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Abstract 
 

The thioredoxin system consisting of thioredoxin (Trx), thioredoxin reductase and NADPH 

plays a significant role in a large number of redox-dependent processes such as DNA 

synthesis and anti-oxidant defense. Elevated levels of this system have been associated with a 

number of diseases including cancer and HIV. Understanding the regulation of this network 

from a systems perspective is therefore essential. However, contradictory descriptions of 

thioredoxin as both an enzyme and redox couple have stifled the adoption of systems biology 

approaches within the field. Using kinetic modeling, this discrepancy was resolved by 

proposing that saturation of Trx activity could be due to the saturation of the Trx redox cycle 

which consequently allowed development of the first computational models of the 

thioredoxin system in Jurkat T-cells and Escherichia coli. While these models successfully 

described the network properties of the thioredoxin system in these organisms, further 

confirmatory studies were required before this modeling approach could be generally 

accepted. The aim of this study was to utilize computational and molecular methods to 

confirm or reject this proposed mechanism for thioredoxin activity. To determine if there is 

any difference in the kinetic models obtained when thioredoxin was modeled as an enzyme or 

as a redox couple, representative core models were developed. The data showed that when 

modeling Trx as a redox couple, the system was able to achieve steady state, there was a re-

distribution of Trx into its oxidized form and, thioredoxin reductase affected the rates within 

the system. On the other hand, when Trx was modeled as an enzyme, the system could not 

reach a steady state, Trx remained in the reduced form and thioredoxin reductase 

concentration had no effect on the rates within the system. As these properties could be 

directly tested in vitro, we sought to directly confirm which model was correct. The 

thioredoxin system from Saccharomyces cerevisiae was cloned, expressed and purified and 

substrate saturation curves were generated using insulin as a model substrate. The data showed 

that the system reached steady state and with increasing concentrations of insulin, the system 

saturated with a progressive re-distribution of the thioredoxin moiety into its oxidized form. 

Further, increasing the thioredoxin reductase concentration increased the flux through the 

system. Collectively, the results obtained through in vitro analyses provided unambiguous 

support for the thioredoxin redox couple model. These results will enable the construction of 

a complete computational model of the yeast thioredoxin system and provide a basis for the 

analysis of this network in a number of pathologies. 
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Chapter 1 
 

1.1 Introduction 
 

Oxygen in its ground state is relatively unreactive and harmless but upon excitation or 

partial reduction, forms a number of reactive species including the superoxide anion (O2
-
), 

singlet oxygen (O2
1
), ozone (O3), and the hydroxyl radical (·OH) that can damage a range of 

intracellular components (Jamieson, 1998). Oxygen-utilizing cells have consequently evolved 

defense mechanisms to detoxify reactive oxygen species (ROS) (Grant, 2001), reduce the rate 

of their production, and repair the damage caused by them (Ross et al., 2000). Oxidative 

stress is a state within the cell in which the level of ROS exceeds the available antioxidant 

defenses that scavenge and inactivate them (Ross et al., 2000, Sheehan et al., 2010). The 

thioredoxin system is an important conserved system that protects the cell against oxidative 

stress by aiding in the reduction of peroxides into harmless products and repairing oxidatively 

damaged proteins (Toledano et al., 2007).  

 

Thioredoxin (Trx), nicotinamide adenine dinucleotide phosphate (NADPH) and 

thioredoxin reductase comprise the thioredoxin system which is widely distributed among  

prokaryotes and eukaryotes (Arnér and Holmgren, 2006). This system was first discovered by 

Reichard and coworkers in 1964 as a hydrogen donor for the enzymatic synthesis of cytidine 

deoxyribonucleoside diphosphate by ribonucleotide reductase in Escherichia coli (Laurent et 

al., 1964). Since then, the thioredoxin system has been implicated in  many cellular functions 

(Figure 1.1) including the synthesis of the other deoxyribonucleotides (Toledano et al., 2007), 

maintaining the reduced environment of the cell, redox control of transcription factors and 

stimulating cell growth (Karlenius and Tonissen, 2010). However, elevated levels of this 

system have been associated with a number of pathologies (Figure 1.1) including HIV 

(Nakamura et al., 1996, Nakamura et al., 2001), asthma (Yamada et al., 2003), diabetes 

(Thirunavukkarasu et al., 2007) and malaria (Nickel et al., 2006). Studies on human lung 

cancer have also shown that Trx and its downstream antioxidants, peroxiredoxin 1 and 2, are 

upregulated in cancerous tissue and may represent an adaptation by tumour cells for 

increased proliferation (Kim et al., 2003, Park et al., 2006, Xu et al., 2012). A study 

involving the analysis of the plasma Trx1 levels in first episode schizophrenic patients 
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showed increased levels of Trx1 in comparison to healthy control individuals (Zhang et al., 

2009).  

 

Therefore understanding the regulation of the thioredoxin system is essential for the 

treatment of these pathologies.  

 

 

Figure 1.1 Roles of thioredoxin. Trx participates in essential processes (inner circle) and is 

involved in either pathophysiological processes or in major disease states (outer circle) 

(Hirota et al., 2002). 

 

1.2 The thioredoxin system 
 

1.2.1 Thioredoxin reductase  

 

Thioredoxin reductase is a member of a family of pyridine nucleotide-disulfide 

oxidoreductases (Williams, 1995, Arnér and Holmgren, 2000b). Members of this family are 

homodimeric flavoproteins, in which each subunit has an NADPH binding site, a redox-

active disulfide bond and a tightly bound flavin adenine dinucleotide (FAD) prosthetic group 
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(Williams, 1995, Zhong et al., 2000). This FAD group mediates the transfer of reducing 

equivalents from NADPH to its own disulfide bond, and then to the disulfide bond of the 

substrate (Holmgren and Bjornstedt, 1995, Williams, 1995). Thioredoxin reductase is the 

only known enzyme to reduce oxidized Trx (Figure 1.2). It is also able to reduce non-

disulfide substrates such as hydrogen peroxide (Takemoto et al., 1998). 

 

 

Figure 1.2 The thioredoxin system. Reduced Trx (Trx(SH)2) directly reduces oxidized 

proteins and is oxidized (TrxS2). The regeneration of Trx from its oxidized form is catalyzed 

by thioredoxin reductase (TR) by using NADPH + H
+
 (Lillig and Holmgren, 2007). 

 

Thioredoxin reductases can be classified into two types, based on size. The first type 

has a higher molecular mass of approximately 55 kDa and is generally found in animals  

(Gasdaska et al., 1995) and protozoa such as the malaria parasite (Krnajski et al., 2001). The 

second type, present in archaea, bacteria, and lower eukaryotes (such as yeast), has a lower 

molecular mass of 35 kDa (Williams, 1995, Hirt et al., 2002). The larger thioredoxin 

reductase found in complex eukaryotic organisms is more closely related to glutathione 

reductase than to bacterial thioredoxin reductase and has a broader substrate specificity 

TR 

 

 

NADPH + H
+

 NADP
+

 

TrxS
2
 Trx(SH)

2
 

 

 

Reduced protein Oxidized protein 

abab 
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(Mustacich and Powis, 2000) and an additional selenium redox active motif (Arnér and 

Holmgren, 2000b, Zhong et al., 2000). 

 

1.2.2 Thioredoxin 

 

Trx is a low molecular weight (12 kDa), thermostable and ubiquitous protein that can 

be  localized in the cytoplasm, in the membranes, in the mitochondrial eukaryotic cell 

fractions as well as in the extracellular space (Das et al., 1999). This redox-active protein has 

a conserved Cys-Gly-Pro-Cys catalytic site that undergoes reversible oxidation/reduction of 

the two cysteine (Cys) residues (Štefanková et al., 2005) and Trx can exist either in a reduced 

(thioredoxin-(SH)2) or oxidized form (thioredoxin-S2). The overall difference between the 

oxidized and reduced forms of Trx is subtle (Holmgren, 1995) and simply involves a local 

conformational change in and around the redox-active disulfide (Arnér and Holmgren, 

2000b). In its oxidized form, Trx is more stable than reduced Trx (Figure 1.3) (Collet and 

Messens, 2010) and contains a single-redox-active disulfide that is formed from the two half-

cystine residues of the protein. In the presence of thioredoxin reductase and NADPH, this 

disulfide is opened and the reduced form of Trx is subsequently formed (Collet and Messens, 

2010). Therefore, reduced Trx has a dithiol whereas oxidized Trx has a disulfide (Holmgren 

and Bjornstedt, 1995). The active form of Trx (thioredoxin-(SH)2) becomes reoxidized whilst 

providing reducing equivalents to target molecules.  
 

 
 

Figure 1.3 Thermodynamic stability of Trx as a function of temperature. Oxidized Trx 

(red curve) is more stable than reduced Trx (blue curve) (Collet and Messens, 2010). 
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Saccharomyces cerevisiae contains three isoforms of Trx. Trx1 and Trx2 are located 

in the cytosol (Gan, 1991, Xu and Wickner, 1996, Trotter and Grant, 2005) whereas Trx3 is 

located in the mitochondrial matrix (Pedrajas et al., 1999, Herrero et al., 2008).  

 

1.2.2.1 Reduction mechanism of Trx 

 

Trx has a hydrophobic surface patch that enables it to make a complex with an 

oxidized substrate. Upon the formation of this complex, nucleophilic attack by the thiolate of 

Cys32 found in Trx results in the formation of a transient mixed disulfide with substrate. This 

is followed by a nucleophilic attack of the deprotonated Cys35 which generates oxidized Trx 

and the reduced substrate (Holmgren, 1985). Oxidized Trx, in turn, needs to be reduced by 

thioredoxin reductase to become active again (Figure 1.2).  

 

1.2.3 Connectivity of the thioredoxin system 

 

The Trx system participates in multiple reactions and several omic techniques and 

methods have been developed to identify the proteins that interact intra-cellularly with Trx. 

These methods have led to the identification of a large variety of potential Trx substrates. An 

example of such an approach is one in which the C-terminal cysteine of the catalytic site of 

Trx is mutated to an alanine (Balmer et al., 2004). The C-terminal cysteine is essential for the 

dissociation of the mixed disulfide complex that results in the release of a reduced substrate 

protein and oxidized Trx. Mutation of the C-terminal cysteine prevents this dissociation, 

thereby allowing the formation of stable complexes between Trx and its substrates. The 

mutant protein can be expressed in vivo and the complexes are then purified by affinity 

chromatography (Depuydt et al., 2009).  

 

An alternate approach involves differential thiol-labeling (Figure 1.4) that identifies 

the proteins kept reduced by Trx.  The in vivo differential thiol trapping technique was 

developed by Leichert and Jakob (2004). In this approach, the accessible thiol groups are 

carbamidomethylated (CAM) with iodoacetamide (IAM) and blocked for the subsequent 

reduction and alkylation steps. DTT is used to reduce the disulfide bonds and the newly 

accessible thiols are then labeled with radioactive iodoacetamide (
14

C-IAM). A radioactive 

label is therefore incorporated into the proteins that originally contained disulfide bonds. 
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Proteins that require Trx for reduction can be identified through a comparison of cellular 

extracts prepared from wild-type and Trx-knockout strains.  

 

 
 

Figure 1.4 Trapping Trx substrates. Extracts were quenched under acid conditions and 

cysteines in their thiol form were alkylated using unlabeled iodoacetamide (IAM). Disulfide 

bonds were reduced with dithiothreitol (DTT) and newly accessible thiol groups were 

modified with [
14

C]-labeled IAM. A radioactive label was therefore incorporated into the 

proteins that originally contained disulfide bonds (Collet and Messens, 2010). 

 

Another approach in which Trx substrates have been identified is through the 

purification of proteins bound to Trx using Tandem Affinity Purification (TAP) followed by 

MS/MS mass spectrometrical analysis (Kumar et al., 2004). The procedure involved a TAP-

tag being appended to the C-terminus of E. coli Trx1 and thereafter the Trx-substrate 

complexes were purified using two affinity chromatography steps. Through this method, a 

total of 80 proteins have been identified, implicating E. coli Trx1 in approximately 26 cellular 

processes (Kumar et al., 2004).  

 

The biosynthetic reactions in which Trx has been implicated include providing 

reducing equivalents to ribonucleotide reductase, thioredoxin peroxidase (Pigiet and Conley, 

1977) and methionine sulfoxide reductases (Sengupta and Holmgren, 2012), the regeneration 

of oxidatively damaged proteins and scavenging reactive oxygen species as well as other free 

radicals (Das and Das, 2000). Through redox regulation, several transcription factors are 

activated by Trx which modulates their DNA binding activities (Holmgren and Lu, 2010, 

Karlenius and Tonissen, 2010). In mammalian cells, Trx directly modulates the activity of 
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various transcription factors such as AP-1 and p53 (Mukherjee and Martin, 2008). Some 

transcription factors can be indirectly reduced by Trx which reduces Ref-1 (redox factor-1) 

which in turn reduces other transcription factors (Demple et al., 1991, Robson and Hickson, 

1991, Robson et al., 1991).  

 

Transcription factors dependent on the Trx/Ref-1 interaction are responsible for the 

activation of many genes that have the overall effect of promoting cell viability in response to 

adverse conditions including oxidative stress and hypoxia (Karlenius and Tonissen, 2010). 

Ref-1 functions not only as a major redox-signaling factor but is also a DNA-repair 

endonuclease, and is involved in the base excision repair (BER) pathway (Demple et al., 

1991). This pathway is responsible for restoring apurinic/apyrimidinic (AP) sites in DNA, 

which are a major end product in reactive oxygen species (ROS) damage (Karlenius and 

Tonissen, 2010). 

 

In plants, the thioredoxin system provides a crucial link between the activities of 

electron transport and carbon assimilation (Meyer et al., 2008). Plant Trxs are involved in 

multiple processes such as photorespiration, lipid and hormone metabolism, membrane 

transport, ATP synthesis (Balmer et al., 2004) and seed germination (Joudrier et al., 2005). In 

the chloroplast, the activities of a number of enzymes including four enzymes of the Benson-

Calvin cycle, fructose bisphosphatase, sedoheptulose bisphosphatase, ribulose-5-P kinase and 

glyceraldehyde-P dehydrogenase, are all regulated by Trx (Dey and Harborne, 1997). Other 

chloroplastic enzymes regulated by Trx include NADP-malate dehydrogenase, phenylalanine 

ammonia lyase and glucose-6-phosphate dehydrogenase (Dey and Harborne, 1997). A Trx 

isoform, Trx h has been associated in the reduction of seed α-amylase and trypsin inhibitors 

from several sources. In soybean, the Kunitz and Bowman-Birk trypsin inhibitors lose their 

ability to inhibit trypsin after reduction by Trx h (Jiao et al., 1992).  In 2009, it was reported 

that approximately 500 proteins had been identified as potential or established Trx targets in 

land plants and oxygenic photosynthetic microorganisms (Montrichard et al., 2009).   

 

The Trx system also participates in multiple reactions in Escherichia coli, including 

the reduction of sulfate which is catalyzed by an enzyme called 3'-phosphoadenosine 5'-

phosphosulfate (PAPS) reductase (Tsang, 1981). Another Trx-dependent reaction in E. coli is 

the reduction of methionine sulfoxide by methionine sulfoxide reductase (Lillig and 

Holmgren, 2007). In addition to this, Trx also provides reducing equivalents to the inner 

membrane protein DsbD which transfers electrons to the periplasm (Rietsch et al., 1997, 
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Chung et al., 2000). In S. cerevisiae, the Trx system is also an important defense mechanism 

against cadmium (Vido et al., 2001) and has also been identified as a reducing agent in the 

reduction of methionine sulfoxide to sulfate (Wilson et al., 1961, Gan, 1991). 

 

The cited literature merely provides a brief description of the scale of the Trx system. 

It is evident that this system has diverse interactions with various protein and non-protein 

substrates.  

 

1.3 Discussion 
 

 

Many diseases, including those mentioned above (Section 1.1), involve a large variety 

and number of elements that interact via complex networks and nonlinear interactions (Wang, 

2010). Therefore, knocking out a single target molecule in a biochemical pathway may be 

insufficient for treating a disease such as cancer, because the cells find alternate molecular 

pathways to escape the blockage (Wang, 2010). For this reason, a number of current drug 

design strategies are often ineffective. It is increasingly believed that a systems approach, 

rather than the current gene-centric view could solve these problems (Wang, 2010, Loscalzo 

and Barabasi, 2011). Systems biology helps to provide an understanding of complex 

phenomena by generating detailed interaction maps of various cellular networks and by 

developing sophisticated mathematical and computational methods and tools with which to 

analyze these networks. Understanding the complex systems involved in various pathologies 

will make it possible to develop smarter therapeutic strategies which could lead to significant 

advances in the treatment of disease (Wang, 2010). 

 

The study of the complete, integrated Trx network (Figure 1.1) was difficult and 

therefore the individual reactions within the network have usually been studied in isolation. 

Although such approaches have produced a significant amount of information and 

understanding, they have been limited in their ability to predict the effects of alterations in 

single or multiple components upon the dynamics of the whole network. Therefore analysis 

of the redox regulation of this network using a systems biology approach would represent a 

significant advance. A first step in any systems biology approach, such as kinetic modeling, is 

to define clearly the components under study (Pillay et al., 2013). However, with Trx, it was 

not clear how this protein should be modeled and due to contrasting in vivo and in vitro 

descriptions¸ construction of models of the thioredoxin system have been complicated (Pillay 
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et al., 2011). Redoxins have been described as both redox couples with redox potentials 

(Figure 1.5 A), and as enzymes with Michaelis–Menten parameters (Figure 1.5 B) as they 

exhibit properties of both. For computational modeling studies, if redoxins were treated as 

redox couples, then the couples would be variables within computational models of these 

systems and each member of a couple would be described with an ordinary differential 

equation. Alternatively, if redoxins were modeled as enzymes, then their rate constants and 

concentrations would be parameters within the rate vectors of these models (Pillay et al., 

2013). 

 

There are a number of inconsistencies in the description of redoxins as enzymes 

(Pillay et al., 2009). Using computational systems biology tools, our lab proposed an 

approach to describe redoxin activity in systems biology applications (Pillay et al., 2009). In 

contrast to the long held view that Trx is an enzyme, it was suggested that the enzymatic 

properties attributed to Trx resulted from the saturation of the Trx redox cycle. With 

increasing concentrations of substrate, the thioredoxin reductase concentration became rate-

limiting and therefore the entire system becomes saturated with the consequent re-distribution 

of oxidized and reduced Trx (Figure 1.5 C). However, further confirmatory studies are 

required before this modeling approach can be generally accepted. The main aim of this study 

was to utilize computational and molecular methods to confirm or reject the proposed model 

for thioredoxin activity.  
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Figure 1.5  Differing descriptions of Trx activity. Redoxins have been described as redox 

couples (with redox potentials) (A) (Trotter and Grant, 2003) and as enzymes (with 

Michaelis–Menten parameters) (B) (Holmgren, 1979a).  Due to the number of inconsistencies 

in the description of redoxins as enzymes, a new approach for describing redoxin activity was 

proposed (C) (Pillay et al., 2009) where it was suggested that with increasing concentrations 

of substrate, the thioredoxin reductase concentration became rate-limiting and therefore the 

entire system becomes saturated with the consequent re-distribution of oxidized (broken line) 

and reduced (dash-dot line) Trx. 
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Chapter 2: Materials and basic methods 
 

This chapter describes all the methods that were routinely carried out during the 

course of this research project. 

 

2.1 Materials 
 

Acrylamide-Bis ready to use solution (37.5:1) and Polyethylene glycol (PEG) 20 000 

were obtained from Merck (South Africa) while TEMED, ammonium persulfate, Coomassie 

brilliant blue G-250 powder, Coomassie brilliant blue R-250 powder, t-butanol and BSA 

were obtained from Sigma (Capital Labs, South Africa). Agarose for gel electrophoresis was 

purchased from Whitehead Scientific (Pty) Ltd (Cape Town, South Africa). All other 

common reagents were obtained from Saarchem (Merck, South Africa). 

 

2.2 Bradford assay 
 

The Bradford assay is based on the binding of Coomassie brilliant blue G-250 to 

protein. The dye exists in three forms, an anionic blue form, a neutral green form and a 

cationic red form. The binding of the cationic form of the dye to the protein causes a shift in 

the absorption maximum of the dye from 365 nm to 595 nm and this allows for 

spectrophotometric quantification of the protein. The protein-dye complex has a high 

extinction coefficient thus leading to great sensitivity in measurement of the protein 

(Bradford, 1976). 

 

This assay is reproducible, accurate and rapid. Unlike other protein assays, this assay 

is less susceptible to interference by various chemicals such as Tris and EDTA that may be 

present in protein samples (Bradford, 1976).  

 

2.2.1 Preparation of reagents 

 

2.2.1.1 Dye reagent 

Coomassie brilliant blue G-250 (0.6 g) was dissolved in 1 liter of perchloric acid 

(2% (v/v)). The solution was stirred for 1 hour and thereafter filtered through Whatman No. 1 

filter paper. The resulting solution was stored in an amber coloured bottle. Visual checks for 
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precipitation were made prior to use. If precipitation was present, a new batch of reagent was 

made.  

 

2.2.1.2 Standard protein solution 

A 1 mg/ml bovine serum albumin solution was made up in dH2O. 

 

2.2.2 Method 

Samples were diluted to 100 μl with dH2O, dye reagent (900 μl) was added and the 

solution was briefly vortexed. The solution was allowed to stand for 5 minutes for colour 

development and thereafter transferred to plastic cuvettes (1.5 ml). The absorbance was read 

at 595 nm against appropriate blanks. A standard curve, relating absorbance at 595 nm to 0- 

100 μl (0-100 μg) of the standard protein was constructed. 

 

 Beyond 50 μg of the standard protein, the curve began to plateau making the readings 

at these points unreliable therefore a second curve was generated using the linear portion of 

the initial curve (0-50 μg).  

 

2.3 Tris-Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) 
 

 Tricine SDS-PAGE is commonly used to resolve smaller proteins in the mass range 1-

100 kDa which are sometimes poorly resolved by the conventional Laemmli SDS-PAGE 

system (Schägger, 2006). In this system, tricine is used as the trailing ion in the stacking 

phase and allows a resolution of small proteins at lower acrylamide concentrations than in 

glycine SDS-PAGE systems (Schägger and von Jagow, 1987).  

 

2.3.1 Preparation of reagents 

 

2.3.1.1 Gel buffer (3 M Tris-HCl, 0.3% (m/v) SDS, pH 8.45) 

Tris (72.7 g) was dissolved in 200 ml dH2O, and adjusted to pH 8.45 with HCl. 

10% (m/v) SDS (6 ml) was added and the solution was made up to 250 ml. 
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2.3.1.2 SDS (10% (m/v)) 

SDS (10 g) was dissolved in dH2O and made up to 100 ml. 

 

2.3.1.3 Anode buffer (0.2 M Tris-HCl, pH 8.9) 

Tris (24.22 g) was dissolved in 950 ml of dH2O, adjusted to pH 8.9 with HCl and 

made up to 1 liter. 

 

2.3.1.4 Cathode buffer (0.1 M Tris-HCl, 0.1 M Tricine, 0.1% (m/v) SDS, pH 8.25) 

Tris (12.1 g), Tricine (17.9 g) and 10% (m/v) SDS (10 ml) were made up to 800 ml 

with dH2O and the pH adjusted if necessary. The buffer was made to a final volume of 1 liter.  

 

2.3.1.5 Initiator (10% (m/v)) 

 Ammonium persulfate (0.2 g) was made up to 2 ml with dH2O just before use. 

 

2.3.1.6 Treatment buffer (125mM Tris-HCl, 4% (m/v) SDS, 20% (v/v) glycerol, 

10% (v/v) 2- mercaptoethanol, 0.01% (m/v) bromophenol blue, pH 6.8) 

Stacking gel buffer (2.5 ml), glycerol (2 ml), 10% (m/v) SDS (4 ml), 2-

mercaptoethanol (1 ml) and bromophenol blue (0.01% (m/v)) were made up to 10 ml with 

dH2O. Samples were boiled for 5 minutes in treatment buffer before electrophoresis.  

 

2.3.2 Method 

The compositions of the stacking and resolving gels used are described in Table 2.1. 

The gels were run at 42 mA with unlimited voltage and were stopped when the tracking dye 

reached the bottom of the gel. The gels were usually stained with Coomassie (Section 2.4) 

but when low concentrations (nanogram range) of proteins were loaded onto the gel, the gel 

was stained by silver staining (Section 2.5).  

 

2.4 Coomassie stain 
 

Coomassie Blue R-250 is an anionic dye that binds to proteins. Formation of the 

protein/dye complex stabilises the negatively charged anionic form of the dye producing the 

blue colour which may then be seen in the gel. Although 50-fold less sensitive than silver 

staining, Coomassie Blue staining is a relatively simple and more quantitative method 

(Dennison, 2003). 
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Table 2.1 Preparation of the resolving and stacking gels for Tris-tricine SDS-PAGE 

Reagents                         Resolving gel (ml)  Stacking gel (ml) 

Monomer     8.0     0.67 

Gel Buffer    4.0     1.25 

dH2O     3.71     3.0 

Ammonium persulfate  0.240     0.050 

TEMED    0.016     0.010 

 

2.4.1 Preparation of reagents 

 

2.4.1.1 Coomassie blue stain (0.125% (m/v) Coomassie brilliant blue R-250, 

50% (v/v) methanol, 10% (v/v) acetic acid) 

 Coomassie brilliant blue R-250 powder (0.125 g), methanol (50 ml) and acetic acid 

(10 ml) were made up to 100 ml with dH2O. 

 

2.4.1.2 Destain I (50% (v/v) methanol, 10% (v/v) acetic acid) 

 Methanol (500 ml) and acetic acid (100 ml) were made up to 1 liter with dH2O. 

 

2.4.1.3 Destain II (5% (v/v) methanol, 7% (v/v) acetic acid) 

 Methanol (50 ml) and acetic acid (70 ml) were made up to 1 liter with dH2O. 

 

2.4.2 Method 

All steps were carried out at room temperature in clean containers. Glassware and 

plasticware were thoroughly washed with ddH2O. Upon completion of electrophoresis, gels 

were soaked in Coomassie blue stain overnight at room temperature with gentle agitation. 

The stain was then removed and the gels were soaked in destain I on a shaker until 

background staining was reduced. Gels were then transferred to destain II and thereafter 

photographed under white light. 
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2.5 Silver staining 
 

 Silver staining has a high sensitivity and can detect protein in the low nanogram 

range. This method involves binding of silver ions to amino acid residues followed by 

reduction to metallic silver (Chevallet et al., 2006). This procedure can be divided into five 

main phases. In the first phase, the gel is fixed to eliminate interfering substances such as 

SDS, amino acids and Tris that cause a high background and therefore poor contrast. In the 

second phase, the gel is sensitized. In the third phase, the gel is impregnated with the 

silvering agent. Two main families of silver staining methods can be distinguished at this 

step, those using silver nitrate solutions as the silvering agent (acidic methods) and those 

using a basic silver-ammonia or less frequently a silver-amine complex (basic methods). In 

the fourth phase, the image is developed, generally by a dilute formaldehyde solution and in 

the final phase, the reaction is stopped to prevent overdevelopment (Rabilloud et al., 1994).  

 

2.5.1 Preparation of reagents 

 

2.5.1.1 Fixing solution (30% (v/v) ethanol, 10% (v/v) acetic acid) 

 Ethanol (60 ml) and acetic acid (20 ml) were made up to 200 ml with dH2O. 

 

2.5.1.2 Wash solution (20% (v/v) ethanol) 

 Absolute ethanol (40 ml) was made up to 200 ml with dH2O. 

 

2.5.1.3 Impregnation solution (0.2% (m/v) AgNO3, 0.075% (v/v) formaldehyde) 

 AgNO3 (0.4 g) and 37% formaldehyde (0.15 ml) were made up to 200 ml with dH2O 

and stored in a dark cupboard. 

 

2.5.1.4 Reduction solution (0.02% (m/v) Na2S2O3.5H2O) 

 Na2S2O3.5H2O (0.1 g) was made up to 500 ml with dH2O. 

 

2.5.1.5 Development solution (3% (m/v) Na2CO3, 0.0005% (m/v)Na2S2O3.5H2O, 0.05% 

(v/v) formaldehyde) 

 Na2CO3 (30 g), Na2S2O3.5H2O(0.005 g) and 37% formaldehyde (0.5 ml) were made 

up to 1 liter with dH2O. 

http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Sulfur
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Sulfur
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Sulfur
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Sulfur
http://en.wikipedia.org/wiki/Oxygen
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2.5.1.6 Stop solution (5% (v/v) acetic acid) 

 Acetic acid (5 ml) was made up to 100 ml with dH2O. 

 

2.5.2 Method 

All steps were carried out at room temperature in clean containers. All containers and 

volumetric flasks were washed with ddH2O. Upon completion of electrophoresis, gels were 

soaked in fixing solution overnight. The gels were thereafter rinsed with wash solution (2 x 

10 min) and ddH2O (2 x 10 min). The gels were treated with reduction solution (1 min), 

rinsed with ddH2O (3 x 30 sec) and soaked in impregnation solution (20 min). After rinsing 

with ddH2O (3 x 30 sec), the gels were immersed in development solution until the bands 

became visible. The gels were rinsed with ddH2O (30 sec), treated with stop solution 

(10 min) and thereafter stored in dH2O. 

 

2.6 Agarose gel electrophoresis 
 

2.6.1 Preparation of reagents 

 

2.6.1.1 Loading buffer (30% (v/v) glycerol, 0.25% (m/v) bromophenol blue) 

 Bromophenol blue (0.01 g) was added to 80% glycerol (1.5 ml) and the volume was 

made up to 4 ml with dH2O. 

 

2.6.1.2 50 x TAE 

 A 50 x TAE stock solution was made by dissolving Tris (24.2 g), glacial acetic acid 

(5.71 ml) and 10 ml 0.5 M EDTA (pH 8.0) in 1 liter dH2O. 

 

2.6.2 Method 

Analysis of isolated plasmid DNA was carried out on 1 % (w/v) agarose gels while 

restriction digestion and PCR products were carried out on 2 % (w/v) agarose gels. Gels were 

prepared by dissolving agarose in 50 ml 1 x TAE buffer (40 mM Tris, 20 mM acetic acid, 

1 mM EDTA (pH 8.0)) by gentle heating over a bunsen burner. Once cooled, 2 μl ethidium 

bromide (10 mg/ml) was added, the gel was poured into the casting tray and allowed to 

polymerize (30 min). Gels were run at 90 V until the bromophenol blue in the loading dye 

had migrated approximately ¾ down the gel and thereafter photographed under ultraviolet 
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light. A standard curve, relating log molecular weight to the distance travelled by each 

fragment (mm) was constructed and used to determine the size of the bands of interest, 

through extrapolation.  

 

2.7 DNA quantification 
 

The NanoDrop™ 2000 UV-Vis Spectrophotometer (Thermo Scientific, South Africa) 

was used to determine the purity and concentration of the DNA. The concentration was 

measured in ng/µl. 

 

2.8 Concentration of protein samples  
 

 Dilute protein samples were concentrated prior to kinetic analysis. A simple method 

of concentrating samples was by dialysis against polyethylene glycol (PEG). Trx and 

thioredoxin reductase samples were placed in dialysis tubing with a cut-off of 3.5 kDa and 

10 kDa, respectively and dialyzed against PEG (20 kDa). 
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Chapter 3: Purification of the yeast thioredoxin system 
 

3.1 Introduction 

  

The initial step in the isolation of a protein is to choose a method of measuring the 

presence of the protein and of distinguishing it from all other proteins that might be present in 

the same material. This is achieved by an activity assay which simply measures the unique 

activity of the protein and allows various materials to be analyzed so that the one containing 

the largest amount of the desired protein, can be used as the starting material (Dennison, 

2003). Usually, the more specific the assay, the more effective the purification is (Berg et al., 

2002).  

 

Once a source material has been selected, the protein must be extracted in a soluble 

form suitable for manipulation. The object of extraction is to get the target protein out of the 

cellular material where it is located and into solution so that it can be manipulated. This can 

be achieved by homogenisation, which disrupts the tissues and breaks open the cells to 

release their contents. The extract can then be clarified by either filtration or centrifugation. 

The crude extracts containing the desired protein are thereafter purified on the basis of 

characteristics such as solubility, size, charge and specific binding affinity (Dennison, 2003).  

 

Various methods have been used in the purification of Trx and thioredoxin reductase. 

The initial methods employed were tedious and time consuming and were replaced with 

cloning technologies which were simpler and faster (Buchanan et al., 2012). The sections 

below describe the materials and methods used to isolate the Trx system. The methods 

section is divided into separate sub-sections with descriptions because of the range of 

techniques covered. All the results are presented in a single section (Section 3.13). 

 

3.2 Materials 

Dithiothreitol (DTT), bovine pancreas insulin, 5, 5'-dithiobis(2-nitrobenzoic acid) 

(DTNB), β-nicotinamide adenine dinucleotide phosphate (NADPH), bovine serum albumin 

(BSA), isopropyl β-D-1-thiogalactopyranoside (IPTG), kanamycin, ampicillin, 4-(2-

aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) and the diethylaminoethanol 

(DEAE) Sepharose were obtained from Sigma (Capital Labs, South Africa) while RNase A 

was obtained from Roche (South Africa). A Rapid DNA Ligation Kit, the Fermentas Gel 
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Extraction Kit, the InsTAclone
TM

 PCR cloning kit, TransformAid
TM

 Bacterial 

Transformation Kit and Taq
TM

 DNA polymerase were obtained from Inqaba Biotech 

(Johannesburg, South Africa) while the QIAquick
TM

 Gel Extraction Kit and Ni-NTA agarose 

were obtained from Whitehead Scientific (Pty) Ltd (Cape Town, South Africa). The New 

England Biolabs HindIII, NdeI and BamHI restriction enzymes were obtained from The 

Scientific Group (Midrand, South Africa) and all other common chemicals were obtained 

from Saarchem (Merck, South Africa) and were of the highest purity available. pET28a was 

generously donated by Professor Dean Goldring (Biochemistry, UKZN) and the thioredoxin 

reductase  clones (pMPTRRA, B, C and D) were generously supplied by Miss M.M Photolo 

(MSc candidate, UKZN).  

 

3.3 Preparation of common reagents 

The preparation of all common reagents has been described in the text below whilst 

the preparation of specialized reagents will be described later in the chapter. 

 

3.3.1 DTT 

A fresh stock solution of DTT (1 M) was prepared at the time of use by dissolving 

DTT powder (0.154 g) in ddH2O (1 ml). 200 µl of this stock solution was made up to 2 ml 

with ddH2O and the resulting DTT solution (final concentration 100 mM) was used in the Trx 

activity assay. 

 

3.3.2 Bovine pancreas insulin 

 A 1.6 mM stock solution of insulin was prepared by suspending insulin (50 mg) in  

0.5 ml 100 mM potassium phosphate buffer (pH 6.5). The pH was adjusted to 2-3 with 1 M 

HCl to dissolve the protein completely and was thereafter titrated back to the original pH of 

the buffer (pH 6.5) with NaOH (1 M). Finally, the volume was adjusted to 5 ml with ddH2O. 

The clear insulin solution was stored at – 20°C.  
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3.3.3 DTNB 

A stock solution of DTNB (63.1 mM, final concentration) was freshly prepared by 

dissolving DTNB powder (0.025 g) in 99% ethanol (1 ml). The resulting solution was stored 

in the dark as DTNB is light sensitive.  

 

3.3.4 NADPH 

Stock vials were prepared by keeping 10 mg portions of NADPH (dry) in separate 

small microcentrifuge tubes at -20°C. At the time of use, a single tube was dissolved in 

ddH2O (250 µl). The stock solution (final concentration 50 mM) was stored at-20°C. 

 

3.3.5 IPTG stock solution 

A stock solution (100 mM) was prepared by dissolving IPTG powder (0.238 g) in 

dH2O and the volume was made up to 10 ml. This suspension was sterilized by passing it 

through a 0.2 μm filter. 

 

3.3.6 Kanamycin stock solution 

A stock solution (30 mg/ml) was prepared by dissolving kanamycin sulphate (0.3 g) 

in dH2O. The volume was made up to 10 ml. This suspension was sterilized by passing it 

through a 0.2 μm filter and stored in 1 ml aliquots at -20°C. 

 

3.3.7 Ampicillin stock solution 

A stock solution (25 mg/ml) was prepared by dissolving ampicillin sodium salt 

(0.25 g) in dH2O. The volume was made up to 10 ml. This suspension was sterilized by 

passing it through a 0.2 μm filter and stored in 1 ml aliquots at -20°C. 

 

3.3.8 Bacterial growth media 

 

3.3.8.1 Luria Bertani (LB) broth 

Tryptone (1% (w/v)), yeast extract (0.5% (w/v)) and NaCl (0.5% (w/v)) were 

dissolved in dH2O and the solution was made up to the desired volume. The solution was 

autoclaved and stored at room temperature. When necessary, the appropriate antibiotic, either 
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kanamycin (30 μg/ml, final concentration) or ampicillin (50 μg/ml, final concentration) was 

added.  

 

3.3.7.2 Luria Bertani (LB) agar 

Tryptone (1% (w/v)), yeast extract (0.5% (w/v)), NaCl (0.5% (w/v)) and 

bacteriological agar (1.5% (w/v)) were dissolved in dH2O and the solution was made up to 

the desired volume. The solution was autoclaved and upon cooling, media was poured into 

petri dishes. When necessary, the appropriate antibiotic, either kanamycin (30 μg/ml, final 

concentration) or ampicillin (50 μg/ml, final concentration) was added. The plates were 

stored at 4°C. 

 

3.3.7.3 Yeast Peptone Dextrose (YPD)  

Yeast extract (1% (w/v)), peptone (2% (w/v)) and dextrose (2% (w/v)) were dissolved 

in dH2O and the solution was made up to the desired volume. The solution was autoclaved 

and stored at room temperature.  

 

3.3.7.4 SOC media 

Yeast extract (0.5% (w/v)), tryptone (2% (w/v)), NaCl (10 mM), KCl (2.5 mM) and 

MgCl2 (10 mM) were dissolved in dH2O and the solution was made up to the desired volume. 

The solution was autoclaved and once cooled, glucose (20 mM, final concentration) was 

added. The glucose solution (1 M) was sterilized by passing it through a 0.2 μm filter. The 

SOC media was then stored at 4°C. 

 

3.3.7.5 2xYT media 

Tryptone (1.6% (w/v)), yeast extract (1% (w/v)) and NaCl (0.5% (w/v)) were 

dissolved in dH2O. The pH was adjusted to 7.0 with NaOH and the volume was made up with 

dH2O. The solution was sterilized by autoclaving and thereafter stored at room temperature.  
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3.4 The yeast thioredoxin activity assay 

 

3.4.1 Introduction 

 

There are a number of assays that have been developed to test the activity of Trx. Trx 

activity was measured using insulin as a substrate where the reduction of insulin by Trx was 

followed spectrophotometrically at 650 nm (Arnér and Holmgren, 2000a). Reduced Trx was 

then regenerated by thioredoxin reductase and NADPH. Mark and Richardson (1976) utilized 

an alternate activity assay that measured the reduction of 5,5'-dithiobis (2-nitrobenzoic acid) 

(DTNB) by Trx to form a yellow product measured at 412 nm and reduced Trx was again 

regenerated by thioredoxin reductase and NADPH. However, both methods possessed a 

significant limitation as purified thioredoxin reductase was required. Although commercial 

kits, such as the fluorescent thioredoxin assay available from IMCO Corporation Ltd, have all 

the necessary components for the assay, they are relatively expensive. In conclusion, current 

assays for Trx are constrained by the cost and availability of pure enzymes and therefore it 

was important to develop a novel Trx activity assay that was inexpensive and allowed for the 

quick identification of the target molecules from crude extracts.  

 

Holmgren (1979b) performed an experiment to determine the rate of the reduction of 

insulin disulfides by DTT. He showed that the addition of E. coli Trx to the reaction mixture 

increased the rate of reduction significantly. Based on these findings, we deduced that if Trx 

increased the rate of insulin disulfide reduction in the presence of DTT, this could be used as 

the basis for an activity assay for Trx. As pure thioredoxin reductase was no longer needed, 

the cost of the assay was greatly reduced. However, a potential problem with this assay and 

the above mentioned assays was that they took over 20 min before a result was obtained.  

 

3.4.2 Methods 

 To determine the activity of Trx, a number of assay conditions were tested based on 

data in Holmgren (1979b). These conditions included variations in insulin (0.01 mM and 

0.13 mM) and DTT (0.33 mM and 1 mM) concentrations as well as the pH of the potassium 

phosphate buffer (pH 6.5 and 7.0). Each reaction mixture contained 2 mM EDTA and 

proceeded at 25°C (Holmgren, 1979b). A modified version of the original assay (Holmgren, 
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1979b) involving the incubation of all components for 20 min at 25°C prior to absorbance 

readings being taken, was also attempted (Sigma-Aldrich, 1994). A method involving the 

reduction of the Trx by preincubating 0.1 M DTT (10 μl) with the Trx containing crude 

extract for 10 min at 25°C was developed and used in this study. A master mix containing 84 

mM potassium phosphate buffer (pH 7.0), EDTA (2.67 mM) and insulin (0.21 mM) was 

made into a final volume of 9 ml. Thereafter the reaction was initiated by addition of the 

preincubated suspension (250 µl) to the master mix (750 µl). The final reaction mixture 

contained 63 mM potassium phosphate buffer (pH 7.0), EDTA (2 mM), insulin (0.01 mM) 

and DTT (1 mM) in a final volume of 1 ml. The change in absorbance at 650 nm was directly 

monitored using a sample without the addition of the crude extract as the reference cuvette. 

Absorbance measurements were made with a UV-1800 Shimadzu Spectrophotometer. 

 

3.5 The yeast thioredoxin reductase activity assay 

 

3.5.1 Introduction 

The thioredoxin reductase assay involves monitoring either NADPH oxidation or 

direct reduction of a substrate such as 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB). In the first 

assay, the reduction of oxidized Trx is measured in a mixture containing potassium 

phosphate, KCl, EDTA and NADPH as well as oxidized Trx. After addition of the 

thioredoxin reductase source, the oxidation of NADPH is monitored spectrophotometrically. 

However, the limitation with this method is that purified Trx is required. Trx, the natural 

substrate of thioredoxin reductase, is very expensive and difficult to obtain so the activity of 

thioredoxin reductase is usually assayed using an alternate substrate. 

 

The alternative assay to measure the activity of thioredoxin reductase is by monitoring 

the change in absorbance at 412 nm occurring as a result of the reduction of DTNB to TNB. 

The use of DTNB as a substitute for Trx has proved to be sufficiently  specific (Arnér and 

Holmgren, 2000a, Štefanková et al., 2006). It was shown that the use of univalent cations in 

the thioredoxin reductase activity assay significantly increased the rate of reduction (Lim and 

Lim, 1995). The role played by the univalent cations is still unknown but it has been 

proposed that these cations may induce a conformational change in E. coli thioredoxin 

reductase, in which its closed conformation is converted to an open conformation thereby 
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exposing the active site. Based on this mechanism the exposed active site of thioredoxin 

reductase  can directly interact with DTNB (Lim and Lim, 1995).  

 

3.5.2 Methods 

To determine the activity of thioredoxin reductase, a number of assay conditions were 

tested including DTNB (1 mM - 5 mM) and NADPH (0.3 mM - 0.5 mM) concentrations as 

well as the pH of the potassium phosphate buffer (pH 7.0 and 7.2) (Arnér and Holmgren, 

2000a, Štefanková et al., 2006). The effect of including univalent cations, NaCl, within the 

reaction was also tested (Lim and Lim, 1995). The final reaction mixture used in this study 

contained 0.1 M Tris-Cl (pH 8.0), 0.5 mM DTNB, 0.24 mM NADPH, 0.01% BSA, 0.5 M 

NaCl and crude extract containing TrxR in a final volume of 1 ml.  The reaction was initiated 

by the addition of the crude extract containing thioredoxin reductase and proceeded at 25°C. 

The change in absorbance at 412 nm was directly monitored using a sample without the 

addition of the crude extract as the reference cuvette. Absorbance measurements were made 

with a UV-1800 Shimadzu Spectrophotometer. 

 

3.6 Purification of Trx 

 

3.6.1 Introduction 

In order to shorten the extraction time and increase the extraction yield, various 

extraction techniques for Trx have been developed including ultrasound-assisted extraction, 

supercritical fluid extraction, hot-water extraction and solvent extraction. Among these, 

ethanol extraction was promoted as an inexpensive, simple and efficient alternative to 

conventional extraction methods (Xiong et al., 2009).  

 

An ethanol extraction method was developed in which Trx was excreted directly into 

the medium by treating S. cerevisiae cells with ethanol (Inoue et al., 2007). This extraction 

was carried out on a large scale (45,000-liter tank) and the ethanol in the extracts was 

subsequently removed with an evaporator followed by lyophilization. The effect of a number 

of conditions including ethanol concentration (0 – 20% (v/v)) and temperature (4-37°C) on 

the release of Trx from S. cerevisiae were tested. Trx release was monitored by Western blot 
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analysis and it was shown that at 37°C, almost the maximum amount of Trx could be 

extracted in 2 hours with 20% ethanol (Inoue et al., 2007).  

 

Usually solvent disruption of cells results in the release of various water-soluble 

proteins which can complicate purification. However, if ethanol extraction was performed 

under appropriate conditions (Inoue et al., 2007), the cells preserved their membranes and 

most intracellular proteins were retained within the intact plasma membranes. In addition, 

ethanol offered several advantages including lower protein concentration in the extraction 

broth which ultimately may reduce the cost and complexity of the purification process (Xiong 

et al., 2009). This method was proposed to be efficacious for the preparation of the starting 

material for the purification of Trx (Inoue et al., 2007). 

 

Earlier methods for the purification of thioredoxin were extremely extensive and time 

consuming as it involved several steps including multiple centrifugation steps, RNase, 

protamine sulfate and ammonium sulfate treatment (Williams et al., 1967). However, 

Harms et al. (1998) were able to purify Trx from anaerobic, amino-acid-utilizing bacteria in 

four steps involving anion-exchange chromatography, acid treatment, affinity 

chromatography with Procion Red and finally gel permeation chromatography. As Trx is 

thermostable, most techniques make use of a heat treatment step (Porqué et al., 1970, Kim et 

al., 2005) which results in the denaturation of most of the undesired proteins. 

 

In contrast, Bao (2006) utilized recombinant purification techniques to acquire pure 

Trx. Their method involved the PCR amplification of the TRX3 gene using S. cerevisiae 

genomic DNA as a template. The amplified fragments were cloned into a pET28a-derived 

expression vector (pET28ad) encoding a hexahistidine (6×His) tag and thereafter transformed 

into the host strain E. coli BL21 (DE3). These cells containing the plasmid were grown and 

were subsequently lysed using both the freeze-thaw and sonication method. The protein was 

then purified by nickel affinity chromatography.  

 

Wang et al. (2009) also utilized recombinant expression for the purification of Trx. 

This was achieved by cloning the Trx gene from Acidothiobacillus ferrooxidans. The gene 

was amplified by PCR, utilizing primers that were designed to add six continuous histidine 

codons to the 5' primer. Genomic DNA from A. ferrooxidans was used as the template. PCR 

was performed and the product was gel purified, double-digested and ligated into an 

expression vector, resulting in a plasmid which encoded a fusion protein containing a hexa-
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His-tag. The recombinant plasmid was then transformed into E. coli competent cells for 

expression purposes. These cells containing the plasmid were grown and were subsequently 

lysed and centrifuged. The final step of purification involved the clear supernatant being 

applied to a Hi-Trap column.  

 

To prepare purified Trx for the purpose of this study, both conventional and molecular 

cloning techniques were attempted. For both methods, a growth curve for S. cerevisiae was 

used to estimate the time required for the yeast to reach a given optical density. 

 

3.7 Generation of S. cerevisiae growth curve 
  

3.7.1 Method 

YPD medium (25 ml) was inoculated with a single S. cerevisiae BY4743 

(MATa/MATα his3Δ0/his3Δ0 leu2Δ0/leu2Δ0 MET15/met15Δ0 LYS2/lys2Δ0 ura3Δ0 /ura3Δ0) 

colony. The yeast inoculated medium was incubated overnight (16 hours) in a shaking 

incubator (30°C, 200 rpm). The overnight culture (1 ml) was transferred into fresh YPD 

medium (199 ml). This culture was incubated (8 hours, 30°C) with shaking (200 rpm) and the 

OD600 values of the culture were recorded at 0 minutes, 120 minutes and thereafter at 

60 minute intervals. This experiment was performed in duplicate and growth curves were 

generated by plotting ln (OD600) values of the exponential growth phase against time (min). 

The doubling time (td) was calculated by equation 3.1. 

    td                          (3.1) 

       

3.8 Ethanol extraction of Trx 
 

3.8.1 Method 

S. cerevisiae cells were cultured in YPD (30°C, 200 rpm, 18 hours) and 30 A600 units 

of culture was centrifuged (20 000 x g, 5 min, 4°C). After the pellet was washed with dH2O, 

it was resuspended in 1 ml dH2O containing 20% (v/v) ethanol and incubated at 37°C for 

2 hours. As a control for the effect of ethanol, an additional cell pellet was resuspended in 

dH2O and thereafter similarly incubated (37°C, 2 hours). The cell suspensions were 

centrifuged (20 000 x g, 5 min, 4°C) and both the cell pellet and the supernatant were 
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analyzed by SDS-PAGE (Section 2.3). For these analyses, an equal volume of 2 × sample 

buffer (125 mM Tris-HCl, 4% (m/v) SDS, 20% (v/v) glycerol, 10% (v/v) mercaptoethanol, 

0.01% (m/v) bromophenol blue, pH 6.8) was added to 20 µl of the re-suspended pellet as well 

as the supernatant. 

 

3.9 Cloning of Trx 

 

3.9.1 Methods 

3.9.1.1 Isolation of genomic DNA from S. cerevisiae 

Yeast genomic DNA was isolated utilizing the Bust „N Grab method (Harju et al., 

2004). Briefly, two 1.5 ml samples of a 16 hour yeast culture grown in YPD were pelleted by 

centrifugation (20000 x g, 5 min, room temperature). The pellet was completely resuspended 

in 200 µl of lysis buffer (2% (v/v) Triton X-100, 1% (w/v) SDS, 100 mM NaCl, 10 mM Tris-

HCl (pH 8.0) and 1 mM EDTA (pH 8.0)) by gentle inversion of the tubes. The tubes were 

then incubated at -75°C until the contents was completely frozen (5 min). These tubes were 

then rapidly transferred to a 95°C water bath (1 min) to allow the contents to thaw. This 

process was repeated three times and thereafter the tubes were vortexed for 30 seconds. 

Chloroform (200 µl) was added to each tube followed by vortexing (2 min). Upon 

centrifugation (20 000 x g, 5 min, room temperature), three distinct layers could be seen and 

the upper aqueous phase was transferred to a clean eppendorf tube containing 400 µl ice-cold 

100% ethanol. The tubes were gently inverted and incubated for 5 min at -20°C for 

precipitation of the DNA. The precipitated DNA was pelleted by centrifugation (20 000 × g, 

5 min, room temperature), washed with 70% (v/v) ethanol (0.5 ml), air-dried and re-

suspended in 50 µl TE buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0)). These 

samples were assayed at 260 nm and 280 nm to determine DNA concentration and purity 

(Section 2.7) and were also analyzed by agarose gel electrophoresis (Section 2.6). 

 

3.9.1.2 PCR 

To amplify the TRX1 gene, PCR was performed using yeast TRX1 specific primers, 

5‟-AGCCATATGGTTACTCAATTCAAAACTGCC-3' and 5'-ACGAAGCTTAAGCATTA 

GCAGCAATGGC-3' (NdeI and HindIII sites are underlined, respectively). These primers 

were designed using Primer3 (http://frodo.wi.mit.edu) and the Trx sequence was obtained 

http://frodo.wi.mit.edu/
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from the Saccharomyces genome database (SGD) (http://www.yeastgenome.org, Gene 

ID 850732). The primers were designed so that there was an overlap between the start codon 

and the restriction site of NdeI whilst the HindIII restriction site overlapped with the stop 

codon. This design ensured that more of the coding sequence was included in the primer, 

increasing the accuracy of the PCR. The PCR reaction mixture consisted of Taq
™

 DNA 

polymerase (0.5 U), reaction buffer (1X), a dNTP mix (0.2 mM), the forward and reverse 

primers (250 nM each) and DNA (0.01-1 µg) in 25 µl. The following PCR cycling conditions 

were used: 95°C, 3 min (initial denaturation); 95°C, 30 sec; 55°C, 30 sec; 72°C, 30 sec (30 

cycles) and a final extension at 72°C, 7 min. For all PCR experiments a no template control 

was included in order to check for contamination and the PCR products were analyzed by gel 

electrophoresis (Section 2.6). 

 

3.9.1.3 Mini-prep procedure for purification of plasmid DNA 

 Plasmid DNA was purified using the standard mini-prep procedure (Sambrook et al., 

1989). Two 10 ml samples of an overnight culture grown in LB (containing the appropriate 

antibiotic) were centrifuged (7250 x g, 5 min, 4°C). The pellet was resuspended in 200 μl 

GTE solution (25 mM Tris-Cl (pH 8.0), 10 mM EDTA, 50 mM glucose), RNase A (2 μl) was 

added and the suspension was incubated at room temperature for 5 min before being 

transferred to a sterile eppendorf tube. 400 μl NaOH/SDS solution (0.2 M NaOH, 

1% (w/v) SDS) was added to lyse the cells and the suspension was mixed by gentle finger 

tapping followed by incubation on ice for 5 min. 3 M potassium acetate solution (300 μl) was 

added and the suspension was incubated on ice for 5 min before being centrifuged 

(12 000 x g, 5 min, room temperature). Isopropanol (600 μl) was added to the supernatant 

(800 μl) and incubated at -20°C for 30 min. The suspension was centrifuged (12 000 x g, 

5 min, room temperature) and the pellet was washed with ice-cold 70% ethanol (500 μl) to 

remove salt. The pellet was then resuspended in 50 µl TE buffer (10 mM Tris-HCl (pH 8.0), 

1 mM EDTA (pH 8.0)).  

 

3.9.1.4 Restriction Digestion 

Plasmid DNA was routinely restricted with either BamHI or HindIII to linearise the 

DNA for sizing. In these reactions, plasmid DNA (1 µg), restriction enzyme (2 U), 

buffer (1 X) and for a BamHI digest, BSA (0.1 µg/ µl) were incubated at 37°C for 2 hours. 

For cloning experiments, plasmid DNA was restricted with HindIII and NdeI to liberate the 

http://www.yeastgenome.org/
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TRX1 fragment. In these reactions, plasmid DNA (37.5 µg), restriction enzyme (2 U each) 

and nuclease free water were all incubated with 1X NEBuffer 2 at 37°C for 4 hours. 

 

3.9.1.5 Gel purification and Ligation 

The amplified TRX1 fragment was gel purified using the QIAquick
TM

 Gel Extraction 

Kit and thereafter ligated with the pTZ57R/T vector using the InsTAclone
TM

 PCR cloning kit 

to yield the pTrxA, pTrxB and pTrxC clones. A typical reaction mixture contained the 

pTZ57R/T vector DNA (0.165 µg), purified PCR fragment (at 3: 1 molar excess over vector), 

Ligation buffer (1 X), T4 DNA Ligase (5U/µl) and nuclease free water. The pTZ57R/T 

vector was transformed into E. coli JM109 cells using a TransformAid
TM

 Bacterial 

Transformation Kit according to the manufacturer‟s instructions. As a positive control for 

competent cell growth, E. coli JM109 competent cells were plated onto a LB agar plate with 

no antibiotic and as a negative control, untransformed cells were plated onto LB plates 

containing ampicillin (50 µg/ml). To purify the recombinant pTZ57R/T DNA, a plasmid 

mini-prep procedure was performed (Section 3.9.1.3). PCR (Section 3.9.1.2) using the 

purified recombinant plasmid as a template was done to confirm the presence of the TRX1 

insert. A restriction digestion using BamHI was also performed to linearise the vector for 

sizing and the vector was digested with HindIII and NdeI to liberate the TRX1 fragment.  

 

3.9.1.6 Plasmid DNA extraction of pET28a 

The expression vector, pET28a, was isolated from E. coli BL21 (DE3) cells using a 

plasmid DNA extraction procedure (Section 3.9.1.3). A260 and A280 readings of the samples 

were taken to determine DNA concentration and purity and these samples were also analyzed 

by agarose gel electrophoresis (Section 2.6). 

 

3.9.1.7 Gel purification and Ligation 

Restriction digested pET28a (section 3.9.1.4) and the liberated TRX1 fragment were 

both gel purified using a Fermentas Gel Extraction Kit. The gel-extracted TRX1 fragment and 

restricted pET28a expression vector were subsequently ligated using a Rapid DNA Ligation 

Kit (Fermentas) to form the expression plasmids pLPTrxA, pLPTrxB and pLPTrxC. A 

typical ligation mixture contained vector DNA (10 – 100 ng), insert DNA (at 3: 1 molar 
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excess over vector), 1X Rapid Ligation Buffer, T4 DNA Ligase (5U/µl) and nuclease free 

water. The mixture was incubated at 4°C overnight and was then used for transformation. 

 

3.9.1.8 Preparation of competent cells using the calcium chloride method 

 A calcium chloride (CaCl2) method (Sabel'nikov et al., 1977) was used to make 

E. coli BL21 (DE3) competent cells. E. coli BL21 (DE3) cells were cultured in 2xYT 

medium until an OD600 (0.3-0.4) was reached. Two 10 ml samples were transferred to ice-

cold sterile tubes, incubated on ice for 10 min and thereafter centrifuged (4500 x g, 10 min, 

4°C). The pellet was resuspended in ice-cold 0.1 M calcium chloride (10 ml). The suspension 

was centrifuged (4500 x g, 10 min, 4°C) and the pellet was resuspended in ice-cold 

0.1 M calcium chloride (2 ml) followed by a 30 min incubation on ice. These competent cells 

were then used for transformation.  

 

3.9.1.9 Transformation of E. coli BL21 (DE3) with pET28a 

The ligation mix (1 µl) was added to the competent cells (20 µl) and incubated on ice 

(30 min). This mixture was then heat shocked (42°C, 90 sec) and immediately placed on ice 

(2 min). Pre-warmed (37°C) SOC media (80 µl) was added to the cells and the cells were 

incubated for 1 hour at 37°C in a shaking water bath. The transformation mix (50 µl) was 

plated onto LB agar plates containing kanamycin (30 µg/ml) and incubated at 37°C 

overnight. As a control for competent cell growth, E. coli BL21 (DE3) competent cells were 

plated onto a LB agar plate (no antibiotic) whilst in the control for antibiotic activity, 

untransformed E. coli BL21 (DE3) competent cells were plated onto the selective medium. 

As a control for the competency, E. coli BL21 (DE3) cells were transformed with the pET28a 

expression vector (70 ng). To confirm the identity of the clones obtained, a colony PCR using 

the reaction conditions described above (Section 3.9.1.2) was done and the plasmid DNA was 

purified and restricted with HindIII to linearize the vector for sizing. 

 

3.9.1.10 Colony PCR 

Sections of single colonies from the transformation plate were selected, dissolved in 

autoclaved distilled water (25 µl) and incubated in a water bath (2 min, 100°C). This mixture 

was centrifuged (13 000× g, 2 min, room temperature) and 2 µl of the supernatant was used 

to perform a PCR using the conditions described above (Section 3.9.1.2). 
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3.9.1.11 Induction and optimization of expression 

Protein expression of the pET28a clones (pLPTrxA, B, C) was induced by culturing 

selected clones in LB media (30 µg/ml of kanamycin) until an OD600 (0.3-0.4) was reached. 

Isopropyl β-D-1-thiogalactopyranoside (IPTG, final concentration 0.5 mM) was added to 

cultures which were incubated at 37°C in a shaking waterbath. Following IPTG addition, 

samples were taken every 30 min and an OD600 was measured. To optimize expression, 

samples were also taken at 2, 4, 6, 17 and 19 hours and an OD600 was measured. All samples 

were centrifuged (12 000 × g, 10 min, 4°C) and re-suspended in water to a final OD600 of 10. 

This step ensured that approximately equal concentrations of protein were compared over the 

course of the induction experiment. An equal volume of 2 × sample buffer (125mM Tris-

HCl, 4% (m/v) SDS, 20% (v/v) glycerol, 10% (v/v) mercaptoethanol, 0.01% (m/v) 

bromophenol blue, pH 6.8) was added to 20 µl of the re-suspended samples and the samples 

were analyzed by SDS-PAGE (Section 2.3). For the optimization experiments, cells were 

also sonicated, centrifuged (15 000 × g, 20 min, 4°C) and thereafter the supernatant was 

subjected to the insulin activity assay (Section 3.4.2). The activity of each sample was 

calculated and this was used to determine the optimal expression time for purification. 

 

3.10 Purification of thioredoxin reductase 
 

3.10.1 Introduction 

The original purification methods involved disruption of yeast cells to release 

thioredoxin reductase into the medium. These methods were tedious and time consuming as 

they involved repetitive steps of ammonium sulfate precipitation, anion-exchange and gel 

filtration chromatography (Williams et al., 1967). Seo and Lee (2010) were able to purify 

thioredoxin reductase  in 3 basic steps namely ammonium sulfate fractionation, 2' 5' ADP-

sepharose affinity chromatography and finally sephadex G-100 column chromatography.   

 

In contrast Pedrajas et al. (1999) utilized recombinant expression for the purification 

of thioredoxin reductase . This procedure involved PCR using TRR2 primers and the genomic 

DNA from S. cerevisiae as a template. The PCR products were cloned into the pGEM-T Easy 

Vector System and thereafter sequenced. For expression of recombinant thioredoxin 

reductase proteins, a mutagenic forward primer was used and PCR amplification was 

performed. The amplified fragment was cloned into a pET15b expression vector, fusing the 
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cloned fragments to a poly HIS sequence. The constructed plasmid was then transformed into 

E. coli BL21 (DE3) competent cells for expression purposes. These cells containing the 

plasmid were grown and were subsequently lysed and the protein was purified by nickel 

affinity chromatography (Pedrajas et al., 1999).  

 

 As with the Trx purification, both native and recombinant methods were explored to 

purify thioredoxin reductase.  

 

3.10.2 Native purification of thioredoxin reductase 

3.10.2.1. Preparation of thioredoxin reductase crude extract for purification 

 Saccharomyces cerevisiae was cultured in YPD overnight (30°C, 200 rpm). The cells 

were centrifuged (10 000 rpm, 10 min, 4°C) and the pellet was resuspended in half its volume 

of 0.05 M Tris buffer (pH 7.5). A fraction of the suspension was lysed by either the freeze-

thaw or bead beat method while the remaining cells remained unlysed. Using the freeze-thaw 

method, the cells were incubated at -75°C, until the contents was completely frozen (5 min), 

and thereafter rapidly transferred to a 95°C water bath (1 min) to allow the contents to thaw. 

This process was repeated three times. Disintegration by bead beating was effected twice 

(2 min) using a bead beater with intermittent cooling on ice (2 min). All lysed cells were 

centrifuged (20 000 x g, 20 min, 4°C) and the supernatants as well as the unlysed cells were 

subjected to the activity assay (Section 3.5.2) to determine which method resulted in the least 

loss of activity. As the bead beat samples provided promising results, these samples were 

subjected to the TPP procedure (Section 3.10.2.2), analyzed by SDS-PAGE (Section 2.3) and 

the activity of each fraction was then determined using the activity assay (Section 3.5.2). TPP 

fractions of the bead beat samples were pooled and dialyzed overnight at 4°C against 

potassium phosphate buffer (pH 7.0). This suspension was then mixed and centrifuged 

(7500 rpm, 5 min, 4°C). This final supernatant was used as crude extract for ion-exchange 

chromatography.   

 

3.10.2.2 Three phase partitioning (TPP) 

 The three-phase partitioning technique is a simple and efficient procedure to purify 

proteins that has been used both for upstream and downstream protein purification processes 

(Dennison and Lovrien, 1997) and has sometimes been used for direct one-step purification 

(Sharma and Gupta, 2001). This method uses t-butanol and ammonium sulfate to precipitate 
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enzymes and proteins out of aqueous solutions. Under normal conditions, t-butanol is 

completely miscible with water but upon the addition of enough ammonium sulfate, the 

solution separates into two phases. If proteins are present within the solution, they may, 

depending on the concentration of ammonium sulfate added, separate into a third phase 

between the lower aqueous and upper t-butanol phase (Dennison and Lovrien, 1997).  

 

3.10.2.2.1 Method 

t-Butanol was mixed with the crude extract to a final volume of 30% (v/v). The 

volume of t-butanol required was calculated from the following equation: 

 

   y  = (0.3/07)x 

  where y =  volume of t-butanol 

   x =  volume of extract 

 

t-Butanol was warmed to 30°C prior to use, as it crystallizes below 25°C. Solid 

(NH4)2SO4 (10% (m/v)) was added to the mixture and dissolved by stirring. This mixture was 

centrifuged (8000 x g, 10 min, 4°C) in a swing-out rotor resulting in a firm layer of 

precipitate between the t-butanol and aqueous phases. The procedure was followed until the 

solution reached a saturation point. The precipitate was resupended in an appropriate buffer. 

 

3.10.2.3 DEAE Sepharose chromatography 

The DEAE sepharose resin was equilibrated with 400 ml buffer A (20 mM Tris-HCl 

(pH 7.5)) containing NaCl (2 M) and EDTA (1 mM) and thereafter washed with buffer A 

(400 ml) at a flow rate of 0.24 cm/min. The thioredoxin reductase containing crude extract 

was loaded onto the column of DEAE-Sepharose (3 cm x 9 cm) and washed with buffer A 

(200 ml) containing EDTA (1 mM). Proteins were eluted with a step gradient of 0 to 

500 mM NaCl each in buffer A (200 ml). Fractions (9.4 ml) were collected, analyzed by 

SDS-PAGE (Section 2.3) and the activity of each fraction was determined (Section 3.5.2). 
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3.11 Cloning of thioredoxin reductase 

 

3.11.1 Methods 

3.11.1.1 Colony PCR 

Clones of thioredoxin reductase (pMPTRRA, B, C and D) were obtained from Miss 

M.M Photolo (MSc candidate, UKZN). These clones had been sequenced confirming that 

they were native TRR1. These were then tested to confirm the presence of the TRR1 gene by 

performing a colony PCR (Section 3.9.1.10) using yeast TRR1 specific primers, 5'-

AGCCATATGGTTCACAACAAAGTTAC-3' and 5'- ACGAAGCTTATTCTAGGGAAGT 

TAAGT-3' (NdeI and HindIII sites are underlined, respectively). The PCR reaction mixture 

consisted of Taq
TM

 DNA polymerase (0.625 U), reaction buffer (1X), a dNTP mix (0.2 mM), 

the forward and reverse primers (250 nM each) and DNA (0.01-1 µg) in 25 µl. The following 

PCR cycling conditions were used: 94°C, 1 min (initial denaturation); 94°C, 30 sec; 46°C, 

30 sec; 72°C, 1 min (35 cycles) and a final extension at 72°C, 5 min. For all PCR 

experiments a no template control was included in order to check for contamination and the 

PCR products were analyzed by gel electrophoresis (90 V). 

 

3.11.1.2 Induction and expression 

Protein expression of the pET28a clones (pMPTRRA, B, C, D) was induced as 

described in Section 3.9.1.11. Optimization of protein expression was conducted with 

samples being taken every 60 minutes for 6 hours and an OD600 being measured. These 

samples were centrifuged (12 000 × g, 10 min, 4°C) and re-suspended in water to a final 

OD600 of 10. An equal volume of 2 × sample buffer (125 mM Tris-HCl, 4% (m/v) SDS, 

20% (v/v) glycerol, 10% (v/v) mercaptoethanol, 0.01% (m/v) bromophenol blue, pH 6.8) was 

added to 20 µl of the re-suspended samples and the samples were analyzed by SDS-PAGE 

(Section 2.3). The cells were then sonicated, centrifuged (15 000 × g, 20 min, 4°C) and 

thereafter the supernatant was subjected to the DTNB activity assay (Section 3.5.2) (Lim and 

Lim, 1995). The activity of each sample was calculated and this was used to determine the 

optimal expression time for purification. 
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3.12 Recombinant purification of Trx and thioredoxin reductase 

 

3.12.1 Methods 

3.12.1.1 Preparation of Trx and thioredoxin reductase crude extract for purification 

To purify recombinant proteins, transformed E. coli  (DE3) cells containing the 

appropriate plasmid were cultured in LB media (30 µg/ml of kanamycin) until an OD600 (0.6-

0.7) was reached. Protein expression was induced by adding IPTG (final concentration 

0.5 mM) and thereafter the Trx cultures were incubated at 37°C in a shaking water bath for 

6 hours whilst the thioredoxin reductase cultures were incubated for 1 hour. Cells were 

harvested by centrifugation (12 000 x g, 10 min, 4°C), resuspended in 10 volumes of 

extraction buffer (20 mM Tris-HCl (pH 7.5), 10 mM NaCl, 1 mM EDTA, 0.2 mM AEBSF 

and 5 mM DTT) and thereafter disrupted by sonication for 5 min. The samples were then 

centrifuged (12 000 x g, 30 min, 4°C) and the Trx containing supernatant was heat-treated 

(75°C, 30 min) followed by centrifugation (12 000 x g, 30 min, 4°C). The heat treatment step 

was omitted for thioredoxin reductase as this protein was not heat stable. The final 

supernatant of each protein was used as crude extract in Ni-NTA affinity purification.  

 

3.12.1.2 Ni-NTA affinity purification 

Ni-NTA agarose beads (2 ml) were packed into a column (2 ml bed volume, 0.8 x 

4 cm), equilibrated with 5 volumes equilibration buffer (0.02 M imidazole, 0.5 M NaCl, 

0.001 M mercaptoethanol, 0.02 M Tris-HCL (pH 8.0)) and thereafter incubated with the 

appropriate crude extract (4°C, 16 hours) in a Revolver™ 360° Sample Mixer. The unbound 

fraction was eluted by gravity and the resin was washed with 10 volumes of wash buffer 

(0.5 M NaCl, 0.02 M Tris-HCl (pH 8.0)). Two volumes of elution buffer (0.25 M imidazole, 

0.5 M NaCl, 0.02 M Tris-HCL (pH 8.0)) was incubated with the resin (4°C, 30 min) and 

thereafter the bound protein was eluted. All fractions were analyzed by SDS-PAGE 

(Section 2.3). The resin was then washed with 0.5 M NaOH for 30 min and stored in 

30% (v/v) ethanol at 4°C. When the resin changed from light-blue to brownish grey, it was 

regenerated according to the manufacturer‟s instructions.  
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3.13 Results 

 

3.13.1 Developing a cheaper and faster Trx activity assay 

Thioredoxin is known to reduce insulin which can be measured by the increase in 

turbidity due to the precipitation of the free insulin β-chain (Holmgren, 1979b). An assay was 

developed to detect the presence of Trx in crude extracts by measuring the insulin reduction 

by Trx with the use of DTT, instead of thioredoxin reductase. To develop this assay, various 

assay conditions were tested as shown below (Table 3.1). The same crude extract was used 

for all the assays. 

 

Assays 1-3 showed no activity for Trx and changes in the reagent concentrations had 

no effect on the rate in these 3 assays (Table 3.1). An unexpected result observed was the lack 

of activity when using potassium phosphate buffer at pH 6.5 as this pH was expected to 

increase the sensitivity of the assay due to the lower solubility of reduced insulin at this pH 

value (Arnér and Holmgren, 2000a). In fact, it was evident that the DTT-dependent reduction 

of insulin in the control reaction occurred at a faster rate (Section 3.4.2) and these assay 

conditions were not suitable for the purpose of this study.  

 

As a Trx activity assay was required for the purification process, it was necessary to 

try alternate methods. Assay 4 involved a 20 min incubation of all the components of the 

assay prior to absorbance readings being taken and the reduction of insulin was observed. It 

was unclear whether this result was obtained due to the change in potassium phosphate buffer 

pH (pH 6.5 to pH 7.0) (Table 3.1) or the inclusion of an incubation period prior to readings 

being taken. While a rate was observed, the 20 min incubation period posed a problem as this 

was time consuming. To minimize the time needed to complete the assay, Trx was reduced 

by preincubation with DTT for 10 min at 25°C prior to the start of the reaction (Table 3.1, 

Assay 5). The rate observed when using this assay was the highest of all the assays. Thus, the 

inclusion of a simple preincubation step, allowed for an assay that was relatively cheap and 

faster than published assays for Trx.  
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Table 3.1 Comparison of the rates obtained by the modification of two Trx activity assays. 

 

Assay Reference 
a
 Assay Reagents Total time 

(min)
 b

 

Rate (OD650/min) x 

10
-2 

± SE (n=2)
 c
 

  Buffer (pH 6.5) 

(mM) 

Buffer (pH 7.0) 

(mM) 
EDTA(mM) Insulin(mM) DTT(mM) 

  

1 (Holmgren, 

1979b) 

100 - 2 0.13 0.33 20 0 

2 (Arnér and 

Holmgren, 

2000a) 

100 - 2 0.13 1 20 0 

3 (Holmgren, 

1979b) 

100 - 2 0.01 1 20 0 

4 (Sigma-

Aldrich, 

1994) 

- 63 2 0.01 1 22 1.01 ± 0.0024 

5 This study - 63 2 0.01 1 10 2.26 ± 0.0048 

 

 

 

a 
The assays used in this study were modified versions of the assays obtained from the references given. 

b
 Total time required before measurement could begin. 

c
 The same crude extract was used for all the assays tested. 
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3.13.2 The development of the thioredoxin reductase assay 

The reduction of DTNB, a generic disulfide substrate, was used to measure 

thioredoxin reductase activity by the change in absorbance at 412 nm. Various published 

methods were attempted to obtain a feasible assay (Table 3.2). The same crude extract was 

used for all the assays. 

 

It was evident that both Assay 1 and 2 could be used to determine the activity of 

thioredoxin reductase based on the reduction of DTNB (Table 3.2). However, the inclusion of 

NaCl in the assay dramatically increased the rate of DTNB reduction. Assay 3 was therefore 

chosen as the activity assay for thioredoxin reductase. 

 

3.13.3 Native purification of Trx using ethanol was unsuccessful 

 For the native purification of Trx, a growth curve for S. cerevisiae was constructed. 

The growth curve was used to determine the doubling time for this particular yeast strain and 

was used to estimate the time taken for cells to reach their target optical density for downstream 

isolation procedures (Figure 3.1) 

 

3.13.3.1 Generation of S. cerevisiae growth curve 

The growth curve data was transformed (Figure 3.1) and a doubling time of 115 min 

was found. To determine the target optical density based on this doubling time, the following 

equation was used 

                                                                     (3.2) 

where   refers to the ln value of the required optical density and   represents the time (hours) 

taken to reach this optical density. 

 

3.13.3.2 Native purification of Trx 

To circumvent the difficulty in isolating thioredoxin from the cellular components, 

Inoue et al. (2007) devised a method to extract thioredoxin from yeast without disrupting the 

cells which involved the treatment of yeast cells with 20% (v/v) ethanol at 37°C. A control 

(0% ethanol) and test study (20% ethanol) showed that significant concentrations of Trx were 

not released from this strain of S. cerevisiae (Figure 3.2). Recombinant expression and 

purification of Trx was then attempted.  
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Table 3.2 Comparison of the rates obtained by utilizing various thioredoxin reductase activity assays. 

 

Assay Reference 
a
 Assay Reagents Rate (OD412/min) x 

10
-2 

± SE (n=2)
 b

 

  Univalent 

cations: NaCl 

(mM) 

Potassium 

phosphate 

buffer (pH 7.0) 

(mM) 

Potassium 

phosphate 

buffer (pH 7.2) 

(mM) 

DTNB 

(mM) 

NADPH 

(mM) 

 

1 (Arnér and 

Holmgren, 

2000a) 

- 58 - 5 0.3 0.128 ± 0 

 

2 (Štefanková 

et al., 2006) 

- - 100 1 0.5 0.0622 ± 0 

 

3 (Lim and 

Lim, 1995) 

500 c - - 0.5 0.24 2.89 ± 0.006235 

 
 

 

a 
The assays used in this study were modified versions of the assays obtained from the references given. 

b 
The same crude extract was used for all the assays tested. 

 c 
The buffer used in Assay 3 was Tris-Cl (pH 8.0).  
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Figure 3.1 Growth curve generated for S. cerevisiae. Plot of ln (OD600) of the exponential 

growth phase against time (n = 2). Standard error bars are smaller than the symbols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Tris-tricine SDS-PAGE of S. cerevisiae BY4743 cells incubated with 20% 

ethanol at 37°C for 2 hours. The treated and control cells were suspended in 20% (v/v) 

ethanol and dH2O, respectively. After the 2 hour incubation period at 37°C, the cells were 

centrifuged and both the pellets and supernatants (Sup) from the treated and control cells 

were analyzed by SDS-PAGE.  
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3.13.4 The successful cloning and expression of TRX1 

Genomic DNA was successfully isolated from S. cerevisiae using the Bust „N Grab 

method (Figure 3.3 A) (Harju et al., 2004) and PCR amplification of the TRX1 gene was 

performed using this DNA as a template and TRX1 specific primers (Figure 3.3 B). Upon 

completion of the PCR reaction, the amplicons were gel purified (Figure 3.3 C). This was 

successful as the bands obtained were found to be 316 bp. 

 

The gel purified TRX1 fragment was thereafter ligated to the pTZ57R/T vector using 

the InsTAclone
TM

 PCR cloning kit and transformed into E. coli JM109 cells to yield three 

clones. Plasmid DNA from these clones, pTrxA, pTrxB and pTrxC, was isolated using a 

mini-prep procedure. The plasmid DNA showed linear, nicked and closed coiled circular 

forms (Figure 3.4 A). The identities of the clones were confirmed by performing a single 

restriction digestion with BamHI to linearize the plasmid DNA (Figure 3.4 B). The size of the 

bands obtained was 3162 bp which was close to the expected size of 3211 bp. To further 

confirm that the pTrxA-C clones contained theTRX1 fragment, a PCR was performed using 

the plasmid DNA as a template. The amplicons (316 bp) obtained clearly showed that TRX1 

was present in the pTrxA-C vectors (Figure 3.4 C). Bands appearing higher up are due to the 

plasmid template in the reaction. A final confirmation was achieved by digesting the pTrxA-

C vectors with HindIII and NdeI to liberate the TRX1 fragment (Figure 3.4 D). Both 

Molecular weight marker XIV and Molecular weight marker III were loaded so as to size the 

TRX1 fragments and the restricted vectors, respectively.  

 

pET28a was isolated from E. coli BL21 (DE3) cells using the standard mini-prep 

procedure (Figure 3.5 A) and a double digestion with NdeI and HindIII was performed 

(Figure 3.5 B) so that the equivalently cut TRX1 fragment could be ligated into the expression 

vector. 
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Figure 3.3 Genomic DNA isolation and PCR amplification of the TRX1 gene. Genomic 

DNA was isolated from S. cerevisiae using the Bust „n Grab procedure (Harju et al., 2004) 

(A). PCR of the DNA was undertaken using TRX1-specific primers (B). The PCR product 

was gel purified using the Fermentas gel purification kit (C). The gels have been cropped to 

fit the figures into this thesis but no other bands were observed in the non-MWM lanes.  
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Figure 3.4 Confirming that the pTZ57R/T clones contained TRX1. pTZ57R/T DNA was 

isolated from E. coli JM109 cells using a standard mini-prep procedure (A). pTZ57R/T DNA 

was restricted with BamHI to linearize the plasmid (B). In addition, PCR of the plasmid DNA 

was undertaken using TRX1-specific primers to confirm the presence of the insert (C). 

Restriction digestion of the cloning vector pTZ57R/T-TRX1 showing the release of the TRX1 

fragment (D). Some gels have been cropped to fit the figures into this thesis but no other 

bands were observed in the non-MWM lanes.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5 pET28a expression vector isolation and restriction endonuclease digestion. 

pET28a was isolated from E. coli BL21 (DE3) cells using a standard mini-prep procedure 

(A). Restriction digestion of the expression vector (B). The gels have been cropped to fit the 

figures into this thesis but no other bands were observed in the non-MWM lanes.  

 

The restriction digested pET28a and the liberated TRX1 fragment were both gel 

purified using a Fermentas Gel Extraction Kit. The gel-extracted TRX1 fragment and 

restricted pET28a expression vector were subsequently ligated, transformed into E. coli 

BL21 (DE3) cells and a mini-prep was performed to isolate the plasmid DNA (Figure 3.6 A). 

A PCR was performed on the mini-prep to verify the success of the transformation 

(Figure 3.6 B). The band sizes of the mini-prep PCR (316 bp) indicated that TRX1 was 

successfully cloned into the pET28a expression vector. A single restriction digest was 

performed on the pLPTrxA/B/C clones using HindIII and the resulting band size (5623 bp), 

which was very close to the expected band size (5620 bp), indicated that the transformation 

was successful (Figure 3.6 C). To further confirm a successful transformation the 
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pLPTrxA/B/C clones were double digested with HindIII and NdeI to liberate the TRX1 

fragment (Figure 3.6 D). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Transformation of E. coli BL21 (DE3) with pLPTrxA/B/C. pLPTrxA/B/C 

DNA was isolated from E. coli BL21 (DE3) cells using a standard mini-prep procedure (A). 

PCR performed on pLPTrxA/B/C clones to verify success of transformation (B). Single 

restriction digestion of pLPTrxA/B/C clones was undertaken with HindIII to size the clones 

(C) and double digestion with HindIII and NdeI was undertaken to release the TRX1 gene 

(D). The gels have been cropped to fit the figures into this thesis but no other bands were 

observed in the non-MWM lanes.  
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The pLPTrxA/B/C clones were subsequently sequenced (Central Analytical Facilities, 

Stellenbosch University) in both directions and the sequencing traces were also manually 

evaluated. The sequences were aligned to the TRX1 sequence from the SGD 

(http://www.yeastgenome.org) using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

 

 

 

Figure 3.7 Alignment of the pLPTrxA/B/C (A) promoter sequences and (B) terminator 

sequences with the TRX1 sequence and reverse complement of the TRX1 sequence from 

A 

B 

http://www.yeastgenome.org/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
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S. cerevisiae (NCBI Reference Sequence: NC_001144.5), respectively. Identical residues 

are denoted with an asterisk. The overall percentage identity between each promoter and 

reference sequence as well as each terminator and reference sequence was 100 %. 

 

Sequence analysis revealed that the cloning of the TRX1 gene was a success 

(Figure 3.7) and these clones could be used for expression. To determine whether Trx could 

be successfully expressed by the pLPTrxA/B/C clones, the clones were induced at different 

time intervals (Figure 3.8). The protein was successfully expressed as the calculated band 

size was 13 kDa for Trx which was very close to the expected size of 12 kDa (Figure 3.8). 

 

 

 

 

 

 

 

 

Figure 3.8 Induction of TRX1. pLPTrxA/B/C transformed cells were induced with 0.5 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG) for various time intervals (0-180 min).  

 

The aim of the next experiment was to determine the optimal induction time for 

harvesting Trx. Cultures were IPTG-induced for a number of time points (2-19 hours) and 

analyzed by SDS-PAGE (Figure 3.9 A) and activity assays (Figure 3.9 B) at each time point 

was performed. Optimum expression (Figure 3.9 A) and maximum specific activity (Figure 

3.9 B) was observed after inducing the cells for 6 hours and this time point was therefore 

used in the purification of Trx. 

 

 

 

 

 

MWM      0        30       60        90        120     150    180      min 
kDa 

100 

30 

20 

15 

10 



48 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Expression and specific activity of TRX1 at various time points (2-19 hours). 

Recombinant TRX1 expression was induced with 0.5 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) for 0-19 hours and analyzed by SDS-PAGE (A). The specific 

activity of induced fractions (B) was also determined. Duplicate biological samples were 

assayed at a given time point and the standard error is indicated. 

 

3.13.5 The native purification of thioredoxin reductase was unsuccessful 

S. cerevisiae cells were lysed by bead beating and thereafter subjected to three-phase 

partitioning and the fractions obtained were analyzed by SDS-PAGE (Figure 3.10).  
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Figure 3.10 Three phase partitioning (TPP) fractions of S. cerevisiae BY4743. 

S. cerevisiae BY4743 cells were lysed by bead beating and thereafter treated with increasing 

concentrations of ammonium sulfate (10-40%).   

 

Each fraction was thereafter assayed for thioredoxin reductase activity. Fractions 

containing activity were pooled, dialyzed and used as crude extract for ion exchange 

chromatography (Figure 3.11). A step gradient (50-500 mM NaCl) was used to elute 

thioredoxin reductase containing fractions (Kim et al., 2005) which were analyzed by SDS-

PAGE (Figure 3.11 B). Unfortunately, a 70 kDa band was observed which represented an 

unknown protein with DTNB activity. Recombinant purification of thioredoxin reductase was 

then attempted.  

 

3.13.6 The purification of recombinant thioredoxin reductase and Trx by affinity 

chromatography 

The pMPTRRA/B/C/D clones were obtained from Miss M.M Photolo (MSc 

candidate, UKZN) and were subjected to colony PCR to ensure that the TRR1 gene was 

present. Upon confirmation (data not shown), these clones were IPTG-induced at different 

time intervals in order to confirm that this protein could be expressed by these clones. The 

protein was expressed successfully with an induced band at a calculated size of 36 kDa which 

was very close to the expected size of 35 kDa (Figure 3.12). Once successful induction was 

observed, it was necessary to determine the optimal induction time for harvesting thioredoxin 
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reductase. Cultures were IPTG-induced for a number of time points (1-6 hours) 

(Figure 3.12 A) and assayed for activity (Figure 3.12 B). Over the time points tested, 

optimum expression (Figure 3.12 A) and maximum specific activity (Figure 3.12 B) were 

observed after inducing the cells for 1 hour and this time point was used for the purification 

of thioredoxin reductase. 

 

 

 

 

 

 

 

 

 . 

 

 

 

Figure 3.11 (A) Activity assay and (B) silver stain of NaCl eluates from the DEAE 

Sepharose column. Dialysed TPP fractions of thioredoxin reductase were separated by ion-

exchange chromatography. Each eluate was subjected to the thioredoxin reductase activity 

assay (A) and the fractions displaying the highest activity were analyzed by SDS-PAGE (B). 

The gel has been cropped to fit the figure into this thesis but no other bands were observed in 

the non-MWM lanes. 
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Figure 3.12 Induction of TRR1. Recombinant TRR1 expression was induced with 0.5 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG) for various time intervals (0-6 hours) and 

analyzed by SDS-PAGE (A) and the DTNB reduction assay (B). Duplicate biological 

samples were assayed at each time point and the standard error is indicated. 

 

To purify the recombinant proteins, transformed E. coli (DE3) cells containing the 

appropriate plasmid were cultured and induced with IPTG for the appropriate time. These 

fractions were then treated as described above (Section 3.12.1.1) and used as crude extract for 

nickel affinity purification. The presence of single bands in the latter lanes indicated a 

successful purification of Trx and thioredoxin reductase with sizes of 13 kDa and 35 kDa 

respectively (Figure 3.13) 
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Figure 3.13 Ni-NTA affinity purification of recombinant TRX1 (A) and TRR1 (B). TRX1 

expression was induced for 6 hours and the cells processed as described in Section 3.12.1.1 to 

yield pure TRX1 (A). TRR1 was induced for 1 hour and the cells processed as described in 

Section 3.12.1.1 to yield pure TRR1 (B). The gels were stained with Coomassie blue. 

 

3.14 Discussion 

 

To purify Trx and thioredoxin reductase, a number of hurdles had to be overcome. 

Firstly, a major problem with assaying coupled systems is that at least one of the components 

must be readily available. Both Trx and thioredoxin reductase are extremely expensive and 

therefore purchasing these proteins was not an option. For this reason, it was necessary to 

develop assays for each protein that did not require its counterpart. 
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The standard insulin assay (Arnér and Holmgren, 2000a) for determining the activity of 

thioredoxin is both time-consuming and costly which makes it impractical for protein 

isolations. We tried to develop an assay based on the DTT-dependent reduction of insulin by 

Trx (Holmgren, 1979b). It was found that DTT could indeed be used instead of thioredoxin 

reductase which provided a considerable saving. Further, the inclusion of a preincubation step 

with DTT increased the rate of reduction and the assay could be completed in a shorter time 

interval (10 min) (Table 3.1). This assay was used for the subsequent purification steps. 

 

Thioredoxin, the natural substrate of thioredoxin reductase is also very expensive and 

difficult to obtain so the activity of thioredoxin reductase is usually assayed using 5,5'-

dithiobis-2-nitrobenzoic acid (DTNB). For this study, assays described by Arner and 

Holmgren (2000a) as well as Štefanková et al. (2006) were attempted. These assays enabled 

the detection of thioredoxin reductase present in crude extracts in the absence of Trx, thereby 

greatly reducing the cost associated with the native assay. However, the rates obtained 

through both methods were not satisfactory (Table 3.2) and could have been caused by the 

NADPH-dependent inactivation of thioredoxin reductase (Štefanková et al., 2006). However, 

by including univalent cations (Lim and Lim, 1995), we managed to significantly increase the 

sensitivity of the assay. It was shown that the use of univalent cations such as NaCl in the 

thioredoxin reductase activity assay significantly increased the rate of reduction of DTNB 

(Table 3.2). Interestingly, Lim and Lim (1995) also indicated that the optimum temperature 

for the direct reduction of DTNB was 10°C. This finding could make this assay very specific 

for the determination of thioredoxin reductase activity and may be useful in studies to 

determine the in vivo activity of thioredoxin reductase.  

 

Once activity assays for both Trx and thioredoxin reductase were developed, the next 

step involved the purification of both proteins. To obtain thioredoxin, it was hoped that this 

protein would be harvested from the supernatants of yeast cells incubated with 20% (v/v) 

ethanol at 37°C for 2 hours (Inoue et al., 2007). After this incubation period, it was expected 

that thioredoxin would be secreted directly into the medium (Inoue et al., 2007) and rapidly 

isolated. According to Inoue et al. (2007), this method potentially offered several advantages 

over conventional extraction methods. However, for the analysis of the extracted Trx, they 

utilized Western blotting rather than SDS-PAGE which provided an indication that the yield 

of thioredoxin obtained by this method was extremely low. The results obtained in this study 

confirmed this (Figure 3.2). Therefore, the use of this method as an initial step in the 
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purification process was not feasible. For this reason, recombinant expression and purification 

became the method of choice. 

 

Genomic DNA from S. cerevisiae was successfully isolated and the TRX1 gene was 

successfully amplified and cloned into the pTZ57R/T cloning vector and then subcloned into 

the pET28a expression vector. The successful induction of Trx expression (Figure 3.8) and the 

100% similarity observed with the sequence data alignments (Figure 3.7) showed that TRX1 

was successfully cloned and expressed.  

 

To obtain thioredoxin reductase, native purification was also attempted. This involved 

lysing the cells, separation by TPP and thereafter subjecting the fractions to ion-exchange 

chromatography. This method was unsuccessful as the desired protein could not be isolated 

(Figure 3.11) which could have occurred as a result of a low concentration of thioredoxin 

reductase being present in the crude extract thereby allowing another protein with a similar 

charge, found in a higher concentration to bind to the DEAE resin. Recombinant expression 

and purification was then attempted. The thioredoxin reductase clones were tested and found to 

contain the TRR1 gene. Thioredoxin reductase expression was induced (Figure 3.12) and both 

thioredoxin and thioredoxin reductase were successfully purified by nickel affinity 

chromatography (Figure 3.13). The purified thioredoxin system was then concentrated as 

described in Section 2.8 and was thereafter available for kinetic analysis experiments. 
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Chapter 4: Thioredoxin should be modeled as a redox couple and 

not an enzyme in computational systems biology models 

 

4.1 Introduction 

 

 The central question that this thesis sought to answer was whether Trx should be 

modeled as an enzyme or redox couple in computational systems biology models. An equally 

valid question is whether it actually makes a difference to the model developed when Trx is 

modeled as an enzyme or redox couple. Initial kinetic assays showed that the DTT-dependent 

reduction of insulin increased in the presence of Trx, suggesting that Trx catalysed the rate of 

reduction (Holmgren, 1979a). Holmgren (1979a) developed the insulin reduction assay which  

showed substrate saturation behaviour (Figure 1.5 B) and it was assumed that this reflected 

the saturation of thioredoxin itself and Michaelis–Menten kinetic parameters were 

consequently assigned to this protein (Chapter 1). Various problems existed with this 

definition of Trx and these issues were resolved by a kinetic modeling study which suggested 

that Trx should be modeled as a redox couple (Pillay et al., 2009). However, as 

Holmgren (1979a) provided what seemed to be a plausible description for Trx activity over 

30 years ago, this new insight has not been readily accepted. For example, Lin (2010) utilized 

data fitting experiments and proposed that Trx does indeed function as an enzyme in a 

complete redox system. The activity of other redoxins (glutaredoxins and peroxiredoxins) 

have also been described using Michaelis–Menten kinetic parameters (see for example 

(Akerman and Müller, 2003, Akerman and Müller, 2005, Peltoniemi et al., 2006)) and 

therefore more convincing data is needed before overturning decades of research. To resolve 

these disputes, the insulin assay system was analyzed using computational modeling and 

in vitro kinetic analyses. 

 

To confirm the hypothesis proposed by our lab that with increasing concentrations of 

substrate, the thioredoxin reductase concentration becomes rate limiting and therefore the 

entire system becomes saturated with the consequent re-distribution of the Trx moiety (Pillay 

et al., 2009), it was imperative to develop a method to track the oxidized and reduced forms 

of Trx.  
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When determining the redox state of a protein, samples have to be quenched to trap 

the prevailing thiol-disulfide status. Two approaches are commonly used. The first entails 

blocking free thiols with a cell-permeable alkylating agent and the second method involves 

the quenching of thiol-disulfide exchange with an acid. Both methods pose advantages and 

disadvantages (Figure 4.1), so the optimal procedure for quenching the thiol-disulfide state is 

a combination of the two strategies where samples are first quenched with TCA followed by 

alkylation of thiols (Hansen and Winther, 2009). This method allows for the separation of the 

reduced form from the oxidized form of thioredoxin on the basis of the difference in 

molecular mass by SDS-PAGE or the difference in charge by urea PAGE, depending on the 

alkylating agent used. 

 

 

 

 

Figure 4.1 Two approaches for quenching the cellular thiol-disulfide status. Positive 

symbols (+) denote advantages and negative (-) symbols denote disadvantages (Hansen and 

Winther, 2009).  

 

4.2 Materials and methods 

 

4.2.1 Materials 

Trichloroacetic acid (TCA) and Iodoacetic acid (IAA) were obtained from Sigma 

(Capital Labs, South Africa) while hydrogen peroxide (H2O2) and all other common 

chemicals were obtained from Saarchem (Merck, South Africa).  
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4.2.2 Preparation of reagents 

The preparation of all common reagents has been described below whilst the 

preparation of specialized reagents has been described later in the chapter.  

 

4.2.2.1 Iodoacetic acid (IAA) 

A stock solution of IAA (1 M) was freshly prepared by dissolving IAA powder 

(0.0935 g) in dH2O (0.5 ml).  

 

4.3 Methods 

 

4.3.1 Kinetic modeling 

Kinetic modeling experiments were carried out using the open source Python 

Simulator for Cellular Systems (PySCeS) modeling software (Olivier et al., 2005) 

(http://pysces.sourceforge.net). A basic set of parameters were chosen to create a core model 

of this system. Realistic models use realistic kinetic parameters and rate expressions whereas 

core models use default kinetic parameter sets and basic rate expressions making them 

extremely useful in studying the generic underlying behavior within systems (Pillay et al., 

2013). These models both contained a thioredoxin reductase reaction modeled with 

Michaelis-Menten kinetics and an insulin reduction reaction (Table 4.1). In the „thioredoxin 

enzyme‟ model, insulin reduction was catalyzed by thioredoxin and modeled with a 

Michaelis-Menten expression while in the „thioredoxin redox couple‟ model, insulin 

reduction was described using mass action kinetics (Table 4.1). The apparent second-order 

rate constant (kcat/Km) for this reaction in the thioredoxin enzyme model was equal to the 

second-order rate constant in the thioredoxin redox couple model allowing the models to be 

broadly comparable. These parameters are given in the text and model files are given in the 

appendix. 

 

4.3.2 Insulin activity assay 

 For the purpose of kinetic analysis, the reaction mixture contained in a final volume 

of 0.5 ml, 100 mM potassium phosphate buffer (pH 7.0), 2 mM EDTA, 0.4 mM NADPH, 

1.5 µM Trx, insulin (20-200 µM) and thioredoxin reductase (0.1-0.3 µM) which initiated the 

reaction. Reactions proceeded at 25°C and the consumption of NADPH was monitored as a 

decrease in absorbance at 340 nm. A sample without the addition of thioredoxin reductase 

http://pysces.sourceforge.net/
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was used as the reference cuvette. Absorbance measurements were made with a UV-1800 

Shimadzu Spectrophotometer for 5 min. Initial studies showed that the system remained in 

steady state beyond the assay periods described below.  

 

Table 4.1 Kinetic parameters and species concentrations used to compare the 

thioredoxin enzyme and redox couple models  

Species Value 

NADPH 100 μM 

NADP 1 μM 

TrxSS 0.5 μM 

TrxSH 0.5 μM 

Insulin (oxidized) 5 μM 

Insulin (reduced) 1 μM 

Parameters Thioredoxin Reductase 

[TR] 0.1 μM 

kcat 100 min
-1

 

Knadph 1.2 μM 

Ktrxss 2.8 μM 

  

Insulin reduction 

 Thioredoxin Enzyme Thioredoxin Redox Couple 

Rate expression Michaelis-Menten Mass action 

kcat
 

1 min
-1 

- 

Kinsulin
 

1 μM - 

kinsulin
 - 

1 μM
-1 

min
-1
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4.3.3 Determination of the redox state of Trx 

The redox state of thioredoxin was determined by adding the activity assay 

components directly into 100% (w/v) ice-cold TCA (200 µl) and incubating on ice for 

20 min. The TCA-treated samples were centrifuged (22 065 x g, 25 min, 4°C) and the 

supernatant was removed. The pellet was resuspended in denaturing buffer (40 µl , 6 M Urea, 

10 mM EDTA, 0.5% (w/v) SDS and 200 mM Tris-HCl (pH 8.5)) supplemented with 

100 mM IAA and incubated on ice for 10 min. The reaction was stopped by the addition of 

20% (w/v) ice-cold TCA (40 µl) to each sample. After a 20 min incubation period on ice, the 

alkylated proteins were centrifuged (22 065 x g, 25 min, 4°C) and the resulting pellet was 

resuspended in 100 µl 2 × sample buffer (125 mM Tris-HCl, 4% (m/v) SDS, 20% (v/v) 

glycerol, 10% (v/v) mercaptoethanol, 0.01% (m/v) bromophenol blue, pH 6.8). Samples were 

boiled (90°C, 5 min) and separated by SDS PAGE using a 17.5% acrylamide gel that initial 

studies showed could separate the oxidized and reduced forms of Trx. The controls for these 

experiments consisted of oxidized and reduced Trx. Oxidized Trx was obtained by incubating 

Trx (1.14 mM) with H2O2 (3 mM) on ice for 45 min while reduced Trx was obtained by 

incubating Trx (1.14 mM) with DTT (2.78 mM) on ice for 45 min. Both samples were then 

treated as described above.  

 

4.4 Results 
 

4.4.1 Computational modeling 

To determine if there is any difference in the kinetic models obtained when 

thioredoxin was modeled as an enzyme or as a redox couple, representative core models were 

developed (Appendix 1). A basic set of parameters were used for both models so that their 

behaviour could be compared (Table 4.1). 

 

A comparison of the models‟ sensitivity to insulin was performed and we found that 

over all the insulin concentrations tested, the thioredoxin enzyme model could not reach a 

steady state as the concentration of oxidized thioredoxin became depleted in the system 

(Figure 4.2 A). Without a reaction to regenerate oxidized thioredoxin, the activity of 

thioredoxin reductase and therefore the flux as measured by NADPH oxidation, decreased to 

zero, despite the presence of reduced thioredoxin in the system (Figure 4.2 A). In contrast, 

when thioredoxin was modeled as a redox couple, the system reached a steady state and the 

effect of increasing insulin concentrations on the system could be determined (Figure 4.2 B). 



60 

 

Further, with increases in the insulin concentration, the thioredoxin redox cycle saturated and 

there was a re-distribution of the thioredoxin moiety into the oxidized form (Figure 4.2 B) 

which was in contrast to the thioredoxin enzyme model (Figure 4.2 A).  

 

 

 

 

Figure 4.2 Computational models with thioredoxin modeled as an enzyme or redox 

couple have distinct kinetic properties. When thioredoxin was modeled as an enzyme, the 

system failed to reach steady state (A) with the flux (black) and concentration of oxidized 

thioredoxin (red) decreasing with time while the concentration of reduced thioredoxin (blue) 

increased with time. When thioredoxin was modeled as a redox couple (B), the system 

reached steady state and the effect of increasing insulin concentrations on the flux (black) and 

on the oxidized (red) and reduced (blue) thioredoxin concentrations could be monitored. 

Increasing the concentration of thioredoxin reductase from 0.1 μM (solid line) to 1 μM (dots) 

had no effect on the simulation results when thioredoxin was modeled as an enzyme (C) but 

the steady state fluxes increased in thioredoxin redox couple model (D). 

 

 The effect of increasing the thioredoxin reductase activity on the rates within the 

system was also tested. Based on Holmgren‟s (1979a) assumption that the thioredoxin 

A B 

C D 

A 

A 
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enzyme becomes saturated by increasing concentrations of insulin, it was expected and 

observed that changes in the thioredoxin reductase concentration have no effect on the rates 

within this model (Figure 4.2 C). However, increasing the thioredoxin reductase 

concentration increased the rate of insulin reduction in the thioredoxin redox couple model, 

confirming that its activity was limiting in this system (Figure 4.2 D). Thus, modeling 

thioredoxin as an enzyme or as a redox couple resulted in computational models with 

contrasting kinetic properties showing that this distinction is important. If the thioredoxin 

redox couple model is correct, the system should be able to achieve steady state, there should 

be a re-distribution of Trx into its oxidized form and thioredoxin reductase should affect the 

rates within the system. On the other hand, if Trx was an enzyme, reaching a steady state 

would be unachievable, Trx would remain in the reduced form and thioredoxin reductase 

concentration would have no effect on the rates within the system. As these properties can be 

directly tested in vitro, we sought to directly confirm which model was correct. 

 

4.4.2 In vitro kinetic analysis 

4.4.2.1 Prediction I: Steady state 

 According to the thioredoxin redox couple model, the system should be able to 

achieve steady state. To test this prediction, the rate of NADPH oxidation was monitored as a 

decrease in absorbance at 340 nm. 

 

An initial decrease in the rate at 340 nm was observed within the first 2 min of the 

reaction and thereafter the system reached a steady state (Figure 4.3) over all concentrations 

of insulin tested (data not shown), supporting the Trx redox couple model. A 5 min reaction 

period was chosen for subsequent assays.  

 

4.4.2.2 Prediction II: Re-distribution of the Trx moiety 

 

With increases in the insulin concentration, the rate of reduction apparently saturated. 

According to the redox couple model, this is due to the saturation of the Trx redox cycle with 

the Trx moiety distributed into its oxidized form (Figure 4.2 B). However, according to the 

Trx enzyme model, Trx should be in its reduced form (Figure 4.2 A). To determine whether 

there was a re-distribution of the thioredoxin moiety into the oxidized and reduced forms, the 

cellular redox state was preserved by rapidly treating the reactions with TCA, which 
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protonates free thiol groups, preventing artificial oxidation during sample preparation 

(Hansen and Winther, 2009). This procedure is usually used in conjunction with Western 

blotting to probe the redox state within cells and is the first study, to our knowledge, to use it 

in vitro. This was advantageous as the need for Western blotting was eliminated. Extracts 

were thereafter alkylated with IAA which reacts irreversibly with thiols in a nucleophilic 

substitution reaction to form the corresponding carboxymethyl derivative (Hansen and 

Winther, 2009). Mobility standards corresponding to fully oxidized and reduced Trx were 

prepared by treating samples with H2O2 (3 mM) and DTT (2.78 mM) respectively prior to 

treatment with IAA (Figure 4.4).  

 

 

 

 

Figure 4.3 Representative graph of NADPH oxidation. The reaction mixture contained in 

a final volume of 0.5 ml, 100 mM potassium phosphate buffer (pH 7.0), 2 mM EDTA, 0.4 

mM NADPH, 1.5 µM Trx, 20 µM insulin and 0.1 µM thioredoxin reductase. Experiments 

were performed in triplicate and proceeded at 25°C. 

 

 

Alkylation of thiols with IAA adds a negatively charged carboxymethyl adduct to the 

thiol resulting in the dithiol (reduced) form of Trx migrating faster toward the anode than the 

disulfide (oxidized) form using native PAGE (Hansen and Winther, 2009). However, SDS-

PAGE was used for the duration of this study and therefore migration and separation of 

protein bands depended on size. For this reason, reduced Trx, containing the carboxymethyl 

group, migrated slower than the oxidized from of Trx (Figure 4.4). 
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Figure 4.4 IAA-treated oxidized and reduced Trx show different mobility during SDS-

PAGE. Trx was oxidized with H2O2 (3 mM) and reduced with DTT (2.78 mM). Samples 

were separated using SDS PAGE. The gel has been cropped to fit the figure into this thesis 

but no other bands were observed in the non-MWM lane. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Re-distribution of the Trx moiety. The reaction mixture contained in a final 

volume of 0.5 ml, 100 mM potassium phosphate buffer (pH 7.0), 2 mM EDTA, 0.4 mM 

NADPH, 1.5 µM Trx, insulin (20-200 µM) and 0.1 µM thioredoxin reductase. Experiments 

were performed in triplicate and a representative gel is shown. The gel has been cropped to fit 

the figure into this thesis but no other bands were observed in the non-MWM lane. 

 

Increases in the insulin concentration resulted in the progressive re-distribution of the 

thioredoxin moiety into its oxidized form (Figure 4.5) which was consistent with the 

saturation of the thioredoxin redox cycle due to the thioredoxin reductase limitation and this 

data therefore supports the thioredoxin redox couple model.  

     Oxidized            Reduced 

          MWM          Trx                             Trx kDa 

17 

11 
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  Reduced Trx 
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4.4.2.3 Prediction III: Influence of thioredoxin reductase 

 

According to the thioredoxin redox couple model, increases in the thioredoxin 

reductase concentration should result in increases in the flux through the system and a higher 

insulin concentration would be needed to saturate the cycle (Figure 4.2 D). To test this 

prediction, the rate of NADPH oxidation was measured at 340 nm at various concentrations 

of insulin (20 µM, 60 µM and 200 µM) and thioredoxin reductase (TR) (0.1 µM and 

0.3 µM). When the concentration of thioredoxin reductase was increased from 0.1 µM to 

0.3 µM, there was a corresponding increase in the flux through the system (Figure 4.6) which 

supported the thioredoxin redox couple model and not the thioredoxin enzyme model 

(Figure 4.2 C).  
 

 
 

Figure 4.6 Reduction of insulin by the thioredoxin system. The rate of NADPH oxidation 

was measured at 340 nm at various concentrations of insulin (20 µM, 60 µM and 200 µM) 

and thioredoxin reductase (0.1 µM (●) and 0.3 µM (○)). Experiments were performed in 

triplicate and the standard error bars are indicated.   

 

Increases in the insulin concentration were accompanied by the conversion of the Trx 

moiety into its oxidized form (Figure 4.7). However with the redox couple, it was expected 

that an increase in the thioredoxin reductase concentration should increase the steady state 
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(reduced) thioredoxin concentration at a given concentration of insulin (Figure 4.2 A-B). Our 

analysis of the oxidized and reduced concentrations of Trx confirmed the modeling result 

with a greater concentration of reduced Trx for a given insulin concentration at a higher 

thioredoxin reductase concentration (Figure 4.7 C-D). The reduced and oxidized forms of 

thioredoxin reductase can also be seen higher in the gel (Figure 4.7 D). In summary, 

thioredoxin reductase was limiting in the system and saturation was due to the saturation of 

the Trx redox cycle. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 The thioredoxin redox couple model predicted that thioredoxin reductase is 

limiting in the Trx system. Increases in the insulin concentration in the redox couple model 

resulted in a decrease of the reduced Trx concentration (blue) using 0.1 µM thioredoxin 

reductase (A). In comparison, when the thioredoxin reductase concentration was increased to 

0.3 µM, the steady state (reduced) thioredoxin concentration (blue) at a given concentration 

of insulin was higher (B). In vitro kinetic analysis confirmed this prediction where less 

reduced Trx was evident when using 0.1 µM thioredoxin reductase (C) as compared to using 

0.3 µM thioredoxin reductase (D). The gels have been cropped to fit these figures into this 

thesis but no other bands were observed in the non-MWM lanes. 
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4.5 Discussion 
 

Our data showed that describing redoxins as enzymes or redox couples is not merely a 

„semantic‟ problem as thioredoxin models developed using either definition have distinct 

kinetic properties (Figure 4.2). Our modeling results showed the that the thioredoxin enzyme 

model could not reach a steady state (Figure 4.2 A) which was in contrast to the well-

established properties of the system in vitro (Holmgren, 1979a, Arnér and Holmgren, 2000a). 

In comparison, the thioredoxin redox couple model reached a steady state and showed 

saturation with increasing insulin concentrations and a subsequent re-distribution of the 

thioredoxin moiety into its oxidized form was observed (Figure 4.2 B). Both models also 

displayed distinct responses to changes in the thioredoxin reductase concentration with the 

thioredoxin enzyme model displaying no effect to these changes (Figure 4.2 C) while the 

fluxes in the thioredoxin redox couple model increased with increased thioredoxin reductase 

concentrations (Figure 4.2 D).  

 

We used the classical insulin reduction assay for thioredoxin activity to test the 

predictions from these models in vitro. We specifically did not fit these kinetic models to our 

datasets as this approach had been previously used to both confirm and/or reject the 

thioredoxin enzyme and redox couple approaches (Holmgren, 1979a, Pillay et al., 2009, Lin, 

2010) and we wanted to resolve this dispute independently. Our results showed that the 

system reached steady state and with increasing concentrations of insulin, the system 

saturated with a progressive re-distribution of thioredoxin into its oxidized form. Further, 

increasing the thioredoxin reductase concentration increased the flux through the system 

(Figure 4.6). Collectively, the results obtained through in vitro analyses provide unambiguous 

support for the thioredoxin redox couple model.  
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Chapter 5: General discussion 
 

In systems biology, the construction of kinetic models is becoming increasingly 

important in order to understand and quantify how complex systems such as the Trx system 

are regulated (Pillay et al., 2013). However, for these approaches to succeed, precise 

definitions of the components within the system are a necessary first step which has been 

complicated by the description of redoxins as both enzymes and redox couples. While our lab 

had been able to resolve these contradictions into a consistent quantitative framework (Pillay 

et al., 2009), further confirmatory studies were required before these results could be 

generally accepted. 

 

To resolve these existing disputes, a number of hurdles had to be overcome. Firstly, it 

was imperative to develop cheap and fast activity assays for both Trx and thioredoxin 

reductase. A novel assay was developed for the detection of Trx activity involving the DTT-

dependent reduction of insulin (Chapter 3). The use of DTT, rather than thioredoxin 

reductase and the inclusion of a preincubation step to reduce the Trx with DTT, made this 

assay both cheap and fast. With respect to the detection of thioredoxin reductase activity, an 

assay utilizing univalent cations in the reaction mixture to increase the rate of DTNB 

reduction by thioredoxin reductase was chosen. Once appropriate assays were found, the 

thioredoxin system had to be isolated from Saccharomyces cerevisiae and subsequently 

purified. S. cerevisiae was an ideal model eukaryote for studying the thioredoxin  system 

because of the genetic and biochemical tractability of the organism and the availability of null 

mutants lacking components of the system (Grant, 2001, Wheeler and Grant, 2004). Apart 

from being easy to manipulate, S. cerevisiae also represents an excellent, well-established 

model system for understanding fundamental cellular processes relevant to higher eukaryotic 

organisms. This eukaryote is inexpensive to maintain and grow and its entire genome has 

been sequenced (Goffeau et al., 1996, Galao et al., 2007). All these attributes make S. 

cerevisiae a suitable candidate for the study of the regulation of the thioredoxin system.  

 

To obtain Trx, cells were incubated with ethanol in the hope that Trx would be 

excreted into the surrounding medium whilst the cells remain intact (Inoue et al., 2007). 

However, this method was unsuccessful. Native purification of thioredoxin reductase 

involving lysis of yeast cells, three-phase partitioning and ion-exchange chromatography was 

also unsuccessful. For this reason, recombinant purification was attempted and both proteins 
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were successfully cloned, expressed and purified using nickel affinity-chromatography 

(Chapter 3).  

 

 Computational modeling was used to determine if there was a difference in the 

models obtained when Trx was modeled as an enzyme or redox couple. Our results showed 

that distinct differences existed between the two models (Chapter 4). In contrast to the 

thioredoxin redox couple model, the thioredoxin enzyme model was unable to achieve steady 

state over all the insulin concentrations tested. Further, with increases in the insulin 

concentration, the thioredoxin redox cycle saturated and there was a re-distribution of the 

thioredoxin moiety into the oxidized form which was in contrast to the thioredoxin enzyme 

model. Finally, increasing the thioredoxin reductase concentration increased the rate of 

insulin reduction in the thioredoxin redox couple model whilst this increase in thioredoxin 

reductase concentration had no effect on the thioredoxin enzyme model (Chapter 4). To 

confirm each prediction of the redox couple model, in vitro kinetic analyses was implemented 

using the classical insulin reduction assay (Holmgren, 1979a).  

 

Through the use of in vitro analyses, three independent pieces of evidence confirming 

the thioredoxin redox couple model were obtained. Firstly, the system reached a steady state. 

Secondly, with increases in the insulin concentration, the thioredoxin redox cycle saturated 

and there was a re-distribution of the thioredoxin moiety into its oxidized form. Finally, 

increasing the thioredoxin reductase concentration increased the rate of insulin reduction. 

This kinetic mechanism accounts for both the in vitro and the in vivo properties attributed to 

redoxins and has a number of implications for the field. Firstly, as we are now able to obtain 

consistent in vitro kinetic parameter sets for Trx reactions, it is envisioned that an integrated 

computational model of this system will precisely describe its role in redox regulation which 

has application for the treatment of a number of pathologies including HIV and cancer in 

which redoxin activity plays a key role. Secondly, a broader revision of redoxin activity is 

required as these results dismantled the well-established description of Trx activity. Finally, 

through these findings and a conclusive description of Trx activity, theoretical modeling 

studies can be viewed with a lot more confidence. This work serves as a good starting point 

for the further adoption of systems biology approaches in the study of redoxins and their 

respective systems.  
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Appendix 1 
 

Kinetic modeling experiments were carried out using the open source Python 

Simulator for Cellular Systems (PySCeS) modeling software (Olivier et al., 2005) 

(http://pysces.sourceforge.net).The following modeling files were used to determine if there 

was a difference when Trx was modeled as an enzyme or redox couple. 

 

File 1: Trx modeled as a redox couple 

FIX: NADPH NADP PSS PSH  

 

R1: NADPH + TrxSS = NADP + TrxSH 

(kcat1*TR*(NADPH/Knadph)*(TrxSS/K1trxss))/((1+NADPH/Knadph)*(1+TrxSS/K1trxss)) 

 

R2: TrxSH + PSS = TrxSS + PSH 

k2*TrxSH*PSS 

 

#Kinetic Parameters = µM and min 

TR =0.1 

kcat1 =100 

Knadph = 1.2 

K1trxss = 2.8 

 

k2=1 

 

#Species concentrations 

NADPH = 100 

NADP = 1 

TrxSS = 0.5 

TrxSH = 0.5 

 

PSS =5 

PSH =1 

 

File 2: Trx modeled as an enzyme 

http://pysces.sourceforge.net/
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FIX: NADPH NADP PSS PSH  

 

R1: NADPH + TrxSS = NADP + TrxSH 

(kcat1*TR*(NADPH/Knadph)*(TrxSS/K1trxss))/((1+NADPH/Knadph)*(1+TrxSS/K1trxss)) 

 

R2: PSS = PSH 

(kcat2*TrxSH*PSS)/(Kpss+PSS) 

 

#Kinetic Parameters = µM min 

TR =0.1 

kcat1 =100 

Knadph = 1.2 

K1trxss = 2.8 

 

kcat2=1 

Kpss =1 

 

#Species concentrations 

NADPH = 100 

NADP = 1 

TrxSS = 0.5 

TrxSH = 0.5 

 

PSS =5 

PSH =1 
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