
ROLE OF NEUTROPHIL MATRIX METALLOPROTEINASE-9 (MMP-9) AND

TISSUE INHIBITOR OF METALLOPROTEASES-l (TIMP-l)

IN THE KILLING OF MICROORGANISMS

MUKTHAR IBRAHIM

Submitted for the fulfillment of the
academic requirements for the degree

of
Masters in Biochemistry

University of Natal

Pietermaritzburg 2003



"THE FREEDOM THAT WE ARE ENJOYING TODAY IS

THE RESULT OF THOSE FIGHTERS THAT HAD

FORGOTTEN THEIR LIFE DURING CERTAIN PERIOD

OF TIME"

SAWA, 1997

To my Mouminah Ibrahim



PREFACE

The experimental work described in this thesis was carried out in the Department of

Biochemistry, University of Natal, Pietermaritzburg, from February 2002 to July 2003,

under the supervision ofDr. Edith Elliott.

These studies represent original work by the author and have not been submitted in any

other form to another university. Where use was made of the work of others, it has been

duly acknowledged in the text.

Mukthar Salih Ibrahim

tcl:1

Signed

September 30, 2003.

j k Al0J!.~. 1#.• , A£ iJ . £ . ~ 44 w;;; AA;

Supervisor

Dr. Edith Elliott,

Signed



ABSTRACT

Microorganisms may evade killing by neutrophils (PMNs) by altering signal transduction

and hence phagosome maturation. Secreted, active matrix metalloproteinases (MMPs)

appear to be required for PMN killing of pseudomonas microorganisms, via an MMP­

and complement-dependent, but otherwise unknown mechanism. This also depends on

the absence of the inhibitor of MMPs, tissue inhibitor of metalloproteinases-I (TIMP-l).

By altering their particular complement opsonin and hence the PMN complement

receptor bound, microorganism may evade killing, as not all PMN complement receptors

trigger phagosome maturation and hence killing of microorganisms. CI inhibitor of the

classical complement cascade, required for the exposure of Clq and further assembly of

complement factors on the bacterial surface and hence binding to specific PMN

receptors, is MMP sensitive. MMP secretion may, therefore, not only facilitate the killing

of microorganisms, but inappropriate secretion, induced by pathogens, may prevent

complement assembly and killing via complement-mediated pathways. It was, therefore,

decided to assess MMP-9 and TIMP-l secretion in the presence of Cl q-opsonized

polystyrene beads and subsequently upon stimulation with pseudomonas organisms, and

explore the relationship between secretion of PMN MMPs (specifically MMP-9) and

TIMP-l and phagocytic uptake and maturation of the PMN phagosome into a killing

body.

MMP-9 and TIMP-l secretion was seen to occur at low levels under most conditions.

However, in the presence of serum, and hence complement, MMP-9 secretion was found

to be upregulated during uptake of Clq-coated beads. MMP-9 possibly inactivates Cl

inhibitor at this stage, causing local tissue swelling (normally associated with the

inactivation of Cl-inhibitor), entry of various white blood cells and further complement

into the area of infection, assisting in the extracellular killing of microorganisms. MMP­

secretion may simultaneously down-regulate the activation of further PMNs VIa

inactivation ofClq assembly and hence phagocytic uptake and activation ofPMNs.
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Unlike MMP-9, secretion of TIMP-l was not upregulated by Clq receptor binding,

implying that any secreted MMP-9 may, therefore, be in excess and hence uninhibited by

TIMP-l. A distinct regulatory mechanism seems to be responsible for the release of

TIMP-l, though TIMP~1 secretion was upregulated by extracellular calcium levels,

partially contradicting previous findings which suggested that TIMP-l was not calcium

regulated. It seems unlikely that extracellular calcium levels would be the only

mechanism by which TIMP-l is regulated, however, and further surface receptor­

mediated agonists should be explored. Levels of MMP-9 and TIMP-l secretion in the

presence of pseudomonas microorganisms now need to be assessed to see whether these

secretion patterns are altered to favour the evasion of opsonization by Clq. Uptake of

Clq-opsonized beads was also increased by the presence of serum, possibly due to

presence of complement. MMP -9 and TIMP-l secretion patterns still need to be

correlated with phagosomal uptake and killing of microorganisms, before their role in

killing ofmicroorganisms becomes fully evident.
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CHAPTER ONE

INTRODUCTION

1.1 Neutrophils

Neutrophils or polymorphonuclear leukocytes (PMNs) are the first phagocytes recruited

to sites of infection, injury or inflammation (Suchard et al., 1997). Like other

granulocytic leukocytes these cells differentiate from bone marrow precursor cells in

response to haematopoietic factors. On maturation, however, they are distinguished from

other members of the granulocytic series by their final content of granules (Borregaard

and Cowland, 1997).

The primary function of PMNs is to phagocytose and destroy potentially pathogenic

microbes. P:MNs remain circulating in blood vessels until they are induced to cross into

tissues in response to chemoattractants such as tissue breakdown products or bacterial

peptides (Rabonovich, 1995). During crawling towards the source of the

chemoattractant, a process known as diapedesis, they express L-selectins which bind to

complementary selectins or sulfated carbohydrates present on the activated endothelium

in the post capillary venules (Evans et al., 1999; Sengelev, 1996). Complementary

ligands in the endothelium, P-selectins and E-selectins (Smollen et al., 2000; Sengelev,

1996), may be bound without stimulation (Figure 1.1) but stimulation with

chemoattractants result in upregulation of integrin and chemoattractant receptors on the

surface of P:MNs (Sengelev, 1996) (Figure 1.1). Even though PMNs have ~2-integrins

such as LFA-l and p150, 95 which bind to the complementary receptors (IeAM-l) on

the endothelium, firm attachment is facilitated by expression of Mac-I (Sengelev, 1996)

(Table 1.1, Figure 1.1).

When PMNs reach the site of infection they attempt to kill the microorganisms in one of

two ways. They may either phagocytose and digest them intracellularly, by secreting



reactive oxygen metabolites (respiratory burst products), bactericidal substances and

enzymes into a digestive body known as the phagosome, or may release these at the site

of infection (Figure 1.1).

Table 1.1 Endothelial adhesion receptors and their counter receptor on leukocytes
(adapted from Hellewell and Williams, 1994).

Endothelium

ICAM-l

ICAM-2

VCAM-l

PECAM

E-Selectin

P-Selectin

Sle'?

(Glycan 1)

Counter

Recep tor

LFA-l + Mac-I

LFA-l

VLA-4

PECAM+?

Sle'

Sle'

L-Sele ctin

Leukocyte

Allleukocytes

Allleukocytes

EO+LO+MO+BO

Allleukocytes

Allleukocytes

Allleukocytes

Allleukocytes

LO, lymphocyte; MO, monocyte; BO, basophil; EO, eosonophil.

Due to their complement of proteases, active against components of the extracellular

matrix (ECM), PMNs may also be involved in inflammatory tissue breakdown (Kjeldsen

et al., 1992) and cleavage of humoral factors such as complement (Knauper et al., 1991;

Reboul et al., 1987; Pemberton et al., 1989). This may occur due to over-activation of

membrane receptors during overwhelming infections or the implantation of large foreign

bodies such as grafts. Both may cause PMNs to undergo a process of uncontrolled

degranulation and respiratory burst with enzymes such as the matrix metalloproteinases

(MMPs), MMP-8 and MMP-9 most highly active against the ECM causing tissue

destruction and inflammatory diseases . During the normal protease-assisted functions of

PMNs, such as tissue digestion and movement of PMNs through the ECM, the activity

of the MMPs may be controlled by the release of a newly discovered granule population

containing one of the MMP inhibitors, tissue inhibitor of metalloproteinase-1 (TIMP-1)

(price et al., 2000). The release of MMPs and other enzymes without the release of their

TIMP inhibitors may result in inflammatory disease. The content of granules present in
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the PMN, their role, regulation of release and specificity is, therefore, important for the

normal and pathological function ofPMNs.

In the context of PMNs being able to fight infection, Osiewicz et al. (1999) showed that

TIMP-1-deficient mice had a complement-dependent improved resistance to

pseudomonas infections. As this hyper-resistance was lost when synthetic MMP

inhibitors were added to the celllbacteria mix (Osiewicz et al., 1999), extracellular active

MMPs and complement seem to be required for such resistance. Since TIMP-1 release

may inhibit extracellular MMP activity we hypothesized that pseudomonas

microorganisms may trigger the release of TIMP-1 and hence interfere in some way with

subsequent MMP and complement-dependent uptake and killing of microorganisms.

One way this may occur is if the protease: inhibitor balance is disturbed and hence the

assembly of complement opsonin coating bacteria and hence the types of receptors

bound and activated by the opsonized bacteria is altered. Altered, receptor-mediated

messages transferred into the PMN, via distinct receptor signal transduction pathways

may prevent phagocytosis and respiratory burst (Goodman and Tenner, 1992) as some

receptor-mediated messages do not result in uptake of opsonized bacteria (Tenner and

Cooper, 1982) or the maturation of the phagosome into a bactericidal body (Botelho et

al., 1999) (Table 1.5). Many pathogenic microorganisms such as Mycobacterium

tuberculosis bacteria, escape killing in the phagosome by, in some manner, interfering

with this process (Chastellier and Thilo, 1997). Before a mechanism by which TIMP-1

and MMP-9 may be involved in the killing of microorganisms or the mechanism by

which bacteria may escape killing in the phagosome may be proposed, it was important

to first review how uptake and extracellular or phagosomal killing usually take place and

to explain which of the various PMN granule populations are usually involved in the

killing of microorganisms.

3
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Endothelium: P-selectin IL-8, fMLP, C5a, LTB4

E-selectin TNF, GM-CSF, PAF

Sialyl Lewis

PMNs: L-selectin

Sialyl Lewis

PSGL-l

CD-56

Figure 1.1 PMN migration and role in fighting infections (modified from Sengelev, 1996).

1.2 PMN granule populations

PMN granule proteins are formed throughout the maturation period of PMNs. i.e. from

the myeloblast to the segmented mature stage. During maturation, granule proteins are

synthesized in the endoplasmic reticulum packaged into coated vesicles in the Golgi

apparatus and aggregated by homotypic fusion with larger granules (Gullberg et al.,

1999) before being transported and fused with their respective granules. Thus granules
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formed at any given stage of maturation contain granule proteins synthesized at that

particular stage of maturation of PMNs (Borregaard and Cowland, 1997) (Table 1.2).

Exocytosis of PMN granule proteins is facilitated by the fusion protein's SNAP and

SNARE. Syntaxin-4 (t-SNARE) occurs in the plasma membrane of PMNs, whereas the

v-SNARE, VAMP-2 is present on the membrane of most granules (Brumell et al.,

1995). Vesicle docking is achieved when vesicles associated with the high specific

fusion protein (SNAP), are fused with membrane associated with t-SNAREs.

The order of exocytosis of granules and granule proteins, therefore, may depend on the

presence and concentration of these fusion proteins . For example, the VAMP-2 is found

at the highest density on the membrane of the most highly mobilizable granules, the

secretory vesicles followed by gelatinase granules and specific granules. VAMP-2,

however, is not detected on azurophil granules (Brumell et al., 1995). Since these

granules are secreted last, exocytosis seems to be affected by the presence and density of

VAMP-2 on the membrane of the various granule populations (Borregard and Cowland,

1997).

PMN granules are classified on the basis of their size, morphology, electron density, and

their content of a given marker protein (Bainton et al., 1971) (Table 1.2). The initial

classification of two major types of granules was based on their content of

myeloperoxidase (MPO). The first granule population that appears during myeloblastic

development is called "azurophil" or "primary" granules as these granules stain

red/purple with azure dyes and are first expressed in the myeloblast stage. The granules

are spherical in shape and have a unique marker known as myeloperoxidase (Gullberg et

al., 1995) (Table 1.2). These granules are also found in large numbers in the

promyelocyte stage of cell development. At the end of this stage, another additional

granule population becomes evident, the specific (secondary) granule. These granules

have irregular and elongated shapes (Borregaard and Cowland, 1997) and have a

specific marker called lactoferrin (LF). In metamyelocytes, band cells and segmented

cells, specific granules are twice as abundant as azurophilic granules (Edwards, 1994).

5



The "gelatinase" (tertiary) and "secretory" granules start to be synthesized at these stage

(Gullberg et al.; .1995). These peroxidase negative granules are known as specific and

gelatinase granules and have overlapping morphological features and it is difficult to

distinguish between them. Borregaard et at. (1995) showed that, of these granules, 15%

contain lactoferrin and about 60% contain both lactoferrin and gelatinase (MMP-9).

Both of these granule subsets were classified as "specific" or "secondary granules"

(Table 1.2). However, 25% of the peroxidase negative granules contain only gelatinase

(MMP-9) but no lactoferrin and are now termed as "gelatinase" granules or "tertiary"

granules (Borregaard et al. 1995) (Table 1.2).

The last granules to be synthesized during the maturation of the PMNs are known as the

secretory vesicles . These are characterized by their alkaline phosphatase marker enzyme

(Gullberg et al., 1995) whereas , MMP-8 , is found in the lumen of specific granules,

cytochrome bss8 and the NADPH oxidase enzyme, components of the respiratory burst

complex , are found on the membrane of specific granules and the secretory vesicles ,

respectively (Table 1.2). The discovery of new granule populations is ongoing (Schettler

et al., 1991). Recently a TIMP-1-containing granule was discovered and described by

Price et al. (2000) . Due to its pleomorphic shape and the overlap in marker proteins seen

in a sub-population of TIMP-1 granules, this granule seems to be synthesized late in the

maturat ion of the PMNs, after the synthesis of the specific granule but before the

synthesis of the secretory vesicles (Price et al., 2000) (Table 1.2).

The order of biosynthesis of granules, azurophil, specific, gelatinase and secretory

vesicles (Table 1.2) (Gullberg et al., 1999), is also reported to be opposite to the order of

calcium-induced secretion (Sengelov et al., 1993; 1995; Borregaard et al., 1992). The

release of TIMP-1 granules would, therefore, be anticipated to occur just after the

release of secretory vesicles.
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Table 1.2 Granules of the human PMNs (modified from Hellewell and Williams , 1994).

Granules'
Primary Secondary Tertiary" Phosphasomes - Calciosomes

Synonyms Azurophilic, non- Specific, Csparticles" Secretory vesicles"
specific, eosino philic, Secretory TIMP -I ' 4

basophilic acidophilic, vesicles 3

adhesornes' TIMP-1 14

Size/shape Mostly spheres, Spherical (approx. Variable shape,
some elipsoid, 200 nm diameter) or (spherical to
approx . 500 nm rod-shaped (130 x pleomorphic)
diameter 1000 nm)5 SO-200nm

diameter6

Lysosomal acid ~-glllcuronidase,

hydrolases acid phosphatase,
cathepsin B,
cathepsin D, etc .

Neutral serine Elastase, Plasminogen
proteases Cathepsin G, activator

Protein ase 3, etc.
Neutral Collagenase Gelatinase
metalloproteinases (MMP-8) (MMP-9)
Anti - microbial Myeloperoxidase, Lysozyme, NADPH oxidase"
factors defensins, cationic Cytochrome b558

7

proteins
Adhension Receptors for FcyRIII (speculative) I I

molecules/ laminin, fibrinogen,
chemotactic factor vitronectin, 9fMet-
receptors Leu-Phe receptor,

CR3 (Mac- l)lO,
p lS0,9S 10

Miscellaneous Vitamin B12- Alkaline Calsequestrin"
binding protein, Phosphatase, 11,12 ?TIMP_l 14

lactoferrin Plasma proteins 13,

Decay accelerating
factor (speculative) 1I

a Unless otherwise indicated the data are taken from Bagginolini (1980)
b The existence of tertiary granules as a distinct population is disputed.
References: 'Singer et al. (1989); 2Dewald et al. (1982); 3Lew et al. (1986 ); 4 Borregaard et al. (1990);
5Bainton (1988); 6Volpe et al. (1988); 7Borregaard et al. (1983); 8Sengel0v et al. (1992); 9Singer et al .
(1989); l~ainton et al. (1987); 1IKobayashi and Robinson (1991); 12Smith et al. (198S); 13Borregaard et
al. (1992); Price et al. (2000)14.

1.2.1 Role of various granule population

PMN granules contain a variety of anti-microbial substances. These include lysozyme,

which acts on the cell wall of gram positive microorganisms (Table 1.3), several cationic
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proteins, such as the bacteriocidal permeability increasing protein (BPI), which are pore­

forming proteins and create pores in the cell walls of various bacteria, and a family of

broad spectrum anti-microbicidal peptides called defensins which kill micro-organisms

by sequential permeabilization of the outer and inner membranes (Selsted and Ouellette,

1995). Lactoferrin is also included as an anti-bacterial protein as, once released

extracellularly or into the phagosome, it complexes with free iron making it unavailable

for the growth of microorganisms (Table 1.2).

PMNs have the potential to secrete these granules in a regulated manner either towards

an extracellular target or towards a pathogen contained within the phagosome, the

digestive body of the PMN (Tapper, 1996), as previously mentioned. Some granules

have to be secreted to up-regulate certain receptors e.g. several receptors are associated

with specific granule types. Since acid hydrolases and neutral serine proteases are

packaged into the same granule, though they are active at different pHs (Table 1.2), it

would seem that such granules are released into a closed internal digestive body formed

upon uptake of bacteria or large particles, as such a body, the pH may be varied using .

proton pumps and other mechanisms, enabling first a neutral and subsequently the acid

proteases/ hydrolases to become active. Assembly of the respiratory burst components

by a granule fusion process may also be most effectively achieved in such a body. Such

a process may, however, occur during phagocytosis, in the body known as the

phagosome, or on the plasma membrane (Regier et al., 2000).

1.3 Phagocytosis

Phagocytosis is the process by which cells, such as PMNs, and macrophages, fibroblasts

and other cells responsible for fighting infection or tissue remodelling, take up relatively

large particles (>~0.5 urn) into the phagosomes and usually requires actin

polymerisation (Rabonovitch, 1995). There are two types of phagocytosis. One is non­

specific and is not aided by receptors and is seen when tissue debris is being removed.

The other is a highly specific and ligand-dependent. In this case phagocytosis is
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triggered when certain ligand-specific receptors bind to their corresponding opsonins or

structural receptor molecules on the surface of a particle or a bacterium. This may be

followed by actin polymerisation membrane ruffling and internalisation of the particle

(Tjelle, 2000). Once internalized, the phagosome may undergo sequential fusion with

various granule types to give rise to different environments aimed at destruction and

digestion of the endocytosed bacterium or particle (Botelho et al., 2000) (Table 1.3 and

Figure 1.2).

Table 1.3 Ingestion of antibody-coated bacteria triggers production or release of many
bacteriocidal agents in phagocytic cells (Janeway et aI., 1999).

Class of mechanism

Acidification

Toxic oxygen-derived products

Toxic nitrogen oxides

Anti-microbial peptides

Enzymes

Competitor proteins

Specific products

pH=--3.5-4.0, bacteriostatic or bactericidal

Superoxide Oz', hydrogen peroxide HzOz, singlet

oxygen 10Z', hydroxyl radical OH; hypochlorite OCI.

Nitric oxide NO

Defensins and cationic proteins

Lysozyme dissolves cell walls of some gram­

positive bacteria. Acid hydrolases further digest

Bacteria

Lactoferrin (binds Fe2
) and vitamin B12 binding protein

When the phagosome becomes a killing body, budding of vesicles from the phagosome

compensate for vesicle fusion. These maintain the surface area of the phagosome

approximately constant but eventually the membranes and the constituent enzymes and

proteins of the phagosome are changed in a budding and fusion process known as

maturation (Botelho et al., 2000). In such a process, the pH of the phagosome is initially

neutral. However, it subsequently increases despite the influx of acidic granule contents
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to the phagosome. This is because H+ ions produced from granules are consumed during

the conversion (0'2- and 0/) of the NADPH oxidase products into H20 2. NADPH

oxidase, however, causes the influx of electrons to the phagosome which is also

compensated by the K+ influx . The influx of the K+ elevates the pH and the ionic

strength of the vacuole which results in the release of the cationic granular proteins,

including elastase and cathepsin G, from the anionic sulphated proteoglycan matrix,

which assist in packaging such proteases in an inactive form (Reeves et al., 2002). When

the phagosome is matured, microbial killing is facilitated by a highly acidic pH (pH 3.5

- 4.0 resulting from H+ ATPase activity) and acid hydrolases (Botelho et aI., 2000)

(Table 1.3 and Figure 1.2).

Foreign body

--+

Chemotaxis Adherence Membrane activation Initiation of phagocytosis

• •• • •....
•

Q)O

•
Phagosome formation Fusion Killing and digestion Release of degradation

Products

Figure 1.2 Stages of phagocytosis and destruction of foreign bodies (adapted from Roitt, 1999),

Entry of a particle or bacterium into a cell via phagocytosis requires activation of the

actin-based cytoskeleton underlying the region of plasma membrane. F-actin assembly

in this region is initiated by signals arising from the interaction of ligand-activated
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receptors on the cell surface. Interaction occurs either directly, utilizing structural

determinants present on the surface of the targets (non-opsonic phagocytosis), or

indirectly by recognizing opsonins (complement or IgG) found in host plasma (opsonin­

dependent phagocytosis) (Greenberg, 1995). The type of opsonization -or ligand

recognized and bound by a specific receptor detennines the signal transmitted into the

cell, the internalisation or non-internalisation of the receptor-ligand complex and the

type and extent of granule fusion with the phagosome, which in turn determines the

degree of respiratory burst and hence success of killing of microorganisms (Zhou and

Brown, 1994; Chastellier and Thilo, 1997). There is also evidence that microorganisms

may influence this process (Osiewicz et al., 1999). In order to explore how this process

may occur, complement and IgG opsonization and resultant receptor binding will first be

described.

1.3.1 Oxygen-dependent and peroxidase-independent microbicidal activity

During peroxidase-independent, oxygen-dependent respiratory burst, phagocytic cells

produce superoxide anions, precursors of anti-bacterial oxygen radicals, upon activation

of the PMN NADPH oxidase complex (Figure 1.2). This multi-component enzyme

complex consists of both cytosolic (Rac-GTP, phosphoproteins p47PhoX, p40Ph0X, and

p67Phox
) and membrane-bound components (p22phox and gp91 phOX

) which form the

heterodimeric flavocytochrome bsss complex and contains a putative NADPH binding

site, FAD, and two hemes (Regier et al., 2000). This complex possesses all the

enzymatic and other machineries required to transfer two electrons from NADPH to two

molecules of oxygen (Hampton et al., 1998). PMN activation leads to the

phosphorylation and translocation of the cytosolic NADPH oxidase components to the

plasma membrane or the membrane of the phagosome. The NADPH oxidase

components subsequently interact with the cytochrome bss8 components brought into the

phagosome by fusion of specific granules and the resulting electron flow gives rise to

respiratory burst. The activation of the NADPH oxidase complex may possibly be
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regulated by a conformational changes in the cytochrome bss8 component (Regier et al.,

2000) .

The NADPH oxidase complex catalyses the following reaction:

The superoxide anion is the primary anti-microbial product but may be dismutated into

hydrogen peroxide by an enzyme called superoxide dismutase or dissociated into water

and oxygen by an enzyme called catalase. These enzymes can be produced by both the

host and some microorganisms, thus, microorganisms that possess such enzymes can

survive such killing mechanisms.

Peroxidase-dependent microbicidal activity, on the other hand, depends on the activity

of the myeloperoxidase enzyme contained in the azurophil granules. Fusion of such a

granule with the phagosome or extracellular release, allows the myeloperoxidase

enzyme to catalyse the conversion of hydrogen peroxide to bacteriocidal hypochlorate

(HOCl) (Andrews and Krinsky, 1986) and chloramines (Hampton et al., 1998; Badwey

and Karnovsky, 1980). On the other hand there are many humoral proteins of the innate

immune system which also have bacteriocidal functions .

1.3.2 Complement and PMN complement receptors

The complement system is part of the innate immune system and consists of 30 plasma

proteins which opsonize and/or kill extracellular bacteria . In the presence or absence of

phagocytosis these form part of an important humoral defence system (Osiewicz et al.,

1999).

There are three pathways by which complement activation and opsonization of bacteria

may occur. The "classical pathway" which is mainly triggered by the binding of Cl and
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conversion of Cl to C1q on the surface of foreign particles. Binding is mainly triggered

by IgG or IgM bound to pathogen surface (Duncan and Winter, 1998; Kishore and Reid,

2000), but may also be triggered by other factors including immune complexes, DNA,

lipid A, certain viruses, and bacterial and parasitic components (Bobak et al., .1987), i.e.

charged surfaces or some sugar residues (Tenner et al., 1981; Butko et al., 1999; Guan et

al., 1991). The "rnanan-binding lectin" pathway (MB-Lectin), on the other hand, is

initiated by the binding of a serum lectin, the mannan-binding lectin, to mannose­

containing carbohydrates on the surface of microorganisms (Tan et al., 1996) (Figure

1.3) (Table lA). The last pathway, the "altemative pathway", is initiated when free C3b

in serum spontaneously binds to the surfaces of foreign particles including endotoxins,

zymosan or aggregated IgA (Figure 1.3) (Nielsen et al., 1997).

In the classical complement pathway C1q, Clr and C1s are complexed to form Cl.

Binding of Cl, to pathogen surface activates the serine protease C1r which subsequently

cleaves the other serine protease C1s (Tenner and Cooper, 1982; Eggleton et al., 1998;

Ruiz et al., 1999). The cleavage ofC1s results in the dissociation of the Cl and exposure

ofC1q, a process regulated by a serum protein called Cl-inhibitor (Reboul et al., 1987).

The dissociation of C1r and Cls from Clq exposes the collagen-like domain of C1q,

which has an effector role in binding to one of the three types of C1q receptors on PMNs

(Ruiz et al., 1999; Nicholson-Weller and Klickstein, 1999; Guan et al., 1991, 1994)

(Table 1.5).

The binding of Clq to receptor ClqRp initiates phagocytosis while binding to the

ClqRO"z- receptor generates superoxide production (Ruiz et al., 1999; Kishore and Reid,

2000; Eggleton et al., 1998) (Table 1.5).
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CLASSICAL PATHWAY MB-LECTIN PATHWAY ALTERNATIVE
PATHWAY

Antibody bound to Mannan-b inding lectin binds to Pathogen surfaces
pathogen surfaces or mannose on pathogen surfaces

specific surface

I l
~ ~

Clq, C lr, Cl s MBL, MASP- l , MASP-2 C3- C4 C4 B--
C2 C2 D

~

~ C3 convertases ....,
.....

I <»
V

Terminal
Complement compon ents

C4a C3b C5b
C3a, C5a C6

C7
C8
C9

V

Pept ide mediators of ~r- Complement opsonisation of Membrane-attack complex,
inflammation, phagocytes, Lysis ofcertain pathogens

Phagocyte recruitment Receptors, (ClqRp, ClqRO'2' , and cells
CRI , CR2, CR3) on

phagocytes

11

Opsonization and removal of
pathogens

Remo val of immune-
complexes

Figure 1.3 Overview of the main components and effector actions of complement. MBL­
Mannan-binding lectin ; MASP-l mannan-binding lectin-associated serine protease-I ;
MASP-2- mannan-binding lectin-associated serine protease-2 (modified from Janeway
et al., 2001).

Alternatively, if C1q receptors on PMNs are not bound, C1s may cleave C4 and C2

proenzymes to form C3 convertase complex (Harrison, 1983) (Figure 1.3). This cleaves
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C3 into C3b and inactive iC3b. C3b and C4b may coat particles to make them palatable

for phagocytosis via the CR-1 receptor (which may also bind Cl q) (Eggleton et al.,

1998; Nicholson-Weller and Klickstein, 1999; Kishore and Reid, 2000) (Table 1.5). The

complement cascade may also continue in the amplification loop of C3 with .activated

serine enzymes cleaving the next serine proenzyme giving rise to C-9 which inserts into

the membrane of the bacteria giving rise to pore formation causing bacterial lysis (Esser

and Sodets, 1988) (Figure 1.3). The whole proteolytic cascade liberates anaphylotoxins

such as C3a, C4a and C5a. C3a, C4a and C5a, which are cleavage products of C3, C4

and C5, respectively, and are potent chemotactic factors (Figure 1.3) (Janatova, 1988;

Samdahl et al ., 1996).

Table 1.4 Functional protein classes in the complement system (modified from Janeway et al,
2001).

Functional protein classes in the complement system

Function Domain Function Domain

Binding to antigen: Clq Peptide mediators C3a, C4a, C5a

antibody complexes of inflammation

and IgG opsonized

pathogen surface.

Binding to mannose MBL Membrane attack C5b, C6, C7, C8, C9

on bacteria proteins

Activating enzymes Clr, CIs, C2b, Bb, Complement CIINH, C4BP, CRI,

D, MASP-I, regulatory proteins MCP,DAF,

MASP-2 Factor H, I, P, CD59.

Membrane-binding C4b,C3b

proteins and

opsonins

MASP- (1,2), mannan-binding lectin-associated serine protease; CIINH, CI - inhibitor; C4BP,C4 binding
protein; MBL, Manan binding lectin; MCP, membrane cofactor protein; DAF, decay accelerating factor.

15



The CR3 complement receptor, the most abundant receptor on the surface of PMNs is a

complement receptor and is also an important integrin of PMN adhesion. The CRI

receptor binds C3b with an affinity of 5 x 107 M-I while the CR3 receptor binds to

monomeric iC3b with a very low affinity, but binds strongly to particles ' coated with

many iC3b, molecules, with an affinity of 103_105 M-I (Edwards, 1994). The CR2

receptor is absent in PMNs. CRI, CR3 and CR4, therefore, may trigger phagocytosis but

may induce respiratory burst synergistically with other ligands and receptors (Table 1.5)

(Zhou et al., 1994).

Table 1.5 Distribution and function of receptors for complement proteins on the surface of
PMNs (modified from Janeway et al., 2001; Eggleton et al., 1998; Zhou et al., 1994;
Fallman et al., 1993).

Receptor

ClqRp

CRI (CD35)

CR3

(CDllb/CDI8)

CR4

(gp150,95)

(CDllc/CDI8)

Specificity

Clq collagen like

Domain

Clq collagen like

Domain

C3b, C4b, iC3b,

Clq

iC3b

iC3b

Functions

Stimulates phagocytosis

Stimulates respiratory burst

Promotes C3b and C4b decay

Stimulates phagocytosis

Stimulate phagocytosis

(Respiratory burst with FcyRlII)

Stimulate phagocytosis

Although both CRI, CR3 and CR4 receptors are involved in phagocytosis, the CRI

receptor primarily promotes the adhesion of particles and uptake is mainly mediated via

the CR3 and CR4 receptors (Fallman et a!., 1993). Receptor binding to either CR3 or

CR4 results in activation of phospholipase D and production of phosphatidic acid

followed by initiation of phagocytosis (Figure 1.4) (Fallman et al., 1993). CR3-mediated
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phagocytosis, requires subsequent activation with inflammatory mediators and

extracellular matrix proteins (Greenberg, 1995) or requires cooperation or co-ligation of

an IgG-Fc receptor (FcyR) in order to give rise to phagocytosis and respiratory burst.

The ClqRO'2- receptor, however, initiates respiratory burst without synergy but requires

the engagement of an intracellular domain of the CR3 receptor. It is, therefore, an

important receptor as the triggering of respirato ry burst via this receptor gives rise to

maturation of the phagosome into bacteriocidal organelle. In this respect, therefore, Cl q

and the ClqRO'2- receptor may be the most important complement factors and receptors

for triggering maturation of the phagosome via the complement opsonin-receptor

system. Hence they are possibly the most important factor for triggering phagosomal

killing ofmicroorgansims in a non-immune host.

In a primed host IgG andlgM are, however, also important opsomns triggering

phagocytosis and killing ofmicroorganisms, depending on which Fe receptor is bound.

1.3.3 Fe receptors and effect of receptor binding

PMNs do not have receptors for opsonizing IgM. There are, however, many inhibiting

and activating types ofFc receptors in PMNs, interacting with the Fe domain of various

classes of IgG molecules, the main activating receptors being represented in Table 1.6.

All of these bind IgG1 with the highest affinity. Free IgG molecules do not trigger PMN

responses, however. Only when IgG molecules are aggregated and mu1timerized on the

surface of opsonized particle may binding to the Fcy receptors on the surface of PMNs,

trigger phagocytosis and/or respiratory burst (Table 1.6). This prevents tissue damage

due to spontaneous activation ofPMNs in the blood (Janeway et al., 1999).

The FcyRI receptor, has a high binding affinity for monomeric IgG but is not normally

found on PMNs unless PMNs are exposed with OO-y, whereas, the FcyRII receptor has

a low affinity for monomeric and dimeric IgG1 and is involved in both IgG-mediated

phagocytosis and respiratory burst (Williams et al., 2000) (Table 1.6). The FcyRIII
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receptor has the lowest affinity to IgG 1 but is also involved in phagocytosis. In PMNs

FcyRII, which have the highest affinity for the most abundant immunoglobulin subclass

in serum (IgG 1) , are most numerous.

Though, the main function ofPMN Fcy receptors would be anticipated to be to facilitate

phagocytosis and respiratory burst, they do not necessarily initiate these responses. The

FcyRI receptor neither initiates respiratory burst (Walker, et al., 1991) nor phagocytosis

(Gabriela and Carlos, 1998) unless tyrosine residues on the receptor are phosphorylated.

This, however, cannot occur unassisted by other receptors, as such residues are not part

of an associated cytoplasmic motif of this receptor. The FcyRII receptors, which have

the tyrosine residues in an immunoreceptor tyrosine activation motif (ITAM), however,

can directly initiate respiratory burst by activation of their own associated tyrosine

kinase or other tyrosine kinases (Greenberg, 1995; Zhou et al., 1994). This activation is

pertussis toxin sensitive indicating its dependence on G-proteins (Zhou et al., 1994)

(Figure lA). The FcyRIII receptor also does not contain the ITAM motif and is unable to

initiate respiratory burst on its own. However, the synergistic activation of the FcyRIII

and the CR3 receptors may induce activation of tyrosine kinases and actin de­

polymerization leading to initiation of respiratory burst in a G-protein independent

pathway (Zhou et al., 1994). The FcyRII receptor is, therefore, the most effective FcyR

for triggering phagocytosis and respiratory burst.
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Table 1.6 Leukocyte Fey receptors and their characteristics (modified from Janewa y et ai, 2001),

Receptor

MW

Binding

Order of

affinity

Cell type

FcyRI (CD-64)

72 kDa

IgG1=IgG»

IgG4»IgG2

Macrophages

PMNs

Eosinophils

Dendri tic cells

FcyRII a (CD-32)

40 kDa

IgG1>IgG)

IgG) = IgG2

Macrophages

PMNs

Eosinophils

Platelets

Langerhans cells

FcyRIII b(~D-16)

50-70 kDa

Macrophages

PMNs

Eosinoph ils

NK cells

Mast cells

Effect of ligation Binding only

ofPMN receptors

Phago cytosis

Respiratory burst

Phagocytosis

During the initial period of infection, however, only complement components and

perhaps IgM may circulate in the blood. Though PMNs have no receptors for IgM, IgM

bound to the surface of target bacteria is very effective in triggering the binding of Cl q

components and generating PMN respiratory burst and phagocytosis via the ClqRO'2­

receptor. As complement-deficient mice are unable to mediate immune response to

several bacterial pathogens (a process requiring phagocytosis and antigen presentation)

and antibodies are usually only produced later in an infection, complement opsonization

and the triggering of phagocytosis and respiratory burst seems more important in the

control of pathogens during early infection than the presence of antibodies and hence

seems more important than the adaptive immune system in the early stages of infection

(Ravetech and Clynes 1998). For this reason the current study focussed on complement-
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mediated PMN responses such as phagocytic digestion (including respiratory burst) even

before the arrival of the macrophage. The primary interest in this study, therefore, is the

PMNs and their role in phagocytic killing of microorganisms, and the observation of

Osiewicz et al. (1999) which suggest that active MMP-9 is involved in this process i.e.

that uninhibited MMP or lack ofTIMP-l secretion is required. During such early events,

exposure of the complement factor Clq and binding to its receptors also seem to be most

important in the phagocytosis and respiratory burst killing of microorganisms. Since

certain factors of the classical complement pathway, CI-inhibitor (Knauper et al., 1991;

Pemberton et al., 1989) and Clq (Ruiz et al., 1995; 1999), are sensitive to cleavage by

PMN MMPs this research will focus on TIMP-l and MMP release from PMNs under

various circumstances i.e. the TIMP-l and MMP-9 ratios seen, their possible effect on

Clq opsonization and the Clq receptor triggering of phagocytosis and respiratory burst.

Before such a study could be undertaken some knowledge of how granule mobilization

and release and respiratory burst may occur was required and whether it was known how

release ofTIMP-l and MMP-9 may be regulated.

lA Granule mobilization and release and respiratory burst.

The PMN responds to external stimulation in a variety of ways and how many and the

nature of the pathways that are triggered still remains unclear. The most studied

molecule for triggering granule release is fMet-Leu-Phe (fMLP). Formyl methionine­

labelled proteins expressed by bacteria are easily distinguished from the host proteins

(Hellewell and Williams, 1994). Binding of the fMLP receptor is followed by the

activation of G-proteins which sequentially trigger three phospholipases, phospholipase

D (PLD), phosphoinositide-specific phospholipase C (PI-PLC), and phospholipase A2

(PLA2). Occupancy of fMLP chemoattractant receptor induces dissociation of a sub­

units from the ~ and y sub-units of the G protein and the a sub-unit is activated by

binding to GTP (Sengelev, 1996). The activated a subunit lowers the calcium

concentration required to stimulate a membrane-associated PLC, which III turn

hydrolyzes phosphotidylinositol biphosphate (plP2) to diacylglycerol (DAG) and
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inositol triphosphate (IP3) . Diacyl glycerol is an activator of protein kinase C (PKC)

which in turn phosphorylates a variety of serine and threonine residues, and IP3 induces

release of calcium from internal cellular stores (Figure 1.4). Release of calcium

increases the cytosolic calcium level and results in differential granule fusion with the

plasma membrane in the order opposite to the order in which the granules are

synthesized, in a calcium concentration-dependent manner, the secretory vesicles being

released by the lowest level of calcium (Sengelev et al., 1993).

Schettler et al. (1991) showed that during stimulation with formyl peptides and

phagocytosis of IgG- and complement-opsonized zymos an, only collagenase (MMP-8)

and gelatinase (MMP -9) were secreted to any significant extent. Less than 6% of

elastase, myeloperoxidase and lactoferrin-containing granules were released with either

of these agents . Secretion was microtubule-dependent and disruption of microtubules

with colcemid inhibited release of all granules. Thus, granules seem to be differentially

associated with the cytoskeleton. Disruption of microfilaments by cytochalasin B,

however, resulted in release of all granule contents under formyl peptide stimulation.

These results show that some granule types are more easily released than others,

possibly because they have an extracellular function while other granules are not easily

mobilized and possibly have a largely intra-phagosomal function.
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Figure 1.4 Multiple second messengers derived from signalling pathways triggered by the G-protein­
coupled receptors, Fc and complement receptors. Rapid activation of three phospholipases as
well as the activation of tyrosine phosphorylation and phosphatidylinositol-3-kinase is known to
be regulated by occupied receptors. The products of the individual reactions which function as
second messengers are indicated as well as the downstream events that they regulate. Dotted lines
indicate alternative pathway of activation. (IgG, immunoglobulin G; FMLP, formyl methionyl
leucyl phenylalanine; C5a, complement fragment 5a; PAF, platelet aggregation factor; ATP,
adenosine triphosphate; LTB4, leukotriene B4; PLAz phospholipase Ai; PI-PLC phosphoinositide
phospholipase C; PLD, phospholipase D; AA, arachidonic acid; DAG, diacyl glycerol; IP3,
inositol triphosphate; PA, phosphatidic acid; DAG, diacyl glycerol; PK, protein kinase; PKC,
protein kinase C; PI3-P phosphoinositide phosphate, PI-3, 4-P2, phosphoinositide diphosphate;
PI-3, 4,5-P3, phosphoinositide triphosphate, FcyRII, FcyRIII, Fe receptors, CR3, complement
receptor 3) (modified from Hellewell and Williarns, 1994).
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How TIMP-1 release is regulated was, however, unknown. Preliminary unpublished

results of Price et al. (2000) indicated that, unlike other granules, the TIMP-1 vesicle did

not seem to be released via a calcium-mediated mechanism. Other ' investigators

indirectly indicated that the TIMP-1 vesicle may be possibly differentially associated

with the cytoskeletal elements and that a different non-calcium-dependent discharge

mechanism may be involved in granule release (Schettler et al., 1991). As knowledge of

how TIMP-1 is released may help in understanding and controlling many MMP-induced

pathologies and may be involved in the evasion of respiratory burst by microorgansims,

the regulation of release of TIMP-1 formed a preliminary sub-investigation of this study.

It was decided to explore various opsonins coatings in a latex bead model system and

use such a system to check the effect of activating various receptors, especially those for

complement in causing the release of MMP-9 and TIMP-1.

It was known that, activation of fMLP receptor results in the activation of PLD and

phosphatidic acid (PA) is subsequently produced. Phosphorylation of p22phox follows

activation of a protein kinase (PK) by PA and gives rise to assembly of the respiratory

burst complex (Figures 1.4 and 1.5). Alternately, PMA may directly activate PKCwhich

subsequently phosphorylates p22p1lOX resulting in respiratory burst (Regier et al ., 2000)

(Figure 1.5). IgG- and compl ement opsonization of zymosan (OPZ) i.e. activation of the

FcyRIII and CR3 receptors, gives rise to phagocytosis and respiratory burst mediated by

both PLD- and PLC-dependent p22phox phosphorylation (Regier et al ., 2000) (Figure

1.5). This gives rise to a strong respiratory burst which would not be achieved by

activation of the CR3 or FcyRIII receptors separately, potentially explaining why

IgG/complement opsonization and activation of the FcyRIII and CR3 receptors together

gives effective maturation of the phagosome and hence killing of microorganisms (Zhou

et al., 1994), an effect enhanced by fMLP (Regier et al., 2000).

Low concentration of free C1q molecules do not induce respiratory burst. However, in

the absence of antibodies, Cl q-opsonized particles or Clq in high concentration can

induce respiratory burst in a manner which is different from the pathway used by other
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complement factors and their receptors. It was shown that Clq mediated superoxide

production is Ca2
+ flux-and actin polymerization-dependent but PKC independent

(Goodman and Tenner, 1992). Even though, Clq triggers respiratory burst via the

ClqRO'2- receptor, respiratory burst is initiated by binding of the ClqRO"i- receptor to

the intracellular domain of CR3 (CD 11b/CD18) receptor (Goodman et al., 1995). Thus,

there is interdependence between the complement receptors.

fMLP OPZ
P A

FcyRIIIICIU

\
Phospholipase D Phospholipase C

! 1Phosphatidic
Diacylglycerol

Acid

! 1
Protein Kinase C

Figure 1.5 Model of p22 phox phosphorylation in PMNs.
STR (seven transmembrane receptors), OPZ (opsonized zymosan) (modified from
Regier et al., 2000; Li:ifgren et al., 1999; Zhou et al., 1994).
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1.5 Summary of objective of the current study

The presence of active extracellular MMPs and complement has been shown to be

necessary for the killing of microorganisms by PMNs (Osiewicz et al., '1999). Since

MMPs bind and are inhibited by TIMP-1 in a 1:1 ratio, the activity of MMPs seen

extracellularly may depend on the relative amount of MMPs and TIMP-l present.

Whether MMPs and TIMP-1 are released individually, together or at all upon

stimulation of PMN complement receptors by opsonizing complement and hence

whether the extracellular MMP:TIMP-1 ratio may influence the outcome of an infection,

is unknown. The current study will focus on one possible mechanism by which the

outcome may be influenced by the MMP:TIMP-1 ratio. This in essence is a mechanism

by which TIMP-1 release may be envisaged to influence complement assembly, and

hence opsonization, the PMN receptors bound and hence phagocytosis, respiratory burst

and killing of microorganisms.

Attention was focused on the first complement component to bind to the surface of

antibody-coated or charged residues on microorganisms, the Cl-complex, the lectin

component of which is C1q. The Cl complex does not bind to any of the phagocyte

receptors (Tenner and Cooper, 1980), however, normal dissociation of Clr and Cls, due

to the presence of Cl-inhibitor, may lead to binding of Clq to PMN Clq receptors,

stimulation of reactive oxygen radical production, phagocytosis, and killing of

microorgansims (Tenner and Cooper, 1980). Cl-inhibitor, has been shown to be cleaved

and inactivated by PMN MMPs (MMP-8 and -9) (Knauper et al., 1991) and by PMN

elastase (Pemberton et al., 1989; Gigli and Tausk, 1988). Release of MMP-9 and not

MMP-8 and elastase is likely to occur during early phases of infection (Goodman and

Tenner, 1992; Kishore and Reid, 2000), however. The effect of MMP-9 (and TIMP-l)

release was, therefore, to be monitored and correlated with respiratory burst or killing of

microorganisms. It was reasoned that secretion ofMMP-9 and possibly TIMP-l, may be

constitutive as MMPs are not usually processed in the other cells and are usually

released constitutively in their pro-form. Pro-MMP-9 is also the only pro-MMP which is

able to bind to both the MMP-binding and the inhibitory domain of TIMP-l. It was,
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therefore, hypothesized that any simultaneously released TIMP-l may stabilize pro­

MMP-9, facilitate activation, and protect MMP-9 against degradation, possibly allowing

limited activity after activation, before preventing large scale degradation of ECM

components and MMP-sensitive factors such as complement Cl-inhibitor {Price et al.,

2000). Therefore, it was our hypothesis that 1) MMP-9 was probably secreted at a low

level facilitating cell movement 2) in a case where phagocytosis was not seen, Cl­

inhibitor may possibly be cleaved by PMN MMP-9, preventing the dissociation of Cl q­

Clr-Cl s, complex, the binding of Clq receptors (ClqRp and ClqR02-) , respiratory

burst and phagocytosis. We hypothesized that this may be due to the prevention of

TIMP-l release by signalling molecules released by microorganisms which have

evolved to evade phagocytosis and complement-mediated killing by PMNs.

Therefore, prior to monitoring respiratory burst, in order to investigate whether MMP-9

and TIMP-l secretion normally occurs when complement is present and whether

complement and especially Clq may form an opsonin, polystyrene beads with surfaces

which would favour the binding ofClq were incubated with complement and the release

of MMP-9 and TIMP-l was monitored. However, before such experiments were

performed, methods for the semi-fractionation and detection ofMMP-9 (Chapter 3) and

TIMP-l (Chapter 4) were optimized. After this methods for detection of latex bead­

complement opsonins were assessed using either pre-coating of latex beads or

incubation in the presence of PMNs and complement. The secretion of MMP-9 and

TIMP-l by phagocytosing PMNs was, therefore, assessed (Chapter 5). The future course

of action is discussed in Chapter 6. To assist the flow of subsequent chapters, methods

which were recurrently used in the thesis are described in Chapter 2.
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CHAPTER TWO

GENERAL MATERIALS AND METHODS

This chapter contains materials and methods that were routinely used throughout the

project. These are included here to increase the readability of subsequent chapters and

allow the use of this thesis as a method reference.

2.1 Materials

All reagents were of analytical grade.

Tris (2-amino-2- (hydroxy methyl)-1,3 -propanediol), bovine serum albumin (fraction

V), nitro blue tetrazolium [2,2'- di-p-nitrophenyl-S, 5'-diphenyl-3, 3'-(3,3'-dimethoxy-4,

4' -diphenylene) di-tetrazolium chloride] , [5-bromo-4-chloro-3-indolyl-phosphate, 4­

toluidine salt] were from Roche Diagnostics, Mannheim, Germany. Acrylamide, NN'­

methylene bisacrylamide, calcium chloride-2-hydrate, glycine, ethylenediamine

tetraacetic acid (EDTA), ammonium peroxodisulfate, ammonium sulfate, sodium

dihydrogen ortho-phosphate, sodium chloride, EDTA.Na2, 2-methylpropan-2-01 (tert­

butanol), sodium azide, ethanol (99%), Triton X-lOO, were from BDH Laboratory

Supplies Poole, England. Brij-35, nit IgG, anti-chicken IgG alkaline phosphatase

conjugated, molecular weight markers (phosphorylase b, albumin, ovalbumin, carbonic

anhydrase, myoglobulin, lysozyme), gelatin (porcine skin), levimsole (L [-]-2,3,5,6­

tetrahydro-6-phenylimidazo [2, l-B] thiazole), trypan blue, 3,3' -diaminobenzidine

tetrachloride, phorbol l2-myristate 13-acetate (PMA), citrate phosphate dextrose

solution, Percoll, tricine, rabbit anti-TIMP-l antibody (T-8687), mouse anti-TIMP-l

monoclonal antibody (T-8187), rabbit anti-chicken antibody alkaline phosphatase tagged

(A-9l7l) and goat anti-rabbit antibody alkaline phosphatase tagged (A-3687) were from
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Sigma Diagnostics, St. Louise, MO, USA. Hybond blotting paper, ECL western blotting

analysis detection kit, lyophilized low molecular weight markers were from Amersham,

Pharmacia Biotech, UK. Film developer (multicontrast developer) and fixer were from

Agfa Corporation, Germany. Tween 20, 2-mercaptoethanol, polyethylene glycol (6 000),

polyethylene glycol (20 000), magnesium chloride-6-hydrate, N-N-N'-N'-tetramethyl

ethylenediamine (TEMED), di-sodium hydrogen phosphate dodecahydrate and

potassium carbonate were from Merck, South Africa. Potassium chloride, Coomassie

brilliant blue R250, potassium dihydrogen orthophosphate were from Saarchem, South

Africa. Sodium dodecylsulfate (SDS) and phenylmethylsulfonylfluoride (PMSF) were

from Boehringer Mannheim, Mannheim, Germany. Hydrogen peroxide 35% (v/v) was

from Riedel-de Haen, Germany. Ponceau S was from GURR, Searle Diagnostic,

Inghamshire, UK. Carboxylated latex beads (1 urn) were from Bangs Laboratories Inc,

Indianapolis, US.A. The chicken anti-TIMP-l, chicken anti-MMP-9 and chicken anti­

molecular weight marker antibodies were raised by Dr. Brendon Price from the

Department of Biochemistry, University ofNatal, South Africa.

2.2 Protein quantitation assays

The simplest and most widely used method for protein determination is a

spectrophotometer method measuring the absorbance of a protein at 280 run (A28o) and

calculating protein concentration using the extinction coefficient of that protein. Most

proteins show maximal absorption at 280 run due to the presence of aromatic amino

acids, such as tyrosine and tryptophan. Different proteins have different ratios of

aromatic amino acids, therefore, in order to use absorbance at 280 run, proteins must be

pure and of known extinction (absorption) coefficients. For IgG and IgY antibodies their

extinction coefficients are 1.43 and 1.25 ml/mg/cm, respectively (Dennison, 2003).

For pure protein preparations with known extinction coefficient, the concentration using

a cuvette with a 1 cm path length was calculated according the following formula .
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A=ExC

Where A = Absorbance at 280 run.

E = Extinction coefficient (ml/mg/cm) i.e. (1 mg/ml of 0.1% solution) of the test protein

in a 1 cm cuvette.

C = protein concentration in mg/ml

2.2.1 Bradford dye binding assay

As it is impossible to determine the concentration of a protein mixture using an

extinction coefficient, Bradford (1976), therefore, developed a method which determines

the total protein concentration using a dye-binding assay in which the binding of a dye to

a protein causes a shift in the absorption maximum. For Coomassie brilliant blue G-250

the shift is from 465 run to 595 run allowing monitoring of absorption shift at 595 run.

This method for quantitation of proteins is still the best for protein measurements. Many

authors have come up with slight modifications but the Bradford assay remains widely

used because of its ease of performance, rapidity, relative sensitivity, and specificity for

proteins (Zor and Selinger, 1996).

Bradford's Coomassie brilliant blue G-250 protein-binding dye exists in three forms: red

(cationic), green (neutral), and blue (anionic) which absorbs at 470 run, 650 run and 590

run, respectively. As the binding of dye to protein ratio increases the blue colour

increases and the red colour decreases. Due to the overlapping absorption characteristics

of the red and blue dye forms the method gives a slight non-linearity (Bradford, 1976).

To avoid this non-linearity Zor and Selinger (1996), recommended reading the

absorbance at 590/450 run so that protein concentration may be established by

measurement of the increasing dye absorption at 590 run and decreasing dye absorption

at 450 run. This ratio was found to be directly proportional to the concentration of

protein present and gave a more linear curve than Bradford's method, increasing
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sensitivity 10-fold and allowing quantitation of down to 50 ng of a standard protein.

Measuring at 590/450 nm also decreased the interference due to competition of low

amount of SDS with the dye.

Another modification was introduced by Read and Northcote (1981). These researchers

observed that increasing the amount of dye in assay solution or decreasing the amount of

phosphoric acid and replacing Coomassie brilliant blue R-250 with Serva Blue G-250

increases sensitivity and also adjusts the colour range achieved with proteins to values

close to that seen for equivalent concentration of the standard protein BSA. BSA is a

commonly used standard protein in the Bradford assay as it has high colour yield unlike

other standards which almost have the same absorbance as the proteins for analysis (Zor

and Selinger, 1996). The modification of Zor and Selinger (1996) and Coomassie

brilliant blue was replaced with Serva Blue in the study as the increased amount of dye

used in the Read and Northcote (1981) method has previously shown to have a

precipitating effect.

2.2.1.1 Reagents

Bradford dye reagent. Dye reagent was prepared according to Bradford (1976) with the

exception that Serva Blue G-250 (50 mg) was dissolved in 25 ml 95% ethanol and used

instead of Coomassie blue. A volume of 50 ml phosphoric acid [85% (w/v)] was added

and the solution was diluted to 500 ml with double de-ionized water (ddH20). The

solution was stirred for 30 min and filtered twice. The final concentration of the reagent

was 0.01% (w/v) Serva Blue G-250, 4.7% (w/v) ethanol, and 8.5% (w/v) phosphoric

acid.

Standard BSA solution Cl mg/m}). BSA (Fraction V) (10 mg) was dissolved in 10 ml

ddH20 to make a 1 mg/ml solution.
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2.2.1.2 Procedure

Stock bovine serum albumin (BSA), prepared as in the above, was used to prepare

standard curves for the microgram and nanogram range of protein. Five replicates of 40

Ills of the diluted sample were dissolved in 160 Ills of ddH20 each. Each sample (200

Ills) was mixed with 800 Ills of Bradford reagent in 1.5 ml Eppendorf tubes to make up

1 ml. The tubes were gently vortexed and transferred to clean plastic cuvettes. [Only

plastic cuvettes were used in the experiment as Coomassie brilliant blue dye binds to

glass cuvettes and gives erroneous readings (Bradford, 1976)]. Dye-protein mixtures

were allowed to react for two min and absorbance of each sample was measured at 590

run and 450 run within one hour. Double de-ionized water (ddH20) served as a blank

instead of dye reagent as in the conventional Bradford's assay because the free dye is

also measured at 450 run thus, no free dye control is needed. The ratio of AS90/4S0 was

calculated and a standard curve was plotted against the amount of protein applied. A

graph was constructed in Microsoft Office Excel software and a linear regression

equation was calculated to determine the concentration of protein.

2.3 Protein sample concentration

Protein samples which were too dilute may need to be concentrated for vanous

purposes. Proteins can be concentrated in different ways such as by changing the

properties of the solvents by addition of high concentration of certain salts or miscible

organic solvents. Some of the precipitation procedures such as the use of certain organic

solvents and changes of pH and temperatures denature proteins and are used only for

certain analytical purposes (Deutscher, 1990).
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2.3.1 Salt precipitation

Very dilute proteins for SDS-PAGE analysis may need to be concentrated for detection

due to the limited capacity of wells in the gel where protein samples are loaded. Some of

the precipitation methods which may be used are the KCl, NaCl, Na2S04 or (NH4)2S04

methods (Englard and Seifter, 1990).

(NH4)2S04 precipitation is important method of protein concentration. In the absence of

(NH4)2S04, proteins remain as open structured, more soluble and less stable forms.

Upon addition of increasing (NH4hS04, however, they start to become compact in

structure, less soluble and more stable. This occurs as the (NH4)2S04 sequesters more

water (the sol- binds to 14 H20 molecules) and causes dehydration and crowding of

the proteins. This eventually causes certain proteins to precipitate as they reach their

solubility limit in a process called salting out (Dennison and Loverein, 1997). The use of

(NH4)2S04 is chosen because next to citrate, sulphate is the second strongest Hofmeister

Cosmothrope which is characterized by its high effectiveness in salting out proteins and

stabilizing protein structure (Dennison and Lovrein, 1997). Ammonium sulfate,

however, needs to be removed by dialysis before electrophoresis may be used.

Therefore, this not is not a convenient method for small volumes.

A slightly modified method, SDSIKCl precipitation was used for most proteins which

were needed to be concentrated for electrophoresis. This method is unsuitable for

general protein concentration as proteins would be denatured by SDS.

2.3.1.1 Reagents

5% Cm/v) SDS. SDS (0.5 g) was dissolved in 10 ml of ddH20.

3M KCl. KCl (2.24 g) was dissolved in 10 ml of ddH20.
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2.3.1.2 Procedure

SDS [5% (v/v), 10 ).11] was added to the sample (100 ).11) in a 1.5 ml Eppendorf tube. The

solution was mixed by inverting the tube and 3 M KCl (10 ).11) was added. The mixture

was again inverted and centrifuged (12 000 x g, 2 min, RT) and the supematant was

discarded. For SDS-PAGE the precipitate may be dissolved in stacking gel buffer (10

).11) and reducing treatment buffer (10 ).11) (Section 2.6.1.1).

2.3.2 Concentration by dialysis

Dialysis uses the principle of osmosis to desalt or effect a buffer change or may be used

to concentrate a sample. Dissolved molecul es and dialysing solutions are separated by

semi-permeable membrane and movement of water and ions is effected from the region

of low ion concentration to the higher ion concentration. The selective sieving of the

membrane due to its defined pore size also allows the movement of protein molecules of

a certain size. The size at which molecules are retained by the membrane is called

molecular cut off. When dialysis is used for desalting, distilled water or buffer with low

ionic concentration may be used as the dialysis solution. This may cause influx of water

and efflux of salts from the protein causing the membrane to swell. If the ionic strength

of the buffer used is low or ddH20 is used to dialyse a solution a phenomenon called

Donnan membrane effect may occur. The large size of proteins and the fact that they

cannot pass through the pores causes an overall build-up of charge associated with the

overall charge on the protein. To compensate this there is an influx of opposite charged

ions. This may result in extremes of pH, either caused by influx of H+protons (acid pH)

or OH- ions (alkaline pH). For this reason proteins should be dialysed against a buffer

where possible as buffer ion dissociation and movement would compensate for ion

inequalities across the membranes, correcting the pH to the desired value.
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Maximal diffusion of solute and hence exchange of ions and H20 can be achieved only

by frequently changing the dialysis buffer or H20 or dialyzing against large volumes.

The number of changes is less important than the total volume of dialysis buffer as large

volumes maintain maximal concentration differences across the dialyzing membrane for

longer (Englard and Seifter, 1990).

When used for concentration of highly diluted samples, the dialysis bag may be

surrounded by solution of high concentration or with compounds with high affinity for

H20 such as granular sucrose or PEG 20 000. Under these conditions water flows out

from the membrane and dissolves in the granular or high concentration of the solute.

Sucrose may enter the bag contaminating the concentrated protein sample, whereas PEG

20 000 would not be able to do so due to its size.

2.4 Three phase partitioning (TPP) semi-fractionation of proteins.

Three-phase partitioning is a method of protein fractionation in which proteins are

harvested in a layer between an upper t-butanol layer and lower aqueous (ammonium

sulfate) layer. Using this method about 25 enzymes and proteins from different sources

has been harvested (Dennison and Lovrein, 1997).

When ammonium sulphate is added to an aqueous solution containing a eo-solvent t­

butanol (which is totally H20 miscible), the solution separates into an upper t-butanol

and lower aqueous layer. As different proteins become more butanolated and

progressively dehydrated, due to the progressive complexing of water by ammonium

sulfate, they reach their solubility limit and come out of solution (Dennison and Lovrein,

1997).

t-Butanol is unique among other common organic solvents because it does not denature

proteins . This may be due to its larger size or due to binding to surface hydrophobic

patches on proteins which constitutes 50% of their surface area. Instead of gaining
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access to the interior of the protein and causing distortion of their structures (Dennison

et al., 2000). Hydrated sulphate ions also become too large, due to aggregation of large

amount of water molecules on their surfaces, to enter into interior of proteins and cause

denaturation. Other organic solvents unlike t-butanol and salts unlike ammonium

sulphate, however, have smaller sizes which allow them to enter into the interior domain

of proteins and denature them. When t-butanol is used at a concentration of 30% (v/v), it

also inhibits enzyme activities and hence protein denaturation that may occur during

homogenization (Dennison et al., 2000).

TPP has additional advantages over conventional salting out because, in TPP the

proteins float and are desalted, in the mid layer, between the t-butanol and

solvent/ammonium sulphate layers. In conventional salting out precipitation of proteins,

becomes increasingly difficult with increasing ammonium sulfate concentrations

(Dennison et al., 2000). Conventional salting out results in high salt content in the

precipitated proteins and, therefore, is usually followed by desalting before further

processing (Dennison et al., 2000). Therefore, TPP was a method of choice for

fractionation ofMMP-9 from sputum.

2.4.1 Procedure

Sputum (20 ml) was collected into a sterile tube from a normal individual fasted for 12

hours. The sputum was clarified (10 000 x g, 4°C, 10 min), the pellet removed the

supernatant was measured and pre-warmed t-butanol [30% (v/v) calculated as indicated

in Equation 1 below] and the required amount of ammonium sulfate (see Equation 2

below) added. The ammonium sulfate was dissolved by inversion, the solution

centrifuged (6 000 x g, 10 min, 20°C) and the protein precipitate was harvested from the

layer formed between the t-butanol and aqueous layer.
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The amount of ammonium sulphate added:

m(NH4hS04 = P [Vs +Vt-butl ··················· 0
Where m(NH.thS04 = mass of ammonium sulphate to be added .

P = the decimal percentage required.

Vs = Volume of the sample solution.

For the subsequent percentage increase of (NH4)2S04, addition was calculated as follows

m(NH4hS04 added = P [Vs + (0.3/0.7 x v.n -Enass G)
Where Enass = the summation of all previously added (NH4)2S04.

The procedure was repeated and the subsequent percentage increase of ammonium

sulphate was calculated as in Equation 3. The protein precipitate was removed by

filtration in Whatman No. 1 filter paper and was immediately dissolved in cold MMP-9

buffer [50 mM Tris-HCl, 200 mM NaCl, 5 mM CaCh, 2 mM PMSF, pH 7.5] before it

was quickly frozen and stored at -20°C.

2.5 Fractionation of IgY from chicken egg yolk

Since some of the antibodies used such as anti-TIMP-l and anti-MMP-9 were raised in

chickens, fractionation of preimmune egg yolk antibodies (IgY) from uninoculated

chickens was prepared for use as pre-immune control IgY preparations for

immunolabelling experiments.
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2.5.1 Reagents

Sodium phosphate buffer (lOO mM sodium phosphate, 0.02% Cm/v) NaN 3, pH 7.6).

NaH2P04.H20 (13.8 g) and NaN3 (0.2 g) were dissolved in 950 ml of purified water,

titrated to pH 7.6 using NaOH , and made up to 1 liter.

2.5.2 Procedure

Egg yolks were separated from the egg white and carefully washed under running water

to remove all traces of albumin. The yolk sac was punctured and the yolk volume

determined in a measuring cylinder. Two volumes of 100 mM Na-phosphate buffer, pH

7.6, were added and mixed in thoroughly. Solid PEG (M, 6 000) was added to 3.5%

(m/v) and dissolved by gentle stirring. The precipitated vitellin fraction was removed by

centrifugation (4 420 x g, 30 min, RT) and the supematant fluid was filtered through

non-absorbent cotton wool to remove the lipid fraction. The PEG concentration was

increased to 12% [i.e. 8.5% (m/v) was added], the solution was mixed thoroughly and

centrifuged (12 000 x g, la min, RT). The supematant was discarded and the pellet was

dissolved in 100 mM Na-phosphate buffer, pH 7.6, in a volume equal to the volume

obtained after filtration. PEG [12% (m/v)] was again added and the solution was stirred

thoroughly and centrifuged (12 000 x g, la min, RT). The supematant fluid was

discarded and the final antibody pellet was dissolved in 1/6 of the original egg yolk

volume, using 100 mM Na-phosphate buffer, pH 7.6, and stored at 4°C.

2.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)

Electrophoretic separation is the most widely used method to determine the approximate

number of proteins in a crude extract and identity of proteins in a mixed solution. This

method uses the rate of migration of charged molecules in an electric field from one pole

to the other, to aid in the separation of proteins. Macromolecules in an electric field will
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accelerate until the magnitude of frictional force is equal to their accelerating force due

to charge. The .resulting steady state mobility of free macromolecules is, therefore,

proportional to the net charge and inversely proportional to the frictional coefficient

(Goldberg et al., 1984). The rate of migration would then be rapid _for those

macromolecules which have a high charge density.

Migration, however, takes place in gels formed by polymerization of acrylamide and

bis-acrylamide co-monorners which form a meshwork of pores that have sieving effects

on proteins. Large proteins, therefore, would move slowly while small molecules would

move more rapidly. Separation of proteins according to molecular weight and charge

density, therefore, would create complications during interpretation of results.

A modification was, therefore, made to the sample preparation method to gives proteins

the same charge, so that separation is based only on their sizes (M'). This modification

simplified determination of molecular weights as only one parameter (size), would now

be the basis of separation. Before loading of protein samples into gels, they were,

therefore, treated with an ionic detergent sodium dodecyl sulphate (SDS). The SDS

found in this treatment buffer subsequently binds to all regions of the protein by

disruption of most non-covalent inter-molecular and intra-molecular protein interactions

and produces a long negatively charged polypeptide chain (Switzer and Garrity, 1999).

Excess amount of soluble thiol (2-mercaptoethanol or dithiotreitol) is also added to the

protein samples and all disulfide bonds are reduced. This helps the SDS to gain access in

binding to all reduced polypeptides.

Under these conditions the same amount of SDS (1.4 g SDS/g polypeptide) binds to all

reduced polypeptides. This results in total unfolding (denaturation) of the proteins in the

sample and, yielding unfolded, highly anionic polypeptide chains. This causes the

polypeptides to form rods of negative charges with equal charge densities or charge per

unit length (charge to mass ratio). Subsequent migration, therefore, depends only on one

parameter, that is the molecular weight. Such a process as electrophoresis may be carried

out using two different gel/buffer systems, the Laemmli and Tris-tricine systems.
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2.6.1 Laemmli system

Most of the higher molecular weight proteins and samples for zymography and reverse

zymography in this study were separated using the Laemmli system (Laemmli, 1970)

using a modification of the original Laemmli system described in Ornstein and Davis

(1964). This is known as a discontinuous SDS system and is now the most widely used

electrophoretic system . In this method proteins are concentrated in the stacking gel

phase at one pH and separated in the running gel phase at another pH. The stacking gel

has a non-restrictive large pore size gel, and is layered on top of a sieving, smaller pore

size separating gel. Concentration of proteins in the stacking gel before entering into the

running gel, allows the application of diluted protein samples. When electrophoresis of

the sample is initiated in the stacking gel at pH 6.8, glycine in the tank buffer carries no

negative charge, however, at pH 8.3 of the running gel buffer it has an average charge of

about -0.1 per molecule. In contrast, the SDS coated protein in the system carries a high

negative charge that is essentially independent of the pH of the system (Switzer and

Garrity, 1999). Chloride ions contained in the stacking gel, therefore, migrate fastest

than the proteins and glycine due to their small size and full negative charge, followed

by the proteins, which slowed by their frictional force, and lastly by the glycine (Switzer

and Garrity, 1999).

Upon entering the running gel at higher pH, however, the frictional force caused due to

decreased pore size of the gel slows the migration of proteins, therefore, the chloride

ions pass the proteins and move fastest. Chloride ions are followed by the glycine and

leave proteins behind to be separated according to their molecular weight (Switzer and

Garrity, 1999).

This method has been used for many years using the formulation of acrylamide/bis­

arylamide monomer by Hjerten, (1962) and the method of Laemmli, (1970).

Electrophoretic separation of proteins is accompanied by molecular weight markers of

known molecular weight. Upon subsequent staining of the gel the separated proteins
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appear as blue bands. A plot of relative mobility of each of the standard molecular

weight marker proteins as a logarithm of its molecular weight is plotted (Weber and

Osbom, 1969) and molecular weight determined by the linear regression usmg

Microsoft Office Excel software.

2.6.1.1 Laemmli system reagents

Acrylamidelbisacrylamide monomer solution [30 % Cm/v) T, 2.6% Cm/v) C].

Acrylamide (58.44 g) and N, N'-methylenebisacrylamide (1.56 g) were dissol ved and

made up to 200 ml with distilled water and stored in an amber coloured bottle at 4°C.

The solution was filtered through Whatman No.1 filter paper before use.

4 x Running gel buffer [1.5 M Tris-HCI, pH 8.8]. Tris (36.3 g) was dissolved in

approximately 170 ml of distilled water, adjusted to pH 8.8 with HCI and made up to

200 ml. The solution was filtered through Whatman No.1 filter paper before use.

4 x Stacking gel buffer [500 mM Tris-HCI, pH 6.8]. Tris (6.05 g) was dissolved in 80 ml

of distilled water, adjusted with HCI to pH 6.8 and made up to 100 ml. The solution was

filtered through Whatman No.1 filter paper before use and made freshly every week.

10% Cm/v) SDS . SDS (10 g) was dissolved and made up to 100 ml with distilled water.

Initiator [10% Cm/v) ammomum persulfate]. Ammonium persulfate (0.1 g) was

dissolved in 1 ml of distilled water just before use .

Tank buffer [250 mM Tris-HCI, 192 mM glycine, 0.1 % Cm/v) SDS, pH 8.3]. Tris (151.2

g) and glycine (72 g) were dissolved and made up to 5 litres with distilled water. Prior to

use, 2.5 ml of SDS stock was added to 250 ml for use in the Mighty Small IT apparatus.

40



Reducing treatment buffer [125 mM, Tris-HCl, 4% Cm/v) SDS, 20% Cv/v) glycerol, 10%

Cv/v) 2-mercaptoethanol, pH 6.8] . Stacking gel buffer (2.5 ml), 10% SDS (4 ml),

glycerol (2 ml) and 2-mercaptoethanol (l ml) were made up to 10 ml with distilled

water.

Non-reducing treatment buffer [125 mM Tris-HCl, 4% Cm/v) SDS, 20% Cv/v) glycerol,

pH 6.8]. Stacking gel buffer (2.5 ml), 10% (m/v) SDS (4 ml) and glycerol (2 ml) were

made up to 10 ml with distilled water.

Stain stock solution [1% Cm/v) Coomassie brilliant blue R-250]. Coomassie brilliant

blue R-250 (1 g) was dissolved in 100 ml of distilled water by magnetic stirring for 1 h

at room temperature. The solution was filtered through Whatman number 1 filter paper.

Staining solution [0.125% Cm/v) Coomassie brilliant blue R-250, 50% Cv/v) methanol,

10% Cv/v) acetic acid]. Stain stock (62.5 ml) was mixed with methanol (250 ml) and

acetic acid (50 ml), and made up to 500 ml with distilled water.

Destaining solution I [50% Cv/v) methanol, 10% Cv/v) acetic acid]. Methanol (500 ml)

was mixed with acetic acid (lOO ml) and made up to 1 litre with distilled water.

Destaining solution II [7% Cv/v) acetic acid, 5% Cv/v) methanol]. Acetic acid (70 ml)

was mixed with methanol (50 ml), and made up to 1 litre with distilled water.

41



Table 2.1 Preparation of Laemmli running and stacking gels of different acrylamide
concentrations.

Volume (ml)
- -

Running gel (%) Stacking gel

Reagent (%)

15.0 12.5 10.0 7.5 5.0 4.0 3.0

Acrylamide/ 7.5 6.25 4.99 3.75 2.5 0.67 0.5

bisacrylamide

monomer solution

(ml)

Running gel buffer 3.75 3.75 3.75 3.75 3.75 0 0

(ml)

Stacking gel buffer 0 0 0 0 0 1.25 1.25

(ml)

10% SDS (ml) 0.15 0.15 0.15 0.15 0.15 0.05 0.05

Initiator (ml) 0.11 0.11 0.11 0.11 0.11 0.025 0.025

Dist. water (ml) 3.5 4.75 5.98 7.25 8.5 3.0 3.17

TEMED (ml) 0.0075 0.0075 0.0075 0.0075 0.0075 0.005 0.005

2.6.1.2 Procedure

The SDS-PAGE electrophoresis unit (Hoefer Mighty Small U®) was assembled in

accordance to the manufacturer's instructions . All the accessories were cleaned either

with IM KOH in ethanol or 99% ethanol. Gel buffers and monomer solutions were

added in to a clean glass beakers and polymeri zation was initiated by the addition of
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initiator and TEMED as per Table 1. The solution was mixed by aspiration into 10 ml

syringe and loaded between a glass and aluminium plate to within 3 mms of the top of

the glass plate. Bubbles were dislodged and the gel overlaid with purified water to allow

uniform polymerisation. The gel was allowed to set (1 h, RT). After polymerization the

excess water was removed and stacking gel was cast according to Table 1 and either 10

or 15 well combs were inserted (30 min) until the gel polymerized to form wells into

which samples were loaded.

After the gel was prepared it was transferred in to Hoefer Mighty Small n® gel

electrophoresis unit. The instrument was connected to a power pack at maximum voltage

and 18 mA per gel. The Laemmli tank buffer was added between the glass and

aluminium plates and into the tank . Samples were mixed with an equal amount of

reducing treatment buffer and boiled (1.5 min), or half their volume of non-reducing

treatment buffer and left unboiled. The samples were loaded in the wells and samples

were subjected to electrophoretic separation for a period depending on the monomer

concentration, while the equipment cooled by continuous circulation of ice-cold water.

After the completion of the running time gels were stained with staining solution or

processed for zymography, or reverse zymography or blotted into nitrocellulose filters.

2.6.2 Tricine system

Proteins with molecular weight below 14 kDa are not well resolved by standard SDS­

PAGE using a Laemmli discontinuous buffer system. The Tricine system developed by

Schagger and Von Jagow, (1987) uses Tricine as the trailing ion. This system allows a

resolution of small proteins especially in the range of 1 and 100 kDa, and uses

acrylamide concentration as low as 10% thus low cross linking. The stacking of small

peptides in the presence of SDS is difficult because small peptides form complexes with

proteins and detergents of the same size and charge as the SDS. Separation of proteins,

therefore, becomes a problem. Glycine (pK 9.6) of the Laemmli system and tricine (pK

8.15) behaves quite differently in the stacking of proteins (Schagger and Von Jagow,
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1987). Glycine leads to stacking even of very large proteins, because it migrates very

slowly in the acidic stacking gel, leaving proteins below 20 kDa unseparated from the

bulk of SDS. In a tricine system the pH of stacking and running gels is the same

(Schagger and Von Jagow, 1987). At the usual pH valuesbetween 6.8 and 8.8, Tricine

migrates much faster than glycine in stacking gel, despite its higher molecular mass,

because much more Tricine is in the migrating, anionic form. As a consequence, the

stacking limit is shifted to the low-molecular-mass range of 30 kDa and this facilitates

the separation of small peptides from SDS micelles (Schagger and Von Jagow, 1987).

The stacking of the proteins of interest can be improved by tailoring the stacking band as

narrow as possible. This is best for the resolution of the small proteins as the proteins

above 30 kDa are already separated from the stack of the smaller proteins before

reaching the separating gel. The stacking and destacking of proteins therefore may be

achieved at lower acrylamide concentrations than those in the glycine systems (Schagger

and Von Jagow, 1987).

2.6.2.1 Tricine system reagents

Reducing and non-reducing buffers and stains were prepared as described in Section

2.6.1.1.

Gel buffer: [2.4 M Tris-HCl, 0.3% Crn/v) SDS, pH 8.45]. Tris (72.7 g) was dissolved in

approximately 180 ml of distilled water, SDS [6 ml of 10% (rn/v) solution] added, the

pH was adjusted to pH 8.45 with HCI, and made up to 250 ml. The buffer was filtered

with Whatman No.1 filter paper and stored at 4°C.

Acrylamidelbisacrylamide monomer stock solution [51 % Crn/v) T, 5.88 % Crn/v) Cl

Acrylamide (48 g) and bis-acrylamide (3 g) were dissolved and made up to 100 ml with

distilled water. The buffer was filtered with Whatman No.1 filter paper and stored in an

amber coloured bottle at 4°C.
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Initiator [10% Cm/v) ammonium per-sulphate]. Ammonium persulfate (0.1 g) was made

up to 1 ml with distilled water prior to use .

Anode buffer [200 mM Tris-HCl, pH 8.9]. Tris (24.2 g) was dissolved in approximately

950 ml of distilled water, adjusted to pH 8.9 with HCl and made up to 1 litre.

Cathode buffer [lOO mM Tris-HCl, 100 mM Tricine, 0.1% Cw/v) SDS, pH 8.251. Tris

(12.1 g) and tricine (17.9 g) were dissolved in approximately (950 ml) of distilled water.

SDS [10 ml ofa 10% (w/v) stock solution] was added, the pH adjusted to 8.25 with HCl,

and made up to 1 litre . The buffer was stored at 4°C.

Table 2.2 Preparation of Tricine running and stacking gels

Type of gel Solution

% Gel Monomer Gel buffer Initiator TEMED Dist. H2O

(ml) (ml) (ml) (ml) (ml)

Stacking 10.0% 3.6 6.0 0.06 0.006 8.4

7.5% 2.66 6.0 0.06 0.006 9.34

5% 1.77 6.0 0.06 0.006 10.23

Running 4% 0.5 1.5 0.05 0.012 4.0

3% 0.375 1.5 0.05 0.012 4.12

2.6.2.2 Procedure

The same procedure as described in Section 2.6.1.2 was followed (using reagents as

described in Table 2.2). The electrophoresis apparatus was subsequently run at 80 volts

and maximum current until the bands pass through stacking gel before the voltage was

increased to 100 volts.
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2.7 Western blotting

Electrophoretic separation of proteins does not allow definite identification of a protein

from a mixture as there may be proteins of similar molecular weight. Unless separation

is followed by Western blotting and proteins are recognised using specific antibodies an

enzyme conjugated specific (secondary) antibody and a substrate which gives a coloured

reaction. Western blotting has the advantage over ELISA as it gives information about

the molecular weight or the purity of antigen for example if the protein is degraded.

Western blotting was first described by Towbin et al. (1979). The procedure assisted

detection of proteins down to 100 ng. Separation and blotting of polypeptides depends

on the pore size of the polyacrylamide gel, the molecular weight, the net charge of the

peptide and the electric current applied (Dunbar, 1994). When proteins and peptides are

separated by SDS-PAGE, they are completely surrounded by SDS and are negatively

charged. SDS decreases binding of protein and peptides to nitrocellulose. Thus if there is

too much SDS bound to the protein or peptides, these migrate quickly from the gel but

may not bind well to the nitrocellulose (Dunbar, 1994). Methanol in the blotting buffer,

however, removes SDS and exposes the hydrophobic groups of the polypeptides and

proteins and assists binding to the nitrocellulose (Towbin et al., 1979). On the other

hand methanol decreases the pore sizes of the gel and may precipitate proteins.

A modification of western blotting by Gershoni and Palade, (1982), exploits the charge

of SDS and omits methanol from the blott ing buffer. This is called Zeta binding and

involves transfer of negatively charged proteins to the positive nylon-66-based

membrane. This method facilitates better transfer of polypeptides and subsequent

overlay of ligands. However, its high affinity to proteins creates high background and

makes quenching difficult. To overcome this problem the membrane must be blocked

with high concentration of a blocking protein for extended period of time, thus the

procedure by Towbin et al. (1979) is preferred.
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2.7.1 Detection of blotted proteins

Detection of blotted proteins using Western blotting usually employs either enzymatic

detection systems or autoradiography. Detection by autoradiography gives' sharp bands

but is not convenient due to the danger of exposure to radioactivity (Dunbar, 1994).

There are many detection systems using different enzymes and substrates. One of the

most commonly used systems is the alkaline phosphatase enzyme conjugated to the

reporter antibody and the use of nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3­

indolyl-phosphate (BCIP) substrates at pH 9.5. When BCIP a substrate for alkaline

phosphatase is catalysed it liberates phosphate group and a 5-bromo-4-chloro-3-indoxyl

group will be formed . The 5-bromo -4-chloro-3-indoxyl group is spontaneously oxidized

in the presence of molecular oxygen to give an insoluble indigo dye. To enhance

detection NET and BCIP are mixed together. Thus, instead of an oxidizing agent, NET

is used as electron acceptor. The 5-bromo-4-chloro-3-indoxyl group which is a product

of the reaction of BCIP and alkaline phosphatase is oxidized by NBT to give an

insoluble indigo dye. NBT is reduced in the reaction and give a blue colour.

The secondary antibody can also be conjugated to horseradish peroxidase and can be

detected by addition of 4-chloro-1-napthol, diaminobenzidine or tetra-methylbenzidine

(TMB) but generally less sharper and fainter bands are produced (Dunbar, 1994). The

various reagents used with different detection systems are given below.

2.7.2 Reagents

Towbin blotting buffer [25 mM Tris, 192 mM glycine, 20 % (v/v) methanol, 0.01%

(w/v) SDS, pH 8.3]. Tris (3.02 g) and glycine (14.4 g) was dissolved in 777 ml of

purified water and SDS [1 ml of the 10% (w/v)] was added. After mixing the solution, ±

200 ml of methanol was added to make the volume up to 1 litre. Usually no pH

adjustment is required.
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Ponceau S [0.1% (w/v) in 1% (v/v) acetic acid], Ponceau S (0.1 g) and acetic acid (1 ml)

were added and made up to 100 ml with distilled water.

Tris buffer saline (TBS) [20 mM Tris, 200 mM NaCl, pH 7.4], Tris (2.42 ·g) and NaCl

(11.69 g) was dissolved in approximately 950 ml of distilled water and adjusted to pH

7.4. The solution was made up to 1 litre with distilled water.

Blocking solution [5% (w/v) low fat milk powder/TBS1. Low fat milk powder (5 g) was

added into 100 ml of TBS prepared as in the above. Detergents [(0.3% (v/v) Brij-35,

Tween-20 or Triton X-lOO] were added where necessary.

Alkaline phosphatase substrate buffer [50 mM Tris, 5 mM MgCh, pH 9.5]. Tris (0.605

g) and MgCh.6H20 (0.1 g) were dissolved in 90 ml of distilled water and adjusted to pH

9.5. The solution was made up to 100 ml with distilled water.

Endogenous alkaline phosphatase quenching solution [2 mM levamisole]. Levamisole

(0.05 g) was added to blocking solution (100 ml) just before use.

Substrate for alkaline phosphatase. BCIP (4-toluidine salt) (1.5 mg dissolved in 30 III

DMF) and NBT (3.0 mg dissolved in 30 III of 70% (v/v) DMF) were mixed separately

and added to substrate buffer (10 ml) just before use.

Endogenous peroxide stop solution. NaN3 (O.lg) was dissolved in blocking solution (100

ml) just before use.

Substrate for horseradish peroxidase [0.06% (w/v) 4-chloro-1-napthol, 0.01% (v/v)

fuili/ TBS]. 4-chloro-l-napthol substrate (2 ml of a stock solution of 0.3% (v/v)

. solution in methanol), TBS (8 ml) and H20 2 (3.33 III of 30% (v/v) solution were mixed

together just before use.
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2.7.3 Procedure

After completion of electrophoretic separation of samples, the gels were transferred to

blotting cassette lined with 4 sheets of filter paper on top of a Scotchbrite scouring pad.

The gel was overlaid with a nitrocellulose membrane and further 4-sheets of filter paper.

The cassettes were inserted into the blotting apparatus with the nitrocellulose facing the

positive pole, blotting buffer added, the apparatus attached to the power pack and the

current run at 200 mA at low temperature (4°C) for 16 h. After transfer was complete,

the blotted membranes were retrieved from the apparatus and stained with Ponceau S.

The molecular weights of standard proteins were marked before the stain was removed

by addition of diluted sodium hydroxide, the nitrocellulose rinsed, dried for 1.5 h and

processed for immunoblotting.

The non-specific binding sites of proteins on membranes were blocked with low fat milk

powder/TBS. Levamisole or sodium azide was added where necessary to quench the

endogenous alkaline phosphatase or peroxidases, respectively. After blocking, the

nitrocellulose was washed 3 x 5 min with TBS and primary antibody (diluted in 0.5%

(rn/v) BSNTBS) was added. After incubation (1 h) the primary antibody was discarded

and membrane was washed (3 x 5 min). Secondary antibody was subsequently added

and the membrane incubated for 1 h. After washing (3 x 5 min) with TBS substrate (for

alkaline phosphatase or horseradish peroxidase) was added and incubated in the dark

until colour development was .evident. The nitrocellulose was dried and stored between

filter papers for photographic capture.

2.8 Enhanced chemiluminescence

A large number of chemical reactions give rise to chemiluminescence or the emission of

light photons. Unlike other western blotting secondary antibody conjugates,

chemiluminescent probes, used in enhanced chemiluminescence (ECL) detection of

antigen-antibody interactions, the light-producing step is a purely chemical step. This

49



step does not involve the precipitation of an enzyme substrate complex and light

emission is captured on X-ray films (Prichard and Cormier, 1968). In the basic (non­

enhanced) chemiluminescence reaction, HRP is used to oxidize a peracid salt, leading to

the formation of a raised oxidation state of the haem group at the centre of HRP itself.

The raised state returns to the initial (ground) state in a two-step process. At each stage a

luminol radical is formed, and as this radical decays, light is emitted (Dunbar, 1994).

. However, in basic unenhanced reactions the light emission ceases in a relatively short

period of time. Luminescence systems produced using HRP, in which blue light is

generated by oxidation of luminol, often gives excellent signal to nose ratio. As

compared to conventional radioactive immunoprecipitation HRP systems are extremely

rapid, sensitive, relatively inexpensive, simple, quick and non-hazardous (Dunbar, 1994;

Nesbitt and Horton, 1992).

Chemiluminescence reactions can be enhanced by the addition of an enhancer molecule

which reacts with the haem group of HRP in place of the luminol leading to the

formation of enhancer radicals. These radicals react to produce luminol radicals and

light is emitted as before (Dunbar, 1994). The reaction is faster than that produced by

luminol alone and is sustained for a significant period of time (Dunbar, 1994). The

presence of enhancer may lead to an increase in emitted light of more than 100 fold over

the unenhanced reaction (Dunbar, 1994).

ECL generally gives low background but needs to be carried out in an X-ray facility

(Dunbar, 1994). The hard copy results obtained on autographic films are directly printed

and are generally darker than chromogenic blots. The system also allows the same blot

to be reexposed many times (Dunbar, 1994).
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2.8.1 Reagents

Tris buffer saline (TBS) [20 mM Tris, 200 mM NaCl, pH 7.41. Tris (2.42 g) and NaCI

(11.7 g) was dissolved in approximately 950 ml of distilled water and adjusted to pH

7.4. The solution was made up to 1 litre with distilled water.

Blocking solution [5% (w/v) low fat milk powder/TBSl. Low fat milk powder (5 g) was

added into 100 ml ofTBS prepared as above. Detergents (0.3% (v/v) Brij-35, 0.3% (v/v)

Tween-20 or 0.3% (v/v) Triton X-lOO) were added where necessary.

Endogenous peroxidase quenching solution. NaN3 (0.1 g) was dissolved to blocking

solution (100 ml) just before use.

Substrate for horseradish peroxidase [0.06% (w/v) 4-chloro-l-napthol, 0.01% (v/v)

!hili/ TBS1. Stock solution (2 ml of a 0.3% (v/v) solution in methanol), TBS (8 ml) and

H20 2 (3.33 ul of30% (v/v) solution] was dissolved just before use.

Luminol detection solution [50% (v/v) detection solution 1, 50% (v/v) detection solution

.z.]. Detection solution 1 (500 ul) and detection solution 2 (500 ul) were mixed in

Eppendorf tubes just before use. From commercial solutions supplied by Amersham,

Pharmacia Biotech, U.K.

X-ray film development solution (Agfa Corporation, Germany) . Solution 1 (10 ml) was

mixed with Solution 2 (0.111 ml) and mixed. Purified water (40.4 ml) added just prior to

use.

X-ray film fixing solution (Agfa Corporation, Germany). Fixer (10 ml) was mixed with

distilled water (800 ml) and mixed. Hardener (1.25 ml) was added just prior to use.
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2.8.2 Procedure

Blotting and immunolabelling was performed essentially as described previously in

Sections 2.7. The difference was in ECL the Hybond! ECL nitrocellulose paper is used

for best result. As the detection is catalysed by HRP, only HRP-linked secondary

antibodies are used. After the last wash the nitrocellulose filters were taken to the

auto radiograph room and all subsequent steps performed in the dark using photographic

safe lights. The membrane was placed on a piece of Saran Wrap sufficiently large

enough to entirely cover the membrane and was overlaid with sufficient detection

solution to reach the edges of the membrane by surface tension. The membrane was

incubated exactly for (1 min, RT). Excess detection solution was removed and the

membrane was carefully covered with Saran Wrap, the air bubbles smoothed out and

placed in the film cassette. A piece of autoradiography film was placed on top of the

nitrocellulose membrane enclosed in the Saran Wrap and the EeL cassette quickly

closed. The film was exposed for 15 s or sometimes more, depending on the rate of band

development, quickly transferred to the photographic film developing solution (1 min)

and washed by agitation. The film was subsequently transferred to the fixing solution

(10 min), was washed in purified water and dried between two pieces of filter papers

returned to the lightbox and photographed.

2.9 Zymography and reverse zymography

Zymography and reverse zymography are techniques used to analyse the activities of

proteolytic enzymes and their inhibitors in a protein mixture. Zymography involves the

electrophoretic separation of enzymes under denaturing (SDS) but non-reducing

conditions (no reducing agent) in polyacrylamide gels containing a substrate. Since

renaturation of proteins can be reversible or irreversible, reversibly denatured proteins

separated in SDS-gels may be renatured by the addition of non-anionic detergent, such

as Triton X-lOO. Non-ionic detergents have lower critical micelle concentration (CMC)

values than SDS and quickly form micelles that surround and remove SDS molecules
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renaturing most proteins (Hawkes et al., 2001). The gel may subsequently be incubated

in a buffer which maintains the activity of the particular proteinases under study, stained

with e.g. Coomassie brilliant blue, and proteolytic activity may be detected as clear

bands (digested) against a blue background of stained undegraded substrate in the gel.

This method is very sensitive and can detect very low concentration of enzymes in

mixed protein solutions (Hawkes et al., 200 I). However, if the substrate has a very high

molecular weight or copolymerized in high concentration with the gel it may alter the

migration of some enzymes by electrophoresis (Gabriel and Gersten, 1992).

Reverse zymography is a modification of the zymographic procedure and may be used

to detect inhibitors such as TIMPs. Demonstration of the presence of an inhibitor is

accomplished by electrophoretic separation of TIMP-containing samples on

zymographic gel containing gelatin and the gelatin degrading enzyme e.g. MMP-9 after

the removal of SDS using Triton X-lOO washing step (Hawkes et al., 2001), incubating

the gel under conditions facilitating the gelatinolytic activity of the MMP . The

proteolytic activity results in the degradation of the gelatin except in the regions

protected by TIMP activity. Subsequent Coomassie brilliant blue staining allows the

visualization of TIMP bands as blue (undigested gelatin bands) against a clear

background created by gelatin degradation. Mixing of the enzyme and substrate together

. in the gel reduces the background as the enzyme gets access to the deeper parts of the

gel. Overloading and running of large amount of proteins may cause detectable staining

of non-inhibitory proteins and hence false "inhibition" results.

For detection of gelatinase B (MMP-9), gelatin, unlike some other substrates, does not

affect the mobility of gelatinase enzymes (Makowski and Ramsby, 1996). A particular

advantage of zymography of MMPs is that as proenzymes are activated by SDS and the

molecular weights of both the proenzyme and active forms of MMPs are evident,

information which cannot be achieved by fluorometric technique (Hawkes et al., 2001)

or ELISA. Moreover, a developing buffer lacking calcium, which is essential for activity

or addition of metal chelators such as EDTA, which bind with the essential metal ion

(Makowski and Ramsby, 1996) may be used as a negative control to confirm that the
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gelatinolytic enzymes detected are MMPs. The pH can also be manipulated to prevent

proteolytic activity of unwanted enzymes. For example, to prevent the activity of other

granule proteins such as elastase, the pH can be adjusted to pH 8.8, a suitable pH for

MMP activity.

To run control experiment for reverse zymography is not possible. However, reverse

zymograrns may be controlled using other techniques such as by subsequently blotting

the reverse zymograrn after development or blotting a duplicate gel into nitrocellulose

paper and using specific antibodies to detect the inhibitor. Reverse zymography must be

optimized to give good results as the gelatinase concentration in the gel is usually

inversely proportional to sensitivity. While, increasing the gelatin concentration

increases the sensitivity and background (Oliver et al., 1997).

2.9.1 Reagents

Renaturation solution [2.5% (v/v) Triton X-lOO]. Triton X-lOO (6.25 ml) was dissolved

in distilled water in a final volume of250 ml.

Gelatinase zymography development buffer [50 mM Tris-HCl, 200 mM NaCl, 5 mM

CaCh, 0.02% (w/v) NaN3, 0.02% (v/v) Brij-35, 2 mM PMSF, pH 8.8]. Tris (0.605 g),

NaCl (1.17 g), CaCh.2H20 (0.074 g), NaN3 (0.02 g), PMSF (1 ml of200 mM solution),

and Brij 35 [67 ).11 of a 30% (v/v) solution] were dissolved in ddH20 (90 ml). The pH

was titrated to pH 8.8 with HCl and the volume made up to 100 ml and was warmed to

37°C just before use.

Fixingldestainingsolution: [methanol:acetic acid: water (4.5: 1:4.5 (v/v)]. Methanol

(45 ml), acetic acid (10 ml) and water (45 ml) were mixed and stored at room

temperature.
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Staining solution: [0.1% Coomassie brilliant blue R-250 (w/v) in fixing/staining

solution]. Coomassie brilliant blue R-250 (0.1 g) was dissolved in 100 ml of

fixing/staining solution.

2.9.2 Procedure

For zymography protein samples were mixed with non-reducing treatment buffer and

were separated on a 10% Laemmli gel in which gelatin (0.01 g/ml dissolved in running

gel buffer) was eo-polymerized, After separation is completed, the proteins were

renatured by washing (2 x 30 min) and transferred into a container filled with

development buffer and developed (16 h, 37°C). After development was complete, the

buffer was discarded and the gel was subsequently stained in 0.1% Coomassie brilliant

blue solution, and destained in destaining solution that contain (methanol: acetic acid:

water [4.5:1:4.5, (v/v)]. The results were visualized in a light box. Enzyme activity

appeared as clear bands in blue background. As a control EDTA(Na2) (5 mM) was

added to the development buffer.

For reverse zymography proteins were mixed with half of their volumes of non-reducing

treatment buffer and separated on a 15% Laemmli gel prepared by eo-polymerization of

gelatin (0.01 g/ml) and MMP-9 (32 ug/ml) in the running gel. After separation, the

proteins were renatured by washing in renaturation buffer (2 x 30 min) were transferred

into a container filled with development buffer and developed (16 h, 37°C). The buffer

was discarded and the gel stained in coomassie brilliant blue solution and destained in

destaining solution. The results were visualized in a light box and captured. TIMP-1

inhibitory activity was seen as dark blue bands of MMP-9 activity in a clear background

ofMMP-9 digested gelatin.
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2.10 Density gradient separation of PMNs.

Many types of cells can be separated using isopycnic or density gradient separation

(Table 2.3). Stoke's law states that the velocity of movement of a cell in a centrifugal

field is proportional to the difference between the specific gravity of the cell and that of

the medium (Roos and De Boer, 1986). According to this law, cells with specific gravity

higher than that of the medium will be sedimented and those with a specific gravity

lower than that of the medium will float to the surface (Roos and De Boer, 1986). Using

this method copurification of different cells at the same time is possible.

Table 2.3 Specific gravity and relative volume of human blood cells (Ross and De Boer, 1986).

Cells Specific gravity (g/cnr') Volume (Channel number)

Platelets 1.054 - 1.062 <3

Monocytes 1.055 - 1.065 46-54

Lymphocytes 1.060 - 1.072 21-27

Basophils 1.065 - 1.075 30-33

PMNs 1.080 - 1.084 40-46

Eosinophils 1.082 - 1.090 45-52

Erythrocytes 1.090 -1.110 6-9

(290 mOsm and pH 7.4 at 25°C)

Isopycnic separation of blood cells can initially be performed by centrifugal separation

into a light and a heavy fraction. The light fraction usually contains the mononuclear

fraction (monocytes and 1ymphocytes, basophils and a few early precursor cells as well

as containing p1ateletes), and the heavy fraction contains erythrocytes and granulocytes

(pMNs and eosinophils) (Roos and De Boer, 1986). The separation ofPMNs from blood

can be achieved using a medium density of 1.077 g/crn'' (Roos and De Boer, 1986;

Beyum, 1968), generated using a mixture ofFicoll (a sucrose polymer) and Isopaque (an

56



iodinated x-ray contrast medium). Since FicolllHypaque (Isopaque) is, however,

reportedly found to alter the metabolism of leukocytes (Dooley et al., 1982), it is not the

method of choice. Another method using Percoll (a colloidal suspension of polyvinyl

pyrrolidone coated silica particles) has been developed, therefore.

Percoll is the density gradient medium choice. It has a zero tonicity and low viscosity,

and can be easily made iso-osmotic and brought to a physiologic pH over a large density

range using various buffers) by addition of media and solute (Borregard et al., 1993).

This property gives rise to a linear relation between concentration and density of Percoll.

It permits cell separation at relatively low centrifugation speeds in a short time.

Moreover, lack of toxicity makes this an ideal density gradient medium (Roos and De

Boer, 1986; Pertoft et al., 1978). PMNs isolated using Percoll gradient are also found to

maintain their biological activity and microbicidal and chemotactic functions at a level

comparable to those of cells isolated by centrifugal elutriation (Dooley et al., 1982).

Moreover, it is described that up to 1.2 glml of Percoll can be sterilized by autoclaving,

thus can be used for experiments which needs sterile gradients (Pertoft et al., 1978).

Aqueous solutions of Percoll have high density, low viscosity and low osmolality.

Therefore, during centrifugation gradients are generated automatically by increasing the

colloid towards the bottom of the tube containing the medium. The use of Percoll as a

gradient material has an advantage because it is not taken up by cells. Other gradients,

however, are permeable to cells and make the cells to shrink or swell. This changes their

specific gravity and causes a problem during isopycnic separation. To overcome this

problem, monocytes and granulocytes have to be pre-incubated for some time in other

material before subsequent gradient centrifugation is performed. This makes them to

maintain their original specific gravity (Roos and De Boer, 1986).

Other parameters which may create problems during separation are overloading and pH

changes (Roos and De Boer, 1986). If the concentration of the cells loaded onto density

gradients is too high, a condition called streaming results causing bulk sedimentation of

cells (Roos and De Boer, 1986). The concentration of red blood cells (RBCs) which by
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far are numerous fractions in blood, may sometimes give rise to this phenomenon. They

are heavier than .other leukocytes but their inclusion is necessary as they contribute to

the creation of the desired density (1.077 g/crrr') . Since they are the heaviest cells, RBCs

usually displace leukocytes into the buffy coat upon centrifugation. However.Rlst.s can

be removed using erythrocyte lysis buffer, containing NH4CI and KHC03. The NH3 and

CO2 produced by the abundant carbonic anhydrase enzyme in RBC's upon penetration

of these compounds into the cells results in osmotic swelling and lysis of RBC's (Roos

and De Boer, 1986). The pH of the gradient can also affect the physical property of the

unlysed WBC's subsequently harvested, thus a physiological pH is preferred and a lysis

buffer used (Roos and De Boer, 1986).

2.10.1 Reagents

Phosphate buffered saline [PBS: 9.2 mM Na2HP04, 1.3 mM NaH 2P04, 140 mM NaCI,

pH 7.4]. Na2HP04.2H20 (0.164 g), NaH2P04.2H20 (0.02 g) and NaCI (0.818 g) were

dissolved in 80 ml of distilled water and made up to 100 ml. No pH adjustment was

necessary. The solution was autoclaved (121"C, 20 min) and kept at 4°C.

Percoll dilution buffer [100 mM NaH2P04, 1.541\1 NaCI]. NaH2P04.2H20 (1.56 g) and

NaCI (9.0 g) were dissolved in distilled water in a final volume of 100 ml. This solution

was autoclaved (121°C, 20.min) and stored at 4°C.

Trisodium citrate (130 mM in dd.H2Q}. Trisodium citrate.5Y2H20 (9.55 g) was dissolved

in distilled water and made up to a final volume of 250 ml. The solution was autoclaved

(121°C, 20 min) and stored at 4°C.

BSA [5% (w/v) in PBS] . BSA (5 g) was allowed to dissolve in PBS (80 ml) for 1 h. The

solution was then made up to 100 ml, filter sterilized through 0.22 urn filters before

storing at -20°C.
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Stock Percoll suspension. Percoll (18.6 ml) was mixed with Percoll dilution buffer (1.4

ml) just before use.

Percoll density gradient (1.077 glm!) [(140 mM PBS, 9.2 mM NaCI, 9.2 mM Na2HPO:h

1.3 mM NaH2P04, pH 7.4.) 5% (v/v) BSA, 130 mM trisodium citrate, diluted Percoll].

PBS (5.69 ml), BSA [2.5 ml of the 5% (w/v) stock solution], trisodium citrate (2.5 ml of

the 130 mM stock solution) and diluted Percoll (14.31 ml) were mixed together and kept

on ice. For use within ±2 h.

Erythrocyte lysis buffer [155 mM NH4CI, 10 mM K2C03, 0.1 mM EDTA, pH 7.4].

NH4CI (0.829 g), K2C0 3 (0.138 g) and EDTA (0.003 g) were dissolved in distilled water

(80 ml) and cooled on ice. The pH was adjusted to 7.4 and the volume made up to 100

ml. The solution was filter sterilized and stored at 4°C.

PMN resuspension and storage buffer [PBSG: 8 mM Na2HP04, 1 mM KH2P0 4, 140

mM NaCI, 3 mM KCI, 0.5 mM MgCh, 1 mM CaCh, 0.1% (w/v) glucose, pH 7.3].

Na2HP04.2H20 (0.142 g), KlhP04 (0.0136 g), NaCI (0.818 g), KCI (0.02 g),

MgCh.6H20 (0.01 g), CaCh.2H20 (0.0147 g) and glucose (0.1 g) were dissolved in

distilled water (80 ml) and made up to 100 ml without pH adjustment. The solution was

filter sterilized and stored at 4°C.

Trypan blue stock solution [0.4% (w/v) Trypan blue in 0.81% (w/v) NaCl and 0.06%

(w/v) K2HP04]. Trypan blue (0.04 g), NaCl (0.081 g) and K2HP04 (0.006 g) were

dissolved in distilled water in a final volume of 10 ml. The solution was filter sterilized

and stored at 4°C.

Acid citrate phosphate dextrose anticoagulant was purchased from Sigma Diagnostics,

St. Louise, MO, USA and PMN lysis solution was made up as described in Section

3.7.1.
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2.10.2 Procedure

Blood (~44 ml) from a healthy individual was collected into a 50 ml tube containing ~6

ml of acid citrate phosphate anticoagulant. The cells were carefully centrifuged (200 g,

20 min, RT) to facilitate the formation of a buffy coat layer and separate the leukocytes

from the platelats which remain in the plasma supematant. Plasma above the buffy coat

(5 ml) and blood below the buffy coat (5 ml) were mixed in a tube before they were

carefully layered into a 15 ml tubes on top of 5 ml of cold 1.0ng/cm3 Percoll gradient

media was prepared according to the following formula:

X (0.0056) + 0.1 (0.0227) + 0.1 (0.0219) + (0.8- X) (0.1245) = desired specific gravity

(g/cm3
) _ 1.

Where X = ml ofPBS/ml of final suspension.

0.0056 = specific gravity ofPBS - 1.

0.1 = ml of albumin and citrate/ml of final suspension.

0.0227 = specific gravity of albumin (5%) - 1.

0.0219 = specific gravity oftrisodium citrate (130 mM) - 1.

0.8 - X = ml of stock Percoll suspension/ml of final suspension.

0.1245 = specific gravity of stock Percoll suspension - 1.

[i.e. = 0.2276 ml of PBS/ml of final volume and gives a solution of 290 mOsm at 25°C,

pH 7.45] (Roos and De Boer, 1986).

After sample application, the gradient was centrifuged (600 x g, 30 min, 20°C) and the

monocyte-containing plasma layer was removed by aspiration leaving small amount of

Percoll above the PMN-erythrocyte layer. This PMN-erythrocyte layer was subsequently

removed into another sterile container, suspended in a 3-fold volume of ice-cold

erythrocyte lysis buffer and mixed every few min until the solution becomes clear

indicating the hemolysis of the RBC's (~10 min). The tubes were centrifuged (2 min,

600 g, 4°C) and the supematants removed. The PMN pellet was subsequently mixed
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with storage buffer and immediately used or diluted in PMN lysis buffer and

immediately snap frozen in liquid nitrogen before they are stored at -20°C.

To test the viability ofPMNs Trypan blue solution 0.1 % was added (10 mg/ml) to cells

in PBSG (20 Ills) and dye exclusion was checked for with the aid of a light microscope

(10 min). Concurrently the cells were also counted in an improved Neubauer

haemocytometer.
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CHAPTER THREE

MATRIX METALLOPROTEINASE-9: SEMI-FRACTIONATION AND
CHARACTERIZATION OF ANTIBODIES

3.1 Introduction

MMPs are involved in normal tissue remodeling and are associated with many

pathological conditions (Massova et al., 1998). Knowledge of the structure of MMPs

assists in understanding their interactions with inhibitors, the TIMPs, the domain­

domain interactions that occur during activation, as well as interactions with the cell

membrane and the matrix. Some background on the MMPs was explored and methods

for detecting MMP-9 were developed and optimi zed before studies on the effect of

release of MMP-9 and TIMP-1 could be undertaken. Release of TIMP-1 may also be

detected by a method known as reverse zymography in which a crude preparation of

MMP (such as MMP-9) is added to the running gel and the presence of inhibitor is

indicated by bands of inhibition of digestion of gelatin (blue) against a clear background

of digested gelatin in a gelatin gel system. For this and all optimization and method

development purposes, a source of MMP was required. In this section of the dissertation

such methods and sources of MMPs were explored.

3.2 MMP structure and function

The matrix metalloproteinases (MMPs) are zmc- and calcium-dependent endo­

peptidases which degrade most extracellular matrix components (ECM) (Massova et al.,

1998; Nagase, 1997). They mainly consist of a pro-peptide, catalytic- and C-tenninal

region (Figure 3.1) and removal of the pro-peptide results in the activation of the

zymogen. The catalytic domain is known to have two zinc ions, one catalytic and the

other structural. Together with a calcium ion, the structural zinc ion is found
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approximately 12 A away from the catalytic zinc and is attached with three-conserved

histidine residues (Massova et al., 1998; Tryggrason et al., 1992).

The Cvterminus of the enzyme consists of a conserved hemopexin-like domain which

facilitates interaction of MMPs with their tissue inhibitors of matrix metalloproteinases

(TIMPs) (Massova et al. , 1998; Tryggrason et al., 1992). Besides this domain, which is

found in all except MMP-7 (PUMP-I), which lacks the C-terminal domain, MMP-2 and

MMP-9 have an additional three repeat sequences of a fibronectin type II-like gelatin­

binding domain which enable them to bind and cleave gelatin (Figure 3.1) (Tryggrason

et al., 1992; Massova et al., 1998). Membrane type MMPs (MT-MMPs) have a

hydrophobic dom ain of approximately 25 residues, representing a putative trans­

membrane domain at the carboxyl terminus, and a recognition motif (RXKR) for furin­

like convertases at the end of the pro-peptide dom ain. This is a substrate of furin which

activates the MT-MMP before secretion (Massova et al., 1998) (Figure 3.2). The role of

the 54-amino acid long proline-rich collagen-like sequence in MMP-9 is, however,

unknown and is not found in any of the secreted ECM metalloproteinase family

members (Wilhelm et al., 1989).
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IV. Others

MMP-7
Zn2+

MMP-ll
Zn2+

MMP-12 Zn2+

Zn2+

H 11--- - 11- ---
Signal Pro-peptide Catalytic domain
peptide

C-terminal domain

Figure 3.1 Domain structures of MMPs. Three common domains are found in MMPs, the pro­
peptide domain, the catalytic domain and the C-terminal domain. Repeats similar to
fibronectin type II domain in MMP-2 and 9 ( ~, trans-membrane domain in MT-MMPs
(11) , Extra 10 to 11 residues in MMP-11 and MT-MMPs (~), the proline-rich (collagen
like sequence) in MMP-9 (\jIj) , and the hemopexin domain in all MMP-s except for
MMP-7 ( ~ ). The cysteine in the pro-domain is for cysteine activation.C, conserved
cysteine. Non conserved cysteine are in parenthesis (modified from Hooper, 1996).
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The vanous structural domains in MMPs cannot explain all the interactions of the

MMPs. However, substrate specificity is generally defined by the sequence in the

substrate-binding domain and MMPs are designed to act one after the other, one MMP

performing a key cleavage on the intact molecule, while others cleave the product of the

primary cleavage. Collagen (Types I, II, III and X), which, with their triple helical

structures are organized in such a way as to form compact highly cross-linked fibers are,

for example, extremely resistant to the action of most enzymes. The two families of

MMP enzymes that can degrade these collagens are the interstitial collagenase (MMP-l)

and PMN collagenase (MMP-8) (Cimpean and Caloianu, 1997; Hasty et al., 1990). The

MMPs cleave the native collagen at a single locus near the C-terminal end (Hasty et al.,

1990; Murphy et al., 1982). The cleavage products (gelatins) lose their triple helical

structure and become substrates for various MMPs (Table 3.1). These gelatinases

(MMP-2 and MMP-9) accelerate the cleavage of collagen resulting in more cleavage

(hydroxyprolines) (Murphy et al., 1982). These two enzymes together degrade soluble

collagen and partially digested collagen two to three times more effectively than the

insoluble collagen (Hibbs, 1992). Gelatinases, however, can also degrade type IV

collagen which is the major component of the basement membrane (Triebel et al., 1995).

The enzyme specificity of gelatinases for gelatin and collagenases for collagen may

usually be employed in electrophoretic and zymography techniques to demonstrate the

presence or identity of such proteases and such techniques will be used in this study.
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Table 3 1 Matrix metalIoproteinases (modified from Hooper, 1996; Kries and Vale, 1999)

Enzymes
Mr

MMP No. · Precursor
Active Matrix substrates

ColIagenases
Interstitial/
tissue/fibroblast
collagenase
(3.4 .24.7)

PMN collagenase
(3.4.24.34)

Collagenase 3

Gelatinases
Gelatinase A
(3.4.24.24)

Gelatinase B
(3.4 .24.35)

Stromelysins
Stromelysin 1
(3.4 .24.17)

Stromelysin 2
(3.4 .24.22)

Others
Matrilysin
(3.4.24.23)

Stromelysin 3

Metalloelastase
(3.4.24.65)

Membrane type
MMP

MMP-l

MMP-8

MMP-13

MMP-2

MMP-9

MMP-3

MMP-10

MMP-7

MMP-11

MMP-12

MMP-14

52000
56000*

105000*
75000*

65000

72 000

92 000
94000
98000

57000
59000*

57000

28000

55000

53000

66000

41000
45
000*

65000

55000

67000

82000
81000

45000
28000

45000
28000

19000

45000
28000

45000

56000

Collagens I, II, III, VII, X, gelatins, entactin, link protein,
aggrecan, tenascin, L-selectin, IGF-binding proteins, pro­
MMPs 2 and 9.

Collagens I, II, Ill, gelatins, aggrecan and link protein.

Collagen I, II, III, gelatins, aggrecan

Gelatins, collagens I, IV, V, VII, X, elastin, fibronectin,
laminin, link protein, aggrecan, galectin-3, IGF-binding
proteins, vitronectin, fibulin-2 , FGF receptor-I, pro-MMPs 9
and 13.

Gelatin, collagens Ill, IV, V, VII, X, XI, XIV, elastin,
aggrecan, link protein, proteoglycans, vitronectin, galectin-3,
proMMP-2 and entactin.

Proteoglycans, fibronectin, aggrecan, gelatins, fibronectin,
laminin, collagen Ill, IV, V, IX, X and XI, entactin, SPRAC,
tenascin-C, vitronectin, Pro MMP 1,8,9 and 13, antithrombin
Ill, PAI-2, aI-protease inhibitor, al-antichemotrypsin, 0.2­
macroglobulin, L-selectin, E- cadherin, HB-EGF, link protein,
fibrin.

Aggrecan, gelatins, fibron ectin, laminin,collagen I, IV, V,
VII , X, entactin, fibronectin, link protein, vitronectin, elastin,
tenasin, fibulin, pro-MMPS 1,2 and 9.

Proteoglycans, laminin, gelatins, collagen IV, entactin,
fibronectin, link protein, vitronectin, elastin, tenascin, fibulin,
proMMPs 1, 2 and 9, laminin, fibronectin, aggrecan, 0.1­
proteinase inhibitor, a 2-macroglobulin.

Elastin, fibronectin, fibrinogen, laminin, entactin, collagen IV,
proteoglycans, fibronectin aggrecan, link protein, vitronectin,
tenascin, fibulin, aI-proteinase inhibitor, armacroglobulin.

Elastin, fibronectin, fibrinogen, larninin, entactin, collagen IV,
proteoglycans, myelin basic protein, IgGs, plasminogen, 0.1­
proteinase inhibitor.

Collagens I, II, Ill, gelatins, fibronectin, laminin, vitronectin,
proteoglycans, proMMPs 2 and 13, ai -proteinase inhibitor,
a2-macroglobulin

*Glycosylated
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3.3 Activation of MMPs

MMPs are usually secreted as proenzymes and activation may take place by proteolytic

or non-proteolytic means (Nagase, 1997). In vitro, the non-proteolytic activation can be

performed by many molecules such as SH reactive agents [iodoacetamide, 4­

aminophenylmercuricacetate (APMA) (Woessner, 1991; Nagase, 1997)], HOCl,

oxidized glutathione, denaturants (urea, SDS, NaSCN), heat treatment (Nagase, 1997),

chaotrophs, oxidants, heavy metals, disulphide compounds and detergents (Cimpean and

Caloianu, 1997; Hooper, 1996) (Table 3.2). Activation is, however, best achieved with

organomercurials (Hibbs, 1992; Bu and Pourmotabbed, 1995), with the more

hydrophobic organomercurial being the most effective (Grant et al ., 1992)

In vivo, most proteolytic activation of pro-MMPs is caused by tissue or plasma

proteinases, or opportunistic bacterial proteinases (Table 3.2) (Nagase and Woessner,

1999). For example, during PMN diapedesis through the blood vessel walls pro-MMPs

are activated by the uPA/plasmin system. The precursor of urokinase-type plasminogen

activator (pro-uP A) is readily converted into active uPA after binding to a specific uPA

receptor on the cell surface of PMNs (Nagase, 1997). The active uPA subsequently

activates cell-associated plasminogen to plasmin which subsequently activates pro­

MMPs (Figure 3.2). Active MMPs or other proteases such as trypsin, chymotrypsin,

cathepsin G, and kalikrein can also activate MMPs (Schettler et al., 1991; Itoh and

Nagase, 1995). Nagase, (1997) suggested a two-st ep processes of protease-dependent

activation of MMPs. The first step requires the activator protease to cleave the protease

susceptible "bait" region located in the middle of the pro-peptide. In the second step this

cleavage subsequently induces conformational changes in the pro-peptide and exposes

the final activation site to be cleaved by a second MMP (Figure 3.2).

MMPs can also be activated before they are secreted e.g. pro-stromelysin-3 (pro-Mi\1P­

11) and pro-MTI-MMP (Nagase, 1997). Pro-stromelysin-J has extra 10 residues in the

pro-peptide domain at the junction with the catalytic domain. This sequence contains

Arg-Gln-Lys-Arg at the C-tenninal end of the pro-peptide. This 65 kDa proenzyme is
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processed to an active 45 kDa enzyme by the Golgi-associated subtilisin-like protease,

furin, and secreted as an active enzyme (Figure 3.2) (Nagase, 1997) .

Pro-MMPs can also be activated via a non-proteolytic mechanisms. This is generally by

"cysteine switch" mechanism, a process by which the cys teine residue in the pro -pept ide

region is transiently dissociated from the zinc atom in the catalytic domain and reacts

with thiol modifying reagents to prevent the re-association of cysteine and zinc

(Cimpean and Caloianu, 1997; Springman et al. , 1990; Hooper, 1996). Upon temporary

activation of the enzyme, proteolytic enzymes may cleave the pro-peptide and cause

permanent activation (Bu and Pourmotabbed, 1995; Springman et al., 1990; Cimpean

and Caloianu, 1997; Hooper, 1996) .

Table 3.2 Enzyme activators of pro-MMPs (modified from Hooper , 1996).

Activators of Pro MMPs
ProMMP-1 Trypsin, plasmin, plasma kallikrein, chymase, MMP -3 and MMP-7 cleave

Gln80_Phe81 bond only when a part of pro-peptide is removed by proteolysis.

ProMMP-2 MT-MMP, MMP-1 (enhanced by heparin), MMP-7 (lesser extent)

ProMMP-3 Activated by many proteases (e.g. plasmin, plasma kallikrein, tryptase, trypsin,

chymase, chymotrypsin, pseudomonas elastase), but not by MMPs

ProMMP-7 Trypsin, MMP-3 (slow, but accelerated in the presence of APMA)

(Partially activated by plasmin, and PMN elastase)

ProMMP-8 MMP-3, tissue kallikrein, PMN elastase, cathepsin G, trypsin, chymotrypsin,

stromelysin and by different mercurial compounds,

ProMMP-9 MMP-3, trypsin, kallikrein, stromelysin and by different mercurial compounds,

(Partially activated by chymotrypsin, cathepsin G, plasmin and MMP-7)

ProMMP-IO Trypsin, chymotrypsin, plasmin, but not by PMN elastase

ProMMP-11 Furin
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Inflammatory cells
Bacterial infection

OtherJ,eimses

tc-uPA

[
PAI-l J
PAI-2

Plasminogeni Plasmin

~
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'---+-------.. Pro-uPA

Cell (PMN)

Pro-MTl-MMP Pro-MMP-Il

~ furin
MTl-MMP MMP-ll

---'---~~ MMP ~ Active
Intermediates MMPs

MMP-2 MMP-13

Pro MMPs

/-------Pro-MMP-2 Pro-MMP-13

TIMP-1
TIMP-2
TIMP-3
TIMP-4

Figure 3.2 Activation pathways of pro-MMPs.
Most pro-MMPs are activated extracellularly in a stepwise manner. Pro-MMP-2 and
pro-MMP-13 are activated on the cell surface by MTl-MMP. Pro-MMP-ll, pro-M'I'l­
MMP and possibly other pro-M'I'-MMPs are activated intra-cellularly. Pro-uPA binds
to the uPA receptor and is activated on the cell surface to the two-chain uPA (tc-uPA)
which in turn activates plasminogen on the cell surface. Plasminogen activator
inhibitors (PAIs) interfere with this process. Plasmin then can initiate activation of the
pro-MMPs. Proteinases from inflammatory cells and microorganisms can also activate

pro-Mlvll's (modified from Nagase, 1997).
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3.4 MMP-inhibitor interactions

As mentioned, complex formation may occur between some precursor MMPs and their

TIMP inhibitors. Gelatinases 2 and 9 form a tight non-covalent and stable complex with

their inhibitors, pro-MMP-2 binds to TIMP-2 via its C-terminus (Goldberg et al., 1992),

as does pro-MMP-9 to TIMP-l (Wilhelm et al., 1989). These interactions may have

several functions. The pro-MMP-2/TIMP-2 complex is found to be required for the tri­

molecular activation of pro-MMP-2 at the surface of the cell. The function of TIMP­

l/pro-MMP-9 complex is not known (Brew et al., 2000) unless it too is involved in

activation (Nagase, 1997). However, TIMP-l shields the C-terminal region of pro­

MMP-9 during complex formation and protects it from inactivation by stromelysin

(MMP-3) and from cleavage by PMN elastase (Ogata et al., 1992; Itoh and Nagase,

1997). In such a complex, however, PMN elastase cleaves TIMP-l and subsequently

activates pro-MMP-9 (Nagase, 1997; Itoh and Nagase, 1997) . In such a complex,

therefore, TIMP-l may serve to have a protective role , facilitating the activation of pro­

MMP-9 in an environment in which elastase is present in high concentrations.

The activating tri-molecular complex, formed between MTI-MMP, TIMP-2, arid pro­

MMP-2, is bound to cell membrane. Initially the N-tenninal region of TIMP-2 binds to

the catalytic site ofMTI-MMP and forms a bi-molecular complex. The pro-MMP-2 then

binds to the C-terminal region of TIMP-2 to form a tri-molecular complex. This tri­

molecular complex exposes the pro-peptide region ofpro-MMP-2 which is subsequently

cleaved and results in activation of the pro-MMP-2 by another nearby active MTI -MMP

(Figure 3.2) (Brew et al., 2000; Nagase, 1997). A tri-molecular complex is also formed

between pro -MMP-9/TIMP-l and MMP-3. In this reversible complex another molecule

of MMP-3, is bound and releases active MMP-9 (Nagase, 1997). Tri-molecular

complexes are also described to be more stable than bi-molecular complexes and can

inhibit other MMPs. Therefore, a more stable tri-molecular complex of pro-MMP­

9/TIMP-l/MMP is formed for the activation of pro-MMP-9 (Gomez et al., 1997; Brew

et al., 2000).
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MMP-8 and MMP-9 are found at high concentrations in PMNs (Oronsky et al., 1973;

Hibbs, 1992; Hibbs et al., 1985) and are mainly secreted extracellularly (Price et al .,

2000; Schettler et al., 1991) especially in response to PMA (Hasty et al., 1986; Hibbs et

al., 1985) cytokines, chemokines or complement components (Schettler et al., 1991)

(Table 3.2, 3.3). Pro-MMP-8 may be purified from PMNs in the buffy coa t of blood

(Schettler et al., 1991) while pro-MMP-9, due to its liability, is best purified from PMA­

stimulated PMNs. PMA stimulation results in up regulation of pro-MMP-9 mRNA

translation and hence an increase in the amount of MMP-9 seen (Hibbs, 1992).

The molecular weights of PMN collagenases and gelatinase, the agonists which cause

their secretion, their substrates, inactivators, location and endogenous inhibitors are

tabulated in Table 3.3.

Table 3.3 PMN Matrix Metalloproteinasc.

Properties PMN Collagenase PMN Gelatinase

(MMP-8) (MMP-9)
Molecular weight Pro-1 05/75/85, mature-58 Pro-92, mature-82

Expression PMA, cytokines, chemokines, PMA, cytokines, chemokines, complement components

induced by complement components

Activation Tryps in, organomercurials, MMP-3, Low pH (2), trypsin, organomercurials, MMP-3,

tissue kallikrein, PMN elastase, chymotrypsin, cathepsin G, plasmin, MMP -7,

cathep sin G, chymotrypsin, kallikre in and stromelysin and different mercurial

stromelysin and different mercurial compounds.

compounds.

Substrate Collagen types I, II, and HI, a2-M, Gelatin, collagen types HI, IV, V, VII, X, XI and XIV,

gelatins, aggrecan and link protein. elastin , proteoglycan, aggrecan, link protein,

vitronectin, galactin-3, proMMP-2 and entactin.

Inactivation EDTA, 1,10 phenanthroline EDTA, 1, I 0 phenanthroline

Intracellular Specific granules Gelatinase granules

localizat ion

Endogenous arM, TIMP-1 , TIMP - 2 arM, TIMP-l, TIMP-2

Inhibitors
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3.5 Source of MMP-9

MMP-9 has been described as a marker for the gelatinase granules ofPMNs (Kjeldsen et

al., 1992; Hibbs and Bainton, 1989) and is reported to be destined solely for

extracellular secretion and is found in high amount in PMNs and leukemic cells (Hibbs

et al ., 1992; Hibbs, 1985; Janowska-Wieczorek et al., 1999; Wilhelm et al., 1989). After

activation by PMA, gelatinase is the major proteinase secreted by PMNs (Hibbs et al.,

1985). Stimulation of PMN in this way, therefore, is an effective method for facilitating

the isolation of MMP-9 in a latent form (Hibbs , 1992), a form more stable to most

denaturing conditions. The selective release of these stored proteinases also gives rise to

a relatively pure preparation from which MMP-9 may be more easily isolated using a

gelatin column, exploiting the high affinity of the enzyme for gelatin (Hibbs, 1992).

Hibbs et al. (1985) also suggested that by manipulation of conditions in the PMN

suspension, it is possible to harvest the gelatinase with minimal contamination from

serine proteinases and other PMN granule proteins. A crude fraction of MMP-9, either

from culture media or from PMN homogenates, may also be prepared using three phase

partitioning (TPP) (Dennison and Lovrien, 1997).

There are several advantages in choosing TPP fractionation of sputum rather than PMNs

for MMP isolation, however. The isolation of PMNs is a time-consuming, difficult and

expensive procedure as compared to the collection of sputum and use of TPP

fractionation. Cell culture media often used to suspend PMNs also contains additives

such as serum which may complicate isolation procedures. Human saliva contains a

latent 94 kDa MMP-9 which may be released to the oral cavity from the surrounding

cells or from PMNs which may enter to the oral cavity through gingival sulci (Davis,

1991). Previously MMP-9 fractionation was performed using TPP (price et al., 2000)

and gave good results as judged by SDS-PAGE, zymography and western blotting

analysis.
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Sputum was, therefore, chosen as a source of MMP-9 and TPP was chosen as a crude

fractionation procedure. For the characterization of anti-MMP-9 antibody and for PMN

release, however, a PMN source was used.

3.6 Three phase partitioning of sputum and analysis of fractions using western
blotting and zymography

One of the problems in isolating MMP-9 by homogenization of PMNs is that release of

PMN serine proteinases, especially elastase, may degrade the PMN MMPs (Murphy et

al., 1982). Several proteins and many enzymes are also degraded by oxygen radicals

generated by stimulated PMNs. This is especially important as loss of activity may result

and hence detection of e.g. TIMP-l in reverse zymograms may fail. For immunological

characterization, however, the presence of epitopes is of primary interest and loss of

activity may not necessarily prevent detection. Degradation of proteins may, however,

give rise to detection of MMP fragments which appear to have incorrect molecular

weights if no protease inhibitors are added.

Various forms of MMP-9 have previously been described. For the pro-MMP-9 form a

92,94 and 98 kDa have been found (Hibbs, 1992; Wilhelm et al., 1989; Davis, 1991;

Schettler et al., 1991). An 82 and 81 kDa active form of MMP-9, varying depending

upon the method of activation (Itoh and Nagase, 1995; Schettler et al., 1991) have also

been observed and were, therefore, anticipated. However, non-reducing treatment of the

enzyme also gives, higher bands ofpro-MMP-9. These are usually between 125-130 and

225 kDa and may represent an NGAL-MMP-9 hetero-dimer and an MMP-9 homodimer,

respectively (Price et al., 2000; Hibbs et al., 1985; Hibbs, 1992; Schettler et al., 1991).
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3.6.1 Reagents

Reagents for reverse zymograms were prepared according to Section 2.9.2, for Western

blots, Section 2.7.2, and for SOS (Laemmli) gel electrophoresis, Section 2.6.1.1.

The amount of protein to be loaded was measured by Bradford protein binding assay as

described in Section 2.2.1.2.

3.6.2 Procedure

The pro-MMP-9 to be used for western ligand blot and reverse zymograms was isolated

from sputum using TPP as described in Section 2.4. Sputum (20 mls) was collected from

a healthy patient fasted for 12 h, proteins were subsequently precipitated with 30% (v/v)

t-butanol and incremental addition of 10-40% (m/v) ammonium sulphate. Precipitated

proteins collected after phase separation were re-suspended in MMP-9 buffer [50 mM

Tris-HCl, 200 mM NaCl, 5 mM CaCh, 0.02% (w/v) NaN3, 0.02% (v/v) Brij-35, 2 mM

PMSF, pH 8.8] and stored at -20 QC for future use. Alternatively they were mixed in

equal volumes of reducing treatment buffer, separated in 10% Laemmli gel and stained

in Coomassie brilliant blue solution as described in Section 2.6.1.1. A further sample for

zymography was mixed with non-reducing treatment buffer and run in 10% Laemmli gel

eo-polymerized with 0.1% (w/v) gelatin. After separation on the SOS PAGE gel, gels

were renatured in 2.5% (v/v) Triton X-lOO and the zymogram developed in zymograrn

development buffer. A further sample was treated with reducing buffer to avoid dimer­

formation, electrophoretically separated, blotted into nitrocellulose and detected with

219 ug/ml anti-MMP-9 antibody.
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3.6.3 I{esults

The reducing SDS-PAGE gel of the TPP-precipitated proteins showed bands at 14.3,

62.6, 66, and 73.3 kDa (Figure 3.3, A). The 66 kDa band was found to be more intense

in the 10-20% and 20-30% (m/v) ammonium sulphate fractions (Figure 3.3 A, c and d,

respectively), while, the 73.5 kDa band was more intense in 0-10% (m/v) and 30-40%

(m/v) fractions (Figure 3.3 A, b and e, respectively). A 14 kDa band was also observed

in the 30-40% (m/v) fraction of sputum (Figure 3.3 A, e).

On the gelatin zymogram gels, only two fractions (0-10 and 20-30% (m/v) ammonium

sulphate fractions) showed gelatinolytic activity (Figure 3.3 B, band d, respectively). A

94 kDa gelatinolytic band not seen in the SDS-PAGE gel, was seen on the gelatin

zymography gel indicating the high sensitivity of zymography for visualizing the

activity of MMPs (Figure 3.3 B).

When the SDS-PAGE gel was blotted into a nitrocellulose by western blotting and

probed with an MMP-9 antibody 94, 61, 45, 36, 33, 16, and 15 kDa bands appeared

(Figure 3.4). Cuts of 0-10% and 10-20% (m/v) ammonium sulfate allowed resolution of

a 61, 45, 36 and 16 kDa band (Figure 3.4, a and b). However, a 94 kDa possible

proMMP-9 band and many apparent degradation products appeared in the 20-30% (m/v)

fraction (Figure 3.4, c). In the 30-40% (m/v) fraction, only the 94 kDa proenzyme was

apparent (Figure 3.4, d). It is difficult to conclude that all the bands belong to MMP-9 as

there may be several MMPs such as MMP-8 and MMP-l which may cross react with the

antisera used and may be secreted in the mouth by the surrounding cells and PMNs.

Cleavage products may also occur due to possible presence of oral proteases of host and

bacterial origin (Okamato et al., 1996) and the observed molecular weights may differ

from those anticipated (92, 82 and 81 kDa). The 94 kDa band seen (Figure 3.3 B, band

d, respectively) due to their gelatinolytic nature and molecular weight possibly represent

pro-MMP-9.
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Figure 3.3

Figure 3.4

SDS-PAGE and gelatin zymogram of sputum MMP-9 isolated by three phase
partitioning (TPP). Aliquots of TPP fractionated sputum (10 ug/lane) were separated
under reducing conditions on a 10% Laemrnli SDS-PAGE gel, stained in Coomassie
Brilliant Blue solution and destained (A) and under non-reducing conditions containing
1 mg/ml gelatin (B) . The proteins were renatured in 2.5% (v/v) Triton X-lOO and
developed in zymogram development buffer. Lane a, M, markers; lane b, 0-10% (m/v)
(NH4hS04; lane c, 10-20% (m/v) (NH4hS04; lane d, 20-30% (m/v) (NH4hS04; lane e,
30-40% (m/v) (NH4hS04; lanef, M, markers.

kDa kDa

94 94

66 66

45 45

30 30

16 16
14 14
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Western blotting of sputum MMP-9 isolated by three phase partitioning (TPP)
and PMN homogenates. Aliquots of TPP fractionated sputum (10 ug/Iane) were
separated in Laemrnli gel under reducing conditions. The gel was blotted onto
nitrocellulose and detected with 219 ug/ml a-MMP-9 antibody. Lane a, 0-10% (m/v)
(NH4)2S04; Lane b, 10-20% (m/v) (NH4hS04; Lane c, 20-30%(m/v) (NH4hS04; Lane
d, 30-40% (m/v) (NH4hS04'
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3.7 Isolation, SDS-PAGE and western blotting ofMMP-9 from PMNs

PMNs produce and secrete large amount of MMP-9 upon stimulation. To confirm the

specificity of the antibody prepared to be used in subsequent studies and hence the

suitability of the sample chosen, PMN MMP-9 was obtained by homogenization of

PMNs and the anti-MMP-9 antibody was re-characterized .

3.7.1 Reagents

Reagents for western blots were prepared as per Section 2.7. Reagents for density

gradient separation of PMNs were prepared as described in Section 2.10. An anti-MMP­

9 antibody raised against a 220 kDa dimer of MMP-9 expressed (by Volker Zollinger,

University of Bielefeld) in a Pichia pastors yeast expression system in chicken by

Brendon Price, University of Natal, was used.

PMN lysis solution [1 M NaCIIPBS, 10% (v/v) DMSOJ. NaCI (0.585 g) was dissolved

in PBS (pH 7.4) (10 ml) and 1 ml ofDMSO was added.

Inhibitor buffer [2 mM PMSF, 1 mM EDTA, 1% (w/v) NaN3l PMSF (10 III of 200 mM

solution in methanol), EDTA (5 III of 200 mM solution), NaN3 (0.01 g) dissolved in 1

ml storage buffer.

The amount of protein to be loaded was measured by Bradford protein binding assay as

described in Section 2.2.1.2.

3.7.2 Procedure

PMNs were isolated from human blood as described in Section 2.10 and mixed into an

equal amount of reducing treatment buffer or frozen at -20°C for subsequent use.
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Samples (20 Ill) were separated by electrophoresis and the gel blotted into nitrocellulose

for 16 h as described in Section 2.7.3. The membranes were subsequently probed with

21.9 ug/ml anti-MMP-9 IgY antibody. Either Brij-35 or Triton X-lOO was added to

wash buffers to aid detection. (The importance of detergents in enhancing detection of

antigens using western blotting is discussed in Chapter 4).

3.7.3 Results

Immunoblotting revealed a band of approximately 94 kDa using both detergents Brij-35

and Triton X-lOO (Figure 3.5 Band C, respectively). Sharper bands were detected

without the use of detergents, however (Figure 3.5, D).

kDa kDa kDa kDa kDa

94 - 94 94 - 94-
66-

66- 66 66 - 45-
45 - 45 45 - 94-

30 30- 30 - 66-

30 - 45-
30

16 - 16 - 16-

16 - 14 - 14 - 14 - 16-

14 -

a b

A B C D E

Figure 3.5 Western blotting of MMP-9 from PMN homogenates using detergents. Molecular
weight markers (a) and PMNs homogenates (20 ul) (b) were separated on (A) 12% (m/v)
Laemmli SDS-PAGE gel under reducing conditions. The PMN homogenates were
blotted (B, C and D) and subsequently probed with 219 ug/ml a-MMP-9 IgY.
Detergents both Brij-35 (B) and Triton X-lOO (C) were added to aid detection or no
detergent was added (D). PMN homogenates were also separated on a 10 % (m/v)
Laemmli gel containing O.Olg/rnl gelatin in the running buffer, renatured in (2.5 % v/v)
Triton X-lOO and developed in zymogram buffer for 16 h before staining (E).
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Antibody labelling specificity for MMP-9 was more easily shown using PMN

homogenates (Fig. 3.5) because, unlike sputum samples (Figure 3.4) bands were only

seen at approximately 94 kDa (possibly pro-MMP-9), and at 66 kDa (Figure 3.5 B,C and

D). The homogenates were also separated on a zymography gel and bands appeared at

92, 125 and approximately 230 kDa (Figure 3.5, E), confirming the gclatinolytic nature

of the 92 kDa and higher molecular weight bands. The 66 kDa band, seen in blots where

no detergent was used, showed no proteolytic activity and, therefore, possibly either

does not represent an active form of MMP-9 or does not represent MMP-9 (Figure 3.5

D).

3.8 Discussion

MMPs are generally extracellular enzymes and are rapidly secreted upon specific stimuli

such as PMA (Hibbs, 1992). Due to the ease with which secretion of gelatinase granules

occurs and the substrate specificity of MMP-9, MMP-9 is believed to be the major

protease involved in diapedesis ofPMNs (Sengelev et al., 1995; Hibbs, 1992). Primary

granule proteases, on the other hand, are secreted to the external environment mainly

during frustrated phagocytosis or excessive activation ofPMNs (Henson, 1971). During

PMN homogenization, however, all proteins and degradative enzymes are released. The

main obstacle to the isolation of pro-MMP-9 and other undegraded forms of MMP-9 in

this case is the digestive activity of especially the serine proteinases (Deutscher, 1990;

Murphy et al., 1982). It is important to inhibit degradation of MMP-9 by serine

proteases by adding PMSF to all buffers (Hibbs et al., 1985). In this study MMP-9 was

apparently detected in sputa by both zymography and western blotting. A gelatinolytic

band of approximately 94 kDa was observed similar to that found in saliva and

identified as MMP-9 by Davis (1991). In addition to the weak 94 kDa band, many other

lower molecular weight, non-gelatinolytic, MMP-9 immunoreactive bands were also

observed in sputa. MMPs may have similar domains which may cause the cross

reactivity with polyclonal antibodies raised against other whole MMP enzymes. The

anti-MMP-9 antibody which was used for this project seems to be specific, however, as
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no cross-reactivity was observed with other MMPs from PMN homogenates. Since only

MMP-8 and MMP-9 are found in PMNs, however, the number of possible cross-reacting

MMPs which may cause immunoreactivity are reduced so it may be argued that the

possible cross-reactivity of the anti-MMP-9 antibody used in this study is still unknown.

The fact that the major band targeted was of the COITect molecular weight for pro-MMP9

and this form was gelatinolytic seems to confirm the antibody's specificity, however.

MMPs, which degrade gelatin, include MMP-l, MMP-2, MMP-3, MMP-7, MMP-8,

MMP-IO, MMP-13, and MMP-14, and saliva also contains some of these enzymes.

Gelatinolytic forms of these, however, do not appear to have been observed in gelatin

zymograms. It would, therefore, seem that the MMP-9 antibody is specific and other

reactive bands in sputum samples were perhaps MMP-degradation products. No

improved immunoreactivity was observed as a result of the inclusion of detergents.

Results obtained by TPP fractionation show that the TPP method is useful for semi­

fractionating enzymes. It is simpler to semi-fractionate MMP-9 from sputum than from

PMNs. The purity and concentration of MMP-9 isolated from sputum fractions is lower,

but the resource is more easily accessed in adequate quantities for use in reverse

zymograms (for the detection of TIMP-l). The presence of contaminating proteins are

also irrelevant in such a system. At this point these reagents were, therefore, judged

adequate for the optimization ofTIMP-l detection by reverse zymography and for future

studies on the release ofTIMP-l and MMP-9.
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CHAPTER FOUR

OPTIMIZATION OF WESTERi'l" BLOTTING, ECL, AND REVERSE
ZYMOGRAPHIC DETECTION OF TIMP-1

4.1 Introduction

The tissue inhibitors of matrix metalloproteinases (TIMPs) are naturally occumng

inhibitors of the MMPs, responsible for ECM degradation and ECM turnover and tissue

remodelling. In the blood about 95% of all proteases are regulated by [12- macroglobulin

(Woolley et al., 1976; Ishibashi et al., 1988). The large size (780 kDa) of [12­

macroglobulin, however, does not allow the inhibitor to penetrate into the tissue

(Woolley et al., 1976) and the TIMPs, which are smaller (~30 kDa), are the only MMP

inhibitors in tissues (Houng et al., 1997). TIMPs inhibit MMPs in a one to one ratio

(Willenbrock et al., 1993; Langton et al., 1998; Macartney and Tschesche, 1983;

Stricklin and Welgus, 1983) and there are four members of the TIMP family numbered

according to the order in which they were discovered i.e. TIMP-1, TIMP-2, TIMP-3 and

TIMP-4. These range in molecular weight from 22 to 30 kDa (Gomish-Ruth et al., 1997)

and in distribution (Table 4.1). They all possess 12 cysteine residues and form six

disulphide bonds which give rise to six loop structures (Williamson et al., 1990) (Figure

4.1). The presence of these six disulphide bonds and six loops give the TIMP family

members a compact structure and a relatively high structural similarity (40-50%) though

low amino acid homology (Williamson et al., 1990; Gomish-Ruth et al., 1997). Their

main differences are found on their C-terminal domains (loops 4 - 6 and a free tail)

(Kries and Vale, 1999).

The N-terminal domain of TIMPs is the inhibitory region which binds the catalytic

domain of the MMPs (Olson et al., 1997). This domain is both necessary and sufficient
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for MMP inhibition (Murphy et al., 1991). The C-tenninal domain, on the other hand, is

used to bind to the Cvtcrminal domain of MMPs during complex formation (Goldberg et

al., 1992; Wilhelm et al., 1989). TIMPs inhibit active MMPs through a non-covalent

binding (Gomez et a!., 1997) and a decrease in TIMP-1 and TIMP-2 levels in tissue

facilitates the uncontrolled degradation of the extracellular matrix observed in

pathological conditions such as rheumatoid arthrit is (Osthues et al., 1992). TIMP -2 and

TIMP-3 are effective inhibitors for membrane type MMP (MT-MMP), while TIMP-3

also inhibits tumour necrosis factor-ex converting enzyme, a metalloproteinase that is not

a member of the matrixin family of MMPs (Brew et al., 2000).

Table 4.1 Molecular characteris tics of TIMPs

Inhibitor kDa. Glycosylation Location Isoe lectric point

TIMP-1 28.5 Glyco sylated Human skin fibroblast s, 5.5 - 8.0

corneal fibroblasts,

gingival fibrobla sts,

adults and foetal lung fibroblasts,

human PMNs and macrophages

TIMP -2 21 Non-glycosylat ed Melan oma cells, fibroblasts, 6.45

alveolar macrophages

TIMP -3 21 Glyco sylated Extracellular matrix 9.04

TIMP-4 23 Non-glycosylated Heart 7.34

4.1.1 Structure ofTIMP-l

TIMP-1, the most ubiquitous MMP inhibitor is a glycoprotein with an approximate

molecular weight of 28 .5 kDa (Triebel et al., 1995) (Table 4.1). It consists of 184

residues, which, like the other TIMPs, include the 12 cysteine bonds and form 6 loops

(Figure 4.1) (Williamson et al., 1990) which imparts a resistance to high temperature,

pH, pressure, denaturing agents and oxidation (Strickling and Welgus, 1983). TIMP-1,
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however, has one free sulfhydryl group which is required for its inhibitory activity and

TIMP-1 activity can be abolished by alkylation of this group using iodoacetamide

(Macartney and Tschesche, 1983).

Due to post-translational modification, TIM P-1 is a highly glycosylated protein. Its two

N-linked glycosylation sites are composed of sialic acid, mannose, galactose and N­

acetyl glucosamine residues which gives rise to approximately 30% of the molecular

weight of the protein (Caterina et al., 1998). Glycosylation occurs in sites (N30 and N82
)

and is heterogeneous. Due to the variability of sialic acid substitution differently

glycosylated TIMP-1 's may have heterogeneous pI values (Murphy and Willenbrock,

1995; Macartney and Tschesche, 1983) (Table 4.1). Glycosylation, however, does not

affect inhibitory activity (Caterina et al., 1998). The N-terminal domain of TIMPs,

. 11 he rezi d' h 2nd "di lfid kn t" (13 124 127 174)especia y t e region surroun mg t e ISU I e 0 cys - cys ,cys - cys

(Bodden et al., 1994), is the inhibitory region which binds with the catalytic domain of

the MMPs (Olson et al., 1997). Though it inhibits MMPs in 1:1 ratio (Taylor et al.,

1996), TIMP-1 does not inhibit bacterial collagenase and thermolysins (Hayakawa et al.,

1992).

TIMP-1 is a member of the oligosaccharide/oligonucleotide-binding proteins. Like the

other oligosaccharide/oligonucleotide-binding proteins it has a binding region which

consists of five-stranded ~-pleated sheet rolled into a ~-barrel of conical shape (Gornish­

Ruth et al., 1997). This ~-barrel topology is homologous to that seen in proteins of the

oligosaccharide/oligonucleotide-binding (OB) fold family (Murphy and Willenbrock,

1995; Murzin, 1993). The common structural futures of this family include the number

of ~-strands and their arrangement, the ~-barrel shear number, an inter-strand hydrogen

bond network, the packing of the hydrophobic core, and the conserved ~-bulge (Murphy

and Willenbrock, 1995). Similarity with other known OB protein fold family members

such as staphylococcal nuclease and Escherichia coli heat labile enterotoxin was

confirmed by superimposition of the inhibitory region (N-TIMP) ofTIMP and the active

or binding domain of the other family proteins. However, these proteins do not have
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similar sequences in their active sites indicating that they do not share a common ligand

binding (Murphy and Willenbrock, 1995).

150
160

Figure 4.1

40

The proposed structure of TIMP-l. The diagram shows the schematic representation
of the amino acid sequence of TIMP-1, including the disulfide bonds assigned by
Williarnson et al. (1990). Loops created by disulfide bridges are indicated (Ll through
L6) (modified from Caterina et al., 1997; 1998).
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4.1.2 Multifunctional nature of TIMP-1.

Besides to its MMP inhibitory activity, TIMP-l has shown to be involved in several

body functions as listed in Table 4.2 .

T able 4.2 Some r eported functions of TIM P-l (modified from Gomez et al., 1996).

Some reported functions of TIMP-l Reference

• Inhibits active forms of MMPs Gomez el 01.,1 997.

• Binds to pro MMP-9 Goldberg et al., 1992; Wi lhelm et al.,

1989; Itoh and Nagase, 1995.

• Role in embryonic bone tissue remodell ing Flenniken and Williams, 1990.

• Role in gonad ial steroidogenesis Boujard et al., 1995.

• Role in tissue rem odelling dur ing tum our progr ession Anne et al., 1997; Yoshij i et al., 1998;

Yoshikawa et al., 1999.

• Growth prom oting activit y to wide range of cells Hayakawa et al., 1992.

• Inhibits angiogenesis in bioassays Moses, 1997.

• Role in gonadial stero idogenesis, tissue remodelling Gomez et al., 1997.

of the reproductive system, and embryonic development

• Role in malignancy and other disease proc ess Gomez et al., 1997.

• Inhib ition of angiogenesis Gomez et al., 1997.

• Modulates cell morphology in vitro Ray and Stetler -Stevenson, 1995.

• Oligonucleotide/oligosaccharide binding ability Muzin, 1993.

• In vitro suppress ion of programmed cell death of B-cells Gudez et al., 1998.

• Inhibits apoptosis of human breast epithelial cells Li et al., 1999.

• Erythroid-potentiating activity Docherty et al., 1985

4.1.3 TIMP-l Vesicles

The subcellular localization of TIMP-l in PMNs was discovered by Price et al. (2000).

This finding apparently rev ealed that, in PMNs, TIMP-l is not constitutively secreted,

but stored in one of the PMN vesicles. TIMP-l was found to be located in distinct
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organelles which are oval in shape, translucent, but smaller than azurophilic granules.

These organelles do not contain any of the classical PMN granule marker proteins,

which indicates that they were a novel organelle (Price et al., 2000). Their sedimentation

with the least dense specific granules in density gradient co-fractionation and their

pleomorphic structure suggests that they are vesicle populations rather than granule

populations (Price et al., 2000). In leukaemia (HL-60) cells which are developmentally

arrested in their maturation at the early promyelocytic stage, TIMP-l is constitutively

secreted (Kobayashi et al., 1995; Janowska-Wieczorek et al., 1999; Bar-Shavit et al.,

1985) like its other granule proteins (Cabec et al. , 1997). Price et al. (2000) discovered

that MMP-9 and TIMP-l colocalized in a minor vesicle population suggesting that the

TIMP-1 granule is synthesized possibly after the synthesis of the gelatinase granule and

MMP-9 (Price et al., 2000).

The retention of TIMP-1 largely in a separate PMN granules indicates that PMNs can

possibly release TIMP-1 when required and preliminary unpublished work indicated that

TIMP-1 release was not regulated by calcium like other granules (Price et al.,

unpublished data). In HL-60 cells, expression of TIMP-1 has been shown to be

upregulated by several activators such as PMA, retinoic acid, vitamin D3 and dimethyl

sulfoxide (DMSO) (Bar-Shavit et al., 1985) but how its release is regulated remains

unknown.

TIMP-l is not a strong inhibitor, therefore, its presence does not result in complete

inhibition of MMPs thus limited proteolysis may occur in the presence of TIMP-1 or

upon binding ofTIMP-1 to MMPs (Murphy et 01.,1982).

4.1.4 TIMP-l and its interaction with MMP-9

TIMP-l forms a complex with the 92-kDa pro-gelatinase (pro-MMP-9) (Table 4.2)

(Wilhelm et al., 1989). In this complex, the C-terminal domain is bound to the C­

terminal domain of pro-MMP-9 but the N-terminal domain of TIMP-l is capable of
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inhibition of other active MMPs (Itoh and Nagase, 1995) as the N-termina1 domain of

TIMP-1 only binds to active MMPs, but not to pro-MMPs (Murphy et al., 1991). Even

during complex formation with TIMP-1, pro-MMP-9 can be activated by

organomercurials, trypsin and stromelysin-1, resulting in an active enzyme which can

degrade types IV and V collagen (Wilhelm et al., 1989; Goldberg et al., 1992). Goldberg

et al. (1992) also showed that in the absence of TIMP-1, pro-MMP-9 could form a

covalent homodimer or a complex with MMP-1. In the presence of TIMP-1, however,

the formation of a pro-MMP-9 homodimer complex with MMP-1, and activation of pro­

MMP-9 by MMP-3 is prevented. TIMP-1 also cannot bind to the pro-MMP-9

homodimer. The TIMP-1fMMP-9 compl ex and all other complexes can be dissociated

by 0.1 % SDS (Goldberg et al., 1992; Triebel et al., 1995). Dissoc iation of the enzyme

and inhibitor by this procedure does not inhibit their activities (Itoh and Nagase, 1995;

Triebel et al., 1995).

4.2 Optimization of TIMP-l detection

The aim of the project is to investigate the release of TIMP-I and MMP-9 during

complement-mediated phagocytosis of polystyrene beads. Previously Price et al. (2000)

observed that TIMP-I and pro-MMP-9 were not secreted into the PMN phagosome

during phagocytosis of IgG-opsonized latex beads. Clearly this showed that MMP-9 and

TIMP-I have no intracellular role in such a case. However, in this study the indirect role

ofTIMP-1 and how it might be involved in the process ofC1q-mediated internalization

of particles is of interest.

For such a study the release of TIMP-1 may be monitored or measured in supematants

of PMNs incubated in the presence of polystyrene beads and complement. Under such

test conditions the release of TIMP-1 and MMP-9 may be very low and, therefore, the

sensitivity of detection methods had to be investigated and optimized and the best

sensitive method chosen.
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4.2.1 Western blot detection ofTIMP-1 from PMN homogenates

Western blotting, western ligand blotting and enhanced chemiluminescence were all

techniques which were considered to be among the best, most sensitive and straight

forward methods of detecting TIMP-I. Before all these methods could be compared and

the most sensitive method chosen for the final experiments on TIMP-I release, the anti­

TIMP-l antibodies to be used had to be optimized.

In order to characterise antibodies to be used for TIMP-I detection, a suitable source of

TIMP-l was required and PMN homogenates were chosen. As discussed in Chapter 3,

the primary problem of homogenization is that proteins and enzymes are released from

cells into an environment that is not ideal for their survival in an undegraded state. Itoh

and Nagase, (1995) showed that TIMP-l and MMP-9 can be degraded by PMN serine

proteases in a time-dependent manner and can produce lower molecular weight forms of

both proteins. When TIMP-l was incubated with elastase, for example, it was degraded

and lost its inhibitory function (Huang et al., 1997). Reactive oxygen radicals can also

degrade TIMP-l (Stricklin and Hoidal, 1992). Thus, the addition of appropriate

proteinase inhibitors and anti-oxidants in the homogenization buffer was required.

Even with the proteolytic activity ofTIMP-l degrading enzymes blocked many different

molecular weight forms of TIMP-l have been reported. The deglycosylated core protein

molecule of TIMP-l has a molecular weight of 20 kDa (Cannichael et al., 1986) but,

several glycosylated forms have been reported. TIMP-l is generally reported to have an

approximate molecular weight of 30 kDa (Price et al., 2000; Cawston et al., 1986;

Hayakawa et al., 1992). This most highly glycosylated form ofTIMP-l was reported by

Triebel et al. (1995) , Strickling and Welgus (1983), and Ritter et al. (1999) to have a

molecular weight of 28.5 kDa. Other forms such as 24.5 kDa (Maccartney and

Tsechesche, 1983), 26.4 kDa (Strickling and Welgus, 1983), 27.5 kDa (Cawston et al.,

1986),28 kDa (Cawston et al., 1986; Murphy et al., 1981; Nagayama et al., 1984), and

29 kDa (Drouin et al., 1988) have also been identified. TIMP-l also forms a 66 kDa

homodimer (Price et al., 2000). The 3 N-terminal inhibitory loops of TIIv1P-l have also
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been described to occur in 3 forms, a 24 kDa and 19.5 kDa glycosylated form and a 13

kDa unglycosylated form (Murphy et al., 1991). The N-tenninal form is responsible for

binding and inhibition of active MMPs and N-terminal truncation of TIMP-1 severely

decreases binding to proMMP-9 (Murphy et al., 1991). The N-terminal form is

responsible for binding and inhibition of active MMPs and an N-terminal truncation of

TIMP-l severely decreases binding ofTIMP-1 to pro-MMP-9 (Murphy et al., 1991).

For this study anti-MMP-9 antibodies (characterized in Section 3.7.1) against a 220 kDa

dimer of MMP-9 expressed in Pichia pastoris yeast and anti-TIMP-l antibodies against

human TIMP-1 (isolated from synovial fluid by Marc-Oliver Luther, Department of

Biochemistry, University of Bielefeld, Germany) raised in chicken, were used as well as

two commercial antibodies, one against the Cvterminus of TIMP-1 and a mouse

monoclonal antibody, to ensure that the bands identified were TIMP-l. All antibodies

were characterized and optimized in this study using methods such as western blot,

enhanced chemiluminescence and various detergents.

4.2.1.1 Reagents

Anti-MMP-9 antibodies (characterized in Section 3.7.1) against a 220 kDa dimer of

MMP-9 expressed in Pichia pastoris yeast (a gift from Volker Zollinger, University of

Bielefeld) and anti-TIMP-1 antibodies against human TIMP-1 (isolated from synovial

fluid by Marc-Oliver Luther, Department of Biochemistry, University of Bielefeld,

Germany), raised in chicken, were a kind gift from Dr. Brendon Price, University of

Natal, South Africa. A rabbit antibody against the C-tenninus of TIMP-1 and mouse

anti-TIMP-1 monoclonal antibody was purchased from Sigma Chemicals (St. Louis,

Mo).

PMN lysis buffer [1 M NaCl/PBS, 10% (v/v) DMSO]. NaCl (0.585 g) was dissolved in

PBS (pH 7.4) (10 ml) as described in Section 2.10.1 and 1 ml ofDMSO was added.
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Inhibitor buffer [2 mM PMSF, 1 mM EDTA, 1% (\V/v) NaN 31 PMSF (10 III of 200 mM

solution in methanol), EDTA (5 III of200 mM solution) and NaN3 (0.01 g) dissolved in

1 ml storage buffer.

The reagents for the Bradford protein binding assay were prepared as described III

Section 2.2.1.1.

4.2.1.2 Procedure

For western blotting PMNs were isolated from human blood using a Percoll density

gradient 1.077 g/cm'' as described in Section 2.10.2. Some of the PMNs were

immediately suspended in PMN lysis buffer, snap frozen in liquid nitrogen and stored at

-20°C. When these PMNs were thawed, they were thawed in Inhibitor buffer. Another

batch of PMNs isolates were mixed with treatment buffer and analysed within 24 h. All

treated and untreated samples (1.59 ug), however, were separated by a Tris-tricine gel

electrophoresis using reducing conditions and blotted (16 h). The membrane was

subsequently probed with (7.2 ug/ml) chicken anti-TIMP-1 antibody with detergents

(Brij-35, Tween-20 and Triton X-lOO) added into blocking- and antibody diluent

solutions to a concentration of 0.3 % (v/v). Binding of the chicken anti-TIMP-1 antibody

or rabbit anti-C-termina1 antibody was detected using alkaline phosphatase conjugated

rabbit anti-chicken antibody (1/100000) or a mouse anti-rabbit antibody (1/30000) and

an NBT/BCIP substrate. All blots developed at the same time to allow comparison of

reactivity with the use of different detergents.

4.2.1.3 Results and discussion

Initially western blot experiments were optimized by dot blots (results not shown) which

showed that endogenous PMN alkaline phosphatase and peroxidases needed to be
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quenched using levamisole or NaN3. The optimal concentration of chicken anti-TIMP-1

and rabbit anti-TIMP-1 antibody was easily determined by this method but the mouse

monoclonal antibody could not be optimized using such a technique. This may be due to

conformational change in TIMP-1 induced after SDS-PAGE which may either expose or

destroy the epitope targeted by the specific antibody used (Nesbitt and Horton, 1992).

During western blot detection ofTIMP-l, both the chicken and the rabbit anti-TIMP-l

antibodies appeared specific as they revealed bands of reactivity previously found for

TIMP-l. However, even after optimization, using normal western blotting procedures,

bands detected in western blots were relatively faint (Figure 4.2 E).

To overcome possible conformational changes in epitopes due to the treatment of

proteins during the electrophoresis and blotting processes, detergents were employed in

an attempt to enhance immunoreactivity. Detergents may alter or refold the proteins to

their original conformation and are commonly used in western blotting and western

ligand blotting for removal of non-specifically binding antibodies. Among the detergents

used, the non-ionic detergents such as Tween-20, Nonidet P-40 and Triton X-lOO

(Davies et al., 1994), Brij-35 (Zeng et al., 1996) are used most commonly. These non­

ionic polyoxyethylene type detergents, in incubation buffers, may induce renaturation of

blotted proteins while other types of detergents do not (Klinz, 1994). Proper re-folding

and stabilization of proteins only occurs when such detergents are present at a

concentration above their critical micelle concentration (CMC) (Tandon and Harawitz,

1987) which would be [(0.09 mM) Brij-35, (0.049-0.059 mM) Tween-20 and (0.2-0.9

mM) Triton X-lOO] (Neugebauer, 1990; Bhairi, 1997). Besides inducing increased

antigen detection by renaturation, protein movement and flexibility is also increased and

may induce the appropriate conformation for binding by antibodies and other proteins

(Zeng et al., 1996).

The western blotting experiments performed with such detergents showed the most

intense bands at 31 kDa when Brij-35 was used (Figure 4.2 B). The molecular weight of

this band is comparable to the 31 kDa TIMP-l inhibitor band purified from skin
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fibroblasts by Welgus et al. (1979). Brij-35 has been shown to be important in the

extraction of low solubility proteins. However, the intensity of the immunoreactivity of

TIMP-1 in the current study was decreased or abolished when Tween-20 or Triton X­

100 was used (Figure 4.2 C and 4.2 D). When no detergents were used the bands were

less evident possibly due in part to a high background and possibly also to the absence

of a detergent's surfactant action in removing weakly bound antibodies (Figure 4.2 E).

Using the chicken antibody, even though the most intense bands appeared in blots

treated with detergents were those with a 31 kDa band, other minor bands were also

observed (Figure 4.2 arrows, B, C, D and E). The immunoreactivity of these bands were

enhanced by some detergents and suppressed by others (Figure 4.2 compare B, C, D and

E). It was evident that the inclusion of inhibitors and anti-oxidants (DMSO) favoured the

preservation of higher molecular forms of proteins [Figure 4.2 A, compare "a" (no

inhibitors) and "b" (inhibitors)] and (Figure 4.2 B, C, D and E, compare "a" and "b").

DMSO is known to prevent oxidative degradation of TIMP-1 (Stricklin and Hoidal,

1992) . This is of particular interest as it seems that all detergents seem to favour the

reactivity of higher (-30 kDa) over lower (-15 kDa) molecular weight forms ofTIMP-l.

PMN serine proteases degrade TIMP-1 from the N-terminal domain in a time-dependent

manner, and Itoh and Nagase (1995), have reported 16 and 17 kDa breakdown products

of this protein. Therefore, it was not surprising to observe a 14.5 and 16.5 kDa form or

possible total digestion of TIMP-l in samples where no inhibitors (1 mM EDTA, 2 mM

PMSF, 1% (w/v) NaN3) were added (Figure 4.2 B, C, D, E, sample "a"). The time­

dependent degradation of TIMP-l is also illustrated by the fact that, when fresh PMN

homogenates (containing no anti-oxidants and inhibitors) were blotted and Tween 20

used in washes and diluents, only a 31 kDa band of undegraded TIMP-1 was detected

(Figure 4.3 B). In other blots where no inhib itors were included the molecular weight of

bands decreased with time (Figure 4.2, B, C, D and E sample "a")

The lower molecular weight fragments of TIMP-1 from untreated samples blotted after

longer period of storage were strongly detected even in the absence of detergents,

showing that no refolding was required for chicken antibody binding and detection of
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these forms of TIMP-1 (Figure 4.2 E, sample "a"). Generally for the PMN homogenates

which were treated with anti-oxidants and inhibitors, however, only one band i.e 31 kDa

was obtained (Fig.4.2, B, C, D and E, sample "b" compare with "a", arrows).
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Figure 4.2 Western blotting ofTIMP-l from human PMN homogenates using detergents.
PMNs were isolated from human blood over Percoll density gradient 1.077 g/cm' as
described by Roos and De Boer (1986) and either diluted with equal amount of reducing
treatment buffer (a) or were first suspended in I M NaClIPBS, and 10% (v/v) DMSO, snap
frozen in liquid nitrogen and thawed into a buffer containing 1 mM EDTA, 2 mM PMSF, 1%
(w/v) NaN3 before mixing into equal amount of reducing treatment buffer (b), molecular
weight markers (c). PMN homogenates (1.59 ug) (a) or (b) were separated on a Tris-tricine
gel (A) and blotted (16 h) (B, C, D, E). The membrane was probed with (7.2 ug/ml) anti­
TIMP-l antibody with detergents added into blocking, and antibody diluent solutions in a
concentration of 0.3 % (v/v) in all except one specimen (no detergent) (E), Brij-35 (B) Triton
X-lOO (C) Tween 20 (D). Antibody binding was detected by alkaline phosphatase conjugated
rabbit anti-chicken antibody (1/100000) and NBT/BCIP substrate.

The chicken antibody generally bound to the lower molecular weight, possible

degradation fragments of TIMP-1 and to the mature molecule and no high molecular

weight forms> 31 kDa (Figure 4.2) where the rabbit antibody bound 30 kDa and greater

(Figure 4.4). Since TIMP-1 is usually degraded from the N-terminal region, such a

labelling pattern may indicate that either there is no epitopes in the N-terminal region

that is recognized by the chicken antibodies or the N-terminal region needed to be

removed in order to expose the epitopes which form the target of the chicken antibodies.

93



kDa kDa

94­

66-

45­

30-

16­

14-

a

A

b

B

Figure 4.3 Western blotting ofTIMP-l from untreated human PMN homogenates. PMNs were
isolated from human blood over Percoll density gradient 1.077 g/cm3 as described by
Roos and De Boer, (1986) and immediately diluted with equal amount of reducing
treatment buffer (no protease inhibitors or anti-oxidants). Homogenates (20 Ill) (A,b)
molecular weight markers (A,a) were separated on a reducing Tris-Tricine gel (A), and
blotted (16 h) (B). The membrane was probed with (7.2 ug/ml) chicken-anti-TIMP-l
antibody with Tween-20 added into blocking, and antibody diluent solutions in a
concentration of 0.3 % (v/v). Antibody binding was detected by alkaline phosphatase
conjugated rabbit anti-chicken antibody (1/100000) and NBT/BCIP substrate.

As mentioned, the rabbit anti-TIMP-1 antibody against the C-terminal region of the

molecule, labelled the higher molecular weight bands, 30 kDa and greater (Figure 4.4 B

and C weakly, and D most successfully) except in blots treated with Triton X-lOO where

a lower-TS kDa band was also detected (Figure 4.4 D, arrow).

In the presence of Brij-35, a 31 kDa probable TIMP-1 band, seen with the chicken

antibodies, was not detected by the rabbit antibodies (Figure 4.4 B, arrows). Both Brij­

35 and Triton X-lOO assisted the detection of the presumptive 66 kDa TIMP-1­

homodimer previously described by Price et al. (2000), using the chicken antibodies

(Figure 4.4, B and D). Unlike the chicken antibody, the rabbit antibody recognized
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higher molecular weight forms almost exclusively indicating that higher bands may

contain the C-terminal epitope, where low molecular weight forms may not, or where

the higher molecular weight forms contain the C-terminal epitope domain which may

become accessible to the rabbit antibody with certain detergent treatments.
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Figure 4.4 Western blotting ofTIMP-l from human PMN homogenates using rabbit antibody.
Molecular weight markers and PMN homogenates (1.59 ug) separated on a reducing
Tris-Tricine gel (A) before blotting into nitrocellulose for 16 h (B, C, D). The
membranes were subsequently probed with 0.2 ug/ml rabbit anti-TIMP-l antibody (B,
C, D) with detergents added into blocking, and antibody diluent solutions to a
concentration of 0.3 % (v/v) blotted homogenates were probed with Brij-35 (B) Tween­
20 (C) Triton X-lOO (D).

In experiments where Tween-20 and the rabbit antibody was used, bands at about 73, 33

and 30 kDa, but no lower molecular weight bands, were detected (Figure 4.4 C). Triton

X-lOO treatment similarly revealed a greater number of higher molecular weight bands

at 73, 66, 43 and 30 kDa (Figure 4.4 D) with the rabbit antibody. The detection of a 15

kDa form of TIMP-1 using Triton-X 100 and the rabbit antibody was unexpected as it

was previously reasoned that the C-terminal domain may be absent in low molecular

weight forms of TIMP-1 (approx. 15 kDa) as no reactivity was generally seen with the

rabbit anti-C-terminal peptide antibody. It was reasoned that the C-terminal fragment
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targeted by the rabbit antibody must be present and especially accessible in a Triton X.

l aa-treated blot (Figure 4.4, D, arrows) . If this is so, this band should also have been

detected in blots treated with Brij-35 or Tween-20 but may not have reacted with the

rabbit antibody due to the unfavourable conformation of the epitopes in Brij-35- or

Tween-20-treated blots (Figure 4.4 Band 4.4 C).

Trimming of TIMP-I is usually known to occur from the N-terminal end, however,

especially when in a complex active with MMPs (Itoh and Nagase, 1995). Since the

rabbit antibody to a C-terminal peptide recognises these forms especially well when

blots are treated with Triton X-lOO it seems that Triton X-lOO exposes the C-terminal

epitopes in the blotted protein. The chicken antibody must recognise a different epitope

to that recognized by the rabbit antibody, however, as Triton X-lOO produced a lower

signal with the chicken antibody (Figure 4.2 C and Figure 4.4 D). It would, therefore,

appear that the immunoreactivity of various forms of TIMP-I or other antigens may be

enhanced or depressed by the use of specific detergents or specimen pretreatments.

4.2.2 Western ligand blotting ofTIMP-l in PMN homogenates.

TIMP-I has the special property of being able to bind its target MMPs after being

blotted (Osthues et al., 1992) and even in its reduced form (Price et al., 2000). This type

of complex was confirmed by Osthues et al. (1992) who detected TIMP-1 using western

ligand blotting of TIMP-1 i.e. a pretreatment with pro-MMP-9IMMP-9 followed by

detection of any band of MMP-9. This method is important especially if cross reactivity

with TIMP-2 is suspected (Oliver et al., 1997). As detergents were effective in altering

the conformation of epitopes in blotted proteins, detergents were also introduced to

assist binding of ligands in western ligand blotting.
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4.2.2.1 Reagents

Reagents for the isolation of PMNs were prepared as described in Section 2.10.1. PMN

lysis buffer and Inhibitor buffer was prepared as described in Section 3.7.1. Reagents for

western ligand blotting were prepared as described in Section 2.6.2.1 and 2.7.2. The

amount of protein to be loaded was measured by Bradford prot ein binding assay as

described in Section 2.2.1.2.

4.2.2.2 Procedure

For western ligand blotting, PMNs were isolated from human blood as described in

.Section 2.10.2. The isolated PMNs were immediately suspended in PMN lysis buffer

and snap frozen in liquid nitrogen. When required PMNs were thawed into an inhibitor

buffer (Section 2.10.2) and mixed into equal amount of reducing treatment buffer

(Section 2.6.1.1). Homogenates (0.8 ug/lane) were separated on a Tris-tricine gels

stained 'and destained (Section 2.6.1.1). A replicate gel was blotted into nitrocellulose for

16 h. The nitrocellulose was blocked with TBS/milk and treated with TBS/milk

containing 4.26 ug/ml of a crude 20-30% (rn/v) NH4S04 TPP fraction containing pro­

MMP-9 (prepared in Section 3.6.3). Various detergents [0.3% (v/v) Brij-35, Tween-20

or Triton X-lOO] were added to blocking, and antibody diluents. Membranes were

probed for MMP-9 using a chicken anti-MMP-9 antibody (219 ug/ml) (Section 3.6.2)

and detected with rabbit anti-chicken (1/100 000) alkaline phosphatase conjugated

secondary antibody and NBT/BCIP substrate.

4.2.2.3 Results and discussion

Pro-MMP-9 (92 kDa) and mature MMP-9 (~81 kDa) were evident in blots of PMN

homogenates not overlayed with crude pro-MMP-9 (Figure 4.5 F). Bands other than
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those seen in Figure 4.5 F, after treatment with pro-MMP-9 may, however, be assumed

to be due to binding of MMP-9 by TIMP-l. When no MMP-9 was overlaid and blotting

was performed no "TIMP-l bands" were detected proving the specificity of reactivity of

the MMP-9 antibody and the detection system.

As mentioned, the C- and N-terminal regions of TrMP- l can form a complex with active

or pro-MMP-9 (proMMP-9), respectively. TIMP -l binds non-covalently via its C­

terminal domain to the Cste rm inal domain of active MMPs (Itoh and Nagase, 1995),

whereas it binds via the N-terminal inhibitory domain to pro-MMP-9 (Murphy et al.,

1991). Different bands may be unpr edictably revealed by western ligand blotting, due to

the differential binding of either the pro and/or mature MMP- 9 enzymes in the crude

MMP preparation and the effects of the detergents used. Hence the pattern of labelling

may be difficult to interpret, irrespective of how the TIMP- l is processed.

Extra MMP-binding TIMP-l bands appeared in the ligand blot when Brij-35 , and to a

lesser extent Tween-20, were used in the overlay and blotting process (Figure 4.5 Band

C, respectively). In western ligand blotting detection ofTIMP-l, Brij-35 showed the best

detection of an approximately 25 kDa form of TIMP-l , revealing bands of reactivity at

approximately 25, 30, 40 and 59 kDa (Figure 4.5 B). These bands may arise due to

binding of mature MMP-9 to the C-terminal residues of TIMP-l which seem to be

expos ed in the higher mol ecular weight forms of blotted TIMP-l , according to the

labelling results of the rabbits against the C terminal of TIMP-l . Alternatively they may

arise due to binding of pro-MMP to the N-terminal domain of TIMP-l present in

uncleaved high molecular weight forms of blotted TIMP-l.

The addition of Tween-20 to buffers (Figure 4.5 C) revealed additional bands at 14, 15

and 22 kDa, possibly representing degraded forms of TIMP-l. As mentioned , the only

blots which showed lower molecular weight TIMP-I fragments were those that were

blotted in the pres ence of Tween-20 (Figure 4.5 C). Trimming of TIMP-l in the

presence of enzymes such as elastase (which is also present in the PMN homogenates)

also usually occurs from the N-terminus . It may be hypothes ized, therefore, that Tween-
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20 favours the binding of the C-terminal region of active MMP-9 to the C-terminus of

truncated TIMP-l (Figure 4.5, C) [whereas Brij-35 possibly favours the interaction of

the N-terminal inhibitory region of blotted TIMP-l which is largely missing in most

lower molecular weight forms of TIMP-l below 20 kDa (the deglycosylated unc1eaved

form) with proMMP-9 , hence few of these bands are revealed in the Brij blots (Figure

4.5 B)].
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Figure 4.5 Western ligand blotting and western blot detection of TIMP-I and MMP-9,
respectively. PMN homogenates (0.8 ug) were separated on a reducing Tris-tricine gel
(A) before blotting into nitrocellulose (B, C, D, E, F). The nitrocellulose was treated
with TBS/milk (F) or TBS/rnilk containing 4.26 ug/ml pro-MMP/Ml\1P-9 (B, C, D, E).
Various detergents [0.3% (v/v)] added to all blocking, and antibody diluents: Brij-35
(B), Tween-20 (C) Triton X-lOO (D) with one exception (no detergent) (E). Membranes
were probed for MMP-9 (219 ug/ml) and detected with alkaline phosphatase conjugated
secondary antibody and NBTIBCIP substrate.
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The addition of Tween-20 to buffers (Figure 4.5 C) revealed additional bands at 14, 15

and 22 kDa, possibly representing degraded forms of TIMP-l . As mentioned, the only

blots which showed lower molecular weight TIMP-l fragments were those that were

blotted in the presence of Tween-20 (Figure 4.5 C). Trimming of TIMP-l in the

presence of enzymes such as elastase (which is also present in the PMN homogenates)

also usually occurs from the N-terminus. It may be hypothesized, therefore, that Tween- .

20 favours the binding of the C-tenninal region of active MMP-9 to the C-terminus of

truncated TIMP-l (Figure 4.5, C) [whereas Brij-35 possibly favours the interaction of

the N-tenninal inhibitory region of blotted TIMP-l which is largely missing in most

lower molecular weight forms of TIMP-l below 20 kDa (the deglycosylated uncleaved

form) with proMMP-9, hence few of these bands are revealed in the Brij blots (Figure

4.5 B)].

Triton X-lOO showed only 76.5 and 104 kDa bands of MMP-9 showing inability to

assist binding of TIMP-l to overlaid MMP-9 (Figure 4.5 D) and gave very similar

results to those where no detergent was added (Figure 4.5, E). Results showed that

detergents such as Brij-35 and Tween-20 seem to facilitate binding ofMMP-9 to various

forms of TIMP-I (Figure 4.5 B and C). Therefore, western ligand blotting and western

blotting indicates that particularly Brij-35 possibly facilitates more protein-protein

interaction and greater mobility of blotted TIMP-I allowing binding between MMP-9

and blotted TIMP-I or the binding of antibodies to particular TIMP-I epitopes present in

the uncleaved form of TIMP-I (30 kDa, 20 kDa and the inhibitory N-tenninal domain,

Murphy et al., 1991).

For the non-overlaid blot (Figure 4.5 F) the (NGALI MMP-9) complex 125-130 kDa

bands obtained was western blotting by others (Hibbs et al., 1985, 1992; Goldberg et al.,

1992) was absent. This was anticipated as such complex binding are absent when a

sample is treated with reducing buffer (Hibbs et al., 1982; 1985).
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Similar studies by Price et al. (2000), using western ligand blots for the detection of

TIMP-l from PMN homogenates, showed only a 30 and a 66 kDa band . In the current

studies, however, binding of MMP-9 was shown to be ligand-concentration-dependent,

as 0.17 ug/rnl of the crude TPP MMP-9 fraction did not show binding of TIMP-l

(results not shown), whereas addition of 4.26 ug/ml of this fraction revealed the

additional bands which possibly correspond to TIMP-l .

4.2.3 Enhanced chemiluminescence (EeL) detection of TIMP-l in PMN
homogenates

Enhanced chemiluminescence (ECL) methods are generally preferred to western blotting

methods, because chemiluminescence combines high sensitivity, and speed of image

development. Blots can be probed and easily imaged using X-ray type paper (Olesen et

al., 2000). ECL is 10 times more sensitive than the most effective chromogenic

substrate, alkaline phosphatase (Graf and Friedl, 1999). Techniques comparable

sensitivity involve radioactivity. These methods, however, are often not used due to the

hazardous nature of radioisotopes (Nesbitt and Horton, 1992). The main components of

the ECL system are the HRP conjugated secondary antibody and luminol. In the

presence of the peroxidase enzyme, luminol and H20 2, luminol donates two electrons to

the HRP-H20 2 complex to free the enzyme complex in a two step system, followed by

several reactions to give light (Prichard and Cormier, 1968).

The reaction can be represented:

HRP + H202 ~ Cl

Cl + LH2 ~ C2+ LE'

C2+ LH2 ~ HRP + LH'

LE' + H20 2 ~ hv + product

Where Cl represents the classical ES complex between HRP and H202,

C2 represents a l-equivalent reduction of Cl by luminol (LH2) to produce a

luminol radical (LH).
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Thus the light producing step is a purely chemical one that does not directly involve

participation of an enzyme complex (Prichard and Cormier, 1968).

Usually chemical enhancers are added to create vigorous reactions. The light emitted is

then captured by hyperfilm ECL or an X-ray type paper with a gelatin emulsion

containing silver bromide which forms a latent image which is subsequently developed

using conventional photographic developer solution.

Optimization of ECL system requires less primary and secondary antibodies than

conventional western blotting due to its high sensitivity compared to chromogenic

systems. This method was, therefore, compared with conventional western blot and

western ligand blotting methods of the detection of TIMP-l.

4.2.3.1 Reagents

Reagents for SDS-PAGE was prepared as described in Section 2.6.2.1. Reagents for

western blotting were prepared as described in Section 2.7.2 . PMN lysis buffer was

prepared as described in Section 2.10 .1. Endogenous peroxide quenching solution,

substrate for HRP, luminol detection solution and other ECL reagents were prepared as

described in Section 2.7.2. Bradford protein binding assay reagents were prepared as

described in Section 2.2.1.2.

4.2.3.2 Procedure

For ECL detection of TIMP-l, PMN homogenates were isolated from human blood as

described in Section 2.10. After isolation PMNs were immediately suspended in PMN

lysis buffer (Section 2.10.1) and snap frozen in liquid nitrogen. When required PMNs

were thawed into a buffer containing 1 mM EDTA, 2 mM PMSF, 1% (w/v) NaN3 and

mixed into equal amount of reducing treatment buffer (Price et al., 2000). PMN

homogenates (0.8 ug/lane) and molecular weight markers (5 Ill/lane) were separated on
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a Tris-tricine gel and blotted into nitrocellulose as described in Section 2.1.3. The

membranes were probed with 7.2 ug/ml chicken anti-TIMP-l IgY or 10 ug/rnl anti­

molecular weight IgY antibody with detergents [0.3% (v/v), Brij-35, Tween-20 or Triton

X-lOOJ added to blocking and antibody diluents (TBS/BSA). Binding of antibody was

subsequently detected with rabbit anti-chicken HRPO conjugated secondary antibody

(1/100 000). Enh anced chemiluminescence was performed using luminol as substrate

exposed into X-ray film (15 s) and the film was developed in X-ray film development

solution and fixed in fixer solution (Section 2.8.1).

4.2.3.3 Results and discussion

Blots treated with Triton X-lOO and Tween 20 showed a 30,24,20, 16, 15, 14, and ~12

kDa bands (Figure 4.6 A and B). The blot treated with Brij-35 also showed very faint 30

and 14 kDa bands (Figure 4.6 C), all of which possibly represent TIMP-l. Unlike the

western blotting and western ligand blotting, therefore, the best detection ofTIMP-l was

observed when Triton X-lOO and Tween-20 were used in all steps (Figure 4.6 A and B).

This enhanced detection of TIMP-I using detergents still shows that Tween-20 seems to

favour reactivity of the lower molecular weight, possible C-terminal domain of TIMP-I

degradation products as shown with ECL (Figure 4.6 B) and previously shown in

western ligand blotting (Figure 4.5 C) where MMP-9 is overlayed. This was not as

evident in conventional western blots with this detergent (Figure 4.2 B). Whereas the

inclusion of Brij-35 seemed to promote good binding of MMP-9 to blotted TIMP-I in

western ligand blots (Figure 4.5 B) and immunoreactivity with the chicken antibody

(Figure 4.2 B) it did not seem to enhance ECL results to the same extent (Figure4.6 C),

an inexplicable result. ECL additionally showed chicken antibody reactivity with these

low molecular weight bands of TIMP-I using Triton X-lOO (Figure 4.5 A). This

detergent did not seem to favour western blotting ofMMP-9 (Figure 4.5 D) or reactivity

of these forms in conventional binding (Figure 4.2 C). These results are hard to explain
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III the light of almost approximate results III conventional western blotting unless

antibodies are exhibiting prozone effects.

kDa
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Figure 4.6 Enhanced chemiluminescence detection of TIMP-l from PMN homogenates.
PMN homogenates (0.8 ug) were separated on a Tris-tricine gel and blotted into
nitrocellulose membranes. The membranes were probed with 7.2 ug/ml anti-TIMP-1
IgY (A, B, C, D) and 10 ug/ml anti-molecular weight IgY (E). Detergents [0.3% (v/v)]
added to blocking, and antibody diluents Brij-35 (C), Tween-20 (B) Triton X-lOO (A)
and no detergent (D) . The membrane was then detected with HRPO conjugated
secondary antibody (1/100 000) . Enhanced chemiluminescence was performed using
luminol (Amersham Pharmachia Biotech.) as substrate and exposed onto x-ray films (IS
sec). The film was then developed and fixed .

4.2.4 Reverse zymographic detection of TIMP-l from PMN homogenates

Optimization of reverse zymography to a picogram sensitivity level for TIMPs has

previously been performed by Oliver et al. (1997). The method, however, was optimized

using recombinant MMP-9. Using such a system 60 and 40 pg ofTIMP-2 and TIMP-1,
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respectively was detected. To optimise detection of TIMP-1 for the current study reverse

zymograms were performed using PMN homogenates and MMP isolated as described in

Section 3.6.

4.2.4.1 Reagents

Electrophoresis reagents for Tris-tricine gel electrophoresis were prepared as in Section

2.6.2.1. Renaturation solution, gelatinase zymography development buffer,

fixingldestaining solution, and staining solution were prepared as described as in Section

2.9.2. PMN lysis buffer was prepared as described in Section 2.10.1. The amount of

protein to be loaded was measured by Bradford protein binding assay as described in

Section 2.2.1.2.

4.2.4.2 Procedure

For reverse zymographic analysis, PMNs were isolated from human blood as described

Section 2.10, suspended in PMN lysis buffer and snap frozen in liquid nitrogen, thawed

into a PMN lysis buffer (Section 3.7.1) and mixed into equal amount of reducing

treatment buffer (Section 2.6.1.1). Various amount ofPMN homogenates (79.5 ng - 636

ng) were separated on a Tris-tricine gel (Section 2.6 .2.2). The same fractions were

separated by reverse zymography with 15% (w/v) Laemmli gel eo-polymerized with

0.01 glml gelatin and 32 ug/ml crude pro-MMP-9 (Section 3.6.2). The gels were washed

in 2.5% (v/v) Triton X-lOO and incubated in development buffer at 37°C (Section 2.9.2)

and the gels were stained and destained before being visualized and photographed in a

light box and captured (Section 2.9.2).

The identity of the presumptive TIMP-1 protein bands was also confirmed by western

blotting of PMN homogenates. i.e. separation on a 15% Tris-tricine gel, blotting into

nitrocellulose for 16 h and probing with 7.2 ug/ml chicken anti-TIMP-1 IgY in

TBS/BSA buffer followed by (1/100 000) dilution of alkaline phosphatase-conjugated
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rabbit anti-chicken secondary antibody containing 0.3 % (v/v) Brij-35. Binding was

visualized with NBTIBCIP substrates (Section 2.7.3).

4.2.4.3 Results and discussion

PMN proteins were seen to separate into 3 major bands at 66, 30 and 15 kDa (Figure 4.7

A). Reverse zymogram analysis was more sensitive than Tris-tricine separation and

Coomassie blue staining and seemed to resolve an intense degraded inhibitory TIMP-l

band at 14 kDa and minor bands at 30 (Figure 4.7, B). The 14 kDa band may represent

the degraded inhibitory form of TIMP-1 produced by PMN serine proteinases (Itoh and

Nagase, 1995), the serine protease inhibitors and other inhibitors of TIMP-1 being

comparatively ineffectual in preventing degradation ofTIMP-1 (Figure 4.7 B and Figure

4.8).

This was also shown by western blot analysis by the presence of a 14 kDa form of

TIMP-1 (Figure 4.8). The minor 30 kDa band observed in the reverse zymogram was

also confirmed as TIMP-l, being immuno-reactive with anti-TIMP-1 antisera (Figure

4.8) . The 66 kDa band evident in the reverse zymogram (Figure 4.7 B) was, however,

not evident in the western blot (Figure 4.8). Brij-35 was used in western blotting and

usually favours detection of lower not higher bands (Figure 4.2, B). This is not

surprising. The blot should perhaps be repeated without detergents. The reverse

zymogram revealed TIMP-1 bands as little as 80 ng of PMN homogenate. Thus , this

method appears very sensitive when compared to western blotting.
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Figure 4.7 Tris-tricine separating and reverse zymographic detection ofTIMP-l from PMN
homogenates.

Homogenates loaded (a, 79.5 ng; b, 159 ng; c, 238 ng; c, 318 ng; d, 397 ng; e, 477 ng;
f, 556 ng; and g, 636 ng) were separated on a Tris-tricine gel and followed by staining
and destaining (A). For reverse zymography the same fractions were separated in 15%
Laemmli gel eo-polymerised with 0.01 g/ml gelatin and 32 ug/ml crude TPP
fractionated MMP-9 (B). The proteins were renatured in Triton X-lOO and incubated in
developing buffer for 16 h before staining.
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Figure 4.8 Western blot analysis of TIMP-l from PMN homogenates.
Homogenates loaded from right to left (0.0795 ug, 0.159 ug, 0.238 ug, 0.318 ug,
0.397 ug, 0.477 ug, 0.556 ug, and 0.636 ug) were separated on a Tris-tricine gel (used
for reverse zymography) and blotted into nitrocellulose. Nitrocellulose membranes
were probed with 7.2 ug/ml chicken anti-TIMP-1 IgY and rabbit anti-chicken alkaline
phosphatase linked IgG antibody followed by NBTIBCIP substrate.

4.2.5 Discussion

The TIMP-1 protein seems to be umque in its apparent ability to be mobile after

blotting, a characteristic shown by it ability to bind overlaid MMP-9 in western ligand

blots. It is known that the N-terminal region of TIMP-1 contains the inhibitory domain,

while the C-terminal region contains the domain which binds the MMP (usually active

MMP, except in the case of proMMP-9) (Itoh and Nagase., 1995). Since the rabbit

peptide antibody seems to bind only the higher molecular weight forms of TIMP-1 (30

kDa and greater) it would seem that the higher molecular weight forms contain the C­

terminal domain but the lower molecular weight forms (below 30 kDa) may have lost

this due to the proteolytic activity of e.g. human leukocyte elastase (Nagase, 1997). If

this is so then it would appear that the chicken polyclonal antibody may recognize an

epitope at or near the inhibitory domain, a domain that is not exposed in the blotted

higher molecular weight forms, irrespective ofwhich detergent was used.
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Brij-35 added to the western blotting wash and diluents favoured the binding of MMP-9

to the higher molecular weight forms of blotted TIMP-l (25 kDa and greater) while

Tween-20 favoured the binding ofMMP-9 to the lower molecular weight forms (25 kDa

and below). It would seem that Brij-35 made the C-terminal domain accessible for

MMP-9 binding but not the inhibitory N-tern1inal domain. In ordinary blots using

chicken antibodies only the 30 kDa band was bound (and not higher M, forms) as the N­

terminal domain does not seem to be exposed for binding by the antibody upon Brij-35

exposure. Tween-20, however, seems to favour binding of MMP-9 to the lower

molecular weight forms of TIMP-l (25 kDa and less) in western ligand blots i.e. must

theoretically expose the N-terminal or C-terminal domain of the blotted TIMP-l.

Tween-20 does not, however, enhance the immunoreactivity of the lower molecular

weight forms of TIMP-l using the chicken antibody as would be anticipated. The action

of the detergents are, therefore, quite subtle and difficult to interpret and predict but may

be useful for demonstration of different forms of TIMP-l.

109



CHAPTER FIVE

Clq-MEDIATED PMN STIMULATION IN PHAGOCYTOSIS

5.1 Introduction

The binding and conversion of factor Cl, of the classical complement cascade, to Clq

on the surface of foreign particles, is possibly the most important step in the activation

of the innate immune complement-mediated system for the control of microorganisms

via phagocytosis and digestion. The Cl q component alone is required to trigger

phagocytosis and digestive processes whereas other complement components require

other additional stimuli. The release of certain PMN proteases may, however, interrupt

this process by inactivation of e.g. Cl-inhibitor and prevent the binding and exposure of

Cl q binding sites for further binding of complement factors on to the surface of the

microorganisms. It is our hypothesis that certain organisms may deliberately exploit

such a mechanism in order to evade phagocytosis and killing by phagocytes such as

PMNs. In order to investigate this possibility and the possible role ofMMP-9 and TIMP­

1 in such strategy, a Clq-coated latex bead model system was used to first investigate

the effect of Cl q opsonization and binding of PMN receptors on the release of TIMP-I

and MMP-9. Such an approach was necessary as it was not known (a) whether TIMP-I

and MMP-9 are usually released prior to and/or during Cl q-mediated phagocytosis and,

(b) whether TIMP-I release, is able to protect Cl-inhibitor from MMP-9 inactivation,

allowing disassembly of CI on the surface of bacteria, exposure of C1q, binding to PMN

C1q receptors and initiation of phagocytosis and phagosome maturation into a killing

body. This needed to be established before our hypothesis could further be explored.

Inactivation of CI-inhibitor, by PMN enzymes was first shown by Pemberton et al.

(1989) and later by Knauper et al. (1991) . As previously mentioned in Chapter 1, three
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of the PMN enzymes have now been con finned to degrade and inactivate Cl-inhibitor.

These are elastase (Pemberton et al. , 1989 ; GigIi and Tausk, 1988, Brower and Harpel,

1981), MMP-8 and MMP-9 (Knauper et al., 1991). However, under normal

circumstance s, inactivation of Cl -inhibitor is unlikely to be due to elastase or

collagenase (MMP-8) as activation of PMNs by receptors binding to Cl q-coated

surfaces does not seem to cause the release of primary and secondary granules

cont aining these enzymes (Goodman and Tenner, 1992; Kishore and Reid, 2000) and

few or no primary granule enzymes are reported to be secreted during phagocytosis of

opsonized particl es (SchettIer et al., 1991). Secretion of MMP-9-containing granules

may, however, occur (Schettler et al., 1991) and hence MMP-9 may inact ivate C1­

inhibitor and prevent the dissociation of C 1r and C1s from Cl complex and binding of

the C1q receptors. As the intact Cl molecule is known to be incapable of binding to

PMN receptors, C l is thus rendered unable to initiate phagocytosis and superoxide

production or maturation of the phagosome (Tenner and Cooper, 1980) , some

information about C I-inhibitor and its rol e is deemed necessary at this point.

5.2 Cl-inhibitor

Cl-inhibitor is a plasma protein of the serine proteinase inhibitor superfamily (serpins)

and is synthesized in the liver (Bock et al., 1986). The molecul e is highly glycosyl ated

with N- and 0- linked carbohydrates constitute a total of 49% of its mol ecular weight

(Bock et al., 1986) . Thus of the 104 kD a molecule only 52 kDa constitutes the core

protein (Figure 5.1)(Bock et al., 1986). Deglycosylation with N-glycanase and 0 ­

glycanase, or both, does not have any major effect on its functional activity (Reboul et

al., 1987). It also has two disulphide bonds, one connecting residues 101-406 and the

other connects residu es 108-183 of the mol ecule (Bock et al., 1986).
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Figure 5.1 Schematic diagram of mature, Cl-inhibitor. Nand C indicate the N-and C-tennini of
the 478-residue polypeptide chain . The disulphide bridge pattern is shown with bars;
residue numbers refer to disulfide-bounded cysteine residu es. Diamonds marks known
sites ofoligosaccharides (Asn-3, -47, -59, -216, -23 1, and -330, Ser-42, Thr-26, -49, -61,
-66, -70 and -74). The peptide bond cleaved by Cls during complex formation is
indicated with an arrow (Bock et al., 1986).

In the compl ement cascade Cl-inhibitor requires complex formation of Cl-inhibitor

with C1s for activation (Brower and Harpel, 1981). Like other serpins, the active site of

Cl-inhibitor is located in an exposed loop near the C-tenninus of the molecule (Knauper

et al ., 1991). C1s binds Arg 444 in its PI site and Thr445 in the P"! site (Figure 5.1),

during . complex formation, releasing a small C-tenninal fragment and forming a

covalent inactive C1s: Cl-inhibitor complex (Bock et al ., 1986; Salvesen et al., 1985).

PMN elastase may cleave Cl-inhibitor at residues 37 (I-L), 40 (V-S) and 440 (I-S) ofthe

N- and C-tenninal region and result in the destruction of inhibitory activity (Bock et al.,

1986) (Figure 5.2). MMP-8 and MMP-9 cleave residues 439 (A-I) and 441 (S-V) closer

to the reactive site (Figure 5.2)(Knauper et al., 1991; Pemberton et al. , 1989).

Inactivation of Cl-inhibitor by MMPs can be prevented by the addition ofEDTA and 1,

10-phenanthroline (Knauper et al., 1991) or peptide inhibitors (Grey et al., 1992).
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Figure 5.2

1 13 33 S S 438 V R· T L L V F E 476 P R A478
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C E

Proteolytic modifi cation of human Cl-inhibitor by va r ious proteolytic enzymes as

indica ted by arrows (ad apted from Knaupe r et al ., 1991).

A, Human PMN elastase

E, Human PMN collage nase

C, Human PMN gelatinase (main product)

D, Pseudomonas aeruginosa

E, Human PMN gelatinase (minor product)

* Act ive si te

C l -inhibitor removes active Clr and Cls by binding and forming a complex with each

molecule (Figure 5.3)(Zicc ardi and Cooper, 1979). Dissociation of Clr and Cls from

Clq results in the initiation of classical complement pathway resulting in pore formation

in the surface of the bound microorganisms or microorganism bound Clq may bind to

one of the Clq receptors (ClqRs) and phagocytosis and respiratory burst may ensue.

5.3 Clq, Clq receptors and cellular responses

Cl q a 462 kDa molecule has six A, B, and C polypeptide chains, each chain is

composed of approximately 225 residues which form a triple helical coil (Nicholson­

Weller and Klickst ein, 1999; Ruiz et al., 1999)(Figure 5.3). The amino terminal half of

each chain has a collagen-like region (CLR), while the carboxy terminal half of the

molecule has a globular lectin region (Nicholson-Weller and Klickstein, 1999) making it

a member of the "collectin" family (Figure 5.3). The two domains are separated by a

kink region where the globul ar structure starts to diverge (Ruiz et al., 1999).

It is residues 14-26 of the A chain of the globular lectin region of Cl q that binds to the

surface of bacteria and initi ates the classical pathway of complement opsonization (Jiang
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et al., 1994) (Figure 5.3). In initiation ofrespiratory burst, however, it is the C chain that

is requ ired (Ruiz et al., 1999) (Figure 5.3). Previously activation of complement was

thou ght to be initiated only by C1q bound to the Fe reg ion of antibodies. However,

recently C1q has been shown to bind directly to mole cules involved in many

inflammatory diseases and molecules such as DNA, Alzheimer's proteins (Eggleton et

al. , 1998), viral compone nts, lipid A, other components of bacteri a and parasites (Bobak

et al., 1987), ~ -amyloid protein (Jiang et al., 1994) and C-reactive prot ein

(CRP) (Eggleton et al. , 1998). The bind ing site on such molecules is distinct from the

mannose-binding lecithin (MBL) pathway which bind s mannose residues, and is

associated with two serine proteinases (MASP-1 and MASP-2). This mimics the activity

seen in Cl q-C1r2C 1S2 complex (Eggleton et al., 1998). Here the MBL complex bind s to

a pathogen surface and MASP-1 and MASP-2 are activated to cleave C4 and C2

(Eggl eton et al., 1998) forming C3 convertase from C2b bound to C4b, as in the Cl q­

C1r and C1s classical pathway (Figure 1.3).

During Cl q-mediated opsonization, the coll agen-like region of C1q (C1qCLR), with a

molecular weight of 180 kDa, is necessary to trigger C1q-mediated phagocytosis and

superoxide production by PMNs (Eggleton et al., 1998; Ruiz et al., 1995; 1999) and

even MMP-cleaved C1q fragments may trigger respiratory burst (Ruiz et al., 1999).

Whether binding initi ates phagocytosis or supero xide production, however, depends on

which C1q receptor is bound. Binding of C1qC LR to the C1qRp receptor (126 kDa)

results in initi ation of phagocytosis while binding ofC1qCLR to the C1qRO'2- receptors

(60 kDa) generates superoxide production (Ruiz et al., 1999; Kishore and Reid, 2000) .

Like C1q, other collectins such as MBL and pulmonary surfactant protein A (SP-A)

have been shown to enhanc e Fe receptor- or complement receptor-mediated

phagocytosis. However, neither SP-A nor MBP stimulate superoxide production in

PMNs (Ruiz et al., 1995; Goodman and Tenner, 1992). They were, therefore, considered

less important in the current study and steps were taken to ensure only the Clq-mediated

system was studied.
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Figure 5.3 Early assembly of the complement system. A) After binding of Cl to the surface of the

particle or antibody molecule, Cl-inhibitor (In) dissociates Clr (r) and Cls (s) to initiate

the classical complement pathway (Adapted from Ziccardi and Cooper, 1979). B) The

Clq molecule. C) A single triple helical structure of Clq (adapted from Ruiz et al.,

1995).

It is known that during stimulation of PMNs by C1q-opsonized particles, phagocytosis

and respiratory burst is initiated (Eggleton et al., 1998; Tenner and Cooper, 1982;

Eggleton et al., 1998; Goodman and Tenner, 1992). Primary and secondary granule

release does not occur (Goodman and Tenner, 1992) but MMP-9 granules may be

released. Whether TIMP-1 is released after such stimulation is, however, unknown.
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Not much is known about the signalling mechanism of Cl q-mediated phagocytosis and

respiratory burst triggered by ClqRp- and Cl qk.Oyreceptors. Unfortunately in previous

experiments performed by Tenner and Cooper (1982), to study such effects, Cl q-coated

latex beads that were too large to be internali zed by PMNs were used. Therefore, C1q­

mediated phagocytosis was not observed and results were left incomplete. Such

experiments were, therefore, repeated during the current study using smaller beads.

5.4 Binding characteristics of complement components

Several proteins, as well as complement ligands involved in opsonization and removal of

foreign particles and immune complexes, are found in serum. The binding characteristics

of these components, however, differs . The first component of the classical pathway for

complement activation, Clq, for example, is the only complement opsonin that forms

electrostatic interactions with charg ed surfaces. This property is due to the charged

globular lecithin region of this molecule and its overall highly basic character (positively

charged), the reason for binding to weekly acidic (negatively charged) surfaces (Tenner

et al., 1981; Butko et al., 1999; Guan et al., 1991). Clq can also bind to the Fab portion

of antibodies by electrostatic interactions, an ionic strength-dependent property (Duncan

and Winter, 1998).

Opsonization via the alternative pathway is initiated by the active cleavage products of

complement factors C3, C4 and C5 (C3b, C4b and C5b) (Gigli and Tausk, 1988;

Janatova, 1988). All three components have similar binding properties (Law et al., 1984;

Sahu et al., 1994; Janatova, 1988). They have thioester binding sites which are protected

by hydrophobic regions, which, if exposed to water, become inactivated (Janatova,

1988; Law et al., 1981) (Figure 5.4). Cleavage of the subunits by their convertase

enzymes exposes the thiol ester-binding site which quickly binds with hydroxyl or

amide residues. This causes the formation of a stable covalent ester bond with surface

sugars or amino acids (Law et al., 1979; 1981; 1984; Sahu et al., 1999) and prevents the

deposition of complement far from the site of activation, thus preventing tissue damage
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(Janeway et al., 2001). The cysteine and glutamine residues which form a thioester bond

in C3b (Figure 5.4) and C4b, in the classical pathway, are replaced by serine and alanine

residues in C5b (Janatova, 1988). C4b is also activated in the same manner by exposure

to a thioester reactive site. The difference between C3b and C4b is that C4b preferably

binds to amine groups rather than hydroxyl groups (Sahu et al., 1994).

Cl q forms primary electrostatic interactions with charged surfaces whereas C3b, C4b

and C5b initially interact with hydrophobic surfaces via their protected hydrophobic

thioester binding sites. This is fortuitous as it enabled either C l q or C3b, C4b and C5b to

be semi-selectively adsorbed onto latex beads, depending upon the surface of the bead

selected. In the current study a bead with a charged, carboxyl-modified surface was,

therefore, selected to favour the binding ofC1q.

loCli'vOlionl

00
o

HO-~-rvS-sQ
HS~-St-J

@-o-~-rvs-sn
HSl..AS'StJ

Surfo'e.bound C3b

Figure 5.4 Hypothetical binding mechanism of C3 (from Law et al., 1981).
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5.5 Binding of proteins to polystyrene beads.

Due to the lability of complement and difficulties experienced in transporting

commercial complement fractions from the supplier for use, it was decided to use fresh

whole serum, appropriately diluted to favour the appropriately Cl q interactions with

charged beads.

Proteins normally readily adsorb to polystyrene beads. Unmodified polystyrene beads

have polymeric surfaces which favour the binding of more hydrophobic residues

whereas carboxylated beads may favour charged interactions. There are many proteins

beside complement in serum (such as albumin, a, ~ and y globulins). It was, however,

reasoned that antibody binding should not be a problem since at low concentration

antibodies bind to polystyrene beads in a random way but when applied at higher

concentrations, such as found in serum (Table 5.1), crowding of antibody favours the

binding of the Fe regions to the bead (Instruction manual, Bangs Laboratories Ltd.) and

due to the hydrophobicity of the Fe region, this would be unlikely to occur. If antibodies

did bind via the Fab region, they would assist in fixing Clq via the classical pathway

(Table 5.1). Therefore, any of IgG in serum would either not bind to carboxylated beads

or would facilitate the binding ofClq.

Since C3, C4 and C5 initially bind to hydrophobic residues and subsequently C3 and C5

interact with hydroxyl residues and C4 reacts with amide and hydroxyl residues,

carboxylated polystyrene beads were considered a good choice as these would not

favour the binding of C3, C4 or CS. The binding of the charged globular region of Cl q,

the opsonin required for this study would, however, take place and hence only the Clq­

binding receptors on the surface of the PMN would be bound. For this reason any

phagocytosis and respiratory burst would be due to the binding and exposure of Cl q to

the bead surface and hence due to the signalling via Clq-binding receptors. It was also

reasoned that, if other serum proteins did bind or competed for binding on the beads this

would not be a problem as long as some Clq molecules were bound. The binding of

complement was, therefore, assessed using a complement-fixation indicator system.
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Table 5.1 The properties and serum levels of the human immunoglobulin isotypes (modified

from Janeway et al., 200 I).

Immunoglobulin

Property IgG 1 IgG2 IgGJ IgG4 IgM IgA1 IgA 2 IgD IgE

Molecular weight 146 146 165 146 970 160 160 184 188

Serum level 9 3 0.5 1.5 3.0 0.5 0.03 5xlO-5

(mean adult mg/ml)

Classical pathway of ++ + +++ +++

Complement activation

Reactivity with + + + +

Streptococcal protein A

5.6 Optimization of comp lement (C1q) coating of polystyrene beads.

Most phagocytosis studies using C1q opsonization used pure C1q from serum which

contains around 34-246 ug/ml (Eggleton et al., 1994; Eggleton et al., 1998; Tenner et

al., 1981). Serum, therefore, is a good source of C1q. Since complement is labile and

isolation of pure C1q would have been time-consuming and would have had to be

carried out rapidly and under aseptic conditions or isolates would have had to be

sterilized in some way, due to the time constraint, it was decided to use fresh serum and

establish the minimum volume of serum required to coat beads without affecting C1q

binding and activity, using a complement fixation test.
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5.6.1 Reagents

Carboxyl-modified polystyrene beads (0.93 urn) were purchased from Bangs

Laboratories Ltd. and supplied at a concentration of 100 mg/ml.

Physiological saline (150 mM NaCl). NaCl (0.878 g) was dissolved in 80 ml of purified

water and made up to 100 ml and sterilized by autoclaving at (121°C, 20 min).

5.6.2 Procedure

Serum was obtained from whole blood and allowed to clot at 4°C overnight, the clot was

removed by centrifugation (2 000 x g, 5 min) and the supernatant serum was

immediately frozen at -70°C.

Cl q-coated polystyrene beads have previously been used for PMN phagocytosis and

respiratory burst experiments (Tenner and Cooper, 1982). Thus the concentration of C1q

(and hence volume of serum) used for the experiments was based on this data where the

maximum amount C1q used was ± 4.4 ~g (Eggleton et al., 1994; Tenner et al., 1981).

Since serum contains 200 ug/ml of C1q, it was calculated that 5 ug would be available

in 25 ul, Therefore, a minimum of 25 ul of serum was added to each tube.

Previously Robert and Quastel (1963) also showed that binding of IgG to polystyrene

beads (at a concentration lower than 1 mg/ml of beads) is proportional to the

concentration of beads. The concentration of polystyrene beads to be used in the

experiment was, therefore, chosen considering the concentration found to be optimal by

Robert and Quastel (1963). Eggleton et al. (1994) also suggested that Clq at a

concentration of 2.2 ug or less is sufficient to opsonize 105 latex beads for PMN

stimulation. Therefore, a concentration of approximately 5 ~g Clq or 25 ~l of serum

was used to opsonize approximately 2 x 107 beads.
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A measure of the amount of serum to be used and hence complement bound to

polystyrene beads was required. In order to establish the amount of serum (and hence

compl ement) bound a complement fixation indicator system was used. This would

provide an indication of the amount of compl ement in serum and subsequently of free

complement , unfixed by exogenousl y added polystyrene beads. The level of serum

compl ement free or bound to beads was determined using an IgG-sensitized erythrocyte

(RBC) indic ator system (i.e. sheep RBCs sensitized with anti-sh eep IgG, where lysis

would indicate compl ement fixation or the presence of free compl ement). The

absorb ance ofRBC to be used in the complement fixation system was adjusted to As4! =

0.42 (109 cells/ml). RBCs were washed three times in physiological salin e, sedimented

by centrifugation and dilut ed to 108 cells/ml by diluting 10 times (Gee, 1983). Serum

volum es ranging from 25 I-lI [(0.13 % v/v) of the final volume] to 87.5 I-lI [(0.46% v/v)]

with 12.5 I-ll increments, were added into microtiter plates. Sensitized RBCs (25 ul) and

physiological saline was added to make a final volume of the 87.5 I-ll and plate was

incubated at 37°C for 30 min (Table 5.2). Wells containing the minimum amount of

serum showing lysis were chosen as the minimum volume used for the test system to

determine the extent of Cl q-binding to the carboxylated polystyrene beads in 30 min .

This volume of serum and increments of 10 I-lI and an equal volume of physiological

saline was added to 1 I-lI (10 ug) of polystyrene beads in 75 I-lI of PMN storage buffer

(PBSG) in variou s wells of a microtiter tray and incubated (30 min). Controls which

included, the omission of beads (Table 5.3) . All suspensions were incubated (30 min,

37°C) before RBCs (25 I-lI) were added and incubated further (1 h, 37°C). Haemolysis

patterns between tests, in which beads were added and control s, in which beads were

omitted, were compared to determinethe minimum amount of serum (C1q) to be added

for total absorption onto the surfac e of polystyrene bead i.e. the point where no

hemolysis occurs in the test wells (bead-containing) while hemolysis occurs in the

equivalent control.
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5.6.3 Results

A minimum volume of 50 III of a III 00 dilution of freshly isolated serum diluted to a

final volume of 162.5 ml [(0.31 % v/v)] in physiological saline was shown to be the

minimum amount of serurn required to ensure the sensitivity of the complement

fixation-sensitive RBC indicator system for use in the assessment of binding of Cl q to

latex beads (Table 5.2).

Table 5.2 Haemolysis assay on isolated serum

Assay tubes *Serum Erythrocytes PS H2O Reaction

(Ill) (108/ml) (Ill) (Ill) Test Control

A 25 25 137.5

B 37.5 25 125

C 50 25 112.5 +

D 62.5 25 100 +

E 75 25 87.5 +

F 87.5 25 75 +

Control

(100% lysis) 25 162.5 + +

(Spontaneous 25 162.5

lysis)

* Serum diluted 1:100 in physiological saline (PS) before assay.
+ Indicates complete lysis . Partial lysis was not considered.

In the coating oflatex beads for Cl q-rnediated uptake, a minimum of 170 III of aI/lOO

dilution of serum to 170 11-1 of physiological saline to 107 beads was required for C1q­

coating. However, the volume of serum used must contain 4.4 ug of C l q which is

contained in 25 11-1 of serum (Eggleton et al., 1994). In the complement fixation test

(Table 5.3) the equivalent of 1.7 11-1 of serum i.e . 0.34 I1-g of C1q was found to be the
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minimum amount which could be used to coat 107 latex beads and give a detectable end

point with the RBC indicator system .

Table 5.3 Complement fixation test to demonstrate binding of Clq.

Test (I-.d)

*S 50 60 70 80 90 100 11 0 120 130 140 150
PS 50 60 70 80 90 100 110 120 130 140 150
Beads 1 I-ll ~

*S 160 170 180 190 200
PS 160 170 180 190 200
Beads 1 /-ll ~

Contro1 (JlI)
*S 50 60 70 80 90 100 110 120 130 140 150
PS 50 60 70 80 90 100 110 120 130 140 150
*S 160 170 180 190 200
PS 160 170 180 190 200

Incubation (30 min, 37°C) in microtiter plates

~
Addition of25 JlI (108 cells/rnl) RBC and incubation (1 h, 37°C).

~
Result

Test 50 60 70 80 90 100 110 120 130 140 150
(*S)
(fll) 160 170 180 190 200

Cont. 50 60 70 80 90 100 110 120 130 140 150
(*S)
(/-ll) 160 170 180 190 200

+ + + +

*S diluted I:I00 in physiological saline (PS)before assay.

5.7 Clq-mediated PMN phagocytosis experiments

For studies on phagocytosis inPMNs using IgG-coated or -uncoated polystyrene beads a

maximum uptake of beads was previously shown to take place during the first 20

minutes of incubation (Robert and Quastel, 1963). As extended incubation periods may

cause the release of secondary granule enzymes (Goodman and Tenner, 1992) and 20
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minutes was previously shown not to cause extensive release of primary granule

enzymes (Schettler et al., 1991) a 20 minute incubation time was used in this study.

Our ultimate goal was to correlate superoxide production with Cl q-mediated uptake and

MMP-9 and TIMP-l release . Since Eggleton et al. (1994) and Tenner and Cooper

(1982) had shown that change in temperature does not affect the expression of Clq

receptors or superoxide generation, experiments were, therefore, performed at room

temperature. Phorbol ester (PMA) was also used to assess the effect of activation of the

PKC pathway while other controls included the uptake of uncoated beads.

5.7.1 Reagents

Reagents for Laemmli gel electrophoresis were prepared as described in Sections 2.6.1.1

and for Tris-tricine electrophoresis as described in Section 2.6.2.1, for zymography as

described in Section 2.9.1, for western blotting as described in Section 2.7.2 and for

PMN isolation as described in Section 2.10.1.

Carboxyl-modified polystyrene beads (0.93-f.lln) were purchased from Bangs

Laboratories Ltd and supplied at a concentration of 100 mg/ml.

0.2 M Stock phosphate buffer. K2HP04 (3.48 g) and KH2P04 (2.72 g) were each

dissolved in 100 ml of purified water and equal volumes of both solutions were mixed to

make 0.2 M stock phosphate buffer ofpH 6.8.

0.05 M Phosphate buffer. One part of stock phosphate buffer was diluted in three parts

of purified water to give a buffer of pH 6.8.

Phosphate buffered saline (PBS: 10.4 mM K2HP04, 1.83 mM NaH2P04.2H20, 150 mM

NaCl). K2HP04 (0.364 g), NaH2P04.2H20 (0.057 g) and NaCI (1.75 g) was dissolved in
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180 ml of purified water, the pH was adjusted to pH 7.4 and made up to a final volume

of 200 ml in a sterile, pyrogen free container. The solution was autoclaved (121°C, 20

min) and kept at 4°C until used.

5.7.2 Procedure

Since endotoxins activate PMNs, reagent glassware was first depyrogenated by heating

(250°C, 2 h) followed by autoclaving (121°C, 20 min) before reagent preparation.

Utensils and reagent containers which could not be exposed to high temperature of dry

heating were extensively washed with sterile ultra pure water. All manipulations and

reagents were sterile and handled aseptically in a laminar flow hood.

PMNs were isolated and re-suspended in PMN resuspension and storage buffer as

described in Section 2.10.2. Cell viability was assessed using the trypan blue (10 mg/ml)

exclusion assay to ensure viability exceeded 98%.

Polystyrene beads were washed three times with a sterile, pyrogen-free PBS pH 7.4,

diluted 10 times to 10 ug/ul i.e. 2 x 107 beads/ul and were used for all experiments. To

each of three tests in Eppendorf tubes, 75 fll of PBS, 25 ul of fresh serum and 1 fll (10

ug) of beads were added, mixed and incubated (37°C, 30 min). The beads were washed

three times in PBS pH 7.4 (5 400 x g, 5 min), and storage buffer (50 ul), serum (25 ul)

and PMNs (l x 106
) were added and allowed to interact (20 min, room temperature). The

beads and PMNs were precipitated by centrifuged (1 300 x g, 1 min) and the

supematants and PMNlbead pellets were separated and stored at -70°C until used for

assay for TIMP-1 and MMP-9. All tests were performed in triplicate. One test was fixed

with 100 ul of fixative solution for processing for electron microscopy (Section 5.8.2).

Control experiments were performed simultaneously and consisted of PMNs incubated

in storage buffer (75 ul) without serum, or with uncoated beads either in the presence of

serum (25 ul) and storage buffer (50 ul) or with only storage buffer (75 Ill) and
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otherwise processed as described for the tests. Further controls did not included beads

but contained serum (25 ul) and storage buffer (50 ).11), or storage buffer (75 ).11) only.

The last control contained storage buffer (75 ).11) and PMA (90 ng) and no beads.

The protein concentration of the supernatants were measured by Bradford dye binding

assay as described in Section 2.2 .1.2 and samples (2.5 ul) separated by electrophoresis

using Laemmli gel electrophoresis as described in Section 2.6.1.2 or Tris-tricine gel

electrophoresis as described in Section 2.6.2.2. For the detection of MMP-9 and TIMP-1

gels separated by electrophoresis were blotted onto nitrocellulose and detected by

western blotting as described in Section 2.7.3. MMP-9 detection was also performed by

running the samples in Laemmli gel eo-polymerized with gelatin (zymography) as

described in Section 2.9 .1. To test the release of primary granule enzymes supernatants

were dotted into nitrocellulose and detected with anti -elastase antibodies.

5.7.3 Results

Little TIMP-1, release was seen. The TIMP-1 that was released seem to be degraded to

14.5 kDa (Figure 5.5 B). Degradation may be due to the release of primary granule

enzymes, especially elastase (Itoh and Nagase, 1995), and/or oxidative processes

(Stricklin and Hoidal, 1992). Degradation was possibly due to oxidative process as PMN

samples incubated in buffer only showed no elastase release (results not shown), but a

TIMP-1 band at 14.5 kDa (Figure 5.5 B) . Other samples also showed low level elastase

release (results not shown). Though levels of proteins loaded varied slightly most TIMP­

1 was released when PMNs were incubated in storage buffer (Figure 5.5 B, f) and to a

lesser extent upon uptake of coated beads (Figure 5.5 B, c) or uncoated beads in the

absence of serum (Figure 5.5 B, d).
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Figure 5.5 TIMP-l release during Clq-coated latex bead uptake studies. Freshly isolated PMNs

were re-suspended in PBSG buffer and 1 x 106 cells were added to a) PBSG (75 Ill) +
PMA (90 ng), b) serum (25 Ill) + coated beads (2 x 107

) + PBSG (50 Ill), c) PBSG (75 Ill)
+ coated beads (2 x 10\ d) PBSG (75 Ill) + uncoated beads (2 x 10\ e) serum (25 Ills) +
PBSG (50 Ill) + uncoated beads (2 x 10\ f) PBSG (75 Ill), g) serum (25 Ill) + PBSG (50
Ills). Controls included h) diluted serum i) PMN homogenates. Suspensions were
incubated for 20 min RT, centrifuged (1 300 g, 1 min) and supematant (2.5 III each) were
reduced with equal amount of treatment buffer and run in (A) Tris-tricine gel as follows
a) 0.07 ug, b) 1.54 ug, c) 0.09 ug, d) 0.067 ug, e) 1.48 ug, f) 0.067 ug, g) 1.02 ug, h) 2.12
Ilg, i) 0.096 ug, j) molecular weight markers . (B) Gel was blotted into nitrocellulose for
16 h and detected with 7.2 ug/ml chicken anti-TIMP-l antibody followed by rabbit anti­
chicken antibody (1/100000). Colour was developed by NBT/BCIP system.
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Figure 5.6 MMP-9 release during Clq-coated latex bead uptake studies. Freshly isolated PMNs
were resuspended in PBSG buffer and 1 x 106 cells were added to a) PBSG (75 ul) +
PMA (90 ng), b) serum (25 ul) + coated beads (2 x 107

) + PBSG (50 ul), c) PBSG (75 ul)
+ coated beads (2 x 10\ d) PBSG (75 ul) + uncoated beads (2 x 10\ e) serum (25 ul) +
PBSG (50 ~1) + uncoated beads (2 x 10\ t) PBSG (75 ul), g) serum (25 ~1) + PBSG (50
~1). Controls included h) diluted serum i) PMN homogenate. Suspensions were incubated
for 20 mill RT, centrifuged (1 300g, 1 min) and supematants (2.5 ~1 each) reduced with
equal amount of treatment buffer and run in (A) Tris-tricine gel as follows a) 0.07 ~g, b)
1.54 ug, c) 0.09 ug, d) 0.067 ug, e) 1.48 ug, t) 0.067 ug, g) 1.02 ug, h) 2.12 ug, i) 0.096
ug, j) molecular weight markers. B) blotted into nitrocellulose for 16 h and detected with
219 ug/ml chicken anti-MMP-9 antibody followed by rabbit anti-chicken antibody (1/100
000) and 1\1J3TIBCIP system.
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The 94 kDa pro-MMP-9 form of MMP-9 seemed to be released due to the binding of

Clq-coated beads by PMNs (Figure 5.6 B, a-g, compare with serum control lane h).

Increased release of MMP-9 was, however, triggered in the experiments where PMNs

were incubated with coated beads in the presence of serum (Figure 5.6 B, b).

kDa

66

45
30

a b c d e f 9 h

kDa

66

45
30

Figure 5.7 Zymographic results of MMP-9 release during Clq-coated latex bead uptake
studies. Freshly isolated PMNs were re-suspended in PBSG buffer and 1 x 106 cells were
added to a) PBSG (75 Ill) + PMA (90 ng), b) serum (25 Ill) + coated beads (2 x 107

) +
PBSG (50 Ill), c) PBSG (75 Ill) + coated beads (2 x 10\ d) PBSG (75 Ill) + uncoated
beads (2 x 10\ e) serum (25 Ill) + PBSG (50 Ill) + uncoated beads (2 x 10\ f) PBSG (75
Ill), g) serum (25 Ill) + PBSG (50 Ill). Two controls were included h) diluted serum i)
PMN homogenates. The suspensions (2.5 ug each) were incubated for 20 min at room
temperature and centrifuged (1 300 g, 1 min). Supematants were treated with equal
amount of non-reducing treatment buffer and run in (A) Laemmli gel containing 1% (w/v)
gelatin as follows a) 0.07 ug, b) 1.54 ug, c) 0.09 ug, d) 0.067 ug, e) 1.48 ug, f) 0.067 ug,
g) 1.02 ug, h) 2.12 ug, i) 0.096 ug, j) molecular weight markers. The gel was
subsequently renatured in Triton X-lOO (2.5 % v/v) for 1 h and developed in development
buffer (0.05 M Tris-HC1, 5 mM csci, 2 mM PMSF, and 0.02% (v/v) Brij-35, pH 8.8) for
16 h. The gel was subsequently stained with 0.1 % Commassie blue and destained.

Zymogram results for MMP-9 showed that only the 2: 94 kDa forms of pro-MMP-9

secreted or in the PMN homogenate were active (Figure 5.7 a-g and i, respectively). No

activity was detected in serum (Figure 5.7 h) and activity comparable to that seen in

non-PMA stimulated cells was observed in the sample in which PMNs were incubated

with PMA (Figure 5.7, a).
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Figure 5.8 MMP-9 in the pellet from during Cl.q-coated latex bead uptake studies. Freshly isolated
6 .

PMNs were re-suspended in PBSG buffer and 1 x 10 cells were added to a) PBSG (75 Ill) +
PMA (90 ng) , b) serum (25 Ill) + coated beads (2 x 107

) + PBSG (50 Ill), c) PBSG (75 Ill) +
coated beads (2 x 10\ d) PBSG (75 Ill) + uncoated beads (2 x 10\ e) serum (25 Ill) + PBSG
(50 Ill) + uncoated beads (2 x 10\ f) PBSG (75 Ill), g) serum (25 Ill) + PBSG (50 Ill), (MW)
molecular weight markers. The suspensions were incubated for 20 min at room temperature
and centrifuged (1 300 g, 1 min). The pellets were reduced with equal amount of treatment
buffer and run in (A) Tris-tricine gel (B) The gel was blotted into nitrocellulose for 16 hours
and detected with 219 ug/ml chicken anti-TIMP-l antibody followed by rabbit anti-chicken
antibody (l/100 000). Colour was developed by NBTIBCIP system.
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MMP-8 is also able to degrade gelatin. How ever, MMP-8 activity was absent in zyrnograrns

showing that there was no significant release of specific granules (Figure 5.7).

No TIMP-l was detected in pellet samples indicating that, under the test conditions, all

TIMP-l was released (results not shown) . Detection for MMP-9 , however, revealed a>

94 kDa, a 65 kDa, 25 kDa and a 15 kDa band in most sampl es (Figure 5.8 B). As

maximum release of MMP-9 was observed in PMNs incubated with coated beads and

serum, low level of MMP-9 was detected in the pellet confirming that MMP-9 was

mostly released (Figure 5.8 B, b). Like in supernatant samples, lower bands were also

observed in pellets which were incubated in serum and may represent degraded products

of MMP-9.

5.8 Bead processing for uptake studies

In order to have a clear pic ture of the effect of MMP-9 and TIMP-l release on Cl q­

mediated uptake of latex beads in the test system, the third test in the triplicate set of

tests set up as required in 5.7.2 was processed for electron microscopy. Robert and

Quastel (1963) had previously showen the uptake ofIgG coated or uncoated polystyrene

beads by PMNs. How ever, uptake of Clq coated polystyrene beads had not been studied

before.

5.8.1 Reagents

Manipulations involving OS04were all carri ed out in a fume hood.

Sodium cacodylate buffer CO.2 M (CHiliCAsOzNa)). Sodium cacodylate (2.14 g) was

dissol ved in 80 ml of purified water, the pH adjust ed to pH 7.2-7.4 by the addition of

HCI and the solution was made up to 100 ml,
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3% (w/v) Glutaraldehyde in phosphate buffer. Glutaraldehyde (3 g) was dissolved in 12

ml of purified water, stock phosphate buffer (0.2 M), 25 ml, was added and made up to

80 ml with purified water. The pH was adjusted to pH 6.8 - 7.4 and made up to 100 ml

with purified water.

Fixative solution, 3% (m/v) glutaraldehyde in 0.05 M sodium cacodylate buffer. 0.2 M

cacodylate buffer (25 ml) and 25% (w/v) glutaraldehyde (12 ml) were made up to 80 ml

with purified water, the pH was adjusted to pH 6.8-7.4 with HCl and the volume made

up to 100 ml.

4% (w/v) Osmium tetroxide. OS04 (1 g) was disso lved in 25 ml of purified water.

2% (w/v) Osmium tetroxide in 0.05 M sodium cacodylate buffer. 1 ml of (0.2 M stock

sodium cacodylate buffer, 2 ml of 4% OS04 and 1 ml of purified water) was mixed in a

fume hood.

EPON-ARALDITE. EPON 812 (1 part) and ARALDITE CY212 (1 part) (Inbed,

Electron Microscopy, Washington, US.A.) and dodecenyl succinic anhydride (DDSA)

(3 parts) (Agar Scientific Limited, Cambridge, U.K.) were mixed by dissolving.

5.8.2 Procedure

Pellets prepared for electron microscopy (Section 5.7.2) were fixed with 100 III of

fixation solution and processed as described in Table 5.4 for electron microscopy

analysis.
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Table 5.4 Standard procedures for embedding with EPON/ARALDITE.

Action Treatment Exposure

overnight
2 x 30 min
2-4 h
2 x 30 min

minimum of 10 min
minimum of 10 min
(overnight)
minimum of 10 nun
minimum of 10 min
minimum of 10 min
minimum of 10 min
minimum of 10 min
2 x 30 min

2 h cap s on
2 h caps on
overnight caps off
24 h caps on
in oven (48 h, 70°C)

3% Glutaraldehyde in 0.0 5 M sodium cacodylate buffer
0.05 M sodium cacodylate bu ffer
2% (w/v) OS04 in 0.05 M sodium cac odylate buffer
0.05 M sod ium cacodylat e buffer

30% (v/v) ethanol
50% (v/v) ethanol
70 % (v/v) ethanol
80% (v/v) ethanol
90 % (v/v) ethanol
100% (v/v) ethanol
100% (v/v) ethanol
100% (v/v) ethan ol
Propylene oxide

Embedding (Epon/Araldite)
*25 % EPO N: 75% Propylene oxid e plus DMP
*50 % EPON: 50% Propylene oxide plus DMP
*75 % EPON: 25% Propylene oxide plus DMP
lOO % EPON plus DMP
100 % EPO N plus DMP

Embedding
Embedding

Primary Fixation
Rinsing
Secondary fixation
Rinseing
Dehydration

*5 drops ofDMP - (2,4,6-[(tri (dimithylaminoethyl) ph enol)] to be added per 5 ml EPON each time .

Sections were cut in a LKBIII ultramicrotome and picked up on a 200 mesh copper grid,

stained with lead citrate and uranyl acetate by Mr. Vijay Bandu, Center of Electron

Microscopy, University of Natal. Grids were examined in a Philips CM-120 Biotwin

transmission electron microscope operating at an accel erating voltage of 80 kV and

photographed.

5.8.3 Results

For the Cl q-coated beads which were incubated in the presence of serum (containing

Cl-inhibitor) (Figure 5.9, arrows). A greater number of beads were phagocytosed in the

presence of serum (C Iq-coated) than without serum (Figure 5.10 arrows).
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1 pm

Figure 5.9 Uptake of Clq-coated polystyrene beads in the presence of serum.
PMN phagocytic vacuoles containing polystyrene beads after phagocytosis was allowed
to procede for 20 min. Pellets were fixed with 100 III of fixation solution (3% (w/v)
glutaraldehyde in 0.05 M sodium cacodylate buffer, pH 6.95), embedded and sections
ut, transferred to grids and stained for transmission electron microscopy. Polystyrene
beads (arrows) observed are slightly dissolved by propylene oxide processing.

A

O.SIJm

Figure 5.10 Uptake of Clq-coated polystyrene beads in the absence of serum.
(A) PMN phagocytic vacuoles containing polystyrene beads after phagocytosis was
allowed to proceed for 20 min. The pellet was fixed with 100 IIIof fixation solution (3%
(w/v) glutaraldehyde in 0.05 M sodium cacodylate buffer, pH 6.95). The pellet was
embedded, sections cut, picked up on grids and stained for transmission electron
microscopy. Polystyrene beads (arrows) are observed as slightly dissolved by propylene
oxide processing. (B) Unintemalized beads (X 1 500).
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5.9 Discussion

As previously mentioned, active MMPs have been shown to be required for killing of

pseudomonas microorganisms (Osiewicz et al., 1999). This killing process has also been

reported to be complement-dependent (Wang and Soloway, 1999; Osiewicz et al.,

1999). The current study shows that Cl q (complement) coating of polystyrene beads, in

the presence of serum and other complement factors such as C l-inhibitor, appears to

trigger an increased secretion ofpro-MMP-9 by PMNs relative to TL\1P-l. According to

Osiewicz et al. (1999) and Wang and Soloway (1999), this situation would be associated

with increased killing of microorganisms. This appears to indicate that a mechanism by

which increased killing by PMNs may occur i.e. by which PMNs may secrete more pro­

MMP-9 than would be normally the case has been discovered in the current study.

However, active MMP-9 has been shown to be required for killing of microorganisms

and MMP-9 is secreted in its inactive form. The results seem to show that secreted

TIMP-1, mainly degraded to its 14.5 kDa but inhibitory form, is present at a lower level

than MMP-9. Degradation by low levels, of elastase or by reactive oxygen species

(Stricklin and Hoidal, 1992) may be responsible for the form of TL\1P-1 seen but may

also activate pro-MMP-9. Therefore, excess secreted MMP-9 (the form proposed to be

required for killing of microorganisms) may become active via a similar mechanism, and

hence may facilitate the killing ofmicroorganisms by some unknown mechanisms.

In our system, however, we do not see any activated pro-MMP-9 unless it is introduced

in serum. Perhaps MMP-9 normally becomes activated by proteases secreted by other

cells present in vivo, therefore. According to our experimental results, TIMP-1 seems to

be regulated more by calcium (in storage buffer) than by binding of C1q to the surface

of microorganisms and PMNs. The fact that PMNs have TIMP-l vesicles (granules)

suggests that TIMP-l secretion is not just constitutive (as seems to be implied by the low

levels of TIMP-l seen in all test samples and supematants). During phagocytosis of Cl q

opsonized particles, increased numbers of gelatinase granules and some TIMP-l­

containing granules were secreted. It is possible that this higher level ofMMP-9 activity

is required to shut down the activity of Cl-inhibitor allowing increased generation ofC4
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and C2 cleavage products resulting in uncontrolled activation of kallikreins and hence

increased swelling or fluid entry to the tissue (Janeway et al ., 2001; Harrison, 1983;

Reboul et al., 1987). This would most likely be accompanied by influx of antibodies,

effector- and antibody-producing white blood cells. Such effects should assist in

overcoming bacterial infections and may be the non-phagocytic route by which MMP-9

may be involved in the killing of microorganisms. Cl-inhibitor is also the only molecule

that dissociates Clr and Cls from Clq. After the disassembly of the Cl-complex,

exposure ofClq and activation ofa few PMNs via CIg receptor-binding has occurred,

the release ofMMP-9 from PMNs, may be necessary to inactivate C1g inhibitor so that

further C I complexes remain un-dissociated and thus incapable of binding and

activating more PMNs, preventing activation of too many PMNs.

The ratios of TIMP-I and MMP-9 present in various supematant needs to be assessed,

before any definite conclusions or hypotheses may be further verified and the ratios after

various incubation periods also need to be correlated with phagocytic uptake and the

generation of respiratory burst.
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CHAPTER SIX

GENERAL DISCUSSION AND FUTURE DIRECTIONS

From the results in this study it was evident that TL.\1P-1 and MMP-9 are (almost

constitutively) secreted at low levels when PMNs were incubated in certain buffers. It is

now clear, however, that the binding of putative Cl g receptors (though they do trigger

some release ofTIMP-1) results in increased secretion ofMMP-9, creating a condition

previously shown to be necess arily for the killing of microorganisms (Osiewicz et al.,

1999). It is also clear that TIMP-1 release is not as affected by the triggering of the

putative C1g complement receptor, as is MMP-9, but is affected by the levels of

extracellular calcium. This is extremely interesting as it implies that TIMP-1 release may

be regulated via a different mechanism to the MMPs. As mentioned in Chapter 1, C1q­

mediated signal transduction is thought to be via intracellular calcium fluxes and actin

polymerization, but not via a PKC-mediated mechanism (Goodman and Tenner,1992).

The fact that increased MMP-9 secretion, which seems to mirror what happens with

MMP-8 (Schettler et al., 1991), is increased upon triggering this receptor seems to

indicate that secretion of the MMPs, and hence gelatinase and specific granules, are

regulated via such a PLCIDAG/IP3- dependent pathway (Figure 1.4) and that TIMP-1

release, and the TIMP-1 granules is not. This suggests that if the mechanism involved in

the regulation of TIMP-I can be identified, such a pathway may be a possible target for

therapeutic intervention in MMP-mediated inflammatory conditions. Putative pathways

activated, therefore, should be verified using inhibitors which specifically block the

signal transduction routes.

The studies of Price et al. (2000), using calcium and a calcium ionophore, indicated that

TIMP-I secretion is not regulated by Ca++, however, the present study seems to partially

verify and partially contradict such a conclusion. Even though some TIMP-1 secretion

was triggered by extracellular calcium, secretion secretion seemed to be at a basal (low)
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level. The amount of calcium in the serum (2.5 mM), however, is even greater than what

is found in storage buffer (1 mM). These experiments should, therefore, be repeated in

the presence of physiological and various higher levels of calcium and other ions found

in plasma (Ca++, 2.5 mM; Mg++, 0.75 mM; K+, 4.8 mM) and should be repeated using

physiological saline, to exclude the effects of these ions. This would finally establish

whether extracellular calcium or other ion levels are responsible for the TIMP-l

secretion seen in this study. It would be unlikely that secretion of a granule would be

regulated by the extracellular levels of an ion, but it is always possible and should be

investigated.

Further studies should also be performed using different PMN agonists, such as £MLP,

and the triggering of other complement receptors to try to identify the intracellular signal

transduction pathway by which TIMP-l is released. This knowledge is, in any case, very

important and is required for prediction of how PMN responses may be manipulated for

different purposes. i.e. to block the release of some granules while triggering others as

this could be of great importance in handling inflammatory disease and invasive cancers.

The mechanism by which increased secretion of MMP-9 was induced also needs to be

checked. PMA was included in studies to check whether MMP or TIMP-l secretion was

upregulated via a PKC-dependent mechanism. It is now realiz ed that the inclusion of

PMA in the latex bead experiments may be very useful as PMA, at different levels, may

enhance or depress the expression of certain PMN receptors. Clq binding and

stimulation of MMP-9 release may be confirmed by stimulation of PMNs with PMA as

incubation of PMNs with PMA at concentrations of < 10 ng/ml may cause PMNs to

shed their Clq receptors but increase the surface expression of CRI and CR3.

Incubation with PMA at a concentration of > 10 ng/ml, causes a decrease in Clq and

CRI receptors but not CR3 receptors (Eggleton et al., 1994). If greater than 90 ng/ml of

PMA was used in the current study CR3-mediated granule release would have been

triggered. If MMP-9 and TIMP-l secretion was not induced by the opsonin (which

would be C3b) in the case of the CR3 receptor, this would imply that C3b was either not

assembled, as assembly stopped at Clq, or that the CR3 receptor does not trigger the
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release of MMP-9 or TIMP-1. If no MMP-9 release was seen when Cl q receptors were

shed (due to high levels of PMA). This would support a C1q receptor-mediated release

ofMMP-9. Another control which may have been included to check that MMP-9 release

occurred via a C1q-mediated receptor pathway and not due to the assembly of other

complement factors, would have been to include rosmarinic acid. Rosmarinic acid is an

organic substance which contains four hydroxyl groups which compete for binding for

the receptive surfaces on the microorganisms (with C4 and C3) (Sahu et al., 1999). If,

after addition of rosmarinic acid, MMP.:;9 is still secreted this would further indicated the

involvement of C1q. However, C4 may also bind through amine residues (Sahu et al.,

1994) so other alternatives, such as the use of specific inhibitors for signalling pathways,

should perhaps also be used to verify the binding of C1q and signal transduction

pathway triggered.

Why active MMPs are required for killing of microorganisms, however, is still at this

stage unclear. Active MMP-9, is most likely to be involved in limited cleavage of the

extracellular matrix allowing movement towards a site of infection, through the barrier

ECM (Price et al., 2000). This activity would have to be tightly regulated by the almost

simultaneous release of TIMP-I as MMP-9 may cleave many other proteins which have

collagen-like domains. Cleavage of Cl-inhibitor by PMN MMP-8 and MMP-9 has

previously been shown (Knauper et al., 1991). The release oflow levels ofTIMP-1 may

be required to inactivate the low levels of MMPs present under most conditions,

allowing the Cl complex to be dissociated by Cl-inhibitor, C1q binding to PMN

receptors, phagocytosis and respiratory burst, all important processes for the removal

and killing of microorganisms. Cl q can also be degraded by elastase (Ruiz et al., 1995).

Since the fragments of Cl q can trigger an increased generation of superoxide production

(Ruiz et al., 1995), stimulation of elastase and MMP release can also potentially increase

the effectiveness of respiratory burst and hence killing of microorganisms.

This study seems to indicate the importance of serum factors (possibly complement) in

the release of MMP-9. The role of MMP-9, and TIMP-1 in the killing of

microorganisms seems still very unclear, however, and needs further investigation. A
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study of the effects of MMP-9 and TIMP-1 release on opsonisation and subsequently

respiratory burst should be pursued, both using polystyrene beads, and in the presence of

bacteria. Where beads are replaced by microorganisms a different mechanism of release

of MMP-9 and TIMP-1 could be brought about by bacterial interference with PMN

signal transduction. In the absence of such experiments no conclusions on this subject

can be drawn, however. It is known that certain microorganisms such as the

pseudomonas species secrete elastases which may activate MMP-9 (Okamato et al.,

1997) and may also inactivate Cl q-inhibitor, preventing phagocytosis which may occur

via a Cl q-mediated mechanism. TIMP-l also does not inhibit bacterial collagenases

(Hayakawa et al., 1992). Bacterial components may, therefore, induce the differential

release of MMP-9 and TIMP-l and result in different outcomes.

The effect of MMP-9 and TIMP-l release on phagocytosis and respiratory burst using

purified proteins and checking the activity ofMMPs after PMN stimulation and inhibitor

secretion, is still untested and should be further investigated. The inactivation of Cl­

inhibitor under such conditions may also be assessed. Knowledge of whether TIMP-l is

totally inhibitory to MMP activity under various conditions would be useful in

understanding the role of TIMP-l release in facilitating infection and preserving anti­

inflammatory conditions. Even though the complement system has such an important

task in the clearance of microorganisms, as has been discussed, its components may be

inactivated by some PMN enzymes and the release of these enzymes may also have both

adverse and beneficial effects. It is recommended that further tests be carried out in a

reductionist fashion using proteins in pure forms, to carefully further explore these

effects.
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