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Abstract 

The utilization of petroleum-based diesel fuel to power compression ignition (CI) engines has 

been hampered by inefficient combustion process resulting in unsatisfactory engine performance 

and emission of hazardous gases. Fatty acid methyl ester (FAME), due to its renewability, 

biodegradability, and environmentally friendly emissions, has been acknowledged as a viable 

alternative fuel for CI engines. The application of waste cooking oil (WCO) as feedstock for 

FAME production did not conflict with food chain, guarantees appropriate disposal of used 

vegetable oil, and prevents contamination of aquatic and terrestrial habitats.  

The FAME was produced by transesterification of WCO samples collected from restaurants, 

catalyzed by calcium oxide derived from chicken eggshell waste powder subjected to high-

temperature calcination. Properties and fatty acid (FA) composition of the FAME were 

determined, the fuel used to power an unmodified CI engine, and measure the performance and 

emission characteristics experimentally. Numerical techniques, including, matrix laboratory, 

response surface methodology, Taguchi orthogonal, artificial neural network, and multiple linear 

regression were utilized to unearth the optimal FAME candidate, determine the properties, FA 

composition, performance and emission characteristics of the newly generated FAME and were 

found to agree with experimental results. It was discovered that FAME candidate with a 

concentration of palmitic acid of 36.4 % and oleic acid of 59.8 % produced improved brake 

thermal efficiency and brake mean effective pressure as well as reduced fuel consumption, and 

other regulated emissions. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

At no other period since 1892 when a German Engineer, Rudolph Diesel, designed the diesel 

engine has the need to discover sustainable alternatives replacement for fossil-based diesel fuel 

been more compelling. Compression ignition (CI) engines have been observed to be more 

efficient, rugged, safer, reliable, and requires less maintenance compared to spark ignition (SI) 

engines. Though more expensive than SI engines, CI engines have found applications in 

construction, industrial, agricultural, and transportation industries despite the obvious 

shortcomings associated with the engine. The quest for the development and deployment of 

affordable, renewable, biodegradable, and environmentally benign fuel to power CI engines has 

been on the increase in recent years. The upsurge in the global population, urbanization, and 

industrial revolution has exerted immense pressure on the available existing energy sources [1]. 

The contemporary world population reached 7.7 billion in June 2019 with about 55 % residing in 

urban areas, the global population has been predicted to attain 9.8 billion in 2050 with an 

estimated 68 % living in the cities [2, 3]. With the larger percentage of the populace living in the 

cities, the competition for the limited available facilities in the cities, including energy sources, 

will become more intense. This huge population has brought with it the need for effective and 

timely movement of goods and services for economic and commercial purposes. Thus, the 

observed challenging operation of petroleum-based diesel (PBD) fuel, the damaging effect of the 

emission of hazardous gases from the tailpipe of CI engines, and the inevitable depletion of fossil 

fuel reserves based on present consumption rate has precipitated a more focused search for viable 

alternatives for the PBD fuel [4].  

The transportation sector consumes over 90 % of total fossil fuel products and over 25 % of global 

energy as shown in Figure 1 [5]. The percentage of the total energy used for on-road transport is 

estimated to increase from the present 28 % to 50 % by 2030 and further to 80 % by 2050 [6]. 
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The total energy consumption in the transport sector was 110 million TJ in 2015 comprising cars 

and bikes, bus, air, passenger rail, and air freight. Heavy trucks, light trucks, and marine engines 

jointly consume 35 % of the transportation sector energy as shown in Figure 2 [7, 8]. This does 

not include the increasing number of CI engines used in irrigation, industrial, and earthmoving 

equipment in the construction sector and other non-road diesel engines and equipment (NRDE).  

 

Figure 1.Global final energy consumption by sector   

Transport = 28 %

Industry = 30 %

Residential and 

Others = 33 %

Non energy = 9 %
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Figure 2. Summary of global energy utilization in the transport sector 2015  

The desire to overcome the twin problems of inefficient engine performance and emission of 

environmentally unpleasant gases that has accompanied the utilization of PBD fuel in CI engines 

has resulted in experimentation involving various alternatives, including straight vegetable oil 

(SVO) and its blends [9, 10]. The many complications associated with the use of SVO has limited 

its adaptation and continued usage thereby turning attention to biofuels [11, 12]. Biofuels are 

produced from the conversion of biomass, vegetable or animal resources into fuel. Biofuels are 

categorized as biogas, bioethanol, and biodiesel [13]. The use of biodiesel has gained more 

prominence and attracted researchers’ interest in recent years due to its ease of production, 

renewability, biodegradability, among other reasons, and is projected to account for 20 % of all 

on-road CI engine fuel by the year 2020 [14, 15].   
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Biodiesel, commonly known as fatty acid methyl ester (FAME), is synthesized from various 

feedstock, including vegetable oils, non-edible oils, animal (chicken, beef, pig) fats, waste 

cooking oil (WCO), waste/recovered fats, etc., and contain long-chain methyl or ethyl esters. The 

introduction, utilization, and commercialization of biodiesel globally has resulted in the 

development of standard properties and test methods by the American Society for Testing and 

Materials ASTM D6751[16] and by the European Committee for Standardization EN 14214 [16]. 

Based on geographical differences, other countries have developed their own standards, drawing 

from the two major standards, and are now well-documented standards [17]. FAME can be tested, 

categorized, and characterized based on the method prescribed by these protocols. FAME 

properties have been found to impact greatly on a fuel’s behavior, storage, performance, 

transportation, combustion, and emissions in CI engines. Figure 3 displays the impact of some of 

the properties of FAME [18]. 

 

 

Figure 3. Biodiesel properties compared with PBD fuel and their impact  
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1.2 Research motivation 

Biodiesel has become a favorite alternative fuel for CI engines owing to the practicability of the 

conversion technology, compatibility with the existing handling infrastructure for traditional PBD 

fuel, and miscibility with other fuels. Due to the combination of these factors, the use of biodiesel 

has gained a foothold among fuel consumers and captured a substantial market share. This has 

led to sustained interest among fuel refiners, engine manufacturers, and automobile producers in 

the need to improve the properties, engine performance parameters, and tailpipe exhaust gas 

characteristics of CI engines powered with FAME. The promulgation and enforcement of 

performance standards and strict emission benchmarks by the United States Environmental 

Protection Agency (USEPA) has continued to put enormous pressure on engine manufacturers to 

halt the degradation of the environment by respecting the relevant performance and emission 

benchmarks. Also, despite the benefits from the adaptation and application of FAME in CI 

engines, widespread adoption and utilization has been hampered by affordability and 

accompanied by operational challenges. The cost of biodiesel has remained high with the cost of 

feedstock believed to make up 70 % to 95 % of the total production expenses [19, 20]. Used 

vegetable oil sourced from restaurants, canteens, and takeaway joints, waste animal (beef, pig, 

chicken, etc.) fats from slaughterhouses, rendered fats and recovered grease from wastewater 

treatment plants offer advantages and have replaced edible and non-edible feedstocks. The edible 

feedstocks, like vegetable oils, are not only expensive (therefore producing an unimpressive 

return on investment), but are not readily available, and, more importantly, conflict with food 

security and land-use change [21, 22].  

Efforts to produce FAME at least cost possible using unsophisticated production infrastructure 

has dominated discourse and experimentation among researchers. The use of catalysts derived 

from materials hitherto termed as waste to replace synthetic catalysts are not only cost-effective 

but also contribute to sanitation and reduce the quantity of waste at dumpsites. Adopting optimal 

refining technology for FAME production is heavily dependent on the type and composition of 

feedstocks, catalyst selection, process parameters, and purification techniques. Also, although 
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FAME has been produced and tested either in blended and unblended forms using various engine 

modification techniques to achieve better engine performance and reduced emission, the relevant 

question to ask, which forms the motivation for this study, is whether an optimal FAME candidate 

capable of guaranteeing acceptable engine performance and mitigated regulated emissions in a 

conventional CI engine has been unearthed. Can numerical and experimental techniques be 

deployed to produce FAME with requisite properties and specifications for better engine 

performance and reduced tailpipe emissions? 

1.3 Problem statement 

The need to upgrade engine performance and reduce the tailpipe emissions of regulated gases of 

CI engine fueled by FAME has continued to engage researchers’ attention. This is not only to 

maximize the benefits of combustion efficiency and power output of the oxygenated fuel but also 

to meet the ever-increasingly stringent emission standards and requirements. The utilization of 

numerical methods to model and predict fuel properties, engine performance parameters, and 

emission characteristics using a limited number of FA compositions has not been sufficiently 

frequently explored despite its strong theoretical base and connections. This is believed to offer 

great opportunities and can be seen as a panacea compared to the rigorous, laborious, costly, high 

laboratory infrastructure requirement for real-time tests. There is an urgent need to unravel an 

optimal FAME candidate derived from WCO with the capability for better engine performance 

and mitigated emissions when used in a conventional CI engine. Hence this work employed 

numerical and experimental techniques to determine an optimal candidate in terms of FA 

composition. 

1.4 Background to the study 

This work lies within the renewable energy field of study. It seeks to develop a sustainable and 

alternative fuel for CI engines to replace PBD fuel. Such an alternative fuel must offer cost, 

performance and environmental advantages, and be produced in line with international best 

practices and protocols. The utilization of PBD fuel in CI on-road and off-road engines has been 

plagued with challenges notably economic, performance, environmental, and emissions. In order 
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to qualitatively and quantitatively meet the perpetually soaring energy and fuel requirements, 

researchers have been developing and testing various brands of biofuel to meet performance and 

emission requirements [23, 24]. The application of biodiesel as a transportation fuel in 

agricultural, construction, marine, and rail equipment has continued to increase, necessitating 

increased research. Transport vehicles continue to consume the largest percentage of biodiesel 

[25-27].  

1.4.1 Production of biodiesel 

Various techniques have been adopted to convert vegetable oils, waste cooking oil, algae, 

biomass, and other waste materials into fuel. Vegetable oils contain long and viscous triglycerides 

which have to be transformed into low viscosity oil suitable for a CI engine. Various feedstocks 

have been identified as having the capacity of being converted to biodiesel, though availability, 

cost, and ease of conversion varies considerably. Compared with other biodiesel production 

techniques, transesterification is believed to be the simplest technique of converting feedstock to 

biodiesel. Pyrolysis involves exposing the feedstock to thermal degradation to remove the oxygen. 

Products of pyrolysis of vegetable oil include alkanes, alkenes, aromatics, and carboxylic acids 

in varying forms and concentrations. However, the prohibitive cost of production and distillation 

infrastructure has restricted the widespread application of this method. The micro-emulsification 

process involves adding alcohol (methanol, ethanol) to vegetable oil to reduce its viscosity and 

so make it more suitable as a CI engine fuel. Additives like surfactants and cetane improvers are 

added to the products of micro-emulsification to further improve its performance. CI engines 

fueled with the products of micro-emulsification over a prolonged time are prone to defects such 

as carbon deposition, injector malfunctioning, and incomplete combustion [28-30]. Over the 

years, four generations of biodiesel have been identified. Table 1 compares the benefits and 

drawbacks of various biofuel production techniques while Table 2 depicts the processing 

technology, merits, and challenges of the four generations of biodiesel. 
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Table 1. Comparison of some biodiesel production techniques 

Production techniques Advantages Disadvantages 

Pyrolysis • Easy process 

• Free from Pollution 

• Involves elevated temperature 

• Costly apparatus required  

• Impure product  

Micro-emulsion • Uncomplicated  • Reduced volatility and stability 

Dilution  • Easy process •  Inchoate combustion 

•  Carbon deposition in engines 

Transesterification • Simple process 

• Industrial-scale production 

• Properties of biodiesel produced 

comparable to PBD fuel 

• Multiple separation processes 

• High moisture and impurity levels 

• Costly catalysts 

• Generation of wastewater 

Superfluid method • Short reaction time 

• No need for a catalyst 

• High conversion 

• High energy consumption 

• High cost of apparatus 

 

 

The choice of focus for this research study is the second generation of biodiesel, due to the 

advantages highlighted in Table 2. Some of the challenges militating against the adoption of the 

second generation biodiesel are being tackled by the use of used vegetable oil, recovered fat from 

beef and chicken, as against other non-edible oils like Nicotiana tabacum (tobacco), Pongamia 

pinnata (karanja), Salvadora oleoides (pilu), Sapindus mukorossi (soapnut), tomato seed, tung, 

Terminala catappa, etc. [31]. The adoption of used vegetable oil is cost-effective, eliminates the 

cost of disposal of used vegetable oil, prevents consumption of unhealthy WCO, and reduces the 

time and land required to cultivate biodiesel-producing crops. Inappropriate disposal of WCO has 

been found to block pipes and sewerage plants and contaminate aquatic and terrestrial habitats 

[32, 33].  

Table 2. Processing technology, benefits, and challenges of generations of biodiesel [34, 35] 

Generation 

of Biodiesel 

Feedstock Processing 

technique 

Benefits Problems 

First Palm oil, 

sunflower 

oil, soybean 

oil, corn oil, 

canola oil 

Esterification and 

transesterification 

of oils. 

Purification 

• Environmentally 

friendly 

• Commercially 

produced 

• Production parameters 

are attainable 

• Fairly cost-effective 

• Limited feedstock 

• Food vs fuel debate 

• Requires arable land for 

cultivation 

• Contributes to deforestation 

• Unsustainable 

• Use of pesticides and 

fertilizers pose a concern 

Second  Non-edible 

oil, waste 

cooking oil, 

waste and 

recovered 

animal fats. 

Pre-treatment of 

feedstock 

Esterification and 

transesterification 

of feedstock. 

Purification 

• No food-fuel conflict 

• Environmentally 

friendly 

• Cost-effective 

• Pesticides and 

fertilizers not needed 

• Requires pretreatment 

• High cost of conversion 

• Land arable land or forests to 

grow 

• Deforestation concerns 
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Third Microalgae, 

Macroalgae 

Algae cultivation, 

harvesting, oil 

extraction, 

transesterification 

• No food-fuel conflict 

• High yield 

• Arable land not needed  

• Easy conversion 

• Environmentally 

friendly  

• Underdeveloped advanced 

technology 

• Large initial cost of 

cultivation 

• Complicated and expensive 

harvesting 

Fourth Microalgae 

Microbes 

Metabolic 

engineering of 

algae, cultivation, 

harvesting, 

transesterification 

• No food-fuel conflict 

• High yield 

• More CO2 capture 

ability 

• High production rate 

• Non-arable land needed 

for cultivation 

• Prohibitive cost for 

large scale cultivation 

• Easy conversion 

• Prohibitive preliminary 

investment 

• Research still at the 

preliminary stage 

• High initial cost for large 

cultivation 

• Harvesting of microalgae and 

microbes are expensive 

 

Transesterification involves the reaction of low molecular weight alcohol and the triglycerides 

contained in the feedstock in the presence of various types of catalyst. Figure 4 presents a 

representation of the three steps involved in the transesterification reaction for the synthesis of 

FAME while Figure 5 depicts a combination of the three steps’ processes. The choice of alcohol 

determines the nomenclature of the resulting ester. Frequently used alcohols include methanol, 

ethanol, propanol, isopropanol, and butanol. Though ethanol is less expensive than methanol, 

methanol is commonly used. When bioethanol is used as methanol, completely bio-based 

biodiesel is produced. If methanol is utilized as the alcohol, the product of the reaction is called 

FAME while fatty acid ethyl ester (FAEE) results from the application of ethanol as alcohol [36, 

37]. Subject to the value of free fatty acids (FFAs), the number of steps involved in the 

transesterification process can be determined. If the FFA value of the feedstock is above 1 

mgKOH/g, transesterification is preceded by the esterification process. Esterification is a single-

step process with tetra oxo-sulphate IV acid as a homogenous catalyst to bring the FFA to less 

than 1 mgKOH/g. If the FFA is lower than 1 mgKOH/g, a single step transesterification process 

is adopted. Due to the low quality of some of the feedstock, especially WCO, waste animal fats, 

and recovered fats and grease, pretreatment processes are required prior to transesterification [38, 

39]. FAME from WCO are believed to exhibit better properties and enhanced engine performance 

compared to biodiesel from other sources [40, 41]. 
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Figure 4. Three steps equation for transesterification reaction [42, 43] 

 

Figure 5. General transesterification reaction [43]  

The transesterification reaction can take place with or without a catalyst. The non-catalytic 

transesterification process is believed to occur at a pressure range of 45 bar to 65 bar, temperature 

of 200 ⁰C to 400 ⁰C and in the presence of alcohol [44]. Compared with the catalytic 

transesterification process, the supercritical transesterification process has been found to take 

place in a shorter time and requiring a simpler purification process as removal of a catalyst is not 

needed. However, the non-catalytic transesterification process is limited to batch process, requires 

high temperatures, pressurized reaction vessels, and high energy costs. The catalyst for 

transesterification process can either be homogeneous, heterogeneous, or biocatalyst (enzyme) 

[45]. Figure 6 shows the types of catalysts for transesterification [46, 47]. Table 3 compares the 

advantages and disadvantages of homogeneous, heterogeneous, and biocatalysts. 
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Table 3. Pros and cons of various catalysts [45, 48-50]  

Types of catalyst Example Pros Cons 

Homogeneous NaOH, KOH, 

CH3ONa, H2SO4 
• Faster reaction 

• The reaction occurs at mild 

temperature conditions 

• Unaffected by FFA and moisture 

content 

• Application to esterification and 

transesterification processes 

• Favors superior kinetics 

• Formation of soap 

• Low yield 

• Large wastewater 

generated 

• Slow reaction 

• Leads to corrosiveness 

Heterogeneous CaO, Mg/Zr, Mg-Al 

hydrotalcite, ZnO/KF, 

ZnO/Ba, Na/BaO, 

K2CO3 supported 

MgO, 

Al2O3/ZrO2/WO3,  

Al2O3/KNO3 

vanadium phosphate 

solid, Fe-Zn double 

metal cyanide 

complex 

• Easy separation 

• Reusability and regeneration  

• Longer lifetime of the catalyst 

• Reduces waste disposal problem 

• Noncorrosive 

• Alkaline catalyst has higher 

selectivity 

• Environmentally friendly and 

recyclable 

• Comparatively cheap  

• High temperature is 

required 

• Leaching of catalyst 

• Limited diffusion 

• High oil to methanol 

ratio 

• Not as effective as 

homogeneous base 

catalysts 

• Higher cost of acid 

catalysts compared to 

alkaline catalyst 

Biobased 

(Enzyme) 

Lipase, Candida 

antaractia 
• Requires less purification  

• Occurs at low temperature 

• Product completely bio-based 

• Expensive 

• Reduced reaction rate 

• Enzyme inactivated 

when exposed to 

alcohol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Categories of catalysts for biodiesel generation 
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1.4.2 Process parameters for transesterification reaction and optimization 

The transition from feedstock to biodiesel is measured by certain parameters including conversion 

efficiency, yield, and ester content. Equations 1, 2, and 3 are used to estimate oil conversion [51], 

yield [52], and ester content [53]. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙
 × 100      (1) 

𝑌𝑖𝑒𝑙𝑑 (%) =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑖𝑙
 × 100       (2) 

𝐸𝑠𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) =  (
∑ 𝐴−𝐴𝐼𝑆

𝐴𝐼𝑆
) (

𝐶𝐼𝑆𝑉𝐼𝑆

𝑚
) × 100      (3) 

Where: 

∑𝐴 = addition of the areas under all peaks from C14:0 to C24:1 

AIS = area under the peak of methyl heptadecanoate (𝐶17:0) used as the internal standard 

CIS = concentration of the 𝐶17:0 solution (gmL-1) 

VIS = volume of the 𝐶17:0 solution (mL) and 

m = sample weight (mg) 

Biodiesel yield and oil conversion are influenced by certain process parameters. Some of these 

parametric conditions include FFA value, reaction temperature, reaction time, alcohol:oil ratio, 

catalyst:oil ratio, catalyst type, catalyst concentration, catalyst particle size, and mixing or 

agitation rate [44]. The choice of a particular parameter influences the choice of another 

parameter. For example, the choice of methanol as alcohol will mean the reaction temperature 

should be less than 60 ⁰C. Also, if the FFA value of feedstock is greater the 1 mgKOH/g, a two-

step process comprising acid-catalyzed esterification and alkaline catalyzed transesterification 

reactions is adopted. Various optimization techniques can be employed for the determination of 

the effect of the diverse operating and parametric process factors in oil conversion and biodiesel 

production thereby determining the optimal operating parameters [54-56]. Generally, under 

varying catalysts and feedstocks, the process parameters for the optimal generation of biodiesel 

are those that agree with the established standards, particularly the ASTM D6751 and EN 14214 
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standards. Some of the established parametric conditions and the effects of the choice of catalyst 

on the production process are presented in Table 4 while Table 5 depicts the outcomes of 

optimization of the catalytic transesterification reaction. 

Table 4. Parametric process for biodiesel production and performance of different catalyst [57-60] 

Parameter  Homogeneous catalyst Heterogeneous catalyst Supercritical 

catalyst 

Bio-based 

catalyst 
Base  Acid  Base  Acid  

Reaction 

temperature (°C) 

40 - 75  50 - 100 60 - 65  30 - 460 230 - 350 35 - 60 

Reaction pressure Atmospheric pressure 0.05 - 20 Mpa 19 - 35 Mpa N/A 

Alcohol:oil ratio 3:1 - 9:1 30:1 - 50:1 6:1 - 18:1 6:1 - 70:1 40:1 - 45:1 3:1 - 18:1 

Reaction time 1 - 4 h  > 4 h 0.5 - 2 h 3 - 20 h 3 min - 1 h > 24 h 

Glycerol recovery Hard  Modest Modest  Simple Simple Simple 

Product purification Hard  Modest Simple Simple Simple Simple 

Catalyst cost Cheap Moderate Expensive 

Effect of water Inhibit 

reaction  

Tolerant to low 

water content 

Inhibit 

reaction 

Tolerant to 

low water 

content 

Increase 

reaction rate 

Negative 

effect if 

excessive 

Effect of FFA Form 

Soap  

No influence No influence No influence 

Reusability No Yes Yes Yes 

 

Table 5. Some results of optimization of catalytic transesterification reaction [18, 61] 

Variable Effects 

Moisture and FFA • Increases moisture  

• FFA lowers ester yield 

• Acid value < 1 mgKOH/g, for the alkali-catalyzed process 

• Reactants reasonably anhydrous 

• High moisture content reduces catalyst effectiveness 

• Increased moisture leads to a reduction in ester yield 

Catalyst type and 

concentration 
• Base-catalyst precipitates quicker ester conversion  

• Acidic-catalyst is slower, works with high FFA and feedstock moisture content  

• High catalyst concentration causes high conversion yield 

Reaction temperature  • Higher reaction temperature increases conversion efficiency and reaction rate 

Molar ratio • Improved ester conversion rate due to greater molar ratio 

Reaction time • Longer reaction time improves conversion yield 

 

1.4.3 Purification of biodiesel 

For biodiesel to meet the internationally established ASTM D6751 and EN 14214 standards, the 

product of the FAME production techniques must be purified. Crude and unpurified biodiesel will 

compromise engine performance, cause unwanted emissions, as well as complicate handling, 
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storage, and transportation of the fuel [62]. During purification, impurities such as soap, water, 

unreacted alcohol, glycerol, metals, etc. are washed away from the crude biodiesel. Table 6 shows 

the major impurities in crude biodiesel and their effects on the engine. Biodiesel can be purified 

either through wet washing or dry washing. In water or wet washing, acidified water, ionized 

water, and other organic solvents, or ionic liquids are used to clean the crude biodiesel. Dry 

washing, on the other hand, utilizes adsorption and ion-exchange, and membrane separation 

techniques for purifying crude biodiesel. However, it is generally believed that a single method 

of purification might be insufficient to achieve clean and pure biodiesel which meets the relevant 

standards, therefore a combination of wet and dry washing techniques may be needed to achieve 

a robust biodiesel purification or refinement technology [63, 64].  

Despite the extra cost, space for additional purification infrastructure, problems of disposal of 

spent ion-exchange resin, and treatment of the attendant wastewater generated during purification, 

the wet purification technique has been widely used. The extra cost and efforts expended during 

purification pale into insignificance though when compared with the alternative cost of the use of 

crude biodiesel. Crude biodiesel is deficient in meeting the standards as specified by ASTM 

D6751 and EN 14214, deteriorate engine performance, and therefore has the capacity to reduce 

the lifespan of engine parts.   

The spent ion-exchange resin can be utilized as compost and additives for animal feed, and the 

wastewater can be recycled and used for irrigation purposes [65]. Glycerol obtained from the 

purification of crude biodiesel has found extensive applications as a raw material in chemical 

industries, personal care products, textile, food, and therapeutic industries. Glycerol is useful in 

treating renal diseases and disorders of carbohydrate metabolism as well as food supplements for 

animals, osmoregulatory, cryoprotectant, and thermoregulatory agents [66, 67]. This shows the 

usefulness of all the products along the biodiesel production value chain.  

Table 6. Biodiesel impurities and their effects [50, 59, 68] 

Impurity Effects 

FFA • Rusting of engine parts  

• Reduced oxidation stability 
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Water  • Hydrolysis 

• Corrosion of fuel lines, injector pumps, and engine parts 

• Failure of fuel pump and piston corrosion 

• Filter blockage due to bacteriological growth 

• Reduced heat of combustion 

• Ice formation leading to congealing of fuels  

Methanol • Reduced kinematic viscosity, density, and flash point values 

• Rusting of parts made of aluminum and zinc  

• Weakening of natural rubber seals, hoses, and gaskets 

Glycerides • High value of kinematic viscosity 

• Deposition of carbon residue in the injectors 

• Crystallization 

Metals (Soap, 

catalyst) 
• Deposition of carbon residue and damage to injectors 

• Obstruction of filter plugging and fuel lines  

• Deterioration of the engine 

Glycerol • Settling and storage problems 

• Fuel tank base deposits and injector damage 

• Increased aldehydes and acrolein emissions 

• Compromised engine durability 

 

1.4.4 Characterization of catalyst, feedstock, and FAME 

Catalysts have the capability of lowering the activation energy thereby accelerating the rate of a 

chemical reaction therefore saving time and cost of energy. However, catalysts can also inhibit 

the rate of a chemical reaction if an appropriate one is not chosen. A wide range of treatment can 

be performed on catalysts to enhance their performance. Over the years, different techniques have 

been advanced to prepare and enhance the capability of heterogeneous catalysts including 

impregnation, sol-gel, co-precipitation, sulfonation, co-mixing, physical mixing, and calcination. 

These techniques require extra infrastructure, technicalities, and, sometimes, additional costs to 

ensure improvement in the performance capability of the catalysts [43]. Solid catalysts can be 

characterized by thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), 

differential thermal analysis (DTA), differential thermogravimetry (DTG), X-Ray diffraction 

(XRD), flame photometric analysis, scanning electron microscopy (SEM), hydrogen nuclear 

magnetic resonance (HNMR) spectroscopy, thermal electron microscopy (TEM), etc., among 

other characterization techniques [69-71].    

WCO has been considered as a prominent and inexpensive feedstock for FAME due to its 

advantages over other feedstocks. WCO, being a low-grade feedstock, needs to be treated before 

conversion to FAME by transesterification process [72, 73]. The pre-treatment procedures arise 
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as an outcome of the chemical modifications that will have occurred during the persistent high-

temperature degradation and contamination by the food that was fried in the oil. The pre-treatment 

processes involve ridding the WCO of food debris, moisture, and other impurities. The treated 

WCO can be subjected to determination of acid value (AV), saponification value (SV), iodine 

value, and molecular weight of the WCO (MWoil). The FFA must be reduced to < 1 mgKOH/g 

for it to be suitable for the one-step transesterification process [74]. The AV, SV, FFA, and MWoil 

can be estimated by Equations 4 to 7.   

𝐴. 𝑉 =  
𝐴×𝑀𝑀𝐾𝑂𝐻×56.1

𝑊
(𝑚𝑔 𝐾𝑂𝐻 𝑔⁄ )       (4) 

𝐹𝐹𝐴 =  
𝐴.𝑉

2
          (5) 

𝑆. 𝑉 =  
𝑀𝑀𝐾𝑂𝐻(𝐵−𝑆)×𝑀𝐻𝐶𝑙

𝑊
        (6) 

𝑀𝑊𝑜𝑖𝑙 =
(56.1×1000×3)

𝑆.𝑉
         (7) 

Where:  

A = volume of potassium hydroxide (KOH) used 

W = Feedstock weight  

B = volume of hydrochloric acid (HCl) in (ml) required  

S = volume of HCl in (ml) required by the sample 

MMKOH = molar concentration of KOH 

M = molar concentration of HCl 

W = weight of the feedstock oil in (g) 

Techniques for determining these properties are expressed in the Association of Official 

Agricultural Chemists (AOAC), ASTM, and EN methods. WCO can also be characterized by gas 

chromatography-mass spectrometry (GCMS), TGA, FTIR, etc. with a view to determining their 

composition and behavior. The FA composition of the feedstock has been discovered to influence 

properties like cetane number (CN), cloud point, flash point (FP), oxidation stability, cold filter 

plugging point (CFPP), kinematic viscosity (KV), etc. 
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After purification, FAME is subjected to physical and chemical properties determination and 

characterization in accordance with methods and procedures specified by their respective AOAC, 

ASTM, and EN standard procedures. The standard specifications and test methods for FAME 

B100 are specified by ASTM D 6751 [75], EN 14214 [76, 77], Worldwide Fuel Charter [78], 

South African National Standard (SANS 1935:2011) [79], among other standards for various 

countries. The FA compositions are determined by GCMS analysis and have been discovered to 

impact the performance, handling, storage, transportation, emission characteristics, and behavior 

of the fuel. Some of the essential properties of FAME linked to its FA composition profile include 

density, CN, calorific value, KV, iodine number, FP, pour point, cloud point, and CFPP. These 

properties can be predicted by linear regression models based on the fuel FA compositional profile 

[80].  

1.4.5 Engine performance and emission characteristics of FAME 

Apart from availability and economic factors, engine performance and the quality of the exhaust 

gases are major determining factors in the selection of FAME as an alternative fuel for CI engines. 

Engine tests are carried out based on established engine test protocols which require that the basic 

descriptions of the test engine such as manufacturer name, model, model year, power rating, fuel 

type, number of stroke per cycle, etc. should be clearly stated. Notable performance criteria 

include torque, power output, brake thermal efficiency (BTE), brake specific fuel consumption 

(BSFC), and exhaust gas temperature (EGT) are measured at varying engine speeds and loads. 

Waste cooking oil methyl ester (WCOME) has been found to be a sustainable replacement for 

PBD fuel in a conventional CI engine owing to its better performance which is attributable to its 

composition [81]. Due to the oxygenated nature and other fingerprints of FAME, WCOME has 

been found to present better combustion efficiency and thermal efficiency compared to PBD fuel 

[82].   

The United States Environmental Protection Agency (USEPA) identified carbon monoxide (CO), 

unburnt hydrocarbon (UHC), particulate matter (PM), nitrogen oxide (NOx), and smoke opacity 

as major regulated emissions emanating from CI engines. The higher oxygen content of WCOME, 
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more than any other inherent property, has been identified as a determining factor for the quantity 

of emission of unmodified CI engine fueled by WCOME [81, 83]. This further justifies the 

adoption of WCOME as an alternative fuel PBD fuel in order to meet the emission requirements 

that is becoming increasingly stringent.  

1.4.6 Numerical interventions 

Due to the escalated intensity of activities in the engine research space, it has become imperative 

to adopt prediction, modeling, and simulation to speed up and improve the quality of research and 

their outcomes. Real-time laboratory investigations have increasingly become not only 

cumbersome, expensive, time-wasting but also involve highly technical person and infrastructure 

outlay. Numerical techniques, on the other hand, have been found to be fast, cost-effective, 

flexible, easy to understand and able to predict various scenarios, thereby accelerating the pace, 

quality, and accuracy of engine research. Researchers, fuel engineers, operators of refineries, 

engine designers and manufacturers, performance and emission experts have explored 

innovations in high-speed soft computing to exploit mathematical relations and models to predict, 

evaluate, optimize, simulate, and authenticate the fingerprints, engine performance parameters, 

and emission attributes of CI engines [84, 85].  

The use of optimization techniques has been found to reduce cost, materials, time of the 

experiment, and to eradicate ‘trial by error’ thereby increasing the conversion efficiency during 

transesterification. Diverse optimization techniques including response surface methodology 

(RSM), Taguchi orthogonal array (Taguchi OA) [86], artificial neural networks (ANN) [87], 

matrix laboratory (MATLAB), adaptive neuro-fuzzy inference systems (ANFIS) [88], Box-

Behnken design [89], and genetic algorithm (GA) [90], among others have been utilized to 

optimize the transesterification of feedstocks to FAME. These techniques can be used 

individually, in combination or in comparison with other techniques using soft computing 

methods with a view to determining the optimal combination of process parameters for FAME 

production. Process parameters like catalyst to oil ratio (%w/w), catalyst particle size (µm), 

reaction temperature (°C), reaction time (min) and methanol to oil ratio can be optimized while 
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the interrelationship among these identified process parameters can be depicted using three 

dimensional (3D) surface plots of RSM, ramps and other plots. The Taguchi OA and RSM 

methods available on the design of experiment (DoE) are among of the most effective and easy 

to use optimization techniques and the outcomes are usually appraised using statistical parameters 

including standard error, sum of squares, correlation coefficient (R), F- and p-values, standard 

deviation, coefficient of determination (R2), and adjusted R2 (𝑅𝑎𝑑𝑗
2 ). 

Multiple linear regression, ANN, and computational fluid dynamics (CFD), among other 

numerical approaches, have been used to predict and model FAME fingerprints, performance 

parameters, and emission characteristics of unmodified CI engine with acceptable outcomes [91-

94]. The application of these numerical techniques has gained traction in recent years and has 

simplified the otherwise cumbersome real-time engine testing process. The holistic utilization of 

these numerical techniques is the future of fuel and engine research.  

The application of mathematical and numerical techniques for the determination of an optimal 

FAME candidate capable of stimulating enhanced performance and reduced emission can be 

achieved using parameters with strong theoretical pedestal and verifiable correlations. Attempts 

to use thermodynamic, temperature, and other correlative models to deliver acceptable models 

for optimal mix has not been successful owing largely to their deficiency in theoretical footings, 

despite their appealing and unsophisticated outlook. These models have been unable to generate 

an optimal candidate partly due to the fact that they do not derive their correlations from the 

composition of FAME [95, 96]. Composition-based models are computed based on FA 

compositions and are straightforward and take into consideration the distinctive fingerprints of 

the individual FAMEs. FAME composition has great influence and produces a more acceptable 

outcome that can predict the candidate with the optimal mix to enhance engine performance in 

addition to lowering the emission characteristics of CI engines. The accuracy of this technique 

can be traced to its stronger theoretical base when compared with other models [97, 98]. Linear 

mathematical correlations are developed using FA compositions for some important FAME 
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fingerprints and a trained ANN is used to predict engine performance and emission 

characteristics. 

1.5 Research questions 

Arising from the background for this study and the quest to advance biodiesel research, the 

relevant questions to ask whose answers could address some of the challenges identified in the 

application of FAME as a renewable, biodegradable, and sustainable fuel for an unmodified CI 

engine, include the following: 

i. Bearing in mind the current challenges and inadequacies associated with the blending of 

FAME and retrofitting of CI engines, can an optimal FAME candidate be unearthed in 

terms of FA composition with the capability of producing enhanced engine performance 

and mitigated emission in a conventional CI engine? 

ii. How well will the developed optimal FAME candidate behave in terms of engine 

performance parameters and emission characteristics when used to run an unmodified CI 

engine? 

iii. Can the cost of biodiesel production be made more affordable from the standpoint of 

feedstock and catalysts selection, production techniques, and in line with the principle of 

conversion of waste to fuel application strategies? 

iv. How can the FA composition of FAME be explored to accurately predict the properties, 

engine performance, and emission characteristics in an unmodified CI engine using linear 

and nonlinear models?      

v. What is the appropriateness of optimization techniques in simplifying and improving the 

interrelationship among biodiesel production process parameters with a view to reduced 

production cost and time while escalating the conversion efficiency?   

vi. To what extent can the advantages derivable from the application of WCO as biodiesel 

feedstock be further explored? 
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1.6 Aim and objectives of the study 

The aim of this research was to engage numerical and experimental techniques to develop an 

optimal FAME candidate for improved engine performance and mitigated emission 

characteristics in an unmodified CI engine. 

The objectives of the study are summarized as follows:  

1. Carry out an extensive literature survey of feedstock and catalyst selection, production of 

unblended biodiesel, numerical and experimental investigations of engine performance 

and emission characteristics. 

2. Explore mathematical, numerical, and experimental techniques to determine an optimal 

FAME candidate based on a strong theoretical base with capability for generating 

improved engine performance and mitigated emission of regulated gases.  

3. Develop and train an ANN model with the capacity to accurately predict engine 

performance and emission characteristics of a conventional CI engine fueled with the 

newly developed optimal FAME candidate. 

4. Synthesize, develop, and characterize a suitable catalyst from existing waste with a view 

to reducing production cost and improving sanitation. 

5. Use appropriate optimization techniques to engender cheaper and more effective process 

parameters towards affordable biodiesel production process. 

6. Model a suitable tool and technique for predicting the thermo-physical properties of the 

newly developed FAME. 

1.7 Significance of the study 

The search for an affordable and sustainable alternative fuel to PDB fuel has been intensified over 

the years due to the reasons advanced above. Various techniques and strategies such as blending, 

low-temperature combustion, exhaust gas recirculation, etc. have offered little optimism in 
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meeting engine performance requirements and strict emission standards in spite of the efforts and 

resources expended in this regard [99, 100]. Also, most countries, particularly in sub-Sahara 

Africa, have not been able to meet their share of renewable fuel and therefore face a serious energy 

scarcity threat bearing in mind the volatility in the global fossil fuel market and environmental 

degradation [101]. The adoption of biodiesel to bridge this gap has been plagued with challenges. 

Though considerable research has been conducted with much still ongoing in this regard, some 

gaps still exist and need to be addressed.  

One of the major significances of this work is that by determining the optimal FAME mix there 

is an opportunity to engineer a biofuel to a precise chemical mix that guarantees desirable 

performance and mitigated emissions. This is an advancement from the existing situation where 

FAMEs are not produced based on the need for improved performance. This research has shown 

how FAME can be produced to specifications based on the selection and management of 

production parameters and processes.  

Targeted investigations are needed to evaluate the factors militating against the adequate 

production of biodiesel to meet the ever-increasing on-road and off-road applications. Global 

biodiesel need can be met with the adoption of feedstocks that do not conflict with food security, 

do not contend with land or require irrigation infrastructure for growing food crops, and which 

are affordable, readily available, and environmentally amenable. Challenges associated with 

production, characterization, storage and transportation infrastructure of biodiesel must be met in 

such a way that global standards and regulations are not compromised. Emissions arising from 

the utilization of pure biodiesel must be eco-friendly and meet international standards [102]. The 

right policy, tools, techniques, and strategies to conduct cutting edge researches in biodiesel 

studies and utilization to optimize the potential benefits must be created, adopted and 

implemented.  

1.8 Research scope and delineation 

The scope of this research is restricted to the numerical and experimental investigation into the 

determination and use of an optimal FAME candidate for improved engine performance and 
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mitigated emissions in a conventional CI engine strategy. The techniques and tools used were 

limited by the availability, cost, and time constraints.  

1.9 Main contributions to the field of study 

The application of biodiesel as an alternative fuel for CI engine has not been without its attendant 

challenges, particularly in terms of its performance and emissions characteristics. This research 

explored numerical and experimental techniques to develop an optimal FAME candidate with the 

capability to engender enhanced engine performance and mitigated emissions in an unmodified 

CI engine. Optimization techniques were applied to determine cheaper and better production 

process parameters using WCO as a feedstock and a catalyst derived from chicken eggshell waste. 

The optimal FAME candidate was defined by two FA compositions, namely, palmitic acid 

(C16:0) and oleic acid (C18:1) which were used as inputs to predict the properties, engine 

performance parameters, and emission characteristics of the new fuel. The possibility of 

producing FAME to meet certain standards, performance, and emissions requirements was 

established.    

1.10 Thesis layout 

The thesis is arranged to respond to the research questions identified in this study in the sequence 

laid out above. The thesis is a compilation of research outcomes published in peer-reviewed 

journals and conferences as stipulated by the University of KwaZulu-Natal for the award of a 

doctoral degree. A total of twelve publications comprising journal and conference papers are 

arranged in nine chapters. 

Chapter 1 contains the introduction, research motivation, problem statement, and background of 

the research. The research questions, aim and objectives of the study, as well as the significance 

of the study and major contributions to the field of study as well as the research scope and 

delineation were presented.    

Chapter 2 provides critical reviews of the properties, engine performance, and emissions 

characteristics of CI engines fueled with WCOME. This is divided into two parts.  
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Part 1 reviews the experimental standards, text cycles, benchmarks, and protocols involved in 

measuring engine performance parameters and emission characteristics of a conventional CI 

engine. Performance parameters like BSFC, BTE, and EGT, and emission characteristic like CO, 

CO2, NOx, UHC, PM, and smoke intensity of CI engine fueled with WCOME are compared with 

a CI engine fueled with PBD fuel. International standard specifications of FAME by ASTM and 

EN 14214, ASTM D6751, Worldwide Fuel Charter, and other countries were discussed.  

Part 2 presents various numerical approaches in assessing engine performance parameters and 

emission characteristics in line with international benchmarks and protocols. In this paper, the 

correlation between properties, engine performance and emission characteristics of FAME, 

various mathematical, numerical, ANN, CFD, and other techniques for the prediction of 

properties, engine performance, and emission characteristics are presented 

Chapter 3 focuses on the application of modelling, optimization and linear regression tools in 

biodiesel research. It consists of three parts.  

Part 1 explores the application of the Taguchi orthogonal approach (Taguchi OA) for the 

modelling and optimization of production of biodiesel. To overcome the challenges associated 

with the conventional one-variable-at-a-time experimental technique, the paper utilized the 

Taguchi OA to determine the optimized parametric parameters for the conversion of waste 

sunflower oil (WSFO) to waste sunflower methyl ester. The interconnection and interrelationship 

between production parameters like a catalyst:WSFO ratio (%w/w), reaction time (min), reaction 

temperature (⁰C), particle size of catalyst (μm), and methanol:WSFO ratio were examined. The 

influence of each parameter on conversion efficiency was determined using analysis of variance 

(ANOVA) and other statistical tools.  

Part 2 compares the use of response surface methodology (RSM) and Taguchi OA for the 

modelling and optimization of biodiesel production. The optimum conditions for the 

transesterification process were determined by the application of RSM and Taguchi OA for the 

purpose of achieving timely and cost-effective FAME production. It was discovered that RSM 

presents a more reliable route especially in handling more parameters with nonlinear relations, 
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and predicted a higher yield, while Taguchi OA offers a cheaper route and linear relations among 

the parameters.  

Part 3 examines the application of linear regression for the prediction of the fingerprints of 

biodiesel employing FA composition as inputs. Multiple linear regression (MLR) was applied to 

model linear relations for the prediction of the density, cetane number, calorific value, and 

kinematic viscosity of biodiesel using palmitic, stearic, oleic, linoleic and linolenic acids as input. 

The predictive capabilities of the models were verified using statistical analysis.  

Chapter 4 reports the outcome of the numerical approach for the determination of optimal FAME 

mix for enhanced engine performance and mitigated emission. Mathematical and numerical 

techniques (MATLAB) were employed to solve linear equations generated for the properties of 

biodiesel, based on their FA compositions and in accordance with acceptable standards, for the 

determination of an optimal FAME candidate capable of producing better engine performance 

and mitigated emissions. The numerically generated FAME candidate was produced by the 

transesterification of waste sunfoil and waste palm oil to FAME. 

Chapter 5 presents the comparative study of engine performance and emission evaluation of 

biodiesel derived from waste oil and Moringa oleifera oil. Waste oil methyl ester and moringa oil 

methyl ester were tested on a 3.5 kW rated, direct injection, single cylinder CI engine. The BTE, 

BSFC, brake specific unburnt hydrocarbon, brake specific carbon monoxide, and brake specific 

nitrogen oxide of the engine when running on the two FAME samples were compared.  

Chapter 6 describes the development, training, and application of ANN for the prediction of 

engine performance and emission characteristics of a diesel engine using fatty acid compositions. 

The trained ANN utilized NNTool on the MATLAB platform to develop the model using a back-

propagation algorithm with a Levenberg-Marquardt (LM) learning algorithm to predict BSFC, 

BMEP, BTE, EGT, CO, smoke intensity, UHC, and NOx. Palmitic acid (C16:0) and oleic acid 

(C18:1) were used as inputs and a total of 125 sample data were mined from literature to train the 

model. The regression coefficient and other statistical indicators of the training, validation, and 
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test data gave satisfactory value, an indication of high predictive proficiency of the model, and 

demonstrated an improvement on previous efforts. 

Chapter 7 presents strategies for the development and characterization of chicken eggshell waste 

as a potential catalyst for the synthesis of FAME. Boiled, calcined, and uncalcined chicken 

eggshell powder of different particle sizes were developed into a CaO catalyst and characterized 

by SEM, TEM, XRD, TGA, and FTIR. The outcome of the investigation showed that high-

temperature calcination has the capacity to convert waste chicken eggshell powder to a reusable, 

cost-effective, and environmentally friendly catalyst for transesterification reaction. 

Chapter 8 depicts the properties, and fatty acid compositions of the feedstock and FAME. It 

consists of two parts.  

Part 1 compares the properties and FA compositions of neat vegetable oils and used vegetable 

oils. This paper compares the FA compositions, iodine value, pH, density, congealing 

temperature, acid value, kinematic viscosity, cetane index and acid number of neat vegetable oil 

and samples of waste vegetable oil (WVO) used to fry different food items. The effects of 

consumption of WVO on human health and aquatic habitat were highlighted.   

Part 2 illustrates the effect of usage on the FA composition and properties of neat palm oil (NPO), 

waste palm oil (WPO), and waste palm oil methyl ester (WPOME). This paper is an extension of 

the previous research listed in this chapter. In the present scenario, the WPO samples were 

converted to WPOME. The effect of usage properties, FA compositions, and degree of saturation 

of the WPOME samples were analyzed and compared with NPO and WPO samples. 

Chapter 9 draws the conclusions of the research and offers recommendations for future work. 
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CHAPTER 2: REVIEW OF PROPERTIES, ENGINE 

PERFORMANCE, AND EMISSION CHARACTERISTICS OF 

COMPRESSION IGNITION ENGINES FUELLED WITH WASTE 

COOKING OIL METHYL ESTER   

This chapter provides critical reviews of the properties, engine performances, and emissions 

characteristics of CI Engines fuelled with waste cooking oil methyl ester. This consists of two 

articles. 

Article 1 gives a critical review of engine performance and emission characteristics of unmodified 

CI engines fuelled with unblended FAME. The various engine test protocols, emission standards, 

performance criteria, and emission characteristics are highlighted. The article has been published 

in International Journal of Applied Engineering Research. 

Awogbemi, O., Inambao F., Onuh E. I. (2018). “Performance and Emissions of 

Compression Ignition Engines Fuelled with Waste Cooking Oil Methyl Ester – A Critical 

Review,” International Journal of Applied Engineering Research (IJAER), ISSN 0973-

4562, Volume 13, Number 11, pp. 9706-9723, Research India Publications. 

https://www.ripublication.com/ijaer18/ijaerv13n11_135.pdf.    (Published) 

Article 2 presented a critical review of the various numerical approaches employed in estimating 

the properties, engine performance parameters, and emission characteristics of an unmodified CI 

engine fuelled with FAME. Among other subtopics, the article establishes the nexus between 

FAME properties, engine performance and emission characteristics of CI engines fuelled by B100 

WCOME, numerical and optical interventions in engine research, and discussed the outcomes of 

numerical approaches to predictions in engine performance and emission characteristics before 

drawing conclusions. The article was published in International Review of Mechanical 

Engineering.  

Awogbemi, O., Inambao F., Onuh E. I. (2019). “Prediction of Properties, Engine 

Performance, and Emissions of Compression Ignition Engines Fuelled with Waste 

Cooking Oil Methyl Ester – A Review of Numerical Approaches,” International Review 

of Mechanical Engineering (IREME), Volume 13, Number 2, ISSN 1970 – 8734, pp 97-

110, Praise Worthy Prize Publishers. 

https://www.praiseworthyprize.org/jsm/index.php?journal=ireme&page=article&op=vie

w&path%5B%5D=23191.   (Published) 

https://www.ripublication.com/ijaer18/ijaerv13n11_135.pdf
https://www.ripublication.com/ijaer18/ijaerv13n11_135.pdf
https://www.praiseworthyprize.org/jsm/index.php?journal=ireme&page=article&op=view&path%5B%5D=23191
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Compression Ignition Engines Fuelled with Waste Cooking Oil Methyl 

Ester – A Critical Review   
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Performance and Emissions of Compression Ignition Engines Fuelled 

with Waste Cooking Oil Methyl Ester - A Review of Numerical 
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CHAPTER 3: PROPERTIES PREDICTION AND OPTIMIZATION 

TECHNIQUES FOR SYNTHESIS OF FATTY ACID METHYL 

ESTER  

 

This chapter examines the use of property prediction and optimization techniques in biodiesel 

research as a panacea in relation to cumbersome and costly real-time laboratory experiments. It 

consists of three articles.  

Article 1 explores the application of the Taguchi OA for the modelling and optimization of 

production of biodiesel. The advantages of Taguchi OA over the conventional one-variable-at-a-

time experimental method was explored to determine the optimal parametric conditions for the 

transesterification of waste sunflower oil. Taguchi OA was found to generate a cost-effective and 

time-saving trajectory from waste sunflower oil to waste sunflower methyl ester. The article was 

published in the proceedings of The World Congress on Engineering, 2019, London, U.K.  

Awogbemi, O., Inambao F., and Onuh E. I. (2019) "Modelling and Optimization of 

Synthesis of Waste Sunflower Methyl Ester by Taguchi Approach," Proceedings of The 

World Congress on Engineering 2019, 3-5 July 2019, London, U.K., pp137-143. ISBN: 

978-988-14048-6-2. ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online). Available on 

http://www.iaeng.org/publication/WCE2019/WCE2019_pp137-143.pdf. (Published) 

Article 2 compares the use of response surface methodology and Taguchi OA for the modelling 

and optimization of the biodiesel production process. The process parameters for 

transesterification were optimized for cost reduction and conversion efficiency. The article has 

been accepted for publication in the International Journal of Engineering Research and 

Technology. 

Awogbemi, O., Inambao F., Onuh E. I. (2019). “Modelling and Optimization of 

Transesterification of Waste Sunflower Oil to Fatty Acid Methyl Ester: A Case of 

Response Surface Methodology vs Taguchi Orthogonal Approach,” International Journal 

of Engineering Research and Technology (IJERT). International Research Publication 

House. (Accepted for publication)  

http://www.iaeng.org/publication/WCE2019/WCE2019_pp137-143.pdf


 

74 

 

Article 3 surveys the application of linear regression for the prediction of properties of biodiesel 

using FA composition as inputs. Linear equations were generated in terms of five commonest 

FAs (palmitic, stearic, oleic, linoleic and linolenic) to predict the density, cetane number, calorific 

value, and kinematic viscosity of FAME. The predictive capabilities of the models were verified 

using experimental data mined from literature. The outcome of the research has been accepted for 

publication by the Journal of Engineering and Applied Sciences. 

Awogbemi, O., Inambao F., Onuh E. I. (2019). “Application of Multiple Linear 

Regression for the Prediction of some Properties of Biodiesel using Fatty Acid 

Compositions,” Journal of Engineering and Applied Sciences (JEAS). Scientific 

Research Publication Company (Accepted for publication). 

  



 

75 

 

CHAPTER 3 ARTICLE 1: Modelling and Optimization of Synthesis of 

Waste Sunflower Methyl Ester by Taguchi Approach  

 

To cite this article: Awogbemi, O, Inambao F., and Onuh E. I. (2019) "Modelling and 

Optimization of Synthesis of Waste Sunflower Methyl Ester by Taguchi Approach" Proceedings 

of The World Congress on Engineering 2019, 3-5 July 2019, London, U.K., pp137-143.  

(Published) 

 

The link to this article: http://www.iaeng.org/publication/WCE2019/WCE2019_pp137-143.pdf 

  

http://www.iaeng.org/publication/WCE2019/WCE2019_pp137-143.pdf


 

76 

 

 



 

77 

 

 



 

78 

 

 



 

79 

 

 



 

80 

 

 



 

81 

 

 



 

82 

 

 



 

83 

 

CHAPTER 3 ARTICLE 2: Modelling and Optimization of 

Transesterification of Waste Sunflower Oil to Fatty Acid Methyl Ester: 

A Case of Response Surface Methodology vs Taguchi Orthogonal 

Approach   

 

To cite this article: Awogbemi, O., Inambao F., Onuh E. I. (2019). “Modelling and Optimization of 

Transesterification of Waste Sunflower Oil to Fatty Acid Methyl Ester: A Case of Response 

Surface Methodology vs Taguchi Orthogonal Approach”. International Journal of Engineering 

Research and Technology. (Accepted for publication). 

 

  



 

84 

 

Modelling and Optimization of Transesterification of Waste 

Sunflower Oil to Fatty Acid Methyl Ester: A case of Response 

Surface Methodology vs Taguchi Orthogonal Approach 

Awogbemi, Omojola*, Inambao, FL and Onuh EI 

Green Energy Solutions Research Group, Discipline of Mechanical Engineering,  

Howard College, University of KwaZulu-Natal, Durban 4041, South Africa 

*jolawogbemi2015@gmail.com. *ORCID: 0000-0001-6830-6434 

 

Abstract: 

Determining the cost-effective process combinations that will achieve prime fatty acid methyl 

ester (FAME) is laborious, onerous and time-wasting using the experimental process; this has 

necessitated the need for modelling and optimization tools. This research study, utilizes and 

compares regression models developed by central composite design of randomized response 

surface methodology (RSM) and L16(4^15) Taguchi orthogonal approach for the optimization of 

five process parameters to predict FAME yield (%) for the transesterification of waste sunflower 

oil (WSFO). The process was catalyzed by calcium oxide developed from high temperature 

calcination of waste chicken eggshell powder. RSM predicted an optimum FAME yield of ~91 

% at process parameters of 1.5 %w/w catalyst: WSFO ratio, catalyst particle size of 50 µm for a 

reaction time of 60 min, reaction temperature of 55 oC; and, methanol: WSFO ratio of 6:1 in 32 

runs. Taguchi, on the other hand, predicted a prime FAME yield of ~61 % under process operating 

parameters of catalyst: WSFO ratio = 1:1 %w/w, catalyst particle size = 75 µm, reaction time = 

45 min, reaction temperature = 45 °C; and, methanol: WSFO ratio = 4:1 in 16 runs. The calculated 

coefficient of determination (R), adjusted R, and coefficient of variance were found to be 0.8167 

%, 0.7743 % and 3.83 % respectively for the RSM method and 0.9085 %, 0.7711 % and 4.03 % 

respectively for the Taguchi method. RSM predicted marginally higher FAME yield but Taguchi 

was substantially more cost-effective owing to 50 % fewer number of runs. 

Keywords: ANOVA, FAME yield, optimization, response surface methodology, Taguchi 

I. INTRODUCTION 

 

Global warming, increased concern about emission of greenhouse gas, air pollution, explosive 

population growth, rapid industrial development, continuous depletion of petroleum fuel sources 

and the need for locally available energy sources has necessitated the quest for countries to survey 

alternative energy sources that are feasible, affordable, beneficial, and sustainable. The target 

energy sources are expected not only to minimize air pollution, slash global warming emissions, 

mailto:*jolawogbemi2015@gmail.com
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generate new jobs, create new industries in the value chain, expand power and energy supply, 

lessen reliance on coal and other fossil fuel sources but also to steer nations towards a cleaner, 

safer and healthier fuel and energy future. In order to meet this goal of switching from traditional 

pollution causing petroleum-based fuels, researchers have paid a great deal of attention to 

development and testing of renewable energy sources. Biofuel, consisting mainly of bioethanol 

and biodiesel, produced 2.8 % of world energy consumption in 2015 and 3.1 % in 2017 [1] and 

is projected to increase to 3.8 % by 2023 [2]. Various countries, have through their renewable 

energy policy, set targets for renewable energy application. Usage and applicability of renewable 

energy in transport increased from 2.6 % in 2011 to 3.4 % in 2018 and is projected to increase to 

3.8 % in 2023 as shown in Fig 1. In the same vein, biodiesel production is projected to continue 

to increase, particularly for the United States of America, Indonesia, Brazil, Malaysia between 

2017 and 2023 as shown in Fig 2. 

 

 

Figure 1. Global share of renewable transport (%) 2011 - 2023 [2]. 

 

 

Figure 2. Projected change in biodiesel generation between 2017 and 2023 [103]. 
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Biodiesel, which is usually referred to as fatty acid methyl esters (FAME), is not only a 

renewable, friendly, easy to produce, but also environmentally pleasant fuel for compression 

ignition (CI) engines. It is generally produced from a range of feedstock including animal fats, 

algae, vegetable oils, and other renewable biological sources. Among the proven methods of 

FAME production, namely, thermal cracking (pyrolysis) [3], microemulsion [4], hydrocarbon 

blending [5] etc., transesterification is the most common due to its simplicity, low equipment 

outlay and higher conversion efficiency [6]. The transesterification process is a reversible 

chemical reaction process where glyceride reacts with alcohol to generate biodiesel with or 

without catalysts.  The alcohol can either be methanol or ethanol while the catalytic process is 

enhanced by acid, alkaline or enzymatic catalysts. After transesterification, the crude biodiesel 

must be purified to comply with international standards such as EN 14214 or ASTM D6751. 

Major benefits of biodiesel include its similar cetane number compared to petrol based diesel 

(PBD) fuel which allows high combustion efficiency, 90 % biodegradability within 21 days, 

reduced emission of hydrocarbon (UHC), carbon monoxide (CO), particulate matters (PM), 

sulphur oxide (SO2), and aromatic compounds, and, compared to PBD fuel, low toxicity, high 

lubricity, more complete combustion and engine performance, safe handling, conversion of waste 

to fuel as well as other social, and economic benefits. In spite of these advantages, increased NOx 

emissions, high production cost, food security threat, etc. are among the shortcomings in the 

application of biodiesel [7, 8]. The application of used or waste cooking oil (WCO) to synthesize 

biodiesel will assuage the almost prohibitive cost of feedstock, prevent food crises arising from 

the utilization of edible vegetable oil as feedstock, as well as help in the proper disposal of WCO 

thereby preventing contamination of aquatic and terrestrial habitats.  

Various techniques including response surface methodology (RSM), Taguchi orthogonal 

array [9], artificial neural networks (ANN) [10], matrix laboratory (MATLAB), Simulink, 

adaptive neuro-fuzzy inference systems (ANFIS) [11], Box-Behnken design [12], and genetic 

algorithm (GA) [13] have been engaged to optimize the transesterification of vegetable oil to 

FAME. These techniques can be used individually, in combination or comparison with other 

techniques using soft computing methods to optimize FAME production. The employment of 

RSM and Taguchi for the modelling and optimization of the transesterification process are 

documented in the literature. Karmakar et al. [14] explored the Taguchi orthogonal design to 

optimize biodiesel generation using castor oil as feedstock and reported that the tool yielded an 

affordable and sustainable optimization technique for synthesizing biodiesel from castor oil. 

Dhawane et al. [15] also employed the Taguchi orthogonal approach for the parametric 

optimization of generation of FAME using edible vegetable oil as feedstock and reported that the 

approach was easy and productive. Other research has supported the efficacy and effectiveness 

of Taguchi to successfully optimize the transesterification process and to achieve the lowest cost 

possible [16, 17]. RSM has been employed to design experiments, develop empirical models, and 

perform optimization of transesterification of oil to biodiesel as well as for property prediction 

[18-21]. 

Najafi et al. [22] applied a combination of ANN, ANFIS and RSM to estimate, predict 

and optimize the parametric factors that influence biodiesel yield during transesterification and 

reported that the models successfully predicted biodiesel yield and the outcomes were validated 
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by the experimental data. The application of Taguchi method to predict and optimize the biodiesel 

production parameters has been reported to yield acceptable conditions for the economical 

generation of biodiesel from various feedstocks through the transesterification process [14, 15, 

23]. Tan et al. [9] used the RSM and Taguchi methods for the optimization of transesterification 

of WCO to biodiesel and reported that the statistical tools provided favorable prediction outcomes 

and experimental validation of biodiesel yield. In general, the application of modelling, 

optimization tools and other soft computing techniques in the transesterification of WCO to 

biodiesel has been found to be cost effective and saves time, are less laborious, innovative, 

flexible, prevents multiple experimental processes, offers better understanding of the process and 

have the capability to forecast and predict “what-if” scenarios. Some of the parameters that 

influence biodiesel yield include reaction temperature, alcohol/feedstock molar ratio, catalyst 

concentration, reaction time, etc. [24-27]. 

The economics and cost analysis of FAME production has shown that cost of feedstock 

gulps over 70 % of the production expenses while raw materials and other consumables jointly 

take up 86 % of the production cost. Raw materials for transesterification process include the oil 

feedstock, catalyst, alcohol, and purification medium. The cost of input and other materials is a 

substantial part of the operating cost [28, 29]. The use of the experimental processes, also known 

as the one-variable-at-a-time (OVAT) experimental technique, is not just expensive, onerous, 

burdensome, time-consuming, requires huge laboratory architecture but also consumes a high 

volume of materials. Materials are wasted in trying to determine the optimal parameters 

combinations for best yield. These identified drawbacks can be overcome by the use of 

optimization techniques with the capability of providing the required information from minimum 

runs by concurrently altering all the process factors. The use of design-of-experiment software 

reduces experimental runs, saves time, saves raw materials, and uncovers the mutual interactions 

going on among the various process independent parameters (inputs) and dependent variable 

(output) [30-32].   

With the use of WCO as feedstock for transesterification gaining traction, the relevant 

questions that remain unanswered and which serve as the justification for this effort relate to the 

necessary conditions that facilitate the optimum biodiesel yield and catalyst recovery in the 

shortest time and lowest cost. The current study aims to use a combination of experimental and 

statistical techniques to interrogate the optimal operating parameters aimed at the 

transesterification of waste sunflower oil (WSFO) to biodiesel using calcium oxide (CaO) 

developed from calcined waste chicken eggshell (WCE) powder. The motivation is to investigate 

parameters that will ensure optimum FAME yield using both the RSM and Taguchi optimization 

methods.   

The effects and influences of catalyst concentration, catalyst particle size, methanol to waste 

oil mole ratio, experimental reaction temperature and reaction time on FAME yield and FAME 

conversion were investigated and analyzed. The specific objectives were: (i) production of 

biodiesel from WSFO using CaO derived from calcined WCE powder; (ii) evaluation of the 

effects of the listed factors of biodiesel yield; (iii) comparison of the experimental FAME yield 

with the predicted FAME yield using RSM and Taguchi methods. The parameters studied were 

catalyst: WSFO ratio (%w/w), catalyst particle size (µm), reaction temperature (°C), reaction time 
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(min) and methanol: WSFO ratio. Also, the interrelationship among these identified process 

parameters were studied using three-dimensional (3D) surface plots of RSM, ramps and other 

plots. The established models using the Taguchi orthogonal and RSM methods were appraised 

using statistical parameters including standard error, sum of squares, correlation coefficient (R), 

F- and p-values, standard deviation, coefficient of determination (R2), and adjusted R2 (𝑅𝑎𝑑𝑗
2 ).  

 

II. MATERIALS AND METHODS 

 

II.I. Materials collection 

 

Waste Sunflower oil (WSFO) sample was sourced and collected from take away outlets close to 

Howard College campus, University of KwaZulu-Natal (UKZN), Durban, at the point of disposal. 

Available information showed that the waste oil had been used repeatedly for 14 days to fry potato 

chips. WCE was collected from restaurants within Howard College, UKZN. Methanol uniVAR 

(analytical grade) at 99.5 % purity was procured from Merck.  

 

II.II. Materials treatment and preparation 

 

The WSFO was heated in an electric heated to 120 °C for 90 min to eliminate water and sieved 

via vacuum filtration to remove food particles and other solids in the oil and later analyzed to 

determine the acid value, molecular weight and iodine number. The procedure for the preparation 

CaO catalyst via high temperature calcination of WCE powder has been described in our earlier 

work [33]. The eggshell powder was classified by using sieves of different pore sizes. 

 

II.III. Transesterification process 

 

The acid value of WSFO allows for a one stage transesterification process. The filtered WSFO, 

methanol and CaO derived from WCE shell powder were emptied into a round bottom flask and 

heated to a predetermined temperature and time and mixed at a predetermined speed (rpm) 

maintained by a magnetic stirrer. A digital thermocouple was utilized to verify the temperature of 

the reacting solution throughout the duration of the experiment. Different catalyst concentrations, 

catalyst particle size, reaction temperature and methanol:WSFO mole oil ratio were used during 

each batch of the transesterification process as shown in Table 1. A medium sized magnetic stirrer 

was employed to guarantee adequate and homogeneity of the reacting mixture maintained at a 

predetermined temperature, time and stirring speed throughout the process. The resulting solution 

was thereafter filtered in a vacuum filtration set up to recover the catalyst. The filtered mixture 

was transmitted into clean separating funnel and left to stay overnight. Glycerol was seen 

coagulated beneath the separating funnel. Thereafter, the coagulated glycerol was drained out 

while the remaining crude before the crude biodiesel was decanted and transferred into a glass 

container for further purification and analysis.  

The FAME yield (%) of WSFO to biodiesel were estimated by Equation (1): 
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𝐹𝐴𝑀𝐸 𝑦𝑖𝑒𝑙𝑑 % =  
𝑊𝑒𝑖𝑔ℎ𝑡𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

𝑊𝑒𝑖𝑔ℎ𝑡𝑂𝑖𝑙
 × 100%      (1) 

 

II.IV. Modeling and optimization by RSM  

 

The optimization of biodiesel yield and catalyst recovery arising from transesterification of 

WSFO into FAME was conducted by applying the central composite design (CCD) of the 

response surface methodology version of design of experiment (DoE) available on the Design-

Expert software. The CCD of a randomized RSM is a very popular and effective optimization 

tool with full or fractional factorial point, axial point and centre point that can be duplicated for 

every combination of categorical factor level. In order to use DoE, several experiments are 

conducted to ascertain the prime factors for the best outcomes. RSM was later engaged to form a 

mathematical model to validate the outcomes of the experiments. The process parametric factors 

investigated for the optimization of the transesterification process of WSFO were catalyst weight: 

WSFO ratio, reaction time, reaction temperature, particle size of the catalyst and methanol-to-

WSFO molar ratio as shown in Table 1. A total of 24 non-center points and 6 center points and 

alpha of 2 gave rise to a total of 32 runs. The choice of this method was dictated by the number 

of variables and levels [34]. The data collected from 32 experimental runs were analyzed by RSM 

CCD by Design Expert Software10.0.8.0 version. 

 

Table 1. Investigated parameters, notations and coded levels 

Variable Units Notation Coded factors level 

-2 -1 0 1 2 

Catalyst:WSFO %w/w X1 0.5 1 1.5 2 2.5 

Particle size of catalyst µm X2 50 75 90 125 150 

Reaction time min X3 30 45 60 75 90 

Reaction temperature oC X4 35 45 55 65 75 

Methanol:WSFO ratio  X5 2 4 6 8 10 

 

II.V. Modeling and Optimization by Taguchi  

 

Application of the Taguchi orthogonal array (OA), developed by Dr. Genichi Taguchi, allows for 

the investigation of every likely permutation of parameters, minimizes the number of tests and 

identifies and quantifies the interactive impacts of the parameters on a process by substantially 

reducing the cumbersome optimization procedure. Taguchi OA reduces the number of 

experiments without negatively affecting the operating parameters while retaining all the required 

details [35, 36]. Taguchi OA allows the implementation of various design designation from L4 

(2^3), L8 (2^7) and up to L64(4^21). In this study, the L16(4^15) design was chosen which allows 

four levels and five parameters in the Taguchi technique. The number of runs, N, were estimated 

by means of Equation (2): 

 

𝑁 = (𝐿 − 1)𝑃 + 1      (2) 
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Where P and L indicate number of parameters and levels, respectively. From Equation (2), the 

number of runs, using Taguchi OA, is 16 runs.  

Table 2 shows the experimental design matrix developed by the Taguchi design. 

Experimental outcomes were analyzed via signal-to-noise (S/N) ratio for estimating the effect of 

the factors on FAME yield. The difference between the response and the anticipated result was 

calculated by S/N ratio as: 

 

𝑆

𝑁
= −10𝑙𝑜𝑔10 (

∑(
1

𝑦𝑖
2)

𝑛
)      (3) 

 

Where yi = response value, and n = number of experimental runs.   

 

Analysis of variance 

 

The evaluation, prediction and measurement of the effects of parametric factors on the 

transesterification process by determining the effects of key factors i.e. the best factor levels from 

the tested factor levels for the optimal process parameters for the transesterification process are 

conducted by analysis of variance (ANOVA) or S/N ratio. However, S/N ratio is unable to identify 

the impact of these factors on the response, unlike ANOVA. The influence of each parameter in 

generating the response can be determined by calculating the contributing factor. 

 

% 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑆𝑆𝑓)

𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑆𝑆𝑟)
 × 100 (4) 

 

ANOVA is targeted at increasing the percentage of FAME yield. The parameter with the highest 

percentage contribution factor is also reflected in the regression model equation employed to 

predict and validate the model from the RSM analysis of the actual data obtained from the actual 

experimental runs [37]. 

 

Table 2. Experimental design matrix generated by Taguchi 

Run 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 FAME 

Yield  

% 

1 1.5 75 60 65 10 85.43 

2 2 125 45 55 10 86.76 

3 2 150 60 45 8 78.32 

4 1 150 90 75 10 69.45 

5 1 90 60 55 6 82.5 

6 2.5 125 60 75 4 71.68 

7 2.5 90 75 45 10 73.78 

8 2.5 150 45 65 6 85.51 

9 2,5 75 90 55 8 70.86 

10 1.5 150 75 55 4 75.45 
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11 2 75 75 75 6 87.54 

12 1 75 45 45 4 81.66 

13 1.5 90 45 75 8 70.55 

14 1.5 125 90 45 6 84.66 

15 1 125 75 65 8 76.58 

16 2 90 90 65 4 87.54 

 

III. RESULTS AND DISCUSSIONS 

 

III.I. Response Surface Method statistical analysis 

 

Table 3 presents the results of the transesterification of WSFO to FAME using RSM via CCD 

experimental design. The experimental (actual) FAME yield varied between 69.45 % and 90.55 

%. The actual yields were evaluated to produce a suitable and workable regression model. An 

appropriate model was selected from mean, linear, quadratic, cubic, quartic etc. A cubic 

regression model was generated and employed to predict optimal parameters for the 

transesterification of WSFO to biodiesel by the software. The best fit model for FAME yield is 

as shown in Equation (5).  

 

𝑦 = 127.84 + 7.41𝑋1 − 1.86𝑋2 − 0.25𝑋3 + 0.22𝑋4 + 6.23𝑋5 − 0.11𝑋1𝑋4 + 0.028𝑋3𝑋5 −

0.019𝑋4𝑋5 − 1.38𝑋1
2 + 0.018𝑋2

2 − 0.51𝑋5
2 − 0.000051𝑋2

3  (5) 

 

Where y is the FAME yield (%), the catalyst WSFO ratio, particle size of catalyst, experimental 

reaction time, process reaction temperature, and methanol:WSFO ratio are denoted by 

𝑋1, 𝑋2, 𝑋3, 𝑋4, and 𝑋5, respectively. The interaction terms are 𝑋3𝑋5 and 𝑋4𝑋5, and 𝑋1
2, 𝑋2

2, 𝑋5
2, 

and 𝑋2
3 are quadratic (cubic) terms of the independent variables. Parameters with positive 

coefficients (linear, interaction or quadratic) have a desirable effect on FAME yield while those 

with a negative coefficient negatively affected FAME yield.  

 

Table 3. Actual and predicted of FAME yield (%) by RSM 

Run 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 
FAME yield (%)  
Actual Predicted 

1 0.5 150 30 75 10 85.43 86.34 

2 1.5 100 90 55 6 86.76 83.12 

3 2.5 150 30 75 2 78.32 79.28 

4 2.5 50 90 75 2 69.45 67.44 

5 1.5 100 60 65 6 82.5 84.74 

6 3.5 100 60 55 6 71.68 73.83 

7 0.5 50 90 35 2 73.78 73.29 

8 1.5 100 60 55 6 85.51 85.45 

9 1.5 200 60 55 6 70.86 70.86 

10 1.5 100 60 55 2 75.45 74.16 

11 0.5 100 60 55 6 87.54 86 

12 1.5 100 60 95 6 81.66 82.62 
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13 2.5 150 90 35 2 70.55 72.14 

14 0.5 50 30 35 10 84.66 87.3 

15 0.5 150 90 75 2 76.58 78.47 

16 0.5 150 90 35 10 87.54 89.85 

17 2.5 50 30 35 2 80.51 83.27 

18 1.5 100 60 55 6 90.43 85.45 

19 0.5 50 90 75 10 89.54 88.18 

20 0.5 150 30 35 2 87.59 85.13 

21 1.5 100 60 55 6 81.54 85.45 

22 2.5 150 30 35 10 90.54 86.15 

23 1.5 100 60 55 6 89.51 85.45 

24 1.5 100 60 55 6 81.87 85.45 

25 2.5 50 30 75 10 76.66 75.31 

26 1.5 100 60 55 6 87.56 85.45 

27 1.5 100 30 55 6 79.65 80.8 

28 2.5 50 90 35 10 89.65 87.99 

29 1.5 50 60 55 6 88.65 91.07 

30 0.5 50 30 75 2 90.55 89.6 

31 1.5 100 60 55 10 76.76 80.46 

32 2.5 150 90 75 10 78.67 77.86 

 

As shown in Table 3, the highest FAME yield, as predicted by RSM regression model, 

of 91.07 %, was obtained with catalyst:WSFO ratio = 1.5 %w/w, particle size of catalyst = 50 

µm, reaction time = 60 min, process reaction temperature = 55 °C and methanol:WSFO ratio = 

6:1, with reaction time being the most important parameter that influences FAME yield.  

The model equation was appraised for statistical importance using the ANOVA test, R2 

and 𝑅𝑎𝑑𝑗
2 . The accuracy, and efficiency of the regression model in predicting the response were 

tested by ANOVA and the outcomes are shown in Table 4. The F-value and p-value of the model 

was estimated to be 9.86 and < 0.0001 respectively, indicating that the model was statistically 

significant at 95 % CI level (p < 0.05) [38]. In that scenario, X1, X2, X3, X4, X4, X1 X4, X3 

X5, X1
2, X2

2, X5
2, and X2

3 are statistically significant model terms while X4 and X5 are insignificant. 

The variable X3 with the highest F-test value of 29.53, p < 0.0001 was the most statistically 

significant parameter indicating that reaction time was the most significant parameter for FAME 

yield. The F-value of 0.58 for the lack of fit denotes that it was not significant compared to the 

pure error. In addition, it was discovered that there is 80.58 % prospect that a Lack of Fit F-value 

of 0.58 could be instigated by noise. It is advantageous to have a non-significant Lack of Fit 

(Table 4). 

Table 5 depicts the outcomes of test for significance of the model. Though the standard 

error of the intercept is high, the standard errors of most of the parameters are < 1 and the degree 

of freedom (df) associated with the parameters are 1. The measure of accuracy and precision of 

the model were ascertained by the R2 and 𝑅𝑎𝑑𝑗
2  values. An R2 value of 0.8617 reveals that 86.17 

% of the entire data were consistent with the predicted data and variability [39]. 𝑅𝑎𝑑𝑗
2  of 0.7743 

indicates an acceptable fitness for the model. An adequate precision (S/N ratio) above than 4 has 

been found to be desirable and advantageous. The S/N ratio of 11.789 is a pointer to the suitability 
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of the model to traverse the design space and a further proof that the generated model is 

statistically significant [40] (Table 6). A standard deviation of 3.14 was recorded and the low 

value of coefficient of variation (CV) of 3.83 % is a sign of good accuracy and dependability of 

this model [41].   

The highest FAME production yield of 91.07 % forecasted by the RSM model was 

accomplished at a catalyst: WSFO ratio of 1.5 %w/w, particle size of catalyst of 50 µm, a reaction 

time of 60 min, a reaction temperature of 55 °C and a methanol: WSFO ratio of 6:1, with reaction 

time being the most important parameter that influenced FAME yield, as clearly displayed in 

Table 3.  

 

Table 4. ANOVA for FAME yield 

Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

Probability 

> F 

 

Model 1170.13 12 97.51 9.86 < 0.0001 significant 

Linear 

Catalyst:WSFO ratio (X1) 65.77 1 65.77 6.65 0.0184 
 

Particle size of catalyst 

(X2) 

159.62 1 159.62 16.15 0.0007 
 

Reaction time (X3) 291.98 1 291.98 29.53 < 0.0001 
 

Reaction temperature (X4) 56.33 1 56.33 5.70 0.0275 
 

Methanol: WSFO ratio 

(X4) 

145.88 1 145.88 14.76 0.0011 
 

Interaction 

X1 X4 84.09 1 84.09 8.51 0.0089 
 

X3 X5 187.14 1 187.14 18.93 0.0003 
 

X4 X5 37.70 1 37.70 3.81 0.0657 
 

Quadratic 

X1
2 53.67 1 53.67 5.43 0.0310 

 

X2
2 172.06 1 172.06 17.40 0.0005 

 

X5
2 170.97 1 170.97 17.29 0.0005 

 

X2
3 188.72 1 188.72 19.09 0.0003 

 

Residual 187.84 19 9.89 
   

Lack of Fit 116.30 14 8.31 0.58 0.8058 not  

significant 

Pure Error 71.54 5 14.31 
   

Total 1357.97 31 
    

  

Table 5. Test of significance 

Factor Coefficient 

Estimate 

df Standard 

Error 

95% CI 

Low 

95% CI 

High 

VIF 

Intercept 127.84 1 13.52 99.55 156.13 
 

Linear 

Catalyst:WSFO ratio (X1) 7.41 1 2.87 1.40 13.43 20.05 

Particle size of catalyst 

(X2) 

-1.86 1 0.46 -2.83 -0.89 1133.89 

Reaction time (X3) -0.25 1 0.046 -0.34 -0.15 3.94 

Reaction temperature (X4) 0.22 1 0.091 0.027 0.41 6.66 

Methanol:WSFO ratio 

(X5) 

6.23 1 1.62 2.84 9.63 76.71 
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Interaction 

X1 X4 -0.11 1 0.039 -0.20 -0.032 15.16 

X3 X5 0.028 1 0.0066 0.015 0.042 8.41 

X4 X5 -0.019 1 0.0098 -0.040 0.0014 12.33 

Quadratic 

X1
2 -1.38 1 0.59 -2.63 -0.14 8.78 

X2
2 0.018 1 0.0042 0.0088 0.026 4546.17 

X5
2 -0.51 1 0.12 -0.76 -0.25 65.75 

X2
3 -0.000051 1 0.000012 -

0.000075 

-

0.000026 

1242.64 

 

Table 6. ANOVA of regression equation 

Parameter  Value Parameter  Value 

Standard Deviation 3.14 R2 0.8617 

Mean 82.12 Adj R2 0.7743 

C.V. % 3.83 Predicted R2 N/A 

PRESS N/A Adequate Precision 11.789 

-2 Log Likelihood 147.45 BIC 192.50   
AICc 193.67 

 

Process parameters interactions 

 

Design expert version 10 was applied to produce 3D response surface plots in order to 

comprehend the connections, interrelationship, and interactions among the process variables 

affecting the selected process response (FAME yield) as generated by Equation 4. The response 

surface plots show the interactions, relationships and correlations of two different variables in the 

study while maintaining the other variables at a fixed value. Figure 2 shows the 3D plots with the 

y axis offset from the x axis at a value of 20.  

 

a. Influence of methanol:WSFO ratio and reaction time on FAME yield 

 

Figure 2a shows the relationship between reaction time and methanol:WSFO ratio against FAME 

yield (%) while keeping catalyst:WSFO ratio, particle size of catalyst, reaction temperature 

constant as 2.5:1 %w/w, 50 µm and 35 oC in that order. As the methanol to WSFO ratio increases 

from 2:1 to 8:1, the proportion of FAME yield increases from 70 % to 90 % but decreases to 82 

% when the methanol to WSFO ratio increases beyond 8:1. This confirms earlier reports that 

sufficient methanol to oil ratio positively impact on FAME yield in the production of biodiesel 

through transesterification reaction. A higher methanol to oil ratio will also precipitate more 

FAME formation [42]. Similarly, as the process reaction time increases from 30 min to 90 min, 

FAME yield increases. This may be attributable to sufficient contact time between the reactants 

which results in higher yield [43]. The interaction of methanol: WSFO ratio and process reaction 

time have negative impacts on FAME yield (Table 5). 

 

b. Influence of catalyst to WSFO ratio and reaction temperature on FAME yield 
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The interactions between reaction temperature and catalyst: WSFO ratio against FAME yield at 

constant catalyst particle size, reaction time, and methanol to WSFO ratio of 150 µm, 30 min and 

2:1 respectively is displayed in Figure 2b. From the plot, the highest proportion of FAME 

generation of about 92 % was achieved at 95 °C and 0.5 %w/w catalyst to WSFO ratio while the 

least FAME yield of 78 % was recorded at 95 °C and 2.5:1 catalyst: WSFO ratio. FAME yield 

decreases from 92 % to 77 % when the catalyst: WSFO improved from 0.5 %w/w to 2.5 %w/w. 

When the transesterification process reaction temperature was escalated from 35 °C to 95 °C the 

FAME production yield reduced from 84 % to 78 %. The catalyst to WSFO ratio had more of an 

effect on FAME yield than reaction temperature. The combination of these two variables had 

negative effects on FAME yield (Table 5). 

 

c. Influence of methanol to WSFO ratio and reaction temperature on FAME yield 

 

The mutual interaction between the methanol to WSFO ratio and process reaction temperature on 

FAME yield is depicted in Figure 2c. Catalyst: WSFO ratio, particle size of catalyst and reaction 

time were kept constant at 0.5 %w/w, 50 µm and 90 min respectively to adequately show the 

interaction between these two variables. As shown in Tables 4 and 5, the combination of methanol 

to WSFO ratio and reaction temperature had a negative but insignificant impact on FAME yield. 

As shown in the plot, the highest FAME yield was attained at a methanol: WSFO oil ratio of 6:1 

and reaction temperature of 95 °C, while the least FAME yield was achieved at 2:1 methanol: 

WSFO ratio and 35 °C reaction temperature. An increase in reaction temperature from 35 °C to 

88 °C resulted in a slight reduction in FAME yield from 92 % to 86 %, while an increase in 

methanol: WSFO ratio from 2:1 to 8:1 led to an increment in FAME yield from 73 % to 90 %. A 

further increment in methanol:WSFO ratio, to 10:1, however, caused a reduction in FAME yield 

to 88 %. The effect of methanol:WSFO ratio was more pronounced than that of reaction 

temperature.  
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(b) 

 
(c) 

Figure 2. 3D response surface plots for (a) methanol: WSFO ratio and reaction time (b) 

catalyst:WSFO ratio and reaction temperature (c) methanol:WSFO and reaction temperature. 

 

III.II. Taguchi method 

 

a. Analysis of variance (ANOVA) 

The outcomes and consequences of the prediction of FAME yield from the transesterification 

process using the L16 Taguchi orthogonal approach is depicted in Table 7. The F-value and the 

sum of squares are estimated and applied to determine the influence of the parameters on the 

response.  

In this study, with the sum of squares of 607.44 and mean square of 67.49, the model is 

considered significant. The F-value and p-value of 6.62 and 0.0161 respectively corroborates that 

the model generated by Taguchi method is significant. Also, the p-value shows that there is only 

1.61 % likelihood that the value of the F-value achieved occurred due to the preponderance of 

noise. Consequently, the model is considered fit and significant enough for the optimization of 

FAME yield of the transesterification process of WSFO within the selected process parameters. 

From the ANOVA study, it has been shown that only three out of the five process parameters, 
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namely, catalyst:WSFO (%w/w), reaction temperature (°C), and methanol:WSFO ratio, have a 

substantial influence on the dependent variable (response). The effects of reaction time and 

particle size of the catalyst was negligible. Among the three parameters having significant 

influence, the methanol: WSFO ratio with F-value and the sum of squares value of 7.92 and 

242.43 respectively showed the highest influence on FAME yield. The significance of each 

process parameters was further authenticated by calculating the contribution factor (CF) of each 

significant parametric factor in the process. Equation (4) was employed to calculate the 

contribution factors. The methanol:WSFO ratio, catalyst:WSFO ratio and reaction temperature 

contribute 36.26 %, 30.42 % and 24.16 % respectively to FAME yield through transesterification 

process as shown in Table 8. The contribution factor result agrees with the ANOVA result 

showing that the methanol: WSFO ratio has the highest influence on FAME yield.  

 

Table 7. Analysis of variance (ANOVA of model and process parameters 

Source Sum of 

Squares 

Degree of 

freedom 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

 

Model 607.44 9 67.49 6.62 0.0161 significant 

X1: Catalyst:WSFO 

(%w/w) 

203.43 3 67.81 6.65 0.0246 
 

X4: Reaction 

temperature ( oC) 

161.58 3 53.86 5.28 0.0404 
 

X5: Methanol:WSFO 

ratio 

242.43 3 80.81 7.92 0.0165 
 

Residual 61.21 6 10.20 
   

Total 668.64 15 
    

 

Table 8. Contribution factor the significant parameter on FAME yield 

Parameter (unit) Contribution factor (%) 

Catalyst:WSFO (%w/w) 30.42 

Reaction temperature (oC) 24.16 

Methanol:WSFO ratio 36.26 

Residual 9.15 

 

From the parameters estimated from the analysis of variance, as shown in Table 9, R2 was 

found to be 0.9085. The R2 value, being close to unity, shows its linearity and fitness for the 

selected model. The value obtained for 𝑅𝑎𝑑𝑗
2  was found to be 0.7711 while the predicted R2 was 

0.349 for the preferred model. Adequate precision is a degree of the S/N ratio and as shown in 

Table 9, the adequate precision value obtained was 7.914 which is almost double the required 

tolerable accuracy of 4 for any model. The adequate precision of 7.914 shows that the model has 

the capability to forecast the dependent variable and adequately optimize FAME yield. 

Furthermore, the standard deviation was estimated to be 3.19 while the coefficient of variance 

was 4.03 % which confirmed the capability of the model to predict the optimum parameters with 

satisfactory precision [15, 44]. 

 

Table 9. Statistical parameters estimated from ANOVA 

Parameter Value Parameter Value 

Standard Deviation 3.19 R2 0.9085 

Mean 79.27 Adjusted R2 0.7711 

C.V. % 4.03 Predicted R2 0.3490 

PRESS 435.26 Adequate Precision 7.914 

-2 Log Likelihood 66.87 BIC 94.60   
AICc 130.87 
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b. Regression model equation from Taguchi method 

 

ANOVA was used to develop a model and identify the individual parameters that were significant 

to the generation of the desired response. Significant parameters were considered and escalated 

while the insignificant parameters were relegated. The CI of the model parameters are 95 % which 

indicated a very high assurance level of the mathematical model to forecast the FAME yield. The 

Taguchi method mathematical model equation (Equation (6)) relate the three parameters that are 

significant in predicting the response.  

 

𝑦 = 79.27 − 1.72𝑋1[1] − 0.24𝑋1[2] + 5.77𝑋1[3] + 0.34𝑋4[1] − 0.34𝑋4[2] + 5.5𝑋4[3] −
0.18𝑋5[1] + 5.79𝑋5[2] − 5.19𝑋5[3]      (6) 

 

Where y = FAME yield (%), 𝑋1[1], 𝑋1[2] and 𝑋1[3] are the weight of catalyst:WSFO ratio, 

𝑋4[1], 𝑋2[2]and 𝑋4[3] are reaction temperature, and 𝑋5[1], 𝑋5[2]and 𝑋5[3] are the 

methanol:WSFO ratio as shown in Table 10.  

The degree of freedom for the model is unity while the CI is 95 % and the standard error 

of the parameters is 1.38 (Table 10). The linear regression model equation has the capacity to 

predict FAME yield using the parameters and data given in Table 2. The influence of the three 

significant parameters on the biodiesel yield is displayed in Fig 3 (a, b, c).  

 

    Table 10. Coefficients in terms of coded for categoric factors and actual for other factors 

Term Coefficient 

Estimate 

df Standard 

Error 

95% CI 

Low 

95% CI 

High 

Intercept 79.27 1 0.80 77.31 81.22 

𝑋1[1] -1.72 1 1.38 -5.10 1.66 

𝑋1[2] -0.24 1 1.38 -3.63 3.14 

𝑋1[3] 5.77 1 1.38 2.39 9.16 

𝑋4[1] 0.34 1 1.38 -3.05 3.72 

𝑋4[2] -0.37 1 1.38 -3.76 3.01 

𝑋4[3] 4.50 1 1.38 1.11 7.88 

𝑋5[1] -0.18 1 1.38 -3.57 3.20 

𝑋5[2] 5.79 1 1.38 2.40 9.17 

𝑋5[3] -5.19 1 1.38 -8.57 -1.81 

    [1], [2] and [3] represent first, second and third level respectively 

 

III.III. Effect of individual significant parameters on FAME yield predicted by Taguchi method 

 

Three process parameters have significant influence on FAME yield as predicted by Taguchi 

method. The three parameters are represented in Equation (6) while their individual contribution 

factors are shown in Table 8.  

 

a. Effect of catalyst:WSFO ratio 

 

At reaction time of 45 min, catalyst particle size of 125 µm and reaction temperature of 55 °C, 

the effect of catalyst:WSFO ratio was measured. As shown in Fig 3a, maximum FAME yield of 

84 % was attained with a catalyst:WSFO ration of 2:1. A higher concentration of the resulted in 

a drastic reduction in FAME yield. This may be a direct consequence of excessive catalyst loading 

which could accelerate the reverse reaction during transesterification. Comparable outcomes have 

earlier been reported by Sirisomboonchai et al. [45] and Gupta and Ratho [46]. 

 

b. Effect of reaction temperature 

 

The proportion of FAME yield was studied at four different temperature levels, namely 45 °C, 55 

°C, 65 °C and 75 °C. As shown in Fig 3b the maximum FAME yield of 89 % was accomplished 
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at a reaction temperature of 65 °C when the catalyst: WSFO ratio, catalyst particle size, reaction 

time and methanol: WSFO ratio were maintained at 2:1 %w/w, 125 µm, 45 min and 10:1 

respectively. A further improvement of the reaction temperature to 75 °C reduced the FAME yield 

to 80 %. This is due to the fact that at high temperatures methanol is lost due to evaporation and 

this impedes the transesterification reaction which alters the methanol to oil ratio resulting in 

saponification. Reaction temperature above methanol boiling point (65 °C) is counterproductive 

[47, 48]. Outcomes of previous research by Maneerung et al. [49], Dhawane et al. [15], Karmakar 

et al. [14] supported the results of this study in this regard. 

 

c. Effect of methanol:WSFO ratio 

 

Methanol: WSFO ratio is the most important factor in FAME yield (Table 8). Under the reaction 

conditions of catalyst: WSFO ration of 2 %w/w, catalyst particle size of 125 µm, reaction time of 

45 min, and reaction temperature of 55 °C, the highest FAME yield of 90 % was obtained at a 

methanol: WSFO ratio of 6:1. Theoretically, a methanol: oil ratio of 3:1 is a prerequisite to 

producing biodiesel and water. However, careful adjustment of molar ratio can result in optimum 

use of alcohol and formation of more product. Excessive methanol to oil ratio impedes FAME 

yield, especially when the catalyst concentration is kept constant [50, 51]. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) Effect of catalyst: WSFO ratio (%w/w), (b) reaction temperature (°C), and (c) 

methanol:WSFO ratio of FAME yield (%) 
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In this present study, the outcome of prediction of FAME yield using RSM optimization technique 

was compared with that of Taguchi OA method. The results of the two optimization techniques 

are similar and in agreement. Both techniques threw up the significant parameters for the 

prediction of FAME yield with the set factors and levels. The two techniques formulated model 

equations based on the significant factors they predicted. There are agreements in the parameters 

that RSM and Taguchi method found to be significant to the models. In this regard, catalyst: 

WSFO ratio, reaction temperature, and methanol: WSFO ratio were found to be dominant. In 

terms of number of data, the Taguchi method required lesser experimental data and always 

utilized linear regression, while RSM could also use quadratic or cubic regression [9, 52]. 

As shown in Fig 4a and Fig 4b, the pattern of the predicted and actual FAME yield was 

similar, indicating agreement between the two optimization techniques [14, 53]. As shown in Fig 

5, the actual and RSM predicted data agreed to a large extent, indicating the accuracy of RSM in 

predicting the response. However, more pronounced deviations between the actual and predicted 

yield were noticed between runs 17 and 24. This can be attributed to the outcome of the different 

interactions among the process parameters. The lower and upper constraints of the range for all 

the investigated process parameters were contained in the optimization process. With the FAME 

yield maximized, the optimal value of the parametric factors which engender a desirability 

function of unity are shown in Fig 6a and Fig 6b. Maximized FAME yields of 93.42 % and 89.13 

% were obtained from the RSM and Taguchi orthogonal methods respectively. The desirability 

function of the RSM and Taguchi method were within the span of the optimum operating process 

conditions for the response within the range of level of factors. The import of the desirability 

function was to obtain an optimal response from the model. Table 11 presents a comparison 

between the outcomes of the utilization of the response surface methodology and Taguchi 

methods to optimize FAME yield. While the RSM models obtained five significant parameters 

that can influence FAME yield, Taguchi presented only three. The Optimum FAME yield 

predicted by RSM was higher than that predicted by Taguchi. The parameter which had the 

highest influence on FAME yield according to RSM and Taguchi were reaction time and 

methanol: WSFO ratio respectively.  

 

(a)  (b)  

Figure 4. Predicted vs actual FAME yield (a) RSM (b) Taguchi method 
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Figure 5. A plot of FAME yield (%) against actual and RSM predicted data 

 

(a) 

 

(b) 

Figure 6. The optimal reaction condition through (a) RSM, (b) Taguchi method 
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Table 11. Comparison of Optimum conditions for RSM and Taguchi 

Criteria  RSM Taguchi 

Catalyst:WSFO ratio (%w/w) 1.5:1 1:1 

Reaction temperature (°C)     55 75 

Reaction time (min) 60 45 

Particle size of catalyst (µm)             50 45 

Methanol:WSFO ratio 6:1 4:1 

Predicted highest FAME yield (%) 91.07 61.16 

Significant parameters • Catalyst:WSFO ratio 

(%w/w) 

• Methanol:WSFO 

ratio  

• Reaction time (min) 

• Reaction temperature 

(°C) 

• Particle size of 

catalyst (µm) 

• Reaction 

temperature (°C) 

• Catalyst:WSFO 

ratio (%w/w) 

• Methanol:WSFO 

ratio  

 

Most significant parameter Reaction time Methanol:WSFO ratio 

No of runs 32 16 

R2 0.8617 0.9085 

𝑅𝑎𝑑𝑗
2  0.7743 0.7711 

C V (%) 3.83 4.03 

 

IV. CONCLUSION 

 

In this study, the RSM and Taguchi orthogonal methods, both from Design Expert version 10, 

were adapted to model and optimize the transesterification of WSFO using WCE powder prepared 

through high temperature calcination. Using the statistical parameters of R2, 

𝑅𝑎𝑑𝑗
2 , 𝐶𝐹, and 𝐶𝑉, the outcome of RSM and Taguchi predictions were compared to establish 

which was the more accurate and cost effective method between the two. The following outcomes 

are worth highlighting: 

i. The models generated by the RSM and Taguchi methods were significant and the model 

equations derived therefrom predicted FAME yield within acceptable error. 

ii. The optimum FAME yield predicted by RSM was higher than that predicted by Taguchi, 

showing RSM to be a better optimization technique.  

iii. RSM predicted FAME yield of 91.07 % with optimum operation condition of 1.5 %w/w 

catalyst:WSFO ratio, process time of 60 min, catalyst particle size of 50 µm, reaction 

temperature of 55 °C and methanol:WSFO ratio of 6:1. Taguchi, on the other hand, 

predicted a FAME yield of 61.16 % under optimum operating parameters of 1.1 %w/w 

catalyst to WSFO ratio, reaction time of 45 min, reaction temperature of 45 °C, 75 µm 

catalyst particle size and methanol:WSFO ratio of 4:1. 

iv. The five tested parameters were discovered to be significant by the RSM model with 

reaction time (min) predicted as the most statistically significant parameter. Of the three 

parameters predicted to be significant by Taguchi method, methanol: WSFO ratio was the 

most significant since it had the highest F-value. 
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v. From the analysis of variance for FAME yield, both the R2 and 𝑅𝑎𝑑𝑗
2  showed that the models 

were validated and consistent with the predicted value confirming the acceptability and 

adequacy of the models. 

vi. Though RSM was found to be more accurate, the Taguchi method with 16 runs was 

observed to be more cost effective and less time consuming than RSM with 32 runs. 

 

From the foregoing, it is safe to conclude that both the RSM and Taguchi methods are 

useful, efficient, and effective for the optimization of FAME yield in a transesterification process 

of waste sunflower oil. RSM is more reliable especially in handling more parameters with 

nonlinear relationship among the process parameters and response because it predicted higher 

yield and more value for money. However, Taguchi is more cost effective in the handling 

processes with a linear relationship between the parameters and the response.  
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Abstract: The quest for renewable, cost-effective, environmentally friendly and sustainable 

alternative fuels to run compression ignition (CI) engines has escalated the tempo of research in 

biodiesel over the last decades. Investigations targeted towards improving combustion, engine 

performance, and emission characteristics of CI engines fuelled with fatty acid methyl ester 

(FAME) have increased substantially in recent years. Properties of biodiesel are key parameters 

in the engine performance, emission characteristics, and its suitability as CI engine fuel, which 

are influenced by its fatty acid (FA) compositions. In order to overcome the complexities in the 

real-time experimental determination of biodiesel properties, prediction techniques have been 

used. This current effort explores multiple linear regression (MLR) to formulate linear 

correlations for the prediction of the density, cetane number (CN), calorific value (CV), and 

kinematic viscosity (KV) of biodiesel using five commonest FAs (palmitic, stearic, oleic, linoleic 

and linolenic). Input data were sourced from literature to formulate linear relations for these 

interesting FAME fingerprints and the outcome subjected to statistical analysis. The predictive 

capabilities of the models were verified using other experimental data mined from various 

sources. The outcomes of the analysis show that the adjusted R square and maximum absolute 

errors are 83 % and 0.35 % for density, 84.3 % and 1.72 % for CN, 43 % and 0.98 % for CV, and 

68.3 %, and 4.33 % for KV. It is evident that linear correlations established from five FAs are 

highly successful in predicting density, CN, CV and KV of biodiesel from a wide range of 

feedstocks 

Keywords: FAME, fatty acid compositions, linear correlations, property prediction 

 

1. INTRODUCTION 

As a result of the global population explosion, rapidly expanding urbanization, industrial 

revolution and economic development, global energy demand and consumption has continued to 

increase, with a huge chunk of the energy sourced from nonrenewable sources. Fossil fuel 

contributed 86.9 %, 82.67 % and 85 % to the global energy consumption in 2010, 2013, and 2016 

respectively. Similarly, in 2013, crude oil and coal contributed 30.92 % and 28.95 % to global 

energy consumption while the figure became 33 % for crude oil and 28 % for coal in 2016 [1]. 

Over the past 15 years, oil has contributed a third of the global energy consumption, closely 

followed by coal and natural gas, in that order [2]. Products of refining of fossil fuels are used to 

power internal combustion engines, particularly compression ignition (CI) engines, have found 

invaluable usefulness in our daily life and continue to contribute significantly to industrial growth, 

economic and commercial growth, agricultural sector development, social and household needs, 
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as well as transportation of goods and services. Generally, global primary energy consumption 

has continued to increase and has projected to continue to increase (Figure 1) [3]. 

 

 

 

Figure 1. Global Total Primary Energy Consumption by fuel 

Transport sector consumes about 28 % of total global energy and contributes 24 % of global 

carbon dioxide (CO2) emissions in the year 2016 [4]. According to the United States 

Environmental Protection Agency [5], transport vehicles contributed 71 % of total greenhouse 

gas emissions globally in 2010. The panacea to this disturbing trend is to develop cleaner and 

affordable alternative fuels to reduce dependence on fossil fuels, guarantee amicable coexistence 

of human and environment and ensure sustainable economic growth. Reducing the use of fossil-

based fuel will ensure that air quality, particularly around high-density traffic residential areas, is 

maintained within the World Health Organization standards to safeguard human health and 

maintain environmental clemency [6].   

Biodiesel, a renewable fuel, comprised of mono-alkyl/methyl esters of long chain fatty acids 

obtained from various feedstocks including neat vegetable oils, used vegetable oils, microalgae, 

animal fats, etc. Biodiesel, also known as fatty acid methyl ester (FAME), are generated by 

various techniques, including, pyrolysis, dilution or blending of oils, micro-emulsification and 

transesterification and are dried to ensure compliance with standards. Internationally acceptable 

specifications for FAME are well documented in the American Standard for Testing and Materials 

(ASTM) and European Union (EN) documents, like ASTM D6751 and EN 14214 respectively. 

Different countries set up their own standards from these two standards as it relates to their 

peculiar geographical locations and in line with international protocols [7-9]. According to the 

United States Energy Information Administration, global biodiesel generation grew from 25.46 

thousand barrels per day (mbpd) in 2002 to 123.9 mbpd in 2006 and further to 432.9 mbpd in 

2012. Consumption was reported to be 22.26, 118.1, and 419.9 mbpd in 2002, 2006 and 2012 

respectively and still increasing [10]. Replacement of petroleum-based diesel (PBD) fuel with 

biodiesel offers technical, economic, sanitation, and economic benefits, notably simpler refining 

process, cheaper feedstock, veritable means of waste disposal, better engine performance and 
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reduction in the emission of GHGs and other hazardous gases. FAME is considered to be the most 

widely used liquid renewable fuel in Europe, accounting for about 80 % of biofuel market share, 

owing to its non-toxicity, biodegradability, and renewability [11].  

There is a near consensus among fuel refiners, and engine researchers on the importance of fuel 

properties in determining fuel quality, fuel mixing, ease of ignition, fuel combustion, and other 

activities in the combustion chambers. Properties like oxygen content, density, cetane number 

(CN), kinematic viscosity (KV), flash point (FP), cold filter plugging point (CFPP), cloud point 

(CP), heating values (HHV), pour point (PP) have been highlighted to influence fuel quality, 

handling, safety, transportation, combustion, engine performance and emission characteristics 

[12, 13]. Fatty acid (FA) compositions of FAME have been an important factor in the 

determination of its fingerprint properties, quality, storage capacity, engine performance, and 

emission characteristics. Put modestly, FA composition determines the properties of FAME. 

Experimental, numerical, simulation and statistical investigations have been used to exploit the 

nexus between FA composition of biodiesel and some of its properties to predict these important 

properties. Specifically, cold flow properties, KV, CN, and other biodiesel fingerprint are 

significantly influenced by fatty acid composition, branching, chain length, number and position 

of double bonds. Samavi et al. [14] predicted the KV and FP of FAME as a function of its FA 

composition and verified the outcome with experimental data. Giakoumis and Sarakatsanis [15] 

estimated the CN, KV, and density of biodiesel from its FA compositions. The outcomes of the 

predictions were compared with experimental value given rise to the low value of relative error. 

Multiple Linear regression (MLR) analysis have been employed to develop compositional-based 

models to predict biodiesel properties from various feedstocks with considerable accuracy 

because the derived correlations possess sound theoretical basis [16-19]. Statistical investigations 

were successfully carried out to predict the density, CN, KV, FP, CFPP, CP and PP of FAME 

based on the degree of saturation and FA composition [19]. MLR, Artificial neural network 

(ANN), and other machine learning techniques were used to forecast the properties of FAME 

based on their FA compositions. The outcome of the investigations shows that these techniques 

are able to predict some important properties of the FAME samples [18, 20-22].   

In determining the most occurring FAs in biodiesel, FA composition of 123 samples of biodiesel 

were studied from various literature and were found to comprise of 13 methyl esters, namely: 

palmitic acid (C16:0), stearic (C18:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic acid 

(C18:3), arachidic acid (C20:0), palmitoleic acid (C16:1), lauric acid (C12:0), myristic acid 

(C14:0), eicosenic acid (C20:1), behenic acid (C22:0), erucic acid (C22:1), and lignoceric acid 

(C24:0).  Available information shows that C16:0, C18:0, C18:1, C18:2, and C18:3 are the most 

common FAs in the biodiesels [20, 23-25].  

With the increased visibility of compositional-based models for the prediction of major FAME 

properties, the relevant questions begging for informed answers and which serve as the motivation 

for this effort is whether biodiesel properties can be accurately predicted using linear correlations 

developed from five methyl esters. The aim of this investigation, therefore, is to use multiple 

linear regression techniques to formulate predictive correlations based on five methyl esters to 

predict density, CN, and KV. The predictive capability of MLR derived-correlations for 
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fingerprint prediction using compositional-based models using five methyl esters as inputs will 

be tested and verified from data mined from literature. This current effort will be limited to the 

application of MLR to predict the density, CN, and KV of unblended FAME derived from various 

feedstocks using C16:0, C18:0, C18:1, C18:2, and C18:3. 

 

2. MATERIALS AND METHOD 

Inputs for the formulation of a reliable correlation for the prediction of biodiesel properties based 

on weight composition of five methyl esters requires a large and widely spread experimental data 

reported in the literature for the correlations to have a broad-based effect, irrespective of the type 

of feedstock, location, production technique, and purification methods [15, 26, 27]. The chosen 

five fatty acids have been found to occur in most of the GCMS analysis of biodiesels, cutting 

across saturated, monounsaturated, and polyunsaturated fatty acids. The general equation adopted 

for the MLR analysis is given by Equation 1. The predicted data for each property are plotted 

against the experimental data to appraise the predictive capability of the model using statistical 

indices. The correlations are used to predict the outcome of another set of data from the literature, 

different from the data used to formulate the correlation and the absolute errors calculated. 

   y = A +  a1X1 + a2X2 + a3X3 + a4X4 + a5X5       (Equation 1) 

Where: 

− y = the dependent variable to be predicted   

− A = the intercept 

− a1 to a5 = the coefficients of each independent variable  

− X1 to X5 = the percentage composition of each FA in the sample 

For this analysis, 1 to 5 represent C16:0, C18:0, C18:1, C18:2, and C18:3 respectively which 

represent the independent variables. 

3. RESULTS AND DISCUSSIONS 

3.1 Density 

The density of a material, measured in kg/m3, is expressed as the mass per unit volume of the 

material. The quantity of fuel admitted into the combustion chamber is influenced by the density 

of the fuel, an indication that density has a direct impact on the fuel injection process, combustion, 

engine performance, and emission characteristics of FAME. Density also has strong correlations 

with KV, CN, and heating value affect the air-fuel ratio and energy content of fuel injected into 

the engine, degree of saturation, number of double bonds, molecular weight, and chain length [28, 

29].    

The data for the generation of the model were sourced from various literature [15, 27, 30]. The 

MLR model equation is as represented by Equation 2 while table 1 shows the independent 

variables, the experimental dependent variables, and the predicted density. The predicted data is 

generated by the linear correlations among the FA compositions.     

Density = 914 − 0.52X1 − 0.54X2 − 0.34X3 − 0.25X4 − 0.14X5  (Equation 2) 



 

113 

 

The intercept value of 914 achieved by this effort is comparably higher than 869 reported by 

Giakoumis [19] but lower than the 923 established by Giakoumis and Sarakatsanis [15] for 

comparable investigations. The statistical indices show that the R-value is 0.927 while the R2 of 

0.859 shows that the predicted dependent variable can be attributed to 85.9 % of the independent 

variables in 30 observations (table 2).  A standard error of 1.9 is suggestive of a satisfactory 

correlation between the model equation and the experimental data, confirming the capability of 

the model equation to adequately predict the dependent variable. 

The model was tested on a new set of experimental values, different from those used in table 1, 

in order to ascertain the predictive reliability of the model using equation 2. As shown in table 3, 

a negligible error was established, with a maximum of 0.35 %.  The predictive capability of the 

model is shown by plotting the experimental data with the predicted data (Figure 2). The 

predictive capability of this model gave a higher R2-value than the outcome of a similar prediction 

by Pratas et al. [31].   

Table 1: Data for Density prediction 

S/N Source C16:0 C18:0 C18:1 C18:2 C18:3 Exp. Density Pred. Density 

1 Beef tallow 24.39 19.08 41.65 5.91 0.72 874.3 875 

2 Canola 4.51 2 60.33 21.24 9.49 881.6 883.3 

3 Chicken fat 24.06 6.42 41.43 18.83 1.06 876.3 878.9 

4 Corn 11.81 2.13 27.35 57.74 0.63 882.2 882.8 

5 Cottonseed 25.93 1.74 15.98 55.12 0.16 879 880.2 

6 Croton 7.25 3.43 10.8 77.25 5.4 883.2 884.6 

7 Hazenut 6.36 3.71 79.17 10.67 0.15 877.9 879 

8 Jatropha 14.42 5.82 42.81 35.38 0.23 878.7 879.8 

9 Karanja 10.89 7.89 53.56 21.34 2.09 882.9 880.1 

10 Linseed 5.18 3.26 19.04 16.12 54.54 891.5 891.1 

11 Mahua 22.23 22.49 39.01 14.87 0.1 874.5 873 

12 Neem 17.57 16.6 45.83 17.79 0.72 876.2 875.5 

13 Olive 11.47 2.83 74.52 9.54 0.51 881.2 878.6 

14 Palm 42.39 4.2 40.91 9.7 0.29 874.7 873.1 

15 Peanut 10.33 2.79 47.63 31.52 0.64 882.9 882.8 

16 Rapeseed 4.07 1.55 62.24 20.61 8.72 882.2 883.4 

17 Rice barn 18.12 2.17 42.35 34.84 0.93 880.9 880 

18 Rubber seed 9.39 9.41 24.22 38.12 17.54 882.3 883.6 

19 Safflower 7.42 2.38 14.41 75.31 0.09 883.8 885.1 

20 Soybean 11.44 4.14 23.47 53.46 6.64 882.8 883.4 

21 Sunflower 6.26 3.93 20.77 67.75 0.15 882.9 884.5 

22 Soybean 15.69 6.14 42.84 29.36 2.03 880.6 880.2 

23 Sunflower 25.1 13.23 44.36 12.06 1.18 873 875.3 

24 Karanja 10.74 6.8 50.24 17.21 3.47 880.5 882.7 

25 Karanja 8.38 5.32 40.54 14.91 2.84 890.6 888.7 

26 Ibicella lutea 9.1 2.33 52.36 35.88 0.33 882.4 881.1 

27 Onopordum 

nervosum 

9.08 2.57 27.02 60.34 10.23 885.4 882.1 

28 Peganum harmala 4.02 2.57 26.93 53.62 2.44 890.1 887.5 

29 Smymium olusatrum 5.26 1.07 74.14 14.1 0.48 880.3 881.8 

30 Solanum 

elaeagnifolium 

9.86 4.24 20.92 63.32 1.07 885.9 883.4 
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Table 2: Statistical indices of the MLR model for density  

Regression Statistics  

Multiple R 0.927 

R2  0.859 

Adjusted R2  0.83 

Standard Error 1.9 

Observations 30 

 

Table 3: Density model verification  

Biodiesel Ref Exp. value Pred. value Error (%) 

RME [32] 882 882.81 0.09 

SFME [32] 885 884.82 0.02 

SME [32] 886 883.4 0.29 

CSME [32] 882 879.06 0.33 

HME [33] 874.07 877.11 0.35 

PBME [34] 869.5 867.96 0.18 

JBME [34] 880.3 879.19 0.13 

ALBME [34] 875.7 877.04 0.15 

 

 

Figure 2. The predictive capability of the density model 

3.2 Cetane Number 

Cetane number (CN) is a dimensionless parameter and one of the most important properties of 

fuel that relates to its self-ignitability and ignition delay characteristics in CI engines. FAME 

structure, FA composition, number and position of double bonds, chain length, degree of 

saturation/unsaturation, boiling point, the heat of vaporization, the heat of combustion, etc have 

been reported to substantially affect CN. Engine combustion noise level, vibration, heat release 

rate, engine performance and generation of pollutants are influenced by the CN of FAME. Higher 

CN is believed to be a precursor for less ignition delay time, lower combustion noise, higher 

power, as well as less emission of soot, NOx, CO, and SO2  [35, 36]. 
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Bamigboye and Hansen [16], Tong et. al. [37], Ramadhas et al.[38], Gerhard Knothe [39] and 

Piloto-Rodríguez et al. [18] among other researchers have estimated CN using a percentage of FA 

compositions as inputs by MLR/ANN or both but with a higher number of methyl esters (> 5 

methyl esters). This present effort is limited to the use of the five most common FAs as input. 

The general linear regression equation (equation 1) is transformed into Equation 3 through MLR 

for the prediction of the CN. The intercept value of 61.84 is comparable with values of 61.1 

predicted by Bamigboye and Hansen [16], and 62.2 predicted by Gopinath et al. [17]. 

Cetane number = 61.84 + 0.07X1 + 0.01X2 − 0.05X3 − 0.22X4 − 0.51X5 (Equation 3) 

Table 4 shows the FA and cetane number measured from experimental data sourced from 

literature [19, 37] and the dependent output predicted by the model. A total of 30 input data was 

used to generate the model. The source of the data covers a wide range of feedstock type to ensure 

the model has a wide range of applications in view of the variability of CN with feedstock type. 

Table 6 illustrates the statistical indices of the model. The developed model was found to be 

significant and competent to adequately predict the dependent variable. The R-value of 0.918 and 

R2 value of 0.843 indicating that 84.3 % of the independent variable determined the outcome of 

the model. A standard error of 2.55 displays a good statistical correlation between the model 

equation and the experimental data. 

Table 4. Measured and predicted data for Cetane number  

S/N Source C16:0 C18:0 C18:1 C18:2 C18:3 Exp. CN Pred. CN 

1 Aphanamixis polystachya Park 23.1 12.8 21.5 29 13.6 48.52 49.5 

2 Azadirachta indica 14.9 14.4 61.9 7.5 0 57.83 58.68 

3 Moringa oleifera Lam 9.1 2.7 79.4 0.7 0.2 56.66 58.67 

4 Mesua ferrea Linn 10.8 12.4 60 15 0 55.1 56.8 

5 Corylus avellana 3.1 2.6 88 2.9 0 54.5 57.44 

6 Basella rubra Linn 19.7 6.5 50.3 21.6 1.1 54 55.83 

7 Ervatamia coronaria Stapf 24.4 7.2 50.5 15.8 0.6 56.33 57.7 

8 Aleurites moluccana wild 5.5 6.7 10.5 48.5 28.5 34.18 36.75 

9 vallaria solanacea Kuntzc 7.2 14.4 35.3 40.4 0 50.26 52.15 

10 Holoptelia integrifolia 35.1 4.5 53.3 0 0 61.22 62.08 

11 Mappia foetida Milers 7.1 17.7 38.4 36.8 0 50.7 52.83 

12 Swietenia mahagoni Jacq 9.5 18.4 56 0 16.1 52.26 52.02 

13 madhuca indicai JF Gmel 17.8 14 46.3 17.9 0 56.61 57.34 

14 Anamirta cocculus Wight & Hrn 6.1 47.5 46.4 0 0 64.26 60.8 

15 Broussanetia papyrifera Vent 4 6.1 14.8 71 1 41.25 45.56 

16 Beef tallow 24.39 19.02 41.65 5.91 0.72 60.9 60.35 

17 Canola 4.51 2 60.33 21.24 9.49 54.8 49.97 

18 Chicken fat 24.06 6.42 41.43 18.83 1.06 57 57.18 

19 Coconut 9.69 0 2.83 6.83 0 61 60.95 

20 Corn 11.81 2.13 27.35 57.74 0.63 52.5 48.6 

21 Cottonseed 25.93 1.74 15.98 55.12 0.16 53.3 50.98 

22 Hazelnut 6.32 3.71 79.17 10.67 0.15 53.8 56.33 

23 Jatropha 14.42 5.82 42.81 35.38 0.23 55.7 53.21 

24 Karanja 10.89 7.89 53.56 21.34 2.09 55.4 54.59 
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25 Mahua 22.23 22.49 39.01 14.87 0.1 56.9 58.72 

26 Olive 11.47 2.83 74.52 9.54 0.51 58.9 56.98 

27 Palm 42.39 4.2 40.91 9.7 0.29 61.2 60.93 

28 Peanut 10.33 2.79 47.63 31.52 0.64 54.9 53.27 

29 Rapeseed 4.07 1.55 62.24 20.61 8.72 54.1 50.38 

30 Waste cooking 15.69 6.14 42.84 29.36 2.03 56.2 53.7 

The model was tested to predict the CN of other reported experimental data available in the 

literature, apart from those used in table 4, as a way to verify the predictive capability of the 

model. As shown in table 6, the highest error obtained was 1.72 % which can be adjudged a good 

result considering the wide variability of the feedstock. Figure 3 shows the plot of experimental 

data against predicted data to show the predictive capability of the model.  

Table 5: Statistical indices of the MLR model for Cetane number 

Regression Statistics 

Multiple R 0.918 

R Square 0.843 

Adjusted R Square 0.81 

Standard Error 2.55 

Observations 30 

 

Table 6. Cetane number model verification  

Source Ref. Exp. value Pred. value Error (%) 

HME [33]  55.66 55.79 0.23 

JBME [34] 53.50 53.67 0.32 

ALBME [34] 55.50 55.11 0.72 

Madhuca butyracea Mac [37] 65.27 64.46 1.26 

Basella rubra Linn [37]  56.33 56.99 1.15 

Ervatamia coronaria Stapf [37]  56.33 57.31 1.72 

 

 

Figure 3. The predictive capability of the cetane number model 
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3.3 Kinematic viscosity 

Kinematic Viscosity (KV) is a degree of the resistance of fluid flow as a result of the internal 

friction of a layer of fluid flowing over another layer and has been found to affect fuel injection, 

fuel atomization, among other critical fuel behavior properties. The high value of KV predisposes 

the fuel into large droplet size, enhanced polymerization reaction, more carbon deposits, poorer 

vaporization, small injection spray angle, and better in-cylinder penetration of the fuel spray. 

Increased KV often leads to weaker fuel combustion, higher oil dilution, and increased emission 

of smoke and other pollutants. KV is closely related to density, specific gravity, degree of 

unsaturation, location of double bonds, and molecular weight [40, 41]. At low temperatures, fuels 

with high KV pose critical challenges while too low KV can cause insufficient lubrication in fuel 

pumps, increased leakage and wear [42].   

The model correlation is as shown in Equation 4 is arrived at from the general format stated in 

Equation 1. The model is significant and sufficient to predict the dependent variable within an 

acceptable standard. Table 7 depicts the FA composition, the experimentally measured KV 

sourced from literature, and the MLR predicted data. With the R2 of 0.683, 68.3 % of the 

independent variable contributed to the prediction of the dependent variable. The R-value of 0.83 

and standard error of 0.33, though with five methyl esters, is comparable to the outcome of similar 

research by Giakoumis and Sarakatsanis [15] with eight methyl esters.   

Kinematic Viscosity = 1.22 + 0.03X1 + 0.07X2 + 0.04X3 + 0.03X4 + 0.02X5  (Equation 4) 

Compared with the capability of MLR to predict CN, the model was not as accurate as of that of 

CN but was significant enough to predict the dependent variable within reasonable error. The 

predictive capability of the model was tested with experimental data, apart from the data used in 

table 7 and the outcome of the verification of the predictive capability model is shown in table 9. 

The model verification presented a maximum error of 4.33 %. Though this current presented 

higher error figures compared with absolute error for density and CN in the preceding sections, it 

is however lower than similar results available in the literature. 

Table 7. Experimental and predicted data for kinematic viscosity  

S/N Source C16:0 C18:0 C18:1 C18:2 C18:3 Exp. KV Pred. KV 

1 Beef tallow 24.39 19.08 41.65 5.91 0.72 4.83 4.96 

2 Canola 4.51 2 60.33 21.24 9.49 4.4 4.48 

3 Chicken fat 24.06 6.42 41.43 18.83 1.06 4.81 4.44 

4 Corn 11.81 2.13 27.35 57.74 0.63 4.32 4.26 

5 Cottonseed 25.93 1.74 15.98 55.12 0.16 4.7 4.19 

6 Croton 7.25 3.43 10.8 77.25 5.4 4.48 4.23 

7 Hazenut 6.36 3.71 79.17 10.67 0.15 4.55 4.84 

8 Jatropha 14.42 5.82 42.81 35.38 0.23 4.72 4.56 

9 Karanja 10.89 7.89 53.56 21.34 2.09 5.04 4.65 

10 Linseed 5.18 3.26 19.04 16.12 54.54 4.06 4.06 

11 mahua 22.23 22.49 39.01 14.87 0.1 5.06 5.25 

12 Neem 17.57 16.6 45.83 17.79 0.72 4.72 5.05 

13 Olive 11.47 2.83 74.52 9.54 0.51 5.05 4.75 

14 Palm 42.39 4.2 40.91 9.7 0.29 4.61 4.60 

15 Peanut 10.33 2.79 47.63 31.52 0.64 4.77 4.31 

16 Rapeseed 4.07 1.55 62.24 20.61 8.72 4.63 4.47 

17 Rice barn 18.12 2.17 42.35 34.84 0.93 4.7 4.42 

18 Rubber seed 9.39 9.41 24.22 38.12 17.54 4.79 4.46 
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19 Safflower 7.42 2.38 14.41 75.31 0.09 4.1 4.11 

20 Soybean 11.44 4.14 23.47 53.46 6.64 4.29 4.28 

21 Sunflower 6.26 3.93 20.77 67.75 0.15 4.53 4.22 

22 RME 3.57 0.87 65.18 22.27 8.11 4.556 4.55 

23 SMEA 10.49 4.27 24.2 51.36 7.48 3.67 4.25 

24 SMEB 10.81 4.54 24.96 50.66 7.27 4.41 4.28 

25 GMSME 3.97 2.99 82.54 4.98 3.7 4.87 4.77 

26 YGME 17.44 12.38 54.67 7.96 0.69 5.02 4.82 

27 GP 10.57 2.66 41.05 36.67 7.1 3.96 4.36 

28 PBME 38.1 4.1 44.2 11 0.3 4.56 4.61 

29 JBME 17.1 6.4 41.8 32.9 0.2 4.27 4.58 

30 Coconut 13.83 3.94 14.3 4.73 0 2.45 2.52 

31 Cottonseed 24.09 2.56 15.74 56.99 0 3.99 4.22 

32 ALBME 14.8 16 41.3 26.6 0.2 5.38 4.97 

33 Soy A 16.18 3.82 28.2 50.46 0 3.74 4.34 

34 Rapeseed 5.26 1.63 62.94 20.94 6.99 3.942 4.51 

35 Soy B 10.18 3.82 28.5 35.46 0 3.96 4.34 

 

Table 8: Statistical indices of the MLR model for kinematic viscosity 

Regression Statistics 

Multiple R 0.83 

R Square 0.683 

Adjusted R Square 0.629 

Standard Error 0.33 

Observations 35 

 

Table 9. Kinematic viscosity model verification  

Source Ref. Exp. value Pred. value Error (%) 

Rapeseed [43] 4.67 4.84 3.57 

POME [44] 4.61 4.79 3.72 

Soybean [45] 4.04 4.2 3.86 

Sunflower [45] 4.55 4.61 1.24 

Jatropa curcas [45] 4.46 4.28 4.33 

 

 

Figure 4. The predictive capability of the Kinematic viscosity model 

3.4 Calorific Value 

The calorific value (CV) of a fuel is a measure or degree of its heating capacity. A CV is measured 

in kilojoule per kg (kJ/kg) and is commonly defined as the quantity of energy generated by the 
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complete combustion of a known volume of fuel under stipulated conditions. The gross calorific 

value, also known as higher heating value (HHV) is measured of the fuel’s heat of combustion 

when the water’s heat of combustion is completely condensed and the heat contained in the water 

vapor is fully retrieved [46]. The net calorific value, also known as the lower heating value (LHV) 

is measured when the product of the fuel’s combustion includes water vapor and the heat in the 

water vapor is not retrieved. The difference between the HHV and LHV is termed the heat of 

vaporization of water. FAME is reputed to contain higher oxygen content than petroleum-based 

diesel fuel (PBDF), it follows that FAME has lower heating values than PBDF. This fact accounts 

for the higher quantity of FAME injected for combustion to achieve the required engine power 

[47].  An increment in the chain length of fuel molecules and carbon/nitrogen to nitrogen/oxygen 

ratio of FAME result in higher CV [48, 49].  

Without a doubt, higher CV is needed for effective combustion of FAME in an unmodified CI 

engine because of its desirable effects on combustion of IC engines. The lowest recommended 

value for the CV of biodiesel fuel for heating purpose as specified by EN 14213 is 35 MJ/kg [50, 

51]. Apart from oxygen content, other factors that influence the heating value of FAME include 

the degree of saturation, number of double bonds, C:O ratio, C:H ratio, and feedstock [23]. Some 

properties like cloud point, density, flash point, and KV have been found to have strong 

correlations with heating values. In terms of emission, a higher quantity of FAME that needed to 

be injected into the combustion chamber to meet up with the required engine power has been 

found to affect PM and NOx emissions, particularly under exhaust gas recirculation system [52, 

53].  

It is believed that heating values can be predicted using the FA composition of FAME. Only a 

few citations are available in referred literature to establish a linear correlation to link heating 

values with FA composition, as far as the authors know. Specifically, Sanli et al. [49], Giakoumis 

[19], and Giakoumis and Sarakatsanis [15] have predicted the heating values using a percentage 

of FA compositions as inputs but with more than five methyl esters. This present effort is limited 

to the use of the five most common FAs as input, using the MLR approach.  Input data are sourced 

from the data set available in the literature [15, 49].  

The model correlation, shown in Equation 5 is arrived at from the general format (Equation 1). 

The model is found to be significant and adequate to predict the CV within an acceptable standard. 

Table 7 shows the five FA compositions, the experimentally determined CV (MJ/kg) sourced 

from literature, and the MLR predicted data. Equation 5 was arrived at by generating a linear 

correlation between the experimentally measured CV and the MLD predicted CV. The intercept 

was found to be 40.144 while C16:0 and C18:1 had a very minimum but negative effect on the 

output data. The predictive capability of the model is shown in figure 5. 

Calorific Value = 40.144 − 0.02X1 + 0.017X2 − 0.001X3 + 0.004X4 + 0.005X5  (Equation 5) 

The statistical analysis (table 11) shows that the model is significant with the R2 of 0.43. This 

implies that 43 % of the independent variable (input) contributed to the prediction of the 

dependent variable (output). The R-value of 0.66 and standard error of 0.33, though with five 

methyl esters, is comparable to the outcome of similar research [15, 40, 49]. The model was 

verified with a different set of data sourced from literature and was found to satisfactorily predict 
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the CV despite the diverse nature of the FAME source.  The difference between the measure and 

predicted CV was negligible and within acceptable standards (table 12). 

Table 10. Experimental and predicted data for Calorific value  

S/N Source C16:0 C18:0 C18:1 C18:2 C18:3 Exp. CV Pred. CV 

1 Corn 11.81 2.13 27.35 57.74 0.63 40.19 40.163 

2 Cottonseed 25.93 1.74 15.98 55.12 0.16 40.48 39.879 

3 Croton 7.25 3.43 10.8 77.25 5.4 40.28 40.401 

4 Hazelnut 6.32 3.71 79.17 10.67 0.15 39.8 40.04 

5 Jatropha 14.42 5.82 42.82 35.38 0.23 40.38 40.062 

6 Karanja 10.89 7.89 53.56 21.34 2.09 40.275 40.106 

7 Peanut 10.33 2.79 47.63 31.52 0.64 39.93 40.071 

8 Rapeseed 4.07 1.55 62.24 20.61 8.72 40.335 40.154 

9 Rice bran 18.12 2.17 42.35 34.84 0.93 40.475 39.929 

10 Rubber seed 9.39 9.41 24.22 38.12 17.54 40.35 40.349 

11 Beef tallow 24.39 19.08 41.65 5.91 0.72 40.04 39.976 

12 Canola 4.51 2 60.33 21.24 9.49 39.975 40.162 

13 Chicken fat 24.06 6.42 41.43 18.83 1.06 39.89 39.821 

14 Lard 25.1 13.23 44.36 12.06 1.18 39.95 39.887 

15 Olive 11.47 2.83 74.52 9.54 0.51 40.28 39.926 

16 Neem 17.57 16.6 45.83 17.79 0.72 39.96 40.112 

17 Mahua 22.23 22.49 39.01 14.87 0.1 40.18 40.114 

18 Safflower 7.42 2.38 14.41 75.31 0.09 40.155 40.339 

19 Waste frying oil 25.043 4.283 37.942 30.032 0.19 39.223 39.811 

20 Waste frying oil 25.95 3.899 43.574 23.637 0.265 39.833 39.754 

21 Waste frying oil 27.614 3.93 42.754 22.805 0.281 39.312 39.719 

22 Waste frying oil 29.117 4.375 37.455 26.233 0.21 39.259 39.717 

23 Waste frying oil 25.645 3.863 43.228 24.306 0.271 39.441 39.762 

24 Waste frying oil 41.438 4.775 40.636 10.293 0.182 39.741 39.413 

25 Waste frying oil 40.637 3.369 42.104 9.958 0.173 39.336 39.401 

 

Table 11: Statistical indices of the MLR model for Calorific Value 

Regression Statistics 

Multiple R 0.66 

R Square 0.43 

Adjusted R Square 0.28 

Standard Error 0.33 

Observations 25 
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Table 12. Calorific Value model verification  

Source Ref Exp. value Pred. value Error (%) 

Jatropha [54] 40.536 40.501 0.09 

Palm [55] 39.907 39.863 0.11 

Corn [56] 39.93 39.538 0.98 

Canola [40] 39.64 39.615 0.06 

Soybean oil [40] 40.04 39.907 0.33 

Grape Seed [40] 39.82 39.968 0.37 

Karanja [57] 39.66 39.542 0.3 

 

 

Figure 5. The predictive capability of the Calorific Value model 

4. Conclusion 

One of the motivations for the use of FAME as CI engine fuel is safer handling, improved engine 

performance, and mitigated emissions. Experimental determination of FAME fingerprint, which 

is a key determinant for the behavior, handling, storage, transportation, performance and 

emissions of the fuel, is onerous, laborious, requires costly laboratory architecture and highly 

technical personnel. Appropriately developed models and prediction correlations are considered 

to be a faster, cheaper and easier method of determining these properties based on certain criteria 

and conditions. The degree of saturation, chain length, branching, number and position of double 

bonds are key parameters in the performance of biodiesel. FA compositions of biodiesel are 

dependent on the type of feedstock, and to some extent on its production parameters and technique 

and greatly influence the properties of FAME based on the proportion of the methyl esters present 

in the biodiesel.  

This current effort employed the five most common methyl esters, namely palmitic acid (C16:0), 

stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) to predict 

density, KV, CN, and CV of FAME using the MLR approach. A linear correlation was generated 

for the individual fingerprints and employed to predict the output using data extracted from the 

literature. The model was analyzed statistically to determine the standard error and other statistical 

indices. The predictive capability and model verification were carried out to test the competency 

and accuracy of the model within acceptable limits. Conclusively, the following points can be 

deduced: 
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• Some FAME properties can be predicted by the proportion of methyl esters as a 

panacea for difficulties in the experimental determination of the properties. 

• Five FAs are enough to generate a linear correlation using MLR to accurately predict 

the density, KV, CN and CV of FAME. 

• The outcome of the model verification shows that the correlation generated by this 

research can be relied upon to correctly predict the dependent outcomes being sought. 

Going forward, a more accurate prediction correlations and models should be developed for 

predicting properties, performance, fuel mixing, combustion, and emission characteristics with 

linear and nonlinear relations. This will eliminate the cumbersome experimental determinations 

of these parameters with a view to advancing capacities in engine research.  

REFERENCES 

[1] BP. Statistical Review of World Energy. Available on 

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-

energy.html.  

[2] H.-W. Schiffer. World Energy Resources by World Energy Council. Available on 

https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources-Full-

report-2016.10.03.pdf .  

[3] EEA. Global Total Primary Energy Consumption by fuel. Available on 

https://www.eea.europa.eu/data-and-maps/figures/global-total-primary-energy-

consumption-by-fuel-1 .  

[4] Statista. Global CO2 emissions share from fuel combustion by sector 2016. Available on 

https://www.statista.com/statistics/270527/distribution-of-worldwide-co2-emissions-by-

sector/.  

[5] EPA. (2017). Climate Change Indicators: Global Greenhouse Gas Emissions. Available: 

https://www.epa.gov/climate-indicators/climate-change-indicators-global-greenhouse-gas-

emissions.  

[6] WHO, Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen 

dioxide, and sulfur dioxide. World Health Organization, 2006. 

[7] H. Jääskeläinen. Biodiesel Standards & Properties. Available : 

https://www.dieselnet.com/tech/fuel_biodiesel_std.php .  

[8] Biodiesel Standards. Available on https://www.biofuelsystems.com/specification.htm .  

[9] Worldwide Fuel Charter. Available on http://www.oica.net/wp-content/uploads//WWFC5-

2013-Final-single-page-correction2.pdf, 2013. 

[10] EIA. World Biodiesel Production and Consumption by Year. Available on 

https://www.indexmundi.com/energy/?product=biodiesel&graph=production+consumption  

[11] L. Zhu, Y. K. Nugroho, S. R. Shakeel, Z. Li, B. Martinkauppi, and E. Hiltunen, "Using 

microalgae to produce liquid transportation biodiesel: What is next?," Renewable and 

Sustainable Energy Reviews, vol. 78, pp. 391-400, 2017. 

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf
https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf
https://www.eea.europa.eu/data-and-maps/figures/global-total-primary-energy-consumption-by-fuel-1
https://www.eea.europa.eu/data-and-maps/figures/global-total-primary-energy-consumption-by-fuel-1
https://www.statista.com/statistics/270527/distribution-of-worldwide-co2-emissions-by-sector/
https://www.statista.com/statistics/270527/distribution-of-worldwide-co2-emissions-by-sector/
https://www.epa.gov/climate-indicators/climate-change-indicators-global-greenhouse-gas-emissions
https://www.epa.gov/climate-indicators/climate-change-indicators-global-greenhouse-gas-emissions
https://www.dieselnet.com/tech/fuel_biodiesel_std.php
https://www.biofuelsystems.com/specification.htm
http://www.oica.net/wp-content/uploads/WWFC5-2013-Final-single-page-correction2.pdf
http://www.oica.net/wp-content/uploads/WWFC5-2013-Final-single-page-correction2.pdf
https://www.indexmundi.com/energy/?product=biodiesel&graph=production+consumption


 

123 

 

[12] H. K. Imdadul et al., "Higher alcohol–biodiesel–diesel blends: An approach for improving 

the performance, emission, and combustion of a light-duty diesel engine," Energy 

Conversion and Management, vol. 111, pp. 174-185,  2016. 

[13] M. S. M. Zaharin, N. R. Abdullah, G. Najafi, H. Sharudin, and T. Yusaf, "Effects of 

physicochemical properties of biodiesel fuel blends with alcohol on diesel engine 

performance and exhaust emissions: A review," Renewable and Sustainable Energy 

Reviews, vol. 79, pp. 475-493, 2017. 

[14] M. Samavi, B. Ghobadian, M. Ardjmand, and A. Seyfkordi, "Prediction of biodiesel 

properties and its characterization using fatty acid profiles," Korean Journal of Chemical 

Engineering, vol. 33, no. 7, pp. 2042-2049,  2016. 

[15] E. G. Giakoumis and C. K. Sarakatsanis, "Estimation of biodiesel cetane number, density, 

kinematic viscosity and heating values from its fatty acid weight composition," Fuel, vol. 

222, pp. 574-585,  2018. 

[16] A. Bamgboye and A. Hansen, "Prediction of cetane number of biodiesel fuel from the fatty 

acid methyl ester (FAME) composition," International Agrophysics, vol. 22, no. 1, p. 21, 

2008. 

[17] A. Gopinath, S. Puhan, and G. Nagarajan, "Theoretical modeling of iodine value and 

saponification value of biodiesel fuels from their fatty acid composition," Renewable 

Energy, vol. 34, no. 7, pp. 1806-1811, 2009. 

[18] R. Piloto-Rodríguez, Y. Sánchez-Borroto, M. Lapuerta, L. Goyos-Pérez, and S. Verhelst, 

"Prediction of the cetane number of biodiesel using artificial neural networks and multiple 

linear regression," Energy Conversion and Management, vol. 65, pp. 255-261, 2013. 

[19] E. G. Giakoumis, "A statistical investigation of biodiesel physical and chemical properties, 

and their correlation with the degree of unsaturation," Renewable Energy, vol. 50, pp. 858-

878, 2013. 

[20] A. O. Barradas Filho et al., "Application of artificial neural networks to predict viscosity, 

iodine value and induction period of biodiesel focused on the study of oxidative stability," 

Fuel, vol. 145, pp. 127-135, 2015. 

[21] D. A. Saldana, L. Starck, P. Mougin, B. Rousseau, N. Ferrando, and B. Creton, "Prediction 

of density and viscosity of biofuel compounds using machine learning methods," Energy & 

Fuels, vol. 26, no. 4, pp. 2416-2426, 2012. 

[22] R. M. Balabin, E. I. Lomakina, and R. Z. Safieva, "Neural network (ANN) approach to 

biodiesel analysis: analysis of biodiesel density, kinematic viscosity, methanol and water 

contents using near infrared (NIR) spectroscopy," Fuel, vol. 90, no. 5, pp. 2007-2015, 2011. 

[23] S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan, "Review of biodiesel 

composition, properties, and specifications," Renewable and sustainable energy reviews, vol. 

16, no. 1, pp. 143-169, 2012. 

[24] X. Meng, M. Jia, and T. Wang, "Neural network prediction of biodiesel kinematic viscosity 

at 313K," Fuel, vol. 121, pp. 133-140,  2014. 



 

124 

 

[25] N. Moradi-kheibari, H. Ahmadzadeh, M. A. Murry, H. Y. Liang, and M. Hosseini, "Chapter 

13 - Fatty Acid Profiling of Biofuels Produced From Microalgae, Vegetable Oil, and Waste 

Vegetable Oil," in Advances in Feedstock Conversion Technologies for Alternative Fuels 

and Bioproducts, M. Hosseini, Ed.: Woodhead Publishing, 2019, pp. 239-254. 

[26] E. G. Giakoumis, "Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid 

composition on a statistical basis, and correlation with the degree of unsaturation," 

Renewable Energy, vol. 126, pp. 403-419,  2018. 

[27] B. Jeeva and C. Rajashekar, "Investigating the Role of Fatty Acid Methyl Ester Composition 

on Engine Performance and Emission Characteristics," International Journal of Vehicle 

Structures & Systems (IJVSS), vol. 10, no. 4, 2018. 

[28] G. Sakthivel and M. Ilangkumaran, "Optimisation of compression ignition engine 

performance with fishoil biodiesel using Taguchi-Fuzzy approach," International Journal of 

Ambient Energy, vol. 38, no. 2, pp. 146-160, 2017. 

[29] G. Knothe, J. Krahl, and J. Van Gerpen, The biodiesel handbook. Elsevier, 2015. 

[30] T. Houachri et al., "Fatty acid methyl esters (FAME) from oleaginous seeds grown in arid 

lands. Part II: Ibicella lutea, Onopordum nervosum, Peganum harmala, Smyrnium olusatrum 

and Solanum elaeagnifolium," Energy Sources, Part A: Recovery, Utilization, and 

Environmental Effects, vol. 40, no. 12, pp. 1434-1441, 2018. 

[31] M. J. Pratas, S. V. Freitas, M. B. Oliveira, S. C. Monteiro, Á. S. Lima, and J. A. Coutinho, 

"Biodiesel density: experimental measurements and prediction models," Energy & Fuels, 

vol. 25, no. 5, pp. 2333-2340, 2011. 

[32] Z. Zhang et al., "Effects of fatty acid methyl esters proportion on combustion and emission 

characteristics of a biodiesel fueled marine diesel engine," Energy Conversion and 

Management, vol. 159, pp. 244-253,  2018. 

[33] M. Gülüm and A. Bilgin, "Measurements and empirical correlations in predicting biodiesel-

diesel blends’ viscosity and density," Fuel, vol. 199, pp. 567-577,  2017. 

[34] M. A. Ruhul et al., "Impact of fatty acid composition and physicochemical properties of 

Jatropha and Alexandrian laurel biodiesel blends: An analysis of performance and emission 

characteristics," Journal of Cleaner Production, vol. 133, pp. 1181-1189,  2016. 

[35] B. Sajjadi, A. A. A. Raman, and H. Arandiyan, "A comprehensive review on properties of 

edible and non-edible vegetable oil-based biodiesel: Composition, specifications and 

prediction models," Renewable and Sustainable Energy Reviews, vol. 63, pp. 62-92, 2016. 

[36] S. Mishra, K. Anand, and P. S. Mehta, "Predicting the cetane number of biodiesel fuels from 

their fatty acid methyl ester composition," Energy & Fuels, vol. 30, no. 12, pp. 10425-10434, 

2016. 

[37] D. Tong, C. Hu, K. Jiang, and Y. Li, "Cetane number prediction of biodiesel from the 

composition of the fatty acid methyl esters," Journal of the American Oil Chemists' Society, 

vol. 88, no. 3, pp. 415-423, 2011. 



 

125 

 

[38] A. S. Ramadhas, S. Jayaraj, C. Muraleedharan, and K. Padmakumari, "Artificial neural 

networks used for the prediction of the cetane number of biodiesel," Renewable Energy, vol. 

31, no. 15, pp. 2524-2533, 2006. 

[39] G. Knothe, "Dependence of biodiesel fuel properties on the structure of fatty acid alkyl 

esters," Fuel processing technology, vol. 86, no. 10, pp. 1059-1070, 2005. 

[40] I. K. Hong, G. S. Jeon, and S. B. Lee, "Prediction of biodiesel fuel properties from fatty acid 

alkyl ester," Journal of Industrial and Engineering Chemistry, vol. 20, no. 4, pp. 2348-2353,  

2014. 

[41] P. Saxena, S. Jawale, and M. H. Joshipura, "A review on prediction of properties of biodiesel 

and blends of biodiesel," Procedia Engineering, vol. 51, pp. 395-402, 2013. 

[42] R. M. Joshi and M. J. Pegg, "Flow properties of biodiesel fuel blends at low temperatures," 

Fuel, vol. 86, no. 1-2, pp. 143-151, 2007. 

[43] S. Geacai, O. Iulian, and I. Nita, "Measurement, correlation and prediction of biodiesel 

blends viscosity," Fuel, vol. 143, pp. 268-274, 2015. 

[44] O. M. Ali, R. Mamat, N. R. Abdullah, and A. A. Abdullah, "Analysis of blended fuel 

properties and engine performance with palm biodiesel–diesel blended fuel," Renewable 

Energy, vol. 86, pp. 59-67, 2016. 

[45] G. Martínez, N. Sánchez, J. Encinar, and J. González, "Fuel properties of biodiesel from 

vegetable oils and oil mixtures. Influence of methyl esters distribution," Biomass and 

Bioenergy, vol. 63, pp. 22-32, 2014. 

[46] M. Kaisan, F. Anafi, J. Nuszkowski, D. Kulla, and S. Umaru, "Calorific value, flash point 

and cetane number of biodiesel from cotton, jatropha and neem binary and multi-blends with 

diesel," Biofuels, pp. 1-7, 2017. 

[47] A. Atabani and A. da Silva César, "Calophyllum inophyllum L.–A prospective non-edible 

biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, 

blending and engine performance," Renewable and Sustainable Energy Reviews, vol. 37, pp. 

644-655, 2014. 

[48] L. F. Ramírez-Verduzco, J. E. Rodríguez-Rodríguez, and A. del Rayo Jaramillo-Jacob, 

"Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel 

from its fatty acid methyl ester composition," Fuel, vol. 91, no. 1, pp. 102-111, 2012. 

[49] H. Sanli, M. Canakci, and E. Alptekin, "Predicting the higher heating values of waste frying 

oils as potential biodiesel feedstock," Fuel, vol. 115, pp. 850-854, 2014. 

[50] K. Muralidharan, D. Vasudevana, and K. N. Sheeba, "Performance, emission and 

combustion characteristics of biodiesel fuelled variable compression ratio engine," (in eng), 

Energy, vol. 36, no. 8, p. 5385, 2011. 

[51] U. Rashid, F. Anwar, and G. Knothe, "Evaluation of biodiesel obtained from cottonseed oil," 

Fuel Processing Technology, vol. 90, no. 9, pp. 1157-1163, 2009. 

[52] C. D. Rakopoulos and E. G. Giakoumis, Diesel engine transient operation: principles of 

operation and simulation analysis. Springer Science & Business Media, 2009. 



 

126 

 

[53] E. G. Giakoumis, C. D. Rakopoulos, A. M. Dimaratos, and D. C. Rakopoulos, "Exhaust 

emissions of diesel engines operating under transient conditions with biodiesel fuel blends," 

Progress in Energy and Combustion Science, vol. 38, no. 5, pp. 691-715, 2012. 

[54] M. Mofijur, H. Masjuki, M. Kalam, and A. Atabani, "Evaluation of biodiesel blending, 

engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian 

perspective," Energy, vol. 55, pp. 879-887, 2013. 

[55] A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. Mahlia, H. Masjuki, and S. Mekhilef, "A 

comprehensive review on biodiesel as an alternative energy resource and its characteristics," 

Renewable and sustainable energy reviews, vol. 16, no. 4, pp. 2070-2093, 2012. 

[56] M. Gülüm and A. Bilgin, "Density, flash point and heating value variations of corn oil 

biodiesel–diesel fuel blends," Fuel Processing Technology, vol. 134, pp. 456-464, 2015. 

[57] T. K. Jose and K. Anand, "Effects of biodiesel composition on its long term storage stability," 

Fuel, vol. 177, pp. 190-196, 2016. 

 

  



 

127 

 

CHAPTER 4: OPTIMIZATION OF FAME COMPOSITION FOR 

IMPROVED ENGINE PERFORMANCE AND EMISSIONS 

REDUCTION  

 

This chapter presents the results of the numerical technique to find an optimal FAME candidate 

to ensure improved engine performance and mitigated emission. Linear mathematical correlations 

were derived using five FA compositions to compute certain properties. A numerical approach 

(MATLAB) was adopted to solve the resulting equations resulting in the parameters of the 

optimal candidate in terms of five FAME compositions only. The outcome has been submitted to 

the International Journal of Low-Carbon Technologies. 

Awogbemi, O., Inambao F., Onuh E. I. (2019). “Optimization of FAME Composition 

for Improved Engine Performance and Emissions Reduction,” International Journal of 

Low-Carbon Technologies. Oxford University Press  
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Abstract: Detrimental environmental effects of diesel fuel have stimulated investigation into the 

utilization of biodiesel as an alternative fuel for compression ignition (CI) engine. This present work 

employed MATLAB to solve linear equations generated for biodiesel properties using fatty acid (FA) 

composition for the determination of an optimal FAME candidate. Transesterification of waste vegetable 

oil employed to experimentally produce the fatty acid methyl ester (FAME) candidate generated through 

numerical intervention. The gas chromatography-mass spectrometer analysis of the resulting FAME 

revealed that the type of used vegetable oil, the food the oil was used to fry, and catalyst particle size 

influenced the FA composition of the FAME. Numerical evaluation of the objective function and the 

constraints yielded a FAME candidate with palmitic and oleic acids at 36.4 % and 59.8 % respectively. 

The resulting FAME candidate is expected to produce optimal engine performance and mitigate emissions 

in an unmodified CI engine. 

Keywords: Engine performance; FAME; MATLAB; optimal candidate; waste cooking oil 

 

1. Introduction 

Globally, there is a growing utilization of 

biodiesel in the internal combustion (IC) engine, 

particularly in the fuel and power generation 

application sectors. This has led to an increased 

global demand for biodiesel with the United States 

of America, Germany, Argentina, Thailand, 

Belgium, and Canada topping the list of world 

producers as of 2016. By 2025 global biodiesel 

consumption is expected to swell by between 4.4 

% to 5.4 % with a market value in the region of 

US$ 53.6 billion [1, 2]. World consumption of 

biofuel is predicted to reach 129.7 million metric 

tons of oil equivalent (Mtoe) from a paltry 59.7 

Mtoe in 2010 as shown in Figure 1 [3]. This 

underscores the importance of biodiesel in the new 

global effort to enhance energy sustainability and 

reduce environmental pollution. Interest in 

biodiesel has compelled further studies in all facets 

of the fuel, predominantly in cost reduction, 

advancing engine performance and mitigating 

emissions for all categories of on-road and off-road 

compression ignition (CI) engines. Research in the 

conversion of used vegetable oil from households 

and restaurants to biodiesel is gaining ground by 

the day. This is due to its numerous advantages 

including a cleaner environment as a result of 

proper disposal, conversion of waste to fuel, 

reduction in the cost of biodiesel production, and 

generation of more income for households and 

small-scale businesses, among others [4]. 
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Fig. 1. World consumption of biofuel, including estimate to the year 2035 

Over the years, particularly in the last few 

decades, many researches have been carried out 

with a view to upgrading the engine performance 

significantly and cutting down the emission 

characteristics of CI engines fueled with biodiesel, 

otherwise referred to as fatty acid methyl esters 

(FAME) with appreciable success. Amongst 

others, hybridization of feedstock, exhaust gas 

recirculation, low-temperature combustion, and 

other fuel injection and combustion strategies have 

been modestly effective in this regard. However, in 

the author’s informed opinion, no attempt has been 

made to establish the FAME mix that gives the best 

possible engine performance and reduced 

emissions. Biodiesel consists of different esters 

and fatty acids (FAs) which are the major 

constituents and determinant of the behavior and 

performance of the fuel.  

The source of the feedstock of biodiesel, 

whether fat or oil, has placed an inherent constraint 

on the composition of FAME. This is so because 

each source has its own unique fingerprint and 

composition. An optimal mix of FAME, therefore, 

is capable of enhancing performance and 

mitigating emissions of harmful gasses from CI 

engines fueled with biodiesel since the fuel’s 

property is dependent on FAME mix. The 

motivation for this current effort is to engineer an 

acceptable FAME mix for CI engine application.  

The significance of this present research 

arises from the need to explore FAME composition 

and the major fingerprints of biodiesel as a basis 

for obtaining a FAME candidate with improved 

performance and reduced emissions. Such a 

relationship depends on the FA composition and 

the fingerprints of FAME. This study used 

compositional models to predict the major 

properties of biodiesel so as to deduce an optimal 

FAME candidate. The numerically generated 

FAME candidate will be produced experimentally 

by transesterification which can then be used to 

verify the outcome of the linear equation model. 

Such an optimal mix is expected to give the best 

possible performance and reduced emission of 

unblended FAME (B100) use in unmodified and 

an unmodified CI engine.  

2. Background of Study 

The inherent properties of FAME are a 

function of several factors including chain length 

and branching, the degree of saturation, number as 

well as position of double bonds [5], while it's 

quality and behavior are influenced by feedstock, 

production technique, handling, and storage 

processes. 

FA composition is a major factor that 

determines the properties of FAME. FA 

composition is measured by gas chromatography-

mass spectrometry (GC-MS). FAs are categorized 

as either saturated fatty acids (SFAs) or 

unsaturated fatty acids (USFAs). SFAs contain 

single carbon-carbon bonds while USFAs contain 

a single or multiple double carbon-carbon bonds in 

the chain. USFA can either be monounsaturated or 

polyunsaturated fatty acids. Table 1 compares 

SFAs and USFAs. 
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Table 1. Comparison of SFA and USFA 

Factor Saturated fatty acids Unsaturated fatty acids 

Structure  

 

 

Type of Bond Single bond between carbon atoms 

(C˗C) 

Minimum of one double bond 

between carbon atoms (C=C) 

Examples Palmitic acid, Stearic acid, Lauric acid, 

Myristic acid, Caprylic acid, Behenic 

acid, Arachidic acid 

Oleic acid, Eladic acid, Palmitoleic 

acid, Linoleic acid, Linolenic acid, 

etc 

Reactivity Less reactive Highly reactive 

Stability More stable Less stable 

Physical appearance  Solid at ambient temperature Liquid at ambient temperature 

Type of chain Straight  Branch, at double bond 

Melting point Comparatively higher Comparatively lower 

Hydrogen atom per 

carbon atom  

Have more hydrogen atoms per carbon 

atom 

Have a comparatively less number 

of hydrogen atoms per carbon atom 

Sources  Animal fats, palm oil, coconut oil. Plant oil, vegetable oil, and fish oil 

Solubility Soluble in vitamins Insoluble in vitamins 

Effect of 

hydrogenation 

Without effect They are converted into saturated 

state by hydrogenation. 

Shelf life/oxidative 

stability 

Have a high oxidative stability index Have a low oxidative stability index 

Experimental determination of properties of 

FAME requires intricate procedures and 

techniques, a high degree of technical equipment, 

reagents, and personnel. It is time-consuming, 

expensive and exposes personnel to possible 

laboratory mishaps and hurts. This has led to the 

use of mathematical models and correlations over 

the last few decades. The deployment of 

mathematical models and correlations are cost-

effective, timesaving, less laborious, innovative, 

flexible, safe and require no reagents, chemicals 

and specialized equipment [6]. Predictions arising 

from mathematical models have often been 

validated by experimental results in compliance 

with accepted standards. The two widely 

recognized standard requirements and test methods 

for B100 FAME are the European standard (EN) 

and the United States (US) standard represented by 

EN 14214 and D6751 respectively [7]. Table 2 

shows details of methods and limits for major 

properties of B100 FAME. 

There are some property prediction models 

for biodiesel employed produced by various 

authors. The empirical-based prediction models 

are believed not to have not produced satisfying 

outcomes in relation to biodiesel. The application 

of the vapour pressure based model is restricted to 

ideal solutions, though it can be extended to 

biodiesel, its accuracy is in doubt. The Liaw’s 

model, a form of activity coefficient-based model, 

is mainly used for all flammable mixtures and not 

strictly for methyl esters. Molecular structure-

based models rely on structural specifications and 

configurations like chain length, the position of 

double bonds, etc., of compounds. It, however, 

fails with the increased molecular weight 

associated with a fatty acid or the ester. Double-

bond based models are contingent upon the 

number of double bonds available in the FAME 

which is considered not comprehensive enough to 

make an informed and all-encompassing forecast. 

Models/correlations based on combustion 

reactions, molecular weight, electron numbers and 

those centered on the physical properties and 

behavior of FAME are not individually 

comprehensive, inclusive, and far-reaching enough 

to accommodate all categories of esters. 

Thermodynamic-based models, though 

successfully predicting the properties of saturated 

fatty acids, have, however, showed a large error 

with unsaturated FAME [8]. 

The use of thermodynamic and other 

correlative models are appealing and 

unsophisticated, but they fail the test of precision 

and are often deficient in terms of theoretical 

footing [9]. These models cannot produce a 

candidate for the optimization problem because 

they do not derive their models from the 

composition of FAME. Composition-based 

models are not only straightforward, they also take 



 

131 

 

into consideration the distinctive fingerprints and 

FA composition of individual FAMEs. FAME 

composition has great influence and produces a 

more acceptable outcome so as to predict the 

optimal mix to enhance engine performance in 

addition to lowering the emission characteristics of 

CI engines [10]. 

Table 2. Limits and test methods of properties of B100 FAME  

Standards 

Europe EN 14214  US ASTM D 6751 

Limits Methods Limits Methods 

Acid no (mgKOH/g, max) 0.5 EN 14104 0.5 D664 

Carbon residue (wt. %, max)   0.05 D4530 

Cetane no. (min) 51 EN ISO 5165 47 D613 

CFPP (°C, max) -5 to -44 EN 116   

Cloud point(°C, max) Variable  EN 23015 Report  D2500 

Copper strip corrosion (3 hr, at 50 °C, 

max) No 1 

EN ISO 2160 No. 3 D130 

Density (Kg/m3) 860-900 

EN ISO 3675 

EN ISO 12185 

  

Distillation (T90, °C, max)   360 D1160 

Ester content (wt. %, min) 96.5 EN 14103   

Flash point (°C, max) 101 EN ISO 2719 93 D93 

Monoglycerides (wt, %, max) 0.7 EN 14105 0.40 D6584 

Diglycerides (wt, %, max) 0.2 EN 14105   

Triglycerides (wt, %, max) 0.2 EN 14105   

Free glycerol (wt, %, max) 0.02 

EN 14105 

EN 14106 

0.02 D6584  

Total glycerol (wt, %, max) 0.25 EN 14105 0.24 D6584  

Iodine number (gl2/100 g, max) 120 

EN 14111 

EN 16300 

  

Kinematic Viscosity @ 40 °C (mm2/s) 3.5-5.0 EN ISO 3104 1.9-6.0 D445 

Linolenic acid methyl esters (wt. %, 

max) 12.0 

EN 14103   

Metal (Ca+Mg), ppm, max 5.0 EN 14538 5.0 EN 14538 

Metal (Na+K), ppm, max 5.0 

EN 14108 

EN 14109 

EN 14538 

5.0 EN 14538 

Methanol, (wt, %, max) 0.2 EN14110 0.20 EN 14110 

Oxidation stability (hrs @ 110 °C, min) 6 EN 14112 3 EN 14112 

Phosphorus (max) 

4.0 

mg/kg 

EN 14107 

PrEN 16294 

0.001% wt D4951 

Polyunsaturated acid methyl esters (wt. 

%, max) 1.0 

EN 15779   

Sulfated ash (wt. %, max) 0.02 ISO 3987 0.02 D874 

Total contamination (mg/kg, max) 24 EN 12662   

Total sulphur (max) 10 mg/kg 

EN ISO 20846 

EN ISO 20884 

EN ISO 13032 

15 ppm D5453 

Water and sediment (% vol., max)   0.05 D2709 

Water, (ppm, max) 500 EN ISO 12937   

2.1. Cetane Number  

As opposed to a spark ignition engine, CI 

engine is a self-ignition engine where the charge 

inside the combustion chamber of the engine is 

projected to be self-ignited. Cetane number (CN) 

is an important dimensionless property of fuel that 

is capable of determining auto-ignition, the fuel 
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quality and fuel ignition delay time [11, 12]. A 

higher value of CN is connected with a shorter fuel 

ignition delay time so that the fuel is combusted 

timeously and completely, smooth running, engine 

stability, less noise, better engine performance and 

emissions mitigation [13, 14]. Thus, CN is 

recognized as the most important property of 

FAME for effective combustion, better engine 

performance, and reduced emissions. An 

increment in the chain length, number of carbon 

atom chains, and a decrease in the mean degree of 

saturation causes in an increase in the CN of B100 

FAME [15, 16]. Recommended specifications and 

test methods for CN for both the EN 14214 and 

ASTM D 6751 are shown in Table 2. 

2.2. Density 

The density of a given matter, or substance is 

the mass per unit volume of the substance. Density 

directly impacts the process and quantity of the 

fuel admitted into the engine’s combustion 

chamber for effective combustion. It has an 

explicit effect on the operation and operation of 

pumps, nozzle injectors, and other fuel injection 

architecture. The density of FAME has been 

reported to be dependent on FA composition, 

feedstock, and to a large extent the production 

techniques [17]. Kinematic viscosity (KV), 

increase in pressure, reduction in temperature, CN, 

the degree of unsaturation, heating value, and 

higher unsaturation have been found to increase the 

value of fuel density, while increased chain length 

is believed to lead to a reduced density of FAME 

[8, 9]. For this study, density was the objective 

function and was maximized between 860 kg/m3 

and 900 kg/m3 as recommended by EN 14214, 

which is the specification for biodiesel from most 

third generation feedstock, including waste 

cooking oil (WCO). The density fingerprint of 

FAME affects fuel atomization, engine operation, 

and thermal efficiency of a CI engine [18, 19]. 

2.3. Kinematic Viscosity 

Kinematic Viscosity (KV) remains a vital 

fluid fingerprint that determines the degree of 

resistance/easiness to the flow of a portion of a 

given fluid over another and is attributable to 

internal friction in the fluid. High KV causes poor 

fuel atomization, slimmer injection spray, and 

precipitates fatter droplet size which ensures in 

poor fuel injection, the formation of engine 

deposits, decreased thermal efficiency, inferior 

fuel combustion and higher emissions. Conversely, 

lower KV precipitates better quality fuel droplets 

and enhanced performance of the fuel injector. 

This ensures the injecting of the required quantity 

of fuel into the combustion chamber. Chain length, 

branching, number and position of double bonds of 

FAME influence the KV and other properties of 

biodiesel [18, 20, 21]. Compared with petroleum-

based diesel fuel, FAME has superior chemical 

structure, molecular mass, and hence higher KV 

[22]. The value of KV not greater than 4.5 mm2/s, 

measured at 40 °C, was used in this study as the 

constraint for the regression analysis. 

2.4. Calorific Value 

Calorific value (CV), otherwise referred to as 

higher heating value, has been more accurately 

described in terms of the measure of the energy 

content of fuels, and depicts the quantity of heat 

given out when one gram of fuel is combusted to 

generate carbon dioxide and water at initial 

temperature. An increment in the chain length of 

fuel molecules and carbon to oxygen ratio of 

FAME results in a higher CV [15, 21]. A higher 

CV is needed for effective combustion of FAME 

in an unmodified CI engine because of its desirable 

effects on combustion of IC engines. The lowest 

recommended value for the CV of biodiesel fuel 

for heating purpose as specified by EN 14213 is 35 

MJ/kg [23, 24]. As one of the constraints, a CV of 

between 34.4 MJ/kg and 45.2 MJ/kg was 

employed in this study for analysis as a desirable 

factor for the combustion of fuel. 

2.5. Cold Filter Plugging Point 

One of the issues inhibiting the utilization of 

FAME in CI engines is its cold flow properties, 

particularly in low-temperature countries. Cold 

filter plugging point (CFPP) signifies the least 

temperature whereupon a known quantity (20 mL) 

of biodiesel flows pass a standardized filtration 

gadget (45-micron screen) in a stipulated period of 

time, usually 1 minute, when cooled in a defined 

condition [8]. CFPP measures the ease of operation 

of fuels under low-temperature climatic 

conditions. It is the temperature of the fuel which 

signals the onset of fuel crystallization or gelling, 

clogging of fuel filters, and other fuel line 

architecture. The consequence of a high CFPP of 

FAME is clogging of the fuel filter, lines and hose 

more easily due to the rapid crystallization of the 

fuel [14, 18]. Long-chain saturated FAME, 



 

133 

 

especially palmitic acid and stearic acid, have been 

found to contribute to high CFPP in fuel, much 

more than unsaturated FAME. The chain length 

saturated factor is employed to correlate the CFPP 

of FAME. Generally, chain length, the intensity of 

unsaturation, and branching, etc., affect the CFPP 

of FAME [25]. CFPP, due to its importance in fuel 

performance at low temperature, was chosen as a 

constraint. In line with EN 14214 and ASTM D 

6751 standards, CFPP was set between -15 °C and 

-5 °C to incorporate extreme low-temperature 

conditions. 

2.6. Cloud Point 

The cloud point (CP) is described as the least 

temperature that facilitates the formation of 

clusters of wax quartzes of about 0.5 μm in 

diameter resulting in the appearance of a murky 

solution. It triggers the formation of biowax within 

the FAME leading to the blocking of fuel hoses, 

lines, filters, and injectors in FAME-fueled engines 

[26, 27]. The nature and quantity of saturated fatty 

acids compounds, the source of the FAME, the 

location of double bonds, in addition to the length 

and linearity of carbon chains, affect the CP of 

biodiesel. The FAME obtained from animal fats or 

oils with double bonds situated near carbon chain 

ends, etc., precipitates elevated CP [8, 28]. 

Although both EN 14214 and ASTM D 6751 do 

not give definite specifications for CP, the 

constraints in this study were set at between -25 °C 

and 26 °C to cater for a wide range of temperature 

conditions. 

3. Review of Literature 

FA composition has been explored to predict 

some properties of biodiesel as a result of the 

fundamental importance of FA composition, 

degree or intensity of saturation or unsaturation, 

and carbon chain length, in addition to the position, 

number, and configuration of double bonds in the 

carbon chain [29, 30]. The impact of carbon chain 

length and intensity of saturation on some physical 

properties of FAME has been affirmed by some 

research [30, 31]. FA compositional models have 

been exploited to predict the KV, CN, density, 

higher heating value [32], iodine value, CP, 

saponification value, pour point [33], flash point 

[34][38], and cold filter plugging point [35]. 

Various numerical techniques and correlations, 

including empirical equations [36], adaptive-

network-based fuzzy inference system [33], 

multiple linear regression analysis [32], least 

squares regression method [37], least squares 

support vector machine model [38], artificial 

neural network [39] etc., have been employed by 

various researchers to predict fuel properties of 

FAME and its blends using FA composition.  

The outcomes of the research of many 

scholars have indicated that the application of 

FAME as CI engine fuel results in better engine 

performance, reduced PM, smoke, UHC, and CO 

emissions in general but increased NOx emission 

in some cases. The outcomes of those researches 

showed that the application of biodiesel fuel is 

capable of improving the performance 

characteristics of the diesel engine, drastically 

reducing CO emissions and lessening NOx 

emissions [40-42]. Researchers have predicted the 

performance and emission characteristics of 

FAME and its blends with varying outcomes. 

Biodiesels with higher saturated FA (palmitic acid, 

stearic acid) composition have been reported to 

exhibit higher CN which tends to improve 

combustion activities within the combustion 

chamber and produce reduced brake specific fuel 

consumption (BSFC), higher brake thermal 

efficiency (BTE), higher exhaust gas temperature 

(EGT), as well as less smoke and NOx. Generally, 

the degree of saturation, chain length, number and 

location of double bonds influence the CN which 

affects the combustion activities and the emission 

characteristics [43, 44]. Jiaqiang [45] explored 

KIVA-4 in conjunction with CHEMKIN II code to 

stimulate and validate the emission characteristics 

of a CI engine under variable load conditions 

fueled by FAME produced from vegetable oil. 

They reported that changes in the percentage of 

palmitic, stearic and oleic acids in the FAME 

influenced the fuel-air mixing, evaporation break 

up, combustion efficiency, engine performance, 

and emission of regulated gases. Similar work by 

authors showed that soot and NOx emissions of CI 

engine energized by FAME are affected by 

changing FA methyl ester proportions [45]. 

Similarly, Zhang et al. [46] investigated the effects 

of the proportion of FA composition of FAME on 

engine performance and emission characteristics 

of biodiesel fueled CI engine. They reported that a 

rise in the proportion of linoleic acids resulted in 

superior BSFC while an increase in the proportion 

of oleic, stearic, and palmitic acids lowered the 

indicated power.  

There is near consensus of opinion that the 

proportion of the five major FAs in FAME, i.e. 
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stearic, palmitic, oleic, linoleic and linolenic acids 

affects the activities of fuel within the combustion 

chambers and greatly influences the engine 

performance and emission of regulated pollutants 

of an unmodified CI engine fueled by FAME. The 

relevant questions to ask, therefore, are: what is the 

best proportion of the five FAs that can improve 

engine performance and reduce emission of 

regulated gases in an unmodified conventional CI 

engine, and how can this proportion be 

determined? This present effort is aimed at 

exploring the use of mathematical and numerical 

tools to determine the optimal FA mix that will 

produce the best FAME candidate for improved 

engine performance and mitigated emission in an 

unmodified CI engine. The motivation for this 

investigation is to assist biodiesel refiners, engine 

manufacturers, combustion and emission 

researchers in their efforts to improve fuel 

combustion with a view to enhancing engine 

performance and lessening the obnoxious 

emissions. This current work is limited to effect of 

the five most common FAs, namely palmitic acid 

(C16:0), stearic acid (C18:0), oleic acid (C18:1), 

linoleic acid (C18:2), and linolenic acid (C18:3), 

on engine performance and emission 

characteristics. 

4. Methods 

An optimal mix FAME candidate was 

determined using a numerical solution which was 

verified by the FA composition of biodiesel 

produced from WCO by transesterification 

process.  

4.1. Numerical Method  

This study employed the application of a 

compositional model using some major properties 

to unveil an optimal candidate mix using linear 

regression equations. This arose from the need to 

explore mathematical tools to solve a series of 

linear equations arising from the compositional 

models of some critical FAME properties. The 

compositional models are products of the strategy 

for property prediction of FAME using the FA 

composition of biodiesel as determined by GC-MS 

analysis.  

Linear correlations of major fingerprints that 

are crucial to engine performance and emission 

generation in an unmodified CI engine fuelled with 

FAME were mined from literature. CN was chosen 

as an objective function and maximized, while 

density, KV, calorific value, cold filter plugging 

point, and CP were taken to be constraints. 

Compositional based models for these properties 

were compiled from literature as shown in Table 3 

and formed into equations (1) to (6). The 

established linear correlations were reduced to 

contain the five most commonly occurring FAs for 

each of the considered properties.  The five most 

occurring FAs from the literature surveyed were 

palmitic, oleic, stearic, linoleic, and linolenic acids 

[47-50]. This section is divided into subheadings 

and provides concise and precise descriptions of 

the experimental results, their interpretation as 

well as the experimental conclusions that can be 

drawn. 

The resulting linear equations (7) to (12) are 

solved, using MATLAB according to the flowchart 

shown in Figure 2, bearing in mind that the 

outcome of the numerical evaluation agrees with 

the EN 14214 and ASTM D 6751 standards. 

Transesterification of WCO feedstock with a 

variety of catalyst particle sizes was carried out to 

produce various FAME with FA compositions and 

properties to meet the specifications arrived at by 

the numerical interventions. The optimal FAME 

candidate produced from WCO was used to verify 

the outcome of the linear equation model. 

4.2. Experimental method 

4.2.1. Material collection and treatment  

Waste vegetable oil samples were collected 

from takeaway restaurants in central Durban. 

Methanol (analytical grade, 99.5 %) was used as 

alcohol. Activated magnesium silicate, 

commercially known as Magnesol® (analytical 

grade, 60-100 mesh, Mw of 100.39 g/mol) was used 

as an absorbent. Magnesol® is hygroscopic and 

contact with eyes must be avoided. The container 

must always be kept airtight. The waste vegetable 

oils were heated to 110 °C in a beaker in an electric 

heater for 15 min to remove moisture and filtered 

to eliminate every food residue and other 

suspended solid particle in the used vegetable oils. 

Some important properties of the WPO were also 

determined by using standard methods. Chicken 

waste eggshells were collected from Butterfield 

Bakery, Reddy’s Bakery, and Nubbile’s Bakery in 

central Durban. 
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Table 3. Composition-based models for the prediction of some FAME properties 

Where X1 = Palmitic acid (C16:0), X2 = Stearic acid (C18:0), X3 = Oleic acid (C18:1), X4 = Linoleic acid (C18:2), X5 = Linolenic 

acid (C18:3), X6 = Arachidic acid (C20:0), X7 = Palmitoleic acid (C16:1), X8 = Lauric acid (C12:0), X9 = Mytristic acid (C14:0), X10 

= Eicosenoic acid (C20:1), X11 = Behenic acid (C22:0), X12 = Erucic acid (C22:1), X13 = Lignoceric acid (C24:0), X14 = Others. 

 

CN:   56.16 + 0.07𝑋1 + 0.1𝑋2 + 0.15𝑋3 − 0.05𝑋4 + 0.23𝑋5 − 0.03𝑋6 − 0.19𝑋7 − 0.31𝑋8 + 0.08𝑋9 + 0.18𝑋10 − 0.1𝑋14 = 45 ≤

𝐶𝑁 ≤ 51                   (1) 

 

DN:  2204.5 − 13.2𝑋3 − 1.4𝑋4 − 16𝑋5 − 13.8𝑋6 − 13.3𝑋7 − 3.717𝑋8 + 39.7𝑋9 + 72.2𝑋14 = 860 ≤ 𝐷𝑁 ≤ 900       (2) 

 

KV: 337.4774 − 3.7096𝑋3 − 0.0993𝑋4 − 3.812𝑋5 − 3.743𝑋6 − 3.6808𝑋7 − 3.717𝑋8 + 0.1131𝑋9 − 10.8943𝑋14 = 𝐾𝑉 ≤ 4. 
                 (3) 
 

 32629.061 + 57.390𝑋2 + 71.795𝑋3 + 231.631𝑋4 + 16.913𝑋5 + 66.268𝑋6 + 70.501𝑋7 + 387.989𝑋8 + 1228.692𝑋9 −

115.455𝑋11 = 34.4 ≤ 𝐶𝑉 ≤ 45.2              (4) 

 

CFPP: −16.447 + 0.3141𝑋3 + 1.57085𝑋5 + 3.1417𝑋9 + 4.71255𝑋12 + 6.2834𝑋13 = −5 ≤ 𝐶𝐹𝑃𝑃 ≤ −15           (5) 

 

CP: −40.278 + 0.514𝑋3 + 0.6364𝑋5 + 0.38363𝑋6 + 0.35362𝑋7+0.26341𝑋8+0.58623𝑋12 =  −25 ≤ 𝐶𝑃 ≤ 26         (6) 

 

𝐶𝑁 =  56.16 + 0.15𝑋1 + 0.23𝑋2 − 0.03𝑋3 − 0.19𝑋4 − 0.31𝑋5             (7) 

 

  𝐷𝑁 =  2204.5 − 13.2𝑋1 − 16𝑋2 − 13.8𝑋3 − 13.3𝑋4 − 3.717𝑋5             (8) 

 

Property  Correlation Definition of unknowns Ref 

Cetane 

number 

(CN) 

𝐶𝑁 = 56.16 + (0.07𝐿𝑎) + (0.1𝑀)𝑖

+ (0.15𝑃) − (0.05𝑃𝑡)

+ (0.23𝑆) − (0.03𝑂)

− (0.19𝐿𝑖) − (0.31𝐿𝑛)

+ (0.08𝐸𝑖) + (0.18𝐸𝑟)

− (0.1𝑂𝑡) 

La = Lauric, M=Myristic, 

P=Palmitic, Pt=Palmitoleic, 

S=Stearic, O=Oleic, Li=Linoleic, 

Ln=Linolenic, Ei=Eicosanoic, 

Er=Erucic and Ot=others  

[16] 

Density 

(DN) 

𝐷𝑁 = 2204.5 − 13.2𝑃 − 1.4𝑃𝐿 − 16𝑆

− 13.8𝑂𝐿 − 13.3𝐿

− 3.717𝐿𝐿 + 39.7𝐴

+ 72.2𝑂𝑡ℎ 

P = Palmitic, PL = Palmitoleic, S = 

Stearic, OL = Oleic, L = Linoleic, 

LL = Linolenic, A = Arachidic, Oth 

= Others [all values in Percentage 

weight]. 

[51] 

Kinematic 

Viscosity 

(KV) 

𝐾𝑉 = 373.4774 − 3.7096𝑃 − 0.0993𝑃𝐿

− 3.812𝑆 − 3.7431𝑂𝐿

− 3.6808𝐿 − 3.717𝐿𝐿

+ 0.1131𝐴

− 10.8943𝑂𝑡ℎ 

P = Palmitic, PL = Palmitoleic, S = 

Stearic, OL = Oleic, L = Linoleic, 

LL = Linolenic, A = Arachidic, Oth 

= Others [all values in Percentage 

weight]. 

[51] 

Calorific 

value (CV) 

𝐶𝑉 = 32629.061 + 57.390𝑎 + 71.795𝑏

+ 231.631𝑐

+ 16.913𝑑 + 66.268𝑒

+ 70.501𝑓

+ 387.989𝑔

+ 1228.692ℎ

− 115.455𝑖 

a–i : mass fractions (wt.%) of the 

fatty acids C14:0, C16:0, C16:1, 

C18:0, C18:1, C18:2, C18:3, C20:0, 

C22:0, respectively 

[21] 

Cold filter 

plugging 

point 

(CFPP) 

𝐶𝐹𝑃𝑃 = 3.1417𝐿𝐶𝑆𝐹 − 16.477 

𝐿𝐶𝑆𝐹 = 0.1𝐶16:0 + 0.5𝐶18:0 + 1𝐶20:0

+ 1.5𝐶22:0 + 2𝐶24:0 

LCSF: The long-chain saturated 

factor for C16:0-C24:0 C: Mass 

fraction of saturated fatty acid (wt%) 

[35] 

Cloud point 

(CP) 

𝐶𝑃 = −40.278 + 0.514𝐶16:0 +
0.6364𝐶18:0 + 0.38363𝐶18:1 +
0.35362𝐶18:2+0.26341𝐶18:3+

0.58623𝐶22:1 

C16:0, C18:0, C18:1, C18:2, C18:3, 

C22:1¼Mass percentage in 

biodiesel 

[34] 
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𝐾𝑉 = 337.4774 − 3.7096𝑋1 − 3.812𝑋2 − 3.743𝑋3 − 3.6808𝑋4 − 3.717𝑋5             (9) 

 

𝐶𝑉 = 32629.061 + 71.795𝑋1 + 16.913𝑋2 + 66.268𝑋3 + 70.501𝑋4 + 387.989𝑋5            (10) 

 

𝐶𝐹𝑃𝑃 = −16.447 + 0.3141𝑋1 + 1.57085𝑋2               (11) 

 

𝐶𝑃 = −40.278 + 0.514𝑋1 + 0.6364𝑋2 + 0.38363𝑋3 + 0.35362𝑋4+0.26341𝑋5           (12) 

 

The unknowns (X1, X2, X3, X4, and X5) are non-negative and vary between 0 and 100 steps of 0.01. 

 

4.2.2. FAME production  

The collected waste chicken eggshells 

were washed with hot water and rinsed several 

times with distilled water to ensure absolute 

cleanliness and converted into CaO as described in 

our previous work [52]. Figure 3 depicts the 

transesterification process for converting WCO to 

WCOME. A waterless purification method was 

adopted to prevent wastewater and the attendant 

cost of disposal and treatment, while used 

Magnesol® was recycled as compost and animal 

feed. Magnesol® at 1 % (magnesol:biodiesel) was 

added to the crude biodiesel maintained at 65 °C 

for 30 min and stirred by a magnetic stirrer at 600 

rpm. This was to allow evaporation of excess 

methanol trapped in the crude biodiesel and to 

ensure adequate contact between the absorbent and 

the crude biodiesel. The mixture was then 

subjected to centrifuge at 400 rpm for 20 min at 

ambient temperature. The decanted biodiesel was 

polished using a 0.45 µm syringe filter. The clean 

FAME was stored in a clean glass vial for analysis. 

4.2.3. Characterization of FAME  

The FA composition of the biodiesel samples 

was determined by a gas chromatograph-mass 

spectrometer (GC-MS) fitted with an ultra-alloy-5 

capillary column and GCMS-QP2010 Plus 

software. Table 4 shows the GCMS configuration 

used for the analysis of FAME samples. The total 

time for the GC-MS analysis was 39.81 min. 

5. Results and discussions 

5.1. Numerical solution 

The composition of FAME and some 

properties that are able to give optimal engine 

performance and mitigated emissions were 

revealed and are shown in Table 5. The optimal 

candidate was the FAME with palmitic acid 36.4 

% and oleic acid of 59.8 %. This candidate was 

arrived at when the CN, CP, density, KV, calorific 

value, and the cold flow plug point (CFPP) met 

both the EN 14214 and ASTM D 6751 standards. 

The CN, because of its importance in combustion, 

engine performance and emission generation, was 

maximized. The other candidates for an optimal 

candidate also provided satisfactory outcomes. 

Palmitic acid and oleic acid, being SFAs 

Start

Compute DN, KV, CV, CFPP 
and CP.

Set values for X1, X2, X3, X4 
and X5. (1-100) using step 

size

Stop

Is
0   CN   100  

Is
860   DN   900  

Is
 KV   4.5  

Is
34.4   CV   45.2 

Is
-5   CFPP   -15 

Is
-25   CP   26 

Output
 X1, X2, X3, X4 and X5

Increment
step

Increment
step

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Fig. 2. The flowchart for solving the equations 
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Fig. 3. Transesterification process flowchart  

 

 

Table 4. GCMS configuration 

Injector 

Inlet temperature 250 °C 

Carrier gas Helium 

Sample size 2 μL 

Injection mode splitless 

Column temperature 50 °C 

Detector 

Type GCMS 

Interface temperature  280 °C 

Detector gain 1.08 kV + 0.00 kV 

Oven temperature program 

Rate  Temperature (°C) Hold time (min) 

- 50 1 

15.00 180 1 

7.00 230 1 

5.00 350 5 

Column 

Type Ultra alloy -5(MS/HT)  

Specification 30 m, 0.25 mm ID, 0.25 μm 

Flow rate 3.0 mL/min 

Total flow 4.9 mL/min 

Column flow 0.95 L/min 

 

and MUFAs respectively, were the dominant 

percentage while stearic, linoleic and linolenic 

acids which are PUFAs had a combined 

composition of less than 2 %. The optimal 

candidate, being defined in terms of its FA 

compositions will be tested in an unmodified CI 

engine and reported in our next publication. 

However, going by the outcome of engine 

performance and emission characteristics of 

similar FAME were found to present encouraging 

performance parameters and mitigated emissions 

[53-56].    
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Table 5. Outcomes of linear algebra to determine an optimal candidate 

C16:0 C18:0 C18:1 C18:2 C18:3 

CN CP 

(°C)  
𝝆 

(kg/m3) 

KV 

(mm2/s) 

CV 

(MJ/kg) 

CFPP 

(°C) 

36.4 0 59.7 0.9 0.1 59.63 1.68 887.81 4.69 39300.85 -5.01 

36.4 0 59.7 1 0 59.64 1.69 886.86 4.69 39269.1 -5.01 

36.4 0 59.7 1 0.1 59.61 1.71 886.49 5.06 39307.9 -5.01 

36.4 0 59.7 1.1 0 59.62 1.72 885.53 5.06 39276.15 -5.01 

36.4 0 59.7 1.2 0 59.60 1.76 884.2 5.43 39283.2 -5.01 

36.4 0 59.8 0 0 59.83 1.37 898.8 4.4 39205 -5.01 

36.4 0 59.8 0 0.1 59.80 1.40 898.41 4.76 39244.02 -5.01 

36.4 0 59.8 0 0.2 59.76 1.43 898.04 4.13 39282.82 -5.01 

36.4 0 59.8 0 0.3 59.73 1.45 897.66 4.50 39321.62 -5.01 

36.4 0 59.8 0 0.4 59.7 1.49 897.29 4.87 39360.42 -5.01 

36.4 0 59.8 0 0.5 59.67 1.51 896.92 5.24 39399.22 -5.01 

Table 6. Properties of waste cooking oil samples 

 

 

 

 

 

 

Source  Waste cooking oil Test method 

Sunfoil 

(WSFO) 

Palm oil 

(WPOFC) 
Palm oil 

(WPOSC) 

 

Food items Chips Fish and chips Chips and sausages N/A 

Usage (Days) 14 14 14 N/A 

Acid value (mgKOH/g) 0.72 0.66 1.13 AOCS Ca 4a-40 

Density @ 20 ºC (kg/m3) 919.8 904.3 913.7 ASTM D 1298 

Iodine value (cg/g) 116.7 81.7 54.2 AOCS Cd 1B-87 

Kinematic Viscosity @ 

40 ºC (mm2/s) 

43.521 44.254 38.407 ASTM D445 
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5.2. Analysis of the Optimal Candidate 

WCOs were adopted as a feedstock due to 

their affordability, availability and environmental 

advantages over other types of feedstocks. Waste 

sunflower oil (WSO), waste palm oil (WPO) used 

to fry fish and chips (WPOFC) and WPO used to fry 

sausages and chips (WPOSC) were used as 

feedstock. Table 6 shows the details and properties 

of the waste cooking oil samples. The acid value of 

the samples shows the suitability of the 

transesterification process for their conversion to 

FAME. The effect of the food items the palm oil 

fried is manifested in the variations in their 

properties. Sausage was found to increase the 

density of the palm oil sample when compared to 

the sample used to fry fish. The iodine value and 

kinematic viscosity of the waste palm oil used to 

fry fish and chips were higher than that used to fry 

sausages and chips. WSO presented higher density 

and iodine values than the waste palm oil samples. 

The transesterification of WSO, WPOFC, and 

WPOSC into waste sunflower oil methyl esters 

(WSOME), waste palm oil methyl ester fish and 

chips (WPOMEFC), and waste palm oil methyl 

ester sausage and chips (WPOMESC) respectively 

using varying catalyst particle size, namely 75 µm, 

90 µm, 125 µm, and 150 µm, were subjected to 

GC-MS analysis. As shown in Table 7, catalyst 

particle size affects FA composition and the degree 

of saturation of FAME. For the WSOME samples, 

SFA varied between 37.18 % and 36.66 %. SFA 

increased with a reduction in catalyst particle size 

from 37.87 % for 75 µm catalyst particle size to 

38.66 % for 150 µm particle size but reduced to but 

reduced to 37.81 % for 150 µm catalyst particle 

size.at 150 µm catalyst particle size produced the 

least SFA but the highest (61.29 %) MUFA. The 

highest PUFA of 0.52 % was recorded at 125 µm 

catalyst particle size. 

The effect of the food item the neat palm oil was 

used to fry did not only affect its properties but also 

the FA composition and degree of saturation. The 

WPOMEFC consisted of about 61 % MUFA, 38 % 

SFA and 1 % PUFA. The percentage of MUFA 

reduced with an increment in the catalyst particle 

size, with the least PUFA occurring at 150 µm 

catalyst particle size. PUFA for WPOMEFC were 

noticed to increase with the increment in the 

catalyst particle size, rising from 0 % for 75 µm 

catalyst particle size to 1.97 % for 150 µm particle 

size. The percentage of MUFA in WPOMESC 

reduced as the catalyst particle size increased. At 

90 µm catalyst particle size, the WPOMESC 

presented the least SFA but the highest PUFA. 

Conversely, SFA and PUFA were noticed to 

increase with an increment in the catalyst particle 

size used to produce WPOMESC. 

In general, oleic and palmitic acids were 

common FAs to all the samples, irrespective of the 

feedstock and catalyst particle size, while 

linolenic, palmitoleic, stearic, linoleic, arachidic 

lauric and behenic acids appeared in trace 

percentages. The different surface area size of the 

catalyst was believed to be responsible for the 

different FA compositions. According to [57], the 

particle size of the solid catalyst influences 

catalytic behavior and performance. Different 

catalytic activity influenced by catalyst particle 

size and surface area is likely to affect the degree 

of saturation, the position of carbon—carbon 

double bond and, ultimately, the FA composition. 

From Table 5 it is evident that the two major 

FAs are palmitic and oleic acids and can be 

produced experimentally. Monirul et al. [53] and 

Ozsezen et al. [54] produced FAME from waste 

palm oil with palmitic and oleic acid of 38.4 % and 

44.3 % and 39 % and 43.69 % respectively. 

Ozsezen et al. [58] produced WPOME with 

palmitic and oleic acids of 39 % and 43.65 % 

respectively and tested the WPOME in an 

unmodified CI engine. The outcome of the 

emission characteristics showed that the CO, CO2, 

HC, and smoke opacity reduced by 88.89 %, 1.74 

%, 14.29 %, and 67.65 % respectively while NOx 

increased by 22.13 % at full load in contrast with 

petroleum-based diesel (PBD) fuel. The result of 

the engine performance test showed that the BSFC 

(g/kWh) increased by 6.93 %, brake power (kW) 

reduced by 2.64 % and the brake thermal efficiency 

reduced by 1.44 % at full load when compared with 

PBD fuel. 
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Table 7. Result of GCMS analysis of FAME samples 

 

 

Fatty acid Structure WSOME @ different catalyst particle size 

(%) 

WPOMEFC @ different catalyst particle 

size (%) 

WPOMESC @ different catalyst particle 

size (%) 

75 µm 90 µm 125 µm 150 µm 75 µm  90 µm 125 µm 150 µm 75 µm 90 µm 125 µm 150 µm 

Oleic acid C18:1  60.43 60.41 60.82 60.75 60.96 60.85 60.43 59.67 61.56 60.75 59.82 59.35 

Palmitic acid C16:0  36.16 36.61 36.63 36.28 37.72 36.24 37.52 37.32 36.35 36.26 36.71 36.51 

Linolenic  C18:3  1.25 1.12 - 0.62 - - 0.13 1.64 0.32 0.47 0.85 0.12 

Palmitoleic   C16:1 - - - 0.54 0.62 0.65 0.25 - - 0.57 0.56 0.43 

Stearic acid C18:0  0.54 0.61 1.01 0.78 - 0.15 0.26 1.04 0.91 - 0.75 1.17 

Linoleic acid C18:2    0.45 0.53 0.52 0.91 - 1.24 0.95 0.33 0.12 0.07 0.55 0.89 

Arachidic  acid C20:0 0.66 - 0.5 - 0.12 - - - - 1.27 0.79 1.05 

Lauric acid C12:0 0.45 0.15 - - 0.44 1.07 0.46 - 0.74 - 0.52 0.06 

Behenic acid C22:0 0.06 0.57 0.52 0.12 0.14 - - - - 0.61 - 0.42 

Saturated FA (%) 37.87 37.94 38.66 37.18 38.42 37.46 38.24 38.36 38 38.14 38.77 39.21 

Monounsaturated FA (%) 60.43 60.41 60.82 61.29 61.58 61.5 60.68 59.67 61.56 61.32 60.38 59.78 

Polyunsaturated FA (%) 1.7 1.65 0.52 1.53 - 1.04 1.08 1.97 0.44 0.54 0.85 1.01 

Total (%) 100 100 100 100 100 100 100 100 100 100 100 100 
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6. Conclusion 

The optimal candidate to engender better 

engine performance and mitigate emissions has 

been numerically determined. Major FAME 

fingerprints that influence engine performance and 

emission were estimated within acceptable 

standards using linear algebra based on FA 

composition. The numerically generated FAME 

was produced by the transesterification of WSO and 

WPO using five different catalyst particle sizes of 

CaO produced from high-temperature calcination 

of waste chicken eggshells. The outcome of the 

application of MATLAB to solve the ensuing linear 

equation consisting of the objective function and the 

constraints yielded a FAME candidate with palmitic 

and oleic acids of 36.4 % and 59.8 % respectively. 

Although the actual candidate could not be 

produced experimentally, a candidate with similar 

characteristics and FA in the range of the optimal 

FAME candidate was generated. The types of 

feedstock, the food items fried in the oil, as well as 

the different particle sizes, were ascertained to have 

an effect on the FA composition of the FAME 

produced through the transesterification process. 

Going forward, the FAME candidates should be 

tested on an unmodified CI engine to measure 

engine performance and emissions.  

However, a research gap still exists on the 

modalities to produce the exact FAME candidate. 

Specifically, more investigations should be carried 

out on the hybridization of feedstock or mixing of 

FAME from the various feedstocks. Also, the actual 

effect of catalyst particle size and other parametric 

factors that can affect the FA composition of FAME 

should be thoroughly investigated. 
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CHAPTER 5: PERFORMANCE AND EMISSION EVALUATION 

OF BIODIESEL DERIVED FROM WASTE RESTAURANT OIL 

AND MORINGA OLEIFERA: A COMPARATIVE STUDY   

 

This chapter examines the performance and emission characteristics of a CI engine fuelled with 

biodiesel synthesis from waste cooking oil (WCO) and Moringa oleifera oil. The article, among 

other things, compared FAME composition of neat Moringa oleifera oil and palm oil with the 

biodiesel derived from Moringa oil and WCO, showcased and compared the engine performance 

and emission of moringa oleifera methyl ester (MOME) and waste oleifera methyl ester 

(WOME). The outcome of the experimental investigation was published in the International 

Journal of Ambient Energy, Taylor and Francis Publishers. 

Onuh E. I., Inambao F., Awogbemi, O. (2019). “Performance and Emission Evaluation 

of Biodiesel Derived from Waste Restaurant Oil and Moringa oleifera: A Comparative 

Study,” International Journal of Ambient Energy.  
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CHAPTER 6: DEVELOPMENT AND APPLICATION OF 

ARTIFICIAL NEURAL NETWORK FOR THE PREDICTION OF 

ENGINE PERFORMANCE AND EMISSION CHARACTERISTICS 

OF DIESEL ENGINE USING FATTY ACID COMPOSITIONS 

 

In this chapter, an artificial neural network was developed, trained and applied to predict the 

performance and emission characteristics of CI engine using FA composition as inputs. Two FAs, 

namely palmitic acid (C16:0) and stearic acid (C18:0), were used as input parameters on a 

NNTool platform using a back-propagation (BP) algorithm with a Levenberg-Marquardt (LM) 

learning algorithm to predict BSFC (g/kWhr), BTE (%), EGT (⁰C), brake mean effective pressure 

(BMEP) (bar), CO (%), smoke intensity, NOx (ppm), and UHC (ppm) for a conventional CI 

engine. The predictive capacity of the model and statistical error parameters such as correlation 

coefficient, mean square error, root mean square error, and the mean absolute percentage error 

were evaluated. The outcome of the prediction has been accepted by the International Journal of 

Engineering Research and Technology for publication.  

Awogbemi, O., Inambao F., Onuh E. I. (2019). “Development and Application of 

Artificial Neural Network for the Prediction of Engine Performance and Emission 

Characteristics of Diesel Engine using Fatty Acid Compositions,” International Journal 

of Engineering Research and Technology (IJERT). International Research Publication 

House. (Accepted for publication) 
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Abstract 

The utilization of artificial neural networks (ANN) for the prediction of biofuel properties, engine 

performance parameters, and emission of gases within statutory regulations in engine research has 

been topical in recent times and is predicted to replace the cumbersome and highly technical 

requirements of real-time engine testing. This study developed an ANN model to predict the 

engine performance and emission parameters of an unmodified compression ignition (CI) engine 

fueled with biodiesel using two fatty acid compositions as inputs. The ANN model adopted the 

backpropagation with Levenberg-Marquardt algorithm, tangent-sigmoid transfer function 

comprising two, eight, and eight nodes as input, hidden, and output layers respectively. The overall 

regression coefficient (R) was found to be 0.9998 while the R-value for predicted outputs ranged 

between 0.9966 and 0.9997, the root mean square error varied between 0.01834 and 0.1725, and 

the mean absolute percentage error was reported to be between 1.6243 % and 4.546 % showing 

an acceptable prediction accuracy. It was found that the MATLAB NNTool is a reliable and 

effective tool for the prediction of engine performance parameters and emission of CI engines 

using two fatty acid compositions as inputs thereby minimize the time, cost, and infrastructural 

requirements of a real-time engine test.     

Keywords: ANN, engine performance, emission, FAME, prediction 

I. INTRODUCTION AND BACKGROUND  

The rise in population, growing depletion 

of crude oil deposits, constrained refining 

infrastructure, and environmental 

pollution, especially emissions from 

transport vehicles, has placed enormous 

pressure on stakeholders to develop 

renewable and biodegradable alternatives. 

This has increased research for affordable, 

renewable, biodegradable, and 

environmentally amenable options which 

include biofuel, hydrogen, electric cars, 

and vegetable oil-based fuels. Various 

researchers [1-5] have, in their 

investigations, enumerated the damaging 

effects of the application of petroleum-

based diesel (PBD) fuel in internal 

combustion engines to include 

environmental, performance, combustion, 

emissions, and health effects.  
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According to the researchers, the 

environmental effects include the 

greenhouse effect, increased global 

temperature, and rapid climate change. 

Infection and inflammation of airways, risk 

of asthma, bronchitis, eye irritation, and 

lung cancer and carcinogenic effects on 

humans and animals’ health are some of 

the health effects of the use of PBD fuel. In 

terms of performance, PBD fuel provides 

incomplete combustion resulting in the 

emission of high volumes of carbon 

monoxide. Biodiesel, as an alternative fuel, 

has been found to offer enormous 

advantages such as non-toxicity, 

renewability, biodegradability, higher 

lubricity, high cetane number, high flash 

point, positive energy balance, low to zero 

sulphur, and safer handling compared to 

PBD fuel. However, biodiesel suffers from 

certain demerits including poor cold flow 

properties, lower volatility, higher 

kinematic viscosity, higher NOx emission, 

more prone to corrosion, damaging effects 

on automobile parts and concrete and auto-

oxidation characteristics [6-9]. The initial 

challenge of high production cost is being 

overcome by the application of waste 

vegetable oil and waste animal fats as 

feedstock. The adaptation of waste cooking 

oil (WCO) has been reported to cause a 60 

% to 90 % reduction in the production cost 

of biodiesel [10, 11].    

Available statistics from the International 

Energy Agency [12] reveal that the current 

global biofuel production is not increasing 

rapidly enough to meet the transport 

biofuel consumption required as specified 

by the Sustainable Development Scenario 

(SDS). Biofuel demand in shipping and 

aviation has continued to increase and it is 

projected to triple by 2030 as shown in Fig. 

1. Deliberate investment and targeted 

research are required in the areas of 

feedstock development, production 

infrastructure, deployment of numerical 

and optimization techniques in the 

production process, and improvement of 

performance and emission indices towards 

meeting the SDS. Meeting optimal engine 

performance and stringent emission 

requirements for compression ignition (CI) 

engines prescribed by regulatory bodies for 

CI engines fueled with fatty acid methyl 

ester (FAME) requires testing the fuels at 

various engine speeds and loads, among 

other parameters. This entails enormous 

resources, time, technicality, and 

personnel. One of the ways to deal with 

these challenges is the application of high-

speed computers in numerical simulation 

and optimization of the production, process 

and utilization parameters to explore and 

discover optimal scenarios.     

 
Fig. 1. Biofuel consumption breakdown in the SDS 
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In order to overcome the strenuous, time 

consuming, costly and intricate engine test 

experimentation involved in the 

determination of performance and 

emission parameters, researchers have 

adopted various numerical prediction tools 

to execute these important tasks. Linear 

prediction models have been widely used 

in predicting FAME properties but have 

been deficient in estimating engine 

performance and emission parameters 

because of their nonlinearity orientation. 

Artificial neural networks (ANN) have 

found wide application in business, 

medicine, engineering, image and voice 

recognition, with appreciable success, 

particularly where the traditional modeling 

techniques proved ineffective. ANN has 

been deployed for the purpose of predicting 

engine performance and emission of 

internal combustion engines [13]. An ANN 

uses the information presented to it to 

learn, relearn, and understand the 

correlation between the input and the 

output data. Using those established 

relationships, the ANN can predict 

responses from a new set of independent 

variables, drawing from its learning 

experience. A properly trained ANN 

possesses a high predictive capability and 

the ability to learn, unlearn, and relearn to 

improve the quality and integrity of the 

output if a different array of data is made 

available The preference of the ANN 

model over other prediction techniques is 

due to its adaptability and capability to 

learn then relearn nonlinear progressions 

and its uncomplicated adaptation to real-

time data fluctuations. A well-trained ANN 

is faster, simpler, and more accurate than 

other conventional simulation techniques 

or mathematical models which require 

extensive computations, long iterations, 

and complex differential equations [14]. 

Major advantages of ANNs include high 

processing speed, ability to capture 

nonlinearities between predictors and 

outcomes as well as the capability to learn 

and model linear, nonlinear, and complex 

correlations. Though ANNs are trained on 

a case by case basis which cannot be 

transferred for usage to other applications, 

this approach has continued to find 

applications in pattern classification, 

scheduling, intrusion detection, financial 

analysis as well as in control and 

optimization [15-20]. 

Due to its obvious benefits, researchers 

have employed well-trained ANN models 

to forecast and estimate engine 

performance parameters and release of 

emission gases on CI engines including 

torque, engine power, brake specific fuel 

consumption (BSFC), brake thermal 

efficiency (BTE), exhaust gas temperature 

(EGT), thermal efficiency, carbon dioxide 

(CO2), nitric oxide (NO), nitrogen oxides 

(NOx), unburnt hydrocarbon (UHC), and 

smoke intensity under different engine 

speed and loading situations. The 

outcomes of the prediction exercises have 

agreed with real-time experimental engine 

test results, thereby meeting the primary 

purpose of its deployment.  

Bearing in mind the importance of fatty 

acid (FA) composition in the handling, 

storage, performance, combustion, 

properties, and emissions of biodiesel fuel, 

a lot of resources and efforts are being 

deployed for the prediction of engine 

performance parameters as well as the 

emission based on its FA compositions. 

These efforts need to be improved upon 

and strengthened, hence the present 

intervention. In this research, the pertinent 

question to ask, and which forms the 

motivation for this research, is whether the 

numerically determined optimal FAME 

candidate can advance engine performance 

and tone down the emission characteristics 

of an unmodified of CI engine.   

The object of the present effort, therefore, 

is to develop and train an ANN model with 

the capacity to predict the engine 

performance parameters and emission 

characteristics of an unmodified CI engine 

fueled with an optimal FAME candidate 

determined in terms of two FA 
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compositions with the aim of unearthing an 

appropriate biodiesel fuel that will advance 

engine performance and mitigate emission 

characteristics. This investigation is 

limited to the use of C16:0 and C18:1 

percentage concentrations as input 

variables to develop an ANN model 

capable of training, testing and predicting 

the BSFC, BMEP, BTE, EGT, CO, smoke 

intensity, UHC, and NOx of an unmodified 

CI engine fueled by unblended FAME.   

The application of ANN in biofuel study 

has been well documented owing to the 

obvious derivable advantages, which 

include simplicity, adaptability, and 

manoeuvrability [21]. ANN has been 

applied on many occasions to predict 

biodiesel properties, engine performance, 

fuel mixing and combustion parameters, 

and emission characteristics. Filho et al. 

[22], Hosseinpour et al. [23], Oliveira et al. 

[24], and Rocabruno-Valdes et al. [25] 

utilized a well-trained ANN model to 

predict some properties of FAME. The 

outcome of their investigations revealed 

that the predicted data agreed with the 

experimental data. Taghavifar et al. [26] 

engaged ANN to predict the heat flux of a 

CI engine using spray characteristics such 

as crank angle, temperature, and pressure 

as inputs with acceptable output. Rao et al. 

[27], Javed et al. [28], and Kshirsagar and 

Anad [29] used ANN prediction modeling 

to predict BTE, BSFC, EGT, CO, CO2, 

UHC, NOx, and soot using blending ratios 

as inputs with reasonable outputs. Çay et 

al. [30], and Kumar et al. [31] developed 

standard backpropagation algorithms on a 

MATLAB platform to predict the engine 

performance of a CI engine powered with 

biodiesel and compared the predicted 

results with experimental results. 

Bietresato et al. [32] evaluated the 

effectiveness of ANN models of sigmoidal 

and Gaussian algorithms to demonstrate 

their predictive capabilities for engine 

performance and emission characteristics 

in a farm tractor.    

Other researchers have used various 

parameters, including temperature, number 

of carbon and hydrogen atoms as inputs for 

the prediction of properties, engine 

performance and emission parameters of a 

conventional CI engine. The use of fatty 

acid (FA) compositions have not been 

widely and adequately exploited. 

Ramadhas et al. [33], Filho et al. [22], 

Piloto-Rodriguez et al. [34], and Sara et al. 

[35] have at various times used FA 

composition as input variables to predict 

the properties, engine performance and 

emission characteristics of FAME. A 

painstaking and exhaustive search of 

literature, comprising over 120 biodiesel 

samples, revealed that palmitic acid 

(C16:0), stearic (C18:0), oleic acid 

(C18:1), linoleic acid (C18:2), and 

linolenic acid (C18:3) are the most popular 

FAs in biodiesel among the 13 FAs [22, 36-

38]. Myristic acid (C14:0), C16:0, C18:0, 

C18:1, and C18:2 were adopted by Menon 

et al. [39] as input variables to predict 

various parameters of CI engine fueled 

with biodiesel using ANN, thereby 

developing an optimal biodiesel fuel 

candidate based of FA composition and 

degree of saturation/unsaturation of the 

fuel.  

II. MATERIAL AND METHODS 

In this section, we discuss the experimental 

and the numerical methods employed in 

carrying out the research. The 

experimental method involves the 

production of an optimal FAME candidate 

through the transesterification of waste 

palm oil (WPO) and the GCMS analysis of 

the samples to reveal the FA composition. 

The development and training of an ANN 

model to predict the engine performance 

and emission characteristics parameters of 

unmodified CI engine fueled with FAME 

is categorized by means of numerical 

techniques using advances in software 

computing. 
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II.I. Production of Optimal FAME 

Biodiesel from WPO and Determination 

of FA Composition 

The WPO sample was collected from a 

local owner-operated restaurant at the point 

of disposal near the university campus 

while waste chicken eggshells were 

obtained from eateries at the University of 

KwaZulu-Natal, Durban, cafeteria. The 

waste chicken eggshells were converted to 

a CaO catalyst through high-temperature 

calcination at 900 ⁰C as described by our 

earlier work [40]. The WPO was pretreated 

by removing food debris and moisture 

before subjecting it to a one-stage 

transesterification process since the acid 

value was found to be 0.66 mgKOH/g.  

The clean feedstock was mixed with 

methanol and calcined CaO catalyst in a 

flat-bottomed flask in the required quantity 

and heated on an electric cooker with a 

magnetic stirrer maintained at 1200 rpm 

while a digital thermocouple was used to 

authenticate the reaction temperature 

throughout the process. A reaction 

temperature of 60 ⁰C, methanol to oil ratio 

of 6:1, the catalyst particle size of 75 µm, 1 

% w/w catalyst: oil ratio, and total reaction 

time of 90 min were selected as process 

parameters. The ensuing mixture was 

subsequently filtered in a Buchner funnel 

filtration system assembled to retrieve the 

catalyst. The filtered mixture was 

transmitted to a separating funnel for the 

glycerol to coagulate at the base of the 

separating funnel where it was tapped off. 

The crude biodiesel was purified using 

magnesol. The purified FAME was 

subjected to FA characterization in a 

GCMS. 

II.II. Development of ANN Model 

ANN, available on MATLAB platform, is 

a parallel distributed processing computer 

system modeled on the functioning of the 

human brain with the capacity to generate, 

form and discover new knowledge without 

any help, based on the information 

presented to it. It comprises a number of 

linked and interconnected processing 

elements known as neutrons or nodes. The 

neutrons are linked with each other by 

synaptic weights through which signals are 

passed from one neuron to the other in 

accordance with the connecting weights. 

The weight of the signal is determined by 

the knowledge acquired in the course of the 

training, testing, and validation. The 

neutron processes information presented to 

it based on its dynamic state. The neuron 

receives input from external sources, 

analyzes such information, and executes 

non-linear operations based on it and 

generates an output [41, 42]. Figure 2 

shows the network configuration of a 

typical ANN model used for this study. 

 

Fig. 2. The ANN structure  

In order to develop and improve an ANN 

model, the network is exposed to the 

training or learning phase and the testing or 

validation stage. During the learning phase, 

the network studies the input data and 

estimates the output variables. In the test 

stage, the network stops learning and 

estimates the output data using the 

knowledge gained during the training 

stage. Training is programmed to terminate 

when the testing error attains the 

previously set tolerance and the preferred 

epoch number is reached in relation to the 

error value [43].  

II.III. Determination of the Model 

Parameters  

For the present research, a MATLAB 

R2017b NNTool was used to develop the 

model [44]. The back-propagation (BP) 
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algorithm with a Levenberg-Marquardt 

(LM) learning algorithm was applied 

because of its high robustness, fault 

tolerance, self-learning, self-adaptability 

and reputation for good prediction 

accuracy [45, 46]. Despite this advantage, 

BPA has been found to be susceptible to 

slow convergence, fluctuations, and severe 

oscillations particularly during the training 

stage [47, 48]. Tangent-sigmoid 

(TANSIG) is adopted as the transfer 

function.  

The number of nodes at the input and 

output layers were selected as stated on the 

research objective which is to use C16:0 

and C18:1 as inputs to estimate the engine 

performance and emission characteristics 

of an unmodified CI engine. For this 

research, the selected engine performance 

output parameters were BSFC, BMEP, 

BTE, and EGT, while the emission 

characteristics were CO, smoke intensity, 

UHC, and NOx. Hence, two nodes were 

selected for input layers while eight nodes 

were selected for output layers. 

A single hidden layer can sufficiently 

predict any non-linear relations or 

functions using the BPA neural network. 

Since there are few nodes in the input layer 

in the proposed model, the network did not 

require any complex arrangement. Hence 

one hidden layer was adopted for the 

model. The number of nodes in the hidden 

layer (p) was selected based on the 

Kolmogorov theorem and neural network 

theory [49]. p was estimated by Eq. 1 [50].  

 𝑝 < √𝑛 + 𝑚 + 𝑎               (1) 

Where 𝑛 is the total number of nodes in the 

input layer, 𝑚 is the total number of nodes 

in the output layer and 𝑎 is a positive 

integer (𝑎 < 10). The 𝑎 must be 

strategically chosen to get a reasonable 𝑝. 

An excessively low 𝑝 will reduce the 

accuracy of the network approximation of 

the model thereby leading to increased 

prediction error, while an excessively large 

𝑝 will make the network unnecessarily 

complex requiring longer training time 

[51]. With 𝑛 𝑣𝑎𝑙𝑢𝑒 of 2, 𝑚 𝑣𝑎𝑙𝑢𝑒 of 3, and 

𝑎 𝑣𝑎𝑙𝑢𝑒 of 7, 𝑝 was set to 10. The learning 

rate and target error were both set at 0.01 

based on the experience of continuous 

testing.  

The minimum gradient of 10−7was set as 

part of the stopping criteria. Other factors 

to be considered for the design of the ANN 

model are depicted in Table 1. Also, as 

shown in Table 2, there were 125 

experimental datasets mined from the 

literature. The FA compositions were 

obtained from GCMS analysis while the 

engine performance and emission 

characteristics were gotten from real-time 

engine tests [52-55]. 70 % (95 patterns) of 

the data were chosen for training the 

model, 15 % (15 patterns) for validation 

while 15 % (15 patterns) were used for 

testing the prediction capability of the 

trained network. The developed, trained, 

and validated model was used to predict the 

engine performance and emission 

characteristics of FAME candidates with 

C16:0 and C18:1 concentration of 36.4 % 

and 59.8 % respectively. The flow chart 

representing the developed ANN algorithm 

is shown in Fig. 3. The performance of the 

developed ANN model was examined by 

correlation coefficient (R), while the errors 

were evaluated using statistical error 

parameters, namely, Mean Square Error 

(MSE), Root Mean Square Error (RMSE), 

and the Mean Absolute Percentage Error 

(MAPE). The R, MSE, RMSE, and MAPE 

were calculated using the Eqs. 2-5 [41, 56, 

57].  
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Table 1. Details of the neural network 

model 

Factors Value 

Input layer 2 

Hidden Layer 1 

Output layer 8 

Number of neutrons in the 

hidden layer 

10 

Number of epoch 10000 

Number of iterations 69 

 R = 1 − {
∑ (𝐴𝑡−𝐹𝑡)2𝑛

𝑖=1

∑ (𝐹𝑡)2𝑛
𝑖=1

}   (2) 

MSE =   
∑ (𝐴𝑡−𝐹𝑡)2𝑛

𝑖=1

𝑛
    (3) 

RMSE = √
∑ (𝐴𝑡−𝐹𝑡)2𝑛

𝑖=1

𝑛
    (4) 

𝑀𝐴𝑃𝐸 =  
∑ |

𝐴𝑡−𝐹𝑡
𝐴𝑡

|𝑛
𝑖=1

𝑛
 × 100 %  (5) 

Where ‘𝑛’ is the number of the patterns in 

the dataset, ‘𝐴𝑡’ is the actual output, and 

‘𝐹𝑡’ is the predicted output value. 

The R, MSE, RMSE, and MAPE were 

applied to measure the accuracy of the 

model. The ANN model was set to 

terminate the iteration when 𝑅 >
98, 𝑀𝑆𝐸 < 0.001, 𝑎𝑛𝑑 𝑀𝐴𝑃𝐸 < 5 %. 

The RMSE measures the variation between 

the predicted data and the experimental 

data while the MSE denotes the standard 

deviation of the difference between the 

predicted value and the experimental value 

for the data. A smaller RMSE symbolizes 

accurate outputs and model. 

 

Table 2. Datasets for the ANN model 
S/N C16:0 C18:1 BSFC 

(g/kWhr) 

BTE 

(%) 

EGT 

(⁰C) 

BMEP 

(bar) 

CO 

(%) 

Smoke 

intensity 

NOx 

(ppm) 

UHC 

(ppm) 

1 20.8 58.4 266.13 33.8 408 11.92 0.07 40 451 43 

2 24.5 62.6 233.31 38.58 398 12.31 0.058 43 750 55 

3 31.4 58.4 325.67 27.62 466 8.91 0.026 50 543 40 

4 30.6 60.3 285.14 31.55 483 9.27 0.023 56 723 35 

5 21.9 57.4 280.47 32.08 449 11.15 0.21 60 468 20 

6 36.3 58.4 252.18 35.68 468 11.79 0.21 54 483 34 

7 23.4 70.3 231.96 38.79 400 12.17 0.069 55 459 40 

8 34.5 68.4 310.43 28.98 477 9.22 0.21 58 425 50 

9 36.5 57.6 272.59 33.12 459 11.64 0.049 49 471 55 

10 35.6 62.4 294.53 30.55 497 10.08 0.018 42 455 53 

11 34.8 60.7 257.24 34.97 430 11.38 0.04 54 460 45 

12 35.8 59.3 229.81 39.15 396 12 0.07 62 446 43 

13 28.5 70.6 278.83 32.27 437 10.62 0.16 66 465 50 

14 43.6 56.2 255.79 35.17 431 12.17 0.032 43 675 32 

15 34.8 55.9 230.03 39.11 389 12.31 0.07 45 447 34 

16 26.4 65.4 279.63 32.17 494 10.9 0.13 56 456 18 

17 23.6 65.3 242.07 37.17 434 12.25 0.032 48 467 32 

18 26.1 65.8 226.24 39.77 388 12.39 0.01 39 478 28 

19 26.7 56.5 246.55 32.43 380 12.67 0.06 30 290 34 

20 34.6 54.2 246.78 40.43 342 10.56 0.05 58 875 32 

21 34.3 51.6 355.74 32.76 250 9.65 0.03 62 650 28 

22 24.5 49.5 290.52 43.24 245 11.89 0.04 54 473 28 

23 23.6 60.5 270.74 40.21 370 10.45 0.18 48 478 19 

24 29.5 61.7 355.61 32.65 290 16.32 0.07 54 660 25 

25 23.5 55.8 322.79 31.35 287 11.04 0.03 50 456 28 
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26 22.5 54.7 250.62 33.65 370 12.76 0.12 61 476 26 

27 23.6 44.7 261.78 32.67 400 10.45 0.16 34 821 43 

28 29.4 58.4 276.85 23.65 468 9.43 0.04 38 448 50 

29 43.48 41.13 280.54 27.43 280 10.45 0.02 43 650 51 

30 42.45 40.32 278.54 23.54 460 12.03 0.03 41 720 40 

31 40.21 50.35 300.45 30.78 380 9.32 0.12 40 459 39 

32 39.43 55.43 285.05 32.76 380 10.45 0.21 42 700 52 

33 42.56 50.45 260.45 22.09 410 15.23 0.07 60 710 48 

34 37.16 46.93 290.54 35.05 420 9.05 0.04 57 651 27 

35 35.76 50.43 315.85 35.87 410 10.45 0.12 43 552 40 

36 40.42 49.32 250.45 34.53 358 10.25 0.08 38 460 48 

37 43.56 42.46 260.48 22.87 330 11.35 0.15 28 570 28 

38 35.32 50.32 270.41 28.54 450 11.21 0.21 40 592 28 

39 38.43 39.45 301.45 27.91 510 10.35 0.05 50 702 34 

40 45.21 55.32 310.65 32.56 350 9.25 0.13 61 810 28 

41 42.75 45.55 317.23 38.21 420 12.25 0.17 52 830 54 

42 34.52 42.59 260.54 28.45 470 10.27 0.13 58 750 43 

43 53.7 22.8 270.4 23.54 400 11.45 0.12 42 453 40 

44 52.9 22.2 230.2 30.43 398 12.43 0.089 45 650 52 

45 51.83 24.13 332.4 26.54 453 9.43 0.012 51 542 43 

46 53 23.3 280.4 32.54 498 8.56 0.032 54 732 51 

47 22.19 48.2 276.1 32.65 453 10.43 0.22 52 487 43 

48 53.3 25 321.3 34.67 487 11.76 0.21 52 505 56 

49 13.31 50.76 324.8 40.32 421 11.43 0.045 48 476 34 

50 55.53 23.26 265.3 28.43 487 10.21 0.27 51 432 45 

51 52.5 24.8 234.5 32.54 462 10.43 0.047 47 480 48 

52 54.1 22.6 301.2 29.56 487 10.04 0.012 41 440 47 

53 48.9 23.18 261.4 33.06 442 11.25 0.05 51 455 51 

54 73.73 16.93 230 39.54 398 11.54 0.081 60 475 48 

55 66.02 20.43 265.1 33.65 436 10.56 0.127 53 432 53 

56 69 23.87 223.5 35.91 429 12.15 0.034 56 624 46 

57 67.7 20.5 230.03 39.23 387 12.23 0.068 45 654 32 

58 63.29 23.68 267.3 33.09 492 10.45 0.014 51 562 27 

59 77.89 32.78 243.1 37.43 431 12.56 0.043 49 467 54 

60 63.5 24 276.3 37.89 342 12.54 0.015 46 480 34 

61 42.8 40.5 254.3 31.65 380 13.21 0.06 41 431 43 

62 42.6 40.5 265.3 39.02 371 11.54 0.08 61 657 30 

63 42.7 40.9 342.1 32.94 278 10.41 0.043 57 567 36 

64 44.81 39.99 287.3 43 263 11.54 0.023 52 680 25 

65 43.32 40.57 276.3 40.43 381 9.43 0.143 52 623 20 

66 40.2 43.3 344.9 32.65 301 12.54 0.043 58 560 27 

67 47.9 37 312.4 31.54 297 11.27 0.078 56 467 30 

68 43.9 39 265.1 33.89 385 12.54 0.17 59 651 24 

69 39.5 43.2 253.87 32.76 402 11.48 0.042 37 605 40 

70 23.3 42.4 265.32 24.5 458 10.21 0.054 31 458 42 

71 25.2 48.9 276.21 28.54 320 11.24 0.027 45 620 35 
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72 23.1 45.8 265.32 23.87 430 12.38 0.04 53 680 43 

73 23.9 43.9 299.3 31.5 341 10.34 0.014 48 461 47 

74 24.34 42.23 300 31.65 374 10.5 0.043 54 680 41 

75 20.1 55.2 267.3 24.65 403 13.78 0.052 61 520 56 

76 28.7 57.4 297 35.78 415 10.54 0.05 54 670 43 

77 11.67 57.51 312.34 33.87 407 10.68 0.14 48 550 40 

78 28.33 57.51 243.43 35.05 372 9.98 0.065 35 535 41 

79 20.6 52.5 260.45 23.55 350 12.21 0.18 30 555 32 

80 22.9 54.2 265.43 28.94 448 11.12 0.27 38 610 28 

81 11.38 48.28 300.2 27.54 471 10.58 0.052 47 700 43 

82 11.4 48.3 312.45 33.56 378 10.76 0.076 60 750 26 

83 11.2 45.5 317.43 39.84 425 11.35 0.17 54 652 44 

84 10.4 47.1 276.4 29.4 446 10.46 0.173 51 690 32 

85 23.6 44.2 265.43 34 400 10.57 0.045 49 475 24 

86 25.5 47.1 235.53 37.98 389 12.89 0.072 40 705 32 

87 24.49 38.32 321.54 28.54 476 10.54 0.045 45 530 38 

88 20.6 64 287.43 32.04 473 10.43 0.043 59 710 43 

89 22.3 64.1 280.11 33.41 450 11.28 0.28 61 480 25 

90 22.3 64.4 250.12 34.14 470 11.54 0.32 57 503 36 

91 20.6 61.6 231.07 35.8 405 12.05 0.076 61 470 43 

92 20.6 61.5 308.05 28.98 465 10.21 0.32 53 443 56 

93 46.36 32.38 278.5 34.65 450 11.56 0.045 52 472 45 

94 69.07 18.97 298.32 30.55 475 10 0.048 48 485 51 

95 43.08 40.55 254.43 34 420 11.35 0.064 52 605 60 

96 23.88 45.25 228.57 38.45 400 12.58 0.023 60 621 42 

97 55.72 40.23 278.43 31 435 11.43 0.182 54 710 38 

98 32.14 47.23 254.65 36.41 420 12.56 0.132 47 540 54 

99 26.03 45.43 234.61 38.5 385 11.67 0.126 48 462 32 

100 21.28 63.12 276.54 32.81 490 11.68 0.023 55 440 26 

101 23.1 63.2 234.54 37 441 10.43 0.043 45 445 55 

102 20.43 61.9 234.78 40.33 398 18.45 0.05 46 465 43 

103 10.12 79.4 200.54 31.56 379 12.5 0.06 47 367 56 

104 24.32 62.05 220.56 40.34 337 11.65 0.056 35 761 34 

105 15.05 75.32 340.54 24 248 10.03 0.132 37 658 37 

106 34.54 50.3 300 51 271 11.32 0.231 41 456 54 

107 35.65 50.5 267.05 40.05 375 10.76 0.16 42 571 39 

108 23.67 58.23 340.54 36.02 271 13.28 0.17 40 665 28 

109 26.76 46.55 342 38.87 300 10.43 0.034 55 456 34 

110 30.65 53.3 256.54 33.13 362 11.32 0.172 42 467 53 

111 27.54 58.43 270 33.76 389 9.47 0.166 48 749 48 

112 34.32 46.5 256.43 30.19 465 11.78 0.074 41 450 65 

113 20.43 46.3 278.54 28.78 300 9.68 0.023 50 630 31 

114 26.43 57.84 260 24.67 487 13.43 0.056 44 726 27 

115 54.32 26.89 310.65 30.56 381 15.32 0.183 54 471 41 

116 46.32 34.54 290.5 33.81 345 18.01 0.124 60 704 28 

117 20.56 60.33 267.54 26.5 389 16.55 0.23 46 723 44 
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118 43.65 34.59 284.65 33.89 400 13.65 0.124 59 456 47 

119 32.65 50.05 312.54 33.71 421 11.45 0.043 44 443 34 

120 25.21 52.65 260.67 37.2 430 9.67 0.012 51 506 49 

121 42.39 34.56 239.05 24.54 327 10.32 0.043 39 561 28 

122 41.65 50.05 289.12 29.55 437 10.43 0.312 45 604 38 

123 44.54 45.5 310.32 28.57 505 11.59 0.043 50 673 43 

124 32.89 44.65 309.65 33.65 355 10.54 0.23 48 782 26 

125 27.35 56.43 278.09 35.18 430 9.26 0.176 51 774 41 

III. RESULTS AND DISCUSSION 

We developed an ANN model to predict the 

engine performance and emission 

characteristics of an unmodified CI engine with 

C16:0 and C18:1 as inputs using the BP-LM 

algorithm. The predicted engine performance 

was BSFC, BMEP, BTE, and EGT, while four 

emission characteristics, namely CO, smoke 

intensity, UHC, and NOx were predicted. The 

two input parameters were palmitic and oleic 

acids. Figure 4 shows the structure of ANN 

consisting of input, hidden, and output layers 

and their respective number of nodes generated 

by the ANN model developed on a MATLAB 

R2017b NNTool. Data were sourced from 

literature for the training and validation of the 

model while the engine performance and 

emission characteristics of optimal FAME 

candidate produced by the transesterification 

of WPO and analyzed by GCMS were 

predicted by the trained ANN model. The 

overall correlation coefficient of the ANN 

model is shown in Fig. 5. The regression 

coefficient of the training, validation, and test 

data gave satisfactory value, an indication of 

high predictive proficiency of the established 

model. The outcome of the overall correlation 

coefficient for the present model is an 

improvement on the outcome of similar efforts 

[58-60]. 

The performance indices of the trained ANN 

model using regression and other statistical 

error parameters as well as comparison of the 

predicted data with experimental data for 15 

different test cases are presented in Fig. 5–14. 

The prediction of output parameters yielded 

impressive outcomes for BSFC, BMEP, BTE, 

CO, EGT, UHC, NOx, and smoke intensity 

with commendable and reliable values of R, 

MSE, RMSE, and MAPE for each parameter. 

This indicates the accuracy, sensitivity, 

capacity, and capability of the developed 

model to simultaneously predict important 

engine performance and emission parameters 

that can be relied upon.
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Fig. 3. Flow chart of ANN model 

 

 

Fig. 4. Neural network model created using 

NNTool box [44] 

 

Fig. 5. The overall correlation coefficient 

of the ANN model. 

 
 

  

Fig. 6. (a) Regression plot for BSFC (b) Comparison of experimental and ANN predicted 

BSFC 
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Fig. 7. (a) Regression plot for BTE (b) Comparison of experimental and ANN predicted 

BTE 

  

Figure 6a compares the ANN predicted 

data with the experimentally measured 

data. With R-value of 0.9984, MSE, 

RMSE, and MAPE values of 0.009906, 

0.09953 g/kWh, and 1.729 % respectively, 

the model performed acceptably. The 

model was also applied to predict the 

BSFC of some FAME samples. This result 

is comparable to the correlation coefficient 

of 0.9968, and MSE of 0.0177 reported by 

Syed et al. [61]. The outcome, as shown in 

Fig. 6b, was commendable and can be 

relied upon to arrive at a sound decision on 

the fuel. Bearing in mind the importance of 

BSFC as an engine performance 

parameter, and the relationship between 

fuel consumption, power output and 

efficiency of an oxygenated fuel like 

FAME, this model will be useful to 

determine the behavior of FAME from its 

palmitic and oleic acid concentrations. 

Figures 7a and 7b illustrate the ANN 

predicted BTE versus experimental BTE 

and the outcome of the predicted data for 

15 experimental test cases. With R of 

0.9982, MSE of 0.0003363, RMSE of 

0.09953 % and MAPE of 1.729 %, the 

developed ANN model was satisfactory 

and acceptable. These results were 

comparable with the outcome of similar 

investigations reported in the literature [59, 

62]. 

The correlation coefficient and other 

statistical errors of the developed ANN 

model for BMEP were found to be within 

acceptable levels throughout the 

investigation despite the nonlinear 

relationship between BMEP and the FA 

composition of biodiesel. As shown in Fig. 

8a and 8b, the model provided a 

satisfactory outcome with statistical errors 

within acceptable limits. The R-value of 

0.9991, MSE value of 0.001032, RMSE 

value of 0.03212 bar and MAPE value of 

2.674 % showed good predictive 

capabilities of the model. Figure 9a and 9b 

show the relationship between the 

experimental and ANN predicted data of 

EGT. The performance index of the model 

indicates an R of 0.999 and RMSE of 

0.03212. This result is comparable with the 

R-values of 0.9995 reported by Syed et al. 

[61] and 0.99754 reported by Javed et al. 

[28].  
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Fig. 8 (a) Regression plot for BMEP (b) Comparison of experimental and ANN predicted 

BMEP 

   

Fig. 9. (a) Regression plot for EGT (b) Comparison of experimental and ANN predicted 

EGT

The developed model predicted CO and 

NOx within acceptable limits. The 

predicted CO and NOx were close to the 

experimentally measured values. This is 

shown by the R-value near 1. The value of 

MSE, RMSE, and MAPE show the high 

prediction accuracy of the model. As 

shown in Fig. 10a and b, and 11a and b the 

gap between the experimentally 

determined and ANN predicted values are 

negligible for CO and NOx emissions. Due 

to the effects of CO emission on humans 

and the environment the parameters need 

to be accurately predicted so as to be able 

to drastically reduce CO emissions. High 

emissions of NOx in a CI engine remains 

one of the drawbacks for the application of 

FAME as a CI engine fuel. Researchers are 

still working on lowering the NOx 

emission in line with standards. This model 

accurately predicts the emissions of CO 

and NOx gases thereby making real-time 

engine tests unnecessary. This result is an 

improvement on the outcome of similar 

studies available in the literature [62, 63].  
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Fig. 10. (a) Regression plot for CO (b) Comparison of experimental and ANN predicted 

CO 

  

Fig. 11. (a) Regression plot for NOx (b) Comparison of experimental and ANN predicted 

NOx 

It can be deduced from the outcomes of the 

model prediction that the ANN predicted 

values agree well with the experimentally 

measured values. This reveals that the 

developed ANN model has satisfactorily 

determined the UHC and smoke intensity 

of CI engine fueled with FAME. The R-

value was found to be 0.9995 and 0.9966 

for UHC and smoke intensity, respectively. 

The closeness of these R values to 1 

signifies the high accuracy of the 

prediction. For the UHC emissions the 

RMSE value is 0.1135 and MAPE value is 

2.503 % (Fig. 12a and 12b) and for the 

smoke intensity the RMSE is 0.02154 and 

the MAPE is 2.294 % (Figure 13a and 

13b). These small RMSE and MAPE 

values are indicative of the high accuracy 

of the developed model [41, 61, 63].  

 
 

Fig. 12. (a) Regression plot for UHC (b) Comparison of experimental and ANN predicted 

UHC 

 

Fig. 13. (a) Regression plot for Smoke intensity (b) Comparison of experimental and 

ANN predicted Smoke intensity
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Table 3. Comparison of outcome of this research with other results 

Parameter unit Present 

research 

Arunkumar 

et al. [64] 

Sanli et al. [65] Subramania

m et al. [66] 

Singh et al. 

[67] 

BSFC g/kWh 205 750 230 to 247 400 to 460 300 to 500 

BTE % 30 28 - 24 to 26 0 to 30 

BMEP bar 45 - 38 to 42 - - 

EGT ⁰C 260 300 - - 150 to 380 

CO % 0.05 0.07 700 to 

6000(ppm) 

- 0.05 to 0.09 

NOx ppm 400 470 1400 to 1550 300 to 900 350 to 980 

UHC ppm 18 35 22 to 26 - 70 to 110 

Smoke 

intensity 

- 50 55 - 72 to 102 9 to 50 

 

III.I. Prediction of Engine Performance 

and Emissions of Optimal FAME 

A well-trained ANN model was deployed 

to predict the BSFC, BMEP, BTE, CO, 

EGT, UHC, NOx, and smoke intensity of 

CI engine fueled with the optimal FAME 

candidate produced to certain 

configurations. The two most important 

FA composition identified were C16:0 and 

C18:1 and these were used as inputs. The 

outcomes of the ANN predictions were 

compared with the outcomes of real-time 

CI engine tests from the literature as shown 

in Table 3. In terms of engine performance, 

the optimal candidates delivered 

encouraging performance parameters when 

compared with similar research outcomes. 

The BSFC was lower whereas the BTE was 

relatively high but at a lower EGT. The 

CO, NOx, UHC and smoke opacity 

emissions were found to be lower than all 

the outcomes of comparable investigations. 

The oxygenated fingerprint of the FAME 

candidate ensured better combustion which 

was reflected in the low CO emission. The 

low EGT also resulted in low NOx 

emissions. These outcomes show that the 

computed optimal FAME candidates 

yielded better engine performance and 

emitted less regulated gases, thereby 

meeting the objective of developing a new 

fuel. 

 

 

IV. CONCLUSION  

In this study, ANN was developed and 

trained using secondary data mined from 

literature for the simulation and prediction 

of engine performance and emission 

characteristics. The validated model was 

used to predict the engine performance and 

emission of a computed optimal FAME 

mix. The MATLAB ANN model based on 

BP-LM algorithms with tangent-sigmoid 

transfer function was developed to predict 

engine performance and emission 

parameters of an unmodified CI engine 

fueled with FAME. We employed two 

input layers, one hidden layer with ten 

neutrons, and eight output layers using 

NNTool techniques to determine the 

BSFC, BMEP, BTE, CO, EGT, UHC, 

NOx, and smoke intensity.  

The outcomes of the developed ANN 

model were evaluated using regression 

coefficient and other statistical error 

platforms as well as other performance 

metrics to compare the experimental data 

with ANN predicted data. A total of 749 

data were mined from literature and used to 

train the model while the FA composition 

of the optimal FAME candidates were 

produced through the transesterification of 

WPO. Going by the results, the model 

performed very well with the experimental 

data matching the ANN predicted data with 

an overall regression coefficient (R) of 

0.9998. For the engine performance 
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parameters, R varied between 0.9982 and 

0.9991 while the RMSE and MAPE ranged 

between 0.01834 and 0.09953, and 1.729 

% and 2.674 % respectively. The R, 

RMSE, and MAPE for the emission 

parameters varied from 0.9966 to 0.9997, 

0.02154 to 0.1725, and 1.6443 % to 4.546 

% respectively. 

From the foregoing, the optimal FAME 

candidates, namely, C16:0 with results of 

36.4 % and C18:1 with 59.8 % 

demonstrated better engine performance 

and mitigated emission characteristics. The 

developed model accurately and reliably 

predicted the performance and emission 

parameters within acceptable limits. Thus, 

these two FAs are sufficient to accurately 

predict the engine performance and 

emission characteristics of a conventional 

and unmodified CI engine. Thus, FAME 

with concentrations of C16:0 and C18:1 

can be trusted to perform optimally and 

generate mitigated emissions. It is thus safe 

to conclude that the developed ANN model 

has been able to reliably and conveniently 

imitate real engine performance and 

emission characteristics within satisfactory 

prediction accuracy and efficiency.  

Going forward, this narrative should be 

stretched further to include the use of FA 

compositions of various feedstocks to 

predict, within reasonable accuracy, 

combustion, fuel mixing, and heat release 

rate with a view to evaluating their 

influence on engine performance, 

combustion, and emission characteristics 

of an unmodified CI engine.  
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CHAPTER 7: DEVELOPMENT AND CHARACTERIZATION OF 

CHICKEN EGGSHELL WASTE AS POTENTIAL CATALYST FOR 

BIODIESEL PRODUCTION  

 

This chapter presents strategies for the development and characterization of chicken eggshell 

waste as a catalyst for biodiesel production. In the article, the process for the collection, cleaning 

and preparation of chicken eggshell waste to powder form, calcination, and characterization 

(TGA, FTIR, XRD, SEM, TEM) of raw uncalcined, boiled uncalcined, and raw calcined chicken 

eggshell waste powder are extensively discussed and conclusions drawn. Synthetic CaO costs in 

excess of USD 230/ton, whereas the conversion of chicken eggshell waste collected freely from 

bakeries cost less than USD 10/ton, expended only on transportation. The article has been 

published in the International Journal of Mechanical Engineering and Technology, IAEME 

Publications.  

To cite this article: Awogbemi, O., Inambao F., Onuh E. I. (2019). “Development and Characterization of 

Chicken Eggshell waste as Potential Catalyst for Biodiesel Production,” International Journal of 

Mechanical Engineering and Technology, Volume 9, number 12, pp. 1329-1346.  

 

The link to this article: 

http://www.iaeme.com/MasterAdmin/UploadFolder/IJMET_09_12_134/IJMET_09_12_134.pdf 
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CHAPTER 8: PROPERTIES AND FATTY ACID COMPOSITIONS 

OF FEEDSTOCK AND BIODIESEL  

 

This chapter presents the properties and fatty acid compositions of feedstock and FAME. It 

consists of two articles. 

Article 1 compares the properties and FA compositions of neat vegetable oils and used vegetable 

oils. The article compared the density, pH, congealing temperature, kinematic viscosity, acid 

value, iodine value, and FA composition of neat sunflower, palm, sunfoil, depot margarine and 

waste vegetable oil derived from these neat oils. The effects of usage on properties, FA 

compositions, human and aquatic health were emphasized. It was published in the International 

Journal of Low-Carbon Technologies.  

Awogbemi, O, Onuh E. I., Inambao F. (2019). “Comparative Study of Properties and 

Fatty Acid Composition of Some Neat Vegetable Oils and Waste Cooking Oils,” 

International Journal of Low-Carbon Technologies, Volume 14, Number 3, ISSN 1748-

1317. EISSN 1748-1325, pp 417-425. https://doi.org/10.1093/ijlct/ctz038 . Published by 

Oxford University Press. (Published) 

Article 2 illustrates the influence of usage on the FA composition and properties of neat palm oil, 

waste palm oil, and waste palm oil methyl ester. The article examined the effects of usage on the 

properties and FA composition on WPO samples used by restaurants to fry different food items 

and the waste palm oil methyl ester derived from the WPO samples. This is to deduce their 

suitability as feedstock for transesterification. It has been peer-reviewed and accepted for 

publication by the International Journal of Engineering and Technology 

Awogbemi, O., Inambao F., Onuh E. I. (2019). “Effect of Usage on the Fatty Acid 

Composition and Properties of Neat Palm Oil, Waste Palm Oil, and Waste Palm Oil 

Methyl Ester,” International Journal of Engineering & Technology (IJET). Science 

Publishing Corporation. (Accepted for publication). 
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CHAPTER 8 ARTICLE 1: Comparative Study of Properties and Fatty 

Acid Composition of Some Neat Vegetable Oils and Waste Cooking 

Oils   
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CHAPTER 8 ARTICLE 2: Effect of Usage on the Fatty Acid 

Composition and Properties of Neat Palm Oil, Waste Palm Oil, and 

Waste Palm Oil Methyl Ester 

 

To cite this article: Awogbemi, O., Inambao F., Onuh E. I. (2019). “Effect of Usage on the Fatty 

Acid Composition and Properties of Neat Palm Oil, Waste Palm Oil, and Waste Palm Oil Methyl 

Ester”. International Journal of Engineering and Technology. (Accepted for publication). 

 

  



 

206 

 

Effect of Usage on the Fatty Acid Composition and Properties of Neat 

Palm Oil, Waste Palm Oil, and Waste Palm Oil Methyl Ester 

 

Awogbemi Omojola*, Inambao Freddie and Onuh Emmanuel Idoko  

Green Energy Solutions Research Group, Discipline of Mechanical Engineering,  

Howard College, University of KwaZulu-Natal, Durban 4041, South Africa 

*Corresponding author E-mail: jolawogbemi2015@gmail.com 

 

Abstract: The need to find an environmentally friendly, renewable, and biodegradable fuel to 

reduce the growing dependence on fossil fuels and its attendant performance and emission 
inadequacies has increased research in biodiesel. Due to its low cost, availability, and a veritable 
means of waste disposal, waste vegetable oil from restaurants, waste fats from slaughterhouses, 
grease from wastewater treatment plants has gained prominence as biodiesel feedstock. This 
present effort compares the properties and fatty acid (FA) composition of neat palm oil (NPO), 
waste palm oil (WPO), and waste palm oil methyl ester (WPOME). WPO used to fry fish and chips 
(WPOFC), and waste palm oil used to fry sausage and chips (WPOSC) were collected at the point 
of disposal. The WPOFC and WPOSC were converted to WPOMEFC and WPOMESC, respectively, 
by transesterification and subjected to property determination and gas chromatography-mass 
spectrometer analysis. The characterization showed that the ratio of saturated FA to unsaturated 
FA changed from 19.64 %:80.36 % for NPO, to 37.67 %:62.33 % for WPOFC, 54.75 %:45.25 % 
for WPOSC, 30.43 %:69.58 % for WPOMEFC and 16.2 %:83.8 % for WPOMESC. These outcomes 
can be attributed to the effect of repeated heating and cooling during frying, contamination from 
moisture, food fried, and the transesterification reaction.   

Keywords— Characterization, FAME, fatty acid, feedstock, waste palm oil 
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1. Introduction  

The increase in population, urbanization, and 

industrialization has an ongoing effect on 

energy demand putting enormous pressures 

on finite energy sources [1, 2]. Compression 

ignition (CI) engines have both on-road and 

off-road applications. The use of petroleum-

based diesel fuel (PBDF) to power CI engines 

has attendant cost, performance, and 

environmental challenges. Unmodified CI 

engines fuelled with PBDF have been found 

to present lower engine power, lower thermal 

efficiency, lower combustion efficiency, and 

lower brake specific fuel consumption when 

compared with CI engines powered by 

biodiesel or its blends. In addition, compared 

with CI engines fuelled with biodiesel, PBDF 

triggers higher emissions of carbon 

monoxide, smoke opacity, and unburnt 

hydrocarbon in an unmodified engine under 

varying loads and engine speeds [3-5]. 

Despite some shortcomings, including the 

high cost of feedstock, low energy 

conversion, and degradation during 

transportation and storage, biofuel offers 

obvious advantages in the world’s quest to 

meet its energy needs [6, 7]. Biodiesel, also 

commonly referred to as fatty acid methyl 

ester (FAME), is an important member of the 

biofuel family.  

According to the European Biofuels 

Technology platform [8], FAMEs are fatty 

acid (FA) esters that are generated from the 

transesterification of feedstock, mainly 

vegetable oils (edible or inedible), and animal 

fats, using methanol in the presence or 

absence of a catalyst. Despite its 

renewability, low sulfur content, safer 

handling, higher cetane number, etc., large-

scale production and application of FAME 

has been hampered by the high cost of 

feedstock, the food vs fuel debate, and the 

long time required to cultivate inedible 

vegetable feedstocks e.g. 3 to 4 years for a 

palm tree to bear fruit [9], and 2 to 3 years for 

a moringa tree to bear fruit [10]. 

Economically, it costs about US$0.35 to 

produce a litre of PBDF from fossil fuel 

compared to about US$0.5 to produce a litre 

of FAME, with raw materials accounting for 

most of the cost [11]. The feedstock is 

believed to account for between 70 % and 95 

% of the cost of FAME production [12, 13]. 

One of the strategies to make the commercial 

production of FAME attainable and 

affordable is the adoption of waste cooking 

oil (WCO) as a feedstock. The initial hurdles 

in collection logistics and infrastructure 

pointed out by Janauna and Ellis [14] and 

Atadashi et al. [15] are being overcome by 

partnering with operators of fast food outlets, 

takeaways, and restaurants. The use of WCO 

as a feedstock will prevent its disposal to 

drainage and rivers thereby endangering 

aquatic habitats. A further advantage is that 

households and restaurant operators can 

make extra income by selling their used 

vegetable oils, including waste palm oil 

(WPO), to biodiesel producers.  

Palm oil, one of the most widely used 

vegetable oils, is produced from palm fruit 

and the extracted red liquid has a range of 

industrial and domestic applications. The 
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global production and consumption of palm 

oil have continued to increase as shown in 

Fig. 1 [16]. According to Barrientos [17], 

Malaysia is the largest global producer and 

exporter of palm oil, exporting 16 469 

thousand metric tonnes in 2017, contributing 

about 8 % gross national income per capita 

and creating thousands of jobs [18, 19]. In 

most Africa countries, smallholders account 

for between 70 % and 90 % of oil palm 

growers. Growing oil palm is credited with 

contributing to deforestation with damaging 

effects on wildlife and forests. Domestic 

palm oil consumption production has 

continued to marginally increase in most 

African countries in the last five years (Fig. 

2) [17]. 

Many chemical reactions take place in palm 

oil during frying resulting in the generation of 

many chemical compounds. During frying, 

the oil is heated repeatedly to between 170 °C 

and 220 °C in the presence of oxygen, and 

sometimes moisture, which causes the palm 

oil to be exposed to physical, thermal and 

chemical degradation. This degradation 

affects the properties, fatty acid composition 

and the degree of saturation of the oil thereby 

lowering the quality of the oil. 

  

 

 
Fig. 1: Global palm oil production and consumption (million metric tonnes). 
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Fig. 2: Domestic consumption of palm oil in some African countries (thousand metric tonnes). 

 

Repeated heating of palm oil at elevated 

temperatures for prolonged periods has been 

found to render the oil harmful for human 

consumption [20-23]. The process of 

transesterification is known to be a simple and 

low-cost conversion technique resulting in high 

conversion efficiency and better combustion in 

CI engines [24, 25].  

Research on the utilization of WPO as an 

affordable and readily available feedstock for 

biodiesel production has been conducted in 

recent years with encouraging outcomes. 

Thushari et al. [26] employed esterification and 

transesterification to convert WPO into FAME 

and carried out investigations of the 

physicochemical properties and FA 

composition. Tran et al. [27] compared the 

chemical composition and physicochemical 

properties of both the WCO and the FAME 

derived from it and confirmed the viability of 

WPO for biodiesel production with 89.6 % 

yield. Similarly, Vargas et al. [28], Thushari and 

Babel [29], and Harahap et al. [30] confirmed 

that WPO is a readily available and cost-

effective feedstock for biodiesel production 

with appreciable production and conversion 

efficiency. Ullah et al. [31] determined and 

compared the physiochemical properties of 

unused palm oil, used palm oil and waste palm 

cooking oil biodiesel. The waste palm cooking 

oil biodiesel was produced in a two-step process 

using an acidic ionic liquid as a catalyst and 

reported obvious differences in the values of the 

properties.  

It has been established that WPO can be 

converted to FAME, but the question remains as 

to whether the food items fried in the oil affect 

its properties, FA composition and degree of 

saturation of the waste palm oil methyl ester 

(WPOME) derived therefrom. This present 

research effort, therefore, aimed to (i) 

investigate the food items fried in the palm oil 

affect its properties and FA composition; (ii) 

compare the properties, FA composition and 

degree of saturation of neat palm oil (NPO), 

WPO and WPOME samples; (iii) evaluate and 

compare the properties and FA composition of 

FAME produced from WPO used to fry two 

different types of food. The motivation for this 

research was to carry out a comparative study of 

the properties and FA compositions of NPO, 

WPO, and WPOME with a view to ascertaining 

0

200

400

600

800

1000

1200

1400

2013 2014 2015 2016 2017 2018

V
o

lu
m

e 
(T

h
o

u
sa

n
d

 m
et

ri
c 

to
n

n
es

)

Year
Nigeria South Africa Egypt Kenya Angola Ghana Cote D'ivoire



 

210 

 

the effect of food items on the feedstock and 

FAME. This current effort is limited to 

determining and comparing the properties and 

FA compositions of NPO, WPO, and WPOME 

with a view to determining their suitability as 

FAME feedstock.  

 

2. Materials and Methods  

2.1. Material collection and treatment 

Three palm oil samples were collected from a 

local takeaway restaurant in Central Durban, 

KwaZulu-Natal province, Republic of South 

Africa. The palm oil samples were an NPO 

sample, a WPO sample used to fry fish and chips 

(WPOFC) and a WPO sample used to fry sausage 

and chips (WPOSC). Other details of the samples 

are as shown in Table 1. The samples are treated 

according to Sahar et al. [32].   

Waste chicken eggshells were collected from 

restaurants at the Howard College cafeteria, 

University of KwaZulu Natal, Durban, Republic 

of South Africa. The waste chicken eggshells 

were converted to calcium oxide (CaO) powder 

through high-temperature calcination as 

described by Awogbemi et al. [33]. The calcined 

eggshell powder was warehoused in an airtight 

glass vial in a desiccator to prevent 

contamination and oxidation. Methanol (99.5 

%; Merck, South Africa, analytical grade, 

univAR) was used as alcohol. Activated 

magnesium silicate, also known by the 

tradename Magnesol® (analytical grade, 60-

100 mesh, the molar weight of 100.39 g/mol, 

Sigma-Aldrich, Germany), was used as an 

adsorbent. Magnesol® is hygroscopic once the 

package is opened, so care was taken to re-seal 

as tightly as possible and contact with eyes was 

avoided. 

Table 1: Details of the oil samples.  

Sample  Sample name Food 

fried 

Usage 

(Days) 

NPO Neat palm oil - - 

WPOFC Waste palm oil Fish and 

chips 

14 

WPOSC Waste palm oil Sausage 

and chips 

14 

 

2.2. Transesterification of waste palm oil 

The acid value of WPOFC and WPOSC were 

determined to ensure that a one stage 

transesterification process would convert the 

samples to WPOMEFC and WPOMESC 

respectively. The clean WPOFC and WPOSC, 

methanol and calcined calcium oxide (CaO) 

derived from waste chicken eggshell powder 

were mixed in a flat bottom flask in the required 

quantity and heated to 60 ºC. A digital 

thermocouple was utilized to verify the 

temperature of the reacting mixture throughout 

the 90 mins duration of the experiment. 

Methanol to oil ratio of 6:1, the catalyst particle 

size of 75 µm and 1 %w/w catalyst:oil ratio was 

the parametric process conditions for the 

transesterification reaction. Mixing was 

maintained by a magnetic stirrer at 1200 rpm to 

ensure homogeneous mixing of the reacting 

solution throughout the process. The resulting 

mixture was thereafter filtered in a vacuum 

filtration set up to recover the catalyst. The 

filtered mixture was transmitted to a separating 

funnel and permitted to settle for 12 hours and 

the glycerol coagulated at the bottom of the 

separating funnel. The glycerol was drained out 

from the bottom of the separating funnel 

followed by the draining of the crude biodiesel. 

Magnesol at 1 %w/w Magnesol:WPOME was 

added to the crude biodiesel and maintained at 

60 °C for 30 min and mixed at 600 rpm by a 

magnetic stirrer. The resulting solution was 

filtered using vacuum filtration, heated to 110 
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°C to remove excess moisture and methanol 

trapped in the biodiesel, then further polished by 

using a 0.45 µm PTFE membrane syringe filter. 

The purified WPOMEFC and WPOMESC were 

transferred into glass containers for further 

analysis and characterization. 

2.3. Properties and FA determination of 

samples 

The NPO, WPOFC, WPOSC, and WPOME were 

subjected to property determination. Table 2 

shows the list and method adopted for the 

property determination and characterization of 

the samples.  

The concentration of FAME composition of the 

waste oil samples was determined by pyrolysis 

Gas Chromatograph Mass Spectrometer 

(PyGCMS) using a Shimadzu Gas 

Chromatograph Mass Spectrometer using an 

ultra-alloy-5 capillary column and GCMS-

QP2010 Plus software. The choice of PYGCMS 

for the WPOFC and WPOSC samples as against 

the normal GCMS was to prevent clogging of 

the column of the GCMS machine due to the 

low volatility nature of the samples. Table 3 

shows the PyGCMS configuration used for the 

analysis of neat and WPO samples. The 

concentration of FAMEs was determined using 

a Shimadzu gas chromatography-mass 

spectrometer (GCMS) with an ultra-alloy-5 

capillary column and GCMS-QP2010 Plus 

software. Table 4 shows the GCMS 

configuration used for the analysis of WPOME 

samples. 

 

 

Table 2: Method/instrument of analysis.

Property Unit  Method/Instrument  Ref. 

Density @ 20 °C Kg/m3 ASTM D 1298 [34] 

Kinematic viscosity @ 40 °C mm2/s ASTM D445 [34] 

Acid value mgKOH/g AOCS Ca 4a-40 [35] 

Iodine value Cg/g AOCS Cd 1B-87 [35] 

pH - pH meter [36] 

Congealing temperature  °C Thermometer [37] 
FA composition (NPO, WPOFC, and 

WPOSC) - PYGCMS 
[38] 

FA composition (WPOME) - GCMS [38]  

 

Table 3: PyGCMS configuration. 

Injector 

Inlet temperature 240 °C 

Carrier gas Helium 

Sample size 2 μL 

Injection mode Split  

Split ratio 30 

Column temperature 40 °C 

Detector  

Type PyGCMS 

Interface temperature  250 °C 

Detector gain 1.22 kV + 0.00 kV 

Oven temperature program 

Rate  Temperature (°C) Holding time 

(min) 

- 40 5 

5.00 125 0 

3.00 285 0 

5.00 320 10 

Column 

Type Ultra alloy -5(MS/HT)  

Specification 30 m, 0.25 mm ID, 0.25 μm 

Flow rate 3.0 mL/min 

Total flow 34 mL/min 

Colum flow 1.00 mL/min 

 

 

 

Table 4: GCMS configuration 

Injector 

Inlet temperature 250 °C 

Carrier gas Helium 

Sample size 2 μL 

Injection mode splitless 

Column temperature 50 °C 

Detector 

Type GCMS 

Interface temperature  280 °C 

Detector gain 1.08 kV + 0.00 kV 

Oven temperature program 

Rate  Temperature 

(°C) 

Holding time 

(min) 



 

212 

 

- 50 1 

15.00 180 1 

7.00 230 1 

5.00 350 5 

Column 

Type Ultra alloy -

5(MS/HT)  

Specification 30 m, 0.25 mm ID, 

0.25 μm 

Flow rate 3.0 mL/min 

Total flow 4.9 mL/min 

Column flow 0.95 mL/min 

 

3. Result and Discussion 

3.1. Effect of usage on properties 

The result of property determination of NPO, 

WPOFC, WPOSC, WPOMEFC, and WPOMESC 

samples are shown in Table 5. The density of 

NPO is higher than that of the WPOFC, and 

WPOSC samples. This can be attributed to the 

effect of repeated pyrolysis leading to the 

production of a lighter hydrocarbon fraction 

resulting in a lower density. The pH of NPO was 

higher than that of waste oil samples with 

WPOFC being the most acidic of the three 

samples. This might be due to the effect of the 

fish oil that has adulterated the oil during frying 

[39]. This result was also confirmed by the acid 

value of the waste oil samples where the WPOFC 

presented an acid value of 0.66 mgKOH/g 

compared to the acid value of 1.13 mg/KOH/g 

of WPOSC. The lower acid value of WPOFC 

compared to WPOSC can be attributed to the 

effect of the fish and sausage respectively on the 

palm oil during frying. In terms of kinematic 

viscosity, usage makes oil more viscous; 

WPOFC was found to be more viscous than 

WPOSC as a result of the effect of the fish oil on 

the NPO. The kinematic viscosity at 40 °C of the 

WPO samples was higher than that of NPO. 

This is in agreement with earlier results reported 

by Chuah et al. [40].  

Transesterification altered the density and 

kinematic viscosity of the samples. As shown in 

Table 5, the density and kinematic viscosity of 

the WPO samples were higher than those of the 

FAME derived from the WPO samples. This 

was due to the effect of the production processes 

involved in the conversion of the waste palm oil 

into methyl esters. The transesterification 

reaction caused the WPOMEFC and WPOMESC 

to be less dense and less viscous than WPOFC 

and WPOSC.  Kinematic viscosity of WPO 

samples are higher than that of NPO due to the 

formation.  

 

 

Table 5: Properties of neat and waste oil samples. 

Properties NPO WPOFC WPOSC WPOMEFC WPOMESC 
ASTM 

D6751 

EN 

14214 

pH 6.34 5.73 6.19 - - - - 

Congealing temperature 

(°C) 
-10.25 12.3 14.7 - - - - 

Density @ 20 °C (kg/m3) 919.48 904.3 913.4 860 870 - 
860 - 

900 

Kinematic Viscosity @ 40 

°C (mm2/s) 
27.96 44.25 38.41 4.5 3.8 1.9 – 6 3.5 - 5 

Iodine value (cg/g) - 81.7 54.2 72.5 52.3 - 120 max 

Acid value (mg KOH/g) - 0.66 1.13 0.28 0.42 
0.05 

max 
0.5 max 

of dimeric and polymeric acids and glycerides 

during usage, and normally higher than the 

viscosity of FAME while lowering the density 

[41, 42]. These trends agree with similar work 

by Uddin et al. [43], and Thushari et al. [26]. 

The iodine values of the WPOME samples were 

lower than those of the WPO samples. A higher 

iodine value was recorded for the WPOFC 

sample compared to the WPOSC sample, and for 

the WPOMEFC sample compared to the 
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WPOMESC sample. The difference in the lower 

iodine values of WPO samples can be traced to 

the effect of food fried, heating time, and 

probably the storage condition before analysis. 

The lower iodine value of WPOME samples 

compared with WPO samples can be adduced to 

the effect of heating during the 

transesterification process [44, 45]. High degree 

of unsaturation of WPO results in 

polymerization of FAME as a result of the 

formation of epoxide due to the addition of 

oxygen in double bonds [32]. This agrees with 

the outcome of previous research by Chuah et 

al. [46].      

Considering the fingerprint of both WPOFC and 

WPOSC, particularly the density and viscosity, it 

can be seen that a lower density and higher 

viscosity trigger a lower saturated fatty acid 

(SFA) and a higher monounsaturated fatty acid 

(MUFA), as shown in Fig. 4. This is unlike the 

case of NPO where a higher density and a lower 

viscosity resulted in a predominantly 

polyunsaturated fatty acid (PUFA). The pH of 

the samples showed that NPO presented with 

the highest pH followed by WPOSC and WPOFC. 

The NPO had a higher acid value when 

compared with the WPOFC and WPOSC samples. 

The pH trend also followed the acid value trend 

of WPOFC and WPOSC and enhanced the 

transesterification process.  

The viscosity of NPO in this research as shown 

in Table 5 was 27.96 mm2/s which falls in the 

range of the 25.6 mm2/s reported by Maneerung 

et al. [47] and 31.78 mm2/s reported by Zein et 

al. [48] though the density of both WPOFC and 

WPOSC were found to be higher than the 902 

kg/m3 reported by Maneerung et al. [47]. These 

properties affect the FA compositions and the 

degree of saturation, and therefore their 

tendency to be converted to FAME. 

 

3.2. Effect of usage on FA composition 

The result of FA composition of the NPO, 

WPOFC, and WPOSC as determined by the 

PYGCMS and that of WPOMEFC and 

WPOMESC as determined by GCMS are shown 

in Table 6. NPO was found to contain linoleic 

acid, and brassidic acid, WPOFC consisted of 

mainly oleic and palmitic acids, while WPOSC 

was made up of mainly palmitic and linoleic 

acids. However, WPOMEFC and WPOMESC 

were made up of oleic and palmitic acids and 

linoleic and caproleic acid respectively. Unlike 

NPO, oleic and palmitic acids were present in 

the WPO samples, while the brassidic acid 

present in the NPO was absent in the WPO 

samples. This may be due to high-temperature 

degradation, oxidation as a result of moisture 

addition, and contamination occasioned by the 

food items. The effect of fish oil contamination 

triggered the presence of stearic acid only in 

WPOFC. However, these results did not wholly 

agree with those reported by Kadapure et al. 

[49]. This may be due to the difference in the 

types and species of palm oil used as well as the 

method of determining the FA composition. It 

should be noted that Kadapure et al. [49] 

obtained their palm oil samples and carried out 

their research in Belgium and the samples were 

analyzed by means of a gas chromatographic 

method. Also, the food items fried in the palm 

oil and the duration of usage were not disclosed. 

There was no guarantee that WPO was obtained 

from the same source as the neat oil. Chuah et 

al. [40] reported the same FA composition for 

neat cooking oil and waste cooking oil which is 

not different from the outcome of this research 

as it relates to NPO and the WPO samples.  Also 

the presence of some transition metals in the 
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food items, for example, iron is present in meat, 

increased the rates of degradation and thermal 

degradation of the oil [50].   

Oleic and palmitic acids were observed to be the 

most dominant FA in both WPOFC and 

WPOMEFC while the stearic and linoleic acids 

in WPOFC were converted to brassidic acid, 

pelargonic acid, lauric acid, behenic acid, and 

caproleic acid in WPOMEFC as a result of the 

transesterification process. Apart from the 

contamination of the oil by the food, moisture is 

also added to the oil during frying. Addition of 

salt, sauces, intermittent heating and cooling 

during repeated frying results into the 

deterioration of the oil and the change in its 

degree of saturation. The effect of 

hydrogenation which occurs during frying can 

also contribute to the conversion [51]. The 

process of conversion of WPOSC to WPOMESC 

by transesterification introduced caproleic acid 

into FAME. Oleic, palmitic and caproleic acids 

are the common FA in both WPOMEFC and 

WPOMESC which can be traced to the properties 

of the WPO sample, notwithstanding the type of 

food which they fried.   

The NPO used in this research consisted of 

52.55 % PUFA which was reduced to 37.35 % 

in WPOSC and 3.76 % in WPOFC as shown in 

Figure 3. The low percentage of SFA in NPO 

was increased in the WPO samples due to usage 

which confirmed the outcome of similar 

research by Kadapure et al. [49]. The effect of 

the food items the oil fried greatly influenced the 

degree of saturation of both the WPOFC and 

WPOSC. The 54.75 % SFA in WPOSC was 

reduced to 37.67 % in WPOFC while the 7.9 % 

MUFA and 37.37 % PUFA in WPOSC became 

58.57 % MUFA and 3.78 % PUFA in WPOFC. 

The FA composition for the WPOFC and WPOSC 

were similar to the outcome of FA analysis of 

WPO by Kadapure et al. [49]. However, the 

high percentage of PUFA in NPO differed 

greatly from the result of similar research by 

Maneerung et al. [47]. No explanation was 

found for the differences in the FA compositions 

other than the different geographical sources 

and species of the palm oil samples. 

The process of transesterification not only 

triggered the increase of the 58.57 % MUFA and 

37.67 % SFA in WPOFC to 69.58 % MUFA and 

30.43 % SFA in WPOMEFC but also caused the 

3.76 % PUFA in WPOFC to completely 

disappear. The percentage of PUFA in WPOSC 

and WPOMESC remained almost the same while 

there was a drastic increment in MUFA from 7.9 

% to 46.05 % as a result of the transesterification 

process. The influence of food items was 

noticeable in the FA composition and degree of 

saturation of both WPOMEFC and WPOMESC. 

Fig. 4 compares the FA composition of WPOFC 

and WPOSC in this research to the outcomes of 

similar research obtained from the literature. 

Maneerung et al. [47], Zein et al. [48] and 

Nguyen et al. [52] reported almost the same 

value for MUFA for waste oil samples. 

Maneerung et al. [47] and Nayak et al. [53] 

reported close values of PUFA though lower 

than that reported by Rahmanlar et al. [54]. 

From the eight samples of WPO shown in Fig. 

4, it can be deduced that there is no consensus 

on the degree of saturation and type of chain in 

all the WPO samples. Degradation temperature, 

usage, duration and degree of usage, type food 

items that were fried, among other elements, 

dictates the FA composition and degree of 

saturation of the WPO samples.   
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Table 6: Fatty acid composition of NPO, WPO, and WPOME. 
Common name Structure NPO WPOFC WPOSC WPOMEFC WPOMESC 

Oleic acid C18:1 - 58.57 7.9 63.96 20.35 

Palmitic acid C16:0 - 36.13 54.75 23.72 16.2 

Capric acid C10:0 5.92 - - - - 

Stearic acid C18:0 13.72 1.54 - - - 

Linoleic acid C18:2 52.55 3.76 37.35 - 37.75 

Brassidic acid C22:1 27.81 - - - - 

Pelargonic acid C9:0 - - - 1.1 - 

Lauric acid C12:0 - - - 3.47 - 

Behenic acid C22:0 - - - 2.14 - 

Caproleic acid C10:1 - - - 5.62 25.7 

Fig. 3: Degree of saturation of NPO, WPOFC, WPOSC, WPOMEFC, and WPOMESC. 

 

 

Fig. 4: SFA, MUFA and PUFA compositions of WPO samples. 
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4. Conclusion 

The application of otherwise known waste raw 

materials such as used vegetable oil from 

restaurants, households and canteens and 

takeaway outlets, waste animal (beef, chicken, 

pig, etc) fats from slaughterhouses and abattoirs, 

rendered fats, and grease recovered from 

wastewater treatment plants have gained 

acceptance as biodiesel feedstock. Though they 

are low-grade feedstocks, appropriate selection 

of production and refining techniques ensure 

derivation of the benefits in their usage. They 

are cheaper than other forms of feedstock and 

help in solving problems waste oil and fats 

disposal challenges. The properties and the FA 

composition of NPO, WPO samples and 

WPOME were investigated with a view to 

determining the effects of usage and food items 

on the samples. The trajectory from NPO 

through WPO used to fry particular food items 

and the WPOME derived from the 

transesterification of the WPO samples were 

reported. The following inferences can be 

drawn:   

• The pH and density of WPO samples were 

found to be lower than those of NPO while 

the congealing temperature and viscosity of 

NPO were found to be lower than that of the 

WPO sample.  

• The pH, congealing temperature, density 

and acid value of WPOFC were found to be 

lower than those of WPOSC but WPOFC had 

higher iodine and viscosity values.  

• The degree of usage, the food fried, the 

effect of repeated heating and cooling, 

storage environment, the type of oil, the 

source of the NPO, and transesterification 

process have been found to affect the 

concentration of the FAME composition, 

and degree of saturation. 

• NPO was found to consist of 52.55 % PUFA 

and 27.81 % MUFA.  

• The composition of saturated fatty acid and 

unsaturated fatty acid were found to be 

affected by the degree of usage, the 

degradation temperature, species of palm 

oil and the food items the oil fried. 

• The degree of saturation of WPOFC and 

WPOSC was less than that of NPO, in most 

cases, and agrees with some of the results 

reported in the literature.  

• The low acid value of the WPO samples 

signifies their suitability for FAME 

production by transesterification. 

• The density of WPOMEFC was found to be 

higher than that of WPOMESC; on the other 

hand, the kinematic viscosity of WPOMEFC 

was higher than that of WPOMESC.  

• The 52.55 % PUFA in NPO was converted 

to 3.76 % in WPOFC and completely 

disappeared in WPOMEFC while the MUFA 

was found to increase from 27.81 % in NPO 

to 58.57 % in WPOFC and 69.58 % in 

WPOMEFC. 

• The 19.64 % SFA in NPO increased to 

54.75 % in WPOSC but reduced to 16.2 % in 

WPOMESC while the MUFA which was 

27.81 % in NPO reduced to 7.9 % in WPOSC 

but increased to 46.05 % in WPOMESC.  

The significance of this investigation is that the 

type of food that NPO fries affects the FA 

composition, properties, and degree of 

saturation of palm oil and consequently 

influences the FA composition and properties of 

the resulting FAME. The FA composition and 

properties of FAME will, in turn, have 

considerable influence on the engine 
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performance and emission characteristics of a 

CI engine fuelled by FAME as well as the 

stability of the FAME. In conclusion, when 

selecting WCO as a feedstock for 

transesterification, consideration should be paid 

to these three factors: the degree of usage, the 

type of food fried by the palm oil, and the NPO 

source.  

Going forward, considerable research 

opportunities exist regarding the effect of frying 

temperature and time on NPO, the cycle of 

frying, palm oil species, etc. Such research will 

contribute towards establishing the optimal 

conditions to obtain feedstock for FAME 

production from palm oil.  
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CHAPTER 9: CONCLUSION AND RECOMMENDATIONS FOR 

FUTURE WORK 

 

9.1 Conclusion 

The quest for an alternative and sustainable fuel to replace PDB fuel to power CI engines has been 

engaging the attention of researchers over the past decades. Though a lot has been achieved, obvious 

research gaps are still visible and require conscious efforts. The utilization of WCO for the synthesis 

of FAME by transesterification has been escalated by this research due to its obvious advantages over 

other feedstocks. Experimental and numerical techniques have been employed for the property’s 

determination and prediction, optimization, engine performance and emission characteristics of CI 

engine fuelled by FAME. The following conclusions can be drawn from the research.  

1. It is possible to synthesize FAME with the requisite properties and capacity for improved 

engine performance and mitigated emission of regulated gases in a conventional CI engine. 

This has been demonstrated in this research.  

2.  FAMEs were produced through a simple conversion process of transesterification using waste 

vegetable oil collected from restaurants, take away outlets and households. The produced 

FAMEs meet the ASTM and EN standards.  

3. The optimal FAME candidate determined by mathematical and numerical tools was 

synthesized by transesterification of WCO and defined in terms of two FA compositions. The 

new FAME contains palmitic acid (C16:0) of 36.4 % and oleic acid (C18:1) of 59.8 %.  

4. The new FAME candidate exhibited better engine performance when compared with PBD fuel 

and biodiesel from other sources when tested on a conventional and unmodified CI engine. The 

constituents of the exhaust gases emanating from the application of the new fuel in a 

conventional CI engine was more tolerable than that from PBD fuel, though the NOx emission 

was still relatively high.  

5. Application of property prediction techniques guarantees the conversion of WCO to high-

quality FAME thereby eliminating the cumbersome, and costly experimental process. Five FA 

compositions were used as inputs and the outcome were within acceptable error limits. 

6. Application of modelling and optimization techniques allows for the synthesis of FAME using 

the minimum quantity of materials, less energy consumption, and in less time for optimal 

FAME production. This prevents time and material wastage, and ensures that FAME is 

generated from available feedstocks.  
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7. Chicken eggshell waste calcined at high temperature contained CaO capable of being and 

suitable as a heterogeneous catalyst for conversion of WCO to FAME. The CaO from chicken 

eggshell waste is advantageous based on its recoverability and reusability.   

8. Further analysis of the WCO feedstock revealed that the degree of usage and type of food items 

that the oil was used to fry affect the FA composition and properties of the WCO and the 

resulting FAME.   

9. The selected feedstock and conversion technique allow for sustainable, easy to use, and 

environmentally friendly production of FAME. 

10. This study has further revealed the applicability of FAME as a sustainable remedy to the 

unpleasant effects of the use of PBD fuel to power CI engines. The determination of an optimal 

FAME candidate has created a viable pathway for improvement of the quality of biodiesel and 

make its use as CI engine fuel more efficient and environmentally acceptable in line with 

international protocols and standards.   

9.2 Recommendation for future work 

Internal combustion engines, particularly CI engines, will continue to find applications in diverse 

capacities for decades to come. The persistent demand by customers for more efficient CI engines with 

minimum fuel consumption, and the ever-increasing stringent emission requirements by various 

environmental standards organizations, will increase demand cost-effective, combustion efficient, 

readily available, and environmentally sustainable fuel alternatives for CI engines. Biodiesel is one of 

those alternatives, and more targeted research studies are still needed to improve every stage of the 

trajectory from feedstock through to FAME quality to performance evaluation, in terms of combustion, 

performance and emission characteristics, of a FAME candidate fuel in a CI engine.    

9.2.1 Experimental 

Huge and potential research opportunities exist in widening the scope, definition, and characterization 

of the FAME candidate with a view to improving and streamlining its production and application. 

Specifically, more parameters that can further define and characterize the optimal FAME should be 

investigated. More optimization techniques should be employed to determine more robust parametric 

parameters for the efficient and cost-effective synthesis of biodiesel irrespective of the source, degree 

of usage, frying temperature, and cycle, food items fried, as well as the level of contamination and 

thermal degradation of the WCO. Also, more targeted real-time engine tests under varying conditions 

of load and speeds are needed to get more data sets to further consolidate the advantages of the new 

fuel.        
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9.2.2 Numerical 

The use of CFD, FORTE, ANSYS FLUENT, and combustion software for the prediction of 

fingerprints, performance parameters and emission characteristics of the optimal FAME mix should be 

investigated. The application of research engines fixed with high-speed digital cameras and other 

techniques should be exploited to ensure a better understanding of the activities of the fuel inside the 

combustion chambers with a view to improving the performance and emission characteristics of the 

engine in line with established protocols and standards. 
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APPENDICES 

 

APPENDIX I: CALCULATION OF MOLAR RATIO OF METHANOL 

TO OIL 

The molar ratio (methanol to oil) for the transesterification process is calculated by following the 

following steps. 

Step1: Calculation of molecular weight of pure fatty acids 

The molecular weight of pure fatty acids is calculated using Equation App. A1 

Molecular weight of fatty acids 𝑀𝑊𝐹𝐴 = 𝑁𝐶 × 𝑀𝑊𝐶 + 𝑁𝐻 × 𝑀𝑊𝐻 + 𝑁𝑂 × 𝑀𝑊𝑂  (App. A1) 

Where, NC, NH, and NO are the number of carbon, hydrogen, and oxygen atoms in the fatty acid (FA) 

chain, respectively. MWC, MWH, and MWO are the molecular weight of carbon, hydrogen, and oxygen, 

which are 12.0107, 1.00794, and 15.9994 grams per mole, respectively. 

Step 2: Calculation of molecular weight of vegetable oils 

 Molecular weight of vegetable oil is calculated from the molecular weight of individual fatty acids 

and fatty acid composition using  

Molecular weight of vegetable oil = ∑ 𝑊𝑖  × 𝑀𝑊𝑖
𝑛
𝑖=1     (App. A2). 

Table App. A1. Molecular weight of pure fatty acids 

Fatty Acid Chemical formula Molecular weight of FA (g/mol) 

Erucic C22H42O2 338.58 

Oleic C18H34O2 282.46 

Linoleic C18H32O2 280.45 

Caprylic C8H16O2 144.21 

Palmitic C16H32O2 256.42 

Stearic C18H36O2 284.48 

Undeclyic C11H22O2 186.29 

Nonadecylic C19H38O2 312.54 

Myristic C14H28O2 228.37 

Capric C10H20O2 144.21 

Arachidic C20H40O2 312.53 

Enanthic C7H14O2 130.19 

Lauric C12H24O2 178.14 

 

 

 

Sample Molecular weight calculation (for Sample A): 
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The fatty acid composition (in weight %) of neat sunflower oil is 32.21% of palmitic acid, 21.98% of 

Linoleic acid, 0.22% of Caprylic acid, 0.51% of Enanthic acid, 0.51% of Capric acid, (.21% of Stearic 

acid and 12.38% of Arachidic acid. 

 

Substituting the weight percentage of fatty acids and their molecular weight (from Table App. A1) into 

Equation (A2), the molecular weight of Sunflower vegetable oil is calculated thus, 
 
(32.21 × 256.42) + (21.98 × 280.45) + (0.02 × 144.21) + (0.51 × 130.187) + (0.51 × 172.26) + (9.21 × 284.48) + (12.36 × 312.53)

100
 

 

= 210.92 g/mol 

Similarly, the molecular weight of other neat vegetable oils and WCO samples are calculated and 

tabulated below 

 

Table App. A2: Molecular weight of vegetable oil 

Vegetable oil Molecular weight (g/mol) 

Sunflower  210.92 

Sunfoil 27.22 

Palm oil (B) 165.91 

Red Palm oil 74.81 

Moringa oil 109.50 

Depot Margarine 109.50 

Used sunflower  4.63 

Used Depot margarine  165.32 

Used sunfoil  5.71 

Used palm oil (FC)  32.53 

Used Sunfoil 2  119.07 

Used palm oil (SC)  182.66 

 

Step 3: Calculation of molecular weight of Triglyceride 

 

The structure of any vegetable oil is a triglyceride, i.e. a glycerol molecule attached with three fatty 

acids. In Step 2, the molecular weight of vegetable oil does not include the molecular weight of 

glycerol. The calculation of the molecular weight of triglyceride is as follows. 

 

The molecular weight of a triglyceride (MWtriglyceride) is given by the Equation (App. A4). 

𝑀𝑊𝑇𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒 = (3 × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑊𝑜𝑖𝑙) + 𝑀𝑊𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 − 3𝑀𝑊𝑤𝑎𝑡𝑒𝑟    (App. A4) 

 

Where, MWglycerol and MWwater are the molecular weight of glycerol and water, which are 92.0938 and 

18.0153 grams per mole, respectively. 

 

Using Equation (App. A4), the molecular weight of the triglyceride of the vegetable oils are calculated 

and tabulated 

 

Table App. A3. Molecular weight of triglyceride of vegetable oils 

Vegetable oil Molecular weight (g/mol) 

Sunflower  670.82 

Sunfoil 119.71 

Palm oil (B) 535.08 

Red Palm oil 262.51 

Moringa oil 563.87 

Depot Margarine 366.56 

Used sunflower  51.94 

Used Depot margarine  534.01 

Used sunfoil  55.18 

Used palm oil (FC)  135.66 

Used Sunfoil 2  395.28 

Used palm oil (SC)  586.05 
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SAMPLE CALCULATIONS ON METHANOL TO OIL RATIO 

1. Mass of methanol required at a 6:1 methanol to oil molar ratio 

mmso = 359.28 g/mol 

 

Basis: mass of feed oil, M = 400g 

𝑛𝑓𝑒𝑒𝑑 =  
𝑀

𝑚𝑚
 

Where 

𝑛𝑓𝑒𝑒𝑑 = the number of moles in the source oil 

M = mass of oil (g) mm = molar mass 

 

Therefore, 𝑛 =
400

359.28
 = 1.0119 𝑚𝑜𝑙      

 

Molar ratio = 6:1 therefore 

𝑛𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = 6 × 1.1133 = 6.0714 𝑚𝑜𝑙 

𝑚𝑚𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = 32.04 𝑔/𝑚𝑜𝑙 

 

Mass of methanol required, 𝑀 = 𝑛 × 𝑚𝑚  

𝑀 = 6.0714 × 32.04 

   𝑀 = 194.54 𝑔  

% yield of biodiesel produced 

Feed oil mass = 400 g 

Mass of biodiesel produced = 376.8 g 

  

𝑌𝑖𝑒𝑙𝑑 % =  
𝑀𝑎𝑠𝑠𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

𝑀𝑎𝑠𝑠𝑂𝑖𝑙
 × 100% 

=
376.8

400
× 100 

= 94 % 
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APPENDIX II: CODE TO COMPUTE OPTIMAL FAME 

 

clc;close all; clear all; 

  
format 
count=0; 
for p1=0:.1:100 
    for p2=0:.1:100 
        for p3=0:.1:100 
            for p4=0:.1:100 
                for p5=0:.1:100 

                     
             CN=56.16 + (0.15*p1) + (0.23*p2)  -(0.03*p3)     -(0.19*p4)    -(0.31*p5); 
                    if ((CNN>=100)&&(CNN<=100)) 

                         
             CV=32629.061 + (71.795*p1)+   (16.913*p2) + (66.268*p3)+(70.501*p4)+(387.989*p5); 
                        if ((CV>=34400)&&(CV<=45200)) 

                             

                             
             CP=-40.278 + (0.514*p1)+   (0.6364*p2) + (0.38363*p3)+(0.35362*p4)+(0.26341*p5); 
                            if ((CP>=-25)&& (CP<=26)) 

                                 
             DN=2204.5  -  (13.2*p1)-(16*p2)-(13.8*p3)-(13.3*p4)-(3.717*p5); 
                                if ((DN>=860)&& (DN<=900)) 

                                     
             KV=337.4774  -  (3.7096*p1)-  (3.812*p2) - (3.743*p3)-(3.6808*p4)-(3.717*p5); 
                                    if (KV <=4.5) 

                                         
             CFPP=-16.447+(0.3141*p1)+ (1.57085*p2); 
                                        if (CFPP<=-5)&&(CFPP>=-15) 
                                            count=count+1; 

                                             
                                           CN(count)=CNN; 
                                            A(count,:)=[p1 p2 CFPP]; 
                                            C(count,:)=[CP DN KV CV CFPP]; 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 

                 
            end 
        end 
    end 
end 
VALUE1=A(opt2,:) 
VALUE2=C(opt2,:) 
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APPENDIX III: PICTURES  

 

Plate 1: Chicken eggshell waste   

 

  

Plate 2: Chicken eggshell waste powder 
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Plate 3: Weighing the chicken eggshell waste powder 

 

 

Plate 4: Weighing the waste cooking oil 
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Plate 5: Weighing the Methanol 

 

 

 

Plate 6: Methanol, catalyst and waste cooking oil 
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Plate 7: Separation of glycerol and crude biodiesel in a separating funnel 

 

 

Plate 8: Ovens for chicken eggshell waste calcination 

 

 

Plate 9: Viscometer 
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Plate 10: PyGCMS/GC-MS machine 

 

 

Plate 11: Simultaneous Thermal Analyser  
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Plate 12: FT-IR Spectrometer 

 

 

Plate 13: Spottering machine 
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Plate 14: FEG-SEM 

 

Plate 15: X-Ray Diffractometer  

 


