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Abstract

In this thesis, a complete group classification of the general case of linear systems of two

second-order ordinary differential equations is presented. Previous studies which produced dis-

tinguished representatives of systems of two linear second-order ordinary differential equations

were not exhaustive. We show that the problem of classifying these systems using an algebraic

approach leads to the study of a variety of cases in addition to those already obtained in the

literature.

Secondly, we provide a new treatment for the linearization of a system of two second-order

stochastic ordinary differential equations. We provide the necessary and sufficient conditions

for the linearization of these systems. The linearization criteria are given in terms of coefficients

of the system followed by some illustrations.

Finally, we consider the underlying group theoretic properties of a system of two linear second-

order stochastic ordinary differential equations. For this system we obtained the determining

equations and the corresponding equivalent transformations which assist with further classifying

the system for some selected cases. This adds to the sparse body of knowledge on this subject.
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1.2 Itô calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Stochastic differential equations . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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Chapter 1

Mathematical Preliminaries and

Outline

1.1 Introduction

Stochastic differential equations (SDEs), and in particular, stochastic ordinary differential equa-

tions (SODEs) include a stochastic component which describes the randomness within the dif-

ferential equations. Thus they have many applications in areas such as engineering, physics,

finance and mathematical biology. SDEs in physics describe the motion of a particle in a noise-

perturbed force field, in particular in the harmonic oscillator [35]. SDEs are also encountered

frequently in the theory of lasers, chemical kinetics and population dynamics [21]. In finance,

SDEs are used to model the option price [45]. They also serve as the basic tool for under-

standing and implementing most important issues in interest rate modeling, and ultimately the

analysis of inflation linked products [13, 58].

The stochastic analysis based on Brownian motion, is the best approach for dealing with random

effects in SDEs. In 1827, Brown [9], observed the irregular motion of pollen particles suspended

in a stationary liquid. He noted that the path of a given particle is very irregular, having a

tangent at no point and the motions of two distinct particles appeared to be independent

[26]. Unfortunately, Brown died in 1858 without providing any kind of theory to explain
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what he had observed [14]. In 1900, Louis Bachelier [4] attempted to described fluctuations

in stock prices mathematically and combined his reasoning with the Markov1 property and

semigroups. He connected Brownian motion with the heat equation and successfully defined

other processes related to Brownian motion, such as the maximum change during a time interval

for one-dimensional Brownian motion [26]. His research work was later proved and extended

by Einstein.

Albert Einstein published one of his ground-breaking papers in 1905 [16] which was based

on the theory of Brownian motion. He showed how the motion of pollen particles in water

could be explained by a random processes due to random bombardment of the pollen by water

molecules. In his approach, he described the Brownian particle’s velocity as an Ornstein-

Uhlenbeck process and its position as a driftless Wiener process. He assumed that Brownian

motion was a stochastic process with continuous paths, independent increments, and stationary

Gaussian increments. He also derived and solved a partial differential equation (PDE) now

known as the Fokker-Planck equation [35].

In 1908, a French physicist, Paul Langevin [34], developed a successful description of Brownian

motion. Langevin’s approach of Brownian motion was slightly more general and more correct

than Einstein’s. He also described the Brownian particle’s velocity as an Ornstein-Uhlenbeck

process and its position as the time integral of its velocity. He introduced a stochastic force

pushing the Brownian particle in velocity space. He applied Newton’s second law to a represen-

tative of Brownian particle and in this way he invented the F = ma law of stochastic physics

now called the Langevin equation. Langevin’s analysis proved to have great utility in describing

molecular fluctuations in other systems including non-equilibrium thermodynamics. Einstein

and Langevin represented the two main approaches in the modeling of physical systems using

the theory of stochastic processes and in particular, diffusion processes and as a result their

research work remains current and is widely referenced and discussed [35].

Norbert Wiener [68] proposed a process as a mathematical description of Brownian motion in

1921. He used the idea of measure theory to construct Brownian motion and he proved many

properties of the paths of the Brownian motion. He developed two key properties relating to

1A Markov process is sometimes referred to as a memory-less stochastic process.
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stochastic integration: that, (1) the paths of Brownian motion have nonzero finite quadratic

variation; and (2) the paths of Brownian motion have infinite variation on compact time in-

tervals, almost surely. He also constructed a multiple integral, known today as the Multiple

Wiener Integral. In recognition of his research work, his construction of Brownian motion is of-

ten referred to as the Wiener process. The Wiener process was discovered to have exceptionally

complex mathematical properties [26].

The fundamentals of stochastic integration were laid down by Kolmogorov [30]. In his research,

he developed a large part of his theory of Markov processes. He demostrated that the continuous

Markov processes depended essentially on only two parameters: one for the size of the random

part or the diffusion component and the other for the speed of the drift. He then connected the

probability distributions of the processes to the solutions of partial differential equations which

he solved and are now known as Kolmogorov equations. Since the Itô integrals were unavailable

at that time, Kolmogorov relied on the analysis of the semigroup and its infinitesimal generator

and the resulting PDEs [26].

Kiyosi Itô used terms and tools from measure theory to develop the theory on a probability

space and his first research paper [24] on stochastic integration was published in 1944. In his

effort to model the Markov processes, he constructed SDE. Furthermore, Itô [25] stated and

proved what is now known as the Itô formula2. Itô knew that it was impossible to integrate all

continuous stochastic processes. One of his key visions was to restrict his space of integrands to

those that were adapted to the underlying filtration of σ-algebras generated by the Brownian

motion [26]. Itô developed the so-called Itô calculus which extends the rules and methods from

classical calculus to stochastic processes such as a Wiener process.

1.2 Itô calculus

A stochastic process is a mathematical model of a probability experiment that evolves in time

and generates a sequence of numerical values. Each numerical value in the sequence can be

modeled by a random variable, so a stochastic process is simply a sequence of random variables.

2The Itô formula provides the chain rule for differentials in the stochastic context.
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This section reviews basic concepts and results on the Brownian motion and stochastic calculus.

Some definitions and properties of stochastic processes which can be found in [2, 3, 20, 46, 54, 58]

are presented.

1.2.1 Stochastic differential equations

Definition 1.1. A continuous and adapted stochastic process Xi(t, ω) is called an Itô process

if it can be expressed in the form,

Xi(t, ω) = Xi(0, ω) +

∫ t

0

fi(s,X(s, ω))ds+

∫ t

0

gi(s,X(s, ω))dW (s) (i = 1, . . . , n). (1.1)

In differential form, this is expressed as,

dXi = fi(t,X(t, ω))dt+ gi(t,X(t, ω))dW (t), (1.2)

where the drift rate f and the volatility g are given adapted stochastic processes. The Wiener

process, W (t), defined on some probability space (Ω,F ,P) is the stochastic process which

provides an adequate model for Brownian motion. Since the Wiener process is of unbounded

variation, the second integral in (1.1) is interpreted as a stochastic integral [46]. �

1.2.2 Stochastic processes

Let Ω be a set of elementary events ω, F is a σ-algebra of subsets of Ω and P is a probability

measure on F . The triple (Ω,F ,P) is called a probability space. The non-decreasing family of

σ-algebras Ft is also called a filtration and the σ-algebra F is denoted by F = (Ft)t≥0.

Definition 1.2. A probability measure P is a function mapping F into [0, 1] with the following

properties [54]:

1. P(Ω)=1,

2. If A1, A2, . . . is a sequence of disjoint sets in F , then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai).

�
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Definition 1.3. A family F = (Ft)t≥0 of σ-algebras is a filtration, if Fs ⊆ Ft for s, t ∈ T with

s < t [2]. �

Definition 1.4. A stochastic process X on (Ω, F , P) is a collection of random variables

{X(t, ω)}t∈T , where T is some index set and Ω is the common sample space of the random

variables [3]. �

A stochastic process {X(t)}t≥0 is said to be adapted to (Ft)t≥0 if X(t) is Ft-measurable for

each t. Denoting the Borel σ-algebra on [0,∞) by B, the process X is called measurable if

(t, ω) 7−→ X(t, ω) is a B ⊗ F -measurable mapping. The process X is said to be continuous if

the trajectories t 7−→ X(t, ω) are continuous for almost all ω ∈ Ω. It is called progressively

measurable if X : [0, t]×Ω 7−→ R is a B([0, t])⊗Ft-measurable mapping 0 ≤ t ≤ ∞. Note that

a progressively measurable process is measurable and adapted.

Remark: For brevity, we write X(t) or {X(t)}t≥0 instead of X(t, ω) or {X(t, ω)}(t,ω)∈Ω×T .

Definition 1.5. Let X1, X2, . . . be a sequence of random variables. We say that these random

variables are independent if for every sequence of sets A1 ∈ σ(X1), A2 ∈ σ(X2) . . . and for every

positive integer n, P(A1 ∩ A2 ∩ · · ·An) = P(A1)P(A2) · · ·P(An) [54]. �

Definition 1.6. A real-valued stochastic process W (t) is called a Wiener process [2, 46, 54] if:

1. the map s 7−→ W (s, ω) is continuous almost surely (a.s.),

2. W (t)−W (s) is N(0, t− s) for all 0 ≤ s ≤ t and

3. if for all times 0 < t1 < t2 · · · < tn, the random variablesW (t1),W (t2)−W (t1), · · · ,W (tn)−

W (tn−1) are independent increments. �

A Wiener process is said to be standard if it satisfies the following properties:

1. W (0, ω) = 0 almost surely,

2. EW (t) = 0 for all t ≥ 0,

3. EW 2(t) = t for all t ≥ 0.
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Definition 1.7. Let {X(t)}t≥0 be a stochastic process adapted to Ft. Assume that E {|X(t)|} <

0 for t ∈ T . The process X is a martingale with respect to Ft if E {X(t)|Fs} = X(s) for each

s < t [2]. �

Definition 1.8. A family of integer valued random variable X = {Xn}∞n=0 defined on a

probability space is a Markov chain if

P {Xn+1 = in+1|Xn = in, . . . , X0 = i0} = P {Xn+1 = in+1|Xn = in}

for all n ≥ 0 and i0, . . . , in+1 ∈ Z [2]. �

The Markov chain property means that the future Xn+1 of the stochastic process X depends

on the history of the process Xn, . . . , X0, only through the value of the process right now Xn

(but not on how that value was obtained).

Some properties of the Itô integral

The stochastic processes X and Y satisfy the following [2, 46]:

1. The Itô integral

∫ t

0

X(r)dW (r) is well-defined for 0 ≤ t ≤ T ,

2. The Itô isometry property: E

(∫ t

0

X(r)dW (r)

)2

=

∫ t

0

E
(
X2(r)

)
dr for 0 ≤ t ≤ T ,

3. E

(∫ t

0

X(r)dW (r)

∫ t

0

Y (r)dW (r)

)
=

∫ t

0

E (X(r)Y (r)) dr for 0 ≤ t ≤ T ,

4.

∫ t

0

(aX(r) + bY (r)) dW (r) = a

∫ t

0

X(r)dW (r) + b

∫ t

0

Y (r)dW (r) for all a, b ∈ R and

0 ≤ t ≤ T ,

5.

∫ t

0

X(r)dW (r) is Ft-measurable for 0 ≤ t ≤ T ,

6.

{∫ t

0

X(r)dW (r)

}
t≥0

is continuous and progressively measurable with probability one.

6



1.2.3 Itô formula

The key tool to solve SDEs is the Itô formula, which is a stochastic version of the chain rule in

calculus. Itô formula is often used in stochastic calculus to find differentials of the stochastic

process that depends on time. It may be used to obtain closed form solutions for some SDEs.

Theorem 1.1. (The 1-dimensional Itô formula)

Assume Φ(t) : R× [0, T ] −→ R is continuous and that Φt,Φx,Φxx exist and are continuous. Set

{Y (t) = Φ(t,X(t))} .

Then Y has the stochastic differential

dY = L0Φ(t,X(t))dt+ L1Φ(t,X(t))dW (t), (1.3)

where the partial differential operators L0 and L1 are defined as

L0 =
∂

∂t
+ f

∂

∂x
+

1

2
g2 ∂

2

∂x2
(1.4)

and

L1 = g
∂

∂x
. (1.5)

The first two terms in L0 correspond to the known chain rule in classical calculus and the last

term appears in stochastic calculus since the Wiener process is not of bounded variation. This

comes from the fact that the Brownian motion moves too quickly and so second order effects are

not negligible. According to the rules of Brownian motion, the stochastic term dW 2(t) = dt.

1.2.4 Generalized Itô formula

The Itô formula can be written in n-vector form with the stochastic differential

dX(t) = F (t)dt+G(t)dW(t), (1.6)

where W(t) = (W1(t), · · · ,Wm(t))T is an m-dimensional Wiener process with independent

components, F (t) = (f1(t), · · · , fn(t))T where an n-vector function with probability 1 and

7



G(t) = {gij(t)} is an n×m-matrix function. In component form (1.6) can be written as

dxi(t) = fidt+
m∑
j=1

gijdWj. (1.7)

Hence, the Itô formula, which is established similarly to the one-dimensional case, becomes

dΦ =

(
∂Φ

∂t
+

n∑
i=1

fi
∂Φ

∂xi
+

n∑
i,j=1

m∑
k=1

1

2

∂2Φ

∂xi∂xj
gikgjk

)
dt+

n∑
i=1

∂Φ

∂xi

m∑
j=1

gijdWj. (1.8)

In vector-matrix notation, (1.8) can be written

dΦ =

(
Φt + fΦx +

1

2
tr(ggT )Φxx

)
dt+ gΦxdW, (1.9)

where tr denotes the trace operator and tr(ggT ) =
∑
i,j

∂2

∂xi∂xj
g2
ij.

1.2.5 Solving SDEs

SDEs are classified into two large groups: linear and nonlinear. Linear SDEs are explicitly

solvable. Solving the SDEs requires an existence and uniqueness theorem.

Theorem 1.2. (Existence and Uniqueness) Let T > 0 and let f, g (f : [0, T ]×R −→ R, g :

[0, T ]× R −→ R) be measurable functions satisfying a linear growth condition

|f(t, x)|+ |g(t, x)| ≤ k1(1− |x|) for all x ∈ R, t ∈ [0, T ],

for some positive constant k1. To ensure uniqueness, the Lipschitz condition,

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ k2 |x− y| for all x ∈ Rn, t ∈ [0, T ],

is sufficient for some positive constant k2. Let X0 be a random variable which is independent

of FWT , the σ-algebra generated by (W (s) : 0 ≤ s ≤ T ), and E |X0|2 <∞. Then the SDE (1.1)

has a unique t-continuous solution X(t) with the properties that

1. X(t) is adapted to FWT ∨ σ(X0);

2. E

(∫ T

0

|X(t)|2 dt
)
<∞.

This ensures that X(t) does not tend to ∞ in finite time. Such an existence and uniqueness

theorem also exists in the multidimensional case.

8



1.2.6 Types of solutions

Definition 1.9. A strong solution of the SDE (1.1) is a stochastic process X with continuous

sample paths and the following properties [2]:

1. X is adapted to the filtration (F)

2. P[X0 = 0] = 1

3. P
[∫ t

0

(
|f(s,X(s))|+ g2(s,X(s))

)
ds <∞

]
= 1, 0 ≤ t <∞. �

Definition 1.10. A weak solution of the SDE (1.1) is a triple Ft, (X,W ), (Ω,F ,P) where

1. (Ω,F ,P) is a probability space and Ft is a filtration of σ-subalgebra of F satisfying the

usual conditions.

2. X = (X(t),Ft)0≤t<∞ is a continuous, adapted Rn-valued process and (3) above, the

stochastic version of equation (1.2) are satisfied [2]. �

Therefore, a solution is a weak solution if it is valid for given coefficients but with an

unspecified Wiener process. This implies that its probability law is unique .

Remark: A strong solution is obtained if the driving Wiener process is given in advance as

part of the problem such that the obtained solution to the SDE (1.1) is Ft-adapted where Ft
is the σ-algebra generated by a Wiener process. A strong solution is also a weak solution but

the converse is not true in general.

1.2.7 Linear SDEs

If the functions f(t, x) and g(t, x) are linear with respect to the variable x, that is, f(t, x) =

f1(t)X(t) + f2(t) and g(t, x) = g1(t)X(t) + g2(t), then

dX(t) = [f1(t)X(t) + f2(t)]dt+ [g1(t)X(t) + g2(t)]dW (t) (1.10)

is called a linear SDE. A linear SDE is autonomous if all coefficients are constants, homogeneous

if f2 = g2 = 0 and in a narrow sense linear when g1 = 0.
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Theorem 1.3. The solution X(t) of the non-homogeneous linear SDE (1.10) can be written

as

X(t) = γ(t)

[
X0 +

∫ t

0

(f2(s)− g1(s)g2(s)) γ−1(s)ds+

∫ t

0

g2(s)γ−1(s)dW (s)

]
, (1.11)

where

γ(t) = exp

[∫ t

0

(
f1(s)− 1

2
g2

1(s)

)
ds+

∫ t

0

g1(s)dW (s)

]
. (1.12)

In case of linear SDE in the narrow sense, equation (1.1) reduces to

X(t) = γ(t)

(
X0 +

∫ t

0

f2(s)γ−1(s)ds+

∫ t

0

g2γ
−1(s)dW (s)

)
(1.13)

where

γ(t) = exp

(∫ t

0

f1(s)ds

)
. (1.14)

1.2.8 Reducing scalar SDEs

Suppose a smooth function Φ(t, x) has an inverse δ(t, y) such that Φ(t, δ(t, x)) = x and

δ(t,Φ(t, x)) = x. Applying the Itô formula to (1.2) the stochastic process Y (t) = Φ(t,X(t))

satisfies the equation

dY (t) = f̄(t, Y (t))dt+ ḡ(t, Y (t))dW (t), (1.15)

where

f̄(t, y) =

(
Φt + fΦx +

1

2
tr(ggT )Φxx

)
(t, δ(t, y)) (1.16)

and

ḡ(t, y) = (gΦx)(t, δ(t, y)). (1.17)

Equation (1.2) is said to be reducible if such a function Φ can be found such that the functions,

f̄ and ḡ given by (1.16) and (1.17) respectively are independent of y.

The problem of finding reducible SDEs using the Itô formula is solvable if a function Φ(t, x)

satisfies the conditions:
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(
Φt + fΦx +

1

2
g2Φxx

)
(t, x) = f̄(t), (1.18)

and

(gΦx) (t, x) = ḡ(t), (1.19)

where g 6= 0. Re-writing equation (1.19) we obtain

Φx =
ḡ

g
. (1.20)

Differentiating equation (1.18) and (1.20) with respect to x gives

Φxt +
∂

∂x

(
fΦx +

1

2
g2Φxx

)
= 0, (1.21)

and

Φxx = − ḡgx
g2
. (1.22)

Differentiating equation (1.20) with respect to t gives

Φxt =
ḡ′g − ḡgt

g2
. (1.23)

Substituting (1.20), (1.22) and (1.23) into (1.21) gives

ḡ′
g
− ḡ

g2
gt + ḡ

∂

∂x

(
f

g

)
− 1

2
ḡgxx = 0.

Therefore,
ḡ′
ḡ

= g

[
1

g2
gt −

∂

∂x

(
f

g

)
+

1

2
gxx

]
. (1.24)

Since the left side of (1.24) is independent of x, it follows that

∂

∂x

[
g

(
1

g2
gt −

∂

∂x

(
f

g

)
+

1

2
gxx

)]
= 0. (1.25)

If (1.25) holds then Φ can be computed from (1.20) and ḡ 6= 0 can be determined from (1.24).

Since (1.24) and (1.21) are equivalent, the function f̄ obtained in this case by (1.16) is inde-

pendent of x. Hence the following theorem holds:

Theorem 1.4.

Equation (1.2) is reducible if and only if the coefficient functions f and g satisfy (1.25).
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Remark: Linear equations are in general irreducible. A homogeneous SDE and narrow-sense

linear SDEs are reducible if condition (1.25) satisfies

g′1g2 + g1(f1g2 − f2g1 − g′2) = 0.

Nonhomogeneous linear SDEs can be solved explicitly by a variation of parameters method as

in ODEs but in general are also not reducible.

Reducible conditions were used in [62] to find the the invertible transformations that linearize

first-order SODEs. The conditions were then extended to second-order SODEs [40] and to jump

diffusion second-order SODEs [49].

1.3 Lie group analysis

The Lie group theory is a very general and useful tool for finding analytical solutions of large

classes of differential equations. The concept of symmetries of differential equations was intro-

duced by Sophus Lie in 1870. Lie [36] provided a group classification of linear second-order

partial differential equations in two independent variables. He [37] further used group theoret-

ical methods to provide a classification of all ordinary differential equations of arbitrary order

in terms of their symmetry group. Later this classification was obtained in a different way [47]

by directly solving the determining equations and exploiting the equivalence transformations.

The application of Lie group analysis to Itô SODEs has been successfully performed [1, 43, 65,

59, 17, 18, 31, 32]. It has since been applied to stochastic dynamical systems [1, 43] and to

the Fokker-Planck equations [19]. However, these approaches considered the restricted cases

of point transformations only. An algorithm for obtaining Lie point symmetries for both the

first-order and n-th order SODEs can be found in [65]. Some of the symmetries obtained in [65]

were not projectable and hence do not belong to the Lie algebra associated with the Fokker-

Planck equations. Ünal [59] included a Brownian motion in his transformation. Unfortunately,

there was no proof that the transformation of Brownian motion satisfies the properties of the

Brownian motion [39]. A Lie group of transformations was constructed that involves both the

dependent and the Brownian motion in the transformations in [39]. This work was reviewed
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and corrected in [18].

1.3.1 Stochastic integrals as time change of Wiener process

We provide the mathematical tools required for defining the transformation of Brownian motion.

The constructions below are similar to those in [46].

Let η(t, ω) be the time change rate and α(t, ω) be a scalar stochastic process satisfying

• α(0, ω) = 0,

• dα(t, ω)/dt = 1/η(α(t), ω) ≥ 0, for almost all positive time and almost all ω ∈ Ω,

• There is a stochastic process β(t, ω), such that α(β(t, ω), ω) = β(α(t, ω), ω) = t for all

(t, ω) ∈ T × Ω.

Then, under the (random) time change t̄ = α(t, ω), the Wiener process W (t) is mapped to

another process W̄ (t̄) according to the relation:

dW̄ (t̄) =

√
dα(t)

dt
dW (t).

1.3.2 Determining equations

Consider the infinitesimal group of transformations

t̄ = t̄(t,x, ε) ≈ t+ h(t,x)ε, x̄i = x̄i(t,x, ε) ≈ xi + ξi(t,x)ε, (1.26)

which leaves equation (1.2) and the framework of Itô calculus invariant. The general form of

the infinitesimal generator is

H = h(t,x)
∂

∂t
+ ξi(t,x)

∂

∂x
(i = 1, . . . , n). (1.27)

The infinitesimal generator is used in the transformation of the drift and diffusion coefficients of

equation (1.2). The Lie point theorem symmetry approach for ODEs requires the coefficients

of the admitted generator h and ξi in its analysis. In the SODEs framework these entities
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are functionally based on the stochastic process {X(t)}. The determining equations for the

coefficients of the admitted generator h = h(t) and ξi = ξi(t,x) are [59]:

ξi,t +ξi,jfj + 1
2
ξi,jlgjgl − fi,th−fi,jξj − fih′ = 0, (1.28)

ξi,jgj − gi,th−
1

2
gih
′ − gi,jξj = 0. (1.29)

The determining equations (1.28) and (1.29) for an admitted Lie group of transformation were

constructed under the assumption that transformations (1.27) transform any solution of equa-

tion (1.2) into a solution of the same equation.

1.4 Outline

The rest of this thesis is organized as follows: In Chapter 2, we use algebraic methods and find

the group classification of systems of two linear second-order ODEs. The algebraic approach

enables one to identify the class of differential equations to which the system presented by par-

ticular model belongs. This enables one to construct generalizations based upon the algebraic

properties of the original system. In Chapter 3, we present the linearization criteria for systems

of two second-order SODEs. One of the main reasons for studying the linearization problem is

the possibility of finding the general solution or a class of transformations that can be applied

to systems of equations to lead to their general solution(s). Chapter 4, the underlying group

theoretic properties of a system of two linear second-order SODEs with constant coefficients

is considered. We additionally solved a group classification problem as it applies to stochastic

processes. We conclude with a discussion and future research in Chapter 5.
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Chapter 2

Complete Group Classification of

Systems of Two Linear Second-Order

Ordinary Differential Equations: The

Algebraic Approach

2.1 Introduction

Systems of second-order ordinary differential equations appear in the modeling of many physical

phenomena. A main feature of these differential equations is their symmetry properties. The

theory of group analysis has been well studied in the literature. The presence of symmetries

allows one to reduce the order of these equations or even find a general solution in quadratures.

Linear equations play a significant role among all ordinary differential equations. They are

considered as a first approximation of the model being studied. In applications, linear equations

often occur in disguised forms. In the study of the symmetries, it is convenient to rewrite the

equations in their simplest equivalent form. We note that equations equivalent with respect

to a change of the dependent and independent variables possess similar symmetry properties.

This leads to a classification problem.
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Systems of two linear second-order ordinary differential equations were studied in [64] where a

new canonical form,

y′′ = a(x)y + b(x)z

z′′ = c(x)y − a(x)z,

was obtained. For this canonical form, the number of arbitrary elements is reduced. The group

classification problem is usually simpler after reducing the number of arbitrary elements. In this

paper, the authors also gave a representation of several admitted Lie groups. In addition it was

also proved that a system of two linear second-order ordinary differential equations can have 5,

6, 7, 8 or 15 point symmetries. However the exhaustive list of all distinguished representatives

of systems of two linear second-order ordinary differential equations was not obtained there.

The main objective of this paper is to use the algebraic approach where the determining equa-

tions presented in [44] are solved up to finding relations between constants defining the admitted

generators.

The algebraic approach takes into account algebraic properties of Lie groups admitted by a

system of equations: the knowledge of the algebraic structure of admitted Lie algebras allows

for significant simplification of the group classification. In particular, the group classification of

a single second-order ordinary differential equation, done by the founder of the group analysis

method, S. Lie [36, 37], cannot be performed without using the algebraic structure of admitted

Lie groups. Recently, the algebraic properties for group classification were applied in [15, 7,

51, 52, 53, 12, 27, 22]. We also note that the use of the algebraic structure of admitted Lie

groups completely simplified the group classification of equations describing behavior of fluids

with internal inertia in [55, 63].

In the present paper, we obtain a complete group classification of the general case of linear

systems of two second-order ordinary differential equations,

y′′ = F (x, y, z), z′′ = G(x, y, z),

by using an algebraic approach. The system considered in this case is a generalization of Lie’s

study [37]. Excluded from our consideration is the studied earlier systems of second-order
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ordinary differential equations with constant coefficients of the form

y′′ = My, (2.1)

where M is a matrix with constant entries and y =

 y

z

. These cases of systems have been

studied in [8, 67, 41, 10, 11]. We also exclude from the analysis the degenerate case given as

follows:

y′′ = F (x, y, z), z′′ = 0. (2.2)

It is worth mentioning here that the complete group classification of two linear second-order

ordinary differential equations has been done recently in [44]. The following four cases of linear

systems of equations with none inconstant coefficients were obtained:

F = α11y + exz, G = e−xα21y + α22z, (2.3)

F = y(sin(x) + c2) + z(cos(x)− c1),

G = y(cos(x) + c1) + z(− sin(x) + c2),
(2.4)

F = y(α11 + x) + z(α12 + (α22 − α11)x− x2),

G = y + z(−x+ α22),
(2.5)

F = yc+ z,G = −y + zc (2.6)

where αij and ci (i, j = 1, 2) are constant, c = c(x) and α21c
′ 6= 0. These systems have the

following nontrivial admitted generators:

System Admitted Generator

(2.3) ∂x − z∂z
(2.4) 2∂x + z∂y − y∂z
(2.5) ∂x + z∂y

(2.6) z∂y − y∂z.

We note that the approach used in [44] is different from the approach used in the present paper.

Since there is an opinion that the algebraic approach is more efficient, the present paper can

be a good example for comparing these two approaches. We show here that for the problem
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of classifying systems of two linear second-order ordinary differential equations the algebraic

approach leads to the study of a variety of cases, although the analysis of these cases is not

complicated.

The paper is organized as follows: The first part of the paper deals with the preliminary study

of systems of two second-order linear equations followed by the group classification method as

applied to linear systems of equations. The subsequent subsections deal with the equivalence

transformations, determining equations and the optimal system of subalgebras. The later part

lists the different cases with their respective results. This is then followed by the results and

conclusion.

2.2 Preliminary study of systems of linear equations

Linear second-order ordinary differential equations have the following form,

y′′ = B(x)y′ + A(x)y + f(x), (2.7)

where A(x) and B(x) are n × n matrices, and f(x) is a vector. Using a particular solution

yp(x) and the change of variable,

y = ỹ + yp,

one can without loss of generality assume that f(x) = 0. Applying the change

y = C(x)ȳ,

where C = C(x) is a nonsingular matrix, system (2.7) becomes

ȳ′′ = B̄ȳ′ + Āȳ, (2.8)

where

B̄ = C−1(BC − 2C ′), Ā = C−1(AC +BC ′ − C ′′).

If one chooses the matrix C(x) such that

C ′ =
1

2
BC,
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then

B̄ = 0, Ā = C−1

(
A+

1

4
B2 − 1

2
B′
)
C. (2.9)

The existence of the nonsingular matrix C(x) is guaranteed by the existence of the solution of

the Cauchy problem,

C ′ =
1

2
BC, C(0) = E,

where E is the unit n× n matrix.

If the matrices A and B are constant, then the matrix Ā in (2.9) is constant only for commuting

matrices A and B. The complete study of noncommutative constant matrices, A and B, was

done recently in [42]. Without loss of generality, up to equivalence transformations in the class

of systems of the form (2.7), it suffices to study the systems of the form

y′′ = Ay. (2.10)

Applying the change of the dependent and independent variables [44]

x̃ = ϕ(x), ỹ = ψ(x)y (2.11)

satisfying the condition
ϕ′′

ϕ′
= 2

ψ′

ψ
, (2.12)

system (2.10) becomes

ỹ′′ = Ãỹ, (2.13)

where

Ã = ϕ′−2

(
A− ρ′′

ρ
E

)
, ρ =

1

ψ
.

For reducing the number of entries of the matrix Ã, one can choose the function ψ such that1

tr Ã = 0. This condition leads to the equation

ρ′′ − tr A

n
ρ = 0. (2.14)

1 This change was used in [64] for the case of n = 2
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In particular, for matrices with tr A = 0 choosing ρ = c1x + c2, the matrix Ã still satisfies the

condition tr Ã = 0. Here,

ψ = (c1x+ c2)−1, ϕ′ = k0ψ
2 = k0(c1x+ c2)−2, (2.15)

where k0 is constant.

2.3 Group classification

For the group classification of systems of two linear second-order ordinary differential equations,

we consider a system of equations (2.10) with a matrix

A =

 a(x) b(x)

c(x) −a(x)

 .

Any linear system of ordinary differential equations (2.10) admits the following trivial generators

y∂y + z∂z, (2.16)

h(x)∂y + g(x)∂z, (2.17)

where (2.16) is the homogeneity symmetry and (h(x), g(x))t is any solution of system (2.10).

For the classification problem one needs to study equations which admit generators different

from (2.16) and (2.17).

2.3.1 Equivalence transformations

Calculations show that the equivalence Lie group is defined by the generators:

Xe
1 = x(x∂x + y∂y + z∂z − 4a∂a − 4b∂b − 4c∂c),

Xe
2 = 2x∂x + y∂y + z∂z − 4a∂a − 4b∂b − 4c∂c,

Xe
3 = ∂x, Xe

4 = y∂z − b∂a + 2a∂c, X
e
5 = z∂y + c∂a − 2a∂b,

Xe
6 = y∂y − z∂z − 2b∂b + 2c∂c, Xe

7 = y∂y + z∂z.
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The transformations corresponding to the generator Xe
1 define transformations of the form

(2.15). The transformation corresponding to Xe
2 and Xe

3 define the dilation and shift of x,

respectively. The transformations corresponding to the generatorXe
4 , Xe

5 ,Xe
6 andXe

7 correspond

to the linear change of the dependent variables ỹ = Py with a constant nonsingular matrix P .

2.3.2 Determining equations

According to the Lie algorithm [47], the generator

X = ξ(x, y, z)
∂

∂x
+ η1(x, y, z)

∂

∂y
+ η2(x, y, z)

∂

∂z

is admitted by system (2.10) if it satisfies the associated determining equations. One can show

that the admitted generator has the property that ξ2
y + ξ2

z 6= 0 if and only if system (2.10)

is equivalent to free particle equations [44]. Hence, one obtains ξ = ξ(x). The determining

equations are

b(ξ′z + zq4 + yq3) + a(ξ′y + zq2 + yq1) + 2(a′y + b′z)ξ − ξ′′′y + (3ξ′ − q1)(ay + bz)

−q1(cy − az) = 0,

and

−a(ξ′z + zq4 + yq3) + c(ξ′y + zq1 + yq2) + 2(c′y − a′z)ξ − ξ′′′z − q3(ay + bz)

+(3ξ′ − q4)(cy − az) = 0,

where an admitted generator has the form

X = 2ξ(x)∂x + (yξ′(x) + q1y + q2z)∂y + (ξ′z + q3y + q4z)∂z

and qi, (i = 1, ..., 4) are constant. We exclude the trivial admitted generators (2.17).

Splitting the determining equations with respect to y and z leads to ξ′′′ = 0 and the equations2

2a′ξ + 4aξ′ + bq3 − cq1 = 0, (2.18)

2b′ξ + 2aq1 + b(4ξ′ + q4 − q2) = 0, (2.19)

2These equations coincide with equations (32)-(34) of [64], where the constants from [64] are s0 = q1, r0 =

q2, p0 = q3, q0 = q4. The difference is that in our study, there is no necessity at this stage of the assumption

b 6= 0 comparing with [64].
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2c′ξ − 2aq3 + c(4ξ′ − q4 + q2) = 0. (2.20)

Since ξ(3) = 0 or ξ = a1x
2 + a2x+ a3, the admitted generators have the form

X = a1X1 + a2X2 + a3X3 + q3X4 + q1X5 +
q2 − q4

2
X6 +

q2 + q4

2
X7,

where

X1 = x(x∂x + y∂y + z∂z), X2 = 2x∂x + y∂y + z∂z, X3 = ∂x,

X4 = y∂z, X5 = z∂y, X6 = y∂y − z∂z, X7 = y∂y + z∂z.

In addition, since the generator X7 is the trivial admitted generator (2.16), one can assume that

q4 = −q2. The constants a1, a2, a3, q1, q2 and q3 depend on the functions a(x), b(x) and c(x).

These relations are defined by equations (2.18)-(2.20), and they present the group classification

of linear systems of two second-order ordinary differential equations.

One of the methods for analyzing relations between the constants consists of employing the

algorithm developed for the gas dynamics equations [47]. This algorithm allows one to study

all possible admitted Lie algebras without omission. Unfortunately, it is difficult to implement

for system (2.10). Observe also that in this approach it is difficult to select out equivalent cases

with respect to equivalence transformations.

In [53, 27, 22]3 a different approach was applied for group classification. In most applications the

algebraic algorithm essentially reduces the study of group classification to a simpler problem.

Here, we follow this approach. For further analysis we study the Lie algebra L6 spanned by the

generators X1, X2, ..., X6.

3See also references therein.
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2.3.3 Optimal system of subalgebras of L6

The Lie algebras L6 = L
(1)
3 ⊕ L

(2)
3 , where L

(1)
3 = {X1, X2, X3}, L(2)

3 = {X4, X5, X6}. The

commutator table can be split into two tables:

X1 X2 X3

X1 0 −2X1 −X2

X2 2X1 0 −2X3

X3 X2 2X3 0

X4 X5 X6

X4 0 X6 −2X4

X5 −X6 0 2X5

X6 2X4 −2X5 0.

Denoting

X1 = e1, X2 = −2e2, X3 = e3,

one can show that the commutator table of the algebra L
(1)
3 becomes

e1 e2 e3

e1 0 e1 2e2

e2 −2e2 0 e3

e3 −2e2 −e3 0.

Hence, the Lie algebra 4 L
(1)
3 is sl(2,R). One also can check that L

(2)
3 is sl(2,R) by denoting

X4 = −e1, X5 = e3, X6 = −2e2.

Notice that an optimal system of subalgebras of the Lie algebra sl(2,R) classification was per-

formed in [50] and it consists of the following list:

{e2}, {e3}, {e1 + e3}, {e2, e3}, {e1, e2, e3}. (2.21)

Then, the optimal systems of subalgebras of L
(1)
3 and L

(2)
3 are

{X2}, {X3}, {X1 +X3}, {X2, X3}, {X1, X2, X3} (2.22)

4This Lie algebra is Lie algebra of type VIII in the Bianchi classification.
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and

{X5}, {X6}, {X4 −X5}, {X5, X6}, {X4, X5, X6}, (2.23)

respectively.

2.3.4 Relations between automorphisms and equivalence transfor-

mations

Let us consider an operator

X = x1X1 + x2X2 + x3X3 + x4X4 + x5X5 + x6X6

Automorphisms of the Lie algebra L6 are

A1 : x̄1 = x1 + 2ax2 + a2x3, x̄2 = x2 + ax3;

A2 : x̄1 = x1e
a, x̄3 = x3e

−a;

A3 : x̄2 = x2 + ax1, x̄3 = x3 + 2ax2 + a2x1;

A4 : x̄4 = x4 − 2ax6 − a2x5, x̄6 = x6 + ax5;

A5 : x̄5 = x5 + 2ax6 − a2x4, x̄6 = x6 − ax4;

A6 : x̄4 = x4e
a, x̄5 = x5e

−a.

Here and further on, only changeable coordinates are presented.

One can show that actions of equivalence transformations are similar to actions of the automor-

phisms. These properties allow one to use an optimal system of subalgebras of the Lie algebra

L6 for group classification.

In fact, using the change of the dependent and independent variables corresponding to the

equivalence transformation (2.11) with

ϕ =
x

1− τx
, ψ = (x+ τ)−1,

the operator

X = x1X1 + x2X2 + x3X3 + x4X4 + x5X5 + x6X6
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becomes

X = x̄1X̄1 + x̄2X̄2 + x̄3X̄3 + x̄4X̄4 + x̄5X̄5 + x̄6X̄6,

where

X̄1 = x̄(x̄∂x̄ + ȳ∂ȳ + z̄∂z̄), X̄2 = 2x̄∂x̄ + ȳ∂ȳ + z̄∂z̄, X̄3 = ∂x̄,

X̄4 = ȳ∂z̄, X̄5 = z̄∂ȳ, X̄6 = ȳ∂ȳ − z̄∂z̄,

and the changeable coefficients are

x̄1 = x1 + 2x2τ + x3τ
2, x̄2 = x2 + x1τ.

Hence, the change of the dependent and independent variables corresponding to the equivalence

transformation Xe
1 is similar to the automorphism Aut1. This property we denote as Xe

1 Aut1.

Similarly, one can check that Xe
i
∼= Auti, (i = 2, 3, ..., 6). Using the two-step algorithm of

constructing an optimal system of subalgebras [48], and the optimal systems of subalgebras

(2.22) and (2.23), one obtains an optimal system of one-dimensional subalgebras of the Lie

algebra L6 which consists of the following set of subalgebras

1.1. X2 + γ(X4 −X5) 3.1. X1 +X3 + γ(X4 −X5)

1.2. X2 + γX5 3.2. X1 +X3 + γX5

1.3. X2 + γX6 3.3. X1 +X3 + γX6

2.1. X3 + γ(X4 −X5) 4.1. X4 −X5

2.2. X3 + γX5 4.2. X5

2.3. X3 + γX6 4.3. X6

where γ is an arbitrary constant.

2.4 Solutions of the determining equations

We obtained the condition that for the group classification one needs to construct solutions of

equations (2.18)-(2.20), where the constants are

a1 = x1, a2 = x2, a3 = x3, q3 = x4, q1 = x5, q2 = x6, q4 = −x6.
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Here, xi (i = 1, 2, ..., 7) are coordinates of the generator

X = x1X1 + x2X2 + x3X3 + x4X4 + x5X5 + x6X6

chosen from the optimal system of subalgebras.

Note that the subalgebra with the generator X3 corresponds to equations with constant coef-

ficients. One can also check that using equivalence transformation (2.11) with corresponding

function x̄ = ψ(x), the generators presented in the optimal system of subalgebras for γ = 0 are

reduced to the generator X̄3 = ∂x̄. Hence, we only need to consider the cases where γ 6= 0.

Subalgebra 1.1 with generator X2 + γ(X4 −X5).

In this case, equations (2.18)-(2.20) become

2xa′ + 4a+ γ(b+ c) = 0,

xb′ + 2b− γa = 0,

xc′ + 2c− γa = 0.

(2.24)

Applying the change,

a = x−2ā, b = x−2b̄, c = x−2c̄,

equation (2.24) is reduced to the equations

2xā′ + γ(b̄+ c̄) = 0,

xb̄′ − γā = 0,

xc̄′ − γā = 0.

(2.25)

From the last two equations of (2.25), one finds that b̄ = c̄+k, where k is a constant. Denoting

c̄ = c̃− k/2, the remaining equations of (2.25) become

xā′ + γc̃ = 0,

xc̃′ − γā = 0.
(2.26)

Then, from the second equation of (2.26), one finds

ā = γ−1xc̃′.
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The first equation of (2.26) becomes

x2ā′′ + xā′ − γ2ā = 0.

This is the Euler type equation with general solution

ā = k1 sin(γ lnx) + k2 cos(γ lnx).

Finally, we obtain

a =
k1 sin(γ lnx) + k2 cos(γ lnx)

x2
, b =

k − 2k1 cos(γ lnx) + 2k2 sin(γ lnx)

2x2
,

c =
−k − 2k1 cos(γ lnx) + 2k2 sin(γ lnx)

2x2
.

We note that this case of equations (2.10) can be reduced by a point transformation to the

equations with arbitrary elements of the form (2.4).

Subalgebra 1.2 with generator X2 + γX5.

Equations (2.18)-(2.20) in this case are reduced to

2xa′ + 4a− γc = 0,

xb′ + 4b+ γa = 0,

xc′ + 2c = 0.

(2.27)

Applying the change

a = x−2ā, b = x−2b̄, c = x−2c̄,

equations (2.27) become

2xā′ − γk = 0,

xb̄′ + γā = 0,
(2.28)

where c̄ = k, k is a constant.

From the first equation of (2.28), we have

ā′ =
γk

2x
.
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From the second equation of (2.28), one obtains

x2b̄′′ + xb̄′ +
γ2k

2
= 0 (2.29)

of which the general solution is

b̄ = −γ
2k

4
(ln x)2 + k2 ln x+ k3.

Finally,

a =
k1 + γk ln x

2x2
, b =

k3 + 4k2 ln x− γ2k(ln x)2

4x2
, c =

k

x2
.

This case of equations (2.10) can be reduced by a point transformation to the equations with

arbitrary elements of the form (2.5).

Subalgebra 1.3 with the generator X2 + γX6.

Equations (2.18)-(2.20) can be expressed in this form

xa′ + 2a = 0,

xb′ + (2− γ)b = 0,

xc′ + (γ + 2)c = 0.

(2.30)

Solving (2.30), one obtains

a =
k1

x2
, b =

k2

x2−γ , c =
k3

x2+γ
.

It is observed that this case of equations (2.10) can be reduced by a point transformation to

the equations with arbitrary elements of the form (2.3).

Subalgebra 2.1 with the generator X3 + γ(X4 −X5).

In this case, we have

2a′ + γ(b+ c) = 0,

b′ − γa = 0,

c′ − γa = 0.

(2.31)
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From equations (2.31), we get

a′′ + γ2a = 0. (2.32)

Then, the solution is

a = k1 sin(γx) + k2 cos(γx), b = k1γx sin(γx) + k2γx cos(γx) + k,

c = k1γx sin(γx) + k2γx cos(γx)− k,

where k1 and k2 are constant.

We note that this case of equations (2.10) can be reduced by a point transformation to the

equations with arbitrary elements of the form (2.4).

Subalgebra 2.2 with the generator X3 + γX5.

We can write equations (2.18)-(2.20) as

2a′ − γc = 0,

b′ − γa = 0,

c′ = 0.

(2.33)

From (2.33), we have

b′′ =
γ2k

2
,

where c = k, k is the constant.

Therefore,

a =
γk

2
x+ k1, b =

γ2k

4
x2 + k1x+ k2,

where k1 and k2 are constant.

We note that this case of equations (2.10) can be reduced by a point transformation to the

equations with arbitrary elements of the form (2.5).

Subalgebra 2.3 with the generator X3 + γX6.

From equations (2.18)-(2.20), one obtains
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a′ = 0,

b′ − γb = 0,

c′ + γc = 0.

(2.34)

Therefore, the solutions to (2.34) are

a = k, b = beγx, c = ke−γx.

Hence the case of equations (2.10) can be reduced by a point transformation to the equations

with arbitrary elements of the form (2.3).

Subalgebra 3.1 with the generator X1 +X3 + γ(X4 −X5).

In this case, equations (2.18)-(2.20) become

2a′(x2 + 1) + 8ax+ γ(b+ c) = 0,

b′(x2 + 1)− γa+ 4bx = 0,

c′(x2 + 1)− γa+ 4cx = 0.

(2.35)

We solve (2.35) by applying the change

a = (x2 + 1)−2ā, b = (x2 + 1)−2b̄, c = (x2 + 1)−2c̄,

and thus, we obtain

(x2 + 1)ā′ + γ
2
(b̄+ c̄) = 0

(x2 + 1)b̄′ − γā = 0

(x2 + 1)c̄′ − γā = 0.

(2.36)

From equations (2.36)

c̄ = b̄+ k,

where k is a constant and

(x2 + 1)ā′ +
γ

2
(2b̄+ k) = 0.

Therefore,

b̄′ =
γā

x2 + 1
.
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Hence,

(x2 + 1)2ā′′ + 2x(x2 + 1)ā′ + γ2ā = 0 (2.37)

and equation (2.37) is reduced to
d2ā

dx̄2
+ γ2ā = 0

with solution

ā = k1 cos(γ arctanx) + k2 sin(γ arctanx).

Therefore,

a = (x2 + 1)−2 (k1 cos(γ arctanx) + k2 sin(γ arctanx)) ,

b = (x2 + 1)−2 (2k1 sin(γ arctanx)− 2k2 cos(γ arctanx) + k) ,

c = (x2 + 1)−2 (2k1 sin(γ arctanx)− 2k2 cos(γ arctanx)− k) .

Here the case of equations (2.10) can be reduced by a point transformation to the equations

with arbitrary elements of the form (2.4).

Subalgebra 3.2 with the generator X1 +X3 + γX5.

In this case, equations (2.18)-(2.20) become

2a′(x2 + 1) + 8ax− γc = 0,

b′(x2 + 1) + 4bx+ γa = 0,

c′(x2 + 1) + 4cx = 0.

(2.38)

Applying the change

a = (x2 + 1)−2ā, b = (x2 + 1)−2b̄, c = (x2 + 1)−2c̄,

equations (2.38) are reduced to the equations

(x2 + 1)ā′ − γ
2
k = 0,

(x2 + 1)b̄′ + γā = 0,
(2.39)

where c̄ = k, k is a constant. From the first equation of (2.39)

ā′ =
γk

2(x2 + 1)
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or

a =
γk arctan x+ k1

(x2 + 1)2
,

and the second equation of (2.39) becomes

b̄′ = −γ(k1 +
γk

2
x̄), (2.40)

where x̄ = arctan x. The solution of this equation is

b̄ = −γ
2k

4
(arctan x)2 − γk1 arctan x+ k2.

Finally,

a =
γk arctan x+ k1

2(x2 + 1)2
, b = −γ

2k(arctan x)2 + 4γk1 arctan x+ k2

4(x2 + 1)2
, c =

k

(x2 + 1)2
.

We note that this case of equations (2.10) can be reduced by a point transformation to the

equations with arbitrary elements of the form (2.5).

Subalgebra 3.3 with the generator X1 +X3 + γX6.

In this case, equations (2.18)-(2.20) become

a′(x2 + 1) + 4ax = 0,

b′(x2 + 1) + b(4x− γ) = 0,

c′(x2 + 1) + c(4x+ γ) = 0.

(2.41)

The general solution of equations (2.41) is

a =
k1

(x2 + 1)2
, b =

k2

(x2 + 1)2
eγ arctanx, c =

k3

(x2 + 1)2
e−γ arctanx.

We note that this case of equations (2.10) can be reduced by a point transformation to the

equations with arbitrary elements of the form (2.3).
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Subalgebra 4.1 with the generator X4 −X5.

In this case, we solve equations (2.18)-(2.20) to obtain

a = 0, b = −c.

This case of equations of (2.10) with c′ 6= 0 belongs to the class of equations of the form (2.6).

Subalgebra 4.2 with the generator X5.

In this case, we solve equations (2.18)-(2.20) to obtain

a = 0, c = 0.

In this case, the second equation of (2.10) is reduced to the free particle equation. This case is

excluded from our consideration.

Subalgebra 4.3 with the generator X6.

For this case, we solve equations (2.18)-(2.20) to obtain

b = 0, c = 0.

This case is also excluded from our consideration.

2.5 Discussion on solving determining equations

We note that the linear combination, where equation (2.18) is multiplied by q2 − q4, equation

(2.19) is multiplied by q3, and equation (2.20) is multiplied by q1 gives the integral

(hξ2)′ = 0,

where h = (q2 − q4)a+ q3b+ q1c. In particular, for ξ 6= 0, this gives

(q2 − q4)a+ q3b+ q1c = kξ−2,
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where k is constant. Moreover, in this case, the change

x̄ = ϕ(x), a = āξ−2, b = b̄ξ−2, c = c̄ξ−2,

where 2ϕ′ξ = 1 reduces equations (2.18)-(2.20) to the simpler form

dā

dx̄
+ b̄q3 − c̄q1 = 0,

db̄

dx̄
+ 2(āq1 − b̄q2) = 0,

dc̄

dx̄
− 2(āq3 − c̄q2) = 0.

The latter system can be rewritten in the matrix form

d

dx̄
Ā+ ĀH −HĀ = 0,

where

Ā =

 ā b̄

c̄ −ā

 , H =

 q2 q1

q3 −q2

 .

The general solution of the matrix equation is [6]

Ā = ex̄HA0e
−x̄H ,

where the matrix

A0 =

 a0 b0

c0 −a0


is a matrix with arbitrary constant entries a0, b0 and c0. The following three particular cases

of the matrix H are used earlier:

H1 =

 0 −1

1 0

 , H2 =

 0 1

0 0

 , H3 =

 1 0

0 −1

 .

For these matrices, their corresponding exponential matrices

esH1 = E + sH1 −
s2

2!
E − s3

3!
H1 + · · · = cos(s)E + sin(s)H1,

esH2 = E + sH2, esH3 =

 es 0

0 e−s

 .

Note also that for γ = 0 the matrix H = 0 , which means that the matrix Ā is constant.
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2.6 Algebras of dimensions n ≥ 2

Assuming that in the admitted n ≥ 2 dimensional Lie algebra there exists one generator such

that ξ = 0, one finds that this generator has to be X4 −X5 and the system is with a = 0 and

c = −b 6= 0. Substituting these values into (2.18) - (2.20), we find that the other generators

can be written in the form,

x1X1 + x2X2 + x3X3, (x2
1 + x2

2 + x2
3 6= 0).

As shown earlier, systems (2.10) admitting such generators are equivalent to a system with

constant coefficients.

Assuming that in the admitted Lie algebra there are two linearly independent generators with

ξ 6= 0, one can conclude that a set of basis generators contains the generators,

X2 + x4X4 + x5X5 + x6X6, X3 + k(y4X4 + y5X5 + y6X6),

where k is some constant chosen for simplicity as will be explained further. Notice also that

because for k = 0 the matrix A is constant, one has to assume that k 6= 0.

Substituting the coefficients of the second generator into system (2.18) - (2.20), where the

coefficients y4, y5 and y6 are chosen from the optimal system (2.23), one finds the derivatives

a′, b′ and c′. After the next substitution of the coefficients of the first generator into system

(2.18) - (2.20), from equation (2.18) we obtain

a = f1b+ f2c,

where fi(x) are some functions. The remaining equations (2.18) - (2.20) compose a system of

two algebraic linear homogeneous equations with respect to b and c. If the determinant of this

system ∆(x) is not equal to zero, then b = 0, c = 0 and a = 0. Hence, one needs to study the

case where ∆(x) = 0. Because ∆(x) is a polynomial with respect to x, one can split it. The

splitting leads to the case where k = 0.

Thus, there are no systems of equations (2.10), admitting more than one nontrivial generator,

which are not equivalent to a constant-coefficient system (2.1).
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2.7 Conclusion

We have given a complete group classification of the general case of linear systems of two second-

order ordinary differential equations excluding the systems which are equivalent to systems of

the type (1) and the degenerate case (2) using the algebraic approach. We were able to apply the

algebraic approach because the study is reduced to the analysis of relations between constants.

The cause of this possibility is the property trA = 0. This condition led us to the equation

ξ(3) = 0. A complete group classification of the general case is obtained. The delineated list

obtained further shows that the problem of classification of systems of two linear second-order

ordinary differential equations using the algebraic approach leads to the study of a variety of

cases, and this approach can be used as an effective tool to study the group classification of

the type of systems studied here. This adds to the body of knowledge in the literature on this

subject including the recent results in [44].
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Chapter 3

Linearization Criteria for Systems of

Two Second-Order Stochastic Ordinary

Differential Equations

3.1 Introduction

Stochastic ordinary differential equations (SODEs) include a stochastic component which de-

scribes the randomness within the differential equations. SODEs are in general nonlinear and

their solutions are difficult to obtain. Various methods of solving differential equations involve

applying a change of variables to transform a given differential equation in to another equa-

tion with known properties. The class of linear equations is known to be the simplest class of

equations for which it is easier to find a solution, hence, the existence of the problem of trans-

forming a given differential equation into a linear equation. This problem, called a linearization

problem, is a particular case of an equivalence problem [5, 21, 40].

Linear SODEs play a role similar to that of linear equations in the deterministic theory of

ordinary differential equations (ODEs). However, the change of variables in SODEs differs

from that in ODEs due to the Itô formula. The transformation of nonlinear SODEs into linear

ones via an invertible stochastic mapping proves to be useful in obtaining the closed form
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solutions [20, 40, 49, 61]. In this paper, we present a general linearizability criteria for the

systems of two second-order SODEs.

We consider the system of two second-order SODEs

dẊ = f1(t,X, Y, Ẋ,Ẏ ) dt+ g1(t,X, Y, Ẋ,Ẏ ) dW

dẎ = f2(t,X, Y, Ẋ,Ẏ ) dt+ g2(t,X, Y, Ẋ,Ẏ ) dW,
(3.1)

where fi and gi, (i = 1, 2) are deterministic functions and dW is the infinitesimal increment

of the Wiener process [46]. System (3.1) is said to be linear if the functions fi and gi are

linear functions with respect to variables X and Y and their respective derivatives. For the

linearization problem one considers the class of equations equivalent to linear equations. Thus

a linear system of two second-order SODEs has the form,

dẊ =
(
α11(t)X + α12(t)Y + α13(t)Ẋ + α14(t)Ẏ + α10(t)

)
dt

+
(
β11(t)X + β12(t)Y + β13(t)Ẋ + β14(t)Ẏ + β10(t)

)
dW,

dẎ =
(
α21(t)X + α22(t)Y + α23(t)Ẋ + α24(t)Ẏ + α20(t)

)
dt

+
(
β21(t)X + β22(t)Y + β23(t)Ẋ + β24(t)Ẏ + β20(t)

)
dW.

(3.2)

We can rewrite (3.2) in the form of first-order SODEs:

dX = Ẋdt,

dẊ =
(
AX +BẊ + a

)
dt+

(
F1X + F2Ẋ + b

)
dW,

(3.3)

where A(t), B(t), Fi (i = 1, 2) are 2× 2 matrices; a(t), b(t) are vectors and

X =

 X

Y

 .

Similar to the treatment of ordinary differential equations (ODEs), the linearization problem

involves finding a change of the dependent variables,

x̄ = ϕ(t, x, y), ȳ = ψ(t, x, y), ∆ = ϕxψy − ϕyψx 6= 0

which can transform the system of equations given in (3.1) into linear SODEs (3.2).
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Lie [36] laid a foundation for the linearization criteria of the second-order ODEs via an invertible

point transformation. He showed that the second-order ODE

ẍ = f(t, x, ẋ) (3.4)

is linearizable by a change of both the independent and dependent variables provided f is a

polynomial of the third degree with respect to the first-order derivative,

ẍ+ Fẋ3 +Gẋ2 +Hẋ+ L = 0

where the coefficients F (t, x), G(t, x), H(t, x) and L(t, x) satisfy the conditions

K1 = 3Ftt − 2Gxt +Hxx − 3FtH + 3FxL+ 2GtG− 3HtF −HxG+ 6LxF = 0, (3.5)

K2 = Gtt − 2Hxt + 3Lxx − 6FtL+GtH + 3GxL− 2HxH − 3LtF + 3LxG = 0.

Equation (3.4) is also linearizable by a change of the dependent variable x provided F = 0 in

which conditions (3.5) become

K1 = (−2Gt +Hx)x −G(−2Gt +Hx) = 0, (3.6)

K2 = (Gt − 2Hx)t +H(Gt − 2Hx) + 3(Lx +GL)x = 0.

Lie’s linearizability criteria for second-order ODEs was extended to the system of second-order

ODEs by the authors in [5, 56, 66] and the references therein. In Bagderina [5], a study of the

linearization problem of the system of two second-order ODEs was completed.

Modifiying Lie’s work for ODEs to SODEs has been done by [62], extended by [40] to the

second-order SODEs and in [49, 60, 61], the conditions for the invertible transformations which

linearize the jump-diffusion are obtained. The reducibility approach was used in [69] to study

the linearization problem of stochastic differential equations (SDEs) with fractional Brownian

motion. This work, however, misused the fractional Itô formula to derive the reducibility

conditions of nonlinear fractional SDEs to linear fractional SDEs. This was reviewed and

corrected in [28].
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The rest of the paper is organised as follows: Section 2 discusses an equivalence transformation

used to reduce the number of coefficients αij in system (3.2). In Section 3, the determining equa-

tions are derived in an Itô calculus context. These determining equations are non-stochastic.

The linearization criteria for a system of two second-order SODEs are given in terms of co-

efficients of the system. The later part of the paper deals with the βijs also from equation

(3.2) and the analysis of relations for them is given. The main result and Theorem are given

in Section 3. Section 4 gives some examples and the conclusion is given in Section 5. To the

best of our knowledge this is a new contribution on the linearization problem of systems of two

second-order SODEs.

3.2 Equivalence transformation

We consider the transformation

X = C(t)X1 + h̄(t) (3.7)

where C = C(t) is a nonsingular matrix and h̄(t) a vector.

Using transformation (3.7), system (3.3) becomes

dX1 = Ẋ1dt,

dẊ1 =
(
ĀX1 + B̄Ẋ1 + ā

)
dt+

(
F̄1X1 + F̄2Ẋ1 + b̄

)
dW,

(3.8)

where

B̄ = C−1(BC − 2Ċ), Ā = C−1(AC +BĊ − C̈), ā = C−1(Ah̄+B ˙̄h− ¨̄h),

F̄1 = CF1, F̄2 = CF2, b̄ = Cb.

Choosing C and h̄ such that

Ċ =
1

2
BC, ¨̄h = B ˙̄h+ Ah̄

we have

Ā = C−1

(
A+

1

4
B2 − 1

2
Ḃ

)
C,
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where we assume that for solving the linearization problem,

B = 0, a = 0

or

α10 = α13 = α14 = α20 = α23 = α24 = 0.

Hence the equivalence transformation here is used to reduce the number of coefficients αij in

system (3.2). The rest of the αij’s will be given in the next section.

3.3 Linearization Criteria for System of Two Second-

Order SODEs

Given a system of two second-order SODEs,

dẊ = f1(t,X, Y, Ẋ, Ẏ ) dt+ g1(t,X, Y, Ẋ, Ẏ ) dW,

dẎ = f2(t,X, Y, Ẋ, Ẏ ) dt+ g2(t,X, Y, Ẋ, Ẏ ) dW,
(3.9)

system (3.9) is reduced to a system of first-order stochastic ordinary differential equations

dX = P dt

dẊ = f1(t,X, Y, P,Q) dt+ g1(t,X, Y, P,Q) dW

dY = Qdt

dẎ = f2(t,X, Y, P,Q) dt+ g2(t,X, Y, P,Q) dW.

(3.10)

We then apply the change of variables

x1 = ϕ(t, x, y), p1 = ϕ2(t, x, y, p, q); y1 = ψ(t, x, y), q1 = ψ2(t, x, y, p, q) (3.11)

with

∆ = ϕxψy − ϕyψx 6= 0,

and using the Itô formula [46] for (3.10), we obtain

dX1 = ϕ2(t,X, Y, P,Q)dt,

dẊ1 = f̃1(t,X, Y, P,Q)dt+ g̃1(t,X, Y, P,Q)dW,
(3.12)
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dY1 = ψ2(t,X, Y, P,Q)dt,

dẎ1 = f̃2(t,X, Y, P,Q)dt+ g̃2(t,X, Y, P,Q)dW,

where

ϕ2 = ϕt + pϕx + qϕy, ψ2 = ψt + pψx + qψy,

f̃1(t, x, y, p, q) =

[
ϕ2t + pϕ2x + qϕ2y + f1ϕ2p + f2ϕ2q +

1

2
g2

1ϕ2pp + g1g2ϕ2pq +
1

2
g2

2ϕ2qq

]
(t, x, y, p, q),

g̃1(t, x, y, p, q) = [g1ϕ2p + g2ϕ2q] (t, x, y, p, q),

and

f̃2(t, x, y, p, q) =

[
ψ2t + pψ2x + qψ2y + f1ψ2p + f2ψ2q +

1

2
g2

1ψ2pp + g1g2ψ2pq +
1

2
g2

2ψ2qq

]
(t, x, y, p, q),

g̃2(t, x, y, p, q) = [g1ψ2p + g2ψ2q] (t, x, y, p, q).

Equating f̃1, g̃1, f̃2 and g̃2 with the linear form (3.2), we obtain four equations,

ϕ2t+pϕ2x+qϕ2y+f1ϕ2p+f2ϕ2q+
1

2
g2

1ϕ2pp+
1

2
g1g2ϕ2pq+

1

2
g2

2ϕ2qq = α11ϕ+α12ψ+α13ϕ2+α14ψ2+α10,

g1ϕ2p + g2ϕ2q = β11ϕ+ β12ψ + β13ϕ2 + β14ψ2 + β10,

and

ψ2t+pψ2x+qψ2y+f1ψ2p+f2ψ2q+
1

2
g2

1ψ2pp+
1

2
g1g2ψ2pq+

1

2
g2

2ψ2qq = α21ϕ+α22ψ+α23ϕ2+α24ψ2+α20,

g1ψ2p + g2ψ2q = β21ϕ+ β22ψ + β23ϕ2 + β24ψ2 + β20.

Substituting the functions ϕ2 and ψ2 from (3.11) into the above equations yields the following

conditions:

ϕxxp
2 + 2ϕxypq + ϕyyq

2 + 2ϕxtp+ 2ϕytq + f1ϕx + f2ϕy + ϕtt − α11ϕ− α12ψ = 0,

ψxxp
2 + 2ψxypq + ψyyq

2 + 2ψxtp+ 2ψytq + f1ψx + f2ψy + ψtt − α21ϕ− α22ψ = 0,
(3.13)

g1ϕx + g2ϕy = β11ϕ+ β12ψ + β13(ϕt + pϕx + qϕy) + β14(ψt + pψx + qψy) + β10,

g1ψx + g2ψy = β21ϕ+ β22ψ + β23(ϕt + pϕx + qϕy) + β24(ψt + pψx + qψy) + β20.
(3.14)

Thus the two pairs of conditions (3.13) and (3.14) are necessary and sufficient for the SODEs

to be linearizable.
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The necessary representation of the functions f1, f2, g1 and g2 are

f1 = a11p
2 + 2a12pq + a13q

2 + a14p+ a15q + a10,

f2 = a21p
2 + 2a22pq + a23q

2 + a24p+ a25q + a20,
(3.15)

g1 = b11p+ b12q + b10,

g2 = b21p+ b22q + b20.
(3.16)

Here the coefficients aij and bik, (i = 1, 2), (j = 0, .., 5), (k = 0, 1, 2) are functions of x, y and t.

Substituting the representations of the function fi, (i = 1, 2) in equation (3.15) into (3.13) and

splitting them with respect to p and q, we obtain the overdetermined system of equations for

the functions ϕ and ψ, that is,

ϕxx = −a11ϕx − a21ϕy, ϕyy = −a13ϕx − a23ϕy, ϕxy = −a12ϕx − a22ϕy,

ϕxt = −1
2

[a14ϕx + a24ϕy] , ϕyt = −1
2

[a15ϕx + a25ϕy] ,

ϕtt = −a10ϕx − a20ϕy + α11ϕ+ α12ψ,

(3.17)

and

ψxx = −a11ψx − a21ψy, ψyy = −a13ψx − a23ψy, ψxy = −a12ψx − a22ψy,

ψxt = −1
2

[a14ψx + a24ψy] , ψyt = −1
2

[a15ψx + a25ψy] ,

ψtt = −a10ψx − a20ψy + α21ϕ+ α22ψ.

(3.18)

We assume that the coefficients aij and bik are given. Compatibility analysis of system (3.17)

and system (3.18) gives conditions for these coefficients which are sufficient for linearization.

Comparing all mixed derivatives of the third order leads to the following equations:

A11,1ϕx + A11,2ϕy = 0, A11,1ψx + A11,2ψy = 0, (3.19)

A12,1ϕx + A12,2ϕy = 0, A12,1ψx + A12,2ψy = 0, (3.20)

A13,1ϕx + A13,2ϕy = 0, A13,1ψx + A13,2ψy = 0, (3.21)

A14,1ϕx + A14,2ϕy = 0, A14,1ψx + A14,2ψy = 0, (3.22)

A15,1ϕx + A15,2ϕy = 0, A15,1ψx + A15,2ψy = 0, (3.23)
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A16,1ϕx + A16,2ϕy = 0, A16,1ψx + A16,2ψy = 0, (3.24)

(A17,1 − α11)ϕx + A17,2ϕy − α12ψx = 0, −α21ϕx + (A17,1 − α22)ψx + A17,2ψy = 0, (3.25)

A18,1ϕx + (A18,2 − α11)ϕy − α12ψy = 0, −α21ϕy + A18,1ψx + (A18,2 − α22)ψy = 0, (3.26)

where

A11,1 = −a11y + a12x − a12a22 + a13a21, A11,2 = −a21y + a22x + a11a22 − a12a21 + a21a23 − a2
22,

A12,1 =
1

2
(a14x−2a11t−a12a24+a15a21), A12,2 =

1

2
(a24x−2a21t+a11a24−a14a21+a21a25−a22a24),

A13,1 =
1

2
(a14y−2a12t−a13a24+a15a22), A13,2 =

1

2
(a24y−2a22t+a12a24−a14a22+a22a25−a23a24),

A14,1 = −a12y + a13x − a11a13 + a2
12 − a12a23 + a13a22, A14,2 = −a22y + a23x + a12a22 − a13a21,

A15,1 =
1

2
(−a14y + a15x − a11a15 + a12a14 − a12a25 + a13a24),

A15,2 =
1

2
(−a24y + a25x + a14a22 − a15a21 − a22a25 + a23a24),

A16,1 =
1

2
(a15y − 2a13t − a12a15 + a13a14 − a13a25 + a15a23),

A16,2 =
1

2
(a25y − 2a23t + a13a24 − a15a22),

A17,1 =
1

4
(4a10x − 2a14t − 4a10a11 − 4a12a20 + a2

14 + a15a24),

A17,2 =
1

4
(4a20x − 2a24t − 4a10a21 + a14a24 − 4a20a22 + a24a25),

A18,1 =
1

4
(4a10y − 2a15t − 4a10a12 − 4a13a20 + a14a15 + a15a25),

A18,2 =
1

4
(4a20y − 2a25t − 4a10a22 + a15a22 − 4a20a23 + a2

25).

Since ∆ 6= 0, we can rewrite equation (3.19) in matrix form ϕx ϕy

ψx ψy

 A11,1

A11,2

 =

 0

0

 . (3.27)

Then from equations (3.19) - (3.24), it is necessary and sufficient that

A1i,j = 0, (3.28)

for (i = 1, .., 6) and (j = 1, 2).
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Solving equations (3.25) and (3.26) one finds αij, i = 1, 2; j = 1, 2 as follows:

α11 = ∆−1(−A18,1ϕxψx + A17,1ϕxψy − A18,2ϕyψx + A17,2ϕyψy),

α12 = ∆−1(A18,1ϕ
2
x + (−A17,1 + A18,2)ϕxϕy − A17,2ϕ

2
y),

α21 = ∆−1(−A18,1ψ
2
x + (A17,1 − A18,2)ψxψy + A17,2ψ

2
y),

α22 = ∆−1(A18,1ϕxψx + A18,2ϕxψy − A17,1ϕyψx − A17,2ϕyψy),

(3.29)

where

∆ = ϕxψy − ϕyψx.

Differentiating αij in (3.29) with respect to x and y, we have the conditions

A17,1x = a12A17,2 − a21A18,1; A17,2x = −a11A17,2 + a21(A17,1 − A18,2) + a22A17,2,

A18,1x = a11A18,1 − a12(A17,1 − A18,2)− a22A18,1; A18,2x = −a12A17,2 + a21A18,1,

A17,1y = a13A17,2 − a22A18,1; A17,2y = −a12A17,2 + a22(A17,1 − A18,2) + a23A17,2,

A18,1y = a12A18,1 − a13(A17,1 − A18,2)− a23A18,1; A18,2y = −a13A17,2 + a22A18,1.

(3.30)

The next step involves finding the βij and relations for them. To do this we split equations

(3.14) and (3.16) with respect to p and q, to obtain

−b10ϕx − b20ϕy + β10 + β11ϕ+ β12ψ + β13ϕt + β14ψt = 0 (3.31)

−b11ϕx − b21ϕy + β13ϕx + β14ψx = 0, (3.32)

−b12ϕx − b22ϕy + β13ϕy + β14ψy = 0, (3.33)

and

−b10ψx − b20ψy + β20 + β21ϕ+ β22ψ + β23ϕt + β24ψt = 0 (3.34)

−b11ψx − b21ψy + β23ϕx + β24ψx = 0, (3.35)

−b12ψx − b22ψy + β23ϕy + β24ψy = 0. (3.36)
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From equations (3.31) - (3.36) we find

β13 = ∆−1(−b12ϕxψx + b11ϕxψy − b22ϕyψx + b21ϕyψy),

β14 = ∆−1(b12ϕ
2
x + (−b11 + b22)ϕxϕy − b21ϕ

2
y),

β23 = ∆−1(−b12ψ
2
x + (b11 − b22)ψxψy + b21ψ

2
y),

β24 = ∆−1(b12ϕxψx + b22ϕxψy − b11ϕyψx − b21ϕyψy),

β10 = ∆−1(B10,1ϕt +B10,2ψt + b10∆ϕx + b20∆ϕy − β11∆ϕ− β12∆ψ),

β20 = ∆−1(B20,1ϕt +B20,2ψt + b10∆ψx + b20∆ψy − β21∆ϕ− β22∆ψ),

(3.37)

where

B10,1 = b12ϕxψx − b11ϕxψy + b22ϕyψx − b21ϕyψy, B10,2 = −b12ϕ
2
x + (b11 − b22)ϕxϕy + b21ϕ

2
y,

B20,1 = b12ψ
2
x + (−b11 + b22)ψxψy − b21ψ

2
y, B20,2 = −b12ϕxψx − b22ϕxψy + b11ϕyψx + b21ϕyψy.

The equations (βi0)x = 0 and (βi0)y = 0, i = 1, 2 compose an algebraic system of linear

equations with respect to βij, (i = 1, 2; j = 1, 2) with a none vanishing determinant. Hence one

can find β11, β12, β21, β22 from this system. For this representation we introduce the notations

ξ1 = 2b10y − 2a12b10 − 2a13b20 + a15b11 + a25b12, ξ2 = 2b10x − 2a11b10 − 2a12b20 + a14b11 + a24b12,

ξ3 = 2b20y + a15b21 − 2a22b10 − 2a23b20 + a25b22, ξ4 = 2b20x + a14b21 − 2a21b10 − 2a22b20 + a24b22,

ξ5 = b12y − a12b12 + a13b11 − a13b22 + a23b12, ξ6 = b11x − a12b21 + a21b12,

ξ7 = b22y + a13b21 − a22b12, ξ8 = b21x + a11b21 − a21b11 + a21b22 − a22b21,

ξ9 = b12x − a11b12 + a12b11 − a12b22 + a22b12, ξ10 = b21y + a12b21 − a22b11 + a22b22 − a23b21,

ξ11 = b11y − a13b21 + a22b12, ξ12 = b22x + a12b21 − a21b12. (3.38)

The final representation of all βij and relations are presented in the appendix.

Notice that from the definitions of ξi and found relations we obtain the following corollaries:
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ξ2y = ξ1x − a11ξ1 + a12(ξ2 − ξ3) + a13ξ4 + a14ξ11 − a15ξ6 + a24ξ5 − a25ξ9,

ξ4y = ξ3x + a14ξ10 − a15ξ8 − a21ξ1 + a22(ξ2 − ξ3) + a23ξ4 + a24ξ7 − a25ξ12,

ξ6y = ξ11x − a12ξ10 + a13ξ8 + a21ξ5 − a22ξ9

ξ8y = ξ10x + a11ξ10 − a12ξ8 + a21(ξ7 − ξ11) + a22(ξ6 − ξ10 − ξ12) + a23ξ8

ξ9y = ξ5x − a11ξ5 − a12(ξ7 − ξ9 − ξ11)− a13(ξ6 − ξ12) + a22ξ5 − a23ξ9

ξ12y = ξ7x + a12ξ10 − a13ξ8 − a21ξ5 + a22ξ9. (3.39)

The equations (βij)x = 0, (i = 1, 2; j = 1, 2) compose an algebraic system of linear equations

with respect to ξ1x, ξ2x, ξ3x, ξ4x with a none vanishing determinant. Hence one can find ξ1x,

ξ2x, ξ3x, ξ4x from this system. We omit their expressions here.

The equations (βij)x = 0, (i = 1, 2; j = 3, 4) compose an algebraic system of linear equations

with respect to ξ6, ξ8, ξ9, ξ12 with a none vanishing determinant. Hence one can find ξ6, ξ8, ξ9,

ξ12 from this system:

ξ6 = 0, ξ8 = 0, ξ9 = 0, ξ12 = 0. (3.40)

The equations (βij)y = 0, (i = 1, 2; j = 3, 4) compose an algebraic system of linear equations

with respect to ξ5, ξ7, ξ10, ξ11 with none vanishing determinant. Hence one can find ξ5, ξ7, ξ10,

ξ11 from this system:

ξ5 = 0, ξ7 = 0, ξ10 = 0, ξ11 = 0. (3.41)

From the equations (β11)y = 0 and (β21)y = 0; one finds

ξ1y = a12ξ1 − a13(ξ2 − ξ3)− a23ξ1, ξ3y = −a13ξ4 + a22ξ1. (3.42)

In order to obtain sufficiency conditions, assume that all the identities listed above are satisfied.

Hence we have proven the following theorem:

Theorem

A system of two second-order stochastic ordinary differential equations,

dẊ = f1(t,X, Y, Ẋ,Ẏ ) dt+ g1(t,X, Y, Ẋ,Ẏ ) dW,
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dẎ = f2(t,X, Y, Ẋ,Ẏ ) dt+ g2(t,X, Y, Ẋ,Ẏ ) dW,

is linearizable by an invertible point transformation if and only if,

f1 = a11ẋ
2 + 2a12ẋẏ + a13ẏ

2 + a14ẋ+ a15ẏ + a10,

f2 = a21ẋ
2 + 2a22ẋẏ + a23ẏ

2 + a24ẋ+ a25ẏ + a20,

g1 = b11ẋ+ b12ẏ + b10, g2 = b21ẋ+ b22ẏ + b20,

where fi, gi, aij, (i = 1, 2; j = 0, ..., 5) and bij, (i = 1, 2; j = 0, 1, 2) satisfy the conditions

A1i,j = 0, (i = 1, .., 6); (j = 1, 2).

Here the A1i,j are listed as follows:

A17,1x = a12A17,2 − a21A18,1; A17,2x = −a11A17,2 + a21(A17,1 − A18,2) + a22A17,2,

A18,1x = a11A18,1 − a12(A17,1 − A18,2)− a22A18,1; A18,2x = −a12A17,2 + a21A18,1,

A17,1y = a13A17,2 − a22A18,1; A17,2y = −a12A17,2 + a22(A17,1 − A18,2) + a23A17,2,

A18,1y = a12A18,1 − a13(A17,1 − A18,2)− a23A18,1; A18,2y = −a13A17,2 + a22A18,1.

In addition,

ξ1y = (a12 − a23)ξ1 − a13(ξ2 − ξ3); ξ2y = ξ1x − a11ξ1 + a12(ξ2 − ξ3) + a13ξ4,

ξ3y = −a13ξ4 + a22ξ1; ξ4y = ξ3x − a21ξ1 + a22(ξ2 − ξ3) + a23ξ4,

b12y − a12b12 + a13b11 − a13b22 + a23b12 = 0; b11x − a12b21 + a21b12 = 0,

b22y + a13b21 − a22b12 = 0; b21x + a11b21 − a21b11 + a21b22 − a22b21 = 0,

b12x − a11b12 + a12b11 − a12b22 + a22b12 = 0; b21y + a12b21 − a22b11 + a22b22 − a23b21 = 0,

b11y − a13b21 + a22b12 = 0, b22x + a12b21 − a21b12 = 0,

where

ξ1 = 2b10y − 2a12b10 − 2a13b20 + a15b11 + a25b12; ξ2 = 2b10x − 2a11b10 − 2a12b20 + a14b11 + a24b12,

ξ3 = 2b20y + a15b21 − 2a22b10 − 2a23b20 + a25b22; ξ4 = 2b20x + a14b21 − 2a21b10 − 2a22b20 + a24b22.
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3.4 Examples

In this section we apply the obtained Theorem to some selected examples to illustrate how to

linearize a system of two second-order SODEs. For checking whether a system of two second-

order SODEs is linearizable we develop a code using REDUCE [23]. We demonstrate the use

of this code using three illustrative examples.

3.4.1 Example 1

Consider a nonlinear system of two second-order SODEs

dẋ = x dW, dẏ = −2x−1pqdt, (3.43)

where the first equation is linear, and the second equation is a nonlinear one without Itô’s

integral.

First we check that all sufficient conditions for linearization (3.19) - (3.42) are satisfied. To find

a linearization transformation we obtain the overdetermined system of equations:

ϕxx = 0, ϕyy = 0, ϕxt = 0, ϕyt = 0, ϕtt = 0, ϕxy = x−1ϕy (3.44)

and

ψxx = 0, ψyy = 0, ψxt = 0, ψyt = 0, ψtt = 0, ψxy = x−1ψy. (3.45)

Notice that this overdetermined system of equations is compatible. Hence we can find a solution

of this system of equations.

The general solution of equations (3.44) and (3.45) is

ϕ = c1xy + c2x+ c3t+ c4, ψ = c5xy + c6x+ c7t+ c8, (3.46)

where ci, (i = 1, 2, ..., 8) are constant. We choose the constants ci such that ∆ = ϕxψy−ϕyψx 6=

0, for example,

c1 = 0, c2 = 1, c3 = 0, c4 = 0, c5 = 1, c6 = 0, c7 = 0, c8 = 0,
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which give the transformation

ϕ = x, ψ = xy.

The latter change maps the nonlinear system (3.43) into the linear system

dẋ = x dW, dẏ = y dW. (3.47)

3.4.2 Example 2

Consider a nonlinear system of two second-order SODEs

dẋ =
1

ϑ2

(
2ϑ′ϑp− x(2(ϑ′)2 − ϑ′′ϑ)

)
dt+

ϑ3

x2
(yϑp+ xq) dW,

dẏ =
1

x2ϑ2

(
−2yϑ2p2 + 2xϑ2pq + 4xyϑ′ϑp− 2x2ϑ′ϑq − 2x2y(ϑ′)2

)
dt (3.48)

+
1

x3ϑ

(
(x2 + yϑ4)p− xyϑ4q

)
dW,

where ϑ = ϑ(t) 6= 0. First we check that all sufficient conditions for linearization (3.19) - (3.42)

are satisfied. To find a linearization transformation we obtain the overdetermined system of

equations:

ϕxx =
2y

x2
ϕy, ϕxy = −1

x
ϕy, ϕyy = 0, ϕxt = − ϑ′

2xϑ
(xϕx + 4yϕy), ϕyt =

ϑ′

ϑ
ϕy, (3.49)

ϕtt =
1

ϑ′
[
x(2(ϑ′)2 − ϑ′′ϑ)ϕx + 2y(ϑ′)2ϕy

]
, (3.50)

and

ψxx =
2y

x2
ψy, ψxy = −1

x
ψy, ψyy = 0, ψxt = − ϑ′

2xϑ
(xψx + 4yψy), ψyt =

ϑ′

ϑ
ψy, (3.51)

ψtt =
1

ϑ′
[
x(2(ϑ′)2 − ϑ′′ϑ)ψx + 2y(ϑ′)2ψy

]
. (3.52)

Notice that this overdetermined system of equations is compatible. Hence we can find a solution

of this system of equations.

Solving the first five sets of equations in (3.49) and (3.51) we obtain

ϕ = ϑλ1
y

x
+ λ3x+ λ10, ψ = ϑλ2

y

x
+ λ4x+ λ20, (3.53)
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where λi, (i = 1, ..., 4) are constant and λ10(t) and λ20(t) are arbitrary functions. Substituting

(3.53) into (3.50) and (3.52) we obtain λ′′10 = 0 and λ′′20 = 0. We can choose the trivial solution

of these equations λ10 = 0, λ20 = 0. Since

∆ = ϕxψy − ϕyψx 6= 0,

we can also choose a particular set of constants such that λ1 = λ4 = 1 and λ2 = λ3 = 0. This

gives us the transformation

ϕ =
ϑ

x
y, ψ =

x

ϑ
,

which maps the nonlinear system (3.48) into the linear system

dẋ = (ϑ′y + ϑq)dW, dẏ = (ϑ′x+ ϑp)dW. (3.54)

3.4.3 Example 3

For the third example, we have

dẋ = − 1

2(x2 − y2)

[
(2x(p2 + q2)− 4ypq − x3 + xy2)dt+ y(x2 − y2)dW

]
,

dẏ =
1

2(x2 − y2)

[
(2y(p2 + q2)− 4xpq + x2y − y3)dt+ x(x2 − y2)dW

]
. (3.55)

Equation (3.55) satisfies all the sufficient conditions (3.19) - (3.42) and hence the compatible

overdetermined system of equations is given by

ϕxx = ϕyy =
1

x2 − y2
(xϕx − yϕy) , ϕxy = − 1

x2 − y2
(yϕx − xϕy) , ϕxt = ϕyt = 0, (3.56)

ϕtt = −1

2
(xϕx + yϕy − 2ϕ) , (3.57)

and

ψxx = ψyy =
1

x2 − y2
(xψx − yψy) , ψxy = − 1

x2 − y2
(yψx − xψy) , ψxt = ψyt = 0. (3.58)

ψtt = −1

2
(xψx + yψy − 2ψ) . (3.59)
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Solving the system of equations (3.56) and (3.58) we get

ϕ = x2(C1 + C2) + 2xy(C1 − C2) + y2(C1 + C2) + C10,

ψ = x2(C3 + C4) + 2xy(C3 − C4) + y2(C3 + C4) + C20,
(3.60)

where Ci, (i = 1, ..., 4) are constant and C10(t) and C20(t) are arbitrary functions. After

substituting (3.60) into (3.62) and (3.59) we obtain C ′′10 = 0 and C ′′20 = 0. For simplicity we

choose the trivial solution of these equations C10 = 0, C20 = 0. Since

∆ = ϕxψy − ϕyψx 6= 0,

we also choose a particular set of constants such that C1 = C2 = C3 = 1
2

and C4 = −1
2
.

Hence the transformation

ϕ = x2 + y2, ψ = 2xy (3.61)

linearizes the equation (3.55) into

dẋ = xdt+ ydW, dẏ = ydt+ xdW. (3.62)

3.5 Conclusion

In this paper, we have completely solved the linearization problem of systems of two second-

order stochastic ordinary differential equations. Necessary and sufficient conditions for lin-

earization by an invertible transformation are given in terms of coefficients of the system. The

result is given in terms of a Theorem with three examples. In addition, we have also shown that

the system of two nonlinear second-order stochastic ordinary differential equations is lineariz-

able via an invertible transformation when certain conditions are satisfied. Moreover, we have

developed a code using REDUCE for checking whether a system of two second-order stochas-

tic ordinary differential equations is linearizable. Certain nonlinear second-order stochastic

ordinary differential equations appeared to be linearizable via invertible transformations.
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Appendix

Final conditions are

A17,1x = a12A17,2 − a21A18,1; A17,2x = −a11A17,2 + a21(A17,1 − A18,2) + a22A17,2,

A18,1x = a11A18,1 − a12(A17,1 − A18,2)− a22A18,1; A18,2x = −a12A17,2 + a21A18,1,

A17,1y = a13A17,2 − a22A18,1; A17,2y = −a12A17,2 + a22(A17,1 − A18,2) + a23A17,2,

A18,1y = a12A18,1 − a13(A17,1 − A18,2)− a23A18,1; A18,2y = −a13A17,2 + a22A18,1.

β11 = ∆−1(−ξ1ϕxψx + ξ2ϕxψy − ξ3ϕyψx + ξ4ϕyψy),

β12 = ∆−1(ξ1ϕ
2
x − (ξ2 − ξ3)ϕxϕy − ξ4ϕ

2
y),

β13 = ∆−1(−b12ϕxψx + b11ϕxψy − b22ϕyψx + b21ϕyψy),

β14 = ∆−1(b12ϕ
2
x − (b11 − b22)ϕxϕy − b21ϕ

2
y),

β21 = ∆−1(−ξ1ψ
2
x + (ξ2 − ξ3)ψxψy + ξ4ψ

2
y),

β22 = ∆−1(ξ1ϕxψx + ξ3ϕxψy − ξ2ϕyψx − ξ4ϕyψy),

β23 = ∆−1(−b12ψ
2
x + (b11 − b22)ψxψy + b21ψ

2
y),

β24 = ∆−1(b12ϕxψx + b22ϕxψy − b11ϕyψx − b21ϕyψy),

β10 = ∆−1(B10,1ϕt +B10,2ψt + b10∆ϕx + b20∆ϕy − β11∆ϕ− β12∆ψ),

β20 = ∆−1(B20,1ϕt +B20,2ψt + b10∆ψx + b20∆ψy − β21∆ϕ− β22∆ψ),

where

B10,1 = b12ϕxψx − b11ϕxψy + b22ϕyψx − b21ϕyψy, B10,2 = −b12ϕ
2
x + (b11 − b22)ϕxϕy + b21ϕ

2
y,

B20,1 = b12ψ
2
x + (−b11 + b22)ψxψy − b21ψ

2
y , B20,2 = −b12ϕxψx − b22ϕxψy + b11ϕyψx + b21ϕyψy,

ξ1 = −2b10y + 2a12b10 + 2a13b20−a15b11−a25b12, ξ2 = 2b10x− 2a11b10− 2a12b20 +a14b11 +a24b12,

ξ3 = −2b20y−a15b21 + 2a22b10 + 2a23b20−a25b22, ξ4 = 2b20x +a14b21− 2a21b10− 2a22b20 +a24b22.
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b10y = (2a12b10 + 2a13b20 − a15b11 − a25b12 + ξ1)/2,

b10x = (2a11b10 + 2a12b20 − a14b11 − a24b12 + ξ2)/2,

b11y = a13b21 − a22b12, b11x = a12b21 − a21b12,

b12y = a12b12 − a13b11 + a13b22 − a23b12, b12x = a11b12 − a12b11 + a12b22 − a22b12,

b21y = −a12b21 + a22b11 − a22b22 + a23b21, b21x = −a11b21 + a21b11 − a21b22 + a22b21,

b22y = −a13b21 + a22b12, b11x = −a12b21 + a21b12,

b20y = (−a15b21 + 2a22b10 + 2a23b20 − a25b22 + ξ3)/2,

b20x = (−a14b21 + 2a21b10 + 2a22b20 − a24b22 + ξ4)/2,

ξ1x = a11ξ1 − a12(ξ2 − ξ3)− a22ξ1, ξ2x = a12ξ4 − a21ξ1,

ξ3x = −a12ξ4 + a21ξ1, ξ4x = −a11ξ4 + a21(ξ2 − ξ3) + a22ξ4,

ξ1y = a12ξ1 − a13(ξ2 − ξ3)− a23ξ1, ξ3y = −a13ξ4 + a22ξ1.
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Chapter 4

Group Classification of Systems of Two

Linear Second-Order Stochastic

Ordinary Differential Equations

4.1 Introduction

Stochastic ordinary differential equations (SODEs) are in general nonlinear and hence their

solutions can be difficult to obtain. The most famous and well established method for obtaining

exact solutions of differential equations is the Lie group analysis method which in its classical

form uses the concept of admitted Lie groups to find corresponding transformations for any

given equation or system of equations amenable to the analysis. The admitted Lie group by

a system of equations is a Lie group for which the coefficients of the corresponding generator

satisfy the subsequent determining equations. The application of Lie group analysis to SODEs

was successfully performed in [43, 1, 38, 59, 57, 18, 21, 32].

In this study, we consider the group classification of systems of two linear second-order SODEs

with constant coefficients. The system of two second-order SODEs is given by

dẊ = F1(t,X, Y, Ẋ,Ẏ ) dt+G1(t,X, Y, Ẋ,Ẏ ) dW, (4.1)
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dẎ = F2(t,X, Y, Ẋ,Ẏ ) dt+G2(t,X, Y, Ẋ,Ẏ ) dW,

where Fi and Gi (i = 1, 2), are deterministic functions and dW is the infinitesimal increment of

the Wiener process [46]. System (4.1) is said to be linear if the functions Fi and Gi are linear

functions with respect to variables X and Y and their respective derivatives. Thus a linear

system of two second-order SODEs has the form:

dẊ =
(
α21(t)X + α22(t)Ẋ,+ α23(t)Y + α24(t)Ẏ + α20(t)

)
dt

+
(
β21(t)X + β22(t)Ẋ,+ β23(t)Y + β24(t)Ẏ + β20(t)

)
dW,

dẎ =
(
α41(t)X + α42(t)Ẋ,+ α43(t)Y + α44(t)Ẏ + α40(t)

)
dt

+
(
β41(t)X + β42(t)Ẋ,+ β43(t)Y + β44(t)Ẏ + β40(t)

)
dW.

(4.2)

System (4.2) can be rewritten in the form of the first-order SODEs:

dx1 = x2dt, dx2 = f2(t, x1, x2, x3, x4) dt+ g2(t, x1, x2, x3, x4) dW,

dx3 = x4dt, dx4 = f4(t, x1, x2, x3, x4) dt+ g4(t, x1, x2, x3, x4) dW.
(4.3)

We introduce the following notations:

f1 = x2, f2 = f2(t, x1, x2, x3, x4), f3 = x4, f4 = f4(t, x1, x2, x3, x4),

g1 = 0, g2 = g2(t, x1, x2, x3, x4), g3 = 0, g4 = g4(t, x1, x2, x3, x4).

The generators of an admitted Lie group of equations (4.3) are considered in the form

h∂t + ξ1∂x1 + ξ2∂x2 + ξ3∂x3 + ξ4∂x4 , (4.4)

where

h = h(t), ξ1 = ξ1(t, x1, x3), ξ3 = ξ3(t, x1, x3).

The coefficients ξ2 and ξ4 in (4.4) are obtained by the prolongation formulae:

ξ2 = ξ1,t + ξ1,x1x2 + ξ1,x3x4 − h′x2,

ξ4 = ξ3,t + ξ3,x1x2 + ξ3,x3x4 − h′x4.
(4.5)

From here on, the following notation:

,t =
∂

∂t
, ,j = ,xj =

∂

∂xj
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is used so that the subsequent equations are written in a more compact form. The admitted

Lie group can be defined by using the determining equations. The determining equations for

the coefficients of the admitted generator in (4.4), given by h, ξ1 and ξ3 are [59, 57, 18]:

ξi,t + ξi,jfj + 1
2
ξi,jlgjgl − fi,th−fi,jξj − fih′ = 0, (4.6)

ξi,jgj − gi,th−
1

2
gih
′ − gi,jξj = 0. (4.7)

Here i = 1, 2, 3, 4 and summation with respect to j is from 1 to 4. Notice that equations (4.6)i=1

and (4.6)i=3 coincide with equations (4.5), respectively.

The objective here is to find a generator (4.4) satisfying the determining equations (4.6), (4.7).

The paper is organized as follows: The subsequent sections deal with the determining equations

derived in an Itô stochastic calculus context, equivalent transformations used to reduce the

number of coefficients αij in system (4.2), the group classification of systems of two second-

order SODEs given in terms of coefficients of the system and the latter part of the paper deals

with the coefficients βij of system (4.2) and the analysis of their respective relations for them.

4.2 Determining equations

For the linear system (4.3) the determining equations (4.6) and (4.7) become

ξ1,x3x4 + ξ1,x1x2 + ξ1,t − h′x2 − ξ2 = 0, (4.8a)

−2f2,x4ξ4 − 2f2,x3ξ3 − 2f2,x2ξ2 − 2f2,x1ξ1 − 2f2,th+ 2ξ2,x4x2g4g2 + ξ2,x4x4g
2
4+

2ξ2,x4f4 + 2ξ2,x3x4 + ξ2,x2,x2g
2
2 + 2ξ2,x2f2 + 2ξ2,x1x2 + 2ξ2,t − 2h′f2 = 0,

(4.8b)

ξ3,x3x4 + ξ3,x1x2 + ξ3,t − h′x4 − ξ4 = 0, (4.8c)

−2f4,x4ξ4 − 2f4,x3ξ3 − 2f4,x2ξ2 − 2f4,x1ξ1 − 2f4,th+ 2ξ4,x4x2g4g2 + ξ4,x4,x4g
2
4+

2ξ4,x4f4 + 2ξ4,x3x4 + ξ4,x2,x2g
2
2 + 2ξ4,x2f2 + 2ξ4,x1x2 + 2ξ4,t − 2h′f4 = 0,

(4.8d)

− 2g2,x4ξ4 − 2g2,x3ξ3 − 2g2,x2ξ2 − 2g2,x1ξ1 − 2g2,th+ 2ξ2,x4g4 + 2ξ2,x2g2 − h′g2 = 0, (4.8e)

− 2g4,x4ξ4 − 2g4,x3ξ3 − 2g4,x2ξ2 − 2g4,x1ξ1 − 2g4,th+ 2ξ4,x4g4 + 2ξ4,x2g2 − h′g4 = 0. (4.8f)
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Substituting the prolongation formula (4.5) into equations (4.8a - 4.8f), equations (4.8a) and

(4.8c) are satisfied, and the remaining determining equations become:

−f2,x4ξ3,x3x4 − f2,x4ξ3,x1x2 − f2,x4ξ3,t + f2,x4h
′x4 − f2,x3ξ3 − f2,x2ξ1,x3x4

−f2,x2ξ1,x1x2 − f2,x2ξ1,t + f2,x2h
′x2 − f2,x1ξ1 − f2,th+ 2ξ1,x3x1x4x2 + 2ξ1,x3tx4

+ξ1,x3x3x
2
4 + ξ1,x3f4 + 2ξ1,x1tx2 + ξ1,x1x1x

2
2 + ξ1,x1f2 + ξ1,tt − h′′x2 − 2h′f2 = 0,

(4.9a)

−f4,x4ξ3,x3x4 − f4,x4ξ3,x1x2 − f4,x4ξ3,t + f4,x4h
′x4 − f4,x3ξ3 − f4,x2ξ1,x3x4

−f4,x2ξ1,x1x2 − f4,x2ξ1,t + f4,x2h
′x2 − f4,x1ξ1 − f4,th+ 2ξ3,x3x1x4x2 + 2ξ3,x3tx4

+ξ3,x3x3x
2
4 + ξ3,x3f4 + 2ξ3,x1tx2 + ξ3,x1x1x

2
2 + ξ3,x1f2 + ξ3,tt − h′′x4 − 2h′f4 = 0,

(4.9b)

−2g2,x4ξ3,x3x4 − 2g2,x4ξ3,x1x2 − 2g2,x4ξ3,t + 2g2,x4h
′x4 − 2g2,x3ξ3 − 2g2,x2ξ1,x3x4

−2g2,x2ξ1,x1x2 − 2g2,x2ξ1,t + 2g2,x2h
′x2 − 2g2,x1ξ1 − 2g2,th+ 2ξ1,x3g4 + 2ξ1,x1g2

−3h′g2 = 0,

(4.9c)

−2g4,x4ξ3,x3x4 − 2g4,x4ξ3,x1x2 − 2g4,x4ξ3,t + 2g4,x4h
′x4 − 2g4,x3ξ3 − 2g4,x2ξ1,x3x4

−2g4,x2ξ1,x1x2 − 2g4,x2ξ1,t + 2g4,x2h
′x2 − 2g4,x1ξ1 − 2g4,th+ 2ξ3,x3g4 + 2ξ3,x1g2

−3h′g4 = 0.

(4.9d)

The latter equations are deterministic (non-stochastic). We then proceed in classifying equa-

tions (4.3). The functions fj and gj (j = 2, 4) take the form:

f2 = α21x1 + α22x2 + α23x3 + α24x4 + α20, f4 = α41x1 + α42x2 + α43x3 + α44x4 + α40,

g2 = β21x1 + β22x2 + β23x3 + β24x4 + β20, g4 = β41x1 + β42x2 + β43x3 + β44x4 + β40,

(4.10)

where αij’s and βij’s (i = 2, 4; j = 0, .., 4) depend on t. Notice that equation (4.3) with

equation (4.10) can be rewritten in the form:

dX = Ẋdt,

dẊ = (AX +BẊ + a)dt+ (B1X +B2Ẋ + b)dW,
(4.11)

where A =

 α21 α23

α41 α43

 , B =

 α22 α24

α42 α44

 , a =

 α20

α40

 , B1 =

 β21 β23

β41 β43

 , B2 = β22 β24

β42 β44

 and b =

 β20

β40

 with X =

 x1

x3

 and Ẋ =

 x2

x4

 .

Here, A, B, Bi, (i = 1, 2), a and b depend on t.
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4.3 Equivalent transformations

In this section, we analyze the determining equations by considering the transformation,

X = C(t)X1 + h̄(t), (4.12)

where C = C(t) is a nonsingular matrix and h̄ is a vector. Using transformation (4.12), system

(4.11) becomes

dX1 = Ẋ1dt,

dẊ1 =
(
ĀX1 + B̄Ẋ1 + ā

)
dt+

(
F̄1X1 + F̄2Ẋ1 + b̄

)
dW,

(4.13)

where

B̄ = C−1(BC − 2Ċ), Ā = C−1(AC +BĊ − C̈), ā = C−1(Ah̄+B ˙̄h− ¨̄h),

B̄1 = CB1, B̄2 = CB2, b̄ = Cb.

Choosing C and m such that

Ċ =
1

2
BC, ¨̄h = B ˙̄h+ Ah̄,

we have

Ā = C−1

(
A+

1

4
B2 − 1

2
Ḃ

)
C.

This allows us to assume that

B = 0, a = 0

or

α20 = α22 = α24 = α40 = α42 = α44 = 0.

The system (4.11) can now be rewritten as

dX = Ẋdt,

dẊ = AXdt+ (B1X +B2Ẋ + b)dW.
(4.14)

In the present paper, we study the case where A, Bi, (i = 1, 2) and b are constant.
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4.4 Group classification

For the group classification of systems of two second-order SODEs, we consider the functions fj

and gj, (j = 2, 4) to be linear with constant coefficients, that is, according to equations (4.10)

and the equivalence transformations:

f2 = α21x1 + α23x3, f4 = α41x1 + α43x3,

g2 = β21x1 + β22x2 + β23x3 + β24x4 + β20,

g4 = β41x1 + β42x2 + β43x3 + β44x4 + β40.

(4.15)

Substituting the functions (4.15) into determining equations (4.9a-4.9d), we obtain the follow-

ing:

2ξ1,x3x1x4x2 + ξ1,x3x3x
2
4 + ξ1,x3(α41x1 + α43x3) + 2ξ1,x1tx2 + ξ1,x1(α23x3 + α21x1)− 2α23h

′x3

−α23ξ3 − 2α21h
′x1 − α21ξ1 + 2ξ1,x3tx4 + ξ1,x1x1x

2
2 + ξ1,tt − h′′x2 = 0,

(4.16a)

2ξ3,x3x1x4x2 + 2ξ3,x3tx4 + ξ3,x3x3x
2
4 + ξ3,x3(α41x1 + α43x3) + 2ξ3,x1tx2 + ξ3,x1x1x

2
2 + ξ3,x1(α23x3

+α21x1)− 2α41h
′x1 − α41ξ1 − 2α43h

′x3 − α43ξ3 + ξ3,tt − h′′x4 = 0,

(4.16b)

−2ξ3,x3β24x4 − 2ξ3,x1β24x2 + 2ξ1,x3(β44x4 + β43x3 + β42x2 + β41x1 + β40 − β22x4)

+2ξ1,x1(β24x4 + β23x3 + β21x1 + β20)− 2ξ1,tβ22 − 2β24ξ3,t − β24h
′x4 − 3β23h

′x3

−2β23ξ3 − β22h
′x2 − 3β21h

′x1 − 2β21ξ1 − 3β20h
′ = 0,

(4.16c)

2ξ3,x3(β43x3 + β42x2 + β41x1 + β40) + 2ξ3,x1(−β44x2 + β24x4 + β23x3 + β22x2 + β21x1

+β20)− 2ξ1,x3β42x4 − 2ξ1,x1β42x2 − 2ξ1,tβ42 − 2β44ξ3,t − β44h
′x4 − 3β43h

′x3

−2β43ξ3 − β42h
′x2 − 3β41h

′x1 − 2β41ξ1 − 3β40h
′ = 0.

(4.16d)

Splitting equation (4.16a) with respect to x2 and x4 results in

ξ1 = γ2 + γ1x1 + k1x3, (4.17)

h′ = 2γ1 + k2, (4.18)

where γ1 and γ2 are functions of t and k1 and k2 are constant. Splitting equation (4.16b) with

respect to x2 and x4 gives

ξ3 = γ3 + k3x1 + (k4 + γ1)x3, (4.19)
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where γ1 and γ3 are functions of t and k3 and k4 are constant.

These conditions lead to

ξ2 = γ′2 + γ′1x1 − (k2 + γ1)x2 + k1x4, ξ4 = γ′3 + k3x2 + γ′1x3 + (k4 − k2 − γ1)x4. (4.20)

After substitution of the conditions (4.17),

−α23γ3 − α21γ2 + γ′′2 = 0, (4.21a)

−4γ1α21 + α41k1 − α23k3 − 2α21k2 + γ′′1 = 0, (4.21b)

−4γ1α23 − 2α23k2 − α23k4 + (α43 − α21)k1 = 0. (4.21c)

For splitting (4.16b), one has the following equations:

−α41γ2 − α43γ3 + γ′′3 = 0, (4.22a)

−4γ1α41 − 2α41k2 + α41k4 + (α21 − α43)k3 = 0, (4.22b)

−4γ1α43 − α41k1 + α23k3 − 2α43k2 + γ′′1 = 0. (4.22c)

Note that from equations (4.21a) and (4.22a), γ2 and γ3 are solutions of the system of two

linear second order equations

γ′′2 = α21γ2 + α23γ3, γ′′3 = α41γ2 + α43γ3. (4.23)

Observe also that equations (4.21b) and (4.22c) give two conditions:

γ′′1 = h′(α21 + α43), (4.24a)

h′(α21 − α43)− α41k1 + α23k3 = 0, (4.24b)

where h′ = 2γ1 + k2. Further simplifications are related with simplifications of the matrix A.

The matrix A can be presented in Jordan form. For a real 2× 2 matrix A, the Jordan matrix

is one of the following 3 types:

J1 =

 a 0

0 b

 , J2 =

 a c

−c a

 , J3 =

 a 1

0 a

 where a, b, c are real numbers and

c > 0. Before studying the three cases of A, it is worth listing down the determining equations
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related with βij’s. From equations (4.16c) and (4.16d) and the above computations, the split

determining equations related with the βij’s are as follows:

2γ′1


β22

β24

β42

β44

+ 3h′


β21

β23

β41

β43

+ 2k1


−β41

β21 − β43

0

β41

+ 2k3


β23

0

β43 − β21

−β23

+ 2k4


0

β23

−β41

0

 = 0,

(4.25a)

h′


β22

β24

β42

β44

+ 2k1


−β42

β22 − β44

0

β42

+ 2k3


β24

0

β44 − β22

−β24

+ 2k4


0

β24

−β42

0

 = 0, (4.25b)

4γ1

 β20

β40

+ 2γ′3

 β24

β44

+ 2γ′2

 β22

β42

+ 2γ3

 β23

β43

+ 2γ2

 β21

β41


−2k1

 β40

0

+ 3k2

 β20

β40

− 2k3

 0

β20

− 2k4

 0

β40

 = 0.

(4.25c)

Here we consider the cases of the Jordan matrices associated with A.

1. Case: A = J1. For this case, apart from the determining equations related with the βij’s,

one has the following conditions to study:

(b− a)


k1

k3

2γ1 + k2

 = 0, (4.26)

γ′′1 = (2γ1 + k2)(a+ b), (4.27)

γ′′2 = aγ2, γ′′3 = bγ3. (4.28)

Equations (4.26) give two cases: b− a = 0 or b− a 6= 0.

(a) Case: b − a = 0. For this case, one has b = a. The general solution for γ2 depends

on three cases, that is, a = 0, a > 0 and a < 0.
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i. Case: a = 0. This also satisfies equation (4.27). For this case, γ1 = γ11t + γ10,

γ2 = γ21t+ γ20 and γ3 = γ31t+ γ30 where γij (i = 1, 2, 3, j = 0, 1) are constant.

The generators obtained for this case are as follows:

X0 = ∂t, X1 = x3∂x1 + x4∂x2 , X2 = t∂t − x2∂x2 − x4∂x4 ,

X3 = x1∂x3 + x2∂x4 , X4 = x3∂x3 + x4∂x4 ,

X5 = t(t∂t + x1∂x1 − x2∂x2 + x3∂x3 − x4∂x4) + x1∂x2 + x3∂x4 ,

X6 = 2t∂t + x1∂x1 − x2∂x2 + x3∂x3 − x4∂x4 ,

X7 = t∂x1 + ∂x2 , X8 = ∂x1 , X9 = t∂x3 + ∂x4 , X10 = ∂x3 .

ii. Case: a > 0. Solving the equations (4.27-4.28), we obtain the following forms of

γ’s: γ1 = γ11e
2r1t + γ10e

2r2t − r1r2k2t
2, γ2 = γ21e

r1t + γ20e
r2t and γ3 = γ31e

r1t +

γ30e
r2t where r2 = −r1 and r1 =

√
a. The generators obtained for this case are

as follows:

X0 = ∂t, X1 = x3∂x1 + x4∂x2 ,

X2 = (t− 2/3r1r2t
3)∂t − r1r2t[t(x1∂x1 − x2∂x2 + x3∂x3 − x4∂x4)− 2(x1∂x2 + x3∂x4)]

−(x2∂x2 + x4∂x4), X3 = x1∂x3 + x2∂x4 , X4 = x3∂x3 + x4∂x4 ,

X5 = e2r1t[1/r1∂t + x1∂x1 − x2∂x2 + x3∂x3 − x4∂x4 + 2r1(x1∂x2 + x3∂x4)],

X6 = e2r2t[1/r2∂t + x1∂x1 − x2∂x2 + x3∂x3 − x4∂x4 + 2r2(x1∂x2 + x3∂x4)],

X7 = er1t(∂x1 + r1∂x2), X8 = er2t(∂x1 + r2∂x2),

X9 = er1t(∂x3 + r1∂x4), X10 = er2t(∂x3 + r2∂x4).

iii. Case: a < 0. Solving the equations (4.27-4.28), we obtain the following forms of

γ’s: γ1 = γ11 sin(2r1t) + γ10 cos(2r2t) − r1r2k2t
2, γ2 = γ21 sin(r1t) + γ20 cos(r2t)

and γ3 = γ31 sin(r1t) +γ30 cos(r2t) where r2 = −r1 and r1 =
√
a. The generators
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obtained for this case are as follows:

X0 = ∂t, X1 = x3∂x1 + x4∂x2 ,

X2 = (t− 2/3r1r2t
3)∂t − r1r2t[t(x1∂x1 − x2∂x2 + x3∂x3 − x4∂x4)− 2(x1∂x2 + x3∂x4)]

−(x2∂x2 + x4∂x4), X3 = x1∂x3 + x2∂x4 , X4 = x3∂x3 + x4∂x4 ,

X5 = sin(2r1t)(x1∂x1 − x2∂x2 + x3∂x3 − x4∂x4)− 2r1 cos(2r1t)(1/2r
2
1∂t − x1∂x2 − x3∂x4),

X6 = cos(2r2t)(x1∂x1 − x2∂x2 + x3∂x3 − x4∂x4) + 2r2 sin(2r2t)(1/2r
2
2∂t − x1∂x2 − x3∂x4),

X7 = sin(r1t)∂x1 + r1 cos(r1t)∂x2 , X8 = cos(r2t)∂x1 − r2 sin(r2t)∂x2 ,

X9 = sin(r1t)∂x3 + r1 cos(r1t)∂x4 , X10 = cos(r2t)∂x3 − r2 sin(r2t)∂x4 .

(b) Case: b− a 6= 0. For this case, one obtains k1 = k3 = 0 and γ1 = −k2/2. This gives

h = const. The general solution for γ’s depends on 2 cases: a = 0; b > 0 and a = 0;

b < 0.

i. Case: a = 0 and b > 0. For this case, γ2 = γ21t + γ20 and γ3 = γ31e
r1t + γ30e

r2t

where r2 = −r1 and r1 =
√
b. The generators obtained for this case are as

follows:

X0 = ∂t, X1 = x1∂x1 + x2∂x2 + x3∂x3 + x4∂x4 ,

X2 = x3∂x3 + x4∂x4 , X3 = t∂x1 + ∂x2 , X4 = ∂x1 ,

X5 = er1t(∂x3 + r1∂x4), X6 = er2t(∂x3 + r2∂x4).

ii. a = 0 and b < 0. For this case, one obtains: γ2 = γ21t + γ20 and γ3 =

γ31 sin(r1t) + γ30 cos(r2t) where r2 = −r1 and r1 =
√
b. The generators obtained

for this case are as follows:

X0 = ∂t, X1 = x1∂x1 + x2∂x2 + x3∂x3 + x4∂x4 ,

X2 = x3∂x3 + x4∂x4 , X3 = t∂x1 + ∂x2 , X4 = ∂x1 ,

X5 = sin(r1t)∂x3 + r1 cos(r1t)∂x4 , X6 = cos(r2t)∂x3 − r2 sin(r2t)∂x4 .

2. Case: A = J2. For this case, along with the determining equations related with the βij’s,

one needs to analyze the following:

c(4γ1 + 2k2 + k4) = 0, (4.29)

c(4γ1 + 2k2 − k4) = 0, (4.30)

c(k1 + k3) = 0, (4.31)
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γ′′1 = 2a(2γ1 + k2), (4.32)

γ′′2 = aγ2 + cγ3, γ′′3 = −cγ2 + aγ3. (4.33)

As c > 0, equations (4.29-4.32) yield k1 = −k3, k4 = 0 and γ1 = −k2/2. The general

solution for γ2 and γ3 depend on cases: a = 0 and a 6= 0.

(a) Case: a = 0. Solving the equations (4.33), we obtain the following forms of γ2 and

γ3:

γ2 = (γ21e
q1t + γ20e

−q1t) cos t+ (γ31e
q1t + γ30e

−q1t) sin t,

γ3 = (−γ21e
q1t + γ20e

−q1t) sin t+ (γ31e
q1t − γ30e

−q1t) cos t,
(4.34)

where q1 = c/2. The generators obtained for this case are as follows:

X0 = ∂t, X1 = x3∂x1 + x4∂x2 − x1∂x3 − x2∂x4 ,

X2 = t(x1∂x1 + x2∂x2 − x3∂x3 + x4∂x4) + x1∂x2 + x3∂x4 ,

X3 = x1∂x1 + x2∂x2 − x3∂x3 + x4∂x4 ,

X4 = eq1t[cos t(∂x1 + q1∂x2 − ∂x4)− sin t(∂x2 + ∂x3 + q1∂x4)],

X5 = e−q1t[cos t(∂x1 − q1∂x2 + ∂x4)− sin t(∂x2 − ∂x3 + q1∂x4)],

X6 = eq1t[sin t(∂x1 + q1∂x2 − ∂x4) + cos t(∂x2 + ∂x3 + q1∂x4)],

X7 = e−q1t[sin t(∂x1 − q1∂x2 − ∂x4) + cos t(∂x2 + ∂x3 − q1∂x4)].

(b) Case: a 6= 0. Solving the equations (4.33), we obtain the following forms of γ2 and

γ3:

γ2 = (γ21e
q1t + γ20e

−q1t) cos(q2t) + (γ31e
q1t + γ30e

−q1t) sin(q2t)

γ3 = (−γ21e
q1t + γ20e

−q1t) sin(q2t) + (γ31e
q1t − γ21e

−q1t) cos(q2t),
(4.35)

where q1 =
c

2q2

and q2 =
−a+

√
(a2 + c2)

c
. The generators obtained for this case
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are as follows:

X0 = ∂t, X1 = x3∂x1 + x4∂x2 − x1∂x3 − x2∂x4 ,

X2 = t(x1∂x1 + x2∂x2 − x3∂x3 + x4∂x4) + x1∂x2 + x3∂x4 ,

X3 = x1∂x1 + x2∂x2 − x3∂x3 + x4∂x4 ,

X4 = eq1t[cos(q2t)(∂x1 + q1∂x2 − q2∂x4)− sin(q2t)(q2∂x2 + ∂x3 + q1∂x4)],

X5 = e−q1t[cos(q2t)(∂x1 − q1∂x2 + q2∂x4)− sin(q2t)(q2∂x2 − ∂x3 + q1∂x4)],

X6 = eq1t[sin(q2t)(∂x1 + q1∂x2 − q2∂x4) + cos(q2t)(q2∂x2 + ∂x3 + q1∂x4)],

X7 = e−q1t[sin(q2t)(∂x1 − q1∂x2 − q2∂x4) + cos(q2t)(q2∂x2 + ∂x3 − q1∂x4)].

3. Case: A = J3. For this case, apart from the determining equations related with the βij’s,

the following has to be considered:

4γ1 + 2k2 + k4 = 0, (4.36)

k3 = 0, (4.37)

γ′′1 = 2a(2γ1 + k2), (4.38)

γ′′2 = aγ2 + γ3, γ′′3 = aγ3. (4.39)

From equation (4.36), one gets k4 = −2(2γ1 + k2). Here, we have two cases to study:

a = 0 and a 6= 0.

(a) Case a = 0. For this case, γ1 = γ11t+γ10, γ3 = γ31t+γ30 and γ2 = γ31t
3/6+γ30t

2/2+

γ21t+ γ20 where γij (i = 1, 2, 3, j = 0, 1) are constant. The generators obtained for

this case are as follows:

X0 = ∂t, X1 = x3∂x1 + x4∂x2 , X2 = t∂t − x2∂x2 − 2x3∂x3 − 3x4∂x4 ,

X3 = t(t∂t + x1∂x1 − x2∂x2 − 3x3∂x3 − 5x4∂x4) + x1∂x2 + x3∂x4 ,

X4 = 2t∂t + x1∂x1 − x2∂x2 − 3x3∂x3 − 5x4∂x4 , X5 = t∂x1 + ∂x2 ,

X6 = ∂x1 , X7 = t3/6∂x1 + t2/2∂x2 + t∂x3 + ∂x4 , X8 = t2/2∂x1 + t∂x2 + ∂x3 .

(b) Case a 6= 0. For this case, one assume that h′ = 0. The general solution for γ3

depends on these cases: a > 0 and a < 0.
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i. Case a > 0. Solving γ’s, one obtains: γ3 = γ31e
r1t + γ30e

r2t and γ2 = γ21e
r1t +

γ20e
r2t + γ31/r

2
1e
r1t + γ30/r

2
2e
r2t. The generators obtained for this case are as

follows:

X0 = ∂t, X1 = x3∂x1 + x4∂x2 , X2 = x1∂x1 + x2∂x2 + x3∂x3 + x4∂x4 ,

X3 = er1t(∂x1 + r1∂x2), X4 = er2t(∂x1 + r2∂x2),

X5 = er1t(1/r2
1∂x1 + 1/r1∂x2 + ∂x3 + r1∂x4),

X6 = er2t(1/r2
2∂x1 + 1/r2∂x2 + ∂x3 + r2∂x4).

ii. Case a < 0. Solving γ’s for this case we obtain: γ3 = γ31 sin(r1t) + γ30 cos(r2t)

and γ2 = (γ21−γ31/r
2
1) sin(r1t)+(γ20−γ30/r

2
2) cos(r2t). The generators obtained

for this case are as follows:

X0 = ∂t, X1 = x3∂x1 + x4∂x2 , X2 = x1∂x1 + x2∂x2 + x3∂x3 + x4∂x4

X3 = sin(r1t)∂x1 + r1 cos(r1t)∂x2 , X4 = cos(r2t)∂x1 − r2 sin(r2t)∂x2 ,

X5 = − sin(r1t)(1/r
2
1∂x1 − ∂x3)− cos(r1t)(1/r1∂x2 − r1∂x4),

X6 = − cos(r2t)(1/r
2
2∂x1 − ∂x3) + sin(r2t)(1/r2∂x2 − r2∂x4).

For each of these 3 cases of matrix A, the study of the determining equations related with

the βij’s was carried out and the relationships between them were found. However the details

for this computation have been left due to the journal restriction on the number of pages per

paper.

4.5 Conclusion

We considered a system of two linear second-order stochastic ordinary differential equations

with constant coefficients and found the determining equations which are non-stochastic. We

illustrated the cases where the αij’s for the determining equations were found and used to

simplify the original system of stochastic ordinary differential equations.
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Chapter 5

Conclusion

There are several methods of finding analytical solutions. One way is to guess a solution and

use the Itô calculus to verify that it is a solution for the SODE under the consideration. For

some classes of SODEs, analytical formulae exist to find the solutions. However, most SODEs,

especially nonlinear SODEs, do not have analytical solutions. A class of solvable SODEs is the

linear class, for which both the drift and volatility functions are linear. In this thesis, we used

a group analysis approach to find solutions for certain classes of linear differential equations.

Firstly, we considered systems of two linear second-order ODEs without a stochastic component.

The algebraic approach was used to solve the group classification problem for systems of two

linear second-order ODEs. We have shown that using the algebraic approach leads to the study

of a variety of cases in addition to those already obtained in the literature. We illustrated that

this approach can be used as an effective tool to study the group classification of the type of

systems studied in this thesis.

Since most SODEs are nonlinear, we have presented the linearization criteria for systems of

two nonlinear second-order SODEs. We provided the necessary and sufficient conditions for

linearization by an invertible transformation. In addition, we also showed that a system of

two nonlinear second-order SODEs is linearizable via an invertible transformation when certain

conditions are satisfied. Moreover, a code was developed using REDUCE for checking whether

a system of two second-order SODEs is linearizable. Certain nonlinear second-order SODEs
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appeared to be linearizable via invertible transformations. The result was given in terms of a

Theorem with three examples. This thesis gives a new treatment for the linearization of two

second-order SODEs.

Lastly, we considered the underlying group theoretic properties of a system of two linear second-

order SODEs with constant coefficients. For this system we obtained the determining equations

and the corresponding equivalent transformations which assist with further classifying the sys-

tem for some selected cases. This system with constant coefficients was solved as part of this

thesis.

Future Research

In chapter four, we only considered the determining equations for the αij’s due to the journal

restriction on the number of pages. However, one selected case of the determining equations

involving βij’s is considered here, with the rest of the cases being left for a future research

project which is underway.

Case: A = J1.

From equations (4.26), one obtains k1 = k3 = 0 and γ1 = −k2/2. After substituting these

conditions, the remaining determining equations with respect to βij are as follows:

2β24γ
′
3 + 2β23γ3 + 2β22γ

′
2 + 2β21γ2 + β20k2 = 0, (5.1a)

2β44γ
′
3 + 2β43γ3 + 2β42γ

′
2 + 2β41γ2 + β40(k2 − 2k4) = 0, (5.1b)

k4


β23

β24

β41

β42

 = 0. (5.1c)

From this case, one can further study the following two cases:

1. the case where there exists at least one generator with k4 6= 0,

2. the case with all generators having k4 = 0.

We consider the case for k4 6= 0 for illustrative purposes.
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1. For case 1, with k4 6= 0, we have β23 = β24 = β41 = β42 = 0. All determining equations

are satisfied except for equations (4.28) and these equations become:

2β22γ
′
2 + 2β21γ2 + β20k2 = 0,

2β44γ
′
3 + 2β43γ3 + β40(k2 − 2k4) = 0.

The general solution for the γ’s depends on three cases: a 6= 0; b 6= 0, a = 0; b 6= 0 and

a 6= 0; b = 0. The cases are considered as follows:

(a) Case A: a 6= 0 and b 6= 0. For this case, one obtains: γ2 = γ21e
−p1t + γ20e

p1t and

γ3 = γ31e
−p2t + γ30e

p2t, where p2
1 = a and p2

2 = b. If β21 = −β22p1 and β43 = −β44p2.

Hence, two cases to consider are: β40 6= 0 and β40 = 0.

Case A.1: If β40 6= 0, then k2 = 2k4. The generators obtained for this case are:

X0 = ∂t, X1 = x1∂x1 + x2∂x2 , X2 = ep1t(∂x1 + p1∂x2), X3 = ep2t(∂x3 + p2∂x4).

Case A.2: In this case, β40 = 0. Hence the two sub-cases to study are: β20 6= 0 and

β20 = 0.

Case A.2.1: Here β20 6= 0, so that k2 = 0. The generators obtained for this case are:

X0 = ∂t, X1 = x3∂x3 + x4∂x4 , X2 = ep1t(∂x1 + p1∂x2), X3 = ep2t(∂x3 + p2∂x4).

Case A.2.2: For this case, β20 = 0. The generators obtained in this case are:

X0 = ∂t, X1 = x3∂x3 + x4∂x4 , X2 = ep1t(∂x1 + p1∂x2), X3 = ep2t(∂x3 + p2∂x4),

X4 = x1∂x1 + x2∂x2 + x3∂x3 + x4∂x4 .

(b) Case B: a = 0 and b 6= 0. For this case, one obtains γ2 = γ21t + γ20 and γ3 =

γ31e
p2t + γ30e

−p2t. The cases to consider are: β40 6= 0 and β21 6= 0.

Case B.1: For β40 6= 0, we further, consider two sub-cases: β21 6= 0 and β21 = 0.

Case B.1.1: For β21 6= 0, this lead to β20 = −γ20β21/k4. For simplicity, we let

β21/k4 = 1. The generators obtained for this case are as follows:

X0 = ∂t, X1 = −x1∂x1 − x2∂x2 , X2 = ∂x1 , X3 = ep2t(∂x3 + p2∂x4).
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(c) Case C: a 6= 0 and b = 0. For this case, we obtain: γ2 = γ21e
p2t + γ20e

−p2t and

γ3 = γ31t+ γ30. The generators obtained for this case are as follows:

X0 = ∂t, X1 = x1∂x1 + x2∂x2 + x3∂x3 + x4∂x4 ,

X2 = x3∂x3 + x4∂x4 , X3 = t∂x3 + ∂x4 , X4 = ∂x3 ,

X5 = ep2t(∂x1 + p2∂x2), X6 = e−p2t(∂x1 − p2∂x2).

The rest of the study of the analysis of the determining equations related to βij’s has been left

for a future research project. The rest of the cases would consider A = J2 and A = J3.
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