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Abstract

This dissertation represents a partial review of the literature pertaining to

the relationship between algebraic graph theory and cryptography. This

requires a preliminary discussion of elementary graph theory, group theory

and cryptography. We then focus on the relevant elements of graph theory,

namely Cayley graphs and strongly regular graphs; and of cryptography,

namely the Boolean and bent functions, which are, respectively, applicable

to pseudo-random generation in stream ciphers, and substitution boxes in

block ciphers.

In particular, we construct a Cayley graph associated with a Boolean

function, Gf (Fn2 ,Ωwt(f)) = (V,E), where (Fn2 ,⊕) is assumed to be the group

from which the graph is constructed, Ωwt(f) the Cayley set contained in Fn2 ,
and wt(f) the Hamming weight of the Boolean function f . Depending on

the value of n, we consider two cases, constructing for each an associated

Cayley graph.

If n is not necessarily even, then we consider the resulting Cayley graph,

Gf (Fn2 ,Ωwt(f)) = (V,E), and study its properties, and evaluate some cryp-

tographic properties of the associated Boolean function, and hence of the

stream cipher. This is possible because the Boolean function acts as a

pseudo-random number generator. Since the security of a stream cipher

lies in designing strong pseudo-random number generators, it is important

to evaluate its properties. This study investigates the cipher attack resis-

tance ability through studying the associated graph. We �nd that obtaining

the regularity of the associated graph is the same as obtaining the Ham-

ming weight of the pseudo-random number generator. Hence, if we know n,

we can easily tell whether the cipher stands a chance of resisting statistical

dependence as an attack.
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Similarly, if n is even and f attains maximum nonlinearity, so that

nl(f) = 2n−1 − 2
n
2
−1, then by prescribing our resulting Cayley graph to be

strongly regular, we can investigate the properties of this graph and evaluate

some cryptographic properties of the bent functions and hence of the block

cipher. This is because the set of bent functions acts as a substitution box,

f : Fn2 → Fm2 for block ciphers. The spectral information of this graph tells

us about the Hamming weight of the bent function.

We conclude with a brief discussion of possible future work.
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Introduction

Cryptography is a very broad research area, as are algebra and graph theory.

The particular focus of this dissertation lies at an interface between algebraic

graph theory and cryptography. We shall concern ourselves with the ques-

tion of what information can be obtained from algebraic graphs about the

security of certain symmetric cryptosystems.

Graph theory has became a very useful tool in solving mathematically mod-

eled problems, for example network problems, road tra�c and ecosystems.

In this dissertation we discuss the impact graph theory has on cryptogra-

phy by considering Cayley graphs of both general form and strongly regular,

and studying their properties to elucidate the possible relationship they may

have with Boolean functions of both general and bent forms.

Symmetric (private-key) cryptography is a branch of cryptography regarded

as not being as strong as asymmetric (public-key) cryptography in terms of

security. However, it is widely employed due to the speed and cost saving

associated with it compared to asymmetric cryptosystems. For this reason

it has became the concern of cryptographers to employ all possible measures

to try to maximize the security of private-key ciphers.

This dissertation focuses on two major private-key ciphers, namely: stream

and block ciphers, which rely deeply on pseudo-random number generators

and substitution boxes respectively, for their security. These ciphers include,

the RC4 (Rivest Cipher 4) known to be the most popular stream cipher in

the world. It is used to protect much of SSL (secure sockets layer) tra�c

today, probably summing up to billions of TLS (transport layer security)

connections every day. SSL establishes an encrypted link between a server
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and a client, eg: a mail server and a mail client. Block ciphers are more often

used than stream ciphers for encrypting Internet communications, stream ci-

phers are more often used when computational resources are constrained; for

example, cellphones. Even though stream ciphers encrypt more e�ciently

than block ciphers since software-optimized stream ciphers need fewer pro-

cessor instructions and hardware optimized stream ciphers use fewer gates

(or smaller chip area), modern block ciphers such as the advanced encryption

standards (AES) are also very e�cient.

We bring to the attention of the reader an idea of evaluating the strength

of the cipher through the knowledge of algebraic graph theory. The study is

initiated by recalling some useful elementary linear and abstract algebra and

group theory. This is later used to de�ne and study Cayley graphs which

are group constructed graphs. In a similar way basic notions of graph the-

ory and cryptography are introduced. Properties and results from Cayley

graphs are discussed in the second chapter. These include, their association

with circulant graphs, and vertex transitive graphs. Another category of

graphs discussed are strongly regular graphs. Strongly regular graphs tend

to possess many spectral properties that become useful in elucidating the

link between algebraic graph theory and cryptography, in terms of the rela-

tionship between their parameters (n, r, λ, µ) and the associated eigenvalues.

By considering some well known cipher attacks, we study and discuss (in the

third chapter) the importance of designing cryptographically strong pseudo-

random number generators and substitution boxes. The design of these se-

curity providers is aligned to some cryptographical requirements drawn from

some well known ciphers. The ability to investigate some of these require-

ments by only studying Cayley graphs constructed from Boolean functions,

is the main objective of this dissertation, and is discussed in the last chap-

ter with some theoretical examples illustrating the results. We consider a

Cayley graph and associate it with a Boolean function to construct a graph

that brings together properties of Cayley graphs and Boolean functions. It is

noticed that this graph gives information about the strength of the designed

stream cipher to resist well known attacks. It is noted that during this design

process there are major trade o�s between properties according to levels of

importance. Similarly, strongly regular Cayley graphs are associated to bent

2



Boolean functions to study the strength of a block cipher to resist against

some possible well known attacks.

We conclude with a brief summary and outline of possible avenues for further

research.
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Chapter 1

Mathematical Prerequisites

We begin by considering very basic de�nitions, properties and results that

shall be useful in this dissertation. Accordingly, we discuss elementary graph

theory (Section 1.1), elementary group theory (Section 1.2), and elementary

cryptography (Section 1.3).

1.1 Elementary Group Theory

This dissertation will deal with algebraic graph theory, and in particular,

graphs described in terms of groups. We therefore begin with a review of

elementary group theory. This material is covered by the following references:

[14], [24], [34], [41] and [44].

De�nition 1.1.1. Let G be a non-empty set of elements. An operation

that combines any two elements to form a third element is called a binary

operation. Then (G, ◦), (where ◦ is a binary operation), is called a group if

the following axioms are met:

G1: for any a, b ∈ G closure is preserved:

a ◦ b ∈ G;

G2: for any a, b, c ∈ G the associative law holds:

(a ◦ b) ◦ c = a ◦ (b ◦ c);
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G3: there exists an identity element e ∈ G, such that,

a ◦ e = a = e ◦ a, for all a ∈ G;

G4: for each element a ∈ G, there exists a′ ∈ G, an inverse element of a,

such that,

a ◦ a′ = e = a′ ◦ a.

Moreover, (G, ◦) is an Abelian group if in addition to the group axioms G is

commutative:

G5: for any a, b ∈ G, a ◦ b = b ◦ a.

De�nition 1.1.2. Let (G, ◦) and (H, ∗) be groups. A group homomor-

phism ϕ : G→ H is a map such that, ∀ g1, g2 ∈ G, ϕ(g1◦g2) = ϕ(g1)∗ϕ(g2).

De�nition 1.1.3. Let (G, ◦) be a group andGL(n,C) a group of n×n invert-
ible matrices with entries x ∈ C. Then a homomorphism ϕ : G→ GL(n,C)

is called a representation of G.

Moreover, if ϕ is a representation, de�ned above, then χϕ : G→ C is de�ned

by χϕ(g) = Tr(ϕ(g)), where g ∈ (G, ◦), is said to be the character of G

[24]. Here, Tr(ϕ(g)) denotes the trace of the matrix de�ned by ϕ above;

the sum of the elements in the main diagonal.

De�nition 1.1.4. If, in addition to De�nition 1.1.2, ϕ is a bijection, then

ϕ is a group isomorphism denoted (G, ◦) ∼= (H, ∗).

De�nition 1.1.5. Let (G, ◦) be a group. A group isomorphism from (G, ◦)
to (G, ◦), i.e., ϕ : G→ G is called an automorphism .

Moreover, the set of all automorphisms of a group (G, ◦) is itself a group

and is called an automorphism group and is denoted Aut(G).

De�nition 1.1.6. Let (G, ◦) be a group and Ω be a non-empty set. If ∃ a
map · : G×Ω→ Ω de�ned by ·(g, ω) = g ·ω = g(ω), for each (g, ω) ∈ G×Ω

then · is called a group action (in fact a left group action) on Ω relative

to (G, ◦) if and only if the following are true:

(i) ∀ω ∈ Ω, eG · ω = ω;
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(ii) ∀g1, g2 ∈ G,ω ∈ Ω, g1 · (g2 · ω) = (g1 ◦ g2) · ω.

De�nition 1.1.7. Let Ω be a non-empty set. Then a bijection from Ω to Ω

is called a permutation on Ω.

Let I be an n×n identity matrix. Then the matrix obtained by permuting

the rows or columns of I is called the n × n permutation matrix . Each

n× n identity matrix has n! permutation matrices.

Moreover, let (G, ◦) be a group and σ a permutation on a set (Ω, say).

Let the elements of (G, ◦) be the permutations σi, for any i. Then (G, ◦) is
a permutation group if composition is the group binary operation and all

the group axioms are met.

De�nition 1.1.8. The symmetric group is a permutation group. It is a

group of bijections of n elements to itself. That is, for a �nite set Ω (say of

order n) then the symmetric group formed by the set of all permutations of

Ω under the binary operation "composition" is denoted by Sn.

Consider the relationship given by the following theorem. The proof of

the theorem is given in the referenced material.

Theorem 1.1.1. [34] [Cayley's Theorem] Let (G, ◦) be a group. Then G

is isomorphic to a subgroup of the symmetric group. For a �nite group of

order n, the group is isomorphic to a subgroup of Sn.

De�nition 1.1.9. Let (G, ◦) be a group, Ω be a non-empty set and · a group
action on Ω relative to (G, ◦). Then the orbit of ω ∈ Ω under the action ·
is the set denoted by G · ω = {g · ω | g ∈ G}.

Moreover the subgroup denoted by Gω = {g ∈ G | g · ω = ω} is called

the stabilizer of ω in G.

De�nition 1.1.10. Let (G, ◦) be a group and Ω be a non-empty set and ·
a group action on Ω relative to (G, ◦). Then (G, ◦) is said to be transitive,

(act transitively), if and only if it has only one orbit; i.e G · ω = Ω, if and

only if |{G · ω | ω ∈ Ω}| = 1, ∀ω ∈ Ω. Moreover, "·" is called a transitive

left action on Ω relative to (G, ◦).
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De�nition 1.1.11. Let (G, ◦) be a permutation group and Ω be a non-

empty set and · a group action on Ω relative to (G, ◦). Then (G, ◦) is called
semi-regular if the the stabilizer of ω in (G, ◦) is only the identity element.

Moreover, (G, ◦) is said to be regular if the following are true [44]:

(i) (G, ◦) is semi-regular;

(ii) (G, ◦) is transitive.

Remark 1.1.1. (G ·ω)∩ (G ·ψ) 6= φ⇒ G ·ω = G ·ψ, for ω ∈ Ω and ψ ∈ Ψ.

Also, for all ω ∈ Ω, ω ∈ (G · ω).

1.2 Elementary Graph Theory

In this section we describe the fundamentals of elementary graph theory.

This material is drawn from [8], [11], [17], [19], [20], [27], [28], [39] and [41].

De�nition 1.2.1. Let G be a �nite non-empty set of elements (objects)

called vertices, together with a (possibly empty) set of unordered pairs (lines

joining two distinct vertices) of distinct vertices, called edges. Then G =

(V,E), (where, V denotes the set of vertices and E the set of edges), is

called a graph .

De�nition 1.2.2. Let G and H be graphs. Then for G = (V1, E1) and

H = (V2, E2), a graph homomorphism ϕ : G→ H is the map ϕ : V1 → V2

such that u, v ∈ V1 and uv ∈ E1, implies ϕ(u)ϕ(u) ∈ E2.

De�nition 1.2.3. If, in addition to De�nition 1.2.2, ϕ is an injection (i.e if ∃
a one-to-one correspondence between V1 and V2 irrespective of the geometric

appearance/naming of the vertices and such that every and only edges in

graph G have counterparts in graph H) then ϕ is a graph isomorphism

denoted G ∼= H.

Moreover, if V1 = V2 and E1 = E2 then graphs G and H are said to be

identical denoted by G = H.
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De�nition 1.2.4. Let G be a graph, a graph isomorphism from G to G, i.e
ϕ : G→ G is called an automorphism of a graph , and clearly ϕ : V1 → V1

for V1 the set of vertices of G. Therefore, each automorphism of a graph is a

permutation on the set V1. However, a permutation on V1 is not necessarily

an automorphism.

The set of all automorphisms of a graph G is the automorphism group of

the graph G denoted Aut(G), if composition is the group binary operation

and all the group axioms are met.

De�nition 1.2.5. Let G = (V,E) be a graph. G is called vertex transitive

if and only if, for each pair of vertices u and v belonging to V , ∃ ϕ ∈ Aut(G)

such that ϕ(u) = v.

Similarly G is called edge transitive if and only if, for each pair of edges

uv and wx belonging to E, ∃ ϕ ∈ Aut(G) such that ϕ(uv) = wx.

Lemma 1.2.1. Let G = (V,E) be a graph. De�ne the map · : Aut(G)×V →
V by ·(ϕ, v) = ϕ(v), for each (ϕ, v) ∈ Aut(G) × V . Then · is a left group

action on V relative to Aut(G).

Proof. Let v ∈ V be arbitrary and let e be the group identity of Aut(G).

Then e is the function on V :

e · v = e(v).

Let x, y ∈ Aut(G) and let u ∈ V . Then

x · (y · u) = x · (y(u)) = x(y(u)),

and

(x ◦ y) · u = (x ◦ y)(u) = x(y(u)).

Therefore

x · (y · u) = (x ◦ y) · u.

Hence, · is a left group action on V relative to Aut(G).
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Proposition 1.2.2. Let G = (V,E) be a graph. Then the following are

equivalent:

(1) G is vertex transitive;

(2) The map · de�ned in Lemma 1.2.1 acts transitively on V relative to

Aut(G).

Proof. 1 ⇒ 2 Assume that G is a vertex transitive graph.

Recall that we de�ned · : Aut(G)× V → V by ·(ϕ, v) = ϕ(v), ∀ (ϕ, v) ∈
Aut(G)× V .

Then, from Lemma 1.2.1, · is a left group action on V relative to Aut(G).

Let u ∈ V be arbitrary. We will now show that

{Aut(G) · v | v ∈ V } = {ϕ · v | ϕ ∈ Aut(G), v ∈ V }

= {ϕ · u | ϕ ∈ Aut(G)}

= {Aut(G) · u}.

Clearly {Aut(G) · u} ⊆ {Aut(G) · v | v ∈ V }.

Let t ∈ {Aut(G) · v | v ∈ V } be arbitrary. Then t ∈ Aut(G) · v for some

v ∈ V .

Since G is vertex transitive, ∃ϕ ∈ Aut(G) such that ϕ(v) = u.

Hence, ϕ · v = u, and ϕ · v ∈ Aut(G) · v ⇒ u ∈ Aut(G) · v. Also,

u ∈ Aut(G) ·u⇒ (Aut(G) ·v)∩ (Aut(G) ·u) 6= φ and Aut(G) ·v = Aut(G) ·u.

Hence, t ∈ Aut(G) · u ⇒ t ∈ {Aut(G) · u}

⇒ {Aut(G) · v | v ∈ V } ⊆ {Aut(G) · u}.

Hence, {Aut(G) · v | v ∈ V } = {Aut(G) · u}.

However, |{Aut(G) · u}| = 1, so |{Aut(G) · v | v ∈ V }| = 1.

1 ⇐ 2 Assume condition 2 is true.

Let u, v ∈ V . {Aut(G) · u}, {Aut(G) · v} ⊆ {Aut(G) · y | y ∈ V }. Since ·
acts transitively on V relative to Aut(G),
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|{Aut(G) · y | y ∈ V }| = 1.

Hence Aut(G) · u = Aut(G) · v. Now v ∈ (Aut(G) · v)
⇒ v ∈ (Aut(G) · u), so ∃ϕ ∈ Aut(G) such that ϕ · u = v. Thus

ϕ(u) = v.

Hence the two statements are equivalent.

De�nition 1.2.6. Let G = (V,E) be a graph. Then G is called a directed

graph (digraph) if the edges of G are given one way directions. Otherwise

G is undirected , i.e edges are not assigned speci�c directions.

De�nition 1.2.7. Let G = (V,E) be a graph. Then G is said to be con-

nected if, for every u, v ∈ V , there exists a path from u to v.

G is called a complete graph denoted Kn of order n if each vertex is

adjacent to all the other n− 1 vertices of Kn [17].

Ḡ is called the complement of G and is de�ned to be the graph having

the same set V but with E replaced by Ē such that, for any uv ∈ E, uv 6∈ Ē
and vice versa. Hence, Ḡ = (V, Ē). If, in addition, G is isomorphic to Ḡ, we
say G is a self complementary graph .

De�nition 1.2.8. A graph G = (V,E) is called bipartite if the set V can

be partitioned into two non-empty subsets V1 and V2 such that uv ∈ E if

and only if vertices u and v belong to distinct subsets or partite sets of V .

Moreover, if each vertex of V1 is joined to every vertex of V2, then G is

called a complete bipartite graph and is denoted Kn,m, where n = |V1|
and m = |V2| or vice versa [17].

De�nition 1.2.9. Let G = (V,E) be a graph. Then G is called regular if

all the vertices of G have the same degree, more speci�cally, G is said to be

r-regular, or regular of degree r, where r refers to the degree value.

Moreover G is called strongly regular if, in addition to regularity, G has

these two properties:
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1 : every pair of adjacent vertices has exactly λ common neighbours;

2 : every pair of non- adjacent vertices has exactly µ common neighbours.

De�nition 1.2.10. Let G = (V,E) be a graph. Then G is said to be a

symmetric graph if Aut(G) acts transitively on a set of ordered pairs of

adjacent vertices. Symmetric graphs are graphs that are both vertex and

edge transitive. Symmetric graphs are also called arc transitive graphs.

De�nition 1.2.11. Let G = (V,E) be a graph. Then G is said to be a

semi- symmetric graph if G is undirected, edge transitive and regular

but lacks the property of vertex transitivity.

Theorem 1.2.3. Every vertex transitive graph is regular.

Proof. Let G = (V,E) be a vertex transitive graph. Let u, v ∈ V . Then

there exists ϕ ∈ Aut(V,E) such that ϕ(u) = v. Let w1, w2, · · · , wn−1, wn be

distinct neighbours of u in (V,E). Then

{u,w1}, {u,w2}, · · · , {u,wn−1}, {u,wn}

are edges in (V,E) and deg(u) = n. This implies that

{ϕ(u), ϕ(w1)}, {ϕ(u), ϕ(w2)}, · · · , {ϕ(u), ϕ(wn−1)}, {ϕ(u), ϕ(wn)}

are edges in (V,E)

⇒ {v, ϕ(w1)}, {v, ϕ(w2)}, · · · , {v, ϕ(wn−1)}, {v, ϕ(wn)} are edges in (V,E)

⇒ {ϕ(w1)}, {ϕ(w2)}, · · · , {ϕ(wn−1)}, {ϕ(wn)} are neighbours of v.

Also, {ϕ(w1)}, {ϕ(w2)}, · · · , {ϕ(wn−1)}, {ϕ(wn)} are distinct,
since w1, w2, · · · , wn−1, wn are distinct and ϕ is injective.

Hence deg(v) ≥ n = deg(u), and clearly deg(v) ≥ deg(u).

In a similar way we show that deg(u) ≥ deg(v).

Now since deg(v) ≥ deg(u) and deg(u) ≥ deg(v), we have that

deg(u) = deg(v). Therefore, G is regular.
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Remark 1.2.1. It is not necessarily true that regularity implies vertex tran-

sitivity; for example, a semi-symmetric graph is regular and edge transitive

but it is not vertex transitive.

A good example of a type of graph we will soon discuss, (strongly regular

graphs), is the Petersen graph, which we de�ne below:

De�nition 1.2.12. Let G = (V,E) be a graph. Then G is called the Pe-

tersen graph if G is strongly regular with 10 vertices, 15 edges, degree 3,

for adjacent vertices 0 common neighbours, and for non-adjacent vertices 1

common neighbour.

Figure 1.1: The Petersen Graph

De�nition 1.2.13. Let A = (aij) be an n×n matrix. Then A is said to be

a symmetric matrix if AT = A that is for all i, j, we have aij = aji.

De�nition 1.2.14. LetG = (V,E) be a graph with vertex set V = {v1, v2, · · · , vn}.
Then the adjacency matrix of G is the matrix A = (aij) where

aij =

1 if vivj ∈ E

0 if vivj 6∈ E.
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Remark 1.2.2. Moreover, note that for digraphs aij is not necessarily equal

to aji unless it is a multi-graph with the same number of multi-edges on both

directions for every vertex. For graphs with loops, aii is not necessarily 0,

i.e the diagonal does not necessarily consists of only zeros. (Notice that aij

represents the number of edges vivj between the two vertices and for directed

graphs this di�ers according to the direction of the edge). For weighted graphs

(graphs where each edge is assigned a positive real number called the weight

of the edge) we should also mention the idea of a weight matrix. Here aij

represents the weight of the vivj if vivj ∈ E and aij = ∞ if vivj 6∈ E. The

notions of weighted directed and simple graphs follow similarly.

De�nition 1.2.15. Let n ∈ N, and A be an n×n matrix. Then A is called

circulant if and only if the following is true: let t ∈ {1, 2, . . . , n − 1}. If

(a1, a2, . . . , an) is the tth row then (an, a1, . . . , an−1) is the (t+ 1)th row.

Moreover a circulant graph G = (V,E) is a graph with circulant adjacency

matrix.

De�nition 1.2.16. Let A be an n × n matrix, and I be an n × n identity

matrix. Then we de�ne det(λI −A) to be the characteristic polynomial

of A; det(λI − A) = 0 to be its characteristic equation ; and the roots of

this equation to be the eigenvalues of A.

Moreover we de�ne the spectrum of A, denoted spec(A) to be the set of all

eigenvalues of A. The spectrum of a graph G, spec(G), is the spectrum

of its adjacency matrix. In addition G and H = (V2, E2) are said to be

isospectral if spec(G) = spec(H).

We further state (in addition to the above de�nition) the following propo-

sition without proof.

Proposition 1.2.4. [27] Let G = (V1, E1) and H = (V2, E2) be isomorphic

graphs. Then spec(G) = spec(H).
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Remark 1.2.3. It is not necessarily true that if two graphs are isospectral

then they are isomorphic;

Example 1.2.1. Consider the isospectral digraphs below which are non-

isomorphic:

Figure 1.2: Isospectral non- isomorphic digraphs [27]

Let u, v be two vertices of a graph. The distance , d(u, v), between u and v

is the length of a shortest path joining u and v. The eccentricity , e(u), of

a vertex u is de�ned as the distance between u and a vertex furthest away

from u. The radius of a graph is the minimum eccentricity of the graph, and

the diameter of the graph is the maximum eccentricity, over all vertices. If

the graph contains a cycle we de�ne the girth of a graph to be the length

of the shortest cycle, and the circumference to be the length of a longest

cycle [8], [19].

We state without proof the following propositions and refer the reader to

the referenced material for proofs:

Proposition 1.2.5. [11] Let G = (V,E) be a connected graph with diameter

d. Then spec(G) ≥ d+ 1.
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Proposition 1.2.6. [16] Let G = (V,E) be a graph with no odd cycles, such

that the number of mutually nonadjacent vertices for any subgraph of G is

at least half the total number of vertices of that subgraph. Then λ ∈ spec(G)

implies −λ ∈ spec(G) if and only if G is bipartite.

1.3 Elementary Cryptography

Cryptography, which will be more formally introduced in Chapter 3, is a

branch of Cryptology. In this section, we use material drawn from [6], [18],

[19], [21], [25], [29], [30], [31] and [35] to describe this relationship, and several

key properties of symmetric stream and block ciphers.

The term cryptology was derived from the Ancient Greek word `kyptos'

meaning `hidden secret'. Cryptology is the science dealing with secret com-

munication, and the mathematics that underpins cryptography and crypt-

analysis. Whereas cryptography is the study of mathematical techniques

to provide information security, cryptanalysis is the study of mathematical

techniques to defeat information security; it is the study of mathematical

techniques to crack the encryption algorithm and obtain the information

without knowledge of the cryptographic keys. Cryptography and cryptanal-

ysis have fought an ongoing war against each other since ancient times [35].

Egyptian hieroglyphs is a symbolic language that was used by ancient

Egyptians to express their communication. This incorporated alphabets and

logo-graphs. The �rst known evidence of the practice of cryptography uses
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non-standard hieroglyphic symbols, although the writing is not necessarily

an application of pure cryptography but rather some sort of encoding that

aims not to hide information but to change the way it appears. This practice

of cryptography dates to 1900 BC [25].

Figure 1.3: Egyptian Standard Hieroglyphic Symbols and Translations

Considerable progress has occurred since, due to the large increase of

literate personnel, the invention of pen and paper, the discovery of comput-

ers, and so on. Crucial to these developments was also the development of

mathematical sophistication. For example, consider the earliest known com-

monly used transposition cipher where characters of a word are just shu�ed

in order to hide the meaning, the well known Caesar's Cipher by Julius

Caesar around 100 BC. Caesar used the substitution cipher with the shift 3

to convey secret messages to his army generals. Each letter in the alphabet

of his message was shifted 3 units down the English alphabet, such that, A

would be replaced by D, Z by C and so on. This cipher, although used

successfully, is vulnerable to attack, depending entirely on the complete lack

of mathematical knowledge on the part of the enemy.

Parallel to the development of cryptography has been cryptanalysis, es-

pecially after the development of complex computer based ciphers following

the invention of digital computers and electronics after World War II [6].

The type of encryption cipher used in Caesar's cipher and many more

built before the 1970's is private-key cryptography. During the 1970's public-
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key cryptography was discovered and there has been much work done on both

families of encryption ciphers since.

Private-key cryptography (also called symmetric cryptography) is the idea

of cryptosystems that make it computationally feasible to compute the de-

cryption from knowing the corresponding encryption key and or vice versa.

The concept also includes cryptosystems where the decryption key is exactly

the encryption key, in which case the main objective is exchanging the key.

This presents many challenges including protecting the key during exchange,

and transportation.

Public-key cryptosystems, are asymmetric-key cryptosystems and they

aim to make it computationally infeasible to compute either key (encryption

or decryption) from the other. The idea of this cryptography was proposed

by Di�e and Hellman in their paper [18].

One of the well known public-key cryptosystems is the RSA cryptosystem

which was a solution to the problem Di�e and Hellman encounted �nding

a suitable trapdoor one-way function that would be useful in constructing a

public-key cryptosystem. Ronald Rivest, Adi Shamir and Leonard Adleman

invented this cryptosystem in 1977, and it is used to this day.

However public-key cryptography can not fully replace private-key cryptog-

raphy due to numerous challenges, including: speed, resource intensiveness

and message size. Hence, the study of private-key cryptosystems continues,

and in this dissertation we focus exclusively on private-key cryptography.

We now introduce some basic terminology and mathematics, focusing on

private-key cryptography. The main objective of cryptography (irrespective

of the type of the cryptosystem) is for secure communication in an unsecured

channel. To achieve this, cryptography has had a long history of mathe-

matically achieving its cryptographic goals (con�dentiality, data integrity,

authentication and non-repudiation).

We shall refer to a plaintext or simply a message, say M , as being the

original intelligible information fed to the algorithm (maybe in any format

or language). The format of M is converted by a process of encoding into a

particular acceptable format or language for e�cient transmission, and this

process only requires an algorithm or cipher (cypher).

17



Modern cryptography introduces the concept of a key (encryption key) and

is a process of disguising the message so as to hide or protect it from any

intruder in an unsecured channel, and this disguised message is then called

a ciphertext (or cryptogram), whilst the reverse process or the process of

reattaining the plaintext (M) from a ciphertext (C) is called decryption or

deciphering and just like encryption (enciphering), it involves or requires

both an algorithm and a key. The presence of a key during encryption and

decryption is one that makes it clear that encoding and decoding is not an

ideal way of de�ning cryptography. Decoding is simply the reverse process

of encoding, at least for symmetric ciphers.

There are two important symmetric-key ciphers that we shall discuss,

stream ciphers and block ciphers. Stream ciphers act explicitly on each bit

of the plaintext by combining it with a generated key. In the case of block

ciphers, the message M is divided into blocks of �xed length, say d, and

encryption is performed separately on each block thus producing a block of

the same size for the ciphertext and these are joined together in di�erent

special ways that themselves provide better security [6].

Paar and Pelzl, in their text "Understanding Cryptography", [31], give

the following �gure (Figure 1.4) to illustrate the di�erence in the mechanism

of stream ciphers and block cipher in Symmetric Cryptography. Notice that

the block length is d in the illustrations below, but in the �rst diagram

(stream cipher) each bit of the plaintext is encrypted with the encryption

key individually, whilst in the second diagram (block cipher), the plaintext

is divided into blocks of length d, each of which is then encrypted as a block

with the encryption key (K).
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x0x1 · · ·xd Stream Cipher (with encryption key K) y0y1 · · · yd

x0

x1

...
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Block Cipher (with encryption key K)

y0

y1

...

yd

Figure 1.4: The mechanism of stream and block ciphers

The Mechanism of Stream Cipher

Suppose xi, yi, ki ∈ {0, 1}, where xi is a bit of the plaintext, yi a bit of the

ciphertext and ki a bit of the keystream. Then the encryption is performed

as follows:

yi = eki(xi) ≡ xi + ki mod 2, where eki denotes using key ki to encrypt.

Next we show that decryption is performed in a similar way, that is:

xi = dki(yi) ≡ yi + ki mod 2, where dki denotes using key ki to decrypt.
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Proposition 1.3.1. Let yi ≡ xi + ki mod 2. Then dki = xi.

Proof. Assume that yi = eki(xi), where xi, yi, ki ∈ {0, 1}.

Then

dki ≡ yi + ki mod 2

≡ (xi + ki) + ki mod 2

≡ xi + 2ki mod 2

≡ xi mod 2

Remark 1.3.1. Since calculations are performed in base 2, we must �rst

convert the format to ASC II.

Example 1.3.1. To encrypt a message such as:

BEWARE THE ARMY!

we look for the corresponding ASCII code and generate the plaintext in the

format we require:

01000010 01000101 01010111 01000001 01010010 01000101 00100000 01010100

01001000 01000101 00100000 01000001 01010010 01001101 01011001 00100001.

In order to proceed, we require a keystream to perform encryption, so the

following introduces the idea of a keystream in a stream cipher, in order to

highlight that the computation of these key bits is in fact the heart of a

stream cipher.

The idea of security (cryptographic) keys in stream ciphers, involves

an understanding of logic gate truth tables and random number generators

(RNG), which are core to this cipher.

From the logic gate truth tables let us single out the 2-input Exclusive-

OR (XOR), which we will be using in this cipher. Exclusive-OR is a logic

gate function that, for "1:- true and 0:- false", gives as output 1 only when
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(only) one of the inputs is 1 else it gives 0. The bits of the plaintext and

those of the keystream are �combined� or encrypted using XOR operations.

The security of stream ciphers lies not on the XOR mechanism, but

upon the randomness of the keystream generator. Amongst the three RNG-

true random number generators (TRNG), pseudo-random number genera-

tors (PRNG) and cryptographic secure pseudo-random number generators

(CSPRNG)-suitable for stream ciphers, we shall discuss the PRNG and from

this example illustrate important attributes common also to the other two.

Pseudo-random number generators generate a string of numbers which are

not in a sense completely random since the sequence is easily reattained un-

like in TRNG, where it is almost impossible to reattain the sequence. The

randomness of this sequence lies in the initial value called the seed (k0) and

the rest of the sequence is the result of the function of the preceding value,

that is, given the seed k0 then k1 = f(k0), and

ki+1 = f(ki), where i ∈ N0.

On the other hand CSPRNG di�ers from this in that given some bits, say t

bits of the keystream, it is almost impossible to compute the next keystream

bit and even the preceding bits using the current tth bit, but possess the

pseudo-randomness property to a degree.

Consider Example 1.3.1 and suppose PRNG is being applied to this problem

to generate a keystream k0, k1, · · · from a chosen seed value, and a function,

(say based on the linear congruential generator) and the generated keystream

becomes something like:

01110001 · · · · · ·

Then, performing encryption gives:

0 1 0 0 0 0 1 0

⊕ 0 1 1 1 0 0 0 1

0 0 1 1 0 0 1 1 ·

Clearly we notice that with this key the �rst symbol "B" of the plaintext after

encryption and decoding by ASCII reads as "3", and also the involvement

of the XOR. The rest of the message follows the same pattern.

21



Proposition 1.3.1 assures us that decryption follows in a similar way with

the same key. Hence we will have:

0 0 1 1 0 0 1 1

⊕ 0 1 1 1 0 0 0 1

0 1 0 0 0 0 1 0

which returns "B" after decoding.

An attack described by Paarl and Pelzl [31] on PRNG motivated the in-

vention of CSPRNG. However, PRNG remains an important cipher.

The Mechanism of Block Cipher

Suppose that xi is a bit of the plaintext, yi a bit of the ciphertext and ki

a bit of the keyspace where xi, yi, ki ∈ {0, 1}. Suppose M is a n-bit long

plaintext. Then M is partitioned in blocks of length d (block-length, where

n ≥ d). Then a block cipher in symmetric cryptography maps each plaintext

block of length d to a d-bit ciphertext. As an aside, note that the larger the

value of d the higher the security but the slower the operation, and that most

of the modern block ciphers have d ≥ 64-binary bits.

Menezes, Van Oorschot and Vanstone [29], de�ne block cipher encryption

function as a bijective map,

E : Vd ×K → Vd,

where K is the keyspace containing subkeys Ki for some i, and the map is

denoted EK(P ) or E(P,K), for P the plaintext.

However, the details of the cipher algorithm vary with the type of block

cipher, some of which currently in use include the Data Encryption Stan-

dards (DES), Triple-DES, Advanced Encryption Standards. To motivate the

study described in Chapters 3 and 4, we look at the mechanism of this ci-

pher through a non-fully detailed discussion of DES. This should highlight

that the security of this cryptosystem relies heavily on the construction of

powerful substitution boxes (S-boxes), which are functions that take some

number of input bits, say r, and transforms them into some number of out-

put bits, say t, where r and t need not be the same. These functions are
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presented in a form of tables and are the heart of the encryption in most

modern block ciphers. The design of these functions (S-boxes) is a di�cult

task since one needs to ensure that they possess certain properties to ensure

strength against a range of powerful cryptanalysis attacks.

Mohamed et al in the paper Study of S-box Properties in Block Cipher, [30],

draw attention to a number of properties S-boxes ought to possess in order

to survive powerful cryptanalysis, and furthermore claims that the process

of creating new powerful S-boxes never ends, with various methods being ap-

plied to make them strong. Some of these properties include non-linearity,

balanceness, the strict avalanche criterion, algebraic complexity, di�erential

uniformity, robustness amongst others.

Example 1.3.2. Consider the message

BEWARE THE ARMY!

from Example 1.3.1 which was encoded (ASCII) as:

M = 01000010 01000101 01010111 01000001 01010010 01000101 00100000 01010

10001001000 01000101 00100000 01000001 01010010 01001101 01011001 00100001.

Suppose we apply a DES block cipher with the keyspace:

K = 0111000001100111001010100010010101010010011110100010000001011111.

Although DES partitions the plaintext to block of length d = 64-bits and

chooses a key of size 64-bits as well, it then ignores the 8th-bit of every byte

of that 64-bit key such that:

K∗ = 01110000110011001010100100100101001011110100100000101111.

Hence, a 64-bits plaintext M is operated using a 56-bits key K∗.

What follows is the desription of the algorithms of DES according to

the DES steps. Note that this process involves many given permutations.

Since DES uses a Feistel cipher, it operates its algorithms in rounds (r).

For DES, r = 16-rounds. Hence, we are expected to generate 16-subkeys

(Ki, for 1 ≤ i ≤ 16).
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First, by applying permutation on K, according to table PC-1 given in

[29], and ignoring those that do not appear on the table because they do not

fall on K∗, we get

PC-1 (K \ {8th − bit of every byte of that 64-bit key}) =

0000000010110011011011111011101111101000001010100100001.

We then split the result of PC-1 into two equal halves, labelled C0 = left

half and D0 =right half. Hence each half has 28-bits and is:

C0 = 0000000010110011011011111011,

D0 = 101111101000001010100100001.

To obtain Ci and Di for all 1 ≤ i ≤ 16, perform a left shift according to the

left shift schedule of Ci−1 and Di−1 for all 16 iterations, and that will give

17 pairs of Ci and Di inclusive of C0 and D0 to C16 and D16.

Next concatenate each pair using table PC-2 given in [29], to form 16-

subkeys Ki, such that,

PC-2 [C3D3].

That is,

Ki = PC-2 [CiDi] for all 1 ≤ i ≤ 16.

Notice that by performing this operation, each subkey reduces in size from

56-bits to 48-bits as results of PC-2. Now that we have 16-subkeys of 48-bits

long each, the next step focuses on algorithms performed on the plaintext

itself and is followed by the use of S-boxes, the core of block cipher.

The �rst process in this step uses an initial permutation function (IP )

of 64 characters given in [29], to give the new arrangement of the bits of

plaintext. Recall that we have partitioned the plaintext into block of d = 64-

bits. Hence, we encrypt each 64-bit block individually by applying IP to each

partitioned ofM , sayMi, for some integer i. The IP (Mi) is also 64-bits long

as Mi so we then split IP (Mi) also into two halves of size 32-bits each and

label the left half L0, the right half R0.

From L0 we build L1 = R0 and de�ne a rule that any Li = Ri−1, for

some i, whilst on the other hand to generate Ri for i > 0, we de�ne the rule
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Ri = Li−1 ⊕ fKi(Ri−1, ). Here, fKi is the round function. This makes use

of the E bit-selection table given in [29], to increase the size of Ri−1 from

32-bits to 48-bits by repetition. This is done so that the size of each Ri−1 is

the same as the size of a subkeys which is 48-bits. Then E(Ri−1) which is

48-bits, is combined with the subkey Ki by use of the XOR explained earlier.

That is, we calculate:

E(Ri−1)⊕Ki,

and get a 48-bit, answer. This is then divided into groups of 6 bits named B1-

B8, (that is E(Ri−1) ⊕Ki = B1B2B3B4B5B6B7B8). These 6-bit strings

are used as coordinates to locate positions in the respective S-box, which are

mathematically constructed tables which are de�ned by functions of special

properties to provide security.

Each 6-bit number gives an idea of a row in an S-box by combining the

�rst and last bit, for example if the number is 111010 and is named B5, then

one has 1 and 0, giving rise to 10 in Z2 and that converts to 2 in Z, and
hence row 2 of the S-box; the rest of the 4-bits are 1101 which converts to 13

in Z, and hence column 13 in the S-box. Row 2, column 13 in S5 has entry

3, that is, S5(B5) = S5(111010) = 310 = 00112. [Note that the columns and

rows are labeled 0-15 and 0-3 respectively].

Iteratively one can construct:

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8).

The next step involves assigning the value of the function f which is 32-bits

long:

f = P [S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)]

where P is a permutation table and that is XORed with Li to get Ri =

Li−1 ⊕ fKi(Ri−1).

So clearly we managed to get Li and Ri for all 1 ≤ i ≤ 16, so we selected

the last iteration L16 and R16 and swap their positions to get R16L16 then

permute the 64-bit long R16L16 by the IP−1 table given in [29], to yield the

ciphertext.

It is worth stating that all ciphers are classi�ed or rated according to the
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two de�nitions that follow:

De�nition 1.3.1. A cipher is said to possess unconditional security if it

is not defeatable even with in�nite computational resources.

De�nition 1.3.2. A cipher is said to possess computational security

if the only way it could be defeated is by the application of a particular

algorithm for at least n operations.

According to these de�nitions all currently known practical ciphers both

private-key and public-key are NOT classi�ed as unconditionally secure, and

at best possess computational security. However, even that is still an issue

since identifying a suitable particular algorithm maybe almost impossible for

a particular cipher [31].

Summary

The idea of this dissertation is to highlight the relationship between graph

theory and cryptography. Hence, this chapter introduced the basics in both

�elds. We considered the basics of group theory and algebra so as to bring

to the readers attention the foundations of group and important properties

that link them with certain graphs. This lead us to the next chapter where

we look at Cayley graphs and strongly regular graphs which form part of the

family of algebraic graphs.

Having considered basic de�nitions of concepts used in graph theory so

as to discuss Cayley graphs and strongly regular graphs, in Section 1.3, we

introduced cryptography (both public-key and private-key) with the aim of

elucidating the di�erence. We then focused on private-key cryptosystems

thus introducing stream ciphers and block ciphers, their mechanisms and

mathematics.

In the chapters that follow we make use of these preliminaries to de�ne in

Chapter 2, certain graphs (Cayley graphs and strongly regular graphs) and

in Chapter 3, certain cryptographic functions (Boolean functions and bent

functions) useful for the design of stream ciphers and block ciphers. Chapter

4 considers the manner in which relationships may be established between

the objects of study in the preceding chapters.
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Chapter 2

Algebraic Graph Theory

In this chapter, we study the de�nitions and properties of Cayley and strongly

regular graphs which are sub-families of the family of algebraic graphs. We

will look at some of the results drawn from the properties of these graphs,

although we will limit our study to results that will help us investigate the

link between these two families and the cryptographic functions that will be

studied in the next chapter. This review will include concepts like eigenvalues

of these graphs, circulant graphs de�ned from Cayley graphs, the spectrum

of graphs and partial di�erence sets. This material is drawn from [3], [4], [8],

[10], [23], [26], [25] and [41].

2.1 Introduction

The study of Graph Theory begins with the discoveries of a Swiss Mathe-

matician Leonhard Euler (April 15, 1707- September 18, 1783) in his work

on the problem of the Seven Bridges of Konigsberg in 1735/6. At this stage

Euler had just introduced the idea without naming it and later the idea was

used in the Knight tour problem. Frequent reference to the idea and tech-

nique to solve problems triggered the introduction of the terminology of a

graph in 1838.

Later, more problems were investigated using the idea of graphs. Graph

theory as a �eld grew and questions rose about graphs. Strategies to answer

these questions were put into practice, one of which was an extension to
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graph theory which looked at addressing problems in graphs by means of

algebraic methods. The idea of algebraic graph theory was introduced

and studied, where ideas from algebra and group theory were put into good

use.

2.2 Cayley Graphs

Arthur Cayley, a British male mathematician (August 16, 1821 - January

26, 1895), �rst introduced the idea of group based graphs by consideration

of what we today call Cayley's Theorem. He named this group constructed

graph the colour group and later it was renamed the Cayley graph or Cayley

colour graph.

In this section we take a closer look at Cayley Graphs as they will be used

in the application to cryptography. Cayley graphs are graphs constructed

via groups. We therefore make use of elementary group and graph theory to

elucidate the connection between group theory and graph theory.

De�nition 2.2.1. Let (G, ◦) be a group, and let Ω be a non-empty set such

that Ω ⊂ G, and ∀ω ∈ Ω we have ω−1 ∈ Ω, i.e Ω is symmetric, but eG 6∈ Ω

for eG the identity element of G. This shall henceforth be refereed to as an

�inverse stable, identity free set" relative to G or a �Cayley set". Then the

Cayley graph G(G,Ω) = (V,E) is the graph with the following properties:

(i) V = {g | g ∈ G};

(ii) E = {gk | k = g ◦ ω for ω ∈ Ω, g ∈ G}.

Cayley digraphs di�er from Cayley graphs in that they have directions. In

this dissertation we focus exclusively on Cayley graphs, that is those where

edges have no direction.

Example 2.2.1. Consider the group (Z8,⊕) and S ⊂ Z8 such that

S = {1 + 8Z, 7 + 8Z, 3 + 8Z, 5 + 8Z}. Now since

Z8 = {8Z, 1 + 8Z, 2 + 8Z, 3 + 8Z, 4 + 8Z, 5 + 8Z, 6 + 8Z, 7 + 8Z},
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notice that the identity eZ8 6∈ S but for all x ∈ S we have x−1 ∈ S; all the
properties to be met in the construction of Cayley graphs are satis�ed. We

can now write the Cayley graph:

G((Z8,⊕), S) = (Z8, {{x, y} | x, y ∈ Z8, ∃k ∈ S such that y = x⊕ k}).

Hence, V (G(Z8, S)) = Z8, and

E(G(Z8, S)) ={{8Z, 1 + 8Z}, {8Z, 7 + 8Z}, {8Z, 3 + 8Z}, {8Z, 5 + 8Z},

{1 + 8Z, 2 + 8Z}, {1 + 8Z, 8Z}, {1 + 8Z, 4 + 8Z}, {1 + 8Z, 6 + 8Z},

{2 + 8Z, 3 + 8Z}, {2 + 8Z, 1 + 8Z}, {2 + 8Z, 5 + 8Z}, {2 + 8Z, 7 + 8Z},

{3 + 8Z, 4 + 8Z}, {3 + 8Z, 2 + 8Z}, {3 + 8Z, 6 + 8Z}, {3 + 8Z, 8Z},

{4 + 8Z, 5 + 8Z}, {4 + 8Z, 3 + 8Z}, {4 + 8Z, 7 + 8Z}, {4 + 8Z, 1 + 8Z},

{5 + 8Z, 6 + 8Z}, {5 + 8Z, 4 + 8Z}, {5 + 8Z, 8Z}, {5 + 8Z, 2 + 8Z},

{6 + 8Z, 7 + 8Z}, {6 + 8Z, 5 + 8Z}, {6 + 8Z, 1 + 8Z}, {6 + 8Z, 3 + 8Z},

{7 + 8Z, 8Z}, {7 + 8Z, 6 + 8Z}, {7 + 8Z, 2 + 8Z}, {7 + 8Z, 4 + 8Z}}

which gives the Cayley graph:
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0 + 8Z 1 + 8Z

2 + 8Z

3 + 8Z

4 + 8Z5 + 8Z

6 + 8Z

7 + 8Z

Figure 2.1: Cayley Graph on (Z8) and S ⊂ Z8
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De�nition 2.2.2. A generating set S of (G, ·) is de�ned as a set S for

which G = 〈S〉, where

〈S〉 = {s = g1·g2·. . .·gn | ∀ i ∈ {1, · · · , n}, gi ∈ G, such that, gi ∈ S or g−1
i ∈ S}.

Theorem 2.2.1. A Cayley graph G = ((G, ·),Ω) is connected if and only if

Ω is a generating set of the group (G, ·).

Proof. “ =⇒ ” Suppose G is connected. Then for any gi, gj ∈ V (G((G, ·),Ω))

there exists a {gi − gj} path. We want to show that

〈Ω〉 = G⇔ {g1 · · · gn | gi ∈ Ω or g−1
i ∈ Ω} = G.

Clearly {g1 · · · gn | gi ∈ Ω or g−1
i ∈ Ω} ⊆ G. Let g ∈ G and eG the

identity element of (G, ·) under the binary operation. Since

G = ((G, ·),Ω) is connected, there is a path from eG to g described as

P = eG, x1, x2, · · · , xn−1, xn, g.

However G = ((G, ·),Ω) is the Cayley graph of (G, ·). Hence, the following
is true for any i ∈ N, ωi ∈ Ω :

x1 = eG · ω1,

x2 = x1 · ω2,

...

xn = xn−1 · ωn,

g = xn · ωn+1,

= xn−1 · ωn · ωn+1

= xn−2 · ωn−1 · ωn · ωn+1

...

= x1 · ω2 · ω3 · ω4 · . . . · ωn+1

= ω1 · ω2 · ω3 · ω4 · . . . · ωn+1.

Then G ⊆ {g1 · · · gn | gi ∈ Ω or g−1
i ∈ Ω}. Therefore 〈Ω〉 = G.
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“ ⇐= ” Now suppose Ω is a generating set of the group (G, ·), that is
〈Ω〉 = G. Let g, h ∈ G⇒ g, h ∈ 〈Ω〉. We want to show that there is a path

from g to h.

Since g, h ∈ 〈Ω〉, then:

g = x1 · . . . · xn · eG xi ∈ Ω or x−1
i ∈ Ω

h = eG · y1 · . . . · yn yi ∈ Ω or y−1
i ∈ Ω.

Here, ∀i, xi, yi ∈ Ω.

Claim: x1 · · ·xn, x1 · · ·xn−1, x1 · · ·xn−2, x1 · · ·xn−3, · · · , x1x2x3, x1x2, x1, eG,

-y1, y1y2, y1y2y3, · · · , y1 · · · ym−1, y1 · · · ym is a walk in G((G, ·),Ω).

Now for {x1 · · ·xn, x1 · · ·xn−1} to be an edge in G((G, ·),Ω):

x1 · · ·xn−1 = (x1 · · ·xn) · k1 for some k1 ∈ Ω

= (x1 · · ·xn) · x−1
n xi ∈ Ω⇒ x−1

i ∈ Ω, for all i.

Therefore {x1 · · ·xn, x1 · · ·xn−1} is an edge in G((G, ·),Ω).

Similarly for {x1 · · ·xn−1, x1 · · ·xn−2} to be an edge in G((G, ·),Ω):

x1 · · ·xn−2 = (x1 · · ·xn−1) · k2 for some k2 ∈ Ω

= (x1 · · ·xn−1) · x−1
n−1 xi ∈ Ω⇒ x−1

i ∈ Ω, for all i.

Therefore {x1 · · ·xn−1, x1 · · ·xn−2} is an edge in G((G, ·),Ω).

Continuing in this way, we see that

x1 · · ·xn, x1 · · ·xn−1, x1 · · ·xn−2, x1 · · ·xn−3, · · · , x1x2x3, x1x2, x1, eG

is a walk.

Next we show that {eG, y1} is an edge in G((G, ·),Ω):

y1 = eG · y1.

Therefore, {eG, y1} is an edge in G((G, ·),Ω).
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Similarly {y1, y1 · y2} is an edge in G((G, ·),Ω):

y1 · y2 = y1 · y2.

Continuing in this way, we see that

eG, y1, y1y2, y1y2y3, · · · , y1 · · · ym−1, y1 · · · ym

is a walk, and our claim is substantiated.

Since g = x1 · · ·xn · eG and h = eG · y1 · · · yn, there is a walk between g

and h. Therefore, since for all g, h ∈ G((G, ·), S) there is a path from g to h;

G((G, ·),Ω) is connected.

Although the following theorem is not proved in this dissertation, it is

listed without proof because it gives a clear relationship between circulant

graphs and Cayley graphs for the purpose of classifying Cayley graphs. The

referenced material provides the proof.

Theorem 2.2.2. [4] Circulant graphs are Cayley graphs if and only if they

are connected.

Lemma 2.2.3. Let (G, ◦) be a group. Let Ω be a non-empty, "inverse sta-

ble" (every element has an inverse in Ω), identity free set relative to (G, ◦)
and g ∈ G arbitrary.

De�ne ϕ : G→ G by ϕ(x) = g◦x for each x ∈ G. Then ϕ ∈ Aut(G((G, ◦),Ω)),

for any G((G, ◦),Ω) a Cayley graph.

Proof. First we show that ϕ is a bijection from G to G. Take α, β ∈ G.

Assume that ϕ(α) = ϕ(β). Then

g ◦ α = g ◦ β

⇒ g−1 ◦ g ◦ α = g−1 ◦ g ◦ β

⇒ eG ◦ α = eG ◦ β

⇒ α = β, ∴ ϕ is injective.
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Now take β ∈ G. We want to show that β = ϕ(α). That is, we must show

β = g ◦ α

⇔ g−1 ◦ β = g−1 ◦ g ◦ α

⇔ g−1 ◦ β = eG ◦ α

⇔ g−1 ◦ β = α.

Note that α = g−1 ◦ β ∈ G by closure. Moreover, by construction,

ϕ(α) = ϕ(g−1 ◦ β)

= g ◦ (g−1 ◦ β)

= (g ◦ g−1) ◦ β

= eG ◦ β

= β ∴ ϕ is surjective.

This shows that ϕ is bijective.

Let a and b be arbitrary objects. Suppose {a, b} is an edge of G((G, ◦),Ω).

Then there exists some k ∈ Ω such that b = a ◦ k. Hence

g ◦ b = g ◦ (a ◦ k)

= (g ◦ a) ◦ k

⇒ ϕ(b) = ϕ(a) ◦ k

⇒ {ϕ(a), ϕ(b)} is an edge in G((G, ◦),Ω)

⇒ ϕ ∈ Aut(G((G, ◦),Ω)).

Theorem 2.2.4. Every Cayley graph is vertex transitive.

Proof. Let G be a Cayley graph. Let x, y be arbitrary vertices of G.

Since G is Cayley, there exists a group (G, ◦) and Ω, a non-empty inverse

stable and identity free set relative to (G, ◦), such that G = G((G, ◦),Ω).

Now y ◦ x−1 ∈ (G, ◦). De�ne ϕ : G → G by ϕ(g) = (y ◦ x−1) ◦ g for all

g ∈ (G, ◦).
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We have ϕ ∈ Aut(G((G, ◦),Ω)) by Lemma 2.2.7. Hence,

ϕ(x) = (y ◦ x−1) ◦ x

= y ◦ (x−1 ◦ x)

= y ◦ eG
= y which implies that G((G, ◦),Ω) is vertex transitive.

Remark 2.2.1. It is not necessarily true that vertex transitivity implies

Cayley, (the converse of Theorem 2.2.4). The fundamental theorem for rec-

ognizing Cayley graphs (given below) helps us to identify vertex transitive

graphs that are not Cayley.

In an e�ort to identify Cayley graphs, Gert Sabidussi presented the funda-

mental theorem below. We state without proof Sabidussi's theorem and refer

the reader to the referenced paper for the proof.

Theorem 2.2.5. [8], [37] [Sabidussi's theorem] A graph G = (V,E) is a

Cayley graph if and only if Aut(G) contains a regular subgroup.

Example 2.2.2. The Petersen graph P is one good example of a vertex

transitive graph such that @ r-regular H subgroup of Aut(P) for some r.

This is a di�cult and lengthy result to prove, and the reader is referred to

[8] for details.

We also show that the cyclic graph C6 is vertex transitive:

Example 2.2.3. Consider the group Z6 = {6Z, 1 + 6Z, 2 + 6Z, 3 + 6Z, 4 +

6Z, 5 + 6Z}. If S ⊂ Z6 such that S = {1 + 6Z, 5 + 6Z}, then we note that

eZ6 6∈ S and for all x ∈ S there is x−1 ∈ S. Hence, we may construct

G((Z6,⊕), S) = (Z6, {{x, y} | x, y ∈ Z6, ∃k ∈ S such that y = x⊕ k})
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where V (G(Z6, S)) = Z6 and

E(G(Z6, S)) ={{6Z, 1 + 6Z}; {6Z, 5 + 6Z};

{1 + 6Z, 2 + 6Z}; {1 + 6Z, 6Z};

{2 + 6Z, 3 + 6Z}; {2 + 6Z, 1 + 6Z};

{3 + 6Z, 4 + 6Z}; {3 + 6Z, 2 + 6Z};

{4 + 6Z, 5 + 6Z}; {4 + 6Z, 3 + 6Z};

{5 + 6Z, 6Z}; {5 + 6Z, 4 + 6Z}}.

0 + 6Z

1 + 6Z

2 + 6Z

3 + 6Z

4 + 6Z

5 + 6Z

Figure 2.2: Cayley Graph on (Z6) and S = {1 + 6Z, 5 + 6Z}

Proposition 2.2.6. Let G(G,Ω) be a Cayley graph. Then G(G,Ω) is |Ω|-
regular.

Proof. Suppose G(G,Ω) is a Cayley graph. Then Ω ⊂ (G, ◦) and for all

g ∈ V (G(G,Ω)), g ∈ G. Also, de�ne the neighbors of g as being:

{k | gk ∈ E(G(G,Ω)) if and only if k = g ◦ ω for ω ∈ Ω, g ∈ G}.
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Hence, the degree of g ∈ G would be the number of all ω ∈ Ω. Therefore

G(G,Ω) is |Ω|-regular.

Next, we recall our earlier de�nition of the adjacency matrix and the

eigenvalues of a graph, and use them to de�ne the notion of an adjacency

operator of any graph on any given eigenfunction. We are, of course, partic-

ularly interested in the case of a Cayley graph.

De�nition 2.2.3. Let G = (V,E) be a graph with A = (aij) as its adjacency

matrix, where vi, vj label elements of V . De�ne f to be an eigenfunction of

A. Then we de�ne an adjacency operator A of G on an eigenfunction

f , by (Af)(vi) =
∑

j∈V aijf(vj).

Let v1, v2, · · · , vn ∈ V . Then generally in matrix form, [26],

Af =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

an1 an2 · · · ann




f(v1)

f(v2)
...

f(vn)

 =


∑n

k=1 a1kf(vk)∑n
k=1 a2kf(vk)

...∑n
k=1 ankf(vk)

 .

For the special case of Cayley graphs G(G,Ω), the adjacency operator on

an eigenfunction can be simpli�ed to be (Af)(g) =
∑

ω∈Ω f(g ◦ ω), where

g ∈ G [26].

Example 2.2.4. Let us consider the Cayley graph de�ned in Example 2.2.3

and as an example show that the special rule for obtaining the adjacency

operator of Cayley graphs on an eigenfunction gives the same answer as the

general method for all graphs for obtaining the adjacency operator on an

eigenfunction. The given Cayley graph has the adjacency matrix:

AG(Z6,S)) =



0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0


.
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Af =



0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0





f(6Z)

f(1 + 6Z)

f(2 + 6Z)

f(3 + 6Z)

f(4 + 6Z)

f(5 + 6Z)


From this we notice that (Af)(4 + 6Z) = f(3 + 6Z) + f(5 + 6Z).

Considering the method de�ned for the special case of Cayley graphs for

obtaining the adjacency operator on an eigenfunction we evaluate (Af)(4 +

6Z): In Example 2.2.3 we are given S = {1 + 6Z, 5 + 8Z}, so

(Af)(4 + 6Z) =
∑
s∈S

f((4 + 6Z) ◦ s)

= f((4 + 6Z) + (1 + 6Z)) + f((4 + 6Z) + (5 + 6Z))

= f((5 + 6Z) + f((3 + 6Z);

and we notice that the two methods agree.

Consider the following lemma that displays the relationship between the

spectral information of a Cayley graph and characters of the Abelian group

used in constructing the graph. The proof for this lemma is given in the

referenced material.

Lemma 2.2.7. [42] Let (G, ◦) be an Abelian group, χϕ : G→ C the charac-

ter of (G, ◦) and Ω the Cayley set. Let G(G,Ω) = (V,E) be a Cayley graph,

and AG its adjacency matrix. Then

1

|Ω|
∑
ω∈Ω

χϕ(ω), gives the eigenvalue of G(G,Ω),

associated with χϕ and the characters of (G, ◦) are the corresponding eigen-

vectors of G(G,Ω).

De�nition 1.2.8 introduced the idea of bipartite graphs. The example

below will help us explore bipartite Cayley graphs:
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Example 2.2.5 (Bipartite Cayley Graph). Suppose that

G((D4, ·), S) = (V,E) = (D4, {{x, y} | x, y ∈ D4,∃k ∈ S such that y = x·k})

is a Cayley graph of the Dihedral group on two generators de�ned by the

vertex set below, α, β ∈ (G, ·) and α 6= β, where (G, ·) is a group.

If S = {α, α3, β}, then:

V (G(D4, S)) = 〈α, β | α4 = β2 = (αβ)2 = eD4〉

= {eD4 , α, α
2, α3, β, αβ, α2β, α3β},

and

E(G(D4, S)) ={{eD4 , α}, {eD4 , β}, {eD4 , α
3},

{α, α2}, {α, αβ}, {α, eD4},

{α2, α3}, {α2, α2β}, {α2, α},

{α3, eD4}, {α3, α3β}, {α3, α2},

{β, αβ}, {β, eD4}, {β, α3β},

{αβ, α2β}, {αβ, α}, {αβ, β},

{α2β, α3β}, {α2β, α2}, {α2β, αβ},

{α3β, β}, {α3β, α3}, {α3β, α2β}}.

Now let V (G(D4, S)) be partitioned into two partite sets, V1, V2 ∈ V (G(D4, S))

such that:

V1 = {eD4 , α
2, αβ, α3β}

V2 = {α, β, α3, α2β}.

This yields the de�ned bipartite Cayley graph:
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eD4 β

α2 α

αβ α3

α3β α2β

Figure 2.3: Bipartite Cayley Graph
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2.3 Strongly Regular Graphs

Strongly regular graph, were �rst discovered and studied in 1963 by Raj

Chandra Bose when he used the ideas of graph theory to solve problems in

his work in design theory and in the theory of error-correcting codes [23].

(To be speci�c, with the aim to survey association schemes of partially bal-

anced incomplete block designs [10]). These graphs quickly became core and

used in many other studies inclusive of that by Donald Gordon Higman in

his work on representation theory. Later they were seen to play a major role

in the study of cryptography.

In this section we take a closer look at strongly regular graphs so as to

prepare for the chapters that follow where they will be used in application

to cryptography. The results reviewed below include both those which are

group theory based and those combinatorial; the reader is referred to the

following sources for further details: [3], [28].

De�nition 2.3.1. Let G = (V,E) be a graph. Then G is called a strongly

regular graph if and only if the following is true:

1 : G is a regular graph;

2 : There exists λ, µ ∈ N0 such that:

i : For all u, v ∈ V (G) if u 6= v and {u, v} ∈ E, then

|NG(u) ∩NG(v)| = λ;

ii : For all u, v ∈ V (G) if u 6= v and {u, v} 6∈ E, then

|NG(u) ∩NG(v)| = µ,

where NG(u) is de�ned as the set of vertices that are neighbours

of vertex u.

Remark 2.3.1. A strongly regular graph has the following parameters:

• n := number of vertices of the graph;
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• r := uniform degree per vertex;

• λ as de�ned in De�nition 2.3.1 [number of common neighbors for ad-

jacent vertices];

• µ as de�ned in De�nition 2.3.1 [number of common neighbors for non-

adjacent vertices],

and these would generally be given in the form (n, r, λ, µ) for any strongly

regular graph. Hence, we shall follow this convention in this text.

Example 2.3.1. A widely used example of a strongly regular graph is the

Petersen graph discussed in De�nition 1.2.12. Notice that the parameters of

the Petersen graph as given in the de�nition satisfy the conditions of strongly

regular graphs.

There are many other examples of strongly regular graphs. For example,

Paley graphs, are graphs constructed from the ring Z/pZ and the identity

free, inverse stable set Ω = {x2|x ∈ Z/pZ} and they are strongly regular

with parameters (n, r, λ, µ) as
(
p, (p−1)

2 , (p−5)
4 , (p−1)

4

)
. A particular case is

described below.

Example 2.3.2. Let G = (V,E) be a Paley graph with p = 13. Then

V (G(Z13, S)) = Z13, and since eZ13 6∈ S,

S = {1 + 13Z, 3 + 13Z, 4 + 13Z, 9 + 13Z, 10 + 13Z, 12 + 13Z}.

To avoid having a messy graph we give a twisted drawing with none of

the mathematics changed and with every vertex given to mod 13. Note that

the ordering of the vertices does not a�ect the graph mathematically. Hence

any mathematically correct drawing is acceptable. The key to understanding

this diagram is sticking to the name of each vertex and noting that repeated

vertices are to be regarded as just one vertex.
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0 1 2

3 4 5

6 7

8

9 10 11

12

2

5

6 7

8

11

Figure 2.4: Paley Graph of p = 13

Notice that we have (13, 6, 2, 3) =
(
p, (p−1)

2 , (p−5)
4 , (p−1)

4

)
for p = 13, as

it should.

Proposition 2.3.1. Every bipartite strongly regular graph has λ = 0.

Proof. Let G be a bipartite graph. Pick vertices u ∈ V (G1) and v ∈ V (G2),

where V (G1) and V (G2) are the partite sets of V (G).

Then, since G is bipartite the only possible neighbours of u ∈ V (G1) are

in V (G2), and; similarly, the only possible neighbours of v ∈ V (G2) are in

V (G1). Hence, there does not exist w such that w is a neighbour of both u

and v.

Therefore, every bipartite strongly regular graph has λ = 0.

Remark 2.3.2. Let G be a strongly regular graph with parameters (n, r, λ, µ).

It is not necessarily true that if λ = 0 then G is a bipartite strongly regular

graph.

Example 2.3.3. Consider the Petersen graph, as de�ned and discussed in

this text. This has λ = 0, but is not bipartite.
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Proposition 2.3.2. [3] Let G = (V,E) be a strongly regular graph. Then the

complement, Ḡ, of G is also strongly regular and has parameters (n, r̄, λ̄, µ̄)

where,

r̄ = n− r − 1,

λ̄ = n− 2− 2r + µ,

µ̄ = n− 2r + λ.

Proof. By the de�nition of Ḡ we have that |Ḡ| = |G| = n.

(a) To show r̄ = n− r − 1:

Let x ∈ V (Ḡ) be arbitrary. Since degG(x) = r, let y1, y2, · · · , yr ∈
V (G) be all the neighbors of x in G listed with no repetitions.

Claim: {y ∈ V (Ḡ) | xy ∈ E(Ḡ)} = V (G)\{x, y1, y2, · · · , yr}. We

prove this by demonstrating that the LHS ⊆ RHS and conversely.

To show LHS ⊆ RHS: Pick t ∈ {y ∈ V (Ḡ) | xy ∈ E(Ḡ)}

⇒ t ∈ V (Ḡ),

⇒ t ∈ V (G).

Suppose t = x then xx ∈ E(Ḡ), which is a contradiction because that

would be a loop, therefore t 6= x.

Therefore, suppose t ∈ {y1, y2, · · · , yr}

⇒ xyi ∈ E(Ḡ) for i ∈ {1, 2, · · · , r}.

However, xyi ∈ E(G), leading to a contradiction, therefore

t 6∈ {y1, y2, · · · , yr}. Hence t 6∈ {x, y1, y2, · · · , yr}. Therefore t ∈
V (G)\{x, y1, y2, · · · , yr} ⇒ LHS ⊆ RHS.

To show RHS ⊆ LHS: Pick t ∈ V (G)\{x, y1, y2, · · · , yr}

⇒ t ∈ V (G),

⇒ t ∈ V (Ḡ), and also t 6∈ {y1, y2, · · · , yr}.
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Therefore, t is not a neighbor of x in G:

xt 6∈ E(G),

⇒ xt ∈ E(Ḡ).

Therefore, t ∈ {y ∈ V (Ḡ) | xy ∈ E(Ḡ)} ⇒ RHS ⊆ LHS.

∴ RHS = LHS.

This establishes that {y ∈ V (Ḡ) | xy ∈ E(Ḡ)} = V (G)\{x, y1, · · · , yr}.

Moreover, degḠ(x) = |{y ∈ V (Ḡ) | xy ∈ E(Ḡ)}|

= |V (G)\{x, y1, y2, · · · , yr}|.

However, since {x, y1, y2, · · · , yr} ⊆ V (G)

|V (G)\{x, y1, y2, · · · , yr}| = |V (G)| − |{x, y1, y2, · · · , yr}| (2.1)

The y1, y2, · · · , yr are distinct, and none of y1, y2, · · · , yr are equal to
x since they are neighbors of x and the graph does not have loops.

Therefore x, y1, y2, · · · , yr are distinct. It follows that:

|{x, y1, y2, · · · , yr}| = r + 1.

Therefore, from (2.1) we obtain:

degḠ(x) = r̄ = |V (G)| − (r + 1)

= n− (r + 1)

= n− r − 1.

(b) To show λ̄ = n− 2− 2r − µ:

Pick x, y ∈ V (Ḡ) such that xy ∈ E(Ḡ) ⇒ xy 6∈ E(G). Therefore

|NG(x) ∩NG(y)| = µ.

Let c1, c2, · · · , cµ be the distinct listing of all elements of NG(x) ∩
NG(y), and let v1, v2, · · · , vt be the distinct listing of all elements of

NG(x)\NG(y), and let u1, u2, · · · , uk be the distinct listing of all ele-

ments of NG(y)\NG(x).
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Claim 1:

NḠ(x)∩NḠ(y) = (V (G)\{x, y})\{c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk}

To show LHS ⊆ RHS: Pick t ∈ NḠ(x) ∩NḠ(y). Then

t ∈ NḠ(x),

⇒ t ∈ V (Ḡ),

⇒ t ∈ V (G).

Suppose t = x. Then xx ∈ E(Ḡ), which is a contradiction because

that would be a loop, therefore t 6= x.

Similarly, suppose t = y. Then yy ∈ E(Ḡ), which is a contradiction

because that would be a loop. Therefore t 6= y, and

⇒ t 6∈ {x, y}

⇒ t ∈ (V (G)\{x, y}).

If t ∈ {c1, c2, · · · , cµ}, then t ∈ (NG(x) ∩NG(y)),

⇒ t ∈ NG(x).

However, t ∈ NḠ(x), yields a contradiction. Therefore t 6∈ {c1, c2, · · · , cµ}.

If t ∈ {v1, v2, · · · , vt}, then t ∈ (NG(x)\NG(y)),

⇒ t ∈ NG(x).

However, t ∈ NḠ(x) yields a contradiction. Therefore t 6∈ {v1, v2, · · · , vt}.

Finally, choosing t ∈ {u1, u2, · · · , uk} ⇒ t ∈ (NG(y)\NG(x)),

⇒ t ∈ NG(y).

However, t ∈ NḠ(y) yields a contradiction. Therefore t 6∈ {u1, u2, · · · , uk},

⇒ t 6∈ {c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk}.
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Therefore t ∈ ((V (G)\{x, y})\{c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk}))

⇒ LHS ⊆ RHS.

To show RHS ⊆ LHS:
Pick t ∈ ((V (G)\{x, y})\{c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk})

⇒ t 6= x.

Suppose xt ∈ E(G). Then t ∈ NG(x). However, NG(x) = (NG(x) ∩
NG(y)) ∪ (NG(x)\NG(y)),

⇒ t ∈ (NG(x) ∩NG(y)) or t ∈ (NG(x)\NG(y)),

⇒ t ∈ {c1, c2, · · · , cµ} or t ∈ {v1, v2, · · · , vt},

which is a contradiction. Hence xt 6∈ E(G)xt ∈ E(Ḡ), and hence

t ∈ NḠ(x).

Similarly, from t 6= y we may show that

t ∈ NḠ(y).

Thus, t ∈ (NḠ(x) ∩NḠ(y)),⇒ RHS ⊆ LHS.

Hence, we have established Claim 1:

NḠ(x)∩NḠ(y) = (V (G)\{x, y})\{c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk}.

Claim 2: {c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk} ⊆ (V (G)\{x, y}).

Pick t ∈ {c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk}. Then, to show

t ∈ (V (G)\{x, y}):

1 If t = ci, then t ∈ NG(x) and t ∈ NG(y),

⇒ t 6= x and t 6= y.
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2 If t = vi, then t ∈ NG(x)⇒ t 6= x, (and, by de�nition of vi,)

⇒ t 6∈ NG(y).

If t = y

⇒ tx ∈ E(G) that is yx ∈ E(G)

which is a contradiction. Hence t 6= y.

3 If t = ui, then t ∈ NG(y)⇒ t 6= y, (and, by de�nition of ui,)

⇒ t 6∈ NG(x).

If t = x

⇒ ty ∈ E(G), that is xy ∈ E(G)

which is a contradiction. Hence t 6= x.

Therefore, we have established Claim 2:

{c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk} ⊆ (V (G)\{x, y}).

It follows that:

|NḠ(x) ∩NḠ(y)| = |(V (G)\{x, y})\{c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk}|

= |(V (G)\{x, y})| − |{c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk}|
(2.2)

Also since c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk are distinct and

non-repetitive:

ci 6= cj , vi 6= vj , ui 6= uj , for i 6= j and ci 6= vi 6= ui for any i,
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we have that,

NG(x) = (NG(x) ∩NG(y)) ∪ (NG(x)\NG(y)) disjoint

|NG(x)| = |(NG(x) ∩NG(y))|+ |(NG(x)\NG(y))|

r = µ+ |(NG(x)\NG(y))|

r − µ = |(NG(x)\NG(y))|

= t.

Similarly

NG(y) = (NG(x) ∩NG(y)) ∪ (NG(y)\NG(x)) disjoint

|NG(y)| = |(NG(x) ∩NG(y))|+ |(NG(y)\NG(x))|

r = µ+ |(NG(y)\NG(x))|

r − µ = |(NG(y)\NG(x))|

= k.

Therefore from (2.2) we get:

|NḠ(x) ∩NḠ(y)| = λ̄ = |V (G)| − |{x, y}| − |c1, c2, · · · , cµ, v1, v2, · · · , vt, u1, u2, · · · , uk|

= n− 2− (|c1, c2, · · · , cµ|+ |v1, v2, · · · , vt|+ |u1, u2, · · · , uk|)

= n− 2− (µ+ r − µ+ r − µ)

= n− 2− (2r − µ)

= n− 2− 2r + µ.

(c) To show µ̄ = n− 2r + λ:

Pick x, y ∈ V (Ḡ) such that xy 6∈ E(Ḡ). Then xy ∈ E(G). Therefore

|NG(x) ∩NG(y)| = λ.

Let c1, c2, · · · , cλ be the distinct listing of all elements of NG(x) ∩
NG(y), and let v1, v2, · · · , vt be the distinct listing of all elements of

NG(x)\NG(y), and let u1, u2, · · · , uk be the distinct listing of all ele-

ments of NG(y)\NG(x).

Claim 1:

NḠ(x)∩NḠ(y) = (V (G)\{x, y})\{c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}
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To show LHS ⊆ RHS: Pick t ∈ NḠ(x) ∩NḠ(y)⇒ t ∈ NḠ(x) and t ∈
NḠ(y),

⇒ t ∈ V (Ḡ),

⇒ t ∈ V (G.

If t = x, then xy ∈ E(Ḡ) which is a contradiction, therefore t 6= x.

Similarly, t = y ⇒ xy ∈ E(Ḡ) which is a contradiction. Therefore

t 6= y,

⇒ t 6∈ {x, y},

⇒ t ∈ (V (G)\{x, y}).

If t ∈ {c1, c2, · · · , cλ}, then t ∈ (NG(x) ∩NG(y)),

⇒ t ∈ NG(x).

However, t ∈ NḠ(x), which yields a contradiction. Therefore t 6∈
{c1, c2, · · · , cλ}.

If t ∈ {v1, v2, · · · , vt}, then t ∈ (NG(x)\NG(y)),

⇒ t ∈ NG(x).

However, t ∈ NḠ(x), which yields a contradiction. Therefore t 6∈
{v1, v2, · · · , vt}.

Finally, choosing t ∈ {u1, u2, · · · , uk} then t ∈ (NG(y)\NG(x)),

⇒ t ∈ NG(y).

However, t ∈ NḠ(y) which yields a contradiction. Therefore t 6∈
{u1, u2, · · · , uk},

⇒ t 6∈ {c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}.

Therefore, t ∈ ((V (G)\{x, y})\{c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk})),

⇒ LHS ⊆ RHS.
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To show RHS ⊆ LHS:
Pick t ∈ ((V (G)\{x, y})\{c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}),

⇒ t 6= x.

If xt ∈ E(G), then t ∈ NG(x). However,

NG(x) = (NG(x) ∩NG(y)) ∪ (NG(x)\NG(y)),

⇒ t ∈ (NG(x) ∩NG(y)) or t ∈ (NG(x)\NG(y)),

⇒ t ∈ {c1, c2, · · · , cλ} or t ∈ {v1, v2, · · · , vt},

which yields a contradiction. Hence xt 6∈ E(G),

⇒ xt ∈ E(Ḡ),

⇒ t ∈ NḠ(x).

Similarly t 6= y ⇒ t ∈ NḠ(y). So t ∈ (NḠ(x) ∩ NḠ(y)). ⇒ RHS ⊆
LHS.

Hence we have established Claim1:

NḠ(x)∩NḠ(y) = (V (G)\{x, y})\{c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}.
Moreover,

(V (G)\{x, y})\{c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}

= V (G)\{x, y, c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}.

Claim 2: {c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk} ⊆ V (G).

To show LHS ⊆ RHS: Pick t ∈ {c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}.

To show t ∈ (V (G)\{x, y}):

1 If t = ci, then t ∈ NG(x) and t ∈ NG(y),

⇒ t 6= x and t 6= y.

2 If t = vi, then t ∈ NG(x)⇒ t 6= x,

⇒ t 6∈ NG(y).
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If t = y

⇒ tx ∈ E(G), that is yx ∈ E(G),

which is possible. Hence t = y.

3 If t = ui, then t ∈ NG(y)⇒ t 6= y,

⇒ t 6∈ NG(x).

If t = x

⇒ ty ∈ E(G) that is xy ∈ E(G),

which is possible. Hence t = x.

Hence x = ui and y = vj .

Therefore {c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk} ⊆ V (G), and

{x, y, c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}
= {c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}

It follows that:

|NḠ(x) ∩NḠ(y)| = |(V (G)\{x, y})\{c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}|

= |(V (G)\{x, y, c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}|

= |(V (G)\{c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}|

= |V (G)| − |{c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk}|.
(2.3)

Also, since c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk are distinct and

non- repetitive, we have that

ci 6= cj , vi 6= vj , ui 6= uj , for i 6= j and ci 6= vi 6= ui for any i.

Moreover,

NG(x) = (NG(x) ∩NG(y)) ∪ (NG(x)\NG(y)) disjoint

|NG(x)| = |(NG(x) ∩NG(y))|+ |(NG(x)\NG(y))|

r = λ+ |(NG(x)\NG(y))|

r − λ = |(NG(x)\NG(y))|

= t.
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Similarly

NG(y) = (NG(x) ∩NG(y)) ∪ (NG(y)\NG(x)) disjoint

|NG(y)| = |(NG(x) ∩NG(y))|+ |(NG(y)\NG(x))|

r = λ+ |(NG(y)\NG(x))|

r − λ = |(NG(y)\NG(x))|

= k.

Therefore from (2.3) we obtain:

|NḠ(x) ∩NḠ(y)| = µ̄ = |V (G)| − |c1, c2, · · · , cλ, v1, v2, · · · , vt, u1, u2, · · · , uk|

= n− (|c1, c2, · · · , cλ|+ |v1, v2, · · · , vt|+ |u1, u2, · · · , uk|)

= n− (λ+ r − λ+ r − λ)

= n− (2r − λ)

= n− 2r + λ.

It should be stressed out that not all given sequences of parameters gen-

erate a strongly regular graph. For example, Bahman Ahmadi (2009) shows

that (21, 10, 4, 5) are not valid parameters for a strongly regular graph. How-

ever, the following theorem assures us that should there exist a strongly

regular graph of some parameters, then one can complete a sequence given

incomplete parameters, via a relationship between them.

Theorem 2.3.3. Let G = (V,E) be a strongly regular graph. Then from the

parameters discussed in Remark 2.3.1

r(r − λ− 1) = (n− r − 1)µ.

Proof. Let G be a strongly regular graph. Pick an arbitrary �xed vertex,

u ∈ V (G), and let Υ be the set of all vertices in V (G) adjacent to u. Then

|Υ| = r, since r is the degree of each vertex.

It clearly follows from Theorem 2.3.2 above that the order of all the other
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vertices outside this set is:

|V (G) \Υ| =
∣∣Ῡ∣∣ = r̄ = n− r − 1. (2.4)

Let S denote the set of all edges of connecting Υ and Ῡ. Then |S| can be

calculated in at least two ways:

1. by considering the number of vertices each vertex of Υ is adjacent to;

that is, each v ∈ Υ is adjacent to u and λ other vertices in Υ, since λ

vertices are adjacent to both u and v, i.e:

|S| = r[r − (λ+ 1)]

= r(r − λ− 1); (2.5)

2. or by picking a vertex in Ῡ and considering the number of vertices it

is adjacent to in Υ; that is, each w ∈ Ῡ is adjacent to µ vertices in Υ,

but from Equation (2.4), there are n− r − 1 elements in Ῡ, so:

|S| = (n− r − 1)µ. (2.6)

Therefore from (2.5) and (2.6), we obtain:

r(r − λ− 1) = (n− r − 1)µ.

Example 2.3.4. Consider the parameters (100, 20, 10, 5), and the equation

given in Theorem 2.3.3. We can easily verify that there does not exist a

strongly regular graph with the given parameters, by establishing that the

LHS 6= RHS:

LHS =r(r − λ− 1) = 20(100− 10− 1) = 1780

which is not equal to:

RHS =(n− r − 1)µ = (100− 20− 1)5 = 395 .

Hence invalid parameters.

Lemma 2.3.4. [3] Let G = (V,E) be a strongly regular graph. Then the

following are equivalent:
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i : G is not connected;

ii : µ = 0;

iii : λ = r − 1;

iv : Each component of G is isomorphic to the complete (r + 1)-regular

graph.

Proof. (i) ⇒ (ii) Suppose G is a disconnected graph. Then G has at least

two components G1 and G2. Let x ∈ V (G1) and y ∈ V (G2). Then there is

no path from x to y ⇒ xy 6∈ E(G). If

NG(x) ∩NG(y) 6= ∅,

then t ∈ NG(x) ∩NG(y) which implies xty is a path in G; a contradiction.

Hence, NG(x) ∩NG(y) = ∅

⇒ |NG(x) ∩NG(y)| = µ = 0.

(ii)⇒ (iii) Let µ = 0, and assume there exists u, v, w ∈ V (G), where u and

w are neighbors of v. Then u must be adjacent to w, since µ = 0 which

implies that each vertex must be adjacent to r − 1 other vertices; that is,

λ = r − 1.

(iii)⇒ (iv) Let λ = r− 1. Then any component of G is complete, and since

degree of G is r then each component is the complete graph Kr+1.

(iv)⇒ (i) Let each component of G be isomorphic to the complete (r + 1)-

regular graph.

Then all vertices of a component must have same degree, which implies

that the components are not connected; that is G is not connected.

The following stated results help in proving most of the results that will

soon follow in this dissertation, the reader is advised to consult the referenced

material for the proofs.

Theorem 2.3.5. [3] Let G be a strongly regular graph. Then the following

expression is true about the adjacency matrix, A, of G:

A2 = (λ− µ)A+ (r − µ)I + µJ,
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where I and J are the identity and the matrix consisting of all entries equal

to one respectively.

Lemma 2.3.6. [3] Let G = (V,E) be a strongly regular graph. Then G has

at most three distinct eigenvalues.

Theorem 2.3.7. [9] Let G = (V,E) be a connected r-regular graph. Then

G is strongly regular if and only if it has exactly three distinct eigenvalues,

r, s, t.

Corollary 2.3.8. [9] Let G be a strongly regular graph. Then,

λ = r + s · t+ s+ t,

µ = r + s · t.

The following de�nition is used to establish relationships between SRG and

groups as will be discussed in Chapters 3 and 4.

De�nition 2.3.2. Let (G, ◦) be a group of order n. A r-subset Ω of G is

called a (n, r, λ, µ)-Partial Di�erence Set in G if, for any g, h ∈ Ω and

g 6= h, the mathematical expression g◦h−1 represents a non-identity element

in Ω exactly λ times and represents a non-identity element in G \Ω exactly

µ times.

Example 2.3.5. Consider Z4

(Z4,⊕) = {4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}

and S ⊂ Z4 such that S = {1 + 4Z, 3 + 4Z}. We notice from Figure 2.5

below that this Cayley graph is strongly regular with parameters (4, 2, 0, 2).

Next we show that S is a (4, 2, 0, 2)-partial di�erence set. We observe

that: |Z4| = 4 and |S| = 2.

Since S = {1 + 4Z, 3 + 4Z}, pick any s, ω ∈ S with s 6= ω, compute

s⊕ω−1 = {((1 + 4Z)⊕ (1 + 4Z)), ((3 + 4Z)⊕ (3 + 4Z))} = {2 + 4Z, 2 + 4Z},
and notice that none of the non-identity elements in this set also lie in S.

Hence λ = 0. Also, for s ⊕ ω−1 = {2 + 4Z, 2 + 4Z} = {2 + 4Z}, each non-

identity member of the complement of S in Z4 appears exactly twice and so

µ = 2. Altogether this indicates that S is a (4, 2, 0, 2)-partial di�erence set

as per the de�nition.
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0 + 4Z 1 + 4Z

2 + 4Z3 + 4Z

Figure 2.5: Cayley Graph on (Z4) and S ⊂ Z4

Summary

In this chapter we introduced the concepts of Cayley graphs and that of

SRG. We discussed how to identify Cayley graphs and SRG from di�erent

sort of graphs by considering Sabiddusi's Theorem for Cayley graphs. We

studied some properties that set Cayley graphs aside from other graphs, and

looked at their construction. Cayley graphs play a major role in developing

the relationship between graph theory and cryptography. The next chapter

introduces some notions in cryptography that link well with Cayley graphs

and SRG. The discussion of this relationship is the topic of Chapter 4. There

we will notice the role Cayley graphs play in stream ciphers, and further

extend the notion of Cayley graphs to that of strongly regular Cayley graphs

in order to study their relationship with block ciphers.
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Chapter 3

Cryptographic Functions

In Chapter 1, we observed that the security of stream ciphers and block ci-

phers rests upon the randomness of the keystream generators and the design

of cryptographically strong s-boxes respectively.

This chapter introduces the properties used to quantify such crypto-

graphic strength. We do so by studying two mathematical functions (Boolean

and bent functions) whose properties are suitable for the design of strong

pseudo-random number generators and s-boxes.

We will discuss known properties that classify keystream generators as be-

ing random enough to provide cryptographic security and s-boxes as being

cryptographically strong. We introduce and discuss some known results, and

the properties of Boolean and bent functions that make them suitable to the

cryptographic needs of pseudo-random number generators and s-boxes re-

spectively. This will complete our background on the mathematical design

of keystream generators and s-boxes. This leads us to the next chapter where

we will link these functions to suitable algebraic graphs with the required

properties for cryptography. This material is drawn from [5], [12], [13], [15],

[22], [43].

3.1 Introduction

The study of mathematical techniques to defeat information security, (crypt-

analysis), is an ongoing process. Hence, many di�erent attack methods have
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been successfully studied and implemented. Cryptography on the other hand

responds by investigating these attacks and creating cryptosystems that are

less vulnerable to them, and the cycle continues.

Stream ciphers make use of Boolean functions to achieve standard security

in pseudo-random number generators because of the properties these func-

tions possess. The Boolean functions focused on here need to be balanced,

non-linear and have a high algebraic degree in order to resist a number of

known attacks by cryptanalysis.

Block ciphers on the other hand make use of bent functions to achieve

security in substitution-boxes. Bent functions are also Boolean functions

but they achieve maximum non-linearity and, in order to support the objec-

tive of constructing suitable cryptographic substitution-boxes, they need to

additonally satisfy the strict avalanche criterion; the bit independence crite-

rion; and also be bijective. Unlike the requirement for stream ciphers, these

functions should not be balanced. Additional properties and their relations

(such as the Hamming weight of these bent functions) are also considered.

In order to understand the role played by the properties desired for a

�nice� cryptographic function, we need to review several cryptanalytic at-

tacks.

The linear approximation attack takes advantage of the linearity of the ex-

pression that involves plaintext bits, ciphertext bits and subkey bits [22].

Another old and famous attack, the di�erential cryptanalysis attack con-

siders the XOR di�erence between plaintexts and its propagations through

nonlinear and linear transformations of a primitive. The correlation attack

focuses on the choice of the Boolean function used: it uses this function to

regenerate the keystream by combining the outputs of the linear feedback

shift registers (LFSR - to be de�ned later on this chapter). The algebraic

attack considers algebraic methods to break the cipher. It expresses the ci-

pher operations as systems of equations and substitutes known information

for certain known variables, then it attempts to solve for the key. So the

choice of the Boolean function is important.

We introduce Boolean and bent functions and discuss their properties, thus
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hinting at techniques to defeat these attacks.

3.2 Boolean Functions

The study of Boolean functions (named after George Boole) is widely dis-

cussed in the �eld of algebraic logic. Boolean functions occur in the study of

the mathematical formulation of logical problems. The language of Boolean

functions has lately become fundamental to the applications of discrete math-

ematics, including the analysis and construction of cryptosystems [5], [16].

In this section we explore Boolean functions for cryptographic use in stream

ciphers. We explore their mathematical properties and align them with the

requirements of cryptography. They will later (in Chapter 4) be compared

to the properties of Cayley graphs.

Remark 3.2.1. Let F2 denote the �nite �eld of two elements. Then F2 is

closed under addition and multiplication modulo 2. In this context the ele-

ments of F2 are bits and the addition is XOR (⊕).

Also, let Fn2 be a {0, 1} vector space of n tuples, n ∈ N, such that X ∈ Fn2 if

and only if X = (x1, · · · , xn), where xi ∈ {0, 1} for all 1 ≤ i ≤ n. It is the

set of all n-dimensional bit-strings.

We will therefore refer to F2 as being the set of all Boolean values.

De�nition 3.2.1. Let f be a map that takes the vector X ∈ Fn2 and maps

it to some xi ∈ {0, 1},

f : Fn2 −→ F2,

f : X 7−→ xi, where X ∈ Fn2 , xi ∈ F2.

Then f is called a Boolean Function . We denote Bn to be the set of

n-variable Boolean functions, that is, f ∈ Bn.

Remark 3.2.2. 1. |Fn2 | = 2n, since it is simply n-tuples of {0, 1}, and
|{0, 1}| = 2.
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2. |Bn| = 22n.

Example 3.2.1. Consider the Boolean function

f(X) = x1 ⊕ x2x3 ⊕ x4, where X = (x1, x2, x3, x4), xi ∈ F2.

Then X ∈ F4
2.

By Remark 3.2.2

|F4
2| = 24 = 16.

Hence in the truth table representation we have 16 rows of 4 columns of

inputs and 16 rows of 1 column of output.

Input Output

x1 x2 x3 x4 f(x1, x2, x3, x4)

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 1 0 0 0

1 0 0 0 1

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

0 1 1 1 0

1 0 1 1 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

Table 3.1: Truth table of the 4-variable Boolean Function f
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De�nition 3.2.2. Let f ∈ Bn. Then f can be expressed in the algebraic

normal form (ANF),

f(x1, · · · , xn) =
⊕

at

(
n∏
i=1

xtii

)
,

=
⊕

atX
t,

= a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn ⊕ a1,2x1x2 ⊕ a2,3x2x3⊕

· · · ⊕ an−1,nxn−1xn ⊕ · · · ⊕ a1,...,nx1 · · ·xn.

Here, xi, ti, at ∈ F2 and X, t ∈ Fn2 . Moreover the algebraic degree of the

ANF of f , denoted deg(f), is the number of variables in the highest order

term with non-zero coe�cient.

De�nition 3.2.3. For the same f de�ned in De�nition 3.2.2 above, we de�ne

the number of vectors X ∈ Fn2 , for which f(X) = 1, to be the Hamming

weight of f , and we denote that by wt(f):

wt(f) =
∑
X∈Fn

2

f(X).

We can also de�ne/calculate the algebraic degree of an n-variable Boolean

function from its Hamming weight:

deg(f) = max {wt(f)|at 6= 0, t ∈ Fn2}.

Moreover, if wt(f) = wt(f ⊕ 1) then we call f a balanced n-variable

Boolean function.

We state without proof the following propositions to explain deductions

made later such as the link between the de�nition of a balanced n-variable

Boolean function and Proposition 3.2.1.

Proposition 3.2.1. Let f be a n-variable Boolean function and wt(f) denote

the Hamming weight of f .Then wt(f ⊕ 1) = 2n−1.

Proposition 3.2.2. Let f be a n-variable Boolean function. Then wt(f) is

odd if and only if deg(f) = n.
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De�nition 3.2.4. Let f, g ∈ Bn. Then the Hamming distance between

f and g in Bn, (denoted d(f, g)), is the number of instances in which cor-

responding values of the functions di�er, that is the number of values of

(x1, · · · , xn) for which f(x1 · · · , xn) and g(x1, · · ·xn) di�er. Thus

d(f, g) = wt(f ⊕ g)

= |{X ∈ Fn2 |f(X)⊕ g(X) = 1}| .

From the above de�nition the following results are clear, proofs to all

these results is provided by the referenced material. We state these results

to provide clarity to the results that conclude this study, in Chapter 4.

Proposition 3.2.3. Let f, g ∈ Bn. Then d(f, g) = 2n−1 − 1
2 .

Proposition 3.2.4. Let d be the Hamming distance of pairs of functions in

Bn. Then d is a metric on Bn.

Proposition 3.2.5. Let d(f, g) be Hamming distance between f and g. If

ḡ = g + 1 is the negation of g, then

d(f, ḡ) = 2n − d(f, g).

De�nition 3.2.5. Let f(X) be a n-variable Boolean function such that

X ∈ Fn2 , f(X) ∈ F2. Then we de�ne the sign function of f to be the

integer valued function

sgn(f(X)) = (−1)f(X).

Moreover, let Y ∈ Fn2 , such that Y = (y1 · · · yn) and X ·Y = x1y1⊕· · ·⊕
xnyn. Then the integer valued function

Wf (Y ) =
∑
X∈Fn

2

(−1)f(X)+X·Y

is called the Walsh transform of a Boolean function f at Y .

Moreover, in general the discrete Fourier transform,

W ∗f (Y ) = f(X)(−1)X·Y ,

63



is sometimes used in place of the Walsh transform as they are closely related

as follows:

W ∗f (Y ) = −1

2
Wf (Y ) + 2n−1δ(Y ),

where δ(Y ) is the Kronecker delta function de�ned as:

δ(Y ) =

1 if Y = 0

0 if Y 6= 0.

Remark 3.2.3. Clearly the Walsh transform of a balanced Boolean function

f on a 0-vector is given as Wf (0) = 0.

Proposition 3.2.6. Let f ∈ Bn, X,Y ∈ Fn2 , such that k = Y ·X. Then the

Walsh transform of f at Y can be given as

Wf (Y ) = 2n − 2wt(f ⊕ k).

Remark 3.2.4.

If Y,Z ∈ Fn2 then Ȳ is the complement of Y and to say, Z ≤ Ȳ means each

zi ≤ ȳi for any i.

Corollary 3.2.7. [16] Let f ∈ Bn, X,Y, Z ∈ Fn2 . Then∑
Z≤Y

W ∗f (Y ) = 2wt(Y )
∑
Z≤Ȳ

f(Y ).

De�nition 3.2.6. Let g ∈ Bn. Then g is said to be a�ne (or an a�ne

function) if and only if deg(g(X)) ≤ 1, where X ∈ Fn2 .

Moreover, let f ∈ Bn and ABn denote the set of all n-variable a�ne Boolean

functions. Then

nl(f) = ming∈ABn
d(f, g)

is called the nonlinearity of f .

Proposition 3.2.8. [5] Let f ∈ Bn, X,Y ∈ Fn2 . Then

nl(f) = 2n−1 − 1

2
max Y ∈Fn

2
|Wf (Y )| .
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De�nition 3.2.7. Let f, g ∈ Bn, and g 6= 0. Then g ∈ Bn is called a anni-

hilator of f ∈ Bn if f ·g = 0 (where · is de�ned to be scalar multiplication).

The set of all annihilators of f ∈ Bn is given by

AN(g) = {g ∈ Bn | f · g = 0}.

Moreover, we de�ne algebraic immunity of f , where g 6= 0, to be

Al(f) = ming∈Fn
2
{deg(g) | f · g = 0 or (f ⊕ 1) · g = 0}.

De�nition 3.2.8. Let f ∈ Bn. If for every Y ∈ Fn2 and 1 ≤ wt(Y ) ≤ m,

Wf (Y ) = 0, then f is called mth-order correlation immune, (cl(m)).

If, moreover, f is balanced then f is called m-resilent .

Proposition 3.2.9. [16] Let f ∈ Bn be m-resilent and 0 ≤ m ≤ n−1. Then

deg(f) ≤ n−m− 1.

Proposition 3.2.10. [16] Let f ∈ Bn be (n− 1)-resilent. Then f is a�ne.

De�nition 3.2.9. Let f, g ∈ Bn, X,Y ∈ Fn2 , such that Y 6= 0. Then the

autocorrelation function of f with respect to Y is given by

ACf (Y ) =
∑
X

f(X) · f(X ⊕ Y ).

Moreover the autocorrelation value of f with respect to Y is given by

|AC∗f (Y )| = maxY ∈Fn
2

∣∣∣∣∣∑
X

f(X) · f(X ⊕ Y )

∣∣∣∣∣ .
The properties described above have been associated with resistance to crypt-

analysis in various manners which we now review. The property of bal-

ancedness allows one to distribute the output uniformly and avoid attacks

by statistical dependence between plaintext and ciphertex. Hence, the func-

tion used for PRNG must be balanced.

Moreover, resistance to correlation attacks on PRNG requires correlation

immunity of order m, cl(m). If f(X) is not cl(m) then an exhaustive
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initiation search as an attack reveals that there is a correlation between the

output and almost m-bits of the input. Furthermore, if m is relatively small,

then the cipher stands the risk of correlation attack (divide and conquer at-

tack).

Low algebraic immunity of f is always desired for an algebraic attack

resistance of the cipher.

High nonlinearity and high level of algebraic degree of f is generally

a requirement for cryptographic functions so as to resist attack by linear and

di�erential cryptanalysis. The Hamming distance , for all f, g ∈ Bn and

g ∈ ABn is desired to be kept high.

The design of cryptographically strong Boolean functions for stream ciphers

involves taking into account of all of the above properties as part of the re-

quirements to overcome well researched attacks and possibly new ones. On

the other hand there are trade-o�s between these properties according to the

speci�c requirements of the cipher.

In stream ciphers, linear feedback shift registers are used in generating

the key-stream (pseudo-random sequence) from the key. A Linear Feedback

Shift Register, (LFSR), is a shift register of key bits, a linear function

taking the key bits and performing XOR's on them to yield the next bit

in the shift register. The output of the LFSR then becomes the input of

the (typically nonlinear) Boolean function used to produce the key-stream.

Although the methodology would di�er depending on the type of genera-

tor (combination or �lter), the focus here is that, regardless of the type of

generator, the output of the LFSR is the input of the Boolean function.

The idea of maximal possible level is an emphasis that the trade o�s be-

tween properties during the design of a strong Boolean functions is necessary.

Methods of designing cryptographically strong Boolean functions include

random generation, algebraic and heuristic techniques and many others.

Having introduced the concept of Boolean functions we shall investigate to

what extent their required properties align with those of Cayley graphs and

hence deduce whether cryptographically useful Boolean functions can be use-
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fully described in terms of Cayley graphs.

Boolean functions with additional properties (such as maximizing certain

properties etc) are generally grouped and classi�ed. In the next section

we review some properties of a special type of Boolean functions, the bent

functions, and discuss their use in cryptography.

3.3 Bent Functions

Bent functions, like many other mathematical discoveries, do not have a

solid recorded beginning. However, results by Rothaus (1976) and Eliseev

are some of the earliest mentions of the notion. Since then the study of bent

functions has intensi�ed as their properties lend themselves to employment

in cryptography, amongst other uses.

In Chapter 2, we explored algebraic graphs. One of the families of graphs we

reviewed was the family of strongly regular graphs. In Chapter 4 we shall

study the cryptographic strength of block ciphers via the properties of these

graphs. In this section we extend the material of Section 3.2 to de�ne and

understand bent functions. We explore their nature for cryptographic use in

block ciphers, thus distinguishing them from the normal Boolean functions

discussed in Section 3.2. Without studying the details of the design of these

functions we review their application to the construction of strong substitu-

tion boxes for a block cipher.

Proposition 3.3.1 is the basis from which one of the properties of bent func-

tions is drawn; the proof is explained in the reference:

Proposition 3.3.1. [5] Let f : Fn2 −→ F2 be an unbalanced Boolean func-

tion with n = 2k, k ∈ Z. Then the upper bound for nonlinearity is

nl(f) ≤ 2n−1 − 2
n
2
−1.

Remark 3.3.1. [40] If f is a n-variable bent functions, and g any a�ne

function then f ⊕ g is also a bent function. It then follows that the hamming

weight of any bent function is given as wt(f) = 2n−1 ± 2
n
2
−1.
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De�nition 3.3.1. Let f : Fn2 −→ F2 be an n-variable unbalanced Boolean

function for even n. Then f is said to be a bent function if and only if the

Hamming distance,

d(f, g) = 2n−1 − 2
n
2
−1, for all g ∈ ABn ,

where ABn denotes the set of all n-variable a�ne Boolean functions. We

denote by BBn the set of n-variable bent functions.

Remark 3.3.2. 1. If f : Fn2 −→ F2 is a bent function, then n is even.

2. If f ∈ BBn, Y ∈ Fn2 and 1 ≤ wt(Y ) ≤ n, then f(X) ⊕ f(X ⊕ Y ) is

balanced, where X ∈ Fn2 .

Example 3.3.1. Consider the Boolean function

f(X) = x1 · x2 ⊕ x3 · x4, where X = (x1, x2, x3, x4), xi ∈ F2,

to be bent, then

nl(f) ≤ d(f, g) = 24−1 − 2
4
2
−1

= 6,

If we let Y = 1011 ∈ F4
2 then 1 ≤ wt(Y ) = 3 ≤ 4.

Next we consider the truth table representation of f(X), f(X ⊕ Y ) and

f(X)⊕ f(X ⊕ Y ):
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Input Output

x1 x2 x3 x4 f(X)

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 1 1 1

0 1 0 1 0

0 1 1 0 0

1 0 0 1 0

1 0 1 0 0

1 1 0 0 1

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Table 3.2: Truth Table of f(X) = x1 · x2 ⊕ x3 · x4

.
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Input Output

x1 ⊕ y1 x2 ⊕ y2 x3 ⊕ y3 x4 ⊕ y4 f(X ⊕ Y )

1 0 1 1 1

1 0 1 0 0

1 0 0 1 0

1 1 1 1 0

0 0 1 1 1

1 0 0 0 0

1 1 1 0 1

1 1 0 1 1

0 0 1 0 0

0 0 0 1 0

0 1 1 1 1

1 1 0 0 1

0 0 0 0 0

0 1 1 0 0

0 1 0 1 0

0 1 0 0 0

Table 3.3: Truth Table of f(X⊕Y ) = (x1⊕y1)·(x2⊕y2)⊕(x3⊕y3)·(x4⊕y4)

.
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f(X) f(X ⊕ Y ) f(X)⊕ f(X ⊕ Y )

0 1 1

0 0 0

0 0 0

0 0 0

0 1 1

1 0 1

0 1 1

0 1 1

0 0 0

0 0 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

0 0 0

Table 3.4: Truth Table of f(X)⊕ f(X ⊕ Y )

.

Remark 3.3.2 claims that if f is bent then f(X)⊕ f(X ⊕Y ) is balanced,

which in this case is true since

wt(f(X)⊕ f(X ⊕ Y )) =
∑
X∈F4

2

(f(X)⊕ f(X ⊕ Y ))

= 8,

which coincides with Proposition 3.2.1 which says f(X)⊕ f(X ⊕ Y ) is bal-

anced if

wt(f(X)⊕ f(X ⊕ Y )) = 2n−1

= 24−1

= 8.
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De�nition 3.3.2. Let f ∈ BBn. Then the Walsh spectrum of f at Y is

de�ned to be:

|Wf (Y )| = 2
n
2 ,

where Wf (Y ) = ±2
n
2 , for all Y, is the Walsh transform of f at Y ∈ Fn2 .

De�nition 3.3.3. Let fi ∈ BBn, where i = 1, . . . ,m. Then an S-box is

de�ned to be:

f : Fn2 −→ Fm2 ,

such that each fi : Fn2 −→ F2 forms a column of the s-box, where the input

bits gives the position and the entry gives the output.

Remark 3.3.3. 1. An s-box is a collection of m highly nonlinear Boolean

functions, (bent functions).

2. Positions of an entry in a s-box starts from row 0, column 0.

Example 3.3.2. Consider the bent function de�ned in Example 3.3.1. Let

f : F4
2 −→ F4

2 be an s-box. Then f1(X) = x1 · x2 ⊕ x3 · x4 forms the �rst

column of f while f2, f3, f4 occupy columns 2, 3, 4 respectively as follows.

Suppose we choose another bent function, f2(X) = 1 ⊕ x1 · x2 ⊕ x1 · x3 ⊕
x1 · x4 ⊕ x2 · x3 ⊕ x2 · x4 ⊕ x3 · x4, and some bent functions, f3(X) and

f4(X), where X = (x1, x2, x3, x4), xi ∈ F2:
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Input Output

x1 x2 x3 x4 f1(X) f2(X) f3(X) f4(X)

0 0 0 0 0 · · ·
0 0 0 1 0 · · ·
0 0 1 0 0 · · ·
0 1 0 0 0 1 1 0

1 0 0 0 0 · · ·
0 0 1 1 1 · · ·
0 1 0 1 0 · · ·
0 1 1 0 0 · · ·
1 0 0 1 0 · · ·
1 0 1 0 0 · · ·
1 1 0 0 1 · · ·
0 1 1 1 1 0 1 0

1 0 1 1 1 · · ·
1 1 0 1 1 · · ·
1 1 1 0 1 · · ·
1 1 1 1 0 · · ·

Table 3.5: Truth Table of the S-box f : F4
2 −→ F4

2

.

Assuming that the 4th row of the truth table is as shown above, then the

input bits are 0100 which corresponds to, outer elements 00 = 0 in decimals

and gives the row position of the entry, and the middle elements 10 = 2 in

decimals, giving the column position of the entry.

Now the output bits are 610 = 01102, which is the entry.

Hence, labelling this s-box S1:

S1

· · 6 ·
· · · 10

· · · ·
· · · ·

Table 3.6: S-box 1 f : F4
2 −→ F4

2

.
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Similarly if we assume that the 12th row of the truth table to be as given

then: Input bits are 0111, where 01= row 1 of the s-box and 11=column 3

of the s-box. The output bits are 1010 = 10102, which is the entry. Similar

calculations are performed for all entries of the truth table to construct the

entire s-box.

Since nonlinearity is very important in constructing secure s-boxes, spe-

cial types Boolean functions have been classi�ed as attaining maximum non-

linearity (amongst other cryptographic requirements) and these have been

used to build attack resistant block ciphers. Among these other crypto-

graphic requirements we consider the strict avalanche criterion and the prop-

agation criterion, and evaluate their link with bent functions.

De�nition 3.3.4. Let f ∈ BBn. Then f is said to satisfy the Strict

Avalanche Criterion, (SAC), if �ipping/ changing a single input bit

xi ∈ X ∈ Fn2 results in the output bits changing exactly half the time.

We state without proof the following lemma and provide reference to the

proof.

Lemma 3.3.2. [16] Let f ∈ BBn, such that
∑

X f(X)⊕ f(X ⊕ Y ) = 2n−1,

for any X,Y ∈ Fn2 . Then f satis�es the SAC if and only if wt(Y ) = 1.

Corollary 3.3.3. Let f ∈ BBn, such that n > 2, and deg(f) = n. Then f

does not satisfy the SAC.

Proof. Let f ∈ BBn with n > 2 and deg(f) = n. Then n = 2t for some

integer t > 1

⇒ deg(f) = 2t for some integer t > 1.

Consider Lemma 3.3.2 and Remark 3.3.2. Since f is bent we have:∑
X

f(X)⊕ f(X ⊕ Y ) = 2n−1.

All that remains to be shown is wt(f) not even, and wt(f) 6= 1.

Assume wt(f) is even. Then by Proposition 3.2.2, deg(f) 6= n, which is

a contradiction.

Hence wt(f) is not even ⇒ wt(f) is odd.
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Since wt(f) is odd and
∑

X f(X)⊕ f(X ⊕ Y ) = 2n−1,

wt(f) =
∑
X

f(X)

=
∑
X

f(X ⊕ Y )

=
1

2

∑
X

f(X)⊕ f(X ⊕ Y ), where Y ∈ Fn2

=
1

2
(2n−1), for some integer n > 1

= 2n−2

> 2, since n > 1 and wt(f) is odd.

Hence wt(f) 6= 1. Therefore by Lemma 3.3.2 above f does not satisfy the

SAC.

De�nition 3.3.5. Let f ∈ BBn. Then f is said to satisfy the Propagation

Criterion of degree (l), denoted PC(l), if �ipping/ changing k input bits

xi ∈ X ∈ Fn2 , for 1 ≤ k ≤ l, 1 ≤ i ≤ n, results in the output bits changing

exactly half the time.

Remark 3.3.4. The propagation criteria −PC(l)− is a general case of the

Strict Avalanche Criterion, PC(1).

Lemma 3.3.4. Let f ∈ BBn, and X,Y ∈ Fn2 such that wt(Y ) = l, where

0 ≤ l ≤ n. Then f(X) is PC(l) if and only if∑
Z≤Ȳ

Wf (Z ⊕ V )2 = 2wt(Ȳ )+wt(Y ), where V,X, Y, Z ∈ Fn2 .
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Proof. Let f ∈ BBn and wt(f) = l, where 0 ≤ l ≤ n. Then

∑
Z≤Ȳ

Wf (Z ⊕ V )2 =
∑
Z≤Ȳ

[∑
X

(−1)f(X)⊕(Z⊕V )·X

]2

=
∑
Z≤Ȳ

[(∑
X

(−1)f(X)⊕(Z⊕V )·X

)(∑
X

(−1)f(X)⊕(Z⊕V )·X

)]

=
∑
Z≤Ȳ

∑
X,K∈Fn

2

(−1)f(X)⊕f(K)⊕(Z⊕V )·(X⊕K)

=
∑
Z≤Ȳ

(−1)Z·(X⊕K)
∑

X,K∈Fn
2

(−1)f(X)⊕f(K)⊕V ·(X⊕K).

(3.1)

Considering Corollary 3.2.7 we have (3.1) as:∑
Z≤Ȳ

Wf (Z ⊕ V )2 = 2wt(Ȳ )
∑

X,K∈Fn
2

(−1)f(X)⊕f(K)⊕V ·(X⊕K)

= 2wt(Ȳ )
∑

X⊕K≤Y
(−1)f(X)⊕f(K)⊕V ·(X⊕K)

= 2wt(Ȳ )
∑

X⊕K≤Y
(−1)V ·(X⊕K)

∑
X⊕K≤Y

(−1)f(X)⊕f(X⊕(K⊕X)).

(3.2)

By same Corollary 3.2.7 (3.2) becomes:∑
Z≤Ȳ

Wf (Z ⊕ V )2 = 2wt(Ȳ ) · 2wt(Y )
∑

X⊕K≤Y
(−1)f(X)⊕f(X⊕K⊕X)).

= 2wt(Ȳ )+wt(Y )
∑

X⊕K≤Y
(−1)f(X)⊕f(X⊕K⊕X)). (3.3)

Now since we are considering a bent Boolean function, by Remark 3.3.2, the

number of zero's and one's produced by f(X)⊕ f(X ⊕ (K ⊕X)) are equal,

⇒ (−1)f(X)⊕f(X⊕(K⊕X)) gives equal number of −1's and 1's.

Therefore 3.3 is equal to 2wt(Ȳ )+wt(Y ).
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Summary

In this chapter we considered private-key cyptography, by focussing on the

cryptographic functions that are used in stream and block ciphers. We de-

�ned Boolean functions and discussed the properties that make them cryp-

tographically useful. We further investigated the likelihood of Boolean func-

tions to resist di�erent attacks by considering some cryptographic require-

ments for cryptographic functions.

We then extended our analysis to a special class of Boolean function (the

bent functions), evaluated their strength with respect to certain attacks, and

discussed how it achieves the upper bound of one of the discussed crypto-

graphic properties; nonlinearity.

In the next chapter we will consider the relationship between algebraic

graphs (the Cayley graphs and strongly regular graphs discussed in the pre-

vious chapter) and the cryptographic functions discussed in this chapter to

explore the possibilities of interpreting the properties of a stream and/or

block cipher through its associated graph.
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Chapter 4

Algebraic Graph Theory

applied to Cryptographic

Functions

The main objective of the study carried out in this dissertation is to inves-

tigate and discuss the links between algebraic graphs and symmetric cryp-

tography.

In this chapter we reconsider the properties and results discussed in Chap-

ters 2 and 3, and we use these properties and results to elucidate the con-

nections between cryptography based on Boolean and bent functions on the

one hand, and characterizations of these in terms of particular graphs, on

the other hand. This allows one to draw conclusions about joint properties.

This material is drawn from [7], [9], [33], [38].

4.1 Introduction

In Section 4.2 we consider the Cayley graph associated with a Boolean func-

tion, and use its spectral information to investigate the cryptographic prop-

erties of the stream cipher. In Section 4.3 a similar investigation is carried

out for strongly regular graphs and bent functions as applied to building

substitution boxes for block ciphers.
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A cipher is said to be cryptographically strong if it can resist almost every

known attack. The term �cryptographically strong� is commonly in use even

though it is imprecise, in the sense that ciphers are generally rated in com-

parison to other existing ciphers in their ability to resist a number of attacks

that have been investigated in cryptanalysis literature. To this end one seeks

to ensure that a cipher satis�es (as a minimum) known math properties, such

as balanceness of the Boolean function in use, that is, wt(f) = wt(f ⊕ 1),

and other properties described in Chapter 3. This chapter describes how one

can make some of these cryptographic decisions about a cipher by studying

its associated graph.

4.2 Boolean functions characterized by Cayley graphs

The security of stream ciphers relies on the design of cryptographically strong

Boolean functions to account for the production of pseudo-random sequences.

Stream ciphers were �rst introduced by Gilbert Sandford Vernam in 1917 and

for that reason they are sometimes referred to as the Vernam Ciphers.

In this section we compare properties of Cayley graphs introduced in Section

2.2 with the cryptographic requirements for Boolean functions to be cryp-

tographically strong discussed in Section 3.2. We construct an associated

Cayley graph, and from this graph we determine the strength of the cipher

by reading o� some Boolean function properties.

Recall that Cayley graphs are those graphs constructed via groups, as

discussed in Section 2.2. We consider a Boolean function as de�ned in the

preceding chapter, (a map from a vector space of n-tuples with elements

from F2). It can be shown that Fn2 is a group under XOR, which in this

study we use to construct the associated Cayley graph.

The following de�nition follows directly from the De�nition 2.2.1:

De�nition 4.2.1. Let (Fn2 ,⊕) be a group, f a Boolean function, Ωwt(f) =

{ω ∈ Fn2 | f(ω) = 1}, set of elements making up the Hamming weight of f ,

such that Ωwt(f) ⊂ Fn2 and ∀ω ∈ Ωwt(f) we have ω−1 ∈ Ωwt(f). Then the

Cayley graph associated with the Boolean function , Gf (Fn2 ,Ωwt(f)) =

(V,E), is the graph with the following properties:
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(i) V = {X | X ∈ Fn2};

(ii) E = {XY | Y = X ⊕ ω for ω ∈ Ωwt(f), X, Y ∈ Fn2}

= {XY | X ⊕ Y = X ⊕X ⊕ ω}

= {XY | X ⊕ Y ∈ Ωwt(f), X, Y ∈ Fn2}

= {XY | f(X ⊕ Y ) = 1, X, Y ∈ Fn2}.

Example 4.2.1. Let f ∈ B3, f(X) = x1x3 ⊕ x2.

Since V (Gf (F3
2,Ωwt(f))) = F3

2, then∣∣V (Gf (F3
2,Ωwt(f)))

∣∣ =
∣∣F3

2

∣∣ = 23.

Considering the corresponding truth table of the Boolean function f ,

Input Output

x1 x2 x3 f(x1, x2, x3)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Table 4.1: Truth Table of f ∈ B3, f(X) = x1x3 ⊕ x2

.

we obtain Ωwt(f) = {010, 011, 101, 110}. From this we notice that any pair

of vertices X,Y ∈ F3
2 is adjacent if X ⊕ Y is any one of the above elements

that give output 1, which follows from the de�nition that:

E(Gf (F3
2,Ωwt(f))) = {XY | f(X ⊕ Y ) = 1, X, Y ∈ F3

2}.

This yields the Cayley graph associated to the Boolean function:
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Figure 4.1: Cayley graph associated with the Boolean function f ∈ B3

In Chapter 1 we de�ned the notions of an adjacency matrix and the

spectrum of a graph G = (V,E). Hence, we consider the adjacency matrix

of Cayley graphs.

De�nition 4.2.2. Let Gf = (V,E) be a Cayley graph associated with a given

Boolean function f ∈ Bn, and b(i),b(j) ∈ Fn2 being the binary representa-

tion of integers, i and j, rows and columns of the corresponding adjacency

matrix respectively, such that 0 ≤ i, j ≤ n− 1. Then, from the de�nition of

a Cayley graph associated with a Boolean function, the adjacency matrix of

this graph is easily attained by:

[aij ]n×n = f(b(i) ⊕ b(j)).

We state without proof the following propositions which are useful in

obtaining the adjacency matrix of Gf ;
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Proposition 4.2.1. [7] Addition mod-2 of binary representation of numbers

has the property:

i⊕ j = (i+ 2n)⊕ (j + 2n) = j ⊕ i

for i, j ∈ N0 such that 0 ≤ i, j ≤ 2n − 1. Whence the above matrix has the

following property:

[aij ]n×n =
[
ai+2n−1,j+2n−1

]
n×n =

[
aj+2n−1,i+2n−1

]
n×n = [aji]n×n.

Proposition 4.2.2. Let [aij ]n×n be the adjacency matrix of the Cayley graph

Gf (Fn2 ,Ωwt(f)) = (V,E). Then
∑

i �xed[aij ] = wt(f), where wt(f) is the

Hamming weight of f ∈ Bn.

Remark 4.2.1. A Cayley graph associated with a Boolean function f ∈ Bn
is wt(f)-regular, since

∣∣Ωwt(f)

∣∣ = wt(f) and Ωwt(f) ⊂ Fn2 , where for all

ω ∈ Ωwt(f) there is ω−1 ∈ Ωwt(f).

In what follows we discuss the nature of a strong link between Cayley

graphs and cryptographic Boolean functions by presenting a spectral per-

spective, where the spectral information of a Cayley graph can give necessary

but not su�cient results about the strength of the designed Boolean func-

tion. We recall the properties to consider when determining the capability

of a cipher to withstand some known attacks; these include the balancedness

of the Boolean function for resistance against statistical dependence, and

others discussed in the preceding chapter. In particular, the Walsh trans-

form of a cryptographic function can be obtained from the eigenvalues of the

associated Cayley graph. We also discuss the possibility of investigating the

ability of a cipher to resist correlation attack, by examining the spectrum of

the Cayley graph associated with the Boolean function and from it conclud-

ing whether the function is mth-correlation immune (or resilent) or not.

The next theorem, (Theorem 4.2.3), paves the way for the results that

conclude and explain the relationship between algebraic graphs and cryp-

tographic functions. The proof to Theorem 4.2.3 is given in the referenced

material. The results that follow are then proved from this theorem.

82



Theorem 4.2.3. [9] Let f ∈ Bn, de�ne

λi = 2nW ∗f (b(i)) for, 0 ≤ i, j ≤ 2n − 1.

Then {λi} = SpecGf (Fn2 ,Ωwt(f)).

Proposition 4.2.4. Let f ∈ Bn. Then f is (cl(m)) if and only if

λi ∈ Spec(Gf ), λi = 0, for all 1 ≤ wt(b(i)) ≤ m.

Moreover, f is m-resilent if and only if λi = 0, for all 1 ≤ wt(b(i)) ≤ m

and λ0 = 2n−1.

Proof. Let f be an n-variable Boolean function.

“⇒ ”: If f is mth-order correlation immune, then

Wf (b(i)) = 0, for, 0 ≤ i ≤ 2n − 1.

From Theorem 4.2.3:

λi = 2nW ∗f (b(i)), for all 1 ≤ wt(b(i)) ≤ m

= 2n
(
−1

2
Wf (b(i)) + 2n−1δ (b(i))

)
= −2n−1Wf (b(i)) + 22n−1δ(b(i)). (4.1)

Recall that,

δ(b(i)) =

1 if b(i)) = 0

0 if b(i)) 6= 0.

However, 1 ≤ wt(b(i)) ≤ m ⇒ δ(b(i)) = 0, since for wt(b(i)) > 0 we must

have b(i) 6= 0.

Then (4.1) becomes

λi = −2n−1Wf (b(i)).

Also, we have that Wf (b(i)) = 0. Hence, λi = 0.

“⇐ ”: Now, assume λi ∈ Spec(Gf ), λi = 0, for all 1 ≤ wt(b(i)) ≤ m.
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Then following from Theorem 4.2.3

0 = λi = −2n−1Wf (b(i)) + 22n−1δ(b(i)).

Hence, Wf (b(i)) = 2nδ(b(i))

=

1 if b(i)) = 0

0 if b(i)) 6= 0.
(4.2)

However, 1 ≤ wt(b(i)) ≤ m ⇒ δ(b(i)) = 0, since for wt(b(i)) > 0 we must

have b(i) 6= 0.

Then (4.2) becomes

Wf (b(i)) = 0.

Similarly, to demonstrate m-resilence we proceed as follows:

“ ⇒ ”: If f is m-resilent, then wt(f) = 2n−1 and Wf (b(i)) = 0, for, 0 ≤
i ≤ 2n − 1.

So, from Theorem 4.2.3,

λi = 2nW ∗f (b(i)), for all 1 ≤ wt(b(i)) ≤ m,

and it follows (in a similar fashion to the presented above) that λi = 0.

Also, by de�nition, λ0 = r = wt(f). However, since f is m-resilent, f is

balanced. Hence, wt(f) = 2n−1 ⇒ λ0 = 2n−1

“ ⇐ ”: Now, assume λi ∈ Spec(Gf ), λi = 0, for all 1 ≤ wt(b(i)) ≤ m

and λ0 = 2n−1. Then, by de�nition, λ0 = wt(f) ⇒ wt(f) = 2n−1 = wt(f ⊕
1). Thus, f is balanced.

Also, by a similar technique as that used above, Wf (b(i)) = 0. Hence,

since Wf (b(i)) = 0 and f is balanced, f must be m-resilent.

Theorem 4.2.5. Let f ∈ Bn,
∣∣Spec(Gf (Fn2 ,Ωwt(f)))

∣∣ = 2, such that λ0 6=
λ1, for λ0, λ1 ∈ Spec(Gf (Fn2 ,Ωwt(f))). Then the connected components of

Gf (Fn2 ,Ωwt(f)) are complete graphs. Moreover, Ωwt(f) ∪ {b(0)} is a group,

where b(0) ∈ Fn2 .

Proof. Let Gf be a Cayley graph associated to a Boolean function with two
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distinct eigenvalues. Then, from Proposition 1.2.5, if |Spec(Gf )| = s+ 1,

diam(Gf ) |Spec(Gf )| − 1 = 1.

Hence any connected components of Gf are complete graphs.

Next we show that
(
Ωwt(f) ∪ {b(0)},⊕

)
meets all properties of a group;

(i) Pick any pair of ωi ∈ Ωwt(f) for any 0 ≤ i ≤ n− 1, (say ω1 and ω2).

Then, since diam(Gf ) ≤ 1, for any connected component,

d(ω1, ω2) = 1,

⇒ any pair of ω′is is adjacent,

⇒ f(ω1 ⊕ ω2) = 1,

⇒ ω1 ⊕ ω2 = Ωwt(f),

Hence,
(
Ωwt(f) ∪ {b(0)},⊕

)
is closed under ⊕.

(ii) Let ω1, ω2, ω3 ∈
(
Ωwt(f) ∪ {b(0)},⊕

)
. Then, since ⊕ is associative;

(ω1 ⊕ ω2)⊕ ω3 = ω1 ⊕ (ω2 ⊕ ω3) .

(iii) Let ωi,b(0) ∈
(
Ωwt(f) ∪ {b(0)},⊕

)
. Then, since any n-dimensional

vector XORed with the 0-vector returns the same vector, and XOR

is symmetric, it therefore, su�ces to say there is a 0-vector b(0) ∈(
Ωwt(f) ∪ {b(0)},⊕

)
such that ωi ⊕ b(0) = ωi = b(0)⊕ ωi.

(iv) Let ωi ∈
(
Ωwt(f)

)
for any i. Then, by the de�nition of Ωwt(f), for all

ωi ∈ Ωwt(f) there exists ωj ∈ Ωwt(f) such that ωi⊕ωj = b(0) = ωj⊕ωi
for any i and j ⇒ ωj = ω−1

i .

Also, since b(0)−1 = b(0), for every ωi ∈
(
Ωwt(f) ∪ {b(0)}

)
,

there exists ωj ∈
(
Ωwt(f) ∪ {b(0)}

)
, such that,

ωi ⊕ ωj = eΩwt(f)∪{b(0)} = b(0) = ωj ⊕ ωi.

Hence, it is clear that
(
Ωwt(f) ∪ {b(0)},⊕

)
is a group.
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Corollary 4.2.6. Let f ∈ Bn,
∣∣Spec(Gf (Fn2 ,Ωwt(f))

∣∣ = 2, such that λ0 6= λ1,

for λ0, λ1 ∈ Spec(Gf (Fn2 ,Ωwt(f))). If b(0) ∈ Ωwt(f), then

λ0 =
∣∣Ωwt(f)

∣∣ and λ1 = 0,

where b(0) ∈ Fn2 .

Proof. Let b(0) ∈ Ωwt(f). Then, Ωwt(f) ∪ {b(0)} = Ωwt(f). By de�nition

λ0 = r =
∣∣Ωwt(f)

∣∣, so all we are left to show is that λ1 = 0.

By Proposition 1.2.5, diam(Gf ) ≤ 1 which implies that, for each connected

component of Gf we have d(X,Y ) = 1, for all X,Y ∈ Fn2 , (since the compo-

nents are complete via Theorem 4.2.5).

Also, since b(0) ∈ Ωwt(f) and Gf is complete, the graph has self loops,

⇒ the adjacency matrix, AGf , of the associated graph is;


1 1 · · · 1

1 1 · · · 1
...

... · · ·
...

1 1 · · · 1

 ,

from which the second eigenvalue, λ1 = 0, may be calculated.

Corollary 4.2.7. Let f ∈ Bn,
∣∣Spec(Gf (Fn2 ,Ωwt(f)))

∣∣ = 2, such that λ0 6=
λ1, for λ0, λ1 ∈ Spec(Gf (Fn2 ,Ωwt(f)). If b(0) /∈ Ωwt(f), then

λ0 =
∣∣Ωwt(f)

∣∣ and λ1 = −1,

where b(0) ∈ Fn2 .

Proof. Let b(0) 6∈ Ωwt(f). By de�nition λ0 = r =
∣∣Ωwt(f)

∣∣, so all we are

required to show is that λ1 = −1.

Similarly as for Corollary 4.2.6, we may construct the adjacency matrix.
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However, now b(0) 6∈ Ωwt(f), so the main diagonal of the adjacency matrix,

AGf , of the associated graph has zero's only;


0 1 · · · 1

1 0 · · · 1
...

... · · ·
...

1 1 · · · 0

 .

Hence, the second eigenvalue may be calculated as λ1 = −1.

Theorem 4.2.8. Let f ∈ Bn. If Gf is connected and |Spec(Gf )| = s + 1,

where s ≤ n
2 then

n ≤ log2

(
wt(f) +

(
wt(f)

s

))
.

Proof. Let Gf be a connected Cayley graph associated with a Boolean func-

tion. Since |Spec(Gf )| = s+ 1, from Proposition 1.2.5;

diam(Gf ) ≤ (s+ 1)− 1 = s.

Also, any pair of vertices X,Y ∈ Gf are adjacent if Y = X ⊕ ωi, where

ωi ∈ Ωwt(f) for some i. Thus, if Z is adjacent to Y ,

Z = Y ⊕ ω2 = X ⊕ ω1 ⊕ ω2 for some ω1, ω2.

Hence, any Z ∈
(
Fn2 \ Ωwt(f)

)
can be given as

Z =
∑
i

ωi, where ωi ∈ Ωwt(f).

It follows then that i ≤ s since diam(Gf ) ≤ s.

Hence Z =
∑r

j cjωj , where r = wt(f) and cj ∈ F2. Now,

∣∣Fn2 \ Ωwt(f)

∣∣ = 2n − r ≤
(
r

s

)
since each cj is either 0 or 1 for any ωi ∈ Ωwt(f), but

∣∣Ωwt(f)

∣∣ = r. Hence
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each Z ∈ Fn2 can be made up of r or less ω′is so

2n − r ≤
(
r

s

)
⇒ 2n ≤ r +

(
r

s

)
Therefore, substituting r = wt(f),

n ≤ log2

(
wt(f) +

(
wt(f)

s

))
.

To illustrate the relationship between Cayley graphs and the Boolean

functions underpining the security of stream ciphers, we consider the follow-

ing continuation of Example 4.2.1:

Example 4.2.2. It is clear from Figure 4.2.1 that Gf (Fn2 ,Ωwt(f)) in Example

4.2.1 is 4-regular, so

2n−1 = 23−1

= 4.

Also Remark 4.2.1 assures us that the regularity of Gf (Fn2 ,Ωwt(f)) is the

Hamming weight of its associated Boolean function. Hence wt(f) = 4, which

is as expected. Therefore, amongst other known attacks we are at least

certain (to some probability) that the cipher can resist statistical dependence

as an attack, since the Boolean function used is balanced by De�nition 3.2.3

and Proposition 3.2.1. One can further test for resistance against other

attacks.
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4.3 Bent functions characterized by Strongly regu-

lar graphs

Just as pseudo-random number generators are core to the security of stream

ciphers, bent functions possessing necessary cryptographic properties are

used for construction of strong s-boxes which are central to the security of

block ciphers.

Block ciphers took over as an important shield for ensuring security of elec-

tronic data after the US National Bureau of Standards (NBS) called for a

strong encryption primitive in 1973. Since then many implementations have

been made, including designs of DES, AES.

In this section we build upon Chapters 2 and 3 by comparing the properties

and results for algebraic graphs and cryptographic functions. In Chapter 2

we introduced Cayley graphs and SRGs. In Chapter 3 we introduced general

Boolean functions and a special case; bent functions.

We consider n to be even and construct a Cayley graph associated to the

Boolean function, Gf (Fn2 ,Ωwt(f)) = (V,E). Then the resulting graph is said

to be associated to a bent Boolean function. If, in addition, Gf (Fn2 ,Ωwt(f)) =

(V,E) is a strongly regular graph then we say Gf (Fn2 ,Ωwt(f)) is a strongly

regular Cayley graph associated with the bent Boolean function ,

with both the vertex and edge set de�ned as in De�nition 4.2.1.

We show the following powerful relationship between strongly regular Cayley

graphs and cryptographic bent Boolean functions. Recall that we consider

n to be even when dealing with bent functions.

Remark 4.3.1. The spectral coe�cients of Gf (Fn2 ,Ωwt(f)) are the eigen-

values of the corresponding adjacency matrix.

Considering Gf (Fn2 ,Ωwt(f)) to be connected we show that there is a link

(via the spectral coe�cient of Gf (Fn2 ,Ωwt(f))) between strongly regular Cay-

ley graphs and cryptographic bent functions. We show that the Hamming

weight of a cryptographic function has a lower bound. Furthermore we ex-

plore some corresponding properties of these strongly regular Cayley graphs.
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Corollary 4.3.1. Let Gf (Fn2 ,Ωwt(f)) = (V,E) be a strongly regular Cayley

graph associated with a bent function. Then

wt(f) ≥ −1 +
√

2n+3 + 1

2
.

Proof. Let Gf be a SRCG associated to a bent Boolean function. Since

Gf is connected, by Theorem 2.3.7, |Spec(Gf )| = 3. This implies that the

maximum eccentricity of Gf (diam(Gf )) is not more than 2.

We omit the case where diam(Gf ) = 0, because it violates the require-

ment of SRG Case I: diam(Gf ) = 1 ⇒ Gf is complete and |Spec(Gf )| = 2.

However, |Spec(Gf )| = 3, which is a contradiction.

Case II: diam(Gf ) = 2⇒ since a pair of vertices X,Y ∈ V (Gf ) is adjacent

if, for ωi ∈ Ωwt(f),

Y = X ⊕ ωi.

Similarly, for pair of nonadjacent vertices X,Z ∈ V (Gf ), sharing vertex

Y ,

Z = Y ⊕ ω2

= X ⊕ ω1 ⊕ ω2.

i.e any element outside the set Ωwt(f) can be given by the sum of two elements

inside the set Ωwt(f).

Hence any Z ∈
(
Fn2 \ Ωwt(f)

)
can be given as

Z =
∑
i

ωi, where ωi ∈ Ωwt(f)

=
r∑
j

cjωj , where r = wt(f) and cj ∈ F2

but the number of cj that are not equal to zero is 2.

Hence,
∣∣Fn2 \ Ωwt(f)

∣∣ = 2n − r ≤
(
r

2

)
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⇒ 2n − r ≤ r(r − 1)

2

⇒ r2 + r − 2n+1 ≥ 0

⇒ r ≥ −1±
√

1 + 2n+3

2

However, r > 0. Therefore

wt(f) ≥ −1 +
√

1 + 2n+3

2
.

Example 4.3.1. The lower bound of the Hamming weight of f in Example

(3.3.1) is

wt(f) ≥ −1 +
√

24+3 + 1

2

=
−1 +

√
129

2

> 5.

The next theorem, Theorem 4.3.2 paves the way for the results that con-

clude and explain the relationship between strongly regular graphs and bent

cryptographic functions. The proof to Theorem 4.3.2 is given in the refer-

enced material. The results that follow are then proved from this theorem.

In particular Theorem 4.3.3 demonstrates a special property in the fam-

ily of strongly regular graphs. This is when λ = µ. Strongly regular graphs

with the property that λ = µ, correlate with symmetric balanced incomplete

block designs, also known as the 2-(n, r, λ) designs [11]. This gives rise to

a natural question on the possible interplay between Boolean functions and

2-designs or a more general question on the possible interplay between cryp-

tographic functions and symmetric 2-designs [1]. Block designs form part of

design theory, a study in combinatorics. The literature (e.g. [2] and [36])

reveals interactions between speci�c types of block designs and cryptography.
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Theorem 4.3.2. [16] Let Gf (Fn2 ,Ωwt(f)) = (V,E) be a strongly regular Cay-

ley graph associated to a bent function. Then

Spec(Gf (Fn2 ,Ωwt(f))) =

{∣∣Ωwt(f)

∣∣ ,√∣∣Ωwt(f)

∣∣− µ,−√∣∣Ωwt(f)

∣∣− µ} .
Theorem 4.3.3. Let Gf (Fn2 ,Ωwt(f)) = (V,E) be a strongly regular graph

associated to a bent function. Then λ = µ if (n, r, λ, µ) are the parameters

of Gf (Fn2 ,Ωwt(f)).

Moreover, the corresponding adjacency matrix satis�es

A2 = (2n−1 ± 2
n
2
−1 − µ)I + µJ.

Proof. Let Gf (Fn2 ,Ωwt(f)) be a SRCG associated to a bent Boolean function.

Then from Theorem 2.3.5 we have that a connected (n, r, λ, µ) strongly reg-

ular graph with the property

A2 = (λ− µ)A+ (r − µ)I + µJ, (4.3)

where I and J are the identity and the matrix consisting of all entries equal

to 1, respectively.

However, r = wt(f). From Theorem 4.3.2{√
wt(f)− µ,−

√
wt(f)− µ

}
⊂ Spec(Gf ).

Then it follows from Corollary 2.3.8 that

λ = wt(f) +
[√

wt(f)− µ ·
√
wt(f)− µ

]
+
√
wt(f)− µ−

√
wt(f)− µ,

= wt(f)−
√

(wt(f)− µ)(wt(f)− µ) (4.4)

µ = wt(f) + (
√
wt(f)− µ) · (−

√
wt(f)− µ),

= wt(f)−
√

(wt(f)− µ)(wt(f)− µ) (4.5)

Since (4.4) and (4.5) are equal, it follows that λ = µ.
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From (4.3) we have that

A2 = (λ− µ)A+ (r − µ)I + µJ

= 0A+ [wt(f)− wt(f) + (wt(f)− µ)] I + µJ

= (wt(f)− µ) I + µJ.

Then, from Remark 3.3.1 we have:

A2 =
(

2n−1 ± 2
n
2
−1 − µ

)
I + µJ.

Theorem 4.3.4. Let f ∈ BBn. Then Gf (Fn2 ,Ωwt(f)) is not a bipartite graph.

Proof. Let Gf (Fn2 ,Ωwt(f)) be a strongly regular Cayley graph associated with

a bent Boolean function f . Then, if Gf (Fn2 ,Ωwt(f)) is bipartite, we have

Spec(Gf ) symmetric with respect to 0 by Proposition 1.2.6. Hence, if λ ∈
Spec(Gf ) then −λ ∈ Spec(Gf ).

From Theorem 4.3.2 above we have that
∣∣Ωwt(f)

∣∣ = wt(f) ∈ Spec(Gf ).

Hence, it would follow that −wt(f) ∈ Spec(Gf ). This is a contradiction, ac-

cording to the properties of Spec(Gf ) in Theorem 4.3.2. Therefore; Gf (Fn2 ,Ωwt(f))

is not a bipartite graph.

Example 4.3.2. Consider f ∈ BB4 de�ned in Example 3.3.1 as

f(X) = x1 · x2 ⊕ x3 · x4.

Then V (Gf (F4
2,Ωwt(f))) = F4

2, so
∣∣V (Gf (F4

2,Ωwt(f)))
∣∣ = 24 = 16.

From Table 3.3.2,

Ωwt(f) = {0011, 1100, 0111, 1011, 1101, 1110},
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so

E(Gf (F3
2,Ωwt(f))) = {XY | f(X ⊕ Y ) = 1, X, Y ∈ F4

2}

= {XY | (X ⊕ Y ) ∈ Ωwt(f), X, Y ∈ F4
2}.

Hence, we have Gf (F4
2,Ωwt(f)) as:
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Figure 4.2: Strongly regular Cayley graph associated with the bent Boolean

function f ∈ BB4

Summary

In this chapter we reviewed the application of Cayley and strongly regular

graphs to cryptographic use. We did this by considering the vector space
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from a Boolean function to be the group from which the Cayley graph is

constructed. Hence this bring together both �elds (graph theory and cryp-

tography) and the graph we end up with is the Cayley graph associated

with a Boolean function. We further noticed that from the Cayley graph

associated with a Boolean function we can derive numerous cryptographic

properties of a stream cipher.

Further to this we saw how strongly regular Cayley graphs play a role

in describing the strength of a block cipher by studying bent Boolean func-

tions. We concluded with examples drawn from the study of the relationship

between graph theory and cryptography.
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Conclusion

This dissertation discussed the construction of Cayley graphs and the prop-

erties they possess with a view to applications in cryptography. Strongly reg-

ular graphs were also discussed so as to de�ne strongly regular Cayley graphs

and distinguish them from general Cayley graphs. We provided background

material on cryptographic functions, and in particular Boolean functions,

(which are used in stream ciphers), and a special case, bent functions (which

are used in block ciphers). We then presented material discussing the links

between Cayley graphs and Boolean functions, as well as those between

strongly regular graphs and bent functions.

The key idea being that of constructing and de�ning a Cayley graph

associated with a Boolean function both generally and those in the special

case of a strongly regular Cayley graph associated with bent Boolean func-

tion. These graphs elucidate the connection between cryptography based on

Boolean and bent functions, on the one hand, and the characterization of

these in terms of general Cayley and strongly regular Cayley graphs on the

other hand.

We showed that the construction of these graphs follows directly from the

de�nition of Cayley and strongly regular graphs, with the group used for the

construction of Cayley graphs being (Fn2 ,⊕). In some cases the Cayley set

Ωwt(t) maybe chosen without regarding the condition, b(0) 6∈ Ωwt(f), where

b(0) is the identity element of the group under the binary operation XOR.

These algebraic graphs can be used to measure some cryptographic prop-

erties of the underlying cipher. The strength of the cipher is measured by

considering the cryptographic functions that make up the security part of

it. Boolean functions make up the pseudo-random number generator of the
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stream cipher, so the design of the Boolean function is the crucial part of the

cipher and needs to align with the cryptographic requirements. Similarly the

set of bent (Boolean) functions makes up the substitution box of the block

cipher, so these bent (Boolean) functions need to be checked against the

relevant cryptographic requirements.

These requirements are drawn from understanding currently well researched

and implemented attacks by cryptanalysts. Some attacks considered in this

dissertation are: statistical dependence between plaintext and ciphertext,

(fast) correlation attacks, algebraic attacks, as well as linear and di�eren-

tial cryptanalysis. Some fundamental requirements drawn from analysis of

these attacks include: the Boolean function must be balanced, which means,

the choice of f must be such that wt(f) = wt(f ⊕ 1) = 2n−1; and the

Boolean function must have high nonlinearity, which is in fact attained to

its maximum by the bent function. Other requirement brie�y discussed in-

clude, SAC, propagation, cl(m), high Hamming distance etc. We noticed

that during the attempt to achieve these requirements there are trade-o�s

that appear, for instance we know that, for block ciphers, we could increase

the number of rounds to make it more secure but at the same time that

would lead to a disadvantage on the speed requirement of the cipher. Also

[32] makes known that correlation immunity and the algebraic degree are

con�icting properties and it is not possible to obtain a function with both

properties optimal.

We managed to conclude that, from the Cayley graph associated with the

Boolean function, one can actually tell whether the designed Boolean func-

tion is suitable against statistical dependence as an attack, since the reg-

ularity of the graph is equivalent to obtaining the Hamming weight of the

function, from which we may decide whether the function is balanced or

not. Theorem 4.3.2 from the last chapter shows that the Hamming weight

of the bent function can be given in terms of the spectral information of the

associated graph.

This dissertation considers PRNG; the author challenges the reader to in-

vestigate the possibility of considering CSPRNG for a similar study.
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