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ABSTRACT 

 

Ficus (Moraceae), with over 800 species, is one of the understudied genera in modern 

pharmacognosy. Rural households depend on their fruits for food while other plant parts such as 

leaves and bark are utilised for medicinal purposes. Phytochemical analyses and biological 

activities of different plant parts, as well as the nutritional value of the edible fruits of many of the 

species are yet to be investigated. This study aimed at investigating three Ficus species (Ficus 

burtt-davyi, Ficus sur Forssk and Ficus sycomorous Linn) that produce edible fruits and are 

indigenous to KwaZulu-Natal, South Africa, as a source of secondary metabolites and essential 

dietary elements, due to their claimed medicinal and nutritional value. Plant material was subjected 

to chromatographic analyses and isolated compounds were identified using spectroscopic 

techniques and by comparison with previously reported data. Fruit and soil samples that were 

collected from sites within KwaZulu-Natal, were digested and analysed for macro, micro and toxic 

elements by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES).  

The phytochemical investigation of F. burtt-davyi revealed the bark to be rich in pentacyclic 

triterpenoids (lupeol and lupeol acetate) and the known antioxidant flavonoid ((+)-catechin) whilst 

the leaves were rich in sterols (β-sitosterol, campesterol, and stigmasterol). Both leaves and fruits 

also contained phaeophytin a, lutein and α-amyrin. This is the first phytochemical report on this 

species. The cytotoxic results indicated that lupeol and (+)-catechin, the most abundant bioactive 

compounds in the stem bark, were responsible for its synergistic cytotoxic effects against breast 

and colorectal adenocarcinoma cell lines.  This study supports the use of this plant species as a 

substitute for antioxidant supplements and as an alternative medicine for oxidative stress related 
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non-communicable chronic diseases in vulnerable communities. The phytochemical analysis of F. 

sur revealed two pharmacologically active triterpenoids (lupeol and sitosterol), one pheaophytin 

(pheaphytin a) and one flavonoid (epicatechin).  

The analytical results indicated that the fruits of F. burtt-davyi, F. sur and F. sycomorous are good 

sources of essential dietary elements and can contribute significantly (p < 0.05) to the 

recommended dietary allowances (RDAs) for most nutrients. The fruits of F. sur and F. burtt-

davyi are good dietary sources of Se and Mn, respectively. The concentrations of As, Cd, and Pb 

were below the instrument detection limits in all three figs indicating that the species do not tend 

to accumulate these toxic elements. Data from this study showed that metal interactions in soil 

influenced their availability, but uptake was to a greater extent controlled by the plant. Statistical 

analyses revealed synergistic relationships in the plants, thereby confirming that uptake of 

elements is controlled to meet metabolic needs. Overall, this study validates the ethnomedicinal 

use of these figs and reveals the nutritional and medicinal benefits of consuming the indigenous 

edible fruits. It also addressed the need for analytical information on the elemental concentrations 

in indigenous edible fruits consumed in South Africa. 
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SUMMARY OF COMPOUNDS ISOLATED 

Compounds in subsequent chapters are not repeated 
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 CHAPTER 1  

INTRODUCTION 

1.1 Plant derived substances and traditional herbal medicine  

The World Health Organisation (WHO) defines medicinal plants as any plant which has one or 

more of its organs consisting of substances which are capable of being used for therapeutic 

purposes, or which are precursors for chemo-pharmaceutical semi synthesis (WHO, 1978). Plant-

derived substances have recently become of great interest due to their versatile applications and, 

over the years, medicinal plants have demonstrated the potential to be the richest bio-resource of 

herbal drugs of traditional systems, modern medicine and chemical entities for synthetic drugs 

(Goldfrank et al., 1982; Rates, 2001). Any part of the plant including the leaves, root, flowers, 

bark, seeds and fruits can be a source of natural plant constituents. In developing countries, more 

and more people rely on traditional herbal medicine for their healthcare needs (Cunningham, 1985; 

Shackleton et al., 2001). The use of plants and plant concoctions in healthcare is predominant in 

areas with inadequate modern health services (Saeed et al., 2004). Plants for therapeutic purposes, 

dates back several centuries; this is well documented by the Indians, the ancient Chinese, and 

North African civilisations (WHO, 1978).  The pattern of medicinal plant utilisation is depicted in 

Figure 1-1. 

Studies show that 70-80% of Africans utilise and rely on traditional medicine for their healthcare 

needs (Goggin et al., 2009; Gqaleni et al., 2007; Mahlangeni et al., 2014; Olsen, 1998). In South 

Africa, approximately 700 indigenous plant species are used by 60% of the indigenes as traditional 
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medicine (Meyer and Afoloyan, 1995). It is also reported that approximately 20 000 tonnes of 

South African indigenous plant material are used each year with an average of 750 g being 

consumed by individual traditional medicine user per use, and at least 3 visits/uses annually 

(Mander, 1998). In addition, gathered wild fruits have been reported to make up to more than 50% 

of the fruits consumed by the local people in a study involving 150 rural households across three 

villages in the Northern province and KwaZulu-Natal in South Africa yearly (Herzog et al., 1993; 

Shackleton et al., 2002). 

 

  

Figure 1-1: Patterns of herbal utilisation.  

(Riewpaiboon, 2004) 

This dependence on wild edible fruits and indigenous plants as better alternatives for healthcare is 

enhanced since the use of most of the plants, aside from being quite affordable, incorporates 

practices which are based on religious beliefs and social-cultural norms. Regardless of the reasons 

for seeking out traditional medicine, there is little doubt that interest in this practice has grown, 

and will almost certainly continue to grow around the world. Although intensive research has been 
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carried out on the isolation of bioactive compounds from medicinal plants, many species remain 

unstudied due to the large plant biodiversity. A phytochemical investigation of such medicinal 

plants could lead to the isolation of novel bioactive compounds with pharmacological importance. 

 

1.2 Rationale for the study 

In the rural areas of South Africa, people depend on trees growing in the wild for fruits due to 

accessibility and affordability, thereby inadvertently exploiting the therapeutic and nutraceutical 

potential of such fruits. In modern pharmacognosy, Ficus (Moraceae) is one of the understudied 

genera among more than 850 genera, despite the fruits being consumed by animals and humans 

and despite the leaves, bark and twigs being used as medicine. Ficus burtt-davyi Hutchinson, Ficus 

sur Forssk and Ficus sycomorus Linn are three medicinal species with edible fruits found in South 

Africa. Although biological studies of some of the Ficus species in South Africa have been 

conducted, phytochemical information on the parts used medicinally and nutritional information 

on the edible parts of most Ficus species has not been documented. Plant derived substances are 

used in both folk and modern medicine for the treatment and management of numerous human 

diseases. The phytochemical screening of new plants can lead to the isolation and identification of 

bioactive compounds that can serve as potential drug leads towards new therapies for the effective 

treatment and management of human diseases. In addition, heavy metals from the environment 

can bioaccumulate in the fruits of these indigenous figs and consumption of the fruits, if 

contaminated, can result in metal toxicities and adverse health effects. A nutritional evaluation 

through assessment of the levels of essential and toxic elements in edible fruits is imperative since 

human exposure to toxic metals through the agricultural food chain may occur especially when 
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levels of these elements are not phytotoxic. There is therefore a need to phytochemically and 

analytically investigate Ficus species to add to the base of knowledge on this genus. 

 

1.3 Aim and objectives of the study  

This study aims to phytochemically and analytically investigate three medicinal Ficus species that 

produce edible fruits and that are indigenous to KwaZulu-Natal, South Africa namely Ficus burtt-

davyi Hutchinson, Ficus sur Forssk and Ficus sycomorus Linn, as possible sources of secondary 

metabolites, hence validate their ethnomedicinal use, and to determine the nutritional value of the 

edible fruits. 

The objectives of the study were: 

 To extract and isolate the secondary metabolites from various parts of the Ficus species 

under investigation. 

 To identify and characterise isolated secondary metabolites using various spectroscopic 

techniques such as Nuclear Magnetic Resonance (NMR), Infrared Spectroscopy (IR), 

Ultraviolet-Visible Spectroscopy (UV-Vis), and Gas Chromatography-Mass Spectroscopy 

(GC-MS). 

 To identify suitable bioassays, based on classification of the compounds isolated and to 

test the isolated compounds for their biological activities thereby promoting further use of 

the plants or validating their ethnomedicinal use. 

 To determine the nutritional value of the fruits by comparing the elemental concentrations 

in the fruits to recommended dietary allowances (RDAs). 
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 To determine the effect of geographical location and soil quality on elemental content of 

fruits and hence determine their impact on elemental uptake. 

 To determine and assess metal contamination in fruits and hence determine their safety 

for consumption.    
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Nutrients 

Vitamins and minerals are classified as micronutrients (minerals required in very small amounts) 

and macronutrients that include minerals required in larger amounts, carbohydrates, proteins and 

fats (McDowell, 2003; Walker, 1990). Minerals that are essential to man include Fe, Ca, Ni, Co, 

Cu, Mg, Cr, Mn, Zn, and Se and most of these are essential at low concentrations. Table 2-1 shows 

the recommended dietary allowances (RDAs) for essential elements set to be adequate for 97 to 

98% of the individuals in the defined class (FNB, 2011).  

 

Table 2-1: Dietary Reference Intakes (DRIs) - Recommended Intakes for Individual. 

Life stage Ca 

(mg/d) 

Cr 

(ug/d) 

Cu 

(ug/d) 

Fe 

(mg/d) 

Mg 

(mg/d) 

Mn 

(mg/d) 

Se 

(ug/d) 

Zn 

(mg/d) 

Males         

14-18yrs 1,300 35 890 11 410 2.2 55 11 

19-50yrs 1,000 35 900 8 400 2.3 55 11 

>51yrs 1,200 30 900 8 420 2.3 55 11 

Females         

14-18yrs 1,300 24 890 15 360 1.6 55 9 

19-50yrs 1,000 25 900 18 310 1.8 55 8 

>51yrs 1,200 20 900 8 320 1.8 55 8 

Recommended intakes for individuals a, b 
a Recommended Dietary Allowances (RDA)-Daily intake adequate for 97 to 98% of healthy 

individuals each defined class. b Sourced from: Food and Nutrition Board, Institute of Medicine, 

National Academies, 2011. 
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In addition, Table 2-2 shows the Acceptable Macronutrient Distribution Ranges towards the 

Dietary Reference Intakes for most individuals (FNB, 2011). 

 

Table 2-2: Dietary Reference Intakes (DRIs): Acceptable Macronutrient Distribution 

Ranges. 

Macronutrient 

 

Children, 1–3 y 

% 

Children, 4–18 y 

% 

Adults 

% 

Carbohydrate 45–65 45–65 45–65 

Protein 5–20 10–30 10–35 

Fat 30–40 25–35 20–35 

Sourced from: Food and Nutrition Board, Institute of Medicine, National Academies, 2011. 

 

From a nutritional perspective, fruits are foods that are lower in energy but higher in 

phytochemicals, micronutrients and bioactive compounds compared to other food sources. Fruits 

are important to the human diet because they contribute towards the components that are essential 

for overall wellbeing such as trace elements, vitamins, carbohydrates, minerals and proteins 

(Itanna, 2002). Many investigations have reported a strong correlation between fruit consumption 

and reduced risk of cardiovascular disease, diabetes, obesity, hypertension, chronic respiratory 

disease, hypercholesterolemia and non-communicable diseases (WHO/FAO, 2003; Dragsted et 

al., 2006; Esmaillzadeh et al., 2006; Norman et al., 2006; 2007; Heidemann et al., 2008; Stea et 

al., 2008; Mayosi et al., 2009). Epidemiological reports have also suggested that a diet rich in 

antioxidant-rich fruits significantly reduced the risk of many cancers (Bradbury et al., 2014; 
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Genkinger et al., 2004; Rahman, 2001) including oesophageal, lung and gender specific breast / 

cervical cancer in adult females, and prostate cancer in adult males (Norman et al., 2006). In 

children, the nutrition related conditions that fruit consumption can ameliorate include vitamin A 

deficiency, malnutrition and obesity (Bosman et al., 2011; Mamabolo et al., 2006). 

Based on dose-response effect, WHO recommends consumption of 160 g and 240 g of fruits each 

day in children aged 0-4 years and 5-14 years, respectively (WHO/FAO, 2003; Lock et al., 2004). 

It also recommends an intake of 600 g per day of fruit and vegetables in adults. Although the 

Department of Health, South Africa, focuses mainly on undernutrition, they have set strategic 

objectives for nutrition-related chronic diseases leading to the Food-Based Dietary Guidelines 

(FBDGs). These guidelines recommend the consumption of plenty of fruits every day.  

 

Table 2-3: Dietary Reference Intakes (DRIs): Tolerable Upper Intake Levels (UL). 

Males/Females As Ca Cr Cu Fe Mg Mn Se Zn 

(Life Stages)  (g/d)  (ug/d) (mg/d) (mg/d)c (mg/d) (ug/d) (mg/d) 

9-13yrs ND 2.5 ND 5,000 40 350 6 280 23 

14-18yrs ND 2.5 ND 8,000 45 350 9 400 34 

19-70yrs ND 2.5 ND 10,000 45 350 11 400 40 

>70yrs ND 2.5 ND 10,000 45 350 11 400 40 

Tolerable Upper Intake Levels (UL)a b  

aUL = Maximum level of daily nutrient intake that is indicative of no possible adverse effect.      
b Food and Nutrition Board, Institute of Medicine, National Academies.                                         
c Intake from pharmacological source only. ND = Not detected. 
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Table 2-3 provides the Tolerable Upper Intake Levels (ULs) for the essential elements. This is the 

maximum level of daily nutrient intake that is indicative of no possible adverse effects in humans. 

Elemental concentrations in food, whether essential or non-essential, is of global concern as 

industrialisation has negatively affected forests and agricultural land in most parts of the world 

which has led to elevated concentrations of nutrients in food that are proving to be toxic (Ajasa 

etal., 2004; Al-Alawi and Mandiwana, 2007; Erdemoglu and Basgel, 2006; Maksimović et al., 

1999).  

Minerals that are essential to plants include Mg, Ca, Cr, Co, Cu, Fe, Mn, Mo, Ni, Se and Zn 

however plants also contain toxic elements such as As, Cd and Pb. Essential and non-essential 

elements are found in soil, from which plants get their nutrients. The availability of metals in 

growth-soil, as well as the affinity of edible fruits for these metals can play a major role in their 

translocation and bioaccumulation. Generally, the first step in elemental bioaccumulation by plants 

is uptake from the soil and this depends on the absorption ability of the root surface. Elemental 

entry into the human food chain via the agricultural route by the root is governed by elemental 

mobility and availability (John and Leventhal, 1996). The element can either be moved through 

diffusion to the root or the root can grow to meet the element through a solution phase.  

Factors that control elemental availability through soil-plant associations are solubility, 

complexation formation and chelation, and these are regulated by soil pH, organic matter content, 

ionic exchange and other biological processes (Violante et al., 2010). Additionally, redox reactions 

can mobilise or immobilise metals, by controlling the oxidation state which is subject to metal 

species and this is of great importance in controlling their mobility and toxicity; such elements 

include Pb, Cr, Se, As, Ni, Co and Cu (Violante et al., 2010). Elemental solubility in the soil–
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liquid matrices determines its mobility and bioavailability. At a given time, only some of the total 

elemental concentration in the soil will be available in soil solution for uptake by the plant whilst 

the rest would be bound to the soil matrix.  Table 2-4 shows the mobility of an element based on 

the fraction to which the element is complexed. 

Table 2-4: Chemical forms of metals in soil.    

 

Source: Gunn et al., 1988; Salomons, 1995. 

Organic substances can form chelates (soluble compounds) which bind elements such as Mn, Fe, 

Zn and Cu thereby increasing their solubility and their availability to plants (Clemens et al., 1990; 

Havlin et al., 1999). This is achieved by keeping the cation from interacting with other inorganic 

compounds via the formation of a ring around the cation in the solution, so that it diffuses easily 

from the soil into the root (Brady and Weil, 1999). Figure 2-1 shows the dynamics of chelation for 

uptake of Fe by the root of the plant. The cation-chelate complex can be absorbed by the root into 

its membrane before releasing the elemental cation from the complex or the cation-chelate 

complex liberates the elemental cation prior to absorption by the root. The two mechanisms end 
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up with the absorption of the elemental cation by the root and the binding of chelates to other 

metals after its return to the soil solution. 

 

Figure 2-1: Cycling of chelated iron (Fe2+) in soils. 

Source: McCauley et al. (2009). 

2.2 Soil 

The Soil Science Society of America, defines soil as “the unconsolidated mineral or organic matter 

on the surface of the earth that has been subjected to and shows effects of inherent and 

environmental factors of climate (water and temperature effects), and macro and micro-organisms, 

conditioned by relief, acting on parent material over a period of time” (David, 2008). It serves as 

a natural medium for growth of land plants and as a source of nutrients for these land plants. 

Generally, soil consist of the following basic components: water, mineral particles, organic matter 

and air (Brady and Ray, 2002) and organic matter further consists of living organisms, humus, and 

roots (Brady and Ray, 2002). Humus is usually formed from decayed organic matter and can be 

described as semi-soluble organic substances having a dark colour. Figure 2-2 shows the average 

composition of soil in good condition for optimal plant growth (Pidwirny, 2006). Under ideal 
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conditions, good soil volume would be 50% soil pores and 50% solid material with the pores 

containing 50% air and 50% water for optimal plant moisture. (Pidwirny, 2006). 

 

Figure 2-2: Average composition of soil.  

(Pidwirny, 2006). 

 

2.2.1 Soil formation and morphology 

Soil is weathered mineral materials of rock resulting from several thousand years of chemical and 

physical processes, influenced by environmental factors (water, temperature and wind abrasions) 

and biological agents (animals and plants) whose impact physically wear the rock and minerals. 

Weathering due to physical influences results in the exposure of larger surface area which will 

ultimately weather by chemical processes through different aqueous chemical reactions in the 

course soil formation. Carbon dioxide, a by-product of respiration and decay of living organisms 

could dissolve in pore water (found in pore spaces) forming carbonic acid, which is capable of 

dissolving minerals. The weathering processes, both chemical and physical, occur simultaneously, 

thereby enhancing each other and hastening soil-forming processes. The process of soil formation 
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produces five visible distinct layers called horizons (O, A, B, C and R) in the soil profile (Pidwirny, 

2006). 

Soil horizons are characterised by the texture, colour, structure and consistency of the soil and 

have varying chemical composition. The topmost layer is the O horizon consisting mainly of plant 

litter at various degrees of decay (Pidwirny, 2006). This layer is followed by the A horizon, where 

it is a layer with mixture of humus, mineral particles and other organic materials. It is characterised 

by greyish to dark-brown to black colour and it is usually porous and light in texture. The A horizon 

is also known to have maximum biological activity. This horizon has a darker upper layer 

indicating organic accumulation, with another layer below indicating loss of material (Pidwirny, 

2006). The B horizon is a soil layer consisting mostly of minerals under strong influence of 

illuviation as it collects and accumulates most of the iron, clay, aluminium and silicates of the soil. 

The C horizon is composed of weathered parent rock material. The C horizon has a varied texture 

and varying particles sizes from clay to boulders. The influence of translocation, organic changes 

and pedogenic developments do not significantly affect the C horizon (McCauley et al., 2009). 

The final layer in a typical soil profile, R horizon, if present, consists of unweathered bedrock 

(McCauley et al., 2009). Figure 2-3 shows the basic soil horizons. 

http://www.physicalgeography.net/physgeoglos/o.html#o_horizon
http://www.physicalgeography.net/physgeoglos/b.html#b_horizon
http://www.physicalgeography.net/physgeoglos/i.html#illuviation
http://www.physicalgeography.net/physgeoglos/c.html#c_horizon
http://www.physicalgeography.net/physgeoglos/w.html#weathering
http://www.physicalgeography.net/physgeoglos/c.html#c_horizon
http://www.physicalgeography.net/physgeoglos/b.html#boulder
http://www.physicalgeography.net/physgeoglos/r.html#r_horizon
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Figure 2-3: A general soil profile. 

(USDA-NRCS, 2011). 

2.2.2 Texture 

Mineral particle sizes are distributed differently and this determines the texture of any particular 

soil (Pidwirny, 2006). The coarseness or fineness of these mineral particles in the soil is called the 

texture of the soil. The different sizes of particles and their amount relative to each other 

determines the texture of soil. Soil texture determines the movement of water, air and plant root 

penetration.  Sand (0.05 to 2 mm in diameter), silt (0.002 to 0.05 mm in dimeter) and clay (< 0.002 

mm in diameter) are the major classes of soil. Clay particles which have the largest surface area to 

volume ratio, are highly reactive and have affinity for or can hold positively charged nutrient ions. 

Figure 2-4 shows the 12 primary classes of soil texture based on the amount of the major mineral 

particles (clay, silt and sand) (Smith and Smith, 1990; USDA-NRCS, 2011). 
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Figure 2-4: Soil textural triangle.  Note that a solid with 25% clay and 40% silt is loam. 

(USDA-NRCS, 2011). 

2.2.3 Soil properties 

For plants to take up nutrients they need to be in the right form, soluble or weakly bound in soil 

solution. Plants are primarily able to take up the ionic form of nutrients via their roots and many 

of these nutrients are taken up as cations. The main soil parameters that govern the processes of 

sorption, desorption and mobility of elements in the soil are water content, pH, soil organic matter 

(SOM) and cation exchange capacity (CEC) (Pongrac et al., 2007). A change in these soil physical 

and chemical conditions directly influences the availability of elements or nutrients for plant 

uptake.  
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2.2.3.1 pH 

The pH of soil is considered as the main soil property that controls the biological and chemical 

processes in the soil environment (Vangheluwe et al., 2005). Soil pH affects how the nutrients 

react with each other, their solubility and hence the availability of nutrients and heavy metals in 

soil for uptake by plants (Smith, 1996). Theoretically, soil pH is defined as a measure of the 

hydrogen ion (H+) concentration in solution present in soil pores which is in dynamic equilibrium 

with the predominantly negative charged surfaces of the soil particles (Vangheluwe et al., 2005). 

Consequently, the number of the binding sites for cations on the soil particles is mainly dependent 

on the soil pH. This is also known as the measure of acidity and alkalinity in soil solution. 

Generally, with acidic soils, there is increase in the trace metals mobility because there is a greater 

chance of cation exchange reactions occurring (Pakade et al., 2013). As the soil pH increases, the 

bioavailability of heavy metal cations decreases (Alloy, 1995; Kabata-Pendias and Pendias, 2001). 

When soils are alkaline, there is decreased solubility which hampers the cations availability; this 

can result in increased susceptibility to leaching or erosion losses in very acidic soils, the opposite 

holds for the availability of anions.  The best soil pH levels for overall nutrient availability are 

levels near 7. These pH levels enhance soil microorganism activity and encourages crop tolerance. 

Chemical amendments change soil pH and they may only be effective for a relatively short period 

and generally lack economic viability. 

At low pH, beneficial elements such as Ca and Mg become less available to plants with availability 

reaching highest within a pH range of 6.5 to 8 (McCauley et al., 2009). The availability of other 

elements such as Mn, Cu, Zn and Fe increases in the 5 - 7 pH range (McCauley et al., 2009) and 

increased Mn uptake may result in levels that are toxic to plants. In addition, there is decrease in 
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organic matter decomposers (bacterial population) and total hindrance of bacterial activity in 

highly acidic soil, thereby causing in build-up of organic matter and bound cation nutrients (Brady 

and Ray, 2008). Soil pH is greatly influenced by NH4
+ fertilisers, organic matter decomposition, 

weathering of minerals and parent material, land management practices and climate (Brady and 

Ray, 2008; Foth, 1990). 

 

2.2.3.2 Soil organic matter (SOM) 

Soil organic matter (SOM) consists of varying degrees of decaying animal and plant remains 

(Moodley et al., 2012). It is the main source of energy and food for soil flora and fauna which 

provide them with metabolic energy, enables biological processes, provides macro- and micro-

nutrients and ensures the storage and adequate release of nutrients and energy (McCauley, 2005; 

Pidwirny, 2006). Humus is a reactive and important part of SOM, contributing to the soil`s ability 

to retain nutrients on the exchange sites (McCauley et al., 2005; 2009). SOM consists of 

approximately 35-50% humus (Prasad and Power, 1997). It serves as a reservoir of nutrients, trace 

elements and water in the soil. SOM consists of negative charges due to dissociation of organic 

acids, which have affinity to adsorb metal cations, reduces leaching by water thereby increasing 

its availability to plants (Taiz and Zeiger, 2002; Vangheluwe et al., 2005). In addition, SOM 

enhances the availability of nutrients by increasing the soil’s cation exchange capacity (CEC), 

providing chelates, thus, increasing the solubility of some nutrients in the soil solution (McCauley, 

2005). Consequently, as SOM increases, availability and uptake of nutrients increases. Soil texture, 

temperature, vegetation, rainfall, rate of decomposition, parent material and landscape are factors 

known to affect SOM (McCauley, 2009). Thus, soil organic matter increases with increasing 

decomposition. 
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2.2.3.3 Cation exchange capacity (CEC) 

The cation exchange capacity (CEC) is the potential of the soil to interchange cations such as Ca2+, 

Na+, Mg2+, Al3+and K+ between soil solution and clay mineral or organic complexes (Chapman, 

1965). Clay mineral and SOM provide the negatively charged sites (exchange sites) that positively 

charged ions (cations) are attracted to and where they are retained. The exchange sites are formed 

because of the dissociation of H+ ions in phenolic groups and carboxylic acid found in the organic 

structures in the soil (Taiz and Zeiger, 2002). As soil pH increases, the number of negative charges 

on clay mineral and organic matter increases, which increases the CEC. Figure 2-5 shows a 

simplified representation of CEC based on a primarily negatively charged colloid attracting cations 

at the exchange sites. 

 

 

Figure 2-5: Simplified representation of exchange capacity. 

(Brady and Ray, 2002). 

At elevated levels, heavy metals and trace elements have the potential to be toxic, therefore 

monitoring soil properties is vital. In some cases, the mineral and heavy metal concentrations could 

be because of geographical variations, plant’s genetic factors, efficiency of mineral uptake, 

different growth conditions, irrigation with polluted water, soil fertility, farm practices, industrial 
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pollution and the analytical procedure employed (Ozcan and Akgul, 1998; Rehman et al., 2008; 

Sial et al., 2006). Constituents of wild medicinal plants have received much research investigation 

and reporting, according to a literature survey (Aloskar et al., 1992). However, the influence of 

inorganic elements on the biosynthesis of the plants pharmacologically-active chemicals has been 

poorly investigated (Aloskar et al., 1992). 

 

2.3 Functional foods and plant based sources 

The idea of “functional foods” was first introduced around mid-1980s and by the 1990s, consumers 

began to view food from a radically different vantage point. Functional food is defined as any food 

or food component that may provide benefits beyond basic nutrition and may prevent disease or 

promote health (Hasler, 2000). Today, there is increasing demand for food that contain 

components with healing and protective ability. Among several factors driving this intense interest, 

is the unstable cost of healthcare for chronic diseases and recent scientific reports associating foods 

and/or food constituents to ideal health status. Such foods include fruits, grains, fortified foods, 

beverages, vegetables, and some dietary supplements. Currently, functional properties of many 

indigenous foods are undergoing studies and developement (Hasler, 2000). Waltham (1998) 

estimated that the market value of functional foods in the United States of America was 28.9 billion 

USD, but more significantly, perhaps, is that there is the possibilty of functional foods to improve 

health, alleviate diseases, and reduce costs for health care. Furthermore, there are emerging 

economic possibilities for most developing countries with more research findings on functional 

foods. This is because such countries have traditional know-how of the health effects of plant 

species indigenous to them and are naturally bestowed with species richenss and abundance. For 
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instance, packaged functional foods in Japan in 2015 had a retail value of $8.5 billion, an 8% 

increase from the $7.8 billion retail value in 2010 (Acheson, 2016). 

South Africa, with over 22 000 species, representing about 10% of the world’s species in 

biodiversity, is considered as a hotspot in the nutraceutical (Functional foods) industry, but 

relatively few of these plants are utilised (Coetzee et al., 1999; Williams et al., 2006). Increasing 

evidence from epidemiological, in vitro, in vivo as well as clinical trial data indicate that the danger 

of chronic diseases, mostly cancer, can be reduced by consuming a plant-rich diet (Block, l992; 

Block et al., 1992; Bradbury et al., 2014; Hung et al., 2004; Key, 2011; Marmot, 2011; Rahman 

and Lowe, 2006; Takachi et al., 2008; Wang et al., 2014). The current burden of disease in South 

Africa, coupled with the cost of modern health services makes it important to investigate and 

determine the functional food properties of indigenous plant-based foods such as indigenous fruits. 

 

2.4 The genus Ficus 

2.4.1 Phylogeny of genus Ficus 

The genus Ficus belongs to the Moraceae family (Mulberry family, comprising 40 known genera) 

(Woodland, 1997) and one of the most populous in number of species of all plant genera because 

of its remarkably large variation in the habitats of its species (Herre et al., 2008). Moraceae is 

found mainly in the tropics and the semi-tropical regions. They include a variety of shrubs, herbs 

and trees, characterised by the presence of laticifier and milky sap in all parenchymatous tissues 

(Duncan and Duncan, 1988; Everett, 1968; Godfrey, 1988). The Moraceae, of the order Urticales, 

class Magnoliopsida and division Magnoliophyta are dicotyledons and flowering plants. Five 



 23  

  

tribes of Moraceae are known: Artocarpeae, Moreae, Dorstenieae, Ficeae, and Castilleae (Rohwer 

et al., 1993).  

Ficeae has only one genus, Ficus, with more than 800 species of shrubs, woody trees, vines, 

epiphytes and hemi-epiphytes, largely distributed in the tropics and subtropics  (Berg, 1989; 

Datwyler and Weiblen, 2004; Lansky and Paavilainen, 2011). They can be either monoecious with 

bisexual inflorescences or dioecious (Berg and Corner, 2005; Weiblen, 2000). The Asian-

Australian region is the main habitat for most species where 500 species are known constituting 

66% of the world`s species while Central and South America (Neotropical region) is a habitat to 

approximately 132 species (Burrows and Burrows, 2003). Presently, there are 112 recognised 

species in Africa (south of the Sahara, including Madagascar) (Afrotropical region ), of which 36 

are found in Southern Africa (Botswana, Namibia, Mozambique south of the Zambezi River, 

Zimbabwe and South Africa) (Burrows and Burrows, 2003). There are twenty five Ficus species 

in South Africa, two of which are sub-endemic, F. burtt-davyi Hutchinson (found in the southern 

part of Mozambique) and F. tettensis Hutchinson (found in Botswana and Zimbabwe) and one 

which is endemic, F. bizanae Hutch. and Burtt-Davy (Burrows and Burrows, 2003). 

Collectively, the Ficus genus is commonly referred to as fig trees or figs. Edible figs occupy a 

significant nutritional position globally, particularly in regions with climates that sustain them 

(Lansky and Paavilainen, 2011). 

 

2.4.2 Ethnobotanical uses and biological activity of Ficus species 

For many centuries, Ficus species, have been used in medicine with widespread and diverse 

applications. Generally, they are used as sources of fruit and for several purposes in traditional 

http://en.wikipedia.org/wiki/Shrub
http://en.wikipedia.org/wiki/Tree
http://en.wikipedia.org/wiki/Vine
http://en.wikipedia.org/wiki/Epiphyte
http://en.wikipedia.org/wiki/Hemiepiphyte
http://www.figweb.org/ficus/Checklists/Checklist_Neotropical_Ficus.htm
http://www.figweb.org/ficus/Checklists/Checklist_Afrotropical_Ficus.htm
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medicine. A list of the more prevalent Ficus species, their uses in traditional medicine and their 

biological activities are presented in Table 2-5. 
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Table 2-5: Ethnobotanical uses and biological activities of Ficus species 

Species 

Plant 

part 

Ethnobotanical uses Biological activity Reference 

F. asperifolia 

Leaf, 

latex, 

fruits, 

stem bark 

Cancers, tumours, colic, 

conjunctivitis, fever, gout, 

headache, haemorrhoids, 

abortifacient, menstruation, 

venereal diseases 

Fibroblast stimulation, 

antioxidant, antimicrobial 

Annan and Houghton, 2008; Ayensu, 1978; 

Burkill, 1985; Vasileva, 1969 

F. awkeostang Root Liver disease 

Cell cycle arrest, apoptosis, 

inhibition of proliferation in 

leukaemia cells 

Chang et al., 2005; Yang et al., 1987 

F. 

benghalensis 

Stem bark, 

latex, 

fruits, root 

Warts, asthma, boils, cough, 

diarrhoea 

Antioxidant, anthelmintic, 

anti-tumour 

Aswar et al., 2008; Augusti et al., 2005; 

Reddy et al., 1989; Shukla et al., 2004 

F. benjamina Leaves  

Anti-inflammatory, 

antinociceptive, antipyretic 

Farag, 2005 
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F. carica 

Fruit, root, 

stem bark 

leaves and 

latex 

Colic, indigestion, loss of 

appetite, diarrhoea, sore 

throat, cough, bronchial 

problems, anti-inflammatory, 

bee sting, eczema, 

cardiovascular remedy, 

haemorrhoids, head wounds 

Cytotoxicity, antiplatelet, 

antioxidant, anticancer, 

haemostatic, 

hypoglycaemic, hypo-

lipidemic, anti- human 

herpes simplex virus (HSV) 

Burkill, 1935; Canal et al., 2000; Gilani et al., 

2008; Hemmatzadeh et al., 2003; Perez et al., 

2003; 1999; Ponelope, 1997; Richter et al., 

2002; Rubnov et al., 2001; Solomon et al., 

2006; Vinson et al., 2005; Yazicioglu and 

Tuzlaci, 1996; Wang et al., 2004 

F. elastic 

Latex, 

roots 

Roundworms and tapeworms 

infections, ear oedema and 

arthritis 

Anti-inflammatory 

Nagaraju and Rao, 1990; Sackeyfio and 

Lugeleka, 1986 

F. exasperate 

Leaves 

and stem 

bark 

Hypertension, and arthritis, 

ulcers, diabetes, wound 

healing, venereal and 

infectious diseases 

Ant nociceptive effect, anti-

inflammatory, anti-

microbial, hypolipidaemic 

activity, antioxidant, anti-

bacterial, hypotensive 

Akah et al., 1997; Ayinde et al. 2007; 

Buniyamin et al., 2007; Burkill, 1985; 

Nimenibo-Uadia, 2003; Odunbaku et al., 

2008; Umerie et al., 2004; Woode et al., 2009 

F. fistulosa Leaves Malaria Antimalarial Zhang et al., 2002 
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F. glomerata 

stem bark Diabetes 

Antidiabetic, antioxidant 

activity, hepatoprotective, 

antiulcer, anti-HIV- 1 

integrase 

Bunluepuech and Lewtrakul, 2009; 

Channabasavaraj et al., 2008; Rahman et al., 

1994; Rao et al., 2008 

F. hispida 

Stem bark, 

fruits 

Swellings, leprosy, anaemia, 

jaundice, diuretic, 

haemorrhage, lactation 

Antidiarrheal activity 

hypoglycaemic 

Acharya and Kumar, 1984; Alam, 1992; 

Ghosh et al., 2004; Nyman et al., 1998; 

Petelot, 1954 

F. maxima 

Leave, 

stem bark 

and wood, 

latex 

Rheumatism, fever, 

gingivitis, anaemia, parasites 
 

Barrett, 1994; Diaz et al., 1997; Duke and 

Vasquez, 1994; Lentz, 1993; Lentz et al., 

1998 

F. microcarpa 

Roots, 

stem bark 

Typhoid 

Cytotoxicity, antioxidant, 

antimicrobial 

Anis and Iqbal, 1986; Ao et al., 2008; Chiang 

et al., 2005 

F. polita Leaves Malaria Antimalarial Etkin, 1997; Gbeassor et al., 1990 
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F. racemosa. 

Leaves, 

fruits, 

stem bark, 

latex, root 

sap 

Boils, blisters and measles, 

visceral obstruction, 

diarrhoea and constipation, 

diabetes, burns, swelling, 

leucorrhoea dysentery, 

haemorrhoids, stomach-ache, 

heat stroke, chronic wounds 

and malaria in cattle 

Antidiabetic, 

antihyperglycaemic, 

hypoglycaemic, antioxidant, 

radio-protective, anti-

inflammatory, anti-edemic, 

antibacterial, antitussive, 

antidiarrheal, wormicidal 

Benny and Adithan, 2000; Bheemachari et al., 

2007; Chandrashekhar et al., 2008; 

Deshmukh et al., 2007; Forestieri et al., 1996; 

Ghimire et al., 2000; Li et al., 2003; 2004; 

Mandal et al., 2000; Nadkarni et al., 1976; 

Narender et al., 2009; Patil et al., 2006; 

Paudyal, 2000; Rao et al., 2003; Sharma and 

Gupta, 2008; Siwakoti and Siwakoti, 2000; 

Sophia and Manoharan, 2007; Thapa, 2001; 

Tiwari, 2001; Yadav, 1999 

F. reflexa 

Stem bark,  

leaves 

Gout, gastrointestinal ulcers  Gurib-Fakim et al., 1996 

F. religiosa 

Stem bark, 

fruits, 

leaves, 

roots, 

Abortifacient, epilepsy, 

diarrhoea, dysentery, asthma, 

cough, respiratory disorders, 

malarial, ulcers, gonorrhoea, 

Antioxidant, antidiabetic, 

anticonvulsant, anti-

inflammatory, analgesic 

activities, anti-lipid, 

Anis et al., 2000; Jain et al., 2004; 2005; 

Khanom et al., 2000; Kirana et al., 2009; 

Kunwar and Bussmann, 2006; Mahishi et al., 

2005; Mousa et al., 1994; Panda, 2005; Pandit 
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latex and 

seeds 

scabies, infertility treatment, 

leprosy, laxative and 

purgative, rheumatism, and 

tuberculosis 

peroxidative effect, 

antimicrobial and antiviral 

et al., 2010; Samy et al., 2008; Sharma et al. 

2001; Singh and Panda, 2005; Sreelekshmi et 

al., 2007; Vyawahare et al., 2007 

F. septica 

Leaves, 

fruits, 

roots 

Headache, gastroenteritis, 

gastralgia, cephalgia, somatic 

pains, bacterial and fungal 

diseases, cough, diarrhoea, 

fever, urinary tract infections 

Antimicrobial 

Baumgartner et al., 1990; Holdsworth, 1980; 

1993; 1992; Holdsworth et al., 1989; 1983 

F. thonningii 

Leaves, 

stem bark, 

root 

Back pain, dislocated limbs, 

lactation, diabetes, appetite 

suppressant, and renal 

conditions 

Cardioprotective, 

hypoglycaemic 

Bhat et al., 1990; Kokwaro, 1976; 

Musabayane et al., 2006; 2007 

F. thunbergii Leaves Back pain, rheumatism None Kitajima et al., 1994 

F. toxicaria 

Latex, 

leaves 

Toothache, gastroenteritis  Grosvenor et al., 1995; Mahyar et al., 1991 



2.4.3 A phytochemical review of the compounds from Ficus species  

Ficus species are known to have a wide distribution of secondary metabolites in their different 

parts including triterpenoids, flavonoids, alkaloids sterols and coumarins. 

 

2.4.3.1 Triterpenoids

 

Figure 2-6: Triterpenoids from Ficus species. 
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One of the most commonly isolated class of compounds from the genus Ficus are triterpenoids. 

Chiang et al (2005), isolated the tetracyclic triterpenoids, 3β-acetoxy-25-hydroxylanosta-8,23-

diene (1) and 3β-acetoxy-25-methoxylanosta-8,23-diene (2) from the roots of F. microcarpa. A 

number of pentacyclic triterpenoids such as lupeol (3) and lupeol acetate (4) (Chiang and Kuo, 

2002), betulonic acid (5), acetylbetulinic acid (6), acetylursolic acid (7), oleanonic acid (8), ursolic 

acid (9) and ursonic acid (10) have also been isolated from the aerial roots of F. microcarpa 

(Chiang et al., 2005) (Figure 2-6). 

 

2.4.3.2 Flavonoids  

Another class of compounds commonly found in this genus are the flavonoids. The stem bark of 

F. cordata and the leaves of F. septica are reported to contain epiafzelechin (11), and genistein 

(12) respectively (Kuete et al., 2008; Wu et al., 2002). Also, quercetin (13), rutin (14) and 

kaempferitrin (15) have been isolated from the leaves of F. benjamina, F. carica and F. septica, 

respectively (Almahyl et al., 2003; El-Kholy and Shaban, 1966; Wu et al., 2002). Ficuisoflavone 

(16) and isolupinisoflavone E (17) have also been isolated from the stem bark of F. microcarpa. 

(Li and Kuo, 1997) (Figure 2-7). 
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Figure 2-7: Flavonoids from Ficus species. 
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2.4.3.3 Alkaloids  

Alkaloids have been isolated from this genus. Phenanthroindolizidine alkaloids were isolated from 

F. septica and F. hispida (Damu et al., 2005; Peraza-Sánchez et al., 2002). Ficuseptine-A (18), 

antofine (19), tylophorine (20), tylocrebrine (21) and isotylocrebrine (22) were isolated from the 

leaves of F. septica; Ficuseptine-B (23), Ficuseptine-C (24) and Ficuseptine-D (25) were isolated 

from the stem bark (Baumgartner et al., 1990; Damu et al., 2005; Wu et al., 2002; Yang et al., 

2006). Hispidine (26) was isolated from F. hispida (Venkatachalam and Mulchandani, 1982) 

(Figure 2-8).  

 

Figure 2-8: Alkaloids from Ficus species. 
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2.4.3.4 Sterols  

A number of sterols have been isolated from this genus such as β-sitosterol (27), β-sitosterol-β-D-

glucoside (28), ψ-taraxasterol ester (29), baurenol (30), 24-methylenecycloartanol (31) and 

stigmasterol (32) (El-Kholy and Shaban, 1966; Wu et al., 2002) (Figure 2-9). 

 

 

Figure 2-9: Sterols from Ficus species. 
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2.4.3.5 Coumarins 

The prominentcoumarins found in fig leaves are the furocoumarins such as bergapten (33) and 

psoralen (34) isolated from F. carica (Damjanić and Akačić, 1974; Meng et al., 1996). In 

addition, marmesin (35) and umbelliferone (36) were obtained from the leaves of F. carica 

(Innocenti et al., 1982; Wu et al., 2002) (Figure 2-10). 

 

 

 

Figure 2-10: Coumarins from Ficus species. 
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2.4.4 Ethnobotanical review of the Ficus species selected for study 

2.4.4.1 Ficus burtt-davyi Hutchinson 

 

Figure 2-11: Ficus burtt-davyi Hutchinson. 

 

Ficus burtt-davyi Hutchinson (Figure 2-11) is named after Joseph Burtt Davy, a South African 

botanist. It is a shrub, climber or small tree that grows up to about 5 m (Burrows and Burrows, 

2003). They have somewhat oval shape, glossy green leaves with varying sizes ranging from 

approximately 2 to 10 cm in length based on its environment. The fruits are usually found paired 

in-between the leaves appearing green mottled with white, turning yellowish when ripe from 

March to November and they are approximately 10 mm in diameter. This shrub adapts easily to 

several habitats and can be epiphytic on trees as a strangler fig, as well as on rocks (epilithic) where 

their roots can split the rocks to find nutrients. The bark is pale, whitish-grey in appearance with 
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young velvety branches. Pollination of F. burtt-davyi is by Elisabethiella baijnathi, a tiny wasp 

(approximately 1.5 mm long). Ficus burtt-davyi is found in thicket, dune forests, coastal swamp 

forest, scrub, and on sand dunes, and in Savanna on rocky outcrops and cliffs normally in eastern 

part of Western Cape, Eastern Cape, KwaZulu-Natal, and north into Mozambique specifically 

along the coastal belt.  The pounding and weaving of Ficus burtt-davyi bark for mat making has 

been known since early times. Fruits are eaten and used as a laxative in the Eastern Cape (Burrows 

and Burrows, 2003). 

 

2.4.4.2 Ficus sur Forssk 

 

Figure 2-12: Ficus sur Forssk. 

Ficus sur Forssk (formerly F. capensis) (Figure 2-12) is commonly referred to as the Cape fig, 

broom cluster fig, bush fig or Malabar tree. It is a large tree, with spreading canopy of 

approximately 12 m in height, but reaching 25 to 30 m in some other areas. Its leaves form a dense, 

http://www.google.co.za/imgres?q=ficus+Sur+Forssk&safe=active&sa=X&hl=en&biw=1080&bih=564&tbm=isch&tbnid=BTjbGHBxdIDb0M:&imgrefurl=http://www.westafricanplants.senckenberg.de/customer/sng_foto/foto/googleEarth.php?pid=10730&docid=jjUzuA9W9AZH3M&itg=1&imgurl=http://www.westafricanplants.senckenberg.de/images/pictures/mor_ficus_sur_-figs_gbaumann_724_75e197.jpg&w=800&h=600&ei=vZ1-UcXJN4mThgeTjoHoCg&zoom=1&iact=hc&vpx=137&vpy=198&dur=250&hovh=194&hovw=259&tx=134&ty=93&page=2&tbnh=125&tbnw=165&start=19&ndsp=25&ved=1t:429,r:20,s:0,i:148
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round/large canopy, they have shiny leaves and purplish figs carried in large clusters appearing 

attractive usually on the lower parts of the trunk. The green leaves are ovate to broadly elliptic in 

shape, up to 23 x 12.8 cm. The bark is smooth at first, grey to pale grey in appearance and produces 

latex appearing whitish and milky which exudes when any part of the plant is injured. The fruits 

(3 to 4 cm in diameter) are large, heavily branched clusters on the stem and low on the main 

branches becoming red mottled with cream or pink when ripe (September to March). The ripe figs 

have a pink colouration usually attractive to several fruit-eating birds, some having visiting birds, 

seen only when figs are ripe. F. sur can be found in Eastern Cape, KwaZulu-Natal, Western Cape, 

Limpopo, and Mpumalanga usually alongside rivers and waterways, riverine forests and drier 

woodlands. F. sur, together with F. burtt-davyi, are the two most southerly occurring figs (Burrows 

and Burrows, 2003). Lung illness has been treated with the latex from the stems as well as 

administered to cows for increased milk production. Root and bark decoctions are administered 

for pulmonary tuberculosis, influenza and skin diseases (Hutchings et al., 1996; Watt and Breyer-

Brandwijk, 1962). Anaemia, sexually transmitted diseases and diarrhoea are among other diseases 

treated with F. sur (Irvine, 1961; Malcom and Sofowora, 1969). The fruits of F. sur are edible and 

the most palatable of all indigenous figs in South Africa. It is much sought after by humans and 

all fruit-eating animals due to its large size, proportionately thick flesh and sweet taste when ripe, 

which can be eaten fresh or sun dried to make a sweet preserve if the insect-laden seeds are 

removed (Burrows and Burrows, 2003). 
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2.4.4.3 Ficus sycomorus Linn 

 

 

 

 

 

 Figure 2-13: Ficus sycomorus Linn.  

Ficus sycomorus Linn (Figure 2-13) is a semi-deciduous savannah tree usually large forming 

canopy of height between 5 to 25 m and occasionally with buttress rooting system. The bark has a 

distinctive greenish-yellow colour with scattered grey scales usually appearing like pale brown 

patches at areas where scales have fallen and with heavy latex flow. The leaves are large, broadly 

oblong to almost circular up to 5 to 17 x 3.5 to 15 cm in size. It is dark green, rough and harsh to 

the touch. When considered together, the yellow bark and the harsh, rough leaves are diagnostic 

features. The fruits occur solitary or paired, with globose or ovoid shape and ripe ones having 

yellow-red to reddish-purple colouration, up to 3.5 x 5 cm, pubescent or almost glabrous. They 

grow on the axils of leafs on old wood branches having about 10 cm of no leaf. Flowering / fruiting 

occurs all year, which peaks between July and December (Orwa et al., 2009). F. sycomorus is 

found occurring southwards through eastern Africa as far as KwaZulu-Natal. It is found along river 

banks, forming a distinctive part of the riverine thicket and also mixed woodland. Medicinal use 
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of the bark includes treatment of coughs, scrofula, throat and chest diseases. Dysentery treatment 

and superficial application for inflamed areas are also known medicinal uses of the latex; bark and 

milky latex mixture are also used for ringworm treatment. The leaves are acclaimed to be effective 

antidote for snakebite as well as good for jaundice treatment. The roots are said to be good as 

laxative and for anthelmintic treatments (Orwa, et al., 2009). Among the wild indigenous figs, few 

are as palatable as F. sycomorous. The fruits have a good flavour; the Tonga women dry them after 

which they acquire a rather sultana-like taste (FAO, 1988; Palmer and Pitman, 1972). 
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CHAPTER 3 

Chemical constituents and in vitro antioxidant activity of crude 

extracts and compounds from leaves and stem bark of Ficus burtt-

davyi Hutchinson 

Abstract 

Ficus burtt-davyi Hutchinson (Moraceae) is an endemic species of South Africa. In this study, a 

phytochemical analysis of the leaves and stem bark of F. burtt-davyi resulted in the isolation of 

five triterpenes (lupeol, lupeol acetate, β-sitosterol, stigmasterol and campesterol), one carotenoid 

(lutein), a phaeophytin (phytyl-7-ethyl-25-(methoxycarbonyl)-3,8,13,17-tetramethyl-26-oxo-12-

vinyl-17,18-dihydro-2,20 ethanoporphyrin-18-propanoate or phaeophytin a) and one flavonoid 

(+)-catechin). The in vitro antioxidant study of the methanol extracts of leaves and stem bark, (+)-

catechin and phaeophytin a using the 1,1-diphenyl-1-picrylhydrazyl (DPPH) free radical 

scavenging assay, ferric reducing antioxidant power (FRAP) assay and hydrogen peroxide (H2O2) 

assay showed significantly higher (p < 0.05) antioxidant activity for the methanol extract of the 

stem bark than the leaves, with IC50 values (in  µg mL-1) of 58.28 ± 5.05 for DPPH,  46.09 ± 0.06 

for FRAP and 151.03 ± 1.60 µg mL-1 for H2O2. The results suggest that the plant can be used as a 

therapeutic agent in alternative medicine for oxidative stress related degenerative diseases. 

 

Key words: phaeophytin; triterpenes; flavonoids; antioxidants. 
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3.1 Introduction  

With over 850 species, Ficus, of the plant family Moraceae, is one of the oldest, most successful, 

but understudied genera in modern pharmacognosy and has extensive distribution of secondary 

metabolites such as triterpenoids, phenolics, flavonoids, alkaloids, coumarins and sterols (Chang 

et al., 2005; Chiang and Kuo, 2002; Lansky and Paavilainen, 2011; Lee et al., 2002). Ficus, within 

their vasculatures, possesses and secrete a latex-like material, affording protection from harm and 

providing self-healing from physical injuries (Lansky et al., 2008). For many centuries, animals 

and humans have depended on its fruit as a source of nourishment while other plant parts such as 

the leaves, bark, and roots have been utilised for medicinal purposes. The latex from Ficus species 

has been investigated for their anticancer activity as far back as the 1940`s (Lansky et al., 2008) 

and extracts have demonstrated enhanced intracellular accumulation of daunomycin in K562/R7 

leukemic cells as well as cytotoxic effects on the growth of multi-drug resistant human sarcoma 

MES-SA/Dx5 cells (Lansky et al., 2008). Thus, the extracts play an adjunctive role in multiple 

cancer prevention and cancer chemotherapy (Lansky et al., 2008; Simon et al., 2001). The 

antioxidant potential of the plant has also been reported where the extracts have been shown to 

decrease lipid peroxidation and increase antioxidant enzymes (Shukla et al., 2004). Although the 

medicinal benefits of Ficus in humans are based on historical and anecdotal reports, with few 

modern clinical trials, ethnomedicinal uses suggest anti-neoplastic and anti-inflammatory actions 

(Lansky et al., 2008). 

Ficus burtt-davyi, known as Uluzi by the Zulu people in KwaZulu-Natal, is highly adaptable to a 

wide variety of habitats and has even been known to grow on larger trees (epiphytic) as a strangler 

fig, as well as on rocks (epilithic) where the roots are able to split the rocks in their search for 
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nutrients (Burrows and Burrows, 2003). The fruits of the plant are edible and also used as a laxative 

by the locals in the Eastern Cape (Burrows and Burrows, 2003). To date, no information has been 

reported on the chemical composition and antioxidant activity of this plant. In this study, we report 

on the isolation and identification of compounds from the leaves and stem bark of F. burtt-davyi. 

In addition, we report on the antioxidant activity of the methanol (MeOH) extracts of the leaves, 

stem bark and selected isolated compounds using a multi-method approach due to the complexity 

of the mechanisms of antioxidant activity (Dejian et al., 2005). 

 

3.2 Experimental 

3.2.1 General experimental procedures 

The 1H, 13C and 2D-NMR spectra were recorded on a BrukerAvanceIII 400 MHz spectrometer at 

400.22 MHz for 1H and 100.63 MHz for 13C. Chemical shifts (δ) are reported in ppm and coupling 

constants (J) in Hz. The 1H and 13C chemical shifts of the deuterated chloroform (CDCl3) were 

7.24 and 77.0 respectively referenced to the internal standard, tetramethylsilane (TMS), 

respectively. Infrared (IR) spectra were recorded using a Perkin-Elmer Universal ATR 

spectrometer. UV spectra were obtained on a Hewlett Packard UV-3600 Spectrophotometer. 

Column chromatography (CC) was performed with Merck silica gel 60, (0.040–0.063 mm). Thin 

layer chromatography (TLC) was performed on Merck 20 cm×20 cm silica gel 60, F254 aluminium 

sheets. The spots were analysed under UV (254 nm and 366 nm), visualised using 10% H2SO4 in 

MeOH followed by heating. Solvents (analytical grade) and other chemicals used were supplied 

by either Merck (Darmstadt, Germany) or Sigma (St. Louis, USA) chemical companies.  
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3.2.2 Plant material 

The leaves and bark from F. burtt-davyi were collected on the Westville Campus of the University 

of KwaZulu-Natal (UKZN), Durban, South Africa, in June 2013. The plant was authenticated by 

Prof. Himansu Baijnath and a voucher specimen (Ogunlaja, O1) has been deposited in the 

Herbarium of the School of Life Sciences, UKZN, Westville. The stem bark and leaves of the plant 

were dried and ground using a mini-industrial grinder (Wiley Mill). 

 

3.2.3  Extraction, fractionation and isolation 

The air-dried, powdered leaves (970 g) of F. burtt-davyi was sequentially exhaustively extracted 

with (4 L × 2) of n-hexane, dichloromethane (DCM), ethyl acetate (EtOAc) and MeOH for 24 h 

using an orbital shaker. The extracts were concentrated by evaporation under vacuum at controlled 

temperatures to obtain crude extracts of n-hexane (24.22 g), DCM (15.64 g), EtOAc (7.76 g) and 

MeOH (52.98 g). The n-hexane and DCM crude extracts of leaves were combined due to similar 

TLC profiles (similar Rf values). This combined extract (38.00 g) was subjected to CC using a 

gradient elution system of n-hexane: EtOAc starting with 100% n-hexane until 100% EtOAc was 

reached through 10% increments of EtOAc, collecting 100 mL fractions at each stage. Six main 

fractions (I-VI) were obtained and fraction II yielded compound A-1 (105 mg), which was eluted 

with n-hexane: EtOAc (8:2). Fraction III (1.23 g) was purified further to give compound A-2 (18.6 

mg) and compound A-3 (20.1 mg), respectively. The EtOAc extract of the leaves (7.0 g) was 

separated using CC in a similar manner to yield seven major fractions (I-VII) based on similar 

TLC profiles. Fraction II and III afforded compound A-4 (30.5 mg) and compound A-5 (10.5 mg), 

respectively. 
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The n-hexane and DCM crude extracts of the stem bark were combined due to similar TLC profiles 

(similar Rf values). This extract (24.35 g) was subjected to CC in a similar manner to that of the 

leaves to yield nine major fractions based on TLC profiles. Fractions II and III gave compound A-

6 (4.5 g) and compound A-7 (4 g), respectively which were eluted with 100% DCM and re-

crystallised in MeOH. The MeOH extract from the stem bark was partitioned with EtOAc and the 

EtOAc fraction was concentrated to yield 4 g of extract. This was separated on a 1.5 cm diameter 

column using CC and a gradient of n-hexane: EtOAc (8:2) to 100% EtOAc (10% increments of 

EtOAc, 20 mL fractions) to afford compound A-8 (23 mg).  

 

3.2.4 Phenolic content and in vitro antioxidant assays 

3.2.4.1 Estimation of total phenolic content (TPC) 

The total polyphenol content (TPC) of the extracts from F. burtt-davyi was determined as Gallic 

acid equivalent (GAE) according to the method described by McDonald et al. (2001) with slight 

modifications. Briefly, 200 µL of the extract (240 µg mL-1) was incubated with 1 mL of ten-fold 

diluted Folin Ciocalteau reagent and 800 µL of 0.7 M Na2CO3 for 30 min at room temperature. 

Absorbance values were determined at 765 nm on a Shimadzu UV mini 1240 spectrophotometer 

(Shimadzu Corporation, Kyoto, Japan). All measurements were done in triplicate. 

 

3.2.4.2 DPPH free radical-scavenging activity assay  

The capacity to scavenge the ‘‘stable’’ free radical 1,1- diphenyl-1-picrylhydrazyl (DPPH) was 

monitored according to the procedure describe by Ahmad et al. (2011) with some modifications. 
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Various concentrations (7.5-500 µg mL-1) of extracts and isolated compounds (3000 µL) made 

from a stock solution (10 µg mL-1) were mixed with 2850 µL MeOH solution containing DPPH 

radicals. The mixture was then vortexed, and incubated for 30 min at room temperature. The 

scavenging activity was evidenced by a change in color from purple to yellow, which was further 

measured by the decrease in absorbance at 517 nm using a Shimadzu UV–Vis spectrophotometer. 

Ascorbic acid was used as the standard while MeOH served as the blank. The assays were done in 

triplicate. The difference in absorbance between a test sample and the control (DPPH + MeOH) 

was expressed as percentage inhibition.  

                                % inhibition = [(Ao - Asample / Ao) × 100] 

Where, Ao (control) = Absorbance of DPPH + methanol and Asample = Absorbance of the sample.  

The IC50value which is the inhibitory concentration in µg mL-1 of samples, or standard, necessary 

to reduce the initial DPPH by 50% as compared to the negative control was determined graphically 

by plotting the absorbance of DPPH as a function of sample concentration in µg mL-1 for the 

standard and samples.  

 

3.2.4.3 Ferric reducing antioxidant power (FRAP) assay 

The reducing power of the extracts and compounds were determined according to the method of 

Oyaizu (1986) as described by Behera et al. (2006) with some modifications. Various 

concentrations (7.5-500) µg mL-1 were mixed with 2.5 mL of sodium phosphate buffer (0.2 M, pH 

6.6) and 2.5 mL of 0.1% potassium ferricyanide and the mixture was incubated at 50 oC for 30 

min. After the addition of 2.5 mL of 10% TCA, the mixture was centrifuged at 3000 rpm for 10 
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min. The upper layer (2.5 mL) was mixed with 2.5 mL of distilled water and 0.5 mL of 0.1% ferric 

chloride, and the absorbance was measured at 700 nm. The methanolic extract without reagents 

was used as a negative control while ascorbic acid with the same concentrations was used as 

positive controls. 

 

3.2.4.4 Hydrogen peroxide-scavenging activity assay 

The ability of the extracts to scavenge hydrogen peroxide was determined according to the method 

of Ruch et al. (1989). A solution of hydrogen peroxide (2 mM) was prepared in 50 mM phosphate 

buffer (pH 7.4). Samples of various concentrations (7.5-500 µg mL-1) were transferred into the test 

tubes, and their volumes were made up to 0.4 mL with 50 mM phosphate buffer (pH 7.4). After 

addition of 0.6 mL hydrogen peroxide solution, tubes were vortexed and absorbance of the 

hydrogen peroxide at 230 nm was determined after 10 min, against a blank. Phosphate buffer (50 

mM) without hydrogen peroxide was used as a blank and ascorbic acid was used as the positive 

control. Hydrogen peroxide scavenging ability was calculated using the following equation: 

Hydrogen peroxide scavenging activity = (1- absorbance of sample/absorbance of control) ×100 

 

3.2.5 Statistical analyses  

The experimental results were expressed as mean ± standard deviation (SD) of three replicates and 

IC50 values were calculated by linear regression. The data were subjected to one way analysis of 

variance (ANOVA) to determine significant differences between means (p < 0.05) Tukey`s test 

was used for post-hoc analyses. All the statistical tests were performed using graphpad prism 6.0.  
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3.3 Results and discussion  

3.3.1 Structure elucidation of compounds from F. burtt-davyi 

Compound A-1, A-2 and A-3 were identified by using spectral data (IR, UV, GC-MS, 1H-NMR, 

13C- NMR and 2D NMR) and by comparison of the NMR data with those reported in literature. 

Compound A-1 was identified as sitosterol (Chaturvedula and Prakash, 2012), compound A-2 as 

campesterol (Choi et al., 2007) and compound A-3 as stigmasterol (Chaturvedula and Prakash, 

2012).  

Compound A-4 was isolated as a dark green amorphous solid.  The mass spectrum of compound 

A-4 obtained by HR-ESI-MS (positive mode) gave m/z value at 893.5530 corresponding to the 

molecular formula (C55H74N4O5) [M+Na] +, (calc. C55H74N4O5 Na 894.1999). The IR spectrum of 

compound A-4 showed absorption bands  at 2922, 3388, 1618 and 1376 cm−1 corresponding to 

C(sp3), NH, CH=CH (vinyl group) and CN, respectively. The UV spectrum of compound A-4 

showed absorption bands at 414 and 669 nm. The data is consistent with the presence of a 

porphyrin nucleus. The 1H-NMR spectrum of compound A-4 showed characteristic peaks for 

chlorophyll derivatives. The 1H-NMR spectrum showed an upfield shift at (δH -1.70) (the NH 

proton from the pyrrole ring), a resonance at δH 6.1–7.9 (vinyl group), meso-proton signals down 

field at δH 9.47 (H-10), 9.33 (H-5), and δH 8.53 (H-20) and δH 6.28 (dd, J= 1.6, 17.5 Hz, H-3a), δH 

6.16 (dd, J= 1.5, 11.55 Hz, H-3b) for a mono-substituted vinyl group corresponding to the structure 

of phaeophytin a. The characteristic phytyl side chain resonances at δH 1.60 (CH), 1.25(CH2) and 

0.97(CH3) were also observed. The 13C-NMR, DEPT 90 and DEPT 135 spectra resolved fifty five 

carbon resonances corresponding to eleven methyl, fourteen methylene, eleven methine and 
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twenty-one quaternary carbons signals. These chemical shifts were in accordance with those 

reported in literature (Wang et al., 2009), thus, compound A-4 was established as phytyl-7-ethyl-

25-(methoxycarbonyl)-3,8,13,17-tetramethyl-26-oxo-12-vinyl-17,18-dihydro-2,20-

ethanoporphyrin-18-propanoate (phaeophytin a).  

Compound A-5 was obtained as a yellow colored compound and GC-MS data showed molecular 

ion peak [M+] at m/z 568.9 which corresponds to the molecular formula C40H56O2. The UV 

spectrum of compound A-5 showed absorption maxima at 454, 480 and 430. The 1H-NMR 

spectrum showed resonance in the olefinic region between δH 5.09-6.62, methylene resonances of 

cyclohexene between δH 1.33-1.44 with a strong OH resonance at δH 4.23. Based on spectral data 

and those reported in literature, compound A-5 was identified as lutein.   

Compound A-6 was isolated as a white solid. The IR spectrum exhibited characteristic absorption 

frequencies at 3326, 878 and 1637 cm-1 typical of the O-H, unsaturated out plane C-H and C=C 

bond vibrations, respectively. The absorptions bands observed at 1379 and 1452 cm-1 were due to 

the distortion vibrations of CH3 groups and methylenic vibrations, respectively. The mass 

spectrum of compound A-6 obtained by HR-ESI-MS (positive mode) gave m/z value at 449.3756 

corresponding to the molecular formula (C30H50O) [M+Na] +, (calc. C30H50O Na 449.7174). The 

1H-NMR spectrum for compound A-6 revealed the presence of seven tertiary methyl singlets 

protons at δH 0.73, 0.76, 0.80, 0.92, 0.94, 1.00 and 1.65; a multiplet at δH 3.18 (H-3), and 

characteristic olefinic protons at δH 4.66 (H-29 a) and 4.54 (H-29 b ) and a sextet at δH 2.39 (19β 

–H). The DEPT 90 and 135 experiments resolved ten methylene, five methine and five quaternary 

carbons. Based on spectral information and those reported in literature, compound A-6 was 
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identified as lupeol. The presence of lupeol in F. burtt-davyi was not reported before the current 

study. 

Compound A-7 was isolated as white crystalline needles. EIMS for C32H52O2 m/z (rel. int.): 468 

[M+] (17.2%), 453 (2.9%), 425 (1.5%), 408 (1.7%), 365 (3.9%), 189 (75.4%), 109 (73.1%), 43 

(100%). The diagnostic peaks occurred at m/z 408 [M-AcOH], 249 [M-C16H27] and 189 [249-

AcOH]. The IR spectrum of compound A-7 exhibited characteristic absorption frequencies at 1732 

cm-1 (C=O), 3073 cm-1 (exomethylene group), 2939 cm-1 (C-H) and 1244 cm-1 (C-O). The 1H-

NMR spectrum of compound A-7 showed eight methyl resonances between δH 0.76-2.01. The 1H-

NMR spectrum of compound A-7 was similar to compound A-6 with addition of an acetate methyl 

resonance at δH  2.01 (H-32) and the proton resonance at δH  4.46 (H-3) which is further downfield 

due to presence of the acetoxy group. Based on spectral information and in comparison with that 

in literature (Mahato and Kundu, 1994) compound A-7 was identified as lupeol acetate. Lupeol 

acetate has never been reported isolated before from F. burtt-davyi.  

Compound A-8 was isolated as a light brown powder. The mass spectrum of compound A-8 

obtained by HR-ESI-MS (positive mode) gave m/z value at 313.0685 corresponding to the 

molecular formula (C15H14O6) [M+Na] +, (calc. C15H14O6 Na 313.2596). The IR spectrum showed 

characteristic absorption bands for the O-H group (3215 cm-1), C=C group (1623 cm-1), and C-O 

group (1145–1019 cm-1). The 1H-NMR spectrum of compound A-8 showed characteristic 

resonances for flavonoids at δH 6.85 (H-2’), 6.76 (H-5’) and 6.74 (H-6’) from the B-ring catechol 

moiety as well as at δH 5.94 as H-8 and 5.87 as H-6 from the meta-coupled protons of the A-ring 

resorcinol moiety. The proton resonances at δH 4.59 (H-2), 3.99 (H-3), 2.87 (H-4) and 2.53 (H-4) 

were used to establish a flavanol skeleton for compound A-8. The 13C-NMR spectrum showed a 
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diagnostic peak at δC 82.8 (C-2) as well as a strong H-2/H-3 correlation from the COSY 

experiment, thus confirming the structure of compound A-8 to be (+)-catechin (Es-Safi et al.,  

2006). Catechin and its analogueshave been shown to possess significant bioactivity, such as anti-

inflammatory, anti-allergic, anti-mutation, anti-aging, improving liver function and removal of 

free radicals (Liu and Chen, 2004). This is the first report of compounds A1-A8 being reported in 

F. burtt-davyi.  

 

3.3.2 Total phenolic content (TPC) 

Table 3-1: Total phenolic content (TPC) and extraction yield (%, mg extract per g 

sample×100) of F. burtt-davyi leaves and stem bark extracts. 

Extracts Yield (%) TPC (mg g-1 GAE) * 

Leaves   

EtOAc 0.51c 0.43 ± 0.01c 

MeOH 3.05b 1.14 ± 0.12b 

Stem bark   

EtOAc 0.80c 1.05± 0.22bc 

MeOH 5.46a 5.90 ± 0.45a 

Data are presented as mean ± SD (n = 3). *GAE (Gallic Acid Equivalent).Values with different 

superscripts letters along a column are significantly different from each other by Tukey’s HSD 

multiple post hoc test, (p < 0.05).  

 

The extraction yields indicated that the stem bark of F. burtt-davyi produced the highest amount 

of extract. Furthermore, the total phenolic content (TPC) of the MeOH extract of the stem bark 

was significantly higher (p < 0.05) than that from other extracts (Table 3-1). Based on this result, 

the MeOH extracts from the leaves and stem barks were selected for in vitro antioxidant study.  
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Figure 3-1: Chemical structures of compounds (A1-A8) isolated from F. burtt-davyi 
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3.3.3 DPPH free radical-scavenging activity assay 

Most antioxidants possess proton radical scavenging activity which may be monitored by 

discoloration of the purple 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals to yellow DPPH in a 

dose-dependent pattern. For this study, the DPPH assay was used to detect the antioxidant activity 

of the extracts and compounds from F. burtt-davyi as shown in Figure 2-1. The results indicated 

that at lower concentrations (˂ 25 µg mL-1), the activity of the extracts (stem bark & leaves) and 

compounds were comparable but were significantly lower than that of AA. 

 

 

 

 

 

 

 

Figure 3-2: DPPH radical scavenging activity of MeOH extracts of F. burtt-davyi stem bark (B), 

leaves (L), phaeophytin a, (+)-catechin and ascorbic acid (AA). Different letters for a 

concentration indicate significantly different means (Tukey’s post hoc comparisons, p < 0.05). 

 

At higher concentrations (˃ 125 µg mL-1), the activity of the MeOH extract from the bark, (+)-

catechin and AA were not significantly different but higher than the other substances tested. The 

high activity of the MeOH extract of the bark could be attributed to the presence of (+)-catechin 

in the extract thereby suggesting that the activity of an extract may be as a result of the presence 
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of one bioactive compound, which, at lower concentrations, may be diminished by the antagonistic 

effects of other compounds or the presence of other non-active compounds. 

 

3.3.4 Ferric reducing antioxidant power assay (FRAP assay) 

Numerous studies have linked the electron donation capacity (reduction) of an antioxidant to its 

anti-oxidative activity (Siddhuraju et al., 2002). The presence of electron donating substances, 

such as antioxidant samples, causes the reduction of the Fe3+/ferricyanide complex to the ferrous 

form (Fe2+). The total reducing power of the extracts and compounds from F. burtt-davyi were 

compared to AA (Figure 3-3).  

 

Figure 3-3: Reducing power of MeOH extracts of F. burtt-davyi stem bark B(MeOH), leaves 

L(MeOH), isolated compounds (phaeophytin a and (+)-catechin) and ascorbic acid (AA). Values 

represented as Mean ± SD (n = 3). 
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catechin and AA to be comparable and significantly higher than that of the MeOH extract from 

leaves and phaeophytin a. 

 

3.3.5 Hydrogen peroxide-scavenging activity assay 

Although hydrogen peroxide is a weak oxidising agent, it can cross cell membranes rapidly and 

while inside the cell, form hydroxyl radicals which are primarily responsible for its toxic effects. 

Therefore, removal of the hydroxyl free radical is necessary to ensure a good health status. The 

scavenging effects of the extracts and isolated compounds in F. burtt-davyi were evaluated against 

this free radical (Figure 3-4). The antioxidant activity of the extracts and compounds using 

hydrogen peroxide were similar to those produced by the DPPH and FRAP assays thereby 

confirming the activities of all the tested substances.  

 

Figure 3-4: Hydrogen peroxide scavenging activity of MeOH extracts of F. burtt-davyi stembark 

B(MeOH), leaves L(MeOH), isolated compounds (phaeophytin aand (+)-catechin) and ascorbic 

acid (AA). Values represented as Mean ± SD (n =3). 
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Table 3-2 shows the IC50 values for the different antioxidant assays. Although compounds A1-A8 

were tested for anti-oxidant activity, the IC50 values for sitosterol, campesterol, stigmasterol, 

lutein, lupeol and lupeol acetate were extremely high  (> 1000 µg mL-1)) for all assays therefore, 

their results are not shown in Table 3-2. The results confirm that the MeOH extract and (+)-

catechin have a significantly higher antioxidant activity (p < 0.05), with comparable IC50 values 

for all three antioxidant assays. However, the IC50 value for the standard AA was significantly 

lower than the plant extracts and compounds. From the TPC and antioxidant activity results, it is 

clear that higher TPC indicates higher antioxidant activity. This is in agreement with previous 

reports (Gorinstein et al., 2003; Maisuthisakul et al., 2007). 

Table 3-2: IC50 of different extracts and compounds from F. burtt-davyi for various 

antioxidant assays. 

Extracts/compound DPPH*( µg mL-1) FRAP*( µg mL-1) H2O2 scavenging*( µg mL-1) 

L(MeOH) 405.39 ± 20.58c 420.95 ± 8.46c 449.56 ± 6.66c 

B(MeOH) 58.28 ± 5.05b 46.09 ± 0.06b 151.03 ± 1.6b 

phaeophytin a 611.15 ± 10.06d 777.80 ± 1.60d >1000d 

(+)-catechin  61.19 ± 0.68b 46.89 ± 0.33b 125.15 ± 1.16b 

Ascorbic acid (AA) 1.14 ± 0.08a 39.32 ± 0.017a 81.56 ± 0.63a 

Each value is represented as Mean ± SD (n = 3). a-d Means in the same column followed by a 

different letter are significantly different (p< 0.05). *No significant difference between assays (p 

< 0.05). 

 

Thus, the present study has shown that the leaves and stem bark of F. burtt-davyi possess moderate 

to significantly good antioxidant activity and may contribute to the retardation of the inflammatory 

process mediated by reactive oxygen metabolites from phagocytic leukocytes that invade the 

tissues and cause injury to essential cellular components (Parfenov and Zaikov, 2000). In addition, 
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previous studies have shown that plant-derived sterols exhibit anti-carcinogenic effects on 

different types of cancers (Awad et al., 1998; De Stefani et al., 2000; La Vecchia et al., 1994; Von 

Holtz et al., 1998). F burtt-davyi could therefore be said to possess anti-cancer potential having 

isolated several sterols from the stem bark. 

 

3.4 Conclusion 

To the best of our knowledge, this is the first report of the phytochemical constituents of F. burtt-

davyi, resulting in the isolation of a carotenoid which has been documented to exhibit moderate 

antibacterial activity and phaeophytin a with strong anti-HCV-NS3 protease activity with little 

cytotoxicity. The data from this study suggests that F. burtt-davyi possessed moderate to good 

anti-oxidative activity and can be used as a potential alternative medicine for oxidative stress 

related non-communicable chronic diseases. 

 

Acknowledgements  

The authors are grateful to the College of Agriculture, Engineering and Science, UKZN for 

support. 

 

 

 

 

 

 



 82  

  

REFERENCES 

Ahmad, R., Hashi, H.M., Noor, Z.M., Ismail, N.H., Salim, F., and Lajis, N.H. (2011).  

Antioxidant and antidiabetic potential of Malaysian Uncaria. Research Journal of  

Medicinal Plant 5, 587-595. 

Awad, A.B., von Holtz, R.L., Cone, J.P., Fink, C.S., and Chen, Y.C. (1998). Beta-Sitosterol  

inhibits growth of HT-29 human colon cancer cells by activating the sphingomyelin  

cycle. Anticancer Research 18, 471–473. 

Behera, B.C., Verma, N., Sonone, A., and Makhija, U. (2006). Determination of antioxidative  

potential of lichen Usnea ghattensis in vitro. Food Science and Technol-Leb 39, 80-85. 

Burrows, J.E., and Burrows, S.M. (2003). Figs of Southern and South-Central Africa. Umdaus  

Press Hatfield, South Africa. 

Chang, M.S., Yang, Y.C., Kuo, Y.C., Kuo, Y.H., Chang, C., Chen, C.M., and Lee, T.H.  

(2005). Furocoumarin glycosides from the leaves of Ficus ruficaulis Merr. var. antaoensis. 

Journal of Natural Products 68, 11–13. 

Chaturvedula, V.S.P., and Prakash, I. (2012). Isolation of stigmasterol and β sitosterol from the   

dichloromethane extract of Rubus suavissimus. International Current Pharmaceutical  

Journal 1, 239-242. 

Chiang, Y.M., Kuo, Y.H. (2002). Novel triterpenoids from the aerial roots of Ficus microcarpa.  

Journal of Organic Chemistry 67, 7656–7661. 

Choi, J.M., Lee, E.O., Lee, H.J., Kim, K.H., Ahn, K.S., Shim, B.S., Kim, N.I., Song, M.C.,   

Baek, N.I and Kim, S.H. (2007). Identification of campesterol from Chrysanthemum 

coronarium L. and its Antiangiogenic Activities. Phytotherapy Research 21, 954–959. 



 83  

  

Dejian, H., Boxin O., and Ronald L.P. (2005). The chemistry behind antioxidant capacity  

assays. Journal Agricultural and Food Chemistry 53, 1841−1856. 

De Stefani, E., Boffetta, P., Ronco, A.L., Brennan, P., Deneo-Pellegrini, H., Carzoglio, J.C., and  

Mendilaharsu, M. (2000). Plant sterols and risk of stomach cancer: a case-control study in 

Uruguay.Nutrition and Cancer 37, 140-144.  

Es-Safi, N., Guyot, S., and Ducrot, P. (2006). NMR, ESI/MS, and MALDITOF/MS analysis of  

pear juice polymeric proanthocyanidins with potent free radical scavenging activity.  

Journal of Agriculture and Food Chemistry 54, 6969–6977. 

Gorinstein, S., Martin-Belloso, O., Katrich, E., Lojek, A., Cız, M., and Gligelmo-Miguel, N.  

(2003). Comparison of the contents of the main biochemical compounds and the  

antioxidant activity of some Spanish olive oils as determined by four different radical  

scavenging tests. Journal of Nutritional Biochemistry 14, 154–159. 

Lansky, E.P., and Paavilainen, H.M. (2011). Traditional Herbal Medicines for Modern Times:  

Figs, the Genus Ficus: CRC Press. Taylor and Francis Group LLC, New York. 

Lansky, E.P., Pavilainen, H.M., Pawlus, A.D., and Newman, R.A. (2008). Ficus spp. (fig):  

Ethnobotany and potential as anti-cancer and anti-inflammatory agents, Journal of  

Ethnopharmacology 119, 195-213. 

La Vecchia, C., Ferraroni, M., D’Avanzo, B., Decarli, A., and Franceschi, S. (1994). Selected  

Micronutrient Intake and the Risk of Gastric Cancer, Cancer Epidemiology, Biomarkers 

and Prevention 3, 393-398. 

 

 



 84  

  

Lee, T.H., Kuo, Y.C., Wang, G.J., Kuo, Y.H., Chang, C.I., Lu, C.K., and Lee, C.K. (2002).  

Five new phenolics from the roots of Ficus beecheyana. Journal of Natural Products 

65, 1497–1500. 

Liu, C., and Chen, R.Y. (2004). Advance of chemistry and bioactivities of catechin and its  

analogues. China Journal of Chinese materia medica 10, 1017–1020. 

Mahato, S.B., and Kundu, A.P. (1994). 13C NMR Spectra of pentacyclic triterpenoids-A  

compilation and some salient features. Phytochemistry 37, 1517-1575. 

Maisuthisakul, P., Suttajit, M., and Pongsawatmanit, R. (2007). Assessment of phenolic content  

and free radical-scavenging capacity of some Thai indigenous plants. Food Chemistry 100,  

1409–1418. 

McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and  

antioxidant activity of olive extracts. Food Chemistry 73, 73-84 

Parfenov, E. A., and Zaikov, G. E. (2000). Biotic type antioxidants: The prospective search area  

for novel chemical drugs. Hardcover ed. VSP Books, Boston. 

Ruch, R.J., Cheng, S.J., and Klaunig, J.E. (1989). Prevention of cytotoxicity and inhibition of   

intercellular communication by antioxidant catechin isolated from Chinese green tea.  

Carcinogenesis 10, 1003–1008. 

Shukla, R., Gupta, S., Gambhir, J. K., Prabhu, K. M., and Murthy, P.S. (2004). Antioxidant  

effect of aqueous extract of the bark of Ficus bengalensis in hypercholesterolaemic  

rabbits. Journal of Ethnopharmacology 92, 47–51. 

 

 



 85  

  

Siddhuraju, P., Mohan, P. S., and Becker, K. (2002). Studies on the antioxidant activity of Indian  

Laburnum (Cassia fistula L.): A preliminary assessment of crude extracts from stem bark,  

leaves, flowers and fruit pulp. Food Chemistry 79, 61–67. 

Simon, P.N., Chaboud, A., Darbour, N., Pietro, A.D., Dumontet, C., Level, F., Raynaud, J., and 

Barron, D. (2001). Modulation of cancer cell multidrug resistance by an extract of Ficus 

citrifolia. Anticancer Research 21, 1023-1027. 

Von Holtz, R.L., Fink, C.S., and Awad, A.B. (1998). Beta-Sitosterol activates the sphingomyelin  

cycle and induces apoptosis in LNCaP human prostate cancer cells. Nutrition and Cancer  

32, 8–12. 

Wang, S.Y., Tseng, C.P., Tsai, K.C., Lin, C.F., Wen, C.Y., Tsay, H.S., Sakamoto, N., Tseng,  

C.H., and Cheng, J.C. (2009). Bioactivity-guided screening identifies pheophytin a as a 

potent anti-hepatitis C virus compound from Lonicera hypoglauca Miq. Biochemical and 

Biophysical Research Communications 385, 230–23. 

 

 

 

 

 

 

 

 

 



 86  

  

CHAPTER 4 

Cytotoxic activity of the bioactive principles from Ficus burtt-davyi 

Hutchinson 

Abstract 

Ficus burtt-davyi Hutchinson (Moraceae) is a medicinal plant species indigenous to Southern 

Africa. In this study, a phytochemical and cytotoxic investigation on F. burtt-davyi was conducted 

to evaluate its ethnomedicinal use. The phytochemical study of the fruits yielded triterpenoids 

(lupeol and α-amyrin). The cytotoxic evaluation was done on the MeOH extracts from fruits and 

stem bark and selected compounds isolated from F. burtt-davyi stem bark and fruits (lupeol, α-

amyrin, lupeol acetate and (+)-catechin) against two human cancer cell lines (breast 

adenocarcinoma (MCF-7) and colorectal adenocarcinoma (Caco-2)) and normal human embryonic 

kidney cells (HEK293) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) cell viability assay. The methanol extract from the stem bark was significantly cytotoxic to 

MCF-7 and Caco-2 cell lines (p < 0.05) in a concentration-dependent manner with IC50 values of 

6.6 and 8.1 µg mL-1, respectively relative to the control. Lupeol and (+)-catechin showed cytotoxic 

activity against MCF-7 cell lines with IC50 values of 22.6 and 29.8 µg mL-1, respectively and 

greater cytotoxic activity against Caco-2 cell lines with IC50 values of 10.7 and 9.0 µg mL-1, 

respectively. Data from this study suggests that F. burtt-davyi exhibits cytotoxicity with no 

significant inhibitory effects against HEK293. The results also indicate that (+)-catechin and 

lupeol, the most abundant bioactive principles in the stem bark, are responsible for the synergistic 

http://www.creative-bioarray.com/Caco-2-CSC-C8200L-item-40983.htm
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cytotoxic effects against tested human cancer cell lines. This study provides evidence on the 

pharmaceutical potential of the medicinal plant, F. burtt-davyi, as a chemotherapeutic agent 

against cancer.  

Keywords: breast adenocarcinoma, colorectal adenocarcinoma, catechin, lupeol, anti-

cancer. 

 

4.1 Introduction  

Cancer is one of the major causes of morbidity and mortality throughout the world. Its prevalence 

in South Africa is also well documented and has been attributed to different factors such as 

smoking, occupational exposure, infections, lifestyle, and environmental pollutants (NCR, 2010). 

Current statistics show an average of 8.2 million deaths per year due to cancer with 12.7 million 

new cases each year, most of which are from developing countries (Ferlay et al., 2010; Stewart 

and Wild, 2014). It is also estimated that new cancer cases across the world will increase to 21·4 

million by 2030 (Ferlay et al., 2010). A recent survey of underlying causes of death in South Africa 

showed cancer to be the second most frequent cause of death, with the first one being tuberculosis 

(SSA, 2014). This survey highlights the need for more effective management and treatment of 

cancer in South Africa and it also confirms that the search for a cure should form part of national 

health initiatives of all nations.  

Generally, plant derived bioactive principles have gained attention in alternative therapeutic 

strategies to fight against different diseases, primarily because of their high therapeutic index and 

since medicinal plants have been used effectively in traditional medicine for centuries (Nisa et al., 
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2011; Sharma et al., 2011; Shoeb, 2006). Plant-derived substances have a long history in cancer 

treatment with approximately 60% of the anticancer drugs currently in use being isolated from 

natural products sourced from plants (Conforti et al., 2008; Gonzales and Valerio, 2006; Jain and 

Jain, 2011; Khakdan and Khosro, 2013). This indicates a high possibility of indigenous medicinal 

plants serving as potential sources in the development of more effective anticancer agents 

(Caamal-Fuentes et al., 2011).  

Previous reports have shown that many Ficus species possess anticancer potential (Lansky et al., 

2008; Pratumvinit et al., 2009; Simon et al., 2001; Sirisha et al., 2010; Zeng et al., 2012). Free 

radical can cause oxidative stress, and it has been implicated in a number of studies as the factor 

responsible for a number of chronic non-communicable diseases, including cancer via DNA 

damage (Chandra et al., 2000). The potential anticancer activity of Ficus species has been credited 

in some reports to the secondary metabolites, such as, terpenoids and flavonoids that are capable 

of preventing oxidative stress-related diseases such as cancer (Elsharkawy, 2013; Sirisha et al., 

2010). In a number of studies, the antioxidant activity has been linked to anticancer effects (Li et 

al., 2007; Sirisha et al., 2010). We also showed significantly high antioxidant activity of the 

bioactive principles from the stem bark of Ficus burtt-davyi (Ogunlaja et al., 2016).   

Ficus burtt-davyi Hutch. (Moraceae) is a medicinal plant species indigenous to Southern Africa 

(Burrows and Burrows, 2003). F. burtt-davyi is highly adaptable, and can survive in wide variety 

of habitats and its fruits are used in traditional medicine as a laxative (Burrows and Burrows, 

2003). Previously, we reported on the isolation of triterpenes, pigments and a flavonoid from the 

leaves and stem bark of F. burtt-davyi (Ogunlaja et al., 2016). In the present study, we report on 

the secondary metabolites isolated from the fruits of F. burtt-davyi. In addition, a cytotoxic 
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evaluation of the methanol extracts from the fruits and stem bark, as well as the isolated 

compounds from the fruits and stem bark against two human tumour cell lines (breast 

adenocarcinoma (MCF-7) and colorectal adenocarcinoma (Caco-2)), relative to normal human 

embryonic kidney (HEK293) cell, using the MTT cell viability assay was carried out. 

 

4.2 Materials and Methods 

4.2.1 Experimental 

4.2.1.1 General experimental procedures 

Nuclear magnetic resonance (NMR) spectra (1H and 13C, 1D and 2D) were recorded in deuterated 

chloroform (CDCl3), referenced to the internal standard, tetramethylsilane (TMS) (Merck, 

Darmstadt, Germany) on a 400 MHz spectrometer (AVANCEIII, Bruker, Rheinstetten, Germany) 

at 400.22 MHz for 1H and 100.63 MHz for 13C. Chemical shifts (δ) are reported in ppm and 

coupling constants (J) in Hz. The 1H and 13C chemical shifts of CDCl3 were 7.24 and 77.0, 

respectively. Infrared (IR) spectra were recorded using a Perkin-Elmer Universal ATR 

spectrometer. UV-Vis spectra were obtained on a UV-Vis-NIR spectrophotometer (UV-3600, 

Shimadzu, Tokyo, Japan). Column chromatography was performed using silica gel (Kieselgel 60, 

0.040–0.063mm, Merck, Darmstadt, Germany). Thin layer chromatography (TLC) was performed 

on aluminum sheets (Merck silica gel 60, 20 × 20 cm, F254, Merck, Darmstadt, Germany). The 

spots were analysed under UV (254 nm and 366 nm), visualised using 10% H2SO4 in methanol 

(MeOH) followed by heating. Mass spectral data was obtained using a gas chromatography-mass 

spectrometer (GC-MS QP2010SE Series, Shimadzu, Tokyo, Japan) with LabSolution Software 
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and equipped with a DB-5SIL MS (30 m × 0.25 mm i.d., 0.25 µm film thickness) fused silica 

capillary column. Helium (2 mL/min) was used as a carrier gas and MeOH or dichloromethane 

(DCM) was used to dissolve the samples. The injector was kept at 250 °C whilst the transfer line 

was at 280 °C. The column temperature was held at 50 °C for 2 min, and then ramped to 280 °C 

at 20°C/min where it was held for 15 min. 

 

4.2.2 Chemicals and Reagents 

All cell culture reagents and media were obtained from Lonza BioWhittaker, Walkersville, USA. 

5-fluorouracil (5-FU) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Fetal bovine 

serum (FBS) was supplied by Hyclone, GE Healthcare, Utah, USA. MTT (3-(4,5-dimethylthiazol-

2-yl)-2,5diphenyltetrazolium bromide, solvents (analytical grade) and other chemicals used were 

supplied by Merck (Darmstadt, Germany). 

 

4.2.3 Plant material 

Fresh plant material was collected between January to August 2016 from the University of 

KwaZulu-Natal (UKZN), Westville campus, South Africa and was authenticated by a botanist, 

Prof. H. Baijnath. A voucher specimen (Ogunlaja, O1) was deposited in the WARD Herbarium of 

the School of Life Sciences, UKZN, Westville. 
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4.2.4 Extraction, isolation and preparation of test samples  

The air-dried, powdered fruit (820 g) of F. burtt-davyi was sequentially extracted exhaustively 

with hexane (3 × 2000 mL), DCM (3 × 2000 mL) and MeOH (3 × 2000 mL) on an orbital shaker 

at room temperature for two days each. The DCM extract (13.2 g) was subjected to column 

chromatography on a 4 cm diameter column using a gradient elution system of n-hexane: ethyl 

acetate (EtOAc) (v/v) starting with 100% n-hexane until 100% EtOAc was reached through 10% 

increments of EtOAc. Fractions of 100 mL were collected for each eluent step and fractions with 

similar retention factors (Rf) on TLC plates (similar TLC profiles) were combined and 

concentrated using a rotatory evaporator to give five major fractions (I-V). Compounds A-6 (20.5 

mg) and A-9 (10.9 mg) were obtained from Fractions I and III, respectively. 

 

4.2.5 Cell viability and cytotoxicity testing  

Human cancer cell lines ((breast adenocarcinoma (MCF-7) and colorectal adenocarcinoma (Caco-

2)) were used and normal human embryonic kidney cell lines (HEK293) were used as the control. 

All cell lines were originally obtained from the American Tissue Culture Collection (ATCC) 

(Manassas, Virginia, USA). Cells were grown as monolayers in Minimum Essential Medium, 

supplemented with 10% FBS and an antibiotic mixture of penicillin (100 µg mL-1) and 

streptomycin (100 µg mL-1). A volume of 100 μL of medium containing 2.0 × 104 cells were 

seeded in a 96-well microtiter plate and incubated at 37 °C in an atmosphere of 95% air and 5% 

CO2, with 100% relative humidity. The MeOH extract from the stem bark and fruits and the four 

isolated compounds were subjected to an in vitro cytotoxicity bioassay by the mitochondrial 

dependent reduction of yellow MTT to purple formazan (Mosmann, 1983) against MCF-7, Caco-
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2 and HEK293 cell lines. Stock solutions (20 µg mL-1) of test samples (extracts and compounds) 

and positive control (5-FU) were prepared by dissolution in dimethyl sulfoxide (DMSO). The final 

concentrations of the test samples in culture were 1, 5, 25, and 50 µg mL-1.  After 24 h of incubation 

and attachment, the cells were treated with fresh media containing the various concentrations of 

crude extract, compounds and positive control or DMSO vehicle control. This was incubated for 

48 h, thereafter, the old medium was replaced with fresh medium containing 10 µg mL-1 of MTT 

in phosphate-buffered saline (PBS) and incubated for 4 h at 37 °C. The supernatant was aspirated, 

MTT-formazan crystals were dissolved in 100 μL of DMSO and the absorbance was measured at 

570 nm by a microplate reader (MR-96A, Mindray, Shenzhen, China). Assays were conducted in 

triplicate. Cell survival (growth) was calculated by comparing the absorbance of treated and 

untreated cells. The percentage cell inhibition was determined. The percentage viability was 

plotted against the extract concentrations and the 50% cell viability value (IC50) was calculated 

from the curve (Hensen et al., 1989).  

 

4.2.6 Statistical analysis  

The experimental results were expressed as mean ± standard deviation (SD) of three replicates. 

The data were subjected to one-way analysis of variance (ANOVA) to determine significant 

differences between means. Tukey`s test was used for post-hoc analyses. All statistical analyses 

were performed using GraphPad Prism 7.0 (GraphPad Software Inc., San Diego, CA). Results 

with p < 0.05 were regarded as statistically significant.   
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4.3 Results and discussion  

4.3.1 Structure elucidation 

Previously, we reported on the phytochemical investigation, resulting in the isolation of 

compounds from the leaves and stem bark of F. burtt-davyi (Ogunlaja et al., 2016). These 

compounds were lupeol, lupeol acetate and (+)-catechin. In this study, compound A-6 was 

identified using spectral data (IR, UV, GC-MS, 1H-NMR, 13C-NMR and 2D NMR) and by 

comparison of the NMR data with those reported in literature. Compound A-6 was identified as 

lupeol (Figure 4-1) (Mohato and Kundu, 1994) which was previously isolated from the stem bark 

of F. burtt-davyi. 

Compound A-9 was isolated as a white powder. GC-MS data showed molecular ion peak [M+] at 

m/z 426 which corresponds to the molecular formula C30H50O. The IR spectrum showed a broad 

absorption band at 3337 cm-1 (OH group) and a band at 1555 cm-1 (C=C). The UV spectrum of 

compound A-9 gave maximum wavelength (λmax) at 229 nm. The 1H-NMR spectrum showed 

characteristic resonances for the oleanane-type pentacyclic triterpene at δH 5.09 (t, J = 3.41 Hz, H-

12), 3.18 (dd, J= 5.17; 10.89 Hz, H-3) and eight methyl resonances. The 13C-NMR spectrum 

showed diagnostic peaks at δC 79.08 (C-3), 124.4 (C-12) and 139.5 (C-13) indicating the presence 

of a Δ12-double bond of the olean-12-ene-type. Based on spectral information and comparison with 

the literature (Dias et al., 2011; Fingolo et al., 2013; Hassan et al., 2015), compound A-9 was 

identified as α-amyrin (Figure 4-1). This is the first report of α-amyrin from F. burtt-davyi. 
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Figure 4-1: Chemical structures of compounds A-6 and A-9 isolated from the fruits of F. burtt-

davyi. 

4.3.2 In-vitro cytotoxicity 

The cytotoxic activity of the MeOH extracts from fruits and stem bark and selected compounds 

previously isolated from F. burtt-davyi stem bark (lupeol, lupeol acetate and (+)-catechin) and 

fruits (lupeol and α-amyrin) was determined using the MTT cell viability assay using different 

cancer cell lines at various concentrations (Ogunlaja et al., 2016). The IC50 value estimated by 

nonlinear regression analysis was used as a parameter for cytotoxicity. The results are summarised 

in Table 4-1. The results showed that the MeOH extract of the stem bark (MeOH (SB)) of F. burtt-

davyi significantly reduced cell viability in both MCF-7 and Caco-2 cell lines, with IC50 values of 

6.6 and 8.1 µg mL-1, respectively. These values are significantly lower than the cytotoxic activity 

for crude extracts of (IC50 ≤ 30 µg mL-1) recommended by the American National Cancer Institute 

(Suffness and Pezzuto, 1990). Furthermore, the extracts showed a significantly low cytotoxicity 

(p < 0.05) towards normal human embryonic kidney cells (HEK293), relative to the control (5-

FU). This result shows the selectivity of the extract towards the cancer cells.  
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Lupeol and (+)-catechin showed cytotoxic activity against MCF-7 cell lines with IC50 values of 

22.6 and 29.8 µg mL-1, respectively and greater cytotoxicity against Caco-2 cell lines with IC50 

values of 10.7 and 9.0 µg mL-1, respectively. The potential of lupeol to inhibit the growth of cancer 

cells was also observed in previous studies (Aratanechemuge et al., 2004; Moriarty et al., 1998; 

Nana et al., 2012). Cmoch et al. (2008) reported the IC50 value for lupeol against MCF-7 to be low 

(< 15 µg mL-1), which is corroborated by this study (22.6 µg mL-1). In addition, the observed 

synergistic cytotoxic effects by MeOH (SB) against tested human cancer cell lines is in agreement 

with a previous report which suggested that lupeol, in combination with other bioactive principles, 

could be beneficial in the treatment of cancer (Lee et al., 2007). Lupeol showed strong, 2-fold 

cytotoxic activity against Caco-2 cell lines compared to 5-FU. Similarly, MeOH (SB) and (+)-

catechin showed significantly stronger cytotoxic activity (p < 0.05) against Caco-2 cells by nearly 

3-fold compared to 5-FU (Table 4-1). Conversely, lupeol acetate and α–amyrin exhibited low 

cytotoxic activity (IC50 > 50 µg mL-1) against all the tested cell lines, similar to previous reports 

(Hassan et al., 2015). 
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Table 4-1:  Cytotoxicity of the methanol (MeOH) extract of fruits (F) and stem bark (SB) 

and isolated compounds (lupeol, lupeol acetate, (+)-catechin and α--amyrin from F.burtt-

davyi,, and positive control (5-FU) against MCF-7, Caco-2 and HEK293 cell lines.  

 

Plant extracts/Compounds 

 

MCF-7 

IC50 µg mL-1 

Caco-2 

  

HEK293 

MeOH (F) >50c >50c  189.5c 

MeOH (SB) 6.6a 8.1a  207.5d 

Lupeol  22.6b 10.7a  179.1c 

Lupeol acetate  >50c >50c  162.0c 

(+)-catechin 29.8b 9.0a  120.2b 

α—amyrin >50c >50c  121.3b 

5-FU (Control) 26.2b 23.1b  102.0a 

Values with different superscript letters along a column are significantly different from each 

other by Tukey’s HSD multiple post hoc test, (p < 0.05).  

 

Figure 4-2 and 4-3 show cell viability after exposure of MCF-7 and Caco-2 cells, respectively to 

different concentrations of test samples. The MeOH extract of the fruits (MeOH (F)), lupeol acetate 

and α-amyrin showed very weak cytotoxic effects against the tested cell lines (Table 4-1) and are 

therefore omitted from the results. The addition of 1–50 µg mL-1 of MeOH (SB) and test 

compounds ((+)-catechin and lupeol) to both cell lines (MCF-7 and Caco-2) resulted in a dose-

dependent inhibition of cell proliferation. The results of the post-hoc analyses (Tukey`s test) 

showed mean percentage cell viability values for MeOH (SB) and compounds (lupeol and (+)-

catechin) to be significantly different (p < 0.05) across all concentrations relative to the vehicle 
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Figure 4-2: Cell viability by MTT assay after exposure of MCF-7 cells to different 

concentrations of F. burtt-davyi methanol extract (stem bark) (MeOH (SB)), isolated compounds 

((+)-catechin and lupeol), DMSO vehicle control (VC) and positive control, 5- fluorouracil (5-

FU). * - p < 0.05 from DMSO; ** - p < 0.05 from DMSO and 5-FU. 

 

control (DMSO). Lupeol displayed significant cytotoxicity against MCF-7 cells at 25 and 50 µg 

mL-1 and significant cytotoxicity against Caco-2 cells across all tested concentrations markedly 

reducing cell viability compared to 5-FU. MeOH (SB) also showed significant cytotoxicity relative 

to 5-FU, at 25 and 50 µg mL-1 against both MCF-7 and Caco-2 cells. (+)-Catechin exhibited 

selectivity towards Caco-2 cells compared to MCF-7 with significant cytotoxicity at 25 and 50 µg 

mL-1 thereby reducing cell viability compared to 5-FU. 

The higher cytotoxic activity of MeOH (SB) of F. burtt-davyi could be attributed to the presence 

and synergistic effect of the more active secondary metabolites, (+)-catechin and lupeol. Similarly, 

the lower cytotoxic activity of MeOH (F) could be as a result of the presence and of the less active 

0

20

40

60

80

100

VC 5-FU MeOH(SB) Catechin Lupeol

M
TT

 c
el

l v
ia

b
ili

ty
  (

%
)

1 µg/mL

5 µg/mL

25 µg/mL

50 µg/mL

*

* *

*

*

*

** *

*

*
*

**

** *

* **



 98  

  

compounds, lupeol acetate and α–amyrin. This report highlights the cytotoxic activity of the 

extracts and pure compounds from F. burtt-davyi which, to the best of our knowledge, is the first 

such report. 

 

 

Figure 4-3: Cell viability by MTT assay after exposure of Caco-2 cells to different 

concentrations of F. burtt-davyi methanol extract (stem bark) (MeOH (SB)), isolated compounds 

((+)-catechin and lupeol), DMSO vehicle control (VC) and positive control, 5- fluorouracil (5-

FU). * - p < 0.05 from DMSO; ** - p < 0.05 from DMSO and 5-FU 

 

4.4 Conclusion 

The present study established the cytotoxic potential of the methanol extracts of the stem bark of 

F. burtt-davyi against MCF-7 and Caco-2 cells with no significant adverse effect on normal 

HEK293 cells, thereby validating its ethnomedicinal use. This selectivity to cancer cells in vitro 

warrants further in vivo studies. Data from this study suggest that (+)-catechin and lupeol, the most 
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abundant bioactive compounds in the stem bark, are responsible for the synergistic cytotoxic effect 

of this extract against breast and colorectal adenocarcinoma cell lines. In addition, data from this 

study provides evidence on the potential of F. burtt-davyi as a chemotherapeutic agent against 

cancer.  
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CHAPTER 5 

Elemental composition of the edible fruits of Ficus burtt-davyi 

Hutchinson from different habitats in KwaZulu-Natal, South Africa. 

Abstract 

Many figs are known to have medicinal value and their fruits are often consumed as food by the 

rural communities. Ficus burtt-davyi Hutchinson is an indigenous medicinal fig used as a laxative 

by the locals in southern Africa. In this study, the concentrations of various elements and the 

proximate chemical composition was determined in the edible fruit of F. burtt- davyi from eight 

different sites in KwaZulu-Natal, South Africa. The elemental distribution of essential elements in 

the fruits varied significantly with site (p < 0.05) and the concentrations were found to be in 

decreasing order of Ca ˃ Mg ˃ Fe ˃ Mn ˃ Zn ˃ Cu. The results of the proximate composition 

indicated that the fruit contained 5.0 ± 0.3% protein, 8.4 ± 0.4% lipids, 78.9 ± 0.6% carbohydrates, 

4.0 ± 0.7% crude fibre and 3.7 ± 0.1% ash. Hierarchical cluster analysis showed variation in 

elemental distribution between the two distinct habitats (coastal and inland forests) representing 

the sampling sites. This study suggests that the fruits can serve as an alternative source of energy 

and may contribute positively to the diet without posing the risk of adverse health effects due to 

low concentrations of toxic elements. The consumption of about 20.0 g of F. burtt-davyi fruit can 

contributes up to 43.8% towards the Recommended Dietary Allowance for Mn.   

 

Keywords: Recommended Dietary Allowance; elemental distribution; essential elements; 

toxicity. 
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5.1 Introduction 

Trees have been an essential part of human survival from the earliest time, providing basic needs 

such as shelter, firewood, medicine and food. The use of indigenous plants as food and to treat 

medical conditions in humans’ dates back to time immemorial. Many Southern African trees have 

edible and often delicious fruits, but many of them are yet to be domesticated and developed into 

commercial crops (Van Wyk et al., 2000). Wild fruit trees are important to rural people, especially 

rural children, because they add important nutrients to the diet and are freely available when other 

food may be inadequate. In addition, several epidemiological studies have shown an inverse 

correlation between the consumption of fruits and the incidence of several chronic diseases such 

as cancer (Block, l992; Block et al., 1992), diabetes (Ford and Mokdid, 2001) and heart disease 

(Rimm et al., 1996).  

Generally, there is renewed awareness for food safety due to several reports associated with 

consumption of contaminated food products and their adverse effects on humans (D’Mello, 2003). 

This has motivated research concerning the risk associated with consumption of plant-based food 

products. Soil to plant transfer is a major route of contamination, thus, the occurrence of heavy 

metals in soils (natural and polluted) and plant-based foods have been the focus of a number of 

studies due to contamination issues (Gebrekidan et al., 2013; Nabuloa et al., 2010a,b; Wang et al., 

2003).  Heavy metals are among the major contaminants of plant-based food products (Zaidi et 

al., 2005). They are often linked with toxicity associated with environmental pollution due to them 

being non-biodegradable, having high residence time and their potential to accumulate in different 

organs of plants (Nabulo et al., 2011; Sathawara et al., 2004; Singh et al., 2010). They can also 

accumulate in the different organs of humans, thereby leading to undesirable and harmful effects 
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(Jarup, 2003). Although some metals are required by humans in very small amounts for growth 

and optimum performance, others such as As, Cd and Pb are toxic even at very low concentrations. 

These heavy metals are not only cytotoxic, but also carcinogenic and mutagenic in nature (Ivanova 

et al., 2008). Generally, metal toxicity results from alteration in the conformational structure of 

nucleic acids, protein or by interference with oxidative phosphorylation and osmotic balance (Yaoa 

et al., 2008).  

Figs have been shown to be over 11 000 years in existence (Kislev et al., 2006). Edible figs have 

been cultivated in Asia since ancient times and featured predominantly in the diet of animals, 

humans and other close relatives for many centuries. Ficus burtt-davyi Hutch is a fig that is 

endemic to South Africa and belongs to the mulberry family (Moraceae) (Burrows and Burrows, 

2003). It is found in a wide variety of habitats, as a shrub in coastal scrublands, scrambling amongst 

the surrounding vegetation (Berg, 1990). It may also occur along the beach margins. F. burtt-davyi 

also grows as a hemi-epiphyte on the stems of large forest trees. Additionally, it may grow as a 

rock-splitter against rock surfaces or cliffs and it is distributed from the Gouritz River in Western 

Cape Province of South Africa to the Escourt and Piet Retief areas of KwaZulu-Natal (Burrows 

and Burrows, 2003). Its fruits are reported to be eaten by the Transkeian people of the Eastern 

Cape Province of South Africa (Burrows and Burrows, 2003; Fox and Young 1983; Rose and 

Guillarmod, 1974). 

Previously, we reported on the nutritional value, bioaccumulation and toxicological assessment of 

heavy metals in the edible fruits of Ficus sur (Ogunlaja et al., 2017).  Although the fruits of F. 

burtt-davyi are eaten and used as a laxative by the locals in South Africa, information about the 

nutritive as well as mineral content is lacking, hence the need for this study. In this study, we 
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examine the edible fruits of F. burtt-davyi for proximate nutrient and mineral content. This work 

would provide necessary baseline information on the edible fruit and also provide the basis for 

their wider utilisation and application. 

 

5.2 Materials and methods  

5.2.1 Sample collection and Preparation  

The soil and fruit samples were collected from eight different sampling sites, representing two 

distinct habitats (coastal and inland forests) in KwaZulu-Natal, South Africa (Figure 5-1), between 

February and March, 2014. Composite soil samples from six points along the drip line of each tree 

were collected randomly from eight designated sampling points with a plastic hand shovel at 15-

20 cm depth. A thoroughly mixed representative soil sample was taken from each site and was 

dried overnight in an oven at 40 °C then passed through a 2 mm mesh sieve to remove organic 

matter and gravel. About 10 g of this soil was crushed with a mortar and pestle to reduce the 

particle size for microwave digestion. Samples were stored in sealed plastic bags and kept in a 

refrigerator until analysed.  

Samples of tree-ripened fruits were randomly picked from trees, placed in sealed plastic bags and 

taken to the laboratory for further analysis. The average temperature during the sampling period 

was 27 °C with no rain or wind but sunshine. All fruit samples were washed thoroughly with 

double distilled water. Thereafter, fruit samples were oven-dried at 50 °C, overnight. Dried fruit 

samples were crushed using a food processor (Kenwood Compact Blender, BL380) and the 

resultant powder samples were stored in a refrigerator in sealed polyethylene bags until analysed. 
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5.2.2 Reagents and chemicals  

All chemicals used were supplied by Merck (Kenilworth, USA) and Sigma (St. Louis, USA) 

Chemical Companies and were of analytical-reagent grade. Elemental calibration standards were 

prepared from spectroscopic grade stock standard solutions of 1000 mg L−1 (Sigma-Aldrich, 

Buchs, Switzerland).   

 

 

 Figure 5-1: Map of selected sampling sites in KwaZulu-Natal, South Africa. 
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5.2.3 Analytical quality assurance and instruments 

All plastic containers were washed with laboratory liquid detergent and then soaked in 1M HNO3, 

overnight. Glassware and other equipment were cleaned with 6M HNO3 and rinsed off with 

MilliporeTM water (Billerica, MA, USA) to minimise the risk of contamination before usage. 

MilliporeTM water was used throughout the experiments. Working standards were made up with 

MilliporeTM water and 10 mL of 70% HNO3 to match the sample matrix. The blank reagents and 

certified reference material (CRMs) for plant (BCR-402, Institute for Reference Materials and 

Measurement, European Commission, Joint Research Centre, Belgium) and soil (D081-540, ERA, 

A waters Company, Milford, MA, USA) were used to verify the accuracy, precision and efficiency 

of the analytical method. All digested samples were analysed within a week after digestion.  

Table 5-1: Validation of the analytical method using plant (n = 8) and soil (n = 6) certified 

reference materials (CRM).  

 

Metals 

BCR-402 

Measured 

Mean 

 

SD 

 

Certified 

Mean 

 

 

SD 

D081-540 

Measured  

Mean 

 

 

SD 

 

Certified 

Mean 

 

 

SD 

As 0.091 0.011 0.093 0.010 100.5 1.20 101 5.92 

Cd - - - - 139.9 1.3 143 5.6 

Co 0.175 0.004 0.178 0.008 200.6 6.1 199 4.1 

Cr 5.18 0.065 5.19a - 90.3 2.6 86.8 6.1 

Fe 245  244a - 12823 20.4 12800 18.0 

Mn - - - - 431.7 9.4 425 9.7 

Se 6.72 0.210 6.70 0.25 129.8 2.2 127 4.5 

Ni 8.25 0.591 8.25a - 241.2 10.10 236 4.17 

Zn 25.3 0.002 25.2a - 128.9 5.6 130 11.5 

*Values are in µg g−1 dry mass (95% confidence interval).  
a Indicative values (without uncertainty). CRM - BCR-402 for plant and D081-540 for soil.  
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The measured mean values were compared with the corresponding certified values (Table 5-1). 

Experimental results compared well with certified values (p < 0.05) with recovery percentages 

being within acceptable limits. 

 

5.2.4 Metal extractions 

5.2.4.1 Exchangeable metals 

Exchangeable metals were extracted using the extracting solution prepared by diluting 38.542 g of 

ammonium acetate (NH4CO2CH3), 25 mL of acetic acid (CH3COOH, 96%) and 37.225 g of 

ethylenediaminetetraacetic acid (EDTA) to 1L in double distilled water. Exactly 50 mL of 

extracting solution was added to 5.0 g of dry soil samples in 250 mL polyethylene bottles and 

shaken in a laboratory shaker for 2 h. Thereafter, solutions were filtered on Whatman No. 1 filter 

papers and then Millipore 0.45 µm filter membranes to permit analysis of extracted metals. All 

samples were stored in plastic bottles and kept in a refrigerator until analysed. 

 

5.2.4.2 Total metals 

Samples of dried, powdered fruit and soil (0.25 g each) were accurately weighed and digested by 

applying the optimised procedure as described by Endalamaw and Chandravanshi, (2015) with 

some modifications. Fruit and soil digests were transferred to 25 mL volumetric flasks, diluted to 

the mark with MilliporeTM water and stored in polyethylene bottles prior to elemental analysis. 
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5.2.5 Soil pH, Cation Exchange Capacity (CEC) and Soil Organic Matter (SOM)  

The soil pH was determined in a soil: water suspension of 1 g in 2.5 mL of deionised water using 

a pH meter (Aqualytica, Model pH 17). Soil organic matter (SOM) was measured using the 

potassium dichromate wet oxidation by titration method as described by Walkley and Black, 

(1934) and was expressed as percent carbon. The cation exchange capacity (CEC) of soil was 

determined using the pH 7.0 ammonium acetate method (Chapman, 1965). 

 

5.2.6 Determination of chemical composition 

Fruit samples were analysed for proximate chemical composition (moisture, crude fat, fibre and 

protein) according to the Association of Official Analytical Chemists methods (AOAC, 2000). The 

carbohydrate content was obtained by difference. 

 

5.2.7. Analytical procedure 

Standard solutions of 13 elements (As, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, Co, and Zn) were 

prepared by diluting their corresponding 1000 mg L-1 stock standard solutions. Elemental analysis 

was by inductively coupled plasma-optical emission spectrometry (ICP-OES) due to its high 

dynamic linear range and sensitivity. Analytical wavelengths were selected based on minimum 

spectral interferences and maximum analytical performance.  

 

 

 

 



113 

 

5.2.8 Data analysis 

5.2.8.1 Bioaccumulation factor (BAF) 

Generally, elements are persistent in the environment and tend to accumulate in plant tissues. In 

this study elemental bioaccumulation was evaluated by comparing their concentration in the fruit 

against that in the growth soil. 

BAF = [Fruit]/ [Soil] Exchangeable 

 

5.2.8.2 Statistical analysis  

All statistical analyses were performed using the Statistical Package for the Social Sciences, 

(PASW version 23, IBM Corporation, Cornell, NY, USA).  

 

5.3 Results and Discussion 

5.3.1 Elemental analysis  

The fruit and the growth soil samples were analysed for thirteen elements comprising of macro-

elements (Ca and Mg), micro-elements (Cu, Co, Fe, Mn, Ni, Cr, Se and Zn), and toxic elements 

(As, Cd, and Pb). Although, total metal concentration in the soil is a valuable indicator of soil 

contamination, the risk from metals to a large extent is governed by their bioavailability (Prokop 

et al., 2003; Tokalioglu et al., 2000; Van Gestel, 2008; Xiao et al., 2011). The heavy metal 

concentration in soil (total and exchangeable) and fruit samples of F. burtt-davyi from eight 

different sites in KwaZulu-Natal are summarised in Table 5-2 for those elements in fruits that were 

above the instrument detection limits. The exchangeable percent (% Ex) was also calculated to 
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measure the percent of elements from the soil that are available for plant uptake. Arsenic, Cd, and 

Pd in soil and in fruit were below the detection limit of the instrument therefore they were excluded 

from the discussion.  

Plants, through various physiological processes are able to regulate metals through storage and 

detoxification, in order to adapt to varied metal concentration conditions (Ciszewski et al., 2013; 

Fairbrother et al., 2007; Peto, 2010). Calcium in soil (total and exchangeable) ranged from 496 to 

8405 μg g-1 and 245 to 4399 μg g-1, respectively with highest concentrations of 14530 μg g-1 in the 

fruit observed at site S8 where the exchangeable Ca was 490 μg g-1 (BAF = 29.2).  Calcium in 

fruits is believed to delay ripening and can contribute about 2% towards body total weight of many 

fruits (Valvi and Rathod, 2011). Likewise, there was accumulation of Mg at all sites with Mg in 

soil (total and exchangeable) and fruits ranging from 214 to 1035 μg g-1, 199 to 340 μg g-1 and 

2461 to 3728 μg g-1, respectively. For Ca and Mg, soil concentrations were lower than fruit 

concentrations, indicating the ability of the fruits to bioconcentrate and bioaccumulate these 

metals. 
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Table 5-2: Elemental concentrations (µg g-1) in fruit and soil (Total (T) and exchangeable 

(E) samples (Mean (standard deviation); 95% confidence interval, n = 3) and 

bioaccumulation factors (BAFs).  

Site Element Fruit Soil(T) Soil (E) [Fruit]/[Soil]T [Fruit]/[Soil]E Ex% 

1 Ca 13540 (380) 4928 (1429) 3388 (2433) 2.7 4.0  68.7 

2 
 

9363 (462) 5549 (671) 4399 (116) 1.7 2.1  79.3 

3 
 

7921 (159) 975 (102) 245 (12) 8.1 32.3  25.1 

4 
 

12713 (840) 724 (464) 7171 (9) 17.6 17.7  99.0 

5 
 

8738 (145) 8405 (1756) 2115 (421) 1.0 4.1  25.2 

6 
 

13807 (862) 865 (80) 799 (78) 16.0 17.3  92.3 

7 
 

8649 (237) 863 (83) 409 (23) 10.0 21.2  47.4 

8 
 

14530 (750) 496 (322) 490 (27) 29.3 29.7  98.6 

1 Cu 11.3 (4.50) 13.3 (1.98) 8.89 (0.92) 0.8 1.3  66.7 

2 
 

9.83 (5.83) 13.1 (8.05) 11.9 (1.10) 0.7 0.8  90.4 

3 
 

11.5 (2.04) 12.0 (0.90) 9.00 (0.97) 1.0 1.3  75.2 

4 
 

13.2 (1.33) 6.06 (1.55) 5.98 (0.99) 2.2 2.2  98.7 

5 
 

13.7 (2.58) 25.7 (5.37) 13.0 (1.22) 0.5 1.1  50.6 

6 
 

14.4 (0.59) 6.09 (0.97) 5.77 (0.78) 2.4 2.5  94.7 

7 
 

11.9 (5.55) 5.38 (1.41) 5.12 (1.02) 2.2 2.3  95.2 

8 
 

12.7 (1.29) 4.60 (3.77) 4.14 (0.65) 2.8 3.1  90.1 

1 Fe 34.8 (7.04) 7254 (1151) 379 (11) 0 0.1  5.2 

2 
 

63.2 (5.23) 7679 (1558) 590 (41) 0 0.1  7.7 

3 
 

78.6 (33) 7556 (484) 476 (24) 0 0.2  6.3 

4 
 

15.9 (1.50) 7804 (3602) 246 3(4) 0 0.1  3.1 

5 
 

50.3 (2.88) 5908 (1589) 429 (17) 0 0.1  7.3 

6 
 

19.0 (8.37) 11680 (421) 308 (94) 0 0.1  2.6 

7 
 

18.0 (7.70) 9438 (207) 246 (28) 0 0.1  2.6 

8 
 

103 (14) 5075 (549) 395 (29) 0 0.3  7.8 

1 Mg 3014 (62) 779 (191) 376 (35) 3.9 8.0  48.3 

2 
 

2673 (75) 681 (109) 265 (21) 3.9 10.1  39.0 

3 
 

2461 (123) 483 (75) 289 (41) 5.1 8.5  59.9 

4 
 

2993 (120) 296 (130) 205 (19) 10.1 14.6  69.3 

5 
 

3328 (86) 1035 (255) 399 (10) 3.2 8.3  38.5 

6 
 

3096 (313) 411 (16) 306 (21) 7.5 10.1  74.3 

7 
 

3728 (158) 572 (36) 400 (27) 6.5 9.3  70.0 
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8 
 

3644 (111) 215 (47) 199 (51) 17.0 18.3  92.6 

1 Mn 24.9 (1.10) 147 (19) 127 (31) 0.2 0.2  86.7 

2 
 

20.4 (1.73) 140 (30) 129 0.1 0.2  92.1 

3 
 

43.6 (2.86) 173 (7.84) 140 0.3 0.3  81.0 

4 
 

53.8 (3.21) 85.1 (44) 59.9 0.6 0.9  70.4 

5 
 

9.51 (0.20) 137 (37) 121 0.1 0.1  88.5 

6 
 

54.8 (1.92) 123 (5.77) 62.9 0.4 0.9  51.2 

7 
 

28.9 (1.36) 246 (50) 125 0.1 0.2  50.8 

8 
 

46.0 (2.55) 37.4 (3.82) 37.0 1.2 1.2  98.8 

1 Zn 49.0 (3.0) 34.2 (11) 30.0 1.4 1.6  87.6 

2 
 

27.8 (7.41) 41.8 (4.97) 20.8 0.7 1.3  49.6 

3 
 

27.9 (2.80) 24.0 (2.11) 9.89 1.2 2.8  41.2 

4 
 

25.3 (1.32) 18.5 (13) 10.0 1.4 2.5  54.2 

5 
 

42.3 (2.54) 79.2 (23) 20.0 0.5 2.1  25.2 

6 
 

25.9 (1.48) 20.2 (1.84) 19.0 1.3 1.4  93.9 

7 
 

25.4 (0.68) 27.4 (5.74) 15.3 0.9 1.7  55.7 

8 
 

28.4 (2.41) 45.0 (11) 21.6 0.6 1.3  48.0 

* [F]/[S]T-[Fruit]/[Soil]Total 
** [F]/[S]A-[Fruit]/[Soil]Exchangeable 

*** Ex% - [Soil] Exchangeable/[Soil]Total 

 

Iron is an essential element to humans and a very important constituent of haemoglobin. It 

promotes the breakdown (via oxidation) of carbohydrates, protein and fat in order to control body 

weight which is a very important risk factor in diabetes. Table 5-2 revealed that the maximum 

concentration of Fe in the fruit of F. burtt-davyi was 103 ± 14 µg g-1 which was observed at site 8. 

The BAFs (exchangeable) of the fruit for Fe were relatively low (˂ 0.3 at all sites), suggesting that 

Fe uptake is controlled by the fruit. This observation is similar to our previous report on the fruits 

of F. sur (Ogunlaja et al., 2017). Overall, about 5.3% of total soil Fe was in exchangeable form. 

About 77.4% of total soil Mn was in exchangeable form but the BAFs (exchangeable) ranged from 

0.1 to1.2 with the highest occurring only at one site (S8). This may be due to the lowering of the 

rate of Mn uptake by plant by Mg (Kies, 1994; Maas et al., 1969). The fruit tends to regulate the 
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uptake of Mn based on metabolic requirements. The concentration of Mn in fruits ranged from 

9.51 to 54.8 µg g-1 which are below the maximum limits of 2000 µg g-1 (Kabata-Pendias and 

Pendias, 1989).  

Total soil Cu ranged from 4.60 to 25.7 µg g-1 while the exchangeable concentration ranged from 

4.14 to 13.0 µg g-1 with an average of 82.7% in exchangeable form. The high exchangeable value  

for Cu may be due to the high stability of the Cu complex formed with EDTA (Madrid et al., 

2008). Copper concentrations in the fruits were all above the WHO permissible limit of 10 µg g-1 

(WHO, 2005) for plants. Elevated concentrations of Cu are known to cause anaemia (via Mn 

depletion, which leads to iron deficiency anemia), liver and kidney damage, stomach and intestinal 

irritation in humans (Raymond and Felix, 2011). 

Generally, Zn concentration in fruits (25.3 to 49.0 μg g-1) was higher than total and exchangeable 

soil concentrations. Although, about 56.9% of Zn was available for uptake by the fruit, the BAF 

was less than 1 for the studied sites. The concentration of Zn in the fruits at sites S1 (49.0 μg g-1) 

and S5 (42.3 μg g-1) were above the maximum levels for plants set by the Department of Health, 

South Africa, which is 40 μg g-1 (DoH, 2004).  

Although the total concentration of the trace essential elements (Co, Cr, and Se) in the soil ranged 

from 1.12 to 4.77 µg g-1, 1.8 to 50.2 µg g-1 and less than 16.5 µg g-1, respectively, the concentration 

in the fruits were below the instrument detection limits, hence they were excluded from Table 5-

2. Ni concentrations in the fruits were also found to be below the instrument detection limits. Total 

soil Ni was also below 0.56 µg g-1. This result showed that F. burtt-davyi fruits tend to exclude 

these metals.  
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Data from this study showed that the elemental concentration in the fruits of F. burtt-davyi was 

the highest for Ca, followed by Mg, Fe, Mn, Zn and Cu. In addition, the concentrations of trace 

essential elements (Co, Cr, Ni and Se) and toxic metals (As, Cd and Pb) were found to be below 

the instrument’s detection limits.  

 

5.3.2 Estimated contribution of metals in fruits to the diet 

Indigenes of South Africa often rely on fruits among other natural resources to meet their basic 

nutritional needs, but often, they are faced with dietary and nutrient deficiency diseases. It is 

therefore paramount to determine the levels of micronutrients in such indigenous fruits and 

estimate their contribution to the diet. In this study, the elemental concentration in the fruits of F. 

burtt-davyi were compared to Dietary Reference Intakes (DRIs) (Table 5-3). The results show that 

the fruit can contribute significantly to the health and nutrition of most individuals for most 

elements.  

Calcium contributes between 17-22% towards the RDA for the element. Generally, malnourished 

children are often faced with dietary diseases due to deficiencies in Zn, Fe and Cu (Maharaj et al., 

2003). Zinc is an essential trace element to humans and it is required for a healthy immune system; 

its deficiency will result in recurrent infections due to an under-performing immune system 

(Moscow and Jothivenkatachalam, 2012; Prasad, 1982). Iron and Cu are essential to human health 

and their deficiency normally occur simultaneously leading to anemia, glucose intolerance, 

likelihood of infections and nervous system problems (Davis et al., 1987; Labadarios, 2007). 

Consumption of about 20.0 g of fruit contributes 5.7-7.9% towards the RDA for Zn, 5.3-12.0% for 

Fe and 27.8% for Cu in most individuals (Table 5-3).   
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Table 5-3: Comparison of Dietary Reference Intake (DRI). * (Recommended Dietary 

Allowance (RDA) and Tolerable Upper Intake Level (UL)) of elements for most individuals 

to the average concentration of elements (n = 8) in F. burtt-davyi fruits. 

Element Average  

concentration 

(mg / 20 g DM) 

DRI (mg/ day) 

RDA                          UL 

 

Estimated 

contribution to 

RDA (%) 

Ca 223.15 1000-1300 2500 17.2-22.3 

Cu 0.25 0.9 8 27.8 

Fe 0.96 8-18 45 5.3-12.0 

Mg 62.34 310-320 350 19.5-20.1 

Mn 0.70 1.6-2.3 9 30.4-43.8 

Zn 0.63 8-11 34 5.7-7.9 

* Sourced from: Food and Nutrition Board, Institute of Medicine, National Academies, 2011. 

Manganese rich, plant-based foods include pineapple, spinach, peanuts, sweet potato, brown rice 

and pecan nuts (USDA, 2009). Manganese is a component of the powerful antioxidant manganese 

super oxide dismutase (MnSOD) enzyme, which neutralises free radicals in the human body 

(Ademuyiwa et al., 2007; Mistry and Williams, 2011; Paynter, 1980). A diet rich in Mn may 

prevent cancer and other devastating diseases like arthritis, osteoporosis, diabetes and epilepsy 

(Ekmekcioglu et al., 2001; Osterode et al., 1996). Data from this study showed that F. burtt davyi 

fruits can serve as an alternative and cheap source of Mn, contributing 30.4-43.8% towards RDA 

if 20.0 g is consumed. A deficiency of Mn can lead to iron-deficiency anaemia, due to the role of 

Mn in Fe utilisation (Balch and Balch, 1990). Other deficiency symptoms include nausea, 

vomiting, impaired glucose tolerance, high cholesterol levels, skin rash, loss of hair colour, 

dizziness, hearing loss, and impaired reproductive function (Balch and Balch, 1990; Friedman et 
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al., 1987; Ulene, 2000).  Extreme lack of Mn in infants may result in convulsions, paralysis, 

blindness and deafness (Lupines, 2001; Ulene, 2000). 

 

5.3.3 Proximate chemical composition 

The moisture content of the fresh fruit of F. burtt-davyi was 23.7%. On a dry weight basis, the 

protein content was 5.0 ± 0.30%, lipid 8.4 ± 0.40%, carbohydrates 78.9 ± 0.55%, crude fibre 4.0 

± 0.70% and ash 3.7 ± 0.10%. The results show the fruits to be high in energy and low in fats.  

 

5.3.4 Soil quality parameters analysis 

Soil pH ranged from 6.5 to 7.4 while SOM ranged from 3.4 to 8.2%. The CEC also ranged from 

2.2 to 18.8 meq/100. 

 

5.3.5 Statistical analysis 

Principal component analysis (PCA) permitted a reduction of 12 variables (elements in soil) to 

four principal components (PC1, PC2, PC3 and PC4), which were extracted, based on the 

eigenvalue ˃ 1. The retained principal components were interpreted using varimax rotation with 

Kaiser Normalisation. These four PCs described over 80% of the total variability which was 

enough to describe the overall elemental pattern, signifying different sources (Table 5-4).  
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Table 5-4: Rotated component matrix for variables in the soil samples (n = 40). 

   Component  

Element                              1                               2                      3                  4 

CoT 0.97 -0.03 0.05 0.12 

CdT 0.92 -0.08 0.09 0.29 

CrT 0.91 0.02 0.11 -0.26 

FeT 0.90 -0.16 -0.04 0.32 

CaT -0.08 0.90 0.35 0.05 

CuT -0.10 0.90 -0.04 0.03 

MgT 0.11 0.87 0.27 0.37 

ZnT -0.14 0.74 0.07 -0.06 

SeT 0.28 0.55 -0.54 -0.41 

AsT -0.03 0.32 0.87 0.01 

NiT 0.28 0.11 0.84 0.01 

MnT 0.31 0.17 0.03 0.90 

Eigenvalues 3.95 3.69 1.73 1.12 

% Total variance 32.93 30.76 14.42 9.31 

Cumulative % 32.93 63.69 78.12 87.43 

Extraction Method: Principal Component Analysis 

Rotation Method: Varimax with Kaiser Normalisation. Bold figures indicate values ˃ 0.7 

 

The first component explained 32.9% of the total variance; high loadings (> 0.7) in PC1 were 

obtained for Cd, Co, Cr and Fe (Table 5-4). The high positive loadings and close association of 

heavy metals Co, Cd, Cr and Fe could suggest their common anthropogenic sources (vehicular 

emissions). Elevated levels of these trace metals have been reported in areas with high traffic 

density in South Africa (Olowoyo et al., 2012). PC2 was strongly represented by Ca, Cu, Mg and 

Zn, contributing 30.8% of the total variance. A quasi-independent behaviour was also observed 

within the group due to Se having a loading of 0.55, which was further corroborated by a large 
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distance in the 3-D PCA loading plot (Figure 5-2), indicative of poor correlation and different 

sources (Table 5-4). PC3 contributed 14.4% to the total variance with a high loading on As and 

Ni, suggesting a common origin, while PC4 was dominated by Mn (0.90), accounting for 9.3% of 

the total variance. This was confirmed by Figure 5-2, suggesting that it came from a different 

source. Similar occurrence was also reported by Mahlangeni et al. (2016). 

 

Figure 5-2: Factor loading plot (showing the four distinct principal components and their 

significant relationship) for 12 element in soil (constructed for 8 sampling sites). 

 

Hierarchical cluster analysis (CA) measuring distribution patterns, based on the Euclidean distance 

between mean elemental concentrations of studied elements, was evaluated in F. burtt-davyi fruits. 

Figure 5-3 shows the CA results for the elemental distribution pattern as a dendrogram in the 

studied area. Generally, the CA revealed varied elemental distribution in the two distinct habitats 

(coastal and inland). Four clusters are observed (1) S3–S4-S7; (2) S6; (3) S8; (4) S1–S2–S5. 

However, clusters 1 and 3 are joined together at a relatively higher level implying perhaps 

similarity in elemental distribution. The proximity in the dendrogram between S1 and S2, and S3 
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and S4 show similarity in elemental distribution at the studied sites. Although, S6 and S8 were 

joined at a relatively higher distance, their proximity in the dendrogram show similarity in 

elemental distribution at sites representing the inland habitat. Hierarchical cluster analysis revealed 

similar distribution of elements between the inland habitats which was dissimilar to that of coastal 

habitat (Figure 5-3). 

 
 

Figure 5-3: Hierarchical cluster analysis dendrogram showing the relationship between the 

studied sites using Ward`s method by Euclidean distance. 

 

Sites - (S1-Bluff, S2-Treasure Beach, S3-Marine Drive. S4-Umhlanga, S5-Brighton Beach, S6-

UKZN, Westville, S7-River palace and S8-Foreshore.)  
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Table 5-5 summarised the significant correlations between elements in the soil and fruits of F. 

burtt-davyi that have been extracted from an inter-item correlation matrix. Only the strong 

correlations are presented. There was a three-way synergy between Ca, Cu and Mg in the soil, 

indicating that these elements have a common origin as observed by PCA (Figure 5-2). There was 

a significantly positive correlation between total soil Ca with exchangeable Cu (r = 0.9) and total 

soil Mg with exchangeable Mn (r = 0.9) indicating a synergistic effect between these metals in 

soil. Although there was a significant correlation between exchangeable Fe with Fe in the fruit (r 

= 0.7), thereby indicating that uptake of Fe was dependent on soil concentrations, there was no 

significant correlation between soil concentrations (total and exchangeable) and fruit 

concentrations for the other metals studied, thereby indicating that uptake was regulated by the 

plant to meet physiological needs. 

 

Table 5-5: Inter-item correlation matrix for concentrations of elements in Fruits (F) and 

soil (S) 

 

 

 

 

 

 

 

 

 

 

 

 

*, ** - significant at p ≤ 0.05 and p ≤ 0.01, respectively. a. XF–[X]Fruit where X = the various 

elements. b. XT–[X]Soil Total where X = the various elements. c. XE–[X]SoilExchangeable where X = the 

various elements. 

 

 
CaF CaE CaT CuE CuT FeF MgE MgT MnF 

CaT ns 0.8** 1 
      

CuE ns 0.7* 0.9** 1 
     

CuT ns ns 0.8** 0.8** 1 
    

FeE ns ns 0.7* 0.7* ns 0.7* 
   

MgT ns 0.7* 0.9** 0.9** 0.8** ns ns 1 
 

MnF ns ns -0.9** -0.7* -0.7* ns -0.7* -0.8** 1 

MnE -0.8** ns ns 0.7* ns ns 0.7* 0.9** -0.7* 
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5.4. Conclusion 

Data from this study showed accumulation of Ca and Mg in comparison to other essential metals, 

indicating that the plant required more of these elements to meet its metabolic needs. The 

concentration of toxic metals (As, Cd and Pb) in the fruits were below the instrument detection 

limits, which showed that it is safe for human consumption. The fruits were also found to be rich 

in Mn which may be beneficial in maintaining a healthy immune system, especially in the poor 

and vulnerable communities of South Africa that rely on these figs for nutrition. Hierarchical 

cluster analysis showed variation in elemental distribution among dissimilar sites.  
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CHAPTER 6 

Antioxidant activity of the bioactive principles from the edible fruits 

and leaves of Ficus sur Forssk. (Moraceae)  

 

Abstract 

Ficus sur Forssk. (Moraceae) is a medicinal plant species found in Africa. It is used to treat 

anaemia, diarrhea and sexually transmitted diseases. In this study, a phytochemical investigation 

of F. sur was conducted and the antioxidant properties of the isolates and extracts were evaluated 

using the ferric ion (Fe3+) reducing antioxidant power (FRAP) and 1,1- diphenyl-2-picrylhydrazyl 

(DPPH) assays. Two pharmacologically active triterpenoids (lupeol and β-sitosterol), one 

pheaophytin (pheaophytin a) and one flavonoid (epicatechin) were isolated from the fruits and 

leaves. The structures of the isolated compounds were characterized by spectroscopic techniques 

and by comparison of the spectroscopic data with the literature values. The findings reveal 

significantly higher (p < 0.05) antioxidant activity for the methanol extract of the fruits (IC50 9.06 

µg mL-1) which may be accounted for by the higher phenolic content and presence of epicatechin. 

The results show the species to be rich in pharmacologically active compounds that are 

documented to exhibit therapeutic and chemo-preventive beneficial effects. Therefore, their 

consumption would have a profound influence on nutrition and health, especially among the 

indigenous people of Africa.  

Keywords: Flavonoid, Triterpenes, Epicatechin, Figs, Antioxidants 
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6.1 Introduction 

Free radical and reactive oxygen species (ROS) from normal metabolic processes and from 

environmental pollution may cause protein and DNA damage within cells via chemical chain 

reactions, leading to oxidative stress (Aqil et al., 2006; Stohs and Bagchi, 1995; Tiwari 2001). 

Oxidative stress is a major risk factor leading to a variety of chronic and degenerative disorders 

such as cardiovascular and neurodegenerative diseases, aging and cancer (Kao et al., 2013; Kiem 

et al., 2011; Pham-Huy et al., 2008; Willcox et al., 2004). Plant based antioxidants are well known 

for their anticancer, anti-inflammatory and anti-aging properties (Matés et al., 1999; Mayne 2003; 

Noguchi and Niki, 2000; Pinnell 2003). These activities are largely attributed to the presence of 

compounds such as flavonoids, tannins, steroids, glycosides, coumarins and pentacyclic triterpenes 

(Ragasa et al., 2009; Sirisha et al., 2010). 

The Southern African region of the world contains a vast source of natural products, with South 

Africa accounting for over 22 000 plant species, representing about 10% of the world’s botanical 

richness (Coetzee et al., 1999; Williams et al., 2006). The genus Ficus (Moraceae) has more than 

850 species growing all over the world, with 25 of the 36 species being indigenous to Southern 

Africa (Namibia, Botswana, Zimbabwe, Mozambique south of the Zambezi River and South 

Africa) (Burrows and Burrows, 2003).  

Some Ficus species that have received extensive phytochemical and pharmacological investigation 

include F. carica (Gilani et al., 2008; Rubnov et al., 2001), F. racemosa (Chandrashekhar et al., 

2008; Li et al., 2004), F. religiosa (Pandit et al., 2013; Samy et al., 2008), F. microcarpa (Ao et 

al., 2008;Chang et al., 2005), F. exasperata (Ayinde et al., 2007; Odunbaku et al., 2008), F. 

glomerata (Patil et al ., 2006; Rahman et al., 1994), F. benghalensis (Shukla et al., 2004) and F. 
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benjamina (Farag, 2005). Although a wide variety of compounds including phenolics, flavonoids, 

alkaloids, coumarins and sterols have reportedly been isolated from the genus Ficus, members of 

this genus are particularly known for their high content of triterpenoids (Chang et al., 2005; Chiang 

and Kuo, 2002; Lansky and Paavilainen, 2011; Lee et al., 2002). 

Ficus sur is commonly referred to as the Cape fig, broom cluster fig, bush fig or Malabar tree. It 

is a large spreading tree, usually about 12 m high, but reaching 25 to 30 m in some areas. The fruits 

of the plant are edible. The root and bark decoctions from the plant are used in traditional medicine 

to treat a variety of ailments including pulmonary tuberculosis, influenza and skin diseases (Eldeen 

et al., 2005; Hutchings et al., 1996). Previously, we reported on the antioxidant activity of Ficus 

burtt-davyi Hutch and the cytotoxicity of the bioactive principles from F. burtt-davyi (Ogunlaja et 

al., 2016). In this study, we report on the isolation and identification of the bioactive principles 

from the fruits and leaves of F. sur.  Additionally, we report on the antioxidant activity of selected 

crude extracts and isolated compounds from this plant species. 

 

6.2 Experimental 

6.2.1 General experimental procedures 

The 1H, 13C and 2D-NMR spectra were recorded using a 400 MHz spectrometer (Avance III 

Bruker, Rheinstetten, Germany) at 400.22 MHz for 1H and 100.63 MHz for 13C. Chemical shifts 

(δ) are reported in ppm and coupling constants (J) in Hz. The 1H and 13C chemical shifts of the 

deuterated chloroform (CDCl3) were 7.24 and 77.0, respectively, referenced to the internal 

standard, tetramethylsilane (TMS). Infrared (IR) spectra were recorded using a Perkin-Elmer 

Universal ATR spectrometer. UV spectra were obtained on a Hewlett Packard UV-3600 
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spectrophotometer. Column chromatography was performed with Merck silica gel 60 (0.040 - 

0.063 mm). Thin layer chromatography (TLC) was performed on Merck 20 x 20 cm silica gel 60, 

F254 aluminum sheets. The spots were analyzed under UV (254 nm and 366 nm), visualized using 

10% H2SO4 in MeOH followed by heating. Solvents (analytical grade) and other chemicals used 

were supplied by either Merck (Darmstadt, Germany) or Sigma (St. Louis, USA) chemical 

companies. 

 

6.2.2 Plant material 

The plant was collected in August 2015 from the University of KwaZulu-Natal (UKZN), Westville 

campus, South Africa. The identity was confirmed by examining material in the WARD 

herbarium, School of Life Sciences, University of KwaZulu-Natal, where a species is lodged 

(Ogunlaja, 2). 

 

6.2.3 Extraction and isolation 

Dried, powdered fruits (800 g) and leaves (950 g) were subjected to sequential extraction with 

hexane (Hex), dichloromethane (DCM), ethyl acetate (EtOAc) and methanol (MeOH) by 

continuous shaking on an orbital shaker for 48 h at room temperature for each solvent. All extracts 

were concentrated by evaporation under vacuum at controlled temperatures and stored in a 

refrigerator at 4 oC until analysed.  

The crude DCM extract of fruits (9.19 g) was subjected to column chromatography using 100% 

n-hexane that was stepwise increased by 10% to 100% EtOAc at a flow rate of approximately 50 

mL/min, collecting eight 100 mL fractions for each eluent step. Fractions 20-23 were combined 



138 

 

and further purification with hexane: EtOAc (1:1) to afford compound A-1 (150.5 mg). Compound 

A-6 was eluted with hexane: EtOAc (8:2), and re-crystallized in MeOH to give a white powder.  

The MeOH extract of fruits (13.7 g) was subjected to partitioning with an equal volume of EtOAc 

and DCM. The EtOAc fraction was dried with anhydrous Na2SO4, and the resultant concentrated 

extract subjected to column chromatography with fractions 9-12 yielding yellow crystals of 

compound B-1 (41.0 mg). 

The Hex extract of leaves (14.07 g) was separated similar to the DCM extract of fruits and yielded 

compound A-1 (105 mg) with hexane: EtOAc (8:2). Similarly, the crude EtOAc extract of leaves 

(10.44 g) was subjected to column chromatography with a hexane: EtOAc step gradient (with 10% 

increments every 100 mL). Compound A-4 (41.87 mg) was eluted with hexane: EtOAc (8:2) as a 

dark green amorphous solid. The other extracts from the fruits and leaves did not yield compounds 

that could be elucidated. 

 

6.2.4 Determination of total phenolic content (TPC) 

The total polyphenol content (TPC) of F. sur extracts (fruits and leaves) was determined as gallic 

acid equivalent (GAE) according to the method as described by McDonald et al. (2001) with slight 

modification. Briefly, 200 µL of the extract (240 µg mL-1) was incubated with 1 mL of ten-fold 

diluted Folin Ciocalteau reagent and 800 µL of 0.7 M Na2CO3 for 30 min at room temperature. 

Absorbance values were determined at 765 nm on a Shimadzu UV mini 1240 spectrophotometer 

(Shimadzu Corporation, Kyoto, Japan). All measurements were done in triplicate. 

 

 



139 

 

6.2.5 Determination of total flavonoid content  

The total flavonoid content of the F. sur extracts (fruits and leaves) was determined according to 

the procedure as described by Chang et al. (2002) with some modification. Briefly, 500 µL (240 

µg mL-1) of each extract was mixed with 500 µL of MeOH, 50 µL of 10% AlCl3, 50 µL of 1 mol/L 

potassium acetate and 1.4 mL water, and allowed to incubate at room temperature for 30 min. 

Thereafter, the absorbance of the reaction mixture was measured at 415 nm on a Shimadzu UV 

mini 1240 spectrophotometer. The total flavonoid content was calculated as quercetin equivalent 

(QE) in µg per mg dry extract. 

 

6.2.6 Ferric (Fe2+) Reducing Antioxidant Power (FRAP) assay  

The total reducing power of the MeOH extracts (fruits and leaves) and isolated compounds from 

F. sur was determined according to the Ferric Reducing Antioxidant Power (FRAP) method as 

described by Behera et al. (2006) with some modifications. Various concentrations (7.5-500 µg 

mL-1) in DCM or MeOH were mixed with 2.5 mL of sodium phosphate buffer (0.2 M, pH 6.6) and 

2.5 mL of 0.1% potassium ferricyanide and the mixture was incubated at 50 oC for 30 min. After 

the addition of 2.5 mL of 10% TCA, the mixture was centrifuged at 3000 rpm for 10 min. The 

upper layer (2.5 mL) was mixed with 2.5 mL of distilled water and 0.5 mL of 0.1% ferric chloride, 

and the absorbance was measured at 700 nm. In this assay, the Fe3+/ferricyanide complex is reduce 

to the ferrous form (Fe2+), and the test solution colour changes from yellow to pale green or blue, 

depending on the reducing power of the antioxidant. MeOH without reagents was used as a 

negative control while ascorbic acid and butylated hydroxyanisole (E320) (BHA) with the same 

concentrations were used as positive controls. All procedures were performed in triplicate. 
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6.2.7 DPPH radical scavenging activity assay 

The antioxidant activity of the extracts (fruits and leaves) and isolated compounds was measured 

in terms of radical scavenging ability, using the DPPH method as describe by Ahmad et al. (2011) 

with some modifications. Various concentrations (7.5-500 µg mL-1) of extracts and isolated 

compounds (150 µL) made from stock solutions (10 µg mL-1) were mixed with 2850 µL MeOH 

solution containing DPPH radicals. The mixture was then vortexed, and incubated for 30 min at 

room temperature. Thereafter, the absorbance was measured at 517 nm against MeOH as a blank 

using a UV-Vis spectrophotometer. The scavenging activity was evidenced by a change in colour 

from purple to yellow, due to proton transfer to the DPPH• free radical by a scavenger which was 

further measured by the decrease in absorbance at 517 nm using a Shimadzu UV–Vis 

spectrophotometer. Ascorbic acid and BHA were used as standards and the procedure was done in 

triplicate. The difference in absorbance between the test sample and the negative control (DPPH 

+ MeOH) was expressed as percentage inhibition. The percentage free radical scavenging activity 

was calculated according to the following equation: 

 % scavenging activity = % inhibition = [(Ao – Asample / Ao) × 100] 

Where Ao = Absorbance of the negative control and Asample = Absorbance of sample. 

 

6.2.8 Statistical analyses  

The experimental results were expressed as mean ± standard deviation (SD) of three replicates and 

IC50 values were calculated by linear regression. The data were subjected to one-way analysis of 

variance (ANOVA) to determine significant differences between means (p < 0.05). Tukey`s test 

was used for post-hoc analyses. All the statistical tests were performed using graphpad prism 6.0.  
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6.3 Results and discussion 

6.3.1 Structure elucidation of compounds from F. sur 

The DCM extract from the fruits of F. sur afforded two compounds A-1 and A-6 (Figure 6-1) 

which were identified as β-sitosterol and lupeol, respectively (Chaturvedula and Prakash, 2012; 

Mahato and Kundu, 1994). β-sitosterol was also isolated from the leaves. Previously, these 

triterpenes were isolated from the edible fruits of Harpephyllum caffrum (Moodley et al., 2014). 

 The MeOH extract of the fruits yielded compound B-1. The 1H-NMR spectrum for compound B-

1 showed characteristic resonances for flavonoids at δH 6.88 (H-2', d, J=1.60 Hz), δH 6.65 (H-5', 

d, J=8.2 Hz) and δH 6.64 (H-6', dd, J=1.60, 8.2 Hz) from the B-ring catechol moiety as well as at 

δH 5.88 (H-6, d, J=2.24 Hz) and δH 5.70 (H-8, J=2.24 Hz) from the meta-coupled protons of the 

A-ring resorcinol moiety. The isomers catechin and epicatechin may be differentiated by the 

chemical shift of C-2 in the 13C-NMR spectrum which is approximately δC 78.0 for epicatechin 

and δC 82.2 for catechin, and by correlations between H-2 and H-3 in the COSY experiment which 

is strong for catechin and weak for epicatechin because of the difference in the dihedral angle (Es-

Safi et al., 2006). Based on the resonance for C-2 at δC 78.0, a weak H-2/H-3 correlation in the 

COSY experiment, 1H-NMR, 13C-NMR, and data in literature (Kiem et al., 2011; Ragab et al., 

2013) compound B-1 was identified as epicatechin. This was further confirmed by GC-MS data, 

IR and UV-Vis spectroscopy. Epicatechin has previously been isolated from other Ficus species 

(Awolola et al., 2014; Kiem et al., 2011; Ragab et al., 2013).  

The EtOAc extract from the leaves afforded compound A-4, which was a dark green amorphous 

pigment (phaeophytin a). The spectral data for compound A-4 compared well with our data on  
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phaeophytin a which was previously isolated from F. burtt-davyi (Ogunlaja et al., 2016), 

confirming compound A-4 to be phaeophytin a.    

 

 

Figure 6-1. Chemical structures of the compounds A-1 (β-sitosterol), A-4 (phaeophytin a), A-6 

(lupeol), B-1 (epicatechin) isolated from F. sur. 

 

6.3.2 Phenolic content, total flavonoid content and in vitro antioxidant assays 

Preliminary testing was done on the extracts of fruits and leaves to determine the different classes 

of compounds present. Table 6-1 shows the percentage yield, total phenolic content (TPC) and 

total flavonoid content of various parts of F. sur. TPC and total flavonoid content of the Hex and 

DCM extracts of both fruits and leaves were extremely low and are therefore omitted from Table 
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6-1. The MeOH extract from both fruits and leaves showed a higher yield compared to the other 

extracts. In addition, the EtOAc extract of fruits was the least recovered. The MeOH extract of the 

fruits showed a significantly higher (p < 0.05) TPC, and flavonoids were only detected in the fruits. 

 

Table 6-1. Percentage yield (mg extract per g sample × 100), total phenolic content (TPC) 

and total flavonoid content of the extracts of F. sur (fruits and leaves). 

Extracts Yield (%) TPC (mg g-1 GAE) * Total flavonoids content 

(mg g-1 QE)** 

Fruit    

Ethyl acetate 0.63 0.43 ± 0.13bc 0.11 ± 0.06b 

Methanol 1.72 1.20 ± 0.09a 0.59 ± 0.12a 

Leaf    

Ethyl acetate 1.10 0.38 ± 0.04c ND 

Methanol 2.16 0.51 ± 0.17b ND 

Data are presented as mean ± SD (n = 3). *GAE (gallic acid equivalent) and **QE (quercetin 

equivalent). Values with different superscript letters along a column are significantly different 

from each other by Tukey’s HSD multiple post hoc test, (p < 0.05). ND – Not detected. 

 

6.3.3 In vitro antioxidant assays 

The functional component in food is widely assessed by their antioxidant capacity, hence, in this 

study, the extracts of fruits and leaves and isolated compounds were evaluated for their in vitro 

antioxidant potential using the FRAP and DPPH assays, relative to the positive controls (ascorbic 
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acid and BHA). Except for epicatechin and the MeOH extracts from fruits and leaves, other 

isolated compounds and extracts showed very weak antioxidant activity for both assays and are 

therefore omitted from the results. 

Both the DPPH and FRAP assays show the antioxidant activity of the extracts and tested 

compounds to be concentration dependent (Figure 6-2 and Figure 6-3). The MeOH extracts of the 

fruits displayed significantly higher (p < 0.05) radical scavenging activity than other extracts 

especially at higher concentrations (50-500 µg mL-1), and the difference was not significant (p > 

0.05) with the standard antioxidants in some cases (250 and 500 µg mL-1). 
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Figure 6-2. DPPH radical scavenging activity (%) of MeOH extract of F. sur (fruits and leaves), 

epicatechin and positive controls (ascorbic acid and BHA). Data are presented as mean ± SD, 

n=3. a-d Values with different letters over the bars for a given concentration of each extract and 

compound are significantly different from each other (Tukey’s-HSD multiple range post hoc test, 

p < 0.05). 

 

Similarly, the results produced by the FRAP assay showed the reducing power of the MeOH 

extract of fruits to be comparable to that of the positive controls (Figure 6-3). The antioxidant 

activity of the MeOH extract of leaves is significantly lower than the other tested samples. The 

DPPH radical scavenging activity was found to be in the order of BHA > ascorbic acid > MeOH 

(fruits) > epicatechin > MeOH (leaves). The ferric reducing antioxidant power was found to be in 

the order of BHA > ascorbic acid > epicatechin > MeOH (fruits) > MeOH (leaves). 
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Figure 6-3. Reducing power of the MeOH extract of F. sur Forssk. (fruits and leaves), 

epicatechin, ascorbic acid and BHA. Data are presented as mean ± SD of triplicate 

determinations. a-e Values with different letters over the lines for a given concentration of each 

extract and compound are significantly different from each other (Tukey’s-HSD multiple range 

post hoc test, p < 0.05). 

 

 

Table 6-2 compares the IC50 values obtained for the extracts and compounds for the DPPH assay.  

The results showed that the extract of the fruits had an IC50 value comparable to the controls which 

was significantly higher (p < 0.05) than the leaves. As polyphenolic compounds, epicatechin and 

catechin have the ability to act as antioxidants via a free radical scavenging mechanism with the 

formation of the less reactive flavonoid phenoxyl radical. The high potential of flavonoid 

compounds to scavenge free radicals may be explained by their ability to donate a hydrogen atom 

from their hydroxyl group and thereby scavenge the free radicals. Data from this study and our 

previous report (Ogunlaja et al., 2016), suggests that the antioxidant activity of the MeOH extract 

of the stem bark of F. burtt-davyi and MeOH extracts of fruits of F. sur is due to the presence of 

catechin and epicatechin, respectively.  

0

0,5

1

1,5

2

2,5

3

3,5

0 50 100 150 200 250 300 350 400 450 500

A
b

so
rb

an
ce

 (
7

0
0

 n
m

)

Concentration (µg mL-1)

MeOH (Fruits)
MeOH (Leaves)
Epicatechin
Ascorbic acid
BHA

c

c

c

d d

e

e

e

eeee

c c
bb

d

d

b

b

d
dc

b

b

dc

b

a
a

a

a

a

a



147 

 

Table 6-2. IC50 of different extracts and compounds from F. sur for the DPPH assay. 

Extracts/compound DPPH*(µg mL-1) 

MeOH (leaves) 369.19 ± 12.04d 

MeOH (fruits) 9.06 ± 2..21b 

Epicatechin  26.75 ± 4.11c 

Ascorbic acid  2.03 ± 0.01a 

BHA 1.93 ± 0.11a 

Each value is represented as Mean ± SD (n = 3). a-d Means in the same column followed by a 

different letter are significantly different (p < 0.05). *No significant difference between assays (p 

< 0.05). 

 

6.4 Conclusion 

The phytochemical investigation shows F sur fruits to be rich in β-sitosterol, lupeol and 

epicatechin and leaves to be rich in pheaophytin a and β-sitosterol. The MeOH extracts of the fruits 

show significant antioxidant activity, which may be accounted for by the higher phenolic content 

and presence of epicatechin. These results highlight the medicinal benefits associated with 

consumption of the edible fruits of F sur, emphasizing its importance in South Africa, where 

reliance on medicinal wild foods (fruits) is on the rise due to availability and accessibility. This 

study lends scientific credence and validity to the ethnomedicinal use of F. sur whilst underpinning 

the benefits of consuming the indigenous edible fruits. 
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CHAPTER 7 

Nutritional evaluation, bioaccumulation and toxicological 

assessment of heavy metals in edible fruits of Ficus sur Forssk 

(Moraceae) 

Abstract  

Ficus sur Forssk (Moraceae) is an indigenous medicinal plant with a wide distribution in Africa. 

In this study, the nutritional potential of this indigenous plant to meet domestic food demands and 

reduce food insecurity in KwaZulu-Natal, South Africa, was investigated. The proximate 

composition and concentrations of metals in the edible fruits collected from eight different sites in 

KwaZulu-Natal were determined to assess for nutritional value and the concentrations of metals 

in the growth soil was determined to evaluate the impact of soil quality on elemental uptake. The 

fruits contained high levels of moisture (88.8%) and carbohydrates (65.6%). The concentrations 

of elements in the fruits were found to be in decreasing order of Ca >Mg >Fe >Zn>Cu >Mn > 

Se with low levels of toxic metals (As, Cd, Co and Pb). This study shows that the consumption of 

the fruits of F. sur can contribute positively to the nutritional needs of rural communities in South 

Africa for most essential nutrients without posing the risk of adverse health effects. 

 

Keywords: Elemental distribution, nutrition, toxicity, soil quality. 
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7.1 Introduction 

Undernutrition is a common health problem amongst rural South Africans, and its effects on 

growth and development has detrimental outcomes, the most serious one being its ability to 

potentiate the development of non-communicable diseases such as cardiovascular disease, cancer 

and diabetes (Mayosi et al., 2009; Norman et al., 2007). Evidence from scientific health reports 

have indicated that the consumption of fruits can reduce the risk of many of the nutrition-related 

diseases and risk factors that contribute substantially to the burden of disease in South Africa 

(Bosman et al., 2011). Indigenous plants have been identified as having the potential to meet 

domestic food demands thereby reducing food insecurity, especially in rural societies and this has 

increased interest in the exploitation, quantification and utilisation of such food plants (Guinand 

and Dechassa, 2000; Kebu and Fassil, 2006).  

In the rural areas of many African countries, people depend on trees growing in the wild for fruit 

due to accessibility and affordability, thereby inadvertently exploiting the therapeutic and 

nutraceutical potential of such fruits. In some cases, indigenous fruits with very little or no 

documentation of their chemical composition are the only fruits consumed (Mahapatra et al., 

2012). On average, indigenous fruits contribute 42% towards the food basket for most rural people 

in Southern Africa (Akinnifesi et al., 2006). A daily consumption of indigenous food plants in 

sufficient quantities can help prevent numerous diseases, improve the nutrition and health of 

children and the elderly and boost the immune system of HIV/AIDS patients (Barany et al., 2001; 

WHO, 2005a). Although rural households in South Africa frequently turn to indigenous fruits for 

food, they are often faced with dietary and nutrient deficiency diseases, a situation which children 
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and lactating women are most vulnerable to (Herzog et al., 1993; Moodley et al., 2012; Shackleton 

et al., 2004). 

The total wellbeing of humanity depends largely on the regular daily intake of macro and micro-

elements in the diet, soil being the primary source. Generally, plants depend directly on soil for 

support and nutrients and metals are mobilised from soil to different parts of plants depending on 

the nature and quality of the soil matrix (Moodley et al., 2012). Excessive levels of heavy metals 

and metalloids may occur in soil as a result of normal geological occurrences and anthropogenic 

inputs such as the application of pesticides, waste disposal (industrial, agricultural and domestic), 

waste incineration, urban effluent and vehicle exhausts (Cui et al., 2004; Pakade et al., 2013). In 

addition, the affinity of different plant parts for these metals can also play a major role in the 

transfer and eventual bioaccumulation of heavy metals. Heavy metals are known to have long 

biological half-lives and may act as cumulative slow poisons, directly influencing public health 

because humans do not have an effective mechanism for their removal from the body (Cui et al., 

2004). In recent years, studies on the impact of heavy metals have increased significantly, 

especially in the areas of toxicology, due to their non-biodegradable nature and implication in 

abnormal cell functioning which is linked to certain types of cancers (Banas et al., 2010; Mathee 

et al., 2002; Tu¨rkdog ˘an et al., 2002). 

Ficus sur Forssk, of the plant family Moraceae, is an indigenous medicinal plant found in 

KwaZulu-Natal, South Africa (Burrows and Burrows, 2003). It occurs from the Southern Cape 

northwards throughout eastern South Africa, to tropical Africa, to Senegal and Cape Verde Islands 

in the west, Ethiopia in the north and Yemen in the east (Burrows and Burrows, 2003). It is known 

as Umkhiwane in isiZulu and serves as an immediate source of food both to animals and humans, 
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hence playing a key role in their everyday survival. An evaluation of the nutritional benefits and 

concentration of essential and toxic heavy metals in the edible fruits is imperative since metal 

toxicity in humans, through the agricultural food chain, at plant tissue concentrations are not 

necessarily phytotoxic.  

Previously, the nutritional value of the fruit of indigenous medicinal plants and the impact of soil 

quality on elemental uptake was reported (Mlambo et al., 2016; Moodley et al., 2012; 2013). This 

study aimed to investigate the elemental distribution and concentration of 13 elements (As, Ca, 

Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se and Zn) in the edible fruits of F. sur and to assess for 

nutritional value and potential metal toxicity. Soil quality parameters were also investigated to 

evaluate their impact on elemental uptake. 

 

7.2 Materials and Methods 

7.2.1 Sample collection and preparation 

F. sur fruit and soil samples from below the tree were collected from eight different sampling sites 

in KwaZulu-Natal, South Africa; 1-Reservior Hills, 2 - Overport, 3 – Burman Bush, 4 – Pigeon 

Valley, 5 – UKZN, Howard Campus, S6 - Hibberdene, 7 – Pietermaritzburg and 8 -Byrne (Figure 

7-1) between February and March, 2014. Sites were flat with varied yet verdant climate (humid 

and subtropical). The topography was diverse with loamy soil type and an annual rainfall of 

1009 mm. The average daily temperature ranged from 20.6 to 28.6 °C. Samples of tree-ripened 

fruits were randomly picked from trees, placed in sealed plastic bags and taken to the laboratory 

for further analyses. The plant was identified and classified by a taxonomist at the School of Life 
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Sciences, University of KwaZulu-Natal, South Africa and a voucher specimen deposited in the 

ward Herbarium. Fruit samples were washed thoroughly with double distilled water to remove 

extraneous matter and then chopped into smaller pieces with a stainless steel knife. Thereafter, 

fruit samples were oven-dried at 50 oC overnight to ensure complete removal of moisture. Dried 

fruit samples were crushed using a food processor (Kenwood Compact Blender, BL380) then 

stored in a refrigerator in sealed plastic bags until analysed.  

 
Figure 7-1: Map of selected sampling sites in KwaZulu-Natal, South Africa. 

 

Soil samples were collected from six random points along the drip line of each tree, at a depth of 

15-20 cm, with the use of a plastic hand shovel. These were thoroughly mixed in a clean plastic 

bucket to achieve homogeneity, thus forming the composite sample. A representative soil sample 

was taken from each site and was dried overnight in an oven at 40 °C then passed through a 2 mm 

mesh sieve to remove organic matter and gravel. Some of this soil (10 g) was crushed with a mortar 
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and pestle to reduce the particle size for microwave digestion. Samples were stored in sealed plastic 

bags and kept in a refrigerator until analysed within 2 weeks. 

 

 

7.2.2 Analytical quality assurance, chemicals and instruments 

All plastic containers were washed with double distilled water and then soaked overnight in 1M 

HNO
3
. Glassware and other equipment were cleaned with 6M HNO

3
 and rinsed off with double 

distilled water to prevent contamination before usage. MilliporeTM water (Billerica, MA, USA) 

was used throughout the experiments. All chemicals used were supplied by Merck (Kenilworth, 

USA) and Sigma (St. Louis, USA) Chemical Companies and were of analytical-reagent grade. 

Elemental calibration standards were prepared from spectroscopic grade stock standard solutions 

of 1000 mg L−1. All digested samples were analysed within a week after digestion. 

The Microwave Accelerated Reaction System (MARS 6, CEM Corporation, Matthews, NC, USA) 

with patented Xpress technology that consists of MARSXpress™ vessels and IR temperature 

sensors, was used for digestion. Each digestion vessel comprises liners (Teflon PFA, Dupont, 

Wilmington, DE, USA), caps, and composite sleeves that have a self-regulating pressure control. 

Fruit and soil samples (0.25 g each) were weighed into the 50 mL liners, to which, 10 mL of HNO3 

was added. Fruit samples were pre-digested for 1 h prior to microwave digestion. Liners were 

capped, placed into the sleeves, loaded onto the 40-place carousel, and placed into the microwave. 

The appropriate method was loaded and the system started. The power was set to 100% at 1600 

W and the temperature was ramped to 180 °C (for fruit samples) and 200 °C (for soil samples) for 

15 min where it was held for 15 min. Fruit and soil digests were transferred to 50 mL volumetric 
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flasks, diluted to the mark with double distilled water and stored in polyethylene bottles prior to 

elemental analysis.  

 

7.2.3 Extraction of exchangeable metals 

The extracting solution was prepared by diluting 38.542 g ammonium acetate (NH4CO2CH3), 25 

mL acetic acid (CH3COOH, 96%) and 37.225 g ethylenediaminetetraacetic acid (EDTA) to 1L in 

double distilled water. Exactly 50 mL of extracting solution was added to 5.0 g of dry soil samples 

in 250 mL polyethylene bottles and shaken in a laboratory shaker for 2 h. Thereafter, solutions 

were filtered through Whatman No. 1 filter papers and then Millipore 0.45 µm filter membranes 

to permit analysis of extracted metals. All samples were stored in plastic bottles and kept in a 

refrigerator until analysed.  

 

7.2.4 Soil pH, Cation Exchange Capacity (CEC) and Soil Organic Matter (SOM) 

The pH of soil was determined by measuring the pH of the solution, 1:2.5, dry wt/v using a Fisher 

Scientific™ FE150 pH meter, fitted with a glass electrode (Khan et al., 2008). Cation exchange 

capacity (CEC) of soil was determined using the pH 7.0 ammonium acetate method (Chapman, 

1965) while soil organic matter (SOM) was measured according to the procedure adopted from 

Walkley and Black, (1934). 
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7.2.5 Proximate composition determination 

Moisture, crude protein, fat, ash and crude fibre content of F. sur fruits were determined according 

to the Association of Official Analytical Chemists method (AOAC, 2000). Total carbohydrate 

content was estimated by difference.  

7.2.6 Elemental analysis 

All extracted and digested samples (soil and fruit) were analysed for As, Ca, Cd, Cr, Cu, Fe, Mg, 

Mn, Ni, Pb, Se, Co, and Zn by inductively coupled plasma-optical emission spectrometry (ICP-

OES) due to its multi-element determination capability, high dynamic linear range and sensitivity 

(Perkin Elmer, 5300DV). Analytical wavelengths were selected based on minimum spectral 

interferences and maximum analytical performance. Initially, the three most sensitive lines were 

chosen. From these lines, the line with no interfering elements was selected. The accuracy of 

analytical procedures was checked by analysing certified reference materials (CRMs). 

 

7.2.7 Bioaccumulation factor (BAF) 

The Bioaccumulation factor (BAF) expresses the ability of a metal species in its different forms to 

migrate from the soil through the plant parts and make itself available for consumption (Cui et al., 

2004). 

BAF = [Fruit] / [Soil] Exchangeable 
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7.2.8 Statistical analysis  

The difference in heavy metal concentrations between the eight sites was investigated using 

discriminant analysis. The results of this analysis were assessed by examining the canonical 

correlation statistics, the Wilk’s lambda statistics, the significance levels and the percentage of 

original group cases correctly classified. In addition, a Pearson’s correlation analysis was applied 

to the dataset to quantitatively analyse and confirm the relationship between soil quality parameters 

(pH, SOM and CEC) and heavy metal concentrations. Principal component analysis (PCA) was 

carried out to identify patterns in the elemental data by identifying the different groups of metals 

that correlate and thus can be considered as having a similar behaviour and common origin. All 

statistical analyses were performed using the Statistical Package for the Social Sciences, (PASW 

version 23, IBM Corporation, Cornell, NY, USA).  

 

7.3 Results and Discussion 

7.3.1 Proximate chemical composition  

The results of the proximate analysis showed F. sur fruits to contain 88.8 ± 0.2% moisture. On dry 

mass basis, the carbohydrate content was 65.6 ± 0.03%, protein 5.2 ± 0.1%, fat 4.7 ± 0.2%, crude 

fibre 7.7 ± 0.02% and ash 17.67 ± 1.3%. The high level of carbohydrates in the fruits indicates that 

they can serve as an immediate and alternative source of energy. These values were similar to 

those reported by Wilson and Downs (2012). 
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7.3.2 Soil quality parameters analysis 

Soil pH ranged from 5.3 to 8.2 while SOM ranged from 11.0 to 22.3%. Higher pH values were 

observed at site 4 (7.6 ± 0.09), site 6 (7.3 ± 0.03) and site 7 (8.2 ± 0.08) and may be connected 

with the higher concentration of Ca in the soil compared with other studied sites. The CEC ranged 

from 2.30 to 3.70 meq/100. 

7.3.3 Elemental analysis 

Method validation for the analytical procedure was carried out by measuring CRMs, BCR-402 

(Institute for Reference Materials and Measurement, European Commission, Joint Research 

Centre, Belgium) for fruits samples and D081-540 (ERA, A waters Company, USA) for soil 

samples. Experimental results were compared with certified results (Table 7-1). Measured values 

compared well to the certified values (p < 0.05) with recovery percentages being within acceptable 

limits. 
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Table 7-1: Validation of the analytical method using plant and soil certified reference 

materials (BCR-402 for plant and D081-540 for soil). 

Element Concentration in BCR-402 

(µg g-1) 

Concentration in D081-540 

(µg g-1) 

 Measured* Certified Measured Certified Acceptable limit 

As 0.10 ± 0.014 0.093 ± 0.010 83.2 ± 3.36 101 ± 5.92 61.0 - 116 

Cd - - 156.0 ± 4.6 143 ± 5.6 116 - 159 

Co 0.174 ± 0.006 0.178 ± 0.008 238.5 ± 7.8 199 ± 4.1 166 - 233 

Cr 4.98 ± 0.248 5.19 a 102.6 ± 2.3 86.8 ± 6.1 69.3 - 104 

Fe 240 ± 6.75 244a 13119 ± 608 12800 ± 18.0 5380 - 20100 

Mn - - 448.5 ± 18.7 425 ± 9.7 347 - 502 

Se 6.80 ± 0.16 6.70 ± 0.25 161.5 ± 5.9 127 ± 4.5 98.4 - 156 

Ni 8.23 ± 0.46 8.25a 212 ± 21.70 236 ± 4.17 175 - 302 

Zn 25.40 ± 0.68 25.02a 136.9 ± 7.9 130 ± 11.5 113 - 184 

*Values are in µg g−1dry mass (mean ± standard deviation, 95% confidence interval, n = 3).  
a Indicative values (without uncertainty). BCR-402 for plant and D081-540 for soil.  

 

The concentrations of heavy metals in soil (total and exchangeable) and fruits are summarised in 

Table7-2 for those elements in fruits that were above the instrument detection limits. Although, 

total soil Pb (21.5-78.4 µg g−1) was above the South African maximum permissible level of 6.6 µg 

g−1 in soils at all sites, the concentrations of Pb in all fruit samples were found to be below the 

instrument detection limit. In addition, concentrations of the other toxic elements, As, Cd and Co 

in all fruit samples were below the instrument detection limit. Selenium was found in fruit samples 

from site 1 (0.86 µg g−1) and site 2 (2.16 µg g−1) only and Ni was found in the fruit sample from 

site 8 (10.30 ± 1.44 µg g−1) only. 

 



166 

 

Table 7-2: Elemental concentrations (µg g-1) in fruit and soil (Total (T) and exchangeable 

(Ex)) samples (Mean ± standard deviation; 95% confidence interval, n=3) and 

bioaccumulation factors (BAFs). 

  Concentration (µg g-1) BAF  

 Element Fruit Soil (T) Soil (Ex) [F]/[S]T
* [F]/[S]Ex

** Ex%*** 

1 Ca 3313 ± 21 630 ± 37 454 ± 19 5.3 7.3 72.1 

2   2270 ± 152 1114 ± 29 1043 ± 34 2 2.2 93.7 

3   2355 ± 40 394 ± 5.58 250 ± 3.91 6 9.4 63.5 

4   2613 ± 24 2528 ± 333 2085 ±7 1 1 1.3 82.5 

5   19467 ± 35 1180 ± 41 1033 ± 27 1.7 1.9 87.5 

6   3310 ± 74 1476 ± 75 1433 ± 31 2.2 2.3 97.1 

7   2792 ± 49 4671 ± 9.9 4089 ±3 7 0.6 0.7 87.6 

8   7746 ± 232 2173 ± 182 786 ± 50 3.6 9.9 36.2 

1 Cu 4.31 ± 0.30 7.78 ± 0.52 2.36 ± 0.30 0.6 1.8 30.3 

2   4.31 ± 0.97 7.76 ± 0.71 6.90 ± 0.30 0.6 0.6 88.9 

3   5.01 ± 1.37 3.06 ± 1.32 2.78 ± 0.12 1.6 1.8 90.6 

4   2.49 ± 0.39 18.2 ± 2.51 10.7 ± 0.30 0.1 0.2 58.9 

5   3.41 ± 0.28 8.54 ± 0.60 6.15 ± 0.12 0.4 0.6 72 

6   2.23 ± 0.55 6.79 ± 1.05 6.25 ± 0.33 0.3 0.4 92 

7   5.11 ± 0.68 23.6 ± 1.20 7.65 ± 0.16 0.2 0.7 32.4 

8   17.4 ± 2.07 8.82 ± 1.02 1.63 ± 0.26 2 10.6 18.5 

1 Fe 61.5 ± 2.56 31536 ± 95 327 ± 28 0 0.2 1 

2   28.0 ± 1.56 20279 ± 104 261 ± 8.59 0 0.1 1.3 

3   21.6 ± 1.61 18391 ± 601 186 ± 4.73 0 0.1 1 

4   29.9 ± 2.95 18534 ± 33 475 ± 18 0 0.1 2.6 

5   62.7 ± 1.80 15302 ± 118 710 ± 13 0 0.1 4.6 

6   35.4 ± 5.10 17534 ± 394 182 ± 4.13 0 0.2 1 

7   105 ± 9.56 67040 ± 352 447 ± 2.51 0 0.2 0.7 

8   129 ± 3.90 15171 ± 553 96.9 ± 7.58 0 1.3 0.6 

1 Mg 1798 ± 162 2534 ± 84 19.6 ± 2.45 0.7 91.5 7.8 

2   1233 ± 40 550 ± 31 73.1 ± 26 2.2 16.9 13.3 

3   1255 ± 4.89 251 ± 6.71 73.2 ± 0.63 5 17.2 29.17 

4   1022 ± 6.56 1189 ± 73 48.7 ± 1.64 0.9 21 4.09 

5   1487 ± 24 874 ± 11 27.6 ± 3.08 1.7 53.8 3.16 

6   1284 ± 36 492 ± 32 33.3 ± 2.23 2.61 38.5 6.77 

7   1613 ± 34 1549 ± 62 26.3 ± 3.01 1.04 61.3 1.7 

8   1766 ± 179 23880 ± 341 83.8 ± 22 0.07 21.1 0.35 

1 Mn 0.47 ± 0.01 16.3 ± 0 .74 4.09 ± 0.26 0 0.1 0.3 
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2   0.52 ± 0.05 18.1 ± 1.39 14.0 ± 0.42 0 0 0.8 

3   1.83 ± 0.02 37.5 ± 1.07 32.5 ± 0.71 0.1 0.1 0.9 

4   0.14 ± 0.01 23.0 ± 2 .08 12.6 ± 0.32 0 0 0.6 

5   0.04 ± 0.01 16.1 ± 0.48 9.90 ± 0.22 0 0 0.6 

6   1.17 ± 0.03 19.9 ± 0.50 13.8 ± 0.15 0.1 0.1 0.7 

7   0.92 ± 0.24 237 ± 26 75.0 ± 1.10 0 0 0.3 

8   20.2 ± 1.25 35.3 ± 0.40 11.5 ± 1.36 0.6 1.8 0.3 

1 Zn 13.7 ± 4.63 27.3 ± 2.77 6.22 ± 0.73 0.5 2.2 22.8 

2   14.6 ± 1.91 24.7 ± 2.51 18.1 ± 0.87 0.6 0.8 73.4 

3   13.5 ± 1.89 9.42 ± 0.33 5.81 ± 0.13 1.4 2.3 61.7 

4   6.90 ± 1.17 54.2 ± 3.60 39.1 ± 5.14 0.1 0.1 72.2 

5   13.4 ± 1.03 23.5 ± 1.19 15.1 ± 0.40 0.6 0.9 64.3 

6   4.35 ± 0.29 21.9 ± 0.48 19.4 ± 0.34 0.2 0.2 88.8 

7   18.1 ± 4.89 37.8 ± 1.36 15.3 ± 0.52 0.5 1.2 40.5 

8   22.8 ± 2.17 22.8 ± 0 .70 4.58 ± 0.61 0.1 5 20.1 
* [F]/[S]T-[Fruit]/[Soil]Total 
** [F]/[S]A-[Fruit]/[Soil]Exchangeable 
*** Ex% - [Soil] Exchangeable/[Soil]Total 

 

The fruit tended to accumulate Mg producing BAFs (Exchangeable) between 16.9 and 91.5 even 

though, Mg mobility was low (0.4 to 29.2%).  This is seen at site 1, where Mg in the fruit was 

more than ninety times that which was exchangeable (Table 7-2). Calcium concentrations in fruits 

ranged from 2270 to 7746 µg g-1 with BAFs (Total) between 0.6 and 6.0 indicating the tendency 

of the plant to accumulate this metal. Copper is an essential micronutrient in humans for the 

production of blood hemoglobin. High doses of Cu can result in anemia, liver and kidney damage, 

and stomach and intestinal irritation (Raymond and Felix, 2011). Total soil Cu was relatively low 

(< 24 µg g-1) and on average 56% was in exchangeable form. Copper concentrations in the fruits 

were within a small range of variation (1.43-17.4 µg g-1) however at site 7, Cu in the fruits 

exceeded the WHO permissible limit of 10 µg g−1 for plants (WHO, 2005b). 
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Zinc is a trace element that is essential for human health, its shortages can cause birth defects. Zinc 

at elevated levels in soil can negatively interrupt the activity of microorganisms and earthworms, 

thus retarding the breakdown of organic matter (Raymond and Felix, 2011). The concentration of 

Zn in the fruit ranged from 4.35 to 18.1 µg g−1. More than 50% of the sites tended to accumulate 

Zn in the fruits with BAFs (Exchangeable) > 1. The concentrations of Cu and Zn in the fruits 

exhibited safe levels relative to the maximum levels for fruit set by the Department of Health, 

South Africa, which is 30 and 40 µg g−1, respectively (DOH, 2004). 

Site 8 was observed to have the lowest exchangeable Fe (96.9 µg g−1) but the highest concentration 

of Cu (17.4 µg g−1), Mn (20.2 µg g−1) and Zn (22.8 µg g−1) in the fruits. This three-way synergy 

between Cu, Zn and Mn is as a result of the reduction of soil retention capacity of one metal due 

to increase in concentration of a contending metal ion. This observation is in agreement with 

reports from literature (Moodley et al., 2012). Although, total soil Fe was relatively high at all 

sites (15171 to 67040 µg g−1), BAFs (Exchangeable) were relatively low suggesting the plants 

control on uptake.  

Manganese is an essential trace metal. Its deficiency produces severe skeletal and reproductive 

abnormalities in mammals and its toxicity symptoms are lung and brain damage (Takeda, 2003). 

The concentration of Mn in fruits ranged from 0.04 to 20.17 µg g-1 which are below the maximum 

limits of 2000 µg g-1 (Kabata-Pendias and Pendias, 1992). This study shows that for the essential 

elements Ca, Mg, Fe, Cu, Mn and Zn, the fruit tends to exclude the element when soil 

concentrations are high but accumulated them when soil concentrations are low, in accordance 

with metabolic requirements. 
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7.3.4 Estimated contribution of metals in fruits to the diet 

The elemental distribution in the edible fruits of F. sur was compared to Dietary Reference Intakes 

(DRIs) (Table 7-3) (IMFNB, 2001).  

Table 7-3: Comparison of Dietary Reference Intake (DRI) (Recommended Dietary 

Allowance (RDA) and Tolerable Upper Intake Level (UL)) of elements for most individuals 

to the average concentration of elements (n = 3) in F. sur fruits. 

Element Average  

concentration 

(mg / 20 g DM) 

DRI (mg/ day) 

RDA                          UL 

 

Estimated 

contribution to 

RDA (%) 

Ca 109.67 1000-1300 2500 8.4-11.0 

Cu 0.11425 0.9 8 12.7 

Fe 1.18275 8-18 45 6.6-14.8 

Mg 28.645 310-320 350 9.0-9.2 

Mn 0.06315 1.6-2.3 9 2.7-3.9 

Se 0.0302 0.055 0.4 54.9 

Zn 0.268375 8-11 34 2.4-3.4 

 

In South Africa, fortification of wheat and maize flour has improved the Fe status of children in 

the country but 24% of children still remain anaemic (Faber et al., 2005; WHO, 2008). The 

consumption of 20.0 g of fruit (which is the average weight of a handful of fruits) contributes 

between 6.6-14.8% towards the RDA for Fe for most adults. Copper deficiency is normally due to 

decreased Cu at birth, insufficient dietary Cu intake and poor absorption. Consumption of 20.0 g 

of fruit contributes about 12.7% towards the RDA for Cu for most adults. Selenium is reported to 

help with the prevention of heart disease and cancer, however if in excess, it can produce toxicity 

effects such as depression, gastrointestinal disturbances and excessive tooth decay (Tank and 
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Strovick, 1960). About 20 g of F. sur fruits may contribute more than 54% towards the RDA for 

Se; however, this amount does not exceed the UL so it would be considered safe. 

Calcium and Mg are macro-elements required for bone formation, the development of strong teeth, 

muscle regulation and control of blood pressure. A common nutritional problem among South 

Africans is hypocalcemia which is due to a deficiency in Ca. In a study done on a randomly chosen 

rural South African community, 13.2% of children were found to have abnormally low levels of 

Ca in their blood (Pettifor et al., 1979). Consumption of 20.0 g of F. sur fruits may contribute 

between 8.4 -11.0% towards the RDA for Ca. A report by WHO showed that an average adult in 

South Africa consumes only half their RDA for Mg (WHO, 2009). An intake of 310-320 mg of 

Mg per day is recommended and the consumption of approximately 20.0 g of F. sur fruits, may 

contribute approximately 28.6 mg (9.0-9.2%) towards its RDA.  

 

7.3.5 Statistical analysis 

The result of discriminant analysis showed that heavy metal concentrations exhibited 

discrimination between studied sites (Table 7-4). Generally, the larger the canonical correlation 

statistic, the greater is the between groups variation as a proportion of the total variation, and the 

larger the Wilk’s lambda statistic, the greater is the within-group variation as a proportion of the 

total variation. There was a high degree of between site variations for As, Ca, Cr, Cu, Co, Mg, Mn, 

Pb, Se and Zn; canonical correlation values ranging from 0.699 to 0.997 and a few lower degrees 

of within-group site variations; Wilk`s lambda statistic ranged from 0.005 to 0.511. The 

statistically significant results also demonstrate that the originally grouped cases have high 

percentage (28.6% to 88.6%). 

https://en.wikipedia.org/wiki/Hypocalcemia
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Table 7-4: Discriminant analyses results for the studied sites. 

Variation Canonical 

correlation 

Wilk`s Lambda 

statistic 

Chi-squares D.F Sign. % of grouped cases 

correctly classified 

As 0.777 0.396 27.824 6 0 28.6 

Ca 0.699 0.511 20.154 6 0.003 40.0 

Cr 0.988 0.024 112.346 6 0 60.0 

Cu 0.967 0.065 81.967 6 0 60.0 

Co 0.985 0.029 106.087 6 0 45.7 

Mg 0.997 0.005 157.781 6 0 88.6 

Mn 0.992 0.015 125.429 6 0 60.0 

Pb 0.922 0.151 56.761 6 0 60.0 

Se 0.821 0.326 33.657 6 0 31.4 

Zn 0.759 0.423 25.795 6 0 57.1 

D.F- Degree of freedom; Sign-Significance. 

The main soil parameters that govern the processes of sorption and desorption of trace elements 

are pH, CEC and SOM. Table 7-5 shows the inter-item correlation matrix for significant 

correlations in the soil and fruits of F. sur. Soil pH correlated significantly to exchangeable Cu (r 

= 0.8) and Ca (r = 0.9) indicating that pH was a significant parameter for controlling availability 

of these metals and not SOM and CEC. There was a significant 3-way positive correlation between 

Fe, Mn and Ni in the soil which is an indication of the same geological parent material. 

Exchangeable Zn and Mn correlated positively to their total soil concentrations, suggesting that 

total soil concentrations may be used to predict the availability of these elements, similar to 

previous studies (Sauv`ie et al., 2000). For concentrations in the fruit, there was a significant 4-

way positive correlation between Ca, Cr, Cu and Mn suggesting that the plant requires proportional 

amounts of these elements for metabolic processes. 
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Table 7-5: Inter-item correlation matrix for concentration of elements in fruit (F) and soil (S).  

 CaF CrF CuF CuT FeT MgT MnF MnT MnE NiT ZnT ZnE 

CaF              

CrF  1.0**            

CuF  0.9* 1.0**           

CuT -0.1 -0.1 -0.1          

FeT -0.2 -0.2 -0.1 0.7*         

MgT 1.0** 1.0** 1.0** -0.1 -0.2        

MnF 1.0** 1.0** 1.0** -0.1 -0.2 1.0*       

MnT -0.1 -0.1 0.0 0.7* 0.9** -0.1 -0.1      

MnE -0.2 -0.2 -0.1 0.6 0.9** -0.2 -0.1 1.0**     

NiT 0.0 0.0 0.1 0.7* 0.8* 0.0 0.0 0.9** 0.7*    

ZnT -0.1 -0.1 -0.2 0.8* 0.3 -0.1 -0.2 0.3 0.1 0.3   

ZnE -0.4 -0.4 -0.5 0.5 -0.1 -0.4 -0.4 0.0 -0.1 0.0 0.8*  

*, ** - significant at p≤ 0.05 and p≤ 0.01, respectively.  

XF–[X]Fruit, XT–[X]Soil Total, XE–[X]SoilExchangeable where X = the various elements. 

 

In order to further identify the relationships between different metals in soil and their 

corresponding origins, principal component analysis (PCA) was conducted (Table 7-6). Figure 7-

2 represents the component plot in rotated space (3-D plot) showing the relationships among the 

twelve heavy metals. Table 7-6 shows that the elements are dominated by three principal 

components which accounted for 73.1% of the total variance. Factor 1 was best represented by As, 

Cr, Co, Mn. Ni and Se, accounting for 49.0% of the total variance. The Cu loading (0.58) is not as 

high as that of other elements of the group, suggesting a quasi-independent behaviour within the 

group.  
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Table 7-6: Rotated component matrix for variables in the soil samples (n = 40). 

Component 

Element                       1                            2                       3 

As 0.77 0.28 0.11 

Ca 0.34 0.62 0.37 

Cr 0.92 0.20 0.17 

Cu 0.58 0.77 0.09 

Co 0.88 0.24 0.31 

Fe 0.20 0.01 0.87 

Mg 0.02 0.49 0.28 

Mn 0.87 0.23 0.32 

Ni 0.64 0.09 0.12 

Pb 0.40 0.80 -0.11 

Se 0.71 -0.10 -0.25 

Zn -0.10 0.90 -0.13 

Eigenvalues 5.89 1.85 1.03 

% Total variance 49.04 15.43 8.61 

Cumulative % 49.04 64.47 73.08 

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser 

Normalisation. Bold figures indicate values ≥ 0.5. 

 

Factor 2 contributed 15.4% to the total variance with a high loading on Ca, Cu, Pb and Zn. Factor 

3 is dominated by Fe (0.87), accounting for 8.6% of the total variance. These associations strongly 

suggest that the elements clustered together have a similar source (Li et al., 2000; Niu et al., 2009; 

Zhou et al., 2007). 
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Figure 7-2: PCA analysis loading 3-D plot (PC1 vs PC2 vs PC3) for 12 heavy metals. 

 

7.4 Conclusion 

The concentrations of elements in the fruits were found to be in decreasing order of Ca >Mg >Fe 

>Zn>Cu >Mn >Se while the concentrations of toxic metals (As, Cd, Co, and Pb) were found to 

be below the instrument’s detection limits. This study shows that the fruits of F. surconform to the 

RDAs for the elements in focus and that their consumption can contribute significantly towards a 

balanced diet without posing the risk of adverse health effects. Statistical analysis revealed 

synergistic relationships in the plant thereby confirming that uptake of elements is controlled to 

meet metabolic needs.  
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CHAPTER 8 

Elemental distribution and nutritional value of the edible fruits of 

Ficus sycomorous Linn 

Abstract 

Ficus sycomorous Linn is a medicinal plant commonly distributed in KwaZulu-Natal, South 

Africa. Its fruits are usually consumed by the indigenous communities. Elemental concentrations 

in the edible fruits of F. sycomorous was investigated to assess for nutritional value by comparison 

with recommended dietary allowances (RDAs) and the possible risk associated with its 

consumption. The elemental concentrations in the fruits, as well as the growth soil acquired from 

eight different sites were determined by Inductively Coupled Plasma-Optical Emission 

Spectrometry (ICP-OES) so as to assess the impact of soil quality on the distribution of element 

and their uptake. Proximate chemical composition results showed high levels of moisture (55.8 ± 

0.3%), carbohydrates (25.3 ± 1.1%), protein (5.6 ± 0.2%), fat (8.9 ± 0.5%), crude fibre (55.8 ± 

0.9%) and ash (4.4 ± 0.4%). The elemental concentrations in the fruits conformed with the RDAs 

and decreased if the order of Ca > Mg > Fe > Zn > Mn > Cu > Cr with concentrations of toxic 

metals (As, Cd, Co and Pb) being below the instrument detection limits. The intake of the fruits 

by humans can improve the health, and meet the nutritional demands of indigenous people without 

posing the risk of adverse effects. Statistical analyses of soil showed similarity for Cd, Co, Cr, Ni 

and Pb, suggesting the same source whilst As, Cu and Zn have a common origin. Data from this 

study indicated that elemental interactions in soil significantly influenced their availability, but 

uptake was to a greater extent controlled by the plant. 
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Keywords: Elemental uptake; edible fruit; soil quality; recommended dietary allowances. 

 

8.1 Introduction 

The burden of disease related to non-communicable diseases is becoming increasingly harmful 

and it is projected to increase significantly in South Africa over the next decades, if necessary 

measures are not put in place to curtail the trend (Abegunde et al., 2007). An insight into the 

magnitude, and risk factors for non-communicable diseases in South Africa is important for 

effective action. Among the risk factors associated with non-communicable diseases is unhealthy 

diet, with a potential to translate to cardiovascular disease, diabetes, and cancer (Mayosi et al., 

2009).  

Nutrition plays a critical function in wellness. It provides not only essential nutrients, but also 

promotes good health and prevention of diseases (Willet, 1994). Every individual requires food 

for proper development and sound health, but the quality as well as the quantity of food is also 

important. The quality of food depends on the relative composition of various nutrients such as 

proteins, fat, carbohydrate, vitamins and mineral. Fruits are vital to the human diet and are known 

to contain components with several types of health promoting action, such as vitamins, essential 

minerals, antioxidants and prebiotics (fibres) (Itanna, 2002).  

Heavy metals are ever-present in the environment as a result of both natural geological occurrences 

and anthropogenic inputs, and humans are exposed to them through various pathways (Wilson and 

Pyatt, 2007). At elevated concentrations, essential elements such as chromium, copper, iron, 

manganese and zinc may lead to metal toxicity symptoms. Other elements such as arsenic, lead, 

cadmium and nickel are most often found to be responsible for harmful damage to humans. In 
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South Africa, rural people traditionally harvest a wide range of fruits from the wild because of its 

taste, and as food supplements to tide over food shortage. Indigenous wild fruits form a major 

portion of the diet of low-income and middle-income people of South Africa, hence their nutritive 

value is important. Although the efficacy of medicinal plants as a therapeutic agent is often 

accounted for by the phytochemical constituents, prolonged ingestion of medicinal plants can 

result in elemental accumulation at harmful levels in humans (Sharma et al., 2009; WHO, 1992). 

Based on this, elemental screening of medicinal plants is paramount for quality control and safety 

(Arceusz et al., 2010; Liang et al., 2004).  

Ficus sycomorous Linn, (Moraceae), also called the sycamore fig is native to South Africa and it 

is commonly found in the province of KwaZulu-Natal. Its dried fruits are taken orally by adults in 

Venda (Vhavenda) for the management of tuberculosis (Arnold and Gulumian, 1984). The 

Vhavenda people also enjoy eating the ripe fruits, especially the smaller, pinkish ones (thole) 

which are sweeter than the larger ones (mahuyu) (Burrows and Burrows, 2003; Netshiungani, 

1981).  In addition, fresh fruits are boiled and used as a pressing for the teats of cattle and goats to 

encourage milk production (lactation) (Arnold and Gulumian, 1984; Mabogo, 1990). Although 

biological and phytochemical studies of F. sycomorous are documented (Al-Matani et al., 2015; 

El-Sayed et al., 2010; Ramde-TIendrebeogo et al., 2012; Romeh, 2013), information on the 

nutritional value of the edible fruits are not reported, hence the need to analytically investigate the 

fruits. In addition, heavy metals from the soil may bioaccumulate in the fruits and eating such 

fruits can result in adverse health effects and metal toxicities. The evaluation of the nutritional 

benefits and concentration of essential and toxic heavy metals in the edible fruits is imperative 

since harmful metal reactions in humans, occur at concentrations that are not necessarily 

phytotoxic.  
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Previously, we reported on the nutritional evaluation, bioaccumulation and toxicological 

assessment of heavy metals in the indigenous medicinal fruits of F. sur (Ogunlaja et al., 2017). 

This study investigated the elemental concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, 

Pb, Se and Zn in the fruits as well as the growth soil in order to assess the nutritional value and 

evaluate the elemental uptake by edible fruits of F. sycomorous. 

 

8.2 Materials and methods 

8.2.1 Sampling 

Tree-ripened fruit samples, randomly picked from eight different sampling locations within 

KwaZulu-Natal, South Africa was used for this investigation (Figure 8-1).  Samples of fruits were 

placed in different sealed plastic bags based on location, and taken to the laboratory for further 

analyses. The plant was identified and classified by a taxonomist at the School of Life Sciences, 

University of KwaZulu-Natal, South Africa and a voucher specimen was deposited in the 

Herbarium. Soil samples at a depth of 15-20 cm were collected beneath the trees from the eight 

different sampling sites from which the fruits were picked.  

 

8.2.2 Reagents, Analytical quality assurance and Standards 

All the chemicals used for this investigation were supplied by Sigma Aldrich (St. Louis, USA) and 

Merck (Kenilworth, USA) chemical companies. Analytical reagent grade chemicals were used for 

samples and spectroscopic grade were used for standards. Elemental calibration standards were 

prepared from spectroscopic grade stock standard solutions of 1000 mg L−1. Glassware and other 
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equipment were cleaned with 6M HNO
3
 and rinsed off with double distilled water to prevent 

contamination before usage. MilliporeTM water (Billerica, MA, USA) was used throughout the 

experiments. All plastic containers were washed with double distilled water and then soaked 

overnight in 1M HNO
3
. All digested samples were analysed within a week. 

 

Figure 8-1: Map of selected sampling sites in KwaZulu-Natal, South Africa. 
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8.2.3 Sample Preparation 

Fruits were washed with double distilled water, and dried in an oven at 50 °C, for 72 h. Dried fruits 

were then finely grounded using a mill and stored in plastic bags until analysed. A representative 

soil sample from each site was dried overnight in an oven at 40 °C then passed through a 2 mm 

mesh sieve to remove organic matter and gravel. Thereafter, soil samples (10 g) was crushed with 

a mortar and pestle to reduce the particle size for digestion. Samples were stored in sealed plastic 

bags and preserved in a refrigerator until analysed. 

 

8.2.4 Digestion and elemental analysis of samples 

Samples of dried, powdered fruit and soil were accurately weighed and digested by applying the 

optimised procedure as described by Endalamaw and Chandravanshi, (2015) with some 

modification. Approximately 0.25 g each of certified reference material (CRM), dried fruit and 

soil samples were placed in the 50 mL beakers to which 10 mL of HNO3 (70%) was added and 

allowed to pre-digest for 1 h (Ogunlaja et al., 2017). The samples were properly wetted and 

digested on the hot plate for a minimum of 45 min at 160 °C, while swirling. It was removed from 

the hot plate before becoming dry and cooled. The fruit and soil digests were transferred into a 25 

mL volumetric flask, diluted to the mark with MilliporeTM water and stored in polyethylene bottles 

prior to elemental analysis. 
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8.2.5 Extraction of exchangeable metals 

The extracting solution was prepared by mixiing 38.542 g of ammonium acetate (NH4CO2CH3), 

25 mL of acetic acid (CH3COOH, 96%) and 37.225 g of ethylenediaminetetraacetic acid (EDTA) 

to 1 L in double distilled water. Exactly 50 mL of extracting solution was added to 5.0 g of dry 

soil samples in 250 mL polyethylene bottles and shaken in a laboratory shaker for 2 h. Thereafter, 

solutions were filtered through Whatman No. 1 filter papers and then Millipore 0.45 µm filter 

membranes to permit analysis of extracted metals. All samples were stored in plastic bottles and 

kept in a refrigerator until analysed.  

 

8.2.6 Soil pH, Cation Exchange Capacity (CEC) and Soil Organic Matter (SOM) 

The pH of soil was determined by measuring the pH of the solution, 1:2.5, dry wt/v using a pH 

meter (Aqualytica, Model pH 17) fitted with a glass electrode.  Cation exchange capacity (CEC) 

of soil was determined using the pH 7.0 ammonium acetate method (Chapman, 1965) while soil 

organic matter (SOM) was measured according to the procedure adopted from Walkley and Black 

(Walkley and Black, 1934). 

 

8.2.7 Determination of proximate chemical composition  

The proximate chemical composition of F. sycomorus fruits (moisture, crude protein, fat, fibre and 

crude ash) was determined in triplicate according to the standard methods of analysis, as described 

by the Association of Official Analytical Chemists (AOAC, 2000). Total carbohydrate content was 

obtained by difference. 
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8.2.8 Elemental analysis 

All extracted and digested samples (soil and fruit) were analysed for As, Ca, Cd, Co, Cr, Cu, Fe, 

Mg, Mn, Ni, Pb, Se, and Zn by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-

OES) due to its multi-element determination capability, dynamic linear range and low detection 

limits. Measurements were carried out using the Perkin Elmer® Optima™ 5300 Dual View ICP-

OES (Billerica, Massachusetts, USA) with axial plasma observation. Analytical wavelengths were 

selected based on minimum spectral interferences and maximum analytical performance. Initially, 

the three most sensitive lines were chosen. From these lines, the line with no interfering elements 

was selected. The accuracy of analytical procedures was checked by analysing certified reference 

materials (CRMs) for plant (BCR-402, Institute for Reference Materials and Measurement, 

European Commission, Joint Research Centre, Belgium) and soil (D081-540, ERA, A waters 

Company, Milford, MA, USA). The experimental means were compared with the corresponding 

certified values. The elemental composition of the certified reference materials, CRMs (BCR 402 

for plant and D081-540 for soil) was used to ensure accuracy of the method of determination and 

the results are represented in Table 8-1. The values for As, Co and Se are certified whilst those for 

Cr, Fe, Ni and Zn are indicative so no uncertainties were ascribed to them. The measured values 

compared well with certified results at 95% confidence interval.  

 

8.2.9 Statistical analysis 

All statistical analyses were performed using the Statistical Package for the Social Sciences, 

(PASW version 24, IBM Corporation, Cornell, NY, USA). Pearson’s correlation analysis was 

applied to the dataset to quantitatively analyse and confirm the relationship between soil quality 
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parameters (pH, SOM and CEC) and heavy metal concentrations. In addition, principal component 

analysis (PCA) and cluster analysis (CA) the commonly used multivariate statistical methods in 

environmental studies (Dı´az et al., 2002) were carried out. PCA was used to reduce data and 

extract a small number of principal components for analysing relationships among the elemental 

soil concentrations. Furthermore, hierarchical CA was carried out to classify the elements on the 

basis of the similarities of their chemical properties. A dendrogram was also created to assess the 

cohesiveness of the clusters formed, in which correlations among elements can readily be detected. 

 

8.3 Results and Discussion 

8.3.1 Proximate and elemental analyses 

The proximate chemical composition of F. sycomorus fruits showed high levels of moisture (55.8 

± 0.3%) and carbohydrates (25.3 ± 1.1%) yet lower than that of Ficus sur fruits with 88.8% 

moisture and 65.6% carbohydrates (Ogunlaja et al., 2017). The fruits also contained 5.6 ± 0.2% 

protein, 8.9 ± 0.5% fat, 55.8 ± 0.9% crude fibre and 4.4 ± 0.4% ash. The values for protein and fat 

were similar to those reported by Wilson and Downs, (2012). The fruits of F. sycomorus contained 

higher crude fibre content compared to F. sur fruits (7.7%) (Ogunlaja et al., 2017). Based on the 

intake level observed to protect against coronary heart disease, the American Heart Association 

(AHA) set the Adequate Intake (AI) for crude fibre in foodstuffs at 38 and 25 g per day for young 

men and women, respectively (AHA, 1983). Fibres from the diet have been reported as a 

significant modifier of the immune system, thereby, reducing the risk factors that leads to 

cardiovascular disease, diabetes, cancer, and obesity (Cho et al., 2013; Chuang et al., 2012; 
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Streppel et al., 2008). The proximate chemical data showed that the fruits of F. sycomorous can 

contribute significantly towards the AI for crude fibre. 

Soil pH ranged from 5.6 to 7.3 while SOM ranged from 10.8 to 21.9%. The CEC also ranged from 

2.0 to 3.8 meq/100. 

 

Table 8-1: Validation of the analytical method using plant (n = 8) and soil (n =6) certified 

reference materials (CRMs).  

 

Metals 

BCR-402 

Measured 

Mean 

 

SD 

 

Certified 

Mean 

 

 

SD 

D081-540 

Measured  

Mean 

 

 

SD 

 

Certified 

Mean 

 

 

SD 

As 0.091 0.011 0.093 0.010 100.5 1.2 101 5.92 

Cd - - - - 139.9 1.3 143 5.6 

Co 0.175 0.004 0.178 0.008 200.6 6.1 199 4.1 

Cr 5.18 0.065 5.19a - 90.3 2.6 86.8 6.1 

Fe 245  244a - 12823 20.4 12800 18.0 

Mn - - - - 431.7 9.4 425 9.7 

Se 6.72 0.210 6.70 0.25 129.8 2.2 127 4.5 

Ni 8.25 0.591 8.25a - 241.2 10.1 236 4.17 

Zn 25.3 0.002 25.2a - 128.9 5.6 130 11.5 

*Values are in µg g−1 dry mass (95% confidence interval).  
a Indicative values (without uncertainty). CRM- BCR-402 for plant and D081-540 for soil. 

 

The elemental concentrations in the soil (total and exchangeable) and fruits samples is summarised 

in Table 8-2. Lead is a non-essential, toxic metal. Continuous low intake in humans causes Pb 

accumulation in the body and can damage nervous system and kidney. The mean total soil 

concentrations for Pb ranged from 4.8-44.0 µg g-1 across the study sites. This elevated 

concentration is above the South African maximum permissible level of 6.6 µg g-1 for agricultural 

soil at most sites (WRC, 1997). Previously, Ogunlaja et al. (2017) also reported similar results for 
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soil Pb, which may be due to vehicular emissions.  At all study sites, the concentration of Pb in the 

fruit samples were below the instrument detection limits. Although, total soil As, Cd, Co and Ni 

ranged from 7.4-8.9 µg g-1, 0.9-6.7 µg g-1, 1.8-27.6 µg g-1 and 4.5-12.1 µg g-1, respectively, 

concentrations in the fruits were found to be below the instrument detection limits and are therefore 

omitted from Table 8-2. This showed that the fruits of F. sycomorous does not accumulate these 

toxic metals.  

The bioaccumulation factor (BAFs exchangeable) for the major elements Ca and Mg ranged from 

6.7-49.0 and 3.5-23.4, respectively, indicating the tendency of the plant to accumulate these 

metals. Total soil Cu concentration ranged from 5.4-44.0 µg g-1 which exceeded the South African 

maximum permissible level of 6.6 µg g-1 for agricultural soil at most sites (WRC, 1997). Except 

for sites 1, 4 and 5, Cu concentration in the fruits exceeded the WHO permissible limit of 10 µg g-

1 for plants (WHO, 2005), although the fruits did not tend to bioaccumulate Cu (BAF < 1 .0 for 

most sites) (Table 8-2). Copper is essential for humans and it is necessary for the formation of 

haemoglobin and red blood cells (Davis and Mertz, 1987). Elevated levels in the food chain can 

result in diarrhoea, vomiting, liver damage, fatigue and depression. 

 

Table 8-2: Elemental concentrations (µg g-1) in fruit and soil (Total (T) and exchangeable 

(Ex)) samples (Mean ± standard deviation; 95% confidence interval, n = 3) and 

bioaccumulation factors (BAFs).  

Site Element Fruit Soil(T) Soil (E) [F]/[S]T
* [F]/[S]Ex

** Ex%*** 

1 Ca 6963 ± 227 2944 ± 57 299 ± 38 2.4 23.3 10.2 

2 
 

6089 ± 197 741 ± 35 124 ± 27 8.2 49 16.8 

3 
 

6882 ± 115 6205 ± 115 410 ± 19 1.1 16.8 6.6 

4 
 

6076 ± 817 7579 ± 385 446 ± 32 0.8 13.6 5.9 
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5 
 

6917 ± 615 12155 ± 771 465 ± 18 0.6 14.9 3.8 

6 
 

5446 ± 519 5387 ± 262 510 ± 19 1 10.7 9.5 

7 
 

4447 ±77 2288 ± 49 566 ± 22 1.9 7.9 24.7 

8 
 

5092 ± 87 2214 ±154 757 ± 53 2.3 6.7 34.2 

1 Cr 0.10 ± 0.13 49.7 ± 0.39 0.76 ± 0.11  0 0.1 1.5 

2 
 

0.33 ± 0.26 44.2 ± 6.54 0.39 ± 0.12 0.01 0.8 0.9 

3 
 

0.17 ± 0.04 110 ± 25.27 0.52 ± 0.01 0 0.3 0.5 

4 
 

0.39 ± 0.01 35.9 ± 4.48 0.55 ± 0.01 0.01 0.7 1.5 

5 
 

0.20 ± 0.10 40.5 ± 3.78 0.57 ± 0.01 0 0.3 1.4 

6 
 

0.12 ± 0.08 36.0 ± 3.42 0.59 ± 0.01 0 0.2 1.6 

7 
 

0.04 ± 0.03 31.8 ± 2.25 0.61 ± 0.01 0 0.07 1.9 

8 
 

0.35 ± 0.05 57.7 ± 5.42 0.63 ± 0.01 0.01 0.6 1 

1 Cu 8.1 ± 0.59 12.4 ± 0.19 11.8 ± 0.16 0.6 0.7 95.2 

2 
 

10.7 ± 1.31 5.4 ± 0.48 5.1 ± 0.05 2 2.1 94.1 

3 
 

10.2 ± 0.26 40.5 ± 1.00 15.4 ± 0.32 0.3 0.7 38.1 

4 
 

9.3 ± 1.17 44.0 ± 4.62 16.0 ± 0.24 0.2 0.6 36.4 

5 
 

9.9 ± 0.63 19.2 ± 1.90 16.4 ± 0.15 0.5 0.6 85.5 

6 
 

10.5 ± 0.80 22.7 ± 0.87 16.8 ± 0.20 0.5 0.6 74.0 

7 
 

10.8 ± 1.75 15.1 ± 0.58 12.4 ± 2.23 0.7 0.9 82.6 

8 
 

10.8 ± 0.11 12.3 ± 1.82 11.7 ± 0.26 0.9 0.9 95 

1 Fe 18.6 ± 14.95 11695 ± 121 234 ± 26.74 0 0.08 2 

2 
 

65.4 ± 16.19 8849 ± 844 418 ± 359 0.01 0.2 4.7 

3 
 

45.1 ± 8.44 36700 ± 1900 437 ± 53.42 0. 0.1 1.2 

4 
 

55.7± 9.97 9194 ± 1319 438 ± 64.91 0.01 0.1 4.8 

5 
 

64.1 ± 17.74 12159 ± 1046 436 ± 17.46 0.01 0.1 3.6 

6 
 

13.3 ± 3.25 14416 ± 1322 399 ± 58.49 0 0.03 2.8 

7 
 

22.0 ± 12.56 9302 ± 310 298 ± 92.88 0 0.07 3.2 

8 
 

9.4± 1.15 13715 ± 1980 324 ± 146 0 0.03 2.4 

1 Mg 1766± 42.43 575 ± 11.18 131 ± 29.22  3.1 13.5 22.7 

2 
 

1998 ± 48.86 277 ± 28.97 85.2 ± 26.79 7.2 23.4 30.8 
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3 
 

2018 ± 81.29 1381 ± 8.22 162 ± 29.90 1.5 12.5 11.7 

4 
 

1982 ± 122 1650 ± 189 161 ± 17.76 1.2 12.3 9.7 

5 
 

2060 ± 30.78 2672 ± 366 133 ± 27.39 0.8 15.4 5.0 

6 
 

2676 ± 141 2748 ± 281 118 ± 15.04 1.0 22.6 4.3 

7 
 

2199 ± 22.23 1053 ± 39.93 574 ± 56.87 2.1 3.8 54.5 

8 
 

1815 ± 26.71 602 ± 107 517 ± 70 3.0 3.5 85.9 

1 Mn 15.4 ± 0.41 213 ± 4.35 184 ± 21.52 0.01 0.08 86 

2 
 

65.7 ± 1.94 55.8 ± 5.98 33.9 ± 3.02 1.2 1.9 60.7 

3 
 

14.4 ± 0.53 1615 ± 114 207 ± 3.45 0.01 0.07 12.8 

4 
 

6.0 ± 0.33 293 ± 44.33 20.8 ± 0.33 0.02 0.3 7.1 

5 
 

6.5 ± 0.16 278 ± 27.14 20.8 ± 0.12 0.02 0.3 7.5 

6 
 

14.9 ± 0.98 346 ±36.14 20.6 ± 0.14 0.04 0.7 6.0 

7 
 

3.3 ± 0.10 179 ±12.29 20.1 ± 0.50 0.02 0.2 11.2 

8 
 

9.7 ± 0.23 198 ± 29.20 16.3 ± 0.44 0.05 0.6 8.2 

1 Zn 42.5 ± 21.11 62.7 ± 12 36.7 ± 0.31 0.7 1.2 58.5 

2 
 

17.7 ± 1.71 54.6 ± 58.28 29.6 ± 26.33 0.3 0.6 54.1 

3 
 

41.6 ± 8.93 134 ± 38.68 57.4 ± 7.07 0.3 0.7 42.9 

4 
 

35.5 ± 12.48 170 ± 28.95 36.2 ± 11.23 0.2 1.0 21.3 

5 
 

24.7 ± 3.18 90.4 ± 43.17 22.9 ± 4.93 0.3 1.1 25.4 

6 
 

35.5 ± 13.72 62.6 ± 19.35 16.7 ± 4.60 0.6 2.1 26.7 

7 
 

44.8 ± 9.32 80.1 ± 30.80 19.3 ± 7.93 0.6 2.3 24.1 

8 
 

35.2 ± 0.11 55.2 ± 14.50 15.2 ± 1.04 0.6 2.3 27.5 

* [F]/[S]T-[Fruit]/[Soil]Total 
** [F]/[S]A-[Fruit]/[Soil]Exchangeable 
*** Ex% - [Soil] Exchangeable/[Soil]Total 

 

Total soil Cr ranged from 31.8-110 µg g-1 and < 1.9% was in mobile form. The concentration in 

the fruits were within a small range of variation (0.04-0.39 µg g-1) suggesting the plants control Cr 

uptake. This is in agreement with other reports (Adriano, 2001; Golovatyj & Bogatyreva, 1999). 

The available Cr ranged from 0.39-0.76 µg g-1, which is less than the phytotoxicity range of 1-5 
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µg g-1 for available Cr in soil (Adriano, 2001). Chromium is an essential element to humans and 

its deficiency includes impaired glucose tolerance, elevation in serum insulin, glycosoria, impaired 

growth and altered immune function. In this study, the elemental concentrations in the fruits were 

in the decreasing order of Ca > Mg > Fe > Zn > Mn > Cu > Cr and the toxic metals (As, Cd, Co 

and Pb) were below the instrument detection limits.  

 

8.3.2 Estimated contribution of metals to the diet 

Fruits play a very important role in the diet of humans, as they provide micronutrients which can 

contribute beneficially to Recommended Dietary Allowances (RDAs), and may help meet the 

nutritional needs of impoverished rural communities where nutritionally deficient diseases are 

common. Table 8-3 shows the comparison of the mean elemental concentrations in 20.0 g of F. 

sycomorous fruits with the Dietary Reference Intake (DRI) for most individuals. The results 

showed that the fruits contained most essential elements, and intake of 20.0 g can adequately 

contribute to the diet without exceeding the tolerable upper intake levels (ULs) for most elements 

(Table 8-3). Depletion of Ca and Mg in the growth soil are often linked to deficiencies in diet, 

which can be managed by the use of Ca and Mg supplements. These enhancement drugs may be 

taken to strengthen bones, regulate muscle and nerve function and control blood pressure. The 

consumption of 20.0 g of fruits may contribute between 9-12% and 13% to the RDA for Ca and 

Mg, respectively. Consumption of 20.0 g of fruits would contribute about 4.5-10.1% towards the 

RDA for Fe and >22.0% towards the RDAs for Cu and Mn. F. sycomorous fruits were richer in 

the nutrients Ca, Mg, Mn and Zn compared to fruits of F. sur (11%, 9%, 4% and 3%, respectively, 

towards the RDA) (Ogunlaja et al., 2017). 
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Table 8-3: Comparison of Dietary Reference Intake (DRI). *(Recommended Dietary 

Allowance (RDA) and Tolerable Upper Intake Level (UL)) of elements for most individuals 

to the average concentration of elements (n = 3) in F. sycomorous fruits. 

Element Average 

concentration 

(mg / 20 g DM) 

DRI (mg/ day) 

RDA                          UL 

 

Estimated 

contribution to 

RDA (%) 

Ca 122.35 1000-1300 2500 12 

Cr 0.0043 0.024-0.035 ND 20 

Cu 0.20 0.9 8 22 

Fe 0.81 8-18 45 10 

Mg 42.00 310-320 350 14 

Mn 0.36 1.6-2.3 9 23 

Zn 0.69 8-11 34 9 

*Sourced from: Food and Nutrition Board, Institute of Medicine, National Academies, 2011. 

 

Chromium is known to improve the efficiency of insulin and it is needed in the metabolism of 

protein, fat and carbohydrate (Chowdhury et al., 2003). Its deficiency includes diabetes and 

cardiovascular disease. For Cr, a daily intake range of 0.024-0.035 mg is endorsed and eating of 

approximately 20.0 g of F. sycomorous fruits, may contribute approximately 0.0043 mg (12.3-

19.9%) towards its RDA.  

 

8.3.3 Statistical result 

To further identify the elemental association in the soil, principal component analysis (PCA) was 

used for elemental source identification. Table 8-4 shows the factor loadings with a VARIMAX 

rotation, as well as the eigenvalues. Three principal components (factors) were obtained describing 

the 86.3% of the total variance. Factor 1 is strongly dominated by Cd (0.98), Co (0.95), Cr (0.95), 
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Fe (0.97), Mn (0.96), Ni (0.90) and Pb (0.81) accounting for 56.6% of the total variance. The high 

loadings and close association suggest their common anthropogenic inputs. Previously, we 

reported similar patterns in soils from KwaZulu-Natal (Mahlangeni et al., 2016). 

Table 8-4: Rotated component matrix for variables in the soil samples (n = 40) 

                                                      Component 

Element                 1                2                3 

Cd 0.98 
  

Fe 0.97 
  

Mn 0.96 0.17 0.16 

Co 0.95 0.17 0.12 

Cr 0.95 -0.12 
 

Ni 0.90 0.31 -0.11 

Pb 0.81 -0.11 
 

Ca 0.12 0.94 0.14 

Mg 
 

0.91 0.19 

As -0.31 
 

0.81 

Cu 0.48 0.41 0.71 

Zn 0.29 0.32 0.64 

Eigenvalues 6.79 2.48 1.08 

% Total variance 56.62 20.66 8.99 

Cumulative % 56.62 77.28 86.28 

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser 

Normalisation. 

 

The strong association between Ca and Mg in Factor 2 accounts for 20.7% of the total variance 

indicating that the element originated from soil mineral forming processes. Factor 3 is represented 

by As, Cu, and Zn accounting for 9.0% of the total variance. Figure 8-2 shows a 3-D plot of the 

PCA loadings, and the relationships among the twelve metals are distinct.  
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Figure 8-2: 3-D PCA analysis loading plot (PC1 vs PC2 vs PC3) for 12 elements in soil. 

 

As expected, Cd, Co, Cr, Fe, Mn, Ni and Pb show a more significant positive association than 

other members of the PC, suggesting that they have a similar source (Figure 8-2). Similarly, a 

strong association existed between Ca and Mg, confirming their natural geological origin.  

Furthermore, hierarchical cluster analysis (CA) was applied to standardised elemental 

concentrations and identify homogenous groups by Ward’s method with Euclidean distance as the 

criterion for forming clusters of elements. Figure 8-3 shows that the elements were clustered into 

two main clusters (A and B).  
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Figure 8-3: Hierarchical cluster analysis dendrogram for 12 elements in soil using Ward`s 

method by Euclidean distance (the distances reflect the degree of correlation between different 

elements). 

   

Cluster A contains two lower clusters, A1 (Cd, Ni, As, Cr, Cu, Pb and Cr) and a stand-alone cluster 

A2 (Mg). Cluster B consisted of Ca and Fe. However, cluster A and B are joined at a relatively 

higher level, signifying a common source. The proximity in the dendrogram between Mg and 

cluster A suggests a form of similarity in distribution patterns in the soil. This association is 

stronger than the association between Mg and cluster B, occurring at a higher level. In addition, 

the PCA and CA produced similar results for heavy metals (Cd, Co, Cr, Ni and Pb), indicating a 

common source. PCA and CA also showed significant correlation between As, Cu and Zn, 
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suggesting another common source.  The inter-item correlation matrix for concentrations in the 

soil and fruits of F. sycomorous showed no significant correlation between soil concentrations 

(total and available) and plant concentrations. This indicates that elemental uptake by the fruits 

was not dependent on soil concentrations, but the plant controlled uptake to meet metabolic needs. 

In soil, significant synergistic relationships existed between Mg and Ca (r = 0.8) and Zn and Cu (r 

= 0.8). Also, a three-way synergy existed between Mn, Fe and Cr (r ≥ 0.9). These relationships 

were also seen in PCA and CA. 

 

8.4 Conclusion 

Data from this study provides information on the nutritional significance of the fruits of F. 

sycomorous which suggested that it is good for health and does not have a tendency to accumulate 

toxic elements (As, Cd, and Pb). The consumption of 20.0 g of fruits may contribute 22% and 23% 

towards the RDA for Cu and Mn, respectively. The elemental concentrations in the fruits were in 

decreasing order of Ca > Mg > Fe > Zn > Mn > Cu > Cr. Although, sites had effect on elemental 

distribution, statistical analyses showed that uptake of elements by the fruits is controlled to meet 

physiological needs as evidenced by the bioaccumulation factors. 
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CHAPTER 9 

SUMMARY AND CONCLUSION 

9.1 Summary 

This work focused on three Ficus (Moraceae) species which are indigenous to South Africa and 

produce edible fruits namely Ficus burtt-davyi Hutchinson, Ficus sur Forssk and Ficus sycomorus 

Linn. For many centuries, indigenous communities in KwaZulu-Natal, South Africa have used 

their edible fruits for food, however, other parts such as leaves, bark, and roots are utilised as 

medicine, in the management, treatment and control of different human diseases such as sore 

throat, diarrhoea, anaemia, infertility, chest infections, coughs, respiratory and liver problems, ring 

worms, toothache, scrofula, pulmonary tuberculosis, influenza, skin diseases, dysentery as well as  

sexually transmitted diseases. Numerous studies have shown that Ficus species are a good source 

of bioactive compounds and essential nutrients. Previous studies on the Ficus genus also indicated 

moderate to good antioxidant and cytotoxic activities, but information on the nutritional and 

medicinal potential of some Ficus species found in KwaZulu-Natal is still lacking. This study 

described the phytochemistry and biological activities of F. burtt-davyi and F. sur. In addition, it 

focused on the proximate chemical composition (carbohydrate, protein, lipid, crude fibre and ash 

content), as well as the elemental distribution in the edible fruits of F. burtt-davyi, F. sur and F. 

sycomorus in order to assess for potential toxicities. This was done by the determination of the 

elemental concentrations in corresponding growth soil, sampled from eight different sites in 

KwaZulu-Natal. The nutritional value of the three edibles figs was also determined by comparing 

their elemental concentrations to recommended dietary allowances (RDAs). 
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9.2 Findings from F. burtt-davyi Hutchinson 

Previously, F. burtt-davyi was only reported in the treatment and management of stomach-aches. 

A phytochemical investigation of the leaves, fruits and stem bark resulted in the isolation of six 

triterpenes (lupeol, lupeol acetate, α-armyrin, β-sitosterol, stigmasterol and campesterol), one 

carotenoid (lutein), a phaeophytin (phaeophytin a) and one flavonoid (+)-catechin).  The 

compound, (+)-catechin demonstrated antioxidant as well as cytotoxic activities. Phaeophytin a 

was previously shown to possess activity against the hepatitis C virus as well as antioxidant, 

antibacterial and anticancer activities. Lutein has also been documented to exhibit moderate 

antibacterial activity. The data from this study suggests that F. burtt-davyi possessed moderate to 

good anti-oxidative activity and can be used in alternative medicine for oxidative stress related 

non-communicable chronic diseases. The phytochemical, antioxidant activity and cytotoxic results 

from this study also indicated that (+)-catechin and lupeol, the most abundant bioactive compounds 

in the stem bark are responsible for the synergistic cytotoxic effect of this extract against breast 

and colorectal adenocarcinoma cell lines. 

The elemental distribution of essential elements in the fruits were found to be in decreasing order 

of Ca ˃ Mg ˃ Fe ˃ Mn ˃ Zn ˃ Cu. The fruits were found to be rich in Mn which make them a 

cheaper alternative to Mn supplements for boosting the immune system. The result of the 

proximate composition indicated that the fruits are rich in carbohydrates and low in fat content. 

This study shows that consumption of the fruits can contribute positively towards a balanced diet, 

and hence ensure food and health safety. This study showed that the edible fruits and stem bark 

are rich sources of triterpenes. It also demonstrated the immune boosting properties of these 

bioactive principles from the edible fruits and stem bark, which are especially important in rural 
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areas of South Africa where immune system enhancing drugs are very expensive, and generally 

beyond the purchasing power of most people with burden of high incidences of HIV and hepatitis. 

 

9.3 Findings from F. sur Forssk  

Our study revealed the leaves to contain a dark green amorphous pigment, phaeophytin a. In 

addition, two triterpenoids (β-sitosterol and lupeol) were isolated from the leaves and fruit, 

respectively. These compounds have been reported to show anti-inflammatory activity, as well as 

cholesterol-lowering effects. The fruit also afforded a strong antioxidant flavonoid, epicatechin, 

which has been shown to have cardio-protective benefits. Data from the antioxidant study of the 

crude extracts and compounds showed that F.sur can be used in traditional medicine, as an immune 

system enhancing alternative, for the improvement of the immunity of HIV and hepatitis patients 

in South Africa. Epicatechin exhibited a significantly stronger antioxidant activity than the known 

antioxidant, ascorbic acid. 

The elemental investigation showed that the fruits conform to the Recommended Dietary 

Allowances (RDAs) for most elements investigated, and when eaten, may considerably improve 

the diet. Consumption of the fruits may lead to significant beneficial increase in Se, an essential 

trace element, known for its strong antioxidant and immune boosting activities which can in turn 

help to prevent chronic non-communicable diseases and boost the immune system of patients 

suffering from diseases such as HIV which is predominant in rural communities in South Africa. 

The results showed that fruits tended to exclude toxic metals such as As, Cd, Co and Pb and 

accumulated essential macro elements such as Ca and Mg. Data from this study indicates that the 
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fruits can serve as an immediate and alternative source of energy due to high level of 

carbohydrates. 

This study shows that the consumption of the fruits of F. sur which are freely and readily available 

can help to prevent chronic non-communicable diseases, improve the diet as well as the health of 

rural communities in South Africa for most essential nutrients without posing the risk of adverse 

health effects. 

 

9.4 Findings from F. sycomorus Linn 

Proximate chemical composition showed F. sycomorus to be rich in fibre. The concentrations of 

elements in the fruits were found to be in decreasing order of Ca > Mg > Fe > Zn > Mn > Cu > Cr 

and toxic metals (As, Cd, Co and Pb) were below the instrument detection limit indicating that the 

intake of the can beneficially improve the health and nutritional needs of indigenous communities 

in South Africa. The Principal component (PCA) and Hierarchical cluster analyses (CA) showed 

that Cd, Co, Cr, Ni and Pb in the soil came from the same source whilst As, Cu and Zn have a 

common origin. Data from this study showed that elemental availability was dependant on the 

metal interactions in soil, but uptake was considerably controlled by the plant. 

 

9.5 Overall conclusion 

In general, we have successfully carried out the phytochemical investigation of some Ficus species 

and some of the isolated compounds exhibited antioxidant and cytotoxicity activities which 

supported their use in traditional medicine in South Africa. This study also showed that the edible 
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fruits are rich in phytocompounds with immune boosting properties, which are needed by most 

indigenous communities in South Africa. In addition, elemental analysis showed that the 

consumption of the fruits (F. burtt-davyi, F. sur and F. sycomorus) can to a great extent improve 

the health and nutrition of humans for the elements investigated. Data from this study lends 

scientific credence and validates the ethnomedicinal use of the plants.  It also gives insight into the 

nutritional and medicinal benefits of consuming the indigenous edible fruits. 

 

9.6 Recommendation and further work 

In vitro activity was carried out in all the bioassays undertaken in this work. In vivo 

experiments need to be carried out on the bioactive extracts and compounds to further determine 

whether or not they have the potential to be developed into drugs. 

Although the MTT assay used for cytotoxicity evaluation is fast and reliable, it does not 

differentiate whether these compounds kill cells or merely inhibit their growth. The mode of 

action of these compounds could be determined by clonogenic assays. 

Isolation and identification of the phytocompounds in the other parts such as roots and twigs of 

the investigated plants is also recommended. 
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(Supporting information includes NMR, IR, UV, and MS spectra) 
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