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ABS T RACT 

In this thesis a model for saturated tearing mode islands is developed. The equations for 

the mode amplitudes are essentially those of R B White et al., after a pertubation 

expansion has been made. It is well known that these equations are not then analytic at 

the mode rational surface. In our model this problem is overcome when a suitable choice of 

the axisymmetric current density perturbation is added to the unperturbed equilibrium 

current density profile. The modelled axisymmetric current density perturbation flattens 

the unperturbed profile locally at the rational surface and is sufficient to induce an island. 

No modelling in the interior of the island is necessary. 

The axisymmetric perturbation has a free variable which adjusts the amount of local 

flattening . However, when the boundary conditions are taken into account, this free 

parameter is determined, and the problem becomes an eigenvalue problem. The boundary 

condition thus determines the amount of local flattening at the rational surface. 

The saturated island widths are determined using a 6.' (W) criterion. The model allows 

for non-a~symmetric plasma surface in a simple way, requiring careful choice of .1' (W) . 

The different criteria are compared to establish the validity of the use of such criteria for 

perturbed boundaries. 

In the cylindrical approximation, one or two modes may be included in the model. In the 

case of two modes, non-linear coupling via the current density profile is introduced. 

Toroidal coupling between modes can also be simply introduced. Two modes that are 

toroidally coupled are considered, but mode-mode coupling is ignored. 
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The emphasis falls in large part on the boundary conditions. Various boundary conditions 

can be considered because distortion of the plasma surface can be fixed by wall effects, 

plasma rotation, external DC coil currents, plasma rotation with external coil currents, etc. 

Of particular interest is the case of toroidally coupled modes, coupled in turn to these 

external conditions as this is the first study of such a nature. 

Results flowing from the study include among others that: 

• for the special case of circular boundaries the model agrees reasonably with the 

results of R B White et al. 

• No significant difference was found between the D. I (W) criterion of P H 

Rutherford, which is valid for circular boundaries, and that of A H Reiman, which is 

also valid for perturbed boundaries, when the boundary is perturbed significantly. 

• Toroidally coupled islands do not increase in size if the boundary condition of that 

particular mode is not changed. If a coil current of particular helicity is switched 

on, it will only affect the mode of that particular helicity. 

• Toroidally induced sideband islands have approximately the same width as natural 

tearing islands when the size of the natural island is large. 



iii 

CONTENTS 

CHAPTER 1: INTRODUCTION 

1.1 General Introduction 

1.2 The Tokoloshe experiment 

1.3 An overview of this Thesis 

CHAPTER 2: AN OVERVIEW OF TEARING MODES IN PLASMAS 

2.1 Introduction 

2.2 Ideal MHD-theory 

2.3 Tearing Modes 

2.4 Linear Tearing Mode Theory 

2.5 Non-linear Theory 

2.6 Equilibrium Studies 

2.7 Numerical Analysis 

2.8 Toroidicity 

2.9 Boundary Conditions 

2.10 Conclusions 

CHAPTER 3: THE REDUCED MHD EQUATIONS 

3.1 Introduction 

3.2 Deriving the Reduced MHD Equation in a Torus 

3.3 The Reduced MHD Equations in the Cylindrical 

Approximation 

3.4 The Strauss Equations [52] 

3.5 The Equations of Rosenbluth et al. [51] 

3.6 The Equations of Waddell et al. [57] 

3.7 Rewriting the Reduced Toroidal Equations in 

(r, 0, cp) Coordinates 

3.8 The Cylindrical Reduced MHD Equations 

3.9 Mode Coupling in the Equations 

3.10 Interpreting the Reduced Time Independent Equations 

3.11 Conclusions 

PAGE 

1 

2 

3 

6 

6 

9 

12 

16 

20 

22 

25 

26 

31 

32 

33 

43 

46 

46 

50 

51 

57 

59 

62 

63 



IV 

CONTENTS 

CHAPTER 4: EQUATIONS FOR ONE TEARING MODE IN 

CYLINDRICAL GEOMETRY 

4.1 

4.2 

In trod uction 

The Reduced Equations for One Mode 

4.2.1 Basic expressions defined 

4.2.2 The helical equilibrium flux 

4.2.3 Rewriting the current density equation 

4.2.4 A closed set of equations 

4.2.5 Problems of a perturbation expansion for J(~) 

4.3 Modelling a Perturbed Flattened Current Profile 

4.3.1 Sykes and Wesson [5] 

4.3.2 The White et al. model [3] 

4.4 An Alternative Approach 

4.4.1 A new model 

4.4.2 The effect of the higher order terms in J(~) 

4.5 Resistivity 

4.5.1 Resistivity as a function of r 

4.5.2 Resistivity depending on 0 and cp 

4.5.3 Expected features of the plasma as time evolves 

4.6 Conclusions 

CHAPTER 5: BOUNDARY CONDITIONS 

5.1 Introduction 

5.2 Non-homogeneous Boundary Conditions 

5.3 Effects of Islands on the Boundary Shape 

5.4 Including Coil Currents in the Problem 

5.5 Deriving Expressions for Br 11 and B 1911 

with an External Coil Current 

PAGE 

64 

65 

65 

66 

68 

70 

71 

74 

74 

76 

79 

79 

83 

85 

85 

87 
88 

88 

90 

91 

95 

97 

103 



v 

CONTENTS 

5.6 Deriving the Coil Current in the Cylindrical 

Approximation 

5.7 The (m,n) Fourier Component of Jz 

5.8 Including the Rotational Frequency in the 

Boundary Condi tions 

5.9 Including an External Coil with Rotational Frequency 

5.10 Minimizing the Energy with respect to 6 

5.11 Conclusions 

CHAPTER 6: THE RESULTS OF THE ONE MODE MODEL 

6.1 Introduction 

6.2 The Functional Form of 6J(r) 

6.3 Determining the Equilibrium and Perturbed Quantities 

6.4 Solving for the Eigenvalue of the Problem 

6.4.1 Determining the local flatness of the current 

density profile with a saturated tearing mode 

present 

6.4.2 An analytic approach to the problem 

6.5 The Island Width 

6.5.1 A method to determine the island width 

in general 

6.5.2 

6.5.3 

6.5.4 

Using 11' (W) = 0 to calculate the 

saturation width 

The form of the total current J( ip) 
inside the island 

The validity of the island width formulae 

6.6 Calculating Flows 

6.7 Equilibrium Effects 

6.7.1 Driving a tearing mode stable situation 

unstable with mode locking 

PAGE 

104 

106 

108 

116 

126 

127 

128 

129 

133 

140 

140 

146 

150 

150 

153 

157 

166 

167 

169 

169 



6.7.2 

6.7.3 

vi 

CONTENTS 

The relation between flatness of the profile (w) 

and the island width (W) 

The perturbation of the boundary 

6.8 The Effect of Rotation on the Island Width 

6.9 The Different ll' (W) criteria Compared 

6.10 External Coils 

6.10.1 The effect of the external coils on the 

island size 

6.10.2 The relation between Wand I l 

6.10.3 The effect of rotation frequency 

6.10.4 Equilibrium effects 

6.10.5 The relation between Ba1 and n 

6.10.6 The relation between the Reiman and 

Rutherford criteria 

6.11 Out of Phase Situations 

6.12 Conclusions 

CHAPTER 7: A TOROIDAL MODEL WITH TWO MODES PRESENT 

7.1 Introduction 

7.2 Defining a "current" Density that follows flux surfaces 

7.3 The Magnetic Flux defined for Two Modes 

7.4 A Perturbation Expansion of K 
7.5 Solving K = -ll *7/J 
7.6 A Closed set of Toroidal Equations 

7.7 The Toroidal Safety Factor 

7.8 The Model for Ko( r) 

7.9 Boundary Conditions for the Toroidal Equations 

7.10 The Vacuum Equations 

7.11 External Coils 

7.12 Conclusions 

PAGE 

173 

174 

176 

178 

180 

180 
183 

187 

188 

192 

194 

197 
203 

206 

207 
209 
215 

218 

219 
220 

221 

225 

228 

230 

231 



vii 

CONTENTS 

CHAPTER 8: RESULTS OF THE TWO MODE MODEL 

8.1 Introduction 

8.2 The Equilibrium Quantities 

8.3 The Eigenvalues of Both Modes 

8.4 Mode Rotation without External Coils 

8.5 External Coils 

8.6 External Coils with Rotation 

8.7 The Effect of the Aspect Ratio 

8.8 Equilibrium Effects 

8.9 Other Effects 

8.9.1 Boundary perturbation 

8.9.2 Coupling of islands through the background 

current density profile 

8.9.3 Toroidal effects in the helical flux 

8.10 The Relation of a Natural Tearing Mode to a 

Toroidally Induced One 

8.11 Conclusions 

CHAPTER 9: CONCLUSIONS 

9.1 

9.2 

9.3 

General Conclusions 

Shortcomings of the Models 

Recommendations for Future Work 

REFERENCES 

APPENDICES A to F 

PAGE 

232 

232 

236 

241 

242 
245 

247 

248 

249 

249 

250 

250 

250 

254 

255 

257 

258 

259 

266 



1 

CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

The study of tearing modes has been going on for many years. It originated when 

instabilities other than ideal MHD instabilities were observed in magnetic 

confinement devices. The theoretical ground work for the study of these modes was 

laid in 1963 by Furth, Killeen and Rosenbluth [1]. They also developed a stability 

criterion. Only the first phase in the development of tearing modes was studied at 

this stage within linear theory and lead to estimates of exponential growth rates. 

In 1973 Rutherford [2] extended this work to include the next phase in the tearing 

mode development. In quasi-linear theory the exponential growth changes to 

algebraic growth when the tearing island reaches the size of the so-called resistive 

layer - a region defined in the linear theory in which resistivity is of importance. 

This work was then built upon by White et al. [3] in 1977 when they studied small 

saturated islands which exceed the size of the resistive layer. For the first time it 

was possible to model saturated tearing modes as observed on Tokamaks. 

In parallel with the analytic modelling of tearing modes, time dependant numerical 

codes were developed. They were used to study coupling between modes and mode 

overlapping and proved the validity of the theory. Important Tokamak phenomena 

were also investigated like the major and minor disruptions. 
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Another field of interest that was studied over the last few years, is the effect of 

boundary conditions on the tearing modes. External coils (both AC and DC) were 

installed on many Tokamaks to do experiments in this regard. This thesis will, 

among other things, concentrate on the effect of boundary conditions as this is 

relevant to the Tokoloshe experiment on which low m-number DC coils have been 

installed. This experiment will be much used in this thesis. 

1.2 The Tokoloshe experiment 

Tokoloshe is a medium sized Tokamak with major radius of 48 cm and a minor 

radius of 24 cm. Although fusion-like parameters cannot be obtained on such a 

small machine, relevant experiments can be done to investigate phenomena that are 

observed on all machines. In particular the physics of the tearing mode, the minor 

and major disruptions, the internal kink mode and edge phenomena were studied in 

the last few years. 

In an attempt to influence the behaviour of the tearing modes, coils of similar 

helicity were installed on the outside of the vacuum chambe.r. Experiments with 

DC coil currents were performed with m=3,2 and 1 helicity coils. 

An interesting feature of Tokoloshe is that it has a very large inverse aspect ratio 

(minor over major radius) of about 0.5. This however, makes it very difficult to use 

perturbation theory to study the physics on Tokoloshe. In this study we will 

assume a larger aspect ratio than that of Tokoloshe which will thus only enable us 

to do a qualitative study of Tokoloshe phenomena. • 
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1.3 An Overview of this Thesis 

We will now present a summary of the chapters. In chapter 2 the relevant 

literature on tearing modes is reviewed. This includes linear and non-linear tearing 

mode theory, equilibrium studies, numerical analysis and the studies on the effects 

of external conditions. Of particular interest to our studies are the 

time-independent reduced MHD equations which are used to do non-linear 

eqUilibrium studies with saturated tearing modes embedded in the plasma in the 

presence of a variety of different boundary conditions. 

In chapter 3 the toroidal reduced MHD equations are derived following Izzo [4]. 

From these the cylindrical equations are deduced for Cartesian, cylindrical and 

helical coordinates. Finally the time independent equations are presented. In the 

case of one mode in the cylindrical approximation the flow automatically disappears 

from the magnetic flux equation. This simplifies the modelling of one tearing mode 

significantly. For two modes the parameter S = TalTA (Ta is the resistive time 

scale and TA the Alfen time scale) has to be set to CD to exclude flows from the 

magnetic flux equation. 

The case of one mode in cylindrical coordinates is discussed in chapter 4. A new 

model is developed in which the axi-;;ymmetric perturbed current is modelled. The 

model is based on the work of White et al. [3] and that of Sykes and Wesson [5]. 

Our approach resembles that of Sykes and Wesson in the modelling of a flat region 

at the position of the saturated island, and also resembles White et al. [3] who 

expressed the perturbed current density inside the island as a function of the helical 

magnetic flux. Advantages of our model include the fact that no assumptions are 

made about the final current density profile in the island which can in principle be 

found accurately depending on the number of terms in the perturbation expansion 
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that is included. Another advantage is that no complicated inner or outer island 

regions are specified - the island in the plasma automatically arises by allowing for 

non-axisymmetric boundary perturbations. 

Chapter 5 deals with the boundary conditions for cylindrical tokamaks. Boundary 

conditions are derived for the case of 

• A non-conducting wall at the plasma edge surrounded by vacuum or a 

coil in the vacuum. 

• An infinitely fast rotating plasma with a resistive wall, or superconducting 

wall. A vacuum region can be included between the plasma and the wall. 

• A rotating plasma with a vacuum region outside the resistive wall. 

• A rotating plasma with an external coil in the vacuum region outside the 

resistive wall. 

(A constant frequency is assumed for a particular situatio.n to allow for our 

time-independent treatment). Only the last case appears to be new. 

When the model of chapter 4, for one saturated tearing mode in a plasma, is coupled 

to the various external situations described in chapter 5, it is possible to generate 

results. These are presented in chapter 6. 

An eigenvalue problem for the free parameters of the model arises. The external 

situation thus self-consistently determines the degree of local flattening of the 

unperturbed axisymmetric current profile at the rational surface. When the 

6. I (W) criteria are included in the problem it is possible to fix the saturated island 

width as well as the perturbation of the boundary. 
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In chapter 7 we expand the cylindrical model of chapter 4 to include two toroidally 

coupled modes. The boundary conditions developed in chapter 5 were found to be 

valid in this case too. 

The model of chapter 7 enables us to study a situation similar to that on Tokoloshe 

where both a (2,1) and (3,1) mode are present . With the correct boundary 

conditions the interaction of these modes with external coils can now be studied. It 

is the first time that toroidally coupled modes have been studied in conjunction with 

such a variety of boundary conditions. 

Finally in chapter 8 we present the results of the toroidal model. The effects of 

toroidal coupling, plasma rotation and external coils are studied for a Tokoloshe 

relevant profile. The relation of a natural (3,1) tearing island to a toroidally 

induced one is also studied as a case of particular interest on Tokoloshe. 

In summary, we have developed both a cylindrical and toroidal model of saturated 

tearing modes, coupled to a variety of external situations. The model enabled us to 

do a qualitative study of Tokoloshe phenomena which could not be studied with the 

normal linear theory. It is thus of particular relevance to the Tokoloshe experiment. 
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CHAPTER 2 

2. AN OVERVIEW OF TEARING MODES IN PLASMAS 

2.1 Introduction 

The purpose of this chapter is to give a broad overview of the work that has been 

done in the field of tearing modes. Linear and non-linear tearing mode theory, 

equilibrium studies, numerical analysis and studies on the effect of external 

conditions are reviewed . 

2.2 Ideal MHD-theory 

The phenomena taking place in a plasma can be divided into those taking place on a 

small scale (e.g. microscopic collisions described by kinetic theory) and those taking 

place over larger scales (e.g. macroscopic fluid type behaviour described by 

hydromagnetic (MHD) theory). Macroscopic phenomena are of great importance in 

plasma confinement because they can cause a dramatic loss of the plasma out of the 

confinement device. 

The first and most obvious approach in understanding the macroscopic behaviour of 

plasmas, is to consider the high electrical conductivity limit (resistivity -I 0). This 

is called the ideal MHD approach. 

If a plasma in equilibrium is displaced with a small perturbation, it will either 

return to the original or some other equilibrium (be stable), or keep growing 

(become unstable). In 1958 Bernstein et . al. [6] derived an energy principle which 

can distinguish between stable and unstable plasma equilibria. According to this 
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principle, a system is stable if a certain energy integral W(~) is positive for every 

displacement ~ satisfying the boundary conditions, and unstable (ideal instabilities 

will grow) if there exists a ~ for which W(~) is negative. 

The energy integral is given by 

(2.1) 

where Q = V ,,(~,,~), 'Y the specific heat, J the plasma current density, ~ the 

magnetic field strength and P a scalar plasma pressure. The most straightforward 

way of applying the energy principle is to impose a conveniently chosen 

normalization condition on ~ and then to minimize W(~) with respect to ~; the 

system is then stable if the minimum value is positive and unstable if it is negative. 

If the energy integral W(~) can be minimized with respect to ~e and ~z, where 

(r,O,z) are cylindrical coordinates, W can be reduced to a one-dimensional form 

(2.2) 

where e is an abbreviation for the radial component er and /\ is a certain 

quadratic form in e and de; dr with m and k as parameters. It is assumed that 

er, iee and iez are real functions of r in cylindrical geometry multiplied by 

exp i(mO + kz), k the wavenumber of the mode in the z-direction. This important 

work was done by Newcomb [7] . 
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Equation (2.2) can be integrated by parts to give 

(2.3) 

where f and g are functions with m and k as parameters. The function that 

minimizes this integral, is given by the Euler-Lagrange equation 

d (f dt) _ g~ Or Or o. (2.4) 

This equation has a singular point wherever f vanishes, which happens when 

kr Bz + mBe o. (2.5) 

This will be important below. 

From equation (2.4) it is possible to derive Suydam's stability condition [7,8] : 

(2.6) 

where q is called the safety-factor and is just ¥ where i is the rotational 

transform, i.e. the angle moved through in one toroidal circuit of the magnetic field 

as it encircles the cylinder. In the cylinder it can be written as 

q (2.7) 

which reduces to q=m/n at the rational surface, i.e. where equation (2.5) is valid. 

We now assume a large aspect ratio "tokamak" where kz = ncp , i.e. cp periodic 

and the ends of the cylinder are identified. 
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According to equation (2.6) the configuration is stable with respect to high-m 

interchange instabilities if ~ is big enough. This change in the helicity of the 

magnetic field with radius is called shear. 

2.3 Tearing Modes 

An important result of early fusion research was that instabilities were observed in 

configurations where the ideal hydromagnetic theory predicted stability. To gain 

insight into this problem we follow Bateman [9]: Define B*(x) = B(x)-Bq:m/Il(x) 

where for simplicity we work in a cartesian coordinate system. Assume the mode 

rational surface (i.e. where equation (2.5) is valid) to be at x=o and use a series 

expansion of B *y in the neighbourhood of this surface 

(2.8) 

Now include only one harmonic of the magnetic field perturbation in the 

x~irection 

B~ (x,y) - Bi sin kyY . (2.9) 

It is now possible to describe the total magnetic field by a flux function 1/J(x,y) 

which ensures V.B = 0 

By - ~, (2.10) 

(2.11) 

This can be illustrated as follows: 
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The combination of Band Bx leads to the formation of an island 
* structure. Contours of constant magnetic field are shown. W denotes 

the island width. 

Taking this approach of Bateman a little further, the following formulae for the 

island width can be derived: 

(2.12) 

with B 1r the perturbed radial magnetic field. 

Bateman and Morris [10] showed that this expression is valid for large island widths 

in Tokamaks. They found a 2 %. deviation forW fa = 0.2 and 4 % for 

W fa = 0.3, with a the minor radius of the Tokamak. 

The flux function defined in equation (2.10) is proportional to the poloidal magnetic 

flux. The poloidal and toroidal flux can be written as follows in toroidal geometry: 

'I/ltor - flux the long way round (2.13) 
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- f d~.~ 
Spol 

flux the short way round . (2.14) 'l/Jpol 

The subscripts denote the toroidal and poloidal directions. 

With this in mind we can see that Figure 2.1 implies that the flux....:surfaces (and 

thus also the magnetic field lines) on tokamaks are designed to have the same 

topology which are broken in the sense that their topology has changed because of 

disconnection and reconnection [11] . The perturbation (2.9) thus predicts a 

magnetic structure in which the magnetic field lines tear. In the ideal MHD case 

the field and fluid are coupled, and it is impossible to disconnect it. Finite 

conductivity (resistivity) can be included in the MHD theory to allow for this 

disconnection, and the formation of a tearing mode. 

The above discussion suggests the possible occurrence of other instabilities (called 

resistive instabilities) not found in the ideal fluid description of a plasma. Apart 

from the tearing mode (from the tearing of the magnetic field lines into islands) 

which was discussed above, there are also the rippling and gravitational 

(interchange) modes [1] which will not be discussed further in this study. Prior to 

this study of reconnection in magnetic confinement devices, resistive studies had 

been made in relation to the earth's magnetosphere, most significantly by Sweet 

[12], Parker [13] and Petschek [14]. 

The reconnection rate is defined as the time rate of change of the magnetic flux, 1/J, 

at the X-point (the point where the magnetic islands are the narrowest) and is 

given by (see e.g. [15]) 
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. 7J(1-t)/(2-t) . 
1/Js N '/ 

(2.15) 

The Sweet-Parker model assumes t=O (~s N 17t) and the Petschek model t=l 

(~s N TJO) [15]. In the case of the tearing mode, reconnect ion initially occurs at the 

rate TJ- S/ 5 when the island is small, but then slows down to [16] 

(2.16) 

when the island size gets large. 

During the linear phase, the growth rate of the tearing instability increases with 

magnetic shear, i.e. 

"f N (q' /q)2/5 , (2.17) 

with 'Y the growth rate. The magnetic shear that stabilizes the ideal MHD 

instabilities (equation (2.6)), destabilizes the tearing mode! 

2.4 Linear Tearing Mode Theory 

Although resistive modes had been investigated by Dungey [17], Murty [18], Aithen 

et al. [19] and Kadomtsev et al. [20] prior to 1963, the first complete discussion of 

the linear theory of resistive modes was published in that year by Furth, Killeen and 

Rosenbluth [1]. They separated the plasma into two regions: 
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(1) a narrow central region around the rational surface where finite 

conductivity permits relative motions of field and fluid; and where 

geometric curvature may be neglected; 

(2) an outer region, where field and fluid are coupled as in the infinite 

conductivity case, and where generalizations to non-planar geometry can 

be introduced as desired. 

In this approach it is assumed that resistivity is only important in the vicinity of 

the rational surface where the resistive mode can grow and therefore where the field 

lines must be allowed to reconnect . Only in this small region around the rational 

surface is resistivity included in the MHD equations. Manheimer et al. [21] derived 

this set of two second order differential equations in a very elegant way, following 

the approach of Coppi et al. [22]. Across the boundaries these equations are then 

matched with the ideal MHD equations which are valid in the outer region further 

away from the rational surface. 

An important result obtained by Furth et al . [1] was a stabilit~ criterion for tearing 

modes. This is defined as 

6.' (2.18) 

where 'l/Jp is a perturbed magnetic flux function, rs the radius of the rational 

surface and 21: the width of the resistive layer. If /1' is greater than zero, the 

perturbation will grow and form a tearing mode. The marginally stable tearing 

mode is defined by /1' = o. 
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Manheimer et al. [21] have given a physical interpretation of 6.' as follows. The 

power per unit area released in the outer region is given by 

p 2 
~ I Bx (x=O) I 6.' + constant, . (2.19) 

from which it can be seen quite easily that there will only be energy available to be 

released if 6.' > O. In the formation of the tearing mode, this energy released in 

the outer region is dissipated by Ohmic heating in the inner region. Alternatively 

the energy released can also result in the acceleration of electrons [23,24,25] (an 

electron inertia-driven tearing mode) or be dissipated by viscous dissipation, i.e. 

without resistivity. It is thus possible to get reconnect ion without resistivity also. 

When the calculation of tearing modes is extended to the collisionless regime 

(recognizing that fusion and magnetospheric plasmas were likely to be virtually 

collision-free) and electron and ion gradient drifts are included, the theory leads to 

the drift-tearing mode [26]. When Hazeltine et al. [27] unified all the previous 

calculations (electron inertia, gradient drifts) by carrying out a kinetic theory 

approach including the full electron-electron and electron-io~ collision operators, 

they found that the tearing mode could also be driven unstable by temperature 

gradients [28]. 

From the infinite-conductivity equation [1] 

~H d7/Jp) _ 7/J [L + F-l d (H dF)] _ 0 
dr' dr P F2" Or Or ' (2.20) 
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F k.B 
m 

kBz + r Bo, 

g 
(m2-1)rF2 k2r2 [dP 2(krBz - . mBo)] 

_ + 2 - + rF2 + F , 
k 2 r 2 + m 2 k 2r 2 + m 2 d r k 2 r 2 + m 2 

valid in the outer region, an energy integral can be formulated [29]: 

W
T 

= fbdr[H (~t6)2 + 1/Jg (g/F + F' ~ H ¥r-)] (2.21 ) 

a 

(2.22) 

where F2H = f, W = ~ W (0, e = 1/Jp/F and f, W(O, e are defined in 
ro '[ 

equation (2.3) . Note that F-l occurs in W T' We have pointed out above that 

F(rs) = 0, indicating a singularity in W T . 

The integrals are to be interpreted in the sense 

(2.23) 

The point b represents a perfectly conducting outer wall. The quantity -W T' 

given by -W T = H(rs)1/Jg (rs) 6,', represents the magnetic driving energy of the 

tearing mode (it is similar to (2.19)). "The infinite conductivity equation (hereafter 

called ICE) derived by Furth et al. [1] and the Euler equation (2.4) is the same 

except that the one derived by Furth et al. [1] is in terms of 1/Jp rather than e . 
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To determine tearing-mode stability, the ICE can be solved for the functions 'l/J1(r) 

and 'l/J2(r) in the respective ranges 0 < r < rs and rs < r < b, and with the 

respective boundary conditions 'l/J1 ~ rm-1 at r = 0, 'l/J1(rS) = 'l/J2(rS), 'l/J2(b) = o. In 

general, the derivative 'I/J~ will be discontinued at rs, and by evaluating A'it 

will be clear whether a tearing mode will grow or not [29]. Robinson [30] rewrites 

the ICE as follows: 

o (2.24) 

3 
r 1" b (r) by defining 'I/J = r where b~ is the perturbed radial magnetic field and 

p (m2+k2r2)t 

A is a function of r, m and k and is singular at r=rs. Equation (2.24), also 

called the tearing mode equation, need not only be derived in the process of 

searching for the perturbation which minimizes the magnetic potential energy of the 

system; it can also be calculated from pressure balance considerations as Ellis did 

[31]. We will return to consider this equation below as it applies to the equilibrium 

of a perturbed system. 

2.5 Non-linear Theory 

In 1973 Rutherford [2] showed that, as the island edge approaches the boundary of 

the tearing layer in its linear growth phase, non-linear effects become important. 

Sizeable non-linear eddy currents arise, producing forces which oppose the growth 

of the mode and which quickly assume the role played in the linear theory by the 

inertia. At this point the exponential growth in time is replaced by algebraic 

growth on a much slower time scale. 
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In Figure 2.2 [9] the magnetic field, longitudinal current density, and flow pattern of 

a tearing mode are shown together with the separatrix of the induced magnetic 

island. It can be seen that the velocity field can drive a second order contribution 

V I B I to the electric field, which, in turn, can drive a second order current density y x 

along the magnetic islands. This current (J~ 2)) produces a new J~ 2) B~ force 

which opposes the V~ flow everywhere [9] . 

VI 
y 

<' ---_._ .. __ ... -- . 

V; / xl ~ 
/' JI ..... -.... B 1 ,. z --.,-.. x 

0 •• '. 

-< 

FIGUIE 2.2 The magnetic field, current density and flo~ pattern of a tearing 
island are shown [9]. 

The growth of the tearing mode is now given by 

dW N TJ A I IT- U (2.25) 

where W is the island width. 

In 1977 White, Monticello, Rosenbluth and Waddell [3] made a quasi-linear 

extension of the work of Rutherford. They noted from numerical analysis that the 

current inside the island (Jb) can be modelled accurately by a linear function of ¢ 
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(with ~J. = V'I/J A z - kr/m ~O) within the island, written as 

J b( 'I/J) a + b 'I/J (r, 0) . 

The work of White et al. [3] will be discussed in more detail in chapter 4, but we 

may note for future reference the use of a model for non-axisymmetric perturbed 

current in the island. 

Together with a perturbation expansion of the current in terms of the fundamental 

harmonic on the outside of the island, they found 

dW 
IT - 1.66 1] (rs) [bo'l(W) - a W] . 

In this equation they used 

D.'l(W) 

(2.26) 

(2.27) 

where 'l/Jl is the first harmonic of the perturbed 'I/J and th~ +,- refers to the 

island edges. The a-term in equation (2.26) is a numerical constant depending on 

the resistivity profile. It is practically negligible if the resistivity profile is 

increasing radially with a scale length given by the minor radius [32] . For typical 

resistivity profiles the mode saturates approximately when bo'l(W) vanishes, and 

the saturated island width can be determined by a numerical evolution of boi(W). 

Generally we can thus wri te 

(2.28) 

This is in agreement with the linear theory where the energy available in the outer 

region for island formation is given by equation (2.19). If all the available energy is 

dissipated P must vanish, and this implies that bot must go to zero. 
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Numerical codes have confirmed this relation (2.26) for islands up to about 

W = 0.2 (a the minor radius) [3] and for experimentally relevant q profiles the 
a 

results agree within 20 % [33]. 

Kutvitskii and Yurchenko [34] derived a result very similar to equation (2.26) . 

They found 

~'i = 1.24 (~I + 0.4 UoUj W in (4/W)) , (2.29) 

where Uo and Uj are the components of the velocity of the resonant magnetic 

surface which results from the gradients of the conductivity and of the current, 

respectively. Equation (2.29) is only valid for narrow islands. It is, according to 

the authors, an improvement on (2.26) since (2.26) cannot explain the effect of the 

conductivity profile on the island growth because it was derived assuming that the 

equilibrium current is steady and is thus applicable only in the Gase of an ohmic 

equilibrium, Jo(r) N ~. 
TJo,r, 

The !J. I criterion is affected by pressure-gradient and toroidal-curvature effects 

[35,36], radial flow [37,38] and viscosity [39]. Equilibrium shear flow also has an 

effect on the ~ I criterion. When the flow shear is larger than the magnetic shear 

of the magnetic null plane, the flow freezes the magnetic field and stabilizes the 

tearing mode [40]. Inclusion of finite Larmor radius effects does not change the 

saturation width but causes a mode rotation at the diamagnetic frequency [41,42]. 

In their analytic modelling Rahm and Kulsrud [16] were able to follow the 

development of a tearing mode through its different phases providing a smooth 

transition from the linear to the non-linear theory for the case of a perturbed 

boundary. 
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These results were all remarkably successful [32,33]. Present work focuses on the 

boundary conditions and other effects like toroidicity. 

2.6 Equilibrium Studies 

In 1957-59 Grad [43], Shafranov [44] and Lust and Schluter [45] derived an equation 

describing the equilibrium for a axisymmetric toroid. This is called the 

Grad-Shafranov equation. By specifying the pressure (P = P( 'l/J)) and flux (I = 

I( 'l/J)) functions, together with boundary conditions or externally imposed constraints 

on 'l/J, the equilibrium flux function can be derived. 

When a plasma possesses a nearby state of lower magnetic energy which is 

inaccessible without magnetic reconnection, the asymmetric ideal 

magneto-hydrodynamic equilibrium with magnetic surfaces consisting topologically 

of nested tori, will go to that lower-energy state which possesses one or more 

magnetic islands [11]. Kotschensreuther et al. [36] were able to modify the 

Grad-Shafranov equation to describe the MHD equilibrium, with small magnetic 

islands present. 

On tokamaks it was found that the characteristic linear and non-linear growth 

times are often much smaller than the time scale for changes in the general 

equilibrium. The tearing instabilities will thus be saturated and their time 

development will be determined by changes in the general equilibrium. Such an 

approach was taken by Sykes and Wesson [5]. They included a flat in the 

equilibrium conductivity profile, simulating a saturated tearing island. This has the 

effect of removing the singularity in the equations. A relaxation procedure was then 

used to find the final island width. 
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In section 2.5 on the non-linear work, we referred to the work of White et al. [3). 

When g~ is put to zero, the equation they derived (equation (2.26)) describes the 

time-independent situation of a saturated island. They studied the island size as a 

function of various current density profile types. In Figure 2.3 we present one of 

their graphs in which a peaked profile (q(r) = C(l + r
2
/ro) was used. We will use a 

profile very similar to this in our study. 

.20 
Saturation Width 

Peaked Current Model 

.16 q(r):C[I+r2/ro2} 

W q(~):m 0 

.12 

.08 

.04 

.4 .5 .6 .7 
ISLAND LOCATION rs 

.8 .9 

nGUiE 2.3 Saturation width predicted using the quasilinear model for m=2. The 
points are results of time stepping the full non-linear code [3]. 

Carreras et aL [46) later showed that their results do not differ very much from the 

simple time independent Rutherford equation (equation (2.25) with 3~ = 0). 
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2.7 Numerical Analysis 

Although the full three-dimensional set of resistive MHD equations had been solved 

numerically [47,48,49], a more common approach to the problem was, and is, to 

solve a reduced set of equations. In 1974 White et al., proposed a set of numerical 

techniques for investigating the full non-linear unstable behaviour of low-m kink 

modes of given helical symmetry in tokamaks [50]. When the equations are 

expanded in the inverse aspect ratio (f = a IRo - the minor over the major radius), 

the terms can be ordered to exclude higher order terms. The equations were 

reduced to helical coordinates by Rosenbluth et al. [51] and cartesian coordinates by 

Strauss [52] (which made it applicable to non-circular cross-sections). In 1983 

Holmes et al. [53] compared the full and reduced sets of magnetohydrodynamic 

equations for resistive tearing modes in cylindrical geometry and found good 

agreement. A comparison for the m=2 magnetic island width, using these 

different equations, is shown in Figures 2.4 and 2.5. A profile of the form 

1 
2>' X q = qo[1 + (r/ro)] was used. We note the good agreement for saturated island 

sizes with small E "5 0.5 and peaked profiles (>. = 3.5). 

Since 1975 the reduced set of equations has been used extensively to study plasma 

phenomena. When Kadomtsev and Pogutse [54] proposed that major disruptions 

(an experimentally observed phenomenon in which plasma can be lost from the 

confinement device) were a consequence of the non-linear development of ideal kink 

modes, these vacuum bubbles were indeed found, but it was shown that when 

magnetic shear is included, the modes were stabilized [51,55]. The interaction of 

modes of different helicity has been studied by many people [56,33]. When modes 

overlap a stochastic region is formed resulting in fast plasma transport to the outer 

region. The possibility of this being the reason for the major disruption has been 

studied extensively [33,57,58,59]. When Goeler [60] and Kadomtsev [61] suggested 
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that the disruption is caused by the m=l instability, it was investigated using the 

reduced MHD equations [62]. The effects of toroidicity and finite pressure have also 

been looked into [63]. 

Although plasma pressure has been found to have little effect on the linear growth 

rates of tearing modes, the non-linear aspects are affected severely. The pressure 

has an effect on the current-driven tearing modes as well as on the pressure-driven 

ballooning mode. Because of the lack of appropriate physical damping mechanisms 

in the reduced tokamak equations, the saturation of the pressure-driven modes was 

found to be very difficult [64]. These modes can be eliminated by excluding pressure 

perturbations for all harmonics. If equilibrium pressure is included [65] it is found 

that the saturation level of the non-linear harmonics increases monotonically with 

the pressure for the otherwise equal equilibria. The stochastic magnetic field region 

at th~ saturation time increases with pressure. The entire plasma region can be 

stochastic if the pressure is large enough. When the plasma resistivity is small, the 

stochastic field region is not large and the m=2 tearing island increases 

monotonically with the plasma pressure. 

The drawback of the non-linear tearing mode theory is that it is derived for small 

islands. In solving the reduced MHD equations it is possible to look into the 

behaviour of large islands. Carreras et al . [66] have confirmed that the m=2 island 

width grows slowly (algebraically) from the time it exceeds the tearing layer width 

until it saturates, irrespective of the value of S = 7 Rf 7 A - as the non-linear theory 

predicts. (7 R is the resistive time-scale and 7 A the Alven time-scale). The island 

they looked at obtains a maximum width of 0.48a, relaxes, and eventually saturates 

at O.37a (a = minor radius). 

In chapter 3 we discuss the reduced MHD equations in more detail. 
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2.8 Toroidicity 

Toroidicity has been included in the reduced MHD equations by various authors 

[4,67]. They found that the m=l, n=1 mode can strongly destabilize the m=2, 

n=1 and m=3, n=1 modes [63], that the size of the m=2, n=1 saturated island 

is reduced (by approximately 12 %) [4], that an m=2, n=1 mode can drive an 

m=3, n=1 mode in equilibria that could not otherwise support an m=3, n=1 

island [10] among other results. Bateman and Morris [10] studied the following: (1) 

the breadth of the global current profile, (2) local peaking or suppression of current 

within the magnetic island being considered, (3) toroidal aspect ratio, (4) elongation 

of the plasma cross-section, (5) harmonic coupling caused by toroidicity and 

elongation, and (6) the influence of multiple magnetic islands on each other through 

the background current profile [10]. 

A toroidal ~ '-criterion was proposed by Connor et al. [68] and Zakharov et al. 

[69], given by 

with ¢1 the perturbed flux function. Conner et al. [70] showed that the MHD 

equations do not specify any particular set of ilmn , only a relation between them 

given as 

IE-ill - 0, 

with E a matrix. Just as the single quantity il' contains all the information 

needed from the ideal MHD solution in order to determine the eigenvalue of the full 

problem in the cylinder, so the E matrix contains all the information needed in a 

torus [70]. 
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2.9 Boundary Conditions 

The external conditions can vary from a superconducting wall or a resistive wall 

with some form of plasma rotation, to the inclusion of external coils. The effects of 

plasma rotation on island st~bilization have been studied by Gimblett [71] and 

others. Persson and Bondeson [72,73,74] were especially interested in the effect of 

wall stabilization on the major disruption. 

Any perturbed magnetic field at the boundary can have an effect on the plasma, 

being able to force reconnect ion from outside. This phenomenon, where tearing 

mode stable equilibria (/).' < 0) can be driven unstable from outside (using 

external coils) was studied by Reiman [75], Ellis [31], Lee et al. [76] and others. In 

such a case the energy needed for island formation is not released in the outer region 

as is the case with a natural island, but is made available from outside the plasma. 

This can be expressed as [75] 

/)., (W) 
E1 

/).'(W) - E1 6'(W) 
Wr;J (2.30) 

where /). ~ l(W) is the /).' - criterion with an external perturbation E1, /)., (W) is 

the same criterion when E1 = 0 and 6' (W) is a function of solutions of the tearing 

mode equation. The term ~ 6' (W) now expresses the extra energy made 
'f'l,rSJ 

available from outside. 

Such a perturbed magnetic field can be caused by gaps in the conducting shell, coils, 

errors in the installation of coils or by external helical coils installed for this 

purpose. To illustrate island formation using external coils we follow an explanation 

of Karger [77]. On the rational surface field lines close on each other after rotating 
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around the torus a number of times. The field lines just outside a rational surface 

have a rotational transform i which is just bigger than that of a field line on the 

rational surface because it encircles the torus a little slower. The line would thus 

tend to move downward on a surface which is just outside the previous rational 

surface. This is illustrated in Figure 2.6 . . The opposite would be true on the inside 

of the rational surface. 

".""-." 
/ //------~ 

// \ 
( 
\ ~ 
. .' ~ successive crossing points 

\ 

'( on a cut 

~ ! ~' 
~ ..... __ ---/ )-,---,:: pI., •• bound..-y 

'-" ___________ ----.~/ rational surlace 

FIGUlB 2.6 A graph showing the successive crossing points on a cut in the torus. 

Now an external winding can be added and the field lines followed. Start on the 

inside of the rational surface. The next time the field line crosses the cut in the 

torus, it would not only be above the previous crossing but also a little to the right 

because of the field component of the external coil on the right side of the torus as 

shown in Figure 2.7. If this procedure is continued, the field line will eventually 

cross the rational surface. This time the next crossing would be below the previous 

one, but still shifted to the right. The end result is an island formed around the 

rational surface. 
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An external coil causes the formation of a magnetic island. 

When Park et al. [15] modelled external coil driven reconnection, they found a finite 

jump in BlP at the rational surface accompanied by a sharp current spike. The 

reconnection rate was found to satisfy the modified Sweet-Parker scaling: 

with p. the viscosity and K a constant. No quasi-steady. state was found for 

TJ» J.L , but for TJ (J.L it was found that 

(2.31) 

which is slightly different from the natural tearing mode case, i.e. TJ3/s as was 

discussed before (before equation (2.16)). 

The MHD-equations can be adapted to include external windings by merely 

changing the boundary conditions. In this case the internal perturbed magnetic 

field includes the external induced field as well as the plasma response. 
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In 1985 J J Ellis [31] used the pressure balance equation 

j "B - Vp 0 

to derive equation (2.24). He dealt with the steady state phenomena,.1ooking at an 

equilibrium which is perturbated by the magnetic islands induced from outside. He 

also looked into the time dependent situation (following Dibiase [78,30]) and showed 

the equilibrium of the time independent steady case is the same as when the 

external field has fully penetrated the plasma. 

Using equation (2.28) makes it possible to calculate the width of the tearing island if 

the perturbed equilibrium is tearing mode unstable (Ll' > 0). In this case it is 

assumed that the island will grow until Ll' = 0 and that the field line topology 

outside the island is not changed in the process. Figure 2.8 illustrates this method: 

FIGUIB 2.8 
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In 1992 Hansen et al. [79] used the abovementioned method to study the effects of 

external coils on the Tokoloshe tokamak. Some of their findings were that the 

(2.1)-mode is not really affected by the external coils, whereas the locking of the 

(3,1)-mode (using a resonant external coil) does not lead to saturation of this mode. 

Both these results were observed on Tokoloshe - the last one in the form of minor 

disruptions. Similar work has been done elsewhere by Yamada et al. [80]. 

An important contribution of Hansen et aI . is the derivation of a stability criterion 

for equilibria with external coils . The equilibria are stable to tearing modes when 

(2.32) 

with rc the coil radius, and subscript vac denoting vacuum magnetic fields. 

Experimental studies on the effect of external DC coil currents were performed by 

several groups. The effect on plasma stability has been studied, among others, by 

Karger et al. [81], McCool et al. [82] and Roberts et al. [83,84]. 

The effect of external AC coils on the plasma was studied theoretically by various 

authors including Hender et al. [85] and Nave and Wesson [86]. Feedback loops had 

also been proposed by some authors [87,88] and can be used to reduce islands [89] in 

experiment. 
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2.9 Conclusions 

We will build upon various aspects of tearing mode studies that have been reviewed 

in this chapter. The non-linear and equilibrium studies are of major importance 

and provide a theoretical framework for the study of saturated tearing modes. The 

~ I (W) criteria will be used extensively. 

The equations to be used will be based on the reduced MHD equations which will be 

discussed in more detail in the next chapter. Boundary conditions for these 

equations have to some extent been developed by the various authors that have 

been referred to under the section on external conditions. We have developed some 

for our specific application on Tokoloshe. 



32 

CHAPTER 3 

THE REDUCED MHD EQUATIONS 

3.1 Introduction 

Since Strauss [52] and Rosenbluth et al. [51] derived the reduced MHD equations, 

they have been used extensively by many authors. In this chapter we will present 

the derivation of the more general reduced equations of Izzo et al. [4] in toroidal 

geometry. From these the Strauss and Rosenbluth equations can be derived. There 

is nothing new in this chapter. It is only included for completeness forming an 

important foundation for the rest of the thesis. We will use the reduced MHD 

equations in cylindrical as well as toroidal geometry. In cylindrical coordinates we 

include one mode in the plasma, ignoring all coupling. This introduces a model and 

is done in chapter 4. In chapter 7 we use the toroidal reduced equations when two 

modes are included in the plasma. In this case we use the model to consider toroidal 

coupling between these modes. 

In these equations it is assumed that the inverse aspect ratio, f = a IRo , is much 

smaller than one (a is the minor plasma radius and Ro the major radius of the 

device). This is not really the case on Tokoloshe where f ~ 0.5. With nothing 

better available, we decided to use it while keeping this limitation in mind. 

Another important feature of the equations that we are going to use, is that a 

low-beta tokamak ordering is assumed, i.e. the pressure is small (O( f2)). We will 

ignore the effect of pressure in this study. 
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3.2 Deriving the Reduced MHD Equations in a Torus 

In this section we will follow the approach of Izzo et al. [41 in the derivation of the 

reduced MHD equations. 

Begin with the resistive MHD equations in rationalized electromagnetic units: 

Wr - - p'V. Y + y. 'V P (3.1) 

av (3.2) p- - - 'VP + JA~ 
at 

BE 
(3.3) - 'V AE 

at 

dP - ,P'V.y (3.4) 
at -

(3.5) 

J 'V AB (3.6) 

where 

d a 
at - ot+ y.'V, 

and p is the mass density, Y is the fluid velocity, J is the plasma current, ~ is 

the magnetic field, P is the thermodynamic scalar pressure, , is the ratio of 

specific heats, and TJ is the plasma resistivity. 

Use the inverse aspect ratio, f N afRo < < 1, as an expansion parameter, where a 

is the minor plasma radius and Ro the major radius of the torus. 
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The following ordering is assumed: 

p, BIP, V 1. N O( eO) 

a v , B ,"!lL, B.V, l/R N O(e) 
1. 1. U~ 

where the subscript 1. denotes components perpendicular to rp, working in a 

cylindrical coordinate system (R,rp,z) . Third order terms will be neglected. 

Assume a perturbation of the toroidal magnetic field of order e2. The toroidal field 

can thus be written as 

BIP - I/R - (10 + i)/R, (3.7) 

with 10 constant (of O( e- 1)) and i N e210. 

The perpendicular magnetic field can be written as the cross product of two Euler 

potentials [90]: 

(3.8) 

or written in terms of a stream function 'I/J as 

with 

~ 

rp - RVrp. (3.9) 
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Thus, 

B - Ro/RV1/JA ~+ (10 + i) Vcp . (3.10) 

Using 

V1/J = ;: it + l/R ~ ~ + ~ z , 
we get 

V1/J A ~ = ;: z - ~ it . (3.11) 

Now, using equations (3.11) and (3.7) in (3.10), we get 

(3.12) 

Now using this, it is possible to derive the current density components from 

equation (3.6): 

because VA(1/JVcp) = V1/J II Vcp giving V A (RB'j))Vcp = V(RB'j)) A Vcp. 

The resulting current density is 

(3.13) 

wI·th A * R 8 (1 8) 82 
u - OR: ROR +~ . 
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Thus 

(3.14) 

and 

(3.15) 

Substituting equation (3.10) into Faraday's law (3 .3) gives 

aB 
- = at 

or 

with VAV ¢ = 0 and ¢ a scalar. 

Using the fact that 10 is constant and it M ~ O( f3), this equation can be written 

as 

using V 7/J A '(p = V A 7/J'(p . 

This reduces to 

VA(RojR) M Cp = - Vtl''IJ + VA(YA~) + VAV¢, (3.16) 

where terms of O( f3) have been dropped. 

From equation (3.16) we get 

(3.17) 
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If the cross product with Cp is taken 

we are left with 

But JACp 

resulting in IIJ ACpIi - IIJ II where IIAII denotes the magnitude of the vector A. 
.l 

Using the ordering of terms, we get from 

that 

If we assume TJ ~ O( f), we get 

Now we are left with 

(3.18) 

which is valid if we are away from the rational surface where the effect of resistivity 

is negligible. 
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Further, 

(YA~) Alp - -(VzB'P Z + VRB'PR) 

- -V B 
- 1. 'P 

reduces equation (3.18) to 

(3.19) 

If we assume that 

(3.20) 

equation (3.19) changes to 

From 

we have 

(3.21) 

But 
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Now we have from equation (3.21) that 

or 

R2 
IRo VU A V({J . (3.22) 

It is thus clear that U is a flow potential. 

If equations (3.10), (3.20) and (3.22) are substituted into the cp-component of 

equation (3.17) we get 

R at 
(3.23) 

The term (YA~)\j> can be written as 

Now, after using equations (3.22) and (3.8) in the above expression, we get 

- [VU.( q;Aq;)V1/J - VU.( q;AV1/J)q;].q; 

- V1/J A q;.VU , (3.24) 
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changing equation (3.23) to 

(3.25) 

When equation (3.14) is substituted into this, it results in 

(3.26) 

This is one of two important equations that are derived in this chapter. It gives an 

expression for the magnetic flux 'I/J. 

To proceed further we multiply the momentum equation (3.2) by R2 and then we 

take the ~omponent of the curl: 

dV 
fp.V A R2p of - ~.V A R2(- VP + JA~) 
\,.-""~-"'" 

A 

= - fp.V R2 VP + ~.VA (R2JA~) 
'--B ~---.../ . '---c~------/ 

Term A can be written as 

dV 
(VR2Ap --=-. fp = -2Rp ~y Z) 

dt 

(3.27) 

(3.28) 
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from Appendix A. Note that 

Term B reduces to 

-R2cp.V fI VP - cp.VR2 fI VP 

- -2Rcp. VR fI VP . (3.29) 

Term C can be analyzed as follows: 

Recall from equations (3.10), (3.7) and (3.13) that 

J - -(Ro/R)~*1/Jcp + V(RBIj» fI cpIR 

B - (Ro/R)V1/J fI cp + (1 /R )cp . 

Now we get 

J fiB - [-(Ro/R)~ * 1/J (Ro/R) ~ - I IR2 ~ (RBIj» ] it 
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using 

and 

When equation (3.30) is substituted into term C, it results in 

(3.31) 

From equations (3.28), (3.29) and (3.31) we get 

= -2Rcp. VR II VP - RRo~ ' (V /). *7fJ). 

(3.32) 

The term 

2p RO/R2 ~Vt z •. O( .04) d b .¥ " an can e neglected. 
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If the pressure is neglected we get (from equations (3 .32) and (3.26)) 

(3.33) 

the velocity equation, and 

(3.34) 

the magnetic flux equation. 

These are the final equations as derived by Izzo et al. [4] . The important feature of 

these equations in common with reduced MHD equations in general, is that only 

two independent variables, 'I/J and U, are involved. 

For high beta equations where only terms of order O( f) are included, the Pressure 

is included explicitly [64,65]. Equations (3.32) and (3.34) are used in Appendix B to 

derive the total energy of the plasma column in a toroidal configuration. We will 

make use of this energy in section 5.10. 

3.3 The Reduced MHD Equations in the Cylindrical Approximation 

The cylindrical reduced MHD equations will now be derived from the toroidal 

equations. 

The cylindrical coordinate system describing the above toroidal configuration can be 

written as 

R = Ro + r cos 0 

z = r sin 0 

cp = sIR, 
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where s is the toroidal arc length. 

Make the substitution 

x = r cos 0, y = r sin 0 . 

The result is 

R = Ro + x 

z = y 

t.p = s/R. 

We want to look at the simplified case of a cylinder. To do this we re-order the 

terms as follows : 

a a ox' ay N 0(1) (x,y N 0(1)) 

From this we get 

l/R 1 
l/Ro - x/R~ + ... . - (Ro + x) -

We can now write 

and 

- (Ro + x)[- 1 /Ra ~ + (1 /Ro _ x /R~) ~] + ~ . 
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Now equations (3.33) and (3.34) become 

(3.35) 

(3.36) 

where 

/ 
{) {) V A A 

VIP = 1 R ~ = as = s, S = cp 

and the following was assumed (as before): 

Terms of O( (3) were dropped in these equations. It can be noted that all toroidal 

effects have been removed and that these equations are thus valid for a straight 

cylinder. 

Equations (3.35) and (3.36) can be rewritten as 

(3.37) 

(3.38) 

where V2 is in the (x,y,s) coordinate system. The definitions of ~ , y and Jz can 

now be adapted to 

~ = V7/J A s + Bos 

V = VU As 
-,l 
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3.4 The Strauss Equations [52] 

If the resistivity is neglected in equations (3.37) and (3.38), we get the ideal 

three~imensionaI, non-linear approximate tokamak equations of motion in 

cartesian coordinates, first derived by Strauss [52]: 

or, as he gave them 

at 

aA ar-

-y.V V~U + ~.VV~A , p = 1 

B.VU 

where s -+ z in equations (3.39) and (3.40) with 7/J = A. 

3.5 The Equations of Rosenbluth et aI. [51] 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

Rosenbluth et aI. [51] derived these reduced MHD equations in helical geometry. 

This will now be discussed. 

Equations (3.42) can be written as 

au - -V.VA + Bz~. 
- uZ 



or 

aA or + y.VA 
au 

BzOz · 
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(3.43) 

Equations (3.41) and (3.43) can be simplified if helical symmetry is assumed. Let 

T - mO - kz , k - n/R . 

Now m and n are the mode numbers of the original perturbation, which has the 

form f(r)exp[i(mO-kz)). For T = constant we get 

mdO = kdz 

or 

a k a 
Vi - m 7J7)' 

using (r,O,z) instead of (x,y,z) as coordinate system. 

Equation (3.43) becomes 

dA B kaU 
QT= zm7J7J 

Bzkyv 2 - 2m _. r 

from Y.Vr2 2rY.Vr = 2rYr 

= 2r(VU A i)r 

(3.44) 
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Substituting 1/1 = A -Bzkr2/2m into equation (3.44) we get 

or 

~ 0, 

where Bz is just Bzo . (3.45) 

When 1/1 is substituted into the expression for ~,now given by 

we get 

Br - };, Be 

These equations satisfy (B.V)1/1 = 0 implying that 1/1 is a flux function. 

Equation (3.41) can be written as 

B.VV2A. 
- 1. (3.46) 

But 

(3.47) 
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When equation (3.47) is substituted into (3.46), we get 

Equation (3.48) can now be written as 

_ V(V2~)" V~. Z , (3.49) 
.L 

using the identity (~,,~).Q - (Q"~).~ . 

In summary, equations (3.45) and (3.49) can be written as 

~=o (3.50) 

a v2u at.L - - y.V(V~U) + v V~~" V~. z . (3 .51) 

These are the same equations that were originally derived by Rosenbluth et al. [51] 

in helical symmetry. 
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3.6 The Equations of Waddell et al. [57] 

If resistivity is included in equations (3.41) and (3.42) (using equations (3.37) and 

(3.38)), we get 

Using equation (3.47) in the expression for the current, i.e., 

Jz = -V2A 
.L 

gives 

When the transformations 

t - t jfP mj(Bzk)) 

A A/(kr~ BzlmfP) 
-

rjrw r -

~ - ¢j(kr~ Bz/m) " 

(3.52) 

(3.53) 

(3.54) 

are used in equations (3.52), (3.53) and (3.54), and the bars are dropped, these 

equations can be written as 
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where rw is the wall radius. 

It is convenient to replace ¢ by ¢ - Et where E is the constant electric field at 

the wall, so that the boundary condition on ¢ becomes ¢(rw,O,z,t) = O. Then we 

get 

(3.55) 

(3.56) 

(3.57) 

which are the equations used by Carreras et al. [66], White et al. [91] and Waddell 

et al. [57]. 

3.7 Rewriting the Reduced Toroidal Equations in (r,O,rp) Coordinates 

The reduced toroidal equations were derived in section 3.2 and are given below. 

Po(¥t V2U - 2/Ro ~ V2U) = RO/R(V¢ A Cp + BoCp).Vil*¢ + 2VRR~ VP . Cp 

(3.32) 

(3.34) 

It is interesting to note that equation (3.33) is an explicit function of the z 

coordinate in cylindrical geometry. 
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We use the following normalization, with a bar specifying the normalized value, 

v - !V 
a 

TJ - ~ r, (~a typical resistivity) 

t - Tn. t with Tn. - a2/~ the resistive time scale 

'I/J - a Bo 7/J , 

B - Bo B, 

J - Bo/a J , 

u - ~U 

6.* - 1/a2 K* , 

p - B~ P/2 

R - ita, 

Ro - itoa, 

z - a z , 

with a the minor plasma radius. 

Now, dropping the bars, the equations can be rewritten as 

(3.58) 

M - h[(V'I/JA~+~) . VU] + TJ6.*'I/J (3.59) 

with 

h - R / Ro - 1 + Er cos 0 
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r A the Alfven time scale. In these equations we have two variables 1/J and U (7} 

and P to be prescribed) and two explicit parameters f and S. 

In this study we will use the time independent equations to study saturated islands 

in the equilibrium. These are given by 

h(V1/JACP+CP)·VU + 7}1J. *1/J = o. (3.61) 

These equations are in the (R,rp,z)-system. The relation with the (r,O,rp)-system, 

shown in Figure 3.1, is given by 

R - Ro + r cos 0 

z - r sin 0 

rp - rp 

with 

sin 0 - z Ir . 

FIGUU 3.1 The (r' 9' \pI coordinate system. 
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We need the following to do the transformation between systems: 

&r 
7fi -

8r 
OR= 

80 
7JZ-

80 
OR= 

Further, 

1::l.*'I/J 

sin ° 
cos 0 

} cos ° 

1 . ° --sm . 
r 

- R~(ft~)+~ 

- - 2/R t/{ + V~'I/J 

t/{= M8r +~80 
rOJI OJI 

- cos 0 M -} sin 0 ~ 

V2 'I/J - 1 [! 8 (r R M) + 1 ~ + 1 8 (R~)] R rar r R cp fl7Jl) 

V2 'I/J 18 M 1~ 1 M 1. ~ - r ar (r r) + fl + R (cos r - r sm 0 .). J. 

Thus, substituting equation (3.67) in equation (3 .66), and writing 

coordinates (r,O,cp), using equation (3.68), we get 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

V2 m 
J. 
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A*1/J = - 2/R (cos OtJi-} sin 0U) +}~ (r tJi) + h~ 

+ ~ (cos 0 tJi -} sin 0 U) 

Using equations (3.62) and (3.64) we find 

au au ar + au ao - sin 0 ~r + -r1 cos O!!JJr . Oz - aroz 7J7J7JZ - UI: UU 
(3.70) 

Another quantity in equation (3.60) is 

VRAVP 

- -( sin 0 ~ + } cos 0:;') ~ . (3.71) 

The perpendicular velocity is 

giving 

v.V (3.72) 

We can also write 

Y·V(V2U) _ h.!. au a (V2U) _ h au .!. a (V2U) 
r 7J7J 7Ji Or r 7J7J (3.73) 

because 
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The Laplacian is now, using equation (3.68), 

! a ( au) + 1 a2u + (fjh)2 a2u + fjh(cos 0 au _.! sin 0 au) . 
- r tfi r Or f17J7J2 ~ Or r 7J7J 

(3.74) 

Now the final time independent equations can be written in the (r,O,cp) coordinate 

system by substituting equations (3.73), (3 .70), (3.69) and (3.71) into equations 

(3.60) and (3.61). 

1aua aUla . au 1 au 
h r 7J7J ~V2U) - h Or r 7Jrj.V2U) - 2f(sm 0 Or + r cos 0 07J)V2U 

- f S 2( sin 0 ~ + } cos 0:;) (3.75) 

(3.76) 

where V2 and ~* are given by (3.74) and (3.69) respectively. 

When V2U and 6. *'l/J are substituted into the above equations, (using equations 

(3.74) and (3.69)), it is possible to see from inspection that 

U( O,cp) = - U( -O,- cp) 

7/J( 0, cp) = 7/J( -0, -cp) . 

We can now expand (see Appendix C) 

(3.77) 

(3.78) 



u 

(I) 

~ i(mO-nrp) £. amn e 
mn 
-al 

CD 

~ . b i(mO-nrp) £. Z mn e , 
mn 
- (I) 

57 

where a Fourier expansion is done in 0 and rp . These expressions can now be 

substituted into equations (3.75) and (3.76) to get a system of ordinary differential 

equations for amn and bmn . This has been done in Appendix D. 

3.8 The Cylindrical Reduced MHD Equations 

Let 

JI 
mn 

II 1 I m 2 
amn + r amn -~ amn 

b" +!. b ' - m
2 

b 
mn rmn ~mn 

After the Fourier expansions have been carried out (in Appendix D), we get 

~ [ [ ~Dklmn 1 + Amn 1 cos (mO-n~) - 0, 

with 
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for the magnetic flux equation, and 

L [ [ LDklmn 1 + Amn 1 sin (mO--ntp) - 0, 
mn kl J 

with 

for the momentum equation. In all these coefficients the f. has been made explicit. 

Let 

This gives 

~ [ [ ~ - :' !!(a,b) 1 + "nbmn + , f Jmn 1 cos (mlJ.-nl") - 0 

o , 

Of, since sine and cosine are a complete linearly independent set, 



with 

nfbmn - L ~ £(a,b) 
kl 

-fJmn 
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J ~ f ('( J) = ~ -rf S-2 £(b,K) nf mn - ~ r,l,.; a, ~ 
kl kl 

= S-2 IR 

IR L ~£(b,K) 
kl 

Vm,n (3.79) 

Vm,n (3.80) 

The J mn terms may be regarded as the mn Fourier coefficients of the current 

density, using equation (3.14) for J4>' Equation (3.79) is the primary equation to 

determine bmn , arid equation (3.80) to determine amn . 

3.9 Mode Coupling in the Equations 

The L terms in equations (3.79) and (3.80) give the coupling between modes 
kl 

since they are quadratic in mode amplitudes. Let us, for reasons of simplicity, 

examine equation (3.79) further. 

For any mode (m,n) this equation can be written as 

fJ mn + nfbmn - ~ L [(m-k)am-k,n-l ble1 - ka~-k'n-l bk1] 0 , 
kl 

(3.81) 

with p substituted for r. 
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To look at the coupling between the (m,n)-mode and the (m+r,n+s)-mode, we do 

the following substitution: 

k - m+r, 

l - n+s. 

Since k = 0,1,2 .. . we have r = -m, -m+1, -m+2 .. . (see Appendix C). 

For s, just as for n, we have 

s: [ID, 00] . 

By the symmetry defined in equations (3.77) and (3.78), we also have 

(This is done in Appendix C). 

Using these relations in equation (3.81), gives 

00 

fJ mn + nfbmn + ~ L [rars b~+r'n+s + (m+r) a~s bm+r,n+s] 0 . 
r=-m 
8 = -00 

In this equation we get coupling of bmn to bm +r,n +8 through ars . 

As a practical example, we can take the coupling between the (2,1) and (3,1) modes 

which are, together with the (l,l)-mode, the dominant modes in Tokoloshe. These 

two modes are coupled to a secondary mode - the (5,2)-mode. The equations for 

these modes are 
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CD 

fJ 21 + fb 21 + ~ L [rars b 2+T'1+S + (2+r) a~s b2+r'1+S] 0 
r = - 2 
s = -00 

CD 

fJ 31 + fb 31 + ~ L [rars b3+rl1 +s + (3+r) a~s b3+r'1+S] 0 
r = - 3 

s = -00 

CD 

fJ S2 + 2fb 52 + ~ L (rars bS+T'2+S + (5+r) a~s bS+r'2+S 0 . 
r = - 5 
s = -00 

Other modes have been neglected in these equations. The coupling term is the same 

for Ampere's Equation (3.80). 

More generally, ranking the modes, we get 

O(f) 

O( f2) 

O( f3) 

3/1 

5/2 7/2 

7/3 8/3 . 

If terms of O( f3) are neglected, it is clear that the first five modes will be the ones 

observed in a Tokamak plasma, where the (4,1)-mode falls outside the Tokoloshe 

plasma when the safety factor at the boundary is less than 4. 

Also note that the coupling of dominant modes to themselves gives coupling to a 

higher order harmonic of that mode. For example the (2,1)-mode would via itself 

couple to the (4,2)-mode. 
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3.10 Interpreting the Reduced Time Independent Equations 

When the resistivity is dropped in the magnetic field equation, we get 

neb - L i £(a,b) 
kl 

o V m,n. (from equation '(3.79)) 

This is exactly the same as 

B.VU - o . . (3.82) 

as can be seen from equation (3.61), remembering that 

B V7/JAfp + fp . 

We now introduce a function 7/J which satisfies B. V 7/J = O. Then 7/J = const 

defines the magnetic surfaces where they exist . The magnetic fieldlines are now on 

these surfaces. 

Equation (3.82) is analogous to B.V7/J = O. For B.VU = 0, the streamlines would 

now also be on the magnetic surfaces. Equation (3.82) is thus telling us that the 

streamlines would be on magnetic surfaces if there is no resistivity, and that 

resistivity will brake this effect. 

If 52 -+ w , equation (3.80) reduces to 

neJmn - L i £(a,J) - O. 
kl 
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This is exactly the same as 

B.VJ = 0 . (3.83) 

as can be seen from equation (3.60) with P = 0 and -6.*1/1 = J4' = J . 

Thus, as above, it is clear that the current stays on the magnetic surfaces, and that 

this relation is broken by the introduction of the magnetic Reynolds number, that is 

by finite resistivity. In the case of only one perturbed mode, equation (3.80) will 

automatically reduce to (3.83) because boo = O. Thus, for one dominant mode in 

the plasma, the current will follow flux surfaces, whether there is resistivity or not. 

3.11 Conclusions 

In this chapter we derived the toroidal reduced MHD equations following Izzo et al. 

[4]. From these equations it was possible to derive the cylindrical equations in 

helical, cartesian and cylindrical coordinates, with and withou.t resistivity. We also 

discussed the effect of resistivity as well, as T 1 > > T A i.e. S -t w. 

When only one mode is included in the plasma, equation (3.83) describes the 

equilibrium physical situation with or without resistivity. This will be the topic of 

the next chapter. In chapter 7 we will use the toroidal rendering of equation (3.83) 

to describe the situation with two modes in the plasma. 
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CHAPTER 4 

EQUATIONS FOR ONE TEARING MODE IN CYLINDRICAL GEOMETRY 

4.1 Introduction 

In this chapter we include one mode in cylindrical geometry in the 

time-independent reduced MHD equations. The reason for including only one mode 

is that the equations simplify significantly as was discussed in the previous chapter. 

Although the situation of one saturated mode in a perturbed plasma equilibrium has 

been discussed before [3] our work differs from earlier studies for the reason that a 

different model is developed. This model makes perturbation theory work in the 

vicinity of the rational surface. It is done by flattening the current profile in a way 

very similar to that used by Sykes and Wesson [5]. It differs from White et al. [3], 

because they only use perturbation theory outside the island, modelling the total 

current profile inside the island as a linear function of the magnetic flux. Further, 

we are going to apply it to Tokoloshe. To model the external windings on 

Tokoloshe, the model 'Yill be extended to include various boundary conditions (the 

topic of the next chapter). 

The effect of the resistive profile will be discussed. A resistive profile of the form 

TJ = TJ(r,(),cp) IX l/J\fJ is used to exclude flow from the problem. A simple resistive 

profile of the form TJ = TJ( r) is then discussed. 
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4.2 The Reduced Equations for One Mode 

4.2.1 Basic expressions defined 

Assume the following directions for quantities used in this chapter: 

o 

k 
m 

n k O=-cp+­m m 

cp 

FIGUlB 4.1 The directions of the important physical quanti ties are shown. 

Let 

B - V1jJ A ep + ep 

wi th 1jJ of the form 

1jJ aOO + amn cos mn 

where mn denotes mO-ncp. 

The current J = Jep can also be written as 

J - joo + jmn cos mn 

(4.1) 

(4.2) 

(4.3) 
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From 0 = E.. cp +!. (using helical symmetry when only one mode is included) it is m m 

clear that b. 0 = ~ b. cpo 

Thus 

n = 1 _b.0l 
m qrs - ~ rs 

dOl 
(iji rs - -!r *1 ' 

rs 

where rs denotes the rational surface, q the safety factor, and use is made of the 

field line equation 

in the form r: 
0 

= ~ dcp where Ro = ~ and B is normalized to Bo = B4' I r=O . 
e 

From the above we have 

ao I + ( rs !. = 0 
rs m 

( 4.4) 

for an axisymmetric unperturbed equilibrium with m the q-value at r = rs. The 
n 

derivative (') denotes ~. 

4.2.2 The helical equilibrium flux 

Define a surface function ;p (r,O,cp) such that 

TJ·V1jJ - 0, ( 4.5) 

with 

( 4.6) 
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This ;p is not the same as the function 'I/J that was used to express the magnetic 

field in equation (4.1) and which is not in general a magnetic surface. When 

equation (4.1) is substituted into the above equation, we get 

(4.7) 

(first harmonic) . (4.8) 

For the axisymmetric unperturbed equilibrium we know that Be = -g'I/J = - a~ . 
o r 

At the rational surface we have BeD I . = - a~ I = H.:n n, from equation (4.4). 
rs rs 

Making these substitutions in equation (4.7) gives 

The equation for the first harmonic, given in equation (4.8), can be solved 

analytically, giving ;P1 =: a a 1. If a is chosen as 1, we get 

and thus 

'I/J~ - - (Be - Be I ) . 
o 0 rs 

(4.9) 

( 4.10) 

(4.11) 

This is just the helical magnetic flux for the unperturbed equilibrium [4]. This 

formula is also derived by an independent argument in Appendix E. 
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4.2.3 Rewriting the current density equation 

As we have seen in Chapter 3, the equation 

B.VJ o ( 4.12) 

is valid when only one mode is included in the plasma, for any value of S. 

Using the expressions for Band J (i.e. (4.1) - (4.3)) in equation (4.12) gives 

./ /. n . 0 
-amnJoo + a oo Jmn + H m Jmn - . ( 4.13) 

This is exactly the same as when one mode (m,n) is used with the zero-order 

equilibrium quantities in equation (3.80) . 

It will now be shown that, instead of using equation (4.12), we can just as well use 

the expression J( ¢), where ¢ is the helical magnetic flux. 

Noting from equation (4.3) that equation (4.13) can be written as 

jo (4.14) 

and substituting equation (4.7) in here gives 

(4.15) 
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Using 

in equation (4.15) results in 

( 4.16) 

We know from equation (4.12) that the current is along flux surfaces, which enables 

us to write J = J( ~). Let us now make a perturbation expansion of J(~) about 

J( ~o). This gives 

( 4.17) 

When only the first harmonic is included, we get 

This gives jl = ~1 djo/d~o, just as in equation (4.16). Instead of equation (4.12) 

we can now use (4.17) to get the same result. Stating it differently: instead of 

using the equation ~. VJ = 0, we can just as well define J = J( ~), with ~ as in 

equation (4.6). 

This result is not new, and was also stated by previous authors [5]. In the 

derivation of these equations, however, we did not follow any particular author. 
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4.2.4 A closed set of equations 

The above discussion leaves us with the following equations: 

a" + ! a' oro 

" 1, m2 
a 1 + r a 1 -"'fl a l 

7/1'0 

with 

J(~) 

- - Jo 

djo 
-a -

1 d~o 

'+ n a o a m' 

ao + al cos (mO - ncp) 

~o + al cos (mO - ncp) 

djo 
- jo + a l -.- cos (mO - ncp) . 

d'I/Jo 

(4.18) 

(4.19) 

( 4.20) 

Equations (4.18) and (4.19) are the same as (3.14) in cylindrical coordinates as was 
2 • 

discussed at the end of section 3.3 and follow from V 7/1 = - J( 7/1). In the above 
.J.. 

equations the axisymmetric current profile jo(r) is prescribed. This leaves us with 

three equations and three unknowns (a l , ao' ~o) to solve for. This enables us to 

determine ao' and thus also ~o. If djo / d ~o is known, a1 can be solved for. 
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4.2.5 Problems of a perturbation expansion for J( ip) 

The problem with a first order perturbation expansion of J( ¢) is that 

dJ( ¢)/d¢o I blows up. This can easily be seen when equation (4.14) is written as 
rs 

dj 0 
(ao+fE-r)-A-

m d1/Jo 

( 4.21) 

using equations (4.16), (4.10) and (4.9). We know that ¢o I = O. For jo I * 0, 
rs rs 

.as is the case with any original unperturbed axisymmetric profile, Jo / d 1/Jo -I (Il in d· A I 
rs 

equation (4.21). 

The behaviour of J( ¢) at rs can be illustrated with the following simple example: 

Let 

Thus 

a" + ! at OrO 

using equation (4.18). 

J<p 1 - r 2 • ( 4.22) 

-1 + r 2 • ( 4.23) 

" 



Now we have 

which we can integrate to give 

a' o 
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The constant K is zero because Be = -ao N rm-1 -+ 0 as r -+ O. 

When ""0 = a o + a ~ is substituted in equation (4.24), we get 

This gives 

n 1 n 12 A t 
- 4 (€ m - ~) ± 4 [( € m -~) - (k - ""0)] 

When this is substituted into equation (4.22), we get 

A n 
At r = a we have ""0 = k and at r = 1, ""0 = k + t € m - 3/ 16 . 

A 1 n 
For ""0 = k + ~ € m - 3/ 16 we get 

J'll - 0 or - 2 + 8 ~ € ... m . 

(4.24) 

( 4.25) 

( 4.26) 

( 4.27) 

( 4.28) 
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The rational surface rs is where ~'o = 0 , resulting in 

I I n ao = - f rs m 
Is 

(using equation (4.4)). 

Now we have, when this is substituted into equation (4.24), 

n 1 3 1 
- f rs m - 4" rs - 2" rs , 

giving 

rs 

This gives, from equation (4.25), 

Drawing J 4' as a function of 7/10 , we get 

-J 
4' 

FIGUlB 4.2 

r=l 

The graph of -J4' = r2- 1 against ti>o. 
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From this graph it is clear that d~ I -I (JJ. It should be noted that Jtp is double 
d'I/Jo rs 

valued for a range of ;Po values. This behaviour is in general true for physical 

profiles. 

4.3 Modelling a Perturbed Flattened Current Profile 

4.3.1 Sykes and Wesson [5] 

dj 0\ From equation (4.16) it is clear that -,- -I (JJ 

d'I/Jo rs 
is the same as j 1\ -I (JJ 

rs 
for a 

well-behaved ;P1. This divergence-problem is overcome in the linear theory of 

tearing modes where the equations are solved for I r-rs I > E, E the resistive layer 

width. They are then connected over the inner region using the 6,. '-criterion. In 

this way the dynamics of the inner region are ignored. In the non-linear theory the 

6,.' (W)-criterion is used instead [79]. 

If we take into account that the linear growth times are often substantially less than 

the time-scale for changes in the general equilibrium, it is expected that the tearing 

modes will be saturated most of the time. A possible approach is thus to ignore the 

first stages of tearing mode development, and to model the final saturated state by 

including a flat at the rational surface. Using energy relaxation, the saturation 

equilibrium can be determined. This approach has been used by Sykes and Wesson 

[5]. 

They used a conductivity profile (J of the form 

in region i 



75 

(J in region ii 

(J f(r-w) 
a-w 

in region 111 , 

where f has the form f = (Jo(1-x 2)(} , 

and the regions are shown in Figure 4.3 . The quantities a and w denote the 

minor radius and island width. 

FIGUlE 4. 3 

a 

" 1", 
r - r. 

This graph is taken from Sykes and \lesson [5]. In (a) the typical 
form for f(x) is shown and in (b) the typical conductivity profile 
for a plasma wi th a tearing mode present. 

A relaxation procedure on a polar mesh was then used to solve the equilibrium 

equation 

with the functional form of the conductivity CJ(~) included in the equation. This 

equation is similar to equations (4.18) and (4.19), with (4.20) substituted therein. 
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White et al. [3] introduced another way to solve this problem. They assumed a 

linear form in ¢ for the final flattened equilibrium profile inside the island 

modelled on numerical calculations. In introducing J( ¢) = a + b ¢, they were 

able to overcome the problems associated with the initial current profile as 

explained below. 

4.3.2 The White et al. model [3] 

White et al. [3] used the same approach as in the linear theory in distinguishing 

between an outer and an inner region. In the outer region they made use of the fact 

that the introduction of an island causes the current to change in two ways, that is 

because of the change in ¢ and due to the change in the functional form of J 

itself. This gives J(¢) = Ja(;Po + l:l;P) + l:lJ(;Po + l:l;P), where ;Po and Ja are the 

solutions of V2¢ = -J( ¢) - 2 in the absence of an island and l:lJ is the change in 

the functional form of J. 

If a perturbation expansion is made in the outer region in terms of the fundamental 

harmonic ;P1, the following expressions are arrived at: 

Substituting this in 

= -J( ¢) - 2 ( 4.29) 

gives 

l:lJ( tl = 0 

V21/Jl - (BJaj B¢)¢l , 

as usual. 
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This approach is not used in the inner region because of the fact that 8Ja /8¢1 -I CD 

rs 

i.e. J( ¢) is not analytic at the singular surface. 

In the inner region, that is inside 7/Js (where 7/Js is the value of 7/J on the 

separatrix), J is assumed to be Jb( ¢). The motivation behind this functional 

dependence was discussed in section 4.2.3. They then proceeded to model Jb( ¢). 

To quote them, "An N-parameter model of the current in the island interior, 

J b( ¢), along with a truncation of the harmonic expansion of ¢( r, 0) wi th N 

harmonics then gives through equation (4.29) a set of N integral-differential 

equations for the harmonics 7/Jn, with the parameters of Jb( ¢) serving as 

eigenvalues. Specifically, they take the form 

where the harmonics of the current are given by 

'lIm 
r:: f dO J( ¢) , 

o 
( 4.30) 

2m 'lIm . 
- -:;r f dO cos mO J( 7/J) , 

o (4.31) 

and 

"[3]. ( 4.32) 

From numerical codes [3] they noted that the current Jb( ¢) is accurately described 

by a linear function of ¢. 
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For ~(r, 0), the flux function in the island interior, they used 

~r,O) ~o(r) + f~bx) (1 + sx) cos mO ( 4.33) 

a + b~(r,O) , ( 4.34) 

where r = rx + x, where rx is the position of the X-point, and s the slope of 

~l(r) in the island interior given by ~/l(rX)/~I(rX)' Their current profile is shown 

below. 

FIGUlE 4.4 

o 0/(0) 

+ 

The current prof ile used by lihi te et al. [3J. 

It should be stressed that they did not use perturbation theory in the inner region, 

and they therefore did not have the problem of singularities at the rational surface. 
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In their analytic work, they used the expression for D. ' to connect the inner and 

outer equations across the island. They also used 

to calculate 

dW rr-

(the island width), 

1.66 17(rs) [ D.' (W) - aWl , . 

a a constant given by some expressions they derived. 

4.4 An Alternative Approach 

4.4.1 A new model 

In our approach we do not distinguish between an inner and outer region of the 

plasma solving different equations in the different regions. T~e equations we solve 

are thus valid in the whole of the plasma region. We can do this since the definition 

of the inner region flows naturally from the problem. It is just the island interior. 

As above, we carry out a Fourier expansion of the helical magnetic flux, given by 

(4.6) 

where only one mode 'l/Jl is included in the plasma. 
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We then make a Taylor expansion about the perturbed current profile to give 

.• dJ( ¢o) 
- J( 7/Jo) + 7/JI cos (mO - ncp) • + ... , 

d 7/Jo 

where J( ¢o) is the first order axisymmetric part of the current. Now we will model 

J( ¢o) such that dJ( ¢o)/d¢o' is finite. This can be done by adding an axisymmetric 

perturbation oJ to the unperturbed axisymmetric profile Ju(r) such that 

Ju(r) + oJ is analytic at the rational surface. 

In the same way as the set of equations in 4.2.4 were derived, we can now derive 

with 

a" + ! a l 

oro 

dJ ( ¢o) 
a" +! al 

- m
2 

- - aI-­
I r I f2-

d 7/J 0 

./. /
0 

_ I + n 
If ao H m ' 

7/J - ao + al cos (mO - ncp) 

7/J - 7/Jo + al cos (mO - ncp) 

- jo(r) + jlr) cos (mO - ncp) . 

( 4.35) 

( 4.36) 

( 4.37) 

( 4.38) 

( 4.39) 

( 4.40) 

(4.41 ) 
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In these equations J( ~o) is not the unperturbed axisymmetric profile Ju(r) , but a 

perturbed axisymmetric profile. 

dJ (~o) 
Recall a

1 
• - J 1 as was derived in equation (4.16). The relation of our 

d1/Jo 

approach to that of White et al. is patent. Instead of their linear function for J( ~), 

we use a perturbation expansion for J(~) in the expressions given by equations 

(4.30) and (4.31). This gives 

'If 

_ 2m rm dO cos mOJ(¢) 
'If Jo 

( 4.42) 

( 4.43) 

where Jo(r) and J 1(r) are their functions, and jo(r) and jl(r) our functions. 

From equation (4.32) it is clear that 

- J o(r) - J a( ¢o(r)) 

- J( ¢o) - Ju(r) , ( 4.44) 

where Ju(r) denotes the unperturbed axisymmetric original current profile. We 

now model oJ o, and thus indirectly J(¢o), where White et al. [3] model J(¢) . 

.. dJ (~o) 
The perturbatIOn oJ 0 WIll be modelled such that • I :/: w , removing the 

d1/J o rs 

difficulty at the rational surface. The reason for modelling J( ¢o) instead of J( ¢) 

is that no assumptions of the final functional form of the current density J( ¢) have 

to be made. 
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It is important to note in our theory that the axisymmetric equilibrium quantities 

ao' ~o, J( ~o) do not refer to the unperturbed equilibrium as in section 4.2.4, but to 

an axisymmetric perturbed equilibrium. Further, it should be noted that 

oJ 0 f O( f2) and that it is not part of the perturbation expansion. If this perturbed 

axisymmetric current has d~ I f CD these equations (4.35) - (4.37) can be solved 
d1/Jo rs 

without the singularities which are inherent in the unperturbed case. This can be 

assured by forcing dJ I = 0 in such a way that J I / ~'o is finite. This is 
dr rs 

immediately obvious from equation (4.21), where jo is now a perturbed 

axisymmetric current. 

In solving the above equations, J(~o) must be prescribed. Because J(~o) = jo(r), 

we can just as well prescribe jo(r) = J(r). This J(r) we get by including a 

perturbation oJ on the unperturbed current profile, such that MI = o. This will 
rs 

force d~ '" CD. With J(r) known, U can be calculated and d~ = U/~'o can 
d~ ur d~ ur 

also be calculated easily. The given set of equations (4.35) - (4.37) can now be 

solved without problems. 

It is important to note that the perturbation Olo can cause J(r) to be double 

valued in the island. In that case the radial points with equal J(r) must also fall 

on equal values of ~o to keep J = J( ~o) . This is not easily accomplished. For 

reasons of simplicity we decided not to allow J(r) to be double valued in this 

model. To keep J(r) from being double valued, we can just ensure that J" I = o. 
rs 
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4.4.2 The effect of the higher order terms in J( 1/;) 

Instead of writing J( ¢) as in equation (4.40), we could have included higher order 

terms to give 

(4.45) 

In this expression the higher order derivatives of the current J( ¢o) with respect to 

¢o are included. We can rewrite the n-thforder derivative of J( ¢o) as 

- ((¢ot1 "'((¢ot1{(¢ot l [(¢O)-lJ/(1)]/(2)}/(3))/(4) ... )/(n) f¢o' 

( 4.46) 

where <i> , i = 1,2 ... n, denotes the order of the derivative. 

If we take into account that 

[(¢ot l J/] has an order one pole 

• • I 

(¢otl[(¢O)-1 J/] has an order three pole 

• • • I I 

('l/JO)-l{(¢O)-I[('l/JO)-l J/]} has an order five pole, 
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dnJ(~o) 
it is clear that the term --- has a pole of order 2n-:-l. 

d~ 

We can thus write the term with the highest order pole on the right-hand side of 

equation (4.46) as 

J I f(:/,II :/,11 JII JII' ) 
A oro, oro, ... , , ..., 

(7/10) 2m+l 

with m = n-l . 

Assuming J I I = 0, we can apply L'Hospital's rule to this term, getting 
rs 

(2m+l)fJlI~~ 

( ~0)2m 

If we want to proceed using L'Hospital's rule, we must have Jill = O. In that rs 

case we can define a new function f1 which contains poles of order less than 2m 

and write 

2mJII' :/,11 f oro 1 

Other terms of similar form are grouped together and handled in similar fashion. If 

this process is repeated 2(n-l)+1 times, making all the derivatives of J up to the 

2(n-l)+1 th one zero, we can remove all the poles. It is thus always possible to 

get a non-divergent value for the n-th derivative of J( ~o) to ~o' if L'Hospital's 

rule can be applied 2(n-l)+1 times. 
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If all the derivatives of J are made zero at the rational surface, all the higher order 

terms of J(~) will be zero at r = rs and thus well behaved. Sykes and Wesson [5] 

managed to define exactly such a profile by including an absolute flat for the inner 

region in their profile. 

4.5 Resistivity 

4.5.1 Resistivity as a function of r 

If the resistivity is included as a function of r, TJ = TJ(r) , we can get an expression 

for the perturbed velocity potential b1 from equation (3.61), which is the same as 

B.VU = TJJ in the cylindrical approximation. This gives 

b r· I:'" 1 = m TJ J1 '1'0 . (4.47) 

from the definitions of ~ and V as given at the end of section 3.7. 

From this it is clear that b11 -+!D if j11 f O. To keep ~1 finite, j1 must be 
rs rs 

zero at the rational surface. For j1 to be zero at rs, djo/d~o must be zero at rs 

[using (4.16)]. It is thus clear that djo/d~o must not only be finite (as was 

discussed in section 4.2.5) but zero if velocity perturbations are included as well as 

TJ(r). This result is not stated in previous work as far as we are able to determine, 

and is compatible with the White et al. [3] model in which jl(rS) was zero and TJ = 

TJ(r) . 

Applying 1'Hospital's rule to 

j 0 
- -A , 

1fJo 
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we get 

. " J 0 
lim. 0 . 
r-l r s 'I/J~ 

With ~IOI \ * 0, it is clear that j~ \ must be zero to have djo / d ~o zero at the 
rs rs 

rational surface. 

We noted previously that 

M\ * 0 ~ d~ I -I CD for the unperturbed profile 
rs d'I/Jo rs 

dJ\ Or rs 
_ 0 ~ dJ \ 

d'I/Jo rs 
is finite for a perturbed axisymmetric profile. 

N ow we also have 

d
2JI (lr2" 

rs 
= 0 for a perturbed axisymmetric profile with 17(r). 

It is now important that M\ = 0 is not enough, but ~;~ \ = 0 is required to 
rs rs 

have a well behaved set of equations if flow perturbations are allowed, together with 

finite 17(r). 

. n 
Lastly, we know that 'I/J'o = a'o + f r m. Because a'o = - Be and Be -10 as r -10, 

o 0 

it is clear that ~'o \ 0 = O. This implies that 

Mlo = 0, (4.48) 

using equation (4.21). 
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4.5.2 Resistivity depending on 0 and tp 

Let TJ = TJo + TJI cos (mO - ntp). This gives 

b l = ~(jITJo+TJdo)j(ao+Er~), ( 4.49) 

using (3.61) in the cylindrical approximation. If B.VTJ = 0 (just like B.VJ = 0), we 

get TJl = ~l TJo j ;Po · This means that the resistivity is along flux surfaces, just like 

the current. A resistive profile of the form TJ(r) N 1jJo(r) is often used [4]. The 

form we specified allows for TJ(;P) N ~ , following from equation (2.5) with no 
J ( 1/;) 

flow and constant E. Equation (4.49) can now be written as 

The only condition for finite b1 in this case is that ~(joTJo) = 0 at rs . 
d 'l/Jo 

( 4.50) 

On the other hand, if dJ 01 

d;Po rs 
o and d~ol 0, b 1 will also be well 

d'i/Jo rs 

behaved. 

If TJojo = const, we get b l = 0 for all r. This is consistent with equation (3.5), 

where we get E = TJJ for V = 0 (assuming E = constant). 

We used both TJ = TJ( r) and TJ( r, 8, tp) in our model. 
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4.5.3 Expected features of the plasma as time evolves 

From the previous discussions, we can get some understanding of the plasma 

behaviour as time proceeds. 

If the equilibrium is tearing mode unstable, and a tearing mode can evolve at a 

rational surface, the following features can be expected: The original unperturbed 

current profile 

very strongly. 

jo has jo \ f 0 which causes the perturbed current jl to grow 
rs 

dj 0 • 
This can easily be seen from the relation jl = -.- 'l/h, and the fact 

d'l/Jo 

that djO/d¢o\ -+ ro for jo\ f o. If TJ is a function of r the fact that jl\ f 0 rs rs rs 

will cause a strong localized flow at rs (from equation 4.47). As the current profile 

flattens (jo \ = 0), the perturbed current will go to zero in the case where 
rs 

TJ = TJ(r). The strong flow at rs will then also disappear. In the case where TJ = 

TJ(r,O,cp) the perturbed current jl will not necessarily go to zero, and if TJo = 

const / jo there will be no flows. 

4.6 Conclusions 

A simple model for the case of one tearing mode in a cylindrical plasma has been 

developed. It is simple in the sense that first order perturbation theory is used. No 

difficult numeric schemes are needed to solve the equations. No model of the island 

shape is included, which follows of its own accord. 

The model developed here has similarities with Sykes and Wesson [5] and White et 

al. [3]. It is similar to that of Sykes and Wesson in the sense that we also include a 

flattening of the profile and look only at time independent final saturated island 
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situations. It differs from them because we do not include an inner and outer 

region, instead only demanding a local flattening at rs, and also, as we shall see, 

because our model reduces to an eigenvalue problem. This will be discussed in 

chapter 5. The model is similar to that of White et al. [3] in the sense that the 

perturbed current profile is modelled in the island region as a function of ip (the 

magnetic flux). It differs therein that theirs is an exact function of 'if; where ours is 

a Fourier series where only the first order perturbation has been included, making it 

an approximate function of ip. If higher perturbations were included, it would be 

an exact function of ip. Instead of using harmonic analysis as they do, we used a 

combination of harmonic analysis and perturbation theory. It differs from White et 

al. in the sense that we make perturbation theory work at the rational surface, 

whereas they only use perturbation theory outside the island. They also use an 

inner and an outer region, something we do not do. Although we do not have these 

different regions, we must still use a L\ I (W) criterion across the island. It should 

be noted that White et al. [3] did analytic work, whereas we only solve the 

equations numerically. 

The model we developed will be used in conjunction with . different boundary 

conditions discussed in the next chapter. The results of the model will be presented 

in chapter 6. 
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CHAPTER 5 

BOUNDARY CONDITIONS 

5.1 Introduction 

In this chapter we discuss the boundary conditions for equations (4.35) to (4.37), i.e. 

for the new proposed model. The aim is to consider the effect of different physical 

situations, i.e. 

• the plasma is locked and coupled to a vacuum region outside 

• the plasma is locked and coupled to an external coil current in the vacuum 

region 

• the plasma is rotating infinitely fast with a partly conducting wall or the 

wall is superconducting 

• the plasma is rotating at some frequency and is coupled to an external 

vacuum region 

• the plasma is rotating at some frequency and is coupled to an external coil 

current in the vacuum region. 

In the first section (i.e. 5.2) the boundary conditions on the plasma edge are 

derived. These are totally general and will later be related to the outside 

conditions. An important parameter in these boundary conditions is 6, the surface 

deformation of the plasma edge. If 6 = 0, conventional tearing mode solutions are 

obtained, but 6 f 0 allows for the wide variety of situations mentioned above. This 

perturbation is chosen to be consistent with the internal mode, i.e. for an internal 

mode modelled by a perturbation 1/11 cos (mO - nip), a surface perturbation of 6 cos 

(mO - nip) is assumed. 
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The first configuration discussed is for the plasma touching a non--conducting wall. 

A coil current can also be included in this configuration, placing it in the vacuum 

outside the wall. In such a situation the plasma boundary conditions are coupled to 

the solutions in vacuum across the wall. This coupling makes it possible to derive 

an expression for ~I for the case of a locked mode . (i.e. no time 
a 1 plasma boundary 

dependence is included) or for an infinitely fast rotating mode with a partly 

conducting wall, which is similar to a superconducting wall, in which case 

~I = O. This parameter ~I is directly proportional a 1 plasma boundary a 1 plasma boundary 

to BriBe I and will be of major importance in the rest of the study. 
1 plasma boundary 

When the rotation frequency is included explicitly, the configuration is changed 

slightly. A vacuum region is included inside the resistive wall. It is shown that this 

solution agrees with the previous one when this vacuum region is reduced in size. 

An external coil is also included with this configuration. 

The work done in the first part of this chapter on boundary conditions is not new 

and has been done elsewhere [75,86]. The approach followed is not that of any 

author in particular. The results are given in a form which is compatible with our 

model. The work done in the last part of the chapter, where a rotational plasma is 

coupled to an external coil current, appears to be new. 

5.2 Non-homogeneous Boundary Conditions 

For equations (4.35) - (4.37) we need ao I a' ao I a' ;Po I a' all a' a ~ I a' The sign 

I a denotes "at the boundary of the plasma". 
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The value of ao I a may be chosen freely because ~ 1. = V 'I/J " Cp - allowing us to 

add any constant to ao' We also know, from equation (4.9), that 

where k is a free constant . 

From section 4.2.1 we know that 

a I o 
1 

-f r - . q 

in zeroth order. 

Thus aola = - a/qla' 

as was shown in equation (4.4). 

(5.1) 

With expressions for the boundary values for ao, ao and 'l/Jo known, we can 

proceed to get expressions for a ~ I a and all a' When a perturbation expansion is 

made about J'P at the boundary, using the expression for the boundary, 

r a _ ro + 6 cos mn, (5.2) 

we get to first order in 6 

(from equation 4.3)) 
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When JO = 0, and the coefficients of linearly independent functions are grouped 
tp 

together, we get 

(cos (0)) (5.3) 

(cos mn) . (5.4) 

The second of these equations can be substituted into equation (4.14) giving 

The quantity a ~ I = Be I must be chosen such that Be I -I 0 for modes with a I a I 0 

m ~ 2. This follows from the fact that BelloN rm-1 . The notation 10 denotes II at 

r = 0 II • 

If we carry out a Taylor expansion about any quantity of order 8 (like al or a~) 

at the boundary, we get 

Dropping terms of O( 82) gives 

AI . ro (5.6) 
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If we remind ourselves that ro = a (the plasma boundary), and r is normalized to 

a, we can replace ro with 1. In summary we get 

ao\ 1 k (arbitrary) (5.7) 

~oll - k1 (using equation (5.1)) (5.8) 

at I 1 
(q1 = q 11) (5.9) - f-

o 1 q1 

aliI - 8 (ao 11 + f ~) (5.10) 

at I 1 1 chosen (shooting value) . (5.11) 

Note that Br = }; = - ~ al sin (mO - ncp). If al is known, Br is known. 

Using a 111 = f (8), we see that the perturbation of the boundary is directly related 

to the radial magnetic field on the boundary. It is also immediately clear that, 

because Be I is included in the expression for all ' this perturbed quantity is 
o 1 1 . 

normalized if Be is normalized. These boundary conditions are thus 
o 

non-homogeneous. Because of this fact, amplitudes are fixed, unlike the case of 

linear tearing mode theory. 

These boundary conditions are completely general. They are valid for any 8. 

They are also valid for 8 -+ O. This follows from perturbation theory, 8 being a 

perturbation of a circular boundary. 
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5.3 Effects of islands on the boundary shape 

When an island is present in the plasma, there will be an accompanying perturbed 

magnetic field Br - otherwise the fieldlines will be circular at any angle cp. This 

magnetic field would not be able to penetrate the wall if the plasma is rotating 

infinitely fast with a partly conducting wall or when the wall is sliperconducting. 

Using the fact that Brl = . Br2 where 1,2 stand for inside, outside [following from 

C~r2 - ~rJ!! = 0] it is immedi"ately clear that Br 11 is zero in these cases, agreeing 

with 0 = 0 as was discussed in the previous section. This means that the boundary 

is circular. It was assumed above that rw = 1, i.e. that the plasma touches the 

wall at the wall radius rw. 

When the plasma is locked somehow, the perturbed field can penetrate the wall. In 

such a case Br 11 is non-zero resulting in a perturbed boundary. This corresponds 

to the free-boundary situation which can be illustrated schematically as follows: 

FIGURE 5.1 

., ". 

/ - / , . 

-...... .•... -._------ - . 

When B~ 11 = 0, the boundary will be circular. Otherwise it will be 

perturbed according to the internal mode. 
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In our approach we include a local axisymmetric flat in the current profile, and at 

the same time perturb the boundary in a resonant way. The flatness of the current 

profile, and ultimately the island width, can now be related to the external 

perturbed boundary, arising either because of a natural tearing island or because of 

an externally induced one (using external coils), or both. 

On Tokoloshe we attempt to influence the natural tearing modes by an external coil 

current . This can be understood easily in the following way: 

Assume the natural tearing mode (with mode numbers m,n) has a perturbation of 

the form 

. B i(mO-nrp) 
Z r e . 

Let X mO - nrp to get sin (mO - nrp) = sin X . 

In the case of a cylinder, where no side bands are present, this tearing mode can be 

affected by a perturbation of the same form, resonating with the inside mode. This 

is possible if four windings are put helically around the cylinder as in Figure 5.2: 

FIGURE 5.2 

----'\ 
( ~-c) 

"'~ 
'" ( ) 

{ ~ 

-----9----
\ J 

The configuration with a (2,1 ) external winding. The value of rp is taken 
to be zero for simplicity. 
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It is now easy to see that the form of Br is approximately K sin X, K < 0, when 

o is varied at a specific r on the inside of the plasma in Figure 5.2. 

The configuration of coils can be expressed as 

o arp + (k-l) I' k = 1, 2 ... l, 

with l the polarity of the winding and a a constant. 

The way to solve the tearing mode problem with external helical coil currents is to 

include these currents in the boundary conditions of the reduced MHD equations as 

will be discussed in the next section. 

5.4 Including coil currents in the problem 

Assume a configuration of the following form: 

non-conducting wall, 

plasma 

boundary 

plasma vacuum 

region I region II 

r=O r=r8 

helical 

coils 

vacuum 

region III 

FIGURE 5.3 A configuration where the plasma boundary touches the wall. An external 
coil is applied in the vacuum region outside. 



98 

In region I equations (4.35) - (4.37) give the expressions for the magnetic field. 

Regions II and III are vacuum and therefore in these two regions, 

o , (5.12) 

with ~ 1 the perturbed magnetic field given by 

Substituting this in equation (5.12) gives 

- 0, 

resulting in 

B 19 - m --B Enr 1z (5.13) 

Br - -lB' ZEn 1z (5.14) 

B 19 zm B - + Bi9 - (5.15) r r r· 

From 

V.B1 o , we get 

B' + 1 B im B . 
r r r + r 19 - zn EB lz o , 
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or after using equations (5.13) - (5.15), 

The general solution of this equation is 

giving (via equations (5.13) - (5.15)) 

- B 1G = ~ [C 1 1m (wr) + C2 Km (wr)] Enr 

in region II (derivatives with respect to wr), and 

- B 1G 

= C3 K~ (wr) 

~C3 Km (wr) Enr 

in region III because Im(wr) and I~(wr) are divergent when r -i (I). 

(5.16) 

( 5.17) 

(5.18) 

(5.19) 

(5.20) 

Connecting these solutions, we get at the vacuum-plasma interface (r=rB) 

(5.21) 

(5.22) 



100 

where ~ 8 is the solution of the plasma equations (i.e. (4.35) to (4.37)) at the 

boundary (discussion in section 5.2). 

At the coils we get 

(5.23) 

- J' (m,n) - z , (5.24) 

where use is made of 

(B~II _ B~I) I = 0 
re 

(5.25) 

(5.26) 

II I I (Be - Be) 8 = 0 
1 1 r 

(5.27) 

(5.28) 

and jz (m,n) is the (m,n) fourier component of the surface current density of the 

coils. 

From equations (5.23) and (5.24) we get 

C1 - f~re jz(m,n) /{[I~(mre)/K~(mrc} -Im(mrc}/Km(mre)] Km(mre)}. 

(5.29) 
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When substituted into equation (5.21) we get a relation between the magnetic field 

at the plasma boundary and the coil current. 

We will first look at the situation with zero coil current. In such a situation it is 

only the constant C2 that needs to be calculated. In the plasma we have 

Br 
1 Oal m2 - r7J7J - -al r 

BIG 
oal 

- a'l· - -Or 

In the vacuum (using the expression for ~1 used in equation (5.12)) 

Now we get 

Br I - 0 
BIG r 

or 

i mall 
-r a' 0-

1 r 

i C 2 K~ ( ffi r) I 
- E r:: r C2Km( mr) r

O 

o En (0 a r m2K~ mr )/Km(mr), 

ro + a cos x . 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 
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If a Taylor expansion is done about ro, we get 

Terms of order E yield 

1 . 

As an example we get (for E = 0.1) 

and 

-0.501 when (m,n) = (2,1) 

~ - -0.3336 when (m,n) = (3,1) . a'JIJ 

(5.36) 

(5.37) 

Lazzaro and Nave [92] found a similar result given as ~I = - 11m. This is just 
all 

the value found when only the first order terms in the series expansion of Km( mr) 

is included. Their result is thus valid when E < < 1 . 

For any perturbation 00' which agrees with a n~oil situation, C2 can be 

calculated from equation (5.34) or C2 = -moo(aol + En)/K~(m) . 
1 m 
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5.5 Deriving expressions for Brl1 and Biol 1 with an external coil current 

Equations (5.21) and (5.22) can be rewritten as 

(5.38) 

- -all 1 1 
(5.39) 

where use is made of the plasma solutions for B~ and B~e i.e. equations (5.30) 

and (5.31). Equations (5.38) and (5.39) can now be rewritten as 

mall 

K~ ( m) = 

f n all 
1 1 

--m-- Km(m) 

Subtracting equation (5.41) from (5.40) gives 

m all l 
K~(m) 

When C l (Le. equation (5.29)) is substituted in this equation, we get 

m all
l 

K~(m) 
fn 
m 

_ fnrc . ( m,n) ~m 1 
m Jz mr K (mr ) , 

c m c 

(5.40) 

(5.41) 

(5.42) 

(5.43) 
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with 

L(x) 
I~(x) Im(x) 

- K~(x) - Km(x) . (5.44) 

Rewriting equation (5.43) results in 

(5.45) 

When j~ m,n) = 0, we get 

which has been derived as equation (5.36) for the no-coil situation. The parameter 

~I is of major importance in the rest of the study. It should be remembered that 
all 

it is proportional to Br/B 1911 . 

5.6 Deriving the coil current in the cylindrical approximation 

On the cylinder we shall use the coil winding law [83] 

° - a z + (p-1) 7r / l, p = 1, 2 ... , 2 l with l = r:: (5.46) 

and let 

J !(r,O,z) 6 (r-rc) 6(O-az-(p-1)(7rjl)) , (5.47) 

where Hr,O,z) is to be determined. 



105 

On Tokoloshe tokamak, the windings are not perfectly helical, but have an 

additional term to account for the shift of field lines due to toroidicity. The general 

winding law is 0 = acp + ~l sin 0 + i(p-1) . The current density may be modelled 

in the present cylindrical case by [83] 

(5.48) 

The current in the coil is just 

(5.49) 

Any surface through which the whole current flows can be used in the above 

equation: 

- f fz 6 (r-rc) 6(O-g(z))rdr dO 

- rc fz (b, (} = g(z), z) (5.50) 

or Ii - f JO dr dz 

- J fO (rc'O,z) c5 ((} - g(z)) dz (5.51) 

with g(z) - az + (p-1)1f/l . 

Let 

g(z) - y. 
(5.52) 
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Now we have, from equation (5.52), 

~ dz - dy or a dz = dy . 

Equation (5.51) now becomes 

(5.53) 

From equations (5.50) and (5.53) we get fO = a Ii and fz = lire' The current 

density can now be written as 

(5.54) 

In the above calculations we used an external coil to generate a magnetic field which 

is of the same helicity as the tearing mode that we want to affect. 

5.7 The (m,n) Fourier component of Jz 

To be able to solve for B~ (with coil current), we need the Fourier mode j~ m,n) in 

equation (5.24). 
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Express J z as a Fourier sum: 

CD 

~ -)' Real (jz( m,n) ei(mB - ncp)) . 
A _II 

n=-m m=O 

We know that 

1 f 211" f 211" -i(mB - ncp) 
@ Jz e dBdcp. 

B=O cp=0 

for m,n f 0 . 

Using equation (5.54) , we get 

(5.55) 

I 2 11" 2 11" .( B ) - k lIre 8 (r-re) f f 8 (B - a z - (p-1) 11"ll) et m -ncp dBdcp 
11" B=O cp=O 

(5.56) 

with k z = Ro cp, k the wave number. - m' 

This is true if only one coil is used. In a situation like Tokoloshe, we have four coils 

for the £=2 case. The configuration was shown in Figure 5.2. 

4 

Now, with 10 - ~)' (-l)P 10 , we get 
(.tot A_II (. 

p=l 

(5.57) 
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The sum in (5.57) gives 2£ if n is odd and zero if n is even. The resulting 

current density component is just 

1£ m _ (-1)m-nl __ . 
7rI'e n 

(5.58) 

When the 6.£ sin (J term (in equation (5,48)) is included in the calculations, an 

expression can be derived modelling the situation on a Tokamak (Appendix F). 

This was done by Hansen [79]. In that case the expression for jz (m,n) is given by 

(5.59) 

where Jm-nl is a Bessel function. In the case of the (2,1) coil the value of 6.£ is 

about 480 and for the (3,1) coils it is 00, on Tokoloshe. 

5.8 Including the rotational frequency in the boundary conditions 

In the previous sections it was assumed that there was a non-conducting wall 

between the plasma and the vacuum. For such a configuration it was possible to 

derive an expression for ~I in the case of no external coil as well as when one was 
1 1 

included. Both these calculations excluded time dependence, reducing it to a time 

independent situation, i.e. when the plasma is locked and non-rotating. 

Another case that can be studied is the one where the plasma rotation frequency is 

infinite with a partly conducting wall or, equivalently, when a super-conducting 

wall is included. Then ~I = O. This was discussed in section 5.3. No external 
all 

coil is assumed to exist in this case. 
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When finite rotational frequency is included in the above case, where the plasma 

touches the non-conducting wall, difficulties arise [93]. However, when a vacuum 

region is included between the plasma and the wall, the expression derived by 

Gimblett [71] can be used at the wall. This is 

'LWTw B 
rw r 

B' I outs ide 
r inside 

Binside = Boutside 
r r' 

(5.60) 

(5.61 ) 

assuming a "thin" wall approximation, with W the mode frequency, Tw = rwDw/'f/w 

the resistive wall time, and rw the position of the resistive wall, Dw the wall 

thickness and 'f/w the wall resistivity. The frequency can be written as wim - W2n 

where Wi is the poloidal rotation and w2 the toroidal rotation. This is found when 

.( 0- ) 8Br 82Br 
Bre'L m ncp is used in or- = 'f/w ~ , and 0 = O(t), cp = cp(t). The following 

configuration is now assumed 

plasma 
regi 0 n I 

r=O 

plasma 
boundary 

vacuum 
region II 

r=l 

resistive 
wall 

vacuum 
regi 0 n III 

FIGURE 5.4 The configuration used when finite rotational frequency in included. 
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From the equations (5.17), (5.18), (5.30), (5.31) we have the following expressions 

BII 
r 

BII 
19 

BIll 
r 

BIll 
19 

Now we have 

-

-

·m 
~-a r 1 

- a' 1 

i[C 1 l~(mr) + C2K~(mr)] 

- fr::r [C 1 lm(mr) + C2Km(mr)] 

i C3K~(mr) 

- fr::r C3Km(mr) . 

at the plasma edge and 

iWTw BIll I 
r r r w w 

at the thin wall. 
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Let WTw - n. Then, with a1 and a'ievaluated at r=l, we get 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

This results in 

(5.66) 

from equations (5.62) and (5.63) . 

From equation (5.64), we get 

(5.67) 

Rewriting equation (5.65) results in 

(5.68) 
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When equation (5.67) is substituted in this equation, we get 

which can also be written as 

(5.69) 

with 

A 

(5.70) 

This results in 

I~(m) + A K~( m) 
(5.71) 

using equation (5.66). 

Equation (5.71) can be rewritten as 

aI/ B + iC 
ii1 - D + zE' (5 .72) 

with 

B 
I ~(mrw) 

- I~( m) - K~( mrw) K~( m) 
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D 
m 2 [ I ~( mr.) 1 
fn Im(m) - K~(mrw) Km(m) 

K"(mr ) I ~(mrw) 1"( mr ) 
m W] I 

C fnrw [m w - K/( ) Km(m) - -"l't K~(mrw) K~(mrw) m fnrw 

2 [K~(mrw) I ~(mrw) I ~(mrw) 
E m rw - K' ( )] Km( m) . - - --rr K~( mrw) K~(mrw) m fnrw 

a 11 The magnitude of ~ is thus 
a 1 1 

In the case of n ~ 0, we get from equation (5.72) 

fn K~(m) 
m 2 .... K..-m"T"( f-n"T) 

(5.73) 

which was derived earlier for the case of a locked mode (Le. equation (5.36)). When 

a 11 n ~ [I) , equation (5.73) reduces to ~ = 0 when rw ~ 1. This is in agreement 
a 1 1 

with the situation where the mode is rotating infinitely fast and there is no vacuum 

on the inside of the resistive wall, i.e. when the wall is seen by the plasma as 

superconducting. This was discussed in section 5.3. 

When n ~ [I) and rw 1= 1 , we get 

[ I~(m) I~(mrw)l 

K~(m) K~(m) K~(mrw) , 
K m( m) [ ..... 1 --,m(r-m--.),-----,I....,~r-r( f-n-r w'"'T') 1 

Km(m) - K~(mrw) 

(5.74) 
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using equation (5.72). 

When rw"':"'" 1 , it reduces to ~I = a , and when rw -!D we get 
all 

Km' (Ell) fn 
- m 2 'r>K~m-r( f-n ....... ) , 

as in the case of no wall. This result is arrived at when the asymptotic solutions of 

I~(x) and K~(x) are used and L'Hospital's rule is applied. 

In the following table the values of itl are tabled in the case of f = 0.1 and 0.5, 
1 1 

(m,n) = (2,1) and with rw(wall radius) = 1.1 and 1.01 where r=l is the plasma 

radius. 

f = 0.1 f = 0.5 

n rw = 1.1 rw = 1.01 rw = 1.1 rw = 1.01 

a -0.501 -0.501 -0.527 -0.527 

1 -0.462 -0.447 -0.489 -0.474 

2 -0.384 -0.353 -0.411 -0.377 

5 -0.227 -0.185 -0.246 -0.2 

10 -0.146 --0.104 -0.158 -0.106 

20 -0.110 -0.05 -0.118 -0.054 

!D -0.094 -0.01 -0.1 -0.011 

Table 5.1 

It is also shown graphically in Figure 5.5 . 
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£=0.1 £=0.5 

r w= 1.0 1 r w= 1.0 1 

-0 .50 .--.-----------------'---------"J 

-0.40 

-0.30 

'.\ , '.\ , \ , \ , \ , \ , \ ,. \ ,'. \ ,'. \ ,'. \ ,'. \ ,'. \ ,'. \ ,'. \ ,'. \ ,". "-,,-all ar 1 I ". "-,,-
-0.20 "-

"-
"-

"-
"-

...... _---------.....:-~-- -----------------------
-0.10 

0 .00L-------~------~-------L------~------~ 

o 6 12 18 24 30 

FIGURE 5.5 The graph of itl against n for rw = 1.1 and 1.01. When the 
1 1 

distance between the plasma boundary and the wall increases, the value of 

~ I deviates further from zero. 
a 1 1 

The values of ~I increases in magnitude when the vacuum· region between the a 1 1 

plasma boundary and the wall is increased. The parameter f does not have a 

significant effect. 

Lazzaro and Nave [86] found a result similar to equation (5.73). They found, in the 

case of a resistive wall, 

(5.75) 
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with 

f 
w2r - imwT 

'\) '\) 

(w2r~ + m2) , 

(J the vessel conductivity. 

For a perfectly conducting wall they found (f=l) 

at 
1 

When rw = 1 this reduces to a = O. When rw is shifted away from r=l, this 
1 1 

value increases (with negative sign) as was shown in Figure 5.5. When f=O 
at 

(agreeing with n = 0) in equation (5.75) we get ~ = - 1 jm , which agrees with 
1 1 

at 
1 

our locked results. For different frequencies the value of - varies between these 
all 

two extremes in a similar fashion to what has been shown in Figure 5.5. 

5.9 Including an external coil with rotational frequency 

When an external coil is included in the vacuum region outside the resistive wall in 

Figure 5.4, the following equations are valid in the different regions (with region IV 

on the outside of the coil): 
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BI 
r 

·m 2r a1 

I - a' B19 - 1 

BII 
r i [C 1 I~(mr) + C2 K~(mr)] 

BII - -m [C 1 Im( mr) + C2 Km( mr)] 19 Enr 

Bill 
r i[C a I~(mr) + C4 K~(mr)] 

BIll 
19 -m [Ca Im(mr) + C4 Km(mr)] Enr 

BIV 
r i Cs K~(mr) 

BIV 
19 -...!!!.... Cs Km( mr) . Enr 

These equations can now be coupled across the different boundaries, giving 

B!11 - Bill 
r 1 

B~911 - Bill 19 1 

Bill r rw - BIll I 
r rw 

iWTw BIll I 
rw r rw (B~IlI-B~II)lrw 

Bill I 
r re BIVI 

r re 

Bill I _ BIVI 19 re 19 re 
_ j(m,n) 

z , 
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which can be written as 

(5.76) 

(5.77) 

(5.78) 

i~:w [C 1 I~(mrw) + C2 K~(mrw)] = ([C 3 I~(mrw) + C4 K~(mrw)] 
- C1 I~(mrw) - C2 K~(mrw) ) m (5.79) 

(5.80) 

(5.81) 

The quantities a1 and a ~ are evaluated at r=l. 

From equations (5.76) and (5.77) 

(5.82) 

From equation (5.78) we get 

(5.83) 
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Equation (5.79) can be written as 

with 

o WT w as before. 

From equation (5.80) we get 

and from equation (5.81) 

I m( fnrc) 
- C3 Km( fnrc) 

- fnrc J' ( m,n) /K (mr ) + c -c . m z m c 4 5 

Now, if equations (5.85) and (5.86) are added, we get 

If equations (5.84) and (5.83) are added in the same way, we get 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

(5.88) 
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When C3 is substituted from equation (5.87) in here, we get 

with 

L(X) 
I ~(X) I m(X) 
K~(X) - Km(X) . 

This can also be wri t ten as 

with 

S(X) 

or 

with 

I ~(X) I ~(X) 
- K~(X) - K:(X) . 

A C + B J'(m,n) 
1 z 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

(5.93) 

(5.94) 
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B 

We can also write equation (5.76) as 

and equation (5.77) as 

If equation (5.97) is subtracted from (5.96), it results in 

or 

a 1 f n K~( m) 
ii- m2 Km{mJ 

K~(m) 
- a' L(m) C1 • m 1 

When equations (5.93) and (5.99) are substituted into (5.76), we get 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

(5.99) 
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+BJ'(m,n)K'(m) 1 
z m rna' 1 

j( m, n ) K' (m) 
r W A K' (m) ) r W B z m tIT 2 m + m 1 rna' 1 

I ~(mrw) 

- K~{fnrw) , 

Now, rewriting (5.100) results in 

1 1 1 1 fn 1 1 a ( a 
iii" - iii" K~( m) L(rnJ - rn 2 Km{ fn) L(rnJ) ( I~( m) + Ai K~( m) ) 

j ~ m, n) 

+B 1rna, K~(m)]. 
1 

(5.100) 
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or 

in 
rw 

(5.101) 

Equation (5.101) can also be written as 

all 
ji m ,n) 

a: A+ B + C 
in a' 1 1 1 

rw - (5.102) 
all 
iil 

D + E 

or 

B C 
j i m,n) 

n 
all 

+ a' zE -
1 Iw 

iil 
-

D n - A (5.103) 
z 

rw 
with 

B 
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D 
I~(m) 1 I~(mrw) 1 

1 - K~( m) L(ffiJ + K~( ffirw) L(ffiJ 

E 

a 1\ The magnitude of ii7 is thus 
1 1 

a 1\ ±j j (m, n) (5 .104) 
~1 (E ~/ (B z ) 2 + C a' + 1 rw 

(D n )2 A2 - + rw 

j( m,n) 

where Z I has been treated as a real quantity, as was found in equation (5.45). a 1 

Now, using equation (5.103), we can test this result. When n = 0 , we get 

J
. (m,n) 

1 Z 
--r (B + C::t ) 

i\. a 1 

E n K~( m) 1 Km( m) L( m) ji m,n) 

m2 Km( m) [ - re Km( mrc) L( mrc) -ar- ], 

as was found in equation (5.45). When n -+ (D , we get 

[ I~(m) 1;'( £nIw) 1 
all E En K~(m) K~(mJ K~(mrwJ 

~1 - -IT = - Km(mJ [ ~:i:~ ~ti::~ 1 
m 
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as in equation (5.74), from which the case of no wall can be found directly. When 

j~ m,n) = 0, we get equation (5 .72) as can be expected. Now, from equation 

(5.102), we get 

n I B + 
± rw 

C 
j~m,n) 

a l 
1 

all D iii + 
(5.105) 

Close examination of the equations of this section will show that the coil current 

and tearing island magnetic fields are considered to be in phase with each other. 

This means that the coil is rotating with the plasma which is not the situation we 

have on Tokoloshe, although it might be relevant to future work. 

When the external coil is fixed in a certain configuration, and the plasma is 

rotating, the tearing island will move in and out of phase with the coil as it rotates. 

If we now assume that the tearing mode stays saturated during the rotation, this 

model gives an approximation to maximum island size when the island is in phase 

with the external coil. The model clearly breaks down when the rotation is slow 

because island oscillation can come into play. 

Out of phase situations can also be considered by changing the sign of the current 

density of the coil current and gives an estimate of minimum island size. An 

arbitrary phase angle can also be included. 

This is the first time as far as we were able to determine, that boundary conditions 

for the case of plasma rotation with an external DC coil current have been derived 

in the presence of a resistive wall. ' 



126 

5.10 Minimizing the Energy with respect to 6 

It was thought that the energy of the equilibrium could be minimized with respect 

to 0 and thus fix the value of o. The energy can be expressed as 

E 

8 
a2B ~Ro f 27r 27r r 

1/2 r r V ¢.V ¢ r dr dOdrp , 
47r 2 0 Jo Jo .L .L 

(5.106) 

as was shown in Appendix B (neglecting pressure and flows). 

Let 

A(1) + 0 cos mn '*11 + ~ 02 cos2 mn ~11 (5.107) 

with 

1 
A(r) = r V ¢.V ¢rdr Jo .L .L 

and again using mn = (mO - nrp). 

If 0 is included explicitly in the expression for ¢, we get 

From 

we get 

V .L ¢. V .L ¢ - ( a I, + 0 a I. cos mn) 2 + ~ a ~ 02 sin 2 mn . 
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This is now substituted into the expression for E, to get 

271" 271" [ 1 [ E - K fa fa fa r (aop + 62(aiP cos 2 mn + 2aOa'l 6 cos mn + 

~ a~ 62 sin2 m.n ] dr 

+ [(aop + 2aOa'l 6 cos mn] 11 6 cos mn 

+ [(aop + 2aoa~ r] 11 62 cos2 mn ] dOdrp, (5.108) 

with K a normalization constant. 

Thus the resulting energy is of the form 

E A+B62 • 

To minimize E with respect to 6, we must have m = O. The only solution is 

6 = 0, which is not in general the case for situations considered here. Thus 6 is to 

be determined in some other way. This is done in the next chapter. 

5.11 Conclusions 

Boundary conditions for the proposed model of chapter 4 were derived. It is now 

possible to have a saturated island with any of the situations of a locked or rotating 

plasma, with or without an external coil current, with or without a resistive wall. 

The value of the basic model proposed in chapter 4, with respect to these different 

situations will now be studied in chapter 6. 
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CHAPTER 6 

\ 

THE RESULTS OF THE ONE MODE MODEL 

6.1 Introduction 

In this chapter the axisymmetric perturbation 8J in the new proposed model of 

section 4.4 is modelled. An unperturbed current model which has been used with 

some success on the Tokoloshe tokamak [94] is used, together with two possible 

functional forms for bJ. No significant difference was found between the two 

models. 

The width of the local flattening caused by 8J is specified by a parameter w. This 

parameter has very specific values for different boundary conditions - reducing the 

theoretical modelling to an eigenvalue problem. Boundary conditions considered are 

for a superconducting wall, no-wall and external coils. Findings are presented for 

(2,1) and (3,1) modes. 

The parameters of the unperturbed current profile are changed allowing flattening 

or peaking of the overall profile. It is found that peaking of the profile can lead to a 

bifurcation where there are no tearing modes present when Br = 0 at the 

boundary, but where a tearing mode does exist for some Br t- 0 at the boundary. 

The first part of this chapter contains the general results for rotating or locked 

modes, i.e. with Br = 0 at the boundary as well as Br t- 0 at the boundary. It 

does not include the effects of external coils, which are discussed in the last part of 

this chapter. 
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6.2 The Functional Form of 6J(r) 

In the consideration of possible functional forms for oJ, the following constraints 

need to be satisfied: 

(a) The total current must stay unchanged. This condition can be expressed 

mathematically as 

1 f oJ dr 
o 

o. (6.1) 

(b) If only the first term is included in the expansion for J(.;p), that is 

A dJ (.;po) 
'1/11 A cos mn, it is clear from equation (4.21) that J/(r) must be 

d'l/1o 

zero at r = rs to keep d~ I finite. (The prime denotes derivatives with 
d'l/1o rs 

respect to rand J(r) denotes the modelled axisymmetric current profile 

J(.;po(r)). To have J(r) as a single valued function of .;po, the second 

derivative of J(r) must also be zero, as was discussed at the end of section 

4.4. 

A simple functional form that satisfies equation (6.1) if rs is not too close to the 

wall, is 

.£.2 
OJ - glP e -(w) (6.2) 

where 

p r - rs + d , 
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with gb d and w parameters to be determined. This functional form allows for 

the position where oJ = 0 to be shifted a distance d a.way from the rational 

surface as was found by White et a1. [3] . Their form for oJ is shown in Figure 6.1. 

0.1 

0.0 

-0.1 ~--------~----------~--------~---------
0.2 

FIGUlE 6.1 

0.3 0.4 r 0.5 

The functional forms of OJ(r) and jl(r) as was found by White ct al. 

[3]. The point OJ(r) = 0 is shifted a small distance from rs. 

In this chapter an unperturbed profile Ju(r) of the form 

(6.3) 

is assumed. This is done because a similar profile has been used wi th some success 

on Tokoloshe, and we want to relate our results to experiment. The profile used on 

Tokoloshe is the one given in equation (6 .3), but only va.lid from r=O to r=t, where 
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t is chosen on the inside of r=l (i.e. t < 1). From r=t to r=l it is assumed that 

Ju(r) = a [94]. 

For the perturbed axisymmetric profile the values of gl and d will be fixed when 

the two equations flowing from J I (r) I = 0 and J" (r) I = a ,(constraint b 
rs rs 

above) are solved. From J I (r) I = 0 we get 
rs 

and from J"(r) I = a we get 
rs 

with 

-1 
A - 2(b-1) r~ (1-r~) - 1 . 

When the normal procedure to solve a cubic equation is followed, it is found that all 

three roots are real. One is always close to zero. Of these the only realistic current 

density profil.e is the one with negligible shift d. The other two result in J/(r) 

becoming positive in the region to the right or left (depending on the root being 

positive or negative) of the rational surface. This can be illustrated by an example. 

For rs = 0.5, w = 0.05 and b = 2.6 the following roots were found: 



d =-0.0004 

dO.0608 

d -D.0616 . 

132 

The only useful root is d = -D.0004. The different forms of the curr~nt profiles for 

different d's look as follows: 

0.2 

o 

FIGUlE 6.2 

-_ d = -D.0004 
- --- d = 0.0608 
-- - .. d = -D.0616 

The three possible profiles agreeing with the three values of d for 
rs = 0.5, w = 0.05 and b = 2.6. 

As was shown in the above example, we found d rv 0.0 for profiles of the form given 

in equation (6.3). There is thus no shift away from the rational surface in the 

position where oJ = 0 as in the case of White et al. [3]. 

Another possible functional form for oJ is 

oJ (6.4) 
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For a current profile of the form given in equation (6.3), we get 

oj (6.5) 

This profile also has the feature that the first and second derivatives are zero. The 

different forms of oj given by equations (6.2) and (6.5) are shown in Figure 6.3 

below. They are so similar that no differences can be detected. This also explains 

the fact that no significant difference was found between the results. 

FIGUiE 6.3 

0.02 

oj 

-0.02 
o r 1 

The forms of OJ(r) for equations (6.2) and (6.5) are indistin­
guishable. 

6.3 Determining the Equilibrium and Perturbed Quantities 

When either of these forms for oj (equation (6.2) or (6.5)) is included in the 

prescribed profile, J(r) = Ju(r) + oJ(r), there are four unknowns that must be 
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determined, i.e. go' b, rs, w. The first · two are linked to the overall profile form 

(peaked, rounded, flat), the last one (i.e. w) is the eigenvalue of the problem giving 

the local flatness of the profile at the rational surface, and rs is to be found 

iteratively. 

It is easy to show that, for an unperturbed profile of the form given in equation 

(6.3), we have 

(6.6) 

and 

(6.7) 

where q is the safety factor given by 

HI I q - - ao · (6.8) 

The notation \ 0 denotes "at r=O". For reasons of simplicity we write q\ 0 as qo 

and q\l as ql in the case of the safety factor. This does not hold for other 

quantities where the "0" refers to equilibrium and the "1" to perturbed quantities. 

The profile given in equation (6.3) has been used with some success on Tokoloshe. 

During a typical shot the plasma is first in the so-called high MHD phase, 

corresponding to ql = 3.6 and 1.3"5 qo"5 1.6, and then reaches the so-called low 

MHD phase, corresponding to ql = 3.6 and qo"5 1 (as signalled by the onset of 

sawteeth). In Figure 6.4 below it is shown how the plasma is first in the high MHD 

phase and then in the low MHD phase during the natural evolution, without 

external coils, as the current peaks. 
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fIGUlB 6.4 The typical evolution of a lirnov signal through the high and low IUD 
phases. 

When the perturbation OJ is added to Ju(r) to give the perturbed axisymmetric 

current profile, the relations given by equations (6.6) and (6.7) do not hold any 

more. 

As the total current is fixed, the q-value at the boundary must stay unchanged, as 

can be seen from the expression 

l/ql = [~fo 1 rJ(r)dr] 11 . (6.9) 

After ql and qo are chosen, we use equation (6.7) to get the parameter b which 

specifies our profile type (peaked, rounded, flat). It is important to note that this is 

just a simple way to determine a useful b. The correct qo will be calculated later 

and ql is included implicitly via the boundary condition ao 11 == -a/q111 ' given in 

equation (5.9). 
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For any value of w) the profile would be fully specified once go is known. To 

determine go we make use of the fact that Be I = ao I = 0 for m ~ 2. The 
o 0 0 

parameter go is now varied until this condition is satisfied. With go' ql and b 

known (for any value of w), we can calculate the corrected value of qo from 

equation (6.8). 

We know that ~o I = 0 (from equations (4.9) and (4.4)). Remember that 1/10 is 
rs 

related to the helical magnetic flux. This enables us to determine the value of rs. 

This value is adapted during every iteration in the process of finding go' Once go 

is known, r s is also known. 

The final current profile can now be calculated for any value of w. It has the form 

shown in Figure 6.5. 

FIGUlB 6.5 
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J(r) 

0.05 

0.0 o----nt-~~~~~ 
0.0 0. 2 0.4 0 .6 0.8 

r (norl11 uniLs) 

The forms of the perturbed and unperturbed axisymmetric current 
densi ty profiles. For this graph we used the OJ specif ied ln 
equation (6 . 5) with w = 0.1128, b = 1.25, ql = 3.6 and qo = 1.6. 
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Using this profile in equation (4.35) enables us to calculate ao and thus the helical 

magnetic flux ~o (using equation (4.37)), which has the form given below. The 

graph of the safety factor for a perturbed and unperturbed profile is shown in Figure 

6.7. 
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The graph of 7/Jo for b = 1. 25 and w = 0.1132. The value of ql was 

3.6 and qo was 1.6. 

q(r) - perturbed 

'-
q(r) - unperturbed 

0.2 0.4 0.6 0.0 1 
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The graph of q for the perturbed and unperturbed axisymmetric 
current density profile. The parameters were w = 0.1275, b = 1.77, 
ql = 3.6 and qo = 1.6. 
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All the equilibrium quantities are now known. The next step is to calculate the 

perturbed quantities, al and a~. This can be done using equation (4.36), but this 

requires the further axisymmetric quantity dJ( ~)/d~o. This is rewritten as 

J' /~'o. Both these quantities (J' and ~'o) are shown in Figure 6.8. In both these 

cases the unperturbed quantities are also shown. It is clear that the effect of oJ is 

to make J' zero at the rational surface. For these calculations the model specified 

in equation (6.5) is used . 

r 

FlGUlB 6.8 

0.02 

0.01 

~'o(r)- .perturbed 
0 .0 ~ 

~'o(r) - unperturbed 

-0.01 
0.0 

r 

(a) (b) 

(a) The graph of J'(r) for both the perturbed and unperturbed 

axisymmetric profiles. (b) The graph of ¢'o for both the perturbed 

and axisymmetric unperturbed profiles. 
\( = 0.1275, b = 1.77, ql = 3.6 and qo = 1.6. 

The parameters are 
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The factor dJ( ~o) / d~o can now be constructed by dividing J' by 'I/J'o. For this 

factor to be well-behaved the rational surface must be calculated very accurately to 

ensure that both J' and ~'o are zero at rs . If this is not the case the mentioned 

factor will blow up because J' I f. 0 will be divided by ~'o I = O. From Figure 
rs rs 

G.9 it is clear that it is indeed well-behaved. 

Using the boundary conditions specified by equations (5.10) and (5.11), we can now 

solve equation (4 .36) to get results for the (2,1) or (3,1) modes. 

100 

0 .0 

- 100 

-200 ~----~~ __ --~~I~----~I~ ______ LI ______ ~ 
0.0 0.2 0.4 0.6 0.0 1 

I' (norm units) 

FIGUlB G.9 dJ • 
The graph of /d'I/Jo. It is generated by dividing J' (r) by 'I/J'o . 
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6.4 Solving for the eigenvalue of the problem 

'6.4.1 Determining the local flatness of the current density profile with a 

saturated tearing mode present 

In this section we will show that the local flatness of the current density profile (at 

the rational surface) expressed in terms of the parameter w, is dependent on the 

all . Br I quantity - which is proportional to B": . Every value of w can be related 
a I 1 19 1 

1 

to a specific value of :':1 . It is now important to recall that different external 
a' 1 

1 

physical situations, i.e. superconducting wall, partly conducting wall with a rotating 

all plasma, no-wall, external coil etc. are related to different expressions for - as 
a' 1 

1 

was discussed in chapter 5 (equations (5.36), (5.45), (5.71), (5.104)). This means 

that these different external situations are related to different values of w. 

When all/all 1 is plot ted as a function of w, we get the graph in Figure 6.10 for a 

(2,1) tearing mode during the high MHD phase (qo = 1.6, ql '= 3.6) on Tokoloshe. 

(The 8J perturbation used is given by equation (6.5)). Figure 6.11 illustrates a 

similar graph for the (3,1) mode with qo = 2.0 and ql = 4.5. In Figure 6.12 the 

(2,1) and (3,1) modes are compared for qo = 1.75 and ql = 3.6 i.e. during the 

high MHD phase. When b is changed and thus the functional form of the profile, 

the vertical asymptote is shifted to the left or right. 

The value of w where the vertical asymptote occurs is much smaller for the (3,1) 

than for the (2,1) mode. This was generally found to be true for the overall current 

profile form of equation (6.3). It means that the (3,1) island size is much smaller 

than the (2,1) for this profile. (We will show later that w IX W(island size)). 
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FIGUlB 6.10 The graph of a~/alI1 against w for a (2,1) mode. It has an 

asymptotic behaviour about a certain w as well as a certain 

value. 
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FIGUlB 6.12 Both the (2,1) and (3,1) modes are shown on this graph for ql = 3.6 

and qo = 1. 75. The value of w about which the asymptote occurs is 

much larger for the (2,1) than for the (3,1) mode. 

It is important to note that it has been found numerically . that the graphs are 

independent of 6 (the parameter of the boundary condition ra = 1 + 6 cos mn). 

This can be seen from the fact that a l is an explicit function of 6 (from equation 

(5.10)). When 0 and r are independent of each other, then a'l would also be a 

function of O. This is implicit here since we do not use an analytic expression for 

a' 
a'l - it is a shooting value. From these arguments it is clear that a!-I should be 

1 1 

independen t of O. 
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For a certain value of 8 the value of aliI can immediately be calculated using 

equation (5.10). This will then give a graph of a ~ 11 or aliI against w - enabling 

us to get a well-determined value of alII 1 for all w. The same reasoning is valid 

for f. It was thus also found that the graph is independent of the value of f. 

a' 
We will now use Figure 6.10, which shows the general behaviour of _11 against 

all 

w, to discuss the general features of the results. An interesting feature is that the 

top-left part and the bottom-right part have two different types of solutions for 

al(r) . 

The solutions of al(r) are shown in Figure 6.13, and are representative of the (2,1) 

or (3,1) mode. Solution Type I is presented in Figure 6.13(a) and Type II in Figure 

6.13(b) and 13( c). In the case of solution II the value of a ill can be positive 

(Figure 6.13(b)) or negative (Figure 6.13(c)), giving rise to a slight difference in the 

form of the solution. 

These solutions (Types I and II) agree with those found by Ellis [31], using linear 

perturbation theory as we do. Using the criterion developed by him and adapted by 

Hansen [79] (i.e. if the curve of a1 cuts the a1 = 0 line inside the plasma, the 

profile is unstable to tearing modes, otherwise it is stable), it is clear that the Type 

I solution corresponds to a tearing mode unstable situation. As w is increased, we 

go from a Type I (tearing mode unstable) to a Type II (tearing mode stable) 

solution. The effect of an increasing w is thus to drive an unstable equilibrium 

stable as was also found by Ellis [31]. Another feature of the graph shown in Figure 

6.10, is that the point where the ai/all -I ± w , agrees with all = 0 (Le. 
· 1 1 

Brl = 0). The point where a~/all = 0 corresponds to ail = 0 (Le. Bo I = 0). 
1 1 1 1 1 
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FIGUlB 6.13 (a) Type I solution. This agrees with a tearing mode unstable 
situation which is found to the left of the vertical asymptote on 

Figure 6.10. (b) Type II solution with a~ 11 positive. This is a 

tearing mode stable situation and is found to the right of the 

vertical asymptote. (c) Type II solution with a/ll
l 

negative. 
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These results are totally general and any set of external conditions (like an external 

a' I coil for exam pIe) can be coupled to 1/ a 1 1 . 

When the plasma is rotating infinitely fast (the rotation frequency W -I CD) and the 

wall is partly conducting or in the case of a superconducting wall, the radial 

magnetic field is not allowed to penetrate the wall, giving rise to Br 11 = 0 when 

the plasma touches the wall. It is thus clear that the point where ai/aliI -I ± CD 

gives the eigenvalue w of the problem in such a case. The physical interpretation 

of this is that the local flatness of the current profile at r = rs (expressed 

mathematically as w) is now given for the case of a fast rotating plasma (or 

superconducting wall). This position on Figure 6.10 agrees with marginally stable 

equilibria -lying between the stable and unstable equilibria as was discussed in the 

previous paragraph. 

In the case when the plasma is non-rotating - allowing Br to fully penetrate the 

wall - the eigenvalue w will be determined by the external conditions, i.e. whether 

an external coil is switched on or not. In the case of . I# = 0 we have 

aI/ail I = -D.501 (for E = 0.1) for a (2,1) tearing mode as was shown in equation 

(5.37). When an external coil is switched on, al/a'lll is dependent on the value of 

j~ m,n) as was shown in equation (5.45). 

We can now see why it is an eigenvalue problem. For any boundary condition 

a' I . 1/al I we have one dIscrete value of w. The boundary conditions thus determine 

the "eigenvalue" of the problem, i.e. what amount of local flattening at r = rs 

(described mathematically as w) is associated with that specific perturbation of the 

boundary. 
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Another important feature of Figure 6.10 is that this gives all the possible values of 

w for different all/alii which can be associated with different degrees of flattening 

in the process of island growth. When growth occurs in an adiabatic way because of 

external perturbations (i.e. changing a~/alll)' this graph gives all the possible 

saturated islands associated with a particular overall current density profile. 

There is a last point to mention. The vertical asymptotes occur at a much smaller 

w for the (3,1) mode than for the (2,1) mode as can be seen from Figure 6.12 for 

qo = 1. 75, ql = 3.6. This was found to be a general feature of the profile defined in 

a
l 

I equation (6.3). For any value of l/ai 1 the value of w will thus be much 

smaller, meaning that the same outside physical situation will lead to a 

comparatively smaller (3,1) island (it will be shown that w N W(island size)). 

Because of this we will only focus on the (2,1) mode for the rest of this chapter, for 

which the current profile is ideally suited. 

6.4.2 An analytic approach to the problem 

The solution of the equation for the perturbed magnetic flux has been found 

numerically in the previous section. In this section we show that the same type of 

solution can be found when the factor dJ( ;Po) /d;Po is modelled, and the equation 

solved analytically. This serves as a check on the previous work. 

The form of the factor dJ( ;Po) /d;Po is shown in Figure 6.9. This form can be 

modelled with three simple functions 
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p(I) - b sin [ I-IS] 
WI ' 

Is - Xl < I < Is + Xl 

I < Is - Xl 

r > rs + ~l 

with 

It is shown in Figure 6.14. (Only the first three terms of the expansion for 

sin (r-rS) have been included in the series). 
WI 

100 

p(r) 

-100 

a I 1 

FIGUlB 6.14 
dJ ~ 

The graph of /d1/lo as modelled by p{r). 



148 

These functions p(r) can now be substituted into equation (4.36) and solved 

analytically by the method of Frobenius assuming 

and m=2. 

The solution in the region r < rs - xl is 

with 

and the solution in the region r > rs + Xl is 

with 

The solution of the middle part, which is more complicated than the solutions of the 

side parts, is given below: 



Aa 

1 10r~/(51 s) A4 - (3!wl) - .wl 

5r s 
As - - {5!wV 
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(6.10) 

This solution is not matched smoothly to the one in r > rs + Xl, because of the 

neglected higher order terms. However, it can be seen from Figure 6.15 that the 

solutions agree qualitatively with those found numerically. The marginally ~table 

solution is found at w 1 ~ 0.133. For w 1 = 0.131 the unstable solution (in 

qualitative agreement with Figure 6.13a)) is given in Figure 6.15a), and for w 1 = 

0.136 the stable solution (in qualitative agreement with Figure 6.13b)) is given in 

Figure 6.15b). 

This relatively direct way of obtaining analytic estimates for stability emphasizes 

the possible power of the model, and should be persued in the future. 
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(a) The analytic solution al(r) for WI = 0.131. This agrees with 

the unstable solution. (b) The analytic solution al(r) for 

WI = 0.136. This agrees with the stable solution. 

6.5 The Island Width 

6.5.1 A method to determine the island width in general 

In determining the width of the island, we make use of the fact that the helical 

magnetic flux will have the same value at both the X-point and at the island edge 

at the position of the O-point. This is the same assumption that has been used to 

determine the well-known approximate formula for the island width [3], i.e. 

w (6.11) 

The total functions ~(r,ObCPO) and ~(r,02'cpo) can be drawn as functions of r, where 

01 is the poloidal angle corresponding to the position of the X-point and O2 the 

poloidal angle at the O-point (CPo is any chosen toroidal angle, taken to be zero in 

1 
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this case). These functions have a minimum at the radial point where the X-point 

occurs (in the case of ~(r,ObCPO)) or at the radial point where the O-point occurs (in 

the case of 1p(r,02,CPO))' This is shown in Figure 6.16, where 01 =; and O2 = o. 

Using the fact that 1p(X-point) = 1p(island edge in line with O-point), the island 

width (W) can easily be determined as shown in Figure 6.16. 

The values of 'If; at the 0 and X-points can be calculated. They are 

'If; . t -O-pom 

'If; . 
x-pomt 

We assume that the island perturbation is of the same phase as the outer boundary 

(ra = 1 + 6 cos (mO-ncp)), as has been done by Reiman [75] and Rahm and Kulsrud 

[16]. AT the X-point the value of ra is just ra = 1-6 (minimum) and at the 

O-point ra = 1 + 6 (maximum). It is now clear that the solution al(rS) < 0 

corresponds to 8> 0, and al(rS) > 0 to 8 < O. When the sign of 8 is changed, the 

value of all
l 

changes sign and the solution also changes sign. A change in the sign 

of 8 thus corresponds to changing the orientation of the island. 

This method makes it unnecessary to go through the time-consuming process of 

fieldline tracing to calculate the island structure. When points of similar ~ are 

connected, a contour plot of ~ can be drawn showing the island structure clearly. 
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The graph of ¢ at 0 = ~/2 and 0= 0 agreeing with the poloidal 

angles where the X-point and the D-point occur. The value of ¢ at 

the I-point is the same as that of ¢ at the island edge at the 
O-point. From this information it is possible to determine the 
island width (V) as shown. 

This is done in the next section. Another point of interest . is of course that the 

plama response is included in the calculations. 

We can at this stage make some estimate of the errors involved in the calculation of 

the island size. Using the same method as was applied to calculate the island width 

formula, we can assume that the VV N (all )t relationship will hold. VVe know 
rs 

that the error involved in our expressions is O( f3), i.e. one order smaller than a l 

which is O( f2). The error in W is thus [O( f3)]t , which is clearly small. 
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6.5.2 Using b.' (W) = 0 to calculate the saturation width 

Although it is now possible to calculate the island width for any value of Br(rs), it 

is still not clear what the final saturation width would be for a natural (or 

externally induced when I#:f. 0) island since 6 remains undetermined. We now 

adopt the method of White et al. [3]. They found ~'i = 1.66 1J(rs)[b. 1 (W) - aWl, 

with 

b.' (W) (6.12) 

where w+ is the outer edge and w- the inner edge of the island (;P1 = at), and a 

a parameter depending on the resistive profile among other things. This b.' (W) is 

calculated over the island width which is also their "inner region" . Although we do 

not have an inner and outer region in our approach, we do have a saturated island in 

the plasma over which the abovementioned b. ' (W) can be calculated. Once the 

island is saturated (~'i = 0), their expression reduces to !:l' (W) - a W=O. 

When 1J N 1/ J, the form of !:l' (W) - aW is very similar to· that of b.' (W) [3]. 

This is shown in Figure 6.17 which is taken from their publication [3]. In another 

publication it was shown that the effect of a is indeed negligible [46]. This is 

shown in Figure 6.18. In a simple approach b.' (W) = 0 can thus be assumed for a 

saturated island, which is the form originally derived by Rutherford [2]. 
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FIGUlE 6.17 This is taken from \lhite et al. [3]. The island growth rate in the 
R.utherford regime against width is shown. 

The approach of White et al. is however, only valid when a superconducting wall is 

present. When a perturbed boundary is allowed, their formula has to be adapted. 

Reiman [75] defined a criterion that is slightly different from that of White et al. It 

is given as: 

!J. 1 (W) 
£1 

(6.13) 

It can also be written as [75] 

!J. ~ (W) = !J. 1 (W) - [£ d ~1(rS)]/ (7' (W) , 
1 . 

(6.14) 

where (7' (W) is a function depending on W, c: 1 = ~1(1), and !J. 1 (W) refers to 

!J.I (W) with £1 = o. 
fl 
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FIGUiE 6.18 This is t aken from Carreras et al. [45J. Their results are compared 
\lith that of Wh i te at al. [3J fo r their peaked model. 

The following relations now hold [75] : 

1 im 6,'(W) 
W-IO 

6,' (W) 

6,' , (6 .15) 

where 6,' is the linear rendering first derived by Furth et al. [1]. We will use this 

generalized form of 6,' (W) in our work which includes external perturbations. 
E 1 

We can now get important information from Figure 6.10. As was discussed earlier, 

the ratio a 11 can be related to different external physical situations, i.e. 
a' 1 1 

superconducting wall, partly conducting wall with rotating plasma, no wall, external 

coils with a rotating or locked plasma. This was discussed in chapter 5. This value 



156 

Of:":\ can now be chosen according to the external situation, i.e. if the plasma is 
a' 1 

1 

locked with no wall, :":1 = -0.5 for a (2,1) mode (using equation (5.37)). When 
a' 1 

1 

the physical situation has been chosen, there is a certain w value corresponding to 

it (from Figure 6.10). 

The way to set-up the numerical program, is to define w as input parameter. 

There are then many possible values that 6 (and thus a111 - using equation 

(5.10)) can have. We can now vary 6 until I:l ~l(W) = 0, which determines the 6 

corresponding to the saturated island width. Every value of w is thus related to a 

value of 6 using the I:l' criterion. 
fl 

In some of the expressions of:":1 the value of a'l I is also needed, i.e. equation 
ai 1 1 

(5.45), (5.71), (5.104). This is now known because:":1 as well as ail is known. 
a I 1 1 

1 

This is important because we are now able to determine Br I (from all ) as well 
11 ' 

as Be (from ail ) for a saturated island with a perturbed boundary. It is not 
1 1 

straight forward to calculate both these quantities in other models. 

We can now look at the effect of a change in boundary conditions. If 6 is increased 

for some reason (not important for this discussion), the value of w will increase 

and with it the current profile would become more flattened. We will show that 

this corresponds to an increase in island size. Figure 6.10 thus gives all the possible 

islands (parameterized as w) for any boundary condition that a specific equilibrium 

current profile can have access to if changed in an adiabatic way, and assuming our 

model is valid. To our knowledge this concise picture has not been shown before. 
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Contour plots for J(~) and 1/J with a (2,1) tearing mode present are shown in 

Figures 6.19 and 6.20. The cases for a (3,1) mode are given in Figure 6.21 and 6.22. 

In these the island widths have been determined by varying 8 (the edge 

perturbation) until /:1' (W) = O. The corresponding graphs for ~r) and jl(r) 
El 

(and 8J(r)) as a function of r are shown in Figures 6.23 and 6.24 in ' the case of a 

(2,1) mode present, and in Figures 6.25 and 6.26 in the case of a (3,1) mode. For 

the (2,1) mode the plasma parameters are qo = 1.6, ql = 3.6 and in the case of the 

(3,1) mode qo = 2.0 and ql = 4.5. The relation of jl(r) to 8J(r) is determined by 

the island width which is dependent on a1(rS)' When a 1(rS) increases, jl(r) will 

also increase because it is a function of a 1(rS)' as was shown in equation (4.16). 

6.5.3 The form of the total current J(~) inside the island 

In our model it was assumed that the total current J is a function of 'I/J . This 

J(~) function will now be discussed both inside and outside the island. 

(a) Outside the island: On the outside of the island J(~) is double valued, 

as was shown in Figure 4.2 for the case of no island . . Although it looks as 

if J(~) has two values at the same ~, it is actually two values of J(~) 

corresponding to two different flux surfaces having the same value of 1/J. 

This can be seen from the form of ~ in Figure 6.16. 

(b) Inside the island: J (r) has the same value at different r inside the island 

as is shown in Figure 6.27 for a (2,1) mode with qo = 1.6 and ql = 3.6. 

The two radial points at which J(r) has the same value, correspond to 

the same flux surface, having the same value of ~. This means that 

J(~) will be single valued inside the island as was shown in Figure 4.3. 
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FIGUlE 6.20 A contour plot of 'l/J with a (2,1) mode present. 
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FIGUIB 6.22 A contour plot of 'IjJ for a (3,1) mode present. 



0.073 

t-:\NO.072 
II 

CI) 

0.07 
0.0 0.2 

162 

0.4 0.6 0.8 1 

r (nonn units) 

FIGUlB 6.23 The graph of 'I/J at both the X and O-points. A (2,1) mode is present. 

As before 'I/J at the X-point is the upper of the graphs. 
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FIGUlB 6.24 Both OJ(r) and jt(r) are shown for a (2,1) mode. 
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The graph of 'IjJ for both the 0 and X-points with a (3,1) mode 
present in the plasma. The difference is negligible. 
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Both OJ(r) and jl(r) are shown for a (3,1) mode. 
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The current density profile for a (2,1) mode. It is given at the 
O-point. 

When only first order terms are included in J( ~), an error of O( (2) is included: 

J( ~) 

The result of this error is that B.VJ ~ 0((2) . The current will thus not be exactly 

along flux surface and will thus also not be exactly single valued inside the island. 

In Figure 6.28 J( -if;) is shown as calculated by our model. The error in J( -if;) in the 

island can be detected. If all the terms were to be included in the perturbation 

expansion, this error would be excluded from the problem. 
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The graph of total J(~) with an island present. Because of error 
terms the current is not single valued inside the island. This is 
indicated wi th an arrow ; 

When the position of the sepatrix of the saturated island is calculated at the O-point using 

the schematic current profile of Figure 6.29, we assume that r = W + is where J'(r) = 0 

and J"(r) > O. The value of r = W _ is then found using the fact that J(W +) = J(W J 
From the form of J(r) as shown in Figure 6.29, it is clear that an error of O( £2) would 

not move r = W _ too far from the correct value calculated using the helical magnetic flux 

because of the steep slope of J(r) at r = W _. On the other hand, r = W + can be shifted 

quite a bit from the correct value if J(W +) has an error of O( £2). From this it is clear 

that using the current is not a good way to calculate the island width in this model. 

It is probably possible to force B.VJ = 0 with the right choice of oJ consistent with 

J" Irs f O. To accomplish this a more complicated form of oJ would be needed, which, 

coupled to some iteration scheme, would make B.VJ = 0 , i.e. J(~) single valued inside 

the island. We did not investigate this possibility further. 
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A schematic diagram of the current density profile. A small error in 
the value of J(r) can cause a significant error in the calculation 
of the island size. 

6.5.4 The validity of the island width formulae 

As was discussed in the beginning of section 6.5.1, the island width formula (given 

by equation (6.11)) is an approximation to the real island width, which can be 

calculated accurately as was described in that section. The values calculated from 

the model are compared below to those calculated using the formula. The % error 

between these calculations is also presented. 

0 [0 7.5[0 Wmodel Wformula % error 

0.01 0.1 0.75 0.61 0.77 26 

0.005 0.071 0.53 0.48 0.54 13 

0.001 0.032 0.24 0.24 0.24 a 
0.0005 0.022 0.17 0.17 0.17 a 
0.0001 0.01 0.08 . 0.08 0.08 a 

(given for (m,n) = (2,1), qo = 1.3, ql = 3.6 with a locked mode). 



167 

From the above results it is clear that the island formula is a good approximation 

when the island width is smaller than about 0.3 of the minor plasma radius. 

We also tested a relation of the form W N [i5 and found good agreement, especially 

with the island width formula. The constant of proportionality, calculated to be 7.5 

in this case, will change when the profile is changed. 

6.6 Calculating Flows 

A resistive profile of the form 

T/( r ) - 1/ J u( r) , (6.16) 

where Ju(r) is the unperturbed current profile, was included in the model. Such a 

model is used quite often [3,4]. The motivation for this type of model was discussed 

in sections 4.5.1 and 4.5.2. This resistive model can be interpreted as an 

approximation to the resistive profile T/(r,O,cp) = 1/J(r,O,cp) which makes use of 

Ohm's law where y (the velocity) = O. When the flow is now calculated for a 

resistive profile of the form given in equation (6.16) (using equation 4.47)), this flow 

can be interpreted as the flow error involved when the unperturbed current profile is 

used instead of the perturbed current profile in equation (6.16) i.e. when the 

resistive profile is not relaxed as is done with the current profile. The flow pattern 

for the abovementioned resistive profile is shown in Figure 6.30. 
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The flow pattern for a resistive profile of the form ~ = 
1J(r)=l jJu (r). The parameters of the model are b = 1.25 and 
w=O.112S. 

This is not the only way to interpret this flow . When the resistive profile is 

assumed to be like the one in equation (6.16) then this is what the flow would look 

like. Using the velocity expression y = VUA~ (i.e. equation (3.22)), we can see 

that the flow in Figure 6.30 is the radial flow (Vr = mb 1). The poloidal flow 

changes sign at about rs, using the fact that Va (X -bi . 
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6.7 Equilibrium Effects 

We assume that the equilibrium current profile has the form given in equation (6.3). 

The value of the safety factor qo can now be varied implicitly by changing b 

(using equation (6.7)), giving rise to a very peaked profile where qo N 0:7, ql = 3.6 

and a more rounded profile with qo N 1.3, ql = 3.6. 

6.7.1 Driving a tearing mode stable situation unstable with mode locking 

For both rotation and non-rotation the local flatness of the current density profile 

at the rational surface with a (2,1) mode present, first increases and then decreases 

when the on-axis current of the profile increases (qo gets smaller). This is shown in 

Figure 6.31. From this figure it is also clear that the profile is flatter at r = rs 
when the plasma is locked than when it is rotating. 
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is small the profile is very peaked. When qo is large (i.e. 1.6) 

the profile is round. Also shown are the values of w for the case of 
an inf ini tely fast rotating plasma wi th a partly conducting wall, and 
the case when the plasma is locked. 
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In the next figure a similar graph is shown for the island width. It is immediately 

clear that there is no real difference between the w (the flatness parameter in 

equation (6.5)) and W (the island width) behaviour. The relation between W 

and w is discussed in section 6.7.2. 
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The graph of the island wi dth against the current profile type. The 
effect of locking is the largest when qo ~ 0.8.' 

A schematic graph very similar to Figure 6.32 was presented by Reiman [75]. In his 

approach he specified a profile parameter 'Y which is related to /)., , i.e. /).' 

increases monotonically with 'Y . For £1 (i .e. ~111) = 0 a bifurcation point is 

found at /1' = O. When /1' < 0 there is a unique solution, corresponding to a 

cylindrically stable equilibrium. When /1' > 0 there are two possible stable 

solutions agreeing with non-axisymmetric equilibria with islands (~l(rS) can be 

positive or negative). This is shown in Figure 6.33, taken from his publication. 
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When f 1 1= 0, the situation changes. The island width is now not zero at the point 

I:::. I = O. This is shown in Figure 6.34, also taken from this publication [75]. 

FIGUlB 6.33 

stable unstable 

The graph of ~l(rS) against a profile parameter 'Y which is 

directly related to I:::. I • At I:::. I = 0 there is a bifurcation point. 
To the right of this bifurcation point we find the two possible 

situations with a saturated island present, i.e. with ¢1 negative 

and positive. 

In our approach, the fast rotating case (0 -I w) agrees with fl = 0 and the locked 

case with f 1 f O. The parameter qo is used to change 1:1'. As qo decreases from 

qo = 1.0, 1:::.' decreases as can be seen from the island width calculations in Figure 

6.32. Our qo thus relates to his 'Y. The point where W -I 0 for the rotational 

case agrees with Reiman's !:::.' = O. It is clear from Figure 6.32 that W f 0 for the 

locked case at this same qo (i.e. !:::. I f 0). This is also what Reiman found as was 
fl 

shown in Figure 6.34. 

We will now use Figure 6.31 for the -rest of the discussion taking the similarity to 

Figure 6.32 into account. 
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FIGUK.E 6.34 The graph 'rl against 'Y. The case of f1 = ° is given as the dotted 
line - agreeing with Figure 6.33. 'rlhen f1 * 0, the situation 
changes to the dark line . 

When qo is about 0.7, the value of w goes to zero in the case of rotation for a 

(2,1) mode. In the case of a locked mode this happens when qo is about 0.6. For a 

(3,1) mode the· value of qo where this happens is larger at about 0.8 for a fast 

rotating mode and 0.7 for a locked mode. Note w -I 0 means that there is no 

flattening of the profile. It also leads to the disappearance of the type I solution in 

Figure 6.10 - as a result of which there are no tearing mode unstable situations 

possible. Equilibria with qo $ 0.7 are thus stable to a fast rotating (2,1) tearing 

mode. This is qualitatively in agreement with Ellis [31] who found in general that 

all equilibria with qo $ 0.6 are stable to (2,1) tearing modes . 

Between the graph for an infinitely fast rotating tearing mode and that for a locked 

one in Figure 6.32, there are lots of possible situations where Br 11 has penetrated 

the wall to some extent, but not fully . To each point on this graph we can then 

associate a rotation frequency. 
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While the profile is in the process of peaking with qo decreasing, it will reach the 

position where no eigenvalue for a fast rotating mode exists (Le. qo ~ 0.7). It can 

then be in some stage of locking with a mode present (w > 0) or with no mode 

present (w = 0). This possibility, that . a mode can be present for a perturbed 

boundary although none is possible for a super conducting wall as boundary (or fast 

rotating mode with a partly conducting wall, i.e. n -I (I)), can be seen from ~eiman's 

equation 

(6.15) 

which was discussed in section 6.5.2. 

For ~'(W) = 0 (i.e. when f1 = 0) it is still possible to have ~'(W) > 0, 
f1 

indicating a tearing mode. It is also in agreement with the work of Gimblett [71] 

where it was shown that the removal of a superconducting wall can lead to a stable 

mode becoming unstable. 

From Figure 6.32 it is further clear that , although the locking has lead to mode 

growth, it has not lead to disruptive growth. This is in agreement with other work 

with parabolic current profiles [86]. What is needed for disruptive growth (Le. very 

large islands) is not only profile peaking, but steepening. Generally, steeper profiles 

result in larger saturated islands. 

6.7.2 The relation between flatness of the profile (w) and the island width (W) 

The present tearing mode model is only valid when 0.15 > w > 0.01 . When - -
w <,; 0.01, the quantities to be measured (like the island width) are smaller than the 

error bars within which the island can be measured. When w is large, the total 
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current is not preserved because 6J is non-zero at the boundary. In spite of the 

fact that it is not possible to calculate the physical quantities, the trends are 

consistent at the extremes of w. 

If an analytic relation between wand the island width could be foun9., it would be 

possible to predict an island width outside the region where it can be numerically 

calculated. If it is assumed that the parameter w (i.e. the local flatness of the 

profile at r = rs) is directly proportional to the island width, and since W is zero 

when w is zero, a relationship of the form W = hw can be tested with the data. 

It was found that 

W hwf<lo (6.16) 

fits the data quite well if ql is kept fixed. The constant h is found to be 1.6 

giving W = 1.6 wf<lo for the (2,1) island. The largest error found with this 

formula is about 1 % of the minor radius . 

6.7.3 The perturbation of the boundary 

The perturbation of the boundary (Figure 6.35) follows the change in island width 

(presented in Figure 6.32) for different current profiles, i.e. different qo. This 

means that larger islands will perturb the boundary more than small islands. 

In Figure 6.35 we show the change in Belll for fast rotating modes as well as the 

change in 6 for locked modes - both with changing qo' The results are for a (2,1) 

mode. 
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Larger islands perturb the boundary more as is clear when this is 
compared with Figure 6.32. 

The deeper the island is, inside the plasma, the smaller the effect of the boundary 

perturbation on it. This can be seen from Figure 6.36. In this graph we compare 

the values of ~I against w for two profiles where ql = 3.6 but qo = 1.75 and 
all 

0.8. The rational surface is at rs = 0.45 when qo = 1.75 and at rs = 0.73 when 

qo = 0.8. It can be seen that the eccentricity of the "hyperbole" is much smaller 

when rs is deep inside the plasma than when it is more to the outside. This was 

found to be generally true. This means that the effect of a change in ~I on w is 
. all 

much smaller when the rational surface is deep inside the plasma. When it is 

all remembered that -;:-r is related to the outside physical situation and w to the 
a 1 1 

island width (W), it is clear that the island width becomes rather insensitive to the 

external situation when the island is deeper inside the plasma. Clearly, this is 

physically reasonable and was found to be true on Tokoloshe [84]. 



176 
5 ~----------------------------'-II'-\--I 

I \ 

3 

1 

I \ 
I \ 
I \ 

I h. 
\ 

, I 
• • ••••• • •• •• • • •• • •• • • • II ' • ' .' • ' . ~l •. .......... .• ....... '" . . . .. 

- 1 -

-3 

. t:r - - - - :-{J.-
~ - -A. .... . 

\ 
/\ 

\ 
1 

, , , ... .... 
- -IS -

-5 
0 .0 5 0.07 0 .09 w 0.1 1 0 .13 0 .15 

rs=0.45 

rs=0.73 
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(rs = 0.73) with ql = 3.6. The value of w becomes rather 
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6.8 The Effect of Rotation on the Island Width 

all In chapter 5 the effect of rotation on the parameter;:T was discussed. It was 
all . 

shown (in Figure 5.5) how this parameter changes with WTw. Using the 6' (W) 
£1 

criterion of Reiman, it is now possible to calculate the saturated island width for 

all all . any value of 0 ~ -:T ~ -:T (locked mode), i.e. for any rotational frequency. From 
a 1 1 all ' 

this calculation a boundary perturbation 0 is immediately known (as was discussed 

in section 6.5.2) which allows us to calculate a111 i.e. Br 11
, from equation (5.10). 

We can thus plot figures of Brll and Bel1 1 against WTw . This is done in Figure 

6.37 and 6.38 for a (2,1) mode with rw = 1.01. Figure 6.37 is for the high MHD 

phase (qo = 1.3, ql = 3.6) and Figure 6.38 for the low MHD phase (qo = 0.8, ql = 

3.6). Note that the amplitude of Bel is much larger during the high MHD phase 
1 1 

than during the low MHD phase. 
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The radial magnetic field reduces when the mode frequency increases. The reason is 

simple and was discussed in section 5.3 - the time for field penetration reduces 

when the mode frequency increases. The perturbed poloidal magnetic field (I Betl) 

does the opposite, increasing with mode frequency. 
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FIGUIE 6.37 The graph of Dr and Bet against WT w. "'hen WTw decreases, i. e. 

the mode slows down, the radial magnetic field increases (as does 
0), but the perturbed poloidal magnetic field decreases. 
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FIGUIE 6.38 The behaviour of Br and Det when the mode slows down (WTw 

decreases) during the low MIlD phase. 
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In Figure 6.39 we present the island width against wr w for the same parameters. It 

is now possible to see how the island evolves if the rotating mode is locked, 

assuming adiabatic changes in the equilibrium. The island width increases when the 

mode frequency decreases for both high and low MHD phases. The effect on the 

island size is, however, bigger during the low MHD phase (i .e. qo = O.S). 

FIGUI.B 6.39 
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The island width increases when the mode frequency decreases for both 
high and low IIIlD phases. 

6.9 The Different 6,' (W) Criteria Compared 

In this section we compare the different !::J. I (W) criteria. We will first discuss the 

case of Br 11 = O. The criteria of R~therford [2], White et al. [3] and Reiman [75] 

were discussed in section 6.5.2. It is shown in Figure 6.40 that the criterion of 

Rutherford predicts a slightly larger island than that of Reiman. This is because 

the criterion is defined differently as is clear from equations (6.12) and (6.13). The 

effect of the a parameter in the criterion of White et aI. (see section 6.5.2) is to 

reduce the island size from that predicted by the Rutherford criterion, bringing it 

more in line with that of Reiman. 
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Comparing the criteria of Rutherford with that of Reiman in the case 
of a superconducting wall, for varying equilibrium parameter qo' 

When an external perturbation (Brit f. 0) is included in the . problem, that is the 

case with decreasing WTw (i .e. 0), the criteria of Reiman and Rutherford can be 

compared to determine what error is involved in using Rutherford instead of 

Reiman for cases where external perturbations are included as has been done by 

Hansen [79]. This difference in island width is shown in Figure 6.41 for a (2,1) 

mode. It is clear that, although the island size is larger when the Rutherford 

criterion is used, the effect of mode locking is qualitatively the same irrespective of 

the type of criterion used. 
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FIGUlB 6.41 The island size using the ~' (W) criteria of Reiman and Rutherford 
is compared for different rotational frequencies. 

6.10 

6.10.1 

External Coils 

The effect of the external coils on the island size 

Far this section it is important to remember the plasma current direction shown in 

Figure 4.1. It is now possible to choose the external coil configuration in line with 

the plasma current direction (as was done in Figure 5.2), or in opposite direction. 

When it is chosen in line with the plasma current direction, i.e. I l > 0, the radial 

magnetic field is of the form Br(r,O,cp) = Br(r) sin X, with BI'(r) < 0 . 
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When the magnetic fields associated with such a configuration (Ii> 0) are drawn, 

it is immediately clear where the islands will form. This is shown in Figure 6.42. 

On the inside of the rational surface the fields are in the anti-clockwise direction. 

When the poloidal magnetic field at the rational surface is subtracted to give the 

helical magnetic field, the poloidal field on the outside of the rational surface will be 

in the clockwise direction. Together with the fields of the coils, it is clear that the 

islands will form in the positions shown. 

FIGUIB 6.42 
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The formation of islands with Ii > o. 

island 
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For this configuration we have 0 <: 0, which corresponds to a
1 

> 0 (from the 

discussion in section 6.5.1). Thus Br(r,O"n) = ! 87/J = - m a sl'n X gl·ves 
.." r Or r 1 

Br( r) = - ~ a 1 <·0 as was discussed earlier in this section. 

From equation (5.59) we know that j~ mIn) > 0 when Ii > 0 for a (2,1) mode. We 

can now in summary state that 
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J'( m,lI) > 0 
'I. ' 

Br < 0 (6.17) 

and 

J'( m,n) < 0 
'I. ' 

Br> 0, (6.18) 

which is valid if the mode is always in phase with the external coil. ' When these 

different configurations are substituted into equation (5.45) we find that an increase 

in I j~ m,n) I (either positive or negative) will always change ~I such that w will 
'I. , 1 a 1 

increase (keeping Figure 6.10 in mind). This means that when the island is locked 

in phase with the coil, a DC coil current will always lead to an increase in island 

size. 

We will now look in more depth at this increase in w caused by an in-phase 

external coil. In the case of W -i 00 the equilibrium is at point 1 on Figure 6.43 

(which is just the inverse of Figure 6.10). Once it is locked, it is at point 2 with 

_a 11 = ~.501 as was discussed earlier. The effect of a coil current is now to drive 
a' 1 

1 

al/a'll along the arrow on the graph shown in Figure 6.43. 
1 1.00 r-------------...,----.+--------

0.80 

0.60 

0.40 

0 .20 ---------+---_ 
---_ I 

\ 
\ 

\ 

\ 
\ 
~ 

-+- - -+-

-----""- I 

0.00 j-__________________________ '_~~,~1--~2--~1----~----------~ 
,. 1 

\ : 
-0.20 \ : 

\ : 

-0.40 i 

-0.60 t 
-0 .80 t-

-1.00 '---------_____ ---1.--.:... _____ ---.-1 

0.11 

FIGUlB 6.43 

w 

This graph shows how 'II will change when a 11 is changed because of 
a~ 1 

an external coil current. The effect of the current is to drive 'II 

larl!er. 
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Equation (5.45) can also be written as 

(6.19) 

For any itl we can calculate the saturated island width from Reiman's criterion 
1 1 

(given in equation (6.13)). Once this is found, both a111 and a ill are known 

(ail
1 

is known because it is the shooting value, and a111 because 6 is known -

see equations (5.10) and (5.11).). The values of ~I and a l

1 1 can now be 
all 1 

substituted into equation (6.19) to obtatn the coil current which must be associated 

with that specific itl . 
1 1 

In Figure 6.44 the relation of ji m,n) to ~I is shown for a (2,1) mode with 
a 1 1 

f = 0.1. It is clear, when compared with Figure 6.43, that an increase in coil 

current leads to an increase in the value of w. Our configuration is such that the 

coil current is only switched on when the mode is already locked, i.e. ~I = -0.501 
all 

for the (2,1) mode. 

6.10.2 The relation between W and I l 

As was already mentioned, the value of a ill (and thus Ba1 11) and a 111 (and thus 

Brll) can be calculated for any itll with a saturated island present. We can now 

draw Brll and Bal11 against jim,n) (which is related to itll as was illustrated 

in Figure 6.44). This is done in Figure 6.45. It is clear that Brll is increasing with 

increasing ji m,n) . From section 6.7.3, we know that larger islands perturb the 
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5r-------------------------------------~1 

3 

1 

- 1 / 
, 

-3 

-5~------~------~--------~------~----~~ 

-0.40 -0.32 

The effect of j;,m,u) 

- 0 .2 4 - 0 .16 -0.08 0.00 
j~ 2t1) (E-3) 

on the quantity ~I . The values of j~ m,n) 
a1 1 

are negative because 6 was chosen to be posi ti ve. 

boundary more, leading to an increase in Drl,. The . increasing coil current will 

thus lead to an increase in island size. In Figure 6.46 we illustrate this for a (2,1) 

mode during the high MUD phase (qo = 1.3, ql = 3.6) and in Figure 6.47 during the 

low MHD phase (qo = 0.8, ql = 3.6). We used f = 0.5 and re = 1.2. This was 

done to be able to relate the results to Tokoloshe where f NO.5. One should 

remember that the island width W is normalized to the plasma radius. 
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1 
decreases, goes through zero and then increases in the opposite senile. 
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because of the large value on Tokoloshe (N 0.5) . 
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The current density ji m,n) used in these calculations is in normalized units. We 

know that (from section 3.7) 

'th ""'(m,n) WI Jz the normalized current, a the minor radius and Bo the on-axis 

toroidal magnetic field. In chapter 3 we used 11-0 = 1, which is not assumed in the 

above equation. From equation (5.59) we have 

(_l)m-nf I (-.L) m . J (niLl) , 
i ?rrc n m-nl i 

with the quantities not normalized. This gives 

Bo 
In - 0.412 ?rr en -- -J' (m,n) 

(. m a 11-0 Z 

with 

Ll i - 0.838, and Jo(1.676) ~ 0.412. 

for the (2,1) mode as was observed on Tokoloshe. 

A configuration with Bo = 0.6 T, a = 0.24 m, rc = 0.288 m and (m,n) = (2.1) 

gives 

Ii - 370 800 Ji m,n) . 

As an example we can take H m,n) = 0.001 which corresponds to a coil current of 

370 A. 

The same island width variation as shown in Figures 6.46 and 6.47 was also found 

by Hansen [79] as shown in Figure 6.48. Our model, however, predicts smaller 
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islands. For 370 A we get an (2,1) island of about 7 ern (Figure 6.47) against his 11 

cm. This difference in island size can be due to the fact that Hansen [79] used a 

non-linear fj.' (W) criterion, but did not consider profile changes (i.e. flattening) 

caused by the saturated island. 

fIGUlR 6.48 
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The variation of island size with coil current as was found by Hansen 
[79] for the low 11m phase. Solid line - nonl~near, short dashes -
vacuum, medium dashes - linear plasma response field. 

6.10.3 The effect of rotation frequency 

In this section we assume a situation where the plasma is rotating at some 

frequency, and an external coil current is applied outside. A resistive wall is 

included between the plasma and the coil with a small vacuum region on the inside 

of the wall. It is now assumed that this is a time independent situation, i.e. that 

the rotational frequency of the plasma is constant for each equilibrium. We can 

thus associate some frequency with a particular equilibrium. 

In the previous section we saw that the island size increases with increasing coil 

current for locked modes, i.e. n = o. This is also true for any given rotational 

frequency as can be seen in Figure 6.49. 
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The effect of rotational frequency on island width for different DC 
coil currents. The parameters used are ql = 3.6, qo = 0.8, f = 0.1, 

rw = 1.1, rc = 1. 3 (low )UID regime) . 

It is interesting to note that changes in n do not have any significant effects on the 

island size when n is large. However, when n is small, a small change in n can 

have a significant effect on the island size. 

The rotational frequency was related to the !J. I -<:riterion by Hansen [79] without 

coil current . It was also used in conjunction with an AC coil current by Nave and 

Wesson [86]. This is however, the first time, as far as we are able to determine, that 

it is used with a DC current in time independent equilibrium studies. 

6.10.4 Equilibrium effects 

In Figure 6.32 we showed the difference in island size when the island is locked or 

rotating infinitely fast for different equilibria. During the high MHD phase 



189 

(parameterized by qo = 1.6) we found no significant differences between locked and 

fast rotating cases. This changed [or the low MUD phase (parameterized by 

qo = 0.8), for which the difference is larger. 

We now include the effect of an exterual DC coil current. This is shown in Figure 

0.50. It is clear that the effect of a coil current is much larger during the high MIlD 

phase, i.e. when the profile is flat. When the profile gets very flat (qo ~ 1.6) it can 

have a large effect on the island size - leading possibly to island overlap with the 

limiter. The differences in behaviour of the graphs for high qo are probably due to 

details of the chosen profile. 
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It is now possible to take into account the effect of rotational plasma frequency, 

together with external coils. This is shown in Figure 6.51. In this graph we show 

the effect of rotational frequency on the island width for different current profiles 

(Le. qo = 0.8, 1.3, 1.5). The island sizes of the high MHD phase (qo = 1.3/1.5) are 

consistently larger than those of the low MHD phase (qo = 0.8) . This is the same as 

to say that island size widens with broadening profiles (qo = 0.8 - peaked, qo = 1.5 

flat) as was found before (shown in Figure 6.49). It is true for all realistic rotational 

frequencies (wr w "5 50). 

Figure 6.51 can be used in an interesting way when it is assumed that each 

equilibrium is associated with a particular rotational frequency. This is in 

agreement with observations on Tokoloshe. The typical toroidal frequency during 

the low MHD phase (i.e. a very peaked profile) on Tokoloshe is 15 kHz. For the 

high MHD phase this changes to 8 kHz (Le. for a flat current profile). One possible 

explanation for this can be found in the conservation of angular momentum. When 

the body of the plasma contracts (i.e. the profile peaks), the rotational frequency 

speeds up. On the other hand, when the body of the plasma expands (Le. the profile 

flat tens), the rotational frequency reduces. 

Let IAA 

- f R5 M dV 

with IAA the moment of inertia about the axis of the tokamak, dm the unit 

element, M the mass density and dV the volume element . For a time 

independent situation we have 

A - lAA w 
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with A the angular momentum and w the rotational frequency. Let us further 

propose that the current density profile and the density profile are very similar 

(preliminary experimental results are in agreement with this) and further that the 

mass density Mo does not change. Then we have 

for the profile type given by equation (6.3). 

The solution of this integral is just 

A 47r2 R8 Mo 2(B+1) w. 

Now we get 

b 3.5 A 

b 2.6 A 

b 1.77 A 

b - 1.25 

-

-

T w :r:s 

T w n 

T w 
n7 

The parameter b=3.5 agrees with qo = 0.8, ql = 3.6 and the parameter b=1.25 

with qo = 1.6, ql = 3.6. According to this model the rotational frequency will 

double when the plasma goes from the high MHD (qo = 1.3) to the low MHD phase 

(qo = 0.8). This is in agreement with observations on Tokoloshe. 



c 

FIGUlB 6.51 

192 

1=200A 

50~~----------------------~ 

\ 

40 4 

\ 
\ 

30 \ 

20 

10 

\ 
\ + 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ of: q 

\ 

\ 

~ 

\ 
\ 
\ 
\ 

Q 
\ 

\ 
\ 

\ 
\ 

Q 
" " '&.. + 

'(9, 
''0 o L-__ ~ ____ ~~~ __ ~~ ____ ~ __ ~ 

0 .10 0.15 0.20 0.25 0.30 0.35 0.40 

W (Island Width) 
The effect of rotational frequency on the island size for different 
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Let us assume that n = 20 during the low MHD phase (qo = 0.8). If this rotational 

frequency is halved (0 = 10) when the plasma moves to the high MHD phase (as is 

observed on Tokoloshe) when qo = 1.5, the island size will grow from W = 0.12 to 

0.29. This is a rather large increase in island size. This is qualitatively in 

agreement with observations on Tokoloshe [94]. 

6.10.5 The relation between B01 and n 

When no external coil currents are applied outside the plasma, the relation between 

BOl and 0 is of the form BOl N 0 (0 < 20) as was shown in Figure 6.37. This 

situation is changed when coil currents are switched on. In Figure 6.52 we show 

BOl against 0 for Ii = 1000 A. For small velocities we found a relation of 

BOl N h, and for larger ones BOl N 0 (see Figure 6.52). Or,. Tokoloshe we found 
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1 Bal N v...' where VIP is now related to n [94). This relation is shown in Figure 
IP 

6.53. This was true even for no external coil current, suggesting error fields in the 

ohmic heating and other coils. 
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FIGUlB 6.52 The relation of Bal to n for ql = 3.6, qo = 0.8, b = 3.5. 
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6.10.6 The relation between the Reiman and Rutherford criteria 

In this section we explore the relation between the Rutherford and Reiman /:).' (W) 

criteria given by equations (6.12) and (6.13) . We will first look at the effect of the 

profile type on the different criteria. In Figure 6.54 we show the effect -of rotational 

frequency on the island size as calculated by both these criteria for a low MHD 

peaked profile. The lower the rotational frequency (0), the closer the island sizes 

predicted by the different criteria gets. 

The difference between the island sizes predicted by the Rutherford and Reiman 

criteria for high frequencies, are in agreement with the differences found earlier (see 

Figure 6.41). The differences are caused by the difference in the Rutherford and 

Reiman expressions for /:).' (W) as given in equations (6.12) and (6.13). They can 

possibly be reduced if the a-like terms (see the expression of White et al. [3] before 

equation (6.12)) are included in the Reiman expression. 

In figures 6.55 and 6.56 we show the same situation for qo = 1.3 and 1.5 i.e. high 

MHD, broad profiles. As before it can be seen that the islan<;l size for 0 = 0 (a 

locked mode) increases when the profile flattens, i.e. qo increases. From these 

graphs it is clear that the criteria predict islands of similar size as 0 is decreased. 

For W > 0.24 the two criteria do not predict significantly different island sizes. 

It is now also possible to look at the effect of the coil current on the predicted island 

sizes using Rutherford and Reiman'S criteria. As in Figure 6.54, we choose the 

value of qo = 0.8, but we have changed the coil current to Ii = 1 000 A in Figure 

6.57. The effect of increasing coil current is the same as the broadening of the 

current profile. It leads not only to larger islands when 0 = 0, but also to 

insignificant differences in the island sizes predicted by both criteria when 

W ~ 0.24. 
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qo= 1.5 with 1=200A 
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FIGUlB 6.56 The difference between the Rutherford and Reiman criteria for qo = 1. 5 

and Ii = 200 A. 

We can thus conclude that the different 6,' (W) criteria will predict different 

island sizes when W -;; 0.24 of the minor plasma radius. When 6 is large 

(W ~ 0.24), there are no significant differences between the criteria of Rutherford 

and Reiman. This justifies the use of the Rutherford criterion when the boundary is 

perturbed as was done by Hansen [75] . 

These relationships between the Reiman and Rutherford criteria have not been 

studied before in the presence of an external DC coil current. 
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6.11 Out of Phase Situations 

All the cases discussed up to now involve a tearing island locked in phase with the 

external coil, or, when the plasma is rotating, only the in-phase situations. We will 

now also consider out of phase situations. 

The plasma cannot be locked out of phase with the external coil because it is an 

unstable equilibrium [85]. When the plasma is rotating however, the island moves 

out of phase with the external coil and this calculation gives an estimate of the 

minimum island size during rotation. Let us, then, consider such a hypothetical 

steady-state case where the plasma island is locked out of phase with the coil. 
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When the island is out of phase with the external coil, we can again evaluate the 

island behaviour from Figure 6.43. Instead of moving along the arrow to the right 

as shown in Figure 6.43, an out-of-phase coil current will move along the arrow to 

a 11 the left as shown in Figure 6.58. The effect is that;:T will decrease from -0.501 
a 1 1 . 

(for a (2,1) island) to zero and will then start increasing positively as the value of w 

decreases. 

From equation 5.105 the cases of rotation can now be investigated. When the 

plasma is rotating very fast, which is similar to a superconducting wall, the value of 

n -+ (IJ. This means that 

When the plasma is touching the wall, i.e. rw -+ 1, the value of E is just zero as 

can be seen from the expression for E presented under equation (5.103). Thus 

~I -+ 0 in the case when n -+ (IJ and the plasma is touching the resistive wall. a 1 1 

All the intermediate frequencies of n will fall between the locked case, and the 

case when n -+ (IJ. When the coil current is large, and ~I is positive,:';'1 will 
a 1 1 a 1 1 

decrease with increasing rotation frequency to zero for the case of the plasma 

touching the resistive wall. When the coil current is small and ~I is negative 
a 1 1 

( I~III ~ 0.501 for a (2,1) island ), the value of ~II will also decrease with 

increaSing rotation frequency to zero. 
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This graph shows how w will change when ~I is changed because of 
a 1 1 

an out-<>f-phase coil current. 

When the out-of-phase coil current is increased from zero, we have already shown 

that the value of ~I starts decreasing from -0.501 following the arrow on Figure 
all 

6.58. Now, the value of a 1 is also decreasing. This means that 0 would also 

decrease. Once 0 = 0 is reached, it will again start increasing in magnitude as a 1 

increases. However, now the sign of 0 would be different and a 1 would thus also 

change sign. This can be seen from equation (6.19) when the procedure of 

increasing j~ 2, 1) is followed through. 

As an example we will now investigate a profile with ql = 3.6 and qo = 1.6. In 

Figure 6.59 we show j~ 2,1) as a function of ~I . It is clear that j( 2,1) increases 
all z 

. all 
as a: gets smaller, goes through zero, and then increases positively. 

1 1 



200 

0 .50 r-------,-----~ 

0.40 

0 . .3 0 
,.-.,. 
"<l-
I 

w 
'-" 

j ( 2,1) 
0 .2 0 

z 

0 . 10 

0.00 L...:::::::=----'L-.-_--'L-.--L---1------'-----' 

-0.50 -0 . .30 -0.10 0 . 10 0 . .30 0 .50 

FIGUI.E 6.59 '(21) all The graph of Jz' against;:-r 
a l 1 

The parameter values of the 

equilibrium are q1 = 3.6, qo = 1.6, rw = 1.1, rc = 1.3. 

a 1\ In Figure 6.60 we show the rotational frequency as a function of;:-r for two 
a 1 1 

a: 
different coil current densities, one agreeing with -:-:-\ < 0 (j~ 2,1) = 0.175 x 10-5) 

all 

and one with !.;\ > 0 (j~ 2,1) = 0.466 X 10-4) . When the rotational frequency 
a 1. 1 

r increases, both these curves show ~I -I -0.094 which agrees with rw = 1.1. If 
j, a 1 1 

a 1\ rw -I 0, this value of;:-r would also go to zero. 
all 
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We can now plot the island width against current density for both the high 

(qo = 1.6) and low (qo = 0.8) MHD phases (q1 is 3.6 for both cases). This is done in 

Figure 6.61. It is immediately clear that the coil current will reduce the (2,1) island 

much more during the high MHD phase. 

Finally, we can combine the results of the in-phase and out-of-phase situations. 

When the plasma is rotating, and a fixed coil current is applied on the outside, the 

island will move in and out of phase with the external coil current. This will cause 

the island to increase (when in-phase) and to decrease (when out-of-phase). A 
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time-dependent treatment will thus show the island increasing and decreasing in 

size at a fixed frequency when the plasma is rotating at a fixed frequency. We 

however, only considered the in-phase and out-of- phase cases. The island-width 

will thus vary between these two extreme values (maximum when in phase and 

minimum when out of phase). In Figure 6.62 we present a graph showing these 

extreme values for a variety of rotational frequencies for the low MHD case. A coil 

current density of 0.14 x 10-3 is applied to an equilibrium with ql = 3.6, qo = 0.8, 

b = 3.5. As before the islands are assumed to be saturated. This assumption will 

break down when n gets too large or when the difference between the minimum 

and maximum values gets too big. 
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6.12 Conclusions 

In this chapter the current perturbation 8J has been modelled for a prescribed 

overall current profile. The eigenvalue w specifies the width of the perturbation 

oj. No significant difference was found between the results of the two models used 

for 8J. 

) 
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An unperturbed profile similar to the one used with success on Tokoloshe [94] was 

used in this study. We did, however, not include a second small flat region on the 

outside of the profile as was done when the profile was used to explain experimental 

results. This explains why we found that the profile did not predict the (3,1) island 

behaviour correctly, but only the (2,1) behaviour. The (3,1) island as calculated 

with the profile we have used, is too small. 

We also tried to model the (1,1) mode. Taking into account that 1/J l tV rm, i.e. that 

B I -i 0, but not Bell ' we attempted the calculation by shooting with a l instead 
roo 

of a~ as was done for the other modes (i .e. equation (5.11)). In spite of this we 

were not able to find any eigenvalues. The reason for this may be that the assumed 

oj or Ju profiles were not applicable to (1,1) mode modelling. 

The model does allow the form of the profile to be changed from peaked to flat when 

the parameters are changed. It can thus be used to study different situations in the 

slow time evolution of a shot. It was found that a locked island is larger than the 

fast rotating one, although the difference is small for certain flat profiles. For 

certain profiles we found that a superconducting wall (or rota:tion) can stabilize a 

tearing mode unstable equilibrium. An external DC coil leads to mode growth. 

These results are consistent with other linear and non-linear work that has been 

done, as was discussed earlier in the chapter. The Reiman fl.1 criterion was of 
fl 

importance in this study because non- superconducting walls were included in the 

problem. It enabled us to apply our model to a wide variety of boundary 

conditions. The Reiman and Rutherford criteria were also compared in the study. 

No significant differences were found when W ~ 0.24 of the minor plasma radius. 
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Results that appear to be new include: 

• The graph of ~I (i.e. Br IB e11) against w giving all possible island 
all 1 

widths for any external situation. Only parts of this graph were 

previously described mathematically by Lazzaro and Nave [92]. 

• Finding both values of Br 11 and Bel11 for saturated islands with 

perturbed boundaries. 

• Investigating the effect of external coils on rotating plasma for Tokoloshe 

type profiles. 

• The finding that broad profiles have very large islands in the presence of 

small external coil currents. 

• A very simple model of angular momentum conservation coupling profile 

type to rotational frequency . 

• Comparison of the il'-criteria of Rutherford and Reiman for perturbed 

and unperturbed boundaries. 
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CHAPTER 7 

A TOROIDAL MODEL WITH TWO MODES PRESENT 

7.1 Introduction 

In this chapter the cylindrical one-mode model of chapter 4 is extended to include 

two modes with toroidal coupling between them. As before, a perturbation 

expansion is used for a "toroidal current density" (not JIP but (1 + ff cos O)J IP)· 

The current density profile is flattened at both rational surfaces using two 

axisymmetric perturbations, parameterized by W1, W2 which again form 

eigenvalues. This makes perturbation theory work and keeps the equations analytic 

for all values of radius. The boundary is perturbed in phase with the two modes, 

with amplitude 81, 82 determined by the Rutherford criterion. The one mode is 

dominant and the other is assumed smaller. 

Our work is related to that of Bateman and Morris [67] in the sense that their 

quasilinear model considers the asymptotic time limit of the reduced MHD 

equations as we do. They also consider saturated tearing islands with toroidal 

coupling. They used a simple approximation for the pressure and current density 

within a magnetic island. This modifies the background equilibrium and removes 

the singularity from the linearized MHD equations, as in our case. To find the 

saturated island width, they used a computer algorithm to find neighboring 

equilibria. This however, does not solve the problem of island width determination 

satisfactory as they state: "Since the saturated magnetic island width and even its 

existence depends to a large extent on the local current density profile, knowledge of 

the global current density profile may not be sufficient to predict magnetic island 

behaviour. Unless the current density profile can be measured accurately or 
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externally controlled, the prediction of the saturated magnetic island width may, by 

necessity, take on a probabilistic nature" [67] . We overcome this problem using 

boundary conditions as was discussed in the previous chapter. 

Bateman and Morris [67] studied profile related effects predominantly, whereas we 

concentrate on boundary effects. All the external situations discussed in Chapter 5 

are considered. To our knowledge it is the first time that toroidal coupling has been 

studied with the emphasis on boundary conditions. 

7.2 Defining a "current" Density that follows Flux Surfaces 

The equations we solve are (3.60), (3.14), (3.10), and are repeated here. Note now 

that V and !:::.. * are the full toroidal operators. 

(7.1) 

(7.2) 

B - 1/h(V7/l" ip + ip) (7.3) 

h - 1 + a cos 0, (7.4) 

with everything normalized according to the normalization of section 3.7. When S -+ [Il , 

equation (7.1) can be written as 

B.VK - 0, (7.5) 
with 

K (7.6) 
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K a "toroidal current density". 

The assumption of S -+ CD is made because of the fact that the role of resistivity is small 

when saturated islands are considered. (Carreras et al. [46] have shown that the a 

term of White et al. [3], which contains the details of the resistive profile, can be 

neglected - see section 6.5.2) . Equation (7.5) can now be written as 

h 81/1 8K _ h 81/1 8K + Er 8K 
7J7J Or Or 7J7J 7JVj o , (7.7) 

where use is made of the expression for B in equation (7.3) . Let us now assume 

Fourier expansions for 1/1 and K i.e. 

1/1 - ao(r) + a l(r) cos (mO- ncp) + air) cos [(m+l)O- ncp + xJ (7.8) 

K - Ko(r) + kl(r) cos (mO-ncp) + k2(r) cos [(m+l)O - ncp + xJ , (7.9) 

where Xl denotes a phase shift between the a l and a2 perturbations which are both 

of O( €) smaller than ao' We only considered two perturbations with poloidal mode 

numbers m and m+l, but with the same toroidal mode number n. The reason for 

this was to simplify the model and to model a situation similar to that on Tokoloshe 

where only the (2,1) and (3,1) modes are dominant during the high MHD phase. When 

only two modes are included in the problem, those modes are coupled by toroidicity. 

We ignore non-linear mode-mode coupling as discussed in section 3.9. 

When the Fourier expansions (7.8) and (7.9) are substituted into equation (7.7), we get 

the following equations for the modes and their harmonics: 
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sin (mB-ncp): 

sin ((m+1)O-ncp+x): 

Ko ((m+1)a2 + ~ mera l cos Xl) 

sin 2(mB-ncp): (7.12) 

sin 2((m+1)O-ncp + Xl): (7.13) 

Terms of O( (3) have been dropped. Only modes of interest have been included. The I 

denotes derivatives to r. 

7.3 The Magnetic Flux Defined for Two Modes 

The flux surfaces 'if; = constant may again be usefully defined by the equation 

JJ .V'if; - O. (7.14) 

When the flux is written as 

~ - ~o + ~l cos (mB-ncp) + ~2 cos ((m+1)1J - ncp + Xl) , (7.15) 

and substituted into equation (7.14), we can proceed in exactly the same way as with 

B.VK = 0 to get 
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(7.18) 

(7.19) 

Equations (7.16) and (7.17) can now be written as 

a'o'I/J l (m + ~ (m+1) a '!!j1 cos Xl) + frn'I/Jl 
A I' PI (7.20) 'l/Jo - i (m+1) (rna 1 + aa 2 cos X d 

and 

a'o'I/J2 ( (m+1) + ~ rna '1p cos Xl) + an'I/J2 
A II' P2 (7.21) 'l/Jo 1 ((m+ 1 ) a2 + 2" maa 1 cos Xl) 

where superscripts I and II are used to distinguish between the two equations flowing 

from the two harmonics. 

From equations (7.18) and (7.19) we know that 

(7.22) 

a2 = A'l/J2' (7.23) 

with '"1 and A integration constants. 

Let us now assume that '"1 = A = 1 for this model. This will be discussed in more 

detail later in this chapter. Then we have 

(7.24) 
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(7.25) 

We can now rewrite equations (7.20) and (7.21) as 

(7.26) 

I n /( 1 m al ) 
ao + H (m+l) 1 + ~ H (m+l) a2 cos Xl . (7.27) 

If we assume that a2 N 0(1), expand the denominators and drop terms of 0((2), we get 
al 

(7.28) 

~JI' I + n 
'f'0 - a o H (m+l) (7.29) 

which are just the cylindrical helical magnetic flux functions for the two modes. 

However, if terms of O( (2) are not dropped in the expressions for ¢~ and ¢~I as given 

by equations (7.26) and (7.27), then each of these expressions also contains the 

information about the other via the at or a2 variables respec.tively. Equations (7.26) 

and (7.27) can thus be interpreted as functions of ¢'o written either in terms of the 

m-harmonic parameters (¢~/) or in terms of the m+1 - harmonic parameters (¢~I/). 

We will thus drop the superscripts. 

Let X = ¢'o - a'o . We can now write equations (7.26) and (7.27) as 

(7.30) 

(7.31) 
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From equation (7.31) we can get 

1 -2" nma l COSXl X 
(7.32) 

((m+1) X - fIn) 

When this expression for a2 is substituted into equation (7.30), it results in 

(7.33) 

to give 

(7.34) 

2 

_ [fI(.!!.. - n)] [1 + ~ €I (2m+1) m (m+1) COS2 Xl 
m (m+l) ~ n 

(7.35) 

We thus have the solutions for X, 

i - i €In m(!+lJ [ 2 m+1 + ~ ] (7.36) 

and 

XII - ~ Hn m(!+l) [ 2 m+1-~] , (7.37) 

where 

Rl - 1 IT (2m+1) m (m+1) 2 
2 n cos Xl (7.38) 

and the terms of N O( f3) have been dropped. 
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When cos Xl = 0 (i .e. when the modes are ~ out of phase), the problem reduces to the 

pure cylindrical one in that the modes do not interact. This is immediately clear from 

equations (7.26) and (7.27). We can now also see this in equations (7.36) and (7.37) . 

When cos Xl = 0 we have RI = 0 and the equations reduce to 

X 

or 

'I I 
¢o 

and 

XII 

or 
' III 

¢o 

I n 
H­m 

n 
€I (m+I) 

I n 
ao + €I (m+I) , 

which are just the cylindrical helical magnetic flux equations for the two modes (see 

equation 4.9). Thus the toroidal mode-coupling corrections playa role if and only if 

cos Xl f. 0 . 

Equations (7.37) and (7.38) can be integrated to give 

(7.39) 

(7.40) 

with 

D 1 n 
2' € m(m+1) , (7.41) 

and the integration constants chosen to be zero. 
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However, when we attempted to solve the final set of equations (given in section 

7.6) we found numerical iteration to be difficult. We then instead of equations 

(7.39) and (7.40) used the normal cylindrical equations (i.e. Rl = 0). This can be 

justified because of the small difference between the cylindrical 1/10 and the 1/10 

where toroidal corrections have been included. The only restriction is that the outer 

island must not be to close too the boundary in which case the effect can become 

large. Toroidal terms in the first order equations are however retained. 

In Figure 7.1 below we compared the cylindrical 1/10 with one for which toroidal 

corrections have been included. It was done for a typical current profile of the type 

to be discussed in section 7.8. 

0.1 

~o(r) 

-0.1 

o 

FIGUlE 7.1 

0.1 

~o(r) 

-0.1 
r 1 '0 r 1 

(a) (b) 

The cylindrical 1/10 (left graph) compared with the 1/10 where toroidal 

corrections have been included for (a) a (2,1) mode (b) a (3,1) mode. 
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7.4 A Perturbation Expansion of K 

'I' 'II' The solutions 1/Jo and 1/Jo as defined in equations (7.20) and (7.21) can now be 

substituted into the expressions for Ko in equations (7.10) and (7.11). This gives 

a~k 1 (m 
1 k2 cos Xl) + an kl 

K' 
+ ~ a(m+1) K1 

0 -
+ 1 rna 1 ~ a(m+l) a2 cos Xl 

kl ao(m + i a(m+1) ~ cos Xl) 
'I' 

+ an 1/Jo 
-

¢l[ ao(m + i a(m+ 1) 'ij1 cos Xl) + an ] 
1/Jl 

(7.42) 

and 

k2 ao((m+1) + 1 kl cos Xl) + 
' II' 

2" am K2 an 1/Jo K' = (7.43) 0 

¢2[ ao((m+1) + 1 am ~ cos Xl) + an ] ~ 
1/J2 

We can now write equations (7.12), (7.13), (7.18) and (7.19) as 

a l 1/J l kl 
- - (7.44) 

a' 1/Ji k' 1 1 

and 

a2 1/J2 k2 
- - (7.45) 

a' 1/J2 k' 2 2 

with solutions 

(7.46) 
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(7.47) 

and a, f3 integration constants. 

For our model we will now choose a = f3 to get 

(7.48) 

This modelling will be justified at a later stage. 

Equation (7.48) can now be substituted into equations (7.42) and (7.43) to give 

K' k 1 A I I 
0 - -;:- 'l/Jo 

'l/J1 

or 

kl 
A 8K o (7.49) - 'l/Jl-:-Y 

8'I/J o 

and K' 0 - k2~II' 
A 0 
'l/J2 

or 

k2 
A 8Ko 

- 'l/J2 -;-yy . (7.50) 
8'I/J o 

From equations (7.49) and (7.50) it is clear that Ko is a function of both ~~ and -foI, 

i.e. 

(7.51) 
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Equation (7.9) can now be written as 

K 

using equations (7.49) and (7.50). This is just a first order Taylor expansion of two 

independent variables, i.e. 

It is now clear that, within this model, the equation 1l.VK = 0 (i.e. equation (7.5)) can 

be represented by 

(7.53) 

with 

(7.54) 

(7.55) 
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7.5 Solving K = -/). * '" 

We will now investigate equation (7.6). This equation can be written as 

o.,p f. o.,p h o.,p 02.,p 1 02.,p 
f cos 0 Or - r sm 0 07J - r Or - h orr - h I'l arrr hK . (7.56) 

When the Fourier expansions for 1/J and K have been substituted into equation (7.56), 

we get 

(7.57) 

+ 1 '(" 1 I (m+~)2 ) 2' ff cos X 1 a 2 + r a 2 - r a2 

(7.58) 

(7.59) 

When equation (7.59) is substituted into equation (7.58), it results in 

" + 1 I m2 1 I 1 f a l r a 1 - f2 a l - 2' fa 2 cos Xl - 2' r (m+1) a2 cos Xl 

(7.60) 
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when terms of o( f3) are neglected. In the same way equation (7.59) can be written as 

II 1 I (m+p2 1 I + 1 f a 2 + r a 2 - r a2 - "2 fa 1 cos Xl "2 r mal cos Xl 

(7.61) 

7.6 A Closed Set of Toroidal Equations 

Finally the equations in the toroidal approximation can be written down as 

(7.62) 

(7.63) 

(7.64) 

(7.65) 

(7.66) 

R = 1 ff (2m+1) m (m+1) 2 
1 2" n cos Xl· 

(where a1 and a2 clearly coupled by toroidicity). 

The rationale behind putting 'Y = A = 1 and a = f3 may now be examined. 
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(i) a = {3: When this assumption is made, we get 

K = Ko + kl cos (mO- ncp) + k2 cos ((m+1)O - ncp + Xl) 

which means that the Fourier expansion of K is compatible with the perturbation 

expansion of K in terms of the functions iI} and ;pI! as defined in equations (7.36) 

and (7.37). 

(ii) ,= A = 1: This assumption leads to 

"I' " II' where 1/1'0 signifies any of 1/10 or 1/10 and ms the particular poloidal mode number 

(m or m+ 1). This reduces to the cylindrical helical magnetic flux when terms of O( (2) 

are dropped and equations (7.26) and (7.27) are decoupled. 

Thus each of these assumptions contributes to the self-consistency of the model. 

7.7 The Toroidal Safety Factor 

The safety factor (q) can now also be defined for this case where toroidal coupling 

is included in the model. From the fieldline equation for (r,O,cp) coordinates 

rdO Rdcp 

EG n;-o 

and the toroidal quantities Be and BIP (given by equations (3.8) and (3.7)), we get 
o 



221 

f dO(l + a cos 0) -1 - - 81/J L f drp . Ora 

Define 

f dO 
wL 1 + H COS 0 

to get 

a' o 
- IT rp + wLC . 

with w
LC 

an integration constant, 

(7.67) 

in the absence of no non-axisymmetric perturbations. A new safety factor can now be 

defined as 

(7.68) 

When this is substituted into equations (7.65) and (7.66), it is immediately clear that 

'I' ' II' 1/Jo = 0 defines the rational surface at r = r sI and 1/Jo = 0 defines the rational 

surface at r = r sII . 

7.8 The Model for Ko{r) 

Closer inspection of equations (7.49) and (7.50) shows that 

K '0 /;pr -+ (I) if K'o :f: 0 at r = r sI (7.69) 

All' 
K'o/1/Jo -+ (I) if K'o f 0 at r = rsII . (7.70) 
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We will now proceed in exactly the same way as in the cylindrical case to prescribe Ko 

in equations (7.62) to (7.66) . From its definition we know that Ko is a function of r. 

We must also demand that Ko I = 0 and Ko I = 0 (from equations (7.69) and 
rsI rsII 

(7.70). We will thus model two axisymmetric perturbations 81(1 and 81(2 to flatten 

the profile of Ko(r) at both rsI(rs1) and rsII(rs2)· 

The function K(~I,~II) is similar to the cylindrical J(~) . In chapter 6 we used a 

parabolic current density profile with only one free variable as was specified in equation 

6.3. We will now use a two parameter model for Ko(r) of the form 

(7.71) 

It is now easy to show from equation (7.62) that 

£ f 
go - 2 q1 B(b+l, r) 

(7.72) 

and 

2£ 
qo go ' 

(7.73) 

where B(b+l, i) denotes the Beta function with parameters b+l and i, and q the 

safety factor as specified by equation (7.68) using the normal notation as was discussed 

after equation (6.8). 

For any choice of the parameters band f in the expression for Kuo(r) (i.e. equation 

(7.71)), it is thus possible to find go and qo when q1 is specified. 

Equation (7.71) specifies the unperturbed equilibrium profile. We will now proceed to 

include two axisymmetric perturbations OK 1 and OK 2 at the two rational surfaces. 
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Let 

(7.74) 

and 

(7.75) 

We assume that the one island is dominant and is located at rs1. The other island 

located at rs2 is smaller. The larger island will thus affect the flatness of the smaller 

island at rs2 but not the other way round. The variable j2 can now be specified in 

such a way that, when the effect of OK 1( r) is included, K 0 I is zero, where 
r s2 

(7.76) 

As before (see constraints (a) and (b) in section 6.2) we force 

Kol = 0 r s2 
(7.77) 

and 

o. (7.78) 

The constraints K 0 I = 0 and K ~ I r = 0 will automatically be satisfied if the effect 
r s1 s1 

of bK 2 is negligible at r = r
S1 

. 



Equation (7.77) results in 

Equation (7.78) gives 

with 

a3 - B wU(4A) 

a2 - - 6 w~/4 

al - -2 B wU(4A) 
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(7.79) 

(7.80) 
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As before (section 6.2) we can now solve for d2 . Now, with j2 and d2 known, we can 

substitute the expression for Ko(r) (equation (7.76)) into equation (7.62) and solve for 
AI' All' 

the equilibrium values of ao and ao as well as 'l/Jo and 'l/Jo . As before (in the 

cylindrical case) the value of go will change slightly when the perturbations t5K 1 and 

t5K 2 are included in Ko(r) . The real value of go can be found by forcing 

Be I = - ao I = o. The rational surfaces rsl and rs2 can be found iteratively from 
o 0 0 

AI'I AIl'1 the expressions 'l/Jo = 0 and 'l/Jo = 0 . 
rsl rsl 

Equations (7.63) and (7.64) can now also be solved because 8K o as well as 8K o are 
8;P~ 8;P~I 

analytic for all r. 

7.9 Boundary Conditions for the Toroidal Equations 

We know that K = K( ;p~, ;P~I) . Now assume as before that the boundary has the 
A I A II 

same form as 'l/Jo or 'l/Jo , i.e. 

r8 - ro + 01 cos (mO-ncp) + 02 cos ((m+1)O - ncp + Xl) . (7.81) 

Therefore K will follow the boundary such that 

(7.82) 
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If we make a perturbation expansion of K(r) about the boundary, we get 

- o. 

From the Fourier components cos(mO-nrp) and cos((m+l)O - nrp + Xl) we get 

(7.83) 

(7.84) 

The expression for k~(ro) and k2(ro) in equations (7.49) and (7.50) can now be 

substituted into the above equations to give 

or 

(7.85) 
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and 

or 

(7.86) 

As before (section 5.2) we may set ro = 1 because of the normalization with regard to 

the plasma boundary a = ro' The value of ao 11 may be chosen freely because 

~.l = (1/h) (V'I/J " fp), which allows us to add any constant to 'I/J = ao ' The values of 

All Ani 'l/Jo 1 and 'l/Jo 1 are now known from equations (7.36) and (7.37). 

The value of a o 11 can be found from equation (7.68), i.e. 

Finally the values of a
/
111 and a 211 will be chosen such that - a ~ I 0 = Bello = 0 and 

- a 21 = Be I = o. 
o 2 0 

All the boundary conditions that are needed to solve equations (7.62) - (7.66), i.e. -

aol1, ¢~Il' ¢~II1' a ol 1, a111' a211' a~ll' a 211' are now known or are to be 

determined in the numerical procedure. We thus have 

- kl (free constant) (7.87) 
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. I I kl + ~(2m+l) + Db (%(v'1+R1 )5 - ~(v'l+Rl )3) (7.88) 
1/Jo -

1 

• I! I 7/Jo 
1 

- kl + ~(2m+1) - Db (g(v'1+R1 )5 - ~(v'l+Rl )3) (7.89) 

a' I - f. /ql (7.90) 
o 1 

a 111 
. I I -01 7/Jo 1 

(7.91) 

a2 \ 1 
- -0 ;pI! \ 2 0 1 

(7.92) 

a' I 1 1 
- shooting value (7.93) 

a'i 2 1 
- shooting value (7.94) 

D 1 {2m+1) m {m+1) COS 2Xl - 2"f. n 

C 1 n 
- 2" f. m(m+1) 

using the fact that a i = 7/Ji, i = 1,2 . 

7.10 The Vacuum Equations 

When the plasma equations ((7.62) - (7.66)) are coupled to vacuum on the outside, 

the toroidal vacuum equations are needed. We know that V"~l = 0 and V'~l = 0 

in vacuum, with 
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(BA A + BA 0 + BA cpA )ei(mO-ncp) 
~ 1 lr r 19 1\{> 

(7.95) 

the perturbed magnetic field with m 2 = m+1 and the superscripts A and B denoting 

the phase. When this is substituted into the toroidal expressions for V"~ 1 = 0 and 

V.~ 1 = 0, and terms of O( f3) are dropped, we get 

A A 
mB 1\{> + an B 19 = 0 (7.96) 

A' A 
B 1\{> + im B lr - 0 (7.97) 

o (7.98) 

A BA' . BA . BA 0 B lr + r lr + zm 19 - ma 1\{> = (7.99) 

and 

(7.100) 

B' B 
B 1\{> + im B lr - 0 (7.101) 

B B'. B B 1G + r B 1G - zm 2 B 1r o (7.102) 

BB BB' . BB . BB 0 
lr + r lr + zm 2 19 - zna 1\{> - , (7.103) 

which are exactly the same as in the pure cylindrical case where the two perturbed 

modes are decoupled. It is thus now possible to use all the expressions that were derived 

for one mode in a cylinder with various external situations and to apply them directly to 

the present model. 
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7.11 External Coils 

The external coils on Tokoloshe have the winding laws qcp = 0 - 6.# sin 0 + 
(p_l)'lr/#, p = 1,2 ... The Fourier expansion of this current at r = rc (the coil 

radius) allows many ji m,n) components to be non-zero. The effects have been 

included in equation (5.59), with the values of 6.# computed for Tokoloshe and 

given just below equation (5.59). 

For the 12~oil, we get 

0.824 12 with Jo(1 .676) = 0.412 
'lrrc 

- 1. 725 12 with J 1(1.676) = 0.575 
TIc 

and for the 13~oil 

j(2d) _ 0 
z 

When both the 12 and 13 coils are on, we get 

0.824
1 - 7rr c 2 

Another thing to remember is that the coupling at the radius where the coil current is 

found (i.e. equation (5.28)), is actually 
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with R denoting the outside and L the inside of the boundary. When j~ m,II) is 

) ( ) . . h l't d f i(mO- ncp+Xl) W found, using equations (5.45 or 5.104, It gIves t e amp I u e 0 e . e 

need the corresponding j~ m,II) at Xl = 0, 0 = 0, cP = 0 to know the coil current 

direction. For 

j~n"II) (0 = 0, cP = 0, Xl = 0) > 0 

the coil current is positive and for 

J'( m,n) (0 - 0 In - 0 X - 0) < 0 z - ''1'- '1- , 

the coil current is negative. 

7.12 Conclusions 

The one mode cylindrical model of chapter 4 was extended to include two modes 

with toroidal coupling between them. This agrees with work done by Bateman and 

Morris [67] but is extended here to allow for non-axisymmetric boundaries. 

The model developed in this chapter will now be used in conjunction with the 

various boundary conditions of chapter 5. This is the first time that toroidally 

coupled modes have been studied with specific attention to the boundary conditions. 

The results are presented in the next chapter. 
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CHAPTER 8 

RESULTS OF THE TWO MODE MODEL 

8.1 Introduction 

The results for the two mode toroidal model will now be presented. 

This chapter is divided into three parts. First we present some' results on the 

equilibrium quantities, i.e. the form of Ko(r) as well as other quantities. Contour 

plots of (2,1) and (3,1) toroidally coupled saturated islands are also presented. 

Then we consider the case of a peaked parabolic (f=2) profile for Kuo(r), i.e. 

representing the low MHD phase on Tokoloshe. Locking of the modes, rotation, 

locking with external coils and external coils with in-phase locking are considered. 

Lastly, we examine the relation of the natural uncoupled (3,1) mode to the coupled 

one. In this part we investigate the effect of coupling on a natural (3,1) mode. 

8.2 The equilibrium quantities 

As was discussed in the previous chapter, the unperturbed "toroidal current profile" 

Kuo(r) is flattened at both rational surfaces when two islands are included. This is 

shown in Figure 8.1 where toroidally coupled (2,1) and (3,1) modes have been 

included in the plasma. The value of the safety factor at the boundary (ql) is 4.5. 

We did not use the value of 3.6 as was mostly done in the cylindrical case, because 

the (3,1) island had to lie deeper in the plasma for the theory to be valid (i.e. with 

Rl = 0 as discussed at the end of section 7.3). 
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r 

The graph of Kuo(r) and KO(r) for a peaked profile with q1 = 4.5, 

qo = 1.0, f = 2, b = 3.5. 

The form of hK = hKl + hK2 that was used to flatten the current profile of Figure 

8.1, is shown in Figure 8.2. Both hKl and hK2 are similar to the 6J used in the 

cylindrical case (Figure 6.3), changing sign at r = rs1 and r = rs2 respectively. 

When both are, however, included simultaneously, and the (2,1) island is dominant 

( hK 1 > hK 2), the effect of hK 1 on hK 2 can be significant as is shown in Figure 

8.2. The hK1 curve prevents the hK curve from changing sign at r = rs2 . 

Also shown are kl and k2 . Both change sign at the particular rational surface, i.e. 

kl at rS1 and k2 at rs2 ' Note that k l is zero at rs2 and k2 at I sl . This will 

be discussed later in this section. 
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The amplitude of k2 is much smaller than kl because the (3,1) mode is only 22 % 

of the (2,1) mode for this case in which the modes were locked. 

FIGUIR 8.2 

0 .01 

0.0 

-0 .01 _ 

-0.02 
0 .0 0 .2 0.'1 O.G O.u 

r (no r m un i Ls) 

The forms of OK = OKI + OK2, kl and k2 for the same profile as in 
Figure 8.1. 

The last equilibrium quantity to be discussed is ~O, the helical magnetic flux. 

There are two expressions for ~O, i.e. ~~ which agrees with the helicity of a (2,1) 

mode in our work, and ~~I which agrees with the helicity of a (3,1) mode in our 

case. The functional form of ~~ has a minimum at r = rS1 (the 'rational surface of 

the (2,1) mode) and that of ~~I has a minimum at r = rs2 (the rational surface of 

the (3,1) mode). This is shown in Figure 8.3. 

Other important quantities to be calculated are 8Ko / 8~~ and 8Ko / 8~~I . These 

are needed to calculate al and a2 from equations (7.63) and (7.64). Both these 

quantities (8Ko/8~~ and 8Ko/8~~I) are shown in Figure 8.4. The quantity 

8Ko/ 8:,,1o -_ K '0/:,,1
0 

, h . t b :,,1' h . h 'fI 'fI c anges sIgn a r = rs1 ecause 'flO c anges sIgn at t at 

point (~~ has a minimum at r = rS1 as was discussed in the previous paragraph). 

This is also true of 8Ko/8~~I = K'o/~~1' which changes sign at r = rs2 . Also 

note that both these quantities are zero at the rational surface other than the one 

where they change sign. This happens because K'o is zero at both rational surfaces. 
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FIGUlB 8.3 
"I "II The form of 'l/Jo and 'l/Jo for a (2,1) and (3,1) island respectively. 

The equilibrium specified in Figure 8.1 is used. 

This also explains the behaviour of kl and k2 which is just 

Finally, being able to calculate all the equilibrium and perturbed quantities for this 

particular profile (ql = 4.5, qo = 1.0, f = 2, b = 3.5), we can calculate the total 

perturbed values of 

"I "I" 'I/J - 'l/Jo + 'l/J1 cos (mO-n<p) 

"II -II " 
'I/J - 'l/Jo + 'l/J2 cos «m+l)O-n<p) 

Ko(r) + kl cos (mO-n<p) + k2 cos «m+l)O-n<p) , 
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F1GUIlE 8.1 
'I I 

The graphs of K '0 / 7/Jo 
I / ;,,II I h '1' b . . f' d . and Ko ~o . T e equI I rlum speCI Ie In 

Figure 8.1 is used. 

with kl = 0, m = 2, n = 1. The contour plot of ~1 is shown in Figure 8.5, that of 

'II . 'I 'II . . 7/Jo in Figure 8.6 and that of K( 7/J ,7/J ) III Figure 8.7. Only on the graph of 

K( ~I, ~II) are both islands visible as can be expected. 

8.3 The eigenvalues of both modes 

Instead of one eigenvalue as before, the problem now has two eigenvalues, w 1 and 

a . \ ail 
These parameters are defined in equations (7.74) and (7.75). The graphs of 

against Wi' i = I, 2, have exactly the same form as before. The only 

difference is that in the case of only one mode present, the graph was independent of 

both 0 and f. It was thus possible to find the functional form of the graph and 

only afterwards to solve for 0 when the saturated island width is determined using 

some 6. I (W) criterion. Now, the form of the graph can only be found at the same 
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FIGUlB 8.5 The (2,1) mode with b = 3.5, f = 2, ql = 4.5 and qo = 1.0. 
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The (3,1) mode with the same equilibrium as in Figure 8.5. 
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A 

J(1f; ) 

0.2 0 .4 0.6 

r (norm units) 
0.8 

o 
o 
o 

1 

Both the (2,1) and (3,1) islands are visible on the contour plot of 

K(i;}, ~II). The equilibrium is the same as in Figure 8.5. 



240 

time that b", i = 1, 2, are determined. For every value of W", the correct value of z z 

~ is only known once the saturated island width, and thus also a "I 
ail 

bi, has been 

determined. This increases the computing time considerably (up to a 100 times 

because both the starting shooting values must also be chosen correctly). In the 

following graph we present ~I against w " for both modes in the case of a peaked 
ail z 

parabolic profile for Ko(r) (b = 3.5, f = 2, ql = 4.5, qo = 1.0). It is clear that the 

profile is flattened much more at the (2,1) rational surface than at the (3,1) surface, 

a " I i.e. w 1 > w 2 for the same ~ . This implies a (2,1) island that is considerably 
a i 1 

larger than the (3,1) island. It is consistent with our present model, which is only 

valid if the (3,1) island is not very large. 

2.00 -, 

~ 
t 
1\ 
1\ 
1\ 

1.20 h I \ 
I \ 
I \ 
I 
I 
I 

~I 0.10 
I 

(2,1) I --\-- mode 
I 

a i 1 I 
I 

'\ \. I - -fr- (3,1) mode "\" 

-0.40 - '\ \! ~ 
\ 

'" +1 

~ "\1 
-1 .20 .j. 

- 2 .00 L-_-'----'-----I'--_---l-_-----1. __ --L...._--.J 

FIGUlB 8.8 

0.00 0.02 0.04 0 .06 0 .08 0.10 0.12 

w · z 

The graph of ~Il against Wi' i = 1,2 for coupled (2,1) (i =1) and 

(3,1) (i =2) modes. 
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8.4 Mode Rotation without External Coils 

As was discussed in chapter 5, we will now assume a configuration where the plasma 

is rotating. Between the plasma and the resistive wall a small vacuum region is 

allowed for, and vacuum is also assumed outside the wall. The form ~f ~II for 

such a configuration is given by equation (5.73). From this equation we can 

tabulate n against ~I for both modes. This is done in Table 8.1 for E = 0.1 ail 
and rw' the wall radius, at 1.01, i.e. the wall is very close to the plasma edge. 

n all a21 
37;1 iI1 

0 -0.501 -0.33 

1 -0.447 -0.316 

2 -0.353 -0.283 

5 -0.185 -0.171 

10 -0.104 -0.105 

20 -0.05 -0.055 

CD -0.01 -0.011 

Table 8.1 

In Figure 8.9 we show the island width as a function of rotational frequency n. 

The (2,1) island increases by 16 % when it is locked (from a very fast rotating 

situation), and the (3,1) island by 36 %. The effect of mode locking is thus much 

larger on the (3,1) island. The islands are considered to be coupled together and 

rotating at the same frequency. 
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o 

---j-- (2.1) mode 

- -fr - ( 3. 1) mod e 

FICUU 8.9 The island widths of the (2,1) and (3,1) islands for different 
rotational frequencies. The equilibrium parameters are ql = 4.5, 

qo = 1. 0, b = 3.5, f = 2. 0 . 

8.5 External Coils 

a'i Equation (5.45) gives ~ when an external coil is.included in the vacuum outside 
a i 1 

the plasma, When fw = 1 and fc = 1.1, we get 

J
'( 3d) 
z 

J
' ( 2,1) 
z 

a a~ I ( all /0,3336 + 1 ) 0, 8~64 

a ail 
(a~1 /0.501 + 1 ) O,9~94' 
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We will now consider three situations, i .e. when only the 13 coil is switched on, when 

both 12 and 13 coils are swi tched on such that j~ 3,1) = 0, and when both the 12 and 

13 coils are on with j~ 2,1) = j~ 3,1). In Figure 8.10 the case of 13 alone is shown, in 

Figure 8.11 we show the second case where j~ 3,1) = 0 , and in Figure 8.12 the third case 

where j~ 2,1) = j~ 3d) . The same profile as before is used, i.e. with pa~ameters ql = 

4.5, qo = 1.0, b = 3.5, f = 2. In all the cases the islands are locked in phase with the 

external coil. 

0.20 .-------------------------------------------------~ 

0. 16 ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --6 

~ 0.12 

u 
C 
IU 
if) 

0.08 

-+--... +--
0 .04 ~-+ ... 

---
+ _---t--­

-.-+--

-r----- -+---------+ 

0 .00 '-----.L-1 -----L---_I-1 __ --L ___ -1-__ --.J 

0.00 

FIGUlR 8.10 

0.20 0.40 0.60 0.80 1.00 1.20 

The width of the (3,1) island for the 13 coil. The (2,1) island width 

stays unchanged on 0.164. 
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0 .25 .--------------------------------------------------, 
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0.00 0.06 0.12 0 . 18 0.24 0 .30 

FIGUlE 8.11 The width of the (2,1) island when j~ 2.1) * 0, j~ 3.1) = O. The width 

of the (3,1) island stays unchanged at 0.036. 
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FIGUlB 8.12 The island widths when j~ 2.1) = j~ 3.1) . 
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Important conclusions can be drawn from these graphs: 

• The island size does not change if the boundary condition for that mode is 

not changed. When ~I is kept at -0.5 (i.e. locked but no external coil 
all 

current), but ~I is increased consistently with increasing 13 (Figure 
a2 1 

8.10), the (2,1) island stays unchanged on 0.164 but the (3,1) island is 

increased. On the other hand, when ~I is kept at -0.33 (i.e. locked but 
a2 1 

no external current density of similar helicity), but it\ is increased 
1 1 

consistently with increasing ji2
,1 ) (Figure 8.11), the (3,1) island stays 

unchanged on 0.036 but the (2,1) island is increased in size. This may 

have implications for experimental mode suppression. 

• The effect of a similar current density is much larger on the (3,1) island 

than on the (2,1) island. The (2,1) island width increased by 10 % and 

the (3,1) island width by 131 % for ji 2,1) = ji 3,1) = 0.1 X 10-3 . From 

this we observe that the (3,1) island is much more sensitive to the 

boundary conditions than the (2,1) island. The reason for this is probably 

due to the proximity of the (3,1) island to the surface. 

8.6 External Coils with Rotation 

We will now consider the case where an external coil is included with a rotating 

plasma. Only "in-phase" cases are considered. The parameters are rw = 1.1, re = 
1.3, qo = 1.0, ql = 4.5, b = 3.5, f = 2.0. 

In Figure 8.13 we present the case when j ~ 2,1) = j~ 3,1) = 0.1 x 10-3 and in Figure 

8.14 when j~ 2,1) = 0 and j~ 3,1) = 0.1 x 10 -3. As before we note that the (3,1) 

island is much more sensitive to the boundary conditions than the (2,1) mode. 
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FIGUlB 8.13 The variation of island SIze (V) with rotational frequency (0) for 

"D 
C 
ro 
(f) 

both modes present and j~ 2,1) = j~ 3d) = 0.1 x 10-3 
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FIGUIH B.14 Island SIze variation with frequency for both the (2,1) and (3,1) 

modes when j~2d) = 0 and j~3,J) = 0.1 x 10-3 
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As before the modes are considered to be coupled and rotating at the same 

frequency. 

8.7 The Effect of the Aspect Ratio 

On Tokoloshe we do not have an inverse aspect ratio of f = 0.1 as was used in the 

calculations up to now, but of NO.5. It is thus important to examine the effect of f. 

In the following graph we show the effect of inverse aspect ratio on island size. As 

f increases, the ratio of the (3,1) island size to the (2,1) island size increases. This 

means that the toroidal sideband increases in size when f is increased. This could 

be due to the proximity of the (3,1) island to the plasma edge. Note that the (2,1) 

mode is not affected significantly by the change in f. 

0.20 r-------------- - , 

0 .16 t-- ------------I 

0.12 

(2.1) mode 

0.08 (3.1) mode 

- --- ---- -- - --- ----- - -
0.04 

0 .00 '-----L----'--__ -L---__ --L-_ ----.l 

0.08 0.16 0 .25 0 .33 0.42 0 .50 

rlGUlB 8.15 The. e.ff~ct of inverse aspect ratio (f) on mode coupling. The 
equIlIbnum parameters were ql = 4.5, qo = 1.0, b = 3.5, f = 2.0. 
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8.8 Equilibrium Effects 

The effect of equilibrium changes can also be looked into. In Figure 8. to we show 

how the island width of the (2,1) and (3,1) islands changes with profile. The (2,1) 

island varies in exactly the same way as ill the cylindrical case (see Figure 6.32). 

The (3,1) island width is the largest for a profile with ql = 4.5, qo = 1.3, b = 2.46, f 

= 2.0 and profiles with qo = 1.0 and qo = 1.5 having smaller sideband islands. 

We arc not sure why the pronounced maximum for the (3,1) island width occurs. 

This may be due to the effects of the chosen profile. 

\J 
C 
ro 
Vi 

0.20 r-------------------------------~ 

---0.16 -----__ _ 
---

0.12 

0.08 

---------0.04 

------------

_-----A---_ ---

------. 

0.00 '------..!.----1...-_--1-__ -L-_--.1 

1.00 1.10 1.20 1.30 1.40 1.50 

--t-- (2.1) mode 

- -fS - (3.1) mode 

fIGU18 8.16 Island width variati,on with equilibrium parameter qo' The other 

parameters are ql = 4.5 and f = 2.0. The value of b can be 

calculated from equation (6.7). 
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8.9 Other Effects 

8.9.1 Boundary perturbation 

We found that the (3,1) island perturbs the boundary much more than the (2,1) 

island. This is shown in Figure 8.17. A boundary perturbation of 0i = 0.19 x 10-2 

corresponds to a (3,1) island width of 0.08 and a (2,1) island width of 0.16. This 

may also be the reason why the (3,1) island is much more sensitive to the boundary 

conditions than the (2,1) island as was discussed earlier. 

"0 
c 
(U 
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0.10 .---------------------------------~ 

0 .32 

0 .2 4 -

0 . 16 

0 .08 

~~~++---
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0 .00 '--------'------'-___ -'--__ ----.1 

- -!-- (2 .1) mode 

- - fr - (3.1) mode 

0 .00 0 .06 0 .13 0 .19 0. 25 

O. 
z 

FIGUlR 8.17 The (2,1) and (3,1) island widths are related to the boundary 
perturbation 0., i = 1,2. z 
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8.9.2 "Coupling" of islands through the background current density profile 

When the unperturbed equilibrium profile is flattened locally at the rational 

surfaces, the surrounding regions are also affected. This happens because the 

current density on the inside of the rational surface is redistributed to the region 

just on the outside of the inner rational surface. Such a change in the form of the 

profile can affect the nearby islands, increasing or decreasing the steepness of the 

profile at those islands. Although other authors found this effect to be significant 

[67], we found it to be small. The main reason why these effects are small in our 

model is that the islands are not positioned close to each other in the plasma. This 

coupling would also be present in a two-mode cylindrical model. 

8.9.3 Toroidal effects in the helical flux 

As was discussed earlier, we used a simplified form for the helical flux expression to 

enhance iteration of the model at the end of section 7.3. Instead of using the 

toroidal helical flux expressions, we used the cylindrical ones. The effect of this 

toroidal modification is to move the islands to the outside (w~en coupled in-phase 

i.e. Xl = 0) or to move them to the ins~de (When coupled out of phase i.e. Xl = 7r) . 

This will clearly have an effect on the island size. For an equilibrium profile with 

parameters ql = 4.5, qo = 1.0, b = 3.5, f = 2.0, we found that the locked (2,1) 

mode was reduced from 0.164 (cylindrical flux function) to 0.142 (toroidal flux 

function) . This is a reduction of 13 %. Other authors also found a reduction in 

island size [4,67]. 

8.10 The relation of a natural tearing mode to a toroidally induced one 

The profile that was used up to now (ql = 4.5, qo = 1.0, b = 3.5, f = 2.0) does not 

have a natural (3,1) island present . The (3,1) island was included in the plasma as 
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a pure toroidal sideband of the (2,1) island. It is thus clear that a (3,1) island of 

nearly the same size as the (2,1) island (for certain values of E and equilibria) can 

be introduced into the plasma when toroidicity is included, even if no natural (3,1) 

tearing mode exists. This effect of a (3,1) tearing stable profile having .a (3,1) 

toroidally induced mode present, was also found by Bateman and Morris [67]. 

To study the relation between a natural tearing island (i.e. an island which exists 

when no toroidal coupling is allowed for) and a sideband island, we proceeded as 

follows: We took two equilibria with very similar parameters (profile 1 - ql = 3.99, 

qo = 1.43, b = 1.4, f = 1.6 and Profile 2 - ql = 4.11, qo = 1.33, b = 1.4, f = 1.4), 

the first being tearing mode unstable and the other tearing mode stable. The island 

sizes of the natural and the sideband islands of the tearing unstable profile and the 

island size of the sideband in the tearing stable equilibrium were then compared. 

This is tabled in Table 8.2 and shown graphically in Figure 8.18 . The profile we 

have used up to now is also included in Table 8.2. The - means island size is zero, 

"tor" means the (3,1) island is a toroidally coupled sideband and "nat" means that a 

natural (3,1) island exists in the case of no toroidal coupling. 

An interesting result from Figure 8.18 is that the island sizes of the natural and 

sideband islands are the same for W > 0.05. It is probable that the sideband island 
N 

takes the value of the natural island when the latter is larger. 



Superconducting Wall Locked ji 2 ,I) = 0 ji 2d ) = 0 

r 4' = go (1- rf ) b 
tor nat ji 3 ,1) = 0.1 x 10- 4 ji 3 ,I) =0.5 X 10- 4 

tor nat tor nat tor nat 
(2,1) (3,1) (3,1) (2,1) (3,1) (3,1) (2,1) (3,1) (3,1) (2,1) (3,1) (3,1) 

go = 0.14 
f = 1.6 0.121 0.021 - -- 0.130 0.042 0.015 0.130 0.052 0.054 0.130 0.08 0.082 
b=l.4 

ql = 3.99 

go = 0.15 
f = 1.4 0.121 0.018 - - - 0.125 0.023 - - - 0.125 0.047 - -- 0.125 0.075 - --

b = 1.4 
ql = 4.11 

go = 0.2 
f = 2.0 0.138 0.023 - -- 0.164 0.036 - -- 0.164 0.046 - -- 0.164 0.066 - --
b = 3.5 

ql = 4.5 

Table 8.2 
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FIGUlB 8.18 The island width of natural and toroidal sideband islands for profile 
1 and of toroidal sideband islands for profile 2. These are compared 
for a super conducting wall situation, a locked one, and locked with 

j~ 3d) = 0.1 x 10-4 and 0.5 x 10-4 . 

On Tokoloshe we observed a situation where the (3,1) island is comparable in size 

with the (2,1) island before the minor disruption . . Thereafter it is much smaller. 

We can tentatively conclude that this ' can be because of profile changes at the edge. 

It is possible that a large natural (3,1) island exists before the minor disruption, and 

that we only observe the toroidal sideband afterwards. It is also possible that both 

before and after the minor disruption the (3,1) island is due to toroidal coupling. In 

such a case the profile change can be the reason for the island size changes. We, 

however, did not find pure toroidal sideband islands of that size for the profiles 

used. 
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8.11 Conclusions 

We modelled a situation of two toroidally coupled modes in a Tokamak. The effect 

of external situations on these modes is of particular interest as it is the first time 

that such a study had been undertaken. 

The main findings of this model for the specific current density profiles studied, 

include: 

• Toroidal sidebands can be introduced although no natural island is 

present. This was also found by Bateman and Morris [67]. 

• Island sizes are not affected if the boundary condi tions are not changed. If 

a current density of a particular helicity is applied at the coil position, it 

will only affect that particular mode of the same helicity. 

• The (3,1) island is much more sensitive to the boundary conditions. 

• When a large natural island is present, the toroidal sideband island will be 

of the same size. Toroidicity will not increase the size of such an island. 

• Large inverse aspect ratios can give rize to large sideband islands. 
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CHAPTER 9 

CONCLUSIONS 

9.1 General Conclusions 

In this thesis cylindrical and toroidal models were developed to study the behaviour 

of saturated tearing mode behaviour on Tokamaks. Some of the interesting features 

of the cylindrical model that appear to be new include: 

• A graph of at/a't (Br/Bet) It against w giving all possible boundary 

conditions the plasma can be coupled to. The island width as well as 

boundary perturbation can be calculated on every point on this graph 

using some !:l' (W) criterion. 

• The values of both Brit and Betl
t 

can be calculated for any boundary 

condition. 

• The relation of Betl
i 

to toroidal rotational frequency with external coils 

resembles that of Tokoloshe for a natural shot. From this it follows that 

error fields playa role on Tokoloshe even if the external coils are switched 

off. 

• Broad flat profiles have very large islands in the presence of small external 

coil currents. 

• A simple model of angular momentum conservation, which couples profile 

type to rotational frequency, describes the Tokoloshe situation quite 

accurately. 
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• A comparison of the /1' criteria of Rutherford and Reiman. Although 

the Rutherford criterion is only applicable when the boundary is circular, 

it agrees very well with the Reiman criterion (which is valid for perturbed 

boundaries) in the case of perturbed boundaries. The criteria do differ for 

circular boundaries because of the difference in their formulation and 

because the White et al. [3] Q-terms do not appear in the Reiman 

criterion. 

The toroidal model enabled us to include two toroidally coupled modes in the 

plasma. The effect of external coils as well as plasma rotation on toroidally coupled 

modes appears to be new. We also looked at the relation between a natural (3,1) 

tearing mode and a toroidally induced one which is of particular interest for 

Tokoloshe. The effect of aspect ratio on the findings was also investigated. 

Some of the findings are: 

• Large inverse aspect ratios can give rize to large sideband islands. 

• The toroidally coupled (3,1) mode grows much faster than the (2,1) mode 

with the same current density applied at the boundary. Both modes 

reduce when the rotational frequency is increased (assuming rigid body 

rotation, i.e. modes rotating at the same frequency) . However, the (3,1) 

mode reduces much more as a percentage of original width. This will 

probably also be true for two uncoupled cylindrical modes. 

• None of the island widths change if the boundary condition of that mode 

is not changed. This can easily be observed in the case when a current 

density of only one mode number (i.e. (2,1) or (3,1)) is applied to the 

boundary. In that case only the one island grows, but the other remains 

unchanged. 
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• The problem that Bateman and Morris [67] mention with regard to the 

determination of the island width (as was discussed in the introduction to 

chapter 7) is overcome by using the boundary conditions as is described in 

section 8.3. 

• The (3,1) island is toroidally induced in many profiles studied. When the 

aspect ratio is changed, the (2,1) island remains unchanged, but the (3,1) 

increases with aspect ratio. 

• When the natural tearing island is small, the toroidally induced one can 

be much larger. However, when the natural tearing island is large, the 

toroidally induced one is of the same size. This is contrary to a possible 

expectation that the effect of both the natural instability and the coupling 

would give an even larger island. 

9.2 Shortcomings of the Models 

The models have certain shortcomings which include: 

• The effect of the axisymmetric current density perturbations used in the 

model can influence the results . The inclusion of two possible models for 

6J in the cylindrical case was an effort to determine the effect of this 

variable (OJ). The fact that no significant difference was found in the 

results is not particularly revealing because of the similarities of the 

models. However, it can be argued that the eigenvalue will force any 

axisymmetric perturbation to flatten the unperturbed profile to the same 

extent, and that this can be th~ reason for the agreement between the two 

models used. 
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The fact that only terms of O( f) were included in the expansion for J(~) 

has as side effect the result that the current density is not single valued 

inside the island. The error of O( f2) in B.VJ = 0 can be observed in 

Figure 6.28. An iteration scheme can possibly be used to eliminate this 

problem as was discussed at the end of section 6.5.4. 

• The rotational frequency (with external coils) was not included in a fully 

satisfactory way since we actually modelled a set of coils rotating with the 

plasma, which is not the situation on Tokoloshe. Assuming that the 

islands will be saturated all the time during the rotation, allows the model 

to be applied to Tokoloshe. In the cylindrical case we considered both 

in-phase and out-<>f-phase situations, and in the toroidal case only 

in-phase situations. For low frequencies the model also breaks down. 

• In the toroidal model we used the cylindrical helical magnetic flux 

expressions assuming small differences. This had as an effect that the 

(2,1) island sizes were not affected which is not fully true as was discussed. 

This simplification, however, enables us to get eas~er iteration for the 

system of equations. 

• In this model we did not allow for overlapping of islands because of the 

restriction that the (3,1) mode be small (section 7.8). This is consistent 

with the theoretical modelling where non-linear mode coupling has been 

ignored (section 3.9). 

9.3 Recommendations for Future Work 

As it was not possible to consider all interesting situations in this thesis, the 

following cases seem to be of interest in case of future work: 
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• The consideration of AC coil currents in conjunction with toroidally 

coupled modes. 

• More complete investigation of the case where the tearing mode is out of 

phase with the external coil current direction. 

• The effect of profile changes with toroidally coupled modes in the case of 

rotation or external coils. 

• The inclusion of more modes, including secondary modes, in the toroidal 

model, and coupling it to the various boundary conditions. 

• The analytic model of section 6.4.2 provides a relatively direct way of 

obtaining analytic estimates for stability and should be persued in the 

future. 
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APPENDIX A 

Term A in equation (3.27) can be written as 

R2 [a a [-R/R au] + a [[-R/R au] a [-R/R au]] 
p mat o7Jz m o7Jz GR o7Jz 

a a [R/R au] au [[-R/R au] au [R/R au]] -GRot 0 OR -OR 0 Oz OR 0 OR 
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2R/R 2 au a [au] R2/R 2 a 2 u a [au] 
- oOR"OZ OR - o0R2"OZ OR 
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APPENDIX B 

DERIVING AN ENERGY INTEGRAL IN THE TOROIDAL SYSTEM 

In this section we derive the energy integral given by Izzo et al. [4]. We recall equation 

(3.32), i.e., 

If this equation is multiplied with U, we get 

UPo ~ V2U + UPo Y.L.V(V2U) - UPo 2/Ro 1i1: V2U 

- 2U VR ~ VP . iP + U ~.V~ *'I/J . 
o 

We know, from vector analysis, that 

Y.(U~*'l/J12 - UV2Uy) 

- V(U~ * 'I/J). 12 + U~ *'I/J(V.12) - V(UV2U).y - UV2U(V.y) 

- V(U~ *'I/J).12 - V(UV2U).y 

- UV~ *'I/J~ + ~ *'l/JVU.~ - UV(V2U).y - V2U(V(VU.y) . 

In the derivation of equation (B.2) we used the fact that 

U N O( E) 

UV2U(V.y) N O(E3) 

V.B = O. 

(B.1) 

(B.2) 
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Thus, 
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(B.3) 

(from equations (3.34) and (3.14)) 

This can be substituted into equation (B.2) . 

We now have 

V.(ULl*'I/J~ - UV2UY) 

- U~.VLl*'I/J + 6.*'I/J(RojR)2 M + 6.*'I/J ROjR T/J\f> - UV(V2U) .Y - V2U(VU·Y) . 

(BA) 

Neglecting higher order terms, we know that 

V2U(VU.Y) N V2U(VU.Y) . 

Substituting Y.l = RjRo VUAcp in VU.Y.l' we get 

VU RjR VUAcpA - _ au RjR au + au RjR au - 0 
• 0 - OJI Oaz az oOJI- , 
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eliminating the last term in equation (B.4). 

Equation (B.4) can now be substituted into equation (B.l). Using 

and 

Po N 1, 

we get 

u ~ V2U + UY,l.V(V2U) = 2U VR ~ VP . Cp + V.(ULl*1/J~ - UV2UY) 
o 

(B.5) 

This immediately reduces to 

(B.6) 

To simplify this equation further we proceed as follows: Let 
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This gives 

lJP or = - R/Ro VUAQJ.VP . 

From vector analysis we get 

V A UR2 VP 
Ito 

Taking the Qr-component, gives 

_ - R/Ro VUAQJ.VP + ~ VR A VP.QJ 
° 

oP 2U A - or + R::" VR A VP .cp. 
o 

Now, using this in equation (B.6), we get 

+ Vcp V A UR2 VP _ oP - ~*./I RO/R J . ~ or 'I' 'Tltp' 

We also know from ~J. - ROjR V7/JAQJ IV O(e) 

(B.7) 

(B.8) 
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and from 

The resulting equation is 

Taking the integral of equation (B.9) gives 

with d-y :: dV 
toroidal 

We can now proceed to analyse each term in equation (B.IO). Thus 

f V.(U~*'I/J~ - UV2Uy)d-y = f (U~*'I/J~ - UV 2UY)dStor 

- 0 because U(a) - o. 

Now 

(B.9) 

(B.IO) 
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_ - f (1 UR2 VP AdA) - 0 because U(a) - 0) 
R~ lP 

using 

f (VAf)dV = - ffAd~ . 

The right hand side of equation (B.lO) can also be simplified: 

using 

f (Vcp).(V¢)dV = f CP(V¢).d~ - f cpV2¢ dV . 

and (VU)2 = VU. VU. 

We also have 
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Finally, 

f ~ (R~/R2 V1/J).d~ = 0 because 1/J = constant on the boundary. 

Thus 

The final energy integral is 

(B.ll) 
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APPENDIX C 

THE COEFFICIENTS FOR "" AND U 

We define "" and U as follows: 

'" _ fr L (amnei(mO-ncp) + a~nei(mO-ncp)) 
mn 

u - fr I. (bmnei(mO-ncp) + b~nei(mO-ncph . 
mn 

Let 

amn - amn + i{3mn , bmn = Dmn + i'Ymn . 

Thus 

"" _ L (amn cos (mO-ncp) - {3mn sin (mO-ncp)) 

mn 

U _ L (Dmn cos (mO-ncp) - 'Ymn sin (mO-ncp)) . 

mn 

We know from the equations that 

1/J( 0, cp) - 1/J( -O,-cp)) 
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and 

U( O,cp) - -U( -O,-cp) . 

Now 

1/J( O,cp) -1/J( -O,-cp) L (O!mn cos (mO-ncp) - f3mn sin (mO- ncp)) 
mn 

- O!mn cos (mO-ncp) - f3mn sin (mO- ncp) 

2 L -f3mn sin (mO-ncp) . 
mn 

This implies that f3mn o for all m,n. 

In the same way we can show that omn = 0 for all m,n. 

From the symmetry it is clear that 

ID 

L O!mn cos (mO-ncp) 

giving 

mn 
-ID 

In the same way we can get 

-ID 

L 0!-m'11 cos (mO-ncp) 
mn 

CD 
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Now 

CD 

1/1 L ll'mn cos (mO-ncp) 
ron 
-CD 

and 
CD 

U - L 'Ymn sin (mO-ncp) . 
ron 
-m 
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APPENDIX D 

FOURIER ANALYZING THE REDUCED MHD EQUATIONS 

When V2U and D. *'IjJ are substituted into equations (3.75) and (3.76), (using 

equations (3.74) and (3.69), it is possible to see from inspection that 

U( O,cp) = - U( - O,- cp) 

'IjJ( O,cp) = 'IjJ( -B,- cp) . 

We now choose 

1/J = L amn ei(mO- ncp) 

mn 

U - L i bmn ei(mO-ncp) 
mn 

where a Fourier expansion is done in 0 and cp and the r-derivatives will be 

discretized later on. 

Substituting this in equation (3 .76) gives 

L (% imamn Zbkl - % a~n zkbkl) ei[(m+k)O-(n+l)cp] 

mnkl 

+ L (f( -il)zbkl + 1/} aiel + 1/ akl + (zk)2 ~ akl 
kl 

- 1/f jh cos 0 aiel + f jh ¥ sin O( zk) akl)e i(k O-lcp) 0 
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Let 
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L (-%mamnb k1 + %k a~n bkl) cos [(m+k)O-(n+l)cp] 

mnkl 

+ L (d bkl + 'TJ Ir akl + 'TJa~l - k2/r2 'TJ akl 

kl 

- 'TJE Ih cos 0 akl) cos (kO -lcp) 

+ L (- E Ih 'TJ Irk sin 0 akl) sin (k 0 - lcp) - 0 . 

kl 

to give 

L A cos [(m+k)O- (n+l)cp] 

mnkl 

+ L [B cos (kO -lcp) + C sin (kO -lcp)] - 0 . 

kl 

(D.l) 
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If the same procedure is followed for equation (3.75), we get 

with 

L {A cos [(m+k)O - (n+l)cp] + D sin [(m+k)O - (n+l)cp]) 

mIlkl 

+ L {B cos (kO-lcp) + E sin (kO-lcp)} + C 

kl 

o 

h E k . E2 • 
A - r Ii m ~ smO b om bkl + ill mk cosO smO bmIl bkl 

- ~ mk sinO bmIl b lel - ~ 12 sinO b~n bkl 

+ f sinO cosO b~n b lel - f sinO b~n b lel + ~ k2 sinO b~n b kl 

(D.2) 

2El2' Ob' b 2E2. 0 Ob' b' 2E2 . -Ii! sm mn kl + n sm cos mn kl + ~ mk cosO smO b mn b kl 

B 

C ES2 sinO Vr + fS2} cosO Vu 
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D h b b" h b b l + h b b") h k 2 b b l 

~ m mn kl - f1 m mn kl r m mn kl - f1 m mIl kl 

2(2 Ob b' S2 "S2 I - III m cos mn kl + f1Ii m a mn akl -:Elf'! m a mn akl 
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If terms of O( f4) are neglected, we finally get an expression for the momentum 

equation {D.2): 

L [ L [ D + E + F 1 + A + B + c 1 sin (mO--ncp) 0 
mn kl 

(D.3) 

A f2S2 S" S2 ---nat -f2 2na + f2-,.nm 2amn r mn mn r~ 

B 

c 

D m-k 2 b btl m-k 2 b b' m-k 2 b btl rr f m-k/n-l kl - f3 f m-k'n-l kl + -r- f m-k'n-l kl 

- (m-~) k2 2 b b' 2(m-k)k2 2 b b k , , 
r f m-k/n-l kl + r 4 f m-k/n-l kl - f2" f2 bm-k/n-1 bk1 

-!. 2 b' btl + k3 
2 b' b S2 ( k) 2' " r f m-k/n-l kl f! f m-k/n-l kl + f2" m- f am-k/n-1 akl 
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1 (3 1 (3( k ) k b b l 

E - 2" p(m-k-1) k bm-k-1Jn-l b k1 - 2" P m- -1 m-k-1Jn-l kl 

1 (3 b l bl + 3 bl b" 1 (3 k2 bl -b + 2" r m-k-i1n-l kl ( m-k-i1n-l kl - 2" P m-k-1Jn-l kl 

3 (3( ) b" 3(3( k ) b b l + 2" r m-k-1 bm-k-iln-l kl - ---p m- -1 m-k-i1n -l kl 

(3 k 3 bl b 1 (3 k bl b 1 S2(3( 1! ) " + 2 P m-k-l1n-l kl + 2" P m-k-l1n-l kl + 2" -r- m-J\-l a m-k-l1n-l akl 
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- 1 £3 ) b 1 £3( k+1) k b b ' F = 2" fl(m-k+1 k bm-k+1In-l kl + ~ fl m- m-k+1In-l kl 

1 £3 I b' 3 b' bIt + 1 £3 k2 b ' b - ~ r bm-k+lIn-l kl - £ m-k+lIn-l kl ~ fl m-k+1In-l kl 

5£3 ( ) b b 5 £3 k b' b ' 2 3 k b ' bIt + f3 k2 m-k+l m-k+1In-l kl - 2" r m-k+lIn-l kl - £ m-k+1In-l kl 

In these coefficients, as well as those below, the £ has been made explicit. The 

equation for the magnetic flux, equation (D.l), can also finally be written as 
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I [ [ In + E. + E_] + A + B + C ] cos (ml!-nl"l - 0, 

mn kl 

(D.4) 

with 

A 

B 

c 

D 

where 

l/h f( r) (f( r ) 
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APPENDIX E 

ANOTHER WAY OF DERIVING THE EXPRESSION 

FOR THE HELICAL FLUX 

The expressions for the helical flux can also be derived in another way. Instead of 

using the Fourier expansions where the first harmonic is included, ordering of terms 

could also have been used. Using the expression for ~ in the equation for the 

magnetic flux, that is equation (4.5), we get 

1. 87/J _ 87/J 1 8¢1. 8¢ E 8¢ 
(r 07J, or' ). (or' r 07J, ~) o , 

written in another form as 

Do the following substitutions: 

8 
7Jl) 

where X 

mode. 

Now we have 

mO - nc,o is a helical coordinate which can be used in the case of one 
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or 

The general solutioIJ of this differential equation is 

¢' = f( ¢' + a ~) 

A particular solution is 

¢' - ¢' + a ~ . 

If this solution is ordered, using the expressions 

we get 

just as was derived in equation (4.9) for a = 1. 
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APPENDIX F 

DERIVING THE COIL CURRENT IN TOROIDAL CONFIGURATION 

The magnetic field in a toroid is given by 

Be - Be (1 + f A cos 0) 
o 

f - afRo (a the minor radius) 

A - (3p + 1)2-1 

(3p - P / (Bij 12/10) 
0 

i. -
f Bij p dp dO 

p = rIa [95, p185] . 
t 

'1 a2 Be 
0 

The equations for a magnetic field line are given by 

rdO Ro d'I/J 

B9 -
Blj> 

or 

dO Ro Be B Ro eo 
~ - rB; - r r (1 + f A cos 0) . lj> 

Thus 

dO dIn r Blj> 
1 + f A cos 0 = q , q = IRo B9 . 



This gives 

Now 

or 

dtp 
dO (1 - f A cos 0) ~ q 

f 9 f9 f4> 1 dO - f A cos d 0 ~ - d tp 
o 0 0 q 

1 o - f A sin 0 ~ - tp . q 

It can also be written as 

tp ~ q 0 + 6 sin 0 , 6 = q fA . 
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Now we want a current density of the form 

J - !(r,0,tp)6(r-a)6(tp-qO-6sinO-k). 

To calculate f we proceed in the same way as in the cylindrical case: 

Let 

Thus 
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- j ftf) 15 (r-b) 15 ( cp - q ° - 15 sin ° -k) r dr dO 

= j ftf) 15 (r-b) 15 ( cp - g( 0)) r dr dO, 

[ g( 0) = q ° + 15 sin 0 + k = y ] 

from -m dO = dy. 

Now 

It = b j ftf) (b,O,cp) 15 (y - cp) alrau dy , 15 (x) = 15 (-x) 

= ag'aO ftf) (b,O(y), cp = y) 

We can also write 

- j fa 15 (r-b) 15 ( cp - q 0 - 15 sin ° -k) R dr d cp 

- Rjfa (b,O,cp) 15 (cp-g(O)) dcp 

= Rftf)(b,O,cp=g(O)). 

Now we have ftf) = lib mIL' fa = l/R Ii and the current density can be written 

as 
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J = Il(O, l/R, (l/b)(q + 8 cos 0)) 8 (r-b) 8(cp-qO- 8 sin O-k) 

It is important that V.J = 0. This can be tested: 

V.J 

_ }~(ll/R8(r-b) 8(cp -qO- 8sinO-k)) 

+ l/R~el/b(q+ 8 cos 0) 8 (r- b) 8(cp-qO-8sin O-k)) 

- }Il/R 8 (r-b) ~(8-qO - 8sin O-k)1 
r=b 

+ l/R Il/b(q+ 8 cos 0) 8(r-b)~(8(cp-qO-8Sin O-k)). 

Let 

u - cp - q 0 - 8 sin 0 . 

We thus have 

8 8 au 8 
7Jl) - Oil em - - (q + 8 cos 0) au 

a a au a 
fRJ = Oil ~ - Oil 

to get 

V.J - 0. 
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