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ABSTRACT 

Rivers are the main source of freshwater water for human communities and provide people 

with numerous ecosystem services such as water purification, transportation, power generation, 

food supply, and water for domestic, agricultural and industrial use. Water resources, and the 

ecosystem services they provide, are particularly important in developing countries, such as 

South Africa. The uMngeni River, is a strategic resource that provides water to two of the 

largest cities in KwaZulu-Natal Province (the uMgungundlovu and eThekwini municipalities), 

with more than four million people, making it socio-economically important. As such, to 

maintain sustainability the protection of the river is important. However, in South Africa and 

KwaZulu-Natal, the impact of anthropogenic activities has made riverine ecosystems one of 

the most threatened types of ecosystems in the world. The use of fish as key indicators of the 

ecological state of aquatic ecosystems is well established as their vulnerability to 

environmental change, mobility, longevity and relative ease of species identification make 

them good indicators. 

This study evaluated the current ecological integrity of the uMngeni River in KwaZulu-

Natal using multiple lines of evidence including fish communities and the state of Labeobarbus 

natalensis (the KwaZulu-Natal yellowfish) populations, and environmental variables. The 

research was undertaken in the major man-made lakes (dams) in the uMngeni River (namely 

Midmar, Albert Falls, Nagle and Inanda Dams) and in the rivers of the uMngeni Catchment. 

Abiotic lines of evidence investigated included water quality and habitat, while the biotic lines 

of evidence included fish community structures and attributes of the population of L. 

natalensis. 

Fish community structures at eight selected River Eco-status Monitoring Programme 

(REMP) sites in the uMngeni catchment were considered. This included consideration of how 

the fish communities responded to changes in a range of environmental variables and alien 
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fishes using the Fish Response Assessment Index (FRAI), we were able to determine that the 

ecological integrity of the uMngeni River decreases in a downstream gradient from the upper 

reaches of the catchment to lower reaches, due the synergistic effect of multiple anthropogenic 

stressors. The multivariate analyses indicated that the anthropogenic impacts responsible for 

shifts in fish community structures, and the associated ecological integrity of the river were 

related to changes in instream habitats and water quality stressors primarily. Most of the 

environmental changes identified can be linked to flow modifications and land use activities 

throughout the uMngeni catchment. 

Assessments of attributes of the L. natalensis populations from large instream 

impoundments in the uMngeni River (namely Midmar, Albert Falls, Nagle and Inanda Dam) 

resulted in diminishing wellbeing of the populations of this endemic migratory fish 

progressively both in abundance and structure, down the length of the catchment. The quality 

and quantity of water diminished down the catchment gradient with this gradient and the effect 

of the barriers themselves can partially be attributed to the impaired state of the populations. 

Impoundments are not preferred by juvenile and young L. natalensis that prefer shallow riffle 

habitats that are lacking in dams, the occurrence of many predatory alien fishes in the dam can 

also be attributed to the absence of small yellowfish in the dams. 

The outcomes of this study can contribute to the sustainable management and 

development of conservation plans for the rivers and dams in the uMngeni catchment. Major 

stressors that should be mitigated include the barrier effect and operation or flow releases from 

the large dams and smaller weirs etc. that cause river fragmentation in the catchment. It is 

recommended that management plans for the conservation of the fishes in the catchment should 

be developed which is achievable as the current supply of resources in the catchment is 

balanced with the demand for use. Fish passages should be established in all of the dams in the 

uMngeni River to allow migratory fish free passage along the river and to re-establish river 
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connectivity processes. Additionally, the removal of redundant weirs or partial man-made 

barriers is recommended to alleviate the effects of fragmentation particularly on the yellowfish 

in the catchment. More research is required to understand the migratory requirements of fishes 

in the catchments and the cost-benefit of mitigating river fragmentation to achieve a sustainable 

balance between the use and protection of resources in the catchment. Finally, the study has 

identified water quality and flow stressors that are negatively affecting the wellbeing of the fish 

communities in the catchment. The water quality stressors derived from land-based activities 

and associated management of flows in the catchment must be improved to attain a sustainable 

balance between the use and protection of the resources of the uMngeni Catchment.   
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CHAPTER 1: 

Introduction 

1.1 Importance of rivers 

Water is considered by many to be earth’s most vital natural resource and it is made even more 

precious by its scarcity (Vörösmarty et al. 2010; Kanyerere et al. 2018). Although 71% of the 

earth’s surface is covered by water, freshwater makes up only 2.5% of all water on earth (USGS 

2019). Furthermore, less than 1% of freshwater is available for human use as most of it is 

locked up in polar ice caps (Geise et al. 2010; USGS 2019). The main source of the freshwater 

water accessible for human use comes from rivers, which also provide numerous ecosystem 

services (Costanza et al. 1997; Yeakley et al. 2016). Ecosystem services provided by rivers 

include water purification, transportation, power generation, food supply, and water supply (for 

domestic, agricultural and industrial use) (Tejerina-Garro et al. 2005; Yeakley et al. 2016). 

Unfortunately, despite their value to us, riverine ecosystems are one of the most endangered 

ecosystems in the world, as a result of human activities (Tejerina-Garro et al. 2005; Dudgeon 

2014; Rodell et al. 2018; Du Plessis 2019). 

With an ever-growing human population worldwide, there is also an increase in 

urbanisation to accommodate the growing numbers (Wigginton et al. 2016; UN WUP 2018). 

The South African urban population, in particular, has grown from 7.8 million in 1960 to 38.3 

million in 2018 (UN WUP 2018). This results in increased demand for land, agriculture, and 

infrastructure, thus putting a strain on the country’s natural resources (Giannecchini et al. 2007; 

Hsu et al. 2013; Jewitt et al. 2015; Fouchy et al. 2018). The strain of increased urban 

populations in South Africa has had great impacts on aquatic habitats and ecosystems through 

physical disturbance of aquatic systems and physicochemical pollution from urban 

development such as mining, infrastructure and dam construction, which alters flow regimes 

(Sibanda et al. 2015; Jewitt et al. 2015; Fouchy et al. 2018; O’Brien et al. 2019). Drastic land 
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use changes have transformed more than 50% of land cover in most provinces and led to over 

57% of all rivers in South Africa being in a threatened or unsustainable ecological state (Jewitt 

et al. 2015; O’Brien et al. 2019). Rural land use, such as agriculture and rangelands, also impact 

habitats through water consumption and deforestation (Jewitt et al. 2015). In Africa, irrigated 

agriculture, as well as domestic and municipal water use, are responsible for the most water 

consumption (Fouchy et al. 2018). 

 

1.2 Importance of river connectivity 

When a river can flow freely it allows for the movement and exchange of water, organisms, 

sediments, organic matter, nutrients and energy throughout the river system (Grill et al. 2019). 

Flow modification by humans is one of the greatest threats to freshwater ecosystems and has 

altered natural river connectivity so intensively that only about a third of the world’s large 

rivers (>1000 km in length) remain free-flowing (Dugan et al. 2010; Grill et al. 2019). The 

construction of impoundments (dams and/ weirs) causes a disturbance in natural aquatic 

systems by altering sedimentation processes, flooding, channelisation and temperature 

regulations (Dugan et al. 2010; Hall et al. 2011; McIntyre et al. 2016; Grill et al. 2019). 

Additionally, by interrupting migration pathways of migratory fish between spawning and 

feeding sites, natural nutrient processes are also affected by dams (Hall et al. 2011; Gao et al. 

2019; Fouchy et al. 2018). There is still much debate as to whether the benefits of dams 

outweigh the negative impacts dams can have on river systems (Joyce 1997; Altinbilek 2002; 

Kuby et al. 2005; Rufin et al. 2019; Schulz and Adams 2019).  
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1.3 Importance of dams for water security 

Despite their detriment to riverine ecosystems, dams have become very important because of 

the services they provide such as water supply, irrigation, flood control and the production of 

hydropower in anthropogenically modified landscapes (ICOLD 2016). Water storage is often 

crucial in developing countries, such as South Africa, as it guarantees water supply, especially 

during droughts (ICOLD 2016). This makes water security a vital component in promoting 

sustainable economic and social development (Steyn et al. 2019). South Africa’s dry climate 

and uneven distribution of water resources have driven both the government and the private 

sector to build large dams and implement irrigation and inter-basin transfer scheme projects 

(Steyn et al. 2019).     

 

1.4 Environmental monitoring 

The social and economic value of water resources, coupled with its scarcity, makes it very 

important for regularly monitoring of the wellbeing of waterways, especially when subjected 

to anthropogenic ills (Kleynhans 2003; Rodríguez-Romero et al. 2018).  Information gathered 

from environmental monitoring can be used for environmental regulation and management 

purposes (Meybeck and Helmer 1996; Baldwin 2019). When monitoring the environment and 

its ecosystems, one has to systematically sample various lines of evidence as ecosystems are 

sensitive to a host of stressors (Reece and Richardson 1999; Artiola et al. 2004; Burns and 

Wiersma 2004; Wepener et al. 2011; Myers‐Smith 2019). Multiple lines of evidence can be 

used to measure the integrity of an aquatic ecosystem (or any other ecosystem) and these 

include both abiotic (e.g. air, water, soil, etc.) and biotic (e.g. microorganisms, invertebrates, 

and vertebrates) lines of evidence (Todd and Roux 2000; Weston 2011; Nõges et al. 2016).  
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1.5 Abiotic indicators 

1.5.1 Water quality (physicochemical characteristics) 

Water quality is the term used to describe the chemical, physical, biological and aesthetic 

properties of water, all of which are influenced by elements that are either dissolved or 

suspended in the water (DWAF 1996b; Boyd 2015; Mandal et al. 2019). Knowing the water 

quality of a system is useful when protecting the integrity of the ecosystem and can be used to 

determine a system’s fitness for various uses (Canter 1985/2018; DWAF 1996b; Dallas and 

Day 2004; Boyd 2015; Heibati et al. 2017; Abbasnia et al. 2019; Chen et al. 2019; Mandal et 

al. 2019). Water quality is monitored by measuring the core variables which include system 

variables (temperature, dissolved oxygen, salts, pH and turbidity), nutrients (phosphate, nitrite 

and nitrate), toxic substances and non-toxic inorganic substances (total dissolved solids and 

electrical conductivity) (Canter 1985/2018; DWAF 1996a; 1996b; Dallas and Day 2004; 

Palmer et al. 2005; Boyd 2015; Abbasnia et al. 2019).  

Urbanisation and land-use changes (such as agriculture) can significantly alter water 

quality, deteriorating the integrity of a riverine ecosystem (Johnson and Dawson 2005; 

Dabrowski et al. 2015; Sibanda et al. 2015; Sharpley 2016; Selemani et al. 2018).  Changes in 

water quality can affect biotic indicators, such as fish, and so monitoring changes in water 

quality can play an important role in maintaining ecosystem integrity (DWAF 1996b; Bilotta 

and Brazier 2008; O’Brien et al. 2009; Li et al. 2010; Ramesh et al. 2018).  Poor water quality 

conditions can also lead to an increase in invasive species, which are often more tolerant of 

deteriorated and polluted waters (Bunn and Arthington 2002; Dudgeon 2014; Gao et al. 2019).   

 

1.5.2 Habitat 

Although river modifications mostly result in water abstraction and deteriorated water quality, 

they can also cause physical alterations in aquatic habitats (Kleynhans 1999). This is important 
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as one of the most determining factors in the survival of organisms in an ecosystem is the 

quality and availability of habitat (Hubert and Bergersen 1999; O’Brien et al. 2009; Venter 

2013; O’Brien et al. 2014, Ramesh et al. 2018). The importance of habitat in the survival of 

biota makes it an important factor to consider when managing fishes and the ecosystems in 

which they occur as well as when assessing the ecological integrity of a riverine system 

(Mangold 2001; O’Brien et al. 2013; Burnett et al. 2018; Ramesh et al. 2018). For fish, habitat 

can be defined as the physical and chemical features that individuals, population or 

communities require to survive (Hubert and Bergersen 1999). Different habitats are 

distinguishable from one other by their physical, chemical and biological properties, not 

excluding basic life requirements of food, water and cover/shelter (Bain and Stevenson 1999). 

River habitat consists of three components: substrate type (silt, mud, sand, gravel, cobbles, 

boulders and bedrock), cover type (undercutting- banks, roots, marginal vegetation, 

overhanging vegetation, depth and substrate) and flow type (still marginal, deep pool, shallow 

pool, deep glide, shallow glide, run, riffle and rapids/torrent) (Kleynhans 2007; Malherbe 

2008).  

       

1.6 Biotic indicators 

1.6.1 Fish 

Fish have often been used to as key indicators when assessing the ecological state of aquatic 

ecosystems (Karr 1981; Barbour et al. 1999; Maceda-Veiga and De Sostoa 2011; Burnett et al. 

2018; Ramesh et al. 2018). However, studies that only look at a single level of biological 

organisation may not always provide sufficient information for a thorough evaluation of 

ecological impact, hence why it has become widely accepted to use different levels of 

organisation (Clements 2000; Van der Oost et al. 2003; Richardson et al. 2011; Murphy et al. 

2013; Rohr et al. 2016; 2017; Valesini et al. 2017; Murphy et al. 2018). The stress responses 
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in organisms can be observed at different levels of biological organisation, from sub-cellular 

to organism, population, community and eventually at the ecosystem level (Munkittrick and 

McCarthy 1995; Adams and Greeley 2000; Murphy et al. 2013; Rohr et al. 2016; Murphy et 

al. 2018). Lower levels of biological organisation respond more rapidly to stressors and so give 

a better understanding of cause-and-effect pathways, while the higher-level responses highlight 

broader ecological implications of environmental and anthropogenic stressors (Valesini et al. 

2017). 

 

1.6.2 Fish communities  

The ability to sustain a balanced biotic community is one of the best indicators of a healthy 

aquatic ecosystem (Karr 1981). Fish communities are very useful when assessing the biotic 

integrity of an aquatic ecosystem as they are relatively easy to identify, incorporate both species 

composition and abundance (unlike single species studies that only focus on abundance), can 

be linked to the effects of stress and toxicity and are usually present in even the smallest streams 

(Karr 1981; Jowett and Richardson 2003). There are, however, some disadvantages associated 

with using fish as indicators of ecological integrity such as their high tolerance to 

environmental change (including habitat degradation) and pollution and bias nature of 

sampling methods because of time constraints (Whitfield and Elliott 2002; Harrison and 

Whitfield 2004; Cabral et al. 2012; Gamito et al. 2012; Rohr et al. 2016).  However, the 

advantages of using fish as indicators outweigh these disadvantages (Harrison and Whitfield 

2004; Cabral et al. 2012; Gamito et al. 2012; Rohr et al. 2016). 

Fish communities can be defined or classified in numerous ways depending on the aims 

of the study, the characteristics of the fish community that the study focuses on and the type of 

quantitative analysis that is used (Jackson et al. 2001).  One of the methods used to classify 

fish community (and other species communities) is multivariate statistical approaches.  
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Multivariate statistics not only summarise and predict community patterns, but they also 

provide an objective approach in identifying fish assemblages and the impact that 

environmental conditions have on them (Jackson et al. 2001; O’Brien et al. 2009; Wepener et 

al. 2011; Dempsey 2019).  Another approach to studying riverine fish communities is by using 

the Fish Response Assessment Index (FRAI) (Kleynhans 1999 2007; Wepener et al. 2011; 

Venter 2013; Levin et al. 2019).      

The FRAI is regularly used to determine the wellbeing of fish communities in Southern 

African freshwater ecosystems by assessing the response of fish assemblages to changes in 

environmental conditions (Kleynhans 2007; Wepener et al. 2011; Venter 2013; Zdanow et al. 

2014; Levin et al. 2019). Habitat integrity and water quality are usually the environmental 

variables used when using the FRAI (and similar indices) and multivariate statistics to assess 

fish community changes in an ecosystem (Dickens and Graham 2002; Thirion 2007; Kleynhans 

2007: Venter 2013; Levin et al. 2019). The FRAI uses information from these environmental 

variables, together with a database of the intolerance and preference ratings for a variety of 

southern African freshwater species, to determine changes in fish assemblages from the natural 

state and the underlying reasons for these changes (Kleynhans 1999, 2003, 2007; Levin et al. 

2019). Metric categories assessed in FRAI include habitat availability (velocity-depth classes), 

flow modification, migration, cover, physico-chemical metric and introduced species 

(Kleynhans et al. 2005; Kleynhans 2007; Venter 2013; Levin et al. 2019). 

 

1.6.3 Fish populations (Labeobarbus natalensis, Castelnau, 1861)  

The KwaZulu-Natal yellowfish, Labeobarbus natalensis forms part of the Cyprinidae family 

and is one of seven different yellowfish species (Labeobarbus spp.) in South Africa (Skelton 

2001; Impson et al. 2008). It is endemic to KwaZulu-Natal and is widely distributed, occurring 

in all major catchments from the Mtamvuna River (Eastern Cape border) to the Mkuze River 
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in the north. It is the most widespread of the yellowfish species (and possibly freshwater fish 

species) in KwaZulu-Natal Province (Karssing 2007). Labeobarbus natalensis can be found in 

a range of different habitats but prefer habitats in the middle reaches of rivers that have a 

combination of deep pools and fast-flowing rapids and riffles and is especially selective when 

spawning (Karssing 2007; Jacobs 2017).    

 Labeobarbus natalensis spawn in fast-flowing riffles (high oxygen content) over a 

gravel and cobble substrate and mature breeding adults, sub-adults, and juveniles migrate 

seasonally (spring and early summer) upstream in search of suitable spawning and feeding sites 

(Karssing 2007). Labeobarbus natalensis migrate in search of silt-free (gravel) spawning as 

the larvae are unable to burrow in silt-covered gravel and thus would be susceptible to predation 

or displacement (Wright and Coke 1975a; 1975b). However, impenetrable barriers (such as 

dams) impede migration, especially into the upper reaches (Wright and Coke 1975a; Karssing 

2007).    

Despite the relatively tolerant nature of L. natalensis, it is still vulnerable to 

anthropogenic impacts associated with anthropogenic land use change including urbanisation 

such as habitat change, chronic pollution, siltation, and increased water abstraction (Karssing 

2007). Instream dams and weirs throughout KwaZulu-Natal Province have slowed down floods 

that would otherwise wash away silt, particularly silt that has formed as a result of erosion from 

poor agricultural practices (Karssing 2007). Dams also trap sediment from naturally turbid 

water, releasing a discharge that is relatively clear (Poff et al. 1997; Hall et al. 2011; 

Hohensinner et al. 2018), making the fish downstream more vulnerable to predation 

(Figueiredo et al. 2016).  

In addition to the aforementioned threats, L. natalensis is also vulnerable to illegal 

netting, particularly at spawning grounds, as well as hybridisation with translocated Orange-

Vaal smallmouth yellowfish (Labeobarbus aeneus) in the upper Thukela catchment (Karssing 
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2007; Swartz 2008). As noted by Karssing (2007), inter-basin water transfers and direct 

stocking for angling purposes may result in intraspecific hybridisation with genetically 

distinct L. natalensis from different river systems. There is now some genetic evidence (though 

limited) of intraspecific hybridisation between L. natalensis populations in the Thukela and 

uMngeni catchments (Stobie et al. 2018). Another source of concern is the increasing threat by 

alien fish, such as largemouth bass (Micropterus salmoides) and common carp (Cyprinus 

carpio), on native fish like L. natalensis. Likewise, extralimital species, such as the L. aenues, 

compete directly with L. natalensis for food and habitat and prey on L. natalensis juveniles 

(Koehn 2004; Karssing 2007; Swartz 2008). 

Labeobarbus natalensis is currently regarded as least concern (Cambray et al. 2017), 

however, the species may be in decline because of the continual pressure placed on the aquatic 

environment and fragmentation of the population because of barriers (both chemical and 

physical barriers) (Skelton 2001; Karssing 2007). Karssing (2007) recommends regular 

surveys in order to monitor the state of the L. natalensis, particularly in areas where they are 

most vulnerable, such as the uMngeni River (Stobie et al. 2018). 

 

1.7 The River Eco-Status Monitoring Programme  

The River Eco-Status Monitoring Programme (REMP) has evolved from, and replaced, the 

River Health Programme (RHP) in 2016 and forms part of the National Aquatic Ecosystem 

Health Monitoring Programme (NAEHMP) (DWS 2016). The REMP was developed by the 

Department of Water and Sanitation, (DWS) South Africa, and focuses on monitoring the 

ecological condition of river ecosystems by characterising the response of instream and riparian 

biota to abiotic drivers of a system (Dallas 2000; DWS 2016). The REMP uses FRAI and other 

similar indices to produce an overall measure of the ecological integrity of a river as a whole. 

Similar to the RHP, the rationale of REMP is that by measuring the integrity of biota in a river 
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ecosystem, we are provided with a direct measure of the health of the river ecosystem as a 

whole (Dallas 2000; WRC 2002). 

 

1.8 Study area: The uMngeni River 

The uMngeni River is one of the major rivers in the KwaZulu-Natal Province (Van der Zel 

1975; Agunbiade and Moodley 2014). The uMngeni River catchment originates at the uMngeni 

Vlei wetland, a protected conservation area, flowing 225 km from source to mouth, emptying 

into the Indian Ocean at the Blue Lagoon (WRC 2002; Matongo et al. 2015). The Msunduzi 

River is a major tributary of the uMngeni River and smaller tributaries include the Lions River, 

Karkloof River, Mpolweni Stream, and Palmiet River. The uMngeni catchment also has several 

large dams which were constructed for water supply, namely Nagle Dam (constructed in 1948), 

Midmar Dam (1965), Albert Falls Dam (1976) and Inanda Dam (1989) (Agunbiade and 

Moodley 2014; Matongo et al. 2015; Hay 2017). 

The uMngeni catchment area is 4 440 km2 with a mean annual rainfall of ~674 million 

cubic meters and supports South Africa’s third-largest regional economy, the Durban–

Pietermaritzburg urban area (Hay 2017; Sutherland and Mazeka 2019).  According to the 

eThekwini Municipality IDP (2017), the region has an estimated population of 3.81 million 

people in 2019. The uMgungundlovu Municipality has a population of just over 1 million 

people (uMgungundlovu District Municipality IDP 2017) and so the uMngeni catchment 

supports ~4.8 million people. Water demand in the uMngeni catchment has exceeded the 

river’s supply and has had to be supplemented by the Mooi River transfer scheme which 

transfers water to supplement Midmar Dam (Snaddon et al. 1999; WRC 2002; Markowitz 

2016; Meissner et al. 2019). One of greatest impacts on the uMngeni catchment is 

anthropogenic land-use transformation with 17% of natural vegetation being reduced in the 

upper uMngeni catchment (Namugize et al. 2018) and as much as 50% of land in the 
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uMgungundlovu municipality has been transformed for agricultural, industrial, commercial 

and residential use (Hay 2017). Other issues affecting this catchment include alien invasive 

plants, increased nutrient loads from agricultural activity, and pollution (WRC 2002; Lin et al. 

2012; Van Deventer 2012; Mahlobo 2016; Hay 2017; Namugize et al. 2018; Namugize and 

Jewitt 2018). Although the uMngeni River system is highly productive, it is also under a lot of 

strain from numerous anthropogenic impacts, thus presenting an opportunity to study and 

monitor this river system. The outcomes of such studies help to enforce management strategies 

that establish a balance between water resource use and riverine ecosystem protection. 

 

1.9 Hypothesis and predictions 

We hypothesised that fish communities in the uMngeni River and L. natalensis populations in 

dams along the river act as ecological indicators, responding to environmental change (abiotic 

drivers), namely changes in habitat and water quality. We predicted that 1) the uMngeni River 

would generally be in a poor state, largely because of the anthropogenic activities prevalent in 

and around the river, and 2) the wellbeing of L. natalensis populations in the major uMngeni 

dams would be compromised as a result of migratory barriers and a lack of habitat diversity.      

 

1.10 Aims and objectives 

The first aim of this study was to determine the present ecological integrity of fish communities 

in the uMngeni River in KwaZulu-Natal, using multiple lines of evidence. The second aim was 

to update the state of L. natalensis wellbeing in the major uMngeni River dams considering 

river fragmentation caused by the dams. To achieve these aims, the following objectives were 

established: 
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1) Characterise fish community structures at eight selected River Eco-status Monitoring 

Programme (REMP) sites on the uMngeni River using the Fish Response Assessment 

Index (FRAI).  

2) Determine shifts in fish community structures and environmental drivers of change in 

these communities using multivariate analysis techniques. 

3) Survey L. natalensis population structures Midmar Dam, Albert Falls Dam, Nagle 

Dam, and Inanda Dam and update the state of L. natalensis populations in KwaZulu-

Natal. 

 

1.11 Study layout  

This thesis is structured with stand-alone chapters; each of the data chapters are written in a 

manuscript format with the intention of submission to an international peer reviewed journal. 

The chapters are as follows:  

Chapter 1: Literature review 

Chapter 2: Assessment of the current ecological integrity and fish community structures of the 

uMngeni River, KwaZulu-Natal, South Africa. 

Chapter 3: Assessing the state of Labeobarbus natalensis (Castelnau, 1861) populations in 

impoundments along the uMngeni River, KwaZulu-Natal Province, South Africa 

Chapter 4: Conclusions 
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2.1 Abstract 

Providing water to two of the largest cities in KwaZulu-Natal Province, South Africa, means 

that the uMngeni River is of great economic importance. As such, protecting the river and the 

life within it is also of great importance. In this study, fish community structure was used as an 

indicator of ecosystem health by assessing how fish communities responded to changes in 

habitat composition and water quality as a consequence of anthropogenic activity using the 

Fish Response Assessment Index (FRAI). Multivariate statistical analyses were used to 

determine differences in fish communities and drivers of change in these communities. The 

results of this study showed that the ecological integrity of the uMngeni River (and its 

tributaries) tended to degrade from upper to lower reaches in response to various anthropogenic 

activities. Deterioration in sites along the uMngeni River was a result of various anthropogenic 

activities ranging from flow modification and migration barriers from dams and weirs, the 

introduction of invasive species and water quality alterations from rural and urban settlements. 

Multivariate analyses showed that variation among the sites selected in this study was 

significantly driven by changes in velocity-depth classes, substrate type, and water quality, all 

of which can be influenced by flow modifications. 

 

Keywords: Ecological integrity, fish community, FRAI, multivariate analysis, 

anthropogenic 
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2.2 Introduction 

Freshwater makes up just 2.5% of all water on earth, and of that less than 1% is available for 

human use as most freshwater is contained in polar ice caps (Geise 2010). Most of the 

freshwater water available for human use comes from rivers, which also provide a plethora of 

other ecosystem services on which they rely (Costanza et al. 1997; Yeakley et al. 2016). River 

anthropogenic services include water purification, transportation, power generation, food 

supply, and water supply (for domestic, agricultural and industrial use) (Tejerina-Garro et al. 

2005; Yeakley et al. 2016). Unfortunately, riverine ecosystems are one of the most intensively 

affected by anthropogenic activities (Tejerina-Garro et al. 2005; Dudgeon 2014). In South 

Africa particularly, increased urbanisation and industrialisation have caused increasing 

deterioration of the water quality of most river systems (Sibanda et al. 2015), the effects of 

which have only been exacerbated by water storage reservoirs and human use (Ashton 2007; 

Ashton 2010; Wepener and Chapman 2012; Fouchy et al. 2018). 

The pressures and demands of a growing economy and human population, such as South 

Africa’s, have great impacts on riverine habitat structure, natural flow regimes, water quality 

and fish diversity (Saunders et al. 2002; Vidal 2008; Fouchy et al. 2018; O’Brien et al. 2019). 

The introduction of invasive species also has detrimental effects on ecosystem health and 

biodiversity of its rivers (Vander Zanden 1999; Rahel 2000; Gao et al. 2019). This has resulted 

in, sometimes, drastic reductions of certain species (Ashton 2010). The severity of the impact 

of anthropogenic activities on rivers makes the assessment of the state and health of these 

ecosystems of upmost importance. There are various ways to assess ecosystem health, 

including environmental components (abiotic) and the use of different biological organisms 

(biotic), at various levels of biological organisation (Richardson et al. 2011; Fouchy et al. 

2018). The levels of biological organisation that can be used range from the molecular level all 

the way to the community level (Richardson et al. 2011; Wepener and Chapman 2012). 
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The ability to sustain a balanced biotic community is one of the best indicators of a 

healthy aquatic ecosystem (Karr 1981; O’Brien et al. 2014). Fish communities are considered 

extremely useful when assessing the biotic integrity of an aquatic ecosystem as they are 

relatively easy to identify, include an array of species (representing a range of trophic levels), 

are sensitive to water quality and are usually present in even the smallest streams (Karr 1981; 

Wepener et al. 2011; O’Brien et al. 2019). Additionally, fish, in general, are good 

environmental indicators as they are widely distributed in aquatic systems and have a relatively 

long-life span (DWAF 1999; Gamito et al.,2012; O’Brien et al. 2011; Levin et al. 2019). There 

are, however, some disadvantages associated with using fish as indicators of ecological 

integrity such as their high tolerance to environmental change (including habitat degradation) 

and pollution and the bias nature of sampling methods (Whitfield and Elliott 2002; Harrison 

and Whitfield 2004; Cabral et al. 2012; Gamito et al. 2012; Collins et al. 2017).  However, the 

advantages of using fish as indicators outweigh these disadvantages (Harrison and Whitfield 

2004; Cabral et al. 2012; Gamito et al. 2012; O’Brien et al. 2019). 

Fish communities can be defined or classified in numerous ways depending on the aims 

of the study, the characteristics of fish community that the study focuses on and the type of 

quantitative analysis that is used (Jackson et al. 2001; Dempsey 2019).  One of the methods 

used to classify fish community (and other species communities) is multivariate statistical 

approaches (O’Brien et al. 2009; Wepener et al. 2011).  Multivariate statistics not only 

summarise and predict community patterns, but they also provide an objective approach in 

identifying fish assemblages and the impact that environmental conditions have on them 

(Taylor et al. 1993; Magnuson et al. 1998; Jackson et al. 2001; Wepener et al. 2011).  Another 

approach to studying riverine fish communities is by using the Fish Response Assessment 

Index (FRAI) (Kleynhans 1999). 
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The FRAI is used to routinely determine the wellbeing of fish communities in southern 

African freshwater ecosystems by assessing the response of fish communities to changes in 

environmental conditions (Kleynhans 2007; Zdanow et al. 2014; Levin et al. 2019). The 

environmental conditions in question normally include water quality and habitat integrity 

(Kleynhans 2007; Levin et al. 2019). The uMngeni River, KwaZulu-Natal, South Africa, is one 

of the most socio-economically important rivers in the region but is under great anthropogenic 

pressure (WRC 2002; Ramulifho 2015; Namugize et al. 2018).  

The aim of our study was to assess the current ecological integrity of fish communities 

in the uMngeni River using FRAI and multivariate statistical techniques. We predicted that the 

uMngeni River would generally be in a poor state, largely because of the anthropogenic 

activities prevalent in and around the river. In this study, we evaluated the current ecological 

integrity and fish community structures of the uMngeni River using multiple lines of evidence 

including community metric measures (FRAI) and multivariate statistical analyses of 

differences in fish communities and drivers of changes in these communities.  

 

2.3 Methods  

2.3.1 Study area 

The uMngeni catchment, in KwaZulu-Natal, area is 4 440 km2 with a mean annual rainfall of 

921 mm (UW 2016; Hughes et al. 2018). It is a summer rainfall region, ranging from an alpine-

type climate in and along the Drakensberg Mountains, to a more temperate summer rain climate 

of the Midlands region and subtropical perennial rainfall area along the coast (UW 2016). Mean 

annual ambient temperatures range between 14 and 22°C and the catchment is generally 

characterised by grassland, with areas of thicket and bushland and forest patches, although a 

lot of this area has been cultivated (UW 2016; Hughes et al. 2018). The study area for this study 

comprised of eight sites in the uMngeni catchment and included sites on the uMngeni 
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(including tributaries) and Msunduzi Rivers (Fig. 2.1). The sites selection coincides with sites 

used in the National River Eco-Status Monitoring Programme (REMP). 

 

 

Fig. 2.1: Map of sampling sites on the uMngeni River, KwaZulu-Natal Province, South 

Africa, in the present study. Site coordinates are presented in the Supplementary Table S1. 

2.3.1.1 U2MGNI-DRGLE 

Situated about 30 km from Midmar Dam, this sampling site was in the area of Dargle Valley 

in the KwaZulu-Natal Midlands (Fig. 2.1, Supplementary information Fig. S2.1a). The area 

surrounding this site is comprised mainly of pastoral grasslands and some forests (including 

indigenous forests and exotic timber plantations). The trees lining the riverbank at this site 
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include the invasive black wattle (Acacia mearnsii), which were later cut down during the 

study. The entire area of Dargle Valley is a conservancy (Dargle Conservancy).   

 

2.3.1.2 U2MGEN-PETRU 

The sampling site U2MGEN-PETRU was in the Howick area (Fig. 2.1, Supplementary 

information Fig. S2.1b). The site is situated in an agricultural area and is directly (about 50 m) 

below a weir. Impacts of agricultural activity may occur at this site (pers. obs.).  

2.3.1.3 U2MGEN-LIONS 

The sampling site U2MGEN-LIONS was in Caversham Valley, near Howick (Fig. 2.1, 

Supplementary information Fig. S2.1c). The site location is surrounded by agriculture, exotic 

timber plantations and a few scattered residential areas (including Caversham Mill restaurant). 

A waterfall and arch bridge are less than 300 m upstream of the site.  

2.3.1.4 U2KARK-USMGN 

The U2KARK-USMGN site was located at the base of the Karkloof River, right before it joins 

the uMngeni River (Fig. 2.1, Supplementary information Fig. S2.1d). There are numerous 

bridge crossings and a weir within about 3.5 km upstream of this site. The site is surrounded 

by agricultural land, exotic timber plantations, and savannah. 

2.3.1.5 U2MGEN-FOUNT 

This sampling site was in Fountainhill Estate in the Midlands, outside Wartburg (Fig. 2.1, 

Supplementary information Fig. S2.1e). Fountainhill Estate forms part of a conservancy 

(Central Umgeni Conservancy) and is mostly surrounded by a mix of bush and grassland, 

though there is also some agricultural activity in the area. Site U2MGEN-FOUNT is also about 

20 km below Albert Falls Dam. Impacts from flow regulation may be present at this site (pers. 

obs.).  
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2.3.1.6 U2DUZI-MOTOX 

Sampling site U2DUZI-MOTOX was on the Msunduzi River which flows through the urban 

area of Pietermaritzburg and is generally littered with anthropogenic waste (pers. obs.) 

Wartburg (Fig. 2.1, Supplementary information Fig. S2.1f). The site is less than 2 km below 

Darvill Wastewater Treatment Works and about 12 km below Camps Drift. This site is also 

about 36 km downstream of Henley Dam. There is also sugarcane agricultural activity in the 

surrounding area. There may be impacts at this site associated with the pollution from 

surrounding urbanised area as well as flow modifications. 

 2.3.1.7 U2DUZI-NKANY 

Sampling site U2DUZI-NKANY was also on the Msunduzi River in the rural area of 

Nkanyezini (Fig. 2.1, Supplementary information Fig. S2.1g). The site is often used by the 

local community for sand mining and watering their cattle. There is also an Eichhornia 

crassipes (water hyacinth) presence at this site. This site is generally impacted negatively by 

sand mining, cattle presence and the invasion of E. crassipes (pers. obs.). 

2.3.1.8 U2MGEN-MZINY 

Sampling site U2MGEN-MZINY was located within the township of iNanda (Fig. 2.1, 

Supplementary information Fig. S2.1h). The site is just less than 5 km below the iNanda Dam 

wall. The area surrounding the site is predominately township settlements as well as natural 

forest. This site may possibly be impacted by modified flow caused by the dam and runoff from 

the surrounding human settlements (pers. obs.).  

 

2.3.2 Field sampling 

Fish communities were sampled from all eight riverine sites also used within the National River 

Eco-Status Monitoring Programme (REMP) in the uMngeni and Msunduzi Rivers, KwaZulu-
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Natal (Fig. 2.1). Fish were collected using electro-fishing techniques and active and passive 

netting techniques (Meador et al. 1993; Barbour et al. 1999; Rodtka et al. 2015). Netting 

techniques included the use of a 6 m long, 1.5 m deep seine net with a bag that was pulled 

through both shallow (< 1 m) and deep (> 1 m) habitats. The habitats that were sampled 

according to established REMP velocity depth categories including: include slow (< 0.3 m/s) 

deep (> 0.5 m) and shallow (> 0.5 m), fast (> 0.3 m/s) deep (> 0.3 m) and shallow (< 0.3 m) 

(James and King 2010). All available substrate and cover features including marginal and 

aquatic vegetation, undercut banks and root wads were sampled. Fish were measured (SL) and 

identified on-site using Skelton (2001) and returned to the river alive. Fish samples were 

collected between May and November 2017 and surveys comprised of two high flow seasons 

and one low flow season.    

 

2.3.3 Water physico-chemical characteristics (Water quality) 

Physico-chemical characteristics were measured in situ at each site concurrent with fish 

sampling. Water quality was measured using a calibrated Eutech PCD 650 multimeter 

(EUTECH Instruments Ltd, Singapore) and the variables measured include oxygen 

concentration and saturation, temperature, pH, electrical conductivity and total dissolved solids 

(TDS). Water clarity was also measured using a clarity tube (Kilroy and Biggs 2002) 

During each fish survey, sub-surface water samples were collected for laboratory 

analyses. Water samples were collected in clean polyethylene plastic bottles, making sure that 

there were no air bubbles in the sample. Samples included a 2L bottle (or 1L x 2) for water 

quality analyses and a 500 ml bottle for microbial analyses. Once collected the water samples 

were refrigerated at 4oC (not frozen) until they were delivered to Umgeni Water's Laboratory 

(Pietermaritzburg, South Africa) for analyses. The following variables were analysed: System 

variables (chemical oxygen demand (COD); electrical conductivity (mS/m); alkalinity 
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(CaCO3); turbidity (ntu)); salts (Chlorides (Cl); Sulphates (SO₄); Calcium (Ca); Sodium (Na)); 

nutrients (Nitrates (NO3); Nitrite (NO2); Phosphorus (SRP and TP)); toxicants (Ammonia 

(NH3)) ; microbial (Coliforms; Escherichia coli; heterotrophic plate count (HPC 37)); 

Chlorophyll a and Fluorine (F). 

 

2.3.4 Habitat 

Habitat condition and availability were assessed using a visual scoring system that considers 

the relative availability of and scores the suitability of substrate, cover and flow biotope types 

and (O’Brien et al. 2012). Velocity-depth was measured using a transparent velocity head rod 

(Fonstad et al. 2005). The substrate available was categorised into different types, namely 

bedrock, boulders, cobbles, gravel, sand, mud and silt (Kleynhans 1999). Habitat parameters 

also included cover which comprised of undercut banks, root wads, marginal vegetation, 

overhanging vegetation, aquatic vegetation, substrate, depth/column (Kleynhans 1999) and 

woody debris.  

 

2.3.5 Fish response assessment index (FRAI)  

The FRAI is an assessment of the effect of environmental changes on fish communities to 

determine the wellbeing of said fish communities (Kleynhans 2007; Avenant 2010; Wepener 

et al. 2011).  The index is specific to southern African freshwater ecosystems (Kleynhans 

2007). The environmental variables used in FRAI and other similar indices usually include 

habitat integrity and water quality (Dickens and Graham 2002; Thirion 2007), together with a 

database of the intolerance and preference ratings for a variety of southern African freshwater 

species (Kleynhans 1999, 2003). The metrics that are assessed in FRAI are categories of these 

preferences and intolerances (Kleynhans and Louw 2007). The following metric categories 

assessed in FRAI (Kleynhans et al. 2005; Kleynhans 2007) include: habitat availability 
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(velocity-depth classes); flow modification (volume, timing and flow duration); migration; 

cover (undercut banks; overhanging vegetation; aquatic vegetation; water column (depth); 

substrate; root wads); physicochemical metric (water quality); and introduced species.  

Assessing the response of fish species to changing environmental conditions can either 

be done through direct measurement (surveys) or inferred from changing environmental 

conditions (habitat) (Kleynhans 2007).  In this study the assessment was conducted via direct 

measurement – fish sampling. In FRAI, ecological responses are interpreted by linking changes 

in environmental conditions (drivers) to fish stress (Kleynhans 2007). The index is based on a 

combination of fish sample data and fish habitat data in which the response of fish species to 

habitat changes is assessed based on knowledge of each fish species’ ecological requirements 

(preferences and intolerances) (Kleynhans 2007).  The FRAI assessment of the ecological 

integrity state of fish communities that were sampled is represented in the form of ecological 

categories (Table 2.1; Kleynhans 2007). 

 

Table 2.1: FRAI ecological category (EC) descriptions (Source: Kleynhans 2007) 

Ecological 

Categories  Name  Description 

Acceptable/ 

Unacceptable 
Score 

(%) 

A Natural Unmodified natural 
Acceptable 

  90 - 100 

B Good 

 Mostly natural with few 

modifications 

      Acceptable 

   80 - 89 

C Fair Moderately modified 
Acceptable 

60 - 79 

D Poor Largely modified Unacceptable 40 - 59  

E 

Seriously 

modified Seriously modified  

 

Unacceptable 20 - 39 

F 

Critically 

modified  Critically or extremely modified 

 

Unacceptable 0 - 19 
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The FRAI results are in the form of both an automatic and adjusted score. The automatic 

score is based solely on the differences in frequency of occurrence (FROC) between expected 

and observed fish species at each specific site (Kleynhans 2007), however it does not account 

for habitat (velocity-depth, cover, flow modification, and physico-chemical) and sampling 

effort and hence there is an adjusted score which can be manually altered to accommodate the 

variations in these factors. Manually adjusting the FRAI score allows the user to evaluate the 

state of environmental drivers according to each site’s habitat availability and sampling effort. 

 

2.3.6 Multivariate statistical analyses   

The use of multivariate statistical analyses techniques to evaluate biological communities in 

different ecosystems is common (Ter Braak 1994; O’Brien et al. 2009; Wepener et al. 2011) 

and in this study multivariate statistics were used to evaluate the response of fish assemblages 

to driving environmental variables (driver components), which included water quality and 

habitat. To analyse the data collected, a principal component analysis (PCA) approach (using 

CANOCO for Windows Version 4.53) was used. The PCA is based on a linear response model 

relating species and environmental variables (van den Brink et al. 2003). The outcomes of the 

analysis (ordination) are represented as two-dimensional maps of the samples, where the 

placements of the samples indicate the (dis)similarities between samples (O’Brien et al. 2009). 

In the case of this study, the samples in question are fish community samples based on the 

diversity and abundance of communities observed. 

In addition to the PCA, various redundancy analyses (RDAs - a derivative of PCAs) were 

conducted to determine which species or environmental variables likely had the greatest 

influence on the structure or groupings reflected in the PCA. To do this, the fish species and 

environmental variables (water quality and habitat) were overlaid onto the original PCA. With 

the use of Canoco for Windows Version 4.53 (Ter Braak and Smilauer 2004), the RDA allows 
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for the selection of the driving variables which are then overlaid onto the PCA (O’Brien et al. 

2009). 

The RDA analyses use best-fit values (rather than the original data) which have been 

estimated from a multiple linear regression between each variable in turn and a second matrix 

of complementary biological or environmental data (O’Brien et al. 2009). The outcome of the 

RDA is interpreted through two-dimensional bi-plots that indicate the similarities or 

dissimilarities between the samples (Shaw 2003; Van den Brink et al. 2003; O’Brien et al. 

2009). 

In the tri-plots that contain the overlaid environmental and species data, each arrow 

represents an environmental variable and points in the direction of the steepest increase of 

values for the corresponding variable. The angles between arrows indicate the sign (+ or -) of 

the correlation between the variables; the approximated correlation is positive when the angle 

is less than 90° and negative when the angle is larger than 90° (O’Brien et al. 2009). The 

distance between the sampling sites in the diagram approximates the (dis)similarity of the 

variables as measured by their Euclidean distance (Shaw 2003). Species data were transformed 

using a LogX2 transformation (because abundance data were available) (Van den Brink et al. 

2003).   

 

2.4 Results  

 

A total of 14 fish species were collected over the duration of this study (which consisted of 

three assessments of eight REMP sites and a total of 160 efforts). This resulted in a total 

abundance of 295 fish of which Labeobarbus natalensis was most common (n = 87), followed 

by Pseudocrenilabrus philander (n = 46) and Tilapia sparrmanii (n = 43). These three most 

common fish were collected 75%, 50% and 63% of sites, respectively. Uncommon species 

included Amphilius natalensis (n = 6), Awaous aeneofuscus (n = 5), Clarias gariepinus (n = 
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2), Enteromius anoplus (n = 1), Enteromius viviparus (n = 1) and the invasive species 

Oncorhynchus mykiss (n = 1) (Table 2.2). The other invasive species collected in this study 

was Micropterus salmoides (n = 27). Translocated indigenous species were also collected at 

U2MGEN-LIONS and U2KARK-USMGN (Table 2.2).   
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Table 2.2: Summary of fish species caught in the uMngeni River in the present study (May. August and November 2017) and their abbreviations. Translocated 

indigenous species are written in bold. 2 

Species name Abbr. 

U2MGNI-

DRGLE 

U2MGEN-

PETRU 

 U2MGEN-

LIONS 

U2KARK-

USMGN 

U2MGEN-

FOUNT 

U2DUZI-

MOTOX 

U2DUZI-

NKANY 

U2MGEN-

MZINY 

Species 

abundance 

Labeobarbus 

natalensis LNAT 0 5 

 

0 11 21 5 44 1 87 

Pseudocrenilabrus 

philander PPHI 0 0 

 

0 0 1 2 4 39 46 

Oreochromis 

mossambicus OMOS 0 0 

 

0 10 0 0 0 3 13 

Coptodon rendalli CREN 0 0  1 1 0 0 8 5 15 

Enteromius 

pallidus EPAL 0 0 

 

2 26 0 0 0 0 28 

Tilapia 

sparrmanii TSPA 0 0 

 

10 13 3 13 4 0 43 

Enteromius 

gurneyi EGUR 0 0 

 

0 20 0 0 0 0 20 

Amphilius 

natalensis ANAT 0 0 

 

0 4 2 0 0 0 6 

Micropterus 

salmoides MSAL 0 0 

 

23 0 0 0 2 2 27 

Oncorhynchus 

mykiss OMYK 1 0 

 

0 0 0 0 0 0 1 

Enteromius 

anoplus EANO 0 0 

 

0 1 0 0 0 0 1 

Awaous 

aeneofuscus AAEN 0 0 

 

0 0 0 0 0 5 5 

Clarias gariepinus CGAR 0 0  0 0 1 0 0 1 2 

Enteromius 

viviparus EVIV 0 0 

 

0 1 0 0 0 0 1 

            

Abundance  1 5  36 87 28 20 62 56  
Diversity  1 1  4 9 5 3 5 7  
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2.4.1 Fish Response Assessment Index (FRAI) 

The assessment of the ecological integrity of fish assemblages using adjusted FRAI scores 

indicated a general downward trend from source/upper catchment to mouth/lower catchment, 

with FRAI Ecological Categories (ECs) ranging from moderately modified (C) to 

largely/severely modified (D/E) (Table 2.3).  

 

U2MGNI-DRGLE  

Indigenous species Anguilla mossambica, A. natalensis, E. anoplus and L. natalensis were 

expected in this region, according to the site’s reference species in Present Ecological State, 

Ecological Importance & Ecological Sensitivity (PESEIS) (DWS 2014a). However, none of 

the reference species for site U2MGNI-DRGLE were ever caught and instead a single O. 

mykiss was caught in the November 2017 (high flow) survey. The EC score at this site was C 

(moderately modified). The metric groups with the most weights in this site were the impact 

of introduced species, migration, and flow modification, indicating that they had the most 

influence on fish assemblages at this site (see Table 2.4).   

 

U2MGEN-PETRU 

According to the PESEIS reference species, the indigenous species A. mossambica A. 

natalensis, E. anoplus and L. natalensis are naturally occurring and expected in U2MGEN-

PETRU (Skelton 2001; DWS 2014a). In the present study, however, only a single L. natalensis 

was caught in the May 2017 (high flow) survey. The adjusted EC score for this site was C 

(moderately modified). The metric groups with the most weights in this site were velocity-

depth classes, flow-modification, and migration.  
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U2MGEN-LIONS 

None of the expected reference species were caught in site U2MGEN-LIONS, but instead quite 

a few invasive M. salmoides (more than any other site) and several translocated indigenous fish 

species (T. sparrmanii, E. pallidus and C. rendalli) were caught over the course of this study. 

The outcome of the fish assemblage assessment (FRAI) in the U2MGEN-LIONS site indicated 

that this site was largely modified (EC score was D). The top three metric groups identified to 

have the greatest impact on fish assemblage at this site were the impact of introduced species, 

flow modification, and migration. 

 

U2KARK-USMGN 

Based on the outcome of the fish assemblage assessment (FRAI), the site U2KARK-USMGN 

was moderately modified (ecological category C). Seven out of ten reference species (DWS 

2014a) were caught at this site (although the frequency of occurrence was lower than the 

reference) as well as two indigenous translocated species, namely E. pallidus and E. viviparus, 

making this site the richest in both diversity and abundance over the course of this study (see 

Table 2.2). The fish assemblage assessment indicated that velocity-depth classes, flow 

modification, and physico-chemical characteristics (water quality) were the main drivers of 

change in fish community at this site. 

 

U2MGEN-FOUNT 

There were fifteen expected reference species at the U2MGEN-FOUNT site and of these, five 

species were caught over the duration of this study. Sampled fish species include A. natalensis, 

L. natalensis, C. gariepinus, P. philander, and T. sparrmanii and all species had a low 

frequency of occurrence. No invasive or translocated species were caught at this site and the 



38 
 

FRAI assessment indicated that the site was moderately/largely modified (EC score was C/D). 

According to the FRAI assessment, velocity-depth classes, flow modification, and physico-

chemical characteristics were the metric groups with the most weight at this site, and hence the 

biggest drivers of change in fish community structure. 

 

U2DUZI-MOTOX 

The fish assemblage assessment (FRAI) of U2DUZI-MOTOX indicated that this site was 

largely modified (EC score was D). Of the thirteen reference species that were expected at this 

site, only three (L. natalensis, P. philander, and T. sparrmanii) were sampled, and at lower 

frequencies of occurrence than the reference. Metric weights in the FRAI assessment indicated 

that velocity-depth classes, flow modification, and physico-chemical characteristics had the 

most significant influence on changes in fish community structure in this site. 

 

U2DUZI-NKANY 

There were thirteen expected reference at this site, five of which were sampled over the course 

of this study. Sampled species include L. natalensis, P. philander, C. rendalli, T. sparrmanii 

and the invasive species M. salmoides. Based on the outcome of the FRAI assessment of site 

U2DUZI-NKANY, this site was largely modified (EC score D) and metric weights indicated 

that flow modification, velocity-depth classes, and physico-chemical characteristics were the 

main drivers of change in fish community structure at this site. 

 

U2MGEN-MZINY 

Site U2MGEN-MZINY was the farthest down the uMngeni River and has the greatest number 

of expected reference species. There were 26 expected reference species at this site (DWS 
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2014a) and only seven of these were sampled (at low frequencies of occurrence) throughout 

the duration of the study, one of which is the invasive M. salmoides. Several of the reference 

fish that were not sampled inhabit both estuaries and freshwaters (Skelton 2001). The FRAI 

assessment of fish communities revealed that this site was largely modified (EC score D), the 

May 2017 survey even indicated it to be seriously modified (EC score E). Metric weights at 

this site indicated that migration, flow modification, and velocity-depth classes had the most 

significant influence on changes in fish community structure at this site. 

 

Table 2.3: Adjusted FRAI scores and Ecological Categories of uMngeni River REMP sites  

 
May Aug Nov 

Site name FRAI Score EC FRAI Score EC FRAI Score EC 

U2MGNI-DRGLE 74.3 C 75.6 C 69 C 

U2MGEN-PETRU 62.3 C 69.5 C 69.7 C 

U2MGEN-LIONS 48.3 D 46.9 D 48.7 D 

U2KARK-USMGN - - 70.4 C 69.6 C 

U2MGEN-FOUNT 61.1 C/D 53.4 D - - 

U2DUZI-MOTOX - - 47.6 D 43.4 D 

U2DUZI-NKANY 54.0 D 44.1 D 40.3 D/E 

U2MGEN-MZINY 37.2 E 44.1 D 44.0 D 
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Table 2.4: Weights of metric groups used in FRAI in the present study. 

Metric group weights (%) Velocity-depth Cover Flow modification Physico-chemical Migration Impact of introduced 

U2MGNI-DRGLE 75.00 73.44 76.56 68.75 81.25 100.00 

U2MGEN-PETRU 100.00 71.93 94.74 85.96 94.74 64.91 

U2MGEN-LIONS 81.67 68.33 98.33 55.00 90.00 100.00 

U2KARK-USMGN 100.00 78.57 100.00 89.29 78.57 82.14 

U2MGEN-FOUNT 100.00 78.57 100.00 92.86 82.14 75.00 

U2DUZI-MOTOX 100.00 75.00 100.00 89.29 85.71 78.57 

U2DUZI-NKANY 100.00 77.78 100.00 92.59 88.89 88.89 

U2MGEN-MZINY 92.86 78.57 96.43 78.57 100.00 82.14 
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Table 2.5: Water physico-chemical characteristics (water quality) of the uMngeni River sites sampled in the present study (May, August and November 2017).  
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HF-NOV-U2MGEN-

MZINY 22.7 8.10 7.8 90.6 33.4 75 2.1 74 42 0.1 0.49 22 14 1.5 20 1414 2 163 1000 36 0.1 5 15 
HF-NOV-U6DUZI-

MOTOX 19.6 7.37 8.18 89.4 42.7 55 3.2 100 50 0.1 1.04 34 20 4.1 20 2250 69 100 1000 40 7.3 335 460 
HF-NOV-U2DUZI-

NKANY 22.3 8.25 8.03 91.3 38.6 29 9.1 69 47 9.1 7.12 35 19 35 20 2420 147 100 1000 39 0.98 241 350 
HF-NOV-U2MGEN-

DRGLE 15.1 7.33 8.67 86.2 5.01 88 0.9 19 2.7 0.1 0.33 2 3.8 1 20 179 12 100 292 3.1 0.1 5 15 
HF-NOV-U2MGEN-

LIONS 19 7.17 8.15 87.8 13.2 54 7.5 48 8.3 0.1 0.42 2.1 9.1 0.1 20 613 7 100 228 7.8 0.1 7.21 24.1 
HF-NOV-U2KARK-

USMGN 19.7 7.33 8.02 87.6 9.5 49 6.8 35 5.3 0.1 0.42 3.1 6.3 0.3 20 2420 117 100 1000 5.5 0.1 5 16.5 
HF-NOV-U2MGEN-

PETRU 18.7 6.0 8.23 88.3 6.46 76 4.5 26 3 0.1 0.19 1.9 5 0.7 20 4352 1233 100 1000 4.2 0.1 5 20 
LF-AUG-U2MGEN-

PETRU 13.8 7.26 7.99 76 7.14 90 2.5 30 3 0.1 0.18 1.6 4.8 0.4 20 261 101 100 55 2.9 0.1 5 20 
LF-AUG-U2MGEN-

DRGLE 9.8 7.62 8.26 75 4 90 0.5 21 2.6 0.1 0.35 1.2 3.9 0.3 20 157 9 100 46 2.3 0.1 5 24.1 
LF-AUG-U2MGEN-

FOUNT 17 7.21 7.55 - 8.7 36 34 31 9.2 0.1 0.38 5.5 4.4 1.7 20 2420 219 100 1000 5.9 0.1 12.6 62.3 
LF-AUG-U2DUZI-

MOTOX 16.5 7.3 7.5 - 40.2 60 3.2 116 49.6 0.1 1 37 22 4 20 2420 72 100 1000 45 8.09 354 472 
LF-AUG-U2KARK-

USMGN 13.6 7.12 7.95 77 8 65 6.2 38 6.1 0.1 0.29 2.1 5.6 1.3 20 308 36 100 1000 4.1 0.1 5 35.6 
LF-AUG-U2MGEN-

LIONS 12.5 7.43 7.82 77 9.1 65 4.9 45 7.6 0.1 0.23 1.7 8 0.3 20 411 7 100 1000 6.2 0.1 5 27.6 
LF-AUG-U2DUZI-

NKANY 14.1 6.93 7.96 - 36.3 50 9.2 70 47 0.1 7.03 36 20 35 20 2420 138 100 1000 39 0.89 241 350 
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LF-AUG-U2MGEN-

MZINY 19.4 7.89 7.95 86 25.7 95 1.6 70 36 0.1 0.83 17 19 1.5 20 387 15 149 1000 40 0.1 8.02 33.8 
HF-MAY-U2MGEN-

PETRU 16.1 6.94 8.7 - 5.95 88 4.2 25 2.8 0.1 0.1 1 5.3 0.8 20 579 83 100 269 5 0.1 5 111 
HF-MAY-U2DUZI-

NKANY 20.5 6.93 7.23 85 30.7 21 38 58 31 0.34 4.94 15 23 2.6 20 24196 763 100 1000 29 0.45 208 373 
HF-MAY-U2MGEN-

MZINY 20.8 7.1 9.74 101 190 80 2 37 0.1 0.22 15.4 14 0.6 20 1300 39 29.4 155 32.3 0.1 5 23 1.7 
HF-MAY-U2MGEN-

LIONS 12.2 6.46 8.08 - 8.436 53 17 181 6.7 0.1 0.46 1 5.9 0.7 20 4839 775 100 318 7.5 0.1 17.2 32.1 
HF-MAY-U2MGEN-

DRGLE 9.3 6.05 8 - 3.945 44 12 11 3.8 0.1 0.12 1.1 2.7 0.2 20 4839 1034 100 1000 4 0.1 5.49 57.3 
HF-MAY-U2MGEN-

FOUNT 15 6.74 7.96 91 10.93 29 20 32 8.9 0.1 0.2 5.3 7.4 2.1 25 4839 300 100 421 11 0.1 21.1 82.5 

2 
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Table 2.6: Overall (average) habitat features of the uMngeni River sites sampled in the present study (May, August and November 2017). 
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HF-NOV-

U2MGEN-

MZINY 312.0 236 358 0.23 0.07 0.33 6 2 16 4 0 46 13 13 0 0 38 0 38 16 0 0 8 

HF-NOV-

U2DUZI-

MOTOX 329.6 257.1 284.3 0.13 0.05 0.20 7.86 2.86 0 0 0 0 85 4.29 7.14 11.43 20 14.29 15.71 12.86 11.43 0 7.14 

HF-NOV-

U2DUZI-

NKANY 365.0 258 462 0.4 0.3 0.4 2 20 3 1 24 50 0 0 0 0 20 0 41 28 3 8 0 

HF-NOV-

U2MGEN-

DRGLE 312.3 263 351 0.3 0.2 0.4 12 11 9.6 0 11 43 14 0 8.3 0 0 5.83 40 15 25 0 5.8 

HF-NOV-

U2MGEN-

LIONS 270.4 187 340 0.3 0.3 0.4 13 0 0 0 7.5 18 61 0 6.7 0 28 11.7 30.8 20.8 1.67 0 0 

HF-NOV-

U2KARK-

USMGN 526.6 391 684 0 0 0.1 0 16 14 0 0 69 0 0 0 1.25 28 0 37.5 34.4 1.25 0 0 

HF-NOV-

U2MGEN-

PETRU 685.0 540 848 0.1 -0 0.2 15 34 0 0 1.3 50 0 0 0 0 18 0 36.3 46.3 0 0 0 

LF-AUG-

U2MGEN-

PETRU 464.3 356 556 0.2 0.1 0.2 0 0 1.4 5.7 2.9 37 53 0 0 0 0 0 64.3 34.3 1.43 0 0 
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LF-AUG-

U2MGEN-

DRGLE 393 333 468 0.2 0.1 0.3 0 6.3 16 13 8.1 51 5 0 3.8 3.75 0 1.25 53.8 2.5 35 0 0 

LF-AUG-

U2MGEN-

FOUNT 407 332 483 0.3 0.2 0.3 0 17 0 10 3.3 30 40 0 0 0 37 0 21.7 28.3 13.3 0 0 

LF-AUG-

U2DUZI-

MOTOX 290 213 383 0.2 0.1 0.3 0 2.2 0.6 0.6 0 11 86 0 0 0 28 5.56 0 44.4 0 0 22 

LF-AUG-

U2KARK-

USMGN 433 357 512 0.1 0.1 0.1 0 27 0.5 4 0 69 0 0 3 0 16 0 46.5 29 6 0 0 

LF-AUG-

U2MGEN-

LIONS 524 421 614 0 -0 0.1 14 19 0 0 2.7 52 13 0 0 0 12 0 45.9 41.8 0 0 0 

LF-AUG-

U2DUZI-

NKANY 302 219 376 0.4 0.2 0.5 1 2 6 28 47 16 0 0 0 0 0 0 59.5 24.5 0 16 0 

LF-AUG-

U2MGEN-

MZINY 408 327 493 0.2 0.1 0.3 6 22 14 1 9 37 11 0.7 0 0 27 0 35.7 35.7 0 1.3 0 

HF-MAY-

U2MGEN-

PETRU 464 405 505 - 0 - 0 0 0 2.5 5 45 48 0 0 0 0 0 70 27.5 2.5 0 0 

HF-MAY-

U2DUZI-

NKANY 275 136 410 0.5 0.3 0.6 0 0 6 28 57 9 0 0 0 0 14 1 52 33 0 0 0 

HF-MAY-

U2MGEN-

MZINY 416 329 494 0.3 0.2 0.4 14 7.5 19 0 2.5 30 24 3.8 0 0 26 0 58.8 12.5 0 0 2.5 

HF-MAY-

U2MGEN-

LIONS 359 293 460 0.2 0.2 0.3 0 2.5 0 7.5 39 50 0 1.3 0 0 28 11.3 46.3 17.5 0 0 0 

HF-MAY-

U2MGEN-

DRGLE 542 473 655 0.6 0.4 0.7 0 10 0 1.3 7.5 79 0 2.5 5 0 1.3 8.75 36.3 48.8 0 0 0 

HF-MAY-

U2MGEN-

FOUNT 351 246 453 0.4 0.3 0.6 0 0 0 5 5.7 86 3.6 0 0 0 5.7 0 66.4 27.9 0 0 0 

4 
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Results of the application of the FRAI approach include a deteriorating trend in the state 

of the fish communities of the Umgeni River downstream. This trend decreased from a 

moderately modified fish community observed in the upper reaches of the catchment associated 

with water quality and flow stressors because of land use changes, and alien invasive species 

that compete with and predate on indigenous species. The ecological integrity state of the fishes 

deteriorates to a largely modied “D” state and on occasion in the Msunduzi River the ecological 

integrity of the fish community has deteriorated to an unststainable Severely Modified “D/E” 

and “E” state. This deterioration was representative of excessive changes to the water quality, 

flows and habitats of the rivers associated with land use changes.  Indicator species identified 

through the application of FRAI that were expected to be more common in the catchment 

included the five Enteromius spp. in particular.  All of these fish species have a high preference 

for good water quality which appears to be a major contributor to the deteriorated state of the 

FRAI scores.  

 

 2.4.2 Multivariate statistical analyses   

 

2.4.2.1 Fish communities based on site   

 

Redundancy analyses (RDA) of intersite community comparisons related to environmental 

variables including water quality, quantity (flow) and habitat (Tables 2.5 and 2.6). Fish 

community structures at the various sites sampled in this study were generally significantly 

unique (p = 0.0010, Fig. 2.2). A total of 65.5% of the total variation of data were presented in 

this ordination, with 39% of the variation on the first axis and 26.5% on the second axis (Fig. 

2.2). The only sites whose community structures were similar to one another were U2MGEN-

PETRU and U2MGEN-MZINY (p = 0.062) as well as U2DUZI-NKANY and U2MGEN-

FOUNT (p = 0.903, Fig. 2.2). Site U2KARK-USMGN had the greatest species diversity 

followed by U2MGEN-MZINY which had a completely different fish assemblage. Invasive 
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species M. salmoides (MSAL), and O. mykiss (OMYK) were closely associated with 

U2MGEN-LIONS and U2MGNI-DRGLE, respectively. Labeobarbus natalensis (LNAT) was 

associated with three (out of eight) sites in this study, namely, U2KARK-USMGN, U2DUZI-

NKANY and U2MGEN-FOUNT. Tilapia sparrmanii (TSPA) was also associated with three 

sites; U2MGEN-LIONS, U2KARK-USMGN and U2DUZI-MOTOX.     

 

 

Fig. 2.2: Redundancy analysis tri-plot of fish species and sites showing dissimilarity among 

sites (arrows) in the uMngeni River in the present study. The fish species (squares) were 

overlaid onto the RDA to show potential driving variables. (Abbreviations as per Table 2.2). 
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2.4.2.2 Fish communities based on seasonal river flow (High flow vs. Low flow)   

 

The results comparing fish community structures in high and low flow seasons indicated that 

fish community structures during the two flow seasons were significantly different in the 

uMngeni River in the present study (p = 0.0220, Fig. 2.3) and thus, flow had a significant 

influence on fish assemblages in this study. 100% of the variation of data were presented in 

this ordination, all of which was on the first axis (Fig. 2.3). Fish species that were associated 

with flow seasons include E. viviparus (EVIV), T. sparrmanii (TSPA), E. gurneyi (EGUR) and 

M. salmoides (MSAL), while E. anoplus (EANO), E. pallidus (EPAL), O. mossambicus 

(OMOS), C. rendalli (CREN), A. aeneofuscus (AAEN) and O. mykiss (OMYK) were 

associated with high flow seasons. Species that were not necessarily related to either season 

included L. natalensis (LNAT), P. philander (PPHI), C. gariepinus (CGAR) and A. natalensis 

(ANAT). though the high flow season had slightly greater species diversity (Fig. 2.3).  

 

 

Fig. 2.3: Redundancy analysis tri-plot of fish species. sites and flow showing dissimilarity 

between high and low flows (arrows) uMngeni River in the present study. The fish species 
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(squares) and sites (triangles) were overlaid onto the RDA to show potential driving variables. 

(Abbreviations as per Table 2.2). 

  

2.4.2.3 Fish communities based on velocity and depth   

  

Velocity-depth was found to have a significant influence on fish community structure in the 

uMngeni River in the present study (p = 0.0090; Fig. 2.4). In this ordination 76% of the 

variation within the data were presented, with 48% of the variation on the first axis and 28% 

on the second (Fig. 2.4). Mean velocity (X (m/s)) accounted for the greatest variation (F = 4.15, 

p = 0.001). Maximum depth (Max (mm); F = 2.19, p = 0.047) and minimum depth (Min (mm); 

F = 3.60, p = 0.004), were also significant drivers of fish community structures in this study. 

Although some of the individual variables, namely minimum and maximum velocity and 

average depth, did not have a significant influence on fish community structure, there was a 

clear distinction between fish species that were more associated with depth variables and those 

that were more associated with velocity variables. 

In this study, water depth was associated with species M. salmoides (MSAL), T. 

sparrmanii (TSPA), O. mykiss (OMYK), E. gurneyi (EGUR), E. pallidus (EPAL), E. viviparus 

(EVIV), E. anoplus (EANO), A. natalensis (ANAT) and O. mossambicus (OMOS) and sites 

U2MGEN-LIONS, U2KARK-USMGN and U2DUZI-MOTOX. Velocity was associated with 

species A. natalensis (ANAT), E. anoplus (EANO), C. gariepinus (CGAR), A. aeneofuscus 

(AAEN), and C. rendalli (CREN) and especially had a relatively strong positive correlation 

with L. natalensis (LNAT) and sites U2DUZI-NKANY and U2MGEN-FOUNT.  
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Fig. 2.4: Redundancy analysis tri-plot of fish species, sites and velocity-depth showing 

dissimilarity between velocity and depth variables (arrows) in the uMngeni River in the present 

study. The fish species (squares) and sites (triangles) were overlaid onto the RDA to show 

potential driving variables. (Note: Min (mm) is minimum depth. Max (mm) is maximum depth. 

X (mm) is average depth. Min (m/s) is minimum velocity. Max (m/s) is maximum velocity and 

X (m/s) is average velocity). (Other abbreviations as per Table 2.2) 

 

2.4.2.4 Fish communities based on substrate type   

 

Statistical comparisons between fish communities and substrates found substrate to be a 

significant driver of fish community structures in the uMngeni River in the present study (p = 

0.0380, Fig. 2.5). In this ordination 70.4% of the variation within the data were presented, with 
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49.5% of the variation on the first axis and 20.9% on the second axis (Fig. 2.5). Of all the 

substrate types, silt accounted for the greatest variation in fish community structure (F = 5.16, 

p = 0.003) followed by mud (F = 2.76, p = 0.017) and cobbles (F = 2.15, p = 0.046).  

Awaous aeneofuscus (AAEN), P. philander (PPHI) and sites U2MGNI-DRGLE and 

U2MGEN-MZINY were closely associated with silt, while other associations with silt included 

C. gariepinus (CGAR), C. rendalli (CREN), M. salmoides (MSAL) and sites U2MGEN-

PETRU and U2MGEN-LIONS. Site U2MGEN-LIONS, M. salmoides (MSAL) and O. mykiss 

(OMYK) were closely associated with mud. Also associated with mud substrate was site 

U2DUZI-MOTOX and species O. mossambicus (OMOS), E. pallidus (EPAL), and T. 

sparrmanii (TSPA). Cobble substrate was strongly associated with L. natalensis (LNAT), A. 

natalensis (ANAT) and sites U2MGEN-FOUNT and U2DUZI-NKANY. Also associated with 

cobble (to a lesser degree) were E. viviparus (EVIV), E. anoplus (EANO), E. gurneyi (EGUR), 

E. pallidus (EPAL), T. sparrmanii (TSPA) and site U2KARK-USMGN.    

In addition to cobble substrate, L. natalensis (LNAT) was also closely associated with 

gravel, as were sites U2MGEN-FOUNT and U2DUZI-NKANY. Pseudocrenilabrus philander 

(PPHI), A. aeneofuscus (AAEN), C. rendalli (CREN) and sites U2MGEN-MZINY, 

U2MGEN-PETRU and U2MGNI-DRGLE were associated with sand (Fig. 2.5). Boulder and 

bedrock substrate types both shared associations with O. mossambicus (OMOS), E. pallidus 

(EPAL), T. sparrmanii (TSPA), E. gurneyi (EGUR), E. viviparus (EVIV), E. anoplus (EANO), 

A. natalensis (ANAT) and sites U2DUZI-MOTOX and U2KARK-USMGN. Additionally, 

boulder substrate was associated with M. salmoides (MSAL) and U2MGEN-LIONS and 

bedrock was associated with L. natalensis (LNAT).   
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Fig. 2.4: Redundancy analysis tri-plot of fish species, sites and substrate showing dissimilarity 

between substrate types (arrows) in the uMngeni River in the present study. The fish species 

(squares) and sites (triangles) were overlaid onto the RDA to show potential driving variables. 

(Abbreviations as per Table 2.2). 

  

2.4.2.5 Fish communities based on cover feature type   

In the present study, cover features had no significant influence on fish community structure in 

the uMngeni River (p = 0.5330. Fig. 2.6). This ordination showed 80.5% of the variation within 

the data, with 61% of the variation on the first axis and 19.5% on the second axis (Fig. 2.6). 
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Fig. 2.5: Redundancy analysis tri-plot of fish species and cover features showing dissimilarity 

between cover features (arrows) in the uMngeni River in the present study. The fish species 

(squares) were overlaid onto the RDA to show potential driving variables. (Abbreviations as 

per Table 2.2). 

 

2.4.2.6 Fish communities based on water quality   

Water quality was a significant driver of fish community structure in the uMngeni River in the 

present study (p = 0.0010, Fig. 2.7). This ordination presented 57.2% of the variation within 

the data, with 32.7% of the variation on the first axis and 24.5% on the second axis (Fig. 2.7). 

Numerous water quality variables that had a significant influence on fish community structure 

included turbidity (ntu, p = 0.001), fluoride (F, p = 0.001), alkalinity (CaCO3, p = 0.035), 

Sodium (Na, p = 0.016), heterotrophic plate count (HPC 37, p = 0.004), sulphate (SO4, p = 
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0.048), total phosphorus (TP, p = 0.031), conductivity (p = 0.031), nitrate (NO3, p = 0.001) and 

ammonia (NH3, p = 0.021).  

The results showed that L. natalensis (LNAT) was associated with turbidity (ntu) and 

coliforms (Fig. 2.7). Oreochromis mossambicus (OMOS) was associated with SO4, while C. 

gariepinus (CGAR) was associated with elevated Na (sodium) and P. philander (PPHI) was 

associated with conductivity (Fig. 2.7). Sites U2DUZI-MOTOX and U2MGEN-MZINY were 

associated with CaCO3 and F, respectively (Fig. 2.7).  

 

 

Fig. 2.6: Redundancy analysis tri-plot of fish species. sites and substrate showing dissimilarity 

between water quality variables (arrows) in the uMngeni River in the present study. The fish 

species (squares) and sites (triangles) were overlaid onto the RDA to show potential driving 

variables. (Abbreviations as per Table 2.2). 
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2.5 Discussion  

The overall ecological integrity of the uMngeni was shown to be in a poor state. In comparison 

to other catchments (the Mvoti and Elands River) faced with simlar impacts and fish species 

the uMngeni is in a poorer ecological state (O’Brien et al. 2013; O’Brien et al. 2009). In 

KwaZulu-Natal, the uMngeni River has been shown to be the most anthropogenic impacted 

river (Evans 2017). The ecological assessment in this study did show that the system in highly 

stressed negatively impacting the ecological integrity of the uMngeni River. Using multivariate 

statistics and FRAI to assess both the impacts and drivers of fish communities provided insight 

into where the ecological integrity can be addressed within the catchment and what drives these 

fish communities in order to improve on the systems ecological integrity. 

 

2.5.1 Multivariate analyses 

For the most part, the eight sites that were sampled in this study were unique in their fish 

community structure and the high flow season had a greater species diversity which was to be 

expected as in other studies (Schlosser, 1985). Of the eight sites, six had L. natalensis present, 

commonly used as an indicator of ecosystem wellbeing (Impson et al. 2008; O’Brien et al. 

2019), though in U2MGEN-MZINY only one L. natalensis was ever caught. Labeobarbus 

natalensis was not caught at the sites U2MGEN-LIONS and U2MGNI-DRGLE in this study. 

Although L. natalensis was present in most of the sites sampled in this study, the low numbers 

in which it occurs is concerning and, given that it is a migratory species (Karssing 2007), this 

is most likely a consequence of the uMngeni River being so heavily regulated and impounded 

by large instream dams; making it the most fragmented river in KwaZulu-Natal (Ramulifho 

2015; O’Brien et al. 2019).  

Velocity-depth parameters were found to have an influence on fish community structure 

in this study. Decreased water velocity, for instance, would result in a shift in fish community 
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structure as species such as L. natalensis and A. natalensis showed a preference for high 

velocity, which is to be expected (Skelton 2001; Karssing 2007). The community structure 

shifted to include species such M. salmoides which generally prefer slow-flowing water. The 

velocity-depth classes of habitat are greatly influenced by the flow dynamics of a river 

(Kleynhans 2007), which in turn is subject to regulation by dams (Poff et al. 1997; Dugan et 

al. 2010; Fouchy 2019). Site U2MGEN-FOUNT included habitats with fast-flowing water and 

as such was associated with L. natalensis. Deep waters were associated with M. salmoides and 

O. mykiss in this study, both of which are invasive species. Similar to the findings in this study, 

Gao et al. (2019) found that dam regulation in the Yangtze River (China) caused significant 

shifts in fish assemblages, even gradually increasing the number of non-native fishes. 

The presence of gravel, cobbles and boulders is very ecologically important as numerous 

KwaZulu-Natal fishes rely on these substrates as breeding and feeding grounds (Skelton 2001) 

and as such, also had an influence of fish assemblages in this study. For instance, L. natalensis 

showed a preference for cobbles and gravel (which it uses to spawn) (Karssing 2007). 

Noticeably, sites U2MGEN-FOUNT and U2DUZI-NKANY were both associated with these 

substrates and so had the two highest L. natalensis abundances. Certain substrate types can also 

act as a form of cover for fish (such as A. aeneofuscus) to hide from predators (Skelton 2001; 

Smokorowski, and Pratt 2007). Awaous aeneofuscus is known to bury itself in the sand for 

cover (Skelton 2001) and is seen in this study to be associated with this substrate. Gravel, 

cobbles and boulders all have the potential to act as cover for fish, but when these substrates 

are buried under fine silt or mud (as found in sites U2MGEN-LIONS and U2MGNI-DRGLE), 

they are no longer useful for cover (Kleynhans 2007). In a systematic review of studies that 

look at the effect of habitat alterations, Taylor et al. (2019) found substrate type (e.g., gravel, 

cobble) to have a significant effect on the abundance of substrate-spawning fish.  
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The main sources of sediment in rivers are generally anthropogenically facilitated 

through agriculture, commercial forestry and urban development such as dams, road 

construction and infrastructure (Waters 1995; Dugan et al. 2010; McIntyre et al. 2016). As 

sedimentation results in reduced fish biodiversity (Poff et al. 1997; Hall et al. 2011; 

Hohensinner et al. 2018), having these activities near a river is detrimental to ecosystem health. 

In the present study, water quality had a significant influence on fish community structure, 

though not as much as the other environmental variables as it only explained 57.2 % of the 

variation. The indicator species L. natalensis showed a preference for waters of relatively high 

turbidity as well as an association with microbial coliforms. None of the species showed a 

preference for water clarity and this was expected as it can make fish more susceptible to 

predators (Skelton 2001; Figueiredo et al. 2016). Salts such as sulphates (SO₄), sodium (Na) 

and chlorine (Cl) had an influence of fish community structure as species such as O. 

mossambicus, C. gariepinus, C. rendalli, E. anoplus and E. pallidus were associated with them. 

Pseudocrenilabrus philander also showed a preference for high conductivity, which is an 

indicator of ions in the water (DWAF 1996). The sites U2MGEN-PETRU and U2MGEN-

MZINY were also associated with elevated conductivity. One of the main sources of 

conductivity is sedimentation, which may result from run-off from agricultural activity (Walser 

and Bart 1999). Considering that the U2MGEN-PETRU site is surrounded by agricultural 

activity, this may be the reason for its elevated electrical conductivity. The effects of water 

quality changes on aquatic ecosystems has been studied quite extensively (Peters and Meybeck 

2000; O’Brien et al. 2009; Peters 2009; DWS 2014b; Yavuzcan Yildiz 2017). Poor water 

quality often results in a decline in fish species, not only because of the intolerances of the 

fishes, but also because the organisms that they feed on may decline (DWAF 1996; Bilotta and 

Brazier 2008). Unfavourable water quality conditions can also give rise to an increase in 
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invasive species which are often more tolerant of deteriorated and polluted waters (Bunn and 

Arthington 2002; Dudgeon 2014; Gao et al. 2019).   

 

2.5.2 Fish response assessment index (FRAI) 

Based on the outcome of fish response assessment index (FRAI), the fish assemblage in the 

surveyed sections of the uMngeni River can be considered to be largely modified in the lower 

reaches and moderately modified in the upper reaches of the river. This is a common occurrence 

in KwaZulu-Natal and many reaches of South Africa where resources are being developed 

(O’Brien et al. 2019). In the eight sites that were surveyed over the course of this study, a 

combined total of 26 indigenous reference species were expected and of this, only 14 were 

caught. 

The site U2MGNI-DRGLE was shown to be moderately modified as none of the four 

expected reference species were caught here. Migration and flow modification were shown to 

be some of the greatest influences of fish community structure at this site. Given the high 

dependence that the lifecycles of A. mossambica, E. anoplus and L. natalensis have on 

migration (Wallace et al. 1984; Skelton 2001; Impson et al. 2008), the presence of weirs and 

Midmar Dam downstream may be the reason for the absence of these species (Dugan et al. 

2010; O’Brien et al. 2019). The alterations in flow that are caused by debris from cut down 

trees in some parts of this site may also play a role in the absence of A. natalensis which is 

particularly intolerant of habitats with no flow. Namugize et al. (2018) showed that land-use 

changes in the upper uMngeni catchment reduced natural vegetation by 17% and this too has 

clearly influenced the river’s ecological state, including the state of fish (Jewitt et al. 2015).  

The presence of the invasive O. mykiss likely has the greatest influence on fish community 

structures at this site. Oncorhynchus mykiss inhabits cool (< 21 ℃), clear and well-aerated 

waters and breed in cold (< 15 ℃) water flowing water in winter (Skelton 2001), thus making 
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U2MGNI-DRGLE a relatively suitable habitat for O. mykiss. This, together with the predatory 

nature of this species (Skelton 2001), is the likely reason it can completely dominate this site. 

The relatively good water quality (which is shown by the multivariate analysis to have a 

significant influence on fish community structure in this study) and minimal human 

modification in this site was the reason why it had a fairly good adjusted FRAI score.  

Site U2MGEN-PETRU was found to be in moderately modified state primarily because 

of modified flow conditions and barriers that hinder fish migration (i.e. the weir that is present 

at this site), both of which have been shown to be detrimental to fish biodiversity (Dudgeon et 

al. 2006; Grill et al. 2019). Additionally, the multivariate statistics performed in this study 

indicated that velocity-depth classes have a significant influence on fish community structures, 

further indicating that habitat modifications that alter flow and depth have a detrimental effect 

on fish communities.  

One of the reference species, A. mossambica, prefers flowing water although it is also 

moderately tolerant of non-flowing water (Skelton 2001). Labeobarbus natalensis also prefers 

flowing waters and is moderately intolerant of no flow because of the importance that flowing 

plays in their breeding (Skelton 2001; Karssing 2007). Amphilius natalensis is relatively 

intolerant of non-flowing waters and prefers fast-flowing water. Being able to freely migrate 

between habitats is also important for these fish species, especially A. mossambica and L. 

natalensis which migrate >100 km and between 20 km and 100 km, respectively, for breeding 

and reproductive purposes (Wallace et al. 1984; Skelton 2001; Karssing 2007). The presence 

of a weir at this site has modified natural flow patterns and impedes on fishes’ ability to freely 

migrate, thus resulting in a decline of fish species that should otherwise occur in high 

frequencies in this site.  

Site U2MGEN-LIONS was shown to be largely modified and, according to the FRAI 

assessment, fish species with a high preference for flowing water and an affinity for migration 
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decreased in frequency of occurrence compared to the reference frequencies of occurrence. It 

can, therefore, be suspected that the decrease in fish community integrity at this site is primarily 

because of competition and predation by invasive and translocated fish species, modified flow 

conditions, and migration barriers. Additionally, invasive species (such as those found at this 

site) have been shown to be more tolerant of unfavourable conditions such as increased 

temperatures and flow modifications (Bunn and Arthington 2002; Dudgeon 2014). 

Micropterus salmoides, in particular, is tolerant of a wide temperature range (below 10 °C to 

32 °C) and is catholic in its feeding habits (Skelton 2001) and so the increased presence of this 

invasive species, is a further indication of this site’s deteriorated state.     

 The relatively poor availability of water in some parts of this site (especially in low flow 

seasons) may also contribute to the lack of reference species, especially those that prefer 

flowing waters (such as A. natalensis and L. natalensis) as well as those whose life cycle relies 

on the ability to migrate (such as A. mossambica, E. anoplus, L. natalensis, E. viviparus and C. 

gariepinus) (Skelton 2001; DWS 2014a). The significance of velocity-depth classes and 

high/low flow seasons in the differences in fish communities among sites is further evidence 

of the influence of water availability at this sire.  

 Translocated species, particularly T. sparrmanii and C. rendalli, most likely thrive at this 

site because they are tolerant of a wide range of habitats (Skelton 2001).  It is, however, 

surprising that a species as widespread and tolerant as C. gariepinus (Willoughby and Tweddle 

1978; Koehn 2004) was absent at this site.   

Site U2KARK-USMGN (which had the greatest fish diversity) was shown to be 

moderately modified with velocity-depth classes, flow modification, and physico-chemical 

characteristics (water quality) being the main drivers of change in fish community structure. 

These findings are further corroborated by the multivariate analysis performed in this study 

which showed velocity-depth classes and physico-chemical characteristics to have a significant 
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influence on fish community variation among sites surveyed. The presence of a weir and 

several bridge crossings upstream of this site may be the reason behind flow modifications and 

changes in velocity-depth classes from the natural state (Ramulifho 2015; O’ Brien et al. 2019). 

Another factor that had a significant influence on fish community structures in this study 

(according to the multivariate analysis) was substrate type. Substrate type, and how it is 

distributed across habitats in any particular site, can affect the presence or absence of fish based 

on the various physiological needs that different substrate may fulfil over the fish’s lifespan 

(Skelton 2001). For instance, gravel substrate is relatively important for L. natalensis as they 

spawn over gravel beds and A. natalensis lives among cobbles and rocks (Skelton 2001; 

Karssing 2007). This site, however, was associated with mud according to the multivariate 

analysis results. Water quality samples taken at this site show elevated microbial levels (E. coli, 

coliforms and HPC 37), indicating that there may be faecal matter present in the water, most 

likely from the wildlife present in the area (DWAF 1996; Zhu et al. 2019) or nearby wastewater 

treatment.  

Moving into the lower parts of the uMngeni catchment to site U2MGEN-FOUNT, the 

site is shown to be moderately/largely modified. According to the FRAI assessment, species 

with a high preference for clear, flowing water decreased in frequency of occurrence compared 

to reference as velocity-depth classes, flow modification, and physico-chemical characteristics 

are the metric groups with the most weight at this site. All these metrices are related to flow 

modification (Kleynhans 2007; Mantel et al. 2010; Jewitt 2015) and at the U2MGEN-FOUNT 

site, this can be attributed to the unnatural flow pattern caused by Albert Falls Dam upstream 

of this site (WRC 2002). Flow alterations can negatively affect habitats, sediment deposition, 

migration and life history/physiological cues such as fish recruitment and growth (Poff et al. 

1997; Bunn and Arthington 2002; Hall et al. 2011). The water quality at this site was relatively 

good, with just slight elevations in microbial activity, namely E. coli, coliforms and HPC 37. 
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Multivariate analysis also indicated that velocity-depth classes and physico-chemical 

characteristics were indeed drivers of change in fish community structure in this study.  

For most reference species, the habitats that they inhabit or prefer to inhabit were present 

at U2MGEN-FOUNT, with just a few exceptions. There was essentially no sand in U2MGEN-

FOUNT (Table 2.6), which is vital for A. aeneofuscus which uses the sand for cover (Skelton 

2001; DWS 2014a). The lack of vegetated pools, which E. viviparus and T, sparrmanii inhabit 

and prefer, respectively, meant that these species were lacking from the site sampled. 

Coptodon rendalli prefers quiet, vegetated backwaters (Skelton 2001) a habitat type that is not 

present at U2MGEN-FOUNT and hence this species was also not sampled at this site.  

Site U2DUZI-MOTOX, which is in the Msunduzi River (a tributary of the uMngeni 

River) was shown to be largely modified and most influenced by changes in that velocity-depth 

classes, flow modification, and physico-chemical characteristics. This site (which occurs in the 

most urbanised location in this study) is about 12 km downstream of Camps Drift, a canalised 

section of the Msunduzi River, and 36 km below Henly Dam, impacting the river’s natural 

flow. Weirs on the Msunduzi River also affect the river’s flow as well as fish migration (Foucy 

et al. 2019). The consequences of urbanisation are most obvious at this site and Levin et al. 

(2019) showed similar results by directly linking increased urbanisation to poor FRAI EC 

scores (i.e. ecological degradation). The Msunduzi River passes through the urban area of 

Pietermaritzburg which further contributes pollution to the river (WRC 2002; Matongo et al. 

2015) and site U2DUZI-MOTOX was no exception (pers. obs.).  

The multivariate analyses indicated that velocity-depth classes and physico-chemical 

characteristics were significant drivers of fish community variation among sites surveyed. 

Multivariate analyses also showed substrate type to have a significant influence on community 

structure. This may be why species that rely on substrate types that were absent in this site 

(such as L. natalensis) or occurreds in low frequencies (lower than expected). As L. natalensis 
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requires gravel with no silt to breed and this was lacking at site U2DUZI-MOTOX which was 

predominated by bedrock, boulders, and mud. Extensive urbanisation, such as is present along 

the Msunduzi River, has been shown to alter flow and sedimentation, thus altering the habitat 

(Poff et al. 1997; Hall et al. 2011; Hohensinner et al. 2018). Other species such A. aeneofuscus 

prefer sandy substrate which it uses for cover, while A. natalensis lives among cobbles and 

rocks and fast-flowing water (Skelton 2001). Enteromius pallidus inhabits pools in clear, rocky 

streams (Skelton 2001), and the water in U2DUZI-MOTOX was quite murky.  

Some of the water quality characteristics at this site may contribute to the absence of 

reference species and poor fish species diversity. For instance, elevated concentrations of 

Chlorine may be a result of the Darvill Wastewater Treatment Works which is less than 2 km 

upstream of this site. Chlorine has detrimental effects on fish and other river organisms (DWAF 

1996). The high electrical conductivity at this site is also an indication of high total dissolved 

salts concentration (i.e. ions in the water such as chloride, sulphate, nitrate, sodium, and 

calcium), indicative of an impacted site (DWAF 1996). Additionally, the ratio of Nitrogen 

(NO3) to Phosphorous (SRP) at this is about 3:1, which is considered typical for impacted sites 

(DWAF 1996). It should be noted, however, that water leaving the Darvill Wastewater 

Treatment Works has also been shown to be of better quality than it was before treatment (WRC 

2002; Matongo et al. 2015). 

The second Msunduzi River site, U2DUZI-NKANY, was largely modified and metric 

weights indicated that flow modification, velocity-depth classes, and physico-chemical 

characteristics were the main drivers of change in fish community structure at this site. As such, 

species with a high preference for clear, flowing water decreased in frequency of occurrence. 

Multivariate analyses also indicated that velocity-depth classes and physic-chemical 

characteristics had a significant influence on fish community variation among sites in this 

study. Once again, flow regulation was one of the main influences on the deteriorated state of 
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this site. Alterations to the Msunduzi River’s natural flow are caused by Henly Dam, weirs and 

canalisation (Camps Drift) upstream (Hall et al. 2011; Hohensinner et al. 2018). The riparian 

zone (which includes marginal vegetation and banks) at this site is also heavily deteriorated by 

anthropogenic activity. The riparian zone is important for the maintenance of freshwater 

biodiversity and a compromised riparian zone leaves a lot of fish species without cover, 

especially juvenile fish (Skelton 2001; Pusey and Arthington 2003). Such species include L. 

natalensis, C. rendalli, P. philander and E. pallidus, most of which were absent or occurred in 

low frequencies at this site. The riparian zone is home to the invertebrates and small vertebrates 

that fish feed on and also provides shade and cover for fish (Pusey and Arthington 2003).    

The riparian zone at this site may be damaged by cattle grazing and trampling which has 

been shown to compromise riparian zones (Amy and Robertson 2001; Campbell et al. 2019). 

Cattle faeces also act as a water contaminant (Zhu et al. 2019) and this was observed in the 

elevated faecal coliform count at this site, although E. coli is within the general limit of 1000 

mpn per 100 ml (DWAF 1996). Additionally, sand mining at this site has compromised the 

riverbank and riparian zone, which is detrimental to fish and other freshwater species (Padmalal 

et al. 2008; Kori and Mathada 2012; pers. obs.). At this site, there is also the invasive aquatic 

plant Eichhornia crassipes (water hyacinth) which is scattered across the site. The dense mats 

that E. crassipes forms can alter water quality which has a detrimental effect on other aquatic 

life (Cilliers 1991; Fouchy et al. 2018). At this site, however, E. crassipes appeared to have not 

altered water quality (most likely because it does not occur in dense mats) and instead water 

quality alterations appear to be a result of sand mining and cattle (pers. obs.).  

Site U2MGEN-MZINY, which was the farthest site down the uMngeni River in this 

study, was shown to be largely/severely modified, with migration, flow modification, and 

velocity-depth classes having the most significant influence on changes in fish community 

structure. This means that, according to the EC scores of the FRAI assessment, fish species that 
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migrate and have a high preference for flowing water decreased in frequency of occurrence. 

Flow alterations at this site are caused by iNanda Dam, which also acts as a barrier for 

migratory fish (Dugan et al. 2010; McIntyre et al. 2016). Migratory fishes depend on a range 

of habitats along a river ecosystem, and so connectivity between habitats is important in order 

to maintain healthy biodiversity (O’Brien et al. 2019).   

Water quality below iNanda Dam was relatively fine because of water purification in the 

dam. Multivariate analyses, however, indicated that this site was associated with sand and 

elevated silt levels. Multivariate analyses also indicated that this site was associated with high 

conductivity, an indication of total dissolved salts concentration (i.e. ions in the water such as 

chloride, sulphate, nitrate, sodium, and calcium) (DWAF 1996). Alterations in nutrient and 

sediment dynamics at this site may be a result of the flow alterations caused by iNanda Dam 

upstream (Poff et al. 1997; Hall et al. 2011; Hohensinner et al. 2018).    

 

2.6 Conclusions  

The results of the present study showed that the ecological integrity of the uMngeni River tends 

to degrade from upper to lower reaches in response to various anthropogenic activities. 

Assessments of fish communities in eight sites in the uMngeni and Msunduzi Rivers showed 

that the ecological states of most sites in the upper reaches of uMngeni River (above Albert 

Falls Dam) to be moderately modified, with one site on the Lions River being classified as 

largely modified. The Ecological integrity of sites on this portion of the uMngeni River was 

largely driven by flow modifications and migration barriers, from Midmar Dam and weirs in 

the upper uMngeni, as well as the impact of invasive species. The site in Fountainhill Estate 

was moderately/largely modified mostly because of the effects of flow modifications caused 

by Albert Falls Dam. Moving down the uMngeni River (including the Msunduzi tributary) the 

ecological state deteriorated further as sites here were largely modified because of flow and 
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water quality alterations. This deterioration was largely because of flow modifications from 

dams and channelisation as well as water quality alterations from urban and rural activities.  

The application of the multi-metric index was successful and identified the stressors driving 

fish communities that were all attributed to anthropogenic land use activities. These outcomes 

conformed with the multivariate analyses that identified significant changes in communities.  

Using multivariate analyses, the present study also showed that variations among the 

sites selected in this study were significantly driven by changes in velocity-depth classes, 

substrate type and water quality (physico-chemical), all of which can be influenced by flow 

modifications. Cover type, however, was shown to not be a significant driver of fish community 

variations in this study.  The outcomes include new evidence of altered fish communities 

associated with multiple stressors in the Umgeni River Catchment that need to be mitigated.  
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2.9 Supplementary Information  

 

 

 

 

Fig. S2.1a: Photographs of site U2MGNI-DRGLE. 

Fig. S2.1b: Photographs of site U2MGEN-PETRU. 
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Fig. S2.1d: Photographs of site U2KARK-USMGN 

 

Fig. S2.1c: Photographs of site U2MGEN-LIONS. 
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Fig. S2.1e: Photographs of site U2MGEN-FOUNT. 

 

 

Fig. S2.1f: Photographs of site U2DUZI-MOTOX. 

 

Fig. S2.1g: Photographs of site U2DUZI-NKANY 
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Fig. S2.1h: Photographs of site U2MGEN-MZINY. 
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Table S2.1: River Eco-status monitoring Programme (REMP) sites sampled and their 

coordinates in the present study. 

REMP site name River Latitude Longitude 

U2MGNI-DRGLE uMngeni -29.488805 29.903036 

U2MGEN-PETRU uMngeni -29.512469 30.094401 

U2MGEN-LIONS Lions -29.414572 30.094375 

U2KARK-USMGN Karkloof -29.443797 30.319403 

U2MGEN-FOUNT uMngeni -29.491252 30.492632 

U2DUZI-MOTOX Msunduzi -29.607 30.4508 

U2DUZI-NKANY Msunduzi -29.611 30.5578 

U2MGEN-MZINY uMngeni -29.720833 30.903937 
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Table S2.2: FRAI Ecological Categories (Kleynhans 2007) and justification sheets for each survey conducted over the course of this study. Lists 

of expected species were taken from the Department of Water and Sanitation's PESEIS documents (DWS 2014a). 

Ecological 

Categories  Name  Description 

Acceptable/ 

Unacceptable 
Score 

(%) 

A Natural Unmodified natural 
Acceptable 

  90 - 100 

B Good 

 Mostly natural with few 

modifications 

      Acceptable 

   80 - 89 

C Fair Moderately modified 
Acceptable 

60 - 79 

D Poor Largely modified Unacceptable 40 - 59  

E 

Seriously 

modified Seriously modified  

 

Unacceptable 20 - 39 

F 

Critically 

modified  Critically or extremely modified 

 

Unacceptable 0 - 19 

 
Site Name U2MGNI-DRGLE Assessor P Dlamini 
River  uMngeni Reviewed G O'Brien 

ABR SPECIES 
REFERENCE 

FROC 

OBSERVED FROC 

May Aug Nov 

AMOS ANGUILLA MOSSAMBICA PETERS 1852 5.00 0 0 0 
ANAT AMPHILIUS NATALENSIS BOULENGER. 1917 5.00 0 0 0 
BANO BARBUS ANOPLUS WEBER. 1897 5.00 0 0 0 

BNAT BARBUS NATALENSIS CASTELNAU. 1861 3.00 0 0 0 

Response of species with a preference/tolerance to May Aug Nov 

Velocity Depth 
Metric 

Fast-Deep  -2 -2 -1 

Fast-Shallow  -2 -2 -2 

Slow-Deep  -1 -1 -1 

Slow-Shallow  0 0 0 

Cover features 
Overhanging veg  2 3 3 

Undercut banks  2 1 1 



78 
 

Substrate  0 0 0 

Instream veg  3 1 3 

Water column  1 1 2 

Response of species that are May Aug Nov 

Flow 
dependance 

Intolerant to no flow  -2 -2 -2 

Moderately intolerant to no flow  -1 -1 -1 

Moderately tolerant to no flow  -1 -1 -1 

Tolerant to no flow  0 0 0 

Response of species that are May Aug Nov 

Physico-
chemical 

conditions 

Intolerant to modified physico-chemical conditions  -1 -1 -1 

Moderately intolerant to modified physico-chemical 
conditions  0 

0 0 

Moderately tolerant to modified physico-chemical conditions  -1 -1 -1 

Tolerant modified to physico-chemical conditions  0 0 0 

Response of which require May Aug Nov 

Migration 

Catchment scale movement  2 2 2 

Movement between reaches  2 2 2 

Movement within a reach  0 0 0 

Extent of the following in the reach May Aug Nov 

Changes in 
connectivity 

Weirs and causeways  2 2 2 
Impoundments  2 2 2 

Physico-chemical barriers  1 1 1 
Flow modifications   1 1 1 

Introduced/alien species May Aug Nov 

Introduced/alien 
species 

Introduced/alien predacious species 1  - - OMYK 

Introduced/alien predacious species 2  - - - 
Introduced/alien predacious species 3  - - - 
Introduced/alien habitat modifying species 1  - - - 
Introduced/alien habitat modifying species 2  - - - 

The impact of introduced competing spp?  0 0 5 

FROC of introduced competing spp?  0 0 0.5 

The impactof introduced habitat modifying spp?  0 0 0 

FROC of habitat modifying spp?  0 0 0 

AUTOMATED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 16.6 15.3 9.5 
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EC: FRAI   
 F F F 

ADJUSTED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 74.3 75.6 69 

EC: FRAI      C C C 

 
Site Name U2MGEN-PETRU Assessor P Dlamini 

River  uMngeni Reviewed G O'Brien 

ABR SPECIES 
REFERENCE 

FROC 

OBSERVED FROC 

May Aug Nov 

AMOS ANGUILLA MOSSAMBICA PETERS 1852 5.00 0 0 0 
ANAT AMPHILIUS NATALENSIS BOULENGER. 1917 5.00 0 0 0 
BANO BARBUS ANOPLUS WEBER. 1897 5.00 0 0 0 

BNAT BARBUS NATALENSIS CASTELNAU. 1861 3.00 0 1 0 

Response of species with a preference/tolerance to May Aug Nov 

Velocity Depth 
Metric 

Fast-Deep  -2 -1 -1 

Fast-Shallow  -2 -2 -1 

Slow-Deep  0 0 0 

Slow-Shallow  0 0 0 

Cover features 

Overhanging veg  1 1 1 

Undercut banks  2 2 2 

Substrate  3 2 3 

Instream veg  2 2 2 

Water column  2 1 1 

Response of species that are May Aug Nov 

Flow 
dependance 

Intolerant to no flow  -2 -2 -2 

Moderately intolerant to no flow  -1 -1 -1 

Moderately tolerant to no flow  -1 -1 -1 

Tolerant to no flow  0 0 0 

Response of species that are May Aug Nov 

Physico-
chemical 

conditions 

Intolerant to modified physico-chemical conditions  -3 -2 -2 

Moderately intolerant to modified physico-chemical conditions 0 0 0 

Moderately tolerant to modified physico-chemical conditions  -2 -2 -2 

Tolerant modified to physico-chemical conditions  0 0 0 

Response of which require May Aug Nov 
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Migration 

Catchment scale movement  3 3 3 

Movement between reaches  3 3 3 

Movement within a reach  1 1 1 

Extent of the following in the reach May Aug Nov 

Changes in 
connectivity 

Weirs and causeways  4 4 4 
Impoundments  2 2 2 

Physico-chemical barriers  1 1 1 

Flow modifications   1 1 1 

Introduced/alien species May Aug Nov 

Introduced/alien 
species 

Introduced/alien predacious species 1  - - - 

Introduced/alien predacious species 2  - - - 

Introduced/alien predacious species 3  - - - 
Introduced/alien habitat modifying species 1  - - - 
Introduced/alien habitat modifying species 2  - - - 

The impact of introduced competing spp?  0 0 0 

FROC of introduced competing spp?  0 0 0 

The impactof introduced habitat modifying spp?  0 0 0 

FROC of habitat modifying spp?  0 0 0 

AUTOMATED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 12.6 12.7 7.5 

EC: FRAI   
 F F F 

ADJUSTED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 62.3 69.5 69.7 

EC: FRAI      C C C 

 
Site Name U6MGEN-LIONS Assessor P Dlamini 

River  uMngeni Reviewed G O'Brien 

ABR SPECIES 
REFERENCE 

FROC 

OBSERVED FROC 

May Aug Nov 

AMOS ANGUILLA MOSSAMBICA PETERS 1852 3.00 0 0 0 
ANAT AMPHILIUS NATALENSIS BOULENGER. 1917 3.00 0 0 0 
BANO BARBUS ANOPLUS WEBER. 1897 5.00 0 0 0 

BGUR BARBUS GURNEYI GÜNTHER. 1868 3.00 0 0 0 

BNAT BARBUS NATALENSIS CASTELNAU. 1861 3.00 0 0 0 
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BVIV BARBUS VIVIPARUS WEBER. 1897 3.00 0 0 0 
CGAR CLARIAS GARIEPINUS (BURCHELL. 1822) 3.00 0 0 0 

Response of species with a preference/tolerance to May Aug Nov 

Velocity Depth 
Metric 

Fast-Deep  -1 -1 -1 

Fast-Shallow  -2 -1 -1 

Slow-Deep  -3 -3 -3 

Slow-Shallow  -3 -3 -3 

Cover features 

Overhanging veg  1 3 3 

Undercut banks  2 3 3 

Substrate  3 3 3 

Instream veg  3 3 3 

Water column  2 0 2 

Response of species that are May Aug Nov 

Flow 
dependance 

Intolerant to no flow  -4 -4 -4 

Moderately intolerant to no flow  -3 -3 -3 

Moderately tolerant to no flow  -2 -2 -2 

Tolerant to no flow  -1 0 0 

Response of species that are May Aug Nov 

Physico-
chemical 

conditions 

Intolerant to modified physico-chemical conditions  -1 -1 -1 

Moderately intolerant to modified physico-chemical conditions -1 0 0 

Moderately tolerant to modified physico-chemical conditions  0 0 0 

Tolerant modified to physico-chemical conditions  0 0 0 

Response of which require May Aug Nov 

Migration 

Catchment scale movement  3 3 3 

Movement between reaches  4 3 3 

Movement within a reach  1 3 3 

Extent of the following in the reach May Aug Nov 

Changes in 
connectivity 

Weirs and causeways  2 2 2 
Impoundments  1 1 1 
Physico-chemical barriers  0 0 0 

Flow modifications   1 1 1 

Introduced/alien species May Aug Nov 

Introduced/alien 
species 

Introduced/alien predacious species 1  MSAL MSAL MSAL 
Introduced/alien predacious species 2  - - - 
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Introduced/alien predacious species 3  - - - 
Introduced/alien habitat modifying species 1  - - - 

Introduced/alien habitat modifying species 2  - - - 

The impact of introduced competing spp?  4 4 4 

FROC of introduced competing spp?  2.5 3 1 

The impactof introduced habitat modifying spp?  0 0 0 

FROC of habitat modifying spp?  0 0 0 

AUTOMATED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 4 1.2 3.9 

EC: FRAI   
 F F F 

ADJUSTED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 48.3 46.9 48.7 

EC: FRAI      D D D 

 
Site Name U2KARK-USMGN Assessor P Dlamini 
River  uMngeni Reviewed G O'Brien 

ABR SPECIES 
REFERENCE 

FROC 

OBSERVED FROC 

May Aug Nov 

AMAR ANGUILLA MARMORATA QUOY & GAIMARD 1824 5.00 - 0 0 
AMOS ANGUILLA MOSSAMBICA PETERS 1852 5.00 - 0 0 

ANAT AMPHILIUS NATALENSIS BOULENGER. 1917 5.00 - 1 0 

BANO BARBUS ANOPLUS WEBER. 1897 5.00 - 0 1 
BGUR BARBUS GURNEYI GÜNTHER. 1868 3.00 - 3 2 
BNAT BARBUS NATALENSIS CASTELNAU. 1861 5.00 - 2 2 

CGAR CLARIAS GARIEPINUS (BURCHELL. 1822) 5.00 - 0 0 

OMOS OREOCHROMIS MOSSAMBICUS (PETERS. 1852) 5.00 - 0 2 
TREN TILAPIA RENDALLI (BOULENGER. 1896) 3.00 - 0 1 
TSPA TILAPIA SPARRMANII SMITH. 1840 5.00 - 4 0 

Response of species with a preference/tolerance to May Aug Nov 

Velocity Depth 
Metric 

Fast-Deep  - -1 -1 

Fast-Shallow  - -1 -2 

Slow-Deep  - -3 -2 

Slow-Shallow  - -2 -1 

Cover features Overhanging veg  - 0 1 
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Undercut banks  - 2 2 

Substrate  - 2 2 

Instream veg  - 1 1 

Water column  - 1 1 

Response of species that are May Aug Nov 

Flow 
dependance 

Intolerant to no flow  - -2 -2 

Moderately intolerant to no flow  - -1 -1 

Moderately tolerant to no flow  - -3 -3 

Tolerant to no flow  - -1 -1 

Response of species that are May Aug Nov 

Physico-
chemical 

conditions 

Intolerant to modified physico-chemical conditions  - 0 -2 

Moderately intolerant to modified physico-chemical conditions - -1 0 

Moderately tolerant to modified physico-chemical conditions  - -3 -2 

Tolerant modified to physico-chemical conditions  - -2 -2 

Response of which require May Aug Nov 

Migration 

Catchment scale movement  - 3 2.5 

Movement between reaches  - 2 1 

Movement within a reach  - 0 1 

Extent of the following in the reach May Aug Nov 

Changes in 
connectivity 

Weirs and causeways  - 1 1 
Impoundments  - 1 1 
Physico-chemical barriers  - 0 0 

Flow modifications   - 0 0 

Introduced/alien species May Aug Nov 

Introduced/alien 
species 

Introduced/alien predacious species 1  - - - 
Introduced/alien predacious species 2  - - - 

Introduced/alien predacious species 3  - - - 

Introduced/alien habitat modifying species 1  - - - 
Introduced/alien habitat modifying species 2  - - - 
The impact of introduced competing spp?  - 0 0 

FROC of introduced competing spp?  - 0 0 

The impactof introduced habitat modifying spp?  - 0 0 
FROC of habitat modifying spp?  - 0 0 

AUTOMATED FISH RESPONSE ASSESSMENT INDEX SCORE 
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FRAI (%)  
 - 34.7 29.1 

EC: FRAI   
 - E E 

ADJUSTED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 - 70.4 69.6 

EC: FRAI      - C C 

 
Site Name U2MGEN-FOUNT Assessor P Dlamini 
River  uMngeni Reviewed G O'Brien 

ABR SPECIES 
REFERENCE 

FROC 

OBSERVED FROC 

May Aug Nov 

AAEN AWAOUS AENEOFUSCUS (PETERS 1852) 5.00 0 0 - 
ALAB ANGUILLA BENGALENSIS LABIATA PETERS. 1852 3.00 0 0 - 

AMAR ANGUILLA MARMORATA QUOY & GAIMARD 1824 3.00 0 0 - 

AMOS ANGUILLA MOSSAMBICA PETERS 1852 5.00 0 0 - 
ANAT AMPHILIUS NATALENSIS BOULENGER. 1917 5.00 1 0 - 
BGUR BARBUS GURNEYI GÜNTHER. 1868 3.00 0 0 - 

BNAT BARBUS NATALENSIS CASTELNAU. 1861 5.00 2 2 - 

BPAL BARBUS PALLIDUS SMITH. 1841 1.00 0 0 - 
BVIV BARBUS VIVIPARUS WEBER. 1897 5.00 0 0 - 
CGAR CLARIAS GARIEPINUS (BURCHELL. 1822) 5.00 1 0 - 

OMOS OREOCHROMIS MOSSAMBICUS (PETERS. 1852) 5.00 0 0 - 

PPHI PSEUDOCRENILABRUS PHILANDER (WEBER. 1897) 3.00 1 0 - 
TREN TILAPIA RENDALLI (BOULENGER. 1896) 5.00 0 0 - 
TSPA TILAPIA SPARRMANII SMITH. 1840 5.00 0 2 - 

Response of species with a preference/tolerance to May Aug Nov 

Velocity Depth 
Metric 

Fast-Deep  -2 -2 - 
Fast-Shallow  -2 -2 - 
Slow-Deep  -4 -4 - 

Slow-Shallow  -3 -3 - 

Cover features 

Overhanging veg  2 2 - 
Undercut banks  2 2 - 
Substrate  2 3 - 

Instream veg  2 2 - 

Water column  2 2 - 
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Response of species that are May Aug Nov 

Flow 
dependance 

Intolerant to no flow  -1 -3 - 

Moderately intolerant to no flow  -1 -1 - 

Moderately tolerant to no flow  -3 -3 - 
Tolerant to no flow  -2 -2 - 

Response of species that are May Aug Nov 

Physico-
chemical 

conditions 

Intolerant to modified physico-chemical conditions  1 -3 - 

Moderately intolerant to modified physico-chemical conditions -3 -3 - 
Moderately tolerant to modified physico-chemical conditions  -4 -2 - 
Tolerant modified to physico-chemical conditions  -2 -2 - 

Response of which require May Aug Nov 

Migration 

Catchment scale movement  1.5 2 - 
Movement between reaches  1 1 - 
Movement within a reach  1 2 - 

Extent of the following in the reach May Aug Nov 

Changes in 
connectivity 

Weirs and causeways  1 1 - 
Impoundments  2 2 - 
Physico-chemical barriers  0 0 - 

Flow modifications   3 3 - 

Introduced/alien species May Aug Nov 

Introduced/alien 
species 

Introduced/alien predacious species 1  - - - 
Introduced/alien predacious species 2  - - - 

Introduced/alien predacious species 3  - - - 

Introduced/alien habitat modifying species 1  - - - 
Introduced/alien habitat modifying species 2  - - - 
The impact of introduced competing spp?  0 0 - 

FROC of introduced competing spp?  0 0 - 

The impactof introduced habitat modifying spp?  0 0 - 
FROC of habitat modifying spp?  0 0 - 

AUTOMATED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 28.2 21.1 - 

EC: FRAI   
 E E/F - 

ADJUSTED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 61.1 53.4 - 
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EC: FRAI      C/D D - 

 
Site Name U2DUZI-MOTOX Assessor P Dlamini 
River  uMngeni Reviewed G O'Brien 

ABR SPECIES 
REFERENCE 

FROC 

OBSERVED FROC 

May Aug Nov 

AAEN AWAOUS AENEOFUSCUS (PETERS 1852) 3.00 - 0 0 
ALAB ANGUILLA BENGALENSIS LABIATA PETERS. 1852 3.00 - 0 0 

AMOS ANGUILLA MOSSAMBICA PETERS 1852 5.00 - 0 0 

ANAT AMPHILIUS NATALENSIS BOULENGER. 1917 1.00 - 0 0 
BGUR BARBUS GURNEYI GÜNTHER. 1868 5.00 - 0 0 
BNAT BARBUS NATALENSIS CASTELNAU. 1861 5.00 - 1 0 

BPAL BARBUS PALLIDUS SMITH. 1841 1.00 - 0 0 

BVIV BARBUS VIVIPARUS WEBER. 1897 5.00 - 0 0 
CGAR CLARIAS GARIEPINUS (BURCHELL. 1822) 5.00 - 0 0 
OMOS OREOCHROMIS MOSSAMBICUS (PETERS. 1852) 5.00 - 0 0 

PPHI PSEUDOCRENILABRUS PHILANDER (WEBER. 1897) 5.00 - 0 1 

TREN TILAPIA RENDALLI (BOULENGER. 1896) 5.00 - 0 0 
TSPA TILAPIA SPARRMANII SMITH. 1840 5.00 - 2 0 

Response of species with a preference/tolerance to May Aug Nov 

Velocity Depth 
Metric 

Fast-Deep  - -3 -3 

Fast-Shallow  - -3 -4 

Slow-Deep  - -4 -4 

Slow-Shallow  - -3 -3 

Cover features 

Overhanging veg  - 2 3 

Undercut banks  - 3 3 

Substrate  - 3 4 

Instream veg  - 2 3 

Water column  - 2 2 

Response of species that are May Aug Nov 

Flow 
dependance 

Intolerant to no flow  - -3 -2 

Moderately intolerant to no flow  - -2 -2 

Moderately tolerant to no flow  - -3 -3 

Tolerant to no flow  - -3 -2 
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Response of species that are May Aug Nov 

Physico-
chemical 

conditions 

Intolerant to modified physico-chemical conditions  - -4 -4 

Moderately intolerant to modified physico-chemical conditions - -3 -3 

Moderately tolerant to modified physico-chemical conditions  - -3 -3 

Tolerant modified to physico-chemical conditions  - -2 -2 

Response of which require May Aug Nov 

Migration 

Catchment scale movement  - 2 3 

Movement between reaches  - 1 3 

Movement within a reach  - 2 2 

Extent of the following in the reach May Aug Nov 

Changes in 
connectivity 

Weirs and causeways  - 2 2 

Impoundments  - 3 3 
Physico-chemical barriers  - 4 4 
Flow modifications   - 3 3 

Introduced/alien species May Aug Nov 

Introduced/alien 
species 

Introduced/alien predacious species 1  - - - 
Introduced/alien predacious species 2  - - - 
Introduced/alien predacious species 3  - - - 

Introduced/alien habitat modifying species 1  - - - 

Introduced/alien habitat modifying species 2  - - - 
The impact of introduced competing spp?  - 0 0 
FROC of introduced competing spp?  - 0 0 

The impactof introduced habitat modifying spp?  - 0 0 

FROC of habitat modifying spp?  - 0 0 

AUTOMATED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 - 17.7 10.3 

EC: FRAI   
 - E/F F 

ADJUSTED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 - 47.6 43.4 

EC: FRAI      - D D 

 
Site Name U2DUZI-NKANY Assessor P Dlamini 
River  uMngeni Reviewed G O'Brien 

ABR SPECIES OBSERVED FROC 
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REFERENCE 
FROC 

May Aug Nov 

AAEN AWAOUS AENEOFUSCUS (PETERS 1852) 3.00 0 0 0 
ALAB ANGUILLA BENGALENSIS LABIATA PETERS. 1852 3.00 0 0 0 
AMOS ANGUILLA MOSSAMBICA PETERS 1852 3.00 0 0 0 

ANAT AMPHILIUS NATALENSIS BOULENGER. 1917 1.00 0 0 0 
BGUR BARBUS GURNEYI GÜNTHER. 1868 3.00 0 0 0 
BNAT BARBUS NATALENSIS CASTELNAU. 1861 3.00 3 1 1 
BPAL BARBUS PALLIDUS SMITH. 1841 1.00 0 0 0 

BVIV BARBUS VIVIPARUS WEBER. 1897 5.00 0 0 0 
CGAR CLARIAS GARIEPINUS (BURCHELL. 1822) 3.00 0 0 0 
OMOS OREOCHROMIS MOSSAMBICUS (PETERS. 1852) 3.00 0 0 0 
PPHI PSEUDOCRENILABRUS PHILANDER (WEBER. 1897) 3.00 0 0 1 

TREN TILAPIA RENDALLI (BOULENGER. 1896) 3.00 1 0 0 
TSPA TILAPIA SPARRMANII SMITH. 1840 3.00 1 1 0 

Response of species with a preference/tolerance to May Aug Nov 

Velocity Depth 
Metric 

Fast-Deep  -2 -2 -2 

Fast-Shallow  -2 -2 -2 

Slow-Deep  -3 -4 -4 

Slow-Shallow  -2 -3 -3 

Cover features 

Overhanging veg  4 3 3 

Undercut banks  3 3 2 

Substrate  3 3 3 

Instream veg  1 3 4 

Water column  1 3 3 

Response of species that are May Aug Nov 

Flow 
dependance 

Intolerant to no flow  -1 -1 -1 

Moderately intolerant to no flow  0 -1 -1 

Moderately tolerant to no flow  -4 -4 -4 

Tolerant to no flow  -3 -3 -3 

Response of species that are May Aug Nov 

Physico-
chemical 

conditions 

Intolerant to modified physico-chemical conditions  -2 -2 -2 

Moderately intolerant to modified physico-chemical conditions -2 -4 -4 

Moderately tolerant to modified physico-chemical conditions  -3 -4 -4 

Tolerant modified to physico-chemical conditions  -3 -4 -3 
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Response of which require May Aug Nov 

Migration 

Catchment scale movement  1.5 1 1 

Movement between reaches  1 1 1 

Movement within a reach  2.5 2.5 2.5 

Extent of the following in the reach May Aug Nov 

Changes in 
connectivity 

Weirs and causeways  2 2 2 

Impoundments  1 1 1 

Physico-chemical barriers  3 3 3 
Flow modifications   1 1 1 

Introduced/alien species May Aug Nov 

Introduced/alien 
species 

Introduced/alien predacious species 1  - - MSAL 

Introduced/alien predacious species 2  - - - 
Introduced/alien predacious species 3  - - - 
Introduced/alien habitat modifying species 1  - - - 

Introduced/alien habitat modifying species 2  - - - 

The impact of introduced competing spp?  0 0 4 
FROC of introduced competing spp?  0 0 1 
The impactof introduced habitat modifying spp?  0 0 0 

FROC of habitat modifying spp?  0 0 0 

AUTOMATED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 30.6 20.7 16.2 

EC: FRAI   
 E E/F F 

ADJUSTED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 54.0 44.1 40.3 

EC: FRAI      D D D/E 

 
Site Name U2MGEN-MZINY Assessor P Dlamini 
River  uMngeni Reviewed G O'Brien 

ABR SPECIES 
REFERENCE 

FROC 

OBSERVED FROC 

May Aug Nov 

AAEN AWAOUS AENEOFUSCUS (PETERS 1852) 5.00 1 1 0 
ABER ACANTHOPAGRUS BERDA (FORSSKÅL. 1775) 3.00 0 0 0 

ALAB ANGUILLA BENGALENSIS LABIATA PETERS. 1852 5.00 0 0 0 

AMAR ANGUILLA MARMORATA QUOY & GAIMARD 1824 5.00 0 0 0 
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AMOS ANGUILLA MOSSAMBICA PETERS 1852 5.00 0 0 0 
ANAT AMPHILIUS NATALENSIS BOULENGER. 1917 5.00 0 0 0 

BANO BARBUS ANOPLUS WEBER. 1897 5.00 0 0 0 

BGUR BARBUS GURNEYI GÜNTHER. 1868 5.00 0 0 0 
BNAT BARBUS NATALENSIS CASTELNAU. 1861 5.00 0 0 1 
BPAL BARBUS PALLIDUS SMITH. 1841 5.00 0 0 0 

BVIV BARBUS VIVIPARUS WEBER. 1897 5.00 0 0 0 

CGAR CLARIAS GARIEPINUS (BURCHELL. 1822) 5.00 0 1 0 
GAES GILCHRISTELLA AESTUARIA (GILCHRIST. 1913) 3.00 0 0 0 
GCAL GLOSSOGOBIUS CALLIDUS SMITH. 1937 3.00 0 0 0 

GGIU GLOSSOGOBIUS GIURIS (HAMILTON-BUCHANAN. 1822) 3.00 0 0 0 

LMCR LIZA MACROLEPIS (SMITH. 1846) 3.00 0 0 0 
MARG MONODACTYLUS ARGENTEUS (LINNAEUS. 1758) 3.00 0 0 0 
MBRA MICROPHIS BRACHYURUS BLEEKER. 1853 3.00 0 0 0 

MCAP MYXUS CAPENSIS (VALENCIENNES. 1836) 3.00 0 0 0 

MCEP MUGIL CEPHALUS LINNAEUS. 1758 3.00 0 0 0 
MFLU MICROPHIS FLUVIATILIS (PETERS. 1852) 1.00 0 0 0 
OMOS OREOCHROMIS MOSSAMBICUS (PETERS. 1852) 5.00 0 1 0 

PPHI PSEUDOCRENILABRUS PHILANDER (WEBER. 1897) 5.00 2 3 1 

RDEW REDIGOBIUS DEWAALI (WEBER. 1897) 3.00 0 0 0 
TREN TILAPIA RENDALLI (BOULENGER. 1896) 5.00 1 0 0 
TSPA TILAPIA SPARRMANII SMITH. 1840 5.00 0 0 0 

Response of species with a preference/tolerance to May Aug Nov 

Velocity Depth 
Metric 

Fast-Deep  -3 -3 -2 

Fast-Shallow  -3 -3 -2 

Slow-Deep  -4 -3 -3 

Slow-Shallow  -4 -3 -3 

Cover features 

Overhanging veg  3 3 3 

Undercut banks  4 3 3 

Substrate  4 4 4 

Instream veg  4 4 4 

Water column  4 4 3 

Response of species that are May Aug Nov 

Flow 
dependance 

Intolerant to no flow  -2 -2 -2 

Moderately intolerant to no flow  -3 -3 -2 
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Moderately tolerant to no flow  -4 -4 -4 

Tolerant to no flow  -2 -2 -4 

Response of species that are May Aug Nov 

Physico-
chemical 

conditions 

Intolerant to modified physico-chemical conditions  -2 -2 -2 

Moderately intolerant to modified physico-chemical conditions -3 -3 -3 

Moderately tolerant to modified physico-chemical conditions  -4 -4 -2.5 

Tolerant modified to physico-chemical conditions  -3 -3 -3 

Response of which require May Aug Nov 

Migration 

Catchment scale movement  2.5 2.5 3 

Movement between reaches  2.5 2 3 

Movement within a reach  2 2 3 

Extent of the following in the reach May Aug Nov 

Changes in 
connectivity 

Weirs and causeways  3 3 3 
Impoundments  3 3 3 

Physico-chemical barriers  1 1 1 

Flow modifications   3 3 3 

Introduced/alien species May Aug Nov 

Introduced/alien 
species 

Introduced/alien predacious species 1  MSAL   
Introduced/alien predacious species 2  -   
Introduced/alien predacious species 3  -   
Introduced/alien habitat modifying species 1  -   
Introduced/alien habitat modifying species 2  -   
The impact of introduced competing spp?  4   
FROC of introduced competing spp?  1   
The impactof introduced habitat modifying spp?  0   
FROC of habitat modifying spp?  0   

AUTOMATED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 12.3 17.2 14.3 

EC: FRAI   
 F F F 

ADJUSTED FISH RESPONSE ASSESSMENT INDEX SCORE 

FRAI (%)  
 37.2 44.1 44.0 

EC: FRAI      E D D 
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3.1 Abstract 

Impoundments (dams) play a relativelyimportant role in anthropogenic developments through 

the many services they provide, such as water supply, irrigation and the production of 

hydropower. However, there is still much debate as to whether the benefits of impoundments 

outweigh the negative impacts, they can have on river systems. Barriers in rivers caused by 

impoundments and weirs are especially harmful to migratory fish because of the restriction 

these barriers have on their longitudinal movement. In this study we assessed the population 

structures of the endemic migratory fish, the KwaZulu-Natal yellowfish Labeobarbus 

natalensis, in four large instream impoundments (namely Midmar, Albert Falls, Nagle and 

Inanda Dam) on the uMngeni River, KwaZulu-Natal Province, South Africa, in order to update 

the state of L. natalensis wellbeing in the uMngeni River. This study showed how L. natalensis 

populations in these four large instream impoundments progressively diminished, both in 

abundance and structure, as both the quality and quantity of water diminished down the 

catchment gradient. The absence of juvenile and smaller adult L. natalensis in all the 

impoundments illustrated how the nature of water impoundments were not well suited for small 

fish because impoundments lack the suitable habitat they require (namely shallow riffles) and 

often harbour alien and larger predatory fishes that prey on small fish. The possible 

construction of fish passages and removal of redundant weirs or partial man-made barriers is 

recommended in order to mitigate the many negative effects of fragmentation on L. natalensis. 

We also recommend further studies on migration cues to assist water resource managers when 

to release flood flows as well as L. natalensis population genetics studies to understand the full 

extent of impoundment fragmentation.  

Keywords: Labeobarbus natalensis, uMngeni River, dam fragmentation, state of wellbeing. 

  



94 
 

3.2 Introduction 

The construction of impoundments (dams) has played a relatively major role in anthropogenic 

infrastructure development and local communities through the services that they provide, such 

as water supply, irrigation and the production of hydropower (Kuby et al. 2005; ICOLD 2016). 

The water supply that impoundments provide is especially important in developing countries 

such as South Africa, given the dry climate (ICOLD 2016; Steyn et al. 2019). There is still 

much debate as to whether the benefits of impoundments out way the negative impacts they 

have on river systems (Joyce 1997; Altinbilek 2002; Kuby et al. 2005; Rufin et al. 2019; Schulz 

and Adams 2019). Such impacts include loss of river connectivity, changing instream habitat 

and altered flow regimes, all of which can have several detrimental effects on river ecosystems 

(Kuby et al. 2005; Dugan et al. 2010; McIntyre et al. 2016; Grill et al. 2019). 

Most river systems have lost their original connectivity as a result of barriers in the 

form of impoundments and weirs (Jager et al. 2001; Birnie-Gauvin et al. 2018; Grill et al. 2019) 

with over 60% of all large rivers (i.e. >1000 km in length) around the world affected by 

fragmentation (ICOLD 2016). Impoundments alter aquatic ecosystems through water 

temperature changes, channelisation, sediment deposition and flooding (Poff et al. 1997; Poff 

and Hart 2002; Walter and Merritts 2008; Hall et al. 2011; McIntyre et al. 2016; Grill 2019). 

These environmental changes also mean that the fragmentation that impoundments cause in 

rivers is a threat to the diversity, abundance, and sustainability of aquatic species in river 

ecosystems (Saunders et al. 1991; Dynesius and Nilsson 1994; Nilsson et al. 2005; Seliger and 

Zeiringer 2018). River fragmentation is especially harmful to migratory fish species (Hall et 

al. 2011; Gao et al. 2019; Fouchy 2019). 

  Barriers in rivers caused by impoundments and weirs are harmful to migratory fish 

because of the restriction these barriers have on the fishes’ longitudinal movement (Fagan 

2002; Fullerton et al. 2010). Impoundments hinder fish migration between feeding and 
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spawning sites, thus altering food webs (Pringle et al. 2000; Hall et al. 2011; McIntyre et al. 

2016). The habitat loss that impoundments cause further results in population loss caused by 

fragmentation, altered food webs and loss of aquatic biodiversity (Rosenberg et al. 2000; 

Jackson et al. 2001; Pess et al. 2008; Morita et al. 2009; Seliger and Zeiringer 2018).  

  Not maintaining river connectivity can have great detrimental effects on fish 

community structures (Joy and Death 2001; Freeman et al. 2003; Park et al. 2003; Gao et al. 

2019). When Santos et al. (2013) compared fish community structures in impoundments to 

those in the river stretch below the impoundment, they found that the community structure 

downriver had greater diversity and more migratory species. Similarly, in a study on the 

migration of brown trout (Salmo trutta), it was found that the removal of barriers increased 

spawning success of adults, fry survival, recruitment, and smolt migration success (Birnie-

Gauvin et al. 2018). 

Fish are regularly used as key indicators when assessing the ecological state of aquatic 

ecosystems (Karr 1981; Barbour et al. 1999; Maceda-Veiga and De Sostoa 2011; Burnett et al. 

2018; Ramesh et al. 2018). Yellowfish (Labeobarbus spp), in particular, are good indicators of 

freshwater ecosystem health, as they are abundant throughout KwaZulu-Natal Province and 

are considered to be a hardy species towards water quality (Impson et al 2008; Burnett et al. 

2018). 

The KwaZulu-Natal yellowfish, Labeobarbus natalensis (Castelnau, 1861), commonly 

known as the scaly, forms part of the Cyprinidae family (Skelton 2001). This species is one of 

seven different yellowfish (Labeobarbus spp.) in South Africa (Skelton 2001; Impson et al. 

2008). This South African yellowfish is endemic to KwaZulu-Natal Province and is widely 

distributed, occurring in all major catchments from the Mtamvuna River (Eastern Cape border) 

to the Mkuze River in the north. It is the most widespread yellowfish (and possibly freshwater 

fish) in KwaZulu-Natal Province (Karssing 2007). Labeobarbus natalensis can be found in a 
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range of different habitats but prefers habitats in the middle reaches of rivers that have a 

combination of deep pools and fast-flowing rapids and riffles (Karssing 2007; Jacobs 2017).    

  Labeobarbus natalensis are long-living and can grow to up to ~640 mm (maximum 

length) and ~4.6 kg (Skelton 2001). Adult fish colour may vary, however commonly are olive 

above with bronze sides and a cream ventral, while fry are silver with dark spots (which they 

lose as juveniles) (Karssing 2007). Labeobarbus natalensis are opportunistic, omnivorous 

feeders, feeding on filamentous algae, diatoms, organic waste, aquatic plants, insect larvae, and 

crabs (Roux 2007). Labeobarbus natalensis can thrive in a range of river conditions and 

habitats (such as pools and impoundments), but are more selective when spawning and as such, 

migrate upstream into rivers for suitable sites (Karssing 2007).   

Labeobarbus natalensis migrates seasonally (spring and early summer) upstream from 

the low and middle reaches into rivers in order to search for spawning and feeding sites 

(Karssing 2007). Labeobarbus natalensis spawn in fast-flowing riffles (high oxygen content) 

over a gravel and cobble substrate free of any silt because larvae are unable to burrow in silt-

covered gravel and thus would be susceptible to predation or displacement (Wright and Coke 

1975a; 1975b). Unfortunately, the presence of instream impoundments and weirs throughout 

KwaZulu-Natal Province has slowed down floods that would otherwise wash away silt, 

particularly silt that has formed as a result of erosion from poor agricultural practices (Karssing 

2007). Additionally, impoundments trap sediment from naturally turbid water, resulting in a 

discharge that is relatively clear. This makes the fish in the river stretch downstream of the 

impoundments more vulnerable to predation (Figueiredo et al. 2016).  When it is migrating 

season (normally October/November) and temperatures and habitat are favourable, mature 

breeding L. natalensis adults, sub-adults and juveniles migrate upstream. However, when there 

are impenetrable barriers (such as impoundments) migration is not possible, especially into the 

upper reaches (Wright and Coke 1975a; Karssing 2007).    
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 Labeobarbus natalensis is currently regarded as least concern (Cambray et al. 2017), 

however, the species may be in decline because of the continual pressure placed on the aquatic 

environment and fragmentation of the population because of barriers (both chemical and 

physical barriers) (Skelton 2001; Karssing 2007). Karssing (2007) recommended regular 

surveys in order to monitor the state of the L. natalensis, particularly in areas where they are 

most vulnerable, importantly the uMngeni River (Karssing 2007; Stobie et al. 2018). 

Labeobarbus natalensis is fairly tolerant of anthropogenic habitat change, however, it is still 

threatened by chronic pollution, siltation, physical habitat changes, and increased water 

abstraction, all of which are mostly associated with urbanisation (such as in Durban and 

Pietermaritzburg) (Karssing 2007). Pollution is known to cause disfigured fins, scales and 

mouthparts in the L. natalensis (Impson et al. 2008). The fungal infection Saprolegnia (an 

indication of stress) is also known to develop in L. natalensis that are found in polluted water, 

particularly near the end of winter (Oldewage 1987). This has been evident in the Msunduzi 

River where several fish kills have been observed over the last decade because of pollution 

events (Karssing 2007; pers. obs.). These pollution events that happen in the upper catchment 

may threaten the quality of the water supply to Durban if not mitigated (Graham and Dickens 

1998; Nel et al. 2007). River fragmentation can also affect the presence or absence of fish and 

reduces genetic variance within populations, this is concerning because of the presence of four 

large in-stream impoundments in the uMngeni River (namely Midmar Dam, Albert Falls Dam, 

Nagle Dam, and Inanda Dam) (Neraas and Spruell 2001; Hartfield 2010; Helms et al. 2011; 

Zhai et al. 2019). These impoundments further reduce and or release irregular out of season 

downstream flows, altering downstream water quality, habitat and biotic integrity (WRC 2006; 

Karssing 2007). 

 Other threats to the L. natalensis include illegal netting, particularly at spawning 

grounds, as well as hybridisation with translocated Orange-Vaal smallmouth yellowfish 
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(Labeobarbus aeneus) that are now present in the upper Thukela catchment. Karssing (2007) 

also noted that inter-basin water transfers or direct stocking for angling purposes may result in 

intraspecific hybridisation with genetically distinct L. natalensis from different river systems. 

There is now some genetic evidence (though limited) of intraspecific hybridisation between L. 

natalensis populations in the Thukela and uMngeni catchments (Stobie et al. 2018). The 

increasing threat by alien fish such as largemouth bass (Micropterus salmoides), and common 

carp (Cyprinus carpio) on native fish, including L. natalensis, is also a source of major concern, 

similarly with extralimital species such as the L. aenues (Impson et al. 2008; Swartz 2008). 

These species compete directly for food resources, habitat and will prey on juvenile L. 

natalensis (Koehn 2004; Karssing 2007). 

  Our aim in the present study was to update the state of L. natalensis wellbeing in the 

major uMngeni River dams considering river fragmentation caused by the impoundments 

themselves. We, therefore, surveyed L. natalensis population structures in the four large 

instream impoundments on the uMngeni River, namely Midmar Dam, Albert Falls Dam, Nagle 

Dam and Inanda Dam, and assessed fish community structures within the impoundments. We 

hypothesised that L. natalensis populations in dams along the uMngeni River act as ecological 

indicators, responding to environmental change (abiotic drivers), namely changes in habitat 

and water quality caused by artificial impoundments. We predicted that the wellbeing of L. 

natalensis populations in the major uMngeni dams would be compromised and that they would 

be further affected by migratory barriers. 

 

3.3 Methods 

3.3.1 Study area 

 The study area comprised four instream impoundments (Midmar, Albert Falls, Nagle, and 

Inanda Dam) in the uMngeni River, within the uMngeni catchment (Fig. 3.1). Midmar Dam is 



99 
 

located at the highest point in the catchment (relative to the other three impoundments) and is 

supplied by the uMngeni River, as well as the Lions River, and streams Gqishi and Nguklu. 

Downstream of Midmar Dam, the uMngeni River is joined by the Karkloof River tributary 

after which it flows into Albert Falls Dam in the Midlands area, near Pietermaritzburg. After 

Albert Falls Dam, the uMngeni River is joined by the Mpolweni tributary and after flowing 

through the Wartburg area is joined by Mkabela River before finally flowing into Nagle Dam 

(the smallest of the four impoundments) in Nonzila, KwaZulu-Natal. Downstream of Nagle 

Dam, the uMngeni River is joined by the Msunduzi tributary, and after moving through the 

Rural area of Valley of a 1000 Hills, it enters Inanda Dam. Below Inanda Dam the uMngeni 

River flows through the city of Durban and out to sea at Blue Lagoon. 
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Fig. 3.1: Map of the four study impoundments, on the uMngeni River in KwaZulu-Natal, 

South Africa in the present study.  

 

Table 3.1: Impoundment capacity at the time of the present study (adapted from DWA 2018).  

Impoundment Full storage 

capacity (million 

m3) 

Percentage 

(%) 

Outflow 

(m3/s) 

Accessed  

Midmar Dam 325.4 99.09 3.04 27 June 2018 

Albert falls Dam 290 51.99 3.04 27 July 2018 

Nagle Dam 24.6 73.46 0.61 11 July 2018 

Inanda Dam 251.6 73.04 0.54 4 July 2018 
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3.3.2 Field sampling 

Fish sampling at all the impoundments took place between 24 June and 28 July 2018 (low-flow 

season). The surveys in this study were carried out with the approval from Ezemvelo KZN 

Wildlife (permit number: OP143-2018) and management at each impoundment. Fish were 

collected using gill nets, fyke nets and seine nets (Tables 3.2 - 3.5) according to suitable areas. 

At each impoundment, samples were taken at the inlet (or upper reach) area, middle reach and 

at the wall (or lower reach) in order to get a good representation of fish in the entire 

impoundment (Fig. 3.2 - 3.5). In each of the three impoundment areas (inlet/middle/wall), five 

fyke nets were deployed during a daytime session and an evening session. The nine gill nets 

were randomly joined together into three sections which were deployed during the daytime 

sessions. Only the 57 mm and 93 mm bar mesh gill nets were used in the evenings in order to 

minimise fish mortality. Where there was suitable shallow habitat, a medium seine net (7 m, 1 

m bag, 4 mm mesh) was used to collect fish. During each survey, several water quality variables 

were collected in situ using a calibrated Eutech PCD 650 multimeter (EUTECH Instruments 

Ltd, Singapore). Each fish collected was measured for standard length (SL), which was used 

to analysis population structures according to age groups/classes (Russell and Skelton 2005). 

The available habitat was visually assessed and described as best as possible according to cover 

and substrate type and velocity/depth (Kleynhans 1999) in each impoundment area sampled. 
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Table 3.2: Sampling efforts at Midmar Dam in the present study. 

Sampling method Specifications Efforts Inlet/Upper reach Middle reach Wall/Lower reach 

Daytime Overnight Daytime Overnight Daytime Overnight 

 

 

 

 

Gill nets 

16 mm  

 

 

25 m weighted and 

floated segment 

 

 

 

Hours in 

the water 

2 - 4 - 2.5 - 

28 mm 3 - 3 - 3.5 - 

35 mm 3 - 3 - 3.5 - 

45 mm 2 - 4 - 2.5 - 

57 mm 3 20 4 16 3.5 17 

73 mm 2 - 4 - 2.5 - 

93 mm 3 20 4 16 3.5 17 

105 mm 3 - 4 - 3.5 - 

125 mm 3 - 3 - 3.5 - 

 

 

Fyke nets 

 

 

Large (x 5) 

2 × 6 m trap, 1 m x 

1.5 m opening, 

1 × 10 m single 

leader, 18 mm 

mesh 

 

Hours in 

the water 

4 17.5 4 19 4 16.5 

4.5 17 3 19.5 4 16.5 

4 18 3 19 3.5 15.5 

3.5 18.5 4 18.5 3.5 15 

4 19.5 4 19 3.5 14.5 

Seine nets  7 m, 1 m bag, 4mm 

mesh 

Pulls 3 - 3 - 3 - 
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Table 3.3: Sampling efforts at Albert falls Dam in the present study. 

Sampling method Specifications Efforts Inlet/Upper reach Middle reach Wall/Lower reach 

Daytime Overnight Daytime Overnight Daytime Overnight 

 

 

 

 

Gill nets 

16 mm  

 

 

 

25 m weighted and 

floated segment 

 

 

 

 

Hours in 

the water 

4 - 3 - 4 - 

28 mm 4.5 - 3.5 - 4.5 - 

35 mm 4.5 - 3.5 - 4.5 - 

45 mm 4 - 3 - 4 - 

57 mm 2 15 4 18 4 17 

73 mm 4 - 3 - 4 - 

93 mm 2 15 4 18 4 17 

105 mm 2 - 4 - 4 - 

125 mm 4.5 - 3.5 - 4.5 - 

 

 

Fyke nets 

 

 

Large (x 5) 

2 × 6 m trap, 1 m x 

1.5 m opening, 

1 × 10 m single 

leader, 18 mm 

mesh 

 

Hours in 

the water 

4.5 18 4 18 4.5 17 

4 18 4 18.5 4.5 16.5 

4.5 18 3 19 4 16 

4 18 2.5 19 4 16 

6 17.5 2.5 19.5 3.5 16 

Seine nets  7 m, 1 m bag, 4mm 

mesh 

Pulls 3 - - - - - 
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Table 3.4: Sampling efforts at Nagle Dam in the present study. 

Sampling method Specifications Efforts Inlet/Upper reach Middle reach Wall/Lower reach 

Daytime Overnight Daytime Overnight Daytime Overnight 

 

 

 

 

Gill nets 

16 mm  

 

 

25 m weighted 

and floated 

segment 

 

 

 

Hours in 

the water 

3 - 3 - 4 - 

28 mm 3 - 3 - 4.4 - 

35 mm 3 - 3 - 4.5 - 

45 mm 3 - 3 - 4 - 

57 mm 2.5 16 4 14.5 4 20.5 

73 mm 3 - 3 - 4 - 

93 mm 2.5 16 4 14.5 4 20.5 

105 mm 2.5 - 4 - 4 - 

125 mm 3 - 3 - 4.5 - 

 

 

Fyke nets 

 

 

Large (x 5) 

2 × 6 m trap, 1 m 

x 1.5 m opening, 

1 × 10 m single 

leader, 18 mm 

mesh 

 

Hours in 

the water 

4 17 4 19 4 18.8 

4 17.5 4 19 4 19 

4 17 4 18 4 19 

4 17 3.5 19.5 4 - 

4.5 16.5 3.5 18.5 4 - 

Seine nets  7 m, 1 m bag, 

4mm mesh 

Pulls 3 - 3 - 3 - 
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Table 3.5: Sampling efforts at Inanda Dam in the present study. 

Sampling method Specifications Efforts Inlet/Upper reach Middle reach Wall/Lower reach 

Daytime Overnight Daytime Overnight Daytime Overnight 

 

 

 

 

Gill nets 

16 mm  

 

 

 

25 m weighted and 

floated segment 

 

 

 

 

Hours in 

the water 

2.5 - 5.5 - 3 - 

28 mm 2.5 - 6 - 3 - 

35 mm 2.5 - 6 - 3 - 

45 mm 2.5 - 5.5 - 3 - 

57 mm 3 17 6 16 2.5 15 

73 mm 2.5 - 5.5 - 3 - 

93 mm 3 17 6 16 2.5 15 

105 mm 3 - 6 - 2.5 - 

125 mm 2.5 - 6 - 3 - 

 

 

Fyke nets 

 

 

Large (x 5) 

2 × 6 m trap, 1 m x 

1.5 m opening, 

1 × 10 m single 

leader, 18 mm 

mesh 

 

Hours in 

the water 

5 16 5 16.5 5 15 

4 17 5 16 5 15 

5.5 16 5 16 4.5 15 

5 17 5.5 16 4 15 

5 17 - - 5 16 

Seine nets  7 m, 1 m bag, 4mm 

mesh 

Pulls - - 3 - 3 - 
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Fig. 3.2: Satellite image of survey sites on Midmar Dam, KwaZulu-Natal, adapted from 

Google. (n.d.). 

 

Fig. 3.3: Satellite image of survey sites on Albert Falls Dam, KwaZulu-Natal, adapted from 

Google. (n.d.). 
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Fig. 3.4: Satellite image of survey sites on Nagle Dam, KwaZulu-Natal, adapted from 

Google. (n.d.). 

 

Fig. 3.5: Satellite image of survey sites on Inanda Dam, KwaZulu-Natal, adapted from 

Google. (n.d.). 
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3.3.3 Statistical analyses 

The data collected (count data), violated the assumptions of the analysis of variance (ANOVA) 

(even when transformed) and so Generalised Linear Models (Poisson distribution) (in SPSS 

version 25, IBM Inc. 2017) were used instead to analyse the data (Quinn and Keough 2002).  

 

3.4 Results 

3.4.1 Catch effort 

A total of 10 fish species were collected in this study during a single assessment of the three 

sites (inlet, middle and lower reach) per impoundment. This resulted in a total abundance of 

228 fish, of which L. natalensis was most common (n = 70), followed by Lepomis macrochirus 

(n = 42), Oreochromis mossambicus (n = 34), Coptodon rendalli (n = 27) and Clarias 

gariepinus (n = 24) (Table 3.6). Oreochromis mossambicus, C. gariepinus and Micropterus 

salmoides were caught in all the impoundments, while Lepomis macrochirus was not caught 

in Albert falls Dam and C. rendalli and Cyprinus carpio were not caught in Midmar Dam. 

Other uncommon species in this study included Tilapia sparrmanii, of which only a single 

individual was caught in Nagle Dam, as well as Micropterus punctulatus and Anguilla 

mossambica that were limited in both numbers and distribution among the impoundments 

surveyed (Table 3.6). Midmar Dam had the most L. natalensis caught there (n = 51) followed 

by Albert falls Dam (n = 13) and Nagle Dam (n = 6). No L. natalensis were caught in Inanda 

Dam (Fig. 3.6). 
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Table 3.6: Summary of fish species caught in, Midmar, Albert falls, Nagle and Inanda Dam, 

KwaZulu-Natal, South Africa in the present study. 

Species name FRAI 

Abbreviations 

Midmar Albert 

Falls 

Nagle Inanda Species 

abundance 

Labeobarbus natalensis LNAT 51 13 6 - 70 

Oreochromis mossambicus OMOS 8 20 1 5 34 

Lepomis macrochirus CMAC 6 - 17 19 42 

Coptodon rendalli CREN - 3 10 14 27 

Tilapia sparrmanii TSPA - - 1 - 1 

Clarias gariepinus CGAR 5 15 1 3 24 

Cyprinus carpio CCAR - 10 1 3 14 

Micropterus salmoides MSAL 2 2 1 2 7 

Micropterus punctulatus MPUN 1 - - 3 4 

Anguilla mossambica AMOS - - 1 4 5 

Impoundment total 

abundance 

 73 63 39 39  

Impoundment species 

richness 

 6 6 9 8  

 

Fig. 3.6: Species abundance and richness of fish caught in Albert Falls Dam, Midmar Dam, 

Inanda Dam and Nagle Dam, KwaZulu-Natal, South Africa in the present study. 
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3.4.2 Labeobarbus natalensis abundance (overall) and populations 

In this study, a total of 70 L. natalensis individuals were caught between Midmar Dam, Albert 

Falls Dam and Nagle Dam. Labeobarbus natalensis was not evenly distributed between the 

four impoundments (P < 0.0001) with 51 L. natalensis individuals caught from Midmar Dam, 

13 individuals from Albert Falls Dam, six from Nagle Dam and none from Inanda Dam (Fig. 

3.7). Midmar Dam had a significantly higher L. natalensis abundance than all the other 

impoundments (P < 0.0001). Albert Falls Dam had an L. natalensis abundance that was greater 

than that of Inanda Dam (p = 0.002), however, it was not significantly greater than that of Nagle 

Dam (p = 0.685). Although there were no L. natalensis caught in Inanda, the L. natalensis 

abundance found in Nagle was so low that there was no significant difference between the two 

Dams (p = 0.083).  

 

 

Fig. 3.7: Abundance of L. natalensis caught in Albert Falls Dam, Midmar Dam, Inanda Dam 

and Nagle Dam, KwaZulu-Natal, South Africa in the present study. 
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3.4.3 Labeobarbus natalensis population structure 

Of the 70 L. natalensis caught, 66 were large adult fish (>350 mm) and these were dominant 

in all three impoundments (P < 0.0001). A few individuals that fell within the 150-199 mm and 

200-249 mm range were also caught in Midmar Dam. The population structure of L. natalensis 

caught in Midmar was heavily weighted towards the adult size class, most of which were above 

350 mm in length (SL) with just a few individuals in the 150-199 mm and 200-249 mm ranges 

(Fig. 3.6).  Labeobarbus natalensis catches in Nagel Dam were minimal and, again, mainly 

within the adult size class (n = 6) (Table 3.6; Fig. 3.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8: Population structure of L. natalensis in Albert Falls Dam, Midmar Dam and Nagle 

Dam, KwaZulu-Natal, South Africa in the present study. 

 

3.5 Discussion 

Labeobarbus natalensis are good indicators of freshwater ecosystem health, as they are 
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towards water quality (Karssing 2007). Their migratory nature, however, makes them 

potentially vulnerable to the effects of river fragmentation by impoundments and their 

sensitivity to flow changes as is the case with other Labeobarbus species (O’Brien et al. 2013; 

Burnett et al. 2018). Labeobabrus natalensis are known to move between refugia habitat in the 

winter, often large instream pools to spawning habitat within faster flowing rapid habitats 

(Karssing 2007). Large impoundments can serve the same purpose as these instream pools, 

providing refuge habitat for aquatic organisms, including fish (Tonkin et al. 2014; Beatty et al. 

2017). However, the size of these pools needs to be sufficient to support a population and 

whether large impoundments can negatively affect refugia habitat for L. natalensis in winter 

remains unclear. The overall abundances of L. natalensis that were observed in this study 

indicated that the species could adapt well to some impoundment environments, although it 

was concerning that no L. natalensis were caught in Inanda Dam. Another major concern is 

that the population structure mainly comprised of individuals from size classes greater than 

350 mm. This is problematic because the absence of smaller individuals means that recruitment 

was compromised in these dams. 

Overall, the results suggest that adult L. natalensis may use some impoundments as 

refugia during winter or unfavourable conditions, where they likely find suitable deep habitat 

where large adults can survive and grow because of the cover features associated with 

impoundments, however, they still need to migrate into rivers to find suitable spawning habitat 

(Wright and Coke 1975a). Thus L. natalensis will move upstream from refugia habitat occupied 

in impoundments to breed and the state of the river upstream would affect recruitment success. 

The cues for when adult L. natalensis move upstream are still to be fully understood and could 

not be determined during this study. The river surveys conducted upstream of Midmar, Albert 

Falls and Nagel Dam (in Chapter 2), indicated the presence of L. natalensis, though in low 

numbers (Supplementary information, Fig. S3.1). Labeobarbus natalensis individuals caught 
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in these river reaches were juvenile to small adults (150-199 mm) (Supplementary information, 

Fig. S3.2). The presence of juveniles indicated successful recruitment and the presence of small 

adults making recruitment possible despite poor abundances within impoundments (Karssing 

2007). Noticeably, there were no large adults caught in the river surveys in these reaches 

(Supplementary information, Fig. S3.2), indicating the use of impoundments as refugia until 

migration cues are met. The exception being the reach between Albert Falls Dam and Nagle 

Dam where healthy abundances of differing size classes were found, despite low abundances 

found in Nagel Dam. The presence of weirs upstream of all the impoundments surveyed 

(Ramulifho 2015) is likely a big contributing factor in the poor population structure of L. 

natalensis in both the impoundments and the rivers that feed into them. 

The lack of L. natalensis juveniles in all the surveyed impoundments indicated that 

juveniles most likely remain in rivers upstream because of the absence of suitable habitat and/or 

the presence of predatory fish such as M. punctulatus and M. salmoides (popular angling 

species, especially M. salmoides) (Skelton 2001). Other invasive alien fish in these dams 

included L. macrochirus which preys on indigenous fish and competes with them for resources 

as they tend to overpopulate waters as well as C. carpio which has destructive feeding habitats 

but is a valued aquaculture and angling species (Skelton 2001). The presence of alien fishes is 

known to have negative consequences for ecosystems, further adding stress to L. natalensis 

(particularly juveniles, which were lacking within the study) (Karssing 2007; Lopez 2018). 

Additionally, the type of habitat required by juveniles, i.e. fast-flowing riffles with gravel 

substrate free from silt (Wright and Coke 1975a; Karssing 2007), is lacking in these 

impoundments and they tend to naturally silt-up (Auerswald and Geist 2017).  

Our results showed a clear difference between the impoundments for the abundances 

of L. natalensis. Each impoundment is placed in different reaches and altitudes in order to meet 

service delivery requirements for the eThekwini and uMgungundlovu municipalities 
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respectively (Breen et al. 1985; Hay 2017). Abundances in catch increased the higher up the 

catchment the impoundment was situated, with Midmar having a significantly higher number 

of L. natalensis.  

Although the L. natalensis numbers caught in Midmar Dam had the highest 

abundances, the population structure was not well represented across all sizes. The population 

structure of L. natalensis caught in Midmar was heavily weighted towards the adult size class, 

most of which were above 350 mm in length (SL).  The L. natalensis populations in the Midmar 

Dam and upstream rivers may benefit from the generally good habitat and water quality in this 

region (Still et al. 2010), although streams Gqishi and Nguklu have been shown to have 

relatively poor water quality (Mahlobo 2016). However, the presence of alien fish and 

numerous small farm impoundments in the catchment (Ramulifho 2015) are detrimental. The 

many farm impoundments and weirs present in this area alter water flow (WRC 2002; Poff et 

al. 2010) and this, in turn, affects the habitats leading to Midmar Dam (McIntyre et al. 2016; 

Grill et al. 2019).  

Down the catchment gradient of the uMngeni River from Midmar Dam to Albert Falls 

Dam, the presence of L. natalensis diminished. Similar to Midmar Dam, Albert Falls Dam 

catches consisted of only adult individuals, with significantly lower abundances. This is 

concerning as the movement of L. natalensis between Midmar Dam and Albert Falls Dam is 

restricted by several barriers and one natural barrier in the form of Howick falls (96 m high) 

(Ramulifho 2015). This greatly affects the connectivity between refugia habitat and spawning 

habitat. The lower abundances and poor population structure of L. natalensis in this 

impoundment suggests that perhaps the effects of river connectivity are greater here than in 

Midmar Dam. Furthemorer, one must consider the effects of discharge from Midmar Dam into 

this reach. The drought during the present study meant that no flood flows were able to be 
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released, despite the maintenance of base flows. This is particularly concerning as the genus is 

known to be sensitivity changes in flow (Karssing 2007; Burnett et al. 2018). 

The diversity of alien fish species present in Inanda Dam were higher than any other 

impoundment surveyed in this study. The alien fish caught in this dam included M. punctulatus, 

M. salmoides, C. carpio, and L. macrochirus. Invasive fish compete with L. natalensis for food 

resources and potentially prey on juvenile L. natalensis (Skelton 2001; Karssing 2007; 

Kimberg et al. 2014) and this is likely one of the reasons for the absence of L. natalensis in 

Inanda Dam and low presence in Nagle Dam and Albert Falls Dam. 

Catches of L. natalensis in Nagel Dam were minimal and, again as in Midmar Dam 

mainly within the adult size class. The presence of gauging weirs around the impoundment and 

within the reach between Nagel Dam and Albert Falls Dam limit the movement of L. natalensis 

in and out of the impoundment (Ramulifho 2015). Within the impoundment, there are weirs 

segregating the inflow and outflow to the impoundment (Graham et al. 1998; pers obs.). This 

could be the main contributing factor for the low presence of L. natalensis considering that this 

reach is regarded as one of the healthiest reaches in the catchment, with enough tributaries to 

assist with naturalised flows (Dickens and Graham 1998; Ramulifho 2015). Interestingly one 

A. mossambica was caught in Nagle Dam and this species along with the presence of alien 

fishes could have negatively impacted the presence of L. natalensis as its diet includes fish 

(Skelton 2001). 

The lack of L. natalensis surveyed within Inanda Dam is concerning, however, the trend 

found in this study (of diminishing L. natalensis abundances in impoundments moving down 

the catchment) suggests that L. natalensis are more mid-reach specific than previously thought 

(Karssing 2007), as they are so scarce in the lower reach dams. However, it must be noted that 

Inanda Dam had a high presence of A. mossambica sampled, and this species is highly 

predatory and seemingly with the presence of other alien fishes could have a greater negative 
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effect on the presence of L. natalensis. All Anguillid spp. have migratory requirements that are 

hindered by the presence of large instream impoundments such as the ones in this study. 

Further, between Nagle Dam and Inanda Dam there is a total of 11 barriers in the uMngeni and 

Msunduzi River (Ramulifho 2015). These barriers include five weirs in the uMngeni River, 

four weirs on the Msunduzi River, excluding Henley Dam in the upper catchment of the 

Msunduzi River (Ramulifho 2015). In addition to these barriers, the Msunduzi is further 

impounded by Camps Drift, which is a canalised reach, altering the river’s natural flow 

patterns. The degree to which this section of the uMngeni River is disconnected from other 

reaches in the catchment could be a contributing factor for the absence of L. natalensis in the 

Inanda Dam. This is because impoundments and barriers in the uMngeni River have altered 

natural flow regimes (Still et al. 2010), which can cause siltation and physical habitat change 

(Poff et al. 2010; Auerswald and Geist 2017), both of which are major threats to L. natalensis 

(Karssing 2007; Cambray et al. 2017). 

Similar to the reaches between the other impoundments, L. natalensis was found within 

the river reach between Nagle and Inanda Dam (Chapter 2). This suggests that the population 

of L. natalensis is not entirely dependent on the presence of impoundments for refugia habitat, 

although the presence of large adult fish is important to the well-being of any population 

structure (Skelton 2001). This is also the longest reach between impoundments, if one includes 

the Msundzi River, which contains the Darvill wastewater treatment works and effluent 

received by the city of Pietermaritzburg, this does recover prior to entering the Inanda Dam. 

 

3.6 Conclusions  

The present study showed how L. natalensis populations in the four large instream 

impoundments on the uMngeni River progressively diminished, both in abundance and 

structure, down the catchment gradient. This supported the suggestion by Karssing (2007) that 
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they are mid-reach species found between altitudes of 100 m to 1500 m above sea level, 

however, the water quality and quantity issues faced within the catchment have seemingly 

limited the species’ presence in lower reaches (Chapter 2; pers. obs.). The further down the 

catchment the greater the compounded impact of water quality and quantity has on the system, 

despite ecosystem services provided by the river when given the chance (Jewitt 2002). The 

absence of juvenile and smaller adult L. natalensis in all the impoundments illustrated how the 

nature of water impoundments are not well suited for small fish. This is because impoundments 

lack the suitable habitat they require (namely shallow riffles) and harbour alien and larger 

predatory fishes that prey on small fish. The study also illustrated how the many impoundments 

and weirs in the uMngeni river system, the most fragmented in KwaZulu-Natal Province 

(Ramulifho 2015), has many negative effects on the systems as water impoundments severely 

alter aquatic habitats by altering natural flow regimes, change sedimentation dynamics and 

alter water quality. The reduction in flow that is often associated with rivers downstream of 

impoundments also causes siltation and algal blooms. The anthropogenic high demand for 

water is the main reason these four impoundments were built and is a case in which providing 

water resources for human well-being has taken precedence over the ecological functioning of 

the ecosystem. This is understandable given South Africa’s uneven water distribution, but to 

what detriment to the ecosystem? The plight of L. natalensis in the uMngeni river catchment 

is relatively bleak and compounded by the introduction of alien fishes, in particular 

Micropterus spp. The fragmentation caused by barriers within the river system needs urgent 

attention to determine the effects of these barriers on, not only the genetic resilience of the 

species in question, but also the movement of other endangered species such as the Anguillid 

spp. Furthermore, these barriers should be mitigated; the lack of fish passages on all the four 

impoundments studied is concerning as no provision is made for river connectivity with the 

catchment. The removal of redundant weirs or partial man-made barriers should also be looked 
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at to encourage the movement of L. natalensis within the river. Finally, the ecological flow 

requirements, with particular attention to flood releases, also need particular attention to know 

when and how to release these flows in order to maximise on benefiting the local fish 

populations. Further studies understanding migration cues of L. natalensis, as well as 

population genetics, are required to inform water resource managers on when to release flood 

flows. 
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3.9 Supplementary Information  
 

 
Fig. S3.1: Species abundance and richness of fish caught in river integrity assessment of 

uMngeni River, KwaZulu-Natal, South Africa. (Abbreviations as per Table S3.1) 

 

 

 

Fig. S1.2: Abundance of L. natalensis caught in river integrity assessment of uMngeni River, 

KwaZulu-Natal, South Africa. (Abbreviations as per Table S3.1) 
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Table S3.1: Species abbreviations. 

Species name Abbreviation 

Labeobarbus natalensis LNAT 

Pseudocrenilabrus philander PPHI 

Oreochromis mossambicus OMOS 

Coptodon rendalli CREN 

Enteromius pallidus EPAL 

Tilapia sparrmanii TSPA 

Enteromius gurneyi EGUR 

Amphilius natalensis ANAT 

Micropterus salmoides MSAL 

Oncorhynchus mykiss OMYK 

Enteromius anoplus EANO 

Awaous aeneofuscus AAEN 

Clarias gariepinus CGAR 

Enteromius viviparus EVIV 
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CHAPTER 4: 

Conclusions 

The main source of freshwater water for human use comes from rivers that are distributed 

throughout the landscape. They provide us with a range of ecosystem services such as water 

purification services, transportation, power generation, food supply, and water for domestic, 

agricultural and industrial use (Tejerina-Garro et al. 2005; Yeakley et al. 2016). The availability 

of water resources, and the ecosystem services that they provide, are especially important in 

developing countries, such as South Africa (ICOLD 2016; Steyn et al. 2019). The uMngeni 

River, for instance, provides water to two of the largest municipalities in KwaZulu-Natal 

province, namely the uMgungundlovu and eThekwini municipalities, making socially and 

economically valuable (Hay 2017; Sutherland and Mazeka 2019). To ensure that our access to 

resources in the uMngeni River is sustainable, the protection of this valuable freshwater 

resouce is important. Unfortunately, the impact of anthropogenic activities has resulted in 

riverine ecosystems becoming one of the most endangered ecosystems in the world (Rodell et 

al. 2018; Du Plessis 2019). And this is the case of parts of the uMngeni River (Namugize et al. 

2018). To achieve sustainability, knowledge of the resource, its dynamics and requirements to 

protect it is required. One of the ways we can assess the ecological state of an aquatic ecosystem 

is through the use of fish species, which have often been used as key indicators owing to their 

sensitivity to environmental change, mobility, relatively long lifespan, and relative ease of 

species identification (Karr 1981; O’Brien et al. 2019; Chapter 1).  

The present study evaluated the current ecological integrity of the uMngeni River in 

KwaZulu-Natal Province using multiple lines of evidence and by assessing the state of the 

KwaZulu-Natal yellowfish Labeobarbus natalensis wellbeing in the major instream dams in 

the uMngeni River. The ecological integrity was determined by driver and responder lines of 
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evidence. The abiotic lines of evidence included water quality and habitat, while the biotic lines 

of evidence included fish community and L. natalensis population assessments. 

The first main hypothesis for this study was that fish communities in the uMngeni River 

would act as ecological indicators, responding to environmental change (abiotic drivers), 

namely changes in habitat and water quality (Chapter 2).  This hypothesis was accepted as the 

results in Chapter 2 indicated that the ecological integrity of the uMngeni River can be assessed 

by assessing changes in fish assemblages. The Fish Response Assessment Index (FRAI) 

showed that the ecological integrity of the uMngeni River tended to degrade from upper to 

lower reaches in response to various anthropogenic activities (Chapter 2). Multivariate analyses 

indicated that the anthropogenic impacts responsible for shifts in community structure (and 

therefore ecological integrity) were changes in velocity-depth classes, substrate type, and water 

quality (physico-chemical); all of which can be linked to flow modifications in most sites 

surveyed (Chapter 2). 

The second main hypothesis of this study was that populations of L. natalensis in 

impoundments along the uMngeni River also act as ecological indicators, responding to 

environmental change (abiotic drivers), namely changes in habitat and water quality caused by 

artificial impoundments (Chapter 3). This hypothesis was accepted as the results of the study 

showed how L. natalensis populations in the four large instream impoundments on the 

uMngeni River progressively diminished, both in abundance and structure, down the catchment 

gradient as the compounded impact of water quality and quantity changes in the system 

increased (Chapter 3). The absence of juvenile and smaller adult L. natalensis in all the 

impoundments illustrated how the nature of water impoundments are not well suited for small 

fish as they lack the suitable habitat they require (namely shallow riffles) and harbour alien and 

larger predatory fishes that prey on small fish (Chapter 3). This study illustrated how the 

numerous impoundments and weirs in the uMngeni river system, the most fragmented in 
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KwaZulu-Natal Province (Ramulifho 2015), has many negative effects on the systems as water 

impoundments severely alter aquatic habitats by altering natural flow regimes, change 

sedimentation dynamics and alter water quality.  

The high anthropogenic demand for water resources needed for human well-being and 

development is the main reason these four impoundments were built, and this is understandable 

given South Africa’s uneven water distribution. However, the question that remains is how 

much are we willing to compromise/alter the ecological functioning of our river ecosystems in 

order to satisfy water demand? The plight of L. natalensis in the uMngeni river catchment is 

relatively bleak, but there are steps that can be taken to remedy the effects of human impacts 

on this species and the river system as a whole. 

 

4.2 Recommendations 

• Although the use of community level measures to evaluate fish health there are 

additional tools or methods that include consideration of indicator species and the 

biology and ecology of these species for example. In the Umgeni River where there are 

low diversities of fish species, especially in the upper reaches of the catchment, these 

methods should also be considered to evaluate fish health and drivers of changes in 

their wellbeing.   

• It is recommended that attention be paid to the driving forces that have led to the 

deteriorated state of the uMngeni sites that were sampled. These sites are largely 

characterised by modified flow, alien fish species, and poor water quality. Efforts to 

mitigate these issues would likely result in an improvement of river health, and 

subsequently the health of fish communities. 

• Fish passages need to be constructed in all dams on the uMngeni River to allow 

migratory fish such as L. natalensis and Anguillid spp. to migrate between habitats.  
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• The removal of redundant weirs or partial man-made barriers needs to also be looked 

at to encourage the movement of L. natalensis within the river.  

• The effects of fragmentation on the genetic resilience of the L. natalensis and Anguillid 

spp. needs to be studied to further investigate the detrimental effects of river 

fragmentation on fish populations and the health of the uMngeni River (and other 

rivers) as a whole.  

• Finally, studies on migration cues the ecological flow requirements of L. natalensis are 

needed to inform water resource managers on when to release flood flows in order to 

maximise on benefiting the local fish populations. 

The findings of this study can be of great use when considering management and 

conservation plans in the uMngeni catchment. Evidence presented in this study on the 

overarching effects of river fragmentation can help inform decision-makers on the appropriate 

management plans (e.g. constructing fish passages) that mitigate anthropogenic impacts on the 

ecological functioning of our aquatic resources, while still maintaining water security that 

promotes sustainable economic and social development. On a more local scale, the finding of 

this study can inform local municipalities on the ills that pollution and sand mining have on 

our aquatic resources and how important it is to create awareness around this and initiate 

campaigns that discourage such activities.    
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