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ABSTRACT 

The purpose of the study was to investigate the mathematical discourses of grade eleven 

learners related to the worded, numerical, tabular, and graphic asymptotes of the hyperbola and 

exponential functions. The theory of commognition was referred to, with particular emphasis 

on the characteristics of the mathematical discourse; that is, word use, visual mediators, 

endorsed narratives, and routines.  

The study has fundamentally adopted an interview-based qualitative research design approach, 

with descriptive and interpretative elements complementing its data analysis processes. In 

addition, some quantitative aspects were administered by means of test-based activities. The 

study was conducted in four schools in the rural Mthatha district of the Eastern Cape Province 

of South Africa. Data was collected by means of a test administered to 112 respondents, and 

task-based interviews with 12 pairs of grade eleven students in those schools. In each school, 

about 30 learners participated in the test, and six from each school took part in the interviews. 

Data was analysed by means of the Discourse Profile of the Hyperbola and Exponential 

Function adapted from the Arithmetic Discourse Profile propounded by Ben-Yahuda and 

others.  

The findings revealed that learners have learnt functions in class, and were all familiar with the 

asymptotes of the hyperbola and the exponential function. While learners could answer 

questions on functions, a rephrasing of the question changed their response. There were also 

challenges of linking different representations of a function to each other. Students would also 

work efficiently on procedure tasks, but struggled on action-oriented tasks.  
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CHAPTER 1 

OVERVIEW OF THE STUDY 

1.1 Introduction 

“South Africa is significantly underperforming in education in general, particularly in 

Mathematics teaching and learning. Mathematics teaching is often of poor quality, with 

teachers not able to answer questions in the curriculum they are teaching, one indicator of the 

challenge. Often, national testing is misleading as it does not show the major gaps at lower 

grade levels” (Minister of Basic Education, 2016). This statement by the Minister is an 

irrefutable indictment of the deteriorating state of Mathematics teaching and learning in the 

South African public school system. The Minister (Mrs A Motshekga) is not the only one to 

have reflected on the poor state of the teaching and learning of Mathematics in the country.  

Researchers and practitioners such as Howie (2003) and Tachie and Chireshe (2013) have also 

reflected on the same issue, and found that several factors were attributable to the generally 

poor Mathematics results. These factors include lack of resources, inadequate learner 

preparedness in previous grade levels, the language of teaching, and the poor quality of 

teaching. Learners’ utterances generally reflect what they have learnt, or what they have not 

yet learnt (Howie, 2003). The latter author also intimates that language was a hindrance in the 

learning of Mathematics, and becomes an issue in areas where learners and teachers mostly 

speak the same geographically-defined dominant language. In such situations, it is easy for 

lessons to be taught in the local language, which may not necessarily be the school’s medium 

of instruction Setati, 2008). The use of local languages sometimes affects learners’ language 

of literacy (Canagarajah, 2002; Vyncke, 2012). It is in this particular context that the present 

study does not consider language-related issues as peripheral to the investigation of learners’ 

mathematical discourse on the hyperbola and exponential functions. To this effect, Nachliel 

and Tabach (2012) assert that words do help identify the mathematical objects they represent 

in a mathematical situation. Since Mathematics is an auto-poietic subject, the use of words 

brings life to abstract objects or concepts. 

The importance of functions in the Mathematics curriculum is indicated by the amount of time 

allocated for the teaching of those functions in all the grade levels, from grade 10 to 12 in the 

Further Education and Training (FET) band of the official school curriculum in South Africa 

(Swarthout, Jones, Klespis & Cory, 2009). Of all the topics in the curriculum and assessment 

policy statement (CAPS), functions have the highest number of teaching weeks (Department 

of Basic Education/ DBE, 2011). Even the weighting of content in assessment, demonstrates 

that functions and their related components have at least 40 % of the marks in Paper 1 of the 

Mathematics high school examination. However, the Department of Basic Education’s grade 

12 reports prove that learners still experience difficulties in learning mathematical functions.  
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The focus on grade eleven was necessitated by the poor performance of learners in the learning 

of mathematical functions at this level. In terms of the curriculum expectations, most of the 

work in mathematical functions would have been studied by grade eleven. In fact, four of the 

five functions studied in the FET band are completed at grade eleven, and are not allocated any 

significant teaching time in grade 12 (DBE, 2011). The researcher deliberately decided to 

investigate the manner in which learners engaged with the hyperbola and the exponential 

function, mainly due to the maximum failure to realise the significance of the asymptotes that 

the functions tend to identify as they approach the extremes.  

While there was sporadic use of formal language by some learners, the asymptotes were at the 

same time expressed more in colloquial terms. For instance, when learners expressed an 

asymptote as though it was a number. Learners seemed to be more comfortable with tasks they 

were familiar with, but struggled with those that were unfamiliar to them. For example, they 

would easily work with graphs of an exponential function written in algebraic form in terms of 

x and y, but experienced some degree of difficulty in the event that the variables changed to t 

and 𝜃 in an exponential function. Furthermore, the learners would identify the asymptote in an 

equation with variables x and y, but fail to identify the asymptote in the event that the variables 

are 𝜃 𝑎𝑛𝑑 𝑡 . In such instances, learners’ narratives were based on what they could see. In this 

regard, they could explain that the asymptote should not intersect with the graph, but could not 

explain the reason for the non-intersection. Secondly, learners attributed their actions or a lack 

thereof, to the teacher’s very own actions. They manifested this in expressions such as: This is 

what we were taught, or This is how my teacher would do it. The learner’s various responses 

above emphasise that there are ritualised mathematical actions and non-mathematical routines. 

Generally, there were more of ritualised mathematical action routines.  

1.2 The Research Problem and its Context 

The teaching and learning of Mathematics in South Africa has been a cause for concern for the 

past twenty-four years of the post-apartheid democratic dispensation (DBE, 2013; Moutlana, 

2007). While there has been some improvement in the number of learners in Mathematics at 

grade 12 from 224 635 in 2011, to 265 810 in 2016, these numbers are less when compared 

with those of Mathematical Literacy which grew from 275 380 to 361 948 for the same period 

(DBE, 2013; DBE, 2017). The slight increase in learners studying Mathematics, compared to 

those studying Mathematical Literacy at grade 12, is indicative of the self-defeating attitude 

that many learners have on Mathematics. The Centre for Development and Enterprise/ CDE 

(2013) suggests that the teaching of Mathematics in South African schools was among the 

worst in the world. In fact, Mogari (2014) laments this state of affairs, when compared to 

countries such as Zimbabwe and Zambia. In these countries, the GDP is not comparable to that 

of South Africa, yet more has been achieved despite the disparate levels of socio-economic 



3 
 

development. The poor state of teaching inevitably translates into a correspondingly poor state 

of learning (Tachie & Chireshe, 2013; Yi, 2006). In the period between 2011 and 2013, the 

Department of Basic Education administered the Annual National Assessment (ANA) in 

Mathematics for grades 3, 6 and 9. The results were of a sliding nature, with grade 3s producing 

far better results than grade 9s. The grade 9 ANA results during the afore-cited three-year 

period reached an average of about 12%, which is indicative of the unsatisfactory state of the 

learning of Mathematics.  

Over the years, the National Senior Certificate (NSC) results have shown skewed patternss, 

with the majority of learners obtaining marks between 0% and 49.9% during the period 2013-

2016, as shown in Figure 1.1 below. 

  

Figure 1.1: Mathematics National Senior Certificate results from 2013 to 2016 

Figure 1.1 above illustrates that about 20% of the candidates attained more than 50% of the 

marks in the NSC Mathematics examinations. Additionally, most of these candidates had over 

the years obtained marks between 9% and 40%.  

Functions and other related aspects constitute more than 40% of the NSC Mathematics Paper 

One examinations. A close scrutiny of the examination reports of the past five years indicates 

that the average mark for learners in functions have been less than 50%, as shown in Table 1.1 

below. 

Table 1.1: Average performance mark on questions involving functions 

Year 2012 2013 2014 2015 2016 2017 

Average Performance on 

Functions 

41% 46% 43% 44% 36% 50% 

Extrapolated from Table 1.1 above, it is clear that the period 2012-2017 was characterised by 

an average performance mark just above 40% for functions-related questions, with the highest 
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average of 50% for 2017; and the lowest average of 36% in 2016. Data from the 2017 

Department of Basic Education’s diagnostic report shows that 245 103 learners wrote their 

Mathematics examinations in 2017, less than 20 000 compared to 265 915 of those who wrote 

their Mathematics examinations in 2016. The 50% average performance on functions in 2017 

may be an indicator of an improvement in the learning of functions. 

1.2.1 Rationale of the study 

The rationale of this study is premised on the researcher’s motivation and justification of the 

main reason or reasons for undertaking the study (de Vos, Strydom, Fouche & Delport, 2011; 

Denscombe, 2007). Accordingly then, both the background/ context of the study and its 

rationale provide a coherent and logical affinity with both the aim and objectives of the study 

(Walliman, 2011) and its rationale.  

Many of the interventions and investigations attempt to solve the challenges of poor learning 

of mathematics have focused on teachers in their investigation and possible solutions or 

recommendations. The idea is that once teachers ‘get it right’, it follows that the expected 

learning will follow on the part of the learners. In this study, the focus is more on learning by 

grade 11 (eleven) learners, than on the teachers as the providers of the expected learning. The 

specific focus on grade eleven was necessitated by the poor performance of learners in the 

learning of mathematical functions at this level.  

Table 1.1 (see p. 3) does not specifically show an improvement in the learning of functions. It 

is this observable lack of improvement which inspired the researcher to investigate learners’ 

discourse on functions in grade 11. In this regard, the researcher’s decision to focus on 

functions was informed by their undeniable importance in Mathematics education in schools. 

The essence of functions in Mathematics is mostly underpinned by their linkage of Algebra to 

Calculus (Adler & Venkat, 2014). The Department of Basic Education’s curriculum planners 

have shown their high regard of functions by allocating the highest teaching time in both grade 

10 and grade 11, which in itself highlights the self-same high value the Department places on 

the indispensability of functions in Mathematics education in schools. Therefore, it is this trend 

of poor performance that prompted this researcher to investigate high school learners’ 

mathematical discourse on functions (Swarthout et al., 2009).  

1.3 Purpose of the Study 

The terms ‘purpose’, ‘aim’, and ‘goal’ in research are used interchangeably to denote their 

synonymous nature, character, and interrelatedness (Babbie & Mouton, 2010; Henning, 2005). 

According to this perspective, these three interchangeable terms are distinguishable from the 

concept of ‘study objectives’. Despite the distinction between ‘purpose’, ‘aim’, and ‘goal’ on 

the one hand, and ‘study objectives’ on the other, there exists a degree of complementarity in  

all of these nuances (Babbie & Mouton, 2010; Kumar, 2012).  
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In the light of the distinguishability of the research aim/ purpose/ goal and study objectives 

(explained further in section 1.4 below), the purpose, aim, or goal of the study refers to the 

researcher’s more general, broader, or overall intentions for conducting the study (Babbie & 

Mouton, 2010; Walliman, 2011). In the context of this research, the overall intention or purpose 

was: To investigate learners’ mathematical discourse on the hyperbola and exponential 

functions. Learners’ mathematical utterances provide a clear reflection and context of what 

they have learnt, or what they have not yet learnt; that is, what they still have to learn (Ben-

Yahuda et al., 2005; Howie, 2003). In this regard, both linguistic proficiency and mathematical 

knowledge of the hyperbola and exponential functions were inextricable aspects of the 

investigation.  

1.4 Objectives of the Study 

While the purpose, aim, or goal of the study is indicative of the more general aspects of the 

researcher’s intentions, the objectives of the study are the writ large reduction, unbundling, or 

unpacking of the self-same research purpose (Babbie & Mouton, 2010; Katzenellenbogen & 

Joubert, 2007). By implication therefore, the study’s objectives allocate a degree of immediacy 

or specificity and measurability, as they are premised and focused on the unambiguous and 

direct intentions for purposes of resolving the identified research problem. Hence the assertion 

by Kumar (2012) that a study’s objectives rest on four pillars; that is, “to describe a situation, 

phenomenon, problem or issue (descriptive research); to establish or explore a relationship 

between two or more variables (correlational research); to explain why certain things happen 

the manner they do (explanatory research); and to examine the feasibility of conducting a study 

or exploring a subject area where nothing or little is known (exploratory research)” (p. 34). It 

is worth mentioning that the current study’s number of objectives are four. That number was 

pre-determined by the researcher, and is independent of Kumar’s four-fold characterisation of 

the nature of an objective as alluded to above. The current study was guided by the following 

four pre-determined objectives, namely: 

 To understand the mathematical discourse of learners in a rural setting with regard to 

mathematical functions  
 

Functions are a very important component of Mathematics as they link algebra to calculus 

(Ben-Yahuda et al., 2005; Howie, 2003). Learners’ mathematical discourse on functions would 

help identify challenges experienced by learners, such as the objectification of the functions 

discourse;  

 

 To explore and identify the lexicon used by learners in expressing themselves in the context 

of mathematical functions  
 

It is in the use of words that learners’ thought processes could be viewed as a window to the 

kind of Mathematics that they hold (Bradley, Campbell & McPetrie, 2013). For example, some 
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learners referred to the asymptote as a point, which is influenced by the extent of their reading 

and interpretation of the table of values in functions; 

 

 To explore, describe, and explain the mathematical discourse of learners on the four 

representations of a function, namely: functions expressed in words, as algebraic form, in 

the form of ordered pairs, and in graphical form  
 

One of the indications that learning has taken place is the learners’ ability or capacity to link 

the four representations of a function with flexibility (Sfard, 2007; Sfard, 2016). The four 

representations are an important component of the curriculum requirements mainly due to the 

scoring or weight that functions and related topics carry in the examinations; 

 

 To explore and define the learners’ experiences and perspectives pertaining to 

understanding the asymptotes of the functions  
 

Learning of Mathematics depends on previously learned mathematical objects (Brodie & 

Berger, 2010). Learning functions at high school level prepares learners for learning about 

rational functions. The kind of functions (e.g. hyperbola, exponential function and tangent 

function) do not show the characteristics of all the rational functions; thus contributing to 

learners’ incomplete generalisation of the asymptote. The incomplete generalisation gives rise 

to contradictions as learners study rational functions further.  

1.5 The Research Questions 

By their nature, research questions are not framed in isolation of other critical units of analysis, 

such as the research problem, aim and objectives, the significance of the study; as well as the 

associated data collection and analysis processes of the study (Creswell, 2014; Kumar, 2012). 

As opposed to questions in a research instrument (e.g. questionnaires or interviews), the 

research questions listed below are fundamentally meant to guide the researcher throughout the 

research process (Babbie & Mouton, 2010). That is, these research questions are not meant to 

be responded to by the selected research participants or respondents. These questions therefore, 

serve as a form of checklist for the researcher during the entire research process. Therefore, 

this study was guided by the following four questions: 

 What discourses do grade 11 learners in rural areas display when learning functions? 

 How does the use of words (lexicon) afford or constrain the participation of learners in the 

mathematical functions discourse? 

 What is the nature of grade 11 learners’ mathematical discourse relating to the four different 

representations of functions in the context of the hyperbola and the exponential functions? 

 What is the nature of learners’ participation in mathematical discourse on the asymptote of 

the hyperbola and exponential function in grade 11? 
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1.6 Significance of the Study 

The significance of the study provides a framework for the motivation, justification, or reasons 

advanced for the study’s truth value in relation to “the complex relationship between the 

scientific environment and the real-life concerns” (Babbie & Mouton, 2010: 10). In essence, 

the complex relationship referred to above is emblematic of the utilitarian function of 

knowledge production and dissemination (Gcasamba, 2014). The utilitarian function itself is 

an illustration of the relationship between scientific research and the lived experiences or social 

reality of people in particular environments. Bunting (2002, p. 67) confirms that: “Knowledge 

is not regarded as something which is good in itself, and hence worth pursuing for its own sake. 

It follows that knowledge which could be used for a specific social, economic or political 

purpose would be the primary form pursued”. From this premise, it is evident that a study could 

be either epistemological or socio-economic in its significance, value, or contribution (Vyncke, 

2012). 

The epistemological significance relates to the extent to which the study contributes to the body 

of knowledge in a particular field of study (such as Mathematics in this case), and identifies 

gaps (if any) between theory and practice (Kumar, 2012). It is envisaged that the current study 

will be of value in its contribution to the field of learners’ mathematical discourses in the 

context of the worded, numerical, tabular, and graphic asymptotes of the hyperbola and 

exponential functions. In this regard, the researcher has developed and utilised an analytical 

tool termed the Discourse Profile of the Hyperbola and Exponential Function (DPHEF), which 

is an extension of the Discourse Profile of the Hyperbola (DPH) - an analytical tool used by 

the researcher for his Master’s research project. The DPH was developed from the Arithmetic 

Discourse Profile (ADP) by Ben-Yahuda et al. (2005), which sought to distinguish 

mathematical communication that appeared similar at face value. The major additions of the 

DPHEF to the DPH is that the ritualised routines are divided into two parts with ritualised 

mathematical and ritualised non-mathematical categories. Ritualised routines are part of the 

growing mathematical discourses.  

In the current study, clear distinctions have been made between the ritualised mathematical 

routines, in terms of which learners act in mathematically acceptable ways but cannot give 

mathematical reasons in support of the particular routine. In the case of the non-mathematical 

rituals, learners generally give wrong mathematical statements in relation to the particular 

mathematical routine. Ritualised mathematical routines show a growing mathematical 

discourse. Furthermore, ritualised mathematical routines are an indication that learners have 

gained something from their interaction with the interlocutor, whereas ritualised non-

mathematical routines represent actions not taught in the classrooms, but learners trying to 

make meaning of the Mathematics presented to them (Sfard, 2012). Ritualised non-
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mathematical routines are exemplified by learners failing to solve linear equations and in the 

conjoining of variables with numbers. Non-mathematical routines do not show a growing 

mathematical discourse as learners’ routines. It is against this general state of affairs that the 

DPHEF is expected to contribute towards learners’ knowledge, perceptions, and experiences 

in the learning of asymptotes of the hyperbola and exponential functions. 

The study is of significant value insofar as both its methodological and socio-economic 

orientations are concerned. From a methodological perspective, the study makes a contribution 

insofar as centralising the ‘voice’ of learners providing their first-hand empirical/ experiential 

multiple realities from their own perspectives and in their own familiar environments 

(Canagarajah, 2002; Vyncke, 2012). In most research studies of this nature, learners’ own 

perspectives are often neglected (Aljoundi, 2014). In this study, learners in a rural setting have 

been afforded an ‘authorial voice’ on the four representations of the two mathematical 

functions; that is, graphical, tabular, algebraic, and worded representations. A similar study 

was only held in 2015 in Johannesburg, arguably the economic hub of the country where 

learners have better resources and were most likely to perform better than those in rural areas. 

This 2015 study showed that there is not much difference between the mathematical discourses 

of the learners in rural areas when compared to their counterparts in urban areas (Tachie & 

Chireshe, 2013). The very same study also found that there was no significant margin of 

disparity in the urban-rural mathematical discourse among learners in grade eleven. 

For policy development and implementation purposes in the realm of Mathematics education, 

the study is of particular importance to both the Department of Basic Education and the schools 

selected as the research sites of this study. Very few protracted studies have been conducted in 

rural areas in respect of the mathematical discourses of grade eleven learners related to the 

worded, numerical, tabular, and graphic asymptotes of the hyperbola and exponential 

functions. It is envisaged that both the findings and recommendations of the study will provide 

an evidence-based framework for the relevant policy makers and Mathematics teachers in the 

improvement of curriculum and teaching methodologies. 

1.7 Scope/ Delimitations of the Study 

The scope or delimitation of the study relates to the conceptual boundaries, frame of reference, 

or extent to which the investigation has been narrowed in order to address the most pertinent 

or core issues in the context of the research topic (Singh, 2006; Walliman, 2011). In this study, 

three symbiotically related factors established a framework of its scope or delimitations. 

Firstly, the study was geographically confined to a rural setting in Mthatha, a rural town in the 

Eastern Cape Province (ECP). The province has been characterised by very high numbers of 

teacher-learner class ratios. In the last few years, the Eastern Cape schools have been either the 
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last or second last in the Mathematics matric results. For example, in 2017 the ECP schools 

achieved a pass rate of 42.3%, only 0.7% better than KwaZulu-Natal (KZN) Province (DBE, 

2018). Against this background, the researcher then decided to investigate learners’ 

mathematical discourse on functions in such a setting in order to understand the context of 

learning mathematical discourses by learners in typical rural or village schools. Furthermore, 

the rural milieu was chosen against the backdrop of the general adverse perceptions and 

opinions that rural schools account for the declining pass rates. In her announcement of the 

National Senior Certificate results for 2016, Minister Motshekga implied that rural schools 

were responsible for poor results.  

Secondly, the study was restricted to the mathematical discourse on the hyperbola and 

exponential functions of grade eleven learners only. In terms of curriculum requirements, grade 

eleven learners are not required to define a function. Accordingly, as research participants, they 

were not subjected to defining the function, which is the curriculum domain of grade 12 

Mathematics learners. 

Lastly, the study was conducted in English, the language of power and access to economic 

opportunities (Canagarajah, 2002; Setati, 2008), in a predominantly isiXhosa-speaking 

geographic area of the country. To these learners, English is studied as a First Additional 

Language (FAL). Some of the language used by the participants may have been affected by the 

interference of the home language, and their responses to questions may have been affected by 

their understanding of the questions in the research instrument (questionnaire or interview) 

(Aljoundi, 2014). Given this state of affairs, the researcher selected participants who scored 

highly in the task-based interview tests, in accordance with the study’s inclusion/ eligibility 

and exclusion/ ineligibility criteria as detailed in Chapter 4 (Research Design and Methods).  

1.8 Chapter Outline 

The layout of chapters in this study is premised on the thematic systematisation and logical 

sequencing of the core research variables (units of analysis) from the study’s conceptualisation 

and its completion. Each of the eight chapters in the study is coherently linked with its 

preceding and subsequent core variables (Babbie & Mouton, 2010).  

Chapter 1: Overview of the Study  

This chapter presents and discusses an overview of the core units of analysis of the study in 

respect of the background/ context of the research problem; the purpose/ aim/ goal of the study 

and its objectives; the research questions; the study’s significance/ value; as well as its scope 

(de Vos et al., 2011). From the perspective of the researcher, all of the afore-cited units of 

analysis are both interstitially and thematically linked with the research topic; which itself 

focuses on grade eleven learners’ mathematical discourses in the context of worded, numerical, 

tabular, and graphic asymptotes of the hyperbola and exponential functions in Mathematics. 
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Chapter 2: Literature Review 

The chapter specifically focuses on the diverse range of sources of information used in guiding 

the study from its conceptualisation, exploration, initiation, and ultimate completion. The most 

salient aspect of the literature review was its enabling of the researcher’s familiarity with, and 

exposure to current trends in theory and practice; current methodological developments; as 

well as topical issues and challenges in the field of study being investigated (Babbie & Mouton, 

2010). The researcher’s approach to the search, consultation, review and analysis of pertinent 

information was directed by the research topic itself. Furthermore, the review of literature was 

a concurrent data collection and analysis process,  as superfluous, redundant, and repetitive 

information could be identified and discarded. It is worth mentioning that the focus of the 

search and review of sources of information was more on the multiple scholarship perspectives 

in the field of learners’ mathematical discourses; rather than on the mere listing and 

compilation of the sources of the information and data.  

The theoretical and conceptual framework of commognition is also discussed in this chapter, 

with a focused description of the development of the mathematical discourse. Definitions of 

salient terms were also provided, such as commognition, objectification, meta-level and object-

level learning; as well as the characterisation of the mathematical discourse in terms of use, 

visual mediators, narratives, and routines. The analytical tool, the DPHEF was also explained 

and discussed in this chapter.  

Chapter 3: Theoretical/ Conceptual Framework 

This chapter delves on the pertinent and inextricably associated concepts on which the 

philosophical foundations are premised, thus enabling a theoretical framework of the study’s 

core mathematical phenomena under investigation (Hesse-Biber & Leavy, 2011). It is against 

this backdrop that commognition and socio-cultural learning are presented as two inter-related 

concepts which systematically help in explaning the association between and among critical 

variables in the asymptote and hyperbola environments (Mpofu & Pournara, 2018). The 

fundamental principles and tenets of commognition and social learning have been relevantly 

integrated such that these principles are shown to be applicable to the core variables of the 

research topic. The definition of key concepts in this chapter precedes the theories themselves, 

since concepts are conceived as the foundational pillars of theories (Ramenyi & Bannister, 

2013). 

Chapter 4: Research Design and Methods  

In this chapter, the research approaches or perspectives and the rationale thereof are presented 

and discussed (Rajasekar, Philominathan, & Chinnathambi, 2013: 5). Also included in the 

chapter were the specific research instrumentation; data collection and analysis approaches; the 

research site, study population and sample size; the sampling techniques/ strategies and criteria;  
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as well as the ethical considerations.  

Chapter 5: Representation of Funtions 

The hyperbola and exponential functions constituted the most central tenet of this chapter. 

Visual presentations were made in the form of tables and graphs which explained the outcomes 

of tests conducted for purposes of determining the learners’ mathematical discourses in respect 

of the hyperbola and exponential function (Mpofu & Pournara, 2018). 

Chapter 6: The Asymptote 

In this chapter, learners’ mathematical discourse was presented and analysed with regard to the 

asymptote of the hyperbola and the exponential function. In essence, this chapter provides an 

analysis of the twenty-four research participants’ task-based interviews based on identification  

of an asymptote from a graph and/ or formula (Flesher, 2003). 

Chapter 7: Four Representations of a Function  

The chapter focuses specifically on the data analysis pertaining to the four representations of a 

function. The Department of Basic Education’s Mathematics curriculum requires that learners 

should work flexibly between the four representations of a function (DBE, 2011). These 

representations are the mathematical functions presented in numerical form; that is, in the form 

of ordered pairs usually presented as a table of value, graphical, verbal form as a function in 

the form of a story and algebraically in the form of a formulae or equation. Examinations, 

which largely influence the teaching and learning content at school, tend to focus on graphical 

and symbolic representations. 

Chapter 8: Summary, Findings, Conclusions and Recommendations 

This final chapter of the study presents and summarises the main findings accruing from the 

elicited responses of the research participants. This evidence served as the most authentic and 

reliable data from which the conclusions, recommendations and generalisability of the study 

could be supported (Greener, 2008; Ramenyi & Bannister, 2013).  

Additionally, the chapter focused on the limitations of the study and their implications. 

Proposals for further study were discussed in order to guide the areas for improvements in 

studies of this nature. 

1.9 Conclusion 

The teaching and learning of learners’ mathematical discourses relates to asymptotes of the 

hyperbola and exponential functions, and is an essential component of the Department of Basic 

Education’s grade eleven curriculum requirement (DBE, 2011). Compared to their urban and 

more socio-economically advantaged counterparts, learners in rural settings are more prone to 

poor performance in this regard. The National Senior Certificate (NSC) Mathematics pass rate 

has been constant between 2014 and 2017, with only some slight and occasional t 

improvements (DBE, 2018). However, a closer analysis shows that it was only a few learners 
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who performed well, while the majority still obtained less than 40% in their NSC year-end 

examinations. 

In the overview of the entire study, the critical units of analysis were mentioned, the most 

notable of which was the DPHEF analytical tool. The DPHEF was developed by the researcher 

in order to identify, describe, and analyse areas in which most challenges were encountered; as 

well as to provide possible solutions to these challenges. In the next chapter (Chapter 2), the 

review of literature is situated in the context of the learning of functions in general, as well as 

the National Senior Certificate’s expected Mathematics curriculum requirements for learners 

in South African public schools.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The review of pertinent literature in this study entailed the thematic and systematic search, 

consultation, synthesis, and analysis of multiple scholarship perspectives and sources of 

information and ideas relating to mathematical discourse and learning. In this regard, the 

review of literature provided both methodological and theoretical backgrounds to the 

researcher, including the identification of any gaps that may exist in the dominant mathematical 

discourse theories and practice (De Vos et al., 2011; Kumar, 2012). In addition, the review of 

literature illuminated on current trends, topical issues and innovations, challenges, policy 

implications, and any lessons that could be learnt from the international domain of 

mathematical discourse and literacy (Ramenyi & Banister, 2013). In addition to the empirically 

generated evidence, such lessons - if any - would be of immense benefit to the study’ 

framework of recommendations (Babbie & Mouton, 2010). Given this brief introductory 

background of the literature review, it is therefore worth noting that the crux of this chapter is 

largely premised on two parameters; namely, mathematical discourse and its context of 

learning.  

With regard to the learning context of mathematical discourse, the researcher distinguishes 

between object-level learning and meta-level learning in order to provide an uncluttered 

learning context of mathematical discourse (Sfard, 2007). With regard to the parameters of 

mathematical discourse, the researcher focuses on its development and also explains the four 

characteristics of mathematical discourse. It is from these four characteristics that the Discourse 

Profile of the Hyperbola and Exponential Functions (DPHEF) analytical tool is formulated.  

2.2 Mathematical Discourse  

Mathematical discourse is a sub-set of discourses, with its own key characteristics that 

distinguish it (mathematical discourse) from other discourses. These characteristics are what 

Berger (2013) refers to as “a range of permissible actions and reactions” (p. 2). A mathematical 

discourse is distinguished from other discourses by distinct characteristics of the commognition 

theory. The latter is discussed later in the chapter as an indication that Mathematics grows from 

within, and is said to be auto-poietic (Sfard, 2015; Nachlieli &Tabach, 2012). In concurrence 

with Berger’s (2013) above-cited proposition, Sfard (2012, p. 2) further describes a discourse 

as a “specific type of communication”. Communication is important in a discourse in that it 

establishes and enhances the conveying of commonly understood messages within a 

community the same participants. For instance, members of the same community would speak 

of a function in Mathematics as referring to an object that can be represented graphically, in 

words, as ordered pairs, or algebraically. This is opposed to the use of the word “function” in 
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everyday language, in which case it may refer to a purpose, task, use, or a role in which 

someone is engaged.  

Mathematics is an interconnected subject where the absence of one component affects the 

success of the mathematical discourse that has to be learnt (Adler & Ronda, 2014). 

Mathematics is also built on previously established facts known as endorsed narratives. Against 

this backdrop, the development of mathematical discourse is then a result of a team effort in 

terms of which a community of mathematicians agrees on which new narratives to endorse, 

and which to reject, based on previously-endorsed narratives. The discourse expands as the 

need for new rules arises (Adler & Venkat, 2014). For example, some of the rules that learners 

hold of multiplication of natural numbers need to be altered in order to accommodate negative 

numbers and fractions. In natural numbers, the multiplication of two numbers results in an 

increased or expanded magnitude, whereas the multiplication of negative numbers and 

fractions will result in a lesser magnitude. Another example pertains to natural numbers, in 

which case addition and multiplication are not concerned with signs. Once negative numbers 

are introduced, the mathematical community agrees on  those rules that should change, and 

those that should be retained. In this regard, mathematical discource entails an internal self-

generation characteristic. Hence the assertion that Mathematics develops from within, with the 

community of mathematicians either endorsing or rejecting particular rules. 

Discourses develop vertically when there is a combination of existing discourses to form new 

meta-discourses at a higher level (Berger, 2013). Algebra is an example of a vertical 

development in that it is a combination of arithmetic and numeric patterns. On the other hand, 

horizontal development is a result of a combination of separate discourses into a single new 

discourse. For example, the graphs of motion combine solutions to equations, rates and 

calculus. Functions would be classified as vertical development as they mostly emerge from 

algebra. 

Discourses develop in an attempt to establish compression, the means by which worded and 

long mathematical statements are expressed in the shortest possible manner by expressing the 

same words or a list of numbers in symbolic form (Sfard, 2012). In this regard, an exponential 

function expressed as 2𝑥 denotes a list of numbers that are growing exponentially, such as 

…
1

8
;  

1

4
; 

1

   2
; 1; 2; 4; 8; 16; and so on. The exponential expression (2𝑥) may describe an 

exponential function, and may denote the shape produced by that function. The object (2𝑥) is 

key to the compression of the mathematical discourse on exponents and exponential functions. 

As a sub-set of development, learning enhances the ability to talk about, or use new 

mathematical objects. When new mathematical objects are used, there is a concomitant change 

in mathematical discourse, which could occur at either the meta- or object-level. In such a 
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context, the learner’s individual involvement enhances benefit from the change arising in the 

mathematical discourse; be it at object- or meta-level. In the event that learners use new words, 

and make conjectures and generalisations, their mathematical discourse necessarily changes 

(Ben-Yahuda et al., 2005). Meta-level growth is mainly attained when there is an interlocutor 

who will help the learner with this change that has some discontinuity with previously accepted 

endorsed narratives.   

The presence of an interlocutor (the more knowledgeable other) is important in the learning of 

mathematical discourse (Bradley et al., 2013). During the formal mathematical conversation, 

the interlocutor fulfils the role of an experienced discursant in the mathematical discourse, 

helping the learner to adjust some previously held informal or ‘un-mathematical’ language. 

The interlocutor begins the mathematical conversation from the learner’s point of view, and 

gradually informs or alerts the learner of the different rules which now apply. For example, a 

linear function is denoted by a constant gradient, but in other functions learners only know that 

the gradient varies in a single function. The learners’ conscious realisation of the inadequacy 

of their knowledge motivates them to participate in the mathematical discourse through their 

“thoughtful imitation” under the interlocutor’s leadership (Bradley et al., 2013; Sfard, 2015).  

The interlocutor or teacher mediates mathematical objects until the learner is able to do the 

work thoughtfully by himself/herself. Thoughtful or reflective imitation means that at first, the 

learner does what s/he sees the interlocutor doing. Some learners fail to make sense of the 

teacher’s mathematical discourse, or fail to find the difference between the new mathematical 

object and the old. Learners in the latter category ultimately absorb ritualised routines, which 

are not mathematical. Another category of learners may mimic the teacher, thus applying 

unthoughtful or uncritical imitation with little, or no awareness for doing so. This group’s 

routines are classified as ritualised mathematical, since they write or say the correct 

mathematical statements without understanding their meanings (Siyepu & Ralarala, 2014).  

Mathematical discourse advances the course of communication and participation in 

mathematical practices, such as abstracting and generalising (Moschkovich, 2002; Sfard, 

2012). In other words, participation in a mathematical discourse means focusing on 

objectification (conceptual understanding in acquisition of theories) rather than just ritualised 

routines (computational fluency). The participation is then individualised when there is talk 

with others or talk with oneself by means of thinking, which is expressed by discursive action 

(Sfard, 2012). Objectification then replaces ‘talking about processes and actions’ with ‘talking 

about objects’ (Sfard, 2008). Objectification is illustrated by learners referring to the 

asymptote, rather than to a line through which the graph does not pass. Objectification makes 

communication in the mathematical discourse more effective.  
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Objectification has a four-fold dimension (Nachlieli & Tabach, 2012). Firstly, the learners’ 

competence in the realisation tree has to be established. A realisation tree is a signifier on which 

the mathematical object is organised or built (Nachlieli & Tabach, 2012). In the functions 

discourse, the realisation tree includes graphs, tables, equations, formulas and verbal 

expressions of the function. In the hyperbola, the realisation tree includes the curve and the 

table of values, in which the asymptote and the formula is clearly indicated in the form of 𝑦 =

𝑎

𝑥−𝑝
+ 𝑞.  Thus, learners should be able to draw curves, interpret the table of values, and work 

with equations and fractions. Key to objectification in the functions discourse is competence 

on the realisation tree, since the introduction of words such as hyperbola, parabola, and 

exponential functions are new to learners. It is most unlikely that learners could know these 

terms prior to their introduction by the teacher in the classroom. Therefore, objectification is 

preceded by the competences in the realisation tree because Mathematics is auto-poietic, and 

its objects do not pre-exist the narrative routines of the self-same objects (Nachlieli & Tabach, 

2012). 

Secondly, objectification is characterised by participation. To this effect, Nachlieli and Tabach 

(2012, p. 17) assert that “participation in discourse is a precondition for the objectification of 

functions”. Accordingly, the definition of “square” to a grade one learner would be different 

from that of a grade 12 learner. The grade 12 learner would have had continuous participation 

on the discourse such that his/her definition is not only guided by what s/he sees, but looks for 

other properties such as the size of angles and sides, parallel lines, and symmetry. Learners 

begin the objectification process by informally using examples and new words, rather than the 

formal discourse. A grade one learner would elementarily mention that a square has four sides. 

While this is true, the definition fits a number of trapeziums that are not squares; for instance, 

the rectangle, the rhombus, and kites. Participation in the discourse then grows gradually with 

the informal terms substituted by formal terms due to the contradictions of conjecture and 

generalisation. Normally, the next four-sided shape introduced after a square is a rectangle. 

Learners need to state differences they see between the two four-sided shapes, the square and 

the rectangle. Adler and Ronda (2014) describe this stage as non-mathematical, according to 

which routines are highly ritualised and based on visual routines, with learners describing 

mostly what they see. At this stage, learners may not realise that a square is a special kind of a 

rectangle. In such cases, the narrative is mainly colloquial, as the learners have not yet fully 

acquired and understood the mathematical lexicon to describe their objects. Learners may not 

use the terms ‘exponential function’ or ‘hyperbola’ at this stage (Adler & Venkat, 2014),.  

Thirdly, objectificationis characterised by the gradual and gentle introduction of formal 

discourse, which includes the covariance of quantities, in which case the term ‘function’ is 
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largely used as a noun. In such cases, learners begin by using rules and talk about processes 

(Adler & Ronda, 2014). For example, a hyperbola would be a function with undefined values. 

While learners may draw continuous graphs using the table of values, they do not necessarily 

perceive the continuity in the table of values. Later in the third objectification stage, various 

ways of representing the function are introduced. For example, a point (2;5) on the table of 

values is the same as (2;5) on the curve and in the equation. When 2 (two) is substituted in the 

formula, the result is 5 (five), and the statement is true for all other points. Infinitely, many 

points would have the same relationship. 

Fourthly, and finally, objectification is characterised by the principle that reflection on the 

object should take place. In practical terms, learners should be exposed to tasks which promote 

reflection on mathematical objects. The reflection is promoted by derivation of rules and 

equivalent representations, as well as the ability to explain the nature of relationships between, 

and among mathematical objects (Adler & Ronda, 2014). Learners should also ask questions 

which promote their growth in the discourse. For example, they should ask: How do the graph, 

algebraic representation, and table of values relate to each other? What kind of worded 

statement is a hyperbola graph? Since functions are governed by grounded principles and 

properties, the examples and tasks given to learners should be such that they lead learners to 

make conjectures and generalisations by working together with the interlocutor for the 

realisation of objectification. Ultimately, objectification is achieved when learners can express 

a function through each representation of that function by recognising the relationships 

between and among different representations of functions. 

2.2.1 Key aspects of a discourse 

Cognitive communication (commognition) constitutes a key aspect of promoting mathematical 

discourse. Sfard (2008) emphasises on the four characteristics of commognition that promote 

the development of the mathematical discourse. These characteristics are words and words use, 

the visual mediators, endorsed narratives and routines. It is from these characteristics of 

commognition that the Discourse Profile of the Hyperbola and Exponential Function (DPHEF) 

was formulated to analyse the development of the mathematical discourse of learners in this 

study.  

2.2.1.1 Words and word use 

Key words or signifiers, are mathematical words such as the equal sign, the function, the 

asymptote,  the intercept, the axes, the coordinates, the graph, and so on. These words enhance 

learners’ mathematical communication, and show a change in the development of their 

mathematical discourse. In Mathematics, key words are a crucial part of the formal discourse. 

These words are esoterically mathematical, and their peculiar usage is different from their 

everyday meaning and contexts (Kendall & Halliday, 2014). For example, “product” in 
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mathematical language is premised on multiplication. In everyday language, the same word 

would relate to measurable output based on work or something that has been done already. 

Other words such as root, differentiation, function, and many more,have a different 

mathematical denotation from their everyday use. The mathematical context of word use is 

sacrosanct as it unlocks the potential of learners to communicate effectively. Effective 

mathematical communication may be affected by the fact that some of the words used in 

Mathematics are not necessarily in English. Their provenance and roots is traceable from 

languages such as Greek and/ or Latin. These would include words such as hypotenuse, 

numerator, and asymptotes (Kendall & Halliday, 2014).  

Learners’ use of mathematical words show their level of participation in the mathematical 

discourse. Compression is quintessentially an expression of advanced levels of participation in 

mathematical discourse (Caspi & Sfard, 2012). By means of compresson, a few words are used 

to express statements that would have been wordy or verbose. In the functions discourse, the 

key words are intercepts, domain, coordinates, turning points, minimum/maximum, gradient 

and so on. In the general hyperbola discourse, the key words include asymptotes, quadrants, 

axis of symmetry, intercepts, the vertex, to name just a few. The exponential function would 

have words such as vertical shift, exponent with a base greater than one, exponential growth, 

and so on. Change in a discourse is evident in spoken or written communication. For example, 

instead of saying or writing: A function whose value is a constant raised to the power of the 

argument, compression is used and the sentence is mathematically translated to an exponential 

function.  

2.2.1.2 Visual mediators 

Key words are supported by visual mediators, which helps the participants to identify and 

coordinate the objects of their mathematical discourse (Adler & Venkat, 2014). Visual 

mediators themselves help to compress wordy statements. For instance, an exponential graph 

provides a synopsis for a lengthy explanation of a phenomenon and its manifestations. Visual 

mediators include concrete objects, iconic mediators and symbolic mediators. Concrete objects 

and their images are the usual mediators used in everyday life. In Mathematics, symbolic 

artefacts are often used to enhance communication. Concrete mediators are objects used to 

assist in explaining mathematical concepts. For example, a rectangular box that is opened in 

class to help illustrate the number of surfaces that are to be calculated, or a clock in the 

introduction of time. The hyperbola and exponential functions do not have concrete mediators 

as they are generally abstract.  

Examples of visual mediators include diagrams, charts, drawings, graphs and symbols. Visual 

mediators can be drawn on paper or boards in the classroom, and it is possible for them to be 

developed mentally by thinking about them. Most of the written Mathematics uses the symbolic 
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syntactic mediators. These are the symbols used in mathematical manipulations. The functions 

notation and symbols used include the following: 𝑦 = 𝑎(𝑥 − 𝑝)2 + 𝑞, for the parabola,

𝑜𝑟 𝑓(𝑥) =
𝑎

𝑥−𝑝
+ 𝑞, 𝑥 ∈ ℝ, 𝑥 ≠ 𝑝 for the hyperbola. Symbolic and iconic visual mediators are 

sometimes responsible for the challenges faced by learners in Mathematics as they first need 

to unlock these mediators before participating more fully in the discourse. In this study, some 

learners found it difficult to relate the symbolic representations to iconic visual mediators, 

which include graphs, tables of values or geometric representations of two-dimensional shapes. 

Iconic mediators are commonly used as pictorial diagrams that are used either in class 

discussion or in learners’ writing tasks in order to assist learners’ visualisation of an image of 

the function. For instance, a graph that represents the motion of a ball, which is an abstract 

object. Figure 2.1 below is a visualised illustration of the iconic mediator of the hyperbola, 

intended to help learners ‘see’ the image of a function.  

 
Figure 2.1: Iconic mediator of the hyperbola 

The iconic mediator illuminates on the syntactic mediator by showing the intercepts, 

asymptotes, axes and the shape of the graph. It helps create an image that learners refer to when 

faced with the questions relating to the hyperbola. The DPHEF has four categories of the iconic 

visual mediators; the interpreted, not recognised, drawn and disallowed. The iconic visual 

mediator is regarded as “interpreted when a graph is used to find features of a function. When 

the learner is not able to interpret the graph his/her mathematical discourse is regarded as “not 

recognised”. [Correspondingly] When learners successfully sketch functions, their 

mathematical discourse is regarded as “drawn” and if learners do not sketch the function, their 

action is classified as “disallowed” (Mpofu & Pournara, 2018, p. 6). 

2.2.1.3 Endorsed narratives 

The third key feature of mathematical discourse are the endorsed narratives, which are the rules 

that have been agreed upon by the mathematical community (Siyepu & Ralarala, 2014; Sfard, 

2008). Endorsed narratives are a result of either object-level or meta-level learning (Sfard, 

2012). Endorsed narratives include definitions, theorems, proofs and axioms. Change in 

development is realised when learners have arrived at new endorsed narratives. Endorsed 

narratives are therefore useful in the development of new discourses. Once a new discourse 
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such as a new function has been established, some basic narratives would have been endorsed. 

In the development of new discourses, mathematicians decide which narratives to keep and 

which to reject based on previously accepted mathematical rules. Learners engage with the 

mathematical objects at the object-level. Meta-level is governed by well-defined meta-rules, 

and learning can only happen through thoughtful imitation and perceiving the rules that govern 

the functions discourse. The endorsed narratives for a hyperbola includes a graph with two 

separate curves that are mirror images of each other, as well as a graph with two asymptotes 

that are perpendicular to each other. For the rectangular hyperbola, the equation 𝑓(𝑥) =
𝑎

𝑥−𝑝
+

𝑞, leads to the equations of the asymptotes, y=q and x= p. Mathematicians refer to the 

behaviour of the graph towards a linear function as the asymptote. In the function (𝑥) =
1

𝑥
, as 

x approaches zero from the right, y approaches infinity; and as x approaches zero from the left, 

y approaches negative infinity. The paths close to zero that the function approaches from both 

the left and the right are the asymptotes. Mathematicians had to endorse this narrative so that 

the narratives agreed upon earlier would not collapse. The interlocutors then bring these 

narratives to the fore in order that learners can own them. In such a context, the learner moves 

from the discourse of others, to the discourse of one-self (Ben-Zvi & Sfard, 2007).  

In Mathematics, errors are narratives that are endorsed by learners, but universally disapproved 

or disowned by mathematicians and experienced participants (Brodie & Berger, 2010). In 

teaching and learning Mathematics, substantiations from learners make sense to them, but are 

not in agreement with what is universally accepted (Ben-Zvi & Sfard, 2007). For example, 

learners may ignore the asymptote and join all the points they see in a graph. When erroneously 

endorsed narratives have been identified, corrective measures should be taken. The researcher’s 

self-developed DPHEF explains three categories of narratives: the substantiations, the 

memorisation and the authority narratives. Substantiations are endorsed narratives, while the 

memorosation and authority narratives represent some attempts by learners to explain their 

erroneous mathematical discourse.  

2.2.1.4 Routines 

Routines are well-defined patterns repeated over time, and are characteristic of a given 

discourse (Sfard, 2007; Swarthout et al., 2009). Routines include mathematical procedures 

used to perform mathematical tasks. Routines could either be exploratory or ritualised. 

Methods of proving and comparing graphs, searching for key words in questions, and making 

generalisations are examples of routines. It is within the routines that words, mediators and 

narratives meet. Exploratory routines add to the mathematical thinking of learners as they result 

in new endorsed narratives, make mathematical connections with previously endorsed routines, 

and further develop their mathematical discourse auto-poietically.  
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On the other hand, ritualised routines are those which are not mathematically classified as they 

lack exploration (Sfard, 2012). For purposes of this study, the researcher categorised ritualised 

routines into two groups. One is the ritualised mathematical, in which learners have the 

acceptable mathematical routines but do not explain why they do things in the manner they do. 

An example is found in Mpofu and Pournara (2018), according to which learners would sketch 

diagrams that exhibit growth in the mathematical discourse with asymptotes clearly shown. 

However, their narrative would imply that the diagrams did not have the asymptotes. The 

researcher has termed the second type of ritualised routines as non-mathematical routines. 

These routines do not make mathematical sense, as attested to by participants in a study by 

Berger (2013). These participants drew vertical asymptotes in the place of removable 

discontinuity. The procedures or explanations thereof do not make mathematical sense. For 

example, stating that a graph does not have the x-axis. Learners who exhibit mathematical 

ritualised routines are better placed for exploratory routines than those presenting non-

mathematical routines.  

The ritualised routines are divided into categories. Firstly, there are “correct” rituals, which 

stipulate that what the learners have written is correct. Secondly, incorrect ritualised routines 

refer to the learner’s inability to understand what the interlocutor has done. In this regard, 

exploratory routines help determine the appropriate circumstances for taking particular 

individualised actions (Siyepu & Ralarala, 2014). Exploratory routines, rather than rituals, 

usually help learners to complete higher order and ‘unseen’ questions successfully. It is 

important to note that learning usually starts from ritualised routines, followed by the 

exploratory routines. Learning would have occurred when learners know when to take certain 

actions in their ‘doing’ of Mathematics 

In this study, the researcher has termed the ritualised and exploratory routines as kinds of 

routines in the DPHEF; as opposed to applicability, flexibility and corrigibility, which he has 

termed ‘the use of routines’. Flexibility is the use of more than a single routine so as to arrive 

at the same narrative and is mostly used to prove endorsed narratives (Ben-Yahuda et al., 2005). 

Flexibility is observed when learners use the table of values to show values approaching an 

asymptote and at the same time sketching a graph that shows points getting closer to the 

asymptote. Applicability routines are about the likelihood of a routine procedure to be used or 

applied in mathematical tasks (BenYahuda et al., 2005). Applicability routine is about what 

prompts learners to take certain actions. For example, learners will start looking for asymptotes 

when they see an equation with a fraction. Subsequently, the fraction triggers the idea of an 

asymptote. With regard to corrigibility, routines are used to check the correctness of answers 

arrived at. An example of corrigibility routine is the use of intercepts of a graph to solve an 

equation of a function equated to zero and algebra to check the correctness of the solution from 
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the graph. In DPHEF, applicability, flexibility and corrigibility routines are termed the use of 

routines, due to their explanation of the role of routines in the enhancement of the learning of 

Mathematics. 

2.3 Mathematical Functions 

In this section, the primary focus is on the hyperbola and the exponential function as the core 

areas of research as derived from the reviewed literature. The exponential function is discussed 

first, followed by the general hyperbola and the rectangular hyperbola. The asymptote, the 

general definition and the school definition are also discussed, followed by the importance of 

learning functions. This section further explores the literature review on the learning of 

functions, as well as the difficulties that learners encounter in their quest to objectify functions, 

which are essentially a relation where a set of inputs have exactly one output corresponding to 

it. A function is defined by a formula or algorithm that gives instructions on how to obtain an 

output from the given input. Sometimes, a function is represented as a graph or alternatively as 

a table with inputs and corresponding outputs. A function has a well-defined set of inputs, 

called the domain, and the set of outputs known as the co-domain, or the range (Mpofu & 

Pournara, 2018).  

2.3.1 The exponential function 

Exponential functions are a result of the work of Napier of Scotland and Burgi of Switzerland. 

Napier developed exponential functions from Algebra in 1614, while Burgi used geometry for 

the development of exponential functions in 1620. A function in the form of 𝑓(𝑥) = 𝑎𝑏𝑥 is an 

exponential function. In the latter function, the input x is an exponent. A general form of an 

exponential function and the parent function of an exponential function is expressed as 𝑦 =

𝑏𝑥. One characteristic of this graph is that as the input values increase, the output grows 

exponentially. However, Mahlobo (2004) argues that the term “exponential function” is a 

misnomer. Mahlobo contends that the term does not resonate with naming of other functions 

as they are named according to the output value, rather than the input value. Mahlobo further 

gives examples of the quadratic and the cubic functions as deriving their names from the output 

value. Figure 2.2 below depicts the exponential function. 
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Figure 2.2: An exponential function with its transformation 

Figure 2.2 above is a representation of an exponential function with part of its transformation. 

The value of b is greater than 1 (one). Characteristically, an exponential function has a single 

horizontal asymptote. Exponential functions decrease or increase depending on the value of b, 

for 𝑏 > 1 there is growth and as the independent variable increases, the dependent variable also 

increases. A decay happens when 0 < 𝑏 < 1.  As the independent variable increases, the 

dependent variable decreases. While b can never be negative, it is important for learners to be 

acquainted with the reasons why it is impossible for b to be negative. Objectification of the 

exponential function can only be achieved through the exploration of the mathematical object. 

The inverse of the exponential function is a logarithmic function. It is for this reason that an 

exponential function is sometimes referred to as the antilogarithm. However, there are 

challenges that learners face in the learning of exponential functions. 

2.3.1.1 Learning of exponential functions 

The learning of exponential functions is important in life. Not only do they help learners in 

their further education, they can be applied in many spheres of life as well. Webber (2002) 

argues that learning of exponential functions is important for learners’ daily lives, and for those 

wishing to study further in Mathematics, especially in relation to topics such as calculus, 

differential equations, and complex analysis. Webber (2002) states further that exponential 

function teaching strategies should be improved, and suggests further that learning of the 

exponential function should come after a grounded learning of exponential expressions and 

equations has been achieved. Makgakga and Sepeng (2013) suggest that learning of 

exponential functions can be enhanced with transformation-oriented learning, notwithstanding 

that their research participants regarded the learning of exponential functions  as difficult. 

Nonetheless, their study concluded that learning and transformation were symbiotic.  

An understanding of exponential functions is very helpful for the interpretation of everyday 

real-world phenomena and sitiations. Exponential functions are useful in practical fields such 

as investment, modelling population growth, carbon dating of artefacts, and are used by 
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coroners to determine time of death. Interpretations based on exponential functions enable 

various stakeholders to make informed decisions about the future. For example, a prediction of 

a growth in population sensitises the government to make future decision about planning for 

important programmes in housing, job creation, health care and many other decision-making 

initiatives. 

2.3.2 The hyperbola 

The hyperbola could be viewed from two perspectives, the general hyperbola and the 

rectangular or school hyperbola. The general hyperbola is fundamentally premised on 

disciplinary Mathematics, while the school Mathematics has been contextualised from 

disciplinary Mathematics through particular selections and emphases. The general hyperbola 

is beyond the school curriculum. It is the rectangular hyperbola that is largely found in the 

school curriculum.  

2.3.2.1 The general hyperbola 

A general hyperbola is a function with a smooth curve on a plane that satisfies a specific 

equation, and has points that are inversely proportional to each other. Furthermore, a hyperbola 

is a function which has two separate curved parts known as connected branches. The two curves 

are a mirror image of each other about a given line. A hyperbola is an open curve which does 

not have an end, but approaches a certain line from the left and the right; or from the top and 

the bottom - that is - from four directions. The point where the curve makes its sharpest turn is 

known as the vertex, and there are always two of these. Two asymptotes that are perpendicular 

to each other are not part of the diagram, but denote the path that the curve approaches as the 

graph tends to infinity or negative infinity. The asymptotes of the general hyperbola are not 

parallel to the axes as shown in Figure 2.2 (p. 28). In the school or rectangular hyperbola, the 

x asymptotes can easily be confused with axes since these asymptotes sometimes coincide with 

the axes, or are parallel to the axes. Figure 2.3 below represents an image of the general 

hyperbola. 

 

Figure 2.3: An image of the general hyperbola 
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The mathematical objects presented in Figure 2.3 (p. 24) above illustrate the discourse of the 

mathematicians on the hyperbola.  

2.3.2.2 The rectangular hyperbola 

The rectangular hyperbola is also referred to as an equilateral or right hyperbola, one in which 

the asymptotes intersect at perpendicular angles to each other (Bradley et al., 2013). South 

African high school Mathematics textbooks do not define the hyperbola, but simply express 

the hyperbola formula. For example, one textbook (Bradley, 2013) defines the hyperbola, as a 

graph with the equation 𝑥𝑦 = 𝑘. Had the definition been stated in words, many learners would 

not experience the difficulty of not knowing that a hyperbola is actually an inverse proportion. 

This definition will have an impact on what a hyperbola is for school learners.  

The rectangular hyperbola has a simple form in which the asymptotes coincide with axes. The 

current study focuses on this hyperbola, whose formula is reduced to 𝑥𝑦 =
𝑎2

2
, and is mostly 

written in the form of 𝑥𝑦 = 𝑘. For a positive k, the graph is in the first and third quadrants; 

while for the negative, it will be on the second and fourth quadrants. The asymptotes of any 

kind of rectangular hyperbola can be translated around the Cartesian plane, but the asymptotes 

remain parallel to the axes (Narasimhan, 2009). 

The school mathematical discourse on the hyperbola focuses on the simple equations in which 

the coefficients of x and y are one. From the researcher’s point  of view, an explanation of the 

hyperbola is warranted, as it is prescribed in the Curriculum and Assessment Policy Statement 

(DBE, 2011). In terms of the CAPS, the curriculum does not expect grade 10 and grade 11 

learners to define a function. In this study, however, some learners referred to the definition of 

the function only because the data collection period overlapped to some grade 12 some learners. 

Essentially, the definition of a function was not part of the tasks or question in this study. The 

curriculum expects learners to convert flexibly between four representations of a function: 

tables, graphs, words and formulae. In this study, the researcher further investigated learners’ 

usage and application of  words, tables, graphs and formulae as representations of the 

exponential functions and the hyperbola (Swarthout et al., 2009).  

In grade 9, learners experience their first learning of the linear function. They use both the 

plotting of points and the use of the gradient in drawing and interpreting straight lines. When 

they reach grade 10, learners are faced with six more new functions in the form of the parabola, 

hyperbola, the exponential function, and the three trigonometric functions. To distinguish these 

functions from each other, learners are expected to first plot points of graphs until they are 

conversant with the shape of the graph; as well as relate the graph to the algebraic 

representation, table of values and words. It is only after there is fluidity between the four 

representations that learners can make generalisations by sketching the graphs, showing the 



26 
 

key points such as the intersection with the axes, as well as the shape of the graph and the line, 

which can be approached but not reached by the function. The curriculum refers to hyperbola 

functions as some rational functions which shows that the functions are not to be restricted to 

the hyperbola. In grade 10, learners learn about a vertical shift on all functions, and a horizontal 

shift in grade 11. Content clarification presents the rational functions as those that are in the 

form of 𝑦 =
𝑎

𝑥
+ 𝑞 in grade 10, and 𝑦 =

𝑎

𝑥−𝑝
+ 𝑞 for grade 11. According to the curriculum, 

learners are expected to first plot the functions, and then make generalisations in order to sketch 

the graphs accordingly. The parameter q has the effect of moving the graph vertically. A 

positive q moves the graph upwards, while the negative moves it downwards. The parameter p 

moves the graph horizontally, either to the left or right. A positive p moves the graph to the 

right, while a negative moves it to the left. This movement resulting from these parameters 

moves the whole graph. (This means all points on the graph move by either q or p units). Figure 

2.4 below depicts the hyperbola and its transformation in terms of the high school curriculum 

requirements.  

 

Figure 2.4: Transformation of the hyperbola 

Figure 2.4 above illustrates the transformation of the hyperbola in the context of the 

curriculum’s requirements, in terms of which learners are expected to master the equations in 

Figure 2.4 above and be able to sketch the graphs from given formulae, ordered points, or 

tables. Learners are also expected to find the equation of functions from the graphs and some 

points on the graph. 

The learning of the hyperbola can be traced back to the inverse proportion relationship. In the 

South African school curriculum, this relationship is learnt only in arithmetic in the lower 

grades (DBE, 2011). Learners move from worded questions to arithmetic, and it is never 

expressed in algebraic form. The expression “y varies inversely to x” or “y is inversely 

proportional to x”, written in symbolic form as 𝑦 =
1

𝑥
, means that 𝑦 =

𝑘

𝑥
, where k is the constant 

of the variation. The difference is that in inverse variation, there are only positive values, since 

variation mainly addresses real objects. For example, the number of hours it takes to build a 

tower is inversely proportional to the number of workers. The asymptotes and the graph on the 
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positive side of the axis are the same, but with no negative values. Yet the same function in 

algebra will have the values (ordered pairs) in the first and third quadrants for positive k, since 

algebra addresses abstract objects (Caduri & Heyd-Metzuyanim 2015; Sfard, 2012). In the 

view of the researcher, this link is important in understanding the relevance of the hyperbola 

in the curriculum and in helping learners understand the path (shape) of the hyperbola.  

In most South African schools textbooks, there are no application questions on the hyperbola  

and the exponential function. The textbooks mostly tend to provide a summary of each of these  

functions, as shown in Figure 2.4 (p. 26) above. 

 

 

 

 

 

 

 

 

Figure 2.5: Examples of summaries for exponential function and hyperbola 

In Figure 2.5 above, examples of the exponential function and the hyperbola are illustrated in 

summarised form. Thus, the summarised versions of most textbooks results in learners just 

following rules without understanding the reasons for the behaviour of the graphs. Another 

notable ‘absentee’ from the textbooks is the application questions. Application questions 

allocates purposefulness to learning of Mathematics, rather than rote learning for passing 

purposes only. The latter does not encourage learners’s individualised exploration of 

mathematical objects; therefore, inimical to the acquisition of relevant knowledge in this 

regard. 

The hyperbola is useful in practical real-life situations requiring some degree of mathematical 

calculations, such as in Astronomy, Physics, Architecture and Engineering. For instance, the 

cooling towers take the shape of a hyperbola, and they are used for taking out waste heat to the 

atmosphere. The hyperbolic structures of the cooling towers enhance their strength and 

capacity to withstand both wind and heat. The shapes of the curve of interference follow that 

of the hyperbola. A guitar’s shape is another example of the hyperbolic shape in real-life. Its 

hollow exterior deep is in the form of a hyperbola, which helps echo the guitar sounds. Other  

real-life hyperbola-shaped objects include curved roofs, most potato chips, even the arch in 

buildings. In real-life application, an exponential function is represented also in Financial 

Mathematics to illustrate compound interest and the depreciation of cars. The depiction of 
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bacteria growth is another of many instances. The designers of questions need to think of these 

utilitarian and pragmatic value when choosing Mathematics textbooks. Sadly, teachers tend to 

use readily made examples from textbooks, and would rarely develop their own. 

2.3.3 Learning of functions  

The hyperbola best explains what happens in limits as 𝑥 approaches an asymptote. 

Understanding of functions at school level establishes a solid base for further studies in 

Mathematics. However, there is agreement within the Mathematics research community that 

functions are not an easy concept for learners (Carlson, Oehrtman & Engelke, 2010; Clement, 

2001; Yavuz, 2010; Moalosi, 2014). It is therefore not surprising, but also not acceptable that 

functions are poorly learnt and taught in schools. At the same time, when the reasons for the 

learning difficulty are laid bare, solutions can be found.  

There are mainly two methods in which functions can be explored by learners, the point-wise 

and the global actions (Fraenkel, Wallen & Hyun, 2012). Point-wise actions refer to what 

learners do once they are first introduced to the function. At this stage, they are introduced to 

narratives that are associated with a particular function. Considering that all points of a linear 

function lie on a straight line, the point-wise actions then play a very important role in the 

explorations that produce such narratives. Hence the Curriculum and Assessment Policy 

Statement trajectory of the DBE’s orientation that learners should begin by plotting points, 

followed by making generalisations based on their explorations (DBE, 2011). Global actions 

are characterised by the general behaviour of the function, such as the turning points, 

asymptotes, and shapes.  

While the point-wise and global actions are equally important in the learning of functions, it is 

the point-wise actions that  are supposed to lead learners to global actions (Essack (2015). In 

this regard, point-wise actions are generally related to the ritual routines, and explorations of 

the function should lead to more fluency in global actions. In some instances, the point-wise 

actions are neglected, with teaching and learning espousing global actions; which is detrimental 

to the learning of functions. In the event that point-wise actions have been neglected, learners 

tend to focus on the ritualised routine, rather than the mathematical object. In such a situation, 

it becomes difficult for learners to move individual point interpretation to a more holistic 

interpretation (Ronda, 2009). In most instances, learners would rather work with point-wise 

actions rather than the global actions. As such, learners should rather be helped to learn global 

actions in order to explore the mathematical objects and eventually generate endorsed 

narratives. 

In the learning of functions, tasks assigned to learners should enhance their knowledge and 

understanding (Leinhardt, Zaslavsky & Stein, 1990 cited in Leshota, 2015). Tasks which 
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enhance the learning of functions include, but are not limited to interpretation and construction 

of functions. In the interpretation mode, the mathematical activities include identification of 

coordinates from a function and generalisation on the behaviour of the graph for certain 

equations. The movement of the graph in relation to the asymptote can be one of the foci on 

interpreting the graph. In the the construction mode, activities include drawing the graph using 

ordered pairs. The design of the tasks to be interpreted and constructed should be such that 

objectification is achieved. 

Leshota (2015) illuminates further that the development of the functions discourse constitutes 

an integral aspect in the learning of functions. An adequate understanding of functions depends 

on the selection of examples and tasks that learners are exposed to. The success of the 

development of the functions discourse depends on what is made available for learners to learn 

(Adler & Ronda, 2014). Functions discourse can be developed using the four principles of 

objectification as explained in sub-section 2.3.1 (pp. 21-22) of this chapter. The development 

of the functions discourse is not easy to achieve, as learners have difficulties. 

Moalosi (2014) suggests that the learning of functions should focus on relationship rather than 

on process. The formula or the equation is regarded by some learners as a process, since they 

regard the formula as a machine for producing the output. Leshota (2015) refers to the same 

scenario as the procedural action on which the learning of functions focuses on covariation 

rather than on correspondence. It is on the bais of the learning of functions that computation 

and plotting of points is emphasised without relating the ordered pair to each other.  

Moalosi (2014) ascertains further that the learning of functions should focus on their multi-

representations and terminology. The implication is that a function can be represented in 

different ways, thus reflecting a translated representation of the same function. A function 

expressed as a graph should be translated to an equation or table. The problem with the table 

of values is that learners sometimes choose input values for a hyperbola that are the same as 

those of a linear function. Correct terminology is important in the learning of functions. The 

definition of an asymptote, for example, has a bearing on the learners’ understanding of the 

relationship between the asymptote and the graph. 

2.3.4 The asymptote 

As discussed earlier, endorsed narratives are agreed upon by the community of mathematicians, 

and the purpose is to have the same narratives applied in the community. There is a dilemma 

on the school-level definition of the asymptote. Mathematicians generally define an asymptote 

of a curve as a line that is tangent to a curve at infinity (Kuptsov, 2001). As the values of the 

curve increase, the curve and the asymptote approach each other. According to this definition, 

a curve may cross the horizontal asymptote. The vertical asymptote cannot intersect with the 
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curve. While some functions such as 𝑓(𝑥) =
𝑥2−3𝑥

𝑥−1
 will have curves not crossing the asymptote, 

there are functions such as 𝑔(𝑥) =
𝑠𝑖𝑛𝑥

𝑥
 in which the horizontal asymptote is crossed infinitely 

many times as the graph tends to infinity. The diagram below illustrates these curves and their 

asymptotes. Figure 2.6 and Figure 2.7 below illustrate the asymptotes in their curving and 

linearity contexts. 

 
Figure 2.6: Illustration of curves and asymptotes 

 
Figure 2.7: Illustration of asymptote linearity 

In terms of Figure 2.6 and Figure 2.7 above, the asymptotes of the function 𝑓(𝑥) =
𝑥2−3𝑥

𝑥−1
 are 

𝑥 = 1 and 𝑦 = 𝑥 − 2. The curve of the function f does not cross the asymptote. The asymptote 

for g is the x-axis, and the curve crosses the asymptote several times.  

In terms of the school curriculum definition, the asymptote is a line whose distance from the 

curve tends to zero as they approach infinity. Grade 11 learners are not expected to learn limits. 

As such, the definition with limits would not be suitable for them. At the same time, the 

proposition that the curve should not cross the asymptote is not mathematically correct, and 

should therefore be avoided in the teaching and learning situation (Berger, 2013). As stated in 

the paragraphs above, the horizontal asymptote may, or may not cross the curve of a graph. 



31 
 

However, it should not mean that learners should be exposed to questions that show the 

asymptote crossing many times. What is emphasised here is for the community of 

mathematicians not to have contradictions.  

There are generally three kinds of linear asymptotes, a vertical asymptote, a horizontal 

asymptote, and a removable discontinuity. In a vertical asymptote, the gradient is undefined 

and the asymptote is presented in the form of 𝑥 = 𝑎. Furthermore, the vertical asymptote is 

parallel to, or coincides with the y-axis. In many instances, making a distinction between the 

vertical asymptote and the removable discontinuity poses a challenge to the learners (Berger, 

2013). A function will have a vertical asymptote at the zero point of the denominator, provided 

the denominator is not a factor of the numerator. In the event that t the denominator is a factor 

of the numerator, the zero of the denominator is then the removable movable discontinuity.  

The second type of an asymptote is horizontal, and is expressed in the form of the equation 

𝑦 = 𝑏. This asymptote is parallel to, or coincides with the x-axis. In the event that 𝑎𝑥𝑛 + … a 

polynomial to the nth degree and 𝑏𝑥𝑚 + … a polynomial to the mth degree, then in 𝑓(𝑥) =

𝑎𝑥𝑛+⋯

𝑏𝑥𝑚+⋯
 then the following state of affairs unfolds: 

1. If n < m, then the x-axis is the horizontal asymptote. An example is 𝑓(𝑥) =
3

𝑥
; 

2. If n = m, then the horizontal asymptote is the line 𝑦 =
𝑎

𝑏
. An example is 𝑓(𝑥) =

3

𝑥−2
+ 1. 

Grade 11 learners are familiar with the above-mentioned formulae that translate to 𝑓(𝑥) =
𝑥+1

𝑥−2
, showing that n = m and the asymptote is y =1. It is rare to find the latter in the learning 

of Mathematics; and 

3. If n > m, then there is no horizontal asymptote. The asymptote is an oblique one, or it will 

be a removable discontinuity. An example would be 𝑓(𝑥) =
𝑥2+3𝑥−5

𝑥+1
, in which case there is 

no horizontal asymptote but a slant asymptote: 𝑦 = 𝑥 + 2 and a vertical asymptote: x= -1. 

In 𝑓(𝑥) =
𝑥2−1

𝑥+1
, there is no asymptote altogether; instead, a removable discontinuity is 

presented. 
 

The horizontal asymptote coincides with the curve when an oblique asymptote is expressed in 

the form of 𝑦 = 𝑚𝑥 + 𝑐, where 𝑚 ≠ 0. The rectangular hyperbola, on the other hand, will 

always have the vertical and horizontal asymptotes. Figure 2.8 below (p. 32) provides a 

diagrammatic representation of the horizontal asymptote, the oblique asymptote, and the 

vertical asymptote.  
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Figure 2.8: Graphical representations of kinds of asymptotes 

Asymptotes are generally linear in nature, but there are instances in terms of which the distance 

between two curves tends to zero as they tend to infinity. This is known as a curvilinear 

asymptote. The curve ℎ(𝑥) =
𝑥3+2𝑥2+3𝑥+4

𝑥
 has an asymptote of 𝑦 = 𝑥2 + 2𝑥 + 3. Figure 2.9 

illustrates the curvilinear asymptote, a curve in a green dotted line and the function h 

represented by the purple curve. 

 

Figure 2.9: An example of a curvilinear asymptote 

In essence then, there are four types of asymptotes, three of which are linear and one that is a 

curve. Asymptotes are not necessarily lines that are part of the graph. In Figure 2.9 above, the 

dotted line shows the location of the asymptote curve, and is drawn for that purpose. A graph 

that does not show an asymptote is mathematically correct, provided all the other requirements 

for that function are clearly represented (Ronda, 2009). 

An asymptote and a removable discontinuity occur when the denominator is zero. The 

difference between the two is that an asymptote cannot be redefined to make the function 

continuous at that point. On the other hand, there is a way of defining a function in removable 

discontinuities such that they are continuous. In the event that a denominator of a rational 

function is zero at a certain value of x and the numerator is not zero, then there is a vertical 

asymptote at that point. In contradistinction, when both the numerator and the denominator are 
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zero, there is a removable discontinuity (Kuptsov, 2001). For example, 𝑓(𝑥) =
4

𝑥−2
 at x=2 

would be 𝑓(2) =
4

0;
 and ℎ(𝑥) =

4(𝑥−4)2

𝑥−4
 at x=4 would result in ℎ(4) =

0

0
. In this case, the 

function f has a vertical asymptote, while the function h has a removable discontinuity. At grade 

11, the curriculum does not require knowledge of this difference. 

2.3.4.1 Learners challenges concerning asymptotes 

As stated earlier, the official high school Mathematics curriculum in South Africa presents 

learners with functions whose asymptotes are either parallel to the axes, or coincide with the 

axes. The hyperbola and the exponential functions have asymptotes at the zero points of the 

denominator, and there is no intersection between the horizontal asymptote and the graphs. The 

reviewed literature shows that learners tend to struggle with the concept of the asymptote 

(Mpofu & Pournara, 2018; Flesher, 2003, Kidron, 2011).  

A study by Flesher (2003) found that learners’ asymptote-related difficulties were universal. 

In her cognitively inclined study, Flesher (2003) focused on college learners who were 

expected to describe the meaning of graphical representations in their own words. Some of the 

findings of this study indicated that learners’ mathematical discourse on the asymptote were at 

a granular stage. (Flesher’s study was cognitive in nature, hence her usage of the term 

‘conceptual misunderstanding’). In the self-same study, some learners were of the impression 

that the asymptote was a number, and not a straight line. This will be most probably coming 

from the algebraic calculations rather than from the graphs. Some of the learners in the study 

struggled to position the asymptote, stating that the asymptote can only coincide with the axes. 

This view emanates from an asymptote of parent functions, in which there are no vertical or 

horizontal translations. Yet, some learners could not define the horizontal and and/or vertical 

asymptotes after correctly calculating the position of the asymptotes on the Cartesian plane.  

Furthermore, learners generalise mathematical objects according to their observationse, 

whether such objects are a procedure or a representation. In her cognitive study, Kidron (2011) 

investigated learners’ concept image on the horizontal asymptote. The learner in question 

struggled to understand that the horizontal asymptote can intersect with the function. The 

diagrams created some commognitive conflict in which the graph and the asymptote behaved 

in a manner that she (Kidron) did not expect. After checking for errors in her work, she finally 

accepted that the horizontal asymptote could intersect with the graph infinitlys. The lesson 

learnt from Kidron’s study is that the current high school definition introduced to learners in 

the South African system of education will need to be changed, if learners are to continue 

studying rational functions. The horizontal asymptotes would intersect with the graph and in 

some instances, the asymptote would be a line in the form of 𝑦 = 𝑚𝑥 + 𝑐.  



34 
 

In a study conducted by Yerusalemy (2003), learners defined the horizontal asymptote as a 

slope with a gradient of zero. Their initial thoughts on the vertical asymptotes were that it 

occurs on every zero point of the denominator. They did not distinguish the removable 

discontinuity from the asymptote. Some of these learners referred to the asymptote as a point, 

which demonstrates that their view of the asymptote was limited. Similar to the study by Nair 

(2010), learners in the study by Yerusalemy (2003) above also stated that asymptotes were 

invisible lines.  

Some teachers too struggle in understanding the concept of an asymptote, as revealed in a study 

by Berger (2013), which revealed that teachers could not distinguish between the removable 

discontinuity and the asymptote. Two teachers drew a vertical dotted line that passed through 

the point where the function was undefined. For the two teachers, the zero points of the 

denominator meant that a vertical asymptote had to pass through that point. At the end of the 

above-mentioned study, teachers had developed new perspectives on how they viewed the 

vertical asymptote. Notwithstanding, this experience shows how deep-seated are the challenges 

in the learning of functions - especially the asymptotes. 

2.4 Functions in the South African School Curriculum 

In terms of the South African high school Mathematics curriculum, grade 10 learners are 

required to begin sketching a hyperbola and exponential functions. These functions are also 

learnt in grade 11 and examinable in grade 12. In grade 10, learners learn functions with a 

vertical shift only, and the horizontal shifts are only introduced in grade 11. Work on functions 

begins with the plotting of points, which enables the learning of the general shape of the 

function and the subsequent generalisations. Thereafter, learners are expected to sketch the 

graphs after mastering the key features of the function. In fact, generalisations on all 

transformations begin with the plotting of points in graphs. Once learners have understood the 

concept, they are then expected to generalise by sketching the graph showing only key points 

such as the intercepts and the asymptotes. In terms of the CAPS, learners should be able to 

progress flexibly between the four representations of a hyperbola and interpret the function 

from whichever representation (DBE, 2011). As Denbel (2015) noted, learners tend to work on 

the representations oblivious of relation between them. A review of the National Senior 

Certificate shows that questions are skewed towards the algebraic and graphical representations 

of the function. The recommendations of CAPS go further, requiring learners to make 

generalisations and prove them, especially with regard to the asymptote, intercepts and 

translations.  
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2.4.1 Learner challenges with functions 

Learners’ difficulties concerning functions is well documented in research (Clement, 2001). 

Carlson et al. (2010) attribute the over-reliance on procedures of learning functions as one of 

the reasons learners struggle to understand mathematical functions. On the other hand, Denbel 

(2015) attributes these difficulties concerning functions to the restricted image of functions that 

learners have. The latter author further noted that the different representations of a function 

were treated in isolation. The findings of the current study confirm the findings of Denbel’s 

(2015) study - that learners experienced difficulties relating to the representation of functions 

among themselves  

Carlsonet al. (2010) proposed that some of the difficulties associated with the learning of 

functions emanate from learners’ failure to distinguish between a general equation and a 

function represented as an algebraic equation. An equation has a single indeterminate. For 

example,     2𝑥 =  
3

𝑥−4
 and a function will have at least two indeterminates or variables. An 

example in this case would be 𝑦 =
3

𝑥−4
. While the two functions look similar to a novice, the 

equation and the formula are mathematically different. When solved, the equation will yield 

values of x which makes the equation to be true. In the context of the formula, the x values 

would have a corresponding y value for the statement to be true. In the context of the formula, 

there are many of the ordered pairs which satisfy the algebraic statement. Caspi and Sfard 

(2012) have noted unequivocally that learners’ main difficulty was that they viewed functions 

as two expressions separated by the equal sign. Insufficient understanding of the meaning of 

the symbolic mediator, the equal sign, was the cause of such misinterpretation of the functions; 

which also translates to an under-developed realisation tree of a function makes. Clement 

(2001) mentions the following contributory factors to learners’ limited understanding of 

functions. Learners are of the view that:  

 a function emanates from a single rule; for example, functions should take the form 𝑓(𝑥) =

𝑎𝑏𝑥 + 𝑞, nothing else would be acceptable; 

 the piece-wise relation is not a function, but a mirror image of the above point;  

 the graph of a function should be continuous; a graph with a discrete value, for example, 

number of men painting houses over time is not regarded as a function since men supposedly 

take integral values only;  

 once there is a gap between the graph, then it ceases to be a function; for example, the 

hyperbola is not regarded as a function as it has two parts; and  

 a function should be a one-on-one; 𝑓(𝑥) = 4 is not regarded as a function. At the same time, 

the same statement [f(x) =4] drawn on paper is regarded as a function.  

While learners are correct that an equation written as x is equal to a constant is not a function, 

the equivalent of the same drawn on a Cartesian plane is regarded as a function. It is also 
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difficult for learners to distinguish between y is equal to a constant and x is equal to a constant 

(y =a and x=a) (Clement, 2001).  

There is a belief among learners that a function should be continuous (Carlson et al., 2010). 

Accordingly, learners would not classify as functions those graphs that are not continuous. The 

vertical test distinguishes a relation from a function. For a function, each input value should 

have a distinct output. The only instance a relation is regarded as a non-function is when an 

input has at least two output values. For example, in 𝑦 = √𝑥 for every value of x, there are two 

distinct y values for all values of 𝑥 (except for 𝑥 = 0). Learners regard all disjointed graphs as 

non-functions. A hyperbola would fall under this category. 

Moalosi (2014) summarises that the difficulties experienced by learners are compounded by 

the requirement to define the function; the 𝑥 and 𝑦 intercepts; the effects of the parameters on 

the graph; interpreting the graph; translating between the representation of the graph; as well 

as the inability to distinguish between the various functions. In the context of the empirical 

observations of this study, learners’ experienced difficulties with the effects of the parameters 

on the function, interpreting information on the table or graph; as well as the ability to translate 

the representations of the functions.  

2.5 Conclusion 

In this chapter, multiple perspectives were  presented and discussed in the context of the 

hyperbola and asymptotes as emanating from the reviewed literature. It was on the basis of the 

background provided by the literature review that there was a deliberate emphasis on the 

difference between the object-level and meta-level development in this chapter. Accordingly, 

the four characteristics of communication and cognition were explained; namely, the use of 

words; the communication visual mediators; the routines; as well as the endorsed narratives. 

The general and the rectangular hyperbola were presented visually, with an explanation of the 

rectangular hyperbola process when the semi-major axis and the semi-minor axes are equal to 

each other. The asymptote and its various types were also described.  

The aspect of learning as participation was also included, since the focus of this study is on the 

learning of the hyperbola. The chapter also made a concerted reference to the requirements of 

the Mathematics curriculum on the functions, in the context of the research topic; including the 

learning of functions and difficulties that learners face in learning these functions.  

The next chapter (Chapter 3) focuses entirely on an inter-theoretical and conceptual framework 

of the study. The theory of commognition and the theory of socio-cultural learning constitute 

the most central aspect of the chapter, in addition to the definition of key concepts associated 

with the research topic and its attendant problem to be resolved. 
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CHAPTER 3 

THEORETICAL/ CONCEPTUAL FRAMEWORK 

3. 1 Introduction 

The previous chapter provided a multifaceted review of the consulted and reviewed literature 

in the sphere of learners’ mathematical discourses and functions. The researcher concurs with 

the assertion by Walliman (2011) in highlighting the role and value of the literature review 

process in the development of a theoretical or conceptual framework. The latter author asserts 

that: “ The [literature] review can be used to show where you have gained inspiration to develop 

your ideas – and that does not just have to be only from academic sources. It should also 

demonstrate that you have a good understanding of the current conceptual frameworks in your 

subject, and that you can take a stance in placing your work within these” (Walliman, 2011, p. 

57). The current chapter then centralises the inter-relatedness of mathematical discourse, 

mathematical functions and the learning of functions within the conceptual parameters or 

frameworks of commognition and social learning as the foundational guiding theories in the 

study in conjunction with the relevant philosophical assumptions (Knobloch, 2010).  

Research studies are mainly based on some specific paradigms, frameworks or perspectives 

which necessarily establish the ‘boundaries’ for scientific investigation (Ramenyi & Bannister, 

2013). Theoretical frameworks themselves are abstract in their nature, but systematically 

present generalisations which explain the association between and among a phenomenon’s 

variables. In this study, mathematical discourse, mathematical functions and the learning of 

functions are posited as inter-related variables of commognition and social learning as specific 

theoretical frameworks. The latter coheres with the perspectives of authors such as Knobloch 

(2010), Ramenyi and Bannister (2013) and Saunders, Lewis, and Thornhill (2012); who 

emphasise that a theory is fundamentally a systematically and symbolically organised 

representation of perspectives pertaining to the reality of ideas, concepts or phenomena that are 

of interest to the researcher. For the purpose of this study, the theoretical framework or 

perspectives (paradigms) provided a context within which the key principles are defined and 

related to the practical domain of the study, in terms of which the research problem could also 

be conceptually relevant to the study’s adopted philosophical assumptions (Kumar, 2012).  

Philosophical assumptions are not peripheral to the researcher’s own system of values, and 

mainly refer to the basic principles or paradigms (philosophically rooted points of view) which 

are subject to application with no need for proof or verification (Knobloch, 2010). In this 

regard, the assumptions guide the particular philosophical approach or “stance” adopted by the 

study in the observation of phenomena or critical research variables that are the subject of both 

observation and investigation (Marshall & Rossman, 2011). Additionally, assumptions (basic 

philosophical/ intellectual abstract ideas or concepts) could be ontological (assumptions based 
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on the nature (“being”) of reality); epistemological (nature and construction of knowledge and 

its reality); methodological (the means by which knowledge of reality is acquired); axiological 

(extent to which detailed attention has been allocated to the various components and aspects of 

the whole study); and rhetorical (the researcher’s art or capacity of written and oral 

persuasiveness). In this study, a hybrid approach was adopted in terms of the degree of 

applicability of different assumptions to different aspects of the research process.  

3.2 Definition of Key Concepts 

The definition of the key concepts is closely related with the conceptual and theoretical context 

and parameters of this study, since it is on the basis of such definitions that clarity and logic 

are accorded to the very thematically concepts which are necessarily embedded in the learners’ 

mathematical discourse and functions, as well as their social learning (Narasimhan, 2009). As 

a result of the thematic coherence and logic-seeking orientation of the definitions of the below-

cited key concepts, their alphabetic sequence does not necessarily signify any order of 

prioritisation or appearance in the study. The key concepts identified in this study are: 

asymptote, the Discourse Profile of the Hyperbola and Exponential Function (DPHEF), 

functions discourse, hyperbola, and mathematical discourse.  

3.2.1 Asymptote 

The term ‘asymptote’ derives from the Greek word literally meaning, “Not falling together” 

(Kupstov, 2001). Mathematically, it means that there were no points of intersection in a graph 

(Mpofu & Pournara, 2018). However, it is now common knowledge that the horizontal 

asymptotes sometimes intersect with the curve. Information about a curve is conveyed in an 

asymptote. In sketching functions, one of the important steps is to determine the asymptote. 

The mathematical definition of the asymptote, used by the community of mathematicians, 

differs from the school definition. The school definition is context-specific, as opposed to the 

purely mathematical definition. Throughout this study, the researcher has attempted to discuss 

the difference between the definitions of the asymptotes, and then showing the difference 

between the asymptote and the removable discontinuity. 

An asymptote of a curve is a line constructed such that the distance between the curve and the 

line approaches zero as one or both x and y tends to infinity (Kidron, 2011). There are three 

types of asymptotes, the vertical, horizontal and oblique asymptotes. The horizontal asymptote 

may or may not intersect with the curve. The vertical asymptote does not intersect with the 

graph. An oblique asymptote is in the form of y = mx + c. Participants of this study only did 

functions with only the horizontal and vertical asymptotes that either coincide or are parallel 

with the axes. Often participants’ definition of an asymptote was closely related to what they 

(participants) had seen in their learning.  
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3.2.2 Commognition 

Communication is a mechanism for the facilitation and execution of mathematical discourse 

by combining and linking communication with cognition (Sfard (2008). In commognition, 

learners participate in a mathematical discourse by both talking and thinking. “Thinking is 

regarded as communication with oneself” (Sfard, 2012). Thinking is expressed in verbal or 

written form. In this regard, participation in mathematical discourse is seen in action, and 

development is seen in change of discourse (Sfard, 2012). The more fundamental aim of 

discussion is to enable learners to think and talk like mathematicians. In the event that the 

conversation in the discourse remains the same, then development has not taken place. Since 

learning is a sub-set of development, the focus is not on the change in the learner, but the 

change in the discourse. Development in the discourse is manifested by the learners’ use of 

new rules in the mathematical discourse (Sfard, 2012). When learners use new rules, their 

communication changes. Therefore, learners would have developed in their commognition and 

mathematical discourse in the event that they are able to make a difference between forms of 

translation and show this change in their communication (Vyncke, 2012).  

3.2.3 DPHEF (Discourse Profile of the Hyperbola and Exponential Function) 

The DPHEF is an analytical tool used to analyse the mathematical discourse of the learners 

who participated in this study. The DPHEF was developed by the researcher from the original 

Discourse Arithmetic profile used by Ben-Yahuda et al (2005). The DPHEF was designed to 

identify and distinguish between the superficial and dispositional differences in learners’ 

mathematical discourse. As an analytical tool, the DPHEF can be used for any mathematical 

function, and is not restricted to the hyperbola and the exponential function only. From the 

perspective (rather than assumption) of the researcher, the DPHEF it is envisaged that the 

DPHEF will contribute towards learners’ knowledge, perceptions, and experiences in the 

learning of asymptotes of the hyperbola and exponential functions. 

The DPHEF has two categories of word use, the mathematical and the colloquial. The 

mathematical use of words is defined as a form of communication about which all members of 

the community of mathematicians have the same interpretation (Tachie & Chireshe, 2013). An 

immediate example is: An increasing exponential function has a base that is more than one. 

The colloquial use of words relates to a mixture of mathematical and non-mathematical words. 

An example could be: An increasing exponential function is the one that goes up. The use of 

words is ambiguous and is prone to different interpretation by different communities of people.  

3.2.4 Functions discourse 

The functions discourse is grounded on the realisation and conceptualisation of Algebra as a 

branch of Mathematics (Caspi & Sfard, 2012; Nachlieli & Tabach, 2012). The words and 

symbols used for functions distinguish the functions discourse from other discourses. A 
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function can be represented in four various ways in commognitive terms. A function can be 

represented verbally by using words to describe a phenomenon; algebraically by using symbols 

to communicate; numerically by using ordered pairs mostly expressed in tables; and 

graphically by either sketching or drawing a graph. In this study, the participants mostly opted 

for graphical and algebraic representations of the functions. Figure 3.1 below illustrates the 

various developmental stages of a functions discourse, as well as the developmental linkage to 

routines. 

Figure 3.1 Development of the functions discourse  

 
Source: Researcher’s own initiative derived from the review of literature 

Figure 3.1 above illustrates the centrality of words pertaining to the development of the 

functions discourse. These words include asymptote, axes, intercept, to name just a few. These 

words usually characterise visual mediators in the form of graphs, tables and formulae. Having 

had exposure to, and knowledge of these words, learners are then able to generalise based on 

their interpretation of the words and their attendant visual mediators. All three tenets of the 

functions discourse (word use, visual mediators and endorsed narratives) collectively 

determine whether learners function at the level of ritualised or exploratory routines. Generally, 

all learners begin from ritualised routines, and some proceed to exploratory routines while 

others take some time to move out of the ritualised routines. Competence in the hyperbola 

functions discourse comes after learners have had competence in each of the sub-discourses on 

inverse proportion, graphs, symbolic expressions and equations, and tables of values. 
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3.2.5 Hyperbola 

A hyperbola is a function whose dual graphical representation of its two parts reflect each 

other’s lines of symmetry (Nachlieli & Tabach, 2012). A hyperbola has two lines of symmetry 

that are given by the equation 𝑦 − 𝑞 = ±(𝑥 − 𝑝). For instance, the school or rectangular 

hyperbola has two asymptotes that are perpendicular to each other. Learners often fail to 

recognise the asymptote when it coincides with the axes (Mpofu and Pournara, 2018). The 

algebraic representation of a hyperbola is in the form of 𝑦 =
𝑎

𝑥−𝑝
+ 𝑞. In this study, learners 

often viewed the parameters p and q as asymptotes, yet they only represent the horizontal and 

vertical movement, which is a display of ritualised routines.  

There are basically two types of the hyperbola, the general and the rectangular hyperbola. 

Whereas the general hyperbola is a function with a smooth or open curve on a plane, the 

rectangular or equilateral hyperbola is one wherein the asymptotes intersect at perpendicular 

angles to each other. In addition, a hyperbola becomes rectangular when the semi-major and 

the semi-minor axes are equal. The semi-major axis is a line segment from the centre to the 

vertex of the hyperbola. The length of the semi-major is denoted by the letter a. A semi-minor 

axis is a line perpendicular to the semi-major axis and has a length of b. Therefore, in a 

rectangular hyperbola a=b, the eccentricity is equal to √2. The asymptotes of a rectangular 

hyperbola are generally represented by the equation 𝑦 = ±𝑥 (provided there are no 

translations) since a=b will yield 1 (one). The asymptotes make an angle of ±45𝑜 to the axis. 

The equation 𝑥2 − 𝑦2 = 𝑎2 yields a rectangular hyperbola (Narasimhan, 2009).  

A learner may plot points for a hyperbola and draw the asymptotes, but still continue to perform 

ritualised routines, due to an insufficient validation of the reasons for the steps to be followed 

in plotting the points of the hyperbola. When sketching a hyperbola, knowing how the graph 

relates to the asymptote is an exploratory routine, but just following the interlocutor’s 

instructions is not. An action that may be an exploratory routine when undertaken by an 

interlocutor may be a ritualised routine when undertaken by a learner.  

3.2.6 Mathematical discourse 

Mathematical discourse is a type of communication and activity of generating the story of 

Mathematics. According to Sfard (2008, 2012, 2015), mathematical discourse is characterised 

by four key elements that help to illuminate the mathematical story of an individual. The 

elements of a mathematical discourse are words and word use, the visual mediators, endorsed 

narratives and the routines. These four elements are ontologically inextricable, and demonstrate 

the development of the mathematical discourse. In participatory learning theories, the textbook 

is regarded as an interlocutor, since learners are able develop their mathematical discourse from 

the textbooks. On a positive note, textbooks can help in the development of mathematical 
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discourses by providing opportunities for learners to explore mathematical objects; such as 

tasking learners to make a generalisation on the horizontal shift. 

In this study, the learners’ mathematical discourse is still in a state of developing. These 

learners could identify mathematical symbols and used a form of discourse they regarded as 

mathematical, but such discourse would not be endorsed by the community of mathematicians 

on the basis that the narratives of the learners were generally ritualised.  

3.3 Theory of Commognition 

The theory of commognition is cognate from the work of Wittgenstein, (1953) and Vygotsky 

(1978). All they were not contemporaries, these two luminaries espoused similar ideas on the 

nature and processes of learning. To them, learning and thinking are means by which one 

communicates mathematical concepts with others and oneself in an objectified manner 

(Daniels, 2001). 

Commognition derives from one of the participation theories which posit learning as the 

process of individualising the mathematical discourse (Sfard, 2007; Sfard, 2014). It is in that 

context that commognition was developed from socio-cultural learning theory, because in its 

development. there is acknowledgement that learning of Mathematics is both societal and 

individual (Caduri & Heyd-Metzuyanim, 2015). The change in societal communication results 

in a change in communication with other individuals. In commognition, it is expected that 

participation progresses from ritualised routines to exploratory routines (Sfard, 2014).  

As a concept, commognition is a combination of “communication” and “cognition”. In the 

commognition perspective, talking and thinking are viewed as part of communication (Sfard, 

2008); and thinking is viewed as an individualised form of communication activity with oneself 

(Sfard, 2007; Sfard, 2008). Thinking is largely expressed in the form of talking and through 

writing. Individuals change by being involved in various activities. For instance, participation 

of learners in the mathematical discourse is measured by their talking, gestures and writing in 

the particular sub-discourse they are engaged in. Therefore, learners participate by talking and 

bringing forth their reasoning in class or group discussion; or in solving problems in their 

writing. 

According to the commognitive perspective, the aim of learning Mathematics is to enable 

learners’ membership of the community of Mathematics (Nachlieli & Tabach, 2012). In such 

a context, learning is viewed as the process of becoming a competent participant in 

mathematical discourse or practice. This participation is evident in communication by a learner.  

3.3.1 Foundational principles of commognition 

Commognition has its foundation on three human activities and their constitutive principles 

(Sfard, 2014). Where communication changes in mathematical activities, there is a concomitant 
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transformation in the way we do things. Secondly, discourses function as propagators of 

innovation and repositories of complexity. Thirdly, learning happens at either object-level or 

meta-level. Object-level learning denotes accumulation of endorsed narratives, while meta-

level learning is about a whole transformation of the endorsed narrative. The three foundational 

principles of commognition are discussed below. 

3.3.1.1 The co-constitutive nature of discourses and other human activities  

As an auto-poietic, Mathematics grows from within (Nachlieli & Tabach, 2012; Sfard, 2015). 

Mathematical activities and developments contribute to the growth of Mathematics as a field 

of study. As human beings engage in mathematical activities, a need for change arises. When 

humans were at ease with natural numbers, counting their wealth and so on, they arose a need 

of representing debts and the negative numbers were born out of that need. These, and a host 

of other human activities, are responsible for innovation within the field of Mathematics, while 

also generating new narratives and transforming other narratives as well. For example, the 

introduction of the hyperbola graph has changed the perception that a graph should always be 

continuous. 

3.3.1.2 Discourses function as propagators of innovation and repositories of complexity 

The ability to communicate enables the change and complexity to be preserved (Sfard, 2014). 

Verbal communication allocates a semblance of reflective communication. This 

communication is both intra-personal and interpersonal. The exchange of views among 

different mathematicians and reflective thought of individuals leads to the preservation and 

application of the changes and innovation to new situations. Change and innovations also 

produce compression, when symbols are used to minimise or reduce communication by saying 

less (Caspi & Sfard, 2012). Instead of writing a set of squares and listing all of them, we can 

write 𝑥2;  𝑥 𝜖ℝ. This then changes mathematical discourse from ‘talk about process’ to ‘talk 

about objects’. In this regard, communication helps to say much with less, while preserving 

what would have been gained. 

3.3.1.3 Two levels of discursive learning 

In object-level development, there are new narratives. For example, when learners are 

introduced to exponential functions subsequent to exposure to the quadratic function, there are 

new objects for them to contend with. These objects include the formula/equation, intercepts, 

asymptote, ordered pairs and types of graphs to be produced. The graph is completed by 

drawing a line that joins all the points. The rules used in the exponential functions sub-

discourse remain the same as those of plotting points on a quadratic, and the development is 

cumulative. At the introduction of exponential functions, learners are already familiar with the 

plotting of points. One major characteristic of object-level development is that it is possible for 
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learners to construct narratives without the interlocutor. This is facilitated by allowing learners 

to explore the mathematical object, as well as making conjectures and generalisations.  

For grade 10 learners who have plotted points in earlier grades, it is possible for them to make 

generalisations on the linear function without the assistance of the interlocutor because the 

growth is cumulative. Points on linear functions always form a straight line. All linear functions 

have this characteristic, and it is not difficult for learner to make or prove a conjecture and 

make generalisations with less help from the interlocutor or teacher. Aother example of 

learning without the interlocutor relates to observing that the constant in a general function 

represents the y-intercept. The constant in functions is the value of the graph’s intersection with 

the y-axis. Learners can observe the behaviour of the constant and expand their discourse. 

There are no contradictions between the rules of sketching a linear graph and those of plotting 

points. Learners can also realise that algebraically, when x is zero, the y value is always the 

constant. In object-level learning, it is possible for learners to generate endorsed narratives 

without the help of the interlocutor on condition that the previously endorsed narratives 

(realisation tree) are in place (Nachieli & Tabach, 2012).  

For meta-level development rules, the interlocutor becomes the important factor. Meta-level 

development is characterised by a change in rules, and new objects change rules of 

endorsement. In meta-level development, there are apparent contradictions between the newly-

introduced narratives and previously accepted narratives. The introduction of Calculus brings 

about meta-level development in that new objects, differential rules, the gradient function, and 

stationery points are introduced; just to name a few. There is no way that learners can use their 

previous knowledge to unlock the rules of differentiation. The interlocutor should explain the 

gradient function, the meaning of stationery points, and differential rules. In object-level 

development, learning is cumulative and there are no new rules, as is the case for meta-level 

development. The interlocutor comes in mainly to narrow the gap between meta-rules and the 

learners’ current development. The purpose of narrowing the gap is to enable learners’ 

advancement to the next possible level. This may be true for most of meta-level learning of 

mathematical objects. For example, the introduction of differential rules, stationery points, as 

well as the behaviour of the graph as it approaches horizontal and vertical infinite points (Sfard, 

2015).  

3.3.2 Applicability/ Relevance of commognition in this study 

The special type of communication in Mathematics is guided by the characteristics of 

commognition. These are the words used, the interpretation of the visual mediators, the 

endorsed narratives and the routines. People engage in mathematical activities so that they may 

become a part of a community of mathematicians (Sfard, 2012). The use of words, 

interpretation of visual mediators and the narratives students endorse determine the routines 
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that learners operate on. In this study, has introduced an analytical tool known as the Discourse 

Profile of the Hyperbola and Exponential Function (DPHEF). The tool was useful in the 

analysis of learners’ mathematical discourse, some of which was found to be ritualised since 

these learners based their mathematical actions on what they saw others (e.g. teachers) doing. 

On the other hand, other learners were able to lay claim to being part of the community of 

mathematicians by exhibiting exploratory routines by using words and interpreting visual 

mediators accordingly.  

Sfard (2015) emphasises the centrality of the interlocutor in commognition, who facilitates 

reflective imitation. Accordingly, the learner does (imitates) what he or she sees the interlocutor 

doing. The more the learner becomes successful, the more s/he reflects carefully on the process 

s/he was involved in, and s/he comes up with conjectures and proves them. Given this state of 

affairs, what Sfard (2007) refers to as mathematical objects is what Vygotsky refers to as 

concepts. Mathematical objects are discursive constructs that replace ‘talk about processes’ 

with ‘talk about things’ (Sfard, 2015). Therefore, mathematical objects are used to say much 

with less. For example, instead of writing “the combination of two sets of marbles one with 6 

(six) marbles and the other with 5 (five) is eleven marbles” we write “6 + 5 = 11”. This form 

of mathematical configuration of learning in commognition theory is presented as the 

attainment of objectification, when the talk about objects replaces talk about processes (Sfard, 

2008).  

3.4 Theory of Socio-Cultural Learning 

Vygotsky, a Russian psychologist, is credited with the development of the socio-cultural 

learning theory (Yasnitsky & van der Veer, 2015). Vygotsky believed that a new man, whom 

he termed superman, has the capacity to improve from what s/he is today, to what his/her 

environment shapes her/him to be. In this regard, everyone was the product of his or her 

environment. For Vygotsky, the society is responsible for producing individual supermen. 

Parents, caregivers and all members of society are responsible for the development of children 

to supermen by individualising societal norms. Although Vygotsky did not intend to develop 

an educational theory, his successors used the principles he was developing to generate the 

socio-learning theory, which gave birth to the social-cultural learning theory (Grigorenko, 

2014). 

Learning is a result of a wide range of activities that happen in society. According to Vygotsky 

(1931), culture is influential in the development of learning. Accordingly, a child grows and 

learns through the milieu of social interaction, which has a special role in cognitive and 

conceptual development. (Vygotsky, 1978). Cognitive development itself is reciprocally 

affected by the particular culture in which the child grows. The embeddedness of cognitive 

development within culture varies across cultures, and shapes children and learners’ thinking 
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in the context of that particular environment. Daniels (2001) points out further that the context 

of learning also determines the kind of learning that the learner will undergo. In such a context 

or environment (milieu), language is the medium through which cultural practices are passed 

from one generation to the other. By their interaction with adults, children and learners acquire 

language, which then becomes a key factor of cognitive development (Canagarajah, 2002; 

Setati, 2008). 

3.4.1 Foundational principles of socio-cultural learning theory 

The socio-cultural learning theory has three broad principles, namely that human development 

and learning originate in cultural interactions; language mediates development of higher mental 

functions; and learning occurs within the Zone of Proximal Development.  

3.4.1.1 Learning originate in social and cultural interactions 

Learning in children happens twice, at the social level and later at the individual level. Learning 

happens between people and then happens within the child. Learners gain knowledge by 

working on a variety of tasks with other people. It is through the interactions with others that 

the learner gains the skills and strategies that s/he will use for solving problems (Scott & 

Palincsar, 2013). The participation is normally guided as there should be someone with higher 

skills that would help the student make meaning of the tasks. Development is about the change 

in activity rather that the transfer of knowledge (Matusov, 2015). Participation in cultural 

activities helps the learner acquire new skills that can be used to solve complex problems. 

3.4.1.2 Language mediates development of higher mental functions 

Language plays an important role in the learning process by facilitating the construction of 

knowledge. Language is the greatest tool in learning as it helps with construction of meaning 

and also communicating with others. Language is also a tool by means of which cultural 

practices are transmitted to the next generation. In addition, language skills are used to solve a 

variety of new problems (Scott & Palincsar, 2013).  

3.4.1.3 Learning occurs within the zone of proximal development 

According to Vygotsky (1978) learning happens within a zone of proximal development 

(ZPD). The ZPD is the distance between what the learner can do on his/her own and what s/he 

can do with the help of the teacher. Learning is depended on the level of development of the 

child rather than the age. Instruction should be structured in such a way that it takes into 

cognisance the previous learning. This calls for sequential arrangement of content so that 

learners may have building blocks or prior knowledge that can help learners to make 

connections and meaning on the content they learn. 

Vygotsky explains learning in the context of the Zone of Proximal Development (ZPD), in 

terms of which the learner is ready to learn new concepts and mathematical objects with the 

help of the More Knowledgeable Other. The ZPD is posited as the difference between what the 
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learner can do on his or her own, and what he or she can do with the help of the MKO. For 

example, the learner is able to plot points on the Cartesian plane and is supposed to be taught 

the drawing of linear functions. The level at which the learner is able to work without the help 

of the adult or MKO is known as the Actual Level of Development (ALD),which depicts the 

actual plotting of points on the Cartesian plane. Scaffolding is used to achieve this transition to 

the actual level of development. Scaffolding per se is referred to as reflective imitation in the 

commognitive perspective. The learner is being scaffolded in order to reach the Potential Level 

of Development (PLD), what the learner is able to do with the help of the adult (more 

knowledgeable other) as exemplified or demonstrated by the learner’s drawing of linear 

functions. While Vygotsky clearly defines the role of the MKO, the role of the learner is not 

clearly defined. Learning in Vygotskian theory largely depends on the MKO, who is supposed 

to know the point at which the learner is ready to move to the next level. In commognition, the 

learner progresses to the next level of learning through reflective imitation by working together 

with the teacher to jointly construct knowledge. In commognition, the role of the learner in the 

learning process is clearly defined, and there is no ZPD equivalent.  

3.4.2 Applicability/ Relevance of socio-cultural learning theory to the study  

One of the important advantages of learning Mathematics is that it provides learners with the 

tools they can use for participation in everyday life (Moschkovich, 2002). These tools include 

interpreting, analysing, describing, making predictions, or even solving problems they may 

face in their schooling or adult life. Unfortunately, not all learners are able to access this 

knowledge or skills at the same time. 

The study focused on rural learners in the Eastern Cape Province of South Africa, an area in 

which cultural and language factors were empirically noted to have some impact on the 

learning of Mathematics. The study found that language and the use of terms was similar as a 

result of the cultural artefacts that affected their learning. Secondly, the selected study 

participants were involved in the task-based interview in pairs, which enabled the collaborative 

construction of knowledge for shaping their mathematical lexicon and resolution of 

misconceptions. The  study focused on the assumption that learners were taught all the work 

on functions by their teachers. The study did not focus much on the zone of proximal 

development, but it was also assumed that they had attained a certain level of development; 

which would allocate a degree of meaningfulness to their tasks. 

3.5 Conclusion 

In this chapter, the theoretical perspectives of both commognition and socio-cultural learning 

were presented and discussed in the context of their main principles and applicability or 

relevance to the study in conjunction with the definition of key concepts. The socio-cultural 

learning perspective was largely utilised to frame the data collection process, while the 
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commognitive perspective enhanced the data analysis process of the study. In the next chapter 

(Chapter 4), the research design and methods of the study are presented and discussed. 
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CHAPTER 4 

RESEARCH DESIGN AND METHODS 

4.1 Introduction  

This chapter outlines the study’s research design and the methods used to investigate learners’ 

mathematical discourse on functions, with particular attention to the hyperbola and the 

exponential functions. While the chapter systematically focuses on the data collection methods 

and instruments, it is worth explicating the distinction between the research processes and 

research instruments employed in this study. For that reason, it is then necessary to briefly 

provide an outline of the difference between research design, research methodology, and 

research methods (Kumar, 2012; Maree, 2007). The rationale for such differentiation is 

necessitated by the assertion that these three research nuances and variables are viewed 

differently by different research scholars, professionals, and practitioners. For instance, some 

view these three concepts as synonymous (i.e. interchangeable and interrelated); while other 

schools of thought propound the view that these three terms are different from each other (ergo, 

interrelated but separate and distinct, and not interchangeable) (Babbie & Mouton, 2010). 

4.1.1 Research design and methodology 

The research design is essentially focused on the strategies or plans utilised to integrate and 

manage the various units and stages of the entire research process. To this effect, Yin (2014, p. 

26) refers to the research design as “the overall integration and sequence of the research 

processes linking the critical units of analysis in order to enable the study reach its 

conclusions”. In concurrence, and in addition to the strategic aspect of a research design, 

Kumar (2012, p. 96) further provides the operational perspective of the research design, stating 

that: “A research design is a [procedural] plan, structure and strategy of investigation so 

conceived as to obtain answers to research questions or problems. The plan is the complete 

scheme or programme of the research. It includes an outline of what the investigator will do 

from writing the hypotheses and their operational implications to the final analysis of data … 

A traditional research design is a blueprint or detailed plan for how a research study is to be 

completed - operationalizing [sic] variables so they can be measured, selecting a sample of 

interest to study, collecting data to be used as a basis for testing hypotheses, and analysing the 

results”. 

To the extent that the research methodology is viewed as the philosophical perspective or 

paradigm from which the overall plan/ strategy of the study is operationalized (Creswell, 2014; 

Hesse-Biber & Leavy, 2011; Yin, 2014), it (research methodology) functionally and 

purposefully conforms to the same intention as the research design. Based on the above 

argumentation by various scholarly research perspectives and traditions, this study adopts a 

perspective in terms of which research design and research methodology are viewed as 
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synonymous, interrelated, and interchangeable; but separate and distinct from research 

methods (Mouton, 2013: 55). It is the researcher’s contention that such differentiation provides 

a cogent clarification of the processes (i.e. design and methodology) and the actual or specific 

research instrumentation/ tools opted for in the study in accordance with the researcher’s well 

considered overall research management, integration, and execution plan or strategy (Kumar, 

2012). 

From both a strategic and philosophical paradigm, this study has encapsulated a combined 

qualitative and quantitative research design (methodology) approach. From a qualitative 

perspective, this study fundamentally incorporated descriptive and interpretive elements based 

on the theory of commognition as expounded in Chapter 3 of this study (Turner, 2010). One of 

the strengths of a descriptive-interpretive research design (methodology) is the focus between 

the goal (end) and the path (means) taken to achieve the stated goal (Babbie & Mouton, 2010); 

as well as the capacity to enhance the generalisability of the study’s findings (Leady & Ormrod, 

2013). The interpretive aspect was necessitated by the fact that the researcher needed to 

interpret the mathematical discourse of grade 11 Mathematics learners on functions, in addition 

to describing the processes leading to both the acquisition and analysis of the data. 

Qualitative research is characterised by data that is not numerical in nature, and the findings 

are arrived at without the use of statistical procedures (Creswell, 2014). Hatch (2002) 

recognises the effect of qualitative research approaches, and how they afford the research 

participants the opportunities to construct their own meaning of their social experiences and 

realities. On the other hand, the partly quantitative (statistical and numerical) approach 

complemented the predominantly qualitative nature of the study. The combined qualitative-

quantitative approach was beneficial to this study for purposes of complementing the 

articulation of explanations, predictions, descriptions, and association between variables in 

order to construct a credible basis for the generalisability of the study’s findings (Creswell, 

2014; Leady & Ormrod, 2013). 

4.2 Data Collection 

Having outlined the processes, strategies, and philosophical perspectives of the study (research 

design/ methodology), data collection focuses on the nature and type of the specific 

instruments/ tools utilised in the systematic accumulation of pertinent (qualitative and 

quantitative) data and information deemed by the researcher to be relevant for the achievement 

of the research objectives and the resolution of the identified research problem (Bless, Higson-

Smth & Kagee, 2006; De Vos et al., 2011; Holtzhausen, 2007).  

In addition to the review of literature, the qualitative data in this combined or method- 

triangulated study was collected by means of task-based interviews and documents that learners 
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had used during the data collection process. On the other hand, the partly quantitative data was 

derived from individually written tests by learners.  

4.2.1 Qualitative data collection: semi-structured task-based interviews 

Qualitative data was collected by means of task-based interviews with 12 pairs of grade 11 

learners (a total of 24). Qualitative data collection entails the gathering of information in a 

prosaic (descriptive) and non-numerical (non-statistical) form in order to explore and/ or 

describe the characteristics of a phenomenon and its related variables(Kumar 2012; Walliman, 

2011). As critical sources of primary data, the research participants of a qualitative study 

provide their perceptions and social realities, from which meaningful and intelligible 

conclusions could be arrived at by the researcher (Wiersa, 2000). As stated previously, task-

based interviews constituted the core of the qualitative data collection method. Semi-structured 

task-based interviews were used in order to allow the voice of the participant to be heard more 

clearly (Assad, 2015). The researcher captured the task-based interviews by means of both 

video and (Opie, 2004) and audio recording as a back-up in case the video recording 

malfunctioned during the collection process. This was an attempt to optimally capture the  

participants in their natural settings (Opie, 2004).  

Task-based interviews are typically an “elicitation of student thinking about problems and a 

belief that true understanding takes place when the student or the learner makes discoveries for 

themselves” (Assad, 2015, p. 1). The researcher was flexible in the administration of this 

research instrument, allowing the selected participants to use multiple methods of answering 

questions. Some preferred to answer questions on the chalkboard, some on paper, while others 

preferred verbal responses only. Participants were allowed to express themselves freely in their 

language of choice. While most of the participants responded in English, there were some 

instances of some learners choosing IsiXhosa (the local language widely used in the Eastern 

Cape) to express themselves. Allowing participants to use their language of choice was not 

intended to impose meaning to their perceptions, but rather to allow their mathematical 

discourse to be interpreted and contextually understood (Aljoundi, 2014; Banda, 2007). In 

instances where the researcher did not understand the meaning of their responses, probing 

questions were employed.  

For purposes of enhancing “the authorial voice” of the learners (Vyncke, 2012, p. 21), the 

researcher selected questions for both test- and task-based interviews to be as close as possible 

to the learners’ everyday classroom experiences. The “voice” of the learners refers to “the 

writer’s [learner’s] distinctive presence, the strength with which the writer comes over as the 

author of the text” (Vyncke, 2012, p. 21). In the context of this study, that ‘voice” is the 

reflection of learners’ own perspectives derived from  their daily cognitive and narrative 

mathematical discourses. One of the advantages of the task-based interviews is their provision 
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of clarity-seeking opportunities to the researcher in situations of learners’ ambiguous 

mathematical narrative (Turner, 2010). In task-based interviews, the interaction with the 

learners allowed for acquisition of a high quality and standard of informat, as the participants 

and the researcher had the opportunity to understand each other’s perspectives. Probing was 

used when necessary, as it is also a powerful tool of prompting for more spontaneous learner 

interaction and responses (Jacob & Ferguson, 2012). Furthermore, task-based interviews were 

useful in helping learners to deepen their meaning-making, giving both solutions and reasons 

for their choices while working on mathe matical solutions (Goldin, 2000).   

In the task-based environment, the identified task presents the interviewer with the opportunity  

to recognise and classify the mathematical discourse of the learners, which is not only about 

what learners say, but also their non-verbal communication and written work. Maher and Sigley 

(2014) ascertain that the type of tasks assigned provides an environment which will determine 

the kind and nature of the mathematical discourse the researcher will derive from learners. In 

this study, follow-up questions were not pre-planned, the interviewer encouraged learners to 

self-correct by further interrogating their answers. Some follow-up questions were sought for 

clarification in order to obtain the correct data from the learners. The other advantage of a task-

based interview is that participants’ mathematical discourse or communication is enhanced in 

the construction of the task (Assad, 2015). A well-constructed task is likely to be effective as 

a data collection tool than a poorly constructed one. For purposes of this study, the success 

factor of the qualitative data collection was entirely premised on the learners’/participants’ 

talking/ narrating their perspectives. Accordingly, the researcher selected four tasks or sub-

tasks close to the participants familiar environment. As such,the participants were able to 

explain themselves fully while the researcher was able to explore their responses optimally 

(Assad, 2015; Maher & Sigley, 2014). Appendix B (p. 195) contains the tasks in the form of 

the Interview Schedule.  

4.2.1.1 Task 1: Naming of the exponential function and the hyperbola 

In all the five tasks, the primary focus has been on the interrogation of learners’ capacity to 

exhibit their mathematical discourse on different representations of the exponential function 

and the hyperbola. In the first task, there were two algebraic representations of an exponential 

function and a hyperbola. There were five sub-questions in this task, requiring learners to name 

each of the functions and thereafter explain each equation or formula relating to the parent 

function in the first sub-question. The second sub-question required learners to identify the 

asymptote of the exponential function and explain the reasons for their responses. The third 

sub-question was the same as the second, the only difference being that this was for a 

hyperbola. The fourth sub-section was premised on the identification of key points such as the 

asymptotes and intercepts on the table of values of both a hyperbola and an exponential 
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function. The final part of the tasks required a definition of an asymptote, as well as 

identification of the asymptote from a graph and an equation. This task afforded learners the 

opportunity to present their mathematical discourse from algebraic representation. 

4.2.1.2 Task 2: Naming the functions and formulating the equation 

The purpose of the second task was to engage learners in discussions which reveal their 

mathematical discourse on worded functions. In this second task, learners were presented with 

functions expressed in words. Learners were required to name these functions, formulate an 

equation using the word information supplied and sketch a graph of the function, and state 

restrictions to the functions where applicable. Lastly, learners were required to provide reasons 

in the event that graphs were expected to have asymptotes.  

4.2.1.3 Task 3: Identifying unfamiliar equations of the exponential function and the 

hyperbola 

In the third task, learners were presented with unfamiliar equations of both the exponential 

function and the hyperbola. The learners had to identify the function, express each function in 

standard form, and subsequently identify asymptotes from the graph. The main idea of the third 

task was to determine learners’ degree of flexibility insofar as rearranging the given formulae 

to standard form is concerned.  

4.2.1.4 Task 4: Identifying table of values of an exponential function 

In the fourth task, the questions were based on the table of values of an exponential function. 

The task required learners to identify the function from the table of values,  stating whether the 

function had an asymptote. The learners were also required to identify features such as the 

domain, the range, and the intercepts. Lastly, the learners had to formulate the equation from 

the self-same table of values. The curriculum requires learners to move flexibly among the four 

representations. The table of values is an iconic visual mediator and conveys information on 

the function that a representation does, but is rarely used beyond introducing learners to a 

particular function. 

4.2.1.5 Task 5: Identifying the function from the graph 

The fifth and final task was a graphical representation of the functions in which two graphs 

were drawn and the requirement was for learners to identify the function from the graph. The 

second part of the task required learners to explain the behaviour of the graph as it approaches 

both positive and negative infinity on both axes. While learners could draw and identify the 

key features of graphs, the researcher needed to establish whether learners could interpret the 

behaviour of these graphs.  
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4.2.2 Quantitative data collection: test-based questionnaires 

While the above-cited qualitative data collection strategies were fundamentally descriptive/ 

prosaic and descriptive (discussion-oriented), the quantitative data collection variants are 

mainly non-descriptive, statistical/ numerical/, and measurable (de Vos et al., 2011). 

Additionally, the quantitative data collection process is objective, controlled, and not prone to 

manipulation by the researcher for purposes of ‘aligninment’ to some research interests or 

agendas (Creswell, 2014). Kumar (2012) asserts that the extent of the quantified data’s 

controllability necessarily translates into standardisation of the concomitant data analysis 

process; precision, validity and accuracy of the research results; as well as the effective 

accomplishment of the study’s objectives. In this study, 112 learners/ respondents were selected 

for participation in a test focusing on the tabular, algebraic, graphical and narrated 

representations of functions; with particular emphasis on the asymptotes of the hyperbola and 

the exponential functions.  

4.2.2.1 Test-based data collection 

The study was conducted in four schools in the rural Mthatha district of the Eastern Cape 

Province (ECP), South Africa. About 30 learners from each of the four schools took part in the 

test. From a possible total of 120 learners/ respondents, 8 (eight) withdrew from the tests, which 

were administered by the researcher in the afternoons after their scheduled lessons. 

Approximately one hour was allocated for the test administration. In each school, 30 learners 

were supposed to take part in the test under the researcher’s guidance as an invigilator. 

Eventually, only 112 learners from the four schools participated in the study after the 

withdrawal of eight learners. The test was conducted under examination conditions, meaning 

that it was based on individual work. No discussion or passing of notes was allowed for the 

entire duration of the test, and the scheduled start and end times were strictly adhered to. 

Furthermore, the researcher supplied both the question paper and answering materials such as 

paper, ruler and pencils. Some learners opted to leave the venue at the time of writing and their 

limited input has been excluded in this study as participation was voluntary. Appendix A (p. 

194) depicts all the questions of the grade 11 test referred to above. 

A dual-purpose testing mechanism was used. Firstly, 6 (six) learners were selected for task-

based pair interviews per school. Secondly, the test served the purpose of examining the 

mathematical discourse of grade 11 learners in the sphere of functions in general. Following is 

a description of the five questions of the test.  

The first question required learners to draw a sketch of a hyperbola. This is a typical 

examination question. Firstly, two sub-questions served as the preparation for sketching the 

graph, identifying the equations of the asymptotes, and calculating the intercepts. The purpose 

of this question was to give confidence to the learners by including some exercises which were 
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not unfamiliar to the learners. Secondly, the question was intended to determine whether 

learners could sketch an iconic visual mediator from an equation. Generally, learners 

performed well in this regard, although the data analysis section 4.4 (see pp. 58-64) will discuss 

and provide more insight on some of the notable discourse of learners with regard to the 

intercepts and the difference between the algebraic and the iconic representation of the 

asymptote and the intercepts. 

In the second question of the test, learners were required to use words to describe an equation 

and give reasons for the choice of their description. Furthermore, learners were to use words to 

interpret a symbolic visual mediator given in the form of an equation. The second part of this 

question required learners to name the asymptote of a transformed equation. Not many learners 

responded to this question successfully. In fact, few learners gave reasons for their description.  

Concerning the third question, the researcher provided a contextual exponential function which 

excluded the usual variables, x and y instead t for time and 𝜃 for temperature. As a result (of 

this exclusion), many learners could not recognise that the function was exponential. The first 

part of the question required learners to complete a table of values. The second part required 

learners to draw a continuous graph using the coordinates from the table, after which the 

learners were required to name the graph from the equation or formula. The last part of this 

third question required learners to describe the meaning of the asymptote in real life.  

The fourth question was a combination of a parabola and an exponential function. In this 

question, there was no scaffolding. Learners had to calculate the positions of the key features 

of these functions. The second part required learners to demonstrate their understanding of the 

points of intersection of graphs as representing the solution for the equations.  

The fifth question generalised transformation of the hyperbola. Firstly, learners had to find the 

value of the constant, then proceed to a vertical transformation. Both horizontal and vertical 

transformation and the last question were based on compression. Most of the learners did not 

attempt any form of response to this question. The implication could be that the learners were 

not exposed to the generalised transformation of the hyperbola. 

4.3 The Study Setting/ Research Site 

The study setting or research site refers to the physical place at which the research was 

conducted (De Vos et al., 2011; Rajasekar et al., 2013). The current study was conducted at 

four rural high schools in the Mthata district of the Eastern Cape Province. Mthatha is a small 

township with a high population density. Education is affected by a variety of factors, including 

a high illiteracy rate of about 20%, and a low per household income as most residents rely on 

government grants and some households are child headed. Large classes averaging 60 learners 

in grade 12 also affect quality education (Mpofu & Pournara, 2018).  
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Generally, the National Senior Certificate results have not been encouraging for some time in 

the Eastern Cape. In fact, the Eastern Cape Province has been the worst performing province 

in NSC results for the past 3 years, with a 56.8% pass rate for 2015, a far cry from the provincial 

target of 70% (DBE, 2016). This challenge is compounded by a high rate of both unqualified 

and underqualified teachers in most of the schools (Tachie & Chireshe, 2013).  

4.3.1 Study population and sample size 

The study population refers to the larger representative group from which the study participants 

are to be selected (sampled) on the basis of their homogeneous characteristics, qualities, or 

attributes (De Vos et al., 2011). The core of the study population in this research consisted 

mainly of grade 11 learners at four high schools of the Mthatha district. In each school, 30 

volunteering participants were invited to take part in the research, but only 112 learners from 

four secondary schools took part in the test as eight learners decided to withdraw in the middle 

of data collection. They felt the questions asked were too difficult for them. The test was 

conducted in the very schools the learners attended. The researcher chose their schools because 

they were familiar to learners. Such an environment was conducive for the learners to express 

themselves freely. The test was written under examination conditions, and was of 50 minutes’ 

duration. The researcher invigilated the test in all the four (4) schools. The answer sheets were 

marked soon after the test, and 10 learners were selected for the task-based interview from each 

school. The researcher then gave general feedback to the Head of the Mathematics department 

at the school on learners’ areas of strength and weakness.  

4.3.1.1 Sample size and sampling method (strategy/ technique) 

In total, 112 grade 11 learners were selected from the four Mthatha high schools for 

participation in the empirical (interview- and test-based) aspects of the study. 

The researcher used the purposive sampling technique in this study on the basis of the selected 

research participants’ possession of similar (homogeneous) representative qualities with the 

study population (Saunders et al., 2012). Purposive sampling is a sampling technique according 

to which the researcher relies on his/ her judgement and knowledge or maximum familiarity 

with the research milieu (environment or setting) to select the relevant research participants 

(Black, 2010). The other advantage of purposive sampling is that it is cost and time effective 

as judgement on selection is usually based on previously available data (Black, 2010).  

Most of the learners do not perform well in functions and English is not their first language. 

They learn English at school as a second language, therefore selection focused on learners who 

were willing to participate in the study voluntarily. Learners who are not perfoming well in 

Mathematics tend not to answer questions accordingly, and the researcher did not wish to risk 

having many blank spaces in the test-based tasks.  
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4.3.2 Sampling criteria 

As a concept, ‘sampling criteria’ refers to the researcher’s own predetermined range of 

considerations or norm (standard) according to which the selected research participants were 

regarded as either relevant or unsuitable for inclusion in the empirical aspect of the research 

(De Vos et al., 2011; Kumar, 2012).  

In the selection of learners for the study’s task-based interviews, the researcher presented the 

names of learners who would take part in the interviews. Learners then discussed among 

themselves and recommended names of six volunteers for the next stage of the data collection. 

The other four (4) learners were placed as possible substitutes in the event that one of the 

selected participants did not come or decided to withdraw from participation. In each of the 

four schools, no selected participant withdrew from the task-based interviews, and three pairs 

of learners participated in the task-based interviews at their school after the designated teaching 

hours. Prior to the interviews, the researcher explained the expected level and nature of 

participation to the learners (Creswell, 2014; Saunders et al., 2014). Learners were also allowed 

to write some additional notes and bring them with if they desired to do so, in addition to being 

allowed to talk during the recorded interview sesssions. Only a pair was interviewed in the 

presence of the researcher.  

The best performing 30 learners in grade 11 were selected from each of the four schools. The 

researcher and  teachers in each school used the average of the marks obtained at the time of 

the study to select the best 40 learners to participate in the test. The researcher earmarked 30 

learners and the other 10 (ten) were placed as substitutes in the case of learners who were not 

willing to participate in the study. In total, 112 learners participated in the test.  

The researcher further selected 6 (six) best performing learners from each of the participating 

4 (four) schools. These 24  best performers took part in a paired task-based interview. Only 

one selected learner dropped out because he changed schools, but was replaced by the learner 

ranked number seven at his school. The characteristics of these learners were such that they 

were the best in each school. In school A, the selected learners’ marks ranged from 40% to 

60%. In school B, the top six learners’ marks ranged from 75% to 80%. In school C, the marks 

ranged from 85% to 90% for the best six; and at school D, the best six learners’ marks ranged 

from 65% to 80%. Although 24 research participants were the best 6 from each school, their 

marks in the test ranged from 40% to 90%. Since this was a very wide range, the researcher 

did not expect their mathematical discourse to be the same. At face value, their mathematical 

discourse looks the same, but a closer analysis using the DPHEF exposes some differences that 

are discussed in the data analysis section below (Section 4.4). 
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4.4 Data Management and Analysis 

Data management focuses on the treatment or preparation of the collected raw data and its 

preservation from contamination, thus ensuring its practical usability and translation for the 

resolution of the research problem; as well as for the maximum achievement of the stated 

research objectives (De Vos et al., 2011). The management and analysis of data are two 

sequentially and symbiotically interconnected processes (Marshall & Rossman, 2011). The 

latter authors allude to this inter-connectedness thus: “Data collection and analysis thus 

typically go hand in hand in order to build a coherent interpretation of the data. The researcher 

is guided by initial concepts and developing understanding, but shifts or modifies them as he 

collects and analyses the data” (p. 18). Therefore, despite their concurrence, data management 

precedes data analysis (Holloway & Wheeler, 2010; Marshall & Rossman, 2011). Following 

the treatment/ preparation and analysis of the qualitative and quantitative raw data, it was 

backed digitally with a master copy and kept in a secured place. Only the researcher has 

password access to the digitally secured information files. Hard copies are also kept safely at a 

secure location, where they will be shredded after a period of five years. In this regard, data 

management reflects and ensures a standardised monitoring and evaluation quality assurance 

mechanism.  

In this study, the researcher personally collected the answer sheets that learners used during 

the interviews as evidence of their participation. Teachers in the selected four schools were 

only involved in ensuring the availability of fully furnished and conducive venues, and assisted 

with coordinating learners for tests and interviews. The data collection times differed from 

school to school. For instance, in some schools data was collected after official school hours 

when other learners had left for home. In other schools, data was collected during the study 

time after the daily lessons had ended. For effective quality assurance purposes of the 

interview, the teacher ensured that he was not drawn to into superfluous probing. The latter 

could inadvertently turn the interviews into teaching sessions and defeat the goal of these 

interview sessions.  

Twenty (20) of the participants were video recorded with their informed consent, while four 

(4) participants did not agree to video recording; instead, they were only audio-recorded. The 

advantages of video recording was that it captured the original/ authenticated voice of the 

learners, their actions, their demeanour; as well as their verbal (e.g. talking) and non-verbal 

communication  (e.g. writing, gestures and facial expressions). The researcher has realised that 

the video recording may have affected the manner in which some learners responded to the 

questions. Some of the learners were too aware of the presence of the recordings that happened. 

The four learners who opted for audio recording only did so as they were not comfortable with 
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their faces being recorded. For ethical reasons, both the video and audio recordings were 

strictly for the purpose of this  study, and not for viewing by unauthorised persons. 

4.4.1 The DPHEF data analytic tool: its relevance and application 

In this study, data was analysed by means of the Discourse Profile of the Hyperbola and 

Exponential Function (DPHEF) as adapted from the Arithmetic Discourse Profile (ADP) by 

Ben-Yahuda et al (2005). The DPHEF itself was influenced by the work of Gcasamba (2014), 

and as an extension of Mpofu and Pournara (2018). As an analytical tool, the DPHEF was 

utilised in this study to analyse learners’ mathematical discourse (both written text and verbal 

utterances). 

The ADP framework was used for Arithmetic, but the researcher adapted it and termed it the 

discourse profile of the hyperbola and exponential function (DPHEF). The Functions Discourse 

Profile (FDP) by Gcasamba (2014) and Discourse Profile of the Hyperbola (DPH) by Mpofu 

and Pournara (2018) were very instrumental in the design of the DPHEF. The researcher opted 

for the DPHEF since the learners’ mathematical discourse on functions in this study seemed to 

be the same, and the DPHEF was very useful in exposing the differences. At face value, 

learners seemed to be saying the same mathematical words, some of which were used 

inappropriately. The researcher for the DPHEF mainly because it explains the data analysis on 

the basis of the four characteristics of the mathematical discourse. These are words and their 

usage, the visual mediators, the routines, and the narratives. In the adaption of the DPHEF, 

some of the categories of the Arithmetic Discourse Profile (ADP) were excluded for two 

reasons. Firstly, some of the terms found in the ADP are not found in later works of Sfard – 

such as ‘proficiency’ ‘routine closure’ ‘conditions’. Secondly, some categories - such as 

concrete mediators and derivative narratives were not investigated in this study; although they 

are still being used in Sfard’s work.  

In the DPHEF, the words and their use are divided into their colloquial and literal contexts. 

Colloquial words include all words which have a combination of mathematical and non-

mathematical language. For example, when a learner says: “My intercept is the line that is 

parallel to the y-axis”. On the other hand, mathematically correct words are those which elicit 

the same meaning from the community of mathematicians, and will deduce the same meaning, 

such as: “An intercept is where the graph intersects with an axis”. The researcher added a 

category of naming mathematical objects. In this category, the naming of mathematical and 

non-mathematical objects was included. When a learner interpreted a word statement and 

named it in a mathematically acceptable manner, the researcher classified the naming as 

mathematical. For example, in the event that a learner mentioned that an inverse proportional 

statement represented a hyperbola. The researcher named mathematical words, but used 

inappropriately as non-mathematical. Furthermore, when a learner named an asymptote as a 
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point. The following critical factors guided the utilisation of the DPHEF as the primary data 

analysis tool of this study: 

 The researcher classified visual mediators into two groups, the iconic and symbolic mediators. 

Iconic mediators are pictorial. For instance, graphs and tables. The symbolic mediators are 

equations and other symbolic mediators, such as 𝑦 = 3𝑥. The researcher has further sub-

divided these into the unrecognised or interpreted iconic mediator. An iconic visual mediator 

is classified as interpreted in the event that the action taken is based on a presented iconic visual 

mediator;  

 The researcher classified all iconic visual mediators as drawn, in the event that they resonated 

with the interpretations of the community of mathematicians; 

 Routines were classified according to their types and properties, including ritualised, deeds and 

exploratory routines. A deed routine is characterised by the performance of practical 

mathematical actions, but failing to perform the same actions in abstract form (Berger, 2013; 

Sfard, 2007). An example of a deed routine is reflected in a street vendor easily multiplying 

the number of packets of tomatoes using price per packet, but failing do the same if given a 

number. If the packet of tomatoes costs R15.00 and the number of packets bought are 7 (seven), 

s/he knows the product should be R105.00 but is not able to multiply 7 and 15. This study did 

not pay much attention to deeds routines.  

The use of routines includes applicability, flexibility and corrigibility. Applicability routines 

are applicable when certain routine procedures are likely to be produced (Ben-Yahuda et al., 

2005). In this study, the applicability routine is exemplified by the following state of affairs: 

 Solving problems: for example, calculation the intercepts or points that satisfy the graph; 

Sketching or drawing graphs and a table of values: The researcher termed this category as 

depicted routines; 

 Use of a tables to identify key features of a hyperbola; Use of the key features (intercepts, 

asymptotes) to sketch a graph. Using a visual trigger, for example an asymptote signifying a 

vertical or horizontal translation.  

 The researcher used the narratives to analyse the discourse of learners on the hyperbola. 

Narratives that resulted in the establishment of new theorems, definitions, and axioms were 

called derivations. In this study, no new narratives were derived as the learners involved in 

the study were not taught by the researcher. Therefore, the derivations narratives were not 

included in this analysis. The analysis will use substantiations, the actions on whose basis it 

is decided to endorse previously constructed narratives. The substantiations that govern 

school Mathematics are not as rigorous as those that govern the community of 

mathematicians. The justifications and reasons for actions are classified as substantiations. 
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The community of mathematicians endorses some of these substantiations, while others are 

not;  

 Memorisation and authority narratives were also used to analyse the learners’ 

mathematicaldiscourses. Memorisation narratives are about remembering previously endorsed 

narratives. For example, 𝑦 = 𝑞 is an equation of a horizontal asymptote. It is a memorisation 

narrative, and was endorsed for the grade 11 learners at the time of the study. Learners would 

simply remember the formula or the rule and apply it; and 

 The researcher also included the authority narrative, which is the representation of the learner’s 

own personal experiences and reality as the authority of justifying their actions. The teacher or 

the textbook could be referred to as the learners’ authority, and is used as the reasons for their 

actions. For example, learners would state that the constant shows the value of the horizontal 

asymptote. When a question is posed: How do you know this?, they would cite the teacher as 

the authoritative source of the statement or information they referred to.  

 

Table 4.1 below (p. 62) represents a summary of the DPHEF’s usage in analysing the data, as 

was described in more detail in the preceding paragraphs of this sub-section (4.4.1, pp. 57-59). 
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Table 4.1: Application of the DPHEF 

Source: Researcher’s own initiative 

Four key 

characteristics of 

mathematical 

discourse 

Classification Description Examples 

Words/ 

words 

use 

Words in 

sentences 

Colloquial Combination of 

literate and colloquial 

An asymptote is an imaginary line that a graph can't 

pass 

Literate The whole expression 

is mathematically 

accepted 

A line whose distance to a given curve tends to zero. 

An asymptote may, or may not intersect its 

associated curve. 

Naming Non 

mathematical 

Ambiguous naming 

of mathematical 

objects 

Naming an asymptote as a point 

Mathematical Use of proper names 

for mathematical 

objects 

Naming an asymptote as a line 

Visual mediators Iconic Interpreted Use of a hyperbola function to identify asymptotes 

Not recognised The iconic visual mediator not used 

Drawn Sketching a graph; table of values 

Disallowed No attempt at drawing the graph/table or an 

incorrect iconic visual representation 

Symbolic construe Identification and interpretation of the asymptotes 

from the equation 

Not construed Incorrect identification/use or no use of symbolic 

mediator 

Formulated/generated Equations from a graph or table 

Routines Kinds 

of 

routines 

Ritualised 

non-

mathematical 

Incorrect 

procedure/statement 

Saying a function is linear yet the coordinates are 

not colinear 

Ritualised 

mathematical 

Correct procedure no 

justification 

Sketching a graph showing that the y-axis is an 

asymptote but talking as if there is no vertical 

asymptote 

Exploratory Verification of 

narratives; Working 

with unfamiliar tasks 

Choice of numbers on a table that show values 

moving towards a limit 

Use of 

routines 

Applicability Solving equations Solving to find intercepts; asymptotes;  

Depicted Hyperbola graph from an equation or table 

Use of a table of 

values 

Identification of  key features from a table of values 

Use of key features Sketch a curve using intercepts, asymptotes and the 

equation 

Using visual trigger An asymptote signifying a vertical or horizontal 

translation 

Corrigibility Correction Self-evaluate and correct  

Flexibility Use of multiple 

routines 

Using key features and/or table of values to sketch 

graphs 

translating Being able to transform an equation to standard 

form 

Narratives Substantiation Justifications and 

reasons 

Justifications for actions, e.g. it is an asymptote 

because… 

Memorisation Formula/rule 𝑦 =
𝑎

𝑥−𝑝
+ 𝑞 is a hyperbola 

Visual (justification 

based on what 

learners can see). 

y = q is an asymptote 

Authority Teacher/textbook My teacher said … or the textbook says….. 
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4.4.2 Exemplifying usage of the DPHEF 

The researcher examined and followed-up on each research participant’s evidence as obtained 

from their elicited responses. Learners were then grouped according to their responses. They 

were only shown how work was classified from two groups of learners. Learners were asked 

to discuss the asymptote of the exponential function. Their responses were then summarised in 

a table. Following is part of the table as an example of how data was analysed by means of the 

DPHEF. For ethical purposes, the actual names of the learners have been kept confidential. 

Table 4.2: An example of the actual data analysis process 

Name Word Use Mediator K. Routine Use Routines Narratives 

1. Participant CC 

Participant M 

Participant HH, 

Participant KK 

Participant EE, 

Participant S 

Participant DD 

Participant JJ 

Participant AA 

Participant LL 

Participant BB 

Colloquial 

 

 

Construed 

Ritualised 

non-

mathematical 

Applicability 

 

Memorisation 

 

Non-

mathematical 

naming 

Interpretation Non-

mathematical 

language 

Visual trigger Formula 

2. Participant R Literate Construed Ritualised 

mathematical 

applicability Memorisation  

Mathematical 

naming 

Identification 

of an 

asymptote  

Does not give 

a reason 

Visual trigger Visual 

Table 4.2 above exemplifies the various phases of the analysis of the elicited responses. In the 

first category, the researcher utilised the response by Participant LL to the statement: Name 

the asymptote of the function 𝒇(𝒙) = 𝟑𝒙+𝟏 − 𝟗. In response, Participant LL stated that the 

asymptote was “negative nine (-9)”. The researcher classified Participant LL’s narrative 

discourse as colloquial because -9 is not a function, and it is impossible to located -9 on the 

graph. The naming of the asymptote was classified as non-mathematical, since asymptotes are 

functions named as formulas or equations.  

Participant LL managed to interpret the algebraic representation of the function and identified 

the value that was generalised to an asymptote -9. The researcher classified this participant’s 

interpretation of the function 𝒇(𝒙) = 𝟑𝒙+𝟏 − 𝟗 as correct, because of her ability to identify the 

asymptote from the algebraic formula. While Participant LL could identify the asymptote 

from the formula, she could not express it in a mathematically accepted manner; where every 

member of the mathematical community would have the same interpretation. Furthermore, the 

researcher furthermore classified her kind of routines as ritualised non-mathematical because 

her narrative was ambiguous. Her use of routines was classified as ‘applicability’ due to her 

response being triggered by the constant on the formula.  
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When Participant LL was asked why she said her asymptote was -9, she responded by 

providing the mathematically accepted expression of an asymptote as (y = -9). The researcher 

then asked her why she changed her response. Participant LL then said: The teacher marks 

us wrong when we write negative nine but will mark it correct when it is y is equal to negative 

nine. Participant LL’s narrated responses were based on what the teacher said, but she did not 

know why the teacher marked her answers as wrong. The researcher proceeded to examine the 

mathematical discourse of Participant R, whose response to the question: What is the 

asymptote of the 𝑓(𝑥) = 3𝑥+1 − 9 ?; to which she responded: The asymptote of f is y = -9. 

An asymptote of an exponential function is a horizontal line parallel to the x-axis. Participant 

R named the horizontal asymptote in a manner which resonates with that the discourse of 

community of mathematicians. The function 𝑦 = −9 could be located on the Cartesian plane. 

When the researcher asked Participant R why she named the horizontal asymptote in the 

manner she did, she responded that she did not know the reason for that response. Her use of 

words was classified as “literate” and the naming of the asymptote as “mathematical”, since 

her discourse was the same as that of the community of mathematicians.  

Participant R identified the asymptote from the symbolic visual mediator. By naming the 

asymptote as y = −9, it showed that Participant R could interpret the symbolic visual 

mediator, and also that she could write the symbolic visual mediator in a mathematically 

acceptable manner. Her interpretation of the algebraic representation of the function was 

classified as “construed”, because she did not only identify the asymptote, but also referred to 

it as a function. 

As much as Participant R could interpret the algebraic representation of an exponential 

function and name the asymptote mathematically, she could not provide reasons for her 

responses. While Participant R’s work is mathematical, she does not provide reasons for her 

actions. The researcher then classified her routines as “ritualised mathematical” because she 

expressed her narrative discourse mathematically. Her use of routines was classified as 

“applicability”, because she had a visual trigger. She claimed to have recognised the constant, 

which was a trigger for her identification of the asymptote. Finally, the researcher classified 

Participant R’s narratives as memorisation based on visuals because her justification for the 

asymptote was based on what she could see only. Data was analysed based on what learners 

said or did on paper or on the chalkboard.  

4.5 Measures of Trustworthiness 

The notion of ‘trustworthiness’ is a demonstration of “the soundness and adequacy” of the 

quality of the research methods opted for in the study (Holloway & Wheeler, 2010; Marshall 

& Rossman, 2011). On the other hand, measures of trustworthiness are the strategies or quality 



65 
 

assurance mechanisms designed to ensure the overall scientific rigour and to instill confidence 

in the findings of the study (Holloway & Wheeler, 2010; Kumar, 2012). The nature of the study 

necessitated that both the qualitative and quantitative measures of trustworthiness be indicated. 

Quantitative researchers often doubt the trustworthiness of the results of qualitative research 

(Silverman, 2001). These researchers do not trust the qualitative research methods due to the 

fact that validity and reliability are not addressed in the same manner. For this reason, 

qualitative researchers have developed terminology that seeks to establish the rigour in 

qualitative research.  

Kumar (2012) asserts that there are generally four measures of trustworthiness, namely: 

credibility, transferability, dependability and confirmability, “and it is these four indicators that 

reflect validity and reliability in qualitative research” (p. 172). The below-mentioned measures 

of trustworthiness reflect both the qualitative and quantitative variants. For instance, instead of 

internal validity, the researcher discussed the elements that establish the study’s credibility. 

Transferability was also discussed in the place of external validity by providing the context in 

which data was collected to allow for comparability of the findings in a different research 

milieu. The researcher also described the study’s dependability by presenting those measures 

of trustworthiness which allow for the study’s repeatability. 

4.5.1 Credibility/ Internal validity 

The credibility/ internal validity of the study is premised on the degree of accuracy and 

agreeability between the results and the quality the research instrument (Marshall & Rossman, 

2011). Shenton (2004) reiterates that the credibility of the study is measured on account of its 

true reflection of the research process, particularly the empirical aspect. 

All the data collected in this study has been kept as evidence and as a true record of the research 

process. Three forms of data were collected, from which this study’s findings are based. Firstly, 

it is the test that was written by 112 learners in grade 11 at the time of the data collection from 

four different schools within the town of Mthatha. Secondly, it is the written notes that were 

used during the task based interviews. Thirdly, there are videos and audios that were captured 

during the time of the data collections. Some evidence of the collected data was also included 

in the analysis section through excerpts of transcripts and pictures of both written and drawn 

work of the participants.  

Finally, the findings of the study confirm what has been found by other studies which were 

conducted previously (Makgakga & Sepeng, 2013). One such study is that conducted by Essack 

(2015), which came close to this study. For instance, Essack (2015) found that learners tend to 

have ritualised routines, and they struggle with questions that seek to interrogate reasons for 

their particular action. Learners did extremely well on procedures that could be classified as 
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‘classroom type’ and struggled with questions that were not normally attended to in everyday 

classroom situations. The researcher also allowed some participants to scrutinise the data of 

this project and ascertain that transcription was done correctly (member checking).  

4.5.2 Transferability/ Generalisability 

Transferability/ generalisability is viewed as the extent of the study’s findings being useful or 

applicable to others in similar contexts as those that prevailed at the original site(s) where the 

study was conducted (Marshall & Rossman, 2011). In a qualitative research, the findings are 

generally affected by the sample size, and cannot be applied to a wider population (Turner, 

2010). Shenton (2004) on the other hand, states that the context where data was collected 

should be described fully, in order to enable those who wish to apply the findings of the study 

to check the applicability of these findings to their own contexts. It is the responsibility of the 

researcher to explain the study context fully (Walliman, 2011). The study was conducted in the 

Eastern Cape Province of South Africa. In this regard, the study’s generalisability was ensured 

by the consistency of the research instruments used (tests and interviews). Accordingly, the 

researcher ensured that all the questions focused on the mathematical discourse of the learners. 

No peripheral aspects of Mathematics were included in the repertoire of questions pertaining 

to learners’ mathematical discourse of functions and the asymptote. 

4.5.3 Dependability/ Reliability  

Dependability/ reliability refers to the extent to which a research instrument consistently 

measures the characteristics of a research variable or construct. Joppe (2000) defines reliability 

in research as the consistency of results over a given population that could be reproduced under 

the same conditions that prevailed at the time of study. For purposes of ensuring the 

repeatability of the study, the researcher has detailed the planning and execution of the research 

by means of an audit trail. In this regard, the researcher has also described the geographic area 

and conditions under which the study was conducted. Accordingly, all documents relating to 

the entire research process were kept for any further research on a topic bearing some degree 

of verisimilitude with the current study. The purpose of an audit trail is essentially to enable 

interested researchers and readers to trace all the processes which unformed the researcher’s 

decision-making throughout various stages of the entire research process (Holloway & 

Wheeler, 2010). 

4.6 Ethical Considerations 

Ethical considerations relate to the protocols, etiquette, and conduct which enhance the study’s 

adherence to acceptable professional, legal, and/ or scientific norms and standards (Kendall & 

Halliday, 2014). There are basically two ethical categories: researcher-specific and participant-

specific ethical norms and standards to be adhered by both parties (researcher and research 

participants). In this study, the researcher complied with both the stipulations and requirements 
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of the Research Ethics Policy of the University of KwaZulu-Natal (UKZN), which is the body 

entrusted with granting permission for the study to commence. Accordingly, the researcher 

applied for ethical clearance, which was eventually granted as Protocol Reference Number: 

HSS/2009/016D. 

Under the participant-focused ethical considerations, the it was the researcher’s responsibility 

to ensure that the research participants and respondents were treated with utmost human dignity 

as enshrined in the Constitution of the country (Act No. 108 of 1996). The researcher was 

legally and professionally bound to fully disclose the purpose of the study and how the results 

would be used. Therefore, all participants and their guardians (for minors) completed written 

consent forms indicating their voluntary participation, and that no financial inducements were 

used to lure them. The informed consent form also stated that they could withdraw from the 

study at any time if they felt that their human rights and dignity were violated by the researcher 

(Kendall & Halliday, 2014). In the event that the consent form’s return slip was not brought 

back, the assumption was that the participant did not wish to take part in the study. Those who 

withdrew from the study were not prejudicially treated or penalised. All participants completed 

consent forms which stated that they participated in the research on their own will, and were 

free to withdraw at any time whenever they so desired on account of perceived or real violation 

of their human diugnu=ity.  

4.6.1 Privacy, anonymity and confidentiality 

The participants’ privacy is an important aspect of empirical data collection (Hesse-Biber & 

Leavy, 2011). Privacy per se focuses on the participants’ freedom to determine the 

circumstances, the time, and the degree to which their personal information or details could be 

shared. For instance, the research participants should be allowed the privacy to fill-in 

questionnaires and participate in interviews without any form of interference. 

On the other hand, anonymity virtually refers to namelessness (Hesse-Biber & Leavy, 2011). 

Anonymity implies that the researcher should not disclose any of the participants’ identities 

relating to their involvement in the research. The researcher should not even be able to link 

data to any particular participant. The researcher ensured the participants’ anonymity by not 

revealing their names in both the tests and interviews. None of the participants’ names nor their 

schools were named in any part of the study. Instead, pseudonyms were used, such as 

“Participant LL”, “Participant C”, and so on. When the study’s preliminary results are 

published, the participants would have been formally informed prior to publication.  

The ethical aspect of confidentiality implies that the data is not publicly available to any 

unauthorised persons who were not directly associated with the investigation (Kendall & 

Halliday, 2014). The researcher ensured that confidentiality was maintained by using 
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pseudonyms of participants and their schools. The researcher also ensured that there was an 

improved chance of participants being truthful and honest in their responses by stressing that 

their names and those of their schools were mentioned. The researcher used iterative questions 

to revise the scripts, checking for the truthfulness of the information by asking the same 

question differently. This step was necessary for eliminating any contradictions, while also 

ensuring that the participants’ responses were clearly understood. Furthermore, all the data 

obtained from the tests, videos and audio-recorded interviews will be kept securely, with no 

one allowed any access as that would constitute a breach of confidentiality. A breach of 

confidentiality takes place in the event that the researcher permits access to documents to any 

unauthorised persons or revealing the identities of the participants (de Vos et al., 2011). 

The researcher further enhanced confidence and confidentiality by means of the informed 

consent form. For instance, this form explained the purpose of the study, how long it will take, 

how learners’ confidentiality would be protected, and the activities in which the school and 

learners were to take part in.  

In the final research report, no description of the participants nor the precise geographical 

location of their school will be indicated. In addition, the researcher will ensure that all the data 

collected is not made available to other parties, including teachers or anyone else at the 

participating schools. The researcher will not discuss anything pertaining to participants, 

whether positive or negative with school authorities. 

4.6.2 Feedback to schools 

The researcher considers feedback to schools during, and after the empirical data collection 

phase as a sacrosanct area of the investigation. Other than for ethical reasons, such feedback 

ensures that trust and confidence prevail between the researcher, the gatekeepers, as well as the 

research participants and respondents themselves (Saunders et al., 2012; Walliman, 2011). 

After every stage of the data collection, the researcher summarised his findings and 

recommendations and submitted them to the schools of the participating learners in the form 

of a formal research report. The report was addressed to the Principal of the school, for the 

attention of the Mathematics Head of Department (HOD). At no stage was the researcher 

specific about the findings in terms of school or learners.  

4.7 Conclusion 

In this chapter, the researcher expounded on the preparation, collection, and analysis of the 

pertinent data of this study. The researcher ensured that the distinction between research design, 

research methodology, and research method was detailed and elaborated on. The DPHEF 

analytical tool was also introduced as a critical part of the data analysis processes in this 

research. The researcher also explained the relevance and applicability of the DPHEF as a 

relevant mathematical tool of analysis. In addition to the measures of trustworthiness and 
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ethical considerations, Chapter 4 is critical insofar as it presented the framework for the 

evidence base of the study, without which the need and significance of the study could be cast 

into doubt. In the next chapter (Chapter 5), the representation of functions is presented and 

discussed in the context of the data derived from the study participants themselves 
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CHAPTER 5 

REPRESENTATION OF FUNCTIONS 

5.1 Introduction 

The major focus of this chapter is on the analysis of the tests written by the 112 participants in 

the four Mthatha high schools selected for participation in the study. The tests had a dual 

purpose. Firstly, to establish the mathematical discourse of the participants in the study; and 

secondly, to select participants that took part in the task-based interviews. Although the 

researcher envisaged the involvement of 30 best performing learners from each school, this did 

not happen as participation was voluntary. In addition, some participants did not complete the 

tests. The participants displayed various levels of mathematical ability, as shown by the results 

in Table 5.1. Participants scored highly in those routine questions which would normally appear 

in examinations, and not many of them performed well in the non-routine questions. In some 

instances, participants would write the correct answers and then write something that was 

mathematically unacceptable. The researcher contends that the participants exhibited ritualised 

routines and their word use is mostly between “literate” and “colloquial”. Their interpretation 

of the visual mediators was mostly influenced by what they saw at the time, which was not 

consonant with the discourse of the community of mathematicians. It is also the researcher’s 

intention to discuss participants’ responses to each of the questions in a summarised form as 

indicated in Table 5.1 below. 

5.2 Summary of Test Responses 

In this section, a summary of the 120 learners’ performance in the quantitatively-oriented 

functions test is provided. The table below further depicts the critical test variables and scores 

attained. 

Table 5.1: Summary of learners’ test-based performance  

Test Variable Total 

Mark 

Number of Learners 

0 1 2 3 4 5 6 7 8 9 

Equations asymptote 2 12 13 87  

Intercepts 3 5 15 8 84  

Sketch graph 3 28 3 6 75  

Exponential graph 2 53 45 13  

Asymptote (exp graph) 1 61 51  

Table of values 2 38 0 74  

Plotting graph 2 41 2 69  

Naming function 1 77 45  

Equation of asymptote 1 81 31  

Meaning of asymptote 1 101 11  

Global method graph 9 19 7 3 15 7 5 10 5 5 49 

Intersection 2 92  20  

Equation 1 33 79  

Translation 3 57 4 5 42  

Translation 3 45 3 3 43  

Stretch 2 86 0 3 21  
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In terms of Table 5.1 (p. 70) above, the first column lists the question number. The second 

column locates the tested functions component, while the following column details the total 

marks allocated for the test. Finally, the last column shows the distribution of the marks per 

question. Table 5.1 (p. 70) above reveals further that the respondents performed well on the 

formal hyperbola questions. The test involved four functions, viz: the linear function, the 

hyperbola, the exponential function and the quadratic function; as well as their different 

representations. Exponential functions and hyperbola questions formed the majority of the 

tested items.  

The test respondents experienced some difficulties in answering real-life questions relating to 

exponential functions. They struggled to state the reason they thought the function was 

increasing or decreasing, given an equation of a decreasing function. More than half (61) of 

the participants could not state the asymptote of a translated exponential function. However, 

most of the participants performed very well in completing the table of values. 

Table 5.1 above (p. 70) shows the learners’ performance in the test per sub-question. The 

participants correctly answered questions that had an algebraic manipulation bias. These 

questions also required learners to calculate the intercepts, state the asymptote, sketch the 

graphs, and complete a table of values. A significant number of the respondents struggled with 

questions that required justification of narratives and showing flexibility of routines. This kind 

of difficulty justifies the notion that most learners’ routines are ritualised (Sfard, 2008). The 

learning of Mathematics seeks to engage participants of the mathematical discourse in such a 

way that they will be able to reach objectification (Nachlieli & Tabach, 2012). On reaching 

objectification, their mathematical discourse will not be only about procedures. They will also 

be able to explain their mathematical actions and arrive at different narratives by means of 

multiple routines. When a participant of the mathematical discourse has reached 

objectification, s/he will be able to address any question on the said discourse, including the 

unseen questions. Written work is one of the means by which participants communicate their 

thoughts to the outside world as evidenced by their test answer sheets in respect of sketching 

the hyperbola and decreasing the exponential function.  

5.3 Sketching the Hyperbola 

A hyperbola is sketched by using a point-by-point plotting mechanism known as a pointwise 

method; or by using the global method and its key features. Point plotting requires as much 

ordered pairs as possible to allow the shape of the graph to emerge. This is the beginning point 

for graph functions, and gives the idea to first-timers of the kind of a shape a function has. A 

global method is applied in the event that learners are more acquainted with different features 

of the function (DBE, 2011). For example, the points in a linear function form a straight line. 

Different functions have unique key features that distinguish them from each other. For 
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example, a novice cannot use just three ordered pairs to sketch a hyperbola, but can do so with 

a linear function. The assumption in this study is that participants have thoroughly worked with 

pointwise graphing, and are now familiar with the global method. Participants were required 

to sketch function f, in which question 1 (one) required them to state the asymptotes of 

.2
1

3





x
xf )(  There was no prescribed method in this question, and participants could 

choose any method they preferred. All the participants who responded to the question only 

stated the asymptote without showing any process or method. This is acceptable, but does not 

insightfully explain to the researcher how participants arrived at their responses. Following 

below are two participants’ responses pertaining to a question on the equations of the asymptote 

(sub-section 5.3.1); and another on the calculation of the intercepts of the graph of f with the 

axes (sub-section 5.3.2). 

5.3.1 Participants’ responses to the equations of the asymptotes 

The first part of Question 1 was: Write the equations of the asymptotes of f. Most of the 

participants performed well in this question. Over 75% expressed the asymptotes 

mathematically, that is, x=1 and y=-2. However, about 25 participants (about 21%) did not 

express the asymptote in a mathematically acceptable manner. Four (4) participants did not 

respond to the question, and just left blank spaces. Twelve participants had all their responses 

incorrect, and could not name either of the asymptotes. Some of the responses will be discussed 

later in this chapter. Thirteen participants’ responses (11%) were partially correct. One of the 

responses was correct on the only 1 (one) asymptote which was written. Most of the 

participants (75%) responded in a manner that is acceptable to the community of 

mathematicians by stating 2 (two) asymptotes that were perpendicular to each other. Below are 

some of the participants’ demonstrated responses on asymptotes. Figure 5.1 below shows 

Participant A’s responses in relation to the equation of the asymptotes of f. 

 

Figure 5.1: Participant A’s response to the equations of the asymptotes of f  

Figure 5.1 is in accord with the discourse of the community of mathematicians. In Figure 5.1 

above, Participant A wrote the two asymptotes of 𝑓(𝑥) =
3

𝑥−1
− 2 mathematically because 

she expressed them as evidence of interpreting the symbolic mediator; that is, the function f. It 
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is important to write asymptotes in equation form, in order that anybody looking at Participant 

A’s work should come to the same conclusion as Participant A. The latter’s interpretation of 

the symbolic visual mediator is “construed” because she can interpret and write equations 

mathematically. The next figure (Figure 5.2) below is a reflection of some participants’ non-

mathematical responses as ritualised routines.   

Participant B answered correctly, and then went on to write the coordinate (1; -2). The 

asymptote is regarded as a coordinate in the same manner that one would do for a turning point 

where the x and y-values are written as a coordinate. 

 

Figure 5.2: Participant B’s response to the equations of the asymptotes of f 

Figure 4.2 above is Participant B’s response to question 1.1: Write the equations of the 

asymptotes of f, which sought the asymptote of .2
1

3





x
xf )(  Participant B identified the 

asymptotes as equations, and then went further to write the coordinates; which show that the x 

is from the vertical equation, and the y is taken from the horizontal equation. Participant B’s 

equations are perfect and to the point. He and other four participants who presented the 

asymptote in the same manner did not take part in the task-based interviews. Nonetheless, the 

researcher could not make a follow-up on the reasons further than the required answer. 

However, it was clear that participants knew how to find the asymptote, but probably did not 

know what the asymptote was. Participant B could interpret the symbolic visual mediator 

.2
1

3





x
xf )(  which was classified according to the DPHEF analytical tool as “construed”. 

Participant B’s routines were classified as “ritualised”, because he showed little 

objectification on the mathematical object, the asymptote (Sfard, 2012).  

The work of six participants indicated below, reflects the second type of mathematically 

unacceptable responses, presenting the equation in terms of the p and q parameters. Participant 

C presented his answer for the asymptote as p = x =1 and y = q = -2. When a function is 

generalised, p and q are used to represent the vertical and horizontal shifts respectively. These 

parameters are used in almost all the functions in the Further Education and Training (FET) 

phase in South Africa. Learners then misconstrue mnemonics as part of the Cartesian plane 

(Adler & Ronda, 2014). The researcher’s experience as a teacher has inculcated the notion of 
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simplifying Mathematics to learners by emphasising the parameters to such an extent that 

learners know the parameters to be the real asymptotes. In Figure, 5.3 below, Participant C 

wrote his equations and included the letters p and q together with the equations, which shows 

that he is able to interpret the symbolic visual mediator, as he is able to name asymptotes from 

the equation.  

 

Figure 5.3: Participant C’s response to the equations of the asymptotes of f 

The researcher classified Participant C’s interpretation of the asymptote as construed because 

he could identify the equations of the asymptote. However, the researcher classified his routines 

as “ritualised mathematical”, as he included p and q in his equation. Although Participant C 

could identify the asymptote, he still had not yet objectified the mathematical object (Sfard, 

2008). Participant C has not yet reached the stage of presenting the asymptote without 

including the mnemonics p and q.  

The third type of response shows that participants had some knowledge of the asymptote of a 

hyperbola, which was demonstrated by the three respondents excluding the y and writing the 

equation as if it was a number. Participant D used inductive reasoning to arrive at her answer. 

Naming the asymptote as -2 is mathematically incorrect, since -2 cannot be located on the 

Cartesian plane. There is a tendency by some learners to think that p or q could replace x and 

y respectively, or that they were synonymous such that one could replace one with the other. 

Figure 5.4 below reflects Participant D’s answer as q = asymptote, q = -2, in terms of which 

asymptote = -2. 

 

Figure 5.4: Participant D’s response to the equations of the asymptotes of f 
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Participant D first wrote a general equation  𝑓(𝑥) =
𝑎

𝑥−𝑝
− 𝑞, and had to be reminded of the 

asymptotes of the function. She went on to substitute the number ‘three’ (3) for a. She then 

equated q to the asymptote. Finally, she wrote that the asymptote was equal to -2. The object 

which Participant D wrote did not exist on the Cartesian plane. She did not do anything about 

the vertical asymptote. She also did not mention the vertical asymptote. The researcher 

classified her interpretation of the symbolic visual mediator as “not construed”, since she could 

not identify asymptotes from the equation  𝑓(𝑥) =
3

𝑥−1
− 2. The researcher further classified 

her routines as “ritualised non-mathematical” because she made follow-up the routines of 

others as her own routines, which did not lead to mathematically endorsed narratives. 

Conclusively, Participant D’s equations were not mathematical as they could not be located 

on the Cartesian plane. 

 

Figure 5.5: Participant D’s corrected response to the equations of the asymptotes of f 

In Figure 5.5 above, Participant D corrected herself. Initially, she erred on the x-intercept, but 

realised her mistake and tried to correct it, with little success. Not many of the participants 

could self-correct. The researcher classified Participant D’s routine type as “corrigibility” 

(Ben-Yahuda et al., 2005), since she realised her mistake and attempted to correct it.  

The fourth type of response was manifested with participants writing only 1 (one) asymptote. 

Four (4) participants only wrote the horizontal asymptote in the form of y = - 2. A hyperbola 

had 2 (two) asymptotes; namely, the horizontal and the vertical. The exponential function is 

the one with only 1 (one) asymptote. 

 

Figure 5.6: Participant E’s response to the equations of the asymptotes of f 
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Participant E was one of the four participants who only wrote the horizontal asymptote. The 

equation y = -2 was mathematical as the object could be located on the Cartesian plane, 

rendering Participant E’s response incomplete. For that reason, his types of routines were 

classified as “ritualised” by the researcher due to the incompleteness of the response, and that 

nothing was written about the vertical asymptote. Some participants did not respond to the 

question and left a blank space as illustrated by Participant E’s response below.  

 

Figure 5.7: Participant E’s non-response to the equations of the asymptotes of f 

Participant E only acknowledged  the question by writing ‘1.1’ on the answer sheet. Like the 

other five participants, Participant RR also did not respond to the question. When participants 

do not respond to questions, it becomes very difficult for the researcher to speculate on the 

reasons for their actions. Based on that, the researcher then decided to take the top 20% of each 

of the four groups of 30 from each participating school. The second question in sub-section 

5.3.2 below required the these respondents to calculatethe intercepts of a hyperbola. 

5.3.2 Participants’ responses to calculation of the intercepts of the graph 

In terms of the question requiring participants’ calculation of the graph’s intercepts, 107 

(95.5%) of the 112 participants obtained at least 1 (one) mark on this question. Although 

intercepts are part of the functions discourse, the success in responding to the question was 

mostly dependent on algebraic manipulation and solutions to equations. Key elements in 

solving the question was substitution, clearing of fractions and solution to linear equations. 

Participants who did not obtain full marks on this question either made an incorrect substitution 

or completely failed to manipulate the equation.  

An intercept is a coordinate of the graph’s intersection with the axes. An intercept is written in 

the form of (a; 0) for the x-intercept, and (0; b) for the y-intercept. For participants to calculate 

the coordinates of the intercepts, the learners needed to substitute zero (0) for x and y 

respectively. Eighty four (n=84, 75%) of the 120 (100%) participants calculated the intercepts 

and scored full marks. Figure 5.8 below indicates Participant F’s response to question 2 (two), 

which required the participants to: Calculate the intercepts of the graph/ hyperbola.  
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Figure 5.8: Participant F’s response to the calculation of the asymptote graph of f 

Participant F showed her intention by calculating the x-intercept and also indicated the part 

of her response calculating the y-intercept. In the calculation of the x-intercept, her steps were 

identical to those of Participant HH, which showed the latter’s developed mathematical 

discourse on the algebra sub-discourse. Her findings were well presented, and she clearly 

indicated that the calculation of the x-intercept should be premised on, and be directed by y = 

0. Participant F’s interpretation of the symbolic mediator was “construed”, since she could 

work on the function by calculating the intercepts. She knew where, and what to substitute in 

the algebraic equation, which was an indication of the ease with which Participant F could 

calculate the symbolic visual mediator 𝑓(𝑥) =
3

𝑥−1
= −2. Although she did not explain, her 

method was evidence of calculation fluency. Her routines were in concurrence with those of 

the community of mathematicians. Therefore, Participant F showed she had objectified the 

mathematical discourse of finding the intercepts of a function (Nachlieli & Tabach, 2012). 

Participant G was one of those whose partial marks in this question (calculation of intercepts) 

could have obtained full marks, had it not been for the mistakes committed with regard to 

directed numbers. Figure 4.9 below (p. 77) shows Participant G’s response to this question. 

 

Figure 5.9: Participant G’s response to the calculation of the asymptote graph of f 
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The response in Figure 4.9 above is an illustration of Participant G’s familiarity with the 

calculation of the x-intercept. In the second part of her calculation of the y-intercept, she did 

everything well but erred on subtraction. One of the uses of routines was corrigibility (Ben-

Yahuda et al., 2005), which is the routine about checking the correctness of work done. In that 

case, Participant G could have substituted her y value into the equation and checked whether 

the answer would be a zero. Self-correction was important in the development of the 

mathematical discourse. When comparing Participant G’s work on calculating the x-intercept 

and the the y-intercept, the researcher discovered that calculating the x-intercept has a higher 

mathematical demand. Should Participant G had developed corrigibility routines, she could 

have realised her mistake. In the study, there are a few instances of participants checking their 

work and conducting some modicum ofself-reflection and self-correction. 

There were some participants who knew how to calculate the intercepts, and there were others 

who did not know what to do. Participant H below is one of the five participants who knew 

that they should substitute the number 1 (one) of the variable by zero, but failed to do so in the 

correct variables. Figure 5.10 below reflects the latter state of affairs with Participant H’s 

response to  the question on the calculation of the intercepts. 

 

Figure 5.10: Participant H’s response to the calculation of the asymptote graph of f 

In Figure 5.10 above, Participant H understood that in the calculation of the intercepts, either 

x = 0 or y = 0 but did not substitute at the correct place. Participant H substituted zero for the 

constant 1 (one) instead of substituting for x. Participant H substituted the constant instead of 

y. Such substitution indicates that Participant H’s mathematical discourse was still developing 

(Sfard, 2012). Participant H knew there might be some substitutions, but did not know where 

exactly to substitute. In the next few paragraphs, the researcher discusses how the participants  
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drew the iconic visual mediator and the graph of a hyperbola.  

A rectangular hyperbola graph is composed of two (2) parts which reflect each other and have 

two (2) asymptotes that are vertically opposite to each other (Yavuz, 2010). In the current 

study, thirty-seven participants could calculate the intercepts and identify the asymptotes, but 

struggled to sketch the iconic visual mediator. Twenty-eight participants could not obtain a 

single mark, three (3) obtained 1 (one) mark, and six (6) participants obtained 2 (two) marks. 

The majority of 75 participants answered all the questions correctly, which indicates a 

developed mathematical discourse of the hyperbola.  

Participant I was one of the participants whose mathematical discourse on the hyperbola was 

developed, judging by the manner in which she drew the iconic visual mediator. Fihure 5. 11 

below (p. 80) is Participant I’s diagram of the hyperbola 

 

Figure 5.11: Participant I’s developed response to calculation of the hyperbola 

In Figure 5.11 above, Participant I’s axes are clearly labelled together with intercepts and 

asymptotes, which demonstrates that Participant I’s mathematical discourse is developed. The 

researcher classified her iconic visual mediator as “drawn” because she produced a diagram 

that was acceptable to the community of mathematicians. Most of the participants produced 

diagrams that were similar to that of Participant I.   

Participant J is one of the participants in the study who managed to identify asymptotes and 

calculate the intercepts, but could not sketch a hyperbola. Intercepts and the asymptotes are the 

key features in sketching the graph using the global approach. Figure 5.12 below (p. 80) reflects 

Participant J’s incorrect representation of the hyperbola. 
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Figure 5.12 Participant J’s representation of the hyperbola 

  

In Figure 5.12 above, Participant J chose to sketch the graph using the global method, which 

applies in the event that key features of a graph have been used to sketch the graph. She had 

already identified the asymptotes, making her task somewhat easier; but could not sketch the 

correct diagram of the hyperbola. Participant J sketched the asymptotes of the hyperbola in 

the correct position, x = 1 and y = -2. She also knew that the hyperbola is a function with two 

parts that reflect each other on the line 𝑦 − 𝑞 = ±(𝑥 − 𝑝). Participant J’s mistake was on the 

plotting of (0; -5) on the x-axis instead of the y-axis, and (
5

2
; 0) on the y-axis instead of the x-

axis. Participant J would have realised that she made a mistake, had she used corrigibility 

routines by checking whether her answer made mathematical sense. In 𝑓(𝑥) =
3

𝑥−1
− 2, the 

value of three (3) is positive, which means that the two parts of the hyperbola are on the first 

and third quadrants of the asymptotes. Mathematical discourse develops when there is 

corrigibility. The researcher classified Participant J’s routines as “ritualised non-

mathematical” due to her failure to plot the correct point on the Cartesian plane and drawing 

the graph on the wrong quadrants.  

Some participants did not draw hyperbolic functions, but drew some other diagrams that 

resembled other functions or undefined graphs. All the three participants in question recognised 

the intercepts, but were challenged by the shape of the hyperbola. This category of learners had 

not yet reached objectification, and their mathematical discourse was still developing. The 

researcher began by looking at their ‘hyperbola’. The diagrams which Participant K and 

Participant L sketched below in Figure 5.13a and Figure 5.13b (p. 81) respectively are not a 

hyperbola, but a linear graph.  
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Figure 5.13a: Participant K’s incorrect representation of the hyperbola 

 

Figure 5.13b: Participant L 

Figure 5.13b: Participant L’s incorrect representation of the hyperbola 

Participant K did not draw a hyperbola, but a linear function. Participant K also did not 

include the asymptotes in his diagram. The evidence from Participant L’s diagram shows that 

it was possible he did not know how the hyperbola looked like because he sketched a linear 

graph. On the other hand, Participant L drew only 1 (one) asymptote and then drew two curved 

parts that passed through the intercepts. In such a situation, the routines of both Participant K 

and Participant L are “ritualised non-mathematical” since none of them could sketch the 

required graph. 

While over 75% of the 112 participants could identify and calculate the asymptotes, only about 

66% were able to complete the task successfully. The sketching of a hyperbola is not 

necessarily a difficult procedure since most of the participantsare supposed to have already 

undertaken and engaged for more than two years leading to grade 11.  
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5.4 Decreasing the Exponential Function 

In this section, the researcher presents and discusses a question by means of which learners 

were asked to account for actions taken in resolving exponential functions. The results show 

that there was a noticeable degree of disparity pertaining to the learners’  responses to these 

two questions: 

Question 2.1: Is f an increasing or decreasing function? Give a reason for your answer; and 

Question 2.2: Write the equation of the asymptote of f (x) – 5. 

An exponential function is denoted by an exponential variable x. Furthermore, exponential 

functions either increase when the base is more than 1 (one), or decrease when the base is 

between 0 and 1. Mastering the decreasing functions needs grounding on exponential laws, and 

an acknowledgement that 𝑓(𝑥) = (
1

3
)

𝑥

 and 𝑔(𝑥) = 3−𝑥 are the same functions. A decreasing 

function is described as such; as the independent variable increases, the dependent variable 

also decreases correspondingly. Interpreting the base should show that as x increases, y would 

also decrease. Only 13 (11%) of the 120 participants obtained all the marks in the first part of 

the question. Almost half (58) of the research participants obtained at least a mark, meaning 

that they mentioned the decreasing factor of the graph. About 11% (n=13) of the 112 

participants who answered the first question correctly also mentioned a mathematically 

acceptable reason for their choice. The second question (2.2) required participants to name the 

asymptote of a transformed function written as 𝑓(𝑥) − 5. Fifty one (45.5%) of the participants 

answered correctly. The ensuing paragraphs are centrally premised on the function 𝑓(𝑥) =

(
1

3
)

𝑥

; as encapsulated in the following two questions: 

Question 2.1: Is f an increasing or decreasing function? Give a reason for your answer; and 

Question 2.2: Write the equation of the asymptote of f (x) – 5. 

In relation to question 2.1 above, almost 10% (n=12) of the participants obtained 100% of the 

marks and provided reasons for their choice of answer. On the other hand, 45 participants 

(37.5%) managed to answer the first part of the question correctly, which required them to 

mention whether the function is increasing or decreasing. Almost half of the participants could 

not recognise that the graph was decreasing. One of the reasons for such a poor performance 

was that the question did not require participants to reproduce a routine. In the first question 

(2.1), the participants followed some well-known procedure, but the routine was different in 

the second question (2.2). The participants found it difficult to give reasons or justify their 

responses in the test and in the interview (Mpofu & Pournara, 2018).  

Thirteen participants responded positively to the question (2.1) requiring them to state whether 

the exponential graph was increasing or decreasing. Participant M was one of the 13 
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participants who had a mathematically acceptable response to the question. The diagram below 

reflects her response to the question: 

 

Figure 5.14: Participant M’s response to decreasing the exponential graph 

In a decreasing exponential function, the base is a fraction between zero (0) and 1 (one). The 

base can be written with a negative exponent. For example, as 𝑓(𝑥) = 3−𝑥 or with the base as 

a fraction as in 𝑓(𝑥) = (
1

3
)

𝑥

. Participant M was able to identify that the function was 

decreasing. Her reason was that base a is between 0 and 1. Participant M’s mathematical 

discourse on this question was correct for the following reasons: The use of words was 

mathematical because she used the term ‘decreasing’ to describe the movement of the graph. 

Furthermore, she interpreted the symbolic visual mediator and could tell that the graph was 

decreasing. Therefore, her interpretation of the symbolic visual mediator is  classified as 

“construed”, because she used “a” instead of the actual base 
1

3
 for her choice. In this case, 

Participant M’s response is characterised as “memorisation” based on rules. Participant M 

did not give a reason in her own words, but chose to use the textbook rule. In Figure 5.15 

below, Participant N’s response to the increase or decrease of the exponential graph shows 

that Participant N used mathematical words to describe the graph. In this regard, Participant 

N correctly interpreted the symbolic mediator 𝑓(𝑥) = (
1

3
)

𝑥

.  However; she could not provide 

a mathematically acceptable reason for the behaviour of the graph. 

 

Figure 5.15: Participant N’s response to decreasing the exponential graph 

Participant N partially answered this question correctly. While it was true that the function is 

decreasing, the reason she provided was equally true for all functions, hence the partial 

correctness. In all functions, as x values increase, the y values decrease. Participant N’s 

reasons are not necessarily incorrect, but her description could be applicable to any function. 

Words used in communication are meant to differentiate between objects. Participant N uses 
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words which do not make such differentiation. In addition, her use of words ascribed to her 

choice and reasons are colloquial, according to the DPHEF analytical tool. Participant N did 

not acknowledge the function f in her response. Nowhere in her response did she mention the 

base of the exponential function. On the latter basis, the researcher then classified her 

interpretation of the symbolic visual mediator 𝑓(𝑥) = (
1

3
)

𝑥

  as “not construed” because she did 

not mention or refer to the mediator in her response. Participant N’s response (that a 

decreasing graph x values increase as y values decrease) was a generalisation that suited all 

functions as stated above. In this regard,  Participant N’s routines were ritualised (Sfard, 2012) 

because she provided a general statement where a distinguishing statement was required.  

 

Figure 5.16: Participant O’s response to decreasing the exponential graph 

Participant O correctly answered that the function was decreasing, but his reasons for the 

decrease were incorrect for this graph. He attributed the graph’s decrease to the vertical shift 

in the negative direction. The shifts, whether vertical or horizontal, do not affect the behaviour 

of the graph. The words used by Participant O were mathematical, but not appropriate for this 

question. The researcher classified her word use as “colloquial” due to her inappropriate use of 

mathematical words, meaning that she did not know where those words fitted in the functions 

discourse. Participant O could not interpret the symbolic visual mediator because she spoke 

of shifts when the function was a parent function. Furthermore, Participant O’s mathematical 

discourse was similar to that of Participant P, because he (Participant O) only managed to 

successfully respond to the first question. In Figure 5.17 below, Participant P responded in a 

manner similar to that of Participant O by only answering the first part of the question 

correctly. 

 

Figure 5.17: Participant P’s response to decreasing the exponential graph 
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Participant P mentioned that the graph was decreasing on the basis that it was an exponential 

function, and implied that all exponential functions were decreasing; which was not the case. 

Participant P mentioned further that the function did not have the value of x. On an x and y 

Cartesian plane, it was not possible for a graph to have x values. Therefore, Participant P’s 

statement that a function had no x-values was not mathematical. Based on that, the researcher 

classified her use and choice of words as “colloquial” (Ben-Yahuda et al., 2005).  

In Figure 5.18 below, Participant Q’s work is an example of some of those participants who 

did not score anything in the test. His choice and reasons were not in accordance with the norms 

(conventions) of the community of mathematicians.  

 

Figure 5.18 Participant Q response to decreasing the exponential graph 

Figure 5.18 illustrates Participant Q’s response to the question on the exponential function. 

Participant Q described the function as increasing, which showed that he did not know the 

difference between an increasing function and a decreasing one. An example relates to 

Participant Q’s reference to the exponent of x as positive. The exponent of 
1

3
 appeared to be 

+ve (positive), whereas 
1

3
 is 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦   3−1 in reality. The product of -1 and x is -ve (negative). 

Therefore, the exponent is not +ve (positive), but -ve (negative). On the whole, the 

mathematical discourse of Participant Q was still far from the narratives and discourses of the 

community of mathematicians.  

The overall responses to Question 2.1 (writing the equation of the asymptote of f (x) – 5) 

revealed that while participants could perform well on routine questions, they struggled with 

questions that sought reasons for their choices. They had to choose between two options, 

making it possible for the participants to arrive at the correct answer. The second part of the 

question became the determinant of how much learning of Mathematics had been learnt. Only 

10% of the learners could give reasons for a decreasing function.  

In question 1 (one) on the asymptote of a hyperbola, 100 participants got at least a mark 

correctly. However in a similar question with a minor modification, only 51 (45.5%) of the 

participants answered correctly. In Question 2.2 (writing down the equation of the asymptote 

of f(x) – 5), the asymptote of the translated exponential function should reflect the vertical 

movement that the function had undergone. That gave credence to the notion that participants’ 



86 
 

routines were ritualised. The researcher used Participant R and Participant W’s work to 

illustrate how different participants could respond to the same question successfully. Figure 

5.19 below exemplifies Participant R’s correct response to the asymptote. 

 

Figure 5.19: Participant R’s response to the equation of the asymptote of f (x) – 5 

Participant R just wrote the answer without showing any working procedure or method. The 

answer was acceptable, as it was a horizontal asymptote. There was no ambiguity with her 

response, and the community of mathematicians would deduced the same meaning. 

Participant R’s interpretation of the symbolic visual mediator was “construed,” because her 

response showed a development in her communication. Her interpretation was endorsed in the 

mathematical discourse. In the ensuing Figure 5.20, the researcher describes  Participant W’s 

response to the question on the asymptote. 

 

Figure 5.20: Participant W’s response to the equation of the asymptote of f (x) – 5 

There were two outstanding features of Participant W’s response. Firstly, she used the equal 

sign as another symbolic visual mediator appropriately in all instances. Some participants 

would have used the equal sign, but Participant W showed that she could communicate using 

the mathematical symbols. Secondly, Participant W showed that she understood the symbols 

𝑓(𝑥) and (
1

3
)

𝑥

to be the same. While Participant R and Participant W were examples of 

acceptable mathematical practice, there were participants who did not perform so well.  

In Figure 5.21 below, Participant SS responded by writing an asymptote without showing any 

method or process, as did Participant R in Figure 5.19 above.  

 

Figure 5.21: Participant SS’s response to the equation of the asymptote of f (x) – 5 
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In Figure 5.21 (p. 86), it was difficult to understand the reasons for Participant SS’s response, 

who wrote the equation as a vertical line. An asymptote of an exponential function is always 

horizontal. Furthermore, Participant SS’s response did not recognise the vertical shift. The 

learners’ confusion concerning an exponential equation lies in deciding whether the asymptote 

is horizontal or vertical. As opposed to a hyperbola, an asymptote has a horizontal and a vertical 

line. If asymptotes were arrived at through exploration of the function, then that seeming 

confusion would not prevail as participants would use the same explorations to arrive at 

narratives in case they had forgotten. When asked to give a reason for his answer, Participant 

SS stated: It is because x does not have a shift. Participant SS used the word “shift” to mean 

a horizontal translation. A show of a few steps would have made Participant SS realise his 

mistake, which is attributed to lack of exploratory routines and flexibility (Ben-Yahuda et al., 

2005) that would have helped him to self-correct.  

In Figure 5.22 below, Participant TT gave a different dimension to the asymptote of an 

exponential function.  

 

Figure 5.22: Participant TT’s response to the equation of the asymptote of f (x) – 5 

In responding to the question requiring the participants to write the equation of the asymptote 

of f (x) − 5, Participant TT multiplied the constant -5 with the exponent x. An asymptote is 

a linear function, but what Participant TT wrote was not a linear equation. Participant TT 

did not interpret the symbolic visual mediator 𝑓(𝑥) − 5 in a mathematically acceptable manner. 

He confused 𝑓(𝑥) − 5 with  𝑓(5𝑥). In fact, Participant TT only responded to the former 

(𝑓(𝑥) − 5) by making substitutions to the equation, and did not respond to the question 

directly. He did not know what an asymptote was, and did not even know how it is represented 

as an equation.  

In this section (4.4), the four categories of the participants’ test responses were discussed. The 

first category is that of participants providing a correct answer without showing any process or 

method. The second category was that of participants whot provided the desired responses and 

also showed they processes leading to the answer. The third category of participants wrote a 

vertical line, instead of a horizontal asymptote. As a result, they misrepresented the asymptote 

of an exponential function by writing an equation showing a vertical line instead of a horizontal 

one. The last category consisted of a discordant depiction of responses which had nothing to 

do with the equation of an asymptote. The researcher proposes that the learning of Mathematics 
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should be enhanced by means of explorations, rather than learners merely following the rituals 

they saw from their teachers (interlocutors) or from other learners (Sfard, 2012).  

5.4.1 The decreasing temperature 

The third question of the functions test was a non-routine question which presented a practical 

decreasing exponential function. The question required participants to complete a table of 

values, as well as drawing and naming the graph. The phrase exponential function, did not 

appear in the question, but the equation was exponential. The participants were also supposed 

to state the asymptote of the graph and explain what the asymptote meant in real-life terms. 

Two-thirds of the participants (67%) successfully completed the table of values and plotted the 

corresponding graph. Just over a third of the participants (33%) named the function 

successfully. The number of participants that successfully named the asymptote went down to 

26% (n=29) and the meaning of the asymptote in real life terms went down to 9% (n=10). 

When comparing the performance or success rate of the first and the third questions, a 

significant decline was observed with regard to participants’ performance (response) in the 

context of the third question. The researcher attributes this decline to the general ritualisation 

of learning of functions. The difference in these two questions was that the familiar 

mathematical language was used in the first question, whereas practical language was used for 

the third question’s responses.  

The completion of a table of values is a routine task for participants in grade 11, especially that 

it is a requirement in earlier grades where learners are required complete a linear function’s 

table of values. In the context of this study, the task given to the participants was not a daunting 

one. Notwithstanding, two factors were observed as contributing to the level of difficulty 

experienced by learners. Firstly, the question was not written in terms of x and y variables. 

Secondly, the exponent was in the form of a fraction. Figure 5.23 below illustrates Participant 

W’s response to the completion of the table of values. 

 

Figure 5.23: Participant W’s response to completion of the table of values  

Participant W was one of the 74 participants who successfully completed the table. As stated 

earlier, the use of t for time and θ  in the equation, posed a challenge to some participants. 

Participant W rounded off her output to two decimal places, which helped her to plot the 
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graph, unlike some participants who did not do so and could not even produce a smooth curve. 

Participant W showed some flexibility in her routines by not writing numbers as emanating 

from the calculator; but rounded them off in a manageable manner, especially for plotting 

points on the graph (Ben-Yahuda et al., 2005). That did not mean that those who did not round 

off their values for the output were incorrect in their responses.  

 
Figure 5.24: Participant UU’s response to completion of the table of values 

In Figure 5.24 above, Participant UU rounded off her output values to the nearest whole 

number. While marking their work, the researcher awarded full marks to her although she 

produced a smooth curve due to the high degree of approximation. In Figure 5.25 below, the 

participants were required to draw a continuous graph of the data on the table provided. 

 

Figure 5.25: Participant W’s response to drawing a continuous graph  

In Figure 5.25 above, Participant W, drew a smooth decreasing exponential function. As 

indicated in the previous paragraph, rounding off the output coordinates contributed to the type 

of graph that Participant W drew and indicated the location of the asymptote of the graph on 

the Cartesian plane. Her graph and table of values did not show the asymptote of the function.  
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In Figure 5.26 below, Participant UU’s graph showed that rounding off the output values to 

the whole number caused her graph not to be as smooth. The situation was compounded further 

as Participant UU chose to use writing paper instead of the grid that was provided; hence the 

faintness in the diagram. 

 

Figure 5.26 Participant UU’s response to drawing a continuous graph 

Although Participant UU thought this was a straight line, the diagram did not resemble a 

straight line at all. Rounding off to the nearest whole number and the choice of a scale on a 

writing pad affected Participant UU’s accuracy. Some of the participants also thought the 

input and output values should be integral values. Such thinking was based on  the fact that in 

most cases, integral values are used for convenience rather than as a rule when sketching or 

plotting a graph. Therefore, in the functions discourse, learners should not just sketch or draw 

a graph without realising that a graph is characteristicallycontinuous. This means that its 

coordinates are elements of real numbers. In this regard, Participant UU’s diagram was then 

more of a sketch than a drawing.  

Any kind of paper could be used for sketches. However,  Participant UU’s situation was 

compounded by the fact that the graph was drawn on paper of very poor quality, which resulted 

in its faintness. Nonetheless, there was a modicum of accuracy with the coordinates. In most 

instances, beginners’ drawings involve many coordinates before the shape of the functions 

becomes clearly visible. Participant UU’s sketch was more of an approximation, and accuracy 

of the scale was not important as only key features were used to show the path of the graph. 

Some participants did not complete the table of values accurately. Following are a few 

examples of those who did not complete the table of values during the tests.  
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Figure 5.27: Participant VV’s responses to completing the table and drawing a continuous 

graph 

From Figure 5.27 above, it is clear that Participant VV failed to complete the table of values 

due to the negative values of the output from an exponential equation. His main challenge was 

primarily located on the failure to interpret the symbolic visual mediator (Ben-Zvi & Sfard, 

2007). From the literature review, it is posited that mathematical symbols were important in 

communicating mathematical information (Bradley et al., 2013; Flesher, 2003). Participant 

VV did not recognise the t variable as an exponent. He worked on his answer as though the 

variable was part of the base, hence the output of negative numbers. Secondly, when drawing 

his graph, Participant VV mixed the -ve (negative) and the +ve (positive) numbers on the 

same side of the axis; resulting in positive (+24), negative (-12) and so on, on the same 

quadrant. Instead of his graph showing a decrease as the table of values suggests, it showed a 

decrease. This shows that in spite of Participant VV drawing a table of values and the axes of 

the graph, he did not understand their meaning. Participant VV understood the plotting of 

points as the diagram suggests, but his problem was with the axes and their meaning. It was 

difficult for Participant VV to draw any graph, because he did not understand how to place 

coordinates in the four quadrants.  

Participants were presented with the equation, the table of values and the graph of the function 

in question 3.3, which required them to name the function. Forty-five participants (37.5%) 

could name the function as exponential. The most common response was that it was a line 

graph. In a line graph, a straight line joins different points. This means that there was no 

expectation of a defined function to be produced. Participants did not see a pattern emerging 

from either their table of values or the graph. Of the 74 participants (61.6%) who named the 

function as something other than the exponential function, 54 of them (45%) stated that it was 
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a line graph. Despite that some participants such as Participant VV had not drawn a line graph 

(as seen in Figure 5.27 (p. 91) above), they stated that the graph was linear. Figure 5.28 below 

shows Participant UU’s naming of the type of graph. 

 

Figure 5.28: Participant UU’s response to naming the type of graph 

Participant UU’s graph does not look like a line graph, although she names it as such. A 

possible reason for misnaming the graph was that she could not find any regular function which 

could fit the graph. Forty five  participants (40%) named the function as exponential. In Figure 

5.29 below, the graph was named correctly by Participant W. 

 

Figure 5.29: Participant W’s response to naming the type of graph 

While Participant W’s response is acceptable in Figure 5.29 above, she did not give a reason 

for her particular response. It was very difficult to speculate as to why she decided to name the 

function as exponential. Only 31 (25.8%) of the participants named the asymptote correctly, 

while the rest of the participants (89, 74.2%) did not. The participants did not provide reasons 

for their choice of answers. The researcher noticed that the number of participants who 

responded positively decreased as the questions increased.  

An asymptote is characterised by the graph’s behaviour as the x or y values approach infinity. 

At infinity, the graph approached a straight line. In case of the cooling curve of coffee, an 

asymptote approached 20℃.  As indicated by the wording in question 3, the cooling curve 

meant that as time increases, the temperature drops to 20℃elcius. Only 9% (n=11) of the 
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participants were able to provide an explanation that was close to an acceptable response. 

Figure 5.30 below is a representation of Participant WW’s responses to question 3.5: What is 

the real-life meaning of the asymptote? 

 

Figure 5.30: Participant WW’s response to the real-life meaning of the asymptote 

Participant WW indicated that the temperature of the coffee “should not pass this point”, 

instead of stating that “the temperature of the coffee cannot be lower than the position of the 

asymptote”. The point he referred to, was the asymptote. Participant WW spoke of an 

asymptote as though it was a point, when it was in fact a line. His view was that the closer the 

temperature was to the asymptote, the lesser the possibility of the temperature decreasing 

beyond that point. This shows further that Participant WW only understood the asymptote 

partially. While he knew that the graph would not pass through the asymptote, Participant 

WW wrote as though there was a point known as the asymptote. In the same vein as 

Participant WW, Participant XX also mentioned the word “point”. Figure 5.31 below 

represents Participant XX’s response to question 3.5 (the real life meaning of the asymptote).  

 

Figure 5.31: Participant XX’s response to the real life meaning of the asymptote 

An extrapolation of Figure 5.31 above indicates that Participant XX took θ to represent the 

amount of money to be paid for the coffee, instead of the temperature. Participant XX stated 

that the amount of money had a limit at R20. 00. In her explanation, Participant XX stated 

that the price of coffee should not be more than R20.00. Participant XX drew a graph with a 

decreasing exponential function, but she wrote the price of coffee as not exceeding R20. 00. 

This contradiction indicates ritualised routines, in terms of which participants acted without 

thorough meaning-making of what was actually happening (Gcasamba, 2014).  

The following figure (Figure 5.32, p. 94) further indicates participants’ deviation from the 

asymptote. In this regard, Participant GG’s response to the meaning of the asymptote in the 

context of cooling coffee had nothing to do with the asymptote 
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Figure 5.32: Participant GG’s response to the real-life meaning of the asymptote 

Participant GG described the phenomenon of what happened to the coffee over time, which 

had no direct bearing or effect on the asymptote. This particular participant provided the correct 

asymptote for question 2.2 (writing the equation of the asymptote) and drew relevant 

asymptotes for question 1.3 (sketching the asymptote of the graph), as reflected in Figure 5.33) 

below. 

 

Figure 5.33: Participant GG’s response to sketching the asymptotes 

In Figure 5.33 above, Participant GG could sketch asymptotes and state their equation in the 

hyperbola and the exponential function. Questions 1.3 (sketching the graph) and question 2.2 

(writing the equation of the asymptote) represented the daily mathematical realities that 

participants were exposed; while question 3.5 (the real-life meaning/ implications of the 

asymptote) represents an unseen question. Asking learners to explain the meaning of an 

asymptote from a contextual situation was not a regular occurrence. Failure to respond to 

application questions reinforced the view that participants’ mathematical discourse was mostly 

ritualised routines. This question had the least number of positive responses of all the questions 

in the test.  
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5.4.2 The intersection of two graphs 

Question 4 of the test required participants to sketch both an exponential and a quadratic 

function on the same set of axes by means of the global method. When using the global method, 

sketching the graph is undertaken by calculating key features such as intercepts, turning points 

and asymptotes. A global method is applicable when participants have been grounded in the 

plotting of graphs. In addition they should  knowing the kind of shape to expect from each 

equation. In this case, the question required the sketching of the graph by using key features. 

About 60% (n=72) of the participants successfully responded to the questions. The quadratic 

function was better responded to than the exponential function was.  

While participants could sketch the two graphs (the parabola and the hyperbola), the 

interpretation thereof was not as impressive. Only 20 (16.7%) of the 120 participants could 

interpret the intersection of the two graphs as the solution to the equation

1
2

1
1242 










x

xx . Most of the participants tried to solve it algebraically, but failed due 

to their inability to simplify the exponent x. The question required participants to mark the 

solution using the letters A and B. Figure 5.34 below represents Participant R’s sketching of 

the exponential and quadratic functions. Participant R’s work was an example of participants 

who succeeded in completing the task of sketching the two graphs and showing the location of 

the solution to the equations. Although the graphs do not look smooth, they conveyed the 

essential message. 

 

Figure 5.34: Participant R’s sketch of 2 graphs and location of the equation 

Figure 5.34 above indicates that Participant R had many coordinates on her graph. This 

reflects a state of uncertainty regarding the shape of the graph. The interpretation of the graphs 
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by the community of mathematicians was the same. Using the DPHEF analytical tool, the 

iconic visual mediator was considered as represented, since Participant R showed all the key 

features of the two graphs; viz: the turning points, the intercepts, the asymptotes, and the shape 

of each graph. The researcher also classified her use of routines as “applicability”, based on 

her correct use of the key features when producing the two graphs (Ben-Yahuda et al., 2005; 

Kidron, 2011).  

The solution to the equation 1
2

1
1242 










x

xx  is at the intersection of the two graphs. 

The point of intersection was the solution because at that point, the x and y values of the two 

graphs coincide. Participant R marked the point of intersection of the two graphs in bold 

letters. Her iconic visual mediator was “construed” because she could tell the point of 

intersection of these two graphs was the solution to the two equations. Participant R displayed 

flexibility routines because she demonstrated there was more than one way of solving equations 

(Ben-Yahuda et al., 2005). Other participants in the study did not respond to the question in 

the manner that Participant R did. Figure 5.35 below illustrates an almost similar response of 

a participant whose graph is well sketched, but with few details.  

 
Figure 5.35: Participant W’s sketch of 2 graphs and location of the equation 

In Figure 5.35 above, Participant W’s response is almost the same as that of Participant R 

in Figure 5.34 (p. 95). The difference between these two participants is only that Participant 

W’s graph was not as detailed as Participant W’s, whose graphs elaborately showed the key 

features of the quadratic and the exponential functions. Unlike Participant R who showed 

each of the key coordinates of the graph, Participant W further located her points on the axes. 

Participant W’s diagram is an example of good sketching, because her graph was not overly 

crowded or cluttered. The graph also demonstrates that she knew the shapes of the two 
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functions and did not rely on plotting coordinates. Using the DPHEF analytic tool, Participant 

W’s mathematical discourse on sketching of the graph was characterised as “depicted”, based 

on her competent sketching of the graph. To the extent that he did not rely on plotting points 

for her shapes, displaying confidence and knowledge,  Partipant W’s routines are then 

characterised as “routine”.  

While Participant W exhibited flexibility in sketching her graph, she did not indicate the 

solution to the point of intersection of the two graphs. During the interview, when the 

researcher asked her why she did not respond to question 4.2, she responded that she did not 

know how to solve the equation. She was able to draw the graphs, but was unable to explain 

that the interpretation of the graphs indicated ritualised routines. Participant W’s routines 

were “ritualised”, because she did not realise that the point of intersection guided the solution 

to the graphs.  

Participant YY was one of the few participants who sketched the parabola well, but 

experienced difficulties regarding the exponential function. Figure 5.36 below is an illustration 

of Participant YY’s sketch of the parabola and the exponential function.  

 

Figure 5.36: Participant YY’s sketch of 2 graphs and location of the equation 

In Figure 5.36 above, Participant YY sketched the parabola showing the intercepts and the 

turning point, although she did not show the coordinates of the turning point. Participant YY 

identified and drew the asymptote of the exponential function y = -1. She also marked the 

intercept with the axes, which was the point of origin. Participant YY went on to draw an 

increasing function. She did not check the correctness of her work by finding another point on 

the graph that would have acted as a guide. Another point would have helped her recognise 

that the graph was decreasing. The action of not checking the correctness of the answer (or lack 

of it) indicates lack of flexibility in her routines.  

In Figure 5.36, Participant YY marked one of the points of intersection B, which indicates 

that she knew the point of intersection of the two graphs was the solution to the algebraic 
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equation of these two graphs. However, Participant YY did not mark the other point of 

intersection. When the researcher asked for the reason, she stated that she forgot to write it. 

She further pointed to the solution on the graph, indicating that she knew how to find the 

solution for the equation. In Figure 5.37 below, Participant YY’s calculation of the intercepts 

is reflected. 

  

Figure 5.37 Participant YY’s calculation of the intercepts 

In Figure 5.37 above, there are two calculations for the intercepts of the exponential function. 

Participant YY’s calculation was correct, but there were some evident elements of ritualised 

routines. After calculating the x-intercept and getting a zero, Participant YY should have 

known that the coordinate (0; 0) is both the y and x intercept. The ritualised aspects of 

Participant YY’s work would have shown some flexibility if she had checked the correctness 

of her answer (Ben-Yahuda et al., 2005). In the next few paragraphs, the researcher shows 

examples of participants who tried to solve the equation 1
2
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algebraically, as shown in Figure 5.38 below.  

 

 

Figure 5.38: Participant AA’s response to intersection of graphs  
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In Figure 5.38 above, Participant AA tried to solve the equation 1
2

1
1242 




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




x

xx  

algebraically, yet the instruction in the question had clearly stated they should mark the solution 

on the graph. Participant AA eventually had the exponent x as a denominator. There is no 

mathematical explanation to support his action. In short, Participant AA moved from an 

exponential function to a fraction, and then concluded with a linear equation. In this regard, 

Participant AA’s routines were non-mathematically ritualised since he just wrote 

mathematical statements that were neither coordinated nor supported by mathematically 

endorsed narratives.  

On the whole, the collective responses indicate that participants could perform routines that 

were practiced in the classroom - such as sketching graphs - but experienced challenges with 

‘unseen’ questions. It was not common in textbooks to solve equations using the graphical 

method. Most of the equations were algebraically solved, hence participants like Participant 

AA opted for the algebraic method. It was also observed that participants did not read 

instructions carefully. The questions did not require the participants to solve the equation, but 

rather to mark points at which they expected the solution to be on the graph. On the whole, 

while participants performed well in the sketching of graphs, they were not as efficient and 

able in transforming them. 

5.5 Conclusion  

In this chapter, the researcher discussed the mathematical discourse of participants in the 

functions test using the Discourse Profile of the Hyperbola and the Exponential Function 

(DPHEF). The researcher also examined the selected participants’ mathematical discourse on 

the transformation of identified graphs. The South African Mathematics curriculum in Further 

Education and Training requires the learning of transforming functions. Notwithstanding the 

grade 11 curriculum requirements, participants in this research generally displayed a sense of 

developed mathematical discourse on the graphical, numerical and algebraic representation of 

familiar questions, but experienced difficulties with regard to questions requiring interpretation 

of the said representations. 

During the interview sessions, the grade 11 research participants often described the functions 

or some aspects thereof in terms of the translations. Participants’ mathematical discourse on 

the hyperbola was more objectified than that of the exponential function. Participants could 

calculate and identify the intercepts and asymptotes of the hyperbola respectively, yet less than 

45% of the participants (n=50) could identify the asymptote of an exponential function. 

Although most of the research participants referred to the shifts when presented with questions 

on translations, only a third (33%, n=37) responded positively. About half of the participants 

did not respond to the questions on translation. One of the reasons for this slow response trend 
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is that the question had three unknowns, two variables and k as numerator to the fraction. For 

most of the questions to which the participants responded, there would be only two unknowns, 

x and y. Only a sixth (16%, n=19) of the participants responded positively to the question on 

the sketch. While two thirds (67%, n=75 of the participants correctly calculated and found the 

value of k, they still worked on their responses with reference to k, even though they equated 

the value of k to 3 (three).  

While two thirds (67%, n=75) of the participants sketched the hyperbola, the exponential 

function and the parabola, the interpretation of components of the graphs was not as high. 

About 10% (n=11) of the participants could explain the meaning of the asymptote in a real-life 

problem. About 60% (n=72) of the participants sketched intersecting graphs, but only 18% 

(n=22) could interpret the meaning of the point of intersection.  

Interpretation of both the algebraic and graphical functions discourse showed that the 

mathematical discourse of participants had not yet reached objectification levels. The 

participants’ unfamiliarity with some of the terms or expressions used, tended to somewhat 

pose a challenge to their correct interpretation of some questions’ requirements. The 

participants’ routines were generally “ritualised”, since they worked well with familiar 

questions. Where a twist was introduced, some of the participants could not respond in a 

manner they did in respect of familiar questions.  

In the next chapter (Chapter 6), the researcher explores and describes the participants’ 

mathematical discourses in the context of the asymptote of a hyperbola and the exponential 

function.  
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CHAPTER 6 

REPRESENTATION OF THE ASYMPTOTES OF A HYPERBOLA  

AND EXPONENTIAL FUNCTIONS 

6.1 Introduction 

In this chapter, the researcher discusses the use of the word ‘asymptote’ as represented from 

the perspectives of the 24 participants in this study. Participants’ test and written responses 

from the task-based interviews showed that they could identify an asymptote from a graph 

and/or formula with ease. Their asymptote narratives did not necessarily indicate the 

objectification of this mathematical object (the asymptote). The researcher categorised the use 

of the term asymptote into four sections.  

Firstly, the researcher discusses how the participants named the asymptote. Their naming of 

the asymptote was facilitated through a linear equation. While there was evidence of 

identifying an asymptote from the equation and the graph, some participants’ naming of the 

asymptote was difficult to locate on the Cartesian plane. Objects on the Cartesian plane were 

identified by means of either their coordinates or the equation of the line defined.  

Secondly, the researcher discusses the participants’ representation of the asymptote on the 

Cartesian plane. On the graph, an asymptote was represented as a linear function, yet some of 

the participants spoke as though the asymptote was a point.  

Thirdly, the asymptote was viewed as a boundary that blocked the graph from passing through 

the Cartesian plane. The asymptote is a line approached by the graph of a function as x or y 

tends to infinity (Denbel, 2015). The asymptote does not block the graph. It is the behaviour of 

the graph that results in some graphs having an asymptote. In some rational functions, there is 

an intersection between the asymptote and the graph. Therefore, the notion that the asymptote 

would never interact with the graph is not always true for all functions.  

Fourthly, the term ‘asymptote’ was used synonymously with the notion of ‘undefined’. At the 

zeros (0s) of the denominator, rational functions are undefined (Denbel, 2015; Gcasamba, 

2014). Some of the study participants expressed that whenever the output in a function was 

undefined, the graph would then always have an asymptote. In some rational functions, it would 

be a removable discontinuity. In this study, participants tended to describe graphs in terms of 

what they saw from the very graphs. There was little evidence of a concerted exploration of 

the mathematical objects. The overall study results provide an indication that participants’ 

mathematical discourse was in status nascendi; that is, still in a state of development. 

Correspondingly, their mathematical communication (discourse/ narration) was not yet at the 

level which could justifiably be endorsed by the community of mathematicians.  
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6.2 Naming of Asymptotes 

An asymptote is a graph towards which another graph tends as x or y approaches positive or 

negative infinity (Denbel, 2015; Gcasamba, 2014). In this study, the asymptote is represented 

as a linear graph coinciding with, or parallel to either of the axes. In naming the asymptote, an 

equation depicting a linear function is the only acceptable way of representing an asymptote in 

algebraic form (Flesher, 2003). The naming of an asymptote as a number has stood out in every 

task performed by the selected participants during the task-based interviews. The tasks in this 

study involved functions in algebraic form, in tabular form, in word form, and in the form of 

the graphs themselves. In all these instances, participants used the algebraic form and identified 

the asymptote as though it was a number. For example, they would state that the asymptote 

was negative nine (-9). While some of the participants would correct themselves and name the 

asymptote in the form of an equation and name it as y = -9, most of them named the asymptote 

as a number. In this section, the researcher used task 1 (one) of question 2 (two), which reads: 

What is the asymptote of  𝑓(𝑥) = 3𝑥+1 − 9? How do you know this?” as an illustration of how the 

asymptote was named by participants in this study. 

All participants identified the asymptote from an equation (𝑥) = 3𝑥+1 − 9. The 24 participants 

who took part in the interviews represented the five best performing participants who wrote the 

functions test. The interviewed participants consisted of the top six learners in each school who 

took part in the study. Six of the participants (25%) named the asymptote as y is equal to 

negative nine (𝑦 = −9), which is an equation. Eighteen participants (33.3%) named the 

asymptote as though it was a number. For example, they would mention that “the asymptote is 

negative nine”. When an asymptote is named as as a number, it becomes difficult to identify 

the object referred to on the Cartesian plane. 

 

The researcher has included Table 5.1 (see. p. 70) as a summary of learners’ responses to the 

question: What is the asymptote of 𝑓(𝑥) = 3𝑥+1 − 9. How do you know this? While all 

participants responded to the first part of the question (in which they had to name the asymptote 

of the exponential function), the same could not be said for the second part of the question (in 

which they explained the narratives of arriving at the asymptote).  

 

In Table 5.1, the first column represents the names of the participants, who were grouped 

according to their answers to questions. For example, the first eleven participants responded to 

the question in the same manner as they did in all the five parts of the DPHEF analytical tool. 

The second column represents the classification of how words were used. The word use is 

classified as “literate” in the event that it is universally accepted in the community of 

mathematicians; for example, when the asymptote is represented as” x is equal to 2 (𝑥 = 2)". 

In the event that the words used are prone to a different interpretation by the community of 



103 
 

mathematicians, then the particular words used are classified as “colloquial”; for example, in 

the event that the response is: “the asymptote is negative nine (−9)". The mediator could be 

either symbolic or iconic. The symbolic mediator includes numbers written in symbols, 

equations, signs and so on. On the other hand, the iconic mediators are diagrammatic 

representations incorporating graphs and tables.  

 

The researcher used the term “construed” to depict a situation in which the mediator is correctly 

interpreted. In the event that a participant responded that the asymptote is negative nine (-9), 

or that the asymptote is (𝑦 = −9), the researcher classified both as "construed”. In the event 

that the participant’s response did not show a correct interpretation of the mediator, it was 

classified as “not construed” by the researcher. In such cases, the participants would have 

responded that  the asymptote x is equal to 1 (x = 1), or  the asymptote is 1 (one). The term “not 

construed” represents situations in which the mathematical object is interpreted incorrectly. On 

the fourth column of Table 5.1, the kinds of routines are represented, which are repetitive steps 

that are performed on the mathematical object. They include procedures for solving 

mathematical problems.   

 

Routines are categorised into a typology of three, viz: exploratory routines, ritualised 

mathematical routines, and the ritualised non-mathematical routines. Exploratory routines refer 

to the participants’ ability to go beyond procedures (Howie, 2003). These routines also explain 

and verify endorsed narratives. An example would be: What is the asymptote of 𝑓(𝑥) = 3𝑥+1 −

9?. How do you know this? This can also be represented to as: “The asymptote is y is equal to 

negative nine (𝑦 = −9)". As the x-values approach infinity, the graph tends to y is equal to 

negative nine.  

 

The second kind of routines are the ritualised mathematical routines. In the second category, 

participants correctly identified the mathematically accepted responses, but could not explain 

or provide a reason for their particular responses. They only knew the what part, as opposed to 

the why (Sfard, 2008). For example, in the event that a participant responded by only stating 

that the asymptote is y is equal to negative nine without providing reasons for it. The third 

category is the ritualised non-mathematical routines, which occur in the event that the response 

is not mathematically acceptable. For example, in the event the participants mention that the 

asymptote is y is equal to 1 (one) for the function 𝑓(𝑥) = 3𝑥+1 − 9.   

 

According to Ben-Yahuda et al. (2005), properties of routines include applicability, flexibility 

and corrigibility. In this study, the researcher refers to applicability, flexibility and corrigibility 

as the use of routines, because these properties of routines show the approach which 

participants use to engage with mathematical problems. Applicability routines occur when 
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certain routines are likely to be produced (Mpofu & Pournara, 2018).). The most dominant 

applicability routine in this study has been the visual trigger. Compared to any other use of 

routines, participants used what they saw in order to respond to mathematical situations. 

Flexibility routines occur when either one or more procedures are produced for a solution. The 

second and subsequent procedures are for checking the authenticity of the first routine by 

arriving at the same endorsed narrative. Flexibility routines are also noticed in unfamiliar tasks 

where participants work on tasks they have not seen before; but can use previously endorsed 

narratives to solve a problem. Flexibility routines can be communicated by using different 

representations or visual mediators to explain endorsed narratives.  

 

The last column of Table 5.1 represents the narratives, which are exemplified by 

substantiations, memorisation, and authority categories. Authority narratives are those in which 

the reasons for actions taken are attributed to the teacher or the textbook as the authoritative 

source. For instance, when Participant S stated: “the teacher marks it wrong when we don’t 

write it like that”, or “that is how it is written in the textbook”. Only a few participants 

specifically referred to the authority narratives. Memorisation narratives represent 

generalisations which are based on memory. There are two branches of the memorisation 

narratives. These are reference to the formula or rule and visuals. An example of reference to 

a formula is represented in the statement by Participant S: The asymptote is negative nine 

because it is the q in the equation. For visuals, the participants would refer to the graph not 

intersecting the asymptote. When participants’ narratives match those of the community of 

mathematicians, the narratives were classified as “substantiations” by the researcher. Table 6.1 

below represents a summary of the naming of the asymptote of an exponential function. 

Table 6.1: Summary of the naming of the asymptote  

Name Word Use Mediator K. Routine Use Routines Narratives 

1 Participant 

CC, Participant 

M, Participant 

HH, Participant 

KK Participant 

EE 

Participant S 

Participant DD 

Participant JJ 

Participant AA 

Participant QQ 

Participant BB 

Colloquial 

 

 

Construed 

Ritualised 

non-

mathematical 

Applicability 

 

Memorisation 

 

Non-

mathematical 

naming 

Interpretation Non-

mathematical 

language 

Visual trigger Formula 

2 Participant R Literate Construed Ritualised 

mathematical 

Applicability Memorisation  

Mathematical 

naming 

Identification 

of an 

asymptote  

Does not give 

a reason 

Visual trigger Visual 
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Name Word Use Mediator K. Routine Use Routines Narratives 

3. Participant Y 

 

Participant  II 

literate Not 

construed 

Ritualised 

non-

mathematical 

Applicability Memorisation 

Mathematical 

naming 

Non-

mathematical 

interpretation 

Non-

mathematical 

interpretation  

Visual trigger Rule 

4 Participant 

GG 

Participant W 

Colloquial Not 

construed 

Ritualised 

non-

mathematical 

Corrigibility Memorisation 

Non-

mathematical 

naming 

Non-

mathematical 

interpretation 

Non-

mathematical 

naming and 

mathematical 

language 

A bit of 

corrigibility 

with prompts 

Rule 

5 Participant OO Colloquial  Construed Ritualised 

non-

mathematical 

Applicability Memorisation 

Non-

mathematical 

naming 

Interpretation Non-

mathematical 

language 

Visual trigger Visual 

Does not 

name 

Wrong 

interpretation 

Does not 

respond to the 

question 

Description of 

visuals 

Visuals 

6 Participant 

FF 

Colloquial  Construed  Ritualised 

non-

mathematical 

Applicability Memorisation 

Non-

mathematical 

naming 

Interpretation Non-

mathematical 

language 

Visual trigger Visuals 

7 Participant U, 

Participant Y, 

Participant NN 

Literate Construed Ritualised 

mathematical 

Applicability Memorisation 

Mathematical 

naming 

Interpretation Explains the 

process 

Visual Rule 

8 Participant Z Literate Construed Exploratory Flexibility Substantiations 

Mathematical 

Naming 

interpretation representatio

n 

Uses another 

form 

Uses graph as 

justification 

Mathematical 

naming 

Interpretation Mathematical Visual Formula 

Of the six (6) participants who named the asymptote mathematically, 4 (four) expressed their 

responses in a manner acceptable to the community of mathematicians. These four participants 

identified the asymptote from the equation 𝒇(𝒙) = 𝟑𝒙+𝟏 − 𝟗, and then expressed the asymptote 

in such a manner that it could be located on the Cartesian plane. Participant R’s response to 

the above equation was unambiguous. On being asked about the asymptote of an exponential 

function, Participant R responded thus: The asymptote of f is y = -9. 

An asymptote of an exponential function is a straight line. Participant R’s naming of the 

asymptote is acceptable to the community of mathematicians because the linear equation could 
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be located on the Cartesian plane. Therefore, the linear equation y is equal to negative nine 

(𝑦 = −9) is a true identification of the asymptote as an equation. In this regard, the linear 

equation y is equal to nine has a graphical equivalent representation, a horizontal line parallel 

to the y-axis and passing through -9 on the y axis. The word use is classified as “literate” due 

to the interpretation of Participant R’s equation of the asymptote being universally accepted 

by the mathematical community in the meaning of that statement. This statement could be 

expressed in different representations of the functions. The question asked is in the form of a 

symbolic visual mediator, which is a mathematical representation that is in the form of a 

symbol (Adler & Ronda, 2014). Participant R identified the asymptote from 𝑓(𝑥) = 3𝑥+1 −

9.  

Participant R interpreted the symbolic visual mediator of the equation of the exponential 

function in the same manner that would be acceptable to the community of mathematicians 

(Flesher, 2003). According to the DPHEF analytical tool, the visual mediator is classified as 

“construed” when participants’ interpretation of that visual mediator is the same as that of the 

community of mathematicians. Participant R’s response is also classified as “literate”, as she 

could relate a symbolic visual mediator to the iconic visual mediator. An iconic visual mediator 

is a mathematical representation that is in the form of a diagram, such as graphs and tables of 

values. Participant R responded that: The asymptote never touches the graph never touches 

the asymptote and it does not pass.  

Instead of Participant R explaining her response according to the formula or the equation, she 

referred to the graph. Using different representations of a functions illustrates Participant R’s 

developing mathematical discourse of functions. When asked to provide a reason for her 

answer, she responded: “the asymptote never touches the …graph”. To state that the asymptote 

never touches the graph is not mathematical, because this definition would change in the event 

that participants are exposed to functions in which the horizontal asymptote intersects as stated 

in the literature review (Kuptsov, 2001). Horizontal asymptotes could intersect with the graph 

in some functions. Her assertion that the graph and the asymptote would never intersect is based 

on empirical evidence, rather than a result of mathematical explorations. An asymptote is a 

result of the behaviour of the graph at extremes. It is to be noted that it is not the asymptote 

that controls how the graph behaves (Mpofu & Pournara, 2018). Her routines are classified as 

“ritualised”. They are based on what she sees rather than on mathematical reasons.  

Ritualised routines are performed mathematical procedures that are based on what other people 

do (Ben-Yahuda et al, 2005). While it is true that the graph and the asymptote will not intersect 

in exponential functions, it is not true of all functions. The South African FET functions do not 

include functions in which the horizontal asymptote intersects with the graph. Applicability 
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routines are premised on the use of mathematical decisions taken to arrive at a procedure. In 

other words, applicability routines are based on the likelihood of certain routines being 

produced. The visual trigger means that the mathematical procedure was influenced mainly by 

what Participant S saw. In this case, Participant R’s use of routines was classified as 

“applicability” because she only used the visuals and not procedures at her disposal to explain 

her answer. She could have used other representations such as the table of values to explain the 

behaviour of the functions as x becomes smaller and approaches negative infinity. 

According to the DPHEF, memorisation narratives are generalisations that are based on what 

the participant remembers. Participant R may not have seen graphs intersecting with the 

asymptote, consequently assuming that all graphs would not intersect with the asymptote. 

Participant R’s narratives then become memorisations based on visuals, because she 

remembered that there were no intersections between the asymptote and all the graphs she 

worked on. Endorsed narratives are based on mathematical explorations (Mpofu & Pournara, 

2018). They are arrived at after conjectures and proofs, as well as disproving those conjectures. 

She mentions that the asymptote would never touch the graph, but does not give reasons for 

her statement. As a result, the researcher classified her narratives as “memorisation based on 

visuals”. Furthermore, Participant R was not specific in her generalisation. In general, an 

asymptote may, or may not intersect with the graph.  

The other learners who named the asymptote mathematically were Participant U, Participant 

Y, and Participant NN. The researcher grouped these participants because their utterances 

were similar when using the DPHEF analytical tool. The common factor in their responses was 

that they used the rule relating the asymptote to the vertical shift. When functions are expressed 

in the standard form of 𝑓(𝑥) = 𝑎𝑥+𝑝 + 𝑞, the parameters p and q (which show the vertical 

and/or horizontal movement from the parent function movement), would have their magnitude 

equal to either the horizontal or the vertical axis. For an exponential function and the hyperbola, 

the asymptotes of the parent function coincide with the axes. Some participants tended to 

associate the asymptote with the horizontal or vertical movement of the graph. They explained 

the presence of the asymptote in terms of vertical or horizontal shifts, rather than the behaviour 

of the graph. 

While the three participants (Participant U, Participant Y and Participant NN) eventually 

named the asymptote mathematically, they vacillated between mathematical language and 

colloquial terms. Participant U referred to an asymptote of x in an exponential function, which 

gave the impression that Participant U was referring to the vertical asymptote; when he had 

in essence confused the horizontal asymptote and the vertical. When asked by the researcher 

to show that on a diagram, he pointed to the horizontal line, which was an indication that he 

did not mean there was a vertical asymptote. In an exponential function with base greater than 
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1 (one) as x approaches positive infinite, the graph approaches infinity and it grows 

exponentially. In a situation where the base of the exponential function is between 0 (zero) and 

1 (one) as x gets smaller (approaching negative infinite), the graph also approaches negative 

infinity. This means there is no vertical asymptote in an exponential function. The only 

asymptote in any exponential function is horizontal. The asymptote is named a vertical 

asymptote rather than the asymptote of x. In this regard, Participant U stated: From the 

asymptote of 'x' here is zero, y is equal to negative nine (𝑦 = −9). It is the values of 'q' in the equation 

of the graph of f'. 

While Participant U names the asymptote mathematically, the narrative is that of an x 

asymptote. There is an x-coordinate, but there is nothing known as the x asymptote. His 

narrative seems to suggest that there is a vertical asymptote. Further probing revealed that 

Participant U did not mean a vertical asymptote, but rather that there was no asymptote at all. 

Participant U responded to the question: Why are you stating the asymptote of x is zero? by 

stating: It is zero because there is no asymptote. The function in question is exponential, as 

explained earlier. Only 1 (one) asymptote was expected. For Participant U, there seemed to 

be no difference between an asymptote in which x or y are equal to zero, and a situation in 

which there is no asymptote at all. An exponential function has only 1 (one) asymptote, which 

is horizontal. While his naming of the asymptote was mathematical (y= -9) his utterances were 

not mathematical. Using the DPHEF analytical tool, the naming of the asymptote was classified 

as “literate”, but his reference to the asymptote of x as zero was colloquial because there is 

nothing known as “the asymptote of x”. The second characteristic of an exponential function 

is that it has a horizontal asymptote. The work of Participant U is referred to in this context. 

Participant U could interpret the symbolic mediator f(x) = 3x+1 − 9. He could identify the 

asymptote from the equation or formula. Accordingly, the researcher classified his 

interpretation of the symbolic visual mediator as “construed”, because the community of 

mathematicians would have come to the same conclusion as his. Participant U identified 

function f as an exponential function whose asymptote is y is equal to negative nine (𝑦 = −9).  

Participant U’s routines are ritualised, despite his identification of the asymptotes of f. He also 

gave the impression that the exponential function has two asymptotes. Participant U refers to 

the asymptote of x as zero. The asymptote could not be an asymptote of x or y. It is the 

asymptote of a function, and not of the axes or part of a coordinate. The asymptote is related 

to a function, it is not an asymptote of a coordinate or of an axis (Kuptsov, 2001). Although he 

managed to identify the horizontal asymptote, Participant U also gave the impression that there 

was an  expectation of the vertical asymptote. Using the DPHEF, the researcher classified 

Participant U’s routines as “ritualised”, as he did not explain the presence of the asymptote in 

terms of the behaviour of the graph, but as a consequence of the vertical shift. His use of 
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routines was again classified as “applicability based on visual trigger”, because he named the 

asymptote mainly from what he saw. Participant U did not explain the behaviour of the graph 

as x approaches negative infinity. He only refers to shifts. His routines were not based on any 

mathematical procedures, but only on what he saw.   

In his explanation of the asymptote, Participant U refers to the y asymptote and the graph not 

having values. Participant U’s first language is isi-Xhosa. Speaking in English was somewhat 

problematic. The medium of communication and instruction is instrumental in the participant’s 

knowledge and understanding of routines. In this regard, the table of values, the ordered pairs, 

the input and output values, as well as the x and y coordinates necessitate expressions that are 

accepted by the community of mathematicians. Coordinates are a set of values which show an 

exact position. Therefore it is impossible for a graph not to have coordinates. Following are 

Participant U’s responses to the table of values. 

Participant U: I was going to state sir, the graph sir, when it doesn’t have the values but when 

you are given the format of the graph, it is given that it is a to the power of x (𝑎𝑥) and then n-

q. so that 'q' is the value of the y asymptote. 

Interviewer: What do you mean by value or values? 

Participant U: Values are these…the x and y values. 

Participant U stated further that q was the value of the asymptote. A value in Mathematics 

carries several meanings. The value may refer to a number in a variable or mathematical object, 

or it may refer to a result of a mathematical computation (Ben-Yahuda et al., 2005). The 

mathematical object which Participant U refers to as the value or values is not clear. 

According to Participant U’s knowledge of the asymptote and the function, value is 

misplaced. Further probing revealed that by “values”, Participant U meant the coordinates. 

Graphs consist of many coordinates, otherwise the object being referred to would not be 

regarded as a graph. When Participant U mentions that the graph has no values, he refers to 

the part on the table of values of which the x-coordinate has no corresponding y-coordinate. 

According to Participant U, no values are related to the asymptote. Interpretation of the visual 

mediators lends itself to explanation of all phenomenon without adequate exploration or 

investigation. For Participant U, the constant represents an asymptote.  

In an equation, the value of the parameter q represents a vertical shift from the parent function 

(Mpofu & Pournara, 2018). Explorations of the mathematical objects with asymptotes (i.e. the 

exponential function and the hyperbola) show that the equation of the asymptote is equal to the 

value of the constant (Flesher, 2003). In the event that the value of the constant is 6 (six), for 

instance, then the horizontal asymptote of the function will be y is equal to six (y=6). It is worth 

noting this does not mean the constant is an asymptote. The explanation for the presence of the 
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asymptote would still be the behaviour of the graph as x-coordinates approach either positive 

or negative infinity for the exponential function and both for the hyperbola. Participant U’s 

narratives on the horizontal asymptote of an exponential function were classified as 

memorisation based on rules. 

Participant U refers to rules which he followed to identify the horizontal asymptote. The 

prevalence of the constant means that there is an asymptote. Even though the answer may be 

correct and Participant U may score full marks in a test, his narratives are not based on proven 

mathematically acceptable facts or procedures. In addition, Participant U did not demonstrate 

beyond reasonable doubt that his reference of the horizontal asymptote to the constant of the 

exponential function was based on mathematical explorations. To a great extent, his narratives 

are an example of memorisation based on the rule of the constant, based on the horizontal 

asymptote of a hyperbola and an exponential function. He further states that there is a y-

asymptote, instead of the horizontal asymptote.   

Participant X is one of the participants who named the asymptote of an exponential function 

in a mathematically acceptable manner. She stated that the asymptote of 𝑓(𝑥) = 3𝑥+1 − 9 is 

𝑦 = −9. However, she was unsure of the number of asymptotes in an exponential function. 

The excerpt below illustrates Participant X’s response to the naming of the asymptotes of 

𝑓(𝑥) = 3𝑥+1 − 9. 

Participant X: Y is equal to negative nine (y=-9)  ... it's always a point that you keep in mind for 

the original equation of an exponential or any type of function, you always need to keep it in mind, and 

then immediately. There is only 1 asymptote if am not mistaken. 

Interviewer: How about the asymptote for the parent function y is equal to three to the exponent x  

(y=3𝑥)  

Participant X: For two (2) or three to the power x (3𝑥) , there are no asymptote, because you do not 

have any shift 

Participant X names the asymptote mathematically. The researcher classified her utterances 

as mathematically based only on the naming of the asymptote. The implication is that although 

Participant X named the asymptote mathematically, her discourse on the mathematical object 

was still developing. Participant X is not sure of the number of the asymptote in an exponential 

function. Her own words show lack of confidence on the asymptote of an exponential function. 

She hesitantly states an exponential function has only 1 (one) asymptote. In trying to explain 

the relationship between the parent function y=3𝑥  and 𝑓(𝑥) = 3𝑥+1 − 9, Participant X states 

the parent function has no asymptote. Participant X’s reason for stating there were no 

asymptotes was that “you do not have any shift”, suggesting that shifts or parameters were 

associated with the asymptotes.  
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Parameters are the units through which a function is transformed (Nair, 2010). For example,  

𝑓(𝑥) = 3𝑥+1 − 9 x = -1 and y = - 9 are the parameters of the function. These parameters show 

the number of units horizontally or vertically from the parent function. She then states the 

“absence” of the parameters implies the absence of the asymptotes. An exponential function or 

a hyperbola with no parameters has asymptotes, because an asymptote in a function is 

determined by the behaviour of the graph (Nair, 2010. In a parent exponential function 

(function without shifts), the asymptote is y is equal to zero (𝑦 = 0). In a parent hyperbola, the 

asymptotes would be y is equal to zero (𝑦 = 0) and (𝑥 = 0). Participant X takes the 

parameters themselves to be the asymptotes. In fact, when the parameters are not written, that 

does not mean the parameters are not present, but just that they are equal to zero. Associating 

the asymptote with the parameters is problematic. It results in asymptotes not being noticed 

when the parameters are not written, or when there is a compound of shifts. The asymptote is 

a consequence of the behaviour of the graph, rather than a response to the shifts or parameters. 

For this reason, her word use is classified as “mathematical”. The researcher classified her 

interpretation of the symbolic visual mediator as “not construed”, because she interpreted the 

lack of parameters as implying that there were no asymptotes.   

Participant X identified the asymptote from the symbolic mediator appropriately. She was 

able to interpret the symbolic mediator and its translation. However, Participant X’s 

challenges show in the event that the exponential function is a parent function. She interprets 

it as a function without asymptotes. Her statement implies that asymptotes are the actual 

parameters. Her mathematical discourse on the asymptote of an exponential function is at a 

developing stage. She has not yet reached a stage where her discourse is at the same level as 

that of the community of mathematicians. While her interpretation of the symbolic visual 

mediator of an exponential function could have been classified as “construed”, her statement 

on the interpretation on the parent exponential function renders her discourse as “not 

construed”. Therefore, her routines are classified as mathematically ritualised with 

applicability (Ben-Yahuda et al., 2005). While her response on the original question was 

mathematically acceptable, further probing on the asymptote of the parent function of the 

exponential function revealed that she regarded the parameters as the asymptote. In essence, 

parameters are not the asymptotes as stated earlier, but may help in identifying the position of 

the asymptote on the Cartesian plane. Over-reliance on the parameters is a problem for 

participants because there is no consistency. In a hyperbola, both the vertical and the horizontal 

parameters are a hint of the asymptotes. In an exponential function, it is the vertical shift only. 

The mathematically acceptable answer is a result of aligning her routines with those of others, 

probably the teacher or what she has read from a textbook. In the event her mathematically 
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acceptable response emerged from explorations, she would have been able to recognise the 

asymptote in a parent exponential function.  

Participant X could have realised that functions with parameters were a result of translating 

the parent function. She used the visual trigger to name the asymptote. Visual triggers are the 

hints that participants use to identify mathematical objects (Adler & Ronda, 2014). The 

parameters in this situation are the visual triggers which help participants to identify the 

position or equation of the asymptote. Visual triggers which are not grounded on mathematical 

explorations result in participants failing to identify mathematical objects when there is a 

change of form, such as  when the function does not have shifts. When an exponential function 

is translated, she named the asymptote. She was not able to do so in a parent function. The 

researcher then classified her routines as ritualised, and the use of routines as applicability 

based on visuals. 

According to Participant X, a transformed exponential function has an asymptote, but a parent 

exponential function does not have any asymptotes. There is evidence that Participant X could 

talk of the asymptote of a transformed exponential function, her generalisation was not based 

on endorsed narratives but on memorising what she has seen done in the community of 

mathematicians. Participant X’s narratives are memorisation based on rules. She could use 

the rules to obtain mathematically correct answers, but could not transfer that knowledge in a 

similar situation in a different representation of the same mathematical object.  

Participant Y and Participant II named the asymptote mathematically, but their interpretation 

of the function was not acceptable within the community of mathematicians. Both participants 

used the mnemonics which helped them identify the asymptotes from the hyperbola and the 

exponential function. In a hyperbola represented by 𝑓(𝑥) =  
𝑎

𝑥−𝑝
+ 𝑞, the asymptotes are 𝑦 =

𝑞 𝑎𝑛𝑑 𝑥 = 𝑝,  and in 𝑔(𝑥) = 𝑎𝑥+𝑝 + 𝑞, the asymptote is 𝑦 = 𝑞. Participant Y and 

Participant II confused these mnemonics and used p instead of q, which is the vertical shift. 

Instead of using the constant as the hint for a horizontal asymptote, they used the horizontal 

shift. Participant Y named the asymptote of 𝒇(𝒙) = 𝟑𝒙+𝟏 − 𝟗 as 𝑦 = −1, and Participant II 

named the asymptote as 𝑥 = −1. When asked to explain his response, Participant II stated: I 

can state that the asymptote can be any x variable that is added or subtracted from the function 

within that x variable. Going back to the formula, 'q' is always y, and ok 'q' is y  and y is the 

asymptote, that means that the graph will not touch there, so... yeah I think that's it. 

In his explanation, Participant II described an asymptote as a variable. An asymptote is a 

linear graph, and is presented in algebraic form as y is equal to a (𝑦 = 𝑎, 𝑥 = 𝑏) for the 

hyperbola and exponential function. The definition or description of an asymptote should at 

least fit any of these two categories (i.e. linearity and algebraic compatibility). Participant II 
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stated that an asymptote was a variable. From the perspective of the researcher, language was 

a barrier for Participant II insofar as communicating his ideas on the asymptote was 

concerned. He named an asymptote as an equation, and not as an expression. Further probing 

by the researcher revealed that by “variable”, Participant II was actually referring to the 

equation. The question was: Can you give me an example of a variable? 

Participant II: For example, you have f(x)=2𝑥 +9, yes, the 9 will be the asymptote. No, y= 9 is the 

asymptote. Participant II recovered from the previous mistake of using the horizontal shift as 

a mnemonic for the asymptote, and used the vertical shift when given an example of a function 

and its asymptote. Furthermore, Participant II could formulate an exponential function and 

state the asymptote mathematically, which is an indication that Participant II’s mathematical 

discourse is still developing (Sfard, 2012) because he could not identify and distinguish 

mathematical objects of the functions discourse. In spite of Participant II’s exhibition of 

mathematical discourse, his word use was classified as “colloquial”, because he referred to an 

equation a variable. At the same time, his naming of the asymptote was classified as “literate”, 

because all members of the community of mathematicians can identify the mathematical object 

that he named.  Participant II’s symbolic visual mediator is “construed”, because he could 

formulate an exponential function and name its asymptote mathematically. The researcher 

regarded his mention of 𝑥 = 1 as a mistake from which he recovered. 

The researcher classified Participant II’s kind of routines as “near exploratory”, because he 

was able to formulate and give examples of the mathematical object. Participant II is showing 

progress in the mathematical discourse by exhibiting some form of objectification, which 

illustrates his knowledge of the exponential function using examples. The use of an example is 

one of the ways of showing flexibility. When Participant II provides an example, it is evidence 

of his developing mathematical discourse. Accordingly, the researcher classified Participant 

II’s use of routines as flexible due to his use of examples.  

By refering to an asymptote as a variable, Participant II’s generalisation is not aligned to the 

narratives of the community of mathematicians. Endorsed narratives are generalisations, 

theorems and proofs that the community of mathematicians endorse for use in the practice of 

Mathematics. Participant II’s narratives on the asymptote of an exponential function are not 

endorsed by the community of mathematicians, but is acceptable at the level of Participant II. 

At grade 11, there is no expectation for learners to establish the intersection of the asymptote 

with the graph. Participant II’s narratives were primarily based on what he has observed from 

the graphs. Therefore, his narratives were classified as “endorsed” from the perspective of the 

community of mathematicians. 

 



114 
 

6.2.1 Asymptote as a Number 

Mathematics is a discourse. Like any other discourse, it has rules that govern it. Proper use of 

mathematical language helps in the development of the discourse. In a discourse, rules help to 

advance the discourse participants’ common interpretation of the object being discussed. In the 

functions discourse, an asymptote is a function. Since an asymptote is a function, it is expressed 

in the form of a graph or an equation. In this study, there was a tendency by participants to 

misname the asymptote as a number. More than half (15) of the participants who took part in 

this study, did exactly so, naming the asymptote as though it was a number. While 13 (%??) of 

them could identify the negative nine (-9), 2 (two, %??)) participants could not identify the 

asymptote. One possibility for this misnaming of asymptotes is attributed to the emphasis on 

the parameters during learning. Emphasis on the procedures only results in participants 

knowing how without knowing what and why. When asked for an asymptote verbally, some of 

the participants would provide a number. When asked to write the number on paper, the 

participants would instead write an equation in the form of  𝑦 = 𝑎 𝑜𝑟 𝑥 = 𝑏. Participant LL’s 

responses reveal a tendency in which there is no understanding of  the reasons for expressing 

the asymptote as an equation. The only reason they would express the asymptote in equation 

form, was for them attain full marks. The researcher asked Participant LL to provide a reason 

for expressing the asymptote as negative nine (-9), or as y is equal to negative nine (y= -9). Her 

response was:  

The teacher marks us wrong when we write negative nine but will mark it correct when it is y 

is equal to negative nine. 

Participant LL’s response above evinces ritualised routines. Responses could be 

mathematically acceptable in the event that the participant acts in the mathematical discourse. 

Participant LL has not explored the mathematical object and discovered for herself the 

difference in expressing an asymptote as a number and as an equation.  

Parameters which transform the function of the parent function are often used as mnemonics 

in helping participants in the mathematical discourse with the mathematical objects; such as 

the asymptote or the turning point in some functions reference). The writ large emphasis on the 

parameters sometimes entices participants into believing that the parameters were the real 

asymptote. In the ensuing discussion, there is an indication that participants justified their 

utterances on the parameters. Some even went as far as stating that q represents an asymptote.  

In the following excerpt, Participant OO’s utterances illustrate the association of the 

asymptote of an exponential function with vertical and horizontal translations.  

Participant OO: The asymptote of f is negative nine (-9), because if you see in exponential graph, 

the, the, in exponential graph, we have 1 asymptote which is q, so their x, we ignore it because in 
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exponential graph, it is shifted in a vertical way in a vertical not horizontal. So we see but they have q 

which is shifted in a vertical way 

In her response above, Participant OO states mathematically that an exponential function will 

have 1 (one) asymptote, but his reasons are not mathematical. The asymptote does not depend 

on the translations, but on the behaviour of the graph. Participant OO states further that there 

is only 1 (one) asymptote because the exponential function can be shifted vertically only. In 

The opposite is in fact a mathematical truism. It is axiomatic that exponential functions can be 

shifted both vertically and horizontally, and the shift or translation does not result in an 

asymptote, as Participant OO suggests. Parent functions also have asymptotes because of the 

behaviour of the graph. Participant OO states that the asymptote is q. This may be a reason 

for regarding the asymptote as a number, because further probing did not produce a response 

from him. When Participant OO states, “1 asymptote which is q”, he substitutes the number 

represented by q and refers to it an asymptote. For Participant OO, the asymptote is not a line, 

but a number generalised as q. Participant OO mentions further that x is ignored because it is 

is an exponential function. According to Participant OO, the reason x should be ignored is 

that, “an exponential graph is shifted in a vertical way and not in a horizontal way”. All 

functions can be translated both horizontally and vertically. Axiomatically, the parameter q 

shows a vertical translation, but does not necessarily mean that the constant will be an 

asymptote in all functions.  

Despite his failure to express the function mathematically, Participant OO could still identify 

the asymptote of the function. Using the DPHEF, the researcher classified the word use as 

“colloquial”, since an asymptote is a graph whose algebraic representation is an equation and 

not a number. Furthermore, asymptotes do not depend on translations but on the behaviour of 

the graph.  

Participant OO evinces the ability to interpret the symbolic visual mediator, 𝑓(𝑥) = 3𝑥+1 −

9. He knows that the function has been translated nine units vertically. He also knows that the 

vertical shift of the exponential function is associated with the asymptote. The researcher then 

classified his symbolic visual mediator as being “construed” on the basis that he could explain  

the function.  

Participant OO has no full objectification of  the asymptote. He translates and names the 

asymptote in the realm of a number. Although Participant OO could interpret the function, he 

has not yet fully developed the asymptote as a mathematical object. Participant OO mistakes 

the constant for the asymptote, whereas the constant only provides a clue for locating the 

asymptote. His use of routines was classified as “applicability based on visuals” because his 

explanations do not transcend what he sees (the visual). Participant OO uses a rule premised 
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on the parameters showing the distance being moved by all the coordinates. In a parent 

exponential function, the asymptote coincides with the x-axis. After a shift of q units, the 

asymptote necessarily shifts with the graph. Participant OO then mistakes the vertical 

movement of the graph for an asymptote. He generalises and assumes the number showing the 

distance from the parent function is the asymptote.  Therefore, his narratives were classified as 

“memorisation based on rules”. From the above statements, it could be conclude that 

Participant OO’s mathematical discourse is not yet objectified. 

Of the 24 participants, Participant W responded differently from all others. Participant W 

focused on the table of values into the function. The table of values is an array of ordered pairs. 

A table of values is one of the representations that participants learn and use in the functions 

discourse. Depending on the choice of the input values, it is possible for an undefined to appear 

on the output. The undefined may, or may not indicate that the asymptote passes through the 

input value. In the event that  the degree of the numerator is more than that of the denominator, 

the undefined may not be an asymptote. It is possible for the chosen values of the input not to 

have undefined as a corresponding value. This does not mean that the graph does not have an 

asymptote. A table of values is a very difficult representation to use for an asymptote. It is 

easier to identify a vertical asymptote from a table of values than a horizontal asymptote, due 

to the difficulty of obtaining an undefined value on the input. The only way for a horizontal 

asymptote to be visible is when the input values are carefully chosen and include no integral 

values. In this case, Participant W refers to the undefined values of a horizontal asymptote, 

which clearly indicates ritualised routines. She is referring to something that is impossible in a 

table of values. 

Participant W continues to describe an asymptote algebraically. Such an orientation posits the 

constant as a mnemonic for an asymptote. Participant W explains further how she will 

recognise the asymptote even in circumstances where the constant of the algebraic form of an 

exponential function is zero. She refers to both the table of values and algebraic representation 

of the graph in the following manner: If you don’t get an undefined value on your graph, you 

look at the algebraic representation of the graph and then where there is supposed to be q in 

the exponential graph is where there is an asymptote. So if there is no q then it means that the 

asymptote is equal to zero. 

In the above response, Participant W refers to  agraph in the manner of a table of values. She 

states that an asymptote is identified by an undefined. This probably means a function 

expressed in the form of a table of values, in terms of which one of the values of the input does 

not have an output. As discussed above, it is almost impossible to obtain undefined on the input 

of the table of values. Participant W further mentions that the asymptote could be identified 

from the equation. This is corroborated in the part of her response stating that q will be the 
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asymptote. Participant W could link two representations of a function by referring to a table 

of values and an algebraic representation of the function. A value cannot be undefined. It will 

still not have a corresponding output. Participant W misnames asymptotes for numbers. It is 

for this reason that the researcher classified the words by Participant W as” colloquial”, 

because she mixes and inappropriately uses mathematical terms; stating that “if there is no q” 

then it means the asymptote is equal to zero.  

In one of the tasks requiring Participant W to explain her identification of the asymptote by 

using 2 (two) representations of a function, her response indicated knowledge of an undefined 

in a table of values as signifying an asymptote. She was also aware that in some instances, the 

undefined may not appear in a table of values. In such situations, it does not necessarily mean 

there is no asymptote. Where the table of values does not indicate the presence of the 

asymptote, an examination of the algebraic form of the function may help in identifying the 

asymptote. Using the DPHEF, the researcher was able to classify Participant W’s 

interpretation of the mediator as construed, due to her awareness of what each representation 

of a function offers.  

In a table of values, it is not expected to find an undefined on the input because input is in the 

form of real values. Participant W failed to recognise that in a table of values, the undefined 

is only for a vertical asymptote. Participant W also names the asymptote as though it were a 

number. She mentions that the asymptote is negative nine (-9), and that the asymptote is zero 

in the absence of q. The objects she named could not be located on the Cartesian plane. 

Accordingly, the researcher classified her kind of routines as “ritualised non-mathematical”, 

because she used function terms  without exploring them. In addition, Participant W’s use of 

routines was classified as “flexible”, largely due to her ability to use more than one 

representation to explain endorsed narratives.   

Furthermore, Participant W acknowledges that there is a possibility of asymptotes going 

unnoticed (not recognised). Her alternative (to the non-recognition of asymptotes) is to rather 

focus on the algebraic representation. Her generalisations are that the constant, which she terms 

q, is where the asymptote is to be found. The constant is mainly a hint, clue or mnemonic, but 

certainly not the asymptote in the sense of Participant W’s erroneous reference of the constant 

as an asymptote; as if the q is not there. All algebraic representations have a constant. 

Sometimes, the constant is not written since it would have been zero. Participant W noticed 

and concluded that the absence of a constant meant that the horizontal asymptote would be y =

0. In addition, Participant W generalises according to what she sees (her visual perception), 

which informs her usage of terms such as “q” instead of the constant. The researcher then 

classified her narratives as “memorisation” based on visuals, because she bases her reason for 
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the asymptotes on memory, and does not use narratives as would be endorsed by the 

community of mathematicians. 

While there is evidence of the participants’ ability to interpret a formula or equation of an 

exponential function, their word use was mostly colloquial. It was difficult to identify the 

mathematical objects she named. Most of the participants were able to identify the asymptote 

mathematically from the algebraic representation using the parameters. The use of routines was 

mostly classified as “applicability”, since the participants tended to use the visual triggers; that 

is, the vertical and/or horizontal translations, to identify the asymptote. The particpants’ 

routines were mostly classified as “ritual”, as they could identify the asymptote but named it 

as a number. Furthermore, their narratives were classified mostly as “memorisation”, as they 

were based on rules or authority of the teacher. In the sub-section 6.2.2, the researcher  presents 

and discusses the participants’ description of an asymptote as a point. 

6.2.2 Asymptote as a Point 

A point is a specific position on a Cartesian plane, while a line is defined as a set of points 

whose coordinates satisfy a given linear equation (Flesher, 2003). In this study, the participants 

defined the asymptote as a point or points at least 14 times. An asymptote is a graph defined 

by an equation. In this study, an asymptote is referred to as a straight line. The participants’ 

test- and interview-based diagrams reflect an asymptote as a (broken) line, yet they refer to an 

asymptote as a point. In some instances, the participants used the terms “point” and “equation” 

as though they were synonyms. Table 6.1 (p. 119) is an illustration of participants’ sketching 

of a hyperbola or exponential functions with an asymptote shown as a line. Participants such 

as Participant BB referred to the asymptote as “the graph not touching that point”. Fourteen 

(%//) of the twenty-four participants used the term “point” incongruously from its acceptable 

usage in the community of mathematicians. 

 

 

Figure 6.1: Participant GG’s diagram showing asymptotes 
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While Participant GG and Participant NN used the term “point” as referring to an asymptote, 

their explanations indicate their knowledge of an asymptote as a line, and not a point. Although 

Participant GG refers to the asymptotes as the points at which the graph is not defined, she 

corrected herself and subsequently mentioned that an asymptote could not be a point but a line. 

On the other hand, Participant NN provided an explanation that was similar to that of 

Participant GG, but explained further that the asymptote passes through the undefined point 

identified from the table of values. However, in realistic terms this is not a point, since a point 

should have x and y values in order to form a coordinate. Therefore, Participant NN’s and 

Participant GG’s responses to the identification of the asymptote from the table of values are 

similar. The researcher then chose to focus on the work of Participant GG because her 

language was easier to follow than that of Participant NN. Participant GG responded to the 

question: Explain how you would identify key features like the intercepts and asymptotes in a 

table of values for the above functions f and g. 

Participant GG: For the asymptotes, you have to look at the points where the graph is 

undefined. The line where the graph is undefined to be specific. Using the table of values, you 

substitute by but like when you try and substitute by like a certain, like a domain, you could 

give ... a certain, like a domain, you can substitute like those values and then if u find that err 

the graph at a specific point, like when you substitute with the specific point and the graph you 

don’t get an out then you can ,,, you can actually conclude that that line is points ... you draw 

a line through that point and then ... it is the asymptote 

 

According to Participant GG, a table of values is a set of separate coordinates with no 

relationship whatsoever; therefore, these ordered pairs are supposedly stand-alone points. This 

is observable in her statement that: You can substitute like those values and then if you find that 

error the graph at a specific point. Mathematically so, the ordered pairs are the points, and 

they represent coordinates through which a specific function is defined on a Cartesian plane. 

Participant GG implies that “undefined” on the table of values means the asymptote passes 

through this coordinate. This perspective is reflected in her statement that: You draw a line 

through that point… and then it is an asymptote. As discussed in the literature review, an 

undefined in a function is not always an asymptote. Sometimes it is a removable discontinuity 

(Berger, 2013).  

 

Participant GG vacillated in and out of mathematical language in her explanation of the 

determination of an asymptote from a table of values. The graph is defined on the coordinates 

through which it passes on the Cartesian plane, rather than by means of points through which 

it does not pass. Participant GG also defined the asymptote as a line where the graph is not 

defined. Her function is not defined on numerous points of the Cartesian plane, and all these 
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points are not the asymptote of the functions. Using the DPHEF analytical tool, the researcher 

classified her use of words as “near literate”, due to her definition of  an asymptote as a line 

despite the difficulty of locating the asymptote on the Cartesian plane using her definition. 

Participant GG can visualise the table of values and make an inference on it. For that reason, 

the researcher then classified her use of iconic visual mediator as “construed”. Her routines are 

further classified as “ritualised non-mathematical”, due to the difficulty of locating the 

asymptote on the Cartesian plane from her utterances. The researcher also classified her use of 

routines as “corrigibility” because she could self-correct. For instance, she had earlier referred 

to an asymptote as a point, but later realised it was not possible for an asymptote to become a 

point, but a line. Accordingly, the researcher classified her narratives as “memorisation based 

on rules” due to her statements such as: “An asymptote cannot be a point but a line…”. 

Additionally, Participant GG relies on rules in her identification of the asymptote from the 

table of values. In the next paragraph, the researcher discusses Participant R’s reference to an 

asymptote as a point. 

Participant R identified 𝑔(𝑥) =
2

𝑥+3
+ 1 as a hyperbola with asymptotes 𝑥 = −3, and 𝑦 = 1. 

She mentioned further that the graph would not touch these two points. There are no two points 

referred to except the two equations stated above, which are  𝑥 = −3 and 𝑦 = 1. The only point 

that the two equations (x = -3 and y =1) have in common is their point of intersection. It is not 

clear what mathematical objects Participant R referred to when mentioning that the graph did 

not touch these two points. What is clear is, however, is that she was referring to the asymptote 

and the function. The following excerpts show how Participant R identified the asymptote of 

g, as well as the reasons for her response. 

Qquestion 3, Task 1: What is the asymptote of g? How do you know this? 

Participant R: S,o g is a hyperbola graph and therefore it has 2 asymptotes which is x is equal 

to three (x=-3) and y is equal to 1 (y= 1). We know this because the graph never touches these 

2 points. The graph never touches these points. 

Using the DPHEF analytical tool, the researcher categorised Participant R’s first sentence as 

“mathematical”, having stated equations of the asymptote for the hyperbola. However, when 

providing her reasons for the asymptote, she mentioned that the graph would not touch these 

two points. She is being specific when she refers to the two points, meaning that each equation 

is a point rather than that the lines representing a set of points. The use of words in the second 

sentence is classified as “colloquial”, because lines and points are two different mathematical 

objects.  
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Participant R construed the symbolic mediator 𝑔(𝑥) =
2

𝑥+3
+ 1, having identified the function 

and mathematically stated the asymptotes. However, the interpretation of the iconic visual 

mediators is not mathematical, because an asymptote is neither a graph nor a point. Instead of 

stating that the graph never touches these two points, Participant R could have stated that the 

graph never touches those lines. In this context, Participant R’s mathematical discourse on 

the asymptote is classified as “ritualised non-mathematical”, since she associates the asymptote 

with a point. She named the asymptote as an equation, but then refers to an asymptote as if it 

was a point. Furthermore, Participant R did not view the asymptote as a graph, but as a point. 

It is against this background that the researcher classified her use of routines as “applicability” 

based on the use of the table of values, because she referred to points that were found in a table 

of values. She could write the mathematical statement on the asymptotes, but the subsequent 

explanation showed her deficient understanding of an asymptote. Writing the two equations 

representing the asymptote did not necessarily mean that Participant R objectified the 

mathematical object.  

The following discussion depicts Participant V’s responses to the question: Explain how you 

would identify key features like the intercepts and asymptotes in a table of values for the above 

functions f and g. Participant V responded in a manner similar to that of Participant R. 

Participant V: For asymptote, from the exponential graph it is where you look for at which 

value. For the exponential graph, it is the point or it is the number that the Y values don't reach. 

On a table, you will see the number or the value that the Y.... you see the value of the number 

that Y never reaches. Let state for instance in a decreasing function or an increasing function, 

on your table. 

A graph is a diagrammatic representation of a function (Kidron, 2011). Participant V used the 

term “graph” synonymously with “function”. A table of values is not a graph, but a 

representation of the function in ordered pairs in as much as a graph is a function in 

diagrammatical form. Participant V used the terms “point” and “number” as though they 

meant the same stating: “It is a point or number that the y-values will not reach”. As stated in 

earlier paragraphs, an asymptote is not a point, but a well-defined line or curve. There is some 

contradiction in her statement that: “…you see the value of the number that y never reaches…” 

A logical question (from the researcher’s perspective) would then be: “How can that number 

be seen when it is never reached?” That is the contradiction, when y-values do not reach a 

certain number. This participant explains the presence of an asymptote in a table of values 

using his knowledge of the other iconic visual mediator, the graph. In a graphical 

representation, the asymptote and the graph do not intersect for the graphs as participants have 

done (Kidron, 2011).  
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Participant V’s description of an asymptote from a table of values has a background of a 

graph. It is from the perspective of a graph that Participant V visualises the graph not 

intersecting with the asymptote. Using the DPHEF analytical tool, the researcher classified 

Participant V’s word use as “colloquial”, because of the use of the non-mathematical words. 

For example, stating that an asymptote is a point identified in a table of values by not “reaching 

y-values”. His interpretation of the table of values is classified as “not construed”, because he 

tries to explain an iconic (a table of values) using the properties of another iconic visual 

mediator (the graph). In this regard, Participant V’s narratives are classified as “memorisation 

with a visual justification”, largely because his explanations are based on what he sees. He uses 

the words “look” and “see” several times in response to the question requiring the identification 

of an asymptote. Accordingly, his identification of the asymptote from the table of values is 

classified as “ritualised non-mathematical”, because an asymptote is not a point. In this regard, 

he has interpreted the table of values according to what he sees.  

The researcher then asked participants to define an asymptote and explain how they 

(participants) could identify it as an equation in a graph. Five participants responded to the 

question: What is an asymptote and how would you identify it in (i) a graph (ii) equation? Table 6.2 

below shows the classification of participants’ responses using the DPHEF analytical tool. 

Table 6.2: Classification of participants’ responses on the asymptote 

Name Word Use Mediator Kinds of 

routines 

Use of 

routines 

Narratives 

Participant CC 1.5 

there is a point it 

doesn’t touch 

Colloquial Iconic Ritualised non-

mathematical 

Applicability Memorisation 

Mixture of 

literate and 

colloquial 

Not construed Use the word 

point as if its 

synonyms with 

line 

Key features Rule 

Participant V 1.5 an 

asymptote is a point 

the graph will be 

restricted 

Colloquial Iconic Ritualised non-

mathematical 

Applicability Memorisation  

Talks as if 

asymptote is a 

point 

Construed An asymptote 

is not a line 

Visual trigger Based on 

visuals 

Participant DD 1.5 

it is a point on the 

graph, the graph 

does not exist 

beyond that point 

colloquial Iconic Ritualised non-

mathematical 

Applicability Memorisation  

An asymptote 

on the graph 

and asymptote 

is a point  

Not construed Asymptote on 

the graph and  

Visual trigger Visual 

justification 

Participant M 1.5 a 

specific point that 

the graph cannot 

touch, so we draw 

the line 

colloquial Iconic Ritualised non-

mathematical 

Applicability Memorisation  

Specific point 

where the 

graph never 

touches 

Construed Asymptote is a 

point 

Visual trigger Visual trigger 

Colloquial Iconic Ritualised 

mathematical 

Applicability memorisation 
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Name Word Use Mediator Kinds of 

routines 

Use of 

routines 

Narratives 

Participant BB 1.5 

the graph does not 

touch that point 

Value that x 

and y values 

cannot touch 

Construed Use of words 

not 

mathematical 

Visual Visual 

In terms of Table 6.2 above, Participant CC, Participant M and Participant BB described 

an asymptote as a point that the graph did not touch. For Participant V, the graph is restricted 

at the point. Participant DD described the asymptote as a point that the graph did not touch. 

Following below is a discussion of how each of these learners described the asymptote. 

Participant CC vaccillated between an asymptote as a line and an asymptote as a point. For 

him, the graph moved next to the asymptote, but did not touch it. He continued to state that the 

asymptote is not drawn on the graph. This is a reflection of a linguistic challenge in this instance 

(Nair, 2010). What Participant CC means is that the graph and the asymptote do not intersect. 

His definition of the asymptote is confined to the graphical representation only. He goes on to 

describe the asymptote as “a point where the graph does not touch up to infinity”. It seems that 

the word “point” is used synonymously with “line”.  

Participant CC’s word use was classified as “colloquial”, because of the difficulty of 

understanding the meaning of his statements. For instance, he states that the graph moves next 

to the asymptote, or that an asymptote is “a point where the graph does not touch up to infinity”. 

Participant CC has not yet construed the iconic visual mediator. To him, there seems to be no 

difference between a point and a line. His routines were then classified as “ritualised non-

mathematical”, because a point is not a line. His use of routines is “applicability” with 

prominent key features, due to the emphasis on the graph not touching up to infinity. This 

shows that he is aware of the key features in a graph with an asymptote. Participant CC’s 

narratives are also memorisation based on rules. Five times in four sentences, he mentions that 

the graph and the asymptote will not touch.  

Participant M defines the asymptote as a line or point. She goes further to state that the line 

should be drawn. Participant M seems to know that an asymptote is a line as there are several 

sentences where she refers to a line rather than a point. Below is a reflection of Participant 

M’s definition of the asymptote:  

Participant M: If it cuts or touches the axes and there is no dotted line drawn, then there will 

be a specific like line or a point where the graph will never touch. And the line must be drawn. 

We usually draw it all the time.  

Participant M seems to state that the asymptote is not drawn as dotted lines in the event it 

coincides with the axes. An asymptote does pass through axes. There is no mathematical reason 

why it should not. Participant M’s description suggests that she meant that in the case where 



124 
 

the asymptote and the axes intersect, there is no need to draw the asymptote. This is probably 

how she has seen the graphs with asymptotes on the axes being drawn, possibly because of the 

use of the same colour of chalk or pencil. However, this is not a rule of thumb. If different 

colours are used, the asymptote can be visible even on the axes. Participant M uses the terms 

“line” and “point” as if they were synonymous. For her, the evidence of an asymptote is a line 

drawn. An asymptote is premised on the behaviour of the graph rather than the dotted line 

(Nair, 2010).  

Participant M’s use of words is classified as “colloquial”, because her use of terms is not 

mathematical. An asymptote is not a point. Further asymptotes are not defined by their “not 

intersecting” with the graph. The researcher classified Participant M’s interpretation of the 

iconic visual mediator as construed because from her utterances, she has an image of an 

asymptote and it relation to the function despite her discordant language. Her routines were 

classified as “ritualised non-mathematical”, because an asymptote is not a point. She also states 

that there is no dotted line drawn when the asymptote and the axes intersect. This led the 

researcher to classify her use of routines as “applicability based visual trigger”, confirming that 

Participant M describes what she sees. An asymptote is not “visible” (not shown as dotted 

lines) when it coincides with the axes. She refers to an asymptote as a point probably because 

of her interpretation of the table of values. For that reason, the researcher classified her use of 

routines as “visually triggered”. For this same reason again, the researcher classified her 

narratives as “memorisation”, based on visuals.  

Participant BB also defined the asymptote as a line, but mentioned a point that was not 

touched by the graph. There is a contradiction in her narrative, which reflects a line. She once 

more mentions a point that is not touched by the graph, stating: In a graph, it’s a dotted line. 

You will see, if it's a dotted line. The graph goes straight but it doesn’t touch that point. that 

value. 

For Participant BB, a dotted line denotes an asymptote. According to her, a dotted line is a 

way of expressing the asymptote. The dotted line is drawn to distinguish the function and its 

asymptote. When drawing functions using geogebra (an interactive online platform used for 

drawing graphs and other mathematical objects like angles, statistics etc.), the asymptote is not 

shown because it is not part of the function. The dotted line shows the path of the asymptote 

and is not necessarily part of the function. An asymptote is a line or a curve, and not a point.  

The researcher classified Participant BB’s use of words as “colloquial”, because she refers to 

a value that the graph never touches. Such utterances are not mathematical. In addition, 

Participant BB displays recognition of the asymptote. She has observed that for the graphs 

she has seen so far, none intersected with the graph. Accordingly, the researcher classified her 
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interpretation of the iconic visual mediator as “construed”, because she was able to locate the 

asymptote on the Cartesian plane despite challenges imposed by her linguistic ‘interferences’ 

(isiXhosa and English). The researcher then classified he routines as “ritualised mathematical”, 

because she understood that an asymptote was a line. Participant BB’s narratives have also 

been classified as “memorisation”, due to her attempt to remember what she has seen in class. 

She does not give mathematical reasons to her responses, but explains what she has seen by 

stating that the asymptote will not touch that point.  

In responding to a sub-task that required him to state whether a function had asymptotes, 

Participant DD mentioned that the coordinate y could be a point, stating: You have two 

asymptotes; you have the X as well as the y so you have to be specific and state X or Y asymptote 

is. Otherwise it's not clear. If given Y=3, Y it can be a point, it can also be an asymptote. 

A hyperbola has two asymptotes that are perpendicular to each other. These are the horizontal 

and the vertical asymptotes. Participant DD refers to the x and y asymptotes by naming them 

the x and y asymptotes, since they are presented in the form of 𝑥 = 𝑎 and 𝑦 = 𝑏. Participant 

DD is of the view that the naming of the asymptotes in the form of equations enhances clarity. 

In the event that asymptotes are expressed in any other way, there is no clarity as to which of 

the two asymptotes are being referred to. While Participant DD is able to explain how 

asymptotes should be expressed by means of 𝑦 = 3 as an example, he then implies y could be 

a point or an asymptote. This suggests that a point and an asymptote are synonymous. As 

explained above, an asymptote is a line and cannot be a point. The community of 

mathematicians agrees on the definition of terms, and distinguished a point from a line: thus 

distinguishing between an asymptote and a point.  

Participant DD further referes to the need for specificity when naming asymptotes, but at the 

same time refers to the asymptote as of coordinates, and narrates an asymptote and a point as 

being synonymous (Nair, 2010). His use of words has been classified as “colloquial”, because 

it does not pass the test of the community of mathematicians. Participant DD’s call for 

specificity in naming the asymptote justified the researcher’s classification of his interpretation 

of the iconic mediator as “construed”; which demonstrates that his mathematical discourse is 

still developing. He vacillates between mathematical and non-mathematical utterances. For this 

reason, the researcher then classified his routines as “ritualised non-mathematical”. 

Participant DD’s narratives were further classified as “memorisation based on rules”. While 

he referes to x and y asymptotes, he also mentions that y can be both a point and an asymptote.  
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6.2.3 Asymptote as a Boundary 

In this study, participants interpreted the asymptote as a boundary, or a wall preventing the 

graph from passing through it. From the literature review, a horizontal asymptote of a graph 

can intersect a graph. Unfortunately, the type of functions to which participants were exposed 

show that an asymptote does not intersect the graph. Learners’ definition of an asymptote is 

based mostly on unproven conjectures based only on their observations. However, CAPS does 

not necessarily restrict the learning of functions to cases where the asymptote does not intersect 

with the graph. Of the 24 participants, 20 (83%) described an asymptote as a boundary which 

should not be breached. The horizontal asymptote in some rational functions could intersect 

with the asymptote. Participant BB is one of the 20 participants who used the term 

“asymptote” as if it is a boundary. The following excerpt demonstrates Participant BB’s 

reference to an asymptote as a boundary: An asymptote is a form of a boundary, it's a value 

that both Y, if it's a horizontal asymptote the Y -values cannot touch or come cross that line. If 

it's a vertical line, it's a vertical asymptote, the X values cannot touch or go through that line. 

So it’s a boundary but you can't touch it, even though it's a boundary, you can't touch it. So 

your graph goes like this. 

Participant BB describes an asymptote as a boundary that cannot be touched or intersected by 

the graph. While emphasising that there is no intersection on the asymptotes, Participant BB 

also states that: “The x values cannot touch or go through that line”. What Participant BB 

meant by x-values not crossing was essentially that there is no expectation of the function to 

have a coordinate that intersects with the asymptote.  

Unlike Participant BB’s reference to the asymptote as a boundary, his primary 

conceptualisation of an asymptote is that it does not cut through the graph. Unlike other learners 

who emphasised on the graph not touching, Participant R focused on the graph not cutting 

and not going through the graph, as depicted in the following response: So, we've said an 

asymptote is the line in the graph that is not cut by the graph or the graph does not pass through 

that line. so that’s is how I will identify it in a graph.  

Participant R describes what she sees in a graph. The assumption that she and other 

participants have is that the reason for the graph not crossing or cuttting the asymptote is due 

to the position of the asymptote. Participant GG and Participant NN also described the 

asymptote in the same manner, as a line through which the graph does not go.  

Participant BB’s words are “colloquial”, because an asymptote is not a boundary that should 

not be touched (Mpofu & Pournara, 2018). An asymptote shows the path that the function takes 

as the graph tends to infinity. The researcher classified Participant BB’s interpretation of the 

iconic visual mediator as “not construed”, as she could not recognise that an asymptote was 
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not a boundary. Therefore, Participant BB’s routines were classified as “ritualised 

mathematical”, because her narratives indicate she could sketch a mathematical diagram, yet 

she interprets the asymptote based only on what she can see. It is in this context that her use of 

routines were classified as “applicability with visual trigger”. Her narratives were further 

classified as “memorisation based on visuals”, because she sees the asymptote as a boundary. 

Participant Z also has the same view as other learners (seeing an asymptote as a boundary). 

Yet, she mentions that there are no asymptotes in a parent function, as demonstrated in the 

following response: In a graph the asymptote is illustrated, it’s a dotted line. When you don't 

have an asymptote, it is there but it's ok for example if we take a hyperbola both asymptote of 

yours will be on the X axis and on the Y axis, so you won't see a dotted line. On a graph you 

identify an asymptote by looking for a dotted line. You are supposed to show it when we draw, 

if you don’t then it is incomplete.  

For Participant Z, a dotted line denotes the presence of an asymptote. The latter is a practice 

and norm that has been accepted as a norm in their learning of Mathematics. This norm has 

become a rule of thumb to them. A dotted line shows the path of the asymptote, and is not part 

of the function (Flesher, 2003). The ‘normalisation’ is demonstrated by Participant Z’s 

statement: When we don’t have an asymptote, it is there…. 

The response above appears to be a contradiction. Participant Z ascertains the absence of 

asymptotes on the basis of presumption that the asymptotesonly coincided with the axes. In 

essence, the graph will show by its behaviour indicates that there is an asymptote. When the 

asymptotes coincide with the axes, it becomes impossible to make a dotted line visible on a 

solid line, especially when using the same colour pen. The asymptotes will not be visible 

because the colour used for the graph and asymptote is the same. The dilemma facing 

Participant Z is that the asymptote must be shown. What should be done when it coincides 

with the axes? It is this dilemma which causes her to suggest that when the asymptote is not 

there, it is still there. Participant Z further implies that the graph is rendered incomplete mainly 

by the absence of an asymptote. Linguistic interferences and terminological opacity could have 

posed a hindrance to Participant Z’s articulation of her thoughts (Aljoundi, 2014).  

Using the DPHEF analytic tool, the researcher classified Participant Z’s word use as “nearly 

mathematical”, because it is accepted that an asymptote is represented using a dotted line. 

Participant Z understands that despite the visual or symbolic mediators not “showing”, she 

nonetheless understands the presence of the asymptote to be there. Her use of iconic and 

symbolic visual mediators was then classified as “construed”. Participant Z mentions nothing 

on the behaviour of the graph in her description of the asymptote. For this reason, the researcher 
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classified her routines as “ritualised mathematical”. Based on her reference to what she sees, 

Participant Z’s narratives were classified as “applicability with visual bias”. 

Unlike Participant Z, Participant OO’s interpretation of the intersection of the asymptote 

and the function is different. For Participant OO, a function with asymptotes must have dotted 

lines drawn on its graph, and the equation or formula of that function should have the 

parameters p and q. Participant OO responded to the question pertaining to the definition and 

identification of an asymptote as a graph and as an equation as follows: An asymptote is a dotted 

line represented in a graph. If there is no dotted line, it will mean there is no asymptote. In an 

equation, you will see the inclusive of p and q. 

In a graph, an asymptote is identified by a dotted line, without which there is no asymptote. 

The asymptote is a stand-alone with no relation to the graph (Nair, 2010). The behaviour of the 

graph determines the asymptote. With or without the dotted line, there would be an asymptote 

based on the type of graph in question (Mpofu & Pournara, 2018). Participant OO further 

states that an equation or formula could only have an asymptote in the event that there are p 

and q parameters. Participant OO sees the asymptotes in these parameters. Participant OO 

derives this notion from observing and listening to the interlocutor (teacher) who often stresses 

that learners should focus on the parameters of the asymptote. Using the DPHEF, the researcher 

convincingly classified Participant OO’s use of words as “colloquial”, because an asymptote 

is not just a dotted line. The dotted line only serves to distinguish between the graph and the 

asymptote. While Participant OO mathematically observes graphs with asymptotes, he seems 

not to know the purpose served by the asymptotes in a graph. The researcher then classified 

her interpretation of iconic and symbolic visual mediators as “not construed”. Furthermore, her 

routines were classified as “ritualised non-mathematical”, since an asymptote is defined by the 

behaviour of the graph, rather than the presence or absence of the dotted line. When the 

parameters p and q are zero, there will still be asymptotes. His use of routines was classified as 

“applicability with trigger visual”, because he interprets the asymptote according to what he 

sees. Participant OO’s narratives are characterised by memorisation based on visuals (Mpofu 

& Pournara, 2018) because he uses what he sees to justify his responses. 

6.2.4 Asymptote as “Undefined” 

In general, many learners face the challenges of distinguishng a vertical asymptote from a 

removable discontinuity, especially that both are calculated at the zeros of the denominator. It 

is impossible for learners to get an undefined on the horizontal asymptote because it is normally 

an output, rather than an input (for vertical asymptote). Fourteen participants (58%) in this 

study used the word “undefined” 72 times. To these participants, the term “undefined” signifies 

an asymptote. While this may be true for the rational functions that they have been exposed to, 

it is not necessarily true for all the functions. For further clarity on the undefined asymptote, 
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the researcher deemed it necessary to explore the participants’ responses to  responses to the 

question: Explain how you would identify key features like the asymptotes in a table of values 

for the above functions f= 3𝑥+1 − 9 and g=
2

𝑥+3
+ 1. 

The researcher selected four participants and interrogated their use of the term “undefined” in 

relation to the asymptote. Participant Z is one of those participants who used the word 

“undefined” more than four times in three phrases. For Participant Z “undefined” and 

“asymptote” are used interchangeably, because she thinks that “undefined” means 

“asymptote”. Following is an extract confirming Participant Z’s interchangeable usage: 

Undefined means asymptote because it states the graph never touches the asymptote because 

if it touches it, it becomes undefined, so conclude and state undefined is the asymptote. In a 

tangent function, for example in y=t and x, there is an asymptote. You get the undefined when 

you punch it on the calculator. 

According to Participant Z, “undefined” means “asymptote”. When Participant Z sees 

“undefined” on the table of values, she immediately knows that there must be an asymptote. 

“Undefined” in this case is a result of a zero on the denominator for certain values. It is not 

always the case that an asymptote is present wnenever there is a zero. In some instances, an 

asymptote will be a removable discontinuity, which happens when the denominator is a factor 

of the numerator. In such a case, there is ‘undefined’ at the zero of the denominator, but the 

asymptote will not pass through that coordinate. Undefined can only be used to determine a 

vertical asymptote, and not a horizontal one. It is not mathematical to then conclude the 

presence of an asymptote whenever there is an undefined. Participant Z further explains 

‘undefined’ on the basis of a graph touching the asymptote. The function is only defined in 

terms of an input and output, otherwise it is undefined in all other instances. The asymptote 

does not necessarily show where the graph is undefined; but explains the behaviour of the graph 

as the function tends to infinity. Participant Z relates the question of the asymptotes to 

trigonometry, where there is a vertical asymptote for the tangent function. Participant Z 

further shows the universality of the asymptote at the zeros of the denominator. Participant Z 

shows that it is not only with the iconic visual mediator that an undefined will result in an 

asymptote, but also in symbolic visual mediator when she narrates the calculator. She explains 

and puts it beyond any reasonable doubt that for her, “undefined” means “asymptote”.  

Based on Participant Z’s utterances, the researcher classified her use of words for this question 

as “colloquial”, because it is not mathematical to always associate “undefined” with 

“asymptote” as synonymous, which is based on what she has seen. The researcher then 

classified her interpretation of the visual mediator routines as “ritualised mathematical”, 

because her utterances clearly demonstrate both the ability to draw mathematically acceptable 
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graphs and further interpret the table of values and formulae. Since Participant Z relates the 

table of values or ordered pairs to graphs to formulae, the researcher then classified her use of 

routines as “flexible” substantiations that are not approved by the community of 

mathematicians. She justifies her statements by relating the three representations of a function.  

Participant KK is one of those participants to whom the word “undefined” was synonymous 

with asymptote. He uses the term “undefined” eleven times in response to the question 

pertaining to his identification of an asymptote from a table of values. The following extract 

represents his response: The graph will never touch this line because when it touches this line 

it will be undefined. If it is undefined, it means that it does not touch this line. This line gives 

you a… then it becomes, our what, our asymptote. I will state asymptote means undefined 

because, on undefined, the graph, the graph there is not undefined, the graph does not have 

values. I will state it means undefined. If you present a time graph, you know a tan graph, you 

have something like this, a time graph, this is 0, come to this line to 180. You find out that in 

45, you have this number and when you press it on your calculator, it is what. It is undefined. 

But this graph, it will go on the same manner like this but it will not. So that's why I'm stating, 

it is undefined. 

Participant KK responded further thus: If you have a tan graph, tan, tan it begins it 0, and 

this is step 45, Yeah, this will become a graph. A tan graph actually it is 0, 45, 90, it's from 35, 

180. it ends here. Then, you will find in your 90 is what is n. You draw this line and there is 

what, there is error undefined. and in your 180, in your 270 you can add and your graph, will 

have it in this manner and your graph, never touches this line. Because in this line it is what, 

it is error meaning it is equal, it is undefined. So this line becomes the asymptote. So I'm still 

stating undefined means it is the asymptote.  

According to Participant KK, in the event that the graph and the asymptote intersect, the graph 

then becomes either invalid or undefined, based on the graph touching the asymptote line. 

Furthermore, Participant KK mentioned that ‘asymptote’ and “undefined” were synonymous, 

mainly due to the graph not having undefined values. What he actually means is that there is 

no corresponding y-value at the zero of the graph. Unfortunately, the language barrier induces 

a narrative which suggests there are many more coordinates, yet he speaks of only one x-value; 

which does not even have a corresponding y-value. To buttress his point, Participant KK uses 

another function, a tangent, to illustrate that the function is undefined at the zero of the 

denominator. He does not show the relationship between undefined and the asymptote. 

Participant KK uses what he sees to interpret mathematical actions. When performing 

calculations, he commits an error on the calculator. According to him, there is no corresponding 

y-value at the point of calculation. Participant KK realises that when proceeding from the 
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ordered pairs to the graph, the disproportionate part of the x-value and the y- value is then 

sketched as a dotted line and named the asymptote. According to Participant KK still, 

whenever there is an undefined on the table of values, we automatically have an asymptote. 

What Participant KK does not explain is how he arrived at the horizontal asymptote. 

The researcher classified Participant KK’s word use as “colloquial”, because undefined does 

not necessarily mean there is an asymptote. Sometimes, it might be a removable discontinuity. 

Participant KK did not explain how that undefined translated to an undefined. His 

interpretation of the iconic visual mediator is then classified as “not construed”. His routines 

are ritualised because he could perform all the mathematical processes without showing some 

understanding of the reasons for the mathematical process. He has not objectified the 

mathematical object. Accordingly, the researcher classified his use of routines as “flexible”, 

because he is able to use the tangent function to explain the hyperbola. Using the DPHEF 

analytic tool, the researcher further classified Participant KK’s narratives as “memorisation 

based on visuals” due to his memorisation ofwhat he has seen in both the table of values and 

the graphs. 

A mathematical error occurs on a calculator when the calculator does not recognise the 

mathematical manipulation performed on it. For example, some calculators show an error on 

the screen when a square root of a negative number is written. The square root of negative nine 

is three I (3i), but the calculator may display an error. This means that an error on a calculator 

is all about the programming of thecalculator, than a mathematical error per se. At the zeros of 

denominators of rational functions, calculatotors normally display an error. Participant KK 

and Participant Y are examples of learners who used the word error for an asymptote. The 

following excerpt by Participant Y used the word error to explain the presence of the 

asymptote: For asymptotes, we will see where there is an error. For asymptote, that’s what’s 

the graph states, if there is an error in Y, then the X values will be the asymptote. 

As explained in the above paragraph, an error does not necessarily mean the prevalence of an 

asymptote passing through that coordinate. Participant Y states that the identification of the 

table of values should be shown by an error. Undefined is usually written on the table of values 

not as an error. As explained earlier, undefined does not necessarily mean the graph has an 

asymptote. Participant Y’s response shows that she relied most on what she saw on the 

calculator without necessarily making explorations on the mathematical object. An error does 

not necessarily mean that the asymptote will pass through that particular point.  

Using the DPHEF analytical tool, the researcher classified Participant Y’s word use as 

“colloquial”, because an asymptote is not identified by an error on the graph; but the behaviour 

of the graph as the function tends to infinity. The iconic visual mediator is not construed 
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because a calculator is supposed to be a calculation aid. What is found on the calculator should 

be used without processing. When a calculator uses words such as error, participants should 

be able to interpret their meaning and use mathematical language. Given her responses, the 

researcher classified her routines as “ritualised non-mathematical”, because on a table of 

values, the word “error” should not be written or found. The researcher accordingly classified 

her use of routines as “applicability with a visual trigger”. Participant Y justifies her answers 

based on what she sees. On that account, her narratives are classified as “memorisation based 

on visuals”. 

According to CAPS, learners should be able to work flexibly between four representations of 

the function. These representations are verbal (words), equations (formulae), numeric (ordered 

pairs), and diagrammatic (graph). These four representations of the function are the same 

phenomenon expressed in different formats. Participants should be able to identify key features 

of the function from whichever representation. A table of values or ordered pairs also represents 

a function. The choice of the input values for the vertical asymptote determines whether key 

features such as intercepts, turning points, or asymptotes could be identified. Three of the 

participants stated that the asymptote could not be identified from the table of values. These 

participants (Participant MM, Participant FF and Participant OO) indicated that an 

asymptote could not be identified from the table of values. Their statements were virtually the 

same, suggesting that an asymptote cannot be identified from a table of values. Since the four 

representations of an asymptote are an expression of the same function, there should be a way 

of expressing the table of values such that key features such as the intercepts and asymptotes 

are visible. Based on the nearly similar statements of the participants, the researcher classified 

their word use as “colloquial”, because it is possible to identify an asymptote from the table of 

values; especially when non-integral values are used for the input (Moalosi, 2014). 

Furthermore, the researcher classified the interpretation of the iconic visual mediator as “not 

construed”, due to their failure to recognise that the asymptote could be construed from the 

table of values. These types of routines are “ritualised mathematical”. While participants are 

able to draw tables of values, they are unable to interpret these tables fully.  

6.3 Conclusion  

In this chapter, the researcher demonstrated that the mathematical discourse of the participants 

was still developing and characterised mostly by colloquial and ritualised routines, as well as 

narratives that were mainly based on what participants could see, rather than the mathematical 

explorations (Mpofu & Pournara, 2018). The researcher utilised the DPHEF analytic tool and 

discussed participants’ representation of the term “asymptote”. Language posed a barrier for 

most of the participants. Such a state of affairs is inimical to their capacity to fully represent 
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their knowledge, understanding and experiences. Inadvertently, this leads to learners referring 

to an asymptote as a point.  

While most of the words used by learners were mathematical, there were instances of their 

confusing communication as accepted in the community of mathematicians; for example, when 

they named an asymptote as a number, an asymptote of an exponential function, or as a vertical 

line. Learners’ visual mediators were generally construed, meaning that they were able to 

interpret both the iconic and symbolic mediators of the two functions. It was difficult to obtain 

reasons for these mathematical actions performed by the participants, which are also largely 

premised on what they saw and/or what they have been taught. Learners deduced meaning from 

what they saw from symbolic and iconic visual mediators.  

The lerners’/ particpants’ representation of the asymptote of the hyperbola and exponential 

functions in this chapter was of critical importance to the broader domain of the study’s 

objectives. Similarly, the next chapter (Chapter 7) provides a conclusive link to learners’ 

mathematical discourses and the community of mathematicians. Such a link is necessary, since 

the learning Mathematics is not a end in itself, neither is such learning peripheral to learners 

connection with their daily realities (Bradley et al., 2013; Caduri et al, 2015) 
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CHAPTER 7 

FOUR REPRESENTATIONS OF A FUNCTION 

7.1 Introduction 

In Chapter 6, the researcher discussed all participants’ responses to the interview questions 

pertaining to the hyperbola and exponential functions. The South African high school 

Mathematics curriculum requires grade 11 learners to work flexibly between the four 

representations of a function (DBE, 2011). In the current chapter (Chapter 7), the researcher 

analyses the mathematical discourse of the 24 participants using the DPHEF. From the 

researcher’s observation, participants were more comfortable with interpreting functions that 

were expressed in algebraic and graphical forms. Although the participants’ mathematical 

discourse was largely visual and based on what they could see, there was evidence of their 

developed mathematical discourse on the function sub-discourse.  

An algebraic formula with an input and an output is one of the four representations of a 

function. An equation with at least two variables represents a function in algebraic form 

(Mahlobo, 2004). In such an equation, there is an input and output value. The algebraic 

representation of functions illustrates the continuity of the graphs because any real values of 

the input produce an output, except in cases where there is an asymptote or a removable 

discontinuity (Berger, 2013). Not all equations produce a function. For example, the inverse of 

a quadratic function and the equation of a circle are not functions. For purposes of this study, 

the researcher focused on the exponential function and the hyperbola. An exponential function 

is characterised by a fixed base, and an exponential function has a variable. The researcher 

expected participants to describe or identify an exponential function as one in which the 

variable x is an exponent. Such description and identification was expected to be central to 

discussing the algebraic representation of the exponential function in a hyperbola as a function, 

where x and y-values are generally inversely proportional to each other. As x values increase, 

the y-values decrease proportionally. Participants rarely described the algebraic representations 

of the two functions in the manner described above; that is, in terms of inverse proportionality. 

7.2 Translation of Functions 

In its simplest form, a parent function is a function in a family of functions that bears the 

characteristics of that function in terms of shape and other properties of the entire family 

(Webber, 2002). For example, in a hyperbola, the parent function would be the two asymptotes 

which are perpendicular to each other in a graph which has two parts that are mirror images of 

each other. In essence, a parent function could be conceived as a function without any form of 

transformation. In fact, all other transformations on functions are performed on it.  All functions 

have a parent function and the description of the function should have a relationship with the 

parent function. It is against this background that the study participants expressed the hyperbola 
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and the exponential functions in terms of their vertical and/or horizontal translations. Most of 

these participants explained the relationship of the graph and its parent function from the 

transformed function to the parent function. No participant referred to the parent function by 

its name. Words such as “standard function” and “original function” were often used.   

Furthermore, all participants identified the two functions expressed in the form of the algebraic 

equations by name. The researcher identified six categories of the participants’ explanation of 

the relationship between the parent function and the transformed function. Ten participants 

(42%) either named the parent function as the original function, or as the standard function. 

Five participants (21%) described the translation of the function as a way of identifying self-

same functions. In a way, the participants did not state how they identified the function because 

all functions can be translated. Two participants (8%) saw an index and concluded that the 

function was exponential. Four learners saw a denominator and then concluded that the 

function was a hyperbola. Participant OO did not identify the function, but only spoke of an 

asymptote. In the following paragraphs, the researcher discusses how each participant 

identified the functions.  

The first task in the first question assigned to the learners was: 𝑓(𝑥) = 3𝑥+1 − 9 and 𝑔(𝑥) =

2

𝑥+3
+ 1. Participants were required to name these two functions and relate them to the parent 

function. The researcher then subsequently focused on an analysis of the participants’ 

responses.  

Five participants (Participant HH, Participant M, Participant II, Participant SS and 

Participant V) named the functions as the exponential function and the hyperbola. They also 

described the relationship between each function and its parent function in terms of the 

translation between the parent function and the transformed function. 

Participant HH and Participant II described the translation from the parent function to the 

translated function. That was how they responded to the question that required them to show 

the relationship between 𝑦 = 3𝑥 and 𝑓(𝑥) = 3𝑥+1 − 9. Participant HH and Participant II 

responed thus: I think f(x) is shifted 9 units downwards and 1unit upwards to the left and 9 

units downwards. 

Participant HH’s and Participant II’s descriptions show that the translated functions 

originated from the parent function. These two participants used mathematically appropriate 

words. For that reason alone, it was not difficult to understand how their reasoning of the 

function f was arrived at, by shifting the parent function 9 (nine) units down and 1 (one) unit 

to the left. Using the DPHEF analytic tool, the researcher classified their interpretation of the 

algebraic representation of the function as “construed” because of their ability to relate the 
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parent function to the transformed function. Participant II’s and Participant HH’s routines 

were also visually triggered, because they based their descriptions of the function on the 

parameters that showed the translations (Ben-Yahuda et al., 2005). The two participants 

described the relationship between the parent and translated functions in a reverse order, where 

there was a suggestion of a translated function preceding the parent function.  Participant V 

explained the translation thus: The first function is an exponential graph, the graph shifts 1 unit 

to the right and 9 units upwards. 

Interviewer: Why do you say that? 

Participant V: Because for you to get 𝑦 = 3𝑥you shift the graph 1 unit to the right and 9 units 

upwards. 

The responses above indicate that they did not recognise 𝑦 = 3𝑥 as the parent function from 

which other functions were translated. Functions were translated from the parent function and 

all descriptions of transformations should have reflected that they emanated from the parent 

function. Participant V used mathematical words, which showed a developing mathematical 

discourse. Although they reversed the description of the translation, there was evidence of 

active participation in mathematical discourse.  

Both Participant V and Participant M could interpret the mathematical object by naming and 

describing the mathematical object. These two participants’ routines of naming the function 

𝑓(𝑥) = 3𝑥+1 − 9 were classified as “ritualised mathematical” because they could name the  

function but did not recognise its parent function. 

While Participant M’s mathematical discourse was the same as that of Participant V, she 

attempted to explain the process by translating functions horizontally, which shows that most 

of her narratives were teacher-driven; rather than from explorations or investigations from her 

own calculations (Sfard, 2012). Below is the conversation between Participant M and the 

researcher (interviewer):  

Participant M: It is going to the right because of the signs. We can. Let's say here in 𝑓(𝑥) =

3𝑥+1. We can state negative one, which is the shift, negative one. Then one and one will cancel, 

then you will be left with 3𝑥. So when the graph is shifting to the right, we are saying it is 

negative. 

Interviewer: Now I want us to talk about that if it is positive one, it means it is going to the 

left. Where do you get that? 

Participant M: It depends on the x-axis or the y-axis. If it is positive that it means it is going 

up, if it is negative, which means it is going down.  

Interviewer: What tells you that? 

Participant S: That is what we were taught. 
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Interviewer: That is how you were taught? 

Participant S and Participant M: Yes 

Interviewer: Did you try to investigate and see.  

Participant M: We did not try that 

Just as Participant V did, Participant M explained the relationship from the transformed 

function to the parent function. Participant M focused on trying to explain the horizontal 

translation of the exponential function. Meanwhile, the researcher then asked Participant M 

to elaborate further on the rules of horizontal translations. These rules state: if 𝑦 = 𝑓(𝑥), then 

𝑦 = 𝑓(𝑥 − ℎ) yields a horizontal translation of the graph of f. The translation was h units to 

the left, because h was greater than zero; and h units to the right for h was less than zero, where 

h was an element of real numbers. Participant M’s explanation was unclear. Although one 

could tell that she was familiar with the applicable rule, she could not articulate it. 

Participant M: When the graph is shifting to the right, we are saying it is negative.  

In the above response, Participant M implies that for negative h, the graph moves to the right. 

The confusion arose when she used the word “negative”. It was not clear whether she meant a 

translation in the mould of 𝑦 = 𝑓(𝑥 − ℎ), or 𝑦 = 𝑓(𝑥 + ℎ). A negative h in 𝑦 = 𝑓(𝑥 − ℎ) 

moves the graph to the left rather than to the right. When the researcher probed Participant M 

on horizontal translation, she spoke of the vertical translations, stating: It depends on the x-axis 

or the y-axis. If it is positive that means it is going up. If it is negative, it means it is going 

down. Participant M’s statement vacillates from the horizontal translation to the vertical one. 

She speaks of the graph either going down or going up. The researcher was then interested in 

obtaining her mathematical discourse on translations. For that reason, the researcher let her 

continue with the vertical translation. In this regard, Participant M spoke of the x and y-axes 

as the basis of translation, instead of the horizontal or the vertical translation.  

The researcher classified Participant M’s word use as “colloquial”, because of the discordant 

use from the perspective of the community of mathematicians. Although she used mathematical 

terms, she did not use them appropriately. There was no translation in the x or y-axes. 

Furthermore, Participant M’s interpretation of the symbolic visual mediators, 𝑓(𝑥) = 3𝑥+1 −

9 and 𝑦 = 3𝑥 was “construed”, because she realised the relationship between the two algebraic 

representations of functions to be translations. Although it was not easy for her to fully describe 

the relationship, there was evidence of a developing mathematical discourse (Sfard, 2012).  

In addition, Participant M’s routines were ritualised. Although she could tell that a translation 

was performed, she could not fully state the translation which had taken place. Lastly, their 

narrative was based on authority. When asked to provide reasons for their narratives, 
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Participant M and Participant S attributed their knowledge to the teacher rather than to what 

they investigated themselves, emphasising that it was how they were taught. 

Participant Y recognises that the function was a translated exponential function, but she could 

not describe the change mathematically. In that regard, Participant Y responded to the 

question and named the function f and described how it related to 𝑦 = 3𝑥.  

Participant Y: F(x) in this graph is an exponential graph and the graph relates to 3𝑥. You can 

say that 𝑦 = 3𝑥... and it will be shifted.  

Interviewer: How will it be shifted? 

Participant Y: The asymptote is one unit down. 

Interviewer: How do you know this? 

Participant Y: The exponential graph does not shift horizontally, it shifts up or down. 

Question 1.1 presented a function in the algebraic form: 𝑓(𝑥) = 3𝑥+1 − 9.  Although 

Participant Y used mathematical terms, they were used in a wrong place, and she did not make 

a distinction between different representations of a function. An algebraic representation 

cannot be referred to as a graph, because a graph is diagrammatic representation of a function 

(Pinter, 2014).  

Participant Y went on to narrate the shifts, which are mathematically referred to as 

translations. She realised that 𝑓(𝑥) = 3𝑥+1 − 9 was a translated function. Such realisation 

shows that her mathematical discourse was advanced. However, she moved away from talking 

about shifts and talked more about an asymptote. In responding to the question on the 

translation of function f, Participant Y spoke of an asymptote moving one unit down. In a 

way, she associated translations with the asymptotes. The translation itself indicated ritualised 

routines because the algebraic representation of the function showed the translation and the 

position of the asymptotes were the consequence of the function being translated. According 

to Participant Y, the function should have been translated one unit down, because she stated 

that the asymptote had been shifted one unit down. She went on to state that the exponential 

function did not shift horizontally, but that it was translated vertically up and down in terms of 

which all functions could be translated. In this regard, Participant Y based her argument on 

the asymptote, stating that: With the asymptote, if you notice, it cuts up or down. It doesn’t have 

a vertical asymptote because it cuts on the y-axis. 

From the above statement, it could be deduced that Participant Y largely associated 

translations with the asymptotes. While it was true that the exponential function does not have 

a vertical asymptote, it was not correct to state that a function does not have a horizontal 

translation only because of the absence of the asymptote. Participant Y’s utterances brought 

to the fore the challenge of translating the vertical and horizontal asymptotes. When asked how 
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she knew that the graph did not have a horizontal shift, Participant Y responded thus: You 

inspect the graph to know that it does not have a vertical shift. 

Participant Y then erred by stating that there was no vertical shift on the graph. She performed 

well in the functions test by obtaining 85% of the marks. However, she did not show any 

significant degree of competence on the translations, due to her association of the asymptote 

with translations.  In addition, she explained the translation of the hyperbola from the 

perspective of the asymptote. In the hyperbola, she mentioned both the horizontal and the 

vertical translations.  

Although Participant Y used mathematical words, she was saming (Nachlieli & Tabach, 2012) 

translations with asymptotes. Saming refers to the treatment of two different objects as though 

they were similar. Where she could identify the asymptote, she did so in the context of a 

translation. Where she did not find an asymptote, she was unable to notice the translation. 

Consequently, the researcher classified her interpretation of the algebraic symbolic mediator 

as not “construed”. Since she could respond to mathematical questions on functions, but could 

not explain herself, Participant Y’s routines were then classified as “ritualised”. Her use of 

routines was mostly visual, basing her utterances on what she could see. In addition, her 

narratives were classified as “memorisations based on visuals”, because she explained all her 

actions according to what she could see (Mpofu & Pournara, 2018). 

In this study, the researcher has elaborately explained the relationship between the parent 

function and the transformed function using the translations from the participants’ perspectives. 

All five participants used the term “shifts” while also identifying and naming the functions. 

However, their description of the function was translated differently. Two participants 

explained the translation from the parent function to the transformed function. Another two 

spoke of the “shifts” as though they were from the transformed function to the parent function. 

The fifth participant could not distinguish a translation from an asymptote at all.  

7.3 Parental Function 

A parent function is the simplest function in its family (Kuang & Gilman, 2011). It is from this 

parent function that other functions are ‘born’ from translations, reflections and other 

transformations. Sometimes, the parent function is referred to as the basic function. In this 

study, the researcher concentrated only on the vertical and horizontal translations. In 

exponential functions, the parent function is expressed as 𝑓(𝑥) = 𝑏𝑥, where b is a positive 

rational (b > 0; b≠ 1). With regard to the hyperbola, the parent function is expressed as 𝑔(𝑥) =

𝑎

𝑥
. Twelve participants (50%) described the parent function as either a standard or original 

function, but none of them used the term “parent function”. A standard quadratic function is 
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written in the form of 𝑓(𝑥) = 𝑎(𝑥 − 𝑝)2 + 𝑞, while its parent function is 𝑓(𝑥) = 𝑥2. In the 

next few paragraphs, the researcher describes how participants discussed the parent function.  

Participant R and Participant W used the term “basic graph” to describe the parent function. 

The use of the term “basic graph” indicates that the learners were able to describe the parent 

function. These two participants were presented with a graph in the form of an algebraic 

representation of a function. They could have referred to the graph as an equation. They named 

the algebraic representation of an exponential function as follows:  

Participant W: So, f is a exponential and y is a basic graph but f has obtain a shift in y 1unit 

to the left and then g(x) is  a hyperbola graph and y is a basic form of a hyperbola but g(x) is 

obtain by shifting y 3 units left and 1 unit upwards. 

Interviewer: What do you think? 

Participant R: It is the same thing. 

While Participant W posits function f as an exponential function, she did not state for which 

function was it the basic graph. She only explained the horizontal shift of the function and said 

nothing of the horizontal for both functions. She just agreed with Participant W, and they both 

did not provide more information relating to their mathematical discourse. However, both 

participants used mathematical words. In the meantime, Participant Z used both the standard 

and original functions as though they were synonymous. She named the functions as 

exponential function and the hyperbola. She went on to describe the relationship between the 

parent function and the transformed function. She described the relationship between the 

algebraic representations 𝑦 = 3𝑥 and 𝑓(𝑥) = 3𝑥+1 − 9 as follows: 

Participant Z: The question is given as okay. 𝑦2, 𝑦 = 3𝑥, is the standard form. And f (x) which 

is y to the, which is three to the power x plus one minus nine (𝑓(𝑥) = 3𝑥+1 − 9) . Here it will 

do a shifting one: a shifting or a translation both vertical and horizontal translation 

Interviewer: What do you mean by standard form. 

Participant Z: Standard form means it is not shifted. Just original. , it not shifted. where x , 

there is no translation 

Participant Z’s response above suggests that she was able to described the relationship 

between the parent function and the transformed function as a translation. Therefore, her use 

of the word “translation” was mathematical. It was unlike some participants who did not use 

the term “translation” at all. She also used the term “standard form”. When asked for the 

meaning of “standard form”, she stated that it“ means it is not shifted, just original”. What she 

meant was that 𝑦 = 3𝑥, was not translated, but 𝑓(𝑥) = 3𝑥+1 − 9 has been transformed. 

Language use might have affected how Participant Z expressed herself, but her intentions 

were clear. For her, a standard form was the parent function. She did not use words 
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appropriately, as indicated by her use of “original” and “standard form” as though they were 

synonymous. A standard function is not the same as the parent function, nor is it known as an 

original function.   

Participant AA, who was a partner of Participant Z during the interviews, spoke of 

translations as Participant OO spoke of eliminations. However, Participant AA used the 

“translations” in his response. The question was asked: Explain how f (𝑥) = 𝟑𝒙+𝟏 − 𝟗 relates to 

𝑦 = 3𝑥 and g(𝒙) =
𝟐

𝒙+𝟑
+ 𝟏 relates to =

2

𝑥
 , to which he responded as follows: 

Participant AA: So now ,what we did here is, we saw that 𝑦 = 3𝑥 we saw that the -9 and the 

+1 were Participant OO eliminated from the whole equation so we thought, see it here, y to 

the power 3𝑥 is the standard form of an exponential function and f is translated graph of y = 

3𝑥  is obtained by shifting y 9 units down and 1 unit to the left. 

Interviewer: Ok, go on. 

Participant AA: And the hyperbola  𝑦 =
2

𝑥
 is the standard form of a hyperbola and g is obtain 

by shifting the standard graph 3 units to the left and 1unit up. 

To some extent, Participant AA explained the relationship from the transformed function to 

the parent function, yet all functions were transformed from the parent function. However, he 

self-corrected and used a proper mathematical term, “translation”. He explained correctly that 

f was a translation of the parent function, and went on to explain the hyperbola accordingly.  

Although Participant AA could explain the relationship between the parent function and its 

offspring, he still used “standard form” instead of “parent function”. His use of words was 

somewhere between “colloquial” and “mathematical”. At the same time, Participant AA’s 

interpretation of the symbolic visual mediator was classified as “construed”, since he was able 

to show the relationship between the two functions, as well as to explain the translation. There 

was evidence of a developing mathematical discourse in the functions discourse because 

Participant AA could talk of the relationship between the parent function and its offspring. 

Participant BB and Participant CC both used the term “original function” instead of “parent 

function”. These two participants did not show or state how the two functions were related. 

Following is the trajectory of the interview with the two participants. 

Participant BB: So f (𝑥) = 3𝑥+1 − 9. It is an exponential function and it is related to y = 3𝑥 

because y = 3𝑥 . 𝐼t is the original graph of the function above and also 𝑔(𝑥) =
2

𝑥+3
+ 1 is a 

hyperbolic function and it is related to 𝑦 =
2

𝑥
  since 𝑦 =

2

𝑥
 it an original function. 

Interviewer: What do you think? 

Participant CC: Yes. f(x), f is an exponential graph because it goes y = 3𝑥     I can see it is the 

original graph of this graph 
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Participant CC and Participant BB agreed on the use of the term “original graph”. From their 

statements, it was clear that they meant the parent graph. The representation that they were 

referring to, is the algebraic representation of a function. The two participants did not explain 

how they related the two functions. The researcher classified their use of words as “colloquial”, 

because they referred to the parent function as an original graph, and to the algebraic 

representation of the function as a graph. They both interpreted the two pairs of symbolic 

representations and visual mediator mathematically, and the researcher classified this 

interpretation as “construed”. In this context, these two participants exhibit a growing 

mathematical discourse. 

Participant X and Participant DD also spoke of the relationship between y = 3𝑥  and f (𝑥) =

3𝑥+1 − 9 as a vertical stretch. Stretching the graph vertically moves it away from the x-axis. In 

a stretch, there is a stretch factor greater than 1 (one) that multiplies the function. One (1) 

cannot be a stretch factor as it is a multiplication identity. Both participants stated that the 

relationship between the two functions was a vertical stretch, yet the multiplicand is 1 (one). 

Following is the trajectory of their responses during the interview. 

Participant X: I said that f(x) is an exponential function and g(x) is a hyperbola. f relates to 

y=3 exponent x (y = 3𝑥) because it is an exponential graph or function without shift and g 

relates to 𝑦 =
2

𝑥
  because it is a hyperbola without any vertical or horizontal shift. 

At first, Participant X identified the parent function by stating that it did not undergo any 

transformation. At the same time, she did not explain how the functions are related to each 

other. She realised that 𝑦 =
2

𝑥
  is a parent function, but did not name it as such. The researcher  

followed up on both participants, as indicated below. 

Interviewer: So, if you look at y = 3𝑥 and f(x), how do they relate? 

Participant DD: Ok. from my answer I say f(x) is an exponential function. g(x) is a hyperbola. 

f(x) graph and y = 3𝑥 are related such that they have the same vertical stretch. Their 'a' is the 

same. That is what I’m trying to say. 

Interviewer: Do you agree? 

Participant X: Yes, I agree. 

Instead of pursuing the idea of a parent function, Participant DD digressed, and spoke of the 

stretch. The value of a was the same for both equations, implying that there was no stretch. 

Participant DD acknowledged that there was no stretch, stating that, “the value of a is the 

same”. Participant DD was implying that both functions were stretched, but did not give a 

definitive stretch factor that would have clearly indicated that a stretch had occurred. The use 

of terms by both these participants show that their mathematical discourse was still developing. 
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Although they did not use mathematical words appropriately, there was evidence of their 

familiarity with mathematical terms on functions such as “stretch” and “shifts”. Both 

participants may have used mathematical terms, but they did not grasp the full import of the 

meanings of those terms. In this regard, they have not yet fully objectified the mathematical 

object known as a function (Sfard, 2012). After naming the algebraic representations of 

functions as an exponential function and a hyperbola, Participant EE and Participant FF 

spoke of a standard equation when actually referring to the parent functions of the respective 

functions named above. They also spoke of a hyperbola as a function with a fraction. As stated 

in the literature review, not all fractions are equations (Larson, 2016). For example, 𝑓(𝑥) =

1

2
𝑥 is not a hyperbola. In this regard, both participants’ responses were as indicated below. 

Participant EE: Yeah the standard equation has an exponent and that is how we are taught 

because you can see the exponent there, so it is an exponential graph because the name states 

so and then … 

Participant FF: It is a standard equation 

These two participants name the algebraic expression of a function as a standard equation. A 

standard equation refers more to equations in general, rather than to functions. They could have 

spoken of the standard form of a function. The terms used by these to participants made 

communication difficult within the community of mathematicians, as it would be hard to 

identify the mathematical object of their narrative. Participant EE went on to present an 

exponential function as exponential, merely because the name suggests so. He also alluded that 

the exponent on the function resulted in the function being named as such.  

One other important utterance from Participant EE has to do with his narratives. This 

participant attributed his narrative to what he had been taught, which is an authority 

perspective. In terms of the DPHEF, Participant EE’s routines are classified as “ritualised”. 

This classification was based on the fact that he did and said what he saw and heard others state 

on the functions discourse. Participant EE’s routines were not a result of explorations, but 

rather premised on the procedures and processes of others. 

The community of mathematicians does not use the term “original function”. Therefore, it is 

not mathematical. A standard function is one defined on an interval of R that is obtained by a 

finite sequence of standard operations beginning from any combination of three basic functions 

(Larson, 2016).  
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7.4 Functions in Word Form 

Teaching and learning is sometimes influenced by the emphasis placed on content of the 

examinations, more than on the content of the curriculum. Verbal representations of the 

functions formed part of examples which were rarely examined in the curriculum. As a result, 

these representations may not have been given much attention in teaching and learning, as the 

evidence of this study suggests. In the next paragraphs of this section, the researcher discusses 

how grade 11 learners participated in the hyperbola represented in word form. 

7.4.1 Hyperbola expressed in a verbal form 

A rectangular hyperbola (also known as a school hyperbola) is an example of an inversely 

proportional function (Kuang & Gilman, 2011). If all other variables in the function were kept 

constant, the size of one variable increased as the other decreased. That could also be true for 

a decreasing exponential function, but the difference was that the product of any corresponding 

points of a hyperbola was constant. That aspect was noticed in a parent hyperbola. Participants 

were presented with a verbal parent hyperbola in which the number of workers increased as 

the time decreased. The statement to which they were required to responded, was: A group of 

workers are planning to paint 10 houses in a complex. It takes 80 hours for 1 (one) person to 

paint all the houses, 40 hours for 2 workers, 20 hours for 4 workers and so on. 

Only 2 (two, 8%?) of the 24 participants recognised the function as a hyperbola. Fourteen 

participants (58%??) thought that the function was exponential; 4 (four, %?) participants stated 

it was linear; and a further 4 (four, 16%) stated they could not respond to the question. The 

researcher then interrogated the 2 (two) participants’ identification of the verbal expression as 

a hyperbola. Participant GG was the only one who exhibited a developed mathematical 

discourse on the hyperbola expressed in words.  

Interviewer: What do you think it is?  

Participant GG: I think it's a hyperbolic function. 

Interviewer: Hmmm why do you say so?  

Participant GG: I think if we look at the statement at the end. It says, it takes eighty hours for 

1 person to paint all the houses. Forty hours for work.....eighty...forty hours for two workers 

and twenty hours for four workers, so we gonna multiply the number of workers, and the 

number of workers yes by the number of hours so we gonna take eighty multiplied by 1 equal 

to eighty, eighty multiplied by two is equal to...oh no... And then forty multiplied by two because 

it takes forty hours for two workers, equal to eighty. And twenty hours times four workers is 

equal to eighty. So now, if we multiply the x-values by the y-values we get a constant number 

that is eighty. So.... so x times y, we can make x the number of hours because number of people 

are independent of time. Time depend on the number on the number of workers that are 

painting the house, so we gonna say x times y equal to k, k is for this constant number and then 
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if you divided by x, you divide by x on this side, y is gonna be equal to 
𝑘

𝑥
, this is the general 

graph of a hyperbola. 

Participant GG exhibited an objectified mathematical discourse on the verbal representation 

of the hyperbola. She realised that the product of any corresponding points resulted in a 

constant. In this question, the constant was 80. Participant GG went on to generalise and 

wrote the function in terms of x, y and k. Her use of words was mathematical. Furthermore, 

she showed that the product of the independent and dependent variables resulted in a constant. 

In this regard, she was abled to identify the function in question as a hyperbola.  

Participant GG was also able to interpret the symbolic visual mediator. The graph was 

expressed in word form and she managed to move from words to algebraic form. Subsequent 

to showing a pattern in the product of the independent and dependent variables, she went on to 

generalise and stated the algebraic form of the function. Using the analytical tool the DPHEF, 

her interpretation of the verbal representation was classified as “formulated” or “generated”, 

because Participant GG came up with a generalised algebraic function derived from a worded 

statement. Her ability to move from words to arithmetic statements and then to algebraic 

equation, showed that her routines were more of exploratory. In addition, Participant GG’s 

use of routines was classified as “flexible”, because she could relate various forms of the 

representation of the hyperbola (Ben-Yahuda et al., 2005). The researcher then classified her 

narratives as “substantiations”, because of her clear justification of her worded statement as a 

representation of a hyperbola.  

Participant GG was the only one of the 24 participants who explained the relationship and 

justified it. Participant HH on the other ahnd, only named the function as a hyperbola but 

could not show or state why she said so in a mathematically acceptable manner. The following 

excerpt shows Participant HH’s responded to a question requiring her to name the function 

from a worded statement. The statement was: A group of workers are planning to paint 10 

houses in a complex. It takes 80 hours for 1 person to paint all the houses, 40 hours for 2 

workers, 20 hours for 4 workers and so on. 

Interviewer: And what did you say it was?  

Participant HH: A hyperbola. 

Interviewer: You are saying is a hyperbola, how do you know? 

Participant HH: Because when you divide forty by two you get the same answer as when you 

divide twenty hours by four and so on.  

Interviewer: What is the same answer? Divide forty by two what did you get.  

Participant HH: Twenty 

Interviewer: You divide twenty by four, what did you get?   



146 
 

Participant HH: You get three comma something no, you get a comma something. 

Interviewer: Twenty by four? 

Participant HH: A five. 

Interviewer: Ok, you get a five. So now I am interested in the reasons why you are saying it's 

a hyperbola. 

Participant HH: No response. 

While Participant HH named the function in written words as a hyperbola, she could not 

provide mathematically acceptable reasons for stating so. Participant HH further stated that 

the division of the ordered pairs resulted in the same answer. If that was true, then the function 

was most likely to be linear with an intercept of zero. When the researcher asked her to justify 

her statement, this showed that her division was not up to the expected level. She could not 

divide 4 (four) into 20. After realising that division of the ordered pairs was not constant, she 

could not provide any further cogent reasons. Her use of the phrase “same answer” was not 

mathematical. In the context of Participant HH’s narrative, “same answer” would have meant 

that the division of the number of hours by the number of people should yield the same number. 

Her use of words in this instance was classified as” colloquial”, because she did not obtain the 

same answer as she purported to. Her use of symbolic mediator necessitated that she be 

classified as ‘not construed”. She could not interpret the verbal representation of the function. 

Her routines were classified as “ritualised incorrect”, because she experienced challenges of 

division (Sfard, 2012). Her narratives were mostly memorisation as she just stated what she 

could remember. In the next few paragraphs, the researcher discusses the following verbal 

response by participants, as representing a linear function: A group of workers are planning to 

paint 10 houses in a complex. It takes 80 hours for 1 person to paint all the houses, 40 hours 

for 2 workers, 20 hours for 4 workers and so on.  

7.4.2 Linear function 

A linear function is denoted by a common gradient and coordinates which form a straight line 

(Stewart, 2012). One way of testing the linearity of a function is to check whether the points 

were collinear or not. Corrigibility routines are mostly about checking one’s assertions on 

various mathematical narratives (Ben-Yahuda et al, 2005). Four participants stated that the 

verbal representation of the function was linear, but none of them checked whether or not the 

points were collinear by calculating the gradient.  

Participant II stated that the function was linear, but did not demonstrate the collinearity of 

the points. Instead, he stated that there was a common factor of two for both the dependent and 

the independent variable. This is how the interview proceeded:  

Interviewer: What did you say it was? There is the question there.  
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Participant II: I said that a linear function. 

Interviewer: Why?  

Participant II: Because the relationship between the number of hours and number of workers 

is the same. Number of hours only decrease by a factor of two, and then the number of workers 

increase by a factor of two.  

Interviewer: So did you prove that it is a straight line? 

Participant II: Yes 

Interviewer: How did you do it? 

Participant II: For the number of hours, I used it as an independent variable so I will used 

the y-value to represent the number of hours and then x has to represent the number of workers. 

According to Participant II, the relationship between the number of hours and the number of 

workers were the same. He went on to talk about the factors of decrease. What the researcher 

was not sure of, was how these relate to the straight-line graph. Hence, the question the 

researcher asked him was based on how he proved that it was a straight-line graph. Participant 

II responded by stating how he ordered his variables, but said nothing about the characteristics 

of the linear function. His use of words was “colloquial”, because the words did not support 

the characteristics of a linear function. Participant II could not interpret the visual mediator 

presented to him, because he could not substantiate his claim of a linear graph. In this regard, 

his routines were ritualised non-mathematical, because he spoke of a linear function at the same 

time he spoke of ratios. In this regard, his narratives were dissimilar to those of the community 

of mathematicians. His “proof”of the function’s linearity was premised on merely stating which 

variables were taken to be x and y. 

Participant CC also named the verbal function as linear. At the same time, he may have 

confused a line graph and a linear graph because he said that he plotted points and the graph 

was linear. He responded to the question which required him to identify the graph in the 

following manner: 

Participant CC: I could say it is a linear function. 

Interviewer: Why? 

Participant CC: It is because you see; let me put it like in a graph form. It is 80 then it is 1 

worker, then it goes on and say 40, let’s say let us put the person, the workers as our X intercept 

and the hours as out Y intercept. If the graph will move, if we plot the graph, the graph will be 

a straight line.  

Interviewer: Did you did you if you say it is a linear, did you try to find the gradient.  

Participant CC: Yes. The gradient. 

Interviewer: Did you? 
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Participant CC: Yes sir. 

Interviewer: Now if you found the gradient then how do you test that the function is linear, 

what do you do? How do you test using a gradient that a function is linear?  

Participant CC: Using the gradient. 

Interviewer: Yes. How do show that. How does the gradient for a linear. How do you know 

from the gradient that this one is linear?   

Participant CC claimed to have plotted the points and found that the graph was a linear 

function. However, he did not have the plotted graph on whose basis the researcher could ask 

him further questions. The researcher then shifted attention to the properties of a linear 

function. Furthermore, the researcher asked him whether he had tried to use the gradient as a 

way of showing that the function was a straight line. In his response, Participant CC initially 

stated he had found the gradient. When asked how he had used the gradient to show that the 

function was linear, he did not respond. Although he used mathematical terms such as linear 

function and gradient, he did not show much of his mathematical discourse. He did not produce 

a graph or some procedure to elaborate on his responses, which is an indication that he may 

not have developed the mathematical discourse on functions because he could not give reasons 

for his assertion on the function’s linearity, and also did not produce evidence supporting what 

he purported.  

Participant JJ and Participant KK also thought that the worded function was linear. They 

had a different reason from the other two participants above. Participant JJ and Participant 

KK link functions to sequences in their explanation of their ‘stance’ on the verbally expressed 

function. The discussion proceeded as indicated below. 

Participant JJ: I said it is the linear function because it has the first constant difference. Yes, 

it has the first constant.  

Interviewer: First constant difference? 

Participant JJ: Yes, as the. It is it is.  

Interviewer: Yeah is that same reason or different reason. 

Participant KK: It is the same reason, it has a constant, common difference. 

Interviewer: What is the common difference? 

Participant KK: After forty hours, you have twenty hours, the difference between here and 

there is negative twenty, so this one. 

Interviewer: But it began at eighty isn't it. 

Participant JJ: Participant KK: Yes. 

Interviewer: What is the difference between eighty and forty it is twenty? 

Participant JJ: The difference between eighty and forty. 
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Interviewer: Yes. 

Participant JJ: Participant KK: It takes eighty hours for 1 person to build the houses, forty 

hours for two people.   

Participant JJ: I am saying stating, one, and this will refer to one person, two, three, four. 

The two participants above stated that the function was linear, based on what they noticed to 

be a common difference within the sequence. Relating functions to sequence showed some 

flexibility in their use of routines (Ben-Yahuda et al., 2005). While it is true that a sequence 

with a common difference is an arithmetic sequence when sketched results in a linear function, 

Participant JJ and Participant KK did not show how they had a linear sequence. These two 

participants did not show that the graph was a straight line by using the gradient to prove that 

the points were collinear. They rather focused on 1 (one) variable and ignored the other. The 

coordinates in the function were given as (80; 1); (40; 2) and (20; 4). They focused on men and 

assumed that the number of men would increase from 1, to 2, 3 and 4, thus forming an 

arithmetic sequence. Participant JJ confirmed this assumption by stating: “I am saying, one, 

and this will refer to one person, two, three, four”. The researcher asked them whether they 

had tried checking the gradients in order to ascertain that the graph’s linearity. Both participants 

responded by stating they did not do that.  

By implication, both Participant JJ and Participant KK could not show convincingly why 

they thought the function was linear. While these two participants may have had reason for 

thinking that the function was linear, they did not use their previous knowledge to check 

whether their assertions were correct or not. The use of routines could have been beneficial in 

that they could have checked whether their reasoning was correct. This would have been 

achieved by sketching the graph or trying to find an equation and use of characteristics of the 

graph they could have identified. In the next few paragraphs, the researcher discusses the 

choice of the majority of participants, most of whom responded by stating that the function 

represented an exponential function.   

There were four major categories of responses from participants who stated the function was 

exponential. Four participants stated that it was an exponential function based on the inverse 

proportionality of one variable increasing and the other decreasing. Another 4 (four) 

participants stated that the verbal function was an exponential because they noticed a common 

ratio. For instance, Participant X stated that the verbal function was an inverse proportional, 

but also went on to mention that it was an exponential function. On the other hand, Participant 

BB removed the zeros and said it was an exponential function. Participant NN initially stated 

that the function was an exponential, but later changed her mind and stated that it was a 

hyperbola.  
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7.4.3 A decreasing exponential function 

Four participants responded to the following question with reference to a decreasing 

exponential function: A group of workers are planning to paint 10 houses in a complex. It takes 

80 hours for 1 person to paint all the houses, 40 hours for 2 workers, 20 hours for 4 workers 

and so on. Name the function represented by the above information. Please explain your 

answer. 

Both Participant Y and Participant LL stated that they first sketched the graph, and found 

that the function was an exponential function. When the researcher probed them further to 

explain why they thought the function was an exponential, they responded by stating that the 

function could neither be linear nor a parabola. Their responses were as follows: 

Interviewer: Why do you say it is an exponential function? Why do you say it is an 

exponential? 

Participant LL: Because the ... I first say if  80 hours for 1 person, then I made the sketch, the 

hours I entered x values and the number of people and then that is why I, as the number of 

workers there are increase, then the hours be less.  

Interviewer: Ok. 

Participant Y: I said it an exponential function because as the number of workers increase, 

as the workers increase, the hour decrease. So that means, if we plot it in a graph, if the x, the 

y increases, the y decreases in exponential function. When you plot the number of workers and 

the hours, we see, we get a graph like this that means it decreases. 

Participant LL: And it is not a straight because the number of hours is not the same as the 

number of workers so it snot the straight 

Interviewer: Yeah, but I think the straight line is not the only graph in a function 

Participant LL: Nor the parabola. 

Interviewer: Ok. 

Participant Y: It is not a hyperbola because in a hyperbola, we get two graphs 

Interviewer: What if I say it is a hyperbola. What will you says? 

Participant LL: You can never have maybe 1 and a half people 

Both Participant Y and Participant LL said that they sketched the graph and found that it 

was an exponential function. They based their argument on that the function was decreasing 

function. Several graphs fit into their description of a decreasing graph. When the researcher 

asked them, how they made the distinction, Participant LL in particular stated that a linear 

function and a parabola did not fit into that category. When the researcher suggested the 

hyperbola, Participant Y did not affirm that a hyperbola could fit into the verbally expressed 

function because a hyperbola has two graphs. As a mathematical fact, a hyperbola does not 

have two graphs as such, but has two parts that are a reflection of each other. What Participant 
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Y did not recognise was that with restrictions on the graph, it was possible to have one part of 

the hyperbola emerging. For Participant LL, the graph could not be a hyperbola because we 

cannot never have one-and-a-half people. Participant LL recognised that while time could be 

in fractions, the number of men could only take integral values.  

While Participant LL and Participant Y could not identify the function as a hyperbola, they 

were able to show their knowledge of the functions in that they could tell that the function was 

neither linear nor quadratic. They also acknowledged that a parabola had two parts although 

their expression was that it was two graphs. Both participants show their developing 

mathematical discourse because they were able to use another form of representation, the 

graphical method. They were not successful in this endeavour, but they exhibited that their 

mathematical discourse was developing by sketching the graph as a way of trying to find what 

function it was. What Participant LL and Participant Y did not do, was to check on the 

correctness of their assertion that the function was exponential by trying to find the equation 

of that function. On the other hand, not only did Participant DD state that the hyperbola had 

two graphs. He also mentioned that there were two hyperbola graphs. The structure of the 

hyperbola seemed to pose challenges for participants, to whom the graph was drawn on paper. 

In a hyperbola, they saw two different graphs, rather than a graph with two parts:  

Participant DD: I saw it in the same way but if it is a hyperbola, obviously there will have to 

be two hyperbola, there will be two graphs, so that is how I saw it, so that is how I decided that 

it will be an exponential graph but mentioning the restrictions but unfortunately here there are 

no restrictions. 

Participant DD decided that the function was exponential because a hyperbola had two graphs. 

To Participant DD for a function to be a hyperbola, it must have the two parts. The interview 

took place when Participant DD was in grade 12, which was the reason he spoke of 

restrictions. It would seem Participant DD was now confusing the inverse of the parabola and 

the hyperbola. At the same time, restrictions could have induced restrictions on the hyperbola 

as well. In the statement of painting a fixed number of the houses, the restrictions on the 

presented variables implied they could not have negative time and painting men to be integral 

values. The graph itself did not show that it was a hyperbola except for a close examination of 

the ordered pairs whose product was (80) eighty and was a hyperbola. The difficulties 

experienced with the identification of the function gave credence to participants’ learning and 

objectification of the four representations of a function objectification (Nachlieli & Tabach, 

2012). In the next few paragraphs, the researcher discusses how participants tried to use 

sequences to identify the function. 
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Participant U, Participant V, Participant S and Participant T related the exponential 

function to the sequences. They noticed the common ratio and the exponential function. The 

common ratio was related to the base of the exponential function. A geometric sequence 

produced the same graph as the exponential function. Following are the two respective 

participants’ statements.  

Participant V: It is an exponential function because it has a common ratio. 

Interviewer: What do you think? 

Participant U: Yes, it has a common ratio. 

Interviewer: What is the common ratio? 

Participant V: Sir? 

Interviewer: What is the common ratio? 

Participant V: The common ratio is the ratio where you 

Interviewer: What is it there? 

Participant V: The common ratio. 

Interviewer: Yes 

Participant V: It is half (1/2). 

Both Participant U and Participant V stated that the function was an exponential. They 

claimed to have noticed a common ratio. A common ratio in a geometric sequence is the same 

as the base in an exponential function. In this instance, there was no common ratio referred to 

in the given statement. The number of men were 1; 2 and 4 so there was no common ratio as 

supposed by these participants.  

Participant U and Participant V erred by considering the third pair of coordinates as though 

it was on the third position. They showed some flexibility because they could relate exponential 

functions to geometric sequence. Furthermore, they used mathematical terms such as ‘common 

ratio’ appropriately.  

Like Participant S and Participant T, Participant U and Participant V also thought the 

function was exponential. They also related the exponential function to the geometric sequence 

even though Participant S and Participant T did not use the term geometric sequence. 

Participant T and Participant S took the x-coordinates as numbers in a geometric sequence, 

but they did not match them with the y-coordinates because they would have seen that 20 was 

the “fourth term” rather than the third, thus rendering the sequence to be invalid. This is how 

the participants responded in the interview: 

Participant S: The function that are represented by the above equation, you can say it is an 

exponential function.  Because from the exponential pattern, number of pattern, we know, the… 

it has to be a common ratio. 'r' is the common ratio. 
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Interviewer: So what is your common ratio? 

Participant S: So here, our common ratio will be 40 over 20, which will be two. So here, we 

get … 

Interviewer: It is what? 

Participant T and Participant S: It is two.  

Interviewer: How do you know that it is two? How do you know that it is correct?  

Participant S: How do you know that it is correct, because it will be, we can find common 

ratio by stating second term divided by first term (t2/t1). So the first term is 80, it says 80, the 

first term in this case, when we were doing our own number 80.  

Participant S introduced terms such as “exponential pattern”, whose common name is 

“geometric sequence. It is true that the geometric pattern has exponential growth, but in 

Mathematics it is not named as such. Participant S showed some flexibility by relating her 

knowledge of functions to geometric sequences. While her flexibility was commendable, she 

did not notice that the third term was missing. She also did not use her sequencing appropriately 

as she was supposed to have a decay and her common ratio should have been between zero and 

1 (one). Her common ratio was stated as two (2) instead of 1/2 (half), according to her own 

assumptions. Corrigibility routines are not evident in Participant S’s utterances because she 

did not check whether the common ratio was indeed two (2) or not, by using other numbers on 

her presumptuous sequence (Ben-Yahuda et al., 2005). Her utterances showed that she 

understood the calculation of the common ratio. This is demonstrated by her ability to state the 

formula for calculating the common ratio. She even mentions 80 as the first term, but still went 

on to mention 2 (two) as the common ratio. She also did not check whether the numbers formed 

a geometric sequence as she purported. A second look would have indicated to her that the 

ordered pairs were not for an exponential function. Participant T, who had earlier agreed with 

Participant S that the common ratio was 2 (two), eventually corrected herself as indicated 

below.   

Participant T: The common ratio is half. 

Interviewer: Then. What about. How do you know that, it is correct? 

When the researcher asked her how she knew that she was correct, she responded that she used 

the formula. According to that formula, the second term should be divided by the first term. 

The researcher then suggested that both these participants could possibility be wrong, as shown 

below.  

Interviewer: If I say there is no common ratio, will you say that I am wrong? 

Participant S: There is no common ratio? 
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Participant T: You will have to specific why you are saying that there is no common ratio. 

You must have your reasons. 

While Participant S exclaimed that there was no common ratio, Participant T responded that 

there should be reasons for stating so. In that regard, Participant T was exhibiting growth in 

her mathematical discourse, because mathematical narratives should have verifiable 

justification. Furthermore, Participant T knew that only mathematical reasons which they did 

not realise, could annul their assertion of an exponential function. On the whole, both 

Participant S and Participant T show a developing mathematical discourse, because they are 

able to relate functions to other mathematical aspects such as sequences.  

In addition to the responses by Participant S and Participant T, Participant AA stated that 

since they had been taught geometric sequences, they realised that it related to the exponential 

functions. In Participant AA’s own words, he realised that the coordinate (20; 4) was not the 

third term, but continued with the notion of a geometric sequence.  

Participant AA: Oh, ok. OK so sir what we saw, since we have been taught geometric 

sequences, we saw that an exponential function is somehow related to a geometric sequence 

equation. So we did here ok, it is said that if you want the common ratio of the ex ....ok in this 

case the common ratio ok. 

In terms of the above excerpt, Participant AA’s narratives were based on authority. The 

participants had been taught geometric sequence, and they managed to make connections which 

showed their relationship. The relationship between sequences and functions may have 

prompted learners’ assumptions that they were addressing exponential functions.  

Participant AA: Ok, so it is said here. In this case [drew a 2x3 table as he explains that 80 is 

1, the 2 is 40, then 3 oh it is 4 it is 20].  So we took these as ok we took these as our positions 

as Tn [circling n in Tn and pointing to 1, 2, and 4 on the table] the T1 = 80, then T2= 40, then 

T3= 20. 

Participant AA contradicted himself on the table of values he sketched. He realised that the 

third coordinate was not the third term. He wrote it as (20; 4), but went on to identify the 

coordinate as though it represented the third term. This participant  adhered to his notion of an 

exponential function. Accordingly, he then ignored the sign which indicated deviation of the 

function from a geometric function. Therefore, it was not an exponential function.  

In this section, the researcher discussed the participants’ knowledge of geometric sequences in 

relation to the exponential function. While it was true that there was a relationship between 

exponential functions and geometric sequence, the coordinates did not follow a geometric 

pattern as the third term was not given, but the fourth. In the latter case, participants could not 
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show that the coordinates were for an exponential function. They exhibited flexibility routines 

by being able to relate the two aspects of Mathematics. At the same time, if they had used 

corrigibility instead of routines to verify the correctness of their narratives, they could have 

realised that the function was a hyperbola rather than an exponential function. Both flexibility 

and corrigibility routines are important in the development of the mathematical discourse (Ben-

Yahuda et al., 2005). Participants struggled with word or verbal representations of the 

hyperbola. It would be incorrect to suggest the learners struggled in all verbal functions. More 

than half of the participants correctly identified the exponential function in a verbal growth 

representation. In the next few paragraphs, the researcher discusses how participants responded 

to the verbal function on exponential function.   

7.4.4 Exponential growth 

An exponential function is the steepest graph (Webber, 2002). Furthermore, the exponential 

function is mostly useful in practical situations such as representing growth in infections, births 

or businesses. In sequence and series, the exponential function is a counterpart of geometric 

sequences. It is characterised by a fixed base and a variable exponent, hence the name 

“exponential function”. In this study, the research participants were required to use ordered 

pairs for purposes of calculating the fixed base, or to sketch the graph using the points. In this 

study, all participants opted for calculation of the fixed base. In this sub-question, there were 

more positive responses than in the previous question on the hyperbola. While only 1 (one) 

participant identified and gave a mathematical explanation on the hyperbola, approximately 13 

participants (54%) managed to deduce that the verbal statement was an exponential function. 

Two participants (8%) thought it was a linear function, while another two (%) thought it was a 

hyperbola, and 1 (one) was of the view that it was a quadratic. Six participants (25%) did not 

respond to the question below.  

Given this scenario: Mr Mkhize, a chicken farmer, begins his poultry business with 200 

chicken, in the second year, he plans to have 400 chicken, increasing them to 800 in the third, 

1600 chicken in the fourth. He plans to continue growing the number of chicken in that manner 

for a long time. 

Based on the above scenario: Name the function represented by the above information, why 

do you say so? 

There were two main categories of responses from the participants. One group calculated the 

equation of the function, and the other used the geometric sequence of the common ratio. Three 

(3) participants (13%) formulated the equation using the statement presented earlier of chicken 

that increased yearly. Participants’ utterances were similar in structure. Participant MM’s 

response are referred to below due to the level of detail entailed.  
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Participant MM: Ok. Here. Ok in this graph, this function is an exponential function. 

Interviewer: Why do you say so? 

Participant MM: Because of, when I calculated it using the scenario given which is above, 

then I have calculated it. I noticed that there is. Ok. Firstly, exponential function, says it is 

equation says y is equal to a times b to the power of x plus or negative p, negative q or positive 

p, (𝑦 = 𝑎𝑏𝑥−𝑝 + 𝑞) then here, we are given, here our, Ok. When I have calculated it, our 'a' 

was 20, then which we multiply 2 to the power x, then we have 200. 200 is made up of 20 

times5, oh 20 times 2 to the power of 3 that is 200. Then 400 here it is 20 times 2 to the power 

of 4, then we have 800 which is equal to 20 times 2. It is 25 not 20. 25. It is 25 

An exponent denotes algebraic representation of the exponential function (Webber, 2002. 

Subsequent to realising that the function was exponential, Participant MM used a general 

equation of an exponential function (𝑦 = 𝑎𝑏𝑥−𝑝 + 𝑞), to show that she was correct in her 

assertion. She managed to calculate the base of the exponent and then tried to prove her 

equation was correct. Participant MM did not use the explicit name for the base. She then 

attempted to show that her algebraic equation was correct by making substitutions into her 

formula. She used appropriate mathematical language, because she named the function 

correctly and used terms such as “power” for “an exponent”. She also showed some 

corrigibility by show the correctness of her equation by means of substitutions into the formula. 

Participant MM also showed that her mathematical discourse is developing because she was 

able to move from verbal expression of a function to an algebraic form of expression. Most of 

the participants (n=12, 50%) decided to use the geometric sequence to show that the function 

was exponential.  

Of the 12 participants that used the geometric sequence formula to identify the verbally 

expressed function, the researcher discusses the responses of the 2 (two) participants who 

correctly stated that there was a common ratio. A geometric series was provided in the form of 

𝑓(𝑥) = 𝑎𝑟𝑛−1, where a was the first term; r was the common ratio; and n the position of the 

term on the sequence. A number of participants concentrated on the common ratio and did not 

overly focus on the other component of the geometric sequence. In her explanation, 

Participant HH showed all the components of the geometric sequence.  

Interviewer: Yes, what is the equation? 

Participant HH: Y is equal to 100 multiplied by 2 raise to the exponent x (𝑦 = 100. 2𝑥) 

Interviewer: How did you find it? 

Participant HH: I said when you times a hundred by 2, you get 200 to the power 1, which is 

what you get , then you get the, and then you make x=1, when you want to work for the first 

200 chickens and then when you say, and I then say 100 to the power 2, then 2 to the power 2 
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which gives you a 400, and then you say 100 times 2 then we put a 3, which gives you a 800, 

and then you say 100 times 2 to the power 4, which gives you 1600. 

Participant HH calculated the equation of the function, which was an indication that she could 

proceed from one representation of the algebraic function to the other with ease. She thus 

exhibits flexibility by not only naming the function as an exponential function, but also stating 

how she could prove it by showing the equation of the function. She also exhibited corrigibility 

by showing how the equation satisfied the statement given for this function. In addition, she 

also demonstrated some exploratory routines by not only stating the equation, but also proving 

that the equation works. Participant HH also demonstrates a developing mathematical 

discourse, as she has objectified the mathematical object, the exponential function. Contrary to 

Participant HH’s mathematical discourse, Participant KK’s utterances showed some 

semblance of growth, but not at par with Participant HH’s. 

Although Participant KK made a number of unmathematical statements, there was evidence 

of his familiarity with geometric sequences. While Participant KK’s counterpart thought the 

function was a parabola because of a “common second difference”, Participant KK 

maintained his stance and insisted that the function was exponential, as indicated below. 

Interviewer: How did you respond to the question? 

Participant KK: I said it is a what, it is an exponential graph because my first term which is 

200, when he began his farm and then they multiply by 2 and get what? 400. And in the next 

year, you multiply also by 2 and get what? You get 800. Then you multiply and so on and so 

on.  meaning each year, each year this chicken farmer, what he is going to do is his chicken 

are multiply by 2, so if I can say the common difference here it is, common ratio, it is 2, it is 2, 

it is 2. Then I can reverse that by saying such as this the nth term or y is equal to a times plus 

x plus q (Tn= or y = a.𝑏𝑥 + q), and then I don't have my q then you take, then my first is 400 

times two to the power x (400.2𝑥).  

Participant KK clearly used the geometric sequence as a base for his contention that the verbal 

function was exponential. He noted that 2 (two) multiplied the next term, thereby noting that 

the sequence has a common ratio. Participant KK also stated the general formula for the 

geometric sequence. When he tried to apply his formula, he did not succeed because he had a 

first term as 200, and it was highly improbable that he could have 200 from 400. 2x. While 

Participant KK has some knowledge of the relation between the geometric sequence and the 

exponential function, he could not perform the algebraic manipulation. He was able to interpret 

the symbolic mediator expressed in the form of words because he recognised that the worded 

statement represented an exponential function. He also managed to recognise that the equation 

used to find the nth term of the geometric sequence was similar to the equation by stating the 
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general formula and its counterpart 400. 2𝑥 . However, he could not perform correct algebraic 

manipulation because 400. 2𝑥 does not represent the worded statement. On that basis, the 

classified his routines as ritualised. As much as he had developed his mathematical discourse, 

his algebraic manipulation was not fluid (Sfard, 2012).  

When interpreting the symbolic visual mediator y = a.𝑏𝑥 + q, Participant KK stated that there 

was no q in 400(2)𝑥. That the q value was not written, does not mean the q value is absent. It 

only means that there is no vertical translation. If the function is not translated vertically from 

the parent function, then the value of q is zero and does not need to be written. Participant 

KK did not interpret the symbolic visual mediator mathematically (Sfard, 2012). He continued 

to explain himself as captured below. 

Participant KK: I say my nth term is same as a times b to the power n minus 1 (𝑎𝑏𝑛−1)  

Participant JJ: Yeah  

Participant KK: Then I will, if I can change this to be in the form of y is equal to a times b to 

the exponent x minus 1 (𝑎𝑏𝑥−1), I get my y is equal to 200 times 2 to the exponent x minus 1 

(𝑦 = 200. 2𝑥−1). Because if I can say 200 times two divided 1, therefore I get my first term 

which is 200 and then saying, 200 times two divided by two minus 1, I get my 400, which is my 

second term, and saying 200 times two to the power three  I get my second which will be 800.  

Participant KK emphasised the relationship between the geometric sequence and the 

exponential function by stating that the nth term is the same as that of an exponential function, 

to which his counterpart Participant JJ agreed to. Participant KK then recovered from his 

earlier utterances where he had written an incorrect formula. The researcher could not attribute 

this change to corrigibility routines as there was no evidence of something he did to recover. 

He used the unsimplified geometric sequence formula. The algebraic manipulation of y =

200. 2x−1 yields  y = 100. 2x. Participant KK went further to prove that his formula was 

correct when used to show the number of chickens in each successive year. Participant KK in 

this instance showed some flexibility and corrigibility routines. Flexibility routines were shown 

by taking the worded statement and expressing it in algebraic form. Corrigibility was also 

displayed by showing that his equation was correct using three of the four coordinates provided 

in the worded statement (Ben-Yahuda et al., 2005). Participant KK demonstrates that he was 

moving towards objectification of exponential function by expressing the worded function as 

an equation and proving how the ordered pairs were calculated. He further demonstrates 

exploratory routines by formulating the equation and showing how it works.  

During the interviews Participant KK’s partner (Participant JJ) was of the view that the 

function was quadratic, due to a common second difference. This showed that for the 

participants, there is a strong link in learners’ mathematical discourse between sequences and 
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functions. Participant JJ did not have convincing reasons for stating that the function was a 

parabola. Following is how Participant JJ argued her case. 

Participant JJ: I said, it is the quadratic function or a parabola.  

Interviewer: Why? I am interested in the reason.  

Participant JJ: … because it has the second common difference.  

Interviewer: Second common difference, ok 

Participant JJ: Yes … 

Participant JJ’s assertion of the second difference indicates that the function is quadratic in 

nature. It also shows that her narratives could be classified as substantiation because they are 

the same as those of the community of mathematicians.  However, Participant JJ made an 

unproven assertion earlier. She could not prove that there was a common second difference. 

The researcher gave her the opportunity to prove her assertion, but she could not. This attests 

to Participant JJ’s challenges in arithmetic manipulation as her utterances show below. 

Participant JJ: Then. Press it on the calculator. Then first, he got here, we got negative 200, 

then it is 400, then it is 600. 

Interviewer: Are you sure. 

Participant JJ: Yes, I am sure sir.  

Interviewer: What is 1600 – 800?  

Participant JJ knew that a sequence with a common second difference is quadratic. As shown 

above, her main challenges were located in the area of subtraction. It is not that she could not 

subtract, but she did not check the correctness of her answers. This has been a challenge noticed 

throughout the study, in terms of which participants made assertions without checking for the 

correctness of what they thought the functions presented. Therefore, Participant JJ is not the 

only participant whose mathematical discourse is at granular stage, but has room for further 

development (Caspi & Sfard, 2012). In the next few paragraphs, the researcher discusses the 

respective participants’ responses to the question on exponential growth. 

Participant NN and Participant GG were of the view that the function was linear, but they 

did not have corroborating evidence for their assertion. After their conversations with the 

researcher, these two above-mentioned changed their stance to adopt the stance that the 

function was exponential.  

7.5 Table of Values 

A table of values presents the x and y values that satisfy a given equation. The x-values 

represent the input and the y-values the output. All these values need to satisfy an equation that 

represents a particular function. All 24 participants identified the graph as an exponential 

function, although their justifications were different. The responses of 8 (eight, 33 %) 
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participants focused on the asymptote; 10 (42%) sketched the graph to prove that the table of 

values represented the exponential function; and the last 6 (six, 25%) spoke of the 

proportionality of the numbers and the common ratio. These participants were responding to 

the question below: 

1.1 Name the function represented by the above table of values, state reasons for your answer 

1.2 How would you identify the asymptote from the table of values? 

The table below shows the ordered pairs for a certain function: 𝑥 ∈ ℝ 

Table 7.1: Ordered pairs of the function 𝒙 ∈ ℝ 

x -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 

y -0,998 -0,996 -0,99 -0,98 -0,97 -0,94 -0,88 -0,75 -0,5 0 1 3 7 15 31 63 
 

 

The participants expected the asymptotes on the table of values to denote the asymptotes by an 

error or undefined on the output section of the table of values. In the study, the participants 

were presented with an exponential function whose asymptote was horizontal and required an 

undefined on the input. For example when Participant LL was asked how she would identify 

an asymptote from the table of values, she responded as follows: 

Participant LL: It maybe an error 

Interviewer: Only that? If there is no error or undefined, then there is no asymptote? 

Participant LL: No sir, that what’s the graphs, if there is an error in y, then the y values will 

be the asymptote. 

The intention of the question was for participants to state how they would identify the 

asymptotes from a table in general. The error which Participant LL refers to, appears in a 

table of values only for the vertical asymptote when the undefined part of the denominator is 

not a zero of the numerator. Otherwise, it will be just a removable discontinuity. Participant 

LL’s assertion that an error always denotes an asymptote is partly correct. It is not always a 

certainty that in instances of discontinuity, there would be an asymptote and exhibits ritualised 

routines. Accordingly, the researcher then classified Participant LL’s narratives as 

“memorisation based on visuals”, because her assertions were based on what she had seen at 

face value; rather than from her investigations and explorations on the mathematical object.  

Participant Y, who is Participant LL’s interview partner identified the table of values above 

as an exponential function. When the researcher asked for her reasons, she responded that the 

function had only one asymptote. Further probing by  the researcher resulted in the following 

response by Participant Y:  

Interviewer: Why do you say exponential? 

Participant Y: Because it has only 1(one) asymptote. 
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Interviewer: What is the asymptote? 

Participant Y: It is zero. 

Interviewer: What is it?  

Interviewer: And where did you get your zero? 

Participant Y: From the .... From negative three (-3), when x is negative three (-3) or negative 

one (-1), it is negative one (-1). Because the y values, when you sketch it, it decreases, it will 

never touch negative one (-1). And by looking, when you look at the positive side, the graph is 

increasing...it not the same as this one and when it gets to negative one (-1), when it gets close 

to negative one (-1) it becomes -0.9998, as it decreases, it does not get to the actual number 

negative one (-1). 

Emanating from the statements above, it is axiomatic that Participant Y was able to identify 

the function as representing the table of values, but could not justify herself for stating so. At 

first, Participant Y justified her statement on the basis that the function had only one 

asymptote. When she was probed further to explain how she identified that asymptote from the 

table of values, she mentioned another representation of the function. She then explained that 

the graph she sketched had an asymptote of -1 (negative one) and not the 0 (zero) she talked 

about. Participant Y’s use of words was nearly mathematical because she did not talk of the 

relationship between the x and y coordinates, but referred to a decrease on the negative side 

and an increase on the positive side. An exponential function either increases or decreases, but 

couldn’t be both increasing and decreasing on the same function. Her interpretation of the 

exponential function was not construed because it did not fit the description of an exponential 

function. The researcher then classified her routines as ritualised mathematical, because she 

knew that an exponential function has one asymptote despite her failure to explain how she 

could identify it from the table of values. She could not give a mathematically acceptable 

explanation of the function’s movement. Her narratives were based on what she saw. There 

was a side of the graph increasing, but the coordinates were not both negative. For Participant 

Y, it meant the graph was decreasing, and for the part of the positive coordinates, she mistook 

it to be an increase. She used a table of values as a means of arriving at a graph, rather than 

seeing it as a representation of a function in its own right.  

Participant Y was not the only participant who identified the function as an exponential but 

could not provide mathematical reasons for stating so. For instance, Participant OO also stated 

that the table of values represented an exponential function. When asked to explain how he 

knew that the function was exponential, Participant OO spoke of the graph not touching 1 

(one). While an asymptote is related to an exponential function, there was no need for 

Participant OO to use it in that instance. Below is the researcher’s depiction of Participant 

OO’s interpretation of the table of values.  
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Participant OO: It is an exponential  

Interviewer: Yes exponential. However, why do you say so? 

Participant OO: If we represent this data on a graph. The graph will not touch one. It will 

come close to it. You can see that it means the asymptote is one.  

Participant OO also used the table of values as a means of drawing a graph rather than a 

representation of a function. His explanation shows that he did not regard a table of values as 

one of the representations of a function which could be interpreted such that the features of a 

function could be brought to the fore. From the table of values, one could derive such features 

as the intercepts, asymptotes, the point at which the graph was increasing or decreasing, points 

of discontinuity, and the name of the graph. This is the curriculum’s underlying intentions for 

learners to be able to convert the four representations of a function flexibly (DBE, 2011).  

Participant OO used the presence of an asymptote as the means by which the presence of the 

asymptote is shown. The presence of the asymptote does not mean that the function is 

exponential as there are other functions which have asymptotes as part of their features. 

Mentioning the presence of an asymptote is not the most convincing reason. Furthermore, 

Participant OO stated that the asymptote was 1 (one), yet an exponential function y is equal 

to one (y= 1) features in the middle of the function and cannot be the asymptote.  

Participant OO’s use of words was non-mathematical. He mentioned that the graph would 

not touch 1 (one) instead of stating that the graph would not intersect with the asymptote or 

line y was equal to 1 (one) (y=1). Participant OO mentioned an asymptote as though it were 

a number by stating that it is 1 (one). The researcher, therefore classified his use of words as 

“non-mathematical”. Participant OO had challenges in interpreting the table of values, to such 

an extent that she had to sketch a graph in order to obtain a picture of what function it was. The 

researcher then classified her interpretation of the table of values as “not construed”, because 

he interpreted the function using another representation. Participant OO’s narratives were 

classified as “memorisation based on visuals” because his talk was based on what he saw rather 

than on generalisations he found through the exploration of the table of values. Therefore, the 

researcher classified his routines as ritualised. 

As one of the four representations of a function, the table of values needed to be interpreted 

with some key features of that function being recognised. Participant AA tried to explain the 

function from the table of values themselves, rather than using other representations such as 

the graph. This is demonstrated in the following explanation by Participant AA:  

Participant AA: It is exponential  

Interviewer: Why do you say so? 
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Participant AA: You can tell that the graph is approaching the asymptote from the table by 

because we can see, you can see the difference between these terms it's not the way that it is 

eemm between the y- axis, between the y terms it is decreasing. The difference between the 

terms it is decreasing. At first, Ok the first term let us say the first position  x value it is 5, then 

you can have  the y value is 63, then the second term it is 4, second term of x is 4, then the y 

term or the y  value it is 31 then the difference between them is 32. Then moving between ok 

the difference. Ok the fourth. OK the third term which means x on x=3, y=15, then the 

difference between the y values is 16, therefore the decrease shows that it is an exponential 

function. 

While Participant AA could not clearly articulate himself, it was not difficult to understand 

his ideas. At first, he spoke of the function approaching the asymptote. He went on to show 

that the differences between the successive output values had a pattern, which was provided 

with the number that had exponents of 2 (two). He mentioned 32, and then the next output 

value was 16. He then concluded that the difference showed that the graph was exponential.  

When Participant AA mentioned that the “difference between the terms was decreasing”, it 

was due to his interpretation of the graph from the right to the left. He mentioned the differences 

from the largest numbers to the smallest. He also referred to the last term as the first, but he 

moves in the opposite direction. When reading the table of values backwards, he named some 

terms first when they were far from being the first. He also alluded to the y-values as 

decreasing, yet the graph was increasing. The researcher therefore classified his use of words 

as colloquial. Participant AA explained the table of values as if the function moved from right 

to left. He described the function as decreasing and because of that; the researcher classified 

her interpretation of the iconic visual mediator as being not construed. His narratives were 

memorisation based on what she could see. Therefore, his routines were ritualised non-

mathematical.  

In this section, the researcher discussed how participants interpreted the table of values that 

represented an exponential function. The participants attempted to explain the table of values 

using the asymptote. Their use of words was predominantly “colloquial”. Their interpretation 

of the table of values was largely “not construed”, and their routines were mostly “ritualised 

mathematical”. In the next few paragraphs, the researcher discusses the mathematical discourse 

of participants who sketched the graph as a way of identifying the function represented by the 

table of values. 

While Participant U and Participant V claimed to have drawn the graph represented by the 

table of values, they did not have the evidence to show that they skethched the graph. The other 

reason was that Participant U and Participant V did not answer follow-up questions directly, 
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and that made it difficult for their exposure to mathematical discourse. The following responses 

show how Participant U and Participant V responded to the question: What function was 

represented by the table of values given above. 

Participant V: It is an exponential function 

Interviewer: What is the reason for saying so? 

Participant V: Because it also has a common ratio 

Interviewer: Where is the ratio, what is the ratio? 

Participant V mentioned that the function was an exponential because it had a common ratio. 

While it was true that an exponential function had a common ratio, Participant V did not 

explain or state what the common ratio was. That made it difficult to examine the mathematical 

discourse of the participant. He did not respond to the researcher’s question concerning the 

ratio and Participant U continued to respond in the following manner: 

Participant U: Besides the common ratio, since you have the values, the x values and the y 

values, when you draw the graph taking the values, it will show you that it is an exponential 

Interviewer: Oh, you drew the graph 

Participant U: No, I did not draw it. I drew it on a rough paper. 

Instead of responding to the question on the common ratio, Participant U shifted the attention 

to sketching of the graph. It was from that graph that he obtained the idea of the graph as an 

exponential function. When asked to show evidence of the graph he sketched, he responded by 

stating that he did it on a rough paper and could not bring the required evidence attesting that 

the graph was an exponential function. As a result, it was difficult to obtain the mathematical 

discourse of Participant U on the table of values.  

Participant U referred to the coordinates as the x and y values. The coordinates consisted of x 

and y values. It is worth noting that the appropriate name is coordinates, instead of values. As 

values, the naming of the coordinates was not the most appropriate way of expressing 

coordinates. The researcher then classified Participant U’s usage of words as “colloquial”, 

because he referred to coordinates as values. In the community of mathematicians and the 

public at large, the term “values” means something different from “coordinates”. Hence, the 

researcher classified his use of words as “colloquial” (Sfard, 2008). 

Participant NN and Participant GG also spoke about sketching of the graph. They initially 

tried to check whether the graph was linear in terms of finding the collinearity of the function. 

When they discovered that the function was not linear, they decided to draw the graph using 

the coordinates on the table of values provided.   

Participant NN: There is 63, 31, and 15 
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Participant GG: OK, Let us draw the graph 

Participant NN: Let us draw the graph for from 0 to 

Participant GG: Ok, let us begin. 

Participant GG: From the first quadrant. OK it is minus... I was telling you this is the first 

quadrant. One, OK 1, 2,3,4,5. OK the y values are from 3,7,15, ok then 1. I think this should 

be something such as; OK 1 goes with this one, and then seven [writing]. It is going to be 

something such as this [pointing]? Straight? No not straight. Exponential. I think it is an 

exponential. OK. 

Participant GG and Participant NN sketched the graph from the positive side of the x-axis. 

Sketching the graph from the y-axis indicates that they did not have to plot all the coordinates 

to determine the shape of the function in order to identify the function represented by 

information on the table of values. What Participant NN and Participant GG indicated that 

they could not identify the function from the table of values. In other words, Participant GG 

and Participant NN could only identify exponential growth from the graph or the algebraic 

representation of the function. These two participants showed that the function was not linear 

by calculating the gradient. When they could not determine the kind of graph they were 

engaged with, they agreed to sketch the graph in spite of using the word “draw”. Such 

exploratory actions from learners of Mathematics enable their mathematical discourse to move 

towards objectification.  

Participant JJ and Participant KK also plotted the coordinates of the table of values so that 

they could identify the function. Participant JJ and Participant KK thought there was no 

other way of plotting the graph. The following is a reflection of their response to the question 

on the function on the table of values. 

Participant JJ: Name the function represented by the above table of values, state reasons for 

your answer. I said it is an exponential  

Interviewer: Why. Why is it exponential 

Participant JJ: it is because, it is an exponential because, when you plot. 

Interviewer: OK. What did you do to see that it is exponential?  

Participant JJ: Because when you plot x and y-values you get your graph. 

Interviewer: Did you sketch it as well 

Participant KK: Yes sir. You get a cap 

Once more, Participant JJ and Participant KK correctly named the function as an 

exponential function, but did so only after sketching the graph. Participant JJ emphasised that 

the plotting of points produces a graph, and that only happens when there is a special 

relationship between the coordinates. Both Participant JJ and Participant KK did not 
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respond to questions that required them to show their reasons for taking action. When the 

researcher asked Participant JJ for reasons of the function being exponential, she responded 

repeatedly that coordinates were plotted. While Participant JJ could identify the exponential 

function from the graph, she could not state what made the exponential function different from 

other functions. Participant JJ could also sketch the graph using the ordered pairs from the 

table of values, but she could not explain why the graph was exponential as an indication of 

ritualised routines. Participant JJ plotted the points, and decided that the graph was 

exponential, but could not explain why the self-same graph was known as an exponential 

function.   

Participants in the section above identified the exponential function by sketching the graph. 

The table of values was used only as a means of plotting points so that they could identify the 

function. The table of values was not taken to be a representation of a function. Otherwise, 

there could have been attempts to identify the function from a table of values. In the next few 

paragraphs, the researcher discusses how some participants spoke of the common ratio as a 

way of identifying the function represented by a table of values. 

A common ratio is a component of a geometric sequence which follows an exponential 

function. Therefore, it was no far-fetched for participants to seek for a common ratio in an 

exponential function. Participant S stated she was somehow disturbed by the decimals on the 

table of values. She then decided that the function was not exponential because of the decimals 

and failure to calculate and finding the common ratio. Participant S’s statements below are 

indicative of her responses to the table of values.  

Interviewer: What kind of a function is that? 

Participant S: This. I think we did not write the question because we were so much disturbed 

by these decimals. 

Interviewer: The decimal 

Participant S: Yes.  

Interviewer: What is wrong with the decimals? 

Participant S: Because at first I thought it was an exponential but when I tried to look for a 

common ratio, it did not come out. Therefore, I did not try for it 

Interviewer: So in an exponential there is a common ratio every time 

Participant T: In exponential graph? 

Interviewer: Yes, that is 

Participant S: In an exponential graph that has a common ratio which a pattern represent a 

function. That is what we were taught.  

Interviewer: That is what you were taught? 
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Learner 2: We were taught 

Participant S and Participant T did not respond to the question on the table of values because 

of the presence of the decimal numbers. Participant S attributed their non-response to being 

disturbed by the decimals. When the interviewer further asked how the decimals disturbed the 

interpretation of the graph, it was revealed that the response had nothing to do with the 

decimals. Participant S’s response suggested that decimals could not be part of the table of 

values, yet the continuous graph suggested that all real numbers were part of the function. The 

choice of the input values that were predetermined to produce integral output values was mostly 

responsible for the notion that said decimal fraction cannot be part of the graph. Decimals are 

part of the number system and therefore, part of the table of values.  

Participant S further stated that she could not find the common ratio from the table of values. 

It was less onerous to calculate the common ratio from data where the function was a parent 

with no transformation. The common ratio in an exponential function will be the base of the 

exponent. In the question, the base was not easy to notice because of the vertical shift of -1 

unit. Participant S gave up on the attempt to investigate the table of values because she could 

not find the common ratio. She immediately attributed her narrative to the teacher. While it 

was true that all exponential functions were actually the geometric series, it did not follow that 

when learners fail to calculate the common ratio then the graph would not be an exponential 

function. Participant S’s assertion gave credence to the view that she was actually taught that 

every exponential function has to be identified by a common ratio. Such a state of affairs 

demonstrates that her routines were ritualised mathematically (Sfard, 2012). She had the 

correct mathematical concept, but had not yet owned it. She needed to give her own reasons 

for whatever mathematical ideas she held rather than mention, “This is how we were taught”.  

Participant S’s interpretation of the mathematical symbols was not mathematical. As 

axiomatic as it is, decimals are part of the numbering system. In fact, all continuous graphs 

have the decimals somewhere within them. The challenge that Participant S faced was that 

she had only seen the table of values where only integral values were used for the convenience 

of calculation. Therefore, the researcher classified Participant S’s interpretation of the table 

of values as not construed because she interpreted the table of values as being representative 

of only integral values. This indicated that when she drew/sketched a graph, she did not notice 

that the graph passed through some coordinates that were not integers. Using the DPHEF, the 

researcher classified Participant S’s routines as ritualised non-mathematical. While she could 

draw graphs but interpreted a table of values as being composed of only integers. The 

researcher further classified her narratives as authority based, because she attributed her 
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mathematical discourse to what she had been taught rather than what she explored and 

discovered herself (Moalosi, 2014).  

7.6 Graphical Representation 

When some learners talked of functions, they are referring to the graphical representation. This 

was brought about by the fact that when functions were learnt, these functions culminated with 

the drawing or interpretation of the graph. As expected, 21 (87%) of the 24 learners who 

participated in this study positively identified the two graphs, namely the hyperbola and the 

exponential function. The three (13%) participants who did not positively identify the graphs 

did so because they did not respond to the questions posed to them. In this part of the analysis, 

the researcher specifically discusses participants’ mathematical discourse on a statement which 

required learners to “Explain what happens to the function as x approaches infinite”. 

Functions are distinguished and named according to their behaviour, which is conspicuous 

through the graphical representation of the function. For instance, the characteristics of 

hyperbolas are such that they had two parts which are a reflection of each other and asymptotes 

which are perpendicular to each other. As stated in the previous paragraph, participants could 

identify the two (hyperbola and asymptote). However, 13 participants (54%) had challenges 

describing the behaviour of the graph as the graph approached the infinite from either side. In 

the next paragraphs, the researcher discusses to the question: “What happens to the graph as x 

or y approaches both positive and negative infinite”?  

Participants encountered problems when describing the behaviour of the graph as it became 

closer to infinity. Eleven participants stated that the graph would approach the asymptotes for 

the hyperbola. The researcher analysed Participant GG’s and Participant NN’s responses to 

the question on the behaviour of the graph because they came close to explaining the behaviour 

of the graph at the required instances. The following statements reflect Participant GG’s and 

Participant NN’s response to the question: Which is the asymptote, explain what happens as 

function x approaches infinity. 

Participant GG: In the hyperbola as x is approaching the infinity, there are going to touch 

the asymptote sir 

Participant GG: And Participant NN: Closer 

Participant GG: Yes, it will be closer; I think it is supposed to be closer. Yes. 

Participant GG: Ok, and then the exponential, same applies.  

Participant NN: It will get closer to the asymptote. 

Participant GG: Yeah closer.  

Participant GG had initially stated that the hyperbola graph was going to touch the asymptote, 

but then Participant NN interjected to mention that it was closer rather than a touch. When 



169 
 

Participant GG mentioned, “They are going to touch the asymptote”, she actually meant that 

the asymptote and the graph would intersect. As stated by these participants already, the graph 

became closer to the asymptote as the x values tend to infinite. The following diagrams (Figure 

7.1) from geogebra indicates that the asymptote and the graph appear to intersect. 

 

Figure 7.1: Representation of the hyperbola and the exponential function 

In Figure 7.1 above, the exponential function and its asymptote appear to be coinciding. In 

actual fact, they do not. This diagram may have affected Participant GG’s utterances, but she 

was corrected quickly and accepted the correction. This situation shows that her narratives on 

the behaviour of the graph was affected by what she saw.  

After Participant NN corrected Participant GG, she went on to state that the same applied to 

the exponential function. As x approaches infinity in a hyperbola, the graph approached the 

asymptote. However, the graph appears exponentially large in an exponential function. 

Accordingly, Participant GG’s routines were classified as ritualised. While her utterances 

were correct for a hyperbola, the same was not true for an exponential function. This meant 

that Participant GG’s routines on functions appeared to be ritualised since she did not 

distinguish the behaviour of the hyperbola graph from that of an exponential function. What 

Participant GG did was common in the learning of Mathematics. Learners exhibit 

objectification of the mathematical object only on one aspect. When the researcher asked her 

to examine her utterances, Participant GG described the behaviour of the graph as x 

approached negative infinity. This shows that Participant GG conducted some self-correction. 

Initially, she said both graphs would become closer to the asymptote as x approached infinity. 

The dialogue below illustrates that the two learners’ mathematical discourse was ritualised.  

Participant GG: So now am talking about exponential. As x approaches the negative infinity, 

the graph will get closer to the asymptote sir.  

Interviewer: Ok fine. 

Participant GG: And then it approaches the positive infinity, it will go away from the. 

Participant GG: And Participant NN: It will move away from the x-axis.  

Participant NN: Closer to the y. 

Participant GG: Yes 
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Participant GG clarified that the behaviour of the graph x approached negative infinity rather 

than the positive side. In explaining how the exponential graph would behave as x approaches 

infinity, Participant GG and Participant NN mentioned that the graph would move away 

from the x-axis. It did not show how the graph behaved. Both these participants also agreed 

that the graph would be closer to y. Any graph is composed of the x and y-coordinates. It was 

difficult following her statement that the graph would be close to the y. At first, Participant 

GG and Participant NN seemed to have the mathematically acceptable narratives on the 

behaviour of the hyperbola graph, but their utterances indicated that their routines were 

ritualised. These two participants’ words were not mathematical as they used utterances such 

as: “The graph moves away from the x-axis”, or “The graph would be closer to y”. It is unlikely 

that the community of mathematicians agrees with the two learners’ explanations of the 

behaviour of the exponential function. Participant GG’s and Participant NN’s explanation 

of the behaviour of the hyperbola as x approaches infinity was classified as “construed”. As x 

approaches infinity, the graph gets closer to the asymptote. At the same time, when explaining 

the same for an exponential function, the two participants’ responses contradicted the earlier 

classification and interpretation of “construed”. This led to the researcher classifying their 

routines as “ritualised” because they did not objectify the mathematical object – the function. 

These two participants successfully described the behaviour of the hyperbola, but could not do 

the same with the exponential function. They were not the only participants who struggled to 

explain the behaviour of the exponential function. 

Meanwhile, Participant FF admitted that it was difficult describing what happened to the 

exponential graph as x increased towards infinity. It would seem that little attention was paid 

to the behaviour of the graph, especially on the extremes when learning about the functions. 

Participant EE did not show a distinction between an exponential function and a hyperbola in 

her utterances. Both Participant EE and Participant FF demonstrated some degree of a 

growing mathematical discourse by partly explaining the behaviour of the hyperbola. Below is 

an excerpt of their response to questions on the behaviour of the hyperbola and an exponential 

function. 

Interviewer: What happens to the graph as x approaches infinity?  

Participant FF: As x approaches infinity? Which graph is x? 

Interviewer: No, x in any graph. What happens to the graph as x approaches infinity? Let us 

begin maybe with an exponential function. As x approaches infinity, what happens to the 

graph? 

Participant FF: These ones are tough 
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Participant FF seemed not to understand the question. For her, x was supposed to be a graph. 

In functions, it is axiomatic that x is a coordinate, and it cannot be confused with a graph. In 

fact, Participant FF did not respond to the question. She only stated that the question was 

tough. While she was able to identify the graphs as the hyperbola and the exponential function, 

she could not explain the behaviour of the graph towards the extremes. As a result, the 

researcher classified her word use as “not mathematical”, because she thought that x was a 

graph. Her interpretation of the graph was “not construed “,because she could not describe the 

behaviour of the graphs that she identified. Additionally, her narratives were not in concord 

with those of the community of mathematicians. She thought x was a graph. While Participant 

FF could name the graphs, she did not only describe the behaviour of the graph but also showed 

some confusion with some components of the graph as she referred to x as a graph.  

Participant EE: Ok so the exponential is such as so and then we increasing function so it 

could go higher. I think 

Interviewer: The x -values will go higher or y values will go higher or the graph will go 

Participant EE: Sorry, the exponential  

Participant EE’s mathematical lexicon may have hindered her from freely articulating his 

thoughts on the behaviour of the exponential function. He gestured with his hands as he 

indicated that the function would increase exponentially. Evidently, language became a barrier 

for Participant EE as he tried to explain himself. He stated, “…so it could go higher”, referring 

to the exponential function. Any function could get higher. His ambiguous description could 

fit in any function. When it came to the hyperbola, both these participants were more 

comfortable in their narratives, and found the appropriate mathematical language to express 

themselves. 

Interviewer: Ok, its fine, it fine, what about the hyperbola.  

Participant FF: Ok sir, so as x approaches the infinity in the hyperbola, it goes closer and 

closer to the asymptote even though it will never touches it, but it will go closer and closer. 

Interviewer: Ok and the. Yes as x approaches negative infinity.  

Participant FF: In the hyperbola 

Interviewer: Yes in all of them, hyperbola and exponential 

Participant FF: It does the same thing but in the negative side 

Interviewer: Where do you get that? 

Participant EE: It is what we were taught. 

Participant FF: Textbook. 

Participant FF described the behaviour of the hyperbola as it approaches the asymptote. She 

emphasised that the graph would approach the asymptote but would not come into contact with 
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it. While that was true that the the exponential function and the hyperbola graph did not 

intersect the asymptote, it was not true for all asymptote functions. Participant FF mentioned 

that the same would happen as x approaches negative infinity. When the interviewer asked 

them to justify their narratives, they attributed their utterances to authority. Participant FF 

explained that she was taught that graphs behaved that way, while Participant EE attributed 

his narratives to the authority of the textbooks. When learners rely on the textbook or teacher 

for their narratives, it indicates that they have not yet explored the mathematical object. As a 

result, their routines are ritualised (Sfard, 2012). 

7.7 Conclusion 

The empiricalluy-based discussions in this chapter revealed that learners’ mathematical 

discourse on the hyperbola and exponential function was still developing. There were signs of 

growth in their mathematical discourse because they could communicate mathematically, 

although they could not properly name some of the objects.  

While learners could identify the two algebraic representations of the functions, they could not 

explain the relationship between the parent function and the transformed function. None of the 

learners mentioned the translations in their explanations. Instead, they explained the 

translations in terms of asymptotes.  

Learners often justified their actions by imitating their communication from their teachers, and 

attributed their reasons for their talk to the very teachers. The learners did not give reason for 

their action, except that it was how they were taught. That gave credence to the view that 

learners’ narratives were based on authority. In the event that the teacher gave the rule, that 

rule had to be followed. The discourse of learners attributing their actions to their teachers still 

shows a discourse of others instead of a discourse of their own.  

Learners managed to show that the equation of a geometric series was the same as the equation 

of the exponential function. When learners are able to recognise the relationship between two 

separate topics in Mathematics, it shows that their mathematical discourse is still developing. 

Notwithstanding the latter, learners still struggled with the hyperbola expressed in words. Once 

more, the challenge was premised on the parent function. Most of the learners thought that the 

hyperbola was also an exponential function, posing the problem of saming two distinct 

functions.  

While learners’ routines were generally ritualised, their narratives were mathematical. Most of 

what learners wrote or said would earn them marks in an examination. However, the challenge 

would prevail in the event that reasons were required for why they wrote what they have 

written. This is an area in which learners were found most wanting. In questions that are more 

than just recall of facts, learners’ mathematical discourse was found to be lacking and needed 
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some improvement. There were few instances in which flexibility and corrigibility were 

noticed from learners’ mathematical discourse.  

In the next chapter (Chapter 8), the researcher concludes the study and discusses some relevant 

and critical recommendations accruing from the findings of the study. 

 

  



174 
 

CHAPTER 8 

SUMMARY OF MAIN CONCLUSIONS, FINDINGS, AND RECOMMENDATIONS 

8.1 Introduction 

Researchers such as Tachie and Chireshe (2008) have documented inordinate research studies 

on poor learner attainments in Mathematics in rural areas such as Mthatha in the Eastern Cape 

Province. Various reasons have been advanced for this lack of achievement, including lack of 

both human and materials resources, poor teacher attendance, lack of innovative teaching 

techniques, as well as teacher absenteeism. In the current study, the researcher found that one 

of the reasons for the poor learning of Mathematics was that learners often did not progress 

beyond ritualised learning of Mathematics, and that mathematical objects in learning of 

functions were rarely explored. The learning of Mathematics rarely progressed beyond the 

context of authority (teacher, textbook or any other sources presented to learners).  

The main aim of the study was to investigate the mathematical discourse of learners in a rural 

area in the learning of functions with particular attention to the asymptote of hyperbola and 

exponential functions. Rural schools are generally characterised by poor infrastructure, 

unqualified and underqualified teachers and a high rate of absenteeism by both teachers and 

learners (Lewis, 2007; Tachie & Chireshe, 2008). Using the DPHEF analytical tool, the 

researcher discovered that rural school learners proved that they have learnt the functions, and 

their routines were generally ritualised mathematical, as opposed to the ritualised non-

mathematical variant. In ritualised mathematical routines, learners did what their teachers 

taught them and consequently thought that was acceptable in Mathematics. In the context of 

non-mathematical rituals, the learners’ thinking is often not mathematical.  

The researcher investigated learners’s word use in functions, as well as their communication 

regarding the asymptotes of the hyperbola and the exponential function. While learners could 

draw the asymptotes on a graph, that did not necessarily mean they have objectified the notion 

of an asymptote. When learners spoke of the asymptotes, they exposed a gap between their 

mathematical discourse and the mathematical discourse of the community of mathematicians. 

The researcher has already addressed learners’ views on asymptotes in Chapter 6 of this study. 

The researcher also investigated the learners’ mathematical discourse in the four 

representations of a function with particular attention on the hyperbola and the exponential 

functions as prescribed in the CAPS curriculum of the department of Basic Education’s 

requirements. The learning of functions begins with ordered pairs. These order pairs satisfy a 

certain algebraic formula and culminate with the characterisation of a certain group of functions 

because of their behaviour. In the learning of the functions, all four representations of the 

functions are important and their interconnections need to be flexible for learners to objectify 

the mathematical object known as a function. The researcher found out that while learners 
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could work with the representations of a function in isolation it became difficult for learners to 

show some inter-connectedness.  

8.2 Main Conclusions 

The study’s main conclusions reflect primarily on those critical methodological and theoretical 

aspects that advanced the researcher’s intentions for undertaking this investigation (de Vos et 

al, 2011; Leady & Ormrod, 2013). In this sub-section, the researcher presents conclusions 

derived from the utilisation of the DPHEF analytical tool. In general, there was not very much 

of a difference between what is said about learners’ learning on functions from DBE reports, 

and what the researcher discovered in this study. While there is evidence of teaching taking 

place in the schools, the learning of Mathematics could still be enhanced using the routines, 

especially flexibility and corrigibility routines as they are partly responsible for moving 

learners from ritualised routines to exploratory routines. The researcher has summarised the 

findings in Figure 8.1 below. 

 

Figure 8.1: Researcher’s summary of findings 

Using the DPHEF, the researcher was able to categorise the types of mathematical discourse 

into three groups and demonstrated how different characteristics of the mathematical discourse 

linked to each other. For learners to communicate in a literate manner, they needed both 

flexibility and corrigibility routines as dominant routines. Flexibility relates to the ability to use 

more than one method in solving mathematical problems (Ben-Yahuda et al, 2005). For 

example, learners’ mathematical discourse on exponential functions showed signs of literate 

communication, because they (learners) related exponential functions to geometric sequences. 

The ability to use more than one approach improved learners’ chances of acquiring exploratory 

routines. The usage of both routines became the foundation for literate discourses and 

narratives because learners tended to objectify the mathematical object by using the literate 
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language in the endorsement of routines. Mathematical discourses developed when learners 

were encouraged to use flexibility and corrigibility routines in their development of exploratory 

routines. In this regard, learners’ language, both written and verbal, improves with flexibility 

and corrigibility routines. 

The applicability routines were explored intensely in this study. The importance of the 

applicability routines is premised on the fact that they are foundational to the development of 

exploratory routines. Furthermore, applicability routines gave rise to ritualised mathematical 

routines in terms of which learners tended to do and say what was said and done by their 

teachers. Accordingly, learners’ mathematical reasons were based on what they were taught by 

their teachers, leading to ritualised mathematical routines characterised by communication that 

was not backed by cogent reasons. Consequently, the applicability routines dominated learners’ 

mathematical discourse, thus rendering the classification (categorisation) of their 

communication between “colloquial”, “literate” and “memorisation” dominated by learners’ 

overwhelming reference to rules. Learners with dominant applicability routines also referred 

to the authority as the ‘prescriptive’ reason for their mathematical actions. While applicability 

routines were necessary for learners’ mathematical development, learners should not settle on 

these routines alone. They need to add flexibility and corrigibility routines in order that their 

mathematical discourse is viewed as congruous with that of the community of mathematicians. 

There are instances where there is no use of routines. In such contexts, the communication will 

not be mathematical. The routines were known to be ritualised according to the commognition 

theory. To distinguish the mathematical ritualised routines from those that are incorrect, the 

researcher termed the unmathematical routines as non-mathematical ritualised routines, which 

were characterised by colloquial communication.   

The learning of Mathematics as reflected and measured by public examinations, is more than 

just covering the topics in the prescribed curriculum. There is a great need to inculcate learners’ 

flexibility between all the four representations of mathematical functions. Various aspects of 

the study’s empirically generated evidence attest to the conclusion that teachers and learners 

should purposefully work towards the intensification of learners’ word use from colloquial to 

literate mathematical discourse. This could be achieved by asking learners to define routinely 

used terms in the Mathematics classes. Learners should also be encouraged to verbalise their 

thinking by explaining their mathematically induced actions. 

8.3 Main Findings of the Study 

The findings of any study highlight its significance to the broader research community, while 

also giving an indication of the extent to which the self-same study was able (or not able) to 

accomplish its objectives, resolve the investigated problem or phenomenon, and answer the 
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research questions (Babbie & Mouton, 2010; Kumar, 2012; Yin, 2018). In this regard then, the 

study’s findings become the practical application and justification of its relevance and 

usefulness. All of the researcher’s observations cited in Section 8.1 bear reference to the study’s 

broader intention of investigating learners’ mathematical discourse on the hyperbola and 

exponential functions. To this end, the study was guided by the following research questions: 

What discourses do grade 11 learners in rural areas display when learning functions? 

How does the use of words (lexicon or mathematical discourse) afford or constrain the 

participation of learners in the functions discourse? 

What is the nature of grade 11 learners’ mathematical discourse relating to the four different 

representations of functions related to the hyperbola and the exponential functions? 

What is the nature of learners’ participation in mathematical discourse on the asymptote of the 

hyperbola and exponential function in Grade 11? 

The following below-mentioned research objectives are a response to the above-cited research 

questions, clearly indicating the symbiotic link between the research questions themselves, the 

research objectives, as well as the extent to which the study achieved (or did not achieve) its 

stated objectives (Babbie & Mouton, 2010; de Vos et al., 2011): 

 To understand the mathematical discourse of learners in a rural setting with regard to 

mathematical functions  

 To explore and identify the lexicon used by learners in expressing themselves in the context 

of mathematical functions  

 To explore, describe, and explain the mathematical discourse of learners on the four 

representations of a function, namely: functions expressed in words, as algebraic form, in 

the form of ordered pairs, and in graphical form  

 To explore and define the learners’ experiences and perspectives pertaining to 

understanding the asymptotes of the functions  

8.3.1 Findings Relating to Learning of Functions 

In this study, the realm of the findings specifically focused on two categories of findings, 

namely: the findings relating to learning of functions, as well as findings in relation to previous 

studies on grade learners; mathematical learning. The findings relating to the learning of 

functions are further categorised into four specific areas, namely: grade 11 mathematical 

discourse in rural settings; the use of words in mathematical discourse; the hyperbola and 

exponential functions in the context of four different representations; as well as learners’ 

participation in the context of the asymptote of the hyperbola and exponential function.  
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8.3.1.1 Discourses used by learners when learning functions 

What learners communicated in word or in text form, translates into their thinking as well 

(Assad, 2015; Howie, 2003). Learners could easily work with familiar questions, which are 

those that they learnt in class every day. For example, 90% (n=100) of the 112 learners could 

write an equation of the asymptote from a formula. On the other hand, 95% (n=106) of the 

learners calculated the intercepts of the hyperbola expressed in a familiar form; for example,
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xf )(  When the same question was asked in a different format, learners tended to 

struggle, as only 45% (n=50) of the learners were able to express the asymptote of an 

exponential function written in the form of 𝑓(𝑥) − 5. The difference in the format of the 

question resulted in half of the learners ( those who were able to write the asymptote) failing 

to express themselves mathematically.  

While learners could sketch graphs, there seemed to be little understanding of what the graphs 

meant. For example, learners sketched 𝑓(𝑥) = −𝑥2 + 4𝑥 + 12 𝑎𝑛𝑑 𝑔(𝑥) = (
1

2
)𝑥-1, but only 

20 (18%) of 112 learners could interpret the meaning of the point of intersection by marking A 

and B as the solution to the 1
2

1
1242 










x

xx . This is an indication of learners’ 

uninformed mathematical meanings of graphs, despite their noted ability to mechanically draw 

those graphs. While most of the learners could interpret mathematical words such as “sketch” 

“symbolic visual mediators” and “the graph of f and g”, they displayed inadequate knowledge 

of the relationship between the point of intersection of the graphs and the equation. In such 

instances, the researcher concluded that the learners’ mathematical discourse was largely 

ritualised.  

8.3.1.2 The use of words in the functions discourse 

Learners defined the asymptote as a line which the graph approaches without cutting through 

it (the graph). Such a definition of an asymptote is not entirely mathematically acceptable, since 

there are instances of the horizontal asymptote intersecting with the graph several times. While 

their definition will affect their learning on functions in the future, it is acceptable at grade 11 

level. In their sketching of graphs, some learners still did not clarify whether the asymptote 

was a point or a line. In this regard, there was both ambiguity and synonimity on the asymptote 

and the removable discontinuity. The table of values was construed as points that were 

discontinuous, rather than coordinates representing the path through which the graphs pass 

through. Therefore, they referred to the asymptote as a point.  

Furthermore, some learners did not see the asymptote as an equation or a graph, but a number. 

They often stated that: “The asymptote is two”. Some learners mentioned that they wrote 
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asymptote as a function for fear of losing marks. They intimated that teachers marked them 

down in the event that they did not express the asymptote as an equation.  

8.3.1.3 The mathematical discourse of learners in relation to the four representations of the 

hyperbola and the exponential functions  

The curriculum requires learners to move flexibly between the four representations of the 

functions (DBE, 2011). Learners’ mathematical discourse of the algebraic and graphical 

representations of the two functions was more developed than that of worded and tabular 

representations. Worded representations are usually tested in the examinations more than the 

tabular form; hence, the emphasis on algebraic representation and the graphs in learning and 

teaching. Learners’ examination-orientedness induced a state of affairs in which they seemed 

more at ease with the identification of algebraic representations of the hyperbola and 

exponential functions. However, when asked to explain the relationship between the parent 

function and the translated functions, they could not explain themselves. In word use, some 

learners referred to the formula as a graph. The usage of the same name for two distinct 

mathematical objects, displays a deficiency in the unsaming of terms (Nachlieli & Tabach, 

2012).    

While learners could draw and work with aspects of the functions such as the intercepts and 

asymptotes, they hardly explained what happened with the translations, which some learners 

explain without using the word the “translations” of what they wrote and what they knew. The 

latter view justifies the perspective that their routines were generally ritualised, because they 

gave “authority” as the reason for their actions asked to substantiate on their responses. 

The ability of the learners to relate exponential functions to geometric sequences demonstrates 

their developed flexibility in mathematical discourse on functions, because they could relate to 

mathematical topics. When learners are able to relate topics in Mathematics, they consequently 

improve on their chances to reach exploratory routines (Ben-Yahuda et al., 2005).  

Regarding the table of values, there is an indication that there is a disjuncture between the table 

itself and the graphs derived from the self-sametable of values. Learners often called the 

asymptote a point, showing that they did not see the order pairs as part of a continuous graph.  

8.3.1.4 The nature of learners’ participation in mathematical discourses of the asymptote of 

the hyperbola and exponential functions  

The study found that generally, the mathematical discourse of learners is comprised of 

ritualised and applicability routines. Learners would correctly name a mathematical object, but 

struggle to explain how the function relates to the parent function. The path to exploratory 

routines passes through the ritualised routines. The mathematically ritualised routines are a 
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necessity for all learners that are to succeed in the learning of Mathematics. Ritualised routines, 

be they mathematical or non-mathematical, are part of the learning process.  

The study also found that in their interpretation of the table of values, some learners named the 

asymptote as a point and not as a line on a Cartesian plane. Such an erroneous interpretation 

shows some disjuncture between learners’ spoken narratives and their written engagement with 

graphs.   

Furthermore, the study revealed the extent of learners’ misreading or misinterpretation of the 

asymptote as a boundary which did not allow graphs to pass through. The implication is that 

learners were not seeing the graph moving towards the asymptote as the graph moved towards 

infinity at extremes. They viewed it as an ‘opaque’ wall through which the graph was prevented 

from passing through. This is largely attributed to their description of the asymptote according 

to what they saw, rather than from their exploration of the graph and its asymptote.  

It was established that most of the learners exhibited ritualised routines. While there were 

instances in which learners showed some forms of exploration by explaining the relationship 

between the asymptote and the graphs, most of the learners would write a mathematically 

acceptable answer, but talk incongruently. For example, learners spoke and wrote of vertical 

asymptotes of an exponential function by stating that the asymptote is 𝑥 = −9 for a 

function𝑓(𝑥) = 3𝑥−1 − 9. Learners whose routines were categorised as non-mathematical, are 

still far from growing in discourses and cannot imitate the interlocutor. Such rituals are a cause 

for concern, as it is difficult to move such learners towards the growing discourses.  

On the use of routines, the researcher found that most of these were applicability based on what 

learners viewed. Learners’ descriptions were based on what they saw as the parameters for 

either a vertical or horizontal translation of the asymptotes.  

8.3.1.5 The mathematical value of the DPHEF 

The DPHEF is an analytical tool used to analyse the mathematical discourse of the learners 

who participated in this study. From the researcher’s point of view, the analytic tool, the 

Discourse Profile of the Hyperbola and Exponential Function (DPHEF) is uniquely credited 

with the systematic unbundling of learners’ mathematical discourses in the context of the 

worded, numerical, tabulated, and graphic asymptotes of the hyperbola and exponential 

functions. The DPHEF was personally developed by the researcher as an extension of the 

Discourse Profile of the Hyperbola (DPH). The latter analytical tool was used by the researcher 

for his Master’s degree research project. The DPH was developed from the Arithmetic 

Discourse Profile (ADP) of Ben-Yahuda et al (2005). The major additions of the DPHEF to 

the DPH is that the ritualised routines are divided into ritualised mathematical and ritualised 

non-mathematical categories.  
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The utilitarian value of the DPHEF translated into the researcher’s efficient separation of the 

ritualised mathematical routines from the ritualised non-mathematical actions. terms of the 

ritualised mathematical routines, learners act in mathematically acceptable ways but cannot 

provide mathematical reasons for the particular routine. In the case of the non-mathematical 

routines, learners generally provide mathematically incorrect statements in relation to the 

particular mathematical routine.  

The DPHEF was designed to separate the differences in learners’ mathematical discourse, and 

can be utilised for any mathematical function. The DPHEF is not confined to the hyperbola 

and the exponential function only. It is the researcher’s contention that the DPHEF will 

effectively contribute to the knowledge, perceptions, and experiences of the learners in the 

learning of asymptotes of the hyperbola and exponential functions. The DPHEF has two 

categories of word use, the mathematical and the colloquial. The mathematical use of words is 

defined as a form of communication about which all members of the community of 

mathematicians have the same interpretation (Tachie & Chireshe, 2013). The colloquial usage, 

on the other hand, premises on everyday and non-mathematical discourse, or a combination of 

both.  

In the context of this study, Table 4.1 (p. 62) in this study is the quintessential example of the 

application of the DPHEF’s mathematical value by its eclectic integration of the four key 

characteristics of the mathematical discourse. In this regard, examples, descriptions, and 

classification of mathematical discourses were systematically analysed as indicated in sub-

section 4.4.1 (pp. 59-61) in this study. On the whole, the DPHEF is mostly credited with the 

systematisation of analysing multiple sets of data to establish a credible framework of the 

study’s evidence-based approach to data collection and usefulnesss of that same data. 

8.3.2 Findings in Relation to Previous Research 

While it has been an expectation that learners’ mathematical discourse would largely be 

ritualised, the researcher did not expect most of their routines to be mathematical. The study 

confirms what other researchers found in the past. Learners’ mathematical discourse was 

mostly visual. They described what they saw, thus corroborating the findings by Mpofu and 

Pournara (2018). In this study, learners would refer to the asymptote in a table of values as a 

point because they “saw” distinct coordinates instead of points that were a representation of a 

function.   

In this study, the researcher found out that learners experienced difficulties with functions. 

Such difficulties included word problems, especially word problems involving the hyperbola. 

The learners struggled with the interpretation of the table of values of an exponential function, 

and could not generate the formula of the graph even though they had a number of ordered 
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pairs from the self-same graph. This is not a surprising. Previous research by Berger (2013), 

Kidron (2011) and Flesher (2003) found that learners and teachers struggle with functions.  

Furthermore, the researcher found that there was a mismatch between what learners wrote and 

what they said. Learners would write an asymptote as 𝑦 = −9, but speak of the asymptote as -

9. In Mpofu and Pournara (2018), learners drew diagrams with asymptotes and spoke as though 

there was no asymptote. The mismatch is a cause for concern because it shows that learners’ 

mathematical discourse has not developed enough. The mismatches are evidence of ritualised 

routines. Notwithstanding the evidence of teaching, the mismatches show that learning does 

not always happen in teaching. Explorations enhanced by means of reflective imitation are the 

only way that will improve learner achievements. The above findings confirm that there are 

difficulties in the learning of functions in particular and Mathematics in general (Fraenkel et 

al., 2012).  

8.4 Recommendations 

In research, recommendations are propositions developed by the researcher in order to validate 

the authentic relevance and contribution of the study (Rajasekar et al., 2013; Ramenyi & 

Bannister, 2013). In addition, the recommendations are a reflection of the study’s juxtaposition 

of the research problem and research objectives on the one hand; as well as the data collection 

and analysis processes and the findings of the study, on the other (Kumar, 2012; Walliman, 

2011). On the whole, recommendations are further intended to benefit the study as a reliable 

evidence-based point of reference for improvements in the teaching and learning of high school 

mathematical discourses.  

8.4.1 Recommendations pertaining to teaching and learning 

To a greater or lesser degree, the findings of this study provide an explanation for the 

Mathematics results of the National Senior Certificate producing less than three percent (3%) 

of learners who score more than 80% of the marks (DBE, 2018). In fact, the 2017 National 

Senior Certificate examinations diagnostic report alludes to 61.1% of learners obtaining marks 

between 0% and 49% in Mathematics. For learners to benefit from participating in the 

mathematical discourse, their scores should be in the region of 60%. The ritualised learning of 

Mathematics is not sufficient for learners that seek to further their education and take careers 

that need Mathematics. 

In this study, there was evidence of teaching. There is no single learner that made a positive 

contribution, be it in the test or during the task-based interviews. The challenge is that the 

participants did not go beyond ritualised learning. In as much as reflective imitation encourages 

explorative learning, teachers need to create any environment that is conducive to producing 

explorations. Explorations moves learners from discourse of others to their own discourses. 
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Often, learners attributed their reasons for action to the teacher. They would often say, “This 

is how we were taught”, or “If I wrote it the way I say it, my teacher will mark me wrong”. 

Teaching should help learners explore the mathematical object before generalising. For 

example, on asymptotes, they should not just be told that the asymptotes are the parameters in 

a standard equation. That should come as a generalisation after learners have worked with 

several graphs and discovered and linked algebra to the graph. Explorations are improved by 

the types of tasks given to learners. Tasks should go beyond the basic of introducing features 

and rules that govern functions. Learners should be asked for reasons pertaining to their 

responses to questions. In addition learners should be able to explain generalisations on 

functions and perform unfamiliar tasks. 

Mathematical language including symbols is part of mathematical discourse. Learners tend to 

use the language that is “tolerated” or allowed in Mathematics classes. Unmathematical 

language use inhibits the learning of Mathematics. In this study, learners regularly used 

expressions such as “the asymptote is four”; or they will say, “When you see undefined, then 

you know there is an asymptote”. Learners do not see anything wrong with the mentioned 

language and would be surprised when the teachers mark them down for communicating in 

that manner. Learners often referred to the parameters “p” and “q” as the asymptotes. Given 

this state of affairs, learners will not have a correct image of an asymptote. They become 

confused in the event that an asymptote is a function or a number. 

More emphasis should be placed on the connections between the four representations of a 

function. While learners could work with basic algebraic and graphical representations of 

functions, they could not show the same efficiency with functions in tabular form and those 

expressed in words. In some instances, the disconnect between the representations were 

apparent. Learners would draw a function with an asymptote represented as a linear function, 

but talk as though an asymptote was a number. When expressing the asymptote in algebraic 

terms, learners would also talk of an asymptote as though it were a point. The exploratory 

learning of Mathematics could be seen in how learners relate the different representations of 

the functions with flexibility.   

8.4.2 Recommendations for future research 

Future research is definitely needed in the improvement of learners’ mathematical discourses. 

Such research could be repeated with learners engaged in learning during lessons in various 

demographically representative context. The study would help unearth the source of the 

unmathematical language that learners use. The study will further bring to the fore, teacher and 

learner habits which lead to the failure of using mathematical language. The study may also 

give researchers an opportunity to know the kind of task and exemplification that happens in 

the classroom, and how it promotes or stifles the development of the mathematical discourse. 
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Subsequent research should also focus on teachers’ mathematical discourse on functions. 

interlocutors make mathematical discourse on functions available to learners. This makes 

teachers important role players in the learning of functions. The study may focus on 

exemplification and task choices by teachers during their teaching as examples of tasks which 

determine the types of routines that learners will have as they engage in mathematical 

problems.  

8.5 Limitations of the Study 

The limitation of the study determined the “conceptual/ theoretical, operational, empirical, and 

methodological constraints” that have the potential “to weaken or reduce” the “scientific 

worth” of research (Rajasekar et al., 2013: 598). It is important to note that (potential or actual) 

limitations, restrictions, or shortcomings do not necessarily compromise the value of the study 

itself. Instead, the limitations cited below are an indication of the study to contribute 

significantly towards the improvement of Mathematics teaching and learning in South African 

schools. 

The findings of this study are generally limited to the 112 learners who were selected from four 

schools in the Mthatha District of the Eastern Cape. Such a geographic confinement has the 

potential to limit the generalisability of the findings to a wider or broader regional, provincial, 

or South African context. The numerical representativity of the study may be construed as not 

reflecting a broader grade 11 learner cohort. The number of participants who took part in the 

study were about 30 high performing learners who participated voluntarily. The researcher had 

intended to have 120 learners participating in the test in the initial task of this study but could 

only obtain 112 learners. The researcher then intentionally had task-based interviews with six 

high performing learners from each of the four schools. The study reflects their views and a 

different group may probably produce a different outcome. What has been found in this study 

is a reflection of the participants, and may not be applicable to another group.  

English is the language of learning and teaching in all the schools that took part in this study. 

Textbooks are written in English, and learners’ assessments are also conducted in English. In 

an area where one language is dominant, it is not far-fetched to assume that the local language 

is used sporadically or occasionally. In this study, the interviews were conducted in English. 

In some instances, however, learners used their local isiXhosa language.  

8.6 Reflections on the Study 

This study helped the researcher to grow both as a Mathematics teacher and as a researcher. 

The focus on learning helped he researcher realise the difficulties that both teachers and 

learners experience in the teaching and learning of Mathematics. The theory of Commognition 

helped to distinguish mathematical learning that is predominantly ritualised against the 
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expected goal of having exploratory routines. At face value learners appeared to meet the 

requirements for learning Mathematics. The DPHEF analytical tool was designed from 

commognitive theory by the researcher. This tool helped to generate the realisation that the 

mathematical discourse of learners was not adequate to make them achieve objectification. 

Teachers need to work together with their learners in order for them to reach a level in which 

better results could be attained.   

Mathematical mediators used in the classrooms should not just be used without their 

explanations. For example, when learners view a table of values it should be clear that the 

ordered pairs on the table of values are not the only coordinates for the functions as most 

functions are composed of real numbers although the table of values will only have integral 

values coming into the fore. Sometimes learners looked at the table of values and thought that 

the coordinates were arbitrary, but sketched continuous graphs. As a teacher, the researcher has 

learnt that there are gaps in the learning of Mathematics which teachers take for granted; such 

as the interpretation of the table of values, and hope that learners will learn them because from 

practice. The researcher also thought of how mathematical information is made available to 

learners. Does the teacher bring the information to learners refined and ready for use or 

should learners discover information for themselves? In this study, learners often referred 

their reason for actions to what their teachers said or did. The discourse should move from 

being the discourse of the teacher, to being the discourse of learners. The researcher has further 

learnt that the reason learners do not perform at exceptionally good levels is the discourse of 

others.  

One of the lessons learnt is that language is important in the learning Mathematics. The 

researcher was very enthused by listening to learners using their language to try to explain 

mathematical concepts. However, their home language posed difficulties, as the mathematical 

language was lost in translation. The use of the local language allowed some confidence in 

their speech. The researcher decided that it was conducive for learners to express themselves 

in their home language, but teachers need to provide them with literate language. The balance 

has to be struck between the use of the local language and the language of teaching and 

learning. When teachers use literate language, learners should then be expected to try practising 

the language of teaching and learning as this would become the means by which entry into the  

literate discourse is accomplished.  
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Appendix A: UKZN Ethical Clearance Letter  
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Appendix B: Functions Test: Grade 11 

Total Marks 40 

Time: 50 mins 

Instructions 

 This test shall be used for research purposes only 

 Attempt all questions 

 Show your working and explanations on the answer sheet provided 

 The test is not for marks and you under no obligation to take part and you are free to 

stop writing whenever you feel like doing so. 

 Your participation in this study is highly appreciated 

QUESTION 1 

Consider the function .2
1

3





x
xf )(  

  

 

1.1 
Write down the equations of the asymptotes of  f. 

 (2) 

 

1.2 Calculate the intercepts of the graph of  f  with the axes.  (3) 

 

1.3 Sketch the graph of  f .  (3) 

                                                                                                                                                [8] 

QUESTION 2 

Consider the function  
x

xf 









3

1
)( .   

 

2.1 Is  f  an increasing or decreasing function?  Give a reason for your answer.  (2) 

 

    

 

2.2 Write down the equation of the asymptote of  f(x) – 5.  (1) 

[3] 

QUESTION 3 

 

John and Nash went to a coffee shop.  They read the following on the notice  

board in the shop: 

When coffee is poured out, its temperature 𝜃 (in degrees centigrade),  

t minutes after pouring, is given by the formula:  

𝜃 = 60 [2
−𝑡
15] + 20 

3.1 Complete the following table:  

𝒕 0 2 4 8 10 12 20 30 
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𝜽         

            (2) 

3.2 Draw a continuous graph of the data on the table, below:    (2) 

 
3.3 What type of graph is this?         (1) 

3.4 Write down the equation of the asymptote.       (1) 

 

3.5 What do you think the real life meaning of the asymptote is in this question? 

            (1) 

 

            [7] 

QUESTION 4 

4.1 On the same set of axes, draw sketch graphs of the following functions: (Clearly show all 

intercepts with axes, turning points and asymptotes.) 

     
1

2

1
)(

124)( 2













x

xg

xxxf

             (9) 

4.2 Show with A, B etc. where you will read the solution to the equation: 

     1
2

1
1242 










x

xx         (2)

           [11] 

 

5 10 15 20 25 30

20

40

60

80

x

y
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4

3

2

1

-1

-2

-3

-4

-8 -6 -4 -2 2 4 6 8

A(1;3)

QUESTION 5 

Given the sketch of 
x

k
xg )(  

 

 

 

 

 

 

 

 

5.1 If A is the point (1;3), determine the value of k.      (1) 

5.2 Use the sketch of 
x

k
xg )(  to draw sketches, each on its own set of axes, of the following, 

showing intercepts with the axes as well as one other point on the graph. Draw and label the 

asymptotes where necessary. 

    5.2.1 1
x

k
y       (3) 

    5.2.2 2
2





x

k
y       (3) 

    5.2.3 
x

k
y .2       (2) 

                                                                                                [9] 
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Appendix C: Paired Interviews 

Task-based Interview Schedule 

Name Response 

Task 1: Given: 𝒇(𝒙)   

= 𝟑𝒙+𝟏 − 𝟗 and 𝒈(𝒙) =
𝟐

𝒙+𝟑
+ 𝟏 

1. Name each of the functions given above and 

explain how f relates to 𝑦 = 3𝑥 and g relates to 

𝑦 =
2

𝑥
 

 

2. What is the asymptote of f? How do you know 

this?  

3. What is the asymptote of g? How do you know 

this?.  

4. Explain how you would identify key features 

like the intercepts and asymptotes in a table of 

values for the above functions f and g. 

 

5. What is an asymptote and how would you 

identify it in (i) a graph (ii) equation?  

 

Name  

Task 2 

1. Given this scenario: A group of workers are planning to paint 10 houses in a complex. It takes 80 

hours for one person to paint all the houses, 40 hours for 2 workers, 20 hours for 4 workers and so 

on. 

 

1.1 Name the function represented by the above 

information, why do you say so? 

 

1.2 What equation fits the above information and 

why do you say so? 

 

1.3 How would you express the above information 

as a graph?  

 

1.4 Are there any restrictions? Why do you think 

so? 

 

 

1.5 Write other ordered pairs for the above 

information which will help illustrate the 

behaviour of the graph, at least 3 points 

 

 

1.6 Are there asymptotes for this function? What 

reasons can you give for your answer? 
 

Given this scenario: Mr Mkhize, a chicken farmer, starts his poultry business with 200 chicken, 

in the second year he plans to have 400 chicken, increasing them to 800 in the third, 1600 chicken 

in the fourth. He plans to continue growing the number of chicken in that manner for a long time 

2.1 Name the function represented by the above 

information, why do you say so? 

 

 

2.2 What equation fits the above information and 

why do you say so? 
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2.3 Express the above information as a graph?   

2.4 Are there any restrictions? Why do you think 

so? 

 

2.5 Write other ordered pairs for the above 

information, at least 3 points 
 

2.6 Are there asymptotes for this function? What 

reasons can you give for your answer? 

 

 

Name  

Task 3:  Use the 2 following equations to answer questions: 

a) 
𝑦−2

2𝑥+4 = 3                                                 b) (𝑦 − 3)(𝑥 + 2) = 4 

1.1 Identify, with reasons, the functions given 

above  

1.2 How would you express each of these 

equations in standard form?  

1.3 Name asymptotes, if any, from the above 

functions and give reasons for your answers  

Task 4 Grade 11 

  

Task 4:  

1. The table below shows the ordered pairs for a certain function: 𝑥 ∈ ℝ 
x -

1

0 

-

9 

-

8 

-

7 

-

6 

-

5 

-

4 

-

3 

-

2 

-

1 

0 1 2 3 4 5 

y -

0

,

9

9

8 

-

0

,

9

9

6 

-

0

,

9

9 

-

0

,

9

8 

-

0

,

9

7 

-

0

,

9

4 

-

0

,

8

8 

-

0

,

7

5 

-

0

,

5 

0 1 3 7 1

5 

3

1 

6

3 

 

1.1 Name the function represented by the above table of 

values, state reasons for your answer  

1.2 Does this function have an asymptote? Why do you say 

so?  

1.3 Identify key features of this function (Intercepts, domain, 

range, etc.)  

1.4 What is the algebraic representation of this function? 

  

 

Name:  

Task 5   

The graph below shows 2 functions. 
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1. Name the functions shown in the above diagram 

 

2. Explain what happens as to the functions as  

a) x approaches infinite.   

b) x approaches negative infinite 

 c) y approaches infinite  

d) y approaches negative infinite 
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Appendix D: Informed Consent Letter to School Principal 

 

Informed Consent Letter to School Principal 

Dear Principal 

Ms/Mrs/Mr/Dr……………………………………. 

Name of school ………………………………….. 

Re: Permission to conduct a research study in your school 

I am writing to request your permission to conduct a research study in your school. This research study 

is entitled: 

 

Grade 11 learners’ participation in the functions discourse: The case of a hyperbola and 

exponential function 

My name is Sihlobosenkosi Mpofu and I am currently studying towards a PhD Degree at the University 

of KwaZulu-Natal (UKZN). As part of the requirements of this degree, I am required to complete a 

research thesis. This study focuses on learning of functions by Grade 11 learners.  

I require 30 Grade 11 Mathematics learners of mixed gender to participate in this research. I would be 

very grateful if you would consent to these learners participating in this study. They will be selected 

from your school.  

If you agree to this, they will be invited to a test, task-based pair interviews and a text review of their 

exercise books.  

All discussions, interviews and dialogues with participants will be video and audio recorded using a 

video and voice recorder, and thereafter transcribed verbatim to produce transcriptions. This research 

information (data) is required for the analysis of data and completion of the actual write up of the thesis. 

Collecting research information for this study will take approximately an hour for a period of about 6 

weeks. All tests, task-based interview, and text analysis will take place on the school premises, with 

your permission. Times and dates will be discussed and arranged with you and the participants at a later 

stage. I will try to ensure that this takes place during their lunch breaks and free periods, in an attempt 

to avoid any disruptions during lessons. Participants will also be encouraged to eat their lunch during 

discussions, interviews and activities, as well as make use of the school toilet should the need arise. I 

will not deprive them of these opportunities, especially since I intend to use some of their free time in 

order to collect sufficient data for my study. 
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Data generation activities will also take place in one of the classrooms with your consent. If I am unable 

to collect my data during school hours, I will make arrangements with your consent and that of my 

participants’ parents/guardians, to perhaps do this after school hours, on days when school closes early 

or during weekends. I will also provide transport for some of my participants to return home, should 

the need arise.  

Please note: 

* Times and dates of this data generation process will be at your sole discretion. I have merely 

presented you with an outline of what I intend to do, however you are free to make any changes and 

suggestions, if necessary.   

* Participation is completely voluntary and participants have the right to withdraw from this study at 

any time. They will not be penalised if they choose to do so.  

* Confidentiality and anonymity will be maintained at all times. The identity of your school and all 

participants will not be revealed at any time, as pseudonyms (different names) will be used to protect 

everyone’s right to privacy. 

* Any information provided by the participants will not be used against them, or against the school, 

and will be used for purposes of this research only. 

* Participation in this study will not result in any cost to your school or the participants.  

*Neither the participants nor your school will receive financial remuneration. However costs incurred 

by participants as a result of their involvement in this project will be covered. 

* This study does not intend to harm the participants in any way.  

* Both parents/guardians as well as participants will be handed letters of consent which they will have 

to carefully read and sign, before I begin data collection.  

I may be contacted at: 

Email address: sihlobosenkosi@gmail.com 

Tel: 0792364875 

My supervisor’s contact details are:  

Email address: Mudalyv@ukzn.ac.za 

Tel: 031 2603682/0829770577 

You may also contact the Research Office through: 

Mariette Snyman 

HSSREC Research Office, 

Tel: 031 260 8350 E-mail: snymanm@ukzn.ac.za 

mailto:snymanm@ukzn.ac.za
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If you would like any further information or if you are unclear about anything, please feel free to contact 

me at any time. Your co-operation and consent will be greatly appreciated.  

If you grant permission to conduct this research at your school, please complete the form below and 

return to me.  

Warm regards  

Sihlobosenkosi Mpofu 
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Appendix E: School Principal’s Declaration Letter 

I …………………………………………………………… (full name/s of school principal) of  

……………………………………….….. (name of school) hereby confirm that I understand the 

contents of this document and the nature of this research project, and I consent to the participants  

participating in this research project. I also grant permission for my school to be used as the research 

site.  

Additional consent 

I understand that interviews will be audio-recorded and I grant permission for this. YES/NO 

I understand that the participants and the school are free to withdraw from the research project at any 

time           YES/NO 

SIGNATURE OF SCHOOL PRINCIPAL: ………………..……… DATE……………..……… 
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Appendix F: Participants’ Information Sheet 

DATE: ………………………….. 

Dear Learner 

My name is Sihlobosenkosi Mpofu and I am a PhD Learner in the School of Education at the University of 

KwaZulu-Natal. 

I am doing research on learning of functions.  

My investigation involves giving a test individual participants for a period not more than an hour and a task to six 

participants working in pairs that takes about 40 minutes followed by an interview that may take about 45 minutes. 

All material needed for the project shall be provided.  

I was wondering whether you would mind if I asked you to be part of this research.   

I need your help with writing a test, a task and participating in an interview. During the interview a pair of 

participants shall discuss their answers with a few questions coming from me. The discussion shall take about 45 

minutes.    I will do a video recording but none of your names shall be mentioned as my interest would be what 

you say and do on paper. I shall have an audio recorder as a backup in case something goes wrong to the video 

recorder. Photos will be taken of the working on functions you shall do. None of your faces shall appear on these 

photos.  

Remember, this test is for research purposes only, it is not for marks and it is voluntary, which means that you 

don’t have to do it. Also, if you decide halfway through that you prefer to stop, this is completely your choice and 

will not affect you negatively in any way. 

I am inviting you to take part in this research. 

I will not be using your own name but I will make one up so no one can identify you. All information about you 

will be kept confidential in all my writing about the study. Also, all collected information will be stored safely 

and destroyed after 3 years of the completion of the project.  

Your parents have also been given an information sheet and consent form, but at the end of the day it is your 

decision to join us in the study. 

I look forward to working with you! 

Please feel free to contact me if you have any questions. 
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Thank you   

SIGNATURE 

NAME: Sihlobosenkosi Mpofu 

ADDRESS: 23 Ebony Street, Primrose 

EMAIL: sihlobosenkosi@gmail.com 

TELEPHONE NUMBERS: 0792364875 
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Appendix G: Learners’ Consent Form 

 

 

 

Please fill in the reply slip below if you agree to participate in my study called: Grade 11 learners’ 

participation in the functions discourse: The case of a hyperbola and exponential function 

       My name is: ________________________  

Permission for my written work to be used for the study Circle one 

I agree that answers to a task during an interview can be used in this study only   YES/NO 

Permission for test and task 

I agree to write a test and a task during an interview for this study.   YES/NO  

Permission to be audiotaped 

I agree to be audiotaped during the interview   YES/NO  

I know that the audiotapes will be used in this study only.  YES/NO 

Permission to be interviewed 

I would like to be interviewed for this study.   YES/NO  

I know that I can stop the interview at any time and don’t have to answer all the questions asked.   

YES/NO 

Permission to be photographed 

I know that I can stop this permission at any time.  YES/NO 

I know that the photos will be used in this study only.    YES/NO 

Permission to be videotaped 

I agree to be videotaped during the interview.    YES/NO  
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I know that the videotapes will be used in this study only.    YES/NO 

Informed Consent 

I understand that: 

 my name and information will be kept confidential and safe and that my name and the name of my school 

will not be revealed.  

 I do not have to answer every question and can withdraw from the study at any time. 

 I can ask not to be audiotaped, photographed and/or videotape  

 all the data collected during this study will be destroyed 3 years after the completion of the research project. 

 

 

Sign_____________________________    Date___________________________  
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Appendix H: Parents’ Information Sheet 

DATE: 

Dear Parent 

My name is Sihlobosenkosi Mpofu and I am a PhD learner in the School of Education at the University of 

KwaZulu-Natal. 

I am conducting research on learning of functions.   

My research involves giving a test and a task to participants and then ask them to discuss the answers where I 

would interject by asking for clarification in the statements they say. I shall video record all the proceedings.  

The reason why I have chosen your child is because he/she is keen learner of mathematics. 

I was wondering whether you would mind allowing your child to take part in the research by writing the test and 

task and taking part in the discussion that would follow, where video recording shall take place. I shall also audio 

record the proceedings as a way of backing up. I shall also take photos of the work they would have done. None 

of the participants’ names shall be used in the report, but names shall be assigned to them. The test shall take a 

period not more than an hour while the task shall take about 40 minutes and the discussion thereafter about 45 

minutes.  

Your child will not be advantaged or disadvantaged in any way. S/he will be reassured that s/he can withdraw 

her/his permission at any time during this project without any penalty. There are no foreseeable risks in 

participating and your child will not be paid for this study.  

I am inviting you to be part of this research by allowing your child to participate. 

Your child’s name and identity will be kept confidential at all times and in all academic writing about the study. 

His/her individual privacy will be maintained in all published and written data resulting from the study.   

All research data will be destroyed 3 years after the completion of the research project. 

Please let me know if you require any further information. 

Thank you very much for your help.   

Yours sincerely, 

SIGNATURE 

NAME: Sihlobosenkosi Mpofu 

ADDRESS: 23 Ebony Street, Primrose 

EMAIL: sihlobosenkosi@gmail.com 

TELEPHONE NUMBERS: 0972364875 
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Appendix I: Parents’ Consent Form 

 

Please fill in and return the reply slip below indicating your willingness to allow your child to participate in the 

research project called: Grade 11 learners’ participation in the functions discourse: the case of a hyperbola 

and exponential function. 

I, ________________________ the parent of ______________________  

Permission for written work to be used for this study Circle one 

I agree that my child’s task can be used in this study only.   YES/NO 

Permission for task 

I agree that my child may write a task for this study.   YES/NO 

Permission to be audiotaped 

I agree that my child may be audiotaped during interview.   YES/NO  

I know that the audiotapes will be used in this study only    YES/NO 

Permission to be interviewed 

I agree that my child may be interviewed for this study.   YES/NO  

I know that he/she can stop the interview at any time and doesn’t have to  

answer all the questions asked.    YES/NO 

Permission to be photographed 

I agree that my child’s work may be photographed during the study.  YES/NO  

I know that I can stop this permission at any time.  YES/NO 

I know that the photos will be used in this study only.    YES/NO 

Permission to be videotaped 

I agree my child may be videotaped during an interview.   YES/NO  
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I know that the videotapes will be used in this study only.    YES/NO 

Informed Consent   

I understand that: 

 my child’s name and information will be kept confidential and safe and that my name and the name of my 

school will not be revealed.  

 he/she does not have to answer every question and can withdraw from the study at any time. 

 he/she can ask not to be audiotaped, photographed and/or videotape  

 all the data collected during this study will be destroyed after 3 years after completion of the project. 

 

 

Sign_____________________________    Date___________________________  
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Appendix J: Sample of Transcripts 

 

Video 154344 

INTERVIEWER = I 

LEARNER 1 (UNATHI)=U  

LEARNER 2 (ALLU) =A 

LEARNER 1 & 2 (Allu & Unathi) = AU  

[00:00:03] I: Ok Welcome Allu and Unathi to this interview.aaaahh may you start by. I will start with 

ee with Unathi, may you start by telling us what you’ve done for Question number 1, Task 1. Question 

number 1. Which says name each 

[00:00:26] U: Name each of the functions given above and explain how f relates to y=3^x and g relates 

to y=2/x. 

[00:00:38] U:  Firstly, the graph of f(x) is the exponential function and g(x) is the hyperbolic function. 

And there is that questions that says how it relates to y=3^x. This graph 3^x has been shifted 1unit to 

the left and 9units down. 

[00:01:07] I:Ok 

[00:01:10] U: And then this one g(x) has been shifted 3units to the left and 1unit opposite. 

[00:01:20] I: Alright. So can you take us to the next question? 

[00:01:29] A: ok. What is the asymptote of f? How do you know this? 

[00:01:33] A: er The asymptote of f(x). F(x) is an exponential, so an exponential has 1 asymptote, which 

is the -9, no it’s actually 1. 

[00:01:51] U:  it’s 1 

[00:01:53] A: No it’s -1. 

[00:01:54] U: No this is a horizontal shift. Utini. 

[00:01:57] A: Wait 

[00:02:01] I: Ok. Yes. Talk. 

[00:02:03] A: OK 9. So X+1=0, it equate back to 0.Right. 
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[00:02:09] U: Yes 

[00:02:12] A: That’s whereby the function should not cross the line. And X is equal to 9 

[00:02:17] U: No an exponential function has 

[00:02:21] I: Ok you can speak up it’s fine. No wrong answer discussed, talk. 

[00:02:24] AU: ok ok  

[00:02:26] U: The exponential function has only one asymptote series , this is the only asymptote that 

f(x) has.ok This one is just the horizontal shift.  

[00:02:32] A: Ohh Yes  

[00:02:33] U: and this one is the verticeal shifting 

[00:02:35] U: and then This one, this -9 is the horizontal asymptote 

[00:02:38] A: Ok, ok, yes 

[00:02:41] I: Why do you say  it is the horizontal asymptote 

[00:02:44] U:horizontal asymptote,  

[00:02:45] I: Yes 

[00:02:47] U:it is the line that the function must not go through or touch. you see. 

[00:02:52] A: on the y-axis 

[00:02:53] I: On the y-axis 

[00:02:55] AU: Yes 

[00:02:57] A:must not go 

[00:02:58] I: hmm 

[00:03:00] I: Ok, ok, am trying to understand you. right. So you are saying that the asymptote of f is 

[00:03:09] U: minus,  Y = -9.   

[00:03:11] I: so is there a difference if I say Y= -9 and if I say -9. It is the same thing or its different 

[00:03:18]  A & U: If you just say -9, you are not specific, it can be x= -9 or y= -9. So it’s better you 

say that Y=-9. 
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[00:03:27] I: so we agree that 

[00:03:29] U: to specify that it must not touch the line y= -9. 

[00:03:33] I: are you sure of that 

[00:03:35] U: Yes, yes, sir.  

[00:03:36] I: ehhheheh 

[00:03:38] A: Ha Ezo confuse 

[00:03:39] I: am not confusing you.so you are saying that it is an asymptote because it must not touch 
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Appendix K: Editor’s Letter 

 

 

 

 

 

 

 


