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Abstract 

In this dissertation, we study the method of Fischer matrices for constructing the 
character tables of group extensions. We apply this method to calculate the character 
tables of all the maxima.I subgroups of the Janka group J1 and one maximal subgroup 
of the Janko group J2 • Many of these maximal subgroups have the form G = N.G 
where N is a normal subgroup of G and G/N � G. (G is an extension of N by G.) 
If the extension is split, the character table of G can be determined by constructing a. 
matrix corresponding to each conjugacy class of G. The character table of G ca.n then 
be determined from these matrices and the character tables of certain subgroups of G, 

called the inertia groups. We have described this method and used it to calculate the 
character tables of the ma.xima.l subgroups of J1 • We have also shown how the Fischer 
matrix method can be used to calculate the character table of any group extension, 
by considering projective characters, and used this more general method to determine 
the character table of the maximal subgroup of J2 of the form 3·PGL2 (9), a. non•split 
extension of the cyclic group of order 3 by PGL2(9). 



PREFACE 

The work described in this dissertation was ca.rried out. in the Department of Mathe­
matics and Applied Mathematics, University of Natal, Pietermaritzburg, from January 
to August 1993, under the supervision of Professor Ja.rnshid Moori. 

These studies represent original work of the author and have not otherwise been 
submitted in any form for any degree or diploma to any University. Where use has 
been made of the work of others it is duly acknowledged in the text. 



' 

Contents 

1 

2 

3 

4 

5 

6 

INTRODUCTION 

THEORY OF CHARACTERS 

2.1 
2.2 
2.3 
2.4 
2.5 

Representations and Cha.ra.cters 
Normal Subgroups • • • ■ 

Products of Characters . . 
Induced Characters . . . 
Permutation Characters 

GROUP EXTENSIONS 

3.1 Definitions, Notation and Basic Results 
3.2 Conjugacy Classes of G = N.G (N abelian) 
3.3 Clifford Theory . . . ' . . . . . . . . . . . . . 

FISCHER MATRICES 

4.1 Definitions . . . . . . .. . . . .

4.2 Properties of Fischer Matrices 

EXAMPLES 

5.1 The group 23 
: GL3(2) 

5.2 A group of the form 24 .S6

5.3 Holomorph of C.p . . . � . 

MAXIMAL SUBGROUPS OF J1

6.1 GL2(11) . . ., . . .. ... 

6.2 23 
: 7 : 3 . . . . . . . 

6.3 2 x As and Ds x D1a 
. . . 

" 

11 

1 

3 

3 
7 
9 

11 
13 

18 

18 
20 
22 

26 

26 
27 

32 

32 
39 
51 

54 

.. • ■ .. • 55
56

...... 61 



iii 

6.4 Sylow 19•normalizer . . . . . . 65 
6.5 Sylow 11 and 7·normalizers . . 69 

7 PROJECTIVE CHARACTERS 72 
7.1 Projective Representations . . . . . . . . . . . . 72 
7.2 Projective Characters . . . . . . . . . . . . . . . 76 
7.3 Projective Representations and Clifford Theory 78 
7.4 Fischer Matrices . . . . . . . . . . . . . . . . . . 79 

8 THE GROUP 3 · PGL2 (9), A MAXIMAL SUBGROUP OF J2 81 
8.1 Conjugacy Classes of G . . 81 
8.2 Fischer Matrices of G . . . . . . . . . . . . . . . . . . . . . . . . . 85 

APPENDIX 91 



iv 

ACKNOWLEDGEMENTS 

I am extremely grateful for all the help and guidance I received from my supervisor, 
Professor Jamshid Maori, while working on this dissertation - I learnt so much from 
working with him. Thank you also to everyone in the Mathematics department of the 
University of Natal, Pietermaritzburg, for their help and encouragement. 

I gratefully acknowledge financial support from the University of Natal (graduate 
assistantship and graduate scholarship) a.nd the Foundation for Research Development. 



Chapter 1 

INTRODUCTION 

Since the classification of all finite simple groups, more recent work in group theory 
has involved methods of calculating character tables of finite groups. In particular, 
the character tables of all maximal subgroups of the sporadic simple groups have not 
yet been determined. Many of these maximal subgroups are extensions of elementary 
abelia.n groups so methods have been developed for the calculation of character tables 
of extensions of elementary abelian groups. If G is an extension of N by G, then 
Fischer showed how the character ta.hie of 7J ca.n be determined by constructing a 
matrix corresponding to each conjugacy class of G. The character table of G ca.n then 
be determined from these matrices a.nd the character tables of certain subgroups of G, 

called the inertia groups. This method applies not only to extensions of elementary 
abelian groups, but also to extensions of a.ny normal subgroup of N with the property 
that each character of N can be extended to its inertia group. In particular, List has 
used this method to determine the characters of groups of the form 2n-ec .Sn [19) , and 
List and Mahmoud have determined the characters of wreath products [20]. More 
recently, Fischer has extended these methods and shown how these ma.trices ( which he 
calls Clifford matrices) can be constructed for extensions of any p-group where pis a 
prime [7]. 

In this dissertation, we describe this method of Fischer matrices and apply it to 
determine the character tables of the ma.ximal subgroups of the Janko group J1 . Chap­
ters 2 and 3 provide a review of ha.sic definitions and results on character theory and 
group extensions which a.re then applied in chapter 4 to describe the Fischer matrix 
methods. After giving some examples of the use of these methods in chapter 5, we 
apply the methods to determine the character tables of all maximal subgroups of J1 , 

To calculate the character tables of the maximal subgroups of J1 , we were able to 
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use the basic Fischer matrix methods as they were used by List [19], List and Mahmoud 
[20] and Salleh [28], since a.11 the group extensions were of elementary abelian groups.
However, these methods cannot be used for certain non-split extensions. In particular,
the maximal subgroup of the Janko group J1, of the form 3·PGL2 (9) is nonsplit and
its character table cannot be calculated in the same way. In an attempt to generalize
these methods to such groups, it is necessary to consider projective representations and
chafacters. We have given some results on projective representations and characters
in chapter 7 and shown how they can be used to construct Fischer matrices for any
group extension.

In order to apply these methods, the projective characters of the inertia groups 
must be known a.nd these can be difficult to determine for some groups, so this method 
is not easily applicable to any group extension. But we have used it to determine 
the character table of the maximal subgroup of J1 , and thus demonstrated how to 
determine Fischer matrices for non-split extensions. 



Chapter 2 

THEORY OF CHARACTERS 

In this chapter we give preliminary results on group characters that will be needed 
to develop the theory in later chapters. Definitions and basic properties of group 
representations and characters a.re given in the first section; in sections 2.2 and 2.3 
we show how the characters of factor groups and direct products of groups can be 
determined) and then consider the relationship between characters of a. group and 
those of its subgroups in 2.4. Finally we give some results on permutation characters 
that will be used in later calculations. 

In the first section most proofs have been omitted but we give references to the book 
by Feit [5] which has a complete treatment of the results. Following Feit, we use the 
classical approach of matrix representations 1 as opposed to considering modules over 
rings and algebras. The module approach does allow for greater simplicity in some 
pi.0ofs but we a.re concerned with the properties of characters which can be derived 
through matrix representations without developing the theory of rings and modules. 
Isaacs [15] and Lederman [18] provide further references for the results of this chapter 
and Curtis and Reiner [4] give a.n extensive treatment of representation theory through 
the module-theoretic approach. Throughout, G denotes a group a.nd F denotes a field. 
We write 1

1 
rather than la for the identity element of G. 

2.1 Representations and Characters 

Definition 2.1.1 Let G be a finite group and F a. field. An F-representation of G is 
a homomorphism T : G --+ GL,,,(F) for some integer n (where GLn(F), the general 
linear group, is the multiplicative group of all non-singuJa.r n x n matrices over F ). 

3 
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- The homomorphism Tis said to have degree n. Two F-representations T1 and T2 of G
a.re equivalent if there exists PE GLn (F) such that T2 (g) = p-1T1 (g)P for all g E G.
An F-representation T of G is reducible if it is equivalent to a representation U where

U(g) _ (A(g) B(g))
- 0 C(g) 

for all g E G. If T is not reducible, it is said to be irreducible. T is defined to be fully 
reducible if it is equivalent to a representation U where 

for all g E G. Tis completely reducible of it is equivalent to one of the form 

where each Si is an irreducible F-representation of G. Then S1, S2, ... , Sr are called 
constituents of T .  

Theorem 2.1.1 (Mashke's theorem) Let G be a finite group. If Fis a field of char­
acteristic zero, or whose characteristic does not divide IGI, then every F-representation 
of G is completely reducible. 

Proof: See [5, (1.1)]. □

Theorem 2. 1.2 (Schur's lemma) Let T1 and T2 be irreducible F-representations of 
G and suppose S is a non-zero matrix over F such that T1(g)S = ST2(g) for all g E G. 
Then- S is nonsingular and T1 is equivalent to T2 . 

Proof: See [5, (1.2)]. D 

Corollary 2. 1.3 Let F be an algebraically closed field} and T an irreducible F-re.presen 
tation of G. Then the only matrices that commute with every T(g) (g E GJ are the 
scalar matrices. 
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Proof: See [5, (1.4)). D

Definition 2.1.2 If Tis an F-representa.tion of G, then the character afforded by Tis
the function XT: G-+ F defined by xr(g) = trace(T(g)) for g E G. The degree of XT is
the degree of T. The trivial character is the character la defined by la(g) = lF for all
g E G. An irreducible character is a cha.ra.cter afforded by an irreducible representation.

Lemma 2.1.4 The following properties hold.
1. A character of G is constant on the conjugacy classes of G.
2. Equivalent representations afford the same character.
3. For any character x, x(l) is the degree of X·
,4. The sum of any two characters of G is again a character of G.
Proof: Parts 1 a.nd 2 follow from the fa.ct tha.t for ma.trices A and P, trace(P-1 AP}=

trace(A).

□ 

3. Let X have degree n. Then x(l) = tra.ce(/n ) = n.

4. Let XT and xu be characters of G, afforded by the representations T a.nd U
respectively. Define the function Son G by S(g) = (T�g) U�.9)). Then Sis a
representation of G with xs = XT + Xu, 

From now on, we will consider representations a.nd characters of a finite group G
over the complex field IC.
Theorem 2.1.5 The following properties hold.

1. Two representations of G have the same character if and only if they are equiv­
alent.

2. The number of irreducible characters of G is equal to the number of conjugacy
classes of G.
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3, Any character of G can be written as a sum of irreducible characters. 

Proof: 

1. See [5, (2.6)]

2. See [5, (2.16)]

3. This follows from Mashke's Theorem (Theorem 2.1.1).

□ 

Lemma 2.1.8 Let x be a character of G afforded by a representation T of degree n.

Then for g E G, T(g) is similar to a diagonal matrix diag( Et, .. • 1 En) where each t:i is 
a complex root of unity. Then x(g) = 1:1 + · · · + fn and x(g-1) = x(g), where x denotes
the complex conjugate of x.

Proof: See [15, (2.15)]. □ 

Note I We will denote the set of all irreducible characters of G by Irr(G). These 
irreducible characters are presented in a table, called the character table of G. In this 
table, the columns correspond to the conjugacy classes of G and the rows to the irre­
ducible characters, with entry aii being the value of the ith irreducible character on an 
element of the jth conjugacy class. This character table satisfies certain orthogonality
relations, which we give in the next theorem. 

Definition 2.1.3 The inner product of two characters x1 and x2 of G is defined by 

<x1, x2>a = 1a1-
1 
I: x1(g)x2(g).
gEG 

Theorem 2.1. 7 ( Orthogonality relations) Let Irr(_ G) = {x1, ... , Xr } and let 
{g1, ••• , gr } be a set of representatives of the conjugacy classes of G. Then 

1. 1c1-• LgeGXi(g)xJ(g) = J,j, that is, <Xi,Xj> = Cij

2. t:! ... 1 x8(gi)xs(9;) = J;jlCa(gi)I,



Pr oof: For part 1 see [5, (2.9)] and for part 2 see [5, (2.14)]. D 
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Theorem 2.1.8 Let Irr(G)::; {x1, .. • ,x,.} and let x be any character ofG. Then 

D 

1. x can be expressed uniquely as X ::; Li=l a;Xi where the ai are nonnegative inte-
gers.

2. If X = Li=l aiXi then <x,x>::; Li=l ar

3. x is irreducible if and only if <x, x> = 1.

Proof: 

1. By theorem 2.1.5(3), x = Li=l a;Xi for nonnegative integers a;. For each i,
<x,x;> = <Lj=l aiXi,Xi> = a,<x;, x,> = a; by the orthogonality relation
(2.1.7(1)), so the ai 's are unique.

2. Follows from the orthoganality relation (2.1.7(1)).

3. Follows from parts 1 and 2.

Note 2 If <p is a.ny class function on G ( that is, a function that is constant on the 
conjugacy classes of G), then ef, can be uniquely expressed in the form ef, = Li=l a;x;
where ai E C and lrr(G) = {x1, • .• , Xr }. Furthermore, ef, is a character if a.nd only if 
all the a, a.re nonnegative integers and ef,-=/=- 0. (See [15, (2.8)]). 

Note 3 If X = I:f=1 aiXi, as in the above theorem, then those Xi with a; > 0 are 
called the irreducible constituent8 of x- We also say that x contains a; copies of the 
irreducible character Xi·

2.2 Normal Subgroups 

Lemma 2.2.1 Let x be a character of G afforded by the representation T. Then 
g E ker(T) if and only if x(g) = x(l). 

Proof: Let n = x{l), son is the degree of T. If g E ker(T) then T(g) =In = T(l), 
where In is the n x n identity matrix, so x(g ) = n = x(l). Conversely, assume 
x(g) = x(l) = n. By lemma 2.1.6, x(g) = t:1 + e::2 +···+En where each E; is a complex 
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root of unity. Therefore, E1 + Ez + • · · + t:11 = n. But lt:;I = 1 for all i, ao we must have 
E; = 1 for all i. Hence T(g) is similar to diag(t:1, ... , t:11) = In , so g E ker(T). D 

Definition 2.2.1 Let x be a cha.ra.cter of O. We define 

ker{x) = {g E G: x(g) = x(l)}. 

Note 1 By the previous lemma, ker(x) is a. normal subgroup of G ( since it is the kernel 
of some group homomorphism). Also, if N is a.ny normal subgroup of G then it is the 
intersection of some of the ker(xi), where lrr(G) = {x1, ... , X

r }. (See [15, p 23J.) 
Now the next result shows that the character table of G/N (where N � G) can be 

obtained from that of G. Here N � G indicates that N is a normal subgroup of G.

Theorem 2.2.2 Let N :::! G.

1. If x is a character of G with N c ker(x) then x defined by x(gN) = x(g) is a
character of G/ N.

2. If x is a character of G/N then the function x defined by x(g) = x(gN) is a
character of G.

3. In both of the above, x E /rr(G) if and only if x E Jrr(G/N).

Proof: 

1. Let T be a representation that affords X· Then NC ker(T) soi' defined on G/N
by T(gN) 

= T(g) is well�defined and it is a representation of G/N that affords
X•

2. As above, if T affords x then T affords x.

3. We have

<x,x>a = 101-l L lx(g)l2

- 101-
1 

L lx(gN)l2 

gEG gEG 

- 101-
1

1N1 I: lx(gN)l1 

gNEG/N 

- 10/Nl- 1 I: lx(gN)l
2 

gNEG/N 

- <x,x>GJN·
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Now by theorem 2.1.8(3), x E Irr(G) iff <x,X>G 
x E Irr(G/N). 1 jff <X, X>G/N - 1 iff 

□ Note 2 In the notation of the previous theorem, we say that x E Irr( G) has been lifted from x E Irr{G/N). By identifying the characters x and X, we may say that Irr(G/N) = {x E Irr(G): NC ker(x)}. 
2.3 Products of Characters We showed in Lemma. 2.1.4 that the sum of any two characters is again a character. \Ve now show that the product xt/J of characters x a.nd 1P defined by xt/J(g) = x(g)t/J(g) is also a character. We will then show how the character table of a direct product of two groups can be easily constructed from tbe character tables of its factor groups. First, we define the tensor product of two matrices. 
Definition 2.3.1 Let P = (Pii)m xm and Q = (qij)nxn be square matrices. Define the 
mn x mn matrix P 0 Q by 

Then 
PimQ) P2mQ 

. 
. Pmrn.Q 

trace(P ® Q) putrace(Q) + p22trace(Q) + · · · + Pmmtrace(Q) - trace( P)trace( Q).
Definition 2.3.2 If T and U are representations of G, then the tensor product T ® Uis defin ed by (T ® U)(g) = T(g) ® U(g). The tensor product T ® U is a representation of G with xn.w = XTXU• Thus the product of two characters ia again a character of G.
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Now let G = H x K be the direct product of Hand K. Let T be a representation 
of H of degree m with character XT, and let U be a representation of K of degree n 
with character Xu. 

Definition 2.3.3 With notation as above, we define the direct product of T and U,

T ® U, as follows: Each g E G can be written uniquely as g = hk for h E H and k E I<, 
and we define (T ® U)(g) = T(h) ® U(k), where 0 on the right hand side is the tensor 
product of Definition 2.3.1. 

For G = H x K the T ® U defined by Definition 2.3.3 is a representation of G of 
degree mn, and 

xn�u(g) = xr(h)xu(k) 

where g = hk. 
With this definition, the product of a character of H and a character of J( is a 

character of G and all the characters of G can be constructed in this way, according to 
the following theorem. 

Theorem 2.3.1 Let G = H x K be the direct product of the groups H and K. Then the
product of any irreducible character of H and any irreducible character of K is an irre­
ducible character of G. Moreover, every irreducible character of G can be constrocted 
in this way. 

Proof: Let XT E Irr(H) and xu E Irr(K), with X = XTXU = XT®V as defined 
above. Then x is a cha.racter of G. \Ve now show that X is irreducible, by showing 
that <x, x> = 1. Let g E G be written as g = hk, h E H, k EK. Then 

E lx(g)l
2 

- E E lxT(h)xu(k)l2

gEG hEH I.EK 

I:: I:: lxT(h)l
2

lxu(k)l
2

hEH lcEK 

( E lxr(h)l
2

)( E lxu(k)l
2

) 
heH kEK 

- IHIIKI

since XT and Xu are irreducible characters of H and K respectively. 
Therefore IGl-1 L

g
eG lx(g)l2 = 1, as required. 

If I Irr(H)I = r and I lrr(K)I = s, then we obtain rs irredncible cha.racters of G
in this way. These are all the irreducible characters of G, since G has rs conjugacy 
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classes. Notice that h k a.nd h1 k' are conjugate of G if and only if h and h' are conjugate in H and k and k' a.re conjugate ·in [(, so the conjugacy classes of G are of the form 
C1 C2 = {h.k: h E C1 , k E C2}, where C1 is a conjugacy class of Hand C2 a, conjugacy class of J{. □

2.4 Induced Characters 

Let H be a subgroup of G. If 0 is a character of G then it can be restricted to H to give the character OIH of H. We now show how a character of H ca.n be induced to G,to give a character of G. 

Definition 2.4.1 Let H � G a.nd let¢ be a class function of H. Then </P, the induced
class function on G is defined by 

where ¢0 is defined on G by 
</>

G(g) = 1ni-1 L ¢l(xgx-1) 
zeG 

{ ¢0(y) = </J(y) if y EH,<jJ0(y) = 0 if y rt H. 

Then ¢0 is a class function of G, and ¢G(l) = [G: H]¢(1). 
Theorem 2.4.1 If <P is a character of H where H � G, then ¢0 is a character of G.

Proof: Let T be a representation of H that affords ¢, say of degree n. Now in the following we define the induced representation T• on G: Let { x1, ••• , Xr} he a set of representatives for the right cosets of Hin G (a transversal for Hin G), where r = [G : H]. Extend T to all of G by defining T(g) to be the zero matrix for g E G-H. Now for g E G, define T*(g) = (T(x;gx_;-1rn·,;,,,,1, where each T(xigx;1 ) is a submatrix of degree n, so T*(g) is a matrix of degree rn. We show that T*(g)T•(h) = T*(gh) for g, h E G. this is equivalent to showing that for all fixed i,j E {l, ... , r }, 
r LT( x;gx:;1 )T( XA:hx;1 ) = T( xighx-;1) (2.1) 

k=l 
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If xighxj
1 ¢ H, then the right-hand side of (2.1) is zero. But in this case we must

have xigx"j; ¢Hor Xkhx-;1 ¢ H for each k E {1, ... , r }, so the left-hand side of (2.1)
is also zero.

Now assume v = x1ghx-;1 E H. The element Xig belongs to exactly one right coset,
say x,g E Hxs , so u = x;gx-; 1 E H. If k =/= s, then x;gx;1 ¢ H. Therefore the sum
on the left-hand side of (2.1) reduces to one term, with k = s. Then (2.1) reduces to
T(u)T(u-1v) = T(v) which is true since u,v EH.

Now T* is a representation of G so it affords a. character 0, say, of G with O(g) =
Li=l </P(x;gx-;1) (since T affords</;). We claim that 0 = ¢P.

□ 

Since¢ is a class function on H, ¢(hxigx-;1 h-1) = ¢,(xigx;- 1 ) for h EH. Thus

[H!.O(g) = LheH Li=l <f;0(hx;gx-;1 h-1) 

= L:rec<Po(xgx-1)
= IHl,<f;G (g)

Note 1 Note that from the proof of the above theorem, we get an alternative formula
for the induced character: Let T be a set of representatives for the right cosets of H
in G. Then

¢
P

(g) = L <l>
o(tgr1 

).
tET 

Induction and restriction of characters are related by the following result.

Theorem 2.4.2 (Frobenius reciprocity theorem) Let H :5 G and suppose <p is a
character of H, and fJ a character of G. Then

<</;,OIH>H = <</;c,0>c ,

Proof: We have <</JG , 0>c = ibl LgeG </JG(g)O(g) = 1b11]11 L9ec E,,ea ¢ 0(xgx-1 )0(g).
Now for a. fixed x E G, as g runs through G, so does xgx-1 = y, and 0(y) = fJ(g),

since(} is a class function on G. Therefore

<¢,a , fJ>a = 

1�1111 L L <Po(y)0(y)
:,;EG 11EG 

1!1 E 4;o(y )fJ(y)
yEG 
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-
l�I 

E ¢,(y )O(y)
yEH 

<¢,OIH>H-
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Corollary 2.4.3 Let Irr(G) = {Xi,---,Xr },Irr(H) = {t,b1,, .. ,t,b.,} where H < G. 
Suppose Xi In = Lj=l aij'lpj and ¢f = Ei=t bij Xi· Then aii = bii for all i, j. 

Proof: By Theorem 2.4.2 we have aii = <XdH, TPi> = <Xi, t,bf> = bii• □
To compute the value of an induced character we will use the following lemma. 

Lemma 2.4.4 Assume H � G, </> is a character of H and g E G. Let [g] denote the 
conjugacy class of G containing g. If H n [g] is empty) then ¢,G(g) = 0. Otherwise, 
choose representatives x1, • • •  , Xm for the classes of H that fuse to [g]. Then 

G( ) _ I ( ) � 4>(xi) 4> 9 - Ca 9 I� \CH(x;)I.

Proof: By definition, </>G(g) = iJ11 E.zeG <t>0(xgx-1). If Hn [g] =�,then xgx-1 rt H

for all x E G, so </P(xgx-1) = 0 for all x E G and </>° (g) = 0. 
Now we ·assume H n [g] =J �- As x runs over G, xgx- 1 covers [g] exactly JCa(g)I 

times, so </P(g) = IC
1
';Jjll E

11e{9] ¢0(y). Now ¢,0(y) = 0 if y rt H, and (g] n H contains 
[H: Cn(xi)] conjugates of ea.ch Xj. Therefore ¢,G(g) = ICa(g)I E�1 1cf�c��)l' D 

2.5 Permutation Characters 

In this section, we will describe an important type of character, a permutation char­
acter. Knowledge of the permutation characters of a. group leads to information about 
the subgroup structure of the group. 

First, we give definitions of the permutation action of G, where, as before, G is a 
finite group. 

Definition 2_5.1 G act.9 on a finite set n if for each g E G and a E n, there is
an element a9 inn such that a1 

= a and (a9 )h = a9h for all a E n and g, h E G.
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Equivalently, G acts on !1 if there is a homomorphism p: G--+ Sn, where So is the set
of all permutations of n (the symmetric group on !1). 

Now let !1 denote a finite set.

Definition 2.5.2 Let a E 0, where G acts on !1. The orbit of G on !1 containing o. is
cP = {a9: g E G}. The stabilizer of a in G is Ga = {g E G: ag ;:; a}. 

The action of G on !1 is said to be transitive if G has only one orbit on n.

Lemma 2.5.1 For G acting on n and a E n, we have 

1. Ga is a subgroup of G.

D 

Proof: 

1. Since 1 E Ga , Ga f <P. Now let g, h E Ga . Then oh = a implies that a =
(o:h)1i.-i = o.,..-i. Now since a9 = 0.1,-i = a, we have a9h-1 = {o:9)h-t = o:1i.-i = a.
Hence gh-1 E Ga . Therefore Ga � G. 

2. We produce a one-one correspondence between a
G and G/Ga , the set of all left

cosets of Ga 
in G: 

Define¢: o:G --+ G/Ga by </J{a9 ) = 9Ga , This is a well-defined one-one function,
since a-9 = ah <==> agh-

1 = a <==> 9h-1 E Ga <==> gGc,. = hGa . The
function is clearly onto, so this proves the result.

Corollary 2.5.2 The length of any orbit of G on !1 divides the order of G.

Proof: Follows from Lemma 2.5.1. D

If G acts on n, this action defines a representation of G: Let n ;::; { 0:1, • • .  , on } and
for each g E G define the n x n matrix 1t 

9 
by 1r 

9 
= ( aij) where 

a··_ { 1 if af = O.j,
13 - 0 otherwise. 

Then 1r
9 

is the permutation matrix of the action of g, and A: G---+ GLn(C) given by
A(g) = 1r

9 
is a representation of G. 
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The character ¢ afforded by this representation is called a. permutation character,
and </J(g) = l{a En: o:9 

= o:}I, that is, </J(g) is the number of points of i1 fixed by g. 
The degree of this permutation character is 1111.

Note 1 Let H � G, then G acts on the set of all right cosets of Hin G, by (Ha)9 
=

Hag. This action is transitive and gives rise to a permutation character of degree 
(G: HJ. 

This permutation character is in fact the trivial character lH of H induced to G.
If we denote this permutation character by x, then x(g) is the number of points of 
w = {Hai,••·,Har } fixed by g, where {a1,.,,,a r } is a transversal for Hin G. Now 
(Hai )9 

= Hai if a.nd only if Haig = Hai if a.nd only if aig a-;1 E H, so 

r { 1 if y EH
x(g) = L

,.=l 
</1°( aiga-;1 ), where ¢0(y) = 0 if y ¢ H. 

Thus X = (lHt-
Conversely, if G acts tra.nsitively on any set, then the associated permutation char­

acter is induced from the trivial character of some subgroup of G, according to the 
following theorem. 

Theorem 2.5.3 Let G act transitively on n. Let a: E i1 and let H = G{i • Then (IH)a 

is the pennutation character of the action, where lH is the trivial character of H.

Proof: Since G acts transitively, a
G 

= 0. Therefore, by Lemma 2.5.1 there is 
a one-one correspondence between i1 and the set of right cosets of Hin G, given by 
o.k 

1-+ Hk for k E G. 
Let g E G. Then (o.k)9 = o.k ¢::::::> o:kgk-

1 

= o. <=> kg k-1 E H ¢=:::>

Hk = Hkg {::::=} Hk = (Hk)9, where G acts on the right cosets of Has in Note 1 
above. Therefore the permutation character of the action of G on i1 is the same as the 
permutation character of the action of G on the right cosets of Hin G, which is (lH)G . 
D 

Corollary 2.5.4 If G acts on O with permutation character x and has k orbits on n,

then <x, la>= k.

Proof: Write n = Uf
=1 

0i, where 0i are the orbits of G on n. Let Xi be the 
permutation character of G on 0i, so X = I:f=t Xi· For o: E 0;, we have Xi= (la0, f
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by Theorem 2.5.3 ,so <Xi, la> = <la;. , le,. .>= 1 by Frobenius reciprocity (Theorem 
2.4.2). Thus <x, le>= k. □ 

' ' 

Every subgroup of G gives rise to a permutation character, as shown by the previous 
results. Conversely, we can show the existence of a subgroup H if we can identify the 
character (ln )G. Because this character is a transitive permutation character, it must 
satisfy certain necessary conditions. We give these conditions in Theorem 2.5.6, but 
first prove a lemma. 

Lemma 2.5.5 If G acts transitively on !11 then all subgroups Ga of G (for o E !1) are 
conjugate in G.

Proof: Let a, (3 E !1. We show that Ga and G13 are conjugate in G, that is, we 
show that there is an h E G with Ga= (Gp)h = hG13 h-1

•

Since G acts transitively on n, there is some h E G such that oh = (3. Now g E Ga
<=} a9 = a � (3h-19 = ph- 1 <=> {3h-1

gh = (3 � h-1gh E Gp <=> g E (G/'.3 )h,
so Ger = (G.a)h as required. D 

Theorem 2.5.6 Let H � G and X = (ln)0
. Then 

1. x(l) divides the order of G.

2. <x, 1/;> S 1/;(l) for all 1/; E lrr(G).

3. <x, le> = 1.

4. x(g) is a nonnegative integer for all g E G.

5. x(g) � x(gm) for all g E G and m a nonnegative integer.

6. x(g) = 0 if the order of g does not divide �(�).

7. x(g)fc'8 is an integer for all g E G.

Proo£: Let n be the set of all right cosets of H in G, so x is the permutation
character of G on n.

1. This is clear, since x{l) = [G: H].

2. By Frobenius reciprocity, <x,1/;> = <(ln)a ,t/;> = <ln,1Pln> S 1/;(1).
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3. This follows from Corollary 2.5.4, since x is a transitive permutation character.

4. x(g) is the number of points of n fixed by g, so must be a nonnegative integer.

5. Each point of n fixed by g is fixed by gm , so the number of points fixed by g
cannot exceed the number of points fixed by gm .

6. We know that !fi1) = IHI so if the order of g does not divide IHI then no conjugate
of g lies in H, hence (lH )G(g} = 0.

7. Let S = {(a,x) : a E n,x E [g],az-
= a}. Since xis constant on (g), we

have l[g]lx(g) = ISi = Laeo l[g] n Ga l, By Lemma 2.5.5, all subgroups Ga a.re
conjugate in G, so j[g] n Ga l =mis independent of a, and x(g)l[g]I = mlS11 =
mx(I).

The following result will be used in later calculations to determine the conjugacy 
class fusions of suhgroups of G.

Theorem 2.5.7 Let H � G, with x = (IH)G . Let g E G and let xi, ... ,xm be 
representatives of the conjugacy classes of H that fuse to [g]. Then

(If H n (g] = <I> i then x(g) = 0).

m ICG(9)1 x(g) = L IC ( -)I' i=l H X1 

Proof: This follows from Lemma 2.4.4. □



Chapter 3 

GROUP EXTENSIONS 

We now go on to consider group extensions and their characters. We first give defi­
nitions and basic results on group extensions and introduce notation. We have used 
the books by Rotman [27] and Gorenstein [10] as references for the first section; there 
are also many other books on group theory which cover the material. In section 3.2 
we describe a method that can be used to detennine the conjugacy classes of group 
extensions, although we restrict ourselves to extensions of a.belian groups. These meth­
ods were use•-1 by Moori [22, 23] and Sa.Heh (28] to determine the conjugacy classes of 
extensions of elementary abelia.n groups. We then consider the characters of group 
extensions in section 3.3. This theory is known as Clifford theory as it is based on an 
important result by Clifford [2] (Theorem 3.3.1). We used Isaacs (15] and Curtis a.nd 
Reiner [4] as references for this section. 

3.1 Definitions, Notation and Basic Results 

Definition 3.1.1 If N and G a.re groups, a.n exten.sion of N by G is a group G tha.t 
satisfies the following properties 

1. N � G

2. G/N � G.

We sa.y that G is a. split extension of N by G if G contains subgroups N and G1 
with G1 � G such that 

18 



19 

l. N � G

2. NG1 = G

3. N n G1 = 1.

In this case G is also called a semi-direct product of N a.nd G, and we identify G1 and 
G. 

Note 1 If G is a. semi-direct product of N and G then every g E G has a unique 
expression of the form g = ng where n E N a.nd g E G. Multiplication in ?i satisfies 
( n191 )( n292) = n 1 n�19192, where n9 denotes 9n g-1.

Definition 3.1.2 The automorphism group of a group G, denoted by Aut(G), is the 
set of all automorphisms of Gunder the binary operation of composition. 

If G is a split extension of N by G, then there is a homomorphism e: G - Aut(N) 
given by 0g(n) = 9n9- 1 

= n9 (n E N,9 E G), where we denote B(g) by 0
9

• Thus G
acts on N, and we say that the extension G realizes 0. 

Conversely, given any groups N and G, a.nd 0: G-+ Aut(N), we ca.n define a semi­
direct product of N by G that realizes 0 as follows. Let G be the set of ordered pairs 
(n,g) (n E N,9 E G) with multiplication given by {n1,91)(n2,92) = (n1091 (n2),9192), 
Then G is a. semi-direct product of N by G. 

Hence a split extension of N by G is completely described by the map 0 : G -
Aut(N), that is to sa.y, it is described by the way G acts on N. 

Following ATLAS [3], we denote an a.rbitra.ry extension of N by G by N.G. A 
split extension is denoted by N: G or N: 9 G where 0 : G -+ Aut(N) determines the 
extension. A case of N.G that is not split is denoted by N, G. 

If G is a split extension of N by G, then G =NG= U
9
ea Ng, so G may be regarded 

as a right transversal for N in G ( that is, a complete set of right coset representatives 
of Nin G). Now suppose G is a.ny extension of N by G, not necessarily split, Then, 
since G/N � G, there is an onto homomorphism,\: G - G with kernel N. For g E G 
define a. lifting of g to be a.n element g E G such that ,\(g) = g. Then choosing a lifting 
of each element of G, we get the set {g: g E G} which is a tra.nsversal for Nin G.

We now show that even for a. non-split extension of N by G, if N is abelian, G acts 
on N. This lemma and its proof were obtained from Rotman [27, 7.17}. 

Lemma 3,1.1 Let G be an eztension of N by G, with N abelian, Then there is a ho­
momorphism O: G---+ Aut(N) such th_at O

g
(n) = gng- 1 (n E NJ, and(} is independent 

of the choice of liftings {g : 9 E G}. 
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Proof: ·For a E G, denote conjuga.tion by a by 'Ya· Since N is normal in G, ,ci lN is 
a.n automorphism of N a.nd the functionµ: 7J-+ Aut(N) defined by µ(a)= 'Yal N is a 
homomorphism. 

If a E N, then µ(a) = lN, since N is abelia.n. Therefore there is a homomorphism 
µ•: G/N--+ Aut(N) defined by µ•(Na)= µ(a). 

Now G � G / N a.nd for a.ny lifting {g : g E G}, the map r/> : G --+ G / N defined 
by r/>(g) = Ng is a.n isomorphism. If {g1 : 9 E G} is another choice of liftings, then 
991

1 E N for every 9 E G so tha.t Ng = Ng1
• Therefore the isomorphism </, is

independent of the choice of liftings. Now let O : G-+ Aut(N) be the compositeµ* o </,. 
If g E G a.nd g is a lifting, then O(g) = µ*(</,(9)) = µ*(Ng) = µ(g) E Aut(N), so for 
n EN, 0a (n) = µ(g)(n) = gng-1, as required. D 

Note 2 Let G be a.n extension of a.n abelia.n group N by G. For each 9 E G we choose 
a. lifting g E G, and for convenience we take I= L We identify G with G/N under
the isomorphism 9 i---+ Ng. Now {g : g E G} is a. right transversal for N in G so every
element h E G has a. unique expression of the form h = ng (n E N,g E G), a.nd we
ha.ve the following relations.

l. gn = n9g, where n E N and g E G

2. gh = /(9, h)9h for some f(g, h) EN, where g, h E G.

Here we use n� to denote 0g(n) as given in the previous lemma.. 

3.2 Conjugacy Classes of G = N.G (N abelian) 

In this section we assume that N is abelian, so the preceding lemma. a.nd Note 2 above 
a.pply. 

To determine the conjugacy classes of G we analyse the cosets Ng, where G =

UaeG Ng. It is only necessary to consider one coset Ng for each conjugacy class of G
with representative g, a.nd the corresponding classes of Ga.re determined by the action 
(by conjugation) of C

9
, the set sta.bilizer in G of Ng. 

Now N f Cg , since for n E N a.nd n1g E Ng, n(n1g)n-1 
= nn1(n-1 )rg E Ng by 

the relations in Note 2 in Section 3.1. 
Therefore N � Cg a.nd we have C9/N = C01N(Ng) because 



Nh E Ca;N(Ng) -$=> NhNg(Nht 1 
= Ng 

<==> NhNngh-1 
= Ng, Vn EN 

<==> Nhngh-1 
= Ng, Vn EN 

¢=:::;,1 hngh-1 E Ng , Vn E N 
-$=> h E Cg 
<==> Nh E C

9
/N. 
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Therefore Cg is a.n extension of N by CG ( g), identifying CG/N (Ng) a.nd Cc (g).
Now we determine the orbits of Cg = N.Cc(g) on Ng. Leth E Ng a.nd let CN (h) 

be the stabilizer in N of h. Then for a.ny nh E Ng (n E N), (nh)z- = n :,;h z- = nh 
for x E CN(h), since N is abelia.n. Therefore CN (h) fixes each element in Ng. Let 
le = ICN(h)I, Then under conjugation. by N each element of Ng is conjugate to� 
elements of Ng, so Ng splits into le blocks with l!f1 elements in each block. Denote 
these blocks hy Q1, •.. , Q1c , 

The orbits of Cg (that is, the conjugacy cl�ses of Ng) are unions of these blocks 
which fuse together by the action of C

9
• Since Cg= N.Cc (g), this fusion is completely 

determined by the action of {Ji : h E Ca(g)}. For suppose Q, a.nd Q; fuse (i #- j). 
Then there exist n 1g E Qi, n 2g E Qi such that (n 1g)" = n2g for some le E C9• But 
/,; E C

9 
implies that /,; = nh for some n E N, h E Ca(g). So (n 1grx = n2g implies 

tha.t((n1gr)h = n2g. Now (n1gt E Qi , so by the action of h
1 Qi and Qi have fused. 

Suppose f blocks fuse to form a.n orbit n of Cg . Then In1 = Jip. Let x E n. 
Then the stabilizer in C

9 
of xis C0(x), so 101 == l�(l

)I 
= l��&W' (by Lemma. 2.5.1). 

Therefore ICa{x )I = 1c1c7<1ll.
So to calculate the conjugacy cl�ses of G we need to find the values of/,; a.nd f 

for each conjugacy class of G. Note that the values of /,; can be determined from the 
action of G on N ( given in Lemma. 3.1.1): 

Consider a class representative g of G. For this cla.ss, le is the number of elements 
of N that fix h, for h E Ng. Take h = g. Now for n EN, 

n fixes g <==> ngn-1 = g -$=> gng1 
= n <==> n 11 

= n. 

Therefore k is the number of elements of N fixed by g, which equals x(g) where x 
is the permutation character of the action of G on N.
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3.3 Clifford Theory 

We now consider the characters of G, an extension of N by G. Here N is any group, 
not necessarily abelian. 

Let() E Irr{N), where N � G. Then Og defined by 09 (n) = 0(gng-1), where g E G 
and n E N, is a character of N, and is said to be conjugate to () in G. G permutes 
Irr(N) by g : 0 i---+ 0g. Since N acts trivially on lrr(N), Irr(N) is permuted by G/N, 
by gN : 0 t--t 09

• 

All of our work in this section and the next chapter is dependent on the next result. 
This result is due to Clifford [2] and is thus known as Clifford's theorem, but we give

a proof from Isaacs [15].

Theorem 3.3.1 Let N '.S! G and x E Irr(G). Let O be an irreducible constituent of

XIN and suppose that () = 01, 02, .. . , Ot are the distinct conjugates of O in G. Then 
XIN = e I:!=i Oi where e = <X!N, 0>. 

Proof: We compute e"<J!N . Define 0° on G by 

Oo(x) = { O(x) �f x EN
0 1f X ¢ N. 

For n EN, we have 0°(n) = INl- 1 L:i:eG0°(xnx-1). Since xnx- 1 EN "Ix E G we have 
OG(n) = !Nl-1 LzeG0z(n). Therefore INI0° 1N = L-:r:EG 0:i: , and if <PE lrr(N) and <P ¢
{0i: 1 $ i $ t} then O = <L:r:eG o:r:,<P>, so <OalN,4'> = 0. Since xis an irreducible
constituent of o<1 by Frobenius reciprocity, it follows that <X]N, 4'> = 0. Thus all
the irreducible constituents of xlN are among the 0ii so XIN = I:t=i <x IN, 0i>0i. But 
<xlN, 0i> = <XIN, 0> since 0i a.nd 0 a.re conjugate, so the proof is complete. D 

Definition 3.3.1 Let N '.S! G and 0 E lrr(N). Then 10(0) = {g E G: 09 = O} is the
inertia group of 0 in G. 

Since IzJ(0) is the stabilizer of O in the action of G on Irr(N), we have that fr:;(O) is
a subgroup of G and N � fc1(0). Also, (G: fci(O)] is the size of the orbit containing 0, 
so in the formula XIN = eI:�=1

0i, we have t = [G: hi(O)]. 
As a consequence of Clifford's theorem, we have the following theorem. 

Theorem 3.3.2 Let N � GJ () E Irr(N) and H = Ia(O). Then induction to G maps 
the irreducible characters of H that contain 0 in their restriction to N faithfully onto 
the irreducible characters of G which contain 0 in their restriction to N.
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Proof: Let A= {f E Irr(H) : <flN, 0> -/- O}, B = {x E Irr(G): <XIN , 0> # O}. 
We will show that the map f 1-t "PG maps A faitlifully onto B, and, furthermore, for 
'IP EA) <TPIN,0> = <fGIN,0>. 

Let 1/J E A. We first show that 1Pa E B. Let x be any irreducible constituent of 
1/JG. Then by Frobenius reciprocity, 1/J is an irreducible constituent of x/H , and since 
0 is a constituent of tlilN, we have that 0 is a constituent of xLv, so x E B. We now 
show that x = 1/Ja. Let 0 = 01, •.. , Ot be the G-conjugates of 0, so that t = [G: HJ 
a.nd XIN = eE!=t Oi, Since O is the only H-coojuga.te of 0 (because H = Iz;(0)), we 
have that tp IN= /0 for some /. But tp is a constituent of xlw, so f $ e. Therefore, by 
counting degrees, 

e.t.0(1) = x(l) $1/J0(1) = f.t.0(1) :5 e.t.0(1) (3.1) 

Equality must hold throughout (3.1), so x(l) = tt,G'(l) and therefore x - tpa, as 
required. 

Now we show that the map is onto. Let x EB. Since 0 is a constituent of xlN , there 
must be some irreducible constituent tp of xlH with <TPIN, 0> # 0. Then 1/J EA and x 
is a constituent of tt,71 (as above). Note that by (3.1), <XIN, 0> = e = f = <tlilN, 0>. 

To show that the map is one-one we need to show that for tp E A, tp is the unique 
irreducihle constituent of 1/JGIH which lies in A. Suppose tp1 E A such that 1/J1 is a 
constituent of 1/J0 1 H = xlH and 1P1 -/- tp. Then 

<xlN,0> � <(1/J + tlii)IN,0> = <tlilN,0> + <t,b1IN,O> > <tlilN,0>, 
a contradiction. This completes the proof. D 

The above theorem shows that to find the irreducible characters of G that contain 
0 in their restriction to N, it suffices to find the irreducible characters of H = 10(0) 
that contain O in their restriction. If 0 can be extended to an irreducible character 
1/J of H (that is tp E lrr(H) with TPIN = 0), then the relevant characters of H can be 
obtained by using the following theorem. 

Theorem 3.3.3 ( Gallagher [8]) With N, G, 0 and H a8 above, if 0 extends to a char­
acter tp E Irr(H) then as fj ranges over all irreducible characters of H that contain N 
in their kernel, f}tp ranges over all irreducible characters of H that contain 0 in their 
restriction. 

Proof: By definition of H, 0 is the only H-conjugate of 0, so by Clifford's theorem 
0H IN = /0 for some integer/. Comparing degrees, OH jN = [H: N]0, so <0H,0H> = 
<0,0HIN> = [H: N]. 
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Now we claim that 08 = L.13 
f3(l).f31P, where /3 runs over all irreducible characters 

of H that contain N in their kernel, or, equivalently, over all irreducible characters 
of H/N. Both OH and 12rd3(l)(3-,p are zero off N because for g ¢ N, 0H(g) = 0 
since xgx-1 1. N \Ix E G, and L

f3
f3(l)(f3'1j,)(g) = L{J ((J(l)(J(g))VJ(g) = 0 (column 

orthogonality for character table of H /N, since g ¢ N).

Also OH IN = [H: N]O = (I:� (3(1)(31/J)IN because for g E N, L.13 (3(1),B(g)?/,(g) = 
L�((J(l))2.-,p(g) = [H: N]ip(g) = [H: N]O(g). 

Therefore OH = L,e (3(1),B-,p as cla1med. 
Now [H: NJ= <0H ,0H> = <LfJ .B(l)/31P,L-,--Y(l),1P> = L{J,..,/3(l)1'(1)<f31P,r1P>­

The diagonal terms contribute at least L (3(1 )2 = [ H : N], so the (3-,p are irreducible and 
distinct. These .BVJ are all the irreducible constituents of 0H, so a.re all the irreducible 
characters of H that contain O in their restriction1 

since for ¢, E Irr(H), <</>IN , 0> =

< </>, cf}l > . 
. □ 

Note 1 Now suppose G is a.n extension of N by G. IT every irreducible character of N
can be extended to its inertia group in G, then by application of Theorems 3.3.2 and 
3.3.3, the characters of G ca.n be obtained as follows: 

Let 01 , • • •  , 0t be representatives of the orbits of G on Irr(N). For each i, let Hi = 
lcJ(Oi) and let t/)i E lrr(Hi) with 1/JilN = 0i, Now each irreducible character of G
contains some 0i in its restriction to N by Clifford's theorem, so by Theorems 3.3.2 
and 3.3.3 we have 

Irr(G) = LJ{(.01/Ji)G : /3 E Irr(Hi),N C ker((J)}. 
i=l 

Hence the characters of G fall into blocks, with each block corresponding to an inertia 
group. 

We now quote some results which give sufficient conditions for the irreducible char­
acters of N to be extendible to their respective inertia groups, so that the above method 
ca.n be used to calculate the characters of G.

The following result and proof was obtained from Curtis a.nd Reiner ([4, page 353]). 

Theorem 3.3.4 (Mackey's theorem) Suppose that N is a normal subgroup of H 
such that N is abelian and H is a semi-direct product of N and H for some H � H. 
If O E Irr(N) is invariant in H (that is, Oh = 0, \fh E H) then f) can be extended to a
linear character of H, 
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Proof: Since H is a. semi-direct product, a.ny h E H can be written uniquely as 
h = nk, n E N, k E H. Define X on H by x(nk) = O(n). Since N is abelia.n, 
0 hM degree 1 so is linear, a.nd the fa.ct that 0 = Oh for a.11 h E H implies that 
0(n) = O(hnh-1) for a.11 h EH. Then if h1 = n1k1 , h2 = n2k2, we have x(h1h2) =
x(n1k1n2k2) = x(n1n�1 k1k2) = 0(n1n�1

) = 0(n1)0(n�1) = 0(n1)0(n2) = x(h1)x(h-i)­
Therefore X is a linear character of H, and X IN = 0. □

In most cases that we will consider, N is abelia.n a.nd the extension is split, so 
Mackey's theorem will apply. 

Mackey's theorem is a corollary of a more general result by Karpilovsky which we 
state without proof. 

Theorem 3.3.5 {17} Let the group H contain a subgroup H of order n such that 
H = NH for N normal in H and let x E lrr(N) be invariant in H. Then x extends 
to an irreducible character of H if the following conditions hold: 

1. (m,n) = 1 where m = x(l) 1

2. N n H :$ N' where N' is the derived subgroup of N.

Another extension theorem is the following: 

Theorem 3.3.6 {9] If N is a normal subgroup of H and 0 is an irreducible character 
of N that is invariant in H1 then 0 is extendable to an irreducible character of H if
([H: N], #ft)= 1. 



Chapter 4 

FISCHER MATRICES 

Let ?1 be an extension of N by G, with the property that every irreducible character 
of N can be extended to its inertia group. With the notation of the previous chapter 
we have that 

t -

Irr(G) = LJ{(,81/,,)G : /3 E Irr(Hi) with NC ker(/3)}. 
i=l 

Now we show how the character table of G can be constructed using this result. 
We construct a matrix for ea.ch conjugacy class of G (the Fischer matrices). Then the 
character table of G can be constructed using these ma.trices and the character tables 
of factor groups of the inertia groups. These constructions of Fischer ma.trices have 
been discussed and used by Salleh {28], List [19] and List and Mahmoud [20].

4.1 Definitions 

As previously, let 01, ••. , Oi be representatives of the orbits of G on lrr(N), and let 
Hi= Ia(Oi) and Hi= H1/N. Let V'i be an extension of Oi to Hi. We take 91 = lN, so 
H1 = G and H1 = G. 

We consider a conjugacy class [g] of G with representative g.

Let X(g) = {x1
1 

• • •  
1 
Xc(g)} be representatives of G-conjugacy cla.sses of elements of the 

coset Ng. Take X1 = g.
Let R(g) be a set of pairs ( i, y) where i E { 1, ... , t} such that H, contains an 

element of [g], and y ranges over representatives of the conjugacy classes of H; that 

26 
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fuse to [g]. Corresponding to this y E Hi, let {y1.,. } be representatives of conjugac y 
classes of Hi that contain liftings of y. 

A 

If /3 E Irr(Hi) with N C ker(/3), then /3 has been lifted from some fe EA Irr(H1), with
f3(y) = /3(y1,. ) for any lifting Yti. of y. For convenience we write f3(y) for f3(y). 

Now, using the formula for induced cha.racters given in Lemma 2.4.4, we have 

By E,1;' we mean that we sum over those k for which Y11c is conjugate to x; in G.

Now we define the Fischer matrix M(g) = (ati,y)) with columns indexed by X(g)
and rows indexed by R(g) by 

Then 

( 4.1) 

(1/Ji/J)
71

(z;) = L a(i,v),B(y). (4.2) 
y:(i,y )E.R(g) 

The rows of M(g) can be divided into blocks, each block corresponding to an 
inertia group. Denote the submatrix corresponding to Hi by Mi(g), and let C,(g) be 
the fragment of the character table of Hi consisting of the columns corresponding to 
classes that fuse to [g). Then, by relation ( 4.2), the characters of V at the classes 
represented by X(g) obtained from inducing cha.racters of Hi are given by the matrix 
product C1(g ).M,(g).

4.2 Properties of Fischer Matrices 

In this section we will give some properties of the Fischer matrices which help in their 
computation. First we state a. result of Brauer and prove a lemma which will be needed 
later. 
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Lemma 4.2.1 (Brauer) Let A be a group of automorphisms of a group K. Then A 
also acts on Irr(K) and the number of orbifa of A on lrr(K) is the same as that on the 
conjugacy classes of K. 

Proof: See [IO, 4.5.2]. □

Lemma 4.2.2 Let A be a group of au tomorphisms of a group K
1 

so A acts on Irr(K)
and on the conjugacy classes of K with the same number of orbits on each by the 
previous lemma. Suppose we have the following matr� describing these actions: 

1 = /1 l2 11 It 

S1 1 1 1 I 

S2 a:u a22 a2j a21 

s· I 
ail a;, aii ai,

St an at2 ati att 
where a1; = 1 for j = 1, . .. ,t, 

l; 's are lengths of orbits of A on the conjugacy classe8 of K,
Si's are lengths of orbits of A on Irr(K),

ai; is the sum of Si irreducible characters of K on the element x;, where x; is an
element of the orbit of length 1;. 

Then the following relation holds for i, i' E { 1, ... , t} : 
t 

L ai;a11;l; = 1Klsi5ii'• 
j=l 

Proof: Let 81 denote the sum of s i irreducible char a.cters of K, so Si ( x;) = a;j. Then

<si, Si•> = JKl-1 Lj=t l;si(x;)s;,(x;) = IKi-1 I:;=1 l;ai;ai'i· But by orthogonality of

irreducible chara.cters, <-Bi, Si,>= 5ii'Si, so Lj=t l;ai;a,1; = 1Kls;5;;,. 
□ 

Now let M(g) = (a[
i,11)) be the Fischer matrix for G = N.G at g E G. We present

M(g) with corresponding "weights" for columns a.nd rows a.s follows:



ICn1(g)I 

ICn2(Y)I 
ICn2(Y')I 

IC-c(x1)I 
1 

1a(2,11)
1 

a(2,y')

1 
a(t,y) 

IC-a(x2)I 
1 

2 a(2,11)
2 

a(2,y')

a2 
(i,y)
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ICa(Xc(g))I 
1 

The matrix M(g) is divided into blocks (separated by horizontal lines), each corre­
sponding to a.n inertia group. Note that a{t ,g) = 1 for all j E { 1, ... , c(g)}.

Fischer has shown that M(g) is square and nonsingular (see [201). In the following 
propositions a.nd note we give fu;rther properties of Fischer matrices. 

Proposition 4.2.3 (column orthogonality) 
. -.,-

L ICa;(y)la(i,v)a(i.11) = 6;i'ICa(x;)I. 
(i,y)ER(g) 

Proof: The partial character table of G at classes x1, ... , Xc(g) is 

where C,(g), M,(g) are as defined in section 4.1. 
By column orthogonality of the character table of G, we have 



0 

t L (Laii,y)a{;,11)/3i(Y)!Ji(Y) +LL afi,11)a(il)/3i(Y)/Ji(Y'))
i=l /J;Em(H;) Y Y Y1'f'-Y 
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- t (L a1i,y)a1;,11) L /Ji(Y )!Ji(Y) + L L a{i,y)a{;,11,) L /3i(Y )/3i(Y'))
i=l Y /J;Eln-{H;) !I 11''1-11 /1;EmiH;) 

t ( � ati,y)a(;,Y)ICH;(Y)I + 0) 
• 

. -.,-L a(i,y)a(i,y) ICH,(Y )j.
(i,y)ER(B) 

Proposition 4.2.4 (List [19]) At the identity of G, the matrix M(l) is the matrix 
with rows equal to orbit sums of the action of G on Irr(N) with duplicate columns 
discarded. 

For this matrix we have a{
i,t) = [G: Hil, and an orthogonality relation for rows:

t 

L a{i,l)ati',l)'IC-a(xj)l-l 
= sii1 ICn.(l)j-1 

= S;;,jH;l-1,
j=l

Proof: The (i, 1),jth entry of M(l) is
j ICa(xi)I a(i,1) ::;;; L IC- (y )I VJ;(y1�)

k H; lk 

where we sum ov:er representatives of conjugacy classes of H; that fuse to [xi] in 
G. Therefore at

i
,l) = VJY(xi)- By Theorem 3.3.2 VJY is an irreducible character of G,

and <frlN , 01> = <VJilN , 0i> = 1. Therefore, by Clifford's theorem (Theorem 3.3.1),
ff1N = La Xa , where we sum over all Xa E lrr(N) in the orbit containing 0i. Now 
Xj EN, and ati,l) = E

a 
Xa(xi)- The orthogonality relation follows by Lemma 4.2.2.

□ 

Note 1 If N is an elementary abelian group (which is the case for our calculations), then List [19] has also shown the following for M(g), where g =/:- 1: If G is a split extension of N by G, then M(g) is the matrix of orbit sums of Cg ( as defined in section 3.2) acting on the rows of the character table of a certain factor group of N with duplicate columns discarded. 
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If the extension is not split, M(g) is the matrix of orbit sums of C9 acting on 
the rows of the character table with duplicate columns discarded a.nd with each row 
multiplied by a pth root of unity where INI = p" for some n. It may be that the root 
of unity for ea.ch row is 1. 

For these matrices (N elementary a.belian, any extension) a(i.u) = 1ig;:_<t}}
1
, and we

have an orthogonality relation for rows ( as a consequence of Lemma 4.2.2): 

where mi= [C
9 

: CG(x;)J. 
(In the notation of section 3.2, mi is the length of the orbit n of C

9
, so mi= 1·r1.) 

The relations given in the a.hove propositions a.nd note will be used later in our 
calculations of Fischer matrices, so for convenience we list them in a. theorem. 

Theorem 4.2.5 For a Fischer matrix M(g) = (af;,31)) of G = N.G we have the fol­
lowing relations. 

1. a(l ,g) = 1 /or all j E {l, . .. ,c(g)} .

. -.,-

2. L(i,y)ER(a) ICH;(Y)la(i,11)a(i,11J = hii'IOa(xi)I,
If N is elementary abelian, then

3. a(i,y) = 1!5'��J)II I and



Chapter 5 

EXAMPLES 

We will give in this chapter examples of the use of the methods discussed in the previous 
two chapters (to calculate conjugacy classes and character tables of extension groups). 

5.1 The group 23: GL3 (2)

Let N be a.n elementa.ry a.belian group of order 8, so N � ½(2), the vector space of 
dimension three over a field of two elements. Let G � GL3(2). We determine the 
character table of G = N: G, where G a.cts na.tura.lly on N. From ATLAS [3], we have 
the character table of G, which we give in Table 5.1. 

Let N be generated by { e1, e2, e3} with e� = 1 for 1 � i � 3, so 

To determine the conjugacy classes of G we analyse the cosets Ng where g is a repre­
sentative of a class of G. (Note that the extension is split, so G = U

9
ec Ng). We use 

the notation of section 3.2, so ICa(x)J = k,!O
J

(g)I' where/ of the k blocks of the coset 
Ng have fused to give a. class of G containing x. 

• g = 1: For g the identity of G, g fixes all elements of N, so k = 8. Then under
the action of CG(g) = G we have two orbits with/= 1 and/= 7, so this coset
gives two classes of G:

x = 1, class (1), ICa(x)[ = 8 x 168 = 1344; 
x = ei, class (21), IC0(x)I = 8

)(;68 = 192.

32 
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class (lA) (2A) (3A) (4A) (7A) (7B) 
centralizer 168 8 3 4 7 7 

X1 1 1 1 1 1 1 

Xi 3 -1 0 1 a a 

X3 3 -1 0 1 a a 

X4 6 2 0 0 -1 -1

Xs 7 -1 1 -1 0 0
X6 8 0 -1 0 1 1

a= ½(-1 + v'7i) 

Table 5.1: Character table of GL3 (2) 

• 9 E (2A): We take 9 = ( � � � ) with [Ca(9)I = 8 The action of 9 on N
0 1 0 

is represented by the cycle structure (l)(e1)(e1e2e3)(e2e3)(e2 e3)(e1e2 e1ea), so 
k = 4. 
The four orbits of Non Ng a.re {g, e2e3g }, { e19, �1e2e3g}, { e29,. e3g} and { €1€29, e1�39} ... - �- � . 

Now we act CG(g) 
= ( o � D · O � n) on the� orbits.

For e9 E Ng, h E Ca (g ), ( eg )h = eh 9" = e"g so we ob ta.in the following orbits: 

{g,e2eag}0o{g) = {g,e2eag}, {e1g,e1e2e3g}Ca(g) = {e1g,e1e2e3g}, {e:2g,e3g}C.G(g) =
{�g, ��, e1e29, e1e�9 }. ' · 

· · 

Therefore we get three classes of G: 

f -1-

' 

f =J., 

f = 2, 

X = 9,

X = e19, 
X = e2g, 

class (22), ICa(x)! = 4 x 8 = 32; 
class (23), ICa(x)j = 32; 
class (41), ICa(x)I = 4

�8 = 16.
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• g E (3A): \Ve ta.lee g = ( � � � ) with ICG{g)I = 3. The action of g on N is1 0 0 represented by (l)(e1e2ea)(e1 e2 e3)(e1e2 e1e3 e2e3). 
Hence k = 2, so we must have just two blocks. These cannot fuse together under 
Ca(g), since gcG(g) = {g}. Therefore we have two classes of G, ea.ch with f = 1:

x = g, class (31), !Cc(x )I = 2 x 3 = 6; x = e1g, class (61), IC0(:z:)I = 6.
• g E (4A): Again we get two classes of G:

x = g, class ( 42), IC0(x)I = 8;x = e19, class ( 4a), IC0(x)I = 8.
For classes (7 A) and (7 B) we have k = 1, so each coset has just one class in G. Tbese a.re classes (71 ) and (72) of G, each with centralizer of order 7. Thus the conjugacy classes of G are as follows: 
class of G (lA) (2A) (3A) (4A) (7A) (1B) 

class of G (1) {21) (22) (23) (4i ) (31 ) (61) ( 42) ( 43) (71) (7 2) centralizer 1344 192 32 32 16 6 6 8 8 7 7 
Now we determine the Fischer matrices: G has two orbits on N, hence two orbits on Irr(N). These must have lengths 1 and 7. The inertia groups are H 1 = G and H2 1where [G: H2] = 7. Let H2 = H2/N, then H2 is a subgroup of G with [G: H2) = 7.Therefore H2 ==' S4 (by considering the maximal subgroups of G given in ATLAS [3]). The cha.ra.cter table of H2 is given in Table 5.2, and the class fusions of H2 in G in Table 5.3. Now to calculate the Fischer matrices we will use the relations of Theorem 4.2.5. Note that all the relations hold, since N is elementary abelian. Corresponding to the identity of G, we have 

1344 
M(l) = 168 ( a 24 C 

192 
! ),
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class (lA) (2A) (2B) (3A) (4A) 
centralizer 24 4 8 3 4 

Xl 1 1 1 1 1 

X2 1 -1 1 1 -1

X3 2 0 2 -1 0

X4 3 1 -1 0 -1

Xs 3 -1 -1 0 1

Table 5.2: Character Table of H2 = S4

class of H2 class of G 

(IA) (lA) 
(2A) (2A) 
(2B) (2A) 
(3A) (3A) 
(4A) (4A) 

Table 5.3: Fusion of H2 in G 
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say. By the relati on 4.2.5(1)

1 
a= b = 1 and by the relation 4.2.5(3), c = 1l48 = 7. Nowby the relation 4.2.5(2), we have 168 x 1 x 1 + 24 x 7 x d = 0, so d:;;; -1. Therefore

�f(l) = (� �1 ).Now suppose g E (2A). Then M(g) is a 3x3 matrix since Ng has three G-conjugacy classes. Let 32 32 16 
M(g) = 1 ( � 8 1 

l a 
C n The entries of the first row and column follow from relations 4.2.5(1) and 4.2.5(3). To calculate a, b, c a.nd d we will use the column orthog onality relation 4.2.5(2). For the second column, 8 + 4lal2 

+ 8!cl2 
= 32 => lal2 

+ 2lcl2 
= 6 => lal = 1 and Jc! = 1. But by orth ogonality of columns 1 and 2, we have 8 + 8a + 8c = 0, so a + c = -1. Thereforea= -2 and c = 1. Similarly, b = 0 and d = -1. The other matrices are determined similarly, and all the Fischer matrices of G are given below. 

(lA) 

(2A) 

(3A) 

{4A) 

M(g) 1344 168 ( 1 24 7 
32 32 8
(1 

1 4 2 -28 1 1 
6 6 3 ( l3 1 !1)
8 8 4 ( 1

4 1 !1)

192 
!1)
16 

iJ 
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(7 A) 7 ( 1) 
7 

(7 B) 7 ( 1) 
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For each matrix M(g), we write IOa(x;)I above column j and on the left of row
( i, y) we write ICH, (y) I-Now we can calculate the characters of G, which fall into two blocks with inertia
groups G and H2, from these matrices and the character tables of G and H2, by
multiplying rows of M(g) with sections of the character tables corresponding tog.

At the identity of G we have M(g) = ( � !
1

). Now we multiply ea.ch row by
columns of tables 5.1 and 5.2 respectively to get the value of the characters of G on
G-classes (1) and (21) as follows;

1 1 1 
3 3 3 

3 
[ 1 1 ] = 3 3 

6 6 6 

7 7 7 

8 8 8 

I 7 -1
1 7 -1
2 [ 7 -1}= 14 -2 
3 21 -3 
3 21 -3 

Similarly, the characters corresponding to class (2A) of Gare
1 1 1 1

-1 -1 -1 -1
-1 [ 1 1 1 ] = -1 -1 -1

2 2 2 2

-1 -1 -1 -1
0 0 0 0 
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1 1 3 -1 -1

-1 1 

[ i -2 -� l
= 

-1 3 -1
0 2 2 2 -2
1 -1 1 1 -3 1 

-1 -1 -3 1 1 

which give the values of the characters of G on G•classes (22 ), (23) and (41 ). Similarly 
for other classes of G, so we get the character table of G given in Table 5.4. It is 
divided into two blocks corresponding to the two inertia groups. 

class (1) (2i ) (22 ) (23 ) (41) (31) (61) (42 ) (43) (71) (72) 
centralizer 1344 192 32 32 16 6 6 8 8 7 7 

X1 1 1 1 1 1 1 1 1 1 1 1 

X2 3 3 -1 -1 -1 0 0 1 1 a a 

X3 3 3 -1 -1 -1 0 0 1 1 a a 

X4 6 6 2 2 2 0 0 0 0 -1 -1
xs 7 7 -1 -1 -1 1 1 -1 -1 0 0

X6 8 8 0 0 0 -1 -1 0 0 1 1

X1 7 -1 3 -1 -1 1 -1 1 -1 0 0 
xs 7 -1 -1 3 -1 1 -1 -1 1 0 0 

X9 14 -2 2 2 -2 -1 1 0 0 0 0 

X10 21 -3 1 -3 I 0 0 -1 1 0 0 
Xu 21 -3 -3 1 1 0 0 l -1 0 0 

a= ½(-1 + v'7i) 

Table 5.4: Character Table of G = 23 
: GL3(2) 
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5.2 A group of the form 2
4 .S6

As a. second example, we determine the Fischer ma.trices and hence the character table 
of a. group of the form 24 

.S6 , a. subgroup of the holomorph 24 .A8 a.nd of M 22, the 
automorphism group of the Mathieu group M22 (see Moori [22]). This character table 
has been determined by Moori by different methods, but we a.re concerned here with 
using the methods of Fischer ma.trices. 

Let G = N.G be the group mentioned above where N is a.n elementary a.belia.n 
group of order 16, so N::: \'4,(2) a.nd G � S6 • We shall calculate the conjugacy classes 
of G using two different constructions of G. In the first we regard G as a group of 
linear transformations, and in the second method we consider G as a. subgroup of M 22

Conjugacy Classes of G (Method 1) 

S6 is a maximal subgroup of As ::: GL4(2). In fa.ct, S6 is isomorphic to SP4(2), the 
set of all 4 >< 4 matrices over a. field· of two elements that preserve a non-singular 
symplectic form. T he isomorphism is given by Huppert [14, 11.9.21]. Now G::: SP4(2) 
acts na.tura.lly on N::: ¼(2). We can thus determine exactly how G acts on N, and use 
the methods of section 3.2 to determine the conjugacy classes of G. The computations 
were done using CAYLEY [l]. 

In Table 5.5 we give the conjugacy classes of G and the number of points of N fixed 
by each class representative g, which we denote by k.

[g] (1) (2A) (2B) (2G) (3A) (3B) (4A) (4B) (5A) (6A) (6B)
[CG(g)I 720 48 48 16 18 18 8 8 5 6 6 

k 16 8 4 4 4 1 2 2 1 2 1 

Table 5.5: Conjugacy Classes of G � Se

Now we analyse the cosets Ng for class representatives g of G. The coset falls into 
k blocks under the action of N, then we determine how these fuse under the action of 
Ca(g). In each ca.se, the action of CG(g) was calculated using CAYLEY. 

• g = 1: In this case k = 16 and under the action of Ca(g) on N we have two orbits
of lengths 1 and 15, so we get two classes of G, the identity class and a class of
involutions (21).
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• g E (2A): We have ICG(g)I = 48. Let 9 = ( ! � n ) which is a.n element of

1 1 1 1 
this class of G. The orbits of Ca(g) on Na.re {(1, 1, 1, 0)}, {(0, 0, 0, O)}, 
{(l, 1, 1, 1 ) 1 ( 0, 0, 1, 0), (0, 1, 1, 1 ), (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1 ), 
( 1, 0, 0, 1) } i a.nd {( 1, 0, 1, 1), (0, 1, 1, 0), (0, 0, 1, 1), (1, 1, 0, 1 ), (0, 1, 0, 1), (1, 0, 0, O)}. 
From Table 5.5, k = 8, so Ng splits into eight blocks Q1, ••• , Q8 of length 2 under 
the action of N. The block Q1 containing g is fixed by Ca(g), so we ha.ve a. class 
(22) of G with f = 1. We also have blocks Q2 = {(1, 1,1, l)g, (0,0,0, l)g},
Q3 = {(0,0,1,0)g,(1,1,0,0)g}, Q4 = {(l,O,O,l)g,(0,1,l,l)g}
a.nd Q5 = {(l,0,1,0)g,(0,1,0,0)g}. Now we act Ca(g) on these blocks. Note
that (vg)h = v11

g for h E Ca(g), so the action of Ca(g) on Ng is determined
by the action of CG(g) on N. Thus, from the action of Ca(9) on N we can
see that Q2 , Q3 , Q4 and Q5 fuse together to give a class of G with / = 4, so
ICO(x)I = 

8�48 
= 25.3 where x = ug, say u = (1, 1, 1, 1). Now x2 

= ugug =

uu9 
= (1,1,1,l)+ (0,0,0,1) = (l,1,1,0). Therefore x has order 4 a.nd we repre­

sent this class of G by ( 41 ). 

Ca(g) also has an orbit of length 6 on N, so the remaining three blocks must fuse 
together to give a class of G with representative x = ug, u = (1,0, 1, 1). Then 
x2 

= ugug = uu9 
= (1, 0, 1, 1) + (1, O; 1, 1) = .Q, so x has order 2. Thus we have

class (23) of G with ICa(x)I = 

sx
3

4s 
= 

27 . 

• 9 E (2B): We have ICa(g)I = 48 a.nd k = 4, so the coset N 9 has four blocks of
length 4. Ca (g) acting on N has three orbits of lengths 12, 3 and 1. So when
Ca (g) acts on _the blocks of Ng there will be fusions / = 1 a.nd f = 3, giving
classes (24) and (42) of G.

Similarly, we have the actions of Ca(g) on N for all remaining classes [g] of G, so 
we get the conjugacy classes of G, � in Table 5.6. 

Conjugacy Classes of G (Method 2) 

We now determine the conjugacy classes of G by an alternative method, by regarding 
G a.s a subgroup of M 22 , 

G acting on N fixes one point and acts transitively on the remaining 15. From the 
character table of S6 (Table 5.11) the permutation character of S6 acting on 15 points 



41 

class of G f class of G Cc;(x) 
(1) 1 (1) 28.32 .5

15 (2i) 28.3 
(2A) 1 (22) 27.3

4 (4t) 25 .3 
3 (23) 27

(2B) 1 (24) 26.3
3 (42) 26

(2G) 1 (2s) 26

2 {4a) 2s 
1 (44) 26

(3A) 1 (3i) 23.32 
3 (61) 23.3

(3B) 1 (32) 2.32 

(4A) 1 (4s) 24 
1 (81) 2"

(4B) 1 (46) 2◄ 

1 (82) 24
(5A) 1 (51) 5
(6A) 1 (62) 22 .3

1 (121) 22.3 
(6B) 1 (63) 2.3

Table 5.6: Conjugacy Classes of G = 24 .S6 
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is X = Xt + X3 + X1• (This was obtained hy using Theorem 2.5.6). Then for a class 
representative g, the number le of points of N fixed by g is a = x(g ). These values are 
given in Table 5.7. In Table 5.7 we label each conjugacy class according to its cycle 
structure. 

[g] 16 142 133 124 i:i22 123 15 6 24 23 32

ICa(g)I 24 .32 .5 24.3 2.32 23 2" 2.3 5 2.3 23 24.3 2.32 

k 16 4 1 2 4 1 1 ·2 2 8 4 

Table 5.7: Conjugacy Classes of G = S6

The coset Ng splits into k blocks, and we now determine the values of f, the fusion 
of these blocks under CG(g). For the identity coset we have values f = 1 and / = 15, 
so classes of G are ( 1) and ( 2a) with centralizer 16 �;20 = 28• 3. Also, for each co set N 9
we will have one class of G formed from the identity block, with/= 1. 

To determine the remainingJ values, we consider Gas a subgroup of M22. The 
permutation character ¢ = (10)Mn is given in [22]. Referring to the character table of 
M 22 in [22] we have ¢ = l + 21' + 55. The values of ¢ on the conjugacy classes of M 22 

a.re given in Table 5.8 ( considering only the classes of M 22 that contain an element of 
G). We use the ATLAS [3] notation for M 2rdasses, and label them+ or - if they lie 
inside or outside M22 , respectively. 

Now for a representative y of a class of M22, we have by Theorem 2.5.7 that rp(y) =
Er ICMl�(y)l/!Ca(x)I, where x runs over representatives of conjugacy-classes of G that
fuse to [y] in M 22-

Classes of elements of orders 2, 4, 8 
. ICM (11)1 In Table 5.9 we give values of ic;tr)I for classes of elements of orders 2, 4 and 8

and using the above expression we determine the fusion of elements to M 22 a.nd the 
conjugacy classes of G.

For each class of G we have one class of G with / = 1, giving us the classes (1), 
(2b), (4b), (2c), (2d) and (4/). Also we ha.ve class (2a) from the identity coset. From 
the entries in Table 5.9 corresponding to these classes we see that (2a) and (2c) must 
fuse to (2A) in M22 and no other class fuses to (2A). Therefore (2b) and (2d) must 
fuse to (2B) and there is no other fusion to (2B). Also ( 4b) and ( 41) must each fuse 
to one of ( 4D) and ( 4C). 

Now we consider each class of G (given in Table 5.7) and the possible J values. 
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class [y] of M 22 IOM�,(y)I cf>(y) 
(1) 28.32 .5.7.11 77

(2A)+ 28.3 13
(2B)- 27.3.7 21
(2C)- 2

7
.5 5 

(4B)+ 25 1
(4A)+ 26 5
(4D)- 26 5
(4C) 25 .3 1 

(BA)+ 24 1 

(BB)- 24 1 

(3A)+ 23.32 5
(6A)+ 23.3 1
(6Bt 22 .3 3
(12A)- 22.3 1

Table 5.8: Conjugacy Classes of M 22

• Class 142: In this case k = 4, so we have four blocks. We have f = 1 for one
block so other f values a.re 1, 2 or 3, to give a class of G containing x with
!Ca(x)I = 

4 xl�9foll = 
26

1
3 

•. Since x has order 2 or 4, it can fuse to one of the
following classes of M22: (2C),(4B),(4A),(4D) or (4C). If f = 1, IC6(x)I = 26.3
but this does not divide JOM2

Jy) I for any of the above classes, so f i 1. Hence
we also cannot have f = 2, so we must have f = 3 and IC0(x)l = 26

. Therefore x
fuses to (4A) or (4D), and we get class (4a) of G. But (2b) fuses to (2Bt in M22 

so lies outside M22• Therefore elements of (4a) which are products of an element
of N and g E (2b) must also lie outside M22• Therefore ( 4a) fuses to ( 4Dt.

• Class 124: Herek= 2 and ICc(g)I = 8, so besides (4b) we have another class
with f = l and I C0( x) I = 24 • From the values of 1���;�

1
)! we see that this class

cannot fuse to any class of elements of order 4, so must ha.ve order B and fuse to
(BA) or (BB).

• Class 1222
: For this class, k = 4 and JCa(g)I = 24

• We have G-class (2c) with
f = 1, and other classes of G must have f E {1, 2, 3} and IOa(x )I = 2;. Therefore
f = 3 is not possible, so there is a class with f = 1 and ICc;(x)I = 26

• This class
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M 22 - class [y] 1 2A 2B 2C 4B 4A 4D 4C 8A 8B

ICM��(y)) 28 .32.5.7.11 28 .3 27.3.7 27 .5 2s 26 26 25 .3 24 24 

¢(y) 77 13 21 5 1 5 5 1 1 1 

[g] f [x] IC�(x)I
llj 1 (1) 2is .3· .5 77 

15 (2a) 28 .3 1 
142 1 (2b) 26 .3 4 14 

3 (4a) 26
10 1 1 

124 1 (4b) 2" 2 4 4 6 

1 (8a) 2" 2 4 4 6 1 1 

1222 1 (2c) 26 12 42 10 

1 (4c) 26 10 1 1 
2 (4d) 25 20 1 3 

23 1 (2d) 27 .3 2 7 
4 (4e) 25 .3 l 

1 (2e) 21 5 
24 1 (4f) 2" 2 4 4 10 

1 (8b) 2" 1 l 

Table 5.9: 
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must then fuse to ( 4A), we label it ( 4c). If there is another class with f = 1 it 
will have ICa(x)I = 26 and there is no class of M22 that it ca.n fuse to, so this is 
not possible. Hence we must have f = 2 a.nd ICa(x)) = 25 and this class must 
fuse to ( 4B). We label it ( 4d). 

• Class 24: Here k = 2 so there are two classes each with f = 1. The second class
must fuse to a class of M22 of elements of order 8.

• Class 23
: We have k = 8, and ICc(g )I = 24 .3. This coset must give rise to a class

(4e) that fuses to (4C) with ICG(x)I = 25.3, so has f;;:; 4. Now for the remaining
blocks, f E {1, 2,3}. If f ;;:; 1, ICa(x)I = 21 .3 and if f = 2, ICG(x)I = 26

.3.

Neither of these is possible since the class must fuse to ( 4C), so f = 3.
Classes of elements of orders 3, 6, 12 

. ICM (11H In Table 5.10 we give values of 1a;�r)I for classes of elements of orders 3, 6, and

M 22 - class [y] (3A) (6A) (6B) (12A) 
ICMn (Y)I 23 .32 23.3 22.3 22 .3 

</>(y) 5 I 3 1 
G - class f G - class IC0(x)I 

l·j3 l (3a) 2.3� 4 

32 1 (3b) 23.32 1 

3 (6a) 23 .3 1 

123 1 (6b) 2.3 2 2 
6 1 (6c) 22 .3 l 

1 (12a) 22 .3 l 

Table 5.10: 

• Class 133: Herek= I, so we have one class (3a) of G, with f =land ICG(x)I =
2.32 . This must fuse to (3A) in M22•

• Class 32: This class has k = 4. There is one class with f = 1 and ICc;(x)I :=: 

4.2.32 = 23.3:i. This must fuse to (3A) in M22. Now other classes of G can have
f = 1,2 or 3. If f =• l, ICc;(x)I = 23 .32, and this does not divide IOM22

(y)I for
any possible class of M 22. Hence we must have f = 3, and a class ( 6a) of G with
IC0(x)I · 23 .3. This class fuses to the M22•cla.ss (6A).
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• Classes 123 a.nd 6: Tb.ese have k = 1 and k = 2 respectively so we get classes(6b), (6c) and (12a) of G, as in Table 5.10. these fuse to Mn-classes (6B), (6B)a.nd (12A) respectively.
Fischer Matrices of G 

Sr, acting on N has two orbits, so has two orbits on Irr(N). These must have lengths 1 and 15. Thus the inertia groups a.re H 1 = ?1 and H 2 where [?1 : H 2] = 15. If 
H2 = H2/N then H2 � Sa with [S6 : H2] = 15. Thus H2 is a. subgroup of S6 of order 48, and its character table is given in Table 5.12. (See (21]). The class labels in Table 5.12 indicate the fusion of H2 in G = S6 • Now using the conjugacy classes of G from Tables 5.9 a.nd 5.10 and the fusion of H2 in G, we get the Fischer matrices M (g) for class representatives g of G, given below. The entries were calculated from the relations in Theorem 4.2.5. 

M(g) 
28.32.5 28 .3 

720 ( 1 �l) 48 15 
26 .3 26

48 ( 1 16 3 �1) 
2616(1 16 1 8 2 

25 
1 -10 

27 .3 27 
48 ( I 8 6 48 1 

24 
8 ( 1 8 1 

1 -2
1

2" 
!1)

26

iJ 
25 .3 

ii ) 



24 

123 

6 

15 

24 24 

8(1 
8 1 �1) 

23.32 
18 ( 1
6 3 

2.32 

18 ( 1 ) 

2.3 

6 ( 1 ) 

22 

.
3 

6 ( 1
6 1 

5 
5 (1) 

23.3 

�1) 

22

.
3 

�1) 
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Now by multiplication of the relevant columns of the character tables of G and H2 

(Tables 5.11 and 5.12) and the rows of the Fischer matrices, we get the character table 
of G, given in Ta.ble 5.13. The characters are divided into blocks, corresponding to the 
two inertia groups. 
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class 16 142 1222 23 124 24 32 
133 123 6 15 

centralizer 720 48 16 48 8 8 18 18 6 6 5 

Xt 1 1 1 1 1 1 1 1 1 1 1 
X2 5 3 1 -1 1 -1 -1 2 0 -1 0 

X3 9 3 1 3 -1 1 0 0 0 0 -1

X4 10 2 -2 -2 0 0 1 1 -1 1 0 

Xs 5 1 1 -3 -1 -1 2 -1 1 0 0 

X6 16 0 0 0 0 0 -2 -2 0 0 1 
X7 5 -1 1 3 1 -1 2 -1 -1 0 1 
Xs 10 -2 -2 2 0 0 1 1 1 -1 1 
X9 9 -3 1 -3 1 1 0 0 0 0 1 

X10 5 -3 1 1 -1 -1 -1 2 0 1 0 
Xu 1 -1 1 -1 -1 1 1 1 -1 -1 1 

Table 5.11: Character Table of G = S6

class 16 142 (1222)i (1222):.i (2
3 )i (2

3
)2 1

2
4 24 3

2 
6 

centralizer 48 16 16 8 8 48 8 8 6 6 

X1 1 1 1 1 1 1 1 1 1 1 

X2 1 -1 1 1 -1 -1 -1 1 1 -1

Xa 1 1 1 -1 -1 1 -1 -1 1 1
X4 1 -1 1 -1 1 -1 1 -1 1 -1
Xs 2 2 2 0 0 2 0 0 -1 -1
X6 2 -2 2 0 0 -2 0 0 -1 1
X1 3 1 -1 1 -1 -3 1 -1 0 0
xs 3 -1 -1 1 1 3 -1 -1 0 0 

X9 3 1 -1 -1 1 -3 -1 1 0 0 

X10 3 -1 -1 -1 -1 3 1 1 0 0 

Table 5.12: Character Table of H2



class of G 16

centralizer 28 .32 .5 
class of G (1) 

Xl 1 
X2 5 
Xa 9 

X4 10 

Xs 5 
Xs 16 
X1 5 
xs 10 

X9 9 

x10 5 
Xn 1 
x12 15 
Xt3 15 
X14 15 

Xu 15 

Xt6 30 
X11 30 
Xis 45 
X1g 45 
X20 45 
X21 45 

142 1222

28
.3 

26 .3 26 26 2s � 27 .3 
(2a) (2b) (4a) (2c) (4d) (4c) (2d) 

1 1 1 1 1 1 1 
5 3 3 1 1 1 -1
9 3 3 1 1 I 3

10 2 2 -2 -2 -2 -2
5 1 1 1 1 1 -3

16 0 0 0 0 0 0
5 -1 -1 1 1 1 3

10 -2 -2 -2 -2 -2 2
9 -3 -3 I 1 1 -3
5 -3 -3 1 1 1 1
1 -1 -1 1 1 1 -1

-1 3 -1 3 -1 -1 7 

-1 -3 1 3 -1 -1 -7
-1 3 -1 -1 -1 3 -5
-1 -3 1 -1 -1 3 5

-2 6 -2 2 -2 2 2
-2 -6 2 2 -2 2 2
-3 3 -1 1 I -3 -9

-3 -3 1 1 I -3 9

-3 3 -1 -3 1 1 3
-3 -3 1 -3 1 1 -3

Table 5.13: Character Table of G = 24.S6

( continued on next page) 
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2a 124 
21 25 .3 24 24 

(2e) (4e) (4b) (8a) 
1 1 1 1 

-1 -1 1 1 
3 3 -1 -1

-2 -2 0 0 
-3 -3 -1 -1

0 0 0 0
3 3 1 1
2 2 0 0

-3 -3 1 1
1 1 -1 -1

-1 -1 -1 -1
-1 -1 1 -1

1 1 -1 1
3 -1 -1 1

-3 1 1 -1

2 -2 0 0
2 -2 0 0

-1 3 1 -1

1 -3 -1 1
-5 3 -1 1

5 -3 1 -1



class of G 
centralizer 
class of G 

X1 

X2 

X3 
X4 

X5 

X6 

X1 

Xs 

X9 

X10 

Xn 

X12 

X13 

X14 

XIS 

X16 

X11 

Xis 

Xt9 

X20 

X21 

24 32 133 123 
24 24 23 _32 23 .3 2.32 2.3 

(4/) (8b) (3b) (6a) (3a) (6b) 
1 

-1

1

0
-1

0
-1

0
1

-1

1

1

1

-1

-1

0
0

-1

-1

1

1

1 1 1 1 1 

-1 -1 -1 2 0 
1 0 0 0 0 
0 1 1 1 -1

-1 2 2 -1 1

0 -2 -2 -2 0
-1 2 2 -l -1

0 1 1 1 1

1 0 0 0 0
-1 -1 -1 2 0

1 1 1 1 -1

-1
3 

-1 0 0 

-1 3 -1 0 0 
l 3 -1 0 0 
1 3 -1 0 0 
0 -3 1 0 0 
0 -3 1 0 0 
1 0 0 0 0 
1 0 0 0 0 

-1 0 0 0 0 
-1 0 0 0 0 

Character Table of V = 24 .S6

(cont.) 
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6 15 

22 .3 22.3 5 
(6c) (12a) (5a) 

1 1 1 
-1 -1 0 

0 0 -1

1 1 0

0 0 0
0 0 1
0 0 0

-1 -1 0
0 0 -1

1 1 0
-1 -1 1

1 -1 0 
-1 1 0 

l -1 0 

-1 1 0 
-1 1 0 

1 -1 0 

0 0 0 
0 0 0 

0 0 0 
0 0 0 

•
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5.3 Holomorph of G
P

Definition 5.3.1 The holomorph of a. group N is N: Aut(N), where Aut(N) actsnaturally on N. 
Lemn:ia 5.3.1 If G

p 
is the cyclic group of order p (p prime), then Aut(Cp) � Cp-1 •

Proof: Let G
p

= <x>. Each a E Aut(Cp) is determined by o:(x), so tha.t Aut(Gp)=
{o-1 , ... , O:p-t} where Oi is defined by o:.(x) = xi for i = 1, ... ,p-1. Now 1et z; be themultiplicative group of nonzero elements of Z

p 
e:! Z/pZ, a.nd define <J,: Aut(Gp)--+ z;by ¢,(ai) = z. Then <J, is an automorphism so tha.t Aut(Gp) ''.::::'. z; But (for example, seeRotma.n [27, 2.16]) the group of nonzero elements of a finite field is cyclic, so Aut(Gp)

'.::::'. G
p
-I· D 

Now we construct the Fischer ma.trices and character table of the holomorph of Gp
, which is G

p
: G

p
-t• Let G = N: G where N � G

p
, G � C

p
-t• If N = <x> then eachelement of G = Aut(N) ma.pa x onto a different non-identity element of N. Thereforethe orbits of G on N ha.ve lengths 1 a.nd p - 1. . To find the conjugacy classes of G we analyse the cosets Ng for each g E G a.ndfind the values of k (the order of the stabilizer in N of g). Since k divides INI and!NI= p, we must have k =pork= 1. If k = p then n9 = n for all n EN, so g = e,the identity of Aut(N)= G. Hence for non-identity ele�ent g we have k = I. Now the classes of Ga.re as follows: For g = e, k = p and there are fusions f = Iad f = p - 1. For f = 1, we ha.ve the identity class of G. For f = p - 1, we have aclass of ?J containing x of order p with IG0(x)I = P;P_=-

1

1> = p. We denote this class by
(p). Corresponding to the cosets Ng where g =/: e, we have k = 1 so there is one classof G containing x for each non-identity x in G, with IGc,-(x)f = p- I. Since G has two orbits on N, it has two orbits on Irr(N) and these must ha.velengths 1 and p - l. Therefore the inertia groups are H1 = G and H2 = N withH1 = G and H2 = { e} respectively. For g = e, the Fischer matrix is

p(p-1) p 

M(e) = 
p - 1 ( 1 1 )
1 p-1 -1 '

For g =/: e, M(g) = ( 1 ), since H2 does not fuse to any non-identity class of G.
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Now the characters of G are determined from the matrices M (9) and the character 
tables of G and H2 • At conjugacy classes of G corresponding to 9 ::: e, the character 
values in the G-block a.re 

ll [1 11-[i iJ, 
a.nd in the Hrblock, 

Corresponding to 9 -=fa e, we have the character table of G for the G-block, and zero in 
the Hrblock, so we have the character table of Gas in Table 5.14. 

class (1) (p) Cl1 Ch . . . Clv-2 
centralizer p(p - 1) p p-1 p-1 . . . p-1

X1 1 

X2 1 
. 

X . 

Xp-1 1 

XP p-1 -1 0 0 . . . 0 

C/1 , . . .  , Clp-2 a.re the non-identity classes (elements) of Cp-I 

X denotes the character table of Gp-I 

Table 5.14: Character Table of Gp : Cp-l 

For example, considering the case p = 7 we can determine the character table of 
Cr : C6 which we give in Table 5.15. 
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class (1) (7) (2) (31) (32) (61) (62)
centralizer 42 7 6 6 6 6 6 

Xt 1 1 1 1 1 1 1 
X2 1 1 -1 -a -a a a 

Xa 1 1 I -a -a -a -a

X4 1 1 -1 1 1 -1 -1

Xs 1 1 1 -a -a -a -a

X6 1 1 -1 -a -a a a 

Xr 6 -1 0 0 0 0 0 

a= ½(1 + v'3i) 

Table 5.15: Character Table of Cr : C6



Chapter 6 

MAXIMAL SUBGROUPS OF J1

J1, the smallest Janko group, is a. sporadic simple group· of order 175560. Janko 
[16] constructed it as a subgroup of GL1(ll), and it is chara.cterized by the following
properties:

1. Sylow 2�subgroups of J1 a.re a.belian,

2. J1 has no subgroup of index 2J and

3. J 1 contains an involution t such that C J
1 
(t) = <t> x F, where F � As, 

From ATLAS [3], we have the character table of J1 and a list of its ma.ximal sub­
groups. We give the cha.ra.cter table in the Appendix, and list the maximal subgroups 
in Table 6.1. 

The character tables of these ma.ximal subgroups have been calculated and a.re 
available through GAP (see [29]); our aim here is to show how the conjuga.cy classes 
and character tables of these groups can be calculated using the theory and methods 
discussed in cha.pters 3 and 4. We also give the class fusions of these ma.ximal subgroups 
to J1 and their pennuta.tion characters. We follow the ATLAS notation in writing the 
irreducible constituents of these characters where we refer to each irreducible character 
by its degree and distinguish different characters of the same degree by a, b, c, ... etc. So 
76b denotes the second irreducible character of degree 76, and we abbreviate 76a + 76b 
to 76ab, for example. The permutation characters which we determine in this chapter 
(with the exception of L2(ll)) a.re not listed in ATLAS. 

54 
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Order Index Structure Specification 
660 266 L2(ll) 
168 1045 23 

: 7: 3 Sylow 2·normalizer 
120 1463 2 x As 
114 1540 19: 6 Sylow 19•normalizer 
110 1596 11: 10 Sylow ll ·normalizer 
60 2926 Dax D10 Sylow 3, Sylow 5-normalizer 
42 4180 7:6 Sylow 7•normalizer 

Table 6.1: Maximal subgroups of J1

6.1 L2(ll) 

This is the general linear group of degree 11 over a field of two elements factored by 
its centre and its character table is given in ATLAS. In Table 6.2 we give its conjugacy 
classes with fusion to J1 • The permutation character is If�(ll) 

;;:; la+ 56ab + 76a + 77a. 

[g] ICkz(11)(9)1 -+ J1 power maps 
7rl 11'3 

(lA) 660 (lA) 
(2A) 12 (2A) 
(3A) 6 (3A) 
(5A) 5 (5A) (5B) 
(5B) 5 (5B) (5A) 
(6A) 6 (6A) (3A) (2A) 
{UA) 11 (llA) 
(11B) 11 (11A) 

Table 6.2: Conjugacy Classes of L:i(ll) 



6.2 23 : 7 : 3
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The normalizer of a Sylow 2-subgroup in 11 is a split extension of an elementary abelian 
group of order 8 by a non-abelian group of order 21, which is a split extension of C7 by 
C3• First, we construct the character table of G = K : Q where J( = <o:> '.:::' C., and 
Q = <f3> ~ C3 • The group Q acts on K, with the action determined by the action of 
(3. Since /3 has order 3, it must act as (e)(o:o:2o:4)(o:3o:6o:5). Then the conjugacy classes 
of Gare as follows: For the coset Kq where q is the identity of Q, we have k = 7 and 
f = 1, 3, 3. So we get the identity class of G and two classes of elements of order 7. 
Now for the cosets K /3 and K 13-1 we must have k = 1 ( since k divides 7 but k =/:- 7 for 
if k = 7 then K and Q commute and G is abelian, a contradiction). Thus we get two 
classes of elements of order 3. Tahle 6.3 gives the conjugacy classes of G.

class of Q
class of G 
centralizer 

(1) (31) (32)
(1) (71) (72) (31) (32)
21 7 7 3 3 

Table 6.3: Conjugacy Classes of G = 7: 3 

Since Q has three orbits on K it has three orbits on Irr(K)
1 

and these must have 
lengths 1, 3, 3 (since the length of any orbit must divide JQ I = 3). Referring to the char­
acter table of K (Table 6.4 ), the orbits of Q on K are { e}, { o:, o:2 , o:4 } and { o:3 , o:6 , o:5 }. 

Hence we find the orbits on lrr(K): Since x�(o:) = xz(o:P) = xz(o:2 ) = xa(o:), we 
have x? = X3· Similarly, xr

1 
= Xs- Therefore the orbits of Q on Irr(K) a.re {xi},

{x2, X3, Xs} and {x,,,, Xa, X1 }. 
Now the rows of M(e), the Fischer matrix corresponding to the identity of Q, are 

orbit sums of the action of Q on Irr(K) with duplicate columns discarded (Proposition 

( 
1 1 1 

) 4.2.4), so M(e) = 3 b c , where 
3 c b 

12.-, 10.-, e.-, l ,.; . -c = e-r- + e-1- + e T =
2 

( -1 - v 7 z) = b.

Each row of M(e) corresponds to a.n inertia group H, where H1 = G and H2 = H3 = K,
so H2 and H3 a.re trivial (where H1 = H / K). The remaining Fischer ma.trices a.re 
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element of C7 e a o:2 
o:3 a4 Ct5 Ct6 

X1 1 1 I I 1 1 1 

X2 1 a a2 
a

3 a4 a5 a6

X3 1 a
2 

a
4 

a
6 a a

3 as 

X4 1 a
3 a6 

a
2 as 

a a4 

Xs 1 a4 a a5 a2 a6 a3 

Xs 1 a5 
a

3 
a a6 

a
4 

a
2 

X1 1 a6 as
a

4 a3 a2 a 

Table 6.4: Character Table of C1 =< a >

l\tl(f3) = M(/3-1) = (1). Now, from the matrix M(e) and the character table of C3, we
get the character table of G ::::'. 7 : 3, given in Table 6.5. 

Now let G = N : G, where N is an elementary abelian group of order 8. Let 
N = {O, e1 , e2, e3, e1 + e2, e1 + e31 e2 + e31 e1 + e2 + ea}- The action of G on N is 
determined by the actions of a and f3 of orders 7 and 3 respectively. These actions are 
as follows. 

a : (0)( e1 e2 e3 e1 + e2 e2 + ea e1 + e2 + e3 e1 + e3) 

f3: (0)(e1)(e2 e3 e2 + ea)(e1 + e2 e1 + e3 e1 + e2 + e3) 

Thus G has orbits of lengths 1 and 7. Now with the action of G on N, the methods 
of section 3.2 give the conjugacy classes of G, given in Table 6.6. The fusion to J1 
is obvious, and with this fusion known we determine the permutation character by 
Theorem 2.5. 7. It is 

IB = la + 56ab + 76a + 77bc + 120abc + 133a + 209a. 

Fischer Matrices of G 

G has two orbit s on Irr(N) of lengths 1 a.nd 7, so the inertia groups are H1 = G with 
H1 = G and H2 = N : H2 where H2 :::;. G with [G : H2] = 7. Hence IH2I :: 3, so 
H2 � C3• Now we get the Fischer matrices, from the conjugacy classes of G and the 
relations in Theorem 4.2.5. The Fischer matrices are given in Table 6.7. 
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[g] {1) (7i ) (72) (31) (32)
ICa(g)I 21 7 7 3 3 

Xl 1 I 1 1 1 

X2 1 1 1 a a 

X3 1 1 1 a a 

X4 3 b b 0 0 

X5 3 b b 0 0 

a= ½(-1 + v'ai), b = ½(-1 + v'7i) 

Table 6.5: Character Table of G = 7: 3 

class of G f class of G centralizer -+ Ji power maps 
,,,.2 

7r
3 

(1) 1 (1) 168 la 

7 (21) 24 2a 

(71) I (71 ) 7 7a (72) 
(72) I (72) 7 7a (71) 
{31) 1 (31) 6 3a (32) 

1 (61) 6 6a (32) (21)
(32) 1 (32) 6 3a (31) 

1 (62 ) 6 6a (31) (21)

Table 6.6: Conjugacy Classes of G ~ 23 
: 7 : 3 



[g] 

(1) 

(71) 

(72) 

(31) 

(32) 

M(g) 

168 24 21 ( 1
3 7 

7 ( 1)

7 ( 1)

6
3 ( 13 1 

6 

3 ( 13 1

!1)

6

�1) 
6 

�1)
Table 6.7: Fischer Ma.trices of ?l ~ 23

: 7: 3
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class (1) (21) (71) (72) (31) (61 ) (32) (62 )
centralizer 168 24 7 7 6 6 6 6 

Xt I 1 1 1 1 1 1 1 

X2 1 1 1 1 a a a a 

X3 1 I 1 1 a a a a 

X4 3 3 b b 0 0 0 0 

X5 3 3 b b 0 0 0 0 

Xe 7 -1 0 0 1 -1 1 -1

X1 7 -1 0 0 a -a a -a

xs 7 -1 0 0 a -a a -a

a= ½(-1 + v'3i), b = ½(-1 + v7i) 

Table 6.8: Character Table of G '.:::'. 23 
: 7 : 3 

Now by multiplication of the columns of the character fables of G (Table 6.5) and 
H2 � C3 with the rows of the Fischer matrices, we get the character table of G (Table 
6.8). 
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class (1) (21) (31) (51) (52)
centralizer 60 4 3 5 · 5

power ,r-Z (31) (52) (51)
maps ,r3 (52) (51)

X1 1 1 1 1 1 
X2 3 -1 0 a b 

Xa 3 -1 0 b a 

X-t 4 0 1 -1 -1

xs 5 1 -1 0 0

a = ½(1 + v'5), b = ½(1 - v'5) 

Table 6.9: Character Ta.ble of A5

6.3 2 x A5 and D6 x D10 

By Theorem 2.3.1 ea.ch char acter of H x K is a. product of a. character of H and a 
character of K. So from the character tables of C2 and As (Table 6.9), we get the 
character table of 2 x A5 (Table 6.10). The fusion to J1 is determined by the power 
maps, and we can then calculate the permutation character as 

1:�A
5 

=la+ 56ab + 16a + 11aa + 120abc + 133aa + 209aa.

Similarly, from the character tables of D6 and D1o (Tables 6.11 and 6.12) we get 
the character table of D6 x D1o (Table 6.13), a.nd 

l 'i3
0 
x 010 

= 1 a + 56ab + 16aaa + 11 aaa + 120aabbcc + 133aaaa be + 209aaaa.
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class (1) (21) (31) (51) (52) (22) (23) (61) (101 ) (102)
centralizer 120 8 6 10 10 120 8 6 10 10 

-11 la 2a 3a 5a 5b 2a 2a 6a lOa lOb 

power 11''l (52) (51) (31) (52) (51)
maps 11'3 (52) (51) (21 ) 

11'5 (2i ) (21 )
Xt 1 1 1 1 1 1 1 1 1 1 

X2 1 1 1 1 1 -1 -1 -1 -1 -1

X3 3 -1 0 a b 3 -1 0 a b

X4 3 -1 0 a b -3 1 0 -a -b

Xs 3 -1 0 b a 3 -1 0 b a

Xs 3 -1 0 b a -3 1 0 -b -a

X7 4 0 1 -1 -1 4 0 1 -1 -1

Xs 4 0 1 -1 -1 -4 0 -1 1 1

X9 5 1 -1 0 0 5 1 -1 0 0

X10 5 1 -1 0 0 -5 -1 1 0 0

a= ½(1 + v'5), b = ½(1 - v'5) 

Table 6.10: Character Table of 2 x A5 

[h] (1) (21 ) (31)
ICD6 (h)I 6 2 3 

Xt 1 1 1 
X2 1 -1 1 
X3 2 0 -1

Table 6.11: Character Table of D6 C:! S3 
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[k] (1) (2i ) (51) (52)
ICn10 (k)I 10 2 5 5 

Xi 1 1 1 1 

X2 1 -1 1 1 

X3 2 0 a b 
X4 2 0 b a 

a= ½(-1 + /5), b = ½(-1- v'5) 

Table 6.12: Character Table of D10 
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class (1) (21) (5i ) (52) (22) (23) (lOi ) (102) (31) (61) (151) (152)
centralizer 60 12 30 30 20 4 10 10 30 6 15 15 

- J1 la 2a 5a 5b 2a 2a 10a !Ob 3a 6a 15a 15b 
power 71"2 (52) (51) . (52) (51) (31) 
maps 71"3 (21) {52) (51)

71"5 (22) (22 ) (31) (31)
X1 1 1 1 1 1 1 1 1 1 1 1 1 

X2 1 -1 1 1 1 -1 1 1 1 -1 1 1 

Xa 2 0 a b 2 0 a b 2 0 a b 

X4 2 0 b a 2 0 b a 2 0 b a 

Xs 1 1 1 1 -1 -1 -1 -1 1 1 1 1 

X6 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 

Xr 2 0 a b -2 0 -a -b 2 0 a b 

Xs 2 0 b a -2 0 -b -a 2 0 b a 

Xe 2 2 2 2 0 0 0 0 -1 -1 -1 -1

Xto 2 -2 2 2 0 0 0 0 -1 1 -1 -1

Xn 4 0 2a 2b 0 0 0 0 -2 0 -a -b

x12 4 0 2b 2a 0 0 0 0 -2 0 -b -a

a = ½ ( -1 + v'5), b = ½ ( -1 - -/5) 

Table 6.13: Character Table of Da X D1o 
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6.4 Sylow 19-normalizer 

Definition 6.4.1 A Frobenius group is a finite group G that contains a nontrivial 
normal subgroup N such that if xis a non-identity element of N then Ca(x) C N. 

Now let G be a Sylow 19-normalizer in J1 . Then by Janko [16], Ci is a Frobenius 
group with structure 19:6. Let G = N : G where N � C19 and G � C6, Then we have 
the following lemma. 

Lemma 6.4.1 When G acts on N, it ffaes one point and has three orbits of length 6. 

Proof: G fixes the identity of N. Now if x is a non-identity element of N, then 
0i1(x) C N, since Ci is a Frobenius group. Therefore, for e I g E G, g ¢ 0

0
(:r). 

(Beca.use G n N = { e}). So no nonidenti ty element of G fixes x. Now we consider the 
action of /3 on N, where G = </3>. Since /3 has order 6, its nontrivial orbits on N can 
have lengths 2, 3 or 6. But if /3 has an orbit of length 2 or 3 then /32 or /33 (respectively) 
fixes a. non-identity element of N which is not possible. Therefore /3 ( and hence G) has 
three orbits of length 6. D

Now let N = <a>, G = </3>. Then G is a subgroup of J1 a.nd J1 has three 
conjugacy classes of elements of order 19, namely 19a, 19b = (19a)2 and 19c-: (19a)4

.

Therefore a, a2 and a4 are all in different classes of J1, so must be in different clMses 
of G. Therefore the three orbits of length 6 of G on N ha.ve representatives a, a2 and 
a4 respectively. 

Conjugacy Classes of G

For each g E G, we find k :; ICN(g)I and/, the block fusiorui. for g = e, k = 19 and 
(by action of G on N) f = 1, 6, 6, 6. Thus we ha.ve the identity class of G and three 
classes of elements of order 19, ea.ch with centralizer 19:6 

= 19. For g I e, k = l (since 
kll9 and k I 19), so f = i. The conjugacy classes of G = 19 : 6 a.re given in Table 
6.15. 

Fischer Matrices of G 

G has four orbits on N, so bas four orbits on Irr(N). One orbit is trivial and the others 
must have lengths tha.t divide IGI, so there a.re three orbits of length 6. Thus the inertia 
groups a.re H1 = ?J with H1 = G a.nd H2 = H3 = H., = N, so H2 = ll3 = H4 = {e}. 
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The Fischer matrix M(e) has rows that are orbit sums of the action of G on Irr(N). 
Since the orbits of G on N are {a 08 a7 a-1 o-8 a-7} {a2 a-3 ""-5 ""-2 ""3 ""5} 

' ' ' , ' ' ' , .... , .... , .... , .... 

and { a4 , a-6
, o9 , o-4, a6

, a-9}, the orbit sums of G on Irr( N) are 

C = X +XS
+ x1 + xl8 + xll + x12

,

d = x2 + x16 + xl4 + x17 + x3 + x5 

and 

where x = e 
1
1�;, a primitive 19th root of unity. 

114 19 19 19 
6 ( 1 
1 6 

Therefore M( e) = 1 6 
I 6 

1 1 
C d 

d e 
e C 

i), where c, d, e are given by the above

relations. 
For g / e, M(g) = ( 1 ), since H2 , H3 a.ad H4 do not fuse to nonidentity classes of 

G. 

Now from the character table of G (Table 6.14) a.nd the Fischer matrices, we get the 
character table of G (Table 6.15). We ca.a also determine the permutation character 
1fi,6 from the fusion to J1 (which is given in Table 6.15) and obtain 

1{�:6 =la+ 56ab + 76aa + 77abc + 120abc + 133aa + 209aa.
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class (1) (61) (31) (2) (32) (62)
X1 1 1 1 1 1 1 

X2 1 a -b -1 -a b 

X3 1 -b -a 1 -b -a

X4 l -1 1 -1 1 -1

xs 1 -a -b 1 -a -b

xa 1 b -a -1 -b a

a = ½(1 + vJi), b = ½{I - v'3i) = a 

Table 6.14: Character Table of C6 



class 

centralizer 
--+ 11

power map 11' 'J 

Xt 

X2 

X3 

X4 

Xs 

Xa 

X1 

xs 

Xg 

(1) (191) (192) (193) (2) (31)
114 19 19 19 6 6 

la 19a 19b 19c 2a 3a 

192 193 191 
1 1 1 1 1 1 
1 1 1 1 -1 -a

1 1 1 1 1 -a

I 1 1 1 -1 1

I 1 I 1 1 -a

1 1 1 1 -1 -a

6 C d e 0 0 
6 d e C 0 0 
6 e C d 0 0 

a = ½(1 + v'3i) 
c = x + xB + x7 + xis + xll + x12

d == x2 + x1a + x14 + x11 + x3 + xs 

e = x,i + xt3 + xg + xis + xa + x10 

2,ri where x = e""ii" 

Table 6.15: Chara.cter Table of 19: 6 
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(32) (61) (62)
6 6 6 

3a 6a 6a 

31 32 

1 1 1 

-a a a 

-a -a -a

1 -1 -1

-a -a -a

-a a a 

0 0 0 
0 0 0 
0 0 0 
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6.5 Sylow 11 and 7-normalizers 

The Sylow 11 and 7- normalizers of J1 are Frobenius groups with structures 11 : 10 
and 7: 6 respectively. Let G :::: N: G be a Sylow 11-normalizer with N � C11 and 
G S:! C10 • The group G acts on N by conjugation so that each nontrivial element of G
fixes only the identity of N (since G is a Frobenius group). Thus the orbits of G on 
N have lengths 1 and 10. This group G is the holomorph of G, so its character table 
follows from section 5.3 and the character table of C10 • We give the character table 
of G in Table 6.16. Using the fusion of G to J1 given in Table 6.16, the permutation 
character is 

liL
i
o =la+ 56ab + 76ab + 77aa + 120abc + 133abc + 209aa

Similarly, a Sylow 7-normalizer of J1 is the holomorph of C7. Its character table is 
given in section 5.3. In Table 6.17 we give the character table of 7: 6 with fusions to 
J1 and we have 

lf�
6 

= la+ 56aabb + 76aaab + 77aabbcc + 120aaabbbccc + 133aaaabbcc + 209aaaaa



class 

centralizer 
---+ 11 

power map 11"2 

Xl 

x2 

X.3 

X4 

Xs 

Xs 

X1 

Xs 

Xg 

X10 

Xn 

(1) (11)
110 11 

la lla 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

10 -1

(101) (51) (102) ( 52)
10 10 10 10 

!Ob 5a 10a 5b 

(51) (52) (53) (54)
1 1 l 1

a b -b -a

b -a -a b

-b -a a b

-a b b -a

-1 1 -1 1

-a b b -a

-b -a a b

b -a -a b

a b -b -a

0 0 0 0 

a = -e61ri/5 b = e21ri/S 
' 

(2) 
10 

2a 

1 

-1

1

-1

1

-1

1

-1

1

-1

0

Table 6.16: Character Table of 11: 10 
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(53) (103) (54) (104)
10 10 10 10 

5b 10a 5a 10b 

(51) (52) (53) (54)
1 1 1 1 

-a -b b a 

b -a -a ;; 

b a -a -b
-a b .b -a

1 -1 1 -1

-a b b -a

b a -a -b

b -a -a b

-a -b b a 

0 0 0 0 
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class (1) (71) (2) (31) (32) (6i) (62
centralizer 42 7 6 6 6 6 6 

-+ Ji la 7a 2a 3a 3a 6a 6a 

power map 11'2 (31) (32)
X1 1 1 1 1 1 1 1 

X2 1 1 -1 -a -a a a 

X3 I 1 1 -a -a -a -a

X4 1 1 -1 1 1 -1 -1

Xs 1 1 1 -a -a -a -a

X6 1 1 -1 -a -a a a

X1 6 -1 0 0 0 0 0

a = ½(I + ylJi) 

Ta.ble 6.17: Character Ta.ble of 7: 6 



Chapter 7 

PROJECTIVE CHARACTERS 

In chapter 4, we showed how Fischer matrices could be used to determine the charac­
ters of a group G with a normal subgroup N such that every irreducible character of 
N can be extended to its inertia group. Now, in order to generalize these methods to 
other group extensions, we need to define and discuss projective representations and 
characters. In the first section we define projective representa.tions and show how they 
are related to ordina.ry representations. (In this chapter we refer to the group repre­
sentations and chara.cters tha.t we defined in chapter 2 as ordinary representations and 
chara.cters). We then go on to define and give some properties of projective characters 
in section 7.2. In section 7.3 we relate projective representa.tions and characters to 
Clifford theory and hence generalize the Fischer matrix methods. 

7 .1 Projective Representations 

Definition 7.1.1 Let G be a. group and Fa field. A projective F-representation of G 
of degree n is a. ma.pping P : G-+ GLn (F) such that for every g, h E G there exists a 
scalar o(g, h) E F such that P(g)P(h) = a(g, h)P(gh). The function a : G x G-+ F 
is the a.ssocia.ted factor set of P. ( From the definition it is dear that o(g, h) # 0 p for 
all g, h E G, so a: G x G-+ F'"). 

Note 1 The projective general linear group is the factor group 

PGLn(F);;;; GLn(F)/Z(GLn (F)) 

where Z(GL
n

(F)) is the centre of GLn(F) which consists of all nonzero scalar matri�s. 
If P is a projective F-representation of G then the composition of P with the natural 

72 



73 

homomorphism G L
n 

( F) --+ PG L
n 

( F) is a homomorphism G --+ PG Ln ( F). Conversely, 
if 1r: G --+ PGLn (F) is any homomorphism, a projective representation P of G can be 
defined by setting P(g) equal to any element of the coset 1r(g) of Z( GLn (F)) in GL.,.,(F). 
Hence the projective F-representations of G ca.n be identified with the homomorphisms 
of G into the projective general linear group. 

Before giving further results on projective representations, we need to consider their 
associated factor sets. 

Lemma 7 .1.1 Let a be the associated factor set of a projective representation P of G.
Then a satisfies

a(xy, z)a(x, y):;;; a(x, yz)a(y, z) 

for all x,y,z E G.

Proof: By associativity we have 

P(x)P(y)P(z) = a(x,y)P(xy)P(z) = a(x,y)a(xy,z)P(xyz) 

and 
P(x)P(y)P(z) = a(y,z)P(x)P(yz) � a(y,z)a(x,yz)P(xyz). 

Now the result follows since P(xyz) is invertible. D 

Any function a: G x G--+ F" that satisfies a(xy,z)a(x,y) = a(x,yz)a(y,z) for 
all x, y, z E G is called an F" -factor set of G. By Lemma 7 .1.1, the associated factor
set of any projective F-representation of G is a.n F"-fa.ctor set of G. Conversely, every 
F"-factor set is Msociated with a projective representation (see [15, 11.6]). We will 
consider projective representations and factor sets over the complex field C from now 
on. 

Definition 7.1.2 Two factor sets a and a' are sa.id to be equivalent if there exists a 
function p: G--+ C"' such that a'(x,y) = p(x)p(y)(p(xy))- 1 a(x,y) for all x,y E G. 
This is an equivalence relation, and we denote the equivalence cla.ss of the factor set a 
by [a]. 

For factor sets a and a', let aa' denote the function defined by ( aa') ( x, y) =
a(x,y)a'(x,y)

for x,y E G. Then aa' is a factor set, as is a- 1 defined by a-1 (x,y) =
(a(x, y)f1 . 
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Definition 7. 1.3 The set of equivalence classes of factor sets forms a.n abelia.n group M
by defining (a:][a:'] = 

[a:a']. The identity of Mis [1] where 1 is the factor set l(x, y) 
= 1 

for all x, y E G, and [a:J- 1 
= 

[a-1]. The group M is called the multiplier of G.

As with ordinary representations, we define equivalence and irreducibility of pro­
jective representations. 

Definition 7.1.4 Two projective representations Pi and P2 of Gare equivalent if there 
is a non-singular matrix T such that for all g E G,

Pi(g) = c(g)TP2(g)T-1 for some c(g) EC*.

If c(g) = I for all g E G then P1 a.nd P,J. are linearly equivalent. A projective represen­
tation P is irreducible if it is not linearly equivalent to a projective representation of 
the form 

Lemma 7 .1. 2 If two projective representations are equivalent then they have equiva­
lent factor sets; if they are linearly equivalent they have equal factor sets. 

Proof: Let Pi and P2 be equivalent projective representations with factor sets a1

and a:2 respectively. Suppose Tis a non-singular matrix and c: G---+ IC* such that 

Pi(g) == c(g)TP2(g)T-1 for all g E G.

Now for g, h E G, 

a1(g, h) Pi (g)Pi(h)(Pi(gh)t1

- c(g )T P2(9 )T-1c(h)T P2(h)T-1 (c(gh)t1T(P2(gh ))-1r-
1

- c(g)c(h )( c(gh ))-1TP2(g)P2(h)(P2(gh )t1
r-

1

c(g )c(h )( c(gh) )-102(9 1 h ),

so a:1 and a:1 are equivalent. If Pi and P2 are linearly equivalent, then c(g) == 1 for all 
g E G in the a.hove expressions, so a:1 = a2• 0 

Now we show how the projective representations of a group G can be determined 
from the ordinary representations of a so-called representation group of G. We follow 
lsa.acs [15] in developing the following theory. 
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Definition 7.1.5 A central extension of G is a group H together with a homomorphism
1r of H onto G such that ker 1r lies in the centre of H. 

Lemma 7. 1.3 Let ( H, 1r) be a central extension of G with A = ker 1r. Let X be a set 
of coset representatives for A in H, and write X = {x9 : g E G}, where 1r(x9) = g. 
Define a: G x G-+ A by  x8xh = a(g,h)x91i,. Then a is an A-factor set of G and the 
equivalence class of a is independent of the choice of X. 

Proof: The fa.ct that a is a factor set follows from associativity in H. If Y = {y
9 

: 

g E G} is another set of c08et representatives then y
9 

= µ.(g)x
9 

for some µ.(g) E A, for 
each g E G. Now

Y9Yli. = µ.(g)µ.(h)x
9Xh - µ.(g)µ.(h)a(g,h)x9h 

- µ(g)µ.(h)(µ.(gh)t1a(g, h)y
9

i,., 

so the factor set given by Y is equivalent to a, as required. D

Corollary 7. 1 .4. Let H be a central e�ension of G with A,X and a as in the previou8 
lemma. Let T be an ordinary representation of H such that the restriction TIA is the 
scalar representation')./ for some '). E Hom(A, C-), that is 

T(a) = ( �(•) �(a) ·.. l 'va EA,

">.(a) nxn 

where n =deg T .  Define P(g) = T(x
9

) for g E G. Then P is a projective representation 
of G with factor set ">.(a), where ">.(a)(g, h) = ">.(a(g, h)). Furthermore, P is irreducible 
if and only if T is and the equivalence claSB of P is independent of the choice of coset 
representatives X. 

Proof: We have 

so P is a. projective representation with factor set ,\(a). Now if y E H, then y = ax 9
where g = 1r(y) and a EA. Thus

T(y) = P(g)">.(a) = P(1r(y)),\(yx;(�)) = P(1r(y))µ.(y), 
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where µ : H ---+ IC* is defined by µ(y) = ,\(yx�{11)). Therefore T(H) and P(G) span
the same vector space of matrices over C, so the result about irreducibility follows. 
Also, if Pi is the projective representation determined by another choice of coset rep­
resentatives, then A(1r(y)) = T(y)µ1 (yt1 

= P(1r(y))µ(y)µ1(yt1 , so A and P are 
equivalent, since for g E G, g = 1r(y) for some y EH. Let c(g) = µ(y)µ1 (y)-1, then 
A(g) = c(g)P(g). □

Note that if T is an ordinary irreducible representation of H then the condition 
that TI A be a scalar representation is satisfied by Schur's Lemma (Corollary 2.1.2), 
since A lies in the centre of H.

Definition 7.1.6 A projective representation of G that can be constructed from an 
ordinary representation of a central extension H of G as in Corollary 7.1.4 is said to 
be lifted to H. A representation group of G is a central extension H of G such that 
every projective representation of G can be lifted to H.

Every group has a representation group by the following result known as Schur's 
theorem, which we state without proof. 

' 

Theorem 7.1.5 Let G be a finite. group of order n. Then G has at least one rep-
resentation group H of order mn where m = \Ml and the kernel of the extension is 
isomorphic to the multiplier M of G. 

Proof: See, for example, (15, 11.17] D 

7 .2 Projective Characters 

Definition 7.2.1 If Pis a projective representation of G, then the projective character
! of P is defined by

!(g) = trace(P(g)) for all g E G. 

We say! is irreducible if Pis, and e has factor set a, where a is the factor set of P.

The projective characters of G can be determined from the the ordinary characters 
of a representation group (H, 1r) of G. Let ,r: H---+ G define the extension Hof G, and 
let {x

g
: g E G} be a set of coset representatives for ker(1r) in H. I£ Pis a projective 

representation of G with projective character e then there .is an ordinary representation 
T of H such that P(g) = T(x

g) for g E G. Let x be the character of H afforded by T, 
then !(g) :::;: x(x

g
) for all g E G.
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Definition 7.2.2 Given a factor set a of G, an element g E G is said to be a-regular 
if a(g, x) = a(x,g) for all x E Ca(g). 

If g is a-regular, so is every conjugate of g, and an element g is a-regular if a.nd only 
if g is ,B-regular for every factor set ,B equivalent to a. So we can define a conjugacy 
da.ss of G to be a-regular if each of its elements is a-regular. 

Now we have analogues of results for ordinary cha.ractera. 

Theorem 7.2.1 1. The number of irreducible projective characters of G with factor
set a is equal to the number of a-regular conjugacy classes of G. 

2. Let 6, ... , ei be the projective characters of G with factor set a, and let C1, • • •  , Ct
be the a-regular conjugacy classes of G with g; a representative of C; for i ::;:
1, ... ,t. Then

t 

L{i(g;)ei(gt) =6;klCa(g;)lfor j,k E {1, ... ,t}
i=l 

3. An element g of G is a-regular if and only if there is an irreducible projective
character e of G with factor set a such that e (g) # 0.

Proof: See [11} D

We have shown tha.t the projective characters of G can be determined from the 
ordinary characters of a. representation group H of G. Haggarty and Humphreys [11] 
show that it is possible to determine the projective characters of G with a given factor 
set without the full representation group of G: Suppose a is a factor set of G, with 
[a} having order e in the multiplier M. Let w be an eth root of unity and let ,B be 
a representative of [a) whose values are powers o( w. For g, h E G define a(g, h)"by 
,B(g, h) = w0

(9,h)_ Let L be the group generated by an element x of order e and elements 
xg (g E G) with multiplication xix6xixh = x1+;x"(g,h)x0h. Then Lis a quotient of the 
representation group H and any projective representation of G with factor set a can 
be lifted to an ordinary representation of L. Thus the projective cha.racters of G with 
factor set a can be determined from the ordinary character table of L.
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7 .3 Projective Representations and Clifford The­

ory 

We will now show how projective representations can be used to generalize our results 
of section 3.3 and hence the Fischer matrix methods of chapter 4. 

Definition 7.3.1 Let N � G. 1£ Y is an irreducible (ordinary) representation of N 
then for g E G, Y9 defined by Yg(n) = Y(gng-1), n E N, is a representation of N, 
called a, conjugate of Y. The inertial group of Y, T(Y), is the set of all g E G such that 
Y is equivalent to Y9

• Note tha.t T(Y) = 171( 0) where fJ is the character of N afforded 
by Y. 

Now let Y be an irreducible representation of N, where N � G and let H;;;:; T(Y), 
so Y is equivalent to all its conjugates in H. The following theorem shows that Y 
can always be extended to a. projective representation of H a.nd gives a necessary and 
sufficient condition for Y to be extendable to an ordinary representation of H. This 
theorem and the next one a.re originally due to Clifford [2]; we state them without 
proof a.nd then restate the results in the form in which we will use them, in terms of 
projective and ordinary characters. 

Theorem 7.3.1 Let N,G, Y and H be as above . Then Y extends to a projective 
representation X of H with factor set a such that a is constant on cosets of N in H. 
Therefore a can be regarded as a factor set a of H = H / N defined by o:( N h, N k) =

a ( h, k). Also, a satisfies ad IN I ~ 1 where d is the degree of Y. Furth erm..ore, Y extends 
to a linear representation of H if and only if a ~ 1. 

Proof: See (25, 3.5.7}. □

Theorem 7.3.2 Let N � G, Yan irreducible representation of N with H = T(Y) and 
H = H/N. Extend Y to a projective representation X of Has in Theorem 7.3.1 with 
factor set a. Then 

1. If W is an irreducible representation of H that has Y as one of its irreducible
constituents in its restriction to N then there exists an irreducible projective rep­
resentation Z of H with factor set 0:-

1 such that W is equivalent to the repre­
sentation Z ® X of H, where o: is the factor set of H obtained from o:, and Z is
the representation of H obtained naturally from Z. 
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2. If, conversely, Z is any irreducible pro;'ective representation of H with factor set
a-1

, then Z 0 X is an irreducible representation of H which is equivalent to some
representation that contains Y in its restriction to N.

Proof: See [25, 3.5.8]. □ 

Corollary 7.3.3 LetN-::lG, () E Jrr(N) andH = 1
0

(0). ThenfJ extends to a projective 
character e of H with factor set a that is constant on cosets of N, so a can be regarded 
as a factor set a of H = H / N. Also, a satisfies ad!NI 

~ 1 where d is the degree of 0. 
Now as T/ runs over all iTTeducible projective characters of H with factor set a-1

, (ii 
runs over all irreducible characters of H that contain O in their restriction to N where 
rj is the projective character of H obtained naturally from Tf. 

Proof: This follows from Theorems 7.3.1 a.nd 7.3.2 by considering the character 
of each representation (projective or ordinary) where the product of characters corre­
sponds to tensor product of representations. D 

Note that in the above corollary, if 0 extends to an ordinary character of H then 
by the last statement of Theorem 7.3.1, a ~ 1 so the relevant projective characters of 
H have trivial factor set. These are the ordinary irreducible characters of H so this 
special case is the result given in Theorem 3.3.3. 

Now by Theorem 3.3.2 and Corollary 7.3.3, the characters of G = N.G can be 
obtained as follows: Let 01 , ... , Ot be representatives of the orbits of G on Irr(N). Let 
Hi ;;:;; I0(0i) and let {i be a projective character of Hi with factor set Cli such that 
lLv = Oi, Then 

t 

Irr( G) = u { ( eiff)G : T/ is an irreducible projective character of Hi with factor set a;1}' 
i=l 

where o; is obtained from Oi and r; from T/ as in Corollary 7.3.3. 

7.4 Fischer Matrices 

With the notation of the previous section, consider conjugacy class [g] of G. Let 
X(g) = {xi, ... , x�(g)} be representatives of G-conjuga.cy-dasses of elements of the coset 
Ng. Ta.lee x1 = g, a lifting of g. Let R(g) be a set of pairs ( i, y) where i E { 1, ... , t} such 
that Hi contains a.n element of [g], and y ranges over representa.tives of the a;-1 -regular 
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classes of Hi that fuse to [9]. Corresponding to this y E Hi, let {y,,.} be representatives 
of conjugacy classes of H i that contain lifti_ngs of y. Let Y11 = y. 

Now, as in 4.1,we have 

(summing over those k for which y1
k 

is conjugate to Xj in G) 
We let 

so 
(ei,;)G(xi) = L a{;,

11
)'1(y). 

11:(i,v)ER(g) 

Again we denote tbe matrix (at,11)) by M(g). This is the Fischer matrix for G at 9,
and we obta..in the characters of G by multiplying the relevant columns of the projective 
characters of Hi with factor set a;:- 1 by rows of M(9 ). 

Lemma 7.4.1 The Fischer matrix M(g) as defined above satisfies 

1. a1l ,g) = 1 for all j E {1, ... , c(g)}.

0 

, -.,-

2. (column orthogonality) E(i,11)ER(g)ati,v)a(i,11)!CH;(Y)I = bii'ICG(xi)I

Proof: 

1. Follows from the definition.

2. As in Proposition 4.2.3, using the projective character orthogonality (Theorem
7.2.1(2)) for Hi.



Chapter 8 

THE GROUP 3 · PGL2 (9), A 
MAXIMAL SUBGROUP OF J2

The Janko group J2 is a. sporadic simple group of order 604800 discovered. by Hall a.nd 
Wales [12]. Its character table is given in ATLAS [3], we give this ta.hie in the Appendix. 
J2 has nine conjugacy classes of ma.ximal subgroups, determined. by Finkelstein and 
Rudvalis [6]. In this chapter we will determine the conjugacy classes and character table 
of one of these maximal subgroups, the normalizer in J'l of the subgroup generated by a.n 
element of class (3a ). This group G is a nonsplit extension of N � 03 by G :::::'. PG L'J (9). 
The group G is isomorphic to Ae.2'J (see ATLAS). For this group Git is not the case 
tha.t every irreducible character of N can be extended to its inertia. group so we cannot 
use the same results on Fischer matrices tha.t we used for our other examples; in this 
case we will use the Fischer matrices that discussed in chapter 7. 

8.1 Conjugacy Classes of G 

We will use the methods of section 3.2 to determine the conjugacy classes of G. For 
g E G, we denote by g a. lifting of g in G, so .\(g) = g where ). : G--+ G is the natural 
homomorphism. By Lemma 3.1.1, G acts on N such that n9 

= gng-1
• We consider a. 

coset Ng for each class representa.ti ve g of G, a.nd the conjugacy classes are determined 
by first acting N, then acting {h: h E Cc(g)} on the orbits of N. If N has k orbits on 
Ng a.nd / of these fuse to give a. class of V with element x then !Ca(x)I = 1cx)c

l
(9ll.

In Table 8.1 we give the character table of G. Referring to the character table of 

81 



class [g] (1) (2i ) (31) (41) (51) (52) (22) (8i )
l[g]I 1 45 80 90 72 72 36 90 

ICa(g)\ 720 16 9 8 10 10 20 8 
power 11'2 (31 ) (21 ) (52 ) (51) (41) 
maps 11'3 (52) (51 ) (82) 

11'5 

Xt 1 1 1 1 1 1 1 1 
X2 1 1 1 1 1 1 -1 -1
XJ IO 2 1 -2 0 0 0 0
X4 8 0 -1 0 -a -b 2 0
Xs 8 0 -1 0 -a -b -2 0
Xs 8 0 -1 0 -b -a 2 0

X1 8 0 -1 0 -b -a -2 0

Xs 9 1 0 1 -1 -1 -1 1

Xg 9 1 0 1 -1 -1 1 -1

Xia 10 -2 1 0 0 0 0 v'2 

Xu 10 -2 1 0 0 0 0 -v2

a= -l + ::ll b = -1 - ::ll
2 2 ' 2 2 

Table 8.1: Character Table of PGL2(9) 

J2 in the Appendix, ATLAS gives the permutation character 

<p = 1� = la+ 63a + 90a + 126a. 

82 

(82) (101) (102)
90 72 72 
8 10 10 

(4i ) (52) (5i )
(81) (102) (101 )

(22 ) (2t) 
1 1 1 

-1 -1 -1

0 0 0
0 a b
0 -a -b
0 b a 

0 -b -a

1 -1 -1

-1 1 1
-J2 0 0

v2 0 0

In Table 8.2 we give the values of <p on the classes of J2•

Let N = { e, n, n- 1 }. Since n and n-1 are conjugate in J2, na: 
= n-1 for some 

x E J2 • Then N� = N, so x is an element of the normalizer in J2 of N which is G.

Therefore n and n-1 are conjugate in G, so n9 = n- 1 for some g E G. Therefore G
fixes e a.nd acts transitively on the two points n and n-1

• The permutation character 
of this transitive action is Xi + X2, so for each g E G, the number k of points of N 
fixed by g is 1 + (x1 + x2)(g). These values, using Table 8.1 for values of x1 and x2, 
are given below. 



83 

class of J2 centralizer </> - 1 J2 
- -r.

(la) 604800 280 
(2a) 1920 40 
(2b) 240 12 
(3a) 1080 1 
(3b) 36 4 

(4a) 96 4 
(5a) 300 10 

(5b) 300 10 
(6a) 24 1 

(8a) 8 2 
(10a) 20 2 
(10b) 20 2 

(12a) 12 1 
(15a) 15 1 
(15b) 15 1 

Ta.ble 8.2: 
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class [g]of G (11) (2i) (31) (41 ) (51) (52) (22) (81) (82) (101) (102)
k 3 3 3 3 3 3 1 1 1 l 1

Now we consider the cosets Ng.

• g = e: Here g = e and Ng = N; G has orbits of lengths 1 and 2 on N, so we
have classes (1) and (31 ) of G. Class (31) contains the element n, a.nd 10O(n)I =
3x 72o = 1080 Now (3 ) fuses to (3a) in J and 10'a (n)I - 1080 = 1 - J.(n) so no

2 · 1 2 IOG(n)I - 1080 - 'I' ' 

other classes of G fuse to (3a).

• g E (21 ): We have ICc(g)I = 16 and k = 3. Therefore g fixes a.ll elements of N
so g and n commute. Now ,\(g2) = ( ,\(g) )2 

= g2 = e, so g2 E N = { e, n, n-1}. 
If g2 = e, then g = e or g has order 2. But g = e is not possible, for then 
>.(g) = g implies g = e, a contradiction. If g2 = n or n-1 then (g)6 = e so 6 
divides the order of g. Therefore o(g) E { 11 2, 3, 6}. But o(g) f:. 1 by the above. 
If o(g) = 3 then (g)2 = n or n- 1 so g = n- 1 or n. Then g E N a.nd A(g) = e, a 
contradiction. Therefore g has order 2 or 6. Suppose g has order 6. Then ng also 
has order 6, so Ng has three elements of order 6. Since g2 E N, g2 E ( 3a) in 12, so 
g E (6a) and ICii (g)I = 24. Therefore 1Ca(9)1 divides 24, where ICG(g)I = 3x/6 

for f E {1, 2, 3}. The only possibility is f = 2. Then there is another class with 
f = l, a.nd hence centralizer 48. But this is not possible (it cannot fuse to 12). 
Therefore o(g) f:. 6, so o(g) = 2 and ng a.nd n-19 have order 6. Thus we have 
class (21) of G with centralizer 24. 

• g E (31): Then ICa(g)I = 9 and again k = 3, so g commutes with n. Since g

has order 3, g has order 3 or 9. But 12 has no elements of order 9, so g must
have order 3, and hence ng and n- 19 also have order 3. These must all be in
class (3b) of 12 by the comments made in the first case above and Table 8.2; with
ICI,(9)1 = 36. Now ICa("ff)l = 3? for f E {I, 2, 3}, such that ICG(g)I divides 36.
The only possibility is f= 3, so we get class {3'2) of G with ICa(9)l = 9.

• Classes (51 ) and (52): Similarly, by considering fusions to 12, we get classes (5i)
and (151 ) of G from class (51 ) of G, and classes (52) a.nd {152) from class (52) of
G.

• Classes (22), (81), (82), (101), (102): These classes all ha.ve k = l, so each corre­
sponds to one class of G with f = I.
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class of G class [x] of G ICo(x)I -+ J2 

(11) (1) 2160 (la) 

(31) 1080 (3a)
(21) (21) 48 (2a) 

(6i) 24 (6a) 
(31) (32) 9 (3b) 
( 41) (4i) 24 (4a) 

(121) 12 (12a) 
(51) (51) 30 (5a) 

(151) 15 (15b)
(52) (52) 30 (5b)

(152) 15 (15a)
(22) (22) 20 (2b) 
(8i) (81) 8 (8a) 
(82) (82) 8 (8a) 
(101) (101) 10 {10a) 
(102) (102) 10 (10b) 

Table 8.3: Conjugacy Cla3ses of G:::;::: 3 · PGL2 (9) 

• g E ( 4t): Here !CG(g)I = 8 and k :::;::: 3 so g commutes with n. By the value of
<P = I{! on class ( 4a) of J2 , we see that G must have a class of elements of order
4 that fuses to (4a). Therefore g has order 4 and ng,n-•g have order 12. So we
must have class (4t) of G with ICc(g)I = 

3�
8 

= 24. Now ICq(ng)I = 

3j8 where
f E {1, 2}. But IC0(ng)I = 12, so we must ha.ve f = 2.

We list all the conjugacy classes of Gin Table 8.3. 

8.2 Fischer Matrices of G 

G has two orbits on N, hence two orbits on Irr(N), so they must have lengths 1 and 2. 
So the inertia groups are H1 = G with H1 = G and H2 :::;::: N.H2 where H2 is a. subgroup 
of G of index 2. Since [G : H.1 ] = 2, H'J g G so H2 is a union of conjugacy classes 
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class (li) (21) (3i ) (32) (4i) (51) (52)
centralizer 360 8 9 9 4 5 5 

1/1 3 -1 0 0 1 a b 
1/2 3 -1 0 0 1 b a 

1/3 6 2 0 0 0 1 1 
1/4 9 1 0 0 1 -1 -1

1/5 15 -1 0 0 -1 0 0

Table 8.4: Projective Characters of H2 = A6 with factor set a-1 

of G. Since IH2I = 360, H2 contains elements of order 3 and 5. From Table 8.1, H2 
must contain the (31 )-class of G and it contains both (5i) and (52) since (52) contains 
squares of elements of (51 ). Now there a.re a further 135 elements of H2, some of which 
must have order 2. If H2 contains the class (22) of G, then there another 135-36 = 99 
elements which is impossible. Therefore H2 contains the (2i) class of G and this leaves 
another 90elements,so (41 ) C H2 . Therefore H2 = (l)U(21)U(31)U(41)U(51)U(52), 
so H2 ~ A6 • Then H 2 is a nonsplit extension of C3 by A6, so is isomorphic to 3.�, 
the threefold proper covering of A6 [6]. 

If 01 and 92 are representatives of the orbits of G on Irr(N), then 01 = lN a.nd 02 
is a nontrivial character of N, necessarily of degree 1. Now 01 extends to the trivial 
character of G, but 02 does not extend to a.n irreducible character of H 2 = 3.A6 since 
3.A6 has no nontrivial characters of degree 1. (Considering the character table of 3.A6 

in ATLAS). Therefore we need to consider the results of chapter 7, and by Corollary
7.3.3 92 extends to a projective character of H 2 with factor set a. Then we get the
corresponding factor set o: of H2 such that a3 

~ 1. Since 02 does not extend to an
ordinary character of H 2 it is not the case that a ~ l, so [o:] has order 3 a.nd therefore 
[a-1] has order 3. So the projective characters of H2 with factor set a-1 ca.n be obtained
from the ordinary characters of 3.H2• Thus, from the ATLAS table of 3.A6 we have 
the projective characters of H2 with factor set a-1

, which are given in Table 8.4. This 
table indicates that classes (31) and (32) of H2 are not a- 1 -regular by Theorem 7.2.1(3)
so H2 ha.s five a- 1 �regular classes and five characters with factor set a-1

, as required 
by Theorem 7.2.1(1). 
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Next we construct the Fischer matrices 1\1(g) for class representatives g of G which 
are given in Table 8.5. The entries were obtained from the relations in Lemma. 7.4.1 
and the fact that all entries must be real (since the characters of Gare all real - every 
element of G is conjugate to its inverse). For classes [g]::::: {l i), (2i), (41), (5i), (52) of 
G there is one a;-1 -regular class that fuses to [g] so these classes have 2 x 2 Fischer 
matrices. For the remaining classes there is no fusion from H2 so these matrices are 
trivial. 

We construct the character table of G from the Fischer ma.trices, the character table 
of G (Table 8.1) and the projective character table of H2 (Table 8.4). We have the 
conjugacy classes of G from Table 8.3. 

Corresponding to the identity class of G (classes (1) and (31 ) of  G), the characters 
in the G are obtained by multiplying the first column of the character table of G by 
the first row of M(g), ie 

1 
1 

10 
8 

8 
8 
8 

9 

9 

10 
10 

[ 1 1 l 
= 

1 1 
1 1 

10 10 
8 8 
8 8 
8 8 
8 8 

9 9 

9 9 

10 10 
10 10 

The characters in the H rblock are obtained by multiplying the first column of 
Table 8.4 by the second row of M(g), ie 

3 6 -3

3 6 -3
6 [ 2 -1 ] ::;:: 12 -6
9 18 -9
15 30 -15

Similarly for all other classes of G, and we get the character table of G (Table 8.2). 



[g] 

(l i)

(21) 

(31) 

(41) 

(5i) 

(52) 

(22)
(81)
(82)

(101) 
(102) 

M(g) 

2160 1080 
720 

( 
1 

360 2 

48 
16 

( 
1 

8 2 

1 

24

�l)
24 

!1)

12 
8

( 
l

4 2 �1)
30 

IO ( l 
5 2

30 
10 

( 
1 

5 2 

1 
1

1
l 
1 

15 

�1)

15 
1 

)
-1

Table 8.5: Fischer Matrices of G 
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class 
centralizer 

- J2

X1 

X2 

X3 

X4 
xs 

Xe 

X'T 

xs 

X9 

X10 

Xll 

X12 

Xl3 

Xu 

Xis 

X16 

(1) (3i ) (2t ) (61) (32) ( 41) (121) (51) (151)
2160 1080 48 24 9 24 12 30 

la 3a 2a 6a 3b 4a 12a 5a 

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

10 10 2 2 1 -2 -2 0 

8 8 0 0 -1 0 0 a 

8 8 0 0 -1 0 0 a 

8 8 0 0 -1 0 0 b 

8 8 0 0 -1 0 0 b 

9 9 1 1 0 1 1 -1
9 9 1 1 0 1 1 -1

10 10 -2 -2 1 0 0 0 
10 10 -2 -2 I 0 0 0 
6 -3 -2 1 0 2 -1 2a 
6 -3 -2 1 0 2 -1 2b 

12 -6 4 -2 0 0 0 2 
18 -9 2 -1 0 2 -1 -2
30 -15 -2 1 0 -2 1 0 

Ta.ble 8.6: Character Table of G = 3 · PGL2{9) 
( continued on next page) 

15 
l5b 

1 
1 
0 
a 

a 

b 

b 

-1
-1

0
0

-a

-b

-1
1
0

89 

(52) (152)
30 15 
5b 15a 
1 1 
1 1 
0 0 
b b 

b b 

a a 

a a 

-1 -1
-1 -1

0 0

0 0
2b -b

2a -a

2 -1
-2 I

0 0



class (23) (81) (82) (101) (102)
centralizer 20 8 8 10 

-t J2 2b 8a Sa 10a 
XI 1 1 1 1 

x2 -1 -1 -1 -1

X3 0 0 0 0

X4 2 0 0 -a

xs -2 0 0 a

X6 2 0 0 -b

X1 -2 0 0 b

Xs -1 1 1 -1

X9 1 -1 -1 1

X10 0 v'2 -v'2 0

X11 0 -v'2 v'2 0
X12 0 0 0 0
X13 0 0 0 0
Xu 0 0 0 0
Xis 0 0 0 0
Xt6 0 0 0 0

Character Table of G = 3 · PGL2(9) 
( cont.) 

10 

10b 

1 

-1

0

-b

b

-a

a

-1

1

0
0
0
0
0
0

0

90 
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class la 2a 3a 5a 5b 6a 7a lOa lOb lla 15a 15b 

centralizer 175560 120 30 30 30 6 7 10 10 11 15 15 

power 
ma.ps 

Xt 

X2 
X3 

X4 

xs 

Xo 

X7 

Xs 

X9 

X10 

X11 

X12 

X13 

Xt4 

Xis 

71"
2 5b 5a 5b 5b 15b 15a 

71"
3 5b 5a 

71"
5 2a 2a 3a 3a 

1 1 1 1 1 1 1 1 1 1 1 1 

56 0 2 -2a -2b 0 0 0 0 1 a b 

56 0 2 -2b -2a 0 0 0 0 1 b a 
76 4 1 1 1 1 -1 -1 -1 -1 1 1 

76 -4 1 1 1 -1 -1 1 I -1 1 1 

77 5 -1 2 2 -1 0 0 0 0 -1 -1

77 -3 2 a b 0 0 a b 0 a b

77 -3 2 b a 0 0 b a 0 b a 
120 0 0 0 0 0 1 0 0 -1 0 0 

120 0 0 0 0 0 1 0 0 -1 0 0 

120 0 0 0 0 0 1 0 0 -1 0 0 

133 5 1 -2 -2 -1 0 0 0 1 1 1 

133 -3 -2 -a -b 0 0 a b 1 -a -b

133 -3 -2 -b -a 0 0 b a 1 -b -a

209 1 -1 -1 -1 1 -1 1 1 0 -1 -1

a= ½(-1 + \/'5) > b;; ½(-1 - \/'5), c = z + z7 + z8 + z11 + z12 + z18
, 

d;; z2 + z3 + zs + zu + z1a + z11, 

e ;; z4 + z6 + z9 + z10 + z13 + z1s 

( z = e2,r,/19) 

Character Table of J1

92 

19a 19b 19c 

19 19 19 

19b 19c 19a 

1 1 1 

-1 -1 -1

-1 -1 .:....1 

0 0 0 

0 0 0 

1 1 1 

1 1 1 

1 1 1 

C d e 

e C d 

d e C 

0 0 0 

0 0 0 

0 0 0 

0 0 0 



class la 2a 2b 3a 3b 4a 5a 5b 5c 
centralizer 604800 1920 240 1080 36 96 300 300 50 
power './l"l 3a 3b 2a 5b 5a 5d 

maps 1{"3 5b 5a 5d 

1{"5 

X1 1 1 1 1 1 1 1 1 1 
X2 14 -2 2 5 -1 2 -3a -3b a+2
X3 14 -2 2 5 -1 2 -3b -3a b+2

X4 21 5 -3 3 0 1 a+4 b+4 -2a
Xs 21 5 -3 3 0 1 b+4 a+4 -2b

Xs 36 4 0 9 0 4 -4 -4 1
X1 63 15 -1 0 3 3 3 3 -2
Xs 70 -10 -2 7 1 2 -5a -5b 0 
X9 70 -10 -2 7 1 2 -5b -5a 0 
Xto 90 10 6 9 0 -2 1 1 0 
Xn 126 14 6 -9 0 2 1 1 1 
X12 160 0 4 16 1 0 -5 -5 0 
X13 175 15 -5 -5 1 -1 0 0 0 
Xt4 189 -3 -3 0 0 -3 -3a -3b a+2
Xrn 189 -3 -3 0 0 -3 -3b -3a b+2

Xt6 224 0 -4 8 -1 0 C d 2a 
Xir 224 0 -4 8 -1 0 d C 2b 
Xis 225 -15 5 0 3 -3 0 0 0 
Xt9 288 0 4 0 -3 0 3 3 -2
X20 300 -20 0 -15 0 4 0 0 0 
X21 336 16 0 -6 0 0 -4 -4 1 

a=½(-l+Js), b=½(-1-v'S), c=2../5- 1, d=-2./5-1 

Character Table of J2 
( continued on next page) 
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5d 

50 
5c 

5c 

1 
b+2 
a+2 

-2b
-2a

1
-2

0
0
0
1
0
0

b+2 
a+2 

2b 
2a 
0 

-2
0
1



class 6a 6b 7a 8a 10a 10b 10c lOd 12a 15a 15b 

centralizer 24 12 7 8 20 20 10 10 12 15 15 

power 71"2 3a 3b 7a 4a 5b 5a 5d 5c 6a 15b 15a 

maps 7r3 2a 2b !Ob 10a lOd 10c 4a 5b 5a 

7r5 2b 2b 2a 2a 3a 3a 

X1 1 1 1 1 1 1 1 1 1 1 1 

X2 1 -1 0 0 a b -a -b -1 0 0 

X3 1 -1 0 0 b a -b -a -1 0 0 

X4 -1 0 0 -1 a b 0 0 1 -b -a

Xs -1 0 0 -1 b a 0 0 1 -a -b

X6 1 0 1 0 0 0 -1 -1 1 -1 -1

X7 0 -1 0 1 -1 -1 0 0 0 0 0

xs -1 1 0 0 -a -b 0 0 -1 a b

X9 -1 1 0 0 -b -a 0 0 -1 b a

Xto 1 0 -1 0 1 I 0 0 1 -1 -1

Xn -1 0 0 0 1 1 -1 -1 -1 1 1

X12 0 1 -1 0 -1 -1 0 0 0 1 1

Xia 3 1 0 -1 0 0 0 0 -1 0 0

Xt4 0 0 0 1 a b a b 0 0 0

X15 0 0 0 1 b a b a 0 0 0

Xl6 0 -1 0 0 1 l 0 0 0 -b -a

Xl'7 0 -1 0 0 1 l 0 0 0 -a -b

Xis 0 -1 1 -1 0 0 0 0 0 0 0

Xt9 0 1 1 0 -1 -1 0 0 0 0 0

X20 1 0 -1 0 0 0 0 0 1 0 0

X21 -2 0 0 0 0 0 1 1 0 -1 -1

a= ½(-1 + v5), b = ½(-1 - v5), c:::: 2yi5 - 1, d:::: -2v5 - 1 

Character Table of J2

(cont.) 
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