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Abstract 

 

Concerns have been raised over the long-term site productivity (LTSP) of short 

rotation plantation forests, such as those of Eucalyptus, in South Africa. This is 

because diminished productivity of long rotation plantations overseas has been 

found to be generally due to decreases in soil porosity and organic matter. Since 

soil porosity and organic matter in plantations are mainly affected by soil 

compaction by harvesting machinery and residue management, the more frequent 

harvesting of short rotation plantations are of particular concern. Therefore the 

effects of soil compaction and residue management on soil properties at two sites, 

one a low organic carbon, sandy soil (Rattray), the other a high organic carbon, 

clay soil (Shafton) were investigated. The potential of early E. grandis productivity 

as an indicator of changes in soil properties at these sites was also evaluated.  

 

Three different levels of compaction (low, moderate and high) were applied to the 

sites by three methods of timber extraction, i.e. manual, logger and forwarder 

loaded by a logger, respectively. Three types of residue management, i.e. 

broadcast, windrow and residue removal were also applied. A factorial treatment 

design was used to ensure a resource-efficient study that allowed separation of 

main and interaction effects. 

 

Various soil physical and chemical properties were measured at intervals from 

before treatment implementation, until approximately 44, and 38 months after 

treatment implementation at Rattray and Shafton, respectively. Trees were planted 

at a commercial espacement at both trials, and their growth monitored over the 

same time period. In addition, to accelerate early growth, negate silvicultural 

variation, and determine changes in stand productivity with treatments, a portion of 

the treatment plots were planted at a very high density and harvested when these 

trees reached canopy closure at about six months of age. 

 

Moderate and high compaction treatments at both sites resulted in significant 

increases in penetrometer soil strength, and often in bulk density. Increasing 

residue retention decreased the compaction effects of machinery and, generally, 
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increased the total quantity of nutrients contained in residues and soil. Changes in 

soil bulk density and organic matter as a result of the treatments in turn affected 

soil water characteristics, generally decreasing plant available water capacity with 

increasing compaction intensity and residue removal. Tree growth measurements 

showed that at both sites, tree productivity was negatively affected at some point 

by increasing compaction. In contrast, residue management only significantly 

affected tree growth at Shafton, initially increasing and later decreasing growth 

with residue removal. These variations in tree growth over time in response to 

treatments are most likely a result of changes in tree characteristics that occurred 

with age. In addition, trees did not always reflect changes in soil properties that 

may affect LTSP, most likely because these soil properties had not yet reached 

levels that would affect tree growth.  

 

It was therefore concluded that early tree growth is not always a good indicator of 

changes in LTSP, and that soil properties are a more reliable indicator. Plantation 

management practices that lead to soil compaction and residue removals will 

negatively impact LTSP in South Africa. However, variable responses of the two 

soils indicate that soils vary in their sensitivity to compaction and residue 

management. This therefore needs to be quantified across a range of major soil 

types in the South African forestry industry. 
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Glossary of Terms 
 

Allometry: The study of the proportional allocation of resources to different plant 

parts (Medhurst et al., 1999). It is often inferred from the differences 

between a particular component and total mass, or differences in 

relative growth rate between components (Cromer and Jarvis, 1990) 

Forest floor: The layer of organic material between the mineral soil and the top of 

the litter layer. It includes leaves and branches fallen through the 

rotation of the stand, as well as the decomposing layer of these 

leaves and branches above the mineral soil. 

Gross primary productivity (GPP):  The total photosynthesis or total amount of 

organic matter assimilated, at a site. 

Harvest residue:  After the felling of a eucalypt stand, branches and tree tops with 

unutilisable stemwood are cut from the stems of trees. These stems 

are then stripped of bark and removed from the stand. Harvest 

residue refers to the bark, branches, associated foliage and tree tops 

left on a site. 

Long-term: At least 50 years, possibly more. The number of future rotations 

must not be limited by decline in soil productivity. 

Mass water content (2m):  The mass of water held per unit mass of oven dry soil, 

and is also known as gravimetric soil water content (Or and Wraith, 

2000). 

Matric potential:  The potential energy of water in a soil arising from the 

combination of capillary and adsorptive forces within the soil matrix 

(Or and Wraith, 2000). 

Net primary productivity (NPP):  The total amount of organic matter produced by a 

site, i.e. GPP minus the organic matter lost to respiration. 

Net primary productivity minus root turnover (NPP-RT):  Net primary productivity 

minus the organic matter lost to fine root turnover. 

Nitrogen mineralization:  The conversion of organic N (in the soil) into inorganic 

(plant available) N, usually ammonium or nitrate, that is the major 

source of N to growing plants (Norton, 2000). 
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Ontogeny:  The development, or series of changes undergone by an individual 

throughout its life, i.e. the course of genesis, growth, maturation, and 

decline (Fitting et al., 1921; Larcher, 2003). It is dependent on 

individual genetics, chronological age and growth environment. 

Therefore, two individuals identical in genetics and chronological age 

may be at different ontogenetic stages (i.e. one has juvenile foliage, 

while the other has only mature foliage) due to differences in the 

growth environment. The resultant allometric relationships of these 

two individuals will therefore be different as the former is at a 

younger stage physiologically. 

Root:Shoot Ratio:  Fine root biomass/foliage biomass (Gonçalves and Mello, 

2004). 

Site productivity:  The plantation forestry productivity of a given site. It is affected 

by all factors that will influence growth of the trees particular to that 

site, such as soil depth, nutritional status and water retention 

characteristics, as well as climate. It is not affected by management 

factors such as spacing (i.e. stems ha-1), weeding or coppice 

reduction/control. It is often measured by gross or net primary 

production (GPP or NPP), often at canopy closure. 

Soil bulk density:  Calculated as the mass of oven dry soil/volume of soil (Skopp, 

2000). 

Soil productivity:  The concept that soil factors affect plantation growth. 

Soil quality: In this instance maximum soil quality would be regarded as the 

maximum plantation productive potential of a site’s soil, such that 

every site has the potential to attain maximum soil quality, even if 

soil productivity is not very high. For example, a site may have a 

shallow soil and inherently poor nutrient status and therefore, a low 

soil productivity. However, if that soil has as high a nutrient status as 

is possible for that soil, and the rooting depth has not been 

compromised, then the soil has a high soil quality. Soil quality 

declines if management of that soil is not optimal for plantation 

forestry. 
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Stand productivity: The (economic) productivity of a stand as measured by tree 

volume or mass (or measures that can derive volume, such as tree 

height, basal area etc.). Stand productivity is dependent on factors 

such as site, climate, species, silviculture and pest/disease 

occurrence.  

Sustainability: 

Broad-sense sustainability:  The United Nations Conference on Environment 

and Development (1992) definition (as follows) has been utilised in 

this study: 

“The stewardship and use of forests and forest lands in a way, and 

at a rate, that maintains their biodiversity, productivity, regeneration 

capacity, vitality and their potential to fulfill, now and in the future, 

relevant ecological, economic and social functions, at local, national, 

and global levels, and that does not cause damage to other 

ecosystems” (Lawes et al., 1999). 

Narrow-sense sustainability:  The economic yield (i.e. wood volume), over 

future rotations (Evans, 1999). 

Type II growth response:  A growth response as a result of a “real” change in site 

productivity, as opposed to a Type I growth response which is as a 

result of inducing an earlier stage of stand growth (e.g. weeding 

results in a Type I growth response, because non-weeded stands 

still reach canopy closure, although later than weeded stands). 

Decreases in stand productivity as a result of depletion of site 

nutrients, would be regarded as a Type II growth response 

(Snowdon and Waring, 1984) 

Volumetric water content (2v):  The volume of water held per unit volume of soil 

(Or and Wraith, 2000). 
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List of Symbols and Abbreviations 

 

Productivity: 

GPP  Gross primary productivity. 

NPP  Net primary productivity. 

NPP-RT Net primary productivity less fine root turnover. 

LTSP  Long-term site productivity. 

Climate: 

MAP  Mean annual precipitation. 

MAT  Mean annual temperature. 

Treatments: 

CL  Low compaction; timber extracted manually. 

CM  Moderate compaction; timber extracted with a 3 wheel logger. 

CH High compaction; timber extracted with a 3 wheel logger and forwarder. 

B Broadcast residue management. 

W Windrow residue management. 

R Residues removed. 

Plot positions: 

IR Interrow; areas either side of the stumpline. 

SL Stumpline; line of stumps from the previous rotation. 

Time: 

T0 Time at which treatments were implemented. 

TP Time of planting. 

TH Time of harvesting of sub-plot trees. 

TF Time of final soil measurement. 

Soil: 

Sa Sand. 

Si Silt. 

Cl Clay. 

LOI Loss on ignition. 

WB Walkley-Black. 

ρb Bulk density (Mg m-3). 

Tρb Troxler bulk density (Mg m-3). 
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MBD Maximum bulk density (Mg m-3). 

CIndex Compression index. 

CSI Compaction sensitivity index. 

PSS Penetrometer soil strength. 

PSS0 Penetrometer soil strength prior to treatment implementation. 

PSS1 Penetrometer soil strength after treatment implementation. 

AWC Available water capacity. 

RAW Readily available water. 

LLWR Least limiting water range. 

θm Mass soil water content (kg kg-1). 

θv Volumetric soil water content (m3 m-3). 

Tree: 

DAP Days after planting. 

GLD Ground-line diameter (of stem). 

DBH Diameter (of stem) at breast height. 

BI Biomass index. 

LAI Leaf area index. 

SLA Specific leaf area. 

Statistics: 

ANOVA Analysis of variance. 

LSD Least significant difference. 

r2 Percentage variance accounted for, an adjusted form of R2. 

NS Not significant. 

* 0.01<p<0.05 

** 0.001<p<0.01 

*** p<0.001 
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Chapter 1 

Introduction 

 

There are currently 1.28 million ha of plantations in South Africa, of which 478 000 

ha are planted to eucalypts, accounting for 55% of the total area planted for 

industrial pulpwood. Of the eucalypts, Eucalyptus grandis is by far the dominant 

planted species (DWAF, 2006). Although pulpwood plantations do not represent a 

large portion of South Africa’s total land area (around 0.5%), the pulp and paper 

industry contributes significantly to South Africa’s GDP and employs many people 

(ZAR 6 billion or 0.5% with 13 200 people employed directly in 2003; Chamberlain 

et al., 2005). As a result of several (governmental) Acts, increases in the area of 

land under plantation forestry in the future are unlikely (Aitken, 2004; Scotcher, 

2004).  

 

Unlike the forestry industry, the agricultural sector has considerable, well-

established evidence that certain agricultural practices have a negative impact on 

the long-term productivity of agricultural land, despite the improvement of 

genotypes (Kelting et al., 1999; Turner et al., 1999; Vance, 2000). In addition to 

this, there is a common view that the restoration of productivity is substantially 

more difficult and costly than the maintenance or improvement of it (Gessel, 

1981). These and other factors have led to concerns about the long-term 

productivity of plantation forests (Johnson, 1994; Burger and Kelting, 1998; Kelting 

et al., 1999). 

 

Plantations by their very nature alter the ecological functioning of a site. However, 

it is still not known whether these alterations as well as the effects of management 

operations, are detrimental, neutral or beneficial to plantation productivity. 

Although all forest plantation practices impact a site and its ecosystem, some 

practices are more detrimental than others (Worrell and Hampson, 1997). In cases 

where plantation productivity has conclusively declined as a result of management 

practices, these declines have been due to a decrease in soil porosity (particularly 

macroporosity), soil organic matter or site nutrients (i.e. soil plus residues) 

(Powers et al., 1995; Kelting et al., 1999; Binkley and Stape, 2004; Deleporte et al., 
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2008). Of the practices most likely to decrease porosity, harvesting and site 

preparation practices that involve machinery result in significant soil compaction 

(Hatchell et al., 1970, McColl and Powers, 1984; Powers et al., 1995; Misra and 

Gibbons, 1996; Ares et al., 2005).  Residue management and the movement of 

machinery over the residues are most likely to affect the soil organic matter and 

nutrient content (McColl and Powers, 1984; Dyck and Cole, 1994; Powers et al., 

1995; Jurgensen et al., 1997; Laiho et al., 2003). 

 

Approximately 80 000 ha of eucalypt plantations are harvested in South Africa 

each year (Smith, 2006). To ensure the marketability of products and to maintain 

site productivity, many South African plantations are voluntarily certified, mainly 

through the International Organisation for Standardisation (ISO) and the Forest 

Stewardship Council (FSC; Lamoral, 1998). In addition, several organisations 

have published guidelines for plantation operations (e.g. Forest Engineering 

Working Group of South Africa, 1994; Forestry Industry Environmental Committee, 

1995). Although the process of certification or adherence to guidelines increases 

the potential to maintain productivity, it does not supply the necessary tools with 

which to measure potential changes, particularly on a site-specific basis. Site-

specific changes in long-term site productivity (LTSP) can only be assessed 

through the development of criteria and indicators of LTSP. These criteria and 

indicators are identified, and values can be developed, from studies that 

investigate the resultant changes in soil properties from plantation management 

across a range of sites, and the effects of these changes on successive rotations 

(Lawes et al., 1999). 

 

In many studies, stand productivity responses to harvesting and residue 

management practices have been found to vary across sites (e.g. Greacen and 

Sands, 1980; Warkotsch et al., 1994; Kelting et al., 2000; Powers et al., 2005; 

Smith, 2006). These varying responses may have been caused by one or several 

of the following: 

• Stand productivity responses to similar practices vary substantially with site 

and soil type. 
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• Productivity was measured using stand productivity rather than site 

productivity (i.e. tree volume rather than net primary productivity; NPP). 

This may result in incorrect conclusions as some practices may result in 

less tree volume, but similar total quantities of biomass (e.g. at high 

stocking rates) or vice versa. 

• Non-treatment effects confound results. Variation in silviculture, stocking or 

pest and disease infestations between treatments, e.g. particular 

treatments may result in lower levels of competing vegetation which then 

influences growth. 

• Stand productivity was usually assessed at rotation end when forest stands 

may not be fully utilising the site, particularly with respect to nutrients. At 

this time, nutrients are mainly obtained either via internal nutrient cycling or 

from the litter layer of that stand. At canopy closure in contrast, leaf and fine 

root development often reaches a maximum and there is substantially less 

reliance on processes such as internal nutrient cycling. This results in the 

maximum requirement for soil resources by the stand occurring at this time 

(Miller, 1995). Canopy closure, therefore, may be the best time to 

determine changes in productivity. 

• The quantity and extent of root systems from previous rotations may allow 

subsequent rotations to overcome the effects of harvesting and residue 

management practices. New roots grow into the old root channels that 

provide microsites with good soil physical and nutritional properties (Powers 

et al., 1990; Nambiar and Sands, 1992; Morris and Miller, 1994; Kelting, 

1999; Smith, 2000).  

 

1.1 Aim and outline of the study 
 

The aim of this study was to evaluate the effect of different levels of soil 

compaction (implemented through harvesting practices) and residue management 

on soil properties, and on the growth of Eucalyptus grandis, at two contrasting 

sites. In particular, the use of the productivity of young, fast-growing Eucalyptus 

stands as indicators of the changes in soil properties as a result of the treatments 

were evaluated. 
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Chapter 2 explores the concepts of sustainability and long-term site productivity, 

the relationship between them, and principles behind the measurement of long-

term site productivity. Chapter 3 details the selected trial sites, the manner in 

which treatments were applied, and measurements taken. The subsequent three 

chapters assess the effects of treatments on soil chemical and physical (Chapters 

4 - 6) properties. Chapter 7 analyses the relationships between changes in soil 

properties on tree growth, productivity and allometry. The final chapter (Chapter 

8) gives the overall conclusions of the study. 
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Chapter 2 

Concepts of Sustainability 

 

This study focuses on the impact of certain forest plantation operations on soil 

properties that can influence the sustainability of future forest plantations. 

Therefore concepts surrounding sustainability, and the relationship between 

sustainability and LTSP were reviewed. More detailed discussions of the effects of 

specific changes in soil characteristics and the effect of these on LTSP are 

contained in each of the following chapters. 

 

2.1 Introduction 
 

Sustainability is essentially the ability to maintain something over time (Prabhu 

et al., 2001). Although it is a commonly utilised term and many have proposed 

definitions, a clear, concise definition of forest sustainability has not yet been 

developed (Vance, 2000; Innes and Karnosky, 2001; Prabhu et al., 2001). This is 

because sustainability has different meanings to different groups, as it is assessed 

relative to an “ideal state”, and it is the assessment of that “ideal state” that varies 

(Burger and Kelting, 1998; Vance, 2000; Innes and Karnosky, 2001; Prabhu et al., 

2001). For example, a production forester would consider sustainability to be the 

maintenance or improvement of timber yields over time.  However, an ecologist 

may view sustainability in the light of species biodiversity and the occurrence and 

functioning of all expected ecological processes.  Conversely, a politician would 

include social and economic processes in the definition.  These contrasting ideas 

of sustainability lead one to the realisation that sustainability may be best defined 

in relation to the expected role of a particular forest, and that these expectations 

may change over time. These goals must be met almost simultaneously, while 

meeting present needs and providing options for the future (Innes and Karnosky, 

2001; McCool and Stankey, 2001; Prabhu et al., 2001; Rametsteiner, 2001). Even 

from a scientific point of view, what constitutes sustainability varies considerably 

and the “ideal state” has been variously defined as: 

• The natural state that has not suffered human effects. 
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• A pre-existing state. 

• The state of the system under low intensity management. 

• The maximum potential of a particular system to meet human needs 

without affecting the future productivity (of the crop in question) of that 

system (Doran and Parkin, 1996; Vance, 2000). 

 

It is therefore not possible to provide a definition that is acceptable to all groups 

and situations. Although the final definition of the “ideal state” (and sustainability) 

is often considered to be an external, anthropocentric concept, it often contains 

characteristics important for environmental sustainability (Doran and Parkin, 1996; 

Vance, 2000). During UNCED (1992) the following definition of “broad-sense” 

sustainability was formed (Lawes et al., 1999): 

“The stewardship and use of forests and forest lands in a way, and at a rate, that 

maintains their biodiversity, productivity, regeneration capacity, vitality and their 

potential to fulfill, now and in the future, relevant ecological, economic and social 

functions, at local, national, and global levels, and that does not cause damage to 

other ecosystems”. 

 

Most other definitions (see Burger and Kelting, 1998 and Prabhu et al., 2001 for 

examples of these) describe broad-sense sustainability in a similar manner. These 

reflect a world-view, stating that forest management must simultaneously meet the 

needs of the present without negatively affecting future yields by practicing ethical 

land stewardship that is ecologically viable (environmentally sound by conserving 

soil, air and water quality; and wildlife and fish habitat), economically feasible 

(affordable), and socially desirable (Burger and Kelting, 1998; McCool and 

Stankey, 2001; Prabhu et al., 2001; Rametsteiner, 2001). Attaining a balance 

between these three “needs” presents an enormous challenge to those in pursuit 

of sustainable production (Doran and Parkin, 1996). In contrast, “narrow-sense” 

sustainability purely relates to the change in economic yield (i.e. wood volume) 

over rotations (Evans, 1999). 
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In this study, sustainability will be evaluated in more detail than that understood by 

narrow-sense, but not as in-depth as broad-sense sustainability would indicate 

(aspects such as social sustainability will not be included). As a result of this, and 

other implications of the term sustainability, the term “long-term site productivity” is 

considered more appropriate for this study. This refers to the maintenance of 

ecosystem processes necessary for the sustained production of timber over future 

rotations. 

 

2.2 Criteria for LTSP studies of forest plantations 
 

Several studies (e.g. Powers et al., 1990; Tiarks et al., 1992; Morris and Miller, 

1994; Powers et al., 1996; Miller et al., 2004) have reviewed LTSP literature of 

plantation forestry. These reviews determined a common set of criteria that were 

used to assess the results and validity of conclusions (concerning LTSP) of 

previous studies. Previous studies had to contain all three of the following criteria 

(determined by Powers et al., 1990; Morris and Miller, 1994) to yield valid 

information on LTSP:  

1. Growth measurements must have been made for a sufficient period of time, 

so that the influence of temporary differences in initial site conditions has 

been reduced and the ability of the site to support tree growth is fully 

utilised. 

2. Differences in tree growth must be as a result of differences in the soil 

environment, rather than as a result of differences in resource allocation 

due to weed competition, stocking or pests and diseases. 

3. A true experimental control must exist, i.e. a control reference against 

which the effect of the treatment can be assessed. This control must not be 

confounded in any way by extrinsic variation.  

 

In addition, results from the studies needed to be interpreted correctly. Snowdon 

and Waring (1984) investigated tree response to fertiliser application and weed 

control and found that there were two basic patterns of response (Type I and II). 

Type I growth responses occur when a treatment does not alter site productivity, 
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but rather stand productivity. It is identified by parallel growth responses between 

the treatment and control with time. Eventually (if the stand is allowed to grow for a 

lengthy time period), the control and treatment growth response curves will meet, 

as site resources become limiting (Figure 1.1a).  An example would be early weed 

control that improves the early growth of a stand, but does not alter site 

productivity. In contrast, Type II responses are identified by divergent growth 

responses that increase with time as a result of changes in site productivity 

(Figure 1.1b). A third type of response has also been documented (Miller et al., 

2004; Figure 1.1c). This type of response cannot be attributed to either changes 

in site or stand productivity, as yield differences remain as a result of initial 

differences in growth. If in the following rotation, growth differences are 

maintained, despite identical silviculture, it can be assumed that a change in site 

productivity has taken place. 

 

As a result of these conditions, very few of the review studies could definitively 

confirm that LTSP had declined. Most studies have either poor data, or the data 

are anecdotal and often retrospective in nature, making separation of cause from 

effect difficult (Powers et al., 1990; Morris and Miller, 1994; Powers et al., 1996; 

Worrell and Hampson, 1997; Richardson et al., 1999; Miller et al., 2004). As a 

solution, Geppart et al. (1984, cited by Miller et al., 2004) suggested that to 

determine if a management practice affects LTSP the following questions must be 

answered: 

1. What properties or processes are changed by the practice? 

2. What is the relative magnitude and direction of change? 

3. What is the duration of the effect? 

4. What interactions with other changes are likely? 

5. Are the forest practices occurring on a spatial or time scale likely to cause 

an impact on the site (i.e. is natural amelioration of effects likely to occur 

within constraints of time and space of current management practices)? 
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Figure 2.1:  Hypothetical growth response (demonstrated by tree height) as a 

result of a treatment relative to the control: (a) temporary decrease 

followed by recovery of stand productivity (no impact on site 

productivity, or Type I response); (b) decrease in site productivity 

(Type II response); and (c) initial decrease in stand productivity that 

does not recover during that rotation (possible decline in site 

productivity). Adapted from Snowdon and Waring (1984) and Miller 

et al. (2004). 
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The complexity, even of plantation ecosystems, means that it is neither possible 

nor necessary to evaluate every single process and component of an ecosystem 

to monitor its productivity and predict with reasonable surety the consequences of 

forest management. In addition, the importance of processes and components in 

an ecosystem will vary from site to site.  It is therefore desirable to identify the key 

processes, which will, with quantification, allow acceptably accurate predictions 

concerning long-term productivity for that plantation (Kimmins, 1994; Burger and 

Kelting, 1998). Turner et al. (1999) suggested that in order to adequately monitor 

changes in plantation sustainability, sustainability and performance indicators are 

required. These indicators must provide information on the actual characteristics 

of plantation forests and how they are changed by management. Ideally 

parameters that indicate processes within the system need to be identified such 

as: 

• Actual productivity measures (i.e. net primary production). 

• Yield of harvested products (i.e. stemwood). 

• Changes in soil properties (including changes over rotations). 

• Genetic improvements. 

• Impacts of pests and diseases. 

• Environmental changes (for example, in water quality). 

 

2.3 LTSP of South African Eucalyptus plantations 
 

Concerns have been expressed regarding the LTSP of South African eucalypt 

plantation forestry as a result of the following: 

• Rotation lengths are short, typically only between 6 and 11 years in 

pulpwood crops, so that harvesting and silvicultural impacts are more 

frequent, resulting in shorter recovery periods combined with greater 

quantities of biomass removal over time (Tiarks et al., 1990; Smith and 

Norris, 1995). 

• Increases in mechanisation and heavy machinery use in plantations as a 

result of the increasing demand for forest products, local labour shortages 

and improvements in technology (Grey and Jacobs, 1987; Reisinger et al., 

1988; Smith, 2000; Brink, 2001). Loss of soil productivity is generally 
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related to the cumulative quantity and mass of equipment that enters a 

stand (Tiarks et al., 1990). 

• Year-round harvesting results in sites being harvested when soils are most 

susceptible to damage (e.g. wet soils are more prone to topsoil disturbance 

and compaction than dry soils; Grey and Jacobs, 1987).  

• Soils in South Africa do not undergo freeze-thaw cycles as a result of the 

warm temperate and sub-tropical climates of this area. In addition, clay 

minerals present in soils planted to forestry in the summer rainfall area are 

generally kaolinitic resulting in low shrink-swell properties. The lack of either 

freeze-thaw or shrink-swell processes prevents the self amelioration by 

soils of compaction (Warkotsch et al., 1994; Smith, 1995; 2003). 

• Since residues contain substantial quantities of nutrients their management 

(e.g. burning, windrowing or broadcasting) is of major importance. In 

addition, subsequent movement of harvesting equipment may remove, 

break-up or mix residues with the topsoil, all of which have implications for  

soil organic matter levels, which, in turn, affect nutrient dynamics and soil 

physical properties (Norris, 1995; Ballard, 2000). 

 

2.4 Measurement of management effects on LTSP 
 

Many authors have highlighted the necessity for well-designed long-term field 

experiments to test the extent to which plantation management affects LTSP 

(Dyck and Cole, 1990; Lousier; 1990; Morris and Miller, 1994; Richardson et al., 

1999). Recommendations for these trials are that: 

• They are spread over a wide range of sites. 

• They are run over several successive rotations with employment of very 

similar management and tree genetics. 

• The climate is monitored during the rotations. 

 

This will allow changes in productivity to be correctly attributed to changes in 

LTSP. Such trials, however, may become empirical in nature if no attempt is made 

to understand the mechanisms altering site productivity (Richardson et al., 1999). 

All experiments are conducted under a specific set of conditions and therefore an 
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understanding of the changes in soil processes that occur over time is essential to 

be able to extrapolate to other sites and conditions.  Also, the time frames of forest 

production are so large (six years at the minimum), that comparisons of 

management practices are not timely enough (Morris et al., 1997; Burger and 

Kelting, 1998; Amateis et al., 2003a). In addition, factors (such as stemwood 

volume) are erroneously often considered measures of LTSP, or are incomplete 

without measurement of another variable (Powers et al., 1996; Burger and Kelting, 

1998; Miller et al., 2004). These problems can be overcome by measurement of 

both the soil properties and processes, and the plantation using approaches that 

ensure measurement of LTSP. 

 

2.4.1 Soil measures 

 

Soil is regarded as the least renewable structural component of a terrestrial 

ecosystem, and declines in site productivity are often linked to a decrease (or loss) 

of soil function (Kimmins, 1996; Burger and Kelting, 1998; Powers et al., 1998). 

This has particularly been found to be the case in several crops that are grown as 

monocultures (such as wheat, maize and cotton) which in some countries, despite 

improved genotypes and intensive management have shown declining productivity 

(and sustainability) as a result of deteriorating soil productivity (Lal and Pierce, 

1991; Mitchell, et al., 1991; Hulugalle and Scott, 2008). In addition, the direct link 

between soil environment and plant growth results in the use of soil properties or 

changes in indicators of soil productivity as measures of long-term forest 

productivity (Burger and Kelting, 1998). 

 

The concept of soil quality (or soil health) was introduced as one component of 

sustainable agriculture in the early 1990’s (Fenton et al., 1999).  Mismanagement 

of soil has historically been shown to result in malnutrition (in the case of soils 

under food crops), poverty and economic disaster; indicating a strong link between 

soil health and plant, animal, and ultimately, human health (Bezdicek et al., 1996).  

This concept has therefore been investigated and developed in the agricultural 

sector (e.g. Lal, 1993; Doran and Parkin, 1994; Schipper and Sparling, 2000) and, 

less frequently, in the forestry sector (e.g. Gale et al., 1991; Burger and Kelting, 
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1999; Kelting et al., 1999).  Soil quality has been defined as “the capacity of a 

living soil to function, within natural or managed ecosystem boundaries, to sustain 

plant and animal productivity, maintain or enhance water and air quality, and 

promote plant and animal health” (Doran and Parkin, 1994).  Ideally, of course, a 

soil quality index or model would include parameters that quantify the soil’s ability 

to perform productive, environmental, and health functions (Bezdicek et al., 1996; 

Burger and Kelting, 1998). The quantification of all soil functions is at present an 

impossible task and so our incomplete understanding of ecosystem functioning 

must be used to make the best scientifically based evaluation possible (Morris et 

al., 1997). 

 

The role of soils in forest productivity is mainly one of air, water and nutrient 

supply in response to demands made by forests as a result of climatic 

characteristics and physiological age of the stand (Burger and Kelting, 1998), as 

well as providing structural support to the trees. The ability of the soil to fulfill these 

roles is dependent on a combination of soil physical, chemical and biological 

characteristics and processes. However, the effects of various key soil factors (or 

processes) on tree growth are not fully understood. If this was the case, then long-

term responses could be estimated from the effects of various practices on these 

factors or processes (Morris and Lowery, 1988; Richardson et al., 1999). 

Currently, relationships between soil factors and productivity are assumed, and 

have generally not been determined, especially against NPP (Powers et al., 1990). 

Key processes (i.e. those that give enough understanding of a system to make 

certain desired predictions) will vary with forest/ecosystem type and 

scientific/management objectives. Quantitative measurement of key processes 

may allow the estimation of other processes in the ecosystem, thereby decreasing 

the need to measure each distinct process (Comerford et al., 1994). As a result of 

our incomplete understanding of the effects of the soil system on forest 

productivity, the measurement of effects of key soil properties and processes on 

forest productivity (over time) is currently the best available method to assess soil-

based criteria of LTSP (Burger and Kelting, 1998). 
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Historically, only the nutrient-supply function of soils was studied in the context of 

plantation sustainability (Rennie, 1955; Pritchett 1979; Dyck and Cole, 1994; 

Johnson, 1994). South African research in this area has found some evidence of 

potential declines in productivity as a result of intensive silviculture through 

theoretical nutrient budget studies, particularly in regard to nitrogen (du Toit and 

Scholes, 2002; du Toit, 2003). While this information is useful, it provides 

information only on one aspect of the role of soil in plantation productivity, which 

can be relatively easily ameliorated by fertiliser application, unless related to 

organic matter decline. 

 

Only a handful of studies have been undertaken to assess changes in soil 

physical, chemical and microbial properties and plantation forest NPP. Many 

studies have concentrated solely on the effects of soil physical properties (e.g. 

Froehlich, 1979; Gale et al., 1991; Costantini and Doley, 2001), soil chemical 

properties (e.g. Burger and Pritchett, 1988; Gale et al., 1991; Arocena, 2000), or 

microbial properties (e.g. Perry et al., 1982) on tree growth. Studies relating 

individual soil properties to NPP have been collated and reviewed extensively by 

Nambiar (1996); Jurgensen et al. (1997), Powers et al. (1998), Powers (1999), 

Fox (2000) and Schoenholtz et al. (2000). 

 

In cases where plantation productivity has conclusively declined as a result of 

changes in soil properties it has generally been found to be as a result of a 

decrease in soil porosity (particularly macroporosity) and/or soil organic matter 

(Dyck and Cole, 1994; Powers et al., 1995; Kelting et al., 1999; Binkley and Stape, 

2004; Ares et al., 2005). Powers et al. (2005) reviewed the first decade of results 

from 26 North American trials investigating the effects of soil compaction and 

organic matter removal (through residue management) on LTSP over a range of 

sites and forest types. Their study showed that soil compaction effects varied with 

initial soil bulk density, texture and the degree of understory competition. Organic 

matter removal had no effect on forest growth at the time of measurement, despite 

consistent declines in soil carbon concentrations and nitrogen availability. 

Although these trials were ten years old, only the most productive sites were 

approaching canopy closure as a result of the long rotation length. The trials were 
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therefore regarded by the authors as being in infancy and warned that trends and 

conclusions from the studies may change in the future. Miller et al. (2004) 

reviewed studies investigating the effects of machinery use in plantations on LTSP 

in North America (including the work of Powers and co-authors). They found that 

soil compaction (with the exception of sandy soils) reduced, and that soil 

disturbance (such as puddling or displacement) had variable, site-specific effects 

on LTSP. The effects of residue management on LTSP in the tropics have been 

investigated in a number of studies through a network funded by the Centre for 

International Forestry Research (CIFOR). Sites with nutrient-poor soils generally 

showed reductions in eucalypt growth with residue removal (e.g. Gonçalves et al., 

2004a in Brazil; Nzila et al., 2004 in the Republic of Congo or Congo-Brazzaville 

(hereafter termed the Congo); Xu et al., 2004 in China; O’Connell et al., 2004a in 

Australia). Growth responses to residue management on more fertile sites varied, 

although significant changes in soil nutrient levels and fluxes were found (e.g. du 

Toit et al., 2004; O’Connell et al., 2004a). 

 

Several studies have quantified the effects of harvesting, in particular, and several 

residue management practices on soils and tree growth in South Africa. 

Warkotsch et al. (1994) found that E. grandis growth (at six months old) was lower 

in areas of high penetrometer soil strength (PSS) in a sandy soil in Zululand. 

However, not only was the study of a preliminary nature and not statistically 

replicated; but extraction routes (and distance from routes), rather than plots, were 

utilised as treatments. Therefore plot sizes were not large enough to prevent tree 

root growth into uncompacted areas. Smith (2003) investigated the effect of soil 

compaction on harvesting extraction roads on the growth of E. grandis and two 

clonal hybrids of E. grandis at three sites in Zululand.  At one site with a slightly 

finer soil texture (4 to 11% clay content), soil compaction resulted in significantly 

lower tree growth for all species/clonal hybrids (8 to 26% decrease) after eight 

years on the extraction road. However, there was no significant effect on growth at 

either of the other sites (five- and eight-year-old stands) where the soils had a 

coarser texture. Similarly, working on other sandy soils in the Zululand region, 

Smith and du Toit (2005) showed that, despite increases in bulk density, PSS and 

decreases in soil aeration, tree growth (measured by wood volume) was not 
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significantly affected. This was attributed to an increase in plant available water as 

a result of soil compaction on the sandy soils. More recently, Smith (2006) studied 

the effect of various harvesting practices on soil compaction and growth over a full 

rotation (12 years) of E. grandis at two contrasting sites in the KwaZulu-Natal 

(KZN) Midlands. At both sites, growth declines were evident for all harvesting 

treatments when compared to no compaction (where timber was manually 

removed). Moreover, the growth curves (basal area and volume) appeared to be 

diverging and indicative of a Type II growth response (Snowdon and Waring, 

1984) suggesting that the treatments are affecting LTSP (Smith, 2006). 

 

These variable tree responses to compaction can be attributed to: 

• A variation in soil response to compaction as a result of mainly soil 

textural, structural and depth differences. 

• In some studies, it is possible that the soil was not compacted sufficiently 

to impact tree growth. 

• The nature of machinery movement in plantations results in variable levels 

of compaction within soil, both horizontally and vertically. 

• Small plot sizes. 

• Similar effects on soil properties may be advantageous at different sites 

(i.e. moist vs dry sites). 

• Tree species vary in their requirements of optimal soil conditions, and 

respond differently to similar soil changes. 

• Previous rotation root systems that may alleviate the effects of compaction 

on trees (Greacen and Sands, 1980; Grey and Jacobs, 1987; Nambiar 

and Sands, 1992; Nambiar, 1996; Smith, 1998; van Lear et al., 2000; 

Costantini and Doley, 2001; Sanderson et al., 2006). 

 

Dalgleish (1999) investigated carbon dynamics in a young, irrigated and fertilised 

E. grandis plantation, but did not assess the effect of these carbon dynamics on 

tree growth. Du Toit et al. (1999; 2004) and du Toit and Scholes (2002) reported 

on the effects of residue management on E. grandis early tree growth and 

biomass on a clay soil in the KZN Midlands. They concluded that increased 

nutrient availability in the burnt, fertilised and slash-retained treatments plus 
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mixing by a three-wheel logger, positively affected early tree growth. They also 

found that only the burning of harvest slash residue resulted in a major loss of 

nutrients. It was therefore concluded that the site was reasonably well buffered 

with regards to nutrients against all other commercial harvest residue treatments. 

 

The variation in site factors (such as soil texture and organic matter content), 

intensity of harvesting and/or site preparation operations, and the site conditions at 

the time of the operation influence the extent to which site productivity will be 

degraded and the soil’s ability to either resist or recover from damage (Dyck and 

Cole, 1994; Powers, 1999; Kelting et al., 2000; Xu et al., 2000).  All of these 

factors impact the growth of the next forest rotation through alteration of the 

rooting environment.  It is recognised that if, after a disturbance at a specific site, 

the site is given enough time to recover to its pre-disturbance conditions, that the 

ecological sustainability of a site will be maintained.  This period is termed its 

“ecological rotation” (Kimmins, 1974). 

 

2.4.2 Plantation measures 

 

Plantation productivity is a component of, and is often used as an indicator of, 

LTSP (Richardson et al., 1999; Morris and Smith, 2002). The productivity of any 

ecosystem is dependent on “the efficiency with which matter and energy enter, 

move through, and are stored at the various trophic levels” (Morris et al., 1997). 

Actual productivity is dependent on the physical, chemical and climatic factors of 

a site and their interaction within a specific biological framework. It is therefore 

dependent on both the inherent features of a site (e.g. climate, geology, 

topography), and those that can be manipulated by management (generally 

associated with the soil, such as porosity, organic matter, nutrients and tree 

species) (Powers et al., 1990; van Miegroet et al., 1994; Kimmins, 1996; Kelting, 

1999). It is therefore productivity under a certain set of conditions or limitations. 

Potential productivity, however, is the productivity of a site without any limitations 

(with respect to management) but is still dependent on the physical, chemical and 

climatic factors of a site. Potential productivity can either be estimated theoretically 

or physically. 
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2.4.2.1 Theoretical determination of productivity 

 

Process-based models such as CABALA and 3-PG can be used to determine 

the potential productivity of plantations (Landsberg and Waring, 1997; Dewar, 

2001; Battaglia et al., 2004). In South Africa, only, 3-PG has been 

parameterised for E. grandis (Esprey and Sands, 2004). However when the 

performance of this model was tested, researchers involved warned that it is not 

infallible and under certain conditions gave inaccurate estimates of productivity 

(Esprey and Smith, 2002; Dye et al; 2004; Campion et al., 2005). In addition, this 

model has not been thoroughly tested in South African plantations of very young 

E. grandis trees. Under such circumstances, physical determination of productivity 

is most accurate. 

 

2.4.2.2 Physical determination of productivity 

 

Changes in potential site productivity can be quantified by measuring actual site 

productivity (Powers et al., 1996). Many international studies reviewed (by Powers 

et al., 1990; Morris and Miller, 1994; Powers et al., 1996; Worrell and Hampson, 

1997; Richardson et al., 1999; Miller et al., 2004) utilised stemwood measures (i.e. 

stemwood height, diameter and/or volume) coupled with survival as the only 

measures of actual site productivity. In Southern African Pinus plantations, 

comparisons of stemwood production over successive rotations were also 

performed to assess changes in long-term productivity (e.g. Evans, 1975; 1978; 

1996; 1999; Morris, 1986). In the few South African Eucalyptus long-term 

productivity studies, stemwood volume was also used as the indicator variable 

(e.g. Smith and du Toit, 2005; Smith, 2006). 

 

The use of stemwood volume to assess actual site productivity is regarded by 

some as insufficient, as it only captures a small portion of site productivity with the 

rest being held in roots, foliage, reproductive parts and litter (Dyck and Cole, 1994; 

Laiho et al., 2003). In addition, treatments that decrease the short-term allocation 

of carbon to tree stemwood may not necessarily degrade the long-term 

productivity of a site, as in the case of inadequate weed control (Powers, 1999). 
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The measurement of productivity solely by stemwood volume/mass may therefore 

lead to uncertain and misleading conclusions. However, it is an easily measured 

and economically important variable (Morris and Smith, 2002). In commercial 

plantations, site index (the average dominant stand height at a specific stand age; 

von Gadow and Bredenkamp, 1992) is often used as a measure of site 

productivity (Morris and Smith, 2002). This is because this measure is generally 

thought to not be affected by factors that alter the partitioning of NPP into 

stemwood. However, there is evidence to the contrary, and this has been 

discussed in detail by Morris and Smith (2002). 

 

Plantation productivity is limited by the ability of a site to supply the resources for 

plant growth, and by the capacity of the plantation to convert these into organic 

matter (Battaglia et al., 1998). The result is termed gross primary production 

(GPP) and is mainly dependent on the capture and utilisation of light, and hence 

on leaf area (Battaglia et al., 1998; Powers, 1999). Gross primary production, 

however, also includes a portion of productivity that is lost through respiration or 

allocation to symbiotic organisms such as mycorrhizal fungi. Since GPP can be 

difficult to accurately quantify, actual site productivity is most easily and 

comprehensively quantified by dry matter production, i.e. GPP minus respiration, 

or NPP (Powers et al., 1990). However, NPP includes biomass lost through fine 

root turnover. This portion of NPP is particularly difficult to determine, and thus 

NPP minus fine root turnover (NPP-RT) is often measured.   

 

Thus, it has been hypothesised that an estimate of a site’s potential productivity 

can be made if leaf area is measured when it peaks, which usually occurs around 

the same time as canopy closure. At this stage, tree growth and nutrient uptake 

rates are so high that the stand fully utilises the site for water and nutrients, i.e. 

when production is maximised trees fully exploit a site (Miller, 1995; Powers et al., 

1996; Powers et al., 1998; Powers, 1999). If potential productivity is determined at 

this stage, stocking has no influence on it, as potential productivity relates to the 

potential growth on a site, when constrained by climate, soil and genetics of the 

plant material (Powers et al., 1996). In South African E. grandis, plantations 

nutrient accretion and leaf area index have been found to peak at or just after 

canopy closure (Dovey et al., 2007). When similar effects have been seen in other 
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plantation eucalypts, this has been attributed to an increase in carbon allocation to 

stemwood at the expense of foliage due to rapid changes in the light conditions 

experienced by tree crowns (Cromer et al., 1993; Medhurst et al., 1999). 

 

It is therefore important that changes in LTSP resulting from changes in the soil 

environment only be assessed while factors that can influence NPP at canopy 

closure such as climate, tree genetics, silviculture, pest and disease incidence, are 

held constant. If these factors, and their interaction, are not held constant, 

meaningful comparisons of productivity at any age are not possible (van Miegroet 

et al., 1994; Powers et al., 1995; Kelting et al., 1999; Miller et al., 2004). A change 

in one of these factors may intensify or counteract changes in other factors. For 

example, changes in soil properties may be either masked or enhanced with 

improvements or changes in tree genotype (Vance, 2000; Miller et al., 2004). 

Additionally, practices such as burning can lead to higher productivity initially, but 

may reduce site productivity in the long-term (Rab, 1996; 1999; Ballard, 2000). A 

site may not be highly productive, but may be managed sustainably, and vice 

versa. Therefore a site’s productive potential may not be achieved as a result of 

management objectives and natural disturbances (Kimmins, 1996; Powers et al., 

1996). 

 

As a result of plantation forestry rotation lengths of at least six years, the use of 

plantation measures to determine changes in LTSP is often not timely enough for 

comparisons of management practices (Morris et al., 1997; Burger and Kelting, 

1998; Amateis et al., 2003a). A solution may be an approach that determines 

productivity at canopy closure in highly stocked stands (Adlard et al., 1984). Micro- 

and mesocosms are commonly used in experimental ecology as small-scale 

replications of actual ecological systems (e.g. Lawton, 1995; Fraser and Keddy, 

1997). In addition, productivity determined at canopy closure is not dependent on 

stocking, but rather maximum leaf area when the stand is fully exploiting a site 

(Powers et al., 1996; Powers et al., 1998). 

 

This theory has led some (e.g. Kelting, 1999; Amateis et al., 2003a; 2003b; Watt 

et al., 2005) to plant trees at a close espacement, as maximum leaf area will be 

attained at an earlier stage than in trees planted at a commercial espacement. 
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This leads to an early high demand for site resources as competition sets in faster 

than in commercial stands, thereby allowing early diagnosis of limiting soil 

resources. This method would also allow the early shading out of weeds, so that 

growth is not influenced by differences in weed control. The small plot sizes also 

decrease the likelihood of microsite variation within plots affecting results, as may 

occur in larger, commercially spaced plots (Amateis et al., 2003a). It has been 

proposed that responses to soil properties at canopy closure in densely spaced 

trees will be very similar to those obtained in commercially spaced trees (Kelting, 

1999; Kelting et al., 2000).  

 

If this approach is used purely to quantify the effects of soil changes on NPP at 

canopy closure, the scaling up of NPP responses of trees in the densely planted 

plots to those of commercially spaced plots is not necessary. If, however, growth 

responses (such as bole diameter and height) are measured, it will be necessary 

to quantitatively link the growth of trees in the densely planted plots with those of 

the commercially spaced plots (Amateis et al., 2003a). If this is required, Amateis 

et al. (2003a; 2003b) identified three difficulties associated with this scaling up of 

tree growth responses as follows: 

1. Allometric relationships change with physiological age. This may mean that 

although similar models for treatment responses may be developed for both 

densely planted and commercially spaced trees, the parameters in the 

models will be different. 

2. Relating tree growth through different chronological time scales is highly 

problematic, as trees would have experienced different growing conditions 

during the different measurement periods. 

3. If competition has set in (leading to self thinning), stand dynamics vary. This 

final difficulty can be avoided if trees are harvested at canopy closure 

allowing the assumption that competition will not have set in substantially 

enough for this to become problematic. 

 

To date, three studies (Amateis et al., 2003a; 2003b; Sharma et al., 2003) 

quantitatively linked the growth of trees in densely planted plots to that of trees in 

commercially spaced plots. However, all of these studies utilised the same set of 

data. 
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Only two studies have utilised densely planted trees to quantify changes in 

productivity as a result of soil compaction and/or residue management. Kelting 

(1999) investigated changes in several soil properties (including the development 

of a soil quality index) and NPP-RT of densely planted Pinus taeda (loblolly pine) 

seedlings. Results suggested that operations which affected plant available soil 

water, soil aeration and net nitrogen mineralisation, such as compaction and 

residue retention, had the greatest effect on seedling growth. In New Zealand, 

Pinus radiata and Cupressus lusitanica seedlings were densely planted in 

separate plots across a range of sites with two main treatments (fertiliser vs no 

fertiliser application and compaction vs no compaction) applied to each species at 

each site (Watt et al., 2005). Site most strongly affected growth, followed by 

fertilisation, and then compaction (which had a negative effect). Removal of the 

climatic effects of temperature and rainfall found that the soil properties which 

most affected growth were C:N ratio, total soil nitrogen and phosphorus and depth 

of the A horizon. 

 

Due to the scarcity of such investigations, the present study aims to investigate 

further the effects of soil compaction and residue management and their 

interaction on site productivity and the use of growth and NPP measures of 

densely stocked plots as indicators of the LTSP of South African Eucalyptus 

plantations. This will then enable the assessment of many management practices 

that lead to soil compaction and affect residues, resulting in improved future 

management of forest plantations. 
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Chapter 3 

Materials and Methods 

 

3.1 Description of sites, trial layout and treatment 

implementation 
 

3.1.1 Description of trial sites 

 

In South Africa, approximately 13 and 30% of Eucalyptus grown for pulpwood is 

found in Zululand and the Midlands areas of KZN, respectively (DWAF, 2006). 

Therefore a study site was located in each of these areas, Rattray in Zululand; 

Shafton in the Midlands. Although both of these sites are situated in the summer 

rainfall region of South Africa, they differ considerably with respect to climate, 

geology and soil properties (Tables 3.1 and 3.2). The lithologies that the sites 

were located on represent approximately 5 and 14% of all plantation areas in the 

country.  Within Zululand, 90% of pulpwood plantations (Eucalyptus, Pinus and 

Acacia sp.), are growth on recent aeolian sand, while in the Midlands, 30% are 

growth on dolerite/shale (Smith et al., 2005; C.W. Smith, 2010, pers. comm.1). 

Rainfall was monitored during the growth period (Appendix 3.1). Soil samples 

were taken prior to implementation of the trials to assess their texture, nutrient 

status and carbon content (Tables 3.3 - 3.5). 

 

                                                      
1 Dr C.W. Smith, Institute for Commercial Forestry Research, Pietermaritzburg, South Africa. 
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Table 3.1: Site and climatic information for the two study sites. 

Property Rattray Shafton 
28° 37’ 25” S 29° 27’ 30” S Coordinates: 
32° 04’ 15” E 30° 12’ 36” E 

Climatic Zonea Sub-tropical Warm temperate 
Altitude (m.a.s.l.) 50 1190 
Aspect East facing East facing 

Weather station climatic data 
Name: Mposa Cedara 

28° 36’ 59” S 29° 31’ 44” S Coordinates: 
32° 01’ 48” E 30° 16’ 48” E 

Mean annual precipitationb (MAP; mm) 1046 841 
MAP from 2004 - 2007 (mm) 956 849 
Mean annual temperature (°C) 21.8 16.8 
Average temperature range (°C) 17.1 – 26.9 9.9 – 22 .5 
Absolute temperature rangeb (°C) 5.4 – 42.3 -5.0 – 37.3 
a From: RDASA (1994). 
b From: Schulze (2008). 
 
Table 3.2: Geological, topographical and soil information for the two study sites. 

Property  Rattray Shafton 
Geology  Recent aeolian sand Dolerite/Ecca shale 
Topography Coastal plain Undulating upland 

plateau 
Slope angle 0.6 ° 3.8 ° 

SAa: Form 
Family 

Fernwood 
Hopefield (1210) 

Kranskop 
Fordoun (1100) 

Soil 
Classification 

USDAb Typic Ustipsamment Haplic Haplustox 
 WRBc Hyperalbic arenosol Acric humic xanthirhodic 

ferralsol 
Soil depth 1.2 m + 1.0 m 
A horizon  Depth 0-0.2 m 0-0.2 m 
 Colour (dry) 10 YR 7/3; very pale 

brown 
7.5 YR 3/2; dark brown 

 Structure Single grain Fine sub-angular blocky 
 Boundaryd Diffuse Sharp 
E/B1  Depth 0.2 m + 0.2-0.45 m 
horizon Colour (dry) 7.5 YR 7/4; pink 7.5 YR 4/6; strong brown 
 Structure Single grain Apedal 
 Boundary - Diffuse 
 Notes Signs of 

wetness/mottling 
increase with depth 

 

B2   Depth  0.45 – 1.0 m 
horizon Colour (dry)  10 R 3/6; dark red 
 Structure  Apedal 
a South Africa (Soil Classification Working Group, 1991). 
b United States Department of Agriculture (Soil Survey Staff, 2006). 
c World Reference Base for Soil Resoirces (FAO, 2001). 
d boundary with next horizon. 
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Table 3.3: Selected soil properties at Rattray. Average (n = 8) values are given 

with standard deviations in parentheses. 

 
Property 

 
0-0.3 

Soil Depth (m) 
0.3-0.6 

 
0.6-0.9 

Clay (%) 3.7 (0.5) 4.3 (1.1) 4.9 (1.1) 
Fine silt (%) 1.4 (0.7) 1.3 (0.8) 1.4 (0.8) 
Coarse silt (%) 1.8 (1.1) 2.0 (1.5) 2.0 (1.8) 
Very fine sand (%) 4.7 (0.6) 4.5 (0.8) 4.4 (1.2) 
Fine sand (%) 54.3 (1.2) 54.5 (0.9) 53.9 (1.6) 
Medium sand (%) 30.6 (1.2) 30.1 (0.9) 30.0 (1.5) 
Coarse sand (%) 3.4 (0.5) 3.2 (0.7) 3.3 (0.5) 
Soil texture Sand Sand Sand 
pH (KCl) 4.82 (0.472) 4.28 (0.13) 4.33 (0.09) 
Total N (g kg-1) 0.21 (0.09) 0.20 (0.01) 0.18 (0.06) 
P (mg kg-1) 1.69 (0.35) 1.52 (1.58) 1.41 (0.16) 
K (cmolc kg-1) 0.17 (0.01) 0.14 (0.01) 0.13 (0.01) 
Ca (cmolc kg-1) 0.33 (0.08) 0.18 (0.08) 0.09 (0.08) 
Mg (cmolc kg-1) 0.17 (0.03) 0.14 (0.04) 0.13 (0.05) 
Na (cmolc kg-1) 0.04 (0.01) 0.05 (0.01) 0.05 (0.02) 
Exch. acidity (cmolc kg-1) 0.14 (0.03) 0.32 (0.10) 0.36 (0.09) 
ECEC (cmolc kg-1) 0.73 0.72 0.67 
Acid saturation (%) 18.80 44.12 54.13 
 

Table 3.4: Selected soil properties at Shafton. Average (n = 8) values are given 

with standard deviations in parentheses. 

 
Property 

 
0-0.3 

Soil Depth (m) 
0.3-0.6 

 
0.6-0.9 

Clay (%) 69.0 (4.5) 66.0 (4.6) 65.5 (8.8) 
Fine silt (%) 6.8 (3.5) 10.7 (4.8) 11.8 (6.4) 
Coarse silt (%) 7.1 (4.1) 8.2 (5.2) 8.4 (6.2) 
Very fine sand (%) 8.7 (3.6) 8.0 (6.1) 7.7 (4.0) 
Fine sand (%) 2.9 (4.7) 1.6 (7.0) 1.5 (6.8) 
Medium sand (%) 2.3 (4.9) 1.3 (5.5) 2.1 (6.1) 
Coarse sand (%) 3.2 (4.6) 4.1 (4.9) 3.0 (8.0) 
Soil texture Clay Clay Clay 
pH (KCl) 4.31 (0.07) 4.94 (0.40) 5.50 (0.29) 
Total N (g kg-1) 2.36 (0.38) 1.31 (0.23) 0.70 (0.17) 
P (mg kg-1) 0.05 (0.02) 0.00 (0.00) 0.00 (0.00) 
K (cmolc kg-1) 0.09 (0.02) 0.05 (0.02) 0.03 (0.01) 
Ca (cmolc kg-1) 0.36 (0.13) 0.21 (0.19) 0.21 (0.15) 
Mg (cmolc kg-1) 0.60 (0.07) 0.47 (0.15) 0.29 (0.07) 
Na (cmolc kg-1) 0.07 (0.01) 0.07 (0.02) 0.05 (0.01) 
Exch. acidity (cmolc kg-1) 1.11 (0.20) 0.23 (0.14) 0.09 (0.04) 
ECEC (cmolc kg-1) 2.22 1.02 0.68 
Acid saturation (%) 50.08 22.26 13.84 
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Table 3.5: Soil organic carbon content (as determined by Walkley-Black) at 

Rattray and Shafton. Average (n = 27) values are given, with 

standard deviations in parentheses. 

 Soil organic carbon content (%) 
Depth (m) Rattray Shafton 
0 – 0.05 0.96 (0.26) 15.94 (5.64) 
0.05 – 0.15 0.47 (0.14) 7.16 (0.90) 
0.15 – 0.3 0.45 (0.05) 5.62 (0.70) 
0.45 – 0.6 0.43 (0.07) 3.16 (0.50) 
 

3.1.2 Site history 

 

The Rattray site has had at least six rotations, while the Shafton trial site is 

currently in its fifth rotation (C.W. Smith, 2007, pers. comm.2; P. Viero, 2007, pers. 

comm.3). In the most recent rotation, these sites were established as harvesting 

impact trials, discussed in detail by Smith and du Toit (2005) and Smith (2006). 

The objective of these trials was to evaluate the cumulative effect of harvesting 

operations on soil compaction from one rotation to the next. 

  

3.1.2.1 Rattray 

 

The previous trial at Rattray consisted of four harvesting treatments (replicated 

four times in a randomised block design) that resulted in three levels of 

compaction and two residue management treatments. These were motor-manual 

felling and extraction of timber (control), mechanised felling and extraction with a 

tracked harvester, and motor-manual felling and 3-wheel logger extraction of 

timber. Residues in the manually extracted timber plots were either broadcast or 

windrowed. The timber was extracted every fifth or sixth row by a forwarder (an 

area termed the “extraction route”). Penetrometer measurements across the trial 

indicated that there was very little increase in soil strength as a result of the tracked 

harvester operation, but a substantial increase in soil strength with the 3-wheel 

logger. Penetrometer soil strength was also measured in the extraction route and 

was found to be considerably higher than that measured in the 3-wheel logger 

                                                      
2 Dr C.W. Smith, Institute for Commercial Forestry Research, Pietermaritzburg, South Africa. 
3 Mr P. Viero, Institute for Commercial Forestry Research, Pietermaritzburg, South Africa. 
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treatments. The effect of residue management treatments on soil properties was 

considered to be negligible at the end of the rotation due to the rapid 

decomposition of residues as a result of the climate (high humidity and 

temperature), even prior to planting of the previous trial (Smith and du Toit, 2005). 

This was confirmed by soil organic carbon results of samples taken across the 

trial (Table 3.5).  Just before felling the previous trial, the trees (E. grandis x 

E. camaldulensis) were measured, and it was found that they had an average 

diameter at breast height (DBH) and height of 156 mm and 24.1 m, respectively. 
 

3.1.2.2 Shafton 

 

The previous trial at Shafton consisted of considerably more timber extraction 

treatments than at Rattray. Felling was performed motor-manually and residues 

across the entire trial site were windrowed. Seven extraction treatments were 

replicated four times in a randomised block design. These extraction treatments were: 

• Manual (control). 

• 3-wheel logger. 

• Tractor/trailer combination. 

• Forwarder (1, 5 and 10 passes). 

• Extraction route (similar to that of the Rattray trial). 

 

Soil strength did not significantly increase (relative to the control) with the 

tractor/trailer combination. Two of the forwarder treatments (5 and 10 passes) gave 

very similar soil strength results, while the 3-wheel logger yielded a unique (relative to 

the other treatments) soil strength pattern with depth (Smith, 2006).  Prior to felling, 

E. grandis trees at this site had an average DBH of 149 mm, and a height of 22.8 m. 

 

The nature of the soil strength results at both trials (and organic carbon results at 

Rattray), indicated that many of the original treatments at the trials were either not 

severe enough to cause a substantial effect on the soil relative to the control, or 

were similar to other treatments imposed. The trials therefore had the potential to 

be altered slightly to meet the objectives of the current study, while addressing 

their original long-term objective. 
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3.1.3 Trial layout 

 

The emphasis in this study, compared to the original designs was to have a more 

structured approach to evaluating the effect of harvesting through creating 

gradients of impacts for soil compaction and residue management. A minimum of 

three (of both) compaction and residue management treatments are necessary to 

create a regression. Therefore minimum, maximum and intermediate levels of 

both compaction and residue management treatments had to be implemented. 

Factorial designs allow a resource-efficient (in this case, land area and cost) 

analysis of both main and interaction effects (e.g. the effect of compaction alone, 

and the resultant effect of compaction under different residue management levels; 

McConway et al., 1999).  As a result, the three levels of compaction were 

combined with the three levels of residue management, giving a total of nine 

treatments (Table 3.6), each of which were replicated three times.  

 

Table 3.6:  Combination of treatments used for the trials. 

Compaction → 
Residue management ↓ 

Low (CL) Moderate (CM) High (CH) 

Broadcast (B) CLB CMB CHB 
Windrow (W) CLW CMW CHW 
Removed (R) CLR CMR CHR 

 

The previous trial layouts were adapted to allow the incorporation and 

implementation of new treatments without destroying the integrity of the original 

trials. For example, plots without any compaction in the previous trial were 

maintained as such in the new trial, and highly compacted plots were re-compacted 

by heavy machinery. Plots that were moderately compacted in the previous rotation, 

as determined by penetrometer soil strength results (Smith and du Toit, 2005; 

Smith, 2006) were then re-implemented with the moderate compaction treatment. 

As a result, some of the moderately compacted treatment plots had undergone 

different treatments in the previous rotation, e.g. at Shafton, similar levels of 

compaction had resulted from the tractor-trailer and 1 pass of the forwarder 

treatments (average profile PSS of 3657 and 3600 kPa, respectively). Since the 

original trials contained a different treatment structure, some plots were not utilised 

in the new trial layouts (Figure 3.1). In addition, the current treatments could not be 

arranged into randomised blocks due to the previous trial design.  
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Figure 3.1: Trial layout of (a) Rattray and (b) Shafton trials. Treatments: low 

(CL), moderate (CM) and high (CH) compaction; broadcast (B), 

windrowed (W) and removed (R) residue management. Grey areas 

indicate areas from the previous trial that could not be incorporated 

into the current trial. Figures are not to scale. 
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3.1.4 Treatment implementation  

 

The experimental treatments applied were not designed to mimic operational 

practices, but rather to create extremes that may occur as a result of current or 

future practices. 

 

Prior to any treatment implementation, main plot (i.e. plots of 20 x 30 m and 19.2 x 

24 m at Rattray and Shafton, respectively) positions were demarcated in the 

standing crop (the rotation prior to that of this study) at both trials. Trees were 

felled motor-manually and the branches and tops cut from the utilisable stemwood. 

Trees were then cross-cut into lengths, manually de-barked and stacked in-field. 

Wood stacks were placed at the edges of each main plot. Residue management 

treatments were then imposed in each of the main plots as follows: 

• Broadcast residue (B): the forest floor was left intact and all harvest 

residue (consisting of bark, branches and tops) spread evenly.  

• Windrowed residue (W): the forest floor was left intact and the harvest 

residue windrowed (i.e. bark and small branches were left on the plot, while 

large branches and tops were piled in windrows. Although not indicated in 

Figure 3.1, narrow lengths of land between plots running along the “top” 

and “bottom” of plots were included in the trial design for windrows, i.e. for 

piles of surplus residues. These windrows did not form part of the 

measurement plots. 

• Residue removed (R): both harvest residue and the majority of the forest 

floor was removed from the plot and placed in the windrows using fire 

rakes, leaving only very fine decomposing organic matter and topsoil intact. 

 

An example of these residue treatments is shown in Plate 3.1. 
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Plate 3.1: An example of residue management treatments (at Shafton). 

 

After the residue management treatments were implemented, main plots were 

then clearly demarcated by danger tape tied to pegs at the four corners of each 

main plot to limit machinery movement to the appropriate main plots. Harvesting 

treatments were then applied in the following manner (full details of vehicle 

specifications can be found in Appendix 3.2): 

• Low compaction (CL): timber was carried off the main plot manually. 

• Moderate compaction (CM): a 3-wheel logger (weighing 5.2 tonnes 

loaded) extracted the timber. To ensure even coverage of these main plots, 

the logger was forced to travel in particular routes around the main plots. As 

a result of the manoeuvrability of the 3-wheel logger, areas within the 

stumpline and interrow were traversed (Figure 3.2 and Plate 3.2). This 

Windrow residue 

Broadcast residue 

Residue removed 
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machinery disturbed the topsoil in the residue removed treatment, and 

broke up and mixed residue with topsoil in the other residue treatments. 

• High compaction (CH): a 3-wheel logger extracted the timber, and loaded 

a forwarder until a full load was obtained (the forwarder weighed about 33.2 

tonnes fully loaded). The forwarder then moved up and down the interrows 

of the main plots for a total of ten passes (Figure 3.2 and Plate 3.2). 

 

 

Figure 3.2: Representation of the movement of machinery over main plots (  

represents a stump from the previous rotation). (a) An example of 

the route of the 3-wheel logger. The route is erratic and crosses the 

stumpline and interrow frequently (the positions of which are 

indicated in (b)); (b) the forwarder moved up and down the interrow 

only. 
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Plate 3.2: Machinery used to create the different compaction treatments; (a) a 

3-wheel logger moving in a windrowed residue plot at Rattray (i.e. 

CM treatment); (b) a 3-wheel logger loading the forwarder at Shafton 

in a residue removed plot (i.e. CH treatment); and (c) a fully loaded 

forwarder moving up and down a broadcast residue plot at Rattray 

(i.e. CH treatment).  

 

(a) 

(b) 

(c) 
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3.1.5 Pre-planting operations  

 

Three operations were carried out prior to planting: 

1. Within each main plot a randomly chosen area (to allow later statistical 

analysis) was demarcated for the planting of 9 x 9 seedlings at a dense 

espacement hereafter termed ‘sub-plots’.  

2. With the exception of the sub-plots, pits were prepared throughout the 

trials at 2 x 3 m and 2.4 x 2.4 m apart at Rattray and Shafton, 

respectively, to match the previous stand density. This was performed 

manually using hoes and marked planting cables to ensure uniform 

spacing. 

3. A pre-plant spray (broad-spectrum herbicide containing glyphosate; 

Roundup®) was then applied to the site to control any competing 

vegetation (Appendix 3.3). 

 

3.1.6 Genetic material 

 

As a result of successful tree breeding, the growth of plantation eucalypts in South 

Africa has improved (Verryn, 2002), and use of improved material may mask any 

changes in site productivity between rotations (Vance, 2000; Miller et al., 2004). 

However, to allow comparisons between studies and as a result of the prevalence 

of E. grandis pulpwood plantations in South Africa, E. grandis was planted at both 

trials. In the case of Shafton, material that was as similar as possible to that 

planted in the previous rotation was also obtained. 

 

The specific clonal hybrid (E. grandis x E. camaldulensis) used in the previous trial 

at Rattray was therefore replaced with a E. grandis clone (TAG 14) in this study as 

unimproved E. grandis is highly susceptible to disease in Zululand. This material 

was obtained from the Mondi nursery in Zululand. The trial at Shafton was planted 

with similar genetic material to the previous rotation, i.e. unimproved E. grandis 

(EG 62372, Grade 1) obtained from Sappi Shaw Research Centre, Howick, KZN. 
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3.1.7 Planting 

 

The trials were planted from 20-22 September 2004 (Rattray) and from 23-24 

November 2004 (Shafton), using two planting strategies:  

1. For the long-term growth studies (the main plots), seedlings were planted in 

the created pits, each with 1 litre of water to promote seedling survival 

(Table 3.7). 

2. In the sub-plots, notches were created (i.e. a small trowel was used to 

make a hole just slightly bigger than the root plug of the seedling) and a 

seedling immediately planted, with 1 litre of water. Notch planting minimised 

disturbance to the soil and ensured that seedling roots felt the full effects of 

the soil environment due to the treatments as soon as possible. In addition, 

the seedlings were planted in rows matching that of the surrounding main 

plot seedlings (Table 3.7, Figure 3.3). To avoid bias, these sub-plots were 

randomly located within each of the main plots. 

 

Table 3.7: Details of planting operations at Rattray and Shafton. 

 Rattray Shafton 
Main plots 

Spacing between trees (m) 2 x 3 2.4 x 2.4 
Stocking (stems ha-1) 1 667 1 736 
No. of trees per plot 100 (10 x 10) 80 (8 x 10) 
Guard rows per plot 2 2 
No. of inner measured trees 36 (6 x 6) 24 (4 x 6) 

Sub-plots 
Spacing between trees (m) 1 x 1 0.8 x 0.8 
Stocking (stems ha-1) 10 000 15 625 
 

No fertiliser was applied at planting. Blanking operations (i.e. replacement of dead 

seedlings with live ones) were carried out to obtain the best possible survival. At 

Rattray, this operation was carried out three times within two months of planting. 

The weather at Rattray was extremely dry and hot the first six weeks after 

planting. This resulted in a number of seedlings dying, and very limited growth of 

the remaining live seedlings. Over the entire trial 334 seedlings were replaced (out 

of an original 4482 seedlings planted). At Shafton, extremely wet and cold weather 



 36 

accompanied by hail just after planting destroyed many seedlings particularly prior 

to the first blanking operation. In the two blanking operations carried out within a 

month after planting a total of 597 seedlings were replaced out of the original 4104 

seedlings planted. 

 

(a)

(b)

(a)

(b)
 

Figure 3.3: Diagram of a main treatment plot at (a) Rattray; and (b) Shafton. 

Trees in the main plots are represented by ; trees in the sub-plots 

by ; trees that remained after the sub-plot trees were thinned to 

maintain the stocking of the stand are represented by . 
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Competing vegetation was controlled until canopy closure of the main plot trees at 

each trial. Prevalent competing vegetation at Rattray necessitated a combination 

of chemical and hand weeding (on five occasions in total) in which grasses were 

sprayed with a fluaziprop-butyl–containing herbicide (Fusillade®) and broad-leaf 

weeds immediately adjacent to trees were hand weeded. At Shafton, competing 

vegetation was dominated by broad-leaf weeds and was not as vigorous as that at 

Rattray, resulting in only two chemical weeding operations using Roundup®. 

Unfortunately, the first weeding operation was partially performed by labour 

weeding the area surrounding the trial who strayed into the trial, resulting in some 

sub-plot trees being erroneously sprayed. The remainder of the area was sprayed 

under supervision shortly thereafter. The second operation was performed without 

incident. 

 

Coppice from the previous tree crop was initially controlled with Roundup® prior to 

planting, and thereafter manually controlled (using axes and cane knives). This 

operation was performed four times at Rattray and three times at Shafton. 

 

All operations and the order in which they were performed are outlined in the 

respective trial diaries (Appendix 3.3). 

 

 

3.2 Site measurements 

 

Measurements and sampling were performed on the day prior to treatment 

implementation (T0), in the two days prior to planting (TP), at sub-plot tree harvest 

(TH), and when trees at Rattray and Shafton were 42 and 39 months old, 

respectively, (TF). Therefore sampling was carried out at different times after 

treatment implementation (Table 3.8). In addition, some monitoring was carried 

out between TP and TF. 
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Table 3.8: Time after treatment implementation (months) at which soil and 

residue samples were taken at Rattray and Shafton. 

Sampling time Rattray Shafton 
T0 0 0 
TP 1.3 8.3 
TH 7.0 15.3 
TF 43.5 47.3 
 

3.2.1 Soil sampling 

 

At both T0 and TP, soil samples were taken by auger from the approximate centre 

of each main plot. These samples were used for the following purposes: 

1. To check for soil uniformity across the trial (for soil depth and any changes 

in morphology of horizons) prior to treatment implementation. 

2. Samples were taken from 0 to 0.3 m, 0.3 to 0.6 m and 0.6 to 0.9 m for 

chemical and physical analyses to be used as background information for 

the trials at T0. These samples were bulked into eight samples representing 

eight areas (i.e. 3 - 4 neighbouring plots) within each trial for laboratory 

analysis. 

3. To measure gravimetric water content using the same samples as in 2. for 

PSS measurements taken at T0 and TP. 

 

At TH and TF, soil samples were taken to evaluate the nutritional and organic 

matter status of the topsoil and subsoil of each treatment plot. Four sample points 

were randomly selected in each plot, two in the interrow, and two in the stumpline. 

Soil was taken from the 0 – 0.05 m, 0.05 – 0.15 m and 0.15 – 0.60 m depths. 

Samples from the interrows were bulked within their plots and depths, resulting in 

six soil samples from each plot, three representing the interrow, and the remainder 

representing the stumpline soils. For determination of organic carbon content, 

interrow and stumpline samples were bulked to give an average for each plot at 

each depth. 
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3.2.2 Soil bulk density 

 

3.2.2.1 Troxler 

 

Soil bulk density was measured with a Troxler 3440 series surface moisture 

density gauge (Troxler Electronic Laboratories, NC, USA), referred to here as a 

Troxler, and its bulk density values as Troxler bulk density (Plate 3.3). 

Measurements were taken at TP, at four randomly chosen points (two in the 

stumpline, two in the interrow) around the sub-plots at Rattray and Shafton, 

resulting in a total of 108 sample points per trial. Measurements were taken at 

each point between 0 to 0.1 m, 0 to 0.2 m and 0 to 0.3 m. At one of these points 

per plot, a PSS measurement was taken to determine the correlation between 

PSS and bulk density at the time of measurement. 

 
 

 

Plate 3.3: The Troxler 3440 series surface moisture density gauge. 
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3.2.2.2 Undisturbed soil cores 

 

Undisturbed soil cores (0.075 m diameter, 0.05 m high) were taken at both sites at 

TP at 0.03 to 0.08 m (or 0.11 to 0.16 m) and 0.41 to 0.46 m. A total of 56 cores 

were taken at each trial, i.e. at 28 points over a range of bulk densities and organic 

carbon contents. At the Rattray trial, 20 of these sample points corresponded to a 

point at which a Troxler measurement had been taken. Since the Shafton trial was 

sampled later, the sampling strategy was improved so that all 28 sample points 

corresponded to a Troxler measurement point. The 0.03 – 0.08 and 0.11 – 0.16 m 

cores corresponded to Troxler measurements taken between 0 and 0.1 m, and 0.1 

to 0.2 m, respectively, while the 0.41 – 0.46 m cores were used to characterise 

bulk density between 0.4 and 0.5 m. From this point forward the cores are referred 

to as having originated from the 0 – 0.1; 0.1 -0.2, or 0.4 – 0.5 m depths. Stratified 

random sampling of the Troxler readings was used to select these sample points.  

The undisturbed soil cores were used to determine: 

a) Soil bulk density, both in the topsoil and subsoil as the Troxler only 

determined bulk density to 0.3 m. 

b) A calibration between the bulk density values obtained by the Troxler and 

actual soil bulk density. Topsoil cores either 0.03 to 0.08 m (16 cores) or 

0.11 to 0.16 m (14 cores) were taken in order to: 

− Ensure the effect of organic matter on Troxler readings (i.e. in the 

0.02 to 0.09 m layer) was quantified. 

− Obtain a core from a central position in the 0 to 0.3 m soil layer, the 

maximum depth layer in which a Troxler reading was taken. 

c) The effect of bulk density and organic matter on water retention analyses. 

This could then be extrapolated to the effect of treatments on water 

retention. 

As a result of the effect of soil organic matter on Troxler values and water 

retention, loss on ignition (Section 3.3.7.2) was determined on the soil trimmed 

from the undisturbed soil cores. 
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3.2.3 Penetrometer soil strength 

 

Penetrometer soil strength was measured at T0 and TP at a total of eight 

randomly selected measurement points per main plot at both trials. To enable 

quantification of the variation in machinery movement between the two harvesting 

treatments after implementation, PSS was measured both in the interrow and 

stumpline (four measurements in each). This was performed using a semi-

automatic cone penetrometer (Geotron Hand Penetrometer Model P5, Geotron, 

P.O. Box 2656, Potchefstroom, 2520, South Africa) that measures PSS at 0.01 m 

increments down the soil profile to a depth of 0.8 m (cone diameter 12.8 mm, cone 

length 50 mm, cone apex angle 30°, basal area 130 m m2) and measures up to a 

maximum PSS of 5000 kPa (Plate 3.4). At Shafton, at TP however, soil strength 

below 0.5 m exceeded the measuring capabilities of the penetrometer at several 

sample points, and therefore no values below this depth were obtained at these 

points. 
 

  
Plate 3.4: (a) Geotron Hand Penetrometer, Model P5; (b) close up of 

penetrometer data-logger. 

(a) (b) 
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3.2.4 Soil water 

 

To monitor changes in surface soil water content (0 – 0.05 m) under the different 

treatments, measurements were taken at both trials between TP and TH using a 

thetaprobe (Delta-T Devices Ltd, UK; Plate 3.5). A total of 12 measurements were 

taken in each main plot on each occasion. Six measurement points were randomly 

selected in the interrow, the other six in the stumpline. 

 

At Rattray, this was performed on three separate occasions, at 85, 132 and 166 

days after planting (DAP). However, at Shafton, although several attempts were 

made, the thetaprobe could only be used at 70 DAP. This was because, during 

drier periods, the soil at the site became so hard that the thetaprobe prongs would 

bend, not only damaging the equipment but also giving unreliable values. 

 

 

Plate 3.5:  Delta-T Thetaprobe and HH2 Moisture Meter. 
 

3.2.5 Residue sampling 

 

At both TP and TH, a 1 m2 quadrat was randomly thrown into each plot containing 

residues (i.e., broadcast and windrow residue plots). A cane knife was used to cut 

the residues outside the quadrat from those inside the quadrat. The residues were 

collected from inside the quadrat down to the mineral soil. In the case of the 

windrow plots, measurements were only made on the inter-windrow area as this is 

where tree measurement plots were located. Residues were thereafter taken to 

the laboratory for analysis (Section 3.3.2). 



 43 

At TF in Rattray, residues had decomposed into a thin layer on the soil surface, 

therefore at two sample points in each plot, a 0.2 x 0.2 m area of the decomposed 

residues were collected. At Shafton, the fire had burnt much of this layer, as well 

as litter that had fallen from the new stand. Therefore, where possible, both burnt 

residues and litter were sampled in the same manner as at Rattray. This led to 

samples being taken, even for the R plots. These samples were then taken to the 

laboratory for analysis (Section 3.3.2). 

 

3.2.6 Tree measurements 

 

3.2.6.1 Sub-plot tree measurement and harvesting 

 

At both trials, measurements of ground-line diameter (GLD), height and crown 

width of sub-plot trees were made until they attained canopy closure. At Rattray, 

this was performed at 69, 132, 166 and 209 DAP, while at Shafton it was at 70, 

120 and 211 DAP. 

 

At canopy closure of trees in the sub-plots (i.e. 209 and 211 DAP at Rattray and 

Shafton, respectively, or TH), five trees within each sub-plot were selected (by 

stratified random sampling) for biomass harvesting. In all cases aboveground 

biomass was separated into foliage and stem plus branch components, and 

weighed. These components were then separately bulked for each plot (e.g. the 

foliage from five trees in a plot) and a sub-sample taken of approximately 0.3 and 

0.4 kg for the foliage, and stem plus branch components, respectively. The foliar 

sub-samples were first placed in cold boxes and then both sets of sub-samples 

were taken back to the laboratory for analysis. 

 

Of the five trees selected for aboveground biomass harvesting, one (the median 

size tree) was sampled belowground for coarse (>2 mm diameter) and fine (<2 mm 

diameter) root biomass. To enable regressions between belowground and 

aboveground components, six additional trees (the three smallest and the three 

largest harvested) throughout the trial were selected for belowground biomass 
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harvesting. The precise estimation of belowground biomass requires much time 

and effort. Therefore, in an attempt to attain an estimate of belowground biomass 

within a suitable time frame, the following methodology was utilised. Fine roots 

were sampled by placing a 0.2 x 0.2 m quadrat over the cut stem of the tree. A 

cane knife was used to cut vertically into the soil to a depth of 0.05 m around the 

quadrant. The soil was then excavated (excluding the stem and any coarse roots 

attached to it) and removed to the laboratory. A fork was then used to lift as much 

as was possible of the belowground stem and coarse roots (Plate 3.6) which were 

then also taken to the laboratory.  

 

Plate 3.6: The excavated pit around a tree stem. The stem and coarse roots 

are about to be lifted from the soil. 

 

3.2.6.2 Tree thinning and main plot tree measurements 

 

At canopy closure (after biomass harvesting), the sub-plot trees were thinned to 

the planting density of the main plot trees. Although not investigated removal of 

trees for below-ground measurements is unlikely to have had a measurable effect 

on compaction as only one or at most two trees were removed per plot. Ground-

line diameter or diameter at breast height (DBH; once this could be measured on 

all the trees) was measured on the inner measured trees (Table 3.7) in the main 

plots between 6 months of age, and 31 and 43 months of age at Shafton and 
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Rattray, respectively. Tree height was also measured, but after tree height 

averaged approximately 10 m across the trials (after 24 and 38 months of age at 

Rattray and Shafton, respectively) height was only measured on selected trees. 

This is because trees became too large to easily measure. A standardised 

relationship (Equation 3.1; Bredenkamp, 1993) was used to determine the 

coefficients of linear regression developed between the DBH and height of the 

selected trees (Appendix 3.4). These regressions were then used to predict tree 

heights. 

 

ln height (m) = b0 + b1/DBH (cm)       Equation 3.1 

 

3.3 Laboratory procedures and calculations 
 

3.3.1 Soil sample processing and analysis 

 

Soil samples were air-dried and sieved to <2 mm before being analysed. 

 

3.3.1.1 Particle size analysis 

 

Particle size analysis was determined by the pipette method (Gee and Bauder, 

1986). The only modification to the method was the treatment of the soil plus 

sodium hexametaphosphate and sodium carbonate (Calgon) with ultrasound at 

300W for 3 minutes to ensure dispersion. Sand fractions were determined 

separately using a dry sieving technique after silt and clay fractions were removed 

(Gee and Bauder, 1986). 

 

3.3.1.2 Soil water retention (undisturbed soil cores) 

 

Undisturbed soil cores were initially saturated with water for a few days.  A tension 

table was then used for the determination of water content at high matric 

potentials (-1.0, -2.0, -3.0, -4.0, -5.0, -6.5, -8.0, -10.0 kPa). This table was 
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composed of a layer of coarse sand overlain by diatomaceous earth (Smith and 

Thomasson, 1974; Klute, 1986). The cores were equilibrated at each matric 

potential for a minimum of 48 hours and were weighed prior to alteration of the 

matric potential of the table. The soil cores were then subjected to matric 

potentials of -30, -60 and -100 kPa on ceramic plates in pressure chambers. The 

cores were assumed to have equilibrated to the matric potential in the pressure 

chamber when no further water was released from the cores over 48 hours. Cores 

were also weighed between each of these potentials to determine soil water 

content. Disturbed soil samples obtained during trimming of the soil cores were 

used to determine soil water content at a matric potential of -1500 kPa using a 

pressure membrane extractor (Richards, 1941; Klute, 1986). 

 

From the resultant data, soil porosity, air-filled porosity and pore-size distribution 

could be calculated (Appendix 3.5). In addition, soil water content was expressed 

both on a mass and volume basis, as the expression of water content on a mass 

basis indicates changes in pore geometry without volume effects, while volumetric 

water content is useful for practical and modelling applications (Smith et al., 2001; 

Appendix 3.5). 

 

3.3.1.3 Calculation of Troxler bulk density 

 

Since the Troxler measured soil bulk density between 0 and 0.1, 0.2 or 0.3 m 

(Tρb(0-0.1), Tρb(0-0.2) and Tρb(0-0.3), respectively), it was necessary to calculate the 

bulk density of the soil between 0.1 and 0.2 m (Tρb(0.1-0.2), Equation 3.2), and 

between 0.2 and 0.3 m (Tρb(0.2-0.3), Equation 3.3). 

 

Tρb(0.1-0.2) = 2Tρb(0-0.2) - Tρb(0-0.1)      Equation 3.2 

 

Tρb(0.2-0.3) = 3Tρb(0-0.3) - Tρb(0-0.1) - Tρb(0.1-0.2)    Equation 3.3 
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3.3.1.4 Bulk density (undisturbed soil cores) 

 

After the cores had been used to measure water retention, they were oven dried at 

105°C, and bulk density calculated as the mass of o ven dry soil per unit volume of 

the core (Blake and Hartge, 1986). These bulk density values were used to 

calibrate the Troxler (Appendix 3.6). 

 

a) Maximum bulk density, compression index and compaction sensitivity 

index 

 

The susceptibility of soils to compaction is determined partially by their 

compactability and compressability (Bradford and Gupta, 1986). This has been 

thoroughly quantified in South African forestry soils (Smith. 1995). Compactability 

refers to the maximum bulk density (MBD) a soil can achieve. Compressibility is 

measured by a compression index (CIndex), and refers to the ability of a soil to 

resist a decrease in volume when a pressure is applied. Smith (1995) developed 

equations to predict the MBD and CIndex of South African forestry soils, which are 

utilised in this study. 

 

Smith (1995) found that MBD (Mg m-3) for various soils was well related to clay + 

silt (Cl+Si (%); r = 0.792; Equation 3.4). This equation was used to determine 

maximum bulk density of the soils at the trials. 

 

MBD = 1.756984 + 0.005195*(Cl+Si) – 0.000107*(Cl+Si)2  Equation 3.4 

 

The CIndex was also found to be related to clay + silt (r = 0.809; Equation 3.5). 

 

CIndex = 0.015756*(Cl+Si) – 0.000121*(Cl+Si)2 – 0.092662  Equation 3.5 

 

Since the susceptibility of a soil to compaction is dependent on both MBD and 

CIndex, Smith (1995) suggested the use of a compaction sensitivity index (CSI). 

Maximum bulk density and CIndex values are classified into susceptibility classes 
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(with values between 1 and 5). The CSI of a soil is then its MBD class added to its 

CIndex class. This results in values between 2 and 10, with higher values indicating 

increased sensitivity to compaction. 

 

b) Relative bulk density 

 

Relative bulk density (Bennie and Burger, 1988) was determined as follows:  

 

Relative bulk density =  actual bulk density     Equation 3.6 
     MBD 
 

where, MBD is determined from Equation 3.4. Note that relative bulk density has 

no units. 

 

3.3.1.5 pH, total nitrogen, extractable phosphorus (Bray-2) and exchangeable 

cations 

 

Soil pH was determined in a soil:solution ratio of 10 g:25 mL using 1M potassium 

chloride solution (Thomas, 1996). The pH of the supernatant was read after the 

samples had stood overnight using a standard glass electrode (Metrohm Hersiau 

E396B; http://products.metrohm.com). 

 

Nitrogen determination was performed using the Kjeldahl method (Nelson and 

Sommers, 1980; Donkin et al., 1993a; Mulvaney, 1996). 

 

Extractable phosphorus (Bray-2) was determined using the methodology of Bray 

and Kurtz (1945). The filtrate was analysed for extractable phosphate 

colorimetrically at 880 nm automatically performed by a segmented flow 

autoanalyser (SANplus SYSTEM; Skalar Analytical, Breda, The Netherlands). The 

colour was developed using the ascorbic acid method (Murphy and Riley, 1962). 

 

Cations (Ca, Mg, K and Na) were extracted by the procedures outlined by Donkin 

et al. (1993a) and Helmke and Sparks (1996). The resultant filtrates were then 
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diluted with ionisation suppressant (strontium or caesium) solutions, and the cation 

concentrations determined by atomic absorption spectrophotometry (AAS; 

SpectrAA-10, Varian Techtron Pty. Ltd., Mulgrave, Victoria, Australia). 

 

a) Calculation of soil nutrient quantities 

 

The quantity of nutrients contained in the soil between 0 and 0.05; 0.05 and 0.15 

and 0.15 and 0.6 m at TH and TF was calculated on a kg ha-1 basis by using 

nutrient concentration values (kg nutrient kg-1 soil) measured by soil analyses 

(Chapter 5) and bulk density data (determined in Chapter 4). At TP, soil samples 

were collected only from the 0 – 0.3, 0.3 - 0.6 and 0.6 – 0.9 m depth layers and 

these were bulked across the trial. To obtain comparisons between the total 

quantity of nutrients at TP, TH and TF in the soil between 0 and 0.6 m, the TP soil 

nutrient data were manipulated. It was assumed that soil nutrient concentration 

values obtained in the 0 – 0.3 m depth layer were the same as that in the 0 – 0.05 

and 0.05 – 0.15 m depth layer. For the 0.15 to 0.60 m depth layer, the following 

calculation was applied to nutrient concentration values: 

 

{[0 – 0.3] + [0.3 – 0.6] + [0.3 – 0.6]}/3     Equation 3.7 

 

where, [0 – 0.3] is the nutrient concentration of the 0 – 0.3 m depth layer, and [0.3 

– 0.6] is that of the 0.3 – 0.6 m depth layer. 

 

To calculate nutrient quantities at TP, these nutrient concentration values in 

conjunction with average bulk density values from CL plots were used (Chapter 4). 

 

3.3.1.6 Organic matter and carbon 

 

Soil organic carbon content was determined both by the Walkley-Black oxidation 

(WB) and loss on ignition (LOI) methods. As a result of the lower cost of the LOI 

method (compared to the WB method), this was used as a routine method in this 

study, and unless stated, carbon discussed in the results was determined by LOI. 

The relationship between organic carbon (WB) and LOI was determined on 202 

soil samples per trial (Appendix 3.7). 
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a) Walkley-Black method 

 

The method outlined in Walkley (1947) was followed. 

 

b) Loss on ignition method 

 

Soil samples were placed in crucibles in a muffle furnace at 450°C for 16 hours 

according to the methodology of Ball (1964), Donkin (1991) and Donkin et al. 

(1993a).  

 

3.3.1.7 Least limiting water range (LLWR) 

 

The LLWR was calculated using critical values for crop growth determined by da 

Silva et al. (1994) from the literature. These critical values were field capacity at a 

matric potential of -10 kPa, wilting point at -1500 kPa, air-filled porosity at 10% and 

PSS at 2000 kPa. In some instances, PSS at 3000 kPa were also included, as 

tree root growth has been found to be limited at this level (Sands et al., 1979). 

 

Regression equations developed to determine the effect of bulk density and soil 

organic carbon content on soil water content were utilised to establish water 

contents at field capacity and wilting point. 

 

3.3.2 Residue sample processing and analysis 

 

Residue samples, from all sampling times, were weighed, and a representative 

sub-sample taken and oven dried at 65ºC until a constant mass was obtained. 

 

The oven-dried sub-samples were then bulked within treatments. These samples 

were ground to pass a 0.5 mm screen. Part of these ground samples was used to 

determine the soil contamination of the residue samples by loss-on-ignition (as 

described for soil samples). Another portion of the ground samples was used for 

analysis of the residues. 
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3.3.2.1 Carbon and nitrogen 

 

Approximately 50%, by mass, of dry eucalypt components is carbon, and this 

factor was applied to determine the carbon content of residues (Kaye et al., 2000; 

Giardina and Ryan, 2002; Corbeels et al., 2003). 

 

Nitrogen determination was performed in a similar manner to soil samples, using 

the Kjeldahl method (Nelson and Sommers, 1980; Donkin et al., 1993b). 

 

3.3.2.2 Sample preparation 

 

Plant samples were dry ashed, placed in solution and filtered for P, Ca, Mg, K, Na, 

Cu, Zn, Fe, and Mn analyses using methodology described by Jones and Case 

(1990) and Donkin et al. (1993b). 

 

3.3.2.3 Phosphorus, potassium and sodium 

 

Filtered extracts were run through a segmented flow autoanalyser (SANplus 

SYSTEM) for the determination of P, in a similar manner to that of soil P analysis. 

For the determination of K and Na concentrations, 1 mL of filtered extract was 

added to 10 mL of 10 000 ppm caesium solution and made up to 100 mL with 

deionised water and concentrations determined by flame emission spectroscopy. 

  

3.3.2.4 Calcium, magnesium, copper, iron, zinc and manganese 

 

Using an AAS, Ca and Mg concentrations in the filtered extract were determined 

on a 1 mL sample that was combined with 3 mL of 25 000 ppm strontium and 

0.5 mL of 0.6 M hydrochloric acid solutions and made up to 50 mL with deionised 

water (Heffernan, 1985). 
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Concentrations of Cu, Fe and Zn were determined directly in the filtered extract on 

the AAS. Manganese concentration was also determined by AAS, after dilution of 

5 mL of filtered extract with 15 mL of 0.6 M hydrochloric acid. 

 

a) Calculation of residue nutrient quantities 

 

Nutrients at TP and TH (kg ha-1) were calculated using nutrient concentration 

values (kg nutrient kg-1 residue) and residue quantities (kg ha-1) (Chapter 5). 

 

3.3.3 Tree component processing and analysis 

 

3.3.3.1 Aboveground components 

 

Stem plus branch sub-samples were dried at 65ºC to a constant mass. Foliar sub-

samples were immediately refrigerated and specific leaf area (SLA) 

measurements performed within two days of harvesting. Specific leaf area was 

determined on each entire sub-sample (approximately 0.3 kg fresh weight of 

foliage) on a single sided basis using a Li-Cor 3100 Leaf Area Meter (LI-COR 

Biosciences, Lincoln, Nebraska, USA). These values were then used to calculate 

leaf area index (LAI) for each tree harvested (the product of SLA and foliage 

biomass). Once SLA measurements were completed, the sub-samples were oven 

dried at 65ºC to calculate dry mass and were then retained for analysis. 

 

Carbon, nitrogen and sulphur in the foliar samples were determined by a LECO 

CNS analyser using the Dumas method (Ebeling, 1968; Sweeney, 1989). A sub-

sample from each foliar sample was prepared in the same manner as the residue 

samples (Section 3.3.2.2). The quantity of nutrients in the resultant filtered 

extracts was then measured by inductively coupled plasma optical emission 

spectrometry (ICP-OES). 
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3.3.3.2 Belowground components 

 

The Shafton soil samples containing the fine roots were air-dried and placed in a 

bucket of water containing a dispersant solution of sodium hexametaphosphate 

plus sodium carbonate (Calgon). The contents of the bucket were frequently 

stirred ensuring that settled soil was adequately agitated to release any roots. 

After each stirring any floating organic matter (consisting of fine roots and 

decomposing biomass) was skimmed off the water surface. This process was 

repeated until yields of organic matter subsided. Magnesium chloride was then 

added to the collected organic matter to induce flocculation of any entrapped clay. 

The contents of this container were also stirred and allowed to settle for at least 

1 hour before the organics were skimmed off again. This process was repeated 

until very little organic matter remained (usually a total of about five times). This is 

very similar to the methodology of Bauhus and Messier (1999) although they did 

not use a chemical dispersant. As a result of the low clay content and lack of 

aggregation in the Rattray soil samples, samples were placed in a bucket of water 

without any chemical addition, stirred and organic matter skimmed off the surface. 

All samples were then oven dried at 65oC and weighed. Three separate sub-

samples of approximately 2 g each were taken from each dried sample. These 

were weighed, and the fine roots separated from the other organic components 

using a pair of tweezers, and weighed. This mass was calculated as a percentage 

of the total sub-sample and averaged across all three sub-samples. This 

allowed calculation of the total fine root mass obtained in the 0.002 m3 

(equivalent of 2 litres) sample taken from around the tree stem.  

 

The coarse root systems from Shafton were washed with low water pressure into 

a container in case any roots broke off. This was not necessary with the Rattray 

root systems as the sandy soil easily dropped off the roots once they were air-dry. 

Any fine roots found attached to the coarse roots were cut off and both samples 

were oven dried at 65oC. The mass of fine roots was added to the total fine root 

mass in the soil sample. Each coarse root was cut at the point where it joined 

either another root or the belowground stem (known as the start of the root). The 

root was then weighed, and in addition to the length of the root, the diameter at 
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both the start and the end of the root was measured. This allowed calculation of 

the approximate root volume (Equation 3.8) and the development of root volume-

mass relationships (Appendix 3.8). The rate of taper of roots with an end 

diameter of 2 mm was also determined (Equation 3.9; Appendix 3.8) and applied 

to any coarse roots broken during removal from the ground. The belowground 

stem was also weighed. 

 

Root volume = [(Radius of start of root + radius of end of root)/2]2 * pi * length of root    

Equation 3.8 

 

Rate of taper = Length of root / diameter at start of root   Equation 3.9 

 

3.3.4 Biomass index, basal area and stemwood volume calculations 

 

Tree performance was estimated using a biomass index (mm3), calculated as 

GLD2 * height (Eccles et al., 1997). For interest, stand basal area (SBA) and 

stemwood volumes were also calculated (Equations 3.10 and 3.11, respectively; 

Abed and Stephens, 2003). Tree volumes are generally not determined on such 

young trees, but rather at rotation end. Therefore tree volume was calculated 

using a generic equation that assumes that the trees are uniform and cone-

shaped, thus assuming a form factor of 3 (Abed and Stephens, 2003). 

 

SBA (m2 ha-1) = [∑(π * (DBH/2)2)]/plot area    Equation 3.10 

 

Stemwood volume (m3 ha-1) = SBA * Average tree height/3  Equation 3.11 

 

3.4 Statistical analyses 

 

Statistical analysis was carried out on selected data sets using Genstat Version 

11.1 (Payne et al., 2008). Generally simple linear regression or two-way analysis 

of variance (ANOVA) were performed. Occasionally, split-split plot design analysis 

was performed as it was more appropriate for the data, as well as to interrogate 

the data further. If necessary, to ensure error assumptions were met for ANOVA 
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analyses, transformation of data were performed and carried out according to the 

principles outlined by Gomez and Gomez (1984). In such instances, or where 

further details of analyses were required, these are given in the relevant section of 

each chapter. Results were regarded as significant if a p value of less than 0.05 

(or 5%) was obtained. Thereafter the differences between treatments was 

determined using the least significant differences method (treatments with different 

letters were significantly different). The percentage variance accounted for (r2) was 

reported instead of correlation coefficients (R) or the correlation of determination 

(R2). This is an adjusted form of R2 that takes into consideration the number of 

parameters that have been fitted in the model, unlike R2, which does not. It is 

calculated as: 

 

1 – (Residual mean square/total mean square)    Equation 3.12 

 

Many regressions were significant (p<0.001) but were excluded as a result of low 

r2 values (r2< 0.5). 
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Chapter 4 

Effect of Compaction Treatments and Residue 

Management on Soil Bulk Density and Strength 

 

4.1. Introduction 

 

Heavy machinery movement is known to increase soil bulk density and to alter 

pore-size distribution and volume of soils (Reisinger et al., 1988). In South African 

eucalypt plantations, the mechanisation of operations is increasing, particularly 

mechanical harvesting (Warkotsch et al., 1994; Brink, 2001; Smith and du Toit, 

2005). These eucalypt plantations are often harvested by ground-based 

machinery that has been found to impact between 10 and 15% of a harvested 

area (Miller et al., 2004). In some circumstances, harvesting operations and 

extraction routes are not restricted, especially between rotations, or in instances 

where the spreading of a lighter impact over an area is desired (Jakobsen and 

Moore, 1981). In either situation, impacts on the soil of a site could be significant. 

In addition, machinery is no longer being used purely for timber extraction, but 

also for felling, debarking, stacking and pitting, and these operations require 

machinery movement over a much larger area than that of extraction routes. In 

South Africa, harvesting operations have resulted in increased soil bulk density 

and PSS (Warkotsch et al., 1994; Smith, 2003; 2006; Smith and du Toit, 2005). 

 

The effect of machinery movement on soil has been found to be affected by the 

quantity, type and distribution of forest floor or residues left on the site (e.g. 

Donnelly and Shane, 1986; Smith, 1998; Hutchings et al., 2002; Ampoorter et al., 

2007). In South Africa, this effect of plantation residue management on soil 

responses to machinery movement has not been researched. Elsewhere, the 

presence of harvest residue was found to reduce soil compaction and disturbance 

effects by machinery, particularly on moist soils, or if more than one pass was 

made (King and Haines, 1980; Jakobsen and Moore, 1981; McDonald and Seixas, 

1997). Harvest residues are thought to decrease the effective ground pressure 

and distribute the weight of the machine over a larger area (Wronski and 
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Humphries, 1994; King and Haines, 1980). In addition, the movement of 

machinery over residues can also affect their distribution across a site, as well as 

result in their break-up and/or incorporation with soil (Geist et al., 1989; Rab, 

1994; Eisenbies et al., 2005). 

 

Changes in soil bulk density, pore-size distribution and volume, as well as the 

changes in other soil properties that they induce, often affect plant growth by 

altering the rooting environment. Several extensive reviews of research 

investigating the effects of heavy machinery on soil physical properties, and the 

effect on tree growth in other parts of the world already exist (e.g. Greacen and 

Sands, 1980; Lousier, 1990; Powers et al., 1996; Ballard, 2000; Miller et al., 

2004). However, tree growth responses (in reviewed research) varied widely, and 

often the actual causes of the responses were not measured, but inferred from the 

data. In addition, most of this information originated from retrospective studies of 

areas that lacked true controls or non-compacted areas, where original conditions 

are unknown, and often with small plot sizes (Powers, 1999). 

 

The extent of compaction effects on the soil are dependent on soil texture, type 

and quantity of adsorbed cations, organic matter content, moisture content and 

bulk density at the time of compaction (Wolkowski, 1990; Aust et al., 1995; Smith, 

1995; Ball et al., 2000; Prévost, 2004; Ares et al., 2005). Soils with a wide range of 

particle sizes are more compactable than those with more uniform particle size 

range (Moolman, 1981; Smith, 1995; Brady and Weil, 1999).  Fine textured soils 

with high organic matter contents are generally more resistant to compaction and 

have a lower potential maximum bulk density than soils of coarser texture and 

lower organic carbon content (Greacen and Sands, 1980; Bennie and Burger, 

1988; Smith, 1995). 

 

Other factors besides the above soil characteristics and residue cover determine 

the response of a soil to compaction. These factors influence the type and 

magnitude of compactive forces applied to the soil. The number of passes, 

amount and type of pressure, vibration or slip during movement, and speed of the 

machinery substantially affect soil responses (Soane et al., 1981a; 1981b; 

Reisinger et al., 1988; Smith, 1998). Axle load determines the degree of subsoil 
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compaction. Axle loads above 4 t per axle which are common in South African 

forestry machinery (Smith, 1998) often lead to subsoil compaction (Soane et al., 

1981b; 1982; Håkansson et al., 1988). 

 

4.1.1. Effect of compaction, machinery movement and residue management 

on soil physical properties 

 

Compaction increases bulk density, and changes pore-size distribution and 

volume, which in turn have an effect on other soil properties. For example, with 

increases in PSS, changes in soil water retention characteristics and decreases in 

aeration have been reported (Greacen and Sands, 1980; Smith et al., 1997a; 

Powers et al., 1998; Ball et al., 2000; Ares et al., 2005). These changes can then 

in turn affect several chemical and microbial soil properties (Donnelly and Shane, 

1986; Lousier, 1990; Miller et al., 2004).  

 

Some of the effects of compaction vary, often as a result of soil textural 

differences. This is particularly the case with soil water retention characteristics 

(Smith, 1998; Gomez et al., 2002a; Page-Dumroese et al., 2006). For example, 

compaction of sandy soils may increase water holding capacity and soil-root 

contact (Sands et al., 1979; Arvidsson, 1999; Gomez et al., 2002b; Ares et al., 

2005). This variability has been considered the cause of variation in tree response 

to compaction (e.g. Smith, 2003; Smith and du Toit, 2005). 

 

Machinery movement does not only increase soil compaction, but can also mix, rut 

and displace soil, which affects many of the soil properties discussed above (Rab, 

1996; Page-Dumroese et al., 1998; Smith, 1998; Block et al., 2002; Ares et al., 

2005). The differentiation between compaction and the other effects of machinery 

are important when determining the cause of soil and tree responses to ensure 

that correct inferences are drawn (Miller et al., 2004). In addition, soil organic 

matter and labile nutrients are usually concentrated in the top few centimetres of 

soil and decrease rapidly with depth in forest soils (du Toit et al., 2004). Therefore 

soil displacement can highly impact the soil productivity of an area (Powers et al., 

1990; Smith, 1998). 
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The management of residues, coupled with the effect of machinery movement on 

those residues also directly affects soil physical properties such as soil temperature 

and moisture; the former decreasing and the latter increasing with residue retention 

(Smethurst and Nambiar, 1990b; Jones et al., 1999; Roberts et al., 2005). Indirect 

effects of residue management occur through changes in soil organic matter 

levels (Powers et al., 1990). Soil organic matter has many effects on soil physical 

properties such as aggregation, total porosity, soil water retention characteristics, 

bulk density, soil strength, infiltration, risk of surface crusting (Smith et al., 1997a; 

Powers, 1999; Smith, 1998; Prévost, 2004), and if residues are not present, it 

influences the temperature of the soil (Prescott et al., 2000). The susceptibility of a 

soil to compaction is reduced with increasing organic matter content, due to 

increasing soil resistance to deformation and/or elasticity, i.e. the rebounding 

ability of the soil (Soane, 1990). 

 

Literature relating to the modification of soil compaction caused by machinery by 

E. grandis residues could not be found. However, data were available for residues 

of other species (natural E. regnans and Acacia, Jakobsen and Moore, 1981; 

natural mixed Quercus sp., Donnelly and Shane, 1986; plantation Pinus taeda, 

McDonald and Seixas, 1997; plantation Picea sitchensis, Hutchings et al., 2002; 

natural Pinus sylvestris, Prunus serotina and Sorbus ancuparia, Ampoorter et al., 

2007). In all of these studies, the presence of residues reduced soil compaction, 

but in no instance was compaction completely prevented. Hutchings et al. (2002) 

investigated the differences in clay loam soil responses to compaction with 

thickness of residues (four treatments with residues ranging between 0.32 and 

0.64 m thick). They found no significant differences in PSS between the four 

residue-retained treatments, although a significant difference in PSS was found 

between no residue and residue retention to 0.1 m soil depth. McDonald and 

Seixas (1997) carried out a similar study on a loamy sand, with forwarder 

movement over different quantities of residues (0, 10 and 20 kg m-3). They found 

that on a moist soil, increasing residue retention lessened the compactive effects 

of the forwarder. Under dry soil conditions, however, there was a significantly 

higher level of compaction in residue removed (0 kg m-3) compared to residue 

retained (10 and 20 kg m-3) treatments, but no significant difference between the 

residue retained treatments.  Although Ampoorter et al. (2007) did not study the 
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effects of different quantities of residue retention, they found that the retention of a 

layer of residue over 0.4 m thick reduced PSS to a depth of 0.3 m. They attributed 

this decrease to the spreading of machine mass over a larger area, thereby 

reducing the mean soil contact pressure. Increasing thickness of retained residues 

has caused a concomitant reduction in increases in PSS with compaction (Schäfer 

and Sohns, 1993, cited by Ampoorter et al., 2007). 

 

While all soil properties are linked, the extent to which each property is affected 

will vary with soil type and stress applied. The growing environment for roots is 

determined by the combination of soil properties, and the extent to which each 

property is affected by the stress applied. For example, soil compaction per se has 

been found not to directly affect root development, rather it is the effect of 

compaction on other soil properties that affect root growth (Taylor and Brar, 1991). 

These properties are soil structure, soil strength, total porosity, macropore 

continuity and quantity, air-filled porosity, gaseous diffusion, volumetric water 

content and hydraulic conductivity (Letey, 1985; Taylor and Brar, 1991; Smith, 

1998; Gomez et al., 2002a). 

 

4.1.2. Soil bulk density and strength 

 

Soil bulk density is often used as a measure by which the effects of compaction 

can be quantified (e.g. Smith et al., 1997a; Smith et al., 2001; Miller et al., 2004), 

as well as a predictor variable for estimating soil water retention parameters and 

total porosity (e.g. Rawls et al., 1991; Smith et al., 2001). This is despite the fact 

that it neither directly affects root growth nor does it give a measure of soil 

strength (Grey and Jacobs, 1987; Miller et al., 2004). Bulk density is also used to 

convert soil properties generally determined on a mass basis into a volume or 

area basis (Federer et al., 1993; Prévost, 2004). Since bulk density naturally 

varies with soil texture and organic matter content, there is an inherent variation in 

bulk density between soil types (King and Haines, 1980; Smith et al., 1997a; 

Brady and Weil, 1999; Prévost, 2004). To overcome this variation, several studies 

have quantified the effects of management on relative bulk density (Soane et al., 

1981a; Carter, 1990; Smith, 1995). 
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Soil strength, or the mechanical resistance of a soil to plant root penetration, is 

well correlated to the resistance of a soil to penetration by a metal probe, 

measured by a penetrometer (Barley et al., 1965; Sands et al., 1979; Greacen and 

Sands, 1980; Bengough and Mullins, 1991; Taylor and Brar, 1991). This is despite 

the fact that the frictional resistance encountered by a probe is between two and 

eight times greater than that encountered by a plant root (Bengough et al., 1997). 

In addition, plant roots can bend and follow paths of least resistance (such as 

macropores or natural failure zones) and often cells are sloughed off from the root 

cap to create a low-friction sleeve for the root to grow in (Bengough et al., 1997; 

Miller et al., 2004). Generally, root elongation rate decreases exponentially as soil 

strength increases until a critical point, after which root penetration ceases (Greacen 

and Sands, 1980). Tree root-limiting levels of PSS have been found to be as low as 

1300 kPa (Zou et al., 2001), but the generally accepted level is 3000 kPa (Sands et 

al., 1979); while root growth has been found to cease altogether above 4200 kPa 

(Misra and Gibbons, 1996). As a result of only a few planes of weakness and 

cracks, compaction of sandy, single grain soils may reach root-limiting levels of 

PSS at values below 2000 kPa (van Huyssteen, 1989). 

 

Assessment of soil strength in relation to forest productivity is regarded as the 

simplest and most practical method of quantifying soil physical conditions (Powers 

et al., 1998). Cone penetrometers are commonly used in agriculture to obtain a 

quick measure of soil strength to indicate the physical state of a soil, to find traffic 

compaction and hardpan areas, and to determine the relationship between soil 

strength and root growth and crop yield (Bradford, 1986). Soil strength is 

dependent on mainly bulk density, structure, texture, organic matter and water 

content (Bradford, 1986; Bennie and Burger, 1988; Ekwue, 1990; Smith, 1995; 

Smith et al., 1997a; 1997b). It therefore often varies a great deal with wetting and 

drying cycles throughout the year (Spain et al., 1990). However, soil strength in 

sandy soils is generally dependent on organic matter content, and relatively 

independent of soil water content (Sands et al., 1979). Penetrometer soil strength 

also increases with depth as a result of soil hardness, penetrometer probe 

diameter and overburden pressure (Bradford et al., 1971; Sands et al., 1979; 

Bennie and Burger, 1988). After a certain depth, PSS either ceases to increase, or 

decreases with depth, as the failure mechanism changes from shear (at shallow 
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soil depths) to shear plus compression (at deeper soil depths). This phenomenon 

is consistent across all soils (unless the probe encounters stones or other 

resistant material) and the exact mechanisms are reviewed by Bradford (1986). 

 

4.1.3. Persistence of soil compaction 

 

The effects of compaction in forest soils have been recorded to persist up to 23 

(Froehlich et al., 1986), 32 (Jakobsen, 1983) and even 50 years (Greacen and 

Sands, 1980) after initiation of the compaction. In other instances, some sites 

have been found to recover to pre-disturbance levels in as little as four to five 

years (Williamson and Neilsen, 2003a; Page-Dumroese et al., 2006). Miller et al. 

(2004) concluded that soil recovery rates after compaction are dependent on 

compaction severity, soil characteristics (depth, texture, structure, mineralogy, 

cation exchange capacity, bonding agents, soil solution, organic matter) and 

climate. When recovery occurs, it is often in the surface soil and is generally as 

the result of freeze/thaw cycles, shrink/swell cycles and soil macrofaunal and root 

activity (Greacen and Sands, 1980; Reisinger et al., 1988; Miller et al., 2004). 

Freeze-thaw and shrink/swell cycles are absent in South African forestry soils and 

soil recovery from compaction may therefore be extremely slow (Jakobsen 1983; 

Warkotsch et al., 1994; Smith, 1998; 2003). Earthworm numbers in South African 

eucalypt soils have been recorded to be relatively low compared to native grass- 

or woodland (Dlamini, 2002), and amelioration through soil biological activity may 

be further limited as decreases in soil macrofauna with increasing compaction 

levels have been recorded (Whalley et al., 1995; Radford et al., 2001). 

Amelioration by root growth may also not be substantial as it is not only lower 

under compacted conditions, but the roots also tend to grow along existing soil 

fractures and old root channels, thus preventing soil loosening. The effectiveness 

of compaction amelioration by root growth is dependent on the total pore volume, 

pore size distribution, and continuity remaining after compaction (Miller et al., 

2004). Retention of harvesting residue and litter has been found to substantially 

speed up rates of soil recovery from compaction when compared to their removal 

(Zabowski et al., 1996). Recovery in subsoils is generally very slow (Reisinger et al., 

1988) and this has been found to be the case in some South African forestry soils 

(van Huyssteen, 1990; Smith, 1998). 
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4.1.4. Chapter rationale and objectives 

 

The objectives of this section of the study were to: 

• quantify the effect of both compaction treatments and residue management 

on soil bulk density and penetrometer soil strength; 

• evaluate the extent to which the impact of the various compaction 

treatments on soil compaction is modified by residue management; and 

• determine the spatial variability of these soil properties (both vertically and 

horizontally in the soil) across the treatments. 

 

Measurement of soil surface physical attributes and processes (such as surface 

crusting and erosion) were excluded from this study. Although these are important 

to plant growth, only soil properties considered to be most impacted by the 

treatments at the sites selected were measured. The effects of the treatments on 

soil water and aeration characteristics are addressed in Chapter 6 . 

 

4.2. Materials and methods 
 

Chapter 3  contains the majority of details regarding materials and methods. 

However, the methodology behind some statistical analyses is presented here. 

 

4.2.1. Troxler bulk density – statistical analysis 

 

Treatment effects on Troxler bulk density were analysed using a split-split plot 

ANOVA, with the treatment structure being compaction * residue management * 

position of the measurement within the plot * soil depth, blocked by replicate. Bulk 

density values measured prior to treatment implementation were used for 

calibration of the PSS measurements, but were too few to use as a covariate in 

the analysis. To supplement these results, a two-way ANOVA was performed on 

the data within their depth ranges.  
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4.2.2. Penetrometer soil strength – statistical analysis 

 

Residual effects of harvesting treatments in the previous trials at Rattray and 

Shafton were quantified by measurement of PSS prior to re-implementation 

(PSS0). At Rattray, four treatments were originally applied. These consisted of two 

levels of compaction (similar to the CM and CH treatments), and two controls (or CL 

treatments). Residues were windrowed over CM and CH and one CL treatment, and 

broadcast over the other CL treatment. As a result of these differences in residue 

management in the previous trial, and to maintain as similar as possible statistical 

analysis throughout the data, PSS0 data from the CLB plots were excluded. At 

Shafton, the original trial had seven timber extraction treatments (Smith, 2006), 

three of which were low compaction (CL), compaction with a 3-wheel logger (CM) 

and compaction with ten passes of a forwarder (CH). Therefore only PSS results 

from the plots under these three treatments were analysed for residual treatment 

effects from the previous trial. 

 

Penetrometer soil strength values for each measurement point were averaged 

every 0.05 m down the profile. These values were then further averaged within 

their depth classes with measurements from the same plot, and same plot position 

of measurement (i.e. interrow or stumpline). Overburden pressure, increasing bulk 

density and clay content, and decreasing organic matter with depth, often lead to 

an increase in PSS with depth (Sands et al., 1979; Fritton, 1990). Therefore, soil 

depth was included in the treatment structure in the statistical analysis of the PSS 

data. The PSS0 data were then analysed using a split-split plot ANOVA, with the 

treatment structure being compaction*position of the measurement within the 

plot*soil depth, blocked by replicate. Soil water content is known to affect PSS 

measurements (Smith et al., 1997a), and was therefore measured at the same 

time as PSS measurements, and was included as a covariate in the analysis of 

the PSS0 data. Shafton’s data required a square root transformation to prevent 

violation of error assumptions. 
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After implementation of the treatments for the current study, PSS measurements 

were retaken (PSS1), and the data treated in a similar manner, although the 

treatment structure now included residue management. At both trials, soil water 

content and PSS0 values were found to be related, and therefore both could not 

be included as covariates. Since PSS0 had a greater effect, this was chosen as 

the covariate to be included in the analyses. It was necessary to transform both 

Rattray and Shafton’s data (square root, and log transformations, respectively). At 

Shafton, soil strength (after treatment implementation) below 0.5 m in some 

treatments exceeded the measuring capabilities of the penetrometer. In these 

cases therefore, statistical analyses were not performed on data below this depth. 

 

One of the objectives of this study was to determine the variation in soil properties 

within the different treatments. Therefore the spread or dispersion of the PSS1 data 

set was evaluated by calculation of its standard deviation (standard deviation = 

√variance). Standard deviation values were calculated for PSS1 data within 

compaction treatments and soil depth layers. 

 

To further analyse treatment effects on soil strength, the relative changes in PSS1 

(from that of the CL treatments) were calculated (Equation 4.1 ) within depth layers 

across the different residue management under the CM and CH treatments.  

 

Relative increase in PSS (%) = PSStreatment/PSSCL * 100     Equation 4.1 

 

where: 

PSStreatment = PSS1 value (within a depth layer) under the treatment in question. 

PSSCL = corresponding PSS1 value (within the same depth layer) averaged across 

the CL treatments. 

 

This data was analysed using a two-way ANOVA (the treatments being residue 

management and CM and CH treatments), with depth as a blocking factor (until the 

point at which the residue effects were no longer significant). Data from the 

Shafton trial were transformed (by a square root transformation) to prevent 

violation of normality assumptions. 
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4.3. Results and discussion 
 

4.3.1. Maximum bulk density and compression index 

 

Maximum bulk density and CIndex values for the soils at the trials were calculated 

from Equations 3.1  and 3.2 (Table 4.1 ). These values were then classified 

according to Smith’s (1995) classification, and the CSI determined for each soil 

(higher values indicating increased sensitivity to compaction). 

 

Although the MBD values determined for Rattray were considerably higher than 

those of Shafton, the sensitivity of these soils to compaction was fairly similar as a 

result of Rattray’s lower CIndex values. 

 

Table 4.1:   Maximum bulk density (MBD; Mg m-3), compression index (CIndex) 

and compaction sensitivity index (CSI) for soils at the two trials using 

the models of Smith (1995). 

Trial: Rattray Shafton 
Horizon: A E A B 
Silt + Clay (%) 7.5 8.1 89.8 81.8 
MBD (Equation  3.1)                                                              1.790 1.792 1.361 1.466 
CIndex  (Equation  3.2) 0.019 0.027 0.346 0.387 
CSI 5 5 5 6 
 

4.3.2. Treatment effects on bulk density 

 

4.3.2.1. Rattray 

 

Troxler bulk density (measured between 0-0.1, 0.1-0.2, and 0.2-0.3 m) was 

significantly (p<0.05) affected by the interaction between compaction treatments 

and residue management, depth of measurement and compaction treatments, and 

plot position and depth of measurement (Appendix 4.1A ). The magnitude of the 

mean square value for the compaction treatments indicates that compaction was 

the major cause of variation in bulk density, followed by depth, plot position and 

residue management. The consistent increase in bulk density with increasing 

depth was expected as this occurs naturally as discussed earlier (Section 4.2.1 ; 

Appendix 4.1B and C). 
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The effect of the compaction treatments on bulk density decreased in the order 

CH>CM>CL (Figure 4.1 ). Residue retention appears to have reduced the 

compactive effects of the machinery used, and bulk density decreased within the 

compaction treatments generally in the order R>W>B. Significant compaction 

treatment and residue management effects were found on bulk density values 

measured within each depth (Appendix 4.1D  and E). However, it is clear that the 

effect of residue retention decreased with depth. 

 

The variability within the plots of the compaction treatments was determined by 

analysing the bulk density values obtained under the different positions within 

each compaction plot (Appendix 4.1A ). The interaction between compaction 

treatments and plot position was only weakly significant (p<0.1). This was due to 

the manner in which the compaction treatments were implemented. As expected, 

Troxler bulk density was only significantly (p<0.1) higher in the interrows than 

stumplines in the CH treatments (Appendix 4.1F ) since the forwarder moved 

between the stumplines (Figure 3.2 ). 
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Figure 4.1: Box whisker plot of Troxler bulk density between 0-0.3 m due to 

compaction treatments and residue management at Rattray. 

Treatment means are displayed above the box whisker, and 

treatments with different letters are significantly different (p<0.001). 
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Relative bulk density values (Table 4.2 ) were calculated from soil core bulk 

density and maximum bulk densities determined from textural analysis (Section 

4.3.1). The values indicate the effects of the compaction treatments, and in some 

cases, the CH treatment compacted the soil almost to its maximum density. 

 

Bulk density (using undisturbed soil cores) was determined at the same site in the 

previous trial (Sibisi, 1998; Smith, 2003). However, as a result of the objectives of 

the prior study, the sampling strategy and technique employed were substantially 

different from those of this study. Therefore the values obtained in the prior study 

are not comparable to those of this study. 

 

Table 4.2:   Range of relative bulk density values (i.e. ratio between soil core 

bulk density and MBD) at two soil depths under the compaction 

treatments at Rattray. 

Compaction treatment 0  – 0.1 m 0.4 – 0.5 m 
Low 0.769 – 0.873 0.839 – 0.917 
Moderate 0.845 – 0.906 0.850 – 0.926 
High 0.868 – 0.963 0.904 – 0.935 
 

Finally, these results indicate that further compaction of the Rattray soil has 

occurred with implementation of the current treatments, despite the soil at this 

time being relatively dry (approximate matric potential of -92 kPa). However, 

relative bulk density results show that additional compaction of soil in the CH 

treatments by machinery in the future cannot be substantial.  In addition, the 

reduction of the effects of compaction by residue retention could have very 

important management implications. 

 

4.3.2.2. Shafton 

 

Bulk density was measured throughout the trial using a Troxler after 

implementation of the treatments in 2004 (Figure 4.2 ). Depth had a significant 

effect but no significant treatment or interrow/stumpline effects were found 

(Appendix 4.2 ). 
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Figure 4.2:  Box whisker plot of Troxler bulk density between 0-0.3 m due to 

compaction treatments and residue management at Shafton. 

Treatment means are displayed above the box whisker. 

 

Relative bulk density values  show that topsoil compaction did not approach 

the maximum possible value for this site under either the CM or CH treatments 

(Table 4.3 ), while subsoil values were even less affected by the compaction 

treatments. However, equations used to determine MBD values were derived from 

reconstituted cores in the laboratory, and it is unlikely that field soils will ever attain 

such bulk densities, particularly in heterogeneous soils. The lack of significant 

treatment effects, coupled with the relative bulk density data, implies that the soil 

at Shafton is relatively resistant to compaction, due no doubt to its very high 

organic C content. 

 

Table 4.3:   Range of relative bulk density values (i.e. ratio between soil core 

bulk density and MBD) at two soil depths under the compaction 

treatments at Shafton. 

Compaction treatment 0  – 0.1 m 0.4 – 0.5 m 
Low 0.657 – 0.801 0.612 – 0.783 
Moderate 0.712 – 0.851 0.670 – 0.780 
High 0.694 – 0.858 0.668 – 0.795 
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Previous studies at this site have only measured bulk density on repacked soil 

cores (Smith, 1995; 2006), and can therefore not give any information regarding 

field bulk density as affected by different treatments.  

 

Despite the Shafton soil being quite moist (around a matric potential of -52 kPa) at 

treatment implementation, bulk density did not significantly increase as a result of 

compaction treatments. This may be due to an insufficient number of samples 

having been taken, particularly since Troxler bulk density values at this trial were 

significantly affected by soil organic carbon (Appendix 3.6 ). This would have 

increased the variability in measurement and prevented the determination of 

treatment differences. 

 

4.3.3. Penetrometer soil strength 

 

4.3.3.1. Rattray 

 

a) Residual compaction 

 

Soil water content at the time of PSS0 measurements ranged across the trial from 

0.014 to 0.065 kg kg-1 (average = 0.039 kg kg-1). 

 

Residual PSS levels as a result of the previous trial treatments were apparent from 

the PSS0 data, and there was a highly significant interaction between depth and 

compaction treatments and depth and plot position (Figure 4.3 , Appendix 4.3 ).  

Significant differences between interrows and stumplines were greatest between 

0.25 and 0.40 m, while PSS0 was significantly greater in CH than CM or CL 

treatments (Appendix 4.3 ). Although compaction treatment main effects are 

superseded by interaction effects, these were weakly significant (p<0.1) and 

means decreased in the order CH>CM>CL.  
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Figure 4.3:  Compaction treatment (Comp) and plot position effects on average 

(28 points per treatment and position) penetrometer soil strength 

(PSS0) with depth prior to treatment implementation at Rattray. 

 

Penetrometer soil strength was also measured by Smith and du Toit (2005) on the 

same trial site in the previous rotation. Since soil water contents at the time of that 

PSS measurement varied between 0.035 and 0.098 m3 m-3 (Smith, 2003), these 

results are comparable with PSS0 results of this study. The magnitude of PSS 

obtained by Smith and du Toit (2005) for the 3-wheel logger and zero compaction 

treatments was similar to that found in this study for the same treatments, despite 

there being no differentiation between stumpline and interrow in their study. The 

persistence of treatment effects from the original trial on soil strength measured 

almost eight years after the original treatments were implemented confirms that 

natural amelioration of compaction in sandy soils of the Zululand region is very 

limited (Warkotsch et al., 1994; Smith, 2003). 

 

b) Effect of compaction treatments on PSS 

 

Soil water content ranged across the trial from 0.021 to 0.055 kg kg-1 (averaging 

0.038 kg kg-1), at the time of PSS1 measurements.  
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Residual PSS (i.e. PSS0) was used as a covariate when analysing treatment 

effects on PSS1 (Appendix 4.4 ). Treatment implementation significantly increased 

PSS under both CM and CH treatments, which decreased in the order CH>CM>CL 

(Figure 4.4 ). However, the interaction between compaction and depth resulted in 

LSD’s being calculated only on this latter data (Appendix 4.4 ). These results 

showed that below 0.2 m PSS1 was significantly greater in the CH treatment than 

CM or CL treatments, while above 0.3 m, PSS1 was significantly higher in CM than 

CL treatments. Since compaction in this soil type does not easily naturally 

ameliorate, the effects of machinery movement may accumulate over time, until a 

maximum bulk density is attained. Interrow PSS was larger than stumpline PSS, 

however, this was weakly significant (p<0.1). There was also a significant 

interaction between depth and residue management but these effects were 

complex, and are discussed in detail later. 
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Figure 4.4:  Compaction treatment (Comp) and plot position effects on average 

(28 points per treatment and position) penetrometer soil strength 

(PSS1) with depth at Rattray.  

 

Although root-limiting values of PSS are discussed in more detail in Chapter 7 , 

root growth is considered to be severely restricted at PSS above 2000 – 3000 kPa 

(Sands et al., 1979; da Silva et al., 1994). At Rattray, PSS1 was found to be above 

2000 kPa only in the CH treatments, between 0.2 and 0.6 m.  
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c) Variation in PSS as a result of compaction treatments 

 

The calculation of standard deviations in the data within treatments and depth 

layers (Figure 4.5 ) revealed that the dispersion or variation in PSS1 was greatest 

between 0.2 and 0.6 m. In addition, variation in the CM treatment was considerably 

lower than either the CL or CH treatments. 
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Figure 4.5:   Standard deviation in PSS1 with depth at Rattray.  Treatments: CL = 

low compaction, CM = moderate compaction, CH = high compaction. 

 

d) Residue management effects 

 

In the analysis of treatment effects on PSS1 data every 0.05 m down the soil 

profile, no significant residue management effects were found, with the exception 

of the soil depth of 0 - 0.05 m (Appendix 4.5 ; A - C). However, this was as a 

result of the PSS1 values under the CL compaction treatments, which did not 

change with residue management. If the relative increase in PSS1 was calculated 

(Equation 4.1 ) for the CM and CH treatments, variation in the relative increases in 

PSS1 in the top 0.3 m as a result of residue management then became significant 

(Figures 4.6a and b, Table 4.4;  Appendix 4.5D ). Below this depth, the effects of 

residue management diminished, and only compaction treatment differences 

remained.  
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Figure 4.6:  Average PSS1 changes with depth (relative to average CL treatment 

PSS1 values) as a result of different residue management (a) under 

moderate compaction (CM) and (b) under high compaction (CH) at 

Rattray. 

 

In each compaction treatment, relative PSS1 decreased in the order R>W>B. In 

addition, the significance of the CM and CH treatment effects increased with 

increasing soil depth, while the significance of residue management effects were 

maintained (Table 4.5 ). However, there were no significant interaction effects. 

This indicates that residue retention diminished surface soil compaction by 

machinery. 
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Table 4.4:   Mean relative PSS1 of CM and CH treatments relative to the CL 

treatment with different residue management at Rattray to a soil 

depth of 0.3 m.  

Compaction/Residue management Mean relative PSS 1 (%) 
High 231.3a 

Moderate 165.0b 

Residue removed 228.5a 

Windrowed residue 190.8b 

Broadcast residue 175.1b 

Treatments with different letters are significantly different (p<0.01). 

 

Table 4.5:  Level of significance (p) of compaction treatments (i.e. CM and CH) 

and residue management effects on relative (to the CL treatment) 

PSS1 values with soil depth at Rattray. Two-way ANOVA’s were 

performed; blocking factor- soil depth.  

Soil depth layer (m) Compaction Residue 
0-0.10   0.580 <0.001 
0.10-0.15   0.138 <0.001 
0.15-0.20   0.006 <0.001 
0.20-0.25 <0.001 <0.001 
0.25-0.30 <0.001 <0.001 
 

Residue removal resulted in significantly higher topsoil PSS1 under both CM and 

CH treatments when compared to residue retention. Visual observation of the 

effect of the 3-wheel logger movement on topsoil in the R plots showed movement 

and mixing of the soil when compared to the B plots (Plate 3.2 ). A decrease in 

topsoil PSS1 was therefore expected in these treatments. However, the direct 

pressure of the logger wheels on the soil (in contrast to the distribution of the 

logger mass over residue), as well as the vibration of the logger may have been 

responsible for higher topsoil PSS1 compared to W or B residue management. 

The differences in PSS1 between B and W residue management in the CM 

treatment (Figure 4.6a ) indicate that increasing residue retention reduces topsoil 

compaction. This is in contrast to that of the CH treatment (Figure 4.6b ), possibly 

as a result of the greater mass of the forwarder, as well as the manner of its 

movement. These results show that residue retention reduces topsoil compaction, 

and that broadcasting, rather than windrowing, of residues substantially reduces 

the effects of 3-wheel loggers on topsoil. These results are consistent with the 

bulk density results (Section 3.3.2 ). 
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4.3.3.2. Shafton 

 

a) Residual compaction 

 

The soil water content at Shafton (for the 0-0.3, 0.3-0.6 and 0.6-0.9 m depths) at 

the time of PSS0 measurement was between 0.326 and 0.488 kg kg-1 and 

averaged 0.397 kg kg-1. 

 

Significant residual treatment effects on PSS0 from the previous trial were apparent, 

decreasing in the order CH>CM>CL (average PSS0 of 2457, 2251 and 2132 kPa, 

respectively) and from interrow to stumpline (average PSS0 of 2357 and 2203 kPa, 

respectively; Figure 4.7 ). As a result of significant compaction treatment x plot 

position x depth interaction effects, comparative least significant differences could 

only be performed on combinations of these factors (Appendix 4.6 ). 
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Figure 4.7: Compaction treatment (Comp) and plot position effects on average 

(28 points per treatment and position) penetrometer soil strength 

(PSS0) with depth at Shafton.  

 

Finer textured soils have been found to have higher PSS values than soils with a 

coarser texture (e.g. Gomez et al., 2002a). This effect was reflected in the PSS 

results of Shafton, when they were compared to those of Rattray.  
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b) Effect of compaction treatments on PSS 

 

At PSS1 measurement (after treatment implementation), soil water content ranged 

between 0.201 and 0.418 kg kg-1, and averaged 0.344 kg kg-1. The drier soil 

conditions during the measurement of PSS1 resulted in PSS values outside the 

measuring range of the penetrometer (i.e. above 5000 kPa). These were often 

reached with increasing depth, and prevented measurement of PSS1 to 0.8 m, for 

example, in the CM-IR treatment (Figure 4.8 ). Despite this, there was a significant 

effect of compaction treatments on PSS1 (p<0.05; Figure 4.8 ; Appendix 4.7A ), 

even with PSS0 being accounted for (as a covariate). However, there was no 

significant difference in the increase in PSS1 between the CH and CM compaction 

treatments, although the PSS1 of these two treatments was significantly higher 

than that of the control at certain depths (p<0.05). This is shown in the resultant 

LSD’s stemming from the significant interaction between compaction treatments, 

residue management and depth (Appendix 4.7B ). The effect of residue 

management on PSS1 is investigated later in the chapter. There was no significant 

difference between PSS1 of interrows and stumplines, although the average trial 

interrow values were higher than the stumpline values (3149 and 3092 kPa, 

respectively). The significant effects of compaction treatments on PSS1 were 

further confirmed by the analysis of treatment (both compaction and residue 

management) effects on PSS1 every 0.05 m down the soil profile (Appendix 4.8 ; 

A - C). Penetrometer soil strength (PSS1) decreased in the order CH>CM>CL in all 

instances. 

 

The effect on PSS as a result of timber extraction treatments of the previous trial 

have been discussed (Smith, 1992; 2006). In that study, PSS was measured at a 

soil volumetric water content of between 0.23 and 0.28 m3 m-3 (equivalent to 

between 0.20 and 0.35 kg kg-1), i.e. much drier than when PSS0 was measured 

prior to treatment implementation in the present study, but similar to when it was 

measured after treatment implementation. The lower values of PSS0 obtained in 

this study (approximately 1000 kPa less) than those obtained by Smith (2006) 

may therefore be a result of differences in soil water content at the time of 



 78 

measurement. Natural amelioration of compaction caused by the previous 

treatments does not appear to be the reason for the lower PSS0, as significant 

differences between the previous treatments (and between the interrow and 

stumpline of the forwarder treatments) still remained. This confirms Smith’s (2006) 

conclusion that the soil at this site would not naturally recover substantially from 

compaction, as the soil does not possess shrink/swell properties, i.e. the clay is 

mainly kaolinitic (Jakobsen, 1983; Murphy, 1984). 
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Figure 4.8: Compaction treatment (Comp) and plot position effects on average 

(28 points per treatment and position) penetrometer soil strength 

(PSS1) with depth at Shafton. 

 

The implementation of compaction treatments of this study significantly increased 

PSS (as accounted for by use of PSS0 as a covariate), despite differences in soil 

water content, and resulted in significantly higher PSS1 under the CM and CH 

treatments. The PSS1 measurements are not reflected by Troxler bulk density, 

although significant effects of compaction treatments on PSS1 were found within 

the top 0.3 m of soil (the same depth to which the Troxler measured). Although not 

apparent from Figure 4.8 , PSS1 in this top layer of soil increased rapidly over small 

increments in depth, and was quite different between the treatments. However, bulk 

density measurements were only taken every 0.1 m, while PSS1 measurements 

were every 0.05 m (which was an average of five readings every cm). Secondly, a 

low number of measurements were taken for Troxler bulk density (four per plot, 
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compared to eight per plot for PSS1). The slight differences between the 

treatments, in combination with the relatively small number of samples taken, may 

have meant that any treatment differences were masked by natural site variation. 

Visual observation of Rattray and Shafton indicated that the latter was more prone 

to microsite formation; an observation also noted by Smith (1992). This variability 

within a site and soil type often occurs as a result of small changes in topography 

that affect the transport and storage of water across and within the soil profile 

(Mulla and McBratney, 2000). 

 

The lack of significant differences in interrow and stumpline PSS1 values down the 

profile is in contrast to PSS0 data in which the interrow CH treatments attained 

higher values than CM treatments (Figure 4.7 ). This could not be explained as 

being due to the soil reaching maximum bulk density, as this did not occur with 

treatment implementation (Table 4.3 ). However, it is likely that a level of soil 

strength was reached during treatment implementation that allowed the soil to 

resist further compaction, as evidenced by the high PSS0 values at treatment 

implementation (Section 4.3.3 ). 

 

In all treatments, PSS1 was found to be above 2000 kPa below 0.25 m, and above 

3000 kPa below 0.3 m, which may limit plant root growth (discussed in more detail 

in Chapter 7 ).  

 

c) Variation in PSS as a result of compaction treatments 

 

The variation in PSS1 values, quantified by standard deviation, showed that all 

treatments had extremely high values of standard deviation, particularly below 

0.1 m (Figure 4.9 ). There was no significant difference in the amount of variation 

in PSS1 between the treatments at any depth. 
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Figure 4.9:   Standard deviation in PSS1 with depth after compaction treatment 

implementation at Shafton.  Treatments: CL = low compaction, CM = 

moderate compaction, CH = high compaction. 

 

d) Residue management effects 

 

When PSS1 data (every 0.05 m) were analysed for both compaction treatment and 

residue management effects, significant residue management effects were only 

found at 0.05 and 0.1 m, and interaction (compaction x residue management) 

effects between 0 and 0.2 m (Appendix 4.8A - C). Although comparisons in 

treatment effects can only be performed separately if there are no significant 

treatment interaction effects, PSS1 at these two depths declined from R>W>B. 

 

As with Rattray, the lack of significant residue management effects on PSS1 below 

0.1 m were a result of there being no residue management effects on PSS1 of CL 

plots (data not shown). Therefore the relative change in PSS1 from that of the CL 

treatments in the CM and CH treatments were calculated (Figure 4.10 , Table  4.6; 

Appendix 4.8D ). The soil depths to which residue management altered the effects 

of machinery were 0.2 and 0.25 m in the CM and CH treatments, respectively. 
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Figure 4.10:  Average PSS1 changes with depth (relative to average CL treatment 

PSS1 values) as a result of different residue management (a) under 

moderate compaction (CM) and (b) under high compaction (CH) at 

Shafton. 
 

Table 4.6:   Mean relative PSS1 of CM and CH treatments relative to the CL 

treatment under different residue management at Shafton to a soil 

depth of 0.25 m.  

Compaction/Residue management Mean relative PSS (%)  
High compaction 186.7a 

Moderate compaction 157.7b 

Residue removed 214.4a 

Windrowed residue 167.0b 

Broadcast residue 135.2c 

Treatments with different letters are significantly different (p<0.01). 
 



 82 

 

As at Rattray, the significance of CM and CH treatment effects on relative PSS1 

increased with increasing soil depth, while that of residue management remained 

highly significant until 0.25 m soil depth (Table 4.7). Again, there were no 

significant interaction effects. Relative PSS1 decreased consistently in the order 

R>W>B, indicating (as at Rattray) that residue retention reduced surface soil 

compaction by machinery. 

 

Table 4.7:  Level of significance of (CM and CH) compaction treatments and 

residue management effects on relative (to the CL treatment) PSS1 

values with soil depth at Shafton. Two-way ANOVA’s were 

performed; blocking factor- soil depth.  

Soil depth layer (m) Compaction treatment Residue m anagement 
0-0.10 0.019 <0.001 
0.10-0.15 0.006 <0.001 
0.15-0.20 0.003 <0.001 
0.20-0.25 0.001 <0.001 
 

Although at both Rattray and Shafton, relative PSS1 was significantly higher with 

residue removal in the top 0.3 m of soil in the CM and CH treatments, at Shafton, 

this relative increase was greater under R residue management than at Rattray. 

This was probably due to the coarse textured and single grain soil at Rattray, 

which resulted in greater loosening of the surface soil with machinery movement 

when compared to Shafton (Plate 3.2 ). 

 

Under the CM treatment, broadcasting of residues reduced relative PSS1 at both 

trials. However, this effect was only evident in the top 0.1 m at Shafton, but 

continued throughout the top 0.3 m of soil at Rattray.  In the CH treatment, similar 

relative changes in PSS1 were recorded under B and W residue management at 

Rattray, unlike at Shafton, where the relative increase in PSS1 was greater in W 

than in B residue management. 

 

The difference in results between sites may be due to the variation in residue 

loads at the two trials when the compaction treatments were implemented. 

Evidence for this is discussed later (Section 5.3.1 ), but essentially Shafton had a 
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greater quantity of residues in B and W residue management plots, than Rattray. 

This thicker residue layer at Shafton decreased the effect of the CM treatment and 

prevented substantial differentiation in the PSS1 response between the B and W 

residue management. In contrast, the smaller residue load at Rattray resulted in a 

lower relative PSS1 only in the CMB treatment (when compared to the CMW 

treatment with the smaller residue load). The importance of residue quantities on 

the reduction of PSS as a result of machinery movement is further supported by 

the response under R residue management plots, which was relatively much 

greater at Shafton than at Rattray. This indicates that if similar quantities of 

residue had been applied at Shafton as at Rattray, there may have been a greater 

difference in PSS1 between the B and W residue management.  

 

When a larger compactive effort (CH) was applied to the sites, there were no 

differences in relative PSS1 between B and W residue management at Rattray. 

However, at Shafton, the substantially thicker B residue resisted the compactive 

effects of the forwarder better than W residue management. These results indicate 

that the greater the quantity of residue left on a site, the lower the compaction of 

the upper layers of soil (in this case the top 0.3 m) by equipment. 

 

4.4. Conclusions 

 

The compaction treatments imposed may be representative of repetitive 

harvesting operations occurring over several rotations, particularly with the CM 

treatment in which machinery movement was random (Figure 3.2 ). In CH 

treatments, this is also true, if the orientation of the operation is maintained in the 

same manner from rotation to rotation (i.e. vehicle tracks travel over the same 

piece of ground). The lack of any amelioration of soil strength in response to 

harvesting treatments in the previous rotation indicates that continued use of 

machinery in forestry operations at both sites will result in a cumulative increase in 

soil bulk density and strength until a maximum level is obtained. 

 

The compaction treatments applied at Rattray resulted in significant changes in 

bulk density and PSS. In the top 0.3 m soil, these effects were moderated by the 
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retention of residue. Bulk density and PSS increased in the order CL<CM<CH. 

However, greater variability in compaction effects on soil bulk density and PSS 

were found under the CH treatment when compared to the CM treatment, and this 

may have implications for tree growth. 

 

The lack of significant effects of the treatments on bulk density, as well as the 

highly variable PSS results at Shafton may imply that this site is more resistant to 

compaction than Rattray. However, significant increases in PSS in the order 

CL<CM<CH were still evident, and since they were greater in magnitude, were 

potentially more root limiting than those obtained at Rattray. 

 

The PSS and bulk density results obtained at the two trials show the importance of 

measurement of more than one variable when determining the soil physical 

environment. Despite the substantially lower soil bulk densities at Shafton, PSS 

values were considerably greater than those at Rattray. 

 

Despite the differences in natural soil physical properties between the sites and 

their response to compaction (as a result of textural differences), the trials had 

some features in common. At both trials, compaction treatments resulted in an 

increase in PSS i.e. CL<CM<CH. Residue retention reduced compaction treatment 

effects on PSS of the top 0.3 m of soil at both trials, and seems to be a function of 

residue quantity. This mitigation of compaction effects in surface soils with residue 

retention has substantial implications for tree growth and seedling survival, as 

organic matter, nutrients and the majority of fine roots are often concentrated in 

this upper soil layer (Ampoorter et al., 2007). 
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Chapter 5 

Changes in Residues, Soil Organic Carbon 

and Nutrients over Time 
  

5.1. Introduction 
 

Decreases in plantation productivity have often been attributed to decreases in soil 

organic matter and nutrient supply that occur mainly as a result of harvesting and 

site preparation practices. These reductions occur particularly in soils that depend 

on the decomposition of organic matter for a large portion of their nutrient supply 

(Powers et al., 1990; 1995; Dyck and Cole, 1994; Johnson, 1994; Morris and 

Miller, 1994; Kelting et al., 1999; Kazotti et al., 2004). There is some evidence to 

suggest that suitable harvesting and site preparation practices may increase 

productivity, thereby increasing organic matter inputs to the soil (Laiho et al., 

2003). Despite this, declines in soil organic matter and nutrient supply are of 

particular concern in short-rotation plantations with high biomass and nutrient 

removal rates (Morris and Miller, 1994; Corbeels et al., 2003; Gonçalves et al., 

2004b; Dovey et al., 2007). However, studies of organic matter and nutrient 

dynamics in these short rotation plantations are severely lacking (Laiho et al., 

2003). 

 

Soil organic matter forms only a small fraction of most forest soils, approximately 

between 1 and 12% (mass basis) in the total soil profile. Despite this it is 

considered to be crucial to the maintenance of soil productivity as a result of its 

effect on physical, chemical and biological properties of soils (Dudal and Deckers, 

1991, Johnson, 1994; Powers et al., 1995; Fisher and Binkley, 2000; Schoenholtz 

et al., 2000). In addition, soils with high organic matter contents in the surface 

horizons are thought to be less susceptible to damage resulting from mechanised 

operations than those that have higher amounts of organic matter in the forest 

floor than in the soil (Jurgensen et al., 1997). 
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Tree growth (and health) is directly linked to the availability of various nutrients 

(Johnston and Crossely, 2002; Dovey et al., 2007). While nutrient deficiencies can 

be easily corrected by fertiliser application, reducing dependence on such 

additions would considerably lower costs of production and impact on the 

environment (Morris, 1987; du Toit and Carlson, 2000; Campion and du Toit, 

2003).  

 

5.1.1. Management effects on soil organic matter and nutrients 

 

Nutrient gains as a result of management can only occur by fertilisation and 

sometimes, by manipulation of the soil microbial population. However, the majority 

of processes contributing to site nutrient and organic matter losses, i.e. biomass 

removals, erosion, soil displacement, leaching and volatilisation, are substantially 

affected by management (Comerford et al., 1994; Kimmins, 1994; Raison and 

Rab, 2001; Dovey and du Toit, 2006). 

 

Removals of plant biomass in plantations occur through harvesting or residue 

management (including burning). Even in situations where only the utilisable 

stemwood is removed from the site, as in the majority of South African eucalypt 

plantations, considerable quantities of biomass and nutrients can still be removed 

(Nambiar and Brown, 1997; Kazotti et al., 2004; Dovey, 2005). In such plantations 

after harvesting, the rates of biomass and nutrient removal or (displacement) are 

largely dependent on harvest residue management (Morris and Miller, 1994; 

Dovey, 2005; Powers et al., 2005). This is because eucalypt harvest residues 

often contain substantial quantities of nutrients that may represent a large 

proportion of the total nutrient pool of a site (e.g. Spangenberg et al., 1996; 

Sankaran et al., 2005; Gonçalves et al., 2007).  

 

Residue removal may lead to an increased loss of soil nutrients through leaching 

(through a reduction in cation exchange sites due to loss of organic matter). 

Further losses of nutrients through leaching and volatilisation are often 

dependent on the timing at which nutrients are mineralised from organic 

compounds (Edwards and Ross-Todd, 1983; Henderson, 1995; Ballard, 2000; 
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Gómez-Rey et al., 2008). Nutrients can also be lost through soil erosion and 

displacement, which often occur where harvest residues have been removed and 

the soil is left bare (Jones et al., 1999; Ballard, 2000; Fernández et al., 2004; 

Gómez-Rey et al., 2008). 

 

5.1.2. Residue management 

 

In South Africa, Eucalyptus is harvested in a similar manner to that used in this 

study (Section 3.1.4). The resultant plant residues (i.e. branches, tops, bark and 

litter from the previous rotation) remaining on the site are then generally 

windrowed, broadcast or burnt (as described in Section 3.1.4), however 

increasing environmental pressures have increased the use of broadcasting, 

despite planting operation difficulties (Norris, 1992; 1993). 

 

5.1.2.1. Eucalypt harvest residue 

 

a) Residue biomass (organic input) 

 

In a summary of plantation studies in the tropics, Tiarks and Ranger (2008) 

reported that residue retention sometimes increased soil organic matter, but 

always prevented the loss of soil organic matter. Of the studies reviewed, several 

included those under eucalypts. In these studies, soil organic C content generally 

decreased with residue removal (e.g. Nzila et al., 2004; Sankaran et al., 2004) 

even if in some instances this was not significant (e.g. Mendham et al., 2002; 

2003; O’Connell et al., 2004a; Gonçalves et al., 2007). 

 

Actual quantities of residues left on site as a result of harvesting and residue 

management operations for plantation eucalypts are well documented (e.g. du 

Toit, 2003; Gonçalves et al., 2004a; Nzila et al., 2004; Xu et al., 2004). However, 

quantities varied substantially with species, age, site characteristics, harvesting 

and residue management operations, and season. 
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b) Factors affecting residue decomposition 

 

Although the same total mass of residue is left on a site, whether broadcast or 

windrowed, there are differences in both the distribution and quality of residues, and 

this therefore affects decomposition dynamics. The higher proportion of woody 

components in broadcast residues compared to residues in the inter-windrow area, 

results in higher C:N ratios and lignin and soluble phenol content of broadcast 

residues, so slowing their rate of decomposition (Bernhard-Reversat and Loumeto, 

2002; O’Connell et al., 2004b; Dovey et al., 2007). On the other hand, the thicker 

layer of residues on the soil surface in broadcast residue management may result 

in a more favourable environment for decomposition, particularly from a 

temperature and moisture perspective. Machinery movement over any residues 

will increase the surface area of residues exposed to microbial attack, and 

therefore increase decomposition rates. 

 

c) Residue nutrient concentrations and contents 

 

Nutrient concentrations of eucalypt harvest residues vary with site characteristics, 

species, age, silviculture (particularly fertilisation), decomposition period and rate, 

and harvesting and residue management operations (e.g. O’Connell and 

Sankaran, 1997; Bernhard-Reversat and Loumeto, 2002; O’Connell et al., 2004b; 

Dovey, 2005; Safou-Matondo et al., 2005). Residue management affects the 

distribution of those nutrients across a site. For example, in Eucalyptus, quantities 

of K are higher in large branches and tops, while Ca and Mg are higher in bark 

(per kg dry mass) than other components (O’Connell et al., 2004a; Dovey, 2005; 

Sankaran et al., 2005; Dovey et al., 2007). It would be expected therefore, that 

inter-windrow areas would have less K, than if residues were broadcast. 

 

For the purposes of this study, however, a comparison of the amount of nutrients 

contained in residues may be more appropriate. Therefore the nutrient content of 

Eucalyptus harvest residues including litter, from a site similar to Rattray (Nzila 

et al., 2004; Deleporte et al., 2008) and Shafton (du Toit et al., 2001a; du Toit, 



 89 

2003; du Toit et al., 2004) were compared (Table 5.1). The former site, although 

located in the Congo, is on a sandy, low organic C, soil, and the previous rotation 

was a Eucalyptus clone that was harvested at about 7.7 years of age, with a 

stemwood volume of 129 m3 ha-1. This yielded approximately 31.4t ha-1 of 

residues in their broadcast residue treatment, of which about 50% had 

decomposed after 6 – 8 months. Close to Shafton, a study was performed using 

E. grandis, however, it was a considerably younger (7 years old) coppiced stand 

(when compared to the previous stand at Shafton) with a stemwood volume of 

147 m3 ha-1. In that study, the residue mass in a broadcast treatment immediately 

after residue manipulation was approximately 116 t ha-1 (du Toit, 2003). Eight 

months later, residue mass decreased to 73 t ha-1 (du Toit, unpublished).  

 

Table 5.1: Nutrient contents (kg ha-1) of broadcast E. grandis harvest residues 

after felling (time). 

Study Nzila et al. (2004) du Toit  (2003) 
Location Congo South Africa 
Time (months) 0 8 14 0 
N 250 108 62 1044 
P 29 5 2 53 
K 63 10 5 193 
Ca 79 48 23 823 
Mg 45 24 12 201 
 

In addition, du Toit (2003) found that a total of 34.3 t ha-1 of the stand was 

branches, capsules and foliage biomass. These components contained a total of 

180, 13, 123, 143 and 51 kg ha-1 of N, P, K, Ca and Mg, respectively, which since 

these are removed from the inter-windrowed areas, would result in lower site 

nutrient contents than areas with broadcast residue management. 

 

Literature relating to windrowing effects on harvest residue nutrients and biomass 

in eucalypts is scarce. However, most nutrients in eucalypt harvest residues are 

contained in the foliage and bark and the former is often removed to windrows 

(Jones et al., 1999; Shammas et al., 2003; Dovey, 2005). Windrowing in other 

species often involves the removal of harvest residue, litter and some soil into 

windrows (Morris and Lowery, 1988).  
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5.1.2.2. Effect of residue management on soil pH and nutrient availability 

 

The effects of residue management on soil chemical properties under tropical 

plantations has been summarised by Tiarks and Ranger (2008). Soil pH changed 

with residue retention only at four sites out of nine, of which at three an increase in 

pH was measured. Residue retention either increased total soil N (at four sites), or 

had no effect (at seven sites), while available soil P only increased at one site (out 

of eight). Exchangeable soil K only decreased at one site out of fourteen with 

residue retention, the rest having measured no effect. Significant increases in soil 

exchangeable Ca with the retention of residues was only documented at four sites, 

with no effect at the remaining ten sites. Residue removal significantly decreased 

soil exchangeable Mg at one site, while at three other sites, residue retention 

increased it, and at the remaining ten sites, there was no effect. 

 

Comparable studies to Rattray (Congo; Nzila et al., 2004; Deleporte et al., 2008) 

and Shafton (Karkloof; du Toit et al., 2008) investigated the effect of residue 

management on soil pH and macronutrients. At the start of the Congolese study, 

2878, 243, 255 and 40 kg ha-1 of total N, and exchangeable K, Ca and Mg, 

respectively, on average, was held in the top 1 m of soil. Broadcast residues 

(Table 5.1) therefore contained 9, 26, 31 and 113 % of the soil nutrient pools 

(Deleporte et al., 2008). In contrast, the Karkloof soil (to a depth of 0.9 m) 

contained approximately 18650, 10, 465, 742, 771 kg ha-1 of N, P, K, Ca and Mg, 

respectively, resulting in broadcast residues representing 6% of total soil N, 530% 

of available soil P (Bray-2), and 42, 111 and 26% of exchangeable soil K, Ca and 

Mg, respectively, of soil nutrient pools (du Toit, 2003). The effect on soil pH and N, 

P, K, Ca and Mg of broadcast residue management relative to residue removal at 

these studies is summarised in Appendix 5.1. 

 

5.1.3. Effect of compaction on soil organic matter and nutrient dynamics 

 

Since soil compaction affects the soil environment, it affects organic matter and 

nutrient dynamics (Greacen and Sands, 1980; Johnson and Curtis, 2001; Busse 

et al., 2006).  Although soil compaction generally increases soil water retention, 
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the concomitant decrease in aeration, and reduced accessibility of the residues, 

may decrease the activity of decomposer organisms (Edwards and Ross-Todd, 

1983; Dick et al., 1988; Whalley et al., 1995; Marshall, 2000). Soil compaction 

alone has generally therefore been found to reduce populations of both soil 

macrofauna and microbes (Breland and Hansen, 1996; Marshall, 2000; Tan et al., 

2005; Busse et al., 2006; Fleming et al., 2006a). However, this is not always the 

case as the effects of compaction on different soil types vary (e.g. Jordan et al., 

2000; Shestak and Busse, 2005; Smith and du Toit, 2005). 

 

Compaction can also reduce root growth and the diffusion rate of nutrients, 

reducing the ability of trees to obtain soil nutrients, and can result in increased 

leaching of nutrients (Powers et al., 1990; Ballard, 2000; Johnston and Crossely, 

2002). However, there is evidence that compaction can improve soil-root contact 

(Arvidsson, 1999). Therefore, compaction can have a positive, negative, or no 

effect on soil organic matter and nutrient availability. In addition, it must be noted, 

that if organic matter is expressed on a volume basis, an increase as a result of 

increasing bulk density is sometimes found, even though the quantity within the 

soil profile does not change (e.g. Johnson et al., 1991). 

 

Machinery movement over residues has been found to have both positive and 

negative effects on soil organic matter and nutrients. This is a result of the type 

of harvesting operation performed and the response of that particular soil (Laiho 

et al., 2003).  The weight and action of machinery results in the breaking up of 

residues and their incorporation with surface soil layers, so increasing the surface 

area of residues exposed to microbial attack (Johnson et al., 1991; Rab, 1996; 

Eisenbies et al., 2005). This incorporation results in considerable organic inputs 

into the soil and may initially increase surface soil organic matter content (Johnson 

and Curtis, 2001; Laiho et al., 2003). The length of time after harvesting that this 

increase has been documented to persist varies between 4 and 18 years 

(Smethurst and Nambiar, 1990a; Knoepp and Swank, 1997). However, the overall 

consequence of the breaking up and incorporation of residues is generally an 

increase in the rate of residue decomposition, leading to a net loss of C as 

microbial communities release increased quantities of mineralised C with 
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heightened respiration (Salonis, 1982; Rab, 1994; Jones et al., 1999; Pérez-

Batallón et al., 2001; Tan and Chang, 2007). This then leads to an overall drop in 

soil organic C content (Jurgensen et al., 1997). In addition, machinery movement 

can displace residues, often leaving bare soil exposed, and can decrease organic 

matter input (Jones et al., 1999; Ballard, 2000; Fernández et al., 2004). 

 

The effect of harvesting-induced compaction on organic matter (in the top 0.1 m 

soil) in eucalypts was investigated in an Australian young E. regnans stand (Rab, 

1994). Logging significantly increased bulk density and decreased organic C and 

organic matter content. In the worst affected areas, bulk density increased 

between 39 and 65%, while organic C decreased between 27 and 66%. In 

contrast, no effect was found of compaction on soil C and N content determined 

across a range of sites (and under a range of species) in the USA (Sanchez et al., 

2006). 

 

5.1.4. Chapter rationale and objectives 

 

The objective of this section of the study was to determine the effect of 

compaction treatments and residue management on: 

1. The biomass of residues at planting (TP) and harvesting (TH) of the sub-plot 

trees. 

2. Soil organic C at TP, TH and TF. 

3. The quantity of nutrients in residues and soil at TP, TH and TF. 

 

5.2. Materials and methods 
 

Refer to Chapter 3 for details regarding materials and methods. 

 

Soil nutrients are discussed as N, P, K, Ca and Mg, where N refers to total soil N, 

P to available soil P (Bray-2), and K, Ca and Mg to exchangeable K, Ca and Mg. 
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5.3. Results and discussion 
 

5.3.1. Quantity of residues 
 

5.3.1.1. Rattray 

 

There were no significant treatment effects on the total quantity of residues on 

each plot at TP, TH or TF (data not shown). However, the average total quantity of 

residues found under broadcast residue management was consistently higher 

than that under the windrow residue management at TP, TH and TF (Figure 5.1). 

In addition, the quantity of residues declined with time.  
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Figure 5.1: Box whisker plot of the effect of residue management on quantities 

of residues at planting (TP), harvesting of sub-plot trees (TH) and 

final soil measurement (TF) at Rattray. Note that residues at TF were 

plotted on the second y-axis. Average values are displayed above 

each box whisker. 
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5.3.1.2. Shafton 

 

The average total quantity of residues found under broadcast residue 

management at Shafton were consistently, significantly (p<0.01) higher than that 

under the windrow residue management at both TP and TH (Figure 5.2, 

Appendix 5.2). Least significant differences are not shown as only two methods of 

residue management, broadcast and windrowed, were statistically tested, and 

they were significantly different from one another. There were significantly less 

residues at TP on CM plots (38.4 Mg ha-1), than either CL or CH plots (54.9 and 

56.3 Mg ha-1, respectively). This is probably due to sampling error, as at TH, there 

was a non-significant decrease in residue quantities from CM>CL>CH. At no 

measurement time was there a significant effect of the interaction between 

compaction treatments and residue management on residue quantities. 
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Figure 5.2: Box whisker plot of the effect of residue management on quantities 

of residues at planting (TP), harvesting of sub-plot trees (TH) and 

final soil measurement (TF) at Shafton. Note that residues at TF 

were plotted on the second y-axis. Average values are displayed 

above each box whisker.  

 

The average quantity of residues within broadcast and windrow residue 

management decreased between TP and TH (p<0.01 and <0.1, respectively; 

Appendix 5.2). After the wildfire, no significant treatment effects were found on 
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the mass of burnt residues (data not shown). These residues included burnt litter, 

and therefore R plots were sampled at TF (Figure 5.2). The increased amount of 

residues present in the R plots is probably a result of the lower intensity of the 

wildfire in these plots (Rietz and Smith, 2009). 

 

At Shafton, the harvesting and implementation of residue management took place 

well before planting (harvesting at 9 months, and residue manipulation 8.5 months 

prior to planting) when compared to Rattray (harvesting 2 months, and residue 

manipulation 1.5 months prior to planting). Despite this longer decomposition time, 

there was a lower mass of residues at planting with both broadcast and windrowed 

residue management at Rattray than at Shafton. This was probably a result of: 

• The climate at Shafton is cooler than that of Rattray, and therefore less 

conducive to decomposition. 

• The difference in tree species grown at the trials in the previous 

rotations. At Rattray, this was E. grandis x camaldulensis (Smith and du 

Toit, 2005), whereas at Shafton it was E. grandis (Smith, 2006). The 

former species is commonly known to have a smaller crown than that of 

E. grandis (L.J. Esprey, 2007, pers comm.1). 

• Trees generally have smaller crowns, and a thinner litter layer in the 

Zululand (Rattray) area when compared to those in the Midlands 

(Shafton) area. This is due to the different growing conditions of these 

areas (L.J. Esprey, 2007, pers comm.1). 

 

5.3.2. Changes in soil organic carbon 

 

5.3.2.1. Rattray 

 

Compaction treatments had a significant effect (p<0.05) on C (% m/m) at the 0-0.05 

m soil depth at TH, but not at TF or other depths (Appendix 5.3). It was significantly 

higher in the CH treatment (3.9%), than in the CL treatment (2.8%), while the CM 

treatment (3.3%) was not significantly different from either CH or CL treatments. 

                                                
1 Dr L.J. Esprey, Institute for Commercial Forestry Research, Pietermaritzburg, South Africa. 
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These treatment effects were maintained in the 0-0.05 m depth layer, even if the C 

values were adjusted for bulk density changes, i.e. values were expressed on a 

volume rather than mass basis (data not shown). Neither residue management 

alone, nor the interaction between residue management and compaction 

treatments had any significant effects on soil C. 

 

Across the trial, soil C content between 0 and 0.05 m initially increased, and then 

decreased to a level similar to that at TP. Below this depth, however, C was fairly 

stable over the three sampling times (Figure 5.3).  
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Figure 5.3: Average soil carbon (C; % m/m) changes with depth at planting (TP), 

harvesting of sub-plot trees (TH) and final soil measurement (TF) at 

Rattray. 

 

The increase in soil C with increasing compaction intensity at TH between 0 and 

0.05 m may be a result of the incorporation of residues into this top layer of soil by 

machinery, and a contribution to soil C stocks. These differences became non-

significant with time, as C contents returned to pre-trial levels (data not shown). 

The lack of residue management effects, despite the low organic C content of 

Rattray’s soil may be a result of the climate of this site that enables rapid 

decomposition. The overall increase in C (0 – 0.05 m) measured at TH at Rattray 

is most likely a result of the input of organic matter from the previous rotation in 

the form of harvest residues, either broadcast or windrowed, and tree roots, 

particularly fine roots. 
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5.3.2.2. Shafton 

 

In the 0-0.05 m soil layer at TH, C was significantly (p<0.01) lower in residue 

removed plots, than in either broadcast or windrowed residue plots (Figure 5.4; 

Appendix 5.4). At other depths and at TF, however, there was no significant 

effect of residue management (Appendix 5.4). Similar results were obtained 

when C values were converted from a mass to a volume basis using bulk density 

data (data not shown). The final measurement may not reflect treatment effects 

due to the fire prior to TF that burnt all residues, and much of the decomposing 

organic layer on top of the mineral soil. Compaction treatments and the interaction 

between compaction treatments and residue management had no significant 

effect on C at any soil depth, or at any time. This is probably because residue 

loads were larger than those of Rattray at compaction treatment implementation, 

so reducing the mixing of residues and soil by the movement of the machinery. 

Soil C also decreased with depth and over the three sampling times (Figure 5.5).  
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Figure 5.4: Effect of residue management on soil carbon (C; % m/m) between 

0 and 0.05 m residues harvesting of sub-plot trees (TH) and final soil 

measurement (TF) at Shafton. Treatments with different letters are 

significantly different (p<0.05). 
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Figure 5.5: Soil carbon (C; % m/m) changes with depth at planting (TP), 

harvesting of sub-plot trees (TH) and final soil measurement (TF) at 

Shafton. 

 

The decrease in soil C after treatment implementation at this site may be due to 

organic matter accumulation during the previous rotation as a result of relatively 

cool and dry soil conditions from shading and water uptake by trees. Once 

harvested, the soil environment may have become warmer and moister, so 

leading to organic matter decomposition, and a decrease in soil C. This effect 

would have been greater at Shafton than Rattray since 15 months, as opposed to 

7 months at Rattray, passed between treatment implementation and TH.  

 

5.3.3. Changes in soil pH and site nutrient pools 

 

5.3.3.1. Rattray 

 

a) Soil pH 

 

Although not significant, soil pH across the trial changed over time. It initially 

increased in all soil depth layers between TP and TH, and then decreased 

between TH and TF (Figure 5.6a). 

 

At TF, residue management had a significant (p<0.05) effect on soil pH in all depth 

layers. However, compaction treatments and the interaction between compaction 
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treatments and residue management, did not have any significant effect (Figure 

5.6b, Appendix 5.5.A-D). In addition, no significant treatment effects were found 

in soil pH at TH (results not shown). 
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Figure 5.6: Change in soil pH in various depth layers at Rattray (a) at planting 

(TP), harvesting of sub-plot trees (TH) and final soil measurement 

(TF), and (b) with residue management at TF (0 – 0.6 m is a depth 

weighted average). Treatments with different letters are significantly 

different (p<0.05). 

 

This increase in soil pH with increasing residue retention is due to the addition of 

plant material with a higher pH than that of the soil, and the contribution of this 
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plant material of K, Ca and Mg (as seen later in Figures 5.7 and 5.8), which 

results in an increase in soil pH (Wong and Swift, 2003). In addition, there is 

evidence that organic matter can buffer the pH of a soil through its CEC (Magdoff 

and Weil, 2004).  

 

b) Site Nutrient Pools 

 

The site nutrient status of Rattray was assessed prior to treatment implementation 

(Tables 3.3 and 3.5). These results indicated that Rattray has a low soil C and 

clay content, resulting in a relatively low ECEC and total N concentration.  

 

The total quantity of N, P, K, Ca and Mg measured in both soil and residues 

generally increased from TP to TH, and then decreased from TH to TF (Figure 5.7). 

However, these changes were not significant. These changes are most likely due 

to the differences in sampling strategies between TP and TH (and TF), as the 

nutrient rich 0 – 0.05 m layer was not directly sampled at TP. However, some 

other eucalypt studies (reviewed by Tiarks and Ranger, 2008) also found 

increases, particularly in soil cations, that were larger than could be accounted for 

by decomposing residues. They attributed this to the uptake of these nutrients 

from deep in the soil profile by tree roots. These nutrients are utilised by the tree 

and then deposited on the soil surface as litter that decomposes and so increases 

soil surface concentrations of those nutrients. This explanation is unlikely for this 

study, as trees were not large enough for roots to obtain nutrients from deep in the 

soil profile. In most instances, the amount of nutrients decreased from TH to TF, 

probably as a result of both plant uptake, and losses through leaching. Exceptions 

to this were overall site N and Ca pools that increased between TH and TF. These 

increases were mainly attributable to increases in N and Ca contained in the 

0.05 – 0.15 and 0.15 – 0.6 m depth layers. This may indicate a contribution by 

decomposing root systems of the previous rotation to soil N and Ca. 
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Figure 5.7: Effect of residue management on average total N, P (Bray-2) and 

exchangeable K, Ca and Mg quantities in soil (0 – 0.6 m) and 

elemental contents of residues at Rattray at planting (TP), harvesting 

of sub-plot trees (TH) and final soil measurement (TF). Soil sampling 

strategy at TP may have resulted in substantially lower quantities of 

nutrients being displayed as the individual 0 – 0.5, 0.5 – 0.15 and 

0.15 – 0.3 m layers were determined from a bulked sample. 

 

Windrowed residues consistently contained a lower proportion of nutrients when 

compared to that in broadcast residues (Table 5.2). However, residue 

management usually did not have a significant effect on site macronutrient pools, 

although the size of these pools generally decreased with decreasing residue 

retention (Figure 5.7). Significant residue management effects were found only at 

TF in soil Ca and Mg (expressed in kg ha-1) in the 0 – 0.05 m depth layer, and the 
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total amount of Ca (kg ha-1) between 0 and 0.6 m (Figure 5.8, Appendix 5.5E-G). 

This is most likely due to the large quantity of Ca added in residues, relative to that 

contained in the soil (Table 5.2). However residues contributed greater 

proportions of P and K, than Mg, yet no significant response was found in soil P 

and K pools. However, less soil Mg may have been taken up by plants or leached, 

as is likely in the case of P and K. The quantity of nutrients contained in residues 

was often significantly affected by residue management (Appendix 5.6). This is 

because residue nutrient quantities are the product of nutrient concentration and 

mass of residues.  

 

Table 5.2: Nutrients held in broadcast or windrowed residues as a percentage 

of that held in the soil (0 – 0.6 m)a at TP at Rattray. 

Nutrient Broadcast (%) Windrowed (%) 
N 11.7 8.9 
P 98.5 60.5 
K 72.4 30.9 
Ca 89.0 81.3 
Mg 36.7 34.1 
a Soil nutrients measured were total soil N, available soil P (Bray-2), and exchangeable soil 

K, Ca and Mg. 
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Figure 5.8: Effect of residue management on soil exchangeable (a) Ca (0 – 0.05 

and 0 – 0.6 m), and (b) Mg (0 – 0.05 m) at the final soil 

measurement (TF) at Rattray. Treatments with different letters are 

significantly different (p<0.05). 
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No significant effect of compaction treatments, or the interaction between 

compaction treatments and residue management, on site macronutrient pools at 

any soil depth were found. This was despite the fact that significant compaction 

treatment effects on soil C at TH were found. It is therefore most likely that any 

additional nutrients (associated with organic matter) were either taken up by trees 

or leached from the soil profile. 

 

Deleporte et al. (2008) found a significant effect of residue management on soil N. 

This was even though similar (to Rattray) amounts of N were measured in their 

residues and soil. However, soil N at Rattray was determined after the wet 

season, and it is possible that this nutrient, as well as K, was leached. Deleporte 

et al. (2008) did not find any significant effects of residue management on soil Ca. 

However, their soil and residues contained substantially lower quantities of Ca 

than those of Rattray. The lack of any significant response of soil P to residue 

management may be due to plant uptake of this nutrient, or the inability of the 

analysis to detect all plant-available soil P. 

 

5.3.3.2. Shafton 

 

a) Soil pH 

 

No trends were seen in the soil pH data at the three sampling times (Figure 5.9a). 

Residue management significantly affected soil pH between 0 and 0.05 m at TH 

(p<0.05; Figure 5.9b; Appendix 5.7). However, there was no significant residue 

management effect at TF, nor were there any significant compaction treatment or 

interaction effects at any time or depth (data not shown). 

 

The increase in soil pH with residue retention is at this trial is most likely for the 

same reasons as that found at Rattray. However, a similar response was not 

obtained at the trial comparable to Shafton (du Toit et al., 2008), although there 

was a similar increase in soil pH across that trial after harvesting.  
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Figure 5.9: Change in soil pH in various depth layers at Shafton (a) at planting 

(TP), harvesting of sub-plot trees (TH) and final soil measurement 

(TF), and (b) with residue management at TH (0 – 0.6 m is a depth 

weighted average). Treatments with different letters are significantly 

different (p<0.05). 

 

b) Site Nutrient Pools 

 

Initial assessment of the soil at Shafton (Tables 3.4 and 3.5) indicated that it is 

relatively high in organic C and clay, yielding a relatively high CEC. In addition, the 

high P fixing capacity of this soil was reflected in the low available soil P results.  
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The total quantity of N, P, K, Ca and Mg measured in both soil and residues did 

not significantly change over time (ANOVA data not shown). However, they were 

generally highest at TH (Figure 5.10). These increases in nutrient contents 

between TP and TH are most likely due to the reasons discussed earlier for this 

phenomenon at Rattray. 
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Figure 5.10: Effect of residue management on average total N, P (Bray-2) and 

exchangeable K, Ca and Mg quantities in soil (0 – 0.6 m) and 

elemental contents of residues at Shafton at planting (TP), harvesting 

of sub-plot trees (TH) and final soil measurement (TF). Soil sampling 

strategy at TP may have resulted in substantially lower quantities of 

nutrients being displayed as the individual 0 – 0.5, 0.5 – 0.15 and 

0.15 – 0.3 m layers were determined from a bulked sample. 
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An extremely high proportion of total P was held in residues at TP, as a result of 

the small amount of plant-available P measured (Table 5.3). This is most probably 

due to the high P-fixing capacity of the Hutton soil, but may be exacerbated by the 

inability of the Bray-2 analysis to extract all plant available soil P.  In contrast, soil 

N comprised the majority of site N (Table 5.3). 

  

Table 5.3: Nutrients held in broadcast and windrow residues as a percentage of 

that held in the soil (0 – 0.6 m)a at TP at Shafton. 

Nutrient Broadcast (%) Windrowed (%) 
N 3.1 2.3 
P 31508.0 15823.0 
K 46.6 20.0 
Ca 196.1 146.5 
Mg 34.1 24.1 
a Soil nutrients measured were total soil N, available soil P (Bray-2), and exchangeable soil 

K, Ca and Mg. 
 

Compaction treatments and residue management (but not the interaction between 

them) often significantly affected soil and site macronutrient pools at TH and TF 

(Table 5.4; Figure 5.10; Appendices 5.8 and 5.9). At TH, significantly greater 

amounts of surface N and P, and total P, were found in CM treatments than the 

other treatments. This may be a result of the soil environment, particularly soil 

water content, created by the moderate amount of compaction, for the 

decomposition of residues. It is also possible that the 3-wheel logger mixed the 

residues with soil which led to a faster decomposition of the residues. Although 

this same machine was used in the CH treatments, the subsequent use of the 

forwarder may have reduced this effect. At TF after the fire, however, soil N was 

significantly affected by the interaction between compaction treatments and 

residue management (Appendix 5.9) as well as by compaction treatments alone. 

The interaction effects were rather complex, but overall, soil N content decreased 

with increasing compaction intensity. This may be due to the wildfire, as the 

intensity of the fire (measured by tree damage) was decreased in the order 

CL>CM>CH, although this was not significant (p = 0.098; data not shown). In 

addition, compaction would have affected soil water characteristics, and may have 

increased the proportion of N transformed into forms that are easily leached or 

volatilised. 
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Table 5.4: Significant results of residue management and compaction treatment 

effects on mean macronutrient values (kg ha-1) of soil depth layersa 

and total nutrients (residues + soil 0 - 0.6m) at Shafton at harvesting 

of sub-plot trees (TH) and final soil measurement (TF). Treatments 

with different letters are significantly different (p<0.05) for each 

nutrient. 

TH 
Residue management: Broadcast Windrow Removed 
N (0 – 0.05 m) 2209a 2083ab 1840b 
P (0 – 0.05 m) 5.72a 4.78ab 3.34b 
P (total) 28.0a 22.1a 10.5b 

K (0 – 0.05 m) 69.6a 50.6b 47.5b 

K (total) 422a 305b 274b 

Ca (0 – 0.05 m) 821a 688ab 512b 

Ca (total) 2269a 2017a 1401b 

Mg (0 – 0.05 m) 156.3a 134.9a 104.4b 

Compaction: Low Moderate High 

N (0 – 0.05 m) 1914b 2257a 1962b 

P (0 – 0.05 m) 4.32b 5.81a 3.70b 

P (total) 21.7a 25.1a 13.8b 

TF 
Residue management: Broadcast Windrow Removed 
K (0 – 0.05 m) 30.2ab 20.6b 37.2a 

Compaction: Low Moderate High 

N (0 – 0.05 m) 1874a 1527ab 1442b 

a Soil nutrients measured were total soil N, available soil P (Bray-2), and exchangeable soil 
K, Ca and Mg. 

 

At TH in the top 0 – 0.05 m of soil, all macronutrients were significantly and 

consistently reduced by residue removal. At that time, total (i.e. residues plus soil) 

site P, K and Ca were the only macronutrients significantly affected by residue 

management, probably because of the large proportion that residues contributed 

to these site pools (Table 5.3). The significant response of surface soil N to residue 

management was unexpected as a result of the very small contribution of residues 

to site N pools. However, the well-established positive relationship between soil 

organic C and total N content may have been the main cause (e.g. Herbert, 1991). 

In contrast at TF, only surface soil K was significantly affected by residue 

management, and was lowest in the W treatment, probably in response to the 

wildfire. In addition, residue management alone (i.e. not compaction treatments or 

interaction effects) significantly affected the quantity of several nutrients contained 

in the residues (Appendix 5.10).  
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Despite residues representing a very small proportion of some soil nutrients, 

particularly N, there was a significant increase in measured soil macronutrients, 

particularly in the surface 0 – 0.05 m, at TH with residue retention. Although 

generally not significant, du Toit et al. (2008) also found increased quantities of N, 

P and K in the soil (between 0 and 0.1 m) of broadcast residue plots compared to 

residue removed plots, particularly in the first 2 years of their trial. The significantly 

higher soil K at TF at Shafton with windrowed residues is most likely the result of 

indirect wildfire effects, rather than direct residue management effects. 

 

Although Shafton’s residues were sampled 9 months after felling of the previous 

rotation, they contained more nutrients (kg ha-1), with the exception of K, than 

the residues at Rattray (sampled 2 months after felling). Even though trees at 

Shafton were slightly smaller; they probably had larger, more nutrient rich, 

canopies due to the slightly higher fertility of the site, and these would have 

decomposed more slowly than at Rattray due to the cooler climate of this site. In 

addition, a lower allocation of biomass to the canopy, and lower nutrient content 

of various components has been found in E. camaldulensis trees when 

compared to E. grandis (Pagano et al., 2009). Although the previous stand at 

Rattray was E. grandis x camaldulensis, it could be assumed that biomass 

allocation and nutrient contents were between that found in E. camaldulensis and 

E. grandis trees alone. Since K is easily leached from plant residues, the longer 

the decomposition period, the lower the K content. This may explain the low K 

values of residues at Shafton when compared to that of Rattray. 

 

5.4. Conclusions 
 

The results indicate that the effect of compaction and residue management on soil 

organic C varies with soil type, residue load and climate. Compaction only had a 

significant effect at Rattray at TH, while residue retention significantly increased 

soil C at Shafton at TH. The longevity of this latter response could not be 

determined due to the wildfire. The lack of significant residue management effects 

at Rattray is most likely due to the climate which encourages a more rapid 

decomposition of organic matter. The significant effect of compaction treatments, 
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in contrast, is a result of a change in the soil environment, and therefore 

decomposition dynamics. The indications are that residue removal, particularly on 

sites with large quantities of residues that slowly decompose, may be detrimental 

to soil organic C stores. It would be expected that on sites with inherently low soil 

organic C coupled with less residues that residue management would 

considerably affect long term soil C contents, and thus LTSP. However, on sites 

such as Rattray, where the climate and sandy soil leads to rapid decomposition of 

residues, residue management is not as central to LTSP, as on sites with higher 

inherent soil organic C, finer texture and with large residue loads, such as Shafton.  

 

Neither compaction nor the interaction between compaction and residue 

management had any significant effect on soil pH at either trial. However, residue 

retention consistently increased soil pH, even if this was short-lived, as in the case 

of Shafton. Considering the generally acidic pH of many South African forestry 

soils, residue removal, without the application of ameliorants (such as lime) would 

further acidify soils, which has implications for nutrient availability and leaching, 

and plant growth. In contrast, residue retention may improve the pH status of 

currently acidic soils. 

  

Compaction treatments only significantly affected soil N and P pools at Shafton, 

and again the occurrence of the wildfire has limited the prediction of longer-term 

effects. The results obtained at TH at Shafton, as well as the lack of compaction 

treatment effects on soil nutrient pools at Rattray at TH and TF, indicate that 

compaction effects on nutrient pools need to be determined across a range of soil 

types before its importance to long-term site productivity can be quantified. 

 

Residue management often had significant effects on soil nutrient pools. At 

Rattray, these effects were only significant on soil Ca and Mg at TF, and can 

therefore be linked to the changes in soil pH. Although no significant residue 

management effects were found on N, P and K soil pools at Rattray, the 

substantial proportion of these nutrients, as well as Ca and Mg, contained in 

residues indicates that repeated residue removal will negatively affect long-term 

nutrient pools at similar sites. The lack of significant residue management effects 
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on N, P and K soil pools is most likely a result of either plant uptake or leaching of 

any additional nutrients supplied by residues. This would have occurred since not 

only does this soil have a low ECEC, but also because there were no significant 

residue management effects on soil C. 

 

Although residues at Shafton represented a relatively small proportion of some soil 

nutrient pools, e.g. N and Mg, residue retention significantly increased, at least in 

the surface soil, quantities of N, P, K, Ca and Mg at TH. These increases are linked 

to the increases measured in soil C, as found by others (e.g. Jurgensen et al., 1997; 

Gonçalves et al., 2007, Tiarks and Ranger, 2008). Unless residue removal at 

similar sites is compensated by adequate applications of fertiliser, particularly P 

and Ca, it represents a large threat to productivity. 

 

Finally, residue removal, even on sites with substantial soil nutrient pools, will 

negatively affect productivity from a nutritional stand-point, both in the short and 

long-term. Nutrients that are most at threat by residue removal appear to be P and 

Ca, and similar conclusions have been reached by others (Sanchez et al., 2006; 

Gonçalves et al., 2008; Mendham et al., 2008; Tiarks and Ranger, 2008). 

Although signs of P deficiencies in plantations are becoming more common, Ca 

deficiencies are not often found. However, evidence from this and other studies is 

that if removals continue, Ca may become problematic in the future (Johnson, 

1994; Fölster and Khanna, 1997; Dovey, 2005). Although quantities of site Mg are 

generally not substantially reduced by biomass removals, concentrations in a soil 

are often positively related to those of exchangeable Ca (Tiarks and Ranger, 

2008). The retention of residues on cooler sites can also increase soil organic C, 

which has implications for nutrients, water, and the susceptibility to compaction of 

such sites. Compaction does not appear to affect soil nutrient pools as much as 

residue management, as its effects are through the alteration of the soil 

environment for organic matter decomposition, and the ability of plant roots to 

obtain, particularly immobile, nutrients. 
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Chapter 6 

Effect of Compaction Treatments and Residue 

Management on Soil Water and Aeration 

 

6.1. Introduction 

 

In South Africa, increased productivity of eucalypt plantations has been 

documented on sites with high annual rainfall or irrigation (Schönau and Grey, 

1987; Smith et al., 2005; Campion et al., 2006). This, in conjunction with the 

relationships found between growth and soil water supply and availability (Boden, 

1991; Smith and du Toit, 2005), has led to the conclusion that plantation growth in 

this country is substantially dependent on water supply and availability (Theron, 

2000). Soil aeration status is also often considered important, as it affects the 

activity, size and community structure of soil microorganisms (particularly the 

nitrifying and general-purpose decay organisms), soil chemistry and plant root 

respiration (important for nutrient uptake), and therefore the growth of plants 

(Wolkowski, 1990; Brady and Weil, 1999). 

 

In South African plantations, soil water supply is not easily affected by 

management as it is mainly dependent on rainfall and/or groundwater supply. 

However, soil water availability and aeration are greatly affected by any 

management practices that impact the soil. 

 

6.1.1. Soil water availability and aeration 

 

Although the ideal measure of soil water availability and supply would be the 

continuous measurement of the water status of trees, this was not possible in 

this study, and therefore estimation of various soil water retention characteristics 

was performed. Available water capacity (AWC) is water held in the soil between 

field capacity, generally regarded as a matric potential of -10 kPa, and wilting 

point (-1500 kPa). It is considered to be the portion of soil water that is plant 

available and is therfore an index of the drought resistance of a soil and is one of 
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the most important determinants of soil productivity (Hall et al., 1977; Bauer and 

Black, 1992). A portion of AWC is readily available to plants (RAW) and is the 

water held in the soil between field capacity and a matric potential of -100 kPa 

(Smith, 1995; Moodley et al., 2004). Soil aeration is considered limiting to both 

plant growth and microbial activity, if air-filled porosity (εa) is less than 10% at field 

capacity (Grable and Siemer, 1968; Dexter, 1988; Topp et al., 1997). The amount 

of water held in the soil at different matric potentials is dependent on the water 

retention characteristics of the soil which are affected by soil properties and 

management (Rawls et al., 1991; Green et al., 2003; Fernández-Gálvez and 

Barahona, 2005). 

 

Comprehensive reviews of the many soil properties that affect water retention are 

available (e.g. Rawls et al., 1991; Or and Wraith, 2000; Green et al., 2003). 

Management effects on soil water retention are generally a result of changes in 

soil bulk density (or pore volume, size distribution and continuity) and organic 

carbon (often as a result of plant residue management; Rawls et al., 1991; Jones 

et al., 1999; Green et al., 2003). 

 

6.1.1.1. Total porosity and pore-size distribution 

 

Total porosity affects total soil water retention and is mainly affected by bulk 

density, decreasing proportionally with increases in bulk density (Kay and Angers, 

2000). In contrast, pore-size distribution generally has greater effects on water 

retention characteristics, soil aeration, infiltration, hydraulic conductivity and plant 

root growth. It is substantially affected by management practices, especially those 

that result in changes in soil bulk density and organic carbon, and is an important 

property when understanding the response of soils to various management 

practices (Soane, 1990; Brady and Weil, 1999). Pore-size distribution can be 

determined from water retention data in conjunction with total porosity (Kay and 

Angers, 2000). Pores are usually categorised according to size and function as 

macro-, meso-, or micropores. Each of the categories of pores are affected to 

varying extents by different soil properties. Several authors (e.g. Blackwell et al., 

1990; Powers, 1990; Wolkowski, 1990; da Silva and Kay, 1997a; Kay and Angers, 

2000; Miller et al., 2004) have thoroughly discussed these aspects. 
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6.1.1.2. Effect of soil bulk density and organic carbon on water retention 

 

Changes in soil bulk density and organic carbon have effects on water retention at 

different matric potentials (and therefore soil water availability and aeration). Water 

retention at lower levels of matric potential (i.e. <-10 kPa) is mainly dependent on 

pore-size distribution and therefore soil structure, bulk density and porosity (Rawls 

et al., 1991). As matric potential decreases with drying of the soil (> -150 kPa) 

water adsorption and specific surface properties such as soil texture, mineralogy 

and organic matter become increasingly important (Rawls et al., 1991; Kern, 

1995). Both organic carbon and soil bulk density have a strong effect on soil 

structure and porosity (Rawls et al., 1991; Skopp, 2000), and have been used in 

the prediction of water retention (e.g. Schulze et al., 1985; Kern, 1995; Smith, 

1995). In addition, the magnitude of the effects of changes in soil bulk density and 

organic matter vary with texture, clay mineralogy and pore geometry (Rawls et al., 

1991; Or and Wraith, 2000; Smith et al., 2001). Generally, increases in bulk 

density result in an increase in volumetric water content and water holding 

capacity, and a decrease in porosity, in particular macroporosity, which leads to 

a decrease in aeration (Ares et al., 2005). In contrast, increases in soil organic 

matter result in decreases in bulk density, and increases in water holding 

capacity- particularly at increasingly negative values of matric potential 

(Henderson, 1995; Kay, 1998). 

 

In general, coarse textured, low organic matter soils (such as that at Rattray) have 

a low total porosity, but a large proportion of macropores that result in high 

hydraulic conductivity and air permeability. In these soils, soil water is mainly held 

in the pore spaces between the individual soil particles. In contrast, finer textured, 

higher organic matter content soils (such as that at Shafton) often have high total 

porosities, but a lower proportion of macropores leading to lower hydraulic 

conductivity and air permeability. In addition, soil water is held in both the pore 

spaces between soil particles and aggregates (which are affected by organic 

matter) and in the pores in organic matter (Brady and Weil, 1999; Kay and Angers, 

2000). When a soil is compacted, macroporosity decreases (and micro- and 

mesoporosity increase), lowering aeration, and often increasing water content at 
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field capacity (Greacen and Sands, 1980; Incerti et al., 1987; Smith, 1995).  

 

6.1.2. Least limiting water range 

  

A number of measures have been proposed to integrate soil physical properties 

that affect plant growth. One of these is the least limiting water range (LLWR), 

originally termed by Letey (1985) as the “nonlimiting water range” (NLWR; da Silva 

et al., 1994). This combines measures of soil strength and aeration at varying soil 

water contents, to define a range over which plant growth would not be restricted 

(Figure 6.1). 

 

For each soil, the soil water retention characteristics and the variation in soil 

strength with varying soil water content must be determined. The soil water 

contents at which soil physical characteristics, specifically aeration, soil strength 

and matric potential, become restrictive to plant growth must be determined. The 

LLWR is the range of soil water contents within which a crop is not limited by soil 

water or air requirements, and is able to extend and proliferate its root system 

(Topp et al., 1997; Reynolds et al., 2002). It has been used in two ways: 

1. As an indicator of management-induced changes in soil physical properties 

that would affect sustainable crop production (Topp et al., 1994; Smith, 

1995; da Silva and Kay, 1997a). 

2. To determine the frequency with which soil water content falls within the 

LLWR; and the relationship between this and crop growth (da Silva and 

Kay, 1996; Kelting et al., 2000). 

 

Generally, soils with poor physical conditions have a small LLWR and require 

careful management for adequate plant growth and to prevent decreases in the 

LLWR (Zou et al., 2000; Reynolds et al., 2002). Therefore LLWR can be used to 

determine the most appropriate management of a particular soil to maintain or 

improve the LLWR (Letey, 1985; da Silva and Kay, 1997b). In South African 

forestry soils, Smith (1995) not only determined the LLWR, but extended its use 

and developed the “compaction envelope”. This incorporates changes in soil 

water, air, bulk density and strength as a result of compaction for a particular soil. 
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Figure 6.1: Generalised relationships between soil water content and soil 

physical factors that are limiting to plant growth. The effects of 

increasing bulk density and decreasing aggregation (structure) on 

the least limiting water range (LLWR) are demonstrated from A to C 

(adapted from Letey, 1985 and Smith, 1995). 
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6.1.3. Soil bulk density and organic carbon effects in forestry soils 

 

Smith et al. (2001) quantified the effects of compaction on a range of South 

African forestry soils of varying texture and organic carbon content. This was 

performed by reconstitution of cores by packing of air-dry sieved (<2 mm) soil to 

desired bulk densities. It was found that in all cases compaction altered water 

retention characteristics of soils and therefore AWC. However, as a result of 

variation in soil properties resulting in complex responses of (and interactions 

between) pore geometry and compressive processes, a relationship between 

AWC and bulk density changes on different soil types could not be obtained. 

 

Soil from the Shafton trial was included in the study by Smith (1995). It was found 

that in reconstituted cores increasing bulk density from 0.906 to 1.251 Mg m-3 

decreased soil water content at matric potentials between 0 and -200 kPa and 

0 and -2 kPa on a mass and volume basis, respectively. Thereafter, soil water 

contents increased with increasing bulk density, although not substantially when 

expressed on a mass basis. This resulted in a decrease in both AWC and RAW 

with increasing bulk density. The LLWR was limited at bulk densities above 

approximately 1.06 Mg m-3 by soil strength alone, and also at field capacity by 

aeration above a bulk density of 1.16 Mg m-3. 

 

During the previous rotation at Rattray, increases in soil bulk density were 

generally found with increasing intensity of harvesting operation (or machinery 

mass and movement). A concomitant increase in AWC was also found, although 

these changes could not be directly related to those reported in bulk density. 

Although air-filled porosity was also affected, it was not affected to a limiting level 

under any circumstances (Smith and du Toit, 2005). 

 

As a result of the soil types occurring in forest plantations, and government 

restrictions regarding planting in water drainage areas, soil aeration in most South 

African forestry soils is generally adequate i.e. soils are rarely wet enough to attain 

εa values of less than 10% (Musto, 1994; Smith, 1995). 
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6.1.4. Soil water supply 

  

Compaction can reduce soil water supply by reducing macroporosity which lowers 

the infiltrability of the soil and leads to runoff (Radcliffe and Rasmussen, 2000). 

However, plantations rarely have an even soil surface since they often do not 

undergo major tillage operations. This leads to “hollows” in the soil surface caused 

by trees (particularly roots and stumps from previous rotations), management 

practices (particularly machinery movement) and the natural activity of fauna. This 

results in any runoff ponding in these “hollows” and infiltrating into the soil. 

 

Residue management may also affect soil water supply. Residue removal 

increases the likelihood of the formation of a soil surface crust due to raindrop 

impact that can reduce infiltration and increase runoff (Radcliffe and Rasmussen, 

2000). Residue retention has had positive (e.g. Ginter et al., 1979; Kelting, 1999; 

O’Connell et al., 2004a; Roberts et al., 2005) or initially positive, and later minor 

(e.g. Smethurst and Nambiar, 1990a; 1990b) effects on soil water content. These 

positive effects are thought to be a result of the: 

a. Physical protection of the soil from evaporation by lowering soil surface 

temperature (through shading) and exposure to wind. 

b. Mulching effect of residues (Smethurst and Nambiar, 1990b; O’Connell et al., 

2004a; Roberts et al., 2005). 

The prevention of soil surface sealing adds to this effect (Green et al., 2003). In 

South Africa, the effect of plantation residue management on soil water 

characteristics has not been investigated. 

 

6.1.5. Chapter rationale and objectives 

 

The literature reviewed indicated that soil compaction and residue management 

may affect water retention, availability and capacity, as well as soil aeration. The 

response and magnitude of water retention, availability and capacity to these 

effects is dependent on inherent soil properties such as particle size distribution, 

organic matter and pore geometry. The objectives of this section of the study were 
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to determine the effect of soil compaction and residue management treatments at 

each trial on: 

• Soil water retention characteristics. 

• Soil water availability. 

• Soil aeration. 

• Least limiting water range. 

 

However, as a result of time and logistical constraints, these effects could not be 

determined directly. The following investigations were therefore carried out prior to 

resolution of these objectives: 

1. The effects of soil bulk density and organic carbon on soil water and 

aeration characteristics were first determined on selected soil cores. 

2. The effects of soil compaction and residue management treatments on soil 

organic carbon and bulk density were ascertained (Chapters 4 and 5). 

These results were then combined to estimate the effects of the treatments on soil 

water and aeration characteristics. 

 

6.2. Materials and methods 

 

Soil compaction and residue management effects on soil C and bulk density have 

been discussed earlier (Chapters 4 and 5). The water and aeration characteristics 

of the 56 undisturbed soil cores taken at each trial (Section 3.2.2.2) were 

determined in the laboratory (Section 3.3.1.3). 

 

6.2.1. Statistical analysis of the effect of soil bulk density and organic carbon 

on soil water retention and availability (undisturbed soil cores) 

 

In the undisturbed soil cores, both bulk density and C were found to have 

significant effects on soil water content (θ) at each matric potential measured at 

both sites (data not shown). However, significant relationships between bulk 

density and soil C at both sites prevented the use of multiple linear regression 

analysis to determine the combination of these factors on soil water retention (data 



 119 

not presented). Therefore results from the cores were grouped according to their 

bulk density and C content (separately for each site). The groups were determined 

by percentiles, i.e. those falling below the 25th percentile, above the 75th 

percentile, and those between the 25th and 75th percentile. This resulted in three 

groups for bulk density, and three groups for C. These groups were then used in 

regression analysis of the data. In addition, the effects of the combination of bulk 

density and C values were determined by combining each bulk density group with 

each C group. This resulted in nine (3 * 3) groups, which were then used in the 

statistical analysis in the same manner. Water retention is generally discussed on 

a mass basis (i.e. kg kg-1; θm), rather than a volume basis (m3 m-3; θv) as a result 

of the dependency of θv on bulk density. Where appropriate, information pertaining 

to θv is included. 

 

6.2.2. Effect of soil bulk density and organic carbon on least-limiting water 

range (undisturbed soil cores) 

 

To simplify the changes in the LLWR with bulk density and C, regression 

equations for the effect of combinations of three levels of bulk density and three 

levels of C were utilised to calculate θm and θv at field capacity and wilting point. 

 

6.2.3. Treatment effects on soil water availability and least-limiting water 

range (undisturbed soil cores) 

 

The effect of the treatments on soil water availability and LLWR were only 

determined where significant effects of the treatments were found in soil bulk 

density and C data (Chapters 4 and 5). Soil water contents at various values of 

bulk density and C were then calculated at field capacity, -100 kPa and wilting 

point from regression equations. Where r2 values were low (i.e. r2<0.5), θ values 

were calculated using available regressions and converted. For example, no 

regression is available to calculate the effect of bulk density in the 0 – 0.2 m layer 

on θv at field capacity at Rattray. Therefore the effect was calculated using the 



 120 

corresponding regression for θm and then converted to θv. Statistical analysis of 

the resultant data was not performed as the results would be identical to those of 

treatment effects on bulk density and C. 

 

6.2.3.1. Compaction treatments 

 

Bulk density values (for each site) were estimated from Troxler bulk density values 

using the calibrations developed in Appendix 3.6. These were then averaged for 

each plot, at each plot position i.e. interrow or stumpline, at each depth. These 

values were then used to calculate the average changes in AWC and RAW (from 

data in Chapter 4) in the top 0.3 m of soil as a result of the compaction treatments 

at each site. 

 

6.2.4. Statistical analysis of treatment effects on soil water content 

(thetaprobe) 

 

Thetaprobe measurements were taken on each plot on three separate occasions 

during the study at Rattray. In contrast, as a result of difficulties during sampling 

(Section 3.2.4), only on one occasion was θv measured with a thetaprobe at 

Shafton. 

 

However, on all three occasions at Rattray, and the single occasion at Shafton, 

there were significant effects of compaction, residue management and their 

interaction on θv, but no significant differences between interrow and stumpline 

measurements (data not shown). The results were therefore analysed using a two-

way ANOVA, with the variables being compaction treatment and residue 

management (for both trials). 
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6.3. Results and discussion 
 

6.3.1. Effect of bulk density and organic carbon on soil water (undisturbed soil 

cores) 

 

6.3.1.1. Rattray 

 

a) Water retention 

 

The range of values for soil bulk density and C (% m/m) are presented in Table 

6.1. The levels of these factors were then used to group cores into nine classes, 

varying in bulk density and C. 

 

Table 6.1:  Ranges of bulk density and soil carbon (C; % m/m) values at Rattray 

grouped according to percentile ranges (undisturbed soil cores). 

Percentile range Bulk density (Mg m-3) 
0 – 25% 1.376 – 1.522 
25 – 75% 1.523 – 1.632 
75 – 100% 1.633 – 1.724 
 C (%) 
0 – 25% 0.437 – 0.644 
25 – 75% 0.645 – 0.954 
75 – 100% 0.955 – 2.754 
 

Increasing bulk density had a significantly negative effect on θm, particularly at 

higher matric potentials (i.e. > -10 kPa), while C significantly increased water 

retention throughout the water retention curve (Figure 6.2; Table 6.2; Appendix 

6.1). The regression equations and associated statistical information for the data 

in Figure 6.2, and for the combination of both bulk density and C groups, are 

given in Table 6.2. With increasing bulk density, θv decreases at matric potentials 

greater than -4 kPa, whereas the effect of increasing C on θv mirrors the response 

found in θm (at any matric potential; Appendix 6.2). 
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Figure 6.2:  The effect on soil water content (θm) of ranges of (a) bulk density and 

(b) soil carbon (C; % m/m) at Rattray (of undisturbed soil cores taken 

between 0 and 0.5 m). 

 

The effect of both bulk density and C at each matric potential measured on θm on all 

cores between 0 and 0.5 m was determined (Table 6.3; Appendix 6.1). These 

results show that bulk density had significant negative effects on θm from saturation 

to a matric potential of only -2 kPa. Soil C also had an effect over this upper range 

of matric potentials. However, the poorly correlated negative relationship between 

bulk density and C (r2 = 0.324; data not shown) may have been the cause of this. 

The higher r2 values of the relationships suggest that bulk density was the primary 

cause of changes in soil water retention over this high matric potential range. 
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Table 6.2: Coefficients of regression equations† and associated percentage of 

variance accounted for by equations (r2) of the effects of ranges of 

bulk density (BD) and soil carbon (C), as grouped in Table 6.1, on 

mass soil water content (of undisturbed soil cores) at Rattray. All 

regression equations were highly significant (p<0.001); n = 56. 

BD/ 
C Range (%) a c b m r2 

0 – 25 0.312 -0.278 -0.359 -3.624 
25 – 75 0.275 -0.239 -0.359 -3.624 BD 
75 – 100 0.254 -0.219 -0.359 -3.624 

0.927 

0 – 25 0.269 -0.245 -0.359 -3.631 
25 – 75 0.267 -0.229 -0.359 -3.631 C 
75 – 100 0.307 -0.266 -0.359 -3.631 

0.927 

0 – 25, 0 – 25 0.274 -0.249 -0.360 -3.609 
25 – 75, 0 – 25 0.271 -0.246 -0.360 -3.609 
75 – 100, 0 – 25 0.245 -0.227 -0.360 -3.609 
0 – 25, 25 – 75 0.322 -0.275 -0.360 -3.609 
25 – 75, 25 – 75 0.272 -0.234 -0.360 -3.609 
75 – 100, 25 – 75 0.257 -0.219 -0.360 -3.609 
0 – 25, 75 – 100 0.329 -0.291 -0.360 -3.609 
25 – 75, 75 – 100 0.288 -0.243 -0.360 -3.609 

BD, 
C 

75 – 100, 75 – 100 0.241 -0.208 -0.360 -3.609 

0.936 

† The regression equation used is of the Gompertz form i.e. y = a + c * EXP(-EXP(-b * (x – 
m))), where y = water content (θm; kg kg-1), x = matric potential (kPa), and a, c, b and m are 
coefficients.  

 

Table 6.3: Significant regression equations (p<0.001) and percentage of 

variance accounted for by equations (r2) of the effect of bulk 

density (BD; Mg m-3) and soil carbon (C; % m/m) on soil water 

content (θm; kg kg-1) of 0 – 0.2 and 0.4 – 0.5 m undisturbed soil 

cores at various matric potentials (Ψm) at Rattray. n = 56. 

Ψm (kPa)  Regression equation  r2 
 0  θm = 0.875 - 0.382 BD  0.871 
-1  θm = 0.814 - 0.357 BD  0.838 
-2  θm = 0.764 - 0.333 BD  0.741 
 0  θm = 0.228 + 0.043 C  0.543 
-1  θm = 0.205 + 0.042 C  0.573 
-2  θm = 0.193 + 0.047 C  0.620 
-3  θm = 0.188 + 0.031 C  0.557 
-1500  θm = 0.006 + 0.007 C  0.720 
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This exercise was repeated on the θv data (Appendix 6.3A). A similar negative 

effect of bulk density on θv between saturation and -2 kPa was found. Increasing C 

generally increased θv from -30 to -1500 kPa, however, several regressions were 

excluded as a result of their low r2 values. 

 

In both θm and θv data, no significant effects of either C or bulk density were found 

between -3 and -100 kPa. This may be a result of the change-over from bulk 

density to organic carbon as the principal factor affecting the relationship between 

θ and matric potential, or due to the heterogeneous nature of the undisturbed soil 

cores. 

 

Similar effects of bulk density on water retention characteristics in South African 

forestry soils of sandy loam texture have been previously found (Smith, 1995). 

Decreases in the effect of bulk density with decreasing matric potential in other 

sandy soils, is also documented (Hill and Sumner, 1967; Rawls et al., 1991; Rab, 

1994). Similarly, organic carbon has been found to increase water retention at all 

matric potentials (Hall et al., 1977; Rawls et al., 1991; 2003). 

 

The results indicate that soil bulk density only has a considerable effect on soil water 

retention under very wet conditions at this site. However, at wilting point, soil organic 

carbon strongly influences water retention. Even small increases in soil C (e.g. of 

0.1%) result in a substantial increase in water retention at this matric potential. 

 

b) Porosity and pore-size distribution 

 

From the water retention data, the effects of soil bulk density and C on total 

porosity and pore-size distribution were determined (Table 6.4). Total porosity 

decreased with increasing bulk density and decreasing C. These decreases 

were mainly through the loss of macroporosity, and an increase in mesoporosity, 

a phenomenon often associated with compaction (Smith, 1995; Brady and Weil, 

1999). The results show that small increases in organic carbon may partially 

negate increases in soil bulk density by increasing mesoporosity. These 

increases in mesoporosity may increase AWC. Air-filled porosity was 
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consistently above 0.32 m3 m-3 (data not shown), well above the minimum value 

of 0.1 m3 m-3 considered adequate for aeration. 

 

Table 6.4: Change in total soil porosity and pore-size distribution (PSD) with 

percentile ranges of soil bulk density and soil carbon (of undisturbed 

soil cores) at Rattray. 

Bulk density range 
<25% 25%<BD<75% >75% Pores 

(m3 m-3) PSD (%) (m3 m-3) PSD (%) (m3 m-3) PSD (%) 
Micro- 0.001 0.1 0.001 0.1 0.001 0.1 
Meso- 0.049 11.1 0.055 13.0 0.058 14.0 
Macro- 0.393 88.8 0.369 86.8 0.356 85. 9 
Total 0.443 100.0 0.425 100.0 0.415 100.0 
 Carbon range 
 <25% 25%<C<75% >75% 
 (m3 m-3) PSD (%) (m3 m-3) PSD (%) (m3 m-3) PSD (%) 
Micro- 0.000 0.1 0.001 0.1 0.001 0.2 
Meso- 0.038 9.4 0.056 13.1 0.067 15.2 
Macro- 0.371 90.5 0.371 86.8 0.371 84.6 
Total 0.409 100.0 0.428 100.0 0.439 100.0 
 

Total porosity values approximately 0.06 m3 m-3 smaller than those obtained in 

this study were found at the Rattray site in the previous trial (Sibisi, 1998). The 

discrepancies can be related to the higher bulk densities obtained in that study 

(Section 4.3.2.1). 

 

c) Water availability 

 

From the water retention regression equations (Table 6.2 and Appendix 6.2), 

AWC and RAW were calculated for the nine different combinations of soil bulk 

density and C. Water content was expressed on both a mass and volume basis, 

as the latter is important for practical applications (Figure 6.3). 

 

Bulk density consistently had a negative effect on RAW and AWC on a mass 

basis. A similar trend was seen when soil water was expressed as θv, with the 

exception of low C soils. Soil C had similar effects on both RAW and AWC on 

mass and volumetric basis. At low bulk density, increasing C increased RAW and 

AWC. At high bulk density, increasing C decreased RAW and AWC. At medium 
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levels of bulk density, RAW and AWC initially decreased, and then increased with 

increasing C. To simplify the comparative process, RAW and AWC for high bulk 

density (75 – 100%), low C (0 – 25%; i.e. HL), medium bulk density (25 – 75%), 

medium C (25 – 75%; i.e. MM) and low bulk density (0 – 25%), high C (75 – 100%; 

i.e. LH) were compared (Table 6.5). 
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Figure 6.3: The effect of combinations of ranges of bulk density (BD) and soil 

carbon (C) on readily available water (RAW) and available water 

capacity (AWC) expressed as (a) mass basis (θm), and (b) volumetric 

basis (θv) at Rattray (of undisturbed soil cores between 0 and 0.5 m).  
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Table 6.5: Effect of selected combinations of bulk density and soil carbon on 

readily and available water capacity (RAW and AWC, respectively) in  

undisturbed soil cores between 0 and 0.5 m at Rattray. 

RAW AWC RAW AWC Bulk density Carbon 
(kg kg-1) (m3 m-3) 

75 – 100% 0 – 25% 0.022 0.022 0.038 0.038 
25 – 75% 25 – 75% 0.022 0.022 0.037 0.037 
0 – 25% 75 – 100% 0.028 0.028 0.041 0.041 

 

The data in Table 6.5 indicate that the greatest amount of RAW and AWC 

occurred when bulk density was at its lowest and C values at their highest. In 

addition, differences in AWC and RAW between the combinations of bulk density 

and C were greatest when water content was expressed on a mass basis. This 

may be a result of volume/bulk density interactions influencing θv. In addition, the 

lack of differences between RAW and AWC indicate the low number of micropores 

in this sandy soil available to hold water between –100 and –1500 kPa. 

 

If, however, raw data (rather than values derived from regression equations 

developed from raw data) from the undisturbed soil cores are utilised, RAW 

averaged 0.036 kg kg-1 or 0.058 m3 m-3, while AWC averaged 0.057 kg kg-1 or 

0.089 m3 m-3 across all treatments and depths. When the data (not shown) were 

examined, there were indications that the regressions obtained for water 

retentivity at Rattray may have over-estimated water content at low matric 

potentials (i.e. -100 and -1500 kPa). 

 

When data from the cores were interrogated by regression analysis, no significant 

relationships between water availability (either AWC or RAW) and either bulk 

density or C were obtained. This may be a result of the low correlation between 

bulk density and C (r2 = 0.324). This indicates that, as a result of the treatments, 

there were some soil cores that had a relatively high organic C content- but with a 

high bulk density; and some with a low C content and low bulk density- perhaps 

due to disturbance from compaction treatments. This may have resulted in the 

lack of significant relationships between either soil C or bulk density and soil water 

availability.  
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Smith and du Toit (2005) determined AWC to range between approximately 0.050 

and 0.085 m3 m-3 at the same site. These values are similar to those determined 

directly from the soil cores, but substantially higher than those determined from 

the regressions in this study. However, in Smith and du Toit’s (2005) study field 

capacity was taken at –8 kPa, whereas in this study it was at –10 kPa. If the AWC 

values of this study developed from the regressions, i.e. Figure 6.3 and Table 6.5, 

are adjusted using a field capacity water content at –8 kPa, very similar values to 

those of Smith and du Toit (2005) are obtained. 

 

Bulk density negatively affected AWC and RAW, except in low C soils when 

water was expressed volumetrically (Figure 6.3). Smith and du Toit’s (2005) 

results also did not show a consistent effect of bulk density on AWC. This is in 

contrast to other studies on sandy soils, which found AWC increased with 

increasing bulk density (e.g. Smith, 1995; Gomez et al., 2002a). Changes due to 

bulk density and C in AWC and RAW were mainly the result of changes in field 

capacity, rather than wilting point (Table 6.2). For example, an increase in C 

alone from the 25-75% range to the 75-100% range resulted in an increase in soil 

water content of 0.007 kg kg-1 and 0.003 kg kg-1 at field capacity and wilting point, 

respectively. This resulted in an increase in AWC of 0.004 kg kg-1. Therefore the 

relationships between θ at field capacity, bulk density and C (Table 6.3; Appendix 

6.3) were mainly responsible for changes in AWC and RAW.  Since there was a 

changeover in the dominant effects, both within bulk density, and between bulk 

density and C, changes in RAW and AWC are not consistent. 

 

d) Least limiting water range 

 

The LLWR extends the usefulness of AWC by restricting it to limiting levels of air-filled 

porosity and soil strength (both of which vary with θ). At Rattray, air-filled porosity at 

field capacity was consistently well above 0.1 m3 m-3, necessary for limitation of the 

LLWR at the upper end of θv. Although soil strength (as measured by PSS0 and 

PSS1) was significantly affected  by  θ (Section 4.3.3.1), this was not the case with 

the 0 – 0.3 m PSS data used to correlate Troxler bulk density, probably as a result of 
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too few measurements (data not shown). Due to the lack of effect of θ on PSS 

values, the effect of bulk density on PSS did not change with θ. Therefore bulk 

densities above 1.646 Mg m-3 resulted in PSS values above 2000 kPa, which then 

limit the LLWR. The effect of the various ranges of bulk density and organic C on 

LLWR was thus identical to that of AWC (Figure 6.3), with the exception that in 

classes with the high bulk density range (i.e. 1.633 – 1.724 Mg m-3), the LLWR or 

AWC is reduced by soil strength. These classes already have low AWC values, 

particularly when θ is expressed on a mass basis. Therefore, a low bulk density 

(<1.522 Mg m-3) combined with high C (0.955 – 2.754%) has the highest amount 

of AWC, while not limiting root growth. 

 

6.3.1.2. Shafton 

 

a) Water retention 

 

As with the Rattray data, soil bulk density and C values from undisturbed soil 

cores formed the percentile groups to allow easier analysis of water retention and 

availability results (Table 6.6). The effect of these bulk density and C ranges on 

soil water retention curves were determined (Figure 6.4 and Table 6.7; 

Appendices 6.4 and 6.5). 

 

Table 6.6:  Ranges of bulk density and soil carbon (C; % m/m) values at Shafton 

grouped according to percentile ranges. 

Percentile range Bulk density (Mg m-3) 
0 – 25% 0.893 – 0.994 
25 – 75% 0.995 – 1.123 
75 – 100% 1.124 – 1.167 
 Carbon (%) 
0 – 25% 13.539 – 15.975 
25 – 75% 15.976 – 19.986 
75 – 100% 19.987 – 21.961 
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Figure 6.4: The effect on soil water content (θm) of ranges of (a) bulk density and 

(b) soil carbon (C; % m/m) at Shafton  (of undisturbed soil cores 

taken between 0 and 0.5 m). 

 

Increasing bulk density resulted in an increasing reduction in θm with decreasing 

matric potential (Figure 6.4). In contrast, soil C had a greater effect at high matric 

potentials, increasing θm with increasing C content. The effect on θv was quite 

different, particularly in the case of bulk density (Appendix 6.5). Increasing bulk 

density resulted in decreasing θv at high matric potentials, but increasing θv at low 

matric potentials, while the effects of C were not as pronounced as with θm. 
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Table 6.7: Coefficients of regression equations† and associated percentage of 

variance accounted for by equations (r2) of the effects of ranges of 

bulk density (BD) and soil carbon (C; % m/m), as grouped in Table 

6.6, on mass soil water content (of undisturbed soil cores) at Shafton. 

All regression equations were highly significant (p<0.001); n=56. 

BD/ 
C Range (%) a b r c s r2 

0 – 25 0.251 0.230 1.273 0.179 1.010 
25 – 75 0.251 0.169 1.273 0.155 1.010 BD 
75 – 100 0.237 0.104 1.273 0.165 1.010 

0.838 

0 – 25 0.217 0.201 1.234 0.151 1.007 
25 – 75 0.236 0.170 1.234 0.156 1.007 C 
75 – 100 0.274 0.183 1.234 0.151 1.007 

0.805 

0 – 25, 0 – 25 0.237 0.221 1.261 0.153 1.009 
25 – 75, 0 – 25 0.217 0.194 1.261 0.158 1.009 
75 – 100, 0 – 25 0.194 0.150 1.261 0.179 1.009 
0 – 25, 25 – 75 0.227 0.256 1.261 0.200 1.009 
25 – 75, 25 – 75 0.244 0.171 1.261 0.156 1.009 
75 – 100, 25 – 75 0.231 0.114 1.261 0.161 1.009 
0 – 25, 75 – 100 0.263 0.238 1.261 0.181 1.009 
25 – 75, 75 – 100 0.287 0.168 1.261 0.140 1.009 

BD, 
C 

75 – 100, 75 – 100 0.289 0.0731 1.261 0.136 1.009 

0.868 

† The regression equation used is of the double exponential form i.e. y = a + b*rx + c*sx, 
where y = water content (θm; kg kg-1), x = matric potential (kPa), and a, b, r, c and s are 
coefficients.  

 

Although often significant, low r2 values excluded many relationships between 

water content and bulk density or C of soil cores at specific matric potentials. The 

few remaining relationships are presented in Appendix 6.6. 

 

Almost identical effects of bulk density on both gravimetric and volumetric soil 

water retention curves were found at the same site in an earlier study (Smith, 

1995). The effect of organic C on water retention was not tested in Smith’s (1995) 

study, although increases in water retention throughout the retentivity curve with 

increasing organic carbon is well documented (Hall et al., 1977; Rawls et al., 

1991; Rawls et al., 2003). 

 

However, despite the much wider range of C values at Shafton, compared to 

Rattray, relatively smaller increases in water retention per unit change in C were 

found. This phenomenon in clay soils, when compared to sandy soils, has been 
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found by others (e.g. Bauer and Black, 1992; Rawls et al., 2003). Differences in 

the effects of both bulk density and organic C on the relative change in water 

retention (when compared to values from the lowest bulk density and highest C 

range) are therefore a result of soil textural differences between the two sites. 

 

b) Porosity and pore-size distribution 

 

The effect of bulk density and C on total porosity and pore-size distribution were 

determined (Table 6.8). Compaction reduced total porosity of the soil at Shafton, 

the main loss being macroporosity, while mesoporosity increased. Increasing 

organic C did not increase total porosity substantially. However, C did increase 

mesoporosity, while having little effect on macro- and microporosity. Air-filled 

porosity was calculated from the same data and was at the very least 0.13 m3 m-3, 

i.e. above the 10% level considered adequate for plant growth. 

 

Table 6.8: Change in total soil porosity and pore-size distribution (PSD) with 

percentile ranges of bulk density and soil carbon (of undisturbed soil 

cores) at Shafton. 

Pores Bulk density range 
 <25% 25%<BD<75% >75% 
 (m3 m-3) PSD (%) (m3 m-3) PSD (%) (m3 m-3) PSD (%) 
Micro- 0.003 0.5 0.003 0.6 0.004 0.6 
Meso- 0.352 56.0 0.373 61.6 0.397 68.4 
Macro- 0.274 43.5 0.229 37.9 0.180 31.1 
Total 0.629 100.0 0.606 100.0 0.581 100.0 
 Carbon range 
 <25% 25%<C<75% >75% 
 (m3 m-3) PSD (%) (m3 m-3) PSD (%) (m3 m-3) PSD (%) 
Micro- 0.003 0.5 0.003 0.6 0.004 0.6 
Meso- 0.344 57.7 0.373 62.4 0.393 63.7 
Macro- 0.250 41.8 0.221 37.0 0.221 35.8 
Total 0.597 100.0 0.598 100.0 0.617 100.0 
 

Total porosity, and the proportion of mesopores constituting total porosity is much 

higher at Shafton, than at Rattray, where in contrast both the quantity and 

proportion of macropores was much greater. Increases in bulk density led to 

similar decreases in total porosity and losses of macroporosity with some 
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increases in mesoporosity at both trials. Despite substantially greater increases in 

C at Shafton (i.e. approximately 2%, rather than 0.4% between groups), increases 

in total porosity with increasing C were not as great as those experienced at 

Rattray. Increases in total porosity with increasing organic C are well documented 

(Kay, 1998). At both trials, however, the main effect of organic C was to increase 

mesoporosity. Air-filled porosity at field capacity at both trials, was well above 10% 

of the total soil volume, even with increasing bulk density or decreasing C. 

Differences in changes in total porosity and pore-size distribution with compaction 

can be attributed to soil textural differences (Gomez et al., 2002a). 

 

c) Water availability 

 

From a plant perspective, changes in RAW and AWC are more important than 

those of θ. The effect of combinations of bulk density and C were determined on 

RAW and AWC (Figure 6.5). 

 

At low C values, bulk density increased RAW and AWC. However, as C increased, 

increasing bulk density decreased RAW and AWC (Figure 6.5). Organic C 

decreased RAW and AWC at high bulk densities, had a slight negative effect at 

medium values of bulk density and initially increased, and then decreased RAW 

and AWC at low values of bulk density (Figure 6.5). These inconsistent effects are 

reflected in Table 6.9 where, as for the Rattray data (Section 6.3.1.1.c), values 

relating to HL, MM and LH were compared. 

 

When actual RAW and AWC values were determined on all of the undisturbed 

soil cores, RAW averaged 0.093 kg kg-1 or 0.098 m3 m-3, while AWC averaged 

0.175 kg kg-1 or 0.184 m3 m-3. These values are fairly close to those obtained 

utilising the regression equations, indicating a good prediction by the equations, 

unlike at Rattray. 
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Figure 6.5: The effect of combinations of ranges of bulk density (BD) and soil 

carbon (C) on readily available water (RAW) and available water 

capacity (AWC) expressed as (a) mass basis (θm), and (b) volumetric 

basis (θv) at Shafton (of undisturbed soil cores between 0 and 0.5 m).  
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Table 6.9: Effect of selected combinations of bulk density and soil carbon on 

readily and available water capacity (RAW and AWC, respectively) in 

undisturbed soil cores between 0 and 0.5 m at Shafton. 

RAW AWC RAW AWC Bulk density Carbon 
(kg-1 kg-1) (m3 m-3) 

75 – 100% 0 – 25% 0.103 0.179 0.121 0.205 
25 – 75% 25 – 75% 0.094 0.160 0.101 0.170 
0 – 25% 75 – 100% 0.113 0.189 0.108 0.179 

 

Using the same soil, but in reconstituted cores, Smith (1995) found that 

compaction only had a negative effect on RAW and AWC, although this effect 

diminished as bulk density approached its maximum. However, the cores obtained 

from the field with low C content had a high proportion of very large, easily 

collapsible macropores (Table 6.8), a situation that would not necessarily occur in 

reconstituted cores. As these soils were compacted, although total porosity 

decreased, the proportion of mesopores increased, so increasing RAW and AWC. 

The cores with medium to high C had higher proportions of mesopores. Therefore, 

decreases in total porosity with compaction would have affected this size of pore 

to a greater extent than in the lower C content cores, probably leading to declines 

in RAW and AWC with increasing compaction.  

 

The much higher RAW and AWC values at Shafton, compared to Rattray, are 

indicative that periods of plant water stress may be less likely at Shafton (if water 

supply and evapotranspiration at the two sites are similar). These differences can 

mainly, once again, be attributed to soil textural differences, as clay soils generally 

have much higher AWC than sands (Bauer and Black, 1992; Smith, 1995; Or and 

Wraith, 2000; Gomez et al., 2002a). The greatest difference between RAW and 

AWC at Rattray when either bulk density or C were considered was 0.006 kg kg-1 

or 0.004 m3 m-3, while at Shafton it was 0.029 kg kg-1 or 0.016 m3 m-3. This 

relatively low variation in water availability with either bulk density or C at both 

trials may indicate that other soil factors, such as soil texture, have a greater 

influence over RAW and AWC (e.g. Bauer and Black, 1992; Smith, 1995); or that 

the regressions developed for the retentivity curves may be over- or under-

estimating a component of RAW or AWC, such as field capacity or wilting point. 
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Although increasing bulk density and decreasing organic C have generally been 

found to decrease RAW and AWC, there are some exceptions. In loamy sands 

and sandy loams, increasing bulk density has been found to initially increase, then 

decrease AWC. In medium textured soils AWC has been found to respond 

differently to organic C (Hall et al., 1977; Bauer and Black, 1992; Hudson, 1994; 

Smith, 1995; Gomez et al., 2002a). This has led to the conclusion that there is no 

“hard and fast” rule that can be applied to AWC and RAW (Hall et al., 1977; 

Hutson, 1983; Kern, 1995; Smith, 1995; Gomez et al., 2002a). Consistent 

responses in AWC and RAW to increasing bulk density or C were not found at 

either Rattray or Shafton. Similar results were obtained in a study in which both 

bulk density and organic C content were varied in different textured soils (Bauer 

and Black, 1992). In that study, AWC in sandy soils initially slightly increased and 

then slightly decreased as organic C increased with concomitant decreases in bulk 

density. However, in the fine textured soils, AWC decreased with increasing 

organic C and decreasing bulk density. 

 

The variable response of AWC and RAW to bulk density and organic C has been 

attributed (Hall et al., 1977; Hutson, 1983; Musto, 1994; Kern, 1995; Smith, 1995; 

Skopp, 2000; Smith et al., 2001; Gomez et al., 2002a) to one of the following: 

• Other unmeasured soil variables. For example water repellency found in 

soils under eucalypts. 

• The use of undisturbed soils obtained from the field (instead of 

reconstituted cores) that contain roots, small stones and soil organisms can 

create variability between cores of similar texture, bulk density and organic 

carbon content. 

• Complex responses of (and interactions between) pore geometry and 

compressive processes with compaction due to variation in soil properties. 

 

d) Least limiting water range 

 

Field PSS values were well above the root-limiting 2000 kPa level determined by 

da Silva et al. (1994), and therefore a second upper limit of PSS at 3000 kPa was 

also included (Sands et al., 1979) in determination of the LLWR. The fact that PSS 
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was not significantly affected by θ (either with these data, or the data in Section 

4.3.3.2) in this soil may be an indication of the variability associated with field 

measurements of PSS, as changes in PSS for this soil have previously been 

determined under laboratory conditions (Smith, 1995).  

 

The LLWR was only limited at higher levels of θ by air-filled porosity at field 

capacity in one instance (high bulk density and high C, i.e. 1.124 – 1.167 Mg m-3, 

6.143 – 7.678%, respectively). The re-calculation of this value from volumetric to 

gravimetric terms is difficult, as a range of bulk densities are used to calculate the 

LLWR, rather than specific values. 

 

Available water capacity and RAW for each of the nine combinations of bulk density 

and C were shown earlier (Figure 6.5). However, the results of this section indicate 

that if root-limiting levels of PSS are considered to be above 2000 kPa, all classes 

with the exception of the lowest range of bulk densities (i.e. 0.893 – 0.994 Mg m-3) 

would be root-limiting. If PSS values above 3000 kPa are used, however, the only 

root-limiting classes would be those with the highest bulk densities. It is important 

to note that even though the Shafton soil has a considerably greater AWC than 

Rattray (0.130 – 0.230 and 0.019 – 0.027 kg kg-1, respectively), it has an 

increased likelihood of plant growth being limited by soil strength. 

 

Smith (1995) determined the LLWR on reconstituted cores, using the same soil, and 

found similar water contents at wilting point and field capacity. Only at bulk densities 

above approximately 1.15 Mg m-3 was aeration limiting at field capacity (i.e. similar 

to this study). Soil strength, however, varied with θ, and because of this, was limiting 

at wilting point and at field capacity at bulk densities above 1.00 Mg m-3 and above 

1.20 Mg m-3, respectively. 

 

However, the data presented here may not be representative of LLWR in the field 

for the following reasons: 

• The variation in PSS with θ needs to be determined more precisely 

(under laboratory conditions), and these values translated into field 

values. This is particularly the case at this trial, as field PSS values are 

well above that considered growth-limiting. 
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• Values for wilting point determined from regression equations in which 

both groups of bulk density and C are combined (Table 6.7) may be 

erroneous as it has been demonstrated (Figure 6.4) that bulk density in 

particular, has little influence at such low matric potentials. This effect 

was also seen at Rattray (Table 6.2 and Figure 6.2). 

 

6.3.2. Treatment effects on soil water availability and least-limiting water 

range (undisturbed soil cores) 

 

6.3.2.1. Compaction treatments 

 

a) Rattray 

 

Compaction treatments significantly affected both soil bulk density and C 

(Chapters 4 and 5). Therefore the effects on AWC, RAW and LLWR of changes in 

bulk density, C, and finally both bulk density and C were determined. 

 

Bulk density 

 

Compaction treatments, through their effect on bulk density, had a negative effect 

on AWC and RAW in comparison to the CL treatment in the 0 – 0.3 m soil layer 

(Figures 6.6 and 6.7). In addition, there were differences in AWC and RAW 

between interrow and stumpline of CH treatments. 

 

Considerably less water is plant or readily available in the top 0.3 m of soil in the CM 

or CH treatment plots than in the CL treatment plots. The CM treatment plots have on 

average 0.012 and 0.006 m3 m-3 (or on a surface area basis, 12.1 and 5.9 R m-2) 

less AWC and RAW, respectively, in the top 0.3 m of soil than that of the CL 

treatments. CL treatments also have on average, 0.027 and 0.013 m3 m-3 (or 26.7 

and 13.0 R m-2) more AWC and RAW than CH treatments.  
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Figure 6.6: Effect of bulk density as affected by compaction treatments and plot 

position at Rattray on (a) AWC and (b) RAW (on a mass basis 

determined from undisturbed soil cores). 
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Figure 6.7: Effect of bulk density as affected by compaction treatments and plot 

position at Rattray on (a) AWC and (b) RAW (on a volume basis 

determined from undisturbed soil cores). 

 

Organic carbon 

 

Soil organic C at Rattray was significantly affected in the top 0 – 0.05 m by 

compaction treatments at TH, increasing with increasing compaction intensity 

(Section 5.3.2.1). Using the average values (for each compaction treatment), 
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AWC and RAW were calculated. Carbon had little effect on RAW values that 

ranged between 0.405 and 0.406 kg kg-1, or 0.382 and 0.383 m3 m-3 (data not 

shown) However, AWC decreased with increasing C, or increasing compaction 

(Figure 6.8). 
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Figure 6.8: Effect of compaction treatments on AWC due to changes in soil 

carbon (C; % m/m) at Rattray (determined from undisturbed soil 

cores between 0 and 0.05 m). 

 

Bulk density and organic carbon 

 

Compaction treatment effects on both C and bulk density were only significant in 

the 0 - 0.05 m soil depth. Therefore compaction treatment effects on AWC 

(through their effect on bulk density and C) were only assessed in this layer. Since 

the effects of C on RAW were found to be extremely small, the combination of 

changes in bulk density and C (due to compaction treatments) were not 

determined, as they can be inferred from the effect of bulk density alone on RAW. 

 

The effect of both bulk density and C on water retention at -10 and -1500 kPa in 

undisturbed soil cores between 0 and 0.1 m was determined earlier (Section 

6.3.1.1.a). These results were used in the calculation of AWC (Figure 6.9). 
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Figure 6.9: Effect of plot position within compaction treatments, and averaged 

across compaction treatments (Average), on AWC on (a) a mass 

basis, and (b) volume basis, at Rattray (determined from undisturbed 

soil cores between 0 and 0.05 m). 

 

Since bulk densities attained in this 0 – 0.1 m soil layer were below that which 

would cause root-limiting levels of PSS, and soil aeration is adequate (Section 

6.3.1.1), the LLWR in this soil layer is dependent solely on AWC (Figure 6.9). 
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b) Shafton 

 

Bulk density determined from soil cores had a significant effect on water retention 

at this trial (Section 6.3.1.2). However, no significant compaction treatment effects 

on bulk density measured with a Troxler were found (Section 4.3.2.2). Therefore 

the effect of the compaction treatments on AWC, RAW and LLWR could not be 

determined by extrapolation using Troxler bulk density results. 

 

The results of Chapter 5, coupled with the LLWR data (Section 6.3.1.2), indicate 

that the majority of the site has bulk densities between 0 and 0.3 m depth that may 

cause some plant root-limiting levels of soil strength. Soil aeration is generally not 

limiting to plant growth. Therefore, changes in available water supply potentially 

have the greatest effect on plant growth at this site.  

 

6.3.2.2. Residue management 

 

a) Rattray 

 

Residue management significantly affected soil bulk density, but not C at Rattray 

(Chapters 4 and 5). However, this significant effect was not as a result of residue 

management per se, but rather the reduction of compaction treatment effects with 

increasing residue retention. Therefore the effects of residue management on 

AWC and RAW were only determined along with those of compaction treatments 

(Section 6.3.2.3). 

 

b) Shafton 

 

Soil organic C was significantly higher in the top 0.05 m of soil with increasing 

residue retention at TH (but not at soil depths between 0.05 and 0.6 m, nor at TF; 

Section 4.3.2.b). Therefore the effect of residue management on AWC and RAW 

was only determined for the 0 – 0.05 m soil depth at TH (Figure 6.10). Organic C 

values (averaged for each type of residue management) were used to calculate 

the amount of soil water held at -10, -100 and -1500 kPa (Section 6.3.1.2).  
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Residue management: B = broadcast (27.3% C);
                                      W = windrow (25.7% C);
                                      R = removed (23.6% C).

 
Figure 6.10: Effect of residue management on (a) AWC and (b) RAW due to 

changes in soil carbon at Shafton (determined from undisturbed soil 

cores 0 and 0.05 m). 
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However, the averaged C values were substantially higher (C range 20.82 – 

31.98%) than those obtained in the soil cores (C range 15.14 - 21.96%). It was 

assumed that the regressions developed in Section 6.3.1.2 could be extrapolated 

outside their range and utilised to determine organic carbon effects on AWC and 

RAW here. 

 

Due to the effect of residue retention on C, decreasing residue retention led to a 

decrease in AWC, and a minor increase, i.e. <0.035 kg kg-1 from removed to 

retained residue management, in RAW. The increase in RAW with decreasing C, 

due to residue removal, is a result of C having a slightly smaller positive effect on 

θ at field capacity than the positive effect on θ at wilting point. These results 

(Figure 6.10) show that AWC is more affected than RAW by C, implying that only 

as the soils dry out, will C content become important to plant available soil water 

status.  

 

The effect of C on the LLWR was not determined, as changes in bulk density and 

PSS with C were relatively small. The main effects on the LLWR would therefore 

be through AWC (Figure 6.10). 

 

6.3.2.3. Compaction treatment x residue management interaction 

 

a) Rattray 

 

Average soil bulk density values (0 – 0.3 m) determined for each combination of 

compaction treatments and residue management (Section 4.3.2.1) were used in 

the calculation of AWC and RAW values (Figure 6.11). 
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Figure 6.11: Effect of the interaction between compaction treatments and residue 

management on (a) AWC and (b) RAW due to changes in soil bulk 

density at Rattray (determined from undisturbed soil cores between 

0 and 0.3 m). 
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b) Shafton 

 

No significant compaction treatment x residue management interaction effects 

were found on soil bulk density or C at Shafton. It was therefore assumed that this 

interaction had no effect on AWC or RAW. 

 

6.3.3. Soil water content (thetaprobe) 

 

6.3.3.1. Rattray 

 

At each time measurements were taken with a thetaprobe (a total of three 

measurement occasions), θv values (0 – 0.05 m) increased with increasing 

compaction and quantity of residues present (Figure 6.12). However, the main 

effects of the compaction and residue management treatments were not always 

significant on each measurement occasion, and the interaction between 

compaction treatments and residue management was not significant at any 

measurement occasion (Table 6.10). The inconsistencies in statistical results 

between measurement occasions may be due to the changing site water content 

on each measurement occasion. Soil water content (0 - 0.5 m) measured by the 

thetaprobe showed that θv averaged 0.041, 0.056, and 0.026 m3 m-3 on 

measurement occasion one, two and three, respectively. This indicates that the 

matric potential of the soil was in the –40 to –1500 kPa range (Appendix 6.2). 

 

At measurement occasions one and two, statistical results were similar, i.e. 

residue management showed a highly significant effect (p<0.001), while 

compaction treatments were only moderately (p<0.05) or weakly (p<0.1) 

significant. The average θv over the trials was also similar at these measurement 

occasions. The positive response of soil water content to residue retention in the 

surface soil has been documented by others (e.g. Kelting, 1999; O’Connell et al., 

2004a; Roberts et al., 2005). However, at measurement occasion three (at TH), 

the soil was considerably drier, and compaction treatment effects were significant, 

while residue management effects were not. This may be because this 

measurement was taken at the start of the dry season when the atmosphere was 
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probably so dry that residues could not prevent evaporation, and only the effects 

of compaction on porosity had an effect on soil water. In addition, the trees had 

grown considerably by this stage and were probably extracting as much available 

soil water as possible. The remaining water was less available and hence was 

affected by compaction treatments. 

 

Table 6.10: Summary of ANOVA results of the effect of compaction treatments 

and residue management on average volumetric soil water content 

(θv) measured using the thetaprobe at Rattray on three different 

occasions. 

Source of Variation d.f. F pr. 
Measurement occasion  1 2 3 
Compaction 2 0.072 0.038 0.005 
Residue 2 <0.001 <0.001 0.583 
Compaction x residue 4 0.344 0.166 0.388 
Residual 18    
Total 26    
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Figure 6.12: Box whisker plot of soil water content (θv; measured with a 

thetaprobe) between 0-0.05 m averaged over three separate 

measurement occasions under different compaction treatments and 

residue management at Rattray. Treatment means are displayed 

above the box whisker columns. 
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6.3.3.2. Shafton 

 

Significant effects of compaction treatments and residue management, but not the 

interaction between them were found on θv between 0 and 0.05 m (p<0.001; 

Figure 6.13; Appendix 6.7). Residue management had a particularly obvious 

positive effect, with increasing θv with increasing residue retention. Compaction 

also increased θv slightly. The θv values obtained indicate that the soil at this time 

(65 DAP) of measurement ranged in matric potentials from –8 to –1500 kPa, the 

range in which bulk density positively affected θv in the retentivity curve 

(Appendix 6.5). However, the effects of compaction were not great enough to 

induce a significant difference between interrow and stumpline measurements of 

θv (data not shown).  
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Figure 6.13: Box whisker plot of volumetric soil water content (θv; measured with 

a thetaprobe) between 0-0.05 m under different compaction 

treatments and residue management at Shafton. Treatment means 

are displayed above the box whisker columns. Treatments with 

different letters displayed above the box whisker are significantly 

different (p<0.05) within compaction treatments and residue 

management. 
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6.4. Conclusions 

 

Measured treatment effects on soil water availability (AWC and RAW) at both sites 

were greatest in the top 0.05 m of soil. In this top layer of soil, soil strength and 

aeration were generally not limiting, and the LLWR was defined mainly by AWC 

and RAW. Although deeper in the soil profile (up to 0.5 m), treatment effects were 

not found on AWC and RAW, soil strength may be the main limiting factor of the 

LLWR. 

 

At Rattray, compaction treatments reduced AWC and RAW (and LLWR) in the top 

0.3 m of the profile, although increasing quantities of residues reduced this effect. 

The LLWR may be further limited by soil strength below 0.2 m, particularly in the 

CH treatments. Although trees obtain water from below 0.5 m, the low AWC (and 

LLWR) and RAW values obtained for the top 0.5 m of soil may be problematic as 

the top layer of soil at this site contains most nutrients (Chapter 4) and fine roots 

and changes in soil water availability will affect both mineralisation and root uptake 

of these nutrients. Reductions in available water through compaction by machinery 

may limit site productivity, and therefore compaction should be limited where 

possible. Although residue management did not significantly affect soil water 

availability, residue retention significantly increased θv in the top 0.05 m of soil. 

This effect may only be significant either until the majority of residues have 

decomposed, after approximately 3 years, or until canopy closure. However, the 

results show that, at this site, compaction coupled with residue removal will be 

detrimental to water supply and availability to a young stand. 

 

At Shafton, compaction generally reduced AWC and RAW. However, the effect 

of compaction treatments on these variables could not be quantified due to 

insufficient Troxler bulk density measurements. Residue management 

significantly affected organic C content in the top 0.05 m of soil which, in turn, 

affected AWC and RAW, the former particularly increased with increasing C. 

Therefore, the retention of residues has the potential to offset some of the effects 

of compaction on the quantity of available water. Although the LLWR in the top 

0.05 m layer was not limited by soil strength or aeration, this was not the case at 
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depths below 0.1 m. The results indicate that compaction may have a substantial 

effect on long-term site productivity of similar sites, the effect worsening with 

decreasing water supply (i.e. rainfall). Residue retention, in particular, increased θv 

in the top 0.05 m of soil. These results, coupled with reduction in soil strength 

values in the top 0.3 m with residue retention, demonstrate the importance of 

residues at this site. 

 

Both soil bulk density and organic C had significant effects on water retention and 

availability at both trials. These effects were not consistent and were probably a 

result of complex changes in porosity in response to the two variables. This 

indicates that both bulk density and organic C need to be carefully managed to 

obtain the best possible soil physical environment for maintaining LTSP. In 

addition, the increase in θv in the top 0.05 m of soil with residue retention at both 

sites indicates the importance of this management practice to maintain favourable 

soil water conditions, particularly in a young stand. The inclusion of LLWR 

information has also been useful to identify factors that may be limiting to plant 

growth besides those of water availability. 

 

A further point to bear in mind is that the majority of the data in this chapter were 

derived from only 56 undisturbed soil cores at each site. Additional cores and 

continuous monitoring of soil water changes would have been ideal to understand 

where water restrictions on the trees lie as the data presented here is only an 

estimation of this. However this would have represented a considerable amount of 

field data collection which was not possible due to time and financial constraints.  
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Chapter 7 

Tree Survival and Productivity 
  

7.1. Introduction 

 

The use of plantation productivity as an indicator of long-term soil productivity has 

been discussed (Chapter 2). Plantation productivity can either be measured by 

non-destructive measures of growth, e.g. tree DBH and height, or by NPP-RT at 

canopy closure (termed potential productivity). Although the latter measure is 

more accurate, it is destructive and time consuming. To adequately quantify 

productivity in this study, measurements were made of both growth and potential 

productivity. 

 

7.1.1. Productivity 

 

Potential productivity can be considered as the amount of biomass produced when 

leaf area is at a maximum (usually close to canopy closure; Powers et al., 1996). It 

is independent of stocking and occurs between canopy closure and stand 

maturity. It is constrained by climate, soils and the genetic potential of the stand 

(Powers et al., 1996; Beadle, 1997; Landsberg and Gower, 1997). The findings of 

Section 2.4.2 indicated potential productivity could be measured by the very 

dense stocking of plots with trees. This allows the rapid identification of key soil 

indicators of growth through placing an extreme demand on site resources 

(Kelting, 1999; Watt et al., 2005). 

 

7.1.2. Factors affecting productivity 

 

Plant productivity is essentially dependent on the uptake of water and nutrients by 

roots, and the capture of light and carbon dioxide by leaves to form 

photosynthates (Nadelhoffer et al., 1985; Landsberg, 1986; Sheriff, 1992; Atkinson 

and Last, 1994). Leaf growth is dependent on the ability of roots to supply the 
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plant with nutrients and water, while the ability of roots to perform this function is in 

turn dependent on the ability of leaves to produce photosynthates for root growth 

and respiration. Therefore changes in allocation of resources to either roots or 

leaves will result in a change in photosynthate available for growth, and thus 

overall productivity. As a result, although the measurement of all stand 

components is important, productivity has been found to be particularly related to 

measurements of foliage and fine roots (Ruark and Blake, 1991; Sands et al., 

1992). 

 

The study of the proportional allocation of resources to different plant parts is 

termed allometry, and is often reported as the difference between a particular 

component and total mass (Cromer and Jarvis, 1990; Medhurst et al., 1999). The 

proportion of resources allocated to a plant part is a result of a combination of 

processes that are influenced by plant genetics, physiological age of the plant 

(ontogeny) and the conditions under which the plant is grown, including 

competition (Cannell and Dewar, 1994; Bernardo et al., 1998; Reed and Tomé, 

1998; Medhurst et al., 1999). This is because resources are limited within a plant 

at any point in time and the allocation of resources to one plant part results in less 

resources going to another plant part, particularly under conditions of stress 

(Waring, 1983). In addition, from a plantation forestry perspective, the 

measurement of allometry is important as any change in allocation patterns will 

affect allocation to stemwood (Sands et al., 1992; Cannell and Dewer, 1994; Misra 

et al., 1998a; Teixeira et al., 2002). 

 

Therefore an understanding of the effects of variable growing conditions (or 

treatments) on allometry is important, as it gives insight into the mechanisms 

controlling allocation and the resultant growth patterns, and thus productivity 

(Landsberg, 1986; Landsberg and Gower, 1997). However, allometric 

relationships can also be affected by ontogeny, which is particularly prevalent in 

young trees and these effects must be separated from treatment effects (Amateis 

et al., 2003a; 2003b). 
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7.1.2.1. Measurements of foliage and fine roots 

 

a) Specific leaf area 
 

Specific leaf area (SLA) is the (one-sided) leaf area of plants per unit mass of 

foliage. It is a measure of the balance between the capture of light and carbon 

dioxide and leaf structure limitations, water loss and herbivore resistance (Sheriff, 

1992; Sefton et al., 2002). High SLAs have been linked to greater plant efficiency, 

as higher leaf area for the same amount of resources (or carbon) increases light 

and carbon dioxide interception and therefore carbon assimilation (Sands et al., 

1992; Sheriff, 1992; Cromer et al., 1993; Landsberg and Gower, 1997). Specific 

leaf area in E. grandis has been found to decrease with age; e.g.  from 35 m2 kg-1 

in 2-month-old seedlings (supplied with ample nutrients and water) to 5 m2 kg-1 in 

12-month-old trees (Linder, 1985; Cromer et al., 1993; Grove et al., 1996; Job 

et al., 2003). This ensures an efficient means of fast establishment, with low 

biomass cost in young trees (Linder, 1985). 

 

b) Leaf area index 
 

The product of SLA and foliar biomass per unit area of land is the leaf area index, 

i.e. the single-sided leaf area per unit of land (Linder, 1985; Landsberg and 

Gower, 1997). Since productivity is related directly to light interception, productivity 

and LAI are in turn related (e.g. in eucalypt plantations, Cromer et al., 1993; 

Beadle et al., 1995; Cromer et al., 1995; Hunt et al., 1999). In young stands the 

more rapid the development of leaf area up to canopy closure, the greater the 

productivity early in the rotation (Beadle and Mummery, 1990).  

 

c) Foliar nutrients 
 

Since foliage is where most physiological processes (such as photosynthesis) take 

place, some have suggested that foliar nutrients will be  most directly related to 

plant productivity when compared to the analysis of other plant components 

(Schönau, 1981a; Mead, 1984; Bellote and da Silva, 2004; Silveira et al., 2004). In 
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addition, foliar analysis can be used to give an indication of overall treatment 

effects on plant nutrition (Ulrich and Hills, 1967; Richards and Bevege, 1972; 

Needham et al., 1990; Silveira et al., 2004). This is particularly the case with trees 

in which the exploration of large volumes of soil by their extensive root systems 

makes the evaluation of available soil nutrients difficult (Barros et al., 2004). To 

this end, foliar nutrient levels and ratios have been compared in vigorously and 

poorly growing trees, to determine where the nutrient imbalance lies, and is a 

common practice in forestry (Drechsel and Zech, 1991; Dell, 1996; Herbert, 1996; 

Bellote and da Silva, 2004). 

 

The critical level approach (Ulrich and Hills, 1967) was used to assess foliar 

nutrients in this study. This approach considers that plant nutrients are required in 

certain quantities and forms for plant health (Dell, 1996). Critical levels are not 

single values, but narrow ranges in which a plant nutrient is deficient, sufficient or 

toxic (Smith and Loneragan, 1997). However, criticism of this approach exists, and 

has mainly originated from fertiliser trials in which no response in foliar nutrient 

levels to applications of specific nutrients has occurred, despite the fact that those 

specific nutrients were below the optimum (e.g. Birk and Turner, 1992; Misra et al., 

1998b; du Toit and Oscroft, 2003). In addition, the use of static critical levels may 

not be suitable in plantation trees because foliar nutrients have been found to vary 

with stand age, season, species, plant tissue age and site (Schönau, 1981a; 

Frederick et al., 1986; Erasmus and Levin, 1991; Dell et al., 1995; Barros et al., 

2004). However, the critical level approach is the simplest method of assessing 

nutrient levels. In South African eucalypt plantations, severe deficiencies/toxicities 

of foliar nutrients are not common despite trees being grown on highly weathered 

soils of low nutrient status. It has therefore been suggested that nutrient balance 

or ratios may be more important when investigating the nutritional status of these 

trees (Schönau, 1982; Herbert and Schönau, 1989; Herbert and Schönau; 1990). 

Critical levels of foliar nutrients for young E. grandis have been determined or 

reviewed by several authors for a range of sites and ages (Herbert, 1990; 

Boardman et al., 1997; Table 7.1). 
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Table 7.1: Critical levels of foliar nutrient concentrations in E. grandis as 

determined by Boardman et al. (1997‡) and Herbert (1990�).  

Study: Boardman et al. (1997) Herbert (1990; 1992) 
Nutrient Def† Marg† Opt† High Range Opt† 
N (g 100g-1) <0.7 1.48-1.8 1.8-3.4 3.5+ 1.30-2.91 >2.0 
P (g 100g-1) <0.07 0.09 0.1-0.3 0.3+ 0.10-0.31 0.16 
K (g 100g-1) <0.5 * 0.6-1.8 * 0.59-0.99 0.70 
Ca (g 100g-1) <0.08 * 0.3-1.0 * 0.89-1.42 >1.0 
Mg (g 100g-1) <0.06 * 0.1-0.35 * 0.27-0.42 0.30 
Fe (mg kg-1) <17 * 60-130 300+ 52-1021 110 
Zn (mg kg-1) <7 * 14-46 * 8-32 18 
Mn (mg kg-1) <8 * 220-700 1000+ 129-6005 600 
Cu (mg kg-1) <2 * 6-15 * 2-26 12 
Na (mg kg-1) * * 3000-4200 * * * 
† Def = deficient; Marg = marginal, Opt = optimal. 
‡ From a review of juvenile plantation E. grandis foliar nutrient studies, i.e. between seedling 

stage and canopy closure. 
� From a summary of 4-year-old E. grandis fertiliser trials in the Zululand region of South 

Africa. 
 

d) Root:shoot ratio 
 

The root:shoot ratio assumes that a functional equilibrium exists between the size 

and activity of shoots (foliage) and fine roots (Cannell, 1985; Johnson and 

Thornley, 1987; Gonçalves and Mello, 2004). Fine roots are generally classified as 

those smaller than 2 mm diameter. They absorb soil water and nutrients directly, 

and their biomass and distribution are sensitive to local environmental conditions 

(Ares and Peinemann, 1992; Fredericksen and Zedaker, 1995; Landsberg and 

Gower, 1997; Vogt et al., 1997; Gonçalves and Mello, 2004).  

 

7.1.2.2. Ontogeny 
 

The allometric relationships of a tree change with its development, i.e. the course 

of genesis, growth, maturation, and decline (Fitting et al., 1921; Larcher, 2003). 

These changes are most easily observed in young trees, where resources are 

initially preferentially allocated to root growth for seedling establishment. As the 

trees grow and reach canopy closure, the majority of resources are then allocated 

to stemwood for the attainment of light (Cromer and Williams, 1982; Fabião et al., 
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1995; Misra et al., 1998a; Beets et al., 2007). This change in allocation patterns 

due to natural growth and development is termed ontogeny (Cannell, 1985; Ruark 

and Blake 1991; Sands et al., 1992; Sheriff, 1992). 

 

Certain treatments will slow down tree growth and development, compared to 

other treatments, resulting in trees of different sizes, at different stages of 

development. Even though the trees in the study are of a similar species and 

chronological age, the simple comparison of allometric relationships (e.g. 

root:shoot ratios) across these treatments, can lead to incorrect conclusions 

regarding treatment effects on allometry (Sands et al., 1992; Beets et al., 2007). 

This is because the direct treatment effects on allocation patterns of trees must be 

distinguished from indirect treatment effects on rates of growth and development 

(Ledig et al., 1970; Gebauer et al., 1996). Several eucalypt studies have found 

that water and/or nutrient availability effects on allometry were significant until 

ontogenetic effects were accounted for (e.g. Cromer and Jarvis, 1990; Osório et al., 

1998; Reed and Tomé, 1998; Guiterrez et al., 2002). 

 

Three methods of determining if allometry has changed with treatments, and not 

ontogeny, are to: 

a) Compare allocation in similar size trees, i.e. in terms of height and ground 

line diameter, or biomass index in small trees, across treatments (Darrow, 

1984; Eccles et al., 1997). 

b) Adjust differences in plant size statistically (Osório et al., 1998; Guiterrez 

et al., 2002). 

c) Compare differences in parameters in allometric equations (Sands et al., 1992). 

 

7.1.3. Compaction effects on survival and productivity  

 

7.1.3.1. Effect of compaction on survival and aboveground productivity 
 

The effects of compaction in South African eucalypt stands were reviewed in 

Section 2.4.1. Results of the previous studies at specifically Rattray and Shafton 

found no significant effect of harvesting treatments on survival (Smith and du Toit, 
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2005; Smith, 2006). In addition, compaction had no significant effect on stand 

productivity (measured by basal area and stemwood volume) at Rattray. This was 

attributed to improved soil water availability, since PSS was not growth limiting. At 

Shafton however, only the logger and extraction route treatments (imposed in a 

similar manner to the CM and CH treatments of this study, respectively) had 

significantly lower growth at 12 years of age than their control treatments. This 

was despite the fact that the logger treatment did not have the highest PSS of all 

the treatments. In addition, although not always significant, the basal area of trees 

in most treatments was lower than that of the control treatments (Smith, 2006). 

 

Only limited work has been conducted internationally on the effect of soil 

compaction on Eucalyptus growth (e.g. Misra and Gibbons, 1996; Williamson 

and Neilsen, 2003a; 2003b). Williamson and Neilsen (2003a) found that 

compaction, and the associated soil damage from machinery movement 

resulted in poorer survival and growth of naturally regenerating eucalypt forest 

on wetter sites. Under glasshouse conditions, eucalypt seedling growth was 

poorest on soils representing those with topsoil displacement and profile 

disturbance when compared to those representing compacted soils, although 

these also had poor growth relative to undisturbed soils (Williamson and 

Neilsen, 2003b). Surface compaction (i.e. top 0.2 m), has been found to more 

significantly decrease E. camaldulensis stem volume when compared to 

increases in bulk density in the subsoil (0.2 – 0.4 m; Pereira, 1990, cited by 

Gonçalves et al., 1998). This is probably due to the concentration of water, and 

particularly nutrients, in the soil surface. Misra and Gibbons (1996) found that 

although eucalypt seedling root growth decreased from soil strengths of 400 to 

4200 kPa (relating to bulk densities of between 0.7 and 1.0 Mg m-3 in a clay soil), 

seedling biomass was not significantly affected. This may be because adequate 

water and nutrients were supplied to the seedlings throughout the experiment. 

 

In other non-eucalypt stands, tree survival and stand aboveground productivity 

have been positively, negatively, or not affected at all by compaction, or the effects 

have diminished with time (e.g. Corns, 1988; Powers, 1999; Kelting et al., 2000; 

Miller et al., 2004; Ares et al., 2005; Fleming et al. 2006b; Tan et al., 2006). The 
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cause of these variable responses to compaction found both internationally and in 

South Africa (Section 2.4.1) were reviewed in Chapter 1. 

 

7.1.3.2. Effect of compaction on belowground productivity 

 

Very few productivity studies have included measurements of roots. This is due 

to the difficulty (as roots vary substantially with soil variability) and expense 

involved in their measurement, and also the low level of precision of 

measurements when compared to those of aboveground biomass components 

(Sutton, 1991; Atkinson and Last, 1994; Misra et al., 1998a; Bauhus and 

Messier, 1999; O’Grady et al., 2005). However, roots represent a large (between 

22 and 63%) portion of the NPP of a stand (Landsberg, 1986; Hendrick and 

Pregitzer, 1993; Waring et al., 1998; Bauhus and Messier, 1999; Teixeira et al., 

2002). In South African E. grandis, belowground biomass represented 

approximately 30% of the total biomass of a coppiced 7-year-old stand in the 

KwaZulu-Natal Midlands (du Toit et al., 1999). 

 

No relationship between root growth and bulk density has been directly determined 

except under controlled conditions (e.g. Foil and Ralston, 1967; Misra and 

Gibbons, 1996). However, several workers have established root growth-limiting 

bulk densities for their sites and species by reviewing literature (e.g. Daddow 

and Warrington, 1983; Lousier; 1990). Even so, there is evidence from other 

studies that these limiting bulk density values are not infallible (Miller et al., 2004; 

Page-Dumroese et al., 2006). This is because changes in belowground 

productivity have been found to be a result of changes in soil strength, water 

availability, nutrient supply to roots and aeration, rather than bulk density per se 

(Grable and Siemer, 1968; Greacen and Sands, 1980; Gomez et al., 2002a; 

Blouin et al., 2004). Generally, increasing soil compaction decreases belowground 

productivity, due to either increasing soil strength or decreasing AWC, or a 

combination of the two. 
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Compaction increases soil strength, so reducing both tree root growth and the soil 

volume able to be explored by roots (Greacen and Sands, 1980; Page-Dumroese 

et al., 1998; Williamson and Neilsen, 2003b; Blouin et al., 2004). Severe root 

limiting levels of penetrometer soil strength (PSS) for Pinus radiata have been 

found to be 1300 kPa (Zou et al., 2001), 2100 kPa (Theodorou et al., 1991) and 

3000 kPa (Sands et al., 1979). While Greacen et al. (1969, cited by Greacen and 

Sands, 1980) found that over a range of penetrometers, plant species and soil 

types that an average soil strength above 2500 kPa severely limited root growth. 

In another review, root limiting values of PSS for a number of tree species were 

found to vary between 2000 and 4200 kPa (Miller et al., 2004). Misra and Gibbons 

(1996) varied PSS in a well-aggregated clay soil and found that increasing PSS 

and bulk density (between 400 and 4200 kPa or 0.7 and 1.0 Mg m-3) reduced root 

length and number in potted E. nitens seedlings. Any reduction in the soil volume 

able to be explored by roots also decreases the ability of roots to obtain soil water 

and nutrients, particularly immobile nutrients, further impacting growth (Froehlich 

and McNabb, 1984; Corns, 1988). In addition, the decrease in soil volume 

occupied by roots can also decrease the physical support to trees, so increasing 

the likelihood of windthrow (Hutchings et al., 2002). Compaction often decreases 

the availability of soil water to plants (or the LLWR), which on drier sites will 

increase the risk of drought (Miller, 1985). 

 

However, in some soils (particularly sandy soils) compaction may increase water 

retention and improve soil-root contact, and if supplies of air, water and nutrients 

are adequate, decreases in growth and productivity may not be found (Greacen 

and Sands, 1980; Taylor and Brar, 1991; Powers et al., 1996). 

 

Finally, as a result of the review in Chapter 2, it was determined that the effect of 

compaction on tree survival and productivity must be evaluated in conjunction with 

changes in soil properties affected (by compaction) and site and species 

characteristics (Powers et al., 1996; Burger and Kelting, 1998; Gomez et al., 

2002a; 2002b; Williamson and Neilsen, 2003a). 
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7.1.3.3. Effect of compaction on SLA, LAI, foliar nutrients and root:shoot ratio in 
eucalypts 

 

Pot studies have found that compaction does not affect SLA, LAI or root:shoot 

ratios of Eucalyptus seedlings (Williamson and Neilsen, 2003b), or root:shoot 

ratios of E. nitens seedlings (Misra and Gibbons, 1996). In Picea and Pinus 

seedlings, however, compaction has increased root:shoot ratios (Corns, 1988). 

 

Contrasting effects of water supply on SLA values in eucalypts have been found. 

Decreasing water supply decreased SLA (Job et al., 2003) or had no effect 

(Tuomela et al., 2001). Although compaction had no effect on the LAI of 

Eucalyptus seedlings (Williamson and Neilsen, 2003b), water stress decreased 

LAI in E. grandis and other eucalypts (Cromer et al., 1993; Beadle et al., 1995; 

Osório et al., 1998; Tuomela et al., 2001; Stape et al., 2004; Whitehead and 

Beadle, 2004). An increase in root:shoot ratio as a result of water stress is thought 

to occur through a reduction in shoot growth (Pereira and Pallardy, 1989; Pereira 

and Osório, 1995). However, variable results of water availability on root:shoot 

ratios in eucalypts have been found (Pereira and Kozlowski, 1976; Bachelard, 

1986; Fabião et al., 1995; Osório et al., 1998; Guiterrez et al., 2002). Lower 

productivity under water stressed situations have been explained by the death of 

fine roots during drought, and the allocation of greater quantities of carbon to 

replace these roots during times of  adequate water supply than ordinarily 

necessary (Pereira and Pallardy, 1989). 

 

In South Africa, coarse root biomass of 4-year-old E. grandis increased while fine 

root biomass decreased, in irrigated treatments relative to the control (Campion, 

2005). In addition there was an increase in both fine and coarse root biomass 

relative to the control in treatments combining irrigation and fertilisation. However, 

it was not clear if the change in allocation was a result of the treatments or 

changes in tree size as a result of the treatments as the comparison of trees of 

similar size across the treatments was not performed. Overall, there was a 

decrease in carbon allocation to belowground biomass with increasing water 

supply. 
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No studies investigating the effect of soil compaction on eucalypt foliar nutrients 

were found. However, in other tree species compaction had varied effects, either 

increasing (e.g. in P. contorta; Blouin et al., 2008), decreasing (e.g. in P. radiata; 

Sheriff and Nambiar, 1995), or having no effect (e.g. in P. radiata; Nambiar and 

Sands, 1992; Merino et al., 2004) on several foliar nutrient concentrations. 

 

7.1.4. Residue management effects on growth, productivity and survival 

 

7.1.4.1. Effect of residue management on survival and aboveground 
productivity 

 

Despite the long-term negative effects on soil organic carbon content of harvest 

residue removal, most review studies found that survival and early growth of 

seedlings increased with residue removal (Dyck and Cole, 1994; Johnson, 1994; 

Morris and Miller, 1994; Powers, 1999; Raison and Rab, 2001; Laiho et al., 2003; 

Gonçalves et al., 2004b). However, as trees grew, the effects of residue 

management on growth were reversed and residue removal resulted in decreases 

in growth (e.g. Proe et al., 1999; Smith et al., 2000). This was attributed to an 

initial greater availability of nutrients, particularly nitrogen, changes in soil 

temperature and moisture (not only affecting physical soil properties, but also 

microbial properties and nutrient availability) and reduced competition by weeds 

(Morris and Miller, 1994; Powers et al., 1995; 1996; Powers, 1999). Later, 

however, as the residues decompose, nutrients originally “locked-up” are 

released, allowing trees on residue retained areas to surpass (in growth) trees on 

residue removed areas (Roberts et al., 2005). 

 

It has been suggested that the response of trees to the retention of residues may 

be partially dependent on climate (Powers et al., 1996). In tropical or warm 

temperate climates, residue removal is thought to not only increase evaporative 

soil moisture loss, but also to lead to extremes in soil temperature that have 

negative effects on soil microbial populations and nutrient mineralisation rates 

(Powers, 1999). However, another review of Eucalyptus studies in tropical areas, 
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found in several cases that residue retention did not improve growth, although it 

was never reduced (Gonçalves et al., 2004b). The positive effect of residues may 

be due to their influence on the temperature, aeration, nutritional and moisture 

status particularly of the topsoil (i.e. the principal area of fine root growth). 

Residues also affect the susceptibility of the soil surface to erosion, the 

reproduction of vegetation (including weed growth), microbial activity and their role 

in nutrient cycling and soil aggregation and structure (Zabowski et al., 1994; Grigal 

and Vance, 2000).  

 

In the previous study at Rattray, Smith and du Toit (2005) found no significant 

effect of either windrowing or broadcasting of residues on tree survival or volume. 

At a site close to Shafton, du Toit et al. (1999; 2004) reported the effects of 

residue management on E. grandis early tree survival, growth and biomass. They 

concluded that increased nutrient availability in the burnt and fertilised treatments 

positively affected early tree growth, although there were no effects on survival. 

However, du Toit and Scholes (2002), reporting on the soil nutrient status at the 

same trial, concluded that only burning of harvest slash residue resulted in a 

substantial loss of nutrients and that the soil was reasonably well buffered against 

major nutrient fluxes caused by residue management practices. 

 

7.1.4.2. Effect of residue management on belowground productivity 
 

Residue management has implications for soil organic matter and nutrient 

dynamics and soil moisture (Chapters 4-6). Fine root biomass increased with 

increasing residue retention (Oliveria et al., 1997 cited by Gonçalves and Mello, 

2004). However, some studies have found no effect of residue management on 

eucalypt root biomass (e.g. Jones et al., 1999; Nkosana, 2002). In other plant 

species, however, fine root biomass and length have generally decreased in soil 

under residue removal in comparison to undisturbed soil (e.g. in Pseudotsuga and 

Picea tree species, Perry et al., 1982; and in various crop species, Bathke et al., 

1992). 
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7.1.4.3. Effect of residue management on SLA, LAI, foliar nutrients and 
root:shoot ratio in eucalypts 

 

Residue management generally has a substantial effect on nutrient supply. Nutrient 

supply, particularly N and P, has also been linked to higher SLA in E. grandis, 

although this effect diminishes as the stand approaches canopy closure 

(Kirschbaum and Tompkins, 1990; Kirshbaum et al., 1992; Cromer et al., 1993; 

Grassi et al., 2002). This has led to the conclusion that nutrition has the greatest 

effect on the SLA of eucalypts when SLA is high and trees are young (Cromer et al., 

1993). Nutrient uptake in E. grandis has also been found to strongly affect LAI 

(Cromer et al., 1984; Linder, 1985; Sands et al., 1992; Cromer et al., 1993). 

However, increased nutrient supply does not always increase allocation of 

biomass to foliage (e.g. Sheriff and Nambiar, 1991), but rather purely increases 

SLA (e.g. Field and Mooney, 1986; Sheriff and Nambiar, 1991). Increases in 

nutrient availability have resulted in decreases in root:shoot ratios in E. grandis 

seedlings and trees (Cromer and Jarvis, 1990; Kirschbaum et al., 1992; Dighton 

et al., 1993; Fabião et al., 1995; Misra et al., 1998a; Campion, 2005) or a 

reduction in allocation of biomass belowground (relative to aboveground) (Grove 

et al., 1996; Madeira et al., 2002; Teixeira et al., 2002). However, other studies (on 

both Eucalyptus spp. and other tree species) have found no effect of fertiliser on 

root:shoot ratios, as a result of proportional increases in each component with 

fertilisation (Nadelhoffer et al., 1985; Santantonio, 1989; Sheriff and Nambiar, 

1991; Smith et al., 1994). However, the effect of residue management directly on 

SLA, LAI and root:shoot ratios has not been quantified in eucalypts. 

 

Residue retention significantly increased the foliar concentrations of N, Ca and Mg 

of 1-year-old eucalypt stands in the Congo (Nzila et al., 2004). A study close to the 

Shafton trial (du Toit et al., 2008) also found that foliar nutrient concentrations 

were often significantly higher in trees (0.25 – 3-years-old) on broadcast than 

residue removed plots. 
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7.1.5. Compaction x residue management effects on survival and productivity 

 

The combination of compaction and residue management (or movement as a 

result of operations) on tree growth has generally only been investigated overseas 

and on other tree species besides eucalypts. Studies reviewed by Morris and 

Miller (1994) generally found that seedling growth was greatest on plots with 

severe soil disturbance and mixing, and residue removal. As the stands matured, 

however, growth was negatively affected by soil compaction (and mixing) and 

residue removal. In other studies, increasing compaction in compaction x residue 

management studies generally led to a decrease in tree size (e.g. Powers et al., 

2005; Tan et al., 2006), although natural amelioration occurred on some sites 

(e.g. Lacey and Ryan, 2000; Powers et al., 2005). Decreasing residue retention in 

these interaction studies either had no effect (e.g. Powers et al., 2005), initially 

increased growth which then “washed out” (e.g. Lacey and Ryan, 2000), or 

decreased growth (e.g. Tan et al., 2006). The results from these and other trials 

indicate that compaction and residue retention effects are site and species 

specific. 

 

At Rattray in the previous study, no interaction effects were found on either tree 

survival or productivity (Smith and du Toit, 2005). Improved early E. grandis 

productivity was found in residue retained treatments where logger movement 

mixed residues and soil, when compared to residue retained treatments alone, at 

a site close to Shafton (du Toit et al., 1999; 2004). However, the results may be 

more due to the mixing effect of the logger on nutrient availability, than actual 

compaction. In addition, there were no significant effects on tree survival. 

 

7.1.6. Chapter rationale and objectives 

 

The effect of soil compaction and residue management on eucalypt stand 

productivity and allometric relationships, as well as tree survival and growth has 

not been adequately investigated in South Africa. Therefore the objective of this 
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section of the study was to determine if, and in what manner, stand productivity 

was influenced by compaction treatments and residue management through their 

effects on soil properties at the two sites. This was achieved by evaluating: 

• compaction and residue management treatment effects on the NPP-RT of 

sub-plot trees; 

• changes in this productivity and the relationship with SLA, LAI, foliar 

nutrient concentrations or root:shoot ratios; 

• the changes found in SLA, LAI, foliar nutrient concentrations or root:shoot 

ratios and their relationship to the compaction treatments and the imposed 

residue management strategies; 

• the relationship between non-destructive measures of tree growth (such as 

GLD, DBH, height or biomass index) and destructive measures of NPP-RT 

or stand allometry; and 

• growth and survival responses to compaction treatments and residue 

management in sub-plots and main plots. 

 

7.2. Materials and methods 

 

Full details of planting, other silvicultural operations and measurements are given 

in Chapter 3. However, the effect on the results of the accidental herbicide 

application to trees at Shafton is discussed here more fully.  

 

7.2.1. Herbicide application effects on trees at Shafton 

 

The accidental application of herbicide at Shafton resulted in defoliation, and in 

some cases death, of some of the sub-plot trees in certain plots. On an individual 

young tree basis, those that survived would have had a lower growth rate as a 

result of the loss of vital leaf area in the early stages of growth. There is evidence 

that lower survival of young eucalypts as a result of external factors (such as 

defoliation by browsing) is later compensated for on a plot basis by the better 

growth rates of surviving trees (Wilkinson and Neilsen, 1995). That study found 
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that young trees that lost half of their crown had lower total volume growth than 

un-browsed trees, while those that lost the entire crown either died or were 

severely suppressed by competing vegetation. In this study, competing vegetation 

would not have impacted growth, only once the trees reached canopy closure 

would poorer growth have become an issue. Therefore during statistical analyses 

of the Shafton results mortality due to herbicide application was used as a 

covariate. 

 

7.2.2. Statistical analysis of effects of soil properties on tree growth and 

productivity 

 

Although significant (p<0.001) relationships were sometimes obtained between 

various soil properties and tree growth or productivity, these were excluded as a 

result of their low r2 values (r2<0.5). 

 

7.3. Results and discussion 

 

7.3.1. Productivity and allometry 

 

7.3.1.1. Effect of biomass index on total and component productivity 
 

There were significant relationships between the biomass index (BI = ground-line 

diameter2 * height; mm3) of trees harvested from the sub-plots and their various 

biomass components at both Rattray and Shafton (Table 7.2; Appendices 7.1 

and 7.2, respectively). Biomass index was therefore utilised as the independent 

variable in the relationships rather than height or GLD because it produced higher 

r2 values with the dependent variables. 
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Table 7.2: Regression equations, percentage variance accounted for (r2) and 

levels of significance (p) of relationships between biomass index 

(BI; mm3) and various biomass components (kg dry mass; y-variate) 

of E. grandis trees at Rattray (209 DAP) and Shafton (211 DAP). 

Component  Regression equation r2 p 
Rattray 

Total y = 0.019 + 5.15E-07 * BI 0.944 <0.001 
Aboveground  y = 0.044 * 3.15E-07 * BI 0.945 <0.001 
Stem + Branches y = 0.019 + 1.90E-07 * BI 0.961 <0.001 
Foliage y = 0.025 + 1.25E-07 * BI 0.901 <0.001 
Belowground  y = 0.017 + 7.48E-08 * BI 0.835 <0.001 
Belowground Stem y = 0.005 + 0.40E-07 * BI 0.940 <0.001 
Coarse Roots y = 0.011 + 2.07E-08 * BI  0.810 <0.001 
Fine Roots - - NS 

Shafton 
Total y = 0.039 + 4.65E-07 * BI 0.967 <0.001 
Aboveground  y = 0.034 + 3.74E-07 * BI 0.915 <0.001 
Stem + Branches y = 0.014 + 2.05E-07 * BI 0.938 <0.001 
Foliage y = 0.019 + 1.71E-07 * BI 0.891 <0.001 
Belowground y = 0.016 + 6.76E-08 * BI 0.836 <0.001 
Belowground Stem y = 0.004 + 3.81E-08 * BI 0.825 <0.001 
Coarse Roots y = 7.95E-03 + 3.05E-08 * BI 0.610 <0.001 
Fine Roots - - NS 
NS: not significant. 

 

The high r2 values (Table 7.2) suggest that changes in allocation of biomass 

occurred principally as a result of tree size, rather than as a direct result of the 

treatments, with the possible exception of fine root biomass. The lack of 

relationships with fine roots may also be due to the difficulties associated with 

sampling and recovery of fine roots from trees in the field, as found by others 

(e.g. Sutton, 1991; Misra et al., 1998a). It is likely that the treatments did not 

significantly alter the allometry of trees, although they may have a significant effect 

on the size of trees. It could thus be expected that treatments with smaller trees at 

the time of harvest would have similar allometry once the trees grow to the size of 

the larger trees in other treatments.  

 

Of the studies investigating allometry in E. grandis, only two were of a similar age 

to this study (Cromer et al., 1993; Nkosana, 1999). In these studies the effects of 

fertilisation and irrigation treatments were investigated on 4- and 8-month-old trees 
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(Cromer et al., 1993), and 5-month-old trees (Nkosana, 1999), this latter study site 

being close to Shafton. From the results presented in both studies, it was not 

apparent if there were changes in allometry with the treatments, although certain 

treatments did have larger trees. However, it was found that in E. globulus 

growing under different irrigation and fertiliser or purely irrigation regimes that 

there were no structural changes in trees as a result of the treatments (Madeira 

et al., 1989; Osório et al., 1998; Reed and Tomé, 1998). Treatments affected DBH 

and height of the trees, and it was tree size that affected allocation to different 

aboveground parts. Highly significant correlations of aboveground components 

with DBH were obtained in an E. diversicolor age-series study (Grove and 

Malajczuk, 1985). 

 

These results indicate that total biomass and that of the components (with the 

exception of fine roots) from planting to canopy closure of the sub-plot trees were 

mainly, and significantly, affected by ontogeny (Table 7.2). Therefore treatment 

effects on productivity were statistically tested only on BI data. 

 

7.3.1.2. Allometric relationships 
 

Significant relationships were found between the proportion of biomass allocated 

above- and belowground, between foliage and stem plus branch biomass and 

between coarse root and stem plus branch biomass at the two trials (Table 7.3; 

Appendix 7.3). No significant relationship was found between foliage and fine root 

biomass at either trial (data not presented).  

 

Linear relationships between above- and belowground biomass, as well as the 

percentage of biomass allocated aboveground were similar at Rattray and 

Shafton. (Table 7.3; Appendix 7.3). However, the allocation to foliage at Shafton 

was only slightly higher than that at Rattray, while allocation of biomass to stem 

plus branches was considerably lower than Rattray (Appendix 7.3). This 

discrepancy is probably not due to the occurrence of canopy closure at Rattray. 

This is because although the trees were bigger at Rattray (average total harvested 

tree biomass was 0.27 kg at Rattray; 0.21 kg at Shafton), with a larger average 
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crown diameter (0.95 m, in contrast to Shafton’s 0.83 m), spacing at Rattray was 

wider (1 x 1 m, in comparison to 0.8 x 0.8 m at Shafton), and the majority of trees 

had not quite reached canopy closure, unlike at Shafton. However, this 

discrepancy may be due to site or genetic differences as allometric equations 

have been found to vary with species and geographical region (Schönau and 

Boden, 1982; Sheriff, 1992; Medhurst et al., 1999). 

 

Almost identical relationships were obtained between coarse roots and stem plus 

branch biomass at both trials, as has been found by others (Misra et al., 1998a in 

E. nitens; and Jackson and Chittenden, 1981; van Miegroet et al., 1994; Drexhage 

and Colin, 2001, in other tree species). The highly significant relationships 

(p<0.001) between these parameters in this and other studies may indicate that 

coarse root biomass can be reliably estimated from measurements of stem 

variables. The lack of a relationship between foliage and fine root biomass at both 

Rattray and Shafton was probably due to the difficulties associated with sampling 

and recovery of fine roots from trees in the field or treatment effects. 

 

Table 7.3:  Regression equations and percentage variance accounted for (r2) 

of relationships between biomass components (kg dry mass) of 

E. grandis trees 209 DAP at Rattray (RAT) and 211 DAP at 

Shafton (SH). All relationships are highly significant (p<0.001). 

Component (y) Component (x) Regression equation r2 
AbovegroundRAT

 BelowgroundRAT y = 2.902x + 0.041 0.837 
AbovegroundSH

 BelowgroundSH y = 5.509x – 0.040 0.851 
Stem+branchesRAT

 FoliageRAT y = 1.624x – 0.033 0.920 
Stem+branchesSH

 FoliageSH y = 1.117x – 0.002 0.976 
Stem+branchesRAT

 Coarse rootsRAT y = 2.086x – 0.014 0.852 
Stem+branchesSH

 Coarse rootsSH y = 2.709x – 0.013 0.870 
 

Despite some slight differences between relationships at the two trials, the high 

r2 values indicate that allocation of biomass at the trials over the first 6 months of 

growth was probably not substantially affected by the treatments (Table 7.3). 

Other studies have reported significant treatment effects on both biomass 

components and total biomass, but not on the relative proportions allocated to 

each component at a particular tree size (e.g. Cromer et al., 1993; 1995). 
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7.3.1.3. Effect of SLA, LAI, foliar nutrients and root:shoot ratio on productivity 

 

a) SLA 
 

Specific leaf area at Rattray varied between 12.3 and 16.2 m2 kg-1, while at 

Shafton it ranged between 12.2 and 16.8 m2 kg-1. No significant relationship 

between total biomass and SLA was obtained at either trial (data not shown). This 

similar range of SLA values at both trials is indicative of the similar age (when 

sampled) of the trees at the trials. The lack of significant relationships with 

biomass is most likely a result of the trees having been sampled either close to, or 

at canopy closure. This is because SLA has been found to be initially very high in 

E. grandis seedlings, decreasing with age (Cromer et al., 1993; Grove et al., 1996; 

Job et al., 2003).  

 

b) LAI 
 

Since LAI was calculated as the product of SLA and foliage biomass per unit land 

area, and SLA values did not vary greatly across the trials, LAI values were 

directly related to foliar biomass values (data not shown). Foliar biomass was 

significantly related to other biomass components of the trees, and therefore 

highly significant relationships (p<0.001) on an individual tree basis between 

aboveground biomass and tree leaf area were obtained at both Rattray and 

Shafton (Figure 7.1; Appendix 7.4). These data indicate that for a similar amount 

of leaf area, a tree at Rattray would have a larger amount of biomass than a tree 

at Shafton, and therefore that trees at Rattray are more efficient, probably due to 

greater resource availability. Linear relationships between aboveground biomass 

and intercepted radiation (based on leaf area) in a range of young (i.e., <3 years-

old) eucalypt species has been found (Beadle et al., 1995; Osório et al., 1998). 

Both studies concluded that differences in aboveground biomass (Beadle et al., 

1995) and total biomass (Osório et al., 1998) were directly related to canopy 

development (or LAI). Similar results were seen in E. grandis of a similar age 

range (Cromer et al., 1993). In this study, the initial linear relationship was 

similar to that of Beadle et al. (1995). As the trees grew, however, increases in 
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biomass with increasing LAI tapered off. This often occurs as canopy closure 

and intra-specific competition sets in (Cromer et al., 1993). Although LAI can be 

used to distinguish between stands of varying management (or age or species), 

this was not performed in this study, as a result of the relationship of total biomass 

with biomass index. However, at Rattray LAI at 208 DAP was calculated to vary in 

the treatment plots between 0.309 and 2.818 m2 m-2 and average 1.511 m2 m-2 

across the trial, while at Shafton it varied between 1.157 and 2.605 m2 m-2 and 

averaged 1.851 m2 m-2 at 211 DAP.  Variation in LAI within species of young 

eucalypts has been found to be low, i.e. between different provenances and less 

than 4-years-old (Beadle and Mummery, 1990), but significant between species 

(e.g. Honeysett et al., 1992). 
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Figure 7.1: Relationship between total biomass and tree leaf area of individual 

trees at Rattray (209 DAP) and Shafton (211 DAP). 

 

c) Foliar nutrient concentrations 
 

Although foliar N values at Rattray (Table 7.4) were similar to those obtained 

by du Toit et al. (2001b) and Schönau (unpublished), on average they would be 

considered below optimum (Herbert, 1990; 1992; Boardman et al., 1997). Foliar 

Mn concentrations covered a wide range. The majority of plots would be 

considered to have below optimum Mn (Herbert, 1992), although some had 

very high values (greater than 1000 mg kg-1; Boardman et al., 1997). However, 

foliar Mn can vary widely without trees showing signs of deficiency or toxicity 
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(e.g. Schönau, 1981b; Carlson et al., 1998).The majority of other foliar nutrients at 

Rattray, i.e. P, K, Ca, Mg, Cu, Fe, Zn, Na and Al, were all generally within the range 

of values in the literature (Herbert, 1990; 1992; Boardman et al., 1997; du Toit et al., 

2001b; Schönau, unpublished). Despite several nutrient concentrations and ratios 

being below optimal, there were no significant relationships with total biomass 

(data not shown).  

 

At Shafton, foliar N concentrations (Table 7.4) were well within the range found by 

other researchers from the same vicinity (i.e. Campion, 2005; Dovey et al. 2007). 

They were also well above the optimum value quoted by Herbert (1990). Foliar P 

concentrations were generally low compared to other sources, and some 

values would be considered marginal (Boardman et al., 1997) or below the 

range previously found in South Africa (Herbert, 1990). A much wider range of 

foliar K concentrations were obtained than those given by Herbert (1990) and 

several values would be considered deficient or marginal (Boardman et al., 1997), 

despite being similar to those of a nearby trial (Campion, 2005). Foliar S, Ca, Mg, 

Cu and Zn concentrations were within the majority of the ranges found in the 

literature (Herbert, 1990; 1992; Boardman et al., 1997; Campion, 2005; Dovey 

et al., 2007) However, foliar concentrations of Fe, Mn and Al of several plots 

would be considered high (Herbert, 1992; Boardman et al., 1997). High foliar Mn 

levels in E. grandis have been attributed to adverse growing conditions (Schönau, 

1982). As at Rattray, despite there being evidence of deficiencies in certain foliar 

nutrients, no significant effects of foliar nutrient concentrations or ratios were found 

on tree biomass (data not shown). 

 

As at Rattray, the lack of significant relationships between foliar nutrient 

concentrations with tree biomass, particularly those considered below optimal for 

E. grandis trees of a similar age, reinforces the view that the diagnosis of nutrient 

deficiencies in eucalypts using foliar analysis is often unreliable (Cromer, 1996). 

However, it must be borne in mind that even if nutrients are not limiting poor 

growth may still occur due to some other limiting factor(s). When poor growth is 

due only to some limiting nutrient(s) then foliar analysis can be of importance in 

highlighting such deficiency. 
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Table 7.4: Range and average of foliar nutrient concentrations of sub-plot trees 

at Rattray and Shafton. 

Rattray Shafton Foliar 
nutrient Range Average Range Average 
N (g 100g-1) 1.35 – 2.22  1.80 2.10 – 3.02 2.49 
N (g m-2) 0.90 – 1.66 1.25 1.51 – 2.21 1.71 
P (g 100g-1) 0.10 – 0.14 0.12 0.08 – 0.12 0.10 
K (g 100g-1) 0.62 – 0.88 0.74 0.47 – 1.04 0.67 
Ca (g 100g-1) 0.76 – 1.17 0.95 0.64 – 1.06 0.79 
Mg (g 100g-1) 0.30 – 0.39 0.35 0.25 – 0.33 0.28 
C (g 100g-1) 49.1 – 51.4 50.5 48.7 – 50.9 50.1 
     
Cu (mg kg-1) 3.6 – 11.6 8.2 7.3 – 13.5 11.6 
Zn (mg kg-1) 13.0 – 26.0 17.0 14 - 24 18 
Fe (mg kg-1) 102 – 224 136 150 – 358 206 
Mn (mg kg-1) 249 - 1039 535 519 – 1195 713 
Na (mg kg-1) 3368 - 4693 3974 2032 - 3659 2650 
Al (mg kg-1) 97 - 178 130 208 - 472 254 
 

d) Root:shoot ratio 
 

As with SLA and foliar nutrients, no significant relationship was obtained between 

root:shoot ratios and total biomass (NPP-RT) at either trial. 

7.3.1.4. Effect of treatments on SLA, LAI, foliar nutrients and root:shoot ratio 

 

a) SLA and LAI 
 

No significant treatment effects were found on SLA (data not shown). Since LAI 

was highly, significantly related to total biomass (and therefore BI), treatment 

effects were not determined, as these will be similar to those found on BI (Section 

7.3.3). 

 

b) Foliar nutrient concentrations 
 

No significant effects of compaction treatments, residue management, or the 

interaction between them were found on foliar nutrient concentrations at Rattray 

(data not shown). This is probably due to the overall lack of significant effects on 



 175 

soil and residue nutrient levels, with the exception of Ca and Mg, at Rattray at TH 

(Section 5.3.3.2). However, at Shafton, both compaction and residue removal 

treatments had a significant negative effect on foliar N (Figure 7.2; Appendix 7.5). 

Although significant interaction effects were found with foliar P concentrations at 

Shafton, the main effects of compaction treatments and residue removal were also 

negative, and these main effects are rather discussed for ease of explanation 

(Figure 7.2; Appendix 7.5). This was despite foliar N concentrations generally 

being optimal at Shafton, although foliar P concentrations were lower than that 

found to be optimal in the literature. Soil N and P contents were decreased by 

residue removal (Section 5.3.3.3), however residues contributed a substantially 

larger proportion of P to the site, than N (Figure 5.11). This, in combination with 

the foliar nutrient concentrations and ratios indicate that at Shafton, the principle 

growth-limiting nutrient was P. Foliar N, but not P, concentrations were 

significantly higher in 0.5-year-old E. grandis grown in broadcast residue 

treatments, when compared to residue removed treatments at a trial close to 

Shafton (du Toit et al., 2008). However, residue management was applied to plots 

2 months prior to planting at that trial. Therefore the foliar nutrient concentrations 

determined when the trees were 1-year-old, may be more applicable to the results 

of this study. At that age, trees in the broadcast residue plots had higher foliar N 

and P concentrations, but the power of the statistical test was insufficient to show 

significance. 

 

The effect of compaction treatments on foliar N and P at Shafton was almost the 

opposite of that on site N and P (Section 5.3.3.3). Under the compaction 

treatments, soil N significantly decreased in the order CM>CH≥CL, while for 

available soil P (0 – 0.05 m) the order was CM>CL≥CH, and for total P it was 

CM≥CL>CH.  This may imply that higher levels of soil nutrients in the more 

compacted treatments may be a result of lower plant uptake, possibly due to the 

restrictive effect of compaction on soil strength (Section 6.3.2.1) and/or soil water 

availability (Section 6.3.1.2). No comparable eucalypt studies investigating the 

effect of compaction on foliar nutrients were found, although one showed no 

significant effect of soil water availability on foliar N and P concentrations of 1-year-

old E. grandis grown at a site similar to Shafton (Campion, 2005). 
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Figure 7.2: Effect of compaction treatments and residue management on 

concentrations of foliar (a) N, and (b) P at Shafton. Treatments with 

different letters are significantly different (p<0.005). 

 

c) Root:shoot ratio 
 

No significant relationships were obtained between BI and fine root biomass (Table 7.2). 

Therefore root:shoot data were analysed for compaction treatment, residue 

management and interaction effects (ANOVA) at both trials. Compaction treatments 

significantly affected root:shoot ratios at Rattray (Figure 7.3; Appendix 7.6), 

whereas at Shafton no significant treatment effects were found (data not shown). 
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The results displayed in Figure 7.3 led to the multiple linear regression 

analysis of fine root and foliage data with topsoil PSS or topsoil Troxler bulk 

density, i.e. between 0 – 0.1 m soil depth, the same depth in which fine roots were 

measured. This was possible since there was no significant correlation between 

foliage biomass and topsoil PSS or bulk density. Both topsoil PSS and topsoil 

Troxler bulk density significantly affected the relationship between fine roots and 

foliage at Rattray (PSS: Equation 7.1). However, a low r2 (r2 = 0.440) was 

obtained when topsoil Troxler bulk density was used (data not shown). 
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Figure 7.3: Box whisker plot of root:shoot ratios of E. grandis trees 209 DAP at Rattray. 

Treatment means are displayed above the box whisker. Treatments 

with different letters displayed above the box whisker are 

significantly different (p<0.05). 

 

FR = 0.066Fol + 2.328E-05PSS – 3.600E-03    Equation 7.1 

(r2 = 0.505; p<0.001) 

 

where FR is fine root biomass (kg); Fol is foliage biomass (kg); PSS is average 

PSS between 0 and 0.1 m (kPa). PSS in the 0 – 0.1 m depth layer ranged 

between 53 and 596 kPa and averaged 259 kPa. 
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These results indicate that there is an increase in biomass allocated to fine roots 

relative to foliage with increasing compaction. This relationship does not appear to 

be affected by ontogeny since foliage biomass is highly significantly related to 

biomass index, while fine root biomass is not. Therefore trees with similar foliage 

biomass are of a similar physiological age, but can have varying fine root biomass 

due to compaction. 

 

The range of PSS values for which Equation 7.1 is valid is extremely narrow 

(between 53 and 596 kPa), and would not normally be considered to have an 

effect on fine root growth (Sands et al., 1979; Misra and Gibbons, 1996; Zou et al., 

2001). Bulk density values, however, are high (between 1.28 and 1.58 Mg m-3). 

Since PSS in the top 0.03 m of soil was below 40 kPa, the averaging of PSS 

values over the top 0.1 m of soil (measurements were taken every 0.01 m) may 

have resulted in extremely low values in this layer of soil, substantially lowering 

the average value. 

 

Penetrometer soil strength was better able to predict the effects of compaction on 

fine root biomass than bulk density. This is most likely due to PSS being related to 

the resistance of a soil to root growth, unlike bulk density (Greacen and Sands, 

1980; Bengough et al., 1997). Increasing soil strength generally reduces root 

elongation rate exponentially, until a critical value, after which root penetration 

ceases (Greacen and Sands, 1980). In addition, a greater number of 

measurements were made per plot of PSS, perhaps increasing the accuracy of 

the measurement of PSS relative to bulk density in each plot. The significant 

effects of soil strength on fine roots in the top 0.1 m of soil has important 

implications for processes such as nutrient and water uptake. 

 

Sibisi (1998) measured fine root density and biomass under compaction 

treatments at Rattray in the previous rotation. Although no other tree components 

were measured, compaction increased fine root density and root biomass, 

supporting the results of this study.  
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The lack of response of fine roots or root:shoot ratios at Shafton to treatments is 

probably a result of the error associated with the measurement of the fine roots. In 

addition, no effects of residue management on fine roots were found at either trial. A 

similar lack of root responses to residue management has been found by others 

(e.g. Jones et al., 1999; Nkosana, 2002), despite the effect of residue management 

on the soil environment (Perry et al., 1982; Gonçalves and Mello, 2004).  
 

7.3.2. Survival 

 

7.3.2.1. Rattray  
 

a) Sub-plot trees 

 

Sub-plot tree survival (at every measurement date) was not significantly affected 

by compaction treatments and/or residue management (Table 7.5). 

 

Table 7.5: Mean sub-plot tree survival (%) as affected by compaction 

treatments and residue management at Rattray at various 

measurement dates (DAP). 

Compaction Residue management DAP 
Low Moderate High Broadcast Windrow Removed 

70 88.4 95.1 90.7 88.4 92.9 92.9 
133 88.3 91.2 87.2 86.8 90.1 89.8 
167 87.7 91.1 87.1 86.4 89.6 89.8 
209 87.5 90.9 87.1 86.3 89.4 89.8 

 

b) Main plot trees 
 

Survival of the main plot trees was good (Table 7.6). At 6 months of age there was 

a weakly significant (p<0.10) effect in which survival was slightly higher in the CH 

treatments than the CM or CL treatments. The significance of this effect decreased, 

however, as the trees grew (data not shown). In the previous trial, there were also 

no significant treatment effects (three harvesting operations x two residue 

management) on survival (Smith and du Toit, 2005). 
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Table 7.6: Mean main plot tree survival (%) as affected by compaction 

treatments and residue management at Rattray at various ages 

(months).  

Compaction Residue management Age 
Low Moderate High Broadcast Windrow Removed 

6 95.4 94.8 98.1 96.6 95.4 96.3 
13 95.4 94.8 97.2 96.3 95.4 95.7 
18 95.1 93.8 96.6 95.1 94.8 95.7 

23.5 95.1 93.8 94.4 94.1 94.1 95.1 
31.5 94.4 93.5 94.8 94.1 93.8 94.8 
41.5 93.2 92.0 93.2 91.7 92.9 93.8 

 

7.3.2.2. Shafton 
 
The accidental application of herbicide at 106 DAP in several plots at Shafton 

affected sub-plot tree growth (and mortality). However, this was not significant 

(data not shown), and the effect of this herbicide application was therefore 

excluded from the analyses. The lack of significant herbicide effects on survival 

and growth imply that, overall, herbicide application did not have a substantial 

effect on productivity, and confirms that productivity determined at canopy closure 

is not affected by stocking (Powers et al., 1996; 1998). 

 
a) Sub-plot trees 
 

Increasing compaction and decreasing residue retention generally improved the 

survival of sub-plot trees at Shafton (Tables 7.7 and 7.8). Since some plots were 

more affected by herbicide application, this was included as a covariate in the 

ANOVAs, with the exception of the 70 DAP measurement. However, the covariate 

did not have a significant effect. This is because in some cases herbicide 

application was severe enough to cause mortality, particularly in the CLB plots, 

whereas in other plots herbicide application was light, and although it caused 

defoliation, trees survived (in several CM and CH plots). 
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Table 7.7: Level of significance (p) determined by ANOVA of the effects of 

compaction treatments and residue management, and the interaction 

between them on the survival of sub-plot trees at Shafton at three 

measurement dates (DAP). 

Treatment 70 DAP 120 DAP 211 DAP 
Compaction 0.032 0.001 <0.001 
Residue NS <0.001 <0.001 
Compaction x residue NS NS 0.010 
 

Table 7.8: Effect of compaction and residue management (res man) on mean 

survival (%) of sub-plot trees at Shafton at three measurement dates 

(DAP). Treatments with different letters are significantly different 

(p<0.05) within measurement dates, and only significant results are 

shown. 

70 DAP 120 DAP 211 DAP 
Compaction Mean Compaction Mean Compaction Res man Mean 

High 98.7a High 94.8a High Removed 98.6a 

Moderate 96.9ab Moderate 93.7a Moderate Removed 97.3ab 

Low 94.7b Low 83.0b Low Removed 95.9ab 

    High Windrow 94.6abc 

  Res man  Moderate Windrow 90.5bc 

  Removed 97.3a Moderate Broadcast 90.5bc 

  Windrow 89.6b High Broadcast 88.4c 

  Broadcast 84.6b Low Windrow 80.3d 

    Low Broadcast 70.1e 

 

b) Main plot trees 
 

Main plot tree survival varied substantially (between 75 and 100%), and there 

were no significant treatment effects on any of the measurement dates (Table 7.9). 

A similar lack of significant treatment effects (of seven harvesting operations) 

on survival were found in the previous rotation at Shafton (Smith, 2006).  
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Table 7.9: Mean main plot tree survival (%) as affected by compaction 

treatments and residue management at Shafton at various ages (months).  

Compaction Residue management Age 
Low Moderate High Broadcast Windrow Removed 

6 90.3 93.1 97.2 92.1 94.0 94.4 
12 90.3 92.6 96.8 91.7 93.5 94.4 
18 89.4 90.7 95.8 89.8 93.1 93.1 

25.5 88.4 90.7 94.9 89.4 91.7 93.1 
30.5 88.0 90.7 94.4 89.4 90.7 93.1 

 

7.3.3. Growth 

 

7.3.3.1. Rattray 
 

a) Effect of compaction treatments and residue management on tree 

growth in sub-plots 

 

Compaction treatments significantly (p<0.05) affected average sub-plot tree GLD, 

except at 209 DAP. Significant effects were also found on sub-plot tree height, 

biomass index and crown diameter, except at 70 and 209 DAP (Figure 7.4; Table 

7.10; Appendices 7.7 - 7.10). Compaction reduced growth with the exception of GLD 

(and therefore BI) at 70 DAP. It is suggested that the lack of a relationship between 

compaction treatments and GLD at the early stage of growth is possibly due to the 

small trees not utilising all soil resources and thus not being affected by changes in 

soil resource supply. The lack of significant effects on crown diameter at the 209 DAP 

measurement is a result of this measurement coinciding with canopy closure of the 

sub-plot trees. 

 

Although residue management (or the interaction between compaction treatments 

and residue management) did not have a significant effect, growth was generally 

better in residue removed plots, than residue retained plots (Table 7.11).  
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Figure 7.4: Effect of compaction treatments on mean (a) ground-line diameter (GLD), (b) height, (c) biomass index (BI), and 

(d) crown diameter of sub-plot trees over time (days after planting; DAP) at Rattray. 
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Table 7.10: Effect of compaction treatments on mean ground-line diameter, 

height, biomass index, and crown diameter of sub-plot trees at 

Rattray at four measurement dates; days after planting (DAP). 

Treatments with different letters in the same column are significantly 

different (p<0.05). 

Compaction 70 DAP 133 DAP 167 DAP 209 DAP 
Ground-line diameter (mm) 

Low 3.92b 12.43a 17.24a 20.72 
Moderate 4.21a 11.74a 15.14ab 18.56 
High 3.58b 9.90b 13.42b 16.15 

Height (m) 
Low 0.404a 0.859a 1.151a 1.503a 
Moderate 0.407a 0.815a 0.977b 1.235ab 
High 0.375b 0.686b 0.874b 1.104b 

Biomass index (mm3) 
Low 7190a 159900a 418000a 794000a 
Moderate 8400a 128500ab 217000ab 508000ab 

High 5540b 90400b 234000b 453000b 
Crown diameter (m) 

Low 0.225 0.825a 0.735a 1.011 
Moderate 0.235 0.751a 0.690ab 0.862 
High 0.210 0.624b 0.584b 0.841 
 

Table 7.11: Effect of residue management on ground-line diameter, height, 

biomass index, and crown diameter of sub-plot trees at Rattray at 

four measurement dates; days after planting (DAP). Treatments are 

not significantly different.  

Residue management 70 DAP 133 DAP 167 DAP 209 DAP 
 Ground-line diameter (mm) 

Broadcast 3.75 10.81 14.68 17.49 
Windrow 3.99 10.92 14.61 18.07 
Removed 3.98 12.34 16.51 19.87 

 Height (m) 
Broadcast 0.399 0.778 0.979 1.235 
Windrow 0.405 0.75 0.971 1.259 
Removed 0.383 0.833 1.052 1.348 

 Biomass index (mm3) 
Broadcast 6440 119700 296000 544000 
Windrow 7740 110400 269000 532000 
Removed 6950 148600 354000 679000 

 Crown diameter (m) 
Broadcast 0.216 0.641 0.700 0.853 
Windrow 0.220 0.639 0.720 0.920 
Removed 0.234 0.729 0.780 0.941 
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Using regressions developed in Table 7.1 and accounting for mortality, total biomass, 

or NPP-RT at 209 DAP, was calculated to be 0.374, 0.255 and 0.220 kg m-2 for CL, CM 

and CH treatments, respectively. Broadcasting, windrowing or removal of residues, 

resulted in an average NPP-RT of 0.258, 0.262 and 0.331 kg m-2, respectively. 

 

It was observed that some plots had considerable variation in tree growth. The 

coefficient of variation (CV) was therefore calculated for both tree GLD and height 

for each plot at each measurement date. Compaction treatments had a significant 

(p<0.05) effect on GLD variability at 167 and 209 DAP (Table 7.12), while 

residue management had an almost significant (p<0.10) effect on GLD variability 

after 70 DAP (data not shown). No significant treatment interaction effects on GLD 

variability were found at any measurement date. In all instances where significant 

treatment effects were recorded, variation in tree GLD decreased in the order of 

CH>CL>CM (CL and CM treatments were not significantly different from one 

another), and B>W>R residue management. 

 

Table 7.12: F probability values† of compaction treatment and residue 

management effects on sub-plot tree GLD and height coefficient of 

variation (GLD-CV and Ht-CV, respectively) from ANOVA at Rattray 

133, 167 and 209 days after planting (DAP). Data were either 

transformed by (a) natural logarithm (ln x) or (b) square root (√x) to 

prevent violation of normality or error assumptions. 

133 DAP 167 DAP 209 DAP Source of 
Variation GLD-CVa Ht-CVb GLD-CV Ht-CV GLD-CV Ht-CV 
Compaction NS 0.007 0.018 NS 0.011 NS 
Residue 0.055 0.008 0.073 NS 0.056 NS 
Comp x Resid NS NS NS NS NS NS 
† NS: not significant; i.e. p>0.1 

 

At 133 DAP there were significant (p<0.01) compaction treatment and residue 

management effects (although no significant interaction effects) on tree height 

variability. At this measurement date, and at 167 DAP and 209 DAP, the variation 

in tree height decreased in the order of CH>CL>CM and B>W>R (Table 7.12). 
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In terms of the variation in BI, only residue management had a significant effect 

(p<0.05) at 133 and 209 DAP (data not shown). Broadcast residue management 

had a significantly higher CV than W or R residue management. There was no 

significant difference in CV of BI between W and R residue management, but 

CV values from W residue management were consistently higher than those 

from R residue management. 

 

b) Effect of compaction treatments and residue management on tree 
growth in main-plots 

 

Compaction treatments had a significant effect on the GLD and DBH of the main 

plot trees at six, 13 and 18 months of age (Figure 7.5; Table 7.13; Appendix 7.11). 

The level of this significance diminished with time from 6 months (p<0.01), to 13 

and 18 months (p<0.05), finally becoming non significant at 23.5 months of age 

and thereafter. Compaction treatments also had a significant effect on tree height, 

that also decreased with time from 6 months (p<0.01), to 13 months (p<0.05), to 

18 months (non-significant; Figure 7.5; Table 7.13; Appendix 7.12).  Ground-line 

diameter, DBH and height consistently decreased with increasing compaction 

intensity. Residue management, and the interaction between compaction 

treatments and residue management, had no significant effect on tree GLD, DBH 

or height at any time. 

 

No significant treatment effects were found on the variation in main plot tree 

GLD/DBH or height (CV) at any measurement date. 
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Figure 7.5: Effect of compaction treatments on mean (a) ground-line diameter (GLD) at 6 and 13 months of age and 

diameter at breast height (DBH) at 18 months of age, (b) DBH between 23.5 and 41.5 months of age, (c) height 

between 6 and 18 months of age, (d) height of main plot trees between 23.5 and 41.5 months of age (31.5 and 

41.5 month heights determined from regressions in Appendix 3.4) at Rattray. 
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Table 7.13: Compaction treatment effects on mean GLD or DBH (mm), and 

height (m) of main-plot trees at Rattray at six measurement dates 

(months). Treatments with different letters in the same row are 

significantly different (p<0.05). 

Compaction Months-GLD/DBH/Height 
Low Moderate High 

6-GLD 23.8a 21.3a 16.2b 
13-GLD 47.1a 43.4ab 37.3b 
18-DBH 51.3a 47.8ab 41.9b 
23.5-DBH 71.4 68.5 62.4 
31.5-DBH 93.0 92.4 87.4 
41.5-DBH 111.5 110.3 107.7 
6-Height 1.5a 1.3a 1.0b 
13-Height 2.6a 2.3ab 1.8b 
18-Height 5.7 5.4 4.9 
23.5-Height 6.8 6.6 5.9 
31.5-Heighta 10.8 10.8 10.6 
41.5-Heighta 13.9 13.8 13.7 
a  Heights not directly measured but determined from regressions developed in Appendix 3.4. 
 

c) Effect of compaction treatments and residue management on overall 
tree growth 

 

At Rattray, tree growth and productivity was consistently negatively affected by 

increasing compaction intensity. These negative effects became non-significant as 

the trees grew. This may be due to the growing tree roots being more easily able 

to overcome soil strength, or the decomposition of tree roots from the previous 

rotation yielding areas of lower soil strength (Nambiar and Sands, 1992; Laclau 

et al., 2001). In addition, increasing compaction intensity increased the amount of 

variation in the growth of sub-plot trees. This can have negative implications for 

stand stemwood productivity at rotation end (Tomé et al., 1994; Little et al., 2003; 

Little and van Staden, 2005). However, no significant treatment effects were found 

on the variability of main plot tree growth at Rattray. 

 

d) Effect of compaction treatments and residue management on basal 
area and volume of trees in main-plots  

 

The basal area and stemwood volume (per unit land area) were calculated for 

interest for the last two measurements performed at Rattray (Table 7.14). Statistical 
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analyses could not be performed on these values as it may result in erroneous 

conclusions as particularly volume was estimated using a simple equation 

(Equation 3.10), and can only be reliably determined at rotation end. Increasing 

intensity of compaction resulted in a considerable loss of stemwood volume which 

increased substantially between the 31.5 and 41.4 month measurements. Residue 

management had variable effects, with trees with windrow residue management 

having the highest volume initially, but later falling behind those with broadcast 

residue management. 

 

Table 7.14: Estimated average stand basal area (SBA), stemwood volume and 

volume loss relative to low compaction treatment or broadcast 

residue management as a result of compaction treatments (Comp) 

or residue management (Residue) of main plot trees at Rattray at 

31.5 and 41.4 months of age. 

Comp SBA Volume Loss Residue SBA Volume Loss 
 (m2 ha-1) (m3 ha-1) (%)  (m2 ha-1) (m3 ha-1) (%) 

31.5 months 
Low 10.699 38.475 0 Broadcast 10.012 42.924 0 
Moderate 10.452 37.441 2.688 Windrow 10.496 45.444 -5.871 
High 9.477 32.871 14.566 Removed 10.102 43.331 -0.946 

41.5 months 
Low 15.197 71.043 0.000 Broadcast 14.390 66.838 0.000 
Moderate 14.654 66.984 5.713 Windrow 14.887 68.667 -2.736 
High 14.162 63.946 9.990 Removed 14.723 67.683 -1.264 
 

7.3.3.2. Shafton 
 

a) Effect of compaction treatments and residue management on tree 
growth in sub-plots 

 

Residue management had a significant effect on GLD, height, BI and crown 

diameter of sub-plot trees at certain measurements times after planting (Figure 7.6; 

Table 7.15, Appendices 7.13 - 7.16). Trees in R plots initially grew better than 

those in B or W plots. However, as the trees grew, these differences decreased in 

significance until at 211 DAP they became non-significant (Figure 7.6). In contrast, 

compaction treatments did not have a significant effect on GLD, height, BI or crown 

diameter of the sub-plot trees at any measurement time (Appendices 7.13 - 7.16). 
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Figure 7.6: Effect of residue management on mean (a) ground-line diameter (GLD), (b) height, (c) biomass index (BI), and 

(d) crown diameter of sub-plot trees over time (days after planting; DAP) at Shafton. 
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Table 7.15: Effect of residue management on mean ground-line diameter, height, 

biomass index, and crown diameter of sub-plot trees at Shafton at 

three measurement dates; days after planting (DAP). Treatments with 

different letters in the same column are significantly different (p<0.05). 

Residue management 70 DAP 120 DAP 211 DAP 
Ground-line diameter (mm) 

Broadcast 3.07b 8.54b 16.71 
Windrow 3.14b 8.47b 15.59 
Removed 4.01a 10.09a 16.89 

Height (m) 
Broadcast 0.3126 0.5555b 1.081 
Windrow 0.2991 0.5419b 0.982 
Removed 0.3235 0.6089a 1.045 

Biomass index (mm3) 
Broadcast 3990b 59600b 417000 
Windrow 3980b 56500b 337000 
Removed 6910a 78100a 375000 

Crown diameter (m) 
Broadcast 0.157b 0.479b 0.836 
Windrow 0.149b 0.469b 0.817 
Removed 0.216a 0.565a 0.834 
 

At 211 DAP, NPP-RT was calculated (using regression equations in Table 7.2 and 

survival) to average 0.302, 0.270 and 0.324 kg m-2 under broadcast, windrowed 

and removed residue plots, respectively, while it averaged 0.284, 0.329 and 

0.283 kg m-2 in CL, CM and CH treatments respectively. 

 

Certain treatments were observed to have an effect on tree uniformity as 

determined by calculation of the CV of the growth measurements in each plot. At 

no stage did the inclusion of herbicide application as a covariate show significant 

effects on tree uniformity (data not shown). At the first measurement date (70 DAP) 

only compaction treatments had a significant effect (p<0.01 and p<0.05) on the CV 

of tree GLD and height (Table 7.16). For both GLD and height, CV values 

decreased in the order CL>CM>CH. At the next two measurement dates, however, 

it was only residue management that had a significant effect on the CV of tree 

GLD (at 120 and 211 DAP; p<0.001 and p<0.05, respectively) and height (only at 

120 DAP; p<0.01). In all instances, R plots had significantly lower CV values than 

the other residue management plots. 



 192 

 

Table 7.16: F probability values of compaction treatment and residue 

management effects on sub-plot tree GLD and height coefficient of 

variation (GLD-CV and Ht-CV, respectively) from ANOVA at Shafton 

at 70, 120 and 211 days after planting (DAP). Data was power 

transformed (either a: x3, or b: x2) to prevent violation of normality 

assumptions. 

 70 DAP 120 DAP 211 DAP 
Source of variation GLD-CV Ht-CV GLD-CVa Ht-CV GLD-CVb Ht-CV 
Compaction 0.008 0.031 NS NS NS NS 
Residue NS NS <0.001 0.007 0.018 NS 
Comp x Res NS NS NS NS NS NS 
 

b) Effect of compaction treatments and residue management on tree 
growth in main-plots 

 

Unlike the sub-plot trees, main plot tree GLD or DBH responded significantly 

(p<0.05) to compaction treatments, as well as residue management (but not the 

interaction between them) at all measurement dates except 6 months (Figure 7.7, 

Tables 7.17 and 7.18; Appendix 7.17). Increasing compaction intensity 

consistently reduced tree GLD or DBH. Similar effects were found with residue 

removal. At 6 months of age trees under R residue management had a higher, but 

not significantly so, GLD than those under W residue management. However, 

trees under these (R) treatments lost this advantage, eventually having a 

significantly (p<0.05) lower GLD or DBH than trees in the W or B treatments 

(at 30.5 months of age). 

 

There was no significant effect of either compaction treatments or residue 

management on main plot tree height, except at 12 months of age (Tables 7.17 

and 7.18; Appendix 7.18). Since similar trends to those in the GLD and DBH data 

were seen, these results may be due to the error associated with the difficulty of 

accurate measurement of tree heights above 3 m. 
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Figure 7.7: Effect of compaction treatments on mean (a) ground-line diameter (GLD) at 6 and 12 months of age, (b) diameter 

at breast height (DBH) between 18 and 30.5 months of age, and effect of residue management on mean (c) GLD at 

6 and 12 months of age, and, (d) DBH between 18 and 30.5 months of age of main plot trees at Shafton.  
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Table 7.17: Effect of compaction treatments on mean GLD or DBH (mm), and 

height (m) of main-plot trees at Shafton at five measurement dates 

(months). Treatments with different letters in the same row are 

significantly different (p<0.05). 

Months-GLD/DBH/Height Low Moderate High 
6-GLD 22.10 21.62 21.50 
12-GLD 48.33a 46.08ab 43.96b 
18-DBH 58.52a 56.00ab 53.13b 
25.5-DBH 86.09a 84.01a 80.69b 
30.5-DBH 97.96a 95.72ab 92.51b 
6-Height 1.2 1.2 1.1 
12-Height 2.4a 2.3ab 2.1b 
18-Height 6.1 5.8 5.6 
25.5-Height 9.9 9.6 9.5 
30.5-Heighta 11.6 11.5 11.3 
a  Heights not directly measured but determined from regressions developed in Appendix 3.4. 
 

Table 7.18: Effect of residue management on mean GLD or DBH (mm), and 

height (m) of main-plot trees at Shafton at five measurement dates 

(months) Treatments with different letters in the same row are 

significantly different (p<0.05). 

Months-GLD/DBH/Height Broadcast Windrow Removed 
6-GLD 22.74 20.33 22.15 
12-GLD 47.75a 45.87ab 44.73b 
18-DBH 58.10a 56.12ab 53.44b 
25.5-DBH 85.38a 85.44a 79.96b 
30.5-DBH 96.86a 98.05a 91.27b 
6-Height 1.3 1.1 1.2 
12-Height 2.4a 2.2ab 2.2b 
18-Height 6.0 5.8 5.8 
25.5-Height 9.7 9.9 9.4 
30.5-Heighta 11.6 11.7 11.3 
a  Height not directly measured but determined from regressions developed in Appendix 3.4. 
 

No significant treatment effects were found in the variation (CV) in mean main plot 

tree GLD/DBH or height (data not shown). 

 

c) Effect of compaction treatments and residue management on overall 
tree growth 

 

At Shafton, residue management had a more pronounced effect on tree growth 

and productivity than compaction treatments. Initially, residue removal increased 
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tree growth, and uniformity. Later, residue removal negatively affected tree growth 

and productivity. These results are probably due to changes in the soil 

environment and nutrient availability over time. Compaction treatments did not 

have a significant effect during the first 6 months of growth, however, from 12 

months of age, compaction significantly, negatively affected tree growth and 

productivity. In the main plots this was around the time of canopy closure when 

nutrient demand from the soil is at its highest, and when restrictions, due to soil 

compaction and strength, in the ability of roots to obtain nutrients will have a 

substantial impact. In addition, the growth of the trees may have necessitated the 

growth of roots into deeper soil layers, where they encountered considerable 

levels of soil strength.  

 

d) Effect of compaction treatments and residue management on basal 
area and volume of trees in main-plots  

 

At Shafton, basal area and stemwood volume (per unit land area) were only 

determined for the final measurement at 30.5 months of age (Table 7.19). As at 

Rattray, an compaction had a negative effect on stemwood volume while trees 

with windrow residue management had a larger volume than other trees (similar to 

the 31.5 month measurement at Rattray). 

 

Table 7.19: Estimated average stand basal area (SBA), stemwood volume and 

volume loss relative to low compaction treatment or broadcast 

residue management as a result of compaction treatments (Comp) 

or residue management (Residue) of main plot trees at Shafton at 

30.5 months of age 

Comp SBA Volume Loss Residue SBA Volume Loss 
 (m2 ha-1 (m3 ha-1) (%)  (m2 ha-1 (m3 ha-1) (%) 
Low 11.509 44.890 0 Broadcast 11.430 44.343 0 
Moderate 11.336 43.730 2.584 Windrow 11.894 46.413 -4.668 
High 11.020 41.810 6.863 Removed 10.569 39.827 10.184 
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7.3.4. Comparison between sub-plot and main plot tree survival and growth 

 

At Rattray, there was no significant effect of treatments on survival in either the 

sub-plots or main plots. At Shafton, tree survival in the sub-plots did not follow the 

same pattern, or was not related to that of the main plots. 

 

Overall growth responses to compaction treatments at Rattray indicate that the 

sub-plot trees responded in a similar manner to that of the main plot trees. 

However, the residue responses seen in the sub-plot trees were not seen in the 

main plot trees. At Shafton, no significant response to compaction treatments was 

found in the sub-plot trees but this was not the case in the main plot trees. In 

addition, responses to residue management treatments were reversed in the main 

plot trees. These results were reflected in statistical analyses when regressions 

were performed between the final plot average GLD of sub-plots (i.e. at 209 and 

211 DAP at Rattray and Shafton, respectively) and at all measurement times of 

main plot average GLD or DBH (Table 7.20). These analyses indicated that while 

sub-plot GLD measures at Rattray were significantly related to subsequent GLD 

and DBH measurements of main plot trees, that the percentage variance 

accounted for by the regressions (r2) was quite low, especially in the 41.5 month 

regression. Regressions between data at Shafton were non-significant, with the 

exception of the 6 month measurement, but this had an extremely low r2 value, 

and should therefore be discarded. Regressions between heights were not 

performed as latter heights were determined from regression equations. 

 

Of the studies using densely stocked plots to predict future effects on stands, 

only one trial has correlated growth with that in commercially stocked plots 

(Amateis et al., 2003a; 2003b; Sharma et al., 2003). Although the only variable in 

that trial was tree stocking, trees in densely stocked plots did follow the same 

pattern of growth as those in more commercially stocked plots. 
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Table 7.20:  Summary of statistical results of linear regressions performed 

between final average GLD of sub-plot trees (at 209 and 211 DAP at 

Rattray and Shafton, respectively) and subsequent measurements of 

GLD and DBH of main plot trees (months after planting; Month) at 

Rattray and Shafton. 

Rattray Shafton 
Month r2 F pr. Month r2 F pr. 
6 0.568 <0.001 6 11.1 0.050 
12 0.648 <0.001 12 NS NS 
18 0.629 <0.001 18 NS NS 
23 0.564 <0.001 25 NS NS 
31.5 0.503 <0.001 30.5 NS NS 
41.5 0.216 0.008    
 

Kelting (1999) and Watt et al. (2008) were the only studies found that used 

densely stocked plots to determine the effects of changes in soil properties. In 

both trials the growth of the densely stocked seedlings was substantially affected 

by the treatments as a result of changes in soil properties. However, tree growth in these 

densely stocked plots was not compared to the growth of commercially spaced trees. 

 

Although measurements of tree productivity and growth at rotation end have not 

yet been made, the results of this study indicate that the use of densely stocked 

sub-plots for the assessment of residue management effects on tree productivity 

or for the prediction of responses in commercially spaced trees may not be 

reliable. This is probably as a result of changes in residues and the effects they 

exert over time. Even where growth of trees in such sub-plots are used to assess 

the effect of soil properties that are relatively stable over time, such as 

compaction, results must be viewed with extreme caution. This is because very 

young trees require relatively small volumes of soil for their nutrient and water 

needs. As the trees grow, the volume of soil required increases and, depending on 

the soil type and amount of compaction, this could be problematic. In addition, 

previous rotation root systems may influence the responses obtained, and as with 

residues, these decompose over time, and may further lead to variable responses. 
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7.4. Conclusions 

 

The assessment of productivity using non-destructive measures of growth (such 

as GLD, height and BI) and LAI in young (<6-months-old) eucalypt stands as an 

alternative to destructive measurements of NPP-RT appears to be feasible. 

Although soil conditions alter the allocation of biomass to fine roots, this is not 

substantial enough to greatly affect total measurements of NPP-RT. Productivity in 

the young eucalypt stands was not significantly affected by SLA, foliar nutrient 

concentrations, or root:shoot ratios as has been suggested (e.g. Sands et al., 

1992; Gonçalves and Mello, 2004; Silveira et al., 2004). However, compaction, 

through soil strength, did affect root:shoot ratios at Rattray, indicating that over a 

rotation, a considerable amount of GPP may be allocated (and lost) to fine root 

respiration and turnover in compacted stands. Although foliar nutrient 

concentrations were not significantly related to productivity, they were significantly 

affected by compaction treatments and residue management at Shafton. The trends 

in foliar N and P concentrations measured when the trees were 6-months-old were 

similar to the trends in GLD/DBH measured when the trees were 12 months old, 

and older. At Rattray, no significant treatment effects were found on foliar nutrient 

concentrations, and after 18 months of age, no significant differences in DBH were 

measured. This may imply that foliar nutrient concentrations are linked to the 

future growth of the stand. 

 

Despite similar treatments being imposed at both sites, tree growth and 

productivity responses were quite different. Compaction was detrimental to growth 

at both sites at different stages of growth. Indications are that compaction is more 

detrimental to LTSP at sites similar to Shafton. At sites such as Rattray, 

compaction appears to have a negative initial effect which may delay canopy 

closure, but that may not affect rotation-end productivity, or LTSP. However, 

these responses may be due to insufficient replication of treatments. If losses 

in stemwood volume due to compaction are considered, a loss of 14.6% under 

CH treatments relative to CL treatments at Rattray 31.5 months after planting is 

over double the loss of 6.9% under the same treatments at 30.5 months after 

planting at Shafton. This indicates that compaction at sites such as Rattray may 
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be more detrimental than those similar to Shafton. However, stemwood volume 

loss under high compaction at Rattray decreased to 10.0% at 41.5 months after 

planting, which may indicate that the negative effect of compaction may not be 

apparent at rotation end. 

 

Residue management only significantly affected growth at Shafton, and residue 

removal was found to initially improve growth, but later decreased it. This trend, 

found by others (e.g. Proe et al., 1999; Smith et al., 2000), has been attributed to 

nutrient dynamics, particularly the availability of N. However, foliar nutrient results 

indicate that, at Shafton, P availability may have a larger effect than N availability. 

In addition, the results indicated that residue management has important 

implications for current stand productivity, as well as LTSP. If stemwood volumes 

were compared, residue removal slightly improved growth at Rattray, although this 

was generally very small (<2.7% at 41.5 months after planting). At Shafton 

however, stemwood volume at 30.5 months after planting was reduced by 

approximately 10.2% if residues were removed. Windrowing of residues actually 

increased stemwood volume by 4.7%, however, it is possible that this trend would 

not continue to rotation end. 

 

The inability of measures of tree growth and productivity in this study to separate 

the effects of climate, soils and management suggest that there is a need for the 

development of such an indicator of stand performance. 

 

The variation in growth and productivity results show that the effect of compaction 

and residue management on tree productivity cannot be predicted from responses 

obtained from one site, but should be assessed across site types. Unfortunately, it 

seems that this assessment cannot be performed by using densely stocked sub-

plots, as these cannot predict growth responses of commercially spaced trees in 

LTSP studies. 
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 Chapter 8 

 General Discussion and Conclusions 
 

The first main objective of this study was to evaluate the effect of different levels of 

soil compaction (implemented through harvesting practices) and residue 

management on soil properties. The second objective was to determine if the 

productivity of young, fast-growing Eucalyptus stands could be used as indicators 

of the changes in soil properties as a result of the treatments. Each objective is 

addressed in this chapter separately. Thereafter the implications for the forestry 

industry and possible future research are discussed. 

 

8.1 Effect of Compaction Treatments and Residue 

Management on Soil Properties 

 

8.1.1 Compaction Treatments 

 

Assessment of the trial sites prior to treatment implementation showed that there 

were still significant effects of the treatments imposed in the previous rotations 

on PSS.  Analysis and comparison of the PSS values with those obtained during 

the preceding studies (Smith and du Toit, 2005; Smith, 2006) led to the 

conclusion that there had been no natural amelioration of soil compaction over 

the previous rotation. It is therefore assumed that the sites have minimal 

capacity to self-ameliorate, and that the effects of compaction are maintained well 

into the future. In addition, due to the soil texture and organic C content of the 

Rattray soil, this site had a much higher soil maximum bulk density and was 

considered to be more susceptible to compaction, than the soil of Shafton. 

 

Application of the CM and CH treatments resulted in a significant increase in PSS 

at both trials, and in soil bulk density at Rattray. These increases were 

considerably higher in the CH than CM treatments. However, as a result of the 



 201 

manner in which these treatments were applied, compaction across the site was 

more variable in the CH, than the CM plots. Although the implementation of 

compaction treatments resulted in higher average bulk density values, average 

PSS was lower at Rattray than at Shafton. This implies that despite the relatively 

low soil bulk densities at Shafton, root growth may be limited by soil strength, 

more than at Rattray. 

 

At Rattray, compaction treatments significantly increased soil C between 0 and 

0.05 m at TH in the order CL>CM>CH. This is probably a result of the incorporation 

of residues by machinery into the topsoil, and this effect was non-significant by TF. 

A similar effect was not seen at Shafton probably because the soil type did not 

lend itself to substantial mixing of residues and soil when the compaction 

treatments were implemented, and because a considerable period of time elapsed 

between treatment implementation and soil sampling at TH. However, the 

compaction treatments at Shafton did have a significant effect on the amount of 

total N and available P (Bray 2) in the 0 – 0.05 m soil depth at TH. Total N and 

available P (Bray 2) were significantly higher in the CM treatment than either the 

CH or CL treatments, which were not significantly different from one another. This 

may be due to differences in the soil environment creating different rates of 

decomposition of residues, or due to variable uptake of nutrients. 

 

At both sites, increasing bulk density led to a decrease in AWC and RAW. At 

Rattray, the increase in soil C between 0 and 0.05 m with compaction treatments 

also further reduced AWC with increasing compaction intensity. However, at both 

sites, θv between 0 and 0.05 m significantly increased with increasing 

compaction intensity. This indicates that although a greater quantity of water is 

held in the soil with increasing compaction, a smaller proportion was available to 

plants. At Rattray, the amount of water available to plants (LLWR) may be further 

limited by soil strength below a depth of 0.2 m, while at Shafton, this limitation 

will be below 0.1 m. 
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8.1.2 Residue Management 

 

The quantity of residues at both sites decreased in the order B>W>R. Despite the 

application of residue management in a similar manner at both sites Rattray had 

lower initial quantities of residues than Shafton. This was probably due to 

differences in site and previous rotation species affecting the initial quantity of 

residues at each site. Also the amount that these residues would have 

decomposed would have varied with climate and the length of time between 

harvesting of the previous rotation and planting. Only at Shafton did soil C 

measured at TH between 0 and 0.05 m, significantly increase with residue 

retention. Due to the wildfire at this trial, effects of residue management on soil C 

at TF could not be determined. The lack of residue management effects on soil C 

at Rattray is probably due to the relatively low mass of residues, even in the B 

plots, and the climate, which is conducive for rapid decomposition of residues.  

 

Where significant, residue removal reduced the nutrient content of residues and 

soil at a site. This impact on site nutrients was greatest at Shafton. At Rattray, 

significant effects were only found at TF on Ca and Mg. This was despite Rattray 

having a lower content of available macronutrients in the soil than Shafton, with 

the exception of P and Ca. However, the total nutrient content of residues at 

Rattray was much lower than that of Shafton, resulting in smaller additions of 

nutrients to the site from residues. At Shafton, a significant decrease at TH in soil 

N, P, K, Ca and Mg contents was found with residue removal, while effects found 

at TF were excluded due to the wildfire. Residues at Shafton contained a 

substantial proportion of site P, as a result of the high P-fixing nature of the soil. In 

addition, where soil pH was significantly affected by residue management at both 

sites, it decreased with increasing residue removal. This has implications for the 

availability (e.g. P) and leaching potential of nutrients (e.g. N). 

 

The significant effect of residue management on soil C at Shafton (at TH between 

0 and 0.05 m) resulted in a change, mainly in AWC, which decreased with 

decreasing residue removal. In addition, at both sites, residue retention also 

increased θv between 0 and 0.05 m. However, this effect may only be significant 
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until either the majority of residues have decomposed, or until canopy closure. 

Nonetheless, residue retention has an important role in maintaining favourable soil 

water conditions in a young stand.  

 

Although a similar study of the effect of residue management on soil C and 

nutrients was performed at a site close to Shafton (du Toit et al., 2008), minimal 

research has been performed on sites similar to Rattray. Thus while some of these 

results are not new, they were necessary to attempt to quantify as many of the 

major variables as possible that would affect tree growth at both sites. In addition, 

this study was unique in that it included interaction effects between compaction 

and residue management. 

 

8.1.3 Interaction between Compaction Treatments and Residue 

Management 

 

At both sites, the effects of the CM and CH treatments were reduced by residue 

retention and resulted in a lower PSS in the top 0.4 m of soil, and at Rattray this 

was reflected in the bulk density results. This reduction was related to the quantity 

of residues left on the plot prior to compaction treatment implementation.  

 

No significant effects of the interaction between compaction treatments and residue 

management were found on the quantity of residues, soil C content, soil pH, or the 

nutrient content of either residues or soil at Rattray or Shafton. 

 

Both soil bulk density and C were found to have a significant effect on soil water 

retention characteristics, and therefore on AWC and RAW at both trials. However, 

significant interaction effects of compaction treatments and residue management 

were only found on soil bulk density at Rattray. Residue retention at this site could 

thus be used to reduce the negative effects of compaction on AWC. Significant 

interaction effects on θv (between 0 and 0.05 m) were found at both Rattray and 

Shafton. Both increasing compaction and residue retention increased θv between 

0 and 0.05 m, which on soils such as those of Rattray due to their inherently low 

AWC and RAW could be particularly advantageous to seedling establishment. 
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8.1.4 Conclusions 

 

The results clearly show that the soils at the two sites are susceptible to 

compaction; more so at Rattray than at Shafton. Also, neither soil possesses the 

ability to naturally ameliorate the effects of compaction. This means that any 

management practice that leads to compaction on these sites will have long-lasting 

effects that can only be ameliorated by human intervention. The effects of this 

compaction on other soil properties not only vary with soil type, but are also 

dependent on the quantity of organic C in the soil. 

 

Residue management effects also varied between the two sites. However, the 

initial source of variation was the residues themselves. Despite identical types of 

residue management at the two sites, initial quantities of residues, their nutrient 

content and the time the residues were able to decompose before planting, 

varied. In addition, decomposition rates during the study at the two sites would 

have varied due to differences in climate. Nonetheless, some key conclusions 

can be drawn. 

 

Residues reduced the amount of compaction inflicted by machinery in the top 0.4 m 

of soil. The greater the quantity of residues, the lower was the compactive effect of 

machinery on the soil. In addition, residue retention increases soil water content in 

the top 0.05 m of soil, at least in the first 8 months after felling, which has 

implications for nutrient mineralisation, seedling establishment and early tree 

growth. Residue management did not necessarily substantially affect soil organic C 

and nutrient levels in the short term (<3.5 years). However, residues do contain 

considerable quantities of nutrients, and removal of residues will negatively affect 

site nutrient capital in the long-term.  

 

Although the implementation of compaction treatments and residue management 

at both trials was almost identical, differences in residue quantities, residue 

decomposition state and rate, as well as soil type, often resulted in dissimilar 
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effects on soil properties. This indicates that the effect of compaction and residue 

management on the LTSP of soils cannot be assumed to be similar, but needs to 

be assessed over a range of sites. 

 

8.2 Eucalyptus Productivity as an Indicator of Changes in 

Soil Properties 

 

At Rattray, tree productivity until 18 months of age was significantly affected by 

compaction treatments, and decreased in the order CL>CM>CH. This was probably 

in response to increasing soil strength and decreasing water availability, despite 

the increases in soil C content with compaction intensity. Although not significant, 

this negative effect of compaction treatments was measured until 41.5 months of 

age, particularly in the DBH data. The decrease in the significance of compaction 

treatments over time may be a result of the ability of roots to explore areas within 

the soil with a favourable environment that were previously unavailable. This 

would occur with the decomposition of the previous rotation roots, yielding zones 

with a low PSS, high organic C and available soil water and nutrients. It is also 

possible that the tree roots of the current stand have grown to a size that can more 

easily overcome the soil strength levels. Compaction treatments also increased 

the variability in growth within sub-plots. This was most likely a result of the 

variability in soil strength demonstrated by the significant differences in bulk 

density and PSS values between interrows and stumplines. 

 

This change in response to compaction by trees as they grow gives new insights 

when data are compared with the previous study at Rattray (Smith and du Toit, 

2005). They did not find any significant compaction effects on tree productivity at 

any time. Similar results were found in this study in the older trees, i.e. 2 years and 

over. However, the significant responses in younger trees obtained in this study, 

coupled with the significant increases in soil bulk density, PSS and other related 

soil variables, indicate that perhaps compaction of the site has reached the 

threshold level for trees.   
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Residue management had no significant effect on tree productivity at Rattray. This 

is probably because the effect of residue management on site nutrients was 

relatively small, significantly affecting only soil Ca and Mg, and some non-significant 

decreases in other site nutrients with residue removal. 

 

Tree productivity (main plots) at Shafton was significantly negatively affected by 

compaction treatments between 12 and 30.5 months of age. This (relatively) late 

growth response to compaction treatments may be a result of either: 

a. Season, as the majority of the period of growth of sub-plot trees was during 

the wet season, unlike the main plot trees that grew through several 

seasons. 

b. The growing tree roots required larger volumes of soil to support 

aboveground growth, and these then encountered considerable soil 

strength. This would have also lowered the ability of the trees to access 

nutrients, particularly immobile nutrients such as P. Foliar results showed 

that P concentrations were highest in CL treatments, while soil available P 

contents were highest in CM treatments at the same sampling time. In 

addition, it is assumed that although significant effects on bulk density from 

compaction treatments were not found, increases in bulk density with 

increasing soil strength did occur. These increases in bulk density, would 

have generally also led to a decrease in AWC and RAW, further decreasing 

tree growth. Since these decreases in growth were found only in older 

trees, this implies that, initially, site resources were not limiting to the 

younger trees with lower water and nutrient requirements. 

 

In contrast, residue management had a substantial effect on tree growth at 

Shafton. Residue removal significantly increased tree growth until 120 DAP, and 

then significantly decreased growth from 12 months of age, until the final 

measurement at 30.5 months of age. Similar responses in other studies have 

been attributed to changes in soil nutrient availability, particularly N. The soil 

sampling regime, however, was not intense enough to detect when changes in 

available nutrients occurred. However, foliar nutrient concentration results suggest 

that by the time the trees were six months old, considerably greater amounts of N 

and P were available to trees in the residue retained plots. 
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Tree productivity, around six months of age, at both Rattray and Shafton, was 

significantly related to non-destructive growth measurements (e.g. GLD, height 

and BI), and these relationships were not affected by the treatments, with the 

exception of the (fine) root:shoot ratio at Rattray. However, treatment effects on 

tree productivity changed as the trees grew. Therefore, while trees can be used as 

indicators of soil conditions, the specific conditions that they respond to will vary 

through their growth cycle. In addition, although trees may overcome some soil 

conditions with growth, such as compaction at Rattray, the initial effects may have 

rotation-end effects on the stand, such as poor uniformity, which ultimately lead to 

lower productivity. From a management perspective, poor initial growth of trees 

leads to late canopy closure, and either increases costs through additional weed 

control, or increases losses through poor uniformity (Little and van Staden, 2005). 

 

8.3 Implications of the study and future work 

 

8.3.1 Compaction treatments 

 

A previous study at Rattray concluded that the effect of soil compaction on tree 

growth was negligible and that only in soils with a subsoil clay content above 10%, 

could growth losses be anticipated with soil compaction (Smith and du Toit, 2005). 

This effect was mainly attributed to an increase in AWC with soil compaction. 

Although the effects of compaction on growth from two years of age were not 

significant in the present study, this appears to be due to inadequate replication. 

The current results show that high levels of soil compaction lead to a reduction in 

productivity and growth, resulting in an almost 10% loss of stemwood volume at 

3.5 years of age. In addition, reductions in growth and productivity were also 

measured on moderately compacted plots despite PSS in these plots only 

attaining a maximum value of 1529 kPa, well below the threshold of 2000 kPa 

quoted in the literature (Section 7.1.3.2). Growth reductions due to compaction at 

Rattray are most likely due to decreasing AWC with increasing compaction 

(Section 6.3.2.1), a result that contrasted with the findings of Smith and du Toit 

(2005). The results indicate that once compaction at similar sites reaches a 



 208 

threshold level, this will negatively affect growth. This alters conclusions of 

previous studies that at sites similar to Rattray soil compaction has minimal effect 

on plantation productivity.  

 

The previous study at Shafton (Smith, 2006) found that increasing soil compaction 

reduced stemwood volume, although this was not always significant. A significant, 

but also negative effect on growth and productivity, until 2.5 years of age (at which 

stage, stemwood volume was 6.9% less in CH than in CL treatments) was also 

found in the present study. This was despite only a 7% increase in PSS in CH than 

in CL treatments, in contrast to an 89% increase in PSS in CH than in CL 

treatments at Rattray. The lack of a more pronounced effect of compaction at 

Shafton is most likely a result of the site’s high soil carbon content. Should this 

decrease in time, this site may be more prone to growth reductions due to soil 

compaction.   

 

8.3.2 Residue management 

 

No studies in South Africa have quantified the effects of residue retention in the 

reduction of the compactive effects of machinery. It was found that topsoil PSS 

increased less with increasing residue retention at both sites. Topsoil compaction 

is considered highly detrimental to LTSP, as it is in this part of the soil that most 

nutrients, water, and therefore tree roots are concentrated. 

 

A previous study (du Toit and Scholes, 2002) at a site close to Shafton concluded 

that similar sites were well buffered against nutrient depletion in the short and long 

term due to considerable soil stores and addition from atmospheric deposition. 

However, the present results at Shafton indicate that residue removal negatively 

impacts tree growth (an estimated 10% loss in stemwood volume was found in 

residue removed than broadcast residue treatments at 2.5 years of age), and 

although nutrient dynamics were not intensively monitored, residue removal did 

significantly decrease foliar concentrations of N and P. In addition, residue 

management did affect soil C content almost 16 months after implementation, 

however this effect could not be confirmed two years later due to a wildfire. 
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Nonetheless, this effect has implications not only for soil nutrient sustainability, but 

also soil water availability, as the loss of soil C reduced AWC (Section 6.3.2.2). In 

addition, soil C assists in a soils ability to resist compaction, and losses will 

increase the susceptibility of the site to compaction. In contrast, the Rattray site is 

considered to be less fertile due to its low CEC, and was thus expected to show a 

greater response in tree growth to residue management than at Shafton. This, 

however, was not the case, and growth and productivity at Rattray were found to 

be relatively unaffected by residue management. In the future however residue 

removals may affect productivity at Rattray. For example, site Ca is currently 

sufficient for tree growth, but continued residue removals at Rattray will result in 

this nutrient eventually becoming deficient, unless atmospheric deposition or 

weathering is sufficient to maintain soil Ca levels. 

 

The results of this study have considerable implications for the management of 

plantations on similar sites. At sites such as Rattray, compaction will negatively 

affect LTSP, and these effects can be reduced by the retention of as much 

residues as possible, at least for the duration of machinery movement. However, 

residue management does not appear to be essential for LTSP. In contrast, 

residue retention is necessary at sites such as Shafton to maintain LTSP, and to 

maintain soil C levels to aid in the reduction of the effects of compaction on tree 

productivity. 

 

8.3.3 Use of densely planted sub plots and tree productivity 

 

From a plant physiology perspective, although compaction and residue 

management affected tree growth and productivity, it did not affect the allometry of 

the densely planted trees, once the effects of ontogeny were accounted for. This is 

in contrast to other studies e.g. in South African plantation E.grandis, Campion 

(2005) concluded that water and nutrient availability affected allometry. 

 

The productivity of densely planted trees was found not to be a good indicator of 

LTSP, as these trees responded to short-term changes in the soil environment 

that may not affect LTSP. 
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8.3.4 Future work 

 

8.3.4.1 Future of the trials at Rattray and Shafton 

 

The continued re-implementation and monitoring of the Rattray trial is essential for 

understanding the effects of compaction and residue management on the long 

term productivity of such sites. With re-implementation it is likely that factors that 

currently do not limit growth may become growth limiting, and can then be 

identified. Should additional funding be available, the monitoring of soil water and 

tree water status would substantially aid in understanding the main factors 

affecting this site. Unfortunately the occurrence of the wildfire at Shafton has 

limited the utility of this rotation for its original purpose. However, it may be useful 

to re-implement the residue management treatments in the next rotation to try to 

tease out the actual reasons for improved growth with residue retention, and to 

determine if this effect is continued to rotation end. The investigation of the effects 

of residue management on nutrient and soil water dynamics would yield some new 

insights that would further understanding on the role of residues in LTSP. 

 

An additional use of the current and future data resulting from these trials is for the 

parameterisation and verification of process-based forest productivity and carbon 

storage/sequestration models. 

 

8.3.4.2 Further LTSP Research 

 

The results of this study show clearly that different sites respond differently to 

similar management practices, with equally variable effects on tree productivity 

and growth. Thus the work should be continued to investigate the range of sites 

used for plantation forestry in South Africa. For instance no data are currently 

available on the effect of compaction and residue management on the productivity 

of eucalypts or soil physical/nutritional properties on granite-derived soils. Over 

150,000 ha of such soils exist in the south-eastern Mpumalanga region alone, and 

about 24% of the total area under forestry is on these soils. These soils are easily 
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compacted and have a tendency to hard-set when dry. In addition, they are often 

deficient in plant available P. Therefore future work should concentrate on such 

sites, as productivity losses may be substantial if the effects of compaction and 

residue management are not understood. In addition, the role of residues in 

reducing the compactive effects of machinery across different sites with different 

residue loads needs to be established, as does the potential of practices that can 

ameliorate compaction, such as ripping. Should time and financial constraints be 

removed, an ideal study would include detailed monitoring of soil water, the effects 

on tree water status, and a focus on nutrient dynamics. 
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Appendix 3.1.  Monthly rainfall data for the durati on of the study. 

 

A. Rattray 

 

Fifty year monthly mean rainfall (from 1950 - 2000 records) and total monthly 

rainfall from September 2004 – April 2008 for a nearby sitea. 

a Detailed in Table 3.1 . 

 

B. Shafton 

 

Fifty year monthly mean rainfall (from 1950 - 2000 records) and total monthly 

rainfall from November 2004 – June 2007 for a nearby sitea. 

a Detailed in Table 3.1 . 

Month 50 yr mean  2004/2005 2005/2006 2006/2007 2007/2008 
September  73.0 94.5 16.4 20.5 36 
October 102.7 53.8 58.0 89.7 94.9 
November 113.6 111.6 84.3 87.1 168.2 
December 107.9 31.6 56.5 133.1 35.9 
January 139.1 167.0 101.6 83.5 53 
February 142.8 123.7 165.2 27.4 129 
March 107.6 122.3 108.1 34.0 108 
April 76.4 18.5 170.8 125.0 141.5 
May 54.3 31.2 46.1 1.2  
June 39.7 81.3 31.9 176.3  
July 46.2 12.3 2.5 3.0  
August 42.7 13.5 77.4 10.2  
Total 1046.1 861.3 918.8 791.0  

Month 50 yr mean 2004/2005 2005/2006 2006/2007 
November 108.0 120 103.9 135.1 
December 130.8 128.2 68.4 113.8 
January 136.0 232.3 187.1 72.4 
February 108.4 127.5 122.8 18.2 
March 100.3 160.4 84.1 98.6 
April 48.5 25.0 85.8 31.6 
May 25.0 6.4 17.3 0.4 
June 11.7 11.2 5.8 31.8 
July 14.1 0.4 0.0  
August 29.7 25.9 46.7  
September 45.3 23.3 37.2  
October 83.6 93.5 108.6  
Total 841.4 954.1 867.7  
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Appendix 3.2. Specifications of vehicles used to im plement the 

compaction treatments. 

 

Property 3-Wheel Logger Forwarder 
Name 225A Logger T17D Articulated 

Timber Truck 
Engine net power (kW) 46 198 
Front tyre size 
Front tyre pressure (kPa/psi) 

18.4 x 26 10 Ply 
unladen: 51.1/7.4 

20.5R25 
laden: 134 kPa/19 

Rear tyre size 
Rear tyre pressure (kPa/psi) 

4.00 x 15.5 10 Ply 
unladen: 94.7/13.7 

20.5R25 
laden: 134/19 

Mass (unladen; t) 5.2 17.82 
Mass (laden; t) 5.8 33.24 
Source:  www.bell.co.za, Bell Equipment Co. SA (Pty) Ltd, 7 Van Eck Place, Mkondeni, 
Pietermaritzburg, 3201, South Africa. 



 245 

Appendix 3.3. Trial diary of forestry operations an d main plot growth measurements carried out at 

Rattray and Shafton. 

 

A.  Rattray trial 

Date DAPa Operation 
24 Jul– 
03 Aug 2004 

-57 Previous rotation manually felled, branches removed and stemwood cross-cut into 5.5 m lengths. 
Bark stripped from wood. 

04-05 Aug 2004 -47 Wood stacked in appropriate positions in trial. 
05-10 Aug 2004 -46 Residue management treatments implemented. 
11 Aug 2004 -40 Old coppice stumps (from many rotations prior to previous rotation) cut to allow machinery 

movement. 
02-03 Sep 2004 -18 Moderate compaction treatments implemented. 
13-16 Sep 2004 -7 High compaction treatments implemented and stacked wood removed from trial. 
16-18 Sep 2004 -4 Densely planted sub-plot positions marked and entire trial manually pitted with hoes. Pre-plant 

spraying operation also performed to kill competing vegetation. 
20-21 Sep 2004 0 Trial planted, one litre of water applied to each seedling during planting. Seedlings in poor condition. 
12 Oct 2004 20 First blanking operation. Hot, dry weather conditions noted. 
15 Oct 2004 23 Two litres of water applied to every plant in trial to improve tree survival during continued hot, dry 

weather. 
25 Oct 2004 33 Second blanking operation. 
9 Nov 2004 48 Third blanking operation. Very hot weather conditions noted. 
10 Nov 2004 49 Chemical spraying of weeds. 
11 Nov 2004 50 Rain. 
12-14 Nov 2004 51 Coppice from previous rotation reduced. 
10 Dec 2004 79 Chemical spraying and hand removal of weeds. 
10 Jan 2004 110 Coppice from previous rotation reduced. 
11 Jan 2004 111 Chemical spraying and hand removal of weeds. 
23 Feb 2005 154 Coppice from previous rotation reduced. 
24 Feb 2005 155 Chemical spraying and hand removal of weeds. 
29 Mar 2005 188 Coppice from previous rotation reduced. 
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Date DAPa Operation 
14 Apr 2005 204 Chemical spraying and hand removal of weeds. 
19-20 Apr 2005 209 Biomass harvest of densely planted sub-plot trees and thinning of plots to main plot espacement. 
21 Apr 2005 211 Main plot tree measurement. 
25 Oct 2005 398 Main plot tree measurement. 
20 Apr 2006 575 Main plot tree measurement. 
05 Sep 2006 715 Main plot tree measurement. 
06 Jun 2007 987 Main plot tree measurement. 
07 Apr 2008 1292 Main plot tree measurement. 
a Negative DAP values are equivalent to days before planting. 
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B.  Shafton trial 

Date DAPa Operation 
17-20 Feb 2004 -279 Previous rotation manually felled, branches removed and stemwood cross-cut into 2.4 m lengths. 

Bark stripped from wood. 
23-27 Feb 2004 -273 Wood stacked in appropriate positions in trial. 
04-11 Mar 2004 -264 Residue management treatments implemented. 
22-23 Mar 2004 -246 Compaction treatments implemented and stacked wood removed from trial. 
06-10 Oct 2004 -48 Coppice from previous rotation reduced. 
13-14 Oct 2004 -41 Densely planted sub-plot positions marked and entire trial manually pitted with hoes. 
23-24 Nov 2004 0 Pre-plant spraying operation to kill competing vegetation followed by planting. One litre of water 

applied to each seedling during planting. 
30 Nov 2004 6 Wet cold conditions coupled with hail damage causes poor survival of trees. 
10 Dec 2004 16 First blanking operation. 
20 Dec 2004 26 Second blanking operation 
14 Feb 2005 82 Coppice from previous rotation reduced. 
10 Mar 2005 106 Accidental herbicide application in several plots by labour working in surrounding compartment. 
24 Mar 2005 120 Herbicide damage fully assessed during tree measurement. 
31 Mar 2005 127 Chemical spraying of weeds. 
07-08 Jun 2005 134 Chemical spraying of weeds and remaining coppice. 
22 Jun 2005 211 Biomass harvest of densely planted sub-plot trees and thinning of plots to main plot espacement. 
23 Jun 2005 212 Main plot tree measurement. 
30 Nov 2005 372 Main plot tree measurement. 
18 May 2006 541 Main plot tree measurement. 
09 Jan 2007 778 Main plot tree measurement. 
07 Jun 2007 927 Main plot tree measurement. 
25 Jun 2007 945 Fire through trial. 
a Negative DAP values are equivalent to days before planting. 
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Appendix 3.4. Relationship between tree DBH and hei ght at 

Rattray and Shafton. 
 

A. Relationship between tree DBH and height at Rattray at 31.5 and 41.5 

months after planting. 
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31.5: ln y = 2.759 - 3.487/x; r2 = 0.712***;

41.5: ln y = 2.949 - 3.558/x; r2 = 0.727***;

 

  

 Estimates of parameters 

Parameter estimate s.e. t(26) t pr. 
31.5 months 

Constant 2.759 0.053 51.69 <0.001 
x -3.487 0.424 -8.22 <0.001 

41.5 months 
Constant 2.949 0.047 62.95 <0.001 
x -3.558 0.425 -8.38 <0.001 
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B. Relationship between tree DBH and height at Shafton at 30.5 months 

after planting.  
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ln y = 2.930 - 4.607/x; r2 = 0.689***

  

 Estimates of parameters 

Parameter estimate s.e. t(25) t pr. 
Constant 2.930 0.066 44.13 <0.001 
x -4.607 0.602 -7.66 <0.001 
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Appendix 3.5. Calculation of soil water content, po rosity, air-

filled porosity and pore-size distribution. 
 

A. Soil water content 

 

The conversion of mass water content (θm) to volume water content (θv) was 

calculated using the following equation: 

 

θv = θm * ρb/ρw         

 

where ρb is soil bulk density, and ρw = density of water (0.998 Mg m-3 at 20 °C). 

 

B. Soil porosity, air-filled porosity and pore-size distribution 

 

Total porosity can be determined from bulk density, as follows:  

 

εt = 1 – (ρb / ρs)         

 

where εt is the total porosity (m3 m-3); ρb is the bulk density (Mg m-3) and ρs is the 

particle density, assumed to be 2.65 Mg m-3 for most soils, as total porosity is not 

very sensitive to variations in particle density found in the field (Kay and Angers, 

2000). 

 

Air-filled porosity can be determined as below: 

 

εa = εt – θv(FC)         

 

where θv(FC) is the volumetric water content at field capacity. 
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Pore-size distribution can be determined from water retention data in conjunction 

with total porosity (Kay and Angers, 2000). The matric potentials at which water is 

held in certain size pores can be determined from the capillary equation:  

 

P = 2γ / r          

 

where P is matric suction in kPa; γ is the surface tension of water (estimated to be 

pure water at 20 °C = 0.073 N m -1); r is the radius of the pores in question. 

Macropores are considered as pores greater than 0.75 mm radius, micropores are 

considered smaller than 0.3 mm radius, and mesopores occupy the radii between 

the two (Blackwell et al., 1990; Brady and Weil, 1999; Kay and Angers, 2000). 

 

From the matric potentials determined by the capillary equation, the corresponding 

volumetric water contents at various bulk densities are determined from water 

retention curves. These are then used to calculate the quantity or percentage of 

total pore volume occupied by the range of pores at various bulk densities.
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Appendix 3.6. Calibration of the Troxler surface mo isture density 

gauge.  

 

A. Introduction 

 

The Troxler has a single probe which contains a 137Cs gamma radioactive source, 

which is lowered into a hole (made by hammering a sharpened rod into the soil) to 

the desired depth and a one minute count taken. This measures the radiation 

transmitted and backscattered through the soil between the source and the 

detector on the base of the machine (at the soil surface). Since soil is 

heterogeneous, certain components such as rock fragments and carbon (and 

therefore organic matter), affect the thermalisation of neutrons released by the 

source more than others (e.g. aluminium, silicon and oxygen; Hignett and Evett, 

2002). Consequently, bulk density measurements obtained using a Troxler should 

be calibrated for different soils (King and Haines, 1979; Steele et al., 1983; 

Cássaro et al., 2000). Therefore in this study, Troxler bulk density values were 

regressed against their corresponding undisturbed soil core bulk density values to 

yield a calibration for the Troxler. The improvement in this regression by the 

inclusion of soil C values as a predictor variable was also evaluated.  

 

B. Rattray 

 

A significant relationship between bulk density measured on undisturbed soil cores 

(0 – 0.2 m) and Troxler bulk densities was obtained (Figure 3.6.1 , Table 3.6.1 ). 

This was despite the recommendation by Steele et al. (1983) that at least 83 soil 

cores would be required to obtain a correlation coefficient of at least 0.65 (only 20 

cores were used in this study). Soil C did not have a significant effect on bulk 

density measured by the Troxler, probably as a result of the very low 

concentration of organic carbon (between 0.12 and 0.78% m/m).  
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Figure 3.6.1:  Relationship between bulk density determined on undisturbed soil 

cores and that measured with a Troxler at Rattray. 

 

Table 3.6.1: Estimates of parameters of the regression between undisturbed soil 

core bulk density and that measured with a Troxler at Rattray. 

Parameter estimate s.e. t(19) t pr. 
Constant -276 233 -1.18 0.252 
x 1.151 0.148 7.77 <.001 
 

C. Shafton 

 

Although topsoil Troxler bulk density was significantly positively related to bulk 

density determined on undisturbed soil cores, this relationship was extremely 

weak (data not shown; r2 = 0.182; 0.001<p<0.01). This was despite the use of 27 

undisturbed soil cores (as opposed to 20 in the Rattray trial) for the calibration. 

Inclusion of C content of the soil cores improved the correlation (data not shown; 

r2 = 0.549 p<0.01). In this relationship, a positive effect of C on Troxler bulk 

density values was found. There was a much greater scatter in the data obtained 

between 0.1 and 0.2 m soil depth when compared to the 0 – 0.1 m soil depth 

(Figure 3.6.2 ). If the data from 0.1 – 0.2 m soil depth are excluded, the 

relationship between core bulk density and Troxler bulk density (excluding C 

values) improved (r2 = 0.581 p<0.001; Table 3.6.2 ). 
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Figure 3.6.2:   Relationship between bulk density determined on undisturbed soil 

cores and that measured with a Troxler in the topsoil at the Shafton 

trial. The regression displayed is for the 0-0.1 m values only. 

 

Table 3.6.2: Estimates of parameters of the regression between undisturbed soil 

core bulk density and that measured with a Troxler at Shafton 

between 0 and 0.1 m. 

Parameter estimate s.e. t(13) t pr. 
Constant 0.219 0.158 1.39 0.188 
x 0.674 0.149 4.52 <.001 
 

D. Discussion 

 

At both trials, there were discrepancies between bulk density measured with a soil 

core, and that with a Troxler. At Rattray, the Troxler generally underestimated bulk 

densities below 1.47 Mg m-3. At Shafton, the Troxler underestimated bulk density 

over the range measured. The low C content and more homogeneous soil at 

Rattray may have reduced the noise in the data around the relationship between 

bulk densities measured with the Troxler and soil cores, unlike at Shafton. At the 

latter trial, C had a positive effect on Troxler bulk density (i.e. overestimation of 

bulk density when compared to soil core values). The reason for the difference 

between the two trials for the range of values at which the Troxler measured 

accurately was probably the result of differences in soil C, and perhaps texture 

and structure. 
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The greater scatter in Shafton trial bulk density data from the 0.1-0.2 m layer when 

compared to that of the 0-0.1 m layer may be a result of higher soil C combined 

with the different angle that the radiation travels from the source to the detector in 

the Troxler that may result in some error. In addition, Troxler bulk density values 

for the 0.1-0.2 m layer were calculated from the values given by the Troxler for the 

0-0.1 m and 0-0.2 m soil layer. These results also indicate that in soils high in 

organic C, reliable determination of bulk density using a Troxler requires a greater 

number of core samples. 

 

The underestimation of bulk density by a Troxler surface moisture density gauge 

has been found in some studies. Bulk density measured by a Troxler was 

consistently 0.3 Mg m-3 lower than that measured with soil cores (King and 

Haines, 1980). However, no mention of soil organic carbon contents was made, 

and bulk densities (measured with soil cores) ranged between 1.36 and 1.76 Mg 

m-3 (similar to those at Rattray). A slight underestimation (with one exception) of 

bulk density by a Troxler when compared to that measured by soil cores was also 

found at a South African sugarcane site (between 1.5 and 2.0 Mg m-3; Swinford 

and Meyer, 1985). Page-Dumroese et al. (1999) found that a Troxler 

overestimated soil bulk density on a soil containing rock fragments. A positive 

effect of organic carbon on Troxler bulk density values leading to an 

overestimation of bulk density has also been found by others (King and Haines, 

1979; Steele et al., 1983; Hignett and Evett, 2002).  
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Appendix 3.7. Comparison between soil organic carbo n 

methods. 
 

A. Introduction 

 

Soil organic carbon content was determined both by the WB and LOI methods. 

Two methods were used because of their relative (to one another) dis/advantages 

(Donkin, 1991; Schulte, 1995): 

WB: determines easily oxidisable organic carbon content and is used to estimate 

(by calculation) total soil organic carbon content as well as soil organic 

matter content. A disadvantage is that a factor (generally 1.33) is used to 

calculate total soil organic carbon content, and this factor has been found to 

vary (Nelson and Sommers, 1996; Kamara et al., 2007). 

LOI: determines soil organic matter content which can be converted into soil 

organic carbon content by a factor. A drawback of this method is that in 

high (2:1) clay soils ignited at temperatures above about 440°C, structural 

water or hydroxyl groups are lost which result in an increased loss in mass 

and an overestimation of organic C (Schulte and Hopkins, 1996; Wang et 

al., 1996; Konan et al., 2002). In South African forestry soils a factor of 

0.284 has been determined only for soils with an easily oxidisable organic 

carbon content (WB) of less than 5 % (Donkin, 1991). 

 

As a result, relationships were sought between soil organic carbon content 

determined by WB and LOI to allow the conversion of LOI values (reported 

throughout this study as C) into total organic carbon values. 

 

B. Rattray 

 

A significant regression was obtained between raw LOI values (i.e. not adjusted 

using the factor of 0.284) and WB total organic carbon values obtained for the 

same samples (Figure 3.7.1 ; Table 3.7.1 ). 
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Figure 3.7.1:  Relationship between Walkley-Black organic carbon (WB; % m/m) 

and loss (of mass) on ignition (LOI; % m/m) at Rattray. 

 

Table 3.7.1: Estimates of parameters of the regression between Walkley-Black 

organic carbon and loss (of mass) on ignition at Rattray. 

Parameter estimate s.e. t(196) t pr. 
Constant 0.0743 0.0213 3.49 <.001 
x 0.4902 0.0149 32.99 <.001 
 

C. Shafton 

 

Raw LOI values (i.e. not adjusted using the factor of 0.284) were significantly and 

positively related to WB total organic carbon values at Shafton (Figure 3.7.2 ; 

Table 3.7.2 ). 
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Figure 3.7.2:  Relationship between Walkley-Black organic carbon (WB; % m/m) 

and loss (of mass) on ignition (LOI; % m/m) at Shafton. 

 

Table 3.7.2: Estimates of parameters of the regression between Walkley-Black 

organic carbon and loss (of mass) on ignition at Shafton. 

Parameter estimate s.e. t(200) t pr. 
Constant -9.383 0.408 -23.02 <.001 
x 0.7768 0.02 38.89 <.001 
 

D. Discussion 

 

Significant positive relationships between LOI and WB values have been found in 

other studies (e.g. Wang et al., 1996; Konan et al., 2002; Cresser et al., 2007). 

The lower intercept and steeper slope of the relationship obtained at Shafton when 

compared to Rattray may indicate that a greater loss of structural water or 

hydroxyl groups took place during LOI. However, the good correlation coefficients 

of these relationships (r2>0.8) indicate that total organic carbon (WB) at the trials 

can be determined from raw LOI values. 
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Appendix 3.8. Determination of coarse root biomass.  
 

A. Introduction 

 

Roots are generally classified as either fine (<2mm diameter) or coarse (>2 mm 

diameter) (Ares and Peinemann, 1992; Fredericksen and Zedaker, 1995; 

Landsberg and Gower, 1997; Vogt et al., 1997; Gonçalves and Mello, 2004). Tree 

and sroots, particularly fine roots, are generally concentrated in the upper soil 

layers, and this has been well documented across a number of species in mixed 

and monoculture plantations (Nambiar, 1983; Fabião et al., 1990; Ares and 

Peinemann, 1992; Bouillet et al., 2002; O’Grady et al., 2005). This high surface 

concentration of roots is attributed to efficient water and nutrient uptake as 

accretion of organic matter, availability of nutrients and warmer temperatures are 

found in this surface soil layer (Davis et al., 1983; Strong and La Roi, 1985; 

Fredericksen and Zedaker, 1995). The distribution of roots in the soil has been 

studied in the previous rotation at Rattray, and at two sites in the KwaZulu-Natal 

Midlands close to Shafton. At Rattray almost double the biomass of roots were 

found in the 0 – 0.1 m versus the 0.1 – 0.2 m soil depth layer of the previous E. 

grandis x camaldulensis stand (Sibisi, 1998), while 60% of fine, and 40% of coarse 

roots of three year-old E. grandis trees were found in the top 0.3 m of soil at the 

Midlands sites (Nkosana, 2002). 

 

B. Materials and methods 

 

Refer to Sections 3.2.6.1  and 3.3.3.2. 

 

C. Results and discussion 

 

Significant (p<0.001) relationships were obtained between the approximate 

volume of roots and their mass at both trials (Figure 3.8.1 ; Tables 3.81 and 3.82). 

Rates of taper of roots with an end diameter of 2 mm were not related to their start 
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diameter (data not shown), and were therefore averaged. At Rattray and Shafton, 

root taper averaged 37.5 and 23.6 mm length mm diameter-1, respectively. 
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Figure 3.8.1:  Relationship between coarse root mass and volume of E. grandis 

trees at (a) Rattray, and (b) Shafton. 

 

Table 3.8.1: Estimates of parameters of the regression between coarse root 

mass and volume of E. grandis trees at Rattray. 

Parameter estimate s.e. t(211) t pr. 
Constant 0.891 0.200 4.460 <0.001 
x 2.334E-04 8.040E-06 29.050 <0.001 
 

Table 3.8.2: Estimates of parameters of the regression between coarse root 

mass and volume of E. grandis trees at Shafton. 

Parameter estimate s.e. t(220) t pr. 
Constant 0.590 0.132 4.470 <0.001 
x 2.938E-04 1.080E-05 27.140 <0.001 
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This method of determination of the coarse root biomass in trees was not found in 

eucalypt literature. Highly significant correlations between root length and mass 

were obtained for coarse roots of P. radiata (Jackson and Chittenden, 1981) and 

between root diameters and mass of P. sylvestris L. (Helmisaari et al., 2002). The 

majority of studies investigating this portion of biomass in the field generally did so 

through extensive excavation of the root system (e.g. Fabião et al., 1995; 

Bernardo et al., 1998; Misra et al., 1998a; Campion, 2005) or by using root coring 

methodology (e.g. Misra et al., 1998a; Nkosana, 2002). However, the results 

indicate that the method used here may have potential for use in other studies of 

small trees. 
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Appendix 4.1. Results of statistical analyses of Tr oxler soil bulk 

density at Rattray. 

 

A.  ANOVA of the effect of compaction treatments (Comp), residue 

management, plot position (interrow and stumpline; IR/SL) and soil 

depth of measurement on Troxler bulk density at Rattray. Blocking 

factor: replicate (Rep), whole plots: treatment (i.e. compaction x 

residue; trt). 

Source of variation df s.s. m.s. v.r. F pr. 
Rep stratum 2 1165 582 0.19  
Rep x trt      
Comp 2 888547 444273 142.20 <0.001 
Residue 2 70741 35370 11.32 <0.001 
Comp x residue 4 38755 9689 3.10 0.046 
Residual 16 49988 3124 1.13  
      
Rep x trt x IR/SL stratum      
IR/SL 1 36121 36121 13.02 0.002 
IR/SL x comp 2 16814 8407 3.03 0.073 
IR/SL x residue 2 1814 907 0.33 0.725 
IR/SL x comp x residue 4 1341 335 0.12 0.973 
Residual 18 49937 2774 1.48  
      
Rep x trt x IR/SL x depth stratum      
Depth 2 563801 281900 150.68 <0.001 
IR/SL x depth 2 11818 5909 3.16 0.048 
Depth x comp 4 18881 4720 2.52 0.048 
Depth x residue 4 2997 749 0.40 0.808 
IR/SL x depth x comp 4 2516 629 0.34 0.853 
IR/SL x depth x residue  4 2624 656 0.35 0.843 
Depth x comp x residue 8 8761 1095 0.59 0.787 
IR/SL x depth x comp x residue 8 7701 963 0.51 0.842 
Residual 72 134702 1871   
      
Total 161 1909024    
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B. Mean Troxler bulk density values between compaction treatments and 

three soil depths at Rattray. 

Compaction Depth (m) Troxler bulk density † (Mg m -3) 
High 0.2 – 0.3 1.70a 
High 0.1 – 0.2 1.68a 
Moderate 0.2 – 0.3 1.58b 
Moderate 0.1 – 0.2 1.58b 
High 0 – 0.1 1.54c 
Low 0.2 – 0.3 1.52c 
Low 0.1 – 0.2 1.47d 
Moderate 0 – 0.1 1.47d 
Low 0 – 0.1 1.38e 
† Treatments with different letters are significantly different (p<0.05). 
 

C. Mean Troxler bulk density values between plot position 

(interrow/stumpline) and three soil depths at Rattray. 

Plot position Depth (m) Troxler bulk density † (Mg m -3) 
Interrow 0.2 – 0.3 1.63a 
Interrow 0.1 – 0.2 1.59b 
Stumpline 0.2 – 0.3 1.57b 
Stumpline 0.1 – 0.2 1.57b 
Interrow 0 – 0.1 1.47c 
Stumpline 0 – 0.1 1.46c 
† Treatments with different letters are significantly different (p<0.05). 
 

D. Selected results of ANOVA’s of the effect of compaction and residue 

management on Troxler bulk density at three soil depths at Rattray.  

Source of variation  df m.s. F pr. m.s. F pr. m.s. F pr. 
Depth (m):  0 – 0.1 0.1 – 0.2 0.2 – 0.3 
Compaction 2 227502 <0.001 371390 <0.001 300831 <0.001 
Residue 2 21636 0.002 33465 <0.001 21078 0.052 
Comp x residue 4 12117 0.009 6251 0.150 5748 0.509 
Residual 99 3374  3619  6920  
Total 107       
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E. Mean Troxler bulk density values (Troxler) between compaction 

treatments and residue management at three soil depths at Rattray. 

Depth 
(m) 

Compaction  Residue 
management 

Troxler 
(Mg m -3) 

LSD†  
(p<0.05) 

LSD†  
(p<0.01) 

High Windrow 1.57 a a 
High Removed 1.55 ab ab 
High Broadcast 1.50   bc abc 

Moderate Removed 1.49     c   bcd 
Moderate Broadcast 1.48     cd     cde 
Moderate Windrow 1.44      de      def 

Low Removed 1.42        ef      def 
Low Windrow 1.38          f          fg 

0 – 0.1 

Low Broadcast 1.34           fg           g 
High  1.68 a a 

Moderate  1.58   b   b 
Low  1.47     c     c 

 Broadcast 1.55 a a 
 Windrow 1.57   b ab 

0.1 – 0.2 

 Removed 1.61     c    b 
High  1.70 a a 

Moderate  1.58   b   b 
Low  1.52     c     c 

 Broadcast 1.58 a NS 
 Windrow 1.59   b NS 

0.2 – 0.3 

 Removed 1.63   b NS 
† Treatments with different letters are significantly different. 
 

F. Mean Troxler bulk density values between compaction treatments and 

plot position (interrow/stumpline) at Rattray between 0 and 0.3 m. 

Compaction Plot position Troxler bulk density † (Mg m -3) 
High Interrow 1.67a 
High Stumpline 1.61b 
Moderate Interrow 1.55c 
Moderate Stumpline 1.54c 
Low Interrow 1.47d 
Low Stumpline 1.45d 
† Treatments with different letters are significantly different (p<0.1). 
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Appendix 4.2. Results of statistical analyses of Tr oxler soil bulk 

density at Shafton. 
 

A.  ANOVA of the effect of compaction treatments (Comp), residue 

management, plot position (interrow and stumpline; IR/SL) and soil 

depth of measurement on Troxler bulk density at Shafton. Blocking 

factor: replicate (Rep), whole plots: treatment (i.e. compaction x 

residue; trt). 

Source of variation df s.s. m.s. v.r. F pr. 
Rep stratum 2 35623 17812 1.78  
Rep x trt      
Comp 2 14850 7452 0.74 0.493 
Residue 2 907 453 0.05 0.956 
Comp x residue 4 18493 4610 0.46 0.764 
Residual 16 160434 10027 1.89  
      
Rep x trt x IR/SL stratum      
IR/SL 1 1338 1338 0.25 0.622 
IR/SL x comp 2 6549 3274 0.62 0.551 
IR/SL x residue 2 29696 14848 2.79 0.088 
IR/SL x comp x residue 4 2046 511 0.10 0.982 
Residual 18 95706 5317 1.01  
      
Rep x trt x IR/SL x depth stratum      
Depth 2 899013 449507 85.57 <0.001 
IR/SL x depth 2 13473 6736 1.28 0.284 
Depth x comp 4 15599 3900 0.74 0.566 
Depth x residue 4 24297 6074 1.16 0.337 
IR/SL x depth x comp 4 9113 2278 0.43 0.784 
IR/SL x depth x residue  4 5165 1291 0.25 0.911 
Depth x comp x residue 8 24906 3113 0.59 0.781 
IR/SL x depth x comp x residue 8 24716 3089 0.59 0.785 
Residual 72 378242 5253   
      
Total 161 1760111    
 

B. Mean Troxler bulk density values at three soil depths at Shafton. 

Depth (m) Troxler bulk density † (Mg m -3) 
0.2 – 0.3 1.11a 
0.1 – 0.2 1.03b 
0 – 0.1 0.93c 

† Treatments with different letters are significantly different (p<0.05). 
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Appendix 4.3. Statistical analyses of treatment eff ects on mean 

PSS0 at Rattray. 

 

A.  ANOVA of the effect of compaction treatments, plot position 

(interrow and stumpline; IR/SL) and soil depth of measurement on 

PSS0 at Rattray. Blocking factor: replicate (Rep), whole plots: 

treatment (i.e. compaction x residue; trt); covariate: soil water 

content. 

Source of variation df  s.s. m.s. v.r. cov.ef  F pr. 
Rep stratum       
Covariate 1 21793 21793 0.00  0.948 
Residual 6 28264926 4710821 2.60 0.86  
       
Rep x trt stratum       
Comp 2 11034456 5517228 3.04 0.97 0.083 
Covariate 1 1862216 1862216 1.03  0.329 
Residual 13 23583057 1814081 3.41 1.00  
       
Rep x trt x IR/SL stratum 
IR/SL 1 133610 133610 0.25 1.00 0.621 
IR/SL x com 2 556541 278271 0.52 0.93 0.600 
Covariate 1 681853 681653 1.28  0.271 
Residual 20 10624866 531243 8.21 1.01  
       
Rep x trt x IR/SL x depth stratum 
Depth 16 171086159 10692885 165.21 0.89 <0.001 
IR/SL x depth 16 7371618 460726 7.12 1.00 <0.001 
Depth x comp 32 11387915 355872 5.50 1.00 <0.001 
IR/SL x depth x comp 32 1974539 61704 0.95 1.00 0.543 
Covariate 1 21174 21174 0.33  0.568 
Residual 671 43429203 64723  1.00  
       
Total 815 371614902     
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B. Mean PSS0 (kPa) values in the interrow and stumpline at Rattray. 

Interrow Stumpline Depth (m) 
Mean PSS0 LSD† Mean PSS0 LSD† 

0.05 31.5 q 42.1 q 
0.10 221.1 p 239.9 p 
0.15 545.3 n 486.8 o 
0.20 1114.6 l 846.0 m 
0.25 1540.0 abcd 1155.9 kl 
0.30 1697.0 ab 1370.5 defghij 
0.35 1710.9 a 1444.6 defgh 
0.40 1633.8 abc 1446.0 defgh 
0.45 1522.0 bcd 1473.7 cde 
0.50 1426.4 defghij 1485.3 cde 
0.55 1343.1 efghij 1481.0 cde 
0.60 1285.2 ghijkl 1471.6 cde 
0.65 1259.4 ijkl 1449.8 defg 
0.70 1248.4 jkl 1432.8 defghi 
0.75 1268.0 hijkl 1430.4 defghi 
0.80 1291.2 fghijk 1469.3 cdef 
† Treatments with different letters are significantly different (p<0.05). 

 

C. Mean PSS0 (kPa) values different compaction treatments at Rattray. 

High Moderate Low Depth  
(m) Mean PSS0 LSD† Mean PSS0 LSD† Mean PSS0 LSD† 

0.05 30.9 l 34.8 l 44.6 l 
0.10 233.1 kl 235.4 kl 223.0 kl 
0.15 553.2 j 500.6 jk 494.3 jk 
0.20 1151.3 ghi 904.3 i 885.2 i 
0.25 1734.5 abc 1162.9 ghi 1146.4 hi 
0.30 2004.5 a 1291.9 efgh 1304.8 efgh 
0.35 2004.4 a 1314.2 efgh 1414.8 defgh 
0.40 1892.8 ab 1337.7 efgh 1389.1 defgh 
0.45 1755.6 abc 1365.1 defgh 1372.7 defgh 
0.50 1609.1 bcd 1414.5 defgh 1343.9 defgh 
0.55 1532.7 cde 1420.7 defgh 1282.7 efgh 
0.60 1468.6 cdef 1410.5 defgh 1256.1 efgh 
0.65 1418.7 defgh 1395.9 defgh 1249.2 fgh 
0.70 1378.8 defgh 1381.8 defgh 1261.2 efgh 
0.75 1357.6 defgh 1411.9 defgh 1278.1 efgh 
0.80 1365.7 defgh 1451.5 defg 1323.6 efgh 
† Treatments with different letters are significantly different (p<0.05). 
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Appendix 4.4. Statistical analyses of treatment eff ects on mean 

PSS1 at Rattray. 

 

A.  ANOVA of the effect of compaction treatments (Comp), residue 

management, plot position (interrow and stumpline; IR/SL) and soil 

depth of measurement on PSS1 at Rattray. Blocking factor: replicate 

(Rep), whole plots: treatment (i.e. compaction x residue; trt); 

covariate: PSS0. 

Source of variation df s.s. m.s. v.r. cov.ef.  F pr. 
Rep stratum       
Covariate 1 126 126 0.06   
Residual 1 2175 2175 8.25 0.53 0.850 
       
Rep x trt stratum       
Comp 2 16648 8324 31.59 0.91 <.001 
Residue 2 204 102 0.39 0.99 0.686 
Comp x residue 4 150 37 0.14 0.99 0.964 
Covariate 1 133 133 0.51  0.489 
Residual 14 (1) 3689 263 3.61 0.97  
       
Rep x trt x IR/SL stratum 
IR/SL 1 282 282 3.87 1.00 0.067 
IR/SL x compaction 2 29 15 0.20 0.97 0.821 
IR/SL x residue 2 561 280 3.84 0.77 0.043 
IR/SL x comp x residue 4 269 67 0.92 0.96 0.476 
Covariate 1 786 786 10.77  0.005 
Residual 16 (1) 1168 73 7.85 1.57  
       
Rep x trt x IR/SL x depth stratum 
Depth 16 35387 2212 237.79 0.73 <.001 
IR/SL x depth 16 57 3 0.38 0.99 0.986 
Depth x comp 32 6962 218 23.39 1.00 <.001 
Depth x residue 32 448 14 1.51 1.00 0.039 
IR/SL x depth x comp 32 326 10 1.09 1.00 0.334 
IR/SL x depth x residue  32 227 7 0.76 1.00 0.824 
Depth x comp x residue 64 672 10 1.13 1.00 0.240 
IR/SL x depth x comp x 
residue 

64 476 7 0.80 1.00 0.868 

Covariate 1 26 26 2.79  0.095 
Residual 543 (32) 5050 9  1.00  
       
Total 883 (34) 182242     
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B. Mean PSS1 (kPa) values in different compaction treatments at Rattray. 

High Moderate Low Depth  
(m) Mean PSS1 LSD† Mean PSS1 LSD† Mean PSS1 LSD† 

0.05 48.6 u 51.8 u 26.5 u 
0.10 561.9 s 456 s 254.4 t 
0.15 1279 op 962.9 qr 541.8 s 
0.20 2011.5 ef 1322.8 klmno 814.1 r 
0.25 2596.5 bc 1495.7 hijklm 1026 pq 
0.30 2927.2 ab 1529.1 hijk 1181.6 op 
0.35 3017.9 a 1524.2 hijk 1341 jklmno 
0.40 2916.4 ab 1500.4 hijkl 1386.2 ijklmno 
0.45 2734.3 abc 1447.8 hijklmn 1348.1 ijklmno 
0.50 2456.5 cd 1375.6 ijklmno 1292.2 klmno 
0.55 2214.3 de 1292.5 klmno 1279.5 klmno 
0.60 2003 ef 1251.5 lmno 1265.7 klmno 
0.65 1822.8 fg 1229.7 lmnop 1217 mnop 
0.70 1703.6 fgh 1230.9 lmnop 1210.3 nop 
0.75 1618.8 ghi 1216.4 mnop 1234.1 lmnop 
0.80 1597.4 hij 1237.2 lmno 1235.7 mnop 
† Treatments with different letters are significantly different (p<0.05). 

 

C. Mean PSS1 (kPa) values in under different residue management at 

Rattray. 

Broadcast Windrow Removed Depth  
(m) Mean PSS0 LSD† Mean PSS0 LSD† Mean PSS0 LSD† 

0.05 29.4 p 32.6 p 64.9 p 
0.10 375.8 o 393 no 503.4 n 
0.15 833.7 m 924 lm 1026 kl 
0.20 1251.7 jk 1413.6 ij 1483.1 ghij 
0.25 1589.5 defghi 1724.6 bcdefgh 1804.1 abcde 
0.30 1806.5 abcde 1866.7 abcde 1964.7 ab 
0.35 1950.4 ab 1927.6 ab 2005.1 a 
0.40 1936.5 ab 1913.3 abc 1953.2 ab 
0.45 1849.5 abcd 1815.2 abcde 1865.5 abcd 
0.50 1747.4 abcdef 1675.2 bcdefg 1701.7 abcdef 
0.55 1650.1 bcdefg 1556.6 defghi 1579.7 cdefghi 
0.60 1542.3 defghi 1502.7 efghi 1475.2 fghi 
0.65 1414.9 ghij 1453.4 fghi 1401.2 ghij 
0.70 1366.5 ghij 1409.2 ghij 1369.2 ghij 
0.75 1328.3 ij 1385.7 ghij 1355.3 hij 
0.80 1329.3 ij 1379.5 ghij 1361.5 hij 
† Treatments with different letters are significantly different (p<0.05). 
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Appendix 4.5. Statistical analyses of treatment eff ects on PSS 1 at 

Rattray. 
 

A. Summary of ANOVA levels of significance of treatment effects on PSS1 

averaged every 0.05 m down the soil profile at Rattray. Blocking factor- 

position of measurement, i.e. interrow or stumpline. 

Depth (m) Compaction      Residue     Compaction x residue 
0.05 0.071 0.006 0.227 
0.10 <0.001 0.127 0.750 
0.15 <0.001 0.245 0.503 
0.20 <0.001 0.221 0.421 
0.25 <0.001 0.303 0.646 
0.30 <0.001 0.567 0.797 
0.35 <0.001 0.885 0.980 
0.40 <0.001 0.972 0.945 
0.45 <0.001 0.948 0.772 
0.50 <0.001 0.882 0.749 
0.55 <0.001 0.715 0.735 
0.60 <0.001 0.774 0.634 
0.65 <0.001 0.801 0.307 
0.70 <0.001 0.818 0.354 
0.75 <0.001 0.745 0.526 
0.80 <0.001 0.795 0.692 
 

B. ANOVA of the effect of compaction treatments and residue 

management on penetrometer soil strength at 0.05 m after treatment 

implementation at Rattray. Blocking factor- position of measurement, i.e. 

interrow or stumpline. 

Source of Variation                   d.f. s.s. m.s. v.r. F pr. 
IR/SL 1 721 721 0.60  
Compaction 2 6790 3395 2.81 0.071 
Residue 2 13880 6940 5.75 0.006 
Compaction x residue 4 7109 1777 1.47 0.227 
Residual 44 53085 1206   
Total 53 81585    
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C. Residue management effects on PSS1 (kPa) at 0.05 m at Rattray. 

Residue management                   Mean PSS 1 (kPa)     
Removed    64.9a 

Windrowed  32.4b 

Broadcast  29.4b 

a Treatments with different letters are significantly different (p<0.05). 
 

D.  ANOVA of the effect of CM and CH treatments and residue 

management on PSS1 relative to that measured under CL treatments 

to a soil depth of 0.3 m at Rattray. Blocking factor- soil depth. 

Source of variation df s.s. m.s. v.r. F pr. 
Depth 5 10806 2161 0.32  
Compaction 1 237751 237751 35.21 <0.001 
Residue 2 108377 54.189 8.03 <0.001 
Compaction x residue 2 30325 15163 2.25 0.108 
Residual 205 1384176 6752   
Total 215 1771435    
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Appendix 4.6. Statistical analyses of treatment eff ects on mean 

PSS0 at Shafton. 

 

A.  ANOVA of the effect of compaction treatments (Comp), plot position 

(interrow and stumpline; IR/SL) and soil depth of measurement on 

PSS0 at Shafton. Blocking factor: replicate (Rep), whole plots: 

treatment (i.e. compaction x residue; trt); covariate: soil water 

content. 

Source of variation df s.s. m.s. v.r. cov.ef.  F pr. 
Rep stratum       
Covariate 1 1212 1212 3.56  0.310 
Residual 1 341 341 1.60 2.28  
       
Rep x trt stratum       
Comp 2 754 377 1.77 0.95 0.195 
Covariate 1 657 657 3.09  0.094 
Residual 21 4471 213 2.14 1.09  
       
Rep x trt x IR/SL stratum 
IR/SL 1 417 417 4.20 0.93 0.052 
IR/SL x com 2 496 248 2.49 0.92 0.105 
Covariate 1 170 170 1.71  0.204 
Residual 23 2286 99 6.02 1.03  
       
Rep x trt x IR/SL x depth stratum 
Depth 16 72367 4523 274.06 0.43 <.001 
IR/SL x depth 16 298 19 1.13 1.00 0.323 
Depth x comp 32 1119 35 2.12 1.00 <.001 
IR/SL x depth x comp 32 864 27 1.64 1.00 0.016 
Covariate 1 0 0 0.00  0.989 
Residual 711 (56) 11734 17  1.00  
       
Total 861 (56) 220351     



 273 

B. Mean PSS0 values (kPa) in different compaction treatments and plot 

positions (IR = interrow; SL = stumpline) at Shafton. 

High Moderate Low Depth 
(m) 

IR/ 
SL PSS0 LSD† PSS0 LSD† PSS0 LSD† 

0.05 IR 315 D 246 D 338 D 
0.10 IR 2032 vwxyz 1308 C 1512 ABC 
0.15 IR 2633 fghijklmnopqrst 1866 yzA 2159 uvwxyz 
0.20 IR 2827 abcdefghijklmnopq 2199 tuvwxyz 2406 qrstuvwx 
0.25 IR 3009 abcdefghijklm 2406 qrstuvwx 2614 hijklmnopqrstu 
0.30 IR 3139 abcdef 2728 efghijklmnopqrs 2838 cdefghijklmnopqr 
0.35 IR 3366 ab 3023 abcdefghijklmno 3003 abcdefghijklmn 
0.40 IR 3286 abc 3216 abcdefghi 3129 abcdefghij 
0.45 IR 2984 abcdefghijklmn 2914 defghijklmnopqr 3032 abcdefghijklm 
0.50 IR 3068 abcdefghijk 2648 jklmnopqrstu 3016 abcdefghijklm 
0.55 IR 3049 abcdefghijkl 2550 mnopqrstuv 2963 abcdefghijklmn 
0.60 IR 2969 abcdefghijklmn 2660 ghijklmnopqrstu 2902 abcdefghijklmnop 
0.65 IR 3115 abcdefghij 2846 cdefghijklmnopqr 2892 abcdefghijklmnopq 
0.70 IR 2898 abcdefghijklmnopq 2786 defghijklmnopqrs 2981 abcdefghijklmn 
0.75 IR 2965 abcdefghijklmn 2837 cdefghijklmnopqr 3134 abcdefg 
0.80 IR 3099 abcdefghij 2912 bcdefghijklmnopqr 3195 abcde 
0.05 SL 314 D 243 D 334 D 
0.10 SL 1402 BC 1349 C 1451 BC 
0.15 SL 1842 yzA 2031 xyz 1836 zAB 
0.20 SL 2205 stuvwxy 2426 pqrstuvwx 2105 wxyz 
0.25 SL 2521 klmnopqrstu 2637 ijklmnopqrstu 2417 rstuvwx 
0.30 SL 2834 abcdefghijklmnopq 3070 abcdefghijklm 2723 fghijklmnopqrstu 
0.35 SL 2840 abcdefghijklmnopq 3273 abcdefgh 3009 abcdefghijklmnop 
0.40 SL 2848 abcdefghijklmnopq 3447 a 3224 abcdef 
0.45 SL 2686 defghijklmnopqrs 3281 abcde 3200 abcdefghi 
0.50 SL 2591 fghijklmnopqrstu 3008 abcdefghijklmno 3017 abcdefghijklmn 
0.55 SL 2670 efghijklmnopqrs 2606 klmnopqrstu 2879 cdefghijklmnopqr 
0.60 SL 2691 defghijklmnopqrs 2488 opqrstuvwx 2850 cdefghijklmnopqr 
0.65 SL 2783 cdefghijklmnopqr 2548 nopqrstuvw 2795 defghijklmnopqrs 
0.70 SL 2828 abcdefghijklmnopq 2399 rstuvwx 3077 abcdefghijklmn 
0.75 SL 2912 abcdefghijklmno 2580 mnopqrstuv 3146 abcdefghijk 
0.80 SL 3076 abcdefghij 2607 lmnopqrstuv 3347 abcd 
† Treatments with different letters or status (capitals vs not capitals) are significantly different 

(p<0.05). 
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Appendix 4.7. Statistical analyses of treatment eff ects on mean 

PSS1 at Shafton. 

 

A.  ANOVA of the effect of compaction treatments (Comp), residue 

management, plot position (interrow and stumpline; IR/SL) and soil 

depth of measurement on PSS1 at Shafton. Blocking factor: replicate 

(Rep), whole plots: treatment (i.e. compaction x residue; trt); 

covariate PSS0. 

Source of variation df s.s. m.s. v.r. cov.ef.  F pr. 
Rep stratum       
Covariate 1 0.059 0.059 0.87  0.522 
Residual 1 0.068 0.068 0.59 0.93  
       
Rep x trt stratum       
Comp 2 1.084 0.542 4.63 1.00 0.027 
Residue 2 0.098 0.049 0.42 0.95 0.666 
Comp x residue 4 0.852 0.213 1.82 0.95 0.177 
Covariate 1 0.180 0.180 1.54  0.234 
Residual 15 1.755 0.117 1.13 1.03  
       
Rep x trt x IR/SL stratum 
IR/SL 1 0.110 0.110 1.06 0.68 0.317 
IR/SL x comp 2 0.595 0.298 2.89 0.64 0.083 
IR/SL x residue 2 0.124 0.062 0.60 0.90 0.559 
IR/SL x comp x residue 4 0.265 0.066 0.64 0.99 0.639 
Covariate 1 0.022 0.022 0.22  0.647 
Residual 17 1.753 0.103 9.64 0.96  
       
Rep x trt x IR/SL x depth stratum 
Depth 16 109.140 6.821 637.85 0.45 <0.001 
IR/SL x depth 16 0.968 0.060 5.66 0.96 <0.001 
Depth x comp 32 4.770 0.149 13.94 0.96 <0.001 
Depth x residue 31 (1) 2.498 0.081 7.53 0.98 <0.001 
IR/SL x depth x comp 25 (7) 0.679 0.027 2.54 0.99 <0.001 
IR/SL x depth x residue  31 (1) 0.687 0.022 2.07 0.99 0.001 
Depth x comp x residue 46 (18) 1.228 0.027 2.50 0.99 <0.001 
IR/SL x depth x comp x 
residue 

27 (37) 0.307 0.011 1.06 0.99 0.383 

Covariate 1 0.030 0.030 2.77  0.097 
Residual 286 (289) 3.059 0.011  1.01  
       
Total 564 (353)      
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B. Mean PSS1 values (kPa) in different compaction treatments (CL = low; CM = moderate; CH = high) and residue 

management at Shafton. 

Broadcast Windrow Removed Depth 
(m) Comp 

PSS1 LSD† PSS1 LSD† PSS1 LSD† 
0.05 CH 109 P 210 O 307 N 
0.10 CH 1124 JKL 1490 HIJK 1540 HIJK 
0.15 CH 1906 EFGHI 2430 ABCDEF 2385 ABCDEF 
0.20 CH 2717 uvwxyzABCDEF 3225 qrstuvwxyzAB 3217 pqrstuvwxyzAB 
0.25 CH 3399 mnopqrstuvwxyzAB 3733 jklmnopqrstuvwxy 4056 hijklmnopqrst 
0.30 CH 3606 lmnopqrstuvwxyz 4017 hijklmnopqrstuvw 3466 qrstuvwxyzAB 
0.35 CH 3484 pqrstuvwxyzAB 4396 fghijklmnopqr 4087 jklmnopqrstuvwxy 
0.40 CH 2898 yzABCDEF 4309 fghijklmnopqrs 4185 ijklmnopqrstuvwx 
0.45 CH 3094 stuvwxyzABCD 4315 fghijklmnopq 3578 rstuvwxyzABC 
0.50 CH 3468 nopqrstuvwxyzAB 4534 defghijklmn 2598 EFGHI 
0.55 CH 3820 jklmnopqrstuvwxyz 4854 cdefghij 2434 CDEFGH 
0.60 CH 4140 ghijklmnopqrst 4850 fghijklmnopq 3493 lmnopqrstuvwxyzAB 
0.65 CH 4571 fghijklmnopqr 4772 cdefghi 3756 jklmnopqrstuvwx 
0.70 CH 4847 defghijklmnopq 5743 bc 4112 fghijklmnopqrs 
0.75 CH 5072 defghijklm 5381 cdefgh 4523 defghijklmnopq 
0.80 CH 5407 cdefg 6059 bc 5350 bcde 
0.05 CM 85 PQ 119 P 282 NO 
0.10 CM 1087 KL 1066 JKL 1446 IJK 
0.15 CM 1857 FGHI 1795 EFGHI 2116 DEFGHI 
0.20 CM 2612 xyzABCDEF 2634 tuvwxyzABCDE 2727 vwxyzABCDEF 
0.25 CM 3569 lmnopqrstuvwxyzA 3514 jklmnopqrstuvwxyz 3347 opqrstuvwxyzAB 
0.30 CM 4202 ghijklmnopqrs 3616 jklmnopqrstuvwxyz 4019 hijklmnopqrstuv 
0.35 CM 4140 jklmnopqrstuvwxyz 3984 hijklmnopqrstu 4236 ghijklmnopqrs 
0.40 CM 4334 jklmnopqrstuvwx 4401 fghijklmnopqr 4456 ghijklmnopqrs 
0.45 CM 4900 defghijkl 3542 mnopqrstuvwxyzAB 4604 fghijklmnopqr 
0.50 CM 6708 defghijklmnop 3878 hijklmnopqrstu 5869 bc 
0.55 CM 2930 BCDEFG 3292 nopqrstuvwxyzAB 2291 BCDEFGH 
0.60 CM 3944 ijklmnopqrstuvw 3907 fghijklmnopqr 3677 fghijklmnopqrs 
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Appendix 4.7B  (continued) 
Broadcast Windrow Removed Depth 

(m) Comp PSS1 LSD† PSS1   PSS1 
0.65 CM 4362 ghijklmnopqrs 3871 ghijklmnopqrs 3923 hijklmnopqrstu 
0.70 CM 4434 fghijklmnopqr 4484 defghijkl 3768 fghijklmnopqrs 
0.75 CM 6077 abc 5332 bcd 5183 bc 
0.80 CM 6296 ab 5973 a 6071 a 
0.05 CL 62 Q 34 R 105 P 
0.10 CL 861 L 501 M 799 L 
0.15 CL 1809 GHIJ 902 L 1472 IJK 
0.20 CL 2759 zABCDEF 1582 GHIJ 2076 DEFGHI 
0.25 CL 3484 opqrstuvwxyzAB 2585 vwxyzABCDEF 2710 wxyzABCDEF 
0.30 CL 3991 ghijklmnopqrst 3010 rstuvwxyzABC 3371 qrstuvwxyzAB 
0.35 CL 4346 fghijklmnopqr 3660 jklmnopqrstuvwx 3782 klmnopqrstuvwxyz 
0.40 CL 4547 defghijklmnopq 4253 fghijklmnopqrs 3863 jklmnopqrstuvwxyz 
0.45 CL 4962 defghijkl 4317 fghijklmnopqr 3995 ijklmnopqrstuvw 
0.50 CL 3668 jklmnopqrstuvwxy 4316 defghijklmno 4040 hijklmnopqrstuvw 
0.55 CL 3974 jklmnopqrstuvwxy 4607 cdefghijk 4065 ghijklmnopqrs 
0.60 CL 3870 lmnopqrstuvwxyzAB 4026 fghijklmnopqrs 3988 hijklmnopqrstu 
0.65 CL 4393 defghijklm 4140 fghijklmnopqrs 4334 fghijklmnopqr 
0.70 CL 4561 defghijk 4699 defghijklmn 3969 ghijklmnopqrs 
0.75 CL 5334 bcdef 4477 fghijklmnopqrs 4100 fghijklmnopqr 
0.80 CL 4554 efghijklmnopq 4227 jklmnopqrstuvwxyz 4174 fghijklmnopqr 
† Treatments with different letters or status (capitals vs not capitals) are significantly different (p<0.05). 
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Appendix 4.8. Statistical analyses of treatment eff ects on PSS 1 at 

Shafton. 
 

A. Summary of ANOVA levels of significance of treatment effects on PSS 

averaged every 0.05 m down the soil profile at Shafton. Blocking factor- 

position of measurement, i.e. interrow or stumpline. 

Depth (m)     Compaction           Residue       Compaction x residue 
0.05 <0.001 <0.001 0.034 
0.10 <0.001 0.031 0.057 
0.15 <0.001 0.218 0.014 
0.20 <0.001 0.494 0.018 
0.25 <0.001 0.618 0.058 
0.30 <0.001 0.352 0.248 
0.35 <0.001 0.924 0.578 
0.40 <0.001 0.233 0.286 
0.45 <0.001 0.607 0.112 
 

B. ANOVA of the effect of compaction treatments and residue 

management on PSS1 at 0.05 m at Shafton. Blocking factor- position of 

measurement, i.e. interrow or stumpline. 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
IR/SL 1 673 673 0.13  
Compaction 2 186834 93417 18.60 <0.001 
Residue 2 207446 103723 20.65 <0.001 
Compaction x residue 4 57682 14421 2.87 0.034 
Residual 44 221046 5024   
Total 53 673681    
 

C. The combined effect of compaction treatments and residue 

management on PSS1 at 0.05 m at Shafton. 

Compaction Residue Management Mean PSS 1 (kPa) 
High Removed 306.5a 
Moderate Removed 281.5ab 

High  Windrowed 210.3b 

Moderate Windrowed 119.1c 

High  Broadcast 109.0cd 

Low Removed 105.0cd 

Moderate Broadcast 84.6cd 

Low Broadcast 62.4cd 

Low Windrowed 34.1d 

a Treatments with different letters are significantly different (p<0.05). 
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D.  ANOVA of the effect of CM and CH treatments and residue 

management on PSS1 relative to that measured under CL treatments 

to a soil depth of 0.25 m at Shafton. Blocking factor - soil depth; data 

was square root transformed to prevent violation of normality 

assumptions. 

Source of variation df s.s. m.s. v.r. F pr. 
Depth 4 7.977 1.994 20.90  
Compaction 1 1.046 1.046 10.96  0.001 
Residue 2 3.601 1.800 18.87 <0.001 
Compaction x residue 2 0.403 0.202 2.11 0.124 
Residual 170 16.218 0.095   
Total 179 29.245    
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Appendix 5.1. Responses obtained on selected soil p roperties of 

the effect of broadcast residues compared to 

residue removal at studies in the Congo (Nzila et 

al., 2004; Deleporte et al., 2008) and Karkloof (du 

Toit et al., 2008).  

Soil 
property Study Soil 

depth (m) Response 

pH Karkloof 0-0.1 No significant difference between 
treatments but pH increased in all 
treatments until 2 years after harvest, then 
decreased to initial levels. 

Total N Congo 0-0.1 Significantly higher N in B than R plots one 
year into the study, thereafter no significant 
difference, but N decreased in R plots in the 
first 3 years of the study. 

 Congo 0.1-1.0 No significant differences. 
 Karkloof 0-0.1 No significant difference between 

treatments but N increased in all treatments 
and this was maintained until rotation end. 

Available P Karkloof 0-0.1 No significant difference between 
treatments but P initially increased in all 
treatments and then declined to levels 
below that measured at the start of the 
study. 

Exch K Congo 0-0.1 No significant differences. 
 Congo 0.1-1.0 No significant differences. 
 Karkloof 0-0.1 No significant difference between 

treatments but K was higher in B than R 
plots. 

Exch Ca Congo 0-0.1 No significant differences. 
 Congo 0.1-1.0 No significant differences. 

 Karkloof 0-0.1 Significantly higher Ca in B than R plots at 
rotation end. Overall increase in Ca in all 
treatments from the start to the end of the 
study. 

Exch Mg Congo 0-0.1 Significantly higher Mg in B than R plots at 
rotation end. 

 Congo 0.1-1.0 No significant differences. 

 Karkloof 0-0.1 No significant difference between 
treatments or from the start to the end of the 
study. 

Note: soil pH and available P were not measured in the Congolese study.
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Appendix 5.2. Statistical analyses of changes in qu antities of 

residues between TP and TH within broadcast or 

windrow residue management at Shafton. 

 

 

A.  ANOVA of the effect of compaction treatments and residue 

management on the total quantity of residues at TP at Shafton. 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 11.867 5.934 8.55 0.005 
Residue Management 1 26.478 26.478 38.14 <0.001 
Compaction x Residue 2 0.566 0.283 0.41 0.674 
Residual 12 8.333 0.694   
Total 17 47.242    
 

B.  ANOVA of the effect of compaction treatments and residue 

management on the total quantity of residues at TH at Shafton. 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 6.014 3.007 3.55 0.062 
Residue Management 1 8.075 8.075 9.53 0.009 
Compaction x Residue 2 0.464 0.232 0.27 0.765 
Residual 12 10.169 0.847   
Total 17 24.721    
 

C.  ANOVA of changes in the total quantity of residue between TP and TH 

within broadcast residue management at Shafton. 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Time 1 16022248 16022248 11.02 0.004 
Residual 16 23269831 1454364   
Total 17 39292078    
 

D.  ANOVA of changes in the total quantity of residue between TP and TH 

within windrow residue management at Shafton. 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Time 1 2885572 2885572 3.27 0.090 
Residual 16 14140053 883753   
Total 17 17025624    
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Appendix 5.3. Statistical analyses of treatment eff ects on soil 

carbon at Rattray.  

 

A. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0 and 0.05 m at harvesting of sub-

plot trees (TH) at Rattray. Blocking factor- position of measurement, i.e. 

interrow or stumpline (IR/SL). 

Source of variation df s.s. m.s. v.r. F pr. 
IR/SL                                         1 0.007 0.007 0.01  
Compaction 2 10.975 5.487 4.16 0.022 
Residue 2 1.039 0.519 0.39 0.677 
Compaction x residue 4 2.773 0.693 0.53 0.718 
Residual 44 58.079 1.320   
Total 53 72.872    
 

B. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0.05 and 0.15 m at TH at Rattray. 

Blocking factor- position of measurement, i.e. interrow or stumpline 

(IR/SL). 

Source of variation df s.s. m.s. v.r. F pr. 
IR/SL 1 0.054 0.054 0.95  
Compaction 2 0.020 0.010 0.18 0.835 
Residue 2 0.244 0.122 2.16 0.128 
Compaction x residue 4 0.284 0.071 1.25 0.302 
Residual 44 2.488 0.057   
Total 53 3.090    

 

C. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0.15 and 0.60 m at TH at Rattray. 

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.001 0.000 0.28 0.761 
Residue 2 0.002 0.001 0.52 0.606 
Compaction x residue 4 0.002 0.001 0.33 0.854 
Residual 18 0.031 0.002   
Total 26 0.036    
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D. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0 and 0.05 m at TF at Rattray. 

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.000 0.000 0.00 1.000 
Residue 2 0.198 0.099 0.99 0.389 
Compaction x residue 4 0.288 0.072 0.72 0.587 
Residual 18 1.794 0.010   
Total 26 2.280    

 

E. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0.05 and 0.15 m at TF at Rattray. 

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.044 0.022 1.32 0.292 
Residue 2 0.001 0.001 0.04 0.961 
Compaction x residue 4 0.030 0.008 0.45 0.768 
Residual 18 0.301 0.017   
Total 26 0.377    

 

F. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0.15 and 0.60 m at TF at Rattray. 

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.006 0.003 0.53 0.599 
Residue 2 0.014 0.007 1.20 0.324 
Compaction x residue 4 0.033 0.008 1.40 0.274 
Residual 18 0.106 0.006   
Total 26 0.160    
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Appendix 5.4. Statistical analyses of treatment eff ects on soil 

carbon at Shafton.  

 

A. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0 and 0.05 m at harvesting of sub-

plot trees (TH) at Shafton. Blocking factor- position of measurement, i.e. 

interrow or stumpline (IR/SL). 

Source of variation df s.s. m.s. v.r. F pr. 
IR/SL                                         1 22.597 22.597 3.69  
Compaction 2 15.246 7.623 1.24 0.298 
Residue 2 96.073 48.037 7.84 0.001 
Compaction x residue 4 31.558 7.889 1.29 0.289 
Residual 44 269.497 6.125   
Total 53 434.971    

 

B. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0.05 and 0.15 m at TH at Shafton. 

Blocking factor- position of measurement, i.e. interrow or stumpline 

(IR/SL). 

Source of variation df s.s. m.s. v.r. F pr. 
IR/SL                                         1 0.011 0.011 0.19  
Compaction 2 0.198 0.099 1.74 0.187 
Residue 2 0.081 0.041 0.72 0.494 
Compaction x residue 4 0.167 0.042 0.74 0.572 
Residual 44 2.501 0.057   
Total 53 2.959    

 

C. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0.15 and 0.60 m at TH at Shafton. 

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.163 0.081 0.72 0.500 
Residue 2 0.023 0.012 0.10 0.904 
Compaction x residue 4 0.828 0.207 1.83 0.166 
Residual 18 2.030 0.113   
Total 26 3.044    
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D. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0 and 0.05 m at TF at Shafton. 

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 9.664 4.832 1.53 0.243 
Residue 2 4.560 2.280 0.72 0.499 
Compaction x residue 4 17.822 4.456 1.41 0.270 
Residual 18 56.820 3.157   
Total 26 88.866    

 

E. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0.05 and 0.15 m at TF at Shafton. 

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.438 0.219 0.76 0.482 
Residue 2 0.256 0.128 0.44 0.648 
Compaction x residue 4 0.757 0.189 0.66 0.630 
Residual 18 5.186 0.288   
Total 26 6.637    

 

F. ANOVA of the effect of compaction treatments and residue 

management on soil carbon between 0.15 and 0.6 m at TF at Shafton. 

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.168 0.084 0.23 0.796 
Residue 2 0.000 0.000 0.00 0.999 
Compaction x residue 4 0.660 0.165 0.45 0.768 
Residual 18 6.540 0.363   
Total 26 7.368    
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Appendix 5.5. Significant statistical analyses of t reatment effects 

on soil pH and exchangeable soil Ca and Mg at TF 

at Rattray. 

 

A. ANOVA of the effect of compaction treatments and residue 

management on soil pH between 0 and 0.05 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.335 0.168 0.68 0.521 
Residue 2 3.822 1.911 7.71 0.004 
Compaction x residue 4 0.797 0.199 0.8 0.539 
Residual 18 4.464 0.248   
Total 26 9.418    
 

B. ANOVA of the effect of compaction treatments and residue 

management on soil pH between 0.05 and 0.15 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.399 0.199 2.02 0.162 
Residue 2 3.226 1.613 16.31 <0.001 
Compaction x residue 4 0.701 0.175 1.77 0.179 
Residual 18 1.780 0.099   
Total 26 6.105    
 

C. ANOVA of the effect of compaction treatments and residue 

management on soil pH between 0.15 and 0.6 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.890 0.445 2.99 0.076 
Residue 2 1.804 0.902 6.06 0.010 
Compaction x residue 4 0.805 0.201 1.35 0.290 
Residual 18 2.680 0.149   
Total 26 6.179    
 

D. ANOVA of the effect of compaction treatments and residue 

management on soil pH between 0 and 0.6 m (weighted average).  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.581 0.290 2.46 0.114 
Residue 2 2.087 1.044 8.84 0.002 
Compaction x residue 4 0.424 0.106 0.9 0.486 
Residual 18 2.124 0.118   
Total 26 5.216    
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E. ANOVA of the effect of compaction treatments and residue 

management on soil exchangeable Ca (kg ha-1) between 0 and 0.05 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.675 0.337 1.21 0.321 
Residue 2 3.972 1.986 7.14 0.005 
Compaction x residue 4 1.434 0.359 1.29 0.311 
Residual 18 5.007 0.278   
Total 26 11.088    
Data natural log transformed to prevent violation of error assumptions. 

 

F. ANOVA of the effect of compaction treatments and residue 

management on soil exchangeable Ca (kg ha-1) between 0 and 0.6 m 

(weighted average).  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.073 0.036 2.36 0.123 
Residue 2 0.137 0.068 4.46 0.027 
Compaction x residue 4 0.020 0.005 0.33 0.856 
Residual 18 0.276 0.015   
Total 26 0.506    
Data log transformed to prevent violation of error assumptions. 

 

G. ANOVA of the effect of compaction treatments and residue 

management on soil exchangeable Mg (kg ha-1) between 0 and 0.05 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.042 0.021 0.46 0.636 
Residue 2 0.435 0.218 4.85 0.021 
Compaction x residue 4 0.227 0.057 1.26 0.320 
Residual 18 0.807 0.045   
Total 26 1.511    
Data log transformed to prevent violation of error assumptions. 
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Appendix 5.6. Average residue nutrient quantities s howing 

significant residue management effects at TP, TH 

and TF at Rattray. 

 

A. Significance (p values) of ANOVA results of the effect of compaction 

treatments and residue management (broadcast and windrow) on 

quantity of nutrients held in residues at TP, TH and TF. 

Nutrient Compaction Residue Compaction x residue 
TP 

P 0.203 0.025 0.820 
K 0.177 0.007 0.555 

TH 
N 0.968 0.031 0.325 

TF 
N 0.577 0.023 0.461 
P 0.862 0.001 0.731 
 

B. Average quantities of macronutrients held in broadcast and windrowed 

residues at Rattray at TP, TH and TF. 

Residue 
management  

N 
(kg ha -1) 

P 
(kg ha -1) 

K 
(kg ha -1) 

Ca 
(kg ha -1) 

Mg 
(kg ha -1) 

TP 
Broadcast 183.4 15.4 107.2 580.8 57.3 
Windrowed 138.9 11.4 45.7 542.2 53.3 

TH 
Broadcast 162.9 13.5 54.1 391.3 40.8 
Windrowed 120.6 8.3 37.1 357.8 32.3 

TF 
Broadcast 5.0 3.8E-05 0.3 10.6 0.9 
Windrowed 2.9 2.0E-05 0.2 6.0 0.5 
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Appendix 5.7. Significant statistical analyses of t reatment effects 

on soil pH at TH at Shafton. 
 

A. ANOVA of the effect of compaction treatments and residue 

management on soil pH between 0 and 0.05 m at Shafton at TH.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.200 0.100 2.75 0.091 
Residue 2 0.262 0.131 3.60 0.048 
Compaction x residue 4 0.141 0.035 0.97 0.448 
Residual 18 0.655 0.036   
Total 26 1.258    
 

 

 

 



 289 

Appendix 5.8. Significant statistical analyses of t reatment effects 

on macronutrients at TH at Shafton. 

 

A. ANOVA of the effect of compaction treatments and residue 

management on total soil N (kg ha-1) between 0 and 0.05 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 619103 309551 3.78 0.043 
Residue 2 633746 316873 3.87 0.040 
Compaction x residue 4 284621 71155 0.87 0.502 
Residual 18 1475265 81959   
Total 26 3012735    
 

B. ANOVA of the effect of compaction treatments and residue management 

on available soil P (kg ha-1, Bray-2) between 0 and 0.05 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 21.260 10.630 4.87 0.020 
Residue 2 25.964 12.982 5.94 0.010 
Compaction x residue 4 4.999 1.250 0.57 0.686 
Residual 18 39.307 2.184   
Total 26 91.529    
 

C. ANOVA of the effect of compaction treatments and residue 

management on available soil P (kg ha-1, Bray-2) contained in residues 

and soil between 0 and 0.6 m (weighted average).  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 609.95 304.97 6.18 0.009 
Residue 2 1431.09 715.54 14.50 <0.001 
Compaction x residue 4 35.45 8.86 0.18 0.946 
Residual 18 888.05 49.34   
Total 26 2964.54    
 

D. ANOVA of the effect of compaction treatments and residue 

management on soil exchangeable K (kg ha-1) between 0 and 0.05 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 160.7 80.4 0.46 0.640 
Residue 2 2577.9 1288.9 7.35 0.005 
Compaction x residue 4 1067.6 266.9 1.52 0.238 
Residual 18 3156.9 175.4   
Total 26 6963.1    
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E. ANOVA of the effect of compaction treatments and residue 

management on K (kg ha-1) contained in residues and soil 

(exchangeable K) between 0 and 0.6 m (weighted average). 

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 19340 9670 0.76 0.481 
Residue 2 108627 54313 4.28 0.030 
Compaction x residue 4 44398 11100 0.88 0.498 
Residual 18 228166 12676   
Total 26 400531    
 

F. ANOVA of the effect of compaction treatments and residue 

management on soil exchangeable Ca (kg ha-1) between 0 and 0.05 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 316463 158232 3.01 0.075 
Residue 2 430999 215500 4.10 0.034 
Compaction x residue 4 230256 57564 1.09 0.389 
Residual 18 946492 52583   
Total 26 1924211    
 

G. ANOVA of the effect of compaction treatments and residue 

management on Ca (kg ha-1) contained in residues and soil 

(exchangeable Ca) between 0 and 0.6 m (weighted average).   

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 929298 464649 2.45 0.114 
Residue 2 3587306 1793653 9.47 0.002 
Compaction x residue 4 483715 120929 0.64 0.642 
Residual 18 3407692 189316   
Total 26 2964.54    
 

H. ANOVA of the effect of compaction treatments and residue 

management on soil exchangeable Mg (kg ha-1) between 0 and 0.05 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 4036.1 2018.1 2.35 0.123 
Residue 2 12262.5 6131.2 7.15 0.005 
Compaction x residue 4 6049.2 1512.3 1.76 0.180 
Residual 18 15425.9 857.0   
Total 26 37773.7    
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Appendix 5.9. Significant statistical analyses of t reatment effects 

on soil macronutrients at TF at Shafton. 

 

A. ANOVA of the effect of compaction treatments and residue 

management on total soil N (kg ha-1) between 0 and 0.05 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 942868 471434 3.75 0.044 
Residue 2 300863 150432 1.20 0.326 
Compaction x residue 4 1720244 430061 3.42 0.030 
Residual 18 2265403 125856   
Total 26 5229379    
Data log transformed to prevent violation of error assumptions. 

 

B. The combined effect of compaction treatments and residue 

management on total soil N (kg ha-1) between 0 and 0.05 m. 

Compaction Residue Management Mean total soil N (kg  ha-1) 
Low Broadcast 2254a 
Low Removed 2052ab 

Moderate  Removed 1699abc 

High Windrowed 1666abc 

High  Removed 1501bc 

Moderate Windrowed 1499bc 

Moderate Broadcast 1381c 

Low Windrowed 1315c 

High Broadcast 1159c 

a Treatments with different letters are significantly different (p<0.05). 

 

C. ANOVA of the effect of compaction treatments and residue 

management on soil exchangeable K (kg ha-1) between 0 and 0.05 m.  

Source of variation df s.s. m.s. v.r. F pr. 
Compaction 2 0.188 0.094 0.66 0.531 
Residue 2 1.229 0.614 4.30 0.030 
Compaction x residue 4 0.462 0.115 0.81 0.537 
Residual 18 2.573 0.143   
Total 26 4.451    
Data log transformed to prevent violation of error assumptions. 
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Appendix 5.10. Summary of significant statistical a nalyses of 

treatment effects on residue nutrient quantities at  

TP, TH and TF at Shafton. 

 

A. Significance (p values) of ANOVA results of the effect of compaction 

treatments and residue management (broadcast and windrow) on 

quantity of nutrients (kg ha-1) held in residues at Shafton at TP and TH. 

Nutrient Compaction Residue Compaction x residue 
TP 

N 0.086 0.047 0.738 
P 0.094 <0.001 0.139 
K 0.005 <0.001 0.694 
Ca 0.443 0.156 0.030 
Mg 0.093 0.003 0.252 

TH 
N 0.017 0.855 0.271 
P 0.002 0.014 0.583 
K 0.009 0.004 0.109 
Ca 0.008 0.021 0.613 
Mg 0.005 0.073 0.769 
 

B. Significance (p values) of ANOVA results of the effect of compaction 

treatments and residue management (broadcast, windrow and residue 

removed) on quantity of nutrients (kg ha-1) held in residues at Shafton 

(TH). 

Nutrient Compaction Residue Compaction x residue 
N 0.17 <0.001 0.772 
P 0.113 0.005 0.699 
Ca 0.208 0.004 0.209 
Mg 0.413 0.043 0.680 
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C. Average quantities of macronutrients held in broadcast and windrowed 

residues at TP and TH at Shafton. In addition, macronutrient quantities 

in burnt residue+litter samples taken at TF are given (including residue 

removed plots). 

Residue 
management  

N 
(kg ha -1) 

P 
(kg ha -1) 

K 
(kg ha -1) 

Ca 
(kg ha -1) 

Mg 
(kg ha -1) 

TP 
Broadcast 317.8 22.9 68.6 609.1 120.1 
Windrowed 228.3 11.5 29.5 455.0 84.9 

TH 
Broadcast 273.5 14.8 31.5 528.3 46.0 
Windrowed 220.7 10.5 19.4 442.8 35.8 

TF 
Broadcast 3.6 7.0E-06 0.2 4.0 0.4 
Windrowed 3.4 6.1E-06 0.2 3.9 0.4 
Removed 2.6 2.4E-06 0.2 2.0 0.3 
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Appendix 6.1. Standard error values of regression e quations 

between soil bulk density and soil carbon 

(combined) on mass soil water content ( θθθθm) at 

Rattray. 

 

A. Standard error values of regression equations displayed in Table 6.2  

of the effects of ranges of bulk density (BD) and soil carbon (C), as 

grouped in Table 6.1 , on mass soil water content (of undisturbed soil 

cores) at Rattray. 

Parameter BD C BD,C 
b 0.011 0.011 0.010 
m 0.089 0.088 0.083 
 

B. Standard error values of regression equations displayed in Table 6.3  

of the effect of bulk density and soil carbon on soil water content (θm) 

of 0 – 0.2 and 0.4 – 0.5 m undisturbed soil cores at various matric 

potentials (Ψm) at Rattray. 

Ψm (kPa) Parameter estimate s.e. t(54) t pr. 
BD 

Constant 0.875 0.031 28.01 <0.001 0 
x -0.382 0.020 -19.26 <0.001 
Constant 0.814 0.033 24.43 <0.001 -1 
x -0.357 0.021 -16.91 <0.001 
Constant 0.764 0.042 18.33 <0.001 -2 
x -0.333 0.026 -12.6 <0.001 

C 
Constant 0.228 0.007 34.72 <0.001 0 
x 0.043 0.005 7.99 <0.001 
Constant 0.205 0.006 33.87 <0.001 -1 
x 0.042 0.005 8.49 <0.001 
Constant 0.193 0.006 33.83 <0.001 -2 
x 0.044 0.005 9.35 <0.001 
Constant 0.188 0.005 40.4 <0.001 -3 x 0.031 0.004 8.23 <0.001 
Constant 0.006 0.001 7.98 <0.001 

-1500 
x 0.007 0.001 11.71 <0.001 
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Appendix 6.2. Soil bulk density and soil carbon eff ects 

(combined) on volumetric soil water content ( θθθθv) at 

Rattray. 

 

A. The effect on soil water content (θv) of ranges of (a) bulk density and (b) 

soil carbon (C; % m/m) at Rattray (of undisturbed soil cores between 0 

and 0.5 m). 
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B. Coefficients of regression equations† and associated percentage of 

variance accounted for by equations (r2) of the effects of ranges of bulk 

density (BD) and soil carbon (C), as grouped in Table 6.1 , on volumetric 

soil water content Rattray (of undisturbed soil cores) at Rattray. All 

regression equations were highly significant (p<0.001); n = 56. 

BD/ 
C Range (%) a c b m r 2 

0 – 25 0.453 -0.403 -0.358 -3.675 
25 – 75 0.434 -0.378 -0.358 -3.675 BD 
75 – 100 0.423 -0.364 -0.358 -3.675 

0.932 

0 – 25 0.422 -0.385 -0.356 -3.668 
25 – 75 0.431 -0.370 -0.356 -3.668 C 
75 – 100 0.458 -0.397 -0.356 -3.668 

0.935 

0 – 25, 0 – 25 0.413 -0.375 -0.359 -3.668 
25 – 75, 0 – 25 0.426 -0.388 -0.359 -3.668 
75 – 100, 0 – 25 0.421 -0.390 -0.359 -3.668 
0 – 25, 25 – 75 0.456 -0.390 -0.359 -3.668 
25 – 75, 25 – 75 0.433 -0.373 -0.359 -3.668 
75 – 100, 25 – 75 0.425 -0.364 -0.359 -3.668 
0 – 25, 75 – 100 0.471 -0.417 -0.359 -3.668 
25 – 75, 75 – 100 0.450 -0.378 -0.359 -3.668 

BD, 
C 

75 – 100, 75 – 100 0.402 -0.348 -0.359 -3.668 

0.937 

† The regression equation used is of the Gompertz form i.e. y = a + c * EXP(-EXP(-b * (x – 
m))), where y = water content (θv; m

3 m-3), x = matric potential (kPa), and a, c, b and m are 
coefficients.  

 
Standard error values of regression equations displayed in Table B  

above of the effects of ranges of bulk density (BD) and soil carbon (C), 

as grouped in Table 6.1 , on volumetric soil water content (of 

undisturbed soil cores) at Rattray. 

Parameter BD C BD,C 
b 0.011 0.010 0.010 
m 0.085 0.082 0.082 
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Appendix 6.3. Soil bulk density and soil carbon eff ects (separate) 

on soil water content ( θθθθm and θθθθv) at Rattray. 
 

A. Significant regression equations and associated percentage of variance 

accounted for by equations (r2) of the effect of bulk density (BD; Mg m-3) 

and soil carbon (C; % m/m) on volumetric soil water content (θv; m
3 m-3) 

of 0 – 0.2 and 0.4 – 0.5 m undisturbed soil cores at various matric 

potentials at Rattray. All relationships were highly significant (p<0.001); 

n = 56. 

Ψm (kPa)  Regression equation  r 2 
0  θv = 0.906 – 0.302 BD  0.669 
-1  θv = 0.848 – 0.288 BD  0.616 
-2  θv = 0.789 – 0.262 BD  0.447 
0  θv = 0.387 + 0.040 C  0.587 
-1  θv = 0.350 + 0.041 C  0.613 
-2  θv = 0.329 + 0.044 C  0.626 
-1500  θv = 0.012 + 0.010 C  0.587 
 

 Estimates of parameters of regression equations displayed in Table A  

above of the effect of bulk density (BD) and soil carbon (C) on soil water 

content (θv) of 0 – 0.2 and 0.4 – 0.5 m undisturbed soil cores at various 

matric potentials (Ψm) at Rattray. 

Ψm (kPa) Parameter estimate s.e. t(54) t pr. 
BD 

Constant 0.906 0.045 20.15 <0.001 0 
x -0.302 0.029 -10.6 <0.001 
Constant 0.848 0.048 17.61 <0.001 -1 x -0.288 0.031 -9.44 <0.001 
Constant 0.789 0.061 12.86 <0.001 -2 x -0.262 0.039 -6.74 <0.001 

C 
Constant 0.387 0.006 68.72 <0.001 0 
x 0.040 0.005 8.74 <0.001 
Constant 0.350 0.005 64.23 <0.001 -1 x 0.041 0.005 9.22 <0.001 
Constant 0.329 0.006 57.75 <0.001 -2 
x 0.044 0.005 9.48 <0.001 
Constant 0.319 0.006 50.14 <0.001 -3 
x 0.028 0.005 5.35 <0.001 
Constant 0.012 0.001 8.57 <0.001 -1500 
x 0.010 0.001 8.74 <0.001 
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B. Significant regression equations and associated percentage of variance 

accounted for by equations (r2) of the effect of bulk density (BD; Mg m-3) 

and soil carbon (C; % m/m) on mass and volumetric soil water content 

(θm; kg kg-1 and θv; m
3 m-3) of 0 – 0.2 m undisturbed soil cores at various 

matric potentials at Rattray. All relationships were highly significant 

(p<0.001); n = 20. 

Ψm (kPa)  Regression equation  r 2 
0  θm = 0.908 – 0.400 BD  0.939 
-1  θm = 0.835 – 0.368 BD  0.905 
-2  θm = 0.792 – 0.346 BD  0.852 
-3  θm = 0.559 – 0.209 BD  0.636 
-60  θm = 0.058 – 0.090 * 0.058C  0.513 
-100  θm = 0.052 – 0.087 * 0.162C  0.507 
-1500  θm = 0.037 – 0.037 * 0.654C  0.885 
0  θv = 0.948 – 0.326 BD  0.847 
-1  θv = 0.872 – 0.299 BD  0.758 
-2  θv = 0.822 – 0.277 BD  0.632 
-1500  θv = 0.044 – 0.045* 0.528C  0.823 
 

Estimates of parameters of regression equations displayed in Table B  

above of the effect of bulk density on mass and volumetric soil water 

content (θm and θv) of 0 – 0.2 m undisturbed soil cores at various matric 

potentials (Ψm) at Rattray. 

Ψm (kPa) Parameter estimate s.e. t(26) t pr. 
θθθθm 

Constant 0.9081 0.0302 30.03 <0.001 0 
x -0.4003 0.0196 -20.46 <0.001 
Constant 0.8352 0.0353 23.63 <0.001 -1 x -0.3677 0.0229 -16.08 <0.001 
Constant 0.7917 0.0429 18.46 <0.001 -2 
x -0.3463 0.0277 -12.48 <0.001 
Constant 0.5586 0.0465 12.01 <0.001 

-3 
x -0.2089 0.0301 -6.94 <0.001 

θθθθv 
Constant 0.9478 0.041 23.11 <0.001 0 
x -0.3256 0.0265 -12.27 <0.001 
Constant 0.872 0.05 17.44 <0.001 -1 x -0.2989 0.0323 -9.24 <0.001 
Constant 0.822 0.0622 13.22 <0.001 

-2 
x -0.2769 0.0402 -6.88 <0.001 
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Standard error values of regression equations displayed in Table B  

above of the effect of soil carbon on mass and volumetric soil water 

content (θm and θv) of 0 – 0.2 m undisturbed soil cores at various matric 

potentials (Ψm) at Rattray. Equations are exponential in the form y = a + 

brx. 

Ψm (kPa) Parameter: a b r 
θθθθm 

-60  0.006 0.047 0.166 
-100  0.005 0.048 0.157 
-1500  0.01 0.008 0.151 

θθθθv 
-1  0.008 0.005 0.166 
 

C. Significant regression equations and associated percentage of variance 

accounted for by equations (r2) of the effect of bulk density (BD; Mg m-3) 

and soil carbon (C; % m/m) on mass soil water contenta (θm; kg kg-1) of 

0.4 – 0.5 m undisturbed soil cores at various matric potentials at 

Rattray. All relationships were highly significant (p<0.001); n=36. 

Ψm (kPa)  Regression equation  r 2 
0  θm = 0.596 – 0.210 BD  0.531 
-1  θm = 0.529 – 0.184 BD  0.514 
a All relationships with θv had r2 values < 0.5 and were excluded. 

 

Estimates of parameters of regression equations displayed in Table C  

above of the effect of bulk density on mass soil water content (θm) of 0.4 – 

0.5 m undisturbed soil cores at various matric potentials (Ψm) at Rattray. 

Ψm (kPa) Parameter estimate s.e. t(26) t pr. 
Constant 0.5958 0.0601 9.91 <0.001 0 
x -0.2101 0.0374 -5.62 <0.001 
Constant 0.5294 0.0542 9.77 <0.001 

-1 
x -0.1835 0.0337 -5.44 <0.001 
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Appendix 6.4. Standard error values of regression e quations 

between soil bulk density and soil carbon 

(combined) on mass soil water content ( θθθθm) at 

Shafton. 

 

A. Standard error values of regression equations displayed in Table 6.7  

of the effects of ranges of bulk density (BD) and soil carbon (C), as 

grouped in Table 6.6 , on mass soil water content (of undisturbed soil 

cores) at Shafton. 

Parameter BD C BD,C 
r 0.023 0.025 0.031 
s 0.001 0.001 0.001 
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Appendix 6.5. Soil bulk density and soil carbon eff ects 

(combined) on volumetric soil water content ( θθθθv) at 

Shafton. 

 

A.  The effect on soil water content (θv) of ranges of (a) bulk density and (b) 

soil carbon (C; % m/m) at Shafton Rattray (of undisturbed soil cores 

between 0 and 0.5 m). 
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B. Coefficients of regression equations† and associated percentage of 

variance accounted for by equations (r2) of the effects of ranges of 

ranges of bulk density (BD) and soil carbon (C; % m/m), as grouped in 

Table 6.6 , on volumetric soil water content (of undisturbed soil cores) at 

Shafton. All regression equations were highly significant (p<0.001); 

n=56. 

BD/ 
C Range (%) a b r c s r 2 

0 – 25 0.234 0.231 1.250 0.164 1.008 
25 – 75 0.258 0.188 1.250 0.160 1.008 BD 
75 – 100 0.265 0.132 1.250 0.184 1.008 

0.857 

0 – 25 0.228 0.212 1.225 0.157 1.007 
25 – 75 0.253 0.182 1.225 0.163 1.007 C 
75 – 100 0.280 0.184 1.225 0.154 1.007 

0.865 

0 – 25, 0 – 25 0.233 0.214 1.271 0.152 1.009 
25 – 75, 0 – 25 0.230 0.201 1.271 0.171 1.009 
75 – 100, 0 – 25 0.221 0.167 1.271 0.208 1.009 
0 – 25, 25 – 75 0.213 0.238 1.271 0.187 1.009 
25 – 75, 25 – 75 0.260 0.178 1.271 0.168 1.009 
75 – 100, 25 – 75 0.264 0.127 1.271 0.185 1.009 
0 – 25, 75 – 100 0.250 0.224 1.271 0.173 1.009 
25 – 75, 75 – 100 0.298 0.172 1.271 0.146 1.009 

BD, 
C 

75 – 100, 75 – 100 0.337 0.083 1.271 0.158 1.009 

0.881 

† The regression equation used is of the double exponential form i.e. y = a + b*rx + c*sx, 
where y = water content (θv; m

3 m-3), x = matric potential (kPa), and a, b, r, c and s are 
coefficients.  

 

Standard error values of regression equations displayed in Table B  

above of the effects of ranges of bulk density (BD) and soil carbon (C), 

as grouped in Table 6.6 , on volumetric soil water content (of 

undisturbed soil cores) at Shafton. 

Parameter BD C BD,C 
r 0.007 0.020 0.006 
s 0.001 0.001 0.001 
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Appendix 6.6. Soil bulk density and soil carbon eff ects (separate) 

on soil water content ( θθθθm and θθθθv) at Shafton. 

 

A. Significant regression equations and associated percentage of variance 

accounted for by equations (r2) of the effect of bulk density (BD; Mg m-3) 

and soil carbon (C; % m/m) on mass soil water contenta (θm; kg kg-1) of 

0 – 0.2 and 0.4 – 0.5 m undisturbed soil cores at various matric 

potentials at Shafton. All relationships were highly significant (p<0.001); 

n = 56. 

Ψm (kPa) Regression equation  r 2 
0 θm = 1.442 – 0.813 BD  0.889 
-1 θm = 1.256 – 0.684 BD  0.752 
-2 θm = 1.153 – 0.612 BD  0.580 
a All relationships with θv had r2 values < 0.5 and were excluded. 

 

 Estimates of parameters of regression equations displayed in Table A  

above of the effect of bulk density (BD) on soil water content (θv) of 0 – 

0.2 and 0.4 – 0.5 m undisturbed soil cores at various matric potentials 

(Ψm) at Shafton. 

Ψm (kPa) Parameter estimate s.e. t(52) t pr. 
Constant 1.442 0.042 34.62 <0.001 0 
x -0.813 0.039 -20.62 <0.001 
Constant 1.256 0.057 22.07 <0.001 -1 x -0.684 0.054 -12.71 <0.001 
Constant 1.153 0.075 15.37 <0.001 -2 x -0.612 0.071 -8.62 <0.001 
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B. Significant regression equations and associated percentage of variance 

accounted for by equations (r2) of the effect of bulk density (BD; Mg m-3) 

and soil carbon (C; % m/m) on mass soil water contenta (θm; kg kg-1) of 

0 – 0.2 m undisturbed soil cores at various matric potentials at Shafton. 

All relationships were highly significant (p<0.001); n=27. 

Ψm (kPa) Regression equation r2 
0 θm = 1.453 – 0.819 BD 0.876 
-1 θm = 0.461 + 108 * 0.001BD 0.726 
-2 θm = 0.484 + 77094 * 5.60E-07BD 0.520 
-3 θm = 0.475 + 3.10E+08 * 0.53E-10BD 0.509 
-5 θm = 0.440 + (3.21E-15 + 1.93E-19 C) +4C 0.544 
-30 θm = 0.85 + (-1.15 + 11.7 C) +0.854C 0.648 
-60 θm = 0.302 + (-2.29E-09 + 5.3E-08 C) + 2.20C 0.593 
-100 θm = 0.539 + (-6.7 + 87 C) + 0.760C 0.593 
a All relationships with θv had r2 values < 0.5 and were excluded. 

 

Standard error values of regression equations displayed in Table B  

above of the effect of bulk density and soil carbon on mass soil water 

content (θm) of 0 – 0.2 m undisturbed soil cores at various matric 

potentials (Ψm) at Shafton. Standard error values are given in the order 

in which they appear in the regression equations above. 

Ψm (kPa) s.e.  s.e. s.e. s.e. 
0 0.063 0.060   
-1 0.041 274 0.003  
-2 0.017 322164 2.61E-06  
-3 0.012 2.12E+09 4.06E-10  
-5 0.0175 4.41E-11 1.23E-12 58121 
-30 1.25 3.96 52 0.215 
-60 0.024 2.13E-08 5.01E-07 1.030 
-100 0.285 26.5 364 0.188 
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C. Significant regression equations and associated percentage of variance 

accounted for by equations (r2) of the effect of bulk density (BD; Mg m-3) 

and soil carbon (C; % m/m) on mass soil water contenta (θm; kg kg-1) of 

0.4 – 0.5 m undisturbed soil cores at various matric potentials at 

Shafton. All relationships were highly significant (p<0.001); n=29. 

Ψm (kPa)  Regression equation  r 2 
0  θm = 0.383 + 12 * 0.020BD  0.912 
-1  θm = 0.414 + 78 * 0.002BD  0.829 
-2  θm = 0.428 + 1031 * 9.2E-05BD  0.745 
-3  θm = 0.426 + 7797 * 8.4E-06BD  0.664 
-4  θm = 0.417 + 21959 * 2.52E-06BD  0.661 
-5  θm = 0.410 + 57227 * 7.7E-07BD  0.592 
-6.5  θm = 0.406 + 535151 * 5.6E-08BD  0.500 
a All relationships with θv had r2 values < 0.5 and were excluded. 

 

Standard error values of regression equations displayed in Table C  

above of the effect of bulk density and soil carbon on mass soil water 

content (θm) of 0.4 – 0.5 m undisturbed soil cores at various matric 

potentials (Ψm) at Shafton. Standard error values are given in the order 

in which they appear in the regression equations above. 

Ψm (kPa) s.e.  s.e. s.e. 
0 0.081 14.5 0.031 
-1 0.042 149 0.004 
-2 0.025 2674 2.67E-04 
-3 0.018 25837 3.08E-05 
-4 0.015 75852 9.64E-06 
-5 0.014 236751 3.54E-06 
-6.5 0.012 2920969 3.36E-07 
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Appendix 6.7. ANOVA (two-way) of the effect of comp action 

treatments and residue management on average 

volumetric soil water content ( θθθθv) measurements 

using the thetaprobe at Shafton. 

 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.028 0.014 11.02 <0.001 
Residue 2 0.036 0.018 13.85 <0.001 
Compaction x residue 4 0.007 0.002 1.44 0.262 
Residual 18 0.023 0.001   
Total 26 0.095    
 



 307 

Appendix 7.1. Relationship between biomass index an d various 

biomass components of E. grandis trees 209 

DAP at Rattray. 
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C. Aboveground biomass 
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F. Fine roots 
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I. Major components 
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J. Standard error values of regression equations displayed in above 

figures of the relationship between biomass index and various 

biomass components of E. grandis trees 209 DAP at Rattray. 

Component Parameter estimate s.e. t a t pr. 
Constant 0.025 0.003 8.28 <0.001 Foliage 
x 1.25E-07 3.61E-09 34.52 <0.001 
Constant 0.019 0.003 6.74 <0.001 Stem+Branches 
x 1.90E-07 3.33E-09 57.04 <0.001 
Constant 0.044 0.006 7.91 <0.001 Aboveground 

biomass x 3.15E-07 6.62E-09 47.55 <0.001 
Constant 0.005 0.002 2.04 0.05 Belowground 

stem x 3.96E-08 1.74E-09 22.74 <0.001 
Constant 0.011 0.002 4.80 <0.001 Coarse roots 
x 2.07E-08 1.71E-09 12.08 <0.001 
Constant 0.017 0.005 3.54 0.001 Belowground 

biomass  x 7.48E-08 5.86E-09 12.75 <0.001 
Constant 0.019 0.018 1.02 0.315 

Total biomass 
x 5.10E-07 2.27E-08 22.51 <0.001 

a  the residual degrees of freedom were 130 for foliage, stem+branches and aboveground 
biomass, while for the remaining components it was 31. 
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Appendix 7.2. Relationship between biomass index an d various 

biomass components of E. grandis trees 211 

DAP at Shafton. 
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C. Aboveground biomass 
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F. Fine roots 
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I. Major components 
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J. Standard error values of regression equations displayed in above 

figures of the relationship between biomass index and various 

biomass components of E. grandis trees 211 DAP at Shafton. 

Component Parameter estimate s.e. t a t pr. 
Constant 0.019 0.00302 6.21 <0.001 Foliage 
x 1.71E-07 5.17E-09 33.12 <0.001 
Constant 0.014 0.003 5.20 <0.001 Stem+Branches x 2.05E-07 4.54E-09 45.14 <0.001 
Constant 0.034 0.006 5.90 <0.001 Aboveground 

biomass x 3.74E-07 9.86E-09 37.91 <0.001 
Constant 0.004 0.002 2.74 0.010 Belowground 

stem x 3.81E-08 3.09E-09 12.34 <0.001 
Constant 0.008 0.002 3.62 <0.001 Coarse roots 
x 3.05E-08 4.27E-09 7.14 0.001 
Constant 0.016 0.003 6.04 0.001 Belowground 

biomass  x 6.76E-08 5.27E-09 12.83 <0.001 
Constant 0.039 0.008 4.96 0.315 

Total biomass 
x 4.65E-07 1.53E-08 30.43 <0.001 

a  the residual degrees of freedom were 133 for foliage, stem+branches and aboveground 
biomass, while for the remaining components it was 31. 
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Appendix 7.3. Relationship between various biomass 

components of E. grandis trees at Rattray (209 

DAP) and Shafton (211 DAP).  
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a Regression equations, percentage variance accounted for and levels of 

significance are given in Table 7.2 .  

 

B. Foliage biomass and stem plus branch (St+br)a. 
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a Regression equations, percentage variance accounted for and levels of 

significance are given in Table 7.2 .  
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C. Relationships between coarse root biomass and stem plus branch 

(St+br) biomassa.  
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a Regression equations, percentage variance accounted for and levels of 

significance are given in Table 7.2 .  
 

D. Standard error values of regression equations displayed in above 

figures of the relationship between various biomass components of 

E. grandis trees at 209 and 211 DAP at Rattray and Shafton, 

respectively. 

Relationship Parameter estimate s.e. t-d.f. a t t pr. 
Rattray 

Constant 0.041 0.018 23 2.20 0.038 Aboveground vs 
belowground x 2.902 0.260  11.15 <0.001 

Constant -0.033 0.003 130 -3.67 <0.001 Stem+Branches 
vs foliage x 1.624 0.025  58.22 <0.001 

Constant 0.014 0.011 23 1.27 0.215 Stem+Branches 
vs coarse roots x 2.086 0.177  11.80 <0.001 

Shafton 
Constant -0.040 0.018 31 -2.19 0.036 Aboveground vs 

belowground x 5.059 0.374  13.55 <0.001 
Constant -0.002 0.002 133 -2.21 0.029 Stem+Branches 

vs foliage x 1.117 0.017  66.81 <0.001 
Constant -0.013 0.009 31 -1.57 0.125 Stem+Branches 

vs coarse roots x 2.709 0.185  14.66 <0.001 
a  the residual degrees of freedom. 
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Appendix 7.4. Estimates of parameters of regression  equations 

displayed in Figure 7.1 between total biomass and 

tree leaf area of individual trees at Rattray (209 

DAP) and Shafton (211 DAP). 

 

 Parameter estimate s.e. t(23) t pr. 
Constant -0.012 0.024 -0.52 0.609 Rattray 
x 0.207 0.015 13.58 <0.001 

 Parameter estimate s.e. t(31) t pr. 
Constant 0.024 0.018 1.37 0.180 Shafton x 0.102 0.007 13.86 <0.001 
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Appendix 7.5. Effect of compaction and residue mana gement on 

the average foliar N and P concentrations of sub-

plot trees at Shafton. 

 

A. ANOVA of treatment effects on foliar N concentrations in sub-plot 

trees (211 DAP) at Shafton. 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.299 0.150 9.56 0.001 
Residue 2 0.341 0.171 10.91 <0.001 
Compaction x residue 4 0.057 0.014 0.91 0.479 
Residual 18 0.282 0.016   
Total 26 0.970    

 

 

B. ANOVA of treatment effects on foliar P concentrations in sub-plot 

trees (211 DAP) at Shafton. Data was power transformed (x2) to 

prevent violation of normality assumptions 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 3.378E-05 1.689E-05 16.22 <0.001 
Residue 2 1.143E-05 5.716E-06 5.49 0.014 
Compaction x residue 4 2.036E-05 5.091E-06 4.89 0.008 
Residual 18 1.874E-05 1.041E-06   
Total 26 8.432E-05    

 

C. The combined effect of compaction treatments and residue 

management on foliar P (g kg-1) of sub-plot trees. 

Compaction Residue Management Mean PSS 1 (kPa) 
Low Broadcast 0.115a 
Low Windrowed 0.098b 

Low Removed 0.096bc 

Moderate Broadcast 0.094bc 

High  Removed 0.093bc 

Moderate Windrowed 0.092bc 

Moderate Removed 0.092bc 

High Broadcast 0.090bc 

High Windrowed 0.088c 

a Treatments with different letters are significantly different (p<0.05). 
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Appendix 7.6. Effect of compaction and residue mana gement on 

root:shoot ratios of E. grandis trees 209 DAP at 

Rattray. 
 

A. ANOVA of the effect of compaction treatments on root:shoot ratios of 

E. grandis trees 209 DAP at Rattray. Note: data was log transformed 

to prevent violation of normality and error assumptions. 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.637 0.319 5.39 0.015 
Residue 2 0.064 0.032 0.54 0.593 
Compaction x residue 4 0.126 0.032 0.53 0.713 
Residual 18 1.065 0.059   
Total 26 1.892    
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Appendix 7.7. ANOVA of the effect of compaction and  residue 

management on the average GLD of sub-plot trees 

at Rattray. 

 

70 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 1.796 0.898 6.66 0.007 
Residue 2 0.327 0.163 1.21 0.321 
Compaction x residue 4 1.281 0.320 2.38 0.090 
Residual 18 2.426 0.135   
Total 26 5.829    
  

133 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 30.835 15.417 4.90 0.020 
Residue 2 13.150 6.575 2.09 0.152 
Compaction x residue 4 15.526 3.881 1.23 0.331 
Residual 18 56.582 3.143   
Total 26 116.092    
 

167 DAPa: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.364 0.182 5.03 0.018 
Residue 2 0.102 0.051 1.41 0.270 
Compaction x residue 4 0.211 0.053 1.46 0.256 
Residual 18 0.652 0.036   
Total 26 1.330    
a Data transformed by the natural logarithm (ln) to prevent violation of normality assumptions. 
 

209 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 94.12 47.06 3.05 0.072 
Residue 2 27.78 13.89 0.90 0.424 
Compaction x residue 4 40.98 10.24 0.66 0.625 
Residual 18 277.41 15.41   
Total 26 440.29    
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Appendix 7.8. ANOVA of the effect of compaction and  residue 

management on the average height of sub-plot 

trees at Rattray. 

 

70 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 57.356 28.678 3.90 0.039 
Residue 2 23.729 11.864 1.61 0.227 
Compaction x residue 4 37.051 9.263 1.26 0.322 
Residual 18 132.288 7.349   
Total 26 250.424    
 

133 DAPa: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 30761950 15380975 5.71 0.012 
Residue 2 7684716 3842358 1.43 0.266 
Compaction x residue 4 8464527 2116132 0.79 0.549 
Residual 18 48493295 2694072   
Total 26 95404488    
a Data power transformed (x2) to prevent violation of normality assumptions. 

 

167 DAPb: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 1.349E+08 6.747E+07 5.82 0.011 
Residue 2 1.388E+07 6.939E+06 0.60 0.560 
Compaction x residue 4 8.863E+07 2.216E+07 1.91 0.152 
Residual 18 2.087E+08 1.160E+07   
Total 26 4.462E+08    
b Data power transformed to prevent violation of normality assumptions.  

 

209 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 7429.2 3714.6 4.96 0.019 
Residue 2 640.3 320.2 0.43 0.658 
Compaction x residue 4 5144.8 1286.2 1.72 0.190 
Residual 18 13474.1 748.6   
Total 26 26688.5    
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Appendix 7.9. ANOVA of the effect of compaction and  residue 

management on the average biomass index of 

sub-plot trees at Rattray. 

 

70 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 37.180 18.590 7.38 0.005 
Residue 2 7.683 3.841 1.52 0.245 
Compaction x residue 4 26.279 6.570 2.61 0.070 
Residual 18 45.358 2.520   
Total 26 116.500    
  

133 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 21804 10902 4.94 0.019 
Residue 2 7148 3574 1.62 0.226 
Compaction x residue 4 10166 2541 1.15 0.365 
Residual 18 39728 2207   
Total 26 78846    
 

167 DAPa: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.5550 0.277 5.40 0.015 
Residue 2 0.097 0.049 0.94 0.407 
Compaction x residue 4 0.343 0.086 1.67 0.201 
Residual 18 0.925 0.051   
Total 26 1.920    
a Data logarithmically transformed (log x) to prevent violation of normality assumptions. 

 

209 DAPb: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 311.90 155.95 3.55 0.050 
Residue 2 47.62 23.81 0.54 0.591 
Compaction x residue 4 197.23 49.31 1.12 0.377 
Residual 18 790.62 43.92   
Total 26 1347.37    
b Data square root transformed (√x) to prevent violation of normality assumptions. 
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Appendix 7.10. ANOVA of the effect of compaction an d residue 

management on the average crown diameter of 

sub-plot trees at Rattray. 

 

70 DAPa: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.353 0.176 1.09 0.358 
Residue 2 0.170 0.085 0.53 0.600 
Compaction x residue 4 0.901 0.225 1.39 0.277 
Residual 18 2.917 0.162   
Total 26 4.342    
a Data square root transformed (√x) to prevent violation of normality assumptions. 

 

133 DAPb: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 16197268 8098634 4.04 0.036 
Residue 2 8782107 4391054 2.19 0.141 
Compaction x residue 4 6335696 1583924 0.79 0.547 
Residual 18 36104010 2005778   
Total 26 67419081    
b Data power transformed (x2) to prevent violation of normality assumptions. 

 

167 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 1871.6 935.8 6.63 0.007 
Residue 2 314.1 157.0 1.11 0.350 
Compaction x residue 4 711.6 177.9 1.26 0.322 
Residual 18 2541.6 141.2   
Total 26 5438.9    
  

209 DAPc: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.0408 0.020 2.43 0.116 
Residue 2 0.010 0.005 0.61 0.552 
Compaction x residue 4 0.079 0.020 2.36 0.092 
Residual 18 0.151 0.008   
Total 26 0.281    
c Data logarithmically transformed (log x) to prevent violation of normality assumptions. 
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Appendix 7.11. ANOVA of the effect of compaction an d residue 

management on the average GLD or DBH of main 

plot trees at Rattray. 

 

6 months of agea (GLD): 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.139 0.070 7.29 0.005 
Residue 2 0.004 0.002 0.21 0.816 
Compaction x residue 4 0.045 0.011 1.18 0.352 
Residual 18 0.172 0.010   
Total 26 0.361    
a Data logarithmically (log x) transformed to prevent violation of normality assumptions. 
  

13 months of age (GLD): 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 437.08 218.54 3.83 0.041 
Residue 2 4.02 2.01 0.04 0.965 
Compaction x residue 4 175.67 43.92 0.77 0.559 
Residual 18 1028.09 57.12   
Total 26 1644.87    
  

18 months of age (DBH): 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 409.57 204.78 3.57 0.050 
Residue 2 17.11 8.56 0.15 0.863 
Compaction x residue 4 238.38 59.59 1.04 0.415 
Residual 18 1033.43 57.41   
Total 26 1698.48    
  

23.5 months of ageb (DBH): 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 1.526 0.763 2.28 0.131 
Residue 2 0.189 0.094 0.28 0.757 
Compaction x residue 4 0.748 0.187 0.56 0.695 
Residual 18 6.015 0.334   
Total 26 8.477    
b Data square root transformed (√x) to prevent violation of normality assumptions. 
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31.5 months of age (DBH): 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 1.703 0.851 1.94 0.173 
Residue 2 0.304 0.152 0.35 0.712 
Compaction x residue 4 2.153 0.538 1.22 0.335 
Residual 18 7.911 0.440   
Total 26 12.071    
   

41.5 months of age (DBH): 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.656 0.343 0.82 0.445 
Residue 2 0080 0.040 0.10 0.909 
Compaction x residue 4 3.214 0.804 1.93 0.149 
Residual 18 7.493 0.416   
Total 26 11.473    
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Appendix 7.12. ANOVA of the effect of compaction an d residue 

management on the average height of main plot 

trees at Rattray. 

 

6 months of agea: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 23.319 11.660 8.47 0.003 
Residue 2 0.067 0.033 0.02 0.976 
Compaction x residue 4 9.193 2.298 1.67 0.201 
Residual 18 24.767 1.376   
Total 26 57.346    
a Data transformed (square root) to prevent violation of normality assumptions. 

  

13 months of age: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 26609 13305 5.55 0.013 
Residue 2 1637 818 0.34 0.715 
Compaction x residue 4 12269 3067 1.28 0.314 
Residual 18 43127 2396   
Total 26 83642    
 

18 months of agea: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 16.223 8.111 3.38 0.057 
Residue 2 1.364 0.682 0.28 0.756 
Compaction x residue 4 6.593 1.648 0.69 0.611 
Residual 18 43.215 2.401   
Total 26 67.395    
a Data transformed (square root) to prevent violation of normality assumptions. 

  

23.5 months of age: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 38818 19409 2.75 0.091 
Residue 2 5938 2969 0.42 0.663 
Compaction x residue 4 17115 4279 0.61 0.664 
Residual 18 127185 7066   
Total 26 189056    
 

Tree height at 31.5 and 41.5 months determined from regressions in Appendix 3.4 , 

and therefore not analysed as results will mirror those of DBH (Appendix 7.8 ).  
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Appendix 7.13. ANOVA of the effect of compaction an d residue 

management on the average GLD of sub-plot trees 

at Shafton. 

 

70 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.449 0.225 1.12 0.348 
Residue 2 5.015 2.507 12.52 <0.001 
Compaction x residue 4 0.520 0.130 0.65 0.635 
Residual 18 3.604 0.200   
Total 26 9.588    
 

120 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 3.015 1.508 1.51 0.248 
Residue 2 15.083 7.542 7.55 0.004 
Compaction x residue 4 6.914 1.728 1.73 0.187 
Residual 18 17.968 0.998   
Total 26 42.980    
  

211 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 5.219 2.610 1.16 0.335 
Residue 2 8.873 4.437 1.98 0.168 
Compaction x residue 4 7.261 1.815 0.81 0.536 
Residual 18 40.416 2.245   
Total 26 61.770    
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Appendix 7.14. ANOVA of the effect of compaction an d residue 

management on the average height of sub-plot 

trees at Shafton. 

 

70 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 6.540 3.270 0.48 0.626 
Residue 2 26.780 13.390 1.97 0.169 
Compaction x residue 4 19.573 4.893 0.72 0.590 
Residual 18 122.475 6.804   
Total 26 175.369    
  

120 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 37.90 18.95 0.75 0.486 
Residue 2 225.79 112.90 4.47 0.026 
Compaction x residue 4 163.58 40.90 1.62 0.212 
Residual 18 454.22 25.23   
Total 26 881.50    
  

211 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 525.8 262.9 1.56 0.236 
Residue 2 449.3 224.6 1.34 0.288 
Compaction x residue 4 789.3 197.3 1.17 0.355 
Residual 18 3026.2 168.1   
Total 26 4790.6    
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Appendix 7.15. ANOVA of the effect of compaction an d residue 

management on the average biomass index of 

sub-plot trees at Shafton. 

 

70 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 2.147 1.074 0.41 0.670 
Residue 2 51.201 25.600 9.75 0.001 
Compaction x residue 4 9.740 2.435 0.93 0.470 
Residual 18 47.239 2.624   
Total 26 110.327    
 

120 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 820.8 410.4 1.34 0.288 
Residue 2 2456.5 1228.2 4.00 0.037 
Compaction x residue 4 2397.0 599.2 1.95 0.146 
Residual 18 5532.4 307.4   
Total 26 11206.6    
  

211 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 28952 14476 1.83 0.188 
Residue 2 29182 14591 1.85 0.186 
Compaction x residue 4 39751 9938 1.26 0.322 
Residual 18 142067 7893   
Total 26 239953    
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Appendix 7.16. ANOVA of the effect of compaction an d residue 

management on the average crown diameter of 

sub-plot trees at Shafton. 

 

70 DAPa: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.009 0.004 1.23 0.317 
Residue 2 0.142 0.071 19.93 <0.001 
Compaction x residue 4 0.022 0.005 1.53 0.236 
Residual 18 0.064 0.004   
Total 26 0.237    
a Data logarithmically (log x) transformed to prevent violation of normality assumptions. 
 

120 DAPa: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 1072188 536094 1.54 0.241 
Residue 2 5355271 2677636 7.70 0.004 
Compaction x residue 4 1744213 436053 1.25 0.324 
Residual 18 6255941 347552   
Total 26 14427613    
a Data power (x2) transformed to prevent violation of normality assumptions.  
 

211 DAP: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 44.92 22.46 0.37 0.693 
Residue 2 19.29 9.64 0.16 0.853 
Compaction x residue 4 124.53 31.13 0.52 0.722 
Residual 18 1078.47 59.91   
Total 26 1267.20    
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Appendix 7.17. ANOVA of the effect of compaction an d residue 

management on the average GLD or DBH of main 

plot trees at Shafton. 
 

6 months of age (GLD): 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 1.866 0.933 0.15 0.862 
Residue 2 28.433  14.217 2.28 0.131 
Compaction x residue 4 13.393  3.348 0.54 0.711 
Residual 18 112.314 6.240   
Total 26 156.007    
  

12 months of age (GLD)a: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.040 0.020 7.49 0.004 
Residue 2 0.018 0.009 3.42 0.050 
Compaction x residue 4 0.024 0.006 2.27 0.101 
Residual 18 0.048 0.003   
Total 26 0.131    
a Data transformed (natural log; ln) to prevent violation of normality assumptions. 

  

18 months of age (DBH): 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 1.310 0.655 4.78 0.022 
Residue 2 0.982 0.491 3.58 0.049 
Compaction x residue 4 0.100 0.025 0.18 0.945 
Residual 18 2.468 0.137   
Total 26 4.859    
 

25.5 months of age (DBH): 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 1.333 0.666 6.65 0.007 
Residue 2 1.783 0.892 8.90 0.002 
Compaction x residue 4 0.008 0.002 0.02 0.999 
Residual 18 1.803 0.100   
Total 26 4.926    
 

30.5 months of age (DBH): 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 1.351 0.676 4.63 0.024 
Residue 2 2.356 1.178 8.08 0.003 
Compaction x residue 4 0.091 0.023 0.16 0.957 
Residual 18 2.624 0.146   
Total 26 6.423    
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Appendix 7.18. ANOVA of the effect of compaction an d residue 

management on the average height of main plot 

trees at Shafton. 
 

6 months of age: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 764.4 382.2 1.20 0.325 
Residue 2 819.7 409.9 1.28 0.301 
Compaction x residue 4 660.1 165.0 0.52 0.724 
Residual 18 5744.1 319.1   
Total 26 7988.4    
 

12 months of agea: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 3.830 1.915 5.61 0.013 
Residue 2 2.528 1.264 3.70 0.045 
Compaction x residue 4 2.243 0.561 1.64 0.207 
Residual 18 6.145 0.341   
Total 26 14.746    
a Data transformed (square root) to prevent violation of normality assumptions. 

  

18 months of age: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.976 0.488 2.47 0.113 
Residue 2 0.238 0.119 0.60 0.558 
Compaction x residue 4 0.097 0.024 0.12 0.972 
Residual 18 3.559 0.198   
Total 26 4.871    
  

25.5 months of age: 

Source of Variation d.f. s.s. m.s. v.r. F pr. 
Compaction 2 0.698 0.349 0.61 0.553 
Residue 2 1.366 0.683 1.20 0.325 
Compaction x residue 4 0.182 0.046 0.08 0.988 
Residual 18 10.261 0.570   
Total 26 12.507    
 

Tree height at 30.5 months was determined from a regression in Appendix 3.4 , 

and therefore not analysed as results will mirror those of DBH (Appendix 7.14 ). 

 


