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ABSTRACT 
 

Marula and moringa seeds are used as a source of food, and the seed oils are used in cosmetics, 

pharmaceuticals and in medicines. This is due to its high nutritive value and high content of 

unsaturated fatty acids, which however makes them highly susceptible to oxidation. Due to its high 

nutritive value, the demand for the seed oil often exceeds industrial supply. Therefore, a timeous 

and environmentally friendly extraction method, which produces an oil with better oxidative 

stability, is required. Hence, the reason for this investigation on the effect of screw press, aqueous 

extraction (37 and 60 °C) and solvent extraction (shaker and Soxhlet) method on the oxidative 

stability of marula and moringa seed oil. 

 The oxidative stability of the seed oils was determined by carrying out several tests, such as 

moisture content, acid value and peroxide value (PV). In addition, the anisidine value (AV), radical 

scavenging activity, conjugated diene (CD) and triene (CT) % were determined by UV-Vis 

spectroscopy. The fatty acid methyl ester content was determined using gas chromatography-mass 

spectrometry (GC-MS). The result for the oil yield showed there was a significant difference 

(P˂0.05) in the different extraction methods. Soxhlet extracted marula and moringa seed oil had 

the highest oil yield of 53.99 % and 35.20 %, respectively. Aqueous extracted marula and moringa 

oil at 37 °C had the lowest oil yield of 18.67 % and 12.00 %, respectively. The fatty acid profile 

showed the presence of palmitic, stearic, oleic, linoleic and behenic acid in moringa seed oils with 

oleic acid being the most dominant in the seed oils with the different extraction methods. Soxhlet 

extracted marula and moringa seed oil had a fatty acid composition of 70.70 and 77.61 % 

respectively, while aqueous extracted marula and moringa seed oil at 37 °C was 72.36 and 79.94 

% respectively. The oxidative stability test PV, a measure of the initial oxidation, and AV, a 

measure of secondary oxidation product, showed there was a significant difference (P˂0.05) for 

the different extraction methods. Aqueous extracted marula and moringa seed oil at 37 °C had the 

highest radical scavenging ability compared to the other extraction techniques. The oxidative 

stability test carried out for 35 days at ambient and different accelerated storage conditions (45 and 

65 °C) showed that aqueous extracted seed oil at 37 °C for both seed oils had lower values for the 

oxidative tests and lower values for the rate of change of PV and AV values thus suggesting a 

better stability oil. This could be as a result of the presence of the higher monounsaturated fatty 
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acid which aids stability, and lower polyunsaturated fatty acid present.  A comparison of the 

stability tests for two seed oils showed that moringa seed oil had a better stability.  This is probably 

due to the lower secondary oxidation products present in moringa oil as well as a higher quantity 

of monounsaturated fatty acid and lower quantity of polyunsaturated fatty acid present compared 

to that of marula. This study showed that aqueous extracted seed oils have a has a better resistance 

to degradation and oxidation reduction and shelf life in comparison with the other extraction 

methods. Also, moringa seed oil showed a better resistance to degradation as compared to marula 

seed oil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
vi 

 

CONFERENCE PARTICIPATION 

 

1. Anwuli T Nwabuebo and Brenda Moodley, Effect of Extraction Methods on the 

Oxidative Stability of Marula and Moringa Seed Oil (Poster presentation at the College 

of Agriculture, Engineering and Science Research Day, 29th November 2016, Howard 

Campus, UKZN). 

2. Attendance at the SCIEX seminar. Innovations in Mass Spectrometry for Food, Forensics 

and Environmental Laboratories. 28th July 2016, Durban 

3. Attendance at the LECO Africa Research and Application in Chemistry, and other 

Scientific Fields workshop, 2nd March 2016, Westville Campus, UKZN 

4. Attendance at the Perkin Elmer Innovation Tour. 24th June 2015, Durban 

 



 
vii 

 

ACKNOWLEDGMENTS 

 

Firstly, I would like to acknowledge the Almighty God, for his love, guidance, favor and infinite 

mercy. I would also like to acknowledge my parents whose financial and moral support has been 

a source of inspiration. 

I would like to acknowledge the sponsorship from National Research Foundation (NRF) and 

Everpix.  

I would also like to acknowledge my supervisor, Dr Brenda Moodley for taking her time to go 

through my work. I also appreciate the effort of Elizabeth Goyvaerts of Everpix for her moral 

support and tutelage during the research work despite her busy schedule. 

I would like to express my appreciation to Mr. Samuel Aremu for assistance, guidance and support 

since I came in to South Africa.  

I would like to thank Dr. Ayobamidele Lawal for his mentorship during this research program. 

The input and support you have provided has been invaluable. I really appreciate everything you 

have done for me, you have really influenced my life in a positive way and made a great 

improvement to my academic life.  

I would also like to acknowledge my senior colleagues Dr. Samson Akpotu, Mr. Jeremiah Oluleye 

and Ekuyikeno Umo, Tolulope Ogunleye whose name I have not included for their support 

throughout this programme. I hope our friendship continues to grow as we all embark on new 

journeys in our lives.  

Finally, I will like to acknowledge Olabode Sanni for his love, care, support and motivation all 

through the research work. 

 

 

 

 



 
viii 

 

LIST OF ABBREVIATIONS 

 

2,2-diphenyl-1-picrylhydrazyl       DPPH  

American Oil Chemist Society      AOCS 

Analysis of variance                                             ANOVA 

Conjugated dienes                                                                         CD 

Conjugated trienes         CT 

Butylated hydroxyanisole        BHA 

Electron transfer         ET 

Fatty acid methyl esters        FAMEs 

Fatty acids          FA 

Ferric reducing antioxidant power       FRAP 

Free radicals          A* 

Gas chromatography coupled with a flame ionization detector   GC-FID 

Gas chromatography mass spectrometry      GC-MS 

Hydrogen atom transfer        HAT  

Hydroperoxide         ROOH 

Malonaldehyde         MA 

Monounsaturated FAs                                                                                    MUFAs 

National Institute of Standards and Technology                                             NIST    

Oxygen radical absorbance capacity       ORAC 

p-anisidine value         p-AV or AV 

Polyunsaturated FAs         PUFAs 



 
ix 

 

Statistical Package        SPSS 24.0 

Supercritical fluid extraction        SFE 

Thiobarbituric acid         TBA  

Total radical trapping antioxidant parameter                 TRAP  

Trolox equivalent antioxidant capacity      TEAC 

 



 
x 

 

TABLE OF CONTENTS 

 

PREFACE ...................................................................................................................................... ii 

DECLARATION: PLAGIARISM ............................................................................................. iii 

ABSTRACT .................................................................................................................................. iv 

CONFERENCE PARTICIPATION .......................................................................................... vi 

ACKNOWLEDGMENTS .......................................................................................................... vii 

LIST OF ABBREVIATIONS ................................................................................................... viii 

TABLE OF CONTENTS ............................................................................................................. x 

LIST OF TABLES ..................................................................................................................... xiv 

LIST OF FIGURES ................................................................................................................... xvi 

LIST OF SCHEMES ............................................................................................................... xviii 

1.0 CHAPTER 1: INTRODUCTION ..................................................................................... 1 

1.1 General overview ............................................................................................................. 1 

1.2 Statement of problem ....................................................................................................... 6 

1.3 Hypothesis ........................................................................................................................ 7 

1.4 Aim and objectives ........................................................................................................... 7 

2.0  CHAPTER 2: LITERATURE REVIEW ....................................................................... 9 

2.1 Oils and Fats ..................................................................................................................... 9 

2.2 Extraction of oil .............................................................................................................. 10 

2.2.1 Cold pressing ................................................................................................................ 10 

2.2.2 Solvent extraction ......................................................................................................... 11 

2.3 Rancidity of oil ............................................................................................................... 14 

2.3.1 Oil oxidation ........................................................................................................... 15 



 
xi 

 

2.3.2 Steps involved in autoxidation of oil ...................................................................... 15 

2.3.3 Oxidation products .................................................................................................. 17 

2.4. Methods to measure oxidation products in oil ............................................................... 17 

2.4.1 Peroxide value ......................................................................................................... 17 

2.4.2 Conjugated dienes and trienes ................................................................................ 18 

2.4.3 Measurement of secondary oxidation products ...................................................... 19 

2.4.4 p-anisidine value ..................................................................................................... 19 

2.4.5 Thiobarbituric acid (TBA) value ............................................................................ 20 

2.4.6 Oxidative stability ................................................................................................... 21 

2.5 Fatty acid composition ................................................................................................... 21 

2.6 Antioxidants ................................................................................................................... 25 

2.6.1      2, 2-Diphenyl-l-picrylhydrazyl (DPPH) assay (Radical Scavenging ability).......... 25 

3.0 CHAPTER 3: MATERIALS AND METHOD ............................................................. 26 

3.1 Materials and reagents .................................................................................................... 26 

3.2 Determination of moisture content ................................................................................. 26 

3.3 Sample preparation ......................................................................................................... 27 

3.3.1 Oil extraction .......................................................................................................... 27 

3.3.2 Soxhlet extraction with hexane ............................................................................... 27 

3.3.3 Hexane extraction at ambient temperature (shaker method) .................................. 28 

3.3.4 Aqueous extraction ................................................................................................. 29 

3.3.5 Screw press extraction ............................................................................................ 29 

3.3.6 Determination of percentage oil yield and efficiency ............................................. 30 

3.3.7 Determination of acid value and percentage free fatty acid ................................... 31 

3.3.8 Determination of the peroxide value....................................................................... 32 

3.3.9 Determination of p-anisidine value ......................................................................... 33 



 
xii 

 

3.3.10 Determination of conjugated dienes and trienes ..................................................... 34 

3.3.11 Determination of fatty acid composition ................................................................ 35 

3.3.12 Radical scavenging activity towards 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical

 ……………………………………………………………………………………..36 

3.3.13 Oxidative stability ................................................................................................... 37 

3.4 Statistical analysis .......................................................................................................... 38 

4.0 CHAPTER 4: RESULTS AND DISCUSSION ............................................................. 39 

4.1 Moisture content of seed and seed oil ............................................................................ 39 

4.2 Oil yield and extraction efficiency ................................................................................. 40 

4.3 Determination of fatty acid profile ................................................................................. 43 

4.4 Acid value ...................................................................................................................... 49 

4.5 Measurement of oxidation products ............................................................................... 52 

4.5.1 Peroxide value ......................................................................................................... 52 

4.5.2 Conjugated diene and triene value .......................................................................... 54 

4.5.3 p–anisidine value .................................................................................................... 56 

4.6 Determination of oxidative stability of the seed oils based accelerated shelf life studies

 ………………………………………………………………………………………….58 

4.7 Determination of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity 78 

5.0 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS ................................ 81 

References .................................................................................................................................... 83 

APPENDICES ............................................................................................................................. 97 

Appendix A: Representative calculation of percentage oil yield and extraction efficiency in 

aqueous extracted marula and moringa seed oil at 37 ˚C .......................................................... 97 

Appendix B: Representative calculation for relative fatty acids present in moringa seed oils . 98 

Appendix C: Representative example of the oxidative stability test calculation (peroxide value) 

for aqueous extracted marula and moringa seed oil at 37 ˚C .................................................. 100 



 
xiii 

 

Appendix D: Representative example of the oxidative stability test calculation (Conjugated 

diene and triene value) for aqueous extracted marula and moringa seed oil at 37 ˚C ............ 101 

Appendix E: Radical scavenging ability of marula and moringa seed oil with different 

extraction methods .................................................................................................................. 102 

 



 
xiv 

 

LIST OF TABLES 

 

Table 2.1: Oil yield (%) of different extraction methods from different seed sources ................. 14 

Table 2.2: List of fatty acids found in plant seed oil (Stobart et al., 2003) .................................. 23 

 

Table 4.1: Moisture content of marula and moringa seeds (n = 3) ............................................... 40 

Table 4.2: Moisture content of marula and moringa seed oil (n=3) ............................................. 40 

Table 4.3: Oil yield and extraction efficiency of marula seed oil (n = 3) ..................................... 41 

Table 4.4: Oil yield and extraction efficiency of moringa seed oil (n = 3)................................... 42 

Table 4.5: Relative fatty acid composition of marula seed oil ..................................................... 48 

Table 4.6: Relative fatty acid composition of moringa seed oil ................................................... 49 

Table 4.7: Acid value of marula and moringa seed oil (n = 3) ..................................................... 50 

Table 4.8: Peroxide value of marula seed oil (n = 3) .................................................................... 53 

Table 4.9: Conjugated diene and triene values of marula and moringa seed oil (n = 3) .............. 55 

Table 4.10: Anisidine value of marula and moringa seed oil (n = 3) ........................................... 57 

Table 4.11: Oxidative stability (shelf life) results of marula seed oil ........................................... 61 

Table 4.12: Oxidative stability (shelf life) of moringa seed oil .................................................... 62 

Table 4.13: Comparison of peroxide values of marula and moringa seed oil for aqueous 37 °C at 

ambient temperature...................................................................................................................... 63 

Table 4.14: Comparison of anisidine values of marula and moringa seed oil for aqueous 

extraction at 37 °C at ambient temperature................................................................................... 63 

Table 4.15: Rate of change of peroxide value for marula seed oil. (PR- parameter, GR- gradient)

....................................................................................................................................................... 77 

Table 4.16: Rate of change of anisidine value for marula seed oil. (PR- parameter, GR- gradient)

....................................................................................................................................................... 77 

Table 4.17: Rate of change of peroxide value for moringa seed oil. (PR- parameter, GR- 

gradient) ........................................................................................................................................ 77 

Table 4.18: Rate of change of anisidine value for moringa seed oil. (PR- parameter, GR- 

gradient) ........................................................................................................................................ 77 



 
xv 

 

Table 4.19: Radical scavenging ability of marula and moringa seed oil with different extraction 

methods ......................................................................................................................................... 78 

 

 



 
xvi 

 

LIST OF FIGURES 
 

Figure 1.1: Photograph showing moringa tree and pods (Oommen, 2015) .................................... 2 

Figure 1.2: Photograph showing the (a) moringa kernels with the papery wings and (b) seeds .... 2 

Figure 1.3: Photograph showing (a) Marula tree and (b) kernel ..................................................... 4 

Figure 1.4: Photograph showing Marula fruit................................................................................. 4 

  

Figure 4.1: GC-MS chromatogram of 5 fatty acids present in aqueous extracted (37 °C) marula 

seed oil .......................................................................................................................................... 45 

Figure 4.2: Actual mass spectrum of palmitic acid methyl ester in marula seed oil .................... 45 

Figure 4.3: Library match for palmitic acid methyl ester from the NIST library ......................... 45 

Figure 4.4: Graph showing the rate of increase of peroxide value at ambient temperature, 45 °C 

and 65 °C for Soxhlet extracted marula seed oil........................................................................... 65 

Figure 4.5: Graph showing the rate of increase of peroxide value at ambient temperature, 45 °C 

and 65 °C for shaker extracted marula seed oil. ........................................................................... 65 

Figure 4.6: Graph showing the rate of increase of peroxide value at ambient temperature, 45 °C 

and 65 °C for screw press extracted marula seed oil. ................................................................... 66 

Figure 4.7: Graph showing the rate of increase of peroxide value at ambient temperature, 45 °C 

and 65 °C for aqueous extracted marula seed oil at 60 °C. .......................................................... 66 

Figure 4.8: Graph showing the rate of increase of peroxide value at ambient temperature, 45 °C 

and 65 °C for aqueous extracted marula seed oil at 37 °C. .......................................................... 67 

Figure 4.9: Graph showing the rate of increase of peroxide value at ambient temperature 45 °C 

and 65 °C for Soxhlet extracted moringa seed oil ........................................................................ 68 

Figure 4.10: Graph showing the rate of increase of peroxide value at ambient temperature 45 °C 

and 65 °C for shaker extracted moringa seed oil .......................................................................... 68 

Figure 4.11: Graph showing the rate of increase of peroxide value at ambient temperature 45 °C 

and 65 °C for screw press extracted moringa seed oil .................................................................. 69 

Figure 4.12: Graph showing the rate of increase of peroxide value at ambient temperature 45 °C 

and 65 °C for aqueous extracted moringa seed oil at 60 °C ......................................................... 69 

Figure 4.13: Graph showing the rate of increase of peroxide value at ambient temperature 45 °C 

and 65 °C for aqueous extracted moringa seed oil at 37 °C ......................................................... 70 



 
xvii 

 

Figure 4.14: Graph showing the rate of increase of anisidine value value at ambient temperature, 

45 °C and 65 °C for Soxhlet extracted marula seed oil. ............................................................... 71 

Figure 4.15: Graph showing the rate of increase of anisidine value at ambient temperature, 45 °C 

and 65 °C for shaker extracted marula seed oil. ........................................................................... 71 

Figure 4.16: Graph showing the rate of increase of anisidine value value at ambient temperature, 

45 °C and 65 °C for screw press extracted marula seed oil .......................................................... 72 

Figure 4.17: Graph showing the rate of increase of anisidine value value at ambient temperature, 

45 °C and 65 °C for aqueous extracted marula seed oil at 60 °C ................................................. 72 

Figure 4.18: Graph showing the rate of increase of anisidine value value at ambient temperature, 

45 °C and 65 °C for aqueous extracted marula seed oil at 37 °C ................................................. 73 

Figure 4.19: Graph showing the rate of increase of anisidine value at ambient temperature 45 °C 

and 65 °C for Soxhlet extracted moringa seed oil ........................................................................ 73 

Figure 4.20: Graph showing the rate of increase of anisidine value at ambient temperature 45 °C 

and 65 °C for shaker extracted moringa seed oil .......................................................................... 74 

Figure 4.21: Graph showing the rate of increase of anisidine value at ambient temperature 45 °C 

and 65 °C for screw press extracted moringa seed oil .................................................................. 74 

Figure 4.22: Graph showing the rate of increase of anisidine value at ambient temperature 45 °C 

and 65 °C for aqueous extracted moringa seed oil at 60 °C ......................................................... 75 

Figure 4.23: Graph showing the rate of increase of anisidine value at ambient temperature 45 °C 

and 65 °C for aqueous extracted moringa seed oil at 37 °C ......................................................... 75 

 

 

 

 

 

 

 



 
xviii 

 

LIST OF SCHEMES 

 

Scheme 2.1: Reaction of glycerol with 3 fatty acids to form triacylglycerol ................................. 9 

Scheme 2.2: Proposed reaction between p-anisidine reagent and malonaldehyde (Shahidi et al., 

2002) ............................................................................................................................................. 20 

Scheme 2.3: General formula of a fatty acid ................................................................................ 22 

Scheme 2.4: Reaction of triglyceride and KOH methanol to form fatty acid methyl ester and 

glycerol ......................................................................................................................................... 24 



 
1 

 

1.0 CHAPTER 1: INTRODUCTION 

  

1.1 General overview 

 

Plants store energy in the form of starch and storage lipids (Lüttge, 2012), mostly in seeds 

(seed oil) or pulp (fruit oil such as olive, avocado, palm) (Bora et al., 2001). In most plants 

lipids are stored in the form of triglycerides, jojoba being an exception where lipids are 

stored as wax (Murphy, 1990). Vegetable oil can be defined specifically as plant oils that 

are in a liquid state, but can generally be in any state (liquid, solid or gaseous) at a given 

temperature. Oils in a solid state at room temperature are called vegetable fat. In early 

days oils extracted from plants were used as a source of food, medicine, energy and 

cosmetic application (O'brien, 2008; Zimba et al., 2005). Oil is used in the treatment of 

ailments like muscle spasms, varicose veins and wounds, hair dandruff and in the 

production of lubricants and soap (Chivandi et al., 2008; Van Wyk et al., 2002). Examples 

of seed oils include sunflower oil, canola oil, sesame oil, grape seed oil, macadamia oil, 

marula and moringa oils and many others.  

This work focused on moringa and marula seed oils, where oils were extracted from seeds 

of their respective trees. They are high oleic acid oils reported with high oxidative stability 

and used as carrier oils in cosmetic formulations. High oxidative stability is an important 

parameter for the cosmetics industry. Currently cold pressed oils are preferred as this 

extraction method is known to preserve oxidative stability. However, aqueous extraction 

is slowly gaining popularity due to the mild conditions required for extraction. Therefore, 

the aim of this study was to compare the effect of different extraction methods on the 

oxidative stabilities of moringa and marula seed oils.  

Moringa olifera is part of the family Moringaceae having 14 species belonging to the 

genus Moringa (Morton, 1991). It is commonly known as the horse-radish or “drumstick” 

tree and indigenous to the western and sub-Himalayan tract including India, Pakistan, 

Asia Minor, Africa and Arabia (Mughal et al., 1999; Somali et al., 1984). It is now widely 

used in the tropical and sub-tropical areas (Anwar et al., 2007; Morton, 1991). Moringa 

is a deciduous tree which grows fairly quickly reaching a height of 5 to 10 m and 
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sometimes 15 m high (Morton, 1991; Somali et al., 1984). It is mostly found growing on 

pastureland or in river basins and grows well on hill sides (Yadav et al., 2016). The 

moringa pod changes colour to brown when it is matured and has about 10 to 50 seeds 

inside the pod, which is about 50 cm long (Figure 1.1). The matured dry seeds have a 

round shape and the outer part of the kernel is covered with a dark brown shell with three 

papery wings (Abdulkarim et al., 2005; Vlahov et al., 2002) (Figure 1.2).  

 

 

 

 

 

 

 

Figure 1.1: Photograph showing moringa tree and pods (Oommen, 2015) 

Figure 1.2: Photograph showing the (a) moringa kernels with the papery wings and (b) 

seeds 

 

Due to the great importance of moringa tree in the food and medicinal industries, some 

specific non-governmental organizations such as Trees for Life, Church World Service 

 

(a) (b
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and Educational Concerns for Hunger Organization have recommended moringa as a 

natural nutrient (Fahey, 2005; Makkar et al., 1999; Manzoor et al., 2007; Sreelatha et al., 

2009). The moringa tree is an all-purpose tree with the green pods and fresh dried leaves 

used as a vegetable which are rich in free leucine. The young leaves are edible and are 

commonly prepared and eaten like spinach or used to make soups and salads and are a 

good source of Vitamins A, B1, B2, B3, B6, B7, C, D, E and K as well as minerals such as 

calcium, copper, iron, potassium, magnesium, manganese and zinc (Foidl et al., 2001). 

Moringa leaves are known to be very nutritious. For example, the content of vitamin C 

present in moringa was higher than that in orange, the vitamin A present was higher in 

moringa than in carrot, the calcium present was higher in moringa than that in milk, and 

potassium in moringa was higher than that in banana. Moringa has twice the amount of 

protein than in yogurt and a higher micro nutrient in dry leaves (Mahatab et al., 1987; 

Manzoor et al., 2007). In another study, it was reported that some parts of the tree showed 

antitumor, antipyretic, antiepileptic, anti-inflammatory, and antiulcer effects and are used 

in native medicines (Morimitsu et al., 2000; Siddhuraju et al., 2003; Singh et al., 1999).  

The seed contains yellow edible oil that is used for medicinal purposes (Anwar et al., 

2003; Foidl et al., 2001). The constituent of the fatty acid present in moringa seed oil is 

about 13 % saturated fatty acids, 82 % unsaturated fatty acids and a higher quantity of 

oleic acid (70 %) (Foidl et al., 2001; Rahman et al., 2009; Tsaknis et al., 1998). Oleic acid 

rich seed oils could be a substitute for hydrogenated vegetable oil because of their high 

stability and numerous health benefits (Rahman et al., 2009; Tsaknis et al., 1999). 

Moringa oil is also used as a lubricant for machinery because of its resistance to rancidity 

(Ferrao et al., 1970; Ramachandran et al., 1980). In addition the oil is used for cooking, 

used in making odours stable in the perfume industry and can absorb and retain volatile 

substances.  

The cosmetic use of moringa oil dates back to the Egyptians, where it was reported that 

the addition of terebinth (frankincense), wax and fresh moringa oil was used to remove 

wrinkles (Kleiman et al., 2006). Moringa seed oil is presently used as a carrier oil in 

cosmetic preparations. It is also reported as a good oil for massaging and for aromatherapy 

applications, and also in body and hair care as a moisturizer and skin conditioner (Aney 

et al., 2009). Other uses include soap making and use in cosmetic preparations such as lip 

balm and creams (Aney et al., 2009). Armand-Stussi et al. (2003) reported that moringa 
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butter, a semisolid fraction of moringa oil, is used in skin products for babies and sensitive 

skin because it helps to soothe and soften the skin. 

Marula (Sclerocarya birrea) belonging to the family Anacardiaceae subspecies caffra, is 

commonly found  in the savannah regions in Africa and its geographical distribution runs 

from inland of West (Gambia and Nigeria), Central (Cameroon) and East (Ethiopia and 

Sudan) Africa and the lowlands of Southern Africa (South Africa) (Viljoen et al., 2008). 

The tree grows up to 10–15 m high with a grey cracked-like bark, strong, thick branches 

and light coloured leaves (Figure 1.3). The leaves are compound, pinnate and the flowers 

are greenish in colour. The fruits are yellow, and look like olives with white fruit pulp 

surrounded by a thick skin (Figure 1.4). 

Figure 1.3: Photograph showing (a) Marula tree and (b) kernel 

 

 
Figure 1.4: Photograph showing Marula fruit 

 

The marula tree is an important source of food, and also has commercial, cultural and 

medicinal importance in Africa. The marula fruit has a strong aroma and is a fleshy fruit 

which is widely consumed due to its high nutritive value (Ojewole et al., 2010). The gum 

obtained from the tree is rich in tannins, and used for making a substitute for ink (Ojewole, 

2003). Its African medicinal uses include bark extract for diarrhea and stomach pain, and 

the root extract is used for treatment of sore eyes (Eloff, 2001; Maroyi, 2011; Mathabe et 

(a) 
(b
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al., 2006). The leaves and roots are used for the treatment of fungal infections and snake 

bite (Dimo et al., 2007; Hamza et al., 2006). Marula wood is used by African villagers 

for making household dishes, mortars for crushing mealie, musical instruments, toys and 

decorative items (Breyer-Brandwijk, 1962). It was reported in literature that the bark 

yields 3.5–20.5 % tannin, 10.7 % tanning matter and traces of alkaloids (Breyer-

Brandwijk, 1962). 

Marula fruit contains a high vitamin C content which is triple that of oranges and has the 

same amount as that in guava (Baba et al., 2014). The fruit contains soluble phenolics, K, 

Na, Ca, Mg, Fe, Zn, Mn (Hillman et al., 2008), crude oils, carbohydrates, crude proteins, 

fibre, saponins (Ogbobe, 1992), minerals (Smith et al., 1996), and ascorbic acid 

(Eromosele et al., 1991). The main phenolic compounds in the fruit are byproducts of 

hydrolizable tannins, catechins, and hydroxycinnamic acid (Borochov-Neori et al., 2008). 

Literature has shown the presence of esters and hydrocarbons such as heptadecene (16.1 

%), benzyl 4-methylpentanoate (8.8 %), benzyl butyrate (6.7 %), (Z)-13 octadecenal (6.2 

%), cyclo-pentadecane (5.7 %), (Z)-3-decen-1-ol (8.4 %), 6-dodecen-1-ol (3.8 %), 11-

hexadecanal (4.4 %), β-caryophyllene (91.3 %), α-humulene (8.3 %), and germacrene D 

(0.1 %) (Viljoen et al., 2008). It was also reported to contain caffeic acid, vanillic acid, 

p-hydroxybenzaldehyde, ferulic acid, p-hydroxybenzoic acid, and p-coumaric acid 

(Ndhlala et al., 2007). In several parts of Southern Africa the whole fruit is used for 

brewing beer and distilling spirits. 

The kernels are rich in oil, which has a clear, pale, yellowish-brown colour with a pleasant 

smell. It is known to have a high nutritional value, high oxidative stability, and antioxidant 

activity, free radical scavenging properties and moisturizing properties. It is also used for 

cooking, preserving meat and for treatment of leather. Mono-unsaturated fatty acids and 

natural antioxidants are abundant in marula oil and the fatty acid composition of the oils 

makes the oil stable (Burger et al., 1987; Eromosele et al., 2003; Glew et al., 2004). It has 

been reported that the oil has an abundance of glutamic acid and arginine and also 

contains 64 % oleic acid, myristic, stearic and amino acids (Eloff, 2001). Due to the 

afformentioned properties it is used in industries for cosmetic preparation. 

Both moringa (indigenous to India) and marula (indigenous to Africa) oils are high oleic 

acid oils. They are both reported to have high oxidative stability and were therefore 
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selected to investigate the effect of different extraction methods on their oxidative 

stability.  

Traditionally oils have been extracted using solvents or by mechanical means (pressure). 

In East Africa, shea butter is still extracted by stirring ground seeds in boiling water and 

scooping of the lower density oil. Of the many oil extraction techniques available, hexane 

extraction is currently the most widely used commercially. However safety, 

environmental and worker health concerns associated with hexane is prompting the 

development of alternative more environmentally friendly methods (Latif, Diosady, et al., 

2008).  

Aqueous extraction, which is a type of cold pressing, is normally used for fruit oil (olive 

and avocado) extraction is more recently being applied to nuts and seed oil extraction, 

notwithstanding the lower yields.  Marula and moringa are mainly pressed by mechanical 

means and currently there are no reports on the extraction of marula and moringa seed 

oils using aqueous extraction at 37 and 60 °C. 

Cold pressing is gaining popularity due to the global drive towards natural extraction 

methods. Cold pressing implies that the temperature during extraction is kept below 60 

°C where the low temperature is said to retain the physicochemical properties and stability 

of the seed oil.  

 

1.2 Statement of problem 

 

At present the common commercial extraction methods used are solvent and mechanical 

oil extraction (Febrianto et al., 2012). The mechanical pressing (screw press) has its 

advantages and disadvantages. One of its advantages is that it is a green method, which 

does not require the use of a solvent for extracting oil from the seed, but its disadvantage 

is that it has a lower oil yield with large amounts of residual oil left in the cake (about 7 

% or 8 %). The advantage of solvent extraction is that it virtually extracts all the oil 

present in the seed leaving about 0.5 % in the cake. Its disadvantage is that the use of a 

solvent makes it not environmentally friendly and flammability of the solvent contributes 

to safety issues during the extraction process (Luthria et al., 2004; Anderson, 2016).  A 
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better method of extraction, which will not affect the physicochemical properties of the 

seed oil, is required. This has led to this study of moringa and marula seeds, which are 

both naturally high in oleic acid with reported high antioxidant activities, and are 

evaluated for the impact of different extraction methods on oxidative stability, a key oil 

quality parameter.  Aqueous extraction may be a suitable alternate method for the 

extraction of seed oils, since it uses milder extraction and processing conditions as well 

as it is a green method that may produce oils that are more stable and have a longer shelf 

life 

 

1.3 Hypothesis  

 

Aqueous extraction results in marula and moringa seed oils with better physicochemical 

properties, greater stability and of higher quality than hexane extracted and mechanically 

pressed oils. 

 

1.4 Aim and objectives 

 

Aim 

To examine whether the method used to extract oil impacts oil quality, and specifically, 

the fatty acid profile, acid value, primary and secondary oxidation, antioxidant activity 

and shelf life of two high oleic acid oils namely, moringa and marula seed oils. 

Objectives  

1) To extract oil from moringa and marula seed using five methods, namely: hexane 

extraction (Soxhlet method at 69 °C), hexane extraction at ambient temperature 

(shaker method), aqueous extraction at 37 °C, aqueous extraction at 60 °C and 

mechanical pressing (screw press method).  
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2) To determine the quality parameters of the extracted oils (as per 1) specifically, the 

acid value (or, percentage free fatty acid), peroxide value, anisidine value and 

conjugated diene and triene values of the seed oils and analyze the results. 

3) To determine the fatty acid composition and compare the profiles of the seed oils 

extracted with the different extraction methods (as per 1)  

4) To determine the impact of the extraction method on the antioxidant activity of the 

different seed oils, if any.  

5) To conduct an accelerated shelf life study on the oils of (1) and compare the results. 

6) To critically analyse the results obtained in 2-5 and determine whether the hypothesis 

is supported or not.  
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2.0  CHAPTER 2: LITERATURE REVIEW 

 

2.1 Oils and Fats 

 

Oils and fats are generally referred to as lipids; they are insoluble in water and soluble in organic 

solvents. The difference between oils and fats is that fats are solid at room temperature and oils 

are liquid at room temperature, with temperature ranging between 21 and 25 °C. Lipids are 

categorized depending on their acyl residue or their polarity (Belitz et al., 2009). Triacylglycerols 

are the generally used edible lipids and are made up of a glycerol backbone and three fatty acids 

(Scheme 2.1).  

 

Scheme 2.1: Reaction of glycerol with 3 fatty acids to form triacylglycerol 

  

Fats and oils are made up of triglycerides and other components like free fatty acids, tocopherol, 

sterols, trace metals, esters, carotenoids, ketones, phospholipids and other compounds. The origin 

of the oil determines its constituents (Belitz et al., 2009). In recent years, the request for edible oil 

has increased with the increase in population. Food industries are mindful of the type of oil they 

use because of health issues, and due to this, there has been an increase in the demand for oleic 

rich oil because of their high stability (Ahamd et al., 2015). Moringa and marula seed oils have 

been found to naturally have high oleic acid content (Abdulkarim et al., 2005; Eloff, 2001).  
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2.2 Extraction of oil 

 

The process of obtaining this oil from seed or plant matrices is called extraction. There are many 

methods for the extraction of oil from plant matrices with the most widely used being chemical 

(solvent) and mechanical extraction (Halim et al., 2012; Mubarak et al., 2015). Cold pressing is 

now gaining more popularity as it is being associated with a more natural product. 

2.2.1 Cold pressing  

 

The term cold pressing does not mean that the temperature is fixed. Codex Alimentarius 

Commission et al. (2001) stated that cold pressed oil is obtained without the application of heat. 

However, heat is always generated in the process of pressing when there is friction between two 

surfaces (Parry et al., 2005). The temperature during the extraction of oil using a cold pressing 

technique depends on the structure of the seed and the oily fruits (Van Hoed et al., 2011) and 

should not be above 50 °C. However there are some exceptions, for example olive oil extraction 

using cold press should not exceed 30 °C (Van Hoed et al., 2011), pumpkin seed oil should not go 

above 60 °C during cold oil pressing (Goranovic, 2009), whereas cold pressing should be between 

the temperature of 40 to 60 °C for berry seed oil (Van Hoed et al., 2009). 

2.2.1.1 Mechanical pressing 

 

Mechanical extraction uses pressure to press the oil, with a screw press or hydraulic press. 

Mechanical extraction of oil is carried out by exerting pressure on the seed to break the cells and 

force out the oils from the seed. The main methods of extraction of oil through mechanical process 

are the screw or expeller press and the hydraulic press. In the screw press, a feeder and horizontal 

screw is used to apply pressure on the seed material. The barrel around the screw is used to let out 

the oil from the barrel. In a hydraulic press the material is loaded in a cage to which pressure is 

applied, the oil is pressed out and the cake is removed manually. A hydraulic press can be operated 

manually, whereas a screw press requires much larger horsepower and cannot be operated 

manually.  
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Mechanical pressing is the easiest method of extracting oil from a seed matrix. Unlike hexane 

extraction, where seed preparation is very important, in the mechanical pressing method, the plant 

matrix is cleaned (stones, sand, dirt, and spoiled seeds are removed by using a sifter or mesh and 

by hand picking) and then fed into the press with enough pressure generated to cause oil to flow 

out from the material (Mandal et al., 2013).  

2.2.2 Solvent extraction  

 

The most commonly used chemical techniques for extracting oil from plant matrices include 

organic solvent extraction, supercritical fluid extraction, accelerated solvent extraction, microwave 

assisted solvent extraction, ultrasonic assisted solvent extraction and aqueous extraction (Halim et 

al., 2011; Khoo et al., 2011). 

Organic solvents such as n-hexane, benzene, toluene, diethyl ether, chloroform, ethanol, 

isopropane, methanol, acetone and ethyl acetate are used in organic solvent extraction (Dunnuck, 

1991). Most of these solvents are toxic and inflammable, not environmentally friendly and may 

have adverse effects on human health (Bhattacharjee et al., 2007; Dunnuck, 1991). Of all the 

solvents mentioned, hexane (non-polar) has been used extensively throughout the world as a 

solvent for extracting vegetable oils because it does not cause much irritation on the skin and has 

less severe toxicity compared to the aforementioned solvents (Balasubramanian et al., 2011). Even 

though chemical extraction is popular, its main disadvantage is that it is inflammable (Iqbal et al., 

2013). 

Solvent extraction techniques are based on the principle of “like dissolves like”. An ideal solvent 

requires high levels of specificity towards lipids especially acylglycerols, and the solvent must be 

volatile enough to ensure low energy distillation to separate the lipid from the solvent. In the 

extraction of oil from plant matrices non-polar solvents such as hexane, benzene, toluene, 

chloroform and polar solvents such as methanol, acetone, ethyl acetate, diethyl ether and ethanol 

can be used (Mubarak et al., 2015). 

The extraction efficiency is greatly affected by a number of parameters such as drying time of the 

plant material, particle size of the plant material, solvent type, amount of solute to solvent ratio, 

extraction temperature and extraction time (Daroch et al., 2013). Therefore, a good experimental 
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design is required to prepare the plant matrix within the range of process parameters to optimize 

process conditions (Chen et al., 2011). The percentage yield of oil can be improved by using 

solvents such as n-hexane, chloroform, methanol and/or a mixture of two or more solvents (Reshad 

et al., 2015). The commonly used and standard solvent for solvent extraction in industry is hexane 

because it is more efficient and reliable compared to other solvents, it uses a reduced amount of 

horse power, and it leaves a minute amount of oil 0.5 % in the cake (Reverchon et al., 2006). 

2.2.2.1 Aqueous extraction 

 

The extraction of seed oil from a plant matrix using an aqueous solution is referred to as an aqueous 

extraction process. This method is more environmentally friendly and safer to operate in 

comparison with organic solvent (hexane) extraction methods. The limitation of this method is its 

low efficiency of oil extraction (Aremu et al., 2015). However, industry prefers this method 

because of the safety; it is non-toxic and environmentally friendly. Much effort have been made 

for the past three decades in optimizing aqueous processing as an alternative for extraction of oil 

from plant matrices. Seed oil from coconuts and rice, peanuts, sunflower seeds, soybeans and 

lupine have been extracted using the aqueous extraction method (Aguilera et al., 1983; 

Hanmoungjai et al., 2000). Hanmoungjai et al. (2000) reported the aqueous extraction method to 

be favorable at a temperature between 45 to 85 °C. 

2.2.2.2 Supercritical CO2 extraction 

 

The supercritical fluid extraction (SFE) technique is a process of removing or dissolving the 

extractant from its plant matrix with the use of supercritical fluid (CO2) (Mubarak et al., 2015). A 

fluid is in its supercritical state when its temperature and pressure is above its critical point, thereby 

dispersing through a solid like a gas and dissolving materials like liquid above its critical point. 

Supercritical CO2 is a widely used solvent for supercritical fluid extractions due to its intermediate 

critical pressure (7.4 MPa) and reasonably low critical temperature (31.1 °C) (Wang et al., 2006). 

Supercritical fluids can be used as an extraction solvent to produce solvent free oil because the 

solvent pressure and temperature can be varied (Santana et al., 2012). Due to this, supercritical 

fluid extraction has been a valuable technique for the extraction of oils, fats and other natural 
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products from seeds (Akanda et al., 2012). Extracts from this method are usually contaminant free 

and in their original chemical form (Rozzi et al., 2002). In addition, the oil is extracted from the 

seed in a shorter time; CO2 is inert, nontoxic, nonflammable and environmentally acceptable. The 

disadvantage of supercritical fluid extraction is that it is expensive to maintain.  

The supercritical fluid extraction (SFE) technique has grown rapidly since its introduction and it 

is now the preferred method for industrial food processing (Akanda et al., 2012). It is regarded as 

a green processing technique and is an alternative to organic solvent-based extraction techniques 

(Herrero et al., 2010).  

2.2.2.3 Ultrasound assisted solvent extraction of oil 

 

Ultrasound assisted extraction is also known as sonication-assisted or ultrasound-assisted solvent 

extraction. This method is used to separate the extractant from the plant matrix with the aid of 

energy formed from the ultrasonic field that disrupts the cell walls of the plant.  This then enables 

the solvent to enter the plant cells to release the seed oils (Vinatoru, 2001). 

Elastic deformation in piezoelectric materials, which occurs due to the application of a high electric 

field frequency (50/60 Hz), is the basis of the principle behind ultrasonic waves. The distortion of 

the piezoelectric transducer is changed to a mechanical vibration, that is improved before being 

communicated to a resonating probe or sonotrode that is in connection with the processing medium 

(Raichel, 2006). Furthermore, ultrasonic technology in solvent extraction has been widely used in 

recent times, for the extraction of oil, pigment, proteins and flavonoids from plant matrices (Li et 

al., 2004). It is a fast technique and requires a shorter time. Its drawback is that it is costly.  

2.2.2.4 Microwave assisted extraction of oil 

 

Microwave extraction is an extraction technique that separates the extractant from the plant matrix 

with the help of microwave energy which is  produced by the perpendicular oscillation between 

the electric and magnetic field which produces electromagnetic radiation with frequencies ranging 

from 0.3 to 300 GHz (Camel, 2001; De Monte et al., 2014).  Microwave heating generally operates 

at a frequency of 2.45 GHz to avoid interferences with communication, domestic and industrial 

applications. Microwave–assisted extraction is widely used in the extraction of valuable 
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components from medicinal herbs and plants (Bayramoglu et al., 2008; Mahesar et al., 2008). The 

type of solvent used for this extraction method has an effect on the extraction yield of the oil 

(Rostagno et al., 2007). The main advantages of the microwave-assisted extraction method are its 

short extraction time, high oil yield, and it is energy saving. It does have some drawbacks in that 

it is expensive and less environmentally friendly (Pan et al., 2003; Priego-Capote et al., 2005; Shu 

et al., 2003).  

Table 2.1 shows the oil yield obtained for extraction of moringa and cranberry seed using various 

extraction methods. 

 

Table 2.1: Oil yield (%) of different extraction methods from different seed sources 

Extraction methods Oil source 
Oil yield % 

(w/w) 
Reference 

Hexane Moringa seed 38.40; 41.47 
(Anwar et al., 2007; Ogbunugafor et al., 

2011) 

Screw press Moringa seed 25.00; 39.10 (Mohamed, 2015; Palafox et al., 2012) 

Supercritical CO2 Moringa seed 21.00; 35.00 
(Mohd-Setapar et al., 2013; Palafox et 

al., 2012) 

Aqueous enzyme Moringa seed 15.41 (Anwar et al., 2007) 

Ultrasonication Cranberry seed 24.21-32.35 (Thyagarajan, 2012) 

Microwave Cranberry seed 15.73-24.15 (Thyagarajan, 2012) 

 

2.3 Rancidity of oil 

 

Rancidity is the word used to signify an unpleasant flavor or taste in food, which is as a result of 

hydrolysis or oxidation. There are three types of rancidity: oxidative rancidity, hydrolytic rancidity 

and microbial rancidity. 
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Hydrolytic rancidity occurs when triglycerides are hydrolyzed to form free fatty acids in the 

presence of a catalyst. Oxidative rancidity results from absorption of oxygen from the environment 

(autoxidation). Microbial rancidity occurs when microorganism, such as bacteria use their 

enzymes (lipases) to break apart the chemical structure of the oil. Oil oxidation generates among 

others, aldehydes and ketones that cause an unpleasant odour or taste. 

Oxidation in oil is very important in terms of quality, nutritional value, toxicity and taste, and 

odour of edible oil. 

2.3.1 Oil oxidation 

 

Autoxidation is any oxidation that occurs in open air or in the presence of oxygen (and sometimes 

UV radiation) and forms hydroperoxide. Hydroperoxide is formed from oxidation or changes of 

an unsaturated fatty acid or one of its intermediary oxidation products, in the presence of oxygen.  

Many factors affect autoxidation of fatty acids; these include oil composition, the degree of 

unsaturation, the presence and activity of antioxidants, partial pressure of oxygen, temperature, 

light exposure, and moisture content of fat/oil (Belitz et al., 2009). In addition, the position of the 

double bond in the triacylglyceride molecule also affects the rate of autoxidation. Fast oxidation 

occurs on triacylglycerides containing unsaturated bonds in position 1- or 3- compared to 

triacylglycerides having an unsaturated bond in  position 2 (Belitz et al., 2009). 

2.3.2 Steps involved in autoxidation of oil 

 

The quality and the stability of oil is affected by oxidation, which occurs in 3 stages: initiation, 

propagation and termination stage. 

At the initiation stage, unsaturated oil (AH) loses it hydrogen radical in the presence of an initiator 

(I) to produce a few very reactive fatty acid molecules that have unpaired electrons called free 

radicals (A*). Initiators are singlet-oxygen molecules (1O2) which are highly reactive with high 

energy but they have a very short life. 

In the propagation reaction stage the oil free radicals (A*) react with oxygen to produce peroxy 

radicals (AOO*) which are also very reactive. The AOO* react with another AH to produce AOOH 
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(hydroperoxide) and another A*. A* can then go around and repeat the reaction, thereby leading 

to a chain reaction.  

The termination step occurs when two radicals (AOO* and A*) are joined to form a non-reactive 

unit. In a situation where oxygen is in excess, peroxy radicals will join to make the termination 

product (Frankel, 2012a; Upritchard, 2004). The initiation, propagation and termination steps are 

summarized in equations 1 to 5: 

 

Initiation stage 

I + AH → A∗ + IH             (1)   

Propagation stage  

A∗ + O2 → AOO∗                (2) 

AOO∗ + AH → AOOH + A∗               (3)                                                                                

Termination stage    

AOO∗ + A∗ → AOOA                (4)                                                           

A∗ + A∗ → AA               (5) 

            

The primary oxidation product that occurs in oil is the formation of hydroperoxide from the main 

oxidation process that occurs during the initiation and propagation stages. The maximum level of 

hydroperoxide increases rapidly in highly unsaturated oils because the hydroperoxide decomposes 

easily. When the hydroperoxide gets to its maximum level it further decomposes into secondary 

oxidation products (Frankel, 2012a; Upritchard, 2004). 

Oxidation in oil can be avoided by the addition of antioxidants, metal inactivators or by capping 

the container of oil with nitrogen to protect the oil. When unsaturated fatty acids are exposed to 

light they are susceptible to photooxidation, when exposed to lipoxygenases they are susceptible 

to enzymatic oxidation, and when exposed to autoxidation, direct reaction of molecular oxygen 

with organic compounds takes place (Frankel, 2012a; Upritchard, 2004). 
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2.3.3 Oxidation products 

 

Hydroperoxides are oxidation products of polyunsaturated fatty acids. This oxidation product is 

referred to as a primary oxidation product because they are detected at the early stage, due to the 

removal of hydrogen from polyunsaturated fatty acids (Akoh et al., 2008; Belitz et al., 2009). 

Further decomposition of these hydroperoxides leads to the formation of secondary oxidation 

products (aldehydes, ketones, alcohols, acids, and lactones) which leads to the unfavorable taste, 

flavor and texture of the oil (Kamal-Eldin, 2003). The oxidative status of oil can be determined by 

quantitatively measuring the primary and secondary oxidation products of the oil as carried out in 

this study. 

Peroxide value and conjugated diene are the commonly used methods for determining the primary 

oxidation state while p-anisidine value is the most widely used quality parameter for measuring 

secondary oxidation products of edible oils (Shahidi et al., 2005). 

 

2.4. Methods to measure oxidation products in oil 

 

2.4.1 Peroxide value 

 

The preferred method of quantifying primary oxidation in the oil and food industry is by measuring 

the peroxide value (Shahidi et al., 2005; Yildiz et al., 2003). This method gives a quantitative 

measure of hydroperoxide present in the initial stage of oil oxidation. The peroxide concentration 

reveals the extent of oxidative deterioration of the oil. 

The quantification of peroxides in oil is determined via HI or Fe2+, based on the principle of 

reduction of the hydroperoxide group in the oil.  

The ferric thiocyanate method is developed based on the ability of hydroperoxide to oxidize 

ferrous ions (Fe2+) to ferric ions (Fe3+) in an acidic medium which are complexed by either 

thiocyanate or xylenol orange to form red-violet or blue-purple chromophores, respectively 

(Eymard et al., 2003; Jiang et al., 1991). The increased sensitivity is as a result of the lower 
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sensitivity of ferrous ions to spontaneously oxidize in air, as compared to the high susceptibility 

of iodide solutions to oxidize. The ferric ions form chromophores which when complexed to 

thiocyanate can be measured by spectrophotometry with absorption at wavelengths of 500-510 nm 

(Belitz et al., 2009; Eymard et al., 2003). 

Determination of the peroxide value using the iodometric method is based on the reaction of 

saturated potassium iodide (KI) solution with the hydroperoxide (ROOH) in the oil. From this 

reaction iodine (I2) is liberated which, when titrated against a standardized solution of sodium 

thiosulfate with starch as an end point indicator, gives a quantitative measurement of the 

hydroperoxide present (Shahidi et al., 2005). The peroxide value is reported as milliequivalent of 

oxygen per kilogram of sample (meq O2/kg). The reaction steps are shown in equation 6 and 7: 

ROOH + 2H+ + 2KI → I2 + ROH + H2O + 2K+       (6) 

        

I2 + 2NaS2O3 → Na2S4O6 + 2NaI         (7) 

    

Even though the iodometric method is the preferred method of peroxide value determination, it 

has several limitations, which include the absorption of iodine across the double bonds, oxidation 

of iodide by dissolved oxygen, difficulty in determining the endpoint, and its sensitivity is lower 

than the ferric thiocyanate. It is further labour intensive, consumes a lot of sample and generates 

organic solvent waste (Dobarganes et al., 2002; Ruíz et al., 2001). 

2.4.2 Conjugated dienes and trienes 

 

Polyunsaturated fatty acids form hydroperoxides during oxidation.  However, if there is a shift or 

rearrangement in the double bond during the formation of hydroperoxides, these then form 

conjugated dienes, which absorb at 234 nm. When there is a further shift in three or more double 

bonds conjugated trienes form, which absorb at 268 nm. (Shahidi et al., 2005). Conjugated dienes 

and trienes are oxidation products and their formation in fats and oils is revealed by an increase in 

UV absorption. The detection of conjugated dienes and trienes using the ultraviolet method is fast 

and requires little sample and no chemical reagents. It is also simple and does not depend on 

chemical or colour reactions. This method has a low specificity and sensitivity in comparison with 
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the peroxide value for the detection of hydroperoxide in oil (Frankel, 2012b; Shahidi et al., 2005). 

Conjugated dienes are generally measured using ultraviolet measurements and hydroperoxides are 

measured using the iodometric titration which determines the peroxide value (Shahidi et al., 2005). 

The limitation of the conjugated diene measurement is that it is dependent on the type of fatty acid 

present.  

2.4.3 Measurement of secondary oxidation products 

 

The decomposition of the primary oxidation product (hydroperoxide) gives rise to the formation 

of secondary oxidation products, which could be volatile or non-volatile. These secondary 

oxidation products include carbonyl containing compounds, hydrocarbons, volatile organic acids, 

alcohols, epoxy compounds and many others. Several methods exist for measuring the secondary 

oxidation product such as thiobarbituric acid (TBA) test, p-anisidine value (p-AV), carbonyl test, 

totox value, conjugated triene value and many others. The commonly and widely used method is 

the p-anisidine test 

2.4.4 p-anisidine value 

 

The anisidine test measures the content of aldehydes (2-alkenals and 2,4-alkadienals) produced 

during the decomposition of hydroperoxide (Frankel, 2012b). The anisidine value is defined as the 

absorbance of a solution after reacting 1 g fat in 100 mL of isooctane solvent and p- anisidine 

reagent (0.25 % anisidine in glacial acetic acid). As shown in scheme 2.2, the reaction of p-

anisidine with an aldehyde in acidic conditions yields a yellowish product which absorbs at 350 

nm (Shahidi et al., 2005). The p-anisidine value is a good and reliable method for measuring the 

amount of secondary oxidation products in fats and oils (List et al., 1974). The anisidine test on 

oils that have been newly pressed can be used to determine their stability. This test can also be 

used to determine hidden oxidation based on the presence of high molecular weight decomposition 

compounds produced during vegetable oil extraction before removal of the odour of the oil 

(Frankel, 2012b). The disadvantage of the anisidine test is that the reagent used must be carbonyl 

free to prevent the interference with the carbonyl present in the sample. Also, the reaction requires 

a water free reagent because in the presence of water the reaction will be incomplete (White, 1995).  
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Scheme 2.2: Proposed reaction between p-anisidine reagent and malonaldehyde (Shahidi et al., 

2002) 

 

2.4.5 Thiobarbituric acid (TBA) value 

 

Thiobarbituric acid is an old method used for determining the lipid oxidation state. The 

thiobarbituric acid (TBA) value is defined as the extent of lipid oxidation and is expressed as 

milligram of malonaldehyde (MA) equivalents per kilogram of sample or as micromoles MA 

equivalent per gram of sample. The product of oxidation of polyunsaturated fatty acids is the 

malonaldehyde which reacts with the thiobarbituric acid reagent to form a pink complex which 

absorbs at 530-532 nm (Frankel, 2012b; Shahidi et al., 2005). Because the reaction consists of a 

large number of secondary oxidation products, the reacting secondary products are referred to as 

TBA-reactive substances or TBARS. The test is standardized by using malonaldehyde generated 

from 1, 1, 3, 3-tetraethoxypropane by acid hydrolysis (Frankel, 2012b). Again, the TBA test 

specifically detects malonaldehyde, which is one particular oxidation product, and whether this is 

representative of the oxidation status of the oil depends on the oil.  
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The thiobarbituric acid reactive substances assay is a well-known assay but suffers from lack of 

sensitivity and specificity. The state of the reaction such as high temperatures, changes in pH, long 

heating times, and presence of antioxidants and metal ions are known to significantly affect the 

colour development which may affect the spectrophotometric analysis (Antolovich et al., 2002). 

Nevertheless the main limitation is as a result of several compounds reacting with the TBA reagent 

and therefore results in an overall higher intensity of the colour complex (de las Heras et al., 2003). 

This test is usually carried out in the assessment of meat but in the case of oils, the p-anisidine 

value test is preferred to the thiobarbituric acid reactive substances assay due to the aforementioned 

limitations (Shahidi et al., 2005). For this reason, the p-anisidine value test was used in this study. 

2.4.6 Oxidative stability 

 

Oxidative stability is the ability of an organic compound to resist oxidation, and further 

degradation, which results in rancidity, and loss of quality. There are many methods that can be 

used to determine the oxidative stability of lipids, and a number of different tests have been 

designed to accelerate the normal oxidation process. The accelerated oxidation method allows one 

to understand how the lipid may deteriorate once exposed to oxidation. The oxidative stability of 

oil is often determined by subjecting it to an accelerated process using high temperatures or 

bubbling with oxygen for the purpose of research. For a better understanding of the oxidative 

stability of oils, measuring the primary oxidation product and secondary oxidation products is 

important to get an indication of its oxidative stability. These products of oxidation are quantified 

using the peroxide value and the p-anisidine tests as described in sections 2.4.1 and 2.4.4. 

 

2.5 Fatty acid composition 

 

The major constituents of oil from all vegetable, animal and marine (fish or algal) are fatty acids 

(FA). Fatty acids are made up of carbon as their backbone in the form of an alkyl chain, and with 

a carboxylic acid group and methyl group attached at each end as shown in scheme 2.3. Physical 

and functional properties of FAs are affected by the number of carbon atoms present including the 
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carbon of the carboxylic group, and the location and number of double bonds present in the straight 

chain (Belitz et al., 2009; Gurr et al., 2008).  

 

R-(CH2)n-COOH 

Scheme 2.3: General formula of a fatty acid 

 

FAs are essential in human and animal diets, they are a source of glucose and metabolic energy in 

the body, and they also play a significant role in the formation and maintenance of cellular 

membranes (Belitz et al., 2009). Monounsaturated FAs (MUFAs) are FAs that contain one double 

bond in their alkyl chain, while, the ones with more than one double bond are called 

polyunsaturated FAs (PUFAs). The structural integrity of cellular membranes is maintained by 

PUFAs (Gurr et al., 2008), and they have also been reported to have health-promoting functions 

against various diseases e.g. cardiovascular, heart, diabetes, cancer, rheumatoid arthritis and 

inflammatory bowel disease (Abete et al., 2009; Caygill et al., 1996; Zurier et al., 1996). Table 2.2 

provides a list of the commonly found fatty acids in plant seed oil. 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Table 2.2: List of fatty acids found in plant seed oil (Stobart et al., 2003) 

Systematic Name Common Name Structure (C: D) 

Dodecanoic acid: Lauric acid 12:0 

Tetradecanoic acid Myristic acid 14:0 

Hexadecanoic acid Palmitic acid 16:0                                                                                                

Hexadec-cis-9-monoenoic acid Palmitoleic acid 16:1Δ9 

Octadecanoic acid Stearic acid 18:0 

Octadeca-9-cis-monoenoic acid Oleic acid 18:1 

Octadeca-cis-9,12-dienoic acid Linoleic acid 18:1Δ9,12 

Octadeca-cis-9,12,15-trienoic acid α-Linolenic acid 18:3Δ9,12,15 

Octadeca-cis-6,9,12-trienoic acid γ-Linolenic acid 18:3Δ6,9,12 

Octadeca-cis-6,9,12,15-tetraenoic acid Stearidonic acid 18:4Δ6,9,12,15 

Eicosanoic acid Arachidic acid 20:0 

Eicosa-cis-9-monoenoic acid Gadoleic acid 20:1Δ9 

Docosanoic acid Behenic acid 22:0 

Docsa-cis-9-monoenoic acid Erucic acid 22:1 

Where C is the number of carbon atoms in the fatty acid; D is the number of double bonds in the 

fatty acid while Δx (delta-x) indicates the position of the double bond on the xth carbon-carbon 

bond counting from the carboxylic acid end.  

Several analytical techniques have been used for determining fatty acids, namely enzymatic, 

spectrophotometric, high performance liquid chromatography, gas chromatography coupled with 

a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). GC-

MS is the preferred method because it has a high sensitivity and resolution. 
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The gas chromatography mass-spectrometry technique comprises of a gas chromatograph coupled 

with a mass spectrometer. The sample to be analyzed is injected into the GC inlet where it is 

volatilized and enters the column with the help of an inert gas usually (helium) which is the mobile 

phase. The mobile phase carries the sample through a packed or capillary column that separates 

the components of the sample based on the different boiling points of the analytes in the sample 

which inturn affects the strength of interaction with the stationary phase. The mobile phase helps 

the volatalized analyte make its way out of the column to the detector (mass spectrometer). The 

mass spectrometer ionizes the chemical compound to generate charged molecular ions and 

fragments, and measures their mass to charge ratio. The ion then travels through the mass analyser 

that separates them based on their mass to charge ratio. The detector amplifies the signal and counts 

the number of ions associated with their specific mass to charge ratio. The information is then 

processed via the computer software and a mass spectrum is created. 

Fatty acids are polar and non-volatile. Therefore, in order for the fatty acid to be volatile and be 

separated by GC, derivatization must be carried out. Methylation is the general method of 

converting non-volatile fatty acids to volatile fatty acid methyl esters (FAMEs) (scheme 2.4.). 

Methylation of fatty acid is performed with BF3 methanol or methanolic potassium hydroxide as 

a derivatizing agent. 

In gas chromatography (GC) we inject the sample, which may be a gas or a liquid, into an gaseous 

mobile phase (often called the carrier gas). The mobile phase carries the sample through a packed 

or capillary column that separates the sample’s components based on their ability to partition 

between the mobile phase and the stationary phase 

C OH
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Scheme 2.4: Reaction of triglyceride and KOH methanol to form fatty acid methyl ester and 

glycerol 
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2.6 Antioxidants   

 

Antioxidants are substances that protect cells from oxidative stress and the effects of free radicals. 

Oxidative stress is an imbalance between free radicals produced in the body and the ability of the 

body to fight against the negative effect of the free radicals by neutralizing with the help of an 

antioxidant. Thus antioxidants play an important role by repairing the damages caused by free 

radicals (McCall et al., 1999; Wittenstein et al., 2002). 

Antioxidants play an important role in delaying or preventing autoxidation. There are two classes 

of antioxidants, primary or chain-breaking antioxidants and secondary or preventative antioxidants 

(Madhavi et al., 1995). The primary antioxidants have the ability to scavenge free radicals and 

inhibit initiation, propagation and the β- scission reaction. Secondary or preventative antioxidants 

are compounds that delay the rate of oxidation by reacting with prooxidants or oxidation 

intermediates (Antolovich et al., 2002). Many methods have been developed for assessing the 

activity of antioxidants. These methods are based on hydrogen atom transfer (HAT) or electron 

transfer (ET) mechanisms. Oxygen radical absorbance capacity (ORAC), total radical trapping 

antioxidant parameter (TRAP) and crocin bleaching assays are the major methods that measure 

HAT while Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power 

(FRAP), and diphenyl-l-picrylhydrazyl (DPPH) assay represent ET-based methods. The DPPH 

assay is the most commonly used method to test the activity of antioxidants in plant materials. 

2.6.1      2, 2-Diphenyl-l-picrylhydrazyl (DPPH) assay (Radical Scavenging ability) 

DPPH is used to determine the antioxidant activity (Oyaizu, 1986) of a substance or compound. 

This method is based on reducing tolueneic DPPH solution in the presence of hydrogen donating 

antioxidant (present in the oil) resulting in the formation of the non-radical form of DPPH-H. It is 

a stable chromogen radical with a deep purple colour. As shown in equation 8 and 9, DPPH radicals 

are reduced in the presence of antioxidants (AH) or reaction with radical species (R*), and the 

reduction reaction results in loss of colour of the solution. This loss in colour can be measured 

spectrophotometrically at 517 nm, which reveals the reducing ability of antioxidants (AH). 

DPPH∗ + AH → DPPH − H + A     (8) 

DPPH∗ + R∗ → DPPH → R       (9) 
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3.0 CHAPTER 3: MATERIALS AND METHOD 

 

3.1 Materials and reagents 

 

Moringa seeds were harvested in March 2016 in Bushbuckridge, South Africa while marula seeds 

were harvested from January to March 2016 in Majeje, South Africa. The moringa seeds were 

stored in the refrigerator at 4 ℃ and the marula seeds were stored in a dark dry room at ambient 

temperature because the quantity of the marula seeds was too large to store in the refrigerator.  

Both seeds were extracted within a week of the seeds arriving at the laboratory. The moringa seeds 

were carefully crushed using a pestle and mortar to de-hull the seeds. Thereafter, the seeds were 

manually cleaned by separation from the hulls while the marula kernels were crushed at the 

Everpix factory site. Screw press extraction was carried out at Everpix, Pietermaritzburg, South 

Africa. The other extraction processes were carried out in the laboratory at UKZN, Westville 

Campus. The extracted oils were stored in glass amber bottles that had been flushed with nitrogen 

and then capped and stored in the refrigerator at 4 ℃ until analysis (Adejumo et al., 2013). All the 

reagent and solvents used were HPLC grade and purchased from Merck and Capital Labs in South 

Africa.  

 

3.2 Determination of moisture content 

 

The moisture content of the seed was determined gravimetrically using the oven method. A 4.9993 

± 0.0001 g sample of the ground seed was weighed in a petri dish and dried in the oven at 105 °C 

for 24 hours. After drying, the seeds were cooled in a desiccator for 30 minutes, and were thereafter 

weighed until a constant value was obtained. This process was repeated in triplicate each time on 

fresh samples to get the average value of moisture content of the seeds (Adejumo et al., 2013). The 

percentage moisture content of the seed was calculated as follows: 

% 𝑀𝑀 = �𝑚𝑚1−𝑚𝑚2
𝑚𝑚1−𝑚𝑚0

�× 100 %                      (10) 
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Where m0 = mass of the empty weighing container in grams  

m1 = mass of the weighing container and sample before drying in grams 

 m2 = mass of weighing container and sample after drying in grams  

The moisture content was determined in triplicate, each time with a fresh sample of seed. 

The moisture content of the oils were determined using the same method described above for 

moisture content of seeds. 

 

3.3 Sample preparation 

 

3.3.1 Oil extraction 

 

The seeds were extracted using various extraction methods: Soxhlet extraction with hexane at 69 

°C, hexane extraction at ambient temperature using a shaker, aqueous extraction at 37 and 60 °C, 

and screw press extraction. The aqueous extraction temperature of 37 °C, was chosen because oil 

would not be extracted at ambient temperature alone.  The aqueous extraction temperature of 60 

°C, was chosen because any higher temperatures would result in the seed oil becoming denatured.  

The temperature of 69 °C, for hexane Soxhlet extraction is the standard temperature used in 

literature. 

3.3.2 Soxhlet extraction with hexane  

 

The seed samples were blended using an electroline domestic blender. The blended seed 

(approximately 50 g that was the average of triplicate weighings) was placed in a thimble, which 

was positioned in the center of the Soxhlet apparatus and connected to the round bottom flask 

containing 300 mL of hexane and anti-bumping stones to prevent it from violent boiling. The set 

up was placed on a heating mantle for 8 hours at 69 °C (Figure 3.1). After the extraction process 

was completed the extract was quantitatively transferred to a Heidolph rotary evaporator (model 

number 517-61000-00-0) at 45 °C to remove the solvent. The final oil extract was purged with 

nitrogen for 40 minutes to remove residual solvent and was kept in the refrigerator until analysis 
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was carried out (Adejumo et al., 2013). The extraction process was carried out in triplicate each 

time on fresh samples (Gandure et al., 2011). 

 

 

 

 

 

 

 

 

Figure 3.1: Diagram of a Soxhlet extraction setup (Wang et al., 2006) 

 

3.3.3 Hexane extraction at ambient temperature (shaker method) 

 

A 120.00 g mass of the blended seed sample was weighed into an amber bottle, 300 mL of hexane 

was added and the mixture placed on a shaker for 8 hours (Figure 3.2). After the extraction process, 

the heterogeneous mixture was centrifuged (Rotofix 32 A) at 6000 rpm for 30 minutes in order to 

separate the solid residue from the solvent. The decanted solvent was transferred to a Heidolph 

rotary evaporator (model number 517-61000-00-0) to evaporate the solvent at a temperature of 45 

°C. The final oil extract was weighed and stored in a tightly sealed amber bottle purged with 

nitrogen and kept in the refrigerator until analysis was carried out (de Oliveira et al., 2014). The 

extraction process was carried out in triplicate each time on fresh samples. 
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Figure 3.2: Photograph of the shaker extraction method setup 

 

3.3.4 Aqueous extraction 

 

The seed sample (150.00 g) was blended using an electroline domestic blender with 35 mL of 

deionized water heated up to 37 °C and 60 °C for each extraction. Thereafter, the samples were 

placed in a glass beaker in a water bath at their respective temperatures and continuously stirred 

manually for 1 hour The sample was then centrifuged at 6000 rpm for 30 minutes and the 

supernatant was collected using a pasteur pipette. The extracted oil was weighed and stored in a 

tightly sealed amber bottle purged with nitrogen and kept in the refrigerator until analysis was 

carried out. The extraction process was carried out in triplicate each time on fresh samples. 

3.3.5 Screw press extraction 

 

The seed (14.50 kg) was sorted by hand, cracked using a cracking machine and then fed into the 

screw press where the oil was pressed. Sufficient pressure was generated for the oil to flow out of 

the seed oil and the oil was then filtered to remove any debris present. After the filtration process 

the oil was packed in an amber bottle, infused with nitrogen gas and tightly sealed and stored in 

the refrigerator until analysis was carried out.  Figure 3.3 shows a schematic diagram of the screw 

press extraction. The extraction process was carried out once. 
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Figure 3.3: Schematic diagram of a screw press (Kmec, 2008) 

 

3.3.6 Determination of percentage oil yield and efficiency 

The oil yield was determined after extraction of the seed oil. For the Soxhlet and shaker extractions 

with hexane, the extracted oil was placed in a round-bottom flask and the solvent removed using 

a rotary evaporator with the water bath temperature set at 45 °C, the mass of the oil was weighed, 

and the oil yield was calculated using the equation:  

𝑂𝑂𝑂𝑂𝑂𝑂 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

× 100 %            (11) 

Where mo = weight of oil recovered after extraction 

             ms = weight of seed samples 

For the aqueous extracted oil, the oil and water extract was centrifuged at 3000 rpm for 30 minutes 

and the oil layer (top) was carefully removed using a Pasteur pipette, and weighed.  The oil yield 

was determined as described in the above equation.  

The extraction efficiency of the seed oil was calculated based on the result obtained in this study 

for the Soxhlet extracted seed oil, because Soxhlet extraction is the standard analytical method for 

determination of fat content. Thus, it is considered to be 100 % of the fat content.  The extraction 

efficiencies of the other extraction methods were calculated in relation to the Soxhlet extraction 

using the equation:  
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     𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

× 100 %                                                                     (12) 

where my is the percentage oil yield for the other extraction methods, and mm is the percentage 

oil yield for Soxhlet extraction which is considered to have a 100 % extraction efficiency because 

it is the standard analytical method.  A sample calculation of the extraction efficiency is provided 

in Appendix A 

3.3.7 Determination of acid value and percentage free fatty acid 

 

Acid value is an essential parameter used to determine the quality of seed oil (Gharby et al., 2012) 

and it reports the extent of hydrolytic degradation that has occurred in the seed. Hydrolytic 

degradation is due to the water content that comes out with the oil during extraction thereby 

reacting with triglycerides to form free fatty acids and glycerol (Soetaredjo et al., 2008). Further 

degradation could be accelerated by the presence of a high moisture content in the seed. 

To standardize an approximately 0.1 M potassium hydroxide, 0.1000 M hydrochloric acid was 

prepared by pipetting 0.95 mL of 32 % concentrated hydrochloric acid into a 100 mL volumetric 

flask and made up to mark with deionized water. A 20 mL aliquot of 0.1000 M HCl was pipetted 

into a 250 mL Erlenmeyer flask and 3 drops of phenolphthalein indicator was added. The solution 

was then titrated against the potassium hydroxide solution until there was a colour change from 

colourless to light pink. The standardization was carried out in triplicate and since the mole ratio 

of KOH: HCl was 1:1, the molarity was calculated using the equation: 

 𝑀𝑀(𝐾𝐾𝐾𝐾𝐾𝐾) = 𝑉𝑉(𝐻𝐻𝐻𝐻𝐻𝐻)×𝑀𝑀(𝐻𝐻𝐻𝐻𝐻𝐻)
𝑉𝑉(𝐾𝐾𝐾𝐾𝐾𝐾)

                      (13) 

where M= molarity  

            V = volume  

The acid value was determined following an adaptation of the AOCS Official Method Cd 3d-63, 

1998a. The oil (2.00 g) was weighed and dissolved in 20 mL of ethanol. The solution was titrated 

against the standardized 0.1 M KOH using phenolphthalein as the indicator. The acid value (AV) 

was calculated using the equation: 
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 𝐴𝐴𝐴𝐴 = 56.1×𝑉𝑉×𝑀𝑀
𝑚𝑚

                   (14) 

where 56.1 is the equivalent weight of KOH  

 V = volume, in mL, of KOH  

M = molarity of KOH  

m = the mass, in grams 

3.3.8 Determination of the peroxide value 

 

The peroxide value was determined following the AOCS Official Method Cd 8-53, 1998c. For the 

standardization of approximately 0.01 N sodium thiosulfate solution, 1.2405 g of sodium 

thiosulfate pentahydrate was dissolved in 125 mL of deionized water and made up to mark in a 

500 mL volumetric flask. A 0.01 N potassium dichromate solution was prepared by firstly drying 

it at 120 °C for 4 hours and dissolving approximately 0.2485 g of the dried dichromate in 125 mL 

of deionized water and making it up to the mark in a 500 mL volumetric flask with deionized 

water. A 1 mL aliquot of concentrated sulfuric acid was added to 80 mL of deionized water in an 

Erlenmeyer flask. To this solution, 10 mL of 0.01 N potassium dichromate solution and 0.9996 g 

potassium iodide was added and the reaction was allowed to stand for 5 minutes. The solution was 

titrated with the sodium thiosulfate solution until the yellow colour was almost discharged. Starch 

indicator (5 mL) was added to the solution, which turned the solution blue, and it was titrated 

against sodium thiosulfate solution until the blue colour disappeared. The following equation was 

used to calculate the concentration of sodium thiosulfate:  

𝑁𝑁 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝐾𝐾2𝐶𝐶𝐶𝐶2𝑂𝑂7×0.1000 𝑁𝑁
𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁2𝑆𝑆2𝑂𝑂3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

            (15) 

where N = Normality 

For the sample analysis, 2.00 g of oil was weighed into a conical flask and 30 mL of solvent 

mixture of glacial acetic acid: chloroform in the ratio of 3:2 (v:v) was added to the oil samples. To 

commence the reaction, saturated KI solution (1 mL) was added and allowed to stand for 1 minute, 

then 30 mL of water (H2O) was added and the liberated iodine was titrated against 0.0100 N 

sodium thiosulfate solution with vigorous shaking until the yellow colour was almost discharged. 
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About 5 mL of 1 % (w:v) starch indicator was added which turned the solution blue black. The 

titration continued with vigorous shaking until the end point was reached indicated by the 

disappearance of colour. This process was repeated in triplicate and a blank test was carried out 

under the same conditions to determine if any of the titrating agents contained peroxides.  The 

following equation was used to determine the peroxide value, which is expressed as millequivalent 

per kilogram of oil (meq/kg of oil). 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = (𝑆𝑆−𝐵𝐵)×𝑁𝑁×1000
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 (𝑔𝑔)

         (16) 

where S = sample titre value in L 

B = blank titre value in L 

N = Normality of Na2S2O3 in meq/L 

1000 = conversion factor 

 A sample calculation is provided in Appendix B. 

3.3.9 Determination of p-anisidine value 

 

The p-anisidine value was determined following the AOCS Official Method Cd 18-90, 1998b. A 

sample of the oil (1.00 g) was measured into a 25 mL volumetric flask and made up to the mark 

with isooctane. The absorbance of the solution was measured at 350 nm with isooctane as the 

blank. The oil solution (5 mL) was pipetted into a test tube and another 5 mL of isooctane into 

another test tube followed by the addition of 1 mL p-anisidine to each of the test tubes. The 

solutions were mixed in their individual test tubes and the absorbance of the solution, with the 

reference cuvette containing isooctane and anisidine solution as a blank was measured after 10 

minutes. The p-anisidine value (pAV) was calculated using the following equation: 

  𝑝𝑝 − AV = 25 𝑚𝑚𝑚𝑚(1.2×𝐴𝐴2−𝐴𝐴1)
𝑀𝑀        (17) 

where A1 = absorbance of oil solution  



34 
 

A2 = absorbance of p-anisidine oil solution  

M = mass of sample  

25 mL = volume of isooctane used to dissolve the sample 

1.2 = correction factor (= 6 mL/5 mL) for dilution of the 5 mL sample solution with 1 mL of 

anisidine reagent dissolved in acetic acid 

 

Instrumental conditions 

The sample was analyzed using a UV-3600 Shimadzu UV-Vis spectrophotometer using a quartz 

cuvette with a path length of 1 cm. The base line was corrected with isooctane. The absorbance 

was measured at 350 nm. 

3.3.10 Determination of conjugated dienes and trienes 

 

The conjugated diene and triene value was determined following the AOCS Official method Ti 

1a-64 (AOCS & Firestone, 1994) at wavelength 232 and 270 nm, respectively. A sample of oil 

(0.98 g) was weighed into a 100 mL volumetric flask and 75 mL of isooctane was added to dissolve 

the sample completely which was then further made up to the mark with isooctane. The conjugated 

diene and triene percentage was calculated from the following equations:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 % = 0.84 ��𝐴𝐴1
𝑏𝑏𝑏𝑏
− 0.07��         (18)                        

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 % = 0.84 ��𝐴𝐴2
𝑏𝑏𝑏𝑏
− 0.07��                                                                      (19) 

where A1 = absorbance of the sample at 232 nm for conjugated diene and A2 = absorbance at 270 

nm for conjugated triene 

b = cell length (1 cm)  

c = concentration of sample used for absorbance measurement in g/L 

0.07 = absorptivity constant (ɛ) of the ester group 
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0.84 = is a factor that accounts for any extraneous absorption (Holman, 1957) 

 

Instrumental conditions 

The absorbance of the sample was measured using a UV-3600 Shimadzu UV-Vis 

spectrophotometer with a quartz cuvette having a path length of 1 cm. The absorbance of the 

sample was recorded at 232 nm and 270 nm. 

3.3.11 Determination of fatty acid composition 

 

Sample preparation 

The fatty acid profile was determined as fatty acid methyl esters (FAMEs) by gas chromatography-

mass spectrometry. The methyl esters were prepared using the method prescribed by the 

International Olive Oil Council, (2001). Fatty acids are polar compounds and are not volatile. In 

order for them to be analyzed on a gas chromatography instrument they have to be volatile and it 

is for this reason that derivatization was carried out before the GC-MS analysis. The most widely 

used method for converting non-volatile fatty acids into volatile fatty acid methyl esters is 

methylation, which is carried out with methanolic potassium hydroxide. A stock solution of 1000 

mg/L was prepared by dissolving 10 mg of oil in 10 mL of hexane. The oil solution was further 

made up to a lower concentration (100 mg/L) using appropriate dilution. A 0.20 mL aliquot of 

methanolic potassium hydroxide (0.2000 M) was added to 2 mL of the oil solution. The mixture 

was shaken vigorously, allowed to stand and separate. An aliquot (1 mL) of the hexane phase (the 

upper layer containing the methyl ester) was transferred into a GC vial for analysis using the GC-

MS (Haiyan et al., 2007). 

 

Preparation of stock solutions 

The lower working concentration of all oils was prepared using the dilution factor method and the 

following equation: 

𝐶𝐶1𝑉𝑉1 = 𝐶𝐶2𝑉𝑉2           (20) 
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For example, from a stock solution of 1000 mg/L, a lower working concentration of 100 mg/L was 

prepared by transferring 1000 mg of the stock solution into a 10 mL volumetric flask and making 

it up to the mark with n-hexane.  

1000
𝑚𝑚𝑚𝑚
𝐿𝐿

× 𝑉𝑉1 = 100
𝑚𝑚𝑚𝑚
𝐿𝐿

× 0.01 𝐿𝐿 

𝑉𝑉1 = 1 × 10−3𝐿𝐿 

A concentration of 100 mg/L was found to be appropriate for instrumentation analysis using GC-

MS.  

 

Instrumental conditions 

The sample was analyzed using gas chromatography-mass spectrometry (GC-MS) (Shimadzu QP- 

2010 SE Ultra Japan), with a DB-5MS capillary column of length 30 m, 0.25 µm internal diameter 

and 0.25 mm film thickness. The carrier gas was helium with a flow rate of 1.04 mL/min and a 

total flow of 5.1 mL/min, a linear velocity of 37.20 cm/sec at purge flow of 3.00 mL/min. The 

injection temperatures were set at 250 °C. The oven temperature was set at 60 °C and held for 1.00 

min, ramped to 300 °C at a rate of 10 °C/min and held for a further 5.00 min. A 3 µL injection 

volume was used in a splitless injection mode. Ion source temperature was 230 °C, interface 

temperature 250 °C, ion source voltage was 70 eV, and total run time 30 min.  

The result was expressed as area % using the following equation: 

% 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑎𝑎
∑𝐴𝐴1

× 100                                                                                            (21) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝑎𝑎 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

∑𝐴𝐴1 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  

3.3.12 Radical scavenging activity towards 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical 

 

The radical scavenging activity of each extracted seed oil was determined by monitoring the 

decrease in absorbance at 517 nm. A 3 mL freshly prepared 0.01 mM toluene solution of 2, 2-
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diphenyl-1-picrylhydrazyl (DPPH) was added to 3 mL of a 5 mg/mL extracted oil sample. The 

sample was mixed thoroughly and left to stand for 30 minutes in the dark to allow the radical-

antioxidant reaction to occur. After the reaction, the absorbance was measured at 517 nm against 

a blank. A synthetic antioxidant, butylated hydroxyanisole (BHA), was also prepared in the same 

manner as the oil sample and was used as a positive control or reference standard for this assay 

(Ahmad et al., 2014). Triplicate measurements were taken.  

 

Instrumental conditions  

The samples were analyzed using a Shimadzu UV-3600 spectrometer with a quartz cuvette with a 

path length of 1 cm. The base line was corrected with methanol. The absorbance was measured at 

517 nm.   

The radical scavenging activity was expressed by the inhibition percentage and calculated using 

the following equation:   

% 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

× 100     (22) 

A control = Absorbance of control 

A sample = Absorbance of sample 

3.3.13 Oxidative stability 

The oxidative stability test was determined by transferring 25 mL of each of the seed oils extracted 

with the different extraction methods into different amber bottles, filled to the top with no head 

space, and capped with screw caps. The amber bottles containing the oil from different extraction 

methods were placed in the dark at ambient temperature and at the different accelerated 

temperatures in an incubator regulated at 45 and 65 °C respectively. The samples were stored at 

their different storage temperatures from day 0 to 35. A 2.00 g and 1.00 g sample of each oil was 

periodically collected and analyzed for peroxide value and anisidine value, respectively.  This is 

described in section 3.3.8 and 3.3.9 (Andarwulan et al., 2014).  
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3.4 Statistical analysis 

 

The data were expressed as mean ± standard deviation calculated from triplicate determinations, 

and the analysis of variance (ANOVA) was performed using Statistical Package for the Social 

Science 24.0 for windows (SPSS 24.0). A probability value at P<0.05 was considered a statistically 

significant difference. The correlation of data was assessed using the Pearson correlation test. 

Student-t-test, comparing two parameters, was used to compare results from the oxidative test for 

the two seed oils extracted using aqueous extraction at 37 °C. 
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4.0 CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Moisture content of seed and seed oil 

 

The amount of water present in the seed has a negative effect on the seed because high water 

content allows the seed to start to grow moulds thereby affecting the storability of seeds, and 

quality of oil extracted from seeds, including its taste and odour (Torres et al., 2006). Moisture 

content primarily depends on the length of drying and the ambient storage conditions especially 

temperature and humidity. High moisture after harvesting, and temperature allows the seed to 

deteriorate fast. From the results (Table 4.1), the moisture content of marula and moringa seeds 

were 5.56 and 7.26 % (dry weight), respectively. The result was well below the maximum accepted 

moisture content of seeds (10 %) so fungal growth is not expected in the seed (Adejumo et al., 

2013). Anwar et al. (2005) reported a moisture content of 5.90 to 7.00 % (dry weight) and yield of 

33.23 to 40.90 % for moringa seed oil, which is similar to that reported in this study. Zharare et al. 

(2004) reported a moisture content value of 5.00 to 5.40 % for different species of marula seed. 

The difference in moisture content value of marula and moringa seed reported in this study as 

compared to literature could be as a result of geographical area or climatic conditions as well as 

the length of drying time and storage condition (Maskan, 2001). The result in Table 4.2, which 

was determined from the results of the analysis of variance test (ANOVA), showed that there was 

a significant difference in the moisture content of the seed oils (marula and moringa) extracted 

using the different extraction methods. The moisture content for aqueous extracted (37 and 60 °C) 

marula seed oil was 5.41 and 5.30 %, respectively while the solvent extracted (Soxhlet and shaker) 

extracted marula seed oil was 4.77 and 4.96 %, respectively. Moringa seed oil extracted using 

aqueous extraction (37 and 60 °C) had a moisture content of 6.94 and 6.65 %, respectively while 

the solvent extracted seed oil (Soxhlet and shaker) had a moisture content of 5.94 and 6.21 %, 

respectively. This result showed that aqueous extracted seed oil had the highest moisture content, 

which is expected because of water used for the extraction process. Also, it is expected that the 

aqueous extracted seed oil should have lower stability because of the amount of moisture present 

as high moisture in harvested seeds hastens the deterioration process. However, the reverse was 

the case, which could be as a result of the higher antioxidant present in the aqueous extracted seed 
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oil as shown in Table 4.19 for radical scavenging activity and the fatty acid profiles which are 

discussed in section 4.3. Overall, moringa seed oil had the higher moisture content compared to 

marula, which correlates with the moisture results of the seeds. 

 

Table 4.1: Moisture content of marula and moringa seeds (n = 3) 

      Marula Moringa 

Moisture content (% w/w)   5.56 ± 0.04 7.26 ± 0.02 

 

Table 4.2: Moisture content of marula and moringa seed oil (n=3) 

 Moisture content (% w/w)  

Extraction methods Marula seed oil Moringa seed oil 

Hexane extraction (Soxhlet) 4.77± 0.02a 5.94±0.02f 

Hexane extraction (shaker) 4.96±0.01b 6.21±0.02g 

Screw press 5.18±0.01c 6.40±0.06h 

Aqueous extraction at 60 °C 5.30±0.01d 6.65±0.05i 

Aqueous extraction at 37 °C 5.41±0.05e 6.94±0.08j 

Values are mean ± SD of marula and moringa seed oils from different extraction methods analyzed 

in triplicate. Mean values in the same column followed by different superscript letters are 

significantly different (P < 0.05) for marula and moringa seed oil, respectively 

 

4.2 Oil yield and extraction efficiency 

 

Oil yield is the amount of oil that can be extracted from the seed. It is expressed as a percentage 

of the starting material (w/w) while extraction efficiency is the percentage of oil extracted in 
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relation to total amount of oil present. The ANOVA test was used to determine the significant 

differences (P<0.05) for the yields and extraction efficiencies for marula and moringa seed oil for 

the different extractions methods.  The results showing the statistical differences between the 

extraction methods are shown in Tables 4.3 and 4.4. 

 

Table 4.3: Oil yield and extraction efficiency of marula seed oil (n = 3) 

Marula seed oil 

Extraction methods  Oil yield (%) Extraction efficiency (%) 

Hexane extraction (Soxhlet) 53.99 ± 0.01a 100.00 ± 1.00f 

Hexane extraction (shaker) 42.74 ± 0.51b 79.17 ± 1.07g 

Aqueous extraction at 60 °C  20.00 ± 0.01c 37.05 ± 0.39h 

Aqueous extraction at 37 °C 18.67 ± 0.68d 34.56 ± 0.36i 

Screw press 21.88e 54.09j  

Values are mean ± SD of marula seed oils from different extraction methods analyzed in triplicate 

except screw press method. Mean values in different column followed by different superscript 

letters are significantly different (p<0.05) for the oil yield and extraction efficiency %, 

respectively. 
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Table 4.4: Oil yield and extraction efficiency of moringa seed oil (n = 3) 

Moringa seed oil 

Extraction methods  Oil yield (%) Extraction efficiency (%) 

Hexane extraction (Soxhlet) 35.30 ± 1.14a 100.00 ± 1.00f 

Hexane extraction (shaker) 27.19 ± 0.91b 77.01 ± 0.55g 

Aqueous extraction at 60 °C 13.05 ± 0.35c 36.98 ± 0.63h 

Aqueous extraction at 37 °C  12.00 ± 0.00d 33.98 ± 0.32i 

Screw press 14.43e  60.91j 

Values are mean ± SD of moringa seed oils from different extraction methods analyzed in triplicate 

except screw press method. Mean values in the same column followed by different superscript 

letters are significantly different (p<0.05) for the oil yield and extraction efficiency %, 

respectively. 

 

Soxhlet extraction using hexane (b pt. 69 °C) gave the highest oil yield of 53.99 % and 35.30 % 

for marula and moringa, respectively; this being the total or 100 % fat content as hexane Soxhlet 

extraction is the standard method for extracting fat content. The shaker method (at ambient 

temperature) gave a lower oil yield for both marula and moringa of 42.74 % and 27.19 %, and 

extraction efficiency of 79.17 % and 77.01 %, respectively. The higher oil yield and extraction 

efficiency recorded with Soxhlet extraction was due to the temperature of extraction (69 ℃) which 

leads to cell walls breaking. This together with the organic solvent used and continuous recycling 

of the hot solvent through the Soxhlet extraction process promotes better extraction efficiency by 

penetrating into the cell wall of the seed which was also broken during the process of grinding, 

solubilizing all the oil present (Daroch et al., 2013; Li et al., 2016). The oil yield value and 

extraction efficiency obtained at 60 °C using water for extraction was also higher compared to that 

obtained at 37 °C and this could be attributed to the difference in temperature.  In this extraction, 

the mechanical grinding led to cell walls breaking but in addition, the higher temperature also 

contributed to better extraction efficiency by also breaking the cell walls thus increasing the cell 
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surface area (Erickson, 1990). Temperature, ranging from 37 to 60 °C, applied in the extraction 

method helps to reduce moisture in the cells, and reduces the viscosity of the oil thereby resulting 

in easier flow of the oil during extraction. It thus speeds up the extraction process and gives a better 

oil yield (Sefah, 2006). The disadvantage of temperature is that when it is too high the oil will be 

oxidized and become rancid (Sefah, 2006). The results showed that moringa seed with high 

moisture content had lower extraction efficiency and marula with a lower moisture content had a 

higher extraction efficiency. This indicates that the lower the moisture content, the higher the 

extraction efficiency which was also found by Adejumo et al. (2013).  

Researchers have reported fat content for solvent extraction (Soxhlet method with hexane) of 

marula oil within the range of 50.00 % to 65.00 % (Mariod et al., 2004; Zharare et al., 2004) which 

was in line with the results obtained for this study. For solvent extracted moringa seeds using a 

Soxhlet method with hexane, researchers reported oil yields between 33.23 % - 42.00 % (Tsaknis 

et al., 1999; Anwar et al., 2003; Anwar et al., 2003) with the value obtained in this study (Table 

4.3 and 4.4) similar to the reported range. The variation in the results of the oil yield could be as a 

result of different plant varieties studied, and environmental and climatic conditions (Anwar et al., 

2003). Sharma and Gupta (1982) also reported that the variation in oil yield could be because of 

genetic characteristics. 

 

4.3 Determination of fatty acid profile 

 

In order to determine the fatty acid composition of the seed oil using GC-MS, the fatty acid present 

in the oil must be volatile. However, fatty acids are generally not volatile and therefore the oil is 

derivatized prior to GC-MS analysis. The normal method for determining the fatty acid profile is 

by using the fatty acid methyl ester standards and comparing the retention time of the standard 

with that of the sample. Due to the unavailability and high cost of the appropriate column (capillary 

column CP-Sil 88 (60 m × 0.25 mm i.d, thickness of 0.25 µm) for analyzing fatty acid methyl 

esters, an inert cap 5 ms/sil column with dimensions of 30 mm × 0.25 nm i.d, × 0.25 µm film 

thickness was used instead supplied by Restek.  The use of this column resulted in some standards 

not being eluted which made identification and quantification based on calibration graphs difficult. 

However, on analysis of the sample itself, all the analytes of interest eluted. Thus instead of basing 
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identification of the analytes in the sample on the retention time of standards, the identification 

was based on each analytes mass spectral fragmentation pattern.  Once the analyte peaks were 

identified in the chromatogram, quantification of the analytes of interest were determined based 

on the percentage of peak area of the analyte versus the total peak areas of all analytes in the 

chromatogram.  The gas chromatogram for marula oil is shown in Figure 4.1.  The peak with 

retention time 16.825 was identified as palmitic acid based on its mass spectrum (Figure 4.2).  The 

mass spectrum showed a molecular ion peak at m/z 270 which corresponded to the molecular mass 

of the methyl ester of palmitic acid having a formula of C17H34O2. From the fragmentation pattern 

of the mass spectrum shown in Figure 4.2 the peak at m/z 239 corresponded to the loss of –OCH3, 

which is seen, by the loss of 31 mass units.  The peak at m/z 227 corresponded to the loss of a 

carbon, which is possibly the carbon from the methyl group at the opposite end of the palmitic acid 

methyl ester structure, with the hydrogens attached to the main structure to stabilize it.  The peak 

at m/z 213 corresponded to the loss of a methylene group shown by the loss of 14 mass units.  

Likewise, the other peaks in the mass spectrum show the loss of –CH2 groups, which confirmed 

the hydrocarbon like backbone of palmitic acid.  Furthermore, a comparison of the mass spectrum 

obtained for palmitic acid methyl ester with that found for palmitic acid methyl ester in the NIST 

library of the GC-MS showed a good match (Figures 4.2 and 4.3).  All the peaks on the gas 

chromatogram were identified based on similar analysis of their corresponding mass spectra. 
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Figure 4. 1: GC-MS chromatogram of 5 fatty acids present in aqueous extracted (37 °C) marula 
seed oil 

Figure 4.2: Actual mass spectrum of palmitic acid methyl ester in marula seed oil 

 

Figure 4.3: Library match for palmitic acid methyl ester from the NIST library 
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The results in Tables 4.5 and 4.6 show the presence of palmitic acid (hexadecanoic acid methyl 

ester), linoleic acid (9, 12- octadecadienoic acid methyl ester), oleic acid (9- octadecenoic acid 

methyl ester), and stearic acid (octadecanoic acid methyl ester) in both seed oils. Behenic acid 

(docosanoic acid methyl ester) was only detected in moringa seed oil and in shaker and aqueous 

extracted marula seed oil at 37 °C. Furthermore, according to the analysis of variance test 

(ANOVA) P<0.05 shows that there is a significant difference in the fatty acid composition for the 

different extraction methods for marula seed oil. There was also a significant difference in the fatty 

acid composition for the different extraction methods for moringa seed oil. The results in Tables 

4.5 and 4.6 showed that the highest fatty acid concentration present in marula seed oil was oleic 

acid. Aqueous extracted marula seed oil at 37 and 60 °C had an oleic acid value of 72.36 and 72.01 

%, respectively, screw press seed oil was 71.12 % and the values for solvent extracted oil were 

70.70 and 70.19 % for the Soxhlet and shaker methods, respectively. Mariod et al. (2004) reported 

oleic acid as 67.20 % for solvent (Soxhlet method with hexane) extracted marula seed oil. 

For moringa seed oil, oleic acid was the most dominant fatty acid. The percent composition of 

oleic acid in aqueous extracted moringa seed oil was 79.94 % and 79.67 % at 37 °C and 60 °C, 

respectively, solvent extracted oil (Soxhlet and shaker method) had 77.61 and 78.78 %, 

respectively, and screw press extracted oil was 79.59 %.  

Latif and Anwar (2008) reported oleic acid as being the dominant fatty acid present in moringa 

seed oil. They reported that solvent extracted moringa seeds using a Soxhlet method with hexane 

had an oleic acid percentage of 67.30 % and aqueous extracted moringa seed oil (at boiling 

temperature) had an oleic acid percentage of 68.07 %. For both seed oil, oleic acid was dominant 

in aqueous extraction compared to the other extraction methods. For the polyunsaturated fatty, 

linoleic acid was found to be dominant in Soxhlet extraction as compared to the other extraction 

methods while aqueous extraction had the lowest and screw press was in between for both seed 

oil. Polyunsaturated fatty acids are highly susceptible to oxidation due to the presence of the double 

bonds. As the number of double bonds increase, the rate of oxidation also increases. The 

polyunsaturated values for all the extraction methods are similar and therefore oils extracted from 

all the methods are prone to oxidation.  However, in ranking the extraction methods in order of 

being susceptible to oxidation, Soxhlet extraction is most susceptible to oxidation. Comparing the 

two seed oils, moringa is expected to be more stable compared to marula seed oil because it has a 
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higher oleic acid content, which is a monounsaturated fatty acid, which has relatively higher 

oxidative stability and lower quantity of polyunsaturated fatty acids (linoleic acid) which is easily 

susceptible to oxidation. Seed oils rich in oleic acid (monounsaturated fatty acid) are reported to 

have a high stability and can be used as replacement for hydrogenated oils (Rahman et al., 2009; 

Tsaknis et al., 1998). 

The variation in the percentage of the fatty acid present in the different extraction methods could 

be as a result of the solubility and different partition coefficients of the different triglycerides in 

the process of extraction where some triglycerides are more soluble at specific temperatures and 

in specific solvents used during extraction.  In addition, different triglycerides are present in 

different parts of the seed cell and the different extraction processes may cause specific parts of 

the seed cell to be exposed leading to extraction of those triglycerides present in that part of the 

cell (Hegel et al., 2011; Günerken et al., 2015).  This is seen in Table 4.5 and 4.6 where the 

monounsaturated oleic acid has the highest percentage extraction from the aqueous extraction 

method at 37 °C and the lowest extraction from extraction methods using high temperature and 

solvent (Soxhlet and shaker). The saturated and polyunsaturated fatty acids were preferentially 

extracted using Soxhlet extraction which suggests these triglycerides require high temperature and 

a solvent for their extraction.  

The fatty acid present in seed oils may also depend on the geographical area, processing method 

such as the extraction technique used for extracting the seed oil, and storage conditions. The 

variation in our results of the fatty acids with that of literature could be because of the harvesting 

time, environmental and climatic conditions, storage process and extraction techniques (Anwar et 

al., 2003; Mariod et al., 2010).  
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Table 4.5: Relative fatty acid composition of marula seed oil 

Extraction methods 

Fatty acid (%) Soxhlet Shaker Aqueous 60 °C Aqueous 37 °C Screw press 

Palmitic acid 12.75 ± 0.12a 11.62 ± 0.27b 11.96 ± 0.27c 10.85 ± 0.00d 11.26 ± 0.45e 

Stearic acid 6.27 ± 0.10p 7.41 ± 0.07r 6.70 ± 0.12s 6.84 ± 0.28t 6.86 ± 0.20t 

Oleic acid 70.70 ± 0.42k 70.19 ± 0.22l 72.01 ± 0.41m 72.36 ± 0.12n 71.12 ± 0.11o 

Linoleic acid 9.32 ± 0.13f 9.16 ± 0.08g  8.98 ± 0.26h 8.29 ± 0.25i  9.03 ± 0.08h 

Behenic acid Not detected 0.94 ± 0.00v Not detected 0.94±0.00v Not detected 

Total saturated 19.02 ± 0.16w 19.97 ± 0.28x 18.66 ± 0.30y 18.63 ± 0.28y 18.12 ± 0.49q 

Total polyunsaturated  9.32 ± 0.13f 9.16 ± 0.08g  8.98 ± 0.26h 8.29 ± 0.25i  9.03 ± 0.08h 

Total monounsaturated 70.70 ± 0.42k 70.19 ± 0.22l 72.01 ± 0.41m 72.36 ± 0.12n 71.12 ± 0.11o 

Values are mean ± SD of marula seed oils from different extraction methods analyzed in triplicate. 

Mean values in the same row followed by different superscript letter are significantly different 

(P<0.05) according to the analysis of variance test.  
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Table 4.6: Relative fatty acid composition of moringa seed oil 

Extraction methods 

Fatty acid (%)          Soxhlet            Shaker        Aqueous 60 °C Aqueous 37 °C Screw press 

Palmitic acid 8.05 ± 1.28a 7.06 ± 0.33b 7.55 ± 0.17c 6.49 ± 0.25d 6.83 ± 0.33e 

Stearic acid 7.39 ± 0.17p 6.01 ± 0.33r 5.92 ± 0.62s 6.96 ± 0.08t 6.37 ± 0.00u 

Oleic acid 77.61 ± 1.18k 78.78 ± 0.77l 79.67 ± 1.90o 79.94 ± 0.48n 79.59 ± 0.24o 

Linoleic acid 1.33 ± 0.00f 1.03 ± 0.06g 0.87 ± 0.04h 0.67 ± 0.11i 0.95 ± 0.15j 

Behenic acid 5.92 ± 0.13v 6.82 ± 0.00w 5.99 ± 0.02x 6.62 ± 0.00y 6.20 ± 0.00z 

Total saturated 21.36±1.30m 19.89± 0.47q 19.46 ± 0.64# 20.07 ± 0.26* 19.40± 0.33# 

Total polyunsaturated  1.33 ± 0.00f 1.03 ± 0.06g 0.87 ± 0.04h 0.67 ± 0.11i 0.95 ± 0.15j 

Total monounsaturated  77.61 ± 1.18k 78.78 ± 0.77l 79.67 ± 1.90o 79.94 ± 0.48n 79.59 ± 0.24o 

Values are mean ± SD, of moringa seed oils from different extraction methods analyzed in 

triplicate. Mean values in the same row followed by different superscript letters are significantly 

different (P<0.05) according to the analysis of variance test. Total saturated fatty acids are all 

significantly different 

 

4.4 Acid value  

 

Table 4.7, shows a significant difference (P˂0.05) in the acid value of the seed oils extracted using 

Soxhlet, shaker, screw press and aqueous extraction methods. The statistical differences between 

the different extraction methods were determined from the analysis of variance test (ANOVA). 
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Table 4.7: Acid value of marula and moringa seed oil (n = 3) 

                                                   Acid value (mg KOH/g oil) 

Extraction methods               Marula seed oil             Moringa seed oil 

Hexane extraction (Soxhlet) 3.59 ± 0.03a 3.44 ± 0.09f 

Hexane extraction (shaker) 3.44 ± 0.03b 3.31 ± 0.06g 

Aqueous extraction at 37 °C 2.30 ± 0.00c 2.04 ± 0.03h 

Aqueous extraction at 60 °C 2.45 ± 0.03d 2.23 ± 0.03i 

Screw press 3.10 ± 0.06e 2.81 ± 0.00j 

Values are mean ± SD of moringa seed oils from different extraction methods analyzed in 

triplicate. Mean values in the same column followed by different superscript letters are 

significantly different (P < 0.05) for marula and moringa seed oil, respectively 

 

The results showed that aqueous extracted marula and moringa seed oil at 37 °C and 60 °C had 

the lowest acid value compared to screw press, shaker and Soxhlet extracted oil (Table 4.7) which 

to some extent indicates that aqueous extracted seed oil has a better quality. The aqueous extracted 

seed oil was expected to have a higher acid value, because it used water as the extracting solvent, 

which may contribute to the hydrolytic degradation or the extent to which the glycerides in the oil 

decomposes, by lipase action. The reverse was the case in this study, which showed that aqueous 

extraction had the lowest acid value. This could be due to the mild operating conditions that did 

not require the use of an organic solvent or high pressure.  This suggests that water alone is not the 

only parameter that contributes to hydrolytic degradation. The high acid values for the Soxhlet 

extracted seed oils could be because of the organic solvent and temperature used in the extraction 

process.  High temperature used in Soxhlet extraction may result in the free fatty acids being more 

soluble in the solvent and thus were easily transferred to the seed oil. In addition, the breakdown 

of free fatty acids in certain solvents may also contribute to more free fatty acids being extracted 

resulting in higher acid values. In addition, these two parameters (temperature and organic solvent) 

are known to negatively affect the natural antioxidants present, which reduces their ability to 
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scavenge the free fatty acids present thereby leading to a lower quality of oil (Bhatnagar et al., 

2009). Storage of the seeds before extraction may also play a role in the acid value of the extracted 

seed oil.  Poor storage conditions may lead to microbial activities, which may result in the 

production of free fatty acids thus leading to higher acid values. The seeds stored in the refrigerator 

may produce less free fatty acids and thus result in less free fatty acid being extracted in the 

extraction process as compared to seeds stored at ambient temperature. Also, the enzymatic 

activity whereby the lipases break down fatty acid from lipid molecules may contribute to the high 

or low acid values of the seed oils. 

Lastly, moringa seeds had a higher moisture content than marula seeds (Table 4.1), which was also 

seen in the seed oils (Table 4.2). A higher water content in the oil is expected to lead to greater 

hydrolytic activity and a higher acid value. Moringa seed oil had higher moisture content and was 

expected to have a higher acid value compared to marula seed but the reverse was the case whereby 

moringa seed oil had a lower acid value even though it had high moisture content. This reversal in 

acid value for marula and moringa could be because moringa seed oil had a higher radical 

scavenging ability compared to marula seed oil as reported further in this study (section 4.7), which 

means that moringa has a higher natural antioxidant content that can scavenge the free fatty acid 

and lead to a low acid value.  The lower acid values for aqueous extracted marula and moringa 

seed oil shows that aqueous extraction resulted in a better oil quality. 

Danlami et al. (2014) reported an acid value of 3.60 mg KOH/g for marula seed oil using solvent 

(hexane) extraction using the Soxhlet method, which compared well with that reported in this 

study. There are no reports in literature on the acid value of aqueous extracted seed oil at 37 and 

60 °C for both marula and moringa seed oil. Therefore, this study presents the first report on the 

acid value of aqueous extracted seed oil at 37 and 60 °C from marula and moringa seeds. 
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4.5 Measurement of oxidation products 

 

The oxidative state of the seed oil was determined using the peroxide value, conjugated diene and 

triene values at 232 nm and 270 nm, and the p-anisidine value.  

4.5.1 Peroxide value 

 

The peroxide value is an indication of the initial stage of oxidation that takes place in the oil and 

is also a measure of the primary oxidation products (peroxides and hydroperoxide) in oil 

(McGinely, 1991). Oil is oxidized during processing and storage via autoxidation in which triplet 

oxygen and singlet oxygen react with the oil. 

 The higher the peroxide value the more susceptible the oil is to rancidity and having a shorter 

shelf life. Table 4.8 shows the results of the different oxidative parameters of the screw press, 

aqueous (37 and 60 °C) and solvent (Soxhlet and shaker) extraction methods. The results in Table 

4.8, shows that there was a significant difference (P˂0.05) in the peroxide value of the seed oils 

extracted with the different extraction methods. The statistical differences were determined 

according to the analysis of variance test (ANOVA). 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

Table 4.8: Peroxide value of marula seed oil (n = 3) 

                                                         Peroxide value (meq/kg of oil) 

Extraction methods               Marula seed oil             Moringa seed oil 

Hexane extraction (Soxhlet) 0.83 ± 0.06a 0.67 ± 0.06f 

Hexane extraction (shaker) 0.70 ± 0.06b 0.50 ± 0.00g 

Aqueous extraction at 37 °C 0.15 ± 0.10c 0.20 ± 0.00h 

Aqueous extraction at 60 °C 0.10 ± 0.06c 0.10 ± 0.00i 

Screw press 0.30 ± 0.12e 0.30 ± 0.00j 

Values are mean ± SD of marula seed oils from different extraction methods analyzed in triplicate. 

Mean values in the same column followed by different superscript letters are significantly different 

(P < 0.05) 

 

The peroxide value results (Table 4.8) showed that Soxhlet extraction using hexane as the solvent 

produced the highest peroxide value and thus the least stable oil, which is probably due to the 

combination of the high temperature and use of a solvent in the extraction process. The high 

peroxide value for Soxhlet extracted oil could also be due to the low radical scavenging ability 

(section 4.7) observed which would result in a lower ability to scavenge the free radicals in the oil 

thus leading to a high oxidation product content and eventually a high peroxide value and a lower 

quality oil.  

Aqueous extraction at 37 °C and 60 °C for both marula and moringa seed oil had a lower peroxide 

value. This could be as a result of the effect of the extraction process where a mild extraction 

technique with lower temperatures produced lower amounts of primary oxidation products, leading 

to a better quality of oil. Aqueous extracted oil (37 °C and 60 °C) had a higher scavenging ability, 

and would therefore be able to scavenge the free radicals in the oil resulting in a low peroxide 

value for this oil.  In addition, aqueous extracted marula and moringa seed oil contained lower 

values of polyunsaturated fatty acid (linoleic acid) as compared to the other extraction methods 
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leading to the seed oil being less susceptibility to oxidation thereby producing lower amounts of 

primary oxidation product (peroxides).  

Overall Moringa seed oil had a lower peroxide value compared to marula seed oil across all 

extraction methods suggesting that Moringa seed oil has lower oxidation products and therefore is 

more stable.    

The peroxide values of the different extraction methods were within the maximum acceptable 

value of 15 meq/kg for oil as recommended by Codex Alimentarus Commission (Joint FAO/WHO 

(Codex Alimentarus Commission, 1999)). 

Anwar et al. (2003) reported a peroxide value of 0.59 meq/kg of oil for solvent extraction (Soxhlet 

method) of moringa oil with hexane, which was in accordance with that reported in this study. 

Tsaknis et al. (1999) reported a peroxide value of 0.36 meq/kg of oil for screw pressed moringa 

seed oil, which was similar to that reported in this study.  There were no available published results 

for comparison of the aqueous extraction at 37 and 60 °C.  

4.5.2 Conjugated diene and triene value 

 

Conjugated dienes and trienes are formed during lipid oxidation. An increase in the absorption at 

232 nm is caused by the formation of conjugated dienes. Absorption at 270 nm increases when 

conjugated trienes are formed. The conjugated diene and triene values show the oxidative 

deterioration of the seed oils (Iqbal et al., 2013). 

The results in Table 4.9 showed that there was a significant difference (P˂0.05) between the 

different extraction methods. The statistical differences in the conjugated diene and triene values 

obtained were based on the analysis of variance test (ANOVA) for the different extraction 

methods.  
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Table 4.9: Conjugated diene and triene values of marula and moringa seed oil (n = 3) 

 Marula seed oil         Moringa seed oil  

Extraction methods Conjugated 

diene value 

Conjugated 

triene value 

Conjugated 

diene value 

Conjugated 

triene value 

Hexane extraction(Soxhlet) 1.16 ± 0.00a 0.79 ± 0.01f 1.08 ± 0.01l 0.64 ± 0.01q 

Hexane extraction (shaker) 1.09 ± 0.00a 0.67 ± 0.01g 1.02 ± 0.01l 0.57 ± 0.00r 

Aqueous extraction at 37 °C 0.66 ± 0.00c 0.39 ± 0.01h 0.65 ± 0.02n 0.37 ± 0.01s 

Aqueous extraction at 60 °C 0.78 ± 0.01d 0.48 ± 0.01i 0.70 ± 0.01n 0.42± 0.01ts 

Screw press 0.99 ± 0.02e 0.54 ± 0.00j 0.87 ± 0.00p 0.47 ± 0.01t 

Values are mean ± SD of marula seed oils from different extraction methods analyzed in triplicate. 

Mean values in the same column followed by different superscript letters are significantly different 

(P < 0.05) for conjugated diene and triene values, respectively. 

 

Conjugated dienes and trienes are products formed during oxidation as a result of the shift in the 

double bond. The shift in the double bond is initiated by parameters such as temperature and light, 

which are specific to different extraction techniques, and cause formation of oxidation products. 

Research has shown that increases in temperature of approximately 10 °C increments will cause 

the rate of reaction of oxygen with oil to double (Khan and Shahidi, 2002; Pan et al., 2004; Rossell, 

1992; Berger, 1994). 

Aqueous extraction method had the lowest conjugated diene and triene values. Low values of 

conjugated dienes and trienes obtained in aqueous extracted seed oils may be attributed to the mild 

extraction conditions used in this technique. Also, the shift in the position of the double bond in 

aqueous extraction method may not be as frequent as the solvent extraction method (Soxhlet and 

shaker method) method resulting in lower conjugated diene and triene values. 

The presence of conjugated dienes and trienes in the seed oils, in this study, can be justified by the 

presence of the polyunsaturated fatty acid, which may easily undergo oxidation resulting in high 

conjugated diene and triene values. Comparing the two seed oils, marula seed oil had a higher 
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quantity of polyunsaturated fatty acid compared to moringa seed oil (Table 4.2) and is therefore 

expected to form oxidation products more easily thus resulting in higher conjugated diene and 

triene values, which have been observed.   

Evaluation of the relationship between the oxidative stability parameters using the Pearson 

correlation test provides the direction and strength of two variables. The correlation test is between 

-1, which shows a negative strong correlation in the downward direction, and +1 a positive strong 

correlation in the upward direction. The closer the coefficients are to +1 and -1, the greater is the 

strength of the relationship between the variables. A strong positive correlation shows the variables 

are in a direct relationship with each other. The conjugated diene strongly correlated with the 

peroxide values of the respective oils, with a correlation coefficient of 0.931 and 0.946 for marula 

and moringa seed oil, respectively. This further confirms that an increase in peroxide value results 

in an increase in the conjugated diene.  

 Comparing the relationship between the conjugated diene and triene percentage for marula and 

moringa seed oil, a strong positive correlation coefficient of 0.981 and 0.961, respectively was 

shown suggesting that if there is a high quantity of dienes present in the oils, there is a 

corresponding high tendency for trienes to also form. This study is the first to report conjugated 

diene and triene values for aqueous extracted marula and moringa seed oil at 37 and 60 °C. 

4.5.3 p–anisidine value 

 

The anisidine value measures the secondary product of lipid oxidation, which is the content of 

aldehydes (2-alkenals and 2,4-alkadienals) produced during the decomposition of hydro-peroxides 

(Frankel, 2012b). The lower the anisidine value the more stable the oil. Tables 4.10 shows the 

results of the anisidine values for the different extraction methods; Soxhlet, shaker, screw press, 

and aqueous at 37 and 60 °C. The results in Table 4.10 showed that there was a significant 

difference (P˂0.05) in the anisidine values of the oils produced by the different extraction methods.  

The statistical differences were determined based on the analysis of variance test (ANOVA).  
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Table 4.10: Anisidine value of marula and moringa seed oil (n = 3) 

                                                             Anisidine values  

Extraction methods Marula seed oil Moringa seed oil 

Hexane extraction(Soxhlet) 1.41 ± 0.03a 1.37 ± 0.08f 

Hexane extraction (shaker) 1.39 ± 0.07a 1.27± 0.05g 

Aqueous extraction at 60 °C  1.11± 0.06c 1.04 ± 0.07h 

Aqueous extraction at 37 °C  1.00 ± 0.03d 0.88 ± 0.04i 

Screw press 1.28± 0.05e 1.21± 0.08g 

Values are mean ± SD of marula seed oils from different extraction methods analyzed in triplicate. 

Mean values in the same column followed by different superscript letters are significantly different 

(P < 0.05) for marula and moringa seed oil, respectively 

 

The anisidine value for Soxhlet, shaker and screw press method for marula and moringa seed oil 

was higher compared to the other extraction methods while aqueous extraction at 37 and 60 °C 

was the lowest. According to Table 4.10, the result showed that more secondary oxidation products 

have formed in the Soxhlet extracted oil thereby resulting in higher anisidine values. High values 

in both the Soxhlet extracted seed oils, could be due to the temperature and solvent used in the 

extraction process. The high temperatures used and the presence of a solvent have encouraged the 

formation of secondary oxidation products resulting in high anisidine values.  In addition, the 

Soxhlet extracted seed oil had a higher polyunsaturated fatty acid content (Table 4.5 and 4.6) and 

lower monounsaturated fatty acid as compared to other extraction techniques. The Soxhlet 

extracted seed oil will therefore tend to produce more primary oxidation products, which will 

further oxidise to secondary oxidation products resulting in higher anisidine values. Aqueous 

extracted marula and moringa seed oil had the lowest anisidine values, which are probably due to 

the low amounts of polyunsaturated fatty acid and high monounsaturated fatty acid present. 

Overall, moringa seed oil had lower anisidine values for all extraction methods which indicates a 

lower presence of secondary oxidation products and should therefore be a more stable oil. 
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The results for the oxidative stability tests (peroxide value, conjugated diene, conjugated triene 

and anisidine value) as shown in Table 4.8 to 4.10 all showed a lower value for aqueous extracted 

seed oils at 37 °C and 60 °C for both marula and moringa seed oil compared to the screw press 

and solvent extraction (Soxhlet and shaker) method. Assessment of the relationship between the 

oxidative stability parameters statistically showed a strong positive correlation between all the 

tests. The correlation coefficient between the peroxide value and conjugated dienes formed during 

the formation of hydroperoxide for marula and moringa seed oil was 0.931 and 0.946, respectively 

indicating that peroxide value and conjugated dienes have a good correlation. This implies that as 

the peroxide value was increasing the conjugated diene value was also increasing Farhoosh and 

Pazhouhanmehr, (2008) showed conjugated dienes to be a good indicator of oxidative stability by 

showing a high correlation with peroxide value, as was also shown in this study. In addition, 

Gomez et al. (2004) also reported a high correlation coefficient of 0.995 for olive oil indicating 

that peroxide value and conjugated dienes are in good correlation in oxidation of olive oil. The 

correlation coefficient between the oxidation parameters (conjugated trienes and anisidine value) 

for marula and moringa seed oil was 0.966 and 0.952 respectively, which also showed a strong 

correlation meaning that as the anisidine value was increasing conjugated triene value was also 

increasing. 

 

4.6 Determination of oxidative stability of the seed oils based accelerated shelf life studies 

 

The objective of every manufacturer and retailer using seed oils is to verify the shelf life of the oil. 

Giese (2000) defines shelf life study as the period of time for a product to meet its acceptable 

expectations regarding its quality. In reality, carrying out shelf life tests take time due to the time 

required for an oil with high stability to deteriorate. For this reason, accelerated storage shelf life 

tests were designed to hasten or increase the rate of oxidation and shorten the time required to 

achieve a change in the quality of the oil, thereby enabling estimation of oxidation rates to the 

expected storage temperature (Labuza and Schmidl 1985). The shelf life test was carried out to 

determine the effect the different extraction methods have on stability of the extracted oil. Shelf 

life of oil is reliant on many factors such as temperature of storage, exposure to light, and the 

presence of antioxidants (McClements and Decker 2008). 
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Moringa and marula seed oils were extracted using the 5 selected methods and were subjected to 

accelerated shelf life studies. This involved storing the oil at ambient temperature in the dark, and 

at higher temperatures (45 and 65 °C) which were chosen to stimulate a fast degradation for a 

period of time in an incubator, and analysing weekly collected samples for peroxide value, an 

indicator of primary oxidation, and anisidine value, the indicator of choice for secondary oxidation.  

Peroxide value measures the quantity of hydroperoxide present in the oil. It is also used to 

determine the initial stage of oxidation and is commonly used in both industry and the academic 

world (Shahidi et al., 2005; McClements and Decker 2008). Statistically, the results in Tables 4.11 

and 4.12 showed that there was a significant difference (P˂0.05) in the peroxide values and 

anisidine values for the shelf-life studies for the different extraction methods. The statistical 

differences were determined based on the analysis of variance test (ANOVA) at the different stages 

of incubation period, day 7 to day 35, and for the different extraction methods. The result for the 

peroxide value at day 0 showed no significant difference (P˃0.05) at ambient temperature, 45 °C 

and 65 °C. The results showed an increase in the peroxide value after each week, which showed 

that the longer the oils were stored, the greater their tendency to be oxidized, which is to be 

expected. A faster increase in peroxide values and p-anisidine values at elevated temperatures than 

at ambient temperature was observed hence storage at higher temperature accelerates oxidation.  

This was observed by the increase in the steepness of the gradient of the straight line from storage 

at ambient temperature to storage at 65 ℃ for all extraction methods (Figures 4.4 to 4.23).  

Tables 4.11 and 4.12 also showed that the aqueous extraction method (37 °C and 60 °C) at the 

different stages of incubation had lower peroxide values compared to screw press and solvent 

(Soxhlet and shaker) extraction methods which had the highest peroxide values. The lower 

peroxide value could be as a result of the higher antioxidant activity in the aqueous extracted seed 

oil (Table 4.19), which enables scavenging of the oxidation products leading to a lower peroxide 

value.  

The p-anisidine value measures the secondary product of oxidation, which is as a result of 

decomposition of hydroperoxide (Frankel, 2012b). From Tables 4.11 and 4.12 the results showed 

that there was a significant difference (P˂0.05) in the p-anisidine values for the shelf life study for 

the different extraction methods.  The statistical differences were determined based on results 

obtained for the analysis of variance test (ANOVA) at the different stages of incubation from day 
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7 to day 35 and for the different extraction methods. The day 0 anisidine value at ambient 

temperature, 45 °C and 65 °C showed no significant difference (P˃0.05). After each week, the 

results showed an increase in the p-anisidine value, which suggests that the longer the oils are kept 

the more the production of secondary oxidation products. The results showed that there was also 

a significant difference for the different extraction methods. Overall, aqueous extracted seed oil at 

37 °C for marula and moringa had the lowest p-anisidine value, and Soxhlet extracted marula and 

moringa seed oil had the highest p-anisidine value. From the results, the seed oil extracted using 

the aqueous extraction method at 37 °C had a better stability throughout the shelf life study 

compared to the screw pressed and solvent extraction methods. The anisidine values of the seed 

oils stored at the accelerated degradation temperature for the different extraction methods 

statistically revealed that there was a significant difference (P˂0.05) between samples stored at 

higher temperatures for the different extraction methods for both oils.  

A student t-test was carried out comparing one parameter, peroxide value, between the two seed 

oils. Statistically, the results in Tables 4.13 and 4.14 comparing the two seed oils at ambient 

temperature for 35 days showed that there was no significant difference at day 0 for the peroxide 

value of the two seed oils. From day7 to 35 onward there was significant difference (P˂0.05) in 

the oxidative stability test for marula and moringa seed oil. Tables 4.11 and 4.12 showed a higher 

peroxide value for marula seed oil compared to moringa seed oil for aqueous extracted oil. A 

comparison of the anisidine value at ambient temperature, for both seed oils that were aqueous 

extracted (Table 4.14), showed that marula seed oil had the higher anisidine value for seed oil 

extracted at 37 °C compared to moringa seed oil extracted at 37 ℃, which implies that moringa 

seed oil has a better stability than marula seed oil. The lower quantity of polyunsaturated fatty acid 

and higher quantity of monounsaturated fatty acid in aqueous extracted moringa seed oil as shown 

in Table 4.6 could also be the reason why aqueous extracted moringa seed oil had a better stability. 

In addition, the antioxidant activity in the aqueous extracted seed oil as reported in this study 

(Table 4.19) could be a contributing factor towards improved stability of the oil as antioxidants 

helps to fight against free radicals that make an oil unstable. The high presence of polyunsaturated 

fatty acid (linoleic acid) in marula seed oil makes the seed oil more susceptible to oxidation 

because of the presence of the double bonds in the polyunsaturated fatty acid.  
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Table 4.11: Oxidative stability (shelf life) results of marula seed oil 

   

PR Soxhlet Extraction  Shaker Extraction  Aq. Extraction 37 °C  Aq. Extraction 60 °C Screw press 

  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient   45 °C   65 °C  Ambient       45 °C    65 °C Ambient 45 °C 65 °C 

0 PV 0.87±0.06 0.87±0.06 0.87±0.06  0.80±0.00 0.80±0.00 0.80±0.00  0.30±0.00 0.30±0.00 0.30±0.00  0.47±0.06 0.47±0.06 0.47±0.06 0.57±0.06 0.57±0.06 0.57±0.06 

 AV 1.50±0.03 1.50±0.03 1.50±0.03  1.44±0.04 1.44±0.04 1.44±0.04  1.12±0.01 1.12±0.01 1.12±0.01  1.30±0.00 1.30±0.00 1.30±0.00 1.37±0.07 1.37±0.07 1.37±0.07 

7 PV 1.00±0.00 1.30±0.00 1.67±0.06  0.90±0.00 1.17±0.06 1.57±0.15  0.37±0.06 0.63±0.06 1.00±0.00  0.57±0.06 0.77±0.06 1.23±0.06 0.63±0.06 0.97±0.06 1.40±0.10 

 AV 1.76±0.01 1.93±0.03 2.16±0.05  1.69±0.05 1.76±0.04 2.10±0.08  1.30±0.01 1.37±0.10 1.54±0.01  1.52±0.02 1.57±0.01 1.74±0.00 1.61±0.01 1.70±0.02 1.96±0.05 

14 PV 1.07±0.06 1.62±0.08 2.33±0.06  1.00±0.10 1.47±0.06 2.20±0.10  0.43±0.06 0.90±0.00 1.63±0.06  0.60±0.10 1.03±0.06 1.80±0.00 0.73±0.06 1.27±0.06 2.03±0.06 

 AV 2.06±0.03 2.26±0.06 2.69±0.13  1.90±0.00 2.04±0.02 2.56±0.05  1.46±0.00 1.55±0.03 1.83±0.02  1.68±0.06 1.77±0.01 2.08±0.06 1.84±0.04 1.94±0.05 2.41±0.01 

21 PV 1.17±0.15 2.10±0.10 3.20±0.00  1.10±0.00 1.90±0.00 3.03±0.06  0.50±0.00 1.30±0.00 2.37±0.12  0.70±0.00 1.47±0.06 2.53±0.15 0.80±000 1.70±0.10 2.83±0.06 

 AV 2.32±0.03 2.71±0.01 3.34±0.00  2.10±0.10 2.44±0.05 3.18±0.25  1.60±0.02 1.80±0.03 2.22±0.11  1.85±0.04 2.06±0.09 2.49±0.05 2.04±0.03 2.30±0.20 2.97±0.07 

28 PV 1.23±0.06 2.50±0.10 3.93±0.06  1.17±0.06 2.27±0.06 3.77±0.06  0.53±0.06 1.63±0.06 3.00±0.00  0.73±0.06 1.83±0.06 3.27±0.15 0.87±0.06 2.03±0.06 3.60±0.10 

 AV 2.60±0.08 3.10±0.03 3.90±0.15  2.32±0.00 2.74±0.02 3.74±0.02  1.76±0.25 2.02±0.08 2.56±0.09  2.03±0.01 2.30±0.04 2.88±0.14 2.23±0.01 2.58±0.08 3.50±0.08 

35 PV 1.37±0.06 2.90±0.00 4.67±0.06  1.27±0.06 2.63±0.06 4.50±0.00  0.60±0.00 2.00±0.00 3.67±0.06  0.83±0.06 2.17±0.06 3.93±0.21 0.97±0.06 2.40±0.00 4.27±0.06 

 AV 2.84±0.04 3.50±0.02 4.44±0.04  2.52±0.01 3.06±0.04 4.23±0.02  1.91±0.02 2.24±0.02 2.90±0.01  2.20±0.10 2.55±0.01 3.25±0.06 2.45±0.01 2.85±0.00 3.96±0.00 

Mean values of triplicate readings ± SD in the same column and row for PV and AV, respectively are all significantly different (P˂ 0.05) for the different extraction methods. But at day 0 for each extraction 

methods there is no significant difference (P˃0.05), respectively.  The numbers (0, 7, 14, 21, 28, and 35) represent the day at which the sample was taken and analysed; day 0 being the start of experiment. 

At ambient temperature for PV soxhlet extraction at day 7 and 14 showed P˃0.05 and is there is no statistical difference. Similarly day 21, and 28; shaker extraction day 21,and 28;  Aq. Extraction 37 °C 

day 7 and 14, 14 and 21, 21 and 28 and 28 and 35 showed P˃0.05. Aq. Extraction 60 °C day 7 and 14, and 21 and 28 showed P˃0.05. Screw press day 0 and 7; day 14 and 21, and day 21 and 28 showed 

P˃0.05. Day 0 for soxhlet and shaker at ambient, 45 °C and 65 °C showed P˃0.05. At day7, Aq. Extraction 60 °C and screw press at ambient temperature, showed P˃0.05. Day 14 soxhlet and shaker at 

ambient temperature; day 21 soxhlet and shaker at ambient temperature and day 28 for soxhlet and shaker at ambient temperature showed P˃0.05. Anisidine value day 0 for soxhlet and shaker at ambient 

temperature, 45 °C, and 65 °C, showed P˃0.05. Day 0 Aq. Extraction 60 °C and screw press at ambient temperature, 45 °C and 65 °C showed P˃0.05. Day 7 soxhlet and shaker extraction method at 

ambient temperature and at 65 °C showed P˃0.05, day 21 at ambient temperature shaker extraction and screw press showed P˃0.05. 
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Table 4.12: Oxidative stability (shelf life) of moringa seed oil 

   

PR Soxhlet Extraction  Shaker Extraction  Aq. Extraction 37 °C  Aq. Extraction 60 °C Screw press 

 Ambient      45 °C    65 °C  Ambient      45 °C     65 °C  Ambient 45 °C 65 °C  Ambient       45 °C    65 °C Ambient    45 °C   65 °C 

0 PV 0.80±0.00 0.80±0.00 0.80±0.00  0.77±0.06 0.77±0.06 0.77±0.06  0.23±0.06 0.23±0.06 0.23±0.06  0.37±0.06 0.37±0.06 0.37±0.06 0.47±0.06 0.47±0.06 0.47±0.06 

 AV 1.44±0.01 1.44±0.01 1.44±0.01  1.38±0.05 1.38±0.05 1.38±0.05  1.00±0.03 1.00±0.03 1.00±0.03  1.20±0.00 1.20±0.00 1.20±0.00 1.32±0.03 1.32±0.03 1.32±0.03 

7 PV 0.90±0.00 1.13±0.06 1.57±0.06  0.83±0.06 1.10±0.00 1.53±0.06  0.27±0.06 0.60±0.00 0.90±0.10  0.43±0.06 0.65±0.05 1.10±0.10 0.53±0.06 0.93±0.06 1.30±0.00 

 AV 1.70±0.00 1.86±0.06 2.17±0.01  1.54±0.05 1.71±0.02 1.87±0.09  1.12±0.02 1.20±0.01 1.34±0.02  1.38±0.08 1.41±0.01 1.58±0.07 1.47±0.03 1.57±0.01 1.78±0.00 

14 PV 0.97±0.06 1.50±0.10 2.20±0.10  0.90±0.00 1.40±0.00 2.17±0.06  0.33±0.06 0.83±0.06 1.47±0.06  0.50±0.00 0.93±0.06 1.70±0.10 0.63±0.06 1.17±0.06 1.97±0.06 

 AV 1.96±0.02 2.14±0.02 2.63±0.02  1.75±0.07 1.94±0.02 2.23±0.12  1.21±0.01 1.34±0.00 1.61±0.01  1.53±0.01 1.57±0.00 1.86±0.01 1.66±0.03 1.79±0.06 2.09±0.02 

21 PV 1.07±0.06 1.93±0.06 3.07±0.06  1.00±0.00 1.83±0.06 2.97±0.06  0.37±0.06 1.23±0.06 2.20±0.10  0.57±0.06 1.30±0.10 2.47±0.06 0.70±0.00 1.60±0.00 2.73±0.06 

 AV 2.23±0.02 2.54±0.02 3.28±0.00  1.97±0.02 2.26±0.06 2.70±0.02  1.31±0.03 1.52±0.02 1.95±0.02  1.68±0.09 1.85±0.02 2.21±0.14 1.85±0.08 2.07±0.06 2.48±0.02 

28 PV 1.13±0.06 2.33±0.06 3.77±0.06  1.07±0.06 2.23±0.06 3.70±0.00  0.43±0.06 1.57±0.06 2.83±0.10  0.60±0.00 1.63±0.06 3.10±0.10 0.77±0.06 1.97±0.06 3.43±0.06 

 AV 2.49±0.03 2.89±0.13 3.82±0.05  2.18±0.02 2.58±0.09 3.10±0.19  1.40±0.03 1.69±0.00 2.24±0.02  1.85±0.00 2.03±0.02 2.54±0.01 2.01±0.00 2.34±0.06 2.83±0.02 

35 PV 1.27±0.06 2.70±0.17 4.43±0.11  1.13±0.06 2.57±0.15 4.40±0.00  0.47±0.06 1.80±0.10 3.50±0.00  0.67±0.06 1.97±0.06 3.73±0.06 0.83±0.06 2.27±0.06 4.10±0.00 

 AV 2.78±0.03 3.22±0.02 4.34±0.00  2.40±0.00 2.85±0.00 3.49±0.01  1.50±0.00 1.86±0.00 2.53±0.00  1.99±0.00 2.24±0.01 2.86±0.01 2.20±0.03 2.60±0.04 3.20±0.01 

Mean values of triplicate readings ± SD in the same column and row for PV and AV, respectively are all significantly different (P˂ 0.05) for the different extraction methods. But at day 0 for each extraction 

methods there is no significant difference (P˃0.05), respectively.  The numbers (0, 7, 14, 21, 28, 35) represents the day at which the sample was taken and analysed; day 0 being the start of experiment. 
At ambient temperature for PV soxhlet extraction at day 7 and 14 showed P˃0.05 and was therefore not significantly different.  Similarly, day 21 and 28 for soxhlet, shaker extraction day 0 and 7; day7 

and 14; day 21 and 28, and day 28 and 35 showed P˃0.05. Aq. Extraction 37 °C day 0 and 7; day 7 and 14; day 14 and 21; day 21 and 28, and day 28 and 35 showed P˃0.05. Aq. Extraction 60 °C day 
0 and 7; day 7 and 14; day 14 and 21; day 21 and 28, and day 28 and 35 showed P˃0.05. Screw press day 0 and 7; day 14 and 21; day 21 and 28; 28 and 35 showed P˃0.05. Day 0 for soxhlet and shaker 

at ambient temperature, 45 °C and 65 °C showed P˃0.05. Day 7 for soxhlet and shaker at ambient temperature, 45 °C and 65 °C showed P˃0.05. Day 7 at 45 °C for Aq. Extraction 37 °C and Aq. 

Extraction 60 °C showed P˃0.05. Day 14 for soxhlet and shaker at ambient temperature and 65 °C showed P˃0.05. Day 21 for soxhlet and shaker at ambient temperature and 45 °C, and for Aq. Extraction 

37 °C and Aq. Extraction 60 °C showed P˃0.05. Day 28 for soxhlet and shaker at 65 °C showed P˃0.05; at 45 °C for Aq. Extraction 37 °C and Aq. Extraction 60 °C showed P˃0.05. Day 35 for soxhlet 

and shaker at 65 °C showed P˃0.05. Anisidine value at day 0 soxhlet and shaker at ambient temperature, 45 °C and 65 °C showed P˃0.05.
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Table 4.13: Comparison of peroxide values of marula and moringa seed oil for aqueous 37 °C 

at ambient temperature 

Values are mean ± SD of marula and moringa seed oils from different extraction methods 

analyzed in triplicate. Values in different column followed by different superscript letters are 

significantly different (P<0.05).  

Table 4.14: Comparison of anisidine values of marula and moringa seed oil for aqueous 

extraction at 37 °C at ambient temperature 

Values are mean ± SD of marula and moringa seed oils from different extraction methods 

analyzed in triplicate. Mean values in different column followed by different superscript letters 

are significantly different (P<0.05). 

 Marula seed oil Moringa seed oil 

Day Peroxide value (meq/kg of oil) Peroxide value (meq/kg of oil) 

0 0.30±0.00a 0.23±0.06a 

7 0.37±0.06c 0.26 ±0.06d 

14 0.43±0.06e  0.34 ±0.06f 

21 0.50±0.00g 0.37 ±0.06h 

28 0.53±0.06i 0.43 ±0.06j 

35 0.60±0.00k 0.47 ±0.06l 

 Marula seed oil Moringa seed oil 

Day Anisidine value Anisidine value 

0 1.12 ±0.01a 1.00 ±0.03b 

7 1.30 ±0.05c 1.11 ±0.02d 

14 1.46 ±0.06e 1.21±0.04f 

21 1.60 ±0.02g 1.31 ±0.03h 

28 1.76±0.25i 1.40±0.02j 

35 1.91±0.05k 1.50 ±0.00l 
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A critical look at the peroxide value results of the accelerated storage temperature at 45 °C and 

65 °C for the different extraction methods statistically revealed that there was a significant 

difference between them for the different extraction methods for both oils.  

Figures 4.4 to 4.23 show the straight line graphs for peroxide and anisidine values plotted 

against time (in days) for the different storage temperatures for all extraction methods for 

marula and moringa seed oils.  The straight-line graphs all show R2 values close to 1 which 

confirms the linear relationship of peroxide and anisidine values with time.  The y-intercept for 

each method of extraction was shown as the same value for all three storage temperatures (i.e. 

was forced through the same value) because the peroxide or anisidine values were the same on 

day zero and therefore had to have the same y-intercept.  

Considering the rate of reaction from Fig 4.4 to 4.23, a plot of the peroxide or anisidine values, 

which is in fact the concentration of the oxidation products, against time shows a straight-line 

graph and therefore the rate of reaction is a zero-order reaction. This means that the rate of 

formation of the oxidation products (primary and secondary products) will remain constant 

with time and is independent of the concentration of the starting reactant. The primary and 

secondary oxidation products form from oxidation reactions of the fatty acids.  Thus the zero 

order result implies that no matter what concentration of fatty acid is present in the oil, the rate 

of forming the oxidation products will be the same.  The result obtained in this study is in line 

with that reported by Piedrahita et al. (2015) 

The results in Tables 4.15 and 4.17 and Figures 4.4a to 4.8 showed that the rate of change of 

peroxide values at the degradation temperature of 45 °C and 65 °C was higher compared to 

that at ambient temperature which is as expected.  
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Figure 4.4: Graph showing the rate of increase of peroxide value at ambient temperature, 45 

°C and 65 °C for Soxhlet extracted marula seed oil. 

 

Figure 4.5: Graph showing the rate of increase of peroxide value at ambient temperature, 45 

°C and 65 °C for shaker extracted marula seed oil. 
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Figure 4.6: Graph showing the rate of increase of peroxide value at ambient temperature, 45 

°C and 65 °C for screw press extracted marula seed oil. 

 

Figure 4.7: Graph showing the rate of increase of peroxide value at ambient temperature, 45 

°C and 65 °C for aqueous extracted marula seed oil at 60 °C. 
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Figure 4.8: Graph showing the rate of increase of peroxide value at ambient temperature, 45 

°C and 65 °C for aqueous extracted marula seed oil at 37 °C. 
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space of time (35 days) resulting in a high peroxide value and an increased rate of oxidation. 
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amounts of oxidation products produced from the extraction method plays an important role in 

the rate of formation of oxidation products and eventually affects the stability of the oil. 

Moringa seed oil showed the same trend with the rate of increase of peroxide value for Soxhlet 

extraction as the highest for the different shelf life storage conditions (Figure 4.9 to 4.13).  

 

Figure 4.9: Graph showing the rate of increase of peroxide value at ambient temperature 45 

°C and 65 °C for Soxhlet extracted moringa seed oil 

 

Figure 4.10: Graph showing the rate of increase of peroxide value at ambient temperature 45 

°C and 65 °C for shaker extracted moringa seed oil 
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Figure 4.11: Graph showing the rate of increase of peroxide value at ambient temperature 45 

°C and 65 °C for screw press extracted moringa seed oil 

 

Figure 4.12: Graph showing the rate of increase of peroxide value at ambient temperature 45 

°C and 65 °C for aqueous extracted moringa seed oil at 60 °C 
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Figure 4.13: Graph showing the rate of increase of peroxide value at ambient temperature 45 

°C and 65 °C for aqueous extracted moringa seed oil at 37 °C 
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Figure 4.14: Graph showing the rate of increase of anisidine value value at ambient 

temperature, 45 °C and 65 °C for Soxhlet extracted marula seed oil. 

 

Figure 4.15: Graph showing the rate of increase of anisidine value at ambient temperature, 

45 °C and 65 °C for shaker extracted marula seed oil. 

y = 0.0387x + 1.50
R² = 0.9993

y = 0.056x + 1.50
R² = 0.9987

y = 0.084x + 1.50
R² = 0.999

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

0 5 10 15 20 25 30 35 40

A
ni

si
di

ne
 v

al
ue

Days

Soxhlet extracted marula seed oil

AV at Ambient AV at  45  °C AV at  65  °C

y = 0.0306x + 1.44
R² = 0.9989

y = 0.0467x + 1.44
R² = 0.9984

y = 0.0796x + 1.44
R² = 0.9982

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

0 5 10 15 20 25 30 35 40

A
ni

si
di

ne
 v

al
ue

Days

Shaker extracted marula seed oil

AV at Ambient AV at  45  °C AV at  65  °C



72 
 

 

Figure 4.16: Graph showing the rate of increase of anisidine value value at ambient 

temperature, 45 °C and 65 °C for screw press extracted marula seed oil 

 

Figure 4.17: Graph showing the rate of increase of anisidine value value at ambient 

temperature, 45 °C and 65 °C for aqueous extracted marula seed oil at 60 °C 
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Figure 4.18: Graph showing the rate of increase of anisidine value value at ambient 

temperature, 45 °C and 65 °C for aqueous extracted marula seed oil at 37 °C 

 

The rate of increase of anisidine value for Soxhlet extracted marula seed oil was the highest for 

all the storage conditions. Aqueous extracted seed oil at 37 °C had the lowest rate of change 

stored at ambient temperature. The rate of change of anisidine value for Soxhlet extracted 

moringa seed oil had the highest value as shown in (Figures 4.19 to 4.23) 

 

Figure 4.19: Graph showing the rate of increase of anisidine value at ambient temperature 45 

°C and 65 °C for Soxhlet extracted moringa seed oil 
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Figure 4.20: Graph showing the rate of increase of anisidine value at ambient temperature 45 

°C and 65 °C for shaker extracted moringa seed oil 

 

Figure 4.21: Graph showing the rate of increase of anisidine value at ambient temperature 45 

°C and 65 °C for screw press extracted moringa seed oil 
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Figure 4.22: Graph showing the rate of increase of anisidine value at ambient temperature 45 

°C and 65 °C for aqueous extracted moringa seed oil at 60 °C 

 

 

Figure 4.23: Graph showing the rate of increase of anisidine value at ambient temperature 45 

°C and 65 °C for aqueous extracted moringa seed oil at 37 °C 
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extraction method as well as the use of water instead of an organic solvent.  These mild 

extraction conditions results in low amounts of primary oxidation products, which will result 

in fewer secondary oxidation products forming. In addition, the mild extraction temperatures 

and the use of water as the extracting solvent produces low amounts of polyunsaturated fatty 

acid (linoleic). Thus, this will lead to less primary oxidation products forming, eventually fewer 

secondary oxidation products, and a more stable oil.  Hence, the aqueous method of extraction 

is the preferred method of extraction for producing oils with a good stability and good shelf 

life due to the longer time it takes to produce both primary and secondary oxidation products.  

In addition, secondary oxidation (p-AV) progresses faster than primary oxidation (PV) at 

ambient temperature; the contrary is observed at elevated temperature whereby secondary 

oxidation progresses slower than primary oxidation. This is observed in all samples 

independent of extraction method or, seed type. Understanding the rationale for this 

observation requires further investigation in future projects. 
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Table 4.15: Rate of change of peroxide value for marula seed oil. (PR- parameter, GR- gradient) 

Table 4.16: Rate of change of anisidine value for marula seed oil. (PR- parameter, GR- gradient) 

PR Soxhlet Extraction  Shaker Extraction   Screw press  Aq. Extraction 60 °C  Aq. Extraction 37°C 

 Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C 

GR 0.0387 0.0560 0.0840  0.0306 0.0467 0.0796  0.0304 0.0424 0.0740  0.0253 0.0356 0.0554  0.0223 0.0318 0.0504 

R2 0.9993 0.9987 0.9990  0.9989 0.9984 0.9982  0.9984 0.9981 0.9989  0.9982 0.9987 0.9993  0.9988 0.9989 0.9985 

Table 4.17: Rate of change of peroxide value for moringa seed oil. (PR- parameter, GR- gradient) 

Table 4.18: Rate of change of anisidine value for moringa seed oil. (PR- parameter, GR- gradient) 

PR Soxhlet Extraction  Shaker Extraction   Screw press  Aq. Extraction 60 °C  Aq. Extraction 37°C 

 Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C 

GR 0.0381 0.0506 0.0822  0.0296 0.0420 0.0600  0.0253 0.0367 0.0528  0.0225 0.0300 0.0471  0.0142 0.0240 0.0436 

R2 0.9997 0.9982 0.9970  0.9979 0.9983 0.9986  0.9990 0.9989 0.9981  0.9990 0.9965 0.9991  0.9992 0.9988 0.9992 

 

PR Soxhlet Extraction  Shaker Extraction   Screw press  Aq. Extraction 60 °C  Aq. Extraction 37°C 

 Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C 

GR 0.0139 0.0582 0.1088  0.0132 0.0527 0.1058  0.0113 0.0522 0.1057  0.0102 0.0495 0.0986  0.0084 0.0487 0.0962 

R2 0.9953 0.9983 0.9993  0.9969 0.9985 0.9993  0.9958 0.9987 0.9990  0.9941 0.9955 0.9990  0.9924 0.9954 0.9997 

PR Soxhlet Extraction  Shaker Extraction   Screw press  Aq. Extraction 60 °C  Aq. Extraction 37°C 

 Ambient 45 °C 65°C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C  Ambient 45 °C 65 °C 

GR 0.0128 0.0552 0.1046  0.0108  0.0524 0.1040  0.0106 0.0512 0.1034  0.0084 0.0462 0.0963  0.0069 0.0454 0.0933 

R2 0.9913 0.9986 0.9987  0.9962 0.9972 0.9994  0.9952 0.9949 0.9990  0.9924 0.9980 0.0963  0.9910 0.9952 0.9993 
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4.7 Determination of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity 

 

The results in Table 4.19 showed that there was a significant difference (P˂0.05) in the radical 

scavenging abilities of the oils extracted from the different extraction methods. The statistical 

analysis is determined from the results of the analysis of variance test (ANOVA).  

Table 4.19: Radical scavenging ability of marula and moringa seed oil with different 

extraction methods 

                                                          % Inhibition  

Extraction methods Marula seed oil  Moringa seed oil 

BHA 99.09 ± 0.00a 99.09 ± 0.00a 

Hexane extraction (Soxhlet) 50.30 ± 0.53b 51.21 ± 0.53g 

Hexane extraction (shaker) 52.12 ± 0.53c 53.33 ± 0.53h 

Aqueous extraction at 37 °C  59.39 ± 0.53d 62.73 ± 0.00i 

Aqueous extraction at 60 °C 56.36 ± 0.00e 59.70 ± 1.05j 

Screw press 54.24 ± 0.53f 56.06 ± 0.53k 

Values are mean ± SD of marula and moringa seed oils from different extraction methods 

analyzed in triplicate. Mean values in same column followed by different superscript letters are 

significantly different (P < 0.05) for marula and moringa seed oil respectively. 

 

Aqueous extracted marula and moringa seed oil at 37 °C had the highest scavenging ability 

compared to the other extraction methods.  This showed that the different extraction methods 

did affect the effectiveness of the antioxidant compounds present in the oils. Solvent and 

temperature used in the solvent extraction could be the factor, which affected the natural 

antioxidant present thus leading to a lower scavenging ability. 

 The result is also confirmed from the oxidative stability tests (PV, p-AV, CD and CT) which 

showed that the aqueous extracted seed oils had the lowest values, which could be as a result 

of the natural antioxidant present in the oil being able to scavenge the free radicals. The BHA 



79 
 

standard was used, in this study, as a positive control and to validate the test.  The scavenging 

ability of BHA was 99.09 %, which was higher than that of both marula and moringa seed oil 

extracted with different extraction methods. This implies that the antioxidant in the standard 

has a strong resistance against oxidation because it scavenges almost all the free radicals and 

inhibits lipid oxidation as compared to the antioxidant in the samples, which could scavenge 

just about 50.30 to 62.73 %.  

The Pearson correlation coefficient test carried out between the radical scavenging ability with 

the oxidative stability tests showed a strong negative correlation. The correlation coefficient 

between the radical scavenging ability and conjugated diene for marula and moringa seed oil 

was -0.920 and -0.886, respectively which means that the higher the radical scavenging activity 

the lower the amount of conjugated diene present in the oil. In addition, a strong negative 

correlation coefficient of -0.967 and –0.890 for marula and moringa seed oil was shown 

between the radical scavenging ability and conjugated trienes which means the higher the 

radical scavenging activity the lower the amount of conjugated trienes present in the oil. A 

strong negative correlation of –0.980 and –0.946 was shown between radical scavenging ability 

and peroxide value for marula and moringa seed oil which means that the higher the radical 

scavenging activity the lower the amount of hydroperoxides (primary oxidation) produced. 

From the correlation test, we may conclude that the higher the radical scavenging ability the 

lower the oxidation process (Prescha et al., 2014). 

The free radical scavenging results obtained for moringa was higher while that of marula seed 

oil was lower than that obtained for cranberry seed oil (55.02 to 55.62 %) obtained from screw 

pressing (Mandal and Lee, 2013). Yu, X., et al. (2013) reported a radical scavenging activity 

of solvent extracted (Soxhlet method with hexane) moringa seed oil to be approximately 56.00 

% which is higher that reported in this study which could be as a result of different harvesting 

periods, storage conditions, geographical area and climatic conditions of where the seeds were 

obtained. 

Overall, moringa seed oil had a higher radical scavenging ability compared to marula seed oil, 

which means that moringa has a higher natural antioxidant content.  This can be related back 

to the acid value in section 4.4 where moringa had a higher moisture content but showed a 

lower acid value.  This is probably due to the high natural antioxidant content of moringa oil, 

which scavenged the free fatty acids resulting in a low acid value. 
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The results from the radical scavenging ability showed aqueous extracted seed oils at 37 °C to 

have the highest ability to fight free radicals, which also corresponded to the lowest values for 

the oxidative stability tests (PV, p-AV, CD and CT).  This shows that the aqueous extracted 

seed oils were thus most stable. 
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5.0 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 

This study was carried out in order to evaluate the impact of extraction methods on the 

oxidative stability of marula and moringa seed oils rich in oleic acid. The shelf life study is 

important because it provides information on the oil stability during storage.  

The results of this study showed that the aqueous extraction method had a lower oil yield 

compared to the screw press and the solvent extraction method for marula and moringa seed 

oil. The results from the GC-MS analysis showed the presence of the following major fatty 

acids; palmitic, linoleic, oleic and stearic acid. Oleic acid (monounsaturated fatty acid) was the 

dominant fatty acid in both seed oils and its presence in oil is important in seed oil stability, 

because it is a poor substrate for oxidation in comparison to polyunsaturated fatty acid. The 

results from the acid value showed that solvent extracted marula and moringa seed oil had the 

highest acid value. The aqueous extraction method had the lowest acid value content, which 

suggested it is an extraction method that produces a better quality of oil.  

Other results for oxidative stability tests, such as, peroxide value, p-anisidine value and 

conjugated diene and triene values also showed lower values for the aqueous extraction method 

indicating that the aqueous extraction method produced a better stability and quality of oil 

compared to the screw press and solvent extraction methods. Further investigation was done 

on the oxidative stability of the seed oils by carrying out the peroxide value and the p-anisidine 

test which are the major tests for detecting the stability of seed oils for a period of 35 days and 

at accelerated shelf life storage temperatures. The results showed that, for the different 

extraction methods, there was an increase in the peroxide value and the p-anisidine value over 

time but the aqueous extracted seed oil had the lowest increase in peroxide value and p-

anisidine value throughout the period of 35 days compared to the screw press, shaker and 

Soxhlet extraction methods. The rate of change of the peroxide value and anisidine value 

showed that aqueous extracted marula and moringa seed oil at 37 °C had the lowest rate of 

increase of primary and secondary oxidation products as compared to the other extraction 

methods. This implies that oils extracted using the aqueous method at 37 °C have better 

stability and shelf life compared to oils produced from the other extraction methods.    

Further analysis was also carried out to determine if the different extraction methods affected 

the antioxidant activity of the seed oil. This was done by carrying out a radical scavenging 

activity test using the DPPH stable radical. The results showed that there was a significant 
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difference between the scavenging ability of the solvent extracted, aqueous extracted and screw 

pressed extracted marula and moringa seed oils. Aqueous extracted marula and moringa seed 

oil at 37 °C had the highest scavenging ability and Soxhlet extracted oil has the lowest ability. 

The radical scavenging ability test also had a good correlation with the oxidative stability tests 

(PV, CD, CT and p-AV). 

Finally, the results reported in this study proved the hypothesis that the aqueous extraction 

method, resulting in a lower oil yield, produced an oil of better quality and stability, which had 

a good radical scavenging ability as well.  

Recommendations and future work 

Further studies should consider the following:  

1) The oxidative stability based on accelerated shelf life studies should be investigated in 

order to determine the factors that lead to increased and decreased primary and 

secondary oxidation at different temperatures. 

2) A comparison of the results obtained for marula and moringa seed oils with that of other 

seed oils such as jacket plum, mongongo nut and Natal mahogany using the same 

extraction methods used in this study. 

3) A comparison of solvent extraction, aqueous extraction at higher temperatures and 

screw press extraction with supercritical CO2 extraction and aqueous enzymatic 

extraction at higher temperatures for marula and moringa seed oils.  

4) The effect of frying/cooking temperatures on the oxidative stability of the studied seed 

oils.  

5) The effect of a natural antioxidant such as Carum copticum (common name Ajwain) 

extract and a synthetic antioxidant such as butylated hydroxytoluene on the oxidative 

stability of marula and moringa seed oil at high temperatures. 
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APPENDICES 

 

Appendix A: Representative calculation of percentage oil yield and extraction efficiency 

in aqueous extracted marula and moringa seed oil at 37 ℃ 

 

Example: The percentage oil yield and oil yield was calculated using the formula: 

𝑂𝑂𝑂𝑂𝑂𝑂 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

× 100 %          

Where mo is the weight of oil (g) recovered after extraction and ms is the weight of seed 

samples (g).  If the mass of the aqueous extracted marula oil at 37 ℃ was 28.00 g and the mass 

of the seed sample was 150.01g, and mass of aqueous extracted moringa seed oil at 37 ℃ was 

18.0069 g and mass of seed sample was 150.11g, then: 

28.00
150.01

× 100 = 18.67 %  for aqueous extracted marula seed oil at 37 ℃  

18.01
150.11

× 100 = 12.00 % for aqueous extracted moringa seed oil at 37 ℃  

Calculation for percentage oil yield for Soxhlet extracted marula and moringa seed oil. If the 

mass of Soxhlet extracted marula seed oil is 27.00 g and the mass of the seed sample was 50.01 

g, and the mass of aqueous extracted moringa seed oil was 17.66 g and mass of seed sample 

was 50.01 g 

Marula: 27.00 
 50.01

× 100 = 53.99 %  

Moringa: 17.66
50.01

× 100 = 35.31 %  

The extraction efficiency was calculated using the formula: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

× 100 %                                                                            

Where my is the percentage oil yield for the other extraction methods and mm is the percentage 

oil yield for Soxhlet extraction which is assumed to have a 100 % extraction efficiency because 

it had the highest yield.   

18.67
53.99

× 100 % = 34.58 % for aqueous extracted marula seed oil at ℃ 

12.00
35.31

× 100 % = 33.98 % for aqueous extracted moringa seed oil at ℃  
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Appendix B: Representative calculation for relative fatty acids present in moringa seed 

oils 

 

The percentage analyte was calculated using the formula: 

% 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑎𝑎
∑𝐴𝐴1

× 100                                                                                             

𝐴𝐴𝑎𝑎 is the peak area of the analyte while ∑𝐴𝐴1is the sum of all peak areas in the chromatogram.  

For oleic acid the peak area is 5187735 for marula and the total peak area is 7169515, and the 

peak area is 3376659 for moringa and the total peak area is 4224233, then: 

5187735
7169515

× 100 = 72.36 %  oleic acid for marula seed oil 

3376659
4224233

× 100 = 79.94 % oleic acid for moringa seed oil 
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Appendix B.1 - GC-MS chromatogram of 9 fatty acids out of the 36 standard mix that came 

off the column 
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Appendix C: Representative example of the oxidative stability test calculation (peroxide 

value) for aqueous extracted marula and moringa seed oil at 37 ℃  

 

The peroxide value was calculated using the formula: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = (𝑆𝑆−𝐵𝐵)×𝑀𝑀×1000
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 (𝑔𝑔)

           

Where S is the sample titer value, B is the blank titer value and M is the molarity of Na2S2O3.  

If the sample titer value is 0.03 L, the blank 0.00 L, the molarity of Na2S2O3 is 0.0100 M and 

sample weight 2.00 g, then: 

(0.03−0.00)×0.0100×1000
2.00

= 0.15𝑚𝑚𝑚𝑚𝑚𝑚/𝑘𝑘𝑘𝑘 of marula oil 

(0.02−0.00)×0.0100×1000
2.00

= 0.10 𝑚𝑚𝑚𝑚𝑚𝑚/𝑘𝑘𝑘𝑘 of moringa oil 
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Appendix D: Representative example of the oxidative stability test calculation 

(Conjugated diene and triene value) for aqueous extracted marula and moringa seed oil 

at 37 ℃  

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 % = 0.84 ��𝐴𝐴1
𝑏𝑏𝑏𝑏
− 0.07��           

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 % = 0.84 ��𝐴𝐴2
𝑏𝑏𝑏𝑏
− 0.07��       

where A1 = absorbance of the sample at 232 nm for conjugated diene and A2 = absorbance at 

270 nm for conjugated triene, b = cell length (1 cm), c = concentration of sample used for 

absorbance measurement in g/L, 0.07 = absorptivity constant (ɛ) of the ester group  0.84 = not 

defined. 

If the sample concentration 0.98 g, the blank 0.00 L, the absorbance of sample is 1.45 and then: 

                                                              

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒% = �1.45
0.98

− 0.07� × 0.84 = 1.18  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡% = �0.99
0.98

− 0.07� × 0.84 = 0.79  
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Appendix E: Radical scavenging ability of marula and moringa seed oil with different 

extraction methods 

 

The radical scavenging activity was calculated using the formula: 

% 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

× 100      

A control is the absorbance of the control while A sample is the absorbance of the sample.  If 

the absorbance of marula oil was 0.45 and that of the control was 1.10, then: 

1.10−0.45
1.10

× 100 = 59.39 % for aqueous extracted marula seed oil at 37 °C  

1.10−0.41
1.10

× 100 % = 62.73 % for aqueous extracted moringa seed oil at 37 °C  
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