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Abstract

The aim of this dissertation is to describe the conjugacy classes and some of the ordinary irreducible

characters of the finite general linear group GL(n, q), together with character tables of some of its

subgroups. We study the structure of GL(n, q) and some of its important subgroups such as

SL(n, q), UT (n, q), SUT (n, q), Z(GL(n, q)), Z(SL(n, q)), GL(n, q)
′
, SL(n, q)

′
, the Weyl group W

and parabolic subgroups Pλ. In addition, we also discuss the groups PGL(n, q), PSL(n, q) and the

affine group Aff(n, q), which are related to GL(n, q). The character tables of GL(2, q), SL(2, q),

SUT (2, q) and UT (2, q) are constructed in this dissertation and examples in each case for q = 3

and q = 4 are supplied.

A complete description for the conjugacy classes of GL(n, q) is given, where the theories of irre-

ducible polynomials and partitions of i ∈ {1, 2, · · · , n} form the atoms from where each conjugacy

class of GL(n, q) is constructed. We give a special attention to some elements of GL(n, q), known

as regular semisimple, where we count the number and orders of these elements. As an example

we compute the conjugacy classes of GL(3, q). Characters of GL(n, q) appear in two series namely,

principal and discrete series characters. The process of the parabolic induction is used to construct

a large number of irreducible characters of GL(n, q) from characters of GL(m, q) for m < n. We

study some particular characters such as Steinberg characters and cuspidal characters (characters

of the discrete series). The latter ones are of particular interest since they form the atoms from

where each character of GL(n, q) is constructed. These characters are parameterized in terms of

the Galois orbits of non-decomposable characters of F∗qn . The values of the cuspidal characters on

classes of GL(n, q) will be computed. We describe and list the full character table of GL(3, q).

There exists a duality between the irreducible characters and conjugacy classes of GL(n, q), that is

to each irreducible character, one can associate a conjugacy class of GL(n, q). Some aspects of this

duality will be mentioned.
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Introduction

The general linear group GL(V ) is the automorphism group of a vector space V. The term linear

comes because of the linear transformations and the term general comes because it is the largest

group with the property of invertibility. When V = V (n,F), the n−dimensional space over a field

F, we identify GL(V ) with the group GL(n,F) consisting of all invertible n×n matrices. Moreover,

if F = Fq, the Galois field of q elements, we write GL(n, q) in place of GL(n,Fq). If n = 1, then

GL(1,F) ∼= F∗, which is abelian. The smallest general linear group is GL(1, 2) ∼= F∗2 = {1}. If n > 1,

then GL(n,F) is not abelian and the smallest non-abelian general linear group is GL(2, 2) ∼= S3.

Also GL(n,F) is not a simple group in general as it has many normal subgroups such as SL(n, q),

the special linear group. In 1907, H. Jordan [35] and I. Schur [67] separately calculated the ordinary

character table of GL(2, q). It was not until 1950 that the character table of GL(3, q) was known,

when Steinberg [72] determined the character tables of GL(3, q) and GL(4, q). Many attempts to

calculate the ordinary character tables of GL(n, q) for arbitrary n were made. For example partial

results found by Steinberg, namely the Steinberg characters of GL(n, q). In 1955, J. A. Green in a

celebrated paper [27] was able to give a complete description for the character tables of GL(n, q) for

any positive integer n. To construct the characters of GL(n, q), Green [27] combined the Frobenius

method of induced characters from certain subgroups, together with Brauer’s theorem of modu-

lar representations. The use of subgroups is similar to the Frobenius treatment of the character

table of the Symmetric group Sn. In fact the work of Green [27] on GL(n, q) inspired other au-

thors, like Deligne - Lusztig [16] in their search for the characters of reductive groups. This was to

generalize some of the aspects defined by Green [27] such as Green polynomials and degeneracy rule.

Below is a detailed description for the work carried on this dissertation:

In Chapter 2 we review the fundamental tools required for the theories of representations and char-

acters, which will be used in the other chapters. This includes basic definitions and elementary

results of representations and characters (Sections 2.1 and 2.2). Also we study some results of

1



Chapter 1 — Introduction

constructing new characters from characters we already know. In Section 2.3 we show that the

product of two characters of a group G is again a character of G. In Section 2.4 we show that if G

has a normal subgroup N then irreducible characters of the quotient G/N extend (lift) irreducibly

to G. In Section 2.5 we study the dual operations known as induction and restriction of characters.

We conclude Chapter 2 by studying an important type of characters of a group G known as the

permutation character, which is associated with the group action. For instance if we have a sub-

group H ≤ G, then there exists a permutation character of G. Conversely if we have a permutation

character of G, then under some certain conditions, we show the existence of a subgroup H ≤ G.

Chapter 3 concerns with the structure of GL(n,F) and some of its important subgroups such as

SL(n,F), UT (n,F), SUT (n,F), Z(GL(n,F)), Z(SL(n,F)), GL(n,F)
′
, SL(n,F)

′
, Weyl group W

and parabolic subgroups Pλ. In addition we also discuss the groups PGL(n,F), PSL(n,F) and the

affine group Aff(n,F), which are related to GL(n,F). In most of these groups we focus on the case

F = Fq. In the last section of this chapter we discuss the concept of the BN pair structure and we

show that GL(n,F), SL(n,F) and PSL(n,F) have BN structures.

In Chapter 4 we determine the character table of GL(2, q), where in Section 4.2, we discuss the

conjugacy classes of GL(2, q) and see that there are q2 − 1 classes fall into four families (Theorem

4.2.1). Also the orders of elements of GL(2, q) will be given (Proposition 4.2.2). In Section 4.3 the

irreducible characters of GL(2, q) will be listed. These characters fall also in four families. The

character table of GL(2, q) will be used to construct character tables of SL(2, q), SUT (2, q) and

UT (2, q) in Sections 4.4, 4.5 and 4.6 respectively. In Section 4.4 the treatment of obtaining the

character table of SL(2, q) will depends on the parity of q. When q is even, SL(2, q) has q + 1

irreducible characters, which are obtained from restriction of some characters of GL(2, q). When

q is odd, SL(2, q) has q + 4 irreducible characters. Of these, q are obtained directly from the

restriction of some of the characters of GL(2, q). To find the other 4 characters of SL(2, q), a sub-

group of GL(2, q) containing SL(2, q) will enter to complete the picture. This subgroup, which is

denoted by SD(2, q) has index 2 in GL(2, q). We list all the conjugacy classes and some of the irre-

ducible characters of SD(2, q). In Section 4.5 we prove that SUT (2, q), q odd, has q+ 3 irreducible

characters, while if q is even, then SUT (2, q) has q irreducible characters. In the latter case, the

character table of SUT (2, q) will be constructed in two different methods. First we use the fact that

SUT (2, q) is one of the Frobenius groups, whose representations are known. The other approach is

through the technique of the coset analysis together with Clifford-Fischer theory (see Moori [52]

and Whitely [76]). In Section 4.6 we show that UT (2, q) has q2−q irreducible characters and we list

the values of these characters on classes of UT (2, q). An extensive number of examples of character

tables ofGL(2, q), SL(2, q), SUT (2, q) and UT (2, q) for q = 3 and q = 4 will be given in Section 4.7.

Chapter 5 contains the main results of this dissertation. In this chapter, we consider GL(n, q) in

2



Chapter 1 — Introduction

general for any n. Section 5.1 is devoted to the study partitions of a positive integer n and some

functions defined in terms of partitions, which will be used throughout the sequel of chapter 5. In

Section 5.2 the conjugacy classes of GL(n, q) will be determined completely, where we give a source

for the representatives of the classes (Jordan Canonical Form, Theorem 5.2.1). We also calculate

the size of any conjugacy class of GL(n, q) (Equation 5.10). The classes of GL(n, q) fall within

several types and all classes of the same type have same size. There are some elements of GL(n, q),

called regular semisimple, which are of particular interest. We count the number and orders of

these elements (Theorems 5.2.13 and 5.2.17). The types of regular semisimple classes of GL(n, q)

are in 1 − 1 correspondence with partitions of n. Also we count the number of primary classes of

GL(n, q) (Proposition 5.2.14). As an application, we construct the conjugacy classes of GL(3, q),

count the number and orders of regular semisimple elements of GL(3, q). We show that the ratio

between the number of regular semisimple classes of GL(3, q) of partition type (n) ` n and those

classes of GL(3, q), which are not regular semisimple of type (n) ` n is given by

Number of regular semisimple classes of GL(3, q) of type (n) ` n
Number of non-regular semisimple classes of GL(3, q) of type (n) ` n

=
1
3(q3 − q)
2
3(q3 − q)

=
1
2
.

In Section 5.3 we discuss the process of parabolic induction, which produces a large number of char-

acters of GL(n, q) from characters of GL(m, q) for m < n. The parametrization of such characters

is, in some sense, related to the character theory of the Symmetric group Sn, where some characters

of Sn are obtained by induction from characters of Young subgroups. The remaining characters of

GL(n, q), which cannot be obtained by parabolic induction, are called cuspidal characters or char-

acters of the discrete series. Section 5.4 is devoted to the cuspidal characters of GL(n, q), which

have nice parametrization in terms of the Galois orbits of non-decomposable characters of F∗qn (Sub-

section 5.4.1). We also calculate the values of these characters on classes of GL(n, q) (Theorem

5.4.4 and Equation (5.19)) and finally we show the importance of the cuspidal characters for all

characters of GL(n, q) (Theorem 5.4.6). In Section 5.5 we study the so-called Steinberg characters

of GL(n, q). For any partition of n, Steinberg found an irreducible character of GL(n, q). He used

simple properties of the underlying geometry of a vector space V. We list the values of Steinberg

characters of GL(2, q), GL(3, q) and GL(4, q). In Section 5.6 we go briefly over Green construction

of characters, which is based on modular characters of GL(n, q) (Theorem 5.6.2). We also prove

that the number of linear characters of GL(n, q), (n, q) 6= (2, 2) is q − 1 (Theorem 5.6.3). The last

section of this chapter is an application to the character table of GL(3, q). The maximal parabolic

subgroup MP (3, q) of GL(3, q) will produce a considerable number of irreducible characters of

GL(3, q). In fact this number is 2
3 |Irr(GL(3, q))| = 2

3(q3 − q), which is equal to the number of

principal series characters of GL(3, q). Therefore we have

Number of cuspidal characters of GL(3, q)
Number of principal series characters of GL(3, q)

=
1
3(q3 − q)
2
3(q3 − q)

=
1
2
.

Green [27] established a duality between the irreducible characters and conjugacy classes ofGL(n, q),

that is to each irreducible character of GL(n, q), one can associate a conjugacy class of GL(n, q); a

3



Chapter 1 — Introduction

property that not many groups have. We conclude Chapter 5 by mentioning some aspects of this

duality (Table 5.14).

Finally a list of character tables, conjugacy classes and other relevant material are supplied in the

Appendix.

We would also like to mention that 77 relevant references are listed under the Bibliography.
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2

Elementary Theories of Representations and

Characters

In this dissertation, G means a finite group unless otherwise stated.

The theories of representations and characters of finite groups were developed by the end of the

19th century. Frobenius, Burnside, Schur and Brauer have contributed largely to these theories.

“The year 1897 was marked by two important mathematical events: the publication of the first

paper on representations of finite groups by Ferdinand Georg Frobenius (1849-1917) and the appear-

ance of the first treatise in English on the theory of finite groups by William Burnside (1852-1927).

Burnside soon developed his own approach to representations of finite groups. In the next few

years, working independently, Frobenius and Burnside explored the new subject and its applica-

tions to finite group theory. They were soon joined in this enterprise by Issai Schur (1875-1941)

and some years later, by Richard Brauer (1901-1977). These mathematicians’ pioneering research

is the subject of this book. · · · ” Curtis [10].

The material that will be covered in this chapter is to illustrate the basics and fundamentals of

representations and characters of finite groups. As general references, this can be found in Curtis

and Reiner [9], Isaacs [38], James [39], Moori [54] and Sagan [66].

2.1. Preliminaries

There are two kinds of representations, namely permutation and matrix representations. An exam-

ple of a permutation representation is given by the known Theorem of Cayley, which asserts that

any group G (not necessarily finite) can be embedded into the Symmetric group SG. The matrix

representation of a finite group is of particular interest.

5



Chapter 2 — Elementary Theories of Representations and Characters

Definition 2.1.1. Any homomorphism ρ : G −→ GL(n,F), where GL(n,F) is the group consisting

of all n×n non-singular matrices is called a matrix representation or simply a representation

of G. If F = C, then ρ is called an ordinary representation. The integer n is called the degree of

ρ. Two representations ρ and σ are said to be equivalent if there exists P ∈ GL(n,F) such that

σ(g) = Pρ(g)P−1, ∀g ∈ G.

From now on, we restrict ourselves to ordinary representations only, unless an explicit exception is

made.

Definition 2.1.2. If ρ : G −→ GL(n,C) is a representation. Then ρ affords a complex valued

function χρ : G −→ C defined by χρ(g) = trace(ρ(g)), ∀g ∈ G. The function χρ is called a char-

acter afforded by the representation ρ of G or simply a character of G. The integer n is called the

degree of χρ. If n = 1, then χρ is said to be linear.

A function φ : G −→ C which is invariant over every conjugacy class of G, that is φ(ghg−1) =

φ(h), ∀g, h ∈ G, is called a class function of G.

Proposition 2.1.1. Any character of G is a class function.

PROOF. Immediate since similar matrices have same trace. �

Now over the set of class functions of a group G we define addition and multiplication of two class

functions ψ1 and ψ2 by

(ψ1 + ψ2)(g) = ψ1(g) + ψ2(g), ∀g ∈ G,

ψ1ψ2(g) = ψ1(g)ψ2(g), ∀g ∈ G.

It is clear that ψ1 +ψ2 and ψ1ψ2 are class functions of G. Also if λ ∈ C, then λψ is a class function

of G whenever ψ is. Therefore the set of all class functions of a group G forms an algebra, which

we denote by C(G). The set of all characters of G forms a subalgebra of C(G). However, it may not

be clear that the product of two characters is again a character. This fact will be shown in Section

2.3. Now we prove that the sum of two characters is again a character.

Proposition 2.1.2. If χψ and χφ are two characters of G, then so is χψ + χφ.

PROOF. Let ψ and φ be representations of G affording the characters χψ and χφ respectively. Define

the function ξ on G by ξ(g) =

(
ψ(g) 0

0 φ(g)

)
= ψ(g)⊕ φ(g). It is obvious that ξ is a homomor-

phism (representation) of G with χξ = χψ + χφ. �

The above proposition motivates the following definition.

6



Chapter 2 — Elementary Theories of Representations and Characters

Definition 2.1.3. A representation ρ of G is said to be irreducible if it is not a direct sum of

other representations of G. Also a character χ of G is said to be irreducible if it is not a sum of

other characters of G.

Example 2.1.1. For any G, consider the function ρ : G −→ GL(1,C) given by ρ(g) = 1, ∀g ∈ G.
It is clear that ρ is a representation of G and χρ(g) = 1, ∀g ∈ G. Obviously ρ is irreducible. This

character is called the trivial character and sometimes we may denote it by 1.

The Theorem of Maschke and Schur’s Lemma (see Theorem 5.1.6 and Corollary 5.1.9 of Moori

[54]) are two pillars on which the edifice of representation theory rests. Maschke Theorem ensures

that under certain conditions, any representation splits up into irreducible pieces. Schur’s Lemma

leads to the orthogonality of representations and hence characters. We mention the statement of

Maschke Theorem only.

Theorem 2.1.3 (Maschke Theorem). Let ρ : G −→ GL(n,F) be a representation of G. If

the characteristic of F is zero or does not divide |G|, then ρ =
r⊕
i=1

ρi, where ρi are irreducible

representations of G.

Over C(G) one can define an inner product 〈, 〉 : C(G)× C(G) −→ C by

〈ψ, φ〉 =
1
|G|

∑
g∈G

ψ(g)φ(g),

where z stands for the complex conjugate of z.

Among the important properties of characters of a group we can mention:

Proposition 2.1.4. 1. Let χρ be a character afforded by an irreducible representation ρ of G.

Then 〈χρ, χρ〉 = 1.

2. If χρ and χρ′ are the irreducible characters of two non equivalent representations of G, then〈
χρ, χρ′

〉
= 0.

3. If ρ ∼=
k⊕
i=1

diρi, then χρ =
k∑
i=1

diχρi .

4. If ρ ∼=
k⊕
i=1

diρi, then di = 〈χρ, χρi〉 .

5. ρ is irreducible if and only if 〈χρ, χρ〉 = 1.

PROOF. See Baker [5], James [40], Joshi [41] or Moori [54]. �
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Chapter 2 — Elementary Theories of Representations and Characters

We shall use the notation Irr(G) to denote the set of all ordinary irreducible characters of G.

Corollary 2.1.5. The set Irr(G) forms an orthonormal basis for C(G) over C.

PROOF. Omitted. See James [40]. �

Note 2.1.1. Observe that Corollary 2.1.5 asserts that if ψ is a class function of G, then ψ =
k∑
i=1

λiχi, where λi ∈ C and Irr(G) = {χ1, χ2, · · · , χk}. If λi ∈ Z, ∀i, then ψ is called a generalized

character. Moreover, if λi ∈ N ∪ {0}, then ψ is a character of G.

The following theorem counts the number of irreducible characters of G.

Theorem 2.1.6. The number of irreducible characters of G is equal to the number of conjugacy

classes of G.

PROOF. See Feit [19], James [40] or Moori [54]. �

2.2. Character Tables and Orthogonality Relations

Definition 2.2.1 (Character Table). The character table of a group G is a square matrix, its

columns correspond to the conjugacy classes, while its rows correspond to the irreducible characters.

The character table of G is very powerful tool to prove results about representations of G and G

itself. For example, the character table of G enables us to

• decide the simplicity of G,

• determine all the normal subgroups and hence can help to decide solvability of the group (in

particular we are able to find the center and commutator subgroup of G),

• determine the sizes of conjugacy classes of G,

• determine the degrees of all representations of G.

Corollary 2.2.1. The character table of G is an invertible matrix.

PROOF. Direct result from the fact that the irreducible characters, and hence the rows of the char-

acter table are linearly independent. �

Proposition 2.2.2. The following properties hold.

8
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1. χ(1G)||G|, ∀χ ∈ Irr(G).

2.
|Irr(G)|∑
i=1

(χi(1G))2 = |G|.

3. If χ ∈ Irr(G), then χ ∈ Irr(G), where χ(g) = χ(g), ∀g ∈ G.

4. χ(g−1) = χ(g), ∀g ∈ G. In particular if g−1 ∈ [g], then χ(g) ∈ R, ∀χ.

PROOF. See James [40] or Moori [54]. �

In addition to the properties mentioned in Proposition 2.2.2, the character table satisfies certain

orthogonality relations mentioned in the next Theorem.

Theorem 2.2.3. Let Irr(G) = {χ1, χ2, · · · , χk} and {g1, g2, · · · , gk} be a collection of representa-

tives for the conjugacy classes of G. For each 1 ≤ i ≤ k let CG(gi) be the centralizer of gi. Then we

have the following relations:

1. The row orthogonality relation:

For each 1 ≤ i, j ≤ k,
k∑
s=1

χi(gs)χj(gs)
|CG(gs)|

= 〈χi, χj〉 = δij .

2. The column orthogonality relation:

For each 1 ≤ i, j ≤ k,
k∑
s=1

χs(gi)χs(gj)
|CG(gi)|

= δij .

PROOF.

1. Using Proposition 2.1.4(2) we have

δij = 〈χi, χj〉 =
1
|G|

∑
g∈G

χi(g)χj(g) =
1
|G|

k∑
s=1

|G|
|CG(gs)|

χi(gs)χj(gs) =
k∑
s=1

χi(gs)χj(gs)
|CG(gs)|

.

2. For fixed 1 ≤ t ≤ k, define ψt : G→ C by ψt(g) =

{
1 if g ∈ [gt],

0 otherwise.
It is clear that ψt is a class function on G. Since Irr(G) form an orthonormal basis for C(G),

then ∃ λ′ss ∈ C such that ψt =
k∑
s=1

λsχs. Now for 1 ≤ j ≤ k we have

λj = 〈ψt, χj〉 =
1
|G|

∑
g∈G

ψt(g)χj(g) =
k∑
s=1

ψt(gs)χj(gs)
|CG(gs)|

=
χj(gt)
|CG(gt)|

.

9
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Hence ψt =
k∑
j=1

χj(gt)
|CG(gt)|

χj . Thus we have the required formula :

δts = ψt(gs) =
k∑
j=1

χj(gs)χj(gt)
|CG(gs)|

.

This completes the proof. �

We conclude this section by giving the character table of the cyclic group F∗q .

Theorem 2.2.4. The group F∗q = 〈θ〉 has q − 1 irreducible characters χk, 0 ≤ k ≤ q − 2 given at

θj , by χk(θj) = e
2πjk
q−1

i
.

PROOF. If ρ(θ) = (c)1×1 = c ∈ C is a 1−dimensional matrix representation, then the values of

the representation ρ over all elements of F∗q are determined by ρ(θj) = cj . By the definition of

representation, we have

cq−1 = ρ(θq−1) = ρ(1F∗q ) = 1.

It follows that c must be a (q− 1)th root of unity. Therefore each root of unity gives an irreducible

representation and the result follows since χρ = ρ. �

2.3. Tensor Product of Characters

In this section we follow precisely the description of Moori [54]. Given two matrices P = (pij)m×m
and Q = (qij)n×n, we define the tensor product of P and Q to be the mn×mn matrix P ⊗Q

P ⊗Q = (pij)Q =


p11Q p12Q · · · p1mQ

p21Q p22Q · · · p2mQ
...

...
. . .

...

pm1Q pm2Q · · · pmmQ

 .

Then

trace(P ⊗Q) = p11trace(Q) + p22trace(Q) + · · ·+ pmmtrace(Q) = trace(P )trace(Q).

Definition 2.3.1. Let U and T be two representations of G. We define the tensor product of T ⊗U
by

(T ⊗ U)(g) = T (g)⊗ U(g), ∀g ∈ G.

Theorem 2.3.1. Let T and U be representations of G. Then

10
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(i) T ⊗ U is a representation of G,

(ii) χT⊗U = χTχU .

PROOF.

(i) ∀g, h ∈ G, we have

(T ⊗ U)(gh) = T (gh)⊗ U(gh)

= (T (g)T (h))⊗ (U(g)U(h))

= (T (g)⊗ U(g))(T (h)⊗ U(h))

= (T ⊗ U)(g)(T ⊗ U)(h).

(ii)

χT⊗U (g) = trace((T ⊗ U)(g))

= trace((T (g)⊗ U(g)))

= trace(T (g))trace(U(g))

= χT (g)χU (g).

Hence χT⊗U = χTχU .

This proves the Theorem. �

Note 2.3.1. Observe that T ⊗ U 6= U ⊗ T in general, but χT⊗U = χTχU = χUχT = χU⊗T . Thus

the tensor product of characters is commutative.

Now we show that knowing the character tables of two groups K and H, then the tensor products

can be used to obtain the character table of K ×H.

Theorem 2.3.2. Let H1 and H2 be two groups with conjugacy classes C1, C2, · · · , Cr and C′1, C
′
2, · · · , C

′
s

respectively. Suppose that Irr(H1) = {χ1, χ2, · · · , χr} and Irr(H2) = {χ′1, χ
′
2, · · · , χ

′
s}. The conju-

gacy classes of H1 ×H2 are Ci × C
′
j and Irr(H1 ×H2) = {χi × χ

′
j | χi ∈ Irr(H1), χ

′
j ∈ Irr(H2)}

for 1 ≤ i ≤ r and 1 ≤ j ≤ s.

PROOF. For all x, h1 ∈ H1 and y, h2 ∈ H2, we have

(x, y)−1(h1, h2)(x, y) = (x−1h1x, y
−1h2y).

Therefore two elements (h1, h2) and (h
′
1, h

′
2) of H1×H2 are conjugate if and only if h1 ∼H1 h

′
1 and

h2 ∼H2 h
′
2, where ∼H denotes the conjugation of two elements in a group H. Thus

Ci × C
′
j , 1 ≤ i ≤ r, 1 ≤ j ≤ s,

11
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are the conjugacy classes of H1×H2. In particular, there are exactly rs conjugacy classes of H1×H2.

On the other hand for all i, j, k, l,〈
χi × χ

′
j , χk × χ

′
l

〉
=

1
|H1 ×H2|

∑
h∈H1, ĥ∈H2

χi(h)χ
′
j(ĥ)χk(h)χ′l(ĥ)

=

 1
|H1|

∑
h∈H1

χi(h)χk(h)

 1
|H2|

∑
ĥ∈H2

χ
′
j(ĥ)χ′l(ĥ)


= 〈χi, χk〉

〈
χ
′
j , χ

′
l

〉
= δikδjl.

Thus the rs characters χi × χ
′
j are distinct and irreducible. This completes the proof. �

Note 2.3.2. Observe that if χ, ψ ∈ Irr(G), then in general χψ 6∈ Irr(G). In the special case when

deg(ψ) = 1, we have the following proposition.

Proposition 2.3.3. Let ψ be a linear character of G and χ ∈ Irr(G). Then χψ ∈ Irr(G).

PROOF. Suppose that ψ is a linear character of G. Then we know that ψ(g) is a root of unity for

any g ∈ G. In particular, we have 1 = |ψ(g)| = ψ(g)ψ(g) for every g ∈ G. Now assume that χ is an

irreducible character of G. It follows that

〈ψχ, ψχ〉 =
1
|G|

∑
g∈G

ψχ(g)ψχ(g)

=
1
|G|

∑
g∈G

χ(g)χ(g)ψ(g)ψ(g)

=
1
|G|

∑
g∈G

χ(g)χ(g) = 〈χ, χ〉 = 1.

Hence ψχ is an irreducible character of G. �

Proposition 2.3.4. The number of linear characters of a group G is given by |G|/|G′ |, where G
′

is the derived subgroup of G.

PROOF. See Theorem 17.11 of James [40]. �

2.4. Lifting of Characters

In this section, we present a method for constructing characters of G when it has a proper normal

subgroup N. We may look at the quotient group G/N, which is of a smaller order than |G|.
Therefore it becomes reasonable to assume that the irreducible characters of G/N are known.

From this assumption we may construct characters of G in a process known as lifting of characters.

Thus the normal subgroups help to find characters of G and conversely the character table of G

enables us to determine all the normal subgroups of G.

12
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Proposition 2.4.1. Let N CG and χ̃ be a character of G/N. The function χ : G→ C defined by

χ(g) = χ̃(gN), ∀g ∈ G is a character of G with deg(χ) = deg(χ̃). Moreover; if χ̃ ∈ Irr(G/N), then

χ ∈ Irr(G).

PROOF. Assume that ρ̃ : G/N → GL(n,C) is a representation which affords the character χ̃. Define

the function ρ : G → GL(n,C) by ρ(g) = ρ̃(gN), ∀g ∈ G. Then ρ defines a representation on G

since

ρ(gh) = ρ̃(ghN) = ρ̃(gNhN) = ρ̃(gN)ρ̃(hN) = ρ(g)ρ(h), ∀g, h ∈ G.

Hence the character χ, which is afforded by ρ, satisfies

χ(g) = tr(ρ(g)) = tr(ρ̃(gN)) = χ̃(gN) ∀g ∈ G.

and so χ is a character of G. For the degree of χ, we have

deg(χ) = χ(1G) = χ̃(1GN) = χ̃(N) = deg(χ̃).

Now let S be a transversal of N in G. Then

1 = 〈χ̃, χ̃〉 =
1

|G/N |
∑

gN∈G/N

χ̃(gN)χ̃(gN)−1

=
1
|G|

∑
gN∈G/N

|N |χ̃(gN)χ̃(gN)−1

=
1
|G|

∑
g∈S
|N |χ̃(gN)χ̃(g−1N)

=
1
|G|

∑
g∈S
|N |χ(g)χ(g−1)

=
1
|G|

∑
g∈G

χ(g)χ(g−1)

= 〈χ, χ〉 .

This completes the proof. �

Definition 2.4.1. The character χ defined in the above Proposition is called the lift of χ̃ to G.

One of the advantages given by the character table of G is that it supplies us with all normal

subgroups of G. This is the assertion of the next theorem.

Theorem 2.4.2. Let N CG. Then there exist irreducible characters χ1, χ2, · · · , χs of G such that

N = ∩si=1kerχi.

13
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PROOF. Firstly, we have the following observation. If χ1, χ2, · · · , χk are the irreducible charac-

ters of G, then
k⋂
i=1

kerχi = {1G}. Now suppose that G/N has s distinct irreducible characters

χ̃1, χ̃2, · · · , χ̃s. So
s⋂
i=1

ker χ̃i = {N}. For 1 ≤ i ≤ s, suppose that χi are the lifts to G of χ̃i. Thus if

g ∈ kerχi, then

χ̃i(N) = χi(1G) = χi(g) = χ̃i(gN),

and hence gN ∈ ker χ̃i. Therefore if g ∈
|Irr(G)|⋂
i=1

kerχi, then gN ∈
s⋂
i=1

ker χ̃i = {N}, and so g ∈ N.

Hence N =
s⋂
i=1

kerχi. �

The converse of the above theorem is also true, i.e. every normal subgroup of G arises in this

way.

Corollary 2.4.3. G is simple if and only if for every χr ∈ Irr(G), where χr 6= χ1, and for all

1G 6= g ∈ G, we have χr(g) 6= χr(1G).

PROOF. See Alperin [3] or Moori [54]. �

Hence the character table can be used to decide whether G is simple group or not.

2.5. Restriction and Induction of Characters

Given a group G and a subgroup H ≤ G. Knowing characters of G, one can get some characters of

H and vice versa. These two dual operations are known as restriction and induction of characters.

2.5.1 Restriction of Characters

Let H ≤ G and let ρ : G −→ GL(n,C) be a representation of G. The restriction of ρ to H, denoted

by ρ↓GH is defined by

ρ↓GH(h) = ρ(h), ∀h ∈ H.

If χρ is the character afforded by ρ, then it is not difficult to see that χρ↓GH is a character of H.

Also if χρ ∈ Irr(G), then it is not necessarily that χρ↓GH ∈ Irr(H).

Theorem 2.5.1. Let H ≤ G. Let χ ∈ Irr(G) and let Irr(H) = {ψ1, ψ2, · · · , ψr}. Then χ↓GH =
r∑
i=1

diψi, where di ∈ N∪{0} and
r∑
i=1

d2
i ≤ [G : H]. The equality holds in the previous

∑
if and only

if χ(g) = 0, ∀g ∈ G \H.

14
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PROOF. We have
r∑
i=1

d2
i =

〈
χ↓GH , χ↓GH

〉
=

1
|H|

∑
h∈H

χ(h)χ(h).

Since χ ∈ Irr(G), we have

〈χ, χ〉G =
1
|G|

∑
g∈G

χ(g)χ(g)

=
1
|G|

∑
g∈H

χ(g)χ(g) +
1
|G|

∑
g∈G\H

χ(g)χ(g)

=
|H|
|G|

r∑
i=1

d2
i +K,

where K = 1
|G|

∑
g∈G\H

χ(g)χ(g). Since K = 1
|G|

∑
g∈G\H

|χ(g)|2, we have that K ≥ 0. Thus

|H|
|G|

r∑
i=1

d2
i = 1−K ≤ 1,

so
r∑
i=1

d2
i ≤
|G|
|H|

= [G : H].

Also

K = 0⇐⇒ |χ(g)|2 = 0⇐⇒ χ(g) = 0, ∀g ∈ G \H.

This completes the proof. �

Theorem 2.5.1 asserts that the number of irreducible constituents of χ↓GH is bounded above by

[G : H]. Therefore if [G : H] is fairly small, the character tables of H and G are closely related.

For example if [G : H] = 2 and χ ∈ Irr(G), then either χ↓GH ∈ Irr(H) or χ↓GH = ψ1 + ψ2 where

ψ1, ψ2 ∈ Irr(H).

2.5.2 Induction of Characters

Let H ≤ G such that the set {x1, x2, · · · , xr} is a transversal for H in G. Let φ be a representation

of H of degree n. Then we define φ∗ on G as follows:

φ∗(g) =


φ(x1gx

−1
1 ) φ(x1gx

−1
2 ) · · · φ(x1gx

−1
r )

φ(x2gx
−1
1 ) φ(x2gx

−1
2 ) · · · φ(x2gx

−1
r )

... · · · . . .
...

φ(xrgx−1
1 ) φ(xrgx−1

2 ) · · · φ(xrgx−1
r )


15
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where φ(xigx−1
j ) is n× n block satisfying the property that

φ(xigx−1
j ) = 0n×n ∀xigx−1

j 6∈ H.

It is possible to show that φ∗ is a representation of G of degree n.

Definition 2.5.1. With the above, the representation φ∗ is called the representation of G induced

from the representation φ of H and is denoted by φ∗ = φ↑GH .

Definition 2.5.2. Let φ be a class function of H. Then φ↑GH , the induced class function on G, is

defined by

φ↑GH(g) =
1
|H|

∑
x∈G

φ0(xgx−1)

where φ0 is defined on G by

φ0(h) =

{
φ(h) if h ∈ H,
0 if h 6∈ H.

Note that deg(φ↑GH) = [G : H] deg(φ).

Theorem 2.5.2. If φ is a character of H where H ≤ G, then φ↑GH is a character of G.

PROOF. See Moori [54] or Whitley [76]. �

Theorem 2.5.3 (Frobenius Reciprocity Theorem). Let G be a group, H ≤ G and suppose

that φ is a character of H and θ a character of G. Then〈
φ, θ↓GH

〉
H

=
〈
φ↑GH , θ

〉
G
.

PROOF. We obtain that〈
φ↑GH , θ

〉
G

=
1
|G|

∑
g∈G

φ↑GH(g)θ(g) =
1
|G|

1
|H|

∑
g∈G

∑
x∈G

φ0(xgx−1)θ(g)

Putting y = xgx−1, then for fixed x, as g runs through G, so does y, and θ(y) = θ(g), since θ is a

class function on G. Hence〈
φ↑GH , θ

〉
G

=
1
|G|

1
|H|

∑
x∈G

∑
y∈G

φ0(y)θ(y) =
1
|G|

1
|H|

∑
y∈G

∑
x∈G

φ0(y)θ(y)

=
1
|H|

∑
y∈H

φ(y)θ(y) =
〈
φ, θ↓GH

〉
H
.

Hence the result. �
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Corollary 2.5.4. Let Irr(G) = {χ1, χ2, · · · , χr} and Irr(H) = {ψ1, ψ2, · · · , ψs} where H ≤ G.

Assume that χi↓GH =
s∑
j=1

aijψj and ψj↑GH =
r∑
i=1

bijχi. Then aij = bij for all i, j.

PROOF. Using the Frobenius Reciprocity Theorem we get aij =
〈
χi↓GH , ψj

〉
=
〈
χi, ψj↑GH

〉
= bij . �

Next we compute the values of induced character φ↑GH on classes of G.

Proposition 2.5.5. Let φ be a character of H and let φ↑GH be the induced character from H to G.

Let g ∈ G and suppose that [g] breaks into m classes in H with representatives x1, x2, · · · , xm. If

H ∩ [g] = ∅, the empty set, then φ↑GH(g) = 0, while if H ∩ [g] 6= ∅, then

φ↑GH(g) = |CG(g)|
m∑
i=1

φ(xi)
|CH(xi)|

.

PROOF. We have

φ↑GH(g) =
1
|H|

∑
x∈G

φ0(xgx−1).

If H∩ [g] = ∅, then xgx−1 6∈ H for all x ∈ G and thus φ0(xgx−1) = 0 for all x ∈ G and φ↑GH(g) = 0.

Now if H ∩ [g] 6= ∅, then let h ∈ H ∩ [g]. As x runs over G, we have xgx−1 = h for exactly |CG(g)|
times, so φ↑GH(g) = |CG(g)|

|H|

∑
y∈[g]

φ0(y). Now φ0(y) = 0 if y 6∈ H, and [g] ∩H contains [H : CH(xi)]

conjugates of each xi. Therefore φ↑GH(g) = |CG(g)|
m∑
i=1

φ(xi)
|CH(xi)|

. �

We conclude this section by remarking that the operations of restriction and induction of characters

do not necessarily preserve irreducibility of characters.

2.6. Permutation Character

Let G acts on a finite set Ω = {ω1, ω2, · · · , ωk} and for each g ∈ G define the k×k matrix πg = (aij)

where

aij =

{
1 if ωgi = ωj ,

0 otherwise.

Then πg is a permutation matrix of the action of g and P : G −→ GL(k,C) given by P (g) = πg is

a representation of G.

The character χP afforded by this representation is called a permutation character, and χP (g) =

|{ω ∈ Ω| ωg = ω}|, that is, χP (g) is the number of points of Ω left fixed by g ∈ G. Therefore

χP (g) ∈ N ∪ {0}, ∀g ∈ G.

17
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Note 2.6.1. Observe that

deg(χP ) = χP (1G) = |{ω ∈ Ω| ω1G = ω}| = |Ω| = k,

since by definition of group action we have ω1G = ω, ∀ω ∈ Ω.

Recall that an action of G on a set X is called transitive if ∀x, y ∈ X, ∃g ∈ G such that xg = y.

Now let H ≤ G and S = {a1, a2, · · · , ar} be a left transversal for H in G. Then G acts on the

set of left cosets of H in G by (aiH)g = gaiH. It is clear that this action is transitive since for

any ai, aj ∈ S, we have (aiH)aja
−1
i = ajH. The resulting permutation character of this action is of

degree [G : H] = |S| = r. In fact this permutation character is 1↑GH . To see this we have

(aiH)g = aiH ⇐⇒ gaiH = aiH ⇐⇒ a−1
i gaiH = H ⇐⇒ a−1

i gai ∈ H.

Thus

χP (g) =
r∑
i=1

φ0(a−1
i gai),

where

φ0(y) =

{
1 if y ∈ H,
0 if y 6∈ H.

Hence χP = 1↑GH . This shows that for any subgroup H, there exists a permutation character of G.

Conversely, if G acts transitively on any set X, then the associated permutation character represents

1↑GH for some subgroup H of G. This is the assertion of the following theorem.

Theorem 2.6.1. Let G acts transitively on a set Ω and let ω ∈ Ω. Then 1↑GGω is the permutation

character of the action.

PROOF. Since G acts transitively on Ω, we have ωG = Ω. It follows by the Orbit-Stabilizer Theorem

(see Moori [54] for example) that there is a 1 − 1 correspondence between Ω and the set of left

cosets of Gω in G, given by ωt 7−→ tGω for t ∈ G. Now for g ∈ G we have

(ωt)g = ωt ⇐⇒ ωt
−1gt = ω ⇐⇒ t−1gt ∈ Gω ⇐⇒ tGω = gtGω ⇐⇒ tGω = (tGω)g,

where G acts on the set of left cosets of Gω in G as given above. Therefore the permutation char-

acter of the action of G on Ω is the same as the permutation character of the action of G on the

left cosets of Gω in G, which is 1↑GGω . �

Corollary 2.6.2. Let G acts on Ω with a permutation character χ. Suppose Ω decomposes into

exactly k orbits under the action of G. Then 〈χ,1〉 = k, where 1 is the trivial character of G.
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PROOF. Write Ω =
k⋃
i=1

∆i where the ∆i are orbits. Let χi be the permutation character of G on ∆i

so that χ =
k∑
i=1

χi. For ω ∈ ∆i, we have χi = 1↑GGω by Theorem 2.6.1. Thus

〈χi,1〉G =
〈
1↑GGω ,1

〉
G

=
〈
1,1↓GGω

〉
Gω

= 1

by Frobenius reciprocity. Therefore 〈χ,1〉 =
k∑
i=1

〈χi,1〉 = k, completing the proof. �

Lemma 2.6.3. If G acts transitively on Ω, then all subgroups Gω, ω ∈ Ω of G are conjugate in G.

PROOF. Since G acts transitively on Ω, there is some h ∈ G such that ωh = κ for any ω, κ ∈ Ω. Now

g ∈ Gω ⇐⇒ ωg = ω ⇐⇒ κgh
−1

= κh
−1 ⇐⇒ κhgh

−1
= κ⇐⇒ hgh−1 ∈ Gκ ⇐⇒ g ∈ (Gκ)h.

Thus Gω = (Gκ)h, which shows that Gω = hGκh
−1. That is Gω and Gκ are conjugate in G. �

Because 1↑GH is a transitive permutation character, it must satisfy certain necessary conditions

mentioned in the following theorem.

Theorem 2.6.4. Let H ≤ G and χ = 1↑GH . Then

(i) deg(χ)||G|.

(ii) 〈χ, ψ〉 ≤ deg(ψ), ∀ψ ∈ Irr(G).

(iii) 〈χ,1〉 = 1.

(iv) χ(g) ∈ N ∪ {0}, ∀g ∈ G.

(v) χ(g) ≤ χ(gm), ∀g ∈ G, ∀m ∈ N ∪ {0}.

(vi) o(g) - |G|
χ(1G) =⇒ χ(g) = 0.

(vii) χ(g) |[g]|χ(1G) ∈ Z, ∀g ∈ G.

PROOF. Let Ω be the set of the left cosets of H in G. Thus χ is the permutation character of G on

Ω.

(i) Since deg(χ) = [G : H], we havedeg(χ)||G|.

(ii) Using Frobenius reciprocity we get 〈χ, ψ〉G =
〈
1↑GH , ψ

〉
G

=
〈
1↓GH , ψ↓GH

〉
H
≤ deg(ψ).

(iii) Since χ is a transitive permutation character, it follows by Corollary 2.6.2 that 〈χ,1〉 = 1.
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(iv) This follows because χ(g) is the number of points left fixed by g and hence is non-negative.

(v) Let g ∈ Gω, that is ωg = ω. It is clear that ωg
m

= ω. Thus any point of Ω left fixed by g is

also fixed by gm. Therefore the number of points fixed by g does not exceed the number of

points fixed by gm.

(vi) We know that |G|
χ(1G) = |H| so if o(g) - |H|, then [g]∩H = ∅, the empty set. Hence 1↑GH(g) = 0.

(vii) Let B = {(ω, x)| ω ∈ Ω, x ∈ [g], ωx = ω}. Since χ is constant on [g], we have

|[g]|χ(g) = |B| =
∑
ω∈Ω

|[g] ∩Gω|

By Lemma 2.6.3 all subgroups Gω are conjugate in G. Thus |[g]∩Gω| = m is independent of

ω, and χ(g)|[g]| = m|Ω| = mχ(1G).

This completes the proof. �

Corollary 2.6.5. Let H ≤ G with χ = 1↑GH . Let g ∈ G and assume that [g] splits in H into m

classes with representatives h1, h2, · · · , hm. Then

χ↑GH(g) =
m∑
i=1

|CG(g)|
|CH(hi)|

.

PROOF. Immediate by Proposition 2.5.5. �
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3

Structure Of The General Linear Group

In this chapter, we go briefly over the basic and elementary properties and the structure of the

general linear group GL(n,F) and some of its subgroups. Also some of the groups associated with

GL(n,F) will be studied. In most of the work, we follow the notation in Alperin [3], Cameron [12]

and Rotman [65].

3.1. Subgroups and Associated Groups

In this section, we study the general features of the general linear group GL(n,F) and some of its

subgroups. We focus mainly in the case where F is finite; that is F = Fq, the Galois Field of q

elements.

3.1.1 The General and Special Linear Groups

Definition 3.1.1. Let V be a vector space over the field F, the General Linear Group of V ,

written GL(V ) or Aut(V ), is the group of all automorphisms of V, i.e. the set of all bijective linear

transformations V −→ V, together with composition of functions as group operation.

If V (n,F) denotes the n−dimensional vector space over a field F, then GL(V ) is identified with

group GL(n,F) consisting of the n× n nonsingular matrices defined over the field F. Moreover; if

F = Fq, then we write GL(n, q) in place of GL(n,Fq). The following proposition counts the elements

of the group GL(n, q).

Proposition 3.1.1. The number of the elements of GL(n, q) is
n−1∏
k=0

(qn − qk).

PROOF. This holds by counting the n×n matrices whose rows are linearly independent. The ith row

can be any vector not in the linear span of the first i− 1 rows and thus has qn − qi−1 possibilities.

Hence, there are (qn − 1)(qn − q) · · · (qn − qn−1) =
n−1∏
k=0

(qn − qk) invertible n× n matrices. �
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For any positive integers n and m with n < m and fixed field F, the group GL(n,F) is embedded

into GL(m,F) by sending A ∈ GL(n,F) to the m ×m matrix having A in the left upper corner,

Im−n in the right lower corner and zeros elsewhere.

Definition 3.1.2. An invertible linear transformation A : V −→ V with determinant 1 is called

a unimodular. For the finite n-dimensional vector space V (n,F), the Special Linear Group,

written SL(n,F), is the subgroup of GL(n,F) consisting of all unimodular transformations.

We omit showing that SL(n,F) satisfies the subgroup axioms. Moreover; we can see that SL(n,F)

is the kernel of the homomorphism det : GL(n,F) −→ F∗ and hence SL(n,F)EGL(n,F). Thus the

group GL(n,F) is not simple group in general.

Proposition 3.1.2. |SL(n, q)| =
n−1∏
k=1

(qn+1 − qk) = q
n(n−1)

2 (qn − 1)(qn−1 − 1) · · · (q2 − 1).

PROOF. By the first isomorphism theorem of groups, GL(n,F)/ ker(det) ∼= Im(det). Now det is

surjective. Therefore, Im(det) = F∗ and ker(det) = SL(n,F). Thus GL(n,F)/SL(n,F) ∼= F∗ and

hence, when F is finite with q elements, |SL(n, q)| = |GL(n, q)|/q − 1 and the result follows by

Proposition 3.1.1. �

Now, let K be an isomorphic copy of the group F∗ ∼= GL(1,F) in the group GL(n,F), where

the embedding is defined as in the comment after Proposition 3.1.1. That is

K =

{(
α 0

0 In−1

)
| α ∈ F∗

}
. (3.1)

This embedding makes K not normal subgroup in GL(n,F) in general. The next theorem relates

the elements of GL(n,F) and SL(n,F).

Theorem 3.1.3. The group GL(n,F) = SL(n,F):K.

PROOF. Assume that g ∈ GL(n,F) and det(g) = δ ∈ F∗. The element kδ−1 =

(
δ−1 0

0 In−1

)
is in

K. Let h = gkδ−1 . Then det(h) = det(gkδ−1) = det(g) det(kδ−1) = δδ−1 = 1, which shows that

h ∈ SL(n,F) and therefore g = h(kδ−1)−1 = hkδ. Hence we have that GL(n,F) = SL(n,F)K. On

the other hand, since SL(n,F) ∩K = {In} and normality of SL(n,F) in GL(n,F) was established

above, we have GL(n,F) = SL(n,F) : K. �

Lemma 3.1.4. Half of the elements of F∗q , q is odd, are squares while if q is even, then all the

elements of F∗q are squares.

PROOF. See Hill [32]. �
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Corollary 3.1.5. If q is even, then GL(2, q) = SL(2, q)×H, H ∼= F∗q .

PROOF. Let H = {αI2| α ∈ F∗q}. Then H is normal in GL(2, q) since gαI2g
−1 = αI2, ∀g ∈ GL(2, q).

By Lemma 3.1.4, every element of F∗q is a square because q is even. Thus we may assume that

det(g) = δ2 for g ∈ GL(n, q) and δ2 ∈ F∗q . Then similar steps used in Theorem 3.1.3 to show

that GL(n,F) = SL(n,F)K can be applied here also. Therefore, GL(2, q) = SL(2, q)H. Now

αI2 ∈ SL(2, q) ⇐⇒ det(αI2) = α2 = 1 ⇐⇒ α = 1. Note that −1 = 1 because q has characteristic

2. Therefore SL(2, q) ∩H = {I2} and the result follows. �

3.1.2 Upper Triangular, p−Sylow and Parabolic Subgroups

Definition 3.1.3. The set UT (n,F) consisting of all n × n invertible upper triangular matrices

over the field F forms a subgroup of GL(n,F), which we call the Upper Triangular Subgroup.

The group UT (n, q) has order |UT (n, q)| = q
n(n−1)

2 (q−1)n, since elements in the main diagonal are

taken from F∗q and elements above to the main diagonal can be any element of Fq.

An important subgroup of the group UT (n,F) is UT (n,F)∩SL(n,F), which we denote by SUT (n,F)

and we call the Special Upper Triangular Group. The group SUT (n, q) has order q
n(n−1)

2 (q −
1)n−1, since elements above the main diagonal can be chosen arbitrarily from Fq, while all elements

of the main diagonal are taken from F∗q in arbitrary way, except the element in the (n, n)th position,

which must be

(
n−1∏
i=1

aii

)−1

to make det(g) = 1. Hence SUT (n, q) is of index (q − 1) in UT (n, q).

In what follows, we give our attention to the Sylow p−subgroups of the general linear group

GL(n, q), where p is the characteristic of the field of q elements.

Definition 3.1.4. The subset of SUT (n,F), where each element have 1’s in the main diagonal,

forms a subgroup of SUT (n,F), called Special Upper Unitriangular Group and is denoted by

SUUT (n,F).

Remark 3.1.1. The group SUUT (n, q) have just been defined is easily seen to belong to Sylp(GL(n, q)),

the set of Sylow p−subgroups of GL(n, q), since the order of SUUT (n, q) is q
n(n−1)

2 , which is the

highest power of q in the order of GL(n, q). Hence, any Sylow p−subgroup of GL(n, q) is conjugate

to SUUT (n, q) and by Sylow’s Theorem, the number of Sylow p−subgroups divides the number

[GL(n, q) : SUUT (n, q)]. Moreover, the group SUUT (n, q) represents a Sylow p−subgroup of the

groups SL(n, q), UT (n, q) and SUT (n, q). We see later that it is also a Sylow p−subgroup of the

parabolic subgroup Pλ.

Definition 3.1.5. An element u of GL(n,F) is called unipotent if its characteristic polynomial is

(t−1)n. A subgroup H of GL(n,F) is called a unipotent subgroup if all its elements are unipotent.
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Remark 3.1.2. The subgroup SUUT (n,F) is a unipotent subgroup ofGL(n,F) since every element

of this subgroup has all eigenvalues equal to 1. It is proved by Kolchin (see Alperin [3]) that any

unipotent subgroup of GL(n,F) is conjugate with the subgroup SUUT (n,F).

The subgroup SUUT (n,F) will be used to give a factorization of the group UT (n,F), namely we

will see that (see Corollary 3.1.9)

UT (n,F) = SUUT (n,F) :
⊗

n copies

F∗.

Note 3.1.1. Note that for n > 1, the group
⊗

n copies

F∗ is not normal in UT (n,F), except when

F = F2. Hence UT (n,F) is not the direct product of SUUT (n,F) and
⊗

n copies

F∗, in general. To

see that
⊗

n copies

F∗ is not normal, take UT (n,F) 3 g =


1 · · · 0 1

0 1
... 0

... · · · . . .
...

0 · · · 0 1

 and
⊗

n copies

F∗ 3 h =


b 0 · · · 0

0 1 · · · 0
... · · · . . .

...

0 · · · 0 1

 , for some b 6= 1. Then we have


1 · · · 0 1

0 1
... 0

... · · ·
. . .

...

0 · · · 0 1




b 0 · · · 0

0 1 · · · 0

... · · ·
. . .

...

0 · · · 0 1




1 · · · 0 −1

0 1
... 0

... · · ·
. . .

...

0 · · · 0 1

 =


b 0 · · · 1− b
0 1 · · · 0

... · · ·
. . .

...

0 · · · 0 1

 6∈ ⊗
n copies

F∗.

Observe that as long as the field F contains more than two elements, then we have such b, which

makes ghg−1 6∈
⊗

n copies

F∗. In the case, when q = 2, the subgroup SUUT (n, 2) = UT (n, 2), while the

subgroup
⊗

n copies

F∗2 reduces to the neutral group. In this case, Theorem 3.1.9 is satisfied trivially.

We conclude this subsection by discussing the parabolic subgroups of GL(n,F). We start by defining

the flags of a vector space.

Definition 3.1.6. A flag F is an increasing sequence of subspaces of an n−dimensional vector

space Vn = V (n,F), which satisfies the proper containment; that is to say

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vr = V (n,F).

Hence

0 < dimV1 < dimV2 < · · · < dimVr = n. (3.2)
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If dimVi = i, ∀i, then the flag F is called a complete flag or full flag.

Let F be the set of all flags of an n−dimensional vector space Vn = V (n,F). We define an equivalence

relation ∼ on F by

(V0 ⊂ V1 ⊂ · · · ⊂ Vr) ∼ (W0 ⊂W1 ⊂ · · · ⊂Ws)

if and only if r = s and dimVi = dimWi, ∀i.

From equation (3.2), we have

(dimV1 − 0) + (dimV2 − dimV1) + · · ·+ (dimVr − dimVr−1) = dimVr − 0 = dimVr = n.

Therefore each equivalence class of∼ defines a partition σ ` n, whose parts are (dimVi−dimVi−1), 1 ≤
i ≤ r. Conversely, to any partition λ = (λ1, λ2, · · · , λk) ` n, written in ascending order, one can

associate (up to equivalence of flags) a flag {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vr = V (n,F) such that the

subspaces Vi, i ≥ 1, of Vn contains of the vectors whose first λ1 + λ2 + · · · + λi components are

nonzero. We summarize this in the following proposition.

Proposition 3.1.6. There is a 1− 1 correspondence between the set of equivalence classes defined

by ∼ above and the set of partitions of n.

PROOF. Established above. �

In terms of the above proposition, we can write without ambiguity Fλ to denote the flag corresponds

to the partition λ. We may also call Fλ by the λ−flag.

Note 3.1.2. The complete flag Fλ is the flag corresponding to the partition λ = 1n.

Let us denote the λ−flag Fλ given in the above definition by Fλ = (V1, V2, · · · , Vk). The gen-

eral linear group Gn = GL(n, q) acts on a natural way on the set of all flags of the vector space

V (n, q) by g(V1, V2, · · · , Vr) = (gV1, gV2, · · · , gVr), where g ∈ Gn can be viewed as an invertible

linear transformation. This action by g preserves the proper containment and dim gVi = dimVi, ∀i.

The action of Gn on F is intransitive and two flags Fλ = (V1, V2, · · · , Vk) and Fµ = (W1,W2, · · · ,Ws)

belong to the same orbit if and only if k = s and dimVi = dimWi, ∀i. The stabilizer of a flag Fλ

on the action of the group Gn on the set of flags, consists of the elements g ∈ Gn such that F
g
λ = Fλ

or g(V1, V2, · · · , Vk) = (V1, V2, · · · , Vk). This motivates the following definition.

Definition 3.1.7. The stabilizer of a flag Fλ which is associated with a partition λ = (λ1, λ2, · · · , λk) `
n is called a Standard Parabolic Subgroup of Gn and we denote it by Pλ. More generally, any

subgroup of Gn conjugates to Pλ is called a Parabolic Subgroup.
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It is proved (see Alperin [3], Bump [11], Green [27], Macdonald [50] or Springer [71]) that a parabolic

subgroup Pλ of Gn consists of the elements of the form
A11 A12 · · · A1k

0 A22 · · · A2k

... · · · . . .
...

0 0 0 Akk

 , (3.3)

where Aii ∈ GL(λi,F), 1 ≤ i ≤ k, and Aij for i < j is a block matrix of size λi × λj .

Next we would like to count the number of λ−flags Fλ of a vector space V (n, q), where λ =

(λ1, λ2, · · · , λk). For this we define [r], r ∈ Z by

[r] =


qr−1
q−1 = qr−1 + qr−2 + · · ·+ 1 if r ∈ Z+,

0 if r = 0,

−qr[−r] if r ∈ Z−.

(3.4)

Also let {r} = [r]! = [1][2] · · · [r]. Moreover by

[
s

t

]
we mean

[
s

t

]
=


[s]!

[t]![s−t]! if s ≥ t,

0 otherwise.

Then we have the following Proposition.

Proposition 3.1.7. Let s, t ∈ N. Then

[
s

t

]
counts the number of t−dimensional subspaces W

of an s−dimensional vector space V over Fq.

PROOF. See James [39]. �

Definition 3.1.8. The polynomial

[
s

t

]
is known as the Gaussian Polynomial.

We recall that if Fλ = (0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk), then dimVi = λ1 + λ2 + · · ·+ λi, ∀1 ≤ i ≤ k and

λ = (λ1, λ2, · · · , λk). Now for each i > 1, the number of subspaces Vi−1 of Vi is given by[
dimVi

dimVi−1

]
=

[
λ1 + λ2 + · · ·+ λi

λ1 + λ2 + · · ·+ λi−1

]
=
{λ1 + λ2 + · · ·+ λi}
{λ1 + λ2 + · · ·+ λi−1}

.

26



Chapter 3 — Structure Of The General Linear Group

Therefore the number of the λ−flags is given by

k∏
i=2

[
dimVi

dimVi−1

]
=
{λ1 + λ2}
{λ1}{λ2}

· {λ1 + λ2 + λ3}
{λ3}{λ1 + λ2}

· {λ1 + λ2 + λ3 + λ4}
{λ4}{λ1 + λ2 + λ3}

· · · {λ1 + λ2 + · · ·+ λk}
{λk}{λ1 + λ2 + · · ·+ λk−1}

=
{λ1 + λ2 + · · ·+ λk}
{λ1}{λ2} · · · {λk}

=
{n}

{λ1}{λ2} · · · {λk}
.

Thus |FλGL(n,q)| = {n}/{λ1}{λ2} · · · {λk} and it follows by the Orbit-Stabilizer Theorem (see The-

orem 1.2.2 of Moori [54]) that |GL(n, q)Fλ | = |Pλ| = |GL(n, q)|/|FλGL(n,q)|. Hence

[GL(n, q) : Pλ] =
{n}

{λ1}{λ2} · · · {λk}
. (3.5)

From the definition of [r], we can see that q - {n}/{λ1}{λ2} · · · {λk}. We deduce that if P ∈
Sylp(Pλ) (p is the characteristic of Fq), then |P | = q

n(n−1)
2 . Since SUUT (n, q) ≤ Pλ (by taking

Aii ∈ SUUT (λi, q)), it follows that SUUT (n, q) ∈ Sylp(Pλ) for any parabolic subgroup Pλ of

GL(n, q). It is possible to show that |Pλ| = q
n(n−1)

2

k∏
m=1

λm∏
s=1

(qs − 1), but this is not straightforward

neither from (3.3) nor from (3.5) and we omit the verification.

Two important subgroups of any parabolic subgroup Pλ, namely the unipotent radical and the

standard levi complement of Pλ, are of great importance. The unipotent radical, which we denote

by Uλ, is defined to be the set of all invertible linear transformations which induce the identity

on the successive quotient Vi/Vi−1, ∀i, where Vi are the components of the flag Fλ on which the

parabolic subgroup Pλ is defined. In terms of matrices, the unipotent radical Uλ consists of the

matrices 
Iλ1 A12 · · · A1k

0 Iλ2 · · · A2k

... · · · . . .
...

0 0 0 Iλk

 . (3.6)

It follows that, if F = Fq, then the order of the unipotent radical Uλ is q

k−1∑
i=1

k∑
j=i+1

λiλj

.

On the other hand the standard levi complement, denoted by Lλ consists of the matrices of the

form 
A11 0 · · · 0

0 A22 · · · 0
... · · · . . .

...

0 0 0 Akk

 , (3.7)
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where as before, Aii ∈ GL(λi,F), 1 ≤ i ≤ k.

Clearly Lλ ∼=
k⊗
i=1

GL(λi,F) and has order
k∏
i=1

|GL(λi,F)| if F is the finite field of q elements. More

generally, any non-normal subgroup of Pλ that conjugates to Lλ is called a levi complement.

Example 3.1.1. If F1n is the complete flag, then the parabolic subgroup P1n is just the group of

upper triangular matrices UT (n,F), while U1n = SUUT (n,F) and L1n =
⊗

n copies

F∗ = the subgroup

of the diagonal matrices (some people refer to L1n as the torus).

Example 3.1.2. 1. Let n = 2. Then the two parabolic subgroups corresponding to the par-

titions λ = (2) and µ = 12 are P(2) = GL(2,F) with unipotent radical U(2) = I2 and levi

complement L(2) = GL(2,F), while the parabolic subgroup P12 is the group UT (2,F) with

SUUT (2,F) as its unipotent radical and GL(1,F)×GL(1,F) ∼= F∗×F∗ as its levi complement.

2. For n = 3, the three parabolic subgroups corresponding to the partitions λ = (3); µ = (1, 2)

and ν = 13 are

P(3) = GL(3,F), U(3) = I3 andL(3) = GL(3,F);

P(1,2) =



α g f

0 a b

0 c d

 | a, b, c, d, g, f ∈ F, α ∈ F∗, ad− bc 6= 0

 ,

U(1,2) =




1 s t

0 1 0

0 0 1

 | s, t ∈ F
 ,

L(1,2) =



α 0 0

0 a b

0 c d

 | a, b, c, d ∈ F, α ∈ F∗, ad− bc 6= 0

 ∼= GL(1,F)×GL(2,F);

P13 =



α1 a b

0 α2 c

0 0 α3

 | α1, α2, α3 ∈ F∗, a, b, c, d ∈ F

 ,

U13 =




1 a b

0 1 c

0 0 1

 | a, b, c ∈ F
 ,

L13 =



α1 0 0

0 α2 0

0 0 α3

 | α1, α2, α3 ∈ F∗

 ∼= F∗ × F∗ × F∗.

Theorem 3.1.8. With Pλ being a parabolic subgroup of Gn, then Pλ = Uλ:Lλ. Furthermore, Pλ =

NPλ(Uλ), the normalizer of Uλ in Pλ.
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PROOF. It is immediate to see from (3.6) and (3.7), that Uλ
⋂
Lλ = {In}. Normality of Uλ in Pλ

follows from the fact that Uλ represents the kernel of the homomorphism ψ : Pλ → Lλ, where ψ

acts on Pλ by sending the main diagonal of an element A of Pλ to the diagonal matrix having the

same diagonal of A. Let A ∈ Pλ, be an arbitrary element. Then Aψ(A)−1 ∈ Uλ. It follows that

A ∈ Uλψ(A) ⊆ UλLλ. Thus Pλ ⊆ UλLλ, and the equality of Pλ and UλLλ is established. Since

Uλ E Pλ, then Pλ = NPλ(Uλ). This completes the proof of the theorem. �

Corollary 3.1.9. UT (n,F) = SUUT (n,F):
⊗

n copies

F∗.

PROOF. The proof is a special case of combining Example 3.1.1 and Theorem 3.1.8. �

Since the levi complement Lλ ∼=
k⊗
i=1

GL(λi,F), then by Theorem 2.3.2, the irreducible characters

of Lλ are

Irr(Lλ) =

{
k⊗
i=1

χi| χi ∈ Irr(GL(λi,F))

}
, (3.8)

where in the last equation,
⊗

is to be understood the tensor product of characters.

Theorem 3.1.8 asserts that the exact sequence

Lλ −→ Pλ −→ Pλ/Uλ

is an isomorphism, where the first map is inclusion and the second projection. This means that an

irreducible character of Lλ extends irreducibly to Pλ, by using the method of lifting of characters

described in Section 2.4. By equation (3.8), we get
k∏
i=1

|Irr(GL(λi, q))| irreducible characters of

Pλ. The preceding irreducible characters of Pλ comes from characters of Lλ are used as a base for

Frobenius method of induction of characters to build up characters of the group GL(n, q). The

characters of the group GL(n, q) appear into two series, namely Principal and Discrete series. The

Principal Series characters are those which are obtained from characters of parabolic subgroups

of GL(n, q). Any character which is not in the principal series characters is said to belong to the

Discrete Series. The discussion of obtaining characters of GL(n, q) from those of Pλ, λ ` n will

be continued in Section 5.3. The discrete series characters will be discussed in Section 5.4.

3.1.3 Weyl Group of GL(n,F)

We recall that a permutation matrix is a matrix obtained from the identity matrix by switching

some columns (rows). The set of all permutation matrices forms a subgroup W of GL(n,F) called

the Weyl Group.
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Theorem 3.1.10. The Weyl group W is isomorphic to the symmetric group Sn.

PROOF. Let B = {e1, e2, · · · , en} be the standard basis of V (n,F). The Weyl group W act on B on

a natural way; that is if w ∈ W, then wei = ek, 1 ≤ i, k ≤ n. Let X = {1, 2, · · · , n}. For each

w ∈ W, the function ϕw : X −→ X given by ϕw(i) = k, for 1 ≤ i, k ≤ n is such that wei = ek, is

well defined and a bijective. Hence ϕw ∈ Sn. Now if we define ϕ : W −→ Sn by ϕ(w) = ϕw, then

it is not difficult to see that ϕ is a bijective homomorphism and hence it is an isomorphism. The

result follows. �

Remark 3.1.3. The above theorem asserts that the Weyl group of GL(n, q) is independent of the

choice of the field F. It is characterized by the dimension n only.

In the next context, we introduce a special kind of matrices of GL(n,F) which are of great impor-

tance in order to describe the elements of GL(n,F) and consequently SL(n,F).

Definition 3.1.9. A transvection is a linear transformation T on V (n,F) with eigenvalues equal

to 1 and satisfying rank(T − In) = 1, where In is the identity transformation on V (n,F).

In matrix language, a transvection Aij(α) where i 6= j and α ∈ F, is a matrix different from the

identity matrix only that it has α in the (i, j)th position. It turns out that all transvections are

elements of SL(n,F).

One can easily verify the following properties of transvections.

Lemma 3.1.11. For α, β ∈ F, i 6= j,

1. Aij(0) = In.

2. det(Aij(α)) = 1.

3. If α 6= 0, then Aij(α) ∈ UT (n,F)⇐⇒ i < j.

4. Aij(α)Aij(β) = Aij(α+ β).

5. (Aij(α))−1 = Aij(−α).

6. For i 6= j 6= k 6= i, the commutator [Aij(α), Ajk(β)] = Aik(αβ).

PROOF. Direct results from the definition. �

As a quick result of this lemma, we have

Corollary 3.1.12. For fixed i and j, the set Aij = {Aij(α) | α ∈ F} forms a subgroup of SL(n,F).
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PROOF. It follows directly by parts (2), (3) and (4) of Lemma 3.1.11. �

The subgroups defined this way are refer as the root subgroups of GL(n,F).

Now, we come to a known theorem concerning the structure of the group Gn = GL(n,F).

Theorem 3.1.13 (Bruhat Decomposition Theorem). GL(n,F) = UT (n,F) ·W · UT (n,F).

PROOF. In Singh [70], it is shown that any matrix A ∈ GL(n,F) splits into a product A = L1wdL2,

where L1, L2 ∈ SUUT (n,F), d ∈
⊗

n copies

F∗ and w ∈ W. It follows that any element of GL(n,F)

is a product of an upper triangular matrix, a permutation matrix, and another upper triangular

matrix. One can refer also to Alperin [3] for the details. �

Remark 3.1.4. Bruhat Decomposition Theorem asserts that GL(n,F) is a union (disjoint) of the

double cosets UT (n,F)wUT (n,F) as w ranges over all elements of W. Thus GL(n,F) is a union of

n! disjoint double cosets UT (n,F)w UT (n,F).

The next theorem gives a smaller generating set for GL(n,F) than that given by Bruhat Decom-

position Theorem, but we first mention a lemma without proof, which will be helpful in the proof

of the theorem.

Lemma 3.1.14. For each b ∈ UT (n,F), there exists a product T of transvections such that Tb is

a diagonal matrix having the same main diagonal entries as b.

PROOF. See Alperin [3]. �

Theorem 3.1.15. The group GL(n,F) is generated by the set of all invertible diagonal matrices

and all transvections.

PROOF. By Bruhat Decomposition Theorem, we have GL(n,F) = UT (n,F)·W ·UT (n,F). Thus if we

could write all the elements of UT (n,F) and W in terms of diagonal matrices and transvection, then

we done. Using Lemma 3.1.14, we can see that UT (n,F) has this property. By Theorem 3.1.10,

every permutation matrices can be written in terms of permutations of Sn, which are generated by

the set of transpositions. The action of a transposition on the standard basis B = {e1, e2, · · · , en}
is that it sends ei 7−→ ej 7−→ ei for some i 6= j and fixes the rest of B. Now the action of the matrix

Aji(1)Aij(−1)Aji(1) on B is that it sends ei 7−→ ej 7−→ −ei for i 6= j and fixes the other elements

of B. Multiplying this latter matrix by the diagonal matrix diag(1, · · · , 1,−1, 1, · · · , 1), where −1

is in the (i, i) position, the resulting matrix sends ei 7−→ ej 7−→ ei for i 6= j and fixes the other

elements of B, which shows that W can be written in terms of diagonal matrices and transvections.

The result follows. �

Theorem 3.1.16. The group SL(n,F) is generated by the root subgroups Aij .
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PROOF. We give the idea of the proof, which rests on the following three main points. Full details

of the proof can be found in Alperin [3].

• Every element of the group SL(n,F) can be transformed into an element of the group UT (n,F)

by multiplying by some suitably transvections.

• Every element of the group UT (n,F) can be transformed into an element of the group

SUUT (n,F) by multiplying by some suitably transvections.

• Every element of the group SUUT (n,F) can be transformed into the identity element In by

multiplying by some suitably transvections.

Thus any element of SL(n,F) is a product of transvections, which completes the proof. �

Theorem 3.1.17. All transvections are conjugate in GL(n, q) and if n ≥ 3, then all transvections

are conjugate in SL(n, q).

PROOF. See Alperin [3] or Rotman [65]. �

3.1.4 Center and Derived Subgroups of GL(n,F) and SL(n,F)

Two normal subgroups of any group G, namely the center of the group Z(G) and the commutator

or derived subgroup G
′
, are of particular interest. In what follows, we mention some important

facts about these two normal subgroups for the case when G is GL(n,F) or SL(n,F).

Theorem 3.1.18. The center Z(GL(n,F)) consists of all invertible scalar matrices and hence

isomorphic to the group F∗, while the center of Z(SL(n,F)) is SL(n,F) ∩ Z(GL(n,F)).

PROOF. Two different proofs are given in Alperin [3] and Rotman [65]. �

Now, we attack the commutator subgroups of GL(n, q) and SL(n, q).

Theorem 3.1.19. The commutator subgroup GL(n, q)
′

is SL(n, q), except in the case n = q = 2.

PROOF. Suppose that n 6= 2 or q 6= 2. Then by Dieudonné [17], GL(n, q)/GL(n, q)
′ ∼= GL(1, q)/GL(1, q)

′

which is F∗q . This shows that [GL(n, q) : GL(n, q)
′
] = q−1. Now, GL(n, q)

′ ≤ SL(n, q) (This follows

from the fact that if aba−1b−1 is a commutator of GL(n, q), then det(aba−1b−1) = 1, which implies

that GL(n, q)
′ ⊆ SL(n, q) and hence GL(n, q)

′ ≤ SL(n, q)). Since GL(n, q)
′

and SL(n, q) have the

same orders, this forces GL(n, q)
′

to be SL(n, q).

If n = q = 2, then GL(2, 2) ∼= SL(2, 2) ∼= S3, but it is easy to see that S
′
3 = A3 � SL(2, 2), which

completes the proof. �

To deal with the commutator subgroup of SL(n, q), we need the following lemma.
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Lemma 3.1.20. If n ≥ 2, then every transvection Aij(α) is a commutator of elements of SL(n, q),

except when n = 2 and (q = 2 or q = 3).

PROOF. We start with the exceptional cases. Let n = 2. Possible transvections are A12(α) and

A21(α) for α ∈ F∗q . We consider the case A12(α) and the other one follows similarly. Assume

that a =

(
β 0

0 β−1

)
, β ∈ F∗q and b =

(
1 θ

0 1

)
, θ ∈ Fq. The commutator of a and b is [a, b] =

aba−1b−1 =

(
1 (β2 − 1)θ

0 1

)
. Therefore expressing the transvection A12(α) as a commutator of

two elements a and b of SL(n, q) is conditionally connected with the existence of β ∈ F∗q , θ ∈ Fq
such that α = (β2 − 1)θ. This is satisfied if θ 6= 0 and β2 6= 1. If |Fq| > 3, then existence of such β

is guaranteed and we can take θ = α(β2 − 1)−1.

On the other hand if n > 2, then Aij(α) = [Aik(α), Akj(1)] for distinct i, j and k, by part (6) of

Lemma 3.1.11. �

Theorem 3.1.21. The commutator subgroup SL(n, q)
′

is SL(n, q) itself, except in the cases n = 2

and (q = 2 or 3).

PROOF. If n 6= 2, then Theorem 3.1.16 asserts that SL(n, q) is generated by the set of all transvections

in GL(n, q). Lemma 3.1.20 states that every transvestion is a commutator of elements of SL(n, q).

Combining these two results, we deduce that SL(n, q) ⊆ SL(n, q)
′
. Since SL(n, q)

′ ≤ SL(n, q), we

have SL(n, q)
′

= SL(n, q).

If n = 2 and (q = 2 or 3), then SL(2, 2) and SL(2, 3) are isomorphic to S3 and S4 respectively.

Again S
′
3 and S

′
4 are A3 and A4 respectively, which furnishes the case. �

Corollary 3.1.22. In the case n 6= 2 or q 6∈ {2, 3}, the group SL(n, q) is perfect.

3.1.5 Groups Related To GL(n,F)

The Projective General and Special Linear Groups

It is known from elementary group theory that the center of a group G is a normal subgroup.

So, the quotient is defined. This motivates the following definition.

Definition 3.1.10. The groups GL(n,F)/Z(GL(n,F)) and SL(n,F)/Z(SL(n,F)) are known as

the Projective General Linear Group and Projective Special Linear Group. These groups

are denoted by PGL(n,F) and PSL(n,F) respectively.

The group PGL(n, q) has order equal to that of SL(n, q) given in Proposition 3.1.2, while the order

of the group PSL(n, q) is given by |PSL(n, q)| = |SL(n, q)|/ gcd(n, q − 1), where gcd(n, q − 1) is
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the greatest common divisor of n and q − 1. In particular, if n = 2, then

|PSL(2, q)| =


q3−q

2 if q is odd,

q3 − q if q is even.

Note 3.1.3. If q is even, then PSL(2, q) ∼= SL(2, q), since Z(SL(2, q)) = {I2}.

It was proved (see Rotman [65]) by Jordan-Moore that PSL(2, q) is simple for q ≥ 4. In 1896,

L. E. Dickson showed (see Cameron [12] or Rotman [65]) that PSL(n, q) for any n ≥ 2 is simple

except when n = 2 and (q = 2 or q = 3). There are many trends to characterize finite simple

groups by their character tables. This problem has been solved completely for the infinite family

of Alternating groups An, n ≥ 5 by T. Oyama [59]. Lambert ([43], Theorem 5.1) proved that

the infinite family of groups PSL(2, q) can be characterized by their character tables; that is if G

is a group with the same character table of PSL(2, q), then G ∼= PSL(2, q). He solved the same

problem for PSL(3, q) in [44]. In [45], he proved that if G is a group with the same character table

as PSL(n, q), q even, then G ∼= PSL(n, q).

Example 3.1.3. Here, we have some of the isomorphisms between PSL(n, q) and some other

familiar groups.

1. PSL(2, 4) ∼= SL(2, 4) ∼= A5
∼= PSL(2, 5).

2. PSL(4, 2) ∼= A8, while PSL(3, 4) and A8 are non-isomorphic simple groups of the same

orders. This result due to Scottenfels in 1900, (see Rotman [65]).

3. PSL(2, 7) ∼= GL(3, 2) and PSL(2, 9) ∼= A6.

The character tables of all the above groups are given in the appendix of Isaac [38].

The Affine group Aff(n, q)

An affine transformation from a finite dimensional vector space V (n,F) = V to itself is a map

φA,b consisting of a linear transformation followed by a translation; that is φA,b(u) = Au+ b, where

A ∈ GL(n,F) and b ∈ V.
The set of all affine transformations of a vector space V form a group under the composition of

functions. We call this group the Affine Group and we denote it by Aff(n,F). Formally the affine

group reads

Aff(n,F) = {φA,b | A ∈ GL(n,F), b ∈ V }. (3.9)

One can obtain all invertible linear transformations of V ; that is GL(n,F), by setting b to be the

zero vector, b = 0, in the preceding equation, then φA,0(u) = Au+ 0 = Au. A result which one can

say that GL(n,F) ⊆ Aff(n,F). On the other hand, one can also obtain the set of all translations τb
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of V, by setting A to be the identity transformation A = In, in the same equation. Then we get

φIn,b(u) = Inu+ b = u+ b. We deduce that the set of translations τb : V −→ V, τb(u) = u+ b form

an abelian subgroup of Aff(n,F).

Proposition 3.1.23. The abelian group T consisting of all translations τb of a vector space V is

isomorphic to the additive group V.

PROOF. The function θ : V −→ SV defined by θ(b) = τb, b ∈ V is a monomorphism. Its image

Im(θ) is easily seen to be all T. Thus by the first isomorphism theorem, V/ ker(θ) ∼= Im(θ) = T.

But θ is one to one function. Therefore ker(θ) = {0V }. Hence V ∼= T as claimed. �

The affine group Aff(n,F) can be embedded as a subgroup of the general linear group of degree

n+ 1. This is the statement of the following theorem.

Theorem 3.1.24. Aff(n,F) ≤ GL(n+ 1,F).

PROOF. Suppose that φA,b and φ
′

A′ ,b′
are two elements of Aff(n,F). Then

φA,bφ
′

A′ ,b′
(u) = φA,b(A

′
u+ b

′
) = AA

′
u+Ab

′
+ b = A

′′
u+ b

′′
,

where A
′′

= AA
′

and b
′′

= Ab
′
+ b. Now define the function ϕ : Aff(n,F) −→ GL(n+ 1,F), by

ϕ(φA,b) =

(
A b

0 1

)
.

Then ϕ is a group homomorphism since

ϕ(φA,bφ
′

A′ ,b′
) =

(
A
′′

b
′′

0 1

)
=

(
A b

0 1

)(
A
′
b
′

0 1

)
= ϕ(φA,b)ϕ(φ

′

A′ ,b′
).

It can also be shown that ϕ is injective. Therefore, ϕ is a monomorphism with kernel ker(ϕ) = {In}.
Hence

Aff(n,F) ∼= Im(ϕ) =

{(
A b

0 1

)
| A ∈ GL(n,F), b ∈ V (n,F)

}
≤ GL(n+ 1,F),

which completes the proof of the Theorem. �

The next theorem, which is stated without proof, is of great importance for the purpose of the

computation of the character tables of Aff(n,F), by using the Clifford-Fischer Method.

Theorem 3.1.25. The group Aff(n,F) is a split extension of V (n,F) by GL(n,F).

PROOF. See Neumann [58] or Rodrigues [63]. �
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In the finite case when F = Fq, then from the above theorem we have Aff(n, q) = qn:GL(n, q).

In her M.Sc dissertation, Whitley [76], calculated the character table of Aff(3, 2) = 23:GL(3, 2).

Iranmanesh [36], had calculated the full character tables of the groups Aff(2, q), Aff(3, q) and

Aff(4, q). The same author in [37] determined the character table of Aff(n, q) for arbitrary positive

integer n.

3.2. The BN Pair Structure of The General Linear Group

The notion of BN pair structure comes from the theory of Lie algebra (see Curtis and Reiner [9]).

Definition 3.2.1. A BN − pair (or Tits System) is an ordered quadruple (G,B,N, S) where:

1. G is a group generated by subgroups B and N.

2. T := B ∩N EN.

3. S is a subset of W = N/T consisting of involutions (elements of order 2), such that 〈S〉 = W.

4. If σ, µ ∈ N and µT ∈ S, then µBσ ⊆ BσB ∪BµσB.

5. If µT ∈ S, then µBµ 6= B.

If (G,B,N, S) is a BN − pair, the subgroups B and T, and the group W = N/T are known as the

Borel subgroup, Cartan subgroup and Weyl group of G respectively. The number |S| is called the

rank of the system.

Now, the group G = GL(n,F), n ≥ 2, has a BN−pair structure. For B, we take the group of

upper triangular matrices UT (n, q). For N, we consider the group of monomial matrices, those

are the matrices having exactly one nonzero element in each row and column. The Cartan group

T = B ∩ N 1 consists of the diagonal matrices and it is normal in N . We identify W = N/T

with the group of permutation matrices. Finally, we may take S to be the subset of W consisting

of those permutation matrices that obtained from the identity matrix by switching two adjacent

columns; that is S consists of all the transpositions of Sn. Satisfying the conditions of the BN−pair

structure for the group GL(n, q) with the above groups B, N, T and the set S, are exhausted by

Bruhat Decomposition Theorem given in Theorem 3.1.13.

Hence (GL(n,F), UT (n,F),Monomials(n,F), T ranspositions(Sn)) is a Tits system with rank
(
n

2

)
= n(n−1)

2 .

Likewise the group SL(n,F) has also a BN−pair structure. For this, let B,N, T and W be the

groups, which together with the set S define the BN−pair structure of GL(n,F). Take B0 =
1The group T is known also as the minimal torus.
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B∩SL(n,F) ∼= SUT (n,F), N0 = N∩SL(n,F), T0 = T ∩SL(n,F) and W0 = N0/T0. By Alperin [3],

W0
∼= Sn. Thus we may take S to be the set of transpositions of Sn.Now, (SL(n,F), SUT (n,F), N0, S)

is a Tits system with rank
(
n

2

)
= n(n−1)

2 .

Finally, the group PSL(n,F) has a BN−pair structure. Refer to Alperin [3] for the details.
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4

GL(2, q) and Some of its Subgroups

4.1. Introduction

In this chapter, we will construct character tables of GL(2, q) and some of its subgroups. This will

include character tables of the following groups

1. GL(2, q), the general linear group,

2. SL(2, q), the special linear group,

3. SUT (2, q), the special upper triangular group and

4. UT (2, q), the standard Borel group (group of non-singular upper triangular matrices).

These groups and some other subgroups, have a lattice diagram shown in Figure 4.1. In each

of the above four groups, two specific examples when q = 3 and q = 4 will be illustrated as the

determination of some of the character tables of some of these groups will depend on the parity of q.

The character table of the group GL(2, q) will be used as a base to construct the character tables of

the above mentioned groups. Also, the irreducible characters of GL(2, q) will be used to construct

the character tables of the groups GL(m, q), for m ≥ 3. In particular, in this dissertation we will

use the irreducible characters of GL(2, q) to produce a large number of irreducible characters of

the group GL(3, q) as we shall see in Section 5.7.

Systematic use of the dual operations, namely induction and restriction of characters from some

subgroups to the main groups and conversely, will be made. All irreducible characters of the group

GL(2, q) will be obtained from induced characters of two subgroups; namely F∗q × F∗q and F∗q2
with some suitable embedding into GL(2, q). Following to that, the character table of the group

SL(2, q), q even, is obtained directly from that of GL(2, q) because of Corollary 3.1.5. When q

is odd, SL(2, q) has q + 4 irreducible characters. Of these, q characters will be obtained from

restriction of irreducible characters of GL(2, q), while for the remaining four characters, the group
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GL(2, q)

SL(2, q)

77ooooooooooo
UT (2, q)
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SUT (2, q)
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T (2, q)

\\99999999999999999

SUUT (2, q)
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Z(2, q)
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Figure 4.1: The lattice diagram of some subgroups of GL(2, q).

SD(2, q), consisting of elements with square determinants, will complete the picture. The group

SUT (2, q) is an split extension group and therefore the methods of the coset analysis and Clifford-

Fischer theory can be applied to obtain its character table. We apply these theories to the case

SUT (2, q), q even. However, when q is odd, these theories are still applicable but are not done in

this dissertation. Also when q is even, the group SUT (2, q) will be one of the Frobenius groups,

whose representations are known. Using this fact, the character table of SUT (2, q), where q is even,

will be constructed.

In the following, we give our attention to the character table of the group GL(2, q), which was done

firstly by Jordan [35] and Schur [67] separately in 1907. This has been studied extensively by many

authors, for example one can find the description of these tables in Aburto [1], Adams [2], Alperin

[3], Drobotenko [18], James, [40], Prasad [60], Reyes [61] or Steinberg [72].

Also, in describing the conjugacy classes and irreducible characters of the group GL(2, q), we follow

mainly James [40] and Steinberg [72].

4.2. Conjugacy Classes of GL(2, q)

In this section, we give representatives for the conjugacy classes of GL(2, q), which is a group of

order (q2−1)(q2− q) = q(q−1)2(q+1) by Proposition 3.1.1, together with the sizes of centralizers,

classes and the orders of the class representatives.
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Theorem 4.2.1. The group GL(2, q) has q2 − 1 conjugacy classes described in Table 4.1.

Class T (1)
k T (2)

k T (3)
k,l T (4)

k

Rep g

(
α 0

0 α

) (
α 1

0 α

) (
α 0

0 β

) (
0 1

−rq+1 r + rq

)
No. of CC q − 1 q − 1 (q − 1)(q − 2)/2 q(q − 1)/2

|Cg| 1 q2 − 1 q(q + 1) q(q − 1)

|CGL(2,q)(g)| (q2 − 1)(q2 − q) q(q − 1) (q − 1)2 q2 − 1

Table 4.1: The conjugacy classes of GL(2, q)

where, in Table 4.1,

• by CC we mean conjugacy classes of a prescribed type of classes,

• α, β ∈ F∗q , α 6= β,

• r ∈ Fq2 \ Fq and rq is excluded whenever r is included,

• in T (1)
k , T (2)

k and T (3)
k,l , k, l denote the integers for which α = εk, β = εl and ε being a generator

of F∗q ,

• in T (4)
k , k denotes the integer for which r = θk, where θ is a generator of F∗q2 .

PROOF. We claim that

• no two different classes of the same types can be conjugate,

• no two classes of different types can be conjugate, and

• the representatives given in the table have the stated sizes of classes and centralizers.

First, it is clear that the classes of the first type consists of the central elements of GL(2, q).

Therefore, each element form a self class and clearly there are q − 1 such classes corresponding to

each α ∈ F∗q . We consider the other three types of classes through the following set of equations.

With g =

(
a b

c d

)
∈ GL(2, q) and α, α

′
, β, β

′ ∈ F∗q , we have

(
a b

c d

)(
α 1

0 α

)
=

(
aα a+ bα

cα c+ dα

)
, (4.1)

(
α
′

1

0 α
′

)(
a b

c d

)
=

(
aα
′
+ c d+ bα

′

cα
′

dα
′

)
, (4.2)
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a b

c d

)(
α 0

0 β

)
=

(
aα bβ

cα dβ

)
, (4.3)

(
α
′

0

0 β
′

)(
a b

c d

)
=

(
aα
′
bα
′

cβ
′
dβ
′

)
, (4.4)

(
a b

c d

)(
0 1

−rq+1 r + rq

)
=

(
−brq+1 a+ b(r + rq)

−drq+1 c+ d(r + rq)

)
, (4.5)

(
0 1

−rq+1 r + rq

)(
a b

c d

)
=

(
c d

−arq+1 + c(r + rq) −brq+1 + d(r + rq)

)
. (4.6)

Now, assume that α 6= α
′
. Then we have the following implications.

Equation (4.1) = Equation (4.2) ⇐⇒ aα = aα
′
+ c, a+ bα = d+ bα

′
cα = cα

′
, & c+ dα = dα

′

⇐⇒ a(α− α′)− c = 0, a− d+ b(α− α′) = 0, c(α− α′) = 0,

c+ d(α− α′) = 0

Since α 6= α
′
, we must have c = 0 and consequently, a = b = d = 0; that is g = 02×2, which

contradicts that g ∈ GL(2, q). Thus interchanging α with another element of F∗q in the typical

element of type T (2)
k , gives another class which is not conjugate to that one obtained by α. Hence

there are q − 1 conjugacy classes of the second type for GL(2, q).

On the other hand, if α = α
′
, then

Equation (4.1) = Equation (4.2) ⇐⇒ aα = aα+ c, a+ bα = d+ bα cα = cα, c+ dα = dα

⇐⇒ c = 0, a = d.

Thus the centralizer of an element of the second type of classes of GL(2, q) consists of the elements

of the form t =

(
a b

0 a

)
and therefore the invertibility of t implies that a must be in F∗q while b can

be any element of Fq. So, there are q(q− 1) elements in the centralizer of an element of the second

type and consequently q2 − 1 conjugates as mentioned in the table.

Similarly, for classes of the third type of GL(2, q), suppose firstly that {α, β} 6= {α′ , β′}. Then

we have the following possibilities

• α = α
′
, β 6= β

′
,

• α = β
′
, β 6= α

′
,

• α 6= α
′

and {β 6= β
′

or β = β
′},

• α 6= α
′
, and {β = α

′
or β 6= α

′}.
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Now

Equation (4.3) = Equation (4.4) ⇐⇒ aα = aα
′
, bβ = bα

′
cα = cβ

′
, dβ = dβ

′

⇐⇒ a(α− α′) = 0, b(β − α′) = 0, c(α− β′) = 0,

d(β − β′) = 0.

We consider two cases out of the above six possibilities of {α, β} 6= {α′ , β′}. Suppose that α = α
′

and β 6= β
′
. Then d = 0 and we have c(α − β′) = 0. replacing α with α

′
in the last equality, we

get c(α
′ − β′) = 0. Since α

′ 6= β
′
, we must have c = 0. Now c = d = 0. This contradicts the invert-

ibility of g. Let us consider the case where take α 6= α
′

and β 6= β
′
. Here we have further subcases

corresponding to α = β
′

or α 6= β
′
. In either cases, equality of equations (4.3) and (4.4) implies

that a = 0 and d = 0 with either b = 0 or c = 0 respectively. So, we have contradictions in these

cases too. The other remaining cases are very similar and we omit the verifications. Therefore,

whenever, {α, β} 6= {α′ , β′}, the elements

(
α 0

0 β

)
and

(
α
′

0

0 β
′

)
are not conjugate in GL(2, q).

On the other hand, if (α, β) = (α
′
, β
′
), then

Equation (4.3) = Equation (4.4) ⇐⇒ aα = aα, bβ = bα, cα = cβ, dβ = dβ

⇐⇒ aα = aα, b(β − α) = 0, c(α− β) = 0 dβ = dβ

⇐⇒ b = c = 0

Thus the centralizer of an element of the classes of third type for GL(2, q) consists of the elements

of the form t =

(
a 0

0 d

)
and therefore the invertibility of t forces a and d to be in F∗q . So, there are

(q − 1)2 elements in the centralizer and consequently, q(q + 1) conjugates of an element in each of

the classes of the third type. Now any class of the third type determined by a pair (α, β), α 6= β

is conjugate to the class determined by the pair (β, α) under the conjugation by the involution(
0 −1

−1 0

)
. In other words, each unordered pair {α, β}α 6=β gives one conjugacy class of this type.

Since there are q− 1 choices for α and q− 2 choices for β, there are (q−1)(q−2)
2 conjugacy classes of

the third type.

Since the size of a conjugacy class of an element of the second type is (q − 1)(q + 1), which is

different from q(q+ 1), the size of a conjugacy class of a typical element of the third type, then we

deduce that elements of the second type can not be conjugate to elements of the third type.

For the last case, where we consider an element of the fourth type Ar =

(
0 1

−rq+1 r + rq

)
and

r ∈ Fq2 \ Fq. The characteristic polynomial of Ar is λ2 − (r + rq)λ+ rq+1, which decomposes into

(λ − r)(λ − rq). Therefore Ar has eigenvalues λ = r and λ = rq. Thus the Jordan form of Ar is
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r 0

0 rq

)
. We deduce that two elements As and Ar are conjugate in GL(2, q) if and only if As and

Ar have the same Jordan form; that is if and only if {s, sq} = {r, rq}. Clearly Ar is not conjugate

to any of the preceding classes we discussed since eigenvalues of an element of the first three types

are in F∗q , while the eigenvalues of an element of the fourth type are in F∗q2 \ F
∗
q .

The next step is to count the size of the centralizer (isotropy group) of Ar. Equating equations (4.5)

and (4.6), we obtain that c = −brq+1 and d = a+ b(r+ rq). Thus the isotropy group of Ar consists

of the elements t =

(
a b

−brq+1 a+ b(r + rq)

)
, (a, b) 6= (0, 0). Since a and b can be any elements

of Fq, but not both zero, we have |CGL(2,q)(Ar)| = q2 − 1 and consequently |CAr | = q(q − 1). We

observe that for elements of the fourth type, we have Ar = Arq . Since r has q2 − q choices and

Ar = Arq , this restricts the number of classes of this type to q2−q
2 .

As a final step, we count the number of elements in all classes that we have found so far:

(q − 1) + (q − 1)(q2 − 1) +
(q − 1)(q − 2)

2
q(q + 1) +

q2 − q
2

q(q − 1)

= (q − 1)
(
q2 +

q(q + 1)(q − 2)
2

+
q3 − q2

2

)
= (q − 1)

(
2q2 + q3 − q2 − 2q + q3 − q2

2

)
= (q − 1)(q3 − q) = q(q − 1)2(q + 1) = |GL(2, q)|.

And the number of conjugacy classes is

(q − 1) + (q − 1) +
(q − 1)(q − 2)

2
+
q2 − q

2

= (q − 1)
(

4 + (q − 2) + q

2

)
= (q − 1)(q + 1) = q2 − 1.

This shows that the classes listed in Table 4.1, are the full conjugacy classes of GL(2, q). �

In Proposition 4.2.2, we calculate the orders of the elements in each of the conjugacy classes.

Proposition 4.2.2. The elements of the group GL(2, q) have the following orders,

o(g) =



q−1
gcd(k, q−1) if g is of type T (1),
p(q−1)

gcd(k, q−1) if g is of type T (2),

lcm
(

(q−1)
gcd(k, q−1) ,

(q−1)
gcd(l, q−1)

)
if g is of type T (3),

lcm
(

(q−1)
gcd(k, q−1) ,

(q2−1)
gcd(k, q2−1)

, (q2−1)
gcd(kq, q2−1)

)
if g is of type T (4).

PROOF. We divide the proof into four parts. In each part we prove the stated order for a typical

element of one of the four types of classes of GL(2, q).
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(i) Let us consider an element g of the first type T (1)
k , where g = αI2 =

(
α 0

0 α

)
and α = εk for

some k. Assume that g has order t. Then

gt =

(
α 0

0 α

)t
=

(
αt 0

0 αt

)
= αtI2 = I2 ⇐⇒ αt = 1⇐⇒ o(α)|t. (4.7)

Let t
′

be the order of α. Then

gt
′

=

(
α 0

0 α

)t′
=

(
αt
′

0

0 αt
′

)
= I2. (4.8)

Therefore, o(g)|t′ ; that is t|t′ . From this and equation (4.7), we deduce that t = t
′
; that is

αI2 has same order as of α = εk for some 1 ≤ k ≤ q − 1. From elementary group theory, we

have o(εk) = (q − 1)/ gcd(k, q − 1). This gives the required order of a typical element of the

first type.

(ii) Suppose that g =

(
α 1

0 α

)
has order t. Then

gt =

(
αt t

0 αt

)
= I2 ⇐⇒ αt = 1 and p|t⇐⇒ o(α)|t and p|t. (4.9)

Since gcd(o(α), p) = 1, by (4.9), we have p.o(α)|t. It is easy to see that

gp.o(α) =

(
1 0

0 1

)
= I2,

so that t|p.o(α). Hence t = p.o(α) = p(q − 1)/ gcd(k, q − 1).

(iii) Now let g =

(
α 0

0 β

)
and let t be the order of g. Then

gt =

(
α 0

0 β

)t
=

(
αt 0

0 βt

)
= I2 ⇐⇒ αt = 1, βt = 1⇐⇒ o(α)|t, o(β)|t

⇐⇒ lcm(o(α), o(β))|t.
(4.10)

Let a = o(α), b = o(β) and d = gcd(a, b). Suppose also that s = lcm(o(α), o(β)) = lcm(a, b).

Then s = ab
d = a

′
db
′
d

d = a
′
b
′
d = a

′
b = b

′
a and gcd(a

′
, b
′
) = 1. Now

gs =

(
α 0

0 β

)s
=

(
αs 0

0 βs

)
=

(
αb
′
a 0

0 βa
′
b

)
= I2. (4.11)

This implies that order of g which is t divides s. We have seen from equation (4.10) that s|t.
Therefore

t = s = lcm(o(α), o(β)) = lcm(o(εk), o(εl)) =
o(εk)o(εl)

gcd(o(εk), o(εl))

=
(q − 1)2

gcd(k, q − 1) gcd(l, q − 1) gcd
(

q−1
gcd(k,q−1) ,

q−1
gcd(l,q−1)

) .
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(iv) Finally let g =

(
0 1

−rq+1 r + rq

)
. The eigenvalues of g are λ = r and λ = rq. Since g ∼(

r 0

0 rq

)
, we have o(g) = o

((
r 0

0 rq

))
. So o(g) = lcm(o(r), o(rq)).

If θ is a generator of the group F∗q2 and r = θk for some k, such that q + 1 - k, then

o(g) =
(q2 − 1)2

gcd(k, q2 − 1) gcd(kq, q2 − 1) gcd
(

q2−1
gcd(k,q2−1)

, q2−1
gcd(kq,q2−1)

) .
Hence all elements of the group GL(2, q) have the stated orders, which completes the proof of the

Proposition. �

4.3. Irreducible Characters of GL(2, q)

We have seen that there are q2− 1 conjugacy classes of GL(2, q) and hence there must be the same

number of irreducible characters. In Table 4.2, we list the values of these irreducible characters

on the conjugacy classes of GL(2, q). For this, we identify the group F∗q with the subgroup U < C
consisting of the (q − 1)th roots of unity by ε̂ = κ, where ε and κ are generators of F∗q and U

respectively.

Theorem 4.3.1. The group G = GL(2, q) has q2 − 1 distinct conjugacy classes fall within four

types T (1), T (2), T (3) and T (4). The q2 − 1 irreducible characters fall also in four distinct types

χ(1), χ(2), χ(3) and χ(4) described in Table 4.2.

Table 4.2: Character table of GL(2, q)

T (1)
s T (2)

s T (3)
s,t T (4)

k

Rep g

(
α 0

0 α

) (
α 1

0 α

) (
α 0

0 β

) (
0 1

−rq+1 r + rq

)
No. of CC q − 1 q − 1 (q − 1)(q − 2)/2 q(q − 1)/2

|Cg| 1 q2 − 1 q(q + 1) q(q − 1)

|CG(g)| (q2 − 1)(q2 − q) q(q − 1) (q − 1)2 q2 − 1

λk = χ
(1)
k α̂2k α̂2k α̂kβ̂k r̂k(q+1)

ψk = χ
(2)
k qα̂2k 0 α̂kβ̂k −r̂k(q+1)

ψk,l = χ
(3)
k,l (q + 1)α̂k+l α̂k+l α̂kβ̂l + α̂lβ̂k 0

πk = χ
(4)
k (q − 1)α̂k −α̂k 0 −(r̂k + r̂kq)
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where, in Table 4.2,

• α, β ∈ F∗q , α 6= β,

• s, t denote the integers for which α = εs and β = εt, ε is a generator of F∗q ,

• r ∈ Fq2 \ Fq and rq is excluded whenever r is included,

• in χ
(1)
k , χ

(2)
k , k = 0, 1, · · · , q − 2,

• in χ
(3)
k,l , 0 ≤ k < l ≤ q − 2,

• in χ
(4)
k , q + 1 - k, k = 1, 2, · · · , q2 − 1 and kq is excluded whenever k is included,

• ̂ is the homomorphism : F∗
qd

= 〈εd〉 −→ C∗ given by ̂(εjd) = ε̂jd = e
2πj

qd−1
i
, for d = 1, 2 and

0 ≤ j ≤ qd − 2.

PROOF. The function det : GL(2, q) −→ F∗q defines a group homomorphism. For k = 0, 1, · · · , q − 2,

we set λk : GL(2, q) −→ U to be λk(g) := χk(det(g)), where χk is an irreducible character

of F∗q . It is clear that the composition χk ◦ det : GL(2, q) −→ U is a group homomorphism.

Thus it is an ordinary representation of degree 1 and consequently is an irreducible character

of GL(2, q). We recall by Theorem 3.1.19 that the derived subgroup GL(n, q)
′

is SL(n, q) ex-

cept when n = q = 2. By Proposition 2.3.4, the number of linear characters of GL(2, q) is

|GL(2, q)|/|GL(2, q)
′ | = |GL(2, q)|/|SL(2, q)| = q−1. Thus, apart from the case GL(2, 2), the q−1

linear characters given by λk are all the linear characters of GL(2, q). In the case GL(2, 2) ∼= S3,

we have the extra linear character corresponding to the sign of the permutations of S3.

The next table shows the values of the linear characters λk on the conjugacy classes of GL(2, q).

Table 4.3: Values of the linear characters on elements of GL(2, q)

Class T (1)
s T (2)

s T (3)
s,t T (4)

r

λk χ2
k(α) χ2

k(α) χk(α)χk(β) χk(r(q+1))

where 0 ≤ k ≤ q − 2.

In fact, the q − 1 linear characters given by the powers of the determinants comprise all the linear

characters of the group GL(n, q), for any n ∈ N and any prime power q, excepting the case GL(2, 2).

This will be proved in Theorem 5.6.3.

Let T be the torus in GL(2, q), which by Section 3.2 consists of the 2× 2 diagonal matrices; that is

T =

{(
a 0

0 d

)
| a, d ∈ F∗q

}
.
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We can see clearly that T ∼= F∗q × F∗q and hence

Irr(T ) = {χkχl| χk, χl ∈ Irr(F∗q)}.

We recall by Definition 3.1.4 that the group SUUT (2, q) consists of the elements of the form(
1 b

0 1

)
, b ∈ Fq. By Theorem 3.1.9, this group is normal in UT (2, q), where a typical element

of UT (2, q) will have the form

(
a b

0 d

)
, b ∈ Fq, a, d ∈ F∗q . The quotient UT (2, q)/SUUT (2, q) is

isomorphic to T ∼= F∗q × F∗q . We will use the method of lifting of characters from the quotient of

a group by a normal subgroup, to get characters of the main group as described in Section 2.4.

Hence Irr(T ) ⊆ Irr(UT (2, q)), where

χkχl

((
a b

0 d

))
= χk(a)χl(d). (4.12)

The following table shows the values of these characters on classes of UT (2, q), which they can be

deduced easily from Table 4.1 [of course we need to check whether a class in GL(2, q) will remain

as it is or will break into classes in UT (2, q)]. The full character table of UT (2, q) will be discussed

in Section 4.6.

Table 4.4: Conjugacy classes and some irreducible characters of UT (2, q)

Type T (1)
k T (2)

k T (3)
k,l

Rep g

(
α 0

0 α

) (
α 1

0 α

) (
α 0

0 β

)
No. of CC q − 1 q − 1 (q − 1)(q − 2)

|Cg| 1 q − 1 q

|CUT (2,q)(g)| q(q − 1)2 q(q − 1) (q − 1)2

χkχl χk(α)χl(α) χk(α)χl(α) χk(α)χl(β)

Now, we use these linear characters of UT (2, q) as a base for Frobenius method of induction of

characters to get characters of GL(2, q). Thus let χk,l = χkχl↑
GL(2,q)
UT (2,q). We consider the following

two cases

Case I: Suppose that χk 6= χl. Then we have
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(i) If g is in a class of the first type; that is g = αI2 for some α ∈ F∗q , then

χk,l(g) =
|CGL(2,q)(g)|
|CUT (2,q)(g)|

χk(α)χl(α) = (q + 1)χk(α)χl(α).

(ii) If g is in a class of the second type; that is g =

(
α 1

0 α

)
for some α ∈ F∗q , then

χk,l(g) =
|CGL(2,q)(g)|
|CUT (2,q)(g)|

χk(α)χl(α) =
q(q − 1)
q(q − 1)

χk(α)χl(α) = χk(α)χl(α).

(iii) If g is in a class of the third type; that is g =

(
α 0

0 β

)
for some α, β ∈ F∗q , α 6= β. Then we

can check that the conjugacy class represented by g
′

=

(
β 0

0 α

)
which is conjugate to g in

GL(2, q) is no longer conjugate to g in UT (2, q). In this case we have

χk,l(g) = |CGL(2,q)(g)|
(
χk(α)χl(β)
|CUT (2,q)(g)|

+
χk(β)χl(α)
|CUT (2,q)(g

′)|

)
= (q − 1)2

(
χk(α)χl(β)

(q − 1)2
+
χk(β)χl(α)

(q − 1)2

)
= χk(α)χl(β) + χk(β)χl(α).

(iv) If g is in a class of the fourth type; that is g =

(
0 1

−rq+1 r + rq

)
for some r ∈ F∗q2 \ F

∗
q , then

χk,l(g) = 0, since there is no intersection between a class of this type and the group UT (2, q).

Note that an element of the fourth type has eigenvalues r and rq which are in F∗q2 \ F
∗
q , while

the eigenvalues of any element of UT (2, q) are in F∗q .

Let us now check the irreducibility of the above characters.

〈χk,l, χk,l〉 =
1

|GL(2, q)|
∑

g∈GL(2,q)

χk,l(g)χk,l(g)

=
(q − 1)(q + 1)2

q(q − 1)2(q + 1)
χk(α)χl(α)χk(α)χl(α) +

(q − 1)(q2 − 1)
q(q − 1)2(q + 1)

χk(α)χl(α)χk(α)χl(α)

+
(q − 1)(q − 2)q(q + 1)

2q(q − 1)2(q + 1)
(χk(α)χl(β) + χk(β)χl(α))(χk(α)χl(β) + χk(β)χl(α))

=
(q + 1)
q(q − 1)

+
1
q

(4.13)

+
1

2(q − 1)2

∑
α 6=β

(χk(α)χl(β) + χk(β)χl(α))(χk(α)χl(β) + χk(β)χl(α)).

In the last term of (4.13), we have divided by 2 because interchanging α with β in the main diagonal

of an element in a class of type T (3), does give the same conjugacy class.
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To evaluate the last sum of the right hand side of equation (4.13), we will use the abelian group

T ∼= F∗q × F∗q of order (q − 1)2 and hence of index q(q + 1) in GL(2, q). Let tα,β =

(
α 0

0 β

)
be an

element of T. With χkχl be an irreducible character of T, defined as before and for fixed k and l,

the function ξ : T −→ GL(2,C) given by

ξ(tα,β) =

(
χk(α)χl(β) 0

0 χk(β)χl(α)

)

is a representation of T. Then ξ = ξ1 ⊕ ξ2, where ξ1, ξ2 : T −→ GL(1,C) given by

ξ1(tα,β) = χk(α)χl(β), ξ2(tα,β) = χk(β)χl(α).

It is clear that ξ1, ξ2 ∈ Irr(T ). Also

χξ(tα,β) = χk(α)χl(β) + χk(β)χl(α).

Thus 〈χξ, χξ〉 = 2 and hence

2 = 〈χξ, χξ〉 =
1
|T |
∑
g∈T

χξ(g)χξ(g) =
1

(q − 1)2

∑
α,β∈F∗q

χξ(tα,β)χξ(tα,β)

=
1

(q − 1)2

∑
α=β

χξ(tα,α)χξ(tα,α) +
1

(q − 1)2

∑
α 6=β

χξ(tα,β)χξ(tα,β)

=
1

(q − 1)2

∑
α∈F∗q

(χk(α)χl(α) + χk(α)χl(α))(χk(α)χl(α) + χk(α)χl(α))


+

1
(q − 1)2

∑
α 6=β

(χk(α)χl(β) + χk(β)χl(α))(χk(α)χl(β) + χk(β)χl(α))


=

4(q − 1)
(q − 1)2

+
1

(q − 1)2

∑
α 6=β

(χk(α)χl(β) + χk(β)χl(α))(χk(α)χl(β) + χk(β)χl(α))

 .

Therefore∑
α 6=β

(χk(α)χl(β) + χk(β)χl(α))(χk(α)χl(β) + χk(β)χl(α)) = 2(q − 1)2 − 4(q − 1) = 2(q − 1)(q − 3).

Turning back to equation (4.13), we get

〈χk,l, χk,l〉 =
(q + 1)
q(q − 1)

+
1
q

+
1

2(q − 1)2
2(q − 1)(q − 3) =

(q + 1)
q(q − 1)

+
1
q

+
(q − 3)
(q − 1)

=
(q + 1) + (q − 1) + q(q − 3)

q(q − 1)
=

2q + q2 − 3q
q2 − q

=
q2 − q
q2 − q

= 1.

This shows that χk,l for 0 ≤ k < l ≤ q − 2 are all irreducible.
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It is easily seen that χk,l = χkχl = χlχk = χl,k. Since k and l are distinct and they range between

0 and q − 2, there are (q−1)(q−2)
2 irreducible characters χk,l.

To see that two characters χk,l and χk′ ,l′ for 0 ≤ k < l ≤ q − 2 and 0 ≤ k
′
< l

′ ≤ q − 2 with

(k, l) 6= (k
′
, l
′
) are distinct, refer to Corollary 28.11 of James [40].

This completes the proof for Case I.

Case II: Suppose that χl = χk; that is l = k. By g ∈ C ∈ T (i) we mean an element g ∈ GL(2, q)

in the conjugacy class C of type T (i). Then by computations similar to Case I, we have

• If g ∈ C ∈ T (1), then χk,k(g) = (q + 1)χ2
k(α).

• If g ∈ C ∈ T (2), then χk,k(g) = χ2
k(α).

• If g ∈ C ∈ T (3), then χk,k(g) = 2χk(α)χk(β).

• If g ∈ C ∈ T (4), then χk,k(g) = 0.

Now

〈χk,k, χk,k〉 =
1

|GL(2, q)|
∑

g∈GL(2,q)

χk,k(g)χk,k(g) =
(q − 1)(q + 1)2

q(q − 1)2(q + 1)
χ2
k(α)χ2

k(α)

+
(q − 1)(q2 − 1)
q(q − 1)2(q + 1)

χ2
k(α)χ2

k(α) +
(q − 1)(q − 2)q(q + 1)

2q(q − 1)2(q + 1)
(2χk(α)χk(β))(2χk(α)χk(β))

=
(q + 1)
q(q − 1)

+
1
q

+
2(q − 2)
(q − 1)

=
(q + 1) + (q − 1) + 2q2 − 4q

q(q − 1)
=

2q2 − 2q
q2 − q)

= 2.

Thus χk,k is not an irreducible character of GL(2, q). We next set St := χ0,0 − 1. Therefore

• If g ∈ C ∈ T (1), then St(g) = (q + 1)− 1 = q.

• If g ∈ C ∈ T (2), then St(g) = 1− 1 = 0.

• If g ∈ C ∈ T (3), then St(g) = 2− 1 = 1.

• If g ∈ C ∈ T (4), then St(g) = 0− 1 = −1.
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Since

〈St, St〉 =
1

|GL(2, q)|
∑

g∈GL(2,q)

St(g)St(g) =
(q − 1)q2

q(q − 1)2(q + 1)

+
(q − 1)(q − 2)q(q + 1)

2q(q − 1)2(q + 1)
+

(q2 − q)(q2 − q)
2q(q − 1)2(q + 1)

=
q

(q − 1)(q + 1)
+

(q − 2)
2(q − 1)

+
q

2(q + 1)

=
2q2 + q(q + 1)(q − 2) + q2(q − 1)

2q(q + 1)(q − 1)
=

2q2 + q3 − q2 − 2q + q3 − q2

2q3 − 2q

=
2q3 − 2q
2q3 − 2q

= 1,

we deduce that St is an irreducible character of GL(2, q). The character St defined above is called

an Steinberg character of GL(2, q). In fact for the group GL(n, q), Steinberg [72] defined |P(n)|
irreducible characters corresponding to the partitions of n. These characters defined by Steinberg

come from the action of the group GL(n, q) on some geometric entities. The character St corre-

sponds to the partition (1, 1) ` 2. The other Steinberg character of GL(2, q) corresponding to 2 ` 2

is the trivial character ofGL(2, q). Steinberg characters will be studied in more details in Section 5.5.

We know from Proposition 2.3.3 that a product of a linear character by an irreducible charac-

ter is an irreducible character. Thus by tensoring the q− 1 linear characters λk with the Steinberg

character St, we get q − 1 irreducible characters of degree q. In the following we give the values of

these q − 1 irreducible characters on the classes GL(2, q)

• If g ∈ C ∈ T (1), then λkSt(g) = qχ2
k(α).

• If g ∈ C ∈ T (2), then λkSt(g) = 0.

• If g ∈ C ∈ T (3), then λkSt(g) = χk(α)χk(β).

• If g ∈ C ∈ T (4), then λkSt(g) = −χk(rq+1).

The q − 1 irreducible characters λkSt are all distinct, because for the primitive (q − 1)th root of

unity ε, we have λkSt

((
ε 0

0 1

))
= χk(ε), which gives distinct values for 0 ≤ k ≤ q − 2.

Note that λkSt(g) = χk,k − λk, ∀ 0 ≤ k ≤ q − 2. We may denote λkSt by ψk.

So far we have found

• q − 1 linear characters.

• q − 1 irreducible characters of degree q.
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• (q−1)(q−2)
2 irreducible characters of degree q + 1.

Thus so far we have (q − 1) + (q − 1) + (q−1)(q−2)
2 = (q−1)(q+2)

2 irreducible characters. Since there

are q2− 1 irreducible characters of GL(2, q), we need to find q2−q
2 additional irreducible characters.

Moreover, if we add up the squares of the degrees of the characters we have found so far, we get

(q − 1) + (q − 1)q2 +
(q − 1)(q − 2)

2
(q + 1)2 =

2q − 2 + 2q3 − 2q2 + q4 − q3 − 3q2 + q + 2
2

=
q4 + q3 − 5q2 + 3q

2
.

Now

|GL(2, q)| − q4 + q3 − 5q2 + 3q
2

= q(q − 1)2(q + 1)− q4 + q3 − 5q2 + 3q
2

=
q2 − q

2
(q − 1)2.

It will be shown that each of the remaining q2−q
2 characters will have the degree q − 1.

We aim to find the remaining q2−q
2 irreducible characters of GL(2, q) by using the characters of the

group F∗q2 . The group F∗q2 = 〈σ〉 is embedded into GL(2, q) by σ 7→ kσ, where kσ =

(
σ 0

0 σq

)
. Now

the group K = 〈kσ〉 =

{(
σs 0

0 σqs

)
| 1 ≤ s ≤ q2 − 1

}
is an isomorphic copy of F∗q2 in GL(2, q)

of index q2 − q. If s is a multiple of q + 1, that is s = (q + 1)j for some 1 ≤ j ≤ q − 1, then

σqs = σq(q+1)j = σq
2jσqj = σjσqj = σ(q+1)j = σs. Thus when s = (q + 1)j, the elements kσs =

kσs =

(
σ(q+1)j 0

0 σ(q+1)j

)
are the scalar matrices in GL(2, q). On the other hand, if s is not a

multiple of q+ 1, then σqs 6= σs. Note that there are (q2− 1)− (q− 1) = q2− q such integers s and

consequently, q2 − q non-scalar kσ in K.

Therefore, K meets GL(2, q) only on classes of type T (1) and T (4).

Since K is cyclic, its irreducible characters are known (Theorem 2.2.4). If θk ∈ Irr(K), then

we let φk = θk↑
GL(2,q)
K and χk = θk↓KF∗q . Now using Proposition 2.5.5 we obtain

• If g ∈ C ∈ T (1), then φk(g) = |CGL(2,q)(g)|
|CK(g)| θk(α) = (q2 − q)χk(α).

• If g ∈ C ∈ T (2), then φk(g) = 0.

• If g ∈ C ∈ T (3), then φk(g) = 0.

• If g ∈ C ∈ T (4), then φk(g) = |CGL(2,q)(g)|
(

θk(r)
|CK(r)| + θk(rq)

|CK(rq)|

)
= θk(r) + θk(rq).
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In the next step, we find the remaining irreducible characters of GL(2, q). For 1 ≤ k ≤ q2 − 1 such

that q+ 1 - k, let πk := χ0,−kψk − φk −χ0,k and note that πk is a combination of known characters

of GL(2, q). In Table 4.5 we list the values of πk on classes of GL(2, q).

Table 4.5: Values of πk on classes of GL(2, q)

T (1) T (2) T (3) T (4)

χ0,−k (q + 1)χ−k(α) χ−k(α) χ−k(α) + χ−k(β) 0

ψk qχ2
k(α) 0 χk(α)χk(β) −χk(rq+1)

χ0,−kψk (q2 + q)χ−k(α) 0 χk(α) + χk(β) 0

χ0,k (q + 1)χk(α) χk(α) χk(α) + χk(β) 0

φk q2 − qχk(α) 0 0 θk(r) + θk(rq)

πk (q − 1)χk(α) −χk(α) 0 −(θk(r) + θk(rq))

There are (q2 − 1)− (q − 1) = q2 − q characters πk of GL(2, q). We have

〈πk, πk〉 =
1

|GL(2, q)|
∑

g∈GL(2,q)

πk(g)πk(g) =
(q − 1)2(q − 1)
q(q − 1)2(q + 1)

+
(q − 1)(q − 1)(q + 1)
q(q − 1)2(q + 1)

+
q(q − 1)

2q(q − 1)2(q + 1)

∑
r∈F∗

q2
\F∗q

(θk(r) + θk(rq))(θk(r) + θk(rq))

=
(q − 1)
q(q + 1)

+
1
q

+
1

2(q − 1)(q + 1)

∑
r∈F∗

q2
\F∗q

(θk(r) + θk(rq))(θk(r) + θk(rq)) (4.14)

and note that replacing r with rq in an element of a class of type T (4) produces the same conjugacy

class. To evaluate the sum in the last term of the right hand side of equation (4.14), we use the

following two groups. Let K be the subgroup of GL(2, q) defined earlier, which is isomorphic to

F∗q2 and suppose that r ∈ F∗q2 . Also, let

H =

{(
r 0

0 rq

)
| r ∈ F∗q

}
=

{(
r 0

0 r

)
| r ∈ F∗q

}
.

Then K and H are both abelian groups of orders q2 − 1 and q − 1 respectively with H < K. Now

for any r ∈ F∗q2 and for fixed k, the function γ(k) : K −→ GL(2,C) given by

γ(k)

((
r 0

0 rq

))
=

(
θk(r) 0

0 θk(rq)

)

is a representation of K. Then γ(k) = γ
(k)
1 ⊕ γ(k)

2 , where γ(k)
1 , γ

(k)
2 : K −→ GL(1,C) given by
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γ
(k)
1

((
r 0

0 rq

))
= θk(r),

γ
(k)
2

((
r 0

0 rq

))
= θk(rq).

We have γ(k)
1 , γ

(k)
2 ∈ Irr(K). Also

χγ(k)

((
r 0

0 rq

))
= θk(r) + θk(rq).

We deduce that χγ(k) is a sum of two non-equivalent irreducible characters. Also note that χγ(k)↓KH =

2θk↓KH .

Now

2 =
〈
χγ(k) , χγ(k)

〉
=

1
|K|

∑
g∈K

χγ(k)(g)χγ(k)(g)

=
1

q2 − 1

∑
r∈F∗

q2

(θk(r) + θk(rq))(θk(r) + θk(rq)).

Thus ∑
r∈F∗

q2

(θk(r) + θk(rq))(θk(r) + θk(rq)) = 2(q2 − 1).

Similarly

4 =
〈
2θk↓KH , 2θk↓KH

〉
H

=
〈
χγ(k)↓KH , χγ(k)↓KH

〉
H

=
1
|H|

∑
g∈H

χγ(k)↓KH(g)χγ(k)↓KH(g)

=
1

q − 1

∑
r∈F∗q

(θk(r) + θk(rq))(θk(r) + θk(rq)).

Thus ∑
r∈F∗q

(θk(r) + θk(rq))(θk(r) + θk(rq)) = 4(q − 1).

Hence ∑
r∈F∗

q2
\F∗q

(θk(r) + θk(rq))(θk(r) + θk(rq)) = 2(q2 − 1)− 4(q − 1) = 2(q − 1)2.

Now returning back to equation (4.14), we get

〈πk, πk〉 =
(q − 1)
q(q + 1)

+
1
q

+
2(q − 1)2

2(q − 1)(q + 1)
=

(q − 1)2 + (q − 1)(q + 1) + q(q − 1)2

q(q − 1)(q + 1)

=
(q − 1)[q − 1 + q + 1 + q2 − q]

q(q − 1)(q + 1)
=
q(q + 1)
q(q + 1)

= 1.
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Thus πk ∈ Irr(GL(2, q)). From Table 4.5, we can see that πkq = πk. This restricts the number

of πk’s to q2−q
2 . We claim that these characters are all distinct. Assume that q + 1 - k, l and

k 6∼= l, lq mod(q2 − 1). We show that πk 6= πl. Recall that the character χγ(k) of K and H is given

on element g =

(
r 0

0 rq

)
by χγ(k)(g) = θk(r) + θk(rq). Now

• if g ∈ H, that is r ∈ F∗q (thus rq = r), then χγ(k)(g) = 2θk(r)

• if g ∈ K \H, that is r ∈ F∗q2 \ F
∗
q (thus rq 6= r), then χγ(k)(g) = θk(r) + θk(rq).

Since k 6∼= l, lq mod(q2−1), we have χγ(k) and χγ(l) are distinct. Thus either θk(r) 6= θl(r) for some

r ∈ F∗q or θk(r) + θk(rq) 6= θl(r) + θl(rq) for some r ∈ F∗q2 \ F
∗
q . Thus πk 6= πl.

Finally, to be consistent with the notation given in the character table of GL(2, q), shown in Table

4.2, we use α̂k, α ∈ F∗q to denote χk(α). The same applies for the elements r ∈ F∗q2 , where r̂k means

θk(r) for θk ∈ Irr(F∗q2). Also, the irreducible characters λk, λkSt, χk,l and πk will be renamed

to χ(1)
k , χ

(2)
k , χ

(3)
k,l and χ

(4)
k respectively. Hence, Table 4.2 is the character table of GL(2, q). This

completes the proof of the Theorem. �

Summary and Discussion

It is well known from elementary theory of ordinary representations that the number of irreducible

characters is the same as the number of the conjugacy classes of the finite group G. In general,

there is no way of associating a conjugacy class to each irreducible character. However, we do

have a very natural correspondence between the conjugacy classes and the irreducible characters of

the group GL(2, q). The groups F∗q , F∗q2 ; and their character groups Ch(F∗q) and Ch(F∗q2); are used

respectively to parameterize the conjugacy classes and the irreducible characters of GL(2, q) as

follows. To give a representative of a class in the first two types of classes, we use only one element

α ∈ F∗q and the same for the first two types of characters, we use only one character χ ∈ Ch(F∗q).
Note that the union of conjugacy classes of the first type will give the center of the group GL(2, q),

while the union of characters of the first type form a group isomorphic to the center of the group

GL(2, q). To represent a class of type T (3), we have used two distinct elements α, β ∈ F∗q where

the conjugacy class is unaltered if we interchange α with β in the class. We have used two distinct

characters χk, χl ∈ Ch(F∗q) to parameterize a character of the third type and we have seen that the

product of χk, χl ∈ Ch(F∗q) is commutative. Finally, to obtain a class of type T (4), we made use of

the elements r ∈ F∗q2 which are not in F∗q and whenever we choose such r, we exclude rq because

r and rq give the same conjugacy class. Also to produce characters of the fourth type, we used

characters θ ∈ Ch(F∗q2) which do not decompose into characters in Ch(F∗q) and whenever we choose

such k to index a character of the fourth type, we exclude kq from the indexing set because k and
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kq give the same character. So we can say that there is a complete duality between the conjugacy

classes and the irreducible characters of the group GL(2, q). Let ε and θ be generators of the groups

F∗q and F∗q2 respectively. Table 4.6 shows the association of a class to an irreducible character of

GL(2, q).

Table 4.6: Duality between irreducible characters and conjugacy classes of GL(2, q)

Irreducible Character Corresponding Conjugacy Class

χ
(1)
k T (1)

k =

(
εk 0

0 εk

)

χ
(2)
k T (2)

k =

(
εk 1

0 εk

)

χ
(3)
k,l T (3)

k,l =

(
εk 0

0 εl

)

χ
(4)
k T (4)

k =

(
0 1

−θ(k+1)q θk + θkq

)

As a final remark, the above duality between the conjugacy classes and irreducible characters of

the group GL(2, q) will be satisfied in general for all groups GL(n, q). A similar table of duality for

the group GL(3, q) will be given in Table 5.13.

4.4. Character Table of SL(2, q)

We recall by Definition 3.1.2 that the group SL(2, q) consists of the 2×2 matrices with determinant

1. This group is normal in GL(2, q) and the quotient GL(2, q)/SL(2, q) ∼= F∗q . Also by Proposition

3.1.2 we have |SL(2, q)| = q(q − 1)(q + 1) = (q3 − q).

The character table of the group SL(2, q) has been studied extensively by many authors, for ex-

ample Adams [2], Berckovich [6], Collins [13], Fulton [22], Gehles [24], Hageman [31], Humphreys

[33], Prasad [60] and Springer [71] and others (some of the authors studied the character table of

SL(2, q) for only one case of q, even or odd. As we shall see later that the character table depends

on the parity of q).

For determining the character table of the group SL(2, q), we first need to find its conjugacy classes.

These conjugacy classes come from those of the group GL(2, q) that have determinant 1. We need

to check whether a class of GL(2, q) with determinant 1 splits in SL(2, q) or remain as it is. Note

that two non-conjugate elements in GL(2, q) can not be conjugate in SL(2, q). The four types of

classes of GL(2, q) have determinants given in Table 4.7.
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Table 4.7: Determinants of the elements of GL(2, q)

g T (1) T (2) T (3) T (4)

det(g) α2 α2 αβ rq+1

Elements in classes of type T (1), T (2), T (3) and T (4) are in SL(2, q) if and only if α2 = 1, α2 =

1, αβ = 1 and r(q+1) = 1 respectively. If α2 = ε2k = 1, then k ∈ {0, q−1
2 }. Thus α = ±1.

Consequently, if q is an odd prime power, then 1 6= −1, while if q = 2s, s ≥ 1, then 1 = −1. Thus

let us consider each case separately.

4.4.1 Character Table of SL(2, q), q = pm, p an odd prime, m ≥ 1

Conjugacy Classes of SL(2, q)

In this case, Z(SL(2, q)) = {I2,−I2}. Thus the first family of classes of GL(2, q) gives us two classes

in SL(2, q) namely I2 and −I2. We will use the notation T (1)
0 instead of I2. Clearly both these

classes have size 1 each.

Now T (2)
k ⊆ SL(2, q) iff k ∈ {0, q−1

2 }. Hence we need only to consider T (2)
0 and T (2)

q−1
2

of GL(2, q).

Since

(
1 1

0 1

)
∈ T (2)

0 and

(
−1 −1

0 −1

)
∈ T (2)

q−1
2

, we denote the T (2)
q−1
2

by −T (2)
0 . In the following we

claim that each of T (2)
0 or −T (2)

0 splits into 2 conjugacy classes of SL(2, q) respectively. Hence we

obtain 4 classes of type T (2) in SL(2, q), namely T (2)
01 , T (2)

0ε , −T
(2)

01 , −T (2)
0ε , with representatives(

1 1

0 1

)
,

(
1 ε

0 1

)
,

(
−1 −1

0 −1

)
,

(
−1 −ε
0 −1

)
respectively.

We calculate the size of the conjugacy class T (2)
01 . We need to find g =

(
a b

c d

)
∈ SL(2, q) such

that

(
1 1

0 1

)(
a b

c d

)
=

(
a+ c b+ d

c d

)
=

(
a b

c d

)(
1 1

0 1

)
=

(
a a+ b

c c+ d

)
. (4.15)

So we must have c = 0 and a = d. Thus g =

(
a b

0 a

)
. But we know that ad − bc = a2 = 1.

Therefore a = ±1 and b can be any element of Fq. This gives in total 2q elements in the centralizer
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and consequently |T (2)
01 | =

q2−1
2 .

Similarly

(
1 ε

0 1

)
∈ T (2)

0ε , which is conjugate to

(
1 1

0 1

)
in GL(2, q) but not in SL(2, q), has a cen-

tralizer size 2q. Hence |T (2)
0ε | = q2−1

2 in SL(2, q). By similar argument the class −T (2)
0 of GL(2, q)

splits into two classes, namely −T (2)
01 and −T (2)

0ε , each of size q2−1
2 .

Any element

(
α 0

0 β

)
∈ T (3)

k,l , α = εk 6= εl = β in GL(2, q) has determinant αβ. Therefore

(
α 0

0 β

)
∈ SL(2, q)⇐⇒ αβ = 1⇐⇒ β = α−1 ⇐⇒ l = −k.

Since α = 1 and α = −1 are the only self inverse elements in F∗q , the third family of classes of

GL(2, q) gives q−3
2 classes T (3)

k,−k, k ∈ {0,
q−1

2 } with elements of type

(
α 0

0 α−1

)
. Exclusion of α = 1

and α = −1 imply that there are q − 3 choices for α and observing that swapping α with α−1 in

T (3)
k,−k produces the same conjugacy class. The next two equations are used to compute the size of

the centralizer of an element of this type. Let x =

(
α 0

0 α−1

)
∈ SL(2, q). If g =

(
a b

c d

)
∈ SL(2, q)

such that (
α 0

0 α−1

)(
a b

c d

)
=

(
aα bα

cα−1 dα−1

)
, (4.16)

(
a b

c d

)(
α 0

0 α−1

)
=

(
aα bα−1

cα dα−1

)
. (4.17)

Equating equations (4.16) and (4.17), we obtain cα = cα−1 and bα = bα−1, which has unique

solution c = b = 0. (Note that α 6= 1 or −1). Since ad− bc = ad = 1, we have d = a−1. Therefore

g ∈ CSL(2,q)(x) if and only if g =

(
a 0

0 a−1

)
, a ∈ F∗q . So |CSL(2,q)(x)| = q − 1 and it follows that

|T (3)
k,−k| = q(q + 1).

The element Ar =

(
0 1

−rq+1 r + rq

)
∈ T (4)

k of GL(2, q) has determinant rq+1. Therefore this

element is in SL(2, q) if and only if rq+1 = 1. Let θ be a generator of F∗q2 ; that is o(θ) = q2 − 1.

Then θq+1 is a generator of F∗q . So that F∗q =
〈
θq+1

〉 ∼= Zq−1. Now the elements r ∈ Fq2 \ Fq
which satisfy rq+1 = 1 are the elements of the form r = θ(q−1)j for j = 1, 2, · · · , q−1

2 . Note that

r.rq = θ(q−1)jθq(q−1)j = θ(q2−1)j = 1. Also note that if j = q−1
2 + 1 = q+1

2 , then r = θ(q−1) q+1
2 =

θ
(q2−1)

2 = −1, which is an element of F∗q , but our choice of r is in Fq2 \ Fq. We conclude that there

are at least q−1
2 conjugacy classes in SL(2, q), which come from T (4)

k classes of GL(2, q).
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Let us calculate the size of the centralizer of an element Ar =

(
0 1

−1 r + rq

)
of SL(2, q) of type

T (4)
k . For g =

(
a b

c d

)
∈ SL(2, q) we have

(
0 1

−1 r + rq

)(
a b

c d

)
=

(
c d

−a+ c(r + rq) −b+ d(r + rq)

)
, (4.18)

(
a b

c d

)(
0 1

−1 r + rq

)
=

(
−b a+ b(r + rq)

−d c+ d(r + rq)

)
. (4.19)

Thus

g ∈ CSL(2,q)(Ar)⇐⇒ c = −b, a+ b(r + rq) = d, −d = −a+ c(r + rq), c+ d(r + rq) = −b+ d(r + rq).

Hence g =

(
a b

−b a+ b(r + rq)

)
and we have a2 + ab(r + rq) + b2 − 1 = 0. If a = 0, then b = ±1.

Hence g =

(
0 1

−1 (r + rq)

)
or g =

(
0 −1

1 −(r + rq)

)
. On the other hand, if a 6= 0, then b de-

pends on a and the fixed element r + rq and hence we have q − 1 possibilities for g. Thus we have

(q − 1) + 2 = q + 1 candidates for g in total. Hence |CSL(2,q)(Ar)| = q + 1 and |[Ar]| = q(q − 1).

We summarize the foregoing elements of SL(2, q) in the following.

Type Rep g No of Conj. Classes |CSL(2,q)(g)| |[g]|

T (1)
0

(
1 0

0 1

)
1 q3 − q 1

−T (1)
0

(
−1 0

0 −1

)
1 q3 − q 1

T (2)
01

(
1 1

0 1

)
1 2q q2−1

2

−T (2)
01

(
−1 −1

0 −1

)
1 2q q2−1

2

T (2)
0ε

(
1 ε

0 1

)
1 2q q2−1

2

−T (2)
0ε

(
−1 −ε
0 −1

)
1 2q q2−1

2

T (3)
k,−k

(
α 0

0 α−1

)
q−3

2 q − 1 q(q + 1)

−T (4)
k

(
0 1

−1 −(r + rq)

)
q−1

2 q + 1 q(q − 1)
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By counting the number of elements in the conjugacy classes we have found so far, we get

1 + 1 +
q2 − 1

2
+
q2 − 1

2
+
q2 − 1

2
+
q2 − 1

2
+

(q − 3)q(q + 1)
2

+
(q − 1)q(q − 1)

2

=
4 + 4q2 − 4 + q3 − 2q2 − 3q + q3 − 2q2 + q

2

=
2q3 − 2q

2
= q3 − q = |SL(2, q)|.

This shows that we have found all the conjugacy classes of SL(2, q). The number of classes of this

group is

1 + 1 + 1 + 1 + 1 + 1 +
q − 3

2
+
q − 1

2
=

12 + 2q − 4
2

= q + 4.

Proposition 4.4.1. Let t(2)
01 , −t

(2)
01 , t

(2)
0ε ,−t

(2)
0ε , t

(3)
k,−k, t

(4)
k be elements of types T (2)

01 , −T (2)
01 , T (2)

0ε ,

−T (2)
0ε , T

(3)
k,−k, T

(4)
k respectively. With p being the characteristic of Fq, then

(i) o(T (1)
0 ) = 1,

(ii) o(−T (1)
0 ) = 2,

(iii) o(t(2)
01 ) = p,

(iv) o(−t(2)
01 ) = 2p,

(v) o(t(2)
0ε ) = p,

(vi) o(−t(2)
0ε ) = 2p,

(vii) o(t(3)
k,−k) = (q − 1)/ gcd(k, q − 1),

(viii) o(t(4)
k ) = q + 1.

PROOF. All follows by Proposition 4.2.2 as follows

1. (i) and (ii) are trivial.

2. For t(2)
01 , we have εk = 1 =⇒ k = q − 1. Therefore o(t(2)

01 ) = p(q − 1)/ gcd(q − 1, q − 1) = p.

3. For −t(2)
01 , we have εk = −1 =⇒ k = q−1

2 . Therefore o(t(2)
01 ) = p(q − 1)/ gcd( q−1

2 , q − 1) =

p(q − 1)/ q−1
2 = 2p.

4. (v) and (vi) are similar to (2) and (3).

5. Since l = −k, we have o(t(3)
k,−k) = lcm

(
q−1

gcd(k,q−1) ,
q−1

gcd(|−k|,q−1)

)
= q−1

gcd(k,q−1) .

6. For fixed t
(4)
k ∈ T

(4)
k we have k = (q − 1)j for some j ∈ {1, 2, · · · , q−1

2 }. Now

o(t(4)
k ) = lcm

(
(q − 1)

gcd((q − 1)j, (q − 1))
,

(q2 − 1)
gcd((q − 1)j, (q2 − 1))

,
(q2 − 1)

gcd(q(q − 1)j, (q2 − 1))

)
= lcm(1, q + 1, q + 1) = q + 1.

Hence the result. �
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Irreducible Characters of SL(2, q)

We aim to find all the irreducible characters of SL(2, q). Note that |Irr(SL(2, q))| = q+4. In Table

4.8, we list the restriction of the characters of GL(2, q) to SL(2, q).

Table 4.8: The conjugacy classes of SL(2, q), q is odd; and the restriction of the characters of

GL(2, q).

Class T (1)
0 −T (1)

0 T (2)
01 −T (2)

01

Rep g

(
1 0

0 1

) (
−1 0

0 −1

) (
1 1

0 1

) (
−1 −1

0 −1

)
No. of CC 1 1 1 1

|CSL(2,q)(g)| q3 − q q3 − q 2q 2q

|Cg| 1 1 q2−1
2

q2−1
2

λk 1 1 1 1

ψk q q 0 0

ψk,l q + 1 (−1)k+l(q + 1) 1 (−1)k+l

πk q − 1 (−1)k(q − 1) −1 (−1)k+1

Table 4.8 (continued)

Class T (2)
0ε −T (2)

0ε T (3)
k,−k T (4)

k

Rep g

(
1 ε

0 1

) (
−1 −ε
0 −1

) (
α 0

0 α−1

) (
0 1

−1 r + rq

)
No. of CC 1 1 q−3

2
q−1

2

|CSL(2,q)(g)| 2q 2q q − 1 q + 1

|Cg| q2−1
2

q2−1
2 q(q + 1) q(q − 1)

λk 1 1 1 1

ψk 0 0 1 −1

ψk,l 1 (−1)k+l α̂(k−l) + α̂−(k−l) 0

πk −1 (−1)k+1 0 −(r̂k + r̂kq)

The next duty will be to check the irreducibility of the characters of GL(2, q) restricted to SL(2, q).

Firstly since all linear characters of GL(2, q) correspond to the powers of the determinants and

since each element of SL(2, q) is of determinant 1, then λk↓
GL(2,q)
SL(2,q) = λ, the trivial character of

SL(2, q), k = 0, 1, · · · , q − 2.
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It is clear from Table 4.8 that the values of ψk do not depend on k, 0 ≤ k ≤ q − 2. So we

may rename it to ψ. Now

〈ψ,ψ〉 =
1

q3 − q

(
2q2 + q

q − 3
2

(q + 1) + q
(q − 1)2

2

)
=

1
q3 − q

(
4q2 + q3 − 2q2 − 3q + q3 − 2q2 + q

2

)
=

1
q3 − q

(
2q3 − 2q

2

)
=
q3 − q
q3 − q

= 1.

Thus ψ ∈ Irr(SL(2, q)). We observe that ψ is the Steinberg character of GL(2, q).

For the third family of characters ψk,l, firstly we fix l = 1 and for each k ∈ {0, 1, · · · , q−3
2 } we have

〈ψk,1, ψk,1〉 =
1

q3 − q

(q + 1)2 + (q + 1)2 + 4
q2 − 1

2
+

q−3
2∑
1

q(q + 1)|α̂(k−1) + α̂−(k−1)|2


To evaluate the term

q−3
2∑
1

|α̂(k−1) + α̂−(k−1)|2 we use

q−3
2∑
1

|α̂(k−1) + α̂−(k−1)|2 =

q−3
2∑
1

α̂2(k−1) +

q−3
2∑
1

2 +

q−3
2∑
1

α̂−2(k−1)

= (q − 3) +

q−3
2∑
1

α̂2(k−1) +

q−3
2∑
1

α̂−2(k−1).

We recall that
q−1∑
j=1

ε̂j = 0, where ε is a generator of F∗q and ε̂ is a generator of the group consisting

of the (q − 1)th roots of unity in C. Also for any s ∈ Z we have
q−1∑
j=1

ε̂sj = 0. Thus

q−1
2∑
j=1

ε̂2j(k−1) = 0

and consequently

q−3
2∑
j=1

ε̂2j(k−1) = −ε̂2(k−1) q−1
2 = −(ε̂q−1)k−1 = −1. Now if α̂ = ε̂j for some j, then

we have

q−3
2∑
1

α̂2(k−1) =

q−3
2∑
j=1

ε̂2j(k−1). Hence

q−3
2∑
1

α̂2(k−1) = −1. Similarly

q−3
2∑
1

α̂−2(k−1) = −1. Therefore

q−3
2∑
1

|α̂(k−1) + α̂−(k−1)|2 = (q − 3)− 1− 1 = q − 5.
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It follows that

〈ψk,1, ψk,1〉 =
1

q3 − q
(
4q2 + 4q + q(q + 1)(q − 5)

)
=

1
q3 − q

(
4q2 + 4q + q3 − 4q2 − 5q

)
=

1
q3 − q

(
q3 − q

)
= 1.

Hence we obtain q−3
2 irreducible characters of SL(2, q) this way.

Setting k = l = 0 in the characters ψk,l of GL(2, q) we get

〈ψ0,0, ψ0,0〉 =
1

q3 − q

(
(q + 1)2 + (q + 1)2 + 4

q2 − 1
2

+ 4
q − 3

2
q(q + 1)

)
=

1
q3 − q

(2q2 + 4q + 2 + 2q2 − 2 + 2q3 − 4q2 − 6q)

=
1

q3 − q
(2q3 − 2q) = 2.

Hence ψ0,0 6∈ Irr(SL(2, q)). It is clear that ψ0,0 = λ+ ψ = 1 + ψ.

From another side, if we let k = q−1
2 and l = 0 we get

〈
ψ q−1

2
,0, ψ q−1

2
,0

〉
= 2 as follows

〈
ψ q−1

2
,0, ψ q−1

2
,0

〉
=

1
q3 − q

(q + 1)2 + (q + 1)2 + 4
q2 − 1

2
+

q−3
2∑
1

q(q + 1)|α̂
q−1
2 + α̂−

q−1
2 |2


=

1
q3 − q

2q2 + 4q + 2 + 2q2 − 2 + q(q + 1)

 q−3
2∑
1

α̂2 q−1
2 +

q−3
2∑
1

2 +

q−3
2∑
1

α̂−2 q−1
2


=

1
q3 − q

(
4q2 + 4q + q(q + 1)

(
q − 3

2
+ 2

q − 3
2

+
q − 3

2

))
=

1
q3 − q

(
4q2 + 4q + 2q(q + 1)(q − 3)

)
=

1
q3 − q

(
4q2 + 4q + 2q3 − 4q2 − 6q

)
=

1
q3 − q

(
2q3 − 2q

)
= 2.

Thus ψ q−1
2
,0 6∈ Irr(SL(2, q)). Here we have ψ q−1

2
,0 = ξ̃1 + ξ̃2, where ξ̃1, ξ̃2 ∈ Irr(SL(2, q)) such that

deg(ξ̃1) = deg(ξ̃2) = q+1
2 (to be shown later). The values of ξ̃i, i = 1, 2 on classes of SL(2, q) are

not easy to compute. We determine these values later. Now ξ̃1 + ξ̃2 have values given by Table 4.9.
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Table 4.9: Values of ξ̃1 + ξ̃2 on classes of SL(2, q)

Class T (1)
0 −T (1)

0 T (2)
01 −T (2)

01 T (2)
0ε −T (2)

0ε T (3)
k,−k T (4)

k

ξ̃1 + ξ̃2 q + 1 (−1)
q−1
2 (q + 1) 1 (−1)

q−1
2 1 (−1)

q−1
2 2(−1)k 0

Next we turn to the fourth family of characters of GL(2, q). By similar computations used in the

last step, we can show that πk for k = 1, 2, · · · , q−1
2 restrict irreducibly to be characters of SL(2, q).

But if k = q+1
2 , we get

〈
π q+1

2
, π q+1

2

〉
= 2 and thus π q+1

2
= ϑ̃1 + ϑ̃2, where ϑ̃1, ϑ̃2 ∈ Irr(SL(2, q))

and deg(ϑ̃1) = deg(ϑ̃2) = q−1
2 (to be shown later). The values of ϑ̃1 + ϑ̃2 on classes of SL(2, q) are

given in Table 4.10

Table 4.10: Values of ϑ̃1 + ϑ̃2 on classes of SL(2, q)

Class T (1)
0 −T (1)

0 T (2)
01 −T (2)

01 T (2)
0ε −T (2)

0ε T (3)
k,−k T (4)

k

ϑ̃1 + ϑ̃2 q − 1 (−1)
q+1
2 (q − 1) −1 (−1)

q−1
2 −1 (−1)

q−1
2 0 2(−1)m+1

where 1 ≤ m ≤ q−1
2 is the integer for which F∗q2 \ F

∗
q 3 r = θ(q−1)m and F∗q2 = 〈θ〉 .

Now we count the number of irreducible characters of SL(2, q) we have obtained so far. This is

built on the assumption that we have determined the values of ξ̃1, ξ̃2, ϑ̃1 and ϑ̃2 on classes of

SL(2, q) and we have proved their irreducibility. The characters we have found till now are

λ; ψ; ψk,1, 1 ≤ k ≤ q − 3
2

; πk, 1 ≤ k ≤ q − 1
2

; ξ̃1, ξ̃2; ϑ̃1, ϑ̃2.

Thus

1 + 1 +
q − 3

2
+
q − 1

2
+ 1 + 1 + 1 + 1 =

2q + 8
2

= q + 4.

This is equal to the number of conjugacy classes of SL(2, q), which tells that we have found all the

irreducible characters of SL(2, q). To complete the character table, we need to find the values of

ξ̃1, ξ̃2, ϑ̃1 and ϑ̃2 on the classes of SL(2, q). To do this, we invoke another subgroup of GL(2, q),

which contains SL(2, q).

Let (F∗q)2 denotes the subset of F∗q consisting of the square elements of F∗q . By Lemma 3.1.4 we have

|(F∗q)2| =

{
q − 1 if q is even,
q−1

2 if q is odd.

Lemma 4.4.2. We have

(i) If a, b ∈ (F∗q)2, then so is ab.
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(ii) If a, b ∈ F∗q \ (F∗q)2, then ab ∈ (F∗q)2.

(iii) If a ∈ (F∗q)2 and b ∈ F∗q \ (F∗q)2, then ab ∈ F∗q \ (F∗q)2.

PROOF. Easy and omitted. One can refer to Wan [75]. �

Remark 4.4.1. Since F∗q is abelian, (F∗q)2 E F∗q .

Proposition 4.4.3. Let SD(2, q) = {g ∈ GL(2, q)| det(g) ∈ (F∗q)2}. Then SD(2, q) ≤ GL(2, q).

PROOF. It is clear that det(I2) = 1 ∈ (F∗q)2. Thus I2 ∈ SD(2, q). Let A,B ∈ SD(2, q) with

det(A), det(B) ∈ (F∗q)2. Therefore det(A) = γ2
1 , and det(B) = γ2

2 , for some γ2
1 , γ

2
2 ∈ (F∗q)2. Now

det(AB−1) = det(A) det(B−1) = γ2
1(γ−1

2 )2 = (γ1γ
−1
2 )2 = γ2 ∈ (F∗q)2. The result follows. �

Proposition 4.4.4.

|SD(2, q)| =

q(q − 1)2(q + 1) if q is even,
1
2q(q − 1)2(q + 1) if q is odd.

PROOF. If q is even, then by Lemma 3.1.4, we have det(g) ∈ (F∗q)2, ∀g ∈ GL(2, q). Thus GL(2, q) ⊆
SD(2, q). Hence SD(2, q) = GL(2, q) and the result follows. On the other hand, if q is odd, then

the function ω : GL(2, q) −→ {1,−1} defined by

ω(g) =

{
1 if det(g) ∈ (F∗q)2,

−1 otherwise,

is a group homomorphism as follows. Let A,B ∈ GL(2, q).

• If det(A), det(B) ∈ (F∗q)2, then by Lemma 4.4.2(i), we have det(AB) = det(A) det(B) ∈ (F∗q)2.

Therefore ω(AB) = 1 = 1× 1 = ω(A)ω(B).

• If det(A),det(B) ∈ F∗q \ (F∗q)2, then by Lemma 4.4.2(ii), we have det(AB) = det(A) det(B) ∈
(F∗q)2. Therefore ω(AB) = 1 = −1×−1 = ω(A)ω(B).

• If det(A) ∈ (F∗q)2 and det(B) ∈ F∗q \ (F∗q)2, then by Lemma 4.4.2(iii), we have det(AB) =

det(A) det(B) ∈ F∗q \ (F∗q)2. Therefore ω(AB) = −1 = 1×−1 = ω(A)ω(B).

Furthermore, Im(ω) = {1,−1}, since existence of g, h ∈ GL(2, q) such that det(g) ∈ F∗q \ (F∗q)2 and

det(h) ∈ (F∗q)2 is guaranteed. To see this, let σ ∈ F∗q \ (F∗q)2 (such σ exists by Lemma 3.1.4). Now

it is cleat that ω

((
1 0

0 σ

))
= −1. Take h = I2. Then ω(h) = ω(I2) = 1 ∈ (F∗q)2. It follows that
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Im(ω) = {1,−1}. By the definition of ω we can see that ker(ω) = SD(2, q). Hence by the 1st Isomor-

phism Theorem GL(2, q)/SD(2, q) ∼= Im(ω) = {1,−1}. Thus |SD(2, q)| = |GL(2, q)|/|{1,−1}| =
1
2q(q − 1)2(q + 1) as required. �

Note that the proof of Proposition 4.4.4 asserts that SD(2, q) = ker(ω). Therefore we have the

following corollary.

Corollary 4.4.5. SD(2, q)EGL(2, q).

In the following, we focus on SD(2, q) when q is odd.

We define an equivalence relation ∼ on SD(2, q) by

A ∼ B in SD(2, q)⇐⇒ det(A) = det(B).

Obviously ∼ is an equivalence relation. Suppose thatM1,M2, · · · ,Mk are the equivalence classes

defined by ∼ . Let (F∗q)2 = {δ2
1 , δ

2
2 , · · · , δ2

q−1
2

} with δ2
1 = 1. The following proposition counts the

number of the equivalence classes of ∼ .

Proposition 4.4.6. There is 1 − 1 correspondence between the equivalence classes defined by ∼
above and elements of (F∗q)2.

PROOF. For each δ2
i ∈ (F∗q)2 there corresponds an equivalence class represented by δiI2. Conversely,

since all elements of [δiI2] have the same determinant δ2
i , then the equivalence classes defined of ∼

are in 1− 1 correspondence with elements of (F∗q)2. �

From the above proposition, it follows that we can denote the equivalence classes of ∼ byMδ21
,Mδ22

,

· · · ,Mδ2q−1
2

, where all elements of Mδ2i
have determinant δ2

i . Note that SL(2, q) =Mδ21
=M1.

The group SD(2, q) is of particular interest since [GL(2, q) : SD(2, q)] = 2 and we know all ir-

reducible characters of such subgroups (see page 219 of James [40]). We do not attempt to find

Irr(SD(2, q)). We need only four of its characters to finish the character table of SL(2, q). However,

we need all the conjugacy classes of SD(2, q) and to see how the classes of SL(2, q) fuse into them.

Any class of type T (1) in GL(2, q) will form a class in SD(2, q) since these are central classes.

Conjugacy classes of type T (2) are all in SD(2, q) but one can easily check that for a fixed α, the

elements g1 =

(
α 1

0 α

)
and g2 =

(
α ε

0 α

)
of SD(2, q), which are conjugate in GL(2, q), are no

longer conjugate in SD(2, q). In SD(2, q), we have |[g1]| = |[g2]| = q2−1
2 . To see that g1 6∼ g2 in
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SD(2, q), let g =

(
a b

c d

)
∈ SD(2, q). Hence ad− bc = y2 ∈ (F∗q)2. Now

(
α ε

0 α

)(
a b

c d

)
=

(
aα+ cε bα+ dε

cα dα

)
,(

a b

c d

)(
α 1

0 α

)
=

(
aα a+ bα

cα c+ dα

)
.

If gg1g
−1 = g2, then c = 0 and a = dε. Therefore ad − bc = d2ε = y2. This yields that

ε = (yd−1)2 ∈ (F∗q)2. Therefore o(ε)| q−1
2 , which contradicts the fact that o(ε) = q − 1.

Next we consider classes of GL(2, q) of type T (3), where a typical element tα,β, α 6= β will be

tα,β =

(
α 0

0 β

)
. Now for a fixed α, we have

tα,β ∈ SD(2, q)⇐⇒ β = α−1x2, for some x ∈ F∗q \ {α,−α}.

Note that in this case we have l = −k+ 2m, where m ∈ Z \ {k,−k} such that x = εm. It is easy to

check that [tα,β] = [tβ,α] in SD(2, q). Thus we have (q−1)(q−3)
4 class of this type in SD(2, q), where

it can be shown that each class has size q(q + 1).

It is possible to prove that eachMδ2i
, 1 ≤ i ≤ q−1

2 contains q−1
2 classes of type T (4). Also, each class

T (4)
k in GL(2, q) is a non-split class in SD(2, q). Therefore we have (q−1)2

4 such classes in SD(2, q)

and |T (4)
k | = q(q − 1).

Adding up the number of elements in SD(2, q) we have found so far, we get

(q − 1) + (q − 1)
q2 − 1

2
+ (q − 1)

q2 − 1
2

+
(q − 1)(q − 3)

4
q(q + 1) +

(q − 1)2

4
q(q − 1)

=
q(q − 1)2(q + 1)

2
= |SD(2, q)|.

This tells that we have found all the classes of SD(2, q), which we list in Table 4.11.

The number of classes of SD(2, q) is

(q − 1) + (q − 1) + (q − 1) +
(q − 1)(q − 3)

4
+

(q − 1)2

4
=

(q − 1)
2

(q + 4).
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Table 4.11: Conjugacy classes of SD(2, q)

Class T (1)
s T (2)

s1 T (2)
sε T (3)

s,−s+2m T (4)
s

Rep g

(
α 0

0 α

) (
α 1

0 α

) (
α ε

0 α

) (
α 0

0 α−1x2

) (
0 1

−rq+1 r + rq+1

)
No. of CC q − 1 q − 1 q − 1 (q−1)(q−3)

4
(q−1)2

4

|Cg| 1 q2−1
2

q2−1
2 q(q + 1) q(q − 1)

|CSD(2,q)(g)| (q2−1)(q2−q)
2

q(q−1)
2

q(q−1)
2

(q−1)2

2
q2−1

2

where, in Table 4.11,

• α, x ∈ F∗q , x 6= ±α,

• in T (3)
s,−s+2m, s,m are the positive integers for which α = εs, x = εm,

• in T (4)
s , if F∗q2 = 〈θ〉 , then s is the integer for which r = θs and −θs(q+1) ∈ (F∗q)2,

• in T (1)
s , T (2)

s1 , T (2)
sε , s has the same explanations as in Table 4.1.

Remark 4.4.2. Recall that SL(2, q) has q + 4 distinct conjugacy classes. Now we have seen that

SD(2, q) =

q−1
2⋃
i=1

Mδ2i
has (q−1)

2 (q+4) conjugacy classes. We note that the central classes of GL(2, q)

are distributed equally into the sets Mδ2i
; that is each Mδ2i

contains 2 central classes namely,

diag(δi, δi) and diag(−δi,−δi). More generally, by defining an equivalence relation ≈ on each Mδ2i

by

m1 ≈ m2 in Mδ2i
⇐⇒ ∃ x ∈Mδ2i

such that m2 = xm1x
−1,

then we can see that for fixed 1 ≤ i ≤ q−1
2 , we have

• Mδ2i
contains two equivalence classes [x1i] and [−x1i], where x1i =

(
δi 0

0 δi

)
, and |[x1i]| =

|[−x1i]| = 1,

• Mδ2i
contains two equivalence classes [x2i] and [−x2i], where x2i =

(
δi 1

0 δi

)
, and |[x2i]| =

|[−x2i]| = q2−1
2 ,

• Mδ2i
contains two equivalence classes [x3i] and [−x3i], where x3i =

(
δi ε

0 δi

)
, and |[x3i]| =

|[−x3i]| = q2−1
2 ,

68



Chapter 4 — GL(2, q) and Some of its Subgroups

• Mδ2i
contains q−3

2 equivalence classes [x4iα], where x4iα =

(
α 0

0 α−1δ2
i

)
and α ∈ F∗q\{δi,−δi}.

Also |[x4iα]| = q(q + 1).

• Mδ2i
contains q−1

2 equivalence classes [x5ir], where x5ir =

(
0 1

−rq+1 r + rq

)
and r ∈ F∗q2 \ F

∗
q

such that rq+1 = δ2
i . Also |[x5ir]| = q(q − 1)

Note 4.4.1. For M1 = SL(2, q), the equivalence classes defined by ≈ are the conjugacy classes of

SL(2, q).

The set Irr(SD(2, q)) can be derived from Irr(GL(2, q)) since [GL(2, q) : SD(2, q)] = 2 (see page

219 of James [40] to see how to extract Irr(N), where [G : N ] = 2 from Irr(G)). We do not

require the full set Irr(SD(2, q)), but we will use four irreducible characters of SD(2, q) to produce

ξ̃1, ξ̃2, ϑ̃1, ϑ̃2 ∈ Irr(SL(2, q)). In Table 4.12 we list few of the irreducible characters of SD(2, q).

Table 4.12: Some of the irreducible characters of SD(2, q)

Class T (1)
s T (2)

s1 T (2)
sε T (3)

s,−s+2m T (4)
s

χ
(1)
k α̂2k α̂2k α̂2k x̂2k r̂k(q+1)

χ
(2)
k qα̂2k 0 0 x̂2k −r̂k(q+1)

ϑ1
(q−1)

2 α̂1+ε (−1
2 +

√
εq
2 )α̂1+ε (−1

2 −
√
εq
2 )α̂1+ε 0 (−1)s+1

ϑ2
(q−1)

2 α̂1+ε (−1
2 −

√
εq
2 )α̂1+ε (−1

2 +
√
εq
2 )α̂1+ε 0 (−1)s+1

ξ1
(q+1)

2 α̂ε (1
2 +

√
εq
2 )α̂ε (1

2 −
√
εq
2 )α̂ε (−1)s 0

ξ2
(q+1)

2 α̂ε (1
2 −

√
εq
2 )α̂ε (1

2 +
√
εq
2 )α̂ε (−1)s 0

where, in Table 4.12,

• in χ
(1)
k , χ

(2)
k , k = 0, 1, · · · , q − 2,

• ε = (−1)
q−1
2 =

{
1 if q ≡ 1(mod4),

−1 if q ≡ 3(mod4).

Next we determine how classes of SL(2, q) fuse into classes of SD(2, q). In Table 4.13 we illustrate

this fusion.

From Table 4.12 we consider ϑ1, ϑ2, ξ1, ξ2 ∈ Irr(SD(2, q)). Let us use for simplicity of notations

ϑ̂1, ϑ̂2, ξ̂1 and ξ̂2 to denote

ϑ̂1 = ϑ1↓SD(2,q)
SL(2,q) , ϑ̂2 = ϑ2↓SD(2,q)

SL(2,q) , ξ̂1 = ξ1↓SD(2,q)
SL(2,q) and ξ̂2 = ξ2↓SD(2,q)

SL(2,q) .
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Table 4.13: Fusion of classes of SL(2, q) into classes of SD(2, q)

Type of classes Class of Class of

of GL(2, q) SL(2, q) −→ SD(2, q)

T (1)
0 T (1)

0

T (1)

−T (1)
0 −T (1)

0

T (2)
01 T (2)

01

T (2)

−T (2)
01 −T (2)

01

T (2)
0ε T (2)

0ε

T (2)

−T (2)
0ε −T (2)

0ε

T (3) T (3)
k,−k T (3)

k,−k

T (4) T (4)
k T (4)

k

The values of ϑ̂1, ϑ̂2, ξ̂1 and ξ̂2 on classes of SL(2, q) are shown in Table 4.14. It is clear from Table

4.14 that ϑ̂1, ϑ̂2, ξ̂1 and ξ̂2 are C−valued characters if q ≡ 3(mod4) and R−valued characters if

q ≡ 1(mod4).

Table 4.14: Values of ϑ̂1, ϑ̂2, ξ̂1 and ξ̂2 on classes of SL(2, q)

Class T (1)
0 −T (1)

0 T (2)
01 −T (2)

01

ξ̂1
(q+1)

2 ε (q+1)
2 (1

2 +
√
εq
2 ) ε(1

2 +
√
εq
2 )

ξ̂2
(q+1)

2 ε (q+1)
2 (1

2 −
√
εq
2 ) ε(1

2 −
√
εq
2 )

ϑ̂1
(q−1)

2 −ε (q−1)
2 (−1

2 +
√
εq
2 ) −ε(−1

2 +
√
εq
2 )

ϑ̂2
(q−1)

2 −ε (q−1)
2 (−1

2 −
√
εq
2 ) −ε(−1

2 −
√
εq
2 )

Class T (2)
0ε −T (2)

0ε T (3)
k,−k T (4)

k

ξ̂1 (1
2 −

√
εq
2 ) ε(1

2 −
√
εq
2 ) (−1)k 0

ξ̂1 (1
2 +

√
εq
2 ) ε(1

2 +
√
εq
2 ) (−1)k 0

ϑ̂1 (−1
2 −

√
εq
2 ) −ε(−1

2 −
√
εq
2 ) 0 (−1)m+1

ϑ̂2 (−1
2 +

√
εq
2 ) −ε(−1

2 +
√
εq
2 ) 0 (−1)m+1
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Firstly let q ≡ 1(mod4), that is ε = 1. In this case we know that ξ̂1(g) ∈ R, ∀g ∈ SL(2, q). We have〈
ξ̂1, ξ̂1

〉
=

1
q3 − q

(
2

(q + 1)2

4
+ 2

q2 − 1
2

(
1 + q + 2

√
q

4
) + 2

q2 − 1
2

(
1 + q − 2

√
q

4
) +

q(q − 1)(q − 3)
2

)
=

1
q3 − q

(
(q + 1)2

2
+
q2 − 1

2
(q + 1)

2
+

(q + 1)
2

q(q − 3)
)

=
(q + 1)

2(q3 − q)
(
(q + 1) + (q2 − 1) + (q2 − 3q)

)
=

(q + 1)
2(q3 − q)

(
2q2 − 2q

)
= 1.

Thus ξ̂1 ∈ Irr(SL(2, q)). On the other hand, if q ≡ 3(mod4) then we know that ∃g ∈ SL(2, q) such

that ξ̂1(g) ∈ C \ R and we have〈
ξ̂1, ξ̂1

〉
=

1
q3 − q

(
2

(q + 1)2

4
+ 2

q2 − 1
2

(
1 + q

4
) + 2

q2 − 1
2

(
1 + q

4
) +

q(q − 1)(q − 3)
2

)
=

1
q3 − q

(
(q + 1)2

2
+
q2 − 1

2
(q + 1)

2
+

(q + 1)
2

q(q − 3)
)

=
(q + 1)

2(q3 − q)
(
(q + 1) + (q2 − 1) + (q2 − 3q)

)
=

(q + 1)
2(q3 − q)

(
2q2 − 2q

)
= 1,

which shows that ξ̂1 ∈ Irr(SL(2, q)).

Similar arguments can be used to show that ξ̂2, ϑ̂1, ϑ̂2 ∈ Irr(SL(2, q)).

Finally we are in the position to give the required values of ξ̃1, ξ̃2, ϑ̃1 and ϑ̃2 on the classes of

SL(2, q). First note that

ξ̂1(g) + ξ̂2(g) = (ξ̃1 + ξ̃2)(g), ∀g ∈ SL(2, q),

ϑ̂1(g) + ϑ̂2(g) = (ϑ̃1 + ϑ̃2)(g), ∀g ∈ SL(2, q),

where (ξ̃1 + ξ̃2)(g) and (ϑ̃1 + ϑ̃2)(g), ∀g ∈ SL(2, q) are given in Tables 4.9, 4.10 respectively.

Therefore we may take

ξ̃1 = ξ̂1 = ξ1↓SD(2,q)
SL(2,q) , ξ̃2 = ξ̂2 = ξ2↓SD(2,q)

SL(2,q) , ϑ̃1 = ϑ̂1 = ϑ1↓SD(2,q)
SL(2,q) and ϑ̃2 = ϑ̂2 = ϑ2↓SD(2,q)

SL(2,q) .

This completes the character table of SL(2, q), q odd. We list the character table of SL(2, q), q

odd, in Table 4.15.
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Table 4.15: The character table of SL(2, q), q is odd

Class T (1)
0 −T (1)

0 T (2)
01 −T (2)

01

Rep g

(
1 0

0 1

) (
−1 0

0 −1

) (
1 1

0 1

) (
−1 −1

0 −1

)
No. of CC 1 1 1 1

|CSL(2,q)(g)| q3 − q q3 − q 2q 2q

|Cg| 1 1 q2−1
2

q2−1
2

λ 1 1 1 1

ψ q q 0 0

ψk,1 q + 1 (−1)k+1(q + 1) 1 1

πk q − 1 (−1)k(q − 1) −1 (−1)k+1

ξ̃1
(q+1)

2 ε (q+1)
2 (1

2 +
√
εq
2 ) ε(1

2 +
√
εq
2 )

ξ̃2
(q+1)

2 ε (q+1)
2 (1

2 −
√
εq
2 ) ε(1

2 −
√
εq
2 )

ϑ̃1
(q−1)

2 −ε (q−1)
2 (−1

2 +
√
εq
2 ) −ε(−1

2 +
√
εq
2 )

ϑ̃2
(q−1)

2 −ε (q−1)
2 (−1

2 −
√
εq
2 ) −ε(−1

2 −
√
εq
2 )

Class T (2)
0ε −T (2)

0ε T (3)
k,−k T (4)

k

Rep g

(
1 ε

0 1

) (
−1 −ε
0 −1

) (
α 0

0 α−1

) (
0 1

−1 r + rq

)
No. of CC 1 1 q−3

2
q−1

2

|CSL(2,q)(g)| 2q 2q q − 1 q + 1

|Cg| q2−1
2

q2−1
2 q(q + 1) q(q − 1)

λ 1 1 1 1

ψ 0 0 1 −1

ψk,1 1 (−1)k+1 α̂(k−1) + α̂−(k−1) 0

πk −1 (−1)k+1 0 −(r̂k + r̂kq)

ξ̃1 (1
2 −

√
εq
2 ) ε(1

2 −
√
εq
2 ) (−1)k 0

ξ̃2 (1
2 +

√
εq
2 ) ε(1

2 +
√
εq
2 ) (−1)k 0

ϑ̃1 (−1
2 −

√
εq
2 ) −ε(−1

2 −
√
εq
2 ) 0 (−1)m+1

ϑ̃2 (−1
2 +

√
εq
2 ) −ε(−1

2 +
√
εq
2 ) 0 (−1)m+1

where, in Table 4.15,
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• ε = (−1)
q−1
2 =

{
1 if q ≡ 1(mod4),

−1 if q ≡ 3(mod4).

• m is the positive integer for which r = θm, θ being a generator of F∗q2 .

4.4.2 Character Table of SL(2, q), q even

In the case SL(2, q), q odd, we have seen that the number of conjugacy classes is q + 4. If the

summand 4 is interpreted as |Z(SL(2, q))|2, then the same interpretation will be valid for the case

when q is even, that is the number of conjugacy classes of SL(2, 2t), t ≥ 1 is q + 1. This can be

shown through the next Proposition.

Proposition 4.4.7. The group SL(2, q), q = 2t, t ≥ 1 has q+1 distinct conjugacy classes described

in Table 4.16.

PROOF. The following statements are the results of direct computations from the conjugacy classes

of GL(2, q).

(i) The identity class I2 is the only class of type T (1) which is in SL(2, 2t).

(ii) The class represented by T (2)
0 is the only class of type T (2) which is in SL(2, 2t). In equa-

tion (4.15), if we replace SL(2, q), q odd by SL(2, 2t), then we get g =

(
1 b

0 1

)
. Thus

|CSL(2,2t)(x)| = q, where x ∈ T (2)
0 . Hence |T (2)

0 | = q2 − 1, which shows that the class T (2)
0 of

GL(2, q) is a non-split class in SL(2, 2t).

(iii) If tk,l =

(
εk 0

0 εl

)
is an element in class T (3)

k,l of GL(2, q), then tk,l ∈ SL(2, 2t) ⇐⇒ l = −k.

Excluding k = 0 and note that tk,−k ∼ t−k,k in SL(2, 2t), we get q−2
2 such classes. It is

straightforward to show that |T (3)
k,−k| = q(q + 1).

(iv) If Ar =

(
0 1

rq+1 r + rq

)
∈ GL(2, q) is of type T (4), then for j = 1, 2, · · · , q2 , we have Ar ∈

SL(2, 2t) since det(Ar) = r.rq = θ(q−1)j .θq(q−1)j = θ(q2−1)j = 1.

Now counting the elements we have found so far, we get

1 · 1 + 1 · (q2 − 1) +
q − 2

2
· q(q + 1) +

q

2
· q(q − 1) = q3 − q = |SL(2, q)|.

Thus Table 4.16 lists the full conjugacy classes of SL(2, q). �
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Table 4.16: The conjugacy classes of SL(2, q), q is even

Class T (1)
0 T (2)

0 T (3)
k,−k T (4)

k

Rep g

(
1 0

0 1

) (
1 1

0 1

) (
α 0

0 α−1

) (
0 1

1 r + rq

)
No. of CC 1 1 q−2

2
q
2

|CSL(2,2t)(g)| q3 − q q q − 1 q + 1

|Cg| 1 q2 − 1 q(q + 1) q(q − 1)

where α ∈ F∗q , α = εk, k 6= 0, and if F∗q2 = 〈θ〉 , then r = θ(q−1)j for j = 1, 2, · · · , q2 .

Irreducible Characters of SL(2, 2t)

Proposition 4.4.8. The characters table of SL(2, 2t) is given in Table 4.17.

PROOF. It is easy to check that 〈ψ,ψ〉 = 1. Similar to the case SL(2, q), q odd in Subsection 4.4.1,

where we proved that ψk,1 ∈ Irr(SL(2, q)), we can prove that ψk,0 ∈ Irr(SL(2, 2t)). Same argu-

ments can also be used to show that 〈πk, πk〉 = 1 for the appropriate k. �

Table 4.17: The Character table of SL(2, q), q is even

Class T (1)
0 T (2)

0 T (3)
k,−k T (4)

k

Rep g

(
1 0

0 1

) (
1 1

0 1

) (
α 0

0 α−1

) (
0 1

1 r + rq

)
No. of CC 1 1 q−2

2
q
2

|CSUT (2,2t)(g)| q3 − q q q − 1 q + 1

|Cg| 1 q2 − 1 q(q + 1) q(q − 1)

λ 1 1 1 1

ψ q 0 1 −1

ψk,0 q + 1 1 α̂k + α̂−k 0

πk q − 1 −1 0 −(r̂k + r̂kq)

where, in Table 4.17,
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• α ∈ F∗q , α 6= 1,

• with θ being a generator of F∗q2 , then r = θ(q−1)j for j = 1, 2, · · · , q2 ,

• in ψk,0, k = 1, 2, · · · , q−2
2 ,

• in πk, k = 1, 2, · · · , q2 .

Remark 4.4.3. Note that SL(2, q) (q even or odd and q = ps) possesses only one irreducible

character χ such that p| deg(χ). It is shown in unpublished paper by Berkovich and Kazarin (see

Berckovich [6]) that if a group possesses only one non-linear irreducible character of p
′−degree,

then it is solvable.

4.5. Character Table of SUT (2, q)

We recall by Subsection 3.1.2 that SUT (2, q) has the form

SUT (2, q) =

{(
a b

0 a−1

)
| a ∈ F∗q , b ∈ Fq

}
.

Therefore |SUT (2, q)| = q(q − 1) and hence [SL(2, q) : SUT (2, q)] = q + 1. This group has the

structure of group extension (nontrivial). To see this, we recall Schur-Zassenhaus Lemma.

Lemma 4.5.1 (Schur-Zassenhaus Lemma). Let G be a finite group and N E G such that

gcd(|N |, |G/N |) = 1. Then G = N :(G/N).

PROOF. See Robinson [62] or Rotman [65]. �

Let

K =

{(
1 b

0 1

)
| b ∈ Fq

}
, H =

{(
a 0

0 a−1

)
| a ∈ F∗q

}
. (4.20)

Then K ∼= Fq and H ∼= F∗q . Note that since |K| = q and |H| = q − 1, we have gcd(|K|, |H|) = 1.

Proposition 4.5.2. SUT (2, q) ∼= K:H.

PROOF. Let A =

(
a c

0 a−1

)
∈ SUT (2, q) and B =

(
1 b

0 1

)
∈ K. Then

ABA−1 =

(
a c

0 a−1

)(
1 b

0 1

)(
a−1 −c
0 a

)
=

(
1 a2b

0 1

)
∈ K.

Thus K E SUT (2, q). The result now follows from Schur-Zassenhaus Lemma. �

Next we determine the character table of SUT (2, q) in both cases of q odd or even.
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4.5.1 Character Table of SUT (2, q), q odd

Conjugacy Classes of SUT (2, q)

From Table 4.15, we can see that the classes T (1)
0 , −T (1)

0 , T (2)
01 , −T (2)

01 , T (2)
0ε , −T

(2)
0ε and T (3)

k,−k are

in SUT (2, q). We recall that any class T (3)
k,−k in SL(2, q) does not change if we replace α ∈ F∗q , α 6∈

{1,−1}, by α−1 in a typical element of the class. This is not the case in SUT (2, q), where each

α ∈ F∗q , α 6∈ {1,−1} gives a new conjugacy class since(
a b

0 a−1

)(
α 0

0 α−1

)
=

(
aα bα−1

0 a−1α−1

)
,(

α−1 0

0 α

)(
a b

0 a−1

)
=

(
aα−1 bα−1

0 a−1α

)
.

Thus if

(
α−1 0

0 α

)
∼

(
α 0

0 α−1

)
in SUT (2, q), we would have

aα = aα−1 ⇐⇒ a(α− α−1) = 0⇐⇒ a = 0 or α = α−1 ⇐⇒ a = 0 or α ∈ {1,−1},

which contradicts the facts that a 6= 0 and α 6∈ {1,−1}. Hence there are at least 6 + (q− 3) = q+ 3

conjugacy classes of SUT (2, q).

Now |T (1)
0 | = | − T

(1)
0 | = 1. Suppose that g =

(
a b

0 a−1

)
∈ SUT (2, q) and let A =

(
1 1

0 1

)
∈ T (2)

01 .

Then (
a b

0 a−1

)(
1 1

0 1

)
=

(
a a+ b

0 a−1

)
,(

1 1

0 1

)(
a b

0 a−1

)
=

(
a b+ a−1

0 a−1

)
.

Thus

g ∈ CSUT (2,q)(A)⇐⇒ a+ b = b+ a−1 ⇐⇒ a = a−1 ⇐⇒ a ∈ {1,−1}.

Therefore |CSUT (2,q)(A)| = 2q and hence |[A]| = q−1
2 . Similar computations show that

| − T (2)
01 | = |T

(2)
0ε | = | − T

(2)
0ε | =

q − 1
2

.

If t =

(
α 0

0 α−1

)
is any element in the class T (3)

k,−k, then

(
a b

0 a−1

)(
α 0

0 α−1

)
=

(
aα bα−1

0 a−1α−1

)
,(

α 0

0 α−1

)(
a b

0 a−1

)
=

(
aα bα

0 a−1α−1

)
.
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Thus

g ∈ CSUT (2,q)(t)⇐⇒ bα−1 = bα⇐⇒ b(α− α−1) = 0⇐⇒ b = 0 or

α = α−1 ⇐⇒ b = 0 or α ∈ {1,−1}.

Since α 6∈ {1,−1}, we must have b = 0. Therefore |CSUT (2,q)(t)| = q − 1 and consequently,

|T (3)
k,−k| = q.

By calculating the number of elements we have obtained so far, we get

2 + 4× q − 1
2

+ q(q − 3) = 2 + 2q − 2 + q2 − 3q = q2 − q = q(q − 1) = |SUT (2, q)|.

This tells that there can not be further classes of SUT (2, q). We list these classes in Table 4.18.

Table 4.18: The conjugacy classes of SUT (2, q), q is odd

Class T (1)
0 −T (1)

0 T (2)
01 −T (2)

01

Rep g

(
1 0

0 1

) (
−1 0

0 −1

) (
1 1

0 1

) (
−1 −1

0 −1

)
No. of CC 1 1 1 1

|CSUT (2,q)(g)| q2 − q q2 − q 2q 2q

|Cg| 1 1 q−1
2

q−1
2

Table 4.18 (continued)

Class T (2)
0ε −T (2)

0ε T (3)
k,−k

Rep g

(
1 ε

0 1

) (
−1 −ε
0 −1

) (
α 0

0 α−1

)
No. of CC 1 1 q − 3

|CSUT (2,q)(g)| 2q 2q q − 1

|Cg| q−1
2

q−1
2 q

where ε is a generator of the group F∗q and α ∈ F∗q \ {1,−1}.
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Irreducible Characters of SUT (2, q)

Let K be the group defined in (4.20). By Proposition 4.5.2 we have SUT (2, q)/K ∼= H. Hence by

Section 2.4 we have Irr(H) ⊂ Irr(SUT (2, q)). Therefore we get q−1 linear characters of SUT (2, q)

and in fact these are all the linear characters, because of Proposition 4.5.3.

Proposition 4.5.3. SUT (2, q)
′

= K.

PROOF. Let A =

(
a b

0 a−1

)
∈ SUT (2, q) and C =

(
c d

0 c−1

)
∈ SUT (2, q). The commutator of A

and C is(
a b

0 a−1

)(
c d

0 c−1

)(
a−1 −b
0 a

)(
c−1 −d
0 c

)
=

(
1 cd(a2 − 1)− ab(c2 − 1)

0 1

)
∈ K. (4.21)

Thus SUT (2, q)
′ ⊆ K.

Conversely we aim to show that any w ∈ K is a commutator. Let w =

(
1 x

0 1

)
∈ K and assume

that a ∈ F∗q , a 6= 1 (such a exists since q ≥ 3). Now(
1 x

0 1

)
=

(
a b

0 a−1

)(
1 x(a2 − 1)

0 1

)(
a−1 −b
0 a

)(
1 −x(a2 − 1)

0 1

)
∈ SUT (2, q)

′
.

Thus K ⊆ SUT (2, q)
′
. Therefore SUT (2, q)

′
= K establishes the result. �

The q − 1 linear characters χk, 1 ≤ k ≤ q − 1 are given on representatives of classes of SUT (2, q)

by

• χk

((
1 0

0 1

))
= 1, χk

((
−1 0

0 −1

))
= (−1)k,

• χk

((
1 1

0 1

))
= 1, χk

((
−1 1

0 −1

))
= (−1)k,

• χk

((
1 ε

0 1

))
= 1, χk

((
−1 −ε
0 −1

))
= (−1)k,

• χk

((
εs 0

0 ε−s

))
= e

2πks
q−1

i
, s = 2, 3, · · · , q − 2, 0 ≤ k ≤ q − 2.

We recall that |Irr(SUT (2, q))| = q + 3. Hence 4 further characters left to be found.
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Proposition 4.5.4. Let ϑ̃1 and ϑ̃2 be the irreducible characters of SL(2, q) given in Table 4.15.

Then ϑ̃1↓SL(2,q)
SUT (2,q), ϑ̃2↓SL(2,q)

SUT (2,q) ∈ Irr(SUT (2, q)).

PROOF. For simplicity of notations, let us denote ϑ̃1↓SL(2,q)
SUT (2,q) and ϑ̃2↓SL(2,q)

SUT (2,q) by ϑ̂1 and ϑ̂2 re-

spectively. We have seen that if q ≡ 1(mod4), then ϑ̃1(g), ϑ̃2(g) ∈ R, ∀g ∈ SL(2, q), while if

q ≡ 3(mod4), then ∃g ∈ SL(2, q) such that ϑ̃1(g), ϑ̃2(g) ∈ C \ R. Now suppose that q ≡ 3(mod4).

We have〈
ϑ̂1, ϑ̂1

〉
=

1
|SUT (2, q)|

∑
g∈SUT (2,q)

ϑ̂1(g)ϑ̂1(g) =
1

q(q − 1)

(
(q − 1)2

4
+

(q − 1)2

4

+
q − 1

2

(
−1

2
+
i
√
q

2

)(
−1

2
−
i
√
q

2

)
+
q − 1

2

(
−1

2
+
i
√
q

2

)(
−1

2
−
i
√
q

2

)
+

+
q − 1

2

(
−1

2
−
i
√
q

2

)(
−1

2
+
i
√
q

2

)
+
q − 1

2

(
−1

2
−
i
√
q

2

)(
−1

2
+
i
√
q

2

))
=

1
q(q − 1)

(
(q − 1)2

2
+ 4× q − 1

2
q + 1

4

)
=

1
q(q − 1)

(
(q − 1)2

2
+
q − 1

2
q + 1

)
=

1
q(q − 1)

(
(q − 1)

2
(q − 1 + q + 1)

)
=

1
q(q − 1)

q(q − 1) = 1.

Hence ϑ̂1 ∈ Irr(SUT (2, q)). Similarly ϑ̂1 ∈ Irr(SUT (2, q)) when q ≡ 1(mod4). This applies as well

for the character ϑ̂2. �

By tensoring the q−1 linear characters χk by ϑ̂1 and ϑ̂2, we can see that if k is even for 0 ≤ k ≤ q−2,

then χkϑ̂1 = ϑ̂1 and χkϑ̂2 = ϑ̂2, while if k is odd, then χkϑ̂1 = χ1ϑ̂1 and χkϑ̂2 = χ1ϑ̂2.

This gives the required 4 irreducible characters of SUT (2, q). In Table 4.19 we list the complete

character table of SUT (2, q).

Now we turn to the other case when q = 2t for some positive integer t.

4.5.2 Character Table of SUT (2, 2t)

We construct the character table of SUT (2, 2t) in two different ways. In the first approach we show

that SUT (2, 2t) is one of the Frobenius groups, which have known representations. In the second

approach we use Clifford-Fischer theory together with the technique of coset analysis.

I: Character Table of SUT (2, q), where SUT (2, q) Viewed as a Frobenius Group

We review the basic properties and the characters of Frobenius groups.

Definition 4.5.1. A group G is called a Frobenius group if it has a proper subgroup H such that

H ∩Hr = {1G}, ∀r ∈ G \H. The subgroup H will be referred as the Frobenius complement.
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Table 4.19: The character table of SUT (2, q), q is odd.

Class T (1)
0 −T (1)

0 T (2)
01 −T (2)

01

Rep g

(
1 0

0 1

) (
−1 0

0 −1

) (
1 1

0 1

) (
−1 −1

0 −1

)
No. of CC 1 1 1 1

|CSUT (2,q)(g)| q2 − q q2 − q 2q 2q

|Cg| 1 1 q−1
2

q−1
2

χk 1 (−1)k 1 (−1)k

ϑ̂1
q−1

2 −ε q−1
2 (−1

2 +
√
εq
2 ) −ε(−1

2 +
√
εq
2 )

ϑ̂2
q−1

2 −ε q−1
2 (−1

2 −
√
εq
2 ) −ε(−1

2 −
√
εq
2 )

χ1ϑ̂1
q−1

2 ε q−1
2 (−1

2 +
√
εq
2 ) ε(−1

2 +
√
εq
2 )

χ1ϑ̂2
q−1

2 ε q−1
2 (−1

2 −
√
εq
2 ) ε(−1

2 −
√
εq
2 )

Class T (2)
0ε −T (2)

0ε T (3)
s,−s

Rep g

(
1 ε

0 1

) (
−1 −ε
0 −1

) (
εs 0

0 ε−s

)
No. of CC 1 1 q − 3

|CSUT (2,q)(g)| 2q 2q q − 1

|Cg| q−1
2

q−1
2 q

χk 1 (−1)k e
2πiks
q−1

ϑ̂1 (−1
2 −

√
εq
2 ) −ε(−1

2 −
√
εq
2 ) 0

ϑ̂2 (−1
2 +

√
εq
2 ) −ε(−1

2 +
√
εq
2 ) 0

χ1ϑ̂1 (−1
2 −

√
εq
2 ) ε(−1

2 −
√
εq
2 ) 0

χ1ϑ̂2 (−1
2 +

√
εq
2 ) ε(−1

2 +
√
εq
2 ) 0

where, in Table 4.19,

• ε is a generator of the group F∗q ,

• s = 2, 3 · · · , q − 2,

• in χk, k = 0, 2, · · · , q − 2,

• ε = (−1)
q−1
2 =

 1 if q ≡ 1(mod4),

−1 if q ≡ 3(mod4).
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The Frobenius kernel K of G with respect to H is defined by

K =

(
G−

⋃
r∈G

Hr

)
∪ {1G}.

We leave showing that K EG but one can refer to Flavell [20] or Grove [29] for the proof.

Example 4.5.1. 1. The smallest Frobenius group is S3. It has A3 as a Frobenius kernel K and

Z2 as its complement H.

2. The Dihedral group D2n, n > 1 is odd, is a Frobenius group. The subgroup generated by the

element of order n acts as a kernel while Z2 is the complement.

The following Proposition gives a structure of finite Frobenius groups.

Proposition 4.5.5. Any finite Frobenius group is a split extension of its kernel K by its complement

H.

PROOF. See page 243 of Robinson [62]. �

Frobenius groups have many other nice properties. One can refer to either Collins [13], Grove [29]

or Robinson [62]. The irreducible characters of a Frobenius group G can be constructed from those

of H and K. They appear in two types

• By Proposition 4.5.5, any irreducible representation φ of H gives an irreducible representation

of G by using the quotient map from G to H. This gives the irreducible representations of G

with K in their kernel.

• If ψ is any non-trivial irreducible representation of K, then the corresponding induced repre-

sentation of G is also irreducible. This gives the irreducible representations of G with K not

in their kernel.

To see that any irreducible representation of a Frobenius group has one of the above forms, refer

to Grove [29].

In the following we show that SUT (2, 2t) is a Frobenius group.

Theorem 4.5.6. SUT (2, q) is a Frobenius group for even q.

PROOF. Let H and K be the subgroups of SUT (2, q) defined in (4.20). We aim to show that H

and K are the Frobenius complement and kernel of SUT (2, q) respectively. From the definition of

Frobenius group, let r ∈ G \H. Then a typical element r will have the form

r =

(
c b

0 c−1

)
, b 6= 0.
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Thus

Hr = rHr−1 =

{(
c b

0 c−1

)(
a 0

0 a−1

)(
c−1 −b
0 c

)}

=

{(
a −abc+ a−1bc

0 a−1

)}
=

{(
a abc+ a−1bc

0 a−1

)}
.

Therefore

Hr intersectsH ⇐⇒ abc+ a−1bc = 0⇐⇒ bc(a−1 + a) = 0⇐⇒ a = −a−1 = a−1 ⇐⇒ a = 1.

Thus Hr ∩H = {1SUT (2,q)} = I2 and hence H is a Frobenius complement of SUT (2, q).

To show that K is a Frobenius kernel of SUT (2, q), we use Theorems 9.2.1 and 9.8.2 of Grove [29],

where the first theorem asserts that a group G is Frobenius if and only if it has nontrivial proper

normal subgroup K such that if 1G 6= x ∈ K then CG(x) ≤ K. The second theorem establishes the

uniqueness of Frobenius kernel of a Frobenius group. We have proved in Proposition 4.5.2 that the

subgroup K, defined in (4.20), is a normal subgroup of SUT (2, q). Therefore to show that K is a

Frobenius kernel of SUT (2, q), it suffices to prove that CSUT (2,q)(x) ≤ K, ∀ x ∈ K \ {1SUT (2,q)}.

Suppose that x =

(
1 b

0 1

)
for some b ∈ F∗q . Let g =

(
a c

0 a−1

)
∈ SUT (2, q). Then

(
a c

0 a−1

)(
1 b

0 1

)
=

(
a ab+ c

0 a−1

)
, (4.22)

(
1 b

0 1

)(
a c

0 a−1

)
=

(
a a−1b+ c

0 a−1

)
. (4.23)

Now

g ∈ CSUT (2,q)(x)⇐⇒ (4.22) = (4.23)⇐⇒ ab = a−1b⇐⇒ a = a−1 ⇐⇒ a = 1.

Thus

CSUT (2,q)(x) =

{(
1 c

0 1

)
| c ∈ Fq

}
= K.

Hence K is a Frobenius kernel of SUT (2, q), which completes the proof of the Theorem. �

We now show that SUT (2, q), for odd q, is not a Frobenius group.

Lemma 4.5.7. If G is a Frobenius group, then Z(G) = {1G}.

PROOF. See Robinson [62]. �
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Corollary 4.5.8. The group SUT (2, q) for odd q is not a Frobenius group.

PROOF. The contrapositive of Lemma 4.5.7 asserts that if the |Z(G)| > 1, then G is not a Frobenius

group. It is clear that I2, −I2 ∈ Z(SUT (2, q)) and the result follows. �

The following theorem deals with the conjugacy classes of SUT (2, 2t).

Theorem 4.5.9. The conjugacy classes of SUT (2, 2t) are given in Table 4.20.

PROOF. It is straightforward to see that for any s ∈ {1, 2, · · · , q − 2} we get a conjugacy class

T (3)
s,−s such that |T (3)

s,−s| = q. Also we can verify that the conjugacy class of SL(2, 2t) represented

by T (2)
0 where |T (2)

0 | = q2 − 1 is a split class in SUT (2, 2t). If we let T (2)
01 =

(
1 1

0 1

)
be a a class

of SUT (2, 2t), then |T (2)
01 | = q − 1 and T (2)

01 fuse to T (2)
0 in SL(2, 2t). Adding elements of classes

T (1)
0 , T (2)

01 , T (3)
1,−1, T

(3)
2,−2, · · · , T

(3)
q−2,−(q−2) we get

1 + (q − 1) + q(q − 2) = q + q(q − 2) = q(q − 1) = |SUT (2, q)|.

Hence the classes given in Table 4.20 are all the conjugacy classes of SUT (2, q). �

Table 4.20: The conjugacy classes of SUT (2, q)

T (1)
0 T (2)

0 T (3)
s,−s

Rep g

(
1 0

0 1

) (
1 1

0 1

) (
εs 0

0 ε−s

)
No. of CC 1 1 q − 2

|CSUT (2,2t)(g)| q2 − q q q − 1

|Cg| 1 q − 1 q

where ε is a generator of F∗q and s = 1, 2, · · · , q − 2.

Irreducible Characters of SUT (2, 2t)

As there are q conjugacy classes of SUT (2, q), we seek q irreducible characters.

We recall that by Proposition 4.5.3 the derived subgroup SUT (2, q)
′

for odd q is K. We can prove

similarly that SUT (2, 2t)
′

= K. In terms of the description of the irreducible characters of Frobenius

groups, there are q−1 linear characters of SUT (2, q) coming from those characters of H through the
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quotient map and therefore are all linear characters of SUT (2, q). Let t(2)
01 ∈ T

(2)
01 and t(3)

s,−s ∈ T
(3)
s,−s.

The values of linear characters χk, k = 1, · · · , q − 1 on classes of SUT (2, q) are given by

χk(T
(1)

0 ) = χk(t
(2)
01 ) = 1 and χk(t

(3)
s,−s) = e

2πsk
q−1

i
, 1 ≤ s ≤ q − 2. (4.24)

Since |SUT (2, q)| = q(q − 1), it turns out that the last character χq is of degree q − 1. At this

stage we can use elementary properties of the character tables (like the orthogonality relations)

to produce the values of χq on classes of SUT (2, q). We do not go this way since the purpose

here is to use the Frobeniusity of SUT (2, q). Therefore we use the nontrivial characters of K ∼=

Fq ∼= Z2 × Z2 × · · · × Z2︸ ︷︷ ︸
t times

to obtain χq. The character table of K is given by
⊗
t times

[
1 1

1 −1

]
. Let

ψ ∈ Irr(K) \ {1}. Then

• ψ↑SUT (2,q)
K (T (1)

0 ) = |CSUT (2,q)(T
(1)
0 )|

|CK(T (1)
0 )|

ψ(T (1)
0 ) = q(q−1)

q · 1 = q − 1,

• ψ↑SUT (2,q)
K (t(2)

01 ) = |CSUT (2,q)(t
(2)
01 )|

|CK(t
(2)
01 )|

ψ(t(2)
01 ) = q

q · −1 = −1,

• ψ↑SUT (2,q)
K (t(3)

s,−s) =
|CSUT (2,q)(t

(3)
s,−s)|

|CK(t
(3)
s,−s)|

ψ(t(3)
s,−s) = 0, s = 1, 2, · · · , q − 2.

Now let χq = ψ↑SUT (2,q)
K . Then χq reads the following values

χq(T (1)
0 ) = q − 1, χq(t

(2)
01 ) = −1 and χq(t

(3)
s,−s) = 0. (4.25)

The complete character table of SUT (2, 2t) is shown in Table 4.21.

Table 4.21: The character table of SUT (2, q)

T (1)
0 T (2)

01 T (3)
s,−s

Rep g

(
1 0

0 1

) (
1 1

0 1

) (
εs 0

0 ε−s

)
No. of CC 1 1 q − 2

|CSUT (2,2t)(g)| q2 − q q q − 1

|Cg| 1 q − 1 q

χk 1 1 e
2πisk
q−1

χq q − 1 −1 0

where ε is a generator of F∗q , s = 1, 2, · · · , q − 2 and k = 1, 2, · · · , q − 1.
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II: Character Table of SUT (2, q) From Clifford-Fischer Theory

We recall that a holomorph of a group G, Holo(G), is the group extension of G by its automorphism

group Aut(G); that is Holo(G) = G:Aut(G). In her Masters dissertation, [76], Whitley determined

the character tables of the holomorph of Zp, which is Zp:Zp−1. In her work, she used the theory of

Clifford-Fischer matrices together with the method of the coset analysis, a method for computing

the conjugacy classes of group extension which was first described and used by Moori [52]. The two

theories of the coset analysis and Clifford-Fischer matrices are out of the scope of this dissertation.

However, we will use these theories to obtain the conjugacy classes and character table of SUT (2, q).

For a complete description of these theories we refer to either Moori [52], [53], Mpono [55], Rodrigues

[63], or Whitley [76].

Proposition 4.5.10. Holo(Fq) ∼= Fq:F∗q .

PROOF. We prove that Aut(Fq) = F∗q . This is immediate since Aut(V (n, q)) ∼= GL(n, q). In particu-

lar, Aut(V (1, q)) = Aut(Fq) ∼= GL(1, q) ∼= F∗q . �

We start by describing the conjugacy classes of SUT (2, q) ∼= Fq:F∗q ∼= K:H using the coset analysis

method (Moori [52]). To be consistent with the notation of Whitley [76], let us denote by G, N

and G, the groups SUT (2, q), Fq and F∗q respectively. Thus G = N :G. Note that this extension

is split and G =
⋃
g∈G

Ng. Hence G is a union of q − 1 distinct cosets. Using the fact that N is

elementary abelian group, then it was shown (Moori [52]) that

|CG(x)| = k|CG(g)|
f

, (4.26)

where k, f and x are defined below.

(i) k = |CN (g)|, the size of the stabilizer of an arbitrary element g ∈ G in the action of G on N.

Since N is abelian group, k represents the number of the orbits Q1, Q2, · · · , Qk of the action

of N on Ng.

(ii) f represents the number of the orbits Qj , j ≥ 1 that fuse to form an orbit Ω, when we act

CG(g) on Ng =
k⋃
j=1

Qj .

(iii) x is an arbitrary element of Ω, which will be a representative of a class of G.

Now, let us consider the cosets Ng for g ∈ G.

1. g = 1G : The identity element 1G fixes all elements of N, so k = q. Then under the action of

CG(g) = G, we have two orbits with f = 1 and f = q − 1. Hence the first coset N1G = N
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gives two conjugacy classes of G. The first class is the identity class of G corresponding to

f = 1. For f = q− 1, we have a class T (2)
01 of G containing the element t01 =

(
1 1

0 1

)
of order

p, the characteristic of Fq. We have |CG(t0)| = q(q−1)
q−1 = q.

2. g 6= 1G : There are q − 2 non-identity elements g ∈ G and consequently q − 2 distinct

cosets Ng. A typical element g can be regarded as the element T (3)
s,−s defined in the proof of

Theorem 4.5.9, where 1 ≤ s ≤ q − 2. This g fixes only the zero element of N as follows. Let

g =

(
a 0

0 a−1

)
, a 6= 1 and n =

(
1 b

0 1

)
, b ∈ Fq. Then

gng−1 =

(
a 0

0 a−1

)(
1 b

0 1

)(
a−1 0

0 a

)
=

(
1 a2b

0 1

)
=

(
1 b

0 1

)
⇐⇒ b = 0.

Thus k = 1 and consequently f = 1. This means that each Ng, g 6= 1G, produce only one

class in G. Hence |CG(x)| = 1×(q−1)
1 = q − 1, so that CG(x) = G.

The conjugacy classes of G are given by the following table.

Table 4.22: The conjugacy classes of G = SUT (2, q)

Class of G 1G T (3)
s,−s, 1 ≤ s ≤ q − 2

Class of G 1G T (2)
01 T (3)

s,−s, 1 ≤ s ≤ q − 2

|CG(x)| q2 − q q q − 1

|[x]| 1 q − 1 q

Now, we determine the Fischer matrices. Since G acts transitively on the non-zero elements of

N, G has two orbits on N and hence two orbits on Irr(N) by a theorem of Brauer (for example

see Lemma 4.2.1 of Whitley [76]). These orbits must have lengths 1 and q − 1. The inertia groups

are H1 = G and H2 = N. Let H1 and H2 be H1/N and H2/N respectively. Then H1 = G and

H2 = {1G}.

We have used Theorem 4.2.5 of Whitley [76] to calculate the Fischer matrices and we have:

Corresponding to the identity 1G of G, the Fischer matrix is

M(1G) =

(
1 1

q − 1 −1

)
.
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The characters values in the G−block at G−classes 1G and T (2)
01 are:

1

1
...

1


(

1 1
)

=


1 1

1 1
...

...

1 1

 ,

and the character values in the H2−block at 1G and T (2)
01 are:(

1
)(

q − 1 −1
)

=
(
q − 1 −1

)
.

For g 6= 1G, since 1G does not fuse to any non-identity class of G, then the Fischer matrix is

M(g) =
(

1
)
.

The G−block consists of the character table of G, while the H2−block consists of zeros.

The complete character table of G is shown in Table 4.23.

Table 4.23: The character table of G = SUT (2, q)

Class 1G T (2)
01 C1 C2 · · · Cq−2

|CG(x)| q2 − q q q − 1 q − 1 · · · q − 1

|CGx | 1 q − 1 q q · · · q

χ1 1 1

χ2 1 1 X
...

...
...

χq−1 1 1

χq q − 1 −1 0 0 · · · 0

where, in Table 4.23,

• C1, C2, · · · , Cq−2 are the non-identity classes of G = F∗q ,

• X denotes the values of the character table on the nonidentity classes of the group G.

If we look well at the character table of G = SUT (2, q), we can see clearly that this table co-

incides with the one we obtained using the technique for Frobenius groups. Of course, this is

natural, since the character table of an arbitrary finite group G is unique. Also if we look at Table

5.14 of Whitley [76], we see that our table for the holomorph of F∗q is similar to the holomorph
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of Zp given in Whitley, only p is replaced by q. Thus our table is a generalization of Whitley’s table.

We conclude this section of the character table of the group SUT (2, q) by making a connection to

the work has been done by Muktibodh [57]. He defined a new notion in group thoery by saying

that a group G is called a Con-Cos group if it has a proper normal subgroup N and ∀x ∈ G\{1G},
the coset Nx forms a conjugacy class of G. Moreover, a group G is called a 2-Con-Cos group if it

is a Con-Cos group and N splits into exactly two conjugacy classes in G. Furthermore, he classified

all the 2-Con-Cos groups.

4.6. Character Table of UT (2, q)

By computations similar to ones performed in the previous sections, we can easily get the conjugacy

classes of UT (2, q). These are listed, together with some irreducible characters of UT (2, q) in Table

4.4 appeared in the proof of Theorem 4.3.1. In Table 4.24, we list the complete character table of

UT (2, q).

Theorem 4.6.1. The character table of UT (2, q) is shown in Table 4.24.

PROOF. In equation (4.12), we produced (q−1)(q−2) irreducible characters χkχl, k 6= l of UT (2, q),

for which the values are listed in Table 4.4. Let us denote χkχl by χ(2)
k,l . On the other hand if l = k,

then we get q − 1 irreducible characters of UT (2, q) which we call χ(1)
k . Note that these characters

are the powers of the determinants of elements of UT (2, q). From Table 4.2, we have seen that

χ
(4)
q−1 ∈ Irr(GL(2, q)). We try χ(4)

q−1↓
GL(2,q)
UT (2,q), which we denote by χ. Its values on classes of UT (2, q)

are given by

χ(t1) = q − 1, χ(t2) = −1 and χ(t3k) = 0,

where t1, t2, t3 are elements of the classes T (1)
s , T (2)

s , T (3)
s,t respectively.

Now

〈χ, χ〉 =
1

|UT (2, q)|
∑

g∈UT (2,q)

χ(g)χ(g) =
1

q(q − 1)2

(
(q − 1)(q − 1)2 + (q − 1)(q − 1)

)
=

1
q(q − 1)2

(q − 1)2 ((q − 1) + 1) = 1.

Thus χ ∈ Irr(UT (2, q)). By tensoring χ with the q−1 linear characters χ(1)
k , we get q−1 irreducible

characters χχ(1)
k of UT (2, q) of degrees q − 1. We rename χχ(1)

k to χ(3)
k . Hence there are q2 − q ir-

reducible characters, which is the same number of conjugacy classes of UT (2, q). This finishes the

character table of UT (2, q). �
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Table 4.24: The character table of UT (2, q)

Class T (1)
s T (2)

s T (3)
s,t

Rep g

(
α 0

0 α

) (
α 1

0 α

) (
α 0

0 β

)
No. of CC q − 1 q − 1 (q − 1)(q − 2)

|Cg| 1 q − 1 q

|CUT (2,q)(g)| q(q − 1)2 q(q − 1) (q − 1)2

χ
(1)
k α̂2k α̂2k α̂kβ̂k

χ
(2)
k,l α̂k+l α̂k+l α̂kβ̂l

χ
(3)
k (q − 1)α̂k −α̂k 0

where the notations are as in Table 4.2 except for the characters χ(3)
k , where we have k = 0, 1, · · · , q−

2.

4.7. Examples

In this section, T (i)
j :

(
a b

c d

)
means that

(
a b

c d

)
is a representative of the conjugacy class T (i)

j .

4.7.1 GL(2, 3)

Fq2 = F9 = {0, 1, θ, θ2, · · · , θ7},

F∗q2 = F∗9 = {1, θ, θ2, · · · , θ7} = 〈θ〉, θ8 = 1,

Fq = F3 = {0, 1, θ4},

F∗q = F∗3 = {1, θ4} = 〈θ4〉 ∼= Z2.

The group GL(2, 3) has order q(q− 1)2(q+ 1) = 48 and q2− 1 = 8 conjugacy classes. By Theorem

4.3.1, these classes lie in four types as follows:

classes of type T (1) are T (1)
0 :

(
1 0

0 1

)
, T (1)

1 :

(
θ4 0

0 θ4

)
,

classes of type T (2) are T (2)
0 :

(
1 1

0 1

)
, T (2)

1 :

(
θ4 1

0 θ4

)
,

classes of type T (3) are T (3)
0,1 :

(
1 0

0 θ4

)
.
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For the last type of classes, we have:

F9 \ F3 = {θ, θ2, θ3, θ5, θ6, θ7}

These 6 elements of F9 \ F3 are partitioned into three sets each contains θj and θ3j . Thus

F9 \ F3 = {θ, θ3} ∪ {θ2, θ6} ∪ {θ5, θ7}.

We take θ, θ2 and θ5 to form the three remaining conjugacy classes of the family T (4). Hence

classes of type T (4) are T (4)
1 :

(
0 1

−θ4 θ + θ3

)
=

(
0 1

1 1

)
, T (4)

2 :

(
0 1

−1 θ2 + θ6

)
=

(
0 1

−1 0

)
,

T (4)
5 :

(
0 1

−θ4 θ5 + θ7

)
=

(
0 1

1 θ4

)
.

Table 4.25: Basic information of the conjugacy classes of GL(2, 3)

Class T (1)
0 T (1)

1 T (2)
0 T (2)

1 T (3)
0,1 T (4)

1 T (4)
2 T (4)

5

o(g) 1 2 3 6 2 8 4 8

|Cg| 1 1 8 8 12 6 6 6

|CGL(2,3)(g)| 48 48 6 6 4 8 8 8

Table 4.26: The power maps of GL(2, 3)

p|o(g) 2 3 p|o(g) 2 3 p|o(g) 2 3 p|o(g) 2 3

T (1)
0 - - T (2)

0 - T (1)
0 T (3)

0,1 T (1)
0 - T (4)

2 T (1)
1 -

T (1)
1 T (1)

0 - T (2)
1 T (2)

0 T (1)
1 T (4)

1 T (4)
2 - T (4)

5 T (4)
2 -

Since there are 8 conjugacy classes of GL(2, 3), there are 8 irreducible characters. These characters

fall into four types χ(1)
k , χ

(2)
k , χ

(3)
k,l and χ

(4)
k described as follows:

χ
(1)
k : There are q − 1 = 2 linear characters χ(1)

0 and χ
(1)
1 .

χ
(2)
k : There are q − 1 = 2 irreducible characters χ(2)

0 and χ
(2)
1 each of degree q = 3.

χ
(3)
k,l : There are (q−1)(q−2)

2 = 1 irreducible character χ(3)
0,1 of degree 4.

χ
(4)
k : There are q2−q

2 = 3 irreducible characters χ(4)
1 , χ

(4)
2 and χ

(4)
5 each of degree q − 1 = 2.
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We explain how to calculate the values of the irreducible characters on the conjugacy classes

of GL(2, 3). We do this for χ(2)
1 and χ

(4)
5 and the other characters follow similarly. Let the hat

function ̂ be the isomorphism from F∗3 to the group of second roots of unity in the complex num-

bers, that is θ̂4 = e
2π
2
i = eπi = −1. Let t(2)

0 , t
(2)
1 , t

(3)
0,1, t

(4)
1 , t

(4)
2 , t

(4)
5 be elements in the classes

T (2)
0 , T (2)

1 , T (3)
0,1 , T

(4)
1 , T (4)

2 , T (4)
5 respectively. From Table 4.2 we obtain

χ
(2)
1 (T (1)

0 ) = qθ̂4
2

= 31̂2 = 3, χ
(2)
1 (T (1)

1 ) = qθ̂4
2

= 3(−1)2 = 3,

χ
(2)
1 (t(2)

0 ) = 0, χ
(2)
1 (t(2)

1 ) = 0,

χ
(2)
1 (t(3)

0,1) = 1̂θ̂4 = −1, χ
(2)
1 (t(4)

1 ) = −r̂k(q+1) = −θ̂4 = 1,

χ
(2)
1 (t(4)

2 ) = −r̂k(q+1) = −θ̂4
2

= −1, χ
(2)
1 (t(4)

5 ) = −r̂k(q+1) = −θ̂4
5

= 1.

For the character χ(4)
5 , let the hat function ̂ be the isomorphism from F∗9 to the group of 8th roots

of unity in the complex numbers, that is θ̂ = e
2π
8
i = e

π
4
i = 1+i√

2
. Then

χ
(4)
5 (T (1)

0 ) = (q − 1)θ̂4
k

= 21̂5 = 2(1)5 = 2,

χ
(4)
5 (T (1)

1 ) = (q − 1)θ̂4
5

= 2(−1)5 = −2,

χ
(4)
5 (t(2)

0 ) = −1̂5 = −(1)5 = −1,

χ
(4)
5 (t(2)

1 ) = −θ̂4
5

= −(−1)5 = 1,

χ
(4)
5 (t(3)

0,1) = 0,

χ
(4)
5 (t(4)

1 ) = −(r̂k + r̂kq) = −(θ̂5 + θ̂15) = −(e
5πi
4 + e

7πi
4 ) = 1+i√

2
+ −1+i√

2
= i
√

2,

χ
(4)
5 (t(4)

2 ) = −(r̂k + r̂kq) = −(θ̂2
5

+ θ̂2
15

) = −(e
10πi

4 + e
30πi

4 ) = −(−1 + 1) = 0,

χ
(4)
5 (t(4)

5 ) = −(r̂k + r̂kq) = −(θ̂5
5

+ θ̂5
15

) = −(e
25πi

4 + e
75πi

4 ) = −(1+i√
2

+ −1+i√
2

) = −i
√

2.

The complete character table of the group GL(2, 3) is listed in Table 4.27. This table can be

obtained from GAP [23] through the command

gap> Display(CharacaterTable(GL(2,3)));

A table of correspondence between our table obtained manually through the theory and the one

obtained by using GAP is also given.
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Table 4.27: The character table of GL(2, 3)

Class T (1)
0 T (1)

1 T (2)
0 T (2)

1 T (3)
0,1 T (4)

1 T (4)
2 T (4)

5

o(g) 1 2 3 6 2 8 4 8

|Cg| 1 1 8 8 12 6 6 6

|CGL(2,3)(g)| 48 48 6 6 4 8 8 8

χ
(1)
0 1 1 1 1 1 1 1 1

χ
(1)
1 1 1 1 1 −1 −1 1 −1

χ
(2)
0 3 3 0 0 1 −1 −1 −1

χ
(2)
1 3 3 0 0 −1 1 −1 1

χ
(3)
0,1 4 −4 1 −1 0 0 0 0

χ
(4)
1 2 −2 −1 1 0 −i

√
2 0 i

√
2

χ
(4)
2 2 2 −1 −1 0 0 2 0

χ
(4)
5 2 −2 −1 1 0 i

√
2 0 −i

√
2

Table 4.28: Correspondence of conjugacy classes of GL(2, 3) in our notation and GAP notation

Our GAP Our GAP Our GAP Our GAP

Notation Notation Notation Notation Notation Notation Notation Notation

T (1)
0 1a T (2)

0 3a T (3)
0,1 2b T (4)

2 4a

T (1)
1 2a T (2)

1 6a T (4)
1 8a T (4)

5 8b

Table 4.29: Correspondence of irreducible characters of GL(2, 3) in our notation and GAP notation

Our GAP Our GAP Our GAP Our GAP

Notation Notation Notation Notation Notation Notation Notation Notation

χ
(1)
0 χ1 χ

(2)
0 χ6 χ

(3)
0,1 χ8 χ

(4)
2 χ3

χ
(1)
1 χ2 χ

(2)
1 χ7 χ

(4)
1 χ4 χ

(4)
5 χ5

4.7.2 GL(2, 4)

Let F∗4 ∼= Z3 and F∗16
∼= Z15 be generated by α and θ respectively. Then a set of representatives of

the conjugacy classes of GL(2, 4) can be given as follows.
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T (1)
0 =

(
1 0

0 1

)
, T (1)

1 =

(
α 0

0 α

)
, T (1)

2 =

(
α2 0

0 α2

)
,

T (2)
0 :

(
1 1

0 1

)
, T (2)

1 :

(
α 1

0 α

)
, T (2)

2 :

(
α2 1

0 α2

)
,

T (3)
0 :

(
1 0

0 α

)
, T (3)

1 :

(
1 0

0 α2

)
, T (3)

2 :

(
α 0

0 α2

)
,

T (4)
1 :

(
0 1

θ5 θ + θ4

)
=

(
0 1

α 1

)
, T (4)

2 :

(
0 1

θ10 θ2 + θ8

)
=

(
0 1

α2 1

)
,

T (4)
3 :

(
0 1

1 θ3 + θ12

)
=

(
0 1

1 α2

)
, T (4)

6 :

(
0 1

1 θ6 + θ9

)
=

(
0 1

1 α

)
,

T (4)
7 :

(
0 1

θ5 θ7 + θ13

)
=

(
0 1

α α

)
, T (4)

11 :

(
0 1

θ10 θ11 + θ14

)
=

(
0 1

α2 α2

)
.

Table 4.30 gives the basic information about these representatives.

Table 4.30: Basic information of the conjugacy classes of GL(2, 4)

Class T (1)
0 T (1)

1 T (1)
2 T (2)

0 T (2)
1 T (2)

2 T (3)
0 T (3)

1 T (3)
2

o(g) 1 3 3 2 6 6 3 3 3

|Cg| 1 1 1 15 15 15 20 20 20

|CGL(2,4)(g)| 180 180 180 12 12 12 9 9 9

Table 4.30 (continued)

Class T (4)
1 T (4)

2 T (4)
3 T (4)

6 T (4)
7 T (4)

11

o(g) 15 15 5 5 15 15

|Cg| 12 12 12 12 12 12

|CGL(2,4)(g)| 15 15 15 15 15 15

The power maps of theses conjugacy classes are given in Table 4.31.
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Table 4.31: The power maps of GL(2, 4)

p|o(g) 2 3 5 p|o(g) 2 3 5 p|o(g) 2 3 5

T (1)
0 - - - T (2)

2 T (1)
1 T (2)

0 - T (4)
2 - T (4)

6 T (2)
1

T (1)
1 - T (1)

0 - T (3)
0 - T (1)

0 - T (4)
3 - - T (1)

0

T (1)
2 - T (1)

0 - T (3)
1 - T (1)

0 - T (4)
6 - - T (1)

0

T (2)
0 T (1)

0 - - T (3)
2 - T (1)

0 - T (4)
7 - T (4)

6 T (1)
2

T (2)
1 T (1)

2 T (2)
0 - T (4)

1 - T (4)
3 T (1)

2 T (4)
11 - T (4)

3 T (2)
1

Let A = e
2iπ
3 = −1

2 +
√

3i
2 , E = −(e

2iπ
5 +e

8iπ
5 ), E∗ = 2−e2 = −(e

4iπ
5 +e

6iπ
5 ), F = −(e

4iπ
15 +e

16iπ
15 )

and G = −(e
22iπ
15 + e

28iπ
15 ). The character table of GL(2, 4) is shown in Table 4.32.

Table 4.32: The character table of GL(2, 4)

Class T (1)
0 T (1)

1 T (1)
2 T (2)

0 T (2)
1 T (2)

2 T (3)
0 T (3)

1 T (3)
2

o(g) 1 3 3 2 6 6 3 3 3

|Cg| 1 1 1 15 15 15 20 20 20

|CGL(2,4)(g)| 180 180 180 12 12 12 9 9 9

χ1 χ
(1)
0 1 1 1 1 1 1 1 1 1

χ2 χ
(1)
1 1 A A 1 A A A A 1

χ3 χ
(1)
2 1 A A 1 A A A A 1

χ4 χ
(2)
0 4 4 4 0 0 0 1 1 1

χ5 χ
(2)
1 4 4A 4A 0 0 0 A A 1

χ6 χ
(2)
2 4 4A 4A 0 0 0 A A 1

χ7 χ
(3)
0,1 5 5A 5A 1 A A −A −A −1

χ8 χ
(3)
0,2 5 5A 5A 1 A A −A −A −1

χ9 χ
(3)
1,2 5 5 5 1 1 1 −1 −1 −1

χ10 χ
(4)
1 3 3A 3A −1 −A −A 0 0 0

χ11 χ
(4)
2 3 3A 3A −1 −A −A 0 0 0

χ12 χ
(4)
3 3 3 3 −1 −1 −1 0 0 0

χ13 χ
(4)
6 3 3 3 −1 −1 −1 0 0 0

χ14 χ
(4)
7 3 3A 3A −1 −A −A 0 0 0

χ15 χ
(4)
11 3 3A 3A −1 −A −A 0 0 0
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Table 4.32 (continued)

Class T (4)
1 T (4)

2 T (4)
3 T (4)

6 T (4)
7 T (4)

11

o(g) 15 15 5 5 15 15

|Cg| 12 12 12 12 12 12

|CGL(2,4)(g)| 15 15 15 15 15 15

χ1 χ
(1)
0 1 1 1 1 1 1

χ2 χ
(1)
1 A A 1 1 A A

χ3 χ
(1)
2 A A 1 1 A A

χ4 χ
(2)
0 −1 −1 −1 −1 −1 −1

χ5 χ
(2)
1 −A −A −1 −1 −A −A

χ6 χ
(2)
2 −A −A −1 −1 −A −A

χ7 χ
(3)
0,1 0 0 0 0 0 0

χ8 χ
(3)
0,2 0 0 0 0 0 0

χ9 χ
(3)
1,2 0 0 0 0 0 0

χ10 χ
(4)
1 G F E E∗ F G

χ11 χ
(4)
2 F G E∗ E G F

χ12 χ
(4)
3 E E∗ E∗ E E∗ E

χ13 χ
(4)
6 E∗ E E E∗ E E∗

χ14 χ
(4)
7 F G E∗ E G F

χ15 χ
(4)
11 G F E E∗ F G

Table 4.33: Correspondence of conjugacy classes of GL(2, 4) in our notation and GAP notation

Our GAP Our GAP Our GAP

Notation Notation Notation Notation Notation Notation

T (1)
0 1a T (2)

2 6b T (4)
2 15c

T (1)
1 3a T (3)

0 3c T (4)
3 5b

T (1)
2 3b T (3)

1 3d T (4)
6 5a

T (2)
0 2a T (3)

2 3e T (4)
7 15b

T (2)
1 6a T (4)

1 15a T (4)
11 15d
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Table 4.34: Correspondence of irreducible characters of GL(2, 4) in our notation and GAP notation

Our GAP Our GAP Our GAP

Notation Notation Notation Notation Notation Notation

χ1 χ1 χ6 χ10 χ11 χ6

χ2 χ2 χ7 χ15 χ12 χ5

χ3 χ3 χ8 χ14 χ13 χ9

χ4 χ13 χ9 χ11 χ14 χ7

χ5 χ12 χ10 χ4 χ15 χ8

4.7.3 SL(2, 3)

The group SL(2, 3) has order q(q − 1)(q + 1) = 24 and according to Table 4.15 it has q + 4 = 7

distinct conjugacy classes described as follows

T (1)
0 =

(
1 0

0 1

)
, −T (1)

0 =

(
−1 0

0 −1

)
, T (2)

01 :

(
1 1

0 1

)
− T (2)

01 :

(
−1 −1

0 −1

)
,

T (2)
0ε :

(
1 ε

0 1

)
, −T (2)

0ε :

(
−1 −ε
0 −1

)
, T (4)

1 :

(
0 1

−1 θ2 + θ6

)
.

The orders and size of conjugacy classes and centralizers of the above representatives are given

in Table 4.35.

Table 4.35: The conjugacy classes of SL(2, 3)

Class T (1)
0 −T (1)

0 T (2)
0 −T (2)

0 T (2)
1 −T (2)

1 T (4)
1

o(g) 1 2 3 6 3 6 4

|CSL(2,3)(g)| 24 24 6 6 6 6 4

|Cg| 1 1 4 4 4 4 6

Now in terms of Table 4.15, the complete character table of SL(2, 3) is given in Table 4.36.
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Table 4.36: The character table of SL(2, 3)

Class T (1)
0 −T (1)

0 T (2)
01 −T (2)

01 T (2)
0ε −T (2)

0ε T (4)
1

o(g) 1 2 3 6 3 6 4

|CSL(2,3)(g)| 24 24 6 6 6 6 4

|Cg| 1 1 4 4 4 4 6

λ 1 1 1 1 1 1 1

ψ 3 3 0 0 0 0 −1

π1 2 −2 −1 1 −1 1 0

ξ̃1 2 −2 1+i
√

3
2

−1−i
√

3
2

1−i
√

3
2

−1+i
√

3
2 0

ξ̃2 2 −2 1−i
√

3
2

−1+i
√

3
2

1+i
√

3
2

−1−i
√

3
2 0

ϑ̃1 1 1 −1+i
√

3
2

−1+i
√

3
2

−1−i
√

3
2

−1−i
√

3
2 1

ϑ̃2 1 1 −1−i
√

3
2

−1−i
√

3
2

−1+i
√

3
2

−1+i
√

3
2 1

4.7.4 SL(2, 4)

This group has order 60 and has q + 1 = 5 conjugacy classes described as follows:

T (1)
0 =

(
1 0

0 1

)
, T (2)

0 :

(
1 1

0 1

)
, T (3)

1,−1 :

(
θ5 0

0 θ−5

)
,

T (4)
3 :

(
0 1

1 θ3 + θ12

)
, T (4)

6 :

(
0 1

1 θ6 + θ9

)
,

where F∗16 = 〈θ〉 .

Now in terms of Table 4.17, the character table of SL(2, 4) is given by Table 4.37.

From the the character table of SL(2, q), we can see that this group is simple (χi(t
(j)
k ) 6= χi(T (1)

0 )),

for all 2 ≤ i ≤ 5, 2 ≤ j ≤ 4, k ∈ {0, 3, 6}, where t(j)k denotes an element in the class T (j)
k ). Since

any simple group of order 60 is isomorphic to A5 (see for example Rotman [65]), then SL(2, 4) ∼= A5

(we have mentioned this in Example 3.1.3).
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Table 4.37: The character table of SL(2, 4)

Class T (1)
0 T (2)

0 T (3)
0 T (4)

3 T (4)
6

|Cg| 1 15 20 12 12

|CG(g)| 60 4 3 5 5

o(g) 1 2 3 5 5

χ1 1 1 1 1 1

χ2 4 0 1 −1 −1

χ3 5 1 −1 0 0

χ4 3 −1 0 E E

χ5 3 −1 0 E E

where E = −(e
2iπ
5 + e

8iπ
5 ).

4.7.5 SUT (2, 3)

The group SUT (2, 3) has order q(q − 1) = 6 and according to Table 4.19, has q + 3 = 6 distinct

conjugacy classes described as follows

T (1)
0 =

(
1 0

0 1

)
, −T (1)

0 =

(
−1 0

0 −1

)
, T (2)

0 :

(
1 1

0 1

)
− T (2)

0 :

(
−1 −1

0 −1

)
,

T (2)
1 :

(
1 ε

0 1

)
, −T (2)

1 :

(
−1 −ε
0 −1

)
where ε is a generator of F∗3 ∼= Z2. Since |SUT (2, 3)| = 6, it follows that SUT (2, 3) ∼= S3 or

SUT (2, 3) ∼= Z6. We have 6 conjugacy classes, which is |SUT (2, 3)|. Thus SUT (2, 3) ∼= Z6. The

character table of Z6 is given by Theorem 2.2.4. However the idea here is to use the character table

of SUT (2, q), which is given by Table 4.19. We show the character table of SUT (2, 3) in Table

4.38.

4.7.6 SUT (2, 4)

Let α be a generator of F∗4 ∼= Z3. Then the classes of SUT (2, 4) are

T (1)
0 =

(
1 0

0 1

)
, T (2)

0 :

(
1 1

0 1

)
, T (3)

1 :

(
α 0

0 α−1

)
, T (3)

2 :

(
α−1 0

0 α

)
.
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Table 4.38: The character table of SUT (2, 3)

Rep g T (1)
0 −T (1)

0 T (2)
01 −T (2)

01 T (2)
0ε −T (2)

0ε

|CSUT (2,3)(g)| 6 6 6 6 6 6

|Cg| 1 1 1 1 1 1

|o(g)| 1 2 3 6 3 6

χ0 1 1 1 1 1 1

χ1 1 −1 1 −1 1 −1

ϑ1 1 1 −1+i
√

3
2

−1+i
√

3
2

−1−i
√

3
2

−1−i
√

3
2

ϑ2 1 1 −1−i
√

3
2

−1−i
√

3
2

−1+i
√

3
2

−1+i
√

3
2

χ1ϑ1 1 −1 −1+i
√

3
2

1−i
√

3
2

−1−i
√

3
2

1+i
√

3
2

χ1ϑ2 1 −1 −1−i
√

3
2

1+i
√

3
2

−1+i
√

3
2

1−i
√

3
2

Table 4.39: The character table of SUT (2, 4)

T (1)
0 T (2)

0 T (3)
1 T (3)

2

|Cg| 1 3 4 4

|CSUT (2,4)(g)| 12 4 3 3

o(g) 1 2 3 3

χ1 1 1 1 1

χ2 1 1 A A

χ3 1 1 A A

χ4 3 −1 0 0

where A = e
2πi
3 = −1

2 +
√

3
2 i.

Corollary 4.7.1. SUT (2, 4) ∼= A4.

PROOF. By Theorem 2.2.13 of Moori [54] we know that there are three non-abelian groups (up to

isomorphism) of order 12. Two of these groups have subgroups of order 6 while the other group

A4 does not have this property. It can be easily checked that SUT (2, 4) is a non-abelian group. If

∃H ≤ SUT (2, 4) such that |H| = 6, then HESUT (2, q). This implies that H is a union of conjugacy

classes of SUT (2, 4). If we look at the attached information to the character table of SUT (2, 4),

concerning the conjugacy classes of SUT (2, 4), we can see clearly that there is no combination of

classes including the identity class that give a subgroup of order 6. Therefore, we deduce that
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SUT (2, 4) ∼= A4. �

4.7.7 UT (2, 3)

With F∗3 = Z2 = 〈α〉 , then the conjugacy classes of UT (2, 3) are

T (1)
0 =

(
1 0

0 1

)
, T (1)

1 =

(
α 0

0 α

)
,

T (2)
0 :

(
1 1

0 1

)
, T (2)

1 :

(
α 1

0 α

)
,

T (3)
1 :

(
1 0

0 α

)
, T (3)

2 :

(
α 0

0 1

)
.

Since all elements of UT (2, 3) are of prime orders, we do not need to give a table for the power

maps. The complete character table of UT (2, 3) is as follows.

Table 4.40: The character table of UT (2, 3)

Class T (1)
0 T (1)

1 T (2)
0 T (2)

1 T (3)
1 T (3)

2

o(g) 1 2 3 6 2 2

|Cg| 1 1 2 2 3 3

|CUT (2,3)(g)| 12 12 6 6 4 4

χ1 1 1 1 1 1 1

χ2 1 1 1 1 −1 −1

χ3 1 −1 1 −1 −1 1

χ4 1 −1 1 −1 1 −1

χ5 2 2 −1 −1 0 0

χ6 2 −2 −1 1 0 0

Remark 4.7.1. It is unfortunate that the library of GAP [23] does not contain the group UT (n, q)

like the cases GL(n, q), SL(n, q), PSL(n, q), · · · , etc, which are known there. We have written a

small subroutine to construct the character table of UT (2, 3), which is attached to the Appendix.

We can see clearly that the character table of UT (2, 3) coincides with the character table of the

Dihedral group D12. We have the following Corollary.
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Corollary 4.7.2. UT (2, 3) ∼= D12.

PROOF. Let a =

(
α 1

0 α

)
and b =

(
1 0

0 α

)
. Then a6 = b2 = I2 = 1UT (2,3). Also a−1 = a5 =(

α α

0 α

)
. Now we have

ab =

(
α 1

0 α

)(
1 0

0 α

)
=

(
α α

0 1

)
=

(
1 0

0 α

)(
α α

0 α

)
= ba5.

Since | 〈a〉 | = 6 = 1
2 |UT (2, 3)|, then 〈a〉 E UT (2, 3) and therefore 〈a〉 〈b〉 ≤ UT (2, 3). Now it is easy

to check that 〈a〉 ∩ 〈b〉 = {I2}. Therefore | 〈a〉 〈b〉 | = | 〈a〉 || 〈b〉 | = 12. Hence UT (2, 3) = 〈a〉 〈b〉 . We

deduce that

UT (2, 3) =
〈
a, b| a6 = b2 = I2, ab = ba5 = ba−1

〉
.

Hence UT (2, 3) ∼= D12. �

4.7.8 UT (2, 4)

With F∗4 = Z3 = 〈α〉 , then the conjugacy classes of UT (2, 4) are

T (1)
0 =

(
1 0

0 1

)
, T (1)

1 =

(
α 0

0 α

)
, T (1)

2 =

(
α−1 0

0 α−1

)
,

T (2)
0 :

(
1 1

0 1

)
, T (2)

1 :

(
α 1

0 α

)
, T (2)

2 :

(
α−1 1

0 α−1

)
,

T (3)
1 :

(
1 0

0 α

)
, T (3)

2 :

(
α 0

0 1

)
, T (3)

3 :

(
1 0

0 α−1

)
,

T (3)
4 =

(
α−1 0

0 1

)
, T (3)

5 :

(
α 0

0 α−1

)
, T (3)

6 :

(
α−1 0

0 α

)
.

Suppose that A = e
2πi
3 = −1

2 +i
√

3
2 . The character table of the group UT (2, 4) is given by Table 4.41.
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Table 4.41: The character table of UT (2, 4)

T (1)
0 T (1)

1 T (1)
2 T (2)

0 T (2)
1 T (2)

2 T (3)
1 T (3)

2 T (3)
3 T (3)

4 T (3)
5 T (3)

6

|Cg| 1 1 1 3 3 3 4 4 4 4 4 4

|CUT (2,4)(g)| 36 36 36 12 12 12 9 9 9 9 9 9

o(g) 1 3 3 2 6 6 3 3 3 3 3 3

χ
(1)
0 1 1 1 1 1 1 1 1 1 1 1 1

χ
(1)
1 1 A A 1 A A A A A A 1 1

χ
(1)
2 1 A A 1 A A A A A A 1 1

χ
(2)
0,1 1 A A 1 A A A 1 A 1 A A

χ
(2)
1,0 1 A A 1 A A 1 A 1 A A A

χ
(2)
0,2 1 A A 1 A A A 1 A 1 A A

χ
(2)
2,0 1 A A 1 A A 1 A 1 A A A

χ
(2)
1,2 1 1 1 1 1 1 A A A A A A

χ
(2)
2,1 1 1 1 1 1 1 A A A A A A

χ
(3)
0 3 3 3 −1 −1 −1 0 0 0 0 0 0

χ
(3)
1 3 3A 3A −1 −A −A 0 0 0 0 0 0

χ
(3)
2 3 3A 3A −1 −A −A 0 0 0 0 0 0
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The Character Table of GL(n, q)

In this chapter we study the conjugacy classes of GL(n, q) in general. This is achieved by giving a

source for the representatives of the classes (Theorem 5.2.1) and then looking at Green’s formula

(equation (5.9)) for calculating the size of the centralizers of the representatives. The theories of

irreducible polynomials and partitions of i ∈ {1, 2, · · · , n} form the atoms from which each conju-

gacy classes is build up. We give a special attention to some elements of GL(n, q), known as regular

semisimple and we calculate the number and the orders of these elements. Also we count the num-

ber of the primary classes of GL(n, q). As an example we compute the conjugacy classes of GL(3, q).

We have seen in the last chapter that a large number of irreducible characters of GL(2, q) (characters

of types χ(1), χ(2) and χ(3)) were obtained by considering those characters of P(1,1) = UT (2, q),

which are obtained through lifting the characters of the quotient UT (2, q)/SUUT (2, q) ∼= T =

F∗q × F∗q ∼= GL(1, q) ×GL(1, q) ∼= L(1,1) the levi complement of the parabolic subgroup P(1,1). The

idea in this chapter is to use the irreducible characters of levi complements Lλ =
k⊗
i=1

GL(λi, q) of

parabolic subgroups Pλ, where λ = (λ1, λ2, · · · , λk) ` n, to construct characters of GL(n, q). Any

character of GL(n, q) obtained in this way is referred to as, a principal series character and the

process of obtaining the characters is referred to as, a parabolic induction. This process produces

a large number of irreducible characters of GL(n, q) from characters of GL(m, q) for m < n. Any

character of GL(n, q) which can not obtained parabolically is referred to as a discrete series or a

cuspidal character. The most important fact is that cuspidal characters of GL(n, q) exist. In other

words parabolic induction does not produce all Irr(GL(n, q)) for any n. Furthermore, the cuspidal

characters are of great importance for characters of GL(n, q) (Theorem 5.4.6) since each character of

GL(n, q) is build up from cuspidal characters. However Green, who constructed all the irreducible

characters of GL(n, q) in his great paper [27], did not start with the cuspidal characters. Instead

he took as his building blocks some generalized characters that are lifts of modular characters. We

mention Green construction of characters in Theorem 5.6.2. There are some certain characters of

GL(n, q) that have been found by Steinberg [72] and they bear his name. These characters are
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discussed in Section 5.5. Although we do not attempt to describe fully the set Irr(GL(n, q)), but

we are able to find all irreducible characters of GL(3, q). This has been done in Section 5.7. Green

[27] showed that there exists a complete duality between the conjugacy classes and irreducible

characters of GL(n, q). That is to any conjugacy class one can associate an irreducible character, a

property that not many groups have. Some aspects of this duality will be shown at the end of this

chapter in Table 5.14.

5.1. Partitions

In this short section we go briefly over partitions of a positive integer n and some functions defined

in terms of partitions, which will be used through the sequel of this chapter. A whole chapter in

MacDonald [50] is devoted to study the theory of partitions. One can also refer to Goldschmidt

[25].

Definition 5.1.1. A partition λ = (λ1, λ2, · · · , λm) of a positive integer n is a decreasing (con-

sequently increasing) sequence of nonnegative integers λi, whose sum is n, i.e.
m∑
i=1

λi = n.

We will be using

• λ ` n to denote that λ is a partition of n,

• {1α12α23α3 · · ·nαn} to denote also partition of n, where iαi means that the positive integers

i appears αi times,

• |λ| means the positive integer for which λ is a partition for and finally

• P(n) is the set of all partitions of n.

Definition 5.1.2. Let λ = (λ1, λ2, · · · , λm) ` n. The integers λi are called the parts of λ, while

m is called the length of λ, which sometimes written l(λ).

Any partition λ = (λ1, λ2, · · · , λm) written in descending order have a geometrical diagram known

as a Ferrers diagram. This diagram is defined to be the set of points (i, j) ∈ Z2, such that

1 ≤ j ≤ λi. To sketch the diagram, we let i (indexes a row) increases as going from top to bottom,

while j (indexes a column) increases as going from left to right. For example the Ferrers diagram

of (4, 2, 2, 1) ` 9 is shown in Figure 5.1.

The conjugate partition λ
′
of λ is the partition obtained by transposing the diagram of λ. For exam-

ple, (4, 2, 2, 1)
′

= (4, 3, 1, 1). The Ferrers diagram of (4, 2, 2, 1) and (4, 3, 1, 1) are shown in Figure 5.1.
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• • • •

• •

• •

•

• • • •

• • •

•

•

Figure 5.1: Ferrers diagrams of (4, 2, 2, 1) ` 9 (left) and (4, 2, 2, 1)
′

(right)

To any partition λ, we attach an integer n(λ), which depends essentially on λ
′
. This integer is given

by

n(λ) =
l(λ
′
)∑

i=1

(
λ
′
i

2

)
, (5.1)

where λ
′
i, i ≥ 1 are the parts of λ

′
. For example consider (1, 1, · · · , 1) ` n. Then (1, 1, · · · , 1)

′
= (n).

Therefore, n((1, 1, · · · , 1)) =
(
n
2

)
= n(n−1)

2 . From another side if λ = (n) ` n, then (n)
′

=

(1, 1, · · · , 1). It follows that n((n)) = 0 since
(

1
2

)
= 0. The integer n(λ) is of great importance

for Green’s formula for |CGL(n,q)(g)| for g ∈ G. We have calculated the values of n(λ), λ ` n for

n = 1, 2, 3, 4, 5 which are listed in Table 6.1.

For any m ∈ N ∪ {0} we define φm by

φm(t) =


m∏
i=1

(1− ti) if m ≥ 1,

1 if m = 0.

(5.2)

If λ = (λ1, λ2, · · · , λk) ` n with λi ≥ λi+1, ∀i, we let mλi be the multiplicity of the part λi in λ.

We define φλ(q) by

φλ(q) =
k∏
i=i

φmλi (q). (5.3)

We conclude this section by defining an ordering on P(n). Let λ = (λ1, λ2, · · · , λk) ` n and

µ = (µ1, µ2, · · · , µl) ` n be distinct partitions both written in descending order. We say that λ < µ

if k < l and if k = l, then λ < µ if the first non-vanishing difference λi−µi is positive. For example

elements of P(5) can be ordered as follows

(5) < (4, 1) < (3, 2) < (3, 1, 1) < (2, 2, 1) < (2, 1, 1, 1) < (1, 1, 1, 1, 1).
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5.2. Conjugacy Classes of GL(n, q)

This section is divided into four subsections, where in the first one we give representatives of the

conjugacy classes of GL(n, q). In the next subsection we calculate the size of the centralizers and

hence the size of conjugacy classes. The third subsection is devoted to some results concerning the

regular semisimple elements and primary classes of GL(n, q), while in the last subsection we give

an example for conjugacy classes of GL(3, q) and we interpret how we got the representatives of

classes of GL(2, q), which were studied in the previous chapter.

5.2.1 Representatives of Conjugacy Classes of GL(n, q)

Construction of the conjugacy classes of GL(n, q) depends essentially on the theories of irreducible

polynomials and partitions.

Definition 5.2.1 (Companion matrix). Let f(t) =
d∑
i=0

ait
i ∈ Fq[t], ad = 1. The d×d companion

matrix U(f) = U1(f) of f(t) is defined to be

U1(f) =



0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · · . . .
...

...
...

...
. . . 1

−a0 −a1 −a2 · · · −ad−1


.

For any m ∈ N, the Jordan block Um(f) is the md×md matrix

Um(f) =



U1(f) Id 0 · · · 0

0 U1(f) Id · · · 0

· · · · · · · · · . . .
...

...
...

...
. . . Id

0 0 0 · · · U1(f)


.

Moreover, if λ = (λ1, λ2, · · · , λk) ` n, then Uλ(f) is defined to be

Uλ(f) =


Uλ1(f) 0 · · · 0

0 Uλ2(f) · · · 0
...

...
. . .

...

0 0 · · · Uλk(f)

 =
k⊕
i=1

Uλi(f).
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The direct sum of Jordan blocks is called the Jordan Canonical Form.

Next we set F to be

F = {f ∈ Fq[t]| ∂f ≤ n, f is irreducible over Fq, f(t) 6= t}. (5.4)

The next theorem produces representatives of conjugacy classes of GL(n, q).

Theorem 5.2.1 (The Jordan Canonical Form). Let A ∈ GL(n, q) with characteristic poly-

nomial fA = fz11 fz22 · · · f
zk
k , where fi ∈ F , 1 ≤ i ≤ k and zi is the multiplicity of fi in this

decomposition. Then A is conjugate to a matrix of the form
k⊕
i=1

Uνi(fi), where νi ` zi.

PROOF. See Rotman [65]. �

From the above theorem we deduce that a conjugacy class of GL(n, q) is determined by a sequence

{fi}ki=1 such that fi ∈ F and ∂fi = di, ∀i, together with a sequence of partitions {νi}ki=1, where

νi ` zi, ∀i and {zi}ki=1 is a sequence of positive integers such that

k∑
i=1

zidi = n.

Therefore any conjugacy class c of GL(n, q) is defined by the data ({fi}, {di}, {zi}, {νi}). The inte-

ger k is called the length of the data.

Two data ({fi}, {di}, {zi}, {νi}) and ({gi}, {ei}, {wi}, {µi}) with lengths k and k
′

respectively pa-

rameterize the same conjugacy class if k = k
′

and there exists σ ∈ Sk such that

wi = zσ(i), ei = dσ(i), µi = νσ(i) and gi = fσ(i), ∀i.

Hence A is conjugate uniquely (up to ordering of Jordan blocks) to a Jordan Canonical Form.

On the other hand, two conjugacy classes of GL(n, q) parameterized by the above data are said to

be of the same type if k = k
′

and there exists σ ∈ Sk such that

wi = zσ(i), ei = dσ(i) and µi = νσ(i) (gi and fi are allowed to differ). (5.5)

Therefor the conjugacy classes of GL(n, q) are distributed into types.

Remark 5.2.1. The work inspired by Green [27] showed that the values of an irreducible character

of GL(n, q) on classes of the same type can be expressed by a single functional formula.
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Example 5.2.1. All central classes of GL(n, q) are of the same type.

Green [27] showed that the number of types t(n) of conjugacy classes of GL(n, q) is independent of

q. The next Theorem gives the number of conjugacy classes c(n, q) of GL(n, q) and t(n).

Theorem 5.2.2. 1. The integer t(n) is given by the coefficient of xn in the expansion of the

series
∞∏
i=1

P(xi)|P(n)|, where

P(x) =
∞∑
n=0

|P(n)|xn =
∞∏
i=1

1
1− xi

= (1 + x+ x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · ) · · · .

2. The integer c(n, q) is given by the generating function

∞∑
n=0

c(n, q)xn =
∞∏
m=1

P(xm)Im(q),

where Im(q) = 1
m

∑
s|m

µ(s)q
m
s and µ(s) is the Möbuis function.

PROOF. See Green [27]. �

Note 5.2.1. The function Im(q) represents the number of irreducible polynomials of degree m over

Fq and this result is due to Gauss.

If q ≤ n, we do not have a class of type

({t− α1, t− α2, · · · , t− αn}, {1, 1, · · · , 1}︸ ︷︷ ︸
n times

, {1, 1, · · · , 1}︸ ︷︷ ︸
n times

, {1, 1, · · · , 1}︸ ︷︷ ︸
n times

),

where α1, α2, · · · , αn ∈ F∗q are all distinct since |F∗q | = q − 1 < n. Note that a typical class of the

above type is represented by 
α1 0 · · · 0

0 α2 · · · 0
...

...
. . .

...

0 0 · · · αn

 .

Therefore it is not necessarily that all types of classes appear

In Table 5.1 we give t(n) and c(n, q) of GL(n, q) for n = 1, 2, · · · , 7.
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Table 5.1: Number of types of classes and number of classes of GL(n, q)

n t(n) c(n, q)

1 1 q − 1

2 4 q2 − 1

3 8 q3 − q
4 22 q4 − q
5 42 q5 − (q2 + q − 1)

6 103 q6 − q2

7 199 q7 − (q3 + q2 − 1)

Definition 5.2.2. Let c be a conjugacy class given by ({fi}, {di}, {zi}, {νi}) with length k, then

1. c is called primary class if and only if k = 1.

2. c is called regular class if and only if l(νi) ≤ 1, ∀ 1 ≤ i ≤ k.

3. c is called semisimple class if and only if l(νi
′
) ≤ 1, ∀ 1 ≤ i ≤ k.

4. c is called regular semisimple class if it is both regular and semisimple. Alternatively a

class is regular semisimple if and only if νi = 1, ∀ 1 ≤ i ≤ k.

Note 5.2.2. 1. The definition of c being a primary class implies that for g ∈ c, the characteristic

polynomial of g is f(t) = (td + ad−1t
d−1 + · · · + 1)s for some s and hence ∂f = d and d|n.

In particular if f(t) = (t − 1)n, then we call c a unipotent. Note that we have defined in

Definition 3.1.5 the unipotency of an element A ∈ GL(n, q) and of a subgroup H ≤ GL(n, q).

2. The definition of c being a regular semisimple class of GL(n, q) implies that any element g ∈ c
has n distinct eigenvalues.

We classify all classes of GL(2, q), GL(3, q) and GL(4, q) according to Definition 5.2.2. These

classes have been given in Tables 4.1, 5.3 and 6.10 respectively.

5.2.2 Sizes of Conjugacy Classes of GL(n, q)

Definition 5.2.3. The pair (V,Ω), where V is an abelian group and Ω ⊆ End(V ), is called a

module.
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Table 5.2: Conjugacy classes of GL(2, q), GL(3, q) and GL(4, q)

n Primary Classes Unipotent Classes Regular Classes Semisimple Classes Regular Semisimple Classes

2 T (1), T (2), T (4) T (1), T (2), α = 1 T (2), T (3), T (4) T (3), T (4) T (3), T (4)

3 T (1), T (2), T (1), T (2), T (3), T (4), T (6), T (5), T (6) T (6), T (7)

T (3), T (8) T (3), α = 1 T (7), T (8) T (7), T (8) T (8)

T (1), T (2) T (1), T (2) T (5), T (8) T (1), T (6) T (16), T (17)

T (3), T (4) T (3), T (4) T (11), T (13) T (9), T (12) T (18), T (21)

4 T (5), T (19) T (5), α = 1 T (15), T (16) T (14), T (16) T (22)

T (20), T (22) T (17), T (18) T (17), T (18)

T (20), T (21) T (19), T (21)

T (22) T (22)

Two modules (V,Ω) and (V
′
,Ω
′
) are said to be isomorphic or equivalent if and only if V ∼= V

′
and

Ω and Ω
′

generate the same ring of endomorphisms of V.

For any n× n matrix A over Fq (not necessarily invertible), we define the module VA of A to be

VA = (V (n, q), R),

where R = 〈A,Fq〉 is the ring generated by A, together with scalars from Fq. That is

R =

{
k∑
i=0

aiA
i| ai ∈ Fq

}
∼= Fq[t]

and Fq[t] operates on V (n, q) by t.v = Av, ∀v ∈ V (n, q). Note that tj is the composition of t taken

j times. Thus any A ∈Mn×n(Fq) defines an Fq[t]−module, which we denote by VA.

Definition 5.2.4. A function f : VA −→ VB is said to be an Fq[t]−isomorphism if it is homo-

morphism and bijection. The modules VA and VB are called Fq[t]−isomorphic.

Lemma 5.2.3. Let V and W be vector spaces over Fq and let T : V −→ V and S : W −→ W be

linear transformations that determine Fq[t]−modules VT and VS respectively. A function f : VT −→
VS is an Fq[t]−homorphism if and only if

1. f is linear transformation of the vector spaces V and W,

2. f(Tv) = S(f(v)), ∀v ∈ V.

PROOF. See Rotman [65]. �
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Proposition 5.2.4. Two matrices A and B are similar if and only if the corresponding Fq[t]−modules

VA and VB are isomorphic.

PROOF. Let T, S : V −→ V be linear transformations affording A and B respectively and also let VT
and VS be the corresponding Fq[t]−modules defined by T and S respectively. Suppose that A and

B are similar matrices. Hence there exists P ∈ GL(n, q) such that B = PAP−1. If f : V −→ V is

the linear transformation corresponds to P, then we claim that f is an Fq[t]−isomorphism between

VT and VS . From Lemma 5.2.3, it suffices to show that f(Tv) = S(f(v)), ∀v ∈ V, i.e., fT = Sf. In

terms of matrices, this represents PA = BP, which we have. Thus VA ∼= VB.

Conversely, suppose that f : V −→ V is an Fq[t]−isomorphism between VT and VS . By Lemma

5.2.3, we have Sf = fT. Since f is an isomorphism, it follows that S = fTf−1. If P is the matrix

corresponding to the linear transformation f, then B = PAP−1; that is A and B are similar ma-

trices. This completes the proof. �

If A,B ∈ GL(n, q) are in a conjugacy class c, then by Proposition 5.2.4 we have VA ∼= VB. It follows

that we can write Vc in place of VA without any ambiguity. Next we review some notions from the

elementary Ring Theory to learn more about the structure of Vc.

We recall that a principal ideal domain R is an integral domain such that all its ideals are principal

ideals. That is if I is an ideal of R, then I = 〈a〉 = aR for a ∈ R. For any v ∈ V, where V is an

R−module, the annihilator Ann(v) is defined to be the set

Ann(v) = {r ∈ R| rv = 0V }.

It is not difficult to see that Ann(v) E︸︷︷︸
ideal

R. If R is a principal ideal domain, then

Ann(v) = {ar| r ∈ R} = aR, for some a ∈ R.

Moreover, if p is an irreducible element of R (has no divisors in R except p and 1R), then an

R−module V is called a p−primary if for all v ∈ V,

Ann(v) = 〈pα〉 = pαR, for some α ∈ N.

Theorem 5.2.5. Let R be a principal ideal domain and V be a finitely generated R−module. Then

V =
s⊕
i=1

Vi,

where each Vi is cyclic submodule and isomorphic to either R or R/pmR, for some irreducible

element p of R. Moreover, the decomposition is unique up to the order of the factors.

111



Chapter 5 — The Character Table of GL(n, q)

PROOF. See Rotman [65]. �

We would like to apply the above discussion to the case R = Fq[t], which it can be shown that

it is a principal ideal domain. Thus for the annihilator of v of the Fq[t]−modules Vc we take the

fixed element to be a monic polynomial of smallest degree in the ideal, that is if v ∈ Vc, then

Ann(v) = 〈f〉 , where f is a monic polynomial such that ∂f ≤ ∂g, ∀g ∈ Fq[t]. Let fi ∈ F . By V〈fi〉,

we mean the fi−primary submodule of Vc; that is the submodule consisting of all v ∈ Vc annihilated

by some power of fi. The submodules V〈f1〉, V〈f2〉, · · · , V〈fk〉 of Vc are referred as the characteristic

submodules since f1, f2, · · · , fk are the irreducible factors which appear in the characteristic poly-

nomial of an element in the conjugacy class c. Thus giving V〈fi〉 the name characteristic submodule

becomes more appropriate.

If c = ({fi}, {di}, {zi}, {νi}), then by Theorem 5.2.5 we have Vc =
k⊕
i=1

V〈fi〉, where each V〈fi〉 is of

the form

V〈fi〉 =
l(νi)⊕
j=1

Fq[t]/ 〈fi〉νij

and νi = {νi1 , νi2 , · · · , νil(νi)} is the partition associated with fi in c. Therefore

Vc =
k⊕
i=1

V〈fi〉 =
k⊕
i=1

l(νi)⊕
j=1

Fq[t]/ 〈fi〉νij . (5.6)

It has been shown in Lemma 2.1 of Green [27] that if Aut(Vc) is the automorphism group of Vc,

then

Aut(Vc) =
k⊗
i=1

Aut(V〈fi〉). (5.7)

Now by equation (2.6) of MacDonald [50] we have

|Aut(V〈fi〉)| = qdi(|νi|+2n(νi))φνi(q
−di).

Consequently

|Aut(Vc)| = |
k⊗
i=1

Aut(V〈fi〉)| =
k∏
i=1

|Aut(V〈fi〉)| =
k∏
i=1

qdi(|νi|+2n(νi))φνi(q
−di). (5.8)

The following Theorem is of great importance and is the main theorem of this subsection. It

characterizes CGL(n,q)(A).

Theorem 5.2.6. Let A ∈ GL(n, q) lies in a conjugacy class c. Then CGL(n,q)(A) = Aut(Vc).
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PROOF. Suppose that σ ∈ Aut(Vc). Then σ : Vc −→ Vc and

σ(ru+ sv) = rσ(u) + sσ(v), ∀r, s ∈ R = 〈A,Fq〉, u, v ∈ V (n, q).

We know that Aut(V (n, q)) = GL(n, q) and σ(Au) = Aσ(u) (since A is regarded as a scalar from

the ring R). Thus

σ(Au) = Aσ(u) =⇒ (σA)u = (Aσ)u, ∀u ∈ V (n, q)

=⇒ Aσ = σA

=⇒ σ ∈ CGL(n,q)(A)

=⇒ Aut(Vc) ⊆ CGL(n,q)(A).

Conversely, if σ ∈ CGL(n,q)(A), then

Aσ = σA =⇒ (Aσ)u = (σA)u, ∀u ∈ V (n, q),

=⇒ σ(Au) = Aσ(u)

=⇒ σ ∈ Aut(Vc)

=⇒ CGL(n,q)(A) ⊆ Aut(Vc).

Hence CGL(n,q)(A) = Aut(Vc). �

Now in terms of equation (5.8) and Theorem 5.2.6 if A ∈ GL(n, q) lies in c = ({fi}, {di}, {zi}, {νi}),
then we deduce that

|CGL(n,q)(A)| =
k∏
i=1

qdi(|νi|+2n(νi))φνi(q
−di). (5.9)

It follows that

|CA| = (
n−1∏
s=0

(qn − qs))/
k∏
i=1

qdi(|νi|+2n(νi))φνi(q
−di). (5.10)

Sometimes we may write aνi to denote qdi(|νi|+2n(νi))φνi(q
−di). That is |CGL(n,q)(A)| =

k∏
i=1

aνi .

Corollary 5.2.7. Two conjugacy classes of the same type have same size.

PROOF. Suppose that c1 = ({fi}, {di}, {zi}, {νi}) and c2 = ({f ′i}, {d
′
i}, {z

′
i}, {ν

′
i}) are two classes of

the same type with length k (see Remark 5.2.2). It follows by (5.5) that there exists σ ∈ Sk such

that z
′
i = zσ(i), d

′
i = dσ(i) and ν

′
i = νσ(i), ∀1 ≤ i ≤ k. If A1 ∈ c1 and A2 ∈ c2, then by (5.9) we have

|CGL(n,q)(A2)| =
k∏
i=1

qd
′
i(|ν
′
i |+2n(ν

′
i ))φ

ν
′
i
(q−d

′
i) =

k∏
i=1

qdσ(i)(|νσ(i)|+2n(νσ(i)))φνσ(i)
(q−dσ(i))

=
k∏
i=1

qdi(|νi|+2n(νi))φνi(q
−di) = |CGL(n,q)(A1)|.
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The result follows by (5.10). �

Remark 5.2.2. Note that k is the length of the data parameterizing c. The term length of conjugacy

class has another meaning.

5.2.3 Regular Semisimple Elements and Primary Classes of GL(n, q)

In this subsection we emphasize some of our results on counting the number and orders of the

regular semisimple elements of GL(n, q). Also we count the number of the primary classes of

GL(n, q). Fleischmann et al. [21] studied the number of regular semisimple classes of Gεn(q) for

n ≥ 2, where

Gεn(q) =

{
GL(n, q) if ε = 1,

Un(q) if ε = −1

and Un(q) is the Unitary Group. The method given there uses the Theory of Lie Algebra and

some topological notions as connectedness of groups. If Reg(Gεn(q)) denotes the number of regular

semisimple classes of Gεn(q), then Theorem 1.1 of [21] reads

Reg(Gεn(q)) = (q − ε)q
n+1 − qn + (−1)n+1ε[n/2](q − εn)

q2 − ε
. (5.11)

Here we introduce a method to calculate the number of regular semisimple elements of GL(n, q)

using simple notions as all what we need is the elementary theory of partitions of a positive integer

n. However formula (5.11) is faster in computations.

Number of Regular Semisimple Elements of GL(n, q)

Counting the number of regular semisimple elements of GL(n, q) is achieved by

• counting the number of regular semisimple types,

• counting the number of classes contained in each of the regular semisimple type,

• counting the number of elements contained in each of the regular semisimple class.

Proposition 5.2.8. There is a 1−1 correspondence between the types of classes of regular semisim-

ple elements of GL(n, q) and partitions of n.

PROOF. By the Jordan Canonical Form (Theorem 5.2.1) any class c = ({fi}, {di}, {zi}, {νi}) of

GL(n, q) must satisfies
k∑
i=1

zidi = n. We know that any regular semisimple class c1 has the form
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c1 = ({fi}, {di}, {1}k times, {1}k times). Therefore we have
k∑
i=1

di = n, that is (d1, d2, · · · , dk) ` n.

If c2 = ({f ′i}, {d
′
i}, {1}k times, {1}k times) is any other regular semisimple class of same type of

c1, then d
′
i = dσ(i), for some σ ∈ Sk. Thus c1 and c2 determine the same partition. Hence

any type of regular semisimple classes determines a partition of n. Conversely, any partition

λ = (λ1, λ2, · · · , λk) ` n defines a type of regular semisimple classes, where a typical class c

will have the form c = ({fi}, {λi}, {1}k times, {1}k times), 1 ≤ i ≤ k. Note that for any λi ∈ N, there

exists an irreducible polynomial of degree λi over Fq. Hence types of regular semisimple classes are

in one to one correspondence with the partitions of n as claimed. �

It turns out that we may denote any type of regular semisimple classes of GL(n, q) by T λ and a

typical class by cλ without any ambiguity.

To count the number of regular semisimple conjugacy classes contained in each type T λ, λ ` n, we

put into our consideration the repetition of the parts of λ. Therefore if we let ri be the multiplicity

of the integer i, then we can write λ in the form λ = 1r12r2 · · ·nrn , where ri ∈ N ∪ {0}. We have

the following lemma.

Lemma 5.2.9. Let f(t) =
m∑
i=0

ait
i ∈ Fq[t], am = 1. If α is a root of f , then αq, αq

2
, · · · , αqm−1

are

the other roots.

PROOF. The Galois group Γ = Γ(Fqm : Fq) is a cyclic group of order m and is generated by the

Frobenius automorphism σq : a 7−→ aq, ∀a ∈ Fqm . We can see clearly that σjq = σqj . Now given

that α is a root of f, then
m∑
i=0

aiα
i = 0. Acting by elements of Γ on both sides of the preceding

equality we get, for all j = 0, 1, · · · ,m− 1,

σqj (
m∑
i=0

aiα
i) = σqj (0) ⇐⇒

m∑
i=0

σqj (aiα
i) = 0⇐⇒

m∑
i=0

aiσqj (α
i) = 0

⇐⇒
m∑
i=0

aiα
qji = 0⇐⇒

m∑
i=0

ai(αq
j
)
i

= 0.

The last equality tells that αq
j

is a root of f whenever α is. �

Proposition 5.2.10. The number of regular semisimple classes of type λ, which we denote by

F (λ), is given by

F (λ) =

n∏
i=1

ri−1∏
s=0

(Ii(q)− s)

n∏
i=1

ri!

,
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where

• Ii(q) = 1
i

∑
d|i

µ(d)q
i
d is the number of irreducible polynomials of degree i over Fq,

• if ri − 1 < 0, then the term
ri−1∏
s=0

(Ii(q)− s) is neglected.

PROOF. Let f(t) be an irreducible polynomial of degree i over Fq. It is known by Gauss Lemma

that the number of such polynomials is given by Ii(q) = 1
i

∑
d|i

µ(d)q
i
d . Now let α1 be a root of

f(t). It follows by Lemma 5.2.9 that the other roots of f(t) are αq1, α
q2

1 , · · · , α
qi−1

1 . Thus if we

choose α1 as an eigenvalue of a representative of a regular semisimple class, then α1 together with

the former set of powers of α1 form a complete set of eigenvalues of the Jordan block of size i.

Since each 1 ≤ i ≤ n appears ri times in the partition λ, it follows that we can choose α1 in

Ii(q) ways, α2 in Ii(q) − 1 ways, and so forth till the αri , which we can choose in Ii(q) − (ri − 1)

ways. We recall that a conjugacy class is unaltered by the arrangement of the eigenvalues in the

Jordan block. Thus we divide by the number of all possible arrangements, which is ri!. Repeating

this for all 1 ≤ i ≤ n, we get the required number mentioned in the statement of the Proposition. �

For any positive integer n, two partitions namely, (1, 1, · · · , 1)︸ ︷︷ ︸
n times

` n and (n) ` n are of particu-

lar interest.

Corollary 5.2.11. With q > n, then corresponding to the partitions λ = (1, 1, · · · , 1)︸ ︷︷ ︸
n times

` n and

σ = (n) ` n, we have F (λ) = (q−1)(q−2)···(q−n)
n! and F (σ) = 1

n

∑
d|n

µ(d)q
n
d .

PROOF. Immediate from Proposition 5.2.10. �

Remark 5.2.3. Note that by Propositions 5.2.8 and 5.2.10 the number of regular semisimple

classes of GL(n, q) is given by
∑
λ`n

F (λ). For fixed n = 1, 2, 3, 4, 5 one can calculate
∑
λ`n

F (λ) from

Table 6.12 and compare with Reg(G1
n(q)). We can see that

∑
λ`n

F (λ) = Reg(G1
n(q)).

Finally we count the number of regular semisimple elements contained in class cλ.

Proposition 5.2.12. Let cλ be a regular semisimple class, where λ = (λ1, λ2, · · · , λk) ` n. Then

|cλ| =

n−1∏
s=0

(qn − qs)

k∏
i=1

(qλi − 1)

. (5.12)
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PROOF. Let g ∈ cλ = ({fi}, {λi}, {1}k times, {1}k times). Since νi = 1, ∀1 ≤ i ≤ k, we obtain by

substituting in equation (5.9) that

|CGL(n,q)(g)| =
k∏
i=1

qλiφ1(q−λi) =
k∏
i=1

qλi
(
qλi − 1
qλi

)
=

k∏
i=1

(qλi − 1).

The result follows by (5.10). �

Now we give the main theorem of this subsection which counts the number of regular semisimple

elements of GL(n, q).

Theorem 5.2.13. With λ = (λ1, λ2, · · · , λk) ≡ 1r12r2 · · ·nrn for ri ∈ N∪{0}, the number of regular

semisimple elements of GL(n, q) is given by

∑
λ`n

n−1∏
s=0

(qn − qs)
n∏
i=1

ri−1∏
s=0

(Ii(q)− s)

k∏
i=1

(qλi − 1)
n∏
i=1

ri!

. (5.13)

PROOF. Direct result from Propositions 5.2.8 and 5.2.10, together with equation (5.12). �

Example 5.2.2. Let us consider the regular semisimple classes of type T (2,2) of GL(4, q). Each

class c(2,2) will have the form c(2,2) = ({f1, f2}, {2, 2}, {1, 1}, {1, 1}) where f1(t) = t2 + a1t+ a0 and

f2(t) = t2 +b1t+b0 are two distinct irreducible polynomials over Fq. To count the number of classes

of this type, we follow Proposition 5.2.10. Thus we may write the partition (2, 2) in the form 22,

that is r1 = r3 = r4 = 0 and r2 = 2. Therefore

F (22) =

4∏
i=1

ri−1∏
s=0

(Ii(q)− s)

n∏
i=1

ri!

=

1∏
s=0

(I2(q)− s)

0! 2! 0! 0!

=
I2(q)(I2(q)− 1)

2
=

1
2
q2 − q

2
q2 − q − 2

2
=
q(q2 − 1)(q − 2)

8
.

Now applying equation (5.12) to any class of this type, we get

|c(2,2)| =

3∏
s=0

(q4 − qs)

2∏
i=1

(qλi − 1)

=
(q4 − 1)(q4 − q)(q4 − q2)(q4 − q3)

(q2 − 1)(q2 − 1)

= q6(q − 1)(q2 + 1)(q3 − 1).
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Hence we obtain

q6(q − 1)(q2 + 1)(q3 − 1)
q(q2 − 1)(q − 2)

8
=
q7(q4 − 1)(q3 − 1)(q − 1)(q − 2)

8

regular semisimple elements of type (2, 2). Repeating the above work for the other four partitions

of 4, we get for GL(4, q), a total number of regular semisimple elements given by

q16 − 2q15 + q13 + q12 − 2q10 − q9 − q8 + 2q7 + q6.

For example the group GL(4, 5), which is of order 116064000000 has 9299587000 regular semisimple

elements.

In the Appendix we list the number of types, conjugacy classes, elements in each conjugacy class

of regular semisimple elements of GL(n, q) for n = 1, 2, 3, 4, 5.

Recall that a class c = ({fi}, {di}, {zi}, {νi}) of GL(n, q) with length k is called primary if and only

if k = 1. The next Proposition counts the number of primary classes of GL(n, q).

Proposition 5.2.14. The number of primary classes of GL(n, q) is given by∑
d|n

|P(
n

d
)| · Id(q). (5.14)

PROOF. By definition a conjugacy class c of GL(n, q) is primary if and only if c = (f, d, nd , ν) for

some f ∈ F with degree d, d|n and ν ` n
d . For fixed d and any ν ` n

d we have Id(q) irreducible

polynomials f of degree d that defines a primary class. It follows that there are |P(nd )| · Id(q)
conjugacy classes defined by the fixed integer d and partitions of n

d . The result follows by letting d

runs over all divisors of n. �

Corollary 5.2.15. There are exactly In(q) =
∑
d|n

µ(d)q
n
d primary regular semisimple classes of

GL(n, q).

PROOF. A class c of GL(n, q) is primary and regular semisimple if and only if c = (f, n, 1, 1) for some

f ∈ F with degree n. It follows by Proposition 5.2.8 that c is a regular semisimple class of type

λ = (n) ` n. Hence by Corollary 5.2.11 we have F ((n)) = In(q) =
∑
d|n

µ(d)q
n
d . In particular if n = p

′

is a prime integer (whether p
′

= p, the characteristic of Fq or not), then there are Ip′ (q) = qp
′
−q
p′

primary regular semisimple classes of GL(p
′
, q). �

Corollary 5.2.16. The group GL(p
′
, q) has exactly (q−1)|P(p

′
)|+ qp

′
−q
p′

primary conjugacy classes.

118



Chapter 5 — The Character Table of GL(n, q)

PROOF. By Proposition 5.2.14 the number of primary conjugacy classes of GL(p
′
, q) is given by∑

d|p′
|P(

p
′

d
)| ·Id(q). We have d ∈ {1, p′}. If d = 1, then there are |P(p

′
)| types of primary classes each

consists of q−1 conjugacy classes. On the other hand if d = p
′
, then c = (f, p

′
, 1, 1) for some f ∈ F

with prime degree p
′
. Therefore by Corollary 5.2.15 we have F ((p

′
)) = qp

′
−q
p′

. Hence the result. �

Example 5.2.3. See Table 5.2.

Orders of regular semisimple elements of GL(n, q)

Suppose that g is a regular semisimple element of GL(n, q) in a conjugacy class cλ, where λ =

(λ1, λ2, · · · , λk) ` n. Assume that F∗
qλi

= 〈εi〉 , ∀1 ≤ i ≤ k and for each group F∗
qλi
, we fix one

generator εi, that is if λj = λi, for some j and i, then we identify εj with εi. It follows that the

eigenvalues of g are

εj11 , ε
j1q
1 , · · · , εj1q

λ1−1
1 ; εj22 , ε

j2q
2 , · · · , εj2q

λ2−1
2 ; · · · ; εjkk , ε

jkq
k , · · · , εjkq

λk−1
k (5.15)

for some integers j1, j2, · · · , jk.

Theorem 5.2.17. With the above, the order of g is given by

o(g) = lcm

(
qλ1 − 1

gcd(j1, qλ1 − 1)
,

qλ1 − 1
gcd(j1q, qλ1 − 1)

, · · · , qλ1 − 1
gcd(j1qλ1−1, qλ1 − 1)

,

qλ2 − 1
gcd(j2, qλ2 − 1)

,
qλ2 − 1

gcd(j2q, qλ2 − 1)
, · · · , qλ2 − 1

gcd(j2qλ2−1, qλ2 − 1)
,

...
qλk − 1

gcd(jk, qλk − 1)
,

qλk − 1
gcd(jkq, qλk − 1)

, · · · , qλk − 1
gcd(jkqλk−1, qλk − 1)

)
.

PROOF. For 1 ≤ l ≤ k, 0 ≤ r ≤ λl − 1, let h denotes the row of eigenvalues of g given by (5.15).

Also let t denotes the row o(εjlq
r

l ) for 1 ≤ l ≤ k, 0 ≤ r ≤ λl − 1.

We know that g ∼ D = diag(h). Assume that o(g) = t. Then

gt ∼ Dt = (diag(h))t = diag(ht) = In ⇐⇒ εjlq
rt

l = 1, ∀1 ≤ l ≤ k, ∀0 ≤ r ≤ λl − 1

⇐⇒ o(εjlq
r

l )|t, ∀1 ≤ l ≤ k, ∀0 ≤ r ≤ λl − 1

⇐⇒ lcm(t)|t. (5.16)

Let o(εjlq
r

l ) = tlr for each 1 ≤ l ≤ k, 0 ≤ r ≤ λl − 1 and let d = gcd(t). Now for each 1 ≤ m ≤
k, 0 ≤ j ≤ λm − 1 we have

lcm(t) =

∏
r,l

tlr

d
= tmj

 ∏
(l,r)6=(m,j)

tlr
d

 .
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Now

glcm(t) ∼ Dlcm(t) = diag
(

(εj11 )lcm(t), (εj1q1 )lcm(t), · · · , (εj1q
λ1−1

1 )lcm(t)

(εj22 )lcm(t), (εj2q2 )lcm(t), · · · , (εj2q
λ2−1

2 )lcm(t)

...

(εjkk )lcm(t), (εjkqk )lcm(t), · · · , (εjkq
λk−1

k )lcm(t)
)

= In,

where lcm(t) in each diagonal entry (εjmq
rλm−1

m )lcm(t) is replaced by tmj

 ∏
(l,r)6=(m,j)

tlr
d

 . This

implies that t|lcm(t), since o(g) = t. From equation (5.16) we have lcm(t)|t. Hence t = o(g) =

lcm(t). Now the result follows from elementary group theory, where we know that o(εjlq
r

l ) =

(qλl − 1)/(gcd(jlqr, qλl − 1)). �

As a corollary of Theorem 5.2.17 we show the existence of an element of GL(n, q) of order qn − 1

(this has been mentioned in Darafasheh [15] without proof).

Corollary 5.2.18. The group GL(n, q), n > 1 has at least q
n(n−1)

2

n−2∏
s=0

(qn−1−qs) elements of order

qn − 1 and at least twice of the previous number if q is even.

PROOF. Let g, h ∈ GL(n, q) such that {εn, εqn, · · · , εq
n−1

n } and {ε2
n, ε

2q
n , · · · , ε2qn−1

n } are the eigenvalues

of g and h respectively. It follows from Theorem 5.2.17 that

o(g) = lcm

(
qn − 1

gcd(1, qn − 1)
,

qn − 1
gcd(q, qn − 1)

, · · · , qn − 1
gcd(qn−1, qn − 1)

)
= lcm (qn − 1, qn − 1, · · · , qn − 1) = qn − 1.

If q is even, then qn − 1 is odd and hence gcd(2, qn − 1) = 1, which yields that gcd(2qm, qn − 1) =

1, ∀ 0 ≤ m ≤ n − 1. Hence o(h) = qn − 1 by similar argument used for o(g). The result follows

since all conjugate elements have the same order. �

5.2.4 Examples: Conjugacy Classes of GL(3, q), GL(4, q), and GL(2, q) (Revisited)

Conjugacy Classes of GL(3, q)

We illustrate how to obtain the conjugacy classes of GL(n, q) for n = 3. Any A ∈ GL(3, q) has

characteristic polynomial that is a monic polynomial of degree 3 of the form f(t) = t3 + a2t
2 +

a1t+ a0 ∈ Fq[t] and it splits over Fq into one of the following five forms:

1. f(t) = (t− α)3 for some α ∈ F∗q .
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2. f(t) = (t− α)2(t− β) for some α, β ∈ F∗q , α 6= β.

3. f(t) = (t− α)(t− β)(t− γ) for some α, β, γ ∈ F∗q , α, β and γ are distinct.

4. f(t) = (t2 + b1t+ b0)(t− α) and t2 + b1t+ b0 is irreducible over Fq.

5. f(t) = t3 + a2t
2 + a1t+ a0 remains irreducible over Fq.

We had excluded the cases f(t) = t · (t2 + c1t + c0), t2 · (t + c0) and t3 since these cases yield

that A has some zero eigenvalue, which contradicts the invertibility of A. We consider each of the

preceding five cases separately.

1. Suppose that f(t) = (t−α)3 for some α ∈ F∗q . In this case f1(t) = (t−α) and fi(t) = 1, ∀i > 1

with k1 = 3 and ki = 0, ∀i > 1. We have ν1 ∈ P(3) = {(1, 1, 1), (2, 1), (3)}.

(i) If ν1 = 13 = (1, 1, 1) ` 3, then

A ∼ diag(U(1)(t− α), U(1)(t− α), U(1)(t− α)) = diag(U1(t− α), U1(t− α), U1(t− α)).

From the definition of the matrix U1(f), then U1(t−α) = [α]1×1 = α. Thus A ∼


α 0 0

0 α 0

0 0 α

 .

Each α ∈ F∗q gives a new conjugacy class and it is clear that these classes are the central classes

of GL(3, q). This yields that there are q− 1 distinct conjugacy class each of size 1. We denote

this type of classes by T (1).

(ii) If ν = (2, 1) ` 3, then

A ∼ diag(U2(f1(t)), U1(f1(t))) = diag(U2(t− α), U1(t− α)).

Since U1(t − α) = α, it follows that U2(t − α) =

(
α 1

0 α

)
. Thus A ∼


α 1 0

0 α 0

0 0 α

 . Each

α ∈ F∗q gives a new conjugacy class. Thus there are q−1 conjugacy classes of this type, which

we denote by T (2). Next we calculate |CGL(n,q)(A)|, where A is of type T (2). In terms of (5.3)

we have m2 = m1 = 1. The function φ(2,1) is thus

φ(2,1)

(
1
q

)
=

2∏
i=1

φmi

(
1
q

)
= φm1

(
1
q

)
φm2

(
1
q

)
= φ2

m1

(
1
q

)
=
(

1− 1
q

)2

=
(
q − 1
q

)2

.

From Table 6.1 (see Appendix) we have n((2, 1)) = 1. Using this together with (5.9) we get

|CGL(3,q)(A)| = q|(2,1)|+2n((2,1))φ(2,1)

(
1
q

)
= q3+2 (q − 1)2

q2
= q3(q − 1)2.
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It follows by (5.10) that

|CA| = (q − 1)(q + 1)(q2 + q + 1).

(iii) In the final subcase when ν = (3) ` 3, we have

A ∼ diag(U3(f1(t))) = diag(U3(t− α)).

Since U1(t − α) = α, it follows that U3(t − α) =


α 1 0

0 α 1

0 0 α

 ∼ A. For any α ∈ F∗q there

corresponds a conjugacy class. Therefore there are q − 1 distinct conjugacy classes of this

type, which we denote by T (3).

By (5.3) we have m1 = m2 = 0 and m3 = 1. The function φ(3) is given by

φ(3)

(
1
q

)
=

3∏
i=1

φmi

(
1
q

)
= φm1

(
1
q

)
φm2

(
1
q

)
φm3

(
1
q

)
=
(
φ0

(
1
q

))2

φ1

(
1
q

)
=
q − 1
q

.

From Table 6.1 we have n((3)) = 0. Thus

|CGL(3,q)(A)| = q|(3)|+2n((3))φ(3)

(
1
q

)
= q3 (q − 1)

q
= q2(q − 1).

It follows by (5.10) that

|CA| = q(q − 1)2(q + 1)(q2 + q + 1).

2. Suppose that f(t) = (t − α)2(t − β), α, β ∈ F∗q , α 6= β. In this case, f1(t) = (t − α)2, k1 =

1, f2(t) = (t − β), k2 = 1, fi(t) = 1, ki = 0, ∀i ≥ 3. We have ν1 ∈ P(2) = {(1, 1), (2)} and

ν2 ∈ P(1) = {(1)}. Therefore we have two subcases:

(i) If ν1 = (1, 1) and ν2 = (1), then

A ∼ diag(Uν1(f1(t)), Uν2(f2(t))) = diag(U(1,1)(t− α), U(1)(t− β)).

Since U1(t− α) = α, it follows that U(1,1)(t− α) =

(
α 0

0 α

)
. Hence A ∼


α 0 0

0 α 0

0 0 β

 . This

type of classes will be denoted by T (4). Notice that
α 0 0

0 α 0

0 0 β

 ∼

β 0 0

0 α 0

0 0 α

 but


α 0 0

0 α 0

0 0 β

 6∼

β 0 0

0 β 0

0 0 α

 .

Thus any ordered pair (α, β), α, β ∈ F∗q , α 6= β presents a new conjugacy class of this type

and hence there are (q − 1)(q − 2) distinct conjugacy classes of this type.
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We compute |CGL(3,q)(A)|, A being an element in a class of type T (4). For the partition

ν1 = (1, 1) we have m1 = 2 and m2 = 0, while for ν2 = (1) we have m1 = 0 and m2 = 1. The

function φ(1,1) is given by

φν1

(
1
q

)
= φ(1,1)

(
1
q

)
=
(

1− 1
q

)(
1− 1

q2

)
=

(q − 1)(q2 − 1)
q3

.

By Table 6.1 we have n((1, 1)) = 1. Thus

aν1 = q|ν1|+2n((ν1))φ(1,1)

(
1
q

)
=
q4(q − 1)(q2 − 1)

q3
= q(q − 1)2(q + 1).

Also

aν2 = q|ν2|+2n((ν2))φ1

(
1
q

)
=
q(q − 1)

q
= q − 1.

Therefore

|CGL(3,q)(A)| = aν1aν2 = q(q − 1)2(q + 1)(q − 1) = q(q − 1)3(q + 1).

It follows that

|CA| = q2(q2 + q + 1).

(ii) On the other hand, if ν1 = (2) and ν2 = (1), then

A ∼ diag(Uν1(f1(t)), Uν2(f2(t))) = diag(U(2)(t− α), U(1)(t− β)) = diag(U2(t− α), U1(t− β)).

Since U1(t− α) = α, it follows that U2(t− α) =

(
α 1

0 α

)
. Hence A ∼


α 1 0

0 α 0

0 0 β

 . Type of

classes of this format will be denoted by T (5). As in previous subcase the number of distinct

conjugacy classes of this type is (q − 1)(q − 2).

Now

aν1 = a(2) = q|2|+2n((2))φ(2)

(
1
q

)
= q2+2·0 q − 1

q
= q(q − 1).

In the previous subcase 2(i) we have seen that

aν2 = q|ν2|+2n((ν2))φ1

(
1
q

)
= q1+2·0φ1

(
1
q

)
=
q(q − 1)

q
= (q − 1).

By (5.9) it follows that

|CGL(3,q)(A)| = aν1aν2 = (q − 1)q(q − 1) = q(q − 1)2.

This shows that

|CA| =
|GL(3, q)|
|CGL(3,q)(A)|

=
q3(q − 1)3(q + 1)(q2 + 2 + 1)

q(q − 1)2
= q2(q − 1)(q + 1)(q2 + 2 + 1).
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3. Suppose that f(t) = (t − α)(t − β)(t − γ), where α, β and γ are distinct. We let f1(t) =

(t− α), f2(t) = (t− β), f3(t) = (t− γ) and fi(t) = 1, ∀i > 3. Thus k1 = 1 = k2, k3 = 1 and

ki = 0, ∀i > 3. Hence

A ∼ diag(Uν1(f1(t)), Uν2(f2(t)), Uν3(f3(t))) = diag(U(1)(t− α), U(1)(t− β), U(1)(t− γ))

= diag(U1(t− α), U1(t− β), U1(t− γ)) = diag(α, β, γ) =


α 0 0

0 β 0

0 0 γ

 .

Type of classes of this format will be denoted by T (6).

Each unordered triple {α, β, γ} with α, β, γ ∈ F∗q and α 6= β 6= γ 6= α introduces a new

conjugacy class. Therefore there are (q−1)(q−2)(q−3)
6 distinct conjugacy classes of this type.

The size of the centralizer of an element A of type T (6) is given by aν1aν2aν3 = (aν1)3 = (a(1))3,

where a(1) = q − 1. Thus

|CGL(3,q)(A)| = (q − 1)3.

Hence

|CA| = q3(q + 1)(q2 + q + 1).

4. Suppose that f(t) = (t2 + b1t+ b0)(t−α), where t2 + b1t+ b0 ∈ F and α ∈ F∗q . We let f1(t) =

t2 + b1t+ b0 and f2(t) = (t− α). Then k1 = 1 and k2 = 1, which implies that ν1 = ν2 = (1).

Since f1(t) = t2 + b1t+ b0 ∈ F , by Lemma 5.2.9, it splits completely over Fq2 . Suppose that

r is a root of f1(t). Then the other root is rq. These two roots of f1(t) satisfy the relations

r+ rq = −b1 and r1+q = b0. Therefore U1(t2 + b1t+ b0) =

(
0 1

−b0 −b1

)
=

(
0 1

−r1+q r + rq

)
.

Also we have U1(t− α) = α. Hence every A corresponds to an r ∈ Fq2 \ Fq and α ∈ F∗q , will

be of the form

A ∼ diag(Uν1(f1), Uν2(f2)) = diag(U(1)(f1), U(1)(f2))

= diag(U1(t2 + b1t+ b0), U1(t− α)) =


0 1 0

−r1+q r + rq 0

0 0 α

 .

Type of classes of this format will be denoted by T (7).
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Using equation (5.9) we get

|CGL(3,q)(A)| =
∏
f∈F

aν(f)(q
deg(f)) = aν1(f1)(q

2).aν2(f2)(q)

= a(1)(q
2).a(1)(q) =

(
q2|(1)|+4n((1))φ1

(
1
q2

))(
q|(1)|+2n((1))φ1

(
1
q

))
=

(
q2 (q2 − 1)

q2

)(
q

(q − 1)
q

)
= (q − 1)2(q + 1).

It follows by (5.10) that

|CA| =
q3(q − 1)3(q + 1)(q2 + 2 + 1)

(q − 1)2(q + 1)
= q3(q − 1)(q2 + q + 1).

Since α ∈ F∗q (there are q− 1 possibilities for α) and r ∈ Fq2 \ Fq (there are q2 − q choices for

r), it follows that there are q(q − 1)2 classes of this type. But for fixed α ∈ F∗q , replacing rq

with r gives the same conjugacy class. This restricts the number of conjugacy classes of this

type to q(q−1)2

2 .

5. Suppose that f(t) = t3 + a2t
2 + a1t+ a0 remains irreducible over Fq. In this case, f1 = f and

fi = 1, k1 = 1 and ki = 0 ∀i ≥ 2. It follows that ν1 = (1).

Since f1(t) ∈ F , it splits completely over Fq3 . If s is a root of f1(t), then sq and sq
2

are the

other roots of f1(t) by Lemma 5.2.9. These roots satisfy the relations s · sq · sq2 = s1+q+q2 =

−a0, s · sq + s · sq2 + sq · sq2 = s1+q + s1+q2 + sq+q
2

= a1 and s + sq + sq
2

= a2. Thus an

element A corresponds to s ∈ Fq3 \ Fq will have the form

A ∼ diag(Uν1(f1)) = diag(U(1)(t
3 + a2t

2 + a1t+ a0))

=


0 1 0

0 0 1

a0 a1 a2



=


0 1 0

0 0 1

−s1+q+q2 s1+q + s1+q2 + sq+q
2

s+ sq + sq
2

 .

Type of classes of this format will be denoted by T (8).

By (5.9) we obtain

|CGL(3,q)(A)| =
∏
f∈F

aν(f)(q
deg(f)) = aν1(f1)(q

3) =
(
q3(|(1)|+2n((1)))φ1

(
1
q3

))

= q3 (q3 − 1)
q3

= q3 − 1 = (q − 1)(q2 + q + 1).

Hence

|CA| = q3(q − 1)2(q + 1).
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Since s ∈ Fq3 \Fq, there are q3−q choices for s. The conjugacy classes introduced by choosing

sq and sq
2

are the same class of that one introduced by choosing s. This gives a total of q3−q
3

classes of this type.

Note 5.2.3. It can be easily checked that classes obtained in each type are not conjugate to classes

in other types as well as classes of the same type are also not conjugate.

We had processed all the possible cases. As a final step, we check the total number of elements in

conjugacy classes we have produced so far. Let Ai ∈ CAi , where CAi is a conjugacy class of type

T (i). By #T (i) we mean the number of conjugacy classes of type T (i). Then we have

8∑
i=1

|CAi | ·#T (i) = 1 · (q − 1) + (q − 1)(q + 1)(q2 + q + 1) · (q − 1)

+ q(q − 1)2(q + 1)(q2 + q + 1) · (q − 1) + q2(q2 + q + 1) · (q − 1)(q − 2)

+ q2(q − 1)(q + 1)(q2 + q + 1) · (q − 1)(q − 2)

+ q3(q + 1)(q2 + q + 1) · (q − 1)(q − 2)(q − 3)
6

+ q3(q − 1)(q2 + q + 1) · q(q − 1)2

2

+ q3(q − 1)2(q + 1) · q
3 − q

3

= q7 − q6 + q8 − 2q7 − q5 + 2q4 +
q9 − 4q8 + q7 + 5q6 + 4q5 − q4 − 6q3

6

+
q9 − 2q8 + q7 − q6 + 2q5 − q4

2
+
q9 − q8 − 2q7 + 2q6 + q5 − q4

3
= q9 − q8 − q7 + q5 + q4 − q3 = q3(q − 1)3(q + 1)(q2 + q + 1) = |GL(3, q)|.

Also

8∑
i=1

#T (i) = (q − 1) + (q − 1) + (q − 1) + (q − 1)(q − 2)

+ (q − 1)(q − 2) +
(q − 1)(q − 2)(q − 3)

6
+
q(q − 1)2

2
+
q3 − q

3

= 3q − 3 + 2q2 − 6q + 4 +
q3 − 6q2 + 11q − 6

6
+
q3 − 2q2 + q

2
+
q3 − q

3
= q3 − q = c(3, q) = The number of conjugacy classes of GL(3, q).

Hence the conjugacy classes we have found are all the classes of GL(3, q). In Table 5.3 we list these

classes with the size of centralizers, conjugacy classes and the number of classes contained in each

type.
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Table 5.3: The conjugacy classes of GL(3, q)

T (1) T (2) T (3)

Rep g


α 0 0

0 α 0

0 0 α



α 1 0

0 α 0

0 0 α



α 1 0

0 α 1

0 0 α


No. of CC q − 1 q − 1 (q − 1)

|CGL(3,q)(g)| q3(q − 1)3(q + 1)(q2 + q + 1) q3(q − 1)2 q2(q − 1)

|Cg| 1 (q2 − 1)(q2 + q + 1) q(q2 − 1)(q3 − 1)

Table 5.3 (continued)

T (4) T (5) T (6)

Rep g


α 0 0

0 α 0

0 0 β



α 1 0

0 α 0

0 0 β



α 0 0

0 β 0

0 0 γ


No. of CC (q − 1)(q − 2) (q − 1)(q − 2) (q−1)(q−2)(q−3)

6

|CGL(3,q)(g)| q(q − 1)3(q + 1) q(q − 1)2 (q − 1)3

|Cg| q2(q2 + q + 1) q2(q2 − 1)(q2 + q + 1) q3(q + 1)(q2 + q + 1)

Table 5.3 (continued)

T (7) T (8)

Rep g


0 1 0

−rq+1 r + r1+q 0

0 α




0 1 0

0 0 1

s1+q+q2 −(s1+q + s1+q2 + sq+q
2
) s+ sq + sq

2


No. of CC q

2(q − 1)2 1
3(q3 − q)

|CGL(3,q)(g)| (q − 1)2(q + 1) (q − 1)(q2 + q + 1)

|Cg| q3(q − 1)(q2 + q + 1) q3(q − 1)2(q + 1)
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Note 5.2.4. The conjugacy classes of types T (6), T (7) and T (8) comprise all the regular semisimple

classes of GL(3, q), while classes of types T (1), T (2), T (3) and T (8) are the primary classes of

GL(3, q). Note that the number of primary classes of GL(3, q) that given by Corollary 5.2.16 is

(q − 1)|P(3)| + I3(q) = 3(q − 1) + q3−q
3 = (q−1)(q2+q+9)

3 . Also the only type of regular semisimple

classes, which are also primary, is T (8), which consists of q3−q
3 classes.

In terms of (5.11) the number of regular semisimple classes of GL(3, q) is given by

(q − 1)
q4 − q3 + (q − 1)

q2 − 1
=
q3(q − 1) + (q − 1)

q + 1
=

(q3 + 1)(q − 1)
q + 1

= (q − 1)(q2 − q + 1).

Alternatively we can use our formula given in Proposition 5.2.10 to produce the number of regular

semisimple classes as follows:

• if λ = (13) ` 3, then F (13) = (q−1)(q−2)(q−3)
6 = #T (6),

• if λ = (1121) ` 3, then F (1121) = I1(q)I2(q) = q(q−1)2

2 = #T (7),

• if λ = (3) ` 3, then F ((3)) = (q3−q)
3 = #T (8).

Therefore the number of regular semisimple classes is

(q − 1)(q − 2)(q − 3)
6

+
q(q − 1)2

2
+

(q3 − q)
3

= q3 − 2q2 + 2q − 1 = (q − 1)(q2 − q + 1).

As a direct application of Theorem 5.2.17 we calculate the orders of the regular semisimple elements

of GL(3, q). Let ε1, ε2 and ε3 be generators of F∗q , F∗q2 and F∗q3 respectively. Suppose that g, h and

t are representative elements for classes of types T (6), T (7) and T (8) respectively. Then

g =


εj11 0 0

0 εj21 0

0 0 εj31

 , h =


0 1 0

−εj(q+1)
2 εj2 + ε

j(1+q)
2 0

0 εi1


and

t =


0 1 0

0 0 1

ε
j3(1+q+q2)
3 −(εj3(1+q)

3 + ε
j3(1+q2)
3 + ε

j3(q+q2)
3 ) εj33 + εj3q3 + εj3q

2

3


for some distinct integers i, j, j1, j2 and j3. By Theorem 5.2.17 we get

o(g) = lcm

(
(q − 1)

gcd(j1, q − 1)
,

(q − 1)
gcd(j2, q − 1)

,
(q − 1)

gcd(j3, q − 1)

)
,

o(h) = lcm

(
(q − 1)

gcd(i, q − 1)
,

(q2 − 1)
gcd(j, q2 − 1)

,
(q2 − 1)

gcd(jq, q2 − 1)

)
and

o(t) = lcm

(
(q3 − 1)

gcd(j3, q3 − 1)
,

(q3 − 1)
gcd(j3q, q3 − 1)

,
(q3 − 1)

gcd(j3q2, q3 − 1)

)
.

In similar fashion to the proof of Proposition 4.2.2 we can calculate the orders of other elements of

GL(3, q). We have done this and we listed these orders in Table 6.2, in the Appendix.
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Conjugacy Classes of GL(4, q)

Any A ∈ GL(4, q) has characteristic polynomial f(t) decomposes into one of the following forms:

1. f(t) = (t− α)4, α ∈ F∗q ,

2. f(t) = (t− α)3(t− β), α, β ∈ F∗q , α 6= β,

3. f(t) = (t− α)2(t− β)2, α, β ∈ F∗q , α 6= β,

4. f(t) = (t− α)2(t− β)(t− γ), α, β, γ ∈ F∗q , α, β, γ are distinct,

5. f(t) = (t− α)2(t2 + at+ b), α ∈ F∗q and t2 + at+ b ∈ F ,

6. f(t) = (t− α)(t− β)(t− γ)(t− ξ), α, β, γ, ξ ∈ F∗q , α, β, γ, ξ are distinct,

7. f(t) = (t− α)(t− β)(t2 + at+ b), α, β ∈ F∗q , β 6= α and t2 + at+ b ∈ F ,

8. f(t) = (t2 + at+ b)(t2 + ct+ d), t2 + at+ b, t2 + ct+ d ∈ F ,

9. f(t) = (t2 + at+ b)2, t2 + at+ b ∈ F ,

10. f(t) = (t− α)(t3 + at2 + bt+ c), α ∈ F∗q and t3 + at2 + bt+ c ∈ F ,

11. f(t) = (t4 + at3 + bt2 + ct+ d), t4 + at3 + bt2 + ct+ d ∈ F ,

Now one can build the Jordan Canonical Form of any A ∈ GL(4, q) by using similar fashion used in

the case GL(3, q). One can also use equations (5.9) and (5.10) to calculate the size of the centralizers

and conjugacy classes. Tables including the representatives of classes and size of these classes have

been given in Tables 6.10 and 6.11 respectively (see Appendix).

Conjugacy Classes of GL(2, q) (Revisited)

We conclude this subsection by revisiting the group GL(2, q), which its conjugacy classes were given

in Theorem 4.2.1. There we proved that the classes lie in four types T (1), T (2), T (3) and T (4), but

we did not give a source for these classes. Now we are in good position to interpret how we got the

representatives. The characteristic polynomial of any A ∈ GL(2, q) splits into one of the following

forms

1. (t− α)2, α ∈ F∗q ,

2. (t− α)(t− β), α, β ∈ F∗q , α 6= β or

3. t2 + at+ b, remains irreducible over Fq.
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When the characteristic polynomial is (t − α)2, α ∈ F∗q , then corresponding to the partitions

ν1 = (1, 1) ` 2 and ν2 = (2) ` 2, we get representatives in respective way given by

A ∼ diag(U(1)(t− α), U(1)(t− α)) = diag(U1(t− α), U1(t− α)) =

(
α 0

0 α

)

and

A ∼ diag(U(2)(t− α) = diag(U2(t− α)) =

(
α 1

0 α

)
.

This gives the first two types of classes T (1) and T (2), where it is clear that T (1) consists of the

central elements of GL(2, q). Thus the size of each conjugacy class of type T (1) is 1, while if A is

an element in a class of type T (2), then

|CGL(2,q)(A)| = q|(2)|+2·n((2))φ(2)

(
1
q

)
= q2

(
q − 1
q

)
= q(q − 1)

which implies that |CA| = q2 − 1, exactly as in Theorem 4.2.1.

Corresponding to the factorization (t− α)(t− β), α, β ∈ F∗q , α 6= β, we get elements of type T (3),

while if the characteristic polynomial t2 + at+ b ∈ F , then we get elements of type T (4). Similarly

we can calculate the size of centralizers and hence conjugacy classes of elements of types T (3) and

T (4) using (5.9) and (5.10) respectively. Thus using Green’s formula for the size of the centralizer

of element of GL(2, q) coincides with the size computed from the definition directly as done in

Section 4.2.

5.3. Induction From Parabolic Subgroups

We recall by Theorem 3.1.8 that a parabolic subgroup Pλ is a split extension of its unipotent radical

Uλ by its levi complement Lλ, where the last one is isomorphic to
k⊗
i=1

GL(λi, q).

Let ψi be a class function of GL(λi, q), 1 ≤ i ≤ k. The function ψ defined on Lλ by

ψ(A) =
k⊗
i=1

ψi(Aii) = ψ1(A11)ψ2(A22) · · ·ψk(Akk) (5.17)

is a class function of Lλ. This class function can be inflated by the lifting method described in

Section 2.4 to be a class function of Pλ by setting ψ(ul) = ψ(l) for all u ∈ Uλ and l ∈ Lλ.

Furthermore, we define the �−product ψ1 � ψ2 � · · · � ψk =
k⊙
i=1

ψi to be the class function of

GL(n, q), which is obtained by inducing ψ from Pλ to GL(n, q). Formally
k⊙
i=1

ψi =
k⊗
i=1

ψi↑GL(n,q)
Pλ

.
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Corollary 5.3.1. If all ψi are characters of GL(λi, q), ∀1 ≤ i ≤ k respectively, then
k⊙
i=1

ψi is a

character of GL(n, q).

PROOF. Immediate. �

Definition 5.3.1. The process of obtaining characters of GL(n, q) from those of Pλ, which in turns

are obtained by lifting the characters of Lλ, is referred to as a parabolic induction.

Note 5.3.1. Observe that parabolic induction produces characters of GL(n, q) from characters of

GL(m, q) for m < n.

Let {B1, B2, · · · , Bs} be a left transversal of Pλ in GL(n, q). Using the induction theorem of char-

acters, which asserts that for x ∈ GL(n, q)\Pλ, then φ↑GL(n,q)
Pλ

(x) = 0 for a character φ of Pλ. Then

for all A ∈ GL(n, q) we get (
k⊙
i=1

ψi)(A) =
∑
i

ψ(B−1
i ABi), where the sum is made over all cosets

BiP for which B−1
i ABi ∈ Pλ. Now

B−1AB ∈ Pλ ⇐⇒ FB
−1AB

λ = Fλ ⇐⇒ B−1ABFλ = Fλ ⇐⇒ ABFλ = BFλ ⇐⇒ BFAλ = BFλ.

The last equality means that BFλ is a flag stabilized by the submodule VA. For all 1 ≤ i ≤ k, if we

let Wi = BVi, where Vi are the components of the flag Fλ and if

BiAB
−1
i =


A11 A12 · · · A1k

0 A22 · · · A2k

...
...

. . .
...

0 0 · · · Akk

 , (Aii ∈ GL(λi, q)),

then the factor module Wi/Wi−1 is isomorphic to VAii for all 1 ≤ i ≤ k (see Green [27] or Mac-

Donald [50]).

Theorem 5.3.2. Let ψi be a class function on GL(λi, q), 1 ≤ i ≤ k and c be any conjugacy class

of GL(n, q). Then

(
k⊙
i=1

ψi)(c) =
∑

{c1,c2,··· ,ck}

gcc1,c2,··· ,ck

k∏
i=1

ψi(ci)

summed over all sequences {c1, c2, · · · , ck}, where ci is a conjugacy class of GL(λi, q) and gcc1,c2,··· ,ck
is the number of sequences

0 = W0 ⊂W1 ⊂ · · · ⊂Wk = V (n, q)

of submodules of V (n, q) such that the successive quotient Wi/Wi−1
∼= Vci , 1 ≤ i ≤ k. In particular,

(
k⊙
i=1

ψi)(In) =
φn(q)
k∏
i=1

φλi(q)

ψ1(In)ψ2(In) · · ·ψk(In). (5.18)
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Moreover, if c is a regular semisimple class of GL(n, q), then it is sufficient to consider only the

regular semisimple classes ci of GL(λi, q) to evaluate (
k⊙
i=1

ψi)(c).

PROOF. See Green [27] or MacDonald [50]. �

Remark 5.3.1. The number gcc1,c2,··· ,ck is known as the Hall polynomial. This polynomial, which

will not be used in this dissertation again, is of great importance for the polynomial defined by

Green, which they bear his name. One can refer to Green [27], Klein [42], MacDonald [50], Springer

[71] or Zelevinsky [77] for more information concerning both of Green and Hall polynomials.

If chc is the characteristic function of a class c, which is defined over x ∈ GL(n, q) by

chc(x) =

1 ifx ∈ c,

0 ifx 6∈ c,

then

k⊙
i=1

(chci) =
∑

{c1,c2,··· ,ck}

gcc1,c2,··· ,ckchc.

Note 5.3.2. Note that the characteristic function chc is a class function and hence the �−product

is well defined.

Proposition 5.3.3. The �−product
k⊙
i=1

ψi is multilinear, associative and commutative.

PROOF. See page 411 of Green [27]. �

Let Cn denotes the algebra of class functions of GL(n, q) and let C =
∞⊕
n=0

Cn, where GL(0, q) is to

be understood as the neutral group. Note that C0 = C. The �−product discussed above defines

a multiplication on C. We can check that C is a commutative and associative algebra over C. The

�−product generates characters of GL(n, q) from characters of GL(s, q) for s < n. In fact R < C,

where R =
∞⊕
n=0

Rn and Rn is the subalgebra consists of characters of GL(n, q). Systematic use

of C has been made by Green [27] in showing that some functions (given by Definition 7.3 in his

paper) of GL(n, q) are integral linear combination of characters of GL(n, q) and hence are characters

themselves. For this purpose he defined a homomorphism from C into S =
∞⊕
n=1

Sn, where Sn is

the algebra of symmetric polynomials in n variables.
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5.4. Cuspidal Characters

We recall by Subsection 3.1.2 that a character of GL(n, q) is said to be a discrete series or cuspidal

character of GL(n, q) if it is not a principal series character. In this section we discuss the cuspidal

characters of GL(n, q). These character have nice parametrization in terms of the non-decomposable

characters of F∗qn (Subsection 5.4.1). We also discuss the values of these characters on classes of

GL(n, q) (Theorem 5.4.4 and Equation (5.19)) and finally we show the importance of the cuspidal

characters for other characters of GL(n, q) (Theorem 5.4.6).

5.4.1 Parametrization of the Cuspidal Characters

Let Fqn : Fq be a field extension. We recall that the Galois group Γ = Γ(Fqn : Fq) is a cyclic

group of size n generated by the Frobenius automorphism σq : a 7−→ aq, ∀a ∈ Fqn . Note that

(σq)j = σqj , ∀0 ≤ j ≤ n− 1. Also Γ acts on the maximal torus F∗qn by aσ
j
q = aq

j
, for ∀0 ≤ j ≤ n− 1

and all a ∈ F∗qn . On the other hand, if θ is a character of F∗qn and σqj ∈ Γ, then we define θσqj by

θσqj = θq
j
, where θq

j
(a) = θ(aq

j
) = θ(aσqj ), a ∈ F∗qn .

Definition 5.4.1. Let θ be a character of F∗qn . For 0 ≤ i ≤ n− 1, the conjugate character θi of

θ is defined to be θi = θσqi = θq
i
.

Note 5.4.1. It is clear that Γ has dual action on F∗qn and on its character group also.

Over Fqn we know that (ad − 1)|(an − 1) ⇐⇒ d|n. For any d dividing n we define the norm map

Nn,d : F∗qn −→ F∗
qd

by

Nn,d(a) = a
qn−1

qd−1 =

n
d
−1∏
i=0

aσ
di
q =

n
d
−1∏
i=0

aq
di
.

It is not difficult to check that Nn,d is a group homomorphism.

Definition 5.4.2. A character θ of F∗qn is said to be non-decomposable if there is not any d

dividing n such that θ = Nn,d ◦ χ for any character χ of F∗
qd
.

This means that θ does not factor through the norm map Nn,d : F∗qn −→ F∗
qd

for any d dividing n.

Remark 5.4.1. Some authors refer to a non-decomposable character by regular or primitive char-

acter.

The next Proposition detects the non-decomposable characters of F∗qn .

Proposition 5.4.1. A character θ of F∗qn is non-decomposable if and only if all of its conjugates

are distinct.
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PROOF. See Prasad [60] or Reyes [61]. �

Let ND(F∗qn) denotes the set of all non-decomposable characters of F∗qn . Since Γ acts on the char-

acter group of F∗qn , it follows that Γ acts on ND(F∗qn) and if θ
′
, θ ∈ ND(F∗qn), then we have

θ
′ ∈ θΓ if and only if θ

′
= θq

i
for some 0 ≤ i ≤ n− 1.

Note 5.4.2. Note that each Galois orbit θΓ = {θ, θq, θq2 , · · · , θqn−1} and hence |θΓ| = n.

Proposition 5.4.2. The number of Galois orbits θΓ is given by 1
n

∑
d|n

µ(d)q
n
d .

PROOF. See Lemma 7.7 of Green [27]. �

Remark 5.4.2. Green [27] constructed an entity called a simplex as follows. Let F∗qn = F∗
qn! =

〈ε〉 and εs = ε
qn!−1

qs−1 , for 1 ≤ s ≤ n. Then F∗qs = 〈εs〉 , ∀s. Thus every element of F∗qs has the

form εks , where k is uniquely determined mod(qs − 1). The element εks has s distinct conjugates

εks , ε
kq
s , · · · , εkq

s−1

s if and only if the set S = {k, kq, · · · , kqs−1} forms a complete set of residues

mod(qs − 1). The set S is called an s-simplex S or a simplex S of degree s. Each of the integers

kqi, 0 ≤ i ≤ s− 1 is called a root of the simplex S of degree s. Green [27] established a canonical

bijection between the set S of all distinct simplexes S of degree ≤ n and the set F of all distinct

irreducible polynomials over Fq of degree ≤ n.

We can see that ω : θΓ −→ S given by ω(θq
j
) = kqj , ∀0 ≤ j ≤ n− 1 is a bijective function.

The cuspidal characters of GL(n, q) have nice parametrization in terms of elements of ND(F∗qn).

To each θk
Γ, where θk ∈ ND(F∗qn), we associate a cuspidal character χθk of GL(n, q) as follows:

Consider the integers 1 ≤ k ≤ qn − 1 such that

n
d
−1∑
i=0

qdi - k, ∀d, d dividing n. This to grant

that we are considering only the non-decomposable characters of F∗qn . For such k, we exclude

kq, kq2, · · · , kqn−1mod(qn − 1). In the computations, we use χk in place of χθk for the appropriate

k.

We summarize the foregoing discussion in the following Theorem, which is the main theorem of

this subsection.

Theorem 5.4.3. The number of cuspidal characters of GL(n, q) is same as the number of regular

semisimple classes of GL(n, q) of type λ = (n) ` n, which is equal to the number of irreducible

polynomials of degree n over Fq. This number is given by 1
n

∑
d|n

µ(d)q
n
d .
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5.4.2 Values of the Cuspidal Characters on Classes of GL(n, q)

The values of the cuspidal characters of GL(n, q) on all the conjugacy classes of GL(n, q) are easy to

compute. We follow the description of Green [28]. Suppose that f ∈ Fq[t] with a root α. By Lemma

5.2.9 we know that αq, αq
2 · · ·αq∂f−1

are the other roots of f. Let θ be an arbitrary character of

F∗qn . We define θ(f) by θ(f) =
∂f−1∑
i=0

θ(αq
i
). Now if d|n, we identify θ with θ↓

F∗qn
F∗
qd
. Next we define the

class function χθ on g ∈ GL(n, q) by

χθ(g) =

θ(f)φl(σ)−1(q∂f ) if [g] is a primary class with σ ` n
∂f ,

0 if [g] is not a primary class,
(5.19)

where φl(σ)−1 is the function defined in (5.2).

Theorem 5.4.4. The class function χθ defined in (5.19) is a generalized character of GL(n, q) for

any character θ of F∗qn and if θk ∈ ND(F∗qn), then (−1)n−1χθk ∈ Irr(GL(n, q)).

PROOF. See Fulton [22], Green [27] or Green [28]. �

Example 5.4.1. Consider the central elements g = αIn = (t − α, 1, n, 1n), α ∈ F∗q of GL(n, q),

which are self-classes. Since the characteristic polynomial of g is (t− α)n, it follows by Definition

5.2.2 that [g] is primary. If θk is any character of F∗qn and F∗qn = 〈θ〉 , then

θk(f) = θk(t− α) =
1−1∑
i=0

θk(αq
i
) = θk(α) = θ(αk).

Also

φl(σ)−1(q∂f ) = φl(1n)−1(q) =
n−1∏
i=1

(1− qi) = (1− q)(1− q2) · · · (1− qn−1).

Now if θk ∈ ND(F∗qn), then Theorem 5.4.4 asserts that (−1)n−1χθk ∈ Irr(GL(n, q)) and at g = αIn,

we have

(−1)n−1χθk(αIn) = (−1)n−1(1− q)(1− q2) · · · (1− qn−1)θ(αk)

= (q − 1)(q2 − 1) · · · (qn−1 − 1)θ(αk).

In Example 5.4.1 if α = 1, that is the identity matrix of GL(n, q), then we have the following

Corollary.

Corollary 5.4.5. The degree of a cuspidal character of GL(n, q) is (q − 1)(q2 − 1) · · · (qn−1 − 1).

The next theorem is of great importance for characters of GL(n, q). It shows that the cuspidal

characters are the atoms from which any character of GL(n, q) is build up.
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Theorem 5.4.6. Every character of GL(n, q) is either cuspidal or a constituent of an
⊙
−product

of cuspidal characters.

PROOF. The proof is inductively on n. By definition, all characters of GL(1, q) are cuspidal. Assume

the result is true ∀1 ≤ m ≤ n − 1. Let χ ∈ Irr(GL(n, q)). If χ is cuspidal, then there is nothing

to prove. Let χ be a principal series character. Then χ is a constituent of
k⊗
i=1

χi↑GL(n,q)
Pλ

for some

Pλ such that λ = (λ1, λ2, · · · , λt) ∈ P(n), t 6= 1 and χi ∈ Irr(GL(λi, q)). By hypothesis each

χi is either cuspidal or a constituent of
⊙
−product of some cuspidal characters. Hence χ is a

constituent of an
⊙
−product of cuspidal characters. �

Remark 5.4.3. By the above theorem (or by definition), we know that any χk ∈ Irr(GL(1, q)) =

Irr(F∗q) is a cuspidal character. Recall that characters of GL(2, q) fall into four types, where char-

acters of type χ(4) are the cuspidal characters of GL(2, q). We also recall that χ(3)
k,l = χkχl↑

GL(2,q)
UT (2,q) =

χk � χl, while the characters χ(1)
k and χ

(2)
k appeared as constituents of χk,k where χkχk↑

GL(2,q)
UT (2,q) =

χk � χk. This show that any χ(3)
k,l is an

⊙
-product of cuspidal characters, while any character χ(1)

k

or χ(2)
k appears as a constituent of an

⊙
-product of cuspidal characters. This confirms Theorem

5.4.6 for GL(2, q).

We illustrate the indexing and the values of the cuspidal characters of GL(2, q), GL(3, q) and

GL(4, q) in the following examples.

Example 5.4.2. Consider GL(2, q) and let θk be a character of F∗q2 . We determine the non-

decomposable characters of F∗q2 . The norm map N2,1 : F∗q2 −→ F∗q is given by N2,1(r) = r.rq =

rq+1, r ∈ F∗q2 . Now θk has two conjugate characters, namely θk itself and θk = θqk, where θqk is

given by θqk(r) = θk(rq). If q + 1|k, we can see that θqk = θk. Therefore θk ∈ ND(F∗q2) if and only if

k ∈ K = {1, 2, · · · , q2− 1}− {q+ 1, 2(q+ 1), · · · , (q− 1)(q+ 1)}. Thus |K| = q2− q. It easily to see

that for any k ∈ K, we have θkq ∈ K and θkq = θk. Therefore in indexing the cuspidal characters

of GL(2, q), whenever we choose k ∈ K, we take off kq from K. Thus we get a set of q2−q
2 such k

to index the cuspidal characters χk of GL(2, q).

Next we calculate the values of the cuspidal characters χθk on classes of GL(2, q). Let g1, g2, g3, g4

be elements in classes of types T (1), T (2), T (3) T (4) respectively. By Example 5.4.1 we have

χθk(g1) = (−1)2−1(1 − q)θk(α) = (q − 1)θk(α) = (q − 1)α̂k. The characteristic polynomial of g2

is f(t) = (t − α) for some α ∈ F∗q and the associated partition to [g2] is λ = (2) ` 2. Thus by

(5.19), we have θk(f) = θk(t − α) = θk(α) = α̂k. Also φl(λ)−1(q∂f ) = φ1−1(q) = 1. Now Theorem

5.4.4 asserts that χθk(g2) = (−1)2−1θk(α) = −α̂k. The characteristic polynomial of g3 splits into

two distinct linear factors. Immediately, χθk(g3) = 0. The last case where g4 has characteristic

polynomial f(t) = t2 + at+ b ∈ Fq[t], which is irreducible, that is f has eigenvalues r and rq where
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r ∈ Fq2 \ Fq. Here we have θk(f) =
∂f−1∑
i=0

θk(rq
i
) = θk(r) + θk(rq). Also φl(λ)−1(q∂f ) = φ1−1(q2) = 1.

By Theorem 5.4.4 we have

χθk(g4) = (−1)2−1(θk(r) + θk(rq)) = −(θk(r) + θk(rq)) = −(r̂k + r̂kq).

This completes the cuspidal characters of GL(2, q).

Sometimes we may write χk in place of χθk .

Example 5.4.3. The case n = 3 is very similar to the case n = 2 since 2 and 3 are both prime

numbers. Consider k ∈ {1, 2, · · · , q3 − 1} such that q2 + q + 1 - k. If we choose such k, we exclude

kq and kq2 from the set {1, 2, · · · , q3 − 1}. Note that if q2 + q + 1 - k, it does not also divide kq or

kq2. We get q3−q
3 cuspidal characters of GL(3, q), which their values are given by

χk(g) =



(q − 1)2(q + 1)α̂k if g is of type T (1),

−(q − 1)α̂k if g is of type T (2),

α̂k if g is of type T (3),

0 if g is of type T (4),

0 if g is of type T (5),

0 if g is of type T (6),

0 if g is of type T (7),

ŝk + ŝkq + ŝkq
2

if g is of type T (8).

(5.20)

Example 5.4.4. We calculate the cuspidal characters of GL(4, q). Firstly we determine the non-

decomposable characters of F∗q4 . Assume that k ∈ {1, 2, · · · , q4 − 1} and let θk be a character of

F∗q4 . We consider the norm maps N4,1 : F∗q4 −→ F∗q and N4,2 : F∗q4 −→ F∗q2 , which are given by

N4,1(r) = r
q4−1
q−1 = rq

3+q2+q+1 and N4,2(r) = r
q4−1

q2−1 = rq
2+1, for all r ∈ F∗q4 . Now θk ∈ ND(F∗q4) if

and only if q3 + q2 + q + 1 - k and q2 + 1 - k. Note that q3 + q2 + q + 1 = (q2 + 1) + q(q2 + 1) =

(q + 1)(q2 + 1). This is reduced to say that θk ∈ ND(F∗q4) if and only if q2 + 1 - k. Equivalently

θk ∈ ND(F∗q4) ⇐⇒ k ∈ {1, 2, · · · , q4 − 1} \ {q2 + 1, 2(q2 + 1), · · · , (q2 − 1)(q2 + 1)}. This gives

(q4 − 1)− (q2 − 1) = q4 − q2 non-decomposable characters of F∗q4 . Now each orbit of the action of

Γ = Γ(Fq4 : Fq) on ND(F∗q4) consists of four conjugate characters namely, θkΓ = {θk, θqk, θ
q2

k , θ
q3

k }.
To parameterize a cuspidal character of GL(4, q), we choose from each θk

Γ a representative char-

acter θk since χθk = χθqk
= χ

θq
2

k

= χ
θq

3

k

. Therefore we have 1
4(q4 − q2) cuspidal characters χθk of

GL(4, q). Note that I4(q) = 1
4(q4 − q2).

137



Chapter 5 — The Character Table of GL(n, q)

To evaluate the cuspidal characters on classes of GL(4, q) we use Theorem 5.4.4 and similar steps

used in calculating the values of the cuspidal characters of GL(2, q). For example consider [g] of

type T (18), which is given by the data ((t2 + at + b), 2, 2, (1, 1)). Let r and rq be the roots of

f(t) = t2 + at + b. Then θk(f) = θk(r) + θk(rq) and φl(λ)−1(q∂f ) = φl((1,1))−1(q2) = (1 − q2).

Therefore we have

χk = χθk = (−1)4−1(1− q2)(θk(r) + θk(rq)) = (q2 − 1)(r̂k + r̂kq).

Similarly we can calculate the values of the cuspidal characters on all other primary classes of

GL(4, q). Let ∆ = {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21}. In Table 5.4 we have skipped giving

relevant information for classes of types T (i) for i ∈ ∆, since all classes of these types are not

primary and by Theorem 5.4.4 the values of the cuspidal characters on these classes are zero. The

values of the cuspidal characters on classes of GL(4, q) are given in Table 5.4.

Remark 5.4.4. Note that the values of the cuspidal characters of GL(2, q) given by Example 5.4.2,

where we used the non-decomposable characters of F∗q2 , the same as the values of χ(4)
k = πk given

in Table 4.2, where πk is written as a combination in terms of some characters of GL(2, q).
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5.5. Steinberg Characters

Let V be an (n+ 1)−dimensional vector space over a field F and let V ∗ denotes the set of nonzero

vectors x = (x0, x1, · · · , xn) of V, that is V ∗ = V −{0}. We define an equivalence relation ∼ on V ∗

by

x ∼ y in V ∗ if and only if x = λy, for some λ ∈ F∗.

Obviously this is an equivalence relation. In the rest of this section let us focus on the case where

F = Fq. It is clear that |V ∗| = qn+1−1. If we denote the equivalence class containing x by [x], then

by definition |[x]| = q− 1. The set of all equivalence classes of V ∗ will be denoted by D and will be

called projective n−space. Immediately we can see that

|D| = qn+1 − 1
q − 1

= qn + qn−1 + · · ·+ 1.

Each class [x] in the projective n−space will be called a projective point or simply a point of D.

Note 5.5.1. Observe that the points of D are in fact the orbits of the action of F∗ on V ∗ given by

xλ = λx for λ ∈ F∗ and x ∈ V ∗.

Definition 5.5.1. A line L(α), where α = (α0, α1, · · · , αn) ∈ V ∗ is defined to be the set of all

points [x] of D such that

α0x0 + α1x1 + · · ·+ αnxn = 0. (5.21)

Note that if x satisfies (5.21), then so does λx, ∀λ ∈ F∗q . Thus L(α) = L(λα), ∀λ ∈ F∗q . For

arbitrary x1, x2, · · · , xn ∈ Fq and for fixed α ∈ V ∗ where assumed that α0 6= 0, then (5.21) has

exactly qn − 1 solutions (x0, x1, x2, · · · , xn) ∈ V ∗. Note that x0 is governed by (5.21). Since each

point [x] contains q − 1 vectors of V ∗, there are exactly qn−1
q−1 = qn−1 + qn−2 + · · · + 1 points [x]

satisfying (5.21). In other words, there are qn−1 + qn−2 + · · ·+ 1 points on each line.

Finally it can be shown that any two distinct points [x] and [y] are contained in exactly qn−1−1
q−1 =

qn−2 + qn−3 + · · ·+ 1 lines.

More generally if W is a subspace of V, then we define

[W ] = {[x]| x ∈W ∗} ⊆ D.

If W is an (m+ 1)−dimensional subspace of V (n+ 1, q), then W is called a projective m−subspace,

and we say that W has projective dimension m. In particular if m = 0, 1, 2 or n− 1, that is W is a

1−dimensional, 2−dimensional, 3−dimensional or n−dimensional subspace of V respectively, then

W is called point, line, plane or hyperplane respectively. In general the i−dimensional subspace is

called an i−flat.
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Definition 5.5.2. Let V (n+ 1, q) be a vector space. The lattice of subspaces of V (n+ 1, q) of di-

mension at least 1 is called a Projective Geometry and is denoted by PG(n, q); i.e., the structure

which contains points, lines, planes, hyperplanes, etc.

Remark 5.5.1. The triple
(
qn+1−1
q−1 , q

n−1
q−1 ,

qn−1−1
q−1

)
forms a design.

Example 5.5.1. Let n = 1. The projective geometry PG(1, q) consists of the vectors (x0, x1) ∈
F2
q − (0, 0). These q2 − 1 vectors divided into q2−1

q−1 = q + 1 classes (points), which are all contained

in one line.

Now the group GL(2, q) acts on PG(1, q) by the mean that if g =

(
a b

c d

)
∈ GL(2, q) and λ ∈ F∗q ,

then

g[x] = g(λx0, λx1) = (λ(ax0 + bx1), λ(cx0 + dx1)) = λ(ax0 + bx1, cx0 + dx1).

This action is transitive and hence the resulting permutation character ∆ contains the trivial

character 1 once. For any g ∈ GL(2, q), let Fix(g) be the set

Fix(g) = {[x] ∈ D| g[x] = [x]}.

We consider the four types of elements of GL(2, q) in this action.

1. Let g =

(
α 0

0 α

)
be any element of type T (1). Then

g[x] = g(λx0, λx1) = (αλx0, αλx1)) = γ(x0, x1) = [x],

i.e., any point of PG(1, q) is fixed by the central elements of GL(2, q), that is |Fix(g)| = q+1.

Therefore deg ∆ = q + 1.

2. Let g =

(
α 1

0 α

)
be any element of type T (2). Then

g[x] = g(λx0, λx1) = (αλx0 + λx1, αλx1) ∈ [x] = (γx0, γx1)⇐⇒ x1 = 0,

i.e, all the q − 1 vectors (x0, 0) of the unique point x are fixed by elements of type T (2).

Therefore |Fix(g)| = 1.

3. Let g =

(
α 0

0 β

)
be any element of type T (3). Then

g[x] = g(λx0, λx1) = (αλx0, βλx1) = γ(x0, x1) ∈ [x]⇐⇒ either x0 = 0 or x1 = 0.

The points x and y represented by the vectors (1, 0) and (0, 1) respectively are linearly

independent in F2
q , since there exists no γ ∈ F∗q such that x = γy.We deduce that |Fix(g)| = 2.
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4. Let g =

(
0 1

−rq+1 r + rq

)
be any element of type T (4). Then

g[x] = g(λx0, λx1) = (λx1,−λrq+1x0 + λ(r + rq)x1) 6= γ(x0, x1) ∈ [x], for some γ ∈ F∗q .

Thus there is no point of PG(1, q) fixed by an element of type T (4), i.e., |Fix(g)| = 0.

For convenience we list the values of ∆ in Table 5.5.

Table 5.5: Values of the permutation character ∆ on classes of GL(2, q)

T (1)
k T (2)

k T (3)
k,l T (4)

k

No. of CC q − 1 q − 1 (q − 1)(q − 2)/2 q(q − 1)/2

|Cg| 1 q2 − 1 q(q + 1) q(q − 1)

∆ q + 1 1 2 0

Now

〈∆,∆〉 =
1
|G|

∑
g∈G

∆(g)∆(g)

=
1

q(q − 1)2(q + 1)

(
(q − 1)(q + 1)2 + (q − 1)(q2 − 1) + 4

(q − 1)(q − 2)
2

q(q + 1)
)

=
1

q(q − 1)2(q + 1)
(
2q(q − 1)2(q + 1)

)
= 2.

Therefore ∆ = 1 + ST, where ST ∈ Irr(GL(2, q)). Hence ST = ∆− 1.

Note 5.5.2. Note that the values of the character ST we have obtained recently is same as the

values of the Steinberg character St have been found in page 50.

In [72] Steinberg found |P(n)| irreducible characters of GL(n, q) corresponding to the partitions

λ = (λ1, λ2, · · · , λn) ` n, where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. He used the underlying geometry of

a vector space V (n, q). These characters are closely related to the irreducible characters of the

Symmetric group Sn.

We recall from subsection 3.1.2 that GL(n, q) acts on the set F consisting of all flags of V (n, q) in

a natural way. This action is intransitive and the resulting orbits are in fact the equivalence classes

defined by ∼ in page 25. It follows by Proposition 3.1.6 that these orbits are in 1−1 correspondence

with P(n). Let Fλ be a representative for the orbit [Fλ]. By definition GL(n, q)Fλ = Pλ. Due to

the action of GL(n, q) on F, we get a permutation character C(λ), which is in fact 1↑GL(n,q)
Pλ

. Using
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equation (3.5), the degree degC(λ) is given by

degC(λ) =
{n}

{λ1}{λ2} · · · {λn}
. (5.22)

The character C(λ) of GL(n, q) is not irreducible in general.

Note 5.5.3. Note that for the partition λ = (n) ` n, the permutation character C(λ) is the trivial

character since P(n) = GL(n, q).

To see how C(λ) breaks into a sum of irreducible characters, we use of the analogy between GL(n, q)

and Sn.With λ being the previous partition, we partition the set {1, 2, · · · , n} into subsets consisting

of λ1, λ2, · · · , λn integers. Let Sλ =
n⊗
i=1

Sλi , where a factor S0 is ignored. Then Sλ ≤ Sn and

clearly has index in Sn given by

[Sn : Sλ] =
n!

λ1!λ2! · · ·λn!
.

Next we let S(λ) = 1↑SnSλ . Thus degS(λ) = n!/λ1!λ2! · · ·λn!. Now Corollary 1 of Steinberg [72] reads

the following.

Theorem 5.5.1. The permutation characters C(λ) and S(λ) split into irreducible characters in

exactly the same manner. That is if C(λ) =
m∑
i=1

diχi, where χi ∈ Irr(GL(n, q)), then S(λ) =

m∑
i=1

diχ̃i, where χ̃i ∈ Irr(Sn).

To find the Steinberg characters we follow the following steps:

1. If P(n) = {λ1, λ2, · · · , λ|P(n)|}, then order the partitions λi in ascending order as defined in

Section 5.1 and renumber them in such away that if i < j, then λi < λj . That is λ1 = (n) <

λ2 = (n− 1, 1) < · · · < λ|P(n)| = (1, 1, · · · , 1).

2. Determine the values of C(λ) = 1↑GL(n,q)
Pλ

, ∀λ ∈ P(n) on classes of GL(n, q). We know that

C(n) = 1 the trivial character, since P(n) = GL(n, q). Consider C(λ1), C(λ2), · · · , C(λ|P(n)|) in

this order.

3. Consider S(λ1), S(λ2), · · · , S(λ|P(n)|) in this order, where we know S(n) = 1 the trivial char-

acter, since S(n) = Sn.

4. Start by decomposing each 1↑SnSλ into its irreducible constituents in the order given above.

For example S(n) = 1, S(n−1,1) = 1 + χ and χ ∈ Irr(Sn). Then find S(n−2,2), S(n−2,1,1) and

so forth till S(1,1,··· ,1).
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5. Theorem 5.5.1 asserts that C(λ) = 1↑GL(n,q)
Pλ

and S(λ) = 1↑SnSλ decompose exactly in the same

manner. Therefore we start by decomposing each C(λ) in the order C(λ1), C(λ2), · · · , C(λ|P(n)|).

For example C(n) = 1, C(n−1,1) = 1 + χ and χ ∈ Irr(GL(n, q)). This χ is called a Steinberg

character. Then find C(n−2,2), C(n−2,1,1) and so forth till C(1,1,··· ,1).

6. From each C(λ) we get a new irreducible character of GL(n, q), which we denote by St(λ).

7. The irreducible character St(λ) is called a Steinberg character.

In the Examples 5.5.2 and 5.5.3 we determine the decomposition and the values of C(λ), λ ` 3

respectively.

Example 5.5.2. Consider n = 3 and let ν = (0, 0, 3), µ = (0, 1, 2) and λ = (1, 1, 1). By (5.22) we

have degC(0,0,3) = 1, degC(0,1,2) = q2+q+1 and degC(1,1,1) = (q+1)(q2+q+1) = q3+2(q2+q)+1.

We know that C(0,0,3) = 1. Now let Sµ = S(0,1,2) = S1 × S2
∼= S2. Thus

1↑S3
S2

(1S3) = 3, 1↑S3
S2

((1 2))) = 1 and 1↑S3
S2

((1 2 3)) = 0,

which shows that 1↑S3
S2

= 1 + χ, where χ is the irreducible character of S3 of degree 2. Hence by

Theorem 5.5.1, we have Cµ = C(0,1,2) = 1 +St(1,2), where St(1,2) ∈ Irr(GL(3, q)) and degSt(1,2) =

q2 + q. In the last case where λ = (1, 1, 1), let Sλ = S1 × S1 × S1
∼= S1. Then 1 ↑S3

S1
is the regular

character which have values given by

1↑S3
S1

(g) =

{
6 if g = 1S3 ,

0 otherwise.

Now by Theorem 5.2.8 of Moori [54] we know that the regular character χπ of any finite group G

with Irr(G) = {χ1, χ2, · · · , χk} is equal to
k∑
i=1

χi(1G)χi. Thus

1↑S3
S1

= 1 + 2χ+ the sign character,

and χ ∈ Irr(S3) with degχ = 2. Therefore by Theorem 5.5.1 we deduce that C(1,1,1) = 1+2St(1,2)+

St(1,1,1). Hence

St(1,1,1) = C(1,1,1) − 2St(1,2) − 1.

It follows that degSt(1,1,1) = q3 + 2(q2 + q) + 1− (2(q2 + q) + 1) = q3.

Remark 5.5.2. Darafasheh [14] showed how to extract the 11 Steinberg characters of GL(6, 2)

from the permutation characters 1↑GL(6,2)
Pλ

, λ ` 6.
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Some Properties of Steinberg Characters

Let St(λ), λ ∈ P(n) denotes the Steinberg character of GL(n, q) corresponding to λ.

1. The trivial character of GL(n, q) is St(n).

2. St(λ)(g) ∈ Z, ∀g ∈ GL(n, q), ∀λ ∈ P(n).

3. Trivially characters are invariant over conjugate elements. Steinberg characters are invariant

over conjugacy classes of the same type.

The next two points give special attention to the Steinberg character St(1
n).

4. Corresponding to λ = (1n), we have degSt(1
n) = q

n(n−1)
2 . We recall by Remark 3.1.1 that

if P ∈ Sylp(GL(n, q)), where p is the characteristic of Fq, then |P | = q
n(n−1)

2 = degSt(1
n).

This character is of particular interest for those who are working in modular representations

of GL(n, q). We do not propose any studies for this character in the direction of modular

representations. However as an ordinary character of GL(n, q), the values St(1
n) are easy to

compute in principal. Excepting the identity element In of GL(n, q), the value of St(1
n) at

an element x of GL(n, q) is given by

St(1
n)(x) =

{
0 if x is a p− singular,
±|P | if x is a p− regulare,

(5.23)

where P ∈ Sylp(CGL(n,q)(x)). The sign of St(1
n) at regular elements is slightly tricky to be

determined. For further details see Humphreys [34].

5. Characterizing St(1
n): The following theorem gives sufficient condition in order to charac-

terize St(1
n).

Theorem 5.5.2. St(1
n) is the unique irreducible constituent of 1↑GL(n,q)

UT (n,q), which fails to occur

in any other 1↑GPλ when Pλ 6= UT (n, q).

PROOF. See Humphreys [34]. �

Proposition 5.5.3. The group GL(n, q) has an irreducible character χ such that p|deg(χ), where

p is the characteristic of Fq.

PROOF. Let λ = (n− 1, 1) ` n. Then S(n−1,1) = Sn−1 × S1
∼= Sn−1. Let S(n−1,1) = 1↑SnSn−1

. We know

by Proposition 13.24 of James [40] that 1↑SnSn−1
−1 ∈ Irr(Sn) and deg(1↑SnSn−1

−1) = n−1. Now by

Theorem 5.5.1, the permutation character C(n−1,1) splits exactly into irreducible constituents in the

same way of S(n−1,1) = 1↑SnSn−1
. Therefore C(n−1,1) = 1 + St(n−1,1) and St(n−1,1) ∈ Irr(GL(n, q)) is

a Steinberg character. Thus St(n−1,1) = C(n−1,1)−1. In terms of equations (3.5) and (3.4) we have

deg(C(n−1,1)) =
{n}

{n− 1}{1}
=

[n][n− 1]!
[n− 1]![1]!

= [n] =
qn − 1
q − 1

= qn−1 + qn−2 + · · ·+ 1.
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It follows that

deg(St(n−1,1)) = (qn−1 + qn−2 + · · ·+ q + 1)− 1 = q(qn−2 + qn−3 + · · ·+ q + 1).

Hence the result. �

Remark 5.5.3. In fact we can go further and prove that p| deg(St(λ)), ∀λ ∈ P(n) \ {(n)}. Note

that deg(St(1
n)) = q

n(n−1)
2 .

Example 5.5.3. In this example we would like to compute the Steinberg characters of GL(3, q).

Let V = V (3, q). Then |V ∗| = q3 − 1 and by the equivalence relation ∼ defined on these vectors,

we get |D| = q2 + q + 1 points. Each point [x] consists of the vectors of the form x =


λx0

λx1

λx2


for all λ ∈ F∗q . These points are stabilized by P(2,1) in the action of GL(3, q) on PG(2, q). Let

g =


a b c

d e f

j h i

 ∈ GL(3, q) and [x] be a point in PG(2, q), then

g[x] =


a b c

d e f

j h i




λx0

λx1

λx2

 =


aλx0 + bλx1 + cλx2

dλx0 + eλx1 + fλx2

jλx0 + hλx1 + iλx2

 .

As in Example 5.5.1, for g ∈ GL(3, q), let Fix(g) be the set

Fix(g) = {[x] ∈ D| g[x] = [x]}.

We know that C(2,1)(g) = 1↑GL(3,q)
P(2,1)

(g) = |Fix(g)|. Also by Example 5.5.2, we know that C(2,1) =

1 + St(2,1) and consequently, St(2,1)(g) = |Fix(g)| − 1, ∀g ∈ GL(3, q).

We consider the 8 types of conjugacy classes of GL(3, q), given in Table 5.3.

1. If g ∈ GL(3, q) is of type T (1), then

g[x] =


α 0 0

0 α 0

0 0 α




λx0

λx1

λx2

 =


αλx0

αλx1

αλx2

 ∈ [x].

Therefore each point of PG(2, q) is fixed by the central elements of GL(3, q). Hence |Fix(g)| =
q2 + q + 1 and consequently St(2,1)(g) = q2 + q.

2. If g ∈ GL(3, q) is of type T (2), then

g[x] =


α 1 0

0 α 0

0 0 α




λx0

λx1

λx2

 =


αλx0 + λx1

αλx1

αλx2

 ∈ [x]⇐⇒ x1 = 0.
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Therefore, non-zero vectors of the form


λx0

0

λx2

 are fixed by elements of type T (2). Clearly,

there are q2−1 such vectors. According to the equivalence relation defined on these non-zero

vectors, we have q2−1
q−1 = q + 1 = |Fix(g)|. Hence St(2,1)(g) = (q + 1)− 1 = q.

3. If g ∈ GL(3, q) is of type T (3), then

g[x] =


α 1 0

0 α 1

0 0 α




λx0

λx1

λx2

 =


αλx0 + λx1

αλx1 + λx2

αλx2

 ∈ [x]⇐⇒ x1 = x2 = 0.

Therefore non-zero vectors of the form


λx0

0

0

 are fixed by elements of type T (3). Clearly,

there are q − 1 such vectors and all lie in one point. Thus |Fix(g)| = 1 and it follows that

St(2,1)(g) = 1− 1 = 0.

4. If g ∈ GL(3, q) is of type T (4), then

g[x] =


α 0 0

0 α 0

0 0 β




λx0

λx1

λx2

 =


αλx0

αλx1

βλx2

 ∈ [x]⇐⇒ (x0 = x1 = 0) or x2 = 0.

If x0 = x1 = 0, then the non-zero vectors will have the form


0

0

λx2

 and it follows that there

is one point in this case. On the other hand, if x2 = 0, then the non-zero vectors will have the

form


λx0

λx1

0

 . It is immediate to see that there are q2 − 1 non-zero vectors and they lie in

q+1 points by the equivalence relation defined on V ∗. Therefore |Fix(g)| = (q+1)+1 = q+2

and consequently St(2,1)(g) = (q + 2)− 1 = q + 1.

5. If g ∈ GL(3, q) is of type T (5), then

g[x] =


α 1 0

0 α 0

0 0 β




λx0

λx1

λx2

 =


αλx0 + αλx1

αλx1

βλx2

 ∈ [x]⇐⇒ x1 = x2 = 0 or x1 = x0 = 0.

A typical non-zero vector in the case x1 = x2 = 0 will have the form


λx0

0

0

 and for the
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case x1 = x0 = 0, the vector will have the form


0

0

λx2

 . Since these two vectors are linearly

independent in V, they are in different points. We deduce that |Fix(g)| = 2 and consequently

St(2,1)(g) = 2− 1 = 1.

6. If g ∈ GL(3, q) is of type T (6), then

g[x] =


α 0 0

0 β 0

0 0 γ




λx0

λx1

λx2

 =


αλx0

βλx1

γλx2

 ∈ [x] ⇐⇒ (x0 = x1 = 0)

or (x0 = x2 = 0) or (x1 = x2 = 0).

Typical non-zero vectors will have one of the form


λx0

0

0

 ,


0

λx1

0

 or


0

0

λx2

 in

respective way to the cases (x1 = x2 = 0), (x0 = x2 = 0) or (x0 = x1 = 0). Since these three

vectors are linearly independent in V, they are in different points, we deduce that |Fix(g)| = 3

and hence St(2,1)(g) = 3− 1 = 2.

7. If g ∈ GL(3, q) is of type T (7), then

g[x] =


0 1 0

−rq+1 r + rq 0

0 0 α




λx0

λx1

λx2

 =


λx1

−rq+1λx0 + (r + rq)λx1

αλx2

 ∈ [x]⇐⇒ x0 = x1 = 0.

A typical non-zero vector will have the form


0

0

λx2

 . All these q − 1 non-zero vectors are

in one point. Therefore St(2,1)(g) = 1− 1 = 0.

8. If g ∈ GL(3, q) is of type T (8), then

g[x] =


0 1 0

0 0 1

sq
2+q+1 −(sq+1 + sq

2+1 + sq
2+q) s+ sq + sq

2




λx0

λx1

λx2



=


λx1

λx2

λsq
2+q+1x0 − λ(sq+1 + sq

2+1 + sq
2+q)x1 + λ(s+ sq + sq

2
)x2

 6∈ [x].

There is no point fixed by an element of this type of classes of GL(3, q). Hence St(2,1)(g) =

0− 1 = −1.
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This finishes the values of the Steinberg character St(2,1) of GL(3, q).

To determine the values of C(1,1,1), we use the parabolic subgroup P(1,1,1) = UT (3, q) = GL(3, q)F1n
.

This subgroup has the form

UT (3, q) =



a b c

0 d e

0 0 f

 | a, d, f ∈ F∗q , b, c, e ∈ Fq
 .

Therefore |UT (3, q)| = q3(q − 1)3 and hence

[GL(3, q) : UT (3, q)] = (q + 1)(q2 + q + 1) = q3 + 2(q2 + q) + 1.

This subgroup is a minimal parabolic subgroup of GL(3, q). From the conjugacy classes of GL(3, q)

obtained in Subsection 5.2.4, we can determine those of UT (3, q). We do not list all classes here,

but for example the elements

diag(α, β, γ), diag(α, γ, β), diag(β, γ, α), diag(β, α, γ), diag(γ, α, β), diag(γ, β, α) (5.24)

which are conjugate in GL(3, q) are no longer conjugate in UT (3, q). We can show that

|CUT (3,q)(A)| = |CGL(3,q)(diag(α, β, γ))| = (q − 1)3,

where A denotes any matrix of (5.24).

Let C(1,1,1) = 1↑GL(3,q)
UT (3,q).

1. If g is of type T (1), then C(1,1,1)(g) = [GL(3, q) : UT (3, q)] = q3 + 2(q2 + q) + 1.

2. If g is of type T (2), then C(1,1,1)(g) = 2q + 1.

3. If g is of type T (3), then C(1,1,1)(g) = 1.

4. If g is of type T (4), then C(1,1,1)(g) = 3(q + 1).

5. If g is of type T (5), then C(1,1,1)(g) = 3.

6. If g is of type T (6), then C(1,1,1)(g) = 6.

7. If g is of type T (7), then C(1,1,1)(g) = 0.

8. If g is of type T (8), then C(1,1,1)(g) = 0.

By Example 5.5.2, we know that C(1,1,1) = χ+2St(2,1)+St(3), where χ ∈ Irr(GL(3, q)) and deg(χ) =

q3. In fact, χ is the third Steinberg character St(1,1,1). We have St(1,1,1) = C(1,1,1) − 2St(2,1) − 1.

Therefore
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1. If g is of type T (1), then St(1,1,1)(g) = q3.

2. If g is of type T (2), then St(1,1,1)(g) = 0.

3. If g is of type T (3), then St(1,1,1)(g) = 0.

4. If g is of type T (4), then St(1,1,1)(g) = q.

5. If g is of type T (5), then St(1,1,1)(g) = 0.

6. If g is of type T (6), then St(1,1,1)(g) = 1.

7. If g is of type T (7), then St(1,1,1)(g) = −1.

8. If g is of type T (8), then St(1,1,1)(g) = 1.

Note 5.5.4. We can see that St(3) and St(2,1) appeared as constituents in both 1↑GL(3,q)
P(2,1)

and

1↑GL(3,q)
P(1,1,1)

, while St(1,1,1) appeared as a constituent for only 1↑GL(3,q)
P(1,1,1)

, which confirms Theorem

5.5.2.

Alternatively one can determine, up to sign, the values of St(1,1,1) using (5.23) since we have the

orders of elements of GL(3, q) in Table 6.2. From this table, elements of types T (2), T (3) and T (5)

are p−singular, while elements in other types are p−regular. Let g1, g2, · · · , g8 be elements of types

T (1), T (2), · · · , T (8) with centralizers C1, C2, · · · , C8 in GL(3, q) respectively. Also for 1 ≤ i ≤ 8, let

Pi ∈ Sylp(Ci). Then

St(1,1,1)(g2) = St(1,1,1)(g3) = St(1,1,1)(g5) = 0.

From Table 5.3 we can see that

|P1| = q3, |P4| = q and |P6| = |P7| = |P8| = 1.

Hence

St(1,1,1)(g1) = ±q3, in particular St(1,1,1)(In) = q3; St(1,1,1)(g4) = ±q; St(1,1,1)(g6) = ±1;

St(1,1,1)(g7) = ±1; St(1,1,1)(g8) = ±1.

This completes the Steinberg characters of GL(3, q), which are listed in Table 5.7

To obtain the five Steinberg characters of GL(4, q) one can use similar method to the one used in

calculating the Steinberg characters of GL(3, q) via the geometric entities or to determine directly

the values of

1↑GL(4,q)
P(4)

, 1↑GL(4,q)
P(3,1)

, 1↑GL(4,q)
P(2,2)

, 1↑GL(4,q)
P(2,1,1)

, 1↑GL(4,q)
P(1,1,1,1)
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on classes of GL(4, q) (see Table 6.10) and then using

1↑S4
S(4)

, 1↑S4
S(3,1)

, 1↑S4
S(2,2)

, 1↑S4
S(2,1,1)

, 1↑S4
S(1,1,1,1)

,

which we know their decompositions in terms of Irr(S4), to decide how 1↑GL(4,q)
P(λ)

, λ ` 4 will

decompose. Each 1↑GL(4,q)
P(λ)

affords a new irreducible character of GL(4, q), which is St(λ).

Table 5.6: The values of Steinberg characters for GL(2, q)

Type T (1) T (2) T (3) T (4)

St(2) 1 1 1 1

St(1,1) q 0 1 −1

Table 5.7: The values of Steinberg characters for GL(3, q)

Type T (1) T (2) T (3) T (4) T (5) T (6) T (7) T (8)

St(3) 1 1 1 1 1 1 1 1

St(2,1) q2 + q q 0 q + 1 1 2 0 −1

St(1,1,1) q3 0 0 q 0 1 −1 1

Table 5.8: The values of Steinberg characters for GL(4, q)

Type T (1) T (2) T (3) T (4) T (5) T (6) T (7) T (8)

St(4) 1 1 1 1 1 1 1 1

St(3,1) q(q2 + q + 1) q2 + q q q 0 q2 + q + 1 q + 1 1

St(2,2) q2(q2 + 1) q2 q2 0 0 q2 + q q 0

St(2,1,1) q3(q2 + q + 1) q3 0 0 0 q(q2 + q + 1) q 0

St(1,1,1,1) q6 0 0 0 0 q3 0 0
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Table 5.8 (continued)

Type T (9) T (10) T (11) T (12) T (13) T (14) T (15) T (16)

St(4) 1 1 1 1 1 1 1 1

St(3,1) 2q + 1 q + 1 1 q + 2 2 q 0 3

St(2,2) q2 + 1 1 1 q + 1 1 −q + 1 1 2

St(2,1,1) q2 + 2q q 0 2q + 1 1 −1 −1 3

St(1,1,1,1) q2 0 0 q 0 −q 0 1

Table 5.8 (continued)

Type T (17) T (18) T (19) T (20) T (21) T (22)

St(4) 1 1 1 1 1 1

St(3,1) 1 −1 −1 −1 0 −1

St(2,2) 0 2 q2 + 1 1 −1 0

St(2,1,1) −1 −1 −q2 0 0 1

St(1,1,1,1) −1 1 q2 0 1 −1

5.6. Construction of the Characters

Definition 5.6.1. A group G is called p−elementary if G = P × 〈x〉 , where P is a p−group and

p - o(x) for some x ∈ G.

Definition 5.6.2. For any finite group G, the subring of the space of complex valued class functions

on G generated by the irreducible complex characters of G is called the character ring of G and

denoted by Ch(G).

Theorem 5.6.1 (Brauer’s Characterization of Characters). A class function φ of a finite

group G is a character of G if and only if φ↓GH is a character for all elementary subgroups H of G.

PROOF. See Brauer [8], Goldschmdit [25], Isaacs [38] or Serre [68]. �

Thus by Brauer’s Characterization of Characters Theorem, the elementary subgroups of G detect

the character ring of G.

Definition 5.6.3. Let t1, t2, · · · , tm be a set of indeterminate variables. A function f on t1, t2, · · · , tm
is said to be symmetric if it is invariant under the action of permutations of Sn on the variables

t1, t2, · · · , tm. That is for any σ ∈ Sm, we have f(tσ(1), tσ(2), . . . , tσ(m)) = f(t1, t2, . . . , tm).
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The set of all symmetric polynomials in m indeterminate variables forms a subring

Λm = F[t1, t2, · · · , tn]Sm

of the polynomial ring F[t1, t2, · · · , tm].

Theorem 5.6.2 (Green’s Theorem [27]). Suppose that θ : F∗qm −→ C∗ is a character of the

multiplicative group of the algebraic closure of Fqm . Let φ : G −→ GL(m, q) be a modular repre-

sentation of a finite group G. For each x ∈ G, let λi(x), 1 ≤ i ≤ m, be the eigenvalues of φ(x).

Suppose that f ∈ Λm is a symmetric polynomial, then the function

χφ : x 7−→ f(θ(λ1(x)), θ(λ2(x)), · · · , θ(λm(x)))

is in Ch(G).

PROOF. We recall that the ring of symmetric polynomials form an algebra, with the elementary

symmetric polynomials as a basis (see Goldschmidt [25], MacDonald [50] or Sagan [66] for these

polynomials). It follows that it is enough to prove the theorem for f = er, 1 ≤ r ≤ m, an

elementary symmetric polynomial. Replacing φ by its exterior powers, it is then enough to prove

the theorem for f = e1 =
m∑
i=1

ti.

Suppose that G is an arbitrary finite group. Let H be any elementary subgroup of G. Then we

know that H = K × P, where P is a p−group and K is a cyclic group such that p - |K| (p is

any prime not necessary to be the characteristic of Fq). By page 414 of Green [27], we know that

χφ↓K ∈ Ch(K). The result will follow if we could show that χφ(xy) = χφ(y), for x ∈ K, y ∈ P.
Since o(φ(y)) = pr for some r, it follows that the eigenvalues of φ(y) are p−powers roots of unity

in F∗qm , hence are all equal to 1. Also φ(x) commutes with φ(y). Using the Jordan canonical form,

we may find a basis for the representation space of φ such that φ(x) and φ(y) can be transformed

simultaneously to triangular matrices, that is

φ(x) =


λ1(x) ∗ · · · ∗

0 λ2(x) · · · ∗
... · · · . . .

...

0 · · · 0 λm(x)

 , φ(y) =


1 ∗ · · · ∗
0 1 · · · ∗
... · · · . . .

...

0 · · · 0 1

 .

Since φ(xy) = φ(x)φ(y), φ(xy) has eigenvalues λ1(x), λ2(x), · · · , λm(x) and it follows that

χφ(xy) = χφ(x) =
m∑
i=1

λi(x)

=
m∑
i=1

θ(λi(x)), by page 155 of MacDonald [50]

= e1(θ(λ1(x)), θ(λ2(x)), · · · , θ(λm(x))) = f(θ(λ1(x)), θ(λ2(x)), · · · , θ(λm(x))).
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Now the function xy 7−→ x is a homomorphic mapping of H = K × P onto K and therefore

χφ ∈ Ch(H). Since H is an arbitrary elementary subgroup of G, it follows by Brauer’s Characteri-

zation of Characters Theorem that χφ ∈ Ch(G). �

The construction of characters given by Theorem 5.6.2 does not produce irreducible characters of

GL(n, q) in general. However, these generalized characters have two advantages:

• the values of these characters are easily described,

• these characters can be extended to generalized characters of GL(n, qk) for any k ∈ N. The

ordinary characters do not have this property. See Bump [11].

We apply Green’s Theorem to the case G = GL(n, q). Let φ : GL(n, q) −→ GL(n, q) be given by

φ(A) = A and let f be the rth elementary symmetric function f = er, 1 ≤ r ≤ n. Also we shall

assume that θ : F∗qn −→ U is an isomorphism of F∗qn to the group U consisting of the (qn−1)th roots

of unity in C. With λ1, λ2, · · · , λn being the eigenvalues of A ∈ GL(n, q) (counted with multiplicity)

and for any k ∈ N ∪ {0}, then

ekr (A) =
(nr)∑
0

r∏
i=1

θk(λi), r ≤ n (5.25)

is a character of GL(n, q) by Green’s Theorem. In particular if r = n, then

ekn(A) =
n∏
i=1

θk(λi) = θk(
n∏
i=1

(λi)) = θk(det(A)) = (θ(det(A)))k. (5.26)

The second and the last equalities of equation (5.26) come from the fact that θ is a homomorphism.

In turns, equation (5.26) gives q−1 linear characters of GL(n, q) corresponding to k = 0, 1, · · · , q−2.

Excepting the case n = q = 2, the next theorem shows that these q− 1 linear characters are all the

linear characters of GL(n, q).

Theorem 5.6.3. If n 6= 2 or q 6= 2, then the characters given by equation (5.26) are all the linear

characters of GL(n, q).

PROOF. Suppose that n 6= 2 or q 6= 2. By Proposition 2.3.4 the number of linear characters of a

group G is equal to [G : G
′
], where G

′
is the derived subgroup. From Theorem 3.1.19, we know

that GL(n, q)
′

= SL(n, q), except in the case n = 2 and q ∈ {2, 3}. It follows that the number of

the linear characters of GL(n, q) is q−1. Since equation (5.26) supplies us with q−1 distinct linear

characters, therefore we know that there can be no further linear character.

In the case n = q = 2, where GL(2, 2) ∼= S3, we have the extra linear character corresponds to the

sing of the permutations of S3. �

One can get from equation (5.26) the following commutative diagram. That is ekn = θ|F∗q ◦ det .
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GL(n, q)
ekn //

det

��

C∗

F∗q

θ|F∗q

<<yyyyyyyyyyyyyyyyyyy

Figure 5.2: The commutative diagram of linear characters of GL(n, q).

5.7. Application: Character Table of GL(3, q)

We have seen in Subsection 5.2.4 that the conjugacy classes of GL(3, q) are distributed into 8 types.

In this section we show that the irreducible characters of GL(3, q) are also fall within 8 types.

5.7.1 Principal Series Characters of GL(3, q)

Linear Characters of GL(3, q)

According to Theorem 5.6.3 there are q−1 linear characters of GL(3, q). These characters are given

by the powers of the determinants of elements of GL(3, q) and we denote each character by χ
(1)
k .

We list the values of χ(1)
k in Table 5.9.

Table 5.9: Linear characters of GL(3, q)

T (1) T (2) T (3) T (4) T (5) T (6) T (7) T (8)

χ
(1)
k α̂3k α̂3k α̂3k α̂2kβ̂k α̂2kβ̂k α̂kβ̂kγ̂k r̂k(q+1)α̂k ŝk(q2+q+1)

where k = 0, 1, · · · , q − 2.

Characters of GL(3, q) obtained through Steinberg characters

In Table 5.7 we have listed the values of St(3) = 1, St(2,1) and St(1,1,1) on classes of GL(3, q).

Forming the tensor product of St(2,1) and St(1,1,1) with χ
(1)
k we get two new types of irreducible

characters of GL(3, q), namely χ(2)
k = St(2,1)χ

(1)
k and χ

(3)
k = St(1,1,1)χ

(1)
k . We list the values of χ(2)

k

and χ
(3)
k on classes of GL(3, q) in Table 5.10.
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Table 5.10: Steinberg characters tensored by linear characters of GL(3, q)

T (1) T (2) T (3) T (4) T (5) T (6) T (7) T (8)

χ
(2)
k (q2 + q)α̂3k qα̂3k 0 (q + 1)α̂2kβ̂k α̂2kβ̂k 2α̂kβ̂kγ̂k 0 −ŝk(q2+q+1)

χ
(3)
k q3α̂3k 0 0 qα̂2kβ̂k 0 α̂kβ̂kγ̂k r̂k(q+1)α̂k ŝk(q2+q+1)

where k = 0, 1, · · · , q − 2.

Characters of GL(3, q) obtained from parabolic subgroups

Here we use the parabolic subgroup P(2,1) defined in Example 3.1.2 to construct some characters

of GL(3, q). In fact it will be shown later that χ(2)
k and χ

(3)
k are also characters of GL(3, q) come

from characters of P(2,1). Recall that P(2,1) has the form

P(2,1) =



a b e

c d f

0 0 α

 | α ∈ F∗q , a, b, c, d, e, f ∈ Fq, ad− bc 6= 0

 .

Therefore |P(2,1)| = q3(q−1)3(q+1) and hence [GL(3, q) : P(2,1)] = q2 +q+1. This group, which we

change its notation now from P(2,1) to MP (3, q), is a maximal subgroup of GL(3, q) by a Theorem

of Aschbacher [4], since it is associated to a partition with 2 parts. From the conjugacy classes

of GL(3, q) obtained in Subsection 5.2.4, we can determine those of MP (3, q). We do not list all

classes of MP (3, q) here, but for example the two elements

g =


α 0 0

0 α 0

0 0 β

 and g
′

=


β 0 0

0 α 0

0 0 α

 (5.27)

of type T (4), which are conjugate in GL(3, q) are no longer conjugate in MP (3, q) as follows. Let

h =


a b e

c d f

0 0 t

 ∈MP (3, q).

Then 
a b e

c d f

0 0 t



α 0 0

0 α 0

0 0 β

 =


aα bα eβ

cα dα fβ

0 0 tβ

 , (5.28)


β 0 0

0 α 0

0 0 α



a b e

c d f

0 0 t

 =


aβ bβ eβ

cα dα fα

0 0 tα

 . (5.29)
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Now

g ∼ g
′

in MP (3, q)⇐⇒ (5.28) = (5.29)⇐⇒ h =


0 0 e

c d 0

0 0 0

 ,

which contradicts the facts that ad − bc 6= 0 and t 6= 0. Therefore g and g
′

are not conjugate in

MP (3, q).

To calculate |CMP (3,q)(g)| and |CMP (3,q)(g
′
)| we add the following two equations.

α 0 0

0 α 0

0 0 β



a b e

c d f

0 0 t

 =


aα bα eα

cα dα fα

0 0 tβ

 , (5.30)


a b e

c d f

0 0 t



β 0 0

0 α 0

0 0 α

 =


aβ bα eα

cβ dα fα

0 0 tα

 . (5.31)

If (5.28) = (5.30) and (5.29) = (5.31), then we obtain

|CMP (3,q)(g)| = q(q − 1)3(q + 1) = |CGL(3,q)(g)| and |CMP (3,q)(g
′
)| = q(q − 1)3.

Through similar steps we can determine those splitting and non-splitting classes of GL(3, q) in

MP (3, q) and calculate the size of each class of MP (3, q).

From the maximality of MP (3, q) we expect to obtain large number of characters of GL(3, q). In

fact this group gives rise to all characters of the principal series of GL(3, q). So in the following we

determine some of the irreducible characters of MP (3, q).

By Theorem 3.1.8 we have that MP (3, q) = U(2,1):L(2,1) and hence MP (3, q)/U(2,1)
∼= L(2,1),

where U(2,1) and L(2,1) are the unipotent radical and levi complement of MP (3, q) respectively. By

Example 3.1.2, the former two subgroups have the forms

U(2,1) =




1 0 e

0 1 f

0 0 1

 | e, f ∈ Fq
 ,

L(2,1) =



a b 0

c d 0

0 0 α

 | α ∈ F∗q , a, b, c, d,∈ Fq, ad− bc 6= 0

 .
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We know that L(2,1)
∼= GL(2, q)×GL(1, q). If χ ∈ Irr(GL(2, q)) and ψ ∈ Irr(GL(1, q)), then

Irr(L(2,1)) = {χψ| χ ∈ Irr(GL(2, q)), ψ ∈ Irr(GL(1, q))}.

Since irreducible characters of GL(2, q) fall in four types as shown in Table 4.2, the irreducible

characters of L(2,1) are also distributed into four types as follows

• λlχk, where λl and χk are any linear characters of GL(2, q) and GL(1, q) respectively.

• ψlχk, where ψl is any character of GL(2, q) of type χ(2) and χk is any character of GL(1, q).

• ψl,mχk, where ψl,m is any character of GL(2, q) of type χ(3) and χk is any character of GL(1, q).

• πlχk, where πl is any cuspidal character of GL(2, q) and χk is any character of GL(1, q).

Since MP (3, q)/U(2,1)
∼= L(2,1), the above characters extend (lift) irreducibly to MP (3, q), because

they are characters of the quotient, where if χ ∈ Irr(GL(2, q)) and χk ∈ Irr(GL(1, q)), then

(χχk)



a b e

c d f

0 0 t


 = χ

((
a b

c d

))
χk(t).

Next we consider χχk↑
GL(3,q)
MP (3,q). Note that the operation of obtaining characters of GL(3, q) this

way is the parabolic induction described previously. Therefore we use the notation χ � χk =

χχk↑
GL(3,q)
MP (3,q), χ ∈ Irr(GL(2, q)), χk ∈ Irr(GL(1, q)). We give an example on how to calculate

χ�χk on classes of type T (4). Let g and g
′

be the elements of GL(3, q) defined in (5.27). To follow

the next computations, we need to keep closely the character table of GL(2, q) given in Table 4.2.

• Suppose that λl ∈ Irr(GL(2, q)) is any linear character and χk is any character of GL(1, q),

where k 6= l. Then

(λl � χk)(g) = λlχk↑
GL(3,q)
MP (3,q)(g)

=
|CGL(3,q)(g)|
|CMP (3,q)(g)|

λl

((
α 0

0 α

))
χk(β) +

|CGL(3,q)(g)|
|CMP (3,q)(g

′)|
λl

((
β 0

0 α

))
χk(α)

=
q(q − 1)3(q + 1)
q(q − 1)3(q + 1)

α̂2lβ̂k +
q(q − 1)3(q + 1)

q(q − 1)3
β̂lα̂lα̂k = α̂2lβ̂k + (q + 1)α̂(l+k)β̂l.

• Suppose that ψl ∈ Irr(GL(2, q)) is of type χ(2) and χk is any character of GL(1, q), where

k 6= l. Then

(ψl � χk) (g) = ψlχk↑
GL(3,q)
MP (3,q)(g)

=
|CGL(3,q)(g)|
|CMP (3,q)(g)|

ψl

((
α 0

0 α

))
χk(β) +

|CGL(3,q)(g)|
|CMP (3,q)(g

′)|
ψl

((
β 0

0 α

))
χk(α)

=
q(q − 1)3(q + 1)
q(q − 1)3(q + 1)

qα̂2lβ̂k +
q(q − 1)3(q + 1)

q(q − 1)3
β̂lα̂lα̂k = qα̂2lβ̂k + (q + 1)α̂(l+k)β̂l.
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• Suppose that ψl,m ∈ Irr(GL(2, q)) is of type χ(3) and χk is any character of GL(1, q), where

k 6= l 6= m 6= k. Then

(ψl,m � χk)(g) = ψl,mχk↑
GL(3,q)
MP (3,q)(g)

=
|CGL(3,q)(g)|
|CMP (3,q)(g)|

ψl,m

((
α 0

0 α

))
χk(β) +

|CGL(3,q)(g)|
|CMP (3,q)(g

′)|
ψl,m

((
β 0

0 α

))
χk(α)

=
q(q − 1)3(q + 1)
q(q − 1)3(q + 1)

(q + 1)α̂(l+m)β̂k +
q(q − 1)3(q + 1)

q(q − 1)3

(
β̂lα̂m + β̂mα̂l

)
α̂k

= (q + 1)α̂(l+m)β̂k + (q + 1)
(
β̂lα̂mα̂k + β̂mα̂lα̂k

)
= (q + 1)

(
α̂(l+m)β̂k + β̂lα̂(m+k) + β̂mα̂(l+k)

)
.

• Suppose that πl ∈ Irr(GL(2, q)) is any cuspidal character and χk is any character of GL(1, q).

Then

(πl � χk)(g) = πlχk↑
GL(3,q)
MP (3,q)(g)

=
|CGL(3,q)(g)|
|CMP (3,q)(g)|

πl

((
α 0

0 α

))
χk(β) +

|CGL(3,q)(g)|
|CMP (3,q)(g

′)|
πl

((
β 0

0 α

))
χk(α)

=
q(q − 1)3(q + 1)
q(q − 1)3(q + 1)

(q − 1)α̂lβ̂k +
q(q − 1)3(q + 1)

q(q − 1)3
.0.α̂k = (q − 1)α̂lβ̂k.

Due to the complexity of computations, we give the values of χ�χk on conjugacy classes of GL(3, q)

without details of computations.

1. Let λl be a linear character of GL(2, q) and χk be any character of GL(1, q). Two cases

appear.

(a) Consider firstly the case where l 6= k. Then

(λl � χk)(g) =



(q2 + q + 1)α̂2l+k if g is of type T (1),

(q + 1)α̂2l+k if g is of type T (2),

α̂2l+k if g is of type T (3),

(q + 1)α̂l+kβ̂l + α̂2lβ̂k if g is of type T (4),

α̂l+kβ̂l + α̂2lβ̂k if g is of type T (5),

α̂kβ̂lγ̂l + α̂lβ̂kγ̂l + α̂lβ̂lγ̂k if g is of type T (6),

α̂kr̂l(q+1) if g is of type T (7),

0 if g is of type T (8).

We can check that each ordered pair (k, l), k 6= l admits λl � χk ∈ Irr(GL(3, q)). We

get (q − 1)(q − 2) irreducible characters λl � χk and we let χ(4)
k,l = λl � χk.
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(b) Consider the other case where l = k. Here we get

(λk � χk)(g) =



(q2 + q + 1)α̂3k if g is of type T (1),

(q + 1)α̂3k if g is of type T (2),

α̂3k if g is of type T (3),

(q + 2)α̂2kβ̂k if g is of type T (4),

2α̂2kβ̂k if g is of type T (5),

3α̂kβ̂kγ̂k if g is of type T (6),

α̂kr̂k(q+1) if g is of type T (7),

0 if g is of type T (8).

We can see that λk � χk = C(2,1)χ
(1)
k , where C(2,1) is the permutation character of

GL(3, q) discussed in Section 5.5. Therefore λk � χk 6∈ Irr(GL(3, q)). Observe that

λk � χk = C(2,1)χ
(1)
k = χ

(2)
k + χ

(1)
k . This shows that χ(1)

k and χ
(2)
k are principal series

characters of GL(3, q). In particular note that St(2,1) = χ
(2)
0 = λ0 � χ0 − 1.

2. Let ψl be any irreducible character of GL(2, q) of degree q and χk ∈ GL(1, q). There are two

cases appear according to k = l or not. We consider only the case k 6= l. Here we have

(ψl � χk)(g) =



q(q2 + q + 1)α̂2l+k if g is of type T (1),

qα̂2l+k if g is of type T (2),

0 if g is of type T (3),

(q + 1)α̂(l+k)β̂l + qα̂2lβ̂k if g is of type T (4),

α̂(l+k)β̂l + α̂2lβ̂k if g is of type T (5),

α̂kβ̂lγ̂l + α̂lβ̂kγ̂l + α̂lβ̂lγ̂k if g is of type T (6),

−α̂kr̂l(q+1) if g is of type T (7),

0 if g is of type T (8).

Each ordered pair (k, l), k 6= l makes ψl �χk ∈ Irr(GL(3, q)). We let χ(5)
k,l = ψl �χk. Clearly

we have (q − 1)(q − 2) irreducible characters χ(5)
k,l .

3. Let ψl,m be any irreducible character of GL(2, q) of degree q+1 and χk ∈ Irr(GL(1, q)). There

are many cases appear according to (l = m = k), (l = m 6= k), (l 6= m = k), (l = k 6= m) or

(l 6= m 6= k 6= l). We consider only two cases out of these possibilities.

(a) Assume that l 6= m 6= k 6= l. We have
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(ψl,m � χk)(g) =



(q + 1)(q2 + q + 1)α̂(l+m+k) if g is of type T (1),

(2q + 1)α̂(l+m+k) if g is of type T (2),

α̂(l+m+k) if g is of type T (3),

(q + 1)
(
α̂(l+m)β̂k + α̂(l+k)β̂m + α̂(m+k)β̂l

)
if g is of type T (4),(

α̂(l+m)β̂k + α̂(l+k)β̂m + α̂(m+k)β̂l
)

if g is of type T (5),

α̂kβ̂lγ̂m + α̂kβ̂mγ̂l + α̂mβ̂lγ̂k if g is of type T (6),

+α̂mβ̂kγ̂l + α̂lβ̂kγ̂m + α̂lβ̂mγ̂k

0 if g is of type T (7),

0 if g is of type T (8).

For each k 6= l 6= m 6= k, we can check that ψl,m � χk is irreducible, but we do not do

this here as this requires invoking some other subgroups of GL(3, q) to evaluate some of

the terms appear in 〈ψl,m � ψk, ψl,m � χk〉 . For example to evaluate

(q − 1)(q − 2)(q − 3)
6

q3(q + 1)(q2 + q + 1)[
∑

α 6=β 6=γ 6=α

(
α̂kβ̂lγ̂m + α̂kβ̂mγ̂l + α̂mβ̂lγ̂k

)
×

(
α̂kβ̂lγ̂m + α̂kβ̂mγ̂l + α̂mβ̂lγ̂k

)
],

two of subgroups of GL(3, q) will be needed are the torus

T =



a 0 0

0 b 0

0 0 c

 | a, b, c ∈ F∗q


and its subgroup 

a 0 0

0 a 0

0 0 b

 | a, b ∈ F∗q
 .

Then one can trace similar computations to ones done in page 49. Each unordered triple

{k, l,m}, k 6= l 6= m 6= k gives an irreducible character ψl,m � χk, which we denote by

χ
(6)
k,l,m. Clearly there are (q−1)(q−2)(q−3)

6 such irreducible characters.

(b) Consider the case where l = k = m. Here we get

(ψk,k � χk)(g) =



(q + 1)(q2 + q + 1)α̂3k if g is of type T (1),

(2q + 1)α̂3k if g is of type T (2),

α̂3k if g is of type T (3),

3(q + 1)α̂2kβ̂k if g is of type T (4),

3α̂2kβ̂k if g is of type T (5),

6α̂kβ̂kγ̂k if g is of type T (6),

0 if g is of type T (7),

0 if g is of type T (8).
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It is readily verified that ψk,k � χk = C(1,1,1)χ
(1)
k , where C(1,1,1) is the permutation

character discussed in Section 5.5. Therefore ψk,k�χk 6∈ Irr(GL(3, q)). We can see that

ψk,k � χk = C(1,1,1)χ
(1)
k = χ

(3)
k + 2χ(2)

k + χ
(1)
k that is χ(3)

k = St(1,1,1)χ
(1)
k = ψk,k � χk −

2χ(2)
k −χ

(1)
k . Thus χ(3)

k is a principal series character of GL(3, q). In particular note that

St(1,1,1) = ψ0,0 � χ0 − 2χ(2)
0 − 1.

4. Let πl be a cuspidal character of GL(2, q) and χk ∈ Irr(GL(1, q)). In this case we have

(πl � χk)(g) =



(q3 − 1)α̂(l+k) if g is of type T (1),

−α̂(l+k) if g is of type T (2),

−α̂(l+k) if g is of type T (3),

(q − 1)α̂lβ̂k if g is of type T (4),

−α̂lβ̂k if g is of type T (5),

0 if g is of type T (6),

−α̂k(r̂l + r̂lq) if g is of type T (7),

0 if g is of type T (8).

The characters πl �χk provided by the pair {k, l} where k = 0, 1, · · · , q− 2 and q+ 1 - l, l =

1, 2, · · · , q2 − 1 and lq(mod q2 − 1) is excluded whenever l is included, are irreducible. It

follows that there are q(q−1)2

2 such characters, which we denote by χ(7)
k,l .

5.7.2 Discrete Series Characters of GL(3, q)

In Example 5.4.3 we have found the values of the cuspidal characters of GL(3, q). Let us denote

each cuspidal character of GL(3, q) by χ(8)
k . We tabulate the values of χ(8)

k on classes of GL(3, q) in

Table 5.11.

Table 5.11: The cuspidal characters of GL(3, q)

T (1) T (2) T (3) T (4) T (5) T (6) T (7) T (8)

χ
(8)
k (q − 1)2(q + 1)α̂k −(q − 1)α̂k α̂k 0 0 0 0 ŝk + ŝkq + ŝkq

2

where q2 + q + 1 - k, k = 1, 2, · · · , q3 − 1 and kq, kq2 are excluded whenever k is being chosen.

Alternatively one can get the values of χ(8)
k as follows: Let 〈fσ〉 , where fσ =


σ 0 0

0 σq 0

0 0 σq
2

 and

F∗q3 = 〈σ〉 , be an isomorphic copy of F∗q3 in GL(3, q). Suppose that θk ∈ Irr(〈fσ〉) and φk =
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θk↑
GL(3,q)
〈fσ〉 . Then provided that q2 + q + 1 - k, one can easily check that

χ̃
(8)
k = φk −

(
χ

(3)
0 − χ

(2)
0 + χ

(1)
0

)
χ

(7)
0,k (5.32)

have the same values as χ(8)
k over all g ∈ GL(3, q). That is χ(8)

k = χ̃
(8)
k .

If #χ(i) means the number of irreducible characters of type χ(i) and also #T (i) means the number

of conjugacy classes of type T (i), then we have

#χ(i) = #T (i), ∀ 1 ≤ i ≤ 8.

For example

#χ(5) = (q − 1)(q − 2) = #T (5).

Therefore

8∑
i=1

#χ(i) = q3 − q =
8∑
i=1

#T (i).

Since all characters we have found are distinct, it follows that we are done with the character table

of GL(3, q), which we list in Table 5.12.
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Table 5.12: The character table of GL(3, q)

Type T (1) T (2) T (3)

Rep g


α 0 0

0 α 0

0 0 α



α 1 0

0 α 0

0 0 α



α 1 0

0 α 1

0 0 α


No. of CC q − 1 q − 1 (q − 1)

|CGL(3,q)(g)| q3(q − 1)3(q + 1)(q2 + q + 1) q3(q − 1)2 q2(q − 1)

|Cg| 1 (q2 − 1)(q2 + q + 1) q(q2 − 1)(q3 − 1)

χ(1)
k α̂3k α̂3k α̂3k

χ(2)
k (q2 + q)α̂3k qα̂3k 0

χ(3)
k q3α̂3k 0 0

χ(4)
k,l (q2 + q + 1)α̂k+2l (q + 1)α̂k+2l α̂k+2l

χ(5)
k,l q(q2 + q + 1)α̂k+2l qα̂k+2l 0

χ(6)
k,l,m (q + 1)(q2 + q + 1)α̂k+l+m (2q + 1)α̂k+l+m α̂k+l+m

χ(7)
k,l (q3 − 1)α̂(k+l) −α̂(k+l) −α̂(k+l)

χ(8)
k (q − 1)2(q + 1)α̂k −(q − 1)α̂k α̂k
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Table 5.12 (continued)

Type T (4) T (5) T (6)

Rep g


α 0 0

0 α 0

0 0 β



α 1 0

0 α 0

0 0 β



α 0 0

0 β 0

0 0 γ


No. of CC (q − 1)(q − 2) (q − 1)(q − 2) (q−1)(q−2)(q−3)

6

|CGL(3,q)(g)| q(q − 1)3(q + 1) q(q − 1)2 (q − 1)3

|Cg| q2(q2 + q + 1) q2(q2 − 1)(q2 + q + 1) q3(q + 1)(q2 + q + 1)

χ(1)
k α̂2kβ̂k α̂2kβ̂k α̂kβ̂kγ̂k

χ(2)
k (q + 1)α̂2kβ̂k α̂2kβ̂k 2α̂kβ̂kγ̂k

χ(3)
k qα̂2kβ̂k 0 α̂kβ̂kγ̂k

χ(4)
k,l (q + 1)α̂(k+l)β̂l + α̂2lβ̂k α̂(k+l)β̂l + α̂2lβ̂k α̂kβ̂lγ̂l + α̂lβ̂kγ̂l

+α̂lβ̂lγ̂k

χ(5)
k,l (q + 1)α̂(k+l)β̂l + qα̂2lβ̂k α̂(k+l)β̂l α̂kβ̂lγ̂l + α̂lβ̂kγ̂l

+α̂lβ̂lγ̂k

(q + 1)
(
α̂(k+l)β̂m + α̂(k+m)β̂l α̂(k+l)β̂m + α̂(k+m)β̂l α̂kβ̂lγ̂m + α̂kβ̂mγ̂l

χ(6)
k,l,m +α̂(l+m)β̂k

)
+α̂(l+m)β̂k +α̂mβ̂lγ̂k + α̂mβ̂kγ̂l

+α̂lβ̂kγ̂m + α̂lβ̂mγ̂k

χ(7)
k,l (q − 1)α̂lβ̂k −α̂lβ̂k 0

χ(8)
k 0 0 0
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Table 5.12 (continued)

Type T (7) T (8)

Rep g


0 1 0

−rq+1 r + r1+q 0

0 0 α




0 1 0

0 0 1

s1+q+q2 −(s1+q + s1+q2 + sq+q
2
) s+ sq + sq

2


No. of CC q

2(q − 1)2 1
3(q3 − q)

|CGL(3,q)(g)| (q − 1)2(q + 1) (q − 1)(q2 + q + 1)

|Cg| q3(q − 1)(q2 + q + 1) q3(q − 1)2(q + 1)

χ(1)
k α̂kr̂k(q+1) ŝk(q2+q+1)

χ(2)
k 0 −ŝk(q2+q+1)

χ(3)
k −α̂kr̂k(q+1) ŝk(q2+q+1)

χ(4)
k,l α̂kr̂l(q+1) 0

χ(5)
k,l −α̂kr̂l(q+1) 0

χ(6)
k,l,m 0 0

χ(7)
k,l −α̂k(r̂l + r̂ql) 0

χ(8)
k 0 ŝk + ŝkq + ŝkq

2

where, in Table 5.12,

• α, β, γ ∈ F∗q , α 6= β 6= γ 6= α,

• r ∈ Fq2 \ Fq, rq is excluded whenever r is included,

• s ∈ Fq3 \ Fq, sq and sq
2

are excluded whenever s is included,

• in χ
(1)
k , χ

(2)
k and χ

(3)
k , k = 0, 1, · · · , q − 2,

• in χ
(4)
k,l and χ

(5)
k,l , k, l = 0, 1, · · · , q − 2, k 6= l,

• in χ
(6)
k,l,m, 0 ≤ k < l < m ≤ q − 2,

• in χ
(7)
k,l , k = 0, 1, · · · , q − 2, l = 1, 2, · · · , q2 − 1, q + 1 - l and lq(mod q2 − 1) is excluded

whenever l is included,

• in χ
(8)
k , k = 1, 2, · · · , q3 − 1, q2 + q + 1 - k and kq, kq2(mod q3 − 1) are excluded whenever k

is included, and finally,

• ̂ is the character : F∗
qd

= 〈εd〉 −→ C∗ given by ̂ (εjd) = e
2πj

qd−1
i
, for d = 1, 2, 3 and

0 ≤ j ≤ qd − 2.
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Remark 5.7.1. We have seen in Remark 5.4.3 that λk, ψk, ψk,l, πk ∈ Irr(GL(2, q)) appeared as

either cuspidal characters of GL(2, q) or constituents of an
⊙
−product of cuspidal characters of

GL(1, q). Now for GL(3, q) we have

1. λk � χk = χ
(2)
k + χ

(1)
k . Thus every χ

(1)
k and χ

(2)
k appears as a constituent of λk � χk, where

λk itself is a constituent of an
⊙
−product of cuspidal characters. Thus χ(1)

k and χ
(2)
k are

constituents of an
⊙
−product of cuspidal characters of GL(2, q) and GL(1, q).

2. ψk,k � χk = χ
(3)
k + 2χ(2)

k + 1. Thus every χ
(3)
k appears as a constituent of ψk,k � χk, where

ψk,k is an
⊙
−product of cuspidal characters of GL(1, q). Thus every χ(3)

k is a constituent of

an
⊙
−product of cuspidal characters of GL(2, q) and GL(1, q).

3. λl � χk = χ
(4)
k,l . Thus every χ

(4)
k,l is an

⊙
−product of cuspidal characters of GL(2, q) and

GL(1, q).

4. ψl � χk = χ
(5)
k,l . Thus every χ

(5)
k,l is an

⊙
−product of cuspidal characters of GL(2, q) and

GL(1, q).

5. ψl,m � χk = χ
(6)
k,l,m. Thus every χ

(6)
k,l,m is an

⊙
−product of distinct cuspidal characters of

GL(1, q).

6. πl � χk = χ
(7)
k,l . Thus every χ

(7)
k,l is an

⊙
−product of cuspidal characters πl of GL(2, q) and

the cuspidal characters χk of GL(1, q).

7. χ(8)
k are the cuspidal characters of GL(3, q).

Hence every character of GL(3, q) is either a cuspidal or an
⊙
−product of cuspidal characters or

a constituent of an
⊙
−product of cuspidal characters of GL(2, q) and GL(1, q).

We have indicated before that there is a duality between the irreducible characters and the conju-

gacy classes of GL(3, q). In Table 5.13 we attach to every irreducible character a conjugacy class of

GL(3, q).

In Chapter 4 we gave examples for the character tables of GL(2, q) for q = 3, 4. Here we give

the character table of GL(3, 3) and the conjugacy classes of GL(3, 4). We list these tables in the

Appendix.

We conclude this chapter by mentioning that there exists a complete duality between the irreducible

characters and the conjugacy classes of GL(n, q). That is to each irreducible character, one can

associate a conjugacy class. Some of the aspects of this duality is shown in Table 5.14. There

exists an exact numeric in each case. For example the number of primary classes is the same as

the number of monatomic irreducible characters (see Definition 5.7.1).
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Table 5.13: Duality between irreducible characters and conjugacy classes of GL(3, q)

Irreducible Character Associated Conjugacy Class

χ
(1)
k T (1)

k =


εk1 0 0

0 εk1 0

0 0 εk1


χ

(2)
k T (2)

k =


εk1 0 0

0 εk1 0

0 0 εk1


χ

(3)
k T (3)

k =


εk1 0 0

0 εk1 0

0 0 εk1


χ

(4)
k,l T (4)

k,l =


εk1 0 0

0 εk1 0

0 0 εl1


χ

(5)
k,l T (5)

k,l =


εk1 1 0

0 εk1 0

0 0 εl1


χ

(6)
k,l,m T (6)

k,l,m =


εk1 0 0

0 εl1 0

0 0 εm1


χ

(7)
k,l T (7)

k,l =


0 1 0

−εl(1+q)
2 εl2 + εlq2 0

0 0 εk1


χ

(8)
k T (8)

k =


0 1 0

0 0 1

ε
k(1+q+q2)
3 −(εk(1+q)

3 + ε
k(1+q2)
3 + ε

k(q+q2)
3 εk3 + εkq3 + εkq

2

3


where ε1, ε2 and ε3 are generators of F∗q ,F∗q2 and F∗q3 respectively.
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Definition 5.7.1. An irreducible character χ of GL(n, q) is called a monatomic if for some d

divides n, then χ appears as a constituent of
⊙

n
d
times

π = π � π � · · · � π︸ ︷︷ ︸
n
d
times

such that π is a cuspidal

character of GL(d, q).

Remark 5.7.2. Green [27] refers to a monatomic character by a primary character.

Table 5.14: Some aspects of the duality between irreducible characters and conjugacy classes of

GL(n, q)

Irreducible character Associated conjugacy class No. of conjugacy classes

linear characters central classes q − 1

unipotent characters † unipotent classes |P(n)|

monatomic characters primary classes
∑
d|n

|P(
n

d
)| · Id(q)

cuspidal characters regular semisimple classes 1
n

∑
d|n

µ(d)q
n
d

of type (n) ` n

induced from distinct regular semisimple classes
n∏
i=1

(q − i)/n!

cuspidal characters of GL(1, q) of type (1, 1, · · · , 1) ` n

† The definition of a unipotent character can be found in Bump [11] or Zelevinsky [77].
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Appendix

Table 6.1: Values of n(λ), λ ` n, n = 1, 2, 3, 4, 5

n λ ` n n(λ)

1 1 0

2 (1, 1) 1

2 0

(1, 1, 1) 3

3 (2, 1) 1

3 0

(1, 1, 1, 1) 6

(2, 1, 1) 3

4 (2, 2) 2

(3, 1) 1

4 0

(1, 1, 1, 1, 1) 10

(2, 1, 1, 1) 6

(2, 2, 1) 4

5 (3, 1, 1) 3

(3, 2) 2

(4, 1) 1

5 0
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Table 6.2: The orders of elements of GL(3, q)

Type Order

T (1) α = εj1
q−1

gcd(j, q−1)

T (2) α = εj1
p(q−1)

gcd(j, q−1)

T (3) α = εj1
p(q−1)2

gcd(j, q−1)

T (4) α = εj11 , β = εj21 lcm
(

(q−1)
gcd(j1, q−1) ,

(q−1)
gcd(j2, q−1)

)
T (5) α = εj11 , β = εj21 p lcm

(
(q−1)

gcd(j1, q−1) ,
(q−1)

gcd(j2, q−1)

)
T (6) α = εj11 , β = εj21 , γ = εj31 lcm

(
(q−1)

gcd(j1, q−1) ,
(q−1)

gcd(j2, q−1) ,
(q−1)

gcd(j3, q−1)

)
T (7) α = εj11 , r = εj22 lcm

(
(q−1)

gcd(j1, q−1) ,
(q2−1)

gcd(j2, q2−1)
, (q2−1)

gcd(j2q, q2−1)

)
T (8) s = εj3 lcm

(
(q3−1)

gcd(j, q3−1)
, (q3−1)

gcd(jq, q3−1)
, (q3−1)

gcd(jq2, q3−1)

)
where ε1, ε2 and ε3 are generators of F∗q , F∗q2 and F∗q3 respectively.
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Conjugacy Classes of GL(3, 3) and GL(3, 4)

The Group GL(3, 3)

Let F∗3 = 〈α〉 , F∗9 = 〈θ〉 and F∗27 = 〈ζ〉 . Representatives of the conjugacy classes of GL(3, 3)

are given by:

T (1)
0 =


1 0 0

0 1 0

0 0 1

, T (1)
1 =


ζ13 0 0

0 ζ13 0

0 0 ζ13

,

T (2)
0 =


1 1 0

0 1 0

0 0 1

, T (2)
1 =


ζ13 1 0

0 ζ13 0

0 0 ζ13

,

T (3)
0 =


1 1 0

0 1 1

0 0 1

, T (3)
1 =


ζ13 1 0

0 ζ13 1

0 0 ζ13

,

T (4)
0,1 =


1 0 0

0 ζ13 0

0 0 ζ13

, T (4)
1,0 =


ζ13 0 0

0 1 0

0 0 1

,

T (5)
0,1 =


1 0 0

0 ζ13 1

0 0 ζ13

, T (5)
1,0 =


ζ13 0 0

0 1 1

0 0 1

,

T (7)
0,1 =


1 0 0

0 0 1

0 −θ4 θ + θ3

 =


1 0 0

0 0 1

0 1 1

,

T (7)
0,2 =


1 0 0

0 0 1

0 −1 θ2 + θ6

 =


1 0 0

0 0 1

0 ζ13 0

,
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T (7)
0,5 =


1 0 0

0 0 1

0 −θ4 θ5 + θ7

 =


1 0 0

0 0 1

0 1 ζ13

,

T (7)
1,1 =


ζ13 0 0

0 0 1

0 −θ4 θ + θ3

 =


ζ13 0 0

0 0 1

0 1 1

,

T (7)
1,2 =


ζ13 0 0

0 0 1

0 −1 θ2 + θ6

 =


ζ13 0 0

0 0 1

0 ζ13 0

,

T (7)
1,5 =


ζ13 0 0

0 0 1

0 −θ4 θ5 + θ7

 =


ζ13 0 0

0 0 1

0 1 ζ13

,

T (8)
1 =


0 1 0

0 0 1

ζ13 −(ζ4 + ζ10 + ζ12) ζ + ζ3 + ζ9

 =


0 1 0

0 0 1

ζ13 1 0

,

T (8)
2 =


0 1 0

0 0 1

1 −(ζ8 + ζ20 + ζ24) ζ2 + ζ6 + ζ18

 =


0 1 0

0 0 1

1 ζ13 ζ13

,

T (8)
4 =


0 1 0

0 0 1

1 −(ζ16 + ζ14 + ζ22) ζ4 + ζ12 + ζ10

 =


0 1 0

0 0 1

1 0 ζ13

,

T (8)
5 =


0 1 0

0 0 1

ζ13 −(ζ20 + ζ24 + ζ8) ζ5 + ζ15 + ζ19

 =


0 1 0

0 0 1

ζ13 ζ13 1

,

T (8)
7 =


0 1 0

0 0 1

ζ13 −(ζ2 + ζ18 + ζ6) ζ7 + ζ21 + ζ11

 =


0 1 0

0 0 1

ζ13 1 ζ13

,
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T (8)
8 =


0 1 0

0 0 1

1 −(ζ6 + ζ2 + ζ18) ζ8 + ζ24 + ζ20

 =


0 1 0

0 0 1

1 1 1

,

T (8)
14 =


0 1 0

0 0 1

1 −(ζ4 + ζ10 + ζ12) ζ14 + ζ16 + ζ22

 =


0 1 0

0 0 1

1 1 0

,

T (8)
17 =


0 1 0

0 0 1

ζ13 −(ζ14 + ζ16 + ζ22) ζ17 + ζ25 + ζ23

 =


0 1 0

0 0 1

ζ13 0 1

.

The basic information about the classes of GL(3, 3) are given in Table 6.3.

Table 6.3: Basic information for conjugacy classes of GL(3, 3)

g o(g) |CGL(3,3)(g)| |[g]| g o(g) |CGL(3,3)(g)| |[g]|

T (1)
0 1 11232 1 T (7)

0,5 8 16 702

T (1)
1 2 11232 1 T (7)

1,1 8 16 702

T (2)
0 3 108 104 T (7)

1,2 8 16 702

T (2)
1 6 108 104 T (7)

1,5 8 16 702

T (3)
0 3 18 624 T (8)

1 26 26 432

T (3)
1 6 18 624 T (8)

2 13 26 432

T (4)
0,1 2 96 117 T (8)

4 13 26 432

T (4)
1,0 2 96 117 T (8)

5 26 26 432

T (5)
0,1 6 12 936 T (8)

7 26 26 432

T (5)
1,0 6 12 936 T (8)

8 13 26 432

T (7)
0,1 8 16 702 T (8)

14 13 26 432

T (7)
0,2 4 16 702 T (8)

17 26 26 432
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Table 6.4: The power maps of GL(3, 3)

p | o(g) 2 3 13

T (1)
0 - - -

T (1)
1 T (1)

0 - -

T (2)
0 - T (1)

0 -

T (2)
1 T (3)

0 T (1)
1 -

T (3)
0 - T (1)

0 -

T (3)
1 T (2)

0 T (1)
1 -

T (4)
0,1 T (1)

0 - -

T (4)
1,0 T (1)

0 - -

T (5)
0,1 T (2)

0 T (4)
0,1 -

T (5)
1,0 T (2)

0 T (4)
1,0 -

T (7)
0,1 T (7)

0,2 - -

T (7)
0,2 T (4)

0,1 - -

T (7)
0,5 T (7)

0,2 - -

T (7)
1,1 T (7)

0,2 - -

T (7)
1,2 T (4)

0,1 - -

T (7)
1,5 T (7)

0,2 - -

T (8)
1 T (8)

2 - T (1)
1

T (8)
2 - - T (1)

0

T (8)
4 - - T (1)

0

T (8)
5 T (8)

4 - T (1)
1

T (8)
7 T (8)

14 - T (1)
1

T (8)
8 - - T (1)

0

T (8)
14 - - T (1)

0

T (8)
17 T (8)

8 - T (1)
1
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Table 6.5: The character table of GL(3, 3)

Class T (1)
0 T (1)

1 T (2)
0 T (2)

1 T (3)
0 T (3)

1 T (4)
0,1 T (4)

1,0 T (5)
0,1 T (5)

1,0

|Cg| 1 1 104 104 624 624 117 117 936 936

|CGL(3,3)(g)| 11232 11232 108 108 18 18 96 96 12 12

o(g) 1 2 3 6 3 6 2 2 6 6

χ
(1)
0 1 1 1 1 1 1 1 1 1 1

χ
(1)
1 1 −1 1 −1 1 −1 −1 1 −1 1

χ
(2)
0 12 12 3 3 0 0 4 4 1 1

χ
(2)
1 12 −12 3 −3 0 0 −4 4 −1 1

χ
(3)
0 27 27 0 0 0 0 3 3 0 0

χ
(3)
1 27 −27 0 0 0 0 −3 3 0 0

χ
(4)
0,1 13 13 4 4 1 1 −3 −3 0 0

χ
(4)
1,0 13 −13 4 −4 1 −1 3 −3 0 0

χ
(5)
0,1 39 39 3 3 0 0 −1 −1 −1 −1

χ
(5)
1,0 39 −39 3 −3 0 0 1 −1 1 −1

χ
(7)
0,1 26 −26 −1 1 −1 1 2 −2 −1 1

χ
(7)
0,2 26 26 −1 −1 −1 −1 2 2 −1 −1

χ
(7)
0,5 26 −26 −1 1 −1 1 2 −2 −1 1

χ
(7)
1,1 26 26 −1 −1 −1 −1 −2 −2 1 1

χ
(7)
1,2 26 −26 −1 1 −1 1 −2 2 1 −1

χ
(7)
1,5 26 26 −1 −1 −1 −1 −2 −2 1 1

χ
(8)
1 16 −16 −2 2 1 −1 0 0 0 0

χ
(8)
2 16 16 −2 −2 1 1 0 0 0 0

χ
(8)
4 16 16 −2 −2 1 1 0 0 0 0

χ
(8)
5 16 −16 −2 2 1 −1 0 0 0 0

χ
(8)
7 16 −16 −2 2 1 −1 0 0 0 0

χ
(8)
8 16 16 −2 −2 1 1 0 0 0 0

χ
(8)
14 16 16 −2 −2 1 1 0 0 0 0

χ
(8)
17 16 −16 −2 2 1 −1 0 0 0 0
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Table 6.5 (continued)

Class T (7)
0,1 T (7)

0,2 T (7)
0,5 T (7)

1,1 T (7)
1,2 T (7)

1,5

|Cg| 702 702 702 702 702 702

|CGL(3,3)(g)| 16 16 16 16 16 16

o(g) 8 4 8 8 4 8

χ
(1)
0 1 1 1 1 1 1

χ
(1)
1 1 −1 1 −1 1 −1

χ
(2)
0 0 0 0 0 0 0

χ
(2)
1 0 0 0 0 0 0

χ
(3)
0 −1 −1 −1 −1 −1 −1

χ
(3)
1 −1 1 −1 1 −1 1

χ
(4)
0,1 −1 1 −1 −1 1 −1

χ
(4)
1,0 1 1 1 −1 −1 −1

χ
(5)
0,1 1 −1 1 1 −1 1

χ
(5)
1,0 −1 −1 −1 1 1 1

χ
(7)
0,1 −i

√
2 0 i

√
2 −i

√
2 0 i

√
2

χ
(7)
0,2 0 2 0 0 2 0

χ
(7)
0,5 i

√
2 0 −i

√
2 i

√
2 0 −i

√
2

χ
(7)
1,1 −i

√
2 0 i

√
2 i

√
2 0 −i

√
2

χ
(7)
1,2 0 2 0 0 −2 0

χ
(7)
1,5 i

√
2 0 −i

√
2 −i

√
2 0 i

√
2

χ
(8)
1 0 0 0 0 0 0

χ
(8)
2 0 0 0 0 0 0

χ
(8)
4 0 0 0 0 0 0

χ
(8)
5 0 0 0 0 0 0

χ
(8)
7 0 0 0 0 0 0

χ
(8)
8 0 0 0 0 0 0

χ
(8)
14 0 0 0 0 0 0

χ
(8)
17 0 0 0 0 0 0
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Table 6.5 (continued)

Class T (8)
1 T (8)

2 T (8)
4 T (8)

5 T (8)
7 T (8)

8 T (8)
14 T (8)

17

|Cg| 432 432 432 432 432 432 432 432

|CGL(3,3)(g)| 26 26 26 26 26 26 26 26

o(g) 26 13 13 26 26 13 13 26

χ
(1)
0 1 1 1 1 1 1 1 1

χ
(1)
1 −1 1 1 −1 −1 1 1 −1

χ
(2)
0 −1 −1 −1 −1 −1 −1 −1 −1

χ
(2)
1 1 −1 −1 1 1 −1 −1 1

χ
(3)
0 1 1 1 1 1 1 1 1

χ
(3)
1 −1 1 1 −1 −1 1 1 −1

χ
(4)
0,1 0 0 0 0 0 0 0 0

χ
(4)
1,0 0 0 0 0 0 0 0 0

χ
(5)
0,1 0 0 0 0 0 0 0 0

χ
(5)
1,0 0 0 0 0 0 0 0 0

χ
(7)
0,1 0 0 0 0 0 0 0 0

χ
(7)
0,2 0 0 0 0 0 0 0 0

χ
(7)
0,5 0 0 0 0 0 0 0 0

χ
(7)
1,1 0 0 0 0 0 0 0 0

χ
(7)
1,2 0 0 0 0 0 0 0 0

χ
(7)
1,5 0 0 0 0 0 0 0 0

χ
(8)
1 −B A B −A −A A B −B
χ

(8)
2 A B A B B B A A

χ
(8)
4 B A B A A A B B

χ
(8)
5 −A B A −B −B B A −A
χ

(8)
7 −A B A −B −B B A −A
χ

(8)
8 A B A B B B A A

χ
(8)
14 B A B A A A B B

χ
(8)
17 −B A B −A −A A B −B

where A = e
2π
13
i + e

5π
13
i + e

6π
13
i and B = e

π
13
i + e

3π
13
i + e

9π
13
i.
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Table 6.6: Correspondence of conjugacy classes of GL(3, 3) in our notation and GAP notation

Our GAP Our GAP Our GAP Our GAP

Notation Notation Notation Notation Notation Notation Notation Notation

T (1)
0 1a T (4)

0,1 2c T (7)
0,5 8c T (8)

4 13a

T (1)
1 2a T (4)

1,0 2b T (7)
1,1 8b T (8)

5 26b

T (2)
0 3a T (5)

0,1 6d T (7)
1,2 4a T (8)

7 26d

T (2)
1 6b T (5)

1,0 6c T (7)
1,5 8a T (8)

8 13d

T (3)
0 3b T (7)

0,1 8d T (8)
1 26c T (8)

14 13c

T (3)
1 6a T (7)

0,2 4b T (8)
2 13b T (8)

17 26a

Table 6.7: Correspondence of irreducible characters of GL(3, 3) in our notation and GAP notation

Our GAP Our GAP Our GAP Our GAP

Notation Notation Notation Notation Notation Notation Notation Notation

χ
(1)
0 χ1 χ

(4)
0,1 χ5 χ

(7)
0,5 χ19 χ

(8)
4 χ9

χ
(1)
1 χ2 χ

(4)
1,0 χ6 χ

(7)
1,1 χ17 χ

(8)
5 χ12

χ
(2)
0 χ3 χ

(5)
0,1 χ23 χ

(7)
1,2 χ16 χ

(8)
7 χ11

χ
(2)
1 χ4 χ

(5)
1,0 χ24 χ

(7)
1,5 χ18 χ

(8)
8 χ7

χ
(3)
0 χ21 χ

(7)
0,1 χ20 χ

(8)
1 χ14 χ

(8)
14 χ10

χ
(3)
1 χ22 χ

(7)
0,2 χ15 χ

(8)
2 χ8 χ

(8)
17 χ13
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The Group GL(3, 4)

Suppose that F∗64
∼= Z63 = 〈ζ〉 . The conjugacy classes of GL(3, 4) are given in Table 6.8.

Table 6.8: The conjugacy classes of GL(3, 4)

Class Rep g o(g) |[g]| |CG(g)| Class Rep g o(g) |[g]| |CG(g)|

T (1)
0

 1 0 0

0 1 0

0 0 1

 1 1 181440 T (1)
1

ζ
21 0 0

0 ζ21 0

0 0 ζ21

 3 1 181440

T (1)
2

ζ
42 0 0

0 ζ42 0

0 0 ζ42

 3 1 181440 T (2)
0

 1 1 0

0 1 0

0 0 1

 2 315 576

T (2)
1

ζ
21 1 0

0 ζ21 0

0 0 ζ21

 6 315 576 T (2)
2

ζ
42 1 0

0 ζ42 0

0 0 ζ42

 6 315 576

T (3)
0

 1 1 0

0 1 1

0 0 1

 4 3780 48 T (3)
1

ζ
21 1 0

0 ζ21 1

0 0 ζ21

 12 3780 48

T (3)
2

ζ
42 1 0

0 ζ42 1

0 0 ζ42

 12 3780 48 T (4)
0,1

 1 0 0

0 1 0

0 0 ζ21

 3 336 540

T (4)
1,0

 1 0 0

0 1 0

0 0 ζ42

 3 336 540 T (4)
0,2

 ζ21 0 0

0 ζ21 0

0 0 1

 3 336 540

T (4)
2,0

ζ
21 0 0

0 ζ21 0

0 0 ζ42

 3 336 540 T (4)
1,2

ζ
42 0 0

0 ζ42 0

0 0 1

 3 336 540

T (4)
2,1

ζ
42 0 0

0 ζ42 0

0 0 ζ21

 3 336 540 T (5)
0,1

 1 1 0

0 1 0

0 0 ζ21

 6 5040 36

T (5)
1,0

 1 1 0

0 1 0

0 0 ζ42

 6 5040 36 T (5)
0,2

 ζ21 1 0

0 ζ21 0

0 0 1

 6 5040 36

T (5)
2,0

ζ
21 1 0

0 ζ21 0

0 0 ζ42

 6 5040 36 T (5)
1,2

ζ
42 1 0

0 ζ42 0

0 0 1

 6 5040 36

T (5)
2,1

ζ
42 1 0

0 ζ42 0

0 0 ζ42

 6 5040 36 T (6)
0,1,2

 1 0 0

0 ζ21 0

0 0 ζ42

 3 6720 27

T (7)
0,1

1 0 0

0 0 1

0 ζ21 1

 15 4032 45 T (7)
0,2

1 0 0

0 0 1

0 ζ41 1

 15 4032 45

T (7)
0,3

1 0 0

0 0 1

0 1 ζ42

 5 4032 45 T (7)
0,6

1 0 0

0 0 1

0 1 ζ21

 5 4032 45
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Table 6.8 (continued)

Class Rep g o(g) |[g]| |CG(g)| Class Rep g o(g) |[g]| |CG(g)|

T (7)
0,7

1 0 0

0 0 1

0 ζ21 ζ21

 15 4032 45 T (7)
0,11

1 0 0

0 0 1

0 ζ42 ζ42

 15 4032 45

T (7)
1,1

ζ
21 0 0

0 0 1

0 ζ21 1

 15 4032 45 T (7)
1,2

ζ
21 0 0

0 0 1

0 ζ42 1

 15 4032 45

T (7)
1,3

ζ
21 0 0

0 0 1

0 1 ζ42

 15 4032 45 T (7)
1,6

ζ
21 0 0

0 0 1

0 1 ζ21

 15 4032 45

T (7)
1,7

ζ
21 0 0

0 0 1

0 ζ21 ζ21

 15 4032 45 T (7)
1,11

ζ
21 0 0

0 0 1

0 ζ42 ζ42

 5 4032 45

T (7)
2,1

ζ
42 0 0

0 0 1

0 ζ21 1

 5 4032 45 T (7)
2,2

ζ
42 0 0

0 0 1

0 ζ42 1

 15 4032 45

T (7)
2,3

ζ
42 0 0

0 0 1

0 1 ζ42

 15 4032 45 T (7)
2,6

ζ
42 0 0

0 0 1

0 1 ζ21

 15 4032 45

T (7)
2,7

ζ
42 0 0

0 0 1

0 ζ21 ζ21

 15 4032 45 T (7)
2,11

ζ
42 0 0

0 0 1

0 ζ42 ζ42

 15 4032 45

T (8)
1

 0 1 0

0 0 1

ζ21 1 1

 63 2880 63 T (8)
2

 0 1 0

0 0 1

ζ42 1 1

 63 2880 63

T (8)
3

0 1 0

0 0 1

1 0 ζ21

 21 2880 63 T (8)
5

 0 1 0

0 0 1

ζ42 ζ21 1

 63 2880 63

T (8)
6

0 1 0

0 0 1

1 0 ζ42

 21 2880 63 T (8)
7

 0 1 0

0 0 1

ζ21 0 0

 9 2880 63

T (8)
9

0 1 0

0 0 1

1 1 0

 7 2880 63 T (8)
10

 0 1 0

0 0 1

ζ21 ζ42 1

 63 2880 63

T (8)
11

 0 1 0

0 0 1

ζ42 ζ21 ζ42

 63 2880 63 T (8)
13

 0 1 0

0 0 1

ζ21 1 ζ42

 63 2880 63

T (8)
14

 0 1 0

0 0 1

ζ42 0 0

 9 2880 63 T (8)
15

0 1 0

0 0 1

1 ζ21 0

 21 2880 63

T (8)
22

 0 1 0

0 0 1

ζ21 ζ42 ζ21

 63 2880 63 T (8)
23

 0 1 0

0 0 1

ζ42 ζ42 ζ21

 63 2880 63

T (8)
26

 0 1 0

0 0 1

ζ42 1 ζ21

 63 2880 63 T (8)
27

0 1 0

0 0 1

1 0 1

 7 2880 63

T (8)
30

0 1 0

0 0 1

1 ζ42 0

 21 2880 63 T (8)
31

 0 1 0

0 0 1

ζ21 ζ21 ζ21

 63 2880 63

T (8)
43

 0 1 0

0 0 1

ζ21 ζ21 ζ42

 63 2880 63 T (8)
47

 0 1 0

0 0 1

ζ42 ζ42 ζ42

 63 2880 63

181



Chapter 6 — Appendix

Table 6.9: The power maps of GL(3, 4)

p | o(g) 2 3 5 7 p | o(g) 2 3 5 7

T (1)
0 - - - - T (7)

1,3 - T (7)
0,6 T (4)

1,0 -

T (1)
1 - T (1)

0 - - T (7)
1,6 - T (7)

0,3 T (4)
1,0 -

T (1)
2 - T (1)

0 - - T (7)
1,7 - T (7)

0,6 T (4)
2,0 -

T (2)
0 T (1)

0 - - - T (7)
1,11 - T (7)

0,3 T (1)
2 -

T (2)
1 T (1)

2 T (2)
0 - - T (7)

2,1 - T (7)
0,3 T (1)

1 -

T (2)
2 T (1)

1 T (2)
0 - - T (7)

2,2 - T (7)
0,6 T (4)

2,1 -

T (3)
0 T (2)

0 - - - T (7)
2,3 - T (7)

0,6 T (4)
0,1 -

T (3)
1 T (2)

2 T (3)
0 - - T (7)

2,6 - T (7)
0,3 T (4)

0,1 -

T (3)
2 T (2)

1 T (3)
0 - - T (7)

2,7 - T (7)
0,6 T (1)

1 -

T (4)
0,1 - T (1)

0 - - T (7)
2,11 - T (7)

0,3 T (4)
2,1 -

T (4)
1,0 - T (1)

0 - - T (8)
1 - T (8)

3 - T (8)
7

T (4)
0,2 - T (1)

0 - - T (8)
2 - T (8)

6 - T (8)
14

T (4)
2,0 - T (1)

0 - - T (8)
3 - T (8)

9 - T (1)
1

T (4)
1,2 - T (1)

0 - - T (8)
5 - T (8)

15 - T (8)
14

T (4)
2,1 - T (1)

0 - - T (8)
6 - T (8)

9 - T (1)
2

T (5)
0,1 T (4)

1,0 T (2)
0 - - T (8)

7 - T (1)
1 - -

T (5)
1,0 T (4)

0,1 T (2)
0 - - T (8)

9 - - - T (1)
0

T (5)
0,2 T (4)

1,2 T (2)
0 - - T (8)

10 - T (8)
30 - T (8)

7

T (5)
2,0 T (4)

2,1 T (2)
0 - - T (8)

11 - T (8)
6 - T (8)

14

T (5)
1,2 T (4)

0,2 T (2)
0 - - T (8)

13 - T (8)
30 - T (8)

7

T (5)
2,1 T (4)

2,0 T (2)
0 - - T (8)

14 - T (1)
2 - -

T (6)
0,1,2 - T (1)

0 - - T (8)
15 - T (8)

27 - T (1)
2

T (7)
0,1 - T (7)

0,3 T (4)
0,2 - T (8)

22 - T (8)
3 - T (8)

7

T (7)
0,2 - T (7)

0,6 T (4)
1,2 - T (8)

23 - T (8)
6 - T (8)

14

T (7)
0,3 - - T (1)

0 - T (8)
26 - T (8)

15 - T (8)
14

T (7)
0,6 - - T (1)

0 - T (8)
27 - - - T (1)

0

T (7)
0,7 - T (7)

0,3 T (4)
0,2 - T (8)

30 - T (8)
27 - T (1)

1

T (7)
0,11 - T (7)

0,3 T (4)
1,2 - T (8)

31 - T (8)
30 - T (8)

7

T (7)
1,1 - T (7)

0,3 T (4)
2,0 - T (8)

43 - T (8)
3 - T (8)

7

T (7)
1,2 - T (7)

0,6 T (1)
2 - T (8)

47 - T (8)
15 - T (8)

14
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Table 6.10: Conjugacy classes of GL(4, q)

Type Representative Conditions No of Classes

T (1)


α 0 0 0

0 α 0 0

0 0 α 0

0 0 0 α

 α ∈ F∗q q − 1

T (2)


α 1 0 0

0 α 0 0

0 0 α 0

0 0 0 α

 α ∈ F∗q q − 1

T (3)


α 1 0 0

0 α 0 0

0 0 α 1

0 0 0 α

 α ∈ F∗q q − 1

T (4)


α 1 0 0

0 α 1 0

0 0 α 0

0 0 0 α

 α ∈ F∗q q − 1

T (5)


α 1 0 0

0 α 1 0

0 0 α 1

0 0 0 α

 α ∈ F∗q q − 1

T (6)


α 0 0 0

0 α 0 0

0 0 α 0

0 0 0 β

 α, β ∈ F∗q , α 6= β (q − 1)(q − 2)

T (7)


α 1 0 0

0 α 0 0

0 0 α 0

0 0 0 β

 α, β ∈ F∗q , α 6= β (q − 1)(q − 2)

T (8)


α 1 0 0

0 α 1 0

0 0 α 0

0 0 0 β

 α, β ∈ F∗q , α 6= β (q − 1)(q − 2)

T (9)


α 0 0 0

0 α 0 0

0 0 β 0

0 0 0 β

 α, β ∈ F∗q , α 6= β
(q−1)(q−2)

2

T (10)


α 1 0 0

0 α 0 0

0 0 β 0

0 0 0 β

 α, β ∈ F∗q , α 6= β (q − 1)(q − 2)

T (11)


α 1 0 0

0 α 0 0

0 0 β 1

0 0 0 β

 α, β ∈ F∗q , α 6= β
(q−1)(q−2)

2
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Table 6.10 (continued)

Type Representative Conditions No of Classes

T (12)


α 0 0 0

0 α 0 0

0 0 β 0

0 0 0 γ

 α, β, γ ∈ F∗q , α 6= β 6= γ 6= α
(q−1)(q−2)(q−3)

2

T (13)


α 1 0 0

0 α 0 0

0 0 β 0

0 0 0 γ

 α, β ∈ F∗q , α 6= β 6= γ 6= α
(q−1)(q−2)(q−3)

2

T (14)


α 0 0 0

0 α 0 0

0 0 0 1

0 0 −rq+1 r + rq

 α ∈ F∗q , r ∈ F∗
q2
\ F∗q

q(q−1)2

2

T (15)


α 1 0 0

0 α 0 0

0 0 0 1

0 0 −rq+1 r + rq

 α ∈ F∗q , r ∈ F∗
q2
\ F∗q

q(q−1)2

2

T (16)


α 0 0 0

0 β 0 0

0 0 γ 0

0 0 0 ξ

 α, β, γ, ξ ∈ F∗q , α, β, γ, ξ are distinct
(q−1)(q−2)(q−3)(q−4)

24

T (17)


α 0 0 0

0 β 0 0

0 0 0 1

0 0 −rq+1 r + rq

 α, β ∈ F∗q , α 6= β, r ∈ F∗
q2
\ F∗q

q(q−1)2(q−2)
4

T (18)


0 1 0 0

−rq+1 r + rq 0 0

0 0 0 1

0 0 −sq+1 s+ sq

 r, s ∈ F∗
q2
\ F∗q , r 6= s

q(q2−1)(q−2)
8

T (19)


0 1 0 0

−rq+1 r + rq 0 0

0 0 0 1

0 0 −rq+1 r + rq

 r ∈ F∗
q2
\ F∗q

(q2−q)
2

T (20)


0 1 1 0

−rq+1 r + rq 0 1

0 0 0 1

0 0 −rq+1 r + rq

 r ∈ F∗
q2
\ F∗q

(q2−q)
2

T (21)


α 0 0 0

0 θ 0 0

0 0 θq 0

0 0 0 θq
2

 α,∈ F∗q , θ ∈ F∗
q3
\ F∗q , θq , θq

2 q(q−1)2(q+1)
3

are excluded whenever θ is included

T (22)


κ 0 0 0

0 κq 0 0

0 0 κq
2

0

0 0 0 κq
3

 κ ∈ F∗
q4
\ F∗

q2
, κq , κq

2
, κq

3 q4−q2
4

are excluded whenever κ is included
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Table 6.11: Sizes of classes and centralizers of GL(4, q)

g |CGL(4,q)(g)| |Cg|

T (1) q6(q − 1)(q2 − 1)(q3 − 1)(q4 − 1) 1

T (2) q6(q − 1)2(q2 − 1) (q2 + q + 1)(q4 − 1)

T (3) q5(q − 1)(q2 − 1) q(q3 − 1)(q4 − 1)

T (4) q4(q − 1)2 q2((q + 1)(q3 − 1)(q4 − 1)

T (5) q3(q − 1) q3(q2 − 1)(q3 − 1)(q4 − 1)

T (6) q3(q − 1)2(q2 − 1)(q3 − 1) q3(q3 + q2 + q + 1)

T (7) q3(q − 1)3 q3(q + 1)(q2 + q + 1)(q4 − 1)

T (8) q2(q − 1)2 q4(q + 1)(q3 − 1)(q4 − 1)

T (9) q2(q − 1)2(q2 − 1)2 q4(q2 + 1)(q2 + q + 1)

T (10) q2(q − 1)2(q2 − 1) q4(q + 1)(q2 + q + 1)(q − 1)(q2 + 1)

T (11) q2(q − 1)2 q4(q + 1)(q3 − 1)(q4 − 1)

T (12) q2(q − 1)4 q4(q + 1)(q2 + q + 1)(q3 + q2 + q + 1)

T (13) q(q − 1)3 q5(q + 1)(q2 + q + 1)(q4 − 1)

T (14) q(q − 1)(q2 − 1)2 q5(q2 + q + 1)(q2 + 1)

T (15) q(q − 1)(q2 − 1) q5(q3 − 1)(q4 − 1)

T (16) (q − 1)4 q6(q + 1)(q2 + q + 1)(q3 + q2 + q + 1)

T (17) (q − 1)2(q2 − 1) q6(q2 + q + 1)(q4 − 1)

T (18) (q2 − 1)2 q6(q − 1)(q3 − 1)(q2 + 1)

T (19) q2(q2 − 1)(q4 − 1) q4(q − 1)(q3 − 1)

T (20) q2(q2 − 1) q4(q − 1)(q3 − 1)(q4 − 1)

T (21) (q − 1)(q3 − 1) q6(q2 − 1)(q4 − 1)

T (22) (q4 − 1) q6(q − 1)(q2 − 1)(q3 − 1)
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A programm to calculate the character table of UT (2, 3) using GAP [23]

gap> G:= GL(2,3);

GL(2,3)

gap> K:=Elements(G);;

gap> H:= [];

[ ]

gap> for i in [1..Size(K)]do

> if K[i][2][1]= 0*Z(3) then

> Add(H, K[i]);

> fi;

> od;

gap> Size(H);

12

gap> for i in [1..Size(H)]do

> for j in [1..Size(H)]do

> if Order(Group(H[i], H[j])) = Size(H) then

> break;

> fi;

> od;

> od;

gap> M:= Group(H[i], H[j]);

Group([ [ [ Z(3), Z(3) ], [ 0*Z(3),

Z(3) ] ], [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ])

gap>Order(M); 12

gap> T:= CharacterTable(M);

CharacterTable(Group([ [ [ Z(3), Z(3) ], [ 0*Z(3), Z(3) ] ], [ [ Z(3)^0, 0*Z(3)

], [ 0*Z(3), Z(3) ] ] ]) )

gap> Display(T); CT1

2 2 2 1 2 2 1

3 1 . 1 . 1 1

1a 2a 3a 2b 2c 6a

X.1 1 1 1 1 1 1

X.2 1 -1 1 -1 1 1

X.3 1 1 1 -1 -1 -1

X.4 1 -1 1 1 -1 -1

X.5 2 . -1 . -2 1

X.6 2 . -1 . 2 -1
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