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Abstract

The aim of this dissertation is to describe the conjugacy classes and some of the ordinary irreducible
characters of the finite general linear group GL(n, q), together with character tables of some of its
subgroups. We study the structure of GL(n,q) and some of its important subgroups such as
SL(n,q), UT(n,q), SUT(n,q), Z(GL(n,q)), Z(SL(n,q)), GL(n,q)", SL(n,q) , the Weyl group W
and parabolic subgroups Py. In addition, we also discuss the groups PGL(n,q), PSL(n,q) and the
affine group Aff(n,q), which are related to GL(n,q). The character tables of GL(2,q), SL(2,q),
SUT(2,q) and UT'(2,q) are constructed in this dissertation and examples in each case for ¢ = 3
and g = 4 are supplied.

A complete description for the conjugacy classes of GL(n,q) is given, where the theories of irre-
ducible polynomials and partitions of ¢ € {1,2,--- ,n} form the atoms from where each conjugacy
class of GL(n, q) is constructed. We give a special attention to some elements of GL(n,q), known
as regular semisimple, where we count the number and orders of these elements. As an example
we compute the conjugacy classes of GL(3, ¢q). Characters of GL(n,q) appear in two series namely,
principal and discrete series characters. The process of the parabolic induction is used to construct
a large number of irreducible characters of GL(n,q) from characters of GL(m,q) for m < n. We
study some particular characters such as Steinberg characters and cuspidal characters (characters
of the discrete series). The latter ones are of particular interest since they form the atoms from
where each character of GL(n, q) is constructed. These characters are parameterized in terms of
the Galois orbits of non-decomposable characters of Fyn. The values of the cuspidal characters on
classes of GL(n,q) will be computed. We describe and list the full character table of GL(3,q).
There exists a duality between the irreducible characters and conjugacy classes of GL(n, q), that is
to each irreducible character, one can associate a conjugacy class of GL(n, ¢q). Some aspects of this

duality will be mentioned.
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1

Introduction

The general linear group GL(V') is the automorphism group of a vector space V. The term linear
comes because of the linear transformations and the term general comes because it is the largest
group with the property of invertibility. When V = V(n,F), the n—dimensional space over a field
IF, we identify GL(V') with the group GL(n,F) consisting of all invertible n x n matrices. Moreover,
if F = [Fy, the Galois field of g elements, we write GL(n,q) in place of GL(n,F,). If n = 1, then
GL(1,F) = F*, which is abelian. The smallest general linear group is GL(1,2) = F5 = {1}.If n > 1,
then GL(n,TF) is not abelian and the smallest non-abelian general linear group is GL(2,2) & Ss.
Also GL(n,TF) is not a simple group in general as it has many normal subgroups such as SL(n,q),
the special linear group. In 1907, H. Jordan [35] and I. Schur [67] separately calculated the ordinary
character table of GL(2,¢q). It was not until 1950 that the character table of GL(3,q) was known,
when Steinberg [72] determined the character tables of GL(3,¢q) and GL(4,q). Many attempts to
calculate the ordinary character tables of GL(n,q) for arbitrary n were made. For example partial
results found by Steinberg, namely the Steinberg characters of GL(n,q). In 1955, J. A. Green in a
celebrated paper [27] was able to give a complete description for the character tables of GL(n, q) for
any positive integer n. To construct the characters of GL(n, q), Green [27] combined the Frobenius
method of induced characters from certain subgroups, together with Brauer’s theorem of modu-
lar representations. The use of subgroups is similar to the Frobenius treatment of the character
table of the Symmetric group S,. In fact the work of Green [27] on GL(n,q) inspired other au-
thors, like Deligne - Lusztig [16] in their search for the characters of reductive groups. This was to

generalize some of the aspects defined by Green [27] such as Green polynomials and degeneracy rule.

Below is a detailed description for the work carried on this dissertation:

In Chapter 2 we review the fundamental tools required for the theories of representations and char-
acters, which will be used in the other chapters. This includes basic definitions and elementary

results of representations and characters (Sections 2.1 and 2.2). Also we study some results of
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constructing new characters from characters we already know. In Section 2.3 we show that the
product of two characters of a group G is again a character of G. In Section 2.4 we show that if G
has a normal subgroup N then irreducible characters of the quotient G/N extend (lift) irreducibly
to G. In Section 2.5 we study the dual operations known as induction and restriction of characters.
We conclude Chapter 2 by studying an important type of characters of a group G known as the
permutation character, which is associated with the group action. For instance if we have a sub-
group H < @, then there exists a permutation character of G. Conversely if we have a permutation

character of GG, then under some certain conditions, we show the existence of a subgroup H < G.

Chapter 3 concerns with the structure of GL(n,F) and some of its important subgroups such as
SL(n,F), UT(n,F), SUT(n,F), Z(GL(n,F)), Z(SL(n,F)), GL(n,F)', SL(n,F)’, Weyl group W
and parabolic subgroups Py. In addition we also discuss the groups PGL(n,F), PSL(n,F) and the
affine group Aff(n,[F), which are related to GL(n,F). In most of these groups we focus on the case
F =IF,. In the last section of this chapter we discuss the concept of the BN pair structure and we
show that GL(n,F), SL(n,F) and PSL(n,F) have BN structures.

In Chapter 4 we determine the character table of GL(2,q), where in Section 4.2, we discuss the
conjugacy classes of GL(2,q) and see that there are ¢> — 1 classes fall into four families (Theorem
4.2.1). Also the orders of elements of GL(2, q) will be given (Proposition 4.2.2). In Section 4.3 the
irreducible characters of GL(2,q) will be listed. These characters fall also in four families. The
character table of GL(2,q) will be used to construct character tables of SL(2,q), SUT(2,q) and
UT(2,q) in Sections 4.4, 4.5 and 4.6 respectively. In Section 4.4 the treatment of obtaining the
character table of SL(2,q) will depends on the parity of q. When ¢ is even, SL(2,q) has ¢ + 1
irreducible characters, which are obtained from restriction of some characters of GL(2,q). When
q is odd, SL(2,q) has q + 4 irreducible characters. Of these, ¢ are obtained directly from the
restriction of some of the characters of GL(2, ). To find the other 4 characters of SL(2,q), a sub-
group of GL(2,q) containing SL(2,q) will enter to complete the picture. This subgroup, which is
denoted by SD(2,¢q) has index 2 in GL(2, q). We list all the conjugacy classes and some of the irre-
ducible characters of SD(2,q). In Section 4.5 we prove that SUT(2,q), q odd, has ¢+ 3 irreducible
characters, while if ¢ is even, then SUT(2,q) has ¢ irreducible characters. In the latter case, the
character table of SUT'(2, ¢) will be constructed in two different methods. First we use the fact that
SUT(2,q) is one of the Frobenius groups, whose representations are known. The other approach is
through the technique of the coset analysis together with Clifford-Fischer theory (see Moori [52]
and Whitely [76]). In Section 4.6 we show that UT(2, ¢) has q? — g irreducible characters and we list
the values of these characters on classes of UT(2, q). An extensive number of examples of character
tables of GL(2,q), SL(2,q), SUT(2,q) and UT(2, q) for ¢ = 3 and ¢ = 4 will be given in Section 4.7.

Chapter 5 contains the main results of this dissertation. In this chapter, we consider GL(n,q) in
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general for any n. Section 5.1 is devoted to the study partitions of a positive integer n and some
functions defined in terms of partitions, which will be used throughout the sequel of chapter 5. In
Section 5.2 the conjugacy classes of GL(n, q) will be determined completely, where we give a source
for the representatives of the classes (Jordan Canonical Form, Theorem 5.2.1). We also calculate
the size of any conjugacy class of GL(n,q) (Equation 5.10). The classes of GL(n,q) fall within
several types and all classes of the same type have same size. There are some elements of GL(n, q),
called regular semisimple, which are of particular interest. We count the number and orders of
these elements (Theorems 5.2.13 and 5.2.17). The types of regular semisimple classes of GL(n, q)
are in 1 — 1 correspondence with partitions of n. Also we count the number of primary classes of
GL(n,q) (Proposition 5.2.14). As an application, we construct the conjugacy classes of GL(3,q),
count the number and orders of regular semisimple elements of GL(3,q). We show that the ratio
between the number of regular semisimple classes of GL(3, q) of partition type (n) - n and those

classes of GL(3,q), which are not regular semisimple of type (n) F n is given by

Number of regular semisimple classes of GL(3,q) of type (n) Fn 1P —q) 1

Number of non-regular semisimple classes of GL(3,q) of type (n) Fn %(q3 —q) 2

In Section 5.3 we discuss the process of parabolic induction, which produces a large number of char-
acters of GL(n,q) from characters of GL(m,q) for m < n. The parametrization of such characters
is, in some sense, related to the character theory of the Symmetric group 5, where some characters
of S, are obtained by induction from characters of Young subgroups. The remaining characters of
GL(n,q), which cannot be obtained by parabolic induction, are called cuspidal characters or char-
acters of the discrete series. Section 5.4 is devoted to the cuspidal characters of GL(n,q), which
have nice parametrization in terms of the Galois orbits of non-decomposable characters of Fy. (Sub-
section 5.4.1). We also calculate the values of these characters on classes of GL(n,q) (Theorem
5.4.4 and Equation (5.19)) and finally we show the importance of the cuspidal characters for all
characters of GL(n,q) (Theorem 5.4.6). In Section 5.5 we study the so-called Steinberg characters
of GL(n,q). For any partition of n, Steinberg found an irreducible character of GL(n,q). He used
simple properties of the underlying geometry of a vector space V. We list the values of Steinberg
characters of GL(2,q), GL(3,q) and GL(4,q). In Section 5.6 we go briefly over Green construction
of characters, which is based on modular characters of GL(n,q) (Theorem 5.6.2). We also prove
that the number of linear characters of GL(n,q), (n,q) # (2,2) is ¢ — 1 (Theorem 5.6.3). The last
section of this chapter is an application to the character table of GL(3,q). The maximal parabolic
subgroup M P(3,q) of GL(3,q) will produce a considerable number of irreducible characters of
GL(3,q). In fact this number is %]Irr(GL(i%,q))] = %(q?’ — q), which is equal to the number of

principal series characters of GL(3, q). Therefore we have

Number of cuspidal characters of GL(3, q)

wlno|wol—
—
Q
w
[\

Number of principal series characters of GL(3,q)

Green [27] established a duality between the irreducible characters and conjugacy classes of GL(n, q),

that is to each irreducible character of GL(n, q), one can associate a conjugacy class of GL(n,q); a
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property that not many groups have. We conclude Chapter 5 by mentioning some aspects of this

duality (Table 5.14).

Finally a list of character tables, conjugacy classes and other relevant material are supplied in the

Appendix.

We would also like to mention that 77 relevant references are listed under the Bibliography.




2

Elementary Theories of Representations and

Characters

In this dissertation, G means a finite group unless otherwise stated.

The theories of representations and characters of finite groups were developed by the end of the

19th century. Frobenius, Burnside, Schur and Brauer have contributed largely to these theories.

“The year 1897 was marked by two important mathematical events: the publication of the first
paper on representations of finite groups by Ferdinand Georg Frobenius (1849-1917) and the appear-
ance of the first treatise in English on the theory of finite groups by William Burnside (1852-1927).
Burnside soon developed his own approach to representations of finite groups. In the next few
years, working independently, Frobenius and Burnside explored the new subject and its applica-
tions to finite group theory. They were soon joined in this enterprise by Issai Schur (1875-1941)
and some years later, by Richard Brauer (1901-1977). These mathematicians’ pioneering research
is the subject of this book. ---” Curtis [10].

The material that will be covered in this chapter is to illustrate the basics and fundamentals of
representations and characters of finite groups. As general references, this can be found in Curtis

and Reiner [9], Isaacs [38], James [39], Moori [54] and Sagan [66].

2.1. Preliminaries

There are two kinds of representations, namely permutation and matriz representations. An exam-
ple of a permutation representation is given by the known Theorem of Cayley, which asserts that
any group G (not necessarily finite) can be embedded into the Symmetric group Sg. The matrix

representation of a finite group is of particular interest.
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Definition 2.1.1. Any homomorphism p : G — GL(n,F), where GL(n,F) is the group consisting
of all n x n non-singular matrices is called a matriz representation or simply a representation
of G. If F = C, then p is called an ordinary representation. The integer n is called the degree of
p. Two representations p and o are said to be equivalent if there exists P € GL(n,F) such that
a(g) = Pp(g)P~', Vg € G.

From now on, we restrict ourselves to ordinary representations only, unless an explicit exception is

made.

Definition 2.1.2. If p : G — GL(n,C) is a representation. Then p affords a complex valued
function x, : G — C defined by x,(g9) = trace(p(g)),Yg € G. The function x, is called a char-
acter afforded by the representation p of G or simply a character of G. The integer n is called the
degree of x,. If n = 1, then x, is said to be linear.

A function ¢ : G — C which is invariant over every conjugacy class of G, that is ¢(ghg™!) =
o(h), Yg,h € G, is called a class function of G.

Proposition 2.1.1. Any character of G is a class function.

PROOF. Immediate since similar matrices have same trace. u

Now over the set of class functions of a group G we define addition and multiplication of two class

functions 1, and 9 by

(V1 +v2)(9) = 1(g) +42(9), VgeGa,
Y1a(g) = ¥i(g)a(g), Vg€ G.

It is clear that i1 4+ 12 and 1119 are class functions of G. Also if A € C, then A\ is a class function
of G whenever ¢ is. Therefore the set of all class functions of a group G forms an algebra, which
we denote by €(G). The set of all characters of G forms a subalgebra of €(G). However, it may not
be clear that the product of two characters is again a character. This fact will be shown in Section

2.3. Now we prove that the sum of two characters is again a character.

Proposition 2.1.2. If xy and x4 are two characters of G, then 50 is Xy + Xo-

PROOF. Let ¢ and ¢ be representations of G affording the characters x, and x4 respectively. Define
Plg) 0

0 d(9)
phism (representation) of G with x¢ = xy + Xo- u

the function £ on G by &(g) = ( ) =1(g) ® ¢(g). It is obvious that £ is a homomor-

The above proposition motivates the following definition.
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Definition 2.1.3. A representation p of G is said to be trreducible if it is not a direct sum of
other representations of G. Also a character x of G is said to be irreducible if it is not a sum of

other characters of G.

Example 2.1.1. For any G, consider the function p : G — GL(1,C) given by p(g) = 1, Vg € G.
It is clear that p is a representation of G and x,(g9) = 1, Vg € G. Obviously p is irreducible. This

character is called the trivial character and sometimes we may denote it by 1.

The Theorem of Maschke and Schur’s Lemma (see Theorem 5.1.6 and Corollary 5.1.9 of Moori
[54]) are two pillars on which the edifice of representation theory rests. Maschke Theorem ensures
that under certain conditions, any representation splits up into irreducible pieces. Schur’s Lemma
leads to the orthogonality of representations and hence characters. We mention the statement of

Maschke Theorem only.

Theorem 2.1.3 (Maschke Theorem). Let p : G — GL(n,F) be a representation of G. If

the characteristic of F is zero or does not divide |G|, then p = @pi, where p; are irreducible
i=1
representations of G.
Over €(G) one can define an inner product (,) : €(G) x €(G) — C by
1 S

geG

where Z stands for the complex conjugate of z.

Among the important properties of characters of a group we can mention:

Proposition 2.1.4. 1. Let x, be a character afforded by an irreducible representation p of G.
Then (xp, Xp) = 1.

2. If x, and X, ore the irreducible characters of two non equivalent representations of G, then

<Xpa Xp’> =0.

k k
3. If p= @dipi, then x, = ZdiXpi-
i=1 =1

k
4. If p= @ dipi, then di = (xp, Xp:) -
=1

5. p is irreducible if and only if (X, X,) = 1.

PROOF. See Baker [5], James [40], Joshi [41] or Moori [54]. u
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We shall use the notation Ir7(G) to denote the set of all ordinary irreducible characters of G.

Corollary 2.1.5. The set Irr(G) forms an orthonormal basis for €(G) over C.

PROOF. Omitted. See James [40]. u

Note 2.1.1. Observe that Corollary 2.1.5 asserts that if ¢ is a class function of G, then ¢ =
k
Z AiXi, where \; € C and Irr(G) = {x1,Xx2, -, Xx}- If \i € Z, Vi, then 1) is called a generalized

=1

character. Moreover, if \; € NU {0}, then 1) is a character of G.

The following theorem counts the number of irreducible characters of G.

Theorem 2.1.6. The number of irreducible characters of G is equal to the number of conjugacy

classes of G.

PROOF. See Feit [19], James [40] or Moori [54]. u

2.2. Character Tables and Orthogonality Relations

Definition 2.2.1 (Character Table). The character table of a group G is a square matriz, its

columns correspond to the conjugacy classes, while its rows correspond to the irreducible characters.

The character table of G is very powerful tool to prove results about representations of G and G

itself. For example, the character table of G enables us to

decide the simplicity of G,

e determine all the normal subgroups and hence can help to decide solvability of the group (in

particular we are able to find the center and commutator subgroup of G),

determine the sizes of conjugacy classes of G,

determine the degrees of all representations of G.

Corollary 2.2.1. The character table of G is an invertible matrix.

PROOF. Direct result from the fact that the irreducible characters, and hence the rows of the char-

acter table are linearly independent. u

Proposition 2.2.2. The following properties hold.
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1. x(1e)||G], ¥Yx € Irr(G).

[Trr(G)|
Xz 1G |G‘

=1

3. If x € Irr(G), then X € Irr(G), where X(g9) = x(g9), Vg € G.

4. x(97Y) = x(g), Yg € G. In particular if g~' € [g], then x(g) € R, Vx.

PROOF. See James [40] or Moori [54]. u

In addition to the properties mentioned in Proposition 2.2.2, the character table satisfies certain

orthogonality relations mentioned in the next Theorem.

Theorem 2.2.3. Let Irr(G) = {x1,Xx2, " , Xk} and {g1,92, - , gk} be a collection of representa-
tives for the conjugacy classes of G. For each 1 < i <k let Cg(g;) be the centralizer of g;. Then we

have the following relations:

1. The row orthogonality relation:
For each 1 <1,5 <k,

Xi gs Xj ) = e
Z ‘CG’ gs <X11X]> 1]

2. The column orthogonality relation:
For each 1 <1,5 <k,

Z Xs gz Xs — 5
‘CG gz K
PROOF.

1. Using Proposition 2.1.4(2) we have

[l Xi(9s)x;(95)
(5 Xq,,X] ‘G’ ZXl Xj ‘G’ Z ‘C )‘XZ gs Z ‘CG gs .

geG

1 if g € [g],
0 otherwise.
It is clear that 1) is a class function on G. Since I77(G) form an orthonormal basis for €(G),

2. For fixed 1 <t < k, define ¢, : G — C by 14(g) =

then 3 s € C such that 1 = > Asxs. Now for 1 < j < k we have

s=1
i = (U, - '
5 = (e x5) IG\QGZGM Xi(9) Z |chs = 1Colgr)]
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This completes the proof. u

We conclude this section by giving the character table of the cyclic group Fy.

Theorem 2.2.4. The group Fy = (0) has q — 1 irreducible characters xi, 0 < k < q— 2 given at

2ﬂ]k

67, by xi(67) = e -1,

PROOF. If p(f) = (¢)1x1 = ¢ € C is a 1—dimensional matrix representation, then the values of
the representation p over all elements of Fy are determined by p(67) = 7. By the definition of

representation, we have
= p(0971) = p(1p;) = 1.

It follows that ¢ must be a (¢ — 1)th root of unity. Therefore each root of unity gives an irreducible

representation and the result follows since x, = p. u

2.3. Tensor Product of Characters

In this section we follow precisely the description of Moori [54]. Given two matrices P = (Dij)mxm

and Q = (gij)nxn, we define the tensor product of P and @ to be the mn x mn matrix P ® Q

@ p2@ - pmQ
P&Q= ()0 = P2?Q p2.2Q p277'1Q
ple szQ e pme

Then

trace(P ® Q) = piitrace(Q) + pastrace(Q) + - - - + pmmtrace(Q) = trace(P)trace(Q).

Definition 2.3.1. Let U and T be two representations of G. We define the tensor product of T @ U
by

(TeU)(g) =T(9) @Ul(g), Vg € G.

Theorem 2.3.1. Let T and U be representations of G. Then

10
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(i) T®U is a representation of G,
(i) xrev = xXTXU-
PROOF.

(i) Vg,h € G, we have

(TeU)(gh) = T(gh)®U(gh

T®U)(9))
= trace((T(g9) ® U(g)))
= trace(T(g))trace(U(g))

xreu(g) = trace(

(
(

= xr(9)xv(g)-

Hence xrou = xTXU-

This proves the Theorem. u

Note 2.3.1. Observe that T ® U # U ® T in general, but xreu = XTXU = XUXT = XUsT- Lhus

the tensor product of characters is commutative.

Now we show that knowing the character tables of two groups K and H, then the tensor products
can be used to obtain the character table of K x H.

/
S

Theorem 2.3.2. Let H and Hs be two groups with conjugacy classes C1,Ca, -+ ,C, and Ci, C;, -, C
respectively. Suppose that Irr(Hy) = {x1,x2, ", Xr} and Irr(Hy) = {XII,XIQ, o X} The conju-
gacy classes of Hy x Ha are C; X C;- and Irr(Hy x Ha) = {x; % X;| Xi € Irr(Hy), X; € Irr(H2)}
for1<i<randl <j<s.

PROOF. For all x, h; € H; and y, ho € Hy, we have

(xa y)il(h’h h2)(x7 y) = (xilhlxa yithy)'

Therefore two elements (h1, hy) and (R}, hy) of Hy x Hy are conjugate if and only if hy ~p, b} and

ha ~mH, h;, where ~p denotes the conjugation of two elements in a group H. Thus

C: x C

L 1<i<r 1<j<s,

11
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are the conjugacy classes of Hy x Hs. In particular, there are exactly rs conjugacy classes of Hy x Hs.
On the other hand for all ¢, 7, k, [,

! ’ 1 1N o
<Xi X Xjr Xk X Xz> = m Z Xi(h)Xj(h)Xk(h)Xl(h)
heHy, heH>

= hlm > xi(h)xi(h) |H12|AZ () (h)

heH, heHo
= (Xi» X&) <Xj7Xl> = 0ik0j1-
Thus the rs characters x; x X;' are distinct and irreducible. This completes the proof. u

Note 2.3.2. Observe that if x, ¢ € Irr(G), then in general xy & Irr(G). In the special case when
deg(1) = 1, we have the following proposition.

Proposition 2.3.3. Let ¢ be a linear character of G and x € Irr(G). Then xy € Irr(G).

PROOF. Suppose that v is a linear character of G. Then we know that 1(g) is a root of unity for

any g € G. In particular, we have 1 = |1(g)| = ¥(g9)¥(g) for every g € G. Now assume that x is an
irreducible character of G. It follows that
1 _

Wxvx) = & > dx(9)¥x(9)

geG
|C{,| S x(@)x(@)6(9)P(9)

geG

= |é| > x(@)x(9) = (. x) =

geG

Hence vy is an irreducible character of G. u

Proposition 2.3.4. The number of linear characters of a group G is giwen by |G|/|G'|, where G’
is the derived subgroup of G.

PROOF. See Theorem 17.11 of James [40]. u

2.4. Lifting of Characters

In this section, we present a method for constructing characters of G when it has a proper normal
subgroup N. We may look at the quotient group G/N, which is of a smaller order than |G|.
Therefore it becomes reasonable to assume that the irreducible characters of G/N are known.
From this assumption we may construct characters of G in a process known as lifting of characters.
Thus the normal subgroups help to find characters of G and conversely the character table of G

enables us to determine all the normal subgroups of G.

12
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Proposition 2.4.1. Let N <G and X be a character of G/N. The function x : G — C defined by
x(9) = X(gN),Vg € G is a character of G with deg(x) = deg(X). Moreover; if X € Irr(G/N), then
x € Irr(G).

PROOF. Assume that p: G/N — GL(n,C) is a representation which affords the character X. Define
the function p : G — GL(n,C) by p(g) = p(¢gN), Vg € G. Then p defines a representation on G

since

p(gh) = p(ghN) = p(gNhN) = p(gN)p(hN) = p(g)p(h), Yg,h € G.

Hence the character x, which is afforded by p, satisfies

x(g9) = tr(p(g)) = tr(p(gN)) = X(gN) Vg € G.

and so x is a character of G. For the degree of x, we have
deg(x) = x(1¢) = X(1¢N) = X(IV) = deg(X).

Now let S be a transversal of NV in G. Then

o 1 I
1=(x,X) = WMQN;/NX(QN)X(QN) !

1 o
= @ > INX(gN)X(gN)™!
gNeG/N

> INIX(gN)X(g~'N)

1
Gl =

= |(1;‘ > INIx(g9)x(g™)

geSs

1 _
= W;X(gmg Y
= 06X -

This completes the proof.

Definition 2.4.1. The character x defined in the above Proposition is called the lift of X to G.
One of the advantages given by the character table of G is that it supplies us with all normal
subgroups of GG. This is the assertion of the next theorem.

Theorem 2.4.2. Let N <<G. Then there exist irreducible characters x1,x2, -, Xs of G such that
N = Ni_ kery;.

13
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PROCOF. Firstly, we have the following observation. If i, X2, -, X% are the irreducible charac-
k

ters of G, then ﬂ ker x; = {lg}. Now suppose that G/N has s distinct irreducible characters
i=1
X15X25° " 5 Xs- S0 ﬂ ker xy; = {N}. For 1 <i < s, suppose that x; are the lifts to G of x;. Thus if
i=1
g € ker yx;, then
Xi(N) = xi(1a) = xi(g9) = Xi(gN),
[Irr(G)]

and hence gN € ker y;. Therefore if g € ﬂ ker y;, then gN € ﬂ ker x; = {N}, and so g € N.
=1 =1

S
Hence N = ﬂ ker ;. u
i=1

The converse of the above theorem is also true, i.e. every normal subgroup of G arises in this

way.

Corollary 2.4.3. G is simple if and only if for every x, € Irr(G), where x, # X1, and for all
lg # g € G, we have Xr(g) # Xr(lG)'

PROOF. See Alperin [3] or Moori [54]. u

Hence the character table can be used to decide whether G is simple group or not.

2.5. Restriction and Induction of Characters

Given a group GG and a subgroup H < G. Knowing characters of GG, one can get some characters of

H and vice versa. These two dual operations are known as restriction and induction of characters.

2.5.1 Restriction of Characters

Let H < G and let p : G — GL(n,C) be a representation of G. The restriction of p to H, denoted
by pl%’} is defined by

plG(h) = p(h), Vh € H.

If x, is the character afforded by p, then it is not difficult to see that Xplf[ is a character of H.
Also if x, € Irr(G), then it is not necessarily that x,|% € Irr(H).

Theorem 2.5.1. Let H < G. Let x € Irr(G) and let Irr(H) = {41,402, ;b }. Then x|$ =
Z divpi, where d; € NU{0} and Z d? < [G: H]. The equality holds in the previous " if and only

@fx( )=0, Vg€ G\ H.

14
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PROOF. We have

1=1

hEH

Since x € Irr(G), we have

bexle = g > x(9)x(9)

geG

1 1 —

= @ Zx(g)x(g)vL@ > x(9)x(9)

geH geG\H

H] 2

where K = Z x(g). Since K = @ Z Ix(9)|?, we have that K > 0. Thus
€G\H geG\H

|H|Zd2 1-K <1,

G| <

SO
G|
a2 < 161 =[G : H].

Z El

Also
K=0<|x(¢)?=0<= x(9) =0, Vg€ G\ H.

This completes the proof. u

Theorem 2.5.1 asserts that the number of irreducible constituents of Xlg is bounded above by
[G : H]. Therefore if [G : H] is fairly small, the character tables of H and G are closely related.
For example if [G : H] = 2 and x € Irr(G), then either x|% € Irr(H) or x|% = 1 + ¢ where
P1,9 € Irr(H).

2.5.2 Induction of Characters

Let H < G such that the set {x1,x9, - ,x,} is a transversal for H in G. Let ¢ be a representation
of H of degree n. Then we define ¢* on G as follows:

d(z1gay") olzrgay') - plargart)

. d(zagry') @(xagry’) -+ dwagr,t)
¢"(9) = : ‘ :

QZ)(xrgqul) (;S(JUTg:Egl) o ¢(xr9x;1)

15
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where gb(a:ing_l) is m x n block satisfying the property that
(b(‘ring_l) = Onxn vxlng_l g H.
It is possible to show that ¢* is a representation of G of degree n.

Definition 2.5.1. With the above, the representation ¢* is called the representation of G induced
from the representation ¢ of H and is denoted by ¢* = gZ)T?I

Definition 2.5.2. Let ¢ be a class function of H. Then ngf], the induced class function on G, is
defined by

zeG

where ¢° is defined on G by

oy | oh) ifheH,
qb(h)_{o ifh¢ H.

Note that deg(¢1%) = [G : H] deg(¢).

Theorem 2.5.2. If ¢ is a character of H where H < G, then qﬁTg is a character of G.

PROOF. See Moori [54] or Whitley [76]. u

Theorem 2.5.3 (Frobenius Reciprocity Theorem). Let G be a group, H < G and suppose
that ¢ is a character of H and 0 a character of G. Then

(6,01%) = (¢15.0)g

PROOF. We obtain that
(61%.0) Z $1% (g Z > ¢ (zgr1)b(g)
geG |G‘ | gEG zeG

Putting y = xgz~!, then for fixed z, as g runs through G, so does y, and 0(y) = 6(g), since 6 is a

class function on G. Hence

(@10l = |G| 1 2 2 8000 = g 2 W)

zeG yelG yeG xeCG

= T H, > swoy) = (6.015)

yeH

Hence the result. u

16
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Corollary 2.5.4. Let Irr(G) = {x1,x2, - ,xr} and Irr(H) = {i1,2, - ,0s} where H < G.

Assume that xil% =Y aity and Y15 = bijxi. Then a;j = by; for all i, j.
j=1 i=1

PROOF. Using the Frobenius Reciprocity Theorem we get a;; = <X2¢g,¢j> = <XZ',1/J]‘T§I> = b;j. u

Next we compute the values of induced character qu% on classes of G.

Proposition 2.5.5. Let ¢ be a character of H and let <Z>Tg be the induced character from H to G.

Let g € G and suppose that [g] breaks into m classes in H with representatives xi, T2, , Tm. If
HN|[g] = @, the empty set, then $1%(g) = 0, while if H N [g] # @, then

PROOF. We have

¢1%(g il LS §0(aga ).
el
If HN[g] = @, then zgz~! ¢ H for all € G and thus ¢°(zgz~!) = 0 for all z € G and ¢1%(g) = 0.
Now if H N [g] 7é &, then let h € H N [g]. As x runs over G, we have zgz~" = h for exactly |C¢(g)

|
times, so ¢1% (g |CG(g | Z #°(y). Now ¢°(y) = 0 if y ¢ H, and [g] N H contains [H : Cp(x;)]

y€lg]
conjugates of each x;. Therefore ¢1%(g) = |Ca(g)| Z \C n
a(r

We conclude this section by remarking that the operations of restriction and induction of characters

do not necessarily preserve irreducibility of characters.

2.6. Permutation Character

Let G acts on a finite set = {w1, w2, -+ ,wi} and for each g € G define the k x k matrix 7y = (a;5)

1 if wf = wj,
jj = .

where

0 otherwise.

Then 7, is a permutation matrix of the action of g and P : G — GL(k,C) given by P(g) = m, is

a representation of G.

The character xp afforded by this representation is called a permutation character, and xp(g) =
Hw € Q| w9 = w}|, that is, xp(g) is the number of points of Q left fixed by g € G. Therefore
xr(g) € NU{0}, Vg € G.

17
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Note 2.6.1. Observe that
deg(xp) = xp(le) = fw € Q| w'e =w}| = Q| =k,

since by definition of group action we have w'¢ = w, Yw € Q.

Recall that an action of G on a set X is called transitive if Vax,y € X, dg € G such that z9 = y.
Now let H < G and S = {a1,a2, -+ ,a,} be a left transversal for H in G. Then G acts on the
set of left cosets of H in G by (a;H)9 = ga;H. It is clear that this action is transitive since for
any a;,a; € S, we have (a;H)%% = a;H. The resulting permutation character of this action is of

degree [G : H] = |S| = r. In fact this permutation character is 11%. To see this we have
(a;H)! = a;H <= ga;H = a;H <~ a;lgaiH =H <— a;lgai € H.

Thus

T

xp(g) = ¢%(a; ' gai),

i=1
where

oy )1 if ye H,
(My){ 0 ifydH.

Hence xyp = 1Tg. This shows that for any subgroup H, there exists a permutation character of G.
Conversely, if G acts transitively on any set X, then the associated permutation character represents

ng for some subgroup H of G. This is the assertion of the following theorem.

Theorem 2.6.1. Let G acts transitively on a set ) and let w € Q). Then 1Tgw is the permutation

character of the action.

PROOF. Since G acts transitively on €, we have w® = Q. It follows by the Orbit-Stabilizer Theorem
(see Moori [54] for example) that there is a 1 — 1 correspondence between €2 and the set of left

cosets of G, in G, given by w! — tG,, for t € G. Now for g € G we have
(W9 = w! == W' 9 = w = t71gt € G, == tG,, = gtG, <= tG, = (tG,)’,

where G acts on the set of left cosets of G, in G as given above. Therefore the permutation char-
acter of the action of G on € is the same as the permutation character of the action of G on the
left cosets of G, in GG, which is ngw. u

Corollary 2.6.2. Let G acts on Q0 with a permutation character x. Suppose €2 decomposes into

exactly k orbits under the action of G. Then (x,1) = k, where 1 is the trivial character of G.

18
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k
PROOF. Write Q2 = U A; where the A; are orbits. Let y; be the permutation character of G on A;
i=1

k
so that y = in. For w € A;, we have x; = 1Tgw by Theorem 2.6.1. Thus
i=1

(i 1) = (118, 1) = (1,11E ), =1

(xi,1) = k, completing the proof. u

M-

by Frobenius reciprocity. Therefore (x, 1) =

=1

Lemma 2.6.3. If G acts transitively on §2, then all subgroups G, w € Q of G are conjugate in G.

PROOF. Since G acts transitively on ©, there is some h € G such that w" = & for any w, k € Q. Now

GEG, e= wI =w = k9" = k" = M = = hghT! € G, = g € (Gr)".

Thus G, = (Gx)", which shows that G, = hG,.h~'. That is G,, and G, are conjugate in G. u

Because 1Tg is a transitive permutation character, it must satisfy certain necessary conditions

mentioned in the following theorem.

Theorem 2.6.4. Let H < G and x = 11%. Then

(i) deg(x)I|G].

(i) (x,v) < deg(¥), V¥ € Irr(G).
(i) (x,1) = 1.
(iv) x(g) e NU{0}, Vg € G.

(v) x(9) < x(g™), Vg € G, Ym € NU{0}.

(vi) o(g) 1 7157 = X(9) = 0.

(vii) X(g)x‘([gg) €Z,VgeQqG.

PROOF. Let € be the set of the left cosets of H in G. Thus x is the permutation character of G on
Q.

(i) Since deg(x) = [G : H], we havedeg(x)||G].

(ii) Using Frobenius reciprocity we get (x, ) = <1Tf1, ¢>G = <1lf1, ¢l§1>H < deg(v)).

(iii) Since x is a transitive permutation character, it follows by Corollary 2.6.2 that (x,1) = 1.

19
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(iv) This follows because x(g) is the number of points left fixed by g and hence is non-negative.

(v) Let g € G, that is w9 = w. It is clear that w9" = w. Thus any point of Q left fixed by ¢ is
also fixed by ¢"*. Therefore the number of points fixed by g does not exceed the number of
points fixed by ¢™.

(vi) We know that ‘(G| = |H| soif o(g) { |H|, then [g]NH = &, the empty set. Hence 11%(g) = 0.

(vii) Let B ={(w,z)| w € Q, = € [g], w* = w}. Since x is constant on [g], we have

l9llx(9) = 1Bl =) Ilg] N Gl

we

By Lemma 2.6.3 all subgroups G, are conjugate in G. Thus |[g] N G| = m is independent of
w, and x(g)[[g]] = m|©| = mx(1a).

This completes the proof.

Corollary 2.6.5. Let H < G with x = ng. Let g € G and assume that [g] splits in H into m

classes with representatives hi, ho,- -+ , hy,. Then
m
¢y N\ 1%(9)
PROOF. Immediate by Proposition 2.5.5. u
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3

Structure Of The General Linear Group

In this chapter, we go briefly over the basic and elementary properties and the structure of the
general linear group GL(n,F) and some of its subgroups. Also some of the groups associated with
GL(n,F) will be studied. In most of the work, we follow the notation in Alperin [3], Cameron [12]
and Rotman [65].

3.1. Subgroups and Associated Groups

In this section, we study the general features of the general linear group GL(n,F) and some of its
subgroups. We focus mainly in the case where IF is finite; that is F = I, the Galois Field of ¢

elements.

3.1.1 The General and Special Linear Groups

Definition 3.1.1. Let V' be a vector space over the field F, the General Linear Group of V,
written GL(V') or Aut(V'), is the group of all automorphisms of V, i.e. the set of all bijective linear

transformations V. — V, together with composition of functions as group operation.

If V(n,F) denotes the n—dimensional vector space over a field F, then GL(V) is identified with
group GL(n,F) consisting of the n x n nonsingular matrices defined over the field F. Moreover; if
F = Fy, then we write GL(n, q) in place of GL(n, ;). The following proposition counts the elements
of the group GL(n,q).

n—1
Proposition 3.1.1. The number of the elements of GL(n,q) is H(q” — qk).
k=0

PROOF. This holds by counting the n x n matrices whose rows are linearly independent. The i* row

can be any vector not in the linear span of the first i — 1 rows and thus has ¢ — ¢*~! possibilities.
n—1

Hence, there are (¢" —1)(¢" — q)---(¢" — ¢" ') = H(q” — ¢*) invertible n x n matrices. u
k=0
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For any positive integers n and m with n < m and fixed field F, the group GL(n,F) is embedded
into GL(m,F) by sending A € GL(n,F) to the m x m matrix having A in the left upper corner,

In—p in the right lower corner and zeros elsewhere.

Definition 3.1.2. An invertible linear transformation A : V. — V with determinant 1 is called
a unimodular. For the finite n-dimensional vector space V(n,F), the Special Linear Group,

written SL(n,F), is the subgroup of GL(n,F) consisting of all unimodular transformations.

We omit showing that SL(n,F) satisfies the subgroup axioms. Moreover; we can see that SL(n,F)
is the kernel of the homomorphism det : GL(n,F) — F* and hence SL(n,F) IGL(n,F). Thus the

group GL(n,F) is not simple group in general.

n—1
n(n—1)

Proposition 3.1.2. |SL(n,q)| = l_I(q"H —M=q¢ = ("-D@@ -1 (-1
k=1

PROOF. By the first isomorphism theorem of groups, GL(n,F)/ker(det) = Im(det). Now det is
surjective. Therefore, Im(det) = F* and ker(det) = SL(n,F). Thus GL(n,F)/SL(n,F) = F* and
hence, when F is finite with ¢ elements, |SL(n,q)| = |GL(n,q)|/q — 1 and the result follows by
Proposition 3.1.1. L

Now, let K be an isomorphic copy of the group F* = GL(1,F) in the group GL(n,F), where
the embedding is defined as in the comment after Proposition 3.1.1. That is

a 0 "
e{(o 2 )ioer: o

This embedding makes K not normal subgroup in GL(n,F) in general. The next theorem relates
the elements of GL(n,F) and SL(n,F).

Theorem 3.1.3. The group GL(n,F) = SL(n,F):K.

&0
PROOF. Assume that g € GL(n,F) and det(g) = § € F*. The element ks—1 = ( 0 7 ) is in
n—1

K. Let h = gks—1. Then det(h) = det(gks—1) = det(g)det(ks—1) = 66~ = 1, which shows that
h € SL(n,F) and therefore g = h(ks—1)~! = hks. Hence we have that GL(n,F) = SL(n,F)K. On
the other hand, since SL(n,F) N K = {I,,} and normality of SL(n,F) in GL(n,F) was established
above, we have GL(n,F) = SL(n,F) : K. u

Lemma 3.1.4. Half of the elements of ¥y, q is odd, are squares while if q is even, then all the

elements of Fy are squares.

PROCF. See Hill [32]. u
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Corollary 3.1.5. If q is even, then GL(2,q) = SL(2,q) x H, H = ;.

PROOF. Let H = {als| a € F;}. Then H is normal in GL(2,q) since galog™" = aly, Vg € GL(2,q).
By Lemma 3.1.4, every element of Fj is a square because g is even. Thus we may assume that
det(g) = 0% for g € GL(n,q) and 6* € F;. Then similar steps used in Theorem 3.1.3 to show
that GL(n,F) = SL(n,F)K can be applied here also. Therefore, GL(2,q) = SL(2,q)H. Now
aly € SL(2,q) <= det(aly) = a®> =1 <= a = 1. Note that —1 = 1 because ¢ has characteristic
2. Therefore SL(2,q) N H = {I2} and the result follows. u

3.1.2 Upper Triangular, p—Sylow and Parabolic Subgroups

Definition 3.1.3. The set UT(n,F) consisting of all n X n invertible upper triangular matrices

over the field F forms a subgroup of GL(n,F), which we call the Upper Triangular Subgroup.

n(n—1)
The group UT'(n, q) has order |UT (n,q)| = ¢ 2 : (g—1)", since elements in the main diagonal are

taken from Fy and elements above to the main diagonal can be any element of F,.

An important subgroup of the group UT (n,F) is UT (n,F)NSL(n,F), which we denote by SUT (n, F)
n(n—1)

and we call the Special Upper Triangular Group. The group SUT(n,q) has order ¢~ 2 (q —

1)"~1, since elements above the main diagonal can be chosen arbitrarily from Fy, while all elements

of the main diagonal are taken from [y in arbitrary way, except the element in the (n,n)th position,
n—1 -1

which must be (H au) to make det(g) = 1. Hence SUT'(n, q) is of index (¢ — 1) in UT'(n, q).
i=1

In what follows, we give our attention to the Sylow p—subgroups of the general linear group

GL(n,q), where p is the characteristic of the field of ¢ elements.

Definition 3.1.4. The subset of SUT (n,F), where each element have 1’s in the main diagonal,
forms a subgroup of SUT (n,F), called Special Upper Unitriangular Group and is denoted by
SUUT (n,F).

Remark 3.1.1. The group SUUT (n, ¢) have just been defined is easily seen to belong to Syl,(GL(n, q)),

n(n—1)

the set of Sylow p—subgroups of GL(n,q), since the order of SUUT (n,q) is ¢ 2 , which is the

highest power of ¢ in the order of GL(n,q). Hence, any Sylow p—subgroup of GL(n, q) is conjugate
to SUUT (n,q) and by Sylow’s Theorem, the number of Sylow p—subgroups divides the number
[GL(n,q) : SUUT(n,q)]. Moreover, the group SUUT(n,q) represents a Sylow p—subgroup of the
groups SL(n,q), UT(n,q) and SUT(n,q). We see later that it is also a Sylow p—subgroup of the
parabolic subgroup Pj.

Definition 3.1.5. An element u of GL(n,F) is called unipotent if its characteristic polynomial is

(t—1)". A subgroup H of GL(n,F) is called a unipotent subgroup if all its elements are unipotent.
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Remark 3.1.2. The subgroup SUUT (n,TF) is a unipotent subgroup of GL(n, F) since every element
of this subgroup has all eigenvalues equal to 1. It is proved by Kolchin (see Alperin [3]) that any
unipotent subgroup of GL(n,F) is conjugate with the subgroup SUUT (n,F).

The subgroup SUUT (n,F) will be used to give a factorization of the group UT (n,F), namely we
will see that (see Corollary 3.1.9)

UT(n,F) = SUUT(n,F): Q) F*.

n copies

Note 3.1.1. Note that for n > 1, the group ® F* is not normal in UT(n,F), except when

n copies
F = Fs. Hence UT(n,F) is not the direct product of SUUT (n,F) and ® F*, in general. To
n copies
1 - 0 1
.. 0 1 : 0 .
see that ® F* is not normal, take UT'(n,F) 3 g = ' _ and ® F*> h =
n copies Do T n copies
0 0 1
0
0 1
, for some b # 1. Then we have
0 0 1
1 - 0 1 b 0 -~ 0 Lo 0 -1 b 0 1—b
0 1 0 01 -~ 0
0 1 0 9 1 o f_ " . . ¢ ® F*.
: : : : o : n copies
0 -~ 0 1 o - 0 1 0o ... 0o 1 0 0o 1

Observe that as long as the field F contains more than two elements, then we have such b, which

makes ghg~! & ® [F*. In the case, when ¢ = 2, the subgroup SUUT (n,2) = UT(n,2), while the
n copies

subgroup ® F5 reduces to the neutral group. In this case, Theorem 3.1.9 is satisfied trivially.

n copies

We conclude this subsection by discussing the parabolic subgroups of GL(n, F). We start by defining

the flags of a vector space.

Definition 3.1.6. A flag § is an increasing sequence of subspaces of an n—dimensional vector

space Vy, =V (n,F), which satisfies the proper containment; that is to say

{0} =WwWcWVvic---CV,=V(n,F).

Hence
0<dimV; <dimV, < --- <dimV, =n. (3.2)
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If dim V; = 4, Vi, then the flag § is called a complete flag or full flag.

Let F be the set of all flags of an n—dimensional vector space V,, = V' (n,F). We define an equivalence

relation ~ on F by

VoocWwc--—-CcVy)~(WoCWyC---CWs)
if and only if r = s and dim V; = dim W;, Vi.

From equation (3.2), we have
(dimV; —0) + (dim Vo —dimV}) +--- 4+ (dimV, —dimV,_;) =dimV, — 0 = dim V, = n.

Therefore each equivalence class of ~ defines a partition o - n, whose parts are (dim V;—dim V;_1), 1 <
i < r. Conversely, to any partition A = (A1, A2, -+, A\g) F n, written in ascending order, one can
associate (up to equivalence of flags) a flag {0} =V, C V; C --- C V, = V(n,F) such that the
subspaces V;, © > 1, of V,, contains of the vectors whose first Ay + Ay + - -+ + A; components are

nonzero. We summarize this in the following proposition.

Proposition 3.1.6. There is a 1 — 1 correspondence between the set of equivalence classes defined

by ~ above and the set of partitions of n.

PROOF. Established above. u

In terms of the above proposition, we can write without ambiguity § to denote the flag corresponds
to the partition A\. We may also call §) by the A—flag.

Note 3.1.2. The complete flag §» is the flag corresponding to the partition A = 1™.

Let us denote the \—flag &) given in the above definition by F\ = (Vi,Va, -+, Vk). The gen-
eral linear group G, = GL(n,q) acts on a natural way on the set of all flags of the vector space
V(n,q) by gV, Va,--- V) = (gVh,gVa,--- ,gV;), where g € G,, can be viewed as an invertible

linear transformation. This action by g preserves the proper containment and dim gV; = dim V;, Vi.

The action of G, on § is intransitive and two flags §\ = (V1,Va,--- , Vi) and §,, = (Wq, Wa, - -+, W)
belong to the same orbit if and only if £ = s and dim V; = dim W;, Vi. The stabilizer of a flag §
on the action of the group G,, on the set of flags, consists of the elements g € Gz, such that Si = B
or g(Vi,Va, -+, Vi) = (Vi, Vo, -+, V). This motivates the following definition.

Definition 3.1.7. The stabilizer of a flag §x which is associated with a partition X = (A1, Ao, -+, A\k) F
n is called a Standard Parabolic Subgroup of G,, and we denote it by Py. More generally, any
subgroup of G, conjugates to Py is called a Parabolic Subgroup.
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It is proved (see Alperin [3], Bump [11], Green [27], Macdonald [50] or Springer [71]) that a parabolic

subgroup Py of GG, consists of the elements of the form

A A - A
0 Ay - Ay

0 0 0 A
where A; € GL(A;,F), 1 <i <k, and A;; for i < j is a block matrix of size A\; x ;.

Next we would like to count the number of A—flags §\ of a vector space V(n,q), where A =

(A1, A2, -+, Ak). For this we define [r], r € Z by

qqr%ll:qr_l_{_qr—Q_F..._{_l ifT‘GZ+7
RERY if r =0, (3.4)
g [—r] ifreZ™.

Also let {r} = [r]! = [1][2] - - - [r]. Moreover by [ i ] we mean

! s ] _ 7@]!%2&]! it s > 1,

t 0 otherwise.

Then we have the following Proposition.

Proposition 3.1.7. Let s,t € N. Then

S
] counts the number of t—dimensional subspaces W
t

of an s—dimensional vector space V over F,.

PROOF. See James [39]. L

s
Definition 3.1.8. The polynomial [ ; ] is known as the Gaussian Polynomsial.

We recall that if §y =(0CVy C Vo C--- C Vi), then dimV; = Ay + Ao+ -+ A\, V1 <i <k and
A= (A1, A2, -+, Ag). Now for each ¢ > 1, the number of subspaces V;_; of V; is given by

dim V;
dim V;'_l

AL+ A+ N
AL+ Ao+ A

R O e R s
M et A

26



Chapter 3 — Structure Of The General Linear Group

Therefore the number of the A\—flags is given by

1 dimV; {M+2) A de+As A+ de+ A+ b
i | dim Vi Ml {AsHA A+ A2 {AaH{ A+ A2+ Agh
{)\1+)\2+"'+)\k} _{)\1+)\2+"'+)\k}
DM+ X+ N1 e D)
{n}

M A2} )

Thus [§2FF™D| = {n} /{1 A2} --- {\} and it follows by the Orbit-Stabilizer Theorem (see The-
orem 1.2.2 of Moori [54]) that |GL(n, q)z,| = |Px| = |GL(n, q)|/|§x“F™9)|. Hence

K?L(n,q):F&]::{Al}{Ai?}..{Ak}. (3.5)

From the definition of [r], we can see that g t {n}/{A\ {2} - {\x}. We deduce that if P €
n(n—1)

Syl,(Py) (p is the characteristic of Fy), then |P| = ¢~ 2 . Since SUUT(n,q) < Py (by taking
Ay € SUUT(Ni,q)), it follows that SUUT (n,q) € Syl,(Py) for any parabolic subgroup Py of

n(n—1)

ko Am
GL(n,q). It is possible to show that |Py| = ¢~ 2 H l_[(qS — 1), but this is not straightforward

m=1s=1
neither from (3.3) nor from (3.5) and we omit the verification.

Two important subgroups of any parabolic subgroup Py, namely the unipotent radical and the
standard levi complement of Py, are of great importance. The unipotent radical, which we denote
by U,, is defined to be the set of all invertible linear transformations which induce the identity
on the successive quotient V;/V;_1, Vi, where V; are the components of the flag §, on which the
parabolic subgroup P) is defined. In terms of matrices, the unipotent radical Uy consists of the

matrices

I, A - Ay

1

(3.6)

k-1 k

Z Aidj
+1

It follows that, if F = F,, then the order of the unipotent radical Uy is ¢*=!7

On the other hand the standard levi complement, denoted by L) consists of the matrices of the

form

Ay; 0 -+ 0
0 A22 0
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where as before, A;; € GL(\,F), 1 <i<k.

k k
Clearly Ly = ® GL(\;,F) and has order H |GL(\;, F)| if F is the finite field of ¢ elements. More
i=1 =1
generally, any non-normal subgroup of Py that conjugates to L) is called a levi complement.
Example 3.1.1. If §i» is the complete flag, then the parabolic subgroup Pi» is just the group of
upper triangular matrices UT'(n, F), while Ujn = SUUT(n,F) and Lin = ® F* = the subgroup

n copies
of the diagonal matrices (some people refer to Li» as the torus).

Example 3.1.2. 1. Let n = 2. Then the two parabolic subgroups corresponding to the par-
titions A = (2) and pu = 1% are Py) = GL(2,F) with unipotent radical Uiz = I and levi
complement L) = GL(2,F), while the parabolic subgroup P2 is the group UT(2,F) with
SUUT(2,F) as its unipotent radical and GL(1,F) x GL(1,F) = F* xF* as its levi complement.

2. For n = 3, the three parabolic subgroups corresponding to the partitions A = (3); p = (1,2)

and v = 1% are

P = GL(3,F), Ug) = I3 and L) = GL(3,F);

a g f
Pup = 0 a b|labedg feF, acF, ad—bc#0y,
\ 0 ¢ d
1 s
Utra = 01 0f]|stelF,,
0
0 0
Lig = 0 a b||abecdelF, acF* ad—bc#0p = GL(1,F) x GL(2,F);
c d
ar a b
Py = 0 ay c ||o1,a0,a3€F* a,be,deF
{ 0 0 as
1 a b
Us = 01 cl|labceFy,
{ 0 0 1
)
a; 0 0
Lz = 0 ax 0 |]al,az,a3 €F* 5 ZF" xF* x F*.
0 0 o3

\

Theorem 3.1.8. With Py being a parabolic subgroup of G, then Py = Ux:Ly. Furthermore, Py =
Np, (Uy), the normalizer of Uy in Pj.
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PROOF. It is immediate to see from (3.6) and (3.7), that Uy () Ly = {I,}. Normality of Uy in Py
follows from the fact that U, represents the kernel of the homomorphism v : Py, — L), where
acts on Py by sending the main diagonal of an element A of Py to the diagonal matrix having the
same diagonal of A. Let A € Py, be an arbitrary element. Then Aw(A)~! € U,. It follows that
A € Uyxtp(A) C UsLy. Thus Py C UyL), and the equality of Py and UyL) is established. Since
Uy < Py, then Py = Np, (Uy). This completes the proof of the theorem. u

Corollary 3.1.9. UT(n,F) = SUUT(n,F): (X) F*.

n copies

PROOF. The proof is a special case of combining Example 3.1.1 and Theorem 3.1.8. u

k

Since the levi complement L) = ® GL(\;,F), then by Theorem 2.3.2, the irreducible characters
i=1

of Ly are

K
Irr(Ly) = {®X1 Xi € IT?“(GL(MF))} ; (3.8)
i=1

where in the last equation, ® is to be understood the tensor product of characters.

Theorem 3.1.8 asserts that the exact sequence
Ly — Py — P\/U,

is an isomorphism, where the first map is inclusion and the second projection. This means that an

irreducible character of L) extends irreducibly to Py, by using the method of lifting of characters

k

described in Section 2.4. By equation (3.8), we get H |[Irr(GL(\i,q))| irreducible characters of
i=1

P). The preceding irreducible characters of Py comes from characters of L) are used as a base for

Frobenius method of induction of characters to build up characters of the group GL(n,q). The
characters of the group GL(n, q) appear into two series, namely Principal and Discrete series. The
Principal Series characters are those which are obtained from characters of parabolic subgroups
of GL(n,q). Any character which is not in the principal series characters is said to belong to the
Discrete Series. The discussion of obtaining characters of GL(n,q) from those of Py, A+ n will

be continued in Section 5.3. The discrete series characters will be discussed in Section 5.4.

3.1.3 Weyl Group of GL(n,F)

We recall that a permutation matriz is a matrix obtained from the identity matrix by switching
some columns (rows). The set of all permutation matrices forms a subgroup W of GL(n,F) called
the Weyl Group.
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Theorem 3.1.10. The Weyl group W is isomorphic to the symmetric group Sy.

PROOF. Let B = {e1,ea, -+ ,e,} be the standard basis of V(n,F). The Weyl group W act on B on
a natural way; that is if w € W, then we; = e, 1 < i,k < n. Let X = {1,2,--- ,n}. For each
w € W, the function ¢,, : X — X given by ¢, (i) = k, for 1 < i,k < n is such that we; = ey, is
well defined and a bijective. Hence ¢,, € S,,. Now if we define ¢ : W — S,, by ¢(w) = ¢y, then
it is not difficult to see that ¢ is a bijective homomorphism and hence it is an isomorphism. The

result follows. [ ]

Remark 3.1.3. The above theorem asserts that the Weyl group of GL(n, ) is independent of the
choice of the field F. It is characterized by the dimension n only.

In the next context, we introduce a special kind of matrices of GL(n,F) which are of great impor-

tance in order to describe the elements of GL(n,F) and consequently SL(n,[F).

Definition 3.1.9. A transvection is a linear transformation T on V (n,F) with eigenvalues equal

to 1 and satisfying rank(T — I,,) = 1, where I, is the identity transformation on V(n,F).

In matrix language, a transvection A;;(«) where i # j and « € F, is a matrix different from the
identity matrix only that it has « in the (i, j)th position. It turns out that all transvections are
elements of SL(n,F).

One can easily verify the following properties of transvections.

Lemma 3.1.11. For o, 8 € F,i # j,

1. Ai;(0) = I,,.

2. det(Aij(a)) = 1.

3. If a0, then Ayj(a) € UT(n,F) « i < j.
4. Aij(a)Ai;(B) = Aij(a+ B).

5. (Aij(a) ™" = Ay(—a).

6. Fori# j # k # i, the commutator [A;;(a), Aji(5)] = Au(af).
PROOF. Direct results from the definition. u

As a quick result of this lemma, we have

Corollary 3.1.12. For fized i and j, the set A;j; = {A;j(a) | o € F} forms a subgroup of SL(n,TF).
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PROOF. It follows directly by parts (2), (3) and (4) of Lemma 3.1.11. u

The subgroups defined this way are refer as the root subgroups of GL(n,TF).
Now, we come to a known theorem concerning the structure of the group G,, = GL(n,F).

Theorem 3.1.13 (Bruhat Decomposition Theorem). GL(n,F) =UT(n,F) - W -UT(n,F).

PROOF. In Singh [70], it is shown that any matrix A € GL(n,F) splits into a product A = LiywdLa,
where L1, Ly € SUUT(n,F), d € ® F* and w € W. It follows that any element of GL(n,F)

n copies
is a product of an upper triangular matrix, a permutation matrix, and another upper triangular

matrix. One can refer also to Alperin [3] for the details. u

Remark 3.1.4. Bruhat Decomposition Theorem asserts that GL(n,F) is a union (disjoint) of the
double cosets UT' (n, F)wUT (n,F) as w ranges over all elements of W. Thus GL(n,F) is a union of
n! disjoint double cosets UT'(n,F)w UT(n,F).

The next theorem gives a smaller generating set for GL(n,F) than that given by Bruhat Decom-
position Theorem, but we first mention a lemma without proof, which will be helpful in the proof

of the theorem.

Lemma 3.1.14. For each b € UT(n,F), there exists a product T' of transvections such that Tb is

a diagonal matrix having the same main diagonal entries as b.

PROOF. See Alperin [3]. u

Theorem 3.1.15. The group GL(n,F) is generated by the set of all invertible diagonal matrices

and all transvections.

PROOF. By Bruhat Decomposition Theorem, we have GL(n,F) = UT (n,F)-W-UT(n,F). Thus if we
could write all the elements of UT'(n,F) and W in terms of diagonal matrices and transvection, then
we done. Using Lemma 3.1.14, we can see that UT'(n,F) has this property. By Theorem 3.1.10,
every permutation matrices can be written in terms of permutations of .S,,, which are generated by
the set of transpositions. The action of a transposition on the standard basis B = {e1,ea, -+ ,e,}
is that it sends e; — e —— ¢; for some i # j and fixes the rest of B. Now the action of the matrix
Aji(1)Ai;(—=1)A; (1) on B is that it sends e; — e; —— —e; for i # j and fixes the other elements
of B. Multiplying this latter matrix by the diagonal matrix diag(1,---,1,—1,1,---,1), where —1
is in the (4,7) position, the resulting matrix sends e; — e; — e; for i # j and fixes the other
elements of B, which shows that W can be written in terms of diagonal matrices and transvections.
The result follows. u

Theorem 3.1.16. The group SL(n,F) is generated by the root subgroups Ajj.
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PROOF. We give the idea of the proof, which rests on the following three main points. Full details
of the proof can be found in Alperin [3].

e Every element of the group SL(n,F) can be transformed into an element of the group UT'(n, F)

by multiplying by some suitably transvections.

e Every element of the group UT(n,F) can be transformed into an element of the group

SUUT (n,F) by multiplying by some suitably transvections.

e Every element of the group SUUT(n,FF) can be transformed into the identity element I,, by

multiplying by some suitably transvections.

Thus any element of SL(n,F) is a product of transvections, which completes the proof. u

Theorem 3.1.17. All transvections are conjugate in GL(n,q) and if n > 3, then all transvections

are conjugate in SL(n,q).

PROOF. See Alperin [3] or Rotman [65]. u

3.1.4 Center and Derived Subgroups of GL(n,F) and SL(n,F)

Two normal subgroups of any group G, namely the center of the group Z(G) and the commutator
or derived subgroup G, are of particular interest. In what follows, we mention some important

facts about these two normal subgroups for the case when G is GL(n,F) or SL(n,F).

Theorem 3.1.18. The center Z(GL(n,F)) consists of all invertible scalar matrices and hence
isomorphic to the group F*, while the center of Z(SL(n,F)) is SL(n,F) N Z(GL(n,F)).

PROOF. Two different proofs are given in Alperin [3] and Rotman [65]. u

Now, we attack the commutator subgroups of GL(n,q) and SL(n,q).

Theorem 3.1.19. The commutator subgroup GL(n,q) is SL(n,q), except in the case n = q = 2.

PROOF. Suppose that n # 2 or ¢ # 2. Then by Dieudonné [17], GL(n, q)/GL(n,q) = GL(1,q)/GL(1,q)’
which is IFy. This shows that [GL(n,q) : GL(n, q)] = q—1. Now, GL(n,q) < SL(n,q) (This follows
from the fact that if aba=1b~! is a commutator of GL(n, q), then det(aba='b~') = 1, which implies
that GL(n,q)" C SL(n,q) and hence GL(n,q) < SL(n,q)). Since GL(n,q)" and SL(n,q) have the
same orders, this forces GL(n,q) to be SL(n,q).

If n = g = 2, then GL(2,2) = SL(2,2) = S3, but it is easy to see that Sy = A3 % SL(2,2), which
completes the proof. u

To deal with the commutator subgroup of SL(n,q), we need the following lemma.
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Lemma 3.1.20. Ifn > 2, then every transvection A;;j(«) is a commutator of elements of SL(n, q),

except when n =2 and (¢ =2 or g =3).

PROOF. We start with the exceptional cases. Let n = 2. Possible transvections are Ajs(«) and

Agi(a) for a € F;. We consider the case Aj2() and the other one follows similarly. Assume

0 1 6
that a = <§ ﬂ_1> , B€F, and b = <0 1) , 0 € F,. The commutator of a and b is [a,b] =

aba= b~ = . Therefore expressing the transvection Ajs(«) as a commutator of

1 (82-1)0
0 1
two elements a and b of SL(n, q) is conditionally connected with the existence of 8 € Fy, 0 € F,

such that a = (82 — 1)0. This is satisfied if 6 # 0 and 3% # 1. If [F,| > 3, then existence of such 3
is guaranteed and we can take § = «(3% — 1)1

On the other hand if n > 2, then A;;(«) = [Aix(a), Ag;(1)] for distinct 4, j and k, by part (6) of
Lemma 3.1.11. u

Theorem 3.1.21. The commutator subgroup SL(n, q)/ is SL(n, q) itself, except in the cases n = 2
and (¢ = 2 or 3).

PROOF. If n # 2, then Theorem 3.1.16 asserts that SL(n, q) is generated by the set of all transvections
in GL(n,q). Lemma 3.1.20 states that every transvestion is a commutator of elements of SL(n, q).
Combining these two results, we deduce that SL(n,q) C SL(n, q)/. Since SL(n,q) < SL(n,q), we
have SL(n,q) = SL(n,q).

If n =2 and (¢ = 2 or 3), then SL(2,2) and SL(2,3) are isomorphic to S35 and Sy respectively.
Again Sé and S’;‘ are Az and Ay respectively, which furnishes the case. u

Corollary 3.1.22. In the case n # 2 or q & {2, 3}, the group SL(n,q) is perfect.

3.1.5 Groups Related To GL(n,F)

The Projective General and Special Linear Groups

It is known from elementary group theory that the center of a group G is a normal subgroup.

So, the quotient is defined. This motivates the following definition.

Definition 3.1.10. The groups GL(n,F)/Z(GL(n,F)) and SL(n,F)/Z(SL(n,F)) are known as
the Projective General Linear Group and Projective Special Linear Group. These groups
are denoted by PGL(n,F) and PSL(n,FF) respectively.

The group PGL(n, q) has order equal to that of SL(n,q) given in Proposition 3.1.2, while the order
of the group PSL(n,q) is given by |PSL(n,q)| = |SL(n,q)|/ ged(n,q — 1), where ged(n,q — 1) is
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the greatest common divisor of n and ¢ — 1. In particular, if n = 2, then

€24 if g is odd,
|[PSL(2,q)| =
¢ —q if ¢ is even.

Note 3.1.3. If ¢ is even, then PSL(2,q) = SL(2,q), since Z(SL(2,q)) = {I2}.

It was proved (see Rotman [65]) by Jordan-Moore that PSL(2,q) is simple for ¢ > 4. In 1896,
L. E. Dickson showed (see Cameron [12] or Rotman [65]) that PSL(n,q) for any n > 2 is simple
except when n = 2 and (¢ = 2 or ¢ = 3). There are many trends to characterize finite simple
groups by their character tables. This problem has been solved completely for the infinite family
of Alternating groups A,, n > 5 by T. Oyama [59]. Lambert ([43], Theorem 5.1) proved that
the infinite family of groups PSL(2,q) can be characterized by their character tables; that is if G
is a group with the same character table of PSL(2,q), then G = PSL(2,q). He solved the same
problem for PSL(3,q) in [44]. In [45], he proved that if G is a group with the same character table
as PSL(n,q), q even, then G = PSL(n,q).

Example 3.1.3. Here, we have some of the isomorphisms between PSL(n,q) and some other

familiar groups.

1. PSL(2,4) = SL(2,4) = As =~ PSL(2,5).

2. PSL(4,2) = Ag, while PSL(3,4) and Ag are non-isomorphic simple groups of the same
orders. This result due to Scottenfels in 1900, (see Rotman [65]).

3. PSL(2,7) 2 GL(3,2) and PSL(2,9) = Ag.
The character tables of all the above groups are given in the appendix of Isaac [38].
The Affine group Aff(n,q)

An affine transformation from a finite dimensional vector space V(n,F) = V to itself is a map
¢4, consisting of a linear transformation followed by a translation; that is ¢4 5(u) = Au+b, where
A e GL(n,F) and be V.
The set of all affine transformations of a vector space V form a group under the composition of
functions. We call this group the Affine Group and we denote it by Aff(n,F). Formally the affine
group reads

Aff(n,F) = {pap | A€ GL(n,F), be V}. (3.9)

One can obtain all invertible linear transformations of V; that is GL(n,F), by setting b to be the
zero vector, b = 0, in the preceding equation, then ¢4 o(u) = Au+ 0 = Au. A result which one can
say that GL(n,F) C Aff(n, ). On the other hand, one can also obtain the set of all translations 7,
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of V, by setting A to be the identity transformation A = I,,, in the same equation. Then we get
ér1,6(uw) = Inu+ b = u+b. We deduce that the set of translations 7, : V. — V, 7(u) = u + b form
an abelian subgroup of Aff(n,[F).

Proposition 3.1.23. The abelian group T consisting of all translations 1, of a vector space V is

isomorphic to the additive group V.

PROOF. The function 6 : V' — Sy defined by 0(b) = 7, b € V is a monomorphism. Its image
Im(0) is easily seen to be all T. Thus by the first isomorphism theorem, V/ker(0) = Im(6) = T.
But 6 is one to one function. Therefore ker() = {0y }. Hence V = T as claimed. u

The affine group Aff(n,F) can be embedded as a subgroup of the general linear group of degree

n + 1. This is the statement of the following theorem.

Theorem 3.1.24. Aff(n,F) < GL(n + 1,F).
PROOF. Suppose that ¢4 and ¢:4, y are two elements of Aff(n,F). Then

Sapd s (W) = dap(Au+b)=AAu+Ab +b=A"u+0,

where A” = AA" and b = Ab' + b. Now define the function ¢ : Aff(n,F) — GL(n + 1,F), by

o(Pap) = (gl i) :

Then ¢ is a group homomorphism since

, AT A b\ (A ¥V ,
(‘0<¢A»b¢A',b/) = 0 1 = 0 1 0 1 = ‘P(QsA,b)SO((ZﬁA/’b/)-

It can also be shown that ¢ is injective. Therefore, ¢ is a monomorphism with kernel ker(¢) = {I,,}.

Hence
A b
Aff(n,F) = Im(p) = { (0 1) | Ae GL(n,F), be V(n,IF)} < GL(n+ 1,F),

which completes the proof of the Theorem. u

The next theorem, which is stated without proof, is of great importance for the purpose of the
computation of the character tables of Aff(n,F), by using the Clifford-Fischer Method.

Theorem 3.1.25. The group Aff(n,F) is a split extension of V(n,F) by GL(n,F).

PROOF. See Neumann [58] or Rodrigues [63]. u
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In the finite case when F = F,, then from the above theorem we have Aff(n,q) = ¢":GL(n,q).
In her M.Sc dissertation, Whitley [76], calculated the character table of Aff(3,2) = 23:GL(3,2).
Iranmanesh [36], had calculated the full character tables of the groups Aff(2,q), Aff(3,¢) and
Aff(4, q). The same author in [37] determined the character table of Aff(n,q) for arbitrary positive

integer n.

3.2. The BN Pair Structure of The General Linear Group

The notion of BN pair structure comes from the theory of Lie algebra (see Curtis and Reiner [9]).

Definition 3.2.1. A BN — pair (or Tits System) is an ordered quadruple (G, B, N,S) where:

1. G is a group generated by subgroups B and N.

2. T:=BNNJN.

3. S is a subset of W = N/T consisting of involutions (elements of order 2), such that (S) = W.
4. If o, pe N and puT' € S, then uBo C BoB U BuoB.

5. If uT € S, then uBu # B.

If (G,B,N,S) is a BN — pair, the subgroups B and T, and the group W = N/T are known as the
Borel subgroup, Cartan subgroup and Weyl group of G respectively. The number |S| is called the
rank of the system.

Now, the group G = GL(n,F), n > 2, has a BN —pair structure. For B, we take the group of
upper triangular matrices UT(n,q). For N, we consider the group of monomial matrices, those
are the matrices having exactly one nonzero element in each row and column. The Cartan group
T = BN N ! consists of the diagonal matrices and it is normal in N. We identify W = N/T
with the group of permutation matrices. Finally, we may take S to be the subset of W consisting
of those permutation matrices that obtained from the identity matrix by switching two adjacent
columns; that is S consists of all the transpositions of S,,. Satisfying the conditions of the BN —pair
structure for the group GL(n,q) with the above groups B, N, T and the set S, are exhausted by

Bruhat Decomposition Theorem given in Theorem 3.1.13.

Hence (GL(n,F),UT(n,F), Monomials(n,F), Transpositions(Sy)) is a Tits system with rank (Z)

_ n(n—1)
5 -

Likewise the group SL(n,F) has also a BN —pair structure. For this, let B, N,7 and W be the
groups, which together with the set S define the BN —pair structure of GL(n,F). Take By =

!The group T is known also as the minimal torus.
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BNSL(n,F) =2 SUT(n,F), No = NNSL(n,F), Ty = TNSL(n,F) and Wy = Ny/Tp. By Alperin [3],
Wy 22 S,,. Thus we may take S to be the set of transpositions of S,,. Now, (SL(n,F),SUT (n,F), Ny, S)

is a Tits system with rank <Z> = ”("2_1).

Finally, the group PSL(n,F) has a BN —pair structure. Refer to Alperin [3] for the details.
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4
GL(2,q) and Some of its Subgroups

4.1. Introduction

In this chapter, we will construct character tables of GL(2,q) and some of its subgroups. This will

include character tables of the following groups

1. GL(2,q), the general linear group,
2. SL(2,q), the special linear group,
3. SUT(2,q), the special upper triangular group and

4. UT(2,q), the standard Borel group (group of non-singular upper triangular matrices).

These groups and some other subgroups, have a lattice diagram shown in Figure 4.1. In each
of the above four groups, two specific examples when ¢ = 3 and ¢ = 4 will be illustrated as the
determination of some of the character tables of some of these groups will depend on the parity of ¢.
The character table of the group GL(2, q) will be used as a base to construct the character tables of
the above mentioned groups. Also, the irreducible characters of GL(2,q) will be used to construct
the character tables of the groups GL(m,q), for m > 3. In particular, in this dissertation we will
use the irreducible characters of GL(2,q) to produce a large number of irreducible characters of

the group GL(3,q) as we shall see in Section 5.7.

Systematic use of the dual operations, namely induction and restriction of characters from some
subgroups to the main groups and conversely, will be made. All irreducible characters of the group
GL(2,q) will be obtained from induced characters of two subgroups; namely F; x F; and IFZQ
with some suitable embedding into GL(2,q). Following to that, the character table of the group
SL(2,q), q even, is obtained directly from that of GL(2,q) because of Corollary 3.1.5. When ¢
is odd, SL(2,q) has g + 4 irreducible characters. Of these, ¢ characters will be obtained from

restriction of irreducible characters of GL(2,q), while for the remaining four characters, the group
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SUUT(2,q)

Z(2,q)

I

Figure 4.1: The lattice diagram of some subgroups of GL(2, q).

SD(2,q), consisting of elements with square determinants, will complete the picture. The group
SUT(2,q) is an split extension group and therefore the methods of the coset analysis and Clifford-
Fischer theory can be applied to obtain its character table. We apply these theories to the case
SUT(2,q), q even. However, when ¢ is odd, these theories are still applicable but are not done in
this dissertation. Also when g is even, the group SUT(2,q) will be one of the Frobenius groups,
whose representations are known. Using this fact, the character table of SUT(2, q), where ¢ is even,

will be constructed.

In the following, we give our attention to the character table of the group GL(2,q), which was done
firstly by Jordan [35] and Schur [67] separately in 1907. This has been studied extensively by many
authors, for example one can find the description of these tables in Aburto [1], Adams [2], Alperin
[3], Drobotenko [18], James, [40], Prasad [60], Reyes [61] or Steinberg [72].

Also, in describing the conjugacy classes and irreducible characters of the group GL(2, q), we follow

mainly James [40] and Steinberg [72].

4.2. Conjugacy Classes of GL(2,q)

In this section, we give representatives for the conjugacy classes of GL(2,q), which is a group of
order (¢? —1)(¢> —q) = q(g—1)%(g+1) by Proposition 3.1.1, together with the sizes of centralizers,

classes and the orders of the class representatives.

39



Chapter 4 — GL(2,q) and Some of its Subgroups

Theorem 4.2.1. The group GL(2,q) has ¢> — 1 conjugacy classes described in Table 4.1.

[ow [ 7 [ [ @ [ 7 ]

o | () 1G] 6o) [ )
| No.oftce || g-1 | ¢-1 [@-D@-22] aa-12 |
LoIel | 1 | -1 q@+n | a@-D |
lCoren@l | @@ -] aa-D ] -1 | £-1 |

Table 4.1: The conjugacy classes of GL(2,q)

where, in Table 4.1,
e by CC we mean conjugacy classes of a prescribed type of classes,
e a,BEF; a#p,
o 7 €Fp\F, and r! is excluded whenever r is included,

° in ’2;(1),’]76(2) and 7}6(3), k,1 denote the integers for which a = ¥, 3 = €' and e being a generator
of Fy,

° in %(4), k denotes the integer for which r = 6%, where 0 is a generator of IF‘:;Q.

PROOF. We claim that

e no two different classes of the same types can be conjugate,
e no two classes of different types can be conjugate, and

e the representatives given in the table have the stated sizes of classes and centralizers.

First, it is clear that the classes of the first type consists of the central elements of GL(2,q).
Therefore, each element form a self class and clearly there are ¢ — 1 such classes corresponding to

each o € F;. We consider the other three types of classes through the following set of equations.

With g = (a

b ! /
d) € GL(2,q) and o, , 3,8 € Fy, we have
c

a b a 1 _ (ex a + ba , (4.1)
c d 0 « ca ¢+ do
o 1, a b _ aa’ —f— c d+ b/o/ 7 (4.2)
0 « c d ca da
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a b a 0 _ (e« b3 7 (4.3)

c d 0 g ca dp
o 0/ a b _ aa: bai , (4.4)

0 g c d cB dp
a b 0 1 [ —brtT a4 b(r +19) (4.5)

¢ d) \=rttt pype)  \—dritl et d(r+1r9))° '
0 1 a b c d
_ . (4.6)
—rdtl r i) \c d —ar®™ 4 c(r+1r?)  —brdtt 4 d(r 4+ 19)

Now, assume that a # . Then we have the following implications.

Equation (4.1) = Equation (4.2) <= aa = ad +c, a+ba=d+ba ca=ca, & c+da=dd
— ala—a)—c=0,a—d+bla—a)=0, cla—a')=0,
c+dla—a)=0
Since a # o/, we must have ¢ = 0 and consequently, a = b = d = 0; that is ¢ = 0249, which
contradicts that g € GL(2,q). Thus interchanging o with another element of F; in the typical

element of type %(2), gives another class which is not conjugate to that one obtained by «. Hence

there are ¢ — 1 conjugacy classes of the second type for GL(2, q).

On the other hand, if & = ¢, then

Equation (4.1) = Equation (4.2) <= aa=aa+c, a+ba=d+baca=cao, c+da=da
— ¢=0, a=d.
Thus the centralizer of an element of the second type of classes of GL(2,q) consists of the elements

b
of the form ¢t = (g ) and therefore the invertibility of ¢ implies that @ must be in Fy while b can

a
be any element of F,. So, there are ¢(¢ — 1) elements in the centralizer of an element of the second

type and consequently ¢? — 1 conjugates as mentioned in the table.

Similarly, for classes of the third type of GL(2,q), suppose firstly that {o, 8} # {a’,3'}. Then
we have the following possibilities

a=a, 8£4,

a=p3,B#d,

a#a and {B#F or f=07Y,

a#d, and {p= o or B+ 0/}.
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Now

Equation (4.3) = Equation (4.4) <= aa = ac, b3 =ba ca = cﬂ/, dg = df’
— ala—a)=0,bB—-a)=0, cla—fF)=0,
d(B—p)=0.
We consider two cases out of the above six possibilities of {«, 5} # {o/, ﬂ/}. Suppose that o = o
and 3 # B'. Then d = 0 and we have cla — [3/) = 0. replacing @ with o in the last equality, we
get c(a/ — 5/) = 0. Since o % 3, we must have ¢ = 0. Now ¢ = d = 0. This contradicts the invert-
ibility of g. Let us consider the case where take o # o and 8 # . Here we have further subcases
corresponding to a = 3 or o # . In either cases, equality of equations (4.3) and (4.4) implies

that a = 0 and d = 0 with either b = 0 or ¢ = 0 respectively. So, we have contradictions in these

cases too. The other remaining cases are very similar and we omit the verifications. Therefore,

. 0 "0
whenever, {«, 5} # {a, 3 }, the elements (g ﬁ) and (% ﬁ/> are not conjugate in GL(2, q).

On the other hand, if (o, 3) = (o', 8'), then

Equation (4.3) = Equation (4.4) <= a«a = aa, b =ba, ca =cf, df = dp
— aa=aaqa, b(f—a)=0, cla—p)=0dp=dg

< b=c=0

Thus the centralizer of an element of the classes of third type for GL(2, q) consists of the elements
0
of the form t = (g d> and therefore the invertibility of ¢ forces a and d to be in Fy. So, there are

(¢ — 1)? elements in the centralizer and consequently, ¢(¢ + 1) conjugates of an element in each of
the classes of the third type. Now any class of the third type determined by a pair (o, 3), a # 3

is conjugate to the class determined by the pair (3, «) under the conjugation by the involution

0 -1
( Lo ) . In other words, each unordered pair {c, 8}, gives one conjugacy class of this type.

(g=1)(g—2)

Since there are ¢ — 1 choices for « and ¢ — 2 choices for 3, there are 5

the third type.

conjugacy classes of

Since the size of a conjugacy class of an element of the second type is (¢ — 1)(¢ + 1), which is
different from ¢(q + 1), the size of a conjugacy class of a typical element of the third type, then we

deduce that elements of the second type can not be conjugate to elements of the third type.

0 1
For the last case, where we consider an element of the fourth type A, = and

r € F2 \ Fq. The characteristic polynomial of A, is A* — (r + 77)X + 777, which decomposes into
(A = r)(A = r?). Therefore A, has eigenvalues A\ = r and A = r?. Thus the Jordan form of A, is
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0
(g q) . We deduce that two elements A; and A, are conjugate in GL(2, q) if and only if As; and
”

A, have the same Jordan form; that is if and only if {s,s?} = {r,r?}. Clearly A, is not conjugate
to any of the preceding classes we discussed since eigenvalues of an element of the first three types
are in [y, while the eigenvalues of an element of the fourth type are in IE‘ZQ \ Fy.

The next step is to count the size of the centralizer (isotropy group) of A,. Equating equations (4.5)

and (4.6), we obtain that ¢ = —br?*! and d = a + b(r +79). Thus the isotropy group of A, consists
a b

—britl a4 b(r +r9)
of Fg, but not both zero, we have |Cer2,)(Ar)| = ¢> — 1 and consequently [Cy, | = g(g —1). We

of the elements t = ( ) , (a,b) # (0,0). Since a and b can be any elements

observe that for elements of the fourth type, we have A, = A,q. Since r has ¢> — ¢ choices and

A, = A,q, this restricts the number of classes of this type to @.

As a final step, we count the number of elements in all classes that we have found so far:

(¢—1)(g—2

) 2
q(g+1)+

q —4q

(@=1)+(g—1(¢* -1+ 5 (g —1)
+1)(g—2 3 ¢?
~ o) (g et D=2 g
2 2
2° +¢* —¢* —2¢+ ¢’ - ¢°
= (¢—-1) 5
= (¢—1(@ -9 =al¢g—1)*(g+1) = |GL2,9)].
And the number of conjugacy classes is
¢—1)(@—-2) ¢ —q
-1+ g1+ IR
44+ (¢q—2)+¢q
— -0 (TG — - e = -
This shows that the classes listed in Table 4.1, are the full conjugacy classes of GL(2,q). u

In Proposition 4.2.2, we calculate the orders of the elements in each of the conjugacy classes.

Proposition 4.2.2. The elements of the group GL(2,q) have the following orders,

w0 D if g is of type TV,
e if g is of type T,
"D dem T AT if g is of type T,
lem gcd((?f,_iz)—l) ’ gcd((?j_q;)—l)’ gcd((;czz,_qu)—l)) if g is of type TW.

PROOF. We divide the proof into four parts. In each part we prove the stated order for a typical
element of one of the four types of classes of GL(2, q).
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(i) Let us consider an element g of the first type Tk(l), where g = aly, = <0

(iii)

0
@ > and o = ¥ for

«
some k. Assume that g has order t. Then

t= (a 0) B (O‘t O) =a'ly = += o' =1 <= o(a)lt. (4.7)

0 of

Let t be the order of . Then

’

t ’
/ a 0 ot 0
= = | = I, 4.8

Therefore, o(g)|t’; that is t[t. From this and equation (4.7), we deduce that t = ¢’; that is
al, has same order as of o = €¥ for some 1 < k < ¢ — 1. From elementary group theory, we
have o(¢¥) = (¢ — 1)/ ged(k,q — 1). This gives the required order of a typical element of the
first type.

1
Suppose that g = (3 ) has order ¢. Then

a
al ot
g = Y Iy <= o' =1 and p|t <= o(a)|t and plt. (4.9)
«

Since ged(o(ar), p) =1, by (4.9), we have p.o(«a)|t. It is easy to see that

1 0
g = (O 1) = I,

so that t|p.o(«). Hence t = p.o(a)) = p(q — 1)/ ged(k,q — 1).

0
Now let g = (3 ﬂ) and let ¢ be the order of g. Then

(4.10)

t
0 L0
gt = (z ﬁ) :<% ﬁt):fw:*ole, Bt =1<+=o(a)lt, o(B)|t

< lem(o(a), o(B))|t.

Let a = o(a), b = o(f) and d = ged(a, b). Suppose also that s = lem(o(«), o(3)) = lem(a,b).
Then s = %b =2 ijb d—a'bd=ab="baandged(a,b) =1. Now

s aOS_ o) 0 B ab/“ 0 _ (4.11)
7o) " \o op) o opr) " '

This implies that order of g which is ¢ divides s. We have seen from equation (4.10) that s|t.

Therefore

o _ _ o(eM)o(h
t=s = lem(o(a),0(8)) = lemfo(e),o(e)) = ——r =
(¢— 1)

ged(k,q — 1) ged(l,q — 1) ged (geabiirys sedls )
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0 1

—rdtl oy pa

r 0 r 0
(O rq> , we have o(g) = o ((O rq>> . So o(g) = lem(o(r), o(r?)).

If 6 is a generator of the group IFZQ and r = 0% for some k, such that ¢ + 1 1k, then

(iv) Finally let g = . The eigenvalues of g are A = r and A = r4. Since g ~

2 2
g —1
O(g) = 9 2 ( ) q2_1 q2_1 :
ged(k,q? — 1) ged(kq, ¢ — 1) ged ( sogteat =7+ zeathnar—y)

Hence all elements of the group GL(2, q) have the stated orders, which completes the proof of the

Proposition. u

4.3. Irreducible Characters of GL(2,q)

We have seen that there are ¢? — 1 conjugacy classes of GL(2,q) and hence there must be the same
number of irreducible characters. In Table 4.2, we list the values of these irreducible characters
on the conjugacy classes of GL(2,q). For this, we identify the group F; with the subgroup U < C
consisting of the (¢ — 1)th roots of unity by & = k, where € and x are generators of F; and U

respectively.

Theorem 4.3.1. The group G = GL(2,q) has ¢*> — 1 distinct conjugacy classes fall within four
types TV, 7@ TG and TW . The ¢2 — 1 irreducible characters fall also in four distinct types
X1, x@ . xB) and x@ described in Table 4.2.

Table 4.2: Character table of GL(2,q)

H | = ] v | 7]

Re a 0 a 1 a 0 0 1
b 0 « 0 « 0 B —patl oy pa

INo.ofcc||  ¢-1 | ¢-1 [G@-D@-2/2] aa-12 |
I el | 1 -1 | g+ q(qg—1) |
| lce@)l [ @-D-a) | ae-1 ] -1 [ ¢£-1 |
A = X;E;l) a2k a2k akﬁkz 7k(g+1)
b | g o s G
Yy = Xl(cgl) (¢ + 1)ak+l Yaas. ak@l + az@g 0
e = XD (q—1)a —ak 0 — (7 + )
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where, in Table 4.2,

o« a,BE, a#p,

e s,t denote the integers for which a = £° and 3 = €!, € is a generator of Fy,

r € Fpe \Fy and r? is excluded whenever r is included,

mn ngl)v Xf)a kzovlv 7q_27

inxgjl), 0<k<l<qg—2,

mn X,(f), q+1tk, k=1,2,--- ,¢> — 1 and kq is excluded whenever k is included,

) ~ 2mj .
" is the homomorphism : Fry = (eq) — C* given by ~(e3) = e = ed1" ford=1,2 and

0<j<q¢—2

PROOF. The function det : GL(2,q) — [y defines a group homomorphism. For k =0,1,---,q—2,
we set A\ : GL(2,q) — U to be Ai(g9) = xw(det(g)), where x; is an irreducible character
of Fy. It is clear that the composition xj o det : GL(2,q) — U is a group homomorphism.
Thus it is an ordinary representation of degree 1 and consequently is an irreducible character
of GL(2,q). We recall by Theorem 3.1.19 that the derived subgroup GL(n,q) is SL(n,q) ex-
cept when n = ¢ = 2. By Proposition 2.3.4, the number of linear characters of GL(2,q) is
|GL(2,9)|/|GL(2,q)'| = |GL(2,4)|/|SL(2,q)| = ¢— 1. Thus, apart from the case GL(2,2), the ¢—1
linear characters given by A are all the linear characters of GL(2,q). In the case GL(2,2) = Ss,
we have the extra linear character corresponding to the sign of the permutations of Ss.

The next table shows the values of the linear characters A\ on the conjugacy classes of GL(2, q).

Table 4.3: Values of the linear characters on elements of GL(2, q)

(w7 [ @ | 7 ]
I [ 3@ | 3@ | xe(ea(® | xalrle)) |

where 0 < k < q— 2.

In fact, the ¢ — 1 linear characters given by the powers of the determinants comprise all the linear
characters of the group GL(n, q), for any n € N and any prime power ¢, excepting the case GL(2,2).
This will be proved in Theorem 5.6.3.

Let T be the torus in GL(2, ¢), which by Section 3.2 consists of the 2 x 2 diagonal matrices; that is

0
r={(" ")|ader;}.
0 d
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We can see clearly that "= F; x F} and hence

Irr(T) = {xwxal x&: xi € Irr(Fg)}.

We recall by Definition 3.1.4 that the group SUUT(2,q) consists of the elements of the form

10
(0 1> , b € Fy. By Theorem 3.1.9, this group is normal in UT(2,q), where a typical element

b
of UT(2,q) will have the form (g d> , b€ Fy, a,d € Fy. The quotient UT'(2,q)/SUUT(2,q) is

isomorphic to T' = Fy x Fy. We will use the method of lifting of characters from the quotient of
a group by a normal subgroup, to get characters of the main group as described in Section 2.4.
Hence Irr(T) C Irr(UT(2,q)), where

XkX1 ((g Z)) = xx(a)xi(d). (4.12)

The following table shows the values of these characters on classes of UT(2, q), which they can be
deduced easily from Table 4.1 [of course we need to check whether a class in GL(2,¢q) will remain
as it is or will break into classes in UT'(2, ¢)]. The full character table of UT'(2, q) will be discussed

in Section 4.6.

Table 4.4: Conjugacy classes and some irreducible characters of UT(2, q)

[ mee [ 70 [ 77 [ 77 |
o | (5a) |G| ()

H No. of CC H qg—1 ‘ g—1 ‘(q—l)(q—Q) H

L el | v [ et [ 0

lCoreg@! | aa-1> | aa-1) | @-1> |

L oo [ x@x@ [ xi@x@ | xalexa® |

Now, we use these linear characters of UT'(2,q) as a base for Frobenius method of induction of
GL(2,q)

UT(2,q)" We consider the following

characters to get characters of GL(2,¢q). Thus let xz; = xxxi1

two cases

Case I: Suppose that x # x;- Then we have
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(i) If g is in a class of the first type; that is g = aly for some o € Fy, then

. |CGL(2,q) (9)]

= Cura (@ HOXH(@) = (@ + Dxi(@)l@)

Xk,l(g)

1

(ii) If g is in a class of the second type; that is g = <g
o

) for some « € Fy, then

_ 1Car2,9)(9)]

 1Cur.9(9) 1)X’€(O‘)Xl(04) = xx()xi().

q
q(q—1)

Xk1(9)

0
(iii) If g is in a class of the third type; that is g = <(g ﬁ) for some «, 3 € Fy, a # 3. Then we

/ 0
can check that the conjugacy class represented by g = (g ) which is conjugate to g in
o

GL(2,q) is no longer conjugate to g in UT(2, q). In this case we have

_ xe(@xi(B) | xu(B)xila)
wite) = (oo @) (0 + 0 )

= (g 0P (S SO @) + G)ae)

0 1
Xk,1(g) = 0, since there is no intersection between a class of this type and the group UT'(2, q).

for some r € Fp, \ F¥, then

(iv) If g is in a class of the fourth type; that is g = ( ;

Note that an element of the fourth type has eigenvalues r and r¢ which are in F; \IF:‘;, while

the eigenvalues of any element of UT'(2, q) are in [Fy.

Let us now check the irreducibility of the above characters.

(Xki> Xk1) = mg@;@m Xk1(9)Xk1(9)
_ (g—=1D)(g+1)? P
= W=+ 1)Xk(a)Xl(O‘)Xk(0‘)Xl(a) +

(¢q—1)(q—2)q(g+1)

(g—1)(¢* - 1)
q(¢—1)*(¢+1)

xk(a)xi(@)xk(@)xi(@)

+ UMD apa(8) + (8 (@) (H@)(6) + () (a)
g+ 1
RN (4.13)
+ e S (@ () + (B u() (T (9) + T

aFl

In the last term of (4.13), we have divided by 2 because interchanging o with 3 in the main diagonal

of an element in a class of type 7®), does give the same conjugacy class.
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To evaluate the last sum of the right hand side of equation (4.13), we will use the abelian group

0
T = F; x Fy of order (¢ — 1)2 and hence of index ¢(g + 1) in GL(2,q). Let to 5 = g 5 be an

element of T. With xxx; be an irreducible character of T, defined as before and for fixed k£ and [,
the function & : T'— GL(2,C) given by

B Xk(a)XlU3) 0
(ta,p) = ( 0 Xk(ﬁ)Xl(O‘)>

is a representation of 7. Then £ = & @ &, where &1,&, : T — GL(1,C) given by

§iltas) = xk(@)xi(B),  &altas) = Xxk(B)xi().

It is clear that &1,& € Irr(T). Also

Xe(ta,3) = xx(@)xi(8) + xx(B)xi(a).

Thus (xe¢, x¢) = 2 and hence

2= (o) = 7y L) = g 2 X Tella)
geT a,B€F;
1 1
— W azz;g Xe¢ (ta,a)Xig(ta,a) + m az?;ﬁ X¢ (taﬁ)xig(taﬂ)

= ( > Gael@)xa(a) + xe(@)xi(@)) (Xe(e)xi(a) + Xk(a)Xl(a))>

aclFy

b (Zm(a)xl (8) + xi(B)x(e)) (Rr (@) (B) + mmma)))
aFf

- i (Zuk(a)m(ﬂ) (B (e) (K(a)x() + mﬁ)xl(a») .
aFB

Therefore

> Oa(@)xa(B) + xr(B)xa(@) (r(@)Xi(8) + Xr(B)xi(@) = 2(¢ = 1) —4(g — 1) = 2(¢ — 1)(¢ - 3).
a#B

Turning back to equation (4.13), we get

o (g+1) 1 1 vy et 1 (g—3)

(Xhols Xbeyt) = q(q—1)+q+72(q—1)22(q 1)(g—3) q(q—1)+q+(q—1)
(g+D+(@—-1)+a@=3) _20+¢ -3¢ _¢*—q_,
q(qg—1) 7 —q @?—-q

This shows that xj; for 0 < k <1 < g — 2 are all irreducible.
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It is easily seen that x1; = xxXx1 = XiXx = Xi,k- Since k and [ are distinct and they range between

(g=1)(g—2)
2

0 and g — 2, there are irreducible characters xj,;.

To see that two characters xx; and X,/ for0 <k<l<qg—2and0< K <l < q — 2 with
(k,1) # (K',1") are distinct, refer to Corollary 28.11 of James [40].

This completes the proof for Case 1.

Case II: Suppose that y; = x; that is [ = k. By g € C € T() we mean an element g € GL(2, q)
in the conjugacy class C of type 7. Then by computations similar to Case I, we have

o lfgeCeTW, then xpi(g) = (q+ xi(e).

e If g€ C € TP, then x14(9) = x3().

e IfgeCeT®, then xxr(g) = 2xk()xk(B).

e Ifgec CeTW, then Xkk(g) = 0.

Now
B 1 oy La=D@+1)? 5 =
(Xk ks Xk k) = ’C;L(ngg(:zq) Xkk(9) Xk (9) = - )2(q+1)Xi(Ol)X%(a)
_ 2 _ _ _
b WmD@ =D b vag @D Daat D) o 0060 @ )xE8)

q(g —1)*(g+1) 2q(q —1)*(g+1)

1 1 2q-—2 —1)+2¢2—-14 2¢% — 2
_ o let) 1 20¢-2) (@t +(e-D+2¢°—4¢ _2°—2 _,

q¢q—1) ¢ (¢—1) q(q—1) ?—q)

Thus x,k is not an irreducible character of GL(2,q). We next set St := xo,0 — 1. Therefore

e IfgcCecTW, then St(g) = (¢+1)—1=q.
e Ifge CcT®@, then St(g)=1—-1=0.
e Ifge CcT® then St(g)=2—-1=

e IfgeCecTW, then St(g) =0—1=—1.
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Since
I S < (g=1)¢
(St,St) = G al, 2, SUNSUI) = 2+ 1)
L a=Dlg=24(g+1) (¢ —9)(* —q)
2q(q —1)*(¢+1) 2q(q —1)*(g+1)
_ q n (q—2) L4

(a—1D(@+1)  2(¢—-1) 2(g+1)

2 +qla+ (g —2)+*q—1) 23 +¢—¢* =20+ ¢* — ¢
2q(g+1)(g— 1) B 2¢° — 2¢q

2¢° — 2g B

2¢ —2¢

we deduce that St is an irreducible character of GL(2, q). The character St defined above is called
an Steinberg character of GL(2,q). In fact for the group GL(n,q), Steinberg [72] defined |P(n)]
irreducible characters corresponding to the partitions of n. These characters defined by Steinberg
come from the action of the group GL(n,q) on some geometric entities. The character St corre-
sponds to the partition (1,1) F 2. The other Steinberg character of GL(2, q) corresponding to 2 i 2

is the trivial character of GL(2, q). Steinberg characters will be studied in more details in Section 5.5.

We know from Proposition 2.3.3 that a product of a linear character by an irreducible charac-
ter is an irreducible character. Thus by tensoring the ¢ — 1 linear characters A; with the Steinberg
character St, we get ¢ — 1 irreducible characters of degree ¢. In the following we give the values of

these ¢ — 1 irreducible characters on the classes GL(2, q)

o If g€ C € TW, then A\t St(g) = X2 ().
o If g C € T@, then \;St(g) = 0.
o If g C e T®, then \;St(g) = xu(a)xs(6)-

e IfgeCe T(4)7 then A\, St(g) = —Xk(rqﬂ)-
The ¢ — 1 irreducible characters A\;St are all distinct, because for the primitive (¢ — 1)th root of
0
unity e, we have A; St ((; 1)) = xx(g), which gives distinct values for 0 < k < ¢ — 2.

Note that A\;St(g) = Xk, — Ak, V 0 <k < ¢g— 2. We may denote A\, St by 1.

So far we have found

e g — 1 linear characters.

e ¢ — 1 irreducible characters of degree g.
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W irreducible characters of degree q + 1.

Thus so far we have (¢ — 1)+ (¢ — 1) + (q71)2(q72) = (q71)2(q+2) irreducible characters. Since there
are q? — 1 irreducible characters of GL(2,q), we need to find @ additional irreducible characters.

Moreover, if we add up the squares of the degrees of the characters we have found so far, we get

(q—1)(q—2) 20 —2+2¢*—2¢> +¢* — ¢®* — 34> + ¢+ 2

(g—1)+(g—1)¢* + 5 (¢+1)° = 5
¢+ —5¢%+3g
_ . ,
Now
4 3 2 4 3 2 2
q" +q° —5¢° +3q ¢ +q¢—5"+3q ¢ —q
IGL(2,q9)| — =q(qg—1)%*(q+1) - = (g—1)%

2 2 2

It will be shown that each of the remaining @ characters will have the degree g — 1.

We aim to find the remaining q2qu irreducible characters of GL(2, q) by using the characters of the
0

group FZZ. The group IF;Q = (o) is embedded into GL(2, q) by o — k,, where k, = (g q) . Now
o

c® 0

the group K = (k,) = {(0 s

of index ¢? — q. If s is a multiple of ¢ + 1, that is s = (¢ + 1)j for some 1 < j < ¢ — 1, then

015 = gtlatl)i = gPigl = gigt = g(@t1)i = g5 Thus when s = (¢ + 1)j, the elements k,* =

) |1<s<¢®— 1} is an isomorphic copy of IF;Q in GL(2,q)

G'(Q"l‘l)j 0
kgs = | are the scalar matrices in GL(2,¢q). On the other hand, if s is not a
0 olat1)i

multiple of g+ 1, then 09 # ¢*. Note that there are (¢> — 1) — (¢ — 1) = ¢ — ¢ such integers s and

consequently, ¢ — ¢ non-scalar k, in K.
Therefore, K meets GL(2,q) only on classes of type 7(0) and T(®.

Since K is cyclic, its irreducible characters are known (Theorem 2.2.4). If 6, € Irr(K), then
we let ¢ = GkT?{L@’q) and yx = le{é. Now using Proposition 2.5.5 we obtain

C
o IfgeCeTW, then gy(g) = “2290,(0) = (¢ — )xa(0).

o If gc C € TP, then ¢r(g) = 0.

e Ifge C eT® then ¢p(g) = 0.
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In the next step, we find the remaining irreducible characters of GL(2,q). For 1 < k < ¢? — 1 such
that ¢+ 11k, let 71, := x0,—k%k — ¢r — X0, and note that 7, is a combination of known characters
of GL(2,q). In Table 4.5 we list the values of 7, on classes of GL(2, q).

Table 4.5: Values of 1, on classes of GL(2,q)

H | o [ ] ® | 710 |
Xo—% || (@+Dx—r(a) | x—r(a) | x—&(a) +x-&(B) 0
Yy, axi () 0 Xk () xx(B) =X (r7th)
Xo,—kUk || (@ + @)x—k(e) 0 Xi(a) + xi(8) 0
X0,k (@+Dxe(a) | xela) | xe(a)+xx(B) 0
b ¢ — qxi(e) 0 0 Or (1) + O (r?)
I m [ @@ | x| 0 | —(0(r) + 0x(r)) |

There are (¢ — 1) — (¢ — 1) = ¢® — ¢ characters 7 of GL(2,q). We have

-t () = (A D=1
(T, T) = |GL(2’Q)|96G2L(:2,Q) k(9)7x(g9) = e 12 D)
(¢—1(g—1)(g+1) alg —1) e
R R CED R CEECESY TEF*ZQ\F;(GWH‘)’” ) @) + T ()
_ G-y 1.t i T T
B S R T ERCESY D (Ok(r) + 0k(r)) (Ok(r) + Ox(r?)) (4.14)

reF, \Fy

and note that replacing r with 77 in an element of a class of type 74 produces the same conjugacy
class. To evaluate the sum in the last term of the right hand side of equation (4.14), we use the
following two groups. Let K be the subgroup of GL(2,q) defined earlier, which is isomorphic to

IE‘*

e and suppose that r € F;z. Also, let

{2} (o)

Then K and H are both abelian groups of orders ¢> — 1 and g — 1 respectively with H < K. Now
for any r € IF;2 and for fixed k, the function 4¥) : K — GL(2,C) given by

(k) r 0 [ Ok(r) 0
“(6) (5 i)

is a representation of K. Then v*) = *Ak) @ 'yék), where %k)’ fyék) : K — GL(1,C) given by
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We have ’yik),’yék) € Irr(K). Also

Xy (k) ((g i)) = 0 (r) + Ox(r?).

We deduce that x,) is a sum of two non-equivalent irreducible characters. Also note that x., ) i =
205,15

Now
2 = <X»y(k>vxfy(’€)> \K| > Xy (9) %m0 (9)
geK
= S 3 )+ A + B,
relf*,
Thus
D (Ok(r) + 0k (r) Bk (r) + O (1)) = 2(¢* — 1).
relf*,
Similarly
1 J—
4 = (200155, 20k 15 ), = <X7(k>l§7X7<k>l§>H = > i (@)x,w i (9)
geH
= — Z Ok (r) + Ok (r1) (Ok(r) + Ox(r?)).
T‘EF*
Thus
> (Ok(r) + 0 (D)) Br(r) + Ok (r?)) = 4(q — 1).
relfy
Hence

Yo Or) +0(rM) Or(r) + O(r?) = 2(¢> — 1) —4(g — 1) = 2(¢ — 1)*.

reF?, \Fy

Now returning back to equation (4.14), we get

oy = @D 1 2= (g=1D’+(@= D@+ +alg =1’
’ ql¢g+1) q 2(g-1)(¢+1) q(g—1)(¢+1)
_ (@=Dlg—l+a+1+¢—q _alg+D) _,
q(¢—1)(¢+1) qg+1)
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Thus 7, € Irr(GL(2,q)). From Table 4.5, we can see that m, = 7. This restricts the number
of m’s to ‘122—_? We claim that these characters are all distinct. Assume that ¢ + 1 t k,[ and
k21, lg mod(q*> — 1). We show that 7 # 7. Recall that the character X~k of K and H is given

0
on element g = (g q) by X, (9) = Ok (r) + Ok (r?). Now
r

e if g € H, that is r € Fy (thus r? =), then x,u) (g) = 20x(r)

e ifge K\ H, that isr € Fr, \ Fy (thus 77 # r), then x. &) (g) = Ok(r) + Ok (r9).

Since k 2 1, g mod(q®> — 1), we have X, and x., o) are distinct. Thus either Or(r) # 0;(r) for some
r € Fg or Oy (r) + 0(r7) # 0i(r) + 6,(r?) for some r € Fy, \ Fy. Thus m, # m.

Finally, to be consistent with the notation given in the character table of GL(2, q), shown in Table

4.2, we use o, a € [ to denote Xk(). The same applies for the elements r € IF:;Q, where 7* means

O (r) for 6y € Irr(FZz). Also, the irreducible characters A, ApSt, xx; and 7, will be renamed
to X,(Cl), X,(f), X,(fl) and X,(:l) respectively. Hence, Table 4.2 is the character table of GL(2,q). This

completes the proof of the Theorem. u

Summary and Discussion

It is well known from elementary theory of ordinary representations that the number of irreducible
characters is the same as the number of the conjugacy classes of the finite group G. In general,
there is no way of associating a conjugacy class to each irreducible character. However, we do
have a very natural correspondence between the conjugacy classes and the irreducible characters of
the group GL(2,q). The groups Fy, F?s; and their character groups Ch(F;) and Ch(FZQ); are used
respectively to parameterize the conjugacy classes and the irreducible characters of GL(2,q) as
follows. To give a representative of a class in the first two types of classes, we use only one element
a € [y and the same for the first two types of characters, we use only one character x € C h(}F:;).
Note that the union of conjugacy classes of the first type will give the center of the group GL(2, q),
while the union of characters of the first type form a group isomorphic to the center of the group
GL(2,q). To represent a class of type 7 (), we have used two distinct elements «, 8 € [y where
the conjugacy class is unaltered if we interchange o with ( in the class. We have used two distinct
characters xg, x; € Ch(F;) to parameterize a character of the third type and we have seen that the
product of x&, x; € Ch(IF:;) is commutative. Finally, to obtain a class of type 7, we made use of
the elements r € Fzz which are not in F; and whenever we choose such r, we exclude r? because
r and r? give the same conjugacy class. Also to produce characters of the fourth type, we used
characters 6 € Ch(F;) which do not decompose into characters in Ch(IF;) and whenever we choose

such k to index a character of the fourth type, we exclude kq from the indexing set because k and
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kq give the same character. So we can say that there is a complete duality between the conjugacy
classes and the irreducible characters of the group GL(2, q). Let € and € be generators of the groups
[y and IF‘ZQ respectively. Table 4.6 shows the association of a class to an irreducible character of
GL(2,q).

Table 4.6: Duality between irreducible characters and conjugacy classes of GL(2, q)

H Irreducible Character | Corresponding Conjugacy Class H

o 7~ (0 ;)
X 72 = (85 ;)
e - (5 )
Xgl) 7;(4) = _g(gﬂ)q 9k_i9kq>

As a final remark, the above duality between the conjugacy classes and irreducible characters of
the group GL(2, q) will be satisfied in general for all groups GL(n, q). A similar table of duality for
the group GL(3,q) will be given in Table 5.13.

4.4. Character Table of SL(2,q)

We recall by Definition 3.1.2 that the group SL(2, ¢) consists of the 2 x 2 matrices with determinant
1. This group is normal in GL(2,q) and the quotient GL(2,q)/SL(2,q) = F;. Also by Proposition
3.1.2 we have |SL(2,q)| = q(¢ — 1)(¢+ 1) = (¢* — q).

The character table of the group SL(2,q) has been studied extensively by many authors, for ex-
ample Adams [2], Berckovich [6], Collins [13], Fulton [22], Gehles [24], Hageman [31], Humphreys
[33], Prasad [60] and Springer [71] and others (some of the authors studied the character table of
SL(2,q) for only one case of ¢, even or odd. As we shall see later that the character table depends
on the parity of q).

For determining the character table of the group SL(2, q), we first need to find its conjugacy classes.
These conjugacy classes come from those of the group GL(2, q) that have determinant 1. We need
to check whether a class of GL(2, q) with determinant 1 splits in SL(2,q) or remain as it is. Note
that two non-conjugate elements in GL(2,q) can not be conjugate in SL(2,q). The four types of
classes of GL(2,q) have determinants given in Table 4.7.
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Table 4.7: Determinants of the elements of GL(2, q)

[ [ [ ]]
[t [ [ [op [7]

Elements in classes of type 71, 73 76G) and 7™ are in SL(2,q) if and only if a® = 1, o? =
1, of = 1 and @) = 1 respectively. If a? = 2 = 1, then k € {O,‘%l}. Thus o = =+1.
Consequently, if ¢ is an odd prime power, then 1 # —1, while if ¢ = 2°, s > 1, then 1 = —1. Thus

let us consider each case separately.

4.4.1 Character Table of SL(2,q), g =p™, p an odd prime, m > 1
Conjugacy Classes of SL(2,q)

In this case, Z(SL(2,q)) = {I2, —I2}. Thus the first family of classes of GL(2, q) gives us two classes
in SL(2,q) namely Iy and —I5. We will use the notation ’26(1) instead of Is. Clearly both these

classes have size 1 each.

Now 7;(2) C SL(2,q) iff k € {0, %} Hence we need only to consider ’26(2) and ’Tg of GL(2,q).
2

11 -1 -1
Since (0 1) € ’16(2) and ( 0 ) € Tg, we denote the 7(2)1 by —’]6(2). In the following we
2

q—
2

2)

claim that each of 76(2) or —’]E)( splits into 2 conjugacy classes of SL(2,q) respectively. Hence we
(

obtain 4 classes of type 7() in SL(2,q), namely ’]612), 76(52)7 —’]6(12), —76(52), with representatives
1 1 1 ¢ -1 -1 -1 —¢ .
, , , respectively.
0 1 0 1 0 -1 0 -1

b
We calculate the size of the conjugacy class ’]6(12 ). We need to find g = <a d) € SL(2,q) such

c
that
11 ab:cH—cb—i—d:ab llzaa—i—b‘ (4.15)
01 c d c d c d) \0 1 c c+d
a b 9
So we must have ¢ = 0 and @ = d. Thus g = 0 . But we know that ad — bc = a* = 1.
a

Therefore a = 1 and b can be any element of IF,. This gives in total 2¢ elements in the centralizer
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)| ?—1

and consequently |’ZE](12 5

1 11
Similarly (O i) € ’2'0(82), which is conjugate to <O 1) in GL(2,q) but not in SL(2,q), has a cen-

tralizer size 2¢. Hence |’26(€2)| = (127—1 in SL(2,q). By similar argument the class —’26(2) of GL(2,q)
splits into two classes, namely —76(12 ) and —76(52), each of size ‘12771

0
Any element <(; ﬁ) € 7;@(?)7 a=¢eb#£¢e =3 in GL(2,q) has determinant 3. Therefore

<((); g) €SLI2,q) <= af=1l<=f=at—=1=—k.

Since a = 1 and a = —1 are the only self inverse elements in Fy, the third family of classes of
GL(2,q) gives 152 classes 79 ke {0, 1} with elements of type @ 0 Exclusion of a = 1
) 8 3 K~k )79 yp 0 o) -

and o = —1 imply that there are ¢ — 3 choices for a and observing that swapping o with a~! in

’];(3_) . produces the same conjugacy class. The next two equations are used to compute the size of

0 b
the centralizer of an element of this type. Let z = <3 _1> € SL(2,q). If g = (a d) € SL(2,q)
a

C

a 0 a b\ [ ax ba (4.16)
0 ot ¢ d)  \ea™' da7')’ '
a b\ [fa O _ [aa ba~! ' (4.17)
c d) \0 ot ca da~!
Equating equations (4.16) and (4.17), we obtain ca = ca™! and ba = ba~!, which has unique
solution ¢ = b = 0. (Note that o # 1 or —1). Since ad — bc = ad = 1, we have d = a~'. Therefore

such that

. . a 0 . .
g € Cgr2,9) () if and only if g = (0 a_1> , a € Fp. So [Csr,9)(7)] = ¢ — 1 and it follows that
\%(,?fk! =q(g+1).

0 1
element is in SL(2,q) if and only if 771 = 1. Let 0 be a generator of IFZQ; that is o(f) = ¢ — 1.
Then #9+1 is a generator of Fy. So that F; = <0q+1> & Zg—1. Now the elements r € Fp \ F,
which satisfy 77t = 1 are the elements of the form r = 0@~1J for j = 1,2,--- ,%. Note that

rd = gla—Digala—1)i = g(¢>~1Dj = 1. Also note that if j= q;21 +1= %1, then r = 9~V

(a®*-1) S : .
o = —1, which is an element of Fy, but our choice of r is in F2 \ F,. We conclude that there

The element A, = < ) € ’2;6(4) of GL(2,q) has determinant r?*!. Therefore this

are at least ‘%1 conjugacy classes in SL(2,¢q), which come from Tk(4) classes of GL(2,q).
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0 1
Let us calculate the size of the centralizer of an element A, = > of SL(2,q) of type

-1 r+rd

%(4). For g = (a
c

b
d> € SL(2,q) we have

(0 1 > <a b) _ ( c d > | (4.18)
-1 r+7r9) \c d —a+c(r+r?) —b+4d(r+r?)
(a b) <O 1 ) _ (b a+b(r+rq)> . (4.19)
c d) \-1 r+r? —d cH+d(r+r?)

g€ C’SL(qu)(Ar) <~ c=-b at+blr+rl)=d, —d=—-a+c(r+r?), c+dr+r?) =-b+d(r+ri).

Thus

b
Hence g = ¢ and we have a® + ab(r +79) + b2 —1 = 0. If a = 0, then b = +1.
—b a+b(r+r9)
0 1 0 -1 _
Hence g = or g = . On the other hand, if a # 0, then b de-
-1 (r+r9) 1 —(r+r9

pends on a and the fixed element r + ¢ and hence we have ¢ — 1 possibilities for g. Thus we have
(¢ —1)+2 =g+ 1 candidates for g in total. Hence [Cgr(24)(Ar)] = ¢+ 1 and [[A;]| = q(g — 1).

We summarize the foregoing elements of SL(2,q) in the following.

Type Repyg No of Conj. Classes |C’SL(2’q) (9)] Ilg]|

10
7" 1 3 1
0 (0 1) q q

2q

|
S -
I
)
N———
—_
)
[ V]
™I
—

Q

| O
—

~
=)
l\)‘l
w
=)
|
[
=)
—
Q
+
—
S~—

q+1 q(g—1)

|
’_\O
|
—
=
+ =
<
=]
SN—
~
=
w‘l
_
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By counting the number of elements in the conjugacy classes we have found so far, we get
-1 ¢-1 ¢-1 -1 (¢-3d¢+l  (¢-Dalg-1)

I+l + gt 5
4+ 4 -4+ P -2 -39+ —2¢° +¢
N 2
2q3—2q

= =5 = ¢* —q=1|SL(2,q)|.

This shows that we have found all the conjugacy classes of SL(2,q). The number of classes of this

group is

-3 -1 1242q—14
I4l+141+1+1+ 22240922 a
2 2 2
Proposition 4.4.1. Let t((]21), fté%), téi), ftéi), t,(f)_k, tgl) be elements of types ’26(12), 7’16(12), ’]6(52),

—’2'0(82), ’Z}C(’g_)k, 7;(4) respectively. With p being the characteristic of Fy, then

=q+4.

(i) o(T") =1,

(ii) o(-T") =2,

(iii) o(tfy) =p,

(iv) o(—t5)) = 2p,

(v) o(ty?) = p,

(vi) o(—t()) = 2p,
(vil) o(t ) = (¢ — 1)/ ged(k,q — 1),
(viii) o(tM) = ¢+ 1.

PROOF. All follows by Proposition 4.2.2 as follows

1. (i) and (ii) are trivial.
2. For té21), we have e¥ = 1 = k = ¢ — 1. Therefore 0(75621)) =p(g—1)/ged(¢g—1,q—1) =p.

3. For —t((fl), we have e = —1 = k = %+, Therefore o(t(()Ql)) =plg—1)/ged(F, g — 1) =
pla—1)/% =2p.
4. (v) and (vi) are similar to (2) and (3).

. _ 3) 1 1 g1
5. Since | = —k, we have o(t;”” ;) = lem (gcd(qu_l), ng(‘q_klvq_l)) = gcdgk,q—l)'

6. For fixed t,(:l) € '2;(4) we have k = (¢ — 1)j for some j € {1,2,--- ,%}. Now

o) = lem ( (¢—1) (¢*—1) (> - 1) )
F ged((q —1)7, (¢ — 1)) ged((g — 1)7, (¢* — 1)) ged(g(q — 1)4, (¢ — 1))
= lem(l,q+1,g+1)=q+ 1.

Hence the result. u
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Irreducible Characters of SL(2,q)

We aim to find all the irreducible characters of SL(2,q). Note that |Irr(SL(2,q))| = g+4. In Table
4.8, we list the restriction of the characters of GL(2,q) to SL(2,q).

Table 4.8: The conjugacy classes of SL(2,q), ¢ is odd; and the restriction of the characters of
GL(2,q).

[ ces | 70 [ 70 [ 70 [ -7 |
Rep o (1 0) (—1 0> (1 1) <—1 —1)
0 1 0 -1 0 1 0 -1
| No.ofcc | 1| 1 R 1 |
| Csop@l | #-a ] &#-a | 20 | 2q |
L el [ 2 [ 1 [ 5] 5|
Ak 1 1 1 1
(0 q q 0 0
(o g+1 | (=) g+1) 1 (—1)kt!
Tk g—1 | (=1D)"g-1) ~1 (—1)FH

Table 4.8 (continued)

| ces | 72 [ 77 | 7% | 1Y |
Rep o (1 a) (—1 —g> (a 0) (0 1 )
0 1 0 -1 0 ot -1 r+4+7r9
| No.ofcc | 1| 1 | a3 | 1 |
lCstew@l ] 20 | 20 | -1 | q+1 |
Loel [ 5 1 % | ae+y [ oaa-n |
Ak 1 1 1 1
Ui 0 0 1 1
Vi 1 (—1)k+ atk=D 1 g—(k=D 0
T —1 (—1)F+t 0 — (7% + 7%9)

The next duty will be to check the irreducibility of the characters of GL(2, q) restricted to SL(2, q).

Firstly since all linear characters of GL(2,q) correspond to the powers of the determinants and

since each element of SL(2,q) is of determinant 1, then )\kigfg ’;1)) = )\, the trivial character of

SL(27Q)7 k:()?l? 7q_2
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It is clear from Table 4.8 that the values of 1, do not depend on k, 0 < k < g — 2. So we

may rename it to 1. Now

_ _ 2
(W) = q31_q<2q2+q6123(Q+1)+q(q 21>>

1 <4q2+q3—2q2—3q+q3—2q2+q>
2

_ 1 <2q3—2q>_q3—q_1
?—q 2 ?-q

Thus ¢ € Irr(SL(2,q)). We observe that v is the Steinberg character of GL(2, q).

3

L=}
L

For the third family of characters 1y, firstly we fix [ = 1 and for each k£ € {0,1,-- -, q;;’} we have

q—3

2

~—

g(g+1)j@a*=t a2

(W, bos) = ¢f (g+ 1%+ (g +1)°

q—3

To evaluate the term Z @k 4 a=*=1)2 we use
1

q=3 q=3 q—3
2 2 2
Z |A(k 1) A—(k—l) |2 _ Z a2(k—1) + Z 2+ Z a—2(k—1)
1 1 1
q—3 qg—3

q—l
We recall that ' = 0, where ¢ is a generator of [F; and € is a generator of the group consisting
7j=1

q—1 =
of the (¢ — 1)th roots of unity in C. Also for any s € Z we have ngj = 0. Thus Z?Qj(k_l) =0
Jj=1 J=1
q—3
and consequently 2823 (h=1) = _g2k-1)" — (87 H*k=1 = _1. Now if & = & for some j, then
7j=1

q=3 q=3
2

q=3 q=3
2 2 2
we have Z a2k=1) — Z £%(k=1) Hence Z a2(=1) = _1. Similarly Z a 2= — _1. Therefore
j=1 1

§jr%1 +aT IR = (g-3)—1-1=¢-5.
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It follows that

1
(Vr,1,Vk1) = F—q (4¢* +4q + q(g + 1)(¢ — b))
= m(4q2+4q+q3—4q2—5q)

Hence we obtain (12;3 irreducible characters of SL(2,q) this way.

Setting k = [ = 0 in the characters 1y, ; of GL(2,q) we get

2 _ _
onstng) = o (@124 @k 0P+ 4T 14l a4 n)

1
= q3_q(2q2+4q+2+2q2—2—1—2q3—4q2—6q)

1
— (2¢° — 2¢) = 2.
?—q

Hence 1o & Irr(SL(2,q)). It is clear that oo = A+ =1+ .

From another side, if we let k = q;21 and [ = 0 we get <wq;1 0 Va1 0> = 2 as follows
2 2

<wq%170’¢q%1,0> = (q+1)* +1)°

a—s a=3

1 2 _5g—1 2 o 1

= . (Qq +4g+242¢* =2+ q(g+1) Zaqu—i—ZQ—i—Za 25
1 1 1

~3 q-3 q-3
_ <4q +4q+q(q+l)<q2 +2 =+ o ))
1

= |
)

4q +4q—|—2q(q+1)(q—3)):q3 q(4q +4q + 2¢° — 4¢° —6q)

(2q3 —2q) =2.
Thus g1 , & Irr(SL(2,q)). Here we have 41 , = €1 + &, where £, & € Irr(SL(2,q)) such that
2 2

deg (&) = deg(&y) = %1 (to be shown later). The values of &, i = 1,2 on classes of SL(2,q) are

not easy to compute. We determine these values later. Now 21 + §~2 have values given by Table 4.9.
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Table 4.9: Values of §~1 + EQ on classes of SL(2,q)

[ows [27] %7 [2P[ %0 [%0] 70 [ 70, [70]
la+&]art|[ (DT @+n| 1 [ D7 | 1 [ (D7 [20"] 0 |

Next we turn to the fourth family of characters of GL(2,¢). By similar computations used in the
last step, we can show that 7y, for k =1,2,---, q;21 restrict irreducibly to be characters of SL(2, q).
But if & = %, we get <7Tq{2i,7r%> = 2 and thus Taf1 = J1 + 52, where 51, = Irr(SL(2,q))
and deg(d1) = deg(Vs) = q;zl (to be shown later). The values of 91 4+ 95 on classes of SL(2, q) are
given in Table 4.10

Table 4.10: Values of U1 + 9 on classes of SL(2,q)

| class [ 77 ] _Z(l) (17 | _TO<12>1 (70 | —To(f)l 70, ] 70 |
EEAr 471\(f1y3 -0 A [T [ [ %] o [e-pt]

where 1 < m < q;—l is the integer for which ]F(’;2 \IE“; 5 r=0a"m and IFZQ = ().

Now we count the number of irreducible characters of SL(2,q) we have obtained so far. This is
built on the assumption that we have determined the values of El, 52, 51 and 52 on classes of

SL(2,q) and we have proved their irreducibility. The characters we have found till now are

-3 -1 ~ ~ ~ -
Xow e 1<k<IS mol<k<dios & & O s

Thus

~3 g1 2q + 8
1+1+qT+qT+1+1+1+1= q2

=q+4.

This is equal to the number of conjugacy classes of SL(2,q), which tells that we have found all the
irreducible characters of SL(2,q). To complete the character table, we need to find the values of
51, 52, J1 and 95 on the classes of SL(2,q). To do this, we invoke another subgroup of GL(2,q),
which contains SL(2, q).

Let (IFZ)2 denotes the subset of Fy consisting of the square elements of Fy. By Lemma 3.1.4 we have

. qg—1 if qis even,
=g 40
5= if gis odd.

Lemma 4.4.2. We have

(i) If a,b € (F%)?, then so is ab.
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(ii) If a,b € F} \ (F%)?, then ab € (F})?.

(ili) If a € (F)? and b € F; \ (F})?, then ab € F; \ (F%)2.

PROOF. Easy and omitted. One can refer to Wan [75]. u

Remark 4.4.1. Since F} is abelian, (IFZ)2 <F.
Proposition 4.4.3. Let SD(2,q) = {g € GL(2,q)| det(g) € (F;)*}. Then SD(2,q) < GL(2,q).
PROOF. It is clear that det(lp) = 1 € (F})% Thus I, € SD(2,q). Let A,B € SD(2,q) with

det(A), det(B) € (F;)?. Therefore det(A) = ~{, and det(B) = 73, for some 7,735 € (F})?. Now
det(AB™1) = det(A)det(B™') = 72 (v; )2 = (117, )2 =~% € (F%)?. The result follows. u

Proposition 4.4.4.

qlg—1)%(g+1) if g is even,

1SD(2,9)] = 9 |
5a(¢—1)*(g+1) if ¢ is odd.

PROCF. If ¢ is even, then by Lemma 3.1.4, we have det(g) € (F})?, Vg € GL(2,q). Thus GL(2,q) C
SD(2,q). Hence SD(2,q) = GL(2,q) and the result follows. On the other hand, if ¢ is odd, then
the function w : GL(2,q) — {1, —1} defined by

sz{ 1 if det(g) € (F)>,

—1 otherwise,
is a group homomorphism as follows. Let A, B € GL(2,q).
e If det(A),det(B) € (F;)?, then by Lemma 4.4.2(i), we have det(AB) = det(A) det(B) € (F;)>.
Therefore w(AB) =1=1x1=w(A)w(B).

o If det(A),det(B) € F; \ (F;)?, then by Lemma 4.4.2(ii), we have det(AB) = det(A) det(B) €
(F:)?. Therefore w(AB) =1 = —1 x —1 = w(A)w(B).

o If det(A) € (F})? and det(B) € F; \ (F})?, then by Lemma 4.4.2(iii), we have det(AB) =
det(A) det(B) € F; \ (F;)?. Therefore w(AB) = =1 =1 x —1 = w(A)w(B).
Furthermore, I'm(w) = {1, -1}, since existence of g, h € GL(2,q) such that det(g) € F} \ (F})? and

det(h) € (F})? is guaranteed. To see this, let o € F} \ (F})? (such o exists by Lemma 3.1.4). Now

1 0
it is cleat that w ((0 )) = —1. Take h = I. Then w(h) = w(I) = 1 € (F})?. It follows that

g
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Im(w) = {1, —1}. By the definition of w we can see that ker(w) = SD(2, q). Hence by the 1%¢ Isomor-
phism Theorem GL(2,q)/SD(2,q) = Im(w) = {1,—1}. Thus |SD(2,q)| = |GL(2,q9)|/{1,—1}| =
3q(q — 1)?(g + 1) as required. u

Note that the proof of Proposition 4.4.4 asserts that SD(2,q) = ker(w). Therefore we have the
following corollary.

Corollary 4.4.5. SD(2,q) <GL(2,q).
In the following, we focus on SD(2,q) when ¢ is odd.

We define an equivalence relation ~ on SD(2,q) by
A~ Bin SD(2,q) <= det(A) = det(B).

Obviously ~ is an equivalence relation. Suppose that My, Ms, -+, M} are the equivalence classes
defined by ~ . Let (IF;)Q = {67,63,---,0%_,} with 62 = 1. The following proposition counts the
2

number of the equivalence classes of ~ .

Proposition 4.4.6. There is 1 — 1 correspondence between the equivalence classes defined by ~

above and elements of (F})?.

PROOF. For each 07 € (IF';)2 there corresponds an equivalence class represented by §;15. Conversely,
since all elements of [§;I2] have the same determinant §2, then the equivalence classes defined of ~

are in 1 — 1 correspondence with elements of (IF;)Q. u

From the above proposition, it follows that we can denote the equivalence classes of ~ by M 52> M 52>
-, M2 o where all elements of Mg have determinant §2. Note that SL(2,q) = ./\/l(;% = M.
a— [

5=

The group SD(2,q) is of particular interest since [GL(2,q) : SD(2,q)] = 2 and we know all ir-
reducible characters of such subgroups (see page 219 of James [40]). We do not attempt to find
Irr(SD(2,q)). We need only four of its characters to finish the character table of SL(2, ¢). However,
we need all the conjugacy classes of SD(2,q) and to see how the classes of SL(2,q) fuse into them.

Any class of type 7 in GL(2,q) will form a class in SD(2,q) since these are central classes.
Conjugacy classes of type 7 are all in SD(2,q) but one can easily check that for a fixed «, the

(67 (6]

a 1 a € . . .
elements g1 = (0 ) and g9 = <0 ) of SD(2,q), which are conjugate in GL(2,q), are no

longer conjugate in SD(2,q). In SD(2,q), we have |[¢g1]| = |[g2]| = f%. To see that g; % g2 in
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5D(2,q), let g = (a

b
d) € SD(2,q). Hence ad — be = y* € (F};)?. Now
c

a € a b\  [aax+tce ba+de

0 « c d ca da ’

a b fa 1\  fax a+ba

c d) \0 « ca c+da)
If gg197' = g2, then ¢ = 0 and a = de. Therefore ad — bc = d?c = y?. This yields that
e = (yd~')? € (F;)?. Therefore 0(5)\%, which contradicts the fact that o(e) = ¢ — 1.

Next we consider classes of GL(2,q) of type TG, where a typical element ta,3, o # [ will be

0
tag = <3 ﬁ) . Now for a fixed «, we have

tag € SD(2,q) <= B = a~ 122, for some z € Fy \ {a, —a}.

Note that in this case we have [ = —k + 2m, where m € Z\ {k, —k} such that x = ™. It is easy to
check that [t, g] = [tg.q] in SD(2,q). Thus we have W class of this type in SD(2, q), where

it can be shown that each class has size ¢(q + 1).

It is possible to prove that each M2, 1 <@ < q;21 contains % classes of type 7. Also, each class

7Win GL 2,q) is a non-split class in SD(2, q). Therefore we have (@=1 Guch classes in SD 2,q
k 1
and |7,V| = g(q - 1).

Adding up the number of elements in SD(2, ¢q) we have found so far, we get

=1, (¢g—1)(¢g—3)
)5t 4

-1

(¢ —1)?
4

(¢—1) + (¢—1)

_ Q(q_ 1)22(Q+ 1) — ‘SD(2,(])‘

+(g—1 qlg+1)+ q(qg—1)

This tells that we have found all the classes of SD(2,¢q), which we list in Table 4.11.

The number of classes of SD(2,q) is

@-D+lg-D+(g-p+ DD oDy
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Table 4.11: Conjugacy classes of SD(2,q)

o [ & [# [ & [P [ & ]
R a 0 a 1 a € o 0 0 1
P (0 a) (0 a) (O oz) (0 a_1x2> (rq+1 T+rq+1>
| No.ofcC [ q-1 [ q-1 | q-1 | @3 ] 7= H
[ ol [ v [ 5 [ 5 [ e | -1 |
[iCsppao) [FHF2] 20 [ d0 [ & [ & ]

where, in Table 4.11,

e a,x €, x # +a,

m

e in ’Z;( )5+2m’ s, m are the positive integers for which a = ¢, © =¢™,

e in ’2'3(4), ifFy, = (0), then s is the integer for which r = #% and —g%a+1) ¢ (F;)Q,

e in T(l) 72 ’Ts(e ), s has the same explanations as in Table 4.1.

y sl

Remark 4.4.2. Recall that SL(2,q) has ¢ + 4 distinct conjugacy classes. Now we have seen that

a=1
2
SD(2,q) = U M2 has @(q—i—él) conjugacy classes. We note that the central classes of GL(2, q)

i=1
are distributed equally into the sets Mj2; that is each M2 contains 2 central classes namely,

diag(0;,0;) and diag(—d;, —d;). More generally, by defining an equivalence relation ~ on each M2

by
my & mg in Ms2 <= 3 © € M2 such that mg = :L‘mlx_l,

then we can see that for fixed 1 <17 < "%1, we have

5
e M contains two equivalence classes [z1;] and [—x1;], where x1; = ( ’ 5) , and |[zy;]] =

[—zu]l =1,

S5
e My contains two equivalence classes [zg;] and [—xg;], where x9; = ( ’ (5> , and |[zo]] =

2_
[—22]] = L5,

0; €
e My contains two equivalence classes [z3;] and [—x3;], where x3; = ( ’ > , and |[zg;]| =

2_
[~zsi]| = L5,
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0
e M 52 contains 5= equlvalence classes [z4iq], where T4, = (3 10 ) and a € F;\{d;, —6;}.
Also |[z4i0]| = q(¢ +1).
0 1

—rdtl g

e M2 contains % equivalence classes [z5;], where z5; = (
1

) anerFzg\F;

such that 741 = 2. Also |[z5i]| = q(q¢ — 1)

Note 4.4.1. For M1 = SL(2, q), the equivalence classes defined by = are the conjugacy classes of
SL(2,q).

The set Irr(SD(2,q)) can be derived from Irr(GL(2,q)) since [GL(2,q) : SD(2,q)] = 2 (see page
219 of James [40] to see how to extract Irr(N), where [G : N] = 2 from Irr(G)). We do not
require the full set Irr(SD(2,q)), but we will use four irreducible characters of SD(2, ¢q) to produce
&, &, U1, Us € Irr(SL(2,q)). In Table 4.12 we list few of the irreducible characters of SD(2, q).

Table 4.12: Some of the irreducible characters of SD(2,q)

[=] & [ © | @ [ 7]
X}(Cl) a2k a2k a2k 22k Pk(g+1)
X;(f) qa2k 0 0 72k Ph(g+1)
9y (qgl)/\1+5 (_% + @)al—i—e (_% - @)al—&-s 0 (_1)5+1
Vs (qgl)alJre (_% _ \/25)a1+e (_% + \/2@)&1“ 0 ( 1)s+1
& | Pa | yha | (-ghat | () | o
e | e | G-gha [ g+¥ha | | o

where, in Table 4.12,
e in X]E;l)7 X](f)a k:()a]-v ,Q*27

g—1 1 if ¢ = 1(mod4),
—1 if ¢ = 3(mod4).

Next we determine how classes of SL(2, ) fuse into classes of SD(2,q). In Table 4.13 we illustrate

this fusion.

From Table 4.12 we consider ¥1,92,&1, & € Irr(SD(2,q)). Let us use for simplicity of notations
151, 52, El and 22 to denote

1= V1l5 G 2= 02lsiGn, G=Glios and & =Gl
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Chapter 4 — GL(2,q) and Some of its Subgroups

Table 4.13: Fusion of classes of SL(2,¢q) into classes of SD(2,q)

Type of classes || Class of Class of
76(1) 76(1)
7(1)
1 1
*7?)( ) %( )
2 2
Tor Tov’
7(2)
2 2
_76(1 ) _76(1 )
2 2
e e
7(2)
2 2
o
3 3
o
1 1
0 7 7

The values of 51, 52, {A’l and Eg on classes of SL(2, q) are shown in Table 4.14. It is clear from Table
4.14 that 1?1, @2, {Al and 22 are C—valued characters if ¢ = 3(mod4) and R—valued characters if

g = 1(mod4).
Table 4.14: Values of 51, 152, El and EQ on classes of SL(2,q)
1 1 2 2
[Cas [0 [ -0 | 712 | -1
& (q;rl) 6(q;rl) (% + \/25> 6(% + \/25)
& || 5] M ] G- [ -
G T e
dp || | el | (c3 =) | —es =50
2 2 3 4
[oas || 72 | 77 [79 ] 7 |
g | G-%D | G-%H [ (-D)F| o
g | G+%Y | G+%hH [ (-DF| o
0 || (=551 | —e(=5-%") | 0 | ()t
do [[(-3+%5D | —e(-3+%H | 0 | (-pm!
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Chapter 4 — GL(2,q) and Some of its Subgroups

Firstly let ¢ = 1(mod4), that is e = 1. In this case we know that El(g) €eR, Vg € SL(2,q). We have

o~ 2 2 _ 2 _ _ o o
<§1,§1> - q31_q<2(q21) +2(12 1(1+qi2\/§)+2q2 1(1+q4 2va, , da 1;((; 3))
1 12 ¢P-1 1 1
= ng((qz L. ¢ 5 (q; )+(q; )q(q—3)>
_ g+l (gt B

Thus & € Irr(SL(2,q)). On the other hand, if ¢ = 3(mod4) then we know that 3g € SL(2,q) such
that El(g) € C\ R and we have

~ o~ 2 2 2 . B
(8.6) = qgl_q<2(qzl) +27 1(11‘1”2(1 . 1(1Zq)+q(q 1;(q 3)>
2 2
_ q31—q<(q—;1) g 2 1(q42rl)+(q42r1)q(q_3))
(¢+1)

= _ (g+1) B
= m((q+1)+(q2—1)+(q2—3q))—m(2q2—2q)_1,

which shows that & € Irr(SL(2,q)).

Similar arguments can be used to show that &, d1, ¥s € Irr(SL(2,q)).

Finally we are in the position to give the required values of El, Eg, Y1 and 52 on the classes of
SL(2,q). First note that

E1(g) +&(g) = (& +&)(9), Vg€ SL(2,q),

~

D1(g) +92(9) = (01 +72)(g), Vg € SL(2,q),

where (&1 + &)(g) and (9, + 92)(g), Vg € SL(2, q) are given in Tables 4.9, 4.10 respectively.

Therefore we may take
G=8=0l5Gn G=8=8l45 N=0=01g5) and Gy=d» =007

2,9) "

This completes the character table of SL(2,¢q), g odd. We list the character table of SL(2,q), ¢
odd, in Table 4.15.
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Chapter 4 — GL(2,q) and Some of its Subgroups

Table 4.15: The character table of SL(2,q), ¢ is odd

oo o] @ [ 7 [ &
R 10 1 0 11 1 -1
ep g - N - N
| No.ofcc || 1 | 1 I )
H 1Csr(2,9)(9)] H ¢ —q ‘ @ —q \ 2g ‘ 2
[ el [+ [ v [ 5 [
v q q 0 0
(S} g+1 | (=D (g+1) 1 1
il ¢—1 | (=1)q-1) -1 (—1)k+L
3 e — G+%) | i+
& G m Do) | — )
) — —eU (s | —eleg 50
¥ B | &L -9 -<1-%
[ ows [ 77 [ -n? | 7P [ 1P ]
R. 1 ¢ -1 —- o 0 0 1
ep g 0 1 0 —1 0 ol 1 g
| No.ofcc | 1 | 1 | P= | ] H
H Csr2.0(9)] H 2q ‘ 2q ‘ q—1 ‘ q+1 H
T o | alg+ 1) | aq-1 |
A 1 1 1 1
(0 0 0 1 1
Vi, 1 (—1)k+1 atk=1) 4 g—(k-1) 0
Tk -1 (_1)kr+1 0 _(,”:k +%\kq)
& G-%D | (3-%Y (—1)F 0
& (3+%Y) | G+%") (-n* 0
R [ ) e R o
Z (—5+°5) | (=5 +F) 0 (—1)m™*

where, in Table 4.15,
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g1 1 if ¢ = 1(mod4),
—1 if ¢ = 3(mod4).

e m is the positive integer for which r = ™, 6 being a generator of F 22.

4.4.2 Character Table of SL(2,q), g even

In the case SL(2,q), q odd, we have seen that the number of conjugacy classes is ¢ + 4. If the
summand 4 is interpreted as |Z(SL(2,q))|?, then the same interpretation will be valid for the case
when ¢ is even, that is the number of conjugacy classes of SL(2,2%),t > 1 is ¢ + 1. This can be

shown through the next Proposition.

Proposition 4.4.7. The group SL(2,q), ¢ =2, t > 1 has q+1 distinct conjugacy classes described
in Table 4.16.

PROOF. The following statements are the results of direct computations from the conjugacy classes
of GL(2,q).

(i) The identity class I is the only class of type 7() which is in SL(2,2).
(ii) The class represented by 76(2) is the only class of type 7@ which is in SL(2,2Y). In equa-
1 b
tion (4.15), if we replace SL(2,q), q odd by SL(2,2!), then we get g = (O 1) . Thus
|Csr2,20) ()| = q, where x € 76(2). Hence |TO(2)| = ¢? — 1, which shows that the class ’]6(2) of
GL(2,q) is a non-split class in SL(2,2").
€k 0 (3)
(iii) If ¢ = 0 . is an element in class 7,;;" of GL(2,q), then t;; € SL(2,2") <=1 = —k.
8 b

Excluding £ = 0 and note that ¢ _j ~ t_jx in SL(2,2"), we get q;22 such classes. It is
straightforward to show that ]’ng(:g_)k| =q(qg+1).

0 1
(iv) If A, = ( o q) e GL(2,q) is of type 7", then for j = 1,2, -- , 4, we have A, €
r r+r

SL(2,2!) since det(A,) = r.r? = §la-1i gala=1i = gla*~1)i = 1,

Now counting the elements we have found so far, we get

q—2 q
1-1+1-(q2—1)+7-q(q+1)+§-Q(q—l):q?’—q:!SL(2,q)\-

Thus Table 4.16 lists the full conjugacy classes of SL(2,q). u
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Table 4.16: The conjugacy classes of SL(2,q), ¢ is even

o [ & [ [ 7% [ 4" ]
e [CTCIEEE
I !CSL;@)(Q)\ | #-a | a | qil qj—l |
[ Cyl | 1t | ¢&-1] e+ | aq-1 |

where a € F}, o =¥, k #0, and1fIF2—<0>,thenr:9(q_1)j for j=1,2,---,

Irreducible Characters of SL(2,2)

Proposition 4.4.8. The characters table of SL(2,2') is given in Table 4.17.

PROOF. It is easy to check that (¢, 1) = 1. Similar to the case SL(2,q), ¢ odd in Subsection 4.4.1,
where we proved that 51 € Irr(SL(2,q)), we can prove that 1o € Irr(SL(2,2")). Same argu-

ments can also be used to show that (g, ;) = 1 for the appropriate k.

Table 4.17: The Character table of SL(2,q), ¢ is even

[ Cbs | (ffo(l)) | (Téz)) | (7753% ) | ( 7" ) H
| Nootco | 1 [ 1+ | % | 4 |
H |Csur(2,20)(9 IH ¢ —q \ q \ q—1 \ q+1 H
H [ H 1 \ ¢ -1 \ q(q+1) \ q(g—1) H
R
Il v [ ¢ [ o | 1+ | -1 |
[ owwo [ a+1 [ 1 Ja+a*] o |
L » et ] 0 | o [0+ |

where, in Table 4.17,
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e aclF, a#l,

e with 0 being a generator of ]FZQ, then r = 0@=1J for j =1,2,--- .4,
i ind}k’,Oa k=1,2,--- ,q;Q’
o inm, k=1,2,--,%

Remark 4.4.3. Note that SL(2,q) (q even or odd and ¢ = p®) possesses only one irreducible
character x such that p|deg(x). It is shown in unpublished paper by Berkovich and Kazarin (see
Berckovich [6]) that if a group possesses only one non-linear irreducible character of p/—degree,

then it is solvable.

4.5. Character Table of SUT(2,q)

We recall by Subsection 3.1.2 that SUT(2, ¢) has the form

b
SUT(2,q) = {(g a1> la€F: be ]F‘q}.

Therefore |SUT(2,q)| = q(¢ — 1) and hence [SL(2,q) : SUT(2,q)] = ¢ + 1. This group has the

structure of group extension (nontrivial). To see this, we recall Schur-Zassenhaus Lemma.

Lemma 4.5.1 (Schur-Zassenhaus Lemma). Let G be a finite group and N < G such that
ged(|N|,|G/N|) = 1. Then G = N:(G/N).

PROOF. See Robinson [62] or Rotman [65]. u

10 a 0 N
R (1 S S L T

Then K = F; and H = F;. Note that since |K| = ¢ and |H| = g — 1, we have gcd(|K|,|H|) = 1.

Let

Proposition 4.5.2. SUT(2,q) = K:H.

1 b
PROOF. Let A= |© | e SUT(2,q) and B = € K. Then
0 a! 0 1
ABA-L — a c 1 b al —¢ _ 1 a?b c K.
0 a'/\0O 1/J\ 0 a 0 1
Thus K < SUT(2,q). The result now follows from Schur-Zassenhaus Lemma. u

Next we determine the character table of SUT(2,q) in both cases of ¢ odd or even.
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Chapter 4 — GL(2,q) and Some of its Subgroups

4.5.1 Character Table of SUT(2,q), ¢ odd

Conjugacy Classes of SUT(2,q)

From Table 4.15, we can see that the classes ’]6(1), —’26(1), ’26(12), —70(12), 70(82), _76(52) and 7;:(3—)1@ are
in SUT(2,q). We recall that any class ’I;C(?i)k in SL(2,q) does not change if we replace o € Fy, a ¢
{1,—1}, by a~! in a typical element of the class. This is not the case in SUT(2,q), where each

aclky, ad {1,—1} gives a new conjugacy class since
a b a 0  faa ba~!
0 a! 0 ot B 0 alal)’
a0 a b B aa™t ba~t

0 « 0 at 0 ala)
a”l 0 a 0
Thus if ~ in SUT(2,q), we would have
0 «o 0 ot

ax=aat <= ala—a)=0=a=0ora=at <= a=0o0rac {1,-1},

which contradicts the facts that a # 0 and « & {1, —1}. Hence there are at least 6+ (¢ —3) = ¢+ 3
conjugacy classes of SUT'(2,q).

Now ]T \ =|- T(l)\ = 1. Suppose that g = (g ab1> € SUT(2,q) and let A = <(1) 1) € 76(12)'
Then
a 1 a a+b
o)) - 6)
(1 1) ( ) B (a b—i—a_1>
0 1 0 at )
Thus

g€ Csurpg(A) = a+b=b+a ' <=a=a"'+=ac{l,-1}
Therefore [Cgyr(2,9)(A)| = 2¢ and hence |[A]| = Q;QI. Similar computations show that

qg—1
=T = 100 = | - T = T

0
Ift = <((j B 1) is any element in the class 77@(3—) i» then
o ;

a b a 0 ace  ba~l
0 a! 0 ot 0 alal)’
a 0 a b B ao ba
0 ot 0 a! B 0 alal)’
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Thus

9 € Csyr(2,9)(t) = ba ' =ba <= bla—a)=0<=b=0or

a=al<=b=0orac{l-1}.

Since a ¢ {1,—1}, we must have b = 0. Therefore |Csyr2,q)(t)] = ¢ — 1 and consequently,
T =a

By calculating the number of elements we have obtained so far, we get

qg—1

2+4x o= +alg-3)=2+20-24¢" =3¢ =¢" —g=q(g—1) = [SUT(2,9)|

This tells that there can not be further classes of SUT(2,q). We list these classes in Table 4.18.

Table 4.18: The conjugacy classes of SUT(2,q), q is odd

[ cas [ 7" [ 1" | 7Y [ -7 |
| H <é ?>+(01 Wé D\G ) u
I ’CSU'T(()Q,q)(g)‘ | #-a| 2-a | 20 | 20 |
Lo | v [ v [ 5] 5 ]

| o | 7 | 7Y | 7 |
Rep ¢ (0 1) (0 —1) (0 a_1>
| No.ofcc || 1 | 1 | a3 |
| 1Csvren@! | 20 | 20 || 41 |
[ ol [ 5 | 5 [ <« |

where ¢ is a generator of the group F; and o € F; \ {1, —1}.
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Irreducible Characters of SUT(2,q)

Let K be the group defined in (4.20). By Proposition 4.5.2 we have SUT(2,q)/K = H. Hence by
Section 2.4 we have Irr(H) C Irr(SUT(2,q)). Therefore we get ¢—1 linear characters of SUT'(2, q)

and in fact these are all the linear characters, because of Proposition 4.5.3.

Proposition 4.5.3. SUT(2,q)/ =K.

b d
PROOF. Let A = (g 1) € SUT(2,q) and C = <(C) 1) € SUT(2,q). The commutator of A
c

a

and C is

o . 4 a”t =b\ (¢t =d\ (1 cd(a®—1)—ab(c* - 1) cK (4.21)
0 a! 0 ¢! 0 a 0 c) \0 ! | |

Thus SUT(2,q) C K.

1 =z
Conversely we aim to show that any w € K is a commutator. Let w = ( ) € K and assume

that a € F, a # 1 (such a exists since ¢ > 3). Now

L z\ (a b 1 2(a®—1)\ fa™! —=b\ (1 —2(a®-1) ,
(0 1>_<0 al) (0 1 )(0 a) (0 1 )eSUT(2’Q)'

Thus K C SUT(2,q) . Therefore SUT(2,q)" = K establishes the result. u

The ¢ — 1 linear characters yi, 1 < k < ¢ — 1 are given on representatives of classes of SUT'(2,q)

by
()

[
— =
~__—
~__—
Il
=
=
B
VN
VN
=
[y
I =
—
~
~
|
i
—_
S~—
=

¢
27ks ;
( >>_eq1, s=23,q-2 0<k<q-—2.

We recall that |Irr(SUT(2,q))| = ¢ + 3. Hence 4 further characters left to be found.

—_
— M
~
N~
I
=
=
x>
N
~/
o |
—_
| |
—_ M
~__—
~—
I
|
=
=

“
“
o
a

78



Chapter 4 — GL(2,q) and Some of its Subgroups

Proposition 4.5.4. Let 51 and @2 be the irreducible characters of SL(2,q) given in Table 4.15.
o | SL(2, SL(2,
Then D1 Lg it Dalipaiy € Irr(SUT(2,q)).

25(7% %)q) nd 792LSUT£)(1 by 51 and 52 re-
spectively. We have seen that if ¢ = 1(mod4), then J1(g), U2(g) € R, Vg € SL(2,q), while if
¢ = 3(mod4), then 3g € SL(2,q) such that 91 (g), J2(g) € C\ R. Now suppose that ¢ = 3(mod4).

We have

PROOF. For simplicity of notations, let us denote 191l

() = oraa ESgTj(Zq)wg)&(g):q(ql_l)((qjl”zﬂqjlw
R (LA e () ()
) () () (4 4)
- q(ql—l)((q_21)2+4xq;1q11)_qm1—1)((q;1)2+qglq+l>
B q(q1—1)<(q; )(q_1+q+l)>ZQ(q—l)Q(q_l):

Hence 9, € Irr(SUT(2,q)). Similarly 0y € Irr(SUT(2,q)) when g = 1(mod4). This applies as well
for the character 32. n

By tensoring the ¢—1 linear characters x; by 31 and 52, we can see that if k is even for 0 < k < g—2,
then ngl = 7/9\1 and Xk7/9\2 = 1/9\2, while if k£ is odd, then Xk7/9\1 = X1{9\1 and Xk1/9\2 = X17/9\2~

This gives the required 4 irreducible characters of SUT(2,q). In Table 4.19 we list the complete
character table of SUT'(2,q).

Now we turn to the other case when ¢ = 2¢ for some positive integer ¢.

4.5.2 Character Table of SUT(2,2")

We construct the character table of SUT(2,2!) in two different ways. In the first approach we show
that SUT(2,2") is one of the Frobenius groups, which have known representations. In the second

approach we use Clifford-Fischer theory together with the technique of coset analysis.

I: Character Table of SUT(2,q), where SUT(2,q) Viewed as a Frobenius Group

We review the basic properties and the characters of Frobenius groups.

Definition 4.5.1. A group G is called a Frobenius group if it has a proper subgroup H such that
HnH" ={lg}, Vr € G\ H. The subgroup H will be referred as the Frobenius complement.
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Table 4.19: The character table of SUT'(2,q), ¢ is odd.

[ s [ 70 | 20 | 77 | 17 |
N 1 0 1 0 11 11
I 0 1 0 -1 01 0 -1
| No.ofcc || 1 | 1 | 1 1 |
H 1Csur2.9)(9)] H ¢ —q ‘ ¢ —q ‘ 2q 2q H
L e | 1+ [ 1 | % 5 |
Xk 1 (—1)k 1 (—1)*
0 el I D e
Z e e e
xad, T ey (=3 +%Y) | e(=3+%
X102 | e [
I S N
1 ¢ -1 -« e 0
Rep g (O 1) ( 0 _1> 0 6_5>
| No.otoc || 1] 1 [ -3 |
H ICsur(2,0)(9)] H 2q 2q ‘ qg—1 H
L e [ 5 [ 5 | ¢ |
Xk 1 (=1 et
0 (5-%) | -e-5-%) ] o0
0> (-3+ %) [ —e(-3+ %Y 0
| (<3-%Y [ d-3-%9 0
ale | (3+%5) [ d-3+%9) 0

where, in Table 4.19,

e ¢ is a generator of the group Fy,
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The Frobenius kernel K of G with respect to H is defined by

K= (G— U H> U{lg}.

reG

We leave showing that K < G but one can refer to Flavell [20] or Grove [29] for the proof.

Example 4.5.1. 1. The smallest Frobenius group is S3. It has A3 as a Frobenius kernel K and

Zo as its complement H.
2. The Dihedral group Da,, n > 1 is odd, is a Frobenius group. The subgroup generated by the
element of order n acts as a kernel while Zs is the complement.
The following Proposition gives a structure of finite Frobenius groups.
Proposition 4.5.5. Any finite Frobenius group is a split extension of its kernel K by its complement

H.

PROOF. See page 243 of Robinson [62]. u

Frobenius groups have many other nice properties. One can refer to either Collins [13], Grove [29]
or Robinson [62]. The irreducible characters of a Frobenius group G can be constructed from those

of H and K. They appear in two types

e By Proposition 4.5.5, any irreducible representation ¢ of H gives an irreducible representation
of G by using the quotient map from G to H. This gives the irreducible representations of G
with K in their kernel.

e If ¢ is any non-trivial irreducible representation of K, then the corresponding induced repre-
sentation of G is also irreducible. This gives the irreducible representations of G with K not

in their kernel.

To see that any irreducible representation of a Frobenius group has one of the above forms, refer
to Grove [29].

In the following we show that SUT(2,2!) is a Frobenius group.

Theorem 4.5.6. SUT(2,q) is a Frobenius group for even q.

PROOF. Let H and K be the subgroups of SUT'(2,q) defined in (4.20). We aim to show that H
and K are the Frobenius complement and kernel of SUT(2, q) respectively. From the definition of
Frobenius group, let » € G\ H. Then a typical element r will have the form

c b
r= , b#£0.
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Thus
o gl c b a 0 cl b
0 ¢! 0 a! 0 c
B a —abc+a'be\ | | [a abc+atbe
B 0 a~! B 0 a"! '
Therefore
H" intersects H <= abc+a 'bc=0<=be(a ' +a)=0<=a=-a'=al<=a=1

Thus H" N H = {1gy7(2,q} = I2 and hence H is a Frobenius complement of SUT(2, q).

To show that K is a Frobenius kernel of SUT'(2, q), we use Theorems 9.2.1 and 9.8.2 of Grove [29],
where the first theorem asserts that a group G is Frobenius if and only if it has nontrivial proper
normal subgroup K such that if 1¢ # = € K then Cg(z) < K. The second theorem establishes the
uniqueness of Frobenius kernel of a Frobenius group. We have proved in Proposition 4.5.2 that the
subgroup K, defined in (4.20), is a normal subgroup of SUT(2, q). Therefore to show that K is a
Frobenius kernel of SUT(2,q), it suffices to prove that Cgyrq)(7) < K, Vo € K\ {lgyr(2,q)}-

a

a c 1 b a ab+c

(0 a1> <0 1) B (0 a! > (4.22)
1 0 a ¢ a a'b+e
(0 1) (0 a1> B <0 a1 > (4.23)

1 b
Suppose that = (0 1) for some b € Fy. Let g = (g Cl> € SUT(2,q). Then

Now
9 € Coyrag () &= (422) = (4.23) <= ab=a"b<=a=a' < a=1
Thus
1 ¢
CSUT(2,q) (.%‘) = ’ cc Fq =K.
0 1
Hence K is a Frobenius kernel of SUT(2, q), which completes the proof of the Theorem. L

We now show that SUT(2,q), for odd ¢, is not a Frobenius group.

Lemma 4.5.7. If G is a Frobenius group, then Z(G) = {1q}.

PROOF. See Robinson [62]. u

82



Chapter 4 — GL(2,q) and Some of its Subgroups

Corollary 4.5.8. The group SUT(2,q) for odd q is not a Frobenius group.

PROOF. The contrapositive of Lemma 4.5.7 asserts that if the |Z(G)| > 1, then G is not a Frobenius
group. It is clear that Iy, —I» € Z(SUT(2,q)) and the result follows. u

The following theorem deals with the conjugacy classes of SUT(2,2t).

Theorem 4.5.9. The conjugacy classes of SUT(2,2!) are given in Table 4.20.

PROOF. It is straightforward to see that for any s € {1,2,---,qg — 2} we get a conjugacy class
75(3,)8 such that \’TS(?’,)S| = ¢. Also we can verify that the conjugacy class of SL(2,2!) represented

1

1
by ’][)(2) where \’26(2)\ = ¢*> — 1 is a split class in SUT(2,2!). If we let ’]6(12) = <O 1) be a a class

of SUT(2,2!), then \To(f)\ =¢—1 and ’26(12) fuse to ’16(2) in SL(2,2'). Adding elements of classes

1 2 3 3 3
76( )7 %(1)7 Tl(,—)lv 7—2(,—)2’ ’7:1( )2

“9,—(g-2) we get

I+ (g—1)+qlg—2)=q+qlqg—2)=q(g—1) = [SUT(2,q)|

Hence the classes given in Table 4.20 are all the conjugacy classes of SUT(2,q). u

Table 4.20: The conjugacy classes of SUT(2, q)

| | 0 | %% | 7% |

1 0 e 0
Re
v (3 52

| No.ofcc || 1 | 1 | g¢-2 |
losvrem@l ]| -4 | ¢ | a-1 ]
[ el [ v Ta-1t ] ¢ ]

Irreducible Characters of SUT(2,2)

As there are ¢ conjugacy classes of SUT(2,q), we seek ¢ irreducible characters.

We recall that by Proposition 4.5.3 the derived subgroup SUT(2, q), for odd ¢ is K. We can prove
similarly that SUT'(2,2!)" = K. In terms of the description of the irreducible characters of Frobenius
groups, there are ¢—1 linear characters of SUT'(2, ¢) coming from those characters of H through the
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quotient map and therefore are all linear characters of SUT(2,q). Let tél) € To(l) and ¥ e 7

§,—S 5,—S*

The values of linear characters yx, k=1,---,¢ — 1 on classes of SUT(2,q) are given by

(T =) =1 and x(t$)) =er’ 1<s<q-2 (4.24)

Since [SUT(2,q)| = q(¢ — 1), it turns out that the last character y, is of degree ¢ — 1. At this
stage we can use elementary properties of the character tables (like the orthogonality relations)
to produce the values of x, on classes of SUT(2,q). We do not go this way since the purpose

here is to use the Frobeniusity of SUT(2,q). Therefore we use the nontrivial characters of K =

1 1
Fy = Zo X Za X -+ X Zs to obtain x,. The character table of K is given by ® [ ) ) ] . Let

t times t times

v € Irr(K)\ {1}. Then

SUT(2 C (TS _
o IR Y) = Counaa ey gy ey g,

SUT(2 (2) |CSUT(2 q)(tol ) @y _q. _1_ _

SUT(2 (3) ICsure, q>( s, N (3) \ _ . o
wTK ( 57,3) |CK(t(3) )| ¢(t ) - 07 s = 17 27 ,q 2.

SUT(2,q)

Now let x4 = ¥1}% . Then x4 reads the following values

X)) =a-1, X)) =-1 and x, () =0. (4.25)

The complete character table of SUT(2,2!) is shown in Table 4.21.

Table 4.21: The character table of SUT(2,q)

H | 0 | % | 77 |

5,—S

es 0
0 &%

| No.ofcc || 1 | 1 | g¢-2 |
H |Csur(2,21)(9)] H q-—q ‘ q ‘ q—1 H
| Gl | 1 [et ] o |

where ¢ is a generator of Fy, s =1,2,--- ,¢g—2and k=1,2,--- ,¢— 1.
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II: Character Table of SUT(2,q) From Clifford-Fischer Theory

We recall that a holomorph of a group G, Holo(G), is the group extension of G by its automorphism
group Aut(G); that is Holo(G) = G:Aut(G). In her Masters dissertation, [76], Whitley determined
the character tables of the holomorph of Z,, which is Z,:Z,_1. In her work, she used the theory of
Clifford-Fischer matrices together with the method of the coset analysis, a method for computing
the conjugacy classes of group extension which was first described and used by Moori [52]. The two
theories of the coset analysis and Clifford-Fischer matrices are out of the scope of this dissertation.
However, we will use these theories to obtain the conjugacy classes and character table of SUT(2, q).
For a complete description of these theories we refer to either Moori [52], [53], Mpono [55], Rodrigues
[63], or Whitley [76].

Proposition 4.5.10. Holo(F,) = F,F;.

PROOF. We prove that Aut(IF;) = IF;. This is immediate since Aut(V'(n,q)) = GL(n,q). In particu-
lar, Aut(V (1,q)) = Aut(Fy) = GL(1,q) = F}. u

We start by describing the conjugacy classes of SUT(2, q) = Fq:F, = K:H using the coset analysis
method (Moori [52]). To be consistent with the notation of Whitley [76], let us denote by G, N
and G, the groups SUT(2,q), F, and [y respectively. Thus G = N:G. Note that this extension
is split and G = U Ng. Hence G is a union of ¢ — 1 distinct cosets. Using the fact that N is

geG
elementary abelian group, then it was shown (Moori [52]) that
k|Ca(g)]
[Ca(2)] = I (4.26)

where k, f and x are defined below.

(i) k= |Cn(g)|, the size of the stabilizer of an arbitrary element g € G in the action of G on N.
Since N is abelian group, k represents the number of the orbits Q1, @9, - - - , @ of the action
of N on Ng.

(ii) f represents the number of the orbits @;, j > 1 that fuse to form an orbit 2, when we act

k
Ca(g) on Ng = | Q.

J=1

(iii) = is an arbitrary element of ), which will be a representative of a class of G.
Now, let us consider the cosets Ng for g € G.

1. g = 1¢ : The identity element 14 fixes all elements of N, so k = ¢q. Then under the action of
Ca(g) = G, we have two orbits with f = 1 and f = ¢ — 1. Hence the first coset N1g = N
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gives two conjugacy classes of G. The first class is the identity class of G corresponding to

_ 11
f=1.For f =q—1, we have a class ’2'0(12 ) of G containing the element tg; = (0 1) of order

p, the characteristic of F,. We have |Cx(to)| = q(qull) =q.

2. g # 1¢g : There are ¢ — 2 non-identity elements ¢ € G and consequently ¢ — 2 distinct
cosets Ng. A typical element g can be regarded as the element 7®  defined in the proof of

S,—S

Theorem 4.5.9, where 1 < s < g — 2. This ¢ fixes only the zero element of NV as follows. Let

a 0 1 b
= , a#1andn= , beTF,. Then
4 f[a O 1 b\ fat O 1 a® 1 b
gng = = = <= b=0.
0 a'/\0 1 0 a 0 1 0 1

Thus £ = 1 and consequently f = 1. This means that each Ng, g # 1g, produce only one
class in G. Hence |Cx(z)| = M = ¢ — 1, so that Cz(x) = G.

The conjugacy classes of G are given by the following table.

Table 4.22: The conjugacy classes of G = SUT(2, q)

| Class of G || 1¢ |79, 1<s<q-2]
[Classof G [| 15 70 [ 79, 1<s<q—2]
| 1o5@) [ ¢4 ¢ | g—1 |
I a—1] ] |

Now, we determine the Fischer matrices. Since G acts transitively on the non-zero elements of
N, G has two orbits on N and hence two orbits on Irr(N) by a theorem of Brauer (for example
see Lemma 4.2.1 of Whitley [76]). These orbits must have lengths 1 and ¢ — 1. The inertia groups
are H; = G and Hy = N. Let Hy; and Hy be Hi/N and Hs/N respectively. Then H; = G and
Hy = {1¢}.

We have used Theorem 4.2.5 of Whitley [76] to calculate the Fischer matrices and we have:

Corresponding to the identity 1g of G, the Fischer matrix is

1 1
w1, )
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The characters values in the G—block at G—classes 1¢ and 70(12) are:

1 1 1
1 1 1
1 1 1

and the character values in the Ho—block at 1¢ and 76(12) are:

(1) (q——l —1) ::<q-1 —1>.
For g # 1¢, since 1 does not fuse to any non-identity class of GG, then the Fischer matrix is
M(g) = (1).
The G—block consists of the character table of G, while the Ho—block consists of zeros.
The complete character table of G is shown in Table 4.23.

Table 4.23: The character table of G = SUT(2, q)

H Class H 1z 76(12) H 4 Co - Cyoo H
’\WEQNHQQ—q ¢ [la-1 -1 - q-1]
el s s ]
R T

where, in Table 4.23,
e (1,Cy, - ,C4—o are the non-identity classes of G' = IFZ,

e X denotes the values of the character table on the nonidentity classes of the group G.

If we look well at the character table of G = SUT(2,q), we can see clearly that this table co-
incides with the one we obtained using the technique for Frobenius groups. Of course, this is
natural, since the character table of an arbitrary finite group G is unique. Also if we look at Table

5.14 of Whitley [76], we see that our table for the holomorph of F} is similar to the holomorph
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of Z,, given in Whitley, only p is replaced by ¢g. Thus our table is a generalization of Whitley’s table.

We conclude this section of the character table of the group SUT(2,q) by making a connection to
the work has been done by Muktibodh [57]. He defined a new notion in group thoery by saying
that a group G is called a Con-Cos group if it has a proper normal subgroup N and Vx € G\ {15},
the coset Nz forms a conjugacy class of G. Moreover, a group G is called a 2-Con-Cos group if it
is a Con-Cos group and N splits into exactly two conjugacy classes in G. Furthermore, he classified

all the 2-Con-Cos groups.

4.6. Character Table of UT(2,q)

By computations similar to ones performed in the previous sections, we can easily get the conjugacy
classes of UT(2, q). These are listed, together with some irreducible characters of UT(2, q) in Table
4.4 appeared in the proof of Theorem 4.3.1. In Table 4.24, we list the complete character table of
UT(2,q).

Theorem 4.6.1. The character table of UT(2,q) is shown in Table 4.24.

PROOF. In equation (4.12), we produced (¢ —1)(q—2) irreducible characters xxxi, k # [l of UT(2,q),

for which the values are listed in Table 4.4. Let us denote xx; by X,(fl) . On the other hand if [ = k,

then we get g — 1 irreducible characters of UT'(2,q) which we call X,(:). Note that these characters

are the powers of the determinants of elements of UT'(2,q). From Table 4.2, we have seen that

X((;i)l € Irr(GL(2,q)). We try Xfﬁ)llgfpg’zg, which we denote by x. Its values on classes of UT'(2, q)

are given by

x(t) =q—1, X(t2) = —1 and x(t3;,) =0,

o 72

where t1, to, t3 are elements of the classes 7 , TS(?) respectively.

Now

1 B 1
X, x) = 7T QEUXT(:M) x(9)x(g) = PRSI ((q—1)(g—1)*+(g—1)(g—1))

1 2
= ————(¢q—1 g—1)+1)=1.
e R CRE R
Thus x € Irr(UT(2,q)). By tensoring x with the ¢—1 linear characters X,(gl), we get g— 1 irreducible
characters XX;(:) of UT(2,q) of degrees ¢ — 1. We rename XX;(:) to X;(f)- Hence there are ¢> — ¢ ir-
reducible characters, which is the same number of conjugacy classes of UT'(2, q). This finishes the

character table of UT(2,q). u
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Table 4.24: The character table of UT'(2, q)

[o= [ @ [ & [ &7 ]
v (G606
0 « 0 « 0 g
H No. of CC H g—1 ‘ qg—1 ‘(q—l)(q—2) H
[ el | 1+ [a-t | o |
| Curap@! [ aa=1? | aa—1) | (@-1> |
X](C) a2k G2k akgk
Xl(fl) qkH qkH ok Bl
v | g-vat]| @ 0
where the notations are as in Table 4.2 except for the characters X}(Cg)’ where we have k = 0,1,--- ,q—

2.

4.7. Examples

J ) is a representative of the conjugacy class Tj(i).
c

C

i b
In this section, ’Z}() : (a > means that (a

4.7.1 GL(2,3)

Fe = Fy9=1{0,1,0,0%---,07},

Fio = Fo={1,0,6%---,0"} =(0), 6° =1,
F, = F3=1{0,1,0"},

F; = Fy={1,0"} = (0") = Z,.

The group GL(2,3) has order ¢(q — 1)%(¢+1) = 48 and ¢ — 1 = 8 conjugacy classes. By Theorem

4.3.1, these classes lie in four types as follows:

10 6* 0
classes of type T are 7 . ) T7m . ,
P 0 01 ! 0 6
11 ot 1
classes of type T3 are 7@ . , 7 . ,
P 0 01 ! 0 6
s (1 0
classes of type 7G) are 76{1) (0 0 4> .
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For the last type of classes, we have:

Fo \ F3 = {0,0%,6%,6°,0° 07}

These 6 elements of Fg \ F3 are partitioned into three sets each contains 67 and 6%, Thus
Fy \IF3 = {‘91 03} U {927 96} U {057 97}

We take 6,62 and 6° to form the three remaining conjugacy classes of the family 74 . Hence

0 1 01 0 1 0 1
classes of type T are 7, - = , 7Y =
P boolcet over) T 1 2 \c1 e2ae) -1 0

0 1 0 1
7w . = .
i (-94 05+07> (1 94>

Table 4.25: Basic information of the conjugacy classes of GL(2,3)

H Class H %(1) rfl(l) H 76(2) /]1(2) H 76(,?1)) H 71(4) 7(4) ,275(4) H
L o9 [ v 203 cf2]s 4 |
[ el [+ 1 ]s sfr]e 6 6|
[Coma [ s o115 = ]

1 2 1 3 1 4 1
70 - - 1® C 0[O [0 [ 50 [0 -
70 |70 2@ [ 1@ 7O [ 7@ @ @ @

Since there are 8 conjugacy classes of GL(2,3), there are 8 irreducible characters. These characters

fall into four types XS), ng), X](CSI) and X§€4) described as follows:

(1) (1)

—
[

X1 ). There are q — 1 = 2 linear characters x; " and x; .

X;(f) : There are ¢ — 1 = 2 irreducible characters X(()Q) and ng) each of degree ¢ = 3.

Xl(f’l) : There are W = 1 irreducible character X(()?i of degree 4.

x,ﬁ ). There are QQT_" = 3 irreducible characters X§4)7 x§4) and Xé4) each of degree g — 1 = 2.
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We explain how to calculate the values of the irreducible characters on the conjugacy classes
of GL(2,3). We do this for ng) and X?) and the other characters follow similarly. Let the hat
function = be the isomorphism from 3 to the group of second roots of unity in the complex num-
bers, that is 8% = e =% = ¢ = —1. Let i, %, ¢, ¢, 45V, ¢V

’]6(2), 7’1(2), 76(7?1’), ’T1(4), ’2’2(4), ’2})(4) respectively. From Table 4.2 we obtain

be elements in the classes

W) = 0 =32 =3  Pr)= =312 =3,
Xt = 0, )= 0,
(6 = =1, ) = e = gt =,
Xg2) (tg )) — _?k(q—i—l) — _0/212 =1, XgZ) (té4)) _ _?k(q—i—l) P4 =1

For the character ngl)’ let the hat function ~ be the isomorphism from F§ to the group of 8th roots

of unity in the complex numbers, that is h=eFi=cil= 1—\%’ Then

W) = (- 1e =21 =207 =2,

T = =i =217 = 2,

() = 1 = —(1)° = -1,

() = G = (-1 =1,

X (t67) = 0,

(1) = ) =~ +0) = (T +eT) = My T =iv3
(1) = ) = (0 4 )= (e T e ) = ~(-141) =0,
VD) = = 47 = —(F + 65 ) = — (T ) = (L 4 =) = —iv2.

The complete character table of the group GL(2,3) is listed in Table 4.27. This table can be
obtained from GAP [23] through the command

gap> Display(CharacaterTable(GL(2,3)));

A table of correspondence between our table obtained manually through the theory and the one

obtained by using GAP is also given.
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Table 4.27: The character table of GL(2,3)

[ ohe |70 7070 72|30 1°0 77 7]
I o9 [ 1 2] 3 6] 2] s 4 3]
T Y Y BT )
H 1Care3)(9)] H 48 48 H 6 6 H 4 H 8 8 8 H
NS 11 11 1 11 1
xﬁl) 1 1 1 1 -1 -1 1 -1
X((JQ) 3 3 0 0 S I -1
R 3 3 0o o -1 1 -1 1
I ] 4 4] 1+ ] of o o 0]
Xt o o -1 1 V2 0 iz
X;4) 2 2 -1 —1 0 0
XY o 2| -1 1 V30 i3

Table 4.28: Correspondence of conjugacy classes of GL(2,3) in our notation and GAP notation

Our GAP Our GAP Our GAP Our GAP
Notation | Notation Notation | Notation Notation | Notation Notation | Notation

7 la 77 3a 7,7 2b 7 4a

7—1(1) 2% 7—1(2) 6a 7—1(4) Sa 7—5(4) b

Table 4.29: Correspondence of irreducible characters of GL(2,3) in our notation and GAP notation

Our GAP Our GAP Our GAP Our GAP
Notation | Notation ||| Notation | Notation ||| Notation | Notation ||| Notation | Notation
T 2 3 1
Xy X1 Xy X6 xéf X8 X5 X3
1) (2) (4) (4)
X1 X2 X1 X7 X1 X4 X5 X5
4.7.2 G’L(Q, 4)

Let F} = Zs3 and Fig = Z15 be generated by o and 6 respectively. Then a set of representatives of

the conjugacy classes of GL(2,4) can be given as follows.
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0
a 1
7(4) 0 1 _ 0 1 (4) 0 1 B 0 1
3 1 63 +012 1 a?)’ 1 65+ 6° 1 o)’
(4) 0 1 B 0 1 (4) 0 1 B 0 1
77 95 97+913> - <a al’ Tll 910 il 4 pl4 a? o2

Table 4.30 gives the basic information about these representatives.

Table 4.30: Basic information of the conjugacy classes of GL(

2,4)

[ hs |20 70 70|70 10 70|30 10 59|
| o9 1 3 3]2 6 6] 3 3 3|
I el 1 1 115 15 1520 20 20 |
| ICorom@) ] 180 180 180 [ 12 12 12 9 9o 9 |

The power maps of theses conjugacy classes are given in Table 4.31.
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Table 4.31: The power maps of GL(2,4)

o) ]| 2 8 slpo@] 2 3 5 [poe)[2 38 5 |
76(1) . _ - 7'2(2) 7—1(1) 76(2) _ 7-2(4) _ 76(4) 7-1(2)
Tl(l) _ ,]-(1) _ 76(3) _ 76(1) _ 7})(4) _ _ 76(1)
72(1) _ T(l) _ 7*1(3) ~ 76(1) _ 7(4) _ _ 76(1)
76(2) 76(1) _ _ 7—2(3) _ 76(1) _ 7@ _ 7%(4) 72(1)
7-1(2) 7-2(1) 76(2) _ 71(4) _ 7;)(4) 7-2(1) 71(14) _ 75(4) 7-1(2)

8im 4im 6im

Let A = e% = —%—l—@, FE = —(6%4—6?), E*=92_¢2 = —((3T—|—(3T)7 F = —(eﬁ-ke 15

22im

and G=—(e 15 + e%). The character table of GL(2,4) is shown in Table 4.32.

Table 4.32: The character table of GL(2,4)

4im

T [ o= [0 30 3020 7° 53220 70 50
L | o9 [ v 3 3] 2 6 6f 3 3 3]
ol e 1 1 1] 115 15] 20 20 20|
| [ lCaen@l ] 180 180 180 12 12 12 9 9 9]
X1 NS 11 1 1 1 1 11 1
X2 xgl) 1 A A 1 A A A A 1
X3 o 1 A4 A 1 A Al A A 1
X4 N 4 4 4 O 0 0 11 1
X5 X 4 44 44| o o ol 4 4 1
X6 P 4 44 44|l o o of a4 A 1
X7 X1 5 54 54| 1 A Al -4 -4 -1
Xs X5 5 54 54| 1 A Al -4 -4 -1
X9 Xt 5 5 5 1 1 1| -1 -1 41
X10 x§4) 3 34 34| -1 -A -A 0 0 0
X1 WY 3 34 34| -1 -A -4 o 0 0
X2 X 3 3 -1 -1 1 0 0 0
X13 Y 3 3 3| -1 -1 -1 0 0 0
X14 W 3 34 34| -1 -4 -A o 0 0
X15 Y 3 34 34| -1 -4 -4 o 0 0

1677

)
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Table 4.32 (continued)

[ [ oms |70 79 79 10 79 70|
H H o(g) H 15 15 5 5 15 15 H
I e [ 212 12 12 12 12
I Ticeren@l]] 15 15 15 15 15 15]
X1 x5 o1 1 1 1 1
X2 Xy A A 1 1 A A
X3 x5 A A 1 1 A A
X4 Xé2) -1 -1 -1 -1 -1 -1
X5 e A A -1 -1 -A -A
X6 X -A -A -1 -1 -4 -A
X7 X 0 0 T o
X8 X6 o 0 0 0
X9 X@ 0 0 0 0
X10 XY G F E E F G
X11 X§4) F G E* E aQ 7
X12 X;(;l) E E* E* E E* E
X13 xé4) E* E E Jok E B
X14 X(74) F G E* E a F
X15 Xﬁ) F E E* F el

Table 4.33: Correspondence of conjugacy classes of GL(2,4) in our notation and GAP notation

Our GAP Our GAP Our GAP
Notation | Notation ||| Notation | Notation ||| Notation | Notation
7 la 7, 6b 7, 15¢
71(1) 3a 76(3) 3¢ 75(4) 5h
7—2(1) 3b 7—1(3) 3d %(4) 54
7% 2 7, 3¢ 7 15b
7% 6a 7Y 150 7 15d
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Table 4.34: Correspondence of irreducible characters of GL(2,4) in our notation and GAP notation

Our GAP Our GAP Our GAP
Notation | Notation Notation | Notation Notation | Notation
X1 X1 X6 X10 X11 X6
X2 X2 X7 X15 X12 X5
X3 X3 X8 X14 X13 X9
X4 X13 X9 X11 X14 X7
X5 X12 X10 X4 X15 X8
4.7.3 SL(2,3)

The group SL(2,3) has order (¢ — 1)(¢ + 1) = 24 and according to Table 4.15 it has ¢ +4 = 7

distinct conjugacy classes described as follows

wm_ (10 w_ (-1 0 @2 . (11 @ . (—1 —1

% _<0 1)’ o _<0 L) T 0 1 ~Tor 0o -1}’
1 ¢ -1 -—¢ 0 1

7(2) : , —T(z) : , 7(4) : .

o (0 1) o 0 -1 ' —1 0*+0°

The orders and size of conjugacy classes and centralizers of the above representatives are given
in Table 4.35.

Table 4.35: The conjugacy classes of SL(2,3)

H Class H 76(1) ‘ _To(l) ‘ 70(2) ‘ _%(2) ‘ 7O ‘ —7® ‘ 7@ H
[ o9 [ v ]2 3] 3][c 4]
H Csr2,3)(9)| H 24 ‘ 24 ‘ 6 ‘ 6 ‘ 6 ‘ 6 ‘ 4 H
L el [ o[ v Jaf 4 a]4 6]

Now in terms of Table 4.15, the complete character table of SL(2,3) is given in Table 4.36.
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Table 4.36: The character table of SL(2,3)

[ ons (&' [ %[ % [ %[ %0 [ 70 (7]
[ o9 [ 1] 2] 38 6 | 38 [ 6 [4]
H 1Cs12,3)(9)] H 24 ‘ 24 ‘ 6 ‘ 6 ‘ 6 ‘ 6 ‘ 4 H
[ o [t[ [« [+« [o]
A 1 1 1 1 1 1 1
(0 3 3 0 0 0 0 1
st 2 -2 -1 1 1 1 0
& 9 9 1+;\/§ —1—2i\/§ 1-1V/3 _1451-\/5 0
52 2 -2 1*; 3 *1+2i\/§ 1+;‘«/:§ —1? 3 0
51 1 1 —121‘\/3 —H;‘\/ﬁ —1—21‘ 3 _1_21-\/5 1
s 1 1 —1—21' 3 —1—21'\/§ —14;‘\/3 —14;‘\/3 1

4.7.4 SL(2,4)

This group has order 60 and has ¢ + 1 = 5 conjugacy classes described as follows:

10 11 : 9 0
70 _ 7 72 . 7 763 . 7
‘ (0 1) ° 0 1 P looed
0 1 0 1
7(4) : , 7@ . ,
’ (1 93+912> ‘ 1 6%+

where Fis = (0).
Now in terms of Table 4.17, the character table of SL(2,4) is given by Table 4.37.

From the the character table of SL(2,q), we can see that this group is simple (Xi(tlgj)) #* Xi(’]f)(l))),
forall 2<i<5 2<j<4, ke€{0,3,6}, where tg) denotes an element in the class ’];C(j)). Since
any simple group of order 60 is isomorphic to As (see for example Rotman [65]), then SL(2,4) = As

(we have mentioned this in Example 3.1.3).
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Table 4.37: The character table of SL(2,4)

[ ks 70 72 70 70 19
el | 1 15 20 12 12|
lical] 60 4 3 5 5 |
| o | 1 2 3 5 5 |
X1 11 1 1 1
X 4 0 1 -1 -1
X3 5 1 -1 0 0
X4 3 -1 0 E E
X5 3 -1 E E

2im 8im

where E = —(e5 +e5 ).

4.7.5 SUT(2,3)

The group SUT(2,3) has order ¢q(¢ — 1) = 6 and according to Table 4.19, has ¢ + 3 = 6 distinct

conjugacy classes described as follows

0 0 1)’ 0 o -1/ ° 0 1 0 0o -1/’
1 1 -
0 1 0 -1

where ¢ is a generator of F§ = Z. Since |SUT(2,3)| = 6, it follows that SUT(2,3) = S3 or
SUT(2,3) = Zs. We have 6 conjugacy classes, which is |SUT(2,3)|. Thus SUT(2,3) = Zg. The
character table of Zg is given by Theorem 2.2.4. However the idea here is to use the character table
of SUT(2,q), which is given by Table 4.19. We show the character table of SUT(2,3) in Table
4.38.

4.7.6 SUT(2,4)

Let « be a generator of F} = Zs. Then the classes of SUT'(2,4) are

10 11 0 -0
7'0(1) _ , 7'0(2) . 7 7'1(3) . « , /]'2(3) . a )
01 0 1 0 ot 0 «
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Table 4.38: The character table of SUT'(2, 3)

H Rep g 76(1) _76(1) 76(12) _76(12) 7662)

[ ICsures (@l | 6 6 6 6 6

e 1 11 1 1

| oyl 1 2 3 6 3
X0 1 1 1 1 1
X1 1 -1 1 -1 1
9 1 1 71+2¢\/§ 71+21\/§ 71721‘\/5
Do 1 —1—21‘\/3 —1—21‘\/5 —14;‘\/5
Y191 1 71451'\/5 175\/5 71721\/5
Y102 1 —1—2i\/§ 1+;\/§ —17;\/5

where A = ¢5' = —%+§'.
Corollary 4.7.1. SUT(2,4) =

PROOF. By Theorem 2.2.13 of Moori [54] we know that there are three non-abelian groups (up to
isomorphism) of order 12. Two of these groups have subgroups of order 6 while the other group
Ay does not have this property. It can be easily checked that SUT(2,4) is a non-abelian group. If
dH < SUT(2,4) such that |H| = 6, then H<ISUT'(2, ¢). This implies that H is a union of conjugacy
classes of SUT(2,4). If we look at the attached information to the character table of SUT(2,4),
concerning the conjugacy classes of SUT'(2

classes including the identity class that give a subgroup of order 6. Therefore, we deduce that

Table 4.39: The character table of SUT'(2,4)

To(l) 7 7—1(3) 7-2(3) H
1 3 4 4
|Csur2,4)(9)] 12 4 3 3 H
1 2 3 3
1 1 1 1
1 1 A A
1 1 A A
3 -1 0 0

,4), we can see clearly that there is no combination of
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SUT(2,4) = Aj. m

4.7.7 UT(2,3)

With F§ = Zy = (o), then the conjugacy classes of UT(2, 3) are

Since all elements of UT(2,3) are of prime orders, we do not need to give a table for the power

maps. The complete character table of UT'(2,3) is as follows.

Table 4.40: The character table of UT(2,3)

[ ces |70 7070 70|77 77|
H o(g) H 1 2 H 3 6 H 2 9 H
[ el | 1 1] 2 o 3 3]
H |Cur(2,3)(9)] H 12 12 H 6 6 H 4 4 H

Remark 4.7.1. It is unfortunate that the library of GAP [23] does not contain the group UT'(n, q)
like the cases GL(n,q), SL(n,q), PSL(n,q),--- , etc, which are known there. We have written a
small subroutine to construct the character table of UT(2,3), which is attached to the Appendix.

We can see clearly that the character table of UT(2,3) coincides with the character table of the
Dihedral group Di13. We have the following Corollary.

100



Chapter 4 — GL(2,q) and Some of its Subgroups

Corollary 4.7.2. UT(2,3) = Ds.

« 0 «

a o
( ) . Now we have
0 «

a 1 1 0 a o 1 0 o o 5
ab = = = — ba .
0 a/ \0 « 0 1 0 o 0 «
Since | (a) | = 6 = $|UT(2, 3)|, then (a) < UT(2,3) and therefore (a) (b) < UT'(2,3). Now it is easy

6 9
to check that (a) N (b) = {I2}. Therefore | (a) (b) | = | (a) || (b) | = 12. Hence UT(2,3) = (a) (b) . We
deduce that

1 1 0
PROOF. Let a = (g ) and b = ( ) . Then a® = b* = Iy = lypeg). Also a™! = d° =

UT(2,3) = (a,b| a® =b* =I5, ab=ba® =ba™').

Hence UT(2,3) = Dia. u

4.7.8 UT(2,4)

With F} = Zs = (a) , then the conjugacy classes of UT'(2,4) are

10 a 0 at 0
T(l) _ 7 T(l) _ 7 T(l) _
‘ (o 1> ' 0 « ? 0 a!
. . . a_l 1
: : : 0 o)
1 0 a 0
7(3) . 7 7(3) . : T(3) .
! (0 a) 2 0 1 ’ 0 o’
a0 3 a 0 3 a0
(O 1>7 IZ:L:)() : <0 _1)7 7%() :
« 0 «

Suppose that A = 5 = —%+i§. The character table of the group UT'(2,4) is given by Table 4.41.

Q
S
N———
S
K

0

—_
=]

9
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Table 4.41: The character table of UT(2,4)

12 |

12

36 | 12

36

| [Cureag)l || 36

Xy
(1)

0

(3)
(3)
(3)
2
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5
The Character Table of GL(n,q)

In this chapter we study the conjugacy classes of GL(n,q) in general. This is achieved by giving a
source for the representatives of the classes (Theorem 5.2.1) and then looking at Green’s formula
(equation (5.9)) for calculating the size of the centralizers of the representatives. The theories of
irreducible polynomials and partitions of ¢ € {1,2,--- ,n} form the atoms from which each conju-
gacy classes is build up. We give a special attention to some elements of GL(n, q), known as regular
semisimple and we calculate the number and the orders of these elements. Also we count the num-

ber of the primary classes of GL(n, q). As an example we compute the conjugacy classes of GL(3, q).

We have seen in the last chapter that a large number of irreducible characters of GL(2, q) (characters
of types X, x(® and x(®) were obtained by considering those characters of Paqy = UT(2,q),
which are obtained through lifting the characters of the quotient UT(2,q)/SUUT(2,q) = T =

F, x F; = GL(1,q) x GL(1,q) = L(; 1) the levi complement of the parabolic subgroup Py ;). The
k

idea in this chapter is to use the irreducible characters of levi complements Ly = ® GL(\;,q) of
i=1

parabolic subgroups Py, where A = (A1, A2, -+, A\x) b n, to construct characters of GL(n,q). Any
character of GL(n,q) obtained in this way is referred to as, a principal series character and the
process of obtaining the characters is referred to as, a parabolic induction. This process produces
a large number of irreducible characters of GL(n,q) from characters of GL(m,q) for m < n. Any
character of GL(n,q) which can not obtained parabolically is referred to as a discrete series or a
cuspidal character. The most important fact is that cuspidal characters of GL(n, q) exist. In other
words parabolic induction does not produce all Irr(GL(n,q)) for any n. Furthermore, the cuspidal
characters are of great importance for characters of GL(n, ¢) (Theorem 5.4.6) since each character of
GL(n,q) is build up from cuspidal characters. However Green, who constructed all the irreducible
characters of GL(n,q) in his great paper [27], did not start with the cuspidal characters. Instead
he took as his building blocks some generalized characters that are lifts of modular characters. We
mention Green construction of characters in Theorem 5.6.2. There are some certain characters of

GL(n,q) that have been found by Steinberg [72] and they bear his name. These characters are
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discussed in Section 5.5. Although we do not attempt to describe fully the set Irr(GL(n,q)), but
we are able to find all irreducible characters of GL(3, q). This has been done in Section 5.7. Green
[27] showed that there exists a complete duality between the conjugacy classes and irreducible
characters of GL(n,q). That is to any conjugacy class one can associate an irreducible character, a
property that not many groups have. Some aspects of this duality will be shown at the end of this
chapter in Table 5.14.

5.1. Partitions

In this short section we go briefly over partitions of a positive integer n and some functions defined

in terms of partitions, which will be used through the sequel of this chapter. A whole chapter in

MacDonald [50] is devoted to study the theory of partitions. One can also refer to Goldschmidt

[25].

Definition 5.1.1. A partition A = (A1, A2, -+, \m) of a positive integer n is a decreasing (con-
m

sequently increasing) sequence of nonnegative integers \;, whose sum is n, i.e. Z Ai =n.

i=1

We will be using

e A\ F n to denote that A is a partition of n,

o {1%12%23% ...7n% 1} to denote also partition of n, where i* means that the positive integers

1 appears «; times,
e |A\| means the positive integer for which A is a partition for and finally
e P(n) is the set of all partitions of n.

Definition 5.1.2. Let A = (A1, A2, -+, A\p) F n. The integers \; are called the parts of A\, while
m is called the length of A\, which sometimes written [(\).

Any partition A = (A1, A9, -+, A\y,) written in descending order have a geometrical diagram known
as a Ferrers diagram. This diagram is defined to be the set of points (i,7) € Z2, such that
1 < j < A;. To sketch the diagram, we let i (indexes a row) increases as going from top to bottom,
while j (indexes a column) increases as going from left to right. For example the Ferrers diagram
of (4,2,2,1) 9 is shown in Figure 5.1.

The conjugate partition A" of X is the partition obtained by transposing the diagram of . For exam-
ple, (4,2,2, 1)/ = (4,3,1,1). The Ferrers diagram of (4,2,2,1) and (4, 3,1, 1) are shown in Figure 5.1.
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Figure 5.1: Ferrers diagrams of (4,2,2,1) F 9 (left) and (4,2,2,1)" (right)

To any partition A\, we attach an integer n(\), which depends essentially on X'. This integer is given
by
1)

i) =3 (;) 5.1)

i=1
where )\;, i > 1 are the parts of \". For example consider (1,1,---,1) F n. Then (1,1, - - - ,1)/ = (n).
Therefore, n((1,1,---,1)) = () = @ From another side if A = (n) F n, then (n) =
(1,1,---,1). It follows that n((n)) = 0 since (4) = 0. The integer n()\) is of great importance
for Green’s formula for |Cr e q)(9)] for g € G. We have calculated the values of n()\), A n for
n=1,2,3,4,5 which are listed in Table 6.1.

For any m € NU {0} we define ¢,, by

(1—t") ifm>1,
Om(t) = it (5.2)

ifm=0.

3

=

If A= (A, A, -+, Ap) B nowith A > Aiyq, Vi, we let my, be the multiplicity of the part A; in A.
We define ¢, (q) by

k
ox(0) = [ ] oms, (@) (5.3)

We conclude this section by defining an ordering on P(n). Let A\ = (A1, A2, ,\;) F n and
w= (u1,p2,- -, ) nbe distinct partitions both written in descending order. We say that A < p
if kK <l and if k =1, then A < p if the first non-vanishing difference A; — p; is positive. For example

elements of P(5) can be ordered as follows

(5) < (4,1) < (3,2) < (3,1,1) < (2,2,1) < (2,1,1,1) < (1,1,1,1,1).
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5.2. Conjugacy Classes of GL(n,q)

This section is divided into four subsections, where in the first one we give representatives of the
conjugacy classes of GL(n,q). In the next subsection we calculate the size of the centralizers and
hence the size of conjugacy classes. The third subsection is devoted to some results concerning the
reqular semisimple elements and primary classes of GL(n,q), while in the last subsection we give
an example for conjugacy classes of GL(3,q) and we interpret how we got the representatives of

classes of GL(2,q), which were studied in the previous chapter.

5.2.1 Representatives of Conjugacy Classes of GL(n, q)

Construction of the conjugacy classes of GL(n,q) depends essentially on the theories of irreducible

polynomials and partitions.

d
Definition 5.2.1 (Companion matrix). Let f(t) = Z ait’ € F,[t], ag = 1. The dx d companion
=0

matriz U(f) = Ui(f) of f(t) is defined to be

1

—ap —ai —az -+ —G4-1

For any m € N, the Jordan block U,,(f) is the md x md matrix

U(f) Ia O 0
0  U(f) ILa 0
Un(f) =
Iq
0 0 0 Ui(f)

Moreover, if A = (A1, Aa,- -+, A\x) F n, then Ux(f) is defined to be

U)q (f) 0 0
0 U 0 k
UNf)=1| . ”.(f ) | =Pu.»
=1
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The direct sum of Jordan blocks is called the Jordan Canonical Form.

Next we set F to be

F={f eF,t]] 0f <mn, fisirreducible over Fy, f(t) # t}. (5.4)

The next theorem produces representatives of conjugacy classes of GL(n, q).

Theorem 5.2.1 (The Jordan Canonical Form). Let A € GL(n,q) with characteristic poly-
nomial fa = f{Hf3% - fiF, where fi € F, 1 < i < k and z; is the multiplicity of f; in this

k
decomposition. Then A is conjugate to a matriz of the form EB Uy, (fi), where v; = z;.
i=1

PROOF. See Rotman [65]. u

From the above theorem we deduce that a conjugacy class of GL(n, q) is determined by a sequence
{fi}¥_, such that f; € F and df; = d;, Vi, together with a sequence of partitions {v;}¥_,, where

v; - 2, Vi and {2}, is a sequence of positive integers such that

Therefore any conjugacy class ¢ of GL(n, q) is defined by the data ({fi},{di}, {z},{v:}). The inte-
ger k is called the length of the data.

Two data ({f;}, {d;}, {z:}, {vs}) and ({g:}, {e:}, {wi}, {p;}) with lengths k and k" respectively pa-
rameterize the same conjugacy class if k = k" and there exists o € Sj, such that

Wi = Zo(i), € = do(i)s Hi = Vo(s) and  gi = fo@), Vi
Hence A is conjugate uniquely (up to ordering of Jordan blocks) to a Jordan Canonical Form.
On the other hand, two conjugacy classes of GL(n,q) parameterized by the above data are said to
be of the same type if k = k' and there exists o € Sy, such that

Wi = Z(;), € = dgs and ;= vy;) (g and f; are allowed to differ). (5.5)

Therefor the conjugacy classes of GL(n, q) are distributed into types.

Remark 5.2.1. The work inspired by Green [27] showed that the values of an irreducible character

of GL(n, q) on classes of the same type can be expressed by a single functional formula.
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Example 5.2.1. All central classes of GL(n,q) are of the same type.

Green [27] showed that the number of types t(n) of conjugacy classes of GL(n, q) is independent of
q. The next Theorem gives the number of conjugacy classes ¢(n, q) of GL(n,q) and t(n).

Theorem 5.2.2. 1. The integer t(n) is given by the coefficient of =™ in the expansion of the
(o]
series HP(xi)“)(")‘, where
i=1

P =Y Pl = T[]
n=0 =

i=1
= I+z+22+ A4+ + - A +23+254+--) -,

2. The integer c(n,q) is given by the generating function

[e.9]

iC(n, 92" =[] Pa™)@,
n=0 m=1

where I,(q) = £ Zu(s)q% and u(s) is the Mébuis function.

m
s|m

PROOF. See Green [27]. u

Note 5.2.1. The function I,,,(¢) represents the number of irreducible polynomials of degree m over

F, and this result is due to Gauss.

If ¢ < n, we do not have a class of type

{t—ai,t—ag, -t —a,},{1,1,--- 1}, {1,1,--- ,1},{1,1,--- ,1}),

-~

n times n times n times
where aq, g, -+, ap € Fy are all distinct since |FZ| = g — 1 < n. Note that a typical class of the
above type is represented by
(05) 0 0
0 (D) 0
0o 0 - ap

Therefore it is not necessarily that all types of classes appear

In Table 5.1 we give t(n) and ¢(n,q) of GL(n,q) forn =1,2,--- , 7.
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Table 5.1: Number of types of classes and number of classes of GL(n, q)

[ofwn] g |
1| 1 g—1
2 ¢ -1
3 ¢ —q
4 22 @ —q
51 42 | ¢ —(¢*+q-1)
6 || 103 q% — ¢?
7199 | "= (P +2-1)

Definition 5.2.2. Let ¢ be a conjugacy class given by ({fi}, {di},{z},{vi}) with length k, then

1. ¢ is called primary class if and only if k = 1.
2. ¢ is called regular class if and only if l(v;) <1, V1 <1i<k.
3. ¢ is called semisimple class if and only if l(v;) <1, ¥V 1<i<k.

4. c is called regular semisimple class if it is both reqular and semisimple. Alternatively a

class is reqular semisimple if and only if v; =1, V1 <i<k.

Note 5.2.2. 1. The definition of ¢ being a primary class implies that for g € ¢, the characteristic
polynomial of g is f(t) = (t* 4+ ag_1t¥~' 4 --- + 1)* for some s and hence df = d and d|n.
In particular if f(¢t) = (¢ — 1)", then we call ¢ a unipotent. Note that we have defined in
Definition 3.1.5 the unipotency of an element A € GL(n,q) and of a subgroup H < GL(n, q).

2. The definition of ¢ being a regular semisimple class of GL(n, ¢) implies that any element g € ¢

has n distinct eigenvalues.

We classify all classes of GL(2,q), GL(3,q) and GL(4,q) according to Definition 5.2.2. These

classes have been given in Tables 4.1, 5.3 and 6.10 respectively.

5.2.2 Sizes of Conjugacy Classes of GL(n,q)

Definition 5.2.3. The pair (V,Q2), where V is an abelian group and Q@ C End(V), is called a

module.
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Table 5.2: Conjugacy classes of GL(2,q), GL(3,q) and GL(4,q)

H n H Primary Classes ‘ Unipotent Classes ‘ Regular Classes ‘ Semisimple Classes ‘ Regular Semisimple Classes H
7O, 7@ 7@ | 7O, T =1 | T®, K TG TV 7B, T7M 7B, 7@
3 T, 7@, 7O, T@), TG, 7@, T©), T7G), 76 76, 7
TG, 7® TG, a=1 T, 7® T, 7® T(8)
7O T®) 7L, 7@ 76), T®) 7@ T(6) 7016) 717
TG, 7® TG, 7AW 70D 7(13) 7O, 7(12) 708) T2
4 76) 7Q19) TG a=1 7(5) 7(16) 7014 7(16) 7(22)
7(20) 7(22) 77 7018 707, 7(8)
T<20),T(21) T(19)7 7(21)
T7(22) T7(22)

Two modules (V,Q) and (V', Q) are said to be isomorphic or equivalent if and only if V 2 V' and

Q and Q' generate the same ring of endomorphisms of V.

For any n x n matrix A over F,; (not necessarily invertible), we define the module V4 of A to be
Va= (V(n) q)a R)a

where R = (A,F,) is the ring generated by A, together with scalars from F,. That is

k
n={Sasiaen|=rp
i=0
and FF,[t] operates on V (n, q) by t.v = Av, Yv € V(n,q). Note that ¢/ is the composition of ¢ taken

j times. Thus any A € M,,»,,(F,) defines an Fy[t|—module, which we denote by Vj.

Definition 5.2.4. A function f : V4 — Vg is said to be an F,[t|—isomorphism if it is homo-

morphism and bijection. The modules V4 and Vg are called F,[t|—isomorphic.

Lemma 5.2.3. Let V and W be vector spaces over Fy and let T :V — V and S : W — W be
linear transformations that determine Fy[t]—modules Vi and Vs respectively. A function f : Vi —

Vs is an Fy[t]—homorphism if and only if

1. f is linear transformation of the vector spaces V and W,

2. f(Tw) =S(f(v)), YveV.

PROOF. See Rotman [65]. u
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Proposition 5.2.4. Two matrices A and B are similar if and only if the corresponding Fq[t]—modules

V4 and Vg are isomorphic.

PROCOF. Let T, S : V.— V be linear transformations affording A and B respectively and also let Vi
and Vg be the corresponding IF,[t] —modules defined by T" and S respectively. Suppose that A and
B are similar matrices. Hence there exists P € GL(n, q) such that B = PAP"L If f: V — V is
the linear transformation corresponds to P, then we claim that f is an F,[t]—isomorphism between
Vr and Vg. From Lemma 5.2.3, it suffices to show that f(Tv) = S(f(v)), Yv € V, i.e., fT =Sf. In
terms of matrices, this represents PA = BP, which we have. Thus V = V3.

Conversely, suppose that f : V — V is an F,[t]—isomorphism between V7 and Vg. By Lemma
5.2.3, we have Sf = fT. Since f is an isomorphism, it follows that S = fTf~!. If P is the matrix
corresponding to the linear transformation f, then B = PAP~'; that is A and B are similar ma-

trices. This completes the proof. u

If A, B € GL(n,q) are in a conjugacy class ¢, then by Proposition 5.2.4 we have V4 = Vp. It follows
that we can write V. in place of V4 without any ambiguity. Next we review some notions from the

elementary Ring Theory to learn more about the structure of V..

We recall that a principal ideal domain R is an integral domain such that all its ideals are principal
ideals. That is if [ is an ideal of R, then I = (a) = aR for a € R. For any v € V|, where V is an
R—module, the annihilator Ann(v) is defined to be the set

Ann(v) = {r € R| rv =0y }.

It is not difficult to see that Ann(v) < R.If R is a principal ideal domain, then

ideal

Ann(v) = {ar| r € R} = aR, for some a € R.

Moreover, if p is an irreducible element of R (has no divisors in R except p and 1g), then an

R—module V is called a p—primary if for all v € V,
Ann(v) = (p*) = p*R, for some o € N.

Theorem 5.2.5. Let R be a principal ideal domain and V' be a finitely generated R—module. Then

S
V=0
i=1

where each V; is cyclic submodule and isomorphic to either R or R/p™R, for some irreducible

element p of R. Moreover, the decomposition is unique up to the order of the factors.
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PROOF. See Rotman [65]. u

We would like to apply the above discussion to the case R = Fy[t], which it can be shown that
it is a principal ideal domain. Thus for the annihilator of v of the F,[t|]—modules V. we take the
fixed element to be a monic polynomial of smallest degree in the ideal, that is if v € V., then
Ann(v) = (f), where f is a monic polynomial such that df < dg, Vg € F[t]. Let f; € F. By Viy,,
we mean the f;—primary submodule of V,; that is the submodule consisting of all v € V, annihilated
by some power of f;. The submodules Vi, Vi), -+, V(y,) of V. are referred as the characteristic
submodules since f1, fo,--- , fr are the irreducible factors which appear in the characteristic poly-
nomial of an element in the conjugacy class c. Thus giving V) the name characteristic submodule

becomes more appropriate.

k
If c = ({fi},{di},{zi}, {vi}), then by Theorem 5.2.5 we have V, = @V%)’ where each Vi, is of

i=1
the form
1(v;)
EBF /{fi)s
and v; = {v4,, Viy, -+~ ’Vil(ui)} is the partition associated with f; in ¢. Therefore
k k l(l/z)
Ve=DVigy = DD Faltl/ (£ - (5.6)
i=1 i=1 j=1

It has been shown in Lemma 2.1 of Green [27] that if Aut(V;) is the automorphism group of V.,
then

Aut(V, ® Aut(V, (5.7)
Now by equation (2.6) of MacDonald [50] we have

|Aut(V<f1>)| = qdi(‘Vi|+2n(w))¢V (q_di).

7

Consequently
k k
| Aut(V,)| = y(g)Aws H | Aut(Vig,)| = [ [ ¢ 120D gy, (g7 %). (5.8)
=1 i=1

The following Theorem is of great importance and is the main theorem of this subsection. It

characterizes Cgr,(n,q)(A)-

Theorem 5.2.6. Let A € GL(n,q) lies in a conjugacy class c. Then Cgrn,q)(A) = Aut(Ve).
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PROOF. Suppose that o € Aut(V,). Then o : V., — V, and
o(ru+ sv) =ro(u) + so(v), Vr,s € R = (A,Fy), u,v € V(n,q).

We know that Aut(V(n,q)) = GL(n,q) and o(Au) = Ao(u) (since A is regarded as a scalar from
the ring R). Thus

o(Au) = Ao(u) (cA)u = (Ao)u, Yu € V(n,q)
Ao =0A
o € Cgr(ng(A)

Aut(Ve) C Carn,g)(A)-

I

Conversely, if 0 € Cgr(n,q)(A), then
Ao =0A = (Ao)u= (cdA)u, Yu e V(n,q),
= o0(Au) = Ao(u)
= o0 € Aut(V,)
= Car(ng(A) C Aut(Ve).

Hence Cgprn,q)(A) = Aut(Ve). u

Now in terms of equation (5.8) and Theorem 5.2.6 if A € GL(n,q) lies in ¢ = ({fi}, {di}, {z},{vi}),
then we deduce that

k
Carmg(A)] =[] a1+ 0D g,, (¢=%). (5.9)
=1
It follows that ) i
Cal = (TT(a" = o))/ T [ a2V, (g~ %), (5.10)
s=0 =1

k
Sometimes we may write a,, to denote ¢%(¥il+2n()) g (g=%). That is 1CaLing (A)] = H ay,.
=1
Corollary 5.2.7. Two conjugacy classes of the same type have same size.

PROOF. Suppose that ¢; = ({f;}, {di}, {2}, {vi}) and e = ({f;},{d;}, {2}, {v;}) are two classes of
the same type with length k£ (see Remark 5.2.2). It follows by (5.5) that there exists o € Sj such
that 2, = Zo (i) d; = dy(;y and v, = Vo(i), V1 <@ < k. If Ay € c; and Ay € cg, then by (5.9) we have

k k
Corma(A)l = [ H2rDg, (¢7%) = [T gt Peol2ntealy, | (g=do)
i=1 i=1

k
_ Hqdi(\w\+2n(w))¢yi(q—di) _ ’CGL(n,q)(A1)|'

=1
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The result follows by (5.10). u

Remark 5.2.2. Note that & is the length of the data parameterizing c. The term length of conjugacy

class has another meaning.

5.2.3 Regular Semisimple Elements and Primary Classes of GL(n,q)

In this subsection we emphasize some of our results on counting the number and orders of the
regular semisimple elements of GL(n,q). Also we count the number of the primary classes of
GL(n,q). Fleischmann et al. [21] studied the number of regular semisimple classes of G¢ (q) for

n > 2, where

G (g) = GL(n,q) ife=1,
e Un(q) ife=-1

and U,(q) is the Unitary Group. The method given there uses the Theory of Lie Algebra and
some topological notions as connectedness of groups. If Reg(G¢,(q)) denotes the number of regular

semisimple classes of G¢,(q), then Theorem 1.1 of [21] reads

n+l _ q" + (_1)n+1€[n/2](q _ en)

Reg(G4 () = (g — ) p (5.11)

Here we introduce a method to calculate the number of regular semisimple elements of GL(n, q)
using simple notions as all what we need is the elementary theory of partitions of a positive integer

n. However formula (5.11) is faster in computations.

Number of Regular Semisimple Elements of GL(n,q)

Counting the number of regular semisimple elements of GL(n,q) is achieved by

e counting the number of regular semisimple types,
e counting the number of classes contained in each of the regular semisimple type,
e counting the number of elements contained in each of the regular semisimple class.

Proposition 5.2.8. There is a 1—1 correspondence between the types of classes of reqular semisim-

ple elements of GL(n,q) and partitions of n.

PROOF. By the Jordan Canonical Form (Theorem 5.2.1) any class ¢ = ({fi},{d;},{z},{vi}) of
k

GL(n,q) must satisfies Zzidi = n. We know that any regular semisimple class ¢; has the form
i=1
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k

c1 = ({fi}, {di}, {1}k timess {1}& times). Therefore we have Zdi = n, that is (dy,ds, -+ ,dg) b n.
i=1

If o = ({ le },{d;}, {1}k times> {1}k times) is any other regular semisimple class of same type of

c1, then d; = dy(;), for some o € Sk. Thus ¢; and ¢y determine the same partition. Hence
any type of regular semisimple classes determines a partition of n. Conversely, any partition
A = (A, A2, ,Ag) F n defines a type of regular semisimple classes, where a typical class ¢
will have the form ¢ = ({f;}, { i}, {1}k timess {1}k times)s 1 < @ < k. Note that for any \; € N, there
exists an irreducible polynomial of degree \; over [F,. Hence types of regular semisimple classes are

in one to one correspondence with the partitions of n as claimed. u

It turns out that we may denote any type of regular semisimple classes of GL(n,q) by 7 and a

typical class by ¢ without any ambiguity.

To count the number of regular semisimple conjugacy classes contained in each type 72, A F n, we
put into our consideration the repetition of the parts of A. Therefore if we let r; be the multiplicity
of the integer 7, then we can write A in the form A = 112" ...n" where r; € NU {0}. We have

the following lemma.

m—1

m
Lemma 5.2.9. Let f(t) = Zaiti e Fylt], am = 1. If o is a root of f, then aq,an, ceeat are
i=0
the other roots.
PROOF. The Galois group I' = I'(Fym : Fy) is a cyclic group of order m and is generated by the
Frobenius automorphism o, : a — a?, Va € F,m. We can see clearly that o} = o4- Now given
m
that « is a root of f, then Z aio = 0. Acting by elements of I' on both sides of the preceding

i=0
equality we get, for all j =0,1,--- ,m — 1,

m m m
oy (Y aia’) =0,(0) = D oy(aa’) =0 Y aio,(a’) =0
1=0 1=0 1=0

m m .
= Y aa’ =0= > a?) =0.
=0 =0

The last equality tells that o is a root of f whenever « is. u

Proposition 5.2.10. The number of reqular semisimple classes of type A, which we denote by
F(X), is given by

n r;—1

H H (Zi(g) — s)

F()\) _ i=1 s=0
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where

e [i(q) = %Zu(d)qé is the number of irreducible polynomials of degree i over I,

dli
ri—1

e ifr; — 1 <0, then the term H (I;(q) — s) is neglected.
s=0

PROOF. Let f(t) be an irreducible polynomial of degree i over F,. It is known by Gauss Lemma

that the number of such polynomials is given by I;(q) = %Z,u(d)qé. Now let a; be a root of
dfi
f(t). Tt follows by Lemma 5.2.9 that the other roots of f(t) are off,o/f, e ,o/fiil. Thus if we
choose a1 as an eigenvalue of a representative of a regular semisimple class, then a; together with
the former set of powers of a; form a complete set of eigenvalues of the Jordan block of size i.
Since each 1 < i < n appears r; times in the partition A, it follows that we can choose a7 in
I;(q) ways, ag in I;(¢) — 1 ways, and so forth till the o, which we can choose in I;(q) — (r; — 1)
ways. We recall that a conjugacy class is unaltered by the arrangement of the eigenvalues in the
Jordan block. Thus we divide by the number of all possible arrangements, which is r;!. Repeating

this for all 1 < ¢ < n, we get the required number mentioned in the statement of the Proposition. W

For any positive integer n, two partitions namely, (1,1,---,1) = n and (n) F n are of particu-
—_——

n times
lar interest.

Corollary 5.2.11. With q¢ > n, then corresponding to the partitions A = (1,1,---,1) = n and
————

n times

0= (n) F n, we have F(}\) = (q_l)(q—n%)"'(q_”) and F(O’) — %Z/L(d)q%

dln

PROOF. Immediate from Proposition 5.2.10. L

Remark 5.2.3. Note that by Propositions 5.2.8 and 5.2.10 the number of regular semisimple
classes of GL(n,q) is given by ZF()\) For fixed n = 1,2,3,4,5 one can calculate ZF()\) from

AFn AFn
Table 6.12 and compare with Reg(GL(q)). We can see that Z F()\) = Reg(GL(q)).
AFn
Finally we count the number of regular semisimple elements contained in class c.
Proposition 5.2.12. Let ¢* be a reqular semisimple class, where \ = (M, A2, -, A\k) En. Then
n—1
H (qn - q3)
|| = Z——. (5.12)
| J [Can))
i=1
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PROOF. Let g € ¢ = ({fi}, {\}, {1} times, {1}k times). Since v; = 1, V1 < i < k, we obtain by
substituting in equation (5.9) that

k k q/\i -1 k
Corma(@)l = [Ja%er@™) =]]a" <) =Tl - .
i=1 .

Ai
i=1 q

The result follows by (5.10). u

Now we give the main theorem of this subsection which counts the number of regular semisimple

elements of GL(n,q).

Theorem 5.2.13. With A = (A1, Ag, -+, A\g) = 1722 ...n™ forr; € NU{0}, the number of regular

semisimple elements of GL(n,q) is given by

n—1 n ri—1

[T -] I]E@ -9

s=0 i=1 s=0
> - - . (5.13)
- .

" [T =]
i=1 i=1
PROOF. Direct result from Propositions 5.2.8 and 5.2.10, together with equation (5.12). u

Example 5.2.2. Let us consider the regular semisimple classes of type 732 of GL(4,q). Each
class ¢(>2) will have the form c¢2?) = ({f1, fo},{2,2},{1,1},{1,1}) where fi(t) = t> + a1t + ag and
fa(t) = t2 + byt +bg are two distinct irreducible polynomials over Fy. To count the number of classes
of this type, we follow Proposition 5.2.10. Thus we may write the partition (2,2) in the form 22

that is r1 = r3 = r4 = 0 and r9 = 2. Therefore

4 r;—1 1
IR OO | FAOED)
F(22) — =1 s=0 — s=0

or2toro

=1
L)@ —-1) 1@ —qi?—q=2 q(®=1)(¢—2)
2 2 2 2 8 ‘

Now applying equation (5.12) to any class of this type, we get

3
(¢* —¢°)

SHO v (¢* = D(¢* — ) (¢* — @) (¢* — ¢°)
2

11

N (@ - 1)@ 1)
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Hence we obtain

2 o T(4 3 _ _
qﬁ(q_l)(q2+1)(q3_1)Q(q 18)(61 2) _q'(¢" -1 81)(q 1)(g —2)

regular semisimple elements of type (2,2). Repeating the above work for the other four partitions

of 4, we get for GL(4,q), a total number of regular semisimple elements given by
4% — 20" + ¢+ ¢12 = 2" — ® — B +2¢7 + ¢°.

For example the group GL(4,5), which is of order 116064000000 has 9299587000 regular semisimple

elements.

In the Appendix we list the number of types, conjugacy classes, elements in each conjugacy class

of regular semisimple elements of GL(n, q) for n =1,2,3,4,5.

Recall that a class ¢ = ({f;},{d;},{zi}, {vi}) of GL(n, q) with length k is called primary if and only

if k = 1. The next Proposition counts the number of primary classes of GL(n, q).

Proposition 5.2.14. The number of primary classes of GL(n,q) is given by

SO IPG)I- Lula). (5.14)

dln

PROOF. By definition a conjugacy class ¢ of GL(n,q) is primary if and only if ¢ = (f,d, %, v) for
some f € F with degree d, d|n and v = 7. For fixed d and any v = % we have I4(q) irreducible
polynomials f of degree d that defines a primary class. It follows that there are [P(%)| - I4(q)
conjugacy classes defined by the fixed integer d and partitions of 7. The result follows by letting d

runs over all divisors of n. n

Corollary 5.2.15. There are exactly I,,(q) = Z,u(d)q% primary regular semisimple classes of
dln
GL(n,q).

PROOF. A class ¢ of GL(n, q) is primary and regular semisimple if and only if ¢ = (f,n, 1, 1) for some
f € F with degree n. It follows by Proposition 5.2.8 that c¢ is a regular semisimple class of type

A = (n) F n. Hence by Corollary 5.2.11 we have F'((n)) = I,(¢) = Z 1(d)g . In particular if n = p’
dln

q* —q
, p
primary regular semisimple classes of GL(p , q). u

is a prime integer (whether p, = p, the characteristic of F, or not), then there are Ip/(q) =

’

Corollary 5.2.16. The group GL(p , q) has ezactly (q—1)|73(p,)|+% primary conjugacy classes.
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PROOF. By Proposition 5.2.14 the number of primary conjugacy classes of GL(p/,q) is given by
Z ]77 )| - I3(q). We have d € {1,p'}. If d = 1, then there are [P(p')| types of primary classes each

dlp’
consists of ¢ — 1 conjugacy classes. On the other hand if d = p’, then ¢ = (f, p,1, 1) for some f € F

with prime degree p’. Therefore by Corollary 5.2.15 we have F((p')) = %. Hence the result. H

Example 5.2.3. See Table 5.2.

Orders of regular semisimple elements of GL(n, q)

Suppose that ¢ is a regular semisimple element of GL(n,q) in a conjugacy class ¢, where \ =
(A1, A2, , Ak) F n. Assume that FZM = (g;), V1 < i < k and for each group szw we fix one
generator ¢;, that is if \; = A;, for some j and 4, then we identify ¢; with ¢;. It follows that the

eigenvalues of g are

JigM =1, _j2 _jaq Jag2—1 Jk  ~Jk4

O\
J1 Jiq Jkq"k—1
€5, €Yy, Ey S ER L ELR T, EY (5.15)

61 761 7... 61
for some integers ji,j2, - , Jjk-

Theorem 5.2.17. With the above, the order of g is given by

ged(ji, ¢ — 1) ged(jig, g™ — 1) 7 ged(jigh 1t ¢t — 1)’
¢ -1 g -1 ¢ -1
ged(jz, ¢ — 1) ged(jog, g™ —1)° " ged(jag*2 L, g2 — 1)’
-1 -1 -1 '
ged(ji, ™ — 1) ged(jeq, ¢ — 1)7 7 ged(jrg 1, ¢* — 1))

PROOF. For 1 <1 <k, 0 <r < X\ —1, let h denotes the row of eigenvalues of g given by (5.15).
Also let t denotes the row o(e; Iy for 1 <1<k, 0<r<X—1.

We know that g ~ D = diag(h). Assume that o(g) = ¢. Then

gt ~D' = (diag(h))! = diag(h!) = I, <= "' =1, V1 <1 <k, YO <r <\ — 1
= o), VI<I<E YO<r<\-—1
<~ lem(t)]t. (5.16)

Let of M):tlr foreach 1 <1<k, 0 <r <X\ —1andlet d= ged(t). Now for each 1 < m <
k, 0 <7 < Apn—1 we have

H tir

r,l
7T m7-]

ty
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Now

glcm(t) ~ chm(;) — diag ((8]1'1)lcm(§)7 ([_:J1‘1<1)lcm(§)7 o (Eglqu—l)lcm(t)

(séz)lcm(t) (6]2‘2‘1)10771@) -

)

(T one

I

(gik)lcm(g)’ (giktl)lcm(i)7 e (giquk—l)lcm(t)) — Ina

) TAM t
where lem(t) in each diagonal entry (eh? ’ Hlem(®) s replaced by tmg H % . This

(Lr)#(m.5)
implies that t|lem(t), since o(g) = t. From equation (5.16) we have lem(t)|t. Hence ¢ = o(g) =

lem(t). Now the result follows from elementary group theory, where we know that o(e{”r) =
(@ = 1)/(ged(sig", ™ — 1)) .

As a corollary of Theorem 5.2.17 we show the existence of an element of GL(n,q) of order ¢" — 1

(this has been mentioned in Darafasheh [15] without proof).

n(n—1) —
Corollary 5.2.18. The group GL(n,q), n > 1 has at least ¢~ 2 . l_I(q"*1 —¢q°) elements of order

s=0

q" — 1 and at least twice of the previous number if q is even.

n—1 n—1
PROOF. Let g, h € GL(n, q) such that {e,,e%,--- ,e% VYand {e2,e20,--- ,e2! ) are the eigenvalues

n’

of g and h respectively. It follows from Theorem 5.2.17 that
g —1 g —1 q" —1 )

o(g) = lcm( , AR —
(9) ged(1,¢™ — 1) ged(g,¢" — 1) ged(gn=1,qn — 1)
= lem(¢"—1,¢"—-1,--- ,¢"—1)=¢"— 1.

If ¢ is even, then ¢" — 1 is odd and hence ged(2,¢™ — 1) = 1, which yields that ged(2¢™,¢" — 1) =
1, VO <m <n—1. Hence o(h) = ¢" — 1 by similar argument used for o(g). The result follows

since all conjugate elements have the same order. u

5.2.4 Examples: Conjugacy Classes of GL(3,q), GL(4,q), and GL(2,q) (Revisited)
Conjugacy Classes of GL(3,q)

We illustrate how to obtain the conjugacy classes of GL(n,q) for n = 3. Any A € GL(3,q) has
characteristic polynomial that is a monic polynomial of degree 3 of the form f(t) = t3 + ast® +

ait + ap € F,[t] and it splits over F, into one of the following five forms:

1. f(t) = (t — )3 for some o € Fy.
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2. f(t) = (t —a)*(t — ) for some o, B € F}, o # f.
3. f(t) = (t —a)(t — B)(t — ) for some a, 3,7 € F;, «, and v are distinct.
4. f(t) = (t* + b1t + bo)(t — ) and t* + byt + by is irreducible over F,.

5. f(t) = t3 + ast? + ayt + ap remains irreducible over F,.

We had excluded the cases f(t) = t- (t> + c1t + cp), t2 - (t + co) and t3 since these cases yield
that A has some zero eigenvalue, which contradicts the invertibility of A. We consider each of the

preceding five cases separately.

1. Suppose that f(t) = (t—a)? for some a € F%. In this case f1(t) = (t—a) and fi(t) =1, Vi > 1
with k1 =3 and k; =0, Vi > 1. We have 1, € P(3) = {(1,1,1),(2,1),(3)}.

(i) If vy =13 = (1,1,1) - 3, then
A~ diag(Uny(t — a), Ugy(t — a), Uy (t — a)) = diag(Ur(t — a), Ur(t — ), Ur(t — a)).

a 0 0
From the definition of the matrix U (f), then U (t—«) = [@]ix1 =a. Thus A~ | 0 a 0

0 0 «
Each a € F; gives a new conjugacy class and it is clear that these classes are the central classes

of GL(3,q). This yields that there are ¢ — 1 distinct conjugacy class each of size 1. We denote
this type of classes by 7(0).

(i) If v = (2,1) - 3, then

A ~ diag(Uz(f1(t)), Ur(f1(2))) = diag(Uz(t — a), Ur(t — av)).

1

a 1 0
).ThusAw 0 o 0. Each
«

0 0 «
a € [} gives a new conjugacy class. Thus there are ¢ —1 conjugacy classes of this type, which

we denote by 7). Next we calculate |CGL(n,qg)(A)], where A is of type 7@ In terms of (5.3)

Since Ui (t — a) = «, it follows that Us(t — a) = (g

we have mg = my = 1. The function ¢y 1) is thus

2 2 2
1 1 1 1 9 < 1> < 1 ) (q — 1>
-] = m; \ — ] — Pm - m -] = 9y -)=(1-- =\ — .
¢@J)<Q> £1¢ <q> i 1<q>¢ 2(@) m g q q
From Table 6.1 (see Appendix) we have n((2,1)) = 1. Using this together with (5.9) we get

C A = gl@DH2n(2,1) 1\ 5@ —17 _ 5 2
ICari.q(A)] =q P(2,1) )" T T (q—1)%.
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It follows by (5.10) that

ICal = (q—1D)(qg+1)(*+q+1).

(iii) In the final subcase when v = (3) - 3, we have

A ~ diag(Us(f1(t))) = diag(Us(t — a)).

Since U;(t — o) = «, it follows that Us(t — a) = ~ A. For any a € F there

_ o 9O =
S = O

e
0
0
corresponds a conjugacy class. Therefore there are ¢ — 1 distinct conjugacy classes of this

type, which we denote by 7).

By (5.3) we have m; = mgy = 0 and m3 = 1. The function ¢3) is given by

()= €)= ) (o ()= (4 0)) 0 ()5

From Table 6.1 we have n((3)) = 0. Thus

" 1 qg—1
Caog ()] = dOF2E) g (q) I N T
It follows by (5.10) that
ICal =q(g—1)*(g+1)(¢* +q+1).

. Suppose that f(t) = (t —a)?(t — ), o, € Fi, a # (. In this case, fi(t) = (t — a)?, ki =
1, fo(t) =(t—=p0), ke =1, fi(t) =1, k; =0, Vi > 3. We have v; € P(2) = {(1,1),(2)} and
ve € P(1) = {(1)}. Therefore we have two subcases:

(i) If vy = (1,1) and v9 = (1), then

A~ diag(Um (fl(t))7 UV2 (fQ(t))) = diag(U(l,l) (t - O[), U(l) (t - /8))

@ _ This

«

a 0

0
Since Uy (t — o) = «, it follows that Uy 1)(t — a) = ( ) .Hence A~ [0 «
0 0

W o o

type of classes will be denoted by 74, Notice that

a 0 0 6 0 0 a 0 0 6 0 0
00 a 0f~1]0 a O but 0 a 0[#]10 B O
0 0 g 0 0 « 0 0 p 0 0 «

Thus any ordered pair (o, ), o, 8 € F;, a # [ presents a new conjugacy class of this type
and hence there are (¢ — 1)(¢ — 2) distinct conjugacy classes of this type.
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We compute [Cgrsq)(A)l, A being an element in a class of type T@W. For the partition
v1 = (1,1) we have my = 2 and mg = 0, while for 5 = (1) we have m; = 0 and my = 1. The

function ¢y 1) is given by

() -oon ()= (- 0-2)- =

By Table 6.1 we have n((1,1)) = 1. Thus

1 Hg—1)(¢* -1
o = ety (1) DDy

Also

1 1
0y, = g2l 2n((2)) () _ Q(qq ) _qo1.

Therefore
ICars.g(A)] = anan, =qlg—1D)* g+ 1)(g - 1) = (¢ = 1)*(g + 1).
It follows that
Cal = (" +q+1).
(i) On the other hand, if v = (2) and s = (1), then
A ~ diag(Uy, (f1(1)), Un, (f2(1))) = diag(U)(t — a), Uy (t — B)) = diag(Us(t — a), Ur(t — B)).

a 1 0
).HenceAN 0 a O0]. Type of
0 0 g

classes of this format will be denoted by 7). As in previous subcase the number of distinct

. . a 1
Since U;(t — ) = a, it follows that Us(t — a) = (0
o'

conjugacy classes of this type is (¢ — 1)(q — 2).

Now

1 0qg—1
mq:a@y=d””“@”wm<>=q”20=q@—1)
q q
In the previous subcase 2(i) we have seen that

1 1 —1
Ay = q|1/2|+2n((1/2))¢1 () _ ql-i-2-0¢1 <> _ q(q ) _ (q _ 1)'
q q q

By (5.9) it follows that

1Carz.g)(A) = avaw, = (¢ —1)a(g — 1) = q(g — 1)*.

This shows that
IGL3.9)| _ ¢’(a—1)*(g+1)(¢* +2+1)
1Car.q(A)l q(q —1)?

ICal = =¢*(q—1D(g+1)(#+2+1).
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3. Suppose that f(t) = (t — «)(t — 5)(t — ), where o, 3 and v are distinct. We let fi(t) =
(t—a), falt) = (t—p), f3(t) = (t—~) and fi(t) =1, Vi > 3. Thus ky =1 =ky, k3 =1 and
k; =0, Vi > 3. Hence

A~ diag(Ulﬂ (fl(t))7 Uy, (fQ(t))7 UVB(fd(t))) = dia’g(U(l)(t - Ot), U(l)(t - ﬂ)v U(l)(t - 7))
a 0 0
= diag(Usr(t — @), Ur(t = B), Ur(t — 7)) = diag(e, B,7) = | 0 3 0
0 0 «

Type of classes of this format will be denoted by 7).

Each unordered triple {a, 3,7} with a, 3,7 € F; and a # 3 # v # « introduces a new

w distinct conjugacy classes of this type.

The size of the centralizer of an element A of type 76 is given by a,, ay,a,, = (a,,)% = (aqy)®,

conjugacy class. Therefore there are

where a(1y = ¢ — 1. Thus
ICarzg(A) = (g—1)°
Hence

ICal=¢*(g+1)(¢* +q+1).

4. Suppose that f(t) = (£* 4+ b1t +bo)(t — a), where t* + b1t + by € F and a € F}. We let f(t) =
t2 4+ byt + by and fo(t) = (t — ). Then k; = 1 and ke = 1, which implies that 11 = v = (1).
Since fi(t) = t> + byt + by € F, by Lemma 5.2.9, it splits completely over [Fg2. Suppose that

r is a root of fi(t). Then the other root is rZ. These two roots of fi(t) satisfy the relations

0 1 0 1
r+7r% = —by and 7179 = by. Therefore Uy (% + b1t +bgy) = = .
—bo —bl —TH_q r+ rd

Also we have U (t — a) = . Hence every A corresponds to an r € Fp2 \ Fy and a € Fy, will
be of the form

A~ diag(Uy, (f1),Un,(f2)) = diag(Uq)(f1), Uy (f2))

0 1 0
= diag(Ur(£* + bit + bo), Ur(t — ) = | —r'*9 7490 0
0 0 «

Type of classes of this format will be denoted by 7(7).
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Using equation (5.9) we get

ICara,g(A)| = H ay( (@™ ) =y, (11)(6) A1) (@)
jeF

1 1
= apy(@D).aw (@) = (q2<1>+4n(<1>>¢1 <q2)> (q|<1)+2n(<1>>¢1 (q))

= (qQ(q2;1)> <q(q;1)> =(q—1)*(g+1).

q

It follows by (5.10) that

3(4_ 1)3 2
0 = U= LN iy 1) g+ )

Since a € Fy (there are ¢ — 1 possibilities for a) and r € Fp2 \ F, (there are q? — q choices for

*
q’

with r gives the same conjugacy class. This restricts the number of conjugacy classes of this

a(g—1)?
type to — 5 -

r), it follows that there are ¢(q — 1)? classes of this type. But for fixed a € F?, replacing r?

5. Suppose that f(t) = t3 + agt? + a1t + ag remains irreducible over F,. In this case, fi = f and
fi=1, ki =1and k; =0 Vi > 2. It follows that v, = (1).
Since f1(t) € F, it splits completely over Fs. If s is a root of fi(t), then s? and s are the
other roots of fi(¢) by Lemma 5.2.9. These roots satisfy the relations s - s7 - s = gltatd® =
—ag, s-81+s- sT 4 50. 597 = gl+a 4 g140° 4 s9+¢° — 4 and s + 57 + s = ay. Thus an

element A corresponds to s € Fys \ F, will have the form

A ~ diag(Uy, (f1)) = diag(U(l)(t3 + ast? + ait + ag))

0 1 0
= 0 0 1
ap a1 a2
0 1 0
= 0 0 1
_gltatd®  glta g g4d 4 ogatd® gy a4 g8

Type of classes of this format will be denoted by 7(®).

By (5.9) we obtain

1
Corpa@ = T aun@D) =ty (@) = <qz(|<1>|+2n((1))>d)1 <3>>
feFr q
3
1
= U 7 1= (- D)@ g+ 1),

Hence

Cal = ¢*(¢ —1)%*(g +1).
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Since s € F s\ Fy, there are ¢> — ¢ choices for s. The conjugacy classes introduced by choosing
3
s7 and s7° are the same class of that one introduced by choosing s. This gives a total of 154

classes of this type.

Note 5.2.3. It can be easily checked that classes obtained in each type are not conjugate to classes

in other types as well as classes of the same type are also not conjugate.

We had processed all the possible cases. As a final step, we check the total number of elements in
conjugacy classes we have produced so far. Let A; € C4,, where Cjy, is a conjugacy class of type

7@ By #7 we mean the number of conjugacy classes of type 7). Then we have

8

SCal-#TY = 1-(g=1D)+(q—D(g+1)(@+g+1)-(g—1)
=1

+ - 1D)*@+ )@ +q+1) (- 1)+P@+q+1)-(¢—1)(g—2)
+ FPla-D@+D)(@+q+1)-(¢g—1)(q—2)
(g—1)(g—2)(g—3)

+ @Plg+1)(*+qg+1)-
?—q
3

+ ¢*lg—1)>%q+1)-

q9—4q8+q7+5q6+4q5—q4—6q3
6
q9_2q8+q7_q6+2q5_q4 q9_q8_2q7+2q6+q5_q4
2 + 3
= - -+ +d" - =13+ 1) +q+1) =|GL(3,q)

— q7_q6+q8_2q7_q5+2q4+

Also

S HTY = (-4 -+ (@—1D)+(¢—1)(g—2)

—1)(g—2)(¢g—3 —-1)2 -
b o(g=D(g-2)+ Y )(q6 )(g )+Q(q2 ) +q3q
5—6¢>+11g—6  ¢> — 2¢? 3
q q q _|_q q +q+q q
6 2 3
= ¢® —q=c(3,q) = The number of conjugacy classes of GL(3,q).

= 3¢—-3+2¢°—6g+4+

Hence the conjugacy classes we have found are all the classes of GL(3,q). In Table 5.3 we list these

classes with the size of centralizers, conjugacy classes and the number of classes contained in each

type.
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Table 5.3: The conjugacy classes of GL(3, q)

| | 70 | 7 | ™ |
(aOO) (alO) (alO)
Rep ¢g 0 a O 0 a O 0 a 1
0 0 « 0 0 « 0 0 «
H No. of CC H qg—1 ‘ qg—1 ‘ (¢g—1) H
| ICaraa@l || Pla— 1P+ D@ +q+1) | ¢*(g —1)? | Fa-y |
| el ] 1 | (@ -D(@+a+1) [ a@- D@ -1 |

Table 5.3 (continued)

H I | 70 |
(aOO) (alo) (aoo)
Rep g 0 a O 0 a O 0 8 0
00 8 00 p 0 0 ~
H No. of CC H (g—1)(¢g—2) ‘ (g—1)(¢g—2) ‘ w H
| 1Co1a0@) || ata— 13 +1) | alq— 1)’ | (¢ — 1)} H
| el | A@+a+) [A@-D@+a+) [Pt D@ +a+1) |

Table 5.3 (continued)

H | 0 | v |

0 1 0 0 1 0
Rep g —pdtt e gplta 0 0 1
0 o sltata®  _(glta 4 14 | gat+d®) g4 g0 4 50

[NoofcC | sa—1° | i@ ) |
llCersn@l || (@-1%@+1) | (¢—1)(¢®+q+1) |
I 1ol | fa-D@trar1) | ¢*(¢—1)*(g+1) |
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Note 5.2.4. The conjugacy classes of types 7, 7(M) and 7T®) comprise all the regular semisimple
classes of GL(3,q), while classes of types 7O, 7@ 76G) and TG are the primary classes of
GL(3,q). Note that the number of primary classes of GL(3,q) that given by Corollary 5.2.16 is
(g—1DIPB)|+1I5(q) =3(¢g—1)+ q3_q = (qfl)(q;ﬂw) Also the only type of regular semisimple

classes, which are also primary, is 7(® ) which consists of q —1 classes.

In terms of (5.11) the number of regular semisimple classes of GL(3,q) is given by

4 _ 3 _ 3(y _ 3 —
(q—1)% 2241(5 1) _a( ;)++1(q 1 _ (g +qli(‘i D - @ -q+1).

Alternatively we can use our formula given in Proposition 5.2.10 to produce the number of regular

semisimple classes as follows:

o if A= (13) F 3, then F(13) = (=D@=2)=3) _ 47(6)

o if A= (1121) I 3, then F(1'2') = I (q)I5(q) = 9451 = 47

o if A= (3) F 3, then F((3)) = {59 = 4#7®),

Therefore the number of regular semisimple classes is

(q—l)(qE2>(q—3)+Q(q;1)2+(q 3_q) —2¢% +29—1=(q—1)(¢* —q+1).

As a direct application of Theorem 5.2.17 we calculate the orders of the regular semisimple elements
of GL(3,q). Let €1,e2 and €3 be generators of Fy, IFZQ and Fzg respectively. Suppose that g, h and

t are representative elements for classes of types 7, T(7) and T respectively. Then

g0 0 0 1 0
g=|0 & o[, h = 52('1“) &) + 52(1+Q) 0
0 0 &P 0 gl
and
0 1 0
t= 0 0 1
6%3(1+q+q ) —( 6?);3(1+q) i 5%3(1+q2) T 5§3(q+q2)) 5?);3 + 6%3(1 + 5]3'3«12

for some distinct integers 1, j, j1, jo and j3. By Theorem 5.2.17 we get

o ((a=) (g—1) (¢-1)

olg) = 1 <gcd(j1, qg—1) " ged(j2, ¢—1)" ged(js, q—1)>’
— tem (=Y (4> —1) (¢~ 1)

oh) = I <gcd(¢, qg—1) " ged(j, ¢>—1)" ged(jg, ¢* — 1)>

and

—lem (¢ —1) (¢ —1) (¢ —1)
olt) =1 <gcd(j3, 3 —1) 7 ged(jzg, ¢3 —1)" ged(jzq?, ¢ — 1)) '

In similar fashion to the proof of Proposition 4.2.2 we can calculate the orders of other elements of
GL(3,q). We have done this and we listed these orders in Table 6.2, in the Appendix.
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Conjugacy Classes of GL(4,q)

Any A € GL(4,q) has characteristic polynomial f(¢) decomposes into one of the following forms:

L f(t)=(t—a)!, ael;,

2. f(t)=(t—a)’(t-P), a.f €Ty, a#p,

3. f(t)=(t—a)*(t—P)% a,BEF;, a#p,

4. f(t) = (t—a)*(t = B)(t —7), o, B,y € FE, a, 3,7 are distinct,

5. f(t)=(t—a)*(t* +at+b), a € F; and t* +at + b € F,

6. f(t)=(t—a)(t—=pB)(t—7)(—&), o B,7,§ € Fy, o, B,7,¢ are distinct,
T ft)=0t—a)t—-pB)(t*+at+b), o, €F;, f#aand t* +at +be F,
8. f()= (2 +at+b)(t>+ct+d), > +at+b, t?+ct+deF,

9. f(t) = (2 +at+0b)% t2+at+be F,

10. f(t) = (t—a)(t* + at®> + bt +¢), a € F; and 3 + at® + bt + c € F,

11. (t* +at? + b2 +ct +d), t* +at3 +bt> + ct +d € F,

~

—~
~

~—
I

Now one can build the Jordan Canonical Form of any A € GL(4, q) by using similar fashion used in
the case GL(3, ¢). One can also use equations (5.9) and (5.10) to calculate the size of the centralizers
and conjugacy classes. Tables including the representatives of classes and size of these classes have

been given in Tables 6.10 and 6.11 respectively (see Appendix).

Conjugacy Classes of GL(2,q) (Revisited)

We conclude this subsection by revisiting the group GL(2, ¢), which its conjugacy classes were given
in Theorem 4.2.1. There we proved that the classes lie in four types 71, 7@ 76G) and TW, but
we did not give a source for these classes. Now we are in good position to interpret how we got the
representatives. The characteristic polynomial of any A € GL(2, q) splits into one of the following

forms

L (t—a)? ack;,
2. (t_a)(t_ﬁ)a a?ﬂeFZ7 a#ﬁor

3. t?> 4+ at + b, remains irreducible over F,.
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2

When the characteristic polynomial is (t — )%, «a € [, then corresponding to the partitions

vi = (1,1) F 2 and v = (2) F 2, we get representatives in respective way given by

A ~ diag(Uny(t — @), Uy (t — ) = diag(Ui(t — o), Ur(t — ) = < (g 2 )

and

A~ diag(Upg(t — o) = diag(Ua(t — a)) = ( ’ ; ) .

This gives the first two types of classes T() and 7, where it is clear that 7() consists of the
central elements of GL(2,q). Thus the size of each conjugacy class of type 7() is 1, while if A is

an element in a class of type 72, then

. 1 1
ICariz,q)(A)] = ¢@T2U@)g <q> =q <qq> =q(g—-1)

which implies that |C4| = ¢® — 1, exactly as in Theorem 4.2.1.

Corresponding to the factorization (t — «)(t — ), a, (3 € Fy, a# B, we get elements of type TG,
while if the characteristic polynomial t2 + at + b € F, then we get elements of type 7@, Similarly
we can calculate the size of centralizers and hence conjugacy classes of elements of types 7®) and
T® using (5.9) and (5.10) respectively. Thus using Green’s formula for the size of the centralizer
of element of GL(2,q) coincides with the size computed from the definition directly as done in
Section 4.2.

5.3. Induction From Parabolic Subgroups

We recall by Theorem 3.1.8 that a parabolic subgroup P, is a split extension of its unipotent radical
k

Uy by its levi complement L), where the last one is isomorphic to ® GL(M\, q).
i=1

Let 1; be a class function of GL(\;,q), 1 <i < k. The function 1 defined on Ly by

k
Y(A) = ® Vi(Asi) = 1(A11)2(A2) - Yr(Agr) (5.17)
i=1

is a class function of Ly. This class function can be inflated by the lifting method described in
Section 2.4 to be a class function of Py by setting ¢(ul) = 9(l) for all w € Uy and [ € Lj.

k
Furthermore, we define the ®—product ¥1 ©® 2 ® -+ © Y = @¢z‘ to be the class function of
=1
' k k
GL(n,q), which is obtained by inducing ¢ from Py to GL(n, q). Formally @ v = ® @Z)ﬁgf(n’q).
i=1 i=1
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k
Corollary 5.3.1. If all v; are characters of GL(\;,q), V1 < i < k respectively, then Qwi s a
i=1

character of GL(n, q).

PROOF. Immediate. u

Definition 5.3.1. The process of obtaining characters of GL(n,q) from those of Py, which in turns

are obtained by lifting the characters of Ly, is referred to as a parabolic induction.
Note 5.3.1. Observe that parabolic induction produces characters of GL(n, q) from characters of

GL(m,q) for m < n.

Let {B1, Ba,---, Bs} be a left transversal of Py in GL(n, q). Using the induction theorem of char-
acters, which asserts that for z € GL(n,q) \ Py, then ¢Tgf(n’Q) (x) = 0 for a character ¢ of Py. Then

k

for all A € GL(n,q) we get (@ ¥i)(A) = Z@D(B;lABi), where the sum is made over all cosets
i=1 7

B, P for which B; 'AB; € Py. Now

B 'AB € P, «= 38 4P =F, «= B 'ABg, = 3\ < AB3, = B3\ — BF{ = B3).

The last equality means that BF) is a flag stabilized by the submodule V. For all 1 < ¢ < k, if we
let W; = BV;, where V; are the components of the flag §» and if

A A - Ay
0 A .. A

A =| = 7% . *1, (AweGLOw9)),
0 0 - A

then the factor module W;/W;_; is isomorphic to Vy4,, for all 1 < i < k (see Green [27] or Mac-
Donald [50]).

Theorem 5.3.2. Let 1); be a class function on GL(\;,q), 1 <i <k and ¢ be any conjugacy class
of GL(n,q). Then

k k
Ov =" D e [ ¥ilc)
i=1 i=1

{Cl7c27A.. 7Ck}
summed over all sequences {c1,cz,- -+ , ¢}, where ¢; is a conjugacy class of GL(\i,q) and g¢, ., .. ..

s the number of sequences
0=WyC W C~~‘CWk=V(n,q)

of submodules of V(n,q) such that the successive quotient W;/W;_1 =2 V.., 1 < i < k. In particular,

k
Q) = 2 (L) () (5.18)
= H ¢Ai (Q)
=1
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Moreover, if ¢ is a reqular semisimple class of GL(n,q), then it is sufficient to consider only the

k
reqular semisimple classes ¢; of GL()\;, q) to evaluate (@ i)(c).

i=1

PROOF. See Green [27] or MacDonald [50]. u

Remark 5.3.1. The number gz, ., ... ., is known as the Hall polynomial. This polynomial, which

Ck
will not be used in this dissertation again, is of great importance for the polynomial defined by
Green, which they bear his name. One can refer to Green [27], Klein [42], MacDonald [50], Springer

[71] or Zelevinsky [77] for more information concerning both of Green and Hall polynomials.

If ch, is the characteristic function of a class ¢, which is defined over x € GL(n, q) by

1 ifxec,
che(z) =
0 ifzx &ec,
then
k
@(Chci) = Z ggl,cg,m ,ckChC'
=1 {e1,e2, e}

Note 5.3.2. Note that the characteristic function ch. is a class function and hence the ®—product
is well defined.

k
Proposition 5.3.3. The ®—product @1/11' 18 multilinear, associative and commutative.
i=1

PROOF. See page 411 of Green [27]. u

(0.@)
Let €,, denotes the algebra of class functions of GL(n,q) and let € = @ ¢,, where GL(0,q) is to

n=0
be understood as the neutral group. Note that €y = C. The ®—product discussed above defines
a multiplication on €. We can check that € is a commutative and associative algebra over C. The
®—product generates characters of GL(n,q) from characters of GL(s, q) for s < n. In fact R < €,
[e.e]
where R = @%n and R, is the subalgebra consists of characters of GL(n,q). Systematic use

n=0
of € has been made by Green [27] in showing that some functions (given by Definition 7.3 in his

paper) of GL(n, q) are integral linear combination of characters of GL(n, ¢) and hence are characters
o
themselves. For this purpose he defined a homomorphism from € into & = @ &,,, where G,, is

n=1
the algebra of symmetric polynomials in n variables.
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5.4. Cuspidal Characters

We recall by Subsection 3.1.2 that a character of GL(n, q) is said to be a discrete series or cuspidal
character of GL(n, q) if it is not a principal series character. In this section we discuss the cuspidal
characters of GL(n, q). These character have nice parametrization in terms of the non-decomposable
characters of Fyn (Subsection 5.4.1). We also discuss the values of these characters on classes of
GL(n,q) (Theorem 5.4.4 and Equation (5.19)) and finally we show the importance of the cuspidal
characters for other characters of GL(n,q) (Theorem 5.4.6).

5.4.1 Parametrization of the Cuspidal Characters

Let Fgn : Fy be a field extension. We recall that the Galois group I' = I'(Fy» : F,) is a cyclic
group of size n generated by the Frobenius automorphism o4 : @ —— a?, Va € Fyn. Note that
(o) = 04,70 < j <n—1. Also I' acts on the maximal torus Fy. by a% = a?, for V0 < ji<n-—1
and all a € Fjn. On the other hand, if ¢ is a character of Fj» and o, € I', then we define 0% by
0% = 07 where 6% (a) = 6(a?’) = 0(a’), a € Fon.

Definition 5.4.1. Let 6 be a character of Fyn. For 0 <i <n—1, the conjugate character 0; of
0 is defined to be 0; = 0% = 97

Note 5.4.1. It is clear that I" has dual action on F» and on its character group also.

Over Fyn we know that (a? — 1)|(a™ — 1) <= d|n. For any d dividing n we define the norm map
Npa: Fogn — qu by

Npd(a) = a1 = H a’t = H at”.
=0

It is not difficult to check that IV, 4 is a group homomorphism.

Definition 5.4.2. A character 6 of ¥y is said to be non-decomposable if there is not any d
dividing n such that @ = Ny 4 0 x for any character x of F;d.

This means that ¢ does not factor through the norm map Ny, 4 : Fyn — F(’;d for any d dividing n.

Remark 5.4.1. Some authors refer to a non-decomposable character by reqular or primitive char-

acter.

The next Proposition detects the non-decomposable characters of Fyn.

Proposition 5.4.1. A character 6 of Fyn is non-decomposable if and only if all of its conjugates

are distinct.
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PROOF. See Prasad [60] or Reyes [61]. u

Let ND(F;n) denotes the set of all non-decomposable characters of Fy.. Since I' acts on the char-
acter group of ., it follows that I' acts on ND(F;.) and if 0,0 c ND(F;.), then we have

0 € 6" if and only if 0 = 07 for some 0<i<n-—1.

Note 5.4.2. Note that each Galois orbit 87 = {,69,07° ... #4" '} and hence |*| = n.

a3

Proposition 5.4.2. The number of Galois orbits 6 is given by %Zu(d)q .
din

PROOF. See Lemma 7.7 of Green [27]. u

Remark 5.4.2. Green [27] constructed an entity called a simplex as follows. Let an = ]an, =

n!—1

(e) and &5 = qus—l, for 1 < s < n. Then Fj. = (g5), Vs. Thus every element of F. has the

form ¥, where k is uniquely determined mod(q® — 1). The element £ has s distinct conjugates
s—1
5?,6?‘1, e ,65‘1 if and only if the set & = {k,kq,--- ,kq*~!} forms a complete set of residues

mod(q® — 1). The set & is called an s-simplex & or a simplex & of degree s. Each of the integers
kq', 0 <i < s—1is called a root of the simplex & of degree s. Green [27] established a canonical
bijection between the set S of all distinct simplexes & of degree < n and the set F of all distinct

irreducible polynomials over F, of degree < n.

We can see that w : 0¥ — & given by w(&qj) = kq’, Y0 < j <n — 1 is a bijective function.

The cuspidal characters of GL(n,q) have nice parametrization in terms of elements of ND(Fyn).

To each 6%, where 6, € N D(F;.), we associate a cuspidal character xg, of GL(n,q) as follows:
n_q
d

Consider the integers 1 < k < ¢™ — 1 such that Z qdi t k, ¥d, d dividing n. This to grant
i=0

that we are considering only the non-decomposable characters of Fy.. For such k, we exclude

kq,kq?, -+ kq"1mod(q™ — 1). In the computations, we use Y in place of g, for the appropriate
k.

We summarize the foregoing discussion in the following Theorem, which is the main theorem of

this subsection.

Theorem 5.4.3. The number of cuspidal characters of GL(n,q) is same as the number of regular

semisimple classes of GL(n,q) of type A = (n) F n, which is equal to the number of irreducible

polynomials of degree n over F,. This number is given by %Z u(d)q%.
din
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5.4.2 Values of the Cuspidal Characters on Classes of GL(n,q)

The values of the cuspidal characters of GL(n, ¢) on all the conjugacy classes of GL(n, q) are easy to

compute. We follow the description of Green [28]. Suppose that f € F,[t] with a root a. By Lemma

5.2.9 we know that af, a? - a?”"" are the other roots of f. Let 0 be an arbitrary character of
af—1
" ! g . . . . Fin
F.. We define 6(f) by 0(f) = > 6(a?). Now if d|n, we identify 6 with 015" . Next we define the
q

i=0
class function yy on g € GL(n,q) by

O(f)buor—1(q%7) if [g] is a primary class with o - 2,
xi(g) = ! g (5.19)
0 if [g] is not a primary class,

where ¢;(,)—; is the function defined in (5.2).

Theorem 5.4.4. The class function xg defined in (5.19) is a generalized character of GL(n,q) for
any character 0 of Fin and if 0, € ND(F;n), then (—=1)""'xq, € Irr(GL(n, q)).

PROOF. See Fulton [22], Green [27] or Green [28]. u

Example 5.4.1. Consider the central elements g = al,, = (t — o, 1,n,1"), a € Fy of GL(n,q),
which are self-classes. Since the characteristic polynomial of g is (¢t — )", it follows by Definition

5.2.2 that [g] is primary. If 0 is any character of Fy. and Fy. = (), then

1-1 ‘
O(f) = Okt — @) = Y Ok(a?) = Ox(a) = 0(c).
=0

Also
n—1

Go)-1(67) = dam—1(@) = [J1 ) =1 =)A= ¢*) - (1 = ¢" 7).

i=1
Now if 0, € ND(F;»), then Theorem 5.4.4 asserts that (=1)""1xg, € Irr(GL(n,q)) and at g = al,,

we have

(—1)" xg,(al,) = ()" M1-q)1—¢*) - (1—¢g" Ho(a")
= (q=D(@ -1 (¢"" = 1)f(a").

In Example 5.4.1 if @ = 1, that is the identity matrix of GL(n,q), then we have the following
Corollary.

Corollary 5.4.5. The degree of a cuspidal character of GL(n,q) is (¢ — 1)(¢> —1)---(¢"~1 = 1).

The next theorem is of great importance for characters of GL(n,q). It shows that the cuspidal

characters are the atoms from which any character of GL(n, ¢) is build up.
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Theorem 5.4.6. Every character of GL(n, q) is either cuspidal or a constituent of an (-) —product

of cuspidal characters.

PROOF. The proof is inductively on n. By definition, all characters of GL(1, q) are cuspidal. Assume
the result is true V1 < m < n — 1. Let x € Irr(GL(n,q)). If x is cuspidal, then there is nothing

n,q)

k
to prove. Let x be a principal series character. Then x is a constituent of ® xﬁgf( for some

=1
Py such that A = (A, A2, ,\t) € P(n), t # 1 and x; € Irr(GL(\;,q)). By hypothesis each
Xi is either cuspidal or a constituent of () —product of some cuspidal characters. Hence y is a

constituent of an () —product of cuspidal characters. u

Remark 5.4.3. By the above theorem (or by definition), we know that any xx € Irr(GL(1,q)) =
Irr(F}) is a cuspidal character. Recall that characters of GL(2, ¢) fall into four types, where char-

acters of type Y are the cuspidal characters of GL(2,q). We also recall that X,(f’l) = kaﬁgég’g)) =
Xkt © x1, while the characters X,(gl) and X;(f) appeared as constituents of xj ; where XkaTg;g"g =

Xt © Xk. This show that any X,(fl) is an ()-product of cuspidal characters, while any character Xg)

or X;(f) appears as a constituent of an ()-product of cuspidal characters. This confirms Theorem

5.4.6 for GL(2,q).

We illustrate the indexing and the values of the cuspidal characters of GL(2,q), GL(3,q) and
GL(4,q) in the following examples.

Example 5.4.2. Consider GL(2,q) and let ; be a character of F?;. We determine the non-
decomposable characters of F;z. The norm map Naj : IE‘;Q — I is given by Noi(r) = rrd =
ratl ¢ F7,. Now 6} has two conjugate characters, namely 6 itself and 0 = 0}, where 6} is
given by 07 (r) = 0j(r?). If ¢ + 1|k, we can see that 6] = 6. Therefore 6, € ND(F:;) if and only if
ke K={1,2,---,¢> -1} —{q+1,2(¢g+1),--- ,(¢g—1)(¢+1)}. Thus | K| = ¢*> — q. It easily to see
that for any k € K, we have 0, € K and 0, = 0;. Therefore in indexing the cuspidal characters
of GL(2,q), whenever we choose k € K, we take off kg from K. Thus we get a set of @ such k
to index the cuspidal characters xj of GL(2,q).

Next we calculate the values of the cuspidal characters xp, on classes of GL(2,q). Let g1, g2, 93, 94
be elements in classes of types T7W, 72 7B 74 regspectively. By Example 5.4.1 we have
xo,(91) = (=1)271(1 = @)0k(a) = (¢ — 1)0k(a) = (¢ — 1)a*. The characteristic polynomial of go
is f(t) = (t — ) for some a € F; and the associated partition to [ga] is A = (2) = 2. Thus by
(5.19), we have Ox(f) = Ox(t — a) = Ox(a) = a*. Also gzblo\)_l(qaf) = ¢1-1(q) = 1. Now Theorem
5.4.4 asserts that xg, (g2) = (—1)>710x(a) = —a*. The characteristic polynomial of g3 splits into
two distinct linear factors. Immediately, xg,(g3) = 0. The last case where g4 has characteristic

polynomial f(t) = t*+ at + b € Fy[t], which is irreducible, that is f has eigenvalues r and 77 where
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af—1

r € Fp2 \ Fy. Here we have 0, (f) = Z O (r?) = 04 (1) + 01, (r9). Also Din-1(0%) = p1-1(¢%) = 1.
i=0
By Theorem 5.4.4 we have

x0,(91) = (1)1 (Ok(r) + 04(r) = —(By(r) + Bxr)) = — (7 +7*1).

This completes the cuspidal characters of GL(2,q).

Sometimes we may write Xy, in place of xg, .

Example 5.4.3. The case n = 3 is very similar to the case n = 2 since 2 and 3 are both prime
numbers. Consider k € {1,2,---,¢> — 1} such that ¢ + ¢ + 11 k. If we choose such k, we exclude
kq and kq? from the set {1,2,---,¢> — 1}. Note that if ¢*> + ¢ + 1 1 k, it does not also divide kq or
kq?. We get ‘133—_(1 cuspidal characters of GL(3, ¢), which their values are given by

(

(g —1)2(g+1)a* if g is of type T,
—(qg—1)a* if ¢ is of type T,
ak if g is of type TG,
alg) = 0 if g is of type T, (5.20)
0 if ¢ is of type T©),
0 if g is of type T(©),
0 if ¢ is of type TV,
S* + gk 4 gha? if ¢ is of type T(®).

Example 5.4.4. We calculate the cuspidal characters of GL(4, q). Firstly we determine the non-
decomposable characters of ]1?24. Assume that k € {1,2,---,¢* — 1} and let 6, be a character of

IE‘Z4. We consider the norm maps Ny : IF;4 — IF; and Ny : FZ4 — ]F'Zz, which are given by
4 g-1
Nyp(r) = rot = p@+@+a+l and Nyo(r) = ra®1 = r+1 for all v € F?,. Now 6, € ND(F},) if

and only if ¢* +¢* + ¢+ 11k and ¢> +11k. Note that ¢ +¢> +q+1= (> +1) +q(¢®> +1) =
(¢ +1)(¢? + 1). This is reduced to say that 6, € ND(IF;4) if and only if ¢* + 1 { k. Equivalently
Or € ND(Fy) <= k € {1,2,---,¢* = 1} \ {¢® + 1,2(¢* + 1),--- ,(¢* = 1)(¢* + 1)}. This gives
(¢* —1) — (¢*> — 1) = ¢* — ¢ non-decomposable characters of IE‘Z4. Now each orbit of the action of
I'=[(Fgp : Fy) on ND(F},) consists of four conjugate characters namely, Or" = {6y, 0], 922, 92,3}.
To parameterize a cuspidal character of GL(4,q), we choose from each 0." a representative char-

4

acter ¢, since xy, = Xo? = Xga2 = Xgad- Therefore we have %(q — ¢?) cuspidal characters X, of
k k

GL(4,q). Note that I4(q) = 1(¢* — ¢?).
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To evaluate the cuspidal characters on classes of GL(4,q) we use Theorem 5.4.4 and similar steps
used in calculating the values of the cuspidal characters of GL(2,q). For example consider [g] of
type 7% which is given by the data ((t*> + at + b),2,2,(1,1)). Let r and r¢ be the roots of
f(t) = t* + at + b. Then Ox(f) = Ok(r) + O(r?) and ¢y)-1(¢") = y,1)-1(¢%) = (1 — ¢?).

Therefore we have
Xk = xg, = (=)7L = ¢*)(0k(r) + 0,(r9)) = (¢ — 1)(7* + 7).

Similarly we can calculate the values of the cuspidal characters on all other primary classes of
GL(4,q). Let A ={6,7,8,9,10,11,12,13,14,15,16,17,18,21}. In Table 5.4 we have skipped giving
relevant information for classes of types 7() for i € A, since all classes of these types are not
primary and by Theorem 5.4.4 the values of the cuspidal characters on these classes are zero. The

values of the cuspidal characters on classes of GL(4, q) are given in Table 5.4.

Remark 5.4.4. Note that the values of the cuspidal characters of GL(2, q) given by Example 5.4.2,
(4)

where we used the non-decomposable characters of FZQ, the same as the values of Xk4 = m, given

in Table 4.2, where 7 is written as a combination in terms of some characters of GL(2, q).
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5.5. Steinberg Characters

Let V be an (n + 1)—dimensional vector space over a field F and let V* denotes the set of nonzero
vectors x = (zo, %1, ,Tpn) of V, that is V* =V — {0}. We define an equivalence relation ~ on V*
by

x ~y in V* if and only if x = Ay, for some \ € F*.

Obviously this is an equivalence relation. In the rest of this section let us focus on the case where
F =TF,. It is clear that |[V*| = ¢"*! — 1. If we denote the equivalence class containing x by [x], then
by definition |[x]| = ¢ — 1. The set of all equivalence classes of V* will be denoted by D and will be
called projective n—space. Immediately we can see that

-1
— :qn_|_qn—1_|_”‘_{_1‘

Each class [x] in the projective n—space will be called a projective point or simply a point of D.

Note 5.5.1. Observe that the points of D are in fact the orbits of the action of F* on V* given by
x* = Mx for A € F* and x € V*.

Definition 5.5.1. A line L(«), where a = (g, a1, ,a,) € V* is defined to be the set of all
points [x] of D such that
oo + o1z + -+ apxy, = 0. (5.21)

Note that if x satisfies (5.21), then so does Ax, VA € F;. Thus L(a) = L(Aa), VA € Fy. For
arbitrary zp,x2, -+ ,z, € F, and for fixed & € V* where assumed that oy # 0, then (5.21) has
exactly ¢" — 1 solutions (zg,z1, 22, -+ ,z,) € V*. Note that z( is governed by (5.21). Since each
point [x] contains ¢ — 1 vectors of V*, there are exactly q;%ll =q¢" 1 +¢" %+ .-+ 1 points [x]

satisfying (5.21). In other words, there are ¢"~' + ¢"~2 4 --- + 1 points on each line.

Finally it can be shown that any two distinct points [x]| and [y] are contained in exactly %
¢ 24 ¢" 3+ ... +1 lines.

More generally if W is a subspace of V, then we define
(W] =A{[z]| z € W*} CD.

If W is an (m + 1)—dimensional subspace of V(n+1,q), then W is called a projective m—subspace,
and we say that W has projective dimension m. In particular if m = 0,1,2 or n — 1, that is W is a
1—dimensional, 2—dimensional, 3—dimensional or n—dimensional subspace of V' respectively, then
W is called point, line, plane or hyperplane respectively. In general the :—dimensional subspace is
called an ¢—flat.
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Definition 5.5.2. Let V(n + 1,q) be a vector space. The lattice of subspaces of V(n+1,q) of di-
mension at least 1 is called a Projective Geometry and is denoted by PG(n,q); i.e., the structure

which contains points, lines, planes, hyperplanes, etc.

Remark 5.5.1. The triple (anr_l; L q”:117 qn__lf 1) forms a design.
q q q

Example 5.5.1. Let n = 1. The projective geometry PG(1,q) consists of the vectors (zg,z1) €
IE‘Z —(0,0). These ¢ — 1 vectors divided into q;—_ll = ¢+ 1 classes (points), which are all contained

in one line.

Now the group GL(2,q) acts on PG(1,q) by the mean that if g = (a
c

b
d) € GL(2,q) and X € Fy,

then
g9lx] = g(Axo, A\x1) = (Mazg + bx1), A(cxg + dx1)) = Maxg + bzy, cxo + dxy).

This action is transitive and hence the resulting permutation character A contains the trivial

character 1 once. For any g € GL(2,q), let Fiz(g) be the set
Fiz(g) = {[x] € D] g[x] = [x]}-

We consider the four types of elements of GL(2, ¢) in this action.

0
1. Let g = (3 > be any element of type 7). Then
o

9[x] = g(Awo, Az1) = (w0, aAx1)) = y(20, 1) = [X],

i.e., any point of PG(1,q) is fixed by the central elements of GL(2, q), that is |Fiz(g)| = ¢+ 1.
Therefore deg A = g + 1.

1
2. Let g = (3 ) be any element of type 7(2). Then
a

9lx] = g(Azo, A\x1) = (@Azo + Ax1, 0dx1) € [X] = (720, 721) <= 21 = 0,

i.e, all the ¢ — 1 vectors (z,0) of the unique point x are fixed by elements of type T3,
Therefore |Fiz(g)| = 1.

0
3. Let g = (3 ﬁ) be any element of type 7). Then

9[x] = g(Azo, Ax1) = (aAzg, fAz1) = Y(x0,21) € [X] <= either zop =0 or z; = 0.

The points x and y represented by the vectors (1,0) and (0,1) respectively are linearly
independent in Fg, since there exists no v € Fy such that x = vy. We deduce that |Fiz(g)| = 2.
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0 1
4. Let g = be any element of type 7. Then
A

g[x] = g\xo, Ax1) = Ay, = T ag + A + r9) ) # y(zo,21) € [x], for some v € .-
Thus there is no point of PG(1,q) fixed by an element of type 7™, i.e., |Fiz(g)| = 0.
For convenience we list the values of A in Table 5.5.

Table 5.5: Values of the permutation character A on classes of GL(2, q)

| [z" 127 [ 77 | 77 |
[ No.ofcC[lg-1] -1 [(¢-Da—2/2]alg—1)/2 |
el [ 1 |-t ae+) | aa-1) |
L & Ja+1] v | 2 o |
Now
B.4) = & AwAE)
geG
- e (- D 0P - e -+ 1D )
1

- qW—lV@+&)@“q*U%q+n):2

Therefore A = 1 + ST, where ST € Irr(GL(2,q)). Hence ST = A — 1.

Note 5.5.2. Note that the values of the character ST we have obtained recently is same as the

values of the Steinberg character St have been found in page 50.

In [72] Steinberg found |P(n)| irreducible characters of GL(n,q) corresponding to the partitions
A= (A, A2, ,\n) B ony where Ay > Ay > -+ > A\, > 0. He used the underlying geometry of
a vector space V(n,q). These characters are closely related to the irreducible characters of the

Symmetric group Sj.

We recall from subsection 3.1.2 that GL(n,q) acts on the set F consisting of all flags of V(n,q) in
a natural way. This action is intransitive and the resulting orbits are in fact the equivalence classes
defined by ~ in page 25. It follows by Proposition 3.1.6 that these orbits are in 1 —1 correspondence
with P(n). Let §) be a representative for the orbit [§x]. By definition GL(n,q)z, = Px. Due to

the action of GL(n,q) on F, we get a permutation character CW | which is in fact 1T%L(n’q). Using
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equation (3.5), the degree deg CW is given by

{n}
deg CN) = SRTpWEwE (5.22)

The character C™) of GL(n, q) is not irreducible in general.

Note 5.5.3. Note that for the partition A = (n)  n, the permutation character CV) is the trivial
character since P,y = GL(n,q).

To see how C™ breaks into a sum of irreducible characters, we use of the analogy between GL(n,q)

and S,,. With A being the previous partition, we partition the set {1,2,--- ,n} into subsets consisting
n

of A1, g, -+ A\, integers. Let S) = ®SA2-7 where a factor Sy is ignored. Then S, < S, and
i=1

clearly has index in S,, given by

n!

[Sn 53] = NI WA

Next we let SO = 1T§:. Thus deg SM = n!/A\1\a!--- \,. Now Corollary 1 of Steinberg [72] reads
the following.

Theorem 5.5.1. The permutation characters C™ and S™) split into irreducible characters in

ezactly the same manner. That is if C = Zdixi’ where x; € Irr(GL(n,q)), then S =
=1
Zdi%, where x; € Irr(Sy).

i=1
To find the Steinberg characters we follow the following steps:
L. If P(n) = {\1,A2, -+, A\jp(n)|}, then order the partitions )\; in ascending order as defined in

Section 5.1 and renumber them in such away that if i < j, then A; < ;. That is \y = (n) <
Ay = (n—l,l) < - <)‘|P(n)| = (1,1,~-- ,1).

2. Determine the values of V) = 1Tgf(n’q), VA € P(n) on classes of GL(n,q). We know that
C(™ =1 the trivial character, since Py = GL(n,q). Consider c), o2 . cXrml) in
this order.

3. Consider S, §(2) ... ,S()‘W’(")l) in this order, where we know S(™ = 1 the trivial char-

acter, since S,y = Sp.

4. Start by decomposing each 17 g, into its irreducible constituents in the order given above.
For example S =1, §™=11) =1 4y and y € Irr(Sy). Then find §(n=22)  g(n=211) 4pq
so forth till S(11),

143



Chapter 5 — The Character Table of GL(n,q)

5. Theorem 5.5.1 asserts that C(N) = 1TGL n:4)

manner. Therefore we start by decomposing each C()‘) in the order c) o) CAPm)),
For example C™ =1, C("~11) =1 + y and x € Irr(GL(n,q)). This x is called a Steinberg
character. Then find C("=22) C(=2L1) and so forth till CLL1),

and SO = 1T decompose exactly in the same

6. From each C™ we get a new irreducible character of GL(n,q), which we denote by St

7. The irreducible character St™) is called a Steinberg character.

In the Examples 5.5.2 and 5.5.3 we determine the decomposition and the values of CM, X\ F 3

respectively.

Example 5.5.2. Consider n = 3 and let v = (0,0,3), p=(0,1,2) and A = (1,1,1). By (5.22) we
have deg C(093) = 1, deg C(*12) = 24 ¢+1 and deg CLY) = (q+1) (P +q+1) = ¢ +2(¢*+q) +1.
We know that C'(093) = 1. Now let Sy = 5(07172) S1 x S = Sy, Thus

115 (1sy) =3, 1183((12))) =1 and 11g((123)) =0,

which shows that 1T§2 = 1+ x, where x is the irreducible character of S3 of degree 2. Hence by
Theorem 5.5.1, we have C* = C(%1:2) = 1 4 §t(12) where St?) ¢ Irr(GL(3,q)) and deg St(1:?) =
¢> + q. In the last case where A\ = (1,1,1), let S = S; x S; x S; = 5. Then 1 Tgi’ is the regular

character which have values given by

) 6 if g=1g,,
1T§f(9)={ ’

0 otherwise.

Now by Theorem 5.2.8 of Moori [54] we know that the regular character x, of any finite group G

with Irr(G) = {x1, X2, , Xx} i equal to in(lg)xi. Thus
i=1

1TS3 =1+ 2y + the sign character,

and x € Irr(Ss) with deg xy = 2. Therefore by Theorem 5.5.1 we deduce that cLl) = 14926¢(1.2) 4
St(LY) | Hence

Sttt — oL _ 96412 g,
It follows that deg St = 3 +2(2 +q) +1— (2(2 +¢q) +1) = ¢*.

Remark 5.5.2. Darafasheh [14] showed how to extract the 11 Steinberg characters of GL(6,2)

from the permutation characters ITIG;L (© 2) A 6.
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Some Properties of Steinberg Characters

Let St X € P(n) denotes the Steinberg character of GL(n,q) corresponding to .

1. The trivial character of GL(n,q) is St(™).
2. St (g) € Z, Vg € GL(n,q), YA € P(n).

3. Trivially characters are invariant over conjugate elements. Steinberg characters are invariant

over conjugacy classes of the same type.

The next two points give special attention to the Steinberg character S,

4. Corresponding to A = (1), we have deg St = qn(nz_l). We recall by Remark 3.1.1 that
if P € Syl,(GL(n,q)), where p is the characteristic of F,, then |P| = qn<n271> = deg St(1").

This character is of particular interest for those who are working in modular representations
of GL(n,q). We do not propose any studies for this character in the direction of modular
representations. However as an ordinary character of GL(n, q), the values S5t(1") are easy to
compute in principal. Excepting the identity element I,, of GL(n,q), the value of St(1") at

an element x of GL(n,q) is given by

0 if ¢ is a p — singular,

St (z) = { (5.23)

+|P| ifxisa p—regulare,

where P € Syl,(Carn,g (7)) The sign of St(1") at regular elements is slightly tricky to be
determined. For further details see Humphreys [34].

5. Characterizing St(!"): The following theorem gives sufficient condition in order to charac-
terize St(1").

GL(n,q)

Theorem 5.5.2. St(1") is the unique irreducible constituent of 1TUT(n 0

in any other 1T1G3A when P\ # UT(n,q).

which fails to occur

PROOF. See Humphreys [34]. u

Proposition 5.5.3. The group GL(n,q) has an irreducible character x such that p| deg(x), where

p s the characteristic of F,.

PROQF. Let A = (n—1,1) - n. Then S,,_1 1) = Sp—1 x S1 = Sy 1. Let Sn=11) — 1T§Z_1' We know
by Proposition 13.24 of James [40] that 11" —1 € Irr(Sy) and deg(lT?Zﬁ1 —1) =n—1. Now by
Theorem 5.5.1, the permutation character C(®~11) gplits exactly into irreducible constituents in the
same way of S(»~11) = ngZq' Therefore C~11) =1 4 §t(=1LY and St"~LY e Irr(GL(n,q)) is
a Steinberg character. Thus St(»~1D = C(»=11) _ 1. In terms of equations (3.5) and (3.4) we have

oy ) -t g1
deg(C1)) = 10T n— 1] =[n] = o i
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It follows that
deg(St 1) = (" 4 " 24 g+ 1) —1=q(¢" 2+ " P+ g+ 1)

Hence the result.

Remark 5.5.3. In fact we can go further and prove that p|deg(St™), YA € P(n) \ {(n)}. Note
n(n—1)

that deg(St1"™)) = ¢~ 2

Example 5.5.3. In this example we would like to compute the Steinberg characters of GL(3, q).
Let V = V(3,q). Then |[V*| = ¢> — 1 and by the equivalence relation ~ defined on these vectors,

AZQ
we get |D| = ¢®> + ¢ + 1 points. Each point [x] consists of the vectors of the form x = | Az
AT9
for all A € Fy. These points are stabilized by P31y in the action of GL(3,q) on PG(2,q). Let
a b ¢
g=1d e f | €GL(3,q) and [x] be a point in PG(2,q), then
i h i
a b ¢ AZg alxg + bAzy + cAzy
gx]=1 d e f Ary | = | dAzg+ ez + fAxzo
j h i Lo JAzg + hAxry + tAxe

As in Example 5.5.1, for g € GL(3,q), let Fiz(g) be the set
Fixz(g) = {[x] € D| g[x] = [x]}.
We know that C2D(g) = 1T1G3£(i’q) (9) = |Fiz(g)|. Also by Example 5.5.2, we know that C'(*1) =
1+ St®D and consequently, StV (g) = |Fiz(g)| — 1, Yg € GL(3,q).
We consider the 8 types of conjugacy classes of GL(3,q), given in Table 5.3.

1. If g € GL(3,q) is of type TW, then

a 0 0 ATg alxg
gx]=1 0 a 0 Ar1 | =] adxp | € [x]
0 0 « AT9 aAT2

Therefore each point of PG(2, ¢) is fixed by the central elements of GL(3, ¢). Hence |Fiz(g)| =
¢ + ¢+ 1 and consequently St(>V)(g) = ¢%> + ¢.

2. If g € GL(3,q) is of type T?), then

a 1 0 Azg aAxg + Ary
gxl=1 0 a 0 A | = Ty € [x] <=z =0.
0 0 « Lo QaATo
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AHJO

Therefore, non-zero vectors of the form 0 are fixed by elements of type 7(2). Clearly,
)\332

there are ¢> — 1 such vectors. According to the equivalence relation defined on these non-zero

vectors, we have q;_—_ll = q+1=|Fiz(g)|. Hence St>V(g) = (¢+1) -1 =gq.

3. If g € GL(3,q) is of type T®), then

a 1 0 AZg adxg + Axy
gxl=1 0 a 1 M1 | = | adzi+Azg | €x] <= x1 =22 =0.
0 0 « AT9 alxo
AXQ
Therefore non-zero vectors of the form 0 are fixed by elements of type 7(3). Clearly,
0
there are ¢ — 1 such vectors and all lie in one point. Thus |Fiz(g)] = 1 and it follows that

St (g)=1—-1=0.

4. If g € GL(3,q) is of type T™, then

a 0 0 Azg aAxg
gx]=1 0 a 0 M1 | =] oz | €x] < (zo=x1=0) or 2 =0.
0 0 g AT BAxa
0
If zg = 1 = 0, then the non-zero vectors will have the form 0 and it follows that there
T2
is one point in this case. On the other hand, if o = 0, then the non-zero vectors will have the
AXQ
form | Az; |.It is immediate to see that there are ¢> — 1 non-zero vectors and they lie in
0

g+ 1 points by the equivalence relation defined on V*. Therefore |Fiz(g)| = (¢+1)+1 = q+2
and consequently St(2’1)(g) =(@+2)—1=q+1.

5. If g € GL(3,q) is of type T®), then

a 1 0 AZg aAxg + alry
gx]=1 0 a 0 Ay | = oAz €lx] < a1 =a2=0o0r z; =2 =0.
0 0 ﬂ /\LL’Q ,8/\1’2
)\xo
A typical non-zero vector in the case x1 = xo = 0 will have the form 0 and for the
0
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0

case 1 = xg = 0, the vector will have the form 0 . Since these two vectors are linearly

)\.CEQ
independent in V, they are in different points. We deduce that |Fiz(g)| = 2 and consequently

StED(g)=2—-1=1.

6. If g € GL(3,q) is of type T(®) then

a 0 0 Axg aATg
gxl=1 0 g 0 Ay | =] Brry | €x] &= (zo=21=0)
0 0 v AT VAT
or (xg=wx2=0)or (x; =x2=0).
Az 0 0
Typical non-zero vectors will have one of the form 0 , AT or 0 in
0 0 AT

respective way to the cases (z1 = x2 = 0), (z9 = x2 =0) or (zg = x1 = 0). Since these three
vectors are linearly independent in V| they are in different points, we deduce that |Fiz(g)| = 3

and hence St(>V(g) =3 -1 =2.

7. If g € GL(3,q) is of type T(7), then

0 1 0 /\.%'0 )\:Bl
gx]=| —rdtt 47 0 My | = —rTAzg+ (r +rDApy | € [X] &= z9 =21 =0.
0 0 o AT9 adx9
0
A typical non-zero vector will have the form 0 . All these ¢ — 1 non-zero vectors are
)\.%'2

in one point. Therefore St (g) =1—-1=0.

8. If g € GL(3,q) is of type T(®), then

0 1 0 Ao
glx] = 0 0 1 A1
sUHaHL _(gatl 4 g HL 0Py g gty g0 ATo

)\561

AsTHaH gy (501 4 5@ g0 F )y 4 A(s 4 59 4 59" )2g

There is no point fixed by an element of this type of classes of GL(3,q). Hence StV (g) =
0—-1=-1.
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This finishes the values of the Steinberg character St(>1) of GL(3, q).

To determine the values of C(111) | we use the parabolic subgroup Pai1y=UT(3,q) = GL(3,q)3n-
This subgroup has the form

c

UT(3,q) = | a,d, f € Fy, b,c,e €,

o O Q2
o o

e
f
Therefore |[UT(3,q)| = ¢*(¢ — 1)® and hence

[GL(3,q) : UT(3,9)] = (¢ + 1)(@® +q+1) =’ +2(¢° +q) + 1.

This subgroup is a minimal parabolic subgroup of GL(3, ¢). From the conjugacy classes of GL(3, q)
obtained in Subsection 5.2.4, we can determine those of UT'(3,q). We do not list all classes here,

but for example the elements

diag(a, 8,7), diag(o, v, ), diag(B3,v, ), diag(f,o,v), diag(y,a, (), diag(7y, 3, o) (5.24)

which are conjugate in GL(3,q) are no longer conjugate in UT(3, q). We can show that

ICur3,g) (A = |Cars,q(diag(a, 8,7))] = (¢ — 1)%,
where A denotes any matrix of (5.24).

Let OO = 17776540

—_

. If g is of type T, then 1Y (g) = [GL(3,¢q) : UT(3,q)] = ¢ + 2(¢> + ¢) + 1.
2. If g is of type T?), then C(L11)(g) = 2¢ + 1.

3. If g is of type T®), then C(L1D (g) = 1.

4. If g is of type TW, then C-LY (g) = 3(¢ + 1).

5. If g is of type T(®), then C(L1D(g) = 3.

6. If g is of type 7, then C(:1D (g) = 6.

7. If g is of type T(V, then C(L1D(g) = 0.

oo

. If g is of type T®), then C1D (g) = 0.

By Example 5.5.2, we know that C(M1D = 425121 14.6t4) where x € Irr(GL(3, ¢)) and deg(x) =
¢>. In fact, y is the third Steinberg character St(b1D). We have St(b1D) = (L) — 96421 _ 1,

Therefore
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1. If g is of type 7, then St(L11(g) = ¢,
2. If g is of type T?), then St(-1D(g) = 0.
3. If g is of type T4, then St(-1D (g) = 0.
4. If g is of type T™W, then St1D(g) = q.
5. If g is of type T, then St(:1Y(g) = 0.
6. If g is of type 7O, then St(:11(g) = 1.
7. If g is of type T(7, then St(-1Y(g) = —1.
8. If g is of type T®), then St1-11(g) =1

Note 5.5.4. We can see that St and St(>1) appeared as constituents in both ITP( 1)’q) and

T P( ), while St0-11) appeared as a constituent for only 1T1G3£(13 ﬁ)

5.5.2.

, which confirms Theorem

Alternatively one can determine, up to sign, the values of St(:11) using (5.23) since we have the
orders of elements of GL(3,q) in Table 6.2. From this table, elements of types 7, T() and 7®)
are p—singular, while elements in other types are p—regular. Let g1, go, - - - , gs be elements of types
TW 7@ ... T®) with centralizers Cy,Cy, - - - ,Cg in GL(3, ) respectively. Also for 1 < i < 8, let
P; € Syl,(C;). Then

St(l’Ll)(gQ) — St(171’1)(g3) = St(l’l’l)(QS) =0.
From Table 5.3 we can see that

|P1| = ¢, |Py| = qand |Ps| = |P;| = |Ps| = 1.

Hence
St () = +¢%, in particular StVD(L,) =% St (gy) = £¢; StEY (gg) = £1;
St (g = +1; StID(gg) = £1.

This completes the Steinberg characters of GL(3, ¢), which are listed in Table 5.7

To obtain the five Steinberg characters of GL(4, q) one can use similar method to the one used in
calculating the Steinberg characters of GL(3, q) via the geometric entities or to determine directly

the values of

TGL (4,9) T (4,9) TGL (4,9) TGL(4 ) TGL (4,9)
Pay P(S n Py P11y’ P11,
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on classes of GL(4, q) (see Table 6.10) and then using

which we know their decompositions in terms of Irr(Sy), to decide how ITIGD(I;E

Sa Sa
1TS(4)7 1TS(3’1)7 1T

Sa
S(2,2)"

17

Sy

S2,1,1)’

Sa
1T5(1,1,1,1)’

4,q)

9

A4 will

decompose. Each 1Tg(LA§4’q) affords a new irreducible character of GL(4, q), which is StV

Table 5.6: The values of Steinberg characters for GL(2, q)

H Type H 70 7@ TG T@ H

St(2)

1

1

1

S(L1)

q

1

-1

Table 5.7: The values of Steinberg characters for GL(3, q)

H Type H 70 7@ TG 7@ g6 g6 T T® H
St(3) 1 1 1 1 1 1 1
St 2 +q ¢ 0 qg+1 1 2 0 -1
S¢(111) @ 0 0 q 0 1 -1 1

Table 5.8: The values of Steinberg characters for GL(4, q)

[ Tpe | 70 710 70 70 70 70 700 70|
G4 1 1 1 1 1 1 1 1
StEY g +q+1) P4q ¢ q 0 ¢+qg+l g1 1
5t(22) *(®+1) ¢ ¢ 0 0 ¢ +4q q 0
§¢(2.1.1) q3(q2 +q+1) q3 0 0 0 q(q2 +q+1) q 0
G(1LLL1) e 0 0 0 0 7 0 0
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Table 5.8 (continued)

H Type H T70O) 00 g0 7012 (13 g4 015 (16) H
St 1 1 1 1 1 1 1 1
S(3:1) 2¢+1 qg+1 1 q+2 2 q 0 3
St(2:2) @ +1 1 1 q+1 1 —q+1 1 2
StLY) 242 ¢ 0 2¢+1 1 -1 -1 3
S¢(1,1.L1) ¢ 0 0 q 0 —q 0 1

Table 5.8 (continued)

H Type H T07) 708 (19 (20) T2 (22 H
St 1 1 1 1 1 1
S¢(3:1) -1 -1 ~1 0 —1
S¢(2:2) 0 2 ¢Z+1 1 ~1 0
S¢(2L1) -1 -1 —q? 0

S(LL11) _1 1 e _1

5.6. Construction of the Characters

Definition 5.6.1. A group G is called p—elementary if G = P x (x), where P is a p—group and
pto(x) for some x € G.

Definition 5.6.2. For any finite group G, the subring of the space of complex valued class functions
on G generated by the irreducible complex characters of G is called the character ring of G and
denoted by Ch(G).

Theorem 5.6.1 (Brauer’s Characterization of Characters). A class function ¢ of a finite

group G is a character of G if and only if qﬁl% is a character for all elementary subgroups H of G.

PROOF. See Brauer [8], Goldschmdit [25], Isaacs [38] or Serre [68]. u

Thus by Brauer’s Characterization of Characters Theorem, the elementary subgroups of G detect

the character ring of G.

Definition 5.6.3. Lettq,to,---

is said to be symmetric if it is invariant under the action of permutations of S, on the variables
t1,12,-- 7t0'(m)):f(t17t27"'7tm)'

,tm be a set of indeterminate variables. A function f onty,to, -+ ,tm

- tm. That is for any o € Sp,, we have f(t(,(l),t(,@), e
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The set of all symmetric polynomials in m indeterminate variables forms a subring
Am == ]F[tl)t27 T ’tn]sm
of the polynomial ring F[ty, to, - , ]

Theorem 5.6.2 (Green’s Theorem [27]). Suppose that 0 : Fzm — C* is a character of the
multiplicative group of the algebraic closure of Fgm. Let ¢ : G — GL(m,q) be a modular repre-
sentation of a finite group G. For each x € G, let \i(z), 1 < i < m, be the eigenvalues of ¢(x).

Suppose that f € Ay, is a symmetric polynomial, then the function
Xg + @ f(O(A1(2)),0(Aa(2)), -+, O(Am(2)))

is in Ch(Q).

PROOF. We recall that the ring of symmetric polynomials form an algebra, with the elementary
symmetric polynomials as a basis (see Goldschmidt [25], MacDonald [50] or Sagan [66] for these
polynomials). It follows that it is enough to prove the theorem for f = e,, 1 < r < m, an

elementary symmetric polynomial. Replacing ¢ by its exterior powers, it is then enough to prove

m
the theorem for f =e; = Zti'
i=1

Suppose that G is an arbitrary finite group. Let H be any elementary subgroup of G. Then we
know that H = K x P, where P is a p—group and K is a cyclic group such that p 1 |K| (p is
any prime not necessary to be the characteristic of Fy). By page 414 of Green [27], we know that
Xolxg € Ch(K). The result will follow if we could show that x4(zy) = x4(v), for z € K, y € P.
Since o(¢(y)) = p" for some r, it follows that the eigenvalues of ¢(y) are p—powers roots of unity
in Fzm, hence are all equal to 1. Also ¢(z) commutes with ¢(y). Using the Jordan canonical form,
we may find a basis for the representation space of ¢ such that ¢(x) and ¢(y) can be transformed

simultaneously to triangular matrices, that is

A1(x) * * * *
0 Ao(x * 0 1 *

o(x) = ) | e =
0 0 Am(z) 0 0 1

Xo(2y) = Xo(z) = ZM(:L")

= Z O(\i(z)), by page 155 of MacDonald [50]

= e(0(M(2)), 0(A2(x)), -+, 0(Am(2))) = F(O(A1(2)),0(Na()), - -+, 0(Am ().
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Now the function zy —— x is a homomorphic mapping of H = K x P onto K and therefore
X¢ € Ch(H). Since H is an arbitrary elementary subgroup of G, it follows by Brauer’s Characteri-
zation of Characters Theorem that x, € Ch(G). u

The construction of characters given by Theorem 5.6.2 does not produce irreducible characters of

GL(n,q) in general. However, these generalized characters have two advantages:

e the values of these characters are easily described,

e these characters can be extended to generalized characters of GL(n,¢") for any k € N. The

ordinary characters do not have this property. See Bump [11].

We apply Green’s Theorem to the case G = GL(n,q). Let ¢ : GL(n,q) — GL(n,q) be given by
#(A) = A and let f be the 7" elementary symmetric function f = e,, 1 < r < n. Also we shall
assume that 0 : Fy, — U is an isomorphism of Fy. to the group U consisting of the (¢" —1)th roots
of unity in C. With Ay, Ao, -+ , A, being the eigenvalues of A € GL(n,q) (counted with multiplicity)
and for any k € NU {0}, then
()
eb(A) = > "T[0*n), r<n (5.25)

0 i=1
is a character of GL(n,q) by Green’s Theorem. In particular if » = n, then

n

en(4) = H 6 (i) = 8°(] [(A)) = 6"(det(A)) = (B(det(A)))". (5.26)

=1

The second and the last equalities of equation (5.26) come from the fact that 6 is a homomorphism.

In turns, equation (5.26) gives ¢—1 linear characters of GL(n, q) corresponding to k = 0,1,--- ,¢—2.
Excepting the case n = ¢ = 2, the next theorem shows that these ¢ — 1 linear characters are all the

linear characters of GL(n,q).

Theorem 5.6.3. If n # 2 or q # 2, then the characters given by equation (5.26) are all the linear
characters of GL(n,q).

PROOF. Suppose that n # 2 or ¢ # 2. By Proposition 2.3.4 the number of linear characters of a
group G is equal to [G : Gl], where G is the derived subgroup. From Theorem 3.1.19, we know
that GL(n,q) = SL(n,q), except in the case n = 2 and ¢ € {2,3}. It follows that the number of
the linear characters of GL(n, q) is ¢ — 1. Since equation (5.26) supplies us with ¢ — 1 distinct linear
characters, therefore we know that there can be no further linear character.

In the case n = ¢ = 2, where GL(2,2) = S3 we have the extra linear character corresponds to the

sing of the permutations of S3. u

One can get from equation (5.26) the following commutative diagram. That is ef = Olw; o det .
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C*

Olwx

Figure 5.2: The commutative diagram of linear characters of GL(n, q).

5.7. Application: Character Table of GL(3,q)

We have seen in Subsection 5.2.4 that the conjugacy classes of GL(3, ¢) are distributed into 8 types.
In this section we show that the irreducible characters of GL(3,q) are also fall within 8 types.

5.7.1 Principal Series Characters of GL(3,q)
Linear Characters of GL(3,q)

According to Theorem 5.6.3 there are ¢ — 1 linear characters of GL(3, q). These characters are given
by the powers of the determinants of elements of GL(3,q) and we denote each character by X](:).

We list the values of X,(Cl) in Table 5.9.

Table 5.9: Linear characters of GL(3,q)

\ H T(1) \ T(2) \ 7<3>\ T(4) \ 7(5) \ 7(6) \ 7 \ T®) \

| |
H X;(gl) H &3k ‘ &3k ‘ &3k ‘ azkgk ‘ a2k:§k ‘ akﬁkﬁk ‘ Phla+1) gk ‘ k(e +a+1) H

where £k =0,1,--- ,q — 2.

Characters of GL(3,q) obtained through Steinberg characters

In Table 5.7 we have listed the values of St® = 1, St and St5Y on classes of GL(3,q).
Forming the tensor product of StV and St(b11D) with X,(gl) we get two new types of irreducible
characters of GL(3, ¢q), namely X/(f) = St(271)xl(€1) and X}(Cg) = St(Ll’l)X](:). We list the values of X;(f)
and xg) on classes of GL(3,q) in Table 5.10.
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Table 5.10: Steinberg characters tensored by linear characters of GL(3, q)

H H 7(1) \ T2 \7<s> \ T(4) \ 70) \ 7(6) \ 7 \ T(®) H
XD (@ +qa | a3k | o | (g+1)a%p" | a3k | 2akr* 0 _ k(@ g+
XD gask 0 0 qa2k gk 0 aFphak | et Dgh | g atD)

where £k =0,1,--- ,q — 2.
Characters of GL(3,q) obtained from parabolic subgroups

Here we use the parabolic subgroup F(; 1) defined in Example 3.1.2 to construct some characters
of GL(3,q). In fact it will be shown later that Xl(f) and X,(j) are also characters of GL(3,q) come
from characters of P 1). Recall that P31y has the form

a b e
Pony=4|c d fllaeF,, abcde feF, ad—bc#0
0 0 «

Therefore | P 1)| = ¢°(¢—1)%(¢+1) and hence [GL(3, q) : P2,1)] = ¢*+¢+ 1. This group, which we
change its notation now from P, 1y to M P(3,¢), is a maximal subgroup of GL(3,¢q) by a Theorem
of Aschbacher [4], since it is associated to a partition with 2 parts. From the conjugacy classes
of GL(3,q) obtained in Subsection 5.2.4, we can determine those of M P(3,q). We do not list all

classes of M P(3,q) here, but for example the two elements

(5.27)

S

I
o o Q
o 9o o
o O ™
o 9o o
O o o

0
0 and g/ =
p

of type 7™, which are conjugate in GL(3,¢) are no longer conjugate in M P(3,q) as follows. Let

a b e
h=1c d f|eMP(3,q).
0 0 ¢
Then
a b e a 0 0 ac ba ef
c d f 0 a 0 = |eca da fB]. (5.28)
0 0 ¢t 0 0 3 0 0 6
g 0 0 a b e af bp ef
0 o 0 c d f = ca da fal. (5.29)
0 0 « 0 0 ¢ 0 0 ta
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Now

)

g~g in MP(3,q) < (5.28) = (5.29) <= h =

o a O

€
of,
0

S 0

which contradicts the facts that ad — be # 0 and ¢ # 0. Therefore g and ¢ are not conjugate in
MP(3,q).

and |Cyrp(3,q) (¢))| we add the following two equations.

To calculate |Chrp(s,q)(9)

0 0 a b e acx ba e«
a 0 c d f|l = |ca da fal, (5.30)
0 g 0 0 ¢t 0 0 6
a b e 6 0 0 af ba e«
d f 0 o 0] = |¢f da fal. (5.31)
0 0 ¢ 0 0 « 0 0 ta

If (5.28) = (5.30) and (5.29) = (5.31), then we obtain
Crpag) (@) = ala— 1) (g+1) = [Carsg(9)l and  [Cupsg(e)] = ala—1)%
Through similar steps we can determine those splitting and non-splitting classes of GL(3,q) in

MP(3,q) and calculate the size of each class of M P(3,q).

From the maximality of M P(3,q) we expect to obtain large number of characters of GL(3,¢q). In
fact this group gives rise to all characters of the principal series of GL(3,¢). So in the following we

determine some of the irreducible characters of M P(3,q).

By Theorem 3.1.8 we have that MP(3,q) = Ug1):L(21) and hence MP(3,q)/Uiz1) = L21),
where Uy 1) and Ly 1) are the unipotent radical and levi complement of M P(3, q) respectively. By

Example 3.1.2, the former two subgroups have the forms

Ugny = 01 fllefel,,p,

Ly = c d 0|laelF,, abcdcFy, ad—bc#0
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We know that L(y1) = GL(2,q) x GL(1,q). If x € Irr(GL(2,q)) and ¥ € Irr(GL(1,q)), then
Irr(Li21)) = {x¥| x € Irr(GL(2,q)),v € Irr(GL(1,q))}.

Since irreducible characters of GL(2,q) fall in four types as shown in Table 4.2, the irreducible

characters of L, 1) are also distributed into four types as follows

e )\ xk, where \; and xj are any linear characters of GL(2,q) and GL(1, q) respectively.
e Xk, where ¢y is any character of GL(2,q) of type x(? and y, is any character of GL(1, q).
® 1.m Xk, Where ¢y , is any character of GL(2, q) of type x®) and xy, is any character of GL(1, q).

e T Xk, Where 7 is any cuspidal character of GL(2,q) and xy is any character of GL(1, q).

Since M P(3,q)/U2,1) = L(2,1), the above characters extend (lift) irreducibly to M P(3, q), because
they are characters of the quotient, where if x € Irr(GL(2,q)) and xi € Irr(GL(1,q)), then

Next we consider XXkTMP 9

e Note that the operation of obtaining characters of GL(3,q) this
way is the parabolic 1nduct10n described previously. Therefore we use the notation x ® xr =
XXkTMPS ) x € Irr(GL(2,q)), xx € Irr(GL(1,q)). We give an example on how to calculate
X ® Xk on classes of type 7). Let g and ¢ be the elements of GL(3, q) defined in (5.27). To follow

the next computations, we need to keep closely the character table of GL(2,q) given in Table 4.2.

e Suppose that \; € Irr(GL(2,q)) is any linear character and xj is any character of GL(1,q),
where k # [. Then

N Ox9) = Mxkly e (@)
1Car3,q(9)] a 0 1Car,q(9)] g0
. Xe(B) + A o
Curco@l \\o o) )  Cman@l Lo o) )
q(g —1)%(g + 1)A21 L (q - 1) (¢ + 1) Falah — G283 4 G

+ 1)
e Suppose that ¢, € Irr(GL(2,q)) is of type X(Q) and yy is any character of GL(1,q), where
k # 1. Then

WX (9) = Yol éq;) (9)
‘CGL(?) q)

) a 0 1Car,q(9)] g0 N
’CMP )g)ﬁb ((0 a))Xk(ﬁH_ |Crp 3q)(gl)|¢l ((0 a))Xk( )

(g
(
ala =1 (a+ 1) a2k + a¢=1)*(g+1) 3alar = ga2 3k + (1+k) 5l
glq— 13+ 1)? pm+ dq—17 g qa” " + (¢ +1)a"™v g
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e Suppose that v, € Irr(GL(2,q)) is of type x(® and xy is any character of GL(1, q), where
k #1# m # k. Then

(Wi ©X)(9) = Vraal SEED (g)

1Cars,q(9)l a 0 1Car(s,q(9)l g0 N

|CMP(3,q) (g)ywl,m < <0 a) ) Xk(/g) + |CMP(37q) (g/)| wl,m ( (O Oé)) Xk( )
_1)3 1 ) S —1)3 D) (5iem . Bmad) ~
::38_1%811%¢+Q¢H>m+ﬂ@( l%:)(ga +ﬂagak

_ (q+1) (I4+m) ﬁk (q+1) (I@ZAmAk_i_ﬂmAlAk)

_ (q + 1) (a(l—i—m)ﬁk + Bla(m+k) + Bma(l—l—k:)) )

e Suppose that m; € Irr(GL(2, q)) is any cuspidal character and yy is any character of GL(1, q).
Then

(mOxk)(g) = WleT%Lp(S’?;)(Q)

N |C’Mp ,q)( )| ((0 a>>Xk(ﬁ)+ 1Crrp(3.0)(9)] l<<0 04>>Xk( )
ala = VA1) pyaige  d@- DD o qyaip

B (¢g+1
~ qlg—1)3(g+1) q(q —1)*

Due to the complexity of computations, we give the values of x® xj on conjugacy classes of GL(3, q)

without details of computations.

1. Let A; be a linear character of GL(2,q) and xj be any character of GL(1,q). Two cases

appear.

(a) Consider firstly the case where | # k. Then

(¢® + g+ 12tk if g is of type T,

(q + 1)a%+k if g is of type T
anJrk

2

if g is of type 71

(
(
(
(nog) =4 T DA H GG g s of type T
altkgl 4 g2k if ¢ is of type T
&k@/y\l + Z)Zlgkﬁl + alﬁlﬁk if ¢ is of type T
akrilatl) if ¢ is of type T
L 0 if g is of type T

6

)
)|
),
),
),
),
M,
).

8

We can check that each ordered pair (k,l), k # | admits \; ® xx € Irr(GL(3,q)). We

get (¢ — 1)(q — 2) irreducible characters \; ® x; and we let X,(fl) =N O Xk
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(b) Consider the other case where | = k. Here we get

( (> +q+1)a% if gis of type TW),

(1)

(¢ + a3 if g is of type T3,

a’k if g is of type T,

(v o)) = | @FHEDigisof type T,
2 ﬁk if g is of type 70,

B&kﬁkﬁk if ¢ is of type T(©),

abrklat1) if g is of type T(7,

(®)

0 if g is of type T®.

\

We can see that A\ © xx = C(Qvl)xl(j), where €2 is the permutation character of
GL(3,q) discussed in Section 5.5. Therefore A\, ® xx & Irr(GL(3,q)). Observe that
e O xp = C2 1)x( ) = X( ) + X,(C) This shows that X,(fl) and X;(f) are principal series
characters of GL(3, q). In particular note that Stz — X(()Q) =X O®xo— 1

2. Let ¢y be any irreducible character of GL(2,q) of degree ¢ and x; € GL(1,q). There are two

cases appear according to k =1 or not. We consider only the case k # [. Here we have

q(q® + g+ 1)a+k if g is of type TV,

ga if ¢ is of type T,

0 if g is of type T(3)7

(¥ © xx)(g) = (q + D)at+k) ﬁl + qa2lﬂk if g is of type T®,
a(l—s—k)ﬁl a215k if g is of type 7(5)’

akﬁlﬁl + algk/v\l + algl’ik if g is of type 7(6),

—akpllat+1) if ¢ is of type 77,

( 0 if g is of type T8,

Each ordered pair (k,1), k # [ makes 1 © xx € Irr(GL(3,q)). We let x,(fl) =1, ® xx. Clearly

we have (¢ — 1)(q — 2) irreducible characters Xl(<:5l) :

3. Let 4y, be any irreducible character of GL(2, q) of degree ¢+1 and x, € Irr(GL(1,q)). There
are many cases appear according to (I =m =k), I=m#k), {#m=k), I=k#m)or
(I #m # k # 1). We consider only two cases out of these possibilities.

(a) Assume that [ # m # k # . We have
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(q+1)(¢* + g + 1)at+m+k) if ¢ is of type T,
(2q + 1)attm+h) if ¢ is of type T,
qi+m+k) if ¢ is of type T,
(q+ 1) (@M BE + GUHOFm 4 GBI if g s of type T,
(Y1m © xx)(9) = (a<l+m)3’“ + QUAR gm a<m+k)31) if ¢ is of type T,
akBA™ + gk gmAL 4+ gmBlak if g is of type T(©),
+amBEAl + &l g™ + &l Ak
0 if g is of type T(7,
0 if ¢ is of type T1).

\
For each k # | # m # k, we can check that v, © x3 is irreducible, but we do not do
this here as this requires invoking some other subgroups of GL(3, ¢) to evaluate some of
the terms appear in (¢, ® ¥, ¥1m © X&) - For example to evaluate

(q—1)(g—2)(q—3)
6

Cla+ D@ +a+ D Y (@FF a5+ am BTt x
atfyta

(akﬁl:)‘/m + akﬁm:y‘l + amglak>]’

two of subgroups of GL(3, ¢q) will be needed are the torus

a 0 0
T = 0 b 0]labcely
0 0 c
and its subgroup
a 0 0
0 a 0]]abel;
0 0 b

Then one can trace similar computations to ones done in page 49. Each unordered triple

{k,l,m}, k # 1 # m # k gives an irreducible character v, ® xx, which we denote by

(6) (q—l)(QgZ)(q—3)

Xk lom- Clearly there are such irreducible characters.

(b) Consider the case where [ = k = m. Here we get

( (g4 1)(¢>+q+1)a% if g is of type TW,

(2¢ + 1)ak if ¢ is of type 7@,

ask if ¢ is of type 7,

3(q + 1)a%k gk if g is of type T,

oo =4 200 e
G&kﬁkﬁk if ¢ is of type T(©,

0 if g is of type T(7,

0 if ¢ is of type 7).
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It is readily verified that ¥ © xx = C(l’l’l)xlgl), where €111 s the permutation
character discussed in Section 5.5. Therefore ¥y, 1, © xi & Ir7(GL(3,q)). We can see that
Vg © xp = OBy (1) (3) + 2X;(€) + X/E;) that is X(3) = Sty (1 — = Vrk O Xk —
2X(2) — (1) . Thus X/,(C ) is a prm(:lpal series character of GL(3,¢q). In particular note that
Stt1.1) —@ZJo,o@Xo—QX(())—l-

4. Let m be a cuspidal character of GL(2,q) and xi € Irr(GL(1,q)). In this case we have

( (@ —1)a™P if g is of type T,

G+ if g is of type T,

_a+k) if g is of type 7®),

(¢—1alFF  if g is of type T,

(M © xx)(9) = &gk if g is of type T®),
0 if g is of type 71,

—ak( +79) i g is of type 717,

0 if g is of type T®),

The characters m; © xx provided by the pair {k,l} where k =0,1,--- ,¢g—2and g+ 111, | =
1,2,---,¢*> — 1 and lg(mod ¢*> — 1) is excluded whenever [ is included, are irreducible. It

Q((I;l)Z (7)

follows that there are such characters, which we denote by Xk,

5.7.2 Discrete Series Characters of GL(3,q)

In Example 5.4.3 we have found the values of the cuspidal characters of GL(3,q). Let us denote
each cuspidal character of GL(3, q) by X,(f). We tabulate the values of X,(CB) on classes of GL(3,¢q) in

Table 5.11.

Table 5.11: The cuspidal characters of GL(3, q)

H H 71 ‘ T2 ‘ 703 ‘ T4 ‘ 70) ‘ 7(6) ‘ T ‘ T®) H
1D [ @-12@+var [ ~@-vat | a* | o | o | o | o [§F4shaqsd |

where ¢> + g+ 11k, k=1,2,--- ,¢> — 1 and kq, kq® are excluded whenever k is being chosen.

c 0 0
Alternatively one can get the values of XS) as follows: Let (f,), where fp = |0 07 0 | and
0 0 of

IF‘Z3 = (o), be an isomorphic copy of ]F;g in GL(3,q). Suppose that 0y € Irr({f,)) and ¢ =
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HkT?}Sg’q). Then provided that ¢> + ¢ + 11 k, one can easily check that

%](Cs) — ¢y — (X(()?’) _ Xé2) X X61)> X(()Q (5.32)

have the same values as X,(CB) over all g € GL(3,q). That is X,(f) = 5(',28).

If #x( means the number of irreducible characters of type x(* and also #7 ) means the number

of conjugacy classes of type 7, then we have

#xD =470 v1<i<s.
For example

#XO) = (q—1)(qg—2) = #T0.

Therefore

8 8

o =¢—q=> #T.

i=1 i=1
Since all characters we have found are distinct, it follows that we are done with the character table
of GL(3, q), which we list in Table 5.12.
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Table 5.12: The character table of GL(3, q)

[ tvee | 7 ™ | 1 ]
a 0 0 a 1 0 a 1 0
Rep ¢g 0 a O 0 a O 0 a 1
0 0 «o 0 0 «o 0 0 «
H No. of CC H qg—1 ‘ qg—1 ‘ (¢g—1) H
| ICaraa@l || Pla— 1P+ D@ +q+1) | ¢*(g —1)? | Fa-y |

H |Gyl H 1 \ (= 1)(*+q+1) \ (@ -1 1) H

X5 ask a3k ok

Xi (¢* + q)a’* ok 0

xi gask 0 0

Xt (¢*> + g+ 1)art (q + 1)ak+2 aQk+2

Xict a(q® + g+ 1)ak 2 gak+2 0

X5t (@ + D)(% + g + Darttm (2q + 1)ak+m Py

X (¢ — Dak+D — 0D D

X (¢ —1)%(q+1)aF —(g—1)a" =,
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Table 5.12 (continued)

| Type | 7MW | 76) | 7(6) H
a 0 0 a 1 0 a 0 0
Rep g 0 a O 0 a O 0 6 0
00 8 00 f 0 0 ~
| Noofcc | (- g2 [ G- | ehedes |
| ICare.g@)l | a(g —1)*(g +1) | q(q —1)? | (¢—1)° |
I el ] PP +q+1) | AP D@ +a+1) | Flar D@ +a+1) |
X}(:) a2k Bk a2k Bk ak B\kak
X (g + 1)a s a2 p* 2ak fiA
chs) qa%k Bk 0 ak 3k:y\k
& (¢ + DaF+D G + G2 5k a3l 4 52 gk a* A+ al gl
_i_alal;y\k
X;(fz) (q+ 1)a(k-+z)gz + qaZIBk a(k+l)§l akgl:?l +al§kfy\l
+alBlak
(q+1) (a(kﬂ)gm +akrmg | gD gm 4 glktm) 5l argam + ak gl
W +altim) e o T
_1_@\13767)77" + alam,/y\k
X (¢ —1)a's" —alpt 0
X 0 0 0
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Table 5.12 (continued)

[ tyee | 70 | 7® H
0 1 0 0 1 0
Rep g —rdtl e 0 0 1
0 0 a sltate® (g1 4 g1 | g0ty g 4 g7 4 g7
| No.otcc | la—1)° | 3(@* —q) |
| Cerso@! || (@-1%a+1) | (¢—1)(¢*+q+1) H
| 1ol | fa-D@rary) | ¢*(¢—1)*(qg+1) |
M akrk(a+1) gk(a®+q+1)
x 0 _gk(@®+a+1)
& _gk7k(a+1) Sk(®+q+1)
Xin akriatl) 0
X&) _gkpia+1) 0
Xihm 0 0
Xkt —ak (P + 7 0
X, 0 3 4+ gka 4 ghd®

where, in Table 5.12,

e o, yeFy, aF fF#a

o 7 cFp\F, r¥is excluded whenever r is included,

2 PR
s€Fps\Fy, s?and s7° are excluded whenever s is included,

e in X,(Cl), Xf) and X,(:’), k=0,1,---,q — 2,

o in X\ and x), k1=0,1,--,¢-2 k#I,

einy!® 0<k<l<m<gq-2

k,l,m

e in X,(:l), k=0,1,---,¢q—2,1=12---,¢>—1, ¢+ 1141 and lg(mod ¢*> — 1) is excluded

whenever [ is included,

e in X,(f), k=1,2,---,¢*—1, ¢*+q+ 11k and kq, kg*>(mod ¢® — 1) are excluded whenever k
is included, and finally,
e ~ is the character : F;d = (eq) — C* given by ~(&}) = ed1" for d = 1,2,3 and

0<j<qg?-2
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Remark 5.7.1. We have seen in Remark 5.4.3 that Ay, ¥y, ¥, m € Irr(GL(2,q)) appeared as
either cuspidal characters of GL(2,q) or constituents of an (-) —product of cuspidal characters of
GL(1,q). Now for GL(3,q) we have

1. A O xk = X,(f) + X,il). Thus every X,E}) and X/(f) appears as a constituent of A\; ® xg, where

Ak itself is a constituent of an () —product of cuspidal characters. Thus xff) and XS) are

constituents of an () —product of cuspidal characters of GL(2,q) and GL(1,q).

2. Y O XK = X](:’) + 2X;(€2) + 1. Thus every X}(€3) appears as a constituent of 1y, © x, where

Yk is an (O —product of cuspidal characters of GL(1,q). Thus every XS’) is a constituent of

an () —product of cuspidal characters of GL(2,¢q) and GL(1,q).

3.NOXE = X,(fl). Thus every X,(fl) is an () —product of cuspidal characters of GL(2,q) and

GL(1,q).

4. Y © xx = X,(;’l). Thus every ngz) is an () —product of cuspidal characters of GL(2,q) and

GL(1,q).

5. Yim © Xk = Xl(cﬁl)m Thus every Xl(fl),m is an () —product of distinct cuspidal characters of

GL(1,q).

6. m O XL = ng)' Thus every X,(:l) is an () —product of cuspidal characters m of GL(2,q) and

the cuspidal characters xx of GL(1,q).

7. X/(f) are the cuspidal characters of GL(3,q).

Hence every character of GL(3, q) is either a cuspidal or an () —product of cuspidal characters or
a constituent of an () —product of cuspidal characters of GL(2,q) and GL(1,q).

We have indicated before that there is a duality between the irreducible characters and the conju-
gacy classes of GL(3,q). In Table 5.13 we attach to every irreducible character a conjugacy class of
GL(3,q).

In Chapter 4 we gave examples for the character tables of GL(2,q) for ¢ = 3,4. Here we give
the character table of GL(3,3) and the conjugacy classes of GL(3,4). We list these tables in the
Appendix.

We conclude this chapter by mentioning that there exists a complete duality between the irreducible
characters and the conjugacy classes of GL(n,q). That is to each irreducible character, one can
associate a conjugacy class. Some of the aspects of this duality is shown in Table 5.14. There
exists an exact numeric in each case. For example the number of primary classes is the same as

the number of monatomic irreducible characters (see Definition 5.7.1).
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Table 5.13: Duality between irreducible characters and conjugacy classes of GL(3,q)

H Irreducible Character

Associated Conjugacy Class

ek 0 0
o 7o et o
0 0 &
ek 0 0
W 70 4 o
0 0 &
0 0
W 700 4 o
0 0 &¥
k0 0
! =0 & o
0 0 &
k10
o 790 & o
0 0 &
e 0 o0
Xon tm =0 & 0
0 0 &p
0 1 0
) 77 = | A g o
0 0 ek
0 0
Xy 7Y = 0 0 1
E§(1+q+q2) _(€§(1+q)+€§(1+q2)+€§(q+q2) €l§+€i§q+€§q2

where €1,&2 and €3 are generators of Fy, F 22 and Fzg respectively.
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Definition 5.7.1. An irreducible character x of GL(n,q) is called a monatomic if for some d

divides n, then x appears as a constituent of @ T=mOmTO---©n such that 7 is a cuspidal
| ——

character of GL(d, q).

n o .
4 times G times

Remark 5.7.2. Green [27] refers to a monatomic character by a primary character.

Table 5.14: Some aspects of the duality between irreducible characters and conjugacy classes of

GL(n,q)

H Irreducible character

Associated conjugacy class ‘ No. of conjugacy classes H

linear characters central classes q—1
unipotent characters | unipotent classes |P(n)|
monatomic characters primary classes Z \P(%)| - I4(q)
dn
cuspidal characters regular semisimple classes % Z ,u(d)q%
dn

of type (n) Fn

induced from distinct

cuspidal characters of GL(1,q)

n
regular semisimple classes H(q —1i)/n!
i=1
of type (1,1,--- ,1) Fn

T The definition of a unipotent character can be found in Bump [11] or Zelevinsky [77].
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Table 6.1: Values of n(\), A\Fn, n=1,2,3,4,5

Hn‘ AFn ‘n()\) H

1 0
2 (1,1) 1
2 0

(1,1,1) 3

3 (2,1) 1
3 0
(1,1,1,1) | 6
(2,1,1) 3

4 (2,2) 2
(3,1) 1

4 0
(1,1,1,1,1) | 10
(2,1,1,1) | 6
(2,2,1) 4

51 (3,1,1) 3
(3,2) 2

(4,1) 1

5 0
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Table 6.2: The orders of elements of GL(3, q)

[oe]
7O a= 5{ Wg_l)
TG a= 5{ #}1)_21)
TO [ =l a=¢f tem (et a + geath o)
70 a=ef', f=¢f p lem (gcd((gf, 1(1)—1) : gcd((?; 1q)—1)>
7O Ja=cf p=cf v=cl | lon (itts » gitf o gt o)
7™ a=c r=2f lem (gcd((?ljlzz)—l) ’ gcd((gjfc}?)—l)’ gcd((jqujtlz%—l))
¢ s=¢ tem (s 1)+ geatiy -1 g )

where €1, €9 and €3 are generators of F;, IFZQ and FZ3 respectively.
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Conjugacy Classes of GL(3,3) and GL(3,4)

The Group GL(3,3)

Let F5 = (a),F§ = (0) and F3, = (¢). Representatives of the conjugacy classes of GL(3,3)

are given by:

00 ¢B 0 0
7’0(1) — 0 1 O , 7’1(1) — 0 Cl?) 0 ,
0 1 0o 0 (¢
10 ¢B 10
77 = o1 ol ¥ = o ¢ o,
0 1 0o 0 (B
10 ¢B 10
76(3) — 0 1 1 , ’]1(3) — O <13 1 ,
0 1 0o 0 ¢
0 0 B0
Ty = |0 ¢® o T = 0 1 0]
0 (¢ 0 0
0 0 B 00
o o= o ¢ |, T = 0 1 1]
0 ¢ 0 0 1
0 0 100
) = 0 1 = 0 :
—0* 6 +063 01 1
0 0 1 0 0
Ty = 0o 1 = 0 0 :
-1 62 +6° 0 ¢ 0
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7
7,7

7
77
7
7%

)

7
77

)

7—1(8)

o O =

C13
0
0

<13
0
0

C13
0
0

0
0

0 0
0 1
—6* 6> +67
0 0
0 1
—0* 0+03
0 0
0 1
—1 62+
0 0
0 1
—0% >+ 07
1
0

0

1

<13 _(C4+<10+<12) <+C3+<9

<13 _(C20+CQ4+<8) C5+C15+C19

C13 _(C2+<18+<6) C7+C21+<11

0
0

0
0

1
0

0
1

_(C8+C20+CQ4) C2+C6+C18

1
0

_(C16+C14+C22) <4+C12+C10

1
0

1
0

0
1

0
1

0

1

(13 0
0 0
0 <-13

€13 0
0 O
0 1

0
0

C13

(e}
—_ O

1
0

1 C13

<13

0
0

C13

1
0

<13

1
0
1

o

0
1

C13

oS = O

0
1

Cl?)

C13

0
1

0
1

C13
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0 1 0 0
¥ = o 0 1 = 0o 1],

1 —(CO+¢2+¢18) B¢+ ™ 11 1

0 1 0 10
' = o 0 1 - 00 1],

1 _(C4+C10+Cl2) C14+616+422 1 0

0 1 0 0 10
¥ = | o 0 1 = | o

<13 _(§14+<16+<~22) <17+<~25+C23 C13 0 1

The basic information about the classes of GL(3,3) are given in Table 6.3.

Table 6.3: Basic information for conjugacy classes of GL(3,3)

| g o ICcraan@l lgll] g [ o9 [Coren@l ldl |

7 [ 1 11232 1| 7D |8 16 702
V| 2 11232 1|77 8 16 702
72 3 108 04 | 79| 8 16 702
2 6 108 104 | 7,7 || 8 16 702
73| 3 18 624 | & || 26 26 432
9 6 18 624 | T || 13 26 432
T || 2 96 17 | 7| 13 26 432
7 [ 2 96 17 | 7® | 26 26 432
.7 || 6 12 936 | ¥ || 26 26 432
7% || 6 12 936 | ¥ || 13 26 432
70 || 8 16 702 | Y [ 13 26 432
T | 4 16 702 | 7 || 26 26 432
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Table 6.4: The power maps of GL(3,3)

13 |

Iplog) |

—

—~ |~ |~ |~ |~ |}~ |~

NI NN N T N N

[ 2 1 b~ P P — b b P — b b — P 1 | ) = 1 | )
- 2 QU N S QU QNN P S A i S (i 2 _ |2 = 2
<t
e Py S S i S s sy i S S A A
— — 2\l [a\l el o <t [t O — 0 O~ — [~ N[~ 10~ — [~ N[~ 2[00

—
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Table 6.5: The character table of GL(3,3)

']

@
1,0
12 |

)

10 —

KA

@
1,0

7—1(1) H 76(2) 7—1(2) H 76(3) 7—1(3) H 7?)(,%)

H 76(1)

Class

96 | 12

18 || 96

— 1_A o oo o© _I_. — 11 _I__ — — O O O O O O o
o O o O — o O — — — — = = = = —
_ _ | [
o ol oll~+ —H|]|lo ol —~ — — o - - - o~ —
_ [ _
[xr e o O <t <f ™M M — — — AN AN AN AN AN AN [N}
_ _ _ _ _ _ f _ [ _
AN AN~ =[O0 N DO O © QI © © © © © © Ne}
— =[N N[ = [N M| (SN aN| N[ A = = o —
_ _ _ _ _ _ _ [ _
AN N D= |0 NS DO o © QI ©O© © © © © © Ne}
— A AN — [xr RN ap] N A AN [a] Lo B e B e B B B —
I~ I~ I~ ~— —~O| |}~ |~ N~ I~~~ =~ =~ =~ N~ ~ ~_
T ol @ ol Rl |E TSl Sl s P S N | T A I I I A
> =2 =2 x| R x| = = = 2T TR = X = X >

| ICoLea(9)l || 11232 11232 108 108 18
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Table 6.5 (continued)

: |
702 |

(

7

702

702 702

702

702

16 |

16

16 16

16

16

| 1Care2 W) ||

iv2

0

—i\/§

2

1

0

—i\@
—i\@

0
0

2
2

i

0 —iv2

0

2

i

2

1

iv?2

—ivV2  —iv2 0

0

3)
3)

N—

—~

~—

—

~—

L~ o~ o~ o~ o~~~
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26
13

26
13

26
26

26
26

26
13

26

Table 6.5 (continued)
13

| 432 432 432 432 432 432 432 432 |
2

OOOOOOOOEZBiA__uAAiBB

S oo o c o o o<l I A/

©C Qe oo cooIdmMINM MMM T(T
_ .
© ol o o o oOin MK T <N

colccococooltmiKimm g <<

3)
(3)

|Gl

| ICoria o) | 26

I~ O~~~ N~~~ N~~~ N~~~ ~_
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et
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X
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6
13

Z+€

57+
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i
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Table 6.6: Correspondence of conjugacy classes of GL(3,3) in our notation and GAP notation

Our GAP Our GAP Our GAP Our GAP
Notation | Notation ||| Notation | Notation ||| Notation | Notation ||| Notation | Notation
7 la T,y 2 .5 8¢ 77 13a
7 2% 7o) 2 77 8b 7. 260
7 3a T, 6d 7% 4a 7.® 26
77 6b 7 6 7% 8a 7 13d
7,7 3b T, 8d 7% 26¢ 7.y 13¢
7.7 6a Ty 4b 7" 13b 7. 26a

Table 6.7: Correspondence of irreducible characters of GL(3,3) in our notation and GAP notation

Our GAP Our GAP Our GAP Our GAP
Notation | Notation Notation | Notation Notation | Notation Notation | Notation

1 4 7 8

X(() ) X1 X((),i X5 xf),é X19 XE; ) X9
(€Y) 4 (@) ®)

X1 X2 X1,0 X6 X1,1 X17 X5 X12
(2) (5) ] (7) (8)

Xo X3 X0,1 X23 X1,2 X16 X7 X11
@) ) (@) (8)

X1 X4 X1,0 X24 X1,5 X18 X8 X7
(3) (M) (8) (8)

X0 X21 Xo0,1 X20 X1 X14 X14 X10
(3) (@) (8) ®)

X1 X22 X0,2 X15 X2 X8 X17 X13
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The Group GL(3,4)

Suppose that g, = Zgz = () . The conjugacy classes of GL(3,4) are given in Table 6.8.

Table 6.8: The conjugacy classes of GL(3,4)

[ Class | Rep g [ o9) | llgll [ Cc(g)l | Class | Rep g | o(9) | Ilgll | ICa(a)l ]|
1 0 0 ¢t oo 0
7 01 0 ) 1 1| 181440 || 7V 0 ¢ o0 3 1| 181440
0 0 1 0 0o ¢
¢ 0 0 1 1 0
7 0 ¢z 0 3 1| 181440 || 7? 01 0 2 | 315 | 576
0 0 ¢* 0 0 1
¢ 0 2 0
7 0 ¢ 0 6 | 315 576 7% 0 ¢*2 o 6 | 315 576
0 0 ¢ 0 0 ¢4
10 ¢t 1 0
7 001 1 4 | 3780 | 48 73 0 ¢ 12 | 3780 | 48
0 0 1 0 0o ¢
¢2 1 0 1 0 0
7,% ( 0 ¢ 1 ) 12 | 3780 | 48 7, 01 0 3 | 336 | 540
0 0 <42 0 0 <21
1 0 0 ¢t 0 o0
7.y ( 01 0 ) 3 | 336 | 540 758 0 ¢ oo 3 | 336 | 540
0 0 (%2 0 o0 1
¢ o 0 42 0 0
7,0 ( 0 ¢ oo ) 3 | 336 | 540 7Y 0 ¢z o 3 | 336 | 540
0 0 (¢*2 0 0 1
¢*2 0 0 1 1 0
7,9 (0 ¢4 0) 3 | 33 | 540 77 01 0 6 | 5040 | 36
0 0 ¢2 0 0 (2
11 0 ¢t 10
7. ( 01 0 ) 6 | 5040 | 36 7,3 0 ¢ o 6 | 5040 | 36
0 0 (¢*2 0o o0 1
21 4 0 ¢2 1 0
7,3 0o ¢ 0) 6 | 5040 | 36 %) 0 ¢ o0 6 | 5040 | 36
0 0 ¢*2 0 0 1
¢z 0 1 0 0
7,9 ¢4 0) 6 | 5040 | 36 7.9, 0 ¢t 3 | 6720 | 27
0 0 42
1 1 0 0
7,7 0 15 | 4032 45 7,7 (0 0 1 15 | 4032 45
0 0 ¢ 1
1 1.0 0
7,7 0 5 | 4032 | 45 750 (0 0 1 5 | 4032 | 45
0 0 1 ¢
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Table 6.8 (continued)
[ Class | Rep g | o9) | llgll | [Ca(g)l || Class | Rep g | ol9) | llgll | ICca)l ||
1 0 o0 1 0 o0
7,7 0o 0 1 15 | 4032 | 45 77 0o 0 1 15 | 4032 | 45
0 ¢21 21 0 ¢z a2
2l 00 2l 00
7,7 0o 0 1 15 | 4032 | 45 7.7 0o 0 1 15 | 4032 | 45
0 ¢ 1 0 ¢4z 1
2l o o0 2l o 0
7,7 0 0 1 15 | 4032 | 45 7.y 0o 0 1 15 | 4032 | 45
0 1 42 0 1 2!
2l o 0 2o 0
7,7 o 0 1 15 | 4032 | 45 7D 0o 0 1 5 | 4032 | 45
0 (2 ¢ 0 2 (%2
2 0 0 2 0 0
7,7 0o 0 1 5 | 4032 | 45 7,7 0o 0 1 15 | 4032 | 45
0 2 o1 0 %2 1
2 0 0 2 0 o
7,7 0 0 1 15 | 4032 | 45 7,7 0 0 1 15 | 4032 | 45
0 1 ¢4 0o 1 ¢
42 9 0 2 0 0
7,7 o 0 1 15 | 4032 | 45 7 o o0 1 15 | 4032 | 45
0 ¢ (2 0 ¢4z (a2
0 10 0 10
7% 0 0 1 63 | 2880 | 63 7 0 0 1 63 | 2880 | 63
211 2 1 1
01 0 0o 1 0
¥ 00 1 21 | 2880 | 63 7® 0 0 1 63 | 2880 | 63
1 0 ¢2 ¢4z 2t
01 0 0 1 0
7Y 00 1 21 | 2880 | 63 7® 0 0 1 9 | 2880 | 63
1 0 (42 ¢l 0 0
01 0 0 1 0
7 (0 0 1 7 | 2880 | 63 7 0o 0 1 63 | 2880 | 63
11 0 a2 g
0o 1 0 0 1 0
T o 0 1 63 | 2880 | 63 7 0 0 1 63 | 2880 | 63
42 (21 42 1 (%2
0 1 0 0 1 0
7 0 0 1 9 | 2880 | 63 7 0 0 1 21 | 2880 | 63
2 0 0 1 ¢ o
0 1 0 0o 1 0
7,5 o 0 1 63 | 2880 | 63 7 0o 0 1 63 | 28%0 | 63
421 <42 <21 <42 <42 C21
0 1 0 01 0
73 0 0 1 63 | 2880 | 63 7 00 1 7 | 2880 | 63
42 1 (21 1 0 1
0 1 0 0o 1 0
¥ 0 0 1 21 | 2880 | 63 7 0 0 1 63 | 2880 | 63
1 ¢4z 9 2 2t 2
0o 1 0 0 1 0
A o 0 1 63 | 2880 | 63 o o o0 1 63 | 2880 | 63
421 C21 <42 C42 <42 <42
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Table 6.9: The power maps of GL(3,4)

N— —
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)))))))))))))))) | "o T son T 2on T = T son T o T on T on T L I 2o T o T o T o
O] Ol O el Ol O ST el S O N N I NN O CHN I P R CFY SN N R R N B NN I O O
SISISISISISIG IS IS IS S S IS S S G B TS IS S S TS SSRGS IS S
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Table 6.10: Conjugacy classes of GL(4,q)

H Type ‘ Representative ‘ Conditions ‘ No of Classes H
a 0 0 O
T 0 o 00 a € F g—1
0 0 a O
0 0 0 «
a 1 0 O
T2 0 a 00 a ey qg—1
0 0 a 0 1
0 0 0 «
a 1 0 O
. 0 0o 0
() * a €F} q-1
0 0 o 1
0 0 0 «
a 1 0 O
0 1 0
T4) @ a€Fy qg—1
0 0 a O
0 0 0 «
a 1 0 O
1
R0 0 o 1.0 a€F; g—1
0 0 o 1
0 0 0 «
a 0 0 O
0 a 0 O
T(6) 0 0 a 0 a,BeF;, a#pB | (g—1(g—-2)
0O 0 0 p
a 1 0 O
0 a 0 O
T 0 0 a 0 o,BEF,, a#B | (¢—1)(g—2)
0 0 0 p
a 1 0 0
0 a 1 O
7®) 0 0 a 0 a,BeFy, a#8 | (¢—1)(¢—2)
0 0 0 B
a 0 0 O
0 aa 0 O — -
TO |0 D o | [ eeeEars | e
0 0 0 8
a 1 0 O
0 a 0 O
7(10) 0 0 8 o a,BeEF;, a#pB | (¢—1)(¢g—2)
0 0 0 p
a 1 0 O
0 a 0 O - —
T O o BEF;, azp | (D=2
0 0 0 pg
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Table 6.10 (continued)

H Type ‘ Representative ‘ Conditions ‘ No of Classes
a 0 0 O
0 o 0 O _ —9)(g—
12 (¢—1)(g—2)(g—3)
702 0 o 5 o By EF;, a#fEy#a (a0 2)e=3)
0 0 0 v
a 1 0 0
0 a 0 O _ _ _
7(13) o, BEF*, a o (g—1)(g—2)(g—3)
0 0 8 0 BEF,, a#B#y# 3
0 0 0 «
a 0 0 0
0 « 0 0 _1)2
(14) * * * a(g—1)
T 0 o 0 1 aEFq,rquz\Fq 5
0 0 —ritl p4pa
a 1 0 0
0 « 0 0 _1)2
(15) * * * a(g—1)
T 0 o 0 1 aEIF‘q,rquz\IFq 5
0 0 —ritl p4pa
a 0 0 O
T(16) 0 800 a,B,7,€ €F}, a,B,7,€ are distinct | (=1(0=2)(a=3)(a=4)
0 0 ~ O
0 0 0 ¢
a 0 0 0
0 g 0 0 _1)2(g—
an * * * a(g=1)"(q=2)
T O . 0,8 €F;, a# B, r €T, \F; )
0 0 —ritl p4pa
0 1 0 0
—patl 4 pa 0 0 2_ _
7(18) r rs €F*, \F*, r+£s a(¢=—=1)(g=2)
0 0 0 1 2 \Fo 7 8
0 0 —satl 54 5
0 1 0 0
—pratl q 0 0 2
(19) r r+r * * (¢°—q)
T 0 0 0 1 r e IFq2 \Fy 5
0 0 —ratl oy gpa
0 1 1 0
—patl q 0 1 2
(20) r r4r * * (¢*—a)
T 0 0 0 1 reFE\F 2
0 0 —'r‘H’l r+rd
a 0 O 0
0 6 0 0 2 _1)2
(21) * * * pq pa a(g—1)"(g+1)
T 0 o g4 0 a,EFq,QEFq3\Fq,9,0 3
0o 0 0 67
are excluded whenever 6 is included
Kk 0 0 0
0 k4 0 0 2 3 4_,2
(22) * * q ,.q q 9" —q
T 0 0 0 HEFq4\Fq2,K,I{ VK 1
0 0 0 K4
are excluded whenever k is included
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Table 6.11: Sizes of classes and centralizers of GL(4, q)

g ] Cr(,9(9)] | Cyl |
TW | (g —1)(* - 1)(¢* - 1)(¢" = 1) 1
7 ¢lg—1)*(* - 1) (@ +q+1)(¢"—1)
76 ¢g—1)(¢* - 1) q(¢® = 1)(¢* = 1)
7" q*(q—1)? (g +1)(¢* - 1)(¢* - 1)
70) *(g—1) (@ —1)(¢* —1)(¢" - 1)
7 (¢ —1)%(¢* = 1)(¢* — 1) PP+ +q+1)
7 (g —1)° S+ 1) +q+1)(¢* — 1)
T7® ¢*(q—1)? g+ 1) -1)(¢* - 1)
7O ¢*(g—1)*(¢* - 1)° P+ +q+1)
719) (g —1)*(¢* - 1) g+ D)@ +q+ 1)@ -1 (¢ +1)
70D ¢*(q—1)? g+ 1) -1)(¢* - 1)
712 ¢*(q—1)* g+ D)@ +a+ D)@+ +q+1)
719 q(q— 1) P+ D)@ +a+1)(¢* - 1)
7049 q(qg —1)(¢* — 1)? (> +q+1)(¢* +1)
715 q(qg—1)(¢* = 1) @ -1)("-1)
ASY (¢—1)* S+ (P +a+ )@+ +q+1)
ASY (¢—1)%(¢*—1) (¢ +q+1)(¢* - 1)
718) (¢* — 1) Slg—1D(@ - D(+1)
719 (@ —1)(¢" = 1) ¢*(¢—1)(¢* - 1)
70 (- 1) g—1)(-1)(¢* - 1)
T (¢—D(¢* 1) (¢ —1)(¢" - 1)
T2 (¢*—1) Sla—1(-1)(¢®—1)
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A programm to calculate the character table of UT(2,3) using GAP [23]

gap> G:= GL(2,3);

GL(2,3)

gap> K:=Elements(G);;
gap> H:= [];

[ ]

gap> for i in [1..Size(K)]do
if K[i][2][1]= 0%Z(3) then
> Add(H, K[il);
> fi;
>

od;

A\

gap> Size(H);
12
gap> for i in [1..Size(H)]do
> for j in [1..Size(H)]do
> if Order(Group(H[i]l, H[jl)) = Size(H) then
> break;
> fi;
> od;
> od;
gap> M:= Group(H[i], H[j1);
Group([ [ [ z(3), Z(3) 1, [ 0%Z(3),
Z3) 11, [ [z2(3)"0, 0%2(3) 1, [ 0%xz(3), Z(3) 11 1)
gap>0rder (M) ; 12
gap> T:= CharacterTable(M);
CharacterTable(Group([ [ [ Z(3), Z(3) 1, [ 0%xZ(3), z(3) 1 1, [ [ Z(3)"0, 0*Z(3)
1, [ 0%x2(3), Z(3) 11 1))
gap> Display(T); CT1
2 2 21 2 2 1
31 . 1 . 1 1
la 2a 3a 2b 2c 6a
11 1 1 1 1
-1 1-1 1 1
1 1-1-1-1

LT T B - -]
O O W NN
N N B, =

|
L S Y

—

(=Y

|

—

|

—
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or? = 11P€ — gt — b+
ot + 91PC + 610 + 2D + 3P — P

Q - mSQ - 3: + mmvm: - mEE@
(T— DT — D)1 —¢h)giP
(T+D+ b+ b+ b)

(T+ )T +D)e(1 = D)D)
(T+D+ b+ b+ b)

Q + NSNQ - NSSS
2 - m@XH - mSAH + m@voH@
(T+D+ b+ b+ b)
(T+D+ D)1 = yD)orh
(1+D+4 b+ b+ b)(T+D+ D)

ﬁ\@|a|§:|$@
(0g1/(¢ —Db)(¥ — D)

€1 =(1'1°¢)
o 1=(1'C'c)

Gl =(1°T°T°2)

(T+ P)e(1+ D)D) (¢ —b)(z—D)(1 — D)) J=(T T T°TT)
(1= ¢b)(1 = D) (1 —D)gb 7/ (P = 4b) = ()
(1= 3P)(1 = zb)gP /(T +b),(1—Db)b Er=(1)
o + 0T + ¢b — ¢h— (T4 D+ D)1+ D)1 —D)gh 8/(¢ —b)(1 — ;P)b ¢ =(¢'2)
01P% = 1P + g1b 4 PG — gb (T— D)1+ D+ h)gb 7/(c —b) (1 —D)b 161 =(11'C)
(142 + DI+ D) (14D)p | 12/(r—D)(e—D)e—=D)(1-P) | yI=TTD
(T+D)(1—Db)eh ¢/(b—¢b) 1€ = (€)
D — b — DT+ ob + bz — b (T+Db+D)(1—D)h ¢/¢(1—=D)b 1 =(1°2)
(T+D+h)(1+5)h 9/(¢ = P)(g —D)(1 - D) (L= (17D
(1—D)b /(1 —="D)b 12 = (2)
b+ ¢bg — b (T +D)b /(@ —Db)(1—b) Jd=(1°7)
1—b I 1—b (1= (1)
7 syuoware orduIsiures 1emnsal Jo "ON 7 ] 7 (\)d U Y : :

u<bh nmﬁ...nmﬁﬂ

=u ‘(b‘u)TH Jo syuowa(e ojduWIISIWOS IR[NSOI JO IoqUINN :gT°9 9[qR],
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