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Abstract

In this dissertation, we study the method of Fischer matrices for constructing the
character tables of group extensions. We apply this method to calculate the character
tables of all the maximal subgroups of the Janko group J; and one maximal subgroup
of the Janko group J;. Many of these maximal subgroups have the form G = N.G
where NN is a normal subgroup of G and G/N & G. (G is an extension of N by G.)
If the extension is split, the character table of G can be determined by constructing a
matrix corresponding to each conjugacy class of G. The character table of G can then
be determined from these matrices and the character tables of certain subgroups of G,
called the inertia groups. We have described this method and used it to calculate the
character tables of the maximal subgroups of J;. We have also shown how the Fischer
matrix method can be used to calculate the character table of any group extension,
by considering projective characters, and used this more general method to determine
the character table of the maximal subgroup of J; of the form 3- PGL,(9), a non-split
extension of the cyclic group of order 3 by PGL,(9).
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Chapter 1
INTRODUCTION

Since the classification of all finite simple groups, more recent work in group theory
has involved methods of calculating character tables of finite groups. In particular,
the character tables of all maximal subgroups of the sporadic simple groups have not
yet been determined. Many of these maximal subgroups are extensions of elementary
abelian groups so methods have been developed for the calculation of character tables
of extensions of elementary abelian groups. If G is an extemsion of N by G, then
Fischer showed how the character table of G can be determined by constructing a
matrix corresponding to each conjugacy class of G. The character table of G can then
be determined from these matrices and the character tables of certain subgroups of G,
called the inertia groups. This method applies not only to extensions of elementary
abelian groups, but also to extensions of any normal subgroup of NV with the property
that each character of NV can be extended to its inertia group. In particular, List has
used this method to determine the characters of groups of the form 2°~¢.5, [19] , and
List and Mahmoud have determined the characters of wreath products [20]. More
recently, Fischer has extended these methods and shown how these matrices (which he
calls Clifford matrices) can be constructed for extensions of any p-group where p is a
prime [7].

In this dissertation, we describe this method of Fischer matrices and apply it to
determine the character tables of the maximal subgroups of the Janko group J;. Chap-
ters 2 and 3 provide a review of hasic definitions and results on character theory and
group extensions which are then applied in chapter 4 to describe the Fischer matrix
methods. After giving some examples of the use of these methods in chapter 5, we
apply the methods to determine the character tables of all maximal subgroups of J;.

To calculate the character tables of the maximal subgroups of J;, we were able to



use the basic Fischer matrix methods as they were used by List [19], List and Mahmoud
[20] and Salleh {28], since all the group extensions were of elementary abelian groups.
However, these methods cannot be used for certain non-split extensions. In particular,
the maximal subgroup of the Janko group J2 of the form 3- PGL,(9) is nonsplit and
its character table cannot be calculated in the same way. In an attempt to generalize
these methods to such groups, it is necessary to consider projective representations and
characters. We have given some results on projective representations and characters
in chapter 7 and shown how they can be used to construct Fischer matrices for any
group extension.

In order to apply these methods, the projective characters of the inertia groups
must be known and these can be difficult to determine for some groups, so this method
is not easily applicable to any group extension. But we have used it to determine
the character table of the maximal subgroup of J;, and thus demonstrated how to
determine Fischer matrices for non-split extensions.



Chapter 2
THEORY OF CHARACTERS

In this chapter we give preliminary results on group characters that will be needed
to develop the theory in later chapters. Definitions and basic properties of group
representations and characters are given in the first section; in sections 2.2 and 2.3
we show how the characters of factor groups and direct products of groups can be
determined, and then consider the relationship between characters of a group and
those of its subgroups in 2.4. Finally we give some results on permutation characters
that will be used in later calculations.

In the first section most proofs have been omitted but we give references to the book
by Feit [5] which has a complete treatment of the results. Following Feit, we use the
classical approach of matrix representations, as opposed to considering modules over
rings and algebras. The module approach does allow for greater simplicity in some
pivofs but we are concerned with the properties of characters which can be derived
through matrix representations without developing the theory of rings and modules.
Isaacs [15] and Lederman (18] provide further references for the results of this chapter
and Curtis and Reiner [4] give an extensive treatment of representation theory through
the module-theoretic approach. Throughout, G denotes a group and F' denotes a field.
We write 1, rather than 1g for the identity element of G.

2.1 Representations and Characters

Definition 2.1.1 Let G be a finite group and F a field. An F-representation of G is
a homomorphism T : G — GL,(F) for some integer n (where GL,(F), the general
linear group, is the multiplicative group of all non-singular n x n matrices over F' ).
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" The homomorphism T is said to have degree n. Two F-representations 7y and T% of G
are equivalent if there exists P € GL,(F) such that Ty(g) = P~'Ti(g)P for all g € G.
An F-representation T of G is reducible if it is equivalent to a representation U where

o= (49 20)

for all g € G. If T is not reducible, it is said to be irreductble. T is defined to be fully
reducible if it is equivalent to a representation U where

Ulg) = (3139) s;(}g))

for all g € G. T is completely reductble of it is equivalent to one of the form

S1(g)
S2(g)

S-{(9)
where each S; is an irreducible F-representation of G. Then 5,,52,...,S5, are called

constituents of T,

Theoremn 2.1.1 (Mashke’s theorem) Let G be a finite group. If F is a field of char-
acteristic zero, or whose characteristic does not divide |G|, then every F-representation
of G is completely reducible.

Proof: See [5, (1.1)]. O

Theorem 2.1.2 (Schur’s lemma) Let Ty and T, be irreducible F-representations of
G and suppose S is a non-zero matriz over F' such that Ti(g)S = STi(g) for all g € G.
Then S is nonsingular and T; 1s equivalent to T.

Proof: See [5, (1.2)]. O

Corollary 2.1.3 Let F be an algebraically closed field, and T an irreducible F-represen
tation of G. Then the only matrices that commute with every T(g) (¢ € G) are the
scalar matrices.



Proof: See [5, (1.4)]. O

Definition 2.1.2 If T is an F-representation of G, then the character afforded by T is
the function x7 : G — F defined by x1(g) = trace(T(g)) for g € G. The degree of xr is
the degree of T'. The trivial character is the character 15 defined by 1g(g) = 17 for all
g € G. An irreducible characteris a character afforded by an irreducible representation.

Lemma 2.1.4 The following properties hold.

1. A character of G is constant on the conjugacy classes of G.
2. Fquivalent representations afford the same character.
3. For any character x, x(1) is the degree of x.

4. The sum of any two characters of G is again a character of G.

Proof: Parts 1 and 2 follow from the fact that for matrices A and P, trace(P~' AP} =
trace(A).

3. Let x have degree n. Then x(1) = trace(l,) = n.

4, Let xr and xu be characters of G, afforded by the representations 7' and U

respectively. Define the function S on G by S(g) = (ng ) U((]g) ) Then S is a
representation of G with xs = X7 + Xv.
O

From now on, we will consider representations and characters of a finite group G
over the complex field C.

Theorem 2.1.5 The following properties hold.

1. Two representations of G have the same character if and only if they are equiv-
alent.

2. The number of irreducible characters of G is equal to the number of conjugacy
classes of G.



3. Any character of G can be written as a sum of irreducible characters.

Proof:

1. See [5, (2.6)]

2. See [5, (2.16)]

3. This follows from Mashke’s Theorem (Theorem 2.1.1).

a

Lemma 2.1.8 Let x be a character of G afforded by a representation T of degree n.
Then for g € G, T(g) is similar to a diagonal matriz diag(ey,.. ., €q) where each ¢ is
a complez root of unity. Then x(g) = e1+--++ ¢, and x(97') = x(g), where T denotes
the complez conjugate of z.

Proof: See [15, (2.15)}]. O

Note 1 We will denote the set of all irreducible characters of G by Irr(G). These
irreducible characters are presented in a table, called the cheracter table of G. In this

table, the columns correspond to the conjugacy classes of G and the rows to the irre-

ducible characters, with entry a;; being the value of the z't’h irreducible character on an

element of the jth conjugacy class. This character table satisfies certain orthogonality
relations, which we give in the next theorem.

Definition 2.1.3 The inner product of two characters x; and x; of G is defined by

<X1, X2>G = |G|n1 Z x1(9)x2(g)-
g€G

Theorem 2.1.7 (Orthogonality relations) Let Ir(G) = {x1,...,X-} and let
{91, ...,9,} be a set of representatives of the conjugacy classes of G. Then

1. IG'—I EgeG X:'(g)Xj(g) = 66.1'1 that is, <Xis Xj> = ‘St'.’f

2. by x:(9:)x:(95) = &;|Ca(g:)l.



Proof: For part 1 see [5, (2.9)] and for part 2 see [5, (2.14)]. O

Theorem 2.1.8 Let Irr(G) = {x1,.--,X-} and let x be any character of G. Then

1. X can be ezpressed uniquely as x = Y'=; a:X; where the a; are nonnegative inte-
gers.

2. Ifx = ¥y aixs then <x, x> = Tia1 G-
3. x 1s irreducible if and only if <x,x> = L.
Proof:

1. By theorem 2.1.5(3), x == Y i_; @:;x: for nonnegative integers a;. For each i,
<X, Xi> = <Z;=1 a;Xi, Xi> = @;<Xi, Xi> = a; by the orthogonality relation
(2.1.7(1)), so the ag; ’s are unique.

2. Follows from the orthoganality relation (2.1.7(1)).

3. Follows from parts 1 and 2.

o

Note 2 If ¢ is any class function on G (that is, a function that is constant on the
conjugacy classes of &), then ¢ can be uniquely expressed in the form ¢ = YI_; a;y:
where a; € C and Irr(G) = {x1,...,x,}. Furthermore, ¢ is a character if and only if
alt the a; are nonnegative integers and ¢ # 0. (See [15, (2.8)]).

Note 3 If x = ¥i_; aixi, as in the above theorem, then those x; with a; > 0 are
called the irreducible constiluents of x. We also say that y contains a; copies of the
irreducible character ;.

2.2 Normal Subgroups

Lemma 2.2.1 Let x be a character of G afforded by the representation T. Then
g € ker(T') if and only if x(g) = x(1).

Proof: Let n = x(1), so n is the degree of T. If g € ker(T) then T(g) = I, = T(1),
where I, is the n x n identity matrix, so x(¢) = » = x(1). Conversely, assume
x(g) = x(1) = n. By lemma 2.1.6, x(g) = &1 + €2+ - - - + €, where each ¢; is a complex



root of unity. Therefore, €; + €2 ++-- + ¢; = n. But |¢| =1 for all ¢, so we must have
¢ = 1 for all i. Hence T(g) is similar to diag(€1,...,¢x) = In, 50 ¢ € ker(T). O

Definition 2.2.1 Let x be a character of G. We define
ker(x) = {g € G : x(¢9) = x(1)}.

Note 1 By the previous lemma, ker(x) is 2 normal subgroup of G (since it is the kernel
of some group homomorphism). Also, if N is any normal subgroup of G then it is the
intersection of some of the ker(x;), where Irt(G) = {x1, ..., x-}. (See [15, p 23].)

Now the next result shows that the character table of G/N (where N Q G) can be
obtained from that of G. Here N 9 G indicates that N is a normal subgroup of G.

Theorem 2.2.2 Let N 4 G.

1. If x is a character of G with N C ker(x) then X defined by x(gN) = x(g) is e
character of G/N.

2. If X is a character of G/N then the function x defined by x(g9) = x(gN) is a
cheracter of G.

3. In both of the above, x € Irr(G) if and only if X € Irr(G/N).
Proof:

1. Let T be a representation that affords x. Then N C ker(T) so T defined on G/N
by T(gN) = T(g) is well-defined and it is a representation of G/N that affords

X
2. As above, if T' affords % then T affords y.
3. We have
<6x>6 =G Y x(9)F = IGI7 3 [x(gN)f?
g€G geG
= |GITN] X [x(eM)?
gNEGIN
= |G/N[TV Y [X(eN)?
gNEG/N

= <i7 X‘>G/N'



New by theorem 2.1.8(3), x € Irr(G) iff <x,x>¢ = 1 iff <X, X>gnv = 1iff
¥ € Itr(G/N).

0

Note 2 In the notation of the previous theorem, we say that x € Irr(G) has been
lifted from x € Irr(G/N). By identifying the characters x and ¥, we may say that
Irr(G/N) = {x € Irr(G) : N C ker(x)}.

2.3 Products of Characters

We showed in Lemma 2.1.4 that the sum of any two characters is again a character.

We now show that the product y¥ of characters x and ¢ defined by x¥(g) = x(g)¥(g)

is also a character. We will then show how the character table of a direct product of

two groups can be easily constructed from tbe character tables of its factor groups.
First, we define the tensor product of two matrices.

Definition 2.3.1 Let P = (pij)mxm and @ = (gi;)nxn be square matrices. Define the
mn x mn matrix P @ ¢ by

@ pQ@ - pimQ
PoQ=(p@)= | ¢ 9 T Pl
1@ Pm2@ 0 Pmm(

Then

trace(P ® Q) = pntrace(Q) + paotrace(Q) + - -+ + pmmtrace(Q)
= trace(P)trace(Q).

Definition 2.3.2 If T" and U are representations of G, then the tensor product T @ U
is defined by (T @ U)(g) = T'(g) ® U(y).

The tensor product T @ U is a representation of G with xrgu = xrxv. Thus the
product of two characters is again a character of G.
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Now let G = H x K be the direct product of H and K. Let T be a representation
of H of degree m with character xr, and let U be a representation of K of degree n
with character xy.

Definition 2.3.3 With notation as above, we define the direct product of 7' and U,
TQRU, as follows: Each g € G can be written uniquely as g = hk for h € H and & € K,
and we define (T ® U)(g) = T'(h) ® U(k), where @ on the right hand side is the tensor
product of Definition 2.3.1.

For G = H x K the T ® U defined by Definition 2.3.3 is a representation of G of
degree mn, and

xtev(g) = xr(h)xuik)

where g = hk.

With this definition, the product of a character of H and a character of K is a
character of G and all the characters of G' can be constructed in this way, according to
the following theorem.

Theorem 2.3.1 Let G = H x K be the direct product of the groups H and K. Then the
product of any trreducible character of H and any irreducible character of K is an irve-
ducible character of G. Moreover, every irreducible character of G cen be constructed
in this way.

Proof: Let xr € Irr(H) and xuv € Irr(K), with x = x7xv = X7gu as defined
above. Then y is a character of G. We now show that x is irreducible, by showing
that <y,x> = 1. Let ¢ € G be written as ¢ = hk, h € H, k € K. Then

Yo = 3 Y Ixr(B)xuk)?

geG REH kEK
= 2 > xe(B)Pxu(k)?
heEH keK
= (22 Ixe(®IN X Ixv (%))
heH keK
= [H||K]|

since xT and Yy are irreducible characters of H and K respectively.
Therefore |G| Tyeq [x(9)]* = 1, as required.

If |Trr(H)| = 7 and |[Ir{K)| = s, then we obtain rs irredncible characters of G
in this way. These are all the irreducible characters of G, since G' has rs conjugacy
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classes. Notice that hk and h'k’ are conjugate of G if and only if 2 and A’ are conjugate
in H and % and k' are conjugate-in K, so the conjugacy classes of GG are of the form
C1Cy; = {h.k:h € Cy,k € C;}, where Cy is a conjugacy class of H and C; a conjugacy
class of K. O

2.4 Induced Characters

Let H be a subgroup of G. If 4 is a character of G then it can be restricted to H to
give the character 0|y of H. We now show how a character of H can be induced to G,
to give a character of G.

Definition 2.4.1 Let H < G and let ¢ be a class function of H. Then ¢€, the induced
class function on G is defined by

$%(g) = |H|™ > ¢%(zgz™Y)

€0

where ¢° is defined on G by

{¢°(y)=¢(y) if y € H,
Ply) =0 ify¢H.

Then ¢% is a class function of G, and ¢%(1) = [G : H] ¢(1).

Theorem 2.4.1 If ¢ is a character of H where H < G, then ¢€ is a character of G.

Proof: Let T be a representation of H that affords ¢, say of degree n. Now in
the following we define the induced representation T* on G: Let {z1,...,2.} he a
set of representatives for the right cosets of H in G (a transversal for H in G), where
7 =[G : H].Extend T to all of G by defining T'(g) to be the zero matrix for g € G- H.
Now for g € G, define T*(g) = (T(xigz;")); j1» where each T(z:gz;") is a submatrix
of degree n, so T*(g) is a matrix of degree rn. We show that 7*(¢)T™(h) = T*(gh) for
g,h € G. this is equivalent to showing that for all fixed ¢,7 € {1,...,r},

i T(zigz; )T (xxhe;') = T(zigha]’) (2.1)
k=1
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If z;ghx;" & H, then the right-hand side of (2.1) is zero. But in this case we must
have zgzy” ¢ H ot zxhaj' € H for each k € {1,...,7}, so the left-hand side of (2.1)
is also zero.

Now assume v = z;ghz;" € H. The element z;g belongs to exactly one right coset,
say z;9 € Hz,,s0o u = z;95;' € H. If k # s, then z;9z;' ¢ H. Therefore the sum
on the left-hand side of (2.1) reduces to one term, with k = s. Then (2.1) reduces to
T(u)T(u~'v) = T(v) which is true since u,v € H.

Now T™ is a representation of G so it affords a character 6, say, of G with 6(g) =

_ #°(zigz; ") (since T affords ¢). We claim that 8 = ¢C.
Since ¢ is a class function on H, ¢(hz,9z7 A1) = ¢(z;g9z;!) for h € H. Thus

|H|.6(g) = Tnen Lica $°(hzigz hY)
=Y ec ¢ (zgz™h)
= |H|.¢%(g)

(|

Note 1 Note that from the proof of the above theorem, we get an alternative formula
for the induced character: Let T' be a set of representatives for the right cosets of H

in G. Then
3%(g) = 3 ¢°(tgt™").

teT
Induction and restriction of characters are related by the following result.

Theorem 2.4.2 (Frobenius reciprocity theorem) Let H < G and suppose ¢ i3 a
character of H, and 6 e character of G. Then

<@, 6|H>H = <¢G,9>G.

Proof: We have <¢%,0>6 = & T,c0 $%(9)0(9) = i1 Toeec Lrea $°(29271)0(g).
Now for a fixed z € G, as g runs through G, so does xgz~! = y, and 0(y) = 6(g),
since § is a class function on G. Therefore

<% 055 = |G| |Hf E 2050(3/)9

zeG yeG

= |H|Z¢(y

yeEG
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- IHI Y #(y)0(y)

yEH
= <&,0\u>n.

0

Corollary 2.4. 3 Let Irr(G) = {xl,...,xr},lrr(H) = {Y1,...,9,} where A < G.
Suppose x:|uw = 35, aijth; and 1{)} =37 1 biixi. Then a;; = by for all i, 7.

Proof: By Theorem 2.4.2 we have a;; = <Xi|m, ¥;> = <X, z/)f;;> =b;. 0O

To compute the value of an induced character we will use the following lemma.

Lemma 2.4.4 Assume H < G, ¢ is a character of H and g € G. Let [g] denote the
conjugacy class of G containing 9. If H N'[g] is empty, then ¢%(g) = 0. Otherwise,
choose representatives T1,...,T, for the classes of H that fuse to [g]. Then

$%(9) = |Cs g)lz xi)[

Proof: By definition, ¢(g) = iHT Leec #°(zgz™). f HN[g] = @, then zgz~! ¢ H

for all z € G, so ¢°(zgz~!) =0 for all z € G and ¢%(g) = 0.
Now we assume H N [g] # ®. As z runs over G, tgz~! covers [g] exactly |Cg(g)|
times, so ¢C(g) = lgl%l(lﬂl Yyeg ¢°(y). Now ¢%(y) = 0if y € H, and [g] "t H contains

[H : Cg(z;)] conjugates of each z;. Therefore ¢%(g) = |Co(g)| Tz, cd;{?;')-{

2.5 Permutation Characters

In this section, we will describe an important type of character, a permutation char-
acter. Knowledge of the permutation characters of a group leads to information about
the subgroup structure of the group.

First, we give definitions of the permutation action of GG, where, as before, G is a
finite group.

Definition 2.5.1 G acis on a finite set Q if for each ¢ € G and a € 0, there is
an element o in  such that o' = « and (o?)* = o for all « € Q and g,k € G.
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Equivalently, G acts on {2 if there is a homomorphism p : G — Sq, where Sg is the set
of all permutations of £ (the symmetric group on Q).

Now let ¥ denote a finite set.
Definition 2.5.2 Let a € ), where G acts on {). The orbit of G on () containing « is

a® = {9 : g € G}. The stabilizerof ain Gis G4 = {g € G : & = a}.
The action of G on §? is said to be transitive if G has only one orbit on 2.

Lemma 2.5.1 For G acting on 1 and a € §), we have
1. Gq is a subgroup of G.
2. 1af =[G : G,)
Proof:

1. Since 1 € Ga, G4 # ® Now let g4 € G,. Then o = a implies that a =
(@) =o', Now since of = ¥ = @, we have @™ = (&¥)/™' =o' = a.
Hence gh~! € G,. Therefore G, < G.

2. We produce a one-one correspondence between af and G/G,, the set of all left
cosets of G, in G:

Define ¢ : a® — G/G, by #(c?) = gG,. This is a well-defined one-one function,
since o = o* <= o = a < gh' € G, <> ¢gG. = hG,. The
function is clearly onto, so this proves the result.

a

Corollary 2.5.2 The length of any orbit of G on () divides the order of G.

Proof: Follows from Lemma 2.5.1. O

If G acts on 2, this action defines a representation of G: Let 1 = {a,...,a,} and
for each g € G define the n X n matrix m, by 7, = (a;;) where

_{1 ifof = aj,

6;; = .
W 0 otherwise.

Then =, is the permutation matrix of the action of g, and A : G — GL,(C) given by
A(g) = my is a representation of G.
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The character ¢ afforded by this representation is called a permutation character,
and ¢(g9) = {a € N : a¥ = a}|, that is, ¢(g) is the number of points of Q fixed by g.
The degree of this permutation character is |2|.

Note 1 Let H < G, then G acts on the set of all right cosets of H in G, by (Ha)? =
Hag. This action is transitive and gives rise to a permutation character of degree
G: Hj.

[ This permutation character is in fact the trivial character 15 of A induced to G.
If we denote this permutation character by x, then x(g) is the number of points of
w = {Hay,...,Ha,} fixed by g, where {ai,...,a,} is a transversal for H in G. Now
(Ha;)? = Ha; if and only if Ha;g = Ha; if and only if a;ga;* € H, so

{1 ifyec H

X(g) = i(bo(aigai_l)a where ¢°(y) = 0 ifygH.

=1

Thus x = (1x)°.

Conversely, if G acts transitively on any set, then the associated permutation char-
acter is induced from the trivial character of some subgroup of G, according to the
following theorem.

Theorem 2.5.3 Let G act transitively on ). Let « € Q and let H = G,. Then (15)°
is the permutation character of the action, where 1y is the trivial character of H.

Proof: Since G acts transitively, o = . Therefore, by Lemma 2.5.1 there is
a one-one correspondence between ) and the set of right cosets of H in G, given by
of  Hk for k € G. '

Let ¢ € G. Then (of) = of <= of* " = o «= kgl € H
Hk = Hkg <= Hk = (Hk)%, where G acts on the right cosets of H as in Note 1
above. Therefore the permutation character of the action of G on §2 is the same as the
permutation character of the action of G on the right cosets of H in G, which is (15)C.
!

Corollary 2.5.4 IfG acts on Q) with permutation character x and has k orbits on ,
then <x,lg> = k.

Proof: Write 0 = UY, ©;, where ©; are the orbits of G on . Let x; be the
permutation character of G on ©;, so x = v%  xi. For a € ©;, we have x; = (IG‘,‘.)G
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by Theorem 2.5.3 ,s0 <xX;, 16> = <lg,,,16a,> = 1 by Frobenius reciprocity (Theorem
2.4.2). Thus <x,1g>=%. 0O

Every subgroup of G gives rise to a permutation character, as shown by the previous
results. Conversely, we can show the existence of a subgroup H if we can identify the
character (14)°. Because this character is a transitive permutation character, it must
satisfy certain necessary conditions. We give these conditions in Theorem 2.5.6, but
first prove a lemma.

Lemma 2.5.5 If G acts transitively on Q, then all subgroups G, of G (for o € §1) are
conjugate in G.

Proof: Let o, € ). We show that G, and G are conjugate in G, that is, we
show that there is an A € G with G, = (Gy)* = hRGgh™!.

Since G acts transitively on {2, there is some h € G such that o* = 3. Now g € G,
= df=a = = = BT = hTlghe Gy = g € (Gp),
30 Gq = (Gg)* as required. O
Theorem 2.5.6 Let H < G and x = (1g)¢. Then

1. x(1) divides the order of G.
<x, > < (1) for all 3 € Irr(G).
<x,lg>=1.

x(g) is @ nonnegative integer for all g € G.

x(9) < x(g™) for all g € G and m a nonnegative integer.

S

x(g) = 0 if the order of g does not divide ;(I%j
7. x(g)% is an integer for all g € G.

Proof: Let Q1 be the set of all right cosets of H in G, so x is the permutation
character of G on 2.

1. This is clear, since x{(1) = [G : H].

2. By Frobenius reciprocity, <x,¥> = <(15)¢,¢> = <lg,¥lg> < ¢(1).
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3. This follows from Corollary 2.5.4, since x is a transitive permutation character.
4. x(g) is the number of points of  fixed by g, so must be a nonnegative integer.

5. Each point of Q fixed by g is fixed by g™, so the number of points fixed by ¢
cannot exceed the number of points fixed by g™.

6. We know that & 1) = |H| so if the order of g does not divide |H| then no conjugate
of g lies in H, hence (1r)%(g) = 0.

7. Let § = {(ay2) : @ € N,z € [g],a® = a}. Since x is constant on [g], we
have |[g]|x(9) = IS| = Taea |[g] M Ga|- By Lemma 2.5.5, all subgroups G, are
conjugate in G, so {[g] N G4| = m is independent of c, and x(g)|[g]| = m|Q| =

mx(1).

(]

The following result will be used in later calculations to determine the conjugacy
class fusions of suhgroups of G.

Theorem 2.5.7 Let H < G, with x = (1g)®. Let g € G and let zy,...,2n be
representatives of the conjugacy classes of H that fuse to [g]. Then

Celo)
-5 Crlz,

i=1

(If HO\[g) = @, then x(g) =0).

Proof: This follows from Lemma 2.4.4. O



Chapter 3
GROUP EXTENSIONS

We now go on to consider group extensions and their characters. We first give defi-
nitions and basic results on group extensions and introduce notation. We have used
the books by Rotman [27] and Gorenstein [10} as references for the first section; there
are also many other books on group theory which cover the material. In section 3.2
we describe a method that can be used to deternine the conjugacy classes of group
extensions, although we restrict ourselves to extensions of abelian groups. These meth-
ods were uses] by Moori [22, 23] and Salleh [28] to determine the conjugacy classes of
extensions of elementary abelian groups. We then consider the characters of group
extensions in section 3.3. This theory is known as Clifford theory as it is based on an
important result by Clifford [2] (Theorem 3.3.1). We used Isaacs {15] and Curtis and
Reiner [4] as references for this section.

3.1 Definitions, Notation and Basic Results

Definition 3.1.1 If N and G are groups, an eztension of N by G is a group G that
satisfies the following properties

1.NQG
2. G/N 2G.

We say that G is a split extension of N by G if G contains subgroups N and G,
with G 2 G such that

18
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1. N9 G

2. NG1=G
3. NnG; =1.

In this case G is also called a semi-direct product of N and G, and we identify G; and
G.

Note 1 If G is a semi-direct product of N and G then every g € G has a unique
expression of the form § = ng where n € N and ¢ € G. Multiplication in G satisfies
(n1g1)(n2g:) = n1n5'g,92, where n9 denotes gng~l.

Definition 3.1.2 The automorphism group of a group G, denoted by Aut(G), is the
set of all automorphisms of G under the binary operation of composition.

If G is a split extension of N by G, then there is a homomorphism 8 : G — Aut(N)
given by 0,(n) = gng~! = n? (n € N,g € G), where we denote 8(g) by 6,. Thus G
acts on N, and we say that the extension G realizes 6.

Conversely, given any groups N and G, and 8 : G — Aut(N), we can define a semi-
direct product of N by G that realizes 8 as follows. Let G be the set of ordered pairs
(n,g) (n€ N,g € G) with multiplication given by (ni, g;)(n2, g2) = (n18;,(n2), g192)-
Then G is a semi-direct product of N by G.

Hence a split extension of N by G is completely described by the map § : G —
Aut(N), that is to say, it is described by the way G acts on N.

Following ATLAS [3], we denote an arbitrary extension of N by G by N.G. A
split extension is denoted by N : G or N :?G where 0 : G — Aut(N) determines the
extension. A case of N.G that is not split is denoted by N:G.

If G is a split extension of N by G, then G = NG = U, Ng, so G may be regarded
as a right transversal for N in G (that is, a complete set of right coset representatives
of N in G). Now suppose G is any extension of N by G, not necessarily split, Then,
since G/N = G, there is an onto homomorphism A : G — G with kernel N. For g € G
define a lifting of g to be an element § € G such that A(g) = g. Then choosing a lifting
of each element of G, we get the set {g : g € G} which is a transversal for N in G.

We now show that even for a non-split extension of N by G, if N is abelian, G acts
on N. This lemma and its proof were obtained from Rotman (27, 7.17].

Lemma 3.1.1 Let G be an extension of N by G, with N abelian, Then there is a ho-

momorphism 8 : G — Aut(N) such that 03(n) =gng~' (n € N), and 0 is independent
of the choice of liftings {g: g € G}.
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Proof: For a € G, denote conjugation by @ by 7,. Since N is normal in G, 7,|n is
an automorphism of N and the function s : G — Aut(N) defined by p(a) = 7|5 is a
homomorphism.

If a € N, then p(a) = 1w, since N is abelian. Therefore there is a homomorphism
4* 1 G/N — Aut(N) defined by u*(Na) = u(a).

Now G = G/N and for any lifting {7 : ¢ € G}, the map ¢ : G —» G/N defined
by ¢(g) = Ng is an isomorphism. If {g; : § € G} is another choice of liftings, then
GGi: € N for every g € G so that Ng = Ng,. Therefore the isomorphism ¢ is
independent of the choice of liftings. Now let 8 : G — Aut(N) be the composite x* o ¢.
If g € G and 7 is a lifting, then 8(g) = p*(¢(g)) = u*(NgG) = u(g) € Aut(N), so for
n € N, 0,(n) = p(g)(n) = gng~?, as required. O

Note 2 Let G be an extension of an abelian group N by G. For each g € G we choose
a lifting § € G, and for convenience we take T = 1. We identify G with G/N under
the isomorphism g — Ng. Now {g: g € G} is a right transversal for N in G so every
element A € G has a unique expression of the form 2 = ng (n € N,g € G), and we
have the following relations.

1. gn = n%G, wheren € Nand g € G

2. gk = f(g, h)gh for some f(g,k) € N, where g,k € G.

«l

Here we use n? to denote 0,(n) as given in the previous lemma.

3.2 Conjugacy Classes of G = N.G (N abelian)

In this section we assume that N is abelian, so the preceding lemma and Note 2 above
apply. . .

To determine the conjugacy classes of G we analyse the cosets Ng, where G =
Ugec Vg. It is only necessary to consider one coset Ng for each conjugacy class of G
with representative g, and the corresponding classes of GG are determined by the action
(by conjugation) of C,, the set stabilizer in G of Ng.

Now N C C,, since for n € N and n1§ € Ng, n(mg)n~! = nny(n~1)%g € Ng by
the relations in Note 2 in Section 3.1.

Therefore N 4 C; and we have Cy/N = Cg,y(NG) because
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Nh € Czn(Ng) <= NhNg(NR)™' = Ng
< NhNngh ! =Ng, Vne N
<= Nhagh™!=Ng, Vne N
< hngh™' € Ng ,VneN
— he(
< NheC,/N.

Therefore C, is an extension of N by C¢(g), identifying Cgz,(Ng) and Cq(g).

Now we detemune the orbits of C, = N.C¢(g) on Ng. ]éet h € Ng and let Cn(h)
be the stabilizer in N of h. Then for any nh € Ng (n € N), (nk)® = n*h® = nh
for £ € Cn(h), since N is abelian. Therefore Cn(h) fixes each element in Ng. Let
k = |Cn(h)]. Then under conjugation by N each element of Ng is conjugate to J-)k!l

elements of Ng, so Ng splits into & blocks with L‘:l elements in each block. Denote
these blocks hy Q1,..., Q%

The orhits of C, (that is, the conjugacy classes of Ng) are unions of these blocks
which fuse together by the action of C,. Since C, = N.Cg(g), this fusion is completely
determined by the action of {A : k € Cg(g)}. For suppose Q; and Q; fuse (i # j).
Then there exist 1,§ € @i, 729 € Q; such that (n;g)* = n,g for sorr_le k € C,. But
k € C, implies that k = nhk for some n € N, h € Cg(g). So (mg)™ = n,g implies
that((n13)")* = n2g. Now (n:3)" € Q;, so by the action 6f &, Q; and Q; have fused.

Suppose f blocks fuse to form an orbit 2 of C;. Then || = f J—i Let z € §.
Then the stabilizer in C, of z is Cz(z), so || = "fl;c"lic—(:-}]' = &?cga(ﬁn (by Lemma 2.5.1).
Therefore |Cg(z)| = fl.‘ng(l]J..

So to calculate the conjugacy classes of G we need to find the values of k and f
for each conjugacy class of G. Note that the values of k can be determined from the
action of G on N (given in Lemma 3.1.1):

Consider a class representative g of G. For this class, k is the number of elements
of N that fix &, for k € Ng. Take h =F. Now forn € N,

1 =1

nfixesg <= ngn™" =7 < gng  =n < n=n,

Therefore k is the number of elements of N fixed by g, which equals x(g) where x
is the permutation character of the action of Gon N.
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3.3 Clifford Theory

We now consider the characters of G, an extension of N by G. Here N is any group,
not necessarily abelian.

Let & € Irr(N), where N 4 G. Then & defined by 0?(n) = 8(gng~!), where ¢ € G
and n € N, is a character of N, and is said to be conjugate to & in G. G permutes
Irt(N) by g : 0 — 09, Since N acts trivially on Irr(N), Irr(N) is permuted by G/N,
by gN : 0 — 69.

All of our work in this section and the next chapter is dependent on the next result.
This result is due to Clifford (2] and is thus known as Clifford’s theorem, but we give
a proof from Isaacs [15].

Theorem 3.3.1 Let N 9 G and x € Irr(G). Let 0 be an irreducidle constituent of
x|n and suppose that § = 04,0,,...,0; are the distinct conjugates of 6 in (G. Then
x|v = e, 0; where e = <x|w,6>.

Proof: We compute GEIN. Define 6° on G by

0 0(z) ifze N
a(x)"‘{o( ) ifz g N.

For n € N, we have 0%(n) = |[N|"' T,z 0%(znz~"). Since znz™! € N Vz € G we have
0%(n) = |N|"! =,50°(n). Therefore |[N|6%|n =Loegl® and if ¢ € Irr(N) and ¢ ¢
{6; : 1 £ ¢ <t} then 0 = <T,507,¢>, so <6%|n,¢> = 0. Since x is an irreducihle
constituent of 6¢ by Frobenius reciprocity, it follows that <x|y,¢> = 0. Thus all

the irreducihle constituents of x|N are among the 6;, so x|v = S, <x|n,0:>0;. But
<x|n,0:> = <x|n,0> since 6; and 0 are conjugate, so the proof is complete. O

Definition 3.3.1 Let N 9 G and 6 € Irr(N). Then I5(0) = {g € G : 6¢ = 0} is the
inertia group of 6 in G.

Since z(0) is the stabilizer of 6 in the action of G on Irr(N), we have that Iz(0) is
a subgroup of G and N C I5(0). Also, [G : I5(0)] is the size of the orbit containing 6,
so in the formula x|v = e T}, 0;, we have t = [G : I5(0)].

As a consequence of Clifford’s theorem, we have the following theorem.

Theorem 3.3.2 Let N 4 G, 8 € Irr(N) and H = I5(8). Then induction to G maps
the irreducible characters ofE that contain 0 in their restriction to N faithfully onto
the irreducible characters of G which contain 0 in their restriction to N.
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Proof: Let A= {3 € Irr(H) : <?/)|N,9> # 0}, B = {x € Irr(G) : <x|n,0> # O}.
We will show that the map 3 — — 1% maps A faithifully onto B, and, furthermore, for
Y €A, <Py, 0> = <1/)G[N,9> _

_ Let 4 € A. We first show that ¥¢ € B. Let x be any irreducible constituent of
%%. Then by Frobenius reciprocity, % is an irreducible constituent of x|z, and since
6 is a constituent of ¥|x, we have that 6 is a constituent of X|wv, 50 x € B. We now
show that x = ¥%. Let 6 = 6y,...,0; be the G-conjugates of 0, so that t = [G : H]
and x|y = €T}, 0i. Since 8 is the only H-conjugate of § (because H = I=(8)), we
have that ¥|n = f8 for some f. But ¢ is a constituent of x|z, so f < e. Therefore, by
counting degrees,

e£.0(1) = x(1) < ¥%(1) = f.£.6(1) < e.£.8(1) (3.1)

Equality must hold throughout (3.1), so x(1) = %°(1) and therefore x = ¥C, as
required.

Now we show that the map is onto. Let x € B. Since 0 is a constituent of x|, there
must be some irreducible constituent ¥ of x|z with <¥|n,0> # 0. Then % € A and x
is a constituent of ¥/¢ (as above). Note that by (3.1), <x|n,0> = e = f = <i|n,0>.

To show that the map is one-one we need to show that for ¥ € A, 9 is the unique
irreducthle constituent of delﬁ which lies in 4. Suppose ¥; € A such that ¥, is a

constituent of '¢‘6|ﬁ = x| and %; # ¢. Then
XN+ 0> 2 <% + 1) |N, 0> = <P|n, 0> + <¥i|n, 0> > <|n, 0>,

a contradiction. This completes the proof. O

The above theorem shows that to find the irreducible characters of G that contain
6 in their restriction to N, it suffices to find the irreducible characters of H = I5(6)
that contain 6 in their restriction. If @ can be extended to an irreducible character

¥ of H (that is ¢ € Irr(H) with ¢|xv = ), then the relevant characters of H can be
obtained by using the following theorem.

Theorem 3.3.3 (Gallagher [8]) With N, G, and H as above, if § extends to a char-
acter ¢ € Irx(H) then as B ranges over all irreducible characters of H that contain N
in their kernel, By ranges over all irreducible characters of H that contain 0 in their
restriction.

Proof: By definition of H, 6 is the only H-conjugate of 6, so by Clifford’s theorem
07 |n = f0 for some integer f. Comparing degrees, 87|y = [H : N}9, so <67,07> =
<4, 9H|N> =[H : N].
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Now we claim that 0¥ = 3", 3(1).8%, where j runs over all irreducible characters
of H that contain N in their kernel, or, equivalently, over all irreducible characters
of H/N. Both 67 and Y5 B(1)B¢ are zero off N because for ¢ & N, 67 (g) = 0
since zgz~' ¢ N ¥z € G, and £, B(1)(B¥)(9) = Ls(8(1)B(9))¥(g) = 0 (column
orthogonality for character table of H/N, since g & N).

Also 0% | = [H : N8 = (£ 8(1)B%)|n because for g € N, £ 8(1)B(g9)¥(9) =

Ta(B(1))2(g) = [H : Np(g) = [H : NJ8(g)-

Therefore 67 = Y5 B(1)B¢ as claimed.

Now [H : N] = <0#,0%> = <345 8(1)8%, T, y(1)19> = L, B(L}y(1) <, 19>.
The diagonal terms contribute at least 3~ 4(1)? = [H : N], so the B4 are irreducibleand
distinct. These G are all the irreducible constituents of 87, so are all the irreducible
characters of H that contain 6 in their restriction, since for ¢ € Irr(H), <d|y,0> =

<¢, 7 >
.a

Note 1 Now suppose G is an extension of N by G. If every irreducible character of N
can be extended to its inertia group in G, then by application of Theorems 3.3.2 and
3.3.3, the characters of G can be obtained as follows:

Let 6y,...,0; be representatives of the orbits of G on Irr(/NV). For each i, let H; =
Iz(0;) and let y; € Irr(H;) with ;|N = 6;. Now each irreducible character of G
contains some 6; in its restriction to N by Clifford’s theorem, so by Theorems 3.3.2
and 3.3.3 we have

Irr(G O {(Bv:)% : B € Im(H),N C ker(3)}.

Hence the characters of G fall into blocks, with each block corresponding to an inertia
group.

We now quote some results which give sufficient conditions for the irreducible char-
acters of IV to be extendible to their respectiveinertia groups, so that the above method
can be used to calculate the characters of G.

The following result and proof was obtained from Curtis and Reiner ([4, page 353]).

Theorem 3.3.4 (Mackey’s theorem) Suppose that N is a normal subgroup of_ﬂ
such that N is abelian and H is a semi-direct product of N and H for some H < H.
If 8 € Irr(N) is invariant in H (that is, 0% = 8, Vh € H) then 0 can be extended to a

linear character of H.



25

Proof: Since H is a semi-direct product, any 2 € H can be written uniquely as
h =nk,n € N, k € H. Define x on H by x(nk) = 0(n). Since N is abelian,
6 has degree 1 so is linear, and the fact that 6 = 6" for all h € I implies that
6(n) = §(hnkh=1) for all h € H. Then if by = nyky, ha = naks, we have x(hiha) =
X(nikinakz) = x(rans*kiks) = 0(nang') = 0(n1)0(n5') = 0(n1)0(n2) = x(h1)x(ha).
Therefore y is a linear character of H, and x|y = 6. O

In most cases that we will consider, NV is abelian and the extension is split, so
Mackey’s theorem will apply.

Mackey’s theorem is a corollary of a more general result by Karpilovsky which we
state without proof.

Theorem 3.3.5 [17] Let the group H contain a subgroup H of order n such that
H = NH for N normal in H and let x € Irr(N) be invariant in H. Then x eztends
to an irreducible character of H if the following conditions hold:

1. (m,n) =1 where m = x(1),
2. NN H < N' where N’ is the derived subgroup of N.

Another extension theorem is the following:

Theorem 3.3.8 [9) If N is a normal subgroup of H and 6 is an irreducible character
of N that is invariant in H, then 0 is eztendable to an irreducible character of H if
([(F: N i) =1.



Chapter 4
FISCHER MATRICES

Let G be an extension of N by G, with the property that every irreducible character
of IV can be extended to its inertia group. With the notation of the previous chapter
we have that

Irr(G) = 0{(@/’;‘)@ : B € Irr(H;) with N C ker(3)}.

=1

Now we show how the character table of G can be constructed using this result.
We construct a matrix for each conjugacy class of G' (the Fischer matrices). Then the
character table of G can be constructed using these matrices and the character tables
of factor groups of the inertia groups. These constructions of Fischer matrices have
been discussed and used by Salleh [28], List [19] and List and Mabmoud [20].

4.1 Definitions

As previously, let 6y,...,0, be representatives of the orbits of G on Irr(/V), and let
H; = I5(6;) and H; = H;/N. Let %; be an extension of 6; to H;. We take #; = 1x, so
Fl = @ and H. 1 = G.

We consider a conjugacy class [g] of G with representative g.
Let X(g) = {z1,...,Tqy)} be representatives of G-conjugacy classes of elements of the
coset Ng. Take zy = 3.

Let R(g) be a set of pairs (i,y) where ¢ € {l,...,t} such that H; contains an
element of [g], and y ranges over representatives of the conjugacy classes of H; that
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fuse to [g]. Corresponding to this y € Hi, let {y;,} be representatives of conjugacy
classes of H; that contain liftings of y.

If B € Ire(H;) with N C ker(8), then $ has been lifted from some 3 € Irr(H;), with
B(y) = B(y,,‘) for any lifting g, of y. For convenience we write 3(y) for 3(y).

Now, using the formula for induced characters given in Lemma 2 4.4, we have

@oPE) = T TS
winer) ¥ Ol

_ 4 IC_(%)I
= ,(,y)zeﬂ(g)zk: |CH,(y5k)l¢i( ’k)ﬂ(y)

= ¥ ():’ 1Cglzs) %bs(zm)) Aly)

v:(i,¥)ER(g) ICH a)'

By ¥’ we mean that we sum over those k for which ¥, is conjugate to z; in G
Now we define the Fischer matrix M(g) = (af‘.,y)) with columns indexed by X(g)
and rows indexed by A(g) by

v |Calz;
(c.y) lec,:((yk)id}‘ fk) (4-1)
Then _
@B (z) = L ohiyB). (42)

#:(3.v}ER(g)

The rows of M(g) can be divided into blocks, each block corresponding to an
inertia group. Denote the submatrix corresponding to H; by M;(g), and let C;(g) be
the fragment of the character table of H; consisting of the columns corresponding to
classes that fuse to [g]. Then, by relation (4.2), the characters of G at the classes
represented by X(g) obtained from inducing characters of H; are given by the matrix
product C;{(g).Mi(g)-

4.2 Properties of Fischer Matrices

In this section we will give some properties of the Fischer matrices which help in their
computation. First we state a result of Brauer and prove a lemma which will be needed
later.
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Lemma 4.2.1 (Brauer) Let A be ¢ group of cutomorphisms of a group K. Then A

also acts on Irt(K) and the number of orbits of A on Irt(K) is the same as that on the
conjugacy classes of K.

Proof: See {10, 4.5.2].

Lemma 4.2.2 Let A be a group of automorphisms of a group K, 80 A acts on Irr(K)
and on the conjugacy classes of K with the same number of orbits on each by the
previous lemma. Suppose we have the following matriz describing these actions:

=4 B - & <« L
s [ 1 1 wes 1 s 1N
so| @31 @z - G; - A2t
$;| @Gy Gz -t Gif 0t Gi
3 k @1 Gzttt Gy vt Gy
where ayj =1 for j =1,...,%,

l;’s are lengths of orbtts of A on the conjugacy classes of K,

s;’s are lengths of orbits of A on Irx(K),

a;; is the sum of 8; irreducible characters of K on the element z;, where z; 8 an
element of the orbit of length I;.

Then the follourng relation holds for 1,4’ € {1,...,t}:

t
Y aijamgl; = | K|sibii.

J'=1

Proof: Let s; denote the sum of s; irreducible characters of X, so si(z;) = a;j. Then
<3; 8> = ]Kl" i1 isi(z)su(z;) = |1\(|'IZ:J_1 l;aijai;. But by orthogonality of
irreducible characters, <s;,8¢> = &ii3i, s0 }:;_1 lja;;37; = | K|s:bi0.

a

Now let M(g) = (a(‘ y)) be the Fischer matrix for G = N.G at ¢ € G. We present
M(g) with corresponding “weights” for columns and rows as follows:
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ICa(z1)] |Cg(z2)| -+ |Ca(zuq)]
ICui(g)| {1 1 £ L)
IOHz (y | a%z.y) a?&v)

ICr,(¥) | alzy 02w

|CH.' (y)l a%{,y) a?i.v)

|Car () @) )
T )

The matrix M(g) is divided into blocks (separated by horizontal lines), each corre-
sponding to an inertia group. Note that ‘121,9) =1forallj € {1,...,¢(9)}.

Fischer has shown that M(g) is square and nonsingular (see [20]). In the following
propositions and note we give further properties of Fischer matrices.

Proposition 4.2.3 (column orthogonality)

Z ‘CHi(yNa;{,i,y)a%i,y) = 63‘3’1}(]’5(.’17]')'.
[‘.'y)en(g)

Proof: The partial character table of G at classes Iy, ..., Ty, is

Ci(g)Mi(g)

Ct(g)ﬂt(g)

where Ci(g), Mi(g) are as defined in section 4.1.
By column orthogonality of the character table of G, we have

ICalz)léy = 20 2 ( PR () (G af:,y-)ﬂs(y’))

i=1 giebr(H;} \w:(s.¥)}ER(g) v(1.y')ER{g)
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=2 (Z“rey) FgbiWBE) + X T o yals o0 ily)Bly ))

i=1 ﬁ:EIJ'.\’(H) v 'y
: ] 7 A
= 2 (Z a",—,y)afi.y) Z ﬂ‘l y)ﬂt y) + Z Z a(x,y)a('.yl) z ﬂ‘(y)lg‘(yi))
=1 y ﬁ.’GIn{H vy y ﬁke[n(ﬂ'..)
‘ A
= X (Z 0l 4)0(i) | Cr (¥)] + 0)
i=1 Yy
= 2 Gy [Cr)l
(i.9)ER{g)

O

Proposition 4.2.4 (List [19]) At the identity of G, the matriz M(1) is the matriz
with rows equal to orbit sums of the action of G on Irr(N) with duplicate columns
discarded. _ .

For this matriz we have aj; ;) = [G : Hi], and an orthogonality relation for rows:

t . .
Z @t 1)80 )| Ca(z)| ™ = & Crr (1) 71 = e | H:| 7Y

=1

Proof: The (i,1), 0 entry of M(1) is
|C5(z;)]
(:1) Zlc_G J)ld) b:)

where we sum over representatives of conjugacy classes of H; that fuse to [z;] in
G. Therefore Ay = = ¢€(z;). By Theorem 3.3.2 ¢€ is an irreducible character of G,

and <1‘b‘ |v,6i> = <ti|n,8:> = 1. Therefore, by Clifford’s theorem (Theorem 3.3.1),

YN = Lo Xa, where we sum over all x, € Irr(N) in the orbit containing 8;. Now

z; € N, and af;;, = T, Xa(z;). The orthogonality relation follows by Lemma 4.2.2.
O

Note 1 If N is an elementary abelian group (which is the case for our calculations),
then List {19] has also shown the following for M(g), where g # 1:

If G is a split extension of N by G, then M(g) is the matrix of orbit sums of C,
(as defined in section 3.2) acting on the rows of the character table of a certain factor
group of N with duplicate columns discarded.
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If the extension is not split, M(g) is the matrix of orbit sums of C, acting on
the rows of the character table with duplicate columns discarded and with each row
multiplied by a pth root of unity where |N| = p" for some r. It may be that the root
of unity for each row is 1.

For these matrices (V elementary abelian, any extension) a%,-,,v) = 'I]g_f:-%)ilf’ and we

have an orthogonality relation for rows (as a consequence of Lemma 4.2.2):

¢(g)

Yo mal Gy = St Co(@ICr, (3){ N
7=1

= Sy lig V]

where m; = [Cy : C-@(a:,')].
(In the notation of section 3.2, m; is the length of the orbit Q of Cy, so m; = ‘MLM.)

The relations given in the above propositions and note will be used later in our
calculations of Fischer matrices, so for convenience we list them in a theorem.

Theorem 4.2.5 For a Fischer matriz M(g) = (a{i‘y)) of G = N.G we have the fol-
lowing relations.

L oal,y=1forallj€{L,... g}

2. Limerts) ICr:()lat ety = 6i7|Ca(=s).
If N is elementary abelian, then

3. a%l-’y) = fg’i%], and

4' E:EI) mjaffgy)aii',y') = 6({19}(,1,”1)@%‘-@}'1\" #



Chapter 5
EXAMPLES

We will give in this chapter examples of the use of the methods discussed in the previous
two chapters (to calculate conjugacy classes and character tables of extension groups).

5.1 The group 2} : GL3(2)

Let N be an elementary abelian group of order 8, so N = V;5(2), the vector space of
dimension three over a field of two elements. Let G = GL3(2). We determine the
character table of G = N : G, where G acts naturally on N. From ATLAS [3], we have
the character table of G, which we give in Table 5.1.

Let N be generated by {e;,es,e3} with €2 =1for 1 < <3, so

N = {1, €1, €2, €3, €1€3, €1€3, €2€3, 616263}-

To determine the conjugacy classes of G we analyse the cosets  Ng where g is a repre-
sentative of a class of G. (Note that the extension is split, so G = U;ec Ng). We use

the notation of section 3.2, so |Cz(z)| = EJ_Q%L!J.I’ where f of the k blocks of the coset
Ng have fused to give a class of G containing z.

¢ g = 1: For g the identity of G, ¢ fixes all elements of N, so & =8. Then under
the action of Ci(g) == G we have two orbits with f = | and f = 7, so this coset
gives two classes of G-

=1, class(l), |Cz(z)

| =8 x 168 = 1344;
T =ep, class(21), |C‘C:'(1’)I i

168 _ 192,

32
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class (1A) (24) (34) (44) (7A) (1B)
centralizer | 168 8 3 4 7 7
X1 1 1 1 1 1 1
X2 3 -1 0 1 a @
X3 3 -1 0 1 a a
X4 6 2 0 0o -1 -1
Xs 7 -1 1 -1 0 0
Xe 8 0 -1 0 1 1
e = -;—(—1 +V/Ti)
Table 5.1: Character table of GL3(2)
1 00
e g€ (24): Wetake g = | 0 0 1 | with |Cs(g)| = 8 The action of g on N
| 010

is represented by the cycle structure (1)(e1)(e1eze3)(ezes)(e2 es)(erez ejes), so
k=4

The four orbits of N on Ng are {g, eze39}, {€19, e1¢2€39}, {€29, €3g) and {e;e29, e1€39}.

111 111
Now we act Cg(g) = < o 106f,[1 10 > on these orbits.
0 01 1 01

For eg € Ng, h € Cs(g), (eg)* = e*g" = ePg so we obtain the following orbits:
{g,e2639}959) = {g, e2eag}, {€19, €1€2€39) 9019 = {e1g, e1ezea9), {29, €3} 910 =
{29, €39, e1629, €139} :
Therefore we get three classes of G:

f = 1, T=9g, class (22), |C-(—;-(q;)i =4 %X 8= 32;

f=1, z=ey, class (23)7 |C§(.’L‘)i = 32;
f == 2, I = 6297 ClaSS (41), |C§(.’B)| - %& - 16.
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010
e g€ (3A): We take g = ( 0 01 ) with |Cg(g)| = 3. The action of g on NV is
1 00
represented by (1)(e1eze3)(er ez e3)(erez ejes ezes).
Hence k = 2, so we must have just two blocks. These cannot fuse together under
Ca(9), since g9} = {g}. Therefore we have two classes of G, each with f = 1:

r=g, class (3;), [Ca(z)| =2 x3 =6;
T = e1g, class (6;), [Cg(z)| =6.

e g€ (4A): Again we get two classes of G:

z=g, class(42), |Cq(z)|=28;
z = e;g, class (43), |Cg(z) =8

8
p—

For classes (7TA) and (7B) we have k = 1, so each coset has just one class in G.
These are classes (7;) and (72) of G, each with centralizer of order 7.
Thus the conjugacy classes of G are as follows:

classof G | (1A) (24) (-3A) | 44) |(74)| (1B)

classof G || (1) (21)[(22) (2) (4)[(B1) (61)[(42) (4)] (1) | (7a)
centralizer || 1344 192 | 32 32 16 6 6 | 8 ) 7 7

Now we determine the Fiecher matrices: G has two orbits on N, hence two orbits
on Irr(NV). These must bave lengths 1 and 7. The inertia groups are H; = G and Hj,
where [G : Hy] = 7. Let Hy = H,/N, then H; is a subgroup of G with [G : Hy) = 7.
Therefore H; = 5, (by considering the maximal subgroups of G given in ATLAS [3]).
The character table of H; is given in Table 5.2, and the class fusions of H; in G in
Table 5.3.

Now to calculate the Fiscber matrices we will use the relations of Theorem 4.2.5.
Note that all the relations hold, since N is elementary abelian.

Corresponding to the identity of G, we have

1344 192

168 a b
M(1) = 24 ( c d )’



class (1A) (24) (2B) (34) (4A)
centralizer 24 4 8 3 4
X1 1 1 1 1 1

X2 1 -1 1 1 -1

X3 2 0 2 -1 0

X4 3 I -1 0 -1

Xs 3 -1 =1 0 1

Table 5.2: Character Table of H, = S,

class of H, | class of G
@Ay | (4
e4) | (4)
2B | ()
(34) | (34)
(44) (4A4)

Table 5.3: Fusion of Hy in G

35
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say. By the relation 4.2.5(1), a = b = 1 and by the relation 4.2.5(3), c = 132 = 7. Now
by the relation 4.2.5(2), we have 168 x 1 x 1 4+24 x 7 x d =0, so d = —1. Therefore

mm=(; ).
Now suppose g € (24). Then M(g) is a 3 x 3 matrix since Ng has three G-canjngacy
classes. Let

32 32 16
8/1 1 1

M(g): 41 2 a b |.
8\'1 ¢ d

The entries of the first row and column follow from relations 4.2.5(1) and 4.2.5(3). To
calculate a, b,c and d we will use the column orthogonality relation 4.2.5(2). For the
second column, 8 + 4|a|? 4+ 8{c|? = 32 = |a|* + 2|¢|* = 6 = |¢| = 1 and |c¢| = 1. But by
orthogonality of columns 1 and 2, we have 8 + 8a 4+ 8¢ = 0, so @ + ¢ = —1. Therefore
a = —2 and ¢ = 1. Similarly, b=0 and d = —1.

The other matrices are determined similarly, and all the Fischer matrices of G are
given below.

[g] M(g)
1344 192
168 1 1
(14) oy ( 7 -1)
32 32 16
8/1 1 1
(24) 4|2 -2 0
g\1 1 -1

6 6
o0 301 2)

8 8
41 1
(44) 4(1 —1)



(74)

1)

7
B) 7(1)
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For each matrix M(g), we write |C5(z;)| above column j and on the left of row

(1,y) we write |Cr,(y)|-

Now we can _calculate the characters of G, which fall into two blocks with inertia
groups G and Hj, from these matrices and the character tables of G and H,, by

multiplying rows of M(g) witb sections of the character tables corresponding to g.
At the identity of G we have M(g) = (

1
7

_ll). Now we multiply each row by

columns of tables 5.1 and 5.2 respectively to get the value of the characters of G on
G-classes (1) and (2;) as follows;

1 11
3 3 3
3 3 3
sl 1]=]¢ ¢
7 7 7
| 8 | '8 8|
[ 1] [ 7 -1
1 7 -1
2 [7 _1]= 14 —2
3 91 —3
3 (21 -3

Similarly, the characters corresponding to class (2A4) of G are

1 1 1 17
-1 -1 -1 -1
—1 -1 -1 =1
> [111]= 5 9 g
-1 -1 -1 -1
0 | 0 0 0]
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L1 3 ~1 -1
11 -1 3 -1
0 2 [f 2 _2] = 2 2 -2
1 -1 I -3 1
-1 -1 -3 1 1

which give the values of the characters of G on G-classes (2;), (23) and (41). Similarly
for other classes of G, so we get the character table of G given in Table 5.4. It is
divided into two blocks corresponding to the two inertia groups.

class (1) (20) [ (22) (2) (4)|(31) (61) | (42) (4) | (71)]|(Ta)
centralizer | 1344 192 | 32 32 16 6 6 8 8 7 7
X T 1] 1 1 1| 1 1| 1 1] 1| 1
X2 3 3| -1 -1 -1 0 0 1 1 a a
X3 3 3| -1 -1 -1 0 0 1 1 a a
X4 6 6 2 2 2 0 0 0 o -1 =1
X 7 7| -1 -1 —1| 1 1| =1 =1| of o
X6 8 8 0 0 of -1 -1 0 0 1 1
X7 7 -1 3 -1 -1 1 -1 1 -1 0 0
& 7 —1| -1 3 -1| 1 -1| -1 1| o| o
o 4 -2 2 2 -2/ -1 1| o of o] o
X10 21 -3 1 -3 1 0 0 ~1 1 0 0

a=1(~1+v7)

Table 5.4: Character Table of G = 23 : GL3(2)
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5.2 A group of the form 2¢.5

As a second example, we determine the Fischer matrices and hence the character table
of a group of the form 2*.Ss, a subgroup of the holomorph 2% Ag and of M, the
automorphism group of the Mathieu group M, (see Moori {22]). This character table
has been determined by Meori by different methods, but we are concerned here with
using the methods of Fischer matrices.

Let G = N.G be the group mentioned above where N is an elementary abelian
group of order 16, so N = V((2) and G = Sg. We shall calculate the conjugacy classes
of G using two different constructions of G. In the first we regard G as a group of
linear transformations, and in the second method we consider G as a subgroup of M,

Conjugacy Classes of G (Method 1)

Ss is a maximal subgroup of Ag = GL,4(2). In fact, Sg is isomorphic to SP(2), the
set of all 4 X 4 matrices over a field of two elements tbat preserve a non-singular
symplectic form. The isomorphism is given by Huppert [14, [1.9.21]. Now G & SPy(2)
acts naturally on N = V,(2). We can thus determine exactly how G acts on N, and use
the methods of section 3.2 to determine the conjugacy classes of G. The computations
were done using CAYLEY [1].

In Table 5.5 we give the conjugacy classes of G and the number of points of IV fixed
by each class representative g, which we denote by k.

[g] [() (24) (2B) (2C) (34) (3B) (4A) (4B) (5A) (6A) (6B)
ICo(g)||720 48 48 16 18 18 8 8 5 6 6
kK |16 8 4 4 4 1 2 2 1 2 1

Table 5.5: Conjugacy Classes of G = Sg

Now we analyse the cosets Ng for class representatives g of G. The coset falls into
k blocks under the action of NV, then we determine how these fuse under the action of
Cs(g). In each case, the action of C;(g) was calculated using CAYLEY.

e g = 1: In this case k¥ = 16 and under the action of Cs(g) on N we have two orbits
of lengths 1 and 15, so we get two classes of G, the identity class and a class of
involutions (2,).
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[Ur T

® g € (2A): We have |Cs(g)| = 48. Let g =

= O O o

) which is an element of

1
this class of G. The orbits of C5(g) on N are {(1,1,1,0)}, {(0,0,0,0)},
{(17 L1, 1)1 (Oa 0,1, 0)1 (03 18 1)7 (13 L,0, 0), (11 0,1,0), (Oa 1,0, 0), (0’ 0,0, 1)?
(1,0,0,1)},and {(1,0,1,1),(0,1, 1,0, (0,0,1,1),(1,1,0,1),(0,1,0,1), (1,0, 0,0}}.
From Table 5.5, & = 8, so Vg splits into eight blocks Q,..., Qs of length 2 under
the action of N. The block @Q; containing g is fixed by Cg(g), so we have a class
(22) of G with f = 1. We also have blocks Q; = {(1,1,1,1)g,(0,0,0,1)g},
Q3 = {(0701]-,0)91 (15 1,0, 0)9}? Q4 = {(1’(],0) 1)9,(0,1, 11 l)g}
and Qs = {(1,0,1,0)g,(0,1,0,0)g}. Now we act Cs(g) on these blocks. Note
that (vg)* = vhg for b € Cs(g), so the action of Cg(g) on Ng is determined
by the action of Cg(g) on N. Thus, from the action of Cz(¢9) on N we can
see that Q;,Q3, Q4 and Qs fuse together to give a class of G with f = 4, so
|Cz(z)| = 258 = 2°.3 where = = ug, say u = (1,1,1,1). Now z? = ugug =
wu? =(1,1,1,1) +(0,0,0,1) = (1,1,1,0). Therefore z has order 4 and we repre-
sent this class of G by (41).

Cc(9g) also has an orbit of length 6 on NV, so the remaining three blocks must fuse
together to give a class of G with representative z = ug, » = (1,0,1,1). Then
z? = ugug = uwu? = (1,0,1,1) + (1,0,1,1) = 0, so « has order 2. Thus we have
class (23) of G with |C(z)| = &8 =27,

0 0
01
10
11
(1,1
0

® g € (2B): We have |Cz(g)| = 48 and k = 4, so the coset Ng has four blocks of
length 4. Cg(g) acting on N has three orbits of lengths 12,3 and 1. So when
Cc(g) acts on the blocks of Ng there will be fusions f = 1 and f = 3, giving
classes (2;) and (47) of G.

Similarly, we have the actions of Cg(g) on N for all remaining classes [g] of G, so
we get the conjugacy classes of G, as in Table 5.6.

Conjugacy Classes of G (Method 2)

We now determine the conjugacy classes of G by an alternative method, by regarding
G as a subgroup of Mo;.

G acting on N fixes one point and acts transitively on the remaining 15. From the
character table of Ss (Table 5.11) the permutation character of Sg acting on 15 points



classof G f classof G Cg(z)

) 1 (1) 28375

15 (1) 283
(24) 1 (22) 27.3

4 (4) 283

3 (2 ¥
(2B) 1 (2) 23

3 (42) 26
(2C) 1 (25) 2°

2 (43) 28

1 (44) 28
(34) 1 (3) B3

3 (6;) 23
(3B) 1 (32) 2.3?
(44) 1 (45) 24

1 (&) 2
(4B) 1 (46) 2

1 (8) 28
(54) 1 (Br) 5
64) 1 (6 223

1 (12,) 223
(6B) 1 (6 2.3

Table 5.6: Conjugacy Classes of G = 2%.5
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is x = x1 + xa + x7. (This was obtained hy using Theorem 2.5.6). Then for a class
representative g, the number & of points of N fixed by g is @ = x(g). These values are
given in Table 5.7. In Table 5.7 we label each conjugacy class according to its cycle
structure.

4] 1 1%2 133 124 1722 123 15 6 24 28 32
|Calg)] | 29.3%.5 243 2,32 23 2¢ 23 5 23 23 213 232
k 16 4 1 2 4 1 1 -2 2 8 4

Table 5.7: Conjugacy Classes of G = Ss

The coset Ng splits into k blocks, and we now determine the values of f, the fusion
of these blocks under Cg(g). For the identity coset we have values f = 1 and f = 15,
so classes of G are (1) and (2a) with centralizer 18X720 = 28.3. Also, for each coset Ng
we will have one class of G formed from the identity block, with f = 1. '

To determine the remaining f values, we consider G as a subgroup of My,. The
permutation character ¢ = (15)¥% is given in [22]. Referring to the character table of
My, in [22) we have ¢ = 1 + 21’ + 55. The values of ¢ on the conjugacy classes of Mo,
are given in Table 5.8 (considering only the classes of M3; that contain an element of
G). We use the ATLAS [3] notation for Mqg-classes, and label them + or - if they lie
inside or outside My,, respectively. ‘

Now for a representative y of a class of M3z, we have by Theorem 2.5.7 that ¢(y) =
Te |C37,,(¥)]/IC7(2) |, where  runs over representatives of conjugacy-classes of G that

fuse to [y) in M.

Classes of elements of orders 2,4, 8

C—
In Table 5.9 we give values of ]—]g'-:?(in)l for classes of elements of orders 2,4 and 8

and using the above expression we determine the fusion of elements to My, and the
conjugacy classes of G.

For each class of G we have one class of G with f = 1, giving us the classes (1),
(28), (4b), (2¢), (2d) and (4f). Also we have class (2a) from the identity coset. From
the entries in Table 5.9 corresponding to these classes we see that (2a) and (2¢) must
fuse to (2A4) in Mz and no other class fuses to (24). Therefore (26) and (2d) must
fuse to (2B) and there is no other fusion to {2B). Also (4b) and (4f) must each fuse
to one of (4D) and (4C).

Now we consider each class of G (given in Table 5.7) and the possible f values.
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class [y] of M2z |Cz,.(y)|  4(y)
(1) 28.3:5.7.11 77
(24)* 28.3 13
(2B)~ 27.3.7 21
(2C)~ 27.5 5
(4B)* 2° 1
(4A)T 29 5
(4D)~ 28 5
(4C) 2°3 1
(8A)* 2 1
(8B)~ 24 1
(3A4)* 23.32 5
(64)* 23.3 1
(6B)~ 22.3 3
(124)" 223 1

Table 5.8: Conjugacy Classes of M2

o Class 12: In this case k = 4, so we have four blocks. We have f =1 for one
block so other f values are 1,2 or 3, to give a class of G containing & with

|Cz(z)| = 4—"1%?@1 = 387’@ Since x has order 2 or 4, it can fuse to one of the

following classes of M3;: (2C), (4B),(4A),(4D) or (4C). If f =1, |Cx(z)| = 26.3
but this does not divide |Cy,,(y)| for any of the above classes, so f # 1. Hence
we also cannot have f = 2, so we must have f = 3 and |C5(z)| = 2°. Therefore z
fuses to (44) or (4D), and we get class (4a) of G. But (2b) fuses to (2B)~ in M3,
so lies outside Mp,. Therefore elements of (4a) which are products of an element
of N and g € (2b) must also lie outside Ma;. Therefore (4a) fuses to (4D)~.

e Class 124: Here k¥ = 2 and |Cg(g9)| = 8, so besides (44) we have another class

with f =1 and |Cz(z)| = 2*. From the values of l%%;(;l)—i we see that this class
G

cannot fuse to any class of elements of order 4, so must have order 8 and fuse to
(8A4) or (8B).

e Class 122%: For this class, ¥ = 4 and |Cs(g)| = 2*. We have @-cla.sss (2¢) with
f =1, and other classes of G must have f € {1,2,3} and |Cg(z)| = . Therefore
f = 3 is not possible, so there is a class with f = 1 and |Cg(z)| = 2%. This class
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Mg — class [y] 1 2A 2B 2C 4B 4A 4D 4C 8A 8B
|Cxz.. (v)] | 28.32.5.7.11 28.3 27.3.7 275 25 26 26 253 2¢ 24
o(y) 77 13 21 5 1 5 5 1 1 1
] f [z [Cz(=)]
1 1 (1) 28.3%5 77
15 (2¢) 283 1
142 1 (2) 283 4 14
3 (4a) 28 10 1 1
124 1 (40) 24 2 4 4 6
1 (8e) 20 2 4 4 6 1 1
1222 1 (2c) 28 12 42 10
1 (4c) 28 10 1 1
2 (4d) 25 20 1 3
22 1 (2d) 2.3 2 7
4 (4¢) 253 1
1 (2 27 5
24 1 (4f) 28 2 4 4 10
1 (8y)  2¢ 11

Table 5.9:




12.

45

must then fuse to (4A4), we label it (4c). If there is another class with f =1 it
will have |C=(z)| = 25 and there is no class of M, that it can fuse to, so this is
not possible. Hence we must have f = 2 and |Cx(z)| = 2° and this class must
fuse to (4B). We label it (4d).

e Class 24: Here k£ = 2 so there are two classes each with f = 1. The second class
must fuse to a class of M, of elements of order 8.

e Class 23; We have k = 8, and |Cs(g)| = 29.3. This coset must give rise to a class
(4¢) that fuses to (4C) with |Cx(z)| = 2°.3, so has f = 4. Now for the remaining
blocks, f € {1,2,3}. If f = 1, |Cx(z)| = 2.3 and if f = 2, |Cx(z)| = 28.3.
Neither of these is possible since the class must fuse to (4C), so f = 3.

(Classes of elements of orders 3, 6,12

In Table 5.10 we give values of 10_22[5—, ((—;IN for classes of elements of orders 3,6, and

My —class [y] | (34) (64) (6B) (124)
|Cxz,, (¥)] | 22.37 223 223 223
$(y)| 5 1 3 1
G —class f G —class |Cg(z)|

3 1 (3a) 237 | 4
32 1 (36) 23.32 1
3  (6a) 253 1
123 1 (6b) 2.3 2 2
6 1 (6c) 22,3 1
1 (12¢) 223 1
Table 5.10:

e Class 133: Here k = 1, so we have one class (3¢) of G, with f = 1 and |Cx(z)| =
2.32. This must fuse to (3A) in Mg;,.

e Class 3% This class has & = 4. There is one class with f = 1 and |Cg(z)| =
4.2.3% = 23.3%. This must fuse to (34) in M. Now other classes of G can have
f=120r3 If f =1, |Cz(z)| = 22.3% and this does not divide |Cy,,(y)| for
any possible class of M3;. Hence we must have f = 3, and a class (6a) of G with
|C5(z)| = 23.3. This class fuses to the My,-class (6A).
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o Classes 123 and 6: These have k = 1 and £ = 2 respectively so we get classes
(68), (6c) and (12a) of G, as in Table 5.10. these fuse to Maj-classes (6B),(65)
and (12A4) respectively.

Fischer Matrices of G

Sg acting on N has two orbits, so has two orbits on Irr(/N). These must have lengths
1 and 15. Thus the inertia groups are H; = G and H, where [G : H;} = 15. If
Hy = Hy/N then H, < Sg with [Sg : Hy] = 15. Thus H, is a subgroup of Ss of order
48, and its character table is given in Table 5.12. (See [21]). The class labels in Table
5.12 indicate the fusion of H; in G = Ss. Now using the conjugacy classes of G from
Tahles 5.9 and 5.10 and the fusion of H; in G, we get the Fischer matrices M(g) for
class representatives g of G, given below. The entries were calculated from the relations
in Theorem 4.2.5.

(9] M(g)
28325 9283
18 720 1 1
48 15 -1
263 9286
4 48 ( 1 1
172 16\ 3 -1
26 25 28
6/1 1 1
1222 611 -1 1
8 \2 0 -2
27.3 27 253
48 [/ 1 1 1
23 8 6 -2 0
8\ 1 1 -1
24 ot



24

13

123

15
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Now by multiplication of the relevant columns of the character tables of G and H,
(Tables 5.11 and 5.12) and the rows of the Fischer matrices, we get the character table
of G, given in Table 5.13. The characters are divided into blocks, corresponding to the

two inertia groups.
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Table 5.11: Character Table of G

6
6

18 192 (1%2%); (1%2%); (2°), (2%), 124 24 37

6

8

8 48 8

8

16

16

48

1 -1 -1

-1

0 -1 -1

0

3 -1 -1
-3 -1

1

class
centralizer

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Table 5.12: Character Table of H,
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(continued on next page)
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5

6

22.3

23223
(6b) | (6c) (12a) | (5a)

133123

32

23.32

2231232

(3b) (6a) | (3a)

(]

(o]

24

24

24

-1

class of G
centralizer

class of G | (4f) (8b)

X1
X2
X3
X4

X5

X6
X7
Xs
X9
X1o

X11
X312
X13
X14
X15
X16
X17
X18
X19
X20
X1

28

Character Table of G

(cont.)
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5.3 Holomorph of C,

Definition 5.3.1 The holomorph of a group N is N : Aut(N), where Aut(N) acts
naturaily on N.

Lemma 5.3.1 If C, is the cyclic group of order p (p prime), then Aut(Cy) = Cp-1.

Proof: Let C, = <z>. Each a € Aut(C)}) is determined by a(z), so that Aut(Cp)=
{e1,--.,ap_1} where q; is defined by a;(z) = gfori=1,...,p—1. Now let Z; be the
multiplicative group of nonzero elements of Z, = Z/pZ, and define ¢ : Aut(Cp) — 2Z;
by ¢(c;) =t. Then ¢ is an automorphism so that Aut(C;) = Z; But (for example, see
Rotman (27, 2.16]) the group of nonzero elements of a finite field is cyclic, so Aut(Cy)

n~y
~Cpy. D

Now we construct the Fischer matrices and character table of the holomorph of C,,
which is Cp : Cp—1. Let G =N : G where N = C,, G = Cyy. If N = <z> then each
element of G = Aut(N) maps z onto a different non-identity element of N. Therefore
the orbits of G on N have lengths 1 and p —1.

To find the conjugacy classes of G we analyse the cosets Ng for each ¢ € G and
find the values of k (the order of the stabilizer in N of g). Since k divides |N| and
IN| =p, wemust have k =pork=1. f k =pthenn? =nforalln € N,sog=e,
the identity of Aut(N)= G. Hence for non-identity element g we have k = 1.

Now the classes of G are as follows: For ¢ = e, k = p and there are fusions f =1
ad f = p— 1. For f = 1, we have the identity class of G. For f = p — 1, we have a
class of G containing z of order p with |Cz(z)| = ﬂp’flu = p. We denote this class hy
(p). Corresponding to the cosets Ng where g # ¢, we have & = 1 so there is one class
of G containing z for each non-identity z in G, with |Cg(z)| = p — 1.

Since G has two orbits on N, it has two orbits on Irr(N) and these must have
lengths 1 and p — 1. Therefore the inertia groups are H; = G and H; = N with
H, = G and H; = {e} respectively.

For g = e, the Fischer matrix is

plp—1) p
mao=371( L0 L)

For g # e, M(g) = (1), since H; does not fuse to any non-identity class of G.
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Now the characters of G are determined from the matrices M(g) and the character
tables of G and H;. At conjugacy classes of G corresponding to g = ¢, the character
values in the G-block are

and in the H,-block,
[1][p-1 -1]=[p-1 -1].

Corresponding to g # e, we have the character table of G for the G-block, and zero in
the Ha-block, so we have the character table of G as in Table 5.14.

class (1) (p) Ch Cly - Clya
centralizer | p(p—~1) p p—-1 p—~1 -+ p—1
X1 1
X2 1
’ : X
Xp-1 1
Xp p—1 -1 0 0 BoE 0
Cly,...,Cl,_3 are the non-identity classes (elements) of Cp—y

X denotes the character tahle of Cp_;

Table 5.14: Character Table of C; : Cp

For example, considering the case p = 7 we can determine the character table of
Cr : Cs which we give in Table 5.15.
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Chapter 6
MAXIMAL SUBGROUPS OF J;

Ji, the smallest Janko group, is a sporadic simple group of order 1753560. Janko
[16] constructed it as a subgroup of GL7(11), and it is characterized by the following
properties:

1. Sylow 2-subgroups of J; are abelian,
2. J; has no subgroup of index 2, and
3. Jy contains an involution ¢ such that C ,(t) = <¢t> x F, where F = A;.

From ATLAS [3], we bave the character table of J; and a list of its maximal sub-
groups. We give the character table in the Appendix, and list the maximal subgroups
in Table 6.1.

The character tables of these maximal subgroups have been calculated and are
available through GAP (see {29]); our aim here is to show how the conjugacy classes
and character tables of these groups can be calculated using the theory and methods
discussed in chapters 3 and 4. We also give the class fusions of these maximal subgroups
to Ji and their permutation characters. We follow the ATLAS notation in writing the
irreducible constituents of these characters where we refer to each irreducible character
by its degree and distinguish different characters of the same degree by a, b, ¢, . . .etc. So
76b denotes the second irreducible character of degree 76, and we abbreviate T6a + 765
to 76ab, for example. The permutation characters which we determine in this chapter
(with the exception of Ly(11)) are not listed in ATLAS.

54
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Order Index Structure Specification

660 266 L,(11)

168 1045 23:7:3 Sylow 2-normalizer

120 1463 2 % As

114 1540 19:6 Sylow 19-normalizer
110 1596 11:10 Sylow 11-normalizer

60 2926 D¢ x Dyq Sylow 3, Sylow 5-normalizer
42 4180 7:6 Sylow 7-normalizer

Table 6.1: Maximal subgroups of J;

8.1 Lo(11)

This is the general linear group of degree 11 over a field of two elements factored by
its centre and its character table is given in ATLAS. In Table 6.2 we give its conjugacy
classes with fusion to J;. The permutation character is li‘z an = la+ 56ab+ 76a + 77a.

9] |ICLan(g)t| — % power maps
A | 660 | (14)

24) | 12 | (24)

(34) 6 (34)

(54) 5 (54) | (5B)
(58) 5 (5B) | (54)

(64) 6 (64) | (34) | 24)
wa)| 11 |(114)

(11B)| 1 |(114)

Table 6.2: Conjugacy Classes of L;(11)
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6.2 25:7:3

The normalizer of a Sylow 2-subgroup in J is a split extension of an elementary abelian
group of order 8 by a non-abelian group of order 21, which is a split extension of C7 by
Cs. First, we construct the character table of G = K : Q) where X = <a> = Cy and
Q = <fB> = (3. The group @ acts on K, with the action determined by the action of
#. Since 3 has order 3, it must act as (e)(aa’a?)(a®*afa®). Then the conjugacy classes
of G are as follows: For the coset Kq where g is the identity of (), we have k = 7 and
f=1,3,3. So we get the identity class of G and two classes of elements of order 7.
Now for the cosets K and Kf~! we must have k = 1 (since k divides 7 but k # 7 for
if £ =7 then K and @ commute and G is abelian, a contradiction). Thus we get two
classes of elements of order 3. Tahle 6.3 gives the conjugacy classes of G.

class of Q) (1) (31) (32)
class of G | (1) (7T1) (72) (31) (32)
centralizer | 21 7 7 3 3

Table 6.3: Conjugacy Classes of G=7:3

Since @ has three orbits on K it has three orbits on Irr{K'), and these must have
lengths 1,3, 3 (since the length of any orbit must divide |@Q} = 3). Referring to the char-
acter table of K (Table 6.4), the orbits of Q on K are {e}, {,c?, ¢*} and {c?, of, a%}.
Hence we find the orbits on Irr(K): Since x3(a) = xa(¢®) = xz(a?) = x3(a), we
have x‘g = x3. Similarly, Xg-l = xs. Therefore the orbits of Q on Irr(K) are {x1},

{Xh X3, X5} and {X'h X8 X7}‘
Now the rows of M(e), the Fischer matrix corresponding to the identity of @}, are

orbit sums of the action of @ on Irr( K') with duplicate columns discarded (Proposition

111
424),s0 M(e)=| 3 b c |, where
3 ¢ b

8rE

b=eF 4 4 = %(—1—{-'\/72'),

c=e%ﬁ+e%ﬂ +eeTﬂ=%(—l—\/7é)=-5.

Each row of M(e) corresponds to an inertia group H; where H, = G and H, = H3 = X,
so Hj and H; are trivial (where H; = H/K). The remaining Fischer matrices are
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elementof C; | ¢ a o o® of o of
v I 1 1 1 1 1 1
X2 1 a a® a® a* o af
X3 1 a2 a* a® a & o°
X4 1 a® a8 o a® a a*
X5 1 ¢* a @ a® a® o&°
Xs 1 a® a® a o a' df
X7 1 a® a° a' a® a? a
a=e¥

Table 6.4: Character Table of C; =< a >

M(B) = M(A!) = (1). Now, from the matrix M(e) and the character table of Cs, we
get the character table of G = 7 : 3, given in Table 6.5.

Now let G = N : G, where N is an elementary abelian group of order 8. Let
N = {0,e1,e2,€3,€ + €2,€1 + €3,€2 + €3,€; + €2 + e3}. The action of G on N is
determined by the actions of @ and A of orders 7 and 3 respectively. These actions are
as follows.

a:(0)(e1 ez ez e1+e2 e2+e3 €1 +e3+e3 €1+ e€3)
B:(0)(e1)(ez es ez +e3)(er + ez e1+e3 er+ €2+ €3)

Thus G has orbits of lengths 1 and 7. Now with the action of G on N, the methods
of section 3.2 give the conjugacy classes of G, given in Table 6.6. The fusion to J;

is obvious, and with this fusion known we determine the permutation character by
Theorem 2.5.7. It is

1176-,1 = la + 56ab + T6a + TThc + 120abc + 133a + 209a.

Fischer Matrices of G

G has two orbits on Irr(V) of lengths 1 and 7, so the inertia groups are H; = G with
H, = G and H, = N : H; where H; < G with [G : Hy] = 7. Hence |Hy| = 3, so
H; = C3. Now we get the Fischer matrices, from the conjugacy classes of G and the
relations in Theorem 4.2.5. The Fischer matrices are given in Table 6.7.
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oona —lwd

o] | (1) (
|Cs(g)| | 21
X1
X2
X3
X4
X35

a=3(—1+v3),b=1(-1+ VTi)

) (72) (

~~—

S = e e e e B
oo & —|w®

7
1
1
1
b
b

Cw o =

Table 6.5: Character Tableof G =7:3

class of G [ | class of G | centralizer | = J; po2wer mzps
@ 1] Q) 168 la
7 (21) 24 2a
(T1) 1 (71) 7 Ta | (72)
(72) 1 (72) 7 Ta | (T1)
(31) 1 (31) 6 da (32)
1 (61) 6 6a | (32)| (21)
(32) 1 (32) 6 3a | (34)
1 (62) 6 6a | (31)| (21)

Table 6.6: Conjugacy Classes of G 223:7: 3




(32)

M(g)

168 24
21 (1 1
A (F

7
7(1)

7
7(1)

6 6
3(1 1
JH

6 6

3(1 1
3\1 -1

Table 6.7: Fischer Matrices of G =2 2% :7:3
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class | (1) (2) (1) (72) (31) (61) (32) (62)
centralizer | 168 24 7 7 6 6 6 6
X1 1 1 1 1 1 1 1 1
X2 1 1 1 1 a a a a
X3 1 1 1 1 a a a a
X4 3 3 b b 0 0 o0 O
Xs 3 3 b b 0 0 0 O
Xe 7 -1 0 0 1 -1 1 -1
X7 7 -1 0 0 a —a @ -—-a
X8 7 -1 0 0 a -—a a -a
a=3(-1+3i), b=3(-1+T)
Table 6.8: Character Table of G =2 2%:7:3

Now by multiplication of the columns of the character tables of G (Table 6.5) and
H,; = C5 with the rows of the Fischer matrices, we get the character table of G (Table

6.8).
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class | (1) (21) (31) (51) (52)
centralizer | 60 4 3 5 5
power 77 @) (2 ()
maps _1° (5) (51)

1l 1 1 1 1 1
X2 3 -1 0 a b
X3 3 -1 0 b a
xa| 4 0 1 -1 -1
xs| 5 1 -1 0 0

a=1(1+v3), b=3(1-V5)
Table 6.9: Character Table of As

6.3 2 X A5 and Dﬁ X Dyg

By Theorem 2.3.1 each character of H x K is a product of a character of H and a
character of K. So from the character tables of C; and As (Table 6.9), we get the
character table of 2 x As (Table 6.10). The fusion to J; is determined by the power
maps, and we can then calculate the permutation character as

2x.45 = la + 56ab + 76a + T7aa + 120abc + 133aa + 209aa.

Similarly, from the character tables of Dgs and Dyo (Tables 6.11 and 6.12) we get
the character table of Dg X D;o (Table 6.13), and

1{,',,(,310 = la + 56ab + T6aaa + T7aaa + 120aabbce + 133aaaabe + 209aaaea.



cass [ (1) (21) (31) (51) (52) (22) (23) (61) (101) (10)

centralizer | 120 8 6 10 10 120 8 6 10 10

— Ji la 2 3a 52 50 22 22 6a 10a 106

power = (52) (51) (31) (52) (5)
maps 7> (52) (51) (21)

7° (21) (21

X1 1 1 1 1 1 1 1 1 1 1

el 11 1t 1 1 -1 -1 -1 -1 -1

xs| 3 -1 0 & & 3 -1 0 a b

Xa 3 -1 0 a b -3 1 0 -—a -b

| 3 -1 0 b a« 3 -1 0 b a

Xs 3 -1 0 b e -3 1 0 —b —a

v+ 4 0 1 -1 -1 4 0 1 -1 -1

X8 4 0 1 -1 -1 -4 0 -1 1 1

ol 5 1 -1 0 o 5 1 -1 0 0

Xwo| 9 1 -1 0 0 =% -1 1 0 0

Table 6.10: Character Table of 2 x A4s

(2] [(1) (20) (30
[Co,(R)[| 6 2 3
X1 1 1 1
X2 1 -1 1
X3 2 0 -1

Table 6.11: Character Table of Dg = S
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(k] [(1) (21) (51) (5a)
Cou®) |10 2 5 5
X3 2 0 aQ b
X4 2 0 b a

a=1(-1+v5), b= (-1~ V5)

Table 6.12: Character Table of Dig
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class 1) @) Gi) (62) (22) () (101) (10;) (31) (61) (15:) (152)
centralizer | 60 12 30 30 20 4 10 10 30 6 15 15
—Ji|la 2« 5a b5b 2 2a 10a 106 3a 6a 1da 156
power  w° (52) (51) (52)  (51) (31)
maps W (21) (52) (5y)
m (22)  (2) (31) (31)
X1 1 1 1 1 1 1 1 1 1 1 1 1
e | 1 -1 1 1 1 -1 1 1 1 -1 1 1
X3 2 0 a b 2 0 a b 2 0 a b
X4 2 0 b a 2 0 b a 2 0 b a
Xs 1 1 1 1 -1 -1 -1 -1 1 1 1 1
e |1 -1 1 1 -1 1 -1 -1 1 -1 1 1
X7 2 0 a b -2 0 —a -b 2 0 a b
X8 2 0 b e -2 0 -b -a 2 0 b a
X8 2 2 2 2 0 0 0 0o -1 -1 -1 =1
X10 2 -2 2 2 0 0 0 0 -1 1 -1 -1
X11 4 0 22 2b 0 0 0 0 -2 0 —a b
X12 4 0 26 2a 0 0 0 0 -2 0 -b =-a

a=1(-1+v5), b= (-1~ VB)

Table 6.13: Character Table of Dg X Dio




6.4 Sylow 19-normalizer

Definition 6.4.1 A Frobenius group is a finite group G that contains a nontrivial
normal subgroup N such that if z is a non-identity element of N then Cz(z) C N.

Now let G be a Sylow 19-normalizer in J;. Then by Janko [16], G is a Frobenius
group with structure 19:6. Let G = N : G where N 2 C19 and G = Cs. Then we have
the following lemma.

Lemma 8.4.1 When G acts on N, it fizes one point and has three orbits of length 6.

Proof: G fixes the identity of N. Now if z is a non-identity element of N, then
Cz(z) C N, since G is a Frobenius group. Therefore, for ¢ # ¢ € G, g & Cg(z).
(Because GN N = {e}). So no nonidentity element of G fixes z. Now we consider the
action of # on N, where G = <f>. Since @ has order 6, its nontrivial orbits on N can
have lengths 2, 3 or 6. But if 8 has an orbit of length 2 or 3 then 5% or 3° (respectively)
fixes a non-ldentlty element of N which is not possible. Therefore 3 (and hence G) has
three orbits of length 6. O

Now let N = <a>, G = <f>. Then G is a subgroup of J; and Ji has three
conjugacy classes of elements of order 19, namely 194,195 = (19a)? and 19c = (19a)*.
Therefore a, a? and a* are all in different classes of Ji, so must be in different classes
of G. Therefore the three orbits of length 6 of G on N have representatives e, a® and
a* respectively.

Conjugacy Classes of G

For each g € G, we find & = |[Cn(g)| and f, the block fusions. for g = e, k = 19 and
(by action of G on N) f = 1,6,6,6. Thus we have the identity class of E’ and three
classes of elements of order 19, each with centralizer E—’f—ﬁ =19. For g # e, k =1 (since
k|19 and k # 19), so f = 1. The conjugacy classes of G = 19:6 are given in Table
6.15.

Fischer Matrices of G

G has four orbits on N, so has four orbits on Irr(/N}. One orbit is trivial and the others
must have lengths that divide |G|, so there are three orbits of length 6. Thus the inertia
groups are Hy = G with H; =G and H;, = Hy=H{ = N,s0 H, = Hy = H, = (e}.
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The Fischer matrix M(e) has rows that are orbit sums of the action of G on Irr(V).
Since the orbits of G on N are {a,a® a’,a™l,e78,a™ "}, {e*) a 3,273, a7?, P, o}
and {a4,a7%,0°% a™*,a® a %}, the orbit sums of G on Irr(N) are

c=a:+a:8+x7+a:m+xn+x”,

and
6‘—“$4+213+19+115+16+$10,

where z = €% , a primitive 19t root of unity.
114 19 19 19
1 1 1 1

d

Therefore M(e) = .

C

6
} , where ¢, d, e are given by the above
1

6 c
6 d
6 e

ana o

relations.

For g # e, M(g) = (1), since Hy, H3 and H; do not fuse to nonidentity classes of
G.

Now from the character table of G (Table 6.14) and the Fischer matrices, we get the
character table of G (Table 6.15). We can also determine the permutation character
134 from the fusion to J; (which is given in Table 6.15) and obtain

11 . = la 4 56ab + 76aa + T7abe + 120abe + 133aa + 209aa.
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class (1) (191) (193) (193) (2) (31) (32) (61) (62)
centralizer 114 19 19 19 6 6 6 6 6
> J;| la 19 196 19¢ 2¢& 3¢ 3a 6a 6Ga

power map 7 19, 195 19 3, 3
x| 1 1 1 11 1 1 1 1

X2 1 1 1 1 -1 -a@ -a a a

Ya | 1 1 1 1 1 —a -@ —-a -a

o | 1 1 1 1 -1 1 1 -1 =1

X5 1 1 1 1 1 —@ —-a -—-a -—a

Xe 1 1 1 1 -1 —a -3 a a

X7 6 c d e O 0 0 0 0

X8 6 d € c 0 0 0 0 0

X9 6 e c d 0 0 0 0 0

a=31+V3)
c=z 428+ 27 + g8 + 211 4 212
d=z? 4 2% 4 21 4+ 217 4 23 4 25
e=x!+z8 + 2%+ 2% 4+ 28 + 21°

2nr

where r = e»

Table 6.15: Character Table of 19:6
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6.5 Sylow 11 and 7-normalizers

The Sylow 11 and 7- normalizers of J; are Frobenius groups with structures 11 :10
and 7:6 respectively. Let G = N :G be a Sylow 1l-normalizer with N = C,; and
G = Cy9.The group G acts on N by conjugation so that each nontrivial element of G
fixes only the identity of N (since G is a Frobenius group). Thus the orbits of G on
N have lengths 1 and 10. This group G is the holomorph of G, so its character table
follows from section 5.3 and the character table of Cio. We give the character table
of G in Table 6.16. Using the fusion of G to J; given in Table 6.16, the permutation
character is

151 o= la + 56ab + 76ab + TTaa + 120abc + 133abc + 209aa

Similarly, a Sylow 7-normalizer of J; is the holomorph of C7. Its character table is
given in section 5.3. In Table 6.17 we give the character table of 7:6 with fusions to
Ji and we have

175 = la + 56aabb + T6aaab + TTaabbce + 120aaabbbece + 133eaaabbee + 209aaaca
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class @ () 10 G (10 2] @ () (105) (53) (100
centralizer 110 11 10 10 10 10 10 10 10 10 10
—J;| 1la 1la 106 5a¢ 18a 50 2a 56 10a Sa 10b

power map 7’ (51) (52) (53) (5a) (51)  (52) (53) (54)
xx | 1 1 1 1 1 1 1 1 1 1 1

X2 1 1 a b b —a -1 -a b b @

X3 1 1 b —-@ —a b1 b -a -a b

X4 1 1 —-b =-a a b -1 b a —a b

X5 1 1 -z b b —a 1 -—-a b b —a

X6 1 1 -1 1 -1 1 -1 1 -1 1 -1

X7 1 1 -ea b b @ 1 -a b b —d

X8 1 1 —-b -@ a b -1 b @ —a b

Xe 1 1 3 ~a -a@ b 1 b -—-a -8 b

X10 1 1 a b b —a -1 -@ —b b a

X11 10 -1 0 0 0 0 O 0 0 0 0

a = —ebrils b= gl

Table 6.16: Character Table of 11:10




class (1) () (@) (31) (32) (61) (62
centralizer 42 7T 6 6 6 6 6
—Ji|la T7a 2a 3a 3a 6a 6a

power map w2 (31) (32)
X1 1 1 1 1 1 1 1

X2 1 1 -1 —-a&@ -a a a

X3 1 1 1 - -a —-a -a

X4 1 1 -1 1 1 -1 -1

X5 1 1 1l -a —a —a -3

X6 1 1 -1 —a -@ a a

X7 6 —-1 0 0 0 0 0

Table 6.17: Character Table of 7:6

a=11+V3)
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Chapter 7
PROJECTIVE CHARACTERS

In chapter 4, we showed how Fischer matrices could be used to determine the charac-
ters of a group G with a normal subgroup N such that every irreducible character of
N can be extended to its inertia group. Now, in order to generalize these methods to
other group extensions, we need to define and discuss projective representations and
characters. In the first section we define projective representations and show how they
are related to ordinary representations. (In this chapter we refer to the group repre-
sentations and characters that we defined in chapter 2 as ordinary representations and
characters). We then go on to define and give some properties of projective characters
in section 7.2. In section 7.3 we relate projective representations and characters to
Clifford theory and hence generalize the Fischer matrix methods.

7.1 Projective Representations

Definition 7.1.1 Let G be a group and F a field. A projective F-representation of G
of degree n is a mapping P : G — G L, (F) such that for every g,k € G there exists a
scalar a(g, k) € F such that P(g)P(k) = a(g, k)P(gh). The functiona: G x G —+ F
is the associated factor set of P. (From the definition it is clear that a(g, %) # O for
allg,he€G,s0a:GxG— F).

Note 1 The projective general linear group is the factor group

where Z(GL,(F)) is the centre of GL,(F) which consists of all nonzero scalar matrices.
If P is a projective F-representation of G then the composition of P with the natural
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homomorphism GL,(F) —+ PGL,(F)is a homomorphism G — PGLn(F'). Conversely,
if 7: G = PGL.(F)is any homomorphism, a projective representation P of G can be
defined by setting P(g) equal to any element of the coset #(g) of Z(G Ln(F')) in GL,(F).
Hence the projective F'-representations of G can be identified with the homomorphisms
of G into the projective general linear group.

Before giving further results on projective representations, we need to consider their
associated factor sets,

Lemma 7.1.1 Let o be the associated factor set of a projective representation P of G.
Then a satisfies
a(zy, z)a(z,y) = a(z,yz)a(y, 2)

forall z,y,z € G.

Proof: By associativity we have
P(z)P(y)P(z) = a(z,y) P(zy) P(2) = o(z,y)a(zy, 2) P(zyz)

and
P(z)P(y)P(z) = a(y, 2) P(z)P(yz) = a(y, z)e{z, yz) P(zyz).
Now the result follows since P(zyz) is invertible. O

Any function o : G x G — F* that satisfies a(zy, z)a(z,y) = a(z,yz)a(y, z) for
all z,y,2z € G is called an F'*-factor set of G. By Lemma 7.1.1, the associated factor
set of any projective F'-representation of G is an F*-factor set of G. Conversely, every
F*factor set is associated with a projective representation (see [15, 11.6]). We will
censider projective representations and factor sets over the complex field C from now
on.

Definition 7.1.2 Two factor sets a and o are said to be equivalent i there exists a

function p : G — C* such that &(z,¥) = p(z)p(y) (p(zy))”" a(z,y) for all z,y € G,
This is an equivalence relation, and we denote the equivalence class of the factor set a

by [a].

For factor sets @ and o, let ca’ denote the function defined by (ac’)(z,y) =
a(z,y)d!(z,y) fer z,y € G. Then acd’ is a factor set, as is @™! defined by a(z,y) =

(a(z,9) 7"
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Definition 7.1.3 The set of equivalence classes of factor sets forms an abelian group M
by defining {a][a'] = [ac/]. The identity of M is (1] where 1 is the factor set 1(z,y) = 1
fer all z,y € G, and [a]™! = [@™!]. The group M is called the multiplier of G.

As with ordinary representations, we define equivalence and irreducibility of pro-
jective representations.

Definition 7.1.4 Two projective representations P; and P; of G are equivalent if there
is a non-singular matrix T such that for all g € G,

Pi(g) = c(9)TP:(g)T? for some c(g) € C".

If c(g9) = 1 for all ¢ € G then P; and P, are linearly equivalent. A projective represen-
tation P is érreducible if it is not linearly equivalent to a projective representation of

the form
* %
0 =/

Lemma 7.1.2 If two projective representations are equivalent then they have equiva-
lent factor sets; if they are linearly equivalent they have equal factor sets.

Proof: Let P, and P, be equivalent projective representations with factor sets o
and a; respectively. Suppose T is a non-singular matrix and ¢: G — C* such that

Pi(g) = c(9)TP(g)T™! for all g € G.
Now for g,k € G,

(03] (99 h) = Pl(g)Pl(h)(Pl (gh))-l

c(9)T Pa(g) T~ c(R)T Po(R)T " (c(gh)) ' T(Po(gh)) ' T
c(g)c(h)(c(gh)) " TPy(g) Po(R)(Ps(gh)) ' T
c(g)e(h)(c(gh)) (g, ),

so a; and aj are equivalent. If P; and P, are linearly equivalent, then c(g) =1 for all
g € G in the above expressions, 50 a; = a;. O

Now we show how the projective representations of a group G can be determined
from the ordinary representations of a so-called representation group of G. We follow
Isaacs [15] in developing the following theory.
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Definition 7.1.5 A central eztension of G is a group H together with a homomorphism
x of H onto G such that ker x lies in the centre of H.

Lemma 7.1.3 Let (H,7) be a central eztension of G with A = ker =. Let X be a set
of coset representatives for A in H, and write X = {z, : ¢ € G}, where 7(z,) = g.
Define a: G x G — A by z,z), = a(g,h)zan. Then a is an A-factor set of G and the
equivalence class of a is independent of the choice of X .

Proof: The fact that a is a factor set follows from associativity in H. If Y = {y, :
g € G} is another set of coset representatives then y, = u(g)z, for some g(g) € A, for
each g € G. Now

Youn = p(9)p(h)z,zn = p(g)p(h)a(g, h)zam
p(9)u(R)(s(gh)) ™ alg, h)ygn,

so the factor set given by Y is equivalent to a, as required. O

I

Corollary 7.1.4 Let H be a central extension of G with A,X and a as in the previous
lemma. Let T be an ordinary representation of H such that the restriction T'|4 is the
scalar representation A1 for some A € Hom(A,C"), that is

A(a) \
T(a) = (a) Va € A,
Na) / pxn

where n =deg T'. Define P(g) = T(z,) forg € G. Then P is a projective representation
of G with factor set Ma), where A(a)(g,h) = Ma(g, h)). Furthermore, P is irreducible
if and only if T is and the equivalence class of P is independent of the choice of coset
representatives X.

Proof: We have
P(g)P(h) = T(z,)T(zw) = T(zz2a) = T(alg, h)zsn) = Malg, R))P(gh),

so P is a projective representation with factor set A(a). Now if y € H, then y = az,
where g = 7(y) and a € A. Thus

T(y) = P(g)Ma) = P(x(y))Myz7g,) = P(r(v))u(y),
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where ¢ : H — C* is defined by p(y) = A(yz;(,)- Therefore T(H) and P(G) span
the same vector space of matrices over C, so the result about irreducibility follows.
Also, if P, is the projective representation determined by another choice of coset rep-
resentatives, then P(7(y)) = T(y)i(y)™ = P(r(y))ue(y)p(y)™, so P, and P are
equivalent, since for ¢ € G, g = 7(y) for some y € H. Let c(g) = u(y)p1(y)?, then
Pi(g) = c(g)P(g). O

Note tbat if T is an ordinary irreducible representation of H then the condition
that T4 be a scalar representation is satisfied by Schur’'s Lemma (Corollary 2.1.2),
since A lies in the centre of H.

Definition 7.1.6 A projective representation of G that can be constructed from an
ordinary representation of a central extension H of G as in Corollary 7.1.4 is said to
be lifted to H. A representation group of G is a central extension H of G such tbat
every projective representation of G can be lifted to H.

Every group has a representation group by the following result known as Schur’s
theorem, which we state without proof.

Theorem 7.1.5 Let G be e finite group of order n. Then G has at least one rep-
resentation group H of order mn where m = {M| and the kernel of the extension is
isomorphic to the multiplier M of G.

Proof: See, for example, {15, 11.17} O

7.2 Projective Characters

Definition 7.2.1 If P is a projective representation of G, then the projective character
£ of P is defined by
£(g) = trace(P(g)) for all g € G.

We say £ is irreducible if P is, and £ has factor set ¢, where a is the factor set of P.

The projective characters of- G can be determined from the the ordinary characters
of a representation group (H, ) of G. Let x : H — G define the extension H of G, and
let {z, : ¢ € G} be a set of coset representatives for ker(w) in H. If P is a projective
representation of G with projective character ¢ then there is an ordinary representation
T of H such that P(g) = T(z,) for ¢ € G. Let x be the character of H afforded by T,
then €(g) = x(z,) for all g € G.



[

Definition 7.2.2 Given a factor set a of G, an element g € G is said to be a-regular
if a(g, z) = a(z, g) for all = € Cglg).

If g is a-regular, so is every conjugate of g, and an element g is a-regular if and only
if g is B-regular for every factor set (3 equivalent to a. So we can define a conjugacy
class of G to be a-regular if each of its elements is a-regular.

Now we have analogues of results for ordinary characters.

Theorem 7.2.1 1. The number of irreducible projective characters of G with factor
set & is equal to the number of a-regular conjugacy classes of G.

2. Let &1, ... ,¢; be the projective characters of G with factor set o, and let Cy,...,C,
be the a-regular conjugacy classes of G with g; a representative of C; for i =
1,...,t. Then

Y- €dg;)(ar) = 8;£|Ca(g;)| for 5,k € {1,...,t}

i=1

3. An element g of G is a-regular if and only if there is an irreducible projective
character ¢ of G with factor set a such that ¢(g) # 0.

Proof: See [11}] D

We have shown that the projective characters of G can be determined from the
ordinary characters of a representation group H of GG. Haggarty and Humphreys [11]
show that it is possible to determine the projective characters of G with a given factor
set without the full representation group of G: Suppose a is a factor set of G, with
[a] having order e in the multiplier M. Let w be an et root of unity and let 8 be
a representative of [a] whose values are powers of w. For g,k € G define a(g, 4) by
B(g, k) = w®h). Let L be the group generated by an element z of order e and elements
z, (9 € G) with multiplication z'z,ziz) = z7+iz*@h)z ;. Then L is a quotient of the
representation group H and any projective representation of G with factor set « can
be lifted to an ordinary representation of L. Thus the projective characters of G with
factor set a can be determined from the ordinary character table of L.
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7.3 Projective Representations and Clifford The-
ory

We will now show how projective representations can be used to generalize our results
of section 3.3 and hence the Fischer matrix methods of chapter 4.

Definition 7.3.1 Let N 9 G. If Y is an irreducible (ordinary) representation of N
then for ¢ € G, Y? defined by Y?(n) = Y(gng™!), » € N, is a representation of N,
called a conjugate of Y. The inertial group of Y, T(Y),is the set of all ¢ € G such that
Y is equivalent to Y9. Note that T(Y) = Iz(6) where 8 is the character of N afforded
by Y.

Now let Y be an irreducible representation of IV, where N 9 G and let H = T(Y),
so Y is equivalent to all its conjugates in H. The following theorem shows that Y
can always be extended to a projective representation of H and gives a necessary and
sufficient condition for Y to be extendable to an ordinary representation of H. This
theorem and the next one are originally due to Clifford [2]; we state them without
proof and then restate the results in the form in which we will use them, in terms of
projective and ordinary characters.

Theorem 7.3.1 Let N,G,Y and H be as above. Then Y ezxtends to a projective
representation X of H with factor set @ such that @ is constant on cosets of N in H.
Therefore @ can be regarded as a factor set o of H = H/N defined by a{ Nk, Nk) =
@(h, k). Also, a satisfies a®™¥| ~ 1 where d is the degree of Y. Furthermore, Y ertends
to a linear representation of H if and only if o ~ 1.

Proof: See {25, 3.5.7]. O

Theorem 7.3.2 Let NQ G, Y an irreducible representation of N with H = T(Y) and
H =H/N. Eztend Y to a projective representation X of H as in Theorem 7. 3. hwith
factor set @. Then

1. If W is an irreducible representation of H that has Y as one of its irreducible
constituents in its restriction to N then there ezists an irreducible projective rep-
resentation Z of H with factor set a™! such that W is equivalent to the repre-
sentation Z @ X of H, where « is the factor set of H obtained from &, and Z is
the representation of H obtained naturelly from Z.
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2. If, conversely, 7 is any trreducible projective representation of H with factor set
a1, then ZQ X is an irreducible representation of H which is equivalent to some
representation that contains Y in its restriction to N.

Proof: See {25, 3.5.8]. O

Corollary 7.3.3 Let NG, 6 € Irn(N) and H = Iz(0). Then 0 eztends to a projective
character & of H with factor set @ that is constant on cosets of N, so @ can be regarded
as a factor set o of H= H/N. Also, a satisfies a®¥) ~ 1 where d is the degree of 9.
Now as 7 runs over all irreducible projective characters of H with factor set o™, (7
runs over all irreducible characters of H that contain @ in their restriction to N where
7 is the projective character of H obtained naturally from 7.

Proof: This follows from Theorems 7.3.1 and 7.3.2 by considering the character
of each representation (projective or ordinary) where the product of characters corre-
sponds to tensor product of representations. O

Note that in the above corollary, if 8 extends to an ordinary character of H then
by the last statement of Theorem 7.3.1, @ ~ 1 so the relevant projective characters of
H have trivial factor set. These are the ordinary irreducible characters of H so this
special case is the result given in Theorem 3.3.3.

Now by Theorem 3.3.2 and Corollary 7.3.3, the characters of G = N.G can be
obtained as follows: Let 8,,...,8; be representatives of the orbits of G on Irr(N). Let
H; = Ix(6;) and let & be a projective character of H; with factor set @ such that
f |N = §;. Then

t -
Irr(G) = | J{(&%) : 7 is an irreducible projective character of H; with factor set a;'},

=1

where a; is obtained from @&; and 7 from 5 as in Corollary 7.3.3.

7.4 Fischer Matrices

With the notation of the previous section, consider conjugacy class [g] of G. Let
X(g) = {z1,...,%q)} be representatives of G-conjugacy-classes of elements of the coset
Ng. Take z; = G, aliftingof g. Let R(g) be a set of pairs (z,y) where: € {1,...,t} such
that H; contains an element of [g], and y ranges over representatives of the o -regular
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classes of H; that fuse to [g]. Corresponding to this y € H;, let {y;, } be representatives
of conjugacy classes of H; that contain liftings of y. Let ¥, = 7.
Now, as in 4.1,we have

e - ¢ |OFH :c_,)[
(E"’?)G(zj) . E (Z IC: k)lft(ylk)) 7}(3})

v:(iy)ER(9)

summing over those k for which y;, is conjugate to z; in G
g k 3
We let

1051
) = 22 163, O

Em(z)= Y al ).
v:(iw)€R(g)
Again we denote the matrix (a‘g‘-m)) by M{(g). This is the Fischer matrix for G at g,

and we obtain the charactera of G by multiplying the relevant columns of the projective
characters of H; with factor set o;? by rows of M(qg).

80

Lemma 7.4.1 The Fischer matric M(g) as defined above satisfies
L al =1 forallj€{l,...,clg)}.
2, (column orthogonality) S ,yenis) Ty Gty |Con(¥)| = 81|C5(2;)]
Proof:

1. Follows from the definition.

2. As in Proposition 4.2.3, using the projective character orthogonality (Theorem
7.2.1(2)) for H,.



Chapter 8

THE GROUP 3-PGLy(9), A
MAXIMAL SUBGROUP OF

The Janko group J; is a sporadic simple group of order 604800 discovered by Hall and
Wales [12]. Its character table is given in ATLAS [3], we give this table in the Appendix.
J2 has nine conjugacy classes of maximal subgroups, determined by Finkelstein and
Rudvalis [6]. In this chapter we will determine the conjugacy classes and character table
of one of these maximal subgroups, the normalizer in J; of the subgroup generated by an
element of class (3a). This group G is a nonsplit extension of N & C3 by G = PGL;(9).
The group G is isomorphic to Ag.2; (see ATLAS). For this group G it is not the case
that every irreducible character of NV can be extended to its inertia group so we cannot
use the same results on Fischer matrices that we used for our other examples; in this
case we will use the Fischer matrices that discussed in chapter 7.

8.1 Conjugacy Classes of G

We will use the methods of section 3.2 to determine the conjugacy classes of G. For
g € G, we denote by 7 a lifting of g in G, so A(§) = g where A : G — G is the natural
homomorphism. By Lemma 3.1.1, G acts on N such that n? = gng~!. We consider a
coset NG for each class representative g of GG, and the conjugacy classes are determined
by first acting N, then acting {%: & € Cg(g)} on the orbits of N. If N has k orbits on
NG and f of these fuse to give a class of G with element z then |Cz(z)| = 55]%5!9)].
In Table 8.1 we give the character table of G. Referring to the character table of

81
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class [g] [ (1) (21) (31) (41) (51) (52) (22) (81) (82) (101) (102)
9] 1 45 8 90 72 T2 3 90 90 72 T2
ICalg)l |720 16 9 8 10 10 20 8 8 10 10
| power (31) (2) (52) (51) (49) (41) (52) (51)
maps 71'3 (52) (51) (82) (81) (102) (101)
° (22) (%)

X1 1 1 1 1 1 i 1 1 1 1 1

X2 1 1 1 1 1 1 -1 -1 -1 -1 -1

xa | 10 2 1 -2 0 0 0 0 0 0 0

X4 8 0 -1 0 —a -6 2 0 0 a b

X3 8 0 -1 0 —a -6 -2 0 0 —a b

vs| 8 0 -1 0 -b -a 2 0 0 b a

X7 8 0 -1 0 —-b ~a -2 0 0 b —a

vs| 9 1 0 1 =1 -1 -1 1 1 -1 -1

X9 9 1 0 1 -1 -1 1 -1 -1 1 1

Yol 10 =2 1 0 0 0 0 +2 —-V2 0 0

Xu| 10 =2 1 0 0 0 0 —2 2 0 0

Table 8.1: Character Table of PG Lz(9)

J; in the Appendix, ATLAS gives the permutation character
¢ = l-é2 = la + 63a + 90a + 126a.

In Table 8.2 we give the values of ¢ on the classes of J,.

Let N = {e,n,n"'}. Since n and n~! are conjugate in J5, n* = n~! for some
z € Jo. Then N® = N, so z is an element of the normalizer in J; of N which is G.
Therefore n and n~! are conjugate in G, so n? = n~! for some ¢ € G. Therefore G
fixes e and acts transitively on the two points n and n~!, The permutation character
of this transitive action is x1 + X2, so for eacb ¢ € G, the number k of points of N
fixed by g is 1 + (x1 4+ x2)(g). These values, using Table 8.1 for values of x; and xa,
are given below.



class of J, centralizer ¢ = 132

(le)
(2a)
(25)
(3a)
(30)
(4a)
(50)
(56)
(6a)
(80)
(10a)
(108)
(12a)
(15a)
(15b)

604800

1920
240
1080
36
96
300
300
24
8
20
20
12
15
15

280
40
12

1

4

4
10

— =) N N

Table 8.2:

83
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class [glof G | (11) (21) (31) (41) (51) (33) (22) (B:) (&) (101) (107)
k 3 3 3 d 3 3 1 1 1 1 1

Now we consider the cosets Ng.

e g=¢: Here g = ¢ and Ng = N; G has orbits of lengths 1 and 2 on N, so we
have classes (1) and (3:) of G. Class (3;) contains the element n, and |Cx(n)| =
3x720 — 1080. Now (3;) fuses to (3e) in J; and l%%-"j}-l = 198 — ] = ¢(n), so no

— TC5l») — 1080
other classes of G fuse to (3a).

e g € (2;): We have |Cs(g)| = 16 and ¥ = 3. Therefore g fixes all elements of N
so g and n commute, Now A(g?) = (A(g))? =¢* = e, 5032 € N = {e,n,n"1}.
If g2 = e, then § = e or § has order 2. But § = € is not possible, for then
A(g) = g implies ¢ = e, a contradiction. If 32> = n or n~? then (g)¢ = e so 6
divides the order of §. Therefore o(g) € {1,2,3,6}. But o(g) # 1 by the above.
If o(g) =3 then (§)*=norn"'sog=n"lorn. Theng € N and A(g) =¢, a
contradiction. Therefore § has order 2 or 6. Suppose g has order 6. Then ng also
has order 6, so Ng has three elements of order 6. Since g> € N, §* € (3a) in Jz, so
7 € (6a) and |Cy,(7)] = 24. Therefore |Cx(7)| divides 24, where |Cx(g)| = 3—’;15’
for f € {1,2,3}. The only possibility is f = 2. Then there is another class with
f =1, and hence centralizer 48. But this is not possible (it cannot fuse to J;).
Therefore o(g) # 6, so o(g) = 2 and ng and n~'g have order 6. Thus we have

class (2;) of G with centralizer 24.

® g €(3,): Then |Cs(g)] = 9 and again k = 3, so § commutes with n. Since g
has order 3, g has order 3 or 9. But J; has no elements of order 9, so § must
have order 3, and hence ng and n~'g also have order 3. These must all be in
class (35) of J; by the comments made in the first case above and Table 8.2; with
|C1,(3)| = 36. Now |Cx(7)] = §%g for f € {1,2,3}, such that |C(g)| divides 36.
The only possibility is f = 3, so we get class (3;) of G with |Cx(7)] = 9.

e Classes (5;) and (5;): Similarly, by considering fusions to J;, we get classes (5;)
and (15;) of G from class (51) of G, and classes (52) and (15;) from class (5;) of
G.

e Classes (2;),(81),(82),(101),(10;): These classes all have k = 1, so each corre-
sponds to one class of G with f = 1.
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class of G class [z] of G [Cx(z)] — Jo
1) () 2160 (la)
(31) 1080  (3a)

(21) (21) 48 (2a)
(61) 2¢  (6a)

(31) (32) 9 (3p)
(4 (42) % ()
(12,) 12 (12q)

(51) (5:) 0 (5q)
(151) 15 (15b)

(52) (52) 30 (56)
(153) 15  (15a)

(22) ) 2 (2
(81) (81) 8 (8a)
(82) (82) 8 (8a)
(10,) (10,) 10 (10a)
(10) (10;) 10 (108)

Table 8.3: Conjugacy Classes of G = 3+ PGL(9)

® g € (41): Here {Cs(g)| = 8 and k = 3 so § commutes with n. By the value of

¢ = lé’ on class (4a) of Jy, we see that G must have a class of elements of order
4 that fuses to (4a). Therefore g has order 4 and ng,n~'g have order 12. So we
must have class (4;) of G with [Cz(g)| = 228 = 24. Now |Cgz(n7)| = :-5’/‘—8 where
f € {1,2}. But |Cz(ng)| = 12, so we must have f = 2.

We list all the conjugacy classes of G in Table 8.3.

8.2 Fischer Matrices of G

G has two orbits on &, hence two orbits on Irr(V), so they must have lengths 1 and 2.
So the inertia groups are Hy = G with H; = G and H, = N.H; where H, is a subgroup
of G of index 2. Since [G : Hy] = 2, H; Q G so H; is a union of conjugacy classes
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cass | {11) (21) (31) (32) (&) (51) (52)
centralizer | 360 8 9 9 4 9 5
m 3 -1 0 0 1 a b

72 3 -1 0 0 1 b a

75 6 2 0 0 0 1 1

N4 9 1 0 0 1 -1 -1

ns 5 -1 0 0 -1 0 0

a=%— 25=b=%+l§'

Table 8.4: Projective Characters of H, = Ag with factor set !

of G. Since |Hz| = 360, H; contains elements of order 3 and 5. From Table 8.1, H,
must contain the (3;)-class of G and it contains both (5,) and (5;) since (5;) contains
squares of elements of (5;). Now there are a further 135 elements of H3, some of which
must have order 2. If H, contains the class (2;) of G, then there another 135 — 36 = 99
elements which is impossible. Therefore H> contains the (2;) class of G and this leaves
another 90 elements, so (4;) C H». Therefore H; = (1) U(2:)U(3;1) U(41) U (51) U (52),
so H; = Ag. Then H, is a nonsplit extension of C3 by As, so is isomorphic to 3.As,
the threefold proper covering of 4¢ [6].

If 0, and 0, are representatives of the orbits of G on Irr(N), then ; = 1y and 6,
is a nontrivial character of N, necessarily of degree 1. Now 6; extends to the trivial
character of G, but 8, does not extend to an irreducible character of H, = 3.A4g since
3.Ag has no nontrivial characters of degree 1. (Considering the character table of 3.A¢
in ATLAS). Therefore we need to consider the results of chapter 7, and by Corollary
7.3.3 0, extends to a projective character of H, with factor set @ Then we get the
corresponding factor set « of H; such that @® ~ 1. Since #; does not extend to an
ordinary character of Hj it is not the case that a ~ 1, so [a] has order 3 and therefore
[a~!] has order 3. So the projective characters of H; with factor set @ can be obtained
from the ordinary characters of 3.H>. Thus, from the ATLAS table of 3.4¢ we have
the projective characters of H, with factor set a~!, which are given in Table 8.4. This
table indicates that classes (3;) and (3;) of H; are not a~!-regular by Theorem 7.2.1(3)
so H; has five o~ '-regular classes and five characters with factor set o~!, as required
by Theorem 7.2.1(1).
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Next we construct the Fischer matrices M (g) for class representatives ¢ of G which
are given in Table 8.5. The entries were obtained from the relations in Lemma 7.4.1
and the fact that all entries must be real (since the characters of G are all real - every
element of G is conjugate to its inverse). For classes [g] = (11), (21),(41), (51), (52) of
G there is one o] '-regular class that fuses to [g] so these classes have 2 x 2 Fischer
matrices. For the remaining classes there is no fusion from H, so these matrices are
trivial.

We construct the character table of G from the Fischer matrices, the character table
of G (Table 8.1) and the projective character table of H; (Table 8.4). We have the
conjugacy classes of G from Table 8.3.

Corresponding to the identity class of G (classes (1) and (3,) of G), the characters
in the G are obtained by multiplying the first column of the character table of G by
the first row of M(g), ie

10 T 1 1]
1 1 1
10 10 10
8 8 8
8 8 8
8 [11]= 8 8
8 g8 8
9 9 9
9 9 9
10 10 10
| 10 | 10 10

The characters in the Hz-block are obtained by multiplying the first column of
Table 8.4 by the second row of M(g), ie

"3 6 —3 ]
3 6 -3
6 [2 —1]= 12 —6
9 18 -9

| 15 | | 30 —15 |

Similarly for all other classes of G, and we get the character table of G (Table 8.2).
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ldl Mla)
2160 1080
20( 1 1
(1) 360( 2 -1 )
48 24
161 1
@) g (2 —1)
B) 1
24 12
8(1 1
() ( 2 —1)
30 15
30 15
o 23 0)
(22) 1
8) 1
(8) 1
(10,) 1
(10) 1

Table 8.5: Fischer Matrices of G



class (D @) @) 61) (32) (41) (12) (51) (151) (52) (152)
centralizer | 2160 1080 48 24 9 24 12 30 15 30 15
— J2 la 3¢ 2 6a 3b 4a 12a 5a 13 3Sb 15a
X1 1 1 1 1 1 1 1 1 1 1 1
X2 1 1 1 1 1 1 1 1 1 1 1
X3 10 10 2 2 1 =2 =2 0 0 0 0
X4 8 8 0 0 -1 0 0 a a b b
X5 8 8 0 0 -1 0 0 a a b b
X6 8 8 0 0 -1 0 0 b b a a
X1 8 8 0 0 -1 0 0 b b a a
X8 9 9 1 1 0 1 1 -1 -1 -1 -1
X9 9 9 1 1 0 1 1 -1 -1 -1 -1
X10 10 10 -2 -2 1 0 0 0 0 0 0
X11 10 10 -2 -2 1 0 0 0 0 0 0
X12 6 -3 -2 1 0 2 -1 2a —a 2b —b
X13 6 -3 -2 1 0 2 -1 26 -b 22 -a
X14 12 -6 4 =2 0 0 0 2 -1 2 -1
X15 18 -9 2 -1 0 2 -1 =2 1 =2 1
X16 30 -15 =2 1 0 -2 1 0 0 0 0

Table 8.6: Character Table of G = 3 - PGL(9)

_1 5 1 _ 1 5
a=}-Fb=}+4

(continued on next page)
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class (23) (81) (82) (10,) (10;)
centralizer | 20 8 8 10 10
— Jo 25 8a 8¢ 10a 10b
X1 1 1 1 1 1
X2 -1 ~1 —1 -1 -1
X3 0 0 0 0 0
X4 2 0 0 —a -b
X5 ~2 0 0 a b
Xs 2 0 0 —b —a
X7 -2 0 0 b a
X8 -1 1 1 -1 -1
Xo T -1 -1 1 1
X10 0 V2 —v2 0 0
X11 0 -v2 V2 0 0
X12 0 0 0 0 0
X13 0 0 0 0 0
X14 0 0 0 0 0
X1s 0 0 0 0 0
Xie 0 0 0 0 0
a=3-b=1+%

Character Table of G = 3 - PGL4(9)
(cont.)

S0
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class la 2¢ 3a bH5a 50 6a 7a 10e 106 1la 15a 156 19a¢ 196 19¢
centralizer | 175560 120 30 30 30 6 7 10 10 i1 15 15 19 19 19
power = 56 5a 5b bb 156 15a 196 19¢ 19a
maps 7 56 b5a
.ol 2¢ 2a 3a 3a
X1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 56 0 2 —2¢ =26 0 O 0 0 1 a b -1 -1 -1
X3 56 0 2 -2 —-2¢ O 0 0 0 1 b a -1 -1 =1
X4 76 4 1 1 1 l1 -1 -1 -1 -1 1 1 0 0 0
X5 6 —4 1 1 1 -1 -1 1 I -1 1 1 0 0 0
X3 17 5 —1 2 2 -1 0 0 0 0 -1 -1 1 1 1
X7 77 -3 2 a b 0 0 a b 0 a b 1 1 1
Xs 7 -3 2 b e 0 O b a O b a 1 1 1
X9 120 0 O 0 0 0 1 0 0 -1 0 0 c d e
X10 120 0 0 0 0 0 1 0 0 -1 0 0 e c d
X11 120 0 O 0 0 0 1 0 0 -1 0 0 d e c
X12 133 5 1 -2 =2 -1 0 0 0 1 1 1 0 O 0
X13 133 -3 -2 —a —=b 0 O a b 1 —a —b 0 o 0
Xi4 133 -3 -2 —b —a 0 0 b a 1 —=b —a 0 0 0
Xis 209 1 -1 -1 -1 1 -1 1 1 0 -1 -1 0 0 0

a=3~1+V8), b=1(-1-V8), c=2z+2" +28+ 2! 4217 4 28,

d=2"+2°+ 2%+ 214 4 216 4 217,
c=z4+zﬁ+29+210+213+z15
(z = e2"/19)

Character Table of J;




class la 2 206 3a 3b da S5a 5b 5¢ 5d
centralizer | 604800 1920 240 1080 36 96 300 300 50 50
power w* 3a 3 2a 56  5a 5d 5c
maps 7> 56 5a 5d 56
5

Xl 11 1 1 1 1 1 1 1 1

Xz 4 -2 2 5 —1 2 =3¢ -3b a+2 b+2

X3 14 -2 2 5 -1 2 =3 —-3a¢ b+2 a+2

X4 21 5 -3 3 0 1 a+4 b+4 —2a 25

X 91 5 -3 3 0 1 b+d4 at+d -2 —2a
X8 36 4 0 9 0 4 —4 —4 1 1

X7 63 15 -1 0 3 3 3 3 —2 -2

X8 70 -10 -2 7 1 2 —5a -—bHb 0 0

X9 700 -10 -2 7 1 2 =5 —ba 0 0

X10 90 10 6 9 0 -2 1 1 0 0
X12 160 0 4 66 1 0 -5 -5 0 0
X13 175 15 -5 -5 1 -1 0 0 0 0
X14 189 -3 -3 0 0 -3 -3a 36 a+2 b+2
X15 189 —3 -3 0 0 —3 —3b —3(1 b + 2 a + 2
X16 224 0 -4 8 -1 0 c d 2a 2b
X17 224 0 —4 8§ -1 0 d c 25 2a
X18 225 —15 5 0 3 -3 0 0 0 0
X189 288 0 4 0 -3 0 3 3 -2 =2
X20 300 —-20 0 -15 0 4 0 0 0 0

a=3-1+v6), b=14(-1-VB), c=2v5-1, d=-25 -1

Character Table of J,

(continued on next page)
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Character Table of J;

L
2

=1+ B), b=

a

(cont.)
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