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Abstract 
Discriminating forest species is critical for generating accurate and reliable information 

necessary for sustainable management and monitoring of forests. Remote sensing has recently 

become a valuable source of information in commercial forest management. Specifically, high 

spatial resolution sensors have increasingly become popular in forests mapping and 

management. However, the utility of such sensors is costly and have limited spatial coverage, 

necessitating investigation of cost effective, timely and readily available new generation 

sensors characterized by larger swath width useful for regional mapping. Therefore, this study 

sought to discriminate and map commercial forest species (i.e. E. dunii, E.grandis, E.mix, 

A.mearnsii, P.taedea and P.tecunumanii, P.elliotte) using cost effective multispectral sensors. 

The first objective of this study was to evaluate the utility of freely available Landsat 8 

Operational Land Imager (OLI) in mapping commercial forest species. Using Partial Least 

Square Discriminant Analysis algorithm, results showed that Landsat 8 OLI and pan-sharpened 

version of Landsat 8 OLI image achieved an overall classification accuracy of 79 and 77.8%, 

respectively, while WorldView-2 used as a benchmark image, obtained 86.5%. Despite low 

spatial of resolution 30 m, result show that Landsat 8 OLI was reliable in discriminating forest 

species with reasonable and acceptable accuracy. This freely available imagery provides 

cheaper and accessible alternative that covers larger swath-width, necessary for regional and 

local forests assessment and management. The second objective was to examine the 

effectiveness of Sentinel-1 and 2 for commercial forest species mapping. With the use of Linear 

Discriminant Analysis, results showed an overall accuracy of 84% when using Sentinel 2 raw 

image as a standalone data. However, when Sentinel 2 was fused with Sentinel’s 1 Synthetic 

Aperture Radar (SAR) data, the overall accuracy increased to 88% using Vertical 

transmit/Horizontal receive (VH) polarization and 87% with Vertical transmit/Vertical receive 

(VV) polarization datasets. The utility of SAR data demonstrates capability for complementing 

Sentinel-2 multispectral imagery in forest species mapping and management. Overall, newly 

generated and readily available sensors demonstrated capability to accurately provide reliable 

information critical for mapping and monitoring of commercial forest species at local and 

regional scales.  

Keywords: forest species discrimination, cross validation, linear discriminant analysis, 

synthetic aperture radar, polarization, spatial resolution   
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CHAPTER ONE 

1. General introduction 

1.1 The value of forest plantations in South Africa 

Commercial forest plantations in South Africa cover approximately 1.3 million hectares 

(Roberts et al. 2007). These forest plantations play invaluable role in the country’s economy, 

contributing approximately 2% towards the gross domestic product (GDP) through timber and 

non-timber products (Lottering and Mutanga 2012). In addition, forest plantations play a 

significant role in sequestrating atmospheric carbon, hence mitigating climate change and 

related greenhouse effects. Commercial forest plantations in the country are dominated by 

exotic plant species such as Pinus, Acacia and Eucalyptus (Lottering and Mutanga 2012, 

Peltzer et al. 2015, Peerbhay et al. 2013, 2016). Generally, plantations that are dominated by 

Eucalyptus and Acacia species are classified as hardwood forests, while Pinus dominated 

plantations are classified as softwood forests (Dube and Mutanga 2015, Peerbhay et al. 2016). 

The economic value and ecosystem services provided by these commercial forest plantations 

strongly depend on the tree species richness (Sheeren et al. 2015). Since different forest tree 

species are often affected by varying threats that include pests, diseases, vulnerability to wild 

fires, management regimes and harvest scheduling, information on forest tree species 

distribution, composition and productivity is critical for managing and monitoring commercial 

forests (Raczko and Zagajewski 2018). In this regard, the generation of accurate and up-to-date 

forest species discrimination maps, especially at regional scales is necessary for adopting 

informed management approaches and policies. In Southern Africa, forest species 

discrimination and mapping remains a major challenge due to limited standardised assessment 

and monitoring approaches and technical and scientific expertise. Thus, there is a need to 

establish viable and affordable spatial approaches and datasets for regional forest species 

mapping and monitoring.   

Previously, traditional methods that include the use of field survey data and aerial photographs 

have been used for forest delineation and mapping. Although such methods are known to be 

highly accurate, they are costly, time consuming and difficult to implement in remote areas 

(Cho et al. 2012, Peerbhay et al. 2013). Furthermore, accessing regional forests and acquiring 

sufficient number of tree samples using traditional approach remains a huge challenge (Lu 

2006). Recently, the combination of remote sensing techniques with field observation has 

proven valuable in providing reliable information necessary for forest species discrimination 
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and mapping (Martin et al. 1998, Naidoo et al. 2012, Peerbhay et al. 2014, Waser et al. 2014). 

Remote sensing provides cheap and quick information necessary for up-to-date and reliable 

forest species discrimination and mapping. Remote sensing techniques capture unique spectral 

information of individual forest species based on species biochemical and biophysical 

characteristics at larger swath width, hence allowing for local and regional forest species 

assessment (Cho et al. 2012, Dube et al. 2018). Hence, there has been increasing interest in the 

adoption of remote sensing approaches in commercial forestry (Basuki et al. 2012, Carreiras 

et al. 2012, Govender et al. 2007, Peerbhay et al. 2016).    

Although remote sensing provides detailed forest species spectral inventories, the utility of 

traditional multispectral sensors (e.g. Landsat TM, and MODIS) for mapping forest species is 

limited by broader bandwidth and larger pixel size, resulting in poor discrimination and 

mapping (Basuki et al. 2012, Brockhaus and Khorram 1992, Carreiras et al. 2012, Eklundh et 

al. 2009, Forkuor et al. 2018). For instance, Brockhaus and Khorram (1992), used Landsat TM 

spectral data to map various forest types in North Carolina forest, United State of America, 

with an overall accuracy of 70.8, while Eklundh et al. (2009) explored the potential of MODIS 

spectral information in mapping forest insect damage from various pine tree species in Norway, 

with an accuracy of 71%. According to Hossain (2016), the minimum accuracy threshold for 

effective decision making should be at least 75%. The lower classification accuracy mentioned 

above can be attributed to larger tracking footprints susceptible to the mixed pixel problem 

(Dube et al. 2014). According to Basuki et al. (2011), information contained in a broadband 

sensor’s single pixel is a mixture of spectral reflectance recorded from various components that 

may include forest canopy, shadows and bare soils, a mixture that significantly compromises 

classification accuracy (Basuki et al. 2012, Carreiras et al. 2012). Furthermore, reliable 

landscape discrimination using traditional sensors is commonly impeded by a higher signal-to-

noise ratio and the saturation problem, especially in a dense canopy cover (Le Maire et al. 

2011, Mutanga and Skidmore 2004). Moreover, traditional sensors show a decreasing 

vegetation sensitivity, especially in increased forest canopy heterogeneity and age. 

Several studies have demonstrated the capability and superiority of hyperspectral imagery in 

discriminating forest species when compared to broadband-multispectral sensors (Govender et 

al. 2007, Govender et al. 2008, Peerbhay et al. 2016). Hyperspectral imagery is characterized 

by narrow bandwidths that allow in-depth acquisition of spectral information, which could be 

lost with broadband-multispectral sensors. Nevertheless, hyperspectral data comes with a 

number of challenges such as cost, limited spatial coverage, data processing, redundancy and 
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a high degree of data dimensionality (Dube et al. 2014, Govender et al. 2007).  In this regard, 

the new generation high spatial resolution sensors such as WorldView-2 and RapidEye have 

increasingly become popular in vegetation mapping. This is attributed to their fewer but robust 

spectral bands, overcoming data redundancy associated with hyperspectral imagery (Adelabu 

et al. 2013, Dube et al. 2016, Peerbhay et at. 2014, Waser et al. 2014). For example, Waser et 

al. (2014) evaluated the potential of Worldview-2 data in discriminating forest tree species 

with an overall accuracy of 85.42%, while Adelabu et al. (2013) used RapidEye image dataset 

to discriminate various tree species with an overall accuracy of 85%. Although these sensors 

provide highly accurate forest species information, they have small spatial coverage and are 

costly, hence limiting their use to small spatial coverages. These limitations necessitate a shift 

towards new and freely available multispectral imagery characterized by large footprint and 

repeated coverage. The new generation freely available Landsat 8 Operational Land Imager 

(OLI) and Sentinel 2 multispectral sensors offer a larger swath width, which permit local and 

regional forest assessment. Furthermore, new generation medium spatial resolution sensors 

provide improved radiometric, spectral and spatial attributes which are assumed to be concise 

in wall-to-wall mapping and monitoring of forest species. Such improvements offer a cost-

effective alternative for regional commercial forest species mapping and management.  

A number of studies note that Sentinel 2’s data offers better spatial and spectral resolution, 

with additional strategically positioned bands in the red-edge region (Korhonen et al. 2017, 

Forkuor et al. 2018, Sibanda et al. 2016). The red-edge region is critical for detecting numerous 

vegetation attributes such as chlorophyll, leaf area index, leaf angle distribution and biomass, 

necessary for improved forest species discrimination and mapping (Sibanda et al. 2016, Dube 

et al. 2018). Moreover, Sentinel’s data provide access to Synthetic Aperture Radar (SAR) 

capabilities, which offer opportunities for complementarity between optical and SAR 

capabilities.  SAR offers valuable surface characteristics like surface roughness, water content 

and structural geometry, which are valuable for landscape discrimination (Balzter et al. 2015). 

Furthermore, SAR imagery operate in all weather conditions, penetrating thin cloud and 

canopy cover, hence overcoming shadowing and clouding effects, a major shortcoming of 

multispectral sensors (Haack et al. 2000, Balzter et al. 2015). These capabilities provide a great 

opportunity for complementarity between optical and SAR data in discriminating and mapping 

forest species. 

Hence, this study sought to map commercial forest species using cost effective multispectral 

remote sensing. The conclusions of this study are restricted to the capabilities of Landsat 8 OLI 
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and the ability of Sentinel 1 SAR data to complement Sentinel 2 MSI for improved forest 

species mapping and discrimination.  

1.4 Aim and Objectives 

 The main aim of this study was to map commercial forest species using cost effective 

multispectral remote sensing in Midlands region of KwaZulu-Natal, South Africa. The 

objectives were: 

 To evaluate freely available Landsat 8 Operational Land Imager (OLI) in mapping 

commercial forest species, 

 To examine the effectiveness of Sentinel-1 and 2 imagery for commercial forest species 

mapping. 

1.5 Research hypothesis 

 The new and readily available Landsat 8 OLI multispectral imagery with improved 

sensor characteristics has the potential to provide accurate and reliable information for 

regional forest species monitoring and management. 

 A Synthetic Aperture Radar capabilities has the ability to successfully improve 

classification potential of Sentinel-2 multispectral imagery for discriminating forest 

species.  

1.6 Research structure  

This dissertation consists of two research papers responding to research objectives and 

hypothesis. Each paper presents information which could be read independently, but 

contributing to the entire general introduction (chapter 1) and synthesis (chapters 4). The 

literature review and methodology are encompassed in both papers, hence duplication and 

overlap could be present. The entire dissertation is formed by four chapters: 

1.6.1 Chapter one 

This chapter provides general introduction and contextualization of the study, highlighting the 

importance and a need for discriminating and mapping commercial forest species. It also 

presents different methods and their related challenges in discriminating and mapping forest 

species. Furthermore, the research aim and objectives are provided in this chapter.   

1.6.2 Chapter two 

This chapter assesses cost effective and readily available remote sensing data for regional forest 

species discrimination and monitoring, particularly in resource limited areas. The chapter 

investigates new and freely available Landsat 8 OLI with wide spatial coverage, improved 
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signal-to-noise ratio and 16-day temporal resolution for commercial forest species 

discrimination and mapping. The findings in this chapter are benchmarked on results obtained 

when using high spatial resolution WorldView-2 data. Benchmarking the results of Landsat 8 

OLI with WorldView-2 is critical for determining the accuracy and precision of the Landsat 8 

OLI data. 

1.6.3 Chapter three  

Although the utility of Landsat 8 OLI showed plausible performance in forest species 

discrimination, the newly launched Sentinel’s data with improved temporal, spatial and spectral 

resolutions also requires further investigation for forest species discrimination. This freely 

available sensor comes with a red-edge region sensitive to vegetation characteristics. 

Furthermore, Sentinel’s data comes with Synthetic Aperture Radar data which could be used 

to compliment multispectral image data, hence improving the classification potential of forest 

species. Therefore, this chapter evaluates the value of combining Sentinel 1 Synthetic Aperture 

Radar and Sentinel 2 multispectral image datasets for discriminating forest species.  

1.6.4 Chapter four 

This chapter provides a synthesis of all findings and conclusions made based on research 

objectives in chapter 2 and 3. Responses to research hypothesis (highlighted in chapter 1) are 

also provided in this chapter.   
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CHAPTER TWO 

The utility of freely available Landsat 8 OLI in mapping commercial forest species in 

KwaZulu-Natal Province, South Africa 

 

This chapter is based on: 

Mthembeni Mngadi, John Odindi, Kabir Peerbhay and Onisimo Mutanga. 2018. The utility of 

freely available Landsat 8 Operational Land Imager in mapping commercial forest species in 

KwaZulu-Natal, South Africa. Journal of Forest Research (under review), manuscript 

number; JRES-D-18-00175.  

Abstract  

Species discrimination remains essential for the management of commercial forests. Recently, 

the adoption of remotely sensed data in forest applications has grown significantly. Whereas 

high spatial resolution sensors have proven successful in mapping and monitoring commercial 

forests, their cost, accessibility and spatial coverage remains a critical challenge. Hence, it is 

necessary to investigate the value of new and improved freely available sensors in forest 

species mapping. Using the Partial Least Square-Discriminant Analysis (PLSDA), this study 

sought to evaluate the performance new freely available and improved raw and pan-sharpened 

Landsat 8 Operational Land Imager (OLI) imagery in discriminating seven key plantation 

forest species in KwaZulu-Natal Province, South Africa. Accuracies achieved using the 

Landsat (OLI) imagery were benchmarked against the WorldView-2 imagery. Results show 

that both raw and pan-sharpened bands successfully delineated commercial forest species, with 

overall classification accuracies of 79% and 77.8%, respectively. Although these accuracies 

were lower than the 86.5% achieved from the higher resolution Worldview-2 image data, our 

findings demonstrate the lower spatial resolution (30 m) of freely available multispectral 

imagery generated a plausible performance in discriminating forest species. Hence, Landsat 8 

could be useful in providing preliminary forestry assessment due to its value in terms of cost, 

rich archival data and wide swath coverage.  

Keywords: Forest species discrimination, high spatial resolution, medium spatial resolution, 

partial least square discriminant analysis 

 

 

 

 



7 
 

2.1 Introduction  

Plantation species are often characterised by varying impacts on local ecosystem services, 

biodiversity, management regimes and economic value (Mandle et al. 2011). Consolidation of 

species in commercial forest mapping may therefore oversimplify critical landscape 

differences (Fagan et al. 2015). Hence, information on spatial distribution of commercial forest 

species is critical for among others supporting forest inventory and estimating productivity, 

silvicultural practices and forest biodiversity (Honnay et al. 1999, Peerbhay et al. 2014, Shang 

and Chisholm 2014). Furthermore, the increasing awareness on climate change and need for 

optimal mitigation measures necessitate mapping forests at species level as different species 

within a commercial forest have varying implications on an ecosystem (Fagan et al. 2015). For 

instance, Mandle et al. (2011) and Siraj (2018) note that Eucalyptus and Pinus species are 

prone to wild fires, hence increased carbon emission while the Silk oak (G. robusts) is less 

prone to fires and known to effectively sequestrate carbon.  

In South Africa, commercial forests cover approximately 1,257,341 ha (approximately 1%) of 

the country’s surface area. These forests contribute about 2% to the Gross Domestic Product 

(GDP) and play a critical role in the carbon-oxygen budget (DWAF 2005, Lottering and 

Mutanga 2012). Therefore, information on commercial forest species is valuable in among 

others; managing forest and forest ecosystem, sustainable harvesting and harvest scheduling, 

managing landscape fragmentation and adopting integrated land use strategies (Geldenhuys 

2000; Ismail and Mutanga 2010). Furthermore, understanding commercial forest species 

distribution is valuable in modelling forest pathogen and disease spread (Ismail and Mutanga 

2010), species to environmental conditions matching to optimise growth and productivity 

(Morris and Pallet 2000), and sustainable allocation of water permits to other uses, as different 

species use varied amounts of water within a catchment (Peerbhay et al. 2013). Additionally, 

limited suitable sites for specific species require optimisation of available land to maintain 

profitability. Hence, determination of species using remotes sensing offer an efficient and cost 

effective means of generating information that can used to effectively manage plantation 

forests (Ghosh 2014; Peerbhay et al. 2013).  

Whereas traditional approaches like use of aerial photographs, field observations and surveys 

are known to be highly accurate, they are often time consuming, expensive, labour intensive 

and logistically impractical, particularly at large spatial extents (Martin et al. 1998, Adam et 

al. 2010, Cho et al. 2012, Karlson et al. 2015). Hence, innovative approaches are required to 

generate spatially explicit information on species within a commercial forestry landscape 
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(Negandra 2001). Recently, new generation multispectral satellite sensors such as Worldview-

2 (430 to 1050 nm) and RapidEye (400 to 800 nm) have demonstrated great capabilities in 

mapping and monitoring vegetation species. For instance, Worldview-2 captures information 

using 8-spetral bands with a finer spatial resolution of 2-m across the visible and Near-Infrared 

(NIR) regions. These bands are highly sensitive to the variability within forest attributes 

(Lottering et al. 2016, Peerbhay et al. 2014). Similarly, RapidEye acquires information with a 

finer spatial resolution of 5-m using 5-bands from visible and NIR portion of electromagnetic 

spectrum.  The two sensors represent commercially available multispectral sensors that offer 

bands with unique imaging configurations, including the red-edge, valuable for vegetation 

mapping. Whereas several studies (Rapinel et al. 2014; Nouri et al. 2014; Peerbhay et al. 2014; 

Adelabu et al. 2013) have adopted these sensors with reliable accuracy in forestry, they are 

commercially operated, therefore costly and not readily accessible. Furthermore, theses sensors 

are characterised by a small swath width, limiting landscape analysis. These limitations create 

the need to explore the value of cost effective large swath imagery in commercial forestry 

mapping.  

Several studies have demonstrated the potential of the new generation Landsat 8 sensor for 

mapping vegetation attributes such as aboveground biomass and leaf area index (Dube and 

Mutanga 2015, Hashemi 2016, Sothe et al. 2017). For instance, Hashemi (2016) successfully 

used Landsat 8 OLI in an Artificial Neural Network environment to predict changes in 

deciduous broadleaf forest in Siah Mazgi basin forest of North Iran, while Dube and Mutanga 

(2015) sucessfully tested the potential of Landsat 8 OLI imagery in predicting commercial 

forest aboveground biomass using a texture analysis approach in KwaZulu-Natal, South Africa. 

Despite these successes, several studies have noted that the Landsat 8 OLI’s low spatial 

resolution (30m) impedes vegetation species discrimination (Goldblatt et al. 2017, Siddiqui 

and Zaidi 2016, Immitzer et al. 2012). However, Landsat data comes with a high spatial 

resolution panchromatic data (15 m) that can complement and enhance multispectral image 

data for landscape delineation. This complementarity offers great potential in commercial 

forest species discrimination. Pan-sharpening for instance, is an image enhancement process 

where a panchromatic high spatial resolution image data is merged with a medium spatial 

resolution multispectral image data to generate a higher spatial resolution image. This 

technique increases the spatial resolution of multispectral image, while maintaining spectral 

information (El-Mezouar et al. 2011). Whereas this approach holds great potential in 

generating higher spatial resolution imagery, the integration of the two forms of dataset, 
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particularly in discriminating forest species remains largely unexplored. Investigating the 

performances of these image datasets for mapping and monitoring forest species could 

therefore be beneficial to resource poor Southern African countries, and indeed the rest of the 

developing world that find the cost of high spatial resolution imagery prohibitive.  

Commonly, discriminating forest species has been a challenge due to high correlation (multi-

collinearity) among variables when using multispectral datasets (Peerbhay et al. 2014). 

Furthermore, variability between forest species reduces the statistical ability to identify and 

discriminate stands of similar species or individual species. Hence, discriminating forest 

species using remotely sensed data requires a robust technique capable of dealing with multi-

collinearity. Approaches like the Partial Least Squares-Discriminant Analysis (PLS-DA) 

technique has proven to effectively deal with multi-collinearity within the spectral data. 

Therefore, this study sought to evaluate the capability of freely available Landsat 8 

multispectral data and its panchromatic band for discriminating commercial forest species 

composition, using the Partial Least Squares Discriminant Analysis (PLS-DA) algorithm. The 

results achieved from Landsat 8 and pan-sharpened Landsat 8 were benchmarked against 

accuracies achieved from higher spatial resolution Worldview-2 imagery. Whereas it is 

acknowledged that sensors like the recently launched Sentinel 2 possess similar or better data 

quality than Landsat 8, the latter’s choice was motivated by the Landsat series rich archival 

data, valuable in both temporal and multi-temporal analysis.  

 

2.2 Materials and methods 

2.2.1 Study site description  

This study was conducted at the Clan forest plantation in the midlands region of KwaZulu-

Natal, South Africa. The commercial forest plantation occupies approximately 67 km2 and 

situated between the latitudes: 29°24’47.14” S, 29°17’46.34” S and longitudes: 30°18’33.29” 

E, 30°28’28.21” E. The area experiences an average annual rainfall that varies from 730 to 

1500mm during the summer, with annual mean temperature of 21.7°C (Dube et al. 2014, Dube 

and Mutanga 2015).  The terrain in the area is characterized by gradual to moderately steep 

slopes at an altitude ranging from 644 to 1266m (Dube et al. 2014, Dube and Mutanga 2015). 

The plantation (Figure 2.1) is dominated by Eucalyptus and Pine tree species that are green 

throughout their growth (Dube et al. 2014).    
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Figure 2.1. Location of the study area with sampled training forest stands. 
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2.2.2 Field data collection 

Species stand data for A.mearnsii, E.dunii, E.grandis, and softwood species stands such as 

P.tecunumanii, P.elloitii, and P.taedea were collected from Sappi on 10th of May 2017. The 

number of forest species stands used in this study were selected randomly within the study 

area, and a field survey conducted to verify the status of the selected forest species. A number 

of mixed Eucalyptus stands was also observed in the study area and included in the sampling 

protocol to assess the effectiveness of a multispectral dataset for discriminating a stand 

consisting of a mixture of forest species. The total number of species stands (N) selected was 

81, which comprised of A.mearnsii (n =12), E.dunnii (n =15), E.grandis (n = 15), 

P.tecunumanii (n = 5), E.mix species (n = 4), P.elloitii (n = 15) and P.taedea (n = 15) (Table 

2.1). The spectral data for these randomly selected plantation stands was extracted at a 

compartment scale using Geographic Information System (GIS) tools.    

Table 2.1. Forest species compartments used in this study.  

Types of species Total number of 

compartment 

per species 

Sampled 

compartment 

Training dataset Test dataset 

Acacia mearnsii 24 12 8 4 

Eucalyptus dunnii 102 15 11 4 

Eucalyptus grandis 222 15 11 4 

Eucalyptus mixed 5 4 3 1 

Pinus tecunumanii 11 5 3 2 

Pinus elliotii 83 15 11 4 

Pinus taedea 128 15 11 4 

 

2.2.3 Image acquisition and pre-processing   

2.2.3.1 Landsat 8 OLI 

A multispectral Landsat 8 OLI satellite imagery was acquired from Earth Explorer 

commissioned by the United State Geological Survey (USGS). The Landsat-8 image covering 

the entire study site was acquired on 30 October 2013 during sunny and clear sky conditions. 

The image consists of eleven spectral bands with a 30-m spatial resolution. The bands obtained 

from visible section include coastal aerosol (435-451 nm), blue (452-512 nm), green (533-590 

nm) and red (636-673 nm), with one band in the near-infrared (851-879 nm) and two short-

wave infrared bands i.e. short-wave infrared 1 (1566-1651 nm) and short-wave infrared 2 

(2107-2294 nm). Band 9, 10 and 11 which represent cirrus clouds (1363-1384 nm), thermal 

infrared-1 (10600-11190 nm) and thermal infrared-2 (11500-12510 nm) were excluded from 

the analysis. The multispectral Landsat-8 image with its eighth bands, including the 
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panchromatic captured at 15-m resolution, were radiometrically corrected and transformed into 

reflectance using Fast Line of Sight Atmospheric Analysis of Spectral Hypercube (FLAASH) 

technique. The radiometrically corrected multispectral image and panchromatic bands were 

fused together using the Gram-Schmidt Pan-sharpening (GSP) tool in ENVI 5.2 software. 

2.2.3.2 Worldview-2 

The Worldview-2 image, covering the study area was acquired from Geo Data Design (Pty) 

Ltd on the 30 of October 2013. The Worldview-2 sensor is comprised of eight multispectral 

bands with a spatial resolution of 2m. The spectral configurations of these eight bands are 

coastal blue (400-450 nm), blue (450-510 nm), green (510-580 nm), yellow (585-625 nm), red 

(630-690 nm) and near-infrared-1 (770-895 nm). The imagery is also comprised of two new 

additional band settings positioned between red edge (705-745 nm) and near-infrared-2 (860-

1040 nm) of the electromagnetic spectrum. The addition of these two new unique bands are 

known to improve the discrimination of forest species. Worldview-2 image was 

atmospherically corrected using the Quick Atmospheric Correction Model (QUAC). The 

radiometric calibration technique in ArcGIS environment was used to convert image into 

surface reflectance.  

2.2.4 Partial Least Squares Discriminant Analysis 

Partial Least Squares Discriminant Analysis (PLS-DA) is a statistical technique that finds a 

linear regression model by constructing predictive variables and response variables into a new 

space. The PLS technique provides the ability to minimize data dimensionality, where response 

variables are correlated to the predictor variables (Rajah et al. 2015). This technique produces 

few eigenvectors from spectral matrices, which serves as an explanatory for both the spectral 

data variance and correlation to the response variables (Peerbhay et al. 2013). As the variables 

in the PLS model are highly correlated, selecting relevant number of components from the 

input dataset is important in order to overcome the problem of overfitting (Peerbhay et al. 2013, 

Rajah et al. 2015). Therefore, the optimisation of training data in this study was critical for the 

selection of optimal number of components, which could improve the classification 

performance of the PLS-DA model. The most commonly used and accurate practical method 

for examining the optimal components in the model is cross validation (CV) (Peerbhay et al. 

2013, Peerbhay et al. 2016). This study used tenfold cross validation technique to select the 

most optimal components from a training dataset. The CV process enables the selection of 

noise free components with reduced multicollinearity. Furthermore, a necessary process for the 

PLS model to yield a reasonable classification accuracy is by selecting relevant response 
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variables using the variable importance in the projection (VIP) score (Palermo et al. 2009, 

Peerbhay et al. 2013). The VIP generate scores of importance from each spectral band that 

function as a representative measure of importance between the spectral bands (Peerbhay et al. 

2013, Farrés et al. 2015). Therefore, in this study, the VIP was used to identify wavebands that 

were critical during the classification of individual forest species. VIP technique produces a 

hierarchical score for each spectral band within the input dataset through the following 

equation:  

𝑣ⅈ𝑝𝐸 = √
𝑝

∑ 𝑍(𝑏𝑚 ⋅ 𝑡𝑛)𝑀
𝑚=1

⋅ ∑ 𝑤2

𝑀

𝑚=1

⋅ 𝑍(𝑏𝑚 ⋅ 𝑡𝑛) 

                                                         

Where 𝑣ⅈ𝑝𝐸  stand for importance of the Eth spectral band which correspond to a model with m 

variables, p represents the total number of variables, 𝑀 is the number of obtained predictive 

variables, W represent the weight of the Eth spectral band within the mth predictive variables 

and Z (bm.tn) is the explanatory percentage which is derived from mth predictive variables. The 

important variables which are selected for the PLS-DA model should have a score greater than 

1, as the mean of squared VIP scores is equivalent to 1. 

2.2.5 Accuracy Assessment 

A confusion matrix was calculated to compute an overall accuracy, user and producer 

accuracies for Landsat-8 OLI, Pan-sharpened Landsat 8 OLI and Worldview-2 imageries. From 

the total input sample, 70% was used as training dataset, while 30% as a test data. The 

producer’s and user’s accuracies were performed to test and compare the separability of 

individual forest species from each imagery dataset. The kappa statistic (or coefficient) was 

also computed to evaluate the significant differences between two error matrixes. The kappa 

coefficient (K) measures the agreement between the correctly classified and expected 

accuracies. Therefore, the K value, which is approximate to one or equivalent to one define a 

positive agreement, while the value of zero represent negative agreement. 
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2.3 Results  

2.3.1 Selection of optimal latent component through cross validation (CV)  

Figure 2.2, illustrates the CV error produced by each component from each satellite sensor 

dataset. The components that obtained a lowest error were used in the final model to 

discriminate forest species. For instance, the CV error for Landsat 8 OLI decreased from 

component 1 to 7 with the error rate ranging from 45.3 % to 15.08%. The PLS-DA model 

produced the lowest error at component 7 (15.08%). However, although the decrease in CV 

error between the components of original and pan-sharpened images was of a similar trend, the 

pan-sharpened Landsat 8 OLI imagery produced the lowest CV error at component 4, with the 

error rate of 11.41%.  

 

 

Figure 2. 2. Obtaining a descriptive power from the components of PLS-DA across the 

Landsat 8 OLI, Pan-sharpened Landsat 8 OLI and Worldview-2 dataset using tenfold cross 

validation error technique. The component that poses the least error rate is labelled with its 

error percentage.   

 

Similarly, the trend of partial decrease in the CV error from the first component to the last 

component was consistent with the high spatial resolution dataset. For example, the CV error 

of WorldView-2 imagery decreased from component 1 to component 8, with component 8 

having produced the lowest error rate of 20.96. Selecting all these components with the lowest 
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error rates was critical for eliminating components that contain unnecessary information, which 

could lower the performance of these sensors during discrimination of forest species. 

  

2.3.2 The classification performance of individual forest species 

Results in Table 2.2 show the ability of new generation moderate spatial resolution Landsat 8 

OLI in discriminating commercial forestry at species level. Specifically, when the first seven 

spectral bands (excluding panchromatic band 9 and atmospheric conditions band 8, 10 and 11) 

were utilized, the overall accuracy obtained using the original image was 79% with the kappa 

coefficient of 0.76 (Table 2.2). These spectral wavebands were effective in the discrimination 

of individual species with individual class accuracies ranging from 50 to 92%.  Spectra 

acquired from a pan-sharpened version of Landsat 8 OLI used to classify forest species 

produced a slightly lower overall accuracy of 77.8% and the kappa value of 0.74 (Table 2.2) 

when compared to the original image. However, the performances of individual species by the 

pan-sharpened image version were comparable to the original image with the accuracy between 

69 and 92% (Table 2.2). These results demonstrate a great potential of Landsat 8 OLI spectral 

bands for discriminating individual species, albeit lower resolution.  

 

Table 2.2. The performance of individual species and the overall classification accuracy 

produced using medium and high spatial resolution sensors. 

Species type   Landsat 8 OLI Pan-sharpened 

Landsat 8 OLI 

WorldView-2 

Producer User Producer User Producer User 

elliotii 81 87 81 87 88 100 

grandis 85 73 87 87 71 80 

mearnsii 85 92 85 92 100 100 

mixed 40 50 0 0 100 50 

taedea 79 73 79 73 94 100 

tecunumanii 80 80 80 80 100 60 

dunnii 80 80 69 73 79 73 

Overall accuracy         79        76.8          86.5 

Kappa value        0.76        0.74         0.83 

The results of this study showed a great improvement in the performance of WorldView-2 

sensor when compared to Landsat 8 OLI, producing an overall accuracy of 86.5% and kappa 

value of 0.83. The spectral information extracted from the raw bands of WorldView-2, 
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including the red-edge band illustrated a superior ability to discriminate individual forest 

species based on producer and user accuracies ranging from 50 to 100% (Table 2.2).  

2.3.3 Variable Importance in the Projection  

The Variable Importance in the Projection (VIP) approach in this study identified important 

wavebands with the scores greater than one, hence effective for the discrimination of forest 

species. For the medium spatial resolution Landsat 8 OLI bands setting, band 3 (green 533-590 

nm) and 5 (near infrared 851-879 nm) were the most important regions for discriminating 

species, with the VIP scores of between 1.13 to 1.19 (Figure 2.3). While pan-sharpened version 

of Landsat 8 OLI showed that band 4 (red 636-673 nm), 5 (near-infrared 851-879 nm) and 6 

(short-wave infrared 1566-1651 nm) were effective for discriminating forest species, with VIP 

scores greater than 1 (Figure 2.3). From both datasets, the near infrared (band 5) region was 

predominant, hence boosting vegetation sensitivity and spectral response. 

 

 

Figure 2. 3. Selection of the most important band(s) by the PLS algorithm effective for the 

discrimination of forest species using Landsat 8 OLI, Pan-sharpened Landsat 8 OLI and 

Worldview-2.  
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When using a high spatial resolution Worldview-2 imagery, the following bands were common 

in the classification of forest species: band 5 (red 630-690 nm), 6 (red edge 705-745 nm), 7 

(near-infrared 770-895 nm) and 8 (near-infrared 860-1040 nm). In all the results, the visible 

and near infrared regions of electromagnetic spectrum were critical for discriminating 

commercial forest species. Figure 2.4, illustrates the individual forest species determined using 

WorldView-2 as a map to Landsat 8 OLI and Pan-sharpened Landsat 8 OLI classifications. 

Figure 2.4, shows the spatial distribution of individual forest stands generated using Python 

system.  
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Figure 2. 4. The best performing image dataset between Landsat 8 OLI and Pan-Sharpened 

Landsat 8 OLI in the mapping of commercial forest species distribution when benchmarked 

to WorldView-2 imagery. 
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2.4 Discussion  

This study sought to investigate whether the high spatial resolution imagery could be compromised 

for the medium spatial resolution imagery in discriminating commercial forest species. The higher 

costs associated with acquisition of high spatial resolution imagery limits their adoption, especially 

in resource-constrained countries like South Africa. This necessitates the consideration and testing 

of the performance of freely available multispectral imagery. One of the key challenges on the 

utility of freely available imagery is the broad wavebands associated with medium spatial 

resolution, which could compromise accurate discrimination of forest species. Hence, this study 

sought to evaluate the performance of freely available imagery against expensive high-resolution 

imagery in discriminating seven plantation forest species (i.e. elliotte, dunnii, grandis, mix, 

mearnsii, taedea and tecunumanii) in Midlands region of KwaZulu-Natal Province, South Africa. 

2.4.1 Classification performance of Landsat 8 OLI multispectral sensor for discriminating 

forest species. 

The findings of this study demonstrate the capability of freely available multispectral Landsat 8 

OLI wavebands for discriminating forest species of different genera (e.g. Acacia mearnsii, 

Eucalyptus dunnii and Pinus taedea) and the species within the same genus (e.g. Pinus taedae and 

Pinus elliotii). The results show that Landsat 8 OLI successfully discriminated forest species 

despite the coarser pixel size of 30 m to an accuracy of 79% and the kappa value of 0.76. This is 

above the required minimum overall accuracy threshold of 75% based on USGS classification 

standards (Hossain 2016). This study acknowledges that there is approximately 10% difference 

between results produced by this freely available imagery and those produced by the benchmark 

WorldView-2, which showed higher overall accuracy of 86.5%. These results are consistent with 

the previous study conducted by Motongera et el. (2017), which mapped Bracken fern weed 

distribution using Landsat 8 OLI in comparison with WorldView-2, with a 9% difference. The 

credible performance of this freely available imagery for discriminating forest species is attributed 

to the sensor’s properties. For instance, the series of wavebands forming Landsat 8 OLI sensor are 

capable of accurately detecting and scanning various features on the earth’s surface based on their 

spectral signature differences. The sensor provides refined spectral range bands that are critically 

sensitive to vegetation’s biophysical and biochemical properties. For instance, the sensor near 

infrared band is designed to track the spectral response of vegetation with a shortened wavelength 



20 
 

of 850-880 nm (Matongera et al. 2017). Additionally, the sensor’s high radiometric resolution 

(12bits) enhance the detection of various vegetation properties (Dube and Mutanga 2015, El-

Askary et al. 2014).  

The appropriate image processing method (e.g. extraction of spectra from band to band) and the 

utility of an advanced classification algorithm (PLS-DA) may have improved the performance of 

Landsat 8 OLI. According to Peerbhay et al. (2014), the robustness of PLS-DA is associated with 

its ability to successfully deal with multicollinearity, which is a major problem in remotely sensed 

information retrieval. This is achieved by selecting latent variables that have least error rate using 

cross validation technique. Generally, the improvements in the discrimination of forest species 

was associated with the utility of spectra acquired from 30-m resolution. Results have 

demonstrated that the use of spectral data derived from multispectral medium resolution sensor 

provides a robust strength for improving the separability of forest species from a complex forest 

canopy with tall trees. The reasonable performance shown by the use of spectral information 

extracted from Landsat 8 OLI could be attributed to the sensitivity of forest species biophysical 

properties such as tree structure, age, leaf area index and biomass (Champion et al. 2008, Dube 

and Mutanga 2015, Fuchs et al. 2009). A previous study by Dube and Mutanga (2015) noted a 

plausible performance of Landsat 8 OLI, primarily based on the ability of the sensor to provide 

distinctive spectra, reducing atmospheric effects and capability to match the angle of the sun. 

Although Landsat 8 OLI imagery showed a lower classification performance, when compared to 

the benchmark WorldView-2, the medium spatial resolution Landsat 8 OLI demonstrated a 

potential improvement in the discrimination of forest species compared to conventional 

multispectral data. This was shown by the high producers’ and users’ accuracies produced using 

the spectral data derived from freely available Landsat 8 OLI. Although Landsat 8 OLI showed a 

reasonable strength in mapping forest species, a broad misclassification was observed on the final 

map output. The misclassification between the species could be due to large scanning footprint of 

the Landsat 8 sensor, which is prone to the mixed-pixel phenomenon. Previous studies have also 

reported that discrimination of forest at a species level is a fundamental problem due to shadowing 

effect. This occurs as results of mixed pixels between the canopy, soils and shadow cast of the 

trees and commonly affect broadband sensors (Basuki et al. 2012, Dube et al. 2014 and Carreiras 

et al. 2012). 
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Based on the current findings, Landsat 8 OLI offer the opportunity to discriminate and manage 

forest species at a regional scale at a cheaper cost than the commercially available high spatial 

resolution WorldView-2 sensor. Whereas the capabilities of WorldView-2 for providing high 

discriminant spectral signature of vegetation and other covers cannot be ignored, the utility of high 

spatial resolution remote sensing is coupled with a number of challenges that include cost, 

accessibility, spectral processing and analysis (Dube and Mutanga 2015). Above all, WorldView-

2 covers a small swath-width, which restricts their application to small spatial extents. Conversely, 

despite low spatial resolution, Landsat 8 OLI covers large swath-width of approximately 185km, 

making its application useful at both local and regional scales. The decision by the United States 

Geological Survey (USGS) to freely avail Landsat data offers an opportunity for temporal and 

multi-temporal mapping, monitoring and management of commercial forest species at minimal 

cost.  

2.4.2 Classification of forest species using pan-sharpened Landsat 8 OLI multispectral data 

The conversion of multispectral imagery by pan-sharpening process did not improve the overall 

classification accuracy. For example, a pan-sharpened version of Landsat 8 OLI produced an 

overall accuracy of 77.8%. This finding is consistent with Wicaksono and Adhimah (2017) in 

mapping benthic habitats using Quickbird dataset. Their results showed an accuracy of 64.28% for 

pan-sharpened data and 73.46% for the original imagery. McCarthy and Halls (2014) also found 

inconsistent performance when using pan-sharpened and original image data. Lin et al. (2015)  

notes that the pan-sharpening process can create noise as a results of heterogeneous variables 

within the multispectral image pixels, which can lower the estimation of biophysical properties. 

Therefore, in the environment where vegetation canopy is dense (e.g. commercial forest 

plantation), the impact of noise can be accentuated, due to the nonlinear measure of biophysical 

characteristics for different types of vegetation (i.e. forest species types). Additionally, pan-

sharpening of Landsat 8 OLI could have increased incident of shadowing effect, where gaps and 

shadow casts between trees are picked up. Therefore, using broader spatial resolution sensor such 

original Landsat 8 OLI data (≥30 m) may be beneficial due to using fewer pixels that captures the 

average spectra of forest canopies rather than averaging many pixels of pan-sharpened data (15 m) 

that increase the incidence of shadows and noise, especially over broader regions of interest.  
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2.5 Conclusion 

This study sought to investigate the performance of freely available medium spatial resolution 

Landsat 8 OLI multispectral data benchmarked on high spatial resolution WorldView-2 data for 

mapping commercial forest species. Based on the results, Landsat 8 OLI showed promising 

potential for discriminating forest species when benchmarked with WorlView-2. This medium 

spatial resolution imagery can provide a cheaper alternative that covers larger swath width, which 

enables mapping and monitoring of forestry on a regional scale. The utility of pan-sharpened 

Landsat 8 OLI data decreased the overall classification accuracy when compared to the original 

data. The inferiority of pan-sharpened image was associated with the distortion of spectral 

signature during the processing, as well as possible shadowing effect. However, despite failure to 

achieve expected results, pan-sharpening could still be considered for general land cover mapping. 

Moreover, the application of VIP approach successfully identified wavebands that were influential 

and important (i.e. band3, 4, 5 and 6) for the discrimination of commercial forest species in this 

study. The utility of partial least square discriminant analysis (PLS-DA) in this study, proved to 

be more appropriate for the classification of forest species and for the selection of most optimal 

wavebands using new generational multispectral remote sensing information.  
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CHAPTER THREE 

Examining the effectiveness of Sentinel-1 and 2 imagery for 

commercial forest species mapping 
 

This chapter is based on: 

Mthembeni Mngadi, John Odindi, Kabir Peerbhay and Onisimo Mutanga. 2018. Examining the 

effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping. Geocarto 

International Journal (under review), manuscript number; TGEI-2018-0334.  

 

Abstract 

The successful launch and operation of the Sentinel satellite platform has provided access to freely 

available remotely sensed data useful for commercial forest species discrimination. Sentinel – 1 

(S1) with a Synthetic Aperture Radar (SAR) sensor and Sentinel – 2 (S2) multi-spectral sensor 

with additional and strategically positioned bands offer great potential for providing reliable 

information for discriminating and mapping commercial forest species. In this study, we sought to 

determine the value of S1 and S2 data characteristics in discriminating and mapping commercial 

forest species. Using linear discriminant analysis (LDA) algorithm, S2 multi-spectral imagery 

showed an overall classification accuracy of 84% (kappa = 0.81), with bands such as the red-edge 

(703.9-740.2 nm), narrow near infrared (835.1-864.8 nm), and short wave infrared (1613.7-2202.4 

nm) particularly influential in discriminating individual forest species stands. When Sentinel 2’s 

spectral wavebands were fused with Sentinel 1’s (SAR) Vertical transmit/Vertical receive (VV) 

and Vertical transmit/Horizontal receive (VH) polarimetric modes, overall classification 

accuracies improved to 87% (kappa = 0.83) and 88% (kappa = 0.85), respectively. These findings 

demonstrate the value of combining Sentinel’s multispectral and SAR structural information 

characteristics in improving commercial forest species discrimination. These, in addition to the 

sensors free availability, higher spatial resolution and larger swath width, offer unprecedented 

opportunities for improved local and large-scale commercial forest species discrimination and 

mapping.    

Keywords: Synthetic Aperture Radar, Linear Discriminant Analysis, forest species 

discrimination, Sentinel-2 
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3.1 Introduction 

Knowledge on commercial forest species extents is critical for adopting informed forest plantation 

related decisions. Such decisions include site or species specific management practices, 

commercial output and viability, forest ecosystem health and harvest scheduling (Franklin et al. 

2000, Wittwer et al. 2004, Peerbhay et al. 2013, Peerbhay et al. 2014). In South Africa, commercial 

forest plantations constitute approximately 2% of the country’s gross domestic product (GDP), 

and complement the national environmental agreement requirements, which seeks to mitigate 

carbon emission and greenhouse effects (Dube et al. 2018, Peerbhay et al. 2014, 2016). 

Furthermore, commercial forests play a critical role in biodiversity and conservation planning and 

provision of ecosystem goods and its services (Peerbhay et al. 2014). Achieving these demands 

require accurate and precise information on a forest landscape. Traditionally, field surveys have 

been used to map forest species. Whereas surveys are known to be highly accurate, they are often 

time consuming, costly, and not ideal for large spatial extents (Henry et al. 2011, Adam et al. 2014, 

Dube et al. 2014). Over the past few decades, remote sensing has emerged as a viable cost effective 

approach for understanding forest plantations biophysical and biochemical attributes (Dube et al. 

2014, Martin et al. 1998, Naidoo et al. 2012, Waser et al. 2014).  

Recently, high spatial resolution commercial sensors such as WorldView-2 and RapidEye have 

gained popularity in discriminating forest species (Peerbhay et al. 2014). Such sensors are 

characterised by fewer, but strategically positioned wavebands and red-edge band, which is 

valuable for vegetation mapping (Eckert 2012, Dube et al. 2014, Cheng and Chaapel 2008). 

However, these datasets are costly and have limited spatial coverage, hence not ideal for the often 

large scale and sometimes regionally distributed commercial forest plantations. The emergence of 

the freely available Sentinel-2 sensor is viewed as a trade-off between advantages offered by lower 

spatial resolution freely available multispectral sensors and the new generation commercial 

sensors. Sentinel-2 is the first medium spatial resolution sensor with unique band setting that 

include the red-edge and improved spatial resolution. The sensor acquires information at spatial 

resolutions of 10, 20 and 60 m using thirteen wavebands positioned within the Visible (443.9-

664.5 nm), NIR (835.1-864.8 nm) and SWIR (1613.7-2202 nm) regions of the electromagnetic 

spectrum. The sensor is freely available, has a larger swath width and a higher temporal resolution, 

which is useful for frequent monitoring and management of forestry. However, despite these 

benefits, the sensor has not been utilized for the discrimination of species in commercial forest 
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plantations. It is therefore necessary to evaluate the capability and effectiveness of Sentinel-2 

imagery for discriminating commercial forest species to support forest management decisions and 

monitoring interventions. Exploring the significance of the sensor’s individual bands is also critical 

for understanding the value of new additional spectral bands on forest species discrimination and 

mapping.  

Additionally, Sentinel image data comes with Synthetic Aperture Radar (SAR) capabilities, which 

could be used to complement multispectral/optical sensors. Sentinel 1 sensor’s interaction with 

features is based on the backscattering of physical properties such as roughness, water/moisture 

content and structural geometry (Balzter et al. 2015), which is different from the reflectance 

interactions of optical multispectral sensors. The sensor uses Interferometric Wide Swath (IW) 

mode to acquire radar information over the land surface, which provide a more advanced ability 

to retrieve canopy height and digital terrain, using dual polarization operations such as Vertical 

transmit/Vertical receive (VV) and Vertical transmit/Horizontal receive (VH) (Balzter et al. 2015). 

Due to the longer wavelength, SAR imagery can penetrate through canopy cover and thin cloud, 

and generate data in all weather conditions, hence is not affected by shadowing and clouding 

effects, which is a major limitation with optical sensors (Haack et al. 2000). In addition, despite the 

fact that optical sensors have a powerful ability to discriminate vegetation, data acquisition is often 

restricted to forest canopy, and unable to detect differences in vegetation structural geometry. In 

this regard, SAR data can be utilized to complement capabilities of optical sensors through fusion 

processes, which could facilitate robust discrimination of vegetation, and consequently improve 

the classification performances of optical data. To date, there has been a limited amount of 

literature that has fully exploited the capability of Sentinel’s data through fusion of optical S2 and 

S1 SAR for discriminating commercial forest species.  

Generally, information provided by remote sensing techniques is associated with high correlation 

and variability between the variables. This could pose a serious challenge in the performances of 

Sentinel 1 and 2 datasets in classification of individual forest species. According to Peerbhay et al 

(2015), a strong correlation between the spectra and noise in the image are the limiting factors for 

the techniques and methods used to analyse remotely sensed data. Therefore, discriminating forest 

species using remote sensing information requires a robust modelling technique to enhance better 

classification performance. Previous studies by Calviño-Cancela and Martín-Herrero (2016), 



26 
 

Davidson et al. (2016) and German et al. (1999) demonstrated the value of the Linear Discriminant 

Analysis (LDA) algorithm in discriminating and mapping vegetation. LDA transforms input 

variables into a lower dimensional space, where data redundancy and noise between classes are 

reduced, hence guaranteeing maximum classification potential (Balakrishnama and Ganapathiraju 

1998, Calviño-Cancela and Martín-Herrero 2016). This statistical model ensures maximum 

separability between classes by increasing the variance ratio of between-class relative to within-

class variance. Where the non-linearity exists between classes, the LDA model uses kernel 

function to separate classes, proving its potential for discrimination purposes. Hence, the essence 

of this study was to investigate the capability and efficiency of combining Sentinel 1 and 2 data 

for discriminating commercial forest species using LDA.  

 

3.2 Materials and methods 

3.2.1 Description of study area  

The research was done at Clan Sappi commercial forest plantation located in Midlands region of 

KwaZulu-Natal province, South Africa. The forest is situated between 29°25'46.14"S and 

30°19'32.29"E and covers about 6700 ha (Figure 3.1). The study area experience sub-tropic climate 

with an average rainfall that range from 700 mm to 1500 mm per year (Dube et al. 2014). The 

plantation is dominated by hardwood such as Eucalyptus species (e.g. Eucalyptus dunnii, 

Eucalyptus grandis) and softwood such as Pinus species (e.g. Pinus taedea) (Dube et al. 2014). 
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Figure 3. 1. Location of the study area with sampled training species in colours and forest stands 

in grey. 
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3.2.2 Image acquisition and pre-processing  

3.2.2.1 Sentinel-2 and Sentinel-1 C-band Synthetic Aperture Radar (SAR) 

Multispectral Sentinel-2 satellite imagery was acquired on the 24 October 2017 from European 

Space Agency (ESA) under sunny and cloudless conditions. The imagery comprises of thirteen 

wavebands with spectral wave range between 443 and 2190 nm. This medium spatial resolution 

satellite sensor captures information at various spatial resolutions (e.g. 10, 20 and 60 m) from the 

visible, near infrared and shortwave infrared regions of the electromagnetic spectrum. The image 

was atmospherically corrected using the Dark Object Subtraction 1 (DOS1) technique from which 

radiance values were converted into surface reflectance within a Quantum Geographic Information 

System (QGIS) platform. Sentinel-1 SAR data was captured from the European Space Agency 

(ESA) on the 30th October 2017, on a cloud free day. In this study, C-band SAR polarimetric data 

was converted to sigma0 (both Vertical transmit/Vertical receive and Vertical transmit/Horizontal 

receive polarizations), and radiometrically and geometrically (terrain) calibrated using Sentinel 

Application Platform tool (SNAP). 

3.2.3 Image fusion  

Many studies have used pixel level fusion techniques due to the approach’s ability to maintain 

spectral information of the original image, hence reduce noise and data distortion (Luo et al. 2013). 

However, such technique requires highly accurate registration, a major challenge when using SAR 

and optical datasets. Conversely, feature level fusion technique does not require precise 

registration, hence suitable and efficient for fusing optical and SAR data. Feature level fusion 

avoids common problems associated with well-known pixel level effects which includes blurring, 

high level of noise and mis-registration (Kor and Tiwary 2004, Luo et al. 2013). Hence, this study 

used feature level approach to fuse the two datasets. This approach is particularly critical as it 

combines a feature set containing richer information about the input variables rather than matching 

score or output decisions from the classifier (Haghighat et al. 2016 and 2016). The input images 

are first segmented into regions and different region properties are calculated using Dual-Tree 

Complex Wavelet Transform (DT-CWT). Calculating region properties is necessary for 

determining features from the input images that are to be used in the fused image. Features are 

fused based on textural margins and DT-CWT technique is powerful in determining textural edges, 

hence combining relevant information required for better recognition and discrimination by the 
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classifier (Kor and Tiwary 2004). Therefore, feature level fusion approach provides robust 

classification performance and reliable information for decision making (Majumdar and 

Bharadwaj 2014).  

3.2.4 Field data collection  

Field data for this study was collected on the 10th of May 2017 from Sappi after an extensive field 

survey. The data comprised of several forest species stands containing hardwood (e.g. E.dunnii, 

E.grandis, E.mix, A.mearnsii) and softwood (e.g. P.elliotii, P.taedea, P. tecunumanii) tree species. 

These forest stands were randomly sampled from stands covering the study area (Table 3.1). The 

study area was revisited to verify the status of resampled forest species. Furthermore, the sample 

forest stands were used as the input dataset to extract spectral data from a remotely sensed satellite 

imagery. However, a number of forest species stands had been harvested and some were very 

young, especially A.mearnsii and P.tecunumanii, resulting to an imbalance between sampled 

compartments.  

 

Table 3.1. Selection of forest species compartments in the study area.  

Species Total number of 

compartments 

Sampled 

compartment 

Training dataset  Test dataset 

A.mearnsii         24         5          3           2 

E.dunnii         102        15          10           5 

E.grandiis         222        15          10           5 

E.mix          5          5          3           2 

P.tecunumanii          11         5          3           2 

P.elliotii          83        15          10           5 

P.taedea          128        15          10           5 

 

3.2.5 Statistical analysis  

The study used Linear Discriminant Analysis (LDA) technique in the Tanagra data mining 

platform (Ye et al. 2005) to discriminate forest species. LDA is a statistical algorithm which 

guarantees maximum classification potential by projecting input variables into a new lower 

dimensional space, hence reducing redundancy and noise between the class variables (Tharwat et 

al. 2017). The LDA projects variables into new space using two approaches (i.e. class-dependent 

and class-independent approaches). Class-dependent projection approach maximizes the ratio 

between-class variance relative to the within-class variance (Balakrishnama and Ganapathiraju 
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1998). In this approach, input variables are independently transformed using two optimization 

criterion. Conversely, class-independent approach increases the overall variance ratio to within-

class variance (Balakrishnama and Ganapathiraju 1998). This approach uses single criterion to 

transform a dataset and consequently, all the input training features irrespective of their class 

identity are transformed. LDA uses Fisher function to compute eigenvalues and eigenvectors, and 

transforms them into a new space (Carreira-Perpinan 1995, Tharwat et al. 2017). Eigenvectors are 

important for creating space between the classes, while eigenvalues represent the magnitude of the 

eigenvector (Li et al. 2006, Tharwat et al. 2017). Therefore, robustness of LDA depends on the 

maximum magnitude of eigenvectors between the classes, which increases the separability 

variance between classes. In this regard, if the distance between the means of different classes is 

greater, discrimination of classes by the LDA produces reasonable accuracy. In this study, where 

the classes were difficult to discriminate due to non-linearity existing between them, kernel 

function of the LDA was used to separate classes, hence increasing class separability potential. 

The p-values are also calculated for identifying spectral wavebands, which were valuable during 

the classification.  

3.2.6 Accuracy assessment 

A confusion matrix was used to compute the overall accuracy, kappa value and the performance 

of individual forest species based on producer and user accuracies (Congalton and Green 2008, 

Peerbhay et al. 2014). All were calculated from the spectral information and sigma0 values of 

Sentinel 2 and Sentinel 1 SAR imageries. Approximately 75 variables were acquired from Sentinel 

1 and 2 imageries. Seventy percent of these variables were used as training set and 30% used as 

the accuracy validation dataset. The producer and user accuracies were computed by dividing the 

correctly classified samples with the total sample (Congalton and Green 2008). Calculating 

producer and user accuracies was necessary for evaluating the capability and efficiency of Sentinel 

1 and 2 imageries in discriminating individual forest species. Furthermore, the kappa value was 

also calculated to measure the agreement between correctly classified and expected accuracies. 

Generally, the kappa value that equals or closer to one describes strong agreement, while the value 

that is approximate to zero define weak agreement (Congalton and Green 2008, Peerbhay et al. 

2014). 
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3.4 Results 

3.4.1 Forest species discrimination using Sentinel 2 MSI 

Using Linear Discriminant Analysis, results in Table 3.2 shows the capability of Sentinel-2 raw 

bands in discriminating individual forest species, with producer and user accuracies ranging from 

74 to 100%. The overall accuracy obtained using this imagery was 84%, with the kappa value of 

0.81. From Table 3.2, it is clear that the total number of correctly classified samples per species is 

higher than incorrectly classified samples, hence a higher overall performance of all forest species. 

 

Table 3.2. Classification of individual forest species by the Linear Discriminant Analysis 

algorithm and all Sentinel-2 spectral wavebands. Diagonal values (highlighted bold) in the table 

represent the samples that were correctly classified.  

  
 

Species 

Type 

dunnii elliotii grandis mearnsii mix taedea tecunumanii Sum User 

dunnii 14 0 1 0 0 0 0 15 93 

elliotii 0 14 0 1 0 0 0 15 93 

grandis 1 0 14 0 0 0 0 15 93 

mearnsii 1 0 0 4 0 0 0 5 80 

mix 0 0 2 0 3 0 0 5 60 

taedea 0 1 0 0 0 14 0 15 93 

tecunumanii 0 4 0 0 0 1 0 5 0 

Sum 16 19 17 5 3 15 0 75 
 

Producer 88 74 82 80 100 93 0 
  

 

Overall classification accuracy: 84%,  

Kappa coefficient value: 0.81 

The results in Figure 3.2 illustrate the spectral bands of Sentinel-2 which were significantly critical 

in the classification of forest species. Based on the statistical analysis, the spectral bands that 

obtained p-values equals or less than 0.05 are significant. Therefore, the red-edge band 7 (703.9-

740.2 nm), Narrow NIR band 8A (835.1-864.8 nm), SWIR band11 (1373.5-1613.7 nm) and SWIR 

band12 (1613.7-2202.4 nm) achieved p-values ranging between 0.001 and 0.0039, and were 

considered influential in the discrimination of forest species.  
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Figure 3. 2. Significance of Sentinel-2 raw bands in the discrimination of forest species. The 

bands highlighted with arrows were more sensitive and essential during the classification.  

 

3.4.2 Classification potential of fused Sentinel-2 and Sentinel-1 

The fusion of individual polarimetric data (i.e. VV and VH) with Sentinel-2 wavebands 

significantly increased the classification performance of forest species. Results in Table 3.3 show 

that the fusion of VH polarimetry with Sentinel-2 produced an overall accuracy of 88% and kappa 

value of 0.85, while VV produced 87% with a kappa value of 0.83. Although both polarizations 

showed higher producer and user accuracies ranging between 74 and 100%, best results were 

achieved using VH polarization. 
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Table 3.3. Discrimination of forest species using Synthetic Aperture Radar (VH and VV 

polarizations) data fused with the spectral wavebands of Sentinel-2.   

Interferometric Data VH Polarization VV Polarization 

Species type Producer User Producer User 

dunnii 94 100 88 100 

elliotii 74 93 74 93 

grandis 94 100 94 100 

mearnsii 83 100 80 80 

mix 100 60 100 60 

taedea 93 93 93 93 

tecunumanii 0 0 0 0 

Overall accuracy 88% 87% 

Kappa value 0.85 0.83 

 

  

Results in Figure 3.3 show the capability of Sentinel-2 multispectral image data in mapping 

individual forest plantation stands. Although Sentinel-2 showed a smooth outline of individual 

forest compartment, the inclusion of SAR data visually increased the mapping potential of 

Sentinel-2 data. For instance, Figure 3.3 illustrate the effectiveness of SAR VH and VV 

polarimetric data for improving the mapping potential of Sentinel-2 through image fusion process.  
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Figure 3. 3. Species classification maps using Synthetic Aperture Radar data (i.e. VH and VV 

polarizations) fused with Sentinel-2 multispectral image data. 
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3.5 Discussion 

Accurate and reliable mapping of commercial forest species is critical for effective management 

and monitoring of forestry. However, mapping forest species using broadband optical images has 

been a critical challenge due to larger scanning window size which is susceptible to mixed-pixels, 

hence poor discrimination and mapping. This study demonstrates that combining Sentinel 2 MSI 

with SAR data can be used to improve the mapping accuracy of commercial forest species.  

3.5.1 Classification performance of Sentinel-2 MSI in discriminating forest species  

Results in this study show that Sentinel-2 spectral bands achieved an overall accuracy of 84% and 

kappa value of 0.81. The image data was successfully used to discriminate individual forest species 

of same genus (i.e. E.grandis, E.dunnii, and E.mix) and different genera (e.g. E.dunnii, P.elliotii 

and A.mearnsii) with producer and user accuracies ranging from 74 to 100%. The plausible 

performance of this sensor could be attributed to the fact that it covers strategic portions of the 

electromagnetic spectrum such as red-edge, providing three bands (i.e. band 5, 6 and 7). Previous 

studies by Dube et al. (2014), Sibanda et al. (2016) and Peerbhay et al. (2014) revealed the 

importance of red-edge bands for increasing vegetation sensitivity and its spectral response. The 

significance of red-edge bands is associated with the ability to measure numerous vegetation leaf 

properties such as chlorophyll content, biomass and canopy structure, necessary for discriminating 

forest species (Dube et al. 2014, Thenkabail et al. 2013;Ramoelo et al. 2015). According to 

Sibanda et al. (2016) and Lee et al. (2004), sensors with red-edge configurations produce 

reasonable overall accuracy in vegetation mapping. Furthermore, in addition to the red-edge bands, 

the p-value results show that NIR and SWIR wavebands were also significant for the classification 

of forest species. These findings are consistent with Immitzer et al. (2016) and Ramoelo et al. 

(2015), which found that red-edge and SWIR bands are the most useful regions in vegetation 

mapping using Sentinel-2 data. Short wave infrared bands are associated with crucial vegetation 

properties such as lignin, starch and nitrogen (Ramoelo et al. 2015, Wang et al. 2004). These 

important absorbers of light reflect very high on the short wave infrared region, hence necessary 

for vegetation mapping (Ramoelo et al. 2013, Skidmore et al. 2010). Although several studies that 

used Sentinel-2 MSI found near infrared region not optimal, our study present the significance of 

this region, especially for its ability to provide refined spectral bands that are highly sensitive to 

the biophysical and biochemical properties of vegetation (Dube and Mutanga 2015, El-Askary et 

al. 2014). Near infrared bands are designed to scan the spectral response of vegetation with very 
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narrow wavelengths of between 850-880 nm (Matongera et al. 2017). Overall, the utility of 

Sentinel-2 in this study showed potential to effectively map commercial forest species. This, in 

addition to free availability and large swath width offer a cost-effective option for large scale 

assessment.  

3.5.2 Classification performance of Sentinel-2 MSI and S1 

Results in this study demonstrate successful improvement in the performance of Sentinel-2 

spectral information when fused with Synthetic Aperture Radar data (Sentinel-1). These results 

produced an overall accuracy of 88% using interferometric data of VH receive-cross polarization 

and 87% using VV receive polarizations. In consistency with this study, Dabrowska-Zielinska et 

al. (2016) noted that the best results are determined using VH polarization. In this study, forest 

species reflected very high on the value of sigma-zero calculated from VH polarization data when 

compared to VV polarization data. According to Dabrowska-Zielinska et al. (2016), polarizations 

that have higher penetration ratios and higher incidence angles, such as VH, produce better results 

due to higher backscattering acquisition. Additionally, an appropriate image processing technique 

such as the conversion of C-band SAR data to noise equivalent sigma zero (NESZ) was necessary 

to improve classification performance of Sentinel-2 spectral data. Moreover, SAR data provides 

access to information related to the physical properties of each commercial forest species, in 

addition to its sensitivity to surface roughness, moisture content and geometric structures (Balzter 

et al. 2015). In contrast, optical sensors like Sentinel-2 are more sensitive to chemical properties 

of ground features, therefore, fusion of SAR and optical sensor (i.e. Sentinel-2) allows detection 

of both physical and chemical attributes of forest canopies, hence providing robust spectral 

signatures for discrimination. Overall, the findings of this study implies that Sentinel-1 SAR data 

can be effectively used to complement capabilities of optical sensors such as Sentinel-2 in 

vegetation mapping, providing significant advantage for commercial forest species discrimination 

and management. 

3.6 Conclusion 

The essence of this study was to investigate the capability of combined freely available Sentinel 1 

and 2 data for discriminating commercial forest species. Based on the results, Sentinel-2 spectral 

data can be used to effectively discriminate forest species with reasonable accuracy. Regions such 

as red-edge (703.9-740.2 nm), near infrared (835.1-864.8 nm) and shortwave infrared (1613.7-

2202.4 nm) were critical in boosting the sensitivity and spectral response of vegetation, which 
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increased the classification potential of Sentinel-2 imagery. However, maximum classification 

performance was achieved when Sentinel-2 spectral bands were fused with SAR data. This clearly 

showed the advantage of image enhancement, especially when using SAR data, which is sensitive 

to the backscattering of physical attributes of vegetation, while multispectral sensors like Sentinel-

2 are more sensitive to chemical properties. In this study, we conclude that Sentinel-1 SAR data 

can be effectively used to improve the classification potential of multispectral optical sensors such 

as Sentinel-2 for forest species discrimination.  
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CHAPTER FOUR: SYNTHESIS 

4.1 Introduction 

Precise discrimination and mapping of commercial forest plantations is critical for optimal forestry 

management. In addition to economic contribution, commercial forests play an important role in 

regional and local carbon cycle, hence complementing requirement of Kyoto Protocol, which seek 

to reduce climate change and associated greenhouse effects (Dube et al. 2018). Such provision of 

economic and ecosystem services depends on species stand diversity, hence information on species 

spatial patterns, composition and productivity is crucial for understanding forest ecosystem 

dynamics (Peerbhay et al. 2014, 2015, Raczko and Zagajewski 2018). Moreover, forest species 

discrimination and mapping is required for conservation planning strategies and maintaining 

species diversity, demands necessitate accurate and reliable information for effective decision 

making. The utility of conventional methods for forest species discrimination and mapping has 

been a serious challenge as they are costly, time consuming and impractical over larger areas 

(Henry et al. 2011, Adam et al. 2014, Dube et al. 2014). However, the emergence of remote 

sensing approaches offers quick and cost effective means of generating information necessary for 

accurate forest species discrimination and mapping. Nevertheless, the costs associated with high 

spatial resolution satellite sensors and the mixed pixel problem associated with broadband sensors 

has been a major limitation in remote sensing of forestry, particularly in resource scarce regions. 

Recently, the emergence of new and readily available multispectral sensors, with larger spatial 

coverage and improved radiometric, spatial and spectral resolutions offer unprecedented 

opportunities for local and regional forest species discrimination and mapping. Therefore, the 

current study sought to map forest species using cost effective multispectral remote sensing in 

Midlands region of KwaZulu-Natal Province, South Africa. This chapter provide analysis of the 

objectives highlighted in the introduction (Chapter 1). Conclusions and responses to research 

hypothesis are also articulated in this chapter. 

4.2 Objectives review 

4.2.1 The utility of freely available Landsat 8 Operational Land Imager (OLI)for forest species 

mapping 

Discriminating forest species using broadband multispectral data has been a challenge, particularly 

when mapping highly dense canopies, because of saturation and mixed pixels’ problems (Dube et 

el. 2015). Despite the fact that high spatial resolution sensors such as WorldView-2 and RapidEye 
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can overcome these challenges, acquisition of such datasets is costly and have limited spatial 

coverage, hence limiting regional assessment, especially in resource scarce regions. Therefore, the 

use of new and readily available multispectral data, with improved radiometric, spatial and spectral 

attributes offers a viable alternative for forest species discrimination and mapping. In this study, 

evidence on the capability of new generation freely available dataset such as Landsat 8 OLI to 

accurately discriminate and map forest species is presented (Chapter 2). To achieve the objective 

of this study, forest species predictor variables were acquired from Landsat 8 OLI and Pan-

sharpened Landsat 8 OLI image sets and analysed using partial least square discriminant analysis 

(PLS-DA) algorithm. These results were benchmarked on the outcome of the WorldView-2 image 

dataset. Despite the low spatial resolution (30 m), results demonstrated competence of new and 

readily available multispectral Landsat 8 OLI in discriminating and mapping species within the 

same genus (i.e. P.taedea and P.elliotii) and species of different genera (e.g. A.mearnsii, E.grandis 

and P.taedea). Contrary to expectation, the pan-sharpened Landsat 8 OLI did not improve forest 

species discrimination accuracies. This could be attributed to noise and distortion during pan-

sharpening process, which compromised the strength of measuring biophysical attributes, 

especially in dense canopies. This study acknowledges the approximate 10% difference between 

the performances of freely available image and commercial WorldView-2 image benchmark, 

which is within the acceptable range. Furthermore, the results achieved in this study were above 

the minimum accuracy threshold of 75% (Hossain 2016), hence the information presented by this 

study is reliable for effective decision making. Overall, Landsat 8 OLI offers a cheaper alternative 

which characterized by larger spatial coverage, that allows for regional forest species mapping and 

monitoring. However, pan-sharpening could still be used for general land cover classification.     

4.2.2 Examining the effectiveness of Sentinel 1 and 2 for commercial forest species mapping 

This study investigated the capability of newly launched freely available Sentinel 2 multispectral 

imagery with improved spatial and spectral resolutions, characterized by new unique band setting 

such as red-edge, for forest species discrimination and mapping. Moreover, additional benefits of 

Sentinel data such as Sentinel’s 1 Synthetic Aperture Radar (SAR) capabilities useful for 

complementing multispectral imagery was examined. Sentinel’s 1 SAR data characterized by high 

penetration ratio provides advance forest physical attributes such as height, texture and structural 

geometry, required for complementing multispectral imageries (i.e. Sentinel 2). Multispectral 

sensors are often restricted to only the top biochemical canopy characteristics due to low 
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penetration ratio. Therefore, combining Sentinel 1 and 2 properties using feature level fusion 

technique was critical for enhancing classification accuracy of forest species. With the application 

of linear discriminant analysis (LDA) algorithm, results in this chapter demonstrated the value of 

exploiting full capabilities of Sentinel data (e.g. Sentinel 2 and SAR) for improved forest species 

discrimination and mapping. Furthermore, larger swath width of these sensors offer a great 

opportunity for local and regional forest species discrimination and mapping.  

        

4.3 Conclusions 

The main aim of this study was to discriminate and map commercial forest species using cost 

effective multispectral remote sensing imagery. Based on the findings of this study, new generation 

multispectral satellite images demonstrated capabilities to accurately provide invaluable 

information for mapping and monitoring of commercial forest species at local and regional scales. 

Conclusions answering research hypothesis highlighted in chapter 1 were:   

 New and readily available Landsat 8 OLI multispectral image with improved sensor 

characteristics has the potential to provide accurate and reliable information for 

regional forest species monitoring and management  

The new and readily available Landsat 8 OLI multispectral imagery offer cost effective 

discrimination and mapping of commercial forest species at regional scale. The improved sensor 

characteristics such as signal-to-noise radiometric resolution of 12-bit dynamic range, larger swath 

width of 185 km and a 16-day temporal resolution makes Landsat 8 OLI imagery one of the most 

valuable sources of remotely sensed data for regional and local forest species management and 

monitoring. Furthermore, Landsat 8’s products are freely accessible, hence providing remarkable 

information for comprehensive decision making based on commercial forest management.  

 Sentinel’s 1 Synthetic Aperture Radar capabilities has the ability to successfully 

improve the classification potential of Sentinel 2 multispectral imagery in 

discriminating forest species 

The emergence of Sentinel 2 multispectral imagery, with better spatial and spectral properties, 

provides access to a new red-edge region useful for vegetation mapping and forest species 

discrimination. In this study, Sentinel’s Synthetic Aperture Radar (SAR) data was useful in 
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complementing capabilities of Sentinel 2 multispectral image for forest species discrimination and 

mapping. In addition to the sensors larger spatial coverage, combining S1 and S2 offers improved 

and invaluable information at no cost.  

 

4.4 The future 

Newly launched and readily available multispectral imageries offer new data sources critical for 

commercial forest species discrimination and mapping. The findings of this study present an 

insight on the utility of freely available multispectral sensors in forest species discrimination and 

mapping. However, for future research; 

 Freely available sensors need to be further tested, in conjunction with forest ancillary data 

(e.g. canopy volume, tree crown, height and age) and texture analysis for the improved 

regional forest species discrimination and mapping.  

 The capability of forthcoming sensors such as Sentinel-3 requires investigation for forest 

species mapping and monitoring. 
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