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ABSTRACT 

 

 

 
Telecommunications in the current information age is increasingly relying on the wireless link. 

This is because wireless communication has made possible a variety of services ranging from 

voice to data and now to multimedia. Consequently, demand for new wireless capacity is growing 

rapidly at a very alarming rate. In a bid to cope with challenges of increasing demand for higher 

data rate, better quality of service, and higher network capacity, there is a migration from Single 

Input Single Output (SISO) antenna technology to a more promising Multiple Input Multiple 

Output (MIMO) antenna technology. On the other hand, Orthogonal Frequency Division 

Multiplexing (OFDM) technique has emerged as a very popular multi-carrier modulation 

technique to combat the problems associated with physical properties of the wireless channels 

such as multipath fading, dispersion, and interference. The combination of MIMO technology 

with OFDM techniques, known as MIMO-OFDM Systems, is considered as a promising solution 

to enhance the data rate of future broadband wireless communication Systems. 

 

This thesis addresses a major area of challenge to both SISO-OFDM and MIMO-OFDM 

Systems; estimation of accurate channel state information (CSI) in order to make possible 

coherent detection of the transmitted signal at the receiver end of the system. Hence, the first 

novel contribution of this thesis is the development of a low complexity adaptive algorithm that is 

robust against both slow and fast fading channel scenarios, in comparison with other algorithms 

employed in literature, to implement soft iterative channel estimator for turbo equalizer-based 

receiver for single antenna communication Systems. 

 

Subsequently, a Fast Data Projection Method (FDPM) subspace tracking algorithm is adapted to 

derive Channel Impulse Response Estimator for implementation of Decision Directed Channel 

Estimation (DDCE) for Single Input Single Output - Orthogonal Frequency Division 

Multiplexing  (SISO-OFDM) Systems. This is implemented in the context of a more realistic 

Fractionally Spaced-Channel Impulse Response (FS-CIR) channel model, as against the channel 

characterized by a Sample Spaced-Channel Impulse Response (SS)-CIR widely assumed by other 

authors. In addition, a fast convergence Variable Step Size Normalized Least Mean Square 

(VSSNLMS)-based predictor, with low computational complexity in comparison with others in 

literatures, is derived for the implementation of the CIR predictor module of the DDCE scheme. 

A novel iterative receiver structure for the FDPM-based Decision Directed Channel Estimation 
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scheme is also designed for SISO-OFDM Systems. The iterative idea is based on Turbo iterative 

principle. It is shown that improvement in the performance can be achieved with the iterative 

DDCE scheme for OFDM system in comparison with the non iterative scheme. 

 

 

Lastly, an iterative receiver structure for FDPM-based DDCE scheme earlier designed for SISO 

OFDM is extended to MIMO-OFDM Systems. In addition, Variable Step Size Normalized Least 

Mean Square (VSSNLMS)-based channel transfer function estimator is derived in the context of 

MIMO Channel for the implementation of the CTF estimator module of the iterative Decision 

Directed Channel Estimation scheme for MIMO-OFDM Systems in place of linear minimum 

mean square error (MMSE) criterion.  The VSSNLMS-based channel transfer function estimator 

is found to show improved MSE performance of about -4 MSE (dB) at SNR of 5dB in 

comparison with linear MMSE-based channel transfer function estimator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 vi 

 

 

TABLE OF CONTENTS 
 

Title Page…………………………………………………………………………..i  

Preface…………………………………………………………………………….ii 

Acknowledgment…………………………………………………………………iii 

Abstract…………………………………………………………………………...iv 

Table of Contents…………………………………………………………………vi 

List of Acronyms………………………………………………………………....xi 

List of Notations…………………………………………………………………xv 

List of Figures…………………………………………………………………..xvii 

List of Tables…………………………………………………………………...xxii 

        

 

CHAPTER 1 ...................................................................................................................... 1 

GENERAL INTRODUCTION ........................................................................................ 1 

1.1 Wireless Communication .................................................................................... 1 

1.2 Wireless Communication Channels .................................................................... 3 

1.2.1 Parameters of Fading Channels ......................................................................... 3 

1.2.2 Fading Channel Classification ........................................................................... 5 

1.3 MIMO-OFDM for Wireless Communication Systems....................................... 7 

1.3.1 MIMO Systems .................................................................................................. 7 

1.3.1.1 Performance gain in MIMO Systems ......................................................... 8 

1.3.1.2 MIMO Systems Capacity ............................................................................ 9 

1.3.2 OFDM Systems ................................................................................................ 10 

1.3.2.1 Advantages and Disadvantages of OFDM Systems ................................. 12 

1.3.3 MIMO-OFDM Systems ................................................................................... 13 

1.4 Research Motivation ......................................................................................... 14 

1.5 Scope of the Thesis and Assumptions .............................................................. 17 

1.6 Organization of the Thesis ................................................................................ 17 

1.7 Original Contributions ...................................................................................... 18 

1.8 Publications ....................................................................................................... 20 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 vii 

1.8.1 Journal Papers ........................................................................................... 20 

1.8.2 Conference Papers .................................................................................... 21 

 

 

CHAPTER 2 .................................................................................................................... 23 

CHANNEL MODELS AND OVERVIEW OF CHANNEL ESTIMATION 

TECHNIQUES ................................................................................................................ 23 

2.1 Introduction ....................................................................................................... 23 

2.2 Multipath Channel Impulse Response Models ................................................. 23 

2.3 Single Input Single Output (SISO) Channel Model ......................................... 24 

2.3.1 Channel Impulse Response Statistics ........................................................ 26 

2.3.2 Discrete-Time Channel Model .................................................................. 27 

2.3.2.1 Symbol-Spaced Channel Impulse Response Model ............................. 29 

2.3.2.2 Fractionally-Spaced Channel Impulse Response Model ...................... 30 

2.4 Multiple Input Multiple Output (MIMO) Channel Model ................................ 32 

2.5 Channel Estimation Techniques ....................................................................... 33 

2.5.1 Pilot-Assisted Channel Estimation Techniques ........................................ 34 

2.5.2 Blind and Semi-blind Channel Estimation Techniques ............................ 37 

2.5.3 Decision Directed Channel Estimation Techniques ................................. 40 

2.5.3.1 Iterative Decision Directed Channel Estimation Techniques ............... 43 

2.6 Chapter Summary ............................................................................................. 48 

 

 

CHAPTER 3 .................................................................................................................... 49 

CHANNEL ESTIMATION FOR SINGLE ANTENNA COMMUNICATION 

SYSTEMS ........................................................................................................................ 49 

3.1 Introduction ....................................................................................................... 49 

3.2  Soft input based Iterative Channel Estimation................................................. 49 

3.3 System Model ................................................................................................... 51 

3.3.1  Channel Interleaver .................................................................................. 52 

3.3.2  Random Block Interleaver ....................................................................... 52 

3.3.3  Channel Model ......................................................................................... 53 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 viii 

3.3.4  System Receiver....................................................................................... 54 

3.3.5  Computation of Mean and Variance of the Message Symbols ................ 54 

3.4 Proposed Soft Input Channel Estimation Algorithms ....................................... 56 

3.4.1  Variable Step Size Normalized Least Mean Square Algorithm .............. 56 

3.4.2  Multiple-Variable Step Size Normalized Least Mean Square Algorithm 58 

3.5 Simulation Results and Discussion ................................................................... 58 

3.6 Computational Complexity of the proposed Algorithms .................................. 73 

3.7  Chapter Summary ............................................................................................ 73 

 

 

CHAPTER 4 .................................................................................................................... 75 

DECISION DIRECTED CHANNEL ESTIMATION FOR OFDM SYSTEMS ...... 75 

4.1 Introduction ....................................................................................................... 75 

4.2 SISO OFDM System Model ............................................................................. 76 

4.3 Channel Model .................................................................................................. 76 

4.4 Proposed Decision Directed Channel Estimator  for SISO OFDM  Systems... 80 

4.4.1  Temporary CTF Estimator ....................................................................... 81 

4.4.2  Parametric CIR Estimator based on FDPM Algorithm ........................... 82 

4.4.3 Channel Impulse Response (CIR) Predictor ................................................. 85 

4.4.3.1   Adaptive RLS Predictor .......................................................................... 86 

4.4.3.2   Adaptive NLMS Predictor ...................................................................... 87 

4.4.3.3   Adaptive VSSNLMS Predictor ........................................................... 87 

4.5 Soft Demapper .................................................................................................. 88 

4.6 Soft  Mapper ..................................................................................................... 90 

4.7 Simulation Results and Discussion ................................................................... 91 

4.8 Comparative Computational Complexity of the proposed DDCE  Scheme ... 109 

4.9 Chapter Summary ........................................................................................... 110 

 

 

 

 

 

 

 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 ix 

CHAPTER 5 .................................................................................................................. 111 

ITERATIVE DECISION DIRECTED CHANNEL ESTIMATION FOR SISO 

OFDM SYSTEMS ......................................................................................................... 111 

5.1 Introduction ..................................................................................................... 111 

5.2 Turbo Principle ............................................................................................... 111 

5.2.1   Generic Turbo Encoder ......................................................................... 112 

5.2.2   Iterative Turbo Decoder ........................................................................ 113 

5.2.2.1   Log-Likelihood Ratios ...................................................................... 114 

5.3 System Model ................................................................................................. 115 

5.4 Iterative Decision Directed Channel Estimation Scheme ............................... 116 

5.5 Soft Demapper and Soft Mappers ................................................................... 118 

5.2.1   Soft Demapper ...................................................................................... 118 

5.2.2   Soft Mapper 1 ....................................................................................... 119 

5.5.3   Soft Mapper 2 ....................................................................................... 120 

5.6 Simulation Results and Discussion ................................................................. 121 

5.7 Computational Complexity of the Iterative DDCE Scheme ........................... 130 

5.8 Chapter Summary ........................................................................................... 130 

 

 

CHAPTER 6 .................................................................................................................. 131 

CHANNEL ESTIMATION FOR MIMO-OFDM SYSTEMS .................................. 131 

6.1 Introduction ..................................................................................................... 131 

6.2  Iterative DDCE Scheme for MIMO-OFDM Systems ................................... 133 

6.3 MIMO-OFDM Systems Model....................................................................... 133 

6.3.1   ST-BICM Transmitter Structure ........................................................... 135 

6.3.2   Channel Statistics .................................................................................. 135 

6.3.3 ST-BICM Receiver ................................................................................. 137 

6.4 Iterative Decision Directed Channel Estimator Modules for  MIMO-OFDM 

 System ............................................................................................................. 138 

6.4.1   Temporary Channel Transfer Function (CTF) Estimator ..................... 138 

6.4.1.1  CTF Estimator based on Minimum Mean Square Error (MMSE)     ......  

  Criterion ............................................................................................. 138 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 x 

6.4.1.2 Variable Step Size Normalized Least Mean Square (VSSNLMS)    

 Adaptive CTF Estimator ..................................................................... 139 

6.4.2   FDPM Subspace Tracking Algorithm-based MIMO CIR Estimator ... 140 

6.4.3   Adaptive VSSNLMS Algorithm-based MIMO CIR Predictor ............. 142 

6.5 Soft MIMO Demapper .................................................................................... 144 

6.5.1   Soft MIMO Demapper Formulation ..................................................... 144 

6.6 Soft MIMO Mapper ........................................................................................ 145 

6.7 Simulation Results and Discussions ............................................................... 145 

6.8 Computational Complexity of the proposed Iterative DDCE scheme for 

 MIMO-OFDM Systems .................................................................................. 161 

6.9  Chapter Summary .......................................................................................... 161 

 

 

CHAPTER 7 .................................................................................................................. 163 

CONCLUSIONS AND RECOMMENDATIONS ...................................................... 163 

7.1 THESIS SUMMARY ..................................................................................... 163 

7.2 SUGGESTIONS FOR FUTURE RESEARCH WORK ................................. 165 

 

 

REFERENCES .............................................................................................................. 167 

 

 

 

 

 

 

 

 

 

 

 

 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xi 

 

 

LIST OF ACRONYMS 
 

1D   - One-Dimensional 

2D   - Two-Dimensional 

4G   - Fourth Generation System 

5G   - Fifth Generation System 

ANMSE  - Asymptotic Normalized Mean Square Error 

AOFDM  - Adaptive Orthogonal Frequency Division Multiplexing 

APP   - A- Posteriori probability 

APRmodRLS  - Approximated modified Recursive Least Square 

AWGN   - Additive White Gaussian Noise 

BER   - Bit Error Rate 

BICM   - Bit Interleaved Coded Modulation 

BLAST   - Bell Laboratories Layered Space Time 

BPSK   - Binary Phase Shift Keying 

BS   - Base Station 

BU   - Bad Urban 

CCs   - Convolutional Codes 

CIR   - Channel Impulse Response 

COFDM  - Coded Orthogonal Frequency Division Multiplexing 

COST  - European Cooperation in the field Of Scientific and Technical 

 research 

CP - Cyclic Prefix 

CSI   - Channel State Information 

CTF   - Channel Transfer Function 

DAB   - Digital Audio Broadcasting 

D-BLAST  - Diagonal Bell Laboratories Layered Space Time 

DDCE   - Decision Directed Channel Estimation 

DFT   - Discrete Fourier Transform 

DPM   - Data Projection Method 

DS-UWB  - Direct Sequence-Ultra WideBand 

DVB   - Digital Video Broadcasting 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xii 

EM   - Expectation Maximization 

EVD   - EigenValue Decomposition 

fD   - normalized Doppler Frequency 

FD-CTF  - Frequency Domain Channel Transfer Function 

FDP   - Frequency Division Multiplexing 

FDPM   - Fast Data Projection Method 

FEC   - Forward Error Correction 

FFT   - Fast Fourier Transform 

FIR   - Finite Impulse Response 

FPTA   - Frequency Pilot Time Average 

FS-CIR   - Fractionally Spaced- Channel Impulse Response 

GSM   - Global System for Mobile 

HT   - Hilly Terrain 

HIPERLAN/2  - High Performance Radio Local Area Network type two 

ICI   - Inter-Channel (Carrier) Interference 

IFFT   - Inverse Fast Fourier Transform 

IEEE   - Institute of Electrical Electronic Engineering 

ISI   - Inter-Symbol Interference 

JPL   - Jet Propulsion Laboratory 

KF   - Kalman Filter 

LAN   - Local Area Network 

LDPC   - Low Density Parity Check 

LLR   - Log-Likelihood Ratio 

LMS   - Least Mean Square 

LMMSE  - Linear Minimum Mean Square Error 

LS   - Least Square 

LORAF  - Low Rank Adaptive Filter 

MAN   - Metropolitan Area Network 

MAP   - Maximum A-Posteriori 

MB-ML  - Multiple Burst-Maximum Likelihood 

MC-CDMA  -  Multi-Carrier Code division Multiple Access 

ML   - Maximum Likelihood 

MMAC   - Multimedia Mobile Access Communication 

MMSE   - Minimum Mean Square Error 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xiii 

MMSEE  - Minimum Mean Square Error Estimator 

M-PSK   - Multilevel-Phase Shift Keying 

M-QAM  - Multilevel-Quadrature Amplitude Modulation 

MRT   - Maximum Ratio Transmission  

MSE   - Mean Square Error 

MVSSNLMS  - Multiple Variable Step Size Normalized Least Mean Square 

MIMO   - Multiple Input Multiple Output 

MISO   - Multiple Input Single Output 

NLMS   - Normalized Least Mean Square 

OFDM   - Orthogonal Frequency Division Multiplexing 

OPML   - Orthogonal Pilot-based Maximum Likelihood 

OSTBC   - Orthogonal Space Time Block Code 

PAPR   - Peak to Average Power Ratio 

PAST   - Projection Approximation Subspace Tracking 

PASTd   - Projection Approximation Subspace Tracking with deflation 

pdf   - probability density function 

PDP   - Power Delay Profile 

PIC   - Parallel Interference Cancellation 

PN   - Pseudo random Noise 

PSAM   - Pilot Symbol Assisted Modulation 

QAM   - Quadrature Amplitude Modulation 

QPSK   - Quadrature Phase Shift Keying 

RLS   - Recursive Least Square 

RF   - Radio Frequency 

RSC   - Recursive Systematic Convolution 

RSE   - Recursive Systematic Encoder 

SDMA   - Space Division Multiple Access 

SIC   - Serial Interference Cancellation 

SIMO   - Single Input Multiple Output 

SISO   - Single Input Single Output 

SNR   - Signal to Noise Ratio 

SOSTTC  - Super Orthogonal Space Time Trellis Code 

SOVA   - Soft Output Viterbi Algorithm 

SS-CIR   - Sample Spaced-Channel Impulse Response 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xiv 

STBC   - Space Time Block Code 

ST-BICM  - Space Time Bit Interleaved Coded Modulation 

STTC   - Space Time Trellis Code 

TDMA   - Time Division Multiple Access 

TSR   - Time Series Representation 

TU   - Typical Urban 

US   - Uncorrelated Scattering 

V-BLAST  - Vertical Bell Laboratories Layered Space Time 

VLSI   - Very Large Scale Integration 

VSSNLMS  - Variable Step Size Normalized Least Mean Square 

WSS   - Wide Sense Stationary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xv 

 

 

 

LIST OF NOTATIONS 

 
 

det        Determinant 

orthnorm       Orthonormalization process 

(.)diag       diagonal matrix 

T
       Transpose 

*
       Complex conjugate  

H
       Hermitian (conjugate transpose)  

{.,.}Cov       Covariance of two variables 

E        Expectation of random variable 

Pr[. .]       Symbol probability 

Re        Real part 

.        Euclidean norm 

2
.        Square of Euclidean norm 

chB        Coherence bandwidth of the channel 

sB        Transmitted signal‟s bandwidth 

c        Speed of light 

C        Shannon capacity 

HC        Symmetric, nonnegative, definite,  

       covariance matrix 

        Dirac‟s delta function 

sE        Energy per transmitted symbol 

fD       Doppler spread/ Doppler Frequency 

cf        Carrier frequency 

       Forgetting factor 


       a priori estimate of  

ˆ        a posteriori estimate of  



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xvi 

H        Channel matrix 

I        Identity matrix 

K        Number of subcarriers 

prdL         Length of predictor filter 

M        Number of paths 

TM        Numbers of transmit antennas 

RM        Numbers of receive antennas 

       Step size 

n        Variable step size 

0N        Gaussian noise power spectral density 

2
e        Ensemble error variance 

2
w        Gaussian noise variance 

2
H         Total average power of the CIR 

R        Sampling rate 

cR        Code rate 

m        mth path time-variant delay  

d        Delay spread 

DT        Coherent time 

sT        Transmitted signal‟s duration 

x        Soft symbol vector 

v        Speed of vehicle 

 

 

 

 

 

 

 

 

 

 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xvii 

 

 

 

 

LIST OF FIGURES 

 

 

 
 

Figure1.1 Multipath propagation in wireless communication channel .................................. 4 

Figure1.2 Relationship between fading channel classification .............................................. 6 

Figure1.3 Comparison between (a) OFDM and (b) Conventional FDM ............................. 11 

Figure1.4 Schematic diagram of MIMO-OFDM system ..................................................... 14 

 

Figure 2.1 Single Input Single Output (SISO) multipath fading channel ............................. 25 

Figure 2.2 MIMO Channel with MT transmit and MR receive antennas ............................. 32 

Figure 2.3 Channel Estimation Techniques Classification ............................................... 34 

 

Figure 3.1 System model employing turbo equalizer-based receiver with soft input-based         

 iterative channel estimator [184] ......................................................................... 51 

Figure 3.2 Simulated ensemble error variance   for the channel estimation algorithms, at 

 each symbol interval n in a frame of pilot and message symbols. Simulation 

 setup: Es/N0 = 10 dB; =0.02, L =1, fD /fs =1/2400 (slow fading channel), and 

 =0.98. ................................................................................................................ 61 

Figure 3.3 Simulated ensemble error variance   for the channel estimation algorithms, at 

 each symbol interval n in a frame of pilot and message symbols. Simulation 

 setup: Es/N0  = 10 dB; =0.02, L==3, fD /fs =1/2400 (slow fading channel),  

 and =0.98. .......................................................................................................... 62 

Figure 3.4 Simulated ensemble error variance   for the channel estimation algorithms, at 

 each symbol interval n in a frame of pilot and message symbols. Simulation 

 setup: Es/N0  = 10 dB; =0.02, L =1, fD /fs =5/2400 (fast fading channel), and 

 =0.95. ................................................................................................................ 63 

Figure 3.5 Simulated ensemble error variance   for the channel estimation algorithms, at 

 each symbol interval n in a frame of pilot and message symbols. Simulation 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xviii 

 setup: Es/N0  = 10 dB; =0.02, L =3, fD /fs =5/2400 (fast fading channel), and 

 =0.95. ................................................................................................................ 64 

Figure 3.6 Normalized MSE for the channel estimation algorithms, at each Es/N0 in a frame 

 of  pilot and message  symbols. Simulation setup: =0.02, L =1, fD /fs =1/2400, 

 and =0.98. .......................................................................................................... 65 

Figure 3.7 MSE for the channel estimation algorithms, at each Es/N0 in a frame of pilot and 

 message symbols. Simulation setup: =0.02, L =1,  fD /fs =1/2400, and =0.98.  

  ............................................................................................................................. 66 

Figure 3.8 Receiver block diagram using soft-input soft output linear equalizer, iterative 

 channel estimator and turbo decoder [220]. ........................................................ 67 

Figure 3. 9 BER for different number of iteration for known channel state information (CSI) 

 at the receiver, 0.005sfDT  .................................................................................. 69 

Figure 3.10 BER for different number of iteration for known channel state information (CSI) 

 at the receiver, 0.01sfDT  .................................................................................... 70 

Figure 3.11 BER for different iterative channel estimator algorithms, fDT= 0.005 ............... 71 

Figure 3.12 BER for different iterative channel estimator algorithms, fDT =0.01 ............... 72 

 

Figure 4.1 SISO OFDM System Transceiver with Decision Directed Channel Estimator .. 77 

Figure 4.2 Decision Directed Channel Estimator Modules for SISO OFDM Systems [154]...  

  ............................................................................................................................. 81 

Figure 4.3 MSE exhibited by FDPM based CIR estimator of the DDCE scheme operating in 

 slow fading Channel fD = 0.005 while using NLMS-based predictor for values of  

  ranges between 0.90 and 1.0. ........................................................................... 94 

Figure 4.4 MSE versus SNR exhibited by FDPM based CIR estimator of the DDCE scheme 

 operating in fast fading Channel fD = 0.02 while using NLMS-based predictor 

 for values of   ranges between 0.90 and 1.0 ...................................................... 95 

Figure 4.5 MSE versus fD exhibited by FDPM based CIR estimator of the DDCE scheme 

 for fixed SNR = 3dB while using NLMS-based predictor for values of   ranges 

 between 0.90 and 1.0. .......................................................................................... 96 

Figure 4.6 Plot of MSE versus  exhibited by FDPM based CIR estimator of the DDCE 

 scheme at fixed SNR=3dB and fD=0.005 and 0.02 respectively ........................ 97 

Figure 4.7 Plot of MSE versus  exhibited by FDPM based CIR estimator of the DDCE 

 scheme at fixed SNR=3dB for fD=0.01 and 0.015 respectively ......................... 98 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xix 

Figure 4.8 MSE exhibited y the RLS, VSSNLMS and NLMS -based CIR Adaptive 

 Predictors for SNR = 5dB ................................................................................... 99 

Figure 4.9 MSE exhibited by the RLS, VSSNLMS and NLMS -based CIR Adaptive 

 Predictors during fast fading channel of normalized Doppler frequency fD=0.02 .  

  ........................................................................................................................... 100 

Figure 4.10 Convergence behaviour of the VSSNLMS-based predictor, RLS-based predictor 

 and NLMS-based predictor for slow fading channel with normalized fading 

 frequency, fD = 0.005. ...................................................................................... 101 

Figure 4.11 Convergence behaviour of the VSSNLMS-based predictor, RLS-based predictor 

 and NLMS-based predictor for fast fading channel with normalized fading 

 frequency, fD = 0.02. ........................................................................................ 102 

Figure 4.12 BER exhibited by FDPM- and PASTd-based DDCE employing NLMS and 

 VSSNLMS adaptive predictors for normalized Doppler frequency fD=0.005 . 103 

Figure 4.13 BER exhibited by FDPM- and PASTd-based DDCE employing NLMS and 

 VSSNLMS adaptive predictors for normalized Doppler frequency fD=0.02 ... 104 

Figure 4.14 MSE exhibited by FDPM- and PASTd-based DDCE employing NLMS and 

 VSSNLMS adaptive predictors for normalized Doppler frequency fD=0.005 . 105 

Figure 4.15 MSE exhibited by FDPM- and PASTd-based DDCE employing NLMS and 

 VSSNLMS adaptive predictors for normalized Doppler frequency fD=0.02 ... 106 

Figure 4.16 BER versus SNR as a function of normalized Doppler frequency (fD) exhibited 

 by FDPM- and PASTd-based DDCE employing VSSNLMS adaptive predictors .  

  ........................................................................................................................... 107 

Figure 4.17 MSE versus SNR as a function of normalized Doppler frequency (fD) exhibited 

 by FDPM- and PASTd-based DDCE employing VSSNLMS adaptive predictors .  

  ........................................................................................................................... 108 

 

Figure 5.1 Schematic diagram of the generic turbo encoder .............................................. 112 

Figure 5.2 Schematic diagram of iterative turbo decoder ................................................... 113 

Figure 5.3 OFDM Transceiver with Iterative Decision Directed Channel Estimator ..............  

  ........................................................................................................................... 115 

Figure 5.4 Iterative Decision Directed Channel Estimator ................................................. 117 

Figure 5.5 BER performance of the proposed Iterative DDCE scheme employing  .... FDPM-

 based CIR estimator and NLMS based predictor, fD=0.005 ............................. 123 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xx 

Figure 5.6 BER performance of the proposed Iterative DDCE scheme employing  .... FDPM-

 based CIR estimator and NLMS based predictor, fD=0.02 ............................... 124 

Figure 5.7 BER performance of the Iterative DDCE scheme with both FDPM-based  ..... CIR 

 estimator and PASTd-based CIR estimator while employing and NLMS based 

 predictor for both normalized Doppler frequencies fD =  ...... 0.005 and fD = 0.02. 

  ........................................................................................................................... 125 

Figure 5.8 MSE at 7th Iteration exhibited by FDPM- and PASTd-based Iterative DDCE 

 while employing and NLMS based predictor for both normalized Doppler 

 frequencies fD = 0.005 and fD = 0.02. .............................................................. 126 

Figure 5.9 BER at the 7th iteration for the proposed DDCE-based FDPM and PASTd 

 algorithms, employing NLMS and VSSNLMS predictors, fD = 0.005 and fD 

 =0.02 .................................................................................................................. 127 

Figure 5.10 MSE at the 7th iteration for the proposed DDCE-based FDPM and PASTd 

 algorithms, employing NLMS and VSSNLMS predictors, fD = 0.005 ............ 128 

Figure 5.11 MSE at the 7th iteration for the proposed DDCE-based FDPM and PASTd 

 algorithms, employing NLMS and VSSNLMS predictors, fD = 0.02. ............. 129 

 

 

Figure 6.1 Block diagram of MIMO-OFDM based on ST-BICM transmission scheme ... 134 

Figure 6.2 Block diagram of MIMO-OFDM receiver with Iterative DDCE scheme ......... 134 

Figure 6.3 Iterative Decision Directed Channel Estimator for MIMO-OFDM Systems .... 139 

Figure 6.4 Initialization Pilot OFDM symbols and Message OFDM symbols arrangement 

 per OFDM symbol frame for the Iterative DDCE Scheme. .............................. 147 

Figure 6.5 Corresponding Pilot OFDM symbols / Message OFDM symbols pattern for the 

 Iterative DDCE Scheme  (N = NPil + NMes). ....................................................... 148 

Figure 6.6 Comparative MSE exhibited by the MMSE-based and VSSNLMS-based 

 Temporary CTF Estimators operating in both slow fading Channel fD = 0.005 

 and fast fading channel fD = 0.02. .................................................................... 149 

Figure 6.7 BER versus SNR exhibited by the 2 × 2 iterative FDPM-based DDCE scheme for 

 BICM Bit interleaved turbo coded MIMO-OFDM System, fD=0.005. ............ 150 

Figure 6.8 BER versus SNR exhibited by the 2 × 2 iterative FDPM-based DDCE scheme for 

 Bit interleaved turbo coded MIMO-OFDM System, fD=0.02. ......................... 151 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xxi 

Figure 6.9 BER versus SNR at 5th iteration as a function of normalized Doppler frequencies 

 exhibited by the 2 × 2 iterative FDPM-based and iterative PASTd-based DDCE 

 schemes for Bit interleaved turbo coded MIMO-OFDM System. .................... 152 

Figure 6.10 MSE versus SNR at 5th iteration as a function of normalized Doppler frequencies 

 exhibited by the 2 × 2 iterative FDPM-based and iterative PASTd-based DDCE 

 schemes for Bit interleaved turbo coded MIMO-OFDM System. .................... 153 

Figure 6.11 BER versus SNR at 5th iteration as a function of normalized Doppler frequencies 

 exhibited by the 2 × 2 iterative FDPM-based for Bit interleaved turbo coded 

 MIMO-OFDM System. ..................................................................................... 155 

Figure 6.12 BER versus SNR after the 5th iteration as a function of percentage pilot overhead 

 during slow fading scenario of normalized Doppler frequency, fD = 0.005 for 

 FDPM- based -based iterative DDCE for MIMO-OFDM Systems. ................. 156 

Figure 6.13 BER versus SNR after the 5th iteration as a function of percentage pilot overhead 

 during fast fading scenario of normalized Doppler frequency, fD = 0.02 for 

 FDPM- based iterative DDCE for MIMO-OFDM Systems. ............................. 157 

Figure 6.14 BER versus SNR after the 5th iteration for FDPM-based iterative for 1 × 1, 2 × 2, 

 and 4 × 4 MIMO-OFDM Systems during slow fading scenario of normalized 

 Doppler frequency, fD = 0.005. ........................................................................ 158 

Figure 6.15 BER versus SNR after the 5th iteration for FDPM-based iterative for 1 × 1, 2 × 2, 

 and 4 × 4 MIMO-OFDM Systems during slow fading scenario of normalized 

 Doppler frequency, fD = 0.02. .......................................................................... 159 

Figure 6. 16  BER results for PASTD-based iterative channel estimator [205]  for 1 × 1, 2 × 2, 

 and 4 × 4 MIMO-OFDM Systems during normalized Doppler frequency, fD = 

 0.003 .................................................................................................................. 160 

 

 

 

 

 

 

 

 

 

 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 xxii 

 

 

 

 

LIST OF TABLES 

 

 

 

Table 2.1  Power delay profile of COST 207 [44] ................................................................... 27 

Table 2.2 Tapped Delay Line Implementation of COST 207 Channel Models [47] ............... 28 

Table 3.1  Summary of the Performances of the Channel estimation algorithms ................... 74 

Table 4.1 Fast Data Projection Method Algorithm [227] ........................................................ 84 

Table 4.2 QPSK constellation .................................................................................................. 89 

Table 4.3 System Parameters ................................................................................................... 92 

Table 4.4 Comparative Computational Complexity o the proposed DDCE scheme for    SISO 

 OFDM System ....................................................................................................... 109 

 

 

 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 1 

 

 

  

 

CHAPTER 1 

 

GENERAL INTRODUCTION 
 

 
In the modern day world we are living today, communication has become an integral part of our 

lives in different forms. We communicate with one another via the avenues of telephones (fixed 

and mobile), radio and television, the internet on both mini and macro computer terminals, just to 

mention a few. Notwithstanding the type of communication Systems being used, the three major 

components of the communication Systems remain the same for all. These include source, 

channel and sink (transmitter, channel and receiver respectively). Both the transmitter and the 

receiver could either be fixed or mobile, and they are separated by the channel. The channel can 

be wireline or wireless. Irrespective of the type of channel, its effects on the transmitted signal 

from the transmitter through the channel to the receiver are similar. These effects include 

distortion of the transmitted signal in the form of attenuation, interference with other transmitted 

signals available in the channel or its own delayed version caused by the channel‟s physical 

characteristics, and contamination with the channel‟s noise. The communication receiver is 

therefore vested with an important task of reconstruction of the accurate estimate of the original 

information-bearing signal. In a bid to do this effectively many signal processing techniques are 

employed at the receiver end of the communication Systems. These include, among others, 

compensation techniques based on the estimation of the time-varying nature of the channel, error-

correction techniques to improve information received through the wireless channels, and 

synchronization techniques both in time and frequency domains. 

 

1.1 Wireless Communication 

 
Wireless communications is one of the most active areas of technology development and a 

rapidly growing branch of the wider field of communications Systems. It is called wireless 

because it involves the use of wireless channels rather than wireline channels. This rapid growth 
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has been coupled closely with the technological advances of our time. It is worth noting that 

telecommunications in the 21st century is increasingly relying on the wireless link. This is 

because wireless communication has made possible a variety of services ranging from voice to 

data and now to multimedia.  As a result, similarly to what happened to wireline capacity in the 

late1990s, the demand for new wireless capacity is now growing at a very rapid rate. 

Nevertheless, the wireless communication system is consistently faced with diverse challenges. 

These include the sparsely available radio frequency spectrum and a complex space-time varying 

wireless environment. Besides these, the system is also confronted with challenges of an 

increasing demand for higher data rates, better quality of service, and higher network capacity 

[1]. Consequently, there is a migration from Single-Input Single-Output (SISO) antenna 

technology to a more promising Multiple-Input Multiple-Output (MIMO) antenna technology for 

deployment in the wireless communications Systems. 

 

The idea of using multiple antennas at both transmit and receive ends has emerged as one of the 

major technical breakthroughs in modern wireless communications system. Theoretical studies 

and initial prototyping of MIMO Systems have shown a high order of magnitude in spectral 

efficiency improvements for point -to-point communication [2 - 5]. As a result, MIMO is 

considered a key technology for improving the throughput of future wireless broadband data 

Systems, which as at present are mired at data rates far below their wired counterparts. 

 

On the subject of the transmission techniques for mitigating the physical limitation of wireless 

channels caused by multipath fading, dispersion, and interference, a very popular multi-carrier 

modulation technique which has emerged recently [6, 7] in the communication field is 

Orthogonal Frequency Division Multiplexing (OFDM) technique. The OFDM technique simply 

converts a wireless frequency selective fading channel into a parallel collection of frequency flat 

fading channels. The subcarriers (subchannels) have the minimum frequency separation required 

to make their time domain waveforms orthogonal while the signal frequency spectrum 

corresponding to the different subcarriers overlap. As a result, the available bandwidth is utilized 

more efficiently. In general OFDM technique for wireless communication Systems has a high 

spectral efficiency compared with Frequency Division Multiplexing (FDM) scheme. In addition, 

it is very robust to selective fading and has a low computational complexity due to the type of 

computational method with which it is implemented.  
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1.2 Wireless Communication Channels 

 
The undesirable effects of a wireless communication channel on the signals transmitted through 

the channel are as a result of the physical properties of the channel. The transmitted signals 

interact with the environment in a very complex way. In the channel between the transmitter and 

the receiver, there are always reflections due to large objects, diffraction of the electromagnetic 

waves around obstructing objects as well as signal scattering. The overall effects of these 

interactions result in many signal copies (or multipath signals) with different attenuation, 

distortion, delays and phase shift arriving at the receiver. These multipath signals can interfere 

with each other constructively or destructively. In the case when destructive interference occurs, 

the signal power can be significantly diminished. This phenomenon is termed as fading. In the 

case of strong destructive inference, the channel will experience what is always referred to as a 

deep fade and may eventually lead to a temporary failure of communication as a result of severe 

drop in the channel signal to noise ratio (SNR). Basically, there are two types of fading effects 

that are associated with wireless communication channels. These include large-scale fading and 

small scale fading [8]. Large-scale fading corresponds to the average signal power attenuation or 

path loss attributable to motion over large areas. Small-scale fading is due to dramatic alterations 

in amplitude and phase of transmitted signal that can mostly be experienced due to slight changes 

in the spatial separation between a receiver and transmitter. Small-scale fading is referred to as 

Rayleigh fading provided the multiple reflective paths are large in number and there is no line of 

sight signal component, hence the envelope of the received signal can be statistically described by 

a Rayleigh probability density function (pdf). However, if there is a dominant non-fading signal 

component present, such as a line-of-sight propagation path, such small scale fading envelope can 

be illustrated by a Rician pdf [8]. Doppler shift is another property of wireless communication 

channel. Doppler shift is caused as a result of relative motion between the transmitter and the 

receiver as well as motion of any other objects in the wireless channel. This also results in the 

time-varying nature of the wireless channel. Figure 1.1 shows a typical wireless communication 

channel with multipath effect. As a result of different environmental paths, each multipath signal 

arriving at the base station from the mobile transmitters, local scatterers and the remote dominant 

reflector, will have different amplitude, carrier phase shift, time delay, and Doppler shift.  If the 

transmitters are in motion, these multipath signals parameters will also be time-varying. 

 

1.2.1 Parameters of Fading Channels 

The following parameters, among others, are always used to characterize wireless communication  
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 Figure1.1  Multipath propagation in wireless communication channel 

 
channels [9].        

 Delay spread ( d ): This is defined as the largest of the delays among the various paths, 

which is due to reflected and scattered propagation paths in a radio channel.  

 

 Coherence bandwidth of the channel ( chB ): This is inversely proportional to the delay 

spread ( 1
ch

d
B ). It represents a frequency range over which frequency components 

exhibit a strong potential for amplitude correlation. Thus a signal‟s spectral components 

in such frequency range will undergo similar channel fading effects. 

 

 Doppler Spread ( fD ): This is defined as the largest of the frequency shifts of the various 

paths of the multipaths in the wireless communication channel. If the receiver and 

transmitter are in relative motion with constant speed, the received signal will be 

subjected to a constant frequency shift called Doppler spread. The Doppler spread is 

given as  

c
v

fD f
c

,                 1.1 

where cf is the carrier frequency, v is the speed of the vehicle, and c is the speed of light. 
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 Coherent Time ( DT ): This is defined as the inverse of the Doppler spread. It is a measure 

of the expected time duration during which the channel‟s response is approximately 

invariant. 

 

1.2.2 Fading Channel Classification              

Classification of fading channels is a direct function of both the transmitted signals characteristics 

and the channel‟s parameters. If sB denotes the bandwidth of the transmitted signal and its 

reciprocal ( 1/ sB ) is the duration of the signal ( sT ), the fading channel, based on time and 

frequency dispersion mechanism, can be classified as follow. 

 

 Frequency Selective Fading channel: This is the type of fading that occurs if the 

bandwidth of the transmitted signal ( sB ) is large compared with coherent bandwidth of 

the channel ( chB ), that is s chB >B  [9]. In this case the symbol duration, sT  is less than 

the delay spread of the channel, i.e. s dT . Under these circumstances, the channel‟s 

output signal that arrives at the receiver will include multiple versions of the transmitted 

signal, which are faded and delayed in time, resulting in intersymbol interference (ISI) 

problem. As such, different frequency components of the transmitted signal would then 

undergo different degrees of fading. 

 

 Non-Frequency Selective (Flat) Fading: This type of fading occurs if the bandwidth of 

the transmitted signal ( sB ) is small compared with coherent bandwidth of the channel 

( chB ), that is s chB B [9]. In this case, the symbol duration, sT  is large compared with 

the delay spread of the channel, i.e. s dT . Under these conditions, delays between 

different paths are relatively small with respect to the symbol duration. Hence, the 

channel transfer function can be taken as constant and different frequency components of 

the transmitted signal experience the same type of fading referred to as flat (i.e., non-

selective) fading in frequency. 

 

 Slow fading channel: The term “slow fading” is used to describe a channel that has its 

impulse response varying at a rate much slower that the rate of change of the transmitted 

signal. In this case, the time duration of a transmitted symbol is small compared with the 

channel coherent time (i.e. s DT T ) [9]. Such a channel can be assumed to be time-



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 6 

invariant over a number of symbol intervals. This type of fading can be due to 

phenomenon such as shadowing, where a large obstacle such as hill or large building 

obscures the main signal path between the transmitter and the receiver. 

 

 Fast fading channel: A channel is said to be introducing fast fading if its impulse 

response changes rapidly within the symbol duration of the transmitted signal. The time 

duration over which the channel behaves in a correlated way is short in comparison with 

the time duration of a symbol. This implies that the coherence time of the channel is 

smaller than the time duration of a transmitted symbol (i.e. D sT T ).  

All these classification, in turn, give rise to four different types of channels as listed below 

and their relationship in both frequency and time domains illustrated in Figure 1.2. 

 Frequency selective fast fading channel 

 Frequency non-selective (flat) fast fading channel 

 Frequency selective slow fading channel 

 Frequency non-selective (flat) slow fading channel 

 

 

Time domain

Frequency Selective 

Fading

Flat Fading

Slow Fading

Fast Fading

Frequency domain

  

 

 Figure1.2  Relationship between fading channel classification  
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The effect of fading is undesirable in wireless communication system. It results in performance 

deterioration in the communication Systems because the quality of the communications link 

depends on the channel and due to fading there is a significant probability that the channel will 

undergo a deep fade effect (strong destructive interference of signal of interest by some unwanted 

or delayed version of the signals due to multipaths in the channel). Different techniques have 

been proposed in a bid to overcome the effects of fading in the communication channel. Others 

even possess the capability of turning to gain some of these negative effects. Examples of these 

are the use of multiple antennas at the transmitter and/or the receiver end of the communication 

system, OFDM transmission scheme, and MIMO-OFDM scheme as earlier mentioned. These are 

briefly described in the next section. 

 

1.3 MIMO-OFDM for Wireless Communication Systems 

 

 The combination of MIMO methods with OFDM known as MIMO-OFDM is considered as a 

promising solution to improve the signal rate of future broadband wireless communication 

Systems. The idea of this scheme is developed in [4] with the intention to compute the 

information-theoretic capacity in a frequency-selective MIMO channels. The great finding was 

that the well-known flat-fading MIMO algorithms can be re-used on a carrier-by-carrier basis 

since the channel becomes orthogonal in the frequency domain with the use of OFDM scheme. 

This reduces the computational effort and makes MIMO-OFDM technique attractive for mobile 

applications. In this section, brief overviews of MIMO, OFDM and MIMO-OFDM for wireless 

communication Systems are presented. 

 

1.3.1 MIMO Systems 

The use of spatial diversity technique is the main idea of multiple antennas Systems originated 

from the single antenna Systems, the SISO Systems. An early type of antenna diversity is the 

receive diversity. In this technique, multiple antennas are used at the receiver end of the 

communication link alone. This results in what is known as Multiple-Input Single-Output (MISO) 

Systems. Some years later it was observed that many of the benefits of receive diversity can be 

obtained by using transmit diversity. In transmit diversity technique multiple antennas are used at 

the transmitter end alone to form Single -Input -Multiple Output (SIMO) Systems. An incentive 

for the usage of transmit antenna diversity is that in a cellular communication Systems, the extra 

antennas will be at the base station so that the mobile station needs not to have multiple antennas. 
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Consequently, the cost of extra antennas at base station can then be paid by service provider. The 

Multiple-Input Multiple-Output (MIMO) combined the performance gains that are achievable in 

both the transmit antenna diversity and the receive antenna diversity Systems with the use of 

multiple antennas at both end of the communication link. The main idea behind MIMO is that 

signals sampled in the spatial domain at both ends are combined in such a way that they either 

create effective multiple parallel spatial data  channels (therefore increasing the data rate), and/or 

add diversity to enhance the bit-error rate  (BER) performance of the Systems. The idea of spatial 

diversity is that in the presence of random fading occasioned by multipath propagation, the 

signal-to-noise ratio (SNR) is significantly improved by combining the output of decorrelated 

antenna elements. The early 1990s witnessed new proposals for using antenna arrays to increase 

the capacity of wireless links thereby creating several opportunities beyond just diversity [1]. 

 

1.3.1.1 Performance gain in MIMO Systems 

The performance benefits available as a result of using the MIMO Systems are largely due to 

spatial multiplexing gain, diversity gain, array gain, and interference reduction. 

Each of these is briefly described below with assumption of having TM  and RM  numbers of 

transmit and receive antennas respectively. 

 

 Spatial multiplexing gain:  Spatial multiplexing technique is the simultaneous 

transmission of multiple data signals from transmitter to the receiver, with both equipped 

with more than one antenna. Consequently, MIMO system is able to offer a linear 

capacity proportional to the minimum number of either the transmit antennas or the 

receive antennas (i.e. min ,R TM M ), in comparison with Systems employing single 

antenna at one or both end of the links, for no extra power or bandwidth expenditure [2-

5], [12]. This gain which is commonly referred to as multiplexing gain, is possible if the 

propagation channel exhibits rich scattering. The receiver takes advantage of differences 

in the spatial signatures induced into the multiplexed signals by the MIMO channels to 

separate the different streams of data transmitted, thereby realizing a capacity gain. 

 Diversity gain: As earlier described in the previous section, diversity is a powerful 

technique to reduce the effect of fading in wireless links where signal power fluctuates 

randomly. Diversity gain is achieved by transmitting the signal over multiple, 

independently fading paths in time, frequency or space. Spatial (antenna) diversity is 

however preferred over time/frequency diversity because it does not involve expenditure 

of either transmission time or bandwidth [12]. Provided that the T RM M  links comprising 
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the MIMO channels fade independently and the transmitted signal is suitably constructed, 

the MIMO Systems‟ receiver can combine the arriving signals such that the resultant 

signal exhibits considerably reduced amplitude variability in comparison to a SISO link. 

Consequently, T RM M th  order of diversity will be obtained. 

 Array gain: MIMO Systems increases antenna gain by beamforming. The gain can be 

achieved both at the transmitter and the receiver, but depends on the number of transmit 

and receive antennas. Besides, transmit/receive array gain requires channel knowledge in 

the transmitter and receiver respectively [12]. 

 Interference reduction: The differentiation between the spatial signatures of the desired 

signal and co-channel signals, when multiple antennas are used, can be employed to 

reduce co-channel interference which occurs due to frequency reuse in wireless channels 

[12]. Just like the case with array method for MIMO Systems, interference reduction also 

requires knowledge of the desired signal's channel. Interference reduction allows 

aggressive frequency reuse and thereby increases the system capacity. 

 

1.3.1.2 MIMO Systems Capacity 

The capacity metrics to represent the quality of the MIMO channels presented in different 

literatures, by various authors, have some slight differences which are due to differing 

assumptions made about the channel.  In general, the singular values of the MIMO channels 

matrix, H , of dimension R TM M , remains the determinant factor of the MIMO Systems 

capacity. In particular, what the transmitter knows about the channel has a great bearing on the 

transmission scheme, and ultimately the achievable capacity. 

 

In [13] it is shown that the usual equation of Shannon capacity (in bit/sec/Hz) given as 

2log 1C ,                 1.2 

for SISO Systems can be extended to derive the capacity expression for MIMO Systems which is 

given as 

2log det
R

H
M

T

C I
M

HH  ,              1.3 

 where 
RMI  denotes the identity matrix of size RM ,  is the average signal-to-noise ratio (SNR) 

at any receiving antenna, det is the determinant, superscript „H‟ stands for Hermitian (conjugate 

transpose), and H  is the R TM M  channel matrix with elements which are complex Gaussian 
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with zero mean and unit variance. It has been however established in [4, 10] that at high SNR the 

MIMO Systems capacity can be approximated to 

2min , log 1R TC M M .               1.4 

The capacity expression in (1.4) shows clearly that there is a linear increase in capacity of MIMO 

Systems proportional to the minimum of the number of transmit and receive antennas. This 

confirms the main reason for its deployment in the wireless communication Systems.  

 

1.3.2 OFDM Systems 

The OFDM technology has become a popular transmission technique for signals over wireless 

channels. The origin of OFDM can be traced back to the Chang‟s paper [6] on the synthesis of 

bandlimited orthogonal signals for multichannel data transmission published in 1966. In the 

paper, a new concept of simultaneous transmission of signals over a bandlimited channel without 

the inter-channel interference (ICI) and the inter-symbol interference (ISI) was presented. A year 

later, performance analysis of effective signal transmission in parallel form was presented by 

Saltzburg [7]. Saltzburg concluded in his paper that in designing an effective parallel system, 

effort should be concentrated on reduction of crosstalk between adjacent channels rather than 

endeavoring to perfect the individual channels. Today, OFDM has become a widely accepted 

multi-carrier modulation method for signals transmission over wireless channels. Several wireless 

technologies and standards such as digital audio broadcasting (DAB), digital video broadcasting 

(DVB), high-rate wireless LAN standard [14] such as the IEEE 802.11a [15], high-performance 

radio LAN type two (HIPERLAN/2) [16], multimedia mobile access communication (MMAC) 

[17, 18], and the IEEE 802.16a [19] metropolitan area network (MAN) standard, are all based on 

OFDM technique [20]. OFDM is also seen as a potential candidate for the future generation of 

the mobile wireless Systems, especially the fourth generation (4G) Systems [20, 32]. 

 

The OFDM concept is based on the splitting of data stream with a high-rate into a number of 

lower rate streams that are transmitted simultaneously over a number of subcarriers. Thus, there is 

an increase in symbol duration for the lower rate parallel subcarriers which in turn reduces the 

relative amount of dispersion, that is caused by multipath delay spread, in time. However, in a bid 

to completely eliminate the intersymbol interference (ISI), a guard time is introduced in every 

OFDM symbol. As such, OFDM technology is seen as a scheme that transforms a frequency 

selective fading channel to a set of parallel flat fading sub-channels. Consequently, the receiver 

structure is drastically simplified, and the time domain waveforms of the sub-carriers become 

orthogonal to each other. In contrast to the normal Frequency Division Multiplexing (FDM) 
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scheme where the subcarriers are non-overlapping, the signal frequency spectrum associated with 

different subcarriers overlap in frequency domain as shown in Figure 1.3. The introduction of 

guard band between the different carriers in the conventional FDM, in a bid to get rid of the 

interchannel interference, results in an inefficient use of the scarce and costly frequency spectrum 

resource. The overlapping of these subcarriers in the OFDM Systems makes possible efficient 

utilization of available bandwidth without causing the inter-carrier interference (ICI). 

 

Direct implementation of OFDM Systems is computationally complex because of the large 

number of subcarriers involved which would require an equal number of sinusoidal oscillators for 

coherent demodulation. However, a breakthrough to the OFDM implementation came in 1971 

when Weinstein and Ebert [21] proposed an effective way of implementing the scheme through 

the application of Discrete Fourier Transform (DFT), which drastically reduces the 

implementation complexity of the OFDM modems. This substantial reduction in implementation 

complexity was attributable to the simple realization that the DFT makes use of a set of 

harmonically related sinusoidal and cosinusoidal basis functions, whose frequency is an integer 

multiple of the lowest nonzero frequency of the set, which is referred to as the basis frequency.  

 

 

  

    (a) 

  

    (b) 

 Figure1.3 Comparison between (a) OFDM and (b) Conventional FDM  
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These harmonically related frequencies can therefore be used as the set of carriers required by the 

OFDM system. By employing a Fast Fourier Transform (FFT), an efficient implementation of the 

DFT, the computational complexity of OFDM could further be reduced. Recent advances in very-

large-scale-integration (VLSI) technology have, however, enabled the availability of economical, 

high-speed and large-size integrated circuits for the implementation of FFT and (Inverse Fast 

Fourier Transform) IFFT. The use of these IFFT and FFT methods for the implementation of both 

the OFDM transmitter and receiver respectively reduces the number of operation to Klog2K from 

K
2
, if DFT techniques are used instead, where K is the number of subcarriers [22].  

 

1.3.2.1 Advantages and Disadvantages of OFDM Systems 

The various advantages and disadvantages of OFDM Systems can be highlighted as follows [23, 

24]:  

 

 Advantages of OFDM Systems: 

  

i. OFDM has immunity to delay spread. Hence the scheme is an efficient way to deal 

with the problem of multipath. 

ii. It has resistance to frequency selective fading because each of the subchannels in 

OFDM is almost flat fading. 

iii. It exhibits efficient bandwidth usage, since the subchannels are kept orthogonal in the 

time domain but overlap in the frequency domain. 

iv. The implementation of OFDM Systems is simple by using FFT (Fast Fourier 

Transform). 

v. The system‟s receiver complexity is low because of absence of multi-taps 

equalizer/detector. 

vi. OFDM possesses high flexibility in terms of link adaptation. 

vii. OFDM is robust against narrowband interference, because such interference affects 

only a few numbers of the subcarriers. 

 

 

 Disadvantages of OFDM Systems: 

 

i. The scheme is sensitive to frequency offsets (caused by frequency differences 

between the local oscillators in the transmitter and the receiver), timing errors and 

phase noise. 
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ii. It exhibits quite a high peak-to-average power ratio (PAPR) in comparison with 

single carrier system that seeks to lower the power efficiency of the Radio Frequency 

(RF) amplifier. 

 

1.3.3 MIMO-OFDM Systems 

The multiple transmitting and receiving antennas can be employed with OFDM to enhance the 

communication capacity and quality of mobile wireless Systems [25-28]. MIMO as described 

above is known to boost capacity. In the case of high data-rate transmission, the multipath nature 

of the communication environment causes the MIMO channels to become frequency-selective. 

However, as elucidated earlier, OFDM transmission scheme can convert such frequency-selective 

MIMO channels into an array of parallel frequency-flat MIMO channels by which the receiver 

complexity is drastically reduced. The combination of these two powerful techniques, MIMO and 

OFDM to form Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing 

(MIMO-OFDM) Systems, is very attractive, and is considered one of the most promising 

solutions to improve the signal rate of broadband wireless communication Systems.  

 

A schematic diagram of a MIMO-OFDM system is shown in Figure1.4. Assuming a MIMO-

OFDM system employing MT transmit and MR receive antennas with N OFDM subcarriers, 

channel encoded bits are first interleaved with a channel interleaver  and then mapped onto a 

number of data symbols via some modulation type such as Quadrature Amplitude Modulation 

(QAM) or Multilevel Phase Shift Keying (M-PSK). These symbols are then passed through the 

transmit diversity processor (e.g. a space-time encoder) that transforms them into MT different 

signals. Each of these signals forms an OFDM block, and they are passed through classical 

OFDM modulators (IFFT followed by cyclic prefix insertion) of K carriers. The resulting OFDM 

symbols are transmitted simultaneously from the individual transmit antennas. At the receiver, the 

individual signals are passed through OFDM demodulators which first discard the cyclic prefix 

and then perform the K-point FFT on the received signals. The outputs of the OFDM demodulator 

are passed through the diversity gain processor in a bid to achieve transmit diversity gain.  The 

diversity gain processor‟s outputs are de-interleaved with a channel de-interleaver 1  and then 

demapped from the QAM or M-PSK constellations. Thereafter channel decoder is used to decode 

the transmitted bits. Detailed of the basic concepts of the MIMO-OFDM system are well 

documented in [29, 30]. 
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  Figure1.4 Schematic diagram of MIMO-OFDM system  

 

 

 

Irrespective of the techniques being employed in wireless communication System (such as 

OFDM, MIMO, or MIMO-OFDM techniques) to combat the effects of the channel on the 

transmitted signals, the availability of the channel state information (CSI) at the receiver end of 

the communication system remains a crucial factor for effective functioning of these techniques 

as well as for the successful recovery of the transmitted signal. 

1.4 Research Motivation 

 

The ever increasing growth of wireless communication Systems has continued to drive the 

research efforts towards obtaining novel techniques by which system capacity can be increased, 

and at the same time maintaining high-quality of services. This, as earlier mentioned, has brought 

about the migration from single antenna, single input single output (SISO) Systems to 

deployments of multiple antennas at both ends of the wireless communication Systems. Emerging 

from this migration is the multiple-input multiple-output (MIMO) Systems. From the spectral 

efficiency angle of wireless communication is the emergence of orthogonal frequency division 
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multiplexing (OFDM) which finds deployment in both single antenna and multiple antenna 

wireless communication Systems. The concepts of MIMO and OFDM were combined with the 

emerging intent of exploiting the advantages of both techniques. This combination has given the 

development to MIMO-OFDM wireless communication Systems with the expectation of having 

spectrally efficient, high data rate system that is robust to frequency selective fading channels.  

 

With the area of applications of the MIMO-OFDM system expanding very fast, the requirement 

for an improved functioning of the Systems is becoming very high. As a result, more research 

efforts are being directed towards achieving better MIMO-OFDM Systems performance. 

However, one of the major challenges to either single antenna, SISO OFDM, or MIMO-OFDM 

communication Systems is means of providing accurate channel state information (CSI) at the 

receiver end of the Systems for coherent detection of the transmitted signal. If the CSI is not 

available at the receiver, the transmitted signal could only be demodulated and detected through a 

non-coherent method such as the differential demodulation technique. However, the employment 

of non-coherent detection method is at the expense of about 3-4 dB loss in signal-to-noise ratio 

(SNR) compared with using the coherent detection method [31]. In order to eliminate such a huge 

loss, it is imperative to develop an efficient and cost effective technique of providing channel 

state information at the receiver for coherent detection of the transmitted information in MIMO-

OFDM wireless communication Systems. 

 

There are different techniques by which channel state information can be obtained and these are 

classified as pilot-assisted (training-based), blind and decision-directed channel estimation 

methods. In the context of pilot-assisted channel estimation scheme, training-data that is known a 

priori at the receiver is transmitted along with the message data from the transmitter. These 

training data is then used to obtain the samples of CSI at the training data‟s locations. The CSI at 

the message data‟s locations are obtained from CSI at the training data‟s locations by means of 

interpolation techniques. The insertion of the training data within the message signal will 

definitely induce additional overhead and thus reducing the data throughput. In blind channel 

estimation method, no training data sequence is needed; instead the statistical properties of the 

channel and certain information about the transmitted signal are employed to obtain the CSI. 

Consequently, there is saving in the bandwidth usage while employing blind channel estimation 

method in comparison with the training-based method. Though the blind channel estimation 

method has its advantage in that it has no overhead loss, unfortunately it can only be applied to 

slowly time-varying fading channels. This is because it will have to memorize the data record for 
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a long time. Thus, it can not be applied in fast-varying channel scenarios that are peculiar to 

mobile wireless communication Systems. Besides, blind channel estimation methods also tend to 

become heavier in terms of computational complexity [74].  

 

Consequently, in this thesis we investigate the training-based channel estimation schemes for 

single antenna system rather than the blind channel estimation method. Our investigation leads us 

to develop a low complexity adaptive algorithm that is robust against both slow and fast fading 

channel scenarios, in comparison with other algorithms employed in literatures, to implement soft 

iterative channel estimator for turbo equalizer based receiver for single antenna communications 

Systems.  

 

In the decision directed channel estimation method, all the detected data at the receiver are used 

for channel estimation. Hence, few numbers of pilots, in comparison with the pilot- assisted 

method, are required to commence the estimation process in the decision directed channel 

estimation method. The gain obtainable with this method in comparison with purely pilot-assisted 

scheme has motivated this research to focus on the decision directed channel estimation method 

for single antenna OFDM Systems and MIMO-OFDM Systems. In this thesis a faster and low 

complexity subspace algorithm, in comparison with other algorithms employed by some other 

authors in literature, is proposed for parametric estimation of the channel impulse response of 

SISO-OFDM and MIMO-OFDM Systems. Besides, a low complexity adaptive predictor, in 

comparison with other available ones in literature, is derived for implementation of the adaptive 

predictor module of the proposed decision directed channel estimation method for the SISO 

OFDM and MIMO-OFDM Systems. In addition, the low complexity adaptive algorithm we 

proposed for channel estimator in single antenna communication Systems is also proposed for use 

to implement the temporary channel transfer function estimator module of the proposed decision 

directed channel estimation method for the SISO-OFDM and MIMO-OFDM Systems. 

 

In addition, iterative technique that is based on turbo principle is employed for the channel 

estimation schemes proposed in this thesis for the single antenna Systems and MIMO-OFDM 

wireless communication Systems. 
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1.5 Scope of the Thesis and Assumptions 

The main objectives of this thesis include: 

i. Identification of the limitations associated with some existing channel estimation 

techniques for both single and multiple antenna Communication Systems.  

ii. Deployment of OFDM transmission scheme to address the problem of ISI in both 

SISO and MIMO wireless Communication System. 

iii. Designing effective channel estimation models for SISO-OFDM and MIMO-

OFDM wireless Communication Systems. 

iv. Deriving and proposing effective and less complex adaptive algorithms for 

implementation of the channel estimation for Turbo equalizer based SISO 

receiver. 

v. Employment of fast subspace algorithm for implementation of CIR estimator for 

both SISO-OFDM and MIMO-OFDM wireless Communication Systems. 

vi. Deriving an effective and less complex adaptive predictor for prediction of time 

varying channel for SISO-OFDM and MIMO-OFDM wireless Communication 

Systems. 

 

Equalizer techniques for both SISO and MIMO Systems, channel coding techniques and channel 

decoding schemes are not addressed in this thesis. Existing techniques and schemes found in 

literature are employed throughout the Thesis. Furthermore, the problems of frequency and time 

synchronization are not addressed in the thesis, rather it is assumed, through out the Thesis, that 

both the transmitter and receiver of the Communication Systems are perfectly synchronized both 

in time and frequency. Lastly, in all the simulation presented in this Thesis, single user rather than 

multiple users is assumed. 

  

1.6 Organization of the Thesis 

 

This thesis is divided into seven chapters including this general introduction. The rest of the thesis 

is organized as follows:  

 

In Chapter 2, channel impulse response models employed in this thesis are presented. In addition, 

some channel estimation techniques presented in literature are reviewed for both single antenna 

Systems as well as for MIMO-OFDM Systems.  
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Soft iterative channel estimation for Turbo equalizer proposed for estimation of time-varying 

frequency selective channels of single antennal Systems is presented in Chapter 3.  

 

In Chapter 4, Decision Directed channel estimation employing a robust subspace tracking 

algorithm and efficient and less complex adaptive predictor is proposed for SISO-OFDM 

Systems.  

 

In Chapter 5, iterative technique based on turbo principle is proposed for the Decision Directed 

Channel Estimation employed for SISO-OFDM Systems of Chapter 4.  

 

Iterative channel estimation technique for SISO-OFDM Systems of Chapter 5 is extended to 

MIMO-OFDM Systems in Chapter 6. Channel transfer function estimator presented in Chapter 3 

for single antenna Systems is also adapted and re-derived in the context of MIMO channel for the 

implementation of the channel transfer function (CTF) estimator of the proposed channel 

estimation schemes for MIMO-OFDM system.  

 

Finally, Chapter 7 concludes the thesis and summarizes the various results of this research work. 

This chapter is concluded by suggesting some open research problems for future work in the area 

of MIMO-OFDM wireless communication Systems. 

 

1.7 Original Contributions 

 
The main contributions of this thesis are the development of channel estimation algorithms for 

single antenna Systems, single input single output OFDM (SISO-OFDM) Systems, and multiple 

input multiple output OFDM (MIMO-OFDM) Systems: 

i. We developed  low complexity adaptive algorithms (VSSNLMS and M-VSSNLMS 

algorithms) that are robust against both slow and fast fading channel scenarios, in 

comparison with other algorithms employed in literatures, to implement the proposed 

soft iterative channel estimator for turbo equalizer base receiver for single antenna 

communications Systems.   

ii. A faster and low complexity subspace algorithm in comparison with other employed 

in literatures is proposed for parametric estimation of the channel impulse response 
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of the proposed decision directed channel estimation method for the SISO-OFDM 

and MIMO-OFDM Systems.  

iii. We also developed a low complexity adaptive predictor, in comparison with other 

available ones in literature, for implementation of the adaptive predictor module of 

the proposed decision directed channel estimation method proposed for the SISO-

OFDM and MIMO-OFDM Systems. 

iv.  Lastly, the low complexity adaptive algorithm we proposed for channel estimation in 

single antenna communication Systems is also proposed for use and re-derived in the 

context of MIMO channel for implementation of the temporary channel transfer 

function estimator of the decision directed channel estimation method put forward for 

the MIMO-OFDM Systems.  

All these algorithms that we proposed for the implementation of channel estimator for single 

antenna Systems, SISO-OFDM Systems and MIMO-OFDM Systems are confirmed to 

provide near optimal performance with low complexity in comparison with some other ones 

in literature through computer simulations. These contributions are detailed in four chapters 

of this thesis as summarized below. 

 

In Chapter 3, computationally efficient iterative channel estimation for Turbo equalizer-based 

communication receiver employing Variable Step Size Normalized Least Mean Square 

(VSSNLMS) algorithm [17] and Multiple-Variable Step Size Normalized Least Mean Square (M-

VSSNLMS) algorithm are proposed for single antenna wireless communication Systems. The 

VSSNLMS and M-VSSNLMS algorithms employed for the implementation of the iterative 

channel estimation is proposed in order to address the problem of slow convergence rate 

associated with the Least Mean Square (LMS)-based channel estimation algorithm proposed in 

literature for single antenna communication system. It is also our intention to put forward a less 

complex algorithm compared with the well known Recursive Least Square (RLS) algorithm. 

 

In Chapter 4, Fast Data projection Method (FDPM) subspace tracking algorithm-based Channel 

Impulse Response Estimator is proposed for implementation of the Decision Directed Channel 

Estimation (DDCE) scheme for SISO-OFDM Systems. This is carried out in the context of a 

more realistic Fractionally Spaced-Channel Impulse Response (FS-CIR) channel model, as 

against the channel characterized by a Sample Spaced- Channel Impulse Response (SS)-CIR. In 

this chapter, we also derive a fast convergence Variable Step Size Normalized Least Square-
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based predictor, with low computational complexity in comparison with other in literature, for the 

implementation of the CIR predictor module of the DDCE scheme. 

 

In Chapter 5, we designed a novel iterative receiver structure for the FDPM-based Decision 

Directed Channel Estimation scheme for SISO-OFDM system. The iterative design is based on 

Turbo iterative principle. It is shown that a significant improvement in the performance can be 

achieved with the iterative DDCE scheme for OFDM Systems in comparison with the non-

iterative scheme presented in Chapter 4. 

 

In Chapter 6, Iterative receiver structure for FDPM-based DDCE scheme of Chapter 5 is 

extended to MIMO-OFDM Systems. In addition, Variable step size Normalized Least Mean 

Square (VSSNLMS)-based channel transfer function estimator is derived in the context of MIMO 

Channel, following the idea presented in Chapter 3, for the implementation of the CTF estimator 

module of the iterative Decision Directed Channel Estimation scheme for MIMO-OFDM 

Systems. 

 

1.8 Publications 

 
During this research work, the following conference and journal papers have been published. 

 

 

1.8.1 Journal Papers 

 

1. Olutayo O. Oyerinde and Stanley H. Mneney, “Improved Soft Iterative Channel 

Estimation for Turbo Equalization of Time Varying Frequency Selective Channels,” 

Wireless Personal Communication Journal, vol. 52, no.2, pp. 325-340, ISSN: 0929-

6212, January 2010.  

 

2. Olutayo O. Oyerinde and Stanley H. Mneney, “Variable Step Size Algorithms for 

Network Echo Cancellation,” Ubiquitous Computing and Communication (UBICC) 

Journal, vol. 4, no. 3, pp. 746-757, ISSN: 1992-8424, August 2009. 
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CHAPTER 2 

 

CHANNEL MODELS AND OVERVIEW OF CHANNEL 

ESTIMATION TECHNIQUES 

 

2.1 Introduction 

 
In this chapter, channel impulse response (CIR) models for both Single Input Single Output 

(SISO) and Multiple Input Multiple Output (MIMO) Systems, which are employed in the 

subsequent chapters, are presented. These include the Symbol (Sample)-Spaced Channel Impulse 

Response (SS-CIR) and the Fractionally-Spaced Channel Impulse Response (FS-CIR) models. It 

is shown in this chapter how FS-CIR model is more fit into realistic channel conditions than its 

SS-CIR model‟s counterpart. The review of channel estimation techniques for single antenna, 

SISO-OFDM and MIMO-OFDM Systems is also presented in this chapter. These techniques 

include pilot-assisted (training-based) channel estimation methods, blind and semi-blind channel 

estimation schemes, and decision directed channel estimation techniques. The chapter 

emphasizes the advantages of the decision directed channel estimation techniques over the other 

two channel estimation schemes. 

 

The rest of the chapter is organized as follows. Classification of multipath channel impulse 

response models are briefly described in Section 2.2. SISO Channel model is presented in Section 

2.3, while Section 2.4 described MIMO channel model. In Section 2.5 channel estimation 

techniques are reviewed, and Section 2.6 gives the summary of the chapter. 

2.2 Multipath Channel Impulse Response Models 

 

Channel model, according to [32], is the bread and butter for telecommunication engineers. This 

is because the foundation on which mobile communication Systems is developed is the channel 
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model. A number of different models have been proposed for the simulation of Rayleigh fading 

channels (both flat and frequency selective fading channels) in the past years. The classification 

of these models can be divided into two categories: the statistical and deterministic models. In the 

statistical models, the power spectral densities of white Gaussian random processes are shaped by 

either time-domain or frequency-domain filtering [33-36], whereas the Gaussian processes are 

approximated by the superposition of finite properly selected sinusoids in the deterministic 

models [37-41]. Details of the rigorous derivation of these models could be found in the cited 

references.  

 

In the subsequent sections, channel impulse response models employed in this thesis for both 

single antenna and multiple antenna Systems are presented. The impulse response of a channel is 

essential for the characterization of the channel. It contains all the information necessary to 

simulate and analyze any type of transmitted signal in the channel. By way of definition, the 

channel impulse response (CIR) can be defined as the instantaneous state of the dispersive 

channel encountered. It corresponds to the vector of the instantaneous amplitudes that is 

associated with different multipath components.  

 

2.3 Single Input Single Output (SISO) Channel Model 

 

Let the transmitted signal ( )s t  in a Single Input Single Output (SISO) wireless communication 

link characterized by multipath fading as shown in Figure 2.1 be given as 

( ) Re ( ) cj ts t x t e ,             (2.1) 

where the complex signal ( )x t  is the equivalent baseband form of ( )s t , 2c cw f  is  a 

carrier/center frequency, and Re{} denotes the real part. The received signal ( )r t  can be written 

as 

1

0

( ) ( ) ( ( ))
M

m m
m

r t t s t t  

     
1

( )

0

Re ( ) ( ( ))c m c

M
jw t jw t

m m
m

t e x t t e ,               (2.2) 
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Figure 2.1 Single Input Single Output (SISO) multipath fading channel  

 
where ( )m t , ( )m t  and M  are the time-variant complex amplitude, the time-variant delay 

associated with the mth path, and the number of paths, respectively.  Assuming that the received 

signal is corrupted by additive bandlimited Gaussian noise that has effective bandwidth of B(Hz) 

and a power spectral density of N0 (W/Hz), the equivalent baseband noise signal ( )w t  will be 

circularly symmetric  complex Gaussian noise (i.e. the real and imaginary parts of the noise are 

independent Gaussian variables with zero means and equal variance) and has a variance given as 

2 *
0 ( ) ( )w N B E w t w t .            (2.3) 

The equivalent baseband form of the received signal ( )r t , corrupted with complex additive white 

Gaussian noise ( )w t , is then given as 

1
( )

0

( ) ( ) ( ( )) ( )c m

M
jw t

m m
m

z t t e x t t w t  

     ( , ) ( ) ( )h t x t d w t  [47],                (2.4)  

 

for all possible delays , , where ( , )h t  is the equivalent baseband impulse response of 

the multipath fading channel at time instant t. The channel impulse response ( , )h t  corresponds to 

the model usually used for mobile wireless channels and is given by 

1
( )

0

( , ) ( ) ( ( ))c m

M
jw t

m m
m

h t t e t ,           (2.5) 

where  is the Dirac‟s Delta function. 
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The corresponding continuous Channel Transfer Function (CTF) is obtained by taking the Fourier 

transform of  ( , )h t  with respect to  as [47]: 

2, ( , ) j fH t f h t e d  

 
1

2 ( )

0

( ) c m
M

j f f t
m

m

t e .         (2.6) 

In a bid to make the mobile channel model mathematically tractable, wide sense stationarity 

assumption is usually made for the channel. A channel is said to be wide sense stationary if the 

second order statistics of ( , )h t  not vary with t. If this assumption is made, we have the usual 

linear time-invariant channel and the Channel impulse response in (2.5) can then be reduced to 

[48]:   

1

0

( ) ( )c m

M
jw

m m
m

h e             (2.7) 

 

2.3.1 Channel Impulse Response Statistics 

In some of the proposed models for wireless mobile channels, each of the CIR component m  

associated with an individual channel path is always modeled by a Wide Sense Stationary (WSS) 

narrow-band complex Gaussian process [42]. For this type of WSS modeled channel, the time-

domain correlation function that characterizes the CIR component m  associated with an 

individual channel path delay 1  and the one associated with path delay 2  is characterized by 

[42]: 

1 2

*
1 2, ,r t E t t t .               (2.8) 

Furthermore, if the assumption of Uncorrelated Scattering (US) is applied to (2.8) which implies 

that the amplitude and phase shifts associated with different CIR delay of 1 2 , then the time-

domain correlation function reduces to 

1 2 1 1 2, , ,r t r t .         (2.9) 

By setting 0t , the function 1,r t  reduces to 10,r r , where 1 . This reduced 

form is known as the multipath intensity profile or delay power spectrum (Power Delay Profile) 

of the Channel, and it describes the channel‟s average power output as a function of the time 

delay . The channel‟s Power Delay Profile (PDP) is useful in determining the channel impulse 

response‟s (CIR) statistical distribution. For a time-varying multipath fading channel, the power 

delay profile is obtained from the magnitude square of (2.5) and it is given as [8, 9] 
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2
( , ) ( , )p t h t  .           (2.10) 

Examples of different commonly used power delay profile for COST 207 (European Cooperation 

in the Fields of Scientific and Technical Research) channel models are listed in Table 2.1 [43, 

44]. Its corresponding tapped delay line implementation is described in Table 2.2 [43, 47]. 

 

2.3.2 Discrete-Time Channel Model 

Let the pulse train transmitted symbol ( )x t , with symbol rate sT , that passed through a transmitter 

filter ( )Trg  (typically a root raised cosine Nyquist filter) and a time varying channel impulse 

response ( , )h t , and corrupted with Gaussian white noise ( )w t   be represented by 

( ) n s
n

x t x t nT .            (2.11) 

At the receiver, the continuous-time received signal ( )z t after passing through the receiver 

filter ( )Rcg , before sampling is 

( ) ( , ) ( ) ( )ez t h t x t w t  

     ( , ) ( ) ( )eh t x t d w t ,             (2.12) 

 

 

Table 2.1  Power delay profile of COST 207 [44] 
 

Profile Power delay Profile (PDP), (delay is in s ) 

Rural Area (RA) 9.21exp( 9.2 ) 0 0.7

0 else
 

Typical Urban (TU) exp( ) 0 7

0 else
 

Bad Urban (BU) 0.67exp( ) 0 5

0.335exp(5 ) 5 10

0 else

 

Hilly Terrain (HT) 3.08exp( 3.5 ) 0 2

0.1232exp(15 ) 15 20

0 else
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Table 2.2 Tapped Delay Line Implementation of COST 207 Channel Models [47] 

Tap No. Delay ( s) Power (dB) Doppler Spectrum 

Rural Area  

1 

2 

3 

4 

 

0 

0.2 

0.4 

0.6 

 

0 

-2 

-10 

-20 

 

Ricean 

Classical(Jakes) 

Classical(Jakes) 

Classical(Jakes) 

Typical Urban (TU) 

1 

2 

3 

4 

5 

6 

 

0 

0.2 

0.6 

1.6 

2.4 

5.0 

 

-3 

0 

-2 

-6 

-8 

-10 

 

Classical(Jakes) 

Classical(Jakes) 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Bad Urban (BU) 

1 

2 

3 

4 

5 

6 

 

0 

0.4 

1.0 

1.6 

5.0 

6.6 

 

-3 

0 

-3 

-5 

-2 

-4 

 

Classical(Jakes) 

Classical(Jakes) 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Hilly Terrain (HT) 

1 

2 

3 

4 

5 

6 

 

0 

0.2 

0.4 

0.6 

15.0 

17.2 

 

0 

-2 

-4 

-7 

-6 

-12 

 

Classical(Jakes) 

Classical(Jakes) 

Classical(Jakes) 

Classical(Jakes) 

Gaussian 

Gaussian 

 

 

where  denotes the convolution product, and ( , )eh t  is the time-varying equivalent channel 

impulse response obtained as 

( , ) ( , ) ( )e Th t h t g  
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          ( , ) ( )Th t g d .             (2.13) 

In (2.13), ( )Tg  is the convolution product between  ( )Rcg  and ( )Trg   given as 

( ) ( ) ( )T Rc Trg g g .             (2.14) 

Because of the presence of the radio filters ( )Rcg  and ( )Trg , the condition of the Uncorrelated 

Scattering (US) is violated. Consequently the time-varying equivalent channel impulse response 

( , )eh t  is no longer Wide Sense Stationary (WSS). Besides, the noise ( )w t  in (2.12) is not white  

again by reason of ( )Rcg at the receiver. By making substitution for ( )x t and ( , )eh t  in (2.12) 

from (2.11) and (2.13) respectively, the received baseband signal is given by 

( ) ( , ) ( ) ( )i T s
i

z t x h t g t iT d w t .         (2.15) 

 

2.3.2.1 Symbol-Spaced Channel Impulse Response Model 

If the continuous-time received signal ( )z t  of (2.15) is sampled at a rate of 1 1
r sT T

, the 

equivalent discrete-time representation given as 

 ( )rz n z nT ,             (2.16) 

can be obtained by substituting  (2.16) into (2.15) to give [45]  

( ) | [ ] , ( ) ( )t nTr r T r s r
i

z n z t x i h nT g nT iT d w nT .       (2.17) 

By substituting m n i , (2.17) becomes (using square bracket instead of subscript) 

, ( )s T s
m

z n x n m h nT g mT d w n ,            (2.18) 

where sT  is the sampling period. 

The symbol-spaced discrete-time channel impulse response (SS-CIR) model is then given by 

, , ( )s T sh n m h nT g mT d ,         (2.19) 

hence, 

, [ ]
m

z n h n m x n m w n ,         (2.20) 

where  
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( )Rc sw n g w nT d .          (2.21) 

If , 0h n m  for all 0m  and m M , where M is the length of the equivalent CIR measured in 

symbol intervals, and the discrete-time channel impulse response is written in a vector form as 

,0 , ,1 ,..., , 1
T

n h n h n h n Mh ,         (2.22) 

the discrete-time received signal z n  of (2.18) can then take the form 

1

0

, [ ]
M

m

z n h n m x n m w n  

       [ ]T n n w nh x .               (2.23) 

In the case where the transmitter and receiver‟s filters are ignored, the symbol-spaced CIR of 

(2.19) will be given as  

, ,s sh n m h nT mT ,            (2.24) 

where 0 1m M . 

 

2.3.2.2 Fractionally-Spaced Channel Impulse Response Model 

The symbol-spaced CIR model presented in Section 2.3.2.1 is not feasible in the real-time 

implementation. This is because, for the model to hold, the receiver‟s filter Rcg must be 

implemented as a “channel matched filter” in order to match the convolution of the transmitter‟s 

filter Trg and the time varying channel impulse response ( , )h t . This in turn will make the 

received samples z n  sufficient statistics for adequate recovery of the transmitted samples.  

However, in reality, the receiver‟s filter Rcg  cannot be implemented as a channel matched 

filter due to the fact that the CIR will be time-varying and might not be known a priori, which 

makes symbol-spaced CIR model not fit into the real-time channel condition. A way out of this is 

to adopt the realistic fractionally-spaced channel impulse response (FS-CIR) model presented in 

this section. In such a realistic channel scenario, the continuous-time received signal ( )z t  of 

(2.15) is sampled several time (e.g 1R ) per symbol period such that sT T . Hence, there will be 

R  values of iz  at each symbol period n . 
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Suppose the received signal ( )z t  of (2.15) is sampled at the rate of R  times the sampling rate 

such that s
r

T
T

R
 , using a time series representation (TSR) of [46] the received sampled 

iz n can be given by 

, ( )i r T r r i
m

z n x n m h nT R iT g mT R iT d w n ,      (2.25) 

where the fractionally-spaced channel impulse response (FS-CIR), represented as R  symbol-

spaced time varying impulse response,  is given by 

, , ( )i s r T s rh n m h nT iT g mT iT d      0,1,2,..., 1i R ,      (2.26) 

then 

, [ ]i i i
m

z n h n m x n m w n        0,1,2,..., 1i R ,      (2.27) 

and 

( )i Rc s rw n g w nT iT d .         (2.28) 

Similarly to the SS-CIR case, by assuming that  , 0ih n m  for all 0m  and m M  the FS-CIR 

can be written in a vector form as 

,0 , ,1 ,..., , 1
T

i i i in h n h n h n Mh .         (2.29) 

Consequently, the received sampled iz n  of (2.23) then simplifies to 

1

0

, [ ]
M

i i i
m

z n h n m x n m w n  

         [ ]T
i i in n w nh x .            (2.30) 

From the foregoing, it implies that for each transmitted symbol x n , R  values of iz  

observation are obtained from the received signal. These are made possible by passing 

x n  through R different time varying filters i nh . The result of using 1R  different time 

varying filters in fractionally spaced channel model is that the received samples iz n  will 

be sufficient statistics enough for the recovery of the transmitted samples, even when the 

receiver‟s filter Rcg  is not channel marched filter. This is the reason why fractionally spaced 

channel model is more fit into realistic channel conditions than its symbol-spaced CIR 

model counterpart presented in Section 2.3.2.1. 
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2.4 Multiple Input Multiple Output (MIMO) Channel Model 

 

In the previous section, channel impulse response for Single Input Single Output (SISO) Systems 

is described. In this section the SISO scenario is extended to the MIMO Systems. Figure 2.2 

depicts a MIMO wireless communication system using MT transmit and MR receive antennas. The 

MIMO channel consists of R TM M  propagation links between the transmitter and the receiver 

ends. Each of these links, in an ideal situation, is made up of a number of statistically independent 

paths. Thus, it could be said that the MIMO channel consist of RM  by TM  R TM M  Single 

Input Single Output (SISO) links. Consequently, the channel impulse expression for SISO system 

in (2.23) can be extended to the case of MIMO system. As a result, MT signals ix n , 1 Ti M , 

constitute the input of the MIMO system at each time instant n . At the receiver end of the 

system, we have MR received signals jz n , 1 Rj M . Each pair ,i j of inputs and received 

signals is connected by a channel impulse response , ,j ih n m  as shown in Figure 2.2. The jth  

received signal at time instant n can now be expressed as [44] 

1

,
1 0

, [ ]
TM M

j j i i j
i m

z n h n m x n m w n ,         (2.31) 
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Figure 2.2 MIMO Channel with MT transmit and MR receive antennas  
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where M , in this case, is the largest number of taps among all the contributing channels. 

The above equation, (2.31) can be written in a vector notation as 

1

0

, [ ]
M

m

n n m n m nz H x w ,          (2.32)  

where ,n mH  is the MIMO channel matrix, and can be expressed as   

11 1

1

, . . . ,

. . .

, . . .

. . .

, . . . ,

T

R R T

M

M M M

h n m h n m

n m

h n m h n m

H .        (2.33) 

 

 

2.5 Channel Estimation Techniques  

 

In wireless communication Systems, the time-varying nature of the channel as well as its 

frequency selectivity in a multipath scenario is considered as one of the major challenges. For 

accurate transmitted signal demodulation, equalization, decoding, and a host of other baseband 

processing applications, the provision of perfect and up to date channel knowledge is very vital. 

Consequently, channel estimation remains an important block in the signal processing stages at 

the receiver of both the existing and the evolving wireless communication Systems.  

 

In the recent years, research efforts have been directed towards producing efficient channel 

estimation techniques for employment in single antenna based communication Systems, single 

input single output-assisted OFDM (SISO OFDM) Systems and multiple input multiple output-

based OFDM (MIMO-OFDM) Systems. In general, the various techniques for channel estimation 

that have been put forward, some of which can be used in different technologies of wireless 

communication Systems (such as WiMAX, LTE, WiFi, etc), can be categorized into three classes. 

These include [48] the pilot-assisted (training-based) channel estimation methods, blind and 

semi-blind channel estimation schemes, and decision directed channel estimation techniques. 

Figure 2.3 shows the three main classification of channel estimation techniques briefly reviewed 

in this chapter, and how they interlinked with each other. 
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 Figure 2.3 Channel Estimation Techniques Classification  

 

 

 

2.5.1 Pilot-Assisted Channel Estimation Techniques  

Pilot-assisted channel estimation technique, which is also known as training-based channel 

estimation scheme, is a conventional way of obtaining channel estimate for communication 

Systems. In this technique, training sequences of data known to the receiver are multiplexed with 

the transmitted information symbols at a pre-determined position before transmission. These 

training data are used at the receiver for estimating the channel state information corresponding to 

their positions. The channel state information corresponding to the information data positions is 

then obtained by means of interpolating between different channel estimates earlier obtained from 

the training data sequence.  
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Quite a number of works have been reported in literature with regards to the pilot-assisted 

channel estimation techniques. In [49, 51], pilot symbol assisted modulation (PSAM) was 

proposed as an alternative to the use of  a pilot tone earlier in use to mitigate the effects of fading 

in wireless communication Systems. The various studies of PSAM in [49, 51] were based on 

simulation and experimental implementation, demonstrating the feasibility of the approach. The 

performance analysis of the approach is provided in [52]. In [53] superimposed pilot assisted 

modulation techniques was compared with that of PSAM, and the conclusion arrived at was that 

the superimposed pilot assisted modulation scheme is 4 dB worse in bit error rate (BER) 

performance than the PSAM scheme. The two pilot-assisted schemes were considered in the 

context of slow (quasi-static) fading environment [54], where it was observed that both 

approaches show the same error performance.  It was further shown that a superimposed pilot 

method achieve better BER performance in fast fading channel in comparison with PSAM but 

with higher computational complexity than PSAM that employs interpolation method. The exact 

BER of multilevel quadrature amplitude modulation (M-QAM) in flat fading with imperfect 

channel estimates is investigated in [55]. In the investigation carried out in [55], the distribution 

of the amplitude and the estimates of the phase by employing a PSAM technique is used to obtain 

the exact BER of the M-QAM. An optimal pilot symbols insertion pattern called time division 

multiplexed training with regular periodic placement is proposed in [56]. The results obtained 

with the new pattern are compared with that of superimposed training scheme for a time-varying 

flat fading channel scenario. It is concluded that the proposed scheme performs better at high 

SNR and for slowly varying channel; however it is found out that the superimposed training 

scheme exhibits better performance than the proposed scheme in the other regimes. In [57] 

adaptive PSAM approaches that address both channel estimation and prediction errors in adaptive 

modulation in order to meet a target BER are proposed. In the proposed scheme, the authors 

optimized the spacing between pilot and data symbols and the power allocation between pilot and 

data symbols in order to maximize spectral efficiency. In their results the authors claimed that the 

adaptive PSAM scheme work well even when the feedback delay is relatively large. 

 

With respect to the single antenna-assisted multi-carrier modulation (OFDM) Systems, different 

contributions to training-based channel estimation technique have been published in literature. 

The early publications on training symbols-based channel estimation for OFDM system only 

considered periodic one-dimensional (1D) pilot patterns that span the frequency direction only. 

However, in some recent publications the theory of two-dimensional (2D) pilot pattern that is 

made to span both the time and frequency directions is exploited [48]. Some of these publications 
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include the 2D-finite impulse response (FIR) and cascaded 1D-FIR Wiener filtering based 

channel estimation schemes of [58, 59, 60]. Channel estimator based on piecewise-constant and 

piecewise-linear interpolations between pilots is proposed for OFDM Systems in [61], with the 

drawback that it needs a large number of pilots to get satisfactory performance which of course is 

costly in terms of bandwidth requirement. Maximum likelihood estimator for OFDM system is 

studied in [62], while Channel interpolation was performed by the two-dimensional interpolation 

between pilots in [63], though the approach is robust to Doppler frequency shifts, it however 

exhibits performance degradation with lower Doppler frequencies. A time domain channel 

estimation approach, the frequency Pilot Time Average (FPTA), wherein intra-symbol time-

domain averaging of identical parts of the pilot signal applied for estimation purpose is 

investigated in [64]. Two types of pilot-aided channel estimation schemes, namely the Maximum 

likelihood estimator and the Bayesian minimum mean squared error estimator (MMSEE), are 

compared in [65]. It is established that the former is simpler to implement since it requires no 

information about the channel statistics, while at low SNR MMSEE is confirmed to exhibit better 

performance because it exploit prior information about the channel. However at intermediate and 

high SNRs the two schemes are found to have similar performance. In [66] windowed Discrete 

Fourier Transform (DFT)-based MMSE channel estimator is proposed for OFDM system, and in 

[67] pilot-assisted channel estimation method based on nonlinear regression channel models is 

proposed for OFDM signals in Rayleigh fading channel environment. In the context of MIMO 

Systems, different contributions have been published with regards to the pilot-assisted channel 

estimation techniques of which some of them could be found in [68, 69].  

 

In addition, different pilot patterns have been proposed for the implementation of the pilot-

assisted channel estimation techniques for both single antenna and multiple antenna Systems. 

Optimal training for single antenna-aided OFDM with respect to the Mean Square Error (MSE) of 

the Least Square (LS) channel estimate as well as the MSE at the output of a zero-forcing 

receiver employing LS channel estimate is  studied in [70]. However, in [71] optimal training for 

single input single output OFDM (SISO-OFDM) Systems with respect to the capacity based on 

Linear Minimum Mean Square Error (LMMSE) channel estimate is proposed. Channel estimation 

techniques based on pilot arrangement in OFDM system are studied in [72], while optimal 

training and pilot design for OFDM Systems operating over Rayleigh fading channel is 

investigated in [73]. In [74, 75, 76, 77] optimal training designs for MIMO OFDM Systems are 

presented.  
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In general, irrespective of the various improvement that have been brought upon the use of the 

pilot-assisted channel estimation technique by different research investigations, the fact that the 

technique brings about wastage in the scarce communication bandwidth still remains a major 

setback in its deployment for channel estimation. Another drawback of the pilot scheme is that 

they make channel estimate to depend on the pilot symbols alone, and the interpolation 

techniques that is applied to estimate for data points, as expected,  can never be hundred percent 

perfect, hence there would be unresolved error introduced into the estimation process. 

 

2.5.2 Blind and Semi-blind Channel Estimation Techniques  

Consequent upon the wastage of bandwidth that is peculiar to the usage of pilot-assisted channel 

estimation technique presented in the previous section, blind channel estimation techniques have 

been investigated. In the blind channel estimation techniques, the use of pilot (training) symbols 

that consume valuable channel capacity is avoided, but instead the channel is estimated by 

employing inherent information in the received signals as well as the transmitted signals‟ 

structural properties. In contrast, the semi-blind channel estimation techniques employ the 

combination of the training based estimation and blind channel estimation methods. In this 

technique, information about the known training symbols as well as inherent information in the 

unknown received signals is used for channel estimation purpose. Existing blind channel 

estimation techniques can be classified as statistical and deterministic. In the class of statistical 

method, the cyclic statistic properties of the received signals are explored in estimating the 

channel, whereas in the deterministic approach the statistic properties of the received signals are 

not used, instead both the received signals and the channel coefficients are considered to be 

deterministic quantities [78].   

 

In various works published in [79, 80, 81, 82, 83, 84] the higher-order statistics of the received 

signals are exploited for channel estimation. Despite the robustness of the idea presented in the 

cited references, in some cases, large number of data samples is required which results in 

complexity in the computation process. These problems are reduced by exploring second-order 

cyclic statistics of the over-sampled channel output in [85, 86, 87, 88]. Algorithms using second-

order statistics for blind channel estimation are compared based on the Asymptotic Normalized 

Mean Square Error (ANMSE) of channel estimates in [89], while in [90] hidden Markov model is 

applied to the issue of blind channel estimation. In [91] a priori knowledge of the transmitted 

data is utilized for blind channel estimation in a fixed wireless sparse multipath channel scenario; 

and frequency-domain blind channel estimation method is proposed in [92]. The problem of 
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blindly estimating the finite impulse response (FIR) of single input single output (SISO) channel 

is considered in [93], by employing second order statistics of transformed data in the channel 

estimation process. Identifiable conditions for channel estimation are derived in the paper. It is 

however noted in the paper that some channels are not identifiable. Examples of deterministic 

channel estimation in single antenna communication Systems can be found in [94, 95, 96].   

 

Examples of statistical blind channel estimation methods for single antenna OFDM Systems 

include those using correlation techniques [97] and cumulant fitting methods [98, 99]. 

Redundancy introduced by OFDM cyclic prefix is employed in [100, 101, 102, 103] to develop 

different blind channel estimation methods, while different subspace blind channel estimation 

approaches are published in [104, 105, 106, 107, 108, 109]. In [110] finite alphabet approach is 

employed to implement blind channel estimation for OFDM, whereas the authors in [111] 

investigate blind channel estimation for IEEE 802.11a based on both finite alphabet approach and 

clustering of subcarriers. In [112, 113, 114], iterative Bayesian method that swings between 

channel estimation and symbol detection (and decoding) is proposed for coded OFDM Systems, 

and deterministic blind channel estimation approach based on maximum likelihood (ML)-

principle is applied to OFDM Systems in [115], while in [116] the basic ML-method of [115] is 

modified for phase shift keying (PSK) signals of OFDM Systems.  

 

Blind channel estimation in MIMO-OFDM Systems is considered in [117], where periodic 

precoding is applied at the inputs and the channel estimation is carried out based on cyclic 

correlation of the Systems output. Subspace approach is utilized in [118] for blind channel 

estimation for MIMO-OFDM Systems. A blind source separation techniques using second order 

statistic is employed for extracting the inputs in the blind channel estimation algorithm presented 

in [119], while a symbol-rate blind estimation method that relies on second order statistics is 

proposed in [120, 121]. Higher order statistic based blind channel estimation methods for MIMO 

Systems are presented in [122, 123, 124, 125, 126, 127]. A deterministic blind symbol estimation 

technique is developed in [128] for single input multiple output (SIMO) Systems by exploiting a 

special data structure of the oversampled channel output. Subspace-based channel estimation 

approaches are presented in [129], using the projection approximation subspace tracking 

combined with deflation (PASTd), and in [130] with short averaging periods, exploiting the 

frequency correlation among adjacent OFDM subcarriers. 
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Comparing between deterministic and statistical blind channel estimation methods, the 

deterministic method converges much faster than statistical one. However, the computation 

complexity of deterministic is very high and even become higher as the constellation order of the 

modulator employed at the transmitter increases [117]. Statistical approaches too, do suffer from 

finite data effect when dealing with an extremely short sample sequence [128]. 

 

Because the blind techniques require no training symbols for the channel estimation, the 

techniques are attractive in that they utilize the bandwidth efficiently. However, in general, blind 

channel estimation techniques suffer from others deficiencies. One of these is their requirement of 

a long data record which result in slow convergence rate of the methods, and they also tend to 

become heavier from a computational complexity point of view [74]. Furthermore, the 

techniques, especially the deterministic and the second order statistic approaches, do leave 

indeterminacy in the channel. Besides, the methods are very sensitive to channel order over-

estimation. Lastly, the blind channel estimation methods do require the channel to be time-

invariant, consequently the techniques are always limited to slowly time-varying channels and 

can not be applied to a fast time-varying channel which is peculiar to mobile wireless 

communications Systems.  

 

In the class of semi-blind channel estimation techniques belong the algorithms in [131, 132, 133], 

where superimposed periodic pilot sequences are used to estimate channel coefficients based on 

the first or second order statistics of the channel. In [134] a semi-blind estimation framework is 

analyzed in which the standard least-squares estimator, based on a known pilot sequence, is 

enhanced by using the statistical structure of the observation. Algorithms for semi-blind channel 

estimation for parallel data and training signal case are developed in [135], however in [136], the 

identifiability conditions for blind and semi-blind finite impulse response (FIR) multichannel 

estimation in terms of channel characteristics, length of received data, and excitation modes of 

input symbol, with number of known symbols for semi-blind estimation are investigated. Semi-

blind channel estimation for block precoded space-time OFDM transmissions is presented in 

[137]. In the case of MIMO system, semi-blind channel estimation is considered for MIMO 

channel in [138], while an approach that can learn channel coefficient when a small amount of 

training data area available is proposed in [139] for frequency selective MIMO Systems. An 

orthogonal pilot-based maximum-likelihood (OPML) semi-blind estimation scheme is proposed 

in [140, 141, 142]. In this approach, the channel matrix is factored into the product of a whitening 

matrix and a unitary rotation matrix, the whitening matrix is estimated from the data using a blind 
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algorithm, while the unitary rotation matrix is estimated exclusively from the training data using 

the OPLM algorithm. In [143], comparative study of training based and semi-blind MIMO flat-

fading channel estimation schemes, when the transmitter employs maximum ratio transmission 

(MRT), is carried out. 

 

Despite the fact that semi-blind channel estimation techniques (that exploit the statistics of the 

unknown data, as well as the known pilot signal) are provide better performance than the pilot-

based and blind channel estimation techniques separately [135], the techniques are outperformed 

by the decision directed channel estimation techniques as well as their iterative versions described 

in the following section. In the case where the same number of pilot symbols employed by the 

semi-blind techniques are assigned to the iterative (decision directed) channel estimation 

techniques, the iterative (decision directed) channel estimation techniques will exhibit better 

performance than the semi-blind techniques and far better than the blind and pilot-assisted 

channel estimation techniques. This understanding as well as the knowledge of various 

shortcomings of the approaches described hitherto, informed our drive to focus on the family of 

decision directed channel estimation techniques in this thesis. 

 

2.5.3 Decision Directed Channel Estimation Techniques  

In the Decision Directed Channel Estimation (DDCE) techniques, both the pilot symbols as well 

as the re-modulated detected message symbols are employed for channel estimation [48]. By this 

process, the DDCE schemes provide a more reliable channel estimate than its pilot-assisted 

channel estimation method counterpart. The reason for this is because in the absence of 

transmission errors, DDCE scheme could be viewed as pilot-assisted channel estimation scheme 

that is employing approximately hundred percent pilot information symbols for channel 

estimation in comparison with the purely pilot-assisted scheme with sparse available pilot 

symbols for the same estimation. By using these techniques, the number of pilot symbols being 

used for channel estimation could be drastically reduced. The mode of operation of the DDCE 

techniques is that the initial a posteriori channel transfer function (CTF obtained based on the 

available present received and detected symbols) associated with the current detected symbol is 

estimated on the basis of the pilot symbols and the re-modulated message symbols. This a 

posteriori CTF is then employed as an a priori channel estimate during the demodulation of the 

next symbols received in the next time slot. In these techniques, very few pilot symbols are 

required for the purpose of initializing the estimation process. 
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In [144] van de Beek etal employ both training symbols and quantized decision variable in the 

decision directed channel estimators (Minimum Mean Square Error and Least Square channel 

estimators) proposed for OFDM Systems. In their methods a priori knowledge of noise variance 

and channel covariance is assumed, the assumption that does not hold in real world scenarios. 

Edfords etal in [145, 146] propose a low-rank approximation to the frequency-domain linear 

Minimum Mean Squared Error Estimator (MMSEE) making use of singular value decomposition 

method. The major problem with the approach is that it requires knowledge of the channel 

frequency correlation, which might not be available, and the operating SNR. In [31] a two-

dimensional (2D)-MMSE estimator is proposed for OFDM system which makes full use of the 

time-and frequency-domain correlations of the frequency response of time varying dispersing 

fading channel, and also capitalizes on the availability of an infinite number of previous initial a 

posteriori channel estimates associated with past OFDM symbols. This assumption of utilizing an 

infinite number of initial a posteriori channel estimates associated with the past OFDM symbols 

is quite unrealistic. In [147] the idea in [31, 144] is extended to the case of clustered OFDM 

system where new transforms, that are independent of the channel delay profile, is used for the 

proposed channel estimator. However, in [148] the performance of an adaptive OFDM (AOFDM) 

transceiver that employs decision directed channel estimation and modulation mode adaptation is 

studied. 

 

A decision directed channel estimation method is proposed in [149] for both OFDM and Multi-

Carrier Code Division Multiple Access (MC-CDMA) Systems, where a channel characterized by 

a Sample Spaced Channel Impulse Response (SS-CIR) is assumed. As it is indicated earlier in 

section 2.3.2.2, this assumption is not feasible in a realistic channel conditions. Achievable 

performance of the estimation method proposed in [149] in conjunction with a more realistic 

Fractionally Spaced Channel Impulse Response (FS-CIR) model described in section 2.3.2.2 is 

analyzed in [150]. Recently, a subspace algorithm namely the deflated version of the Projection 

Approximation Subspace Tracking (PASTd) algorithm of [151], and the adaptive Recursive Least 

Square (RLS) predictor of [152], are deployed to implement the decision directed channel 

estimation scheme in [153, 154] for OFDM Systems in a realistic fractionally spaced mobile 

channel scenario. The major drawback with the proposed scheme by the authors in [153, 154] is 

associated with the algorithms deployed. In the case of the PAST algorithm, it is highlighted in 

[151] that the deflation technique applied on PAST algorithm to arrive at PASTd version causes a 

stronger loss of orthonormality between eigenvectors of the transformation matrix utilized in the 

algorithm. Therefore, if there are some post-processing methods that use the signal subspace 
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estimate, from which an orthonormal basis of the signal subspace is required, in order to extract 

the desired signal information, the transformation matrix has to be re-orthonormalized. This of 

course will result in increase of computational complexity. Another shortcoming mentioned in 

[151] is the fact that PASTd algorithm exhibits an increase in computational complexity if the 

number of OFDM subcarriers, K , is much greater than the number of the Fractionally Spaced 

(FS) channel paths M  (i.e. if K M ). Although the RLS converge faster than its Normalized 

Least Mean Square (NLMS) counterpart, it is emphasized in [152] that the coefficient update 

complexity is more costly for RLS-based predictor compared with that for NLMS predictor. This 

obviously will limit the deployment of RLS-based predictor in a real time implementation. In this 

thesis, these two drawbacks are addressed in the proposed decision directed channel estimation 

methods presented in Chapter 4. 

 

In [26] a decision directed channel parameter estimation and optimum training sequences for 

OFDM with multiple transmit antennas is proposed. The method involves the inversion of a large 

matrix in order to decouple the inter-antenna interference. A simplified channel estimator is then 

presented in [155] based on optimum training sequences for OFDM Systems with multiple 

transmit antenna, in order to reduce the complexity involved in the approach of [26]. However, it 

is noted in [155] that the substitution made to reduce the computational complexity of the 

simplified channel estimator proposed may cause some performance degradation. The techniques 

in [26, 155] is extended to MIMO OFDM Systems in [156] where the estimated channel delay 

profile of the various independent channels are exploited for channel parameter estimation. Other 

contribution to the DDCE scheme for MIMO Systems includes the presentation in [157] where 

the application of the RLS algorithm for adaptation of the CIR-related tap predictors‟ coefficient 

in the context of parallel interference cancellation (PIC)-assisted DDCE designed for OFDM 

Systems employing mulitiple transmit antennas is studied. A subspace-based decision directed 

channel estimation employing a modified Low Rank Adaptive Filter (LORAF) 1 algorithm in 

[158] is proposed for MIMO-OFDM system in [159]. Unfortunately it is observed from the 

simulation results presented in [159] that the performance of the proposed subspaced-based 

channel estimator is worse at low SNR, which is explained as due to the subspace tracking error 

caused by strong noise. The PIC-assisted DDCE designed for OFDM Systems that support 

multiple users and employ multiple transmit antennas at base station (BS) is investigated in [160]. 

Recently, the decision directed channel estimation proposed for single antenna-based OFDM 

Systems in [150] is extended to MIMO-OFDM Systems in [161] with the modification made to 

the channel transfer function (CTF) estimator module of the scheme. The CTF estimator module 
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of the DDCE scheme is made up of the complex RLS algorithm that exploits the probability-

related soft information available at the output of the MIMO-OFDM system‟s detector rather than 

the decision-based estimates of the transmitted symbols employed in [150] which are prone to 

decision error and might cause error propagation which will eventually result in substantial 

performance degradation in the case of MIMO-OFDM Systems. 

 

2.5.3.1 Iterative Decision Directed Channel Estimation Techniques  

In the iterative schemes, the channel estimator employs the increasingly refined soft or hard 

symbol information computed by either the detector/equalizer or the decoder and fed back to the 

estimator in order to improve the quality of the channel estimates as the number of iteration 

increases. In the process, the detector/equalizer or the decoder also benefits from the improved 

channel estimates and then outputs better soft or hard symbol information which in turn is fed 

back into the channel estimator. Hence the detector/equalizer or the decoder operates in an 

iterative mode with the channel estimator. If hard symbol information is employed, the channel 

estimator makes use of the hard decided output of either the detector/equalizer or the decoder. 

Such channel estimation schemes are then referred to as hard iterative channel estimation. On the 

other hand, if the soft symbol information is utilized, the channel estimator will use the log-

likelihood ratios (LLR) on the coded bits calculated by either the detector/equalizer or the 

decoder for channel estimation. Similarly, such schemes are referred to as soft iterative channel 

estimation. 

 

The iterative method based on expectation-maximization (EM) algorithm is presented in [162] for 

joint channel parameter estimation and symbol detection. With EM algorithm, the quality of the 

channel estimate is not guaranteed throughout the iteration process. Hard decision from decoder 

is used to refine the channel estimate in the iterative method presented in [163] for coded OFDM 

(COFDM) Systems, while in [164] iterative channel estimation methods is presented, where soft 

and hard decision feedback from equalizer are used separately to improve the channel estimate. It 

is however verified in [164] that soft decision feedback performs about 0.15dB better than hard 

decision feedback, for both channel sounding and least square estimation. The soft statistics in the 

form of a posteriori probability are exploited in [165] to estimate and track the random 

fluctuations occasioned by time division multiple access (TDMA)-based mobile radio links that is 

impaired by time-varying frequency-selective multipath channel. A recursive version of EM 

algorithm employed in [162] is applied to channel estimator proposed in [166]. The performance 

of a coherent COFDM system in the presence of a time-varying frequency-selective fading 
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channel using a predictor-based channel estimator is investigated in [167]. The channel 

estimation method presented is based on a decision directed adaptive technique that uses 

decisions at the output of either the detector or the decoder.  Iterative estimation and decoding of 

turbo codes over fading channels employing both hard and soft feedback from turbo decoder is 

presented in [168, 169]. It is further confirmed from the simulation results presented in [168, 169] 

that channel estimate based on soft decision feedback outperforms its counterpart based on hard 

decision feedback by about 0.5dB. A wireless communication systems receiver based on joint 

iterative channel and data estimation, exploiting both the power of pilot-symbol assisted 

modulation and turbo coding for fading channels, is proposed in [170]. However in [171] the 

iterative channel similar to the one considered in [164] is proposed for fast fading GSM (Global 

System for Mobile) channel with feedback from decoder rather than from the equalizer. However, 

as expected, the performance in this case is better than when the feedback is obtained from the 

equalizer. The reason for this is due to the fact that the feedback from the decoder has been 

further  refined after leaving the equalizer stage, and it is lower in error in comparison with the 

feedback from the equalizer as a result of the decoding process.  A receiver that performs joint 

channel estimation and turbo decoding, where the two processes benefit from each other, is 

presented in [172]. An iterative channel estimator based on EM algorithm as well as an estimator 

based on bootstrap process using linear pseudo-inverse are presented in [173]. Iterative soft serial 

interference cancellation (SIC) algorithm for joint data detection and channel parameter 

estimation based on soft-in soft-out single user decoders and soft interference cancellation is 

presented in [174], while joint channel estimation and decoding approach is presented in [175]. A 

new way of initial estimation of amplitudes of fading channel with delayed turbo decoding 

initialization is proposed in the iterative channel estimation technique presented in [176], while 

iterative channel estimation is invoked in [177] to design a trellis-based turbo equalizer. In the 

iterative scheme proposed in [178] channel estimation, signal detection, decoding, and 

retransmission are achieved in a disjoint iterative mode. In the papers, hard decision rather than 

soft decision is fedback from decoder to the estimator. Two different iterative channel estimators 

for mobile OFDM Systems, the first one based on iterative filtering and decoding while the 

second one uses an a posteriori probability, are investigated in [179]. The two estimators are said 

to perform equally at low to moderate Doppler frequency shifts, however the second estimator 

outperformed the first one for a channel with very large Doppler frequency shifts. An EM sub-

optimal two-step iterative channel estimation and decoding algorithm using some approximations 

is proposed in [180], whereas in [181] the application of the iterative channel estimation and 

coherent detection is proposed for implementation of the Direct Sequence Ultra Wideband (DS 
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UWB) technology. Iterative channel estimation technique proposed in [169] is extended to the 

case of frequency selective fading channels in [182]. 

 

Four different algorithms-based iterative channel estimators, the least mean square (LMS), 

recursive least square (RLS), the modified RLS, and the Kalman-based algorithms, are compared 

in [183, 184]. In these papers both hard and soft decision feedback from decoder are considered. 

The results from the papers further confirmed that the estimation with soft decision generally 

performs better than the one with hard decision feedback. The authors observed that though LMS 

shows slow convergence during the initial training sequence, it however performs well in the 

remainder of the frame. Besides, while using soft feedback from decoder, LMS performs only 

slightly worse than modified RLS and much better than ordinary RLS using soft or hard 

decisions. In addition, the authors in the papers concluded that by using soft feedback for iterative 

estimation, the LMS-based estimator is always close to the best performing estimator among 

those employed. Hence, since the LMS algorithm is the simplest algorithm, it is suggested by the 

authors that LMS with soft feedback should be used for iterative channel estimation. 

 

Despite the fast convergence of the RLS algorithm, according to the authors in [183, 184], its 

deployment in the real-time implementation is to be avoided because of its costly computational 

complexity. Because of the limitation of the RLS algorithms and the performance exhibits by 

LMS algorithm as confirmed in [183, 184], in Chapter 3 of this thesis we seek to develop an 

improved version of LMS-based iterative channel estimator that will take care of the slow 

convergence of the LMS algorithm  and brings about improvement on its performance. 

 

An iterative channel estimation technique that exploits coding gain to achieve a channel 

estimation that yields an overall system performance is proposed in [185] for mobile fourth 

generation coherent OFDM Systems. In [186] soft input weighted recursive least square error 

estimator and  soft input Kalman channel estimator (obtained by restructuring the channel 

estimation problem of one of the Kalman state estimation, revealing the soft information from the 

decoding process, into the statistical description of the channel) are proposed. Non-data 

maximum likelihood channel estimation is improved in [187] by using convolutional encoder at 

the transmitter and a soft-input soft-output decoder that works iteratively with channel estimator 

at the receiver. Local linear and parabolic B-splines are applied in [188] for iterative channel 

estimation over fast flat fading channels, while in [189] a method to measure the channel statistics 

and operating signal-to-noise-ratio (SNR) from the received signal is proposed for iterative 
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detection in OFDM Systems. Pilot-symbol-aided iterative channel estimation method for coded 

OFDM-based Systems is considered in [190] by using the least-squares (LS) technique with 

discrete Fourier transform (DFT)-based interpolation in the frequency domain and linear 

interpolation in the time domain. Virtual pilots are formed from the a posteriori probability 

(APP) provided by the channel decoder. Iterative coded OFDM is investigated in [191] where the 

reliability of the soft symbols is improved by feeding back a posteriori log-likelihood ratio values 

(LLR-values) instead of extrinsic LLR-values to the channel estimator. Recently, an iterative 

detector comprises Turbo decoder and a channel estimator is proposed for OFDM Systems in 

[192]. As usual, the proposed modules operate in an iterative mode during which they exchange 

soft information with one another. In [193], a channel estimation method for OFDM Systems in 

fast fading channel scenario is proposed, while sliding window approach is used to compensate 

the inter-carrier interference (ICI) terms for pilot tones. An adaptive soft-based multiple burst 

maximum-likelihood (MB-ML) technique is presented [194] for channel estimation in turbo 

receiver. In the presented technique, a priori information on the coded bits available at the 

iterative receiver is exploited while employing a subspace tracking approach with the aim of 

reducing the computational complexity of the eigenvalue decomposition (EVD) as well as 

improving the tracking performance in a scenario where the multipath pattern gradually changes 

over the time. In [195] an iterative channel estimation, equalization, and decoding scheme for 

pilot symbol assisted transmission over a frequency selective Rayleigh fading channel is 

proposed. The scheme employed a channel estimator that is separated from equalizer soft-input 

soft-output module similar to the type presented in [183, 184]. Significant performance 

improvement is observed for the scheme with iteration as opposed to its non-iterative counterpart. 

Specifically, it is observed in the paper that there is performance degradation of about 2.7dB for 

slower fade rate and 5.7dB for the faster fade rate compared with the iterative channel estimator 

at a BER of 10
-3

. 

 

Channel matrix of a MIMO channel is estimated with the aid of soft decision from a Turbo 

decoder in the proposed pilot aided joint channel estimation and data detection method for MIMO 

communication Systems presented in [196]. An iterative method for decision directed channel 

estimation for OFDM is presented in [197], where its application to joint channel estimation and 

data decoding for space time coded system is illustrated. Similarly, in [198] iterative equalization 

algorithm is proposed for frequency selective MIMO channels, in which the proposed algorithm 

works jointly with the iterative estimator. In [199] joint channel estimation and data detection is 

proposed. A joint iterative channel estimation scheme is proposed in [200] for mitigating the 
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effect of multiple-access interference and multipath channel distortion on the space-time 

multiuser detector. Adaptive filtering-based iterative channel estimation techniques using hard 

decisions are proposed in [201] where it is concluded that the LMS estimator is a reasonable 

choice in terms of computational efficiency, with a minimum performance loss gain compared 

with RLS and the Kalman filter (KF) estimators. This conclusion still reinforce our drive to avoid 

the use of the more complex RLS algorithm in the various channel estimation schemes proposed 

in this thesis, but rather put forward with a more efficient version of the LMS algorithm with a 

negligible higher computational complexity compared with the LMS algorithm. In [202] an 

iterative channel estimation method for the space time block coded (STBC) OFDM system with 

cyclic prefix reconstruction is proposed, while in [203] an iterative joint channel estimation and 

signal detection approach is proposed for MIMO-OFDM system. An iterative channel estimation 

algorithm based on time domain filtering, and which can iteratively reduce the multi antenna sub-

channel interference and the effect of additive white Gaussian noise (AWGN) is proposed in 

[204]. 

 

In [205] a turbo MIMO-OFDM receiver that is made up of a soft-feedback decision directed 

MIMO channel estimator, a soft-input-soft-output space-time detector and a soft-input-soft-output 

parallel-concatenated turbo decoder is proposed. These three components of the receiver 

iteratively exchange soft bit related information over a number of iterations. The soft-feedback 

decision directed MIMO channel estimator that is made up of the same decision directed channel 

estimation method is proposed by the authors in [153, 154] except that the CTF estimator is based 

on the RLS algorithm used by the authors in [183, 188]. As such, the soft-feedback decision 

directed MIMO channel estimator comprises RLS-based CTF estimator, PASTd-based CIR 

estimator and RLS-based CIR predictor. Recently in 2009, comparative results are also presented 

in [206] for soft-feedback iterative DDCE scheme using the structures in [161, 205] with Turbo 

codes and Low Density Parity Check (LDPC) codes as the channel error-correcting coding 

scheme.  It is obvious, based on the drawbacks with the use of the RLS algorithm and the PASTd 

subspace tracking algorithm, as a result of their complexity that has earlier been mentioned, that 

the proposed soft-feedback decision directed MIMO channel estimator will be so complex that it 

can not be practically implemented. Hence in this thesis, a less complex decision directed channel 

estimation and iterative decision directed channel estimation techniques for SISO-OFDM 

Systems are presented in Chapter 4 and 5 respectively. The iterative decision directed channel 

estimation technique of Chapter 5 is extended to the case of MIMO-OFDM Systems in Chapter 6. 

The authors in [205] with another author, also proposed a Generic Algorithm (GA) assisted 
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iterative joint channel estimation and multi-user detection approach in [207] for multi-user 

MIMO Space Division Multiple Access (SDMA)-OFDM Systems in a bid to resolve the problem 

associated with the rank-deficient scenarios (a situation where the number of users are higher than 

the number of receive antennas). Lastly, an iterative receiver for MIMO-OFDM system with joint 

intercarrier interference (ICI) cancellation and channel estimation is presented in [208]. The 

authors concluded, based on their simulation results, that for mobile transmission scenarios the 

proposed method can effectively compensate the effect of intercarrier interference. 

 

2.6 Chapter Summary 

In this Chapter, multipath channel impulse response (CIR) models for both SISO and MIMO 

Systems are presented. The statistics of the channel impulse response model in terms of the 

correlation function and power delay profile are described and their expressions given. Examples 

of different commonly used power delay profile for COST 207 are also tabulated. Discrete time 

channel models including the Symbol (Sample)-Spaced Channel Impulse Response (SS-CIR) and 

the Fractionally-Spaced Channel Impulse Response (FS-CIR) models employed in the subsequent 

chapters of this thesis are presented. Thereafter, overviews of the three main types of channel 

estimation techniques, namely the pilot-aided channel estimation, blind channel estimation and 

decision directed channel estimation techniques are presented, while the various shortcomings 

associated with these methods are discussed. 

 

Based on the various shortcomings associated with the blind and purely pilot-based channel 

estimation schemes, as observed in the review carried out in this chapter, the subsequent chapters, 

except chapter 3, focus on the family of decision directed channel estimation technique. Chapter 3 

exploits pilot-based channel estimation technique in an iterative mode in order to document the 

comparative performances of the proposed algorithms to be used in the subsequent chapters. 
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CHAPTER 3 

 

CHANNEL ESTIMATION FOR SINGLE ANTENNA 

COMMUNICATION SYSTEMS 
 

3.1 Introduction 

 
 

This chapter focuses on channel estimation for single antenna communication Systems. 

Specifically, soft input based iterative channel estimation is proposed for turbo equalization over 

frequency selective fading channel of single antenna communication Systems. Robust algorithms 

for implementation of the channel estimation scheme are proposed, and the comparative results 

with other algorithms in the literature are presented. The specific purpose of this chapter is to 

document the achievable performance of the proposed algorithms which are used in the 

subsequent chapters for implementation of decision directed channel estimation schemes. 

 

The rest of this chapter is organized as follows. Soft input based iterative channel estimation is 

introduced in Section 3.2. Section 3.3 describes the system model employed in this chapter. The 

proposed soft input channel estimation algorithms are presented in Section 3.4, while comparative 

simulation results and discussion are given in Section 3.5. Computational complexity of the 

proposed algorithms in comparison with some others is presented in Section 3.6. Section 3.7 

summarized the chapter. 

 

3.2  Soft input based Iterative Channel Estimation 

 

Emergence of Turbo code through the novel contribution of Berrou et al [209, 210] opens the 

gate to iterative processing techniques in communication Systems. This has been extended to 

equalization, synchronization, and channel estimation in conjunction with forward error 
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correcting code in various communication Systems. In a single antenna communication system, 

an equalizer is employed, basically, to reduce the effect of inter-symbol interference occasioned 

by multipath activities in the communication channel. However, the equalizer depends on 

accurate channel state information provided by channel estimate for its optimum performance. 

Among the different types of equalizers is the Turbo equalization scheme based on finite impulse 

response (FIR) filter proposed by Tuchler et al. [211, 212]. This equalization-based receiver 

jointly performs an iterative process between the equalizer and the decoder whereby both the 

equalizer and the decoder, exchange soft information in the form of log-likelihood ratios (LLR) 

on the code bits during the iterative cycle. In [183, 184] channel estimations scheme based on 

some adaptive algorithms are proposed for Turbo equalization. The estimator works in an 

iterative mode with both turbo equalizer and Turbo decoder. During the course of iteration, the 

quality of the channel estimation can be improved as the number of iterations increases. This 

requires that the channel estimator be fed with the feedback information from the decoder. This 

requirement will lead to either the hard decision or soft decision information on the code bits 

being feedback, as input reference signal, to the channel estimator. This will then result in either 

hard or soft iterative channel estimation scheme. Both hard and soft input based iterative channel 

estimators have been proposed in literatures, however it is established in [164, 183, 184] that 

estimation with soft input information generally performs better than estimation with hard 

decision input information. 

 

Different types of adaptive algorithms have been proposed over the years for the purpose of 

updating the channel estimates used by Turbo equalizer for detection of the transmitted symbols 

at every symbol interval. Examples of these are the simple least mean square (LMS) algorithm 

and the more complex recursive least squares (RLS) algorithm.  Simulation results are presented 

in [183, 184] in order to document comparative performance of LMS and RLS based soft input 

iterative channel estimator alongside estimators based on the modified version of RLS, modified 

RLS and approximated modified RLS algorithms (APRmodRLS). It is concluded that though 

LMS shows slowest convergence during the initial training sequence using soft feedback, its 

performance is close to the best performing algorithm of all the algorithms employed. Since LMS 

is the simplest algorithm, it is proposed, based on the results obtained, that LMS is to be used for 

iterative channel estimation while employing soft information feedback from decoder/equalizer. 

It is based on this conclusion that improved versions of LMS, variable step size Normalized LMS 

(VSSNLMS) and multiple-variable step size Normalized LMS (MVSSNLMS) algorithms, are 
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derived and  proposed for implementation of soft input iterative channel estimation for Turbo 

equalization in single antenna communication Systems in this chapter. 

 

 

3.3 System Model 

 
Figure 3.1 shows the block diagram of the system model considered in this chapter. At the 

transmitter end of the system, binary source bits, bp {1, 0} are encoded with the aid of a channel 

encoder. The output bits of the encoder, ck {1, 0}, are intearleaved to ck
’
 {1, 0} by employing 

a channel interleaver. The interleaved code bits are thereafter mapped to M-ary signal 

constellation. Sequences of pilot symbol tn, known at the receiver, are multiplexed with the 

modulated message symbols. The multiplexed stream of symbols is then transmitted over an M-

tap frequency selective Rayleigh fading channel. 
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Figure 3.1 System model employing turbo equalizer-based receiver with soft input-based         

iterative channel estimator [184]  
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3.3.1  Channel Interleaver 

This is a simple single input single output mechanism that takes symbols from a fixed alphabet as 

input and produces an identical set of symbols at the output in an altered temporary order [213]. 

Invariably, interleaver acts to shuffle the order of a sequence of symbols. Traditionally, 

interleaving is used to “randomize” the locations of errors caused by busty (correlative) channels, 

which in turn improves the performance of classic block and convolutional coding schemes 

designed and optimized for non-correlative channels, such as the Additive white Gaussian noise 

(AWGN) channel. With iteratively decoded concatenated coding schemes like Turbo code, 

interleavers are used mainly to decrease the correlation between the information encoded by 

different convolutional codes (CCs) encoders in the Turbo code, thereby improving the distance 

properties of the resultant concatenated code. 

 

The implementable interleavers can be divided into two categories: Deterministic and Random 

interleavers. In the class of deterministic interleavers are the classic block interleavers, Berrou-

Glavieux interleavers and Jet Propulsion Laboratory (JPL) interleavers. Pseudo-random (PN) 

generator interleavers, random number generator interleavers and semi-random(s-random) 

interleavers constitute the random interleavers [213]. Due to its efficiency, a type of the random 

interleavers (random number generator interleaver) is employed in the simulation work in this 

chapter and the subsequent chapters. 

 

3.3.2  Random Block Interleaver  

A Random interleaver can be described as a block interleaver with a mapping function generated 

from a permutation, based on the outputs of a random noise source [213]. The basic idea behind 

the design of random block interleavers is to eliminate regular pattern of the input signal bit 

sequence, resulting in extremely long interleaver periods.  

 
In the whole of this thesis, random number generator described in the following is employed. 

Using any type of uniform number generator, a period N random number generator interleaver‟s 

mapping function is determined as follow [213]. 

1. N random numbers are generated. These numbers are stored in a length-N vector, 

denoted by  0 1 1, ,..., NU U UU . 

2. The elements contained in U  are re-ordered to range from the smallest to the largest 

value. The result is stored in a length-N vector, denoted by 0 1 1, ,..., NV VU VV . 
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3. For every i, with 0 i N , the index j is determined such that i iU V . The mapping 

function of the interleaver is then simply represented as ( )i j . 

 

 

3.3.3  Channel Model 

Since the purpose of this chapter is to document the achievable performance of the proposed 

algorithms ,in comparison with the ones put forward by the authors in [184], which are used in 

the subsequent chapters for implementation of decision directed channel estimation schemes, the 

symbol space channel model used in [184] is employed in this chapter. The Channel impulse 

response (CIR), including transmitter and receiver filters, is modeled as a symbol-spaced time-

varying linear filter ,0 ,1 , 1, ,...,
T

n n n n Mh h hh  as described in Chapter 2, with length M. Each of 

,n ih  are mutually independent Rayleigh fading taps with a Gaussian Doppler spectrum [214], 

where the fading rate is defined as the value of the Doppler spectrum. The tap energies are equal 

and normalized to yield 1H

n nE h h , where superscript „H‟ stands for Hermitian (conjugate 

transpose). The noise 
nw  are real value of zero mean white Gaussian noise with variance 

2
0w N . 

 

The Rayleigh fading taps are modeled by employing Watterson Channel model of [214]. The 

Watterson Channel model views the radio frequency (RF) channel as a transversal filter where the 

taps are complex and vary with time. The time-varying taps, ,n ih , can be obtained by filtering 

complex additive white Gaussian noise (AWGN) with filters whose frequency-domain power 

spectra have a Gaussian shape. The Doppler spread id of interest is indirectly incorporated into 

the filter by ensuring that the standard deviation i of each Gaussian-shaped power spectrum  is 

set to 
2

id
[214]. In equation form the amplitude of the filter taps in frequency domain is given 

by [214]:  

2 22 /
2

( )
2

2

if d

i f

i

e
H

d
      , f .            (3.1) 

A time domain expression for the amplitude of the filter taps can be obtained by computing the 

Inverse Fourier Transform of (3.1) which gives: 
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2 2 2

( ) 2 it d

ih t e               (3.2) 

The resulting time-domain equation has a Gaussian shape. However, in order to ensure a power 

gain of one the taps computed using (3.2) have to be normalized. 

 

3.3.4  System Receiver 

At the system receiver, the received distorted and noise corrupted signal 
nz  is given as  

T
n n nnz w h x ,                         (3.3)  

where 
,0 ,1 , 1

, ,...,
T

n n n n Mh h hh is the length M time-varying discrete-time CIR, 

1
,...,

T

n n n Mx xx , and 
nw  are as described above. Iterations are performed between three 

soft input based devices: the turbo equalizer, the turbo decoder, and the soft input iterative 

channel estimator.  The sequence of pilot symbols is used to aid the channel estimation process. 

In the first equalization and decoding iteration, the channel estimates are derived from the pilot 

symbols only. However, they are mostly not accurate enough due to the small number of pilot 

symbols multiplexed with the message symbols at the transmitter end of the system. Hence, this 

will result in error propagation in the system. The pilot symbols are usually made to be few in 

numbers because on their own, they waste transmission bandwidth power. Immediately after the 

first iteration, when the soft decision from the decoder is available, the estimation can be refined, 

since to some degree, all the data symbols can be treated as pilot symbols. In this way, the whole 

receiver: the estimator, the equalizer and the decoder work in a fully iterative way and the overall 

performance is expected to improve as the number of iterations increase. The turbo decoder uses 

the deinterleaved extrinsic log-likelihood ratios (LLRs), '( )E
e kL c , from the equalizer to estimate 

the transmitted data bits and also calculate the extrinsic LLRs '( )D
e kL c  for the equalizer and the 

channel estimator to be used in the subsequent iterations. In addition, the decoder produces 

estimate ˆ
pb of the transmitted messaged bits 

pb . 

 

3.3.5  Computation of Mean and Variance of the Message Symbols  

From the code bit LLRs ( )D
e kL c fedback from the decoder, the mean '{ }n n

y E y  and the variance 

'n
yv  of each transmitted message symbol ny  is calculated respectively as: 

n ny E y  
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      = .Pr{ }n
s S

s y s ,                   (3.4) 

' { , }
n

n ny
v Cov y y  

        ' ' * *
n n n nE y y y y  

        = * *.Pr n n n

s S

ss y s y y ,                     (3.5) 

where S is the vector of symbols in the M-ary signal constellation. The symbol probabilities 

Pr[ ]in
sy  are calculated from the code bit probabilities Pr[ 0,1]kc which are given by the input 

LLRs [212] as 

( )1
Pr[ 1] 1 tanh

2 2

k
k

L c
c   ,                          (3.6) 

and 

( )1
Pr[ 0] 1 tanh

2 2

k
k

L c
c   .                            (3.7) 

In the case where S is from M-phase shift keying (M-PSK) constellation, we have * 1i is s  for 

all is S , such that (3.5) simplifies to '
*1

n
n ny

v y y . By using 8-PSK constellation, we have by 

following [212]  

,tanh( ( ) / 2)j n jl L C  , for j = 1, 2, 3.                                             (3.8) 

Consequently, (3.4) becomes 

1 2 3 1 2((1 2) 1) / 4 (1 2 ) / 4 .((1 2 ) / 4 (1 ( 2 1) ) / 4 )ny i l i l l i l i l ,      (3.9)    

while (3.6), by taking pilot symbols into consideration, becomes 

 '
2

1
n

ny
v x .                                            (3.10) 

Using the statistics ny and '
ny

v , the transmitted symbols 
nx  is written as: 

n nn
xx ,                                            (3.11) 

where n  is a discrete-valued noise variable (having Gaussian distribution) with variance 

*{ , }n n nE v and zero mean. During the period that the message symbols ny   have been 

transmitted, the mean n nx y , and variance '
n

n y
v v . However, when pilot symbols nt  have been 

transmitted, the mean n nx t . This implies that there is a perfect a priori information about the 

symbols, and * 1n ny y . Hence, from '
*1

n
n ny

v y y , variance 0nv .  
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3.4 Proposed Soft Input Channel Estimation Algorithms 

 

The soft input channel estimator provides time-varying channel estimates of CIR n̂h  as well as 

estimated noise variance 2 2 2 2
, ,0 ,1 ,

, ,...,ˆ ˆ ˆ ˆw n w w w n
 at each time step n to be used by the turbo 

equalizer. Two improved version of the LMS algorithm employed in [183] are proposed herein 

for the updating of the CIR. These are derived in the following sections. 

 

3.4.1  Variable Step Size Normalized Least Mean Square Algorithm 

The LMS algorithm [215] is given more attention in real-time applications because it exhibits a 

good balance between computational cost and performance. This is the reason why it is suggested 

in [183], based on the simulation results presented, that the LMS rather than RLS algorithm 

should be used for updating the channel estimate at every symbol interval for communication 

receivers because its structure is less complex.  However, a very serious problem associated with 

the LMS and its improved version, Normalized LMS algorithms is the choice of the step-size ( ) 

parameters which is responsible for the rate of convergence as well as the obtainable excess mean 

square error associated with the algorithms.  

 

With the LMS algorithm, the CIR is updated as 

1
ˆ ˆ
n n ne nh h x ,               (3.12) 

where ne  is the error signal while using the soft symbol nx  for channel estimation. This error 

signal ne  is given as [183] 

ˆT
n n ne z nh x .                 (3.13) 

By employing the LMS algorithm as given above, the correction n ne x  applied to the CIR 

vector ˆ
nh  at the (n+1) time index is directly proportional to the input soft symbol   vector nx . 

Consequently, when nx  is large, the LMS algorithm experiences a gradient noise amplification 

problem [215]. In order to overcome this difficulty, the correction that is applied to the CIR 

vector ˆ
nh  at next time index (n+1) is normalized with respect to the squared Euclidean norm of 

the input soft symbol vector nx  at the present time index n in order to obtain the NLMS algorithm 

for updating of CIR given as 

1 2
ˆ ˆ n
n n n

n

e
x

h h
x

,                (3.14) 
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where 
2

nx  denotes the square of Euclidean norm of the input vector nx  . A small value of step 

size  in (3.12) and (3.14) will ensure small misadjustments in the steady state, but the algorithms 

will converge slowly and may not track the nonstationary behaviour of the operating environment 

very well. On the other hand, a large value of    will, in general, provide faster convergence and 

better tracking capabilities at the cost of higher misadjustment. Any selection of the step-size 

must therefore be a trade-off between the steady-state misadjustment and the speed of adaptation. 

The idea of variable step size is to ensure that the proposed variable step size normalized least 

mean square (VSSNLMS) algorithm detects the rate at which the optimal coefficients of the 

channel are changing, during both slow and fast fading channel scenarios, and select the best 

value   that can result in estimates that are close to the best possible one in terms of mean square 

error.  

 

Since the NLMS algorithm exhibits a better performance than LMS algorithm due to the 

normalization introduced into the algorithm [215], VSSNLMS algorithm [17] is therefore 

obtained for NLMS algorithm and it updates the CIR as 

 

1 2
ˆ ˆ n
n n n n

n

e
x

h h
x

.             (3.15) 

The variable step-size expression for the VSSNLMS algorithm proposed for updating the channel 

estimate of CIR in this chapter is obtained by extending the approach used in [216, 217]. This is 

achieved by adapting the step-size sequence using a gradient descent algorithm so as to reduce 

the squared-estimation error at each time index. The variable step-size n  is then updated as: 

2

1
1

ˆ
2

n
n n

n

e
 

      
2

1
1

ˆ
.

ˆ2

T
n n

n
nn

e h

h
 

     1
1 2

n n
n

e e T
n n-1

n-1

x x

x
.                     (3.16) 

Symbol  in (3.16) is a small positive constant that controls the adaptive behavior of the step-size 

sequence n . Deriving conditions on , so that convergence of the adaptive system can be 

guaranteed appears to be very difficult. However, the initial convergence speed of the VSSNLMS 

algorithm will be insensitive to the choice of  if it is chosen to be very small in comparison with 
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the initial value of n [17]. Hence, the convergence of the algorithm can be guaranteed by 

restricting n  to always stay within the range that would ensure convergence as stipulated for 

LMS and NLMS algorithms [215, 218]. Therefore, the step-size obtained from (3.16) would not 

be used for updating of the channel estimate at any particular time index if it falls outside the 

values that guarantee convergence of the NLMS algorithm. Consequently, the step-size sequence 

n  will be restricted to within the range 0 2n , the limit within which convergence of the 

NLMS algorithm is guaranteed as analyzed in [218]. The limit for the variable step size n , in 

order to make for convergence of the VSSNLMS algorithms-based channel estimator, is given as 

follows   

max max

min min

ˆ

ˆ

ˆ

n

n n

n

if

if

otherwise

                              (3.17) 

where min max0 2 . 

 

3.4.2  Multiple-Variable Step Size Normalized Least Mean Square Algorithm 

The multiple-VSSNLMS algorithm proposed herein is similar to the VSSNLMS algorithm of 

section 3.4.1 except that instead of using a single variable step-size for updating the channel 

estimate of CIR vector, ˆ
nh , each of ,0 ,1 , 1

ˆ ˆ ˆ, ,...,n n n Mh h h  is updated with a unique variable step-size 

resulting in multiple-VSSNLMS algorithm. As a result, the variable step-size n  in (3.15) 

becomes a vector given as ,0 , 1,...,
T

n n n M  . Thus, multiple-VSSNLMS algorithm is M-

time more complex than VSSNLMS algorithm. The multiple variable step size vector is similarly 

obtained as: 

1
1 2

ˆ ˆ n n
n n

e e T
n n-1

n-1

x x

x
.                                 (3.18) 

In the same way as the case of single variable step size of section 3.4.1, each of the variable step-

size, ,n m  (for m = 0… M-1) in the multiple-variable step size vector n  is restricted to within 

the range as given in (3.17).  

3.5 Simulation Results and Discussion  

 

In this section two set of simulations are carried out in order to validate the performance of the 

proposed algorithms for soft input channel estimation. In the first round of simulation, the 
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simulation set up is similar to the one used in [183, 184], and is based on the system model of 

Figure 3.1. Blocks of data bit bp {1, 0} are generated randomly and encoded with rate ½ (2, 1, 

4) Convolutional codes encoder. The encoder output bits, ck {+1, -1}, are intearleaved to ck
’
 

{1, 0} using a random-interleaver. Interleaved code bits are then mapped to message symbols yn 

using Gray-coded 8-PSK signal constellation S. Pilot symbols tn are generated also from a Gray 

coded 8-PSK by mapping random generated bits to tn. The message symbols yn and the pilot 

symbols tn are multiplexed into frames, where a frame consists of 160 initial pilot symbols 

followed by three sequences of 150 message symbols and 30 pilot symbols. The energy Es per 

transmitted symbol xn is one. The symbols xn are transmitted over a time-varying ISI channel of 

length M’ =6. ,i nh are mutually independent Rayleigh fading taps with a Gaussian Doppler 

spectrum modeled according to [16], where the fading rate fd is defined as the 2  value of the 

Doppler spectrum. The tap energies are made equal and normalized to yield 1H
n nE h h . The 

noise nw  has variance 2
0w N . At the receiver end, the LLRs ( )D

e kL c  fed back from the decoder 

are modeled as independent real Gaussian random variables with average value 2
k Lc  and 

variance 2
L  .This is a common model for the LLRs produced by a decoder during iterative 

decoding [164], and the actual distribution of LLRs is computed directly from bits transmitted 

over a simple AWGN channel. The value of 0L  corresponds to poor soft information, all 

( )D
e kL c are 0, and an increasing L corresponds to more and more reliable soft information. 

 

At this stage of the simulation, one of the proposed algorithms for implementation of the soft 

iterative channel estimation scheme, the VSSNLMS algorithm and those in [183, 184] have been 

used to generate a time-varying channel estimate ˆ
nh  of length M = M’+2 = 8 (to account for the 

fact that M’ is not known in reality) and the error signal ne  has been recorded. In total, 10,000 

frames have been simulated in order to estimate the (ensemble) error variance 2 *
,e n n nE e e  at 

each symbol interval. The parameters bp, nh , tn, and L(ck) are randomly different for each frame. 

For all the algorithms, the variance 2
,ˆw n  is obtained as 2 2 *

, ,ˆw n e n n nE e e .  Forgetting factor, 

 =1+ 0 is used for RLS and the APRmodRLS algorithms while 0 is used for LMS and to 

initialize VSSNLMS algorithms.  In addition to the (ensemble) error variance and the bit error 

rate (BER) used as performance index for the channel estimation algorithms, the mean-squared 

error of the channel estimator is also obtained, at this stage of the simulation work, in order to 
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establish the performance of VSSNLMS algorithm in comparison with the other three algorithms. 

The Normalized Mean-Squared Error (NMSE) used is given as [168] 

2

2

ˆ
n nn

nn

E

NMSE
E

h h

h
,                  (3.19) 

while 

2
ˆ

n nn
MSE E h h .                        (3.20) 

  

 In order to obtain the Normalized MSE, accurate tracking of channel length is assumed and a 

singular frame is considered. Figures 3.2, Figure 3.3, Figure 3.4 and Figure 3.5 show convergence 

of the algorithms as well as the variation of the ensemble error variance, 2
e  throughout the 

frame. Significant decreases in ensemble error 2
e  with time are observed when the pilot symbols 

are used for estimation whereas it increases when soft message symbols are used. From the plots 

it could be seen that RLS based channel estimator show best convergence and it is followed 

closely by the proposed VSSNLMS based channel estimator. The LMS based channel estimator 

show poor performance among the algorithms compared. On the order hand, RLS exhibit the best 

performance in the steady state region of the plots, while the performances of both the 

VSSNLMS and APRmodRLS based channel estimators are close to each other. The LMS based 

channel estimator also show poor performance in the steady state region. However, it is observed 

that the results of error variances of Figure 3.2 to Figure 3.5 are slightly larger than those 

presented in [184]. The slight difference might be associated with the fact that there are 

differences in the simulation approaches presented in this Chapter in comparison with that of 

[184]. In [184], yn and tn are generated randomly, there is no encoding and interleaving processes. 

Conversely, in this Chapter, blocks of data bit bp are encoded, interleaved before being 

multiplexed with tn. Figures 3.6 and Figure 3.7 show the Normalized MSE and corresponding 

MSE for these algorithms. In the aggregate, it is obvious from the simulation results that the 

performance of VSSNLMS-based channel estimation algorithm is far better than those of the 

APRmodRLS algorithm and the LMS algorithm proposed for soft input channel estimation in 

[183, 184] and close to that of RLS-based channel estimator. The reason for this could be 

associated to that fact that the modified RLS (APRmodRLS) algorithm reduces to LMS algorithm 

while using soft symbols for channel estimation as stated in [184]. 
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Figure 3.2 Simulated ensemble error variance   for the channel estimation algorithms, at 

each symbol interval n in a frame of pilot and message symbols. Simulation setup: Es/N0 = 10 

dB; =0.02, L =1, fD /fs =1/2400 (slow fading channel), and =0.98.  
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Figure 3.3 Simulated ensemble error variance   for the channel estimation algorithms, at 

each symbol interval n in a frame of pilot and message symbols. Simulation setup: Es/N0  = 10 

dB; =0.02, L==3, fD /fs =1/2400 (slow fading channel),  and =0.98.  
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Figure 3.4 Simulated ensemble error variance   for the channel estimation algorithms, at 

each symbol interval n in a frame of pilot and message symbols. Simulation setup: Es/N0  = 10 

dB; =0.02, L =1, fD /fs =5/2400 (fast fading channel), and =0.95.  
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Figure 3.5 Simulated ensemble error variance   for the channel estimation algorithms, at 

each symbol interval n in a frame of pilot and message symbols. Simulation setup: Es/N0  = 10 

dB; =0.02, L =3, fD /fs =5/2400 (fast fading channel), and =0.95.  
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Figure 3.6 Normalized MSE for the channel estimation algorithms, at each Es/N0 in a frame 

of  pilot and message  symbols. Simulation setup: =0.02, L =1, fD /fs =1/2400, and =0.98.  
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Figure 3.7 MSE for the channel estimation algorithms, at each Es/N0 in a frame of pilot and 

message symbols. Simulation setup: =0.02, L =1,  fD /fs =1/2400, and =0.98.  

 

In the second phase of the simulation work, a rate 1/3, 16 state, 512 data bit turbo code with 

generator matrix (031,027) is employed to encode blocks of data bit bp {+1, -1}. The encoder 

output bits , ck {+1, -1} are interleaved to ck
’
 {+1, -1} and then modulated with BPSK 

modulator to yn. Random interleavers are used in the turbo encoder and as channel interleavers. 

Sequences of 15 known pilot symbols, tn, obtained by mapping randomly generated bits to BPSK 

are regularly inserted into the frames, with 64 data symbols between each pilot sequence. The 

pilot symbols are used to aid the channel estimation process. They are also used by the equalizer 

as a priori information during the first-time equalization. The symbols nx  are transmitted over a 

time-varying ISI channel. The time-varying frequency-selective Rayleigh fading channel, 
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,0 ,1 , 1
, ,...,

T

n n n n Mh h hh of length M = 4 is generated employing Rayleigh fading simulator 

presented in [219]. The tap energies of the CIR are made equal and normalized to 

yield 1H

n nE h h . The 
nw  are real valued samples of zero-mean white Gaussian noise with 

variance
2

0w N . The receiver, in this case, performs turbo equalization using the turbo 

equalizer structure of Figure 3.8 that is based on MMSE criterion and time recursive update 

algorithm derived by authors in [211, 212] for a time-invariant channel and re-derived by authors 

in [220] for a time-varying communication channel. The filter length of the linear SISO equalizer 

is N = (N1 + N2 +1) = 11, where N1 =7 and N2 = 3. This ensures that the transmitted symbols nx  

starts with a preamble of at least N+M   pilot   symbols   known   to   the   receiver in order to 

bootstrap the time-recursive update algorithm of the equalizer [211, 212]. During the first-time 

equalization, the known pilot symbols are used as input to the channel estimator and the channel 

estimates are kept constant between the pilot sequences. In the subsequent iterations, the pilot 

symbols and the soft symbols, ( )D
e kL c , feedback from the decoder are used to calculate both 

nx  

 

 

Figure 3.8 Receiver block diagram using soft-input soft output linear equalizer, iterative 

channel estimator and turbo decoder [220].  
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and   
nv  according  to  (3.4)  and  (3.5).  The mean and the variance are used by the equalizer and 

the channel estimators in the subsequent iterations. The optimal soft-input soft output decoder for 

a turbo code, the Maximum A-Posteriori (MAP) decoder implemented as log-MAP in [221] is 

employed at this stage of simulation. In total, 10,000 frames are used for all simulations and the 

BER performances measured. Forgetting factor   =1- 0 is used for RLS algorithm, while 0 = 

0.02 is used for LMS and NLMS algorithms and to initialize both VSSNLMS and multiple-

VSSNLMS algorithms,  is set to 0.002.  

 

Known channel state information at the receiver is assumed for the first round of simulations to 

ascertain the iteration stage at which the improvement in BER starts declining, that is the stage 

where further iterations do not bring about improved results to the system. This is found for both 

fast and slow fading channel to be after the seventh iteration as shown in Figure 3.9 and Figure 

3.10. It is observed that there is an improvement in the BER performances from the first iteration 

until the seventh iteration, after which no improvement in the result is visible. This lends 

credence to the improved performance obtainable when iterative receiver is used in a 

communication system. Subsequent simulations are then run for just five iterations and the BER 

performances at the seventh iteration are measured. Subsequently, the VSSNLMS and multiple-

VSSNLMS algorithms are used along side LMS, NLMS and RLS algorithms, to estimate channel 

state information (CSI) for the case where channel knowledge is not known at the receiver. The 

results after the seventh iteration for both slow and fast fading channel, 0.005sfDT  and 0.01sfDT  

are shown in Figure 3.11 and Figure 3.12 respectively. The performance curves denote as known 

channel in Figure 3.11 and Figure 3.12 serves as a benchmark and performance lower bound for 

the system. It is observed that the performances of the proposed algorithms are far better than 

those of LMS and NLMS algorithms and are close to that of RLS algorithm. The reason for these 

better performances is because of the variability in the step-sizes which drives the proposed 

algorithms step-size to the optimum values, and then results in faster convergence of the 

algorithms with better tracking capabilities. The performances of all the algorithms for fast fading 

channels appear to be lower when compared with that of the slow-fading channel. This implies 

that all the algorithms find it easy to track the slow fading channel as opposed to the fast fading 

channel. It is necessary to, however, state that the length of linear SISO equalizer, number of pilot 

symbols and the time varying channel CIR generator employed in this Chapter are different from 
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those used in [183, 184]. These and some other factors might be responsible for the differences in 

the results presented in this Chapter and that of [183, 184]. A lower length of the linear SISO 

equalizer is chosen in order to reduce the complexity for the sake o smooth simulation on 

Computer. It is noted that the iteration result converges at 7th iteration in this Chapter, however in 

[183, 184] results at 3rd
 
and 4th

 
iteration are displayed. The iteration stage at which the 

convergence occurs is not stated in [183, 184].  Obviously, the complexity of the equalizer did 

not allow higher iteration to be reached. Regarding duration each iteration takes for the 

simulation to complete, this varies with the SNR and the speed of the personal computer 

employed. Estimated times in seconds for each of the iteration, for SNR of 1dB, 5dB and 9dB in 

the simulation presented in this chapter are 0.172, 0.187, and 0.204 respectively. 
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Figure 3. 9 BER for different number of iteration for known channel state information (CSI) 

at the receiver, 0.005sfDT  



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 70 

0 1 2 3 4 5 6 7 8 9 10
10

-3

10
-2

10
-1

10
0

Eb/No[dB]

B
E

R

 

 

1st Iteration

2nd Iteration

3rd Iteration

4th Iteration

5th Iteration

6th Iteration

7th Iteration

8th Iteration

 

Figure 3.10 BER for different number of iteration for known channel state information (CSI) 

at the receiver, 0.01sfDT  
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Figure 3.11 BER for different iterative channel estimator algorithms, fDT= 0.005  
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Figure 3.12 BER for different iterative channel estimator algorithms, fDT =0.01  
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3.6 Computational Complexity of the proposed Algorithms 

 

Comparative computational complexity in terms of coefficient update are given in [152] for both 

NLMS and RLS algorithms to be  of order O(ML) and O(ML
2
) respectively,  where L is the filter 

length and  M is the channel maximum delay. However, the VSSNLMS algorithm only requires L 

extra additions and (L+4) extra multiplications (divisions) compared with NLMS algorithm. It 

then turns out to be that the coefficient update of VSSNLMS-based channel estimator will be of 

order O[(3L+4)M], which is still far lower than that of RLS-based channel estimator for a large 

filter length such as L = 10 or higher depending on the available chip‟s memory. In the case of 

multiple-VSSNLMS-based channel estimator, this requires ML extra addition and M(L+4) extra 

multiplications (divisions) compared with NLMS algorithm. Consequently, computational 

complexity in terms of coefficient update for the multiple-VSSNLMS-based channel estimator is 

of order O[(3L+4) M
2
]. Obviously, it is expected that due to the multiple step-size being 

employed by multiple-VSSNLMS algorithm, the algorithm would be of higher complex structure 

in comparison with VSSNLMS algorithm that uses single variable step-size for the estimation of 

all the CIR taps.  

 

 

3.7  Chapter Summary 

 
In this chapter, soft input iterative channel estimation for single antenna communication Systems 

has been considered. The benefits of the iterative receiver are verified through the presented 

simulations results. Two variable step-size algorithms are also proposed for iterative channel 

estimation of communication Systems in a bid to address the problem of slow convergence rate 

and channel tracking capabilities associated with the LMS and NLMS-based channel estimation 

algorithms. The chapter also put forward the use of a less complex algorithm that is realizable in a 

real-time application. From the results in the first phase of the simulation carried out in this 

chapter, it is obvious that the VSSNLMS-based iterative channel estimation algorithm shows a 

faster convergence rate than both APRmodRLS algorithm and the recommended LMS algorithm 

of [183, 184]. In the second phase of the simulation work, it is observed from the simulation 

results that both single and multiple-VSSNLMS-based iterative channel estimation algorithms 

outperform both LMS and NLMS algorithms and their performances are close to that of RLS 

algorithm. The performances of the various algorithms in this chapter are summarized in Table 

3.1.  



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 74 

 

Table 3.1  Summary of the Performances of the Channel estimation algorithms  

 

Algorithms Performance indexes 

 

MSE                                               BER 

LMS Fair                                                  Fair 

NLMS Fair                                                  Fair 
APRmodRLS  Good                                                  - 

VSSNLMS Very good                                      Good 

M-VSSNLMS     -                                                  Good 

RLS Very good                                    Very good 
 

 

Consequent upon the negligible difference in the performance of the VSSNLMS and multiple-

VSSNLMS algorithms, it could be concluded that the VSSNLMS algorithm which is less 

complex than both multiple-VSSNLMS and RLS algorithms is suitable for the tracking and the 

estimation of a fast-varying channels in single antenna communication Systems. The proposed 

algorithms have similarly been deployed for network echo cancellation and the results obtained 

which are presented in [222, 223] further confirmed the efficiency of these algorithms. 
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CHAPTER 4 

 

DECISION DIRECTED CHANNEL ESTIMATION FOR 

OFDM SYSTEMS 

 

4.1 Introduction 

 
Due to the growth of mobile communications over the years, there have been strong demands for 

improved wireless Systems. However, the problem confronting the design of wireless 

communication Systems come from some limiting factors associated with wireless environments, 

such as multipath fading, Doppler effect and co-channel interference. The negative effect of 

multipath fading of wireless channels results in inter-symbol interference (ISI). This in turn 

imposes a limit on the transmission rate of single-carrier Systems. In conventional single-carrier 

communication Systems of chapter 3, the problem of ISI is mostly addressed by employment of a 

time domain channel equalizer. Nevertheless, when the signal rate increases, the symbol duration 

decreases and as a result the equalizer structure becomes very complex. Recently, Orthogonal 

Frequency Division Multiplexing (OFDM) scheme was introduced as a robust solution to the 

problem ISI as well as to produce a high-bit-rate transmission over mobile wireless channel [21, 

224]. However, as emphasized in [225], the availability of accurate channel state information 

remains a crucial factor in maximizing both the channel capacity and the integrity of 

communication Systems. It is therefore obvious that the efficient system performance in the 

single antenna OFDM Systems depends largely on the availability of robust and accurate channel 

estimation technique. In this chapter, decision directed channel estimation scheme is therefore 

proposed for OFDM Systems. The proposed scheme is based on one of the algorithms proposed 

in the previous chapter and a subspace algorithm. 

 

The rest of this chapter is organized as follows.  Section 4.2 briefly describes SISO OFDM 

system model, while channel model is presented in Section 4.3. Detail of the proposed decision 

directed channel estimator for SISO OFDM system is presented in Section 4.4. Section 5 and 
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Section 6 respectively described both soft demapper and soft mapper that are used in this chapter. 

Simulation results are presented and discussed in Section 4.7. Section 4.8 presents comparative 

computational complexity of the proposed DDCE scheme for SISO OFDM Systems, while the 

chapter is finally summarized in Section 4.9. 

 

4.2 SISO OFDM System Model 

The block diagram of the SISO OFDM transceiver considered in this chapter is shown in Figure 

4.1. The transmitter part comprises a turbo encoder with two Recursive Systematic Encoder 

(RSE) used as the Forward Error Correcting (FEC) code for the information data sequence bp. 

The interleaver that follows the encoder interleaves the output of the turbo encoder c to c . A 

Quadrature Phase Shift keying (QPSK) modulator is used to modulate the two consecutive 

interleaved bits c  to message QPSK symbol, y[n]. The modulated message symbols are 

multiplexed with QPSK pilot symbols, t[n] with the aid of multiplexer. The multiplexed symbols 

are passed through the serial-parallel (S/P) converter. A K-point Inverse Fast Fourier Transform 

(IFFT) is then applied to the multiplexed symbols, resulting in the OFDM symbols, x[n, k]. In 

order to combat intersymbol interference due to multipath channel, a guard time in form of cyclic 

prefix (CP) is inserted between consecutive OFDM symbols before transmission in the frequency 

selective fading channel. At the receiver, the reverse operation takes place. As shown in Figure 

4.1, the receiver incorporates the DDCE for the purpose of estimating the channel state 

information needed for coherent detection of the transmitted OFDM symbols. The channel 

estimate is fed into the Soft Demapper that calculates the soft information about each transmitted 

bit. The interleaved soft information is used by the turbo decoder to make the final decision about 

the possible transmitted bits. 

 

4.3 Channel Model 

The considered channel model is the complex baseband representation of a multipath Rayleigh 

fading channel of a mobile wireless system given as [42, 154]:  

1

( , ) ( ) ( )
M

m m
m

h t t c ,                     (4.1) 
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Figure 4.1 SISO OFDM System Transceiver with Decision Directed Channel Estimator  

 

 

 

where ( )tm  is the different path time-varying complex gains, m is the different path time 

delays, c(τ) is the aggregate impulse response of the transmitter-receiver pair that corresponds to 

the square-root raised-cosine Nyquist filter, and M is the number of paths. The symbols ( )tm  

are always modeled to be wide sense stationary (WSS) narrowband complex Gaussian processes. 

These are independent for different paths in the fading channel as a result of the motion of one of 

the communicating terminals. The frequency response of (4.1) at time t is described as [31] 

2( , ) ( , ) j fH t f h t e d ,              

 2( ) ( ) mj f
m

m

C f t e                (4.2) 
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where 2( ) ( ) j fC f c e d  is the Fourier transform pair of the transceiver‟s impulse response 

( )c . It is further stated in [31] that for OFDM Systems with proper cyclic extension and 

adequate synchronization, the discrete subcarrier-related Channel Transfer Function (CTF) can be 

expressed as: 

0 1

0

[ , ] ( , ) [ , ]
K

kl
K

l

H n k H nT k f h n l W  

          
/

1

( ) [ ] m s
M

k T
m K

m

C k f nW ,                  (4.3) 

where  

1

[ , ] ( , ) [ ] ( )
M

s m s m
m

h n l h nT lT n c lT ,                    (4.4) 

is the Sampled Spaced-Channel Impulse Response (SS-CIR) and exp( 2 / )KW j K . The 

quantities M, K, K0 and Ts denote the number of Fractionally Spaced (FS) channel paths, the 

number of OFDM subcarriers, the number of equivalent Sample Spaced (SS)-CIR taps, and the 

base-band signal‟s sample duration respectively. However, in realistic channel conditions 

associated with non-sample spaced time-variant path-delays ( )m n , the receiver, as noted in 

[154], will encounter received signal components dispersed over several neighboring samples 

owing to the convolution of the transmitted signal with the system‟s CIR, which is referred to as 

leakage. But this phenomenon is unavoidable and therefore the resultant SS-CIR [ , ]h n l  will 

comprise numerous correlated non-zero taps as indicated in (4.1). In contrast to this, the 

fractionally-spaced CIR (FS-CIR), also known as non-Sample Spaced-CIR, ( ) ( )m mn nT will 

be constituted by a low number of 0M K K  statistically independent non-zero taps associated 

with distinctive propagation paths [154]. Because it is more computationally efficient to estimate 

this low number of fractionally-spaced CIR-related taps experienced in a realistic channel 

condition than estimating all the correlated non-zero SS-CIR taps, the fractionally-spaced CIR 

channel model is best fit into the implementation of OFDM system. 

 

 

The time-domain and frequency-domain correlation properties of the discrete CTF 

coefficients [ , ]H n k  associated with different OFDM blocks and subcarrier is characterized by the 

cross-correlation function [ , ]Hr l m , for tl and fm , given as [225, 226]  
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*[ , ] [ , ] [ , ]Hr l m E H n l k m H n k  

    2 [ ] [ ]H t fr l r m ,                           (4.5)   

where 
2
H  is the total average power of the CIR defined as 

2 2

1

M

H m
m

,                    (4.6)  

where 
22 [ ]m mE n . 

The time-domain correlation function of the cross correlation function that characterizes CIR 

component m  associated with an individual channel path is denoted as ][lrt  in (4.5). This is 

generally modeled by a wide sense stationary (WSS) narrow-band complex Gaussian process, 

and it is described as follows 

*[ , ] [ ] [ ]i jr l j E n n l  

 ; [ ] [ ]t ir l i j .                                       (4.7) 

In (4.5), the frequency-domain correlation functions is denoted as ][mrf  and is given as [149] 

2
2 2

2
1

[ ] ( ) m

M
j m fm

f
m H

r m C m f e .                            (4.8) 

 

As a result of the insertion of cyclic prefix (CP) after OFDM modulation, the channel matrix will 

become circulant matrix whose columns are composed of circularly shifted versions of a zero-

added channel vector. Hence, the linear convolution performed by the channel is converted to a 

circular convolution. The received signal in the discrete frequency domain, after the CP has been 

removed, is given as 

[ , ] [ , ] [ , ] [ , ]z n k H n k x n k w n k ,                             (4.9) 

for 0,1,..., 1k K  and all n‟s. In (4.9), [ , ]x n k , [ , ]w n k and [ , ]H n k  are the transmitted symbol, 

additive white Gaussian noise sample and the complex CTF coefficient respectively, associated 

with the kth subcarrier of the nth OFDM symbol. 
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4.4 Proposed Decision Directed Channel Estimator  for SISO OFDM 

 Systems 

In order to come out with robust channel estimation techniques for single antenna OFDM 

Systems, efforts have been directed towards obtaining efficient channel estimation techniques for 

OFDM Systems by researchers as indicated in Chapter 2. Decision Directed Channel Estimation 

(DDCE) method [39, 48, 149, 154] happened to be the most recent channel estimation technique 

which has emerged from these efforts.  In the absence of symbol errors, the DDCE method has 

been proved to provide better and accurate CSI than the well known purely pilot-assisted channel 

estimation techniques. The reason for this is because in the absence of transmission errors, the 

DDCE scheme could be viewed as a pilot assisted channel estimation scheme employing 

approximately hundred percent pilot information for the channel estimation as against the purely 

pilot assisted scheme with sparsely available pilot symbols for the same estimation [48, 149, 

154]. The DDCE scheme comprises three modules as depicted in Figure 4.2. The first one is the 

temporary CTF estimator referred to in [5, 6] as a posteriori CTF estimator, followed by 

parametric CIR estimator, while the last stage is the CIR predictor referred to as a prior CIR 

predictor module in [48, 154]. 

 

 
In this chapter, we propose the use of Fast Data Projection Method (FDPM) algorithm, recently 

developed in [227], to implement the CIR estimator module of the DDCE scheme. We also derive 

a Variable Step Size Normalized Least Mean Square (VSSNLMS)-based predictor following the 

method in [42]. This is employed to implement the adaptive predictor module of the DDCE 

scheme.  The DDCE scheme is implemented in the context of a more realistic Fractionally 

Spaced-Channel Impulse Response (FS-CIR) channel model, as described above, as against the 

channel that is characterized by a Sample Spaced (SS)-CIR which is assumed in [149].  

 

 

The inputs to the CTF estimator are the received symbols [ , ]z n k and the output of the soft 

mapper [ , ]y n k . During the initialization stage of the estimation scheme, pilot symbols, [ ]t n  

multiplexed to all the carriers, are used instead of the soft mapper‟s output [ , ]y n k , to initiate the 

estimation process, while [ , ]y n k  are used in the subsequent estimation stages. The inputs to the 

CTF estimator are used to make a temporary estimate of the CTF coefficients ˆ [ ]nH  that 

correspond to the current channel state. The output of the CTF estimator is fed into the parametric  
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Figure 4.2 Decision Directed Channel Estimator Modules for SISO OFDM Systems [154]  

 
 

CIR estimator to generate the FS-CIR [̂ ]n . This is employed by the adaptive CIR predictor to 

predict an a priori estimate 1n


 of the next CIR on a tap-by-tap-basis [1, 2]. The predicted CIR 

is convolved with the transformation matrix [ ]nW  to obtain the Frequency Domain FD-CTF 

[ 1]H n


. During the 1n th  OFDM-symbol period, the FD-CTF [ 1]H n


 is employed by the 

soft demapper to produce the soft input for the decoder. This process continues until all the 

symbols are detected. 

 

4.4.1  Temporary CTF Estimator  

The Temporary CTF estimator module of the DDCE scheme is based on the Minimum 

Mean Square Error (MMSE) estimator [228]. This is similar to what is employed in 

[154]. By assuming the parameters H[n,k] to be complex-Gaussian distributed with a zero 

mean and variance of , the noisy MMSE estimate of the FD-CTF coefficients H[n,k]  

of the  scalar linear model described by (4.9), using the two inputs signals to the CTF 

Estimator, is given as [226, 228]  

1

2

[n, k] [n, k] [n, k] [n, k]1
[n, k] .

2 2
w H w

y y y z
H =   

 = 
2

2

2

[n,k] [n,k]

[n,k] w

H

y z

y

,       `                    (4.10) 
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where the noisy estimate [n,k]H  could be written as 

[n,k] [n,k] [n,k]H =H +v ,           (4.11)  

and [n,k]v  denotes the i.i.d. complex-Gaussian noise samples with a zero mean and a variance of 

2
v HMSE . Additive white Gaussian noise‟s variance, 0

2
N , where 0N  is the noise 

power. The symbol HMSE  denotes the average Mean Square Error (MSE) associated with the 

MMSE CTF estimator of (4.10). 

 

4.4.2  Parametric CIR Estimator based on FDPM Algorithm 

The idea of employing the signal subspace technique for estimation of parametric channel model 

for OFDM Systems is first deployed in [229] and is followed up in [154]. Nevertheless, the 

approach of parametric channel model has earlier been applied to Global System for Mobile 

Communications system [230] and the high-speed digital video broadcast system [91] to enhance 

the performance of channel equalizer and estimator. As stated in [229], the main reason behind 

the deployment of subspace technique here is because there is always a low number of M (the 

number of FS-CIR taps) in comparison with K (the total number of FD-CIR taps), that is M K . 

Consequently, it is more computationally efficient to estimate a low number of CIR-related taps 

in the low dimensional signal subspace than having to estimate all the FD-CTF coefficients.  

 

By following the approach in [226], the substitution of [n,k]H in (4.11) with (4.3) results in 

/

1

[ , ] ( ) [ ] [ , ]m s
M

k T
m K

m

H n k C k f nW v n k ,            (4.12) 

where ( )C f  denotes the frequency response of the transceiver‟s pulse-shaping filter and  

1
2j

K
kW e ,  while m  and m are the amplitudes and the relative delays of the FS-CIR taps 

respectively. In matrix form (4.12) becomes 

[ ] [ ] [ ]n n n H W v ,                       (4.13) 

where ( [ ])=diag C kW W  is defined as (K × M)-dimensional matrix in which ( [ ])diag C k is a 

(K × K)-dimensional diagonal matrix with the corresponding elements of the vector ( )C f  on the 

main diagonal [226]. Symbol W  is the Fourier Transform matrix defined by 
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m

s

k
T

km KW W for all K’s and M’s. Since the channel‟s Power Delay Profile (PDP) and the 

associated transformation matrix ( )W  will be time-varying if one of the communication terminals 

is in motion, and might not be known a priori, there is need for accurate tracking of this channel‟s 

parameter.  

 

In [154] results of recursive tracking of OFDM channel‟s PDP and the associated transformation 

matrix employing PASTd algorithm are presented. However, some shortcomings of the PASTd 

algorithm are highlighted in [227]. One of these is the fact that the deflation technique applied on 

PAST algorithm to arrive at PASTd version causes a stronger loss of orthonormality between 

eigenvector [ ]m nw  of the transformation matrix n
W  for 1,...,m M . Therefore, if there are 

some post-processing methods that use the signal subspace estimate, from which an orthonormal 

basis of the signal subspace is required in order to extract the desired signal information, the 

transformation matrix has to be re-orthonormalized. This will result in increase in the 

computational complexity of the process. Another shortcoming mentioned in [227] is the fact that 

PASTd algorithm exhibits an increase in computational complexity if K M . In a bid to avoid 

these shortcomings, the FDPM algorithm [227] that possesses a simple structure with a single 

parameter (the step-size of the algorithm) to be specified is hereby proposed for the first time and 

employed in this chapter for accurate tracking of the FS-CIR‟s PDP instead of the PASTd 

algorithm used in [154]. The FDPM algorithm has an extremely high convergence rate towards 

orthonormality. It is also the fastest among all competing subspace algorithms of the same 

computational complexity, including the PAST and the PASTd algorithms, as observed in [227].  

 

The description of FDPM algorithm, as adapted to parametric CIR estimation, is given as follows. 

If HC is a symmetric, nonnegative, definite, covariance matrix of the observation vectors ˆ [ ]nH  of 

size K, its singular vectors corresponding to the M dominant singular values can be computed with 

the aid of  an iterative procedure referred to as orthogonal iteration [231] that has the following 

variants [227] 

[ ] [ 1] , 1,2,...K Hn orthnorm n n W I C W               (4.14) 

while  > 0 is a small scalar parameter known as step size and “orthnorm”  stands for 

orthonormalization process. In the case where matrix HC  is unknown and the data vector 
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sequence ˆ [ ]nH  is acquired sequentially, HC   in (4.14) can be replaced with an adaptive 

estimate [ ]H nC that satisfies [ ]H HE nC C . This results in the Adaptive Orthogonal Iterative 

algorithm given as [227]: 

[ ] [ ] [ 1] , 1,2,...K Hn orthnorm n n n W I C W   .                 (4.15) 

The choice of [ ]H nC  will lead to different subspace tracking algorithms. However, the simplest 

selection for [ ]H nC  is the instantaneous estimate of the covariance matrix, ˆ ˆ[ ] [ ] [ ]H
H n n nC H H  

which results in the Data Projection Method (DPM) introduced in [42] and given as follows: 

ˆˆ[ ] [ 1] [ ]n n n HW H ,                         (4.16) 

ˆ ˆ[ ] [ 1] [ ] [ ]Hn n n nT W H ,                     (4.17) 

ˆ [ ] [ ]n orthnorm nW T ,                     (4.18) 

while the orthonormalization is performed using Gram-Schmidt. In [227], Gram-Schmidt part is 

removed and a faster orthonormalization procedure based on Housholder transformation is 

applied to the DPM algorithm that reduces the overall complexity to order ( )O KM  which 

eventually results in the FDPM algorithm. The summary of the FDPM algorithm as applied to the 

tracking of the FS-CIR‟s PDP is given in Table I. 

 

Table 4.1 Fast Data Projection Method Algorithm [227] 

 For faster convergence, [0]W is initialized to orthonormal matrix (typically the 

first M columns of the identity matrix) with K rows. 

 

 With the new observation ˆ [ ]nH , the FDPM algorithm  is applied as follow: 

 

For  n = 1, 2, . .  

  ˆˆ[ ] [ 1] [ ]n n n HW H    

  2
ˆ [ ]nH

    

  ˆ ˆ[ ] [ 1] [ ] [ ]Hn n n nT W H   

  1ˆ ˆ[ ] [ ] [ ]n n na e   ,    where 1 10...0
T

e   

            
2

2
[ ] [ ] [ ] [ ] [ ]

[ ]

Hn n n n n
n

Z T T a a
a

 

          [ ] [ ]n normalize nW Z  ,     this is the normalization of each column           

                                                           of [ ]nZ . 

end 
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The performance index for FDPM subspace tracking algorithm, in order to compare it with 

PASTd algorithm, is defined in terms of the MSE criterion as follows 

2
( )MSE E ne ,                   (4.19) 

where ( )ne  is given as  

ˆ ˆ( ) [ ] [ 1] [ ]n n n ne H W .                  (4.20) 

 

4.4.3 Channel Impulse Response (CIR) Predictor 

In [152] three variants of MMSE predictors and two types of adaptive predictors for 

implementation of the proposed DDCE scheme for OFDM Systems are presented. The variants of 

the MMSE prediction techniques presented includes the full-blown MMSE predictor, reduced 

complexity MMSE predictor, and the DFT implementation-based MMSE predictor. In the class of 

adaptive predictors, also presented in [152], are the Recursive Least Square (RLS) and the 

Normalized Least Means Square (NLMS) predictors. In [234], comparative results are presented 

for both robust MMSE predictor and the adaptive RLS predictor. In both [152] and [234] it is 

concluded that the adaptive predictor outperforms its MMSE counterpart especially in a fast time 

varying channels because of its ability to track time-varying channel and noise statistics. This is 

due to the fact that the adaptive predictors do not require a priori knowledge of channel and noise 

statistics, the channel correlation functions and the noise variance, which change slowly with time. 

On the other hand, the performance of the MMSE predictor depends largely on the a priori 

knowledge of the channel and noise statistics (which are time-varying and are not known a priori), 

in the absence of which its performance is grossly affected. Hence, the adaptive predictors are 

considered as a better alternative for employment in wireless communications Systems.  

 

Between the two adaptive predictors proposed in [152], the RLS predictor is said to perform 

better than the NLMS predictor. This is due to the fact that the RLS algorithm converges faster 

with smaller excess Mean Square Error (MSE) in comparison with the NLMS algorithm as 

mentioned and demonstrated in Chapter 3. However, the computational complexity in terms of 

the coefficient update is said to be significantly more costly for RLS than NLMS, in particular for 

large filter length [152]. This, in a way, imposes a limitation to the deployment of the RLS 

predictor in a real time implementation. It is against this background that we seek to derive an 

improved version of NLMS-based predictor with faster convergence rate close to, but with less 
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complexity when compared with the RLS-based predictor. This predictor is hereby tagged 

Variable Step Size NLMS (VSSNLMS)-based CIR predictor. The CIR predictor predicts the a 

priori estimate of the CIR taps, 1m n


, associated with the next OFDM symbol, for  m = 0, 

1,..., M -1 on a tap-by-tap basis by employing the previous CIR taps tagged a posteriori CIR taps 

[152]. However, in the time domain, the mth CIR component ( )m n  will experience a 

narrowband fading process that is characterized by an associated cross-correlation function. This 

cross-correlation function can be described as[152] 

*[ ] [ ] [ ] [ ]m m tE n n l r l i j ,                     (4.21) 

where [ ]tr l denotes the time-domain correlation function and [.]  is the Kronecker delta function. 

The narrowband process of (4.21) can be approximately modeled as an autoregressive process of 

the order prdL  [152]. The a priori estimate of the mth CIR component predicted by the predictor 

is given as  

ˆ[ 1] [ ] [ ]H
m m mn n n


p ,                       (4.22) 

where the mth CIR tap‟s finite impulse response prediction filter coefficient vector is denoted as  

{ [0], [1],..., [ 1]}m m m m prdp p p Lp ,  

and  

ˆ ˆ ˆ ˆ[ ] { [ ], [ 1],..., [ 1]}T
m m m m prdn n n n L . 

The two adaptive predictors, the RLS and the NLMS predictors proposed in [152] with the 

VSSNLMS predictor derived in this chapter are presented in the next sub-sections. 

 

4.4.3.1   Adaptive RLS Predictor 

The RLS based CIR tap predictor [152, 215] calculates the mth predictor filter  [ ]m np  such that it 

minimizes the scalar cost function 

2

,
1

[ ] 1
n

n j H
RLS m m m m

j

n j n jp ,                  (4.23) 

where  is a forgetting factor that accounts for possible time varying attribute of the fading 

process of the mobile channel, and it can assume a value within the range 0 1. The RLS 

based predictor filter [ ]m np  is updated by the following equation [152, 215] 

*[ ] [ 1] 1 [ ]m m m mn n n e np p k ,                   (4.24) 

where [ ]me n  is the prediction error and it is given as  
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ˆ[ ] [ ] [ ]m m me n n n


 

        ˆ ˆ[ ] [ 1] [ 1]H
m m mn n np ,                  (4.25) 

and m nk  is the RLS gain vector given as [152, 215]: 

ˆ1

ˆ ˆ1

H
m m

m H
m m m

n n
n

n n n

G
k

G
.                 (4.26) 

In (4.26), the matrix m nG  is the inverse of the prd prdL L  sample covariance matrix of the mth 

CIR tap. The matrix m nG  can be obtained recursively as 

1
ˆ 1H

m m m mn I n nG k G .                 (4.27) 

 

4.4.3.2   Adaptive NLMS Predictor 

With NLMS algorithm, the CIR tap‟s predictor filter coefficients [ ]m np  of length prdL  are 

updated as [152] 

*

2
ˆ[ ] [ 1] [ ] [ 1]

ˆ [ 1]
m m m m

m

n n e n n
n

p p ,             (4.28)  

where  is the constant step size and [ ]me n  is as expressed in (4.25). For stable operation, the 

NLMS algorithm requires to be within the range 0 2  [215]. The selection of µ goes a long 

way to determine the convergence speed of excess Mean Square Error (MSE), as well as the 

ability to track the time-varying channel parameters. The values of  0.5  is said to give a good 

result in [152]. For n = 0, the predictor filters are initialized [152] 

as [ ] 1 0 0 ... 0
T

m np . 

 

4.4.3.3   Adaptive VSSNLMS Predictor 

Since it is the selection of the step size that determines the convergence rate of the adaptive 

NLMS predictor as well as its ability to track the fast time-varying channel, we hereby derive a 

variable step size version of the NLMS predictor tagged the Variable Step Size Normalized Least 

Mean Square (VSSNLMS) Predictor. By following the approach used to derive the VSSNLMS-

based channel estimator for Turbo Equalizer-based communications receiver in Chapter 3 [232, 

233], the VSSNLMS-based predictor is hereby derived as follow. The CIR tap‟s predictor filter 

coefficients [ ]m np  are updated as 
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*

2

[ ]
ˆ[ ] [ 1] [ ] [ 1]

ˆ [ 1]
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n n e n n
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p p .                (4.29) 

The VSSNLMS-based predictor then predict the a priori estimate of the mth CIR component as  

ˆ[ 1] [ ] [ ]H
m m mn n n


p ,          (4.30) 

where [ ]me n , the prediction error, is as expressed in (4.25) and [ ]n is the variable step-size 

which is updated following [232, 233] as 

2[ ]
ˆ[ ] [ 1]

2 [ 1]

e n
n n

n
                            (4.31a) 

2 [ ][ ]
ˆ[ ] [ 1] .

2 [ ] [ 1]

m
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n n

n n
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p
             (4.31b) 

*

2

ˆ ˆ[ , ] [( 1), ] [ ] [ 1]
ˆ[ ] [ 1]

ˆ [ 1]

T
m m

m

e n k e n k n n
n n

n
.               (4.32)  

For the complex input signal and complex channel tap, (4.32) becomes 

*

2

ˆ ˆRe [ , ] [( 1), ] [ ] [ 1]
ˆ[ ] [ 1] .

ˆ [ 1]

H
m m

m

e n k e n k n n
n n

n
        (4.33) 

In order to restrict the variable step size [ ]n  to the range 0 [ ] 2n  which makes for stable 

operation of NLMS algorithm as stated above, the variable step size [ ]n in (4.29) is then 

confined to within the range given as   

max max

min min

ˆ

ˆ[ ]

ˆ[ ]

if

n if

n otherwise

,                 (4.32) 

 

where min max0 2 . 

 

As with the NLMS predictor, for n = 0, the predictor filter‟s coefficient, using VSSNLMS-based 

predictor, are initialized as [ ] 1 0 0 ... 0
T

m np . 

 

4.5 Soft Demapper  

For the QPSK constellation used for modulation of the coded bits in this chapter, , [ ]i jy n  denotes 

one of the four QPSK symbols obtained, at the transmitter end of the system, by mapping two 
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successive interleaved bits  'c  and '
1c  to QPSK constellation with µMod2=0 as given in Table 

4.2. Using the approach in [235], the soft demapper calculates log-likelihood ratios 

' | [ , ]L c z n k and '
1 | [ , ]L c z n k  of the two successive interleaved bits  'c  and '

1c  respectively 

as   

 

' ' ' ' '
1 1 1'

' ' ' ' '
1 1 1

Pr | 1, 0 Pr | 1, 1 exp
| [ , ] ln

Pr | 0, 0 Pr | 0, 1 exp

a

a

z c c z c c L c
L c z n k

z c c z c c L c
  

          

'
1

'
1

10 11

00 01

ln

a

a

L c

n n

L c

n n

B B e

B B e

,                 (4.33) 

 

' ' ' ' '
1 1'

1 ' ' ' ' '
1 1

Pr | 0, 1 Pr | 1, 1 exp
| [ , ] ln

Pr | 0, 0 Pr | 0, 1 exp

a

a

z c c z c c L c
L c z n k

z c c z c c L c
 

             

'

'

01 11

00 10

ln

a

a

L c

n n

L c

n n

B B e

B B e

.               (4.34) 

 

 

 

Table 4.2 QPSK constellation 

 

Modulation Input bits: 'c , '
1c  Modulation Output Symbol , [ , ]i jy n k  

                                        00 0,0y  = exp(j /4) 

                                        01 0,1y  = exp(3j /4) 

                                       10 1,0y  = exp(-j /4) 

                                       11 1,1y  = exp(-3j /4) 
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The probabilities i j
nB , with , 0,1i j in (4.33) and (4.34) are obtained by employing probability 

function [235] given as  

 

 

 

       
2

,

2 2

1 1
exp [ , ] [ , ] [ , ] ,

2 2

i j

w w

z n k H n k y n k


      (4.35)  

 

where 2
w is the noise variance. The a priori values of bits 'c  and '

1c : '
aL c  and '

1aL c  

respectively, are set to zero since there is no feedback from the decoder.  

 

4.6 Soft  Mapper  

The soft mapper is used to estimate the symbols [ , ]y n k   by using the outputs of the soft 

demapper.  Hence, symbols [ , ]y n k , at each kth subcarrier, can be computed using ' | [ , ]L c z n k  

and '
1 | [ , ]L c z n k  as follow [179] 

 
00 01 10 11[ , ] n n n ny n k D D D D ,         (4.36)  

 

where, 

 
' ' ,

1Pr Pr [ , ]i j i j
nD c i c j y n k .          (4.37) 

The probabilities 'Pr 1c  and 'Pr 0c  can be expressed respectively as 

'

'
| [ , ]1

Pr 1 1 tanh
2 2

L c z n k
c ,          (4.38)  

and 

'

'
| [ , ]1

Pr 0 1 tanh
2 2

L c z n k
c .                      (4.39)  

Similarly, the probabilities '
1Pr 1c  and '

1Pr 0c can be expressed respectively for as  

'
1'

1

| [ , ]1
Pr 1 1 tanh

2 2

L c z n k
c ,              (4.40)  

and  

,Pr [ , ] | [ , ]i j i j
nB z n k y n k
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'
1'

1

| [ , ]1
Pr 0 1 tanh

2 2

L c z n k
c .         (4.41) 

 

4.7 Simulation Results and Discussion  

This section presents the results of the simulation work conducted for the proposed DDCE for 

SISO OFDM system. For all the results presented, the QPSK-modulated OFDM system with K = 

64 subcarriers and a total bandwidth of 800kHz are assumed. A rate 1/3 turbo encoder of octal 

generator polynomial 7/5, consisting of a random interleaver with size N = 2304 bits is employed. 

The symbol duration, Ts is 80µs, the CP length is 16 samples (1/4 of the symbol period) and the 

guard interval, Tg = 20µs. As a result the total block period, T is 100µs. The six-path time-

varying Rayleigh fading COST 207 Typical Urban (TU) channel model of [43] with Doppler 

frequencies of 50Hz and 100Hz is employed. These parameters are tabulated in Table 4.3. The 

first OFDM symbol with 64 subcarriers comprises the pilot symbols which are used for the 

initialization of the channel estimation scheme. In our simulation, we assume M = 6 FS-CIR taps, 

 is set to 0.95 for PASTd algorithm. The length of the CIR predictor (Lprd) is set to 10,  is set to 

0.002, and µ0 = 0.5 is used for the NLMS-based predictor and to initialize the VSSNLMS-based 

predictor. The forgetting factor value  for RLS-based predictor is set to 0.99. The optimal SISO 

turbo decoder, the Maximum A-Posteriori (MAP) decoder implemented as log-MAP in [221] is 

employed in this simulation. 

 

The optimum value for the step size  in Table 4.1, for convergence of the proposed FDPM 

algorithm, is between zero and unity ( 0 1.0 ) [227]. A value of  close to unity is confirmed 

in [227] to give good result. Hence, this simulation commences by varying the value  in Table 

4.1 between 0.90 and 1.0 for FDPM algorithm, while using the NLMS-based predictor to 

implement the DDCE scheme of Figure 4.2. Figure 4.3 and Figure 4.4 correspond to the MSE 

results of FDPM for various values of , both in slow and fast fading channels respectively, while 

Figure 4.5 depicts the MSE as a function of the normalized fading frequency (fD) exhibited by 

FDPM based CIR estimator of the DDCE scheme for fixed SNR of 3dB, while using NLMS-based 

predictor for various values of . Figure 4.6 show the plot of the MSE versus  exhibited by 

FDPM based CIR estimator of the DDCE scheme at fixed SNR of 3dB for fD =0.005 and 0.02 

respectively, while Figure 4.7 shows corresponding plot for fD =0.01 and 0.015 respectively.   The 
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results in Figure 4.3, Figure 4.4 and Figure 4.5 suggest that the optimum value of  largely 

depends more on the fading rate than the SNR. The value of 0.98  appears to be a compromise 

between the slow and fast fading channels, and this value is used for the remaining simulations. 

This optimum value becomes more visible in the plots of Figure 4.6 and Figure 4.7 respectively. 

From Figure 4.3, Figure 4.4 and Figure 4.5, the value of 1.0  results in poor performance of the 

proposed FDPM algorithm. This is apparently due to instability in the algorithm as a result of 

using 1.0 . The optimum value is expected to be a value in the region of 0 1.0 .  

 

 
 

Table 4.3 System Parameters 

 

 

 

Simulations were also carried out in order to demonstrate the achievable performance of the 

proposed VSSNLMS predictor employed in the context of the decision-directed channel 

estimation for SISO OFDM system in comparison with the RLS-based predictor and NLMS-based 

Parameters Value 

FFT Size, Number of carriers ( K) 64 

Channel bandwidth, B  800kHz 

Sample Period,1/B 12.5 s 

Subcarrier spacing ( f =B/K) 12.5kHz 

Symbol duration,T (1/ f) 80 s 

Guard interval (Tg) 20 s 

Guard type Cyclic extension 

Total symbol duration (Ts = T+Tg) 100 s 

Modulation QPSK 

Channel model 6-paths Rayleigh fading COST 207 Typical  Urban 

(TU) channel model of Ref [12] 

Maximum delay spread 20 s 

Channel coding 1/3 rate, (7, 5) Turbo code 
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predictor. Figure 4.8 depicts the comparative prediction MSE versus the normalized Doppler 

frequency (fD) for the proposed VSSNLMS predictor and the adaptive RLS and NLMS predictors, 

while holding the SNR constant at 5dB. The normalized Doppler frequency (fD) is varied between 

the slow fading channel of normalized Doppler frequency fD= 0.001 and the fast fading channel of 

normalized Doppler frequency fD= 0.1. The achievable MSE performance gain of the proposed 

adaptive VSSNLMS predictor is observed to be far better than that of the NLMS predictor and 

close to that of the RLS predictor over the whole range of the normalized Doppler frequencies. 

The better performance could be attributed to the variable step size employed by the VSSNLMS-

based predictor. In Figure 4.9, the MSE performance of the adaptive predictors is illustrated for the 

fast fading channel scenario with the normalized Doppler frequency fD=0.02, while SNR is 

increased from 0dB to 10dB. Once again, the proposed VSSNLMS predictor exhibits a better 

performance in comparison with the NLMS predictor, and its performance is close to that of the 

RLS predictor. 
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Figure 4.3 MSE exhibited by FDPM based CIR estimator of the DDCE scheme operating in 

slow fading Channel fD = 0.005 while using NLMS-based predictor for values of   ranges 

between 0.90 and 1.0.  
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Figure 4.4 MSE versus SNR exhibited by FDPM based CIR estimator of the DDCE scheme 

operating in fast fading Channel fD = 0.02 while using NLMS-based predictor for values of   

ranges between 0.90 and 1.0  
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Figure 4.5 MSE versus fD exhibited by FDPM based CIR estimator of the DDCE scheme 

for fixed SNR = 3dB while using NLMS-based predictor for values of   ranges between 0.90 

and 1.0.  
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Figure 4.6 Plot of MSE versus  exhibited by FDPM based CIR estimator of the DDCE 

scheme at fixed SNR=3dB and fD=0.005 and 0.02 respectively 
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Figure 4.7 Plot of MSE versus  exhibited by FDPM based CIR estimator of the DDCE 

scheme at fixed SNR=3dB for fD=0.01 and 0.015 respectively 
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Figure 4.8 MSE exhibited y the RLS, VSSNLMS and NLMS -based CIR Adaptive 

Predictors for SNR = 5dB  
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Figure 4.9 MSE exhibited by the RLS, VSSNLMS and NLMS -based CIR Adaptive 

Predictors during fast fading channel of normalized Doppler frequency fD=0.02  

 

 

Figure 4.10 and Figure 4.11 show convergence behaviour of the proposed adaptive VSSNLMS 

predictor in comparison with RLS-based predictor and NLMS-based predictor, for both slow and 

fast fading channel scenarios, respectively. It is observed that the performance for slow fading 

scenario, in all cases, is better than that of the fast fading scenario. This shows that the scheme 

finds it easy to track the slow fading channel than its fast fading counterpart. The results also 

show how DDCE employing VSSNLMS-based predictor outperforms its NLMS counterpart and 

its performance is very close to that of RLS-based predictor, especially at the lower part of Signal 

to Noise Ratio (SNR) considered. The improved performance of the DDCE employing 
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VSSNLMS-based predictor could be associated with the rate of convergence of the VSSNLMS-

based predictor that is improved as a result of the variable step size in the predictor in contrast to 

the fixed step size employed in the NLMS-based predictor. 
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Figure 4.10 Convergence behaviour of the VSSNLMS-based predictor, RLS-based predictor 

and NLMS-based predictor for slow fading channel with normalized fading frequency, fD = 

0.005.  
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Figure 4.11 Convergence behaviour of the VSSNLMS-based predictor, RLS-based predictor 

and NLMS-based predictor for fast fading channel with normalized fading frequency, fD = 0.02.  

 

Finally comparative performances between the FDPM and PASTd subspace algorithm for CIR 

estimator in combination with NLMS-based predictor and the proposed VSSNLMS-based 

predictor are presented. Figure 4.12 and Figure 4.13 show the comparative performance gain of 

FDPM-based DDCE over PASTd-based DDCE in form of Bit Error Rate (BER) for both slow and 

fast fading scenarios respectively. The curves labeled „perfect channel state‟ information (CSI) 

correspond to detection using the perfect knowledge of channel at the receiver, and serve as 

benchmark for the two cases of fading channels. The achievable MSE exhibited by the FDPM-

based DDCE in comparison with PASTd-based DDCE while employing VSSNLMS and NLMS 

predictors are shown in Figure 4.14 and Figure 4.15 for slow and fast fading channels respectively. 
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Furthermore, Figure 4.16 and Figure 4.17 illustrate the achievable BER versus SNR and the MSE 

versus SNR as a function of normalised Doppler frequency (fD) respectively, for both FDPM- and 

PASTd-based DDCE employing VSSNLMS adaptive predictor. In general, the good performance 

exhibited by the whole system at lower part of Signal to Noise Ratio (SNR) is obviously aided by 

the type of the channel encoder (the Turbo encoder) and the SISO Turbo decoder employed, which 

are known to exhibit good performance at lower SNR. This is the more reason why Turbo encoder 

rather than the convolution encoder is employed in the Systems. 
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Figure 4.12 BER exhibited by FDPM- and PASTd-based DDCE employing NLMS and 

VSSNLMS adaptive predictors for normalized Doppler frequency fD=0.005  
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Figure 4.13 BER exhibited by FDPM- and PASTd-based DDCE employing NLMS and 

VSSNLMS adaptive predictors for normalized Doppler frequency fD=0.02  
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Figure 4.14 MSE exhibited by FDPM- and PASTd-based DDCE employing NLMS and 

VSSNLMS adaptive predictors for normalized Doppler frequency fD=0.005  
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Figure 4.15 MSE exhibited by FDPM- and PASTd-based DDCE employing NLMS and 

VSSNLMS adaptive predictors for normalized Doppler frequency fD=0.02  
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Figure 4.16 BER versus SNR as a function of normalized Doppler frequency (fD) exhibited 

by FDPM- and PASTd-based DDCE employing VSSNLMS adaptive predictors  
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Figure 4.17 MSE versus SNR as a function of normalized Doppler frequency (fD) exhibited 

by FDPM- and PASTd-based DDCE employing VSSNLMS adaptive predictors  
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4.8 Comparative Computational Complexity of the proposed DDCE 

 Scheme 

Computational complexity of the proposed scheme employing FDPM-based CIR estimator and 

VSSNLMS-based CIR predictor in comparison with the one proposed in [154] are shown in 

Table 4.4. The FDPM-based CIR estimator, which is confirmed in [227] to be the fastest among   

 

 

 

Table 4.4 Comparative Computational Complexity o the proposed DDCE scheme for  

  SISO OFDM System 

 

Subspace algorithm for 

DDCE CIR Estimator  

Computational 

Complexity 

Adaptive 

CIR-based 

Predictor  

Computational 
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re-orthonormalization 
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all competing subspace algorithms of the same computational complexity (including the PAST and 

the PASTd algorithms) exhibits similar computational complexity: 6 ( ) (7 )KM O M O KM , as the 

PASTd algorithms with re-orthornomalzation. In [42] the computational complexity in terms of 

the coefficient update of the adaptive NLMS and RLS predictors are compared and are given as 

order prdO ML  and 2
prdO ML respectively where prdL  is the length of the CIR predictor filter. 

Similarly to the case of VSSNLMS-based estimator proposed in Chapter 3, the proposed adaptive 

VSSNLMS predictor only requires prdL  extra additions and 4prdL  extra multiplications 

(divisions) compared with the adaptive NLMS predictor. It then turns out that the coefficient 

update of the proposed adaptive VSSNLMS predictor will be of order 3 4prdO L M , which is 

still far lower than that of RLS-based adaptive predictor for large filter length. 

 

 

 

4.9 Chapter Summary  

 

In this chapter, channel estimation for SISO OFDM system is presented. Specifically, Decision 

Directed Channel Estimation scheme is investigated for single antenna OFDM Systems in the 

context of a more realistic Fractionally Spaced-Channel Impulse Response (FS-CIR) channel 

model, as against the channel characterized by a Sample Spaced (SS)-CIR. Simulation results to 

validate the proposed scheme is presented and also discussed. The main contributions in this 

chapter include the application of the FDPM subspace tracking algorithm for the implementation 

of the CIR estimator module of the DDCE scheme, derivation of the VSSNLMS predictor for the 

implementation of the CIR predictor module of the DDCE scheme. Comparative complexity issues 

with the proposed scheme are also discussed. The presented simulation results show how the 

FDPM-based CIR estimator outperforms the PASTd-based CIR estimator. The results also 

indicate that the VSSNLMS-based CIR predictor improves the performance of the DDCE scheme 

in comparison with when NLMS-based predictor is employed. The simulation results with the 

DDCE scheme based on the proposed VSSNLMS-based CIR predictor is also observed to be very 

close to a more complex RLS-based predictor earlier employed by other authors in literature. 
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CHAPTER 5 

 

ITERATIVE DECISION DIRECTED CHANNEL 

ESTIMATION FOR SISO OFDM SYSTEMS 

 
 

5.1 Introduction 

 
Iterative technique, based on turbo principle, has received special attention in the signal 

processing as well as error correcting coding research fields. This is because the technique has 

been confirmed to exhibit some gains over its non-iterative counterpart. In this chapter, we re-

consider a turbo-coded single input single output (SISO)-OFDM system presented in Chapter 4. 

However, here the design of its receiver is made to be iterative implying that its module 

comprises Turbo decoder and the Iterative Decision Directed Channel Estimation (DDCE) 

scheme that are working together in an iterative mode in conjunction with the soft Demapper. 

 

The rest of the chapter is organized as follows.  Section 5.2 describes turbo principle, while the 

system model is presented in Section 5.3. Section 5.4 describes the iterative DDCE scheme. The 

soft demapper and soft mappers employ in this chapter are presented in Section 5.5.  Simulation 

results for the proposed iterative DDCE schemes are discussed in Section 5.6. Section 5.7 gives 

the summary of the whole chapter. 

 

5.2 Turbo Principle 

In [236] concatenated coding scheme as a means of achieving improved coding gain was initially 

proposed by Forney. This was achieved by combining two or more constituent codes as channel 

encoder. Turbo Code proposed in [209] emerged as a refinement of the concatenated encoding 

structure, in addition with an iterative algorithm for decoding the constituent code sequence. 

Excellent gain in terms of bit error rate (BER) performance, as low as 10
-5

, at a signal to noise 
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ration (SNR) of about 0.7 dB is achieved through this scheme in order to achieve the Shannon‟s 

capacity. The idea in this chapter is based on the iterative decoding structure of the turbo code. 

Before presenting the proposed structure, it is important to have insight into the encoding 

structure for better understanding of the decoding structure of the turbo code on which the 

proposal in this chapter is based. 

 

5.2.1   Generic Turbo Encoder 

As shown in Figure 5.1, turbo encoder is made up of two constituent encoders. Each of the 

encoder are usually 1/2 rate Recursive Systematic Convolutional (RSC) encoder. Consequently, 

the sequence of input bits is encoded twice with these constituent encoders. The input bits of the 

second encoder are the interleaved version of the input of the first encoder. The output of the 

Turbo encoder comprises the Systematic bits c (the input bits), parity bits c1 (output of the first 

constituent encoder), and parity bits c2 (output of the second constituent encoder). These are 

multiplexed together before transmission. In order to obtain better coding rates, the two parity 

sequences could be punctured before being multiplexed with the systematic bits. 

 

 

ck

Interleaver

Component 

Encoder 1

Component 

Encoder 2

Multiplexing

Input bits bp Systematic bits  c

Parity  bits  c1

Parity  bits  c2

 

   

 Figure 5.1 Schematic diagram of the generic turbo encoder  

 

 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 113 

5.2.2   Iterative Turbo Decoder 

The schematic diagram of iterative Turbo decoder is shown in Figure 5.2. It comprises of two 

RSC component serially concatenated via an interleaver that is similar to that of the encoder. 

Decoder 1 takes as its inputs the received soft information sequence corresponding to the 

systematic bits, the received parity 1 sequence (corresponding to the first encoder), and the 

information from decoder 2 about the likely values of the bits being decoded (known as a priori 

information). The interleaved version of the soft information sequence, corresponding to the 

systematic bits, along side the received parity 2 sequence (corresponding to the second encoder), 

and the information from decoder 1 about the likely values of the bits being decoded are fed into 

decoder 2. In addition to computing the decoded output bit sequence, each decoder must also 

produce the associated probabilities for each bit being decoded as well as soft output for the 

decoded bits. The soft outputs are generally represented in terms of Log Likelihood Ratios 

(LLRs). The decoder can either be based on Maximum A-Posteriori (MAP) algorithm proposed 

in [237] or the Soft Output Viterbi Algorithm (SOVA) presented in [238]. 
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 Figure 5.2 Schematic diagram of iterative turbo decoder  
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5.2.2.1   Log-Likelihood Ratios 

In [239] the concept of Log likelihood Rations (LLRs) is introduced to simplify the iterative 

feedback from one component decoder to other in the iterative turbo decoding. For a data bit pb , 

the soft information in terms of LLRs, is defined as the ratio of the probability that pb  is equal to 

+1 to the probability that pb  is equal to -1, and given by 

Pr 1
ln

Pr 1

p

p

p

b
L b

b
.             (5.1) 

The sign of the decoded bit corresponds to the most probable hard decision on the bit, and it is 

determined from the magnitude of LLRs. The amplitude of LLRs corresponds to the reliability of 

this decision.   Most often, the interest is to determine the probability of pb  equal to +1 or -1 

conditioned on some received soft information z . Consequently, (5.1) will be conditioned LLRs 

and is given as: 

 

Pr 1|
| ln

Pr 1|

p

p

p

b
L b

b

z
z

z
,             (5.2) 

while 

exp |
Pr 1|

1 exp |

p

p

p

L b
b

L b

z
z

z
.           (5.3) 

By using Bayes‟ theorem, the conditioned LLRs of (5.2) is equivalent to 

Pr | 1 Pr 1
| ln

Pr | 1 Pr 1

p p
p

p p

b b
L b

b b

z
z

z
  

   
Pr | 1 Pr 1

ln ln
Pr | 1 Pr 1

p p

p p

b b

b b

z

z
.              (5.4) 

 

This LLRs so obtained are used to compute the extrinsic .eL  information that is used as a priori 

information input, .aL , for the next component decoder. Thus, extrinsic information from 

component decoder 1 in Figure 5.2 is 

1 1 1|e p p a pL b L b L bz .            (5.5) 
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More detail about iterative turbo decoding principle and the associated algorithms can be 

found in the following references therein [240, 241]. The iterative DDCE structure for 

SISO OFDM that follows in the subsequent sections is built based on the iterative turbo 

decoding principle described. 

 

5.3 System Model 

The block diagram of the system model incorporating the iterative DDCE scheme is as shown in 

Figure 5.3. At the transmitter, in the same way as the one in Chapter 4, there is a turbo encoder 

with a two Recursive Systematic Encoder (RSC) and random bit interleaver. Following this is the 

Quadrature phase shift keying (QPSK) modulation that used for modulating both the message and 

pilot bits. The multiplexed QPSK symbols are fed into the IFFT modulation after which the cyclic 

prefix (CP) is added before transmission over the frequency selective fading channel. The receiver  

performs the reverse operations. After the parallel-to-serial conversion of the received message  
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Figure 5.3 OFDM Transceiver with Iterative Decision Directed Channel Estimator  
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symbols, the iterative DDCE is employed to estimate the channel behaviour. This is fed into the 

soft demapper that employs the channel estimate in combination with the received message 

symbol to compute the soft information about each of the transmitted bits. The outputs of the soft 

demapper are thereafter deinterleaved to a posteriori L-values and sent to the turbo decoder. The 

turbo decoder, in turn, computes extrinsic information from where a priori values that are fed back 

to the soft demapper and the Iterative DDCE are obtained. This process continues over a pre-

determined numbers of iteration. The turbo decoder makes the estimate of the transmitted bits 

during the last iteration and returns ˆ
pb .  

 

The channel characteristic employed follows after the one described in Chapter 4. Hence, the 

continuous-time CIR adopted is the complex baseband representation of the mobile wireless 

system given as 

( , ) ( ) ( )
M

m m
m

h t t c ,                     (5.6) 

where ( )m t  and  m  are the time-variant complex amplitude  and the delay of the mth path 

respectively, and c(τ) is the aggregate impulse response of the transmitter-receiver pair that 

corresponds to the square-root raised-cosine Nyquist filter. By virtue of the motion of one of the 

communicating terminals, ( )m t ‟s are always modeled to be WSS narrowband complex Gaussian   

processes   which are    independent for different paths. Consequently, at the receiver, after the 

cyclic prefix (CP) has been removed from the OFDM symbols, the received signal in the discrete 

frequency domain is given as [1] 

[ , ] [ , ] [ , ] [ , ]z n k H n k x n k w n k ,                             (5.7) 

For 0,1,..., 1k K  and all n‟s. In (4.9), [ , ]x n k , [ , ]w n k and [ , ]H n k  are the transmitted symbol, 

additive white Gaussian noise sample and the frequency domain complex CTF coefficient 

respectively, associated with the kth subcarrier of the nth OFDM block. 

 

5.4 Iterative Decision Directed Channel Estimation Scheme 

The Iterative DDCE scheme is shown in Figure 5.4. Similar to the DDCE scheme of Chapter 4, it 

comprises of three majour parts namely the temporary CTF estimator, which is referred to as a 

posteriori CTF estimator, the parametric CIR estimator, and the CIR predictor (also known as a 
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prior CIR predictor). In each of the iteration cycles, the known pilot symbols [ ]t n are used to 

initialize the decision directed channel estimation process between the estimator and the Soft 

Demapper, while the detected symbol [ ]y n  is used in the subsequent estimation process during 

each of the iterations. At any iteration stage, the CTF estimator uses its input to make a temporary 

estimate of the CTF coefficients ˆ [ ]nH  that corresponds to the current channel state. The output of 

the CTF estimator is fed into the parametric CIR estimator to generate the FS-CIR [̂ ]n . This is 

employed by the adaptive CIR predictor to predict an a priori estimate 1n


 of the next CIR on a 

tap-by-tap-basis. The Frequency Domain (FD)-CTF [ 1]n


H  is obtained from the predicted CIR 

convolved with the transformation matrix [ ]nW . The FD-CTF [ 1]n


H  is employed by the Soft 

Demapper to compute the next soft input '
1nc  to the Soft Mapper-1. Soft Mapper-1 in turn uses 

this to calculate the next detected symbol [ 1]y n  that is fed into the Iterative DDCE during the 

1n th  OFDM-symbol period.  Each of the iterative DDCE modules are based on the various 

algorithms proposed in Chapter 4. 

 

At the end of the estimation /detection process during each of the iteration stages, the a priori L-

values 'SD
aL c from the decoder is subtracted from the soft detected symbols 'c (the a-posteriori 

L- values from the Soft Demapper) to form the extrinsic L-values 'SD
eL c . After deinterleaving, 

the extrinsic L-values become the a-priori L values D
aL c  fed to the Turbo decoder. However, in  
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Figure 5.4 Iterative Decision Directed Channel Estimator  
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the first iteration, the a priori L-values 'SD
aL c from decoder are assumed to be zeros since there 

is no soft information available at the output of the decoder at this stage. The Turbo decoder in 

turns calculate the a-posteriori L- values for all the code bits by employing the Maximum A-

Posteriori (MAP) decoder implemented as log-MAP [12]. The extrinsic L-values D
eL c is 

obtained by substracting the a-priori L values D
aL c  from the a-posteriori L-values. The 

extrinsic L-values D
eL c  is then interleaved to form the a-priori L values SD

aL c  that are fed to 

the Soft Demapper and Soft Mapper-2. These are used in combination with the known pilot 

symbols [ ]t n ,  during the second iteration  and upward, for estimation and detection processes. 

Soft Mapper-2 is employed to calculate the probability of the possible transmitted symbols (the 

soft symbols ˆ[ , ]y n k ) from the a priori L- values SD
aL c . These soft symbols are then used as the 

input to the iterative DDCE in the subsequent iteration after the first iteration instead of the 

received symbols. The iterative estimation, detection, and decoding processes continue for a 

number of predetermined iterations. At the final iteration stage, the decoder makes a final 

decision and returns hard decision estimate ˆ
pb  of the possible transmitted bits. 

 

5.5 Soft Demapper and Soft Mappers 

In this section the soft demapper and the two soft mappers, 1 and 2 of Figure 5.3 are presented in 

context of the proposed iterative DDCE. 

 

5.2.1   Soft Demapper 

The soft demapper follows after the one presented in Chapter 4 except that instead of setting the a 

priori values to zero, the a priori values are obtained from the feedback from the Turbo decoder 

after the first iteration. Consequently, the soft demapper calculates log-likelihood ratios 

' | [ , ]L c z n k and '
1 | [ , ]L c z n k , of the two successive interleaved bits  'c  and '

1c  

respectively, as   
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The probabilities i j
nB , with , 0,1i j in (5.8) and (5.9) are obtained by employing probability 

density function [215] given as  

,Pr [ , ] | [ , ]i j i j
nB z n k y n k  

       
,

2 2

1 1
exp [ , ] [ , ] [ , ] ,

2 2

i j

w w

z n k H n k y n k


       (5.10)  

where 2
w is the noise variance. As stated above, the a priori values of bits 'c  and '

1c , 

'
aL c  and '

1aL c  respectively, are set to zero during the first iteration since there is no 

feedback from the decoder at this stage, but assume their respective values at the 

subsequent iterations.  
 

 

5.2.2   Soft Mapper 1 

The soft mapper 1 estimates the soft symbol [ , ]y n k , input to the iterative DDCE, by using the 

outputs of the soft demapper.  Therefore, the soft symbol [ , ]y n k , at each kth subcarrier, is 

computed using ' | [ , ]L c z n k  and '
1 | [ , ]L c z n k   from the soft demapper as follow [179] 

 

00 01 10 11[ , ] n n n ny n k D D D D ,         (5.11)  

where, 
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' ' ,
1Pr Pr [ , ]i j i j

nD c i c j y n k .          (5.12) 

The probabilities 'Pr 1c  and 'Pr 0c  can be expressed respectively as 

'

'
| [ , ]1

Pr 1 1 tanh
2 2

L c z n k
c ,          (5.13)  

and 

'

'
| [ , ]1

Pr 0 1 tanh
2 2

L c z n k
c .                      (5.14)  

Similarly, the probabilities '
1Pr 1c  and '

1Pr 0c can be expressed respectively as  

'
1'

1

| [ , ]1
Pr 1 1 tanh

2 2

L c z n k
c ,              (5.15)  

and  

'
1'

1

| [ , ]1
Pr 0 1 tanh

2 2

L c z n k
c .         (5.16) 

 

 

5.5.3   Soft Mapper 2 

Soft Mapper-2 calculates the probability of the possible transmitted symbols (the soft symbols 

ˆ[ , ]y n k ) from the a priori L- values SD
aL c . The output of the soft mapper 2 is then used as the 

input to the iterative DDCE in the subsequent iteration, after the first iteration, instead of the 

received symbols [ , ]n kz . 

The soft symbol is calculated as follow [179] 

      

00 01 10 11ˆ[ , ] n n n ny n k M M M M .         (5.17) 

 

Similarly to the case of Soft Mapper 1, we have  

 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 121 

' ' ,
1Pr .Pr . [ , ]i j i j

nM c i c j y n k ,          (5.18) 

where the probabilities 'Pr 1c  and 'Pr 0c can be expressed respectively as 

'

' 1
Pr 1 1 tanh

2 2

SD
aL c

c , and               (5.19)  

'

' 1
Pr 0 1 tanh

2 2

SD
aL c

c .          (5.20)  

Correspondingly, the probabilities '
1Pr 1c  and '

1Pr 0c can be expressed respectively as  

'
1'

1
1

Pr 1 1 tanh
2 2

SD
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c , and         (5.21) 

'
1'

1
1

Pr 0 1 tanh
2 2

SD
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c .          (5.22) 

     

The values '
aL c  and '

1
SD
aL c ,  are the a priori values of the bits 'c  and '

1c  to the Soft 

Demapper respectively, obtained from the extrinsic information( D
eL c ) that is available at the 

output of the decoder.  

 

5.6 Simulation Results and Discussion 

In this section simulation results are presented and discussed in a bid to characterize the 

achievable performance of the iterative DDCE scheme in comparison with its non-iterative 

counterpart presented in Chapter 4. Simulations are also run to confirm the performance of the 

proposed iterative DDCE scheme employing FDPM subspace tracking algorithm and VSSNLMS 

predictor in comparison with using PASTd subspace tracking algorithm and the NLMS predictor. 

 

A rate 1/3, octal generator polynomial of (7, 5), turbo-coded QPSK-modulated OFDM system 

with K = 64 subcarriers and a total bandwidth of 800kHz is assumed. The symbol duration, Ts is 

80µs, while the CP length is 16 samples (1/4 of the symbol period) with the CP period, Tg = 

20µs. Consequently, the total block period, T is 100µs. Random interleavers are employed in 
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the system. The six-path time-varying Rayleigh fading COST 207 Typical Urban (TU) channel 

model of [43] with Doppler frequencies of 50Hz and 100Hz is employed. The first OFDM 

symbol of 64 subcarriers comprises the pilot symbols. These are used to initialize the channel 

estimation process. In all the simulation, we assumed having M = 6 FS-CIR taps, and we set  = 

0.98 for FDPM algorithm, while  is set to 0.95 for PASTd algorithm. The length of the CIR 

predictor (Lprd) is set to 10, while µ0 = 0.5 is used for NLMS-based predictor and to initialize 

VSSNLMS-based predictor,  is set to 0.002. 

 

Figure 5.5 and Figure 5.6 show the performance improvement in terms of BER as iteration 

increase, for the system employing the proposed Iterative DDCE scheme of Figure 5.3 with 

FDPM-based CIR estimator and NLMS based predictor under slow and fast fading scenario 

respectively. Also shown in the figures are the results after the 8th iteration of Turbo decoder for 

the system employing non-iterative DDCE scheme presented in Chapter 4, with FDPM-based 

CIR estimator and NLMS based predictor. The 8th iteration results of Turbo decoder for the 

system employing non-iterative DDCE scheme presented in Chapter 4 is chosen because this is 

the point where the results start to decline for the system. The curves labeled perfect channel state 

information (CSI) correspond to detection with perfect knowledge of channel at the receiver, and 

serve as benchmarks in the two cases of channel fading. It is observed that the results for Iterative 

DDCE scheme begin to show no further improvement after the 7th iteration for both fading 

scenarios. It is also observed that the results of the non-iterative DDCE scheme are just a little bit 

better than the 6th iteration results of the iterative DDCE scheme. However, the 7th and 8th 

iterations results of the iterative DDCE scheme are better than that of the non-iterative DDCE 

scheme (with turbo decoder). 

 

Figure 5.7 shows the comparative performance gain, in terms of BER, of FDPM-based iterative 

DDCE over PASTd-based iterative DDCE while using NLMS based predictor for both slow and 

fast fading channel scenarios respectively. The corresponding Means Square Error (MSE) exhibits 

by both subspace tracking algorithms during both slow and fast fading channel scenarios after the 

7th iteration are as shown in Figure 5.8. It is obvious from the figures that FDPM-based iterative 

DDCE outperforms its PASTd-based iterative DDCE counterpart and its results are closer to the 

ideal channel estimator (the perfect CSI).  
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Figure 5.5 BER performance of the proposed Iterative DDCE scheme employing FDPM-

based CIR estimator and NLMS based predictor, fD=0.005  
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Figure 5.6 BER performance of the proposed Iterative DDCE scheme employing FDPM-

based CIR estimator and NLMS based predictor, fD=0.02  
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Figure 5.7 BER performance of the Iterative DDCE scheme with both FDPM-based CIR 

estimator and PASTd-based CIR estimator while employing and NLMS based predictor for both 

normalized Doppler frequencies fD = 0.005 and fD = 0.02.  
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Figure 5.8 MSE at 7th Iteration exhibited by FDPM- and PASTd-based Iterative DDCE 

while employing and NLMS based predictor for both normalized Doppler frequencies fD = 0.005 

and fD = 0.02.  

 
In Figure 5.9, comparative performance gain of FDPM-based iterative DDCE in comparison with 

PASTd-based iterative DDCE, as well as performance gain achievable while employing 

VSSNLMS-based predictor and NLMS-based predictor are shown in terms of BER for both slow 

and fast fading channel scenarios. In the figure, the results indicate that FDPM-based iterative 

DDCE employing NLMS and VSSNLMS predictors show better performance than PASTd-based 

iterative DDCE employing the two predictors respectively. The figure also indicates performance 

improvement introduced by the employment of the proposed VSSNLMS predictor over its NLMS 

counterpart for each case of FDPM-based iterative DDCE and PASTd-based iterative DDCE 
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schemes. The corresponding Means Square Error (MSE) results are shown in Figure 5.10 and 

Figure 5.11 for slow and fast fading channel respectively. During the slow fading channel 

scenario shown in Figure 5.10, the MSE performances of the FDPM-based iterative DDCE 

employing NLMS and VSSNLMS predictors are better than that of PASTd-based iterative DDCE 

employing the two predictors respectively. There is also MSE performance improvement for both 

FDPM-based iterative DDCE and PASTd-based iterative DDCE schemes as NLMS predictor is 

replaced with VSSNLMS predictor. However, for the fast fading channel scenario shown in 

Figure 5.11, the performance gain of the FDPM- and PASTd- based DDCE schemes employing 

VSSNLMS predictor in comparison with the one with NLMS predictor is very small. This narrow 

marginal gain might be due to the fact that the improvement brought upon the scheme by the 

iterative techniques overrides the improvement the VSSNLMS predictor offers during this fast 

fading channel scenario.  
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Figure 5.9 BER at the 7th iteration for the proposed DDCE-based FDPM and PASTd 

algorithms, employing NLMS and VSSNLMS predictors, fD = 0.005 and fD =0.02  
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Figure 5.10 MSE at the 7th iteration for the proposed DDCE-based FDPM and PASTd 

algorithms, employing NLMS and VSSNLMS predictors, fD = 0.005  
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Figure 5.11 MSE at the 7th iteration for the proposed DDCE-based FDPM and PASTd 

algorithms, employing NLMS and VSSNLMS predictors, fD = 0.02.  
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5.7 Computational Complexity of the Iterative DDCE Scheme 

 

The computational complexity of the proposed iterative DDCE scheme employing FDPM-based 

CIR estimator and VSSNLMS-based CIR predictor is the same with that of its non-iterative 

counterpart presented in Chapter 4 detailed in Section 4.8. However, as a result of the iterative 

paths introduced in the system receiver, the complexity of the OFDM receiver in comparison with 

its non-iterative counterpart of Chapter 4 will increase by an additional extra one soft mapper and 

an interleaver as can be seen from Figure 4.1 and 5.3 respectively.  

 

5.8 Chapter Summary 

 

In this Chapter the concept of iterative DDCE technique proposed for SISO OFDM system is 

presented. The scheme is based on a Fast Data Projection Method subspace tracking algorithm as 

well as VSSNLMS-based predictor derived in the previous Chapter. Simulation results suggest 

that improved performance can be achieved with a reasonable number of iterations. The results 

also indicate that the iterative DDCE scheme, at an optimal iteration number, outperforms its non-

iterative DDCE counterpart proposed in Chapter 4. The simulation results further show 

improvement in the performance of the proposed iterative scheme employing the FDPM 

algorithm over its counterpart that employs the PASTd algorithm. The results also indicate that 

the VSSNLMS-based CIR predictor brings about an improvement to the performance of the 

DDCE scheme in comparison with the DDCE scheme employing NLMS-based predictor, 

especially during slow channel fading scenario. In the whole, the Iterative DDCE scheme 

confirms the added advantage offered by the iterative technique in comparison with the non-

iterative technique. However, the proposed scheme will exhibit some disadvantages in terms of 

hardware complexity and also the implementation issues such as additional time required for 

iteration in comparison with its non-iterative counterpart presented in Chapter 4. This will 

definitely bring about some delay in the processing time at the system receiver. 
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CHAPTER 6 

 

CHANNEL ESTIMATION FOR MIMO-OFDM SYSTEMS 
 

 

6.1 Introduction 

 

 

Employment of multiple antennas at both transmitter and receiver ends of wireless 

communication Systems, termed as MIMO system, has received attention both from industries as 

well as from academic communities. The reason for this is due to the various gains attached to the 

deployment of the multiple antennas in the communication Systems. Prominent among these 

gains are the diversity gain and the multiplexing gain.  

 

Diversity gain can be achieved with the aid of space time coding technique. The deployment of 

the space-time coding enables the transmission of the same data symbol from multiple transmit 

antennas. The received data symbols, at each of the receive antennas, are the superposition of all 

the transmitted data symbols. As such, the receiver will detect the same transmitted data symbol 

several times and at different antenna position in space. As long as the fading for each 

transmission links between a pair of transmit and receive antennas in the MIMO Systems can be 

assumed to be independent of each other, such that at least one link is not in a fading dip at the 

same time with the other links, the transmitted data symbols can be detected with higher accuracy 

at the receiver of MIMO Systems. In this way, the bit error rate (BER) performance of the system 

can be significantly enhanced. This performance improvement is referred to as diversity gain. The 

space time coding techniques for MIMO Systems can be found, for example, in [242]. There are 

different types and improved versions of space time coding techniques that have been proposed in 

literatures. Some of these are the Space-Time Trellis Codes (STTC) in [243], the Orthogonal 

Space-Time Block Code (OSTBC) in [244, 245], and the Super-Orthogonal Space-Time Trellis 

Codes (SOSTTC) in [246, 247]. Since the focus of this thesis is on channel estimation techniques 

for wireless communication system including MIMO-OFDM system, space time coding 
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technique is not considered. Consequently, MIMO encoding (space-time coding) is not pursued 

further. 

 

Multiplexing gain is achieved with the aid of Spatial Multiplexing technique. In this technique, 

stream of data symbols are independently transmitted on different transmit antennas 

simultaneously. Consequently, multiplexing gain, which is the increase of data rate, is obtained at 

no additional power consumption or bandwidth expenditure. The main difference in the system 

architecture for achieving diversity gain and multiplexing gain is that the former can be achieved 

when multiple antennas are employed at either ends of the communication system. However, for 

the multiplexing gain to be achieved, multiple antennas are required at both end of the 

transmission link [248]. As mentioned in Chapter 1, the MIMO system that employs spatial 

multiplexing technique will have its data rate/ capacity growing proportionally with the minimum 

of the numbers of transmit, MT and receive, MR antennas (that is min{MT, MR}). There are 

different algorithms that have been employed to implement spatial multiplexing. The first of these 

is the diagonally-layered space-time known as diagonal Vertical Bell laboratories Layered Space 

Time (D-BLAST) proposed in [244]. In [249, 250], a simplified version of D-BLAST known as 

V-BLAST is proposed. Coding gain can be achieved by encoding the data in advance with 

convolutional code [251]. In [252] spatial multiplexing approach based on the serial 

concatenation of a convolutional encoder, a bit interleaver, and a space-time signal constellation 

mapper is proposed, where it is shown that the presented structure approaches the optimal 

performance. In this approach, information bits are encoded with a convolutional encoder after 

which the encoded bits are appropriately interleaved and demultiplexed into several parallel 

streams.  Each of these streams is then mapped unto signal constellation points such as M-

PSK/M-QAM constellation, and independently transmitted on a transmit antenna. Linear 

superposition of the transmitted signals corrupted by channel noise is captured by each receive 

antenna at the receiver end of the MIMO Systems. This approach is said to be a space-time 

extension of the bit-interleaved coded modulation idea of [253]. Hence, the scheme is referred to 

as space-time bit-interleaved coded modulation (ST-BICM) [252]. 

 

In a broadband communication occasioned by higher data rate, MIMO channel exhibits strong 

frequency selectivity. However, Orthogonal Frequency Division Multiplexing (OFDM) has 

become a convenient technique for wideband transmission where the frequency selective 

channels are converted to an equivalent set of frequency flat sub-channels. The joint deployment 

of both MIMO and OFDM techniques, referred to as MIMO-OFDM Systems, is considered as a 
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promising technology for the future generation of broadband wireless Systems, as it decouples the 

frequency selective MIMO channel into an equivalent numbers of parallel MIMO channels while 

still maintaining the higher data rate achievable in the MIMO system.  

 

In this chapter, soft input iterative DDCE scheme employing adaptive VSSNLMS and subspace 

tracking FDPM algorithms is proposed for estimation of MIMO CSI at the receiver of the bit 

interleaved turbo coded MIMO-OFDM Systems. The proposed iterative DDCE operates in an 

iterative mode in conjunction with the MIMO demappers and the Turbo decoder at the receiver of 

the MIMO-OFDM Systems. 

 

The rest of this chapter is therefore organized as follows. Section 6.2 briefly introduces iterative 

DDCE scheme for MIMO-OFDM Systems, while the MIMO-OFDM Systems model is described 

in Section 6.3. Different modules of the proposed iterative DDCE for MIMO-OFDM Systems are 

described in Section 6.4. Section 6.5 and Section 6.6 present soft MIMO demapper and soft 

MIMO mapper respectively. Simulation results for the proposed iterative DDCE for MIMO-

OFDM system are discussed in Section 6.7. Finally, Section 6.8 summarized the chapter. 

 

6.2  Iterative DDCE Scheme for MIMO-OFDM Systems 

The ST-BICM architecture has been presented for MIMO-OFDM Systems in [254-257]. Iterative 

detection and decoding for the ST-BICM MIMO-OFDM architecture is presented in [258]. In 

[259] optimal decoding of the bit-interleaved coded modulation (BICM) MIMO-OFDM Systems 

where an imperfect channel estimate is available at the receiver is investigated. In this thesis 

however, iterative DDCE scheme [263, 264] similar to the one in Chapter 5 is proposed for the 

MIMO-OFDM system, which is based on ST-BICM structure described above. The proposed 

iterative DDCE operates in an iterative mode in conjunction with the MIMO demappers (also 

called detectors) and the Turbo decoder at the receiver of the MIMO-OFDM Systems. 

 

6.3 MIMO-OFDM Systems Model 

 

Figure 6.1 shows block diagram of MIMO-OFDM based on space-time bit-interleaved coded 

modulation (ST-BICM) transmission scheme. Figure 6.2 depicts the block diagram of the receiver 

of the MIMO-OFDM system based on ST-BICM including the proposed iterative DDCE scheme. 
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Figure 6.1 Block diagram of MIMO-OFDM based on ST-BICM transmission scheme  
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Figure 6.2 Block diagram of MIMO-OFDM receiver with Iterative DDCE scheme  
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6.3.1   ST-BICM Transmitter Structure 

In the Space-Time Bit Interleaved Coded Modulation (ST-BICM) transmitter structure shown in 

Figure 6.1,  binary source bits 1 2, ,..., , 1, 1
bNb b bb  are encoded by a turbo encoder having 

code rate Rc . The encoder output sequence  1 2, ,..., , 1, 1
cNc c cc  , where b

c
c

N
N

R
, are 

interleaved to 1 2, ,..., , 1, 1
cNd d dd  by employing a random interleaver of length cN . 

The interleaved code bit stream, d , are demultiplexed to MT transmit antenna as  

[ ], 1,... Tn i Mid , at a time instant n. Each of the TM  parallel streams is then mapped to complex 

symbol, 1 2[ ], [ ],..., [ ]TMn x n x n x nx , chosen from M-ary signal constellation , such as QPSK 

employed in this work. The outputs of the mapper are modulated by the OFDM modulator to 

each subcarrier as 1 2[ , ], [ , ],..., [ , ]
TMn,k x n k x n k x n kx ,   and transmitted through MT antennas. 

 

 

6.3.2   Channel Statistics 

Considering a single user MIMO-OFDM system of Figure 6.1 and Figure 6.2 with MT transmit 

and MR receive antennas, with each OFDM subcarrier of length K, the MIMO channel will 

experience frequency selective fading occasioned by M independent paths in each of the MT  MR 

Single Input Single Output (SISO) propagation links. Each of these SISO links is similar to SISO 

channel considered in the previous chapters. Hence, the SISO links of the MIMO channel can be 

characterized as a multipath SISO channel employed in the previous chapters. As it is with the 

previous multipath SISO channel, the OFDM transmission scheme converts each of the 

broadband frequency selective MIMO channels to a set of K parallel flat fading channels.  

 

With reference to the previous chapters, the complex baseband representation of the continuous-

time CIR of a mobile wireless system is described as [242, 246]  

( , ) ( ) ( )m m
m

h t t c ,                 (6.1) 

where ( )m t  and  m  are the time-variant complex amplitude  and the delay of the mth path 

respectively, and c(τ) is the aggregate impulse response of the transmitter-receiver pair that 

corresponds to the square-root raised-cosine Nyquist filter. Consequent upon the motion of one of 

the communicating terminals, ( )m t ‟s are always modeled to be WSS narrowband complex 

Gaussian   processes   which are    independent   for different paths.   
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The average power of ( )m t ‟s is a function of the channel delay profiles, which are dependent 

upon the environment. In the case of MIMO Systems, the channels that are related to different 

transmit and receive antennas usually experience the same delay profiles as with the SISO 

Systems [260]. Consequently, the time domain channel impulse response (CIR) from the ith 

transmit antenna to the jth receive antenna, following equation (6.1), can be denoted by 

 
1

0

( ) ( )
M

ji ji m
m

h m c              (6.2)   

 

However, for OFDM Systems with proper cyclic extension and adequate synchronization, the 

discrete subcarrier-related Channel Transfer Function (CTF) can be expressed as: 

0 1

0

[ , ] ( , ) [ , ]
K

kl
ji ji ji K

l

H n k H nT k f h n l W  

   
/

1

( ) [ , ]
m s

M k T

ji ji K
m

C k f n m W  ,            (6.3)                                  

where 

 [ , ] ( , )ji ji sh n l h nT lT  

 
1

[ , ] ( )
M

ji s m
m

n m c lT ,                    (6.4) 

is the Sample Spaced Channel Impulse Response SS-CIR and exp( 2 / )KW j K . In (6.4) 

( , ) ( , )ji jin m nT m  is the Fractionally Spaced Channel Impulse Response (FS-CIR), and it will 

be constituted by a low number of 0M K K   statistically independent non-zero taps associated 

with distinctive propagation paths. The symbols K, T, f, and Ts in (6.3) are the number of 

subcarrier, OFDM symbol length, subcarrier spacing, and OFDM symbol duration respectively. 

In matrix form, equation (6.3) can be written as:    

ji ji jin n nH W ,              (6.5) 

where ( [ ])ji ji=diag C kW  W  is defined as (K × M)-dimensional matrix in which ( [ ])diag C k is a (K × 

K)-dimensional diagonal matrix with the corresponding elements of vector ( )C f  on the main 

diagonal [161]. Symbol jiW  is the Fourier Transform matrix defined by  
m

s

k
T

ji ji K
W km W  for 

each propagation links between the ith transmit and jth receive antenna, and for all k’s and m’s. 
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6.3.3 ST-BICM Receiver  

At the receiver of the MIMO-OFDM system based on ST-BICM scheme, if perfect time and 

frequency synchronization are assumed, after the cyclic prefix (CP) has been discarded and 

OFDM demodulation has be carried out, the signal received at the  jth receive antenna is the 

superposition of MT distorted transmitted signals. Hence, the signal received at the jth receive 

antenna associated with the kth subcarrier of the nth OFDM block can be written as 

1

, , , [ , ]
TM

j ji i j
i

z n k H n k x n k w n k ,           (6.6) 

 

where ,jz n k , ,ix n k  and [ , ]jw n k  denotes the receive symbol at the jth antenna, the 

transmitted symbol from the i-th transmit antenna, and the complex zero-mean white Gaussian 

noise sample encountered at the jth receive antenna respectively. 

In vector form, the received signal of (6.6) is given as 

, , , ,n k n k n k n kz H x w              (6.7) 

 

where, 

11 1

1

, . . . ,

. . .

, . . .

. . .

, . . . ,

T

R R T

M

M M M

H n k H n k

n k

H n k H n k

H ,           (6.8) 

 

1 2, , , , ,..., ,
R

T

Mn k z n k z n k z n kz ,           (6.9) 

and 

1 2, , , , ,..., ,
R

T

Mn k w n k w n k w n kw .         (6.10) 

 

The received signals are fed into the 1 K array of MIMO demapper. The demappers, with the aid 

of estimated MIMO CSI provided by the proposed iterative DDCE scheme, compute soft 

information about the transmitted message bits. These, after being de-interleaved, are fed into the 

turbo decoder that makes final decision about the possible transmitted bits following a number of 

iteration. Soft information are fed back to both the MIMO demappers and the array of the 

iterative DDCE scheme in order to complete the iterative loop of the receiver of the MIMO-

OFDM system based on ST-BICM. 

 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 138 

6.4 Iterative Decision Directed Channel Estimator Modules for 

 MIMO-OFDM System  

 

Each of the MT  MR array of Iterative Decision Directed Channel Estimator at the receiver of the 

MIMO-OFDM system of Figure 6.3 comprises three majour component namely, Temporary 

Channel Transfer Function (CTF) Estimator, Parametric Channel Impulse Response (CIR) 

Estimator, and the Adaptive Channel Impulse Response Predictor as shown in Figure 3. Details of 

these are given in the following sections. 

 

6.4.1   Temporary Channel Transfer Function (CTF) Estimator 

 

6.4.1.1  CTF Estimator based on Minimum Mean Square Error (MMSE)   

 Criterion 

By extending the MMSE employed in the previous chapters for single antenna OFDM Systems to 

MIMO channel, the MMSE estimate of the MIMO FD-CTF coefficients H[n,k]  of the scalar 

linear model described by (6.7), using the two inputs signals to the CTF Estimator, is given as 

[226, 228]  

1

1 1
2 2 2

[n,k] [n,k] [n,k] [n,k]
1

[n,k] .

R R

i ij i

M M

i i i i
i i

ij

w H w

y y y z

H =  

  1
2

2

2
1

[n,k] [n,k]

[n,k]

R

R
i

ij

M

i i
i

M
w

i
i H

y z

y

,                (6.11) 

where the noisy estimate [n, k]ijH  could be similarly written as 

[n,k] [n,k] [n,k]ij ij iH =H +v ,                 (6.12)  

and [n,k]iv  denotes the i.i.d. complex-Gaussian noise samples with a zero mean and a variance of 

2
ijv HMSE  at the i-th receive antenna. The symbol 

ijHMSE  denotes the average Mean Square 

Error (MSE) associated with the MMSE CTF estimator of (6.11). In the simulation results that 

will be shown later, it is observed that the performance of MMSE based CTF estimator for    
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Figure 6.3 Iterative Decision Directed Channel Estimator for MIMO-OFDM Systems  

 

MIMO-OFDM system is worse when compared with how it performed in the case of single 

antenna OFDM Systems. The simple reason for this is due to the problem of rank deficiency 

nature associated with the estimation of the MIMO channel. This problem is similarly alluded to 

in [161]. In order to mitigate this problem, arrays of VSSNLMS based adaptive channel estimator 

of Chapter 3 are then proposed to implement the CTF estimator, instead of the linear MMSE 

based CTF estimator, to independently estimate the MR  MT uncorrelated channel coefficient of 

the MIMO CTF matrix rather that the RLS-based channel estimation applied by the authors in 

[161]. The use of the VSSNLMS based adaptive channel estimator is inspired by its low 

complexity and its performance that is close to the performance of the more complex RLS based 

adaptive channel estimator as indicated in Chapter 3. 

 

 

6.4.1.2 Variable Step Size Normalized Least Mean Square (VSSNLMS)   

 Adaptive CTF Estimator 

The derivation of the Adaptive VSSNLMS-based CTF estimator for the proposed Iterative DDCE 

scheme for MIMO OFDM system is presented in this section. By omitting the indices i and j for 

simplicity, the VSSNLMS-based CTF recursively estimates ˆ [ ]nH  as follows. 

2

ˆˆ ˆ[ ] [ 1] [ ] [ ]
ˆ

H [n]
n n n n

[n]

x
H H e

x
,                 (6.13) 

where superscript „H‟ is a Hermitian (conjugate transpose), 

ˆ[ ] [ ] [ ] [ ]Hn n n ne z H x ,                  (6.14) 

and ˆ[ ]nx  are the soft value of the detected symbols. The variable step size [ ]n   is updated as 

[232, 233] 
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2[ ]
[ ] [ 1]

2 [ 1]

n
n n

n

e
              (6.15a) 

2 ˆ[ ] [ ]
[ ] [ 1] .

ˆ2 [ 1][ ]

n n
n n

nn

e H

H
             (6.15b) 

By substituting (6.15a) into (6.15b), and the result substituted into the result obtained from the 

result of the substitution of (6.13) into (6.15b), we have 

 

 

*

2

ˆ ˆRe [ ] [ 1]
[ ] [ 1]

ˆ

Hn n [n] [n-1]
n n

[n-1]

e e x x

x
.                      (6.16)  

When the input signal and the channel tap are real (6.16) becomes: 

 

 
2

ˆ ˆ[ ] [ 1]
[ ] [ 1]

ˆ

Tn n [n] [n-1]
n n

[n-1]

e e x x

x
 .                (6.17) 

 

The values of  [ ]n  are restricted within the range 0 [ ] 2n  in order to make for stable 

operation of the algorithm [232, 233]. 

 

 

6.4.2   FDPM Subspace Tracking Algorithm-based MIMO CIR Estimator  

 

The time domain MIMO CIR estimator is based on the FDPM algorithm [227] earlier proposed 

for single antenna CIR estimator in the previous chapters. This is hereby re-derived in the context 

of MIMO-OFDM Systems. If the symmetric, nonnegative, definite, covariance matrix of the 

observation vectors ˆ
ji [n]H  of size K is represented as

jiHC , its singular vectors corresponding to 

the M dominant singular values can be computed with the aid of an iterative procedure referred to 

as orthogonal iteration [231] that has the following variants [227] 

[ ] [ 1]
jiji K H jin orthnorm n W I C W .                            (6.18) 

Replacing 
jiHC  with adaptive estimate [ ]

jiH nC , (6.18) results in an adaptive orthogonal iterative 

algorithm given as 

[ ] [ ] [ 1]
jiji K H jin orthnorm n n W I C W .                         (6.19) 
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If [ ]
jiH nC  is replaced with instantaneous estimate of the covariance matrix represented as 

ˆ ˆ[ ] [ ] [ ]
ji

H
H ji jin n nC H H , (6.19) results in Data Projection Method (DPM) algorithm given as  

ˆ[ ] [ 1] [ ]ˆ ji jiji
n n n HW H ,                         (6.20) 

ˆ[ ] [ 1] [ ] [ ]ˆ
H

ji ji ji ji
n n n nT W H ,                    (6.21) 

ˆ [ ] [ ]ji jin orthnorm nW T .                    (6.22) 

The FDPM algorithm [227], which is herein re-derived in the context of MIMO channel and 

employed to track the time-domain MIMO CIR, is obtained through the application of a faster 

orthonomalization procedure (Housholder Transformation) to the DPM algorithm. This 

application of the faster orthonomalization procedure to obtain the FDPM algorithm is the basis 

for its better performance in comparison with other subspace tracking algorithms with the same 

order of computational complexity.  

 

In summary, the time-domain CIR estimates ˆ [ ]ij n  of length M is tracked based on the temporary 

FD-CTF observation, ˆ
ji [n]H , using the subspace FDPM tracking algorithm as follows. 

 At time index n =0, the [ ]n
ijW is initialized to orthonormal matrix (typically the first M 

columns of the identity matrix) with K rows for faster convergence. 

 

For i = 1, 2, …, MR 

 Do 

 For j = 1, 2, …, MT 

  Do   

  For  n = 1, 2, . 

 ˆˆ [ ] [ 1] [ ]Hn n n
ij ij ijW H                        (6.23) 

 2
ˆ [ ]nijH

                 (6.24) 

 ˆ ˆ[ ] [ 1] [ ] [ ]Hn n n n
ij ij ij ijT W H               (6.25) 

 1ˆ ˆ[ ] [ ] [ ]n n nij ij ija e   ,    where 1 10...0
T

e           (6.26)

 
2

2
[ ] [ ] [ ] [ ] [ ]

[ ]

Hn n n n n

n
ij ij ij ij ij

ij

Z T T a a

a

             (6.27) 
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     [ ] [ ]n normalize n
ij ijW Z  ,               (6.28) 

  end for n 

 end for MT 

end for MR 

The performance FDPM subspace tracking algorithm in terms of mean square error (MSE) 

criterion is as follows. 

2
( )MSE E ne ,                   (6.29) 

where ( )ne  is given as  

ˆ ˆ( ) [ ] [ 1] [ ]n n n n
ij ij ije H W .                  (6.30) 

 

6.4.3   Adaptive VSSNLMS Algorithm-based MIMO CIR Predictor 

 

The MIMO CIR predictor for the proposed iterative DDCE for MIMO-OFDM Systems is based 

on VSSNLMS algorithm and it is similar to the one in the previous chapters for single antenna 

OFDM Systems, except that it is herein adapted to the case of MIMO channels. The choice of 

VSSNLMS-based predictor over its counterpart, the (RLS)-based adaptive predictor is similarly 

based on the reasons for employing VSSNLMS-based CTF estimator instead of the RLS-based 

CTF estimator, the computation complexity issues [261, 262] detailed in Chapter 4.  

 

The VSSNLMS algorithm updates the mth CIR tap‟s predictor coefficients [ ][ ]ij n m p  of length 

prdL  as [261, 263, 265] 

*
2

[ ]
ˆ[ , ] [ 1, ] [ , ] [ 1, ]

ˆ [ 1, ]

ij
ij ij ij ij

ij

n
n m n m e n m n m

n m

p p ,              (6.31) 

where, 

 ˆ ˆ[ , ] [ , ] [ 1, ] [ 1, ]H
ij ij ij ije n m n m n m n mp .                 (6.32) 

The MIMO CIR  is then predicted for the next time index n+1 as 

ˆ[ 1, ] [ , ] [ , ]H
ij ij ijn m n m n m


p ,                 (6.33) 

and the variable step size of (6.31) is obtained as  

*

2

ˆ ˆRe [ , ] [ 1, ] [ , ] [ 1, ]
ˆ [ ] [ 1]

ˆ [ 1, ]

H
ij ij ij ij

ij ij

ij

e n m e n m n m n m
n n

n m

.                (6.34) 
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In order to restrict the variable step size [ ]ij n  to the range 0 [ ] 2ij n  which makes for the 

stable operation of the NLMS algorithm as stated above, the variable step size [ ]ij n  in (6.31) is 

restricted within the range given as    

max max

min min

ˆ [ ]

ˆ[ ] [ ]

ˆ [ ]

ij

ij ij

ij

if n

n if n

n otherwise

,                     (6.35) 

where min max0 2 . 

At time index n = 0, the predictor filters are initialized as [152] [ , ] 1 0 0 ... 0
T

ij n mp . The 

operation of the VSSNLMS based MIMO CIR predictor is summarized as follow: 

For i = 1, 2, …, MR 

 Do 

 For j = 1, 2, …, MT 

  Do   

  For  n = 1, 2, . .  

   Do   

    For m = 1, 2, …, M 

    if n = 0, 

  set  [ ][ ] 1 0 0 ... 0
T

ij m np  

 

  ˆ ˆ[ , ] [ , ] [ 1, ] [ 1, ]H
ij ij ij ije n m n m n m n mp     (6.36a) 

  *
2

[ ]
ˆ[ , ] [ 1, ] [ , ] [ 1, ]

ˆ [ 1, ]

ij
ij ij ij ij

ij

n
n m n m e n m n m

n m

p p    (6.36b) 

  ˆ[ 1, ] [ , ] [ , ]H
ij ij ijn m n m n m


p       (6.36c) 

  

*

2

ˆ ˆRe [ , ] [ 1, ] [ , ] [ 1, ]
ˆ [ ] [ 1]

ˆ [ 1, ]

H
ij ij ij ij

ij ij

ij

e n m e n m n m n m
n n

n m

  (6.36d) 

 

   end for M 

  end for n 

 end for MT 

end for MR 

 

The predicted CIR is finally converted to the frequency domain CTF using the transformation 

matrix [ ]n
ijW  as 

, [ ]* [ 1, ]ijn k n n m
 

ijH W .           (6.37)  

The CTF obtained is then fed to the soft MIMO demapper for the purpose of obtaining soft 

information for the next OFDM symbol.  
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6.5 Soft MIMO Demapper 

 

The soft MIMO Demapper is fed with the outputs of the OFDM demodulators, the estimated 

MIMO CTF, as well as the extrinsic (soft) information returns by the Turbo decoder. The 

demapper computes the a posterior log likelihood ratios of the coded and interleaved transmitted 

bits for i-th antenna branch mapped at k-th subcarrier into the q-th bit position (i = 1, . . ., MT; and 

q = 1, . . . Q from the 2
Q
-ary signal constellation) as 

 

,

,

,

Pr [ ] 1
[ ] ln

Pr [ ] 1

i q

i q

i q

d n
L d n

d n
          (6.38) 

 

 

6.5.1   Soft MIMO Demapper Formulation 

 

If the q-th bit corresponding to the symbol ,ix n k , transmitted from the i-th transmit antenna 

and on the k-th subcarrier, at time instant n, is represented as , [ , ]i qd n k ,  then its log-likelihood 

ratios can be denoted as , [ , ]i qL d n k , where i = 1, . . ., MT; and q = 1, . . ., Q (from the 2
Q
-ary 

signal constellation). In the case where QPSK constellation is used for modulation at the 

transmitter end of the system, Q = 2. Hence, the log-likelihood ratios , [ , ]i qL d n k  of (6.38) 

conditioned on the estimated channel state information, ,n k


H  (made available by the proposed 

iterative DDCE scheme) as shown in Figure 6.2, is given as [252] 

 

,

,

,

,

,

[ ] 1

[ ] 1

Pr [ ] 1| ,
[ ] ln

Pr [ ] 1| ,

Pr

ln
Pr

i q

i q

i q

i q

i q

n] d n

n] d n

d n [n] [n]
L d n

d n n] [n]

[n], [n], [n]

[n], [n], [n]





x[

x[

z H

z[ H

x z H

x z H

,         (6.39) 

 

where , [ ] ; 1, 1i qd n b b  is the set of all possible vectors having bit , [ ] 1 1i qd n or . The 

number of elements in such a set is 12 TM Q  [252] .The subcarrier index k, is dropped for 

convenience purpose. The joint probability density of (6.39), obtained from the product of the 

conditioned channel probability density function, and the a priori probability of the symbol 

vector, under AWGN assumption, is given as [252] 
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2

, ,

0 1 1 1 1

1 1
Pr exp [ ] [ ]

2

R T TM M M Q
i i q i q

j s ji a
j i i q

[n], [n], [n] K z [n] - E H [n]x [n] d n L d n
N

x z H ,     (6.13) 

where K is a constant. The elements of the symbol vector [n]x  and the bits that are mapped to 

such a vector are denoted as ix [n]  and , [ ]i qd n  respectively. The a priori log-likelihood ratios 

, [ ]i q
aL d n  are set to zero at the initial stage of the iterative process, since there is no a priori 

information on the coded bit at this stage. During the subsequent iterations, the a priori ratios of 

the bits of each transmit antenna branch are derived from the output of the Map turbo decoder. 

The a priori log-likelihood ratios from the decoder are also employed by another soft mapper to 

compute soft symbols that are fed into the proposed iterative DDCE scheme for the estimation of 

the channel state information in the second iteration and beyond. 

 

6.6 Soft MIMO Mapper  

 

The soft MIMO Mapper follows after the soft Mapper of the previous chapters for single antenna 

OFDM Systems scenario. In order to make for effective performance of the soft mappers, 

different M-PSK constellation arrangement are used on each of the ith antenna branch at the 

transmitter end of the system, ranging from gray to anti-gray mapping arrangements. 

 

6.7 Simulation Results and Discussions  

 

In order to evaluate the performance of the proposed soft input iterative DDCE scheme for the 

MIMO-OFDM Systems, computer simulations were conducted for the MT  MR MIMO-OFDM 

Systems based on the ST-BICM transmission scheme shown in Figure 6.1 and Figure 6.2. The 

time-variant six-path COST 207 Typical Urban (TU) channel model of [43] with normalized 

Doppler frequencies of 0.005, 0.02, and 0.01 is employed, while the channel gains associated 

with transmit and receive antenna pairs are independent but with the same statistical properties. A 

total channel bandwidth of 800 kHz divided into K = 64 subcarriers is assumed. In order to make 

the subcarriers orthogonal to each other, the symbol duration, Ts is set to 80µs, while the CP 

length is 16 samples (1/4 of the symbol period)  and additional guard interval Tg = 20µs is 

employed to give protection from intersymbol interference occasioned by channel multipath 

delay spread. Consequently, the total block period, T sum up to 100µs.  The turbo encoder of rate 
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1/3 and octal generator polynomial of (7, 5) is serially concatenated with random interleaver in 

order to achieve the bit interleaved coded modulation technique.  A realistic non sample-spaced 

CIR of length M = 6 is assumed in all the simulations. The step size µ for FDPM-based CIR 

estimator is set to 0.98, while  is set to 0.95for PASTd algorithm. The length of the CIR 

predictor (Lprd) is set to 10, while initialization values of [ ]n  and [ ]ij n  are set to 0.5, and  set 

to 0.002 for both the VSSNLMS-based CTF estimator and the VSSNLMS-based predictor 

respectively. 

 

The simulation work begins with extension of the linear MMSE CTF estimator employed in the 

previous chapters for single antenna OFDM Systems to the case of MIMO-OFDM Systems. 

Subsequently, the proposed VSSNLMS-based CTF estimator is employed. In order to ensure 

error free estimate from the proposed iterative DDCE for MIMO-OFDM Systems, the first Npil-th 

OFDM symbols comprises the known pilot symbol out of the total (N = Npil + Nmes) OFDM 

symbols per frame as shown in Figure 6.4. Figure 6.5 depicts the corresponding pilot-messages 

OFDM symbols pattern. Both Iterative DDCE and the soft MIMO demapper operate in an 

iterative mode with the Turbo decoder during which they exchange soft information with Turbo 

decoder in a bid to refine their outputs over a number of iterations. During the last iteration, the 

hard decision about the transmitted bits ˆ
pb  is made by the Turbo decoder. At this initial stage, the 

OFDM frame length N is set to 25, while Npil  =1 and Nmes = 24 resulting in 4% = 
pilN

100%
N

 

pilot message overhead. The number of transmit and receive antennas are set to MT = MR = 2. The 

comparative results exhibit by the two estimators for both slow and fast fading channels are as 

shown in Figure 6.6. It is observed that the performance of the linear MMSE CTF estimator in 

comparison with the adaptive VSSNLMS-based CTF estimator is very poor for both fading 

channel scenarios, and the margin between the MSE performance of VSSNLMS-based CTF 

estimator in comparison with linear MMSE CTF estimator become wider as the SNR increases. 

The reason for this poor performance of the linear estimator is apparently due to the problem of 

highly rank-deficient nature associated with the estimation of MIMO CTF, which a linear 

estimator like MMSE will find difficult to accurately estimate. This problem is similarly alluded 

to in [161], where RLS-based CTF estimator is employed to mitigate the problem. However, it is 

confirmed in [184] that the complexity cost associated with RLS algorithm would not lend it to 

real time implementation. This is the reason while the VSSNLMS-based CTF estimator is 

proposed in this Chapter. 
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The effect of iteration between the three modules, soft MIMO demapper, Turbo decoder and the 

proposed iterative DDCE over a number of iterations is also investigated. At this stage, the 

iterative DDCE is constituted by VSSNLMS-based CTF estimator, FDPM-based parametric CIR 

estimator, and adaptive VSSNLMS-based predictor. The achievable bit error rate (BER) over six 

iterations are displayed in Figure 6.7 and Figure 6.8 for slow and fast fading channels 

respectively. The results show an improvement for both fading channels up to the fifth iteration. 

The result is more noticeable for the fast fading channel scenario. Simulation is further run for the 

proposed iterative DDCE for MIMO-OFDM Systems employing PASTd-based CIR estimator 

proposed in [161]. Figure 6.9 and Figure 6.10 show comparative BER and MSE performance 

respectively between the FDPM-based iterative DDCE and the PASTd-based DDCE schemes 

after the fifth iteration. The proposed FDPM-based iterative DDCE exhibits better performance in 

comparison with its PASTd counterpart, especially at higher SNR. 

 

 

 

 

NMes Message Symbols per OFDM Symbol frame

Message OFDM Symbols

- -1 2 - NPil 1 2 3 - - - NMes

NPil Pilot Symbols per OFDM Symbol frame

Initialization Pilot OFDM Symbols

 

 

Figure 6.4 Initialization Pilot OFDM symbols and Message OFDM symbols arrangement 

per OFDM symbol frame for the Iterative DDCE Scheme.  
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Figure 6.5 Corresponding Pilot OFDM symbols / Message OFDM symbols pattern for the 

Iterative DDCE Scheme  (N = NPil + NMes). 
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Figure 6.6 Comparative MSE exhibited by the MMSE-based and VSSNLMS-based 

Temporary CTF Estimators operating in both slow fading Channel fD = 0.005 and fast fading 

channel fD = 0.02.  
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Figure 6.7 BER versus SNR exhibited by the 2 × 2 iterative FDPM-based DDCE scheme for 

BICM Bit interleaved turbo coded MIMO-OFDM System, fD=0.005.  
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Figure 6.8 BER versus SNR exhibited by the 2 × 2 iterative FDPM-based DDCE scheme for 

Bit interleaved turbo coded MIMO-OFDM System, fD=0.02.  
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Figure 6.9 BER versus SNR at 5th iteration as a function of normalized Doppler frequencies 

exhibited by the 2 × 2 iterative FDPM-based and iterative PASTd-based DDCE schemes for Bit 

interleaved turbo coded MIMO-OFDM System.  
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Figure 6.10 MSE versus SNR at 5th iteration as a function of normalized Doppler frequencies 

exhibited by the 2 × 2 iterative FDPM-based and iterative PASTd-based DDCE schemes for Bit 

interleaved turbo coded MIMO-OFDM System.  

 

 

Figure 6.11 further shows the achievable BER performance of the proposed FDPM-based 

iterative DDCE as a function of normalized Doppler frequencies 0.005, 0.02, and 0.01. The 

results indicate a poor performance at higher normalized Doppler frequency of 0.01. This 

suggests that the proposed estimator finds it difficult to track a very rapid fading MIMO channel. 
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Furthermore, the effect of the pilot overhead 
pilN

100%
N

 in the OFDM frame is investigated. 

Figure 6.12 and Figure 6.13 illustrate the  BER performance after the fifth iteration for the 

FDPM-based iterative DDCE under slow and fast fading MIMO channels respectively while 

varying the percentage overhead of the initialization pilot symbols between 4%,  16% and 28% 

per OFDM symbol frame. The results indicates improvement in the obtainable channel estimate 

when the pilot overhead increases from 4% to 16%, but with less improvement when it is 

increased from 16% to 28 % in both cases of fading MIMO channel conditions. Lastly, the effect 

of the antenna diversity on the proposed iterative DDCE for the bit interleaved turbo coded 

MIMO-OFDM Systems is investigated. Figure 6.14 and Figure 6.15 portray the achievable result 

with 1  1, 2  2, and 4  4 MIMO-OFDM Systems for slow and fast fading MIMO channels. It 

is observed that the increment of MT and MR from MT = MR =1 to MT = MR = 4 brings about 

improvement to the BER performance of the estimator for both slow and fast fading channel 

cases. This is largely due to the increased spatial diversity advantage associated with higher 

number of antenna at both ends of the MIMO communication Systems. However, it is noted that 

there is degradation in the performance of the proposed iterative DDCE scheme for MIMO-

OFDM Systems when compared with performance obtainable with the single antenna OFDM 

Systems at lower SNR during the fast fading channel. The simple explanation for this is that the 

high complexity-based iterative DDCE scheme for MIMO-OFDM Systems (in the order of MT  

MR compared with that of single antenna system) finds it difficult to track the channel estimate 

accurately during the fast fading MIMO channel scenario in comparison with the low complexity-

based iterative DDCE scheme for single antenna system at low SNR.  

 

In order to validate the various results presented hitherto, effort was made to reproduce results for 

PASTD-based channel estimation proposed for similar scheme in [205] employing Turbo coding 

with code rate 1/2. Figure 6.16 illustrates the achievable results of the PASTD-based estimator for 

1 × 1, 2 × 2, and 4 × 4 QPSK MIMO-OFDM systems corresponding to results of Figure 6.0 of 

[205]. With close comparison with the previous results, it is obvious that the FDPM-based 

estimator proposed in this thesis, whose results are earlier presented, exhibits better performance 

that the PASTD-based channel estimation of [205].  

 

In a bid to investigate the effect of code rate on the overall performance of the system, plot of 

PASTD-based estimator for 1 × 1 systems employing Turbo coding with code rate 1/3 is included 

in Figure 6.16. It is observed that the there is a significant improvement in the result by reducing 
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the code rate from 1/2 to 1/3 especially at higher SNR. The performance exhibits by PASTD-

based estimator for 1 × 1 systems employing Turbo coding with code rate 1/3 is closed to its 

equivalent in Figure 4.16 of Chapter 4. The little observable difference could be associated to the 

differences in the number of data per frame, number of iteration, and fading rate. It is noted 

herein that 1/3 code rate for Turbo coding employed in this thesis rather than 1/2 code rate used in 

the various cited literature has brought significant improvements upon various results presented in 

the thesis. 
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Figure 6.11 BER versus SNR at 5th iteration as a function of normalized Doppler frequencies 

exhibited by the 2 × 2 iterative FDPM-based for Bit interleaved turbo coded MIMO-OFDM 

System.  
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Figure 6.12 BER versus SNR after the 5th iteration as a function of percentage pilot overhead 

during slow fading scenario of normalized Doppler frequency, fD = 0.005 for FDPM- based -

based iterative DDCE for MIMO-OFDM Systems.  
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Figure 6.13 BER versus SNR after the 5th iteration as a function of percentage pilot overhead 

during fast fading scenario of normalized Doppler frequency, fD = 0.02 for FDPM- based 

iterative DDCE for MIMO-OFDM Systems.  
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Figure 6.14 BER versus SNR after the 5th iteration for FDPM-based iterative for 1 × 1, 2 × 2, 

and 4 × 4 MIMO-OFDM Systems during slow fading scenario of normalized Doppler frequency, 

fD = 0.005.  
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Figure 6.15 BER versus SNR after the 5th iteration for FDPM-based iterative for 1 × 1, 2 × 2, 

and 4 × 4 MIMO-OFDM Systems during slow fading scenario of normalized Doppler frequency, 

fD = 0.02.  
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Figure 6. 16  BER results for PASTD-based iterative channel estimator [205]  for 1 × 1, 2 × 2, 

and 4 × 4 MIMO-OFDM Systems during normalized Doppler frequency, fD = 0.003 
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6.8 Computational Complexity of the proposed Iterative DDCE

 scheme for MIMO-OFDM Systems 

 

In order to have idea of the computational complexity of the proposed iterative DDCE scheme for 

MIMO-OFDM system, computational complexity of each module is examined. The 

computational complexity of adaptive VSSNLMS algorithm is of order 3 4prdO L M [8], 

while the computational complexity of the FDPM subspace tracking algorithm is of order 

6 ( ) (7 )KM O M O KM . It implies that each of the arrays of the iterative DDCE will constitute a 

computational complexity of twice 3 4prdO L M  to take care of the CTF estimator and the 

predictor, plus (7 )O KM  to take care of the CIR parametric estimator module, in the context of 

SISO-OFDM system. Consequently, for the bit interleaved turbo coded MIMO-OFDM, the order 

of computational complexity of the proposed iterative DDCE will grow linearly in order of MT  

MR in comparison with the SISO-OFDM system of Chapter 5. However, if RLS algorithm of 

complexity order 2
prdO ML  is employed as used in [161] for implementation of CTF estimator 

and CIR predictor, each of the arrays of the iterative DDCE for MIMO-OFDM system will 

constitute a computational complexity of twice 2
prdO ML . This will definitely be more costly if 

larger predictor filter length prdL  is used. 

 

 

6.9  Chapter Summary 

 

In this chapter, MIMO-OFDM based on space time-BICM is presented. In order to make for 

coherent detection of the transmitted signal in the system, soft input iterative DDCE scheme 

based on adaptive VSSNLMS and subspace tracking FDPM algorithms is proposed for 

estimation of MIMO CSI at the receiver of the bit interleaved turbo coded MIMO-OFDM 

Systems. The VSSNLMS-based temporary CTF estimator, the FDPM-based parametric CIR 

estimator, and the adaptive VSSNLMS-based CIR predictor are derived in the context of MIMO 

channel for the proposed iterative Decision Directed Channel Estimation scheme. Simulation 

results portraying the performance trends of the proposed iterative DDCE for both slow and fast 

fading channel scenarios have been presented and discussed. In the overall, the proposed 
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estimator for MIMO-OFDM system employing the VSSNLMS-based CTF estimator and 

VSSNLMS-based predictor derived in this chapter, as well as the FDPM-based CIR estimator is 

shown to outperform its counterpart based on MMSE criterion and PASTd subspace algorithm. 

However, the order of computational complexity of the proposed iterative DDCE scheme grows 

linearly as MT  MR (the number of transmit and receive antennas) in comparison with the 

computational complexity of the similar scheme proposed in the previous chapters for SISO-

OFDM system. 
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CHAPTER 7 

 

 CONCLUSIONS AND RECOMMENDATIONS   

 

7.1 THESIS SUMMARY  

 
In this thesis, the issue of channel estimation for single input single output (SISO), multiple input 

multiple output (MIMO) Systems in combination with orthogonal frequency division 

multiplexing transmission scheme is addressed. This is necessitated with the understanding that 

without availability of perfect channel state information (CSI) at the receiver end of either the 

SISO or MIMO OFDM Systems, the achievable advantages associated with the Systems and the 

OFDM transmission scheme would not be maximally exploited. Having reviewed previous 

contributions in this area of research, we proposed computationally efficient and robust channel 

estimation schemes for single antenna communication Systems, SISO-OFDM communication 

Systems and MIMO-OFDM communication Systems. 

 

Specifically in Chapter 3, soft input based iterative channel estimation scheme is proposed for 

turbo equalization-based receiver for single antenna communication system over frequency 

selective fading channel. Single-VSSNLMS and multiple-VSSNLMS algorithms are derived for 

the implementation of the proposed channel estimator in a bid to address the problem of slow 

convergence rate and poor channel tracking capabilities associated with the LMS and NLMS-

based channel estimation algorithms. From the presented results the proposed VSSNLMS-based 

iterative channel estimation algorithm shows faster convergence rate than both APRmodRLS 

algorithm and the LMS algorithm earlier recommended for the same purpose in literatures. The 

presented simulation results also show that both single and multiple-VSSNLMS-based iterative 

channel estimation algorithms outperform both the LMS and the NLMS algorithms and their 

performances are very close to that of the well know computationally complex RLS algorithm. 

We concluded that the single-VSSNLMS algorithm which is less complex than both multiple-
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VSSNLMS and RLS algorithms is suitable for the tracking and the estimation of a fast-varying 

frequency selective fading channel in single antenna communication Systems. 

 

In the subsequent Chapter, Decision Directed Channel Estimation scheme for SISO OFDM system 

in the context of a more realistic Fractionally Spaced-Channel Impulse Response (FS-CIR) 

channel model is investigated. We proposed the use of the Fast Data Projection Method (FDPM) 

subspace tracking algorithm for the implementation of the CIR estimator module of the DDCE 

scheme. The presented results show how the FDPM-based CIR estimator outperforms the PASTd-

based CIR estimator proposed by another authors in literature. VSSNLMS-based predictor is 

further derived for the implementation of the CIR predictor module of the DDCE scheme.  The 

presented results also indicate that the VSSNLMS-based CIR predictor improved the performance 

of the DDCE scheme in comparison with when NLMS-based predictor is employed. The 

obtainable results of the DDCE scheme employing the proposed VSSNLMS-based CIR predictor 

is also observed to be very close to the scheme that employs a more complex RLS-based predictor. 

In terms of computational complexities, we have been able to show that the proposed DDCE 

scheme employing FDPM-based CIR estimator and VSSNLMS-based CIR predictor is less 

complex in comparison with the one proposed in the literature; hence the proposed estimator 

scheme for SISO OFDM communication system is more appropriate for real time implementation. 

 

The concept of iterative technique based on turbo principle is applied, in Chapter 5, to the DDCE 

scheme proposed in Chapter 4 for SISO OFDM communication system. Based on this principle 

an iterative structure is designed to implement the proposed iterative DDCE scheme for SISO 

OFDM communication system. The presented results suggest that improved performance can be 

achieved with a reasonable number of iterations. The results also indicate that the iterative DDCE 

scheme, at an optimal iteration number, outperforms its non-iterative DDCE counterpart proposed 

in the previous Chapter. In summary we have been able to confirm the added advantage offered 

by the proposed iterative DDCE scheme in comparison with the non-iterative scheme. 

 

Lastly, soft input iterative DDCE scheme is proposed for space-time bit-interleaved coded 

modulation (ST-BICM) MIMO-OFDM communication system. For the MIMO-OFDM system, 

VSSNLMS-based temporary CTF estimator, FDPM-based parametric CIR estimator and adaptive 

VSSNLMS-based CIR predictor are derived in the context of MIMO channel for the proposed 

iterative Decision Directed Channel Estimation scheme. The derivation and the proposal of the 

VSSNLMS-based temporary CTF estimator for MIMO-OFDM system is informed by the poor 



Channel Estimation for SISO and MIMO OFDM Communication systems,  Olutayo O. Oyerinde, April  2010 165 

performance exhibited by the CTF estimator based on minimum mean square error (MMSE) 

criterion that has been employed in the case of SISO OFDM system in the previous Chapters. In 

the overall, the proposed iterative DDCE estimator for MIMO-OFDM system employing the 

VSSNLMS-based CTF estimator and the VSSNLMS-based predictor, as well as the FDPM-based 

CIR estimator is shown to outperform its counterpart based on MMSE criterion and PASTd 

subspace algorithm. From the foregoing, it could be concluded that the proposed iterative DDCE 

scheme, employing the algorithms, is robust enough for estimation of CSI for MIMO-OFDM 

communications system. 

 

7.2 SUGGESTIONS FOR FUTURE RESEARCH WORK 

 
In this thesis the issue of channel estimation for both single antenna and multiple antenna-based 

OFDM Systems is investigated. However, we believe that there are quite a lot of research works 

that need to be carried out especially for MIMO-OFDM communication Systems. This is because 

it is of common knowledge that MIMO-OFDM technique will have a crucial role to play in the 

implementation of the future generation of the mobile wireless Systems, especially the fourth 

generation (4G) and fifth generation (5G) Systems and even higher generation that could be 

conceived. Hence, the work presented in this thesis could be used as a platform for some future 

research works, some of which are highlighted in the following: 

 

 In the various communication Systems presented in this thesis, single user rather than 

multiple users is assumed in all the simulation works as stated in Section 1.5. The 

proposed estimation schemes can be extended to the case of multi-user single antenna 

and MIMO Systems. 

 

 The proposed iterative estimator is implemented for the multi level phase shift keying 

(M-PSK) Systems. The scheme could be implemented for the case of multi level 

quadrature amplitude modulation (M-QAM) Systems in order to investigate its 

performance trend. 

 

 Perfect time and frequency synchronization is assumed in all our simulations, but we 

know that this is not the case in the practical world. Hence, it will be necessary to 

investigate the possibility of time and frequency synchronization in conjunction with the 
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proposed channel estimation scheme. In addition, a way of incorporating interference 

cancellation with the proposed channel estimation process should be considered. 

 

 Extension of the proposed iterative DDCE scheme for space-time bit-interleaved coded 

modulation MIMO-OFDM communication system to the space time coded MIMO-

OFDM in a bid to exploit both the coding and diversity gains should also be considered. 

 

 It is obvious that the computational complexity of the proposed iterative DDCE scheme 

for MIMO-OFDM communications system increases linearly with the number of 

transmits and receives antennas. A method by which reduction in the computational 

complexity could be achieved should be looked into.  

 

 Besides, the iterative DDCE scheme should also be extended to the case of virtual 

antenna arrays technique employing cooperative and relay station-aided communication 

antenna Systems. 
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