining the way that the 

organism is constructed from the very small building blocks of life. These rules are generally 

preserved in the genes that are connected together in the shape of strings called chromosomes. The 

genetic algorithm generally develops mathematical chromosomes (population of strings), which 

encode solutions to optimization problems through specific operators like selection, mutation, and 

crossover [240].  

The final solutions of a genetic algorithm technique are encoded in fixed length binary (0 and 1) 

strings. The improvements of this algorithm mainly include manipulation of the mentioned 

operators. The Genetic Programming (GP) [249, 250] is an effective modification of the genetic 

algorithm, in which the solutions are represented as nonlinear structures of parse trees (behaved as 

functions) instead of fixed length binary solutions. This improvement brings about searching 

among variety of possible functions for finding the final solution [249, 250]. Considering the 

drawbacks of the GP [249, 250]  (which will be discussed later), Ferreira [251] introduced a new 

modification to the original Genetic Programming algorithm [249, 250]. In the new technique, 

called “Gene Expression Programming (GEP)” [251], ramified structures of different sizes and 

shapes (parse trees) are completely encoded in the linear solutions of fixed length that finally result 

in more effective models [240, 251]. The details of the GEP algorithm are described in the next 

sections.  

3.2.1.1 Genetic Programming  

As stated above, the genetic programming [249, 250] is an extension of the genetic algorithms. 

The defined problem (the forms of the functions, number of parameters etc.) has no effect on the 
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genetic programming algorithm [249, 250]. The main difference between the GP [249, 250] and 

the GA [248] is that in the first one, the chromosomes contain of nonlinear structures similar to 

parse trees though they are similar to the GA [248] linear structures, which are naked replicators 

working as genotype and phenotype. These parse trees, adopted like the protein molecules, involve 

diverse forms of functionality. Thus, the final solution of a particular problem can be found among 

more various types of functions. As a matter of fact, the genetic operators (such as recombination, 

crossover, and mutation) also operate during the computational steps of the genetic programming 

[249, 250] exactly similar to those of the original genetic algorithm [248] however they resemble 

to pruning and grafting of trees. As mentioned by Ferreira [240], the main shortcomings of the 

genetic programming is that the complex replicators (parse trees structures) can be only amended 

in limited ranges because their reproduction should be done just on the parse trees.  

+ -

a / *b

a b ab

*

 

Figure 3.2 A typical computer LISP program in the genetic programming algorithm represented as a parse 

tree (expression tree), which represents the algebraic expression [a+(a/b)]× [b-(a×b)] by a two-gene 

chromosome 

These modifications involve modifying or exchanging definite branches of the corresponding 

parse trees [240], that may bring about invalid (unacceptable) trees structures. A typical computer 

LISP program based on the genetic programming [249, 250] algorithm is shown in Figure 3.2.  
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3.2.1.2 Gene Expression Programming   

The gene expression programming is a modification of the genetic programming. In the gene 

expression programing, the population individuals are symbolic expression trees unlike those of 

genetic programming, in which the individuals are encoded as linear chromosomes, which are later 

translated into the expression parse trees i.e. the genotype and phenotype are eventually separated. 

Therefore, the gene expression programing algorithm has many of the advantages of the 

evolutionary algorithms [252]. Another element of the gene expression programing is that the 

chromosomes are such designed that can permit the creation of multiple genes.  Consequently, the 

novel structures of the genes in the gene expression programming algorithm, allows encoding of 

any program for efficient evolution of the solutions. The organized structure of the genes also 

permits powerful and efficient genetic operators searching for the solutions in the entire feasible 

space of the problem. These operators are directly recombined on the linear encoding (before it is 

translated into a tree). Recombination, as a matter of fact, is sharing the information from the genes 

of the parents to the gene of the offspring. As a result, the improved parts of the resulting 

expression trees generally experience little resemblance to their previous ancestors. On the other 

hand, the GEP special codes use Karva language to make it possible to infer exactly the phenotype 

given the sequence of a gene and vice versa. For instance, the algebraic expression (a / b) + ( ca

) can be easily shown as a diagram or Expression Tree (ET) like Figure 3.3, with the Karva 

language representation of * / Q + a b a c (Q stands for the squared root function). Each characters 

places in one position from 0 to 7 and can be shown as 0 1 2 3 4 5 6 7. To conclude, the operators 

in this strategy bring about generation of the valid parse trees that may be complex mathematical 

structure or even artificial neural networks. 
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3.2.1.3 The gene expression programing general computational steps 

Ferreira [240] presented the general computational steps of the gene expression programming 

strategy as follows: 

1.  Initialization of the population comprising the random generated chromosomes of a certain 

number of individuals; 

2.  Fitness of the individuals based on fitness functions (cases); 

3.  Choosing the individuals based on their fitness to regenerate with modification. 

4.  The new individuals are treated using the same procedure including expression of the 

genomes, confrontation of the selection environment, selection, and reproduction with 

modification.  

/ Q

a b

ca

+

*

 

Figure 3.3. A typical Karva language program in the gene expression programming strategy, which 

gene chromosome-)] by a twocarepresents the algebraic expression [(a / b)]+[(  

5. Initialization of the population comprising the random generated chromosomes of a certain 

number of individuals; 

6.  Fitness of the individuals according to fitness functions (cases); 

7.  Choosing the individuals according to their fitness to reproduce with modification. 
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8.  The new individuals are treated using the same procedure including expression of the 

genomes, confrontation of the selection environment, selection, and reproduction with 

modification.  

9. Repeating the aforementioned steps for a certain number of generations or until a good 

solution has been found (convergence of the algorithm according to the defined criteria). 

The same algorithm has been followed in this section to develop the model.  

The above mentioned steps are schematically shown in Figure 3.4. 

 

 

Figure 3.4. The  gene expresion programming algorithm main steps. 
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Chapter 4 Databases 

4.1 Liquid Thermal Conductivity of Pure Chemical Compounds at 

Atmospheric Pressure 

In this study, approximately 19000 liquid thermal conductivities of more than 1600 pure mostly 

organic compounds at a pressure of 1 atm for temperatures below normal boiling point  and at 

saturation pressure for temperatures above the normal boiling point were extracted from DIPPR 

801 database [4] and used to develop and validate the model. 

The database [3]  has been randomly split into three sub-data sets; the “training”, the “validation”, 

and the “prediction” sets. The shares of the training, the validation and the test sets from the 

database have been 80 %, 10 % , and 10 %, respectively [252]. The database are presented as 

supplementary file in the supplementary DVD.  

4.2 Viscosity of Ionic Liquids 

An extensive literature survey was conducted to collect a comprehensive experimental viscosity 

data set for ionic liquids at atmospheric pressure. Consequently, 1672 data points related 443 ILs 

comprised of 191 cations  and 76 anions were collected from 204 different references.  

The most recent corresponding data point was included in case of multiple reported data points. 

The ionic liquids studied were categorized into 17 different chemical groups containing 1,3-dialkyl 

imidazolium, 1-alkyl imidazolium, amino acids, ammonium, double imidazolium, guanidinium, 

isoquinolinium, morpholinium, oxazolidinium, phosphonium, piperidinium, pyridinium, 

pyrrolidinium, pyrroline, sulfonium, tetra-alkyl imidazolium and tri-alkyl imidazolium. The 

database are presented as supplementary file in the supplementary DVD.  

To develop a valid and reliable model, the data set were split into the two sections: the “training” 

and the “test” sets. The ”training” set was implemented to obtain the model and the ”test” set was 
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employed to assess the predictive power of the obtained model. The K-means clustering technique 

was employed to choose the training and the test sets. This method is used to split n data points 

into k partitions in which each data point belongs to the partition with the closest mean. As 

discussed in a previous article the shares of the training and the test sets from the main data set 

should be selected with caution [253]. As a result, approximately 20 % of the data including 336 

data points was used for the test set.  The remaining 80% data was employed for developing the 

model. 

4.3 Thermal Decomposition Temperature of Ionic Liquids 

A comprehensive literature survey was conducted to gather an extensive experimental Td data set 

for ionic liquids. Consequently, the experimental Td data for 586 ionic liquids composed of 305 

cations and 52 anions and were extracted from 71 peer-reviewed reference sources. It should be 

mentioned that in case of multiple reported values for a unique ionic liquid, the most recent one 

was kept in the data set for further studies.  

The ionic liquids within the data set were  classified into 21 chemical groups containing 1,3-

Dialkyl imidazolium, 1-Alkyl imidazolium, 4,4-Dimethylimidazolium, Amino acids, Ammonium, 

Double imidazolium, Guanidinium, Morpholinium, Oxazolidinium, Phosphonium, Piperidinium, 

Pyridazinium, Pyridinium, Pyrrolidinium, Quinary alkyl imidazolium, Sulfonium, Tetra-alkyl 

imidazolium, Tetrazolium, Tri-alkyl imidazolium, Triazolium, and Uronium.  

The database are presented as supplementary file in the supplementary DVD. 

 Employing the K-means clustering technique similar to the previous section, the Td data set was 

also divided into two sub-data sets including the training and the test sets, respectively. 20 % of 
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the data set including 119 data points was assigned to the test set. The remaining data points was 

allocated to the training set for model development purpose. 

   

4.4 Electrical Conductivity of Ionic Liquids 

An extensive experimental electrical conductivity data set for ionic liquids was collected from 21 

different references. The database includes 977 data points for 54 ionic liquids composed of 18 

cations  and 17 anions. In case of multiple published experimental data point at a fixed temperature, 

the most recent ones (from chronological point of view) were kept in the data set. The data set 

encompass a wide range of electrical conductivity values from 0.00009 to 20 S.m-1 and a wide 

range of temperatures from 238 to 480 K. Before doing any further processing on the data set, all 

the experimental data have been compared to remove doubtful data. Finally, 100 experimental data 

were eliminated. As result, the database used to next computations contains 977 experimental data. 

The database are presented as supplementary file in the supplementary DVD. 

 Employing the K-means clustering technique similar to the previous section, the electrical 

conductivity data set was also divided into three sub-data sets including the training, the validation 

and the test sets, respectively. 10 % of the data set including 97 data points was assigned to the 

test set. Similar to the test set, 10 % of the data set including 97 data points was allocated to the 

validation set. The remaining data points (783 data points) were employed as the training set for 

model development purpose. 
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4.5 Normal Boiling Point Temperature of Pure Organic Compounds 

An enormous database of normal boiling point temperature data for 17768 chemically diverse 

organic compounds extracted from Yaws' Handbook of Thermodynamic and Physical Properties 

of Chemical Compounds [254] was employed to develop and then to validate a QSPR model. The 

database was randomly divided into three sub-data sets including the training, the validation and 

the test sets, respectively. 10 % of the data set including 1776 normal boiling point temperatures 

was assigned to the test set. Similar to the test set, 10 % of the data set including 1776 normal 

boiling point temperatures was allocated to the validation set. The remaining 80 % of the database 

including 14216 normal boiling point temperatures (863 data points) was employed as the training 

set for model development purpose. 

The database are presented as supplementary file in the supplementary DVD. 

 

 

4.6 Sublimation Enthalpy at the Standard Reference Temperature of 298 K 

Inj this study a databased proposed by Acree and Chickos [91] together with the most recent 

published subli9mation enthalpy data during the past three years [255-327] was employed to 

develop the model and then to validate it.  

The data is comprised of 1645 experimental sublimation enthalpies of 1269 compounds.  A single 

experimental sublimation enthalpy was reported for 1018 compounds. Multiple values were found 

for 251, in which case the arithmetic averages were included in the data set. No attempt was 

performed to compare the independently determined values, which mostly differed by less than 6 

kJ mol-1.  A careful analysis of the compounds within the dataset shows that the sublimation 

enthalpies range between 34 and 240 kJ.mole-1.  
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Implementing the K-means clustering technique explained earlier, the data set was divided into 

three sub-data sets including the training, the validation and the test sets, respectively. 10 % of the 

data set including 127 data points was assigned to the test set. Similar to the test set, 10 % of the 

data set including 127 data points was allocated to the validation set. The remaining data points 

(1015 data points) were employed as the training set for model development purpose. 

The database are presented as supplementary file in the supplementary DVD. 

 

4.7 Vaporization Enthalpy at the Standard Reference Temperature of 298 K  

The collection of vaporization enthalpies at the standard temperature of 298.15 K collected by 

Acree and Chickos [91] was employed to model development and then to model validation. The  

recently published vaporization enthalpies were also included in the database [257-259, 264, 266, 

273, 277, 280, 282, 286, 290, 296-298, 305, 317, 323-325, 328-389]. 

The data set includes 4320 experimental vaporization enthalpies of 2811 pure organic compounds. 

There are just 2049 pure compounds for which just a single experimental data point has been 

reported in literature. In other words, multiple vaporization enthalpies were published for the 762 

compounds. In this study, the arithmetic average of multiple reported values was included in the 

data set. It should be mentioned that no attempt was performed to compare independently reported 

vaporization enthalpies, which mostly part differed by less than 9 kJ.mol-1.  A quick analysis of 

the data set demonstrates that the vaporization enthalpy enthalpies range between 15.6 and 424.5 

kJ.mole-1.  

Using the K-means clustering technique mentioned earlier, the data set was divided into three sub-

data sets including the training, the validation and the test sets, respectively. 10 % of the data set 
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including 281 data points was assigned to the test set. Similar to the test set, 10 % of the data set 

including 281 data points was allocated to the validation set. The remaining data points (2249 data 

points) were employed as the training set for model development purpose. 

The database are presented as supplementary file in the supplementary DVD. 

 

4.8 Speed of Sound in Saturated Liquids 

In order to develop a reliable and accurate model, application a high quality data set is essential. 

For this purpose, the ThermoData Engine of the National Institute of Standard and Technology [5] 

was used in the present work to provide 1667 saturated liquid speed of sound data for 74 pure 

organic compounds.  Information about the name of the compounds and the original reference for 

each data point are presented as supplementary file in the supplementary DVD [390].  

Implementing the K-means clustering technique mentioned earlier, the data set was divided into 

three sub-data sets including the training, the validation and the test sets, respectively. 10 % of the 

data set including 166 data points was assigned to the test set. Similar to the test set, 10 % of the 

data set including 166 data points was allocated to the validation set. The remaining data points 

(1335 data points) were employed as the training set for model development purpose. 

The database are presented as supplementary file in the supplementary DVD. 

 

4.9 Standard Molar Chemical Exergy of Organic Compounds 

The dataset used in this study is that of Kotas [197]. The dataset comprises standard molar 

chemical exergy values for 133 pure organic compounds. The data values range from 303580 
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kJ·mole-1 (for formic acid) to 13254570 kJ·mole-1 (for tetraphenylmethane). The organic 

compounds within the database are composed of elemental carbon, hydrogen, nitrogen, oxygen, 

and sulfur. The minimum and maximum number of carbon, and hydrogen atoms of the compounds 

are for methane (1 carbon atom) and tetraphenylmethane (25 carbon atoms), formaldehyde (2 

hydrogen atoms) and  octadecane (38 hydrogen atoms), respectively. In the dataset, there are 22 

nitrogen, 63 oxygen, and 18 sulfur containing compounds. The maximum occurrence of nitrogen, 

oxygen, and sulfur atoms is related to melamine (6 nitrogen atoms), β-maltose (11 oxygen atoms), 

and cyctine (2 sulfur atoms), respectively. Therefore, the dataset covers a fairly wide range of 

organic compounds. 

The K-means clustering technique was used to split the data set to the training, validation, and test 

sets [391, 392]. In order to avoid these issues, approximately 80% of the data was assigned to the 

training set (107 data points) and the remaining was divided into two equal sub-datasets and were 

allocated to the validation and test sets, respectively (13 data points each).      

The database are presented as supplementary file in the supplementary DVD. 

4.10 Refractive Indices of Organic Compounds 

The superiority of a proposed model is dependent on the extensiveness of the dataset used for both 

the development and testing of the model. In other words, the applicability, reliability and accuracy 

of the model for estimation of physical properties depend on the comprehensiveness of the dataset 

employed in its development [393-399]. There are relatively few studies in literature which used 

of a very large dataset for model derivation with the aid of the group contribution method. This 

makes the dataset of 11918 diverse mostly organic compounds drawn from Yaws’ Handbook of 
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Thermodynamic and Physical Properties of Chemical Compounds [400] the most comprehensive 

and extensive dataset for the develop of a GC model for refractive index of pure compounds. 

A quick analysis of the compounds within the dataset shows that the refractive indices range 

between 1 and 1.872 and molecular weights between 16.042 and 891.497. It should be 

that there are a few cadmium, tin, antimony, lead, tellurium, and bismuth compounds in the 

database. Figure 4.1,  

Figure 4.2, and Figure 4.3 indicate the distribution of refractive indices, molecular weights, and atom 

numbers, respectively. 

 

Figure 4.1 Distribution of refractive indices in the databank 
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Figure 4.2 Distribution of molecular weights in the refractive index databank 

 

Figure 4.3 Distribution of atom numbers in the refractiuve index databank 
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Using the K-means clustering technique mentioned earlier, the data set was divided into three sub-

data sets including the training, the validation and the test sets, respectively. 10 % of the data set 

including 1191 data points was assigned to the test set. Similar to the test set, 10 % of the data set 

including 1191 data points was allocated to the validation set. The remaining data points (9536 

data points) were employed as the training set for model development purpose. 

The database are presented as supplementary file in the supplementary DVD. 

4.11 Freezing Point Temperature of Organic Compounds 

The important step in developing comprehensive predictive models is to apply an informative, 

inclusive and representative dataset [398, 399, 401]. The essential criteria for a sufficiently 

predictive model are the availability of a set of data of adequate size, diversity and measured under 

the same (or similar) conditions with sufficiently reproducibility and accuracy [402]. 

Consequently, there are almost few previous studies (mostly reported by the author) in literature 

which report the handling of large datasets to derive a group contribution method. Hence, a dataset 

of freezing point values for more than 16,500 diverse mostly organic compounds extracted from 

Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds [400] was 

used in this study.A quick analysis of the compounds within the dataset indicates that the freezing 

points range between 54.26 and 914.05 K.  

Using the K-means clustering technique mentioned earlier, the data set was divided into three sub-

data sets including the training, the validation and the test sets, respectively. 10 % of the data set 

was assigned to the test set. Similar to the test set, 10 % of the data set including was allocated to 
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the validation set. The remaining data points were employed as the training set for model 

development purpose. 

The database are presented as supplementary file in the supplementary DVD. 
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Chapter 5 Adaption & Modifications of the Algorithms 

As mentioned in previous chapters, several thermo physical properties were investigated in this 

thesis. The mathematical algorithms used in this study were extensively discussed in chapter 3. 

In this chapter, the modifications/adaptions of the mathematical algorithms for each 

thermophysical properties are discussed in details.       

5.1 Liquid Thermal Conductivity of Pure Chemical Compounds at Atmospheric Pressure 

5.1.1 Developing a General Model for Liquid Thermal Conductivity 

The gene expression programming as explained in section 3.2 has been pursued to obtain a reliable 

model. The corresponding states principle parameters, namely, critical temperature (Tc), critical 

pressure (Pc), critical volume (Vc), acentric factor (ω), along with normal boiling temperature (Tb), 

temperature (T), and the molecular weight (Mw) have been considered as input parameters of the 

model and then introduced to the gene expression programming for the sake of a non-linear model 

development. At the beginning, the liquid thermal conductivities of pure organic compounds was 

assumed to be correlated to the abovementioned properties as follows: 

Error! Reference source not found.Error! Reference source not found. 

),,,,, ,( wbccc MTTVPTfk            

The following steps were pursued:  

1. Setting an initial population i.e. In this step. The chromosomal structures were randomly 

generated using a set of mathematical operators such as (-,+,*,/,^) presented as pars trees and input 

parameters as terminals.  
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2. Computation of the fitness value for every individual of the generated population by the 

following objective function (OF): 

Error! Reference source not found. 
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where N stands for the number of the liquid thermal conductivities studied, n represents the number 

of the model parameters, and superscripts pred and exp are the predicted and experimental liquid 

thermal conductivities. As mentioned earlier the DIPPR 801 [3] data set was used to provide the 

main data set of liquid thermal conductivities.  

3.  Selection of the best model trees to make proper parents for replacement. In this step, each 

model is assessed using the fitness function represented in above equation. In this study, the 

tournament technique has been employed to produce an sufficiently diverse population in each 

generation.  

4. Employing the genetic algorithm operators such as replication, mutation, and inversion for 

gene reproduction with modification computational steps. 

a. Replication operator: It copies exactly the chromosomes of the individuals chosen in the 

selection step (step 3).  

b. Mutation operator: It brings about efficient adaption of individuals populations.  The point 

mutation has been implemented, in which a random node (in the structures of the chromosomes) 

is selected and the stored information is replaced with a different random primitive of the same 

arity taken from the initial (old) set [1, 2]. Having defined the mutation rate (pm), the mutation can 

happen everywhere in the structural organization of chromosomes; however, with preservation of 
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the original structure. The mutation can be normally performed through changing the heads of 

genes symbols and terminals of the tails. 

c. Inversion operator: This operator is applied to create new individuals through modification of 

the heads of randomly selected genes. It has already been argued that all the new individuals 

created by inversion are considered as correct programs. The performance of this operator can be 

adapted choosing a value for the inversion rate (pi).
  

5. Transposition and insertion sequence elements: The transposable elements of gene 

expression programming are a part of the genome that can be activated and jumped to another 

place in the chromosome, which include three types as implemented by Ferreira [1, 2]: “Short 

fragments with either a function or terminal in the first position transpose to the head of genes, 

short fragments with a function in the first position that transpose to the root of genes (root IS 

elements or RIS elements), and entire genes that transpose to the beginning of chromosomes.” 

6. Recombination: This step, which is conducted in three manners including one-point 

recombination, two-point recombination, and gene recombination, randomly chooses two 

chromosomes to exchange specific material with each other, leading to appearance of two new 

chromosomes. Consequently, new generation is created. The preceding procedure is repeated until 

the defined stopping criteria (can be user-defined convergence criteria or maximum number of 

generations) is satisfied.  The details of this procedure along with comprehensive examples are 

provided by Ferreira [1, 2].  

5.1.2 Developing a Quantitative Structure-Property relationship 

Initially, the chemical structures of all the compounds within the data set were prepared for 

geometry optimization. This step was done employing the Dreiding Force field  in Chemaxon's 
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JChem [403]. In the next step, Dragon software [404]  was used to calculate the molecular 

descriptors. Approximately 3000 molecular descriptors were calculated for each chemical 

structure. Then, those molecular descriptor which have not been calculated for all the chemical 

structures were eliminated. Also, a pair-correlation analysis was perfumed to remove highly 

correlated molecular descriptors. It was assumed that any pair of molecular descriptors whose 

squared correlation coefficient of their linear regression is higher than 0.9 behave the same and 

one should be eliminated to decrease the solution space. It should be noted that temperature was 

also considered as an experimental descriptor. As a result of the abovmentioned steps, the 

molecular descriptors and the electrical conductivities are introduced to the sequential search 

algorithm (SS) [405] for the sake of choosing the proper subset of molecular descriptors.  

5.1.3 Developing a Group Contribution Model for Liquid Thermal Conductivity 

The chemical structures of all the pure compounds were analyzed with much attention and 

approximately 650 functional groups/segments/substructures were identified useful to describe the 

liquid thermal conductivities of pure mostly organic compounds. Subsequently, the frequency of 

each one was counted and used for next steps. The pair correlation analysis as explained in 

previous section was performed to eliminate the irrelevant functional 

groups/segments/substructures. Consequently, 321 functional groups/segments/substructures were 

remained and introduced to the sequential search algorithm (as explained in section 3.1.2) for the 

sake of calculation of their contribution on the liquid thermal conductivities. It is required to 

prevent entering irrelevant functional groups/segments/substructures in to the final group 

contribution model.  Irrelevant functional groups/segments/substructures means those parameters 

which has no effect on the accuracy of the model.  
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5.2 Viscosity of Ionic Liquids 

In order to develop a reliable group contribution model for the prediction of the viscosity of ionic 

liquids, the chemical structures of all counterparts of ionic liquids within the data set were carefully 

investigated to identify all the possible functional groups/segments/substructures. Finally, nearly 

310 functional groups/segments/substructures were identified. Subsequently, the frequency of 

each one was counted and used for next steps. It should be noted that temperature was included in 

the molecular descriptors pool as an experimental descriptor. Performing the pair correlation as 

mentioned in previous section, the number of functional groups/segments/substructures was 

decreased to 200. Consequently, the sequential search (as explained in section 3.1.2) was used to 

determine the optimal subset of functional groups/segments/substructures and their corresponding 

contribution on viscosity of ionic liquids. Finally, 46 functional groups/segments/substructures (24 

for anions and 22 for cations) in addition to temperature chosen by sequential search algorithm. In 

order to increase the quality of the model, the dependency of the viscosity of ionic liquids to 

temperature was further evaluated by trying several non-linear terms. 

5.3 Thermal Decomposition Temperature of Ionic Liquids 

5.3.1 Developing a Quantitative Structure- Property Relationship 

In order to develop a QSPR for the thermal decomposition temperature of ionic liquids, the 

geometry optimization was performed on the chemical structures of all the ionic counterparts of 

all the ionic liquids within the data set. The optimization was perfumed using the Dreiding Force 

Field algorithm [406] in Chemaxon'sJChem. In the next step, the optimized chemical structures 

were introduced to Dragon software [404] for molecular descriptors calculation. Consequently, 

approximately, 3000 molecular descriptors were calculated for each ionic counterparts. To develop 

the model the molecular descriptors of cations and anions of each ionic liquids were used. The 



 

72 

 

same steps explained in previous sections was done to remove molecular descriptors which have 

not been computed for all the ionic counterparts. Furthermore, the pair correlation analysis as 

explained in previous section was performed to omit the irrelevant molecular descriptors.  Finally, 

the genetic function approximation technique as explained in section 3.1.1 was used to select the 

proper subset of molecular descriptors from the remaining set. 

 

5.3.2 Developing the Group Contribution method 

The thermal decomposition temperature of ionic liquids was also studied to develop a group 

contribution model. Consequently, the chemical structures of the ionic counterparts of all the ionic 

liquids were considered to determine the all the possible functional groups/segments/substructures. 

As a result, 425 unique functional groups/segments/substructures were identified. Subsequently, 

the frequency of each one was counted and used for next steps. The number of functional 

groups/segments/substructures was dropped to 261 using pair correlations analysis as explained in 

previous sections. Employing the sequential search (as explained in section 3.1.2), 30 functional 

groups/segments/substructures (10 for anions and 20 for cations) was selected to optimally 

describe the thermal decomposition temperature of ionic liquids.  

5.4 Electrical Conductivity of Ionic Liquids 

5.4.1 Developing a Non-Linear QSPR 

The electrical conductivities of ionic liquids was investigated to develop a QSPR. Therefore, the 

ionic counterparts of all the ionic liquids were investigated for geometry optimization and then 

molecular descriptor calculation. It should be noted that the Dreiding Force field in Chemaxon's 

JChem was used for geometry optimization of the chemical structures [403]. Subsequently, the 
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optimized chemical structures were introduced to Sarchitect software (Sarchitect) [23] to compute 

the molecular descriptors.   Approximately 1000 molecular descriptors were calculated for each 

ionic species. The number of molecular descriptors was dropped as a consequent of elimination of 

the incompletely calculated molecular descriptors and performing the pair correlations as 

explained in previous sections. It should be noted that temperature was also considered as an 

experimental molecular descriptor. Implementing the sequential search algorithm as explained (as 

explained in section 3.1.2) coupled with the least square support vector machines approach (as 

illustrated in section 3.1.4), a new non-linear LSSVM-QSPR was developed. It should be 

mentioned that the application sequential search algorithm which results in linear models is not 

appropriate for those properties which have non-linear dependency to either temperature or 

molecular descriptors.  

5.4.2 Developing a Non-Linear GC Model 

The ionic species (cations and anions) of all the ionic liquids within the data set were carefully 

analyzed to identify all the possible functional groups/segments/substructures. Consequently, 146 

unique functional groups/segments/substructures were identified. Subsequently, the frequency of 

each one was counted and used for next stages. Implementing the pair correlation analysis the 

number of functional groups/segments/substructures was dropped to 78. Employing the sequential 

search (as explained in section 3.1.2) coupled with least square support vector machines (22 

functional groups/segments/substructures (11 for anions and 11 for cations) were selected to 

optimally predict the electrical conductivity of ionic liquids.  
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5.5 Normal Boiling Temperature of Pure Organic Compounds 

5.5.1 Developing a non-linear QSPR  

The geometry optimization was performed on all of the compounds within the database using the 

Dreiding force fields in Chemaxon's JChem [403]. The optimized molecular structures were then 

introduced to Dragon software [407] for the molecular descriptor computation. Nearly 3000 

molecular descriptors were computed for each compound. As result of elimination of the 

incompletely calculated molecular descriptors for all the compounds and performing the pair 

correlations as explained in previous sections,  the number of molecular descriptors was dropped 

to 1143 molecular descriptors. Using the sequential search algorithm as explained (as explained in 

section 3.1.2) coupled with the three-layer feed forward neural networks (3FFNN) with Sigmoid 

(hyperbolic tangent) transfer function (as illustrated in section 3.1.3), a new non-linear 3FFNN-

QSPR was developed. 

Handling a very large database was one of the major achievement of this study. This challenge 

was overcome by employing a parallel computing technique. In order to decrease the 

computational round-off errors, the literature values of the NBPs are normalized to values between 

-1 and 1 using minimum and maximum values of input data. This procedure, done in the 

optimization section, is performed to obtain the neural network parameters ( W1, W2, b1, b2) and 

has no effects on the results of the model. 

In the next step the database is randomly divided into three subsets: 

i. A Training Test set to generate the structure of the ANN (80% of the studied compounds, 

14216 compounds); 

ii. A Validation (Optimization) set for optimizing the model parameters (10% of studied 

compounds, 1776 compounds); and 
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iii. A Test ( Prediction) set to assess the capability of the model to estimate the desired property 

for compounds not used in the model development (10% of studied compounds, 1776 compounds) 

Finally, the optimal values of the weight matrices (W1, W2) as well as the bias vectors (b1, b2) are 

obtained by minimization of the objective function as explained in section 3.1.3.  

 

5.6 Sublimation Enthalpy at the Standard Reference Temperature of 298 K 

5.6.1 Developing a GC model 

To develop a reliable correlation model, one must use parameters which enable one to distinguish 

each compound from the others. In other words, one needs a unique set of parameters for each 

compound that can adequately describe the sublimation enthalpy. Based on past experience [20, 

21] it was decided to generate the parameters from the molecular structures. As a result, a 

collection of 294 chemical substructures were gathered which have previously been implemented 

by the authors to correlate other important physical properties [110, 408-410]. In the next step, the 

frequency of appearance of each of these 294 chemical substructures was counted in each 

compound. The pair correlation between each pair of the 294 chemical substructures was then 

evaluated to avoid entering irrelevant parameters into the final model. In the next step, if the pair 

correlation of a pair of chemical substructures was more than the threshold value of 0.95, one of 

them was eliminated and the other kept for the next step. Performing this procedure, the collection 

of the chemical substructures was reduced to 251 chemical substructures. In order to determine the 

final model and to choose the optimal subset of chemical substructures affecting the sublimation 

enthalpy, the SS algorithm explained in section 3.1.2 was applied [409].  
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5.7 Vaporization Enthalpy at the Standard Reference Temperature of 298 K  

5.7.1 Developing a GC model 

The physio-chemical properties of chemical compounds may be regarded as the intermolecular 

interactions originating from their chemical sub-structures. Therefore, it seems to be rational that 

one relates the properties to an efficient subset of these chemical sub-structures. The term 

“efficient” means a subset which enables one to distinguish each chemical compound from the 

others. In order to find an efficient subset of chemical sub-structures to predict the vaporization 

enthalpy, 1600 chemical sub-structures which have been previously used by the authors to 

correlate other important properties [110, 408-410] were generated.  Next, the number of 

occurrences of each of these 1600 chemical sub-structures in chemical structures of the chemical 

compounds were collected in a table. Then, the pair correlation between each pair of these 1600 

chemical substructures was considered as the major criteria to prevent entering irrelevant chemical 

sub-structures. In this step, if the pair correlation of a pair was more than the threshold value of 

0.9, one of them was eliminated and the other kept for the subsequent computations. Following 

these preliminary calculations, the collection of chemical structures was reduced to 323 chemical 

sub-strutures.  

In order to find the optimal subset of chemical sub-structures affecting the vaporization enthalpy 

and also to develop the final model, the SS algorithm as explained in section 3.1.2 was 

implemented [409].  

5.8 Speed of Sound in Saturated Liquids 

The first step in developing a group contribution model is to determine which set of chemical 

substructures can be most efficient in describing the desired property under consideration.  
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In the next step, it is required to select the most efficient subset of substructures which can describe 

the desired property with highest accuracy. It should be noted that great attention should be paid 

when choosing the most efficient subset of chemical substructures to avoid selecting those 

substructures that have no or low contribution to the desired property. The latter makes the problem 

of developing a group contribution model difficult. Therefore, there is a requirement to develop 

new strategies. Another obstacle in developing a group contribution model is to determine how 

the desired property can be related to the most efficient subset of chemical substructures. In most 

cases the process of introducing the most efficient subset of chemical substructures and the 

developing the model are considered as two separate steps: 

1.  Introducing the most efficient chemical substructures according to some rule of thumb, 

some basic findings about how to decompose a chemical structure to its basic units, or their 

effectiveness on other physical properties.  

2. Determining the contribution of each chemical substructure on the desired property using 

a multivariate linear regression method (In some cases, it is possible to develop some nonlinear 

correlations based on the linear contribution of each chemical substructures.)     

In order to avoid choosing irrelevant chemical substructures, a subset variable selection strategy 

was employed. Also, nonlinear regression methods were implemented to develop the group 

contribution model for cases in which multivariate linear regression methods give poor results.  

As a result, a combination of SS algorithm discussed in section 3.1.2  as a subset selection 

technique and least squares support vector machine (LSSVM) as a non-linear regression method 

is implemented in this study.  
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5.9 The GC model for Determination of the Standard Molar Chemical Exergy of 

Organic Compounds 

The chemical structures for all 133 compounds within the dataset were carefully investigated to 

find the most effective chemical substructures that can be used to distinguish compounds from 

each other. To achieve this goal, a collection of the most important chemical substructures that had 

previously been implemented for the estimation of the other physical properties of pure organic 

compounds [110, 409, 410] was utilized. Thus, a collection of 187 chemical substructures was 

prepared. In the next step, the number of occurrences of each chemical substructure in each 

compound was counted. Finally, the results were imported into a table.  

The final model was developed in two steps as follows; 

1- Firstly, the pair correlation between each pair of 187 chemical substructures was evaluated 

to prevent entering irrelevant parameters into the final model. As a result, if the squared 

correlation coefficient (R2) of a linear correlation between a pair of chemical substructures 

was more than the threshold value of 0.95, one of them was eliminated and the other one 

was kept for the next step. Performing this step, the collection of the chemical substructures 

was reduced to 140 chemical substructures. This step is used to pre-evaluate the collection 

of 187 chemical substructures. In this step, some of the irrelevant parameters are 

eliminated. 

2- In the next step, the SS algorithm as explained in section 3.1.2 was used. 
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5.10 Refractive Indices of Organic Compounds 

5.10.1 The QSPR Model 

In developing a QSPR model, molecular descriptors are one of the most important ingredients. 

Furthermore, the molecular descriptors are the final result of a logical and mathematical procedure 

in technical terms, which transform chemical structure information, encoded within a symbolic 

representation of a molecule, into a useful number or the result of some standardized experiment 

[411]. The optimized molecular structures are a necessity to calculate molecular descriptors. The 

molecular structures are optimized with accurate Dreiding force fields as defined by Chemaxon’s 

JChem[403]. In order to calculate the molecular descriptors, the optimized molecular structures 

must be loaded into Dragon software[21]. It is capable of calculating over 3000 descriptors from 

several diverse classes.  These classes consist of Topological indices, Burden Eigen values, 

Constitutional descriptors, Connectivity indices, Information indices, 2D autocorrelations, Walk 

and path counts, Functional group counts, Atom-centered fragments, Molecular properties, Edge-

adjacency indices, topological charge indices, Eigenvalue-based indices, geometrical descriptors, 

Randic molecular profiles, 3D-MORSE descriptors, RDF descriptors, WHIM descriptors, 

GETAWAY descriptors, charge descriptors, 2D binary fingerprint, and 2D frequency finger print. 

The descriptors obtained were analyzed carefully and those which were not able to be calculated 

for some compounds were neglected completely. 

After calculation of the descriptors, the next step is to gather the subset from the descriptor pool 

which can correlate the refractive index well. One of the crucial issues in this study is the handling 

of a large number of compounds as their associated descriptors in model development. From 

experience gained in previous studies[21, 412], it can be concluded that the sequential search 

strategy [413] is the correct choice for the subset variable selection/reduction, in terms of its 
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capability of handling the large number of data, as well as acceptable computational run-times. 

However, the algorithm uses a simple scheme to select the best features and develop the final 

model. As a result, a two-step strategy was used in this section as follows; 

1- Reduction of the number of molecular descriptors to several tens so that the 

application of a more sophisticated method such as Genetic Function Approximation 

(GFA) is feasible.  

2- Selection of the best subset of molecular descriptors from the output of the previous 

step to develop the final model.  

In the first step, a SS mathematical strategy explained in section 3.1.2 is applied to reduce the 

number of molecular descriptors to several tens of descriptors.  

In the next step, the Genetic Function Approximation (GFA) as explained in section 3.1.1is applied 

for selection of the most efficient subset of variables from the small subset of variables selected 

by the sequential search algorithm in the previous step.  

5.10.2 The GC model 

The chemical structures of all the components used in the database were examined thoroughly to 

find out the most efficient sub-structures for the estimation of the refractive index. In other words, 

having defined the compounds present in the database, the chemical structures of all of the studied 

compounds have been analyzed to recognize the functional groups. These functional groups are 

generally selected from a series of groups containing approximately 500 different chemical groups 

as follows [21, 92, 395, 397, 408, 410, 414-421]: 

a) Functional groups are partitioned in different categories, each one including two pairs from 

all of the groups. 
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b) A mathematical strategy (algorithm) is applied to establish a linear relationship between 

the two groups in a pair: 

5.1 

bGCaGC ji                                                                  

where GC denotes the functional groups, a and b are the parameters of the linear regression, and 

subscripts i and j refer to i th and j th functional groups. 

c) In the case where the squared correlation coefficient of equation 5.1 is greater than a 

selected value (0.9 in this study), one of the groups is omitted from the investigated pair because 

it has no significant effects on the model finally developed and results in an increase in the model 

parameters (final functional groups). 

The preceding procedure is pursued until the most efficient contributions for evaluation of the 

corresponding property (refractive index) have been determined. In order to propose an accurate 

and reliable correlation model, one must utilize parameters which enable one to distinguish one 

compound from the other. In other words, one needs a unique set of parameters for each compound 

that can sufficiently describe the refractive index. In the present study, it was decided to generate 

the parameters from the molecular structures. As a result, a collection of nearly 500 chemical 

substructures were collected. In the next step, the frequency of appearance of each of the chemical 

substructures was counted in each compound. The pair correlation between each pair of the 

chemical substructures was then evaluated to avoid entering irrelevant parameters into the final 

model. Then, if the pair correlation of a pair of chemical substructures was more than the threshold 

value of 0.9, one of them was eliminated and the other kept for the next step. Performing this 



 

82 

 

procedure, the collection of the chemical substructures was decreased to nearly 200 chemical 

substructures.  

In order to develop the final model and select the optimal subset of chemical substructures 

affecting the refractive index, the SS algorithm explained in section 3.1.2 was applied [417]. 

 

5.11 Freezing Point Temperature of Organic Compounds 

5.11.1 The QSPR Model 

 

The optimized molecular structures are a necessity to calculate molecular descriptors. The 

molecular structures are optimized with accurate Dreiding force fields as defined by Chemaxon’s 

JChem [403]. In order to calculate the molecular descriptors, the optimized molecular structures 

must be loaded into Dragon software [26]. It is capable of calculating over 3000 descriptors from 

several diverse classes. These classes consist of Topological indices, Burden Eigen values, 

Constitutional descriptors, Connectivity indices, Information indices, 2D autocorrelations, Walk 

and path counts, Functional group counts, Atom-centered fragments, Molecular properties, Edge-

adjacency indices, topological charge indices, Eigenvalue-based indices, geometrical descriptors, 

Randic molecular profiles, 3D-MORSE descriptors, RDF descriptors, WHIM descriptors, 

GETAWAY descriptors, charge descriptors, 2D binary fingerprint, and 2D frequency finger print. 

The descriptors obtained were carefully analyzed and those which were not able to be calculated 

for some compounds were completely neglected. 

The K-means clustering technique is employed to partition the main dataset into the training, the 

validation, and the test sets. Consequently, 80% (13,313 points), 10% (1,664 points), and 10% 
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(1,664 points) of the main dataset were assigned to each one of the training, the validation and the 

test sets. It should be noted that the “Training” set is applied to generate the model structure and 

the “Validating” set as well as the “Test (prediction)” set are employed to investigate its validity 

and prediction capability.  

One of the most important aspects of this study is the handling of a large number of compounds 

as their associated descriptors in model development. For this purpose, powerful mathematical 

tools are required. From experience gained from previous studies [412, 422], it can be concluded 

that the sequential search mathematical strategy [413] is appropriate for the subset variable 

selection in terms of its capability of handling the large number of data, as well as acceptable 

computational run-times. Therefore, a sequential search mathematical strategy is applied to reduce 

the number of molecular descriptors to several tens of descriptors. The sequential search strategy 

implements an extensive search throughout the feature subsets [423]. The disadvantage of 

sequential forward selection (SS) is that if several features collectively are good predictors, but 

alone each is a poor prediction, none of the features may be chosen [423]. However, it should be 

mentioned that the SS with percentage of average absolute relative deviation as an objective 

function is successfully used for selection of variables.  

5.11.2 The GC Model 

For the prediction of pure component properties, group-contribution models such as those 

developed by Lyman et al. [424], Lydersen [425], Joback and Reid [426], Horvath [427], Ambrose 

[428], and Klincewicz and Reid [429] have been widely utilized. In these models, the property of 

a compound is a function of structurally-dependent parameters, which are determined by summing 

the frequency of each group occurring in the molecule and multiplying by its contribution. These 

techniques provide the advantage of quick prediction without requiring substantial computational 
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resources [430]. In proposing an efficient and reliable group-contribution model for the prediction 

of freezing point, the chemical structures of all the compounds were tested thoroughly to find out 

the most efficient sub-structures. Hence, having defined the compounds present in our database, 

the chemical structures of all of the studied compounds were analyzed to recognize the chemical 

substructures. These functional groups are normally selected from a series involving 

approximately 500 varying chemical groups [417]. 

In the next step, the frequency of appearance of each of the chemical substructures was counted in 

each compound. The pair correlation between each pair of the chemical substructures was then 

evaluated to avoid entering irrelevant parameters into the final model. Next, if the pair correlation 

of a pair of chemical substructures was more than the threshold value of 0.9, one of them was 

removed while the other was kept for the next step. Conducting these steps, the collection of the 

chemical substructures was decreased to nearly 300 chemical substructures.  

In order to select the optimal subset of chemical substructures which affect the freezing point and 

finally proposing the final group-contribution model, the SS algorithm was implemented [417].  

The method is suitable for the subset variable selection in terms of its capability of handling the 

large number of data, as well as for an acceptable computational run-time.  

The “Training” set is applied to generate the model structure, while the “Validation” set as well as 

the “Test” set are employed to investigate its prediction validity and capability. In other words, the 

first set is for developing the model, the second set is for evaluation of the internal validity of the 

group-contribution model, and the final set is for assessing the predictive capability. In splitting 

the dataset into sub-data sets, the K-means clustering technique is implemented to partition the 

main dataset into the training, the validation, and the test sets. As a consequence, 80% (13,533 
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points), 10% (1,694 points), and 10% (1,694 points) of the main databank were assigned to each 

of the training, the validation, and the test sets, respectively.  
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Chapter 6 Results 

 

6.1 Liquid Thermal Conductivity of Pure Chemical Compounds at 

Atmospheric Pressure 

6.1.1 The General Model 

The Gene expression programming [1, 2] technique allowed determining the convenient 

parameters for the most accurate model from the following parameters: wbccc MTTVPT ,,,,, ,  . 

The final correlation can be reported as follows: 

 

6.1 

𝑘 = 1 × 10−4 (10𝜔 + 2𝑃𝑐 − 2𝑇 + 4 + 1.908 (𝑇𝑏 +
1.009𝐵2

𝑀𝑤
2 ) +

3.9287𝑀𝑤
4

𝐵4
+

𝐴

𝐵8) 

where 

6.2 

𝐴 = 3.8588𝑀𝑤
8(1.0045𝐵 + 6.5152𝑀𝑤 − 8.9756) 

and 

6.3 

𝐵 = 16.0407𝑀𝑤 + 2𝑇𝑏  − 27.9074 

In 6.1Error! Reference source not found., 6.2, and 6.3 units for k, Pc, and 𝑀𝑤 are W.m-1.K-1, bar, 

and g.mol-1, respectively. T and Tc are in K.  

The statistical parameters of the obtained results presented in Another important drawback of the 

model proposed by Latini et al. and Baroncini et al. [23-29] is that it cannot be used for any pure 

compounds. The parameters of the model are presented just for several chemical families of 

compounds comprised of saturated hydrocarbons, olefins, cycloparafins, aromatics, alcohols, 

organic acids, ketones, esters, and refrigerants. These chemical families do not cover a significant 

number of widely used chemical families such as amines, silanes/siloxanes, inorganic compounds, 

                                                           
 The model has been published in AIChE Journal. 59, 1702-1708, 2013.  
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sulfides/thiophenes, mercaptanes, epoxides, peroxides, nitriles, elements, and aldehydes. This 

point reveals that the model is not a general model. 

Table 6.1 indicate that the average absolute relative deviation of the determined liquid thermal 

conductivity values from the experimental ones [3] is about 8.7 %. 

The detailed results using the developed model for all of the studied compounds along with the 

values of the input parameters of the model are presented as supplementary file in the 

supplementary DVD.  

Furthermore, the capability of the proposed method for determination of the liquid thermal 

conductivity values for different chemicals/chemical families are presented in the published article 

[252].  

Reasonable deviations from the DIPPR 801 [3] dataset values can be observed. This issue asserts 

the acceptable applicability of the proposed model for many of the chemical families. This point 

is confirmed when taking a look at the uncertainty of the DIPPR 801 data [3]. According to the 

results, it can be concluded that the deviation of the model results are mostly within or very close 

to the average uncertainty of DIPPR 801 data [3]. This latter demonstrates the capability of the 

model.  

It is worth it to know that the computational steps in each generation of the GEP [1, 2] strategy 

needs parallel computing and consequently high amounts of CPU time. For development of the 

method, we have defined a convergence criterion for the algorithm, which is the difference 

between the accuracy of the obtained results from the current generation and the previous one in 

each step. Consequently, it is possible to develop a more accurate model through continuation of 

the calculation steps producing more generations from the subsequent populations. However, 

careful investigation using more powerful computers should be made to verify this concept. 

In comparison with the models proposed by Latini et al. and Baroncini et al. [23-29] and Sastri et 

al. [30], the presented model here is simpler and has smaller number of parameters. The previous 

models have a major drawback. Since, both the models have several chemical family- dependent 

parameters; many compounds may be fitted into more than one chemical family of compounds. 
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As a result some difficulties may happen when prediction of the liquid thermal conductivity of 

multifunctional compounds.  

Another important drawback of the model proposed by Latini et al. and Baroncini et al. [23-29] is 

that it cannot be used for any pure compounds. The parameters of the model are presented just for 

several chemical families of compounds comprised of saturated hydrocarbons, olefins, 

cycloparafins, aromatics, alcohols, organic acids, ketones, esters, and refrigerants. These chemical 

families do not cover a significant number of widely used chemical families such as amines, 

silanes/siloxanes, inorganic compounds, sulfides/thiophenes, mercaptanes, epoxides, peroxides, 

nitriles, elements, and aldehydes. This point reveals that the model is not a general model. 

Table 6.1 The statistical parameters of the general model proposed for the liquid thermal conductivity of 

pure organic compounds. 

Statistical parameters 

training set  

R2 0.8835 

Average absolute relative deviation 8.96 

Standard deviation error 0.0146 

Root mean square error 0.0148 

N 15221 

  

optimization set  

R2 0.8715 

Average absolute relative deviation 8.95 

Standard deviation error 0.0150 

Root mean square error 0.0152 

N 1902 

  

prediction set  

R2 0.9105 

Average absolute relative deviation 8.96 

Standard deviation error 0.0144 

Root mean square error 0.0147 

N 1902 

  

total set  

R2 0.8856 

Average absolute relative deviation 8.68 
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Standard deviation error 0.0146 

Root mean square error 0.0149 

N 19025 

 

Another important drawback of the model proposed by Latini et al. and Baroncini et al. [23-29] is 

that it cannot be used for any pure compounds. The parameters of the model are presented just for 

several chemical families of compounds comprised of saturated hydrocarbons, olefins, 

cycloparafins, aromatics, alcohols, organic acids, ketones, esters, and refrigerants. These chemical 

families do not cover a significant number of widely used chemical families such as amines, 

silanes/siloxanes, inorganic compounds, sulfides/thiophenes, mercaptanes, epoxides, peroxides, 

nitriles, elements, and aldehydes. This point reveals that the model is not a general model. 

Furthermore, the major advantage of the presented model over previous models is that it has been 

evaluated using nearly 19000 experimental data for nearly 1600 compounds.  

Therefore, we can conclude that the developed model is a valid one from a statistical point of view 

and we may not be able to doubt about the applied data using the characteristics of the model.  

 

6.1.2 The QSPR Model 

According to method explained in section 5.1.2, the optimum model was obtained as follows:  

6.4 

𝑘 =0.228925489(±0.000706464) + ∑ 𝑘𝑖𝐶𝑖
20
𝑖=1   

As can been found from eq. 6.4, the optimum number of descriptors is 20. As mentioned above, 

the optimum number of molecular descriptors should be obtained by tracking the accuracy of the 

model.  

                                                           
 The model has been published in Fluid Phase Equilibria. 355, 52-80, 2013..  
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The optimum subset of molecular descriptors selected by SS algorithm along with their 

definition is presented in Table 6.2. Furthermore, the coefficient of each molecular descriptor in 

eq. 6.4 is presented in Table 6.3.    

The average absolute relative deviation (AARD %), standard deviation error, and root mean square 

error of the model from experimental data are respectively 7.4%, 0.01, 0.01. It should be noted 

that the model shows the same parameters for the training set, validation set and test set.  

The model shows reasonable deviation from DIPPR 801 data [4]. Furthermore, it can be concluded 

that the deviation of the model results are mostly within or very close to the average uncertainty 

of DIPPR 801 [4] data. This latter demonstrates the capability of the model.  

 

 

Table 6.2 The molecular descriptors selected by sequential search algorithm to describe the thermal 

conductivity of pure organic compounds. 

ID Descriptor Definition 

k1 T Temperature 

k2 SIC0 structural information content (neighborhood symmetry of 0-order) 

k3 ATS2m 
Broto-Moreau autocorrelation of a topological structure - lag 2 / weighted by 
atomic masses 

k4 MATS1v Moran autocorrelation - lag 1 / weighted by atomic van der Waals volumes 

k5 BEHm1 highest eigenvalue n. 1 of Burden matrix / weighted by atomic masses 

k6 JGI1 mean topological charge index of order1 

k7 DP17 molecular profile no. 17 

k8 RDF130e 
Radial Distribution Function - 13.0 / weighted by atomic Sanderson 
electronegativities 

k9 Mor30e 3D-MoRSE - signal 30 / weighted by atomic Sanderson electronegativities 

k10 E1p 
1st component accessibility directional WHIM index / weighted by atomic 
polarizabilities 

k11 R5p R autocorrelation of lag 5 / weighted by atomic polarizabilities 

k12 nRCN number of nitriles (aliphatic) 

k13 nHDon Sum of the hydrogens linked to all of the Os and Ns in the molecule  

k14 N-067 number of aliphatic Al2-NH 

k15 TPSA(Tot) topological polar surface area using N, O, S, P polar contributions 
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k16 BLTF96 Verhaar model of Fish base-line toxicity for Fish (96h) from MLOGP (mmol/l) 

k17 B02[F-F] presence/absence of F-F at topological distance 2 

k18 F03[C-C] frequency of C-C at topological distance 3 

k19 F05[C-N] frequency of C-N at topological distance 5 

k20 F07[C-O] frequency of C-O at topological distance 7 

 

Another point that should be considered is that the proposed model uses just chemical structure-

based parameters and doesn’t require any other physical properties like normal boiling point and 

critical properties as required in the models proposed by Latini et al., Baroncini et al. [23, 24, 26-

29, 431, 432] and Sastri et al. [30].     

Therefore, this model is superior to the previous models proposed by Latini et al., Baroncini et al. 

[23, 24, 26-29, 431, 432] and Sastri et al. [30].     

 

Table 6.3 The coefficients of the eq.6.4  

Coefficient ID Coefficient Coefficient Error 

C1 -0.000200805 1.02874E-06 

C2 0.025053989 0.001129233 

C3 -0.004309863 0.000226684 

C4 -0.00388204 0.000231799 

C5 -0.002597065 0.000144797 

C6 -0.029900996 0.000762129 

C7 0.000968139 4.73535E-05 

C8 0.000157524 1.52522E-05 

C9 -0.009813803 0.000330394 

C10 -0.022988099 0.000766659 

C11 -0.016816946 0.001009798 

C12 0.019440866 0.000471029 

C13 0.010927854 0.000139057 

C14 -0.019446752 0.000536146 

C15 0.000259336 6.47995E-06 

C16 0.003567252 0.000153197 

C17 -0.0310118 0.000549327 



 

92 

 

C18 0.001290887 2.7123E-05 

C19 -0.005157446 0.000226558 

C20 -0.002039102 9.16509E-05 

 

As a matter of fact, the previous models have a major drawback. Since, both the models have 

several chemical family- dependent parameters; many compounds may be categorized into more 

than one chemical family of compounds. As a result some difficulties may take place when 

prediction of the liquid thermal conductivity of multifunctional compounds.  

Another important drawback of the model proposed by Latini et al. and Baroncini et al. [23, 24, 

26-29, 431, 432]  is that it cannot be used for any pure compounds. The parameters of the model 

are presented just for several chemical families of compounds comprised of saturated 

hydrocarbons, olefins, cycloparafins, aromatics, alcohols, organic acids, ketones, esters, and 

refrigerants. These chemical families do not cover a significant number of widely used chemical 

families such as amines, silanes/siloxanes, inorganic compounds, sulfides/thiophenes, 

mercaptanes, epoxides, peroxides, nitriles, elements, and aldehydes. This point reveals that the 

model is not a general model. 

Moreover, the main advantage of the proposed QSPR model over previous models is that it has 

been developed and validated using nearly 19000 evaluated thermal conductivity data for 1635 

chemical compounds provided from DIPPR 801 data [4]. As a result, the developed model is a 

valid one from a statistical point of view and we may not be able to doubt about the applied data 

using the characteristics of the model.   
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6.1.3 The GC Model 

The proposed GC model for representation/prediction of liquid thermal conductivity is as follows: 

6.5 

bTakNk
i

ii 


49

1

        

where iN , ik , T, a, and b are the number of occurrences of ith chemical substructure, the 

contribution of the ith chemical substructure, temperature, the intercept of equation 6.5, and the 

temperature contribution, respectively. The parameters of the model are presented in the published 

article [433].  

The DIPPR 801 [4] data can be described successfully using the group contribution method. The 

average absolute relative deviation (AARD %), standard deviation error, and root mean square 

error of the model from experimental data are 7.2%, 7.2%, 7.1%, 0.01, 0.01, 0.01, 0.01, 0.01, and 

0.01 for the training set, validation set and test set respectively.  

Reasonable deviations from the DIPPR 801 [4] data  can be observed. This observation supports 

the acceptable applicability of the presented model for many of the chemical families. This point 

is confirmed when taking into consideration the uncertainty of the DIPPR 801 [4] data. According 

to the results, it can be concluded that the deviation of the model results are mostly within or very 

close to the average uncertainty of DIPPR 801 [4] data. The latter demonstrates the capability of 

the model.  

There are some points for which the model does not produce very accurate thermal conductivity 

values (generally in the higher than 13 AARD % range) and a possible explanation is given below. 

There are three chemical families for which the model results show AARD% more than 13%; 

INORGANIC GASES (24.8%), OTHER INORGANICS (21.8%) and POLYFUNCTIONAL 

ACIDS (13.4%).  

 According to earlier discussions, experimental measurement of accurate liquid thermal 

conductivity data is very difficult. Thus, the first possibility which may prevent the model in 

                                                           
 The model has been published in Journal of Molecular Liquids, 190, 223–230, 2013.  
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providing good representation/prediction for the data points may be due to the high experimental 

uncertainties. A quick consideration of the supplementary table demonstrates that the uncertainties 

of the data generally lie between 1 to 50 % (available in the supplementary DVD).  

  In comparison with the models proposed by Latini et al. and Baroncini et al. [23-29] and 

Sastri et al. [30], the model proposed herein is simpler and has a smaller number of parameters. 

The previous models have a major drawback. Since, both the models have several chemical family-

dependent parameters; many compounds may be fitted into more than one chemical family of 

compounds. As a result some problems may occur when predicting the liquid thermal conductivity 

of multifunctional compounds.  

Furthermore, the model proposed by Latini et al. and Baroncini et al. [23-29] cannot predict the 

liquid thermal conductivity of any random choice of pure compounds due to the fact that the 

parameters of the model do not exist for several important chemical families. Therefore, the model 

cannot be considered as a general model. 

Moreover, the main advantage of the proposed GC model over previous models is that it has been 

developed and validated using nearly 19000 experimental data for nearly 1600 compounds. As a 

result, the developed model is from a statistical point of view more robust and has greater validity. 

There is probably greater confidence, as a result, in the application of the model due to this 

characteristic.  

6.2 Viscosity of Ionic Liquids 

The group contribution technique has been pursued to develop an accurate model for estimation 

of the viscosity of ionic liquids.  

According to the aforementioned procedure, the contributions of each of 46 parameters were 

determined. The proposed model for estimation of viscosity of ILs is found as follows: 

6.6 
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 The model has been published in Chemical Engineering Science 80 (2012) 326–333.  
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where aiN , ciN , ai , ci ,and 0 are, respectively, the number of occurrence of ith  sub-structure 

of anions and cations, the contribution of the ith sub-structure of anions and cations, and the 

intercept of eq.6.6. The obtained group contributions, namely ai , ci , 0  ,as well as the  

temperature coefficients A, B, C, and D  are presented in the published article [228].  

The predicted viscosities and their absolute relative deviations from experimental values and the 

statistical parameters of the model are presented as supplementary file in the supplementary DVD 

[228].The results demonstrate that this GC model can reliably estimate the viscosity of ILs. The 

model results, respectively, shows an average absolute relative deviation (%AARD), standard 

deviation, and root mean square error of 6.4 %, 0.21, and 0.21 from the 1672 experimental data.  

The AARD% of the model for each class of ILs used in this study are presented in Table 6.5. 

 

 

 

Figure 6.1 (Left) Predicted viscosities of ionic liquids by eq.1 versus the corresponding experimental 

values. (Right) Relative deviation of predicted viscosities of ionic liquids versus the corresponding 

experimental ones. (*) and (o) denote the training set and the test set. 

The predicted viscosities in comparison with the experimental values are presented in Figure 6.1 

(Left). In addition, the deviation of the model in comparison with the experimental data is 

presented as Figure 6.1 (Right).  
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These comparisons clearly show that this model can be used as a predictive tool for the prediction 

of the viscosity of various ILs. A comparison between the model predictions and their 

corresponding experimental values is depicted in Figure 6.2 (Left). 

The models results for [C2mim][DCA], [C10mim][NTf2], [C1mim][NTf2], and 

[C2mim][C2SO4] as a function of temperature are presented in Figure 6.2 (Right). As depicted, the 

model can accurately predict the viscosity of ILs as a function of temperature.   

One of the major causes of error in experimental data that may bring about large deviations when 

developing models is the presence of contaminations [45] in the ILs or ILs which are not of 

extremely high purity being used. 

Table 6.4 The statistical parameters of the model proposed for viscosity of ionic liquids 

Statistical Parameter 

training set 

R2 0.880 

Absolute average relative deviation 6.21 

Standard deviation error 0.20 

Root mean square error 0.20 

N 1336 
  

test set  

R2 0.854 
Absolute average relative deviation 6.79 
Standard deviation error 0.22 
Root mean square error 0.22 
N 336 
  

total 

R2 0.874 
Absolute average relative deviation 6.32 
Standard deviation error 0.21 
Root mean square error 0.21 
N 1672 

They can significantly affect various properties of ILs particularly their viscosities. The 

contaminants are mostly composed of water, halides, and other organic solvents. For instance 

existence of traces of Cl- ion in [C4mim][BF4] will result in a significant deviation in its viscosity. 

Moreover, with increasing the concentration of such ions, the viscosity dramatically increases. For 
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instance when the concentration of Cl- increases from 0.01to 0.5 m, the viscosity of [C4mim][BF4] 

increases from 154 to 201 cP [434].  

In comparison with the previous models that have been proposed, this model is more applicable 

across a wider domain. It has been developed and evaluated using 443 ILs composed of 76 and 

191 unique anions and cations. Additionally, the temperature range of experimental data in this 

study is 50-433 K which is wider than that of previous models. 



 

98 

 

Table 6.5. The average absolute relative deviation of the proposed model for viscosit of ionic liuquids 

from the corresponding experimental based on different classes of ionic liquids studied (In the table the 

units of T and η are respectively in K and) cP. 

No Class AARD% T range  log(η exp) range  log(η pred) range  N 

1 1,3-Dialkyl imidazolium 5.86 50.00  - 433.15 0.53  - 3.99 0.46  - 5.41 1381 

2 1-Alkyl imidazolium 10.06 293.15  - 298.15 1.56  - 2.91 1.56  - 2.74 26 

3 Amino acids 9.87 353.15  - 353.15 1.95  - 3.71 2.01  - 3.19 2 

4 Ammonium 8.01 289.15  - 343.15 0.55  - 3.92 0.54  - 3.45 86 

5 Double imidazolium 3.58 298.15  - 358.15 2.09  - 3.22 2.06  - 3.05 19 

6 Guanidinium 5.81 293.15  - 333.15 2.05  - 3.36 2.09  - 3.07 9 

7 Isoquinolinium 6.69 329.15  - 329.15 2.56  - 2.56 2.75  - 2.75 1 

8 Morpholinium 10.85 298.15  - 303.15 2.28  - 2.58 2.35  - 3.01 9 

9 Oxazolidinium 8.47 298.15  - 303.15 2.15  - 2.63 1.95  - 2.86 12 

10 Phosphonium 16.00 293.15  - 303.15 1.53  - 4.28 1.54  - 3.32 19 

11 Piperidinium 8.56 298.15  - 298.15 1.92  - 2.41 1.83  - 3.09 14 

12 Pyridinium 3.86 293.15  - 353.15 1.11  - 2.30 1.13  - 2.38 7 

13 Pyrrolidinium 7.51 293.15  - 301.15 1.55  - 2.41 1.57  - 3.23 21 

14 Pyrroline 3.62 298.15  - 298.15 1.62  - 1.82 1.76  - 1.76 3 

15 Sulfonium 9.57 253.15  - 353.15 0.66  - 2.68 0.81  - 2.71 50 

16 Tetra-alkyl imidazolium 0.00 333.15  - 333.15 2.99  - 2.99 2.99  - 2.99 1 

17 Tri-alkyl imidazolium 7.45 293.15  - 373.15 1.47  - 2.23 1.53  - 2.99 12 

 

 Figure 6.2 (Left ) Comparison of the predicted viscosities of ionic liquids and their corresponding 

experimental values:  approximately 54 % of the viscosities are predicted within 0-5 %, 26 % 

within 5-10 %, 10 % within 10-15 %, 6 % within 15-20 %, 2 % within 20-25 %, and the remaining 

2 % within 25-31 %. (Right) Viscosity as function of temperature (The unit for ɳ is cP). 
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The model is even superior to the previous QSPR model proposed by one of the authors [45] due 

to its comprehensiveness (76 and 191 unique anions and cations vs. 36 and 146 unique anions and 

cations in the previous study) and accuracy (6.4 % vs. 9 % AARD in the previous study).  

6.3 Thermal Decomposition Temperature of Ionic Liquids 

6.3.1 The QSPR Model 

The final QSPR model obtained contains 12 descriptors. In order to investigate the contribution of 

anions and cations on Td of ILs, their corresponding descriptors in the model are presented as 

𝑇𝑑
𝐴𝑛𝑖𝑜𝑛and 𝑇𝑑

𝐶𝑎𝑡𝑖𝑜𝑛, respectively: 

 

 

6.7 

𝑇𝑑 = 447.17 + 𝑇𝑑
𝐴𝑛𝑖𝑜𝑛

+ 𝑇𝑑
𝐶𝑎𝑡𝑖𝑜𝑛

 

 

6.8 

𝑇𝑑
𝐴𝑛𝑖𝑜𝑛 = −44.75 𝑛𝐶𝐿𝐴𝑛𝑖𝑜𝑛 + 35.97 𝐺𝐴𝑇𝑆1𝑚𝐴𝑛𝑖𝑜𝑛 + 236.01 𝐸3𝑣𝐴𝑛𝑖𝑜𝑛 + 209.82 𝑅4𝑒 +𝐴𝑛𝑖𝑜𝑛 

− 21.08 𝑛𝐶𝑝
𝐴𝑛𝑖𝑜𝑛

 − 40.88 𝐵01[𝐶 − 𝑂]
𝐴𝑛𝑖𝑜𝑛

 

 

6.9 

𝑇𝑑
𝐶𝑎𝑡𝑖𝑜𝑛 = −186.39 𝑅1𝑚 +𝐶𝑎𝑡𝑖𝑜𝑛+ 11.58 𝑛𝐼𝑚𝑖𝑑𝑎𝑧𝑜𝑙𝑒𝑠𝐶𝑎𝑡𝑖𝑜𝑛 − 71.17 𝑆 − 107𝐶𝑎𝑡𝑖𝑜𝑛

− 35.41 𝐵03[𝑁 − 𝑁]𝐶𝑎𝑡𝑖𝑜𝑛 − 24.90 𝐹03[𝐶 − 𝑂]
𝐶𝑎𝑡𝑖𝑜𝑛

+ 48. 62 𝐹04[𝑁 − 𝑂]
𝐶𝑎𝑡𝑖𝑜𝑛

 

 

In eq. 6.7, 6.8, and 6.9, Error! Reference source not found. the subscripts “Anion” and “Cation” 

denote the descriptors of anions and cations respectively.  

Following Todeschini and Consonni [435], we may say: 

                                                           
 The model has been published in Chemical Engineering Science. 84, 557-563, 2012.  
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 “nCL” is the number of chlorine atoms. It seems that the presence of chlorine atoms in 

anions decrease the Td of ILs [435]. 

 

 “GATS1m” is the Geary auto correlation - lag 1 / weighted by atomic masses. This 

descriptor shows how Td is distributed along the anion structure. It has a positive effect on 

Td [435]. 

 “E3v” is the 3rd component accessibility directional WHIM index / weighted by atomic 

van der Waals volumes. Directional WHIM descriptors are calculated as some univariate 

statistical indices on the projections of the atoms along each individual principal axis, 

while the global WHIMs are directly calculated as a combination of the former, thus 

simultaneously accounting for the variation of molecular properties along the three 

principal directions in the molecule. In this case, any information individually related to 

each principal axis disappears and the description is related only to a global view of the 

molecule. This descriptor has a positive effect on Td [435]. 

 “R4e+” is the R maximal autocorrelation of lag 4 / weighted by atomic Sanderson electro 

negativities. It is a measure of polarity in the anion. When the polarity is boosted, Td 

increases [435]. 

 “nCp” is the number of terminal primary C(sp3). It has negative effect on Td [435]. 

 “B01[C-O]” is the presence or absence of C-O at topological distance 1. Its presence 

results in value “1” and its absence will bring about a value of “0”. It has a negative 

effect on Td. 

 “R1m+” is the R maximal autocorrelation of lag 1 / weighted by atomic masses. It has a 

negative effect on Td [435]. 
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 “nImidazoles” is the number of Imidazoles in the chemical structure of the cation. 

Presence of such substructure has a positive effect on Td [435].“S-107” is the number of 

R2S or RS-SR in which R represents any group linked through carbon. It appears that the 

presence of such substructures has a negative effect on Td [435]. 

 “B03[N-N]” is the presence or absence of N-N at topological distance 3. Its presence 

results in a value of “1” and its absence will result in a value of “0”. It has a negative 

effect on Td [435]. 

 “F03[C-O]” is the number of C-O at topological distance 3. It has a negative effect on Td 

[435]. 

 “F04[N-O]” is the number of N-O at topological distance 4. It has a positive effect on Td 

[435]. 

The average AARD% of the model results from experimental values for the training set and the 

test are close to 5.2 % and 5.1 %, respectively.  

The AARD% of the model results from 586 experimental Td data is approximately equal to 5.2%. 

The deviation of the model results from experimental data for different chemical classes of ILs are 

presented in Table 6.6. As can be seen, the highest AARD% values are related to Quinary alkyl 

imidazolium and Uronium ILs. It may be due to this fact that the model cannot predict their Td 

well, because they are outnumbered in the database. This latter issue prevents the model to modify 

itself to predict their Td well. A comparison between the presented model and those recently 

proposed demonstrates that the database used here (586 ILs) is much more comprehensive than 

those previously employed by Lazuss [47] (198 ILs) and Yan et al. [48] (158 ILs). 
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Table 6.6 The deviation of the predicted (the QSPR) thermal decomposition temperatures of ionic liquids 

from the corresponding experimental data based on different chemical families of ionic liquids. 

No. Compound ARD% AARD% range   Td
exp / N.m-1  Td

pred / N.m-1 N 

1 1,3-Dialkyl imidazolium 5.4 0.3 

 

- 15.9 423.15 

 

- 725.15 469.84 

 

- 667.22 83 

2 1-Alkyl imidazolium 4.1 0.2 

 

- 12.2 461.15 

 

- 686.15 478.31 

 

- 661.04 43 

3 4,4-Dimethylimidazolium 3.2 3.2 

 

- 3.2 488.15 

 

- 488.15 472.63 

 

- 472.63 1 

4 Amino acids 6.2 0.5 

 

- 14.4 392.15 

 

- 514.15 375.74 

 

- 550.17 29 

5 Ammonium 5.3 0.0 

 

- 15.3 379.15 

 

- 693.15 389.78 

 

- 665.88 121 

6 Double imidazolium 2.9 0.1 

 

- 9.6 577.95 

 

- 715.15 609.38 

 

- 712.3 26 

7 Guanidinium 5.0 0.1 

 

- 13.0 463.15 

 

- 587.15 462.53 

 

- 552.24 16 

8 Morpholinium 5.5 0.9 

 

- 13.8 397.15 

 

- 685.15 366.7 

 

- 653.53 34 

9 Oxazolidinium 4.9 0.1 

 

- 15.6 446.15 

 

- 620.15 452.84 

 

- 601.78 21 

10 Phosphonium 5.0 0.7 

 

- 12.8 457.15 

 

- 693.15 456.45 

 

- 663.73 23 

11 Piperidinium 5.4 0.0 

 

- 15.1 440.15 

 

- 696.15 429.14 

 

- 658.75 21 

12 Pyridazinium 5.1 4.2 

 

- 6.0 573.15 

 

- 573.15 538.97 

 

- 548.93 2 

13 Pyridinium 3.0 0.4 

 

- 6.5 500.35 

 

- 677 488.73 

 

- 652.84 6 

14 Pyrrolidinium 6.3 1.1 

 

- 13.8 423.15 

 

- 690.15 431.73 

 

- 658.83 25 

15 Quinary alkyl imidazolium 8.5 8.0 

 

- 8.9 674.15 

 

- 739.15 620.17 

 

- 673.46 2 

16 Sulfonium 3.1 0.1 

 

- 5.3 449.15 - 456.15 455.6 - 472.78 8 

17 Tetra-alkyl imidazolium 5.7 0.5 

 

- 14.3 439.15 

 

- 580.15 502.08 

 

- 571.96 6 

18 Tetrazolium 6.8 3.5 

 

- 10.3 443.15 

 

- 588.15 458.84 

 

- 549.3 3 

19 Tri-alkyl imidazolium 5.6 0.7 

 

- 13.8 528.75 

 

- 730.19 495.84 

 

- 667.97 27 

20 Triazolium 5.4 0.1 

 

- 15.3 379.15 

 

- 698.15 363.67 

 

- 685.39 88 

21 Uronium 7.4 7.4 

 

- 7.4 493.15 

 

- 493.15 456.52 

 

- 456.52 1 
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Regardless of that, the number of parameters used in the model (12 molecular descriptors) is much 

lower than those of Lazuss [47] (58 GCs) and Yan et al. [48] (25 molecular descriptors). Therefore, 

the model may be regarded as superior to the previous models.  

6.3.2 The GC Model 

According to the procedure explained in section 5.3.2, the contribution of each of the 30 sub-

structures was determined using the training set. The proposed model for estimation of the Td of 

ILs is as follows: 

6.10 





20

1

0

10

1 i

ddcici

i

daiaid TTNTNT            

where aiN , ciN , daiT , dciT ,and 0dT are, respectively, the number of occurrence of ith sub-structure 

of anions and cations, the contribution of the ith sub-structure of anions and cations, and the 

intercept of eq. 6.10. The computed group contributions, namely daiT , dciT , and 0dT , are presented 

in the published article [436].  

The average AARD% of the model results from experimental values for the training set and the 

test are 4.5% and 4.3%, respectively. The model results show an AARD% of 4.4 % from 

experimental Td values for the 613 ILs.  

The deviation of the model results from experimental data for different chemical classes of ILs are 

presented in Table 6.7 . 

 

                                                           
 The model has been published in Fluid Phase Equilibria. 355, 81-86, 2013.  
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Table 6.7 The deviation of the predicted (the group contribution model) thermal decomposition 

temperatures of ionic liquids from the corresponding experimental data based on different chemical 

families of ionic liquids. 

No. Family %AARD AARD% range Td exp range Td pred range N 

1 1,3-Dialkyl imidazolium 
4.8 0.0 - 14.8 436.15 - 725.15 389.35 - 735.58 96 

2 1-Alkyl imidazolium 
2.9 0.1 - 7.7 461.15 - 686.15 478.63 - 664.69 42 

3 Amino acids 
4.1 0.0 - 12.7 392.15 - 514.15 399.53 - 541.68 32 

4 Ammonium 
4.8 0.0 - 14.9 374.15 - 693.15 387.22 - 724.66 139 

5 Double imidazolium 
3.8 0.3 - 8.4 508.15 - 715.15 512.00 - 693.38 28 

6 Guanidinium 
5.1 1.0 - 10.7 463.15 - 587.15 469.41 - 560.07 16 

7 Morpholinium 
4.3 0.2 - 14.5 413.15 - 685.15 417.61 - 657.94 32 

8 Oxazolidinium 
4.0 0.3 - 11.3 446.15 - 620.15 451.91 - 641.29 18 

9 Phosphonium 
3.5 0.5 - 13.0 457.15 - 693.15 464.56 - 657.94 22 

10 Piperidinium 
4.5 0.0 - 13.9 473.15 - 696.15 469.41 - 657.94 18 

11 Pyridazinium 
1.2 1.2 - 1.2 573.15 - 573.15 579.86 - 579.86 2 

12 Pyridinium 
1.8 0.3 - 4.3 500.35 - 677.00 494.36 - 664.93 5 

13 Pyrrolidinium 
5.5 0.2 - 12.3 523.15 - 690.15 550.85 - 657.94 20 

14 
Quinary alkyl 
imidazolium 

1.1 0.4 - 2.3 606.15 - 739.15 603.50 - 742.80 3 

15 Sulfonium 
1.4 0.8 - 2.3 449.15 - 456.15 445.72 - 445.72 8 

16 Tetra-alkyl imidazolium 
6.6 3.0 - 11.5 439.15 - 580.15 489.73 - 599.23 6 

17 Tetrazolium 
8.0 2.8 - 13.7 455.15 - 588.15 452.88 - 507.54 3 

18 Tri-alkyl imidazolium 
5.4 0.7 - 14.5 526.15 - 730.19 479.72 - 684.73 31 

19 Triazolium 
4.5 0.0 - 13.5 382.15 - 698.15 393.36 - 647.91 91 

20 Uronium 
1.8 1.8 - 1.8 493.15 - 493.15 484.43 - 484.43 1 
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A comparison between the proposed model and those recently presented in literature indicates that 

the database used in this study (613 ILs) is much more comprehensive than those previously 

implemented by Lazuss [47] (198 ILs) and Yan et al. [48] (158 ILs). Furthermore, the number of 

parameters used in the model (30 molecular descriptors) is much lower than those of  Lazuss [47] 

(58 GCs) and very close to that of Yan et al. [48] (25 molecular descriptors). Of course, counting 

GCs is much simpler than computation of molecular descriptors that needs at least elementary 

knowledge of molecular simulation. Therefore, the model may be superior to the previous models. 

Thus, the model is predictive (within 4.4%) and may be conveniently used to predict the Td of ILs.   

 

6.4 Electrical Conductivity of Ionic Liquids 

6.4.1 The Non-Linear QSPR Model 

Implementing the SS algorithm explained in section 5.4.1 , the optimal susbset of 10 molecular 

descriptors was selected. Table 6.8 reports the selected molecular descriptors. As mentioned earlier, 

in all computational steps in this study, temperature is considered as a molecular descriptor.  

The LSSVM computational steps as explained have been performed following the described 

procedure in section 3.1.4. Thus, the optimal values of 
2

 and γ are 8.5048 and 7884361327.30237.  

The AARD of the model results from experimental data for each of ILs used in this study are 

presented in Table 6.9. 

                                                           
 The model has been published in Chemical Engineering Science. 101, 478-485, 2013.  
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Table 6.8 The optimal subset of molecular descriptors describing electrical conductivity of ionic liquids 

along with their definition. 

Moecular descriptor Definition 

T / K Temperature 

nPa number of phosphorous atoms 

MATS2ma Moran autocorrelation - lag 2 weighted by atomic masses 

GATS3ea Geary autocorrelation - lag 3 weighted by atomic Sanderson electronegativities 

Mor19pa MoRSE - signal 19 weighted by atomic polarizabilities 

CH2X2c  number of CH2X2 groups 

X3Avc average valence connectivity index chi-3 

R3mc R autocorrelation of lag 3 weighted by atomic masses 

R4pc R autocorrelation of lag 4 weighted by atomic polarizabilities 

f-veVSAc fractional van der Waals surface area of atoms with negative charge 

*Superscripts a and c denotes the anion- or cation-based descriptors.  

 

An important point that needs careful attention is that for some ILs the experimental data reported 

in various references significantly differs from each other. Thus, it is very difficult to decide about 

which reported data are correct and which should be eliminated. In addition, there are some 

fluctuations in the experimental data that may be due to some difficulties that are associated with 

measuring the experimental data. These issues are major causes of error in most of the ILs studied.  

 A comparison between the proposed model and the only other model available for estimation of 

the electrical conductivity of ILs (Matsuda et al. [39]) shows that the proposed model demonstrates 

significantly better results and shows an AARD of 1.9% in a wide range of temperature and for a 

data set significantly larger than that of  Matsuda et al.  
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Table 6.9 The statistical parameters of the propsoed QSPR for electrical conductivity of ionic liquids 

Statistical Parameter 

training set 

R2 0.999 

Average absolute relative deviationa 1.8 

Standard deviation errorb 0.06 

Root mean square errorc 0.06 

Nd 783 

  

validation set 

R2 0.999 

Average absolute relative deviation 2.5 

Standard deviation error 0.09 

Root mean square error 0.09 

N 97 

  

test set 

R2 0.999 

Average absolute relative deviation 2.7 

Standard deviation error 0.07 

Root mean square error 0.07 

N 97 

  

total 

R2 0.999 

Average absolute relative deviation 1.9 

Standard deviation error 0.06 

Root mean square error 0.06 

N 977 

 

 

6.4.2 The Non-Linear GC model 

 

The group contributions have been determined using the LSSVM [235] mathematical method 

explained in section 5.4.2. The optimized values of the LSSVM algorithm [235] have been 

calculated as follows: γ = 610524.4217 and 
2

  = 14.4637.  

                                                           
 The model has been published in Chemical Engineering Research and Design. 92, 66-79, 2014.  
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It has been found that the squared correlation coefficients, absolute average deviations, standard 

deviation errors, and root mean square errors of the developed model for the “training” set, the 

“validation” set, the “test” set, and the main dataset for the LSSVM-GC model are 0.997, 0.997, 

0.994, 0.997, 3.1 %, 3.6 %, 4.9 %, 3.3 %, 0.16, 0.17, 0.20, 0.16, 0.16, 0.17, 0.20, and 0.16, 

respectively. The AARD of the model results from experimental data for each of ionic liquids used 

in this study are presented as supplementary file in the supplementary DVD [437]. 

In comparison with the previous models it should be stated that the model is not comparable with 

majority of previous models due to this fact that majority of them have been developed just for 

small number of ILs or just for a few limited temperatures. Furthermore, some of them have been 

proposed to introduce new theories and they have not been intended to be used new models. As a 

result, in this section, we compare our model with the models proposed by Matsuda et al. [39], 

Tochigi and Yamamoto [53], and Gardas and Coutinho [46]. 

In comparison, with the model proposed by  Matsuda et al. [39], the present model is more accurate 

and more comprehensive. The model developed here can represent/predict the electrical 

conductivity of ILs with a lower AARD of 5% over a wide range of temperatures (maximum 

deviation 40% compared to the several hundred percent with the model of Matsuda et al. [39]. 

Furthermore, the model is more comprehensive (1077 experimental data vs. 139 experimental 

data) than the model proposed by Tochigi and Yamamoto [53]. Furthermore, in terms of the 

parameters of the models, the model presented here just uses chemical substructures to 

represent/predict the electrical conductivities of ILs, however, the parameters of the model 

proposed by Tochigi and Yamamoto [53] need quantum chemical calculations.  Also, the model 

presented here is better than that of Gardas and Coutinho [46] because it has been developed for a 

significant larger data set and this makes it more comprehensive. Furthermore, our model 
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showedlower deviation from experimental data compared to the model proposed by Gardas and 

Coutinho (3.3% vs. 4.6%) [46]. 

6.5 The Non-Linear QSPR for Normal Boiling Point Temperature  
 

Pursuing the steps discussed in sections 3.1.3 and 5.5.1, the developed has the structure of 44-40-

1 (44 molecular descriptors are regarded as the inputs of the algorithm, the second layer, viz. 

hidden layer is composed of 40 neurons, and finally one neuron was assigned for the output layer).  

Parametric description of the proposed ANN model is presented as eqn. 6.11: 

6.11 

NBPCalc(i) = W2 × (tanh((W1 × Ti) + b1))) + b2                                                                                   

In this equation Ti denotes i-th column of the input matrix (T). The input matrix elements are 

molecular descriptors (row) of the training set compounds (column). W1and b1 are the weight and 

bias matrices of second layer, respectively. Similarly, W2and b2 represent the weight and bias 

matrices of third layer (output layer), respectively. The dimension of the neural network 

parameters are as follows: 

W1 (Weight 1) = 40 × 44   , W2(Weight 2) =  1 × 40 ,  

b1(Bias 1) = 40 × 1 , b2(Bias 2) = 1 × 1  

Therefore, the ratio of the data/ (parameters of the ANN module including the weights and biases) 

is equal to 7.72 (14216 /1841). Therefore, the model is valid and is not over-fitted.  

The model derived has forty four descriptors to predict normal melting temperatures. Descriptors 

                                                           
 The model has been published in Fluid Phase Equilibria. 354, 250-258, 2013.  
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as well as their definitions and their classes are reported in the published article [438]. Statistical 

parameters of the derived model  and a comparison between predicted versus literature NBP data 

are presented in the published article [438].  By analyzing the absolute relative deviations, the 

large portion of the investigated NBP values were successfully predicted within a promising range 

of 0-3 % (62.5 %). 21.4% of investigated values were predicted within the range of 3.1%-6%; 

8.33% of data within the range of 6.1%-9% and merely 7.77% of investigated data had an error 

greater than 9 %. As was discussed earlier, 84 % of predicted values have deviations of less than 

6%. The distribution of the deviations was also studied and is presented as Error! Reference 

source not found.. As is shown in this figure, the distributions of deviations are identical for the 

training, validation and test subsets. The list of compounds studied as well as their predicted 

normal melting temperatures is presented as supplementary file in the supplementary DVD. [438].  

An advantage of the proposed model is the use of the largest datasets for both development and 

testing of the model. There a relatively few previous studies in literature which tackle the handling 

of very large datasets for the sake of model derivation with the aid of QSPR methodology. 

Difficulties in selecting the appropriate mathematical method and optimization strategy for treating 

the molecular descriptors to evaluate the normal boiling point may be one of the main reasons for 

a scarcity of methods for handling large datasets. Apart from considerations with regard to the 

computation times associated with the model development, there are several 

Another drawbacks associated with the model development as well. The procedure of selecting 

convenient parameters from a descriptor pool is very complex owing to the large number of 

compounds as well as their associated descriptors.  
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Contrary to group contribution models which merely contain functional fragments, determination 

of some of the model parameters (descriptors) are not easy and computational software is required.   

 

Figure 6.3 The normal boiling point temperatures distribution of error based on the training, the validation 

and the test sets 

 

A closer look at prior models for the estimation of the normal boiling point of organic compounds 

revealed that the majority of them employed small datasets to establish predictive correlations. 

Exploitation of a large database which covers a significant range of chemical compounds is of 

great importance to develop a widely applicable and accurate model.  
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Among the previous models, some [74, 83] merit further discussion with regard to the databases 

implemented. 

By employing database of 6000 experimental boiling point data, extracted from Registry of 

physiochemical Data, Chalk et al. [83] introduced a QSPR model which had satisfactory 

performance: R2 = 0.96 (Training set) and Error of Standard deviation equal to 16.5 K for 6000 

training set values. From a modeling point of view, Chalk et al. did not reveal the detailed 

procedure for their descriptor selection. This step is the critical bottleneck for handling very large 

databases. The feature selection procedure implemented by Chalk et al. was formal inference-

based recursive modeling (FIRM). Similarly, as  3 layer feed forward artificial neural network with 

sigmoid transfer function was implemented in Chalk et al.’s work with a network architecture of 

18:10:1. The ratio of the number of training molecules to the number of model descriptors in the 

present model is (14216 /44 ≈ 323 ), which is close to the associated value in Chalk et al.’s work 

(6000 /18 ≈ 333). The high ratio can be interpreted as the immunity of the proposed models to 

overtraining. The performance of Chalk et al.’s model is slightly better than the model proposed 

in this study in terms of the model statistical parameter (R2(Chalk model) =

0.96 , R2(this study) = 0.943), at expense of using a database which approximately half the size 

of that used in this study (14216/6000 ≈ 2.369). In the Chalk et al. model, 56.0% of the training 

set estimations have deviations below 10 K, 84.9% below 20 K, and 93.4% below 30 K. In the 

model proposed in this study, 95.2% of the training set estimations have deviations below 10 K, 

99.66% below 20 K, and all of estimated values have a deviation below 30 K. In the light of 

aforementioned values, the model proposed in the present work can be considered as being 

superior to that of Chalk et al.  
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Another example of a large dataset used in literature for prediction of normal boiling points is the 

GC based model proposed by Stein and Brown [74]. By introducing more functional groups, as 

well as correction for temperature dependent bias, they developed a modified version of the Jobak 

and Reid correlation which can predict the boiling points of 6584 compounds with an average 

absolute error of 20.4 K. No statistical parameter other than average absolute error was reported 

in their work which makes it difficult for detailed comparison between models. As stated in their 

work, a large number of boiling points were measured at pressures less than the 1 atm which 

necessitates extrapolation to obtain corresponding values at 1 atm. Employment of extrapolated 

data instead of "real" experimental data would resultantly decrease the reliability of the model.  

 

6.6 Sublimation Enthalpy at the Standard Reference Temperature of 298 K 

 

In order to find the optimal model in terms of both the number of chemical substructures and 

accuracy, a threshold value of 0.01 was considered for the decrease in AARD% as a stopping 

criterion. It means that when the improvement of the model AARD% was less than 0.01, the SS 

algorithm was automatically stopped and reported the final model. The optimal model was 

obtained using 147 chemical substructures. The model obtained is as follows: 

6.12 

∆𝑠𝑢𝑏𝑙𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝐻𝑚(𝑘𝐽. 𝑚𝑜𝑙−1) = ∑ 𝑛𝑖 × ∆𝑠𝑢𝑏𝑙𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝐻𝑚
𝑖 +

147

𝑖=1

∆𝑠𝑢𝑏𝑙𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝐻𝑚
0 

where ∆𝑠𝑢𝑏𝑙𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝐻𝑚
0 , ∆𝑠𝑢𝑏𝑙𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝐻𝑚

𝑖  and 𝑛𝑖 are the intercept of the equation, the contribution 

of the ith chemical substructure to the sublimation enthalpy, and the number of occurrences of the 

                                                           
 The model has been published in Fluid Phase Equilibria. 354, 265-285, 2013.  
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ith chemical substructure in every chemical structure of pure compounds, respectively. The subset 

of 147 chemical substructures and their contribution to the sublimation enthalpy are tabulated in 

the in supplementary file in the supplementary DVD. [414].  

The model results [414] show that it can successfully predict the standard molar enthalpies of 

sublimation of pure organic compounds at 298 K. The average absolute relative deviation, standard 

deviation error, and root mean square error of the model are 6.3%, 10.5, and,10.5 for the training 

set; 6.3%, 10.7, and 10.7 for the validation set; and 6.3%, 12.7, and 10.8 for the test set, 

respectively.  

Unfortunately, a comprehensive comparison between the presented model and the previous models 

is not possible because they have mostly developed for small groups/classes of compounds. Even 

the largest dataset used by Ouvrard  and Mitchell [106] which comprised of sublimation enthalpies 

of 261 organic compounds, when compared with the data used in this study is very small.  

In order to compare the performance of the presented model developed in this study with that 

proposed by Ouvrard  and Mitchell [106], a comparison was made based on the chemical families 

of compounds that were used by Ouvrard  and Mitchell [106] in their studies. They categorized 

the compounds within their data set as aliphatic hydrocarbons, aromatic hydrocarbons, and non-

hydrogen bonding compounds. We used the same classification for our main dataset in order to 

make a comparison. The results are presented in Error! Reference source not found.. As can be 

seen, the model presented by Ouvrard and Mitchell [106] predicts the sublimation enthalpies of 

the aliphatic and aromatic hydrocarbons slightly better than the model presented in our study. A 

similar behavior can be observed for non- hydrogen bonding compounds. It should be noted that 

the number of hydrocarbons in our dataset is significantly larger than that of Ouvrard  and Mitchell 
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[106]. Another point to consider is that majority of the compounds for which the experimental 

sublimation enthalpies have been reported are capable of forming hydrogen bonding. However, 

most of the compounds used by Ouvrard and Mitchell [106] to develop their model are non-

hydrogen bonding. This latter detail may be considered as a drawback of thir model.   

Table 6.10. Comparison of the sublimation enthalpy model and the model proposed by Ouvrard and 

Mitchell [106] 

Chemical family Statistical parameter Ouvrard  and Mitchell [106] The presented model 

Aliphatic hydrocarbons n 33 38 

 R2 0.968 0.932 

 RMSE 7.42 8.61 

Aromatic hydrocarbons n 50 79 

 R2 0.965 0.836 

 RMSE 7 10.85 

non-hydrogen bonding compounds n 156 164 

 R2 0.896 0.885 

 RMSE 9.98 10.56 

Various compounds n 226 1269 

 R2 0.925 0.826 

  RMSE 9.58 10.79 

 

6.7 Vaporization Enthalpy of Organic Compounds at the Standard Reference 

Temperature of 298 K 

The procedure outlined in section5.7.1 was pursued by introducing the collection of 323 chemical 

sub-structures into the SS algorithm.   

According to the algorithm, the optimal vaporization enthalpy model includes 150 chemical sub-

strutures. The model obtained is as follows: 

                                                           
 The model has been published in Fluid Phase Equilibria. 360, 279–292, 2013.  
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6.13 

∆𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐻𝑚°(𝑘𝐽. 𝑚𝑜𝑙−1) = ∑ 𝑛𝑖 × ∆𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐻𝑚
𝑖 +

150

𝑖=1

∆𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐻𝑚
0 

 

where ∆𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐻𝑚
0 , ∆𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐻𝑚

𝑖  and 𝑛𝑖 are the intercept of the equation, the contribution 

of the ith chemical sub-structure to the vaporization enthalpy and the number of occurrences of the 

ith chemical sub-structure in every chemical structure of pure compounds, respectively. The subset 

of 150 chemical sub-structures and their contribution to the vaporization enthalpy are tabulated 

and presented as supplementary file in the supplementary DVD [436].  

The model results demonstrate that it can successfully predict the standard molar vaporization 

enthalpies of pure organic compounds at 298 K. The %AARD, standard deviation error, and root 

mean square error of calculated values based on the model from the experimentally measured 

vaporization enthalpies are 3.7%, 4.45, and 4.45 for the training set, 3.7%, 4.51, and 4.52 for the 

validation set, and 3.7%, 3.78, and 3.78 for the test set, respectively.  

According to the results, the model predicts the enthalpies of 689 hydrocarbons with an %AARD 

of 2.4%. There are 14 hydrocarbons for which the model shows an %AARD of more than 10%. 

The compounds are trans 2,2,4,6,6-pentamethyl-3-heptene (24%), cis 2,2,4,6,6-pentamethyl-3-

heptene (20.7%), cis 1,2-diphenylethylene (20.3%), 4,4-dimethyl-1-hexene (19.5%), 1-

cyclopropyl-1,3-pentadiene (19.2%), 1-trans-5-trans-9-cis-cyclododecatriene (13.8%), 1,1,4-

trimethylcyclohexane (12%), bicyclo[2.2.1]hepta-2,5-diene (11.7%), dibenz[a,c]anthracene 

(10.9%), 5,5-bis(3,3’-dimethylbutyl)-2,2,8,8-tetramethylnonane (10.5%), 5-ethylidene-2-

norbornene (10.4%), perylene (10.3%), and 2-methylbicyclo[2.2.2]oct-2-ene (10%).  
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The model predicts the vaporization enthalpy of nitrogen compounds within the AARD of 4.7% 

deviation compared with experimental values. The %AARD of the model results from experimental 

vaporization enthalpy for oxygenated compounds is 4.5%. The majority of the outliers are for 

oxygenated compounds (55 out of 71). According to the results, the model can predict the 

vaporization enthalpies of the phosphorous-containing compounds with a reasonable AARD of 

2.7%. Sulfur-containing compounds are a class of compounds for which the model shows an 

AARD of 3.6%. Fluorine-containing compounds are one of the important classes of compounds 

whose vaporization enthalpies are estimated by the model with an AARD of 4.4%. The model 

predicts the vaporization enthalpies of chlorine-containing compounds better than fluorine-

containing compounds in terms of AARD (3.7% vs. 4.4%). Based on the model analysis, the 

vaporization enthalpies of bromine-containing compounds are successfully predicted by the 

model. The model AARD for this class of compounds is 2.5%, which is less than those of 

previously mentioned halogenated compounds.  

Unfortunately, a comprehensive comparison between the model proposed in this study and 

previously proposed models is not possible because they have mostly been developed for small 

groups/classes of compounds and it is not possible to use most of the previous models for the 

compounds used in this study.  

Very recently, Santos and Leal [154] reviewed various models for the estimation of the 

vaporization enthalpy at the standard temperature of 298.15. They used a dataset of 83 

hydrocarbons including alkanes, alkenes, polyenes, diynes, cycloalkanes, alkylidenecycloalkenes, 

cycloalkenes, and benzene related compounds to compare their model with the models proposed 

by Ducros et al. [141, 142], Guthrie and Taylor [145], Chickos et al. [137], Domalski and Hearing 

[439] , Constantinou and Gani [138], and Kolská et al. [146]. The same dataset used here to
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Table 6.11. Comparison between the presented vaporization enthalpy model and the previous models suggested by Ducros et al. [141, 142], 

Guthrie and Taylor [145], Chickos et al. [137], Domalski and Hearing [439] , Constantinou and Gani [138], and Kolská et al. [146], using the data 

set comprised of 83 compounds used in Santos and Leal [154] studies. 

No. Compound exp. This work Santos and Leal Ducrosa et al. 

Guthrie and 

Taylor Chickosc et al. 

Domalskid et 

al. 

Constantinoue and 

Gani Kolskáf et al. 

This 

work AE %ARD AE %AARD AE %ARD AE %ARD AE %ARD AE %ARD AE %ARD AE %ARD 

1 3,3-Diethylpentane 42.6 43.5 0.9 2.1 1.1 2.6 0.1 0.2 0.7 1.6 2.9 6.8 0.4 0.9 0.6 1.4 0.2 0.5 

2 2,2,4-Trimethylhexane 40.7 40.3 0.4 0.9 0.1 0.3 0.5 1.2 1.3 3.2 3.1 7.6 0.9 2.2 0.7 1.7 0.7 1.7 

3 2,2,5-Trimethylhexane 40.2 40.7 0.5 1.2 0.1 0.3 1.0 2.5 1.8 4.5 2.6 6.5 1.4 3.5 0.1 0.3 0.3 0.8 

4 2,3,5-Trimethylhexane 41.4 41.5 0.1 0.3 0.5 1.2 0.9 2.2 1.3 3.1 2.5 6.0 0.9 2.2 0.6 1.5 0.3 0.7 

5 Nonane 46.4 46.1 0.3 0.7 0.3 0.7 0.3 0.7 0.4 0.9 1.3 2.8 0.0 0.0 1.2 2.6 0.9 1.9 

6 2,4-Dimethyloctane 47.1 47.3 0.2 0.4 0.6 1.3 1.4 3.0 2.0 4.3 1.5 3.2 1.7 3.6 0.6 1.3 0.1 0.2 

7 2-Methylnonane 49.6 49.2 0.4 0.8 0.3 0.6 0.2 0.4 0.9 1.8 1.9 3.8 0.5 1.0 0.5 1.0 0.1 0.2 

8 Decane 51.4 51.1 0.3 0.6 0.4 0.8 0.3 0.6 0.5 1.0 1.6 3.1 0.1 0.2 0.9 1.8 0.6 1.2 

9 Dodecane 61.5 61.1 0.4 0.7 0.9 1.5 0.4 0.7 0.5 0.8 2.3 3.7 0.2 0.3 0.1 0.2 0.1 0.2 

10 Tri-tert-butylmethane 55.3 48.5 6.8 12.4 3.5 6.3 1.5 2.7 0.0 0.0 9.9 17.9 1.4 2.5 7.0 12.7 6.1 11.0 

11 5-Ethyl-5-methyldecane 60.5 61.5 1.0 1.7 2.0 3.3 1.9 3.1 3.1 5.1 2.1 3.5 2.7 4.5 1.3 2.2 0.8 1.3 

12 3,3,6,6-Tetraethyloctane 74.3 72.8 1.5 2.1 1.6 2.2 0.6 0.8 1.0 1.4 7.3 9.8 1.0 1.4 3.0 4.0 3.6 4.9 

13 Hexadecane 81.4 81.0 0.4 0.4 1.4 1.7 0.4 0.5 0.9 1.1 3.5 4.3 0.7 0.9 1.2 1.5 1.1 1.4 

14 2,4,4-Trimethyl-2-pentene 37.5 35.7 1.8 4.9 0.2 0.5 0.7 1.9 0.3 0.8 2.5 6.7 0.5 1.3 1.1 2.9 1.0 2.7 

15 (Z)-2,2-Dimethyl-3-hexene 37.2 36.7 0.5 1.4 0.1 0.3 0.7 1.9 0.2 0.5 2.2 5.9 0.2 0.5 1.3 3.5 0.4 1.1 

16 (E)-2,2-Dimethyl-3-hexene 37.2 36.7 0.5 1.4 0.3 0.8 0.7 1.9 0.2 0.5 2.2 5.9 0.4 1.1 1.3 3.5 0.4 1.1 

17 1-Octene 40.4 40.3 0.1 0.2 0.0 0.0 0.1 0.3 0.5 1.2 0.1 0.3 0.0 0.0 0.1 0.3 0.6 1.5 

18 (Z)-2-Octene 40.2 40.5 0.3 0.7 1.0 2.5 1.3 3.2 2.3 5.7 0.3 0.8 0.8 2.0 0.4 1.0 1.2 3.0 

19 (E)-2-Octene 40.2 40.5 0.3 0.7 1.3 3.2 1.3 3.2 2.3 5.7 0.3 0.8 1.2 3.0 0.4 1.0 1.2 3.0 

20 (Z)-3-Octene 39.7 40.5 0.8 1.9 1.2 3.0 1.9 4.8 3.3 8.3 0.8 2.0 1.0 2.5 0.6 1.5 1.5 3.8 

21 (E)-3-Octene 40.2 40.5 0.3 0.7 1.0 2.5 1.4 3.5 2.8 7.0 0.3 0.8 0.9 2.2 0.1 0.3 1.0 2.5 

22 (Z)-4-Octene 39.7 40.5 0.8 1.9 1.2 3.0 1.9 4.8 3.3 8.3 0.8 2.0 1.0 2.5 0.6 1.5 1.5 3.8 

23 (E)-4-Octene 42.9 40.5 2.4 5.7 1.7 4.0 1.3 3.0 0.1 0.2 2.4 5.6 1.8 4.2 2.6 6.1 1.7 4.0 

24 2,6-Dimethyl-1-heptene 45.9 43.1 2.8 6.1 2.3 5.0 1.3 2.8 1.0 2.2 2.8 6.1 1.9 4.1 3.4 7.4 3.0 6.5 

25 1-Nonene 44.7 45.1 0.4 0.8 0.5 1.1 0.8 1.8 1.2 2.7 0.4 0.9 0.8 1.8 0.5 1.1 1.0 2.2 
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26 1-Decene 50.4 50.1 0.3 0.7 0.3 0.6 0.1 0.2 0.6 1.2 0.6 1.2 0.2 0.4 0.6 1.2 0.0 0.0 

27 3-Methyl-3-propyl-1-heptene 50.9 50.8 0.1 0.2 1.0 2.0 0.9 1.8 0.4 0.8 1.9 3.7 1.7 3.3 0.1 0.2 0.2 0.4 

28 1-Undecene 54.3 55.1 0.8 1.4 0.6 1.1 1.2 2.2 1.8 3.3 0.2 0.4 1.4 2.6 0.2 0.4 0.8 1.5 

29 1-Dodecene 60.8 60.0 0.8 1.2 1.1 1.8 0.3 0.5 0.3 0.5 1.6 2.6 0.0 0.0 1.7 2.8 0.9 1.5 

30 1-Hexadecene 80.2 80.0 0.2 0.2 1.1 1.4 0.2 0.3 1.2 1.5 2.3 2.9 1.0 1.3 2.5 3.1 1.4 1.8 

31 1,5-Hexadiyne 31.9 35.4 3.5 11.1 1.4 4.4 3.5 11.0 31.9 100.0 0.8 2.5 6.9 21.6 0.3 0.9 0.7 2.2 

32 (Z)-1,3,5-Hexatriene 34.1 31.7 2.4 7.1 1.1 3.2 0.5 1.5 25.7 75.4 3.0 8.8 1.0 2.9 2.4 7.0 3.8 11.1 

33 1,7-Octadiyne 41.7 44.9 3.2 7.6 1.3 3.1 3.7 8.9 31.6 75.8 1.2 2.9 7.3 17.5 0.8 1.9 0.3 0.7 

34 Bicyclopropyl 31.7 33.9 2.2 6.9 3.3 10.4 5.8 18.3 5.3 16.7 0.6 1.9 14.6 46.1 0.7 2.2 2.8 8.8 

35 1-Cyclopropylpenta-1,3-diyne 51.9 50.0 1.9 3.7 1.2 2.3 41.0 79.0 41.8 80.5 11.4 22.0 32.3 62.2 5.9 11.4 5.7 11.0 

36 1,1,2-Trimethylcyclopentane 38.1 36.6 1.5 4.0 0.5 1.3 0.4 1.1 2.5 6.6 3.1 8.1 6.1 16.0 0.5 1.3 2.5 6.6 

37 1,1,3-Trimethylcyclopentane 36.6 35.4 1.2 3.1 0.1 0.3 1.1 3.0 1.0 2.7 0.5 1.4 4.6 12.6 0.0 0.0 2.9 7.9 

38 Butylcyclopentane 45.9 45.6 0.3 0.7 0.3 0.7 0.4 0.9 1.7 3.7 0.8 1.7 5.3 11.6 0.3 0.7 0.2 0.4 

39 1,1,3-Trimethylcyclohexane 41.9 39.5 2.4 5.7 0.6 1.4 0.1 0.2 1.2 2.9 0.1 0.2 0.9 2.2 0.9 2.2 4.2 10.0 

40 1,1,4-Trimethylcyclohexane 45.6 40.1 5.5 12.0 4.3 9.4 3.8 8.3 4.9 10.8 3.8 8.3 2.8 6.1 1.0 2.2 7.9 17.3 

41 Isopropylcyclohexane 44.0 44.2 0.2 0.4 0.2 0.5 0.1 0.2 1.2 2.7 0.9 2.1 0.9 2.1 0.3 0.7 0.3 0.7 

42 Bicyclopentyl 50.4 49.4 1.0 2.0 1.4 2.8 1.0 2.0 3.8 7.5 0.6 1.2 10.5 20.8 2.0 4.0 0.1 0.2 

43 tert-Butylcyclohexane 47.0 46.7 0.3 0.7 0.6 1.3 0.3 0.6 1.2 2.6 2.6 5.5 0.5 1.1 2.3 4.9 0.0 0.0 

44 Bicyclohexyl 58.0 58.8 0.8 1.4 1.4 2.4 1.6 2.8 1.3 2.2 1.2 2.1 3.5 6.0 0.9 1.6 0.5 0.9 

45 Decylcyclohexane 78.7 80.5 1.8 2.3 0.3 0.4 1.5 1.9 0.9 1.1 0.8 1.0 3.3 4.2 0.9 1.1 0.6 0.8 

46 Dodecylcyclohexane 88.9 90.5 1.6 1.8 0.3 0.3 1.3 1.5 0.8 0.9 1.6 1.8 3.3 3.7 1.8 2.0 1.4 1.6 

47 3-Isopropyl-6-methylene cyclohexene 49.2 50.3 1.1 2.2 1.0 2.0 2.6 5.3 10.0 20.3 1.5 3.1 4.2 8.5 3.8 7.7 1.1 2.2 

48 

Cyclohexene, 1-methyl-4-(1-

methylethylidene)- 53.2 52.0 1.2 2.3 1.0 1.9 3.2 6.0 5.2 9.8 3.4 6.4 1.6 3.0 5.3 10.0 4.0 7.5 

49 1,3-Dimethylcyclopentene 35.0 36.5 1.5 4.4 0.4 1.1 1.8 5.1 1.8 5.1 0.8 2.3 3.6 10.3 0.4 1.1 4.7 13.4 

50 1,4-Dimethylcyclopentene 34.5 36.5 2.0 5.9 0.1 0.3 2.8 8.1 1.1 3.2 1.3 3.8 4.1 11.9 0.6 1.7 5.2 15.1 

51 1,5-Dimethylcyclopentene 36.5 37.1 0.6 1.6 1.4 3.8 0.3 0.8 0.3 0.8 2.8 7.7 2.1 5.8 1.0 2.7 4.3 11.8 

52 4-Ethylcyclopentene 36.8 36.6 0.2 0.5 0.1 0.3 0.1 0.3 1.5 4.1 1.0 2.7 2.0 5.4 3.2 8.7 1.1 3.0 

53 3-Methylcyclohexene 38.8 36.6 2.2 5.6 3.1 8.0 2.0 5.2 2.3 5.9 3.0 7.7 1.0 2.6 4.7 12.1 1.4 3.6 

54 

1-Methyl-4-isopropyl-1,4-

cyclohexadiene 51.4 51.3 0.1 0.1 0.6 1.2 8.7 16.9 9.6 18.7 3.7 7.2 2.3 4.5 5.7 11.1 1.1 2.1 

55 1-Ethenyl-2-methylbenzene 49.3 48.0 1.3 2.7 0.0 0.0 10.7 21.7 12.4 25.2 6.2 12.6 3.1 6.3 3.3 6.7 0.1 0.2 

56 1-Ethenyl-3-methylbenzene 49.5 47.7 1.8 3.6 0.8 1.6 11.8 23.8 12.6 25.5 4.4 8.9 2.0 4.0 3.1 6.3 0.5 1.0 

57 1-Ethenyl-4-methylbenzene 48.9 48.0 0.9 1.8 0.2 0.4 11.7 23.9 12.0 24.5 3.8 7.8 0.7 1.4 3.7 7.6 1.7 3.5 
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58 (Z)-1-Propenylbenzene 49.1 47.4 1.7 3.4 0.4 0.8 10.1 20.6 10.2 20.8 4.0 8.2 0.5 1.0 2.5 5.1 2.4 4.9 

59 (E)-1-Propenylbenzene 46.9 47.4 0.5 1.1 2.9 6.2 7.9 16.8 8.0 17.1 1.8 3.8 3.1 6.6 4.7 10.0 4.6 9.8 

60 Allylbenzene 46.2 46.4 0.2 0.5 0.0 0.0 3.9 8.4 4.2 9.1 1.1 2.4 3.6 7.8 2.4 5.2 0.2 0.4 

61 1-Ethyl-2-ethenylbenzene 52.1 52.3 0.2 0.5 2.0 3.8 9.3 17.9 11.8 22.7 4.4 8.5 2.5 4.8 5.0 9.6 1.1 2.1 

62 1-Ethyl-3-ethenylbenzene 53.9 52.4 1.5 2.8 0.4 0.7 12.1 22.5 13.6 25.2 4.1 7.6 2.9 5.4 3.2 5.9 0.1 0.2 

63 1-Ethyl-4-ethenylbenzene 52.6 52.7 0.1 0.2 0.9 1.7 11.3 21.5 12.3 23.4 2.8 5.3 1.0 1.9 4.5 8.6 1.9 3.6 

64 1-Buten-2-ylbenzene 51.8 51.8 0.0 0.1 2.1 4.1 8.0 15.5 8.3 16.0 2.0 3.9 4.4 8.5 3.6 7.0 2.9 5.6 

65 (3-Methyl-1-buten-2-yl) benzene 53.2 54.9 1.7 3.2 3.4 6.4 6.3 11.8 4.8 9.0 0.8 1.5 2.0 3.8 5.5 10.3 4.2 7.9 

66 3-Methyl-1-tert-butylbenzene 51.1 53.4 2.3 4.5 1.5 2.9 2.8 5.5 1.0 2.0 2.1 4.1 0.3 0.6 7.4 14.5 0.3 0.6 

67 4-Methyl-1-tert-butylbenzene 52.2 53.7 1.5 2.9 0.4 0.8 1.2 2.3 0.1 0.2 3.2 6.1 0.2 0.4 6.3 12.1 0.3 0.6 

68 (3,3-Dimethyl-1-buten- 2-yl) benzene 53.2 57.4 4.2 7.9 7.0 13.2 3.2 6.0 5.1 9.6 0.5 0.9 0.9 1.7 7.1 13.3 6.6 12.4 

69 Cyclohexylbenzene 60.8 60.7 0.1 0.2 1.6 2.6 0.7 1.2 1.8 3.0 1.6 2.6 0.4 0.7 2.3 3.8 1.6 2.6 

70 3,5-Dimethyl-1-tert-butylbenzene 56.6 57.9 1.3 2.4 0.8 1.4 2.4 4.2 0.2 0.4 2.9 5.1 2.3 4.1 7.5 13.2 1.1 1.9 

71 1,3,5-Triethylbenzene 59.2 61.7 2.5 4.3 2.3 3.9 1.0 1.7 1.5 2.5 0.0 0.0 4.2 7.1 2.8 4.7 0.3 0.5 

72 1,3-Di-isopropylbenzene 56.2 58.7 2.5 4.5 0.7 1.3 0.6 1.1 0.3 0.5 1.2 2.1 1.6 2.9 1.7 3.0 0.9 1.6 

73 1,4-Di-isopropylbenzene 56.5 59.0 2.5 4.4 1.0 1.8 0.2 0.4 0.0 0.0 1.5 2.7 1.3 2.3 1.4 2.5 0.7 1.2 

74 1,3-Di-tert-butylbenzene 59.6 63.6 4.0 6.8 3.3 5.5 5.6 9.4 1.5 2.5 2.0 3.4 1.6 2.7 14.5 24.3 0.1 0.2 

75 1,4-Di-tert-butylbenzene 63.0 63.9 0.9 1.5 0.1 0.2 1.7 2.7 1.9 3.0 5.4 8.6 1.2 1.9 11.1 17.6 2.7 4.3 

76 1,3,5-Tri-isopropylbenzene 64.6 71.0 6.4 9.9 2.3 3.6 4.4 6.8 3.3 5.1 2.4 3.7 0.6 0.9 6.6 10.2 0.9 1.4 

77 1,2,4,5-Tetra-isopropylbenzene 75.7 82.3 6.6 8.7 3.9 5.2 7.0 9.3 3.6 4.8 0.9 1.2 4.4 5.8 8.8 11.6 2.1 2.8 

78 1,1-Diphenylethylene 71.2 71.4 0.2 0.3 2.9 4.1 9.9 13.9 11.0 15.5 2.6 3.7 2.0 2.8 9.2 12.9 7.1 10.0 

79 (Z)-1,2-Diphenylethylene 70.5 72.7 2.2 3.1 3.9 5.5 14.0 19.9 14.4 20.4 1.9 2.7 7.9 11.2 10.5 14.9 9.6 13.6 

80 (E)-1,2-Diphenylethylene 79.6 72.7 6.9 8.7 2.5 3.1 23.1 29.0 23.5 29.5 11.0 13.8 0.8 1.0 1.4 1.8 0.5 0.6 

81 1,1-Diphenylethane 68.9 70.3 1.4 2.1 3.8 5.5 1.4 2.0 2.1 3.1 2.4 3.5 23.3 33.8 4.4 6.4 4.3 6.2 

82 2-Methyl-1,1-diphenylpropane  73.2 76.9 3.7 5.0 0.7 1.0 5.8 7.9 6.6 9.0 2.7 3.7 27.9 38.1 7.3 10.0 7.0 9.6 

83 Tri-phenylethene 91.8 100.5 8.7 9.5 13.0 14.2 7.1 7.7 7.7 8.4 4.9 5.3 15.8 17.2 23.4 25.5 20.1 21.9 

  Total     1.6 3.1 1.4 2.6 3.7 7.0 5.1 10.6 2.4 4.6 3.3 6.4 3.1 5.5 2.1 4.1 
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 compare the obtained model with the previous ones, even the one proposed by Santos and Leal 

[154]. The results are presented in Table 6.11 [436]. 

 As demonstrated, the model proposed predicts the vaporization enthalpies of the compounds with 

an %AARD of 3.1%. However, the models proposed by Ducros et al. [141, 142], Guthrie and 

Taylor [145], Chickos et al. [137], Domalski and Hearing [439] , Constantinou and Gani [138], 

and Kolská et al. [146] predicts the dataset with an %AARD of 7%, 10.6%, 4.6%, 6.4%, 5.5%,  

and 4.1%, respectively. Therefore, the model predicts the vaporization enthalpies of the selected 

83 compounds better than these previous models. It should be noted that the model proposed by 

Santos and Leal [154] estimates the vaporization enthalpies of the selected 83 hydrocarbons with 

an %AARD of 2.6% which shows that their model is slightly better than the present model (2.6% 

vs. 3.1%). However, the model proposed by Santos and Leal [154] is capable of use for just for 

hydrocarbons, i.e. it cannot be considered as a general model. As result, the model proposed here 

can be considered better than previous models.  

6.8 Speed of Sound in Saturated Liquids  

Nearly 600 chemical substructures were gathered from previous articles published by the authors 

and considered to be useful for the representation/prediction of saturated liquid speed of sound. 

Since the saturated liquid speed of sound is a temperature dependent property, temperature is 

included in the database of chemical substructures as a separate column and considered as a 

chemical substructure.  

                                                           
 The model has been published in Journal of Molecular Liquids, 194, 159-165, 2014.  
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The combination of sequential search algorithm and LSSVM was used to select the most efficient 

subset of chemical substructures as well as developing a non-linear LSSVM model [235].  

The most efficient subset of chemical substructures comprised of 44 chemical substructures 

including temperature. It is presented as supplementary file in the supplementary DVD [390].  

The optimized values of the LSSVM algorithm [235] were calculated by means of the simulated 

annealing optimization technique [235]  as follows: γ = 6737788.288 and σ2 = 0.993333622. The 

numbers of significant digits for the two aforementioned parameters were obtained by sensitivity 

analysis of the overall errors of the optimization procedure.  

The determined saturated liquid speed of sound values and their absolute relative deviations using 

this method and compared with the experimental values are presented as supplementary file in the 

supplementary DVD. [390] It has been found that the squared correlation coefficients, average 

absolute deviations (AARD%), standard deviation errors, and root mean square errors of the 

developed model for the “training” set, the “validation” set, the “test” set, and the main dataset for 

the LSSVM-GC model are 0.998, 0.999, 0.998, 0.998, 0.5 %, 0.6 %, 0.7 %, 0.6 %, 17.31, 9.43, 

21.15, 17.12, 17.30, 9.41, 21.13, and 17.12, respectively.  

According to the results, there are 9 data points, for which the model shows more than a 10% 

absolute relative deviation (ARD%); 4 points of which are for propane, 2 points for methane, and 

one point for each one of  carbon dioxide, ethylbenzene, and 3-bromohexane. 

A careful consideration of the model results shows that it represents/predicts the saturated liquid 

speed of sound of propane, methane, carbon dioxide, ethylbenzene, and 3-bromohexane with 

AARD% of 3.73%, 1.93%, 2.39%, 0.92%, and 1.93%, respectively. Furthermore, the highest 

deviation of the model results from experimental data is related to propane and carbon dioxide 
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with deviations of 3.73% and 2.39, respectively. As a result, the model cannot predict the saturated 

liquid speed of sound of propane and carbon dioxide as accurately as for the other compounds. 

Moreover, since the model predicts the saturated liquid speed of sound of methane, ethylbenzene, 

and 3-bromohexane very well, there may be issues with regard to the accuracy of measurement of 

the data points. 

 

6.9 The Standard Molar Chemical Exergy of Organic Compounds 

The sequential search was initially started with a collection of 140 chemical substructures prepared 

in the previous step (section 5.9).  

The optimal model is obtained using a subset of 47 chemical substructures. The model is presented 

as follows:    

6.14 

𝜀° = 𝜀°0 + ∑ 𝑛𝑖𝜀°𝑖

47

𝑖=1

 

where 𝜀°0 and 𝜀°𝑖 are the intercept of the equation, and the contribution of ith chemical substructure 

to the standard chemical exergy of pure organic compounds, respectively (The units for both 𝜀°0 

and 𝜀°𝑖 are kJ.mole-1). The subset of 47 chemical substructures and their contributions to standard 

chemical exergy are presented in Table 1.  

The model can successfully be described using the group contribution method. The average 

absolute relative deviation, standard deviation error, and root mean square error of the model from 

                                                           
 The model has been published in Energy 70, 288-297, 2014.  
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experimental data are (1.6%, 158601, 158393) (1.6%, 260872, 254247) and (1.6%, 145868, 

140166) for the training set, validation set, and test set respectively.  

The AARD% of the model from literature values for hydrocarbons is equivalent to 2.1%. The 

maximum absolute relative deviation of the model from literature hydrocarbon data is for ethylene 

with a value of 11.9%.  

According to the dataset, there are 21 nitrogen containing compounds within the database for 

which the model gives a promising AARD% of 0.3%. The maximum absolute relative deviation 

among nitrogen compounds is for urea for which the value is 1.5%. 

An analysis of the compounds in the dataset shows the presence of 62 oxygenated compounds. 

The AARD% of the model from literature values for the oxygenated compounds is a promising 

value of 0.9%. The maximum relative deviation for the model among the oxygenated compounds 

is for phthalic anhydride which has a value of 9.3%. 
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Table 6.12 The contribution of each chemical substructure to the standard molar chemical exergy pure organic compounds (parameters of 

equation 6.14) 

No. ID Chemical substructure Comment Substructure Contribution 

 ε°0  intercept of eq. (2) 626,757.2 

1 ε°1 

 

number of total tertiary C(sp3) 
Y = H or any heteroatom 

171,171.8 

2 ε°2 

 

number of ring tertiary C(sp3) 
Y = H or any heteroatom 

-209,682.5 

3 ε°3 

 

number of non-aromatic conjugated C(sp2) -89,442.6 

4 ε°4 

 

number of aliphatic secondary C(sp2) 
Y = H or any heteroatom 

115,290.6 
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5 ε°5 

 

number of primary amides (aliphatic) 
Al = H or aliphatic group linked through C 

-253,798.9 

6 ε°6 

 

number of secondary amides (aromatic) 
Y = Ar or Al (not H, not C = O) 

-615,532.7 

7 ε°7 

 

number of aldehydes (aliphatic) -61,177.5 

8 ε°8 

 

number of guanidine derivatives 183,077.7 

9 ε°9 

 number of primary amines (aliphatic) 
Al = aliphatic group linked through C  

(not C = O) 
154,555.3 

10 ε°10 

 

number of tertiary amines (aliphatic) 
Al = aliphatic group linked through C  

(not C = O) 
-13,275.5 

11 ε°11 

 

number of imides (thio-) 
Y = H or C     Y1 = O or S 

-361,685.5 
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12 ε°12 

 

number of ethers (aliphatic) 
Al = aliphatic group linked through C (not C = O, not C # N) 

48,097.1 

13 ε°13 

 

number of intramolecular H-bonds 
Y1 = B, N, O, Al, P, S 

Y2 = N, O, F 
-100,695.5 

14 ε°14 CH3X  253,982.7 

15 ε°15 R--CR--R  31,298.4 

16 ε°16 R-C(=X)-X or R-C#X or X=C=X  -135,027.2 

17 ε°17 Ha attached to C0(sp3) no X attached to next C  57,481.2 

18 ε°18 Ha attached to C3(sp3) or C2(sp2) or C3(sp2) or C3(sp)  -26,030.7 

19 ε°19 Ha attached to C0(sp3) with 1X attached to next C  41,406.9 

20 ε°20 phenol or enol or carboxyl OH  -200,332.3 

21 ε°21 Al-O-Ar or Ar-O-Ar or R..O..R or R-O-C=X  69,949.7 

22 ε°22 Ar2NH or Ar3N or Ar2N-Al or R..N..Rb  -146,741.0 

23 ε°23 absence/presence of C-C 
0 or 1 
 

258,074.9 

24 ε°24 absence/presence of C-O 
0 or 1 
 

39,315.2 

25 ε°25 absence/presence of C-S 
0 or 1 
 

803,943.3 

26 ε°26 absence/presence of C-A-C 
0 or 1 
(A means any atom except hydrogen) 

201,602.5 

27 ε°27 absence/presence of C-(A)2-C 
0 or 1 
(A means any atom except hydrogen) 

211,229.7 

28 ε°28 absence/presence of N-(A)2-O 
0 or 1 
(A means any atom except hydrogen) 

-68,150.9 

29 ε°29 absence/presence of C-(A)3-C 
0 or 1 
(A means any atom except hydrogen) 

178,596.3 

30 ε°30 absence/presence of N-(A)3-O 
0 or 1 
(A means any atom except hydrogen) 

-179,334.0 

31 ε°31 absence/presence of O-(A)3-O 
0 or 1 
(A means any atom except hydrogen) 

-45,758.6 

32 ε°32 absence/presence of C-(A)4-C 
0 or 1 
(A means any atom except hydrogen) 

165,809.6 
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33 ε°33 absence/presence of C-(A)5-C 
0 or 1 
(A means any atom except hydrogen) 

144,194.3 

34 ε°34 absence/presence of C-(A)6-C 
0 or 1 
(A means any atom except hydrogen) 

131,264.1 

35 ε°35 absence/presence of C-(A)7-O 
0 or 1 
(A means any atom except hydrogen) 

717,611.9 

36 ε°36 absence/presence of C-(A)8-C 
0 or 1 
(A means any atom except hydrogen) 

399,063.2 

37 ε°37 absence/presence of C-(A)9-C 
0 or 1 
(A means any atom except hydrogen) 

543,611.6 

38 ε°38 absence/presence of C-(A)9-O 
0 or 1 
(A means any atom except hydrogen) 

-204,606.1 

39 ε°39 C-C  319,737.5 

40 ε°40 N-A-N 
number of N-A-N substructure  
(A means any atom except hydrogen) 

16,773.2 

41 ε°41 C-(A)2-N 
number of C-(A)2-N substructure  
(A means any atom except hydrogen) 

127,623.3 

42 ε°42 N-(A)2-O 
number of N-(A)2-O substructure  
(A means any atom except hydrogen) 

26,865.4 

43 ε°43 O-(A)2-O 
number of O-(A)2-O substructure  
(A means any atom except hydrogen) 

-5,498.2 

44 ε°44 C-(A)3-C 
number of C-(A)3-C substructure  
(A means any atom except hydrogen) 

55,195.2 

45 ε°45 C-(A)3-N 
number of C-(A)3-N substructure  
(A means any atom except hydrogen) 

4,884.9 

46 ε°46 N-(A)3-O 
number of N-(A)3-O substructure  
(A means any atom except hydrogen) 

160,371.9 

47 ε°47 C-(A)5-C 
number of C-(A)5-C substructure  
(A means any atom except hydrogen) 

-10,059.0 

R represents any group linked through carbon;  

X represents any electronegative atom (O, N, S, P, Se, halogens);  

Al and Ar represent aliphatic and aromatic groups, respectively;  

= represents a double bond;  

# represents a triple bond;  

-- represents an aromatic bond as in benzene or delocalized bonds such as the N-O bond in a nitro group 

a An alpha-C may be defined as a C attached through a single bond with -C=X, -C#X, -C--X. 

b Pyrrole-type structure
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The model can successfully predict the standard chemical exergy of all the oxygenated compounds 

within an AARD% of 2.5%, except for three compounds for which the model shows a significant 

deviation (butanol with 7.8%, L-Sorbose with 8.9% and phthalic anhydride with 9.3%).   

There are 3 sulfur containing compounds within the dataset for which the model results in a 

promising AARD% value of 0.3%. The maximum deviation of the model among sulfur containing 

compounds is for cycteine which has a value of 0.8%.  

In order to compare the model proposed in this study with previous models reported in literature 

[198, 200-202, 204, 206-208], the following points have to be considered. First of all, the proposed 

model predicts the standard chemical exergy of pure organic compounds at their most stable state 

without any information about what is this state at the reference state [208]. This point is very 

important because the knowledge of the physical state of the compound is needed in the majority 

of previous models to select the correct correlation for the estimation of the chemical exergy [208]. 

In some cases the physical state of a compound at the reference state may be controversial, as has 

been reported by Song et al. [208].  

In most of the previous models the elemental compositions are used to estimate the chemical 

exergy of pure organic compounds [198-202, 204, 206, 208] instead of the chemical structure. 

Although this may be useful for some of the fuels studied, which are composed of various organic 

and inorganic compounds, the application of elemental based models for pure organic compounds 

would be limited. This is the most likely reason why the elemental based models cannot take into 

account the interactions among various chemical groups in pure organic chemical compounds. 

The last point that should be considered when comparing the proposed model with previous 

reported models is that the model presented in this study proposes a direct procedure to estimate 
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the chemical exergy of pure organic compounds. As has been mentioned earlier, most of the 

currently available models are based on the estimation of entropy [201-206, 208]. Therefore, most 

of the available models are developed in two steps, the first step which involves the estimation of 

entropy of pure organic compounds. This two-step approach may generate some errors in the 

estimation of the chemical exergy of pure organic compounds. Thus, direct methods for the 

estimation of chemical exergy of pure organic compounds are better than indirect methods. As a 

result, a comparison of the proposed model is made with just one of the recently proposed direct 

methods for the estimation of the standard chemical exergy of pure organic compounds, viz. the 

model proposed by Gharagheizi and Mehrpooya [207] using the same dataset as used in this study.   

As shown in Table 6.13, A comparison between the model proposed by Gharagheizi and 

Mehrpooya and the model proposed here shows that, in terms of the AARD%, the model proposed 

in this study is more accurate and gives a lower value (1.6% vs. 3%) than the model proposed by 

Gharagheizi and Mehrpooya [207]. Although the model proposed by Gharagheizi and Mehrpooya 

[207] gives slightly better results for hydrocarbons (1.5% versus 2.1%), it gives significantly 

higher deviations for nitrogen containing compounds (5.5% vs. 0.3%), oxygenated compounds 

(4.8% vs. 0.9%), and sulfur containing compounds (4.3% vs. 0.3%). Also, the proposed model is 

simpler to apply compared to the model proposed by Gharagheizi and Mehrpooya [207]. This 

simplicity is mainly due to the fact that the parameters of the proposed model are several chemical 

substructures that are used to constitute any chemical structure and can be easily counted without 

any need for additional computational facilities.   
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Table 6.13. Comparison of the presented model and the previous model propsoed by Gharagheizi 

for the estimation of standard molar chemical exergy of pure organic compounds. 

 

No. Name 𝜀° [197] 𝜀° [207] 𝜀° (this model) %ARD Status 

1 Methane 836510 837479 856682 2.4 training 

2 Ethane 1504360 1493749 1549457 3.0 training 

3 Propane 2163190 2159909 2185759 1.0 training 

4 Butane 2818930 2816466 2831689 0.5 training 

5 Pentane 3477050 3472976 3500180 0.7 training 

6 Hexane 4134590 4129492 4155884 0.5 training 

7 Heptane 4786300 4786117 4779915 0.1 training 

8 Octane 5440030 5442718 5391015 0.9 training 

9 Nonane 6093550 6099346 5870851 3.7 training 

10 Decane 6749750 6765669 6749750 0.0 training 

11 Undecane 7404520 7422373 7773198 5.0 training 

12 Dodecane 8059340 8079121 8253034 2.4 training 

13 Tridecane 8714200 8735920 8732870 0.2 training 

14 Tetradecane 9368970 9392787 9212706 1.7 test 

15 Pentadecane 10023870 10049717 9692542 3.3 test 

16 Hexadecane 10678810 10706722 10172378 4.7 training 

17 Cycloprppane 2052490 1935966 2188932 6.6 training 

18 Cyclobutane 2707730 2602430 2825234 4.3 training 

19 Cyclohexane 3928100 3917013 3905863 0.6 training 

20 Methylcyclo-hexane 4573030 4573714 4535844 0.8 training 
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21 Ethylcyclohexane 5246900 5229963 5246744 0.0 training 

22 Propyl cyclohexane 5878430 5886942 5925969 0.8 training 

23 Butylcyclo-hexane 6534510 6543524 6527010 0.1 training 

24 Ethylene 1366610 1279652 1204570 11.9 training 

25 Propene 2010840 1936747 2013644 0.1 training 

26 1-Butene 2668920 2603054 2659573 0.4 training 

27 1-Hexene 3984330 3916220 3983769 0.0 training 

28 1-Heptene 4641570 4572698 4607799 0.7 training 

29 Acetylene 1269310 1064274 1204570 5.1 validation 

30 Propyne 1904070 1722194 1898353 0.3 training 

31 1-Butyne 2561190 2379366 2544283 0.7 validation 

32 1-Hexyne 3876600 3702643 3868478 0.2 training 

33 1-Heptyne 4534300 4359199 4492509 0.9 training 

34 Benzene 3310540 3269841 3216089 2.9 training 

35 Toluene 3952550 3936233 3942062 0.3 validation 

36 Ethylbenzene 4610250 4592769 4652961 0.9 training 

37 Propyl benzene 5262930 5249352 5332187 1.3 training 

38 Butyl benzene 5908120 5906035 5933228 0.4 training 

39 Decyl benzene 9730670 9860632 9744860 0.1 training 

40 Naphthalene 5264190 5268941 5490353 4.3 training 

41 1,2,4,5-Tetramethyl benzene 5896060 5906209 5860390 0.6 training 

42 2-Methylnaphthalene 5892920 5926221 6227060 5.7 validation 

43 Pentamethylbenzene 6534420 6563080 6518156 0.2 training 

44 Hexamethylbenzebe 7191670 7219706 7175923 0.2 training 
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45 Anthracene 7229600 7259330 7745706 7.1 training 

46 Phenanthrene 7213270 7260270 7876215 9.2 training 

47 1,1-Diphenylethane 7682020 7682565 7806947 1.6 test 

48 Octadecane 11981110 12032547 11132050 7.1 validation 

49 Triphenyl methane 10127620 10114360 10109522 0.2 training 

50 1,3,5-Triphenylbenzene 12510990 12556476 12952432 3.5 training 

51 Tetraphenylmethane 13254570 13194206 13257495 0.0 training 

52 Formaldehyde 541650 467365 552833 2.1 training 

53 Formic acid 303580 303694 304682 0.4 training 

54 Ethanol 1370800 1337401 1368106 0.2 training 

55 Dimethylether 1426440 1336314 1423737 0.2 training 

56 Acetaldehyde 1167860 1124829 1156677 1.0 training 

57 Ethylene oxide 1288990 1122547 1291982 0.2 validation 

58 Ethylene glycol 1214210 1171872 1238387 2.0 training 

59 Acetic acid 923570 960880 908525 1.6 training 

60 Propan-2-ol 2007820 1994356 2013666 0.3 training 

61 Acetone 1798440 1781915 1765225 1.8 training 

62 Butanol 2472470 2653804 2666412 7.8 training 

63 Butan-2-one 2441780 2438659 2468635 1.1 training 

64 Furan 2123420 2012248 2154912 1.5 test 

65 Butyric acid 2224950 2273868 2248238 1.0 test 

66 Ethyl acetate 2278750 2273237 2269389 0.4 test 

67 Pentan-1-ol 3325530 3307392 3334903 0.3 training 

68 2-Methylbutan-2-ol 3289530 3307914 3290800 0.0 test 
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69 Cyclopentanol 3121220 3094945 3119990 0.0 training 

70 Furfuryl alcohol 2694580 3546876 2680381 0.5 training 

71 Hexan-1-ol 3977170 3963991 3990608 0.3 training 

72 Cyclohexanol 3764560 3751633 3765919 0.0 training 

73 Heptan-1-ol 4637550 4630048 4614638 0.5 training 

74 Benzyl alcohol 3804960 3770707 3808933 0.1 training 

75 (2R,3S)-butane-1,2,3,4-tetraol 2240470 2172446 2233939 0.3 training 

76 Succinic acid 1616310 1741722 1625473 0.6 training 

77 Maleic acid 1500300 1527654 1498284 0.1 validation 

78 Fumaric acid 1476100 1528134 1498284 1.5 test 

79 Phenol 3135370 3114266 3086370 1.6 training 

80 Galactitol 3212360 3163713 3216518 0.1 training 

81 Mannitol 3220860 3163380 3216518 0.1 training 

82 alpha-D-Galactose 2942570 2953493 2937417 0.2 validation 

83 L-Sorbose 2952820 2953141 3216518 8.9 training 

84 Benzoic acid 3350440 3393838 3384131 1.0 validation 

85 Ortohydroxybenzoic acid 3158140 3238540 3169339 0.4 training 

86 Phthalic anhydride 3439410 3469838 3759117 9.3 test 

87 Phthalic acid 3419530 3518391 3334262 2.5 training 

88 Diphenyl ether 6293850 6201233 6287329 0.1 training 

89 Beta-lactose 6013420 5848889 6054024 0.7 validation 

90 Sucrose 6033090 5845699 6048526 0.3 training 

91 alpha-Lactose 6070860 5839574 6054024 0.3 training 

92 beta -Maltose 6091000 5836308 6054024 0.6 training 
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93 1-Hexadecanol 10532980 10549810 10520107 0.1 training 

94 Palmitic acid 10089060 10176611 10101933 0.1 training 

95 Oxalic acid 370950 427871 372288 0.4 training 

96 Cyanoguanidine 1481960 1460350 1480928 0.1 training 

97 Melamine 2127400 2207973 2127928 0.0 validation 

98 Adenine 2946840 2948763 2947239 0.0 test 

99 2-Cyanopyridine 3251510 3145629 3234102 0.5 training 

100 Diphenyl amine 6553430 6514554 6551586 0.0 training 

101 Urea 693580 772555 682846 1.5 training 

102 Ammonium carbonate 673570 881063 666072 1.1 test 

103 Aminoethanoic acid 1055280 1116979 1048660 0.6 training 

104 Alanine 1697540 1773538 1694221 0.2 training 

105 L-Asparagine 1751920 1898256 1751920 0.0 training 

106 Alloxan 1056120 1416361 1056956 0.1 validation 

107 Creatinine 2448730 2462233 2446040 0.1 training 

108 Creatine 2453170 2519567 2455860 0.1 training 

109 Allantoin 1916760 2088837 1917986 0.1 training 

110 D-glutamic acid 2403600 2554679 2433764 1.3 test 

111 Hypoxanthine 2606950 2637700 2609441 0.1 training 

112 Xanthine 2366340 2474488 2364262 0.1 training 

113 Uric acid 2294870 2316469 2294051 0.0 training 

114 Guanine 2697010 2785235 2698042 0.0 training 

115 Hippuric acid 4398530 4485927 4397498 0.0 training 

116 Ethanethiol 2139620 2099638 2132734 0.3 training 
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117 Dimethyl sulphide 2150970 2099466 2140268 0.5 training 

118 Propane-1-thiol 2802640 2756220 2785110 0.6 test 

119 Methyl ethyl sulphide 2802940 2756216 2799549 0.1 training 

120 Butane-1-thiol 3448920 3412950 3431040 0.5 training 

121 2-Methyl propane-1-thiol 3444480 3412995 3407056 1.1 training 

122 Diethyl sulphide 3456540 3412874 3223316 6.7 training 

123 Methyl propyl sulfide 3452810 3412911 3484114 0.9 training 

124 Thiophene 2850290 2774243 2849590 0.0 training 

125 Ethyl butyl disulpide 4063330 4018875 4585135 12.8 training 

126 Pentane-1-thiol 4101510 4079088 4099531 0.0 training 

127 2-Methyl thiopene 3402110 3433230 3380558 0.6 training 

128 3-Methyl thiopene 3403780 3433195 3553001 4.4 training 

129 Thiophenol 3921690 3875538 4051331 3.3 training 

130 Dipropyl disulphide 5370870 5341656 4601209 14.3 training 

131 3-3-Dithiodipropionic acid 4176460 4269027 4176902 0.0 training 

132 Cysteine 2292610 2379938 2273248 0.8 validation 

133 Cystine 4425660 4120550 4424628 0.0 training 

 

6.10 Refractive Indices of Organic Compounds 

6.10.1 The QSPR model 

A summary of the results obtained using the procedure is as follows: 

 Database collection from literature.  

                                                           
 The manuscript has been published in Journal of Chemical and Engineering Data 59, 1930-1943, 2014.   
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 Drawing and optimization of chemical structures according to the method mentioned. 

 Molecular descriptor calculation using Dragon software [21]. 

 After preliminary studies 2328 molecular descriptors are retained. 

 Training, validation, test sets allocations using the K-means clustering technique. 

 Selection of most effective 58 molecular descriptors using the SS algorithm as explained 

in section 3.1.2. 

 Selection of the most efficient molecular descriptors and development of the final model 

using the GFA method as explained in section 3.1.1. 

 Final correlation is a multi-linear model with 20 parameters. 

 The Hat approach is applied to check for outliers, and also to determine whether the newly 

developed correlation is statistically correct and valid. 

 Elemental analysis of the results. 

The model which is derived to estimate the refractive index data has a best twenty-

parameter correlation equation with a total R2 =0.892 is as follows: 

6.15 



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20
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ii bXaRI  
                                                               

where b=0.690850214 and ai and Xi values are presented in the published article. The R2 and 

average absolute relative deviation of the new correlation in the testing phase are 0.897 and 0.9 %, 

respectively.  
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The results obtained demonstrate that good agreement exists between the prediction of 

equation 6.15 and refractive index literature data. As previously mentioned, in proposing a 

predictive model or correlation, outlier detection plays a significant role to assess group or groups 

of data which may differ from the bulk of the data present in a dataset [440-442]. Therefore, to 

check whether the model is statistically correct and valid; the Williams plot has been sketched for 

the results obtained. The results of the refractive index predictive correlation illustrate that only a 

few of the data points may be considered as outlier. It may be possible to eliminate these probable 

outliers from the correlation results and propose more accurate ones; nevertheless, our aim, herein, 

has been to study the ability of all of the investigated models to estimate the entire range of 

refractive index values from a dataset in literature. 

An elemental analysis was undertaken to determine the validity and accuracy of the model for 

various atomic elements contained in the molecules in the databank. The results indicate that there 

is an acceptable agreement between the literature data and the predicted values.  

An advantage of the correlation proposed is the application of the most extensive dataset for both 

development and testing of the refractive index model. There are a relatively few previous studies 

in the literature which tackle the handling of very large datasets for the sake of model derivation 

with the aid of a QSPR strategy. Difficulties in selecting the proper mathematical-based technique 

and optimization strategy for treating the molecular descriptors to evaluate the refractive index 

may be one of the main reasons for a scarcity of methods for handling large datasets. Apart from 

considerations with regard to the computational times associated with the model development, 

there are several other drawbacks associated with model development. The procedure of selecting 

convenient parameters from a descriptor pool is complex owing to the large number of compounds 

as well as their associated descriptors. In contrast to group contribution models which merely 
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contain functional fragments, determination of some of the model parameters (descriptors) are not 

easy and specialized computational software is required. 

6.10.2 The GC Model 

In order to obtain an accurate and reliable correlation, the collection of nearly 200 chemical 

substructures prepared as previously discussed, were introduced into the sequential search 

mathematical algorithm. Furthermore, in order to obtain the optimal correlation in terms of both 

the number of chemical substructures and accuracy, a threshold value of 0.01 was considered for 

the reduction in the average absolute relative deviations (AARD) as a stopping criterion. It means 

that when the improvement of the model AARD% was less than 0.01, the SS algorithm was 

automatically stopped and reported the final model. The optimal model was obtained using 80 

chemical substructures. The best model derived to predict refractive index data for an eighty-

chemical sub-structure correlation equation, with a total R2 = 0.888 is as follows: 

6.16 
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where RI0, RIi and ni are the intercept of the equation, the contribution of the i th chemical 

substructure to the refractive index, and the number of occurrences of the i th chemical substructure 

in every chemical structure of pure compounds, respectively. The subset of 80 chemical 

substructures and their contribution to the refractive index are presented as supplementary file in 

the supplementary DVD. 

                                                           
 The manuscript has been submitted to Fluid Phase Equilibria.  
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The R2 and average absolute relative deviation of the new correlation in the testing phase are 

reported as 0.898 and 0.83, respectively. The results demonstrate that good agreement exists 

between the prediction of equation 6.16 and refractive index literature data. The model results 

indicate that it can successfully predict the refractive index of pure organic compounds.  

As previously mentioned, in proposing a predictive model or correlation, outlier detection plays a 

significant role to assess a group or groups of data which may differ from the bulk of the data 

present in a dataset [440-442]. Therefore, to check whether the model is statistically correct and 

valid; the Williams plot has been sketched for the results obtained. The results of the refractive 

index predictive correlation illustrate that only 197 of the data points may be considered as outlier. 

6.11 Freezing Point Temperature of Organic compounds 

6.11.1 The QSPR Model 

According to the procedure followed in this study, thirty descriptors are selected using the 

sequential search algorithm. The descriptors, as well as their descriptions are reported as 

supplementary file in the supplementary DVD. The model derived for the prediction of freezing 

point data has a best thirty-parameter correlation equation, with total R2 = 0.710, as follows: 

6.17 
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where b = 203.12942119,  ai and Xi are presented in the published article (The manuscript has been 

submitted to Journal of Thermal Analysis and Calorimetry). To evaluate the accuracy of the 

proposed correlation, statistical error analysis, in which squared correlation coefficients (R2), 

                                                           
 The manuscript has been submitted to Journal of Thermal Analysis and Calorimetry.  
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average absolute relative deviations (AARDs), standard deviation errors STD, and root mean 

square errors (RMSEs), and graphical error analysis, in which crossplot and error distribution is 

sketched, have been utilized that are presented in the published article. The R2 and average absolute 

relative deviation of the new correlation in the testing phase are 0.723 and 12.5%, respectively. 

The results obtained demonstrate that good agreement exists between the prediction of 

equation 6.17 and the literature data of freezing point.  

As previously mentioned, in developing a predictive model or correlation, outlier detection plays 

a significant role to assess group or groups of data which may differ from the bulk of the data 

present in a dataset [441-443]. The results of the freezing point predictive correlation illustrate that 

there are only 220 of data points whose literature values may be erroneous.  

An elemental analysis on the databank was performed. According to the results, the model can 

predict the freezing points of the 2,491 hydrocarbons with an AARD % of 13.53 %. There are 18 

hydrocarbons which are outliers in the applicability domain of the implemented model.  

As demonstrated, the AARD% of the model from literature data for nitrogen-containing 

compounds is 12.79 % and there are 136 outlier data points for nitrogen-containing compounds. 

The AARD% of the model results from literature data for oxygen-containing compounds is 12.11 

%. There are 129 oxygen compounds which are outliers in the applicability domain of the 

implemented model. There are just 6 phosphorous-containing compounds within the dataset for 

which the model gives an AARD% of 17.05%. Sulfur-containing compounds are another class of 

compounds for which the model shows an AARD% of 13.74%. It should be noted that there are 

28 outlier points for sulfur-containing compounds. Fluorine-containing compounds are one of the 

important classes of compounds whose freezing points are predicted by the model with an 

AARD% of 14.94 % and there are 12 outlier data points. The model predicts the freezing points 
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of chlorine-containing compounds better than fluorine-containing compounds in terms of AARD% 

(12.96 % vs. 14.94 %) and worse in term of outlier data (16 vs. 12). Based on our fragmental 

analysis, the freezing points of bromine-containing compounds are successfully estimated by the 

model. The model AARD% for this class of compounds is 12.55 % which is less than those of 

halogen-containing compounds mentioned above. Moreover, there are 7 bromine-containing 

compounds which are outliers in the applicability domain of the model implemented, which is less 

than for fluorine- and chlorine-containing compounds. Iodine-containing compounds are another 

class of halogen compounds whose freezing points are successfully predicted by the model. The 

model shows an AARD% of 12.7 % with only 4 outlier data points which is the minimum outlier 

number among all the lighter halogen compounds. According to the obtained results, many of the 

outliers for the model are for nitrogen- and oxygen-containing compounds. This may be the major 

cause for the high deviation in the predictions of the freezing points for these nitrogen- and oxygen-

containing compounds. There is therefore high probability that the literature data maybe in error. 

 

6.11.2 The GC Model 

In order to develop an efficient and reliable group-contribution model, the collection of nearly 300 

chemical substructures prepared as described in the previous section, was introduced into the SS 

algorithm. Moreover, in developing the optimal model, in terms of both accuracy and the number 

of chemical substructures, a threshold value of 0.01 in terms of improvement was considered for 

the average absolute relative deviations (AARD) as a stopping criterion. According to the 

aforementioned procedure, 112 chemical substructures were finally selected using the sequential 

                                                           
 The manuscript has been submitted to Fluid Phase Equilibria.  
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search algorithm. The chemical substructures as well as their contribution values are reported as 

supplementary file in the supplementary DVD.  

As mentioned above, the group-contribution model derived to predict freezing point data has a 

correlation equation (best 112 chemical structures) with total R2 =0.735 as follows: 

6.18 
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where FP0, FPi and gi are the intercept of the equation, the contribution of the ith chemical 

substructure to the freezing point, and the number of occurrences of the ith chemical substructure 

in every chemical structure of pure compounds, respectively.  

The R2 of the newly developed group-contribution model for the training, validation and testing 

phase are reported as 0.736, 0.705 and 0.756, respectively. In addition, the total average absolute 

relative deviation is 10.76 %. The results demonstrate that a good agreement exists between the 

predictions of equation 6.18 and the literature data for freezing points. The model results indicate 

that it can successfully predict the freezing point of pure organic compounds.  

Outlier detection (or diagnostics) is of importance when developing and proposing mathematical 

models [440, 441]. Detection of outliers easily indicates individual datum (or groups of data) that 

may differ from the bulk of the data present in a databank [440-442, 444]. Consequently, there is 

indeed a necessity to evaluate the available experimental/literature data for freezing point, since 

uncertainties in the experimental data used in the model development would affect the estimation 

capability of the proposed group-contribution model. Hence, the Leverage Value Statistics 

technique [444, 445] was applied to determine the reliability, accuracy, and consistency of 
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experimental data. The graphical detection of suspect data or outliers is undertaken through 

sketching the Williams plot on the basis of the calculated H values [440, 441]. A detailed 

discussion of computational procedure and equations for this technique can be found elsewhere 

[440, 441]. As already mentioned, the compounds in our database are composed of Carbon, 

Nitrogen, Oxygen, Phosphorus, Sulfur, Fluorine, Chlorine, Bromine, Iodine, Boron, Aluminum, 

Silicon, Iron, Germanium, Arsenic, Selenium, Cadmium, Tin, Antimony, Tellurium, Mercury, 

Lead and Bismuth. In order to evaluate the performance of the model with regard to groups and 

elemental constituents of the molecules, an elemental analysis on the database was conducted. 

Consequently, the model predicts the freezing points of 2,460 hydrocarbons with an AARD of 

10.27 %. There are 26 hydrocarbons which are outliers in the applicability domain of the model 

implemented. According to the results, the accuracy of the predicted freezing points for higher 

atom numbers is better than for lower values. The AARD of the model from 5700 literature data is 

10.89% and there are 140 outlier data points for nitrogen-containing compounds. The AARD of 

the model results from literature data for 9777 oxygen-containing compounds is 10.52 %. There 

are 146 oxygen-containing compound data values which are outliers in the applicability domain 

of the model implemented. Sulfur-containing compounds are another class of compounds for 

which the model shows an AARD of 12.78 %. It should be noted that there are 38 outlier points for 

sulfur-containing compounds.   

Fluorine-containing compounds have freezing points which are predicted by the model with an 

AARD of 11.05 % and there are 10 outlier data points. For chlorine-containing compounds, the 

AARD of the model from literature data is 10.14% and there are 23 data point outliers. 
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Chapter 7 Conclusions 

The liquid thermal conductivity of pure organic compounds was the first property investigated in 

this study and three models were developed for its prediction. Three correlations based on the gene 

expression programming, the QSPR, and the group contribution were developed. All the models 

were evaluated using a comprehensive database of experimental liquid thermal conductivities for 

approximately 1600 pure organic compounds. According to Table 2.1 all the three models are more 

comprehensive and more accurate than the previous models. Among the three models proposed, 

the first one, namely the general model which correlate the liquid thermal conductivity to other 

thermophysical properties is simpler in shape and less accurate than the other two (AARD: 9% vs. 

7.4% for QSPR and 7.1% for group contribution). The QSPR is more predictive than the other two 

and has moderate accuracy among them. Several statistical techniques were used to evaluate its 

predictive capability. However, the most accurate one is the third model, namely, the group 

contribution model which shows an AARD of 7.1% from experimental data. It is worth it 

mentioning that the applicability domain of all the models in terms of temperature and liquid 

thermal conductivity is satisfactory wide.    

In the next step, an extensive database for viscosity of ionic liquids at standard pressure of 1 atm 

including 1672 experimental data points for 443 ionic liquids was collected from more than 

literature sources. Using the database, a group contribution model was developed for the estimation 

of viscosity of ionic liquids. The model shows an AARD% of 6.8. According to Table 2.2, the 

model is more comprehensive and more accurate than the previous model. 

As next part of this study, a comprehensive database of thermal decomposition temperature data 

for 586 ionic liquids was initially collected from literature sources. Implementing the database, a 
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QSPR was developed. The models shows 5.2% AARD from the corresponding experimental data. 

The database was updated to 613 ionic liquids by collecting more experimental data from literature 

sources and then was used to develop a group contribution model. The model shows an AARD% 

of 4.5% from the corresponding experimental data. According to Table 2.3, both the QSPR and GC 

models are more comprehensive and more accurate than previous models.   

Electrical conductivity of ionic liquids was the next property investigated in this study. An 

extensive data set of 1077 electrical conductivity data for 54 ionic liquids was initially collected 

form literature. Then, two independent non-linear models were developed; a QSPR and a group 

contribution model. In terms of accuracy, the QSPR surpass the group contribution model (AARD: 

1.9% vs. 3.3%). However, in terms of simplicity of input parameters, the group contribution model 

surpass the QSPR.  

In the next part of study, an enormous database of normal boiling point temperature of pure organic 

compounds was successfully handled and employed to develop a very comprehensive QSPR. One 

of most novel part of this study is the handling more than 17500 chemical structures which is the 

largest ever reported database in open literature for which a QSPR has been developed. The model 

shows promising AARD% of 3.6% from the corresponding literature data. According to Table 2.5, 

the model is significantly more accurate and more comprehensive than the previous models and 

can be regarded as a step forward in the field of study.  

 In the next stage of this thesis, the sublimation and vaporization enthalpies at the standard 

temperature of 298.15 K were investigated. First, a database of sublimation enthalpies at the 

standard temperature of 298.15 K for 1269 pure organic compounds was collected from literature. 

Employing the database, a group contribution model was developed. The model shows an AARD 
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of 6.4% from the corresponding experimental data. According to Table 2.6, the model is the more 

comprehensive and more accurate than the previous models.  

Also, an extensive database of vaporization enthalpies of 2249 pure organic compounds at the 

standard temperature of 298.15 K was collected from literature sources. Employing the database, 

a group contribution model was developed which shows an AARD of 3.7% from the corresponding 

experimental data. As shown in Table 6.11 , the model is more accurate than the previous models. 

In terms of the comprehensiveness, the database used in this study is the largest ever reported 

database for vaporization enthalpy at the standard temperature of 298.15 K.     

Speed of sound of saturated liquids was the next property studied in this thesis. A collection of 

1667 experimental data for 74 pure chemical compounds were extracted from the ThermoData 

Engine of National Institute of Standards and Technology [5]. The database was used to develop 

a group contribution model. The model shows an AARD% of 0.6 from the corresponding 

experimental data. It should be noted that there was no previous model which directly estimate the 

saturated liquids speed of sound.  

One of the important properties for which a group contribution model was developed in this study 

is the standard molar chemical exergy of pure organic compounds. The model shows an AARD% 

of 1.6% from the corresponding experimental data for 133 pure organic compounds. It should be 

mentioned that the database used to evaluate the model is the most comprehensive database for 

the standard molar chemical exergy of pure organic compounds. The performance of the model 

was compared with one of the previous models. As shown in Table 6.13, the model shows 

significantly better AARD than one of the previous accurate models (1.6% vs. 3%). It is worth it 
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mentioning that in terms of the simplicity of calculation of input parameters, the proposed model 

surpasses the previous models.  

Again another large database of refractive indices of approximately 12000 pure organic 

compounds was initially used to develop a QSPR with slightly new strategy than the one used for 

normal boiling point temperatures. A combination of sequential search algorithm and genetic 

function approximation was successfully used to develop an accurate model for the estimation of 

refractive index. The model shows an AARD of 0.9% from the corresponding literature values. In 

the next, step, a group contribution model was developed. The model shows an AARD of 0.83%. 

As concluded, the group contribution model shows better results in terms of accuracy. As 

mentioned earlier in section 6.10, both the QSPR and group contribution are more accurate and 

more comprehensive compared with previous models.  

Freezing point temperatures of pure organic compounds was the most recent studied property in 

this thesis. One more time, a large database of nearly 16500 pure organic compounds was used to 

develop a QSPR and a group contribution model. A comparison between two models demonstrate 

that the group contribution model performance is better than the QSPR model (AARD: 10.78% 

vs. 12.6%).  

In this thesis several computational techniques were successfully used to model various 

thermophysical properties particularly large databases. The gene expression programming is a 

promising technique in developing empirical and semi-empirical models in which a 

thermophysical property is correlated with other thermophysical properties. This technique is in 

its initial stages of development and it should be improved in terms of speed.  
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In terms of the computational methods used in developing QSPRs, it is worth it pointing that the 

genetic algorithm-based subset variable selection and model development methods such as genetic 

function approximation show the best results among various algorithms. The algorithms are 

available in several commercial software packages such as Materials Studio, Sarchitect, and 

QSARINS which are capable of handling just small to moderate size databases (less than for 

instance 2000 molecules with less than 2000 molecular descriptors). The software packages mainly 

suffers from their programming bases which lets use of the maximum 3.2 GB of RAM (32-bit 

programming base). This issue may be resolved by development of more commercial software 

packages which enable unlimited RAM usage (64-bit programing base). Another issue which 

seriously confines the computational speeds of the currently available commercial software 

packages is that they are capable of using just a single processor. Nowadays, most of desktops and 

notebooks have multi-core processors. Multi-thread-based programming’s can significantly 

improve the speed this type of computations. 
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Chapter 8 Recommendations for Future works 

1- The QSPR technique, the group contribution approach, and the gene expression 

programming technique can be applied for all thermophysical properties. 

2- The abovementioned methods needs to be extended for binary and ternary mixtures. Since 

there is no basic mixing rule for molecular descriptors components of binary and ternary 

mixtures, novel planes should be devised. 

3- The much descriptive chemical structure-based parameters such as new chemical 

substructures/segments in the GC method or new molecular descriptors in QSPR method 

can be suggested to enhance the accuracy of the currently available methods for the 

estimation of various physical properties of compounds.  

4- Almost the majority of subset variable selection techniques that are currently in use in 

QSPR/GC approach are based on linear correlations. Non-linear models bring about more 

accurate models. 

5- Outlier detection is a crucial step in developing QSPR/GC methods when particularly 

dealing with large databases of compounds. Although the leverage approach was used in 

this study for outlier detection; more accurate outlier detection techniques are needed. 
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Appendix  

 Statistical Parameters: Mathematical Definition  

The mathematical definition of the relative deviation (RD%), average absolute relative deviation 

(AARD%), root mean square error (RMSE), standard deviation error (Std), and squared correlation 

coefficient (R2) are presented as follows: 
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where pred and lit denote the predicted value by model and its corresponding value reported by 

literature, respectively. The terms pred and lit  refer to the mean values over the predicted values 

by the model and the mean value over the literature reported data. N is the number of data point in 

each data set or subset. 
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