
AUTONOMOUS MOBILE MATERIALS HANDLING
PLATFORM ARCHITECTURE FOR

MASS CUSTOMISATION

UNIVERSITY OF
KWAZULU-NATAL

Anthony John Walker
School of Mechanical Engineering

University of KwaZulu-Natal

Submitted in fulfillment of the academic requirements for the degree of

Master of Science in Engineering

November 2008

o

As the candidate's Supervisor I agree/do not agree to the submission of this dissertation:

Signed: _

Professor Glen Bright, 23 December 2008

ii

Declaration

The author hereby declares that he has produced this paper without the prohibited
assistance of third parties and without making use of aids other than those specified:
notions taken over directly or indirectly from other sources have been identified as
such. This paper has not previously been submitted in identical or similar form to
any other University examination board.
The work was completed by the author at the School of Mechanical Engineering,
University of KwaZulu-Natal from January 2007 to November 2008.

Signed: _
A.J. Walker

First and foremost I dedicate this thesis to my loving parents, CheryI and
Raymond, who have provided me with the utmost guidance and support

throughout my life. To my sister, Caryn, for always looking out for my best
interests and sustaining a good friendship.

Finally, to Klaus, William and Jessica, who, although represent the family pets,
contribute to my health.

Abstract

In order to facilitate the materials handling requirements of production structures
configured for Mass Customisation Manufacturing, the design of requisite materials
handling and routing systems must encompass new conceptual properties. Materials
handling and routing systems with the capacity to support higher-level management
systems would allow for mediated task allocation and structured vertical integration
of these systems into existing manufacturing execution and management systems.
Thus, a global objective in designing a materials handling and routing system, for
such production configurations. is to provide a flexible system mechanism with min­
imal policy on system usage.

With the recent developments in mobile robot technologies, due to various advance­
ments in embedded system, computational, and communication infrastructures, mo­
bile robot platforms can be developed that are robust and reliable, with operating
structures incorporating bounded autonomy. With the addition of materials han­
dling hardware, autonomous agent architectures, structured communication proto­
cols and robotic software systems, these mobile robot platforms can provide viable
solution mechanisms in realising real-time flexible materials handling in production
environments facilitating Mass Customisation Manufacturing.

This dissertation covers the research and development of a materials handling and
routing system implementation architecture, for production environments facilitat­
ing Mass Customisation Manufacturing. The materials handling and routing task
environment in such production structures is characterised in order to provide a well
defined problem space for research purposes. A physical instance of a functional sub­
set of the architecture is constructed consisting of a semi-autonomous mobile robot
platform equipped with the infrastructure for materials handling and routing task
execution. The architecture orientates the mobile robot platform in such a way as
to present a collection of functional units, integrated and configured for a range of
applications, and prevents viewpoints in the sense of monolithic mobile robots less
susceptible to reconfiguration and stochastic utilisation.

Acknowledgements

First and foremost I would like to acknowledge my supervisor, Professor Glen Bright,
for providing me with the suitable environment and guidance to further my educa­
tion in Engineering, and allow me to develop as a researcher.

I would also like to acknowledge my fellow research colleagues, Jared, Louwrens,
Riaan and Shaniel, for putting up with my long-winded discussions about modern
engineering practice, production systems, and Open Source software development,
in the late afternoons down in the laboratory.

Lastly, I would like to acknowledge the entire Open Source software community for
caring enough about the Open Source movement to take time out of their lives to
endure harsh debugging sessions and follow standardised coding practises to release
source code in the open free market.

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Brief Problem Space - Solution Space Overview 1
1.2 Research Project Objectives . 2
1.3 Dissertation Overview 2
1.4 Chapter Summary 3

2 Constructing the Autonomous Material Transportation Specification 5
2.1 Mass Customisation and DFMC 6

2.1.1 Mass Customisation - A Brief History and Definition . 6
2.1.2 Design For Mass Customisation 6

2.1.2.1 Design For Manufacture (DFM) 6
2.1.2.2 Modularisation................ 7
2.1.2.3 Paramaterised CAD/CAM product models 7

2.1.3 Summary . 7
2.2 The MCM Production Structure 7

2.2.1 Concurrent Analysis Through Control Theoretic Constructs. 7
2.2.2 Plant Layout and Material Routing Efficiency. 9

2.2.2.1 Functional Plant Layouts 9
2.2.2.2 Cellular Plant Layouts 9
2.2.2.3 Conceptual MCM Plant Layouts 10

2.2.3 Summary 11
2.3 A Flexible Material Routing Primitive - FMRP . 11

2.3.1 FMRP Characterisation 12
2.3.1.1 Crucial Aspects in Material Loading and Off-Loading Phases 12
2.3.1.2 Crucial Aspects In the Transportation Phase 13

2.3.2 FMRP Definition. 13
2.3.2.1 Materials Handling Primitive. . . . 13
2.3.2.2 Material Transportation Primitive . 14
2.3.2.3 Flexible Material Routing Primitive 14

2.3.3 A Generic Implementation Architecture . 15
2.3.3.1 Hardware Implementation Layer 16
2.3.3.2 Device Abstraction Layer 16
2.3.3.3 Task Execution Layer 16
2.3.3.4 Task Allocation Layer . . 16

2.3.4 Summary 16
2.4 Project Specifications 17

2.4.1 Dimensional and Dynamic Specifications. 17
2.4.2 Sensory Specifications 18
2.4.3 Motion Specifications 18
2.4.4 Summary . 18

2.5 Chapter Summary 18

v

CONTENTS

3 Hardware Implementation Layer 19
3.1 The Concept of Mechatronics . . 20
3.2 Mobility Hardware Sub-Block . . 20

3.2.1 Functional Specification . 20
3.2.1.1 Output Specification. 21

3.2.2 Differential Drive Platforms . . 21
3.2.2.1 Mechanical Configuration and Theory of Operation 21
3.2.2.2 Important Implementation Aspects 22
3.2.2.3 Odometry....... 22

3.2.3 Physical Implementation. 24
3.2.3.1 Prototype Overview 24
3.2.3.2 Structural Base Plate 24
3.2.3.3 Integrated Drive Units 24

3.2.4 Embedded Control Framework and Odometric Implementation 27
3.2.4.1 Control Loop Structure 27
3.2.4.2 Embedded Control Access Policy. 28
3.2.4.3 Odometric Implementation 28
3.2.4.4 Preliminary Performance Testing. 29

3.2.5 Summary 31
3.3 Sensory Infrastructure Sub-Block . . . 32

3.3.1 Functional Specification . . 32
3.3.1.1 Output Specification. 32

3.3.2 Ultrasonic Sensors 32
3.3.2.1 Theory of Operation. 33
3.3.2.2 Capability Parameters. . . . 33
3.3.2.3 Physical Emission Characteristics 33
3.3.2.4 Environmental Performance Impacts. 34

3.3.3 Hardware Implementation 35
3.3.3.1 The SRF02 Ultrasonic Range Finder. 35
3.3.3.2 Physical Emission Characteristics of the SRF02 36
3.3.3.3 Sensor Platform Implementation 36
3.3.3.4 Embedded Control Framework 36

3.3.4 Summary 38
3.4 Materials Handling Hardware Sub-Block 38

3.4.1 Functional Specification 38
3.4.1.1 Output Specification. 38

3.4.2 Hardware Implementation. 39
3.4.3 Summary 40

3.5 Chapter Summary 40

4 Device Abstraction Layer 41
4.1 RollerMHP's Onboard Host Computer. 42

4.1.1 Selected Computer System 42
4.1.1.1 Mainboard and CPU 42
4.1.1.2 Operating System Implementation 42
4.1.1.3 Global Communication Infrastructure 43
4.1.1.4 Functional Scope. 43

4.2 The Player Robot Device Interface 44
4.2.1 Fundamental Concepts. 45

4.2.1.1 Interface 45
4.2.1.2 Driver....... 45
4.2.1.3 Device 45
4.2.1.4 Player's Client-Server Model for Message Transfer 46

4.2.2 Software Architecture . 48
4.2.3 Messaging Basics . 48

4.2.3.1 Raw Player Messages 49
4.2.3.2 Server Scoped Message Encapsulations and Queuing Facilities 49
4.2.3.3 Client-Server Message Transfer . . 50
4.2.3.4 Server-Driver Message Transfer " 51

vi

4.2.4 Players Driver API .
4.3 Driver Development for RollerMHP .

4.3.1 Supported Interface Specifications
4.4 Chapter Summary

CONTENTS

51
52
52
54

5 Task Execution Layer 57
5.1 Material Transportation 58

5.1.1 Navigation Preliminaries. 58
5.1.1.1 Global Navigation Overview 58
5.1.1.2 Local Navigation Overview 59

5.1.2 Player as a Code Repository . 59
5.2 Materials Handling 60

5.2.1 Preliminary Control Concepts. 60
5.2.1.1 Stability 60
5.2.1.2 Lyapunov Stability and Equilibrium Points 61
5.2.1.3 Controllability..... 61
5.2.1.4 Posture Stabilisation. . . 62

5.2.2 Modeling and Control Properties . 62
5.2.2.1 The Configuration Space 62
5.2.2.2 Under-actuated Mechanical Systems 63
5.2.2.3 Differential Constraints 63
5.2.2.4 Controllability............ 65
5.2.2.5 Feedback Stabilisability and Brockett's Condition 65

5.2.3 Logic Based Switching Control Law Implementation 67
5.2.3.1 Preliminary Insights 67
5.2.3.2 Coordinate Diffeomorphism 67
5.2.3.3 Control Law Construction 68
5.2.3.4 Hybrid Dynamics and Operating Structure 69
5.2.3.5 Nonholonomic Integrator State Constructor Algorithm 70
5.2.3.6 Control Region Extractor Algorithm (With Hysteresis) 72
5.2.3.7 Switching Signal Transition Algorithm. 72
5.2.3.8 Control Input Algorithm 73
5.2.3.9 C++ Class Implementation. 73
5.2.3.10 Testing and Response Characteristics . 73

5.2.4 Control Law Implementation Through Polar Coordinate Transformation. 75
5.2.4.1 Polar Coordinate Transformation 76
5.2.4.2 Control Law Implementation 77
5.2.4.3 Tuning Properties 77
5.2.4.4 Testing and Response Characteristics 79

5.2.5 Summary 81
5.3 Chapter Summary . 84

6 Summary and Future Research
6.1 Mass Customisation Manufacturing.

6.1.1 Effective Plant Layout Design
6.1.2 MCM Product Design through DFMC
6.1.3 The FMRP Definition and Problem Space .

6.2 The AMTS for Generic Encapsulation
6.2.1 Device Collections versus Monolithic Robot Implementations
6.2.2 The Need for Software Scalability and Code Re-Use
6.2.3 The Motion Control Problem

6.3 Research Project Summary
6.4 Future Research .

VII

85
85
85
86
86
86
87
87
87
88
88

CONTENTS

A Embedded System Technology 91
A.1 BrainStem@ Technology. 91

A.1.1 Hardware Module Implementation . . . 91
A.1.1.1 BrainStem@ Moto 1.0 Module 92
A.1.1.2 BrainStem@ GP 1.0 Module . 92

A.1.2 System Architecture 93
A.1.2.1 High-Level Application Programming Interface 93
A.1.2.2 Embedded Run-Time Kernel and Programming Framework. 93
A.1.2.3 Packetised Communication Protocol 95

A.1.3 Operating Modes. . . 95
A.1.3.1 Slave Mode. 95
A.1.3.2 TEA Mode. 95
A.1.3.3 Reflex Mode 95

A.1A Summary 95

B Embedded TEA Code Listing 97
B.1 TEA Source File for BrainStem@ GP 1.0 Module 97
B.2 BrainStem@ Moto 1.0 TEA Source File 97

C C++ Player Driver Code 99
C.1 position2d Driver Code. 99

C.1.1 Header File modrollermhp. h . 99
C.1.2 Source File modrollermhp.cc . .100

C.2 sonar Driver Code 110
C.2.1 Source File sonaracc. cc .. , . 110

D Logic Based Switching Controller Implementation 117
D.1 Modified ModRollerMHP-Driver Code . . . 117

D.1.1 Header File modrollermhp. h 117
D.1.2 Source File modrollermhp. cc 118
D.1.3 Switcher Header File switcher.h . . 126
D.1.4 Switcher Source File switcher. cc . . 127

D.2 Configuration File for RollerMHP. 133

References 135

VIII

List of Figures

2.1 Control Theoretic Description of Mass Customisation Manufacturing. 8
2.2 Functional Plant Layout Structure . . . 9
2.3 Cellular Plant Layout 10
2.4 Conceptual MCM Layout Configuration 11
2.5 Flexible Material Routing Primitive 12
2.6 Flexible Material Routing Primitive Task Instance 14
2.7 Autonomous Mat.erial Transportation Specification 15
2.8 Components of the AMTS Implemented in this Work. 17
2.9 CIM Cell Conveyor System 17

3.1 Hardware Implementation Layer 19
3.2 Venn Diagram Description of Mechatronics 20
3.3 Mobility Hardware Sub-Block 21
3.4 Mechanical Configuration and Theory of Operation for a Differential Drive Plat-

form. 22
3.5 Differential Drive . 23
3.6 Partial Differential Drive Platform Representation .. , . . . 24
3.7 Drive-Shaft Support Sub-assembly 25
3.8 Adjustable Motor Bracket With Integrated Drive Electronics 26
3.9 Logic and Drive Interfaces for MD03 Motor Driver 26
3.10 Closed Loop Control Framework Around Each Drive Wheel 27
3.11 Control Loop Structure for the Differential Drive Platform. 28
3.12 Sample Step Response 31
3.13 Differential Drive Platform Implementation 31
3.14 Sensory Infrastructure Sub-Block. . . . 32
3.15 Ultrasonic Range Parameters 33
3.16 Ultrasonic Wave Propagation Geometry . . 34
3.17 Sensor Cross-Talk. 34
3.18 SRF02 Ultrsonic Range Finder and Communication Pin-out. . 35
3.19 Beam Propagation Geometry for the SRF02 Ultrasonic Range Finder 36
3.20 Ultrasonic Sensor and Sensor Platform 37
3.21 Ultrasonic Sensor Platform and Embedded Control Interface 37
3.22 Interface Support For Sensor Platform Integration 38
3.23 Materials Handling Hardware Sub-Block . . 39
3.24 Materials Handling Device Implementation 39
3.25 HIL Physical Implementation 40

4.1 Device Abstraction Layer 41
4.2 Computational Infrastructure On-board RollerMHP 42
4.3 Communication Sub-System of the AMTS 43
4.4 Hardware Abstraction Layer. 44
4.5 Interface Specification 45
4.6 Driver Translation Functionality 46
4.7 System Placement of Player's Message Transfer and Mediation Mechanism. 46
4.8 Client Server Architecture of the Player Robot Device Interface. 47
4.9 Graphical Representation of Message and MessageQueue Software Object . 50

ix

LIST OF FIGURES

4.10 Run-Time Instance of a Client Server Subscription 50
4.11 Device Specific Message Forwarding ... 51
4.12 Driver encapsulation of the BrainStem@ C API . 52
4.13 Player's Server Implementation for RollerMHP . . 53
4.14 PlayerViewer's Shell Output. 53
4.15 PlayerViewer Screen-shot of RollerMHP's Device Instances 54
4.16 Server's Shell Output for PlayerViewer Client Subscription 55

5.1 Task Execution Layer 57
5.2 Material Transportation Aspect of FMRP Task Execution 58
5.3 Materials Handling Aspect of FMRP Task Execution. . 60
5.4 Differential Drive Configuration Space 62
5.5 Rolling Without Slipping Condition 64
5.6 Vector Field Properties of the Nonholonomic Integrator. 66
5.7 Hysteresis Characteristics of the Switching Signals Transition Function Imple-

mentation . 69
5.8 Control Loop Construct of the Logic Based Switching Controller . . 70
5.9 Configuration Error Calculation and Coordinate Transformation . . 71
5.10 Posture Stabilisation Response for Logic Based Switching Controller 74
5.11 RollerMHP's Position Trajectory Response 75
5.12 RollerMHP's First Response. 76
5.13 Polar Coordinate Transformation . . . 76
5.14 Input Translational Velocity Variation 78
5.15 Posture Stabilisation 79
5.16 Position Trajectory. 80
5.17 Control Input Convergence 80
5.18 Optimal Convergence. 81
5.19 Time-Optimal Position Trajectory .. 81
5.20 Time-Optimal Control Input Convergence . . 82
5.21 Configuration Error Convergence for Parallel Parking Operation 82
5.22 Position Trajectory for a Parallel Parking Operation . . . 83
5.23 Control Input Convergence for Parallel Parking Operation . 83

A.l BrainStem@ Network and Form Factor .
A.2 BrainStem@ Moto 1.0 Module and Motion Channel Pinout
A.3 BrainStem@ GP 1.0 Module and I/O Pinout .
A.4 The Architecture of the BrainStem@ Technology

x

91
92
93
94

List of Tables

4.1 Players 12 byte Address Structure ...
4.2 Players Message Header Data Structure

xi

47
49

LIST OF TABLES

XII

Chapter 1

Introduction

"Great thoughts reduced to practice become great acts" - William Hazlitt

This dissertation covers research in the area of advanced manufacturing and specifically
focuses on the development of mobile robot systems to facilitate the materials handling and
routing tasks required for production rate sustainability under customer-induced variations in
production requirements in Mass Customisation Manufacturing (MCM) implementation.

1.1 Brief Problem Space - Solution Space Overview

The prohlem addressed lies in facilitating a specific form of materials handling and routing
task associated with customer-induced variations in production requirements. In the context
of MCM, these variations in production requirements are caused through deterministic changes
in product design, which can produce variations in work flow through a production plant when
processing requirements fall outside the capability scope of manufacturing infrastructure sub­
sets associated with standard work flow and ronting.

Characterisation of the problem space associated with this research is achieved by exposing
the concepts and properties of MCM production structures. This characterisation leads to the
development of a functional definition for a materials handling and routing task that facilitates
customer-induced work-flow <-+ payload routing variations.

As manufacturing systems have technical properties and characteristics that are product and
process technology specific, the development of absolute physical systems, as solution mecha­
nisms, does 1101. provide a. credible research output. Therefore, an effort is made to focus on
generic requirements and develop solution structures on the basis of system scalability and ex­
tensibility, allowing for integration of application specifics to facilitate unique production plants.

Exposure of the properties and characteristics of flexible materials handling and routing
tasks develops into a materials handling and routing system implementation architecture that
provides a generic solution structure incorporating the core functionality required in order to
facilitate the materials handling and routing tasks of customer-induced variations in production
requirements. A physical prototype is developed based on a subset of the functional units of
the implementation architecture in the form of a semi-autonomous mobile robot platform.

Materials handling and routing of payloads between distributed manufacturing infrastruc­
ture subsets through the utilisation of mobile devices, such as mobile robots, requires research
and development of motion controllers for such robot devices in order to execute materials
handling and routing tasks. Due to this requirement, the majority of the research output is
based on the motion control problem. Full state feedback stabilisation of differential drive
mobile robot platforms is quantified along with the development of Lyapunov stable l motion

1 Lyapunov stability is introduced in section 5.2.1.2

1. INTRODUCTION

controllers. Control solutions take the form of asymptotically stable non linear, and piecewise
continuous hybrid control laws.

1.2 Research Project Objectives

1. To research materials handling and routing for Mass Customisation Manufacturing (MCM),
in order to expose, characterise: and define the routing tasks associated with its produc­
tion structure in order to provide a well defined problem space for research.

2. To develop a layered implementation architecture that encapsulates the core functionality
required for materials handling and routing task execution.

3. To research, design and construct a mobile materials handling and routing robot plat­
form, in alignment with the layered implementation architecture, to provide a test-bed
for experimentation and performance testing purposes.

4. To utilise the mobile materials handling and routing robot platform to test and validate
the motion control aspects associated with facilitating the material routing requirements
imposed through MCM production structures.

1.3 Dissertation Overview

The main topics in each chapter are listed and briefly described below in order to provide an
overview of this dissertation as a whole.

Chapter 2
Preliminary concepts and characteristics pertaining to Mass Customisation, as a niche
market facilitator, are presented. These preliminary concepts are required in order to
understand the unique production environment created through MCM implementation.
An overview of the plant layout aspects that affect materials handling requirements in
MCM production is presented in order to provide insight into passive measures that can
minimise materials handling and routing requirements. The chapter ends by defining
a Flexible Material Routing Primitive (FMRP), and presents a layered implementation
architecture designed to facilitate the execution of such.

Chapter 3
The concept of Mechatronics is presented in order to highlight the design method used
in developing the mobile materials handling and routing robot platform prototype, which
provides a test-bed for experimentation purposes. The mobile robot platform's design
history is presented including relevant theory and pivotal design aspects in its implemen­
tation.

Chapter 4
The design and operating structure of the Open Source software system used in im­
plementing Hardware Abstraction Layer (HAL) functionality for the mobile materials
handling robot platform is presented. The software system provides software scalability
and allows for code re-use by abstracting the hardware specifics of the mobile materials
handling and routing platform behind well defined generic software abstractions over an
JP network, through the use of interface specifications.

Chapter 5
The motion control algorithms implemented in order to facilitate the motion control as­
pects associated with material payload transportation between distributed manufacturing
infrastructure subsets is presented. Multiple motion control algorithms are implemented
and tested on the mobile materials handling and routing robot platform prototype in
order to quantify the motion control performance provided by each algorithm.

2

1.4 Chapter Summary

Chapter 6
A summary of the outputs achieved during the research project provide insight into future
research in advanced manufacturing systems and MCM. A discussion on the importance
of an internationa.l development community in the realisation of next generation materials
handling systems for Mass Customisation Manufacturing provides preliminary insight into
task force development. Common Model Development (CMD) is discussed with reference
to the layered implementation architecture.

1.4 Chapter Summary

The layout and main content of this dissertation has been presented in order to provide the
reader with a well directed outlook on the work covered.

3

1. INTRODUCTION

4

Chapter 2

Constructing the Autonomous
Material Transportation
Specification

{{To make contributions of this kind, the engineer requires the imagination
to visuaLise the needs of society and to appreciate what is possibLe, as
weLL as the technoLogicaL and broad sociaL-age understanding to bring his
vision to reaLity" - Sir Eric Ashby

The aim of this chapter is to expose, characterise, and define a "Flexible Material Routing
Primitive" (FMRP), a task that has been conceptualised to represent a specific form of materi­
als handling and routing operation, associated with customer-induced variations in production
requirements.

From the characteristics of a FMRP, an implementation architecture is introduced that en­
capsulates the core functionality required to facilitate the execution of such materials handling
and routing tasks. This implementation architecture forms the major component in the devel­
opment of a mobile materials handling and routing robot platform prototype in chapter 3.

The concepts and characteristics exposed in this chapter act as precursors to the introduction
of design and performance specifications for the mobile materials handling and rout.ing robot
platform developed during thi:-; research project. These specifications are presented in section
2.4.

5

2. CONSTRUCTING THE AUTONOMOUS MATERIAL TRANSPORTATION
SPECIFICATION

2.1 Mass Customisation and DFMC

It is important to understand and quantify how customers, in the context of MCM, create
variations in production requirements, in order to develop manufacturing structures that are
capable of economically operating under such conditions. In order to understand MCM, one
must. first understa.nd the notions of Mass Customisation and Design for Mass Cust.omisation
(DFMC).

2.1.1 Mass Customisation - A Brief History and Definition

The concept of Mass Customisation first appeared in the book "Future Shock", by Alvin Toffler
[45]. Toffier, much appreciated for his propositions and explanations for modern sociological
phenomena, described Mass Customisation as a method of catering to niche markets. "Mass
Customisation" was formally termed by Stan Davis. In his book "Future Perfect", Davis
projected trends encompassing micro-segmentation of consumer markets and unique product
development. for customers [14]. The definition provided by Frank Piller best describes Mass
Customisation fundamentals. and thus, it is the formal definition in t.his dissertation [.36].

Mass Customisation. "Customer co-design process of products and services which meet
the needs of each individual customer with regard to certain product features. All operations
are performed within a fixed solution space, characterised by stable but still flexible and
responsive processes. As a result, the costs associated with customisation allow for a price
level that does not imply a switch in an upper market segment", [361.

The key aspects, in bold font in the above definition, require reiteration.

- "Customer co-design": Customers, in the context of Mass Customisation, are integral
product design elements and implicitly create production dynamics.

- "certain product features": Customisation is limited to certain product features thus
ensuring globally bound and deterministic variations in production requirements.

- "fixed solution space": The production environments implementing Mass Customisa­
tion have limited, but well defined, capabilities.

- "stable but still flexible and responsive": Production rate volatility is minimised
through responsive production operations.

Therefore Mass Customisation, or more specifically MCM, is not only the manufacture of
customised products at mass production efficiencies, [25], but even more so: is a production
structure developed to economically facilitate bounded, customer-induced variations in produc­
tion requirements, under near constant production rates.

2.1.2 Design For Mass Customisation

DFMC represents the notion of designing products that are more susceptible to efficient and
economical manufacture in a MCM context [27J. DFMC is an extremely complex task and
this is only a brief overview of the aspects of DFMC that are capable of affecting production
stability.

2.1.2.1 Design For Manufacture (DFM)

Taking processing requirements into consideration when designing products provides smooth
transitions into production. Design for fixturing, design for easy fabrication and assembly,
design for minimal setup and design for minimal utilisation of cutting tools are all design
methods used in DFM. DFM can produce products that require less overall processing which
implicitly creates simpler logistics and material flow through the production plant thus reducing
materials handling and routing tasks.

6

2.2 The MCM Production Structure

2.1.2.2 Modularisation

Modular products allow for an increase in the degree of customisability for a particular product
model. Modularity allows for the structured utilisation of manufacturing resources and plays
a major role in facilitating and satisfying the psyche of demanding and particular customers.
There exists a strong correlation between Mass Customisability of a product with regard to
modularity [33][32].

2.1.2.3 Paramaterised CAD/CAM product models

This is a fundamental requirement in DFMC and allows customers to configure t.heir desired
product through t.he use of configurators, which represent software systems wit.h Graphical
User Interfaces that allow customers to edit the configuration of a custom product. This not
only aids in customer satisfaction but also prevents unnecessary choices from manifesting into
unseen production conflicts.

2.1.3 Summary

DFMC can thus be seen as a passive measure of ensuring production rate stability by design­
ing products that "behave well", in terms of developing bounded and controlled variations in
production dynamics, under deterministic customer-induced, changes in product design. The
successful implementation of Mass Customisation, in the context of facilitating custom product
manufacture through MCM, is largely dependent on the design and customisability of the prod­
ucts offered by a particular manufacturing firm. DFMC can be seen as the first line of defense
in providing stable production in an environment perturbed by customer-induced changes in
product design, and must not be overlooked.

2.2 The MCM Production Structure

In order to implement production structures that are capable of MCM, all elements that affect
or control the "magnitude" or "frequency" of customer-induced production rate variations must
be collected and concurrently analysed as a whole. Concurrent analysis can allow for insight
into methods of quantifying and achieving production stability, recall the "stable but still
flexible and responsive" aspect of Mass Customisation, section 2.1.

2.2.1 Concurrent Analysis Through Control Theoretic Constructs

There will always be a semantic breakdown regarding the communication of concepts across
engineering disciplines. For this reason, the author has encapsulated the concepts of MCM
production structures in a control theoretic construct, in order to partially provide semantic
homogeneity for this discussion.
Conceptual insight into concurrency, in the design and implementation of MCM production
operations, can be realised by encapsulating MCM in a SISO control loop construct, Figure
2.1. In such constructs, customers can be regarded as deterministic input disturbances into
production plant that are set up, or optimised, around a set of standard processing require­
ments. These input disturbances, i.e. customers, effectively produce variations in production
requirements and production rate, y(t), due to changes in standard CAD/CAM models and
associated production plans, stored in a Standard Product Model Library! (SPML).

In t.his control theoretic model. DFMC is regarded as a pre-filter or feed-forward cont.roller
that conditions Company Wide Decisions (CWD), such as target consumer market and product
strategy, into more suitable parameterised CAD/CAM product models. This notion reiterates
the importance of DFMC in achieving successful MCM at pre-determined economic production

lIn the context of MCM, and for this representation, a SPML stores a collection of product CAD/CAM
models in "standard" confip;uration. Standard confip;urations can be thought of a those product configurations
that represent best estimates of cust.omer preference, determined through market research

7

2. CONSTRUCTING THE AUTONOMOUS MATERIAL TRANSPORTATION
SPECIFICATION

yet)

rl••ibl.
Ma.DufactuxiD9

By.t_
(rMS)

+

+Uncerta1nty in production
rate

Active Production Stability Generators
",. .
o

: r-----. r-r"l7.••::'lib=l'::".--;
: Adaptive b.l-'l'1_
o Proce.. NIIt.ri.l.

Control Bandlin9
(APC) ""'1'l1lI

+ +

u{t)

~ . I"·. .··: P•••iv. Production Stability Generator. :........................... , ,.
Production Monitor

(SCADA)

diet)

PZ'odu.ctioD
Dat.

Qene:r'ator

Determiniatic Input
Diaturbance (Cuatomer)

.......'.ct"r1D9
".cutJ.OD

'y.t_ (.S)

F••dback Control

+

Company
!fide
Deci.ion.

Figure 2.1: Control Theoretic Description of Mass Customisation Manufacturing ­
In this model, customers act as input disturbances, which offset standard production operations.
These input disturbances require regulation by the MCM production controller

rates, section 2.1.2.

Manufacturing infrastructure, such as Flexible Manufacturing Systems (FMS) can be re­
garded as abstract actuators that are driven by control signals from the production controller,
i.e. with reference to Figure 2.1, Manufacturing Execution Systems (MES), to absorb process
variations in order to maintain nominal production rates under deterministic input disturbances
created through customer-induced changes in standard product design. In the same sense, Flex­
ible Real-Time Materials Handling, (FRTMH), as an "active" manufacturing component, can
be envisaged as an abstract actuator that integrates, through distributed materials handling
and routing ta.<;k execution, various FMS processing cells in order to provide required process
integration. In terms of this control theoretic construct and production model, a conceptual
control problem statement can be constructed as follows.

The MCM Control Problem. Find/select/choose/design and concurrently develop a feed­
forward controller (DFMC), a feedback controller (MES), actuators (APC, FRTMH, FMS),
sensors (SCADA, QC), and include passive measures such as structured plant layouts and
product flow buffers, to produce a production plant that operates so as to regulate deterministic
customer-induced input disturbances in the form of process and material routing variations at
a pre-determined stable and economic production rate.

Note: With regard to the aspects concerning material routing variations, plant layout, as
a "passive" manufacturing component, is equally as important as Flexible Real-Time Materials
Handling, as an "active" manufacturing component, in achieving input disturbance regulation
and production rate stability. This aspect exposes the multi-dimensional solution spaces of
modern manufacturing, and associated materials handling environments. These components
are shown as yellow blocks in Figure 2.1. Plant layout and its correlation to materials handling
requirements is discussed in section 2.2.2.

8

•
e

2.2 The MCM Production Structure

2.2.2 Plant Layout and Material Routing Efficiency
Current plant layout structures, such as process, product and cellular layouts are designed for
a particular product mix and production volume, which is assumed to remain constant for
extended periods of time, between three to five years [31. These plant layouts are designed
utilising metrics that describe long term materials handling efficiency. When production re­
quirements change, through a change in product mix or production volume, a reconfiguration
in plant layout is required in order to sustain materials handling efficiency and production rate
stability. This is a costly exercise and it is not uncommon for plant managers to prefer to live
with the inefficiencies of an existing plant layout structure, rather than perform a costly plant
layout reconfiguration [4].

2.2.2.1 Functional Plant Layouts

In modern manufacturing environments, functional layouts, also known as process layouts [19],
in which manufacturing infrastructure of similar functional scope are grouped together, are
considered the most flexible for high product variety and/or low production volumes, Figure
2.2.

: Turning Nillin9 A••embly

~', --' ----------rnee .__ ---.-..e, •\ , ," -~-----~ .%.. r
0\/ 0 ,---. e ,e\ /e

... , 'I/ \ : '--_~y;""""__----J

1 / 'fU:j [i'~k'_"_ -I "....U'U'
.~ .--::_-~ -~ g: ~Jt ~

___ • Product Type 1 RoutiDlI

.. Product Type 2 Routinll

,, ,
...

Figure 2.2: Functional Plant Layout Structure - Common colors represent manufacturing
infrastructure of the same functional scope

The materials handling efficiency in such plant layout structures is dependent on the spatial
distribution of consecutive processing stations that provide the necessary processing primitives
required to facilitate the manufacture of a particular product. Functional layouts have poor
materials handling and routing efficiency, and can produce inefficient materials handling and
routing in cases where a particular product requires the utilisation of consecutive processing
primitives that have high spacial distribution. This can result in poor production rates, bottle­
necks, and under utilisation of manufacturing resources.

A credible objective in designing a functional layout is to determine a relative configuration
of processing work-cells, such as milling work-cells and turning work-cells, so as to minimise
the average required materials handling and routing distance for a particular product mix. In
practical implementations, layout designs based of minimising functional descriptions incorpo­
rating metrics such as Total Materials Handling Distance and Total Adjacency Score are utilised
frequently [24].

2.2.2.2 Cellular Plant Layouts

Cellular layout configurations are developed by grouping manufacturing infrastructure into
functional cells. Each processing cell is dedicated to the manufacture of a family of products
with similar processing requirements. This is also known as a Group Technology layout and is

9

2. CONSTRUCTING THE AUTONOMOUS MATERIAL TRANSPORTATION
SPECIFICATION

used frequently in batch production operations [19], Figure 2.3.

Proc••• Group 1+

---1° 1••-1
Proc••• Group 3 t

I·o·I J...
Proce.. Group ..

~--­

~--.
Proc... Group 2

m·• •••

Proc... Group 5

I~· or• e-·

Figure 2.3: Cellular Plant Layout - In modern implementations of cellular layouts, a robotic
manipulator is centrally situated in each cell and provides articulated intra-cell materials handling

Cellular plant layouts simplify workflow and reduce the materials handling and routing require­
ments for a particular product mix, [19]. Once again however, cellular layouts are designed
under the assumption that product life cycles are sufficienUy long and that the demand for the
product is stable. Once established, there is minimal inter-cell materials handling and routing.
This aspect makes cellular layouts sensitive to changes in product demand or mix.

2.2.2.3 Conceptual MCM Plant Layouts

There are no universally accepted methods of designing plant layouts, and thus materials
handling systems for MCM implementation, although there is much literature on the subject
[23][11]. One can suggest, however, that increasing the functional scope of layout structures
through responsive and flexible materials handling and routing systems would allow for hybrid
plant layouts, incorporating the structures associated with both functional and cellular layouts,
to provide robust prod'llction rates through flexible process integration in MCM. Through care­
ful DFMC, active manufacturing infrastructure, such as Flexible Manufacturing Systems could
be grouped into functional cells that facilitate a subset of the variational aspects of custom
product design. Flexible materials handling and routing operations could then integrate these
functional subsets, by executing flexible} material routing tasks, to facilitate the manufacture
of custom products at economic production rates.

It has become common practice in high variety production to use customisable production
platforms that incorporate and quantify the particular processing, and materials handling and
routing aspects, in the design and manufacture of a custom product [26][18]. These customisable
production platforms encapsulate the processing requirements of a base product configuration,
which all custom products are based upon through changes in modular component attadunent
and dimensional variation [20].

By balancing the production aspects associated with base product component manufacture
with the production aspects of providing flexible customisability on top of base components,
MCM plant layouts can be designed to facilitate high-volume low routing flexibility, in
material flow between processing stations producing base product components, and low volume
..... high routing flexibility, between processing stations adding customisable elements to base
product components.
Figure 2.4 presents a conceptual layout of a MCM production plant based on this balancing
structure. The layout is hybrid in the sense that the materials handling system integrates the
elements of both functional and cellular layout configurations.

}Flexible in the sense that the material payload is not constrained to move along pre-determined paths

10

2.3 A Flexible Material Routing Primitive - FMRP

Figure 2.4: Conceptual MCM Layout Configuration - Conventional conveyor and gantry
systems can facilitate materials handling requirements in FMS processing stations producing base
components. Mobile platforms then facilitate flexible materiat routing tasks between FMS pro­
cessing stations for custom component integration.

2.2.3 Summary
An important aspect in the implementation of MCM is the concurrent development of produc­
tion structures that can regulate the negative effects of customer-induced variations in produc­
tion requirements. These production structures can be designed by concurrently integrating
all passive and active manufacturing execution components in order to minimise the negative
effects on production rate, either magnitude or frequency, due to customer-induced variations
in production requirements, recall Figure 2.1.

The flexibility provided by plant layouts and materials handling systems is vital in providing
the required process integration for custom product manufacture. The design of functional and
cellular plant layouts however, are based on deterministic paradigms, where product demand
and production volumes are known with high degrees of certainty. Metrics, such as Total Mate­
rial Handling Distance and Total Adjacency Score used in their design, do not aid in providing
insight into determining the flexibility and reconfigurability of a particular plant layout. One
can suggest that there is a need to develop new metrics that can describe the flexibility of a
particular plant layout and materials handling and routing system as a single collective unit. In
MCM production operations, over stimulation of plant layout reconfiguration procedures every
time new production requirements develop is not an option. The problem of maintaining pro­
duction efficiency and stability in MCM, now becomes a factor of both plant layout design and
materials handling and routing flexibility. Therefore, for MCM implementations, plant layout
and the associated materials handling systems design should be regarded as a single problem
and treated as a collective unit, Le. with reference to Figure 2.1, treat both yellow blocks as
the same block.

2.3 A Flexible Material Routing Primitive - FMRP

From the previous description, it is apparent that customers in the context of MCM, and for
fixed hybrid plant layouts, induce material routing primitives that fall outside of the scope of
standard materials handling infrastructure, such as fixed conveyor and gantry systems. When
this occurs, flexible infrastructure must be commissioned to execute off-standard, or "flexible",
material transportation tasks. Flexible materials handling and routing infrastructure, such as
mobile materials handling robots, have an upper bound on the material flow volume that can

11

Region of COnvergence with
Radiue R

2. CONSTRUCTING THE AUTONOMOUS MATERIAL TRANSPORTATION
SPECIFICATION

be facilitated by their operating structure. This is based on exposing the limits associated
with performing point to point payload transportation's under single payload instance, and
limited physical capacity and motion capability. In this regard, conveyor systems are more
suited to high volume material payload transfer in that the payloads can be distributed along
the entire conveyor system. Therefore, these flexible material routing systems should cover the
material routing aspects associated with product variety only, where the required "utilisation
frequency" 1 is relatively low in comparison to that being facilitated by conveyor systems, recall
Figure 2.4.

2.3.1 FMRP Characterisation

All materials handling and routing tasks can be decomposed into three basic phases.

1. Material Loading or Pickup phase.

2. Transportation phase.

3. Material Off-load or Set-down phase.

In terms of a FMRP, both the material loading, and off-loading phases are critical in providing
robust materiaJ transfer between manufacturing infrastructure and materials handling devices.
In this sense they can be treated as an equivalent materials handling task. The transportation
phase does not explicitly concern the handling of materials, but rather, the gross movement of
material between distributed manufacturing infrastructure subsets.

A graphical representation of a FMRP including the various materials handling and routing
phases is shown in Figure 2.5.

Mat.rial Tran.portation Pha.. (Local and Global Navig.tion)

~: '~__~:~_Nat.rial. Handling Pha••
Ob.t.cle. (Po••ibly ~ (Po.ture Stabili.ation)

Dynamic) ••-.:--- -o~"" .. "

/----------------' .. ' •• '00 '.~........ \,

lEJ EJ ~7~···
! FMS EJ ~--o-o--o-,---: :,' -......
\ .. -------r;::::r-- .. / ,.. ~ Start
~ :

Motion Control Tranaiti~n
Zone

Figure 2.5: Flexible Material Routing Primitive - The Region of Convergence, (RoC) is a
conceptual space, established to incorporate higher-level mutually exclusive access specifications
to input/output port infrastructure via manufacturing management frameworks. This is described
in section 2.3.1.2

2.3.1.1 Crucial Aspects in Material Loading and Off-Loading Phases

During these phases, transfer of a material payload is taking place, therefore the relative po­
sition and orientation of the materials handling hardware and manufacturing infrastructure
subset2 is critical to ensure successful transfer without damaging the material payload and/or
materials handling hardware. During this phase the materials handling hardware should con­
figure its alignment with the manufacturing infrastructure subset, absolutely, to ensure that

I This could also be considered as a task execution frequency
2Such as the storage buffer conveyor into a FMS cell

12

2.3 A Flexible Material Routing Primitive - FMRP

position and orientation errors inherited by non-ideal transportation hardware does not de­
stroy the successful execution of the material payload transfer operation. For this purpose, the
materials handling hardware must be able to move and align itself relative to the underlying
transportation hardware.

Situated around each input/output port in Figure 2.5 is a restricted Region of Convergence,
(RoC). The region is restricted in the sense that only one mobile materials handling device may
occupy the region, to gain access to the input/output port of the manufacturing infrastructure,
at any particular time instant. This has been conceptualised in order to incorporate mutually
exclusive access rights, provided by higher-level management frameworks [47], into a FMRP
definition. The border of the region represents a· transition zone for the "type" of motion control
required during material payload transportation. Inside the RoC, motion control is in the form
of posture stabilisation. This is a critical aspect in which the mobile materials handling and
routing robot platform aligns itself, i.e. achieves a required position and orientation [x p , YP' t1 p jT,
with the input/output port in such a way as to ensure successful and robust material payload
transfer. The access rights associated with the RoC will assure that posture stabilisation motion
control can disregard the explicit requirement of obstacle avoidance as no other robot platforms
will occupy the region.

2.3.1.2 Crucial Aspects In the Transportation Phase

The transportation phase is concerned with the routing of a material payload between two
distributed manufacturing infrastructure subsets, such as two FMS cells. This phase could
potentially require large transportation distances with arbitrary start and end locations.

Outside the RoC, the motion control must be in the form of global and local navigation
with explicit real-time obstacle avoidance. The global navigation is required in order to estab­
lish path planning between the input/output ports of distributed manufacturing infrastructure
subsets. The local navigation is required to establish awareness and perception in the dynamic
environment of advanced MCM production plants.

These notions of Regions of Convergence and the associated motion control primitives are
analogous to satellite attitude control systems where the control infrastructure is distributed
and performs a different function based on its accuracy and sensitivity. For example, in the
attitude adjustment of a satellites communications equipment with a receiver on earth, thrusters
are used for large attitude adjustments and smaller more accurate magnetic torque generators
for final alignment of the communications infrastructure with the receiver on earth.

2.3.2 FMRP Definition

A FMRP is best described by composing two functionally different. motion primitives, Figure
2.6.

2.3.2.1 Materials Handling Primitive

With reference to Figure 2.6, a materials handling primitive consists of the following operations.

1. Posture stabilisation from a pose) on the boundary of a RoC, [xn Yr, t1r]T, onto a goal
pose, [x p , YP' t1p]T, in a pre-determined vicinity of an input/output port.

2. An absolute alignment of the materials handling infrastructure with the input/output
port using degrees of freedom above those of the underlying transportation device, recall
section 2.3.1.1.

3. A material payload transfer task, either loading or off-loading.

1 Pose and configuration are analogous

13

2. CONSTRUCTING THE AUTONOMOUS MATERIAL TRANSPORTATION
SPECIFICATION

..-­
Notion Control Tranaition Zone
(Biqher-level Nanaq...nt Syatem
Requeat Protocol)

FMRP End .--"[z ye)"
, p2

Obataclea (Poaaibly 0 ,: ••' [zu yuQ..l"
Dynamic) \~'''''''' _~:.; -_·: Mat.r.t.ala Handling Pb•••

Input/oupu[~pOyrt
Q

j' , " ~,~ ""b [Q(Pjo:ture Stabiliaation)

Location -pi p1 pi \... ._ Xd: Y d id

,'------.--.. ----- \... ..e.;
r IntS I '[Jfi.'". ·:.:·,~····.::t.r::~'~--'---------~ Mater1.~ Tranaport.tion

iB EJ fr '.~ --~---::~~~~e ,/// pr1a1t1"L:

: I1IS I ••~ "', ..

~..): "'..-t " ..g
'--------r.:=:l" , "~::---L.--- Nobile x

~_ [z.. y .. B.. J FMRP St~rt--------Materi.ls
- Ran~1n9

[z,y.B,j' Pl.tfo....

Figure 2.6: Flexible Material Routing Primitive Task Instance - Posture stabilisation,
represented by the red dashed line in the above figure, of differential drive platforms is a difficult
control problem and is covered explicitly in chapter 5

2.3.2.2 Material Transportation Primitive

With reference to Figure 2.6, a material transportation or routing task consists of the following
operation.

1. A global navigation operation from a location, [Xl, YI]T, to a second location [X2, Y2]T,
while avoiding obstacles in real-time.

2.3.2.3 Flexible Material Routing Primitive

A FMRP is defined as follows.

1. A materials handling and routing task assignment from a higher-level manufacturing
management system to a mobile materials handling and routing robot platform.

2. A Material Transportation Primitive (NULL)1 with [Xl, YI]T = [X" Ys]T and [X2, Y2]T =
[xr }, Yrl]T, a boundary point of a RoC.

3. A query to a higher-level management framework to request access to an input/output
port followed by an outcome acknowledgment.

4. A Materials Handling Primitive (Loading).

5. A Material Transportation Primitive to the off-load RoC with [Xl, YI]T = [XpI , YPl]T and
[X2, Y2]T = IXr2, Y,-2]T.

6. A query to a higher-level management framework to request access to an input/output
port followed by an outcome acknowledgment.

7. A Materials Handling Primitive (off-loading).

8. A Material Transportation Primitive, (NULL), with [Xl, ydT = [Xp2, YP2]T and [X2, Y2]T
= [xar , Yar]T.

1NULL specifies that no material payload is present

14

2.3 A Flexible Material Routing Primitive - FMRP

2.3.3 A Generic Implementation Architecture

A physical materials handling and routing robot platform requires certain basic core capabili­
ties in order to execute a FMRP defined in section 2.3.2.3. In a functional sense, hardware is
required to facilitate materials handling as well as provide low-level motion primitives in order
to transport a material payload between manufacturing infrastructure subsets. Active sensory
infrastructure is required to provide the mobile robot with environmental perception and in­
formation on its local working environment. This allows the platform to sense both static and
dynamic obstacles in order to perform local navigation and obstacle avoidance during material
transportation. Due to the possibly heterogeneous l materials handling platforms, executing
FMRP's in a production plant, software systems are required that provide HAL functional­
ity2 in order to provide scalability in control and management structures. Implementing such
software systems allows for the development of generic communication standards with homo­
geneous semantics. A communication subsystem is required to enable the passing of messages,
such as FMRP task instances, from higher-level manufacturing management systems to the
materials handling and routing device, and allow for task status reporting. At the highest level
of abstraction, a materials handling and routing robot platform requires an agent architecture
to provide problem solving ability during a FMRP task instance. The agent architecture can
also provide facilities to store local task information, such as start and destination location,
material payload characteristics and production priority metrics such as due date.

Oven the many years of system development, Engineering architectures have been devel­
oped to allow for the structured encapsulation of the concepts and specifications required to
implement internationally recognised and scalable systems. Following in this approach, an
implementation architecture has been developed to encapsulate the above mentioned core ca­
pability requirements for FMRP task execution. The architecture is termed the Autonomous
Material Transportation Specification (AMTS), Figure 2.7.

Figure 2.7: Autonomous Material Transportation Specification - The Application
Specifics sub-block encapsulates that which is required in order to interface generic task al1o­
cations with the product and manufacturing technology specifics of a production plant

The architecture is layered, hierarchial, and consists of four main levels of functional implemen­
tation. An overview of each functional layer follows.

I In terms of hardware implementation
2See section 4.2 in chapter 4

15

2. CONSTRUCTING THE AUTONOMOUS MATERIAL TRANSPORTATION
SPECIFICATION

2.3.3.1 Hardware Implementation Layer

The Hardware Implementation Layer (HIL) is a specification on the capabilities of the hardware
implementations designed to facilitate the physical requirements of a FMRP. The HIL consists
of three sub-blocks that are assigned output specifications on the necessary capabilities for
physical FMRP execution. A physical instance of the HIL is covered in chapter 3.

2.3.3.2 Device Abstraction Layer

The Device Abstraction Layer (DAL) is a specification on the structure and implementation of
the software systems used to abstract hardware specifics into generic abstractions pertaining
to concepts associated with FMRP execution. The DAL has been incorporated into the imple­
mentation architecture in order to explicitly include the requirement of scalability in the control
structures developed to control physical robot device implementations by allowing higher-level
control software to operate in terms of generic device abstractions l . The software implementa­
tion used during this research project is covered in chapter 4.

2.3.3.3 Task Execution Layer

The Task Execution Layer (TEL) is a specification on the elements that constitute the motion
primitives associated with the transportation and materials handling aspects of a FMRP, recall
section 2.3.2.3. Specifications are placed on posture stabilisation, and local navigation and
obstacle avoidance capabilities. The TEL has access to the HIL through the DAL in order to
perform the motion primitives required in order to execute a FMRP. The motion controller
implementations developed to facilitate the TEL are covered in chapter 5.

2.3.3.4 Task Allocation Layer

The Task Allocation Layer (TAL) is a specification on the communication infrastructure that
allows the materials handling and routing device to accept, interpret and locally manage an as­
signed FMRP task. The TAL consists of a materials handling agent architecture and toolbox to
allow higher-level software systems to gain access to the capabilities provided by the TEL. The
TAL facilitates the routing and transmission of task data. To date, this layer of the architecture
has not been implemented as research regarding the components, such as the agent architecture
and task allocation and scheduling algorithms associated with its implementation are still an
open subject in the Mass Customisation Manufacturing research community. Although not
explicitly represented in this work, the TAL could place specifications on the status reporting
protocols for FMRP task completion or the error codes thrown in FMRP task instance failure.

The mobile materials handling and routing robot platform prototype developed during this
research project is based on a subset of the functional components in the AMTS implementation
architecture, Figure 2.8.

2.3.4 Summary

A Flexible Material Routing Primitive has been characterised and defined in terms of function­
ally disjoint materials handling and routing operations. This has allowed for its critical aspects
to be encapsulated in an implementation architecture termed the Autonomous Material Trans­
portation Specification, (AMTS).

lThe DAL is analogous to the Hardware Abstraction Layer (HAL) of an Operating System (OS). Hopefully
this analogy makes the functional aspect of the DAL more apparent

16

2.4 Project Specifications

Teak Allocation Layer

Materiala Handling
Agent Architecture

Application
Specific.

Figure 2.8: Components of the AMTS Implemented in this Work - Although not in
its full capacity, the Communication Sub-system sub-block was implemented during this research
project and is covered in section 4.1.1.3

2.4 Project Specifications

By characterising a FMRP, specifications on physical implementations to facilitate the execu­
tion of such can now be introduced.

In order to establish research bounds and design goals, specifications were placed on func­
tional as well as performance aspects of the mobile materials handling and routing robot plat­
form developed during this research project.

2.4.1 Dimensional and Dynamic Specifications

1. The maximum height of the mobile robot platform, including the materials handling
infrastructure, should be 800 mm to interface with the conveyors used by the Computer
Integrated Manufacturing (CIM) cell in the Mechatronics and Robotics laboratory, Figure
2.9

800-

··t"

" •.1.

GantEy a•••d Material Tr.n.~.r Oevice

Figure 2.9: CIM Cell Conveyor System - The gantry based transfer device replicates
the infrastructure associated with Flexible Manufacturing Systems

17

2. CONSTRUCTING THE AUTONOMOUS MATERIAL TRANSPORTATION
SPECIFICATION

2. Width and breadth of the platform should both be less than 650 mm to allow the platform
to navigate through doorways in the laboratory.

3. To allow for feasible application of first order kinematic models during the development of
motion controllers for the mobile robot platform, rise times for any step input in velocity
around nominal operating conditions should be under a second.

2.4.2 Sensory Specifications

1. The mobile platform must be able to gather perceptive data, using active sensors, about
its surrounding environment in all directions on a horizontal plane to minimise directional
bias in local navigation performance.

2.4.3 Motion Specifications

1. The mobile platform must be able to perform asymptotic posture stabilisation and have
a Iyapunov stable motion control system.

2. The mobile platform must be able to locally navigate its surrounding environment in
real-time.

2.4.4 Summary

Performance specifications have been placed on certain design aspects of the mobile materials
handling and routing robot platform prototype, in order to establish design bounds for physical
implementation.

2.5 Chapter Summary
Successful MCM implementation is dependant on the design and customisability of the prod­
ucts offered by a particular manufacturing firm. In this regard, Design For Mass Customisation,
(DFMC) is extremely important and must not be overlooked.

MCM can be seen as a unique production environment with production characteristics that
span past the scope of conventional batch and mass production. MCM implementation requires
a concurrent out.look on the integration of components that affect or control the magnitude
and/or frequency of customer-induced variations in production rate. This can be achieved by
conceptualising MCM production in a control theoretic construct.

Due to the unique nature of MCM production, it is fundamentally important for firms im­
plementing MCM to understand how customers affect production dynamics, in order to create
and engineer production systems that are capable of economically facilitating customers needs
through effective plant layout structures and flexible materials handling systems. These plant
layouts and materials handling systems must be regarded as a single functional or collective unit.

A Flexible Material Routing Primitives (FMRP), provides a mechanism that can allow for
the process integration of distributed manufacturing infrastructure subsets in MCM production
plant. For the purpose of generic and structured encapsulation, an implementation architecture
has been presented that encapsulates the fundamental capabilities required in order to execute
a FMRP, in order to maintain production rates under deterministic changes in standard pro­
duction requirements.

18

Chapter 3

Hardware Implementation Layer

"ALways design a thing by considering it in its next Larger context
a chair in a room, a room in a house, a house in an environment,
an environment in a city pLan." - Eliel Sa.arinen

Chapter 2 aimed at characterising the materials handling environment in MCM production
operations, in order to expose and define the notion of a Flexible Material Routing Primitive
(FMRP). This progressed into the development of an implementation architecture, termed the
Autonomous Material Transportation Specification (AMTS), to facilitate the execution of such.

This chapter presents the prototype mobile robot platform developed in alignment with the
Hardware Implementation Layer of the AMTS, Figure 3.1.

ra.k Allocation Layer

Material. Handling
Agent Architecture

Hardware ~l...ntatioo Layer

Material. Handliog Ben.ory
Rardwara Xnfr••truetare

llabUity
Hardware

Figure 3.1: Hardware Implementation Layer - The CAD model shown in the figure repre­
sents the integrated physical implementation of the underlying hardware sub-blocks in the Hard­
ware Implementation Layer

Description of the hardware prototypes presented here follows a particular format. Firstly,
the relevant hardware sub-block of interest is highlighted, including its functional and output
specification. Any relevant theory and pivotal design parameters pertaining to the hardware
sub-block is presented. Lastly, the hardware prototype developed to facilitate the output spec­
ification is presented.

19

3. HARDWARE IMPLEMENTATION LAYER

3.1 The Concept of Mechatronics

In recent years, an increasingly inter-disciplinary approach has been taken in solving complex
engineering problems. Modern cars, manufacturing infrastructure, such as machine tools, and
numerous other systems ranging from hard disk drives to washing machines are examples of the
integration between electronic control and communication systems, and mechanical engineering,
[46]. The term "Mechatronics" is used to describe this process of integration. Many informal
definitions for mechatronics exist in research literature and books on the subject, all roughly
describing the same concepts. One such definition follows [46].

Mechatronics. The synergistic and concurrent integration of the infrastructure associated
with the disciplines of Mechanical Engineering, Electrical and Electronic Engineering, Computer
and Software Engineering, and Systems and Control Engineering to provide lean, responsive
solutions to complex engineering problems

Emphasis is placed on the synergy associated with concurrent integration of existing in­
frastructures. This aspect separates Mechatronics from solution methods based on achieving
performance specifications through the composition of infrastructure, designed from first prin­
ciples, in disjoint design and solution spaces.

Figure 3.2: Venn Diagram Description of Mechatronics - This graphical representation of
the concept of Mechatronics identifies the Mechantronic design space as a unified intersection of
four engineering disciplines, f38]

The hardware prototypes developed for the HIL of the AMTS use multiple embedded systems.
Appendix A has been devoted to the introduction of the technology used in implementing these
embedded systems. This introduction is required, as reference is made to the technology dur­
ing the introduction of the Device Abstraction Layer of the AMTS in chapter 4. A review of
Appendix A should clarify the technical terminology used in following sections.

3.2 Mobility Hardware Sub-Block

3.2.1 Functional Specification

The Mobility Hardware sub-block specifies the physical device interface to the factory floor that
provides low-level motion primitives to facilitate a material transportation task.

; 20

3.2 Mobility Hardware Sub-Block

Ta.k A11ocat1on Layer

Material. Bandlin9
Avent Architecture

Figure 3.3: Mobility Hardware Sub-Block - As can be seen from the photograph in the
figure, the smooth floor of the research laboratory makes high traction wheels vital in proving
accurate motion control of the mobile platform

3.2.1.1 Output Specification

The output specification is based on the assumption that the factory floor, on which the mobile
device operates, is flat and smooth, thus allowing motions on a plane to facilitate the trans­
portation of material payloads between distributed manufacturing infrastructure subsets. This
is a reasonable assumption as safety specifications limit factory floors to smooth flat surfaces.

• Output Specification:
Planar motion primitives in the configuration space]R2 x SOl.

In order to provide planar motion primitives in]R2 x SOl, a two wheeled differential drive
platform was designed and implemented. The operating specifics of differential drive platforms
is covered in section 3.2.2.

3.2.2 Differential Drive Platforms

This section provides an overview of the operating characteristics and implementation aspects
associated with differential drive platforms, in order to provide iIlsight into developing a physical
implementation to facilitate the output specification of the Mobility Hardware sub-block.

3.2.2.1 Mechanical Configuration and Theory of Operation

The most common mechanical configuration for implementing differential drive platforms con­
sists of two independently driven active drive wheels attached to a main structural support
framework, stabilised by passive caster wheels. Most mobile robots used in academic research
utilise this standard mechanical configuration.
Differential drives can produce planar motions consisting of combinatorial translations and ro­
tations, Figure 3.4. Translations are achieved by establishing identical angular velocity in both
drive wheels. Equal, but opposite, angular velocities in the drive wheels produce pure rotations.
Various combinations of translations and rotations can be achieved by varying the difference in
angular velocity between the active drive wheels, hence the term differential drive.

21

3. HARDWARE IMPLEMENTATION LAYER

III • -Ill
L •

Pure Rot.ation

III .. III
L •

Pure
Tranalation

Right Active 1
Drive Wh•• l

pa••ive
StabUi.era

lAft Acti..e
Drive Wh••l

Structural
Support

Figure 3.4: Mechanical Configuration and Theory of Operation for a Differential
Drive Platform - In some physical implementations of differential drives, only one passive sta­
bilising wheel is used to stabilise the mobile platform. This only provides robust stability in cases
where the centre of mass is sufficiently centred over the single caster wheel

3.2.2.2 Important Implementation Aspects

There are multiple aspects that affect the motion performance of a differentia) drive platform.
Active drive wheel slippage is one of the main contributors to positioning errors during odo­
metric calculations on mobile differential drive platforms. Therefore, active drive wheels with
good traction characteristics must be selected in their implementation. Also, selecting active
drive wheels with large diameters relative to the width of the differential drive allows for lower
angular velocities and accelerations on the drive wheels to produce feasible linear velocities,
while avoiding inertial based wheel slippage during tight turning motions.

Utilising regular caster wheels for stability induces disturbance torques during tight turning
motions, due to the eccentric offset between the caster wheel and its axial attachment, thus
contributing to positioning errors. Ball transfer units, however, can be used instead, without
the negative impact of disturbance torques. This allows for the development of a simple kine­
matic model of the differential drive platform.

Differential drives are sensitive to angular velocity differences in the drive wheels. Closed
loop motion control systems around each active drive wheel are required to allow for pure
translation and rotation motions and overall motion performance.

3.2.2.3 Odometry

The pose of a differential drive represents its position, in terms of location and orientation, with
respect to a global co-ordinate system. This is more commonly known as its configuration.

The configuration of a differential drive, q, in a generalised combination of Cartesian and
polar co-ordinates, is described by Eq. 3.1 and shown in Figure 3.5.

(3.1)

Odometry is a means of implementing dead-reckoning, which is a method of determining a
mobile platforms current configuration based on a previous known configuration and knowledge
of higher-order differential information about the mobile platforms configuration, such as its
configuration velocity.
Translation, Eq. 3.2, and anti-clockwise rotation, Eq. 3.3, of a differential drive platform can be
specified explicitly in terms of its acbve drive wheel radii, r, the axle length between its active
drive wheels!, L, and the left and right drive wheel angular velocities, WL and WR respectively.

v (3.2)

1Although only one drive axle is shown in the figure, differential drives have independent drive axles

22

3.2 Mobility Hardware Sub-Block

Left Drive Wh••l

Ye

y

Right Drive Wheel

Figure 3.5: Differential Drive - Left and right drive wheels can be controlled independently
in order to provide translational and rotational motions

W (3.3)

From the above parameterised translation and rotation, theoretical odometry can be performed
on a differential drive plat.form by integrating its configuration velocity, Eq. 3.4. over time,
Eq.3.5.

[

cos(O)
sin(O)

o

j t+l1t

Qi + t qdt

(3.4)

(3.5)

This form of odometry describes the ideal case and can only be considered trustworthy if WL

and WR, as well as all other system parameters, such as Land r, are known with absolute
certainty. This is however, not achieved in practice due to imperfect measurements and uncer­
tainty in system parameters, as well as uncertainty in the environment in which the differential
drive platform is operating. Robotics research is plagued by uncertainty, which has forced re­
searchers to set moderate performance specifications in view of achieving more robust solutions,
insensitive to bounded uncertainty.

Practical differential drive platform implementations utilise embedded control and data
acquisition systems to perform odometry. The majority of physical implementations use op­
tical incremental encoders, more specifically quadrature encoders, fitted to the active drive
wheels shafts, to measure drive wheel angular velocity. The output signals from the quadrature
encoders provide input into embedded micro-controllers that continuously run an embedded
odometry algorithm, which essentially represents a discrete form of Eq. 3.5. These quadrature
encoders also provide feedback signals for closed loop control of the drive wheels. This is cov­
ered in section 3.2.4.

In practice, the configuration error, i.e. the difference between the actual configuration and
that estimated through an embedded odometry implementation, grows over time and is known
as drift. There exists passive numerical methods that can be used when implementing odometry
algorithms in order to minimise drift and prevent degraded positional accuracy of the differen­
tial drive platform. One such numerical method is covered in section 3.2.4.3.

One of the drawbacks associated with differential drives is the nonholonomic kinematics
of the resulting mobile device. This is a result of the differential constraint imposed on the
differential drives generalised configuration velocity, Eq. 3.4, by the rolling without slipping

23

3. HARDWARE IMPLEMENTATION LAYER

condition l exhibited by the drive wheels. It is important to understand these constraints when
designing feedback motion plans for a mobile robot platform utilising a differential drive for
mobility generation. This requires the implementation of nonlinear, discontinuous or time­
varying motion control laws, see section 5.2.2.5.

3.2.3 Physical Implementation

In order to minimise the utilisation of once-off, or non-standard hardware components, an effort
was made to construct the differential drive platform by integrating as many standard and/or
Commercial Off-The-Shelf (COTS) components as possible.

3.2.3.1 Prototype Overview

a-bridge MOtor D~iv.r

Figure 3.6: Partial Differential Drive Platform Representation - The drive chain has
been omitted from the CAD figure for clarity purposes

A partial CAD representation of the differential drive platform developed to facilitate the
Mobility Hardware sub-block, is shown in Figure 3.6. A structural base plate with passive
stabilising wheels provides structural support for integrated drive units. Two powered drive
wheels housed in drive units with integrated quadrature encoder and H-bridge motor driver
provide the physical differential drive interface to the factory floor.

3.2.3.2 Structural Base Plate

In the scope of l\llechatronics, some form of initial condition or readily understood constraint is
required in order to instantiate design progression. In this light and in view of the dimensional
specification set on the mobile platform prototype, recall section 2.4.1, the structural base plate
was designed as a once-off component. Ball transfer units were selected, over regular caster
wheels, to provide static stability for the differential drive platform as they do not induce
disturbance torques during tight turning motions, recall section 3.2.2.2.

3.2.3.3 Integrated Drive Units

For reasons of availability and ease of modification, two 20 inch BMX MAC wheels were se­
lected and modified to house drive shafts in order to function as the active drive wheels. These
wheels are capable of providing ample traction for the differential drive platform and have good
mechanical strength properties, required to facilitate the high impact loads of their native ap­
plication environment2 .

The drive-shaft support assembly and power train was designed by considering the drive­
shaft as the focal component. Peripheral hardware was selected and integrated in order to
provide a mechanical support structure for housing and powering the drive-shaft. The drive­
shaft is supported by a sub-assembly that integrates the shaft with a quadrature encoder, Figure

1 Discussed under the motion control constraints in chapter 4
2BMX vertical ramp or "vert" riders utilise MAG type wheels often, with great success

24

3.2 Mobility Hardware Sub-Block

3.7.

Pillow Block
and Alu.iniUII.
&atru8ion

Flange aearinQ
Unit and Mild­
St•• l Plate

Quadrature Encoder
A...OIbly

Figure 3.7: Drive-Shaft Support Sub-assembly - Flange and pillow block bearing units
provide solid driv~shaft support as well as allow for fine axial adjustments of the drive-shaft

A pillow block bearing unit seated on standard aluminium extrusion supports the wheel
hub interface side of the drive-shaft. Support of the drive-shaft terminates at a flange bear­
ing unit on right-angled mild-steel plate. This mechanical configuration provides a compact
sub-assembly. Angular velocity feedback information, for control and odometry purposes, is
provided by an HEDS-5701-FOO panel mount quadrature encoder that is press-fitted into a
nylon housing and 1'.110 bolt assembly. The HEDS-5701-FOO is a 256 count-per-revolution (cpr)
quadrature encoder and outputs TTL square waves on 2 channels that are electrically out of
phase by 90 degrees. Quadrature decoding of the output signals allows for the angular velocity
and position of the drive shaft to be determined. The quadrature encoder assembly was inserted
into the drive-shaft after an 1'.110 drill and tap operation was performed on the opposite side to
the wheel hub interface.

The drive-shaft is powered through a chain and sprocket power transmission unit driven
by a 12 Volt 40 Watt DC geared motor, fitted to a screw-jack-adjustable motor bracket with
integrated H-bridge motor driver, Figure 3.8.

The MD03 motor driver by Devantech 143], was selected to function as the electronic motor
driver. The MD03 is a medium power fully integrated motor driver and provides both a low­
power logic interface and a high-power drive interface, Figure 3.9.
The actual H-bridge circuitry on the MD03 is driven internally by an embedded PIC16F872
(PIC16) micro-controller using PWM at 15kHz. User based control of the H-bridge circuitry
occurs implicitly through the embedded PIC16 via its exposed logic interface. Factory flashed
firmware embedded on the PIC16 provides four user based control modes, selectable via a DIP
switch mounted on the MD03's PCE.

Mode 1: Ov - 2.5v - 5v Analog, Ov full reverse, 2.5v stop and 5v full forward.

Mode 2: Ov - 5v Analog with separate direction control.

Mode 3: RC Mode. Controlled by standard radio control system. Direct connection to
RC receiver with 1ms - 2ms pulse with 1.5ms neutral.

Mode 4: lIC interface. Full control with acceleration and status reporting. Up to 8
modules can reside on the same lIC Bus. SCL speed up to 1MHz.

25

3. HARDWARE IMPLEMENTATION LAYER

Figure 3.8: Adjustable Motor Bracket With Integrated Drive Electronics - Drive elec­
tronics is in the form of an integrated H-bridge motor driver.

o Bi9h Po••r

o Notor Drive
o Voltag.
o
~
Notor Battery
Ground

Motor T.~n.l +
Motor Terainal -

+ V 8att.ry (12V)

B-Bridga Circuitry With
%atevrated Balf-Bridga

Dr1..ra, CbarV- ~. and
15 V M08rE~ ~raD.i.tor.

,,
Internal Br1do_ Control
.ith PWM and Diraction
at 15 kBa

nc Bua SDA

nc Bua SCL

LoCJ1c Control
Sip_l,
One of Four
Mod••

Figure 3.9: Logic and Drive Interfaces for MD03 Motor Driver - The MD03 is considered
a medium power motor driver, succesfully handling continuous currents of 20 Ampares without
damaging the board

26

3.2 Mobility Hardware Sub-Block

Mode 2 operates by driving the SDA channel with an analog voltage between Ov and 5v to
produce zero to full output drive voltage with separate direction control logic on the SCL
channel. A TTL logic level 0 on the SCL channel represents "reverse" direction and logic level
1 represents "forward" direction. Quotation marks indicate that motor direction convention is
application specific. The MD03 includes an internal Resistor-Capacitor, (RC) filter on the SDA
channel, allowing PWM signals above 20 kHz to provide the same affect as an analog signal,
thus allowing the MD03 to interface directly with digital control signals.

3.2.4 Embedded Control Framework and Odometric Implementation

A control framework was designed for the differential drive platform such that higher-level
host software systems would have implicit access to two embedded PID velocity control loops,
representing the active drive wheels, through a serial communication link into a BrainStem@
network. This provided higher-level host software systems with a policy versus mechanism
structure when utilising the differential drive platform for motion applications.

3.2.4.1 Control Loop Structure

Each drive unit was provided a dedicated BrainStem@ Moto 1.0 module in order to implement
a velocity PID loop around each active drive wheel. Although a single Moto 1.0 module is
capable of providing the necessary I/O facilities to encapsulate both drive units in a control
loop, two Moto 1.0 modules were utilised with one motion control channel disabled, on each
module, to effectively double the bandwidth of the embedded controllers, Figure 3.10.

·················1

1-
--5V •__ AO'F"'-'-" I
--AO

Cbann.l
8

/RS-232 to
~ nL Level

Shift.r
(MAX-232) IC

Serial C~n1c.t1on

to Boat Cc.putinq
Pl.tfo~

r····
• I-I

~ 1:1
• I~I
• I-II I_I
: 1·1

~ _ _. _..l

" ..,
IIC Connection
'fo Second Noto
1 . 0 Nodule and
Control Loop

Figure 3.10: Closed Loop Control Framework Around Each Drive Wheel - The level
shifter converts RS-232 signal levels into CMOS/TTL levels required by the BrainStem@ Moto
1.0 module

Two Moto 1.0 modules were networked on the same nc bus by assigning master characteristics
to one module, the router, and slave characteristics to the other. This is achieved through a
built-in command set. Host computing platforms were provided serial communication access
to the embedded BrainStem@ network through the serial UART on the router module, Figure
3.11.

27

3. HARDWARE IMPLEMENTATION LAYER

Boat Co-putinq Pl.tfo~

Figure 3.11: Control Loop Structure for the Differential Drive Platform - The serial
link into the BrainStem@ network runs at 9600 baud. This baudrate was selected as it provided
the most stable link

3.2.4.2 Embedded Control Access Policy

Using the TEA language, embedded control code was written, compiled and loaded onto each
Moto 1.0 module. The embedded code was designed to bootstrap at power-up and configure
each module to perform closed loop velocity PID control on one channel while shutting down
the other channel altogether. The control code runs continuously and provides host software
with integer write access to selected memory locations on each modules scratchpad1 . The em­
bedded TEA program then utilises the host written scratchpad value as the reference value into
the underlying velocity PID control loop.

The BrainStem@ Moto 1.0 module can perform "velocity damping" when configured for
velocity PID control implementation. In this setup, changes in velocity reference values into the
PID control loop occur gradually over time. Velocity damping acts as an acceleration limiter
and was used in the implementation of the control framework for the differential drive. The
TEA code imp'lementing the embedded control code is listed ,in Appendix B.2.

Once each control loop is active, higher-level host software systems write the selected scratch­
pad locations through the serial communication link into the BrainStem@ network, to set the
angular velocity of each drive wheel.

3.2.4.3 Odometric Implementation

The encoder feedback velocity metric used by the Moto 1.0 module is "encoder counts per PID
period", which is the number of encoder pulses accumulated in the time between PID calcu­
lations. The PID period for each module is set to 20mS as part of the start-up routine of the
embedded TEA programs.

As the counts-per-revolution of the HEDS-5701-FOO is known to be 256 cpr, along with
knowledge of the quadrature decoding algorithm implemented on the Moto 1.0 module, the
encoder velocity metric can be used to determine the angular velocity of each drive wheel and

1 A scratchpad is the common terminology given to a globally shared area of memory in an embedded
micro-controller that allows embedded processes to share dat.a

28

3.2 Mobility Hardware Sub-Block

thus through Eqns. 3.2 and 3.3 provides an estimate of the linear and angular velocity of the dif­
ferential drive platform. Although this knowledge can provide input into odometry algorithms,
such as discrete explicit Euler algorithmic implementations of Eq. 3.5, odometry was performed
rather, through acquisition of accumulated encoder counts on the active control channel on
each Moto 1.0 module. This form of odometry, based on accumulated encoder counts per drive
wheel, is used often in mobile robotics and does not explicitly require the integration of ve­
locities which creates a simpler algorithm implementation. One of the drawbacks associated
with BrainStem@ modules, however, is that they do not implement floating point arithmetic
as part of their embedded program execution. Due to this drawback, odometric calculations
had to be performed on the host computing platform after reading the memory mapped I/O
port associated with storing the value of the accumulator on each Moto 1.0 module through
the serial UART.

The metric used in implementing the odometry algorithm for the differential drive platform
is "metres per encoder pulse" (mpep), and is formulated as follows.

21r r Drive Wheel Circumference
mpep= -- =

1024 Encoder Pulses Per Revolution

Where r is the radius of the active drive wheels, 0.254 m or 10 inches, and 1024 are the number
of electronic pulses per revolution for the HEDS-5701-FOO quadrature encoder under the 4x
quadrature decoding algorithms implemented as part of the embedded firmware of the Moto
1.0 modules. The metric represents the minimum distance detectable by the embedded elec­
tronic control infrastructure. For this particular differential drive, this happens to be 2 ~g2~54

or 0.0016 m (1.6 mm). With this metric, odometry can be performed by summing incremental
changes in the linear displacement of each drive wheel and relating these linear distances to
changes in the linear displacement and angular orientation of the differential drive platform.

Referring back to section 3.2.2.3, passive measures of minimising drift can be implemented
through numerical methods in odometry algorithms. A particular form of odometry algorithm,
based on the mpep metric described above, which is equivalent to performing 2nd order Runge­
Kutta integration of Eq. 3.5 [15] was implemented, Algorithm 1.
The odometry implementation used for the differential drive platform developed here imple­
ments this algorithm in an infinite loop in higher-level software systems on a host computing
platform, this is covered more during the discussion of the higher-level software systems in
chapter 4.

3.2.4.4 Preliminary Performance Testing

During preliminary testing, a laptop was utilised on-board the differential drive platform to
act as its host computing system. A laptop running the Fedora Core 7 Linux distribution was
selected. Access libraries, in the form of C source code, are available for communicating with
the BrainStem@ modules from Linux through a serial link. Utilising these access libraries, a
simple C application was written that writes PID reference values into scratchpad locations on
each Moto 1.0 in the network through a serial link, assigned through the structure of the em­
bedded TEA programs, and reads the memory mapped I/O associated with velocity feedback
inputs.

Short runs were performed by providing various velocity step inputs into the differential
drives embedded control loops and recording the response in file structures created at program
run-time, Figure 3.12.
As can be seen from the response, rise times are within specifications set in section 2.4

29

3. HARDWARE IMPLEMENTATION LAYER

Algorithm 1: Runge-Kutta 2nd order Equivalent Odometry Algorithm

Input: The left and right wheel encoder accumulator values, N Land N R

Output: The estimated configuration for the differential drive platform, Qr = [xr Yr er]T
begin

/ / Initialise Odometric Configuration if­
if if- not initialised then

l
Ni <- N L

N R <- N R

x; = Y; = e; = 0
set odometry initialised flag
return

oNL <- (NL - Ni)
ONR <- (NR - NR)
/ / Use mpep metric to determine linear displacement of each active drive wheel in

metres

oLw <- oNL x mpep
oRw <- ONR x mpep

/ / Determine incremental angular and linear displacement of the differential drive
platform

oer <- (oRw -IiLw)/AL / / AL = axle length between drive wheels
od <- (OLw + IiRw)/2

/ / Implement 2nd order equivalent Runge-Kutta numerical integration

iJ <- e; + (lier /2)
X r <- x; + lid cos iJ
Yr <- Y; + lid sin iJ
er <-- e; + lier
/ / Normalise er to an element E [-11",11"]
er <-- NORMALISE(er)

/ / Update configuration

if- <- if
return if

end

30

3.2 Mobility Hardware Sub-Block

Velocity Step R••pon••

2.62422161.2 L4

Tt... (a)

0.80.4 06

07
O.~

0.6
055 (

~ ~ I
I D..&!> I
- 04 I

:~ Iti 0.3i O~+-__---."'-'-"':-==--_''':::::'', ~__y/f

0.15 /
0.1 /

DOS ..J
O+-........::,....--r---,.-----r-~~-..__-...,..._-~-~-_...,..-~-___,~___,

o 0.2

Figure 3.12: Sample Step Response - The error seen at 0.6 m/s is not to be confused with
steady state error in the underlying PID loop. This is due to the quantisation errors of digital
control hardware, an extremely important characteristic that affects the performa.nce of posture
stabilising controllers

3.2.5 Summary

The performance and implementation aspects of differential drive platforms has been covered
to provide insight into the development of a physical implementation to facilitate the motion
specifications of the Mobility Hardware sub-block of the Hardware Implementation Layer. The
physical differential drive platform consists of two functional units that, under composition,
provide both structural support and drive infrastructure to allow for robust motion and odo­
metric performance of the differential drive platform. The drive infrastructure is in the form
of integrated drive units. These drive units have been encapsulated in a closed loop control
framework, enabled through a set of a PIC18C252 based embedded motor controllers, namely
BrainStem@ Moto 1.0 modules. The odometry algorithm uses a particular form of config­
uration update that makes it numerically equivalent to performing Runge-Kutta 2nd order
integration of Eq. 3.5. Unfortunately, due to the numerical execution environment provided by
the embedded run-time kernel on the BrainStem@ modules, this odometry algorithm had to
be implemented on a host computer. This is covered in chapter 4.

The physical implementation of the differential drive platform is shown in Figure 3.13

Figure 3.13: Differential Drive Platform Implementation - The BrianStem@ modules
have been placed on top of their enclosure purely for demonstration purposes

31

3. HARDWARE IMPLEMENTATION LAYER

3.3 Sensory Infrastructure Sub-Block

Ta.k Allocation Layer

Material. Handling
Agent Architecture

~lication

Specifi.ca

Agent
Toolbox

Figure 3.14: Sensory Infrastructure Sub-Block - As can be seen in the figure, ribbon cable
has been used for all serial communications as this type of cable provides a sound physical medium
for data transmission allowing higher baudrates to be used for communication pmposes

3.3.1 Functional Specification
The Sensory Infrastructure sub-block specifies the active sensory infrastructures used by the
mobile materials handling and routing robot platform to gather structural information on its
local surrounding environment for perception purposes.

3.3.1.1 Output Specification

The output specification is such as to provide an even sensory envelope, independent of the
orientation of the mobile materials handling and routing platform. This is to ensure that the
mobile platform can react in a uniform manner as obstacles come into scope from all directions
during operation.

• Output Specification:
3600 active sensory perception within a circular planar region at least three times the
effective diameter of the mobile materials handling and routing platform.

Multiple active sensing technologies exist for robotic perception applications. These technolo­
gies are characterised by varying degrees of accuracy, power requirements, and cost. Technolo­
gies include Light Detection and Ranging (LIDAR) systems, active vision, infra-red systems
and ultrasonic technologies. Of these technologies, ultrasonic sensing was selected to facilitate
the output specification of the Sensory Infrastructure sub-block. Ultrasonic sensing technology
has been implemented on multiple integrated sensors that are relatively cheap, have low power
requirements and do not require powerful computational infrastructure to acquire range data.
An overview of the characteristics of ultrasonic sensors is presented in section 3.3.2

3.3.2 Ultrasonic Sensors
Ultrasonic sensors have multiple operating characteristics that must be well understood when
developing sensing systems.

32

3.3 Sensory Infrastructure Sub-Block

3.3.2.1 Theory of Operation

Ultrasonic sensors detect distances, for range acquisition purposes, by emitting an ultrasonic
sound wave into the surrounding environment and measuring the time taken for the echoed
sound wave to be returned to the sensor, due to reflection off structural objects in the envi­
ronment. Sound wave generation is provided by an integrated electronic device including a
transceiver that both emits the sound wave, through electronic excitation of a disk membrane,
and detects the signal when the sound wave echo excites the disk membrane on its return.

3.3.2.2 Capability Parameters

Due to physical bandwidth limitations of the membrane on the transceiver, there is a finite
distance in front of the membrane face that can not effectively induce range readings through
object detection, as the membrane is still vibrating under transmission excitation when the
echo is returned. This is known as the blind zone and is a function of the physical bandwidth
of the membrane, Figure 3.15.

.,...---..,••'••••••••••••••••••••• 1Iax~u..m Senainq Diet.nce

Inteqrated Oltr••on1c Sen.or

a

'".:
'"".....•
i

.......r Mina_ Senain9 Diat.nee

......... ' ~.~~~~..~~~~ .
Ultr••onic ~r.n.c.iv.r

Figure 3.15: Ultrasonic Range Parameters - In modern times, it is uncommon for researchers
to design and manufacture their own ultrasonic sensors, as cheap, highly integrated, and effective
ultrasonic sensors are available on the market, designed specifically for robotic applications

The capability of an ultrasonic sensor, with regard to acquiring range readings of the objects
in its local environment, is determined by multiple parameters. The maximum sensing distance
is the largest reliable range reading detectable by the ultrasonic sensor.

The beam angle effectively determines the conical volume of region in front. of the sensor
in which an obstacle must reside in order to successfully return an echoed sound wave to the
transceiver. This is known as the detection zone. Even if obstacles reside in the detection
zone, it is not always guaranteed that the return echo will reach the transceiver. This is due to
environmental characteristics discussed in section 3.3.2.4.

3.3.2.3 Physical Emission Characteristics

The ultrasonic sound wave emitted by the sensors transceiver, its beam, is not evenly distributed
across the beam angle, Figure 3.16
This physical aspect of the signal gives ultrasonic sensors a directional bias in terms of range
accuracy. Wide objects detected near the center of the beam provide more accurate range
readings over objects detected near the beam periphery.

33

3. HARDWARE IMPLEMENTATION LAYER

Typical Be... Pattern at SOUK I

Figure 3.16: Ultrasonic Wave Propagation Geometry - The majority of modern ultrasonic
sensors operate at 40KHz as this frequency provides good performance and propagation geometry

3.3.2.4 Environmental Performance Impacts

Ultrasonic sensors are extremely sensitive to the geometric properties of the objects in the de­
tection region of the beam. Occasionally, an echo is refracted and not reflected off an object in
the detection region. This produces random range readings that can affect the performance of
mobile platforms utilising ultrasonic sensors for perception purposes.

In sensory systems uWising multiple fixed-position ultrasonic sensors, beam signals emitted
by one sensor can occasionally be detected by another leading to the problem of sensor cross­
talk, Figure 3.17.

Figure 3.17: Sensor Cross-Talk - Mobile robot platforms experiencing cross-talk seldom travel
in a smooth motion as data fusion algorithms start producing random outputs that degrade
performance in directed motions

The negative effects of cross-talk can be minimised but never diminished absolutely. Re­
searchers have developed methods of reducing cross-talk by providing unique beam signals to

34

3.3 Sensory Infrastructure Sub-Block

each ultrasonic sensor using pseudo-random binary signatures [41]. Other methods are based on
firing sequences in which a sensor pair that are less likely to establish an instance of cross-talk,
due to their relative position and orientation, are fired consecutively.

3.3.3 Hardware Implementation

12 SRF02 ultrasonic range finders were selected, based on insight provided by the capability
parameters described under section 3.3.2.2 and integrated into an embedded sensor platform.
An overview of the SRF02 ultrasonic range finder follows in section 3.3.3.1

3.3.3.1 The SRF02 Ultrasonic Range Finder

Statua LJ:D

PlC Micro-controller
- Handle. Required
Timing for Underlying
Sen.ing Circuitry and
Proyide. '1"wo
~unicat.ion

Int.r~ac.. ror the
a••r

t.1ode

< "'P"

(''e')(1e.......)

n!ffiJli~
Figure 3.18: SRF02 Ultrsonic Range Finder and Communication Pin-out - The status
LED is used to indicate an emission beam burst, as well as indicate the current lIe address at
power up

The SRF02 ultrasonic range finder is manufact.ured by Devantech [43] and is a fully inte­
grated sensor with embedded PlC micro-controller, which handles timing of ultrasonic beam
transmission and reception, Figure 3.18. The embedded PlC also acts as an interface between
the user and the actual ultrasonic sensing circuitry, providing two communication interfaces for
the user. For the development of the embedded sensor platform, the IIC interface was selected
for communication.

In the IIC communication mode, the embedded PlC abstracts the sensing circuitry behind
6 registers allowing the user to initiate ranging primitives through standard IIC communication
protocols with the SRF02. Register 0 is the command register. Writes to this register initiate a
ranging session. Reads on the command register returns the SRF02 firmware revision. Register
2 and 3 hold the 16 bit unsigned result from the last ranging session. The meaning of the value
stored in these registers depends on the value written to the command register, that initiated
the associated ranging session. Depending on the ranging command written to the command
register, the result stored in registers 2 and 3 can represent the last range in inches, centimetres
or the beams flight time in micro seconds (uS).

After a ranging command is written to the command register, a wait period of 70 milliseconds
must occur in order to allow the range to complete and the beam energy to dissipate. An lIe
read sequence on registers 2 and 3 then returns the range result to the embedded system
requesting range data, e.g. an embedded control module or micro-controller.

35

3. HARDWARE IMPLEMENTATION LAYER

o

180

Figure 3.19: Beam Propagation Geometry for the SRF02 Ultrasonic Range Finder­
As can be seen in the figure, the SRF02 has a relatively even beam propagation geometry. This
makes the SRF02 a well suited ultrasonic sensor for mobile robotics

3.3.3.2 Physical Emission Characteristics of the SRF02

The SRF02 has been designed to function effectively over its operating range and has the beam
propagation geometry shown in Figure 3.19 [37].
The SRF02's transceiver membrane is capable o(producing beam angles approaching 60 degrees.
In order to facilitate the specifications set by the Sensory Infrastructure sub-block. 6 SRF02
sensors would need to be placed 60 degrees apart. This configuration however would be prone
to range accuracy errors during detections near the periphery of the beam, induced through the
uneven propagation geometry of ultrasonic sensors, recall section 3.3.2.3. To passively overcome
these accuracy bias characteristics, 12 SRF02 sensors were placed 30 degrees apart in order to
maximise the accuracy of the range data. This has a negative affect on cross-talk however,
although by implementing structured firing sequences, these negative affects can be minimised.

3.3.3.3 Sensor Platform Implementation

In order to position the SRF02 sensors in a 360 degree array, an aluminium bracket was designed
to hold each sensor. Each bracket housed a connector hub to allow easy attachment of the SRF02
onto the lIC bus. An aluminium disk plate provided structural support for the 12 aluminium
brackets which were positioned 30 degrees apart from one another around the periphery of the
disk. Standard aluminium extrusions were stacked together to create a beam upon which the
disk was fastened, Figure 3.20.

3.3.3.4 Embedded Control Framework

An embedded control framework was implemented to provide host computing systems with
serial access so sensory range data from the sensor platform. For this purpose, a BrainStem@
GP 1.0 module was used to integrate each SRF02 sensor onto an lIC bus and handle the firing
of each sensor, utilising an embedded TEA program, Appendix A.

SRF02 ultrasonic range finders are shipped with an lIC address of OxEO. In order to inter­
face multiple sensors on the same bus, each consecutive sensor needed to be assigned a different
nc address. Documentation on how to do this is provided with the SRF02 and consists of writ­
ing three consecutive commands to the command register. During address changes, only one
SRF02 must reside on the nc bus and three commands written to the command register, the
current nc address followed by the command OxA5 and lastly the new requested lIC address.

36

3.3 Sensory Infrastructure Sub-Block

SRF02 Oltraaonic Ranqe
Finder

~

Figure 3.20: Ultrasonic Sensor and Sensor Platform - The Inter Integrated Circuit (IIC)
bus has become the standard communication interface for the majority of commercial off the shelf
sensors for robotic applications

This was done on 11 of the 12 SRF02 sensors purchased and provided IIC addresses ranging
from OxEO to OxF6.

The embedded TEA program implemented on the GP 1.0 module executed IIC read and
write routines to fire each SRF02 ultrasonic sensor. Sensors were fired in a sequence in which
consecutive firing pairs were opposite one another on the sensor platform. This aided in min­
imising the probability of cross-talk, Figure 3.21.

lIe Coon.etor To GP
1 . 0 Module GP l. 0 Module Local lIe Hub

Con••cut1v.
Firing- Sequence
Pair

Figure 3.21: Ultrasonic Sensor Platform and Embedded Control Interface - Having
IIC connector hubs allows for easy removal of the sensors from the platform, if required

The TEA program was configured to bootstrap at power up and continuously fire the
SRF02's in the centimeter ranging mode. The return values were stored in an array in the
scratchpad to allow host software to read the scratchpad array through a serial communication
link to retrieve the range readings, see Appendix B.l.

37

3. HARDWARE IMPLEMENTATION LAYER

In order to interface the sensor platform with the underlying differential drive platform,
developed in section 3.2.3, Standard aluminium extrusions were utilised. Large rectangular
extrusions were selected as they provided mounting points for peripheral hardware such as
DC-DC converters, Figure 3.22.

Standard Aluminium
Right Angled
E tru.ion

Standard ~ua1niua

Extru.ion8

Figure 3.22: Interface Support For Sensor Platform Integration - Industry standard volt­
age regulators were used to provide the platform's electronic infrastructure with constant power.
This prevents any unwanted power glitches from resetting parameters or destroying hardware

3.3.4 Summary

Ultrasonic sensors were selected as the active sensory infrastructure to facilitate the specifica­
tions set by the Sensory Infrastructure sub-block of the Hardware Implementation Layer.

An embedded system implementation makes the ultrasonic range data available to host
computing and software systems through a serial communication link. The sensors are fired in
consecutive pairs positioned opposite one another on the sensor platform, in order to minimise
cross-talk. Range data in stored locally on the embedded control module in a scratchpad array
which host computing and software systems have read access through a serial communication
link.

3.4 Materials Handling Hardware Sub-Block

3.4.1 Functional Specification

The Materials Handling Hardware sub-block is a specification on the capabilities of the hardware
device providing the physical interface to a material payload for handling purposes.

3.4.1.1 Output Specification

The output specification has been based on the payload manipulation required in order to
perform a material payload transfer operation, recall section 2.3.2.3.

• Output Specification:
Hardware device must provide the material payload at least one extra degree of motion
freedom above that provided by the underlying mobility device.

38

3.4 Materials Handling Hardware Sub-Block

Taak Allocation Layer

Application
Specifica

Materials Handling
Agent Architecture

Figure 3.23: Materials Handling Hardware Sub-Block - Although not implemented yet,
sensing system on the conveyor, such as infra-red distance detectors can be used to detect payload
instances

The hardware devices used for materials handling purposes are extremely application spe­
cific, and so design of a materials handling device to facHitate the above specification was based
on creating infrastructure to interface with the existing conveyor systems of the Computer Inte­
grated Manufacturing (CIM) cell in the research laboratory, recall the specifications of section
2.4.

3.4.2 Hardware Implementation

The materials handling device designed to facilitate the output specification consists of two
functional components, Figure 3.24.

RotarY Support Houaing (Bot 'ainted)
~t.ri.l Conveyor A•••mbly

Thruat Bearing Unit

Figure 3.24: Materials Handling Device Implementation - The thrust bearing unit facil­
itates smooth motions under high load conditions, although for research purposes this does not
take effect

A material conveyor assembly provides material translation motion through a belt drive around
two nylon rollers. The cambered profile machined into the rollers keeps the belts tracking in
a straight line. A rotary support housing and thrust bearing unit integrates the material

39

3. HARDWARE IMPLEMENTATION LAYER

conveyor assembly with the underlying sensor platform. This provides the material conveyor
with an added degree of freedom thus satisfying the output specification.

3.4.3 Summary

Due to the application specifics of materials handling hardware devices, the Materials Han­
dling hardware sub-block only places output specification on the additional degrees of freedom
provided by the materials handling hardware for material payload manipulation and transfer.
These extra degrees of freedom are required in order to increase the overall accuracy and,
more importantly, the repeatability of the materials handling hardware and associated transfer
operations.

3.5 Chapter Summary
This chapter presented the physical prototype implementations developed to facilitate the out­
put specifications of the underlying hardware sub-blocks of the Hardware Implementation Layer.
The physical prototypes are encapsulated in embedded system frameworks, making the devices
available through a serial communication link for host computing platforms to gain mediated
access to their functionality.

Figure 3.25: HIL Physical Implementation - One can see the mobile robot platform in this
sense as an integrated collection of devices rather that a monolithic platform

The AMTS orientates the physical implementation of the HIL away from monolithic mobile
robots, and onto a collection of functionally correlated, yet operationally disjoint devices. This
aspect of the architecture can be interpreted as an integrated axiomatic framework where there
is a one to one mapping between design parameters and functional requirements, Figure 3.25.

The physical robot implementation, as a collective unit of three integrated prototype devices,
has been named in order to follow in the norm of robotic system development as well as allow for
easy reference to the mobile robot platform. The mobile device has been named "RollerMHP"
after its wheeled mobility and application scope.

40

Chapter 4

Device Abstraction Layer

"Design and programming are human activities; forget that and all is lost. JJ

- Bj arne Stroustrup

The previous chapter covered the development of RollerMHP, in alignment with the under­
lying specifications encapsulated in the Hardware Implementation Layer of the AMTS. This
chapter presents the Open Source software system used in implementing device abstractions
above the Hardware Implementation Layer. This was required in order to allow for control
software scalability by implementing generic control applications that establish homogeneous
message transfer constructs between abstract robotic device classes. Robotic device abstractions
are provided by software drivers which drive the robotic hardware and perform the required
message translation between standardised "interfaces", Figure 4.1.

Material. Handlin9
Agent Architecture

Application
Specific.

A\Jent
Toolboa

.---.- - ---- ---_ .. ----- ------ --_....._-------- -._-- ---- ---:

,
,
,
!
,.,
,,,
,

Figure 4.1: Device Abstraction Layer - This layer of the AMTS aligns itself with the concepts
of Operating System theory, where the Hardware Abstraction Layer (HAL) works in conjunction
with underlying device drivers to provide a homogeneous execution environment for application
programs

Description of the software system used in implementing the Device Abstraction Layer has been
deferred to section 4.2 in order to present the computing infrastructure selected to operate as
a "localhost" computer on-board RollerMHP.

41

4. DEVICE ABSTRACTION LAYER

4.1 RollerMHP's Onboard Host Computer

RollerMHP required an on-board computer to integrate and operate its underlying embedded
systems, as well as hold software and communication systems to provide higher-level manage­
ment frameworks with a "task sink interface" J •

4.1.1 Selected Computer System

An x86 based computing platform was selected to function as RollerMHP's on-board computer.
An x86 architecture was selected over more embedded architectures such as ARM and PowerPC
as it allowed for a smooth installation of standard Operating Systems.

4.1.1.1 Mainboard and CPU

RollerMHP's on-board host computer consists of a VIA C7VCM Mini-ITX form factor main­
board with integrated VIA C7 CPU running at 1.5 GHz [301. An 80 Gigabyte hard drive
functions as the on-board storage device and is attached to the mainboard through its IDE in­
terface. For memory support, the mainboard has one SO-DIMM socket to hold a DDR400/333
SDRAM memory module. The board can support up to 1GB of RAM although only 256MB
was used in this application.

VIA C7VCN Mioi-ITX Kainboard

OSB Wifi Wetwork Adapter Mioi-ITX Cha••i.

Figure 4.2: Computational Infrastructure On-board RollerMHP - The Mini-ITX form
factor has become the preferred form-factor for high power computing in mobile robotic applica­
tions, due to its small size and standard bus interfaces such as PCI

A built-in ATX DC-DC converter means that the motherboard only needs a 12 Volt power
supply input. All other voltages, including those needed by the hard drive are created and pro­
vided on-board the C7VCM mainboard. The mainboard and all peripheral hardware is housed
in a chassis designed to facilitate the Mini-ITX form factor, Figure 4.2.

4.1.1.2 Operating System Implementation

Open Source Operating System platforms, such as those based on the Linux kernel, have be­
come widely used in the academic research community due to their stability and the growing

IThe author defines a "task sink interface" as a software and communication system that can accept and
interpret FMRP task assignments

42

4.1 RollerMHP's Onboard Host Computer

number of Open Source software developers.

RollerMHP's onboard computer runs the Fedora Core 7 Linux distribution. Fedora Core,
or more recently, just "Fedora", is considered as one of the more technical Linux distributions
allowing the user to configure and tune the Operating System to suit their specific applica­
tion, whether it be for desktop use or an embedded Real-Time system that utilises Real-Time
extensions of the base Linux kernel.

4.1.1.3 Global Communication Infrastructure

Although the Task Allocation Layer of the AMTS has not been implemented yet, a communi­
cation sub-block was required in order to assign motion tasks to RollerMHP, Figure 4.3.

T••k Allocation Layer

Material. aandlinv
Agent Architecture

Application
Specific.

Avent
Toolbox

Figure 4.3: Communication Sub-System of the AMTS - For research purposes in a labora­
tory environment, IEEE 802.l1b/g provides a relatively high bandwidth communication channel
although in manufacturing environments, the 2.4GHz frequency range is often utilised along with
Wireless Area Networks (WAN) which could impede the use of this frequency range for future
materials handling systems

RollerMHP is accessible, in terms of global communication!, through the IEEE 802.l1b/g com­
munication specification, commonly known as "Wifi" , via a USB wireless network adapter on the
on-board computer, Figure 4.2. The network scoped communication interface is a requirement
in modern manufacturing environments where all manufacturing execution and supervision
based data transfer occurs over Real-Time Ethernet (RTE) systems.

4.1.1.4 Functional Scope

RollerMHP's on-board computer serves two main purposes.

1. To operate and integrate RollerMHP's embedded systems, which form the low-level control
framework for the differential drive and sensor systems, through serial communication
streams into BrainStem@ networks.

2. To house and operate an Open Source software system that allows the hardware specifics
of RollerMHP to be abstracted onto generic network device interfaces, in a client-server
access model. In this regard, the on-board computer acts as a "Iocalhost" computer.

The software system used in implementing this functionality is introduced in section 4.2.

IGlobal communication is considered here as communication between external systems, such as manufac­
turing management mainframe computers, and the mobile materials handling and routing robot platforms

43

4. DEVICE ABSTRACTION LAYER

4.2 The Player Robot Device Interface

A Hardware Abstraction Layer (HAL) is a software construct used in Operating Systems to
separate, or "hide", the hardware specifics of a computer system from the higher-level exe­
cution environment of software applications. HAL's perform this separation by utilising well
defined generic software constructs, such as "mouse" or "printer", each having a standard inter­
face. Higher-level software executables interact with these generic interfaces to access hardware
through common messaging semantics and communication specifications. This allows appli­
cation programs to avoid having to know the hardware details of a particular mouse, printer
or any other hardware device, as long as each device adheres to the messaging constructs as­
sociated with the appropriate standard interface. The details of making a particular printer
support the standard "printer" interface is handled by a software object called a device driver,
Figure 4.4.

Executable Application Pro9ram

r----f'--- Print ("/dev/printer/O", aome docwoent);

Print ("/dev/printer/l" , another document);

A generic ~print.r~

r.-.----A "'r----------------------i--------------,I ~/dMoI/pr:lnt ../O~ // A 'p"inte~ ~cific
,________ Data atrue:t-ure

typedef atruct docbuff.r:\
char* buffer;
I docbuffe,,_t;

// Loca~ Pr:int\) Method

rint(... , docbuffer_t* doe);

-------v--------
jprLnter- interface
apecification

A generic ~pr1nt.rw

r~--~.A '"r----------------------i--,...,....-----------,
I, ~/dav/pr:ln .t/l~ 11 A &p"uu:.r:" .pacific

Data .tructur.,------ -
tYPed.f .truct docbuff.,,\
char- buffer;
) docbuff.r_t;

// Local Print Cl Method

rint(... , docbuffer_t· doe);

-print.r·~1nt.rfac.
apacification

Figure 4.4: Hardware Abstraction Layer - A HAL forms part of the core functionality of
all modern Operating Systems and is vital in providing homogeneity in the complex integrated
environment of modern computing infrastructure

Through the implementation of HAL's, application programs can call methods under the facil­
ities of, for example,

Print("printer/O", some document)

as opposed to,

Print_In-Some-Hewlett.Packard-Specific_Way(some document)

It is up to device drivers to translate generic methods and associated data structures, such as
the hypothetical Print(... , some document) method and docbuffer_t data structure, into
device specific low-level I/O communication to actually carry out the requested operation.

The Player Robot Device Interface, "Player", is a C/C++ based software implementation
analogous to the HAL in an Operating System and forms part of the Player/Stage/Gazebo
project [44]. Player defines a set of interfaces, each being a specification on the way in which
user based software applications can interact with a particular class of robotic device. Player has
been designed and developed to run on Operating Systems based on the POSIX specification l

,

such as Linux, both PC and embedded versions, Solaris and BSD systems.

1 Portable Operating System Based On Unix

44

4.2 The Player Robot Device Interface

4.2.1 Fundamental Concepts

Player operates in terms of three fundamental concepts in establishing its HAL functionality.
In the most common form of implementation instance, these three elements, as a collective unit,
are integrated in a client server model. An overview of each fundamental concept follows.

4.2.1.1 Interface

An interface is a software specification on how to interact with a certain class of robotic sensor,
actuator, or algorithm. An interface defines the syntax a.nd sema.ntics associated with all
messages that can be exchanged with entities in the same class. For example, the position2d
interface is a specification on the message syntax and semantics associated with the class of
robotic mobility devices that are capable of producing planar two dimensional motions, such
as differential drive platforms. E3{;h interface specification has been implemented as a set of C
data structures and message codes, specific to the data management requirements and message
semantics associated with a certain class of robotic devices, Figure 4.5.

%IIt.d•• lpecUiaaUoa (poeiUoa2d)

lupportedp I_ntic. (9. CocIa.) Dat.......P.
C_v-. .. t/....lyp

•. 9 .•defiD. PLAYD..JC,IGTYI'&~TA1

Int.rf.aa Specificge SUbtype.(.....ag. IUbtype CocIa.)
//Iletri... Currant Robot PO•• (Confi~.tion)

•. 9. 'defina PLARa....POSU·I0II2D_DATAJlTAft 1

Data St=ct:uno. to lupport D.t. ae.oci.ted Witb
......V- IUbtype &aacution:

a.9. typedef .truct pl.yar-PO.ition2d_deta(
pl.y.r-po.._t po.;
play.r-po••_t .el;
uint:8_t. atat:e;
)playar-POaition2dLdata_t;

Figure 4.5: Interface Specification - only a subset of the supported message semantic subtypes
has been shown for clarity. For full insight into Player's interface specification, see [44]

Player specific message structures have been developed to f3{;ilitate message transfer between
robotic devices operating under Players interface specification. An overview of the message
concepts and Player specific data structures associated with their management is provided in
section 4.2.3.

4.2.1.2 Driver

In the context of Player, a driver is a piece of software, usually written in C++, that commu­
nicates with a robotic sensor, actuator, or algorithm in such a way as to translate its inputs
and outputs to conform with one or more interfaces. The driver, much like any other in the
context of modern computing, hides the specifics of any given entity by making it appear to be
the same as any other entity in its class, Figure 4.6.

4.2.1.3 Device

Player considers a device to consist of a driver bound to an interface, and provided a fully
qualified address I . All message based communication occurs among devices, via interfaces.
The drivers, while performing most of the work, are never accessed directly.

I The address structures are introduced during the introduction to Players client-server access model in
section 4.2.1.4

45

4. DEVICE ABSTRACTION LAYER

Hardwa.. Specific.

Driver

po.ition2d
Interface Specific
Me•••V.. and Data

Figure 4.6: Driver Translation Functionality - Drivers are not always written for single
interface support. Drivers can be written to support multiple interfaces. It is up to the driver
designer to decide on the best driver implementation based on flexibility and or code efficiency

4.2.1.4 Player's Client-Server Model for Message Transfer

It has been established that Player provides HAL functionality for robotic system development,
which allows higher-level software applications to utilise generic messaging constructs to com­
municate with and manipulate certain classes of robotic devices. The facilities providing the
message transfer is the topic of this section, Figure 4.7.

Player'. HAL functionality

Figure 4.7: System Placement of Player's Message Transfer and Mediation Mech­
anism - Under Player's architecture, multiple application programs can communicate with the
same device interface

To maximise message transfer distribution, Player has been designed to operate as a networked
device server, and is often referred to as the Player server in this regard. Runn~ng on a host
computer, the Player server mediates message transfer to and from devices. Client programs
communicate with the Player server over a TCP socket and initiate a message transfer session
through a subscription request protocol. Client programs use local proxy's on device instances
in the Player server in order to send and receive messages. This completes the HAL func­
tionality provided by Player. Drivers run inside the Player server, under device scope, often
in multiple threads, and control their associated robotic device. Devices are assigned network
addresses for reference and communication purposes which is implemented in Player as a 12
byte address field encapsulated in a C struct type definition, Table 4.l.
The Player server mediates all message transfer between client applications and address refer­
enced devices, as well as inter-device subscriptions, Figure 4.8.
Client control applications are written in terms of generic device interfaces, therefore, control
code written for one robotic device will, within reason, work on another as long as it supports

46

4.2 The Player Robot Device Interface

Players Device Address Structure

typedef struct player_devaddr {
uint32_t host; II server host IP
uint32_t robot; If Associated TCP socket
uint16_t interf; II Interface code e.g. #define
uint16_t index; II Specific device index
} player_devaddr_t;

PLAYERJ'OSITION2D_CODE 4

Table 4.1: Players 12 byte Address Structure - The index field is used to specify a particular
device instance

TCP/OOP Tran.port
Client
Control
Application.

Generic Device

* •••pa

Interface Driver
RS-232, US8, IEEEl394

~t Co..uni.aation
, ,
, ', ', ', ', ', ', ', ', ', ', '
", ':
,,
,

12 Byte Device Addr•••
JP .d~••• :TCP aocket:int.rface:indax

.I

Figure 4.8: Client Server Architecture of the Player Robot Device Interface - Player
was originally designed for implementation on Pioneer mobile robots [1]. The PatrolDX Pioneer
robot is shown in the Figure

47

4. DEVICE ABSTRACTION LAYER

the same interface specifications. This code re-use and scalability makes Player the worlds
leading Robot Device Interface [131.

4.2.2 Software Architecture

Player is composed of 5 main software libraries.

• libplayererror
libplayererror is a C library that provides generic error reporting facilities such that
application developers can utilise a common error message format for debugging purposes.

• libplayercore
libplayercore is a C++ library that forms the main server kernel and messaging con­
structs. The library provides basic messaging and queuing functionality, a driver API
to allow users to write drivers for their specific hardware needs, as well as support for
loading plug-in drivers at run time.

• libplayerdrivers
Driver support for some common hardware devices used in robotics research, such as the
SICK LMS200 laser range finder, have been included as part of Player's source code. The
libplayerdrivers library stores all such drivers, which can be included in the server at
compile time. This is the static software context for drivers. A dynamic context exists as
well in which driver code is loaded into the server as a shared object} at run time.

• libplayertcp
The TCP transport mechanism associated with Players client-server model has been en­
capsulated in a separate C++ class object to separate the functionality of the Player
server from explicit network transport particulars. This allows the server to focus on
message mediation between device interfaces. Support for TCP client-server transport
is provided by the libplayertcp library. The functionality of this library is covered in
section 4.2.3.3.

• libplayerxdr
The libplayerxdr library provides support for XDR data marshaling. Raw data mes­
sages sent over the TCPJIP network are formatted in accordance with the eXternel Data
Representation (XDR) encoding specification [2]. This specification details the encod­
ing of network data that is independent of the word size, byte~order (endian-ness) or
other details of any particular comput.er architecture. XDR specifies a set of data types,
e.g. int, float, char, and encodings for them. libplayerxdr is a C library that has
been designed to facilitate this encoding and decoding specification, such that application
programmers can avoid the inevitable software bugs associated with having to write "mar­
shalingjdemarshaling" code. Player specific C structures are transformed into their XDR
representations automatically at run-time by the functions provided in the libplayerxdr
library.

Note: From this point on, reference will be made to Player's C++ class constructs in order to
provide scope on the servers run-time functionality and driver API. Without reference to the
functionality provided by each C++ class object, comprehension of Player's main operating
structure may be to a lesser degree.

4.2.3 Messaging Basics

The transfer of data, encapsulated in Player specific message structures, between client ap­
plications and devices housed in the server occurs over a TCPJIP network. The messaging
constructs used in this context is the topic of the following sections.

1 Other names for these file executable formats include shared library or dynamic link library (DLL) in the
context of the windows operating system

48

4.2 The Player Robot Device Interface

4.2.3.1 Raw Player Messages

Player developers have included a particular message semantic and packaging structure that
requires the use of a "message header". All raw Player messages sent over the TCP/IP network
are preceded by a message header. The message header itself has been implemented as a C
struct type definition, Table 4.2.

Players Message Header Structure

typedef struct player-IDsghdr {
player_devaddr_t addr; I/Destined device address, host:port:interf:index
uint8_t type; //Message type (Data, Command, Request/Reply
uint8_t subtype; //Interface specific message code
double timestamp; //seconds since epoch
uint32_t seq; //message book keeping
uint32_t size; //size in bytes of the message payload
} player-IDsghdr_t;

Table 4.2: Players Raw Message Data Structure - Under Players current implementation,
message payloads are limited to 8MB in length which is a considerably large message

A message header keeps track of a destined device address and acts as an indicator, as to the
message type and subtype, that follows the particular message header instance, such that the
message processing facilities in the Player server can efficiently distribute the message to the
correct device.

4.2.3.2 Server Scoped Message Encapsulations and Queuing Facilities

Inside the Player server, all raw messages received through a TCP socket over an IP network are
automatically encapsulated in Message objects l . All Player messages are transferred between
devices, and their associated drivers2 , as pointers to Message objects. Reference semantics
on data transfer has been used so that messages can be delivered to multiple recipients with
minimal memory overhead. Message objects are delivered by being pushed on and popped off
MessageQueue objects. Each actual low-level driver code executable3 running in the server has
its own integrated MessageQueue object, which receives any messages sent to its associated
device interface/so

MessageQueue objects snpport configurable message replacement. This functionality is use­
ful when a driver requires new incoming messages of the same semantic, Le. type and subtype,
to overwrite old ones, e.g. the message queue of a driver supporting the posi tion2d interface
must behave in this way under velocity command messages. Other driver implementations,
such as those controlling robotic manipulators would configure their MessageQueue object to
queue incoming messages of the same semantic in a FIFa manner, in order to correctly per­
form forward and inverse kinematics for manipulation purposes. Messages are stored in an
associated queue through the use of a MessageQueueElement object, which provides a linked
list encapsulation of a Message object, Figure 4.9.
There are two MessageQueue operating contexts in Player's server implementation. One queue
context is associated with Driver object implementations and acts as a drivers local message
buffer, and the other with client server subscriptions. The creation of client scoped message
queues is discussed in section 4.2.3.3.

IThis raw message packaging facility is provided by the PlayerTCP object and is covered in section 4.2.3.3
2The device-driver collective is discussed under section 4.2.4
3Generally in the form of shared library

49

4. DEVICE ABSTRACTION LAYER

t
play.lt~qhdr_t would
deter-dne d••tined device

....av-o-n. 0-r-i r-apQloa-~

~
~~

------.-- -------------- -- EapQloa..a~

IDab ••,load I,. N"1t 11~-". ----- ------ -- - ---- .
:::.:~:y.r -..f

,

Figure 4.9: Graphical Representation of Message and MessageQueue Software Object
- In the figure, a raw Player message is a newly XDR-demarshaled network representation of C
data structures representing the interface specifications associated with a certain class of robotic
device preceded by an instance of the Player message header data structure

4.2.3.3 Client-Server Message Transfer

This section covers the functionality provided by the libplayertcp library in providing mes­
sage transfer between a TCP socket interface and Player's server implementation, recall section
4.2.2. Player has been designed such that the network transport layer associated with the
client-server model is completely hidden from the user. This means that driver authors do not
have to explicitly take TCP communication specifics into account when developing drivers. The
PlayerTCP object forms part of the run-time infrastructure of Player's server implementation.
The server keeps reference to a PlayerTCP object which handles tile run-time creation of client
associated message queues in the server, and wraps raw network packets into Message objects
for pushing onto and popping off of message queues.

When a client application subscribes to the server, on a particular TCP socket, the PlayerTCP
object handles the creation of the MessageQueue object in the server, which acts as a queue
reference for that particular client-server message passing session. The server then establishes
synchronisation messages with the client to keep data transfer temporally strict, Figure 4.10.

Pl.yerrcr Object

Convert_ Raw Network Data Into a
_ ..aq. Object

Player server

Too devic•• , repr•••ntiu9 driver.
bound to an interface and 91••n a
fully qualified 12 byte eddre••

Figure 4.10: Run-Time Instance of a Client Server Subscription - The AddClientO
method actually handles the creation of the clients MessageQueue object and performs the required
book keeping on the number of subscribed client applications

The PlayerTCP object in this sense acts as a black-box between Player server specific Message
objects and network scoped, XDR encapsulated C data structures, representing Player's mes­
sage headers and interface specifics. Each client application, currently subscribed to the Player
server, has an associated MessageQueue object in the server, which the server uses to send
messages between devices currently subscribed on the clients message queue.

50

4.2 The Player Robot Device Interface

4.2.3.4 Server-Driver Message Transfer

When a client application creates a proxy on a particular device instance, the server will try
to subscribe the clients MessageQueue object to an associated Device object's client queue
reference. Device objects encapsulate the servers implementation of devices, which represent
an interface-driver collective with an associated 12 byte device address, recall Table 4.1. Re­
call that drivers are never accessed directly in the operating context of the Player server, even
though they are explicitly involved in processing all messages sent to their associated devices.

As far as message transfer is concerned, Device objects act as forwarding mechanisms for
messages sent to them by one of their subscribed client message queues. Device objects have
reference to their underlying Driver object's MessageQueue object, and forward all messages
sent to them onto the Driver object's input MessageQueue object, Figure 4.11.

Convert. Raw Hetwork Data
Into A Me••Aie Object

Continuoualy Pro~••••• Ne••ag••
OD Input ~•••9eQu.u. and Talk.
To IIardvAre I f Need Be

Figure 4.11: Device Specific Message Forwarding -

A Driver object's input MessageQueue object is the most important element with respect to
driver code implementation. The driver API is described in section 4.2.4.

4.2.4 Players Driver API
For Player non-developers, i.e. the user community, the driver API is the most important as­
pect of Player. The driver API allows users to write C++ drivers to provide device support for
their own specific hardware needs. User developed drivers are compiled into shared libraries
to act as plug-in software modules, which the server loads during run-time through the use
of configuration files} and a ConfigFile object. A ConfigFile object is included as part of
Player's libplayercore library in order to handle the parsing of configuration files, passed into
the server executable at run-time, in order to find and load user developed plug-in drivers.

In the operating context of the Player server, a driver must perform two main tasks.

1. Abstract the utilisation specifics of a hardware device behind one or more of Player's
interface specifications.

2. Actively process Player specific messages that arrive on its associated input MessageQueue
object..

Player developers have included the Driver class as part of Players driver API in order to allow
users to readily create drivers to support their specific hardware needs.

The Driver class includes all the base functionality to interface with the message passing
run-time environment of the Player server. The main thread of a driver sits in an infinite loop
and continuously processes messages that arrive on its input message queue. Driver authors,

1 Configuration files are used to tell the server executable and associated ConfigFile object where to find
the plug-in driver. The Configuration file used for RolterMHP is shown in Appendix D.2

51

4. DEVICE ABSTRACTION LAYER

i.e. users, implement their specific driver through inheritance with the base Driver object
and re-implement key methods in order to support their specific hardware device. The Player
distribution and official website includes documentation with multiple examples on how to go
about writing plug-in drivers [44].

4.3 Driver Development for RollerMHP

Using Players driver API and the BrainStem@ C API access libraries for LimIX, drivers were
written to support RollerMHP's hardware specifics under Players interface specifications in or­
der to facilitate the Device Abstraction Layer of the AMTS. Child Driver classes l were written
that wrapped the necessary routines of the BrianStem@ C API in C++ member functions,
Figure 4.12.

RollerMBP'. Driver'.

: ----.---.--- -------------- ------; : C++ Member Function

I ~ Encapsulation of
: .~aJ.nat_ C UJ : : Br.inSt•• C API

------------------- - ----_! :
•• ----------------- - -~S.r1.1 Communication

-_._-------_ .. _-,,
,

~ B-bridge and
: quadrature encoder

,,

~-- ----- -------- -- --- -------- -- _._- ---- -- ---- --_...... __:

.... -- -_. ----- .. --.-. ---.. -- -.--- - --- -,,
,,,
,

Ultra.onic ••naor.~
on the IIe b".

Th. Driver Cl•••

dDriver cl... :
I-.pl_ntat10n i--- ----- - - - -- - - ---- ---- - ~ - - ---

Inheritance

Figure 4.12: Driver encapsulation of the BrainStem@ C API - Two drivers were developed
to support RollerMHP in Player's operating framework

4.3.1 Supported Interface Specifications
Two main drivers were written in C++ and compiled into shared tibraries under Player's com­
piIation specifics in order to act as plug-in objects for dynamic loading into Player's server
implementation at run-time. With the current driver implementations, RollerMHP supports
the position2d and sonar interfaces2 . Two separate drivers were written for RollerMHP's
hardware as this software practice provides a one to one mapping between the bulk driver code
and the supported interface, which produces cleaner and more maintainable code.

The ModRollerMHP...Driver driver and the SonarAcc driver, see Appendix C, provide the
necessary software infrastructure to get RollerMHP up and running in- the context of Player'S
server implementation, Figure 4.13.
The ModRo11erMHP...Driver driver supports the posi tion2d interface specification and allows
RollerMHP's differential drive platform to appear as a generic posi tion2d device over an IP
network. Among the vast functionality provided by the ModRollerMHP...Driver driver, it allows
client applications to control RoNerMHP's translational and rotational velocity and receive con­
figuration updates according to the Runge-Kutta odometry implementation, recall Algorithm 1
of section 3.2.4.3. The SonarAcc driver supports the sonar interface specification and abstracts
RollerMHP's embedded active sensor system behind an array of generic sonars over an IP net­
work. The SonarAcc driver is currently being extended to support the actarray interface, [5],
to allow the materials handling conveyor to be abstracted behind an array of generic linear and

1In C++, a child class is a class which inherits from another class
2For full insight into Player's interface specifications, see [44J

52

4.3 Driver Development for RollerMHP

RS-232, USB. IEEE139.
C~unlc.t1on

.....-T~eve
T",anaf.", Mediation

TCP/UDP Tran.port (Play.zTCP)

,t ,....---------------,
Play.", ..,.".'"

Client
Control
Application.

,
".'

ICU_ ~! iL-=::'---_....-----==.:.=..:..::.... --'
, '.'.'
"......g. ~ran.f.r : :

Under Device Proxy

Figure 4.13: Player's Server Implementation for RollerMHP - The position2d device at
index 1 forms the device interface of an "abstract" driver which uses other drivers as sources of
data and sinks for commands instead of actual hardware. This is covered in chapter 5

rotary actuators. This will allow for the development of generic forward and inverse kinematic
code for the materials handling infrastructure on RollerMHP.

Player comes with a few general purpose client applications for testing and debugging driver
code. PlayerViewer is one such client application, which provides a GUI interface and proxy
manifold to a range of generic devices over an IP network. During preliminary testing and
debugging of the ModRollerMHP..Driver and SonarAcc driver code, the PlayerViewer client ap­
plication was used to check the functionality of the drivers and debug the code if need bel. A
screen shot of PlayerViewer's shell output is shown in Figure 4.14.

~ad)'

'"'udr
rUdy
ready
lJl"illllJtp.1rlf!d
rudy

rfo..dy 1
road)' Stat.u. of the

rudy J~--~LI-"driver
:~:~p"rr.. ~ e"ecutable

pou'Uon;id: 1 vU
Iroot@loUllbo~t .",.\k~rJt1I ptayerv ·11 In,166.ze.2
~hy~rYl@Wf"1 '.& .•
Cun_cHn, to 1l02.168.2t,~:6"SI

,.Uill\l tOonc-t t....
...... i\lIbl~ dreyi(~: 192.168.26.2:66U
pnitlon2d:O ftQ'drtll·h,..h~

l)Owr:1 "drOl\."'~

so,.lr:tI so..r.c:c
;W;tarr"ily:D ~o.an({

poodtlo.n2d:l vt~ r-:--""':'''':':~:':''':~,
Iroot~l~ulho~t _8\urI4ptaT~IY·h19::.tMI.H,ll
..t&S' ..n'l~r J.8.o& • S.rv.r
COItnecti.ng to (192.1611.2'.2:6655) +--------------i"-t-- .ubacription
~;~1"V COM!!!:.t r.qu••t.

uHebte ck... ice-J: 192.168.20.2:6665

{

pololILon2d:1 ftOdrOl.ll!r.hP}
powr:' -odroL\.~hF N... of th.
tOftiilr:& »o".racc driver
:N:tOlrny:' c"ltaroUC
poodtLon2d: 1 vf~ executable
I rootOlOCilUtost ilvat~t)" I

I':"'

Availabl. devic••
in the ••rver

Figure 4.14: PlayerViewer's Shell Output - The shell output messages show the available
devices in the server, the name of the driver providing the message translations and the status of
the device

I If need be is an under-statement, any code of considerable complexity is bound to have a few bugs. The
many books on debugging source code written by highly respected software developers is evidence of this fact

53

4. DEVICE ABSTRACTION LAYER

In the shell output, the PlayerViewer client application has been executed under subscription
to a server at location 192.168.20.2 on the TCP socket 6665, which represents the IP address of
RollerMHP's on-board computer, from one of the spare Linux computers in the laboratory. The
actual communication occurs over a wireless Ethernet link, facilitated by two IEEE 802.11b/g
USB network adapters. As far as client applications are concerned, such as PlayerViewer,
RollerMHP is seen as a combination of position2d and sonar devices, Figure 4.15.

~1.n.t••

Figure 4.15: PlayerViewer Screen-shot of RollerMHP's Device Instances - The sonar
sensor model used in PlayerViewer models the beam of an ultrasonic sensor as a conical geometry,
which is not a true representation of the actual beam geometry. Under most operating conditions
though, this is a reasonably accurate assumption

To show what this client application subscription looks like from the server side of message
transfer session, RollerMHP's onboard computer was connected to a computer screen and the
server instantiated on a custom configuration file, which essentially tells the server and associ­
ated ConfigFile object where to find the plug-in driver code in Fedora's file system, and which
interfaces the driver supports, Figure 4.16.

As can be seen in Figure 4.16, after the server is up and listening on TCP socket 6665 it
accepts its first client, client 0 representing PlayerViewer, which can then act through sending
messages with device proxy's to the server to manipulate RollerMHP via its exposed position2d
device and receive RollerMHP's active sensor data via its exposed sonar device.

4.4 Chapter Summary

HAL's are vital components in providing a homogeneous operating platform for application pro­
grams. These HAL's allow application programs to communicate with and operate on generic
devices without having to know detailed knowledge about the specifics associated with a de­
vice's underlying hardware, such as the hardware implementation of desktop printers. HAL's,

54

• Part 01 the PlaytrlStage/Gazebo Projfct Itlttp:/lplayerstagt.sourceforge,netJ.
• Copyri.ght (Cl 2eee . 2~Ut6 Briar. Gerkey. Richud vaughan, Andr't"I lIowiu·d.
• Hate Ko&Oi9, and contributors. Released under the GNU General Public license.
• Phyer (OHS ~1t~ A8SOlUTEL'I' NO w,\RRAHTV. This is free softwue, and you
• art w!lco-e tG rtdhtribute it und.r certain conditions; su COPYING
I for detalls.

4.4 Chapter Summary

~ tiNodrollerllllhp.so .odrollerahp.cc aodro\\erahp.h ~

~ bash·].2S kinan player CUBtom
Tbe buh-3.2S player aodrollerlllhp.cfg .--------------+ configuration file
011e Driver (11 U81S
.bared libr.;y code bnh-3.2S Player v.2.&.S

executable

tryiag to load Ihotte/lwalker/ceve\opeent/.otlondriver/Ubeodroth~r.hp.so ..
success
invokint player ..driver_ini te) ...
succus
tr)'hg to load Ihoee/awalkertdevtoloplH!l'ltll'tHPsonaruhator/tibsonancc. 50 •..

succus
invoking phyer_driver .. init() ...
5UCCtSS

Listtning on ports: 6US ..._------ ~*"cl1.nt application.
~cu'ted client 8 on port 6665. id 5
~ •••ociat.d Lil.

~~~ I deacriptor

Figure 4.16: Server's Shell Output for PlayerViewer Client Subscription - The
P1ayerTCP object keeps track of subscribed clients using file descriptors. The PlayerViewer client
is seen as fd 5 by the server's P1ayerTCP object

as a software construct, provide a generic interface between physical hardware and the appli­
cation programs requesting resources from them. This is achieved through the construction
of interface specifications which represent the software abstraction framework for a particular
class of computer hardware devices, such as "mouse" or "printer". Device drivers provide the
mapping between the hardware specifics of a device and the associated interface specification.

Player provides this functionality for robotic devices, thus allowing the development of
generic control code, which provides software scalability and promotes code re-use, a vital re­
quirement in any modern software system. Player's driver API was used, along with Player's
interface specifications, to abstract the hardware specifics of RollerMHP, i.e. the BrainStem@
modules and connected hardware devices, behind generic interfaces.

Player has been designed to facilitate message transfer and communication between appli­
cation programs and device abstractions, through a client-server model. This provides devices
with network scope and makes them accessible over a TCP lIP network. Application programs
act as clients and subscribe to Player's server implementation in order to initiate a message
transfer session. These client applications hold local device proxy's to the server in order to
send and receive messages to and from devices held in the server. Physical communication with
RollerMHP occurs over a wireless Ethernet connection facilitated by IEEE 802.11b/g USB net­
work adapters.

Two drivers were written to provide Player specific HAL functionality and support for
RollerMHP in Player'S client-server operating model. The ModRollerMHP..Driver driver sup­
ports the posi tion2d interface and allows RollerMHP's underlying differential drive platform
and embedded system to appear as a generic position2d device capable of configurations on
if = ]R2 X SOl. The SonarAcc driver supports the sonar interface and abstracts RollerMHP's
ultrasonic sensor platform and embedded system behind an array of generic sonar devices.

55



4. DEVICE ABSTRACTION LAYER

56



Chapter 5

Task Execution Layer

"To isoLate mathematics from the practicaL demands of the sciences is
to invite the steriLity of a cow shut away from the buLLs.}} -Painuty
Lvovich Chebyshev

Chapter 4 covered the software system, namely Player, used in providing the infrastructure to
develop generic robotic control frameworks by abstracting hardware specifics onto well defined
software interfaces and messaging constructs. Player provided client-server mediated control of
the abstract "devices" constituting RollerMHP's physical configuration, over an IP network.

This chapter covers the development, testing, and validation of the motion control algo­
rithms, designed in the scope of Player's interface specifications, for RollerMHP, to facilitate
the motion requirements underlying the Task Execution Layer of the AMTS.

Ta.k Allocation Layer

IIateriah Bandlin9 C-..icat:l.OD
Agent Architecture I aub-ayat..

Agent
Toolbox

o

FIIiU'
Start

/'--- ---- -EJ-------",
, '
, 11IlI'iEJ t,
i rNS EJ'~
\------'!Inputl n.)

IIat.~ial Tranapo~atiOD llat.~iala BaDdlin9
o .•.-'

.'

Application

~=====~~~~~~~s~pa~Ci=f=i=C=·=====r:::::::::::::::::: ~FIIiU'=~End~:I:0_ ",'~ Taak "ecution Laya~ ~

Figure 5.1: Task Execution Layer - This chapter only covers generic aspects of the Task
Execution Layer. This is due to the highly application specific domains of modern production
environments

Facilitation of a FMRP task requires study into global and local navigation, as well as posture
stabilising motion control of the physical robot platforms executing FMRP task instances. It
is therefore only natural that much effort is spent in researching, developing, and testing the
motion control aspects associated with material payload transportation. To this extent, this
chapter holds the majority of this dissertations research scope.

57



5. TASK EXECUTION LAYER

5.1 Material Transportation

Depending on the complexity of the payload, materials handling, i.e loading and unloading op­
erations, can form the majority of the materials handling and routing task duration. Although
this aspect would suggest placing emphasis on optimising materials handling operations, in
modern dynamic production environments with highly distributed manufacturing infrastruc­
ture, gross material transportation forms a major aspect in the efficiency and real-time task
tracking ability of mobile materials handling systems performing FMRP tasks, Figure 5.2.

T••k Allocation Layer

Material. Randlino
Aqent Arcbitecture

Aqent
Toolbox

Application
Specific.

Routing Path Under

Global and Local ~

.~..._.,,~__ ~_- 0-~
,> EJ" ....I I "' ••••••••

iEJ I'IllI [lb)0g, .:' 0
!FN8 EJ .....
: ... I ....
o o', "
\~~------IIDPu~I--..... =rt

Figure 5.2: Material Transportation Aspect of FMRP Task Execution - Global naviga­
tion is essential1y a path planning problem and is highly dependent on the environment in which
the mobile robot platform is operating in. It is therefore not explicitly covered here

5.1.1 Navigation Preliminaries

The definition of a FMRP provided in section 2.3.2.3 defined a Transportation Primitive as a
global navigation operation between two distributed, unconnected manufacturing infrastructure
subsets l , while avoiding obstacles in a real-time manner. An brief overview of navigation
operations follows in section 5.1.1.1.

5.1.1.1 Global Navigation Overview

The performance of global navigation algorithms, implemented on mobile robot platforms, is
highly dependent on the amount of structural information, regarding the mobile platforms op­
erating environment, available for concurrent analysis and decision making. Decision making
is meant in the context of finding optimal paths between navigation endpoints under analysis
of the structural layout of the operating environment.

Intuitively, in order for a mobile robot platform to autonomously perform global navigation
operations, it must be provided, or create, a map of its working environment as well as know
its location within the map. Mobile robot platforms perform localisation to determine their
position, or more precisely their pose or configuration in a map. This is achieved by correlat­
ing structural information about their surrounding environment with structural information,
such as distinct landmarks or waypoints in the map provided, through sensory perception, data

1Unconnected in the sense that no standard materials handling infrastructure joins the manufacturing in­
frastructure subsets

58



5.1 Material Transportation

fusion, and data analysis. Map representations can be in many forms, from complex three
dimensional structural models to minimal two dimensional bitmap representations of the envi­
ronment. Once localised, a mobile robot has the base knowledge to perform path planning and
global navigation operations.

In recent years gracious research efforts have been applied in solving the Simultaneous Lo­
calisation and Mapping (SLAM) problem [17]. The SLAM problem addresses whether it is
possible for a mobile robot platform, placed in an unknown environment, to build a map of
its surrounding environment through structural geometric development of sensory perception
outputs, while concurrently localising in the map. Although multiple solutions to the SLAM
problem have been developed, the "loop closure" problem still makes an appearance due to the
ever present uncertainty in sensor performance [29]. Due to the structured layout of production
environments, it would seem unorthodox to expect mobile materials handling robots to per­
form SLAM. In production environments, the loop closure problem would not be tolerated and
production rates would surely drop. Maps provided a priori accompanied by active measures
of localisation under the use of active beacon technologies [42] would suffice in providing the
necessary information and knowledge to enable mobile materials handling and routing robot
platforms to perform global navigation operations.

Due to the highly application specific nature of global navigation operations, research efforts
during this project, were focused on local navigation and obstacle avoidance in facilitating a
subset of the material transportation requirements of FRMP task execution.

5.1.1.2 Local Navigation Overview

Local navigation includes both obstacle avoidance as well as local decision making. In order to
perform local navigation, a mobile robot platform must utilise sensory perception outputs and
perform data fusion to extract enough structural information about the surrounding obstacles
in order to, both avoid them, and move in the most feasible direction possible if more than
one obstacle is present in its local surrounding environment. The aspect of decision making in
cases of multiple obstacles must not be overlooked and can determine the overall performance
of a local navigation algorithms and prevent the introduction of "local minimums" where the
mobile robot gets trapped in areas with many surrounding obstacles during operation.

5.1.2 Player as a Code Repository

Although most drivers that run in the Player server directly control hardware, more recently,
a number of "abstract" drivers have been developed which use other drivers as sources of data
and sinks for commands. Many algorithms have been developed using these measures and ac­
company the Player source code. The "amcl" driver is one such abstract driver implementation
and performs Adaptive Monte Carlo Localisation, which is a very popular particle filter based
localisation algorithm used by modern mobile robots [16]. Many other abstract drivers accom­
pany the Player source code including local and global navigation algorithms. RollerMHP uses
a well known local navigation algorithm that comes with Player in the form of an abstract driver
namely the Vector Field histogram (VFH) algorithm, and was compiled into the Player server
as a static object at compile time. The Vector Field Histogram algorithm is a local navigation
algorithm pioneered by Johann Borenstein [10]. The algorithm provides mobile robots with
real-time obstacle avoidance, and was developed using mobile robots equipped with ultra-sonic
sensor arrays for sensory perception, much like RollerMHP. The algorithm has many favourable
characteristics that make it highly applicable in dynamic manufacturing environments.

A complete overview of the operating characteristics of the VFH algorithm can be found in
[8][7][9]. A video of RollerMHP performing a local navigation operation can be seen on the CD
accompanying this dissertation.

59



5. TASK EXECUTION LAYER

5.2 Materials Handling

From the definition provided in section 2.3.2.3. A Materials Handling Primitive requires the
mobile materials handling and routing robot platform to perform posture stabilisation, in which
the mobile robot platform converges onto a goal pose in the vicinity of an I/0 port from an
initial configuration on the boundary of a Region of Convergence (RaC).

Material transfer operations are application specific whereas posture stabilisation require­
ments are generic enough to warrant credible research. This section explicitly covers the re­
search, development, and testing of the motion controllers implemented on RollerMHP in order
to perform posture stabilisation within a RaC, Figure 5.3.

T••k ~location Layer

Materiala BandJinv
Aqent Architecture

Avent
Toolbox

Application
Specific.

Revion oL Convergence
with Iladiua R

Figure 5.3: Materials Handling Aspect of FMRP Task Execution - The characteristics
of, and requirements for, the payload transfer block, are sensitive to the application environment
and are therefore not covered. This is done to focus research effort in more useful domains

5.2.1 Preliminary Control Concepts

Before the introduction of the posture stabilisation motion control problem, two fundamental
concepts in control theory, stability and controllability, are introduced in order to make the
motion controllers, introduced in following sections, more comprehensive. The following stabil­
ity discussion is in terms of state-space concepts and it is assumed that all state vectors and
control inputs are elements in ~n and ~m respectively, the space of all real numbers.

5.2.1.1 Stability

The notion of stability in control engineering is usually associated with the response charac­
teristics of syst.ems implementing feedback control. Given the vector valued state differential
equation,

£(t) = f(x(t), ii(t)),

representing the vector field of a control system model with state vector x(t) E ~n and control
inputs fi(t) E ~m. The feedback control problem in this regard is to find some control law
ii(t) = g(x(t»), 9 : ~n -+ ~m, such that the state of the system or "plant", x(t), converges
onto some desired goal state xg , from an arbitrary initial state x(to) = Xi, as t -+ 00. The
control engineering term given to the task of designing g(x) is "feedback stabilisation" [40].

60



5.2 Materials Handling

Under the application of g(x), a fully qualified vector field 1 is produced. This fully qualified
vector field, representing the image of £(t) = j(x(t),g(x(t))), can be considered autonomous,
in that its solutions to initial value problems in the form of contour integrals, representing state
trajectories, evolve through time without further dependencies on ii.

In linear state-space control theory, i.e. systems models taking the form £(t) = j(x(t), ii(t)) =
A(t) x(t) + B(t) ii(t), with A and B being n x nand n x m matrices respectively, feedback sta­
bilisation characterisation involves the application of eigenvalue analysis on n x n matrices
incorporating linear operators2 , which is a well understood theory and method of feedback sta­
bility characterisation [35J. Nonlinear control theory however, is not nearly as well established
as its linear counterpart. The feedback stabilisation of nonlinear control systems is usually a
much more complex task than that associated with linear systems, along with the methods
of stability characterisation. In nonlinear control theory, and applied mathematics for that
matter, a particular type of stability theory exists termed LyapwlOv Stability, named after the
Russian mathematician, Aleksandr Mikhailovich Lyapunov. This is covered in section 5.2.1.2

5.2.1.2 Lyapunov Stability and Equilibrium Points

Lyapunov Stability theory characterises how the state trajectory of a dynamic system behaves
in the local vicinity of a goal state, which is considered to be an equilibrium point of the state
space, in that £(t) = j(x ,g(xg )) = 0, for the cases involving feedback stabilisation. Lyapunov
Stability theory is an inv01ved subject and this is only a brief overview of its associated concepts.

A goal state, xg is said to be Lyapunov stable if for any open neighbourhood of xg , NI ~ IRn,
i.e. an open region of state-space which includes xg , there exists another open neighbourhood,
N2 ~ NI of xg such that for any initial state x(to) = Xi E N2 , the state trajectory3 stays within
NI, Vt > to [40]. Lyapunov stability does not specify weather the state trajectory eventually
reaches the goal point as time approaches infinity. In order for this to occur, the dynamic
system requires asymptotic stability characteristics.

A goal state xg is asymptotically stable if it is Lyapunov stable, and further more Ilx(t) ­
xgll --> 0 as t --> 00 [40]. Furthermore, a goal state x9 is exponentially stable if it is asymptoti­
cally stable and there exists constants 0' and (3 such that [40J,

Vt > to

The full state feedback posture stabilising controllers developed and tested, to provide Roller­
MHP with feedback stabilisability to a goal point it its configuration space ih = [xg, Yg, 8gf,
from an initial configuration ih = [Xi, Yi, Bif, are all asymptotically stable.

5.2.1.3 Controllability

Consider once again, all systems described by the vector valued state differential equation in
the form,

£(t) = j(x(t), ii(t)), j : IRn x IRffi --> IRn

Systems of this form are termed controllable if for all Xi, x9 E IRn, there exists a control input
trajectory U = ii(T) for T E lto, t], such that in integrating the vector field, £(T) = j(x(T), U)
from x(to) = Xi, the value 0 the integral curve, or state trajectory, is x(t) = xg . Simply put,
a system is controllable if there exists a state trajectory between an initial state, Xi and a goal
state x g . Controllability is returned to when discussing the control properties associated with
posture stabilising differential drive platforms in section 5.2.2.4.

1Fully qualified in the sense that the vector field is independent of iI
2Such as the complex variable s = (7 + j w
3In the case considered here, the solution in the form of a contour integral for an initial value problem of a

vector valued state differential equation

61



5. TASK EXECUTION LAYER

5.2.1.4 Posture Stabilisation

Posture stabilisation of practical physical systems is a control engineering problem, and in the
case of differential drive platforms, a nonlinear control problem. It is important to understand
the required control efforts in implementing posture stabmsation, through feedback stabilisa­
tion, on differential drive platforms. In this regard, posture stabilisation consists of regulating
relatively small configuration errors l in the differential drive's configuration space. Posture
stabilisation of differential drives requires the development of, either feed-forward control laws,
or feedback control laws. Feed-forward control implementation is strictly a trajectory planning
problem, in which a control input trajectory, li, is developed, representing temporally dispersed
translational and rotational velocity commands, and applied to the differential drive platforms
physical control infrastructure in order to move the platform along a pre-determined trajec­
tory that joins an initial configuration and goal configuration. Feedback control laws are, by
their very nature, more robust, but face serious mathematical obstructions. Posture stabilising
motion controllers designed to overcome these obstructions can produce unrealistic and unsat­
isfactory transient responses [6J. An overview of the unique control properties of differential
drives follows in section 5.2.2.

5.2.2 Modeling and Control Properties
In this section, the kinematic model of a differential drive platform is implicitly exposed through
explicit coverage of the constraints on its configuration velocity. Eq. 3.4. Deriving the kinematic
model in this way provides greater insight into the feedback stabilisation properties of differential
drive platforms.

5.2.2.1 The Configuration Space

It is important to visualise motion trajectories in terms of configuration spaces2 in order to
appreciate the constraints imposed by the wheel-floor interface of differential drive platforms.
Selecting the same generalised coordinates as those of section 3.2.2.3 to describe a differential
drive platform's configuration, its configuration space can be visualised as a topological space,
Figure 5.4

Notion Path

10,0,01'

confiquration apace
Oriqin

Sub.pace
Identification

x

[X.' Y., 8.) 'f

A point in the
conLiquration apao.
i.•. A
configuration

-+

Figure 5.4: Differential Drive Configuration Space - This topological space has an identity
on the orientation coordinate. Identities are useful in path planning and can provide optimal
solutions to path planning problems

The topological identity allows configuration trajectories to "wrap around" the configuration
space and are useful in motion planning. Posture stabilisation implementation relies on under­
standing the constraints imposed on generalised configuration velocities, such as Eq. 3.4, and
its associated controllability. An overview of under-actuated systems is presented in section
5.2.2.2.

I Relatively small in that the configuration error is within some bounded region around the origin of the
differential drives configuration space. The configuration error is infact a relative term, as the goal point, which
is essentially arbitrary. is considered the origin of the configuration space

2State space concepts are analogous to the configuration space

62



5.2 Materials Handling

5.2.2.2 Under-actuated Mechanical Systems

An under-actuated mechanical system is one in which there are a smaller number of available
control inputs than independent generalised configuration coordinates. Under-actuated systems
arise due to some form of non-integrable motion constraint. In such systems, it is impossible to
choose a set of generalised configuration coordinates equal to the number of degrees-of-freedom
(dof) for the mechanical system. The number of generalised configuration coordinates, also
known as Lagrangian coordinates, exceeds the number of dof by the number of non-integrable
motion constraints [28]. Such mechanical systems are called nonholonomic.

Differential drive platforms are nonholonomic as they have n = 3 generalised configuration
coordinates q= [x, y, B]T E ~2 x SOl but only m = 2 available control inputs ii = [V,w]T, which
are practically realised through the control of the left and right drive wheel angular velocities.
The non-integrable differential constraint imposed on a differential drive platform's generalised
configuration velocity ~ is due to the rolling without slipping condition exhibited by the active
drive wheels, section 5.2.2.3.

5.2.2.3 Differential Constraints

All Pfaffian1 nonholonomic systems are characterised by n - m non-integrable differential con­
straints on their generalised configuration velocity, Eq. 5.1 [15].

A(q)~= 0 (5.1)

All feasible instantaneous generalised configuration velocities can be found by determining the
kernel solution to Eq. 5.1. This can be achieved through the use of standard techniques from
linear algebra, and for the cases where the number of constraints is less than the number of
generalised configuration coordinates, produces a continuum of solutions, Eq. 5.2 [15].

~= G(q) ii, ii E ~m (5.2)

Where the column space of the n x m matrix G(if) is chosen as to span the null space of matrix
A(q).

Differential drive platforms have (n - m) = (3 - 2) = 1 differential constraint on their gen­
eralised configuration velocity that arises as a consequence of the drive wheels not being able
to slip in the lateral direction2 , Figure 5.5.
If the active drive wheels do not slip in the lateral direction then the translational velocity
remains distributed between its underlying components in the x and y coordinates of its gen­
eralised configuration space, Eq. 5.3.

x iJ-- =V=--
cosB sinB

The resulting differential constraint is shown in Pfaffian form in Eqns. 5.4 and 5.5.

(5.3)

Xsin B - iJ cos B
ij

'[,'nO ::OOfffi
o

o

(5.4)

(5.5)

I Pfaffian forms of constraint equations are parametric representations that specify all allowable instantaneous
configuration differentials as opposed to implicit representations which specify all prohibited instantaneous
configuration differentials ,[40J

2Under normal operating conditions

63



5. TASK EXECUTION LAYER

y ., v lIin(9)
v

y

)E---"-'-~----.. x., V COli (9)

"

y

8

Figure 5.5: Rolling Without Slipping Condition - The configuration space is also shown in
order to provide visualisation on configuration trajectories

The Pfaffian constraint equation, Eq. 5.1 is satisfied for ± = cos 9 and iJ = sin 9. Scalar
multiples of this solution is also a solution of Eq. 5.1, this scaling represents the magnitude
of the differential drives translational velocity v, Le. ± = v cos 9, iJ = v sin 9. The Pfaffian
const.raint does not. prohibit the remaining generalised configurat.ion velocity, i.e. il, which is
scaled over IR in a one to one mapping through the application of w. Collecting all feasible
solutions for the instantaneous generalised configuration velocity if into matrix form, results in
the first order kinematic model of a differential drive platform, which is a vector field f over
IRn, f : IR2 X SOl X IR2 -+ IR3 , Eq. 5.6.

(5.6)

The vector field associated with the first order kinematic model of a different.ial drive platform
is best interpreted as a combination of two vector fields, Eq. 5.7.

f h h

ID wr:+[ff (5.7)

Therefore, the translational and rotational velocity control inputs, v and w act as weights which
determine how much each vector field contributes to the resulting generalised configuration
velocity. Eq. 5.7 classifies a differential drive platform, in the context of control application,
as a control-affine system [40]. Control-affine systems are linear in terms of control input
application but nonlinear in terms of state trajectories. Differential drive platforms are in fact
a special kind of control-affine system called a drift-less control-affine system: in which the
generalised configuration velocities collapse under zero control input1 .

I Generalised configuration velocities collapse under this condition in terms of kinematics, although on real
robots like RollerMHP, the configuration velocities converge to zero under the natural dynamics of the robot
and associated differential drive platform

64



5.2 Materials Handling

5.2.2.4 Controllability

By taking the tangent linearisation of Eq. 5.7 about some point in the configuration space ifr, a
linearised system is formed, Eq. 5.8 [151.

(5.8)

As far as posture stabilisation is concerned, this system is not controllable [15]. This implies
that a linear controller will never be able to achieve posture stabilisation of a differential drive
platform, not even in the local sense where the system is linearised continuously around current
states through the use of Jacobians. In order to provide a differential drive platform with a
posture stabilising motion controller, one must delve into the tools provided by nonlinear control
theory. This insight does not break down the overall controllability however. Controllability of
a differential drive can be shown constructively by explicitly providing a sequence of maneuvers
to bring a. differential drive platform from an initial configuration [Xi, Yi: OiV to any desired
goal configuration ,[xg,Yg, OgIT. Since a differential drive, configured in the sense shown in
section 3.2.2.3, can rotate on itself, the posture stabilising task consists of a pure rotation on
the point [Xi, Yi]T. to align the orientation of the differential drive platform with the goal point,
followed by a pure translation to the goal point, [xg,Yg]T, and lastly a pure rotation operation
on the goal point until the platform is at the correct orientation 0 = eg . Systems of this kind
are known as locally null controllable, and as far as posture stabilisation is concerned, require
special attention, section 5.2.2.5.

5.2.2.5 Feedback Stabilisability and Brockett's Condition

The vector field of a differential drive's generalised kinematic modeL representing all feasible
instantaneous configuration velocities, Eq. 5.6, can be generalised into the form shown in Eq. 5.9.

£= f(x,il), (5.9)

Feedback stability of systems of the form in Eq. 5.9, through the development and imple­
mentation of a smooth time-invariant feedback control laws, il = g(x), requires the resulting,
fully qualified vector field, £ = f(x,g(x)), to have certain properties. Brockett [39] exposed a
condition that all fully qualified vector fields must uphold, in order to make a certain goal con­
figuration in their configuration space a "smoothly" stable equilibrium point, under full state
feedback controL The condition is termed Brockett's Condition and is developed below [211.

Brockett's Condition. Given the system,

£= f(x, il), x(to) = xo, f(O,O) = 0

with f : Rn X jRm ----; Rn, continuously differentiable. If the system is smoothly stabilisable,
Le. there exists a continuously differentiable function 9 : jRn ----; Rm, such that the origin is an
asymptotically stable equilibrium point of £= f(x, g(x)), with stability defined in the Lyapunov
sense l

, then the image of f must contain an open neighbourhood of the origin.

For those not familiar with set theory, this states that in order to stabilise such systems,
with smooth time-invariant feedback control laws. the resulting fully qualified vector field must
produce integral curves, as solutions to initial value problems, that are able to approach the
origin of the state-space from any direction. This can also be interpreted as a continuity con­
dition over the vector fields around the origin. In practical applications, this condition is not
limited to the origin of the state-space and, through linear transformations, is applicable to
arbritrary goal points in the state space of the system. This is shown when introducing the

I recall section 5.2.1.2

65



5. TASK EXECUTION LAYER

posture stabilising controllers developed and tested on RollerMHP.

During his explanation, Brockett used the so called "nonholonomic integrator", as an ex­
ample of a system that is not smoothly stabilisable onto the origin of its state space by full
state feedback control [39]. The nonholonomic integrator, known in the control community as
Brockett's system, is also known as the Heisenberg system as it arises in quantum mechanics
[401. It is represented as follows, Eq. 5.10.

(5.10)

Where i £ [Xl, X2, X3]T E IR3 and i1 £ [Ul' U2]T E IR2. Since the image of the map [xr, uT]T t-->

[Ul, U2, Xl U2 - X2 udT, i.e. the vector field, does not contain the point [Q, 0, tY for any t i- 0,
Brockett's condition states that there is no time-invariant continuously differentiable full state
feedback control law, i.e. g(i) that makes the origin of the state space an asymptotically stable
equilibrium point. This is hest interpreted by looking at the vector fields, Figure 5.6

x,

x,

u,

x

'L- x,

x,

x,

"---- x,

Figure 5.6: Vector Field Properties of the Nonholonomic Integrator - The state is seen
to "lock" on the X3 axis and prevent further stabilisation under the condition that XI = X2 = 0

Whenever Xl and X2 are both zero, X3 = °and X3 remains constant, thus destroying any
chance of convergence of a configuration onto the origin. The difficulties implied by Brockett's
condition can be overcome with gracious efforts into the development of time-varying periodic
controllers, sliding mode control laws, stochastic control laws, as well as a number of nonlinear
control law implementations [48] [31].

It is a known fact, any completely nonholonomic system with three configuration coordi­
nates, or states, and two control inputs, can be converted into Brockett's system, i.e. a non­
holonomic integrator, by a local co-ordinate transformation [34]. This transformation is known
as a diffeomorphism and is used often in differential manifold theory. Since differential drive
platforms meet this criteria, they are equivalent to Brockett's system through a coordinate dif­
feomorphism and therefore fail to meet Brockett's condition for smooth time-invariant feedback
stabilisability

From the aforementioned insights gained into the feedback stabilisability of differential drive
platforms, two posture stabilising controllers were developed for RoIlerMHP using two different
feedback control laws. The first controller implemented pivots off the vector field characteristics
exposed through Brocketts nonholonomic integrator and is presented in section 5.2.3. The
second controller implemented is based on a polar coordinate transformation that produces
a resulting system that satisfies Brockett's condition for smooth stabilisability, however, the
transformation produces a singularity at the origin of the transformed configuration space and
requires special attention, section 5.2.4.

66



5.2 Materials Handling

5.2.3 Logic Based Switching Control Law Implementation
In order to provide RollerMHP with a posture stabilising motion controller, a logic based switch­
ing controller was implemented. The control law is a slight modification to that in [21].

The logic based switching controller implemented on RollerMHP is based on stabilising
Brockett's original nonholonomic integrator and is an example of a hybrid control law, em­
ploying both continuous dynamics and discrete logic. This makes for some interesting feedback
vector fields.

5.2.3.1 Preliminary Insights

Recall the nonholonomic integrator, Eq 5.11.

(5.11 )

It has already been established that when Xl and X2 are both zero, X3 = 0 and X3 remains
constant. Perhaps more importantly, whenever Xl and X2 are "small", only "large" control
inputs will produce credible changes in X3. One control strategy to make the origin of the
configuration space a stable equilibrium point of the full state feedback control system, is to
use control inputs ii £ [u}, U2JT to keep configurations away from the X3 axis when X3 is
large and let Xl and X2 become small as X3 diminishes towards zero. This is precisely the
method performed by the logic based switching controller implemented on RollerMHP. Before
an introduction to the control law however, the coordinate diffeornorphism used to convert the
configuration space of a differential drive into that of Brockett's nonholonomic integrator is
introduced in section 5.2.3.2.

5.2.3.2 Coordinate Diffeomorphism

The coordinate diffeomorphism used for the purposes of transforming RollerMHP's configu­
ration velocity into Brockett's nonholonomic integrator is shown in Eqns. 5.12 through 5.16
122J.

Xl X cosB + y sinB (5.12)
X2 B (5.13)

X3 2 (x sinB - y cosB) - B(x cosB + y sinB) (5.14)

UI v - W (x sinB - y cosB) (5.15)

U2 W (5.16)

With these coordinate transformations, RollerMHP's configuration exists in the configuration
space l of Brockett's nonholonomic integrator and is susceptible to the configuration "locking"
notions exposed in previous sections. For example. to expose the first Brockett vector field
coordinate:

Xl XcosB + ysinB - X sinB 8+ Ycos(} 8
XcosB + ysinB + 8 (y cosB - X sinB)

vcos2
() + vsin2B- 8(xsinB - ycosB)

v - w (xsin() - ycosB)
UI

By performing the same operations on all configuration coordinates, one will see that this dif­
feomorphism does indeed produce Brockett's nonholonomic integrator.

An overview of the constituent elements and operating structure of the logic based switching
controller implemented t.o stabilise the nonholonomic integrator form of RollerMHP's configu­
ration space is presented in section 5.2.3.3.

I State space is perhaps a better term in control contexts

67



5. TASK EXECUTION LAYER

5.2.3.3 Control Law Construction

From this point on, configuration will be synonymous with state in order to utilise readily un­
derstood control terminology.

The logic based switching controller operates by constructively switching between pre­
determined control laws in order to stabilise Brockett's non-holonomic integrator, and thus
RollerMHP's configmation, from an arbitrary initial condition. The switching logic is rather
complex and is dependent on how the Brockett state evolves through time within functionally
bound and overlapping regions in ]R3, i.e. the Brockett state space. The logic based switching
controller builds from two base mathematical elements [21].

1. Four, monotone nondecreasingl , functions 1rj : [0, +00) ---->]R, j E S £. {l, 2, 3, 4}, with
the following properties:

(i) 1rj(O) = 0 for each j E S, and 0 < 1r1(W) < 1r2(W) < 1r3(W) < 1r4(W) for every W > O.

(ii) 1r1 and 1r2 are bounded.

(iii) 1r1 is such that ifw ----> 0 exponentially fast, then W/1rI(W) ----> 0 exponentially fast.

(iv) 1r4 is smooth on some non-empty interval (0, c], and

wE (0, c]~1r4(W) < 1r4(w),
dw W

As well, if W ----> 0 exponentially fast then 1r4 (w) ----> 0 exponentially fast.

The last condition, condition (iv), is a specification on lipschitz continuity, which can be
used to determine whether a specific initial value problem, much like the nonholonomic
stabilisation problem considered here, has a unique solution on a vector field.

2. Four overlapping regions in ]R3:

{x E ]R3 : 0 ~ xi + x~ < 1r2(x5)},

{x E]R3 : 1r1(x5) < xi + x~ < 1r4(X5)},

{ - 111>3. (2) 2 2}X Em... 1r3 x3 < Xl + X2 ,

{O}

U=9a(X), t2.to, (5.17)

Where a is a piecewise, continuous from the right at every point, switching signal taking on
values in the set S £. {1,2,3,4} for each element x E]R3 under the following control structure
[21 ],

Utilising these two base elements, the switching logic based control law takes on the form show
in Eq. 5.17 [21].

[
1

] [
X +~ ] [ -Xl +~ ] [ 0 ]_ {; _ {; I x +x _ {; XI +x _ (;

gdx) = 1 ,92(X) = X2 _ ~I X3~ ,g3(X) = -x _ ~~ X~ ,94(X) = 0
x.+x2 2 X, +X2

(5.18)

The switching signal a is determined recursively, Eq. 5.19 [21],

(5.19)

Where, for t 2. to, O'-(t) denotes the limit from the left of O'(T) as T ----> t. O'-(to) is an element
in S that effectively initialises Eq.5.19. This is an important aspect in the practical application

1 Non-decreasing functions are required to prevent the state "locking" discussed in previous sections

68



5.2 Materials Handling

of this control law and is covered when presenting the algorithms developed to implement the
controller.

The switching signal transition function I/> : ]R3 x S -+ S is a pivotal mechanism in the logic
based switching controllers performance as t -+ 00 and is defined as shown in Eq.5.20 [21].

I/>(x,j) = { ~ax{i E S : x E ~j}
if x E ~j

if x ~ ~j
(5.20)

Although it may not seem apparent, I/> is implemented in such a way as to provide hysteresis
in the switching signal when the Brockett state transitions between the various control regions
~k that partition the state space. This can be seen by analysing a typical set of monotone,
non-decreasing functions 1rj composed with the various control regions ~k. A typical choice for
a set of 1rj is 1r) (w) = 1 - e- VW, 1r2 = 21r], 1T3 = 31r] and 11'4 = 41T] [21]. For the explanation of
hysteresis, the various control regions have been projected into (w), w2)-space, where w) = X5
and W2 = xI + x~, Figure 5.7.

.'
+..­
11

i' JI,
-~-

Zone

State Trajectory

l~"~" ,-. ,
, ,
,,~

,

I;:
. ....

, , Il,
Ir

,

...,,

-.- Il,-
, ,
(J tranaition

w,=x,'

(5.22)

Figure 5.7: Hysteresis Characteristics of the Switching Signals Transition Function
Implementation -

The hysteresis characteristics instilled into the switching signal through its transition function
implementation prevents infinitely fast chattering, in which the switching signal switches be­
tween the various control regions and thus control laws infinitely fast thus producing controller
instability.

A rigorous analysis of the properties and characteristics of the logic based switching con­
troller presented here can be found in [21]. Section 5.2.3.4 covers the recursive logic used by
the control law during operation.

5.2.3.4 Hybrid Dynamics and Operating Structure

The logic based switching controller, implementing full state feedback control, effectively pro­
duces a hybrid dynamic system, which has both continuous dynamics and discrete logic,
Eq. 5.21.

(5.21)

Each vector field, ii = fi(X), representing the resulting fully qualified state velocity of Brockett's
nonholonomic integrator under application of the ith control law, Eq. 5.22, is dependent on the
value of a switching signal (J with hysteresis characteristics instilled through the implementation
of its transition function, Eq. 5.23,

69



5. TASK EXECUTION LAYER

a- = lim a(T)
T-+t-

(5.23)

There are multiple tasks required in the implementation of the logic based switching controller.

1. Determine the current state of the nonholonomic integrator, i.e. determine x E ~3.

2. Based on the current state, update the current control region, i.e. determine the current
~k'

3. Based on a current state, x, and associated control region ~k as well as a-, which has
been effectively initialised] implement the hysteresis based switching signals transition
function, Eq. 5.23.

4. Apply the control law ii = 9,,(x), based on the current value of a output from its transition
function.

The controller implementation on RollerMHP runs these four operations recursively to provide
posture stabilisation. The control system structure of the above logic based switching controller
can be more readily understood by looking at the feedback control loop associated with its
implementation, Figure 5.8.

plant
/ .. .
: RollerMBP·. i qe

Firat Order I

• Kin_tic Model :
~ :Inver••

Diffeomorphi•• of
Control Input.

Controller
r······ .. ··············· .......... ···..... ··"

lw,> n(w,) j- R

-_ .

······,·~ .

q +•

Requested Goal
Con fiqurat ion

1
Goal-Relative
C~nfi9Ur.tion Error

- q Coordinate
Ditfeoaorphi••

OdOJDetric J:atiJaate r· ..·.. ·;~:~:~;~;;:··;ft·~ ..::-;;;·_···..
of Configuration qoe. equivalent Odometry

Impl..entation Ba••d OD

• mpep Metric _ •
\ -..............•....

Sen.or

Confiquration
V.locity

Figure 5.8: Control Loop Construct of the Logic Based Switching Controller - Although
the "sensor", i.e. the odometry implementation, acts to integrate the configuration velocity, this
is not an actual representation of the algorithm structure, Algorithm 1, which performs odometry
based on acquiring accumulated encoder pulses

An overview of the algorithms implemented to perform the required control follows in sections
5.2.3.5 through 5.2.3.8.

5.2.3.5 Nonholonomic Integrator State Constructor Algorithm

The first algorithm is more of a procedure that converts the configuration error between Roller­
MHP's initial configuration and a request.ed goal configuration, with respect to the local co­
ordinate system of the goal configuration, into its equivalent state error in the state space of
Brockett's nonholonomic integrator and is shown in Procedure 2 with reference to Figure 5.9.

IThis is covered during the discussion of the Algorithm 3

70



5.2 Materials Handling

Ralative Confiquration Error

X
1

•• 1

~A••ocl.t.d State in
/ tezoaa of Brockett'.

,/ Nonbolonoelc Integ-rator

x,

y

.~/L- _

6x

"'0
I~-iii;i--- --:-----
Confl9Uratlon !

Figure 5.9: Configuration Error Calculation and Coordinate Transformation - The
goal configuration must be viewed as the origin of the configuration space

Procedure 2: Update_Current-State

Input: Current configuration Qc E ll~.z x SOl and requested goal configuration
Ch E]R2 X SOl

Output: Equivalent state of Brockett's "nonholonomic integrator" x E ]R3
begin

/ / get Qc - Ch
Llx = Xc - x g
Lly = Ye - Yg

Orel = Oc - Og

/ / rotate relative position error by Brei' anti-clockwise

Xrel = Llx cos Orel + Lly sin Brei
Yrel = - Llx sin Brei + Lly cos Bre!

/ / apply diffeomorphism defined under section 5.2.3.2 to relative configuration error

Xl = Xrel cos Brei + Yrel sin Brei
X2 = Brei
X3 = 2 (Xrel sin Brei - Yrel cos Brel) - Brei (Xrel cos Br'el + Yrel sin Brei)

end

71



/ / create 1r function images

5. TASK EXECUTION LAYER

5.2.3.6 Control Region Extractor Algorithm (With Hysteresis)

This algorithm determines which control region ::Rk is currently occupied, based on an input
state vector if E ~3, such that if; : ~3 x S -+ S can operate so as to perform the necessary
switching logic, while the hysteresis characteristics prevent chattering of the switching signal,
a, as t -+ 00, Algorithm 3.

Algorithm 3: Control Region Extractor

Input: The current state vector if £ [Xl, X2, X3] E ~3

Data: Switching signal discrete set elements Si E S £ {I, 2, 3, 4}; bounding function
images 1rj for j E {l, 2, 3, 4}

Output: The current control region ::Rk for k E {l, 2, 3, 4}

begin

Wl +- x5, W2 +- xi + x~ / / coordinate containers

foreach j E {l,2,3,4} do
L1rj +- tuning constantj x (1 - e.JW,)

if a- not initialised then

l [W2. 1r(Wl)]? >->::Rk / / determine initial control region, see section 5.2.3.3
a- +- Sk / / set a- (to) to an initial set index, equivalent to k
return ::Rk / / and set a- initialised flag

/ / implement hysteresis based region selection based on a­

if 0 :::; W2 < 1r2 then

lif (W2 > 1r1) and (a- = S2) then
I return::R2 .

else
L return ::R l

else if 1r2 :::; W2 < 1r4 then

lif (W2 > 1r3) and (a- = S3) then
I return ::R3

else
L return ::R2

else if W2 2:> 1r4 then
L return ::R3

else
L return ::R4

end

The initialisation logic, [W2, 1r(Wl)]? >-> ::Rk , has not been explicitly shown here, as it is of
secondary importance to the hysteresis logic implementation. For those who seek greater insight
into this algorithm, a C++ implementation is shown in the Update_ControLRegionO method
in Appendix D.1.4.

5.2.3.7 Switching Signal Transition Algorithm

This algorithm implements a simple selection process which pivots off the work performed by
Algorithm 3, in order to change the set element of the a switching signal, Algorithm 4. This
simple algorithm is applicable provided that previous work on implementing the hysteresis
switching logic on the control region transitions has been taken into account.

72



5.2 Materials Handling

Algorithm 4: Switching Signal Selection Algorithm

Input: Current control region ~k based on x E 1R3 and the switching signals left limit
value 8i E S ~ {l,2,3,4}

Output: The correct set element value for a
begin

if i =I k then

I a~ 8k
a ~a

else

La~ 8i
a ~a

end

5.2.3.8 Control Input Algorithm

This algorithm implements the control law based on the value of the current switching signal
a. The diffeomorphism is also taken into account, Algorithm 5.

Algorithm 5: Selectable Control Law Application

Input: The current value of the switching signal a = 8i E S ~ {I, 2, 3, 4}
Output: A control law application u = ga(x)
begin

switch a do
case 8j

L u=gdx)
case 82

L u= g2(X)
case 83
L u= g3(X)

case 84

L u= g4(£)

/ / convert back into required translational and rotational velocity

v = Uj + U2 (Xrel sin Orel - Yrel cos Orel)
W = U2

end

5.2.3.9 C++ Class Implementation

The logic based switching controller was implemented in C++ as a Switcher object. The
Switcher object was integrated into RollerMHP's ModRo11erMHP...Driver driver which pro­
vided the Switcher object with the necessary data to perform the control laws, i.e. provided
access to RollerMHP's configuration data, and allowed the controller to set required transla­
tional and rotational velocities see Appendix D. The Switcher object is integrated directly into
ModRollerMHP...Driver code, this was done purely for testing purposes. Currently, the code is
being ported to an abstract driver, allowing research colleagues to benefit from the control law
and further enhance its properties within the scope of the Player Robot Device Interface.

5.2.3.10 Testing and Response Characteristics

The logic based switching controller has very interesting response characteristics that, unfortu­
nately, make it extremely difficult to tune. 1\ming the algorithm consists of selecting the gains
on the 'Trj functions, in order to achieve reasonable, rather than required, state trajectories in

73



5. TASK EXECUTION LAYER

the state space of Brockett's nonholonomic integrator, recall Figure 5.7. A poor selection of
bounding function gains, represented as "tuning constants" in Algorithm 3, can have a detri­
mental affect on posture stabilisation performance. This is a characteristic of the hybrid nature
of the logic based switching controller, in that the temporally continuous switching between
predetermined control laws produces feedback vector fields that reasonably stabilise the trans­
formed state vector onto the origin. Thus the diffeomorphism's pre-image, i.e. the real world
configuration trajectory of the differential drive platform, may not behave quite as expected.
This is one of the major drawbacks of this type of posture stabilising controller implementation.

/
/-'. / I y-location error

,/ ~,I /
I / '. I'I .....

I I' I .......... ~_ ~-

: J ' .
.f I .............

!/ -'~-.

I I /
1 I I

//,
1 I

-.I'-- /
I /

/ I .,...
/

1/ \ x-location error
1

7.' 10 11. '5 " 17.5 " :12. '5 " 27.5 "Ti.... (-)

/
/

/

1

orientation

"error "-
~ 11

;' I
I
I
I

/
-1.5000 /1,
').0000 ./

-2.0000

l. 50CI:

J.OlJOO

:0-
1.5000

- 2.0000

~
..
.. 1.5000.. 0

0 .. l.CIlC!C.. .... •• 0.5000

C
C
0 a.aotlo0 ....

." .,., - -0.5000." .,
• c
0 • -1.0000
llo ......

·1.50000

Figure 5.10: Posture Stabilisation Response for Logic Based Switching Controller
- The orientation co-ordinate wraps around due to the identification of the configuration space
IR2 x SOl

After rigorous tuning, a response from an initial configuration of [-1.50, -3.00, o.oof showed
convergence to the origin of the configuration space as t -> 00, Figure 5.10.

As can be seen from the response of the orientation coordinate, RollerMHP did spin around
a few times. This characteristic only appears from large initial configuration errors in which
multiple switches in the control laws are required in order to stabilise the configuration onto
the origin. The author feels that it is the time invariance of each control law implementation
that causes this behaviour, and time varying control law implementations would perhaps suit
this kind of application better. It is to the authors knowledge that this is the first time any
algorithm of this kind has been implemented on a real mobile robot platform of considerable
size and dynamic influence.

Greater insight into this controller implementation comes from analysis of the position tra­
jectory, Figure 5.11.
The error in the final configuration is due to a number of reasons. On physical systems when the
vector fields become small near the origin of the configuration space, the magnitude of the input
commands fall below that required to produce further motion of the physical platform, and as
such contributes to the steady state error of the controller. This behaviour is further enhanced
through the quantisation of the underlying digital feedback infrastructure, i.e. the quadrature
encoders providing angular velocity feedback on the drive wheels, as lower velocities are more
sensitive to the quantisation effects of digital feedback.

The run-time architecture of the software implementations used in executing the controller
on computing infrastructure also plays a major role in performance. Multi-threaded implemen­
tations that run the control application algorithm, Algorithm 5 in a separate thread from that
of the state extraction and switching signal transition algorithms, Procedure 2 and Algorithms

74



5.2 Materials Handling

to 0000

l. soDa

3.0000

01.5000

'2.0000

1. SODA

:! 1. DODO

" 0.50000.....
0.0000•u

0... -0.5000
I
>.

·1.0000

.1. ~ooo

.~. 0000

-:l.SOOO

·).0000

').5000

\
\

\

\

/"';-"'-

:'
I

High region .witching frequency

Actual Final
Configuration
[0.0129, 0.1792, 0.09)'

~~ ::O~God

Confiquration
[0.00, 0.00, 0.00)'

Initial
Confi9\lration
1-1.50, -3.00, 0.00)'

-'2.5 -2.0 ·1.5 ·1.0 ·0.5 0.00 0.50 1.00 1.50 2.00 ~.SO 3.00 3.50 4.00
~ 000 000 000 000 DD 00 00 00 00 00 00 00 00

x-location (a)

.•.oooo+__----,.-~-~-~-~-...._-+__-~__,.-__..-~-.........-_r_-...._____1
· •. 0 ·]..5 ,),0
000 000 000

Figure 5.11: RollerMHP's Position Trajectory Response-

3 and 4, are exposed to the negative effects of random scheduling. This can produce unwanted
characteristics that are not actually part of the controllers fundamental mathematical proper­
ties. These "race conditions" usually contribute to headaches, rather than performance, and
should be eliminated through the correct mutex l locking of shared data, such as the image of
the switching signal 0".

After testing the controller with multi-threaded based code implementations, the author is
convinced that a single threaded code implementation of the controller can only better the per­
formance of the switching signal and thus the controller, in stabilising Brockett's nonholonomic
integrator and thus, through diffeomorphic transformations, mobile robot platforms.

To show how bad things can get with the hybrid dynamic system produced through the
associated switching logic of the controller, RollerMHP's first posture stabilisation response is
shown in Figure 5.12. RollerMHP was placed on a stand during this initial test, this was great
insight as can be seen in the response.
The response shown in Figure 5.12 is a true indication of Lyapunov stability, and pays tribute
to the truly nonlinear nature of the feedback stabilisation of differential drive platforms, and
the associated Brockett system through diffeomorphic transformation. Although Lyapunov
stability is considered a weak form of stability, it is a very real quantity that should not be
overlooked in the discussion of system performance.

5.2.4 Control Law Implementation Through Polar Coordinate Trans-
formation

The previous controller utilised the control characteristics of logic based switching between
time-invariant controJ Jaws to produce resultant vector fields capable of producing, locally lips­
chitz and piecewise continuous, integral curves, or state trajectories, that converge to the origin

1Mutual Exclusions are used in computer science to represent the semantics associated with mutually ex­
clusive access to shared data in a multi-threaded software application

75



5. TASK EXECUTION LAYER

, / x-location .rror

, .(

"

15

11.5

:;; 10 y-location error

~
• \!:!. 1.5

" "0 0

" t
"• • 2.5 ,
c c
0 0... ... ... .---., .,... •• ., '2.5
0 c ,... • ,

' .... ·5

" ,
0 , ,

·1.S
".

·10
0 10 15

/
'-,/-
,

/

20

Ti... (a)

30 35 40 45

Figure 5.12: RollerMHP's First Response -

of the state space as t -+ 00. This was done so as to overcome the obstructions and conditions
imposed by the insights provided by Brockett.

Another method of overcoming the control obstructions placed on systems not satisfying
Brockett's Condition for smooth feedback stabilisability, is to remove the Cartesian coordinates
from the differential drives state space and replace them with ones of a polar coordinate nature.
This was done so for the second controller implementation which is based on the control law
developed in [12J.

5.2.4.1 Polar Coordinate Transformation

With reference to Figure 5.13, the following polar coordinate transformation was applied to
the configuration of a differential drive platform to produce a control system which overcomes
Brockett's Condition for smooth time-invariant feedback stabilisation, Eq. 5.24 through 5.26
[15J. For clarity purposes in the following description, relative configurations will be denoted
as if they are absolute, i.e. qrel = q, although all configurations are relative to the goal point,
which is denoted the origin during control application, and as such, one can treat qrel as q.

y

I~<+_.L.-_.. X

p

Figure 5.13: Polar Coordinate Transformation-

p (5.24)

76



5.2 Materials Handling

tan-1 (~) - 8 + 7T

~(+ 8

(5.25)

(5.26)

Using this new coordinate system, the system model, in the form of state differential equations,
for a differential drive becomes characterised by a singularity at the origin of the state space,
Eq. 5.27 through 5.29 [15].

P -coS'Y v (5.27)

"y
sin 'Y

(5.28)--v-w
p

J sin 'Y
(5.29)--v

p

This introduces some practical restrictions on algorithm implementation and results in a lower
bound on accuracy. However, through careful algorithm implementation, this lower bound can
be made insignificant.

5.2.4.2 Control Law Implementation

The following non-linear control law was used in setting up the necessary feedback vector fields
to produce a globally asymptotic and stable equilibrium point at the origin of the state space,
Eq. 5.30 and 5.31 [15].

v

w

k1 Pcos 'Y

sin ~(COS 'Y
k2 ~( + k1 b + k3 8)

~I

(5.30)

(5.31)

Where, k1 , k2 , and k3 are the tuning parameters.

(5.33)

(5.32)v

w

5.2.4.3 'lUning Properties

The pivotal properties of the control law can be exposed by transforming back into the con­
figuration space incorporating Cartesian coordinates and analysing the resulting input vector
fields along the x and y axes of the local goal configuration, Eq. 5.32 and 5.33.

k1 Jx 2 + y2 cos (tan-1 ( ~) - 8 + 7T)

k2 (tan-1 (~) - 8 + 7T) +

k
1

[Sin ( tan-
1(;) - 8 + 7T) cos ( tan-

1( ; ) - 8 + 7T) ]

( tan -1 (;) - 8 + 7T)

X[tan-1 (~) - 8 + 7T + k3 ( tan-1 (~) + 7T) ]

By analysi,ng the control law in the "native" configuration space of the differential drive plat­
form allows insight into tuning the controller in order to optimise performance.

Along the x and y axes of the goal configuration, input translation vector fields v vary
sinusoidally, according to the relative orientation error between the current configuration and
goal configuration, Figure 5.14.

77



5. TASK EXECUTION LAYER

Jnput Tranalational Velocity Surface.

v

"'. I-->.,
~O.2

~u 0."....-- ...
o 10

. y~, (a) (tor K ••, • 0)
,
,

TI-_·~·
, ,

"1~~'-'
"1

~
v (a/.).'i.

, ~! ~
~__ _ __+ -u ~
I't:~ -1.0 ___,

t

Figure 5.14: Input Translational Velocity Variation - As can e seen by the input transla­
tional velocity variations, shortest path convergence properties have been incorporated into this
controller

For current configurations anywhere along the goal configurations local y-axis, i.e. '<Ix = 0, from
Eq. 5.32, tan-] (y/x) = 7f/2 - n7f,n E {O,l}, and v = k]lyl cos (7f/2+ (1- n)7f - Orel)'

Along the positive y-axis, n = 0 and v = k] y cos (32" - Orel), which is maximised at k] y
for Orel = 3; and minimised at -k] y for Orel = ~. Along the negative y-axis, n = 1 and
v = k] Iyl cos (7f/2 - Orel), which is maximised at k] Iyl for Orel = ~ and minimised at -k] Iyl
for Orel = 32".

For current configurations anywhere along the goal configurations local x-axis, i.e. '<Iy = 0,
from Eq. 5.32, tan-] (y/x) = n 7f, nE {O, I}, and v = k] Ixl cos ((n + 1) 7f - Ored·

Along the positive x-axis, n = 0 and v = k] x cos (7f - Orel), which is maximised at k] x
for Orel = 7f and minimised at -k] x for Orel = O. Along the negative x-axis, n = 1 and
v = k] Ixl cos (27f - Orel), which is maximised at k] Ixl for Orel = 0 and minimised at -k] Ixl for
Orel = 7f

For other configurations involving non-zero x and y values, the tan- 1 (y/x) term of the input
translational velocity, Eq. 5.32 contributes to the phase shift in the sinusoidal velocity variations
around relative orientation errors, according to the cmrent approach quadrant. However, the
magnitude of the translational velocity input v is still tuned entirely by the constant k] and
thus, must be set to a value that optimises performance over the operating range of the posture
stabilisation controller. By the definition of a FMRP, recall section 2.3.2.3, the euclidean
distance between a configuration on the boarder of a Region of Convergence and the I/O port
of the associated manufacturing infrastructure subset represents the maximum "p = Jx 2 + y2"

seen by the posture stabilising controller. In order to prevent unnecessary saturation of control
inputs in the face of physical systems like RollerMHP, the maximum translational velocity input
must potentially occur] on the boarder of the RoC, i.e.

Ivl max = k] Pmax

1 i.e. If the relative orientation in the configuration error between a configuration on the boarder of a RoC
and the I/O port is such as to produce an extreme value of Eq. 5.32

78



5.2 Materials Handling

The DC motor and chain and sprocket power transmission unit powering each active drive wheel
provides RollerMHP with a maximum translational velocity of approximately 2 m/so Roller­
MHP has been governed to a maximum translational velocity of 1.5 m/s in order to prevent
excessive wear on the drive motors. Utilising a maximum radius for a RoC of 3 rn, equivalent
to the maximum p seen by the control law in Equation 5.30, a gain of k) = 0.5 provides the
necessary mapping of maximum translational velocity to suitable configurations on the boarder
of a RoC as required.

Through much the same analysis of Eq. 5.33, the tuning parameters, k2 and k3 can be
chosen so as to provide maximum angular velocity inputs within the capability of the physical
system in question, i.e. RollerMHP.

Although this analysis may provide slight insight into tuning the controller, it is always
best to optimise the performance through on-line tuning. On-line tuning produced k2 = 0.4
and k3 = 0.6 to provide convergence from arbitrary configurations within a 3m circular region
around the goal configuration, Le. [0.0,0.0, O.OJT in times less than 10 seconds.

5.2.4.4 Testing and Response Characteristics

For testing purposes, the polar coordinate based posture stabilising control law was integrated
directly into the ModRollerMHP.J)river driver, see the PolarControlAlgorithm 0 method in
Appendix C.l.

The polar coordinate transformation produces trajectories that seem "natural" in the sense
that the trajectories mimic those of feed-forward control. This is beneficial as one can determine
the maximum area occupied by the mobile platform during posture stabilisation.

Multiple tests were preformed during the on-line tuning of the controller. Tasks were as­
signed a difficulty rating, depending on the degree in which the differential constraints were
"stimulated" by the requested motion. For example, a parallel parking operation is the most
difficult posture stabilisation operation for a differential drive, while a straight line motion is
the easiest.

Preliminary tests involved the on-line tuning of the controller and were all performed from
the same initial configuration of 1-3.00, -1.50, O.OJ. The first response was selected at k) = 0.4,
k2 = 0.3 and k3 = 0.7, Figure 5.15.

/,8... 1 Error

9.0008.0007.0006.0005.000t.ooo

"

3.0002.0001.000

1.250

1.000

0.750

0.500

:;; 0.250

! • 0.000..
-0.250.. .. '0.500

0 0.. .. -0.750.. .... .. ·1.000
c c -1.250
Q Q... ... ·1.500.. ..... • -1. 750• ~Q '2.000.. •... '2.250..

0 -2.500

-2.750

-] .000
0.000

Tima la)

Figure 5.15: Posture Stabilisation -

The "natural" response characteristics of the controller can be seen in the Xrel - '!;/rel trajectory,
Figure 5.16. The response produced a steady state error in position of around 1.6% of the initial

79



5. TASK EXECUTION LAYER

configuration error with an absolute value of p = 5.32cm. This can be considered reasonable in
the face of the digitised low-level feedback infrastructure and frictional effects of RollerMHP's
drive infrastructure.

Poa1t1on Trajectory

Goal
Confiqu.~ation

[0.00,0.00,0.00)'

1.0000.000-I. ODD-2.000

Final Configuration
[-0.052, 0.011, 0.021]'

--....~:l:::;::r..-

. J. 000

Initial Configuration
[-3.00, -1.50, 0.00]'

1.000

0.750

0.500

0.150

O.ODD

• 0 .150

! . 0 .500

·0.750
)0;' '1.000

·1.150

'1.500

.1. 750

·:l.ODO

·1.HO

'1.500

·2.750

·J.OOO
'4.000

Figure 5.16: Position Trajectory -

The control inputs fall well below saturation levels and show good convergence properties, Fig­
ure 5.17.

Input Tranlat10nal Velocity

~r----- ':'
Input Anqular Valocity "~--

--
'.000'.0007.000IS.ODD5.0004.(l00) .0002.0001.000

1.2ao

• 1.100
..... .- 1.000.! .......,

0.900> •.. 0.800
>. 3 0.700..... 0.600U
0 ..

0.500... ..
a ...

a.too> g... ... 0.300

• a
~ > 0.200
0

~ fl.IDO.....
a ... 0.000... 6-• -0.100
~ ~• -0.200.... -0.300

0.000

Time (a)

Figure 5.17: Control Input Convergence - The fixed lower limit on the angular velocity
input w as t -> 00 and p -> 0 is a practical requirement during application of this controller

The angles "y and 8 are undefined for x = y = 0 and as such, the practical application of this
controller requires slight modification to the control law implementation. As p ---+ 0, the values
for ~I and 8 must be "locked" on the values assumed in the final approaching phase. This
practical obstruction partially contributes to the steady state error of the controller and can be

. seen in the angular velocity response in Figure 5.17,

From insight into the extremums of the translational and angular velocity inputs over the
configuration error-space representing an empty RoC, and the physical limitations of Roller­
MHP, the controller was tuned to as to attain minimum convergence times while avoiding
control input saturation. With this setup, k1 = 0.5, k2 = 0.4 and k3 = 0.6, Figure 5.18.

80



5.2 Materials Handling

--- ---~=';""'----------=--=======:::=::::=::::====--'''''';';.~

1.,00

11.250., 1.000 I

:! • 0.7>01
~ 0.500 ..

0.250
~ ~

0.000 -
0 0
~ ~ '0.250
~

~.. .. -0.500

C C '0.150

0 0 -1.000... .... .. ·J.2!:10... ~ -1.500•0 C .1. 750.. e.. -2.000..
0 ·;1.250

-3.500
'2."150

".000
0

I y~.ltrror

Cl 0.5 0 1 1 1.5 1
.:15 .1$ .:15 .15

___ 8 Error
~ ~>

I I •

:I 2.5 2 ], 3.5' f, ••5. '5 5.5 5 6 6 •.!,
.25 ."5 .25 .75 .21 ." .:3& .75 .25 ."

Ti_ ta)

Figure 5.18: Optimal Convergence-

With these tuning parameter values, the steady state error is approximately 2% of the initial
configuration error with an absolute value of p = 7cm, Figure 5.19.

Poaition Trajectory

Finel Configuration
(-0.05, 0.016, 0.041J"~~~3~------l-GO.1Configuration

(0.00, 0.00, 0.00)'

Initial Confi9Qration
(-3.00, -1.50, o. OO!'

1.0000.000

/

·1.000-2.000'3.000

1.000

0.750

0.500

0.250

0.000

-0.250

-0.500

-0.750. -1.000:.:
-1.25(1

·1.50D

-1.750

'2.000

-2.250

-2.500

-2.750

".000
•.... 000

Figure 5.19: Time-Optimal Position Trajectory -

The translational velocity input command is seen to be maximised at 1.5 m/s at the initial
configuration error thus contributing to the minimal convergence time, Figure 5.20.
The hardest task, in terms of posture stabilisation through full state feedback control, for a
differential drive platform, is a parallel parking operation. This directly opposes the differen­
tial constraints imposed on the platforms generalised configuration velocity through the rolling
without slipping condition. RollerMHP was given the task of parallel parking under posture
stabilisation in order to rigorously test the capabilities of the polar coordinate transformation
based controller. A response from an initial configuration of [0.00, -3.00, O.OO]T is shown in
Figure 5.21. The position trajectory is shown in Figure 5.22.
The control inputs are within their limits as shown in Figure 5.23 RollerMHP can be seen
performing a parallel parking operation in the video located on the CD accompanying this
dissertation.

5.2.5 Summary

In this particular instance of physical platform implementation, facilitation of the motion
requirements of the materials handling primitive of a FMRP requires posture stabilisation,
through full state feedback control, of under-actuated mobility systems with nonholonomic

81



5. TASK EXECUTION LAYER

1.600.. ....- Input Tranalational Velocity
"- 1.400

.! 11 '",
"- 1.~00

"'''''-\~ "..
>. ..., 1.000..

S ""--u
0

>. 0.800...
11 .,
> ..

~ ....-- '.u 0.600... 0 "-.. ... -/c .. 0.4000 >.. .. Input Anqulllr Velocity.,.. .. O.~OO... ...
11 rc 0.000......

... _------------
'0.400 +--~--,.......-.......-__._--..__-_._--,.......- -__.--~-_._--,.......-~-___,

0.000 0.500 1.000 1.500 ~.OOO ~.500 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500 7.000

Time (s)

Figure 5.20: Time-Optimal Control Input Convergence -

~8~. Error

YI"e.l Error

X
n1

Error

3.000000

2.500000

2.000000

1.500000

1.000000

0.500000

0.000000

'0.500000

-1.000000 ./

'1. 500000

'2.000000

'2.500000

'3.000000 -

:;;-
os

i l<

l< l<
00 l<

l< l<
l< 101101

<: <:
0

0 ...... ...... OS... ..... <:0 •Po ...
l<
0

108j4
'3.500000 +---....---,--___,---,---.......---,-----,---,----,----,

o

Time (a)

Figure 5.21: Configuration Error Convergence for Parallel Parking Operation -

82



5.2 Materials Handling

Final Configuration Goal Configuration

(-0.057, 0.014, 0.025)' / [0.00, 0.00, 0.00)',, ,, ,, ,,

(i
,

---.,

~......" Trajactory

~~Initial Configuration
(0.00, -3.00, O.OO!,

1.000000

0.750000

0.500000

0.250000

0.000000

• 0.250000

-0.500000

-0.750000

'1. 000000

-1.250000

-1.500000

-1. 750000

-2.000000

-2.250000

-2.500000

-:Z.750000

-3.000000

-3.250000

-3.500000

-3.750000

'4.000000
-2.000000 -1. 000000 0.000000

Xn , (ID)

1.000000 2.000000

Figure 5.22: Position Trajectory for a Parallel Parking Operation -

1.100000

1.000000

• 0.'00000
..... .. 0.800000! .......,

0.700000~ •
>. ~ 0.600000.,

3...
0.5000000

0 >.... .. 0.400000• ...
> 0 0.3000000... ...• a 0.200000c >0... .. 0.100000., •• ... 0.000000... :I• t>oc c -0.100000• 0(..
t< -0.200000

-0.300000

-0.400000

-0.500000
0 1

~ Input Tranalational Valocity

10

Time (a)

Figure 5.23: Control Input Convergence for Parallel Parking Operation -

83



5. TASK EXECUTION LAYER

kinematic constraints. These constraints limit the applicability of suitable controllers to non­
linear, piecewise continuous and time varying control laws.

The response achieved with the polar coordinate transformation based controller, enables
the occupancy region1 to be estimated before hand. This is due to the "natural" response char­
acteristics created through the implementation of the control law. Also, the properties of the
resulting fully qualified vector field make optimisation of the controller, in terms of matching
physical capabilities with the those produced by the tuned controller, a relatively simple task.

Due to the vector field properties of Brockett's system, i.e. the state locking characteristics of
the nonholonomic integrator, posture stabilisation based on the application of control laws, de­
signed to stabilise generic nonholonomic integrators, does not produce feasible state trajectories
in terms of establishing deterministic occupancy regions. This is due to the limited applicabil­
ity of diffeomorphisms required to transform the generalised configuration of differential drive
platforms into that of Brockett's system.

5.3 Chapter Summary
The Task Execution Layer of the AMTS has been presented in terms of control and navigation
requirements. The real-time aspects of material payload and transportation task execution is
associated with this layer of the AMTS, and so methods of establishing "longest execution time"
metrics should be of concern. Establishing these sort of performance metrics for the Global
Navigation sub-block is a difficult, or perhaps even intractable task, due to the uncertainty in
the placement of dynamic obstacles, such as other mobile materials handling and routing robot
platforms2 . The development of these metrics for the Materials Handling sub-block provides
grounds for far more tractable efforts. The RoC in the definition of a FMRP is one such element
that provides the grounds to develop "longest execution time" metrics. As seen in section
5.2.4, one can optimise certain classes of posture stabilisation controllers such that physical
capabilities of materials handling and routing robot platforms can map to "longest execution
time" quantities through considering the size of the RoC. This was achieved in section 5.2.4.3
and allows RollerMHP to have a, worst case, 10 second convergence time3 independent of initial
configurations on the boundary of a RoC.

I For this discussion, the occupancy region is considered as the total region of space required to perform
posture stabilisation, in terms of the joint collective of positional trajectories and the physical volume occupied
by the materials handling and routing robot platform

2Static obstacles are known with absolute certainty, i.e. the plant layout
3 Analogous to settling time in control terms

84



Chapter 6

Summary and Future Research

{{ProbLems worthy of attack prove their worth by fighting back" -Paul
Erdos

This chapter aims at summarising this dissertation in such a way as to bring into scope the
crucial insights into the problems involved in facilitating the materials handling environments
created through MCM production operations.

The research objectives of section 1.2 are once again addressed including the solution meth­
ods employed in achieving them.

6.1 Mass Customisation Manufacturing

In the context of facilitating modern niche markets and establishing first mover market share
through responsive manufacturing techniques, the successful implementation of MCM produc­
tion structures relies on a manufacturing firms ability to constructively and concurrently inte­
grate all available manufacturing resources. This includes both passive and active manufactur­
ing infrastructure.

The control theoretic model and description of the production structure involved in MCM,
recall Figure 2.1 provides semantic homogeneity for engineers across multiple disciplines. The
author considers this approach as a means of establishing Common Model Development (CMD)
in the modern research community. The standardisation of concepts brought on by CMD
can provide the necessary infrastructure to establish international research partnerships, thus
aiding the development of third world nations through constructive and relevant research and
development practices.

6.1.1 Effective Plant Layout Design

It has been established in chapter 2 that plant layout, as a passive measure of decreasing required
materials handling, is just as important as the development of highly engineered autonomous
materials handling and routing robots, in facilitating the materials handling requirements of
customer-induced variations in production requirements.

The deterministic nature of customer-induced variations in production requirements plays
a major role in establishing insight into the concurrent design and application of plant layout
structures and active flexible materials handling infrastructure, such as the mobile robot plat­
form developed during this research project. This aspect of production implementation once
again highlights the need for concurrent engineering. Papers such as !49] describing methods of
applying probabilistic models to develop metrics that describe customer preference in product
choice is evidence that there exists a research community involved in the research required to
achieve insight into the development of efficient MCM production operations.

85



6. SUMMARY AND FUTURE RESEARCH

6.1.2 MCM Product Design through DFMC

It is not uncommon for engineers to create and introduce unnecessary production problems into
a manufacturing environment through aggressive design and development of products that are
sensitive to process and product configuration variations. As far as the problem space asso­
ciated with this research project is concerned, the design of products that minimise required
materials handling is a particularly useful design goal. In this regard, DFMC plays one of the
most crucial roles in establishing successful MCM production operations and implicitly deter­
mines the production dynamics and materials handling and routing environment associated
with production rate output of a manufacturing system, recall the pre-filter analogy of Figure
2.1.

Production engineers should try to strike a balance between developing products that "be­
have well" , in terms of producing bounded variations in production requirements, and products
that have the capability of satisfying the psyche of demanding customers. This is by no means
an easy task, although through the application of flexible materials handling and routing sys­
tems, the problems associated with customer-induced material routing variations could be to a
lesser degree.

6.1.3 The FMRP Definition and Problem Space

As this research was concerned with materials handling and routing in MCM production en­
vironments, the problem space associated with performing a materials handling and routing
task between distributed, unconnected, manufacturing infrast.ructure required quantification in
order to establish a well defined problem space.

The FMRP task definition provided in section 2.3.2.3 takes into a.ccount the various forms
of motion control required to provide robust material payload transfer to and from materials
handling infrastructure via correct alignment, through posture stabilisation, of the mobile robot
platform with the input/output port infrastructure of FMS processing cells.

A material transportation primitive of a FMRP task essentially decomposes into a global
path planning and local navigation and real-time obstacle avoidance problem. There is much
literature on this subject in the mobile robotics research community although, in the majority
of the literature, application scope falls under unstructured environments unlike those utilis­
ing structured plant layouts for production implementation. There is a need to develop path
planning algorithms for mobile materials handling and routing robot platforms that include
optimisations based on knowledge of scheduling outputs in the production plant.

6.2 The AMTS for Generic Encapsulation

Quantifying the properties and requirements for developing solutions to the problem space
spanned by the materials handling environment of MCM based customer-induced variations in
production requirements, has allowed for the generic encapsulation of requisite functionality in
an implementation architecture. This architecture, the AMTS, provides flexible materials han­
dling and routing system implementations with the capability of interfacing with higher-level
management frameworks at a level that can allow for the application of scheduling optimisa­
tions procedures.

By implementing an architecture rather than a specific materials handling system implemen­
tation, one can encapsulate the generic motion control and communication facilities required in
order to perform high-level l material payload routing in the dynamic production environments
of MCM production plant.

1 High-level in the sense of scheduling management and autonomous operation

86



6.2 The AMTS for Generic Encapsulation

6.2.1 Device Collections versus Monolithic Robot Implementations

One of the main aspects of the AM'FS is the near one to one mapping between the functionality
specified by the sub-blocks of each respective layer and the associated functionality required for
FMRP task execution. This axiomatic property allows for a shift in the way in which physical
implementations of the ATMS are envisaged in a system scope. Rather than monolithic robot
implementations with limited reconfigurability, the ATMS produces platforms which essentially
represent the constructive integration of functionally correlated, yet operationally disjoint de-­
vices, each performing well defined operations. This can be seen in RollerMHP's physical
implementation.

6.2.2 The Need for Software Scalability and Code Re-Use

In order to produce an extensible and scalable framework for developing control structures for
mobile materials handling and routing robot platforms, methods acquired from Operating Sys­
tem theory can be put to good use. The functionality provided by the HAL software construct
of Operating System implementations is highly applicable to modern robotic systems with het­
erogeneous hardware implementations.

The Player Robot Device Interface is the worlds leading implementation of this functionality
and is one of the most successful Open Source software projects in the mobile robotics research
community. The client-server operating model makes Player even more powerful by proving
network scoped access to device instances, thus allowing for the distribution of device messages
across IP networks. This also means that any software system which can communicate through
TCP sockets is capable of manipulating robotic devices under Player's operating context, as
long as each system adheres to XDR data marshaling and Player's messaging constructs.

RollerMHP's network scoped device access provides the capability of high information dis­
tribution and resource integration, for example, Player's server implementation can accept an
arbitrarily large amount of client application subscriptions meaning that multiple clients can
hold proxy's on the same devices. This has good application in large distributed manufacturing
environments where the task allocation systems could implement dynamic client subscriptions
in the underlying FMRP task allocation procedures as the mobile robot platforms navigate
in and out of various processing regions of the plant. This would be required in high noise
environments where there are already multiple active wireless networks, in order to maximise
the communication signal strength providing FMRP task allocations.

6.2.3 The Motion Control Problem

Chapter 5 presented the control obstructions and solutions in implementing fun state feedback
control in order to perform posture stabilisation of differential drive platforms. Due to Brock­
ett's Condition, linear control was not accessible and non-linear control laws or discontinuous
control laws had to be implemented. This lessens stability criteria development to those estab­
lished by Lyapunov which relies on the creation of auxiliary functions to determine the stability
of the closed loop motion control system. As the AMTS places specification on the capabilities
of the mobility generation devices rather than mechanical configuration, an effort to produce
holonomic mobility devices would allow for the application of linear time-invariant controllers
for posture stabilisation. However, the posture stabilisation performance provided by the polar
coordinate transformation based posture stabiliser of section 5.2.4 shows that differential drive
platforms are highly applicable in the materials handling environment of MCM production op­
erations.

What holonomic mobility configurations provide in feedback stabilisability and controllabil­
ity, an equally high gain in mechanical complexity accompanies the functionality. This brings
up the question of platform maintenance and operational robustness. The simpler mechani­
cal configuration would provide a more robust mobility generating device and so the author
sees differential drives as a good choice of mobility generation for physical implementations
facilitating the output specifications of the Mobility Hardware sub-block.

87



6. SUMMARY AND FUTURE RESEARCH

6.3 Research Project Summary

This research project has produced a materials handling and routing system implementation
architecture with the axiomatic properties to shift the way in which materials handling and
routing systems are envisaged in a system management and utilisation scope. By studying
the problem space spanned by the systems implicitly linked to materials handling and routing
requirements, such as plant layout and customer-induced variations in production requirements
brought on by the operating struct.ure of MCM production implementations, a well defined
flexible materials handling task was quantified in a FMRP definition.

Based on the FMRP definition and requisite execution functionality encapsulation, the
AMTS, a physical instance of a subset of the AMTS was realised to produce the RollerMHP
mobile robot platform. By developing RollerMHP in alignment with the AMTS, a network
scoped generic control structure was developed using the Player Robot Device Interface, a
world leader in Open Source robotic software.

RollerMHP provided a sound test bed for establishing the applicability of differential drives
in providing the necessary mobility in order to execute materials handling and routing oper­
ations in MCM production plants. The control obstructions established through nonholomic
kinematics and differential constraints were overcome through the use of discontinuous control
laws and nonlinear control laws, each showing asymptotic stability in the sense of Lyapunov.

Overall, the research project has provided great insight into the problem space spanned by
the production dynamics associated with customer-induced variations in production require­
ments in Mass Customisation Manufacturing. Over the research project, the following papers
were written and published in international conference proceedings.

- Bright. G and Walker. A.J. Standardised framework for flexible materials handling man­
agement, based on operating system primitives. In proc. of the Australasian Conference
on Robotics and Automation, ACRA, 2007. Brisbane Australia

- Bright. G and Walker. A.J. Mobile mechatronic platform architecture for flexible ma­
terials handling. In proc. of the Australasian Conference on Robotics and Automation,
ACRA, 2007. Brisbane Australia

- Bright. G and Walker. A.J. A mobile mechatronic platform architecture for the develop­
ment of flexible materials handling systems. in proc. of the 17th International Federation
of Automatic Control, IFAC, World Congress 2008. Seoul Korea

6.4 FU.t ure Research

Future research in the field of advanced manufacturing systems should involve the development
of vertically integrated materials handling and routing systems. This vertical integration into
higher-level manufacturing management frameworks would allow for higher-level manufacturing
execution and control systems to perform real-time materials handling and routing scheduling
optimisation procedures through structured access to "task sink interfaces" associated with the
physical devices performing payload routing operations in a production plant. In this regard,
the Task Allocation Layer of the AMTS architecture requires development. Furthermore, design
of the systems used in integrating the sub-blocks of the Task Allocation Layer should develop
on knowledge of the properties and characteristics of MCM production environments covered
in chapter 2.

Middleware systems are required to provide the necessary syntactic and semantic translation
between the software systems associated with higher-level manufacturing management frame­
works and those associated with the encapsulation of the Task Allocation Layer of the AMTS.
The request prot.ocols of interest are associated with instilling mutually exclusive access specifi­
cations between the input/output port infrastructure of processing cells and materials handling
robot platforms. The definition of a FMRP, recall section 2.3.2.3, incorporated the notion of a

88



6.4 Future Research

request access protocol for this reason.

FUture research work in developing metrics to quantify the dynamic behaviour of production
plant involved in MCM operations, would provide insight into the development of suitable
production operations based on the concurrent concepts presented in chapter 2, recall Figure
2.1.

89



6. SUMMARY AND FUTURE RESEARCH

90



Appendix A

Embedded System Technology

A somewhat sparse description of the embedded control technology developed by Acroname
Incorporated has been included here in order to provide insight into the technology used in
implementing the embedded systems during this research project.

A.I BrainStem@ Technology

IIIe Bu.
COnnector

BrainStem@ technology integrates hardware and software to produce embedded control mod­
ules that operate in a form analogous to the human nervous system. The technology was
developed by Acroname Incorporated [37J, and is used by research organisations, academic
institutions, and in commercial Original Equipment Manufacturers (OEM) applications alike.

A.l.! Hardware Module Implementation
BrainStem@ technology has been encapsulated in a family of PIC18C252 based embedded con­
trol modules, Figure A.I.

Figure A.I: BrainStem@ Network and Form Factor - The lIC bus connector on each
module has been designed to allow a set of modules to be stacked on top of each other, much like
the PC 104 form factor

All control modules have a standardised serial DART, Inter-Integrated Circuit (lIC) Bus, and
logic power interface which allows the technology to develop on networking concepts by relay­
ing information across industry standard protocols such as nc. This allows for scalability in
hardware implementation through the utilisation of a common form factor.

In a BrainStem@ network, one module is configured to act as a router and handles traffic
between the host computing platform and all other modules on the network, utilising its built-in
routing engine.

91



A. EMBEDDED SYSTEM TECHNOLOGY

Each module has a different application scope ranging from general purpose use for interfac­
ing with sensors, actuators, LCD screens, and other embedded hardware through to dedicated
high resolution motion control. An introduction to the embedded control modules utilised
during this research project is presented in sections A.1.1.1 and A.1.1.2.

A.1.1.l BrainStem@ Moto 1.0 Module

The BrainStem@ Moto 1.0 module has been specifically designed for closed loop motion control
applications and provides two high resolution motion control channels. Each motion control
channel has the I/O capability of providing a Pulse Width Modulation (PWM) signal between
2.5kHz and 5MHz and a TTL1 logic "direction" signal to drive a multitude of H-bridge DC
motor drivers. Quadrature encoder inputs are also available on each motion control channel for
velocity and position feedback in order to implement closed loop motion control of DC motor
drive systems, Figure A.2.

Channel 0 Channel 1

l Fr~
:.... ..... ........ ...... .... Quadrature
• I. •• • 'round Encoder

: 1-1 J: 1-1 ! +5V

: H ! AO

: '_I ! Al To H-bridqe

....-! 1"1: JLO'1
ic

• I_I ; Enc.oder A. Interface

: I_I • encoder 8

:. 1-1 ! PWM
• 1.1 --t---Dinction Input

: 1.1 ! DO/Brake· ......................
PIC1BC252 at 40KHz

Figure A.2: BrainStem@ Moto 1.0 Module and Motion Channel Pinout - The LM2940
low drop-out voltage regulator on the BrainStem@ Moto 1.0 module allows a voltage between
4.5V and 12V to power the module

The Moto 1.0 module is shipped with firmware based embedded PID control algorithms and
can perform both closed loop velocity and position control. The user can change the gains in
the embedded PID algorithms through a built-in command set in order to tune their systems
for an efficient closed loop control implementation.

The Moto 1.0 performs 4x state table decoding on its quadrature inputs, thus enabling accu­
rate, noise resistant feedback control in motion systems utilising H-bridge based motor drivers
as DC motor interface circuitry and quadrature encoders as feedback devices.

The Moto 1.0 keeps track of encoder counts for each motion control channel in a 32 bit ac­
cumulator. All feedback information into the embedded PID control loops from the quadrature
encoder inputs is made available to the user through memory mapped I/O ports, allowing the
user to aquire data to perform odometric calculations2 by reading memory mapped I/O. Host
computing platforms manipulate the Moto 1.0 module through a serial DART communication
link. The access and operating modes for BrainStem@ modules is discussed under section
A.1.2.

A.1.1.2 BrainStem@ GP 1.0 Module

The BrainStem@ GP 1.0 module is a general purpose embedded controller and provides the
same I/O facilities as most embedded micro-controller systems.

ITransistor-Transistor Logic
20dometry is covered in section 3.2.2.3

92



Digital I/O

A.I BrainStem@ Technology

RC Servo Control

Figure A.3: BrainStem@ GP 1.0 Module and I/O Pinout - The GP 1.0 module has
recently been replaced by the GP 2.0 module, which has added functionality, [37j

Apart from providing the standard serial UART and IIC interface, the module provides A/D
facilities, digital I/O and an array of PWM channels for driving standard RC servo's, Figure A.3.

BrainStem modules operate in the context of a system architecture that ranges from high­
level software Application Programming Interfaces (API's) and support libraries, through to
low-level device I/O for communicating with peripheral embedded hardware. An overview of
the BrainStem@ architecture follows in section A.1.2

A.1.2 System Architecture

The BrainStem@ architecture encapsulates high-level software, industry standard communica­
tion and inter-connect standards, and hardware modules to provide a comprehensive environ­
ment for robotic system development, Figure AA.

A.1.2.I High-Level Application Programming Interface

The highest level of abstraction holds cross-platform software library support and Application
Programming Interfaces (API's) for Java, C and C++ developers. Supported computing and
Operating System (OS) platforms include Windows, WinCE, PalmOS, MacOS X, and Linux.

A.1.2.2 Embedded Run-Time Kernel and Programming Framework

A BrainStem@ specific embedded programming language has been developed by Acroname
called Tiny Embedded Application (TEA) that encapsulates a subset of the C programming lan­
guage. Each BrainStem@ module has been equipped with an embedded multi-tasking run-time
kernel that allows several embedded TEA programs to execute concurrently. The embedded
kernel executes op-codes stored in a peripheral EEPROM memory chip to provide concurrency
for embedded application execution. Due to the EEPROM based implementation of the run­
time kernel, BrainStem@ modules are limited to a computational performance of around 9000
operations per second, which is considerably slow when considering that the PIC18C252 pro­
viding the CPU core and I/O peripherals runs at 40MHz. Flexibility in program execution is,
however, greatly increased through the embedded run-time kernel. TEA source files are com­
piled by the "aSteep" compiler on the host machine, into executable objects. These executables
can then be loaded onto a BrainStem@ module through the host-to-module serial communi­
cation link in an In System Programming (ISP) fashion. A virtual machine abstraction has
been developed and encapsulated in the "aTEAvm" software application that allows embedded

93



A. EMBEDDED SYSTEM TECHNOLOGY

I· I:
:1

I "81ueToDtn 'I, I

I 't

I
, ::I,

I,

"
j
' /,,

I,

"I?
, 'I
I f,
I "
I " /'

I
I
I
I
I

fROll !
I.,

~,,,

sDftware .hanlware .lndustry staManl bus .lInk

Figure A.4: The Architecture of the BrainStem@ Technology - The "a" prefix on each
software block is represents "Acroname" and is used throughout the software API's for maintain
portability between computing platforms

94



A.1 BrainStem@ Technology

TEA executables to be debugged on host computing machines, before being loaded onto the
modules.

A.1.2.3 Packetised Communication Protocol

Host computing platforms communicate with BrainStem@ modules through an industry stan­
dard serial DART, under a BrainStem@ specific packet protocol. Data sent to BrainStem@
modules from host platforms first passes through the "aStern" packet processing engine1

, which
packages standard serial character streams into packet structures that are recognisable by the
function table handling routines that form part of the embedded firmware on the BrainStem@
modules. Data sent back from the BrainStem@ modules is once again filtered through the
"aStern" packet processing engine where the packets are dismantled back into standard streams
of serial characters for host interpretation.

A.1.3 Operating Modes

BrainStem@ modules can run in multiple operating modes. These modes are not mutually
exclusive and it is possible for a module to be running in more than one operating mode at any
particular instant.

A.1.3.1 Slave Mode

In this mode, a host computer manipulates or reads memory mapped I/O directly through the
serial DART. BrainStem@ modules act as translators between higher-level host platforms and
a number of analog, digital, lIC and other devices.

A.1.3.2 TEA Mode

BrainStem@ modules operate in this mode by executing, possibly multiple concurrent, embed­
ded TEA programs through the facilities offerd by the embedded run-time kernel.

A.1.3.3 Reflex Mode

In this mode, one command or device I/O triggers another command or series of commands.
Reflexes are at the lowest level of program execution and are generally Ilsed in the context of
Inturrupt Service Routines (ISR) to free up the module from polling critical I/O transitions.

A.1.4 Summary

BrainStem@ technology has a multi-layered operating architecture that can facilitate cross­
platform development of embedded systems. This is benficial in modern times as embedded
applications are realised across heterogeneous systems. BrainStem@ technology has been im­
plemented in a family of PIC18C252 based embedded control modules. Module application
scope ranges from general purpose digital I/O to dedicated closed loop motion control.

1 In the form of a shared library encapsulation of packet processing functions implemented in C

95



A. EMBEDDED SYSTEM TECHNOLOGY

96



Appendix B

Embedded TEA Code Listing

Included here are source code listings for the embedded applications that were run on the
BrainStem@ modules.

B.l TEA Source File for BrainStem@ GP 1.0 Module
This code maintains sensor readings in the scratchpad, such that RollerMHP's onboard com­
puter can read in arrays consisting of range data.

\\ The Devantech SRF08 and SRF02 ultrasonic sensors have the same
IIC interface, infact the same embedded PlC,

and so use the same source code and header prototypes
#include <aSRF08.tea>
#include <aPad.tea>
#include <aCore.tea>
#include <aPrint.tea>
#define NUMOFSONARS 12

void main(void)
{

int sonar_ret = 0;
int debug;

aCore_Sleep(50000);
int i;
int j;
while (1)

{
char sonar_address = (char)OxEO;

for(i = 0; i < NUMOFSONARS; i++)
{

}

}

sonar_ret = aSRF08_Rangelnt«char)sonar_address. aSRF08_CM);
aPad_Writelnt(j, sonar_ret)
j = j + 2;
sonar_address = (char) (sonar_address + 2);

}

B.2 BrainStem@ Moto 1.0 TEA Source File
The code for controlling the left drive wheel has been listed here, the code for controlling the
right drive wheel is the same, apart from channel selection.

II Embedded TEA code for the Brainstem Driving the Left Motor

97



B. EMBEDDED TEA CODE LISTING

#include <aMotion. tea>
#include <aPad.tea>

void set_channel_parameters(void)
{

aMotion_SetMode(O, aMOTION_MODE_ENCVEL, (1 « aMOTION_PWMFLAG_INVPID»;
aMotion_SetMode(l, aMOTION_MODE_OFF, 0);

aMotion_SetParameter(O, aMOTION_PARAM_P, 320);

aMotion_SetParameter(O, aMOTION_PARAM_I, 0);

aMotion_SetParameter(O, aMOTION_PARAM_D, 1600);

aMotion_SetParameter(O, aMOTION_PARAM_COFFSET, 0);

aMotion_SetParameter(O, aMOTION_PARAM_PWMRAIL, 32767);

aMotion_SetParameter(O, aMOTION_PARAM_PERIOD, 200);

aMotion_SetParameter(O, aMOTION_PARAM_PWMFREQ, (int) (ObOOOOOOOOIObllllllll»;
}

void configure_motor_control(void)
{
II Set the ramp acceleration step
II time to 200ms for smooth
II velocity transitions
aMotion_SetRampAccStepTime(O, 200);
II Configure channels for velocity damping
aMotion_SetRampFlags(O, Ox0001);

aMotion_SetEnc32(0, 0, 0);
aMotion_RampEnable(O, 1);
return;
}

int main(void)
{

II local storage for the scratchpad "reference velocity"
int left_velocity;
set_channel_parameters();
configure_motor_control();

II Initialise the required scratchpad values
II to zero to prevent any nasty motor runaways
II at power on
aPad_WriteInt(O, (int)O);
II Start the infinite loop to continuously update
II velocity setpoints
while(l)
{
left_velocity = aPad_ReadInt«char)O);
aMotion_SetRampVel(O, left_velocity);
}
return 0;
}

98



Appendix C

c++ Player Driver Code

Below is a listing of the driver code developed to support RollerMHP under the position2d
and sonar interface specifications of the Player Robot Device Interface.

C.l position2d Driver Code

Included in the code listed here, are methods for creating file structures at run-time, for
data logging purposes. Also included is the implementation of the polar coordinate trans­
formation based posture stabilisation control law of section 5.2.4. This can be seen under
the ModRollerMHPJ)river: :PolarControlAlgoritbmO method which runs in its own thread
of execution after being invoked through the message processing methods associated with
ModRollerMHP...Driver: :ProcessMessageO, recall that a child implementation of a Driver
object must sit in an infinite loop and process Messages which arrive on their associated
MessageQueue object.

C.l.I Header File modrollermhp.h

#ifndef _ModRollerMHP_Driver
#define _ModRollerMHP_Driver

#include <aID.h>
#include <aStem.h>
#include <aPad.h>
#include <pthread.h>

#include <libplayercore/playercore.h>
#include <cstdio>

int max(double, double);
class ModRollerMHP Driver public Driver
{

virtual void Main();
player_devaddr_t position_addr;
player_devaddr_t power_addr;
int last_lticks;
int last_rticks;
bool odometryinitialised;
double gamma_negative;
double delta_negative;
bool gammadeltainit;
aStreamRef linkstream;
aIOLib ioref;
aStemLib stemref;
pthread_mutex_t controller_exit_mutex;

99



C. c++ PLAYER DRJVER CODE

int GetOdometry(int* It, int* rt, short* lv, short* rv);
int UpdateOdometry(int It, int rt);
int GetLibraries();
int OpenTerminal();
int ClearAccumulator(const char channel);

public:
double posx;
double posy;
double posa;
pthread_t polarcontrolthread;
FILE* xerror;
FILE* yerror;
FILE* therror;
FILE* xposition;
FILE* yposition;
FILE* velinput;
FILE* omegainput;
const char* serial_port;
bool polar_controller_called;
bool position_target_reached;
player_position2d_cmd_pos_t localpositioncmd;
ModRollerMHP_Driver(ConfigFile* cf, int section);
II controller thread
static void* polarentryfunc(void* arg);
int ProcessMessage(MessageQueue* resp_queue,

player_msghdr* hdr,
void* data);

int ProcessVeICommand(player_position2d_cmd_vel_t* cmd);
int thread_controller();
int PolarControIAlgorithm();

virtual int Setup();
virtual int Shutdown();
int SetVelocity(int, int);

};
#endif II ModRollerMHP_Driver

C.1.2 Source File modrollermhp. cc

1*
* Player - One Hell of a Robot Server
* Copyright (C) 2000
* Brian Gerkey, Kasper Stoy, Richard Vaughan, & Andrew Howard
*** This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
** This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
** You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
**1

100



C.I position2d Driver Code

1* Source code for supporting wheeled mobile robots which utilise,
* as there underlying drive control infrastructure, BrainStem Moto 1.0 modules
*** Author: Anthony John Walker, awalker~ukzn.ac.za

*1
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <aModuleUtil.h>
#include <aMotion.h>
#include <aModuleVal.h>
#include <aUtil.h>
#include <aModule.tea>
#include <aCmd.tea>
#include <aModuleVM.h>
#include <aErr.h>
#include "modrollermhp.h"
#include "modrollermhp_constants.h"

return «Driver*) (new ModRollerMHP_Driver(cf, section)));

Driver* ModRollerMHP_Driver_Init(ConfigFile*
{

}

cf, int section)

table->AddDriver("modrollermhp", ModRollerMHP_Driver_Init);

void ModRollerMHP_Driver_Register(DriverTable* table)
{

}

extern "C"
{

int player_driver_init(DriverTable* table)
{

ModRollerMHP_Driver_Register(table);
return(O);

}

{

}

memset(&this->position_addr, 0, sizeof(player_devaddr_t));
memset(&this->power_addr, 0, sizeof(player_devaddr_t));

if (cf->ReadDeviceAddr(&this->position_addr, section, "provides",
PLAYER_POSITION2D_CODE, -1, NULL) == 0)

{
if (Addlnterface(this->position_addr) != 0)

this->SetError(-l);
return;

}

if (cf->ReadDeviceAddr (&this->power_addr , section, "provides",
PLAYER_POWER_CODE, -1, NULL) == 0)

{

{

}

if (Addlnterface(this->power_addr) != 0)

this->SetError(-l);
return;

}

this->serial_port cf->ReadString(section, "port", MODROLLERMHP_DEFAULTPORT);

101



PLAYER_ERROR("Could not retrieve library entry addresses");

PLAYER_ERROR1("failed to open terminal: %s\n", strerror(errno));

C. c++ PLAYER DRIVER CODE

}

int ModRollerMHP_Driver::Setup()
{

puts ("ModRollerMHP_Driver initialising ... ") ;
this->posx = this->posy = this->posa = 0.0;
this->odometryinitialised = false;
this->polar_controller_called = false;
this->gammadeltainit = false;

pthread_mutex_init(&this->controller_exit_mutex, NULL);
this->xerror =

fopen("/home/awalker/development/motiondriver/logdatalx.txt", "W+");

this->yerror =
fopen("/home/awalker/development/motiondriver/logdataly.txt", "W+");

this->therror =
fopen("/home/awalker/development/motiondriver/logdatalth.txt l

,I W+");

this->velinput =
fopen("/home/awalker/development/motiondriver/logdata/velin.txt", "w+");

this->omegainput =
fopen("/home/awalker/development/motiondriver/logdatalomegain.txt", "W+");

this->xposition =
fopen("/home/awalker/development/motiondriver/logdatalxpos.txt", "W+");

this->yposition =
fopen("/home/awalker/development/motiondriver/logdatalypos.txt", "W+");

if(GetLibrariesO != 0)
{

}

if (OpenTerminal 0 ! = 0)
{

}

this->ClearAccumulator(O);
this->ClearAccumulator(l);

II Start the Main() thread ... calls dummy static funcs etc.
StartThread 0 ;
puts("ModRollerMHP_Driver initialised");

return(O);
}

int ModRollerMHP_Driver: :Shutdown()
{

puts("Releasing the ModRollerMHP_Driver ... ");

II Set the heartbeat to link dependant
aModuleVal_Set(this->stemref, 4, aMODULE_VAL_HBFLAG, 0);

StopThread();

if(this->ioref)
{

{

}

if (aIO_ReleaseLibRef(this->ioref , NULL) != 0)

PLAYER_ERROR("Failed to release the 10 library");

}

if (this->stemref)

102



C.l position2d Driver Code

{

{

}

if (aStem_ReleaseLibRef(this->stemref, NULL»

PLAYER_ERROR("Failed to release the Stem library");

}

pthread_join(this->polarcontrolthread, NULL);

fclose(this->xerror);
fclose(this->yerror);
fclose(this->therror);
fclose(this->velinput);
fclose(this->omegainput);
fclose(this->xposition);
fclose(this->yposition);

if (this->position_target_reached
{

}

== true)

pthread_mutex_destroy(&this->controller_exit_mutex);

puts("ModRollerMHP_Driver is shutdown.");

return(O);
}

int ModRollerMHP_Driver::ProcessMessage(MessageQueue* resp_queue,
player_msghdr* hdr,
void* data)
{

if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_CMD,
PLAYER_POSITION2D_CMD_VEL,
this->position_addr»

{
assert(hdr->size = sizeof(player_position2d_cmd_vel_t»;
this->ProcessVelCommand«player_position2d_cmd_vel_t*)data);
return(O);

}
else if (Message: :MatchMessage (hdr, PLAYER_MSGTYPE_CMD,

PLAYER_POSITION2D_CMD_POS,
this->position_addr»

{
assert(hdr->size = sizeof(player_position2d_cmd_pos_t»;
this->localpositioncmd = *(player_position2d_cmd_pos_t*) data;
if(this->polar_controller_called == false)

{
puts("Threading Controller ... ");
this->thread_controller();
this->polar_controller_called = true;

}
return(O);

}
else if (Message: :MatchMessage(hdr, PLAYER_MSGTYPE_REQ,

PLAYER_POSITION2D_REQ_GET_GEOM,
this->position_addr»

{
assert(hdr->size = sizeof(player_position2d_geom_t»;
player_position2d_geom_t geom;
geom.pose.px 0.0;
geom.pose.py 0.0;
geom.pose.pa 0.0;
geom.size.sl 0.508;
geom.size.sw 0.600;

103



C. c++ PLAYER DRIVER CODE

this->Publish(this->position_addr, resp_queue, PLAYER_MSGTYPE_RESP_ACK,
PLAYER_POSITION2D_REQ_GET_GEOM,
(void*)&geom, sizeof(player_position2d_geom_t), NULL);

return(O);
}

else if (Message: :MatchMessage (hdr , PLAYER_MSGTYPE_REQ,
PLAYER_POSITION2D_REQ_RESET_ODOM,
this->position_addr))

{

{

}

if(hdr->size != sizeof(player_position2d_reset_odom_config_t))

PLAYER_WARN("Arguement to req reset odom is wrong size");
return(-1);

this->ClearAccumulator(O);
this->ClearAccumulator(l);
this->posx 0;
this->posy = 0;
this->posa = 0;
this->Publish(this->position_addr, resp_queue,

PLAYER_MSGTYPE_RESP_ACK, PLAYER_POSITION2D_REQ_RESET_ODOM);

return(O);
}

else
return(-l);

}

int ModRollerMHP_Driver: :SetVelocity(int lv, int rv)
{

aErr err = aErrNone;
err = aPad_Writelnt(this->stemref, 2, 0, Iv);

err = aPad_Writelnt(this->stemref, 4, 2, rv);
if(err != aErrNone)

{
PLAYER_ERROR("SetVelocity Failed");
return(-1) ;

}
return(O);

}

int ModRollerMHP_Driver: :ProcessVeICommand(player_position2d_cmd_vel_t* cmd)
{

double rotation = 0.0;
double command_leftvel = 0.0;
double command_rightvel = 0.0;
int final_Ieftvel = 0;
int final_rightvel = 0;
double translation = cmd->vel.px;
double rotspeed = cmd->vel.pa;
double omega = rotspeed/MODROLLERMHP_MAXROTSPEED;
double v = translation/MODROLLERMHP_MAXTRANS;

int sigma = max(fabs(v), fabs(omega));
switch(sigma)

{
case 1:

{
if (translation > 0)

translation = MODROLLERMHP_MAXTRANS;
else

translation = -MODROLLERMHP_MAXTRANS;

rotspeed = rotspeed/fabs(v);

104



C. c++ PLAYER DRIVER CODE

gamma = atan2(yrel, xrel) - thetarelative + M_PI;
delta = gamma + thetarelative;
this->gamma_negative = gamma;
this->delta_negative = delta;

}

double kl 0.5;
double k2 0.4;
double k3 0.6;
player_position2d_cmd_vel_t velcmd;

velcmd.vel.px = kl*rho*cos(gamma);
double A = (sin(gamma)*cos(gamma)/gamma);
double B = gamma + k3*delta;
velcmd.vel.pa = k2*gamma + kl*A*B;
fprintf (this->velinput, "%f\n", velcmd. vel. px) ;
fprintf(this->omegainput, "%f\n", velcmd.vel.pa);

this->ProcessVelCommand(&velcmd);
if«rho + fabs(thetarelative)) < 0.1)

{
this->gammadeltainit = false;
pthread_mutex_lock(&this->controller_exit_mutex);
this->position_target_reached = true;
this->polar_controller_called = false;
pthread_mutex_unlock(&this->controller_exit_mutex);

}

return(O);
}

int ModRollerMHP_Driver: :GetLibraries 0
{

PLAYER_ERROR("aIO_GetLibRefO failed");

aErr err = aErrNone;
aIO_GetLibRef(&this->ioref,
if(err != aErrNone)

{

}

&err);

PLAYER_ERROR("aStem_GetLibRefO failed");

aStem_GetLibRef(&this->stemref, &err);
if(err != aErrNone)

{

}
return«int)err);

}

int ModRollerMHP_Driver::OpenTerminal()
{

aErr err = aErrNone;
aStream_CreateSerial(this->ioref, this->serial_port, 9600,

&this->linkstream, &err);
if(err != aErrNone)

{
PLAYER_ERROR1("aStream_CreateSerialO failed: %s\n", strerror(errno));
PLAYER_ERROR("Releasing the library references, please try again\n");
aStem_ReleaseLibRef(this->stemref, NULL);
aIO_ReleaseLibRef(this->ioref, NULL);
return(-l);

}

aStem_SetStream(this->stemref, this->linkstream, kStemModuleStream, &err);

if(err != aErrNone)

106



C.l position2d Driver Code

break;
}

case 2:
{

if (rot speed > 0)
rotspeed = MODROLLERMHP_MAXROTSPEED;

else
rotspeed = -MODROLLERMHP_MAXROTSPEED;

translation = translation/fabs(omega);
break;

}
default:

break;
}

rotation = rot speed * MODROLLERMHP_AXLE_LENGTH / 2.00;
command_rightvel = translation + rotation;
command_leftvel = translation - rotation;
final_leftvel = (int)rint(command_leftvel / MODROLLERMHP_MPS_PER_TICK);
final_rightvel = (int)rint(command_rightvel / MODROLLERMHP_MPS_PER_TICK);

if (SetVelocity(final_leftvel , final_rightvel) != 0)
{

PLAYER_ERROR("ProcessVelCommandO failed");
pthread_exit(NULL);

}
return(O);

}

int ModRollerMHP_Driver::PolarControlAlgorithm()
{

double deltax = this->posx - this->localpositioncmd.pos.px;
double deltay = this->posy - this->localpositioncmd.pos.py;
double thetarelative = this->posa - this->localpositioncmd.pos.pa;
double rotate_into_goal = this->localpositioncmd.pos.pa;
double xrel = deltax*cos(rotate_into_goal) + deltay*sin(rotate_into_goal);
double yrel = -deltax*sin(rotate_into_goal) + deltay*cos(rotate_into_goal);

fprintf(this->xerror, "%f\n", deltax);
fprintf(this->yerror, "%f\n", deltay);
fprintf(this->therror, "%f\n", thetarelative);
double rho;
double gamma;
double delta;
double euclid_xy = deltax*deltax + deltay*deltay;
if(this->gammadeltainit == false)

{
rho = sqrt(euclid_xy);
gamma = atan2(yrel, xrel) - thetarelative + M_PI;
delta = gamma + thetarelative;
this->gamma_negative gamma;
this->delta_negative delta;
this->gammadeltainit = true;

}

rho = sqrt(euclid_xy);
if(rho < 0.2)

{
gamma this->gamma_negative;
delta = this->delta_negative;

}
else

{

105



PLAYER_ERROR1("Failed to retrieve left encoder data %d", err);

PLAYER_ERROR1("Failed to retrieve right encoder data", err);

PLAYER_ERROR1("Failed to retrieve left encoder vel feedback", err);

C.l position2d Driver Code

{
PLAYER_ERROR("aStemSetStream failed to set the stem packet processor");

}
if (!aModuleUtil_EnsureModule(this->stemref , 4»

{
PLAYER_ERROR("Active Module Not Found");
return(-l);

}
char hb;
err = aModuleVal_Get(this->stemref, 4, aMODULE_VAL_HBFLAG, khb);
if«err == aErrNone) && (hb != 1»

err = aModuleVal_Set(this->stemref, 4, aMODULE_VAL_HBFLAG, 1);

return(O);
}

int ModRollerMHP_Driver: :GetOdometry(int* It, int* rt, short* lv, short* rv)
{

char buff [4] ;
aErr err = aErrNone;
err = aMotion_GetEnc32(this->stemref, 2, 0, buff);
if(err != aErrNone)

{

}
*It = aUtil_Retrievelnt«const char*)buff);

err = aMotion_GetEnc32(this->stemref, 4, 1, buff);

if(err != aErrNone)
{

}
*rt = aUtil_Retrievelnt«const char*)buff);

err = aMotion_GetPIDlnput(this->stemref, 2, 0, Iv);
if(err != aErrNone)

{

}

PLAYER_ERROR1("Failed to retrieve right encoder vel feedback", err);

err = aMotion_GetPIDlnput(this->stemref, 4,
if(err != aErrNone)

{

}

1, rv);

return(O);
}

int ModRollerMHP_Driver: :UpdateOdometry(int It, int rt)
{

int ltdelta, rtdelta;
double I_delta, r_delta, a_delta, d_delta;
double theta_hat;

if(!this->odometryinitialised)
{

this->last_Iticks = It;
this->last_rticks = rt;
this->odometryinitialised true;
return(O);

}

ltdelta
rtdelta
I_delta
r_delta

It - this->last_Iticks;
rt - this->last_rticks;
ltdelta * MODROLLERMHP_M_PER_TICK;
rtdelta * MODROLLERMHP_M_PER_TICK;

107



C. c++ PLAYER DRIVER CODE

a_delta = (r_delta - I_delta) I MODROLLERMHP_AXLE_LENGTH;
d_delta = (I_delta + r_delta) I 2.00;

II Implement 2nd order Runge-Kutta numerical integration
II for pose update
theta_hat = this->posa + (a_delta/2);
this->posx += (d_delta * cos(theta_hat));
this->posy += (d_delta * sin(theta_hat));
this->posa += a_delta;

this->posa = NORMALIZE(this->posa);
this->last_Iticks It;
this->last_rticks = rt;

return(O);
}

int ModRollerMHP_Driver::ClearAccumulator(const char channel)
{

aErr err = aErrNone;
aPacketRef packet;
char data[aSTEMMAXPACKETBYTES);
data [0) cmdMO_ENC32;
data[l) (char)channel;
data [2) 0;
data [3) 0;
data [4) 0;
data [5) 0;

aPacket_Create(this->stemref, 2, 6, data, &packet, &err);
if(err != aErrNone)

{
PLAYER_ERROR("Failed to create the ClearAccumulator packet");
return (-1) ;

}
aStem_SendPacket(this->stemref, packet, &err);
if(err != aErrNone)

{
PLAYER_ERROR("Failed to send ClearAccumulator packet to module 2");
return (-1) ;

}
aPacket_Create(this->stemref, 4, 6, data, &packet, &err);
if(err != aErrNone)

{
PLAYER_ERROR("Failed to create the ClearAccumulator packet");
return (-1) ;

}
aStem_SendPacket(this->stemref, packet, &err);
if(err != aErrNone)

{
PLAYER_ERROR("Failed to send ClearAccumulator packet to module 1");
return(-l);

}
return(O);

}

void ModRollerMHP_Driver: :Main()
{

player_position2d_data_t position_data;
Ilplayer_power_data_t power_data;
double leftvel_mps = 0.0;
double rightvel_mps = 0.0;
int left_ticks = 0;
int right_ticks = 0;

108



C.1 position2d Driver Code

short 1eftve1 = 0;
short rightve1 = 0;
boo1 first_entry;
boo1 exited;

fore; ;)
{

{

}

pthread_testcance1();
ProcessMessages();
if (this->GetOdometry(&left_ticks , &right_ticks, &leftve1, &rightve1»

PLAYER_ERROR("Failed to retrieve Odometry data");

else
UpdateOdometry(left_ticks, right_ticks);

fprintf(this->xposition, "%f\n", this->posx);
fprintf(this->yposition, "%f\n", this->posy);
position_data.pos.px this->posx;
position_data.pos.py this->posy;
position_data.pos.pa this->posa;
position_data.ve1.py 0.0;
1eftve1_mps = 1eftve1 * MODROLLERMHP_MPS_PER_TICK;
rightvel_mps = rightvel * MODROLLERMHP_MPS_PER_TICK;
position_data.ve1.px = (leftve1_mps + rightve1_mps) / 2.00;
position_data.ve1.pa ; (rightve1_mps - 1eftve1_mps) /

MODROLLERMHP_AXLE_LENGTH;
position_data. stall = 0;
this->Publish(this->position_addr, NULL, PLAYER_MSGTYPE_DATA,

PLAYER_POSITION2D_DATA_STATE,
(void*)&position_data, sizeof(p1ayer_position2d_data_t),
NULL) ;

pthread_mutex_10ck(&this->contro11er_exit_mutex);
first_entry = this->polar_contro11er_called;
exited = this->position_target_reached;
pthread_mutex_un10ck(&this->contro11er_exit_mutex);
if (first_entry == true)

pthread_join(this->polarcontro1thread, NULL);

{

}

if(exited = true)
{

}

us1eep(10000) ;
}

}

int ModRol1erMHP_Driver: :thread_controller()
{

pthread_create(&po1arcontro1thread, NULL, &po1arentryfunc, this);
return(O);

}

int max(doub1e v, double w)
{

if(v > w)
{

{
if(v > 1)

return(l);

109



C. c++ PLAYER DRIVER CODE

}
else

return(O);
}

if(w > v)
{

{

}

if (w > 1)

return(2);

else
return(O);

}
return(O);

}

void* ModRollerMHP_Driver::polarentryfunc(void* arg)
{

ModRollerMHP_Driver* modrop = (ModRollerMHP_Driver*)arg;
sleep(3);
while(modrop->position_target_reached == false)

{
modrop->PolarControIAlgorithm();
usleep(150000) ;

}
modrop->SetVelocity(O,O);
puts("Exiting control thread");
pthread_exit(NULL);

}

C.2 sonar Driver Code

Listed her is the code which allows RollerMHP's array of 12 SRF02 ultrasonic sensors to appear
as an array of generic sonar devices.

C.2.! Source File sonaracc. cc

/*
* Player - One Hell of a Robot Server
* Copyright (C) 2000
* Brian Gerkey, Kasper Stoy, Richard Vaughan, & Andrew Howard
*** This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
** This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
** You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
**/

// Driver which implememts the device abstractions for the ultrasonic sensors
// and the conveyor system of the RollerMHP Materials Handling Platform.

// Interfaces supported: sonar
// actarray

llO



C.2 sonar Driver Code

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <aIO.h>
#include <aStem.h>
#include <aModuleUtil.h>
#include <aModuleVal.h>
#include <aModuleVM.h>
#include <aUtil.h>
#include <aServo.h>
#include <aPad.h>
#include <stdlib.h>
#include <aModule.tea>
#include <aCmd.tea>
#include <math.h>
#include <libplayercore/playercore.h>
const int numberofsonars = 12;

class SonarAcc public Driver
{
private:

virtual void Main();

II Integrated sonar and conveyor system data storage
int Sonardata[numberofsonarsJ;
II For future support of the actuator array interface
player_actarray_data_t conveyordata;
player_actarray_geom_t conveyorgeom;
player_sonar_data_t sonardata;
player_sonar_geom_t sonargeom;

IIDevice addresses
player_devaddr_t sonar_address;
II For future support of the actuator array interface
player_devaddr_t conveyor_address;

IIReferences and stream abstractions
aIOLib ioref;
aStreamRef Linkstream;

II Internal Methods
int GetSonarData(int* sonar);
int GetSonarPose(player_sonar_geom_t* sonargeometry);

int OpenSerialPort();
int GetAllReferences();

II int GetConveyorState(aStemLib stemref, player_actarray_actuatorgeom_t* ptr);
public:

aStemLib stemref;
const char* serial_port;

SonarAcc(ConfigFile* cf, int section);

int ProcessMessage(MessageQueue* resp_queue, player_msghdr* hdr, void* data);
Ilint ProcessConveyorPosition(player_actarray_position_cmd_t* cmd);
Ilint ProcessConveyorHome(player_actarray_home_cmd_t* cmd);

virtual int Setup();
virtual int Shutdown();

};

IIConstructor
SonarAcc::SonarAcc(ConfigFile* cf, int section) : Driver(cf, section)
{

memset (&this->sonar_address , 0, sizeof(player_devaddr_t));
memset (&this->conveyor_address , 0, sizeof(player_devaddr_t));

111



table->AddDriver("sonaracc", SonarAcc_Init);

return «Driver*) (new SonarAcc(cf, section)));

C. c++ PLAYER DRIVER CODE

if (cf ->ReadDeviceAddr (& (this->sonar_address), section, "provides",
PLAYER_SONAR_CODE, -1, NULL) == 0);

if (this->AddInterface(this->sonar_address))
{

this->SetError(-1);
return;

}

if (cf->ReadDeviceAddr(&(this->conveyor_address), section, "provides",
PLAYER_ACTARRAY_CODE, -1, NULL) == 0);

if (this->AddInterface(this->conveyor_address) != 0)
{

this->SetError(-1);
return;

}

this->serial_port = cf->ReadString(section, "port", "ttyUSBO");

static player_sonar_geom_t sonargeometry = {12, {{O.O, -0.236, (3*(M_PI/2))},
{O.O, 0.236, (M_PI/2)},
{0.236, 0.0, O.O},

{-0.236, 0.0, M_PI},
{0.204, 0.118, (M_PI/6)},
{-0.204, -0.118, (7*(M_PI/6))},
{0.204, -0.118, (11*(M_PI/6))},
{-O. 204, 0.118, (5* (M_PI/6))},
{0.118, -0.204, (5*(M_PI/3))},
{-0.118, 0.204, (2*(M_PI/3))},
{0.118, 0.204, (M_PI/3)},
{-0.118, -0.204, (4*(M_PI/3))},}
};
this->sonargeom = sonargeometry;
}

IIDriver Initialisation method
Driver*
SonarAcc_Init(ConfigFile* cf, int section)
{

}

II Driver Registration Function
void
SonarAcc_Register(DriverTable* table)
{

}

II To avoid C++ name mangling
extern "C"
{

int player_driver_init(DriverTable* table)
{

SonarAcc_Register(table);
return(O);

}
}

int
SonarAcc: :GetSonarData(int* sonar)
{

aErr err = aErrNone;
int j = 0;
for(int i = 0; i < 12; i++)

112



C.2 sonar Driver Code

{
err = aPad_ReadInt(this->stemref, 2, j, &sonar[i]);

this->sonardata.ranges[i] = (sonar[i]/100.0);
j= j +2;
Ilusleep(1000) ;

}
this->sonardata.ranges_count 12;

return(O);
}

int
SonarAcc: :GetAllReferences()
{

int err = aErrNone;
if (aIO_GetLibRef (&this->ioref , NULL) != 0)

fprintf(stderr, "Failed to get the 10 Library Reference\n");

if (aStem_GetLibRef(&this->stemref, NULL) != 0)

fprintf(stderr. "Failed to get the Stem Library Reference\n");

return(err);
}

int
SonarAcc: :OpenSerialPort 0
{

if(aStream_CreateSerial(this->ioref. this->serial_port, 9600,
&this->Linkstream. NULL))

fprintf (stderr, "Failed to Open serial port %s\n",
this->serial_port);

if (aStem_SetStream(this->stemref, this->Linkstream, kStemModuleStream.
NULL))

fprintf(stderr. "Failed to set the packet stream\n");

II Set autoheartbeat stuff to ensure a healthy stream and watchdog safety
if(!aModuleUtil_EnsureModule(this->stemref, 2))
{

fprintf(stderr. "Active Module Not Found");
return(-l);

}

char heartbeat;

int ret = aModuleVal_Get(this->stemref, 2, aMODULE_VAL_HBFLAG, &heartbeat);
if«ret == 0) && (heartbeat != 1))

ret = aModuleVal_Set(this->stemref, 2, aMODULE_VAL_HBFLAG, 1);
return(O);

}

int
SonarAcc::Setup()
{

puts("SonarAcc Driver Initialising");

if (GetAllReferences() !=O)
{

fprintf(stderr. "Setup GetAllReferences failed");
return(-l);

}

if (OpenSerialPort() != 0)

113



C. c++ PLAYER DRlVER CODE

{

fprintf(stderr, "Setup DpenSerialPort Failed");
return (-1) ;

}

aModuleVal_Set(this->stemref, 2, aMODULE_VAL_IICBAUD, 1);

StartThread 0 ;
puts("SonarAcc Driver Initialised and awaiting commands");
returneD);

}

int
SonarAcc: :Shutdown()
{

puts("Shutting Down The sonaracc Driver on RollerMHP");
StopThreadO;
aModuleVal_Set(this->stemref, 2, aMODULE_VAL_IICBAUD, 2);
aModuleVal_Set(this->stemref, 2, aMODULE_VAL_HBFLAG, 0);

aStream_Destroy(this->ioref, this->Linkstream, NULL);
if (this->ioref)

{

if (aID_ReleaseLibRef(this->ioref, NULL) != 0)
{

PLAYER_ERRDR("Failed to release the ID library");
}

}

if (this->stemref)
{
if(aStem_ReleaseLibRef(this->stemref, NULL) != 0)

{
PLAYER_ERRDR("Failed to release the Stem library");

}
}

return(O);
}

int
SonarAcc: :GetSonarPose(player_sonar_geom_t* sonargeometry)
{

II Functionality handled internally by the ProcessMessage() method
return(O);

}

int
SonarAcc::ProcessMessage(MessageQueue* resp_queue, player_msghdr* hdr, void*
data)

{

if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_REQ,
PLAYER_SDNAR_REQ_GET_GEOM ,this->sonar_address))

{

this->Publish(this->sonar_address, resp_queue,
PLAYER_MSGTYPE_RESP_ACK, PLAYER_SONAR_REQ_GET_GEDM,
(void*)&this->sonargeom, sizeof(player_sonar_geom_t), NULL);

returneD);
}

else if(Message: :MatchMessage(hdr, PLAYER_MSGTYPE_REQ,
PLAYER_ACTARRAY_GET_GEDM_REQ,
this->conveyor_address))

114



C.2 sonar Driver Code

{

II do future conveyor handler here
return(O);

}

else if(Message: :MatchMessage (hdr, PLAYER_MSGTYPE_CMD,
PLAYER_ACTARRAY_POS_CMD,
this->conveyor_address»

{
assert(hdr->size == sizeof(player_actarray_position_cmd_t»;
this->SetConveyorPos(this->stemref,

(player_actarray_position_cmd_t*)data);
return(O);

}
else

return (-1) ;
}

void
SonarAcc::Main()
{

fprintf (stderr, "GetSonarData Failed");

fore; ;)
{

pthread_testcancel();
ProcessMessages();
if (this->GetSonarData(this->Sonardata)
{

}

!= 0)

this->Publish(this->sonar_address, NULL, PLAYER_MSGTYPE_DATA,
PLAYER_SONAR_DATA_RANGES, (void*)&this->sonardata,
sizeof(player_sonar_data_t), NULL);

usleep(10000) ;
}

}

115



C. c++ PLAYER DRIVER CODE

116



Appendix D

Logic Based Switching Controller
Implementation

Listed below is the code implementation of the logic based switching controller coverd in section
5.2.3. The controller was integrated into the RollerMHP...Driver driver during testing purposes.
Currently, the code is being ported to an abstract driver.

D.l Modified ModRollerMHP-Driver Code
Listed here is the driver code which implements the logic based switching controller by creating
a SWitcher object on the heap, which then implements the algorithms considered in section
5.2.3 to provide RollerMHP with posture stabilisation.

D.!.l Header File modrollermhp. h

#ifndef _ModRollerMHP_Driver
#define _ModRollerMHP_Driver
#include <aIO.h>
#include <aStem.h>
#include <aPad.h>
#include <pthread.h>
#include <libplayercore/playercore.h>
#include "switcher.h"
II function used in maintaining curvature during saturation of control inputs
int max(double, double)j
II forward declaration of Switcher Class
class Switcherj
class ModRollerMHP_Driver : public Driver
{

II the Main thread
virtual void Main();
II address structures for the drivers interface specifications
player_devaddr_t position_addrj
player_devaddr_t power_addrj
II internal odometry book keeping data
int last_lticksj
int last_rticksj
bool odometryinitialisedj
II shared library references, BrainStem Libraries
aStreamRef serialstreamj
aIOLib ioref j

II the serial file stream abstraction

117



D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

aStemLib stemref;
II Internal Methods
int GetOdometry(int* It, int* rt, short* lv, short* rv);
int UpdateOdometry(int It, int rt);
int GetLibraries();
int OpenTerminal();
int ClearAccumulator(const char channel);

public:
II Internal odometric pose, public so that it is accessible from the Switcher
II class
double posx;
double posy;
double posa;
II Pointer to the serial device file
const char* serial_port;
II public bool for keeping track of whether the controller has been
II called and initialised, i.e. temporally active
bool controller_called;
II pointer to the underlying low-level switching based logic controller
Switcher* controllerp;
ModRollerMHP_Driver(ConfigFile* cf, int section);

int ProcessMessage(MessageQueue* resp_queue,
player_msghdr* hdr,
void* data);

int ProcessVelCommand(player_position2d_cmd_vel_t* cmd);
II StartController() calls ExecuteControl() through the controllerp pointer
int StartController();
virtual int Setup();
virtual int Shutdown();
int SetVelocity(int, int);

} ;
#endif II ModRollerMHP_Driver

D.1.2 Source File modrollermhp. cc

1*
* Player - One Hell of a Robot Server
* Copyright (C) 2000
* Brian Gerkey, Kasper Stoy, Richard Vaughan, & Andrew Howard
*** This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
** This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
** You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
**1

#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <aModuleUtil.h>

118



D.1 Modified ModRollerMHP..Driver Code

return «Driver*) (new ModRollerMHP_Driver(cf, section)));

#inc1ude <aMotion.h>
#include <aModuleVal.h>
#include <aUtil.h>
#include <aModule.tea>
#include <aCmd.tea>
#include <aModuleVM.h>
#include <aErr.h>
#include "modrollermhp.h"
#include "modrollermhp_constants.h"
#include "switcher.h"

II Forward declaration of Switcher class
class Switcher;

Driver* ModRollerMHP_Driver_Init(ConfigFile*
{

}

cf, int section)

table->AddDriver("modrollermhp", ModRollerMHP_Driver_Init);

void ModRollerMHP_Driver_Register(DriverTable* table)
{

}

extern "C"
{

int player_driver_init(DriverTable* table)
{

ModRollerMHP_Driver_Register(table);
return(O);

}

{

}

memset(&this->position_addr, 0, sizeof(player_devaddr_t));
memset (&this->power_addr , 0, sizeof(player_devaddr_t));

if (cf->ReadDeviceAddr (&this->position_addr , section, "provides",
PLAYER_POSITION2D_CODE, -1, NULL) == 0)

{
if (Addlnterface(this->position_addr) != 0)

this->SetError(-1);
return;

}

if (cf->ReadDeviceAddr (&this->power_addr, section, "provides",
PLAYER_POWER_CODE, -1, NULL) == 0)

{

{

}

if (Addlnterface(this->power_addr) != 0)

this->SetError(-1);
return;

}

this->serial_port = cf->ReadString(section, "port",
MODROLLERMHP_DEFAULT_SERIALPORT);

}

int ModRollerMHP_Driver: :Setup()
{

puts ("ModRollerMHP_Driver Initialising ... ");
this->posx = 0.0;

119



D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

PLAYER_ERROR("Failed To Create Serial Stream\n");

PLAYER_ERROR("Failed To Gain Shared Library References\n");

this->posy = 0.0;
this->posa = 0.0;
this->odometryinitialised
this->controller called

if(GetLibrariesO != 0)
{

}

if(OpenTerminalO != 0)
{

}

= false;
false;

this->ClearAccumulator(O);
this->ClearAccumulator(l);

II Start the Main() thread ... calls dummy static funcs etc.
StartThreadO;

II Create a logic based switching controller on the heap
this->controllerp = new Switcher(this);
puts("ModRollerMHP_Driver initialised");
return(O);

}

int ModRollerMHP_Driver: :Shutdown()
{

puts("Releasing the ModRollerMHP_Driver ... ");

II Set the heartbeat to link dependant
aModuleVal_Set(this->stemref, 4, aMODULE_VAL_HBFLAG, 0);

II Free up heap memory used by the logic based switching controller
delete this->controllerp;

StopThread 0 ;
if (this->ioref)

{

{

}

{

}

if (aIO_ReleaseLibRef(this->ioref, NULL) != 0)

PLAYER_ERROR("Failed To Release The ID Library");

}
if (this->stemref)

{
if (aStem_ReleaseLibRef(this->stemref, NULL))

PLAYER_ERROR("Failed To Release The Stem Library Reference");

}

puts("ModRollerMHP_Driver is shutdown.");

return(O);
}

int ModRollerMHP_Driver: :ProcessMessage(MessageQueue* resp_queue,
player_msghdr* hdr,
void* data)
{

if (Message: :MatchMessage(hdr, PLAYER_MSGTYPE_CMD,
PLAYER_POSITION2D_CMD_VEL,
this->position_addr))

{
assert(hdr->size = sizeof(player_position2d_cmd_vel_t));

120



D.l Modified ModRollerMHP-Driver Code

this->ProcessVelCommand«player_position2d_cmd_vel_t*)data);
return(O);

}
else if(Message: :MatchMessage (hdr, PLAYER_MSGTYPE_CMD,

PLAYER_POSITION2D_CMD_POS,
this->position_addr»

{

{

/*assert(hdr->size = sizeof(player_position2d_cmd_pos_t»;
this->controllerp->throughputcmd = *(player_position2d_cmd_pos_t*)data;
if(this->controller_called == false)

puts("Starting/Restarting the Switching Controller");
this->StartController();
this->controller_called true;
return(O);
}*/

return(O);
}

else if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_REQ,
PLAYER_POSITION2D_REQ_GET_GEOM,
this->position_addr»

{
assert(hdr->size = sizeof(player_position2d_geom_t»;
player_position2d_geom_t geom;
geom.pose.px 0.0;
geom.pose.py 0.0;
geom.pose.pa 0.0;
geom.size.sl 0.508;
geom.size.sw 0.610;
this->Publish(this->position_addr, resp_queue, PLAYER_MSGTYPE~RESP_ACK,

PLAYER_POSITION2D_REQ_GET_GEOM,
(void*)&geom, sizeof(player_position2d_geom_t), NULL);

return(O);
}

else if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_REQ,
PLAYER_POSITION2D_REQ_RESET_ODOM,
this->position_addr»

{

{

}

if(hdr->size != sizeof(player_position2d_reset_odom_config_t»

PLAYER_WARN("Arguement to req reset odom is wrong size");
return(-l);

this->ClearAccumulator(O);
this->ClearAccumulator(l);
this->posx 0;
this->posy = 0;
this->posa = 0;
this->Publish(this->position_addr, resp_queue,

PLAYER_MSGTYPE_RESP_ACK, PLAYER_POSITION2D_REQ_RESET_ODDM);
return(O);

}
else
return(-l);

}

int ModRollerMHP_Driver: :SetVelocity(int lv, int rv)
{

121



D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

aErr err = aErrNone;
err = aPad_Writelnt(this->stemref, 4, 0, lv);

err = aPad_Writelnt(this->stemref, 2, 2, rv);
if(err != aErrNone)

{
PLAYER_ERROR("SetVelocityO Failed");
return(-l);

}
return(O);

}

int ModRollerMHP_Driver: :ProcessVelCommand(player_position2d_cmd_vel_t* cmd)
{

double rotation = 0.0;
double command_leftvel = 0.0;
double command_rightvel = 0.0;
int final_leftvel = 0;
int final_rightvel = 0;
double translation = cmd->vel.px;
double rot speed = cmd->vel.pa;

double omega = rotspeed/MODROLLERMHP_MAXROTSPEED;
double v = translation/MODROLLERMHP_MAXTRANS;

int sigma = max(fabs(v), fabs(omega»;
switch (sigma)

{
case 1:

{
if (translation > 0)

translation = MODROLLERMHP_MAXTRANS;
else

translation = -MODROLLERMHP_MAXTRANS;

rotspeed = rotspeed/fabs(v);
break;

}
case 2:

{
if (rot speed > 0)

rotspeed = MODROLLERMHP_MAXRDTSPEED;
else

rot speed = -MODROLLERMHP_MAXROTSPEED;
translation = translation/fabs(omega);
break;

}
default:

break;
}

rotation = rot speed * MDDROLLERMHP_AXLE_LENGTH / 2.00;
command_rightvel = translation + rotation;
command_leftvel = translation - rotation;
final_leftvel = (int)rint(command_leftvel / MDDROLLERMHP_MPS_PER_TICK);
final_rightvel = (int)rint(command_rightvel / MDDROLLERMHP_MPS_PER_TICK);

if (SetVelocity(final_leftvel, final_rightvel) != 0)
{

PLAYER_ERROR("ProcessVelCommandO failed");
pthread_exit(NULL);

}
return(O);

}

int ModRollerMHP_Driver: :StartController()

122



D.l Modified ModRollerMHP..Driver Code

{
puts(IStartController()");
this->controllerp->ExecuteControl();
return(O);

}

int ModRollerMHP_Driver: :GetLibraries()
{

PLAYER_ERROR(" aIO_GetLibRefO failed 11);

aErr err = aErrNone;
aIO_GetLibRef(&this->ioref,
if(err != aErrNone)

{

}

&err);

PLAYER_ERROR("aStem_GetLibRef 0 failed 11);

aStem_GetLibRef(&this->stemref, &err);
if(err != aErrNone)

{

}

return«int)err);
}

int ModRollerMHP_Driver: :OpenTerminal()
{

aErr err = aErrNone;
aStream_CreateSerial(this->ioref, this->serial_port, 9600,

&this->serialstream, &err);
if(err != aErrNone)

{
PLAYER_ERROR1("aStream_CreateSerial() failed: %s\n", strerror(errno));
PLAYER_ERROR("BrainStem's Serial Connection Failed\n");
aStem_ReleaseLibRef(this->stemref, &err);
return(-l);

}

PLAYER_ERROR("aStem_SetStreamO: BrainStem Packet Processor Failed");

aStem_SetStream(this->stemref,
kStemModuleStream, &err);
if(err != aErrNone)

{

}

this->serialstream,

PLAYER_ERROR("BrainStem Module Not Active\n");

aModuleVal_Set(this->stemref, 4, aMODULE_VAL_HBFLAG, 1);

if (!aModuleUtil_EnsureModule(this->stemref , 4))
{

}

char heartbeat;
err = aModuleVal_Get(this->stemref, 4, aMODULE_VAL_HBFLAG, &heartbeat);
if«err == aErrNone) && (heartbeat != 1))

{

}

return«int)err);
}

int ModRollerMHP_Driver: :GetOdometry(int* It, int* rt, short* lv, short* rv)
{

char buff[4);
aErr err = aErrNone;
err = aMotion_GetEnc32(this->stemref, 4, 0, buff);

123



PLAYER_ERROR1("Failed to retrieve left encoder data %d", err);

PLAYER_ERROR1("Failed to retrieve right encoder data", err);

PLAYER_ERROR1("Failed to retrieve left encoder vel feedback", err);

D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

if(err != aErrNone)
{

}
*It = aUtil_RetrieveInt«const char*)buff);

err = aMotion_GetEnc32(this->stemref, 2, 1, buff);

if(err != aErrNone)
{

}
*rt = aUtil_RetrieveInt«const char*)buff);
err = aMotion_GetPIDInput(this->stemref, 4, 0, Iv);
if(err != aErrNone)

{

}

PLAYER_ERROR1("Failed to retrieve right encoder vel feedback", err);

err = aMotion_GetPIDInput(this->stemref, 2,
if(err != aErrNone)

{

}

1, rv);

return(O);
}

int ModRollerMHP_Driver::UpdateOdometry(int It, int rt)
{

int Itdelta, rtdelta;
double l_delta, r_delta, a_delta, d_delta;
double theta_hat;

if (lthis->odometryinitialised)
{

this->last_lticks = It;
this->last_rticks = rt;
this->odometryinitialised true;
return(O);

}

Itdelta It - this->last_lticks;
rtdelta rt - this->last_rticks;
l_delta ltdelta * MODROLLERMHP_M_PER_TICK;
r_delta rtdelta * MODROLLERMHP_M_PER_TICK;
a_delta (r_delta - l_delta) I MODROLLERMHP_AXLE_LENGTH;
d delta (l_delta + r_delta) I 2.00;

II Implement 2nd order Runge-Kutta numerical integration
II for pose update
theta_hat = this->posa + (a_delta/2);
this->posx += (d_delta * cos(theta_hat»;
this->posy += (d_delta * sin(theta_hat»;
this->posa += a_delta;

this->posa = NORMALIZE(this->posa);
this->last_lticks It;
this->last_rticks = rt;

return(O);
}

int ModRollerMHP_Driver::ClearAccumulator(const char channel)
{

aErr err = aErrNone;
aPacketRef packet;

124



D.l Modified ModRollerMHP-Driver Code

char data[aSTEMMAXPACKETBYTES];

data [0] cmdMO_ENC32;
data [1] (char)channel;
data [2] 0;
data [3] 0;
data [4] 0;
data [5] 0;

aPacket_Create(this->stemref, 2, 6, data, &packet, &err);
if(err != aErrNone)

{
PLAYER_ERROR("Failed to create the ClearAccumulator packet");
return(-l);

}
aStem_SendPacket(this->stemref, packet, &err);
if(err != aErrNone)

{
PLAYER_ERROR("Failed to send ClearAccumulator packet to the module");
return (-1) ;

}

aPacket_Create(this->stemref, 4, 6, data, &packet, &err);
if(err != aErrNone)

{
PLAYER_ERROR("Failed to create the ClearAccumulator packet");
return (-1) ;

}
aStem_SendPacket(this->stemref, packet, &err);
if(err != aErrNone)

{
PLAYER_ERROR("Failed to send ClearAccumulator packet to the module");
return (-1) ;

}
return(O);

}

void ModRollerMHP_Driver: :Main()
{

player_position2d_data_t position_data;

II power interface is disabled for now
II player_power_data_t power_data;
double leftvel_mps = 0.0;
double rightvel_mps = 0.0;
int left_ticks = 0;
int right_ticks = 0;
short leftvel = 0;
short rightvel = 0;
for(; ;)

{

{

}

pthread_testcancel();
ProcessMessages();
if (this->GetOdometry(&left_ticks , &right_ticks, &leftvel, &rightvel))

PLAYER_ERROR("Failed to retrieve Odometry data");

else
UpdateOdometry(left_ticks,

position_data.pos.px
position_data.pos.py
position_data.pos.pa
position_data.vel.py

right_ticks);
this->posx;
this->posy;
this->posa;
0.0;

125



D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

leftvel_mps = leftvel * MODROLLERMHP_MPS_PER_TICK;
rightvel_mps = rightvel * MODROLLERMHP_MPS_PER_TICK;

position_data.vel.px = (leftvel_mps + rightvel_mps) I 2.00;
position_data.vel.pa = (rightvel_mps - leftvel_mps) I

MODROLLERMHP_AXLE_LENGTH;
position_data. stall = 0;
this->Publish(this->position_addr, NULL, PLAYER_MSGTYPE_DATA,

PLAYER_POSITION2D_DATA_STATE,
(void*)&position_data, sizeof(player_position2d_data_t),
NULL);

usleep(15000) ;
}

}

int max(double v, double w)
{

if(v > w)
{

{

}

if(v > 1)

return(l);

else
return(O);

}
else if(w > v)

{

{

}

if(w > 1)

return(2);

else
return(O);

}
else

return(O);
}

D.1.3 Switcher Header File switcher.h
#ifndef Switcher
#define SWitcher
#include "modrollermhp.h"
#include <libplayercore/playercore.h>
#include <pthread.h>
#include <cstdio>
class ModRollerMHP_Driver;
class Switcher {

II storage for xl, x2 and x3. The diffeomorphic state variables
double nonholo_int_state[3];
double relative_configuration[3];
II switch variable for triggering an exit status
int target_reached;
II the discrete image and left limit of the switching signal
int sigma;
int sigma_negative;
bool sigma_initialised;
II Logfile Handles
FILE* region_data_wl;
FILE* region_data_w2;
FILE* sigma_image_history;

126



D.l Modified ModRollerMHP...Driver Code

FlLE* x_error;
FILE* y_error;
FlLE* th_error;

II a variable for holding control reqion status
int control_region;

II mutex for controlled access to controller internals
pthread_mutex_t access_mutex;
pthread_mutex_t sigma_and_sigma_neg;

public:

II pointer to the respective position2d interface
ModRollerMHP_Driver* modrollerp;
II thread id for the state tracking thread
pthread_t sigma_transition;
II thread id for the control implementation thread
pthread_t control_application;

II local storage of the goal point to converge onto
player_position2d_cmd_pos_t throughputcmd;

II And here begins the declaration of methods used to implement the algorithm
II update the internal diffeomorphic state
int UpdateStatelnternal();
II determines the current state reqion
int Update_Control_Region(double, double, double);
II the switching functions image manipulator f: R-3 x S -> S
int Phi ();
II function to handle the setting of control inputs u = g_(x) R-3 x S -> R-2
int Control () ;
II thread entry function for diffeomorphic state tracking
static void* phi_R_sigma_neg(void*);
II thread entry for control signal implementation
static void* U_g_sigma_x(void*);
II function for getting the controller up and running
int ExecuteControl();

II Constructs onto the underlying 'ModrollerMHP_Driver' driver
Switcher(ModRollerMHP_Driver*);
-Switcher() ;

};

#endif II Switcher

D.1.4 Switcher Source File swi tcher. cc

1*
* Player - One Hell of a Robot Server
* Copyright (C) 2000
* Brian Gerkey, Kasper Stoy, Richard Vaughan, & Andrew Howard
*** This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
** This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
** You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

127



D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

**/
/* Multi threaded C++ implementation of the logic based switching controller
*** Author: Anthony John Walker, awalker@ukzn.ac.za

*/
#include "switcher.h"
#include <math.h>
#include <unistd.h>
#include <string.h>
#include <cstdio>

// Forward declaration of ModRollerMHP_Driver class for reference semantics
class ModRollerMHP_Driver;

Switcher::Switcher(ModRollerMHP_Driver* modro)
{

puts("Commisioning low-level Controller ... ");
this->sigma_initialised = false;

// Gain reference to the associated ModRollerMHP_Driver
this->modrollerp = modro;

pthread_mutex_init(&this->access_mutex, NULL);
pthread_mutex_init(&this->sigma_and_sigma_neg, NULL);
this->target_reached = 0;

memset(&this->throughputcmd, 0, sizeof(player_position2d_cmd_pos_t));
region_data_w1 =

fopen("/home/awalker/development/ModRollerMHP/logdata/w1.txt", "w+");
region_data_w2 =

fopen("/home/awalker/development/ModRollerMHP/logdata/w2.txt", "w+");
sigma_image_history =

fopen("/home/awalker/development/ModRollerMHP/logdata/sigma.txt", "w+");
x_error =

fopen("/home/awalker/development/ModRollerMHP/logdata/error_x.txt", "w+");
y_error =

fopen("/home/awalker/development/ModRollerMHP/logdata/error_y.txt", "w+");
th_error =

fopen("/home/awalker/development/ModRollerMHP/logdata/error_th.txt", "w+");

puts("Low-Level Controller Has Been Commissioned");
}

Switcher::-Switcher()
{

puts("Uncommisioning Low-Level Controller");

fclose(this->region_data_w1);
fclose(this->region_data_w2);
fclose(this->sigma_image_history);
fclose(this->x_error);
fclose(this->y_error);
fclose(this->th_error);

if(this->target_reached == 1)
{

puts("joining any 'zombie' threads");
pthread_join(this->sigma_transition, NULL);
pthread_join(this->control_application, NULL);

}

pthread_mutex_destroy(&this->access_mutex);
pthread_mutex_destroy(&this->sigma_and_sigma_neg);

puts("Done");

128



D.1 Modified ModRollerMHP-Driver Code

}

int Switcher::UpdateStateInterna1()
{

II Calculate the relative disturbance input, i.e the error relative to goal
II pose
double deltax = this->modro11erp->posx - this->throughputcmd.pos.px;
double deltay = this->modrol1erp->posy - this->throughputcmd.pos.py;
double thetare1 = this->modrollerp->posa - this->throughputcmd.pos.pa;
fprintf(this->x_error, "%f\n", deltax);
fprintf(this->y_error, "%f\n", deltay);
fprintf(this->th_error, "%f\n", thetare1);
double rotate_theta_into_goal = this->throughputcmd.pos.pa;
double xrel = deltax*cos(rotate_theta_into_goal) +

de1tay*sin(rotate_theta_into_goal);
double yrel = -deltax*sin(rotate_theta_into_goa1) +

de1tay*cos(rotate_theta_into_goal);

II Apply a diffeomorphism to the configuration state
II in order to produce the generic "nonholonomic integrator"
II described by Rodger Brockett
double xi = xre1*cos(thetarel) + yrel*sin(thetare1);
double x2 = thetarel;
double x3 = 2*(xrel*sin(thetarel) - yrel*cos(thetarel)) - thetarel*

(xrel*cos(thetarel) + yrel*sin(thetarel));
II Lock access to the controller internal when updating the state
pthread_mutex_1ock(&this->access_mutex);

this->nonholo_int_state[O] xi;
this->nonho1o_int_state[i] = x2;
this->nonholo_int_state[2] = x3;
this->relative_configuration[O] xrel;
this->relative_configuration[i] = yrel;
this->relative_configuration[2] = thetarel;

II Unlock the mutex as we are finished with the important data
pthread_mutex_unlock(&this->access_mutex);

II Expose the current control region
this->Update_Control_Region(xi, x2, x3);

return(O);
}

II This function propagates the sigma image and is defined as a mapping
II from R-3 x S -> S. sigma = phi(x,sigma_left_lim) : R-3 x S -> S
int Switcher: :Phi()
{

pthread_mutex_1ock(&this->sigma_and_sigma_neg);
int sigma_1eft_1im = this->sigma_negative;
int region = this->contro1_region;
pthread_mutex_un1ock(&this->sigma_and_sigma_neg);
if(sigma_1eft_lim != region)

{
puts (" Sigma Image Switch ... ");
pthread_mutex_1ock(&this->sigma_and_sigma_neg);
this->sigma = this->control_region;
this->sigma_negative = this->sigma;
pthread_mutex_unlock(&this->sigma_and_sigma_neg);
fprintf(this->sigma_image_history, "%d\n", this->sigma);
return(O);

}

129



D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

pthread_mutex_lock(&this->sigma_and_sigma_neg);
this->sigma = this->sigma_negative;
this->sigma_negative = this->sigma;
pthread_mutex_unlock(&this->sigma_and_sigma_neg);
fprintf(this->sigma_image_history, "'l,d\n", this->sigma);
return(O);

}

int Switcher: :Control ()
{

double ControlInputs[2];
pthread_mutex_lock(&this->access_mutex);
double xl this->nonholo_int_state[O];
double x2 = this->nonholo_int_state[l];
double x3 = this->nonholo_int_state[2];

double X = this->relative_configuration[O];
double Y = this->relative_configuration[l];
double Th = this->relative_configuration[2];
pthread_mutex_unlock(&this->access_mutex);
pthread_mutex_lock(&this->sigma_and_sigma_neg);
int sigma = this->sigma;
pthread_mutex_unlock(&this->sigma_and_sigma_neg);

switch(sigma) {
case 1:

ControlInputs[O]
Control Inputs [1]
break;

case 2:

ControlInputs[O]
ControlInputs[l]
break;

case 3:

ControlInputs[O]
ControlInputs[l]
break;

case 4:
ControlInputs [0]
ControlInputs [1]
break;

default:
break;

1·,
1;

xl + (x2*x3)/(xl*xl + x2*x2);
x2 - (xl*x3)/(xl*xl + x2*x2);

-xl + (x2*x3)/(xl*xl + x2*x2);
-x2 - (xl*x3)/(xl*xl + x2*x2);

O·,
0;

}

player_position2d_cmd_vel_t cmd;
cmd.vel.px = ControlInputs[O] + ControlInputs[l]*(X*sin(Th) - Y*cos(Th));
cmd.vel.pa = ControlInputs[l];
cmd.vel.px *= 0.4;
cmd.vel.pa *= 0.4;
modrollerp->ProcessVelCommand(&cmd);

return(O);
}

int Switcher: :Update_Control_Region(double xl, double x2, double x3)
{

II Create and store the region variables
double wl = x3*x3;

130



{

}

{

}

{

}

{

}

{

D.1 Modified ModRollerMHP-Driver Code

double w2 = xl*xl + x2*x2;
II For data logging and debugging purposes
fprintf(this->region_data_wl, "%f\n", wl);
fprintf(this->region_data_w2, "%f\n", w2);
double regiongain = 0.5;
II Develop the current image values of the control regions
double pi_l regiongain*l*(l - exp(-sqrt(wl)));
double pi_2 regiongain*1.5*pi_l;
double pi_3 regiongain*2*pi_l;
double pi_4 regiongain*4*pi_l;
double epsilon = sqrt(wl + w2);

II Initialise the sigma image on first call to controller
if(this->sigma_initia1ised = false)

{
if(O <= w2 < pi_i)

pthread_mutex_lock(&this->sigma_and_sigma_neg);
this->sigma_negative = 1;
this->contro1_region = 1;
pthread_mutex_unlock(&this->sigma_and_sigma_neg);
epsilon = 1;
this->sigma_initialised = true;

else if(pi_l <= w2 < pi_3)

pthread_mutex_lock(&this->sigma_and_sigma_neg);
this->sigma_negative = 2;
this->control_region = 2;
pthread_mutex_unlock(&this->sigma_and_sigma_neg);
epsilon = 1;
this->sigma_initialised = true;

else if(w2 >= pi_3)

pthread_mutex_lock(&this->sigma_and_sigma_neg);
this->sigma_negative = 3;
this->control_region = 3;
pthread_mutex_unlock(&this->sigma_and_sigma_neg);
epsilon = 1;
this->sigma_initialised = true;

else

pthread_mutex_lock(&this->sigma_and_sigma_neg);
this->sigma_negative = 4;
this->control_region = 4;
pthread_mutex_unlock(&this->sigma_and_sigma_neg);
epsilon = 1;
this->sigma_initialised = true;

}

pthread_mutex_lock(&this->sigma_and_sigma_neg);
int local_sigma_neg = this->sigma_negative;
pthread_mutex_unlock(&this->sigma_and_sigma_neg);

II Set current control region
if(O <= w2 < pi_2)

{

131



D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

2'.
}

{

}

this->control_region

else

this->control_region = 1;

}
else if(pi_2 <= w2 < pi_4)

{

this->control_region

this->control_region

this->control_region = 3;

4',

3;

2',

if (w2 >= pi3)
}

else
{

}
else

{

}

II Update sigma image
this->Phi () ;

if (epsilon < 0.1)
{

else

this->control_region

{

}

{

}

this->target_reached = 1;
this->sigma_initialised false;

}

return(O);
}

int Switcher::ExecuteControl()
{

II Thread the handler functions to start the ball rolling
this->sigma_initialised = false;
pthread_create(&sigma_transition, NULL, &phi_R_sigma_neg, this);
pthread_create(&control_application, NULL, &U_g_sigma_x, this);
return(O);

}

void* Switcher: :phi_R_sigma_neg(void* arg)
{

Switcher* control = (Switcher*)arg;
sleep(2);
while(control->target_reached == 0)
{

control->UpdateStatelnternal();
usleep(150000);

}

pthread_exit(NULL);
}

void* Switcher::U_g_sigma_x(void* arg)
{

Switcher* control = (Switcher*)arg;
sleep(2);
while(control->target_reached == 0)
{

132



D.2 Configuration File for RollerMHP

control->Control();
usleep(150000);

}
pthread_exit(NULL);

}

D.2 Configuration File for RollerMHP
driver
(
name "modrollermhp"

plugin "/home/awalker/development/ModRollerMHP/libmodrollermhp.so"
provides ["position2d:O" "power:O")

port "ttySl"
alwayson 0
)

driver
(
name "sonaracc"
plugin "/home/awalker/development/MHPsonaractuator/libsonaracc.so"
provides ["sonar:O" "actarray:O")
port "ttySO"
alwayson 0
)

driver
(
name "vfh"
provides ["position2d:l")
requires ["position2d:0" "sonar:O")
distance_epsilon 0.3
angle_epsilon 5
max_speed 0.15
max_acceleration 0.1
safety_dist_Oms 0.4
free_space_cutoff_Oms 500000.0

133



D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

134



References

[1] Mobile Robots Inc. [Accessed 5 September 2007]. http://www.mobilerobots.com. 47

[2] RFC1832 XDR: External Data Representation Standard. [Accessed 27 November 2008].
http://www Jaqs.org/rfcs/rcn832.html. 48

[3] J. Balakrishnan. The dynamics of plant layout. Management Science, 39(5):654-655,1993.
9

[4] Irani. S.A Benjafaar. S, Heragu. S.S. Next generation factory layouts: Research challenges
and recent progress. Interfaces, 32(6):58-76, 2002. 9

[5] MacDonald. B. Biggs. G. Generic interfaces for robotic limbs. In proc. of the Australasian
Conference on Robotics and Automation, 2006. 52

[6] McClamroch. N.H Bloch. A.M, Reyhanoglu. M. Control and stabilization of nonholonomic
dynamic systems. IEEE Transactions on Automaic Control, 37:1746-1757,1992.62

[7] Koren. Y. Borenstein. J. Real-time map-building for fast mobile robot obstacle avoidance.
SPIE Symposium on Advances in Intelligent Systems, Mobile Robots, V, 1990. 59

[8] Koren. Y. Borenstein. J. Histogramic in-motion mapping for mobile robot obstacle avoid­
ance. IEEE journal of Robotics and Automation, 7(4):535-539, 1991. 59

[9] Koren. Y. Borenstein. J. The vector field histogram - fast obstacle avoidance for mobile
robots. IEEE journal of Robotics and Automation, 7(3):278-288, 1991. 59

[10] Ulrich. I. Borenstein. J. Vfh+: Reliable obstacle avoidance for fast mobile robots. In
proceedings of the 1998 IEEE International Conference on Robotics and Automation, pages
1572-1577, 1998. 59

[11] Zavanella. L. Braglia. M, Zanoni. S. Layout design in dymanic environments: Strategies
and quantitative indices. Internat. J. Production Res. Forthcomming, 2002. 10

[12] Balestrino. A. Casalino. A.M, Bicchi. A. Closed loop steering of unicycle-like vehicles via
lyapunov techniques. IEEE Robotics & Automation Magazine, 2:27-35, 1995. 76

[13] Gerkey. B. Collet. T, MacDonald. B. Player 2.0: Toward a practical robot programming
framework. In proceedings of the Australasian Conference on Robotics and Automation,
ACRA, 2005. 48

[14] S. Davis. Future Perfect. Basic Books, 1997. 6

[15] Vendittelli. M. De Luca. A, Oriolo. G. Control of wheeled mobile robots: An experimental
overview. in RAMSETE: Articulated and Mobile Robots for SErvices and TEchnology,
270, 2000. 29, 63, 65, 76, 77

[16] Thrun et al. Monte-carlo localization for mobile robots. In proc. of the International
Conference on Robotics and Automation, pages 1322-1328, 1999. 59

[17] Thrun et al. Simultaneous localisation and mapping with sparse extended information
filters. International Journal of Robotics Research, 23(7):693-716, 2004. 59

135



REFERENCES

[18] Tseng et al. Generic bill-of-materials-and-operations for high variety production manage­
ment. Concurrent Engineering: Research and Applications, 8(4):297-322, 2000. 10

[19] M.P Groover. Automation, Production Systems and Computer Integrated Manufacturing.
Prentice Hall, 2nd edition, 2000. 9, 10

[20] Wortmann. J.C. Hegge. H.M.H. Generic bill-of-material: A new product model. Interna­
tional Journal of Production Economics, 23:117-128,1991. 10

[21] Stephen Morse. A. Hespanha. J .P. Stabilization of nonholonomic integrators via logic based
switching. Automatica, 35:385-393, 1999. 65, 67, 68, 69

[22] Stephen Morse. A. Hespanha. J.P, Liberzon. D. Logic based switching control of a non­
holonomic system with parametric modeling uncertainty. Syst. f3 Contr. Lettr, Special
Issue of Hybrid Systems, 38:167-177,1999. 67

[23] Huang. H. Irani. S.A. Custom design of facility layouts for multi-product facilities using
layout modules. IEEE Trans. on Robotics and Automation, 16:259--267, 2000. 10

124] Balakrishnan. J. and C.H. Cheng. Dynamic plant layout algorithms: A state of the art
survey. Omega, 26(4):507-521, 1998. 9

[25] Tseng. M.M. Jiao. J. Design for mass customization. Annuals of the CIRP, 45(1):153-156,
1996. 6

[26] Tseng. M.M. Jiao. J. An information modeling framework for product families to support
mass customization manufacturing. Annuals of the CIRP, 48(1):93-98, 1999. 10

[27] Tseng. M.M Jiao. J. Customizability analysis in design for mass customization. Annuals
of the CIRP, 36(8):745-757, 2004. 6

[28] Pars. L.A. A Treatise on Analytical Dynamics. Heinemann, 1965. 63

[29] Newman. P. Leong Ho. K. Detecting loop closure with scene sequences. International
Journal of Computer Vision, 74(3):261-286, 2007. 59

[30] [Accessed 21 August 2007] Logic Supply. http://www.logicsupply.com. 42

131] Yannier S. Sabanovic A. Qnat A. Bastan M. Sliding mode based behaviour control. Pro­
ceedings of the World Academy of Science, Engineering and Technology, 3:118-121, 2005.
66

[32] J.H. Mikkola. Capturing the degree of modularity embedded in product architectures.
Journal of Product Innovation Management, 23:128-146, 2006. 7

[33] J.H. Mikkola. Measuring the degree of mass customization: A product architecture mod­
ularization perspective. POMS 18t h Annual Conference, 2007. 7

[34] Sastry. S. S. Murray. R.M. Nonholonomic motion planning: Steering using sinusoids. IEEE
Transactions on Automaic Control, 38:700-716, 1993. 66

[35] Nise. N. Control Systems Engineering. John Wiley & Sons, 4th edition, 2004. 61

[36] Listed on Frank Pillar's Web Site. http://www.mass-customization.de/glossary.htm#mc.
6

2008].

2008].July

February

10[Accessedwebsite[37] Acroname Incorporated online
http://www.acroname.com. 36,91,93

[38] Image reference from website [Accessed 5
http://wv.·w.ftickr.com/photos/72038961NOO/383482529/. 20

136



[44]

[43]

[45]

[46]

[47]

REFERENCES

[39] Brockett. R.W. Asymptotic stability and feedback stabilization. In R.Brockett, R. Mill­
man, H. Sussmann, "Differerntial geometic control theory", Birkhauser, pages 181-191,
1983. 65, 66

[40] Lavalle. S. Planning Algorithms. Cambridge University Press, 2006. 60, 61, 63, 64, 66

[41] J. ShovaL S. Borenstein. Using coded signals to benefit from ultrasonic sensor crosstalk
in mobile robot obstacle avoidance. IEEE International Conference on Robotics and Au­
tomation, Seoul Korea, pages 2879-2884, 2001. 35

[42] Jarvis. R. Spero. D. Towards exteroceptive based localisation. Proceedings of the 2004
IEEE Conference on Robotics, Automation and Mechatronics, 2004. 59

[Accessed 14 April 2007] Technical listing on Devantech website. http://www.robot­
electronics.co.uk/htm/md03tech.htm. 25, 35

[Accessed 20 November 2008] The official website of the Player/Stage/Gazebo project.
http://playerstage.sourceforge.net. 44, 45, 52

A. Toffler. Future Shock. Bantam Books, ISBN: 0553277375, 1971. 6

Bolton. W. Mechatronics. Pearson, Prentice Hall, 2003. 20

Bright. G Walker. A.J. Standardised framweork for flexible materials handling management
based on operating system primitives. In Proc. of the Australasian Conference on Robotics
and Automation, ACRA, 2007. 13

[48] G. Wang, D. Xu. Full-state tracking and internal dynamics of nonholonomic wheeled
mobile robots. IEEE/ASME Transactions on Mechatronics, 8(2):203-214, 2003. 66

[49] Tseng. M.M. Wang. Y. Incorporating probabilistic model of customers' preferences in
concurrent engineering. in Annuals of the CIRP - Manufacturing Technology, 57:137~140,

2008. 85

137


	Walker_AJ_2008.p001
	Walker_AJ_2008.p002
	Walker_AJ_2008.p003
	Walker_AJ_2008.p004
	Walker_AJ_2008.p005
	Walker_AJ_2008.p006
	Walker_AJ_2008.p007
	Walker_AJ_2008.p008
	Walker_AJ_2008.p009
	Walker_AJ_2008.p010
	Walker_AJ_2008.p011
	Walker_AJ_2008.p012
	Walker_AJ_2008.p013
	Walker_AJ_2008.p014
	Walker_AJ_2008.p015
	Walker_AJ_2008.p016
	Walker_AJ_2008.p017
	Walker_AJ_2008.p018
	Walker_AJ_2008.p019
	Walker_AJ_2008.p020
	Walker_AJ_2008.p021
	Walker_AJ_2008.p022
	Walker_AJ_2008.p023
	Walker_AJ_2008.p024
	Walker_AJ_2008.p025
	Walker_AJ_2008.p026
	Walker_AJ_2008.p027
	Walker_AJ_2008.p028
	Walker_AJ_2008.p029
	Walker_AJ_2008.p030
	Walker_AJ_2008.p031
	Walker_AJ_2008.p032
	Walker_AJ_2008.p033
	Walker_AJ_2008.p034
	Walker_AJ_2008.p035
	Walker_AJ_2008.p036
	Walker_AJ_2008.p037
	Walker_AJ_2008.p038
	Walker_AJ_2008.p039
	Walker_AJ_2008.p040
	Walker_AJ_2008.p041
	Walker_AJ_2008.p042
	Walker_AJ_2008.p043
	Walker_AJ_2008.p044
	Walker_AJ_2008.p045
	Walker_AJ_2008.p046
	Walker_AJ_2008.p047
	Walker_AJ_2008.p048
	Walker_AJ_2008.p049
	Walker_AJ_2008.p050
	Walker_AJ_2008.p051
	Walker_AJ_2008.p052
	Walker_AJ_2008.p053
	Walker_AJ_2008.p054
	Walker_AJ_2008.p055
	Walker_AJ_2008.p056
	Walker_AJ_2008.p057
	Walker_AJ_2008.p058
	Walker_AJ_2008.p059
	Walker_AJ_2008.p060
	Walker_AJ_2008.p061
	Walker_AJ_2008.p062
	Walker_AJ_2008.p063
	Walker_AJ_2008.p064
	Walker_AJ_2008.p065
	Walker_AJ_2008.p066
	Walker_AJ_2008.p067
	Walker_AJ_2008.p068
	Walker_AJ_2008.p069
	Walker_AJ_2008.p070
	Walker_AJ_2008.p071
	Walker_AJ_2008.p072
	Walker_AJ_2008.p073
	Walker_AJ_2008.p074
	Walker_AJ_2008.p075
	Walker_AJ_2008.p076
	Walker_AJ_2008.p077
	Walker_AJ_2008.p078
	Walker_AJ_2008.p079
	Walker_AJ_2008.p080
	Walker_AJ_2008.p081
	Walker_AJ_2008.p082
	Walker_AJ_2008.p083
	Walker_AJ_2008.p084
	Walker_AJ_2008.p085
	Walker_AJ_2008.p086
	Walker_AJ_2008.p087
	Walker_AJ_2008.p088
	Walker_AJ_2008.p089
	Walker_AJ_2008.p090
	Walker_AJ_2008.p091
	Walker_AJ_2008.p092
	Walker_AJ_2008.p093
	Walker_AJ_2008.p094
	Walker_AJ_2008.p095
	Walker_AJ_2008.p096
	Walker_AJ_2008.p097
	Walker_AJ_2008.p098
	Walker_AJ_2008.p099
	Walker_AJ_2008.p100
	Walker_AJ_2008.p101
	Walker_AJ_2008.p102
	Walker_AJ_2008.p103
	Walker_AJ_2008.p104
	Walker_AJ_2008.p105
	Walker_AJ_2008.p106
	Walker_AJ_2008.p107
	Walker_AJ_2008.p108
	Walker_AJ_2008.p109
	Walker_AJ_2008.p110
	Walker_AJ_2008.p111
	Walker_AJ_2008.p112
	Walker_AJ_2008.p113
	Walker_AJ_2008.p114
	Walker_AJ_2008.p115
	Walker_AJ_2008.p116
	Walker_AJ_2008.p117
	Walker_AJ_2008.p118
	Walker_AJ_2008.p119
	Walker_AJ_2008.p120
	Walker_AJ_2008.p121
	Walker_AJ_2008.p122
	Walker_AJ_2008.p123
	Walker_AJ_2008.p124
	Walker_AJ_2008.p125
	Walker_AJ_2008.p126
	Walker_AJ_2008.p127
	Walker_AJ_2008.p128
	Walker_AJ_2008.p129
	Walker_AJ_2008.p130
	Walker_AJ_2008.p131
	Walker_AJ_2008.p132
	Walker_AJ_2008.p133
	Walker_AJ_2008.p134
	Walker_AJ_2008.p135
	Walker_AJ_2008.p136
	Walker_AJ_2008.p137
	Walker_AJ_2008.p138
	Walker_AJ_2008.p139
	Walker_AJ_2008.p140
	Walker_AJ_2008.p141
	Walker_AJ_2008.p142
	Walker_AJ_2008.p143
	Walker_AJ_2008.p144
	Walker_AJ_2008.p145
	Walker_AJ_2008.p146
	Walker_AJ_2008.p147
	Walker_AJ_2008.p148
	Walker_AJ_2008.p149
	Walker_AJ_2008.p150
	Walker_AJ_2008.p151
	Walker_AJ_2008.p152



