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ABSTRACT 

Understanding biodiversity patterns and the processes that structure them along environmental 

gradients has been a topic of major ecological interest. Although relatively well-known, alpha 

diversity is still poorly understood. It is therefore crucial to investigate alpha diversity patterns 

as they reveal how diversified species are within a site and identifies processes underlying the 

co-occurrence of species at a local scale. The patterns and processes related to beta diversity, 

however, have lagged even more behind. Beta diversity describes the variation in species 

composition between sites. It reveals whether species turnover or richness differences cause 

variation in community composition between sites. Together, alpha and beta diversity may 

provide baseline information for conservation planning, especially in African Tropics. African 

tropical rainforests, although very diverse, are some of the most threatened and understudied 

ecosystems of the world. Similarly, although the primary aim in ecology has been to document 

biodiversity patterns and the processes that structure them, those of invertebrates have lagged 

behind. As a result, very little is known about African tropical invertebrate patterns and the 

mechanisms that drive them. The current study, therefore aims (1) describe ant diversity 

patterns and community assemblages along the Udzungwa mountains, (2) to describe the extent 

of compositional differences between sites (beta diversity) and (3) to reveal the assembly 

mechanisms that drive these differences along an altitudinal gradient, Udzungwa Mountains, 

Tanzania. A standardized pitfall survey was conducted across five elevational transects, each 

at a distance of 0.1, 1, 20 and 174 km from the first one. Three target elevations which 

correspond to the three forest types of this mountain (lowland (300-800 m.a.s.l), sub-montane 

(800-1400), montane (1400-1500)) were selected. A total of 31 776 ant specimens were 

collected. They belong to five subfamilies, 34 genera and 101 species. Species richness declined 

with increasing elevation. Three species assemblages corresponding to the three forest types 
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were observed across the mountains. The lowland assemblage was very distinct, while the sub-

montane and montane assemblages were closely related. Results show that distance (km) and 

elevational distance (m.a.s.l) influence variation in community composition (beta diversity). 

Beta diversity increases with geographic and elevational distance, although more noticeable 

with elevation. The standardised effect sizes (SES) models suggest that species turnover 

increases with distance and elevation, while richness differences decrease with distance and 

elevation. Species turnover plays a significant role in structuring ant communities with 

increasing elevation while neither species turnover nor richness differences play a significant 

role in structuring ant communities with increasing geographical distance. The overall findings 

of this study, therefore, suggest that ants of the Udzungwa mountains are niche conservative, 

beta diversity is affected by distance and elevation and that species replacement structures ant 

communities with increasing elevation, while biotic interactions structure ant communities with 

increasing distance. Therefore, temperature is very important in structuring ant communities 

along the Udzungwa mountains and complementarity between sites is maximized by choosing 

sites that are at different elevations. 
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CHAPTER 1: INTRODUCTION 

For decades, the primary aim in ecology has been to document biodiversity patterns across 

ecological gradients. Similarly, the primary mechanisms and processes underlying biodiversity 

patterns along gradients has received considerable attention (Sanders, 2002; Willig et al., 2003; 

Kaspari et al., 2004; Szewczyk and McCain, 2016). The latter has gained momentum recently 

as we are entering the Anthropocene and humankind is geared to develop conservation 

measures due to projected negative impacts of climate change (Bellard et al., 2012), habitat loss 

(Brooks et al., 2002) and various other anthropogenic activities on biodiversity (Meineke et al., 

2018).  

Biodiversity is the variability among living organisms in all ecosystems and the ecological 

complexes involved (Hamilton, 2005). Much of it is concentrated in tropical rainforests 

(Harrison, 2005) as a result of their lack of seasonal variability in temperature (Janzen, 1967). 

The lack of seasonal variability creates temperature stratification, narrowing the temperature 

ranges of tropical species (Hua, 2016). It also lowers species dispersal abilities across elevations 

as species adapted to certain elevational temperatures cannot move to other elevations (Hua, 

2016). It is, therefore, important to understand biodiversity patterns and possibly reveal the 

factors that allow high concentration of biodiversity along elevations in order to be able to 

inform conservation programmes.  

Tropical rainforests are associated with elevational gradients. These gradients are a powerful 

model system used to study the effects of environmental changes on biodiversity (Körner, 

2007). They are of great interest because they show great variation in environmental conditions 

within a short geographic distance and are well replicated across space (Rahbek, 1995). 

Elevational gradients have yielded multiple biodiversity patterns for multiple taxa, for example 

mammals (McCain, 2007), plants (Manish et al., 2017), amphibians and reptiles (Willig and 
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Presley, 2016), birds (Rahbek, 1997; McCain, 2009) and also arthropods (Munyai and Foord, 

2012; Malumbres-Olarte et al., 2018).   

Two general patterns have been observed across elevational gradients; a decline in species 

richness with increasing elevation (Stevens, 1992; Brühl et al., 1999; Rahbek, 2005; Le Cesne 

et al., 2015) and mid-elevational peak in species richness (Colwell and Lees, 2000; Sanders, 

2002; Munyai and Foord, 2012). Some studies have reported an increase of species richness 

with increasing elevation (Brehm et al., 2003; Sanders et al., 2003; Malumbres-Olarte et al., 

2018) while others observed no clear pattern (Botes et al., 2006). Generally, these patterns have 

been suggested to be largely driven by the biology of the taxa being investigated, climatic 

conditions and geometric constraints (Gillette et al., 2015). Several other hypotheses have been 

proposed to explain these patterns Viz. thermal energy hypothesis, mid-domain effect, the effect 

of area and elevation climatic model (Szewczyk and McCain, 2016).  

The thermal energy hypothesis is a temperature-based hypothesis which suggest that there is a 

close relationship between temperature and species diversity (Kaspari et al., 2004). It predicts 

that warmer climatic conditions result in longer foraging periods, increased primary 

productivity and increased metabolic and chemical reactions that lead to faster ecological and 

evolutionary processes (Allen et al., 2002), therefore, species richness will decrease with 

decreasing temperature (Allen et al., 2002; Malsch et al., 2008; Szewczyk and McCain, 2016 ). 

The mid-domain effect best describes a mid-elevation peak in species richness (McCain, 2009). 

It is a null model based on spatial domain imposed geometric constraints and predicts that 

species richness will peak at mid-elevation as a result of geometric constraints affecting the 

distribution of species ranges (Colwell et al., 2004) and has been documented for various taxa 

(Rahbek 1997; McCain, 2004, 2007, 2009). The area hypothesis emphasises that increased area 

results in larger species populations (Gaston, 2000) and more habitats for species to inhibit 

(Rosenzweig and Abramsky, 1993) which encourage the increase in species richness. However, 
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because area shrinks with elevation, area hypothesis has been used by Sanders (2002) and Dunn 

et al. (2010) to explain a decrease in species richness along elevational gradients. The elevation 

climatic model is dependent on a mountain’s local climate. It predicts that the combination of 

temperature and precipitation are the drivers of diversity. Elevations that are warmer and wetter 

exhibit the highest diversity (Brown, 2001; McCain, 2007). On arid mountains, diversity is 

highest at mid-elevations where there is an optimal combination of higher temperatures and 

higher moisture (Sanders et al., 2003). In wet mountains however, diversity is highest at low 

elevations, and lowest at high altitudes due to extreme temperature (McCain, 2007). These 

drivers vary however, with spatial scale. The latter are mainly associated with diversity on a 

local scale (alpha diversity) and to better understand biodiversity conservation, authorities need 

to categorise biodiversity into its spatial components as introduced by Whittaker (1960). 

Whittaker (1960) first introduced biodiversity as three different components working at 

different scales. Alpha diversity, beta diversity and gamma diversity. Alpha diversity describes 

the variability of species at local scales (Whittaker, 1960; Whittaker, 1972). It is often expressed 

as the number of species (species richness) within a site (Whittaker et al., 2001) and is an 

important measure of biodiversity because species are a fundamental descriptive unit of analysis 

in different disciplines including ecology and conservation biology (Sites Jr and Marshall, 

2004). Alpha diversity is also important because it reveals processes underlying the co-

occurrence of species at a local scale (Swenson et al., 2012). Alpha diversity patterns and the 

processes associated with these patterns can be used for conservation planning at local scales, 

however, coupled with beta diversity patterns and the processes shaping them, these two 

components of diversity could better inform conservation especially at a regional scale (Condit 

et al., 2002).  

Beta diversity is a measure of variation between sites (Whittaker, 1960; Whittaker, 1972; 

Tuomisto, 2010; Anderson et al., 2011). It reveals what makes species assemblages more or 
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less similar from each other in a given time and space (Vellend, 2010).  Beta diversity provides 

a link between diversity at local (alpha diversity) and regional (gamma diversity) scales 

(Whittaker, 1960; Whittaker, 1972) making it a good measure to observe the dynamics of 

biodiversity patterns (Soininen et al., 2007; Soininen et al., 2018). It can describe how 

communities respond to several threats of biodiversity, such as anthropogenic activities 

(Vellend et al., 2007) and climate change (Leprieur et al., 2011) at different environmental 

gradients (Anderson et al., 2011) by quantifying biodiversity loss (Socolar et al., 2016). Beta 

diversity has therefore been identified to provide information that best inform conservation 

strategies (Condit et al., 2002; Qian, 2009; Socolar et al., 2016). 

Beta diversity is a multifaceted component of biodiversity (Bishop et al., 2015). It has multiple 

definitions (Tuomisto, 2010; Anderson et al., 2011) as well as approaches to quantify it 

(Vellend, 2001; Koleff et al., 2003; Jost et al., 2010). For decades the distance decay in 

similarity was used to describe how species composition between two communities vary with 

geographic distances (Soininen et al., 2007) and has been reported (Nekola and White, 1999) 

to be a result of a decrease in similarity of environmental conditions between sites at different 

distances, spatial configuration and the nature of landscapes that limits/allows dispersal of 

species and the neutral theory (Nekola and White, 1999; Hubbell, 2001). More recently, 

however, the partitioning of beta into its relative components provides a powerful tool for 

analysing the processes responsible for species composition of different species communities 

(Baselga, 2010; Carvalho et al., 2012) and if linked with distance decay could illuminate the 

decreasing similarity between communities with increasing distance, which might be related to 

the key drivers of beta diversity (Foord and Dippenaar‐Schoeman, 2016). 

Baselga (2010) proposed a conceptual and methodological framework partitioning beta 

diversity (Btotal) into species turnover (Bsim) and nestedness-resultant (Bnes) components. 
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However, some authors (Almeida‐Neto et al., 2012; Carvalho et al., 2012; Legendre, 2014)  

argue that Bnes is not a true measure of nestedness-resultant dissimilarity between sites but is a 

special case of an ordered pattern of species richness differences that cannot exactly be 

calculated. Another conceptual and methodological framework partitioning beta diversity 

(Btotal) into species replacement (Brepl) and richness differences (Brich) was proposed by 

Carvalho et al. (2012) and Podani and Schmera (2011). Brepl is the replacement of a species by 

another species in another site (Legendre, 2014) while Brich is the loss or gain of species from 

one site to another (Urban et al., 2006) and disentangling the roles Brepl and Brich is important in 

understanding biodiversity patterns (Baselga, 2010).  

Understanding the processes by which communities are structured and maintained and how 

these processes vary over temporal, environmental and spatial gradients is important in 

community ecology (Urban et al., 2016; Ford and Roberts, 2018; Pouteau et al., 2019). It has 

been widely reported that niche assembly processes, dispersal assembly processes and a neutral 

theory as proposed by Hubbell (2001) structure community assemblages (Keil et al., 2012) and 

that their contribution varies in importance among ecosystems (Ford and Roberts, 2018). Niche 

assembly processes promote or limit the occurrence of a species in the next site as a result of 

the environment. It is associated with processes like environmental filtering and inter-specific 

competition (Stegen et al., 2013). Environmental filtering occurs when species fail to persist in 

a particular environment because they do not have the suitable phenotypes or traits to cope with 

specific environmental conditions (Keddy, 1992) while competition occurs when a certain 

species out competes another for the same resources found within a niche/habitat. Dispersal 

assembly processes structure a community when the ability of a species to disperse to another 

site and survive detects whether a species will be present/absent in the next site, (Boulangeat et 

al., 2012). Hubbell (2001), however, suggests that it is both these processes niche assembly 

processes and dispersal assembly processes that structure communities.  
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Along altitudinal gradients, the variation in species communities has been observed to decrease 

with increasing elevation, owing to range sizes, mechanisms of community assembly as well 

as dispersal (Kraft et al., 2011).  However, patterns of species turnover and richness differences 

are not well known due to lack of studies partitioning beta diversity into these components 

(Marini et al., 2013; Nascimbene and Spitale, 2017; Qin et al., 2019). Qin et al. (2019) reported 

that beta diversity was made up by both species turnover and richness differences in their 

disturbed sites. Species turnover decreased with increasing elevation owing to change in 

environmental conditions, particularly temperature and richness differences on the other hand 

increased with elevation due to dispersal limitations. Nascimbene and Spitale (2017) observed 

species turnover and richness differences contribute differently to the community assembly of 

bryophytes and lichens and may reflect the response of these species to temperature increase. 

The contrasting results as reported by Nascimbene and Spitale (2017) show that the partitioning 

of beta diversity components may yield different results depending on the taxa being 

investigated as well as the study area.  

The current study was conducted across the Udzungwa Mountain ranges which are a 

biodiversity hotspot recognised for their high level of endemism as well as their outstanding 

biodiversity and ecosystem services (Rovero et al., 2009). They are listed amongst the 17 most 

threatened tropical forest ecosystems of the world due to the influence of climate change and 

land degradation to biodiversity loss (Myers et al., 2000). There is, therefore, a high demand 

for conservation strategies in this area as its biodiversity is under threat and most of its species 

remain unquantified. Multiple studies have documented primates (Rovero et al., 2007; Rovero 

et al., 2009), plants (Lovett et al., 2006; Lovett and Wesser, 2008) and birds (Dinesen et al., 

2001; Burgess et al., 2007) of the Udzungwa mountains, however, invertebrate studies are still 

lagging (Malumbres-Olarte et al., 2018). 
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Invertebrates have proven to be a powerful tool in monitoring the environmental change 

(Andersen and Majer, 2004). Moreover, they are a highly successful group with most of its 

diversity found in terrestrial (Munyai and Foord, 2015) and aquatic ecosystems (McGeoch et 

al., 2011). Invertebrates are highly abundant, are well known for their provision of ecosystem 

services (Anderson et al., 2011; McGeoch et al., 2011) and play an important role as 

bioindicators within ecosystems. However, they are often excluded from conservation 

programmes (Cardoso et al., 2011). Therefore, in this study ants were used as model organisms 

to describe their diversity patterns and community assemblages along the Udzungwa mountains 

(Chapter 2), to describe the extent of compositional differences between sites (beta diversity) 

and to reveal the assembly mechanisms that drive these differences (Chapter 3). By 

disentangling the general underlying causes of species turnover and richness differences along 

the Udzungwa mountains, the current study aims to provide the first step towards informing 

conservation planning as proposed by Socolar et al (2016). Alpha diversity patterns can be used 

to infer how best to conserve at a local scale, while beta diversity can be used to infer how best 

to conserve at a regional scale. 
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CHAPTER 2: Ant diversity declines with increasing elevation along the 
Udzungwa mountains, Tanzania 

Abstract 

Tropical rainforests are the most diverse, but maybe the least understood terrestrial ecosystems 

of the world. The elevational patterns associated with them are understudied, especially for 

invertebrates. There is, however, evidence of biodiversity following two general patterns a 

monotonic decline in species richness with increasing elevation or a mid-elevational peak, 

depending on the taxa and geographic region being investigated. This study, therefore, aims to 

investigate ant diversity patterns along an altitudinal gradient in the Udzungwa Mountains, 

Tanzania. It was hypothesized that (1) ant diversity will be concentrated in the lowland forest 

and will decrease with increasing elevation and (2) each forest type will have a distinct ant 

assemblage. A standardized survey using pitfall sampling was conducted across five elevational 

transects, each at a distance of 0.1, 1, 20 and 174 km from the first one. They were at three 

target elevations which corresponded to three forest types (lowland, 300-800 m a.s.l; sub-

montane, 800-1400 m a.s.l; montane, 1400-1500 m a.s.l). Ant species richness declined with 

increasing elevation perhaps owing to their limited tolerance to the cold at higher elevation. 

Three ant assemblages associated with the three forest types were observed along the mountain 

ranges, suggesting that ants are niche conservative. The ant assemblage associated with the 

lowland forest was very distinct, while assemblages associated with the sub-montane and 

montane forests shared species. Our findings show that most ant species are found in the 

lowland forest and that their assemblages are distinct. It seems like this study could be used for 

conservation and monitoring, regardless of the diversity patterns observed.  

Keywords: Ant assemblages, elevational gradients, biodiversity, ants (Hymenoptera; 

Formicidae), Easter Arc Mountains  
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2.1 Introduction  

One of the central goals in ecology is to understand the distributional patterns of biodiversity 

and the factors that are responsible for such patterns. The latter allows for the assessment and 

monitoring of changes in ecosystems as well as biodiversity and assists the development of 

conservation priorities and policies (Dickinson et al., 1992; Jost et al., 2010; Hoffmann et al., 

2018). To be able to reach this goal, we must first quantify and characterize communities 

across various ecosystems. This involves studying species composition and community 

structure as well as understanding their variation within a given time and space (Malumbres-

Olarte et al., 2018).  

Environmental gradients have been widely studied to reveal the distribution of biodiversity 

across different regions and climatic conditions (McCoy, 1990; Rahbek, 1995; Brown, 2001; 

Arnan et al., 2014). They are useful because they elucidate the effects of natural changes in 

the environment on biodiversity. It has been observed that biodiversity changes along 

environmental gradients, and that the patterns of change are strongly variable (Sanders et al., 

2003; Willig et al., 2003; Kaspari et al., 2004). The most documented pattern of biodiversity 

is the latitudinal gradient of increasing richness from polar regions to the equator (Willig et 

al., 2003). It has been documented for a wide range of taxonomic groups and reported across 

different environments (Tittensor and Worm, 2016). Another major environmental gradient 

that has been studied is the altitudinal gradient. However, patterns along the altitudinal 

gradients have varied between taxa as well as regions (Munyai and Foord, 2012; 2015; Peters 

et al. 2016).  

Altitudinal gradients are a powerful model systems (Körner, 2007). They provide natural 

experiments when investigating the distribution of biodiversity as they have a wide range of 

environmental conditions within small geographic space (Körner, 2007; Bishop et al., 2014). 
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This makes it particularly easier to test patterns and processes that would occur on a larger 

scale (Sanders et al., 2007). The prediction that a 100 m rise in elevation lowers air 

temperature by 0.6 – 1.0 ̊C, limiting species from moving further up the mountain (especially 

with thermophilic species) suggests that ecosystems at high altitudes (with the predicted 2̊ C 

increase in air temperature by 2100) are more vulnerable to climate change, making studying 

patterns along altitudinal gradients very important for conservation (Körner, 2007; Wang et 

al., 2017).   

The Udzungwa Mountains are part of the Eastern Arc Mountains, which is a massif stretching 

from Kenya to Tanzania along the east coast of Africa (Lovett et al., 2006; Rovero et al., 

2009). This massif is recognised as a biodiversity hotspot (Myers et al., 2000) and a 

conservation site for iconic endemic species, such as the Udzungwa red colobus and the 

Sanjei mangabey (Dinesen et al., 2001; Rovero et al., 2006). It also has the second richest bird 

biodiversity in Africa (Rovero et al., 2009). Much of its known biodiversity is from avifauna 

studies (Dinesen et al., 2001; Cordeiro et al., 2006; Romdal and Rahbek, 2009) as well as 

mammal studies (Marshall et al., 2005; Stanley and Hutterer, 2007; Marshall et al., 2008; 

Rovero et al., 2009) and very little is known about the local invertebrates.  

Ants are a diverse and important group of insects in tropical rainforests (Brühl et al., 1999). 

They contribute 10-20% of animal biomass in terrestrial ecosystems and are of great 

ecological importance (Holldobler and Wilson, 1990; Brühl et al., 1999). They are found in 

all forest strata and serve as herbivores, scavengers and predators. They are ecosystem 

engineers (Folgarait, 1998) and can be used as biological indicators (Andersen and Majer, 

2004). The composition of ants varies along environmental gradients (Wiescher et al., 2012) 

and their traits that correlate with environmental conditions, therefore making the presence or 

absence of a particular species a potentially appropriate indicator  of environmental stress 
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(Kaspari and Weiser, 2000; Wiescher et al., 2012). Although ants have been the focus of 

many elevational studies, a lot more is yet to be revealed about the African tropical ants. 

Therefore, our findings will contribute to the knowledge of tropical ant patterns and 

consequently the conservation of these diverse tropics, particularly African tropical forests.  

The current study aims to characterise ant communities along an altitudinal gradient in the 

Udzungwa Mountains and test the following hypotheses: (1) ant diversity will decline with 

increasing elevation considering that they are largely thermophilic and that (2)  they will be 

distinct ant assemablage composition which correspond to the three forest types along the 

Udzungwa mountains.  

2.2 Methods and Materials 

Study Sites Description 

The Udzungwa Mountains (7.82̊ S, 36.70̊ E) are widely recognized for their outstanding 

biodiversity and high endemicity (Rovero and De Luca, 2007). They form the largest block of 

the Eastern Arc Mountains (Burgess et al., 2007) covering 10 000 km2. Their long-term 

climatic stability has made the mountains to endure through millions of years (Lovett and 

Wasser, 2008). The altitude ranges from 200 to 2500 m a.s.l. and has heterogeneous habitats 

which range from the lowland rainforest (300–800 m a.s.l.) covered by deciduous miombo 

(Brachystegia spp); submontane rainforest (700–1400 m a.s.l.) covered by a moist forest 

consisting of evergreen species; montane rainforest (1400–1800 m a.s.l.) and mountain 

bamboo forest (2400 m a.s.l.)  covered by a mosaic of bamboo (Sinarundinaria alpina) and 

Hagenia abyssinica species as described by Shangali et al., (1998). The climate in the 

Udzungwa Mountains is variable and it receives rainfall between 2000-3000 mm per year, 

due to the influence of the Indian Ocean (Rovero et al., 2009; Rovero et al., 2017). It has a 
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heavy rainy season between March and May, and a light rainy season between November and 

February (Lovett and Thomas, 1986). Our study was conducted in the Udzungwa Mountain 

National Park, proclaimed in 1992, protecting one fifth of the mountain (Rovero et al., 2009).  

Ant sampling 

Five elevational transects were set up, each with a 50 m x 50 m square plot at each of the 

three target elevations (300-800, 800-1400 and 1400-1500 m a.s.l.) which correspond to three 

different forest types (lowland forest, submontane forest and montane forest, respectively, 

(Table 2.1)) (Lovett, 1999). The five transects were separated horizontally by 0.1, 1, 20 and 

175 km from the first transects (Appendix A).  

At each 50m x 50m plot, twelve pitfall samples 4m apart (12 x 4 = 48) were collected on each 

side of the plot (Appendix A), as part of the application of the Conservation Oriented 

Biodiversity Rapid Assessment for Tropical Forests (COBRA-TF) sampling protocol 

(Malumbres‐Olarte et al., 2017). They were partly filled with preservative solution (propylene 

glycol) and a few drops of liquid soap to break surface tension and sheltered using lids on 

stilts about 2-3 cm above the ground. The traps ran for two weeks.  

Samples were washed in the laboratory and stored in 96% ethanol. Ants were identified to genus 

level using Fisher and Bolton (2016) and then identified to species level where possible using 

online databases; viz. AntWiki (http://www.antwiki.org/) and AntWeb (http://antweb.org/).  

Number codes were assigned to unidentified ant species and were only identified to genus level 

and then assigned to morphospecies. Voucher species are held in the Zoological Museum of the 

Natural History Museum of Denmark, Copenhagen, Denmark. 

Table 2. 1: Description of the three studied forest habitat types in the Udzungwa Mountains, 

Tanzania, modified from (Rovero et al., 2009). 

http://www.antwiki.org/
http://antweb.org/
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Habitat types  Altitudinal range Description  
Lowland forest (low elevation) 300 – 800  Forest with deciduous and 

semi-deciduous trees, canopy 
15–25 m with emergents to 50 
m 

Sub montane forest (mid 
elevation) 

800 – 1400 Moist forest with mainly 
evergreen species, canopy 25–
40 m with emergents to 50 m  

Montane forest (high 
elevation) 

1400 – 2600 Evergreen moist forest, with 
canopy height progressively 
lower with altitude 

 

Data analysis  

Sample coverage for species diversity was analyzed in iNEXT online software (Chao et al., 

2016). Extrapolation show that a few more species could have been found in the lowland forest, 

otherwise almost all species were sampled in the sub-montane and montane forest (Appendix 

B). Sampling completeness based on Chao1 and Jack2 richness estimators was determined 

using EstimateS (Version 9.1.0) (Colwell, 2013) and graphs were drawn using the R language 

(R Development Core Team, 2017). The species composition of the ant communities was 

explored and compared through non-metric multidimensional scaling (nMDS). We used a 

distance matrix calculated based on Bray-Curtis distance, rank dissimilarity and two 

dimensions. The comparison of species composition within the three habitat types was 

conducted using PERMANOVA in R (R Development Core Team, 2017). Characteristic 

species of each habitat were determined using the Indicator Value Method (IndVal) which uses 

the degrees of specificity (uniqueness to a particular site) and fidelity (frequency within the 

vegetation type/aspect) of each species (Dufrêne and Legendre, 1997). An indicator value above 

70% shows that a species is both highly specific and has a high fidelity to a given site. The 

significance of the IndVal values is then tested by random reallocation of replicates among 

groups (Botes et al., 2006). 
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2.3 Results  

A total of 31 776 ant specimens belonging to five subfamilies, 34 genera and 101 species 

were collected. Myrmicinae was the most diverse subfamily with 54% of the total abundance, 

50% (51 species) of the total number of species and 41% of the total number of genera (Table 

2.2). The second most diverse subfamily was Ponerinae with 24% of species and 29% of the 

total number of genera, followed by Formicinae with 19% of the total species and 18% of the 

total number of genera. The least diverse subfamilies were Dolichoderinae and Dorylinae with 

3% and 4% of the total species richness respectively. However, Dorylinae was the second 

most abundant subfamily with 42% of all specimens. The most speciose genera were 

Tetramorium (19 species), Pheidole (8 species), Strumigenys (6 species) while Camponotus 

and Crematogaster had five species each. 

Table 2. 2: Species richness and abundance of ant subfamilies collected in the study. 

Subfamily Genera Species Species 

Richness (%) 

Abundance Abundance (%) 

Dolichoderinae 1 3 2.9 5 0.01 

Dorylinae 3 4 3.9 13266 42 

Formicinae 6 19 18.8 466 1 

Myrmicinae 14 51 50.5 17157 54 

Ponerinae 10 24 23.8 882 3 

Sampling completeness  

According to sampling coverage, sampling was complete for the three habitat types: lowland, 

sub-montane and montane forest as sampling coverage was close to 1 (Table 2.3). However, 

extrapolation show that more species in the lowland forest would have been recorded with 

further sampling (Appendix B).  
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Table 2. 3: Observed number of species and sample coverage for each sampling plot in the three 

habitat types (lowland, sub-montane and montane forest). 

 

Habitat type Plot Altitude m a.s.l Observed 
species richness  

Sample 
coverage 

Lowland 1 650 29 0.9963 
 2 650 38 0.9967 
 7 708 40 0.9939 
 13 674 22 0.9893 
 16 659 24 0.9748 
Sub-montane 3 1005 24 0.9986 
 4 993 21 0.9956 
 8 978 25 0.9982 
 14 1006 15 0.9961 
 17 908 13 0.9118 
Montane  5 1448 23 0.994 
 6 1482 18 1 
 9 1527 15 0.9954 
 15 1552 15 0.9862 
 18 1531 5 0.9863 

 

 

Species diversity patterns 

Ant activity was the highest at mid-elevation and Myrmicaria rustica angustior contributed 

much to it (27% of the total abundance) (Figure 2.1). Ant activity which is the total number of 

individuals in a plot, was lowest at low elevation (Figure 2.1) even though it was dominated 

by Dorylus helvolus, which also contributed with 27% of the total abundance. Simpsons index 

of diversity showed that the low elevation was the most diverse (0.664) followed by the mid-

elevation (0.4817), with the high elevation being the least diverse (0.4435). Species richness 

was significantly higher at low elevations (31 ± 8), it decreased at mid-elevations (20 ± 9) and 

it was the lowest at high elevations (15 ± 7) (Figure 2.2). 
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Ant assemblage composition across the gradient 

The NMDS showed a separation of communities according to their elevations. 

PERMANOVA confirmed significant differences in species composition between plots at the 

three elevations (df=2, Pseudo-F= 2.7863, P=0.002). Species composition for the low, mid 

and high elevations is distinct (Figure 2.3).  

Indicator species  

Seventy-four percent of the species were found in the lowland forest, while 44% and 33% 

were collected in the sub-montane and montane forests, respectively. Fifteen species had a 

wide distribution and occurred in all elevations, 37 species were restricted to the lowland 

forest, 11 were restricted to the sub-montane and 9 species were restricted to the montane 

forest (Appendix C, F). However, the latter species were not indicators of the different forest 

types. Five species were indicators of the lowland forest, two were indicators of the sub-

montane forest and two were characteristic of the montane forest (Table 2.4).  

Table 2. 4: Indicator values (IndVal) of ant species for forest habitat types along the transects. 

All indicator values are significant (p < 0.05). 

 
Habitat type 
 

 
Species 

 
Indicator value (%) 

Lowland     
    

Pheidole sp.05                                       100        

 Megaponera analis 
rapax 

99.52        
 

 Camponotus sp.02. 
(etiolipes gp.) 

94.12        
 

 Tetramorium cf. 
yarthiellum                 

80        
 

 Nylanderia sp.01                                     70.77        
 

Sub-montane Bothroponera sp.01                               
 

85.71                
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 Myrmicaria rustica 
angustior 
 

81.23        
 

Montane Tetramorium sp.14                                
 

100        
 

 Mesoponera sp.02                                 
 

82.61        

 

 

Figure 2. 1: Ant activity across the elevational gradient (low (300-800 m), mid (800-1400 m), 

high (1400-1500 m). 
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Figure 2. 2: Ant species richness across the elevational gradient (low (300-800), mid (800-

1400), high (1400-1500)). 
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Figure 2. 3: Non-metric multidimensional scaling (NDMS) plot of community similarity (Bray–

Curtis dissimilarity index) based on ant species found in three forests types – lowland (red), 

sub-montane (purple), montane (blue) in the Udzungwa Mountains, Tanzania. 

2.4 Discussion  

Ant species declined with increasing elevation along the Udzungwa mountains. This is a 

widely observed pattern along elevational gradients (Stevens, 1992; Grytnes and Vetaas, 

2002) but not so much for the other taxa studied across the Udzungwa mountains. Along these 

mountains, ground dwelling spiders increase with elevation (Malumbres-Olarte et al., 2018), 

bird richness peaked at mid-elevations (Romdal and Rahbek, 2009) and plants and rodents 
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increase with elevation (Lovett et al., 2006; Stanley and Hutterer, 2007), opposing patterns of 

ant richness as reported in the current study.  

It is widely accepted that ants are generally a thermophilic group (Kaspari and Weiser, 2000). 

The distribution of ants is mainly determined by their tolerance to the heat (Dunn et al., 2010), 

and therefore, a decrease in ant species along an altitudinal gradients may be explained by the 

decrease in temperature towards the high elevations (Sanders et al., 2007; Bishop et al., 2014). 

Cooler temperatures may slow down metabolic processes of ants, affect the development of 

eggs and larvae, affect their foraging activities and consequently their primary productivity 

(Rosenzweig and Abramsky, 1993).  

The limited tolerance of ants to the cold may also cause niche conservatism. This is the 

tendency of species to retain aspects of their fundamental niche over time (Wiens and 

Graham, 2005). Mountainous areas are known to have novel set of environmental conditions 

which act as a barrier, limiting the dispersal of species from one elevation to the next. The 

latter therefore, creates a difference in species richness between elevations (Wiens and 

Graham, 2005; Wiens et al., 2010).  

In the tropics, lowland species are reported to have very narrow fundamental niches which 

limits their distribution to the lowland (McCain, 2009), and we found that a great number of 

ant species were restricted to the lowland forest (Appendix B). These species vary from a 

rarely encountered cryptic species (Asphinctopone pilosa) (Hawkes, 2010), a widely 

distributed Technomormyx pallipes  in Afrotropical and Malagasy species, to a common 

rainforests and evergreen predatory forests species (Odontomachus assiniensis), as well as 

common generalists ant species (Monomorium mirandum) (Hawkes, 2010; Garcia et al., 

2013). The species restricted to the lowland seem to have specialised to the lowland and they 

have kept their specialisation over time. As a consequence, they cannot disperse to or survive 



28 

in the sub-montane and montane forest. The latter is also supported by the high number of 

indicator species associated with the lowland forest, emphasizing that more species are 

specialised to this forest type.  

Fewer ant species were restricted to the montane forest (Appendix B) and only two were 

indicators of this forest type. Some species seemed to have larger distributional ranges as they 

were found in all three elevational zones. This is typical of tropical species at higher 

elevations as they tend to be generalists with wider tolerances (Oyen et al., 2016) compared to 

those in the lowland forests, however, in the current study, species showing wide tolerances 

were found across the mountain (Appendix B). Amongst them were both generalists and 

specialised genera such as Myrmicaria (tropical climate specialists), Pheidole (generalized 

Myrmicinae) and Solenopsis (hot climatic specialists) (Andersen, 1997). However, all these 

species may be generalists on these mountains as they have wide geographic distribution and 

show no habitat preferences.  

The two most influential species were Myrmicaria rustica angustior and Dorylus helvolus. 

Myrmicaria rustica angustior is found in open areas of Afrotropical regions and feeds on 

other insects (AntWeb, 2019). It contradicts with its habitat preference in this study as it was 

found throughout the mountain. Its abundance peaked at mid-elevations (Appendix D) 

perhaps owing to overlapping ranges of the lowland and montane forests resulting in the 

edges providing more open habitats for ants to inhabit (McCain, 2009). However, Dorylus 

helvolus declined with increasing elevation (Appendix D). Species in genus Dorylus are 

generalist predators that consume any kind of prey ranging from immatures of other insects to 

vertebrate carrion and this observation might explain their occurrence throughout the 

mountain (Gotwald Jr, 1995). Moreover, Dorylus species are known to move nests in 

response to prey availability (Schöning and Moffett, 2007) and are most likely to have been 
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influenced by foraging behaviour, as their colonies migrate to new colonies in irregular 

intervals resulting in new colonies forming through colony fission (Gotwald, 1995).  

Three ant assemblages associated with the three forest types seem to have developed over 

time. These findings are similar to that of spiders along these mountains (Malumbres-Olarte et 

al., 2018), however ant assemblages seem to be more distinct. The low elevations (lowland 

forest) had the most distinct assemblages while high and mid-elevations shared species. 

Tropical species have narrow elevational ranges as they are adapted to or are exposed to 

stable local environmental conditions causing them to specialize to those specific conditions 

(Janzen, 1967). The latter may explain the separation of assemblages with respect to their 

elevational zones. The distinct low elevation assemblages may be a result of many tropical 

lowland species having narrow fundamental niches limiting their distribution to the lowland, 

while other species may occur in more than one elevation as a result of their wider tolerances 

(Hua, 2016). The homogeneous  habitat structure in the Udzungwa Mountains might be the 

reason for the similarities between the mid and high elevation communities (matching the 

ideas of spider communities on the same mountain) (Malumbres-Olarte et al., 2018). 

However, other important factors that structure insect assemblages for example are how 

specialized species are to resources as well as their physiological tolerances to the climate 

they are exposed to, might have contributed to this pattern (Stork and Grimbacher, 2006).  

In conclusion, our study supports a dominant pattern in tropical mountains; that ant species 

richness declines with an increase in elevation. It also adds to our knowledge of the 

distribution of the poorly understood group of animals on this mountain. Secondly three 

distinct ant assemblages were observed corresponding to the three target elevations/forest 

types with the lowland forest (low elevation) showing a high variation of species when 

compared to the montane and sub-montane forest. Conservation along these mountains should 
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monitor the dynamics of identified indicator species associated with each forest types in order 

to be able to measure the response of biodiversity to climate change and anthropogenic 

activities on these mountains. 

The importance of prioritizing specific blocks on the Eastern Arc massif like the Udzungwa 

mountains for conservation has been largely emphasized (Dinesen et al., 2001), however, only 

biological data of birds, mammals, plants and a few invertebrates indicating “potential trends 

in importance” have been used to inform this decision. Extensive research including the 

environmental and climatic factors which might be responsible or the drivers of the reported 

biodiversity patterns, still needs to be done on the invertebrates of this mountain to better inform 

conservation strategies. The current study along with Malumbres-Olarte et al. (2018) shows 

contrasting biodiversity patterns between ants and spiders suggesting that a lot is yet to be 

revealed and inferred from the invertebrates of the Udzungwa mountains and potentially other 

areas that have not been prioritized. 
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CHAPTER 3: What drives ant beta diversity along the Udzungwa mountains, 
species turnover or richness differences? 

Abstract 

Disentangling the role of deterministic and neutral processes in structuring communities has 

gained considerable attention. Recent studies have suggested that the partitioning of beta 

diversity, which is the variation in species composition between two sites, into species turnover 

and richness differences can provide appreciable insights on the importance of these processes 

in structuring communities. Here, we test the relative role of distance and the environment in 

structuring ant assemblages along the Udzungwa Mountains in Tanzania. A standardized 

survey using pitfall sampling was conducted across five elevational transects which were at a 

distance of 0.1, 1, 20 and 174 km from the first one. Sites within transects were at three target 

elevations which corresponded to three forest types (lowland, 300-800 m a.s.l; sub-montane, 

800-1400 m a.s.l; montane, 1400-1500 m a.s.l).  Beta diversity was influenced by both 

elevational distance (m.a.s.l) and geographic distance (km). Dispersal limitations did not play 

a significant role in structuring ant composition between sites. It also did not explain variation 

in the two beta diversity components; species turnover and richness differences, suggesting that 

historical processes or biotic interactions structure ant communities with distance. Across 

elevations, species turnover increased with elevation while richness differences decreased with 

elevation. The latter elucidates the role of species replacement in structuring ant communities 

along an elevational gradient and that of temperature acting as an environmental filter in 

structuring ant compositions.  

 

Key words: beta diversity, elevational gradient, species turnover, richness differences, 

biodiversity, ants (Hymenoptera; Formicidae), Udzungwa Mountains 
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3.1 Introduction 

Beta diversity is a central concept in community ecology. It is defined as the extent of change 

in community composition between sites (Whittaker, 1960). It is commonly referred to as the 

variation in species composition between two sites (Legendre et al., 2005; Baselga, 2010; Kraft 

et al., 2011; Hu et al., 2018). It allows for the identification of processes that structure 

community assemblages (Kraft et al., 2011) and reveals how communities respond to the 

influence of climate change, environmental gradients and anthropogenic activities (Vellend et 

al., 2007; Anderson et al., 2011; Leprieur et al., 2011). 

 There are multiple approaches of quantifying beta diversity (Koleff et al., 2003; Baselga, 2010; 

Anderson et al., 2011; Podani and Schmera, 2011; Carvalho et al., 2012). However, it is the 

partitioning of beta diversity into two process-based components (species turnover and richness 

differences/nestedness) that has proven both important and useful in describing beta diversity 

patterns and the different mechanisms that control how community assemblages are structured 

(Legendre et al., 2009; Baselga, 2010; Carvalho et al., 2012; Foord and Dippenaar‐Schoeman, 

2016; Soininen et al., 2018). The latter is particularly important because understanding the 

relative importance of these two components of beta diversity gives insight on which processes 

drive beta diversity as well as how best to conserve specific sites/habitats of a given ecosystem 

(Socolar et al., 2016).   

Baselga (2010) proposed the first methodological and conceptual framework, where he 

partitioned beta diversity into species turnover and nestedness. Species turnover being species 

replacement between communities. It is when species that exist in one site are replaced by 

different species in the next site (Bishop et al., 2015; Socolar et al., 2016; da Silva 

 et al., 2018)  as a result of environmental filtering as well as spatial and historical constraints 

(Qian et al., 2005; da Silva et al., 2018). Nestedness on the other hand, is the loss or gain of 

species between communities (Gaston, 2000). It is a result of one species assemblage being a 
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subset of another and is a reflection of how many habitats are available to species or are 

occupied at different sites (Baselga, 2010; Legendre, 2014; Soininen et al., 2018). However, 

Carvalho et al. (2012) suggested that nestedness is a special case of an ordered pattern of 

differences in species richness and there is no unequivocal way to measure it (Legendre, 2014). 

Therefore, a second framework partitioning beta diversity into species turnover and richness 

differences was proposed (Podani and Schmera, 2011; Carvalho et al., 2012). Richness 

differences is the loss or gain of species causing richness differences between sites. It is a result 

of dispersal limitation, colonization and selective extinction (Novotny and Weiblen, 2005; 

Urban et al., 2006; Ulrich et al., 2009) and like nestedness, it is a reflection of available niches 

and is due to processes that result in species thinning which cause nestedness (Legendre, 2014). 

This framework does not over emphasize the role of species turnover, and therefore gives the 

best estimate of biodiversity patterns and the processes structuring them (Carvalho et al., 2012).   

Changes in biodiversity across elevational gradients have been of major ecological interest, 

however, little is known about beta diversity patterns and their drivers across these gradients 

(Qian and Ricklefs, 2012; Tello et al., 2015). This is unwarranted as beta diversity captures the 

dynamic nature of diversity regulation better than the alpha diversity (Wang et al., 2012; Hu et 

al., 2018; Soininen et al., 2018). It has the potential to illuminate the different processes 

associated with elevation that structure community assemblages (Kraft et al., 2011), to reflect 

the relationships between local and regional diversity (Tello et al., 2015) and consequently 

inform regional conservation planning (Legendre et al., 2005; Angeler, 2013; Socolar et al., 

2016). 

Studies that partition beta diversity into turnover and richness differences show that the 

contribution of these components vary along gradients and that species turnover often 

contributes more to total beta diversity than richness differences (Tonial et al., 2012; Foord and 

Dippenaar‐Schoeman, 2016; Heino et al., 2019). These patterns may be as a result of numerous 
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processes such as the effect of environmental conditions, dispersal limitation and species 

interactions (Soininen et al., 2007; Baselga, 2010; Gilman et al., 2010). They may also be a 

result of a gradients disturbance history, vegetation structure and range sizes (Vasconcelos et 

al., 2000; Kaspari et al., 2008; Hua, 2016). 

It is evident that we lack studies that partition beta diversity components along both latitudinal 

and elevational gradients hence our understanding of the processes that govern it is limited. 

There are few studies (if any) with a rigorous study design that accounts for the short comings 

of most beta diversity studies; which are low replication, short elevational extents and the lack 

of within elevation replication (Kraft et al., 2011; Wang et al., 2012; Tello et al., 2015). The 

current study uses a sampling method that accounts for beta diversity along elevational 

transects, and at different geographic distances within each elevation zone. Here we aim to 

describe patterns of beta diversity and establish the role of elevation and geographic distance in 

structuring ant assemblages and how they affect species turnover and richness differences. We 

used ants as a model organism because they are indicator species, they occupy all terrestrial 

habitats and can be identified to species level (Andersen and Majer, 2004).  

The Udzungwa mountains are a biodiversity hotspot threatened by climate change, land 

degradation and consequently biodiversity loss (Myers et al., 2000). The lowland forests were 

converted, leaving the mountain ranges as islands which has contributed to their high level of 

plant and mammal endemism (Lovett and Congdon, 1989; Lovett, 1990; Lovett and Wasser, 

2008). However, anthropogenic activities continue to threaten these forests, and climate change 

is likely to drive species at highest elevations to extinction. We found that that ant species 

richness declines with increasing elevation and that different ant assemblages on these 

mountains are associated with its three forest types (lowland, sub-montane and montane forest) 

(chapter 2). It is therefore important to measure the extent of compositional change between 
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sites and reveal the processes that structure them, in order to better understand how ant 

communities are structured along elevational gradients and possibly how best to conserve them. 

We therefore hypothesize that (1) richness differences will contribute more to overall beta 

diversity than species turnover between sites because of ants limited ability to disperse  long 

distances and (2) ant assemblages along elevation will be structured by both richness 

differences and species turnover as the elevational zones are close to each other but temperature 

acts as a barrier because it is different in each elevational zone. We predict that (1) species loss 

will increase with increasing geographic distance because ants will not be able to disperse long 

distances resulting in high richness differences, making dispersal limitations the main driver of 

the variation between sites. (2) The reported  decrease in temperature with increasing elevation 

(Malumbres-Olarte et al., 2018) will limit the replacement of species in new sites as ants are 

thermophilic and are not adapted to live in cold environments (Kaspari and Weiser, 2000), 

making environmental conditions the main driver of variation between elevational distances. 

3.2 Methods and Materials 

Study Sites Description 

The Udzungwa Mountains (7.82̊ S, 36.70̊ E) are a major center of mammal and plant endemism. 

It is widely recognized for its outstanding biodiversity and high endemicity (Rovero and De 

Luca, 2007). The Udzungwa Mountains form the largest block of the Eastern Arc Mountains 

(Burgess et al., 2007) covering 10 000 km2. Their long-term climatic stability has made them 

endure through millions of years (Lovett and Wasser, 2008). The altitude ranges from 200 to 

2500 m a.s.l. with heterogeneous habitats. It has lowland rainforest (300–800 m a.s.l.); 

submontane rainforest (700–1400 m a.s.l.); montane rainforest (1400–1800 m a.s.l.); and 

mountain bamboo forest (1800 m a.s.l.) as described by Shangali et al., (1998). The climate in 
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the Udzungwa Mountains is variable and it receives rainfall between 2000-3000 mm per year, 

due to the influence of the Indian Ocean (Lovett et al., 2006; Rovero et al., 2009; Mumbi et al., 

2008, Rovero et al., 2017). It has a heavy rainy reason between March and May, and a light 

rainy season between November and February (Lovett and Thomas, 1986).  

The Udzungwa Mountains has a gradient in forest types (Lovett et al., 2006; Rovero et al., 

2017). It is covered by deciduous miombo (Brachystegia spp) in the lowland (300 m a.s.l) and 

by a mosaic of bamboo (Sinarundinaria alpina) and Hagenia abyssinica in the evergreen 

montane rainforest (2400 m a.s.l) (Table 1) (Lovett and Wasser, 2008; Rovero et al., 2017). In 

1992 one fifth of the mountain was protected as the Udzungwa Mountain National Park (Rovero 

et al., 2009) where our study was conducted. 

Ant sampling 

Five elevational transects were be set up, each with a 50 m x 50 m square plot at each of the 

three target elevations (300-800, 800-1400 and 1200-1500 m a.s.l.) which correspond to three 

different forest types (lowland forest, sub-montane forest and montane forest, respectively, 

Table 2.1)) (Lovett, 1999). The five transects were separated by 0.1, 1, 20 and 175 km between 

the first and the remaining transects.  

Twelve pitfall samples (where each sample consisted of four pitfall traps) were collected, as 

part of the application of the COBRA-TF sampling protocol (Malumbres‐Olarte et al., 2017) in 

October–November 2014.  They were partly filled with preservative solution (propylene glycol) 

and a few drops of liquid soap to break surface tension and sheltered using lids on stilts about 

2-3 cm above the ground. The traps were left in the field for 2 weeks.  

Samples were washed in the laboratory and stored in 96% ethanol. Ants were identified to genus 

level using Fisher and Bolton (2016) and then identified to species level where possible using 

online databases; viz. AntWiki (http://www.antwiki.org/) and AntWeb (http://antweb.org/).  

http://www.antwiki.org/
http://antweb.org/
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and then assigned to morphospecies. Voucher species are held in the Zoological Museum of the 

Natural History Museum of Denmark, Copenhagen, Denmark. 

Data analysis  

Data was analysed using the R programming environment version 3.4.1 (R Core Team, 2017). 

Beta diversity was partitioned as proposed by Carvalho et al (2013) to determine the relative 

role of species replacement and richness differences in generating beta diversity. Beta 

diversity was measured as the Jaccard index into two additive components, difference due to 

turnover and difference due to species loss/gain. The measures do not overestimate the role of 

species turnover (Carvalho et al., 2012) and are not sensitive to undersampling (Cardoso et 

al., 2009). The observed metrics were then compared with those expected under a random 

model of community assembly in order to identify the processes that drive beta diversity 

patterns. One thousand random assemblages whose species occurrence frequency and sample 

species richness were maintained while species occurrence was shuffled across sites, were 

generated using the independent swap method of the ‘randomizeMatrix’ function in the 

‘picante’ package (Kembel et al., 2010). We then calculated the standardised effect sizes 

(SES) of the observed measures as a function of mean and standard deviation of the null 

distribution (Bishop et al., 2015). SES values > 1.96 and < - 1.96, are significantly larger or 

smaller than expected. Multiple regressions were performed to model the response of the 

three beta diversity metrics and their SES to distance and elevational distance using the 

function ‘lm’ in the package ‘lme4’ (Bates et al., 2013). A quadratic term was included for the 

observed metrices to account for nonlinear responses of geographic and elevational distance 

in diversity. Model predictions were then visualized using the ‘ggplot2’ function (Wickham, 

2016).  

Community composition   
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Variation in community composition was analysed using the latent variable modelling. This is 

a Bayesian model-based approach that uses a set of underlying latent variables to account for 

residual correlation among species in order to explain community composition. The Bayesian 

model-based approach accounts for overdispersion in data without confounding location with 

dispersion by offering the option to adjust the distribution family to for example “poisson” or 

“negative binomial” (Hui, 2016). Model-based unconstrainted ordination was performed 

using the ‘boral’ package. Ant communities were modelled with two latent variables and 

negative binomial distribution to visually represent similarities between communities at sites. 

3.3 Results  

Observed patterns 

Distance explained a significant amount of variation in beta diversity.  There is a polynomial 

relationship between distance (km) and overall beta diversity in the lowland forest, however, 

distance seems to play a limited role in structuring ant communities as neither species turnover 

nor richness differences significantly explain variation in species composition (Table 3.1).  

There is a significant linear increase in total beta diversity explained by species turnover at 

intermediate distances (10 km) and richness differences at furthest distances (100 km) (Table 

3.1). The latter suggests that distance does not affect beta diversity in the lowland forest while 

richness differences structure ant communities in the sub-montane forest and species turnover 

structures ant communities at intermediate distance and richness differences structure ant 

communities at furthest distances in the montane forest.  

There is a linear increase in total beta diversity with elevational differences (Figure 3.1) and 

both species turnover and richness differences contribute significantly in explaining the 

variation in total beta diversity (Table 3.1). We observed a polynomial relationship between 

species turnover and elevational differences while we observed a linear relationship between 
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richness differences and elevational differences (Table 3.1). Species turnover shows a convex 

relationship while richness differences show a concave relationship with elevational differences 

(Figure 3.2). The latter suggest that species turnover structures ant communities at intermediate 

elevational differences (500 m.a.s.l) while richness differences structures them at high 

elevational differences. The role of richness differences becomes more important in structuring 

ant communities with increasing elevational distance.  

 

 

Figure 3. 1: The contribution of total beta (Bray-Curtis), species turnover (Beta3) and richness 

differences (Betarich) to beta diversity patterns between sites in the lowland (low), sub-montane 

(mid) and montane (high) forests of the Udzungwa mountains. 
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Table 3. 1: Results of multiple regressions for the relationship between total beta diversity, 

turnover and species loss with distance and elevation. 

 Low Medium High Elevation 
 Jaccard index 
Intercept 0.65*** 0.66*** 0.5*** 0.73*** 
Distance 0.034** 0.103* 0.11** 0.1*** 
Distance2 -0.006*    
Distance3     
R2- adjusted 0.75 0.53 0.68 0.64 
 Differences due to turnover 
Intercept 0.43*** 0.46*** 0.5*** 0.54*** 
Distance 0.002 -0.08 -0.36 0.14* 
Distance2   -0.35*** -0.059** 
Distance3   -0.14** -0.06. 
R2- adjusted -0.11 -0.08 0.88 0.18 
 Differences due to species loss 
Intercept 0.22* 0.24* 0.15* 0.25** 
Distance 0.02 0.09* 0.15. 0.08*** 
Distance2   0.34**  
Distance3   0.13*  
R2- adjusted -0.08 0.4 0.89 0.24 
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Figure 3. 2: The contribution of total beta (Betajac), species turnover (Beta3) and richness 

differences (Betarich) to beta diversity patterns along an elevational transect on the Udzungwa 

mountains. 

 

Standardized patterns  

The standardised effect sizes for overall beta diversity slightly increase with distance in the 

lowland, sub-montane and montane forest (Figure 3.3). Standardised species turnover 

increases from less than expected to greater than expected with increasing distance in the sub-

montane forest, while it slightly increases in the lowland and montane forest (Figure 3.3).  

There is a slight decrease in the standardised richness differences in all three forest types. The 

findings suggest that, although the relationship between distance and beta diversity is small, 

distance does influence the rate of turnover and that species replacement and species loss/gain 

does not play a role in explaining beta diversity patterns between sites that are different in 

distances from each other across all three habitat types (Table 3.2).  
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The standardised effect sizes for overall beta diversity increase with increasing elevational 

distance (Figure 3.4). Overall beta diversity is lower than expected at small elevational 

distances and is higher than expected at larger elevational distances. Standardised species 

turnover increases with increasing elevational distance while standardised richness differences 

decrease with increasing elevational distance (Figure 3.4). These results suggest that  turnover 

is significantly influenced by elevational distance. The role of richness differences in 

structuring ant communities decreases with elevation, while that of species turnover increases 

with elevation suggesting that species turnover is important in structuring ant communities 

along an elevational gradient. 

Table 3. 2: Results of multiple regressions for the SES relationship between total beta diversity, 

turnover and species loss with distance. 

 Low Medium High Elevation 
 Jaccard index 
Intercept 0.520 0.586 0.830 8.28e-09*** 

 
Distance 0.292 0.409 0.791 2.52e-10*** 

  
R2- adjusted 0.29 -0.03 -0.12 0.63 
 Differences due to turnover 
Intercept 0.552 0.0176* 0.819 5.96e-09*** 

  
Distance 0.308 0.1226 0.779 1.89e-10 *** 

 
R2- adjusted 0.02 0.19 -0.11 0.65 
 Differences due to species loss 
Intercept 0.55 0.585 0.821 8.01e-09 *** 

 
Distance 0.309 0.402 0.775 2.84e-10*** 

  
R2- adjusted 0.02 -0.03 -0.11 0.63 
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Figure 3. 3: The SES contribution of total beta (Bray-Curtis), species turnover (Beta3) and 

richness differences (Betarich) to beta diversity patterns between sites in the lowland (low), sub-

montane (medium) and montane (high) forests of the Udzungwa mountains. 
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Figure 3. 4: The SES contribution of total beta (Betajac), species turnover (Beta3) and richness 

differences (Betarich) to beta diversity patterns along an elevational transect on the Udzungwa 

mountains. 

Community similarity  

There are three distinct assemblages along the Udzungwa mountains which correspond to the 

three elevations (lowland, sub-montane and montane) (Figure 3.3). The sub-montane ant 

communities are intermediate between montane and lowland sites (Figure 3.3). Fifteen species 

were associated with all three forest types. Forty-one species were restricted to the lowland, 

twelve occurred in the sub-montane and thirteen restricted to the montane forest. The similarity 

or dissimilarity between these assemblages seem to be affected by both distance (km) and 

elevational distance (Table 3.1; Figure 3.3). 
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Figure 3. 5: Plot of community similarity based on ant species sampled in three forests types: 

lowland (red), sub-montane (green), montane (black) in the Udzungwa Mountains, Tanzania. 

3.4 Discussion 

This study provides insight into the processes that structure ant communities along the 

Udzungwa mountains, Tanzania. To the best of our knowledge, it is the first to measure 

taxonomic beta diversity along an elevational gradient given a sampling design that accounts 

for turnover with an increase in elevation (600-1500 m.a.s.l) as well as an increase in geographic 

distance (0.1-175 km) for African ants. Bishop et al. (2015) measured ant species and functional 

beta diversity across the Drakensberg mountains, giving insight on processes that may control 

elevational patterns, while Foord and Dippenaar‐Schoeman (2016) studied beta diversity for 

spiders along the Cederberg mountains. However, the latter studies lack comparison of transects 

at different distances (Wang et al., 2012; Tello et al., 2015).  
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Sites at the same elevation would be expected to have similar environmental conditions, 

particularly temperature, no matter the distance between them considering that they are at the 

same latitude. The latter, suggests that beta diversity would depend exclusively on dispersal 

limitation and thus increase with increasing geographic distance (Vasconcelos et al., 2010). The 

SES results, however, show that ant compositions are not strongly driven by dispersal limitation 

as there was only a slight variation in beta diversity with increasing distance. The SES results 

also show that distance does not explain much of the variation in both beta diversity components 

(species turnover and richness differences) even though species turnover appeared to be less 

than expected by chance and richness differences larger than expected by chance with 

increasing distance. The latter suggests the role of biotic interactions (e.g. predation, 

competition and mutualism) in structuring ant communities with varying geographic distance, 

which are some of the most important factors that structure communities (Gilman et al., 2010) 

as they have the potential to modify resource availability or local abiotic conditions (Boulangeat 

et al., 2012). The similar environment within same elevations may have also selected for a 

similar composition of ants and stochastic factors such as random colonization, extinction and 

ecological drift may have contributed to the structuring of ant communities with distance 

(Chase and Myers, 2011). 

Elevation significantly affected beta diversity patterns, emphasizing the role of environmental 

filtering in structuring ant communities. The observed overall beta diversity increased with 

increasing elevation, showing that turnover is highest in high elevations. This finding 

contradicts Kraft et al. (2011) and Tello et al. (2015) who found that beta diversity decreases 

towards high elevations but was, however, similar to Bishop et al. (2015), who reported an 

increase in beta diversity with increasing elevation, which was largely driven by species 

turnover.  
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In this study the role of species turnover in structuring ant communities increased with 

increasing elevation, suggesting that species replacement is the main driver of ant communities 

along an elevation gradient. Richness differences on the other hand decreased with elevation. 

Sites that are very close to each other tend to have the same species and only really differ in 

terms of richness while sites that are distant elevational-wise have very different species and 

don’t differ much in the number of species perhaps owing to the harsh temperature conditions 

only allowing for adapted species to establish and survive at high elevations, trading off large 

population sizes for traits suitable for survival.   

Similar to Bishop et al. (2015) ants on the Udzungwa mountains tend to be specialized to certain 

elevations and not the entire gradient emphasising the role temperature as a strong predictor of 

ant communities along elevational gradients. In the tropics, species are known to have narrow 

temperature ranges (Janzen, 1967). The latter therefore, makes mountain passes effective 

barriers of dispersal as species with  narrow temperature ranges at one elevation have low 

fitness to move to another elevation (Janzen, 1967). This also limits elevational ranges of tropic 

species and promotes speciation along mountain slopes (Moritz et al., 2000; McCain, 2009; 

Hua, 2016).  

Three ant species assemblages associated with each target elevation were observed. The low 

and mid-elevation assemblages were almost similar while the high elevation assemblage was 

distinct, perhaps owing to reduced effective dispersal of species as a result of narrow 

temperature and elevational ranges. Species restricted to the three target elevations seem to have 

narrow temperature and elevational ranges.  

In conclusion, this study reveals that beta diversity is affected by elevational distance (more 

pronounced) and distance (slightly less pronounced). Beta diversity did not vary much with 

increasing geographic distance, suggesting that dispersal limitation play a minimal role in 

structuring ant communities between sites therefore emphasizing the role of the environment 
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and not dispersal in explaining variation in ant communities at different geographic distances.  

Along an elevational gradient, species turnover structed ant communities at high elevations, 

while richness differences structured ant communities at low elevation, perhaps owing to 

temperature selectively filtering which species can establish and survive at each different 

elevation. These results suggest that temperature is very important in structuring ant 

communities along the Udzungwa mountains and that complementarity between sites is 

maximized by choosing sites that are at different elevations. 
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CHAPTER 4: CONCLUSION AND RECOMMENDATION 
FOR FURTHER RESEARCH 

4.1 Introduction 

Tropical rainforests are the most diverse terrestrial ecosystems on Earth (Harrison, 2005). A 

large proportion of their animal biomass comes from ants (Holldobler and Wilson, 1990; Brühl 

et al., 1999) although they are largely not understood (Longino et al., 2014). Studying ant 

biodiversity patterns and processes structuring them along tropical rainforests could therefore 

contribute to our knowledge of the processes driving their high diversity and consequently give 

insight on how to best conserve them. The current study specifically aimed to contribute to the 

knowledge of African tropical rainforests by investigating both alpha and beta ant diversity 

along an elevational gradient along the Udzungwa mountains.  

Alpha diversity is species richness within a site (Whittaker et al., 2001). It gives a description 

of species diversity found along the local scale (Whittaker, 1960) while beta diversity is the 

variation in species composition between two sites and it operates at a regional scale (Whittaker, 

1960; Whittaker, 1972). The current study investigated both alpha and beta diversity by 

quantifying ant diversity, documenting their diversity patterns and identifying which processes 

structure ant communities; whether it was species turnover or richness differences. By so doing, 

a comprehensive reference was built for protecting regional biodiversity (Anderson et al., 2011; 

Socolar et al., 2016). 

4.2 Revisiting the aims and objectives 

The first aim of the study was to describe ant diversity patterns along an elevational gradient in 

the Udzungwa Mountains and assess how ant assemblages vary with the three forest types along 

the mountain ranges. The current study reported a decline of ant species richness with 
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increasing elevation and therefore once again observing the most documented biodiversity 

patterns along elevational gradients. The latter is not surprising because ants are thermophilic 

organisms (Kaspari and Weiser, 2000), and their limited tolerance to the cold may have caused 

their decline as temperature also decreases with increasing elevation (Dunn et al., 2010; 

Malumbres-Olarte et al., 2018). Three different assemblages were found on these mountains. 

The lowland had a distinct assemblage owing to the narrow elevational ranges tropical species 

have, while the sub-montane and montane forest shared some species. The findings of this study 

suggest that ants are niche conservative (Wiens and Graham, 2005). The latter suggests that 

ants have limited tolerance to the cold limits their ability to disperse from one elevation to the 

next (Wiens et al., 2010). In the context of climate change, ants of the Udzungwa mountains 

would move up the mountain in search of suitable conditions, while montane species face the 

risk of being pushed to extinction.  

The second aim of the study was to understand the processes that drives ant communities by 

investigating beta diversity patterns and the role of niche and dispersal processes in structuring 

ant communities within an elevation and along the Udzungwa mountains ranges. Findings show 

that beta diversity is affected by both distance and elevation. Beta diversity increased with 

increasing elevation and increasing distance. SES results suggest that the role of species 

turnover in structuring ant communities increases with distance and elevation, while that of 

richness differences decreases with both distance and elevation. Species turnover is important 

in structuring ant communities along elevational distance suggesting that ants are locally 

adapted to environmental conditions of the different elevation zones while dispersal limitations 

play a limited role in structuring ant communities with increasing distance, suggesting that 

biotic interactions structure ant communities.       
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4.3 Contributions of the study 

This study is the first to document ant biodiversity patterns and their possibly drivers along the 

Udzungwa mountains in Tanzania. The Udzungwa Mountains ranges are a biodiversity hotspot 

well known for mammal and plant endemism (Rovero et al., 2009). Invertebrates, however, are 

highly successful and diverse group which are largely understudied across the region. This 

study therefore contributes to the knowledge of a dominant terrestrial invertebrate group, ants 

(Hymenoptera: Formicidae), on these mountains and African tropics in general (Botes et al., 

2006; Munyai and Foord, 2012; Bishop et al., 2015). It has revealed another decline in tropical 

ant species richness with increasing elevation (Brühl et al., 1999; Malsch et al., 2008; Longino 

et al., 2014). The high diversity as well as distinct assemblage associated with the lowland forest 

suggests that there is a high need to conserve this forest type. In fact, there is need to conserve 

the whole mountains as findings show that ants are niche conservative as their distribution is 

restricted to the forest type or elevation zone they are found in.   

In order to best inform conservation planning, we must understand beta diversity patterns and 

the processes that structure them (Socolar et al., 2016). This study is the first to measure beta 

diversity patterns with a sampling method that accounts for within elevation replicates which 

are often lacking in most beta diversity studies. It is also one of the few studies (Carvalho et al., 

2012; Foord and Dippenaar‐Schoeman, 2016) to partition beta diversity into species turnover 

and richness differences along elevational gradients, which is particularly important in 

informing conservation planning. The findings of this study could be used to best inform 

conservation planning in the Udzungwa mountains. 

4.4 Challenges  

For decades, studies have been documenting biodiversity patterns and the processes that 

structure them. Despite this long-standing investigation, biodiversity remains unquantified in 
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remote areas, especially in Africa. The contribution of humankind to climate change (Hulme et 

al., 1999), the degradation of ecosystems (Mona et al., 2019) and the introduction of invasive 

species (Meineke et al., 2018) is accelerating biodiversity loss, and the latter leaves us at risk 

of losing biodiversity that has not been documented. Therefore, there is a great demand for 

quantifying biodiversity in tropical rainforests and coming up with conservation programs, 

especially in understudied areas.  

Alpha diversity and how it is quantified is relatively well understood, however beta diversity is 

a little challenging. Beta diversity has multiple definitions as well as methodological concepts 

of quantifying it (Tuomisto, 2010; Anderson et al., 2011). Baselga (2010) and Carvalho et al. 

(2012) proposed the partitioning of beta diversity into species richness and richness 

differences/nestedness and it is indeed important as it gives insight on how to best inform 

conservation programs (Socolar et al., 2016).   

4.5 Future possibilities 

Ants are ecologically important organisms found in almost all terrestrial habitats (Folgarait, 

1998). Their distribution is shaped by several mechanisms such as environmental conditions, 

species interactions, historical and geographical factors i.e. dispersal limitation (Dröse et al., 

2019). The way these mechanisms shape communities vary with respect to the different 

components of diversity, as taxonomic, phylogenetic and functional diversity provide unique 

information on biodiversity and consequently the way in which it should be conserved (Webb 

et al., 2002; Cadotte et al., 2010; Cadotte et al., 2011). The current study investigated taxonomic 

diversity, and the next is step is understanding phylogenetic and functional processes of 

biodiversity and understanding the processes that shape them. 

Understanding ant phylogenetic diversity and functional diversity along the Udzungwa 

mountains and linking it to ant taxonomic diversity can provide insight into the extent to which 
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communities are structured by niche processes as well as dispersal limitation (Cavender‐Bares 

et al., 2009; Pavoine and Bonsall, 2011; Purschke et al., 2013). Phylogenetic diversity has the 

potential to reflect if a system faced with environmental changes can generate new evolutionary 

solutions or it can persist despite the changes (Forest et al., 2007; Faith, 2008) while functional 

diversity has the potential to reflect the functional response of species communities to 

environmental filters as well the communities ability to occupy functional niche space in order 

to optimize ecosystem functioning (Díaz et al., 2007; Cadotte et al., 2009). Therefore, future 

work has the potential to reveal exactly how phylogenetics and functional traits structure ant 

communities along the Udzungwa mountain ranges.    

4.6 Final comments and summary of the conclusion 

Explaining the coexistence of the diverse species assemblages found in tropical rainforests 

remains a challenge in tropical ecology (Harrison, 2005). Much of its biodiversity remains 

unquantified and biodiversity patterns understudied. This study has documented both local and 

beta diversity patterns as well as the role of niche and dispersal processes that structure ant 

communities along mountain ranges in the African tropics. It has revealed the need for 

conservation on these mountains and has given insight on how best to conserve the mountain’s 

different forest types and at different distances.  
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APPENDIX A: The five (50m x 50m) plots consisting of 12 pitfall traps on each side of the 

plot 4 m apart at each elevation (lowland (300-800 m.a.s.l), sub-montane (800-1400 m.a.s.l), 

montane (1400-1500 m.a.s.l)). 
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APPENDIX B: Interpolation and extrapolation of species diversity at three forest types 

(lowland, sub-montane, montane) across the studied communities. 

 

 

APPENDIX C: Checklist of subfamilies and ant species collected in three habitat types of the 

Udzungwa mountains ranges. 

 
 

Subfamilies and species 

 

Lowland 

Habitat type  

Sub-montane 

 

Montane 

Dolichodrinae  
 

Technomyrmex sp.01 2 0 0 

Technomyrmex sp.02 1 0 0 

Technomyrmex sp.03 0 1 0 

Dorylinae  
 

Aenictus sp.01 0 2 0 

Dorylus sp.01 4393 134 8733 

Parasyscia sp.01 0 3 0 

Parasyscia sp.02 0 1 0 

Formicinae  
 

Camponotus sp.01 (maculatus gp.) 21 11 10 

Camponotus sp.02 (etiolipes gp.) 16 1 0 
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Camponotus sp.03 (cintellus gp.) 1 0 0 

Camponotus sp.04 (maculatus gp.) 5 0 0 

Camponotus sp.05 (niveosetosus gp.) 1 2 0 

Lepisiota cf. crinite 0 0 5 

Lepisiota sp.01 (capensis gp.) 31 3 160 

Lepisiota sp.02 3 0 0 

Lepisiota sp.03 5 0 0 

Lepisota sp.03 2 0 0 

Nylanderia sp.01 137 18 0 

Plagiolepis sp.01 5 0 0 

Plagiolepis sp.02 2 0 0 

Plagiolepis sp.03 0 0 1 

Polyrhachis sp.01 8 6 0 

Polyrhachis sp.02 1 0 0 

Tapinolepsis sp.03 0 0 2 

Tapinolepsis sp.01 1 0 0 

Tapinolepsis sp.02 0 2 4 

Myrmicinae  
 

Calyptomyrmex sp.01 0 1 0 

Cardiocondyla sp.01 0 0 6 

Carebara sp.01 11 9 0 

Carebara sp.02 104 0 2 

Catalaucus sp.01 0 1 0 

Crematogaster sp.01 8 0 13 

Crematogaster sp.02 5 0 0 

Crematogaster sp.03 8 0 0 

Crematogaster sp.04 4 6 5 

Crematogaster sp.05 1 0 0 

Melissotarsus emeryi 1 0 0 

Meranoplus sp.01 7 0 0 

Microdaceton sp.01 1 0 0 

Monomorium sp.01 27 0 0 

Myrmicaria sp.01 224 8539 1749 
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Pheidole sp.01 (crassinoda gp.) 181 895 641 

Pheidole sp.02 351 548 11 

Pheidole sp.03 348 6 0 

Pheidole sp.04 (megacephala gp.) 699 401 193 

Pheidole sp.05 85 0 0 

Pheidole sp.06 8 115 18 

Pheidole sp.07 (liengmei gp.) 225 0 0 

Pheidole sp.08 15 3 0 

Solenopsis sp.01 191 39 63 

Solenopsis sp.02 9 3 0 

Strumigenys sp.01 1 14 3 

Strumigenys sp.02 4 6 0 

Strumigenys sp.03 6 0 0 

Strumigenys sp.04 0 21 21 

Strumigenys sp.05 0 1 0 

Strumigenys sp.06 0 0 6 

Tetramorium cf. yarthiellum 104 0 0 

Tetramorium sp.01 (setigerum gp.) 38 0 0 

Tetramorium sp.02 (setigerum gp.) 1 0 0 

Tetramorium sp.03 (weitzeckeri gp.) 125 738 95 

Tetramorium sp.04 (setigerum gp.) 2 0 0 

Tetramorium sp.05 (gabonense gp.) 16 0 0 

Tetramorium sp.06 1 0 0 

Tetramorium sp.07 (notiale gp.) 3 2 1 

Tetramorium sp.08 1 0 0 

Tetramorium sp.09 1 0 0 

Tetramorium sp.10 (sereceiventre gp.) 1 0 0 

Tetramorium sp.11 (simillimum gp.) 40 1 4 

Tetramorium sp.12 1 0 0 

Tetramorium sp.13 0 3 0 

Tetramorium sp.14 0 0 40 

Tetramorium sp.14 (Rhpatomyrmex gp.) 0 1 0 

Tetramorium sp.15 (notiale gp.) 0 0 9 
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Tetramorium sp.16 0 0 6 

Tetramorium sp.17 (squaminode gp.) 0 0 19 

Monomorium sp.02 1 21 0 

Ponerinae  
 

Anochectus sp.01 1 1 0 

Anochectus sp.02 2 0 0 

Anochectus sp.03 1 0 0 

Asphinctopone Pilosa 2 0 0 

Bothoponera sp.01 0 3 0 

Bothroponera sp.01 10 60 0 

Bothroponera sp.02 2 0 0 

Bothroponera sp.03 3 1 0 

Cryptopone sp.01 0 0 1 

Hypoponera sp.01 1 0 0 

Hypoponera sp.02 2 0 0 

Hypoponera sp.03 0 0 6 

Leptogenys sp.01 5 386 42 

Leptogenys sp.02 0 2 0 

Leptogenys sp.03 2 0 0 

Leptogenys sp.04 0 0 12 

Megaponera analis rapax 209 1 0 

Mesoponera sp.01 3 0 0 

Mesoponera sp.02 4 0 19 

Mesoponera sp.03 4 5 0 

Odontomachus sp.01 8 0 0 

Plectroctena sp.01 1 0 0 

Plectroctena sp.02 0 4 0 

Plectroctena sp.03 0 0 77 
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APPENDIX D: Ant activity of the two most influential species (A - Myrmicaria rustica 

angustior, B – Dorylus helvolus) across the elevational gradient – low (300-800 m), mid (800-

1400 m), high (1400-1500 m). 

 

 

A 

 

B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



78 

 
APPENDIX E: Latitudinal and longitudinal coordinates for each plot. 

Plot  Latitude Longitude 

1 - 7.41135 36.56286 

2 -7.41149 36.56247 

3 -7.41024 36.55493 

4 -7.41052 36.55484 

5 -7.40455 36.55069 

6 -7.40421 36.55068 

7 -7.41234 36.56007 

8 -7.41129 36.55392 

9 -7.41062 36.54524 

13 -7.50296 36.52013 

14 -7.50261 36.51330 

15 -7.49398 36.50260 

16 -8.30134 35.55089 

17 -8.29581 35.54595 

18 -8.29195 35.54273 
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 APPENDIX F: A Venn diagram showing the number of species restricted and shared within 

the three forest types of the Udzungwa mountains. 
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