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ABSTRACT 

Clathrate hydrates formation in natural gas processing facilities or transportation pipelines may 

lead to process and/or safety hazards. On the other hand, a number of applications are suggested 

on the basis of promoting the gas hydrate formation. Some researchers have investigated 

separation and purification processes through gas hydrate crystallization technology. Some works 

report that the hydrate formation is applicable to the gas transportation and storage. Gas hydrate 

concept is also studied as a potential method for CO2 capture and/or sequestration. Water 

desalination/sweetening, and refrigeration and air conditioning systems are other proposed uses of 

hydrates phenomenon. In the realm of food processing and engineering, several studies have been 

done investigating the application of gas hydrate technology as an alternative to the conventional 

processes. Accurate knowledge of phase equilibria of clathrate hydrates is crucial for preventing 

or utilizing the hydrates.  

It is believed that energy production or extraction from different fossil fuels is responsible for 

considerable emissions of CO2, as an important greenhouse gas, into the atmosphere. Furthermore, 

CO2 removal from the streams of natural gas is important for enhancing the gaseous streams’ 

heating value. Employment of solvent-based processes and technologies for removing the CO2 is 

a widely employed approach in practical applications. Amine-based or pure amine solutions are 

the most common choice to remove the produced CO2 in numerous carbon capture systems. 

Further to the above, ionic liquids (ILs) are capable to be utilized to capture CO2 from industrial 

streams. Other potential solvent are sodium piperazine (PZ) and glycinate (SG) solutions. 

Equilibrium absorption of carbon dioxide in the aqueous phase is a key parameter in any solvent-

based CO2 capture process designing.  
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The captured CO2, then, can be injected into the hydrocarbon reservoirs. In addition to the fact 

that injection of CO2 into potential sources is one of the most reliable methodologies for enhanced 

hydrocarbon recovery, utilizing this process in conjunction with the CO2 capture systems mitigates 

the greenhouse effects of CO2. One of the most significant variables determining the success of 

CO2 injection is known to be the minimum miscibility pressure (MMP) of CO2-reservoir oil. 

This research study concerns implementation of computer-based methodologies called 

artificial neural networks (ANNs), classification and regression trees (CARTs)/AdaBoost-CART, 

adaptive neuro-fuzzy inference systems (ANFISs) and least squares support vector machines 

(LSSVMs) for modeling: (a) phase equilibria of clathrate hydrates in: 1- pure water, 2- aqueous 

solutions of salts and/or alcohols, and 3- ILs, (b) phase equilibria (equilibrium) of hydrates of 

methane in ILs; (c) equilibrium absorption of CO2 in amine-based solutions, ILs, PZ solutions, and 

SG solutions; and (d) MMP of CO2-reservoir oil. To this end, related experimental data have been 

gathered from the literature.  

Performing error analysis, the performance of the developed models in representing/ 

estimating the independent parameter has been assessed. For the studied hydrate systems, the 

developed ANFIS, LSSVM, ANN and AdaBoost-CART models show the average absolute 

relative deviation percent (AARD%) of 0.04-1.09, 0.09-1.01, 0.05-0.81, and 0.03-0.07, 

respectively. In the case of hydrate+ILs, error analysis of the ANFIS, ANN, LSSVM, and CART 

models showed 0.31, 0.15, 0.08, and 0.10 AARD% of the results from the corresponding 

experimental values. 

Employing the collected experimental data for carbon dioxide (CO2) absorption in amine-

based solutions, the presented models based on ANFIS, ANN, LSSVM, and AdaBoost-CART 

methods regenerated the targets with AARD%s between 2.06 and 3.69, 3.92 and 8.73, 4.95 and 
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6.52, and 0.51 and 2.76, respectively. For the investigated CO2+IL systems, the best results were 

obtained using CART method as the AARD% found to be 0.04. Amongst other developed models, 

i.e. ANN, ANFIS, and LSSVM, the LSSVM model provided better results (AARD%=17.17). The 

proposed AdaBoost-CART tool for the CO2+water+PZ system reproduced the targets with an 

AARD% of 0.93. On the other hand, LSSVM, ANN, and ANFIS models showed AARD% values 

equal to 16.23, 18.69, and 15.99, respectively. Considering the CO2+water+SG system, the 

proposed AdaBoost-CART tool correlated the targets with a low AARD% of 0.89. The developed 

ANN, ANFIS, and LSSVM showed AARD% of more than 13. For CO2-oil MMP, the proposed 

AdaBoost-CART model (AARD%=0.39) gives better estimations than the developed ANFIS 

(AARD%=1.63). These findings revealed the reliability and accuracy of the CART/AdaBoost-

CART methodology over other intelligent modeling tools including ANN, ANFIS, and LSSVM.   
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1. Introduction 

1.1. Machine Learning  

Until now, numerous studies have been performed on the applications of data mining and 

machine learning methodologies in chemical engineering. The accuracy of the results from smart 

models are normally more than the conventional models (like thermodynamic or empirical) which 

would be an asset for research and engineering activities. 

Some of the widely utilized approaches in engineering fields are ANNs, ANFISs, decision 

trees (DTs) and SVMs. ANN is a potent machine designed on the foundation of human brain’s 

nervous system [1-4] that can be used for various problems [5-8]. Information regarding the ANNs 

are given in the literature [9-17]. The ANFIS methodology was formulated by Jang [18]. This 

technique was developed using the concept of ANNs in combination with the fuzzy inference 

system (FIS) with the aim of overcoming the shortcomings of these two methods [19]. In ANFIS, 

the input(s)-output(s) connection is defined by employing the Takagi and Sugeno′s type fuzzy 

rules, i.e. “if-then” [20, 21].  

The SVM is another powerful strategy presented based on the machine learning foundations 

[22-29]. As an advantage over methods like ANN and ANFIS, the SVM model has acceptable 

generalization performance, and fewer adjustable/tunable parameters [26, 30]. Suykens  and 

Vandewalle [22] presented a modified version of the standard SVM called least  square  SVM  

(LSSVM) in order to improve/reduce the  model complexity. 

DTs are sets of procedures that can be employed for the regression problems and/or 

classification issues [31]. The DT algorithm is a non-parametric methodology [32, 33]. In 



2 
 

regression analysis, the aim of employing the DTs is presenting a tool to estimate and represent a 

specified target through learning some decision rules that are simple [34]. The required rules are 

obtained from the inputs, i.e. independent parameters, of the desired databank for modeling. The 

DT-based procedure is straightforward and simple to understand: in the root node, the introduced 

data points into the DT is separated into smaller sub-groups employing the first depicted rule. 

These produced smaller groups are internal nodes. These nodes, i.e. internal nodes, could be split 

into smaller categories if needed.  

 

1.2. Study Objectives  

This study concerns applying innovative machine learning methodologies including ANN, 

ANFIS, LSSVM, and Decision Tree for modeling gas hydrate equilibrium dissociation conditions, 

solvent-based CO2 capture processes, and CO2-crude oil minimum miscibility pressure systems. 

To achieve the research goals, extensive experimental databases have been collected from 

previously published works that are available in open literature. 

The selected systems for conducting the modeling on the basis of machine learning approaches, 

i.e. ANN, ANFIS, LSSVM, and Decision Tree, are: 

1- Equilibrium dissociation conditions of gas hydrates in: 1- pure water, 2- salt(s) and/or 

alcohol(s) aqueous solutions; 

2- Equilibrium dissociation conditions of methane hydrates in ILs; 

3- CO2 equilibrium absorption in various amine aqueous solutions including diethanolamine 

(DEA), monoethanolamine (MEA), and triethanolamine (TEA); 

4- CO2 equilibrium absorption in ILs aqueous solution; 
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5- CO2 equilibrium absorption in piperazine (PZ) aqueous solution; 

6- CO2 equilibrium absorption in sodium glycinate (SG)aqueous solution; 

7- Minimum miscibility pressure (MMP) systems of carbon dioxide-reservoir oil. 

After the development of the predictive tools for the aforementioned systems using the 

collected experimental data bank, an error analysis is performed to evaluate the capability of the 

presented tools in predicting/representing the target values. To this end, several statistical 

parameters are utilized. The best obtained model for each system is determined. Some of the 

developed models in this research were compared to the existing tools in the literature. Due to the 

unavailability of the codes of the published models in the literature, comparative study was not 

performed. 

The rest of this work is arranged as follows: first of all, a literature review is presented. Later, 

a detained background regarding the aforesaid systems is provided in Chapter 2. Next, 

computational algorithms of the machine learning approaches (ANN, ANFIS, LSSVM, and 

Decision Tree) will be presented in Chapter 3. Chapter 4 gives the information the used data 

points for hydrate+water/ice+salt(s)/alcohol(s), hydrate+water+ionic liquid, CO2+water+amine, 

CO2+water+ionic liquid, CO2+water+piperazine, CO2+water+sodium glycinate, and the system of 

CO2-oil minimum miscibility pressure. In Chapter 5, the employed statistical parameters for 

evaluation of the developed models will be introduced. Moreover, this chapter gives the obtained 

results from modeling processes as well as a discussion of the presented models for the application 

of interest. Finally, Chapter 6 summarizes the key findings of this study. 

Further to the above, in continuation of our previous work [35], the application of the 

proposed semi-theoretical approach for modeling the equilibrium conditions of CH4 hydrate in the 

presence of a salt/alcohol containing solutions is extended to the hydrates of CH4 and CO2 in 
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aqueous solutions of sugars. Moreover, phase equilibria of CO2 hydrate in tomato and orange 

juices were modelled using thermodynamic and empirical approaches. To achieve the research 

goals, the experimental liquid-hydrate-vapor (L-H-V) phase equilibrium data of 

CH4+xylose+water, CH4+xylitol+water, CH4+glucose+water, CO2+sucrose+water, 

CO2+glucose+water, CO2+fructose+water, CO2+Orange Juice, and CO2+Tomato Juice hydrate 

systems were gathered from the literature. Moreover, a new empirical tool was presented for 

accurate estimation of the CO2 hydrate formation/dissociation temperature in pure water. The 

detailed information and results regarding the modeling have been reported in Appendix A.  
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2. Literature review  

2.1. Clathrate hydrates 

2.1.1. An overview of gas hydrate  

Clathrate hydrates are formed from gas molecules that are entrapped into cages of water 

molecules [36]. Three structures are known to exist for hydrates: 1- structure I (sI); 2- structure II 

(sII); and 3- structure H (sH). Fig. 2.1 demonstrates the hydrates structures. 

 

Fig. 2.1: Clathrate hydrate structures [36] 

Commonly, the sI and sII can form in petroleum industry [37]. Since hydrate formation in 

petroleum-related pipelines and/or equipment may results in flow assurance concerns, it is 

important to prevent this occurrence by using proper method(s)/technique(s) [38, 39]. Some 
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researchers proposed the application of hydrates for desalination of seawater [40, 41]. There are 

also published works investigated the ability of hydrates as a method for transformation and/or 

storage of natural gas [42]. Other positive applications of hydrate are separation processes [43], 

future potential energy sources [44, 45] and CO2 storage/sequestration [46, 47]. 

 

2.1.2. Methods for predicting hydrate dissociation conditions 

There are various methodologies in the literature for calculation of clathrate hydrates 

dissociation or formation conditions. Katz and coworkers [48-50] presented a set of vapor-solid 

equilibrium constants ( vsK ).  This approach is developed considering the N2 a non-hydrate former. 

The other assumption was that ethane has same vsK value as n-C4 has. Nowadays we know that 

these assumptions are incorrect [51]. 

Authors like Makogon [52] and Holder et al. [53] presented empirical tools for some pure 

systems. Katz [54] developed a chart, known as gas gravity graph, for estimating the phase 

equilibria of sweet natural gas hydrates. Applying this method may results in large errors in some 

conditions [55]. Another chart method was presented by Baillie and Wichert [56] for sour gases. 

In 2013, a semi-theoretical model was proposed by Ghiasi and Mohammadi [57]. This 

general model, then was specified to be applicable for calculating the hydrate forming conditions 

of CH4 in alcohol(s) or salt(s) as thermodynamic inhibitors. The more sophisticated approach is 

based on statistical thermodynamics [58]. This approach has been modified by several researchers 

[59] [60] [61] [62] [63]. In addition to these improvements, this theory is applied for estimation of 

the natural gas hydrate forming conditions in thermodynamic inhibitors [38, 64-69].  
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Further to the above-mentioned methods, some authors suggested to apply the 

computational intelligences like ANFS [70], ANN [71] [72] and LSSVM [73] for predicting the 

hydrate forming or dissociating conditions. In another study [74], the performance of some 

thermodynamic models is compared to the capabilities of ANN and ANFIS methods in predicting 

the dissociation pressure of hydrates.   

 

2.1.3. Modeling studies on hydrate+IL systems 

Using the heterosegmented statistical associating fluid theory (SAFT), Jiang and Adidharma 

[75] modelled the thermodynamic properties of the imidazolium ILs. Furthermore, they predicted 

the formation (dissociation) conditions of CH4 hydrate in imidazolium ILs employing the 

heterosegmented SAFT in conjunction with the solid solution theory introduced by van der Waals 

and Platteeuw (vdWP) [58]. In another work, Avula et al. [58] developed a model on the basis of 

theory of vdWP, Peng and Robinson equation of state (PR-EOS) [76], and the Pitzer–Mayorga–

Zavitsas-hydration model for the phase equilibria of methane hydrate in 21 ILs. Keshavarz et al. 

[77] utilized the vdWP model, PR-EOS, and NRTL model to predict the dissociation conditions 

of methane hydrate in aqueous solution of 1-butyl-3-methylimidazolium dicyanamide,1-butyl-3-

methylimidazolium tetrafluoroborate and tetraethyl-ammonium chloride. A similar work in done 

by Tumba et al. [78] for modeling the thermodynamic stability conditions of CH4 and CO2 hydrates 

in tributylmethylphosphonium methylsulfate. 

Partoon et al. [79] employed the Maddox et al. [80] tool for non-electrolyte inhibitors for 

modeling the phase boundary of methane hydrate formation in ILs. Zare et al. [81] employed the 

electrolyte cubic square-well (eCSW) EOS and the vdWP model to estimate the equilibrium 
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pressure of methane hydrate dissociation in [BMIM][BF4], 1-(2-hydroxyethyl)-3-

methylimidazolium tetrafluoroborate ([OH-EMIM][BF4]), 1-buthyl-3-methylimidazolium methyl 

sulfate ([BMIM][MeSO4]), 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIM][EtSO4]), and 1-

ethyl-3-methylimidazolium hydrogen sulfate ([EMIM][HSO4]). There are far more methods 

which is not within the scope of this work to mention. 

In addition to the thermodynamic modeling, Nazari et al. [82] resolved a five-step mechanism 

to model the kinetics of formation of the methane hydrate in ILs. In 2016, Rasoolzadeh et al. [83] 

studied the induction time of methane hydrate formation in three ILs including [BMIM][BF4], 

[BMIM][DCA], and TEACL.  

Using the Chen anf Gue [84] model and Patel-Teja EOS, Liao et al. [85] modelled the phase 

equilibria of semi-clathrate hydrate of gas mixtures in tetra-n-butyl ammonium bromide (TBAB) 

solution. In the case of semi-clathrates of methane and carbon dioxide, Shi and Liang [86] 

proposed a thermodynamic tool based on the vdWP model, PR-EOS, and e-NRTL activity model 

for studying the effects of TBAB, TBAC, and TBAF on the staibility conditions. In another study, 

Verrett et al. [87] used the vdWP model, Trebble–Bishnoi EOS, and e-NRTL activity model to 

investigate the semi-clathrate systems of carbon dioxide and methane in TBAB. 

In 2015, Baghban et al. [88] developed predictive mathematical models on the basis of SVM 

method to predict the dissociation conditions of semi-clathrate hydrates of methane, carbon 

dioxide, nitrogen, hydrogen, argon, xenon, and hydrogen sulfide in TBAB. In another study,  

thermodynamic modeling of phase equilibria of semi-clathrate hydrates of the methane, carbon 

dioxide or nitrogen+ TBAB was presented by Eslamimanesh et al.[89]. A similar work was done 

by Paricaud [90]. 
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2.2. CO2 Capture 

2.2.1. Energy and environment  

According to a projection by U.S. Information Administration [91], energy consumption  

of the world will rise in future. Fig. 2.2 shows the total consumed energy amounts (from 1990 to 

2010) as well as the projected world total energy demand in the next decades. 
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Fig. 2.2:  Consumed energy and the world total energy demand (data from Ref. [91]) 

 

Among the available primary energy sources, i.e. nuclear energy, fossil energy, and 

renewable energy [92], the fossil fuels play a crucial role in providing the energy demand of world. 

The outlook for energy by ExxonMobil Corp. [93] suggests that the natural gas (NG) is the fastest-

growing fuel through 2040. This finding is in agreement with other studies [91, 94-96]. By fuel 
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type, Fig. 2.3 shows the total energy consumption. NG is the cleanest, safest, and most effective 

fossil fuel [96-98]. This is owing to the fact that NG’s CO2 emission factor is approximately 41% 

lower than the emission factors of other fossil fuels when combusted [99]. 
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Fig. 2.3: Total consumption of energy by fuel type (data from Ref. [91]) 

 

As given in Table 2.1, the main constituent of a typical NG is CH4. Approximately, forty 

percent of the identified NG reservoirs have CO2 and H2S, known as acid gases [100]. 16 % of 

these reservoirs are proven to be substantially sour with an acid gas content of more than twenty 

percent [101, 102]. 
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Table 2.1: Components of a typical NG [103] 

Hydrocarbons Non-hydrocarbons 

Component Concentration, mol% Component Concentration, mol% 

C1 70-98 N2 Trace-15 

C2 1-10 CO2 Trace-20 

C3 Trace-5 H2S Trace-20 

C4 Trace-2 He Up to 5 (not usually) 

C5 Trace-1   

C6 Trace-0.5   

C7 and + Trace   

 

2.2.2. CO2 removal: reasons  

Among the available non-hydrocarbon components in NG, CO2 is considered as an 

environment damaging substance. This is owing to the intrinsic properties of CO2. For example, 

dissolving CO2 in water contributes to producing an acidic solution known as carbonic acid [104, 

105]. Consequently, during transportation of NG having CO2, corrosion problems occur in the 

pipelines and other equipment [106-109]. As a result, the operation costs will increase [110]. 

Further to the above, separation of CO2 results in progress in transportability of NG and 

calorific value as well [111]. Moreover, decreasing the volume of NG by capturing the CO2 

reduces the size of the compressor station and also the number of compressors used for 

transmission of NG. This would be mentioned that existence of CO2 in gas streams might leads to 

crystallization of CO2 within liquefaction processes. 
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CO2 is one of the main greenhouse gases. Hence, from environmental point of view, it is of 

significant importance to limit the CO2 emissions. Indeed, CO2 is believed to be the most 

prominent greenhouse gas [112]. It is responsible for approximately sixty percent of the 

greenhouse gases effect on the global climate [113, 114]. Generally, maximum allowable 

concentration of CO2 in sweet (or sale) gas is 4 ppm [115-118]. For selecting an appropriate 

process for removal of acid gases, several factors should be considered [108, 116, 119]. A good 

approach to handle the captured carbon dioxide from NG is acid gas disposal in proper geological 

sites [120-127].  

 

2.2.3. CO2 removal processes 

Several technologies and processes including permeation, cryogenic fractionation, absorption 

and adsorption cab be utilized for CO2 capture from flue gas or NG streams [128-130]. 

Furthermore, some hybrid separation approaches are presented in the literature [106, 131-134]. In 

addition to the main and hybrid methods, acid gas separation can be done employing the hydrate-

based process/technology [135-140]. In this method, the H2S or CO2 are separated from crystals 

of solid clathrate hydrate physically via adsorption. 

Cryogenic fractionation includes the compression of the gas stream, and cooling it to low 

temperature (allowing CO2 removal by distillation) [141]. As opposed to the available methods for  

recovering the CO2, cryogenic fractionation generates CO2 at high pressure [142]. This technology 

is economic just for NGs with high CO2 content [141, 143]; for example, the Natuna gas field with 

more than seventy percent CO2 [144]. Increasing the energy demand contributes to the gas (energy) 
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production from such fields that were not considered attractive, form economic point of view, until 

now [145]. A cryogenic-based method is developed for such cases [146].  

Permeation process for CO2 capture is performed using different types of membranes. Unlike 

N2, C1 and other paraffin hydrocarbons with low permeability coefficients, H2S and CO2 are 

highly permeable. The membrane removes the issues of utilizing the packed columns. 

Comprehensive details regarding the permeation process as well as membrane categories are 

available in the literature [147-154].  

Briefly, the adsorption is a physical-chemical method wherein the H2S or CO2 is captured form 

the gas stream by using different solid adsorbents and/or reaction with some materials on a solid 

surface [108, 116, 155]. Commonly, the solid technologies are proper only for gases having low 

to medium quantities of mercaptans or hydrogen sulfide [108, 130]. Acid gas separation utilizing 

the iron oxide process and molecular sieves are chemical adsorption and physical adsorption, 

respectively.  

Solid methodologies are just suitable to remove small amounts of impurities. However, the 

absorption processes, both the physical and chemical ones, can be utilized to separate substantial 

amounts of acid gases. Amongst such  available physical solvents as n-methyl-2-pyrrolidone, 

dimethyl ether of polyethylene glycol and methanol,  the main advantage of methanol-base method 

is its ability to separate the COS. Furthermore, methanol has low selectivity for CO2 over H2S 

[156]. Among the aforesaid solvents, the n-methyl-2-pyrrolidone has the topmost selectivity for 

hydrogen sulfide over CO2 [142]. Since water and hydrocarbons could be solved in these physical 

solvents, the selectivity of the absorption processes to the acid gases over the hydrocarbons should 

be reached by controlling the polyglyme distribution of the solvent, water content as well as 

operating conditions [157].  



14 
 

In the field of CO2 removal from NG and/or flue gas, the well-known widely employed 

method, that is commercialized, is chemical absorption process using alkanolamine (or 

alkanolamine-based) solutions [158-162]. In a respective order, the methyldiethanolamine 

(MDEA), diethanolamine (DEA) and monoethanolamine (MEA) are tertiary, secondary and 

primary amines. Triethanolamine (TEA) is another common tertiary amine. [163, 164]. The 

properties of amine solutions and related information are documented in the literature [108]. 

Further to these solvents, application of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ), 4-

(diethylamino)-2-butanol (DEAB), 2-(Diethylamino) ethanol (DEEA) and triisopropanolamine 

(TIPA) to the acid gas removal is also investigated [165-169]. Some published studies investigated 

the potential of CO2 separation employing the amines mixtures [170-173]. Mass transfer 

mechanisms, chemical reaction kinetics and process chemistry of the amine-based absorption 

methodology is available in the literature [108, 115, 118, 174-180]. 

Some researchers studied the capability of the sodium glycinate (SG) in CO2 removal has 

[181-186]. Based on a research study [184], it is revealed that aqueous solution of SG has a 

applicable potential to be used as an absorbent for CO2. Another potential compound for CO2 

capture is known to be the 1,4-diazacyclohexane (PZ) solutions. Moreover, several hybrid solvents 

are suggested to unify the concurrent advantages of physical and chemical solvents. 

 

2.2.4. Modeling studies on CO2 capture  

Such thermodynamic-based tools as Deshmukh- Mather model [187], electrolyte NRTL model 

[188], modified UNIQUAC model [189], and Kent-Eisenberg model [190] are developed to 

analyse and model the carbon dioxide loading capacity of various solvents at different conditions.  
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However, these types of approaches have some limitations in terms of the accuracy and range of 

applicability as well [191]. As an alternative, data mining and machine learning approaches like 

ANFIS, SVM and ANN can be successfully utilized to represent/predict the targets in a specific 

process. Published works in the literature affirms that our claim is completely true [71, 72, 192-

199]. For amine-based process, Koolivand Salooki et al. [200] presented a neural network tool 

employing back-propagation (BP) learning algorithm to estimate the reflux amount as well as the 

outlet down temperature of contactor. Similarly, Saghatoleslami et al. [201] used neural-based 

genetic algorithm. In a work by Ghiasi and Mohammadi [107], the feasibility and applicability of 

both standard back-propagation neural network and LSSVM to estimate the optimum circulation 

rate of MEA in amine treating unit have been evaluated. In 2013 and for amine regenerator tower, 

a comparison between the abilities of the SVM and ANN in estimating the reflux flow-rate and 

bottom stream temperature was performed by Adib et al. [202]. 

  In a work by Sipöcz et al. [203], the feed forward ANN was used to model the MEA-

based processes (under steady conditions) for removal of CO2 from the power plant’s flue gas. 

Zhou et al. [204] employed the ANN, sensitivity analysis along with ANFIS for modeling the post 

combustion process of a amine-based CO2 capture. Daneshvar et al. [167] proposed a neural 

network modeling for representing the experimental amounts of CO2 solubility in TIPA, 

TIPA+MEA, and MEA aqueous solutions. More studies can be found in the literature [205-207] 

[208-212]. 
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2.3. CO2-Oil Minimum Miscibility Pressure (MMP) 

2.3.1. CO2-Oil MMP 

As a tertiary recovery method, injecting the gases like CO2 into mature reservoir fields results 

in increasing the amount of hydrocarbon recovery [213]. Depending on the conditions of the 

reservoir like composition of the reservoir’s oil, pressure, and temperature as well as economic 

considerations, the type of injection gas could be determined. In addition to carbon dioxide, such 

gases as hydrocarbon mixtures, flue gases, methane, and nitrogen can be utilized for enhancing the 

oil recovery from hydrocarbon reservoirs. 

Since the 1970s, CO2 injection into the reservoirs for enhancing the recovery of oil has been 

recognized as a potential operation [214]. This is generally due to the fact that amongst the 

available gases that can be employed for injection as a technique for enhanced oil recovery (EOR), 

utilization of CO2 has several advantages over other gases. It is well-known that CO2 emission into 

the atmosphere is a significant cause of the greenhouse gas effect. As a method of CO2 utilization, 

the produced CO2 from resources like natural gas streams, flue gases, and refinery gases could be 

injected/sequestrated into saline aquifers, gas/oil reservoirs, or coalbeds. As a result, both the 

economic and environmental goals will be satisfied. Moreover, using CO2 compared to other gases 

will cost less and has higher displacement efficiency [215, 216]. The recovery performance of CO2 

injection processes for EOR are examined by several researchers [217-221]. These studies cover 

both the field scale and laboratory scale investigations. 

Considering operational and economic standpoints, production of pure CO2 gas streams in gas 

refineries or power plants is not recommended. Commonly, the CO2 streams from available 

resources contain amounts of hydrocarbons, nitrogen, and/or hydrogen sulfide. Since the influence 
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of a drive gas in EOR processes mainly depends on its composition, knowing the accurate 

composition of an impure CO2 stream is crucial for designing optimum CO2-EOR processes. 

Such techniques as immiscible flooding, miscible flooding, near miscible flooding, CO2 huff-

and-puff, and carbonated water flooding are proposed for EOR processes employing CO2 [222-

225]. In terms of the capability for CO2 sequestration as well as the oil recovery, it is believed that 

the most effective process is miscible CO2 flooding [222, 226]. Because of the fact that the 

efficiency of displacement of the crude oil by CO2 is highly dependent to pressure, to identify the 

mutual miscibility between the injected CO2 and the crude oil, a parameter namely minimum 

miscibility pressure (MMP) is used. 

By definition, MMP is the threshold pressure where flood changes from multiphase flow to 

single phase flow at reservoir condition. To achieve the highest recovery through CO2-EOR 

miscible process, the hydrocarbon reservoir must be in operation at or above the CO2-oil MMP. 

Hence, MMP plays a vital role in CO2-based miscible EOR processes. Inaccurate 

prediction/calculation of MMP might results in significant problems. 

 

2.3.2. Determination of MMP 

Experimental, computational, and empirical approaches can be employed for measuring/ 

predicting the MMP. The experimental methods are designed for directly measuring the MMP; in 

contrast, the computational/empirical approaches are useful for predicting/ calculating the values 

of MMP. 
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Several experimental procedures have been proposed to measure the CO2-reservoir oil MMP. 

Slim tube test, rising bubble method, and vanishing interfacial tension (VIT) method are classified 

as experimental methodologies for MMP determination. For a given reservoir fluid and the 

injection gas, slim-tube experiments are known to be the standard experimental procedure for 

MMP or minimum miscibility concentration (MMC) determination [227, 228]. Since the real 

fluids are used in slim-tube experiments, the reliability of these experiments is generally accepted. 

In this method, the complex interactions between phase behavior and flow will be captured in a 

porous medium. It should be noticed that organization of these type of experiments are usually 

expensive. Furthermore, slim-tube method is slow and time-consuming. Because of this, this 

approach is not often used for obtaining MMPs in practice. 

As an alternative to the slim tube experiments, Christiansen and Hains [229] presented the 

experiment of rising bubble. This approach is a relatively rapid method for MMP determination. 

Using rising bubble apparatus (RBA), the gas is introduced via a needle at the tube’s bottom; 

consequently, miscibility development between oil and gas bubble can be observed. Finally, MMP 

for oil/gas pair could be measured on the basis of the rising gas bubble’s shape [229]. Although 

utilization of RBA is cheap and quick as compared to the slim tube experiments, the rising bubble 

experiment has major limitations. For example, this method is unreliable in estimating the MMP 

for a condensing drive [230]. 

On the basis of measurement of the interfacial tension between the injected gas and the crude 

oil at a fixed temperature and at various pressures, Rao [231] developed VIT method to determine 

MMP. Similar to the RBA, VIT is also a visualization technique for defining MMP. In 2006, 

Ayirala and Rao [232] proposed a modified version of the VIT method. In addition to the aforesaid 

techniques, mixing cell (multiple-contact) experiment [233] and swelling/extraction test [234] are 
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other measurement methods.  

There are three different frameworks for calculation/prediction of MMP: computational 

methods that utilize phase behavior computations on the basis of an EOS and computer 

simulations; empirical correlations on the basis of experimental results; and intelligent/smart 

models. Generally, three computational methods including analytical calculations, slim-tube 

compositional simulation, and multi-contact mixing cell are available for the application of interest 

[233]. In analytical approaches, the method of characteristics (MOC) is employed [235, 236]. 

MMP prediction by means of methods of mixing cell (cell-to-cell) is based on the repeated contact 

between oil and gas. In slim tube simulation, one-dimensional flow equation is solved employing 

the adjusted cubic EOS for the gas and oil [233]. 

There are several empirical approaches for predicting CO2–oil MMP. For example, 

correlations developed by Alston et al. [237], Emeral and Sarma [238] (corrected by Sebastian et 

al. [239]), Emeral and Sarma [238] (corrected by Alston et al. [237]), Yelling and Metcalfe [240]  

(corrected by Sebastian et al. [239]), and Yelling and Metcalfe [240] (corrected by Alston et al. 

[237]) are empirical models for estimation of the MMP. Li et al. [241] proposed another model in 

2012 for MMP prediction. In 2017, Valluri et al. [242] presented a new correlation to predict CO2-

oil MMP. 

In 2013, Shokrollahi et al. [195] employed the method of LSSVM for predicting the MMP of 

CO2-reservoir oil. In another work, Tatar et al. [243] employed radial basis function type ANN to 

estimate CO2-reservoir oil MMP. In 2015, Kamari et al. [244] presented an equation to predict the 

CO2-MMP in live oil systems. This equation is developed on the basis of gene expression 

programming (GEP). Recently, Karkevandi-Talkhooncheh et al. [245] presented several ANFIS 

models for prediction of MMP of CO2-oil system. They optimized the created ANFIS models 
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using particle swarm optimization (PSO), back-propagation, ant colony optimization, genetic 

algorithm, and differential evolution. Based on the results, the ANFIS model optimized with the 

PSO has the highest accuracy in predicting the target values. 
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3. Modeling tools  

3.1. ANN 

ANN attains its name from neuron that is a simple processing unit in the human brain. These 

artificial neurons can be mutually connected in a network such that some signals conveyed 

between them [1-4]. In 1943, McCulloch and Pitts [10] generated the first “artificial neuron”. Fig. 

3.1 represents a schematic of an artificial neuron. The demonstrated neuron m in Fig. 3.1 can be 

mathematically represented as follows: 

 



n

i

mimim bxwr
1   …………………………………………………...…………………….. (3.1) 

 mm rFy 
  …………………………………………………...………………….………….. (3.2) 

in which x1, x2,…,xn indicate the inpus; wm1, wm2, …, wmn are the weights; rm shows the linear 

combiner output; bm is the bias term; f indicates activation function; and ym is the neuron’s output 

signal.  

 

Fig. 3.1: A typical model representing an artificial neuron  
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This study employs the MLPs as the most popular feed-forward networks used in chemical, 

petroleum and natural gas processes [246, 247]. To train the MLPs and find the synaptic weights, 

the BP learning algorithm trained by the Levenberg-Marquardt (LM) technique [248-251] was 

used. 

 

3.2. LSSVM 

based on statistical learning theory, Vapnik [252-254] developed a supervised learning 

algorithm namely SVM. After the introduction of SVMs, they became an attractive tools for 

different analyses [255-264]. Detailed information regarding the SVMs can be found in the 

literature [252, 254, 265-269]. This work employs the LSSVM algorithm. LSSVM is a 

reformulation to conventional SVM [266, 270]. Mathematical background of the LSSVM is given 

in our published works . 

In order to obtain the hyper-parameters of the LSSVM algorithm, i.e. regularization constant (

 ) and kernel bandwidth ( 2 ), the optimization algorithm of Coupled Simulating Annealing 

(CSA) was used [271]. Simplified flowchart of LSSVM model optimized by CSA algorithm is 

demonstrated in Fig. 3.3. Fig 3.4 shows schematic of the LSSVM algorithm. 
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Fig. 3.3: Simplified flowchart of LSSVM model optimized by CSA algorithm 

 

 

Fig. 3.4: Schematic of the LSSVM algorithm 
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3.3. ANFIS 

Jang [272] introduced the ANFIS methodology by combining the FIS and ANN algorithms.  

As depicted in Fig. 3.5, the ANFIS has five different layers. In a respective order, the input layer, 

i.e. layer 0, and the output layer, i.e. layer 5 indicate the inputs and the output. In the hidden layers 

of this structure, there are different adjustable and fixed nodes. These nodes are functioning as 

rules and membership functions (MFs) as well. 

  

 

Fig. 3.5: Typical structure of ANFIS for a two-input and one output problem 

 

To train the ANFIS model and find the MF parameters, a hybrid learning algorithm was used 

[272]. The suggested training steps for the Hybrid-ANFIS method is depicted in Fig.3.6. 
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Fig. 3.6: Simplified flowchart of a typical Hybrid-ANFIS model  

 

3.4. Decision Tree & Boosting 

In machine learning, boosting algorithms can be employed for converting weak 

regressors/classifiers to strong ones [273]. Indeed, boosting algorithm encompasses two or more 

models to boost the precision of prediction or classification. Among the available boosting 

algorithms in the literature, the AdaBoost is a widely utilized method. To implement the method 

of AdaBoost, the information about the functioning of the weak learners is not required in advance 

[274]. AdaBoost.M1, and AdaBoost.R2, AdaBoost.M2 and AdaBoost.R, are different types of the 
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AdaBoost method. This work employs the AdaBoost.R2 [275], a boosting method for regression, 

for developing an ensemble method to predict the target values.   

Initially, a weight, wi, is assigned to each training data point. For each training sample, the 

following equation represents the absolute error: 

  iiRi yxfe  2     ……………………………………….………...…………………….. (3.3)                                                     

where ie ,  iR xf 2  and iy  indicate the absolute error, base regressor prediction, and target, 

respectively. 

To adjust the weights after each boosting iteration, the loss function is used. By considering E 

as the maximum value of absolute errors, three different loss functions namely linear, square, and 

exponential can be calculated according to the following expressions in a respective order: 

E

e
L i

i     ……………………………………….………...………………………………….. (3.4)                                                                        

2

2

E

e
L i

i     ……………………………………….………...………………..……………….. (3.5)                                                                      











E

e
L i

i exp1     ……………………………………….………...…….……………….. (3.6)                                                    

Finally, the average loss can be calculated as bellows: 

 ii pLL ……………………………………….………...………………………….….. (3.7) 

in which pi is the probability that data point i is in the training set.  
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 In this study, the CART model was selected as the weak learner. In other words, the 

ensemble method was developed using the AdaBoost algorithm in conjunction with the CART 

method. CART is a non-parametric learning algorithm of decision trees that generates either 

regression or classification models. This method was presented by Breiman et al. [34]. More 

information regarding CART method can be found in our previous works [276, 277]. 
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4. Experimental data 

4.1. Hydrate+Water/Ice+Salt/Alcohol Systems 

To develop smart tools able to model the dissociation/formation conditions of different 

clathrate hydrates in pure water or inhibitors, an extensive databank containing more than 3500 

experimental data points at (solid/ice/vapor) and (solid/liquid/vapor) equilibrium of several 

systems were gathered from the open literature published between 1940 and 2013 [36, 38, 49, 66, 

67, 94, 278-360]. 

This assortment contains phase equilibria of several gas mixtures, nitrogen, hydrogen 

sulfide, methane, ethane, butane and propane in water and solutions of alcohols and/or salts. 

Detailed information are summarized in Tables 4.1 to 4.5.  

 

Table 4.1: Additives in C1 hydrate system 

Additive Mean (wt%) Max (wt%) 

NaCl 2.28 22.03 

KCl 0.60 15 

CaCl2 1.20 25.74 

MgCl2 0.46 15 

Methanol 5.48 85 

Ethylene glycol 3.30 70 

Diethylene glycol 0.67 50 

Triethylene glycol 1.18 50 

1-propanol 0.61 20 

2-propanol 0.60 20 
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Table 4.2: Additives in C2 hydrate system 

Additive Mean (wt%) Max (wt%) 

NaCl 0.51 20 

KCl 0.40 10 

CaCl2 0.47 15 

Methanol 5.11 50 

Triethylene glycol 1.70 40 

 

Table 4.3: Additives in C3 hydrate system 

Additive Mean (wt%) Max (wt%) 

NaCl 2.46 20.03 

KCl 1.86 20 

CaCl2 1.53 15.2 

Methanol 2.08 50 

 

Table 4.4: Additives in N2 hydrate system 

Additive Mean (wt%) Max (wt%) 

NaCl 1.76 26.4 

KCl 1.49 36 

Methanol 12.52 50 

Ethylene glycol 0.52 15 

 

Table 4.5: Additives in H2S hydrate system 

Additive Mean (wt%) Max (wt%) 

NaCl 0.66 20.2 

KCl 0.16 15.01 

CaCl2 0.48 33 

MgCl2 0.15 10 

Methanol 2.80 60 

Ethylene glycol 1.23 70 
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4.2. Hydrate+IL Systems 

The equilibrium data of methane hydrate dissociation in the presence of 32 ILs are gathered 

from Ref. [77-79, 81, 361-369]. details regarding the collected database are given in Table 4.6.  

Table 4.6: information regarding the collected databank for methane hydrate in ILs 

IL Temperature range (K) Pressure range (MPa) Concentration (wt%) 

[3C4C1P][MeSO4] 273.3-287.1 4.09-14.77 26.11, 50.07 

[BMIM][Ac] 279.4-286.8 3.49-13.04 10 

[BMIM][BF4] 272.9-287.1 2.58-11.50 10,15,20 

[BMIM][Br] 285.9-291.6 10.57-20.41 10 

[BMIM][Cl] 286.0-291.2 10.67-20.67 10 

[BMIM][DCA] 272.5-281.4 2.51-6.26 10 

[BMIM][I] 286.2-291.5 10.52-20.45 10 

[BMIM][MeSO4] 284.7-287.1 9.39-12.16 10 

[EMIM][Ac] 274.5-286.6 3.51-13.08 10 

[EMIM][Br] 284.7-290.8 10.10-20.20 10,20 

[EMIM][Cl] 272.6-298.0 3.35-35.00 0.1-40.0 

[EMIM][ClO4] 275.3-287.6 3.54-13.21 10 

[EMIM][EtSO4] 284.6-287.4 8.67-11.65 8,10 

[EMIM][HSO4] 281.9-287.2 7.07-11.95 10 

[EMIM][I] 276.7-288.0 3.99-14.12 10 

[EMIM][NO3] 269.2-289.7 3.08-16.12 1.0-40.0 

[EMIM][SCN] 275.2-287.5 3.52-13.15 10 

[EMMOR][BF4] 276.9-282.2 3.99-7.06 10 

[EMMOR][Br] 277.4-282.2 4.13-6.98 10 

[EMPIP][BF4] 272.6-280.8 3.03-6.83 10 

[EMPIP][Br] 274.6-282.0 3.13-7.02 10 

[MMIM][I] 276.7-288.0 4.00-14.29 10 

[N1,1,1,1][Cl] 276.7-288.0 4.66-16.27 10 

[N1,1,1,eOH][Cl] 276.7-288.0 4.11-15.01 10 

[N2,2,2,2][Cl] 272.1-280.7 2.48-5.99 10 

[OH-C2MIM][Cl] 276.6-288.0 4.18-15.31 0.1-10 

[OH-EMIM][BF4] 283.4-286.7 9.34-11.50 10, 20 

[OH-EMIM][Br] 273.6-285.5 3.60-9.60 5-25 

[OH-EMIM][Cl] 271.9-285.0 3.60-9.60 5-25 

[OH-EMIM][ClO4] 275.0-287.4 3.45-12.96 10 

[OH-EMMIM][Cl] 274.7-287.4 3.51-13.28 10 

[PMIM][I] 285.8-291.1 10.54-20.36 10 
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4.3. CO2+Water+Amine Systems 

The gathered experimental data points comprises equilibrium conditions for absorption of 

CO2 in aqueous solutions of MEA, TEA and DEA published in the open literature [370-383]. In a 

respective order, related information about amine concentration, pressure, CO2 loading capacity 

and temperature for TEA, DEA, and MEA systems are summarized in Tables 4.7 to 4.9.   

 

 

Table 4.7: Collected data for water+TEA+CO2 system 

Ref. 
Temperature, 

K 

CO2 partial 

pressure 

range, kPa 

Amine 

concentration, 

mol/L 

CO2 loading, 

(mol CO2/mol 

amine) 

NPTS 

[383] 
313.2, 333.2, 

353.2  
1.43-153.4 

2, 3 
0.034-0.534 40 

[370] 298.15  1.264-100.27 0.5-5 0.117-0.976 23 

Total 298.15-353.2 1.264-153.4 0.5-5 0.034-0.976 63 

NPTS indicates number of points. 
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Table 4.8: Collected data for water+DEA+CO2 system 

Ref. 
Temperature, 

K 

CO2 partial 

pressure, kPa 

Amine 

concentration, 

mol/L 

CO2 loading, 

(mol CO2/mol 

amine) 

NPTS 

[374] 

313.15, 

333.15, 

353.15  

13.4965-

286.069 

0.32194298,  

0.32339248, 

0.324846754 

0.281-0.817 11 

[381] 
303, 313, 

323  
9-104.7 2, 4 0.445-0.786 24 

[372] 
298.15, 

323.15 

9.1034-

2013.0344 

0.057454573, 

0.223622552, 2 
0.006-2.012 23 

[382] 
298.15-

380.57 
10.18-7017 2, 2.45, 3.5 0.184-1.273 80 

[378] 313.15 10.84-269.3 0.324846754 0.507-0.83 5 

[380] 
366.48, 

394.25 
78.15-291.3 0.266020127 0.324-0.421 6 

[379] 
299.82-

399.82 
9.487-6511.27 0.536540558 0.0751-4.7619 194 

Total 
298.15-

399.82 
9-7017 0.057454573-4 0.006-4.7619 343 

NPTS indicates number of points. 
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Table 4.9: Collected data for water+MEA+CO2 system 

Ref. 
Temperature, 

K 

CO2 partial 

pressure, kPa 

Amine 

concentration, 

mol/L 

CO2 loading, 

(mol CO2/mol 

amine) 

NPTS 

[373] 313.15 13.1-2189.1 
0.183616859, 

0.278962149 
0.562-1.068 11 

[374] 

313.15, 

333.15, 

353.15 

10.6207-

320.1379 

0.531093557, 

0.533812589, 

0.536540558 

0.575-0.683 12 

[371] 
298.15, 

373.15 

10.1732-

1013.46 
5 0.289-851 10 

[375] 

333.15, 

353.15, 

373.15 

8.2167-

1183.7532 
5 0.306-0.646 24 

[377] 393.15 9.045-191.9 0.525682276 0.1766-0.4182 18 

[376] 313 110-6000 0.536561052 0.65-1.04 6 

[378] 313.15 11.85-321.92 0.536540558 0.528-0.705 5 

[380] 

353.15, 

373.15, 

393.15 

9.877-398.76 

0.269189506, 

0.270288061, 

0.525682276, 

0.531093557 

0.215-0.473 11 

[379] 353.15 8.62-121.8 2.4 0.42-0.58 6 

Total 
298.15-

393.15 
8.2167-6000 0.183616859-5 0.1766-1.068 103 

NPTS indicates number of points. 
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4.4. CO2+ IL Systems 

The gathered collection to model the CO2 solubility in ILs comprises 5332 equilibrium data 

sets. Information regarding the investigated ILs in this research as well as the references and the 

operational conditions of the data points are provided in Table 4.10.  

Table 4.10: Information about the studied ILs 

ILs No. P range (MPa) T range (K) CO2 solubility 

(mole fraction) 

References 

[THTDP][DCA] 105 0.304–90.248 271.11–363.4 0.111–0.843 [384] 

[hmim][Tf2N] 436 0.0089–45.28 278.12–413.2 0.001–0.8333 [385-394]  

[bmim][BF4] 255 0.0097–67.62 278.47–383.15 0.001–0.61 [385, 395-400]  

[bmim][Tf2N] 447 0.06753–49.99 279.98–453.15 0.01488–0.8041 [401-408]  

[bmim][PF6] 406 0.00969–73.5 282.05–295.05 0.0006–0.729 [387, 395, 400, 403, 409-416]  

[N4,1,1,1][NTf2] 20 0.03606–20.37 282.94–343.07 0.01424–0.879 [401, 405]  

[bmim][Ac] 81 0.0101–75 283.1–353.24 0.063–0.599 [385, 417, 418] 

[THTDP][phos] 93 0.163–61.172 283.21–363.39 0.15–0.895 [384] 

[emim][Tf2N] 345 0.01–43.2 283.43–453.15 0.0001–0.782 [385, 387, 391, 392, 401, 403, 

407, 408]  

[THTDP][NTf2] 120 0.106–72.185 292.88–363.53 0.169–0.879 [419] 

[C9mim][PF6] 11 0.86–3.54 293.15–298.15 0.197–0.554 [412] 

[C6mim][BF4] 161 0.312–86.6 293.18–373.15 0.071–0.703 [387, 394, 420]  

m-2-HEAF 80 0.494–52.91 293.21–363.42 0.057–0.534 [421] 

[bmim][CH3SO4] 54 0.908–9.805 293.2–413.1 0.03185–0.4524 [413] 

[P14,6,6,6][Tf2N] 98 0.53–22.2 293.35–373.35 0.3606–0.848 [391, 422] 

[C4mim][DCA] 40 1.018–73.64 293.36–363.25 0.2–0.601 [423] 

[C8mim][Tf2N] 138 0.1123–34.8 297.55–353.15 0.0311–0.8456 [408, 424]  

[emim][EtSO4] 40 0.352–9.461 298.04–348.15 0.0174–0.457 [410, 425]  

[emim][Ac] 36 0.01–1.9998 298.1–348.2 0.094–0.428 [385, 426] 

[emim][TFA] 27 0.01–1.9996 298.1–348.2 0.001–0.282 [426] 

[dmim][Tf2N] 37 1.439–20.15 298.15–322.2 0.257–0.878 [391, 405, 427] 

[HEA] 42 0.116–10.98 298.15–328.15 0.0081–0.4009 [428, 429] 

[BHEAA] 18 0.125–1.505 298.15–328.15 0.0089–0.0905 [428] 

[HHEMEA] 18 0.124–1.516 298.15–328.15 0.0045–0.0761 [428] 

[HEL] 42 0.127–10.09 298.15–328.15 0.0034–0.2442 [428, 429] 

[BHEAL] 18 0.121–1.598 298.15–328.15 0.0035–0.0738 [428] 

[HHEMEL] 18 0.154–1.535 298.15–328.15 0.0062–0.0776 [428] 

[bmmim][Tf2N] 36 0.0099–1.8997 298.15–343.15 0.002–0.382 [430] 

[p(5)mpyrr][Tf2N] 36 0.0097–1.9002 298.15–343.15 0.002–0.406 [430] 
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[P4441][Tf2N] 36 0.0099–0.8999 298.15–343.15 0.003–0.393 [430] 

[emim][BF4] 34 0.251–4.329 298.15–343.2 0.0156–.2406 [387, 431] 

[C6mim][PF6] 159 0.296–94.6 298.15–373.15 0.058–0.727 [387, 394, 432]  

[THTDP][Cl] 70 0.168–24.57 302.55–363.68 0.119–0.8 [419] 

[hemim][BF4] 44 0.114–1.194 303.15–353.15 0.004–0.102 [433] 

[C8mim][PF6] 61 0.1287–10.516 303.15–363.27 0.0231–0.755 [410, 434]  

[HMIM][MeSO4] 48 0.3–50.14 303.15–373.15 0.158–0.602 [394] 

[C6mim][TfO] 134 1.25–100.12 303.15–373.15 0.267–0.816 [394, 435] 

[C2mim][SCN] 72 1.3–95.34 303.15–373.15 0.169–0.474 [436] 

[C2mim][N(CN)2] 80 0.88–96.2 303.15–373.15 0.171–0.585 [436] 

[C2mim][C(CN)3] 80 0.59–88.29 303.15–373.15 0.17–0.703 [436] 

[C3mpy][Tf2N] 56 0.52–47.1 303.15–373.15 0.186–0.787 [437] 

[C5mpy][Tf2N] 64 0.27–55.1 303.15–373.15 0.198–0.785 [437] 

[C7mpy][Tf2N] 64 0.26–72.24 303.15–373.15 0.302–0.853 [437] 

[BMP][Tf2N] 72 0.68–62.77 303.15–373.15 0.2276–0.8029 [411] 

[BMP][MeSO4] 40 3.07–97.3 303.15–373.15 0.2871–0.6049 [411] 

[HMP][Tf2N] 64 1.06–47.55 303.15–373.15 0.2778–0.8105 [411] 

[OMP][Tf2N] 72 0.51–35.92 303.15–373.15 0.2409–0.8176 [423] 

[BMP][TfO] 64 1.88–70.2 303.15–373.35 0.2583–0.7058 [422] 

[C9mpy][Tf2N] 56 0.26–100.12 303.15–453.15 0.323–96.81 [437] 

[THTDP][Br] 47 0.876–12.998 303.19–363.44 0.114–0.694 [384] 

[C2mim][TfO] 55 0.8–37.8 303.85–344.55 0.1794–0.6268 [435] 

[C4mim][TfO] 65 0.85–37.5 303.85–344.55 0.2182–0.672 [435] 

[C8mim][TfO] 65 0.68–34 303.85–344.55 0.2166–0.7414 [435] 

[omim][BF4] 121 0.571–85.8 307.79–363.29 0.1005–0.7523 [410, 438]  

[emim][PF6] 74 1.49–97.1 308.14–366.03 0.104–0.619 [439] 

m-2-HEAA 41 0.84–80.5 312.93–363.61 0.157–0.5 [421] 

1-Bromohexane 22 0.537–10.781 313.15–333.15 0.0411–0.9681 [440] 

1-Methylimidazole 18 0.99–15.352 313.15–333.15 0.0837–0.9521 [440] 

[hmim][Br] 11 3.09–14.891 313.15–333.15 0.132–0.468 [440] 

[TDC][DCN] 38 0.01–1.9007 313.15–333.15 0.00175–0.272 [441] 

[EMMP][TF2N] 39 0.0098–1.9 313.15–333.15 0.00182–0.3165 [441] 

[TDC][TF2N] 39 0.0097–1.8998 313.15–333.15 0.0023–0.36 [441] 

[P6,6,6,14][Cl] 8 8.21–20.71 313.2–323.2 0.714–0.824 [405] 

[Pyrr4,1][NTf2] 8 8.06–20.38 313.2–323.2 0.65–0.853 [405] 

[N1,8,8,8][NTf2] 8 8.08–20.56 313.2–323.2 0.789–0.907 [405] 

[bmim][Cl] 45 2.454–36.946 353.15–373.15 0.1306–0.406 [442] 
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4.5. CO2+Water+PZ system 

In order to utilize the smart modeling techniques for representing/predicting the solubility of 

CO2 in PZ solutions, the required experimental data were collected from the literature [166, 443] 

[168, 444-446]. Details about the collected databank for the equilibrium system of (CO2+ 

PZ+water) are given in Table 4.11.  

 

Table 4.11: Equilibrium system of CO2+ PZ+water 

Ref. No. T range (K) CPZ (mol/L) PCO2 range (kPa) 
2CO  

[443] 17 313.00-343.00 0.600 0.03-40.00 0.160-0.960 

[166] 64 287.10-313.10 0.099-1.999 1.93-532.00 0.097-2.680 

[168] 315 298.00-328.00 0.200-4.500 0.08-1487.00 0.263-2.956 

[444] 58 298.15-343.15 0.200-0.600 0.27-111.37 0.360-1.230 

[445] 93 313.13-393.15 1.919-3.912 13.30-9560.00 0.502-1.687 

[446] 29 313.15-333.15 1.913-7.708 5.89-15.50 0.260-0.860 

Total  577 287.10-393.15 0.099-7.708 0.03-9560.00 0.097-2.956 

 

 

4.6. CO2+Water+SG System  

For the system of (CO2+sodium glycinate (SG)+water),  197 equilibrium data were collected 

from the literature. More information about the experimental data points are summarized in Table 

4.12. 
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Table 4.12: Equilibrium information for CO2 solubility in solution of SG  

Ref. T, K CSG, mass% 
2COP , kPa  , mol CO2/ mol SG 

solution 

n 

[184] 303.15, 

313.15, 

323.15 

10, 20, 30 213.5-5062.5 0.170-1.075 74 

[185] 313.15, 

323.15, 

333.15 

5, 10, 15, 

20, 25 

0.06-773.5 0.0023-1.7490 123 

 

 

 

4.7. CO2-Reservoir Oil MMP  

In order to develop mathematical models for representing/predicting the CO2-reservoir oil 

MMP, previously published experimental data on the parameters affecting the value of CO2-

reservoir oil MMP have been gathered from literature. The collected data points have been reported 

by Rathmell et al. [447], Shokir [448], Holm and Josendal [218], Alston et al. [237], Sebastian et 

al. [239], Eakin and Mitch [449], Harmon and Grigg [450], Emera and Sarma [238], Jacobson 

[451],  Graue and Zana [219], Metcalfe [452], Thakur et al. [453], Gharbi and Elsharkawy [454], 

Dong et al. [455], Bon et al. [456], and Shokrollahi et al. [195]. 

 

4.8. Data Validation   

In this work, the mathematical approach of Leverage was employed to assess the gathered 

datasets for the studied systems. Leverage method comprises of calculation of the differences 

between target values and model outcomes, i.e. residual, as well as defining a Hat matrix that 
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includes the predicted values and target values. Information about this technique is given in our 

published works [457, 458]. 

Utilizing the Leverage approach, it was found that the gathered databases for hydrate systems, 

CO2+solvent systems, and CO2-oil MMP are reliable. Hence, the collected data points were used 

for both development and performance evaluation of the predictive mathematical models including 

tree-based, ANN, ANFIS, and LSSVM. 
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5. Model development  

5.1. General step  

The first step in the development of the ANN, LSSVM, DT and ANFIS models is dividing the 

gathered database into two smaller groups including test dataset and training dataset. For each 

system, the employed databank was randomly divided into two sub-datasets. The allocated data 

points for the training are utilized to construct the predictive mathematical model. On the other 

hand, the test sub-group is employed to assess the performance of the developed models in 

representing the target values. The utilized softwares for the development of the smart models are 

Matlab and Python.  

 

5.2. Hydrate+Water/Ice+Salt/Alcohol Systems 

To develop the predictive tools to estimate the HDT of various systems including propane, 

methane, ethane, hydrogen sulfide, i-butane and nitrogen in the solutions of alcohol and/or 

electrolyte or pure water, HDT is considered as a function of concentration(s) of the available 

additives (salts and/or alcohols) and the system’s pressure as well:  

 
additive

CPfHDT ,    …………………………………………...………..……………….. (5.1)  

where P and 
additive

C  indicate pressure and additive(s) concentration in aqueous phase, 

respectively.  

For the desired gas mixtures, another independent parameter was the gas composition: 
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 
additivei

CZPfHDT ,,   ……………………………………...………..……………….. (5.2) 

in which 
i

Z  is the gas composition. 

 To construct ANN tools for estimating the HDT of the investigated hydrate systems, the 

number of hidden neurons was changed from 5 to 15. Subsequently, the performance of the created 

ANN model was evaluated. Table 5.1 gives the topology of the best developed ANN model for 

each system. For all the developed ANN models the transfer function of hyperbolic tangent 

sigmoid type was used. 

 

 

Table 5.1: Topology of the presented ANN models for the studied hydrate systems 

System Topology 

C1 11-9-1 

C2 6-8-1 

C3 5-10-1 

i-C4 1-7-1 

H2S 5-8-1 

N2 1-9-1 

Gas mix. 23-12-1 

 

The tunned values of the LSSVM hyper-parameters including kernel bandwidth ( 2 ) and 

regularization constant ( ) to predict/represent the HDT of H2S, C1, C3, C2, N2, i-C4 and gas 

mixture systems are given in Table 5.2. 
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Table 5.2: Hyper-parameters of the presented LSSVM tools for hydrate systems 

System 2    

C1 0.142784211937565 644.724445609795 

C2 0.004869768861272 185.010666994328 

C3 29.75196837406490 106.660364404458 

i-C4 0.369711172980082 7437.14229983432 

H2S 0.008745591455999 47.6432124133609 

N2 1.385581681162430 39993.4467324536 

Gas mix. 0.912513403963931 163.660953927937 

 

Specifications of the presented ANFIS models are summarized in Table 5.3. Structures of 

the constructed ANFIS models for estimation of the dissociation conditions of C3, N2, C1, C2, i-

C4, H2S and gas mixture are shown in Fig. 5.1. 

 

Table 5.3: Information of the developed ANFIS models for the studied hydrate systems 

Parameter 
System 

C1 C2 C3 i-C4 H2S N2 Gas mix. 

Cluster center's range of influence 0.41 0.11 0.21 0.35 0.13 0.18 0.26 

No of inputs  11 6 5 1 5 1 23 

No of fuzzy rules 2 3 4 2 13 3 4 

Max epoch number 700 500 100 200 200 180 200 

Initial step size 0.10 0.10 0.10 0.10 0.05 0.05 0.05 

Step size decrease rate 0.95 0.95 0.90 0.90 0.90 0.85 0.95 

Step size increase rate 1.10 1.05 1.05 1.05 1.05 1.15 1.15 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
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(g) 

Fig. 5.1: ANFIS structure for (a) methane hydrate system; (b) ethane hydrate system; (c)propane 

hydrate system; (d) i-butane hydrate system; (e) hydrogen sulfide hydrate system; (f) nitrogen 

hydrate system, and (g) gas mixture hydrate system 

 

Specifications of the presented AdaBoost tools for estimation of the HDT of investigated 

hydrate systems are summarized in Table 5.4. The digraph of the developed AdaBoost-CART 

model can be found in Appendix B. 

Table 5.4: Specifications of the presented AdaBoost models for the studied hydrate systems 

System Number of Trees Maximum Depth 

C1 7 45 

C2 3 40 

C3 4 45 

i-C4 2 25 

H2S 6 40 

N2 2 25 

Gas mix. 8 55 
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5.3. Hydrate+IL Systems 

With the aim of developing the models, as defined in Eq. (5.3), it is assumed that the 

equilibrium temperature of methane hydrate dissociation in ILs (THyd, K) is a function of the 

system’s pressure (PHyd, MPa), concentration of the aqueous phase (CIL, wt%), critical temperature 

of the IL (Tc, K), and the critical pressure of the IL (Pc, MPa). 

 ccILHydHyd TPCPfT ,,,    ……………………………………...………..…………………... (5.3) 

In this work, the critical properties of the investigated ILs are calculated using the group 

contribution methods presented by Valderrama and Robles [459]. 

In order to find the optimum ANN model, the number of hidden neurons was changed from 5 

to 15. Subsequently, the performance of the created ANN model was evaluated. The network with 

10 hidden neurons as well as hyperbolic tangent sigmoid transfer function presents a better 

performance compared to other structures. The weight and bias values of the best developed ANN 

model are presented in Table 5.5. 

The tunned values of the LSSVM hyper-parameters including kernel bandwidth ( 2 ) and 

regularization constant ( ) for predicting the dissociation temperature of methane hydrate in the 

presence of ILs are found to be 1.58390588574261 and 47471.4308399958, respectively. As can 

be seen, the number of digits of ANN and LSSVM models are different. This is due to the fact that 

the number of digits of the LSSVM and ANN controlling parameters are generally obtained using 

sensitivity analysis of the overall errors of the procedure of employed optimization. 

Specifications of the developed ANFIS model are summarized in Table 5.6. The structure of 

the constructed ANFIS model for predicting the dissociation conditions of methane hydrate in ILs 

is shown in Fig. 5.2. Fig. 5.3 illustrates the MFs for the independent parameters including the 
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system’s pressure, concentration of the aqueous phase, critical temperature/pressure of the IL. The 

vertical axis in Fig. 5.3 is the degree of membership. This parameter, also known as membership 

grade, is the output of a MF. The value of it ranges from 0 to 1. 

Table 5.5: Information of the proposed ANN model for hydrate+IL systems 

Hidden layer Output layer 

Weight matrix 
Bias 

vector 

Transposed 

weight vector 
Bias 

1.3617 -1.8998 -0.0822 0.8246 -2.6571 -0.8618 

1.2714 

0.3341 -1.3306 -0.3439 1.8648 -2.1783 -2.2582 

-0.37773 0.4412 -1.3430 2.6148 1.3324 1.4962 

-2.2096 0.4224 0.7344 2.4015 0.7179 -0.1589 

-0.3155 0.2364 -3.6534 0.1131 -4.1347 2.5965 

-0.2115 0.2108 -1.0659 1.6358 0.7525 -2.3328 

0.8142 0.8558 -3.7081 -0.4779 -1.1096 -0.2216 

0.0772 0.1335 -5.2415 -0.0462 -4.5466 -3.0992 

0.7812 -0.6621 1.8328 -2.8899 0.4450 -0.3898 

-0.2465 0.0235 0.0235 0.3061 4.7785 -4.4022 

 

 

Table 5.6: The developed ANFIS model to predict the C1 hydrate dissociation temperature in 

ILs 

Parameter Description/value 

Cluster center's range of influence 0.40 

No of inputs  4 

No of outputs  1 

No of fuzzy rules 6 

Max epoch number 700 

Initial step size 0.10 

Step size decrease rate 0.90 

Step size increase rate 1.10 
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Fig. 5.2: Structure of the created ANFIS model for methane hydrate+IL systems 

 

Fig. 5.3: Membership functions for the independent parameters (C1+IL system) 
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Using a procedure of trial and error, the tunned value of the maximum depth for the CART 

model was found to be 13. The initial CART depth was 2 to start the trial and error procedure. The 

digraph of the developed CART model can be found in Appendix B. 

 

5.4. CO2+Water+Amine Systems 

With the objective of presenting effective models to predict CO2 loading capacity of amine 

aqueous solutions,  ,  partial pressure of CO2, 2COP , system’s temperature, and concentration of 

amine in aqueous phase, eaC min , are selected as the independent parameters of modeling. 

 eaCO CPTf min2 ,,     ……………………………..……..…………………….…….. (5.3) 

By changing the number of neurons in the hidden layer from 5 to 15, several models were 

built for predicting the solubility of CO2 in amine (MEA, DEA, and TEA) aqueous solutions. 

Subsequently, the performance of the obtained ANN models was evaluated. Table 5.7 summarizes 

the topology of the best developed ANN models for each amine system. In this work, the 

hyperbolic tangent sigmoid transfer function was employed for presenting all the ANN models. 

The tunned values of the LSSVM hyper-parameters including kernel bandwidth ( 2 ) and 

regularization constant ( ) for prediction/representing the solubility of CO2 in MEA, DEA, and 

TEA aqueous solutions are given in Table 5.8.  
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Table 5.7: Topology of the presented ANN models for the studied amine systems 

System Topology 

CO2+MEA+Water 3-11-1 

CO2+DEA+Water 3-11-1 

CO2+TEA+Water 3-9-1 

 

 

Table 5.8: Hyper-parameters of the presented LSSVM tools for hydrate systems 

System 2    

CO2+MEA+Water 
5219.69911188144 13.1865999959447 

CO2+DEA+Water 500.021537462106 0.42109028447486 

CO2+TEA+Water 1379192.32247305 4.25519334412296 

 

Tables 5.9 gives the specifications of the presented ANFIS models for modeling the CO2 

removal with solutions of amine (MEA, DEA, and TEA). 

 

Table 5.9: Specifications of the created ANFIS tool for estimating the CO2 loading capacity of 

MEA, DEA, and TEA solutions 

Parameter 
System 

MEA DEA TEA 

Cluster center's range of influence 0.3 0.5 0.8 

Number of inputs  3 3 3 

Number of fuzzy rules 9 8 8 

Maximum epoch number 500 1500 500 

Initial step size 0.10 0.10 0.10 

Step size decrease rate 0.95 0.90 0.90 

Step size increase rate 1.05 1.10 1.10 
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The number of features in AdaBoost-CART methodology is equal to the number of 

independent variables. Hence, there are three features including 
2COP , 

eaC min
, and T. Next 

parameter of the AdaBoost-CART method is the maximum depth of CART. This parameter 

determines the maximum length among the existing paths in a tree that connects a root to a leaf. 

There is no universal rule to obtain the maximum depth of CART so that the presented tree-based 

model provides the best outcomes. Furthermore, the optimum number of CART models in the 

AdaBoost-CART model should be determined.    

In this work, a trial and error procedure was used to find the best value for the maximum 

depth of CART as well as the number of trees in predictive mathematical model. The initial tree 

depth was 3 for starting the procedure. The obtained results are summarized in Table 5.10. The 

digraph of the developed AdaBoost-CART model can be found in Appendix B.  

 

Table 5.10: Specifications of the presented AdaBoost-CART models for the studied hydrate 

systems 

System Number of Trees Maximum Depth 

CO2+MEA+Water 3 17 

CO2+DEA+Water 3 11 

CO2+TEA+Water 5 16 
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5.5. CO2+IL systems 

Eq. (5.4) defines the independent variables considered for constructing the CART model 

for estimation of the solubility of carbon dioxide in ILs. 

  ,,,, CC PTPTf    ………………………………...…...…..…………….….…….. (5.4) 

in which, in respective order,  P and T are the pressure (MPa) and temperature (K);  , ,, CC PT

indicate the acentric factor of the IL, critical temperature (K), and critical pressure (MPa), 

respectively. The acentric factor as well as the critical properties for the studied ILs were obtained 

from Baghban et al. [460]. 

In this work, using a trial and error procedure, the tuned value of the maximum depth of 

the CART model found to be 15. To start the trial and error procedure, the initial tree depth was 

assumed to be 3. The prediction ability of the proposed model will be compared to the capability 

of the previously published RBF-ANN, LSSVM, MLP-ANN, and ANFIS models by Baghban, 

Mohammadi and Taleghani [460]. The digraph of the developed CART model can be found in 

Appendix B. 

 

5.6. CO2+Water+PZ System 

For presenting predictive tools, it is considered that the solubility of carbon dioxide in PZ 

solution is dependent to the concentration of PZ ( PZC ), CO2 partial pressure ( 2COP ) and 

temperature (T). Ew. (5.5) defines the mathematical representation of the independent and 

dependent parameters:   
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 PZCO CPTf ,, 2  …………………………………………….………………………. (5.5) 

Considering the ANN methodology, the number of neurons in the hidden layer (or  the number 

of hidden neurons) was adjusted between 5 and 15. Then, the capability of the presented ANN tool 

in predicting the target values was evaluated employing the mean squared error (MSE) as a cost 

function. All the created ANN models utilized the transfer function of hyperbolic tangent sigmoid 

type. 

At the end, the obtained topology for the best presented ANN model was 3-9-1. The tuned 

values for biases and weights of the proposed optimum ANN model with 3-9-1 topology are given 

in Table 5.12.  

 

Table 5.12: Information for the best ANN model developed for (CO2+water+PZ) system 

Hidden layer Output layer 

Weight matrix Bias vector Trans. weight vector Bias 

-1.2643 3.4209 -0.0184 -3.6502 -0.5777 

-2.3893 

2.8040 -0.1054 3.0622 -3.5056 0.0960 

1.3671 1.3623 1.6775 5.3652 0.8594 

2.0448 2.6560 -1.2479 -2.9889 -0.0584 

1.1061 -2.0991 2.8461 0.7045 -0.1810 

-1.5344 1.9070 1.4035 -1.7739 0.1604 

1.6475 -5.6549 0.9918 -8.0949 -4.5166 

1.0310 -4.4735 15.0809 13.4310 -8.4983 

-0.0837 20.6984 0.2548 22.3810 4.9268 

 

In a respective order, the tuned values of the CSA-LSSVM tool hyper-parameters including 

regularization constant ( ) and kernel bandwidth ( 2 ) were computed to be 633.3124026229270 

and 0.421303271273034. 
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Information of the developed ANFIS tool to model the equilibrium solubility of CO2 in 

solution of PZ is summarized in Table 5.13.  Fig. 5.4 demonstrates the structure of the created 

ANFIS tool. 

 

Table 5.13: Specifications of the created ANFIS tool for the CO2+water+PZ system 

Parameter Description/value 

Cluster center's range of influence 0.28 

No of inputs  3 

No of outputs  1 

No of fuzzy rules 3 

Maximum epoch number 200 

Initial step size 0.10 

Step size decrease rate 0.90 

Step size increase rate 1.10 

 

 

 

 

Fig. 5.4: ANFIS tool for (CO2+water+PZ) system 
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 Employing the trial and error algorithm and changing the CART’s number in the AdaBoost-

based model, the most accurate AdaBoost-CART tool was found to have 5 DTs. Furthermore, the 

maximum depth of the CARTs was calculated to be 14. Schematic of the best presented AdaBoost-

based model to estimate the carbon dioxide equilibrium absorption in PZ aqueous solution is 

shown in Fig. 5.5. The digraph of the developed CART model can be found in Appendix B. 

 

 

Fig. 5.5: Schematics of the AdaBoost-CART model for CO2+water+PZ system 
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5.7. CO2+Water+SG System  

Eq. (5.6) is the mathematical representation of the relation between the dependent and 

independent variables for the modeling process:  

 TCPf SGCO ,,
2

  ……………………………………………………………..……………. (5.6) 

where CSG is the concentration of SG solution 

According to the result of the used trial and error procedure, the optimum ANN model has 

the structure of 3-11-1. The tuned values for the hyper-parameters of LSSVM tool including    

and 2  are 2391.43658924352 and 20.1719613854336, respectively. Tables 5.14 gives the details 

of the proposed ANFIS tool to model the CO2 removal with SG solution.  

 

Table 5.14: Specifications of the presented ANFIS model for predicting solubility of CO2 in SG 

Parameter Description/value 

Cluster center's range of influence 0.63 

No of inputs  3 

No of outputs  1 

No of fuzzy rules 6 

Maximum epoch number 700 

Initial step size 0.05 

Step size decrease rate 1.02 

Step size increase rate 1.24 

 

 

In the case of presenting the AdaBoost-CART tool, a predictive mathematical model with 

5 CARTs was found as the optimum structure. The maximum depth of the CART within the 
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AdaBoost was detected to be 10. The proposed AdaBoost-CART tool is schematically illustrated 

in Fig. 5.6.   

 

Fig. 5.6: Structure of the proposed AdaBoost-CART tool to estimate the CO2 loading capacity of 

SG  

 

 

5.8. CO2-Oil MMP  

In 2013, Tatar et al. [243] developed an ANN model to predict the CO2-reservoir oil MMP. 

In another work, Shokrollahi et al. [30] employed the LSSVM technique for modeling the CO2-

reservoir oil MMP. In this work, two novel predictive mathematical models are developed on the 

basis of ANFIS and AdaBoost-CART methodologies.  

 For building the predictive mathematical models, it is assumed that the CO2-reservoir oil 

MMP is a function of the reservoir temperature, composition of the drive gas, critical temperature 
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of the drive gas (in average), molecular weight of C5+ fraction in crude oil (MW C5+), the ratio of 

volatile to intermediate components in crude oil. The pure drive gas is CO2, and the impure drive 

gas contains CO2, H2S, C1-C5, and/or N2. C1 and N2 are the volatile components; and the 

intermediate components in the crude oil are C2-C4, H2S, and CO2. Finally, nine independent 

parameters were determined. Table 5.15 gives the independent parameters and their corresponding 

ranges. The CO2-reservoir oil MMP range is from 6.54 to 34.47 MPa, and the average of it is 14.86 

MPa. 

 

Table 5.15: Independent parameters and their ranges for developing ANFIS and AdaBoost-

CART models 

Parameter Minimum Maximum Average 

T (K) 305.35 391.45 341.92 

Tc (K) 281.45 338.77 301.95 

CO2 (mol%) 40 100 86.56 

H2S (mol%) 0.00 50 5.51 

N2 (mol%) 0.00 8.80 0.25 

C1 (mol%) 0.00 20 4.71 

C2-C5 (mol%) 0.00 25 2.96 

MW of C5+ 136.47 302.50 188.98 

Volatile/Intermediate ratio 0.14 13.61 1.79 

 

 

Tables 5.16 summarizes the specifications of the created ANFIS tool for modeling the 

CO2-reservoir oil MMP as a nonlinear function of the aforementioned independent variables. Fig. 

5.7  illustrates the structure of the presented ANFIS model. 
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Table 5.16: Specifications of the presented ANFIS model for CO2-reservoir oil MMP prediction 

Parameter Description/value 

Cluster center's range of influence 0.52 

No of inputs  9 

No of outputs  1 

No of fuzzy rules 15 

Maximum epoch number 200 

Initial step size 0.10 

Step size decrease rate 0.90 

Step size increase rate 1.10 

 

 

 

 

Fig. 5.7: Structure of the created ANFIS model for CO2-reservoir oil MMP prediction 
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In the case of development of the CART-based tool for the application of interest, an 

AdaBoost-CART model with 5 decision trees was obtained as the best model. The maximum depth 

of each decision tree found to be 13. Schematic of the presented AdaBoost-CART model to predict 

the CO2-reservoir oil MMP is demonstrated in Fig. 5.8.   

 

 

Fig. 5.8: Schematics of the AdaBoost-CART tool to estimate the CO2-reservoir oil MMP 
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6. Results and discussion  

6.1. Model assessment criteria  

With the aim of assessment of the accuracy of the developed models, statistical variables 

including average absolute relative deviation percent (AARD%), coefficient of determination (R2) 

and average relative deviation percent (ARD%) have been utilized. ARD% defines the distribution 

of errors between negative and positive values. AARD% is a measure of the accuracy of the model. 

R2 value mathematically describes the goodness of fit. The higher the R2 value, the more the data 

points are fitted to the predictive mathematical model. AARD%, ARD%, and R2 can be calculated 

using Eq. (6.1) to (6.3), respectively:  


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
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in which expi, predi, and n represent the experimental targets, predictions, and the number of data 

points, respectively. 

Normally, R2 value ranges between 0 and 1. An R2 value of 1 indicates that each point on 

the regression line fits the target. ARD% helps to find out that a predictive mathematical model 

overestimates or underestimates the target value. If the obtained value for ARD% is negative, 



62 
 

predictions through the applied model are underestimated. Otherwise, the model gives the 

overestimated estimations. AARD% is a degree of scatter.  

 

6.2. Hydrate+Water/Ice+Salt/Alcohol systems 

Results of the performance evaluation of the constructed AdaBoost, ANFIS, ANN, and 

LSSVM models for predicting the equilibrium dissociation temperature of C1, H2S, C2, N2, C3, i-

C4 and gas mixture hydrate systems are summarized in Tables 6.1 to 6.3.  

 

Table 6.1: R2 values of the developed models for predicting the HDT of investigated hydrate 

systems 

System 
AdaBoost ANFIS ANN LSSVM 

Train Test Overall Train Test Overall Train Test Overall Train Test Overall 

C1 0.9996 0.9994 0.9996 0.9759 0.9865 0.9773 0.9483 0.7617 0.9452 0.9957 0.9807 0.9938 

C2 0.9977 0.9977 0.9977 0.8890 0.9197 0.8925 0.9208 0.9827 0.9231 0.9633 0.7057 0.9527 

C3 0.9988 0.9982 0.9982 0.9700 0.9881 0.9724 0.8851 0.9480 0.8862 0.7459 0.7470 0.7458 

i-C4 0.9928 0.9978 0.9967 0.9954 0.9983 0.9950 0.9972 0.9880 0.9970 0.9985 0.9424 0.9984 

H2S 0.9997 0.9934 0.9994 0.9742 0.9638 0.9739 0.9644 0.9785 0.9649 0.9798 0.8740 0.9680 

N2 0.9982 0.9993 0.9992 0.9997 0.9998 0.9997 0.9774 0.9940 0.9783 0.9996 0.9992 0.9996 

Gas mix. 0.9985 0.9980 0.9980 0.8704 0.8812 0.8711 0.8420 0.8551 0.8526 0.9718 0.9470 0.9699 

 

According to Table 6.1, for all the investigated systems, the value of R2 for the presented 

AdaBoost models is higher than 0.99. Hence, in terms of the R2 parameter, the presented AdaBoost 

models have better performance in predicting/representing the target values. These parameters 

should be further checked against the thermodynamic model accuracy parameters. 
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Table 6.2: ARD% values of the developed models for predicting the HDT of investigated 

hydrate systems 

System 
AdaBoost ANFIS ANN LSSVM 

Train Test Overall Train Test Overall Train Test Overall Train Test Overall 

C1 0.00 0.01 0.00 0.01 0.07 0.01 -0.20 -0.11 -0.19 0.00 0.21 0.02 

C2 0.01 0.02 0.01 0.03 0.20 0.05 -0.06 0.07 -0.06 0.02 0.34 0.05 

C3 -0.01 -0.04 -0.01 0.01 0.30 0.04 0.06 0.01 0.05 0.02 -0.03 0.02 

i-C4 0.01 0.23 0.03 0.00 0.11 0.01 -0.01 -0.10 -0.01 0.00 0.06 0.01 

H2S -0.06 0.01 0.00 0.01 0.26 0.03 -0.05 0.14 -0.03 0.01 -0.21 -0.01 

N2 0.00 0.02 0.00 0.00 -0.04 0.00 -0.06 -0.21 -0.08 0.00 0.01 0.00 

Gas mix. 0.00 0.00 0.00 0.02 0.02 0.02 0.04 0.22 0.06 0.01 0.02 0.01 

 

According to the obtained values for ARD% that are tabulated in Table 6.2, it can be concluded 

that the errors arising from the presented AdaBoost models for C1, H2S, N2, and gas mixture 

hydrate systems as well as the LSSVM model for N2 hydrate are equally distributed between 

negative and positive values. On the other hand, since the value of ARD% of the developed ANN 

model for C1 hydrate is equal to -0.19, this model considerably underestimates the targets. For 

other developed models, the values of the ARD% parameter are approximately close to zero.  

 

Table 6.3: AARD% values of the developed models for predicting the HDT of investigated 

hydrate systems 

System 
AdaBoost ANFIS ANN LSSVM 

Train Test Overall Train Test Overall Train Test Overall Train Test Overall 

C1 0.03 0.04 0.03 0.51 0.55 0.51 1.03 0.86 1.01 0.24 0.50 0.27 

C2 0.07 0.05 0.07 1.10 1.08 1.09 0.88 0.31 0.83 0.43 1.09 0.49 

C3 0.05 0.04 0.05 0.33 0.48 0.35 0.60 0.23 0.56 0.82 0.73 0.81 

i-C4 0.03 0.23 0.05 0.13 0.14 0.13 0.08 0.12 0.09 0.06 0.06 0.06 

H2S 0.02 0.16 0.04 0.51 0.46 0.50 0.64 0.33 0.61 0.38 1.25 0.46 

N2 0.03 0.09 0.04 0.04 0.05 0.04 0.21 0.21 0.21 0.05 0.06 0.05 

Gas mix. 0.03 0.03 0.03 0.91 0.91 0.91 0.92 1.37 0.96 0.31 0.47 0.33 
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As a degree of scatter, the values of AARD% reveal the excellent performance of the proposed 

AdaBoost models to predict the dissociation temperature of the investigated hydrates. For all the 

systems, the presented AdaBoost models represent the target values with AARD%s between 0.03 

and 0.07 (Table 6.3).  

Relative deviations of the outcomes of the developed models for C1, C2, C3, i-C4, H2S, N2, 

and gas mixture hydrate systems are demonstrated in Fig. 6.1 to 6.7, respectively. As can be seen 

from Fig. 6.1, relative errors of the AdaBoost model for C1 hydrate are distributed between -1.5 

and 1. On the other hand, the relative errors of the ANFIS and ANN models range from -6.0 to 

4.0; this domain for the LSSVM model is [-6,2].  

According to Fig. 6.2, the relative deviations of the outputs of the AdaBoost model for C2 

hydrate have the values between -2 and 1. For C2 hydrate system, the error ranges of the ANFIS, 

ANN, and LSSVM models are [-16,4] and [-15,4], and [-14,4], respectively. For all other hydrate 

systems, except for i-C4 hydrate, the error domains of the developed AdaBoost models are more 

limited than the error domains of the ANFIS and ANN models. In the case of i-C4 hydrate system, 

the error range of the AdaBoost model is from -1.2 to 0.6. [-0.5,1], [-0.4,1.0], and [-0.3,0.7] are 

the ranges for the ANFIS, ANN, and LSSVM models in a respective order. 
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       (a), (b) 

(c), (d)  

Fig. 6.1: Relative deviations of the outcomes of the developed models for methane hydrate 

system; (a) AdaBoost-CART; (b) ANFIS; (c) ANN, and (d) LSSVM 
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(a), (b) 

 

(c), (d) 

Fig. 6.2: Relative deviations of the outcomes of the developed models for ethane hydrate system; 

(a) AdaBoost-CART; (b) ANFIS; (c) ANN, and (d) LSSVM 
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(a), (b) 

 

(c), (d) 

Fig. 6.3: Relative deviations of the outcomes of the developed models for propane hydrate 

system; (a) AdaBoost-CART; (b) ANFIS; (c) ANN, and (d) LSSVM 
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(a), (b) 

 

(c), (d) 

Fig. 6.4: Relative deviations of the outcomes of the developed models for i-butane hydrate 

system; (a) AdaBoost-CART; (b) ANFIS; (c) ANN, and (d) LSSVM 

 

(a) 
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(A), (b) 

 

(c), (d) 

Fig. 6.5: Relative deviations of the outcomes of the developed models for hydrogen sulfide 

hydrate system; (a) AdaBoost-CART; (b) ANFIS; (c) ANN, and (d) LSSVM 
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 (a), (b) 

(c), (d) 

 

Fig. 6.6: Relative deviations of the outcomes of the developed models for nitrogen hydrate 

system; (a) AdaBoost-CART; (b) ANFIS; (c) ANN, and (d) LSSVM 
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 (a), (b) 

(c), (d) 

 

Fig. 6.7: Relative deviations of the outcomes of the developed models for gas mixture hydrate 

system; (a) AdaBoost-CART; (b) ANFIS; (c) ANN, and (d) LSSVM 
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The ability of the developed AdaBoost tool in predicting the experimental data of Haghighi et 

al. [294] for methane hydrate+ EG+water system is compared to that of the presented ANFIS and 

ANN models in Table 6.4. As can be observed from Table 6.4, using the proposed AdaBoost 

model, all the reported data are reproduced without error. Employing the ANFIS, ANN, and 

LSSVM models result in errors from 0.03 to 2.62 K, 0.29 to 4.76 K, and 0.01 to 1.20 K, 

respectively. Results of the developed smart models in comparison with the experimental data by 

Ross and Toczylkin [338] for ethane hydrate in the aqueous solution of TEG are summarized in 

Table 6.5. Except for two data points, the AdaBoost model regenerated all other targets without 

error. On the other hand, the ANFIS, ANN, and LSSVM models reproduced the data with the 

average error of 2.90, 0.93, and 0.04 K, respectively. 

Table 6.4: Comparison of the model’s outputs with the experimental data by Haghighi et al. 

[294] for methane hydrate 

EG, 

wt% 

P, kPa T, K  Error, K    

Exp. AdaBoost ANFIS ANN LSSVM AdaBoost ANFIS ANN LSSVM 

10 6379 279.40 279.40 279.37 278.66 278.20 0.00 0.03 0.74 1.20 

17600 288.25 288.25 288.79 283.49 288.47 0.00 0.54 4.76 0.22 

37448 293.95 293.95 295.63 291.11 293.97 0.00 1.68 2.84 0.02 

20 7159 277.75 277.75 276.81 275.79 277.01 0.00 0.94 1.96 0.74 

17779 284.90 284.90 284.68 280.51 285.24 0.00 0.22 4.39 0.34 

29917 289.25 289.25 289.45 285.52 289.39 0.00 0.20 3.73 0.14 

30 6862 273.35 273.35 271.73 271.94 272.72 0.00 1.62 1.41 0.63 

18586 281.15 281.15 280.18 277.34 281.44 0.00 0.97 3.81 0.29 

31690 284.80 284.80 285.06 282.91 283.90 0.00 0.26 1.89 0.90 

40 5055 264.95 264.95 263.89 266.10 264.86 0.00 1.06 1.15 0.09 

15255 274.10 274.10 272.39 271.02 274.09 0.00 1.71 3.08 0.01 

23166 277.05 277.05 276.90 274.66 277.12 0.00 0.15 2.39 0.07 

31386 279.05 279.05 279.88 278.25 278.67 0.00 0.83 0.80 0.38 

50 12621 265.35 265.35 263.19 262.66 264.88 0.00 2.16 2.69 0.47 

21724 269.65 269.65 269.87 267.06 269.91 0.00 0.22 2.59 0.26 

30910 271.55 271.55 274.17 271.26 271.56 0.00 2.62 0.29 0.01 



73 
 

Table 6.5: Comparison of the model’s outputs with the experimental data by Ross and Toczylkin 

[338] for ethane hydrate 

TEG, 

wt% 
P, kPa 

T, K  Error, K  

Exp. AdaBoost ANFIS ANN LSSVM AdaBoost ANFIS ANN LSSVM 

40 

1970 275.0 275.0 277.01 275.65 275.01 0.00 2.01 0.65 0.01 

2300 275.8 275.8 277.05 276.16 275.80 0.00 1.25 0.36 0.00 

3300 277.9 277.9 277.19 277.36 277.87 0.00 0.71 0.54 0.03 

20770 281.7 283.0 279.61 280.70 281.66 1.30 2.09 1.00 0.04 

33570 283.0 283.0 281.39 283.24 282.95 0.00 1.61 0.24 0.05 

20 

790 273.7 273.7 281.25 272.84 273.74 0.00 7.55 0.86 0.04 

1290 276.5 278.0 281.32 277.35 276.47 1.50 4.82 0.85 0.03 

1540 278.0 278.0 281.36 278.45 278.01 0.00 3.36 0.45 0.01 

2630 283.0 283.0 281.51 280.43 282.94 0.00 1.49 2.57 0.06 

9720 285.5 285.5 282.49 287.05 285.44 0.00 3.01 1.55 0.06 

28270 288.0 288.0 285.07 287.08 287.93 0.00 2.93 0.92 0.07 

36270 289.0 289.0 286.18 288.80 288.92 0.00 2.82 0.20 0.08 

10 

1000 277.0 277.0 283.49 277.13 281.94 0.00 6.49 0.13 0.06 

1800 282.0 282.0 283.60 281.65 286.25 0.00 1.60 0.35 0.05 

3720 286.3 286.3 283.87 283.07 288.92 0.00 2.43 3.23 0.08 

23270 289.0 289.0 286.58 287.94 288.72 0.00 2.42 1.06 0.08 

 

 

Table 6.6 gives the outputs of the presented models versus the experimental by Ng and 

Robinson [322] for propane hydrate in the presence of MeOH solution. The maximum error 

obtained using the AdaBoost model is equal to 0.93 K. The worst predictions of the ANFIS, ANN, 

and LSSVM models have 2.23, 7.68, and 2.03 K, respectively. Table 6.7 shows the outcomes of 

the developed tools in comparison with the experimental data by Holder and Godbole [355] for i-

butane hydrate in pure water. For the pressure of 35.1 kPa, the estimation of the AdaBoost model 

has 2.8 K deviation from the experimental HDT. At other conditions, the results of the AdaBoost 

tool are better than the outcomes of the ANFIS, ANN, and LSSVM models. 



74 
 

Table 6.6: Comparison of the model’s outputs with the experimental data by Ng and Robinson 

[322] for propane hydrate 

MeOH, 

wt% 
P, kPa 

T, K  Error, K  

Exp. AdaBoost ANFIS ANN LSSVM AdaBoost ANFIS ANN LSSVM 

5.00 

234 272.12 272.12 272.12 271.77 273.21 0.00 0.00 0.35 1.09 

259 272.58 272.58 272.71 271.99 273.24 0.00 0.13 0.59 0.66 

316 273.28 273.28 273.60 272.50 273.29 0.00 0.32 0.78 0.01 

405 274.18 274.18 274.25 273.27 273.27 0.00 0.07 0.91 0.91 

468 274.79 274.79 274.44 273.79 273.43 0.00 0.35 1.00 1.36 

794 275.02 274.97 274.60 276.33 273.72 0.05 0.42 1.31 1.30 

1720 275.09 274.97 277.16 282.77 274.47 0.12 2.07 7.68 0.62 

6340 274.97 274.97 274.71 274.16 276.54 0.00 0.26 0.81 1.57 

10.39 

185 268.30 269.23 268.76 271.17 266.94 0.93 0.46 2.87 1.36 

228 269.23 269.23 269.17 271.23 271.26 0.00 0.06 2.00 2.03 

352 271.07 271.07 269.69 271.40 270.11 0.00 1.38 0.33 0.96 

360 270.93 271.07 269.71 271.41 271.29 0.14 1.22 0.48 0.36 

415 271.59 271.59 269.78 271.48 271.31 0.00 1.81 0.11 0.28 

434 271.82 271.59 269.80 271.51 271.31 0.23 2.02 0.31 0.51 

737 272.07 272.07 269.87 271.89 271.38 0.00 2.20 0.18 0.69 

984 272.10 272.07 269.87 272.18 271.43 0.03 2.23 0.08 0.67 

6510 272.08 272.08 269.98 272.45 271.72 0.00 2.10 0.37 0.36 

 

 

Table 6.7: Comparison of the model’s outputs with the experimental data by Holder and 

Godbole [355] for i-butane hydrate 

P, 

kPa 

T, K  Error, K  

Exp. AdaBoost ANFIS ANN LSSVM AdaBoost ANFIS ANN LSSVM 

17.6 241.4 241.4 242.26 241.37 241.36 0.00 0.86 0.03 0.04 

20.2 243.4 243.4 243.90 243.38 243.48 0.00 0.50 0.02 0.08 

26.4 248.4 248.4 247.60 246.10 248.38 0.00 0.80 2.30 0.02 

35.1 253.7 256.5 252.25 253.69 253.63 2.80 1.45 0.01 0.07 

42.8 256.5 256.5 255.89 256.50 256.58 0.00 0.61 0.00 0.08 

53.5 259.7 259.7 260.25 259.69 259.69 0.00 0.55 0.01 0.01 

66.4 263.3 263.3 264.58 263.20 263.28 0.00 1.28 0.10 0.02 

85.5 268.1 268.1 269.37 267.94 268.08 0.00 1.27 0.16 0.02 

89.7 269.4 269.4 270.18 268.85 269.33 0.00 0.78 0.55 0.07 

91.3 269.5 269.5 270.47 269.43 269.81 0.00 0.97 0.07 0.31 
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The reported data by Mohammadi and Richon [302] for hydrogen sulfide hydrate in solution 

of salts and/or alcohol as well as the estimations of the proposed predictive mathematical models 

are reported in Table 6.8. As can be seen, the best results are obtained from the AdaBoost for all 

the reported thermodynamic conditions. The experimental data by Nixdorf & Oellrich [16] for 

nitrogen hydrate+water system versus the outputs of the presented AdaBoost, ANFIS, and ANN 

models are given in Table 6.9. At the pressure of 17668.0 kPa, the ANFIS model provides the best 

estimation. However, the overall performance of the AdaBoost model is better than the ANFIS, 

ANN, and LSSVM models. Table 6.10 gives the estimations of the presented models in 

comparison with the experimental data published by Kamari & Oyarhossein [287] for natural gas 

hydrate in the presence of pure water. The results prove the ability of the AdaBoost in the 

prediction of the HDT of the studied hydrate system of natural gas.  

 

Table 6.8: Comparison of the model’s outputs with the experimental data by Mohammadi and 

Richon [302] for hydrogen sulfide hydrate 

Concentration, wt% 
P, kPa 

T, K  Error, K  

NaCl CaCl2 MeOH EG Exp. AdaBoost ANFIS ANN LSSVM AdaBoost ANFIS ANN LSSVM 

5 0 0 15 

180 272.7 273.4 274.93 274.48 273.96 0.70 2.23 1.78 1.26 

315 278.3 278.3 277.34 276.28 277.35 0.00 0.96 2.02 0.95 

584 284.4 284.4 282.16 280.39 284.22 0.00 2.24 4.01 0.18 

1082 290.1 290.1 291.07 290.23 288.88 0.00 0.97 0.13 1.22 

5 0 10 0 

189 273.4 273.4 275.16 272.06 274.52 0.00 1.76 1.34 1.12 

288 277.2 277.2 277.76 276.03 276.81 0.00 0.56 1.17 0.39 

456 281.6 281.6 280.61 281.54 280.93 0.00 0.99 0.06 0.67 

777 286.8 286.8 284.69 287.84 286.87 0.00 2.11 1.04 0.07 

0 0 30 0 

236 267.5 267.5 270.79 266.79 268.61 0.00 3.29 0.71 1.11 

338 271.1 271.1 271.08 270.41 270.65 0.00 0.02 0.69 0.45 

496 274.8 274.8 271.52 274.98 274.39 0.00 3.28 0.18 0.41 

0 0 50 0 

201 254.1 254.1 253.89 254.31 254.28 0.00 0.21 0.21 0.18 

328 260.0 260.0 258.52 259.18 258.24 0.00 1.48 0.82 1.76 

464 264.2 264.2 262.93 263.57 262.94 0.00 1.27 0.63 1.26 
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Table 6.9: Comparison of the model’s outputs with the experimental data by Nixdorf & Oellrich 

[306] for nitrogen hydrate 

P, kPa 
T, K  Error, K  

Exp. AdaBoost ANFIS ANN LSSVM AdaBoost ANFIS ANN LSSVM 

16935 273.67 273.67 273.61 273.13 273.66 0.00 0.06 0.54 0.40 

17668 274.07 274.20 274.00 273.50 274.02 0.13 0.07 0.57 0.23 

19521 275.11 275.11 274.96 274.40 274.91 0.00 0.15 0.71 0.35 

20748 275.77 275.77 275.55 274.97 275.47 0.00 0.22 0.80 0.15 

24092 277.27 277.27 277.02 276.40 276.90 0.00 0.25 0.87 0.00 

 

 

Table 6.10: Comparison of the model’s outputs with the experimental data by Kamari & 

Oyarhossein [287] for gas mixture hydrate (C1=81.55%, CO2=3.31%, N2=0.17%, C2=5.37%,  i-

C4=2.23%,  n-C4=0.51%,  i-C5=1.00%,  n-C5=0.52%, C6=0.45%, C7=0.75%, C8+=0.70%, 

H2S=1.05%, and C2H4=2.39%) 

P, kPa 
T, K  Error, K  

Exp. AdaBoost ANFIS ANN LSSVM AdaBoost ANFIS ANN LSSVM 

848.0 274.78 274.78 278.73 281.59 276.41 0.00 3.95 6.81 1.63 

1620.2 279.80 279.80 280.53 281.70 278.03 0.00 0.73 1.90 1.77 

2275.2 282.03 282.03 282.05 281.80 281.12 0.00 0.02 0.23 0.91 

3102.6 284.87 284.87 283.96 281.92 283.61 0.00 0.91 2.95 1.26 

4136.8 286.53 286.53 286.26 282.05 286.37 0.00 0.27 4.48 0.16 

5308.9 288.18 288.18 288.61 282.20 288.89 0.00 0.43 5.98 0.71 
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6.3. Hydrate+IL System 

The summary of the error analysis results, i.e. the obtained values of the ARE%, AARE%, and 

R2%, for the proposed LSSVM, CART and ANFIS tools are given in Table 6.11. For all the 

developed models, the values of R2 reveal that the dissociation/formation temperature of the C1 

hydrate in ILs is predictable from the independent parameters, i.e. pressure of the system, 

concentration of the aqueous phase, critical temperature of IL, and critical pressure of IL. Fig. 6.8 

depicts the outputs of the presented models versus the corresponding experimental values of 

methane hydrate dissociation temperature in ILs. 

 

Table 6.11: Error analysis results of the proposed LSSVM, CART and ANFIS tools 

Model Dataset 
Parameter 

R2 ARD% AARD% 

LSSVM 

Train 0.9911 0.00 0.07 

Test 0.9548 -0.03 0.18 

Total 0.9885 0.00 0.08 

ANFIS 

Train 0.9724 0.00 0.30 

Test 0.9609 0.12 0.36 

Total 0.9712 0.01 0.31 

CART 

Train 0.9781 0.00 0.10 

Test 0.9794 0.01 0.10 

Total 0.9785 0.00 0.10 

ANN 

Train 0.9611 -0.07 0.14 

Test 0.9380 -0.07 0.22 

Total 0.9591 -0.07 0.15 
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Fig. 6.8: Predictions of the presented (a) LSSVM model, (b) ANFIS model, (c) CART, and (d) 

ANN models vs. the corresponding experimental values 
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 According to Table 6.11, the values of ARD% for the presented LSSVM, ANFIS, CART, and 

ANN models are 0.00, 0.01, 0.00, and -0.07, respectively. Hence, it can be concluded that errors 

arising from the presented models are equally distributed between negative and positive values. 

The histograms of the derived relative errors from the presented LSSVM, ANFIS, CART, and 

ANN models are demonstrated in Fig. 6.9. 

As can be observed from Table 6.11, the calculated values of AARD% for the presented 

LSSVM, ANFIS, CART, and ANN models are equal to 0.08, 0.31, 0.10, and 0.15, respectively. 

Hence, all the proposed tools for the application of interest are capable of reproducing the targets 

with satisfactory precision. However, the LSSVM model with two adjustable hyper-parameter 

provides better estimations. On the other hand, the weakest results are provided by the ANFIS 

model. 

For the hydrate system of methane+[Emim][NO3]+water, Table 6.12 gives the performance 

of the presented LSSVM, ANFIS, CART, and ANN models. The concentration of [Emim][NO3] 

in the aqueous phase ranges from 1.0 to 40.0. In Table 6.13, for [Pmim][I], [OH-Emmim][Cl], 

[OH-Emim][ClO4], and [N2,2,2,2][Cl] solution of concentration 10 wt%, the predictions obtained 

from the constructed predictive tools are compared to the corresponding experimental values.  
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Fig. 6.9: Histogram of errors for the presented (a) LSSVM, (b) ANFIS, (c) CART, and (d) ANN 

models 
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Table 6.12: Outputs of the presented models vs. corresponding experimental values for methane 

hydrate+[Emim][NO3]+water system 

wt% P  

(MPa) 

T (K)  Relative error (%)  

Exp. LSSVM ANFIS CART ANN LSSVM ANFIS CART ANN 

1.0 3.54 

4.98 

6.55 

8.42 

13.33 
 

276.1 

279.5 

282.1 

284.5 

288.5 
 

276.2 

279.6 

282.3 

284.4 

288.6 
 

276.0 

277.8 

283.1 

287.6 

290.3 
 

276.1 

279.5 

282.1 

284.1 

288.5 
 

276.2 

279.5 

282.3 

284.4 

288.6 
 

0.02 

0.02 

0.08 

-0.04 

0.02 
 

-0.05 

-0.59 

0.37 

1.09 

0.64 
 

0.00 

0.00 

0.00 

-0.14 

0.00 

 
 

0.04 

0.00 

0.07 

-0.03 

0.03 

 
 

2.5 3.57 

5.04 

6.41 

8.29 

13.44 
 

276.1 

279.4 

281.8 

284.1 

288.3 
 

275.8 

279.3 

281.8 

284.0 

288.2 
 

276.2 

278.1 

282.5 

284.2 

290.0 
 

276.1 

279.4 

281.8 

284.1 

288.3 
 

275.8 

279.3 

281.5 

284.0 

288.2 
 

-0.11 

-0.03 

0.00 

-0.03 

-0.03 
 

0.04 

-0.47 

0.25 

0.04 

0.59 
 

0.00 

0.00 

0.00 

0.00 

0.00 

 
 

-0.11 

-0.04 

-0.11 

-0.04 

-0.03 

 
 

5.0 3.51 

4.75 

6.39 

8.44 

13.20 
 

275.7 

278.5 

281.4 

284.0 

287.8 
 

275.4 

278.3 

281.6 

284.1 

287.9 
 

276.4 

277.4 

281.9 

286.1 

289.0 
 

276.1 

278.5 

281.4 

284.1 

287.6 
 

275.4 

278.1 

281.6 

284.0 

287.9 
 

-0.11 

-0.07 

0.07 

0.03 

0.03 
 

0.25 

-0.39 

0.18 

0.74 

0.42 
 

0.14 

0.00 

0.00 

0.03 

-0.07 

 
 

-0.11 

-0.14 

0.07 

0.00 

0.03 

 
 

5.5 3.08 

4.67 

6.25 

8.21 

12.12 

16.12 
 

274.0 

278.3 

281.1 

283.8 

287.1 

289.7 
 

274.6 

278.0 

281.4 

283.8 

287.0 

289.7 
 

276.8 

277.2 

281.4 

285.7 

288.1 

291.1 
 

274.6 

278.0 

281.5 

283.8 

287.0 

289.7 
 

274.0 

278.3 

281.1 

283.8 

287.1 

288.0 
 

0.22 

-0.11 

0.11 

0.00 

-0.03 

0.00 
 

1.02 

-0.40 

0.11 

0.67 

0.35 

0.48 
 

0.00 

0.00 

0.00 

0.00 

0.00 

-0.58 

 
 

0.22 

-0.11 

0.14 

0.00 

-0.03 

0.00 

 
 

10.0 3.05 

4.91 

6.43 

8.04 

12.87 
 

274.8 

278.3 

280.8 

283.2 

286.8 
 

275.0 

278.0 

281.1 

283.6 

287.2 
 

275.8 

276.8 

280.4 

283.9 

287.1 
 

274.8 

278.3 

281.4 

283.6 

286.8 
 

274.4 

278.0 

281.2 

283.7 

287.2 
 

0.07 

-0.11 

0.11 

0.14 

0.14 
 

0.36 

-0.54 

-0.14 

0.25 

0.10 
 

0.00 

0.00 

0.21 

0.13 

0.00 

 
 

-0.14 

-0.11 

0.14 

0.18 

0.14 

 
 

20.0 3.53 

4.93 

6.05 

8.18 

12.86 
 

273.7 

277.0 

279.4 

281.5 

285.3 
 

273.8 

276.7 

279.6 

281.5 

285.3 
 

272.7 

274.4 

278.3 

281.5 

286.2 
 

273.3 

277.0 

281.4 

281.5 

285.3 
 

273.3 

277.0 

281.4 

281.5 

285.3 
 

0.04 

-0.11 

0.07 

0.00 

0.00 
 

-0.37 

-0.94 

-0.40 

0.00 

0.32 
 

-0.13 

0.00 

0.70 

0.00 

0.00 

 
 

-0.13 

0.00 

0.70 

0.00 

0.00 

 
 

30.0 3.53 

4.91 

6.42 

271.8 

275.1 

277.4 

271.8 

274.9 

277.5 

271.6 

274.6 

278.0 

271.8 

274.3 

278.5 

273.8 

274.2 

278.1 

0.00 

-0.07 

0.04 

-0.07 

-0.18 

0.22 

0.04 

-0.29 

0.38 

0.73 

-0.33 

0.25 
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8.20 

12.88 
 

279.6 

283.4 
 

279.5 

283.4 
 

280.3 

283.6 
 

280.5 

282.8 
 

280.0 

285.3 
 

-0.03 

0.00 
 

0.25 

0.07 
 

0.32 

-0.21 

 
 

0.14 

0.67 

 
 

40.0 3.41 

4.79 

6.35 

8.11 

12.76 
 

269.2 

272.4 

275.0 

277.3 

281.0 
 

269.2 

272.3 

275.0 

277.3 

281.0 
 

270.4 

272.5 

274.4 

275.8 

278.4 
 

269.2 

274.6 

275.0 

277.3 

281.0 
 

269.2 

272.3 

275.1 

274.3 

281.0 
 

0.00 

-0.04 

0.00 

0.00 

0.00 
 

0.45 

0.04 

-0.22 

-0.54 

-0.93 
 

0.00 

0.81 

0.00 

0.00 

0.00 
 

0.00 

-0.04 

0.04 

-1.08 

0.00 
 

  

 

Table 6.13: Outputs of the proposed models vs. corresponding experimental targets for methane 

hydrate in some ILs (10 wt% solution) 

IL P 

(MPa) 

T (K)  Relative error (%)  

Exp. LSSVM ANFIS CART ANN LSSVM ANFIS CART ANN 

[Pmim][I] 10.54 285.8 285.2 285.4 285.8 285.2 -0.21 -0.14 0.00 -0.21 

 14.68 288.8 288.7 288.6 288.5 288.7 -0.03 -0.07 -0.1 -0.03 

 20.36 291.1 291.1 292.7 291.1 291.1 0.00 0.55 0.00 0.00 

[OH-Emmim][Cl] 3.51 274.7 274.8 276.1 274.5 274.8 0.04 0.51 -0.07 0.04 

 4.91 278.1 277.6 276.9 278.1 277.6 -0.18 -0.43 0.00 -0.18 

 6.27 280.5 280.5 280 280.3 280.4 0.00 -0.18 -0.07 -0.03 

 8.24 283.2 283 283.5 283.5 283.0 -0.07 0.11 0.11 -0.07 

 13.28 287.4 287.3 287.1 287.4 287.3 -0.03 -0.10 0.00 -0.03 

[OH-Emim][ClO4] 3.45 275 275 277.4 274.9 275.1 0.00 0.87 -0.04 0.04 

 4.94 278.6 278.5 278.3 278.9 278.5 -0.03 -0.11 0.11 -0.03 

 6.44 281.3 281.5 280.9 281.3 281.5 0.07 -0.14 0.00 0.07 

 8.34 283.5 283.5 283.6 283.5 283.5 0.00 0.04 0.00 0.00 

 12.96 287.4 287.4 288.1 286.7 287.4 0.00 0.24 -0.24 0.00 

[N2,2,2,2][Cl] 2.48 272.1 272.2 273.7 272.1 272.2 0.04 0.59 0.00 0.04 

 3.27 274.9 274.8 275 274.9 274.8 -0.04 0.04 0.00 -0.04 

 4.33 277.6 277.6 276.8 278.5 277.6 0.00 -0.29 0.32 0.00 

 5.39 279.4 279.7 278.6 279.4 279.8 0.11 -0.29 0.00 0.14 

 5.99 280.7 280.7 279.6 280.7 280.1 0.00 -0.39 0.00 -0.21 
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6.4. CO2+Water+Amine Systems 

The results of presented LSSVM and ANFIS models for prediction of CO2 solubility in MEA, 

DEA, and TEA aqueous solutions are compared to the outcomes of the developed ANN and 

AdaBoost-CART models in Table 6.14. Obtained values for the AARD% as a measure of the 

accuracy of the tools reveal that the proposed AdaBoost-CART models for (H2O+TEA+CO2), 

(H2O+MEA+CO2) and (H2O+DEA+CO2) systems provide better predictions than other 

investigated models including ANN, LSSVM, and ANFIS. For all the amine systems, the values 

of R2 for the presented AdaBoost-CART models are more than 0.99 indicating that the models 

perfectly fits the experimental data. As can be seen, employing the ANN models for predicting 

CO2 loading capacity of MEA, DEA, and TEA aqueous solutions results in obtaining the worst 

predictions. 

Fig. 6.10 illustrates the histogram of relative errors in percent for the created ANN models to 

represent the equilibrium absorption of CO2 in MEA, DEA, and TEA aqueous solutions. Similarly, 

Fig. 6.11 depicts the errors histogram for the presented AdaBoost-CART models. Comparing these 

figures shows the good precision of the AdaBoost-CART models over the ANN models in 

estimating the targets. Fig. 6.12 demonstrates the differences between the predictions of developed 

ANFIS tools to calculate the CO2 loading capacity of the studied amines and corresponding 

experimental targets (in terms of relative error). The regenerated CO2 loading of amine solutions, 

i.e. MEA, DEA, and TEA, using the developed LSSVM models are compared to the corresponding 

experimental data in Fig. 6.13. 
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Table 6.14: Overall performance of the models for amine systems 

System Model Parameter Value 

H2O+MEA+CO2 

LSSVM 

R2 0.9803 

ARD%  0.48 

AARD% 4.95 

ANFIS 

R2 0.9854 

ARD%  0.56 

AARD% 3.69 

ANN 

R2 0.9386 

ARD%  1.67 

AARD% 8.73 

AdaBoost-CART 

R2 0.9987 

ARD%  0.15 

AARD% 0.51 

H2O+DEA+CO2 

LSSVM 

R2 0.9918 

ARD%  -1.15 

AARD% 6.52 

ANFIS 

R2 0.9671 

ARD%  -0.11 

AARD% 3.60 

ANN 

R2 0.9580 

ARD%  1.31 

AARD% 8.24 

AdaBoost-CART 

R2 0.9977 

ARD%  -1.91 

AARD% 2.76 

H2O+TEA+CO2 

LSSVM 

R2 0.9851 

ARD%  -1.18 

AARD% 6.09 

ANFIS 

R2 0.9986 

ARD%  0.03 

AARD% 2.06 

ANN 

R2 0.9929 

ARD%  0.58 

AARD% 3.92 

AdaBoost-CART 

R2 0.9998 

ARD%  1.14 

AARD% 1.14 
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Fig. 6.10: Histogram of relative errors of the presented ANN models for (a) MEA, (b) DEA, and 

(c) TEA amine systems 
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Fig. 6.11: Histogram of relative errors of the presented AdaBoost-CART models for (a) MEA, 

(b) DEA, and (c) TEA amine systems 
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(c) 

Fig. 6.12: Relative deviations of the predicted CO2 loading capacity of amines by the proposed 

ANFIS tools from targets for: (a) MEA, (b) DEA, and (c) TEA systems 
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Fig. 6.13: The developed LSSVM model for (a) MEA, (b) DEA, and (c) TEA aqueous solutions 

vs. the corresponding experimental targets 
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The negative value of ARD% for the developed AdaBoost-CART model for H2O+DEA+CO2 

system indicates that the estimations of the model are slightly underestimated. For the presented 

tree-based models for MEA and TEA systems, the values of ARD% are positive. The values of 

this parameter for all the developed ANN models are also positive. Hence, the ANN models as 

well as the tree-based models for MEA and TEA systems give slightly overestimated predictions. 

Table 6.15 summarizes the ranges for the obtained errors (absolute) using the LSSVM and 

ANFIS models and the proposed ANN and AdaBoost tools as well. For the H2O+MEA+CO2 and 

H2O+DEA+CO2 systems, maximum errors of the built AdaBoost-CART models are lower than 

the maximum errors of other models. For H2O+TEA+CO2 system, the ANFIS model has the best 

error range. Considering the values of maximum error, the ANN models have the weakest 

performance in representing the target values of the studied amine systems. Graphical comparison 

of the presented LSSVM, ANFIS, ANN, and AdaBoost-CART models in terms of the number of 

predictions with absolute relative deviation in percent more than 10.00 is depicted in Fig. 6.14. 

For MEA solution of 5.00 mol/L, Table 6.16 gives the outcomes of the proposed AdaBoost-

CART model versus corresponding experimental data by Shen and Li [375] (for T=298.15 and 

T=373.15 K), and Lee et al. [372] (for T=335.15, T=353.15, and T=373.15 K). The estimated CO2 

solubility in 0.1836 mol/L MEA aqueous solution with the developed AdaBoost-CART model is 

demonstrated in Fig. 6.15. The experimental data are reported by Park et al. [373]. 
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Table 6.15: Error ranges of the models for amine systems 

System Model Abs. RD (%) 

Min Max 

CO2+MEA+Water LSSVM 0.00 18.62 

ANFIS 0.00 25.66 

ANN 0.16 62.35 

AdaBoost-CART 0.00 9.57 

CO2+DEA+Water LSSVM 0.01 298.18 

ANFIS 0.00 98.47 

ANN 0.00 317.94 

AdaBoost-CART 0.00 81.24 

CO2+TEA+Water LSSVM 0.00 26.48 

ANFIS 0.00 17.80 

ANN 0.00 30.48 

AdaBoost-CART 0.00 22.22 

 

 

Fig. 6.14: Comparing the predictive mathematical models in terms of high absolute relative 

deviation (%) for (a) MEA, (b) DEA, and (c) TEA amine systems 
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Table 6.16: Results of the built AdaBoost model vs. corresponding targets for MEA solution of 

concentration 5 mol/L 

Ref. T (K) PCO2 (kPa) 
  (mol of CO2/mol of amine) Abs. 

RD% Exp. AdaBoost-CART 

[372] 

298.15 

10.373 0.555 0.555 0.00 

31.371 0.601 0.601 0.00 

98.629 0.664 0.664 0.00 

322.352 0.739 0.739 0.00 

1013.460 0.851 0.851 0.00 

373.15 

10.173 0.289 0.289 0.00 

31.986 0.353 0.353 0.00 

100.563 0.447 0.427 4.47 

316.154 0.501 0.501 0.00 

993.975 0.581 0.581 0.00 

[375] 

333.15 

15.596 0.495 0.495 0.00 

30.768 0.514 0.514 0.00 

59.536 0.526 0.526 0.00 

94.873 0.558 0.565 1.25 

115.201 0.565 0.565 0.00 

439.791 0.592 0.592 0.00 

834.628 0.646 0.646 0.00 

353.15 

8.217 0.403 0.403 0.00 

14.430 0.422 0.460 9.00 

24.374 0.446 0.446 0.00 

35.938 0.464 0.464 0.00 

76.629 0.493 0.493 0.00 

115.201 0.515 0.515 0.00 

399.106 0.532 0.532 0.00 

818.575 0.559 0.559 0.00 

1183.753 0.595 0.595 0.00 

373.15 

8.710 0.306 0.306 0.00 

20.072 0.347 0.345 0.58 

41.976 0.411 0.411 0.00 

73.710 0.427 0.423 0.94 

100.563 0.423 0.427 0.94 

383.904 0.457 0.457 0.00 

787.400 0.508 0.508 0.00 

1160.997 0.523 0.523 0.00 
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Fig. 6.15: Performance of the proposed AdaBoost-CART model in predicting CO2 solubility in 

MEA solution of concentration 0.1836 mol/L at T=313.15 K [373]  

 

For the DEA concentration in the aqueous phase at 3.50 mol/L, Table 6.17 compares the results 

of the developed AdaBoost-CART model at temperatures between 298.15 and 373.15 K with the 

experimental data by Vallée et al. [382]. Fig. 6.16 shows the capability of the presented tree-based 

tool in reproducing the reported data by Jane and Li [379]. 
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Table 6.17: Results of the built AdaBoost model vs. corresponding targets for DEA solution of 

concentration 3.5 mol/L [382] 

T (K) PCO2 (kPa) 
  (mol of CO2/mol of amine) Abs. 

RD% Exp. AdaBoost-CART 

298.15 

22.19 0.599 0.630 5.17 

70.17 0.693 0.693 0.00 

203.10 0.790 0.790 0.00 

671.31 0.914 0.914 0.00 

2030.90 1.033 1.033 0.00 

6422.30 1.189 1.189 0.00 

323.15 

21.23 0.468 0.465 0.55 

70.17 0.564 0.564 0.00 

194.29 0.666 0.765 14.82 

701.70 0.782 0.782 0.00 

2030.90 0.922 0.918 0.49 

7017.00 1.081 1.081 0.00 

348.15 

22.19 0.334 0.334 0.00 

67.13 0.434 0.484 11.52 

221.90 0.540 0.616 14.07 

671.30 0.664 0.664 0.00 

2122.90 0.803 0.803 0.00 

6713.10 0.986 0.986 0.00 

373.15 

22.19 0.184 0.184 0.00 

70.17 0.295 0.344 16.61 

221.90 0.414 0.414 0.00 

671.30 0.539 0.539 0.00 

2122.90 0.682 0.803 17.74 

6713.10 0.857 0.857 0.00 
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Fig. 6.16: Performance of the proposed AdaBoost-CART model in predicting CO2 solubility in 

DEA solution of concentration 0.1831 mol/L at T=338.75 K [379] 

 

Table 6.18 presents a comparison of the developed AdaBoost-CART tool with the real CO2 

loading capacity of TEA solution with a concentration equal to 2.00 mol/L at 313.20-353.20 K 

temperature range. The capability of the proposed CART-based model in regenerating the reported 

data by Mason and Dodge [461], for H2O+TEA (3.5 mol/L)+CO2 system is shown in Fig. 6.17. 
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Table 6.18: Results of the built AdaBoost model vs. corresponding targets for TEA solution of 

concentration 2 mol/L [383] 

T (K) 
PCO2 

(kPa) 

  (mol of CO2/mol of amine) Abs. 

RD% Exp. AdaBoost-CART 

313.2 

1.62 0.085 0.085 0.00 

6.56 0.128 0.128 0.00 

9.56 0.169 0.169 0.00 

14.98 0.205 0.205 0.00 

36.27 0.345 0.345 0.00 

92.98 0.534 0.534 0.00 

333.2 

2.60 0.077 0.077 0.00 

8.58 0.114 0.114 0.00 

32.91 0.207 0.207 0.00 

53.88 0.243 0.243 0.00 

60.17 0.257 0.257 0.00 

90.97 0.340 0.340 0.00 

153.40 0.485 0.485 0.00 

353.2 

5.42 0.066 0.066 0.00 

8.05 0.080 0.080 0.00 

20.56 0.108 0.108 0.00 

43.01 0.134 0.134 0.00 

98.14 0.178 0.178 0.00 

137.90 0.191 0.191 0.00 
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Fig. 6.17: Performance of the proposed AdaBoost-CART model in predicting CO2 solubility in 

TEA solution of concentration 3.5 mol/L at T=298.15 K [461] 

   

Fig. 6.18 demonstrates the relative importance of each feature, i.e. 
2COP , eaC min , and T, in the 

creation of the proposed AdaBoost-CART models for (H2O+TEA+CO2), (H2O+MEA+CO2) 

(H2O+DEA+CO2) systems. As can be observed from Fig. 6.18, in development of the CART-

based tools for all the studied systems, the amine concentration in aqueous phase has the lowest 

importance as compared to other features. On the other hand, CO2 partial pressure is the most 

influencing factor in developing the AdaBoost-CART model to predict the solubility of CO2 in 

DEA solution. In case of the models for MEA and TEA systems, the temperature is the most 

effective parameter.  
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Fig. 6.18: Relative importance of each input on the CO2 solubility in (a) MEA, (b) DEA, and 

(TEA) solution in development of the proposed AdaBoost-CART models 

 

6.5. CO2+IL System 

Error results of the CART model are given in Table 6.19. With accordance to Table 6.19, the 

R2 between the predictions of the proposed tree-based tool and corresponding target CO2 solubility 

in ILs is equal to 1; this reveals that the regression line thoroughly passes through the targets. The 

R2 is graphically represented in Fig. 6.19. The AARD% calculated for the train data points shows 

an excellent ability of the CART-based approach via the training (development) phase. Moreover, 

for the test data points, the AARD% less than 0.05% indicates the vigor of the created model for 

accurate prediction of the unobserved datasets. 
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Table 6.19: Error analysis for the Created CART-based tool 

Dataset 

Variable 
 

 

ARD% R2 AARD% 

Train 0.0 1 0.04 

Test 0.01 1 0.06 

 

 

 

Fig. 6.19: Calculated solubility of CO2 in ILs vs. target values  

 

The accuracy of the calculations of CO2 solubility in ILs using the created CART and the 

previously published RBF-ANN, LSSVM, MLP-ANN and ANFIS tools are given in Table 6.20 

and Fig. 6.20. As can be observed, among the studied methods by Baghban, Mohammadi and 

Taleghani [460], the LSSVM tool provides the best outcomes in terms of AARD% and R2 values. 

However, comparing the capability of the LSSVM tool with the created CART model indicates 

that using the CART presents much better calculations as the AARD% and R2 values are 0.04 and 
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1, respectively. Since the values of ARD% for all the literature models, i.e. RBF-ANN, LSSVM, 

MLP-ANN and ANFIS [460], are positive, these tools overestimate the solubility of CO2 in ILs. 

Amongst the proposed tools by Baghban, Mohammadi and Taleghani [460], ANFIS presents the 

weakest estimation capability. 

 

 

Table 6.20: The created CART-based tool vs. the literature models [460] 

Tool 

Variable   

ARD% R2 AARD% 

CART 0.0 1 0.04 

LSSVM 13.60 -7.16 17.17 

ANFIS 41.54 0.9185 62.84 

MLP-ANN 7.36 0.9726 34.28 

RBF-ANN 12.80 0.9821 25.25 
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Fig. 6.20: The created tree-based model vs. the published models in the literature [460] 
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Fig. 6.21 shows the number of estimations by the created tree-based tool and the literature 

models [460] that resulted in absolute relative deviation percent values more than 25. According 

to Fig. 6.21, just one data is reproduced by the created CART bad absolute RD%. Some of the bad 

predictions of the created tree and the published models in the literature [460] are given in Tables 

6.21-6.29. Table 6.21 indicates that AARD% of the poor outputs of the created tree is less than 

6.5%. However, AARD% of bad estimations of the published literature models are more than 

1813%, 1494% 5060% and 2432%. 

 

 

Fig. 6.21: The published literature models [460] vs. the created CART tooll in terms of high 

absolute RD% 
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Table 6.21: Results of the created tree-based tool with high deviation from the targets 

T, K P, MPa Tc Pc   
molmol /,  

RD% 
Exp Extra Tree 

348.5 0.0485 876.24 2.22 1.327 0.008 0.01 25.00 

348.5 0.0485 876.24 2.22 1.327 0.012 0.01 -16.67 

343.55 4.495 1225.8 7.95 0.7698 0.4 0.4515 12.87 

348.5 0.098 876.24 2.22 1.327 0.017 0.019 11.76 

343.55 4.495 1225.8 7.95 0.7698 0.503 0.4515 -10.24 

297.4 0.0091 876.24 2.22 1.327 0.007 0.0063 -10.00 

348.5 0.098 876.24 2.22 1.327 0.021 0.019 -9.52 

313.15 0.0097 1255.7 1.803 0.5876 0.0028 0.003 7.14 

314.05 5.15 788.05 3.31 1.225 0.551 0.5891 6.91 

314.05 5.15 788.05 3.31 1.225 0.6271 0.5891 -6.06 

313.89 0.0386 632.3 2.04 0.8489 0.0054 0.0057 5.55 

334.38 0.0435 632.3 2.04 0.8489 0.0054 0.0051 -5.55 

324.12 0.0421 632.3 2.04 0.8489 0.0056 0.0053 -5.36 

323.15 0.0102 1073.7 1.615 1.0726 0.0019 0.0018 -5.26 

297.4 0.0091 876.24 2.22 1.327 0.006 0.0063 5.00 

297.4 0.0091 876.24 2.22 1.327 0.006 0.0063 5.00 

333.15 0.0101 1255.7 1.803 0.5876 0.0023 0.0024 4.35 

344.49 0.0427 632.3 2.04 0.8489 0.0047 0.0049 4.25 

334.38 0.0413 632.3 2.04 0.8489 0.0049 0.0051 4.08 

323.15 0.0101 1255.7 1.803 0.5876 0.0025 0.0024 -4.00 

344.49 0.045 632.3 2.04 0.8489 0.0051 0.0049 -3.92 

324.12 0.04 632.3 2.04 0.8489 0.0051 0.0053 3.92 

413.1 3.431 1081.6 3.61 0.4111 0.0913 0.0948 3.83 

313.89 0.0406 632.3 2.04 0.8489 0.0059 0.0057 -3.39 

323.2 0.0828 708.9 1.73 0.7553 0.0124 0.012 -3.22 

313.3 0.103 708.9 1.73 0.7553 0.0162 0.0158 -2.47 

303.72 0.0772 632.3 2.04 0.8489 0.0127 0.013 2.36 

303.72 0.0726 632.3 2.04 0.8489 0.0133 0.013 -2.25 

334.15 0.089 632.3 2.04 0.8489 0.0095 0.0097 2.10 

313.15 0.348 950.45 33.21 1.666 0.0158 0.0161 1.90 
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Table 6.22: Results of the published LSSVM [460] with high deviation from the targets 

T, K P, MPa Tc Pc   
molmol /,  

RD% 
Exp LSSVM 

318 0.0963 788.05 3.31 1.225 0.0001 0.030393 30293.28 

322.9 0.0091 876.24 2.22 1.327 0.001 0.031726 3072.55 

338 0.098 708.9 1.73 0.7553 0.0006 0.013134 2088.92 

282.75 0.01017 632.3 2.04 0.8489 0.002 0.033414 1570.71 

322.8 0.0091 876.24 2.22 1.327 0.002 0.031868 1493.41 

298 0.0105 708.9 1.73 0.7553 0.001 0.014995 1399.55 

298.05 0.01015 708.9 1.73 0.7553 0.001 0.014885 1388.47 

298.2 0.01 632.3 2.04 0.8489 0.001 0.010896 989.64 

298.15 0.0097 1221.9 1.828 0.2603 0.003 0.032305 976.82 

282 0.0089 876.24 2.22 1.327 0.006 0.059445 890.75 

298.2 0.01 788.05 3.31 1.225 0.004 0.035366 784.16 

298.1 0.01 824.67 28.86 0.6808 0.001 0.008801 780.09 

281.9 0.009 876.24 2.22 1.327 0.007 0.059767 753.81 

298.15 0.01 1255.8 2.031 0.3193 0.002 0.014736 636.78 

298.15 0.01 1255.8 2.031 0.3193 0.002 0.014736 636.78 

297.4 0.0091 876.24 2.22 1.327 0.006 0.041903 598.38 

297.4 0.0091 876.24 2.22 1.327 0.006 0.041903 598.38 

283.05 0.00969 708.9 1.73 0.7553 0.004 0.025309 532.73 

283.1 0.0097 708.9 1.73 0.7553 0.004 0.025302 532.55 

298.15 0.0099 1155 1.173 0.5207 0.003 0.018405 513.50 

297.4 0.0091 876.24 2.22 1.327 0.007 0.041903 498.61 

348.5 0.0091 876.24 2.22 1.327 0.004 0.023579 489.47 

348.5 0.0091 876.24 2.22 1.327 0.004 0.023579 489.47 

297.95 0.00973 632.3 2.04 0.8489 0.002 0.011017 450.83 

313.15 0.0097 1255.7 1.803 0.5876 0.00284 0.013331 369.39 

313.15 0.0101 1073.7 1.615 1.0726 0.00178 0.007913 344.54 

322.9 0.0487 876.24 2.22 1.327 0.009 0.038372 326.36 

333.15 0.0101 1255.7 1.803 0.5876 0.0023 0.009586 316.76 

333.15 0.0101 1038.7 2.588 0.3334 0.00182 0.007469 310.39 

322.9 0.0482 876.24 2.22 1.327 0.01 0.038288 282.88 
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Table 6.23: Results of the published ANFIS [460] with high deviation from the targets 

T, K P, MPa Tc Pc   
molmol /,  

RD% 
Exp ANFIS 

318 0.0963 788.05 3.31 1.225 0.0001 0.047109 47008.97 

298.1 0.01 824.67 28.86 0.6808 0.001 0.196765 19576.49 

298 0.0105 708.9 1.73 0.7553 0.001 0.053345 5234.48 

298.05 0.01015 708.9 1.73 0.7553 0.001 0.053176 5217.60 

298.15 0.01 1255.8 2.031 0.3193 0.002 0.090346 4417.30 

298.15 0.01 1255.8 2.031 0.3193 0.002 0.090346 4417.30 

282.75 0.01017 632.3 2.04 0.8489 0.002 0.08212 4006.00 

298.2 0.01 632.3 2.04 0.8489 0.001 0.040802 3980.20 

343.15 0.0099 1255.8 2.031 0.3193 0.002 0.072611 3530.54 

343.15 0.0099 1255.8 2.031 0.3193 0.002 0.072611 3530.54 

333.15 0.0101 1255.7 1.803 0.5876 0.0023 0.075709 3191.72 

343.15 0.0097 1221.9 1.828 0.2603 0.002 0.063271 3063.56 

323.1 0.01 824.67 28.86 0.6808 0.004 0.125239 3030.96 

323.15 0.0101 1255.7 1.803 0.5876 0.00254 0.0782 2978.75 

298.15 0.0097 1221.9 1.828 0.2603 0.003 0.091873 2962.43 

313.15 0.01 1255.8 2.031 0.3193 0.003 0.0853 2743.35 

313.15 0.01 1255.8 2.031 0.3193 0.003 0.0853 2743.35 

313.15 0.0097 1255.7 1.803 0.5876 0.00284 0.079074 2684.31 

323.15 0.01 1038.7 2.588 0.3334 0.00209 0.057706 2661.07 

313.15 0.0097 1221.9 1.828 0.2603 0.003 0.080799 2593.29 

322.9 0.0091 876.24 2.22 1.327 0.001 0.026472 2547.16 

333.15 0.0101 1038.7 2.588 0.3334 0.00182 0.047793 2525.97 

283.05 0.00969 708.9 1.73 0.7553 0.004 0.097481 2337.03 

283.1 0.0097 708.9 1.73 0.7553 0.004 0.097308 2332.71 

313.15 0.0101 1073.7 1.615 1.0726 0.00178 0.041966 2257.64 

298.1 0.0498 824.67 28.86 0.6808 0.009 0.197308 2092.31 

298.15 0.0099 1155 1.173 0.5207 0.003 0.065271 2075.70 

328.15 0.127 821.61 43.54 1.2287 0.0034 0.073509 2062.02 

323.15 0.0102 1073.7 1.615 1.0726 0.00187 0.039506 2012.62 

348.2 0.0102 708.9 1.73 0.7553 0.001 -0.01896 -1996.21 
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Table 6.24: Results of the published MLP-ANN [460] with high deviation from the targets 

T, K P, MPa Tc Pc   
molmol /,  

RD% 
Exp MLP-ANN 

318 0.0963 788.05 3.31 1.225 0.0001 0.010103 10002.97 

298.1 0.01 824.67 28.86 0.6808 0.001 0.074585 7358.45 

333.15 0.0101 1255.7 1.803 0.5876 0.0023 0.133895 5721.51 

323.15 0.0101 1255.7 1.803 0.5876 0.00254 0.127059 4902.32 

313.15 0.0097 1255.7 1.803 0.5876 0.00284 0.12388 4261.98 

333.15 0.0101 1038.7 2.588 0.3334 0.00182 0.055442 2946.27 

323.15 0.01 1038.7 2.588 0.3334 0.00209 0.057863 2668.57 

348.15 0.0102 632.3 2.04 0.8489 0.002 -0.04833 -2516.58 

298 0.0105 708.9 1.73 0.7553 0.001 0.024982 2398.25 

298.05 0.01015 708.9 1.73 0.7553 0.001 0.024849 2384.85 

344.49 0.02033 632.3 2.04 0.8489 0.00236 -0.04595 -2047.15 

328.15 0.156 853.92 29.28 1.3308 0.0024 -0.04541 -1992.29 

328.15 0.158 970.51 28.24 1.6719 0.0027 -0.04723 -1849.11 

334.38 0.0197 632.3 2.04 0.8489 0.00243 -0.04197 -1827.22 

348.15 0.05013 632.3 2.04 0.8489 0.003 -0.04391 -1563.77 

298.15 0.0099 1155 1.173 0.5207 0.003 0.049889 1562.97 

324.12 0.01906 632.3 2.04 0.8489 0.00255 -0.03643 -1528.61 

338 0.098 708.9 1.73 0.7553 0.0006 0.00962 1503.36 

333.15 0.05 1255.7 1.803 0.5876 0.00902 0.139948 1451.53 

323.25 0.01015 632.3 2.04 0.8489 0.003 -0.03705 -1335.04 

354.2 0.065 632.3 2.04 0.8489 0.004 -0.0444 -1210.01 

283.05 0.00969 708.9 1.73 0.7553 0.004 0.051992 1199.79 

283.1 0.0097 708.9 1.73 0.7553 0.004 0.051892 1197.30 

323.15 0.0501 1255.7 1.803 0.5876 0.01052 0.133765 1171.53 

282.75 0.01017 632.3 2.04 0.8489 0.002 0.02511 1155.52 

313.89 0.0184 632.3 2.04 0.8489 0.00271 -0.02823 -1141.72 

298.15 0.01 1255.8 2.031 0.3193 0.002 0.022679 1033.95 

298.15 0.01 1255.8 2.031 0.3193 0.002 0.022679 1033.95 

344.49 0.04267 632.3 2.04 0.8489 0.00474 -0.04342 -1015.95 

328.15 0.169 950.45 33.21 1.666 0.0035 -0.03154 -1001.11 
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Table 6.25: Results of the published RBF-ANN [460] with high deviation from the targets 

T, K P, MPa Tc Pc   
molmol /,  

RD% 
Exp RBF-ANN 

318 0.0963 788.05 3.31 1.225 0.0001 0.014292 14192.04 

298.1 0.01 824.67 28.86 0.6808 0.001 -0.00361 -460.91 

298 0.0105 708.9 1.73 0.7553 0.001 0.021087 2008.67 

298.05 0.01015 708.9 1.73 0.7553 0.001 0.021032 2003.19 

298.15 0.01 1255.8 2.031 0.3193 0.002 0.050813 2440.63 

298.15 0.01 1255.8 2.031 0.3193 0.002 0.050813 2440.63 

282.75 0.01017 632.3 2.04 0.8489 0.002 0.031315 1465.77 

298.2 0.01 632.3 2.04 0.8489 0.001 0.00759 659.03 

343.15 0.0099 1255.8 2.031 0.3193 0.002 0.010326 416.30 

343.15 0.0099 1255.8 2.031 0.3193 0.002 0.010326 416.30 

333.15 0.0101 1255.7 1.803 0.5876 0.0023 0.045591 1882.20 

343.15 0.0097 1221.9 1.828 0.2603 0.002 -0.0266 -1430.22 

323.1 0.01 824.67 28.86 0.6808 0.004 -0.00448 -212.12 

323.15 0.0101 1255.7 1.803 0.5876 0.00254 0.04948 1848.02 

298.15 0.0097 1221.9 1.828 0.2603 0.003 0.054857 1728.57 

313.15 0.01 1255.8 2.031 0.3193 0.003 0.028414 847.12 

313.15 0.01 1255.8 2.031 0.3193 0.003 0.028414 847.12 

313.15 0.0097 1255.7 1.803 0.5876 0.00284 0.067021 2259.90 

323.15 0.01 1038.7 2.588 0.3334 0.00209 0.025532 1121.62 

313.15 0.0097 1221.9 1.828 0.2603 0.003 0.028958 865.28 

322.9 0.0091 876.24 2.22 1.327 0.001 0.000545 -45.46 

333.15 0.0101 1038.7 2.588 0.3334 0.00182 0.028043 1440.81 

283.05 0.00969 708.9 1.73 0.7553 0.004 0.025453 536.32 

283.1 0.0097 708.9 1.73 0.7553 0.004 0.025335 533.37 

313.15 0.0101 1073.7 1.615 1.0726 0.00178 0.005883 230.51 

298.1 0.0498 824.67 28.86 0.6808 0.009 0.002013 -77.63 

298.15 0.0099 1155 1.173 0.5207 0.003 0.044918 1397.26 

328.15 0.127 821.61 43.54 1.2287 0.0034 0.006853 101.56 

323.15 0.0102 1073.7 1.615 1.0726 0.00187 2.89E-05 -98.45 

348.2 0.0102 708.9 1.73 0.7553 0.001 0.009366 836.56 

 

 



106 
 

The created tree-based tool for estimating the CO2 solubility in different solvents and at various 

temperatures and pressures are depicted in Fig. 6.22-25.  

 

Figure 6.22: Prediction CART tool of CO2 solubility in IL with PC=2.36 MPa, TC=585.3 K, and 

 =0.7685 
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Fig. 6.23: Prediction CART tool of CO2 solubility in IL with PC=3.48 MPa, TC=756.89 K, and 

 =0.783 
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Fig. 6.24: Prediction CART tool of CO2 solubility in IL with PC=1.8171 MPa, TC=1277.68 K, 

and  =0.5475 
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Fig. 6.25: Prediction CART tool of CO2 solubility in IL with PC=1.803 MPa, TC=1255.7 K, and 

 =0.5876 

 

The relative importance of each input including pressure, temperature, critical pressure, critical 

temperature, and acentric factor in the development of the proposed tree-based tool is shown in 

Fig. 6.26. The most important variable that impacts the creation of the presented CART is the 

system’s pressure (73.16%); on the other hand, the critical pressure of the IL has the lowest 

importance (4.04%). Baghban et al. [460] employed the relevancy factor combined with the 
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LSSVM tool to determine the effect of the independent variables of the target. In a respective 

order, pressure and temperature have the highest and lowest impacts.  
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Fig. 6.26: Relative importance of each input in creation of the proposed tree-based tool for 

predicting the CO2 solubility in ILs 
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6.6. CO2+Water+PZ System 

Table 6.26 gives the error analysis information. The AARD% of 0.93 proves the robustness 

of the created AdaBoost-CART tool for (CO2+water+PZ) system. Considering the ARD%, the 

developed AdaBoost-CART tool slightly overestimates the targets. As given in Table 6.26, there 

is no satisfactory agreement between the predictions of the LSSVM, ANFIS and ANN tools and 

the corresponding experimental values.  

Table 6.26: Error analysis of the created tools for (CO2+water+PZ) system 

Tool Dataset 
Variable   

R2 AARD% ARD% 

AdaBoost-CART 

Train 0.9970 0.94 0.25 

Test 0.9934 0.83 -0.02 

Total 0.9967 0.93 0.22 

LSSVM 

Train 0.8840 16.28 6.42 

Test 0.8905 15.84 0.51 

Total 0.8843 16.23 5.82 

ANN 

Train 0.7858 17.19 6.08 

Test 0.7880 32.16 20.55 

Total 0.7849 18.69 7.53 

ANFIS 

Train 0.8940 16.06 6.27 

Test 0.8505 15.42 5.23 

Total 0.8890 15.99 6.16 

 

Fig. 6.27 visualizes the outputs of the developed tools versus the targets (absorption of CO2 

in PZ solution). Fig. 6.28 is the histogram of the errors for the developed tools. Predictions of the 

created AdaBoost tool versus the experimental data by Nguyen et al. [446] and Bishnoi and 

Rochelle [443] are summarized in Table 6.27 and Table 6.28, respectively. 
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Fig. 6.27: The experimental CO2 solubility in PZ vs. the outputs of the created (a) AdaBoost-

CART, (b) LSSVM, (c) ANN, and (d) ANFIS tools 
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Fig. 6.28: Histogram of errors for the created tools 
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Table 6.27: Outcomes of the created AdaBoost tool vs. the experimental data by Nguyen et al. 

[446] for (CO2+water+PZ) 

T (K)  PCO2 (kPa) 
  (mol CO2/mol PZ) 

RE% 
Experimental AdaBoost-CART 

313.15 

7.643 
5.89 0.58 0.58 0.00 

5.92 0.80 0.80 0.00 

4.781 

6.83 0.34 0.56 64.29 

6.83 0.68 0.56 -17.85 

6.86 0.54 0.54 0.00 

6.92 0.44 0.44 0.00 

6.99 0.82 0.82 0.00 

1.913 

7.07 0.62 0.62 0.00 

7.13 0.30 0.30 0.00 

7.18 0.74 0.74 0.00 

7.20 0.52 0.52 0.00 

7.21 0.46 0.46 0.00 

7.51 0.86 0.86 0.00 

333.15 

7.707 15.50 0.80 0.80 0.00 

7.708 15.60 0.58 0.58 0.00 

4.825 

17.30 0.32 0.39 21.88 

17.30 0.46 0.39 -15.22 

17.40 0.66 0.66 0.00 

4.826 
17.60 0.60 0.60 0.00 

17.60 0.78 0.74 -5.77 

1.931 

17.90 0.56 0.56 0.00 

17.90 0.34 0.34 0.00 

18.00 0.26 0.26 0.00 

18.10 0.38 0.52 36.84 

18.10 0.66 0.52 -21.21 

18.20 0.74 0.74 0.00 

18.30 0.76 0.76 0.00 

4.830 18.50 0.84 0.84 0.00 

1.932 18.50 0.82 0.82 0.00 
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Table 6.28: Outcomes of the created AdaBoost tool vs. the experimental data by Bishnoi and 

Rochelle [443] 

T (K) 
PCO2 

(kPa) 

  (mol CO2/mol PZ) 
RE% 

Experimental AdaBoost-CART 

313 

0.03 0.32 0.32 0.00 

0.04 0.32 0.32 0.00 

0.08 0.47 0.47 0.00 

0.11 0.48 0.47 -2.08 

0.25 0.55 0.55 0.00 

0.45 0.61 0.63 3.28 

0.85 0.72 0.72 0.00 

0.95 0.72 0.72 0.00 

3.00 0.82 0.82 0.00 

40.00 0.96 0.96 0.00 

343 

0.06 0.16 0.16 0.00 

0.13 0.22 0.22 0.00 

0.45 0.35 0.35 0.00 

0.65 0.42 0.50 19.05 

1.44 0.47 0.47 0.00 

3.43 0.59 0.62 5.08 

7.88 0.72 0.72 0.00 

 

 

In a respective order, Figs. 6.29 to 6.31 graphically shows the AdaBoost-CART estimations 

vs. experimental data reported by Dash et al. [168], Derks et al. [444] and Kamps, Xia and Maurer 

[445]. The relative importance of the inputs in creation process of the AdaBoost-CART tool for 

modeling the (CO2+water+PZ( equilibrium system is depicted in Fig. 6.32. 
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Fig. 6.29: AdaBoost-CART predictions vs. experimental data by Dash, Samanta and 

Bandyopadhyay [168] 
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Fig. 6.30: AdaBoost-CART predictions vs. experimental data by Derks, Dijkstra, Hogendoorn 

and Versteeg [444] 
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Fig. 6.31: AdaBoost-CART predictions vs. experimental data by Kamps, Xia and Maurer [445] 
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Fig. 6.32: Relative importance of the inputs in creation of the AdaBoost-CART tool for 

(CO2+water+PZ) system 
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6.7. CO2+Water+SG System  

The statistical variables used for error analysis are given in Table 6.29. The AARD% of 

0.89 indicates the excellent performance of the created model. Considering the ARD% for all the 

studied data, the developed AdaBoost-CART tool slightly underestimates the targets. For 

visualizing the estimations and the targets, Fig. 6.33 is provided. Fig. 6.34 depicts the histogram 

of the errors for the created tree model.  

Table 6.29: Statistical variables for the created AdaBoost-CART tool 

Dataset 

Variable    

AARD% ARD% 

Train 0.76 -0.17 

Test 2.04 0.25 

Total 0.89 -0.13 
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Fig. 6.33: The experimental targets vs. the outputs of the created AdaBoost-CART tool 
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Fig. 6.34: Errors histogram for the created AdaBoost-CART tool 

 

The error analysis results for other developed tools are tabulated in Table 6.30. With 

accordance to Table 6.30, these tools regenerate the target values with good accuracy. However, 

it is clear that the AdaBoost-CART methodology provides more robust outcomes than other 

techniques. 
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Table 6.30: Statistical variables for other created tools 

Tool  Dataset 
Parameter   

ARD% R2 AARD% 

LSSVM 

Train 1.36 0.9070 13.24 

Test -7.16 0.8808 14.37 

Total 0.49 0.9023 13.36 

ANN 

Train 4.81 0.8857 18.25 

Test 3.35 0.7078 14.31 

Total 4.66 0.8863 17.85 

ANFIS 

Train 2.64 0.9259 14.77 

Test 12.21 0.7872 21.15 

Total 3.61 0.9139 15.42 

 

 

Table 6.31 compares the outcomes of the created AdaBoost-CART tool in comparison 

with some target values. For solution of SG with concentration of 10 mass%, Fig. 6.35 depicts the 

AdaBoost-CART tool for calculation of the CO2 solubility in SG. 

Fig. 6.36 illustrates the relative importance of the inputs. As shown in Fig. 6.36, the CO2 

partial pressure constitutes the most important variable in the creation of the obtained AdaBoost-

CART tool. On the other hand, the system’s temperature has the lowest importance on the tree tool 

development. 
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Table 6.31: Rresults of the created AdaBoost-CART tool vs. selected targets 

T (K) CSG 

(mass%) 
2COP  (kPa)   (mol CO2/ mol SG solution) RD % 

Experimental Predicted 

313.15 5 3.24 0.5718 0.5718 0.00 

10 184.40 1.041 1.0480 0.67 

15 39.84 0.5975 0.6017 0.70 

20 648.60 0.9174 0.9174 0.00 

25 505.74 0.7942 0.7942 0.00 

30 97.80 0.5830 0.5830 0.00 

323.15 5 396.09 1.3482 1.3482 0.00 

10 58.10 0.8330 0.8330 0.00 

15 18.38 0.2809 0.2809 0.00 

20 601.39 0.8352 0.8352 0.00 

25 404.89 0.6620 0.6620 0.00 

30 177.90 0.6240 0.6200 -0.64 
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Fig. 6.35: AdaBoost-CART tool of CO2 solubility in solution of SG (10 mass%) 
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Fig. 6.36: Relative importance of the inputs in the creation of the tree model  
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6.8. CO2-Oil MMP 

Error analysis results for the test and train data sets of the proposed ANFIS and AdaBoost-

CART models are given in Table 6.32. Both the ANFIS and AdaBoost models provide satisfactory 

predictions. However, for both train and test datasets, the proposed AdaBoost-CART model gives 

better estimations than the developed ANFIS. For all the datasets, the obtained values of ARD% 

are positive. The range of ARD% is from 0.04 to 1.82. Hence, the presented ANFIS and AdaBoost-

CART models slightly overestimate the value of CO2-reservoir oil MMP. 

 

Table 6.32: Error analysis results of the created ANFIS and AdaBoost-CART tools 

Model Status Parameter Value 

AdsBoost-CART 

Train 

R2 0.9990 

ARD%  0.16 

AARD% 0.39 

Test 

R2 0.9986 

ARD%  0.42 

AARD% 0.42 

ANFIS 

Train 

R2 0.9976 

ARD%  0.04 

AARD% 1.07 

Test 

R2 0.9322 

ARD%  1.82 

AARD% 6.90 

 

 

A comparison between the estimated values of CO2-oil MMP and corresponding experimental 

data is illustrated in Fig. 6.37 and 6.38. In Fig. 6.37, the cross plot that compares the outputs of 

the ANFIS and AdaBoost-based models versus experimental CO2-oil MMP is shown. In this 
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figure, the black line ( 45  line) is the equality line, where the predictions of the models and the 

experimental targets are exactly the same. For both the presented ANFIS and AdaBoost-CART 

models, a tight cloud of points is located about the line of equality, which indicates an excellent 

association between the predictions of the models and the corresponding targets. For the presented 

predictive tools, Fig. 6.38 demonstrates a graphical comparison of the experimental data against 

the outcomes of the models as point to point analysis. As can be seen, reported CO-oil MMP values 

are reproduced by the developed models with good accuracy. 

 

 

Fig. 6.37: Parity plot compares the predictions of the developed (a) AdaBoost-CART and (b) 

ANFIS models with corresponding experimental values  
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Fig. 6.38: Point to point comparison between the outputs of the (a) AdaBoost-CART and (b) 

ANFIS tools for CO2-oil MMP 
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The histograms of the obtained relative error in percent from the developed ANFIS and 

AdaBoost-CART models are shown in Fig. 6.39. As can be observed from the errors histogram of 

the AdaBoost-CART tool, most of the experimental data are reproduced with absolute relative 

errors (REs%) around zero. There is only one prediction with absolute RE% more than 15. In case 

of the ANFIS model, there are three estimations with absolute RE% more than 15. Further to this, 

Fig. 6.39 shows that the proposed AdaBoost-CART model has better range for errors. 
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Fig. 6.39: Histogram of relative errors of the presented (a) AdaBoost-CART and (b) ANFIS 

models 
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The ANN model presented by Tatar et al. [243], LSSVM model developed by Shokrollahi et 

al. [30], GEP-based model proposed by Kamari et al. [244], and ANFIS-PSO model developed by 

Karkevandi-Talkhooncheh et al. [245] (for prediction of CO2-oil MMP) are selected as basis of 

comparison. It is proved that the aforesaid ANN, LSSVM, and GEP-based models provide better 

predictions as compared to the classical approaches including the correlations by Alston et al. 

[237], Emeral and Sarma [238] (corrected by Sebastian et al. [239]), Emeral and Sarma [238] 

(corrected by Alston et al. [237]), Yelling and Metcalfe [240]  (corrected by Sebastian et al. [239]), 

and Yelling and Metcalfe [240] (corrected by Alston et al. [237]).  

The calculated values of statistical variables (R2, ARD%, and AARD%) for the developed 

ANFIS and AdaBoost-CART models as well as the ANN, LSSVM, GEP-based, and ANFIS-PSO 

models are summarized in Table 6.33. According to the tabulated results in Table 6.33, both the 

presented ANFIS and AdaBoost-CART models provide better predictions as compared to the 

previously published ANN, LSSVM, GEP-based, and ANFIS-PSO models. Moreover, no model 

can rival the built AdaBoost-CART model for accuracy. Among the existing intelligent models in 

the literature, the ANN model presented by Tatar et al. [243] provides better results than other 

models including LSSVM [195], GEP-based [244], and ANFIS-PSO [245] models. 

The estimated pure CO2-reservoir oil MMP by the presented ANFIS and AdaBoost-CART 

models versus the corresponding reported data are given in Table 6.34. As can be seen from this 

table, most of the targets are predicted by the AdaBoost-CART model without error. The RE%s 

of the ANFIS model are between -15.83 and 20.58. 
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Table 6.33: Overall performance of the models for CO2-reservoir oil MMP prediction 

Model Parameter Value 

AdaBoost-CART  

R2 0.9990 

ARD%  0.19 

AARD% 0.40 

ANFIS 

R2 0.9794 

ARD%  0.21 

AARD% 1.63 

ANN [243] 

R2 0.9905 

ARD%  0.50 

AARD% 2.26 

LSSVM [195] 

R2 0.9030 

ARD%  *** 

AARD% 9.60 

GEP [244] 

R2 0.8284 

ARD%  -1.65 

AARD% 10.47 

ANFIS-PSO [245] 

R2 *** 

ARD%  -1.36 

AARD% 7.53 
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Table 6.34: Predicted pure CO2-oil MMP by the presented ANFIS and AdaBoost-CART models 

T (K) MWC5+ Vol./Int. 
CO2-reservoir oil MMP Relative error (%) 

Reported ANFIS AdaBoost-CART ANFIS AdaBoost-CART 

305.35 187.77 0.74 6.9 6.5 6.9 -5.88 0.00 

307.55 212.56 1.56 10.0 10.5 10.0 5.00 0.00 

310.93 235.56 2.58 16.5 16.4 16.5 -0.61 0.00 

312.59 199.70 1.28 13.8 12.4 13.8 -10.14 0.00 

313.71 187.80 0.74 8.3 8.8 8.3 6.02 0.00 

315.93 196.10 0.82 10.6 10.2 10.6 -3.77 0.00 

315.93 204.10 0.81 10.3 10.6 10.3 2.91 0.00 

315.93 204.10 0.82 10.3 10.7 10.4 3.88 0.97 

315.95 204.10 0.81 10.4 10.6 10.4 1.92 0.00 

322.04 187.27 1.50 11.0 11.6 11.0 5.45 0.00 

322.05 205.10 0.55 10.6 11.1 10.6 4.72 0.00 

327.55 168.39 1.01 11.8 11.8 11.8 0.00 0.00 

327.59 185.83 0.14 9.5 9.5 10.3 0.00 8.42 

327.59 171.20 0.93 11.0 11.3 11.0 2.73 0.00 

327.59 235.56 0.15 12.8 12.5 12.8 -2.34 0.00 

327.59 185.83 0.60 10.3 10.1 10.3 -1.94 0.00 

327.59 185.83 0.67 10.3 10.2 10.3 -0.97 0.00 

330.35 187.77 0.74 11.9 11.0 11.9 -7.56 0.00 

330.35 182.60 9.16 13.8 13.8 13.8 0.00 0.00 

330.93 202.61 0.42 11.7 12.2 11.7 4.27 0.00 

332.15 205.00 0.48 12.8 13.2 12.8 3.12 0.00 

338.71 187.27 1.50 13.4 13.1 13.4 -2.24 0.00 

340.95 203.81 1.35 16.9 17.0 16.9 0.59 0.00 

344.25 221.00 5.90 23.5 23.5 23.5 0.00 0.00 

344.25 207.90 0.32 15.5 15.3 15.5 -1.29 0.00 

344.26 207.90 0.32 15.5 15.3 15.5 -1.29 0.00 

344.26 221.00 5.90 23.4 23.5 23.4 0.43 0.00 

349.85 217.67 7.67 20.7 20.7 20.7 0.00 0.00 

353.15 240.70 6.20 27.8 23.4 27.8 -15.83 0.00 

354.25 198.40 0.59 16.0 16.5 16.0 3.13 0.00 

355.35 261.64 0.33 21.4 21.4 21.4 0.00 0.00 

358.71 247.80 2.43 34.5 41.6 34.5 20.58 0.00 

375.37 205.00 5.21 28.2 28.2 28.2 0.00 0.00 

377.55 153.96 1.77 22.0 22.0 22.0 0.00 0.00 

383.15 180.60 0.91 20.2 20.1 20.2 -0.50 0.00 

385.37 213.50 1.16 24.1 24.1 24.1 0.00 0.00 

388.75 261.64 0.33 25.3 25.3 25.3 0.00 0.00 

390.37 169.20 1.18 23.4 22.9 23.4 -2.14 0.00 

391.45 171.10 1.20 23.5 24.0 23.4 2.13 -0.43 



130 
 

For a drive gas with the carbon dioxide, methane, and nitrogen concentrations equal to 91.75, 

8.05, and 0.20 mol%, Table 6.35 gives the experimental CO2-oil MMP and the predictions of the 

ANFIS and AdaBoost-CART models as well. The AdaBoost-CART model exactly regenerated all 

the reported targets except for the data with a temperature of 333.15 K, MWC5+ of 165.59, and 

Vol./Int. of 4.62. For another impure derive gas (CO2=87.38, C1=7.67, C2-C5=4.67, and N2=0.19 

mol%), the outputs of the developed predictive mathematical models are compared to the 

experimental data in Table 6.36. CO2-reservoir oil MMPs represented/predicted by the AdaBoost-

CART model are in substantial agreement with the experimental/target values. ANFIS model 

estimates the target with RE%s between -2.27 and 1.87. 

 

Table 6.35: Predicted CO2-oil MMP by the presented ANFIS and AdaBoost-CART models in 

comparison with the reported data for a drive gas with CO2=91.75, C1=8.05, and N2=0.20 mol% 

as composition 

T (K) MWC5+ Vol./Int. 
CO2-reservoir oil MMP Relative error (%) 

Reported ANFIS AdaBoost-CART ANFIS AdaBoost-CART 

333.15 

165.59 4.62 16.2 16.3 16.1 0.62 -0.41 

138.50 0.51 11.0 11.1 11.0 0.91 0.00 

136.47 0.63 15.1 15.0 15.1 -0.66 0.00 

353.15 

165.59 4.62 17.2 17.3 17.2 0.58 0.00 

138.50 0.51 12.7 12.7 12.7 0.00 0.00 

136.47 0.63 17.1 17.1 17.1 0.00 0.00 

373.15 

165.59 4.62 18.5 18.4 18.5 -0.54 0.00 

138.50 0.51 14.6 14.5 14.6 -0.68 0.00 

136.47 0.63 18.7 18.8 18.7 0.53 0.00 
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Table 3.36: Predicted CO2-oil MMP by the presented ANFIS and AdaBoost-CART models in 

comparison with the reported data for a drive gas with CO2=87.38, C1=7.67, C2-C5=4.67, and 

N2=0.19 mol% as composition 

T (K) MWC5+ Vol./Int. 
CO2-reservoir oil MMP Relative error (%) 

Reported ANFIS AdaBoost-CART ANFIS AdaBoost-CART 

333.15 

136.47 0.63 12.7 12.7 12.8 0.79 0.00 

138.50 0.51 8.8 8.8 8.6 -2.27 0.00 

165.59 4.62 12.0 12.0 11.7 -2.00 0.00 

353.15 

165.59 4.62 13.1 13.1 13.1 0.00 0.00 

138.50 0.51 9.7 9.7 9.7 0.00 0.00 

136.47 0.63 14.1 14.7 14.2 0.71 4.26 

373.15 

138.50 0.51 10.7 10.7 10.9 1.87 0.00 

136.47 0.63 15.5 15.5 15.3 -1.29 0.00 

165.59 4.62 13.9 13.9 13.9 0.00 0.00 
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7. Conclusions 

In this research study, several machine learning and data mining approaches including 

LSSVM, CART/AdaBoost-CART ANN and ANFIS were utilized for modeling the equilibrium 

conditions of the following systems: hydrate+water/ice+salt(s)/alcohol(s), hydrate+IL, 

CO2+water+amine, CO2+IL, CO2+water+PZ, CO2+water+SG, and CO2-reservoir oil MMP. 

Further to the above, a semi-empirical/theoretical methodology was extended to the phase 

equilibria of hydrates of methane (C1) and carbon dioxide (CO2) in aqueous solutions of sugars. 

Moreover, phase equilibria of carbon dioxide hydrate in tomato and orange juices were modelled 

using thermodynamic and empirical approaches. Detained information were provided in 

Appendix A.  

To perform the modeling using the aforementioned methodologies, extensive databases were 

gathered from the literature. The collected databanks cover wide ranges of dependent and 

independent parameters of the investigated systems. In brief, a total number of 3510, 384, 509, 

5368, 597, 197, and 135 experimental data points were collected for gas hydrates in pure water or 

aqueous solution of salt(s) and/or alcohol(s), methane hydrate in the presence of IL, CO2 loading 

capacity of solution of amines (MEA, DEA, or TEA), CO2 loading capacity of ILs, CO2 loading 

capacity of PZ solution, CO2 loading capacity of SG solution, and CO2-oil MMP, respectively. 

For each system, the employed databank was randomly divided into two sub-datasets namely 

test and training datasets. All the models were developed employing the training data. The 

allocated data points for the test were used to evaluate the capability of the developed model in 

predicting the target values. Statistical variables including AARD%, R2 and ARD% were selected 

as the criteria for evaluating the accuracy of the created LSSVM, ANN, ANFIS, and 

CART/AdaBoost-CART models. 



133 
 

The summary of obtained results from error analysis for the developed LSSVM, ANN, ANFIS, 

and CART/AdaBoost-CART models to model/represent the equilibrium conditions of the 

investigated systems is as follows: 

A. Considering the error analysis results, all the developed LSSVM, ANN, ANFIS, and 

AdaBoost-CART models for methane, hydrogen sulfide, ethane, nitrogen, propane, i-

butane, and gas mixture hydrates in pure water or aqueous solutions of thermodynamic 

additives/inhibitors provide satisfactory predictions when predicting the HDT. 

However, the most accurate estimations were obtained from the developed AdaBoost-

CART models. All the proposed AdaBoost-CART models for hydrate systems of 

ethane, methane, propane, hydrogen sulfide, i-butane, gas mixture and nitrogen 

reproduced the experimental data with AARD% values equal to 0.03, 0.07, 0.05, 0.05, 

0.04, 0.04, and 0.03, respectively. Furthermore, all the tree-based models indicated R2 

value of greater than 0.99. Except for the developed ANN model for methane hydrate 

system, with ARD% value of -0.19, the ARD%s for all the predictive mathematical 

models are close to zero. Hence, the errors are almost equally distributed between 

positive and negative values.  

  

B. Error analysis indicated AARD% values equal to 0.08, 0.31, 0.10, and 0.15 for the 

presented LSSVM, ANFIS, CART, and ANN models to predict methane hydrate 

dissociation in the presence of IL. Hence, all the models provide satisfactory results. 

However, the LSSVM model gives the best predictions. Since the value of AARD% 

for test dataset of the CART tool is lower than that of the LSSVM model, it can be 

concluded that the performance of the CART model in estimation of the unseen data is 

better than the LSSVM model. For all the presented models, ARD% was close to zero. 
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C. Comparing the results of the created LSSVM, ANFIS, AdaBoost-CART, and ANN 

models revealed that for all the amine systems including (H2O+TEA+CO2), 

(H2O+MEA+CO2) and (H2O+DEA+CO2) the proposed AdaBoost models reproduce 

the targets with lowest AARD% (0.51, 2.76, and 1.14, respectively) and highest R2 

(0.9987, 0.9977, and 0.9929, respectively). Among other developed models, i.e. 

ANFIS, ANN, and LSSVM models, the ANFIS models provided the best estimations. 

On the other hand, the weakest results were obtained using the ANN model. 

 

D. For CO2+IL system, a predictive tool was presented on the basis of CART 

methodology. The presented AdaBoost-CART model then was compared with the 

created LSSVM, RBF-ANN, ANFIS, and MLP-ANN models by Baghban et al. [460] 

in predicting the solubility of CO2 in ILs. Error analysis indicated that the CART model 

that was proposed for the prediction of CO2 loading capacity of various ILs has an 

AARD%=0.04 and a R2=1. On the other hand, the LSSVM, RBF-ANN, ANFIS, MLP-

ANN models developed by Baghban et al. [460] have an overall AARD% of 17.17, 

62.84, 34.28, and 25.25, respectively. Hence, employing the available intelligent 

models in the literature results in considerable deviation in calculation of CO2 solubility 

in ILs. ARD%s equal to 13.60, 41.54, 7.36, and 12.80 reveals that these models 

overestimate the target values. In case of the proposed CART model, error analysis 

indicated an ARD% =0.00 which shows equally distributed deviations between 

positive and negative values. 

 

E. The AARD%s for the created ANFIS, AdaBoost-CART, LSSVM and AAN tools for 

equilibrium system of (CO2+water+PZ) were calculated to be 15.99, 0.93, 16.23 and 
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18.69, respectively. Moreover, the previously mentioned tools have an overall R2 of 

0.8890, 0.9967, 0.8843 and 0.7849, respectively. Considering the statistical parameters 

as criteria for model assessment, it can be concluded that utilization of the ANN, 

LSSVM and ANFIS tools for prediction of CO2 solubility in PZ results in drastic errors. 

Hence, it is recommended to use the AdaBoost-based model for calculating/estimating 

CO2 loading capacity of PZ solution. 

 

F. Similar to the CO2+water+PZ system, the performance of the ANN, LSSVM, and 

ANFIS tools in modeling the equilibrium absorption of CO2 in SG solution found to be 

unsatisfactory. This is due to the fact that the obtained AARD%s for the developed 

ANN, LSSVM, and ANFIS models are equal to 14.31, 13.36, and 15.42, respectively. 

As opposed to these methods, it was found that the AdaBoost-CART methodology can 

be successfully utilized for the application of interest. With an AARD% value of 0.89, 

the proposed tree-based model, i.e. AdaBoost-CART model, is a reliable and accurate 

predictive tool.  

 

G. With the aim of modeling CO2-reservoir oil MMP, Hybrid-ANFIS and AdaBoost-

CART methodologies were employed. The performance of the developed tools in the 

predicting the MMP of CO2-oil, then, was compared to the ability of the previously 

published ANN, LSSVM, GEP-based, and PSO-ANFIS models in the estimation of 

CO2-oil MMP. With accordance to the error analysis results, both the Hybrid-ANFIS 

and AdaBoost-CART models developed in this study provide better estimations than 

the available models in the literature. The overall AARD% of the ANN model 

developed by Tatar et al. [243], LSSVM model developed by Shokrollahi et al. [195], 

GEP-based model developed by Kamari et al. [244], and PSO-ANFIS model developed 



136 
 

by  et al. [245], are 2.26, 9.60, 10.47, and 7.53, respectively. The total AARD% for the 

Hybrid-ANFIS and AdaBoost-CART modes presented in the current work were 0.40 

and 1.63, respectively, which indicate accuracy and robustness of the employed 

methods for CO2-oil MMP prediction. However, the proposed AdaBoost-CART model 

is more accurate and reliable for the estimation of CO2-oil MMP. This model indicated 

an R2=0.9990. 

The presented models in this study pave the way for a more accurate, reliable, and fast 

estimations of the targets. 

 

8. Recommendations  

Among the investigated methodologies for developing coordinated models to 

estimate/represent the target values, the CART/AdaBoost-CART method showed great 

performance and capability. Hence: 

1- Considering the robustness of the CART/AdaBoost-CART technique in modeling the 

studied equilibrium systems, it is recommended to utilize the developed models on the 

basis of this technique in development of engineering software dealing with problems like 

PVT, CO2 capture, and hydrate calculations. 

2- In near future where adequate data is available, new models with wider application ranges 

can be developed. 

3- It is recommended to assess the ability of CART/AdaBoost-CART method in modeling 

other processes in chemical, natural gas, and petroleum engineering.   
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Appendix A 

 

Phase Equilibria of Methane and Carbon Dioxide Hydrates in Sugar Aqueous 

Solutions: Modeling Using a Semi-Theoretical Framework 

 

1. Introduction  

In the realm of food processing and engineering, several studies have been done 

investigating the application of gas hydrate technology as an alternative to the conventional 

processes. For example, Heist and Barron [462] reported that using the gas hydrate technology 

results in a reduction in energy consumption for separation of aqueous solutions through 

evaporation by 70-90%. Phillips et al. [463] proposed a method for protein recovery from solutions 

of reversed micellar using the hydrate formation. Purwanto et al. [464] studied the concentration 

of coffee solutions by the use of xenon hydrate. Li et al. [465] proposed the used of ethane hydrate 

for concentrating orange juice. The use of bromomethane (CH3Br) and trichlorofluoromethane 

(CCl3F) hydrates for concentration of the aqueous solutions of carbohydrates, lipids, and proteins 

are studied by Huang et al. [466, 467]. Chun and Lee [468] studied the equilibrium conditions of 

hydrate of chlorodifluoromethane (CHClF2), also known as R22, in glucose, sucrose, and lactic 

acid solutions.  In another work, Chun and Lee [469] investigated the possibility of concentration 

of glucose, sucrose, and fructose aqueous solutions by means of carbon dioxide hydrate. Further 

works on the subject of utilization of hydrates in the food industry have been reviewed by Smith 

et al. [470]. 



167 
 

In continuation of our previous study on the semi-theoretical modeling of a gas hydrate 

phase equilibria in the presence of an inhibitor containing aqueous solution, we present here a new 

model for carbon dioxide hydrate incipient stability conditions in aqueous solutions of glucose, 

sucrose, or fructose that is on the basis of the previously proposed thermodynamic-based 

framework. This study also introduces an extension of the published model for methane hydrate 

with the aim of representing/predicting the methane hydrate formation/dissociation conditions in 

glucose, xylose, and xylitol aqueous solutions. Molecular formula and structure of the aforesaid 

sugars are given in Table A.1. Furthermore, the inhibition effects of tomato and orange juices on 

the phase equilibrium of carbon dioxide hydrate are investigated. 

 

2. Modeling framework for CH4 hydrate 

As described in the original work [35], Eq. (A.1) represents the Clausius-Clapeyron 

equation. This equation can be employed for calculations related to the solid-gas phase changes 

like gas hydrate formation/dissociation.  

  
2

00

ln

ZRT

H

dT

Pd 
  …………………………………………………………………………… (A.1) 

where P is the pressure of the system; 0T  denotes the incipient hydrate formation/dissociation 

temperature (HFDT) in pure water; Z is the compressibility factor; and R is the gas constant.  

In the case of methane hydrate in pure water, the following expression has been proposed 

by Ghiasi and Mohammadi [35] to represent the left side of Eq. (A.1):  
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00
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Table A.1: Information about the investigated sugars 

Name  Formula Structure  

Sucrose C12H22O11 

 

Glucose C6H12O6 

 

Fructose C6H12O6 

 

Xylose C5H10O5 

 

Xylitol C5H12O5 
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According to the works by Maddox et al. [80] and Javanmardi et al. [471], the effect of a 

thermodynamic inhibitor on the formation/dissociation temperature of the natural gas hydrate can 

be described as follows: 

  












TTNR

H
aw

11
ln

0

 ………………………………………………………………………. (A.3) 

in which T is the HFDT in the presence of aqueous solution of an inhibitor; ∆H and N denote the 

hydrate formation/dissociation enthalpy and the number of water molecules in the hydrate; and aw 

is the water activity. From thermodynamics we know that: 

       wwwww lnxln.xlnaln    ………………………………………………………….. (A.4) 

where w  indicates the water activity coefficient and wx  is mole fraction of the water. Eq. (A.5) 

gives the relationship between the mole fractions of water and inhibitor, inx .  

inw xx 1 …………………………………………………………………………………… 

(A.5) 

The following equation is the two-suffix Margules activity model that can be used to 

estimate the value of the water activity coefficient: 

  inw x
RT

A
ln ………………………………………………………………………………. 

(A.6) 

where A is constant. In the original work [35], the values of A are obtained for aqueous solutions 

of NaCl, KCl, CaCl2, MgCl2, 1-propanol, 2-propanol, methanol, ethylene glycol, diethylene 

glycol, and triethylene glycol.  
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By combining the aforementioned equations, the following semi-theoretical formula has 

been developed by Ghiasi and Mohammadi [35] to predict/represent the methane HFDT in the 

presence of an inhibitor: 

 in
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With the objective of finding the Margules coefficient for methane hydrate systems 

including CH4+xylose+water, CH4+xylitol+water, and CH4+glucose+water, the experimental 

phase equilibrium data have been collected from literature [472, 473]. The operating ranges of 

temperature, pressure, and concentration of the aforementioned additives in the aqueous phase of 

the system are tabulated in Table A.2. Similar to the original work [35], the following correlation 

is used to predict the formation/dissociation temperature of the methane hydrate in pure water: 

4

4

3

3

2

2100 )ln()ln()ln()ln( PcPcPcPccT   …………………………...…………….. 

(A.8) 

in which ci denote the coefficients. The values of the constants of Eq. (A.8) are given elsewhere 

[35]. The compressibility factors are calculated using the Peng-Robinson equation of state [35, 

76].  

Table A.2: Details regarding the gathered data for methane hydrate in sugar aqueous solutions 

System Reference 
Range 

T, K P, kPa CSugar 
a, mole fraction 

CH4+xylose+water [472] 273.51-282.09 3024-6849 0.000627-0.029130  
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CH4+xylitol+water [472] 273.56-282.51 3021-7093 0.002980-0.029350 

CH4+dextrose+water [473] 275.23-281.25  3430-7770 0.010989-0.041095 

a CSugar denotes the concentration of sugar in the aqueous phase 

 

Table A.3 gives the tuned values of the Margules coefficient for the methane hydrate in the 

studied sugar aqueous solutions. These values are obtained using the Levenberg-Marquardt 

optimization algorithm [249-251]. 

 

Table A.3: Obtained Margules coefficient for methane hydrate in various sugar aqueous 

solutions at investigated data 

System A value  

CH4+xylose+water -10.943 

CH4+xylitol+water -6.332 

CH4+glucose+water -7.497 

 

 

3. Extension of the framework to CO2 hydrate 

a. Hydrate system of CO2+water 

To employ the proposed semi-theoretical approach for prediction of the incipient 

formation/dissociation temperature of carbon dioxide hydrate in aqueous solution of an inhibitor, 

the value of the CO2 HFDT in pure water must be known in advance. In this section we begin to 
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develop a new empirical tool that can be used for estimation of CO2 HFDT in pure water. The 

required data points for empirical model development are the reported experimental three phase 

L-H-V data of carbon dioxide hydrate in pure water [49, 280, 282, 305, 317, 340, 345, 369, 474-

501]. The gathered experimental data, as graphically shown in Fig. A.1, cover the temperatures 

between 273.10 and 283.32 K as well as pressures from 1200 to 4509 kPa. 

T, K

272 274 276 278 280 282 284
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Fig. A.1: L-H-V equilibrium data of CO2 hydrate formation/dissociation conditions in pure water 

[49, 280, 282, 305, 317, 340, 345, 369, 474-501] 

 

 Among the available functions for performing the curve fitting process like trigonometric 

functions, exponential functions, and polynomials [502], the most employed approximants are 

polynomials [247, 503]. This work employs a sixth order polynomial for correlating the CO2 

HFDT as a function of the pressure: 
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where ai are the constants. The tuned values of ai are given in Table A.4. 

 

Table A.4: Tuned coefficients used in Eq. (A.9) to predict the CO2 HFDT in pure water 

Constant Value 

0a  1122488.1373938 

1a  -863823.979374808 

2a  276909.848564922 

3a  -47319.2580289076 

4a  4546.2447364678 

5a  -232.8407071043 

6a  4.9664295624 

 

 

b. Hydrate system of CO2+sugar+water 

In the previous work [35], a general model, as defined by Eq. (A.10), was developed to 

represent/predict the formation/dissociation temperature of a gas hydrate in the presence aqueous 

inhibitor solution. This semi-theoretical model has been developed utilizing thermodynamic 

approaches including two-suffix Margules activity model [504, 505], Clausius-Clapeyron equation 

[506, 507], and a thermodynamic model for expressing the inhibitor effect on the gas hydrate 

temperature [80, 471].  
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in which  01 Tf  is a function. From the original work [35], recall that this function was defined to 

be: 

  
 01

0

ln
Tf

dT

Pd
  …………………………...……………………………..……………….. (A.11) 

Indeed, Eq. (A.11) says that sketching the three phase equilibrium pressure-temperature data of a 

gas hydrate in pure water on ln(P) versus 0T  plane will contribute to obtain a mathematical 

expression for the Clausius-Clapeyron equation.  

In order to extend the general model to CO2 hydrate systems, first, an appropriate 

expression must be find for  01 Tf . Using a third order inverse polynomial and the gathered 

experimental data for three phase L-H-V equilibrium of carbon dioxide hydrate in pure water, 

ln(P) was correlated as a function of 0T  of carbon dioxide hydrate: 
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P …………………………...……………….…………………..…………….. (A.12) 

where bi are the constants. The tuned values of bi are given in Table A.5. Doing so, we find: 
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(A.13) 

Reported values of hydration number for CO2 hydrate are different [280, 282, 508-511]. 

Theoretically, since the carbon dioxide hydrate is a Type I hydrate, its hydration number can vary 

between 5.75 and 7.67. Over the temperatures between 272 and 283 K, Anderson [512] found that 
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the CO2 hydrate hydration number varies between 6.6 and 5.6 values. In this study it is assumed 

that 1.6N .  

Table A.5: Tuned coefficients used in Eq. (A.12) to predict the CO2 HFDP in pure water 

Constant Value 

0b  3946.22 

1b  -3215797.19 

2b  877505741.52 

3b  -80035942233.19 

In conclusion, we have the following formula for predicting/representing the HFDT of 

system of CO2+inhibitor+water:  
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where 
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In order to tune the values of Margules coefficient for carbon dioxide hydrate, the 

experimental data of Smith et al. [470],  Chun and Lee [469], and Carbone [473] for 

CO2+sucrose+water, CO2+glucose +water, and CO2+fructose+water systems have been gathered. 

Information about the collected database is given in Table A.6.  
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Table A.6: Details regarding the gathered data for CO2 hydrate in sugar aqueous solutions 

System Reference 
Range 

T, K P, kPa CSugar 
a, mole fraction 

CO2+sucrose+water [469, 470] 274.0-281.9 1630-4617 0.05843-0.08764 

CO2+fructose+water [469] 273.6-280.6 1800-4240  0.11101-0.16652 

CO2+glucose+water [469, 473] 274.0-281.7 1580-4360 0.05551-0.16652 
a CSugar denotes the concentration of sugar in the aqueous phase 

 

As demonstrated in Fig. A.2, the reported data by Chun and Lee [469], and Carbone [473] 

for CO2+glucose +water do not follow a unique trend. On the other hand, Fig. A.3 illustrates that 

the reported data by Chun and Lee [469] are in agreement with the data of Smith et al. [470], for 

CO2 hydrate in 20 wt% sucrose aqueous solution. It seems that the experimental data of Carbone 

[473] are probably doubtful. As a result, only the data of  Chun and Lee [469] and Smith et al. 

[470], have been employed for fitting the A values. Table A.7 gives the obtained A values for the 

investigated CO2 hydrate systems. The values of this parameter are optimized using the Levenberg-

Marquardt algorithm [249-251]. Like the methane hydrate systems, the compressibility factor for 

the hydrate systems of carbon dioxide are calculated using the Peng-Robinson equation of state 

[35, 76]. 
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Fig. A.2: Comparing the experimental data of Carbone [473] and Chun and Lee [469] for 

hydrate system of CO2+glucose+water 
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Fig. A.3: Comparing the experimental data of Smith et al. [470] and Chun and Lee [469] for 

hydrate system of CO2+glucose+water 

 

Table A.7: Obtained Margules coefficient for CO2 hydrate in various sugar aqueous solutions at 

investigated data 

System A value  

CO2+sucrose+water -50980 

CO2+fructose+water -21070 

CO2+glucose+water -26940 
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4. CO2+Orange/Tomato Juice hydrate system 

The purpose of this section is investigating the phase equilibrium of carbon dioxide hydrate 

in the presence of tomato or orange juice. To this end, Eq. (A.3) is utilized in order to calculate the 

water activities. The presented empirical model of Anderson [512], as defined by Eq. (A.17), is 

employed to estimate the enthalpy of carbon dioxide hydrate dissociation. 

    1000)15.273(53.09.62  TH  ……………………………………………..…….. 

(A.17)                            

in which H  is in J/mol. 

The employed experimental data are the reported data by Li et al. [513, 514]. Table A.8 

summarizes the composition of the juices for the gathered database. 

 

Table A.8: Contents of tomato/orange juice in the gathered experimental data 

Solution Content 

Reducing sugar, 

(g/100g) 

Total acid, 

(g/kg) 

Vitamin C, 

(mg/100g) 

Soluble solid Water  

Orange juice 4.42 6.08 49.96 10.5% 87.7% 

Tomato juice 2.51 3.31 16.85 5.5% 94.2%  

 

 

5. Results and discussion  

a. CH4+Sugar+Water hydrate systems 
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Fig. A.4 shows the outputs of the proposed semi-theoretical methodology with the 

optimized A values for hydrate systems of CH4+Xylose+Water, CH4+Xylitol+Water, and 

CH4+Glucose+Water versus the corresponding experimental values. As can be seen from Fig. A.4, 

there are excellent agreements between the predictions of the proposed model and the target values. 

The values of the coefficient of determination (R2) of the developed model for the studied systems 

of methane hydrate are higher than 0.98 indicating the perfect fit of the regression line to the data. 
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Fig. A.4: Cross plot of the predicted vs. experimental methane HFDT in sugar solutions 

 

For all the aforementioned methane hydrate systems, the absolute deviations vary between 

0.01 and 0.54 K. In another word, for all the gathered data, the maximum deviation of the 

experimental target values from the values predicted by the proposed method do not exceeds than 

0.54 K. Table A.9 gives the values of statistical parameters consisting of R2, average absolute 
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deviation (AAD), and average absolute relative deviation percent (AARD%) to give evidence on 

the accuracy of the semi-theoretical approach. According to the error analysis results tabulated in 

Table A.9, the proposed thermodynamic-based framework can be successfully employed for 

representing the incipient stability conditions of methane hydrate in the presence of aqueous 

solutions of different sugars. 

 

Table A.9: Error analysis results for the semi-theoretical method to predict/represent CO2 HFDT 

equilibrium in sugar aqueous solutions 

System Parameter  

R2 AAD, K AARD% 

CH4+Xylose+Water 0.9973 0.33 0.12 

CH4+Xylitol+Water 0.9976 0.22 0.08 

CH4+Glucose+Water 0.9826 0.27 0.02 

 

 

For xylose solution of concentration 1.316 mol%, Fig. A.5(a) shows the models’ outputs 

in comparison with the experimental data of Jin et al. [472]. In Fig. A.5(b), the predicted methane 

HFDTs in 0.298 mol% xylitol solution with the extended model have been graphically compared 

to the reported data by Jin et al. [472]. Similarly, Fig. A.5(c) demonstrates both the model’s 

estimations and the experimental data of Carbone [473] for the glucose concentration in aqueous 

phase at 2.439 mol%. As the figures display, the experimental targets are magnificently 

regenerated by the model. 
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Fig. A.5: Comparison of the model outputs with experimental data [472, 473] for 

CH4+Sugar+Water hydrate systems  
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b. CO2+Water hydrate system 

Relative deviations (in percent) of the predicted carbon dioxide HFDT in pure water by the 

developed empirical model (Eq. (9)) from the corresponding experimental values have been shown 

in Fig. A.6. As depicted in Fig. A.6, the majority of the data points are located around the zero 

line. Furthermore, the maximum relative deviation of the new empirical tool is lower than 0.16. In 

terms of absolute deviation, the maximum error of the model is no more than 0.44 K. In a respective 

order, the overall R2, AAD, and AARD% values for Eq. (9) are 0.9983, 0.08 K, and 0.03 which 

illustrate the accuracy of the presented model. The goodness of fit of the new model can be 

observed from Fig. A.7 that depicts the predictions of the model versus the experimental CO2 

HFDT in pure water. 
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Fig. A.6: Relative deviations of the estimated carbon dioxide HFDT in pure water by the new 

empirical correlation from the experimental data 
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Fig. A.7: Cross plot of the predicted vs. experimental carbon dioxide HFDT in pure water 

 

 

c. CO2+Sugar+Water hydrate systems 

In Fig. A.8, the predicted values of CO2 HFDT in aqueous solutions of glucose, fructose, 

and sucrose by the presented semi-theoretical model (Eq. (14)) are plotted against the 

corresponding target values. For the developed model, Fig. A.8 shows is a heavy concentration of 

data points around the Y=X line ( 45  line). This means a strong relationship between the outcomes 

of Eq. (14) and corresponding experimental values for hydrate systems of CO2+sucrose+water, 

CO2+glucose+water, and CO2+fructose+water. 
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Fig. A.8: Cross plot of the predicted vs. experimental carbon dioxide HFDT in sugar solutions 

 

   Table A.10 gives the error analysis results for the developed method to predict/represent 

the equilibrium temperature at which carbon dioxide hydrate forms/dissociates in the presence of 

various sugar aqueous solutions. The obtained values for the statistical parameters indicate that the 

proposed methodology produce consistently accurate predictions across the investigated ranges of 

temperature, pressure, and concentration of sugar in the aqueous phase. For all conditions, the 

proposed method showed the maximum absolute deviation to be less than 0.5 K. 
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Table A.10: Error analysis results for the semi-theoretical method to predict/represent CO2 

HFDT equilibrium in sugar aqueous solutions 

System Parameter  

R2 AAD, K AARD% 

CO2+Sucrose+Water 0.9958 0.19 0.07 

CO2+Gructose+Water 0.9958 0.20 0.07 

CO2+Glucose+Water 0.9846 0.20 0.07 

 

 

The experimentally determined formation/dissociation conditions of carbon dioxide 

hydrate in sucrose solution of concentration 1.2987 mol%, reported by Smith et al. [470], are 

compared to the results of the new model in Fig. 9(a). Fig. 9(b,c) compares the obtained results of 

the thermodynamic-based model with the reported data by Chun and Lee [469] for CO2+glucose 

(2.439 mol%)+water, and CO2+fructose (4.1094 mol%)+water hydrate systems, respectively. 
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Fig. A.9: Comparison of the model outputs with experimental data [469, 470] for 

CO2+Sugar+Water hydrate systems 
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d. CO2+Orange/Tomato Juice hydrate systems 

Employing Eq. (A.3) and (A.17), the values of water activities for carbon dioxide hydrate 

in the presence of tomato or orange juice were calculated. Table A.11 gives the experimental data 

of CO2+Orange/Tomato Juice hydrate systems as well as the corresponding calculated values of 

water activity. According to Table A.11, both the investigated tomato and orange juices are 

responsible for the decrease in the water activity. Hence, it can be concluded that both the studied 

juices are inhibitor containing solutions. However, since the obtained water activities are very 

close to 1, the tomato and orange juices with the specified contents have a weak inhibiting effect 

on the carbon dioxide hydrate phase equilibria. Furthermore, the studied orange juice is found to 

exhibit a stronger inhibition as compared to the tomato juice.   

Table A.11: calculated values of water activity for CO2+Orange/Tomato Juice hydrate systems 

System 
Experimental data 

aw 
P, kPa T, K 

CO2+Tomato Juice 2319.75 278.41 0.9995 

 2940.80 280.19 0.9990 

 3161.29 280.90 1.0016 

 3614.62 281.71 0.9997 

 4114.47 282.50 0.9988 

CO2+Orange Juice 2370.59 278.30 0.9953 

 2847.06 279.59 0.9937 

 3276.47 280.70 0.9949 

 3935.29 281.80 0.9930 

 4388.24 282.80 0.9970 
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The tuned values for the water activity are used for prediction of the CO2 hydrate 

formation/dissociation conditions in the defined juices across the operating ranges of the data. The 

obtained model which is on the basis of Eq. (A.3) and (A.17) is as follows: 
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where C is the constant that is equal to 410653.2   and  510356.1   for CO2+Orange Juice and 

CO2+Tomato Juice hydrate systems, respectively. This parameter can be adjusted again if more 

data are available.  

Employing the new model, the obtained AAD values for the investigated hydrate systems 

of CO2+Orange Juice and CO2+Tomato Juice are 0.17 and 0.06 K, respectively. Fig. A.10 

demonstrates the accuracy of the presented model in predicting the CO2 HFDT in tomato and 

orange juices.  
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(b) CO2+Orange Juice
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Fig. A.10: Comparison of the model outputs with experimental data [513, 514] for CO2+Juice 

hydrate systems 
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Appendix B 

Digraphs of the created CART/AdaBoost-CART models for the studied systems are provided 

in an electronic file. 

 

 


