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THESIS SUMMARY 

Inoculation with diazotrophic bacteria is well documented as a means to enhance growth and 

increase yields of various crops, especially when used as an alternative or a supplement to the 

use of nitrogenous fertilizers and agrochemicals for sustainable agriculture. Nitrogen is the most 

limiting nutrient for increasing crop productivity, and the use of chemical sources of N fertilizers 

is expensive, and may contribute to environmental pollution. Therefore, there is a need to 

identify diazotrophic inoculants as an alternative or supplement to N-fertilizers for sustainable 

agriculture. The search for effective diazotrophic bacterial strains for formulation as biofertilizers 

has been going on for over 40 years and a number of inoculant biofertilizers have been 

developed and are commercially available. 

 

In the current study, 195 free-living diazotrophic bacteria were isolated from soils collected from 

the rhizosphere and leaves of different crops in different areas within the KwaZulu-Natal 

Province, Republic of South Africa. Ninety five of the isolates were selected for further 

screening because they were able to grow on N-free media using different carbon sources. 

Isolates that were very slow to grow on N-free media were discarded. Of these, 95 isolates were 

screened in vitro for growth promotion traits tests including tests for ammonia production and 

acetylene reduction. The best 20 isolates that were also able to reduce acetylene into ethylene 

were selected for growth-promotion trials on maize under greenhouse conditions. Of the 20 

isolates, ten isolates enhanced (P = 0.001) growth of maize above the Un-inoculated Control. 

Molecular tests were conducted to identify the ten most promising isolates selected in the in vitro 

study. In the greenhouse study, these diazotrophic isolates were screened for their ability to 

enhance various growth parameters of maize (Zea mays L.), following various inoculation 

techniques (drenching, seed treatment, foliar spray and combination of these). Inoculations with 

the five best diazotrophic isolates by various methods of application increased dry weight and 

leaf chlorophyll content (P < 0.001, P = 0.001), respectively, compared to the Untreated Control. 

Although, all methods of application of diazotrophic inoculants used in this study resulted in 

increased dry weight and leaf chlorophyll content, combined methods of application (seed 

treatment + drenching) and sole application (seed treatment) were significantly more (P < 0.05) 

efficient. The best five most promising isolates were identified for growth promotion of maize 

under greenhouse conditions. They were also assessed for their effects on germination of wheat 
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in vitro and were further tested in combination with various levels of nitrogenous fertilizer for 

growth-promotion of wheat (Triticum aestivum L.). These five isolates were also investigated for 

their potential to enhance growth and yields of maize and wheat crops in field trials, when 

combined with a low dose of nitrogenous fertilizer. These isolates were further studied for their 

contribution for enhancing plant growth through nitrogen fixation by predicting N content in 

leaves using a chlorophyll content meter (CCM-200) and correlated to extractable chlorophyll 

level at R
2 

= 0.96. 

 

In this study, relative to the Un-inoculated Control, the best five isolates enhanced  growth of 

maize and wheat when combined with a 33% N-fertilizer levels for a number of growth 

parameters: increased chlorophyll levels and heights of maize, shoot dry weight of maize and 

wheat; and enhanced root and shoot development of these crops in both greenhouse and field 

conditions. The best contributions of diazotrophic bacteria was achieved by Isolate LB5 + 

0% NPK (41%), V9 + 65% NPK (28.9%), Isolate L1 + 50% NPK (25%), Isolate L1 + 25%NPK 

(22%) and LB5 + 75% NPK (15%) undergreenhouse conditions. At 30 or 60 DAP, isolates with 

33%N-fertilizer caused relatively higher dry weight than the 100%NPK. Inoculation of Isolate 

StB5 without 33N% fertilizer cuased significant (P<0.005) increases in stover dry weight. 

In field studies, inoculation of diazotrophic bacteria alone or with 33%N-fertilizer resulted in 

relatively greater increases of dry weight, stover dry weight, number of spikes and yield at 

different growth stages higher than the Un-inoculated or Unfertilized Control. However, the 

increases were not statistically significant. The use of microbial inoculants in combination with 

low doses of nitrogenous fertilizers can enhance crop production without compromising yields. 

The isolates obtained in this study can effectively fix nitrogen and enhance plant growth. The use 

of microbial inoculants can contribute to the integrated production of cereal crops with reduced 

nitrogenous fertilizer inputs, as a key component of sustainable agriculture. 
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PROLOGUE 

By 2050 the global human population is projected to increase by 50%, and the global grain 

demand is projected to double (Alexandratos, 1999). Poor soil fertility is one of the major 

constraints for crop production (Ouédraogo et al., 2001). Millions of people in the world are 

fed by modern agriculture, benefiting from increased yields resulting from greater inputs of 

fertilizer, pesticides and other technologies (Cassman, 1999). However, ensuring 

sustainability of agriculture, enhancing crop growth and improving crop yields, all without 

compromising environmental integrity or human health are major challenges (Tilman et al., 

2002). Moreover, continuous use of agrochemicals may impact negatively on the 

environment (Poudel et al., 2001; Wilson and Tisdell, 2001). The high cost of fertilizers also 

inflates the cost of crop production. The use of microorganisms in agriculture has therefore 

been identified as a cheaper and more environmentally friendly alternative or supplementary 

mechanism to improve crop production and reduce production costs (Parr et al., 1994; Wu et 

al., 2005; Berg, 2009).  

 

The first major groups of biofertilizers identified were Rhizobium spp., that fix nitrogen from 

the atmosphere in root nodules on legumes. They have been used commercially as inoculants 

for legumes for over 100 years (Boonkerd and Singleton, 2002). Research in the field of 

biofertilizers has resulted in the development of different kinds of microbial inoculants or 

biofertilizers including nitrogen fixing bacteria, phosphate solubilizing microorganisms, 

vesicular–arbuscular mycorrhizae (VAM) and plant growth promoting rhizobacteria (PGPR). 

Several free-living bacteria genera have been reported to enhance plant growth, subsequently 

increasing yields of crops (Kloepper et al., 1989; Glick, 1995; Kennedy et al., 2004; Lucy et 

al., 2004). Improvements in growth parameters resulting from the use of microbial 

inoculants, combined with reduced rates of chemical fertilizers, have been also reported in 

previous research (Chen, 2006; Jilani et al., 2007; Adesemoye et al., 2009; Kumar et al., 

2009). Research on the use of microbial inoculants to enhance growth and increase yields of 

crops has been the focus of many studies (Okon and Vanderleyden, 1997; Dobbelaere et al., 

2001; Riggs et al., 2001; Matiru and Dakora, 2004; Mehnaz et al., 2010). Typically these 

beneficial microorganisms have been isolated from the rhizosphere of plants and formulated 

into microbial inoculants. 
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The aim of the current study were to isolate diazotrophic bacteria from the rhizosphere and 

leaves of different cereal crops, and evaluate their potential to promot plant growth The 

specific objectives were to: 

 Isolate and identifiy diazotrophic bacteria from the rhizosphere and leaves of wheat 

and maize; 

 Screen these bacteria in vitro as plant growth-promoters; 

 Select the most efficient bacterial strains for use as bio-inoculants; 

 Evaluate the effect of diazotrophic bacteria as biofertilizers on the growth of maize 

and wheat in both the greenhouse and field; 

 Evaluate effective inoculation techniques and simplest methods of application to be 

adopted by small-scale farmers; 

 Determine the optimum dose of nitrogenous fertilizer to be used in combination with 

biofertilizer inoculation, aiming to integrate the application of chemical fertilizers and 

biofertilizers with an optimal yield; and 

 Investigate the effects of combining bacterial inoculants with reduced levels of N 

fertilizer, and co-inoculation of these bacterial isolates with a strain of Trichoderma 

harzianum (Eco-T). 

The referencing system used in this thesis is based on the specific style used in the journal 

Crop Science. 

The thesis is in the form of discrete research chapters, each following the format of a stand-

alone research paper. This is the dominant thesis format adopted by the University of 

KwaZulu-Natal because it facilities the publishing of research out of theses far more readily 

than the older monograph form of thesis. As such, there is some unavoidable repetition of 

references and some introductory information between chapters. 
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CHAPTER ONE 

LITERATURE REVIEW 

1.1 Introduction 

In the developing world, maize (Zea mays L.), wheat (Triticum aestivum L) and rice (Oryza 

sativa L) are the most important staple crops and require relatively large nitrogen inputs for 

their production. Over 80% of our atmosphere is Nitrogen (N2), which cannot be used by 

plants unless converted into nitrate or nitrite either chemically by the Haber–Bosch process, 

or by Biological Nitrogen Fixation (BNF). Most of the nitrogenous fertilizer is produced by 

industrial N fixation. It requires approximately 18.5 Mcal of fossil energy to produce one kg 

of N-fertilizer (Da Silva et al., 1978). Each unit of N fertilizer produced requires two units of 

petroleum (Hamdi, 1982; Wagner, 1997). This is expensive, especially for farmers in the less 

developed countries, and is not sustainable because petroleum is a non-renewable resource. 

This is a major problem in southern Africa (Mafongoya et al., 2007; Mtambanengwe and 

Mapfumo, 2008), Central Africa (Mafuka et al., 2007) and the entire sub-Saharan region 

(Kimetu et al., 2004), a region in which soil nutrient reserves are being depleted because of 

continued nutrient mining by intensified cropping without adequate replenishment of 

nutrients that have been removed. One method of increasing crop yields is the use of 

chemical fertilizers that are expensive and may pollute the environment (Bhattacharjee et al., 

2008a). However, Africa has the lowest fertilizer use in the world because artificial fertilizers 

are neither available nor affordable to small-scale farmers in the region (Boddey et al., 1995a; 

Kimetu et al., 2004). Improving agricultural productivity in Africa requires building up and 

maintenance of soil fertility, despite the low incomes of smallholder farmers (Mafongoya et 

al., 2007). This has led to interest in biofertilization with an emphasis on BNF (Peoples et al., 

1995a; Wagner, 1997). Biological nitrogen fixation uses microbes to convert atmospheric 

nitrogen into a plant-usable form, offering a cost effective and eco-friendly source of N 

fertilization. While BNF may generate only a fraction of total crop N requirements for 

commercial farmers (Kennedy et al., 2004a), it may provide substantial inputs of N for 

resource poor farmers as a long term, sustainable option.  
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1.2 Biofertilizers 

Biofertilizers are based on microorganisms that promote plant growth by increasing the 

supply or availability of primary nutrients to the host plant. When these microbes are applied 

to seed, plant surfaces, or soil, they colonize the rhizosphere or interior of the plant (Khalid et 

al., 2004a). Beneficial rhizosphere bacteria, collectively called plant growth promoting 

rhizobacteria (PGPR), are the main constituents of biofertilizers. They may be more cost 

effective than chemical fertilizers (Kloepper et al., 1989; Ahmad et al., 2006a; Ahmad et al., 

2008). Use of microbial biofertilizers may reduce the need to use chemical fertilizers, which 

is crucial for small scale farmers (Rai, 2006). However, biofertilizers are dependent upon 

physical, environmental, nutritional and biological factors (Wani et al., 1995). PGPRs exert 

their positive effects on plant growth both, directly and indirectly (Giller and Cadisch, 1995). 

Members of the genera Azotobacter, Azospirillum, Pseudomonas, Acetobacter, Burkholderia, 

Bacillus, Paenibacillus, and some members of the Enterobacteriaceae are effective as 

biocontrol and biofertilization agents in agriculture (Siddiqui, 2006). These beneficial 

bacteria enhance emergence, colonize roots, stimulate growth and enhance yield (Niranjan 

Raj et al., 2006).  

 

1.2.1 Direct Growth Promotion 

Biofertilizers promote plant growth and health by nitrogen fixation (Vessey, 2003), 

synthesizing phytohormones (Klee et al., 1987; Frankenberger and Arshad, 1995; Dobbelaere 

et al., 2003; Rodrigues et al., 2008), solubilization of inorganic phosphate and mineralization 

of organic phosphate (making phosphorous available to plants) (Glick, 1995;  odr  gue  and 

Fraga, 1999; Khalid et al., 2004b), and as microbial iron transport agents by secreting 

sideropheres that solubilize and sequester Fe from the soil and provide it to plant cells. 

(Kloepper et al., 1980). 

 

1.2.1.1 Biological Nitrogen Fixation (BNF) 

The global use of N-fertilizers increases annually (Vance, 2001). However, an estimated 58 

Tg N of ((Vitousek, et al., 2013)). In agricultural systems, BNF takes place as a result of 

symbiotic relationships involving legumes and Rhizobium spp. (Peoples et al., 1995b), or by 

non-symbiotic associations between free-living diazotrophs and plant roots (Peoples and 

Craswell, 1992). The latter are various species of symbiotic nitrogen-fixing bacteria that have 

been studied for their ability to successfully colonize roots, stems and leaves of non-
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leguminous plants such as rice, sugarcane, wheat and maize (Bhattacharjee et al., 2008b). 

Several nitrogen-fixing bacteria, e.g., Acetobacter diazotrophicus Gillis et al., Herbaspirillum 

seropedicae Baldani et al., Azoarcus spp. and Azotobacter strains (Steenhoudt and 

Vanderleyden, 2000) have been shown to colonize graminaceous plants (rice, wheat, maize) 

and exert plant growth promoting effects in their non-leguminous hosts via nitrogen fixation 

and phytohormonal stimulation of root development and root activity (Rothballer et al., 

2009). Khalid et al. (2004b) confirmed the potential of associative diazotrophic bacteria to 

promote the growth of many cereals and grasses. Their capacity to fix atmospheric nitrogen 

(N2) makes them a viable option to generate BNF, which is economically attractive. Although 

many genera and species of N2-fixing bacteria are isolated from rhizosphere of various 

cereals, mainly members of the genera of Azospirillum, Azotobacter and Herbaspirillum have 

been widely shown to increase yield of cereals under field conditions. 

Rhizobium inoculants are used for leguminous crops (Peoples and Craswell, 1992), whereas 

Azotobacter may be used with crops like wheat, maize, mustard, cotton, potato and vegetable 

crops (Martinez Toledo et al., 1988; Rai and Gaur, 1988). Azospirillum inoculants have been 

recommended for sorghum, millet, maize, sugarcane and wheat (Kapulnik et al., 1981; 

Venkateswarlu and Rao, 1983; Mertens and Hess, 1984; Rai and Gaur, 1988; Dobereiner et 

al., 1995). In the field, increasing plant production through enhanced BNF needs the 

establishment of effective N2-fixing systems (Boddey and Dobereiner, 1988; Ishizuka, 1992). 

 

1.2.1.2 Phytohormones 

A phytohormone is an organic compound which is produced naturally in plants and it is 

active in small amounts in controlling growth and other functions (Letham, 1969). There are 

three types of phytohormones: auxins, gibberellins, and cytokinins. The production of 

phytohormones by plant-growth promoting rhizobacteria is considered to be an important 

mechanism by which these bacteria promote plant growth. All three types of hormones 

involve several stages of plant growth and development, such as cell elongation, cell division 

and tissue differentiation (Letham, 1969; Costacurta and Vanderleyden, 1995). Symbiotic 

bacteria Rhizobium and Bradyrhizobium synthesize indole-3-acetic acid (IAA) via indole-3-

pyruvic acid (IPA). IAA is naturally occurring auxin with broad physiological effects. Many 

bacteria are able to produce IAA, including bacteria that are phytopathogenic, as well as 

those that are plant-growth promoting (Lambrecht et al., 2000). Some PGPR may stimulate 
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root proliferation by IAA biosynthesis, therefore they may enhance uptake of soil minerals 

and nutrients by the host plant (Lambrecht et al., 2000). 

 

1.2.1.3 Phosphate Solubilization 

After nitrogen, phosphorus is the major plant growth-limiting nutrient despite, its abundance 

in soil in both inorganic and organic forms. Phosphate is poorly accessible to plant because of 

its high reactivity with aluminum, iron and calcium, which leads to its precipitation 

(Gyaneshwar et al., 2002). Group of heterotrophic microorganisms such as Bacillus and 

Pseudomonas are known to have the ability to solubilize inorganic P from insoluble sources 

(Wani, et al., 2007). They dissociate the phosphates from soil complex through several 

mechanisms, such as the production of organic acids which dissolve or chelate inorganic 

phosphate, or the production of phosphatases and phytases, which dissociate phosphorus 

from organic complexes (Vikram et al., 2007). They increase the availability of soil 

phosphate, promoting plant uptake of this element ( odr  guez and Fraga, 1999). They also 

release phosphates by secretion of acids and phosphatases that solubilize and mineralize 

phosphates and make them available to plants (Kim et al., 2010). This group includes the 

following bacteria: Bacillus megaterium de Bary, B. circulans Jordan, B. subtilis (Ehrenberg) 

Cohn, Pseudomonas striata Chester, and P. rathonis Miligula. Root growth is regulated by 

phosphorus availability and in early stages of plant growth, it benefits the plant by 

stimulating the production of deeper and more abundant roots (Henry et al., 2010). 

 

1.2.1.4 Siderophores 

Siderophores (iron carriers) are defined as relatively low molecular weight molecules that 

have a high specificity for chelating or binding iron. Siderophores are produced by many 

microorganisms, including bacteria, yeast, and fungi, to extract iron from the environment 

(Neilands, 1995). Bacteria living in the soil or water must have a mechanism to solubilize 

iron precipitates in order to assimilate iron from the environment. Plant growth promoting 

rhizobacteria have been associated with improved plant growth through a direct effect on the 

plant, through antagonism against phytopathogenic microorganisms by production of 

siderophores, which are high affinity Fe
3+

 chelators, that enhances the microbial acquisition 

of Eron (Fe) in irone deficient environment (Scher and Baker, 1982) and cyanide (Loper and 

Buyer, 1991; Flaishman et al., 1996; Howard, 1999).  
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1.2.2 Indirect Growth Promotion 

1.2.2.1 Biocontrol of Phytopathogens 

Diazotrophs are able to decrease or prevent the deleterious effects of pathogenic 

microorganisms through antibiotic production, suppressing pathogens or combinations of 

them (Dobbelaere et al., 2003). Microorganisms that can grow in the rhizosphere are ideal for 

use as biocontrol agents since the rhizosphere provides the front-line defense for roots against 

attack by pathogens (Weller, 1988).  

 

1.2.2.2 Antibiotic Production 

Plant growth promoting rhizobacteria (PGPR) are indigenous to soil and the plant rhizosphere 

and play a major role in the biocontrol of plant pathogens (Dowling and O'Gara, 1994). The 

production of antibiotic substances by some strains has been recognized as a major factor in 

the suppression of many root pathogens. Associative and endophytic nitrogen-fixing bacteria 

often produce antibiotic substances to promote plant growth and control phytopathogens 

(Bally and Elmerich, 2007). Many of these PGPR have the ability to produce disease-

suppressive antibiotic such as phenazine-1-carboxylic, 2,4-diacetylphloroglucinol, 

streptomycin, pyoluteorin and pyrrolnitrin (Rai and Gaur, 1988). 

 

1.2.2.3 Induced Systemic Resistance (ISR) 

Biocontrol can also be mediated by activation of induced systemic resistance (ISR) responses 

in plants, and by modification of hormonal levels in the plant tissues (Bowen and Rovira, 

1999). ISR occurs naturally as a result of colonization of the roots by beneficial soil-borne 

microorganisms, such as plant-growth promoting rhizobacteria and mycorrhizal fungi. 

Different beneficial microbe-associated molecular patterns are recognized by the plant, which 

results in a mild, but effective activation of the plant immune responses in plant tissues.  

1.3 Field Crops 

Cereals such as wheat, rice, and maize are the major cereals that sustain humanity (Fischer et 

al., 2007). These crops need 20 to 40 kg soil N ha
−1 

per crop to satisfy the N requirements for 

each tonne of grain produced (Peoples and Craswell, 1992). In the developing world, maize is 

the most important staple crop, and nitrogen is the most important input required for maize 

production (Nziguheba et al., 2005). As a staple food, maize has a large and stable market 

and is the most important agricultural product in South Africa. On the basis of area and 

volume of production, it remains the most important dry-land crop, globally. However, yields 
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in Africa are extremely low, at about 10% of potential, around 700 kg of maize per hectare 

against a potential seven tonnes per hectare in Central America (Gladwin et al., 2001). 

Wheat is generally grown in three production regions in South Africa, i.e., winter/spring-

planted wheat in the summer rainfall region, winter-planted wheat types under dry land 

conditions, and spring wheat types grown under irrigation in the summer rainfall region 

(Hatting et al., 2000). Wheat requires 50% of its total nitrogen by mid to late tillering. For 

example, winter wheat would ideally produce two to three tillers which support most of the 

yield by early spring (Holmes et al., 2006). The other 50% of their total nitrogen requirement 

needs to be applied early enough to supply the high demand of these growing tillers 

(Blankenau et al., 2002). 

Farmers often lack irrigation, and Africa has the lowest global fertilizer usage (on average, 

less than five kg ha
-1

) (Borlaug and Dowswell, 1995) because farmers are simply unable to 

afford inputs used by their developed world counterparts. The possibility of using BNF on 

cereals and other non-legume crops has been proposed (Boddey et al., 1995b; Dobereiner et 

al., 1995). Studies on sorghum, maize and wheat inoculated with Azospirillum have revealed 

a BNF contribution of five kg N ha
-1

 yr
-1 

(Okon and Labandera-Gonzalez, 1994). Unkovich 

and Baldock (2008) pointed out that the contribution of N by free living soil bacteria for crop 

growth in Australia is probably <10 kg ha
-1

 yr
-1

. Because the contribution of N by free living 

soil bacteria for crop growth is so small, researchers in developed countries have suggested 

that the ability of PGPR to fix N is no longer an important criterion for classification of a 

bacterium as a biofertilizers (Peoples et al., 2002; Boyle et al., 2008). However, food 

shortages and malnutrition are still widespread problems in the developing world and it is 

therefore important to use whatever potential there is to increase the output of low external 

input agriculture. To make the cultivation of cereals sustainable and less dependent on 

nitrogen fertilizer , it is important to use PGPRs that can biologically fix nitrogen and 

produce growth enhancing substances (for example, indole-3-acetic acid and siderophores) 

(Table 1.3). These may contribute to enhanced cereal yield (Mtambanengwe and Mapfumo, 

2008). 
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1.4 Biological Nitrogen Fixation (BNF) by Non-symbiotic Diazotrophs 

The only biological reaction counterbalancing the loss of N from soils or ecosystems is BNF 

(Hurek and Reinhold-Hurek, 2003). Activity of non-symbiotic nitrogen-fixing bacteria is low 

in systems with crop residues containing high levels of plant available nitrogen because the 

nitrogenase enzyme activation slows down if sufficient fixed nitrogen is available in the soil 

environment (Reference fix). Moreover, the reduction of atmospheric nitrogen (N2) to 

ammonia (NH3) by the nitrogenase enzyme consumes large amounts of energy (Kim and 

Rees, 1994) and depends on adenosine 5 ' - triphosphate (ATP), Mg'+, and a source of low 

potential electrons (Watt et al., 1975). 

It was observed that non-leguminous plants like rice, sugarcane, wheat and maize form an 

extended niche for various species of N2-fixing bacteria (Bhattacharjee et al., 2008b). These 

bacteria thrive within the plant, successfully colonizing roots, stems and leaves. Free - living 

diazotrophs that has been repeatedly detected in association with plant roots include 

Acetobacter diazotrophicus Gillis, Herbaspirillum seropedicae (Leifson) Ding and Yokota, 

Azoarcus spp. and Azotobacter spp. (Steenhoudt and Vanderleyden, 2000). Some of these 

diazotrophic bacteria have been called endophytes because of their occurrence mainly within 

plant tissue (James et al., 1997). Endophytic diazotrophs have been isolated from several 

grasses in which significant BNF has been demonstrated, particularly Brazilian sugarcane 

varieties, but also rice, maize, and sorghum (Boddey and Dobereiner, 1995). They have been 

linked with high level of N-fixation, particularly in sugarcane where the bacteria are found in 

large numbers (Boddey et al., 1991; Dobereiner et al., 1995). BNF by some diazotrophic 

bacteria such as Azotobacter, Clostridium, Azospirillum, Herbaspirillum and Burkholderia 

can substitute for urea-N (Kennedy et al., 2004a). Clostridium spp. was the first gram 

positive, strictly anaerobic archaebacterium that was shown to be capable of nitrogen-fixation 

(Dixon and Wheeler, 1983). 

 

1.4.1 Free Living N2-fixing Bacteria 

Free living nitrogen fixers represent a range of microorganisms including bacteria living on 

plant residues (saprophytes), bacteria which live entirely within plants (endophytes) and 

bacteria living in close association with the plant root (rhizobacteria). Free-living nitrogen-

fixing bacteria reside in the rhizosphere of certain plants (including many grasses) and fix 

nitrogen in nutrient-rich plant rhizospheres. In the free-living system, plants gain benefit 
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when bacteria die and release nitrogen to the environment (Bentley and Carpenter, 1984), or 

when bacteria are loosely associated with roots of plants (James, 2000).  

 

1.4.1.1 The Genus Azotobacter 

Azotobacter is a gram negative bacterium that is usually motile, oval or spherical in shape, 

and forms thick walled and elongated cysts 1.4-2.0 µm in diameter (Socolofsky and Wyss, 

1961). It prefers aerobic condition but can grow under low oxygen pressure and fixes N, at a 

rate of at least 10 mg N2 per gram of carbohydrates consumed (Drozd and Postgate, 1970). It 

is able to grow at a pH range of 4.8 - 8.5 and fixes N at optimum pH of 7.0 - 7.5 (Dilworth et 

al., 1988).The species Azotobacter vinelandii Lipman and Azotobacter chroococcum 

Beijerinck are free-living, aerobic heterotrophic diazotrophs that depend on an adequate 

supply of reduced carbon compounds such as sugars for energy (Kennedy et al., 2004a). 

These bacteria have been reported to stimulate crop yield and this led to the artificial 

inoculation (‘A otobacterin’) of crops in Russia in the 1950s. Inoculation with Azotobacter 

can increase rice yield up to 0.9 t ha
-1

 and N accumulation up to 15 kg ha
-1 

(Yanni and El-

Fattah, 1999). Similarly, inoculum of A. chroococcum was effective in enhancing the 

vegetative growth of maize (Nieto and Frankenberger, 1991). It has also been reported that 

wheat yields increased up to 30% with Azotobacter inoculation (Kloepper et al., 1991). 

However, it is not clear whether these beneficial effects were due to nitrogen fixation or to 

the production of growth substances by the bacteria (Stewart, 1969). 

 

1.4.2 N2-fixation Associated Bacteria 

In the rhizosphere of grasses, many N2-fixing microorganisms are present. Some are strongly 

associated with plants they inhabit and respond strongly to the availability of  plants 

nutrients. Nitrogen-fixing plant growth promotion rhizobacteria (PGPR) include the 

following species: Azotobacter paspali Döbereiner (Approved Lists, 1980), Azospirillum 

lipoferum Beijerinck Tarrand et al., Azospirillum brasilense Tarrand et al. and Azotobacter 

amazonense which have been studied for more than 50 years, though their contribution of 

fixed nitrogen to crop plants are controversial (Giller and Cadisch, 1995). For example, 

Bashan et al. (1989) demonstrated that the contribution of a Nif- strain of Azospirillum 

brasilense to the improvement of tomato seedling growth was not through nitrogen fixation. 

However, Boddey and Knowles (1987) suggested that when some of these bacteria associated 

with specific hosts such as sugarcane and Panicum sp., nitrogen fixation can become quite 
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significant. There are numerous N2-fixing bacteria taxa such as: Acetobacter diazotrophicus 

Gillis et al. and Herbaspirillum spp. that are associated with sugarcane, sorghum and maize, 

and are considered to enhance crop yields (Triplett, 1996; James et al., 1997).  

 

1.4.2.1 The Genus Azospirillum 

Bacteria of the genus Azospirillum (a subclass of proteobacteria) have been known for many 

years as PGPR (Okon and Labandera-Gonzalez, 1994; Steenhoudt and Vanderleyden, 2000). 

Azospirillum species are aerobic heterotrophs that convert atmospheric nitrogen into 

ammonium under microaerobic conditions at low oxygen levels, through the action of a 

nitrogenase complex (Roper and Ladha, 1995; Steenhoudt and Vanderleyden, 2000). They 

grow extensively in the rhizosphere of graminaceous plants (Kennedy and Tchan, 1992) and 

penetrate the root to grow endophytically (James et al., 2000). They are also capable of 

producing antifungal and antibacterial compounds, growth regulators and siderophores 

(Pandey and Kumar, 1990). Irrespective of their form of application and their mode of action 

on plants, the genus Azospirillum can provide bio-fertilizer strains. Okon and Labandera-

Gonzalez (1994) argued that the term biofertilizer is not appropriate for Azospirillum spp. 

because their application does not replace the application of nitrogen fertilizers. They have 

the ability to colonize the root cortex of plants, especially grass family (Gramineae), and act 

as plant growth promoting agents, mostly via phytohormonal stimulation of root development 

and activity (Rothballer et al., 2009). The beneficial effect of Azospirillum on several crops 

could be resulted from both nitrogen fixation and its stimulating effects on root development 

(Döbereiner, 1987). Examples of Azospirillum inculants in different countries (Table 1.1). 
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Table 1.1 Use of biofertilizer inoculants, mainly Azospirillum spp. in different countries 

Countries     Crops Biofertilizers inoculants References 

Israel wheat, sorghum Azospirillum brasilense 
Sarig et al. (1984); Avivi and Feldman (1982); 

 Inbal and Feldman  (1982) 

Egypt wheat, maize Azospirillum brasilense Hegazi et al. (1981); Hegazi et al. (1983) 

India 

sorghum, wheat, pearl millet 

(Pennisetum americanum), 

barley 

Azospirillum brasilense 
Pal and Malik (1981); Rai and Gaur (1982); Rao et al.(1985); 

Subba Rao et al.(1985) 

Britain maize, wheat Azospirillum brasilense O'Hara et al. (1981); Lethbridge and Davidson (1983) 

Belgium Wheat Azospirillum brasilense Reynders and Vlassak (1982)  

Germany spring wheat  Azospirillum lipoferum Mertens and Hess (1984)  

Australia Digitgrass Azospirillum brasilense Schank et al. (1981)  

USA sorghum, Pennisetum sp. Azospirillum brasilense Smith et al. (1984); Pacovsky et al. (1985)  

Brazil maize, sorghum and wheat Azospirillum brasilense Lin et al. (1983); Rennie et al. (1983) 
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1.4.3 Endophytic N2-fixing Bacteria 

Endophytic diazotrophs, such as Acetobacter, Azoarcus, and Herbaspirillum, reside in 

graminaceous plant within plant tissues, and may fix nitrogen (Table 1.2). These endophytic 

bacteria live within plant tissues without causing visible damage to the host plant and may 

promote plant growth directly or indirectly. For example, they can establish themselves inter-

cellularly in the root system of non-legumes (especially cereals) and fix nitrogen 

endophytically (Cocking, 2003). Inoculating different crops and grasses, such as sugarcane in 

Brazil (Boddey et al., 2003), wetland rice in Asia (Ladha and Reddy, 2003), and cereal fields 

in Canada (Rennie and Thomas, 1987) with these endophytic bacteria, has resulted in 

improved crop production without artificial nitrogen input. 

 

Diazotrophic endophytic bacteria fall into two groups: facultative and obligate (Baldani et al., 

1997). Facultative endophytes are those that survive in the soil or on plant surfaces and are 

able to colonize the interior of some plants (Cocking, 2003). For example: endophytic 

Azospirillum strains are facultative endophytes (Baldani et al., 1997), entering host plants via 

seeds or wounds at lateral root junctions (James and Olivares, 2010). Obligate endophytes are 

those that survive poorly in the soil and appear to have a requirement for living within a host 

plant (Baldani et al., 1997). For example: Herbaspirillum spp., Acetobacter diazotrophicus 

Gillis et al. and Burkholderia spp. usually live inside plants, within their xylem vessels and in 

intercellular spaces (James and Olivares, 2010). 

. 

1.4.3.1 The Genus Herbaspirillum 

The genus Herbaspirillum were initially thought to be a new Azospirillum species but later it 

was shown to have no close relatedness with Azospirillum spp. (Baldani et al., 1986a). 

Herbaspirillum spp. are endophytes that colonize sugarcane, rice, maize, sorghum and other 

cereals (James et al., 2000). In the late 1980s some Brazilian varieties of sugarcane were 

shown to be able to obtain significant contributions from endophytic diazotrophs that infected 

the interior of plants (Baldani et al., 1986a). Herbaspirillum seropedicae (Leifson) Ding and 

Yokota was first isolated in Rio de Janeiro, Brazil (Baldani et al., 1986a), and it has the Nif-

N gene which is necessary for nitrogenase activity (Klassen et al., 1999). Boddey et al. 

(2003) discovered other endophytic diazotrophs including Gluconacetobacter diazotrophicus 

Corrig. (Gillis et al.) Yamada et al., Herbaspirillum seropedicae (Leifson) Ding and Yokota, 

H. rubrisubalbicans (Christopher and Edgerton) Baldani et al. and Burkholderia spp. within 
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sugarcane. However, it was not clear which endophyte is responsible for the measured BNF. 

Motobu et al. (2006) suspected that G. diazotrophicus was the dominant contributor of BNF 

to sugarcane. Kennedy et al. (1997) noted that the endophytes made a significant contributor 

to the nitrogen economy of sugarcane. In other studies, inoculation of cereals with N2 fixing 

bacteria such as H. seropedicae, increased plant growth and grain yield (Divan Baldani et al., 

2000). However, the total increase in N content in the inoculated plants may not be only 

through N2 fixation by the microorganism but it may be through increased development of 

the root system, which promoted water absorption and mineral uptake, leading to a yield 

increase (Okon, 1985). 

 

Table 1.2 Examples of endophytic diazotrophs and their host crops 

PGP Relationship 

to the host 

Host crops References 

Azoarcus sp. Endophytic kallar grass 

sorghum 

rice 

Hurek et al. (2002) 

Stein et al. (1997) 

Egener et al. (1999) 

 

Burkholderia sp.  Endophytic rice Baldani et al. (2000) 

Gluconacetobacter  

diazotrophicus  

 

Endophytic sorghum 

 sugarcane 

Isopi et al. (1995) 

Boddey et al. (2001) 

Sevilla et al. (2001) 

Herbaspirillum sp.  

 

Endophytic Rice  

Sorghum  

Sugarcane 

James et al. (2002) 

James et al. (1997) 

Pimentel et al. (1991) 
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Table 1.3 Biology, and potential role of some diazotrophs promoting crop production  

Diazotrophs Condition Habitat Energy source 

Mechanisms 

of effect References 

Azotobacter chroococcum Aerobic Rhizosphere Organics in soil BNF Kennedy and Tchan (1992) 

Clostridium spp. Anaerobic Soil saprophyte Organics in soil BNF Kennedy and Tchan (1992) 

Azospirillum spp. Microaerobic Rhizosphere, mildly 

endophytic 

 

in roots, stems and leaves organics in 

soil, root exudates and plant tissue 

 

BNF, PGP Reinhold and Hurek (1988) 

Mirza et al. (2000) 

Okon and Kapulnik (1986) 

H. seropedicae Microaerobic Endophytic, rhizosphere Root exudates BNF, PGP Baldani et al. (1986b) 

Azoarcus sp. Microaerobic Endophytic Root exudates BNF Hurek et al. (1994) 

Reinhold-Hurek et al. 

(1993) 

B. vietnamiensis  Rhizosphere, endophytic Organics in soil and root exudates 

 

BNF, PGP Baldani et al. (1997) 

R. leguminosarum bv. 

trifolii 

 

 Endophytic in roots 

 

Root exudates PGP Yanni et al. (1997) 

Yanni et al. (2001) 

R. etli bv. Phaseoli  Endophytic in roots Root exudates PGP Gutie´rrez-Zamora and 

Mart ´ne -Romero (2001) 

A. caulinodans Microaerobic Endophytic in roots Root exudates PGP Anyia, et al. (2004) 

A. diazotrophicus Microaerobic Endophytic in roots, 

stems and leaves 

Root exudates and 

plant tissue 

BNF  Baldani et al. (1997) 

Boddey et al. (1991) 

Biological nitrogen fixation (BNF); plant growth promotion (PGP) 
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1.5 Factors Affecting Nitrogen Fixation 

1.5.1 Energy Source 

Biological nitrogen fixation depends on the availability of carbohydrates. In general, large 

quantities of carbohydrate are required for high rates of nitrogen fixation because there is 

intense competition between nitrogen-fixing and non-nitrogen-fixing forms (Stewart, 1969). 

Symbiotic nitrogen-fixing bacteria receive energy directly from the host legume but free-

living bacteria have to compete for their sources of energy within the soil (Chen et al., 1993). 

 

1.5.2 Oxygen 

Aerobes such as Azotobacter require oxygen for metabolism. The oxygen levels have a 

significant effect on the efficiency with which aerobes fix nitrogen (Stewart, 1969). 

Azospirillum is a microaerobic organism which requires low oxygen levels for the expression 

of nitrogenase activity (Tarrand et al., 1978) and nitrogen-fixation occurs in microaerobic, 

nitrogen-limited conditions (Eckert et al., 2001). Nitrogen-fixation is inhibited by oxygen 

because dinitrogenase reductase is rapidly and irreversibly inactivated by oxygen. Nitrogen-

fixation efficiency is greatly increased at a low partial pressure of oxygen (Parker and Scutt, 

1960). 

 

1.5.3 Combined Nitrogen fertilization 

Combined nitrogen sources inhibit nitrogen fixation. The inhibition appears when nitrogen is 

reduced to ammonia and the presence of free ammonia represses nitrogenase activity. 

However, the degree and type of inhibition depend on the level of supplied combined 

nitrogen (Stewart, 1969). 

 

1.5.4 Iron, Molybdenum and Hydrogen-ion Concentration 

Iron and molybdenum are the only metals present in the nitrogenase complex (Stewart, 

1969). Optimum nitrogen fixation occurs when 0.02 to 0.05 ppmof iron and 0.2 ppm of 

molybdenum are supplied. For example, addition of molybdenum to tropical soils has often 

markedly increased nitrogen fixation (Stewart, 1969). The nitrogenase enzyme operates best 

over a fairly narrow pH range of 7.0 and fixation falls off markedly above and below 6.5 to 
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7.0 (Stewart, 1969). Yet most of the agricultural soils in the southern hemisphere have a pH 

of 4.0-6.0 (Sanchez, 2002). 

 

 

1.6 Nitrogen-fixation Detection 

1.6.1 Total N-balance Method 

This method measures whether the plant or soil system accumulates N over time from N2 

fixation inputs. Nitrogen losses from the system through ammonia volatilization, 

denitrification and leaching, may result in an underestimate of the fixed N in the system 

(Herridge et al., 2008). 

 

1.6.2 The Nitrogen Difference Method 

The nitrogen difference method is adequate for active nitrogen fixers. This method can be 

used in soils of limited N supply (Herridge et al., 2008) but it will not detect increases of less 

than about 1% in the total nitrogen, even when uniform samples can be taken (Chalk and 

Smith, 1994). This method and N balance has been largely replaced by the 
15

N and Ureide 

Methods (Herridge et al., 2008). 

 

1.6.3 The Stable Isotope (
15

N) Method 

The most definitive measurements of BNF make use of the stable, heavy isotope, 
15

N, and 

requires access to a mass spectrometer (Sprent, 1979). In this method, incorporation of 
15

N2 

(labeled dinitrogen) into plant or microbial cells is measured. Exposure of samples to about 

10% 
15

N2, in a balance of argon or helium to eliminate competition from 
14

N2 is needed. 

Following incubation, samples can be digested and the 
15

N content of the materials can be 

determined using a mass spectrometer. Detection of 
15

N in tissues or cells provides definitive 

proof of BNF and allows for a very accurate quantification of the amount of nitrogen-fixation 

that has occurred (Lima et al., 1987; Danso, 1995; Boddey et al., 2001). This method is 

accurate but is time consuming and expensive, both in terms of the equipment needed and the 

cost of the isotope itself (Robinson, 2001). It is technically challenging and requires 

substantial inputs of labour. Moreover, errors in quantifying the N fluxes can introduce 

uncertainties into the final estimates of N2-fixation (Chalk et al., 1994). 
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1.6.4 The Acetylene Reduction Assays 

The nitrogenase enzyme is capable of reducing acetylene (C2H2) to ethylene (C2H4) and is 

universally responsible for biological N2-fixation. Both gases can be detected and quantified 

using gas chromatography (Hardy et al., 1973).This test provides a sensitive measure of 

nitrogenase activity and is useful for detecting the N2 fixation activities of bacterial cultures 

or plant residues that may be harbouring N2-fixing bacteria (Herridge et al., 2008). Enclosing 

the particular agent in a gas-tight vessel and periodically removing and injecting into the gas 

chromatograph to evaluate ethylene (C2H4) may disturb the N2-fixing species, which may 

result in a decline in activity, especially in the Rhizobium/legume symbiosis (Bergersen, 

1970; Dixon and Wheeler, 1983; Minchin et al., 1983; Minchin et al., 1994; Vessey, 1994). 

However, this method is far simpler and faster than other methods. 

 

1.7 Application of Biofertilizers 

Some rhizospheric bacteria have been developed as biofertilizers and biopesticides to 

minimize excessive use of inorganic fertilizers as well as to protect the environment and plant 

health (Kennedy et al., 2004b; Ahmad et al., 2006b; Banerjee et al., 2006). In many countries 

several PGPR formulations are currently available as commercial products for agricultural 

production (Alarcón and Ferrera-Cerrato, 2000; Lucy et al., 2004; Wu et al., 2005; Nakayan 

et al., 2009). Bacillus subtilis is one of the first widely sold PGPR strain marketed by 

Gustafson, Inc. as Kodiak in the USA (Alarcón and Ferrera-Cerrato, 2000; Harman et al., 

2010). In China microbial agents made up of different strains of Bacillus (B. brevis Migula,, 

B. cereus Frankland and Frankland, B. coagulans Hammer, B. firmus Werner, B. 

licheniformis (Weigmann) Chester and B. sphericus Meyer and Neideand B. subtilis 

(Ehrenberg) Cohn have been commercially available since 1980s (Chen et al., 1996; Zhang et 

al., 1996). 

Various strains of A. brasilense. and A. lipoferum have also been used to inoculate cultivars 

of different species of plants (Okon and Labandera-Gonzalez, 1994). For example in 

sorghum, inoculated maize and wheat with Azospirillum have revealed a contribution of 5 kg 

N ha
-1

 yr
-1

. In India the Gujarat State Fertilizers Company (GSFC) has commercialized two 

biofertilizers namely: Sadar Azotobacter and Sadat Azospirillum for cereals, cash crops and 

vegetables since 1984. Three years later a phosphate solubilizing biofertilizer (Sadar 

phosphate) was commercialized. Since 1995 a new N-fixing biofertilizer (Sadar Super 

culture) for sugarcane was introduced to the market. In Egypt, there are groups of commercial 
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products called Cerealin that contain different species of bacteria, depending on the crop. 

Inoculation of citrus trees with Cerealin (containing Azospirillum brasilense) increased yields 

of Washington navel orange (Shamseldin et al., 2010). Similarly, Cerealin (containing 

Bacillus polymyxa Ash et al. and Azotobacter) increased turfgrass height, turf density, fresh 

and dry weights, and total chlorophylls and carotenoids (Monem et al., 2001). Another 

commercial biofertilizer called Nemales, containing Serratia spp., has been shown to increase 

growth and crude protein content in wheat (Banerjee et al., 2006). In the Philippines, a 

biofertilizer product called ‘BIO-N’ is available in the market and used for the production of 

rice and corn, and has reduced use of chemical fertilizer by 30-50% (Monsalud, 2008). In 

Indonesia there are 41 commercial biofertilizers in use (Husen et al., 2007). There have been 

many reports worldwide on the continuous research on the effects of biofertilizers, which 

include laboratory, greenhouse and field experiments over the years (Okon and Labandera-

Gonzalez, 1994). Biofertilizers have emerged as an important component of an integrated 

nutrient supply system and hold the promise of improving crop yields through 

environmentally better nutrient supplies. However, the application of microbial fertilizers in 

practice has not achieved consistent results. 

 

1.8 Limitations of Biofertilizers 

Biofertilizers are dependent upon physical, environmental, nutritional and biological factors. 

Factors such as high soil temperature or low soil moisture (Rao, 1982), extreme soil acidity 

or alkalinity (Stamford et al., 2007), and low phosphorous and molybdenum availability 

(Egamberdiyeva, 2007) can all negatively affect the performance of microbial inoculants. 

Furthermore, poor quality control in the production process can result in ineffective strains 

being sold as soil inoculants (Martínez-Viveros et al., 2010), together with insufficient 

concentrations of microorganisms and high level of contaminants (Kannaiyan, 2003). Further 

problems can be associated with its incorrect transportation and storage conditions that affect 

the viability of the inoculants (Odame, 1997). Moreover, the presence of high native 

populations (Thiyagarajan et al., 2003; Martínez-Viveros et al., 2010) or the presence of 

bacteriophages, may result in a poor survival of the microbial biofertilizer inoculants as they 

compete with indigenous bacteria for available growth substrates (Martínez-Viveros et al., 

2010). 
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1.9 Future prespects of biofertilizer 

The air in our atmosphere is made up of Nitrogen gas (N2). This gas is of no use to most 

organisms and can only be beneficial to plant growth if it is first converted to ammonium 

and/or nitrate. This can either be done through industrial processes, in the manufacture of 

chemical fertilizers, or through biological nitrogen fixation. Plant growth enhancements and 

yield increases following inoculation of non-legumes with Azospirillum brasilense were 

initially attributed to biological nitrogen fixation by some researchers. However, it is always 

difficult to ascertain that a PGPR promotes plant growth by using only a single mode of 

action. One of the generally accepted concepts is also that beneficial PGPR are effective only 

when they successfully colonize and persist in the plant rhizosphere (Bloemberg and 

Lugtenberg, 2001). Studies by Biswas et al. (2000) and Riggs et al. (2001) reported that 

improvements in growth parameters of various crops as a result of bacterial inoculations at 

reduced levels of nitrogenous fertilizers. Therefore, isolating and screening suitable microbial 

inoculants may enhance nitrogen fertilizer efficiency, leading to enhanced crop production at 

lower doses of fertilizers. Finally, some questions needs answering, Are there effective N2-

fixing bacterial in the soil rhizosphere, root and leaves? Is nitrogen fixed by N2-fixing 

microorganisms enough to promote plant growth? 
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CHAPTER TWO 

ISOLATION AND IN VITRO SCREENING OF DIAZOTROPHIC BACTERIA FOR 

PLANT GROWTH PROMOTION 

M.H. Kifle and M.D. Laing 

Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Sciences 

University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, 

South Africa 

Abstract 

Diazotrophic bacteria were isolated from rhizosphere soil, roots and leaves of maize collected 

from Cedara, Greytown and Ukulinga, KwaZulu-Natal, South Africa. The ability of these 

bacteria to fix nitrogen was confirmed by their ability to grow on a semi-solid nitrogen-free 

media, an ammonia production test and nitrogenase activity using the Acetylene Reduction 

Assay (ARA). Bacteria which grew on N-free media with a carbon source (sucrose, D-

mannitol or malate) and tested positive for ammonia production were then further tested 

using the ARA. Ethylene (C2H4) production was quantified and ranged from 0 to 73 nmoles 

of C2H4 h
-1

 culture
-1
. Isolates that produced ≥40 n mole of C2H4 h

-1
 culture

-1
 were re-screened 

on maize plants, and 50% of them caused significant (P < 0.001) increases of stomatal 

conductance, dry weight and chlorophyll content index of maize leaves. The rest of these 

isolates caused no significant (P > 0.05) increases in dry matter, stomatal conductance and 

chlorophyll level compared to an untreated and unfertilized control. Furthermore, the 

untreated and unfertilized control had the lowest measured parameters, and the untreated and 

100% NPK fertilized control had the highest stomatal conductance, chlorophyll level and dry 

weight. The best eleven isolates were identified, using partial 16s rRNA sequence analysis. 

Isolates StB5, A3, A6, B1 and A61 showed a 99% similarity with Pseudomonas spp., Isolate 

V9 and A5 showed 97% similarity with Burkholderia ambifaria, Isolate L1 94% similarity 

with Enterobacter spp., Isolate V16 97% similarity with Bacillus megaterium, Isolate A2 

100% similarity with Klebsiella spp., and Isolate LB5 100% similarity with Pantoea spp. The 

identification of these isolates was confirmed by MALDI TOF biotype classification. Isolates 

StB5, A3, A6, B1 and A61 were identified as Pseudomonas nitroreducens at score values of 

1.98, 1.90, 1.96, 2.03 and 1.88, respectively. Isolates V9 (2.46) and A5 (1.86) were identified 

as Burkholderia ambifaria, Isolate L1 (2.33) as Enterobacter cloacae, Isolate V16 (1.72) as 
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Bacillus megaterium, A2 (2.24) as Klebsiella variicola and Isolate LB5 (2.27) as Pantoea 

ananatis. 

Key words: diazotrophs, nitrogen fixation, ARA, stomatal conductance, chlorophyll level, 

MALDI TOF 

 

2.1 Introduction 

Biological nitrogen fixation (BNF) is the conversion of atmospheric N2 to ammonium, a form 

of N that can be utilized by plants. This is done by certain bacteria (diazotrophs), which 

contain nitrogenase, the enzyme complex that catalyzes the conversion of N from the gaseous 

to the combined form. Diazotrophic bacterial are able to grow without external sources of 

fixed nitrogen but they are dependent on an adequate supply of reduced carbon compounds 

such as sugars for energy (Bashan et al., 2004). They appear to be physiologically adapted for 

utilization of specific substrates or classes of substrates (Bagwell and Lovell, 2000). Selective 

media (N-free semi-solid), which simulate their soil environment, have been used to isolate 

several bacteria from root rhizosphere. They have been called diazotrophs (Döbereiner, 

1988). In many studies, acetylene reduction assay (ARA) is a test that has been used to 

measure the nitrogenase activity by these diazotrophic bacteria because it is cheap and simple 

(Boddey and Dobereiner, 1995; Boddey and Knowles, 1987). 

Diazotrophs are either free-living, or symbiotic between legumes and rhizobia (Vessey et al., 

2005). The free-living diazotrophs grow in soils (Döbereiner, 1992a), rhizosphere soils 

(Martin et al., 1989; Döbereiner, 1992a; Dobbelaere et al., 2003; Vessey, 2003), the 

rhizoplane (Bagwell and Lovell, 2000; Vessey, 2003) or can be found within plant tissues 

(endophytic) (Olivares et al., 1996a; Palus et al., 1996; Reinhold-Hurek and Hurek, 1998; 

Roesch et al., 2008). Diazotrophic bacterial species and strains belonging to genera such as 

Acetobacter, Arthrobacter, Azoarcus, Azospirillum, Azotobacter, Bacillus, Beijerinckia, 

Derxia, Enterobacter, Burkholderia, Herbaspirillum and Pseudomonas have all been isolated 

from the rhizosphere of various crops (Glick, 1995; Barraquio et al., 1997; James et al., 2000; 

Dobbelaere et al., 2003). Azospirillum spp. are considered to be rhizospheric (growing close 

to or on root surfaces) (Kennedy and Tchan, 1992). Some Azospirillum strains can also be 

endophytic, being found within the roots of some graminaceae (Cocking, 2009). Azotobacter 

are colonists of the rhizoplane (Kennedy et al., 1997). Genera such as Herbaspirillum, 

Ideonella and Klebsiella appeared to be rare in soil but dominant in the interior of plants 

(Roesch et al., 2008). Their ability to colonize different ecological niches, together with their 
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competitive advantages under conditions of inadequate carbon substrates and N-deficiency 

situations, make them economically important in agriculture and may be used as biofertilizer 

inoculants for improving crop yields (Urquiaga et al., 1992). 

Rhizospheric diazotrophs are competitive with the soil micro-flora for C substrates and 

release fixed N to the plant only after their death (Rao et al., 1998; Dobbelaere et al., 2003). 

Genera of Azospirillum and Azotobacter have been widely studied. For example: when corn 

seeds were inoculated with Azospirillum brasilense corrig. Tarrand et al., shoot dry weight of 

corn increased by 20 to 30% (Lin et al., 1983). In another experiments by Bashan et al. 

(1989), inoculation of several plants with A. brasilense resulted in increases in plant dry 

weight and yield. Sarig et al. (1988) also reported that same species caused a 15-18% 

increase in grain yield of sorghum and that it increased yields of cereal and forage grasses 

(Okon, 1985). Many researchers believe that the positive effect of these bacterial species on 

non-leguminous plant yields may not only be due to nitrogen fixation but also from 

stimulating plant growth by producing active compounds, such as phytohormones and 

vitamins (Kapulnik et al., 1981; Okon, 1985; Boddey et al., 1986; Caballero-Mellado et al., 

1992; Dobbelaere et al., 2003). 

Herbaspirillum seropedicae Baldani et al., H. rubrisubalbicans Christopher and Edgerton 

Baldani et al. and Acetobacter diazotrophicus Gillis et al. are recognized diazotrophic plant 

endophytes. They colonize roots, stems, and leaves of various graminaceous plants (Baldani 

et al., 1986; Urquiaga et al., 1992; Dong et al., 1994; Olivares et al., 1996a) and are able to 

fix nitrogen. It is believed that some of these endophytic diazotrophic bacteria contribute 

substantial amounts of N to certain graminaceous crops (Barraquio et al., 1997; Boddey et 

al., 1991). As they are uniformly distributed within plant tissues in a protective environment 

(Urquiaga et al., 1992), they can fix N in plants and transfer the fixed N products to their 

hosts. Brazilian varieties of sugarcane are capable of obtaining over 60% of their nitrogen 

from BNF (Boddey et al., 1995b). Döbereiner (1992b) and Boddey et al. (2003) also 

suggested that Herbaspirillum spp. may be responsible for replacing N fertilizer by BNF in 

Brazilian varieties of sugarcane. Similarly, Fujii et al. (1987) reported that inoculation of rice 

with endophytic diazotrophic bacteria such as Klebsiella oxytoca (Flugge) Lautrop and 

Enterobacter cloacae (Jordan) Hormaeche increased dry weight and fixed N of inoculated 

rice plants. 
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The aims of this study were to isolate nitrogen fixing bacteria using N-free semi-solid media 

with different carbon sources, evaluate them for nitrogenase activities, screen them for any 

beneficial effects on plant parameters, and to identify them to the species level. 

 

2.2 Methods and Materials 

2.2.1 Bacterial Isolation 

Diazotrophic bacteria were isolated from soil rhizospheres, roots and leaves of maize plants 

collected from Cedara (Agricultural research collage, Hawick), Greytown, and Ukulinga 

(University of KawaZulu –Natal Research Farm, Pietermaritzburg), (KwaZulu-Natal, 

Republic of South Africa). Roots and leaves were surface sterilized with 3.5% sodium 

hypochlorite for five minutes and subsequently rinsed three times with sterile distilled water, 

using a modified protocol of Kloepper et al. (1991). Roots and leaves were cut into pieces 

and grounded with 10 mℓ of distilled water. A modified protocol of Döbereiner (1988) (N-

free semi-solid media) was used to isolate rhizospheric, rhizoplane and endophytic 

diazotrophs. Pure cultures of diazotrophic bacteria were then isolated by serial dilution, and 

plated onto an N-Free (NF) media containing of either 20g ℓ
-1

of mannitol, sucrose or malate 

as the carbon source; 0.2 g ℓ
-1

 K2HPO4; 0.2 g ℓ
-1

NaCl; 0.2 g ℓ
-1 ; 

MgSO4.7H2O; 0.1 g ℓ
-1; 

K2SO4; 5.0 g ℓ
-1 

CaCO3; 20 g ℓ
-1

 agar (Merck) for a solid agar medium, or with 5 g of agar 

per liter for a semi-solid medium. These bacteria were incubated at 30°C for 4 days. 

Soil samples were collected from the rhizosphere of maize and wheat from different sites by 

uprooting the root system and placing them in plastic bags for transport to the laboratory. 

They were stored at 4 C for subsequent analysis. Excess soil was shaken off and the soil 

adhering to the plant roots was collected from each soil sample. Ten grams of each soil 

sample were transferred to a 250 m-Erlenmeyer flask containing 90 mℓ sterile distilled water 

and shaken at 150 rpm in an orbital shaker incubator for 30 minutes. Plates with NF medium 

Mannitol as a Carbon source for dia otrophic bacteria were inoculated with 0.1 mℓ of 

suspensions obtained from the above dilution procedure (3 replicates per dilution). The pH 

was adjusted to 6.5 using 98% Sulfuric acid and 50% Sodium hydroxide. After five days of 

incubation, colonies were transferred onto a fresh N-free media, and after 2 days were 

streaked out onto Tryptone Soy Agar (TSA) (Merck) plates. Bacterial isolates were selected 

by size and shape of colony and by their ability to grow on N-free media. These colonies 

were sub-cultured onto TSA and incubated at 30°C, purified and stored in 15% glycerol at -

80°C. 
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2.2.2 Ammonia Production Test 

Ammonia production was analyzed using the qualitative method of Ahmad et al. (2008). 

Bacterial isolates were tested for the production of ammonia in peptone water. Freshly grown 

cultures were inoculated in 10mℓ peptone water in each tube and incubated for 48–72 hrs at 

28±2
0
C. Nessler’s reagent (0.5 mℓ) was added in each tube. Development of a brown to 

yellow colour was a positive test for ammonia production. 

 

2.2.3 Acetylene Reduction Assay (ARA) 

The basis for the assay is the fact that nitrogenase, the enzyme complex in diazotrophic 

microorganisms that reduces nitrogen to ammonia, also reduces acetylene to ethylene. Ninety 

three bacterial diazotrophs were isolated from soil, roots and leaves using an N-free semi-

liquid medium, mannitol, sucrose and malate were used as carbon sources. Isolation of pure 

cultures was obtained after several transfer onto N-free agar media incubated at 28±2
0
C for 5-

7 days. One mℓof pure culture grown in Tryptone Soy Broth (TSB) for 24 hrs were 

inoculated onto 10 mℓ of nitrogen-free semi-liquid medium, with 0.5% mannitol as a carbon 

source, solidified by 0.3% gellan gum in 20ml serum bottles and closed with a red rubber 

septum (SIGMA-ALDRICH, William Freeman and Co., Ltd.) and incubated for 72 hrs at 

28
0 

C. Bottles that showed bacterial growth were assayed for acetylene reduction. Ten percent 

of the atmosphere in the bottles was replaced with acetylene (C2H2), whereas bottles without 

acetylene were used as the control. After 2hrs, at 24
0 
C, 0.25 mℓ gaseous samples from each 

bottle were removed and analyzed for ethylene with a Hewlett-Packard 5830 A gas 

chromatograph fitted with a 2m - 2.1mm, 80 - 100 mesh, Poropak R column. Oven 

temperature was adjusted to 70
0 

C. Injection and flame-ionization detector temperatures were 

adjusted to 150
0 
C. Nitrogen carrier gas flow rate was adjusted to 50mℓ min

-1
. 

 

2.2.4 Source of Seeds 

Seeds of white mai e of the cultivar, Mac’s Medium Pearl, (an open pollinated variety) were 

bought from McDonalds Seeds
®1

 and were used throughout the experiment. 

 

                                                           
1
MacDonald’s Seeds (Ltd).P.O. Box 40, Mkondeni, 3212, Pietermaritzburg, Republic of South Africa 
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2.2.5 Bacterial Inoculation 

2.2.5.1 Inoculum Preparation 

Bacterial isolates were grown in 100 mℓ Erlenmeyer flasks each containing a 25 mℓ Tryptic 

Soy Broth (TSB) (Merck) for 3 d at 28 ± 2°C in a shaker at 150 rpm. Flasks were inoculated 

with bacteria previously grown in TSA for 48 hrs. After 3 d bacteria were harvested by 

centrifugation using a Beckman J2-HS Centrifuge
2
 at 9000 rpm for 15 mints. The broth was 

decanted and bacterial pellets were re-suspended in sterile distilled water. Bacterial cells were 

then counted using a plate dilution technique on TSA plates, and adjusted to a concentration 

of 10
8 

colony forming unit (c.u). mℓ
-1

 of water. 

 

2.2.5.2 Seed Treatment 

Twenty out of ninety bacterial isolates which produced relatively high C2H4 levels were 

selected for further greenhouse screening for N-fixation and growth promotion. Maize seeds 

were treated with bacterial isolates at a concentration of 2.4x10
8
 cfu and dried at room 

temperature overnight. Treated maize seeds were planted on pine bark artificial growing 

medium (Table 2.1). 

                                                           
2
Beckman Coulter Inc. 4300 N Harbour Boulevard, Box 3100, Fullerton, California, 92834-300., USA 
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Table 2.1 Composted Pine Bark Growing Medium Analysis (KwaZulu-Natal 

Agriculture and Environmental Affairs
3
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.6 Measurements of Stomatal Conductance and Chlorophyll Index 

Greenhouse measurements of stomatal conductance and leaf chlorophyll were made on six to 

eight weeks old seedlings. Leaf stomatal conductance was measured with a portable meter 

(SC-1 Leaf Porometer, Decagon Devices, Inc.)
4
. Measurements of stomatal conductance were 

made between 9:00am- 3:00pm on sunny days on 8 to 10 leaves of each maize plant on five 

plants per treatment. Chlorophyll was measured using a portable, handheld device called 

chlorophyll meter
5
 (that estimates the chlorophyll content of leaves). Measurements were 

made on 8 to 10 leaves on each of fifteen maize plants per treatment. 

 

                                                           
3
KZN Agriculture and Environmental Affairs, Private Bag X9059, Pietermaritzburg, 3200, Republic of South 

Africa 
4
SC-1 Leaf Porometer, Decagon Devices, Inc., 2365 NE Hopkins Court, Pullman, WA 99163 – USA 

5
CCM-200 Plus, Opti-Science Inc., 8 Winn Avenue, Hudson, NH, USA, 03051. 

Sample Pine bark 

C% 12.39 

S% 0.11 

N% 0.43 

Ca% 0.61 

Mg% 0.10 

K% 0.28 

P% 0.18 

Moisture % 25.07 

Na mg kg
-1

 405.0 

Zn mg kg
-1

 73.0 

Cu mg kg
-1

 16.7 

Mn mg kg
-1

 802 

Fe mg kg
-1

 12293 

Al mg kg
-1

 7120 
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2.2.7 Bacterial Identification 

2.2.7.1 DNA Extraction and 16S rRNA Sequence Analysis 

One mℓ of 24 hrs bacterial culture was centrifuged at 14,000 rcf (relative centrifugal force 

(rcf) for 5 mins. The pellet was suspended in 25µℓ of (10 mM) Tris and one mℓ of buffer was 

added and incubated at 60
0
C for 1h. One ml of a second buffer (CTAB) was added and gently 

mixed. Then the bacterial-buffer suspension were divided into two in 1.5 ml tubes, and 

500 µℓ of chloroform-iso-amyl alcohol was added and mixed gently, and the resultant 

mixture was centrifuged at 14,000 rcf for 10 mints. By avoiding the layer of impurities, 

900 µℓ of clear supernatant was removed as the sample. To this was added 600 µℓ of propan-

2-ol and refrigerated at -20
0
C for 1h. It was centrifuged for 15 mints at 4,000 rcf and the 

supernatant was discarded. The pellet were washed with 50 µℓ of 70% ethanol solution and 

dried in a laminar flow with lid of the tube being left open for 30 mints. The pellet was then 

suspended in 50 µℓ of 10mM Tris (pH 8) or 0.5 X TE buffer. At this point the DNA purity 

and quality were checked on the Nanodrop UV spectrophotometer equipment (Nanodrop 

1000, Inqaba Biotech)
6
 and a 5 µl sample was run on 0.8% agarose gel (SeakemLE Agarose, 

Whitehead Scientific (Pty) Ltd www.whitesci.co.za)) stained with SYBRSafe Nucleic Acid 

Stain (Invitrogen), with a GeneRuler 1 kb DNA Ladder Plus molecular weight marker 

(Thermo-Fisher)
7
 to confirm the presence, size and quality of genomic DNA. Once the purity 

of the DNA was checked, it was sent to the Central Analytic Facility, Stellenbosch University 

for sequencing and BLAST identification. The BLAST identifications were then confirmed 

by Matrix Assisted Laser Desorption Ionization-Time of Flight (Maldi-TOF) classification 

(Brucker Daltonik Maldi-TOF Biotyper (www.bruker.com)). 

 

2.2.7.2 Bruker Daltonik MALDI Biotyper Classification 

Bacterial cultures were sub-cultured on 10 % TSA for 24 hrs at 30
0
C. A single bacterial 

colony were taken and placed into a 2 ml Eppendorf tube with 300 µℓ of ultra-pure water, 

and 900 µℓ of pure ethanol were added, mixed and the suspension was centrifuged at 

14,000 rcf for 2 mints. A small pellet of bacterial cells was visible at the bottom of the tube. 

The liquid was removed, and the pellet was briefly re-spun followed by the removal of 

residual ethanol. It was then re-suspended in 10 µℓ of 70% formic acid, and 10 µℓ of 

                                                           
6
 Inqaba Biotec, P.O.Box 1435, Hatfield 0028, Pretoria, South Africa 

7
 Thermo Fisher Scientific Inc., 81 Wyman street, Waltham, MA 02454, US 

http://www.bruker.com)/
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acetonitrile was added, and the sample was vortexed briefly. The mixture was centrifuged for 

2 min at 14,000 rcf, and the supernatant transferred into a clean micro-tube. The sample to be 

analyzed was warmed to room temperature, and a 1 µℓ sample was spotted onto a steel target 

plate (Bruker Daltonics Inc., Billerica, MA, USA) and gently mixed with 2 µℓ of matrix 

solution. 

 

2.2.8 Experimental Design 

Maize plants treated with bacterial isolates were watered every other day with 500 mℓ 

nutrient solution containing: 0.11mℓ ℓ
-1 

H3PO4; 0.13 gℓ
-1 

KOH; 0.14 g ℓ
-1 

K2SO4; 0.74 gℓ
-1

 

CaCl2.2H2O; 0.10 g ℓ
-1 

MgSO4.7H2O and 0.02 g ℓ
-1 

of micronutrients (MICROPLEX
®
). 

There were two controls: one was untreated and supplemented with a complete fertilizer 

solution (NPK soluble fertilizer [3:1:3(38)] at a rate of 1g ℓ
-1

); and the second was untreated 

and unfertilized (Control-none). Plants were supplied 500 mℓ of water or hydroponic 

fertilizer every second day. Each treatment consisted of three pots with a top diameter of 

200 mm that held 2kg of composted pine bark. Each pot was seeded with five seeds. Pots 

with each of the five isolates were watered daily with an equal amount of a nutrient solution 

of hydroponics soluble fertili er containing in g ℓ
-1

 of water NPK, [3:1:3 (38) Complet
®

], 

0.25, micronutrients (Microplex), 0.02 (Ocean Agriculture, Mulder’s Drift, South Africa)7, 

with phosphorus and potassium levels adjusted to the full amounts recommended for each 

crop. The Un-treated Control and not fertilized (control) was watered with tap water and the 

Fully Fertilized Control (100% NPK) with a solution of NPK, [3:1:3 (38) Complete
®
) at a 

rate of 1g ℓ
-1

 w/v).The seedlings were thinned to three plants per pot. 

The experiment was arranged in a randomized complete block design (RCBD), replicated 

three times. Two months after planting chlorophyll and stomatal conductance were measured 

and plants were harvested and dry weight was taken after the biomass was dried in an oven 

for 72 hrs at 70°C. 

 

2.2.9 Statistical Analysis 

Experiments were repeated twice, unless otherwise stated. Data was analyzed using GenStat
®
 

Executable release 14
th

 Edition Statistical Analysis Software. Significant differences between 

treatments were determined using Duncan Multiple Range Test at 5% siginificant level. 
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2.3 Results 

2.3.1 Isolation and Preliminary Screening of Bacterial Diazotrophs 

There were differences between diazotrophic isolates, in their ability to grow on semi-solid 

N-free medium, and using D-mannitol, D-malate or sucrose as carbon sources (Table 2.2). 

All these isolates were able to grow well on the N-free semi-liquid medium when sucrose 

were used as the carbon source (Table 2.2), and generated ammonia. About 20% of the 

bacterial isolates grew well on N-free media with D-mannitol, sucrose or malate as a growth 

substrate. Approximately, 80% of the bacterial isolates showed slow growth on N-free 

medium with D-mannitol or malate after 5-7d of incubation period at 28 ± 2
0
C. Growth rate 

on preliminary screening of bacterial diazotrophs are presented in Table 2.2.  

 

2.3.2 Preliminary Screening of Bacterial Diazotrophs for Nitrogenase Activity 

The diazotrophic nature of all the recovered isolates was determined by ARA. Ethylene was 

quantified by gas chromatography (GC) and the results were expressed in nano moles of 

C2H4 produced h
-1

 culture
-1

. All the isolates exhibited nitrogenase activity, but the level of 

activity varied with different isolates (Table 2.3). Approximately 17% of the isolates 

produced very little C2H4, no more than the Control; 66% of the isolates produced 

significantly (P < 0.001). Higher C2H4 compared to the Control (N-free semi-liquid medium). 

Only 20% of the isolates produced highly significant levels of C2H4 (40-73 nmoles of C2H4 h
-

1
culture

-1
) (P < 0.001). 
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Table 2.2 Growth of bacterial isolates on N-free media with three different carbon source and screening for NH3 production 

 

 

 

 

 

 

 

 

 

 

 

 

 

(+) = positive test for ammonia production; slow = poor bacterial growth media; fast = well growth on the media with different carbon sources 

Bacterial growth were considered slow when the mass doubling time was longer than 10-12 hrs and there were few number of visible colonies on plate against incubation time 

Isolates mannitol sucrose Malate NH3 test Treatments mannitol sucrose malate NH3 test 

Bt10 slow well Slow + Mr55 slow well well + 

Bt14 slow well Slow + V13 well well slow + 

Bt3 slow well Slow + V4 well well slow + 

M11 slow well Slow + V6 well well slow + 

SB1 slow well Slow + V7 well well slow + 

Mr25 slow well Slow + LB9 slow well well + 

Mr53 slow well Slow + Mr23 slow well slow + 

Mr150 slow well Slow + Mr19 slow well slow + 

Mr55 slow well slow + x slow well well + 

Mr121 slow well well + Mr148 slow well slow + 

Mr2 slow well slow + Mr17 slow well slow + 

Mr20 slow well slow + D6 well well slow + 

Mr8 slow well well + M9 well well slow + 

Mr37 slow well well + Mr9 slow well well + 

Mr141 slow well well + V14 well well slow + 

Mr35 slow well well + V3 well well slow + 

Mr63 slow well well + Mr34 slow well slow + 

V15 well well slow + Mr22 slow well slow + 

StB3 well well slow + Bt7 slow well well + 

E9 well well slow + Mr54 slow well slow + 

LB2 well well slow + Mr27 slow well well + 

Mr37 well well slow + V17 slow well well + 

V18 well well slow + Bt4 slow well well + 

Bt2 well well slow + Bt12 slow well slow + 
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Table 2.2 Continued Growth of bacterial isolates on N-free media with three different carbon source and screening for NH3 production 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

Isolates Mannitol sucrose malate NH3 test Treatments mannitol sucrose malate NH3 test 

M12 well well slow + G3 slow well well + 

StB12 slow well well + V11 slow well well + 

V1 slow well slow + StB8 slow well slow + 

Br2 well well slow + Mr131 well well slow + 

Bt1 well well slow + Bt13 well well well + 

Mr16 well well slow + Mr105 well well well + 

RB1 well well slow + StB1 well well well + 

Bt15 well well slow + StB13 well well well + 

Mr6 slow well well + Bt5 well well well + 

RB6 well well slow + V20 well well well + 

V12 slow well well + V8 well well well + 

Mr13 slow well slow + A61 well well well + 

RB2 slow well well + A2 well well well + 

StB7 slow well well + B1 well well well + 

LB7 slow well well + A6 well well well + 

Mr7 slow well slow + A5 well well well + 

Bt9 well well slow + A3 well well well + 

Bt6 well well slow + LB5 well well well + 

Bt8 slow well well + L1 well well well + 

V2 well well slow + StB5 well well well + 

StB17 slow well slow + V16 well well well + 

V5 slow well slow + V9 well well well + 
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Table 2.3 Nitrogenase activity measured (by the Acetylene Reduction Assay (ARA) 

method of the bacterial isolates 

 

Means with the same letter in the same column are not significantly different at P ≤ 0.05 

 

 

 

Isolates 

nmol of 

C2H4 h
- 1

 culture
-1

 Isolates 

nmol of 

C2H4 h
- 1

 culture
-1

 Isolates 

nmol of C2H4 h
- 1

 

culture
-1

 

Broth 0.32  a M12 21.86 cdefghijklmn Bt12 29.01 ghijklmnop 

Bt14 4.81 ab StB12 21.91 cdefghijklmn Bt7 29.46 ghijklmnop 

M11 6.2 ab V1 21.91 cdefghijklmn StB8 29.87 ghijklmnop 

Mr2 6.24 ab Br2 21.96 cdefghijklmn G3 31.78 hijklmnopq 

SB1 6.46 ab Bt1 21.96 cdefghijklmn V3 31.99 ijklmnopq 

Mr63 6.51 ab RB1 21.96 cdefghijklmn Mr27 32.27 ijklmnopq 

Bt10 7.29 abc Bt15 22.01 cdefghijklmn V14 32.39 ijklmnopqr 

Bt3 7.32 abc RB6 22.01 cdefghijklmn Mr57 32.77 jklmnopqr 

Mr141 7.61 abc V12 22.01 cdefghijklmn Mr34 33.04 klmnopqr 

Mr20 7.90 abc Mr148 22.02 cdefghijklmn Bt4 33.26 klmnopqr 

Mr25 9.10 abcd RB2 22.06 cdefghijklmn Bt5 33.49 lmnopqr 

Mr8 9.76 abcde StB7 22.06 cdefghijklmn V20 33.58 lmnopqr 

StB3 10.46 abcde LB7 22.11 cdefghijklmn Bt11 33.69 lmnopqr 

V15 10.96 abcde Bt9 22.15 cdefghijklmn Mr21 33.94 mnopqrs 

Mr53 12.26 abcdef Bt6 22.20 cdefghijklmn StB13 35.09 nopqrst 

Mr35 12.29 abcdef Bt8 22.20 cdefghijklmn V10 35.33 nopqrst 

E9 12.66 abcdef V2 22.20 cdefghijklmn Mr150 35.54 nopqrstu 

Mr38 15.40 bcdefg StB17 22.30 cdefghijklmn Mr131 37.13 nopqrstu 

Mr58 15.96 bcdefg V6 22.40 cdefghijklmn StB1 37.23 nopqrstu 

Mr6 16.44 bcdefgh M9 22.41 cdefghijklmn Mr37 38.82 opqrstuv 

V5 17.02 bcdefghi V7 22.45 cdefghijklmn A2 42.00 pqrstuv 

Mr16 17.22 bcdefghi LB9 22.55 cdefghijklmn A3 45.10 qrstuv 

V4 17.25 bcdefghij x 22.80 cdefghijklmn B1 45.84 qrstuv 

Mr19 17.32 bcdefghij D6 24.19 defghijklmno A61 46.69 qrstuv 

Mr13 17.38 bcdefghij Mr17 24.19 defghijklmno A5 47.28 rstuv 

Mr7 17.53 bcdefghij Mr22 24.73 efghijklmno LB5 48.36 stuv 

Mr121 17.76 bcdefghijk Mr9 25.09 efghijklmno L1 48.75 tuv 

Mr55 18.22 bcdefghijkl V18 25.20 efghijklmno A6 49.88 uv 

LB2 18.75 bcdefghijklm V17 27.48 fghijklmnop StB5 52.37  v 

V13 19.05 bcdefghijklm V19 28.40 ghijklmnop V16 65.15  w 

Bt2 21.86 cdefghijklmn V11 28.82 ghijklmnop V9 73.20  w 

CV% 30.4 
       

DMRT 12.035 
       

Sed 6.101 
       

F-test 9.662        

P-value <0.001 
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2.3.3 Secondary Screening of Diazotrophic Bacteria for Nitrogen Fixation, Using Plant 

Growth Parameters 

Maize plants were inoculated with 20 different nitrogen fixing bacterial isolates. Stomatal 

conductance, chlorophyll content index of the leaves and dry weight of each plant were 

measured. Of the twenty diazotrophic isolates, 50% of the induced high siginificant increases 

(P < 0.001) in the maize leaf chlorophyll level, stomatal conductance and dry weight, relative 

to the Untreated and Unfertilized Control (Table 2.4). The rest of these isolates had no effect 

(P < 0.05) on dry matter, stomatal conductance and chlorophyll level compared to the 

Untreated and Unfertilized Control. Plants of the Untreated and Unfertilized Control 

(Control-none) showed the lowest stomatal conductance, chlorophyll level and dry weight. 

As expected, plants of the 100%NPK fertilized (NPK) Control had the highest stomatal 

conductance, chlorophyll level and dry weight (Table 2.4). Based on chlorophyll level 

measurements, Isolate StB5 contributed 59%, Isolate V9 56.7%, Isolate V16 56.5%, Isolate 

L1 53.3%, LB5 52.2%, Isolate A3 51.8%, Isolate A5 51.6%, Isolate A6 49.3%, Isolate B1 

47.8%, and Isolate A2 46.8% to the index of the chlorophyll levels of maize plants. 
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Table 2.4 In vivo screening of diazotrophic bacteria for nitrogen fixation 

Bacterial 

Isolates 

Chlorophyll content 

index (CCI) Dry weight(g) 

Stomatal conductance 

(m mol m
-2 

s
-1

) 

Control 4.45 a 2.77  a 54.2 (1.733)  a 

StB8 5.08 ab 3.63 ab 121.6 (2.085) abc 

Mr131 5.24 abc 3.62 ab 122.5 (2.086) abc 

Bt13 5.38 abcd 3.63 ab 122.5 (2.087) abc 

Mr105 5.59 abcde 4.13 abcd 142.0 (2.152) abcd 

StB1 5.83 abcde 5.17 bcd 137.7 (2.127) abc 

StB13 5.95 abcdef 3.79 abc 130.3 (2.115) abc 

Bt5 6.08 abcdef 3.72 abc 147.3 (2.165) abcd 

V20 6.11 abcdef 5.85  cd 147.6 (2.169) abcd 

V8 6.21 abcdefg 5.79  cd 134.6 (2.129) abc 

A61 6.28 bcdefg 6.23  d 206.5 (2.295) cde 

A2 6.37 bcdefg 5.84  cd 198.3 (2.274) cde 

B1 6.52 bcdefg 3.80 abc 244.1 (2.383)  de 

A6 6.71 bcdefg 3.41 ab 218.1 (2.335) cde 

A5 7.03 cdefg 2.42  a 188.8 (2.253) bcde 

A3 7.06 cdefg 5.26 bcd 219.3 (2.341) cde 

LB5 7.11 defg 5.51 bcd 203.4 (2.278) cde 

L1 7.26 efg 5.85  cd 206.2 (2.281) cde 

V16 7.70 fg 5.99 d 265.0 (2.423)  e 

V9 7.72 fg 2.80 a 253.3 (2.404)  e 

StB5 8.03 g 3.48 ab 244.7 (2.386)  de 

NPK 13.62 h 9.90 e 517.5 (2.712)  f 

CV% 14 

 

23.90 

 

23.20(4.2) 

 DMRT 1.544 

 

1.833 

 

90.41(0.198) 

 SED 0.765 

 

0.908 

 

43.00(0.093) 

 P <0.001 

 

<0.001 

 

<0.001 

 Means with the same letter in the same column are not significantly different at P < 0.05; values in parenthesis are 

transformed data using log base 10 for the stomatal conductance  

 

2.3.4 Identification of Diazotrophic Isolates 

Comparative analyses of nucleotide sequences of amplified 16S rRNA fragments, using a BLAST 

approach, revealed that Isolates StB5, A3, A6, B1 and A61 exhibited sequence similarities of 100% 

with Pseudomonas spp. Isolate V9 and A5 showed a 97% similarity with Burkholderia ambifaria. 

Isolate L1 had a 94% similarity with Enterobacter spp.; Isolate V16 had a 97% similarity with 

Bacillus megaterium; Isolate A2 had a 100% similarity with Klebsiella spp.; and Isolate LB5 had a 

100% similarity with Pantoea spp. (Table 2.5). 

 

With this system, a score of ≥2.000 indicates species level identification, a score of 1.700 to 1.999 

indicates identification to the genus level, and a score of <1.700 is interpreted as no identification. 

Isolates StB5, A3, A6, B1 and A61 were identified as Pseudomonas nitroreducens with MALDI-
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TOF scores of 1.98, 1.90, 1.96, 2.03 and 1.88, respectively. Isolates V9 (2.46) and A5 (1.86) were 

identified as Burkholderia ambifaria, Isolate L1 (2.33) as Enterobacter cloacae, Isolate V16 (1.72) 

as Bacillus megaterium, A2 (2.24) as Klebsiella variicola and Isolate LB5 (2.27) as Pantoea 

ananatis. An independent identification of these isolates, based on 16S rRNA gene and Maldi-TOF 

Biotyper, confirmed their identity. 

Table 2.5 Affiliation of the isolates in the GenBank and the identification of the closest type 

strain based on the 16S rRNA gene sequencing and Bruker Daltonik MALDI-TOF Biotyper 

classification 

Isolates 16S rRNA similarities (highest match) 

BrukerMALDI Biotype (highest 

score) 

V16 Bacillus megaterium Strain As-30 (97%) Bacillus megaterium (1.722)  

A5 Burkholderia sp. IBP-VNS127 (99%) Burkholderia ambifaria (1.867) 

V9 Burkholderia ambifaria (99%) Burkholderia ambifaria (2.462) 

L1 Enterobacter cloacae Strain G35-1(98%) Enterobacter cloacae (2.327) 

A2 Klebsiella variicola (99%) Klebsiella variicola (2.243) 

LB5 Pantoea ananatis (97%) Pantoea ananatis (2.268) 

A3 Pseudomonas nitroreducens Strain R5-791 (99%)  Pseudomonas nitroreducens (1.901) 

A6 Pseudomonas nitroreducens. (99%) Pseudomonas nitroreducens (1.96) 

B1 Pseudomonas nitroreducens. (99%) Pseudomonas nitroreducens (2.034) 

StB5 Pseudomonas nitroreducens Strain R5-791 (99%)  Pseudomonas nitroreducens (1.989) 

A61 Pseudomonas nitroreducens. (99%) Pseudomonas nitroreducens (1.882) 

 

 

2.4 Discussion 

Isolation and screening for potential diazotrophic bacteria are crucial steps in research on 

biofertilizers, in order to discover efficient nitrogen fixing bacteria. There is a need to develop 

simple, inexpensive and quick procedures with repeatable and reliable results (Ahmad et al., 

2006; Döbereiner, 1988). For instance, an in vitro screening procedure (growth on N-free semi-

solid media, ARA and the ammonia production test), the combination of which provides rapid, 

repeatable results. Bacterial isolates were selected based on their growth behavior in a nitrogen-

free semi-solid medium typified by ammonia production analyses of liquid cultures, which 

confirmed their capacity to fix N2 in pure culture. All these isolates were able to grow well on an 

mhtml:file://E:/Medhin%20and%20Reannah%2018042012.mht!file:///C:/Documents and Settings/Administrator/Application Data/Bruker Daltonik/MALDIBiotyperAutomationControl/HtmpResults/Medhin and Reannah 18042012.html#ID0EGCA
mhtml:file://E:/Medhin%20and%20Reannah%2018042012.mht!file:///C:/Documents and Settings/Administrator/Application Data/Bruker Daltonik/MALDIBiotyperAutomationControl/HtmpResults/Medhin and Reannah 18042012.html#ID0ESCA
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N-free semi-liquid medium when sucrose was used as carbon source but grew slowly on D-

mannitol and malate. 

 

Single colonies that grew well and produced ammonia in N-free liquid medium were then tested 

in an acetylene reduction assay. Acetylene reduction values ranged from 4.81 to73.0 nmoles of 

ethylene produced h
-1 

culture
-1

. It is difficult to compare the nitrogenase activity of bacterial 

strains studied in this work with the results obtained by others, mainly due to the different 

methods used and the different ways of expressing the levels of nitrogen fixation. These results 

on nitrogenase activity were in agreement with the results of  óżycki et al. (1999) who reported 

similar nitrogenase activity of diazotrophic bacteria, most of which belonged to the genera 

Pseudomonas and Bacillus. However, it is difficult to extrapolate data from acetylene reduction 

assays to the actual dinitrogen fixation because this assay only measures nitrogenase activity and 

reveals no information on whether the fixed N can be incorporate into plants (Boddey et al., 

1995a). 

 

In this study, 50% of the tested isolates induced 50% to 60% increases in dry weight, stomatal 

conductance and chlorophyll content index compared to untreated and unfertilized maize plants. 

These increases were due to the inoculation of these diazotrophic isolates and strongly support 

our hypothesis that inoculation with diazotrophic bacteria may be beneficial in enhancing plant 

growth. However, water stress produced quite large reductions in the content of chlorophyll and 

stomatal conductance rate. Therefore, water stress in plants should be avoided by daily watering 

on the previous day prior to measuring. Additionally, stomatal conductance recovery was 

affected by direct sunlight. This suggests that the recovery should be done during the middle 

portion of the day, between 09:00 to 15:00. 

 

About 50% of these isolates were identified as Pseudomonas spp. The predominance of this 

genus both in the soil and in the root zone may be due to low nutritional requirements, its 

capacity to utilize numerous complex organic substrates (Krotzky and Werner, 1987) and its 

tolerance to low pH (Eckford et al., 2002). Nitrogenase active members of this genus have also 

been isolated by other researchers (Vermeiren et al., 1999; Mano and Morisaki, 2008;). One of 

the selected isolates was identified as Pantoea ananatis which had been isolated from the leaves 
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and roots of healthy plants, yet it was capable of nitrogen fixing and caused no apparently 

harmful effects to treated plants. 

 

The genus Burkholderia is well known because it has strains that cause diseases in humans 

(Bevivino et al., 1994; Miralles et al., 2004; Chiarini et al., 2006; Mendes et al., 2007; Jacobs et 

al., 2008). In this study two nitrogen fixing Burkholderia spp. were isolated from maize 

rhizospheres and showed no harmful effect on treated plants. In another studies, Estrada et al. 

(2002) isolated a strain of endophytic, N2-fixing Burkholderia sp. associated with maize in 

Mexico. Perin et al. (2006) also recovered N2-fixing Burkholderia from the rhizosphere of maize 

and from surface-sterilized leaves of sugarcane cultivated in Rio de Janeiro, Brazil. Similarly, 

Reis et al. (2004), in their ecological survey of nitrogen-fixing bacteria, isolated the genus 

Burkholderia from the rhizosphere and interior of sugarcane and maize plants in Brazil, Mexico 

and South Africa. Burkholderia heleia sp. nov., a N2-fixing bacterium was also isolated by 

Aizawa et al. (2010) from an aquatic plant in Vietnam. 

 

One of the selected diazotrophic isolate in this study was identified as Bacillus megaterium de 

Bary. El-Komy (2005) also isolated B. megaterium strains and reported that some strains were 

powerful phosphate solubilizers and nitrogen fixers on the roots of wheat plants. Wu et al. 

(2005) also reported on the ability of B. megaterium to solubilize phosphate. Foster (1964) and 

Brown (1974) reported on tthe use of "azotobacterin" (Azotobacter chroococcum) and 

"phosphobacterin’’ (B. megaterium) inoculations in the Soviet Union, and that yield increases of 

10% to 20% were reported under a wide variety of practical agricultural conditions; one 

diazotrophic isolate was identified as E. cloacae and another as Klebsiella variicola. They are 

prominent diazotrophs that are often found associated with maize, as endophytes, or on roots and 

in the rhizosphere soil. Berge et al. (1991) reported that an E. cloacae was the most abundant 

diazotrophic bacterium in the rhizosphere of maize-growing soils in France. The selected 

diazotrophic bacteria showed promise by enhancing plant growth under greenhouse conditions. 

However, this needs further research to confirm these results under realistic agricultural 

conditions. Therefore, the selected diazotrophic isolates might be potentially beneficial and 

should be tested more in greenhouses and field conditions with maize and wheat to confirm their 

application as a commercial biofertilizer. 
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CHAPTER THREE 

EFFECT OF DIFFERENT METHODS OF APPLICATION OF DIAZOTROPHIC 

INOCULANTS ON MAIZE GROWTH:A GREENHOUSE STUDY 

 

M.H. Kifle and M.D. Laing 

Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Sciences 

University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, 

South Africa 

Abstract 

Diazotrophs are living microorganisms capable of fixing atmospheric nitrogen in the soil and 

thereby increasing crop yields, minimizing fertilizer costs, and improving agricultural 

sustainability. In this study, the effectiveness of different methods of application of five 

diazotrophic bacteria onto maize (Zea mays L.) was studied under greenhouse condition at the 

University of KwaZulu-Natal, Pietermaritzburg South Africa. Methods of applications of 

diazotrophic inoculants included: seed treatment, drench, foliar spray, seed treatment + drench, 

seed treatment + foliar spray, foliar spray + drench and seed treatment + foliar spray +drench. 

Diazotrophic bacteria found within rhizosphere soils, roots and stems of field grown maize were 

previously isolated and identified as: Bacillus megaterium (Isolate V16), Burkholderia ambiferia 

(Isolate V9), Enterobacter cloacae (Isolate L1), Pantoea ananatis (Isolate LB5), and 

Pseudomonas nitroreducens (Isolate StB5). Inoculation of five diazotrophic isolates by the 

different methods of application significantlly increased dry weight and leaf chlorophyll content 

(P < 0.001, P = 0.001). Overall, all methods of applications of the diazotrophic inoculants used in 

this study resulted in measureable increases in dry weight and leaf chlorophyll content, combined 

methods of application (seed treatment + drenching) and sole application (seed treatment) were 

significantly (P < 0.001) efficient and effective. 

 

Key words: diazotrophic bacteria, application methods, leaf chlorophyll level and growth 

promotion 
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3.1 Introduction 

Maize, wheat, and rice are the major cereal grains that sustain humanity (Fischer et al., 2007). In 

the developing world, maize is the most important staple crop, and nitrogen is the most important 

input required for maize production (Nziguheba et al., 2005). In the developing world, maize 

production averages around only 700 kg of maize per hectare compared with the yield potential 

of seven tonnes per hectare in the USA (Gladwin et al., 2001). In part this is because farmers in 

Africa use the least fertilizer in the world because they cannot afford the inputs used by their 

developed world counterparts (Borlaug and Dowswell, 1995). The routine application of high 

levels of chemical N-fertilizers may induce a series of negative consequences on the soil ecology 

and from the runoff of N into water systems (Acosta-Martinez and Tabatabai, 2000; Adesemoye 

and Kloepper, 2009). To reduce the dependence on N fertilizers in agriculture, the use of 

nitrogen-fixing bacteria may be an alternative agricultural practice. 

 

Plant-growth-promoting rhizobacteria (PGPR) have been identified as having the potential to 

provide nutrients in sustainable systems in crop production (Saharan and Nehra, 2011). Whilst 

rhizobia are well established as nitrogen fixing in symbiosis with legumes, free-living, root-

associated diazotrophic bacteria can provide a source of biologically fixed N for cereal crops 

(Rao et al., 1998). It is also well documented that inoculation with diazotrophic bacteria can 

increase soil fertility and enhance plant productivity (Hayat et al., 2010). These diazotrophic 

bacteria include isolates of many soil bacteria, including the following genera: Enterobacter, 

Pseudomonas, Pantoea, Burkholderia, Klebsiella, Azospirillum, Azotobacter and Bacillus. These 

are all PGPR and are now being widely researched for use to enhance plant productivity 

(Fuentes-Ramirez and Caballero-Mellado, 2006; Steenhoudt and Vanderleyden, 2006; Caballero-

Mellado et al., 2007; Mirza et al., 2007; Yachana, 2012). For example, Yanni and El-Fattah 

(1999) reported that selected strains of Azotobacter, Pseudomonas and Azospirillum increased 

the yield of rice by 20% to 55%, and a strain of diazotrophic Burkholderia increased the biomass 

of a rice crop by 69% (Kennedy et al., 2004). Some endophytic diazotrophs have been also 

discovered in crops such as sugarcane, which were able to fix 60%–80% of the annual plant N 

requirement (Dobereiner et al., 1993; Boddey et al., 1995). Bacillus megaterium deBary has 

been characterized as a PGPR. Many researchers believed that the ability of this strain to 

consistently enhance the growth of maize and other crop species under field conditions was due 
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to phosphate solubilization (Brown, 1974; De Freitas et al., 1997   odr  gue  and Fraga, 1999  

Wu et al., 2005). However, a nitrogen fixing strain, B. megaterium C4, originally isolated from a 

maize rhizosphere, was found to have a colonization pattern similar to those of many Gram-

negative diazotrophs, such as Azospirillum brasilense Tarrand et al. (Liu et al., 2006). Similarly 

Raju et al. (1972) isolated a strain of Enterobacter cloacae, which was an N2-fixing, PGPR in 

the rhizosphere of a maize plant. Berge et al. (1991) found that strains of Enterobacter cloacae 

(Jordan) Hormaeche and Edwards 1960, Klebsiella spp., and Pseudomonas spp. were the most 

abundant diazotrophs in maize roots. In many cases, the PGPR diazotrophs also express 

biocontrol activity against plant diseases (Hinton and Bacon, 1995). There is a problem in this 

field of PGPRs because some of the plant associated PGPR genera such as: Burkholderia, 

Enterobacter, Pantoea and Pseudomonas may also be opportunistic pathogens on humans (Berg,  

et al., 2005, Tyler and Triplett, 2008). 

As it is very useful to isolate and identify bacterial strains with plant growth-promoting 

capabilities, optimizing methods of application of these strains to specific plant organs is needed. 

Bressan and Borges (2004) reported that a foliar spray treatment was effective to inoculate 

bacterial endophytes which successful migrated inside stems of maize plants. Similarly, foliar 

application of PGPR strains of Azotobacter, Azospirillum and Beijerinckia was reported by 

Sudhakar et al. (2000) to be an effective method of application resulting in an increased fruit and 

leaf yield of mulberry (Morus spp.). In another study, strawberry plants were inoculated with 

Bacillus M3, Pseudomonas BA-8 or Bacillus OSU-142, either by root inoculation technique or 

foliar sprays. Both methods resulted in increased yields, growth and P, Fe, Cu and Zn content in 

the strawberry plants and increased soil P, Fe, Zn, K, and Mg availability (Esitken et al., 2010). 

The objective of this work was to compare methods of application of five strains of diazotrophic 

inoculants onto maize, aiming to optimize their plant growth promoting performance on maize 

plant. These bacterial isolates, Bacillus megaterium (V16), Pseudomonas spp. (StB5), 

Enterobacter cloacae (L1), Burkholderia ambiferia. (V9), and Pantoea ananatis (LB5), had 

been isolated and screened previously (unpublished data in chapter two), to confirm their 

diazotrophic activities. 
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3.2 Methods and Materials 

3.2.1 Inoculum Preparation 

Diazotrophic bacteria were isolated from soil rhizospheres, roots and leaves of maize plants 

collected from Cedara (Agricultural research collage, Hawick), Greytown, and Ukulinga 

(University of KawaZulu –Natal Research Farm, Pietermaritzburg), (KwaZulu-Natal, Republic 

of South Africa). Roots and leaves were surface sterilized with 3.5% sodium hypochlorite for 

five minutes and subsequently rinsed three times with sterile distilled water, using a modified 

protocol of Kloepper et al. (1991). Roots and leaves were cut into pieces and grounded with 

10 mℓ of distilled water. A modified protocol of Döbereiner (1988) (N-free semi-solid media) 

was used to isolate rhizospheric, rhizoplane and endophytic diazotrophs. 

Bacterial inocula were prepared by streaking each bacterial strain onto N-free agar (mannitol as a 

carbon source). After colonies grew, 10 mℓ of sterile distilled water was introduced into each 

petri dish before hockey stick agitation of these colonies to create bacteria suspensions. Cell 

numbers were then adjusted to a required concentration for each application method using a 

Neubauer improved haemocytometer
8
.  

 

3.2.2 Source of Seed 

Seeds of white mai e of the cultivar, Mac’s Medium Pearl, (an open pollinated variety) were 

bought from McDonalds Seeds
®9

. 

 

3.2.3 Application Methods 

The bacterial strains were inoculated onto maize plant using seven different application methods: 

i. a seed treatment 

ii. a drench 

iii. a foliar spray 

iv. seed treatment + drench 

v. seed treatment + foliar spraying 

vi. drench + foliar spraying 

vii. seed treatment + drench + foliar spray. 

                                                           
8
Neubauer improved cell counting chamber, Hirschmann Laborgerate GMbH and Co. KG, HauptstraBe 7-15, 74246 

Eberstadt, Germany 
9
MacDonald’s Seeds (Ltd), P.O. Box 40, Mkondeni, 3212, Pietermaritzburg, Republic of South Africa 
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Maize seeds were sterilized prior to treatment or planting by dipping them in 95% ethanol and 

then transferring them to 1% sodium hypochlorite for 4 min, followed by rinsing in sterilized 

distilled water eight times. 

 

3.2.3.1 Seed Treatment 

Surface sterilized maize seeds were coated with a suspension of the bacterial inoculants (10
10

 

colony forming units (CFU) mℓ
-1

) and an adhesive (2% gum arabic) and allowed to air-dry 

overnight. Bacterial cell counts were approximately 10
8
 CFU per seed. Seeds treated with sterile 

distilled water amended with gum arabic served as a Non-Treated Control. 

 

3.2.3.2 Drenching 

After emergence of the seedlings grown in pots with a top diameter of 200 mm that held 2kg of 

composted pine bark, a bacterial suspension at a concentration of 10
6
 CFU ml

-1
 (5 mℓ plant

-1
 and 

followed by 5 mℓ plant
-1

 a week later) was drenched (Kifle and Laing, 2011). The Un-treated 

Control  received no bacterial inoculations. 

 

3.2.3.3 Foliar Spray 

Bacterial suspensions from 48 hour old plated cultures were adjusted to 10
7
 CFU mℓ

-1
 and mixed 

with 0.01% aqueous Break-thru
®
 (polyether-polymethylsiloxane-copolymer)

10
  

(www.agricare.co.za) as adjuvant and sprayed onto 6 weeks old maize leaves grown in pots with 

a top diameter of 200 mm that held 2kg of composted pine bark using 2ℓ hand-held sprayers. 

After emergence of seedlings (three per pot), plants were sprayed twice to run-off at a rate of 

5 mℓ plant
-1 

at a concentration of 10
6 

CFU mℓ
-1

. Two sprays were applied, a week apart. As a 

Control treatment, plants were sprayed with 5 mℓ of Break-thru
® 

at 0.01% in water, on the same 

dates as the bacterial treatments. 

 

3.2.4 Growth Medium and Application of Nutrient Solution 

Maize plants were grown in 75 mm diameter plastic pots containing composted pine bark in a 

fan-and-pad controlled environment tunnel (Controlled Environment Facility, University of 

KwaZulu-Natal, Pietermaritzburg, South Africa). Plants were hand watered (250 ml pot
-1

) every 

                                                           
10

Western farm service, Inc. P.O.Box 1168, Fresno, California 93715 

http://www.agricare.co.za/
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three days supplemented with nutrient solution: (0.14 g ℓ
 -1

 K2SO4, 0.13 g ℓ
 -1

 KOH, 0.1 g ℓ
 -1

 

MgSO4, 0.74 g ℓ
 -1

 CaCl2.2H2O, 0.11 mℓ ℓ
 -1

 H3PO4 to make up 100 % PK fertilizer and 0.02 g ℓ
-

1
 
- 
of Microplex

®1 
to provide micronutrients. Eighteen pots were used as a Positive Control, and 

were therefore watered with a 100% NPK soluble fertilizer [3:1:3 (38)]
11

. As a Low Nitrogen 

Control, another 18 pots were watered with 100% PK nutrient solution and 0.02 g ℓ
-1

 of 

Microplex®. As a Zero Fertilizer Control, another 18 pots were watered with only water 

(Untreated Control). When plants reached the six leaf stage, leaf chlorophyll content was 

measured using chlorophyll meter
12

 and the fresh biomass was harvested and then placed in 

brown paper bags and dried at 70°C in the oven for 72 hours. Dry samples were weighed for 

shoot dry weight determination. 

 

3.2.5 Experimental Design 

The experimental design was in  5 x 7 factorial design (five bacterial isolates, 7 application 

methods), with three control treatments, using three replications (5 bacterial isolates x 7 

application methods x  3 replicates) and 3 controls x 6 pots x 3 replicates, arranged in the 

greenhouse in a randomized complete blocks design. Each treatment consisted of six pots with a 

top diameter of 75 mm filled with composted pine bark. Each pot was planted with five seeds, 

which were thinned to three plants per pot after germination. 

 

Experimental Analysis 

Factorial analysis of variance was performed using the General Linear Model of ANOVA, of 

Genstat
®
 14

th
 edition. An F value for main treatment effects and their interaction were considered 

significant at P ≤ 0.05 level. Treatment means were separated using DMRT test at the 5% 

probability level. 

                                                           
11

Ocean Agriculture (Pty) Ltd, P.O. Box 741, Muldersdrift, 1747, South Africa 
12

 CCM-200 Plus, Opti-Science Inc., 8 Winn Avenue, Hudson, NH, USA, 03051. 
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3.3 Results 

3.3.1 Single Method of Application of Five Selected Diazotrophic Bacterial Inoculants on 

Maize Growth under Greenhouse Conditions 

Five selected diazotrophic bacterial isolates increased (P < 0.001) dry weight and leaf 

chlorophyll content of maize when they were applied by single methods of application, seed 

treatment, drench or foliar spray (Table 3.1), when compared with the Untreated Control. Seeds 

treated with these five diazotrophic inoculants had increased leaf chlorophyll content by 31.7% 

to 65.0% and dry weight by 123.4% to 291.4%. When applied by drenching, these inoculants 

increased dry weight by 53.9% to 59.7% and leaf chlorophyll content by 134% to 171% (Table 

3.2). When these diazotrophic bacteria were applied in a foliar spray they increased the leaf 

chlorophyll of maize plants by 59.2% to 72.6% and increased dry weight by 121% to 165%. 

Among individual diazotrophic treatments, Isolate L1 (Enterobacter cloacae) increased leaf 

chlorophyll content, and Isolate StB5 (Pseudomonas spp.) and Isolate V16 (Bacillus 

megaterium) increased dry weight, when they were applied as seed treatments. When applied as 

a drench, Isolate LB5 (Pantoea ananatis) induced a higher leaf chlorophyll content and Isolate 

StB5 (Pseudomonas spp.) increased maize dry weight. When applied by foliar spray, Isolate L1 

(Enterobacter cloacae) contributed to higher leaf chlorophyll content and Isolate V16 (B. 

megaterium) to greater dry weight. 
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Table 3.1 The effect of single methods of application of five diazotrophic bacterial inoculants on the growth of maize 

Treatments 

Seed treatment (St) Drench (Dr) Foliar spray (Fs) 

CCI Dry weight (g) CCI Dry weight (g) CCI Dry weight (g) 

Control 6.41 a 1.73  a 2.97  a 1.523  a 3.09  a 1.643  a 

100%PK 7.21 ab 5.68  ab 5.59  a 4.56  a 4.7  a 4.36  a 

StB5 14.53 c 22.23  c 12.24  b 12.38  b 10.77  b 9.65  b 

V16 14.10 c 22.23  bc 11.55  b 11.803  b 10.79  b 11.783  b 

V9 13.53 bc 12.69  bc 12.51  b 10.71  b 11.65  b 10.017  b 

LB5 14.27 c 13.97  c 11.47  b 12.047  b 12.4  b 10.79  b 

L1 14.78 c 14.61  bc 12.71  b 11.667  b 13.21  b 11.597  b 

100%NPK 22.74 d 21.89  c 21.28  c 13.757  b 18.19  c 15.34  c 

CV% 15.70 

 

25.6 

 

8.1 

 

13.0 

 

9.7 

 

11.4 

 
LSD 3.689 

 

5.905 

 

1.594 

 

2.226 

 

1.801 

 

1.88 

 
SED 1.72 

 

2.753 

 

0.743 

 

1.038 

 

0.839 

 

0.876 

 
P <0.001 

 

<0.001 

 

<0.001 

 

<.001 

 

<0.001 

 

<.001 

 
 

Means with the same letter in the same column are not significantly different at P ≤ 0.05; 

100%PK= plants were un-inoculated and fertilized with 100% potassium and phosphorous plus a micronutrient solution (Microplex
®
);  

100%NPK= plants were un-inoculated but fertilized with 100% NPK [3:1:3 (38)]
®
and Microplex

®
; 

Control= plants un-inoculated and no fertilizer application; 

CCI=Chlorophyll Content Index; 

DW= Dry weight 
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Table 3.2 Comparing the performance of five strains of diazotrophic bacteria in enhancing maize growth, relative to an Unfertilized Control 

Treatments 
Seed treatments (St) Drench Foliar spray 

CCI 

%CCI 

Equivalent DW(g) 

% over 

Control CCI 

%CCI 

Equivalent DW (g) 

%over 

Control CCI 

% CCI 

Equivalent DW (g) 

% over 

Control 

Control 7.21 31.71 5.68 - 5.59 26.27 4.56 - 4.70 25.84 4.36 - 

StB5 14.53 63.89 22.23 291.37 12.24 57.52 12.38 171.49 10.77 59.21 9.65 121.33 

V16 14.10 62.01 22.23 291.37 11.55 54.28 11.80 158.84 10.79 59.32 11.783 170.25 

V9 13.53 59.50 12.69 123.42 12.51 58.79 10.71 134.87 11.65 64.05 10.017 129.75 

LB5 14.27 62.75 13.97 145.95 11.47 53.90 12.05 164.19 12.40 68.17 10.79 147.48 

L1 14.78 64.99 14.61 157.22 12.71 59.73 11.67 155.86 13.21 72.62 11.597 165.99 

100%NPK 22.74 100 21.89 385.38 21.28 100 13.757 301.69 18.19 100 15.34 351.83 

 

Means with the same letter in the same column are not significantly different at P ≤ 0.05; 

100%PK= plants were un-inoculated and fertilized with 100% potassium and phosphorous and a micronutrient solution (Microplex
®
);  

100%NPK= plants were un-inoculated but fertilized with 100%  NPK [3:1:3 (38)]
®
and Microplex

®
; 

Control= plants un-inoculated and no fertilizer application; 

CCI=Chlorophyll Content Index; 

DW= Dry weight 
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3.3.2 Combined Application Methods of Different Diazotrophic Bacterial Strains on 

Maize Growth 

A comparison of dry weights and leaf chlorophyll content when diazotrophic isolates were 

applied by seed treatment + drench confirms that diazotrophic isolates had growth-promoting 

abilities (Table 3.3). The mean dry weight of plants treated with the diazotrophic isolates was 

117%-202% higher than the Untreated Control plants (Table 3.4), and there was a 34.3% - 

40.64% increase in leaf chlorophyll content of maize plant (Table 3.5). When these selected 

diazotrophs were applied by seed treatment + foliar spraying dry weight increased by 154% -

 194% (Table 3.4) over the Untreated Control, and leaf chlorophyll content increased by 65.7%-

71.96% (Table 3.5). Combining foliar spray +drench increased leaf chlorophyll content by 

55.86% - 60.37% (Table 3.5) and dry weight by 42%-114% (Table 3.4) over the Untreated 

Control. Combining all three application methods, seed treatments + drench + foliar spray, 

increased leaf chlorophyll content by 58.05%-66% (Table 3.5) and increased dry weight by 

82% - 102% (Table 3.4) over the Untreated Control. 

 



73 
 

Table 3.3 Effect of combined methods of application of five selected diazotrophic bacterial inoculants on the growth of maize 

Treatments 

Seed Treat (St) + Drench (Dr) Seed Treat (St)+ Foliar spray (Fs) Fs + Dr St + Dr + Fs 

CCI 

 

Dry weight (g) CCI 

 

Dry weight (g) CCI 

 

Dry weight (g) CCI 

 

Dry weight (g) 

Control 2.95  a 4.93  a 2.91  a 1.73  a 3.88  a 2.36  a 3.09  a 2.4  a 

PK 5.64  a 5.36  ab 4.66  a 4.24  a 7.11  a 6.55  ab 5.34  a 6.09  b 

StB5 15.97  b 14.88  bc 14.4  b 10.8  b 12.86  b 12.64  bc 12.83  b 12.35  c 

V16 15.09  b 16.17  c 13.89  b 11.44  b 12.78  b 14.02  bc 12.99  b 11.76  c 

V9 14.43  b 15.71  bc 13.97  b 11.34  b 12.80  b 9.36  abc 13.91  b 11.29  c 

LB5 14.85  b 12.05  b 13.15  b 12.39  b 11.90  b 10.27  abc 13.31  b 11.1  c 

L1 15.28  b 11.67  b 13.45  b 12.47  b 12.35  b 10.91  bc 12.22  b 11.99  c 

NPK 24.31  c 19.81  c 20.01  c 18.01  c 21.30  c 15.36  c 21.05  c 16.04  d 

CV% 8.3 

 

24.6 

 

10.4 

 

14.5 

 

9.0 

 

25.7 

 

7.6 

 

11.2 

 LSD 1.978 

 

5.998 

 

2.197 

 

2.624 

 

1.874 

 

4.575 

 

0.735 

 

2.036 

 SED 0.922 

 

2.796 

 

1.024 

 

1.224 

 

0.874 

 

2.133 

 

1.577 

 

0.949 

 P <0.001 

 

<0.001 

 

<0.001 

 

<.001 

 

<0.001 

 

<0.001 

 

<0.001 

 

<0.001 

 Means with the same letter in the same column are not significantly different at P ≤ 0.05 

100%PK= plants were un-inoculated and fertilized with 100% potassium and phosphorous and micronutrients 

100%NPK= plants were un-inoculated but fertilized with 100% NPK [3:1:3 (38)]
 ®

 and micronutrients 

Control= plants un-inoculated and no fertilizer application 

CCI=Chlorophyll Content Index; 

DW= Dry weight 
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Table 3.4 The effect on maize growth of five isolates of diazotrophic bacteria with multiple 

application techniques 

 

  

Bacteria 

Seed Treatment (St) + 

Drench (Dr) 

Seed Treatment (St) 

+ Foliar spray (Fs) 

Drench + Foliar 

spray 

Seed treat + Drench 

+ Foliar 

Dry 

weight (g) 

% over 

Control 

Dry 

weight(g) 

% over 

Control 

Dry 

weight (g) 

% over 

Control 

Dry 

weight 

(g) 

% over 

Control 

Control 5.36 - 4.24 - 6.55 - 6.09 - 

StB5 14.88 177.61 10.80 154.72 12.64 92.98 12.35 102.79 

V16 16.17 201.68 11.44 169.81 14.02 114.05 11.76 93.1 

V9 15.71 193.10 11.34 167.45 9.36 42.90 11.29 85.39 

LB5 12.05 124.76 12.39 192.22 10.27 56.79 11.10 82.27 

L1 11.67 117.67 12.47 194.10 10.91 66.57 11.99 96.88 

 

 

Table 3.5 The Effect of diazotrophic bacterial isolates on leaf chlorophyll content with 

multiple application methods 

Bacteria 

St + Dr St +FS Dr + Fs St + Dr + Fs 

CCI 

%CCI 

Equivalent CCI 

%CCI 

Equivalent CCI 

%CCI 

Equivalent CCI 

%CCI 

Equivalent 

StB5 15.97 65.69 14.40 71.96 12.86 60.38 12.83 60.95 

V16 15.09 62.07 13.89 69.42 12.78 60.00 12.99 61.71 

V9 14.43 59.36 13.97 69.82 12.80 60.09 13.91 66.08 

LB5 14.85 61.09 13.15 65.72 11.90 55.87 13.31 63.23 

L1 15.28 62.85 13.45 67.22 12.35 57.98 12.22 58.05 

100% NPK 24.31 100 20.01 100 21.30 100 21.05 100 

 

ST = seed treatment 

Dr = drenching 

FS = foliar spray 

100%NPK= plants were un-inoculated but fertilized with 100% nitrogen, potassium and phosphorous [3:1:3 

(38)]
 ®

 and micronutrients 

CCI=Chlorophyll Content Index; 

DW= Dry weight (g) 
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3.3.3 Factorial Analysis of the Application of Five Diazotrophic Bacterial Strains Using 

Different Methods of Application 

Inoculation of five diazotrophic bacterial isolates using three different methods of application, 

and their combinations, increased leaf chlorophyll content and dry weight of maize the 

various combinations used (Table 3.5). Of these application techniques, seed treatment alone 

and seed treatment + drench treatment had significant (P < 0.001) effects on dry weight and 

leaf chlorophyll content. On the other hand, foliar sprays or drench treatments alone had no 

effect on leaf chlorophyll content. There was a significant interaction between the bacterial 

strains and the different methods of application on leaf chlorophyll content and dry weight, (P 

= 0.007 and P = 0.024, respectively).Isolates all performed similarly across all treatment 

metods but siginificantlly better than control or PK. However NPK was still best. 

 

Table 3.6 Analysis of the effect of different methods of application of five diazotrophic 

inoculants on maize growth 

Source level Dry weight CCI 

 Main Effect 

Bacterial Isolates P<0.001 P<0.001 

 

Control 2.33  a 3.61  a 

 

PK 5.26  b 5.75  b 

 

V16 12.01  c 12.88  c 

 

LB5 12.60  c 13.11  c 

 

StB5 12.75  c 13.37  c 

 

V9 13.09  c 13.26  c 

 

L1 13.53  c 13.37  c 

 

NPK 16.08  d 21.27  d 

Methods of application  

 

P<0.001 

 

P<0.001 

 

 

St 12.71  b 13.41  c 

 

Fs 9.40  a 10.62  a 

 

Dr 9.81  a 11.22  ab 

 

St + Fs 10.30  a 11.92  b 

 

St + Dr 13.93  b 13.62  c 

 

Dr + Fs 10.18  a 11.93  b 

 

St +Fs + Dr 10.38  a 11.82  b 

M. application × B. isolates 

 

P=0.024 

 

P=0.007 

 Means with the same letter in the same column are not significantly different at P ≤ 0.05 
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3.4 Discussion 

In the present investigation, diazotrophic isolates were evaluated for their effects on growth of 

maize. Plant growth promotion by the diazotrophic strains using different methods of 

inoculation sometimes resulted in increases of dry weight and leaf chlorophyll content. Isolate 

L1 (Enterobacter cloacae) performed the best in increasing leaf chlorophyll content when 

applied by either seed treatment, drenching or foliar spray inoculation. Isolate V16 (Bacillus 

megaterium) induced a greater dry weight when inoculated by foliar spray than the other 

diazotrophic isolates. This is in agreement with Sudhakar et al. (2000), who reported that 

foliar sprays of nitrogen fixing bacteria on mulberry were the best inoculation method. 

In this study, interestingly, the strain of B. megaterium (V16) expressed growth promotion 

effects on maize through N-fixation, even though phosphate solubilizing is widely reported as 

the key route that this bacterial species uses to promote plant growth. For example, Raja et al. 

(2006) reported that an isolate of B. megaterium enhanced plant growth by solubilizing 

phosphate but it failed to fix nitrogen.  

There was significant interaction between the five diazotrophs and their methods of 

application, either by seed treatment alone or the combination of seed treatment + drench, in 

terms of measured leaf chlorophyll contents or plant dry matter. Seed treatment as a sole 

application, or in a combination of seed treatment + drench, induced higher leaf chlorophyll 

content and dry weight. Given its efficacy as a solo treatment, and that seed treatment was the 

simplest and most convenient method of application, this method of application can be 

recommended to farmers as the best method of application of diazotrophs for plant growth 

promotion. 
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CHAPTER FOUR 

EFFECTS OF SELECTED DIAZOTROPHS ON GROWTH AND YIELD OF MAIZE 

 

M.H. Kifle and M.D. Laing 

Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Sciences 

University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, 

South Africa 

Abstract 

Greenhouse and field experiments were conducted at Ukulinga Farm, University of KwaZulu-

Natal, Pietermaritzburg South Africa in the 2010/2011 and 2011\2012 growing seasons to 

study the effect of N-fixing bacterial isolates on the growth and yield of maize. Eight nitrogen 

fixing bacterial isolates including: Bacillus megaterium (V16), Pseudomonas spp. (StB5, A2, 

A6 and A61), Burkholderia ambifaria (V9), Enterobacter cloacae (L1) and Pantoea ananatis 

(LB5) were used. These were used as inoculants on maize plants aiming to stimulate plant 

growth, maintain or increase yield while reducing the need for N fertilizer. Trichoderma 

harzianum (Eco-T
®
)

13
 was used as a positive control for a germination test in the laboratory. 

All the diazotrophic bacteria and Eco-T
®
, increased germination by 25-54.3 %. Seeds treated 

with microbial Isolates StB5, V16 and Eco-T
® 

increased (P = 0.003) shoot length, and isolate 

StB5, V16, L1, V9, A2 and Eco-T
®
 increased (P < 0.001) root length and seed vigor index of 

maize. Under greenhouses conditions bacterial inoculations caused only small increases (P > 

0.05) in leaf chlorophyll content. However, when these bacterial isolates were integrated with 

33%N fertilizer, the chlorophyll content and dry weigh increased (P < 0.05) compared to the 

Un-inoculated and Unfertilized Control. In the field, in year 2010/2011, plants treated with 

selected diazotrophic bacteria, with or without 33% N-fertilizer, had no effect (P > 0.05) on 

germination, grain yield, dry weight and plant height at (30, 60 or 90 DAP) and leaf 

chlorophyll content both at 30 and 60 DAP compared to the Un-inoculated and Unfertilized 

Control and 100% NPK. Germination increased (P < 0.001) by 19.9 - 135%. In year 

2011/2012, plant dry weight at 30, 60 or 90 DAP was increased by 66%, 50% and 70% ( P < 

0.001) with Bacillus megaterium (V16), and 51%, 45% and 18% (P < 0.001) with StB5 

(Pseudomonas nitroreducens), respectively. Compared to the Un-inoculated and Un-fertilized 

                                                           
13Plant Health Products (Pty) Ltd, P.O.Box 207, Nottingham Road, KwaZulu-Natal, South 

Africa 
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Control, seed treatment with B. megaterium (V16) and P. nitroreducens (StB5) increased (P < 

0.001) the grain yield by 46.1% and 41%, respectively. Plant height and leaf chlorophyll 

content also increased (P < 0.001) by the inoculation of the selected diazotrophic bacteria. 

Key words: diazotrophic bacteria, seedling growth, seed vigor chlorophyll level, maize, 

germination  

 

4.1 Introduction 

Maize is the most important staple crop in the developing world. As a staple food, maize has a 

large market and is the most important agricultural product in South Africa. However, poor 

soil fertility, draught and disease are measure problems to crop production (Lynch, 2007). A 

source of nitrogen is necessary for high yields for all agricultural and horticultural crops. 

Therefore, use of diazotrophic bacteria as bio-inoculants for cereals might eventually be a 

standard agronomic practice on most crops. 

Microorganisms that promote plant growth either by nitrogen fixation or other mechanisms 

belong to a range of genera: e.g., Azospirillum, Azotobacter, Bacillus, Pseudomonas and 

Serratia (Bashan et al., 2004). Most plant growth promoting rhizobacteria (PGPR) are N-

fixing bacteria (diazotrophs) (Table 4.1). Their ability to fix nitrogen probably makes the 

organisms better adapted to live in the rhizosphere. A widely studied diazotrophic bacterium, 

Azospirillum brasilense Tarrand et al., was once believed that it has beneficial effects on non-

legumes via biological nitrogen fixation (BNF). However, multiple inoculation experiments 

done by Dobbelaere et al. (2003) failed to show a substantial contribution of BNF to plant 

growth in most cases. This is indicating that A. brasilense promotes plant growth not only 

through N-fixation but also through other mechanisms such as phytohormones (Spaepen et 

al., 2009).  

Increases in growth and yield of agronomically important crops in response to inoculation 

with diazotrophic bacteria have been reported by Kennedy et al. (2004b), Okon and 

Labandera-Gonzalez (1994) and Bashan et al.(2004). Strains of Bacillus spp., Pseudomonas 

spp., Enterobacter spp., Burkholderia spp. and Pantoea spp. can affect seed germination, 

seedling growth and yield (de Freitas, 2000; Mar Vázquez et al., 2000; Liu et al., 2006). 

Inoculation of plants with Enterobacter spp. can also result in significant increases in various 

growth parameters, such as increases in plant biomass, nutrient uptake, N content, plant 
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height, leaf size and root length of cereals (Bashan, et al., 2004) and could also be used as 

biocontrol agent (Duponnois and Mateille, 1999).  

The effect of diazotrophic bacteria on growth and yield of cereals has been studied by many 

researchers. However, the effect of diazotrophic bacteria on growth parameters from 

germination to yield were not evaluated simultaneously. The main objective of this study was 

to evaluate if selected diazotrophic bacterial strains could affect seed germination and certain 

economically important agronomic performances of maize (Zea mays L.) grown under 

greenhouse and field conditions, and assess how these bacterial strains would perform with or 

without 33% N-fertilizer. 
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Table 4.1 Example of diazotrophs in promoting plant growth based on their ability to fix N2 

PGPR Host plant References 

Bacillus polymyxa Wheat Omar et al., 1996 

Burkholderia species  in rice Divan Baldani et al., 2000 

Azotobacter species  maize and wheat Pandey et al., 1998; Mrkovacki and Milic, 2001 

Azospirillum species  maize, rice and wheat Boddey et al., 1986; Garcia de Salomone and Dobereiner, 1996; Malik et al., 

1997 

Azoarcus species kallar grass, sorghum and rice Stein et al., 1997; Egener et al., 1999; Hurek et al., 2002 

Anabaena and Nostoc rice and wheat Obreht et al., 1993; Hashem, 2001 

Gluconacetobacter diazotrophicus  sorghum and sugarcane Isopi et al., 1995; Sevilla et al., 2001; Boddey et al., 2003 

Herbaspirillum species  rice, sorghum and sugarcane Boddey et al., 1995; James et al., 1997; James et al., 2002 

Bacillus spp. sugar beet, peanut, potato, bean, sorghum, and wheat Çakmakçi et al., 2006; López-Bucio et al., 2007; Ortíz-Castro et al., 2008 

Pseudomonas fluorescens-putida potato, sugar beet and radish  Kloepper et al., 1980 

Pseudomonas putida and P. fluorescens canola, wheat and potato  Frommel et al., 1993; Shaharoona et al., 2007 

Pantoea ananatis dune grass  Taulé et al., 2012 

Burkholderia cepacia  Maize Bevivino et al., 1994 
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4.2 Methods and Materials 

4.2.1 Performance of Diazotrophic Bacteria Using Germination Bioassay 

Ninety five bacteria naturally present in the rhizosphere or on roots and leaves of maize were 

isolated from three different sites (Cedara, Greytown and Ukulinga farm), South Africa. These 

were screened for N-fixing ability and growth promoting characteristics (data not printed in 

Chapter 4). Eight of the 93 isolates with N-fixing ability (V16, V9, StB5, LB5, L1, A2, A3, A6 

and V61) were evaluated for growth of maize using a paper towel method following the 

procedures described by Nezarat and Gholami (2009). These diazotrophic isolates were 

identified as Bacillus megaterium (V16)), Pseudomonas spp., (StB5, A2, A3, A6 and A61), 

Burkholderia ambifaria (V9), Pantoea ananatis (LB5) and Enterobacter cloacae (L1) using 16r 

DNA sequencing, and a Bruker Daltonik MALDI Biotyper classification. Twenty five maize 

seeds were surface sterilized with 1% sodium hypochlorite for 5 min washed 5 times with 

sterilized distilled-water, coated with a suspension of the bacterial inocula (10
8
 colony forming 

units (CFU)) plus an adhesive (2% ) gum arabic), before air-drying overnight. A mean cell count 

was 10
6
 CFU per seed. Seeds treated with sterile distilled-water amended with gum arabic served 

as the Un-treated Control, and seeds treated with 2×10
9
 conidia g

-1
 of Trichoderma harzianum 

Eco-T
®
 were used as a Positive control. Trichoderma harzianum Eco-T

®
 is a registered, 

formulated biocontrol product, effective for plant growth promotion was provided by Plant 

Health Products (Pty) Ltd (Yobo, et al., 2004). Each treatment was replicated three times. Seeds 

were germinated in a growth chamber at 28
0
C. After five days, the number of germinated seeds 

was counted, and root and shoot length of individual seedling was measured to determine the 

vigor index with the following formula: Seeds vigor index = [(mean root length + mean shoot 

length) X germination %] (Abdul Baki and Anderson, 1973). 

 

4.2.2 Seed Source 

Seeds of white mai e of the cultivar, Mac’s Medium Pearl, (an open pollinated variety) were 

bought from McDonalds Seeds
®14

; surface sterilized with 1% sodium hypochlorite for 5 min and 

washed 5 times with sterilized distilled water.  

 

                                                           
14

McDonalds Seed Company (Pty) Ltd., Pietermaritzburg, Republic of South Africa 
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4.2.3 Seed Treatment 

Maize seeds (Zea mays) were treated with the bacterial inoculums (10
8
 colony forming units 

(CFU)) and adhesive (2% gum arabic) suspension and allowed to air-dry overnight. Cell count 

was10
6
 CFU per seed. Seeds treated with sterile distilled-water amended with gum arabic served 

as a Un-treated control. Seeds were planted in 75 mm pots using composed pine back as a 

growing medium. Temperatures varied between 26-28 °C under greenhouse conditions. Eight 

weeks later, leaf chlorophyll content was measured at the 6-foliate stage using a hand held 

chlorophyll content meter (CCM-200 plus)
15

. Dry weight was obtained by harvesting the total 

biomass of the maize plants after they were oven-dried for 72 h at 70°C. 

 

4.2.4 Fertilizer Application 

Pots were hand watered every three days (250 mℓ pot
-1

) supplemented with reduced N-fertilizer 

33% N (calcium nitrate (48))
16

 at a rate of 0.33 gℓ
-1

) or soluble fertilizer was applied at a rate of 

0.224 gℓ
-1

 KH2PO4, 0.149 gℓ
-1

 K2SO4, 0.324 gℓ
-1

 KCl, 0.203 gℓ
-1

 MgSO4, to make up 100% PK 

fertilizer. Nine pots that served as the positive control were watered with 100% NPK soluble 

fertilizer [3:1:3(38)] at a rate of 1gℓ
-1

and another nine pots were watered with 33%N and 

100% PK. In the field, lime ammonium nitrate (LAN)
1
, Super phosphate

17
 and Potash were used 

as sources of normal amount recommended for N, P and K fertilizers for the growth of maize. 

 

4.2.5 Field Experiments 

Field experiment was conducted at Ukulinga, a research farm of the University of KwaZulu–

Natal, Pietermarit burg, South Africa (29° 24′ E  30° 24′ S).Soils at the site are classified as 

Westleigh forms (Soil Classification Working Group 1991) with clay content of 55%. The 

experimental treatments were arranged in a split plot design with three replicates. Each plot was 

8.7m long x 3.75m wide, consist of six rows with a 0.75m inter row spacing. Plots were irrigated 

when there was no rain to ensure that no water deficit occurred during the crop growth cycle. 

Crops were fully protected against weeds and pest in the two experimental seasons. Total leaf 

                                                           
15Optic-science, 8 Winn Avenue, Hudson. NH 03051. USA 
16 Ocean Agriculture (Pty) Ltd. P.O. Box 741, Muldersdrift, 1747, South Africa 

17Omnia Fertilizer Group (Pty) Ltd. P.O.Box 69888, Bryanston,2021, South Africa 
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chlorophyll assessments were performed for all plots at the 6 and 8 foliate-stage. Chlorophyll 

readings were taken on the midpoint of the youngest fully expanded leaf and on the ear leaf. Ten 

leaves were measured at random in the plot and leaf chlorophyll content was calculated for each 

plot. Plant height was measured by randomly selecting ten plants from each plot and measuring 

the distance from the ground to the stem tip. Samples were oven-dried at 70 
0
C for three days 

and dry weights recorded. Full doses of potassium (K) and phosphorus (P) fertilizers were 

applied according to soil test recommendation from the soil testing laboratory at Cedara, South 

Africa. Experiment plots were hand-planted on 24
th

 of November 2010 and the second season on 

10
th

 of November 2011. Germinated seedlings were counted 14 days after planting (DAP) and 

the germination percentage calculated.  

 

4.2.6 Experimental Design 

The experimental split plot design was in factorial combination of two factors: Bacterial isolates 

x 33%N- fertilizer, with the main plots arranged in a randomized complete block. Each treatment 

was replicated three times. In the main plot, five bacterial isolates were evaluated: Isolates V16 

(B. megaterium), StB5 (B. ambifaria), V9 (P. nitroreducens), LB5 (P. ananatis), L1 (E. 

cloacae). In the split plot, two levels of N-fertilizer (0%N, 33%N) were tested.  

 

4.2.7 Experimental Analysis 

One way ANOVA was used to analyze the data from greenhouses and factorial analysis was 

performed using Genstat
®
 14

th
 edition for the field data.100% NPK was not part of the factorial 

ANOVA applied to the other treatments F values for main treatment effects and their interaction 

were considered significant at P ≤ 0.05 level. When a particular factor or an interaction of factors 

significantly influenced a variable, means were separated using Duncan’s multiple range tests at 

5% probability level. 
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4.3 Results 

4.3.1 Germination of Maize Inoculated With N-Fixing Bacteria and Eco-T
®
 

All the eight selected diazotrophic bacterial isolates and Eco-T
®
 increased (at least at P<0.05) 

germination by 25-54.3% (Table 4.2). Compared to the Un-treated control (Table 4.2), treating 

maize seeds with these bacterial isolates and Eco-T
®
 significantly promoted (P < 0.05) 

germination. Seeds treated with bacterial Isolates StB5, V16 or Eco-T
® 

significantly increased (P 

= 0.003) shoot length under greenhouse conditions. Moreover, seed treatment with bacterial 

isolates StB5, V16, L1, V9, and A2, and Eco-T
®
 increased (P < 0.001) root length and enhanced 

the seed vigor index of maize (Table 4.2 and Figure 4.1).  

 



88 
 

Table 4.2 Effect of N-fixing bacterial isolates on the growth of maize seedlings 

Treatment Germination % Shoot length (cm) Root length(cm) 

Seed Vigor 

Index 

Control 34.87  a 7.83  a 2.67  a 366.14 

A2 59.56  b 10.17  ab 13.00  bc 1380.01 

A61 65.15  bc 9.33  ab 6.67  ab 1042.40 

LB5 71.18  bc 8.33  a 7.33  ab 1114.68 

StB5 71.85  bc 21.83  c 16.00  c 2718.09 

A6 77.74  bc 9.00  ab 7.17  ab 1257.06 

V16 79.24  bc 17.50  bc 19.17  c 2905.73 

L1 79.54  bc 15.33  abc 15.67  c 2465.74 

V9 82.70  bc 15.67  abc 17.33  c 2729.10 

Eco-T
®

 89.20  c 22.33  c 18.00  c 3597.44 

CV% 19.80 

 

33.30 

 

30.70 

  Lsd 24.11 

 

7.845 

 

6.485 

  Sed 11.48 

 

3.734 

 

3.087 

  P 0.01 

 

0.003 

 

<.001 

  - Means with the same letter in the same column are not significantly different at P ≤ 0.05 

Control = Un-treated control 

 

4.3.2 Effect of Selected N-Fixing Bacteria and 33%N-Fertilizer on Growth of Maize 

Eight of the selected diazotrophic bacterial isolates were evaluated for their effect on the growth 

of maize under greenhouse conditions. In addition to this, these bacterial isolates were tested 

with reduced level of N-fertilizer (33%N). Control treatments included un-inoculated with no 

fertilizer (control + 0%N) and un-inoculated with reduced fertilizer (Control + 33%N). Without 

fertilizer, no significant increases in leaf chlorophyll content were observed. However, when 

these bacterial isolates were combined with 33% N fertilizer leaf chlorophyll content 

siginficanlty higher than un-inoculated with no fertilizer (control + 0%N) (P = 0.02) (Table 4.3). 

When some of these bacterial isolates combined with 33%N fertilizer showed numberical 

increases in dry weight compared to Un-inoculated and 33% N-fertilizer (Table 4.3).  
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Table 4.3 The effect of selected N-fixing bacteria with and without N-fertilizer on the 

growth of maize in greenhouse study  

N%-Fertilzer Isolates Chlorophyll (CCI) Dry weight (g) 

0 Control  3.75[0.57]  a 1.67[0.22]  a 

 

StB5  3.58[0.55]  a 7.38[0.85]  defg 

 

V9  4.29[0.63]  a 6.31[0.81]  cdef 

 

LB5  4.32[0.64]  a 4.97[0.69]  bcd 

 

A3  4.39[0.64]  a 3.82[0.58]  b 

 

V16  4.48[0.65]  a 5.75[0.76] bcde 

 

A2  4.52[0.65]  a 4.40[0.64]  bc 

 

A6  4.59[0.66]  a 3.77[0.57]  b 

 

L1  4.68[0.66]  a 4.84[0.68]  bcd 

 

A61  4.84[0.68]  a 4.60[0.66]  bcd 

      33 Control  8.76[0.94]  c 10.93[1.03]  ghi 

 

StB5  10.12[1.00]  c 9.66[0.98]  fgh 

 

V9  8.78[0.94]  c 8.68[0.93]  efgh 

 

LB5  8.62[0.93]  bc 9.68[0.97]  fgh 

 

A3  8.37[0.92]  bc 10.58[1.02]  ghi 

 

V16  10.36[1.02]  c 16.00[1.19]  i 

 

A2  7.88[0.90]  bc 11.02[1.02]  ghi 

 

A6  6.50[0.80]  b 13.55[1.12]  hi 

 

L1  8.73[0.93]  c 9.93[0.99]  fgh 

 

A61  8.21[0.91]  bc 11.66[1.06]  hi 

N%-Fertilizer X Isolates P=0.02[0.025]   P=0.004[0<001]   

 

CV% 15.80[8.7] 

 

28.5[12] 

 - Means with the same letter in the same column are not significantly different at P ≤ 0.05, values in parenthesis are 

transformed data using log base 10 

 

4.3.3 Growth Parameters of Maize under Field Conditions 

Seed treatment with five N-fixing bacterial isolates under field conditions improved germination 

levels. In the season of 2010-2011, application of bacterial isolates V16, StB5, V9, LB5 and L1 

resulted in increases in seed germination levels (18.4%-38.5% (Table 4.4). In the season of 2011-

2012, application of the isolates V16, StB5, V9, LB5 and L1 increased germination by 17, 37, 7, 
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27 and 22%, respectively; when these bacterial isolates were combined with 33%N, germination 

increased by 51, 51, 48, 26 and 37%, respectively. 

 

Table 4.4 The effect of N-fixing bacteria on the germination of maize in the field 

Treatments Field grown maize Germination (%) 

N%-Fertilizer Isolates 2010-2011 2011-2012 

0 Control 35.3  a 37.3  a 

 

V16 55.5 abc 54.7  bc 

 

StB5 56 abc 74.6  ef 

 

V9 69.5  c 59  cd 

 

L1 58.9 abc 64.7  cde 

 

LB5 61.5  bc 44.6  ab 

33 Control 43.1 ab 82.7  fg 

 

V16 55.5 abc 54.7  bc 

 

StB5 53.7 abc 88  fg 

 

V9 57.8 abc 85.3  fg 

 

L1 67.2 bc 74  def 

 

LB5 68.9 c 63  cde 

 

NPK 66.7   95   

N-fertilizer X Isolates 

 

P=0.056   P<0.001   

 

CV% 15.80[8.7] 

 

28.5[12] 

 - Means with the same letter in the same column are not significantly different at P ≤ 0.05 

 

4.3.4 Effects of Nitrogen Fixing Bacterial Isolates on the Dry Weight of Maize (2010-2011 

season) 

The effects of five selected diazotrophic bacterial isolates with or without 33%N- fertilizer on 

grain yield and dry weight of maize in the field are presented in Table 4.5 for the 2010-2011 

seasons. Analysis of variance showed no significant differences among treatment combinations 

for dry weight at 30 or 90 Days After Planting (DAP) (Tables 4.5). However, variation among 

these treatments means were found for dry weight at 60 DAP (Tables 4.5). Plants treated with 

selected diazotrophic bacteria with or without 33%N-fertilizer and plant fertilized with 

100%NPK had no significant differences on dry weight at 30, 60 or 90 DAP. These selected 

diazotrophic bacterial isolates, with or without 33%N-fertilizer, did not increase maize grain 

yield (Table 4.5). 
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Table 4.5 Maize growth parameter in the (2010-2011) season 

Treatments 

  

Dry weight  in 2010/2011 season 

 

  

Fertilizer Isolates 30DAP 60DAP 

 

90DAP 

 

Yield ( kg plant
-1

) 

 
Control 18.85 a 142.8  abc 796.3 a 3.61a  

0  L1 13.99  a 148.7  abc 588.8  a 4.23ab  

 
V16 14.03  a 129.2  ab 686.6  a 4.51abc  

 
 LB5 15.73  a 124.3  a 783.4  a 4.39abc  

 
V9 17.12  a 145.7  abc 731.6  a 4.59abc  

 
StB5 17.55  a 145.3  abc 726.5  a 4.44abc  

        

  

33 Control 17.01 a 159.9 c 730..4  a 4.99bc  

 
L1 18.26  a 159.3  c 769.0  a 4.48abc  

 
V16 19.49  a 155.3  bc 721.2  a 4.21ab  

 
LB5 17.48  a 152.8  bc 681.8  a 3.74a  

 
V9 15.91  a 160.8  c 666.6  a 4.21ab  

 
StB5 17.23  a 160.9  c 720.0  a 4.34ab  

 
NPk 18.56 

 
159.4 

 
719.1 

 

  

N-fertilizer F=3.01 P=0.10 F=14.34 P=0.001 F=0.03 P=0.873 F=0 P=0.995 

isolates 
 

F=0.13 P=0.97 F=1.65 P=0.205 F=77 P=0.56 F=0.28 P=0.917 

N x isoaltes F=1.25 P=0.326 F=0.46 P=0.764 F=0.26 P=0.89 F=2.59 P=0.055 

CV% 18 
 

9.4 
 

20.9 
 

13.3  

- Means with the same letter in the same column are not significantly different at P ≤ 0.05 

- Control = untreated and unfertilized DAP = Days After Planting 
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4.3.5 Effects of Nitrogen Fixing Bacterial Isolates on the Dry Weight of Maize in the 

(2011-2012) Season 

Results showed that there were numerical increases in dry weight because of the inoculation of 

the N2-fixing bacterial isolates, with or without added N-fertilizer (Table 4.6). Increases in plant 

biomass at 30, 60 and 90 DAP were 20.3%, 72.2% and 46.2% with Isolate StB5; 13.3%, 81.9% 

and 41.1% with Isolate L1; 3.5%,73.6%, 37.1% with Isolate LB5, 10.5%,71.5%, 49.3% with 

Isolate V9; 11.2%, 93% and 27.9 with Isolate V16 under field conditions. Increases in plant 

biomass (dry weight) were observed due to bacterial inoculation and 33% N-fertilizer 

application. Increased in dry weight at 30, 60 and 90 DAP were 32.2%, 115.9% and 65.3% with 

Isolate StB5 + 33%N, 18.2%,106.9% and 82.4%; with Isolate L1+33N%, 16.8%, 101.2% and 

35.3%; 39.9%, 124.2% and 49.1% with V9, and 32.9%, 116.6% and 59.3% with V16. Seed 

treatment with V16 and StB5 numerically increased the grain yield of field-grown maize by 

46.1% and 41%.  
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Table 4.6 Maize growth parameters in the (2011/2012) Season 

Treatments 

Isolates 

Dry weight (g plant
-1

) in Season 2011-2012 

Yield (kg plot-1) N-fertilizer 30DAP   60DAP   90DAP   

0 Control  14.3  a 56.5  a 363.3  a 2.95 a 

 

LB5  14.8  a 98.1  b 498  abc 3.02 ab 

 

V9  15.8  a 96.9  b 542.3  abc 3 ab 

 

V16  15.9  a 109.3  bcd 464.7  ab 3.02 ab 

 

L1  16.2  a 102.8  bc 512.7  abc 2.96 a 

 

StB5  17.2  ab 97.3  b 531  abc 3.3 abc 

33 Control 26.3  bc 117.0  bcd 565  bc 4.06 bc 

 

LB5  16.7  ab 113.7  bcd 491.7  abc 3.94 abc 

 

V9  20.0  ab 126.7  d 541.7  abc 3.55 abc 

 

V16  19.0  ab 122.4  cd 578.7  bc 4.31 c 

 

L1  16.9  ab 116.9  bcd 662.7  cd 3.96 abc 

 

SB5  18.9  ab 122.0  cd 600.7  bcd 4.16 c 

100% NPK 34.4   131   771.3   5.27 

 N-fertilizer X Isolates   P<0.001   P<0.001   P<0.001   P<0.001 

 CV 

 

21.4 

 

6.3 

 

10.5 

 

0.9168 

 - Means with the same letter in the same column are not significantly different at P ≤ 0.05 
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4.3.6 Effects of Selected N-Fixing Bacterial Isolates in the (2010-2011) Season on Maize 

Growth 

In the 2010-2011 season inoculation of bacterial isolates with or without 33%N fertilizer caused 

no significant effect on maize height at 30, 60 or 90 DAP (Table 4.7). 

 

Table 4.7 Effect of selected N-fixing bacterial isolates on the maize height in the 2010-2011 

seasons 

Treatments Height (cm)  maize plant
-1

 in 2010-2011 season 

 N%-fertilizer Isolates 30DAP 60DAP 90DAP 

0 Control 44.91 a 70.59 a 176.5  ab 

 

L1 46.37 a 68.18 a 173.3  ab 

 

V16 46.82 a 62.85 a 154.2  a 

 

LB5 48.94 a 69.19 a 159.5  a 

 

V9 49.81 

 

66.06 a 171.3  ab 

 

StB5 59.3   67.15 a 179.2  ab 

33 Control 56.36   68.89 a 176.8  ab 

 

L1 46.26   69.89 a 165.3  ab 

 

V16 47.82   67.25 a 186.7  b 

 

LB5 46.21 a 63.38 a 168  ab 

 

V9+ 44.69   68.27 a 178.2  ab 

 

StB5 47.41   69.63 a 186  b 

 

NPK 57.52 a 72.85 a 176.7  ab 

N-fertilizer P=0.198 

 

P=0.677 

 

P=0.05 

 Isolates 

 

P=0.538 

 

P=0.827 

 

P=0.139 

 N-fertilizer x isolates P=0.629 

 

P=0.694 

 

P=0.116 

 

 

CV% 17.1 

 

8.7 

 

7.4 

 - Means with the same letter in the same column are not significantly different at P ≤ 0.05 

-  

4.3.7 Effects of Selected N-Fixing Bacterial Isolates in the 2011-2012 Season on growth of 

Maize  

Maize height was significantly (P < 0.001) higher when seeds were treated with N-fixing 

bacteria (isolates StB5, L1, V9 and V16) after 30, 60 or 90 DAP (Table 4.8). At 30 DAP, maize 

plants from seeds treated with bacterial isolates and added N-fertilizer (33% N) had similar 

height as the control (un-treated and fertilized with 33%N). Plant heights at 30 or 60 DAP 

inoculated with Isolate LB5 showed no significant increases (P < 0.05) compared to untreated 
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and 0%N. At 90 DAP; plants height treated with Isolate V16 was scored equivalent plant dry 

weight to plants fertilized with 100% NPK. 

 

Table 4.8 Effect of bacterial isolates on the growth of maize in the season 2011-2012 

   Maize height (cm plant
-1

) in season 2011/2012 

N%-Fertilizer Isolates 30DAP 60DAP 90DAP 

0 Control  11.03  a 47.67  a 102.7  a 

 

LB5  17.53  ab 51.2  ab 150.7  b 

 

StB5  24.2  bc 63.27  cd 157.3  bc 

 

L1  24.47  bc 57.9  bc 158.7  bcd 

 

V16  27.0  c 66.67  cd 152.3  b 

 

V9  28.6  c 64.07  cd 159  bcd 

33 Control  41.37  de 82.43  f 172  cde 

 

LB5  36.57  d 71.5  de 162.7  bcd 

 

StB5  39.83  de 83.83  f 173.7  cde 

 

L1  36.27  d 78.8  ef 174  cde 

 

V16  40.17  de 81.5  f 181.7  ef 

 

V9  39.83  de 83.17  f 176.7  de 

100% NPK 45.33   87.33   195   

N%-Fertilizer X Isolates P P<0.001   P<0.001   P<0.001 

 

 

CV% 14.1 

 

7.2 

 

5.9 

 - Means with the same letter in the same column are not significantly different at P ≤ 0.05 

 

 

4.3.8 Effects of Selected N-Fixing Bacterial Isolates on Chlorophyll Content 

In the 2010-2011 season, inoculation of selected diazotrophic with or without N-fertilizer 

resulted in no significant increases on the chlorophyll content both at 30 or 60 DAP (Table 4.9). 

In the 2011-2012 growing season, inoculation of selected isolates (Isolate V16) combined with 

33% N-fertilizer caused relatively higher chlorophyll content at 60 DAP  compared to untreated 

and fertilized control (Table 4.10). At 30DAP, Plants treated with isolates (StB5, V16 and V9) 

shoed significantly (P<0.001) higher chlorophyll content. 
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Table 4.9 Effect of Bacterial isolates on the leaf chlorophyll content in year 2010/2011  

Treatments 

 

Chlorophyll (CCI) 2010/2011 

N fertilizer 

Bacterial 

isolates 30DAP 

 

60DAP 

 0 Control 39.95  a 69.63  a 

 

LB5 48.94  a 79.19  a 

 

L1 46.37  a 80.16  a 

 

 StB5 59.30  a 77.15  a 

 

V9 45.90  a 76.49  a 

 

V16 47.92  a 75.55  a 

33 Control 60.42  a 79.91  a 

 

LB5 46.21  a 73.38  a 

 

L1 48.98  a 78.41  a 

 

StB5 47.41  a 78.61  a 

 

V9 44.69  a 81.03  a 

 

V16 47.82  a 77.25  a 

100% NPK 57.52 

 

85.11 

 N-fertilizer 

 

P=0.652 F=0.21 F=1.02 P=0.324 

Treatments 

 

P=0.591 F=0.76 F=0.66 P=0.657 

N-fertilizer x Treatments 

 

P=0.042 F=0.79 F=1.69 P=0.179 

  

 

CV%=16.1    CV%=6.7   

- Means with the same letter in the same column are not significantly different at P ≤ 0.05 
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Table 4.10 Effect of Bacterial isolates on the leaf chlorophyll content in year 2011/2012 

Treatments Chlorophyll level (CCI) 2011/2012 season 

N%-Fertilizer Isolates 30DAP       60DAP 

0 Control 21.22 a 18.17  a 

 

LB5 30.68 ab 42.93  abc 

 

L1 31.28 ab 37.87  abc 

 

StB5 34.95 b 30.93  ab 

 

V9 37.70 b 36.77  abc 

 

V16 39.63 b 41.60  abc 

33 Control 39.65 b 45.28  abc 

 

LB5 35.45 b 54.13  bc 

 

L1 38.05 b 60.74  c 

 

StB5 37.32 b 53.60  bc 

 

V9 35.77 b 56.90  bc 

 

V16 40.63 b 59.92  c 

100 NPK 38.60 

  

57.98 

N-fertilizer 

 

P<.001 F=22.63 

  

P<0.001 F=46.57 

Treatments 

 

P=0.001 F=6.07 

  

P=0.013 F=3.75 

N-fertilizer x Treatments 

 

P<0.001 F=7 

  

P=0.54 F=0.742 

 

 CV%=9.4 

  

CV%=20 
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4.4 Discussion 

Maize seeds treated with diazotrophic bacterial isolates including: Bacillus megaterium (V16), 

Burkholderia ambiferia (V9), Enterobacter cloacae (L1), Pantoea ananatis (LB5), 

Pseudomonas sp. (StB5, A2, A6 and A61)and formulated products of Trichoderma harzianum 

(Eco-T
®
) significantly increased levels of germination and vigor index. Shoot length was 

promoted by Isolates StB5, V16 and by Eco-T
®
. Root length was enhanced by Isolate StB5, V16, 

L1, V9 and by Eco-T
®
. Increases in germination, root and shoot length and seed vigor index, in 

response to these isolates may be associated with their ability to fix nitrogen and to produce 

growth promoting substances. These results are consistent with the findings of Lugtenberg and 

Kamilova (2009) who reported stimulation of the growth of tomato (Lycopersicon esculent L.), 

pepper (Capsicum Annum L.) and mung bean (Vigna radiata L.)  plants when inoculated with 

Enterobacter cloacae CAL3. Similarly, Zakria et al. (2008) had reported that nitrogen fixing 

Enterobacter spp. Strain 35 stimulated the growth of Brassica oleracea. Lifshitz et al. (1987) 

also found that inoculation of canola (Brassica campestris L.) seed with a strain of Pseudomonas 

putida (Trevisan) Migula increased root length significantly. In another study by Hameeda et al. 

(2008) maize seeds inoculated with a strain of Pseudomonas spp. increased germination by 20–

40%.  

Experiments were carried out under greenhouse conditions using eight selected diazotrophic 

bacteria to determine their ability to fix nitrogen and enhance plant growth, with 33%N-fertilizer. 

Inoculation of the isolates without N-fertilizer showed no significant increase of chlorophyll 

content compared to un-treated control. However, maize dry weight was numerically increased. 

These increases of dry weight may be due to other plant growth promotion characters of the 

selected diazotrophic bacteria. This result indicated that growth and metabolic activity of soil 

microorganisms were limited by the availability of nutrients. Consequently, application of 

reduced N-fertilizer is needed if these diazotrophs are to be used effectively especially by 

commercial farmers. 

Further experiments were carried out in the field for two seasons (2010/2011 and 2011/2012). 

Selected diazotrophic bacterial inoculation and 33% N-fertilizer application affected positively 

http://www.google.co.za/search?q=Burkholderia+ambiferia&hl=en-ZA&gbv=2&safe=active&sa=X&nfpr=1&spell=
http://www.google.co.za/search?q=Enterobacter+clocea&hl=en-ZA&gbv=2&safe=active&sa=X&nfpr=1&spell=
https://www.google.co.za/url?q=http://www.oardc.ohio-state.edu/seedid/single.asp%3FstrId%3D159&sa=U&ei=AwUkU_GbNI2QhQfN7YHwBQ&ved=0CDEQFjAD&usg=AFQjCNHk7pMx38UENwQHz4_venHbxlKcYA
http://www.google.co.za/search?q=Enterobacter+clocea&hl=en-ZA&gbv=2&safe=active&sa=X&nfpr=1&spell=
http://www.google.co.za/search?q=Brassica+campistris&hl=en-ZA&gbv=2&safe=active&sa=X&nfpr=1&spell=
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the growth parameters investigated; especially In 2011/2012 season demonstrated the importance 

of evaluating potential growth promoting bacteria under a variety of experimental condition and 

plant growth stages. In the 2010/2011 season, growth parameters were generally showed 

relatively higher levels of germination as a result of these diazotrophic bacterial strains, with or 

without added N-fertilizer. However, germination was not significantly higher than the 

Unfertilized and Un-inoculated Control. The most important result was that there were no 

significant differences between plants fertilized with 100% NPK fertilizer and plants treated with 

selected diazotrophic bacteria with or without 33% N-fertilizer in plant height, dry weight and 

leaf chlorophyll level at 30, 60 or 90 DAP. However, yield increases were significantly higher in 

plants fertilized with 100%NPK compared to plants treated with selected diazotrophic bacteria 

with or without 33%N-fertilizer.  

In the 2011/2012 season, plant height at 30, 60 or 90DAP and leaf chlorophyll content at 30 and 

60 DAP showed relative increases as a result of the inoculation with selected diazotrophic 

bacterial isolates. Except at early stage (30 DAP), dry weight response to all inoculants at 60 

clearly showed the beneficial role of these diazotrophic bacteria. Although the result showed no 

significant increases as result of inoculation of the selected diazotrophic bacteria, the growth 

parameters results were numerically higher. Similar results were reported by Ridge and Rovira 

(1968) in (Kloepper et al., 1989), that wheat yield increased up to 43% with Bacillus 

inoculations. The enhancing effect of seed inoculation with diazotrophic bacteria on shoot dry 

weight and yield of maize has been reported by many researchers (Garcia de Salamone et al., 

1996; Dobbelaere et al., 2002; Kennedy et al., 2004a; Wu et al., 2005; Liu et al., 2006; Perin et 

al., 2006; Shaharoona et al., 2006; Gutierrez-Miceli et al., 2008; Oliveira et al., 2009). Such an 

improvement may be attributed to nitrogen-fixing and phosphate solubilizing capacity of 

bacteria, as well as the ability of these microorganisms to produce growth promoting substances 

(Kloepper et al., 1991   odr  gue  and Fraga, 1999  Kloepper et al., 2004). 

In conclusion, Isolates V16 (Bacillus megaterium), StB5 (Pseudomonas nitroreducens), V9 

(Burkholderia ambifaria), L1 (Enterobacter cloacae) and LB5 (Pantoea ananatis) may have 

plant growth promoting action, together with the ability to fix nitrogen.  
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CHAPTER FIVE 

MAIZE RESPONSE TO INOCULATION OF DIAZOTROPHS AT VARIOUS LEVELS 

OF NITROGEN FERTILIZATION: GREENHOUSE STUDY 

 

M.H. Kifle and M.D. Laing 

Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Sciences 

University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, 

South Africa 

Abstract 

Maize response to inoculation with three diazotrophic isolates V16 (Bacillus megaterium), L1 

(Enterobacter spp.) and V9 (Burkholderia spp.) was studied when combined with five levels of 

N fertilization (0%, 25%, 50%, 75 and 100%) under greenhouse condition. Seed inoculation with 

Isolate V16, L1 and V9 significantly affected dry weight, chlorophyll content and plant height. 

Inoculation with Isolate L1 (Enterobacter spp.) increased dry weight, plant height and 

chlorophyll content by 12.8%, 34.4% and 32.1%, respectively, compared to the untreated and 

unfertilized control. Isolate L1 at 25% of the recommended N level increased dry weight, plant 

height and chlorophyll content by 11.87, 2.01 and 43.42% compared to the Uninoculated + 

25%N. Inoculation with Isolate V9 (Burkholderia spp.) increased dry weight by 17%, 

chlorophyll content by 16.5% and plant height by 53.68%, compared to untreated and 

unfertilized control. This diazotrophic strain plus 25% of the recommended rate of N increased 

dry weight by 11.3%, chlorophyll content by 20.88% and plant height by 18.63% than the 

control of untreated and fertilized with 25% of recommended N level. Isolate V16 increased dry 

weight, plant height and chlorophyll content by 30.87%, 71.05% and 35.27%, respectively, 

compared to the untreated and unfertilized control. At 25% of the recommended N level, Isolate 

V16 enhanced dry weight, plant height and chlorophyll content by 22.14, 42.63 and 33.13%, 

respectively, compared to the untreated and 25% of recommended N level.. Diazotrophic 

treatments in response to concurrent N applications can be able to be determined by chlorophyll 

content meter (CCM) reading. The result showed that when the levels of N-fertilizer increased, 

the chlorophyll content also increased. Correlation analysis indicated that 98% of the variation in 

N application levels was predicted by CCM readings. Extractable total chlorophyll, chlorophyll a 

and chlorophyll b were also linearly correlated with the chlorophyll content meter readings (y = 
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0.070x – 3.199, r
2
 = 0.80; y = 0.119x – 2.355, r

2
 = 0.81; y = 0.066x – 4.012, r

2
 = 0.79), 

respectively. 

 

Key words: Chlorophyll content index, diazotrophic bacterial isolates, maize growth and CCM-

200 

 

5.1 Introduction 

The rising concern regarding nitrogen fertilizer production has been highlighted on a global stage 

by increases in global oil prices. Replacement of chemical fertilizers with biofertilizers is an 

attractive goal for sustainable agriculture. Nitrogen is the macro-nutrient that most frequently 

limits the growth and productivity of non-leguminous plants (Schepers et al., 1992) and it is the 

most limiting factor in maize production (McCarty and Meisinger, 1997). A number of 

diazotrophic bacteria were previously found to interact with plants either in the rhizosphere or 

endophytic. Given the ability of diazotrophs to fix N, some strain may relieve N-deficiencies 

where there is inadequate application of N fertilizers. The genera Bacillus, Burkholderia and 

Enterobacter are known to penetrate the roots of cereals and grow intercellular as root 

endophytes as well as growing in the rhizosphere (Reinhold-Hurek and Hurek, 1998; Wakelin 

and Ryder, 2004).  

 

Numerous Bacillus strains express plant growth promoting (PGP) activities. Besides having PGP 

properties, some strains can also fix nitrogen. When strains of Bacillus sp. were inoculated onto 

Pinus contorta Dougl seedlings, they contributed 4% of seedling foliar nitrogen (Chanway and 

Holl, 1991). In another study, Bacillus M3 alone or in combination with Bacillus OSU-142 

increased yield, growth and nutrition of raspberry (Rubus idaeus L.) plants grown under organic 

growing conditions (Orhan et al., 2006). Burkholderia is a genus rich in plant-associated 

nitrogen-fixers (Caballero-Mellado et al., 2004). Many N2-fixing isolates Burkholderia have 

been recovered from the rhizosphere, or as endophytes, from sugarcane (Saccharum officinarum 

L.), maize (Zea mays L.) and teosinte (Zea diploperennis H.) plants in Brazil, Mexico and South 

Africa (Estrada et al., 2002; Reis et al., 2004).Some are novel Burkholderia species (Perin et al., 

2006). When rice was inoculated with B. vietnamiensis in field trials, it increased grain yields up 

to 0.8 t ha
-1 

and fixed 25-30kg N ha
-1

(Tran Van et al., 2000). B.vietnamiensis can fix 19% of the 

http://en.wikipedia.org/wiki/Zea_mays
http://en.wikipedia.org/wiki/Carl_Linnaeus
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rice plant N from the atmosphere (Baldani et al., 2000). Montañez et al. (2012) showed that 

maize (Zea mays L.) can also establish beneficial associations with various nitrogen fixing and 

plant growth promoting bacteria (PGPB). Raju et al. (1972) isolated nitrogen fixing Enterobacter 

cloacae from maize plants. Nelson and Craft (1991) showed that Enterobacter cloacae also 

controlled Sclerotinia homoeocarpa F.T.Benn. It has been used as biocontrol agent for the 

control of postharvest diseases of fruits and vegetables, and as a pre-plant seed treatment for 

suppression of damping-off (Hinton and Bacon, 1995). 

 

The use of diazotrophic bacteria as biofertilizers for agriculture has been the focus of numerous 

studies. Inoculation of sugarcane with diazotrophic endophytes resulted in increases in 

production of up to 35% (Boddey et al., 2003), and between 7.1% and 31.9% of dry mass 

increase (de Oliveira et al., 2006). However, there are significant challenges to predict the level 

of N supplied by these diazotrophic bacterial strains to plants. The standard methods for 

determining plant N status involve extractions and spectrophotometric determinations. Typically, 

a sample must be detached, ground up in a solvent and assayed in a spectrophotometer. 

However, these methods are destructive and time consuming (Smith et al., 1998). Bullock and 

Anderson (1998) showed that leaf N content is highly correlated with leaf chlorophyll (CHL) 

concentration. Cate and Perkins (2003) also showed chlorophyll concentrations correlate 

positively with leaf N. This relationship should make it possible to use leaf chlorophyll content 

to estimate crop N status (Daughtry et al., 2000). Development of portable chlorophyll meters 

(Opti-Sciences, Inc. Hudson, USA), that take instantaneous measurements of chlorophyll without 

leaf destruction, has emerged as tool to indirectly assess plant N status (Waskom et al., 1996). It 

is a hand held device, which relies on transmittance and absorbance of light to assess the leaf 

chlorophyll content of plants (Pal et al., 2012).  

 

The objectives of this study were to evaluate the potential of different diazotrophic inoculants for 

maize growth at different rates of N fertilization. 
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5.1.1 Methods and MaterialSource of inoculum and preparation 

Bacterial isolates were isolated from the soil rhizosphere, root or leaves of different plants using 

standard isolation procedures and selected through an in vitro studies and greenhouse study 

(Chapter 2) and were also assessed for their effects on germination of wheat in vitro (Chapter 3) 

and maize growth in field (chapter 4).  

 

5.1.2 Source of Seeds 

Seeds of white mai e of the cultivar, Mac’s Medium Pearl, (an open pollinated variety) were 

bought from McDonalds Seeds
®18

. 

 

5.1.3 Seed Inoculation 

Maize seeds were inoculated prior to planting by coating seeds with a bacterial suspension in 

gum arabic. The seed was treated with different diazotrophic bacterial isolates suspension 

amended with 2% gum Arabic. Cell numbers were adjusted to 10
8 

cfu ml
-1

 using distilled water. 

Cell number per seed was verified after inoculation by suspending seeds in water and plating 

various dilutions on nutrient agar plates. Seeds were planted within 24-48 h after inoculation. 

 

5.1.4 Fertilizer 

Limestone Ammonium Nitrate (LAN)
19

 was used for N- fertilizer source with levels of, 100%N 

(400kg ha
-1

), 75%N (300kg ha
-1

), 50%N (200kg ha
-1

), 25%N (100kgha
-1

) and 0%N (0kgha
-1

). 

Super phosphate
20

 and Potash
21

 were used as sources of P and K, respectively. Full amount of P 

and K were used as recommended by local Fertilizer Advisory Center, Cedara, Pietermaritzburg, 

South Africa. 

 

 

                                                           
18McDonalds Seed Company (Pty) Ltd., Pietermaritzburg, South Africa 
19 Sasol Nitro a division of Sasol chemical industries Ltd. P.O.Box 5486, Johannesburg 2000, Republic of South Africa  
20Omnia Fertilizer Group (Pty) Ltd. P.O.Box 69888, Bryanston,2021, South Africa 
21

Omnia Fertilizer Group (Pty) Ltd. P.O.Box 69888, Bryanston,2021, South Africa 
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5.1.5 Chlorophyll Content Meter (CCM) Readings 

We used a hand-held CCM-200 chlorophyll content meter (Opti-Sciences, Inc. Hudson, USA)
22

. 

The CCM-200 Plus, has a 0.71-cm
2
 measurement area, and calculates a chlorophyll content 

index (CCI) based on absorbance measurements at 660 and 940 nm. The claimed accuracy of the 

CCM-200 is ±1.0 CCI units. For scientists and farmers with limited direct access to laboratory 

analysis for N, the meter provides a cheap and convenient estimate of chlorophyll content per 

unit leaf area during vegetative growth. The CCI was sampled on five leaves from each branch 

segment with the CCM sensing head held as close as possible to the junction of the central vein 

and the next adjacent major vein without including major vein tissue under the sensor. Five non-

overlapping measurements were taken on each leaf from homogeneous, healthy leaf tissue, and a 

mean value calculated from the measurements for each maize plant. 

 

5.1.6 Chlorophyll Extraction 

After the CCI had been sampled, five 6.4-mm diameter disks were punched from each leaf in the 

approximate locations of the CCI measurements. The disks were extracted in 80% (v/v) acetone 

at 4 °C in the dark. Transmittance of the extract was measured with a Spectronic-Unicam 

Genesis/8 spectrophotometer. 1.5 ml of each extract was then transferred to disposable 

polystyrene cuvettes. The spectrophotometer (range 200–1100 nm, spectral band width 5 nm, 

wave length accuracy ±1 nm, and wavelength setting repeatability of ±0.3 nm; model U-1100, 

Hitachi Ltd, Tokyo, Japan), was calibrated to zero absorbance using a blank of 80%(v/v) 

acetone. Absorbance of both blank and sample were measured at 645 and 663 nm. Total 

chlorophyll was calculated according to Wellburn (1994). The equation of Arnon (1949) 

modified by Porra (2002) was used to calculate the chlorophyll concentration: CHLa (µg g
-1

 of 

fresh weight) = 12.25A663.2 – 2.79A646.8; CHLb (µg g
-1

 of fresh weight) = 21.5A646 – 

5.1A663; CHL a+b (µg g
-1

 of fresh weight)=(1000A470 –1.82Ca – 85.02Cb)/198. 

 

 

 

                                                           
22 Optic-Sciences (Pty) Ltd, 8 Winn Avenue. Hudson, NH 03051, USA 
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5.1.7 Statistical Analysis 

Experiments were repeated twice and results were pooled and averaged. Data was analyzed using 

GenStat
®
 14

th
 Executable release Statistical Analysis Software. A 4x5 factoral ANOVA was 

used to analized the data. Differences between treatments were distinguished using Duncan’s 

Multiple Range test (DMRT) at 5% significance level 

 

5.2 Results 

5.2.1 Chlorophyll Readings of Maize Plants at Six Leave Stage 

Mean chlorophyll meter reading for each treatment was expressed as a chlorophyll content index 

(CCI) of the mean reading for the different levels of N-fertilized treatment. N fertilizer increment 

was compared to the chlorophyll meter reading at the six leaf stage of the maize plants. When 

levels of N-fertilizer increased, the chlorophyll content also increased (Figure 5.1). Levels of N-

fertilizer application were correlated 96%, 97% and 99% maize response in CCI, dry weight and 

height, respectively. 

 

 

Figure 5.1 Relationship between N fertilizer levels and CCI, dry weight and height of maize 

inoculated with three different diazotrophs 
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5.2.2 Extractable chlorophyll (a) values versus chlorophyll content meter (CCM) readings 

Extractable chlorophyll (a) values from maize leaves at the 6 leaf stage ranged from 27.61 to 

122.35 (µg g
-1

 of fresh weight). The relationship between extractable chlorophyll (a) and CCI 

was significantly linear, with an r
2
 indicating that 81% (P < 0.001) of the variation was explained 

by a linear model (Figure 5.2). The relationship of CCI and chlorophyll (a) demonstrated the 

accuracy of chlorophyll meter readings. 

 

 

Figure 5.2 Relationship between chlorophyll a in the leaves of maize plants, and chlorophyll 

meter readings (CCI) 

 

5.2.3 Extractable Chlorophyll (b) Values Verses Chlorophyll Content Meter (CCM) 

Readings 

Extractable chlorophyll (b) values from maize leaves at the 6 leaf stage ranged from 33.74 to 

199.43 (µg g
-1

 of fresh weight). The relationship between extractable chlorophyll (b) and CCI 

was significantly linear, with an r
2
 indicating that 79% (P < 0.001) of the variation was explained 

by a linear model (Figure 5.3).  
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y = 0.0703x + 3.1999 

R² = 0.8069 
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Figure 5.3 Relationship between chlorophyll (b) in the leaves of maize plants, and 

Chlorophyll meter readings (CCI) inoculated with different diazotrophic bacteria 

5.2.4 Extractable Total Chlorophyll (a + b) Verses Chlorophyll Content Meter (CCM) 

Extractable chlorophyll (a+b) values from maize leaves at the 6 leaf stage ranged from 39.03 to 

198(µg g
-1

 of fresh weight). The relationship between extractable total chlorophyll (a + b) and 

CCI was significantly linear, with an r
2
 indicating that 80% (P < 0.001) of the variation was 

explained by a linear model (Figure 5.4).  

 

 

 

 

 

 

 

 

Figure 5.4 Relationship between chlorophyll (a+b) in the leaves of maize plants, and Chlorophyll meter 

readings (CCI) inoculated with different diazotrophic bacteria 
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5.2.5 Relationship between N-Fertilizer Application and Different Diazotrophs Inoculants 

on the Growth of Maize Plants 

Three bacterial strains × five N-fertilizer level combinations were tested. Three of the 

diazotrophs showed no siginificant increases of dry weight, height and chlorophyll content when 

0% N source was provided (Table 5) compared to the untreated and unfertilized control. Mean 

chlorophyll meter readings varied on plant dry weight treated with different diazotrophs and N-

fertilizer levels. Plants inoculated with these diazotrophs plus 25%N- fertilizer showed  no 

significant increases in dry weight, CCI compared to the untreated control + 25% N (Table 5.1). 

Significant increases in plant height were observed when isolates L1 and V16 combined with 

25%N fertilizer. Plants treated with diazotrophic bacteria plus N-fertilizer recoreded numerical 

higher plant heights and dry weight than solo applications of N-fertilizer levels (Table 5.5). 

Inoculation of maize seeds with Enterobacter sp., and Bacillus megaterium alone significantly 

increased dry weight (P = 0.005) and plant height (P = 0.003) (Table 5.1). Applications of N-

fertilizer levels also significantly increased dry weight (P < 0.001) and plant height (P < 0.001). 

However, there was no interaction (P = 0.687 and P=0.0653) between applications of different 

N-fertilizer levels in combination with any of the diazotrophic inoculants. Inoculation of 

diazotrophic bacteria alone did not affect (P = 0.159) the chlorophyll content index (CCI).  
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Table 5.1 Effects of diazotrophs in combination with different levels of N–fertilizer on maize 

growth 

 

Treatments 

  

Growth parameters 

N-Fertilizer Isolates     Dry weight (g) Chlorophyll (CCI) Plant height (cm) 

0 Control 22.61  a 22.57  a 30.50  a 

 

L1 25.51  ab 30.33  ab 40.30  b 

 

V9 26.59  ab 26.30  a 46.93  bc 

 

V16 29.59  abc 30.53  ab 52.17  cd 

25 Control 32.43  bcd 28.97  ab 48.20  bc 

 

L1 36.28  cde 41.55  abcd 58.81  def 

 

V9 36.10  cde 35.02  abc 57.18  cde 

 

V16 39.61  def 41.32  abcd 64.17  ef 

50 Control 43.49  efg 43.02  abcde 64.99  ef 

 

L1 46.02  fg 48.48  bcde 67.39  efg 

 

V9 44.63  fg 40.03  abcd 66.89  efg 

 

V16 50.45  g 50.10  bcde 68.42  fg 

75 Control 61.27  h 52.50  cdef 76.26  gh 

 

L1 65.94  h 63.67  efg 77.00  gh 

 

V9 64.18  h 53.70  cdefg 77.40  gh 

 

V16 65.02  h 71.94  fg 77.00  gh 

100 Control 84.17  ij 74.47  g 92.40  i 

 

L1 88.3  j 56.07  cdefg 84.40  hi 

 

V9 78.03  i 54.8  cdefg 92.73  i 

 

V16 87.86  j 59.63  defg 91.47  i 

N-fertilized F=327.51 P=<0.001 F=21.75 P<0.001 F=117.36 P=<0.001 

Isolates 

 

F=4.96 P=0.005 F=1.82 P=0.159 F5.41 p=0.003 

N-fertilizer X Isolates f=0.76 p=0.0687 F=0.79 P=0.653 F=1.92 P=0.063 

  

CV%=8.7 

 

CV%=24 

 

CV%=8.8 

 Treatment means followed by the same letter are not significant at P > 0.05 probability level 
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5.3 Discussion 

Maize is one of the most widely cultivated cereals in the world, and its production is highly 

dependent on chemically produced nitrogen fertilizers. In this study on the inoculation of three 

diazotrophs (Enterobacter sp., Bacillus megaterium and Burkholderia sp.) alone or combined 

with N-fertilizer at all levels confirmed that diazotrophs can make contribution to maize growth 

and that there are differences in their capacity to support N2 fixation. There were increases in 

plant height as a function of the N-fertilization level. The integration of biological nitrogen 

fixation (BNF) into crop production strategies may improve the sustainability of agricultural 

systems. In addition to their ability to fix nitrogen, these diazotrophs may stimulate plant growth 

indirectly through a combination of mechanisms, such as the synthesis of phytohormones and 

vitamins, the inhibition of plant ethylene synthesis, the stimulation of nutrient uptake 

(solubilization of inorganic phosphate, as well as mineralization of organic phosphate), and 

improvement of stress resistance and control of pathogenic microorganisms (Berge et al., 1990; 

Triplett, 1996). The screening of diazotrophs which have the ability to fix nitrogen and promote 

plant growth directly or indirectly is a key factor for the eventual reduced application of N-

fertilizer to several important crops such as wheat, maize and other plants. Inoculation of maize 

with Burkholderia sp. (V9), Enterobacter sp. (L1) and Bacillus megaterium (V16) caused 

numeical increases in dry weight, cholorphyll content and plant height, but not statistically 

significant. The growth of Sorghum bicolor was positively influenced by the inoculation of 

Enterobacter sp. strain BB23 (Chiarini et al., 1998). Similarly, Bacillus M3 alone or in 

combination with Bacillus OSU-142 increased yield, growth and nutrition of raspberry plant 

under organic growing conditions (Orhan et al., 2006). The effect of the inoculation of 

diazotrophs on cereal productivity may also depend on plant genotype, bacterial strain, and soil 

type (Baldani et al., 1987) as well as environmental conditions (Bhattarai and Hess, 1993). In 

this experiment, we have demonstrated that inoculation of diazotrophic isolates had significant 

(P<0.001) effects on plant highet at 25%N fertilizer. This suggests that the use of diazotrophs as 

plant growth promoting bacteria will be most valuable for maize production in low N-input 

agriculture. 

Our result showed a strong linear correlation between extractable total chlorophyll content and 

CCI values. A similar result was reported by Cate and Perkins (2003) in different plant species. 

van den Berg and Perkins (2004) reported that 64% of the variation in N was predicted by CCI in 
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leaves of sugar maple. Study by Pal et al.(2012) found more than 80% of the variation in N was 

predicted by the CCM-200 reading. This indicates that the CCM is an effective tool for the rapid 

and non-destructive estimation of chlorophyll content in maize leaves. Once general 

relationships are established for a particular crop species, it should be possible to use the CCM as 

a tool for a variety of management and research applications.  
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CHAPTER SIX 

EVALUATION OF THE EFFECT OF DIAZOTROPHS ON WHEAT GROWTH UNDER 

GREENHOUSE AND FIELD CONDITIONS 

 

M.H. Kifle and M.D. Laing 

Discipline of Plant Pathology, School of Agricultural, Earth and Environmental  Sciences 

University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, 

South Africa 

Abstract 

The effect of diazotrophic bacteria on seed germination, seedling growth and yield of greenhouse 

and field grown winter wheat were evaluated in greenhouse trials, and field trials in 2011 and 

2012. In these experiments five diazotrophic bacterial strains were used. These bacteria had been 

isolated previously: V16 (Bacillus megaterium), V9 (Burkholderia ambiferia), Stb5 

(Pseudomonas sp.), L1 (Enterobacter cloacae) and LB5 (Pantoea ananatis). In laboratory 

studies, seed inoculation significantly enhanced seed germination and seedling vigour index. 

Their effect on the growth of winter wheat was measured in greenhouse trials where each 

bacterium isolate was combined with different levels of chemical fertilizers. Diazotrophic 

bacterial inoculation with a combination of different levels of NPK fertilizer significantly (P < 

0.001) increased dry weight by 3.3% to 104%. Maximum dry weight of biomass (104%) was 

obtained when fertilizer was applied at 65% NPK (of optimum fertilization level) together with 

Isolate L1. In a field trial in 2011 plant dry weight, number of spikes, straw dry weight and yield 

were numerically (P > 0.05) higher than the untreated and unfertilized control. In the 2012 field 

trial plant dry weight and yield were significantly increased by the application of bacterial 

inoculations, especially with 33% N-fertilizer. Inoculation of wheat seeds with diazotrophic 

bacterial strains significantly increased dry weight at 30days after germination. However, by the 

end of both seasons, the combination of N-fertilizer application and diazotrophic bacterial 

inoculation did not have a significant effect (P = 0.8) on dry weight and yield of winter wheat. 

Key words: diazotophic bacteria, seedling growth, chlorophyll content, germination, wheat  
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6.1 Introduction 

Joshi and Bhatt (2011) recorded that wheat is a major staple food crop that sustains 35% of the 

world’s population. South Africa is suitable for the cultivation of a large variety of crops, 

including wheat. Nitrogenous chemical fertilizers are essential in modern agriculture to enhance 

food production. However, a substantial proportion of these fertilizers are lost through gaseous 

emissions, denitrification and leaching of nitrates into ground water (Sekhon, 1995), which 

impacts negatively on the environment (Hagin and Lowengart, 1995; Rejesus and Hornbaker, 

1999).  

 

Bacteria in the rhizosphere of plants that exert beneficial effects to the plants are called plant 

growth promoting rhizobacteria (PGPR) (Kloepper et al., 1989). Plant growth promoting 

rhizobacteria promote growth directly by providing nutrients or enhancing nutrient uptake, and 

indirectly by suppressing plant pathogens (Vessey, 2003; Ahmad et al., 2008). Use of microbial 

inoculants to enhance growth and increase yields of crops has attracted the interest of many 

researchers (Kloepper et al., 1991; De Freitas et al., 1997; Okon and Vanderleyden, 1997; 

Kennedy et al., 2004; Nain et al., 2010; Yasin et al., 2012). Several free-living bacteria genera 

have been reported to enhance growth and increase yields of crops of agronomic importance. A 

significant increase in growth rates have been reported in sugarcane due to application of 

Acetobacter diazotrophicus Beijerinck (Boddey et al., 1991). In another study, Boddey et al. 

(1995) showed that certain Brazilian cultivars of sugarcane obtained over 150 kg of N ha
-1

 year
-1

 

from biological nitrogen fixation (BNF). Similarly, when wheat and barley were treated with 

Azospirillum and Pseudomonas strains, increases in dry weight of plant between 16.8 and 78% 

were achieved with wheat, and between 54.5% and 68% with barley (Hegazi et al., 1998). 

Application of Azospirillum strains can increase wheat yields under greenhouse and field 

conditions (Hegazi et al., 1998; Dobbelaere et al., 2002; Saubidet et al., 2002; Khalid et al., 

2004b). When rice was inoculated with A. lipoferum (Beijerinck) Comb, increases in plant 

height, tiller number and yields of rice were observed (Elbeltagy et al., 2001; Balandreau, 2002). 

Kennedy and Islam (2001) in a review of BNF noted that application of Azotobacter sp. may 

contribute up to 50% of wheat N nutrient requirements under greenhouse conditions, and can 

increase rice yields by more than 20% in the field. In another study, Tran Van et al. (2000) 

reported that application of Burkholderia vietnamiensis Gillis et al. increased rice yields by 13%-
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22%. Choudhury and Kennedy (2004) found that another species of this genus increased rice 

biomass by 69% per plant; and documented increases in root and shoot length, grain weight and 

grain yield as a result of inoculation of Herbaspirillum seropedicae Baldani yield increases in the 

greenhouse were reported when this strain was applied to maize (Zea mays L.), sorghum 

(Sorghum bicolor ssp. Bicolor), sugarcane (Saccharum officinarum L.) and wheat (Triticum 

aestivum L.) (James, 2000). 

However, the quantities of N fixed by BNF in cereal crops is relatively limited when compared 

to the application of fertilizer sources of N. Yet, resource-poor small-scale farmers cannot afford 

the cost of fertilizers, and they are the single biggest input cost for many commercial farmers. 

Use of nitrogen fixing (diazotrophic) bacteria has therefore been proposed as an alternative to 

nitrogenous fertilizers used in small scale farmers. Integration of chemical fertilizers together 

with biofertilizers, mainly with BNF, may attain sustainability, secure economic return and build 

up soil fertility (Hegazi et al., 1998). Fuentes-Ramirez et al. (1993) have shown that a large 

numbers of A. diazotrophicus strains can be isolated from sugarcane grown under low doses of 

nitrogen fertilizer as compared to those grown with high doses. Likewise, Pedraza et al. (2009) 

reported that diazotrophic bacteria in combination with nitrogen fertilizers reduced the amount of 

nitrogen fertilizer that needs to be applied to plants. Dobbelaere et al. (2001) and Jilani et al. 

(2007) also found that the best results were obtained from diazotrophic inoculations combined 

with moderate nitrogen fertilizer applications. For positive responses to diazotrophic bacterial 

inoculations on crop productivity, plant genotype (Moutia et al., 2010), bacterial strains and soil 

type (Jagnow, 1987; Baldani et al., 2002b) and environmental conditions (K   lkaya, 2008) all 

play important roles. The purpose of the current study was to evaluate previously screened, free-

living diazotrophic bacterial strains that are capable of enhancing maize growth and increase 

yields, with or without starter N-fertilizer, as an option to enhance crop yields in low-input 

production of wheat.  

 

 

 

http://en.wikipedia.org/wiki/Zea_mays
http://en.wikipedia.org/wiki/Carl_Linnaeus
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6.2 Methods and Materials 

6.2.1 Source of Inoculum 

Diazotrophs were isolated from the rhizosphere of different plants using standard isolation 

procedures and selected through in vitro studies such as the acetylene reduction assay and 

ammonia production (Chapter 2). Isoaltes were selected based on the higher ARA result and 

growth promotion effect in greenhouses. Selected diazotrophic isolates were identified as 

Bacillus megaterium (V16)), Pseudomonas spp.,(StB5), Burkholderia ambifaria (V9), Pantoea 

ananatis (LB5) and Enterobacter cloacae (L1) using both 16r DNA sequencing, and Bruker 

Daltonik MALDI Biotyper classification (Bruker Daltonics Inc., Billerica, MA). 

 

6.2.2 Source of Seeds 

The wheat seed Triticum aestivum L. (PAN 3494) was supplied by Pannar Seed company (Pty) 

Ltd
23

. 

 

6.2.3 Inoculum Preparation 

Bacteria cultures were inoculated into tryptic soy broth (TSB) and incubated for 48 hours at 28ºC 

in an orbital shaker incubator
24

 at 150 (rpm). Cells were harvested by centrifuging at 10,000 rpm 

for 15 minutes at 4ºC (Beckman Coulter Avanti J-26 XPI High Speed Centrifuge)
25

. Cell 

numbers were then adjusted to 10
8
 cfu ml

-1
with sterile distilled water, and their viability was 

confirmed using a plate count method. 

 

6.2.4 Seed Germination Bioassay 

Twenty five wheat seeds were surface sterilized with 1% sodium hypochlorite for 5 minutes and 

washed 5 times with sterilized distilled-water and soaked into the bacterial inocula (10
8
 colony 

forming units (CFU)) and adhesive (2% gum Arabic) suspension, then seeds were coated with 

2 g of 2 × 10
9
 conidia g 

-1
 of Trichoderma harzianum (Eco-T

®
) and allowed to air-dry overnight. 

Cell count was 10
6
 CFU per seed. Seeds were treated with 2 g of 2×10

9
 conidia g 

-1
 of Eco-T

®
. 

                                                           
23

 Pannar Seeds (Pty)Ltd. P.O.Box 19, Greytown 3250,South Africa 
24

Shalom Laboratory Supplies c.c. 132 Commercial Road, International Plaza, Durban 4001, P. O. Box 57030, Musgrave Road 

Durban 4062 
25 Beckman Coulter Inc. 4300 N Harbour Boulevard, Box 3100, Fullerton, California, 92834-300., USA.  
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Treatment of seed with sterile distilled-water amended with gum Arabic served as the Control. 

These seeds were germinated in a growth chamber at 28
0
C. After five days, the number of 

germinated seeds was counted, and root and shoot length of individual seedling was measured to 

determine the vigor index with the following formula: Seeds vigor index= [(mean root length + 

mean shoot length) X germination %] (Abdul Baki and Anderson, 1973). 

 

6.2.5 Field Site 

Field trials were conducted at Ukulinga Research Farm, University of KwaZulu–Natal, 

Pietermarit burg, South Africa (29° 24′ E  30° 24′ S). Soils at this site are classified as having 

Westleigh forms (Soil Classification Working Group 1991). Plots were irrigated when there was 

no rain to ensure that no water deficit occurred during the crop growth cycle. Crops were fully 

protected against weeds and pests in the two experimental seasons.  

 

6.2.6 Fertilizer 

In the greenhouse experiment, pots were hand watered every three days (250 ml pot
-1

) 

supplemented with soluble fertilizer, applied at a rate of 0.224 g L
-1

 KH2PO4, 0.149 g L
-1

 K2SO4, 

0.324 g L
-1

 KCl, 0.203 g L
-1

 MgSO4 to make up the 100%PK fertilizer solution. Nine pots 

representing the positive control were watered with 100% NPK soluble fertilizer [3:1:3(38)] 26 at 

a rate of 1 gℓ
-1

.Another nine pots were watered with water only, and served as the Untreated and 

Unfertilized Control. 

 

In the field trials, the entire field was fertilized with the full amount of P (superphosphate) and no 

potassium were used as recommended by local Fertilizer Advisory Centre, Cedara, 

Pietermaritzburg, of South Africa. Two sub plots were treated with either 33% of the normal 

amount of nitrogen (N) (as limestone ammonium nitrate (LAN)) recommended for the crop. The 

other was not fertilized with N. Two thirds of the fertilizer was applied at sowing and one third 

five weeks after sowing. These experiments were hand-planted on the 24
th

 of June 2011season 

and on 20
th

 of June 2012 season. 

                                                           
26 Ocean Agriculture (Pty) Ltd. P.O. Box 741, Muldersdrift, 1747, South Africa 
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6.2.7 Experimental Design 

In the field split plot design with two factors were used: Bacterial isolates x N-fertilizer were the 

primary treatments, arranged in a randomized complete block. Each treatment was replicated 

three times. In the main plot, five bacterial isolates were evaluated: Isolates V16 (Bacillus 

megaterium), StB5 (Bacillus ambifaria), V9 (Pseudomonas sp.), LB5 (Pantoea ananatis), L1 

(Enterobacter cloacae). In the split plot, two levels of N-fertilizer (0% N and 33% N) were 

tested in combination with the five bacteria. Plots were 2m x 1m rectangles. Each plot had six 

rows spaced at 20 cm with a distance of 10 cm between plants. Both pre-emergence and post-

emergence herbicides were used to control weeds. Five plants were sampled for shoot dry 

biomass measurements every 30 days for three months. These plants were harvested at the soil 

level, dried in an oven at 70ºC for 72 hours and weighed. Yield parameters such as number of 

spikes were recorded. Yield per plot was determined by threshing the spikes. 

 

6.2.8 Statistical Analysis 

Greenhouse data were subjected to analysis of variance (ANOVA) using GenStat Release 14., 

copyright 2011, VSN International Ltd. A factorial ANOVA was conducted to compare the main 

and interaction effects of isolates and N-fertilization levels for the field data. When a significant 

F-test was found in the ANOVA, treatment mean comparisons were performed using Duncan’s 

Multiple Range Test at the 5% level of significance. 

 

6.3 Results 

6.3.1 Effect of Bacterial Seed Inoculation Enhancing Seed Germination and Seedling 

Vigour Index in the Laboratory 

Five selected diazotrophic bacterial isolates and a formulated fungal strain, Eco-T
®
 

(Trichoderma harzianum), increased % germination (23 - 41.29%) and seedling vigour index. 

Seeds treated with these bacterial isolates and Eco-T
®

 had better (P<0.001) germination and 

vigour index compared to Un-inoculated and Unfertilized Control (Table 6.1). Seed inoculations 

enhanced (P < 0.001) shoot length and root length, especially Isolate V16. 



127 
 

Table 6.1 Effect of diazotrophic bacteria on wheat growth using the paper towel method in vitro 

Treatments %Germination Shoot length(mm) Root length (mm) Vigour Index 

Control 33.33  a 3.17  a 3.50  a 209  a 

V9 56.32  b 12.83  b 15.50  b 1597  b 

LB5 58.52  bc 13.33  b 15.33  b 1692  b 

L1 58.16  bc 16.67  b 17.33  b 1935  bc 

StB5 63.96  bcd 15.50  b 17.50  b 2134  bcd 

Eco-T
®
 74.60  cd 16.33  b 21.33  b 2810  cd 

V16 80.21  d 18.83  b 20.33  b 3121  d 

CV% 8.7 

 

22.2 

 

20.6 

 

17.8 

 Lsd 9.428 

 

5.459 

 

5.807 

 

610.98 

 Sed 4.327 

 

2.505 

 

2.665 

 

280.42 

 P <0.001 

 

0.001 

 

<0.001 

 

<0.001 

 Means followed by same letter are not significant at P≤0.005 

 

6.3.2 Effect of Diazotrophic Bacteria, with or Without Different Levels of NPK Fertilizer, 

on Wheat Growth under Greenhouse Condition 

Diazotrophic bacterial inoculation with different levels of NPK fertilizer caused significant 

increases in dry weight (P<0.001) (Table 6.2). The greatest increase in dry weight (41%) was 

obtained with Isolate LB5 when 0% NPK was applied. Significnat dry weight increases were 

recorded with Isolate V9 at 50%NPK and Isolate LB5 at 65%NPK compared to untreated and 

fertilized controls. The interaction effect of inoculum and levels of NPK fertilizer was not 

significant (P=0.349, Table 6.2). 
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Table 6.2 Effect of diazotrophs alone and in combination with five levels of NPK fertilizer on 

the growth of winter wheat under greenhouse condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatments 

  

  

N-fertilizer Isolates Dry weight (g)   

0 Control 1.96  a   

 

StB5 2.29  a   

 

V9 2.713  a   

 

L1 3.633  a   

 

V16 4.627  ab   

 

LB5 6.923  bc   

25 Control 7  bc   

 

StB5 7.01  bc   

 

V9 8.063  cde   

 

L1 9.75  cdefgh   

 

V16 8.627  cdef   

 

LB5 7.087  bc   

50 Control 7.613  cd   

 

StB5 9.247  cdefg   

 

V9 9.403  cdefg   

 

L1 10.68  efgh   

 

V16 9.88  cdefgh   

 

 LB5 10.63  efgh   

65 Control 9.08  cdefg   

 

StB5 10.69  efgh   

 

V9 12.583  h   

 

L1 10.297  defgh   

 

V16 9.787  cdefgh   

 

LB5 12.073  gh   

75 Control 9.843  cdefgh   

 

StB5 9.86  cdefgh   

 

V9 10.747  efgh   

 

L1 11.153  fgh   

 

V16 11.3  fgh   

 

LB5 11.747  gh   

100 NPK 12.09 

 

  

N-fertilizer F=67.64 P<0.001   

Isolates 

 

F=6.36 P<0.001   

N-fertilizer X Isolates F=1.13 P=0.349   

 

CV%= 17.8 
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6.3.3 Trial One and Two- Effect of Diazotrophic Inoculants, in Combination with 

Reduced N-Fertilization, on Winter Wheat Growth in the Field in 2011 

In the first trial, inoculation of five diazotrophic isolates with or without N-fertilizer caused no 

significant increases in dry weight at 30, 60 or 90 DAP (Table 6.4). Moreover, at 60 or 90 DAP, 

these isolates with or wthout N-fertilizer caused no significant increases in number of spikes and 

yield (P < 0.005) (Table 6.5). However, when these isoaltes where inoculated with or without N-

fertilizer scored relative higher dry weight than the untreated and fertilized controls. At 30 or 60 

DAP, isolates with 33%N-fertilizer caused relatively higher dry weight than the 100%NPK. 

Inoculation of Isolate StB5 without 33N% fertilizer cuased significant (P<0.005) increases in 

stover dry weight (Table 6.5). The interaction between the different diazotrophic inoculants and 

N-fertilizer applications was not significant (P<0.001) (Table 6.4).  

In Trial Two, inoculation of diazotrophic bacteria alone or with 33%N-fertilizer resulted in 

relatively greater increases of dry weight, stover dry weight, number of spikes and yield at 

different growth stages higher than the Un-inoculated or Unfertilized Control (Table 6.6 and 

Table 6.7). However, the increases were not statistically significant.  

. 
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Table 6.4 Effect of diazotrophs with or without 33% N-fertilizer on the wheat growth in Year 2011(Trial one) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Treatments Dry weight (g) Trial one 

   N-fertilizer Isolates 30DAP 

 

60DAP 

 

90DAP 

 0 Control 1.21  a 15.27  ab 56.78  a 

 
V16 1.237  a 16.38  abc 69.99  ab 

 
 V9 1.537  abc 14.27  a 69.26  ab 

 
StB5 1.257  a 14.53  a 72.9  ab 

 
LB5 1.387  ab 17.88  abc 84.59  ab 

 
 L1 1.527  abc 15.07  ab 67.67  ab 

33 Control 1.723  abc 18.01  abc 78.18  ab 

 
V16 1.893  bc 19.53  abc 82.1  ab 

 
V9 1.74  abc 20.88  abc 70.83  ab 

 
StB5 1.93  bc 22.96  bc 70.54  ab 

 
LB5 2.01  c 23.7  c 74.56  ab 

 
L1 1.907  bc 24.13  c 96.79  b 

 
100% NPK 1.67 

 
21.28 

 
102.09 

 N-fertilizer F=22.57 P<0.001 F=8.96 P<.001 F=2.93 P=0.101 

Isolates 
 

F=0.52 P=0.758 F=0.79 P=0.569 F=1.18 P=0.349 

N-fertilizer Xisolates F=0.52 P=0.756 F=0.61 P=0.693 F=1.14 P=0.371 

  
CV%=19.5 CV%=22.2 CV%=20.3 
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Table 6.5 Effect of diazotrophs, with or without 33% N fertilization, on different growth parameters of winter wheat in Year 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatments 

 

Experiment one 

N-fertilizer Isolates Stover dry weight (g) Yield (g) No of spike 

0 Control 151.8  a 100.3  a 148.3  a 

 

V9 177.0  ab 121.2  ab 136.0  a 

 

V16 173.6  ab 112.0  ab 133.0  a 

 

L1 175.5  ab 131.5  ab 139.0  a 

 

LB5 202.2  ab 134.0  ab 144.3  a 

 

StB5 215.4  b 143.4  ab 147.3  a 

33 Control 203.1  ab 145.7  ab 140.0  a 

 

V16 184.8  ab 114.2  ab 130.3  a 

 

LB5 165.7  ab 145.1  ab 138.0  a 

 

L1 191.0  ab 124.5  ab 152.3  a 

 

V9 191.6  ab 164.2  b 143.3  a 

 

StB5 209.2  b 158.1  b 164.3  a 

100% NPK 265.0 

 

177.3 

 

168.3 

 Fertilizer_level F=0.08 P=0.782 F=0.13 P=0.723 F=0.28 P=0.604 

Treatments F=1.92 P=0.138 F=2.17 P=0.095 F=1.02 P=0.431 

Fertilizer_level XTreatments F=0.95 P=0.471 F=1.15 P=0.362 F=0.46 P=0.804 

  

CV%=15.3 CV%=20.4 CV%=13.5 
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 Table 6.6 Effect of diazotrophs with or without 33% N-fertilizer on the wheat growth in Year 2011(Trial two) 

  

 

 

 

 

 

 

 

 

 

 

  

Treatments Dry weight (g) Trial two 

   N-fertilizer Isolates 30DAP 60DAP 90DAP 

0 Control 1.21  a 14.27  a 56.78  a 

 

V16 1.237  a 16.38  abc 69.99  ab 

 

StB5 1.257  a 14.53  a 84.59  ab 

 

LB5 1.387  ab 15.27  ab 72.9  ab 

 

L1 1.527  abc 15.07  ab 67.67  ab 

 

V9 1.537  abc 17.88  abc 70.83  ab 

33 Control 2.01  c 18.01  abc 74.56  ab 

 

LB5 1.723  abc 23.7  c 78.18  ab 

 

V9 1.74  abc 20.88  abc 69.26  ab 

 

V16 1.893  bc 19.53  abc 82.1  ab 

 

L1 1.907  bc 24.13  c 96.79  b 

 

StB5 1.93  bc 22.96  bc 70.54  ab 

 

100%NPK 1.67 

 

14.19 

 

59.67 

 N-fertilizer 23.57 <.001 18.96 <.001 2.93 0.101 

Treatments 0.52 0.758 0.79 0.569 1.18 0.349 

N-fertilizer X  Isolates 0.52 0.756 0.61 0.693 1.14 0.371 

  

CV%=19.5 CV%=22.2 CV%=20.3 
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Table 6.7 Effect of diazotrophs, with or without 33% N fertilization, on different growth parameters of winter wheat in Year 2011 

 

  

 

 

 

 

 

 

 

 

 

 

                      Means followed by same letter are not statistically significant at P<0.05 

 

 

Treatments 

  

Experiment two 

  N-fertilizer Isolates No. of spikes Stover dry weight (g) Yield (g) 

0 Control 146  a 201.9  a 145.7  ab 

 
V9 126  a 193.9  a 121.2  ab 

 
V16 131  a 200.2  a 112  ab 

 
L1 127.3  a 197.1  a 131.5  ab 

 
LB5 139.7  a 203.6  a 100.3  a 

 
SB5 155.3  a 208.6  a 143.4  ab 

33 Control 155  a 223.4  a 164.2  b 

 
V16 150.3  a 209.1  a 145.1  ab 

 
LB5 133  a 196.8  a 134  ab 

 
L1 152  a 224.4  a 124.5  ab 

 
V9 143.3  a 244.2  a 114.2  ab 

 
SB5 134  a 205.9  a 158.1  b 

100% NPK 141 
 

214.1 
 

138 
 N_fertilizer 0.96 0.338 0.98 0.333 0.13 0.723 

Treatments 0.1 0.99 0.44 0.817 2.17 0.095 

N_fertilizer.Treatments 0.27 0.926 1.03 0.427 1.15 0.362 

  
CV%=15.2 CV%=24 

 
CV%=20.4 
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6.5 Year 2012 - Field Trials on the Effect of Diazotrophic Inoculants in Combination 

with Reduced N-Fertilizer on the Growth of Winter Wheat 

In Trial Three, all the diazotrophic bacterial inoculum with or without 33% N-fertilizer, had no 

significant effect on dry weight at 30, 60 or 90 DAP (P<0.005) (Table 6.8). However, at 30 DAP, 

Isolates StB5 followed by Isolate L1 scored relatively higher dry weight than the untreated and 

33%N-fertilized control (Table 6.8). Despite the increases were not signifnicant, all isolates with 

added fertilizer resulted in relatively higher yiled compared to untreated and 33%N-fertilized 

control (Table 6.9). 

In Trial Four, at 30 of 60 DAP, Isolate StB5 without 33%N-fertilzier caused significant increase 

(P<0.005) in dry weight (Table 6.8). At 60 DAP, Isolate V9 without add N-fertilizer was also 

significantly (P<0.005) increased dry weight. Isolates StB5 and LB5 without N-fertilizer caused 

signifnicant increases in yield (Table 6.9). Whilst the main effects were significant, the 

interaction effect of inoculum and 33% N- fertilization were not statistically significant for dry 

weight at various growth stages, or for yield in both Trial Three or Trial Four (Table 6.8 and 

Table 6.9). 
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Table 6.8 Effect of diazotrophs with or without 33% N-fertilizer on the wheat growth in Year 2012 (Trial Three and Four) 

Treatments Dry weight (g) Trial Three 

   

Dry weight (g) Trial Four 

   N-

fertilizer Isolates 30DAP 60DAP 

 

90DAP 

 

30DAP 

 

60DAP 

 

90DAP 

 0  control 0.43  ab 22.77  a 126.5  a 0.28  a 11.14  a 105.8  a 

 
 V16 0.33  a 25.14  a 119.9  a 0.37  ab 18.25  abc 104.4  a 

 
StB5 0.39  a 21.22  a 114.9  a 0.51  bc 21.54  bc 104.2  a 

 
L1 0.39  ab 16.83  a 97.4  a 0.35  ab 18.53  abc 120.3  a 

 
 V9 0.41  ab 18.91  a 104  a 0.26  a 21.91  bc 117.2  a 

 
LB5 0.47  abc 20.6  a 116  a 0.29  a 15.29  ab 99.4  a 

33 control 0.47  abc 22.06  a 101.5  a 0.61  c 27.34  c 103.7  a 

 
V16 0.37  a 20.33  a 119.1  a 0.49  bc 25.96  c 119.3  a 

 
StB5 0.68  c 17.74  a 114.7  a 0.44  abc 26.81  c 84  a 

 
 L1 0.62  bc 18.1  a 116.7  a 0.41  abc 25.29  c 113.8  a 

 
 V9 0.44  ab 19.89  a 139.4  a 0.43  abc 22.65  bc 86.5  a 

 
 LB5 0.52  abc 23  a 128.7  a 0.54  bc 19.75  abc 113.7  a 

100 NPK 0.60 
 

33.17 
 

163 
 

0.5 
 

42.21 
 

155.6 
 N-fertilizer F=8.25 P=0.009 F=0.13 P=0.727 F=0.54 P=0.471 F=17.3 P<.001 F=16.68 P<.001 F=0.39 P=0.537 

Isolates 
 

F=1.86 P=0.143 F=0.69 P=0.638 F=0.25 P=0.933 F=1.21 P=0.338 F=1.36 P=0.278 F=0.65 P=0.662 

N-fertilizer X Isolates F=1.48 P=0.235 F=0.32 P=0.894 F=0.8 P=0.561 F=2.64 P=0.051 F=1.58 P=0.207 F=0.86 P=0.522 

  
cv%=25.4 

 
CV%=30 

 
cv%=24.2 

 
CV%=25.3 CV%=23.8 CV%=22.8 
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Table 6.8 Effect of diazotrophic bacteria in combination of reduced N-fertilizer on the wheat 

yield in 2012 

 

 

 

 

 

 

 

 

 

 

 

 

 

Means followed by same letter are not statistically significant at P<0.05 

 

6.4 Discussion 

During 2011 and 2012, greenhouse and field experiments were carried out to evaluate the 

response of winter wheat to inoculation with selected diazotrophic bacteria. Inoculation with 

selected diazotrophs significantly increased germination and seedling vigour. Inoculation 

generally affected root length and shoot length. These increases in the early growth of wheat 

seedlings inoculated with diazotrophic bacteria (Bacillus megaterium, Pseudomonas sp., 

Burkholderia sp., Enterobacter cloacae and Pantoea ananatis) suggest that beside their N-fixing 

ability, these organisms may also produce growth substances that would enhance the germination 

Treatments Yield (kg plot-1) 

  
N%-Fertilizer Isolates Trial Three Trial Four 

0 Ccontrol 0.18 a 0.23 a 

 

V16 0.33 ab 0.38 abc 

 

StB5 0.28 ab 0.41 bc 

 

L1 0.31 ab 0.3 abc 

 

V9 0.3 ab 0.36 abc 

 

LB5 0.28 ab 0.46 bcd 

33 Control 0.38 ab 0.45 bcd 

 

V16 0.41 b 0.51 cd 

 

StB5 0.42 b 0.52 cd 

 

L1 0.42 b 0.6 d 

 

V9 0.43 b 0.49 cd 

 

LB5 0.4 b 0.47 bcd 

 

NPK 0.44 

 

0.46 
 

N%-Fertilizer F=25.26 P<0.001 F=1.67 P=0.210 

Isolaes  F=0.25 P=0.94 F=0.31 P=0.0049 

N%-Fertilizer X Isolates F=2.53 P=0.06 F=0.65 P=0.664 

  CV%=20.8  CV%=32.7 
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and growth of wheat seedlings. Growth substance such as indole acetic acid (IAA) and 

gibberellins (GA) can be produced by both Azotobacter sp. and Azotomonas sp. which can 

enhance the growth of wheat (Pati et al., 1995). Dobbelaere et al. (2003) and Karthikeyan et al. 

(2007) found that the seed of various crops, when inoculated with plant growth promoting 

rhizobacteria (PGPR), germinated faster. 

In the greenhouse experiments, inoculation of wheat seeds with diazotrophic bacteria (B. 

megaterium, Pseudomonas sp., Burkholderia sp., E. cloacae and P. ananatis) with NPK fertilizer 

at 0%, 25%, 50%, 65% and 75% increased dry weight from 0.08% to 41% more than the 

Controls. Seeds inoculated with diazotrophic bacteria alone developed a greater dry weight by 

2.7% - 41% relative to the control. This enhanced seedling growth may be attributed to several 

causes, such as: biological nitrogen fixation (BNF), production of plant growth hormones, 

siderophores and biological control of sub-lethal fungal pathogens. All isolates used in the 

current study reduced acetylene to ethylene, which is a characteristic of diazotrophic bacteria 

(Chapter 2). Stimulation of plant growth and yield increases in wheat as a result of inoculation 

with diazotrophs has been documented by others (Kloepper et al., 1989; Boddey et al., 1995; 

Hegazi et al., 1998). Reports on increases in wheat dry biomass following inoculation with 

rhizobacteria are well documented (Ozturk et al., 2003; Khalid et al., 2004a; Salantur et al., 

2006; Shaharoona et al., 2008). 

In this study, at 25% NPK application rate, all of the inoculated treatments increased the dry 

weight by 0.08% to 22.7% over the Untreated plus 25% NPK fertilizer control. At 50% NPK 

fertilizer application level, the inoculatns increased dry weight; by 13.5% - 25.3%, over the 

Untreated plus 50% NPK fertilized treatment. At 65% NPK, the dry weight increase due to the 

bacterial inoculation was ranged 10-28.9% over the untreated pluse 65% NPK. At 75% NPK, the 

isolates effect on dry weight was ranged 0.1-15.7% over the untreated pluse 75% NPK control. 

The possible reason for the lack of plant growth responses to inoculation with diazotrophs 

combined with high levels of N-fertilizer are probably associated with a lower nitrogenase 

activity of the diazotrophs. Nitrogenase activity of diazotrophs is strongly influenced by ambient 

ammonium levels (Burris et al., 1991). Over application of chemical fertilizers have a negative 

effect on growth and activity of diazotrophs. Okon and Labandera-Gonzalez (1994) reviewed 

results obtained with different crops following inoculation with Azospirillum strains in several 
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countries over a period of twenty years. Maximum shoot dry weight in this study was recorded 

with Isolate LB5 (Pantoea ananatis) without added N-fertilization. 

In Year 2011 two field experiments (Trials One and Two) were conducted and out of five 

diazotrophic bacterial isolates, StB5 alone influenced stover dry weight at 30 DAP. Çakmakçi et 

al. (2006) also showed that effects of PGPRs were greater at early growth stages of plants than 

later. Seed inoculation with diazotrophic bacterial isolates, with or without N-fertilizer, and at the 

highest N rates (100% NPK), did not influence plant growth parameters and yield production. 

This result suggests that the residual soil N content was already adequate for wheat production in 

2011. 

In Year 2012 two more field trials were conducted. In these trials seed inoculation with the 

selected diazotrophic bacteria, with or without N-fertilizer, enhanced wheat growth and 

increased yield. These results were achieved by reducing soil N to a minimum level by planting 

wheat and rice repeatedly in the field without any fertilizer application, prior to running Trials 

Three and Four. A second factor was that there was substantially more rainfall in Year 2012 than 

in 2011. It seems that bacterial strains have higher potential to enhanced crop growth and yield 

with reduced N-fertilizer and greater rainfall.  

The best contributions of diazotrophic bacteria was achieved by Isolate LB5 + 0% NPK (41%), 

V9 + 65% NPK (28.9%), Isolate L1 + 50% NPK (25%), Isolate L1 + 25%NPK (22%) and LB5 + 

75% NPK (15%) undergreenhouse conditions.  

These results show the potential of an integrated management strategy that incorporates 

diazotrophs and reduced N-fertilizers a means to increase wheat yields. The selected diazotrophs 

could be used as biofertilizers for spring wheat in agricultural systems utilizing zero or low N 

inputs. Increases in biomass and yields of crops of agricultural importance after diazotrophic 

bacterial inoculations, in the presence of low doses of N fertilizer, have been recorded by others. 

Kennedy et al. (2004) recorded several studies in which significant increases in growth and yield 

of several crops were reported following inoculation with several free-living bacteria genera, in 

combination with low doses of nitrogen fertilizer. Increase in yields following seed inoculation 

with Azospirillum strains in combination with low doses of nitrogen have been reported by other 
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authors (Fuentes- am  re  et al., 1999; Shahaby et al., 2000; Dobbelaere et al., 2001; Baldani et 

al., 2002a). 

In conclusion, though the increases in plant growth parametes or yield was not statisitcailly 

significant, the effect of the inoculation diazotrophs, with or without N-fertilization scored 

relatvely higher plant growth parameters or yield under both greenhouse and field conditions 

compared to untreated controls. 
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CHAPTER SEVEN 

EFFECTS OF INOCULATION OF BACILLUS MEGATERIUM (V16) AND 

TRICHODERMA HARZIANUM (ECO-T
®
), SINGLY OR CO-INOCULATION AT 

REDUCED N-FERTILIZER RATES, ON PLANT GROWTH 

 

M.H. Kifle and M.D. Laing 

Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Sciences 

University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, 

South Africa 

Abstract 

The synergistic effects of Bacillus megaterium deBary (V16) and Trichoderma harzianum Rifai 

(Eco-T
®
) with or without N-fertilizer on wheat and maize growth were determined under 

greenhouse conditions. Single inoculations of V16 and Eco-T
®
 without added N-fertilizer 

increased maize dry weight by 97% and 46%, respectively, above the Un-fertilized and Un-

inoculated Control. However the increases in shoot dry weight of maize were not statistically 

significant. Inoculation of V16 and Eco-T
®
 together with added N-fertilizer (33%N) increased 

maize dry weight by 300% above the Un-fertilized and Un-inoculated Control. Inoculation of 

Isolate V16 or Eco-T
®
 with added N-fertilizer (33%N) increased maize dry weight by 17% and 

23%, respectively, above the Un-inoculated plus 33% N-fertilizer treatment. Plants inoculated 

with V16 with Eco-T
®
 plus 33%N-fertilizer significantly (P<0.001) increased maize dry weight 

by 51%, above the Un-inoculated plus 33%N-fertilizer treated plants. Inoculation of Isolates 

V16, Eco-T
®
 and V16 + Eco-T

®
 without added N-fertilizer increased wheat dry weight by 91%, 

117% and 269%,respectively, above the Un-inoculated and Un-fertilized control. The maximum 

increase in chlorophyll content index (CCI) (12.87) was observed with plants fertilized with 

100%NPK. The dual inoculation of diazotrophic bacteria with Eco-T
®
, with or without reduced 

N-fertilizer, consistently increased the growth of wheat and maize. 

 

Key words: Diazotrophic bacterium, Eco-T
®
, wheat, maize, reduced fertilizer, plant growth 

promotion 
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7.1 Introduction 

Crop production needs to be increased substantially to reduce hunger and food insecurity in 

Africa. Maize and wheat are staple food and the most widely grown crops in Africa by small 

scale farmers (Bruns and Abel, 2003; Ortiz-Monasterio et al., 2007). These crops need low levels 

of soil nitrogen in order to grow and flourish (Cakmak, 2002; Raun et al., 2002; Ladha et al., 

2005). However, nitrogen fertilization is a major limitation to crop productivity (Pang and Letey, 

2000; Cassman et al., 2002). Most farmers in Africa are poor and use insufficient amounts of 

mineral fertilizers, or do not use any. The reasons include lack of access to commercial fertilizers 

and high transport costs (Jayne et al., 2003; Alene et al., 2008). Soil microorganisms play a 

significant role in organic matter decomposition and release of plant nutrients (Kuzyakov et al., 

2000). Plant growth promoting rhizobacteria (PGPR) can stimulate plant growth by fixing 

atmospheric nitrogen (Canbolat et al., 2006), solubilizing phosphorus (Rodriguez et al., 2006) 

and iron (Ma et al., 2009) and producing plant hormones such as auxins, gibberellins, cytokinins 

and ethylene (Bashan and de Bashan, 2005; Naserirad et al., 2011; Saharan and Nehra, 2011a). 

Enhancement of plant growth and increases in crop yields caused by microbial inoculants has 

been reported by a number of authors (Dobbelaere et al., 2003; Kennedy et al., 2004; Khalid et 

al., 2004; Kloepper et al., 2004; Lucy et al., 2004; Çakmakçi et al., 2006; Berg, 2009). Studies 

on the positive effects of PGPR on seed germination, seedling growth and yield of maize have 

been reported (Shaharoona et al., 2006; Cassán et al., 2009; Gholami et al., 2009). Use of 

microbial inoculants may result in the productive use of reduced doses of chemical fertilizers 

because PGPR are thought to be more efficient under nutrient-limited conditions (Shaharoona et 

al., 2008; Kumar et al., 2009).Use of microbial inoculants, combined with reduced doses of 

chemical fertilizers, has been reported by Riggs et al. (2001) and Dobbelaere et al. (2001).Use of 

multiple strains for optimum crop production was proposed by Vessey (2003). Dual or multi-

inoculation with bacterial strains or bacteria in combination with fungi or arbuscular mycorrhizal 

fungi can yield better results than single inoculations (Lucy et al., 2004; Artursson et al., 2006; 

Han and Lee, 2006; Adesemoye et al., 2009). The objectives of this study were to investigate the 

effects of single or dual inoculation of PGPR, and fungi with or without reduced levels of N 

fertilizer, on maize and wheat growth. 
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7.2 Methods and Materials 

7.2.1 Source of Inoculum 

The bacteria isolates used in this study were selected through an in vitro screening of 95 

diazotrophic bacteria for plant growth promoting activities (Chapter 2). The twenty isolates that 

displayed the most growth promoting activities were selected for secondary screening for 

enhancement of seedling growth under greenhouse conditions. The diazotrophic bacterial strain 

(Bacillus megaterium) used in this study was previous studied (Chapter 2,3,4,5 and 6) for plant 

growth and yield increases, together with a commercial biocontrol agent a strain of Trichoderma 

harzianum Rifai sold as Eco-T
®
 by Plant Health Products (Pty) Ltd, Pietermaritzburg, South 

Africa). 

 

7.2.2 Preparation of Inoculum 

Bacterial cultures were inoculated into tryptic soy broth and incubated for 48 hours at 28ºC in an 

orbital shaker incubator
27

 at 150 rpm. Cells were harvested by centrifuging (Beckman Coulter 

Avanti J-26 XPI high speed centrifuge)
28

 at 10,000 rpm for 15 minutes at 4ºC. Cell numbers 

were then adjusted to 10
8
 cfu mℓ

-1
 by a dilution method using sterile distilled water. Cell counts 

were done using a counting chamber and viability confirmed by plate count method. This 

procedure was repeated for each subsequent experiment. 

 

7.2.3 Seed Source 

The maize seed Zea mays L. (AY 106 YR) used in these studies was purchased from MacDonald 

Seed Company
29

. The wheat seed Triticum aestivum L. (PAN 3494) was supplied by Pannar 

Seed company (Pty) Ltd
30

.  

 

                                                           
27

 Shalom Laboratory Suppliers c.c. 132, Commercial Road, International Plaza, Durban 4001, P.O.Box 57030, 
Musgrave Road, Durban 4062, South Africa 
28

 Beckman Coulter Inc. 4300 N Harbour Boulevard P.O.Box 3100, Averton, California 92834-340, USA 
29

MacDonald's Seeds (Pty)Ltd. 2 Trek Road, Mkondeni, Pietermaritzburg, 3212, P.O.Box 40, South Africa 
30

 Pannar Seeds (Pty)Ltd. P.O.Box 19, Greytown 3250,South Africa 
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7.2.4 Seed Treatments 

Seeds were disinfected by soaking in 0.02% sodium hypochlorite for two minutes, then rinsing 

them five times in sterile distilled water. Seed inoculation was done by soaking the seeds in a 

bacterial suspension in 2% gum arabic for two hours to enhance adhesion of the cells onto the 

seed. For a Control treatment, the seeds were soaked in a suspension of 2% gum arabic in sterile 

distilled water. The seeds were then dried on a lamina flow bench overnight. This procedure was 

followed for all seed inoculations in all other experiments.  

 

7.2.5 Fertilizers 

Pots with each inoculated treatments were watered daily with an equal amount of a nutrient 

solution of soluble fertilizer applied at a rate of 0.224 g L
-1

 KH2PO4, 0.149 g L
-1

 K2SO4, 0.324 

g L
-1

 KCl, 0.203 g L
-1

MgSO4 and micronutrient (Microplex)
31

 at a rate of (0.02 gℓ
-1

). For the 

Fully Fertili ed Control a solution of NPK, [3:1:3 (38) Complete™] at a rate of 1g ℓ
-1

was used. 

The 33%N treatments all used 0.33 gℓ
-1

 (w/v) of the same fertilizer for the reduced fertilizer 

control, with phosphorus and potassium levels adjusted to the full amounts recommended for 

each crop. The Un-inoculated Control was watered with tap water. 

 

7.2.6 Experimental Design 

A randomized complete blocks design was used. Nine treatments were applied, consisting of the 

diazotrophic bacterium, and one fungal strain (Eco-T
®

), and a combination of the two, with or 

without 33%N-fertilizer, plus three controls (Untreated+0%N, Untreated + 33% N and Untreated 

+100% fully fertilized controls) were used. Each treatment consisted of three pots with a top 

diameter of 200 mm, filled with composted pine bark. Each pot was seeded with five seeds. The 

pots were kept in the greenhouse with a temperature range of 25-30°C. The seedlings were 

thinned to three and five plants per pot for maize and wheat, respectively, after germination. The 

chlorophyll levels in maize leaves were measured using a chlorophyll content meter (CCM-200 

plus)
32

 at the sixth to eighth leaf stage to give a chlorophyll content index (CCI). Plants from 

each pot were harvested at the shoot base after eight weeks and were then dried at 70°C in an 

oven for 72 hours and weighed to obtain shoot dry biomass. 
                                                           
31

 Ocean Agriculture (Pty) Ltd. P. O. Box 741, Mulders Drift, Republic of South Africa, 1747 
32

 CCM-200 Plus, Opti-Science Inc., 8 Winn Avenue, Hudson, NH, USA, 03051 
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7.2.7 Experimental Analysis 

Data were subjected to analysis of variance (ANOVA) using GenStat Release 14.1, copyright 

2011, VSN International Ltd.Treatment mean separation was done using to Fisher’s LSD test, at 

5% level of significance. 

 

7.3 Results 

Inoculation of B. megaterium (Isolate V16) or Eco-T
®

 applied singly showed significant 

(P<0.001) increases in wheat dry weight but no significant increases in maize dry weight, 

compared to the Untreated-control. Similarly, Isolate V16 applied alone significantly increased 

maize chlorophyll level (P<0.001) higher than the Untreated-control (Table 7.1). Dual 

inoculation of Isolate V16 and Eco-T
®
 without added N-fertilizer increased maize dry weight 

equivalent to the plants of the 33%N-fertilized treatment. The inoculants applied singly or 

together, combined with 33%N-fertilizer, increased maize and wheat shoot dry weight over the 

Untreated plus 33%N.  

Inoculation of Isolate V16 plus 33%N-fertilizer was the best treatment for enhanced maize 

chlorophyll levels (Table 7.1). Isolate V16 or Eco-T
®
 applied singly significantly (P<0.001) 

increased shoot dry weight of wheat over the Untreated control. Dual application of these two 

inoculants significantly increased shoot dry weight of wheat over the Untreated control, or 

Isolate V16 or Eco-T
®
 applied singly. In the presence of 33% N-fertilizer, Isolate V16 performed 

as well as the combination of Isolate V16 plus Eco-T
®

, in enhancing shoot dry weight of wheat 

(Table 7.1). Of all the treatments, plants fertilized with 100% NPK showed the highest shoot dry 

weight of wheat and maize, and the highest chlorophyll levels of maize. Dual inoculation of 

Isolate V16 and Eco-T
®

 plus 33%N-fertilizer increased maize dry weight by 51% and wheat dry 

weight by 22% (Table 7.1). Inoculation of Isolate V16 plus 33%N-fertilizer increased maize 

chlorophyll level by 9% over the Untreated plus 33%N. 
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Table 7.1 Combined effect of inoculants with or without reduced N-fertilizer on maize and 

wheat growth under greenhouse conditions 

Treatments 

Maize Wheat 

Dry weight (g) CCI Dry weight (g) 

Control 9.59  a 2.03  a 1.85 a 

Eco-T
®

 14.01  a 7.25  ab 4.02 b 

V16 18.92  a 8.01  bc 3.54 b 

V16+Eco-T 45.81  b 9.33  bc 6.84 c 

33%N 46.58  b 12.3  bc 7.82 cd 

V16+33%N 54.86  bc 13.4  c 8.69 de 

Eco-T+33%N 57.61  bc 11.05  bc 8.38 d 

V16+Eco-T+33%N 70.52  c 11.12  bc 9.53 e 

NPK 93.6  d 20.87  d 12.17 f 

CV% 14  16.7  5.1 

 Lsd 11.09  3.062  0.6203 

 Sed 5.23  1.444  0.2928 

 P <0.001  P<0.001  <0.001 

 Means in a column followed by the same letter are not significantly different at 5% level of 

significance according to Fisher’s L.S.D. test 

CCI: Chlorophyll Content Index 

Treatments: diazotrophic bacterial Isolate (V16), a commercial BCA (Eco-T
®
), 33%N-fertilizer 

as a percentage of the amount recommended for the crop by the local Fertilizer Advisory Centre, 

Cedara, Pietermaritzburg, Republic of South Africa; Un-inoculated and Fully Fertilized Control 

(100%NPK) and Un-inoculated and Un-fertilized (Control)  

 

7.4 Discussion 

In many studies, the inoculation of diazotrophs applied singly can only partly meet the N demand 

of plants because cereals and other non-legumes usually require high N levels for optimum 

yields. An eco-friendly and cost effective strategy that combines the use of reduced applications 

of chemical N-fertilizer combined with plant growth promoting inoculants may be important for 
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sustainable agriculture. Use of microbial inoculants to enhance plant growth and increase yields 

of agricultural crops has been under investigation for several years. Use of combined bio-

inoculants for enhancing plant growth and yield has also shown promising results. However, 

inconsistence of data has been reported (Bashan and Holguin, 1997; Mansfeld-Giese et al., 2002; 

Lucy et al., 2004). Co-inoculation of plant growth bacteria and fungi, combined with a reduced 

level of N-fertilizer, therefore, could provide an option for optimum crop production. 

 

Several microorganisms are known to have beneficial effect on plant growth and plant nutrient 

accumulation. In this study, inoculation of Bacillus megaterium (V16) and Eco-T
®
, applied 

singly, caused no significant increases in dry weight of maize. However, co-inoculation of 

Bacillus megaterium and Eco-T
®
, without any added N-fertilizer, enhanced shoot chlorophyll 

level of maize and shoot dry weight of wheat above the Un-inoculated and Un-fertilized control, 

the bacterium or Eco-T
®
 were applied singly. Eco-T

®
 known to be a bio-control agent, also 

showed stimulation of plant growth in the absence of a pathogen. This enhanced leaf N and shoot 

dry weight was either due to the BNF activity of Bacillus megaterium and plant stimulation 

effect of Eco-T
®
, or due to the increased nutrient uptake by these plants because of the 

inoculants. Previous studies have shown that effectiveness of PGPR using multi strains 

inoculations (Yang et al., 2009). The results of the present study agree with the results of Jisha 

and Alagawadi (1996), who showed that the co-inoculation of Bacillus polymyxa (Prazmowcoki) 

Mace and T. harzianum enhanced growth of sorghum, as compared to either organism applied 

singly under greenhouse conditions. Similar result reported by Yobo et al. (2011) showed 

combined inoculation of T. atroviride SYN 6 and B. subtilis B69 increased seedling dry biomass 

of beans by 43% in greenhouses. In another studies, combined inoculation of biocontrol agents 

and PGPR suppressed plant disease (Nakkeeran et al., 2006) and improved yields and nutrient 

uptake (Rudresh et al., 2005). Combining Bacillus megaterium de Bary and Azotobacter 

chroococcum Beijerinck increased crop yields in field trials by 10-20% (Saharan and Nehra, 

2011b). Ahmad et al. (2006) also showed that the co-inoculation of Vigna radiata L. T44 with 

Bradyrhizobium (Kirchner) Jordan with other rhizosphere bacteria gave better results than those 

inoculated with Bradyrhizobium alone.  
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A single microbial inoculation at reduced chemical fertilizer levels enhanced chlorophyll level of 

maize and dry biomass of wheat and maize above that of plants treated with reduced chemical 

fertilizer or bacterial isolates alone. The shoot dry biomass obtained with the seed inoculation 

with V16 plus Eco-T
® 

at reduced N-fertilizer performed better than the 33% N-fertilizer. Similar 

results were recorded for sugarcane (Saccharum officinarum L.) by co-inoculation of two 

bacteria, which enhanced crop biomass under N-limited condition (Muthukumarasamy et al., 

2006). Inoculation of wheat with Azospirillum brasilense increased yield and other yield 

components significantly under low fertilizer rates compared to higher rates under field 

conditions (Dobbelaere et al., 2001). Application of PGPR in combination with a reduced level 

of inorganic fertilizer enhanced nitrogen and phosphorus uptake in tomatoes (Adesemoye et al., 

2009). In this study, inoculation of Isolate V16 and Eco-T
®
 increased maize dry weight by 51% 

and 22%, and wheat dry weight, above the Untreated plus 33%N-fertilizer. These results suggest 

that co-inoculation could meet up to 51% and 22% nutrient requirements of the two crops, 

respectively, and co-inoculation could supplement reduced amounts of N fertilizer without 

compromising crop yields. Other studies have also demonstrated that inoculation of wheat with 

Azotobacter could reduce urea N requirements by 50% under greenhouse conditions (Soliman 

and Monem, 1995; Hegazi and Fayez, 2001; Hellal et al., 2011; Saharan and Nehra, 2011b). The 

present study suggests that the use of combined inoculants together with reduced N-fertilizer 

applications may provide an important alternative for the integrated management of fertilizers for 

sustainable agriculture. 
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Thesis Overview 

Globally, there is increasing need to reduce the cost of fertilizer inputs in agricultural crop 

production. The search for replacements or supplement to fertilizers and agrochemicals has 

attracted the attention of many researchers in the last few decades. Eighty percent of our 

atmosphere is made up of nitrogen gas (N2). This gas is of no use to most organisms and can 

only be beneficial to plant growth if it is first converted to ammonium and/ or nitrate. This can be 

done through an industrial process (the Haber-Bosch reaction) used in the manufacture of 

nitrogenous fertilizers but this requires electricity and indirectly contributes to climate change, 

via the burning of hydrocarbon. However, use of N-fertilizer inputs in developing countries need 

to increase each year, in order for production to increase. This will cost billions of US dollars 

and may be harmful to the environment and to human health (Saleque, et al., 2004, Kitchen, et 

al., 2010, Powell, et al., 2010). Many soils in Africa are severely depleted of nitrogen, making it 

difficult for smallholder farmers to produce the yields needed to feed growing populations. Use 

of microbial inoculants to enhance crop production has therefore been proposed as more 

affordable and environmentally sound option for sustainable agriculture (Wu, et al., 2005). 

Diazotrophic bacteria are known by their ability to convert N2 into ammonia which can be used 

by plants. They provide their host plants with competitive benefits in a C-rich and N-poor 

environment, with the result that they promote plant growth (Dobbelaere, et al., 2003).  

Inoculation of seed of crops with diazotrophic bacteria has been documented to increase plant 

growth and yields (Dobbelaere, et al., 2003, Vessey, 2003, Choudhury, et al., 2004, Ahmad, et 

al., 2008). These diazotrophic bacteria have been shown to influence plant growth and yields 

through mechanisms such as biological nitrogen fixation (BNF), phytohormone production and 

phosphate-solubilization (Dobbelaere, et al., 2003). Bacteria widely investigated for plant growth 

promotion include genera such as Azospirillum (Vessey, 2003, Bashan, et al., 2010), Azotobacter 

(Dobbelaere, et al., 2003, Wu, et al., 2005), Bacillus (Çakmakçi, et al., 2006, Adesemoye, et al., 

2008), Klebsiella (Vessey, 2003, Compant, et al., 2010)and Pseudomonas (Dey, et al., 2004, 

Ahmad, et al., 2008). 

In vitro studies were conducted to determine the possible mechanisms of plant growth promotion 

exhibited by these isolates. Ninety five bacteria were selected by the ability to grow on N-free 

media using different carbon sources (sucrose, D-mannitol or malate). Secondly, they were 
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subjected to a test for ammonia production, and were then further tested using the acetylene 

reduction assay (ARA). C2H4 production was quantified and ranged 0 to 73 n moles of C2H4 h
-1

 

culture
-1
. Isolates which produced ≥40 n moles of C2H4 h

-1
 culture

-1 
were re-screened on maize 

plants in vivo and eleven of them caused significant (P<0.001) increases of stomatal 

conductance, dry weight and chlorophyll content index of maize leaves. These isolates were then 

identified using partial 16s rRNA sequence analysis and MALDI TOF Biotype classification and 

they were identified as Pseudomonas spp., Burkholderia ambifaria, Enterobacter spp., Bacillus 

megaterium, Klebsiella spp. and Pantoea spp.  

The five best diazotrophic bacterial isolates were investigated for their effectiveness for different 

methods of application onto maize (Zea mays L.) under greenhouse conditions. These methods of 

application were drenching, seed treatment, foliar spray and a combination of these. The five 

isolates were also assessed for their effects on the germination of wheat in vitro, and were tested 

in combination with various levels of nitrogenous fertilizer for growth-promotion of wheat 

(Tritium aestivum L.). These five isolates were also investigated for their potential to enhance 

growth and yields of maize and wheat crops in field trials, especially when combined with a low 

dose of nitrogenous fertilizer. These isolates were further studied for their ability to enhance 

plant growth through nitrogen fixation by predicting chlorophyll content using a chlorophyll 

content meter (CCM-200), and correlated with chemical analysis for chlorophyll content. A 

study was also conducted on the in vitro interaction of isolates of Bacillus megaterium and Eco-

T
®
, a commercial biocontrol agent (BCA), (an isolate of Trichoderma harzianum Rifai), to 

determine the value of applying the two microbes together to enhance plant growth. 

In this overview we report the findings of this study and the issues that need to be addressed in 

future research. The findings from this research were as follows: 

 Combination of the most promising bacterial isolates from the in vitro studies and a low 

dose of nitrogenous fertilizer to enhanced growth of maize and wheat under greenhouse 

conditions.  

 Inoculation of selected diazotrophic isolates applied as seed treatment or seed treatment 

plus drench resulted in increases in dry weight and leaf chlorophyll content of maize. 
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 Indirect estimation of N content using chlorophyll content meter (CCM-200 ) and 

extractable leaf chlorophyll content were  highly correlated 

 Seed inoculation of maize with some bacterial isolates, in combination with a low dose of 

nitrogenous fertilizer, increased shoot dry biomass and yields of maize relative to the 

Uninoculated Control. 

Seed inoculation of wheat with some bacterial isolates in combination with a low dose of 

nitrogenous fertilizer caused significantly higher biomass and yield than the Uninoculated 

Control under field conditions. Isolation of diazotrophic bacteria were carried out on N-free 

media using various carbon sources (sucrose, D-mannitol or malate). Similar methods of 

isolation were reported by (Park, et al., 2005, Picossi, et al., 2005, Tejera, et al., 2005). Then 

ninety five isolates were able to grow well on media when sucrose was provided as carbon 

source but grew slowly on D-mannitol and malate. Many isolates produced ammonia in liquid 

cultures, which confirmed their capacity to fix N2 in pure culture. Isolates which are slow to 

grow on N-free media might indicate that the isolates require microaerobic conditions for fixing 

nitrogen (Li, et al., 2008). For further selecting and screening of prospective strains, ARA was 

used as a test for diazotrophy. Out of the 93 strains from the primary selection process, only 

strains with an ARA activity of ≥40 nmol C2H4 h
−1

 culture
-1

were studied further. It is difficult to 

compare the nitrogenase activity of bacterial strains studied in this work with the results obtained 

by others, mainly due to the different methods used and the different ways of expressing the 

levels of nitrogen fixation. The results of this study on nitrogenase activity were in agreement 

with the results of  óżyckiet al. (1999) who reported similar levels of nitrogenase activity of 

diazotrophic bacteria, most of which belonged to the genera Pseudomonas and Bacillus. The 

strains which exhibited ≥40 nmol C2H4 h
−1

 culture
-1

 and enhanced maize growth in greenhouses 

conditions were identified to genus level using 16s rRNA sequencing and MALDI Biotyper 

classification. Using partial 16s rRNA sequence analysis, Isolates StB5, A3, A6, B1 and A61 

showed a 99% similarity with Pseudomonas spp., Isolate V9 and A5 showed 97% similarity with 

Burkholderia ambifaria, Isolate L1 94% similarity with Enterobacter spp., Isolate V16 97% 

similarity with Bacillus megaterium, Isolate A2 100% similarity with Klebsiella spp., and Isolate 

LB5 100% similarity with Pantoea spp. The identification was confirmed by MALDI TOF 

Biotype classification. Isolates StB5, A3, A6, B1 and A61 were identified as Pseudomonas 
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nitroreducens at score values of 1.98, 1.90, 1.96, 2.03 and 1.88, respectively. Isolates V9 (2.46) 

and A5 (1.86) were identified as Burkholderia ambifaria, Isolate L1 (2.33) as Enterobacter 

cloacae, Isolate V16 (1.72) as Bacillus megaterium, A2 (2.24) as Klebsiella variicola and Isolate 

LB5 (2.27) as Pantoea ananatis. Both identification methods showed high correlations with 

known genera and species. Similar result was reported by Saffert, et al. (2011) who used a 

Bruker Biotyper to identify Gram-negative bacilli to the genus and species level correctly.In-

vitro screening of diazotrophic bacteria for nitrogenase activity provided a quick and viable 

technique for the selection of effective diazotrophic bacterial strains for use in sustainable 

agriculture. However, some of the effective isolates selected were subsequently shown to be 

closely related to bacterial species known to be pathogenic to animals and humans. Therefore, 

there is still a need to identify simpler techniques that include identification of the isolates that 

can be used for screening of larger numbers of isolates in vitro. Reports on a lack of correlation 

between results obtained in vitro and under field conditions exist in the literature (Schroth and 

Becker 1990; Williams and Asher, 1996). However, in this study, the most promising isolates 

identified in vitro also worked well under greenhouses and field conditions. They enhanced 

seedling growth of maize and wheat under greenhouse and field conditions. Isolate Bacillus 

megaterium (V16), Burkholderia ambiferia (V9), Enterobacter cloacae (L1), Pantoea ananatis 

(LB5) and Pseudomonas nitroreducens (StB5) enhanced shoot dry biomass and yield in wheat 

and maize. This demonstrated that isolates that exhibited good nitrogenase activity in vitro also 

enhanced plant growth in greenhouses. Khalid et al. (2004) also demonstrated that there was a 

positive correlation between the in vitro indole-3-acetic acid production by rhizobacteria and the 

increases in host growth parameters. Further research is required to establish the exact 

mechanism responsible for the observed results, to determine whether these results were due to 

the synergistic effects by various growth enhancement mechanisms. 

 

Finding appropriate application methods of inoculum and optimum concentrations is a key for 

the use of diazotrophs to enhance plant growth. Inoculation of Isolate StB5 (Pseudomonas spp.) 

increased maize dry weight when applied by seed treatment or drenching alone, and induced 

higher leaf chlorophyll content when applied by several combinations of application (seed 

treatment + drench, seed treatment + foliar spray or drench + foliar spray). Isolate V9 

(Burkholderia ambiferia) induced increases in dry weight when applied by a combination of seed 

http://www.google.co.za/search?q=Burkholderia+ambiferia&hl=en-ZA&gbv=2&safe=active&sa=X&nfpr=1&spell=
http://www.google.co.za/search?q=Enterobacter+clocea&hl=en-ZA&gbv=2&safe=active&sa=X&nfpr=1&spell=
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treatment + drench + foliar spray. Seed treatment as a sole application or in a combination of 

drenching induced higher leaf chlorophyll content and dry weight. Foliar application of PGPR 

strains of Azotobacter, Azospirillum and Beijerinckia was reported by Sudhakar et al. (2000) to 

be an effective method of application resulting in an increased fruit and leaf yield of mulberry 

(Morus spp.). Given its efficacy as a solo treatment, and that seed treatment is the simplest and 

most convenient method of application, this method of application can be recommended to 

farmers as the best method of application of diazotrophs for plant growth promotion. 
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Diazotrophic treatments and concurrent N applications increased plant N levels which was 

determined by chlorophyll content meter (CCM) readings. The result showed that when the 

levels of N-fertilizer increased, the chlorophyll content also increased. Correlation analysis 

indicated that 98% of the variation in N application levels was predicted by CCM readings. 

Similar results were also reported by Cate and Perkins (2003) that chlorophyll concentrations 

correlate positively with leaf N. This relationship should make it possible to use leaf chlorophyll 

content to estimate crop N status (Daughtry et al., 2000). 

Inoculation of diazotrophs in combination with a 65% nitrogenous fertilizer in wheat resulted in 

a greater shoot biomass than the Fully Fertilized Control, whereas increasing fertilizer doses 

above these levels did not seem to have any significant effect on the biomass of wheat. 

Maximum dry weight (41%) was obtained when fertilizer was applied at 0%NPK along with one 

of the isolates as compared to the Un-inoculated and Unfertilized Control under greenhouse 

conditions. The dry weight increases from Isolate StB5 together with a 65%NPK fertilizer 

application rate, out yielded the fully fertilized (100%NPK) Control. This observation indicates 

that these bacterial isolates were more effective at low levels of nitrogenous fertilizer 

applications. Similar results were reported by Ozturk, et al. (2003) improvements in growth 

parameters of barley and wheat as a result of bacterial inoculations at reduced levels of 

nitrogenous fertilizers. These findings confirm that the use of suitable microbial inoculants may 

enhance nitrogen fertilizer efficiency, leading to enhanced crop production at lower doses of 

these fertilizers. Use of the best isolates found in this study may provide an important component 

of integrated mineral management for maize and wheat production. 

Therere is a problem in this field of PGPRs because some of the plant-associated PGPR genera 

such as Burkholderia, Enterobacter, Pantoea and Pseudomonas may also be opportunistic 

pathogens on humans (Berg, et al., 2005, Tyler and Triplett, 2008). However, there is currently 

no direct link between rhizosphere isolates and those that are pathogenic to animals and humans. 

If the necessary precautions are taken to ensure the safety of personnel dealing with the 

inoculants, these isolate identified in this study could therefore be grown and formulated as 

inoculant biofertilizers for enhancing maize and wheat production. 
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In conculusion, inoculation of diazotrophs alone or combined with reduced level of N-

fertilization may reduce the requirement of N-fertilization as a major boost to science. This 

biofertilization technology may also make N-fertiliation possible for small scale farmers at 35-

65% of the level used by commercial farmers at a price of more than R1000 ha
-1

 for N-fertilizer 

versus R30 ha
-1

 for bacterial inoculants on seeds, the costs are dramatically different for maize 

and wheat production. 
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