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Abstract

In order w fncllitate the materials handling recuirements of production structures
ol [isr Muss Custombsntion Manufscturing, the design of requisite mabermls
Tl i i FoMLITE RyRLEDEN et few canoeplial wﬂxm Materiils
limniad ling med rowting systems with the iy Lo higher- mAnAEETETt
sysaLoms woulld allow for medited task al hon stroctured vertical integration
of s into existing manufecturing execution and mansgement systemes,
Thm,u?uhllﬂljmﬂﬂin i materials handling and routing sy=tem, for
siich vithin conliiuratione. m Lo provide a Sexible system mochanizm with min-
Imal palicy on system usage,

With the recent developments in mobile robot technologies, dee to varous advanoe
ments in embedded system, computational, and communication infrastructures, mo-
bile robot platforms can be developed thal sre robust and relisble, with operating

w1 e biunided aulonomy. With the addition of materials han-

ures, protoe-
cols and robotic softwnse wlh—-ﬂﬂlmhuﬂﬂhﬂmnmﬂnﬁlﬂe
solution mechankems in real-lime fexible materials handling in production

This disserintion covers Lhe ressanch -H:I-T:nutd‘l--ﬂ hanicdling sored
routing system impleneniation architecturs, production environments facilita-

applications, and preventa
ppoeplible 1o reconfiguration and sochastic utilmation.
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Chapter 1

Introduction

"ioreal thowghts reduced to practice beceme great acts’’ = William Bazlite
This dissertation covers research in the srea of advanoed manufactu lndqmuﬁﬂllr
focuses on the development of mobile robot systems to [acilitate the handling and
routing tasks required for production rate sustainshi customer-induced varistons in
production requirements in Mass Customisation mﬂam (MCM) implementation
1.1 Brief Problem Space - Solution Space Overview

Th bem nddclresned Thes in lpldlthﬂﬂ'ﬂllﬂhhhud snd routi
¢ prech facilitating » Ilf:l ng

ﬁclﬁdﬂﬂﬂhnﬂwm tha context
, Uissier vurintions in uction muudﬂmlh changes
in product , which can produce m'“-:.-ui fow through & production plant when
processing hunﬁhﬁ!nplhﬂnrmdmmhnuf' infrastruciire sub-
Bels with standard work Sce and rouating

Charsclerisaton of Lhe problem Crmdluﬂﬂthhhhmuuhhudbym
the concepts and of MOM production structures. This charscterisstion leads to the
development of & i definition for a materials handling and routing task that fscilitetes
customer-induced work-flow s payload routing variations.

As manuisciuring systema have technleal propertios and cherscterisiios that are product and
PrOCess specific, ihe development of absolute physical systems, as solution mechs-
nisms, does not provide s croedible research output. Therelore, an effort is made 1o focus on
generic pequiremnonts and develop soluthon structures on the basis of sysiem soalabdility and ex-
tensibility, allowing for intagration of spplication specifics to facililale unique produection planis

Em ura of the properibes md-:hlrmmunllnﬂhmundlulm teiLing
mhﬁnlmﬂmﬁhhﬂh‘lﬂ!mmmm Leriure that
rovides & generic solutlon structure incorporsting the core fanctionality required ln order to
fwilltlh the materials handling and routing tasks of costomer-induced varlatbons (n production
mequiremenis. A physical i doveloped based on & subset of the functional units of
the implementation architecture in the form of a semi-astonomous mobile robot plitform,

Materinls bamdiing and routing of paylosds between distributed manufacturing infrastrue-
ture subsets through the uiilisstion of mobils devices, such as mobile robats, requimes Feseurch
development of motion controllers for such robot devices in order 10 execuls malerials
handling and routing tesks. Due to this the majority of the research oulput s

on the motion control problem. Full stale feedback stabllisation of differential drive
robot platiorms s quantified along with the development of Lyapunov stable' motion

! Lyapunos stabiiity s introdisesd in ssction 8.3.1.3

3
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L. INTRODUCTION

conirollers. Coplrol solistions take the form of asymptotically stable nonlmesr, snd phacewie
eontinuous hybrid control lews.

1.2 Research Project Objectives

1. T ressirch muterials handling and routing for Mass Customisation Manufscturing (MOM],
i order 1o exposs, charscterise. and define ihe routing tasks sssociated with s produe
tlon structure in order to provide a well defined problem space for research,

Z Tndneluﬂl layered implementation archilecture that encapsulates the come functionlity
roujiakrod miiterials handling amd routlng tak svecution.

i To research, design and constroct a mobile materials bandiing and robol plat-
form, in alignment with the layered implementation architecture, o ide & pesi-bed
for experimentation and performance testing porposes.

4, To utilise (e mobile materials handling and roullng robod phatform to tesl and validate

this motion coptrel aspects associated with (acilitating the material routing requlsensents
imposed through MCM production siructures

1.3 Dissertation Overview

The main topics in each chapier are listed and briefly described below in order 1o provide an
overyiew of this dissertation as a whole

Chapter 2
P and charncteriatics to Mass Customisation, lehe
i B T I a0 & ke

mmwmmmiwmwmmnm
An overview of the plant layout aspects thal allect materials handling requirements in

MOCM production s in onder 1o bde [msight into passive messures that can
minimse materiaky and roul wummh. The chapter endh by defining
i Flexible Material Routing P'I‘I.mh.inﬁhlrm’ & lmyered implemeniaiion

rehitecture designed to [acilitats the ssecstion of

Chapter 3

Tle coneept af Mechatronics = pressilad in order (o highlpbt the design method uwsed

I dwu]npln.g the mobile materialy bandling and routing robot platform prototype, which

ﬁlm a test-bed for experimentalion purposes, The mobile robol platform's
n- h presented including relevant theory and plvotal design nspects in i implemen-

i

Chapler 4

The design and operating structurs of the Open Soorce software system uied In bme
plementing Hardware Abstraction .'Ll.;rn ﬂH.ﬁrlml:tumlhr!thmbihmuuthh
handling robot platiorm is presented. The software system provides software scalability
ansid allows for code reme by almtraciing the hudnumﬂnd the mabile matorisls
bandling asd routing behind well defined genenc sofiware abstrections over an
I petwork, throash use of imterisce specifications.

Chapter 5

'I'harmummddpﬂthulnﬁm in order Lo [malitate the motion contiol s
pevts pssocinbed with material pay Lrsportation between distributed manufactaring
infrastructure subsels |s presested. Mualiiple motion control lhtilh_ nre implomented
e tested on the mobike materinls ing and ruu projotype in
oFder Lo quantify the motion control performance pmm algorithm



1.4 Chapter Summary

Chapter 6

A summary of the outputs achieved during the research project provide insight into future
research in advanced manufacturing systems and MCM. A discussion on the importance
of an international development community in the realisation of next generation materials
handling systems for Mass Customisation Manufacturing provides preliminary insight into
task force development. Common Model Development FCMD) is discussed with reference
to the layered implementation architecture.

1.4 Chapter Summary

The layout and main content of this dissertation has been presented in order to provide the
reader with a well directed outlook on the work covered.
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Chapter 2

Constructing the Autonomous
Material Transportation
Specification

“Te make comivibuiions of this kind, ithe emguineer reguiras Lhe imoginaiion
fo wissalise fhe aseds of sociely and fo appreciatie what 15 possibile, as
wall a» the fechaslogical amd Broed sccial-age undersionding fo bring hia
vizien to realidy’" - Hir Eric Ashby

The aim of this chapler s io expose, chirscterise, and defino a "Flexible Material Routing
Primitive™ (FMHRFP], & task thal kas been conceptualised {o represent a spocific form of materi-
als handling and routing operation, associnted with customar-induced warintions in production
reqUirensenis

From the charscteristics of 8 FMRP, an implementation architecture is introducsd that en-
capsulates the core functionality required to facilitate the execution of such materials
and routing tesks, This Implementation architecture forms the major component in the
opment of n mobils materlals handling and routing robot platform prototype In chapler 3.

The concepts and characteristlcs exposed in this Bt & precursors (o the Introduction
of design and performance specifications for the ile malerials handling and rouling robot
:lﬂnrmd:whpaddmiul. resoarch project. These specibcations are presenied (n section



2, CONSTRUCTING THE AUTONOMOUS MATERIAL TRANSPORTATION
SPECIFICATION

2.1 Mass Customisation and DFMC

It & important o understand and quantify how customers, in the context of MM, croste
varislions in production requifements, in order o develop manufaciuring struotures that are
capable of economically operaling under such conditions. In order to understand MOM, one
El‘[l:u;_hﬂ{{gl understand the notions of Mas Custombsation and Desizn for Mass Customisatbon

2.1.1 Mass Customisation - A Brief History and Definition

The concept of Mass Customizstbon frel appesred in the book “Futore Shook®™, by Abvm Toffler
[45). Tofier, much nppreciated for his propositions and explanatons lor modern socologicsl
phenomena, described Mass Custormnisstion s & method of to miche markets. “Mass
Customisation” was [ termal by Stan Davis, In his book "Fiture Perfect”, Davis
projected trends encom: mlmm%nwnu'l.iun of consumer minrkots snd unigue prodoct
development for customers [14). The definition provided by Frank Piller best describes Mass
Customisation fandamentals, and thus, it is the formal definition in this dissertation [36].

Masz Customisation. “Customer co-design process of products and services which meet
ihe needs of each individual customer with regard to certain produet features, All ions
are performed within & Axed solution space, characterised by stable but still Rexible and
responsive prooesses. A & result, the oosts associated with éuslomisation allow for a price
level that does not imply & switch In an opper market segment”, [36]

The key aspects, in bold foni in ihe above definition, reguire reileration

= *“Custormer co-deslgn™: Customers, in the context of Mass Customisstion, are integral
product design elements and implicitly create production dynamic

= "eertain duct Mestures™: Customisation is limited to ceriain product Festures thes
ENSUring illy bound and dederministic variations in production réquirements.

- “fixed solution space”: The productlon environments implamenting Mass Customiss-
tion have limited, but well defined, capabilitices

- “giable but still Hoxible and responsive”: Production rte valatility is minkmbsed
through pesponsive production operationg.

Therefore Mass Cuilomisation, or more spocifically MOM, s nol only the manufacture of
cusiomized products sl mass production efficiencies, [25], but oven more so, B & production
structure developsd 10 soosomically lacilitate bounded, customer-induced wariskions in produc-
tion requirenients, under near constant production rale

2.1.2 Deslgn For Mass Customisation

DFMC represonts the notion of desigrong products thal are more susceplible to efficient and
ecanomieal manufacture in & MCM context [27]. DFMC s an extremely complex Lask and
“t!.lli-nllai only o briel overview of the aspects of DFMC thet are capable of afecting production
stability,

2.1.2.1 Design For Manufacture {DFM)

Taking processing requirements into consideration when designing products provides smooth
transitions it production. Design for fixturing, design for easy Tabricatbon sod assembly,
design for minimal setup and design for minimal wtlisation of cuttlng tools are all design
melhods wsed in [FM. BF'L[ can produce products that require bess overall processing which
smplicitly creates simpler logistics and material flow through the production plant thus reducing
materials handling and routing tesks
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2.1.2.3 Modularisation
Modilar uets allow for an incresse in the ol eustomsability for & particular product

ke e o et e ity e e of dumriiog S pactilar Cmimiors
There exists a strong between Mass Custombsability of a product with regard to
modularity [33](32].

2.1.2.3 Paramatlerised CAD/CAM product models

e bl g g g d’ﬂnﬁmhn;h i o goormad g g o
User Interfnces that allow customers to ol & comtom product. This not

mﬁhmmmmmmm&mmw
unssin production conficis.

2.1.3 Summary

DFMC can ithus be ssen a5 & passive measure ol produciion rate stabllity by design-
ing that “behave well™, hmd%mmmh
mmw&m roduct design. The
succemslul implamantation of Mess Customisation, in the conbext :E cutorm produet
manulariure through MOM, is largely dependent on the anil custom] Lty of the prod-
uhuﬁuﬁdh“rrﬂruhrmumtnmgirm_ DFMT can be soen a8 (he el ling of defense
tion in an environment pqnu:h-ndhy customer-induced changes

prm mdmuumlhmhﬂhd.

2.2 The MCM Production Structure

In order bo mer pmducl.hn structures that are capable of MCM, all elements Lhat affect
ar sontrol the “magnitude” or “frequency”™ of customer-induced production rate variathons must
ke collected and con :mwmu;rmﬂrudunﬂuh. Concurrent anal can albow lor insight
uako methods of quantifying and Eﬁ “stability, the “stable but still
Aexible and responsive” aspect of Mass , section 2.1

2.2.1 Concurrent Analysis Through Control Theoretic Constructs
There will always be a semantic breakdown regarding the communication of ooncepts scross

For this reason. the asthor has encapsulated the of MICM

d.:-;n » -
o concurmency, m the design and of BMOCM production
S e A A% 31 R« o ot
L hﬂmﬂ;mw-mmmlﬁmm
produciion plant thal are set up, or around & st of standard processing requine

menls. Thee Ia disturbances. ie customers, effectively produce veristions in production

requiemenis production mte, yi), hm&mhnnndudﬂnnjthumﬁhnd
mmocinted production plans, stored in & Standard Product Model Libeary! (SPML)

i thin control Lheoreiic model, DFHU'CV}ERM ms o pre=Alier or feod-lforward controller
that conditlons Company Wide Decislons as tarpet consumer merket and producl
strategy, into more multable parsmeterised CAD/CAM product models. ‘This notion reiberates
the importance of DFMC in mhhm; succeslul MOM ot pre-determined sconomic production

Yin ihe combext ol MOM, snd for this repressntation, ISFHthw-nmﬁuﬂuurmdmﬂAﬂ.fEﬁH
mardels in “standard” comfgiratson, Standard configurations can be thought of s thaose ot candiguratione
Lleit paprsanl bt aullmate of castamer preferencs, determined throagh market missrch
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Figure 1.1: Control Theorstie Deseriptlon of Mass Custimmbsation Masufacturing -
In this modsl, customers et a8 Input dist which offset standard productlon opsrations.
These input disturbances reguzirs regulatien by the MOM production centraller

rales, section 212

Manufacturing infrasiructure, such &5 Flexible Manufacturing Systema (FMS) can be re-
garded as abstract actuntors that are driven by costmol signals from the thon controller,
i.e. with reference o Figure 2.1, Manufscturing Execution Systems (MES), to absorb process
yarlations in crder Lo malintain omsinel production raies under deterministie input disturbances
created through customer-lnduced changes in mandard rrudnﬂdm In the same sense, Flex-
ible Real-Time Materinle Handling, (FRTMH), &5 pn “acthve”™ manulsctaring component, can
be envisuged a5 an phstraet actuator thed inbeprates, throongh dstribiil malerials handling
and routing task execution, various FMS procsssing cells in order Lo provide requined proosss
integratihon. In termes of thin contml Cheorstie constroct and production model, s conceptial
contrel problem statement can b constructed s follows

The MCM Control Problem. Find/scloct /choose/desipn and concurmently develop a feed-
forward costroller [DFMC), o eedback controller (MES), sctuntars (APC, FRTMH, FMS),
sepsors (SCADA, OO}, and Include vie menaures such e structured plam liyouts and
pmcthhhlmwmlllpnmm b that operates so as bo regulnte determinisiic
customer-indooed disturbancs in the form of process and material routing varintions at
& pre-detenmined 54 and eronomic production rate.

Note: With regard o the aspects concerning material routing welationa, plant layout, ns
a “passive. manufsciuring component, i equally a= important &s Flexible Real-Time Materials
Handling, as an “setivw™ mamdactaring component, in schieving inpot disturbance regulatlon
and production rate stability, Thin aspect exposes the muli-dimensional sodution spaces of
modern manufacturing, and asociated materisls handling environments. These components
are ehown a8 yellow blocks in Figare 2.1, Plast lsyoul and iis correlation (o materials handling
requirements s discussed In section 222
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ié ripubied in onder to sustain materials Bandling anid rate

X hlﬁﬁmdiinﬂmh i bo prefer to live

with the imeificiencies of an existing plast layout structure, than perform s costly plant
layout reconfiguration (4]

t [ oo e| Lese
'r-..::- © 9 ® e l‘-._]_l ]
© i.._q’_‘_ ®eé -_t."p o
eo e 0oeoe ‘e o'®

2.2 Functional Plant Layoul Structure - Common eolors represent. masulacturing
m&mmhﬂw“& i

The materials handling efficlency in such plant Inyout structures is dependent on the apatisl
distribution ol consscutive m“mﬁnhmﬂchtm mmm—
required to facllitnte the manufacture of & parti product, Functlonal layouts poor
materials hand and routing , and cen produce inefficient malerisli handling snd
muti._uglnr.hunh:' hupﬂl.k:ul. uul; IJHMHMHH%
tives Ehat L .]-H:'Ildhlﬂ.hﬂ i ﬂ.lll'-Ih- [ltﬂlll‘.hﬂl‘ll-..
mmdm.mﬂundiulﬂlulhnnlnuw:‘m ey

A credible objective in designing a Whmihm-rﬁﬁnwrum

-mi-:ﬂhn:humlﬂmﬂ-rm -:I'b-cl:lhnul-nm:f:rtr
reqpuired materials handling routing distance et r n
mhﬂwﬁphnm hﬂdﬂm dﬁn:m.h’:ul
mmmumm Adjumqﬂnﬂlmiﬁ:i
2222 Cellular Plani I.qrﬂl

Cellnlar layout configurations are manufacturing mfrastructune nto

functional cells. Eﬂl[nucrﬂhlﬂ hﬁd.lr.lild to the manufacture of & family of products
with similar processing reguiremenia. This ks also known as & Group Technology layout and in
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used frequently in batrh production operations [19{, Figure 2.3,

ENUEES S era—— [T p—

2 0 e -

Figure 2.3: Callular Plant Layouat - In modarn ImLHmﬂ'I-I"I‘.II'I-I al cellular lmyouts, & robatic
enasiijeislator = contrally stuaied moeach cell and prisicdss arlboulsied inire-cel] malerials handilng

Cellular plamt layouls simplily workfos lndrﬂnuthmudhiudmuﬂngrqlﬂm
I 9. Omm however, cellular
et L ammmeation 10k grerbact IS v i st amiekontly ot Bl a8 the st ok tho

rerdibel ks stable, Doee established, there = minimal fter-cell materials handling and routing,
E“mu.-,pmt oo s ulhl-nlumﬂ:nwim-:m:hun in product demand or miox

2.2.2.3 Conceptual MCM Plant Layouts

There are no universally scoepted methods of designing plam amd thiss materials
hasdling systerns for MCM implementation, ol there s Htersture oo the subject
I:H-[I:l un however, that incressing the functional Iqu of layout structures

Iuﬂ'hhmhtiuhhmdlln;udm m allow for kylbekd

ill.'nlpu'lhn; thu utructu:-ea mlnr.ed with ﬂWH

in TR

l‘u:l i, :u-r u-nuiutuhl Lnl‘m*.mu:n. mn:: Flaxible Manufacturing Systems could

mm cells that facilitate n subset of the varistional aspects of custom

Flexible materials handling and routing operations could then integrate thes

thmtﬂm‘ material routing Laaks, to fecilltate the manalseture
sl sconomic produoction rates.

It has become oommon practios = high vansty prodectioo b ose customisable production
plitiormn that incorporste and quastify the particular procesaing, and materials handling snd
rouling napects, in the design and mamifaciore of & custom product 18], These customisallo
production platiorms encapsulate the processing regairements of & product configuration,
which all nummndmumhu:lupnu through changss in moduler component attachment

B_r balmnelng the production aspects mudnni with s component. mamilacture

Hmhmdwwﬂ ‘W of base
CM plant h;muu can be designed Tu Enul:l'l.nl.l- high-volume :I:-w_tn' fexi o

u-l-'ll.llu- stations producing base product componenis, and low
ws high routing , betwesn processing stations adding custamisabile cements to bas
components
e 2.4 a coneeptaal tof & MOM production plant based oo this balancing
siruciure. s hybead i the sense that the materials handling system integrates the
#lements of bath and cellular [syout configurations,

" Fhonibale o Ve senes thsl the material payioad s ol copatraired @ move along pre-determined pathes

1]



Flgure 3.4: u—nﬂuummm « Conventional cotrvevor and ganiry

R RLETN Indm-u i—ﬂunmh-mhhﬁ ELal et [
sots. Mobile platiorms thon facistate Scxible between FMD pro-
slpdbong for custom compoment integration.

2.2.3 Summary
Amn psortam in the implemmentation of MOUM is the concurrent dpm:l
unu These production structurss can be h;-mcmtyr meuu

w:ﬂuﬂummmm order to miokmiss Lhe nogative
either magnitude or frequency, due to customer-induced variathons
Iupmll mmuunlll‘umr:.

The and materials handling ln'l'u-'l
(1 ol PP ntegratiun e G somh DAUCIEE TasMOEICTRTe The deslgn of funeiional An)
cellular lioni s m.mhﬂmdﬂmmkpundbﬁl.whm uet dermsnd
and uction volumes are known with high degrees of certainty. Metrics, a8 Totnl Male-
fabght Into ietermiring the Rexibilly aad recongrebility of “m*”“mu‘” ‘m" o, Ons
- i
par o bl bbb s o i gl g
i i i rouk s e enllect i,

mﬂpﬁ“nmﬂhmﬁhﬂtﬂﬂﬂmm reconfifuration procedurms every
Lime new uekian requiremenis develop 18 not an op mw:ﬂ'-ﬁMMw
duction e ey snd stability in MCM, now becomes & factor of plant layout and
Tﬂ?ﬁﬁnﬁ ;fmnh i dﬂn‘:mld h“t.l:nldﬂl single

uﬂhﬂuﬁntmmﬂumhmtnFimri. huhﬁilh- -

2.3 A Flexible Material Routing Primitive - FMRP
ﬁmd:phﬂdﬂﬂhﬂ,hhlﬁﬂﬂﬂﬂﬂwﬂ:mﬁ:mﬂuﬂﬂ“ﬂhnﬂdh

fiwed hybrd plant layouts. induce malerial rouling that fall outside of the
siandard matcrinh handling infaatructore, such s comveyor and gaatny %
this orcurs, fiexhle infrastructure muat by commismnned to Frecute

Lransporialion handling routing i
mobile materials bandling robots, have an upper bound on the material flow volume that can
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be [acilitated by their operating struciure. Thin i based on exposing the [imits sssocisbed

with performing point to polnt paylosd transportation’s under single payload instance. and

limmbtioel ply capacity and motion capability, In ihis regand, conveyor m i
suited to bigh solume matertal paylond transfer in that e payloads can be

the entire conveyor system. Lhese Hexlbbo muoterial ronting systems should coves lhr
matevial routing aspects associsted with product varlaty only, 'u-hu-e the required “atilisstion

{_m“";";l is relatively bow in comparison to that belng fucilitated by comvevor systems, recall
arc

2.3.1 FMRP Characterisation

All mnterinls handling and routing tssks can be decomposed into three basic phases.
1. Materisl Losding or Pickup phase
2. Transportation phase.
3 Materisl Of-load or Set-down phase

In terms of 0 FMHAP, hthﬂumlhhlludh;. lndnl-hdtﬂulnunilulmwmﬁml
robikit material transfer between manufacturing infrastrecture and materials handling devios
In this sense they can be treatod ss sn equivalent malarials task. The transportation
phase dos= not explicitly concern the handling of materials, but , Hhe gros moverneat of
material between distrbuted mannfacturing infrasructure subsets,

A graphical representation of & FMRP ineluding (e various materials hasdling and routing
phases s shown in Figure 2.5.

L I Possap Phass (Loawl and Blakal Wevigailan|
FalF ®jd

L. Hatariale Bendling Fhass
(Postars Frahilisshion)

Watbos Centrol Tranaikion Riagton wk 0
[r— Rmdiuvs N

Figure 1.58: Flaxlble Matarinl Fouting P"m“ll::- Tlse Rgiom of Comvergenes, (Ral) & s
established 1o mul enclusive soosss
WWT“ Mﬂhﬁ?ﬂm numlﬂlr':rn; mﬂ.rllluwmuu: framewnrks, This e deserabed

2.3.1.1 Crucial Aspects in Material Loading and Of-Loading Phases

Duiring these phases, transfer of & material payioad is taking place, therefore the relative po-
sithan wed orieniation of the maberials handling hardware and manufacturing lalraatruciupy
submot? is eritical 1o ensure successful transfer without damaging the material paylond and /v
matarinls handling hardware. During ihis phase the materials handling hardwnre should con-
figure its alignment with the manufacturing infrastruciure subset, absolutely. to ensure Lhat

I'This could aleo be considered nn & tash axscitis Drepusey
¥Buch sa the storage buffer conveyer lnta & FBIS cell
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position anid orientation srrors inheribed by non-ideal trensportation hordware dos not de
stroy the succesalnl execution of the material payload transfer aparation. For thin purpose, the
materials bandling hardware must be able o move and allgn itsell relatlve o the onderlving

transportation hardwire.
Situated around anch iInput /output port in Figuere 2.5 b8  restricted of Convergence

(Hol). The region is restricted in the sense that one mubile materinls

DY lhr%g tugﬂnmhﬂuhpuﬂuﬂ!ﬁmtﬂh w.rmﬂw”
st any particulnr Ume ipsland. This has been conceptuslised in order Lo i isally
exclusive nocess rights, by higher-level management frameworks [MT], imto & FMRP
definition. The border of the region represents » Lransition sone for the PP ——
required wluduwm the RoC, motion control & In the form

of posture jon. This & a critical aspect in which the mobile materials handling and

mmmmmimm;mﬂmmmmh ';I;';
wilth the input foutpat in-mni- uhmmﬂﬂmm
poptrol cun dsregard u;ﬁlmhmdmm-mnhnmbdphhm

will occupy the region.

2.3.1.2 Crucial Aspecis In ihe Transportation Phase

The phise s concermed with the routing of o materisl lond beiweon two
Infrastructure subsets, such as two FMS Thiln phiase coilkd

potentially require large traneportation distances with arbitrary skart and end dscalbons.

Outside the RoC, the motion control must be in the foom of global and local navigation
with real-time obatacle avoblance. The global navigation & required in order 10 estab-
lish pat mummam cutpul ports of distriboted mamslect infrastructure
sy bt navigation s required to establish awsreness aod perception in the dynamic
environment of svancs] MOM production plants,

Mnmmdwmﬂmwﬂt&mmmuﬂ{mhh-m
analogous to salellive sititude control where the controd infrastructure

mnd perforns o different function o it mccuracy and sensilivity. For sxample, in the
attltude adjustment of a satellites commumications equipment with & recelver on sarth, thretes

are used for large atiitude sdjustments and smaller more sccorate magnetic lorges geneTaton
for final alignment. of the commumicalbons Infrastrecture with the receiver on esrth

2.3.2 FMRP Definition

A FNEAPF s besl describad bj' L T T fl.ni:th-.l.ﬂj' different motion Erimotieem, [-'I;nm
26

2.3.21 Materials Handling Primitive
With reference to Figure 2.8, 8 materials handling primitive consists of the following operatloms,

1. Posture sishilisation from a pose' on the boundery of a RoC, [x,, . 0|7, onto & goal
pose, [y, By, 8|7, I & pre-determined vicinity of an input/output port,

2. An absolute alignment of the materials handling infrastructure with the inpul/output
port ising degreii of freedom above those of the underlying transportastion device, recall
section 2.3.1.1.

3. A material payload transfer task, alither loading or ofi-losding

! Pose and configurstion ars nnnlogoes

12
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Figure 2.6: Flexible Muatarlal Houting Primitive Task Tnstance - Postare stabilisstion,
represented by the red dashied line in the figure, of diferential drive platforms s & dificul
control problem and B coversd sxplicitly in chapler §

2.3.2.2 DMaterial Transporistion Primitive

With referenor to Figure 2.6, & material transportation or routing tesk consists of the following
operation.

L

A global navigation operation from a bocation, [y, 1n|”, to a second bocation |rg, w|”
while avoiding olstacles in real-lime.

23.2.3 Flexible Material Houting Primitive
A FMRP s defined aa follows

A materials bamiling and mooting tesk sssienment from 8 higher-level manulacturing
mankgemenl syeiem o & mobile materials handling and routing robot platform

A Muterial Transportation Primitive (NULL)' with [y, g7 = |z, pl” and |25, " =
[#+1, pet]T. & houndary point of & RoC>

A guery to n highor-level management framework to reguesi acors 1o &0 impat )/ outpat
prarl fexllowad by an euteoms scknowlbedgment.

. A Materials Handling Primitive [ Loading).

A Material Transportation Primitive to the off-load RoC with |y, 1]" = |2y, yp]7 &0d
b, val™ = |32, wea]”

A query to a higher-level management framewnork to request acoess Lo an input foutput
port fodlowes by an outcome acknowledgmant.

A Materials Handling Primitive {ofi-loading).

A Maierial Transportation Primitive, (NULL), with [ry, i|" = |rps, wal” snd |22, 3a]”
= |ars ParlT -

PRULL wpresfen that s materis] payloed & proses
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2.3.3 A Generic Implementation Architecture

A phyaieal materials handling and routing robot platform reguires ceriain base come capabili-
ties in order Lo executs & s dlﬁﬁ;l;d mll:lthnﬂ.l.i.ﬂ. lnmmiuh-dmh
required to fecilltate mater innd mi will as provide ow- motion primitives in onder
to transport & materinl paylond Detwesn manofacturing infrastructure subsets. Active sensory
mfrastrocture i requlred to provide the mobile robot with emviromenial peceplion and in-
formation on ita local working environment. This allows the platform to sense both statlc and

stion. Due to the hetamogensous! materials hasdling platforms, executing
FM in n produciion plant, lji.n-nrqﬁ'nilhllpl:rihHA.LI'_tknl-
ity? in order to provide scalability in control snd sroctures. | uch

such a8 FMAP tash insiances, from io the
maberinls bandling amd routing divice, and allow for tesk statos reporting. At ihe highmit kvl
of abstraction, & maierials arsl rohot platform an agent architecture

maberial paylosd charactsristles and production priorty metrics such a8 dus dais,

Orven Lhe many years of systom development, Engineering architectures hivwe beon devel-
oped to allow for the structured encapsulstion of the conceply and specifications required Lo
implement and scalable systems. Following in this spproach, an

wrchitecture has besn developed (o ancapsulate the above mentbones] core s
mmﬁmuhMHMMtlm.mmMmhmthAm

Transporistion Specification (AMTS), Figure 27,

The architecture 18 lnyered, hisrirchial, snd consists of four main levels of funciimnal mplanen-
tation. An overview of ench functional lnyer follows.

M terme of hinrd ware
*Sps gection 4.7 in chapies 4

15
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2.3.31 Hardware Implementation Layer

The Hardware [mplementation Layer {HIL) is n specification an the capabilities of the hardwan
implementations designed to facilitate the phiyakesl requiremants of a FMRP. The HIL consisis
of threr sub-hlocks thet wre assigned cubpub specifications on the necessary capabilities lor
physical FMAP execution. A physical instance of the HIL is covered in chapier 3

2.3.3.2 Device Abstraction Layer

The Deviee Absiraction Layer [DAL) B & speciflcation on the stracture and implemantation of
ihe sofllware syrsiems used 1o shstrsct hardware specifics (plo generic abstractions pertainlng
to concepts associated with FMRP execution. The DAL has heen incorporated into the imple-
menlation architectore in order to sxplicitly inclede the requirmment of scalability in the control
pirictures developed 1o control physical robot devies implementstions by allowing higher-level
pontral soltware to operate in terms of geeric device abstractions’. The soltware implemmenia-
thon used during this research project @8 coversd in chapler 4.

23.3.3 Task Execution Layer

The Task Execulion Layer {TEL) is & specification an the elemsnts thal constitule (he molion
primitives assoclated with the transportation and materials handling aspects of a FMRUP, recall
section 2323, Specifications are placed of posture stabilizstion, and local navigation and
obstacle avoldance capahilitbes. The TEL has aovess to the HIL through the DAL in order (o
perform the motion primitives od in order to execute 8 FMRP. The motion controller
implementations developed to facilitiio ithe TEL are covered in chapter 5

2.3.3.4 Task Allocation Layer

The Tazk Allocation Layer (TAL) i & specification on the communicathon infrastructure that
nliows the materials handling and routing device (o sccept, interpret and locally manage an as-
signed FMRP tack The TAL consisis of & materials handling agent architectore and woolbox to
allow higher-lewel software sysiems 1o gain acoes (o the capabilities provided by the TEL. The
TAL facilitates the routing and transmisshon of task data. To date, this Luver of the architecture
has not been implementsd &8 research regarding the componenis. such as the agenl architertore
and task allocation and scheduling algorithms assoctited with iis implamentstson are sl an
open subject in the Mas Cumtomisation Manulactusing research community, Although not
expliattly reprosented in this work, the TAL could place specifications on the status reporting
protocols for FMAP task complotion or the error codes throws in FMRP task instance (milure.

The mobile materfals handling and routing robot platform prototype developed during this
ressarch project is hased on asubset of the functionel components n the AMTS (implementation
architecture Figure 18

2.3.4 Summary

A Flexible Matorial Rouling Primitive haa been charactensed and defined in terms af Tunction-
ally dizjoint materials handling and routing operations. This has allowed [or ith critical aspects
to be encapsulated in an implementation architecture termed the Autonomous Material Trans.
portation Specifieation, (AMTS)

"The DAL in snalogous 1o the Masdwase Abstracrisn Layer {HAL) of mn Operating Sysiem (05). Hopefubly
this anabogy makes the famnttions] aepsct of the DAL more spparest

£}



2.4 Project Specifications

Flgurs 3.8; Componants of the AMTE Implesmentied in this Work - Allbhiugh not in

tn Full copactly, the Communication Sub-sywtem sub-block wea implemented during this resesich
project and = covered in sectbon 4.1.1.3

2.4 Project Specifications

By characterising & FMRP, specifications on physical implementations to facilitats the sxeco-
thon of mach ean now be intredpoed

I oider to establish research bounds and design goals, specifications were placed on func-
tional as well s perfonnance aspeets of the mobile materials handling and routing robot plat-
form developed during this mesesmch project.

2.4.1 Dimensional and Dynamic Specifications

I. The maximum height of the mobile robot platform, [neluding the materials handling
infrastructure, should be 800 mm to interface with the conveyors used by the Computar
Integrated Manufacturing (CIM) cell in the Mechatronics mnd Robotios laboratory, Figure
9

wy Bassd Msisrisl TesnsFer Devics Autmmatic Storsgs snd vimenl Bpes (RIRE)

_i.,_._-__._-..

Flgure 3. CIM Call Con Sysiem - The gantry bassd tramsfer device replicates
Lhe imfrasiruciore sssscinted wilh Flenble Mamifarionng Systems

kT



2. CONSETRUCTING THE AUTONDMOUS MATERIAL TRANSPORTATION
SPECIFICATION

2. Width and breadth of the platform slrould both be bess than 650 mm to allow the platform
bir navigate throngh doorways in the laboratony.

3. Taallow for fensible application of firs order kinematic models during the developmeant af
meation controllers for the mobille robot platiorm, rise Uimes e any step input in velocity
nrovind mrominal operating conditions shouk] be under & seoond.

2.4.2 Sensory Specifications

. The mobile platform miusl be able 1o gother perceptive dats, using active ssnsom, aboul
ummtmml:lg environment L il rllrnﬁl.hm on & horizontal plane to minimise dirertonal
bias in local navigathon performance,

2.4.3 Motion Specifications

I. The mobile platform must be able w perflorm asymptotic poslure stabilisation snd hawe
a lyapunov stable motion control system.

2 Eﬂh platform nast be able to locally navigate s surrounding environmeant |n

2.4.4 Summary

Performance specificalions have been placed on certain design sspects of the mohile materials
ha.nnl:tlmg and routing rebot platiorm prolotype. in order to sstablish design bounds for physleal
implementation,

2.5 Chapter Summary

Successful MCM implémentation b dependant on the design snd customisability of the prod-
wcts offered by a partleular manufactuning firm. In this ; Diesign For Mass Customisaiion,
(DFMIC) is extremely important and must not be ;

MOM can be -nn A8 A roduction environment with uction charncteristics that
qm st lh bateh and mass production. MCM implementation reguins
a concarmeil m the integration of components that affect or control the magnitude
and for tm ol customer-induced varistions in production rate. This onn be achicved by

production in & control theoretic construel.

Due o the unique nature of MOM production. it i fundamenlally imporiant lor firms im-
MOM o undersiand how customers afect production dynamics, in order to croste

and pndmunn #yslems that are of economically I‘zdl.l pustoners neads
layout structures fiexible materials I'Il.l:l.dlln] nystoma. These plant

Jt}whnﬂ handling systems must be regarded as a single [unctional or collective unlt,

A Flaxible Material Primitives (FMRP), provides a mechaniam that can allow for
the process integration of d mamulaciuring infrastroctum subsots in MCM production
ﬂulm. For tha p of generic and sirdctured encapsulation, an implementation architecture

bwen thint the fundamental capabilitios required in arder to execute
a FMHAP, in order o mal production rates under deterministic changes in standard pro-
dution requiraments.



Chapter 3

Hardware Implementation Layer

""Always design o thing by considering 40 I8 4ia nézd larger coniesi —
g choir in & reem, & voom 18 & houwse, & house 18 an enwirocament,
an snvircnmeni 8 o city plam. ** - Elisl Ssaripes

Chapier 2 aimed at charsrtarisng the maierials handling enviroament 8 MO prodection
operstions, in order io expose and define the notion of & Flezibls Matarial Routing Primitive
(FMRP). This progressed into ithe development of an implementalbon archilecture termed 1he
Avtonomous Material Transportation Specificetion (AMTS), to [scilitate the execution of such

This chapier presenis the prototype mobile obasl plaiform developed in alignment with the
Hardware Implemenistinn Layer of the AMTS, Figurs 3.1,

Tk AllzcEsizs LeTES
— P— [ 2w TR SR

Figure 3.1: Hardware Implementation Layer - The CAD model shown in the Sgure repre
semin Lhw iningraied plosical implementation of the underiying hardware b blodks in the 1and-
ware lmplnmenialion Laver

Description of the hardware prototypes presented bere follows a partbcoiar format.  Fistly,
ihe relevant hardwsre sub-block of interest is highlghied, incheding its functbonal amd outpul
specification. Any relevant theory and pivolal design paramelen periaining (o the hardware
sub-block is presenied. Lastly, the handware prototvpe developed 1w (acilitale Uhe ootpot spec
ificwtbon is presenied.

(L)



3. HARDWARE IMPLEMENTATION LAYER

3.1 The Concept of Mechatronics

In révent years, an increnaingly inter-disciplinary approach has been taken o solving compley
engincering problems. Modern cass, manufacturing infrastructure, sach ss machine ook, nul
musmerine of by myslemas ranging from hard disk drives to washing machines are sxamplos of Lhe
integralon between alectronie controd &nd communicaton systemas, and mechanlenl enginesring,
45]. The term "Mechatronbs™ s wsed to describe this process of integiation. Many informal
definithons for mechslronio exist in research erature and books on the subjecs, all ronghly
describing the ssme concepla. Ooe such definition lollows [46]

Mechatronbs. e synerglstic and concurrent mtegration of (he infrastricture sasocialed
witly Lhis disciplines nFﬂﬂ:h-nn:d Enginecring, Elertrical amd Eleririie Erq;:nuﬂ:n;, Clomputer
and Soltwnre I'"J'L-T , and Systems Contrsl Engineoving (0 provide ean, mesponsive
sululions to complex engineering problems

Emphnsin in placed on the synergy associated with eoncurrent ind bon of exisiing is-
frastructures, Thin sepect seporates Mechatronics from solution imethods hesed on schieving
porformance speciflestions through the composition of infrastructure, deslgned froom St prine
ciple, o dinjolst design and solution spaces.

Figurs 3.31 Yenn Diagram Description of Mechaironics - This graplscal represseisiss of
the conerpl of Mechatronica ideptifies the Mechaatronic desgn space 8 8 unifed itesseriuon of
fotar enyginieering discipline, |8

Tha bardware prototypes doveboped for the HIL of the AMTS use muliiple embsedded systoms
Appendix A b been devoted o the intreduction of Lhe technology ased (n implementing {hess
embedded systems, This introduction is reguined, as referance b geude 1o e techpology du-
ing the introduction of the Devioe Abstraction Layer of the AMTS in chipter 4. A review of
Appendiz A aboubd clarify th technical termincdogy used Lo followlig sscllons

3.2 Mobility Hardware Sub-Block

3.2.1 Functional Specification

The Mobility Hardware sub-hlock specifies the physical device interface to the facvory Hoor that
pricibin bow-Jivel maotloh peimitives to elitate & material transporation (aak



4.2 Mobility Hardware Sub-Block

Figure 3.3 Mobiliiyy Hardwsre Sub-Block - As con be soen from ihe hﬂﬁrq:rhl.lhu
hnﬁ-nntihun[thmzhhhnm:uhlhllitunkmwhi
accursts motlon control of the mobile platborm

2211 Output Specification

The output specibcation s based on ihe msumplion that the Boor, on which the mobile
device operate. ke fatl and emooth, thus allowing melions on & to (ecilitale ihe trans
portation of muterial payloads between distributed manufsctaring infrastrecture sulsets This
in » rensonable sssumption s safely specifications lmil factory foom to emooth fat surfsces

# Dutput Specification:
Planar mobion primitives in the configuration space RY = 30"

It order to provide planar motion primitives ia B¥ = 30', & two wheeled differential drive
plaiforin was designed and mplemented The opersiing specifics of differestial deive platiomms
s eovered in seciion 323

3.2.2 Differential Drive Platforms

This sectlon provides an overview of the opersting charncteriatics and Implementation aspects
mmocimied wilh differeniial drive platicems. in order Lo provide lusight Into developing s physical
implementation to facilitate the output specification of the Mobility Hardware nub-block

3.2.2.1 Moechanical Configuration and Theory of Operation

Ths most common mechanical configuration for implementing differsntial drive platforms con-
watd of two indepenadently driven active drive whoels attached o & main structursl support
fraumework, stabilised by passive caster wheels. Mot molile robotn used in neademibs resenrch
utiliss this standard mechanical configuration

Difermntinl drives can produce planar motiony consisting of combsinalonal translations snd ro-
tatiors, Figure 3.4, Tranalations are achieved by estnblishing idemiical angular velosity in both
ifrive wheels. Egual, but opposite, angular velocities in the drive wheels prodiuce pure rolalbons.
Various combinations of translations and rolations can be achieved by varying the difference in
angulnr welockty betwesn the active drive wheels. hence the term drive
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4$.2,2,2 Important Implemeniation Aspecis

Thare are muliipls that affect the motion parformance of & differential drive plaiform
Active drlve wheel & is one of the maln contributors Lo positioning erors during odo-
metric calculstions on be differential drive platforms. Therelore, active drive with

ﬁ traction characteristics must be selected in thelr implementation. Also, selecting active

whenls with diameters relative Lo the width of the differential drive allows for bower

warl ol Lios pecelerations on the drive wheels to produce feasible fnear velocities,
avolding Inertial based wheel slippage during tight turning meobans.

UtiBising regular caster wheels for stability induces disturbance torques during tight turning
motions, due o the sccenirie offset between the canber wheel and Ite axial attachment, thua
oontributing fo positicning ervors. Ball transfer unils, however, can be used instead, willout
ihe negalive impact of disturbanoe torques. This allows for the developmeni of & simple kine-
malic model of the diflerential drive platform

DHfferentinl drives are sensitive 1o velocity differences in the drive wheela. Closed

loop motion oontral systems anownsd active drive wheel are required to allow for paire
tranalation and rotation motions and overall molk performande

42230  Odomatry

The posn of & differential drive represents it position, i terms of loostion snd orienistion, with
rmpiect Lo & global eo-ordinate system. This is mare mmnlrhnmmu:mhumhm

The configuration of a diferential drive §. in o generalised combinstion of Cartesan and
polar eo-oedinites, is d!-::ni:ml by Eq, 3.1 wid shown by Flgum 3.5,

i E::.rHF & B! x 50/ {a.1)

hlmal dend-rechonlag, which is n method of determining

08 i prav knowi configuration and knowledge

of kighsr-order about the mobile platforms configuration, siuch as its
mﬁ 11, and asti-clockwisr rotation, Eq. 3.3, of & differential drive platborm can be

i L in Lerms of fs ackive drive w ridil, v, the mxle length between its active
drive wheels', L, and the left and right drive wheel angular velocities, o and wp respectively

r L}
v = lem+ul (3.2}

"ARhough omly ane drive sxhe i shown in the fpen, difforestial drives sy independent drive wes

i



3.2 Mobility Hardware Sub-Block

w = %IWI-H:I (3.3)
From the above e transiation and rotation, theoretleal odometry can be performed
E.M drive platform by integrating s configuration welocity, Eq. 3.4. over time,
: # coa{d) 0
ig=| 9| = | wnl®) 0 ul"] (3.4)
i 01 i
440
Jibar = -:THl ot (3.5)
Thin farm of cdometry describes the idesl cnse and can only be considered if wy

talnty in

driwpll.l. I8 operating. Rnhnﬂmm:d]-ﬂmjdhrw which hss fooed re-
-lrd:mlhul mﬂummmhmdmmwm
inmenlthve to bounded uncertaint

Prackical diffecential drive :Ihmm-ld.h
wequbsltion eysterms o odometry. s jority
tieal incremental mmmmnu-dmmmm
whaely shalis, 1o measure drive whesl angular . The outpant signals from the quadratire
enooders provide inpul inlo embedded mi run an enbedded

Ona of Lhe drawbacks associaled with differential drives l& the nonholonomic kinematica
of the resulting mobile device. This is & result of the diferential constraint im an the

differential drives generalised configuration velocity, Eq. 3.4, by the rolling without slipping



3. HARDWARE IMPLEMENTATION LAYER

condition” exhibited by the drive wheels. 1t I8 impartant to understand these constraints when
designing leedback motion plans for & mobile robot platform utilising & differential drive [or
mobility generation. This requires the Implementation of nonlinear, discontinuous or time
warying motion control lass, see section 5.2.2.0

3.2.3 Physical Implementation

Is oeder to minimise the otilsstion of once-off, or non-standard hardware components. an &ffarl
was made to constroct the differentisl drive platlorm by ivisgrating as many standard and/or
Commercinl Off-The-Shell (COTS) componenis ks possible

3.2.3.1 Prototype Overview

Brrccraral lass Pleave endruczre ExcadsTr

EswEmEly

E-liLdps Eelar DElVer

Figurs 1.6: Partial Differeniial Drive Plaiform Rapresentatbon - The dove cham bas
besn omibited from the CAD Bgure for clarity purposs

A partisl CAD represendation of the differential drive platform developed to Inciliate the
Mobility Hardware sub-block, s shown in Figure 3.6. A structural base g with passive
siahilising wheels structural support for (nlegrated drive units. Two powersd drive
wheels boused in drive umits with integrated quadratere encoder and H—lmd.p matar driver
provide the physical differentisl drive ioterfacs 1o the Iactory Boor.

3.2.3.2 Structural Bass Plaie

In the scope of Mechabonics, soime form of inltial condition or readily uaderstood comstrainl 1
required in onder Lo instantists design progreséon. In this fight and in view of the dimensional
spacificakion set on the mobile platiorm prototype. recall section 2.4.1, the siructursl base plate
was dexigned os o onceoff Ball transfer unila wese selected. over regular
wheels, wmammmmmmmmm-whmm
disturbance torques during Lght turning motlons, recall secthon 1223

3.2.3.3  Integrated Drive Units

For ressons of availability und esse of modification, two 20 inch BMX MAG wheels were
lected and modified to house drive shafts in order to function ss the active drive wheels.
wheels are capable of providing ample tractlon for the differential drive platiorm and have
mechanical strength pmpmbn. required Lo fncilitate the high impact loads of their native &

plication environment?

¥

i

1

The drive-shaft support assembly and power train was designed by considering Lhe drive-
shaft =5 the focal component. Peripheral hardware was selocted and integrated in order Lo
provide a mechanical support structure for housing and powering the drive-shalft. The drivwe-
shafi i supported by & sub-asssmbly that integrates the shaft with o quadrature sncoder, Figure

1 Dricmwed ander the motbmn comftrol conat st i chaptar 4
ERMN vertiosl remp ar “wart® iders ulllis MAG ype whesls often, with greal puooms

S



3.2 Mobility Hardware Sub-Block

k. 4 |
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Figure 3.71 Drive-Shaft Support Sub- - Flange and pillew biock bearing unils
provids solid drive-abaf suppart s well a8 allow jor exial adjusimants of the drive-shal

A pillow block bearing unit seated on standard aluminium extrusion supports the whiel
hub mterface side of the drive-sahalt. Support of the driveshafl terminates sl o fange banr
ing unil on rig liscd mﬂd—nuﬂwjﬂﬂr. This mechanical configuration provides n compact
sub-sssembly. Angular welocity feedback Information, for control and odometry purposes, i
provided by an HEDS-8701- panel mount gquadrature encoder thel ls press-fitted into »
nylon housing and 10 bolt sasembly, The HEDS-6T01-FO0 ia a 256 count-per-revalution (epr)
quadrature encoder and ouljils aguare waves on 2 channels that sre slectrically oul of
phase by 90 degres. Quadrature decoding of the outpul signaks sllows for the anguler velocity
and positien of the drive shall Lo be determined. The quadrature enooder assembly was bseried
into the drive-shalt altar an M0 drill and tap operation was performed on e opposits alde to
the whesl hub interface,

Thdnmﬂlfluwm:m a chain and sprockst power Uransmbsbon unil driven
by & 12 Valt 40 Wait gearnd motor, Hiled 0 & sorew-jack-adjustable motor bracket with
integrated H-fabidge motor driver, Figure 3.8.

The MDD3 motor dever by Dewatoch 3], was selectend 1o function as the electionke motos
driver. The MING i & meldinm power fully slegrated moter diiver and provides both 6 low-
powrer logie interisce and & high-power drive ierisee, Figure 3.0

The actual H-bridge circultry oo the MDO3 i driven intermally by an cmbodded PICIEFET2
(FIC16) micro-controller using FWM at 15kHz. User based control of the H-twidge clreuitry
occurs implicitly through the embedded PIC16 via its exposed interface. Factory Anabed
firmwsre embedded on the PIC14 biden four user based comtrol modes. selectable via & DIP
switch mounted on the BN I"l.!j‘.Ehlﬂ.‘r

Mode 1: O - 2.5v - v Analog, Ov full reverse, 2.8y stop and Sv [ull ferward
Mode 2: (v - bv Analog with separate direction control,

Mode 3: RC Mode, Controlled by stsndard rdio contral aystem. DHreel connection ta
RO recelver with Ima - 3re pulse with 1.5ms neutral.

Mode 4: 1L interfnen,  Full controd with aoosleration and status reporting, Up to 8
modules can rewide on the same 11C Bus. SCL spead up to 18 Hz

25



3 HARDWARE IMPLEMENTATION LAYER o

Figure 3.8: Adjustable Motor Bracket With Intograted Drive Electronics - Drive elec-

tionds i in e form of en imbegrated H-hridge mator drivor
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Fligure 3.th Logic and Dirive Interfaces for M3 Molor Driver - The MDOS s consbdered

i sl lum powsr molor driver, seocesfally handling oo oo currents ol M) Ampares without
dimiiing the lsoard
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3.2 Mobility Hardware Sub-Block

Mode 2 operates by driving the SDA chaninel with an ainlog voltage betwesn (v and Sv o
produce mero Lo full output drive voltage with separate direction control logie on the SCL
channel. A TTL logic level 0 an the SCL chanmel representa “reverse” direction and logic level
I represents “forward” directbon. Cuotation marks elicate Ul molor direction convention =
application specific. The MDO3 inclodes an internal Resistor-Capacitor, (RC) filter on the SDA
channel, allowing PWM signals sbove 30 kHz o provide the same affect s an analog signal.
thus allowing the MDO3 to inerince directly with digital control signals.

1.2.4 Embedded Control Framework and Odometric Implementation

A control framework was designed fin the differemtial drive platform such that higher-level
host software systems woakd have implicit scoss 16 two embedded PID wlocity control loops,
representing the active drive wheels, through & mrial communication bink into & BrainStemif)
network. This provided higher-lewvel host software systema with a policy versus mechanesm
sirupcture when otibising the differential drive platform for motion applications.

3.2.4.1 Contirol Loop Structure

Each drive unit was provided s dedicated BralnStemd Moto 1.0 module in order to fmplenent
u veloelly PID loop sround sach setive drive whel, Alihough o sagle Moto 1.0 module is
enpable of providing the necessary 10 focilitbes b encapsulale both delve unlts in o control
loop, two Moto 1.0 modules were utilised with one motion control channel disahled, on each
module, to effeclively double the bandwidih of the embedded controllers, Figure 3.10.

nabpilhedd]

!

230 Closed Loop Cowtrol Framewsrk Arcund Esch Drive Wheesl - The levsl
als dwnh s FS232 signal levels into OMOS,TTL levols reguired tiy the RrainStem(E Moto
1.0 ma

Two Moto 1.0 misdules were metworkod on the s TIC s by ssgning msster characteristics
Lo arm msdidle, the router, and slave chamcleriitios to the other. This @8 athieved through a
bulle-kn command set. Host computing platforme were provided serial communication scoess
L (b embedded BrainStem@) network through the serial UART on ihe routsr module, Figure
1l
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Fﬁm 3.11: Control Leop Structure for the Differentinl Drive Platform - The serial
bink mdo the 'ﬂrun.‘ilrnt@ melwork rumi &l 9600 hawd. This bagdrats was selectsl e bl provided
ihe most stabis link

3.2.4.2 Embedded Control Access Palicy

Using the TEA | nge, smbedded control code was written, compiled and losded oolo each
Mot Lﬂmnduhwhmhdﬂdmdnmd-mdhmﬂwupmm
ench moduie to perform closed loop welocity PID control on ane chanmel wiile slaiting down
the other channel aliogeiher. The control code runs continuously amd provides bost softearne
with ime;;:\wrih- ncowss to selactod memory Jocations on each modulis scratchpad’ The em-
bedded TE then utilises the host written scratchpad value as the reference value into
the underlying velocity PID control loop,

The Erunmw Moto 1.0 module con perform “velocity damplng” when configured for
velocity FID control implemeniation. In this setup, changes in veloolty reference values into Lthe
FID contmol loop coour graduoally over time. Velocity damping scie ms an pecalerslion limiter
and wes used in the implemeniation of the conirol framework for ihe differential drive. The
TEA code implementing the embedded control code s Hsted in Appandls B2,

Onee esch control leop is sctive, higher-level bost sofiwar oyitens welle Lhe selected scratch-
pad locatkons through the serial commumication link into the BrainStsmdl network, to st the
anpgulsr velocity of sach drive wheel

3.2.4.3 Odometric Implementalion

The epcosder leedback velocity metric used by ihe Moto 10 module s “snosder counis per PID
period”, which In the mumber of encoder pulses aocumulated in the time betwsen PID calow-
latlons, The PID pearled for each module is set to 20mS s part of e sar-up routine of the
embedded TEA programs,

As the counts-per-revolution of the HEDS-5701-FiM) k= known fo be 256 cpr, along with
knowledge of the quasdrature decoding algorithm implemanted on the Mote 1.0 module, the
encoder valocity matric can be used to determine Lthe angular velocity of esch drive wheel and

& svwichpsd B the common lerminelogy gives Lo & globally sharsl wea of memory in an embeddod
mve=snnliolier (hal sl smbecded procsses o share datn
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thus through Egns. 3.2 and 3.3 provides an sstimate of the linear and angular velocity of the dif-
ferential drive platform. Although this knowlsdge can provide input into cdometry algorithms,
such as discrete explicit Euler algorithmic implementations of Eq. 3.5, cdometry was performad
rather, through soguisition of accumulated encoder counts on the active control channal on
each Moto 1.0 module. This foem of odomatry, based on sccomulated encoder counts per drive
wheel, ia used often in mobile robotics and doss not explicitly require the integration of we
bocities which creates a simpler algorithm implementation. One of the drawbscks assocluted
with BramStem(® modubes, however, b that they do nol implement foating point arithmetic
of thelr embedded program execution. Due to this drawback, odometric eslealations
to be performed on the host computing platform alter reading the memory mapped 1/0
port associated with storing the value of the scoumulator on each Moto 1.0 module through
the serial UART.

The metric used in implementing Lhe odometry algorithm for the differential drive platiorm
is “metres per encoder pulse” (mpep), and |s formulnsted as follows.

2wr Dirlve Whesl Cirewmference

PP = 2 = Brcoder Pulses Per Revolution

Whire # i the radius of the active drive wivssls, 0.25 m or 10 inches, and 1024 ere the oumbes
of electronic pulses per revolution for the HEDS-5T01-FO0 quadrsture encoder under the dx
gundratiure decoding algorithms implementead s part of ihe embedded firmware of the Molo
1.0 modules. The metric represents (he minlmum disiance detectable by the embedded elec-
tronic control infrastrocture. For this particular differential drive, this happens to be 23538
ar 00016 m (1.6 mm). With this metric, odomeiry can be porformed by summing incremental
changss in the linear displacement of sach drive wheel and relaling these [inear distances to
changes in the linear displacement and angular orientation af the differentinl drive platform.

Referring back to section 3223, passive messures of minimising drift can be implementad
through numarical methods in odometry algorithma. A particular [orm of sdometry algorithm,
based on the mpep metric described above, which is equivalent to performing 2™ order Rungs-
Kutta integration of Eq. 3.5 [15] was implementod, Algorithm 1.

The odometry implementalion used for the diferential drive platform developed here imple-
menia this algorithm in an mfnite loop in higher-level ioftwnre systems on a host compuling
platform. this & coversd more during the discussion of the higher-level software sysiems in

chapter 4.

3.2.4.4 Prollminary Performance Testing

During preliminary testing, s lnplop wes uiilsed on-bosrd the diflereniial drive platform to
et a8 jtd host computing syvetem. A lapiop running the Pedors Core 7 Linux dstribotion was
selected. Acoess |ibraries, n the form of C source code, are amilable for communicating with
thie BralnStemd) modilss from Linux through & serial link. Utilising tlhese scoess libraries, a
almple C application was written thet writes FID reference values lnlo scraichpad locations on
dnch Moto 1.0 1 the network through s serial link, sssigned ihrough the sireture of the em-
becddiad TEA programs, snd resds the memory mapped |/0 ssociated with velocity feadback
Inpuin.

Sharl runa were performed by providing various velocity step inpuls inbe the differential
drives embedded rontrol loops and recording Lhe response in file structures crented ab program
run-Lieve, Figure 3.12-

A can be seen from the response, rise times are within specifications set in section 2.4

2
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Allurlthm 1: Runge-Kutia 2 order Equivalent {'.ld-nmul.q. Algorithm

Input: The left and right wheel snooder accumulator values, Ny and N
Outpud; The estimated conbguration for the diferential deive platform, §. = [z, !.]T
n

A Initinlise Cdometrie Configuration
IF 7 not mitialized then

Nl'.- — N

Ng — Ny

o=y =0 =0

set odometry initialised flag

relurn

§Ny — (Ne. - N7)

i.ﬂli—{ﬂg—ﬁ;]

£ Use mpep metric to determine linear displacement of sach active drive whesl in
metres

ALy +— SN = mpep
ER: - JNJ;  mpep
£t I;ll-:nrmint incremental angular and lnear displscement of the differential drive

By — (e = Rl )AL Jf Ap = axle length between drive whesls
dd — (8L + dR,) /2

4/ Implement 2™ arder equivalent RungeKutta numerical integration

8 — 0> + (88./2)

T, — 3 +8d con §

W — po + dd sin

8, — 6 + 88,

ff Normalise #, to an cloment € |-r, w)
&, — NORMALISE(#, )

A Updste configuration

§ —¥_

relurm §

e




3.2 Mobility Hardware Sub=-Block

Walusiny Busp Respones

Wuleeiiy (m/im)
=] = = =2 L -]
FERESEREREEERE

3.2.5 Summary

The performance snd implemesiation sapects of differential drive plstforms has been coversd
to provide insight into the d ol of & phywical implementation to facilitate the motion

tionz of the Mobility re i b-block of the Hardware Implemeniation Layer, The
physieal diferential drive platform consbuts of two lunctional unlte thet, under composition,
provide both structural support and drive infrastructure to allow for robust motion and odo-
metric performance of the differentisl drive platform. The drive infrastructure ks in the form
of integrated drive unite. These drive unitn have besn eneapaulsted in & closed loop contrel
framework, enabled through a set of & PICIRCESD based embedded motor controllers, numely
BrainStem{d) Moto 1.0 modules. The odometry slgorithm osss & particular form of config-
urntion update that makes it numerically equivalent to performing Runge-Kutta 2% order
integration of Eq. 3.5, Unfortunaisly, dus to the numerioal execution environment provided by
the embedded run-time kermel on the BrainStem@ modules, this odometry slgorithm bad to
be implemented on & host computer. This s covered in chapter 4.

The physical implementation of the differential drive platform o shown in Figure 3.13

Flgure 3.13: Differential Drive Platform Implemsniation - The BrianSiem@ modubs
havee bean placed on top of their enclosure puraly for deesonsbonlbon parposs:s:

i I



3 HARDWARE IMPLEMENTATION LAYER

3.3 Sensory Infrastructure Sub-Block

ra

Fliguire 3,1d: Sensory Infrastructure Sub-Block - Al can be seen in the Bgure, rdbbon cabile
P biwn usesd for all serin] communications s this Ly ol cabila |m|'-'ln:|- n sound physical mediam
fis dais bramsmission sllowing higher basdrates 1o be ussid for communkcation purposes

3.3.1 Functional Specification

The Sensory Infrastrectiure sub-block specifies the active sensory infrastroctures used by the
mabile mualerials hamalling and mouting robot platform to gather strociural information on its
local sarrounding environment for perveption parpases

3.3.1.1 Ouitput Specification

The output specification is such a5 to provide an even sensory envelope, independent of the
orieptilion of the mobile meaterals hamdling and routing platlorm. Thiz & 1o cosure that the
marbile platform can react In a anilorm msaner a8 obwiacks oome into scope from all directbons
during operation.

& Dutput Specification:
0" pethee sensory perception within a clroulsr planar reghon ot lesst thres Limes the
alfeciive dinmeter of the moblle msterials handling snd mouting platform

Misltlple actlve sensing technologies exist for mobotle pereeEpt ko applications. These technolo
gien nre charncierised by varying degrees of nccuracy, power requirements, and cost, Technolo-
g include Light Detection and Ranging (LIDAR) systems, setive vision, infra-red svatema
and ultrsonkc technologies. O these techinologies, ulirssonic snsing was selected o faeillials
the output specification of the Sensary [nfrastructure sub-block. Ultrasonic sensing technology
has heen implemented on muliiple integratod sensors that are relstively cheap, have low power
requiremeants and do mit redqilire p.m?ul compuiational infrastrmucture to aequire rangs data.
An overview of the charscieristies of alirmsonic sensors is presentod in sectbon 3.3.2

3.3.2 Ulirasonic Sensors

LNitrasonic sensors have multipls operating charscterstios that must be well onderstood when
developing sensing sysiems

a2



3.3 Sensory Infrastructure Sub-Block

3.3.21 Theory of Operstinn

Ulirssonic sensors detect distances, for range lnw-lilirdm purposes, by emitting an ultmsonic
sound wave into the swrounding environment and meas thie Uime tnken for l-'ha.-ndm-ud.
mouid wave 1o be returmed to the sensor, due Lo reflection ltrunturﬂnbjlﬂ the envi-
ronmenl. Sound wave generation is provided by an integraied electronke divice Including &
iransceiver that both smits the sound wave, through slectronde exvitation of a dik membranes,
and detects the signal when the sound wawe acho excites the disk membrane on s retumn.

3.3.2.2 Capability Parameters

Due do physical bandwidth lmitations of the membrane on the transcelver, there is & Baitle
disianee i front of the membrane face thad can not effectively induce range

object delection, ss the membrane is still vibrating under tramsmission excitation when
ocho i returned. This 18 known as the blind zone and is & fanction of ke physical bandwidih
af tha membrane, Figure J.15.

|
lpassting Bangs

I.......

A18 Ulirasconic Hange Parameters - In modern £ bt i umeemmErs lor resaarchers
w and masualeclare thelr own ultrasonic sensors, as rmﬂldulﬁlhl
m“nm.hnhmmm; applications

Tha of an ilirasonic sensor, with regard to range rendings of the objects
in iin environment, |8 determined by multiple parameters. mAXimmam senskng doiance
s ibe largest relinble ﬂ.uprl.nd.lng detectable by the ulirasonic senser,

The beam angle effectively deiermines the conical volume of region in front of the sensor
in which an obstacle must resiche |n order to socosssfully return an echoed sound wave to the
trupaceiver, Thin is known us the detection zone. Even U obsiacles rebde o the detection
aona, (4 18 not adways pusrantoed that the retum echo will reach the transeeiver. This @ dus to
envimonmintal chamoteristics discussed in section 3.3.2.4

3.3,.3 Physlcal Emission Characteristics

Thir ultrasonic ssund wive smitted by the sensors transceiver, its beam, @ not svenly distributed
scross the boam angle, Figure 3.16

This physion] sepect of the signal gives ultrasonic sensors a directional bins in terms of range
necurncy, Wide objects dotected near the center of the beam provide mom accurile renge
rend ings over abijecis detected near the beam periphery.
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[(Saar Tisld | [ rer risla |

Figurs 1.16: Ultrasonic Wave Propagation Geomelry - The majority of modern altrssonkc
wepmcrs oparsie ol A0 Hz as this frogiesscy poovede good performance and propagmtion geosmetny

3.3.2.4 Environmental Performanes limpacts

Ultrasonic sensors are extremely sensitbve Lo the geometric properties of the objects in the de.
ioct lon of the beam. Oechnbonally, an scho is refracted and not reflecied off an obiject in
ithe n;imThhpmdmrmﬂnmmnmdhulhtmnlmnhﬂhunnul
mobile platforms utilising ultrasonic sinsom for percepiion purposes,

In semsory systems wtilising multiple fixed-position ultresonic ssnsors, beam et e
'b,mul mu!:l:;.n occasionally be detected by another leading bo the problem of sensor eross-
, Figure 3.17.

Cnama-Tals
- --\-_""\—\_\_\__\_
T

Pi,gur: 3.1T: Sensor Cross-Talk - Mobile rolsot phlfnrms experiencing oros-alk seldom tissvel
in & smooth motion @ dain Nebon wlgorthing start prodocing random eutpuats Ul degrade
periormance in directe] motoing

The negative effects of croas-talk can be minimised but never diminished absolutely He
searchers have developed methods of reducing cross-talk by providing unlqgue beam signals to



1.3 Sensory Infrestructure Sub-Block

ench ulirssonic sensor wsing peeudo-random binary signatures [41]. Other methods are based on
firing sequences in which & sensor pair that are less likely 4o establish an inslance of cross-tall,
due to their relative position and orientation, are fired consecutivaly

3.3.3 Hardware Implementation

12 SRFU2 ultresonic range finders were selected, based on insight provided by the capability
parameters described under section 3.3.2.2 and integrated into an embedded sonsor platform.
An owerview of the SRFD2 ultrasonic range Ander follows in section 3.3.4.1

3.3.4.1 The SRFO2 Ultrasonic Range Findor

P &

F 4.18: SAF0 Ultrsonke Rangs Findsr and Communication Ple-out - The status
1 h'wudﬂmmuhmbm.u-ﬂuiﬂm the current |10 sddreas ai

The SAFI2 uitrasonic range finder s manulsctured by Devantech [43] and s & fully inte-
grabed sermor with embedded PIC microcontroller, which bandles timing of ulirescnic baam
transmissbon and reception, Figure 3.18. The embedded PIC also acts na wn inberface balween
the user and the actual ultrusonic sensing circultry, providing two communioalion interfaces for
tha user. For the development of the embedded sensor platform, the 11T inter{uoe was selecisd
for communication,

In tha |10 communication mode, the embedded PIC abstracts the sensing clrcwitry bahind
6 registara allowing the usir to inltiste ranging primitives through standard 11C communbcation
protocols with the SRF02. Roghiter 0 i= ithe command register. Writes (o ihis reglsier inkliste &
ranging sssion. Reads on the command register returms the SRF02 firmware revislon. Register
2 and 3 hodd the 16 bit unsigned result from the st ceaging session. The meankng of ibe wlie
atopid kn Lhese registern doponds on the value written to the command regmter, theal initiated
the mmincintod runging seevion. Depending on the ranging command wrilien W0 the oommand
register, the resuli stored in registers 2 and 3 can represent the Iast range in mches, oonlbnetres
of the benma fight time in mbcro seconds [uS).

Afer u rnnging command s written to the command register, & wait porcd of 70 millissconds
must occur in order 1o allow Uhe range o compleie and the beam snergy (o dissipate. An [IC
read sequence on registers 3 and J then relurns the range reult W0 the embedded system
requisting range data, e an embedded control module or micro-condraller.
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rl._ur. 1.15: Beam Propagation Gaomatry for ithe SRFG2 Ultrssconic Rangs Findar -
As can be seen 0 the Bgure. the SRFOT has & relal vl beam propagation geometry. This
makes (he SHFOE & well suited uliresonic semod for febsd s

3.3.2.2 Physical Emission Characteristics of the SRF0Z

The SHFO2 has been designed to function effectivaly over ita opersting range and has 1he beam
I tion geometry shown in Figure 319 |

wt SHFO2's transceiver membrani is capahils ucihng beam sngles ing B0 .
I order to facilitate the mhﬁmﬁmﬁ%!ﬂ
renanre would need to be o] spart This configurstion however would be

Lo Tange necuracy ermocs during detertions near the perl of U beam, induosd through the

uneven propagation try of ultrasonic sonsors, reonll section 3.3.2.3. To passively overcome
Lhiss seourscy biss tice, 12 SRF{ senaors were plnoed 30 degrees apart n arder Lo
mnximbse ihe sccuracy of the range dats, This haa o negative affect on cross-talk however

although by implementing structured firing sequences, these negative affects can be minimised

3.3.3.3 Sensor Platform Implementatlon

I order to position the SAFD2 sensoms (o w 360 degree armay, an aluminium bracket wes des|gived
to bold each sensar. Each bracket howsed a conmector hub to allow ensy attachment of the SHF(Z
ooto the [HC bes. Ao aleminiom disk plate provided stroctural supporl for the 12 aluminlum
brnckets which were poailmes] ) degrers apart [roan one another around the per al Lhe
dsk. Standerd aluminiem sitrusions sere dacked together to geate & boam upon which the
diak was fastened, Figure 300

13134 Embedded Contrel Framewsork

An embedded control framework was implemented o provide bt compuling cims with
pirinl BooEss 50 sensory range dala [rom Lhe seosor platform. For this purpose, & BrainStem)
GP 1.0 module was used 1o inlegrale cach SRFOZ senscor onto an 11T bas snd handle il Grng
of mach sensor, utilising an embadded TEA program, Appendin A

SRFD2 ulirasonic ¢ hﬂ:lm:ﬁpﬂlwﬂhm[muﬂr_dﬂlﬂ.lﬁnﬂnmlm
lﬂlmulﬁp]umnmtnm buis, cotseutive sensor needed Lo be seslgned s different
NC address. Documentation an how to do this s provided with the SRFO2 and conslsts of wrii-
three consecutive commands to the command regiater. During v ross , only ope
02 must reside on the [IC bus and thres commends wrilten to the command reglatar, che
current IIC address followed by the command OxAD and lastly the new requesied 110 acddress.
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Figure 3.20: Ultrasonic Sensor and Sensor Platform - The Inter Integrated Circuit ([IC)

s hine becmme the standecsd m‘nﬂ.i:llminlﬂ{lt!h'ihmljﬂ'ﬂy ol cosnmercial off the shell
pienimors for robolic applications

This was dose on 11 of the 12 SRPUE sensars |iu1rJ'.u|:11 Enad ||.rmah~|! 1IC addresses TRNgIng
fraen aED o xFE

The emboddad TEA prosram mnplemenied on the GF 1.0 module exeevtod [0 read snd
write routines o fre each SAFOY ultresonie sensor. Sensors were fired in & sequence in whick
consoculive Bring patr were opposite one anolber on Lhe sensor platform. This alded in min-
imising Lhe probability of eross-talk, Figure 3.21

ibE Commsatiand To &0

.8 & 1.0 meduls Local IIC Hub

Baiind
Isterfece Cabis

Firimsg

Flgure 3.31: Ullrasonic Sensor Platform aod Embedded Control TidesTeoe - Heaving
1L pommecior hubs allows for ey reonoval of Lhe sensors (rom ihe phatform, if reguered

The TEA program was comfigured lo boolstrap st power uwp and continooualy Bre the
ERFOY's in ihe cenlimeter manging mode. The return valuss were stored in an armay in the
scruilchpad to allow host software b0 read Lhe soralchped arrsy through s serial communiestion
fink io retrieve L range readings, == Appendiz B 1
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In ooder io mlerface the sannoe [lillfurm with the und-ri:..'in; differentiel drive |r|l!!r|rm.
developed in section 3L, Siandard aluminiom extrnusions sere ulilised. Large rectangular
extrusions were selectsd a8 they provided mounting points for paripheral hardware such as
DC-DC comvertes, Figure 322

Framinrd L LW - ¥ BB Cerwwrtar
Right Angled Fulisgs Bmgulstor

Extrumlon

LT T NP
[ EL R ]

Figure 3.23: Interfsce Support For Sensor Platform In sl lowy - [mdostry stacdard vole-
BEF regilatorng wein ussl Lo provide She plaiform’s dertons infrastructume wilh constant power
Thin prevents asy wmeanted powes glitches from reseliing parametons of destroying hardsare

.34 Summary

Uitrasonkc sensore were selecied s the active sensory infrastructure to facilitate ithe specfica
Ehonn st by the Sensory Infrastructure sub-block of the Hardwars Implementation Layver

An ambedded sysiem implementation makes the ultrasonle range data avatlable o hos

computing and software systems through o serinl communication link. The seneors are Gred in
enmsecutive palrs positionsd opposite one ancther on the sensor platform, in order to minkmise
erome-talk. Hange data in stored locally on Lhe embetdded control module in & scratchpad armay
which host computing and software systems have read access through a serinl communication
link

3.4 Materials Handling Hardware Sub-Block

3.4.1 Functional Specification

The Materials Handling Hardware sub-block i & specification on the capabilities of the hardware
cevicn providing the plovsical interface (o a msterial payload or handing purposes.

3.4.1,1 Output Specification

The sutput speciBcation haz been based on the payload manipulation sequired im order b
peerforms a msterial paylosd transfer operatbon, recell section 2.3.2.3

o lutput Specification:

Hardware device must provide the materinl paylond ol least one extra degree of motion
fresdiom abowve that provided by the uonderlying mobility device

14
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Tagh Rllpoetden lajad

Eatmrials Bandlisg U ——— R L Rt
hpamt Archibmcturs ﬂ-q.n- Teribes

-

] -

Figure 3.23: Materinls Handling Hardware Sub-Block - Although pod mplemes

el vl
sensing systam o8 the conveyor, such & inlra-red dislasos delsciomn can be aaed Lo detect pavboad
10t A e

The hardware devices wsnd [or materinls handling pirposes e extremely applieation spe
cific, and so deslgn of & matarlals handling device to facilitate the shove specification wis based
on cresting infrastructurs to interface with the axisting eonveyor systems of the Computer Inte-

grated Manulacturing {OIM) cell in the resenrch Inboraiory, recall the specificathons of section
24,

3.4.2 Hardware Implementation

The materlals handling devics damilgned o fscilitele ihe output specication consists of two
functional components, Filgure 3.24.

kotary Boppor: Housing (Eel Febedsd)

Thrusk Essring Deit

Figure 3.24: Materlals Handling Devies Implememtation - The throst bearing unis (sell-

itates smooth motkoons under high baad comditions, alihougl (or esearch parposes this doms mol
take =fect

A material comveyor assembly provides material traaalition motion through a belt drive around
two oylon rollers. The cambered profile machined into the rollers keeps the belts tracking in
a straight line. A rotary support bouslang and Lhrost beading unit Inlegrates the matevial

14



3. HARDWARE IMPLEMENTATION LAYER

cofvveyr assernbly with the onderlying sensor platform. This provides the material conveyor
with an added degres of [reedom thos sstiefying the output specification

3.4.3 Summary

Due o the applicalion specifics of materials handling hardware deviees. ihe Matenals Han-
dling hardware sub-block only places output sperification on ihe sdditional degress of freedom
provicked by Lhe malerinks handling hardware for malerial payios] manipulation and transfer.
These exira degress of {resdom are required in order o increase the overall scowrscy and,
miore importantly, the repestability of the materials handiing hardware and sssociated trancfe
|||;.|l'.p.'.-l|l|||

3.5 Chapter Summary

This chapter prasspted the plosical prototype implementations devaloped (o facilitate the out-
pul speciiications of the underlying hardware sub-hlocks of the Hardware Implementation Layer
Tha physlcal prototypes are encapsulated in embedded system lrmmeworks, making the devices
mymilnble through & serial communicetion link for host computing platforms to gain medisted
weoess 1o their functionality

Flgura 3.28: HIL Physlcal Implementation - (oe can ses ihe mobile robat platform in this
senae &8 an iniegrated collection of deviess rather ibal & monolivhic plaifarm

The AMTS orientates the physical implementation of the HIL wway from momolithie mobile
robois, and onio a collection of functionally correlated, yoi operationally disjoint devices. This
nepect of Lhe archiiectiure can be interpreted as an integrated anlomatle [ramework where there
i a one 1o one mapping betwesn design parameten and fupetional requiremssts. Figure 325

The phvsical robol. implementation, &= a oollective anil of Lheee integrated prototype devires,
hna been named in order W follow in the porm of robotic svstem development as well 25 allow fos
caxy réferenos to the mobile robot platform. The mobile device has been named “RollerMHP
after s whesled mobility and apphcsiion srops

i)



Chapter 4

Device Abstraction Layer

""Design and programming are humas scliwitdes; ferget thet amd all da losi. **

- Bjarne Btroustrup

mmmmmaﬂmdmw in alignment with the undeér-
specifications encapsulaied in the Hardware Implemeniation Laver of ihe AMTS. Thin
chapter presemis the Open Source soltware system used in implementing deviee abairactions
above the Hanlware lmpiementation Layer. This was required in order to allow for control
moftware scalability by implementing paneric conliol applicalions that establish homoganeous
message Lransler constructs between abwiract robotle device classes Robotic device abstractions
are provided by software drivers which drive ihe robotic bardware and perform the required
messsge transistion between siandardised “mieriaces™, Figure 4.1.

Figurse d.1: Devies Abstraetion Layer - This layer of the AMTS aligrs it=lf with the conceqin
of (hperating System theory, whare ihe Hardware Abatractbon Layer [HAL) works in conjunction
with underiying device drivers o provide o bmogensous executbon snvironmant for applieation

Deseription of the software system used in oplementing the Device Abstraction Layer has been
deferred to section 4.2 in order to present the computing Infrastructure sslected to operate as
& “localhost™ eomputer on-board RolleeMHP,

1]



4. DEVICE ABSTRACTION LAYER

4.1 RollerMHP’s Onboard Host Computer

RaollarbHP rogquired an on-board computer to integrote and opernie its underlying embedded
pyrtarmi, a owell e hold soltenre and communleatlon sysisms Lo provide higher-lovel manages
mend frameworks with o “task sink interface”!

4.1.1 Selected Computer System

An x5 based computing piatform was selected to [unction a8 RollerdHP's on-Bowrd comipailer
An =Bf srchiveciure wes selected over more embedded architectures sweh as ARM and Power U
as it allowsd for & smooth installation of standard Operating Systems.

4.1.1.1 Malnhosrd and CPLU

Roller MHP s on-board host. computer consiats of & VIA CTVCM Min:-ITX form factor main
e wiitly intésgrated VIA CT CPU running at 1.5 GHz |3:I'=! An BD [lisa_t.-.:q- bnzed ilpive
funclions as tlse on-board storage devioe and {5 allached to the mainbosrd through its [DE in
terfnce, For memory support, the mainboard has one S0-DIMM sociest $0 haold a DVDHR 400,333
SDRAM memory module. The board oan support wp to 1GB of BRAM although only 25681
wius use] in this application

Vik CTVON Mimi=ITE Mainbassi

TER Will Webwurh Sdagpdai Himi-ITE Theepin

Flgure 4.21 Computatisnal Infrastructure On-board RollerBMHEHP - The Bl ITY form
factor has become Lhe ]_rrl:l'l:rrer] fatti-liwetor Tar ||||J;|J pevwes computing n nesbalbe guilbmit o ||]|;||il\. h
thona, due to ks small gize and standard bas inlerness such ns PCI

A built-in ATX DHMC-DC convertes metans thal the motherboard only needs a 12 Voll power
supply inpot. All other voltages, including those neaded by the hard drive aré ersated and pro
vided on-board the CTVCM malnhoard, [he mainboard and al] peripheral hardware s housed
in & chassts destgned to facilitate the Mink-ITX form [actor, Figure 4.2

4.1.1.2 Operating Sysiem Implemenialion

Upen Source Dperaiing System plaiforms, such &s those based on the Linux bernel, have be
coanee 'widely used in the academic research community due o thetr stabdlity and the growing

_‘Tl:.r mrthear defines & "l sink er;'l'u #" &a A softwsre snd compmicelion welemn Ussl cas sevepd smd
imarprel. FMAF task assignmants



4.1 RollerMHP's Onboard Host Computer

niinber of Open Source software developers.
RolkerMHP's onboard l;w?dﬂ runs the Fedora Core 7 Linux distribution. Fedora Care.,

or mare recently, just “Fedora®, is considersd as one of the maore technleal Linux distributions

ﬂ--m lnd:lunmuwﬂh; tem to wuit thelr flc Ln-
Lhist, it be for ime or an embedded Real-Time svetem that utl Rk Time
extensions of Lhe base Linux L

4.1.1.3 Global Communication Infrastructure

Alihough the Task Allocation Layer of the AMTS has not been implemented A cotETRL-
cation mub-block was required lo onder to assign motion tasks o RollerMHP, 4.3

Faah &L jsast bon Laypay
Ealadiale Saadlleg

Mazapmmanl Meinl i ssss

Flgure 4.5: Communicsilon Sul-System of the AMTS - For ressarch purposss in o lalsors-
mﬂﬂﬂllhﬂﬂnﬂirﬂﬂ'ﬂ:hhhbmdmdlhtnmnhzﬂnn chimnel
-mwuu-n ihe 34GHs frequency range is often utilised with
Wirsless Ao Networks (WAN) which could impede the use of this frequency range for faturs

maierinly harwlling syviems
RollesMHP is accessible, in terma of global communication', through the IEEE 802.11h/g com-
munication specification, knowm s “WiR® | vie & USB wireless network sdapler on the

on-board computer, Figure 4.3, network l:up-d' oommuncation interface is & requirement
in modern manufacturing snvironmenis where all manufacturing execution ami supervision
based data transfer occur over Haal-Timeé Ethernat (ATE) systams.

4.1.1.4 Functional Scope

RollerMHP's on-board computer serves two main purjoses.

1. Tooperate and integrate RollerMHP'S embedded systems, which form the low-level control
framework for the differentinl drive and sensor systems. through serisl communication
stroams into BrainStem@D networks,

2. To house and operate an Open Source software system that allows the hardware specifics
of RollerMHP to be abstracisd onto generic network device inlerfaces, in & cliest-server
access model. In this regard, the on-board computer acts as a Slocalhest™ eomputer.

The software system used in implementing this functionality i introduced in section 4.2.

o kobal coammOnicEEn B eoraeiered e me comsmsnerslmn el ween saletaal syalems, such as mamifno.
Liting management mainfieme comgailen, and the mobde matetial hasdling and roating mobot platfos s

4
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4.2 The Player Robot Device Interface

A Hurdware Absiraction Layer (HAL] 15 a soliware construct assd in Operating Sysiems o
separaie, or “hide”, the hardwire specifics of & compuler oystem from the higher-level exe
eulion environmeni of software spplications. HAL's perfonn this separation by utilising well
defined generic software contructs. swch as “mouse™ of “prinier”, sach having & standerd inler-
face, Higher-level soltware executables interact with ihre generic interiaces (o sccess hardware
through commaon semantics and communicalkon Tnﬂnﬂm Thizs allows appli-
ontlon programi o avokd having to know the hardwas delsils of & particolar mowss, prinies
or any other hardware device, a5 long as each devion adheérs Lo Lhe messaging constructs se-
pcchitad with the appropriate standerd interface. The delails of making & particelsr printer
!Ir.llppurl.dl'-hﬂ ftandard “printer” interface is handled by a soltware object called & device dover,
kg .4

Enmawtabis hpyplire inn Frogs s
——— Frint [~ fldarfpe inb e 0", b deresanl) |
Frimy | " fdawfpainiaifL", aselhar deoumaat ) ;

iF & "primter” specifin
Onitm sEractmrm

trpecaf sirmct dcchlfesi
LT

¥ dochafifear &

Fif Leedl FirhEs | )

i..., dochuffer_1* #ea),

_—

T

“priatad” bnier o
mpecificetion

Figura 4.4: Hardware Abstraciion Layer - A HAL lorms part of the cote [unctionality of
all mudern Drpeeating Systeimn and |8 vikal in providing bomogeneity in the complex ntegristed
snvironment of modern computing infrastructine

Through the implementation of HAL's, application programs can call methods under the facil-

Hies ol for example,
Print{’ "printer/0'*, some document)

& opposed Lo,
Frist In Sope Hevleti Packard Specific May{sone documsnt)

It s up to device drivers (o trafalate genernc meihods and associated date structures, such &
the hypothetical Print(..., stas document) mecihod and docbaffer © dats structure, into
device specific low-level 1/0 communicalion to aciually carry out Uhe requested operation

The Player Robat Devies Interface, “Player”, is & C/C++ based eoftware implementation
sfnlogous to the HAL in an L'lpumlm Bywiem and lorms part of the th-w,f.'ilmm-m
project [44]. Player defines & set of interfaces, ench being o on the way in which
user based EJ:“.‘A'BI‘E npplleaticns can Interaet with & particular of robotic deviee, Player h-!I,l
haeen designed and developed to min on Operatin EE“IIB based on the POSIX specification’,
such as Linux, both PC and embedded m'l.'lunl-,'g and BSD systoms,

I Portable Operating Syviem Hased On Unix

e



4.2 The Player Robot Device Interfnce

4.2.1 Fundamental Concepts

Flayer operstes in terma of thres odameninl concepts in establishing s HAL linctonalicy
In the mesi corumen formi of [mplemsnistbon instance, these three slemenis, a5 o onllective unil,
nre integrated in & client server model, An overview of each fundamental coneepl follws

4.2.1.1  Interface

Anlntuﬂmhunﬂwnﬂdluﬂmumummtmdnldm&m.
ncluator, or algoriilm, inlerinee

defines e synlax and semaniics associaied with all

F 4.5 Interface Spacifention - el of Lhe sapported messge semanlie sublyjee

T
Player specific message structures have besn developed 1o [scilitate message transher betweon
robotic deviess operating under Flayers interface specification. An overview of the
concepts and Player specific dats structure sssocisted with their management b provided in
secthon 4.2.3.

4.2.1.2 Diriver

In ihe context of Player, a driver & a ploce of software, usually written in C4+4, that comm-
mbcates wilh & robotic sensor, sctustor, or algorithm in such & way as Lo lranslale its inputs
and outputs to conform with one or more interfaces. The driver, much like any other in the
context of modern computing. hides the ol any given entity by making il spposr o be
the same &s any other entity in its class, Figure 4.6,

4.2.1.3 Devica

Ployer considers a devioe to consist of a driver bound to an imterface, and provided a fully
alified nddress'. All message basod communication occurs among devices via lnterfaces
he drivers, while performing most of the work, are never socessed divect Iy

i mddress siroctiens are ntroduced diening the indrodeciion o Plavers cheort-srver scoms okl in
mectiEin 4214
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Bardsare dpssllice

Communiaat Lan Channsl
RA-313, HEHE, DEEELA%4

[mymrisce Spscific
W gaages aad Sala

Figure 4.8 Driver Transiation Functionality - Dyrers are not abways wmitten for
inter{nor suppart. [rivers can be writien to suppeort. maliiphs nlefesces. Tt & up 1o the driver
deslgner io decide oo the best driver implementation besed on Bexibility and or code efficiency

4.2.1.4  Player's Client-Server Model for Message Transfer

[t hiws been established that Player provides HAL funetionality for rebotbe system desvelopment,
which allows higher-level software applications to utiliss generlc messaging constructs to com-
municate with snd manipulate certmin clisses of robolio dovies. The facilities providing the
imessage transfer i the topic of this section, Flgure 4.7.

- Baanapy Tidsafed el Below? Les

& Plaged & BAL fesctissality

Figure 4.7 System Placement of Player’s Mossage Transfer and Mediation Mech-
anlem - Under Player's architectore, mulbliple applieation programs cen oommunscsle with the
pnme device interfoce

T maximise message trivnsler distrabubion, Player hss beon designed to opérate as & nstvorked
diviee server, and B often referred 4o na the Flayer server in this regaed. Runnbag on s host
[RRTFITRTIREL 8 Lhis F‘]u_'r'ﬂr BErwRr mrﬂ:lml.r_u mrsiags l.mnh!l':-l' La H.hl'.l T dtu’h’td.. {“Ir.nl hrrlg;rn.n“
communicate with the Plaver server over s TCP sochet and initinte . messags transfer session
through a uuh&ﬂipthu request prolocol, Client programs wse Jocal proxy's on deviee [nstances
i the Player serwver in order to send and recelve messnges. This completes the HAL func
thonality provided by Plaver. Delvers run insides the Player server, under device scopse, often
in multiple threads, .1.1'u'_| comtral their associated mohotle device. Devices are mlanrd: nelwork
addresses for reference and communication purposes which ks implemented in Player as o 12
byrte address feld encapsulated in & C siruct type definition, Tebie 4.1

The Player server mediates all message tranaler botwenn client applications and address refr-
enced devices, as well &8 mier<device subscriptiom, Figure 4.8

Client. control applications are written in terms of generie devies interfaces, therfore, control
onde writien for one robotic device will, within mdason, work on another & long 5 it supports



4.2 The Player Robot Device Inierface

Players Device Address Structure

typedef struct player devaddr |
uintd2.t host; // eerver host [P
uint32 ¢t robot; // Associsted TOF pocket
pinti6 t intexf; /S loterface coda l.g; def ine FLAYER_POSITIORZD.CODE 4
uinti€ t index; // Specific device index

} player devaddr.t;

Table 4.1: Players 12 byta Address Btructure - The ndex Bald s used Lo specily & partheuler
daviee nslnmoe

Y I T S T ——
msarir Lewica IF madrmas T sochetl intssieses indes
e

Figure 4.8: Clhient Server Archileciure of the Player Fobot Device Interface - Playes
was oraginal

by detagned for implemenistion oo Pionses moblls mbota |1 The Patrol[EX Fionssr
roheol i showm in the Figure

av
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the ssme interlace specifications. This code re-use and scalabilily makes Player the worlds
leacling Robot Device Interface [13].

4.2.2 Software Architecture
Player & compossd of 5 main software Bhraries:

o libp
libplaysrerror s a T hbrary that provides generic orrod meporting lacilities such that
lwttﬁll.hﬂ developens can ulilise 3 common ermor message formet for debugging purposes.

w lilip
libplayercors is & C++ Lbrary that forms the main smivr kernel and mesaging con-
structs. The Hbrary provides besic messaging and ing functionality, & driver API
to illow users to wnite drivers for their specific hardware needs, &5 well &= sapport for
londing plug-in drivers &t run time.

o libplayerdrivers
Dirivir suppeart [or seane commion hardware deviess usssd in robolics research, such == the
SICK LMSHEN lasor range finder, have been included as part of Player's source code. The
libplaysrdrivers |ibrary stores all such drivers, which can be included in the server st
eompila timve. This i the static softwnre conlext for drivers. A dyvommic context exists &

woll in which driver code is loaded into the server s o shared object’ 8t run tme.

L]
Th?‘ﬁmmmhnhmﬁnedmﬁh?h;mdhnbmmndﬂhubmnm
capsulaied in & sparate C++ clazs object to sparate the (unctionality of the Player
wrver [rom explicit metwork transport particulass. This allows the server to focus on
message mediation between device interfaces. Support for TCP client-gerver transport
“mﬂj the libplayertcp lhrary The functionality of this llbrary is covered in
wecLion 4. .

= i

'[hlimmmmw for XDDR date marshaling. Raw dats mes

mmmﬂﬂ. m,; u;nt.-uni;i"ll"ll mﬁ:mhﬂw I:n";

it i : 3 i P

ing of network LHMJIMMMM{M}W

othar celnily of any pariicular compuler architeciure. XDR specifies & s=i of data types,

#g ok, foal, char, and encodings For them libplaysrzdy B & C library that has

bean cenigned to facilitate this encoding snd decoding specification, such that spphcaton

wmem-ﬂdﬂ:iﬂuﬁlemﬂwm baigs associated with having to write “mas-
ing/demarshaling” code. Player specific C siruclores are irenslormed mio ther XDR

representations automatically al run-ihme by the functlons provided in the 1isplayerzdr

Mote: From this point on, reference will be made to Player's C++ class constructs in order to
rm-hh seope on the servers run-time funckionality and driver APL Without reference to the
unctionality provided by each C++ clnas object, comprehenslon of Player's main aperating
itrciuie may be 1o & lesser degree.

4.2.3 Messaging Basics

The trensfer of data. encapsulaied in Player specific message struciures, between client ap-
plicstions and devices howsed in L server oocurns over 8 TCOP)TP network. The messaging
constructs used in this context s the topic of the lollowing sections.

| Dt numsis for il fle snocuisble lonmsts mohele sharsd ey or dysamic Enk lifary {DLL) in ihs
coatant ol the windows operating sysiem

dH



4.3 The Player Robot Device Interfnce

4.2.3.1 Haw Player Messages

Playor developers have included a partioulir message semantic and packaging structure Ll
roquires the use of & “message hoader™, All rew Player massiges sent over the TOP /TP network
are preceded by o messape hesder, The messige header ibsell has been implemontod a8 a C
miruct type definition, Table 4.2.

Pluyers Mesunge Hender Stroctare
typedel struct

..dm:‘ﬁ" !’.ﬂ'l.‘liltl.%l.l device address, bost:port:intert:index
T Eype; -‘Hﬂll!'lt 'H Comgand, I-'F“”"PI!'

uisti t i At n' 144 message code

doable - u::uﬂ.lm %

uiatdl & ] uan.gn- book

nist3Z & Mﬂﬁ flaize in bftl:..?‘ﬁi messags payload

} player msghdr x;

mq.m mmm mhm-m nm.um;up mﬁfmth'

A message header keeps track of & destined device address snd acts sa an indicator, a5 to the
mvmsngs type and subtype, that follows the perlicolor messsge hander instance, sach that tha
mﬂpmuuing facilities in the Player server can efficiontly distribute the message 1o the
corract devien,

4.2.3.2 Server Scoped Message Encapsulations and Quening Facilities

Lusbde the Player server, all raw messages received & TCP socked over an [P network are
avtsmatically encapsulated n ohjects’. All messages are (ranshered betwesn
devioss, and iber asocialed , & pointers 1o Message objects. Feference semantics

on data transfer has been used so thal messages can be deliversd (0 multiple recipients with
minimal memory overhesd. Message objects are deliversd by being on and popped off
m-ﬂr Fachi scioal bow-level driver ende runnitg in the sérver has

Messageluesve object, which receives any messages seni (o its sssocisted
drrhli.uu{uh

Hansagaluaue objects sipport configurabla replacement. This finctionality 18 use-
ful when & driver requires new incomiog messages of the same semantic, Lo, type and subtype,
Lo overwrite old onos, e.g. the message queue of & driver pporting the poaition2d mierface
mist. behavs o thls way under sedocity commaned mesages, Other driver implementations,
puch w those vontrolling robotic manipulators would configure thelr MessageQueus ohject to

weue incoming messages of the same semantic in o FIFO manner, in order o correctly per-
orm [orward and leverse kinematics for manipulation purposss, Messages sre stored o an
nssociated quiin through the use of o HessageQueusElament objsct, which provides & linked
list. encapsulation of n Message ohject, Figure 4.0,

There are two HessageJusuve operating contexts in Plyer's server implesentstion. One goews
coitext & associnied with Driver object implementathons and acte as & drivers local message
bufler, and the olher with cliont server solmcriplions. The creation of clienl scoped message
queurs I8 discussed In seclion 4.2.3.3

LT LT —— facibity i provided by Uhe PlayssTCP ohject snd & coverad i sectoe 4333

T ibewicw-brrses m. mmrer section 4.3 d
i i Boren of ahared Lbraey

49
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Rae Plupss

L]
playss_smaghds & would
dstarmine destined devios

Figurs 4.5 GWMﬂWhmﬂhhﬂ
- I U & rEw mEEALE e network af

duts the intarface —Mm-m
device preceded by an mmlance of the Player mesags leader data straciue

4.2.8.3 Client-Server Message Transfor

Thin secticn oovars the functionality provided by the 1ibplayertcp library in providing mes-
sign Lranslar between a8 TOP soclost interface and Player s server implementation, recall sectbon
4,2.2, Player haa been designed such that the nitwork trinsport layer associsted with the
clnt-server model is completely bidden froim the user, This means that driver authors do oo
have Lo explicitly take TCP communication specifics into sccount when developing drivers. The
PlayerTCP object forma part of the run-time infrastructure of Player's server implomentation.
The server keeps reference to a Player TCP obiject which handles the run-time ereatlon of aliant
associated message queues in the server, and wraps raw network packets into Message objects
for pushing onto snd popping off of mesage queues.

Whini & clieni application subscribes 10 Uhe seiver, on & particular TCP socket, the PlayezTCP
object handles the crestion of the RessageQuess objeci in the server, which acils & & gueus
reference for that particuiar cliemt-sorver message passing session. The server then establishes
synchronisstion mesages with the client to keep dsls transler temporally strct. Figure 4. 10

Elimad
Agppliawiion
Halding |
- I
1ashany Too devioss., sepeasesling dalvsis |
Comvaris Naw Bstwors Dada bAGE & beund to sn Antevdses amd glesn @
Eanmage CBjact fully qualifisd LI byt sdissss

Figure 4.1 Run-Time Instance of & Cliewl Server Subacription - The LidClisat)
et b actually handles the creation of the clents MessageQuens object and performa the required
bosink Wwpirag on Ll ommber off sulweribed el applaal o

The PlaysrTCF object in Lhis sense acis as 5 black-hon betwesn Player server apecific Haaaags
objects and network scoped, XDH encapsulsted O dats struciures, representing Player’s mes
sage henders and interface specifien. Each client application, currently subscribed 1o the Player
worvir, hisi an psociited Message(uaue object in Lhe server, which the server uses to send
micanages btwesn devices currently subiscribed on the clients nessage quess.



4.2 The Player Robot Device Interfaco

4284 Server-Driver Message Transfer

When o clipt application cresbes & proxy on 6 partbeulsr devioe instance, the sever will try
m“‘hﬂ oy Mhﬁmwxm

L g
i listerfnce-driver collective with an associaled 12 by dieviee address, recall Table 4.1. Re-
enll that drivers ame never acoessed directly in the operating context of the Player server, even
lhnuﬂﬂn:muﬁdﬂyhmlnllu”.ﬂn—ﬂuﬂmﬂﬂmm

As fur ransfer Devi enechasisms for

q:ﬂwl:g-_:m “ﬂhﬂhlﬁtuh‘mﬂi‘“w e

mmmw Dri ol jert s Mepsagelunue 3 MHESsIgEn
-tmmnmthmﬂ:l-nh:'- mlmw;:'?kmam

Figure 4.11: Device Bpecific Masssge Forwarding -

.ﬁl:ruunbje:uimulllulpt.l-. s the posl imperiant slement wilh respect (o
driver code implementation. The ﬁﬂdﬂﬂﬂlﬂhnﬂhi?ﬂ

For P e the pser commmnily, the drivie APl & the most important as-
poct of The driver AP] allkows users (o writs T+ drivers to provide divice suppart for
ibeir pwm hardware meeds User developed drivers aie comppled into shared lilarles
;‘nm- |=|:|I’t-|-|1ur1 maosdules, which the server losds during rn-time throogh the we
configuration fles' and & ConfigFile obijoct, A ConfigFile object is included as part of
Player’s libplayercore fibrary in order to handle the of ion files, passed inio
1he server exscutable st run-time, i onder 1o Ad lond user plm-hﬂ:im.

In the operating context of Lhe Player server, o deiver must perform two main tasks.

I. Abatract the utilisation specifice of a hardware device behind one or more of Player's
Interface specifications,

5 :ﬁh‘lr process Player specific mosages that arrkve on ils sesocisted input MessageQusus
Bl

PMiyer dleval hawve included the Briver cliss aa il Players driver APl in onder to allow
s Lo creste drivers bo support thelr hardwars needs,

The Driver cless includes all the hass io inderface wilh the [T
run-time emvironmenl of the Player server. The ol & driver sils o an & hooip
ikt contimuously processes messages ths lrﬂnmlulqui._pquﬂa. Dwiver aathors,

‘mh-ﬂ.ﬂﬂ--—ﬂﬁ_dﬂdhlﬂfu-djﬂlimuu
e pug-in drbven. The Confgueation e used o FollerbiT b shewn s Appenciz [ 2
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b, twsers, unpl-emmt lhl1r acifle driver through inberitance with the base Driver ohject
e n—lmpimm il in order to support their specific hardware device, The Player
dustribution and nfﬁt:ll! webalie includoes documentation with multiple oxamples on how to go
ahout writing plug-in drivers |44,

4.3 Driver Development for RollerMHP

Using Players driver APl and the BrainStem@) C AP1 scoess librarks for Limex, drivers were

written to support RollesMHP's hardware specifics under Players interface specifications in or-

der to facilitsts the Devies Absiraction Layer of the AMTS. Chill Driver classes' were written

IF!:.II wrapped the necessary roulines of the BrianSiem@®) C AFl in C++ member functions,
igure 4 12

m

Ths Driwes Bass Class Piq Hnllarsll e Ewives s il
e - T Wl

bwivesr dlass i = gppapeelstion of

................... [ | Wrsinbies © API

FLT T T I B PR e el B

Wy idgw and
I quadialnie wazzdme

Figure 4.12: [river encapsulation of the BralnStem®) C AT - Two drivers were developssd
to suppirt RollerMHP in *laver's operating framesork

4.3.1 Supported Interface Specifications

Two main drivers were written in C++ and comptled into phared libraries under F‘[n;.-er f EAIfT
ifice in order lo act as ﬁl!upm objects for dynamic loading into P "B Barver
implementation st fus-time. With the current driver implemenstations, RollerMHP supporin
E:dpn:junuﬂ and sosar Interfaces?. Two separate drivers were written for FollesMHP's
this software practice provides a one to one mapping between the bulk driver cods
and the supported interface, which prodoces cleanesr and more maintainable code.

The RodReller®RP Driver driver and the Soaarice driver, see Appmndix C, provids the
necessary sofisers infrestroctare (o get Roller MHP up ssd running in the context of Player's
server implansntation, Figure 4.13
The ModiollarMEP Driver driver supporis the positicadd mlerisce specification and sllows
RollerMHIMs differential drive platform to appear as & generic positiondd device over an [P
network. Among the vast funciionality provided by the ModRollerMEF Driver driver, it allows
cliont applications to control RollerMAT s translstionsl and rotations! velocity and receive con-

mibon updates according to the Runge-Kutta odometry implementation, recall Algorithm |

#iction :! 2.4.3. The SonarAce driver supporis the sonar interface spacification and abwiracis
RollerMHP's embedded active sensor system behind an array of generic sonars over an 1P nit-
wark. The SoparAce driver is currently being extended to suppert the actarray interface, (5|,
to mllow the materials handling convevor to be abstrncted behind an arrwy of generie Hnear sl

i O, & cluilel cluss i & closw which inhersis [rum asaiber ©lnes
"For full insight imto Flayer's interface specification, se [44)



4.3 Driver Development for RollerMHP

* 3R R, JEEELTRE
P Commeedcad bas

‘.IQF'I.'I.'I..I.II.IE'
Gndar Dwwice Prosy

Figure 4.13: Plarer's Sorver Im _h—m-THr-lu-Hdnhu
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robiry actoators. This will allow for the development of generde forward and inverse kinematle
oode for the materials handling infrastructore on RollerMHP.

Playver comes with & few general purpose cliend applications for testing and debugging driver
oode. PlaverViewer i one such clisnl application, which provides a GUI Interface and prosy
manifold to & mngs of generic deviesm over an [P sstwork. During preliminery testing and
debugging of ihe ModRal LerMHP Driver and Bonardce driver code, the PlayerViewor ellent ap-
plicntion was wsed to cherk the functionality of the drivers and debug the code if nesd be'. A
sreen shol of PlayerViewer's abell output s shown bn Flgire 4.14.

romres oy n HLE
ot iy i

B rvEn
EmTuaEl
Matwd @i Uha

Figure 4.14: PlayerViewer's Shell Output - The shall outpit messages show Lhe wvallablie
devices m the server, the name of the driver providing the message translations and Lhe atatus of
the device

VI mewed b 8o ander-statement, emdn ol ponaidenshds compledity s bourd 30 heve & few bugs, The
mamny books on debuegging scurce code writien by highly mspeciad sofiwsre developers i evidence of this s
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In the shell output, the PlayerViewer cliont applicstion has been executed wader subscripiion
to & server al location 192.168.20.2 an the TCF sockel 8885, which represents the 11 address of
Roller MH s on-board computer, from ono of the spare Linux compubers in the laboratory, The
actual commupication occurs over & wireless Ethernet link, (neilitated by two TEEE BO2.115,g
USH neiwork adapiers. As [ar as cllent applications are concerned, such as Plaver lower,
Roller MHP is s a6 & combination of positiondd and sonar devices, Figare 4.15

Figure 4.15: PlayerViewsr Screen-shot of FollerMHP's Davica Instances - The sonar
senscy model used in Player Viewsr models the beam of an ultrasonic ssnsor i w conbenl geametry,
which s ot & troe repressstation of L actisal beam geometry. Under mont oparating conditions

though, this is a ressomably scourate ssaumplon

To show what this client spplication sulscription koks like from the srver side of message
tranafer session, RollerMHP's oabissrd computer was connected to a uler screen and the
sorvar instantisted on ik custom comfyguration fle, which ssentially tells (e mrver and sssoci-
niod ConfigFile objeci where bo find the plug-in driver code In Fedota's file system, and which
interlaces the driver supports, Figure 4 146

An can be seen in Figure 4,140, after the server iz up sod listening on TCP socket 5565 it
aecepts its frst client, chent O epressoting PlayerViewer, which oamn st Lhrough seoding
messages with device proxy ‘s Lo Lhe server to manipulate RollerMHP via its exposed position2d
desvice and receive HollerMHP's setlve sensor dota vin its expossd sonar device.

4.4 Chapter Summary

HAL’s are vital components in providing a homogensous operating platform for application pro-
graums. These HAL's allow application programs 1o communicsis with and operate on genersc
devioes without having Lo know detailed knowledge about ihe specifics sssociated with a de-
vioe's underbying hardwaie, wich ai the bardware implementation of dektop printers. HAL',
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wiifall wlasnr
.'. wlayer modi-allarmip aly &

lelﬂ'ﬂ“-“' il e f1nd mnm ' PlayeVhowee clions

s miwn aa £ & by the server's Flayes TCF object

as & soltware construct, provide a generic Interface between physical hardware and the appli-
cation rams requesting resources from them. This i achioved through the construction
of inter npecifications which represent the soltware abelraction [rnmework for & parlicular
clasa of computer hardware devices, such s “mouse” or “printer” . Devies drivers provide the
mapping betwesn the hardware spocifics of a dovice and the psociated interface specificalion.

Player provides this functlonality for robotic devices, thui allowing the development of
pemarke contrnl code, which provides software sealnbality and oo re-use, & vital e
quidrement in any modern software system. Player's driver AP was wsed, along with Player's
interfacn apeclfications, to abatract the hardware specifics of RollerBMHP, L2 the BrainStemif)
modules nnd consected hardware devices, behind genenic interisces.

Player has baoed designed 1o facilfiate trandder and communleation between appli-
calion programs and device abstractions, ml chenl-aerver miadel. This provides devices
with network ﬁa and makes them accessble over & TOP /TP peiwork. Application programs
il hs clients subscribe to Playver's sorver implementalion in onder (o inltiate & message
tranafer seaslon. Thess client ications hold kocal devier proxy's (o the server (o order to
send and reoeive messages Lo from devices held in the server, Plosical communication with
RaodlerMHI® oocurs over & wireks=s Ethernet connection [ecilitated by IEEE 802.11b/g USB net-
work admptiers

Twe drivers wers written to provide Player HAL functionality and support for
Rollksr MHP in Player's clent-server king . The HodRollerMHP Oriver driver sup-
ports the positiondd interface and RollerMHP's underlying difarential drive platform
amd pysiem Lo appear 8 o generic pesition2d devies capable of configurations on
§= B » 80" The Senardce driver supports the gonar interfnce and abstracts RolleeMHP's
pltrasonic senmor plalform and embedded system belind nn array of generio sonar devices.
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Chapter 5

Task Execution Layer

"'Te isolate mothemaldca from Lhe proctical demands of the sciemces 19
to invite the aterilify of o cow shut awey from the bulls. *° -Pafzuty
Lvavich Chabyabav

iCh 4 covered the soltwre sysism, nsmely Player, used in providing the infrastrecture
mmwmmﬁmwm nuﬂ'm

This chapler covers the , testing. and walkdation of the mothon control algs-
rithms, designed in the scope of ‘s interface specifications for RollerMHP, to facilitate
the motion requirements enderlying the Task Execution Layer of the AMTS.

mmmﬂﬂmw robot platforms executi FMRP task Instances, 1t
i therefore only naturs| that mhmﬂﬂugwdup!ummmtm

ith m paylosd transportation, To this axient, this
chapter holds the majority of I.hh innertintions research scope.

5



5. TASK EXECUTION LAYER

5.1 Material Transportation

Depending an lhmhitj ul ihe payhoad, matenals handling. e loading and unboading op-
eraiions. can form the mjr b mateviaks handling and rooting task duratios. A]lhwgh

this sspect would placing emphasis oo optimising materials handling operations, in
modern dynmmibe environments with highly distributed suasufacturing infrastruc-
ture. gross metorial transporiation forms & major espect in the eficiency amd real-times task
tracking ability of mobils msierinl hlndlm.g systems performing FMRP taaks, Figure 52.
[ Tanh Allsestisn ba )
Haterinle Hsndiing Egmnt
Ageni Architscturs Toolbon

Wik ing Fabh Unies
Blobal snid Lensld
FEwigal isn

'
- |
. 4

’
wre

4 3
o D ol
an
Figwra 831 Moterisl Tra tion Aspeci of FMAP Thekh Execution - Giobal navigs-
tlan s enmiistbally & path ng problem and s highly depeadent on the eavironment in which
the mobile robot platferm 8 operating in. 14 is 1.I-=rr!rm el explicitly cowered here

5.1.1 Navigation Preliminaries

The definition of & FMRP provided in section 21.2.3 defined a Transportation Primitive an n
global navigalion opemation between two distribitsd, snconnected manufscturing infrastnigtine
subseta’, while svoiding obstacles in & real-time manner. An briel owerview of navigation
operaticns kllows in section 5.1.1.1

B.1.1.1 Clobal Navigation Overview

The performance of global navigaiion algorithme, implermenied on mobile robot platforms, s
highly dependent on the amount of structural information, reganding the mobile plationns op
erallng environment, available for concurrent analyss and decision making Decision making
in meant in I.h:mmmafﬁmﬂn;wﬂmﬂ pathe between navigation endpoints under analysn
af the structural layout of the aperating environment

Intuitively, in order for n mobile robot platlform o sutopomously perform global nevigation
oparilions, it must be provided, or crents, & map of |18 working environment &z well a8 Riow
its location within the n:up Mohile robot platiorms perform localisation to determine e

bom, or more precisely their pose or configuration in & map. This is achieved by corre
structural information lbuul‘. their surrounding environment with structural information,
such as distinct landmarks or waypoints in Lthe map provided, through sensory pereeption, dita

s merted i the wewse that no stamsdard matevials hanling infrsstroctgre joims the manidacturing s
fmdtiwtare bt



geometric dovelopment of mnsory perception

have bean diveloped, the ‘hq}chm't'l m], liﬂmkﬂlnlpplmr dlﬂdlut]lu
evel pressnl uncortainty in sensor perfoemance (200, Due to the structured layoul of production
environments, it would seem unorthodox to expect mobile materinle handling robots to per-
form SLAM. In produstion environments, the leop closure probilem wonild not be tolerated and
production rates would surely drop, Maps provided & priorl sccompeoled by active measures
of localissthon under :m“ﬂmmmmuwmmm providing the
necessary information and knowledge to enable mobilke hamlling and routing robot
platforms o perforim globnl navigation operations.

Due to the highly application specific nature of global navigation operations, resesrch efforts
during this project, were focused on local navigation and obstacle svoidance in (acilitating a
subset of ihe muterial ransporiation reguirements of FRMP task exscution.

5.1.1.2 Looal Navigatlon Overview

Local navigation includes bolh obstacls svoidance a8 well &5 local decision making. In order to
perform local navigation, s mobile robot platform mest utilise sensory perception outputs and
periorm data fumion 1o exviract snough strectural information about the surrounding obwiacls
in onder o, both avold them, and move in the mosi fessible direction possible if more than
one obstacle is present in ita local surrounding environment. The sspect of decision making in
cases of multiple ohetncles musi not be overlooked and can determine the overnll performance
of & local navigation algorithms and prevent the introduction of “local minimums™ whire the
mohile robot gets irapped [ areas with many surrounding obstacles during opersthan.

5.1.2 Player as a Code Repository

Although most drivers that run InﬂuFJﬁ* directly controd bardware, more recently,
a number of “shatract” drivers have boes peeel which uee other drivers as sources of dats
and sinks for commands, M %lthmhtuhmdmhgndmmhnmudm
mmpuythlﬁmrﬁumg "mamel® driver w obe such abstract driver lmplomenistion
.l.'im ve Monie Carlo Localisstion, which is a very popular particle Blter hased
lnulhnt.lumall;ﬂ used by modern mobile robots [16). Many other shstract drivers aooom-
pany the Player source code including loeal and navigation alporithms. HollerMHP uses
-ﬂmwmmm;mmm:lhhﬂunbﬂdﬂm
nlﬂbthmﬁmﬂ [VFH) algorithm, and was compiled into ithe Player server
z 5 e

overview of Lhe operaling charscteristics of the VFH algorithm ean be found in

I!IIT'II'EI Arﬂndmuﬂm-hﬂm“ﬂlnnmhm an the CD
accompanying this dssertation
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5.2 Materials Handling

From the definition provided in section 2323 A Materinls Handling Primitive requires the
inobile materiale bandling and routing robot platfiorm to perform posture stabilisation, in which
the mobile robot platfonm converges ooto & goal pose in the viginliy of an |/ port from an
mitial configuralion on Lhe boundary of & Regon of Convergenos [ Holl).

Materinl tranafer operaiions are appbcation specibc wherena posture siabilsatics requime
ments ke gEneric enough W0 wamant credible research. This section explicily oovers U= =
search, developmant, and testing of the motion controllens implemented on RollesMHP in order
to perform posturs stabilisation within a Rol, Figure 5.3

T R

H":; 5.3 Materlnls Handling Aspoct of FMRP Tank Execution - The chirscteriatics

al, for, the pﬁd trnnnler hluu.h are penaitive b0 the beaklon onvironment
udmh- in dond to focius mesarch efort in lewﬂu]dnmum

5.2.1 Preliminary Control Concepts

Balors ihe introduction of the posture stabiliation motion control problem, two flundamental
cohfepts in conirol theory, and controllability, are broduced in order Lo make the
mslion controllers, introducsd in #ectbons, more comprehensive. The following siakbil
ity discussion is in terms of stale-spaos concepls and it i5 assumed that all stale veclons and
control inpuls are alements in B¥ and ™ respectively, the space of all real numbers

6.2.1.1 Stability

The sotlon of stability In contral neering (s usually associated with the response charae-
torlaticn of systems implemanting back comtred. Given the veckor valued state differential

muaLhon,
(1) = A @), R xR™ <R"

wmwmﬂﬂ;mwmummwwmumwﬂ: & R" and contral
?uuﬂ'll}Elt" The feedback contral problem in this regard is to nome control lw
i) = g: R — B™, wuch that the siate of the system or “plant®, fi], converges

an arbitrary initial state £{tg) = £, sa ¢t — oo, The
control esgineering term given to the task of designing (T} is “feedback stabilisation” [40].



5.2 Materials Handling

Unider the application of g(T), a fully qualified vector field! is produoced Thes fully qualified
vector feld, represent - cunsicered autonomous
in that its salutions dﬁ:ﬂ'fﬂmﬂm 'ﬁﬂﬂmﬂm unht integrals, representing state
trijeciorken, evalve through tlmllrnln.rl. furtber dependencis on &

) #[t) + B(t) it maamﬁqw“ﬂ#f““‘mﬂﬂ TR, @(t)) =
H.u 2 matrice TR

qu'l:n" Mhlﬂmundlh!rndmhnddhdhnhuh
Wmmmmﬂmm o ot el o wll kb
ns its limear counterpart. The mm:ﬁmﬂiﬂr contral eystems is usually
rw:hmm.pﬁuhﬂlhntht_mudwﬂh hwm:lmgwhhthmhd:

mﬂﬁ_hmmﬂ leﬂﬂ?ﬁ]:mmmlm
m‘mﬂl’" stahility ty, named
Russinn mathematician, Alelsandr &murhh Lynpunov. is oovered in section §5.2.1.2

5.2.1.2 Lyapunov Stability and Equllibrium Points
I. Btability theory characterises how e state trajectory of & dvimmic system behaves
h:ﬂﬂdnhfnfl!;ud:-m-'hhhhwm be &n eguilibrium poist of the stats

mhlhll ].f w&fm&m“hd'ﬂu:::lrlhﬂmﬂm“IHim

A gonl state, £, hﬂwhwmuhwmmd M; T R,
(8 mnmmﬂmmmf,.mm neiglmrhmd

Ny S Njof [,Mthnhwhlﬁumﬂhi =¥ €My, lhmu-mwfnmﬂhin

M ¥ > Lynpunov stability does not specify weather the state trajectory eventunll
l'cll-l:l'l-:l . poini a8 Lime infimity. hﬂﬁthflhﬁluumw.ﬂud;mmli
qmmaymuh ty charactersiios,

A goal state ¥, is ssymplotically stable if it is Lyspunov stable, and further more ||£{(t) —
Fyll — 0 ot ¢ — oo 40| Furthermore, a goal state ¥, i exponentinlly stable if it is asymptoti-
cally stable and there exists constants o and & such that [40],

W) = £ll S oo |Fko) = Fyll. VIt
mwmﬂmmmmmﬂmw.ﬂimw“ﬂm
HﬂPiimHh&mHIhnHHwhumdmmhmmmMﬂ e vy 2,17
from an initial configurntion § = |2, w. &) T are all asymptotically stabile

5.2.1.3 Controllability
Consbder once agaln, all systems described by the weotor valoed state differential equation in

the form,

o) = fiNe).a(e)), S:R*=R™-R"
Systems of this form are termed controllable if for all £, £, € R®, lhlnexlu-tlu.:untml input
trajectory U = lon that in integra veetor fiel ’
ot Fia) = £ Wbt vatus of the kgl corve, or Sale Safaciory, s £1) = Fy. Slply .
lmhmﬂmrﬁhw:mmmmmlnummi.udnm

siate ,. Controllability is returned to when discussing the control properties associated with
pwlunﬁnhihdiﬁhﬂhldﬂuphlhmm section §5.2,2.4,

Hﬂhﬁ—MWWHdhhw of i
in the

the complen warslin 5 = & &
n-nlld-lh-.IhnlmhmhnﬂlmruﬂpﬂﬁrmI-Ilulnlu-ﬂnhle—dt
wector walied wtats difsrential equation



5. TASK EXECUTION LAYER

5214 Posture Stabilisation

Posture stabilisation of practical physical systems is n control engineering problem, and in the
cuse of differential drive platforms, & nonlinear control problem. It is important to understand
the required control efforts in implementing posture stabilisation, through feedback stabilin-
tion, on Mﬁummﬁmﬂ poature stabilisation consiste of regulating
relstively small configuration errors” in the differential drive’s configuration . Posture
stabilisation of differential drves requines the dewlopment of, either contral laws,
ar feedbach control laws, Fesd-forward control implenentstion i sirictly & trajectory

prohlem, in which & control input trajectory, U, hmm
teanslnlionnl and rotationsl velocity commands, ﬂm

pliyslenl control Infrastrocture in order (o move 'Lht m
tory thiat pins an Initial configuration and goal configuration. mﬂh-lm.h:r
thilr very naturs, mors robust, but face serous mathematical obstructions. Posture l.ll,i.lﬁ'll

mathkin conbrallers designed to overcome thess obstructions can produce unrealistic snd
Lianabent responses [6]. Anmmrﬂnnflhnunbmumhnipnpuﬂ-ﬂdlm
drives {ollows in ssetion 5.2.2,

5.2.2 Modeling and Control Properties

In this section, Lhe kinematic model of & differential drive platform is implicitly exposed through
nﬂtﬂw of the comsiraints on its configuration velocity. Eq. 3.4, Deriving the kinematic

model in this way provides greater insight into the feedback stabilisation properties of differential
drive platiorms

5.2,2.1 The Confliguration Space

It iw important o visuslise motion trajectories o l.ﬂml-dml?‘n‘lhﬂlpl:-’luwﬁ-rm
recinte the constirainks im by the wheel-floor wlerlnoe of differential drive i
ing the same general coordinales as those of section 3223 to describe & differentisl
?hl- pl;l;lnrm'l comtfigiuration, its conhgurathon spece can be visuelised as & topologhcal space,
e

Bubeapais
L LR T T

Figura &.4: Diferentinl Dirive Configuration B it popologicsl space has en identiny
op the orientation coordinnln. Idlllll.lﬁ are wseful in 1:-a-1.h planning and can provide optimal
aclutions to path planaing problems

The topological identity allows configuration Lrajectories o “wrap arcund” the configuration
space and are useful in motion planning. Posture stabilisation im tmtbon relies on under-
sanding the constraints imposed on generalised configuration velocitis, such as BEq 3.4 and
its sssociated controllability. An overview of under-actunted systems 8 presanted o section

5112
'lﬂ-ﬂr—lhhh wiier @ within some bounded repan sround Lhe of Lhe
:*ﬂ *m-ﬂnﬂ-nulﬂﬂ which
-dlr-hj. rontidored b
'h—mm-‘-*




5.2 Materials Handling

5.2.2.2 Under-actualed Mechanical Systoms

:::'I.lﬂ ihan Hup-l.imt p_m&unlh l.'un:I'h. m.'ILI'ET:immbH &mtlhhlz
inprala ated. L'nder-actusbed systems
arise due (0 some lorm of non-integrable motion constraint. Tn such systems, it is impossible to
choose & st of generalised mhuutm coordinaies squal Lo the number of degrees-of-frecdom
dofj h' I.h mechanical T.il nnmhlr of configuration coordinates also

of dof by tha number of non-integralle
motbon mmnhu [ﬂnl Such muﬂumw“mumuﬂid nanholonomic,

Differantial drive platforme are nonholonombc s they ke n = 3 generalised
-I:.ﬂ"elt’:ﬂﬂ' bu:mim-znﬂhﬁlmﬂimi=
are pr ol h the eontrol of the left and right drive
The non-intagrable differential constraint Impoased on & differential drive platform’s gessralined

configuratbon ulnnu&'h due to the rolling without slipping condition exhibited by the active
drive whesls, section 5.2.2.5.

5.2.2.8 Differential Constraints

All Plaffian' nonhalonomic syeems Mhn-nmlmmﬂﬂm
Mmmmﬂmummm 118
Api=0 (5.1)

All Tenaible instanisnenin geierslised configuration velocitim can be found by determin
kernel sobution s B.1. This can be schieved ihe wee of standard teehnlgues
livear algebra, and ihe casés where the nomber of copsbradnti |& less than the number of
generalised configuration coordinstes, produces s continuum of solutions, Eg. 5.2 [15].

F=G(fid, TeR™ (5.2)

mﬂmnﬂmnmnhh&ﬂum rankrix G0 8 closen &6 0o spas Lhe null spece of matnx

Differential drive platforms have (n—m} = (3 — 2) = | difforential constraint on therr geo-
uﬂhdcnnnli'uummuhtmm:llmﬂmm-Mmtm-H:
to slip in the lnternl direction®, Figure 5.5.

If the mcibwe dreive whisls do oot slip in the latersl direciion ihes the translational velocity
remaina distributed between ite underlving components i ihe r and y coondinates of its gen-
eraliwed configuration space, Eq. 5.3

Lo o
The resulting differeniinl constraint is shown in Pinfian form in Egne. 54 and 5.5,

zsnd—geosd = 0 {5.4)

Al TaT
EE—M’E il = 0 {5.5)

i
"r'“n

lm::d'mh.l‘l.‘:htquﬂul:l: m&nﬁﬂﬂ_ﬂw

mﬂﬂplﬂm i Bereesiinks |40§
Lingder noeminl aperating conditkns
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ir = v sin(8)

v
/f
P

r S
rd L ¥
y k AR
» X= v cos(B) % .:. .
8 q

Figure 5.5: Rolling Without Slipping Condition - The configuration space is also shown in
order to provide visualisation on configuration trajectories

The Pfaffian constraint equation, Eq. 5.1 is satisfied for & = cos @ and § = sin #. Scalar
multiples of this solution is also a solution of Eq. 5.1, this scaling represents the magnitude
of the differential drives translational velocity v, i.e. £ = vcos 6, § = vsin §. The Pfaffian
constraint does not prohibit the remaining generalised configuration velocity, i.e. #, which is
scaled over R in a one to one mapping through the application of w. Collecting all feasible
solutions for the instantaneous generalised configuration velocity ¢ into matrix form, results in

the first order kinematic model of a differential drive platform, which is a vector field f over
R™, f:R? x SO x R? - R®, Eq. 5.6.

=

cos@ 0O o
y|=|siné 0 [ e ] (5.6)
f 0 1

The vector field associated with the first order kinematic model of a differential drive platform
is best interpreted as a combination of two vector fields, Eq. 5.7.

S N f2

z cos @ 0

y|=|sinf [v+ |0 |w (5.7)
(7] 0 1

Therefore, the translational and rotational velocity control inputs, v and w act as weights which
determine how much each vector field contributes to the resulting generalised configuration
velocity. Eq. 5.7 classifies a differential drive platform, in the context of control application,
as a control-affine system [40]. Control-affine systems are linear in terms of control input
application but nonlinear in terms of state trajectories. Differential drive platforms are in fact
a special kind of control-affine system called a drift-less control-affine system. in which the
generalised configuration velocities collapse under zero control input’.

'Genera]jsed configuration velocities collapse under this condition in terms of kinematics, although on real
robots like RollerMHP, the configuration velocities converge to zero under the natural dynamics of the robot
and associated differential drive platform
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5.2.2.4 Controllability

By taking Lhe tangent linearisation of Ey. 5.7 about some point o the configurtion space @, a
linearised system bs formed, Eq. 5.8 |15].

oo g
ldﬂﬂ,]w+[ﬂ]u. ﬂ'-i"- (5.8)

As far ns posture stabilisation mm&.tﬂsmhmmaunhhll Thhlmpﬁu
that n lingar controller will never be able 1o achieve posture stabilisation of d}
ﬁmmmmmhmummmummmw
stabes ihe use of Jacobinns. In order to provide s differenilal drive platform with a
posiure motion controlker, one must delve into the mnmmwmmm
theory. This doen ot break down the overall however. Controllability of
a differential drive can be ahown constroctively by explicitly -WHW
mhﬂlwdmﬂﬂhmh_mrﬂhlm 1..“'..F‘I.ll-lﬂ'liﬂ]ﬂ
::ﬁwuhni:-.n.l‘,? Since a differential drive, configured in the sense shown in
23, can rolats uhﬂ.ﬂ-mmﬁﬁqtﬁmﬂ;d-mmﬂ
the point [z |7 mmmmmﬂmwmwmmhmpﬂm
Folboweesd translation o the ; and & pusrs rotation
mmﬁmmummﬂﬁ“’h'&uﬂw— f e i
are known as locally null controllable, lnduhupmmmuumumumld reduire

5.2.25 Feedback Stablllsability and Brockett's Condition

The vector field of & differential drive's generalised kinematic model, ting all fensibbe
instantansous configuration velooities, Eg, 5.6, can be generalisad inlo the shown in Eg. 5.9.
= (@), R x50 xR =R’ (5.9)

Feedback stability of syswena of the form in 53,!111'@1!: development and &
mﬂummmm%h = gl ], nlqu.ih-'lh
w-ﬂhdwﬂuﬁdd.!- to have coriain properties. Brodett
ﬂrﬁhtﬂ“ﬂ, 1 ﬂﬂu‘ﬁ mﬂaﬂ.muﬁuhm’:n ml
figuratsn mm emoolhly™ stable equilibeium state
mmmmum&mumudkmmml

Brockett's Condition. Given the system,

F= f(2,4), #(tg) = T, f(0,0) =0

with [ : K™ = B™ — R®, conlinuoualy differentinble. If the system in smoothly siabillsabile,
ie. there exists & continuously differentiable function g : B™ — R™, such that the origln 8 ano

i stable equilibrium point of # = J{£, (), with stability defined in 1he Lynpunoy
, then the image of [ must contain an open neighbourhood of the orlgin,

Fh:rl.hmml.hmilla.rwlthmlhmry.lhilmﬁnmmmlhhluuuhlﬂln-m
with amooth time-invarinnt feedbrck control laws. the resulting fully qualified vecior fle
produce integral curves, as solutions (o initial value problems, that are able 1o
mﬂﬁhm“whﬁﬁmwhmul u‘m—
dit mtb:mlmﬂdh-mudﬂﬂﬁlﬁ In practical applications, this condition i Bl
limited to the origin of the state-speoe ; through linear transformations, is applicable o
arbritrary goal points in the sale mpace of the system. This & shown when introducing U

Vrecull secdion

an

2132
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posture stabilising comyollers developed and tested on RollesMHP,

During his explanation, Brockett used the so called “nopholosomic inlegrator”, &5 an ox-
ample of & systein that B nol smoothly stabilisable oplo the origin of its state space by fall
state feedback control [3%. The nonhclnomic integrator, known in the control commonity as
Brocketi’s system, s abo known & the Helsenberg system &8 i arises in quanium mechenics
0. It i representod aa follows, Eq. 500

I =y, Ty =y, Ty = I ug — Ty 500}

Where £ & |1, 1y, :«,[:‘ & B and 7 2 uy, |7 € R Since the lnage of the magp |7, a7|7
[t19, wg, £y ug = g ]", bo the vector feld, does not contaln the point .n.¢|T for amy e # 0,
Brockeit's condition wlates thet thers ie no time-imarlant continsounly differentiable full state
feedback control lew, e, g{&] that mekes the origin of the siate apace nn paymptotically stable
equilibrinm paint. This In heat inkerpreted by looking sk the vector felds, Flgure 5.6

Figure b8 Voctor FMebd Properties of the Nonholonombe Tntegrator - The siste s seen
Lo “lock” on bt 2a axis end prevant further stabilsalion under Lhe comdition that 2y = £y = 0

Whenever @y awmild £y are both zer, +y = 0 and £y remaing constant, thue desdroylng any
chance of convergence of a configuration onto the origin. The difficulties implied by Br t'u
condition can be owercome with gracious efforts into the development of time-varying
condrollers, aliding mode control aes, stochastic control lwws, 8 well a5 & number of oonlinaar

& & knows e, any completely nonholonomic aystem wilh three configurstion coords
nalis, of sistss, and two coptrol inputs, can be converled inlo Brodostt's system, ie & BoB-
holonomic integrator, by a local co-ordinate transformation |34]. This transformation (s known
i & diffsomorphism and is used often in differential manilodd theory, Since differential drive
ﬁmmmm they are equivalent to Brockett's sysiem throagh & coordinats dif-

hism and therefore [l to st Brocksit's comadition lor smooth time-invariamn feed back
itk sals 1ty

From the aforementioned insights gained into the feedback stabilisability of differantial deive
platforms, two posture stabilising controllors were developed for RollerMHP using two differant
frodback control laws. The first controller implemented pivets off the vector field characterintles
exposeed through Brocketts nonholonomic integrator and & presented in section 823 The
wecond controller implernented is based on & polar coordinate transformation that produces
b rosiilting system that satifies Brockeil's conditlon for smooth stabilisability, however, the
Lransformation produces » singularity st the arigin of the treosformed configuration space and
requires special attention, section 52 4



5.3 Material Handling

5.2.3 Logic Based Switching Control Law Implementation

In order to TRaller MHP with utnhmﬁ controller, b binsed ewitch-
ing waa Implemanted. "Th:tﬂ'rlrnl law s as mud.ﬁ:-.'tuhnn qull.ﬁl. in [21].

The based switch mrﬂhlmplzmenudmﬂﬂﬂuMHPllhlndmluhﬂHn;
mﬁwmhhhngmhi mmuimnmﬂ a hybrid control law, em-
phrh;m cantinuous dynamics discrete logic. This ﬁnrmmwllﬂu
vector

5.2.3.1 Praliminary Insighis
Recall the nonholonomic integrator, Eq 5.11.

) =y, Iy =uy, n=nwm=-anw (5.11)

It has been eslablisled that when mdnmhuhm?-nud rETAins
gy~ 'I'h.'-'l Ty and ry are 5 only control
inputs will produce credililes in r3. Ove cootrol o make the origin of the
configuration space & stable point of the fail stais control pystam, s Lo
use control inpuls € & [u,, to keep configurations away from the zy axis when oy is
by & ot Rased Meitilng Suatuilier e on RollachHP. Belore

G
mm mnm‘h-hnuur.thmﬂmadl fami used to comeert the

The coordinate diffesonorphiaom wod for the purposes of trensforming RollerMHPs

Eﬁ]’m viboeity into Brochett's nonholonomic s shown in Eqoi. 5.12 through 5.18
ry = rooal + ysind {5.12)
ry = 8 (513)
xg = 2 [zsind ~ yooss) — 8 [xcosf + ysing) (5.14)
v = v=w(rsnd - ycosf) (5.15)
ug = W {5.16)

With thesr coordinats Lransformations, RollrMHPs configuration exists in ihe configuration

space’ of Rrockett's nonholonomic and iz susceptible to the configuration “lockin

notwns exposed I8 previous secthods. example. o expose the firmt Brocketl weclor fie
coordinate

£1 = #cosd + jaind — rsinf @ + ycosd §
= #eoaf + faind + & [y cosf - zsind)
= weow'# 4 vEin’d = § (zsind — yeosd)
= v~w|esind - yoosd)
= W

By performing the same operaiions on all configuration coordinates, one will see ihat this dil-
feomorphism does (ndeed produce Brockett's nonholopomic mtegrator.

An overview of the comstituent eléments and operating strocture of the s swrinch
controller implemented to stabilise Lhe mhdnmnkimapllu form of MIImeﬁr.w

18tate space is perbiagn a betles Lo in conlrs] coplests

7
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5.2.3.3 Control Law Construction
From this paint on, configurstion will be synonymouss wilh slale in order (o oiiliss readily un-
derstond contral termin

Ek b l'nllh"hln; coniroller operates by construcLively swilching between pre

laws in order to stabilise Brockett's non-holonomie integrator, and thus
RoflerMHP's ml.l;rﬂ'lhh:n. fram wn arbitrary initial condition, The wlt:h & u?: ks rather
complex and is dependent on how the Brockett state evolves through time within functionally
bound and nﬂ in #*, iLe. the Brocketl state spoace. The logle based switching
controller bukkls mathematical slements [21].

! [ B s :
l-rimw-ﬁmﬂ-ﬂ*ﬂl R, j&82{1,2234), with
(1) wy{0) = 0 for ench j € &, and 0 < =;{w)} < =3{w) < £y{w) < wy{w) for every w > 0.
(i) my wnd oz are boundesd.
{iii) my is such that il w — 0 exponentially fast, thes w/= (w) — 0 exponentially fxst.
(iv) my I smooth on some non-empty interval (0, ¢, amd

.i g} < —""Ew} 4

digs

As well, il w — 0 exponentially fast then my{u) — 0 exponentinlly fast.
The last condiiion, conditlon {iv). is & specificathon on lipschils comtinuity. which can be

used] Lo delermine whelher 8 specific initial value problem. much like | he nonholonomic
stabilisation problem considered here, has & unigue solutlon on & vecior field.

2 Four overlapping regions in BY:

= [FeR:0< s 4 2] < myiad)).

xR {#e B - my(r3) < ] + 1] < myz])).
Ry {7 e B : my{x}) < 2] + =),

Ry {o}

Ulihlingthuetw huse slements, the switching logic based contml law takes on the form show

4 = g, (), f > g, (517}
Where & s a plecowiss, continsous from the nght at every point, switching signal taking on
vt-;:i.huin the set § & {1.2,3,4) for each element # ¢ R under the following control structure

lﬂ-ﬂ![:l-niﬂ'[:;t%]-hﬁﬂi[::fﬂ]rmlﬂ=[3] (5.18)

The switching signal o is determined recursively, Eq. 5.19 [21],
c=glF.e ), 121 (5.19)

Where, for { 2 Ly, @~ (t) denotes the limit from the et of i) as v == L. o (1) i= an element
in B that elfectively inilialises Eq.5.19. This is an impariant ssjseet in the practical application

INonedocrassing, lincuions sre regquised to prevest the sate “bocking” dlscamed i oo et

wE {0,¢

b i |




5.2 Materials Hl.n:llin!

dﬂwmmsmﬂmmwmmmmm
e :

The wwitching signal transition function ¢ R =B —~Biaa mechanism in the logic
basod switching controllers performance &s § — oo snd s s shown in Eq.5.20 [21]
: | HfeX
A it faist. $ hn:hn Lo provide
hh’l::.'h Ay s implemsented ns mm

that partition Lhe state space. This can be seen by set of monotons,
!ﬁmm-}wmmmmﬂmﬁ A typical chaice for
l”ﬂljhl]tﬂjtlﬂ-!"ﬁ my = Dmy, wy = Jwy and wy = 4wy |21]. For the explanation of
hysteresin, Lhe various control regions have been projected inbo (wy . wa-space, where w; = =3
and wy = 2] + =}, Figure 5.7.

Btate Trajsotory

Figora 5.7: Hywieresls Characteristics of the Switehing Slgnals Transition Funetion
Implemental lon -

mmmmmmmm:&w Its transition luncison
implementation prevents infinitely the swi Mmb
t_ﬁ--ﬂuu:uﬂmhqhmﬂlhm lmhﬁmﬂ; thus producing controller

.’.rinnmunnnﬂ.ylh [ Lhe hﬁhﬁhim‘ldm-
troller presented here - MI Su:ﬂml.lllm h.:u-m“;;
Ihl.‘mtrnllﬂrdm‘i‘unpﬂ'

B.2.3.4 Hybrid Dynamic aml Operating Structure

Tha based switching controller. full state feedback control, cffectivel
ﬁhﬂ dynnmle wyatim, v coptineois dynamben and :linrruhnrlt::icm.
i
£F= 115 {B.21)

Each vector Sebd, 2, = /(7). representing the renulting fully qualified state velocity of Brockett's
mmmmﬂmwmmm, . 522, in dependent on the
ﬂﬂduﬂﬂ:ﬂqﬂpﬂlpﬂh charactedsties [nstilled through the |mplementatson
e A i = g{T) (6.22)
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o= B(E a7 o= = 14r:1 oir) i5.23)
o o

Thera wre multiple tasks required n the implemantation aof the ke besed switching controlbe.
| Determine the current state of the nonholonomic integrator, Le determine 7 € RY,
2 g.*d o the current staie, update the currenl conbrol region, i.e. determine the currenl

3 Bassd on & current stale, T, and mssocisbied control region Ry as well as o=, which has

heen efectively initialsed’ implement the hysteresis based swilching signals trunsition
funcilon, Eq. 5.7

4 }l.pphr ihe ponirol law @ = g, (F), based on the currend value of o cucpuat from (ks transitbon
unction,

The contraller implementation op RollerMHEP runs these four operalins recursively 1o provids
poiture slabilisation. The control system structure of Uhe alwove loge besed switching controller
enn b more rendily undensdood by looking st the feedback control loop associated with its
fmplemontation, Figure 5.8,

[ FURER AT E R )
EITER PERTRE T Flast
f
L Bollammd s || T

Hi bow, == w8

T i
" FEEETY Y i...-.-.-_-.-.-_ -------- nal
D f fesmaTphi o of
Caatrsl

Figure §.81 Cantrol Loop Constru whhbu:hﬂnnlﬂwﬁdu-uﬂ-:uun- A
the “sensor, Ls, the odome " integrate the velocity, thin

odomeiry ﬂ mmontallan, eols Lo
s it A H.‘Iull representalion af the mlgoslthm structure, Algorithm 1, = performe odametry
hassd on acquiring ecewmatlnted eptoder jralses

An overview of the algorithms implemented to perform the required control Tollows in secthons
5335 through 5238

5.2.3.5 Nonbolonomic Intogrator State Constructor Algorithm

The frst algorithm i= more of & thal converts the configuration ermor betwesn Hollar-
MHP'y mitial configaration lrﬂﬂdmllmhurﬂmmﬁmpﬂihmthalullm
ordinate sysiem of the configuration, into iis te errar in Lhe aiale space of
Brocketi's nuhdmuﬁ?ﬁmmuﬂndmnm%rﬂnhmhmtuﬁ;m&ﬁ

VThis is covered during the discussins of the &lgorihm 3
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_Pm-:-l'nr-? I.Ip-uu.nurut.'l:m

mlqtuaﬂm&il':&ﬂ' and requested goal configuration
" f € R x SO
tﬂ;lt.gir:lut. Equivalent state of Brockett's “nonholonomic integrator” ¥ € RY

£ g -

Ar=2xr.-1I,

Ap=

Ores = 6, — 6,

£ rotate relative posltion error by 8.y, snti-clockwis

g = Bz ooiill,yy + H.IIIT"
Urel = —Axsin gy +

£ spply difleomorphism defined under section 52 3.2 to relative configuration error
Ty = Fops COB Py + P iy

T =

23 = 2 [Zut 350t — W 008 Bret) — Bt (et 008 B+ rud S Ort)

Tl
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5.2.3.6 Control Reglon Extractor Algorithm (With Hysteresls)

Thiz algorithm determines which control region R i= currently occupied, based on an input
state vector ¥ € R?, such that ¢ : R? = § — 5 can operale w as (o perform the necessary
switching logic, while the hysteresis characteristics prevent chatlaring of the switching signal,
o, 85 § — oo, Algorithm 3.

Algorithm 3: Control Region Extractor

I;put: The current state vector £ £ |y, 2, z] € B?

Data; Switching signal discrete set elements s € § 2 {1,2,3,4); bounding lunction
imangen m; for j € {1,2,3,4)

Duitpiit: The current conteal region By, for £ € {1,2,3,4)

begin

wy «—x§, wye 2]+ // coordinate containers

foreach j € {1,2,3,4) do

L my «— tuning eonstant, = (1 - e¥ i) 4/ ereate v function images

il &~ sl tnibialised Lhen
[wz. wlun )|T == Ry 7/ determine initial control region, s section 5.2.3.3
o~ =gy Ff #le” [ls) 0 an infial =t index, squivalent 1o k
return Ry /7 and st o~ initialised flag

Fi lmplement hysteresis hased region slection based on o

0 < uy < vy then

If (wyp = =) and (0~ = s3) then
raturn Xy

@
L return &,
else if 7y < wy < my thon
i (g 2 wy) and (o~ = 53 then
return Hy
| L return Hy
else il wy > =y then
Lrﬂun:l,
else
| return X
e

The initialisation laghe, |wy, #{uy)|? — Ry, has not been sxplicitly shown bere, as it s of
senondary importance o the hysteresis logic implementation. For those who seek gronter insight
inbo this algorithm, i C4++ implameitation is shown in the Updats Control Region() method
in Appendix .14,

5.2.3.7 Bwitching Signal Transition Algorithm

This algorithm implemanta a simple selection process which pivots off the work performed by
Algarithm 3, in order o change the set element of the = swilehing & ; Algorithm 4, This

smple algorithm s applicable provided that previous work on lm the hystiress
switching logic on the control region transitions bas been taken into account
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Algorithm 4: Switching Signal Selection

Input: Current control region Ry based on 7 € R? and the switchiog signals left limit
value o € 84 {1,2,3,4)

w: The correct set element value for o

if i @ k them
- iy
F -8
-
g

end

5.2.3.8 Control Input Algorithm

This algorithm implements the control law based on the value af the current switching signal
g. The difeomorphlsm b alss taken into sccount, Algorithm 5,

Input; The current value of the switching signal o = »; € § & {1,2,3, 4}
Output: A control lsw spplication & = g, (F)

ewitch o do

;

ik

ix Ny is
£ =
L. .

-
[

-
-
2
e |

ChSE 5y
| L =a(®
/# convert back into required translational and rotational velocity

vty 4 g (Tt 000 Prai = Yrai €08 Brer)
=y

5.2.3.8 C44 Class Implementaiion

The logic based switching controller was in C4+4 aa u Switchar obpci. The
Switcher ohject was inlegrated boio P's HodRol lexMHP Driver driver which pro-
vided the Switcher ohjoct with Lhe necessary data to perform the control laws, e provided
accesx o RollerMHP's configursiion data, and allowed the coniroller o sel feguired transls-
tional and rotationsl velocities see Appendix D). The Bwitcher object is integrated directly into
Modiol lerMEP Driver code, this waa dooe purely for testing purposes. Currently, the code is
bring poried to an abstract driver, allowing ressarch tao bansfit from ihe contral law
uuﬁmhul:mmlunmwhlh scope of the Robot Devies Tuterface

5.2.3.10 Testing and Responss Characteristics

The logle based awitching controller haa very interesting response characteristion thot, unfortu.
nately, make it extremely diffienlt to tune. Tuning the algorithm consists of selecting the gaine
on the #; functions, in order to schieve rul.lunl.'l:lT&, rather than required, state trajeclories n

73
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Hﬂmcllu'lnmhdumﬂﬂ:m . moeall Figure 57, A poor selection of
A “Tuning constants” in Algorithim 3, can have & detri-
nmn'llll-l-ﬁul.nnpﬂun lesatson prrformance. This i & characteristic of the hybrid nature
uftheh:l:hlﬂdnm:hmgmrﬁlﬁ in that the temporally contimuos switching between
predetermined control laws produces foedback vector fields that reasonably stabilise the frane.
Iﬂmuf slate vector onto the ofigin. Thus the diffeomorphism’s pt:-rl-m. e the real world
urisbion frajectory of the differential drive platform, not behave quite as npuﬂ-l:l

Thh one of the major drawbacks of this type of posture st g controller implemesitat in

Crisntatien srrad §esd]

l.'lia Pasture EI:H'H—I.H- far Lioggle Based Switching Contrallar
- orienlation co-ordinate wreps sround dies o the entification of the configaration apase
R = 50

Afer rigonous tuning, n:;-n-:!'rmu imitial ruﬁ.[uil.mdl,—lﬁﬂ m.ﬂum' shrrwsnl
conivergence o Lhe ongin of the canfiguralon spece a8 § — oo, Figure 5000

As ean be seen from the respanse of the orientation coordinsis, RolerMHP did spin around
i few times. This charscteristic only nppears from large initial configuration #rrom in which
mlltiphe wwlichis in the contred lawe are reguited in ordes 1o stabilise 1he configuration oo
the origin, The suthor feels that it is the time lovarisnce of each control law implementation
thiat causes Lhis behaviour, and time varving oontral law i woulld perhaps suit
Ehis kind of appbeaibon better. 11 b to the nuthor kinowl that this is the At time a
nlgorithm of kind hns besn implemonted on n real muhlr:mhut platform of wrlulllﬂ'll:?‘
wind and dynamic nfuence.

Cirsatar insight into this controller mmiplementation comes from analysis of U posilion Lia-

mmjf".;umﬁll
wrror in Lie Bnal comfguration is due to & number of reasons. mﬁuﬂlﬂmrmlh
worior fields become small near the origin of the configursiion space, vnl"lhl‘Ju
commands (&l below that reguired o produce lurther motion of the physical e
ﬁmﬁﬁrlumﬂnlﬁdrm“dﬂmmmhm

gunstisation of the underlying infrestrocture, fusdratre
nmﬁmmmmmmmlhﬁu-ﬁuhm“m
wsenRitive 1o the guantisstion ofiocts of digital Teedback,

Thit run-Lime architecture of the softwars implementations used in executing the oontroller
on eompuiing infrastructore also pluys 0 major rola in performance. Multi-thresdad implamen-
ttlons that ran the conlrol spplication l.lm’r.ll'il‘.hln. Algorithm 5 in & separate Uhresd from that
of tha atits sxtraction and switching signal transitkon algorithms, Procodure 2 and Algorithms

T
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a,
i, o

N g High regice switckong freguancy
Ty — e

P
o
i

yelovatles (u)

7, BEEE 1

0. T -
A B AN BB DR B8 b, B <8 0,88 08 L.BA 1,88 B.8m T AS G331 b.EA 0 0B
SSF DOI OO BOF WM MW N MM W DO @F W B | = o W™

1 and 4, are expossd (o the negative effects of madom scheduling. This can produce unwanted
charscieristics thet are pot sctually part of ihe controllers fundamenta] mathemstical proger-
tes. These “race conditions™ usually contribule to headaches, rather thas performance, and
should be eliminated through the correct mutex locking of shared data, such as the [mage of
ihe switching sigmal =.
mmmmmﬂmmm implementations, the author @
convinced that & single threaded code implementation of the controller can only better the per-
formance of the switching signal and thus the cantroller, in stabilising Brocketit's nonholonomic
imbegrator and thos, through diffeomorphic transformations, mohile robot platforms

To show how bad things can get with the hybrid dynamle system produced through the
mesociated switching logic of the controller, RollerMHP's first posture stahilisation response ks
shown In Figure 5.12. RollerMHP waa placed on a stand during this initial test, this was great
Imufght a8 can be seen in the resporbs,

That response shown in Figure B, 12 b true indicatbon of Lyapunov stebility, and pays tribiiba

b Lhe truly nonlinear nature of the feedback stabilinstbon of differential drive platforms, and

tho associated Brockett system thiough diffeomorphic transformation. Although Lyapunoy

unh!lﬁhmndamdatﬁkhrmnlmulm it i n very el guantity that should not ba
in the discussion of system performance.

5.2.4 Control Law Implementation Through Polar Coordinate Trans-
formation

The previous controller uiilised the conirol characteristios of logic based switching between
time-immriant contral laws 1o produce resultant vector fields capable of producing. locally lips-
chits and plecewise continuoes, integral curves, or state trajectories, Lhal converge Lo the arigin

Plmimal Exrleyion are wed in e b represend (e sty emocited with matoslly e
clumivs avess b shared dats e eft g A lical mn

Th
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P R i

x-location error

Position error (m)
Oriantation arror (rad)

e \
o] ™ P orientation errox

Tima (=)

Figure 5.12: RollerMHP’s First Response -

of the state space as { — co. This was done so as to overcome the obstructions and conditions
imposed by the insights provided by Brockett.

Another method of overcoming the control obstructions placed on systems not satisfying
Brockett's Condition for smooth feedback stabilisability, is to remove the Cartesian coordinates
from the differential drives state space and replace them with ones of a polar coordinate nature.
This was done so for the second controller implementation which is based on the control law
developed in [12].

5.2.4.1 Polar Coordinate Transformation

With reference to Figure 5.13, the following polar coordinate transformation was applied to
the configuration of a differential drive platform to produce a control system which overcomes
Brockett’s Condition for smooth time-invariant feedback stabilisation, Eq. 5.24 through 5.26
[15]. For clarity purposes in the following description, relative configurations will be denoted
as if they are absolute, i.e. g,y = ¢, although all configurations are relative to the goal point,
which is denoted the origin during control application, and as such, one can treat g..; as g.

Figure 5.13: Polar Coordinate Transformation -

p = Jrl+y? (5.24)

76
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y = “"4(5)*”' (5.25)
§ = 148 (5.26)

U'sing this eoordinate system. the system model, in the form of state diferential equatbons,
ﬂ-:ummm by w singularity ai th: ofigin of the state space,

for &

Ex. 5.27 through 5.29 [15].
p = —cosyu (5.27)
i o= ?u—u (5.28)
§ = Eu (529}

.

This introd mmmmh lower

B.2.4.2 Control Law Implementation
The following non-linsar control lsw was vsed in selling upthmmhdhﬁvmhm

snd stable Lhie of 1

Eq]?;.'l-d ) sy mptotic equilibrium polnt at origin state spioe,
¥ = kypoosy (5.30)

v = btk IR 4y (5:31)

Where, ky, ky, and &y are the tuning parameters.

5.2.4.3 Tuning Properties
mumumﬂ:mmuumhmwmmmm

1 nearporating Cartesian the resulting
nmﬂfum:wymﬂmmwmmu and 5.33. RS
v o= by u‘.l."-ll*.’ﬂ(un"‘-(;) . L3 :) (5.32)

N
["' CHOED) ]
[m (£) -0+ ;.;)“)] 53

H:.r analysing the pontrol liw in the “nathee™ R ﬂ ke d:ﬁunnlul drive plat-
R iove Sakehs e, Diatg i comtramor 5 GESar 1o paimiee

mn:uﬂpmﬂh;ﬂmmmuﬂum“ﬁuldavm
nmiﬁly th-*r!ht-rlt orentalos ermor between ihe curriil configuration and

T
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Eapegn frassletiess) velssity Derfecss

Figure 5.14: Input Translationsl Velocity Variation - As can & seen by the inpet trascls-
LEnal i'liuh'-:'rr.}' varintiong, shorieit prih comergence propertss have been voorporated into this
contrnller

For current configuratlons anywhere along the goal configurations local y-axis, Le. ¥x = 0, from
Eq. 532, tan ' (y/s) = w2 = mm,n € (0,1}, and v = & || con{m/2 + (1 = n)w—Bar).

Along the positive p-axia, m = ) and v = &y i,ri:::nsllji‘gl1 = Brai ), which is maximized at & g
for 8, = % and minimised &t -k y for 8,0 = §. Along the negative y-axis, n = 1 and
v = ky lyj cos(w/2 = 0.4), which i maximised at & |y| for §. = § and minkmised at —k; |y|

for B4 = 37,

For curreni conhgurations amywhere along the goal configurations local r-axis, ie ¥y =10,
from Eq. 532 tan~{y/rl=mnen € (0,1}, and v = &, =] e {{n + 1) o = @)

Along the positive pomxis, m = 0 and v = ky © oos (v = #,,4), which is maximsed st &y 2
For #.o; = w and mibnimised 8l —ky x for & = 0. Along the negatihve raxis, n = 1 and
v = ky |x] ros(2e = B, which is maximised st & |2] for 8, = 0 and minimised at —k; |£] For

el = T

For other configurations involving non-zero x and y values, Lhe 1n||“|:|-|.l'u-j term of the ingaat
tramslational velocity, BEq. 532 contritiotes to the phase shift in the ginpsoldal velocity veriations
arcand relative orentation errors, according to the curcenl approsch guadrant. However, the
magnitude of the tramalational velocity input v & still tuned enticely by the constant k; and
this, must be st to & wlue that optimises performance over L operating range of the postuns
siahilisstion controller. By the defimition of & FMAP. recall seciion 2.8.2.3, the suclidean
distance between & configurstion on the boarder of & Hegion of Cosvergence and the 1,0 port
of the associated manulacturing infrastreciure subset represents the maximum “p = /77 + 32"
séen by the posture siabillsing coniroller. In order to prevent unsecsssary saturation of control
inpuis in the fiee of phrdﬂ.p.l wyutems lke RollecbMHP, the maximom translations] velocity mput
st potentially secur ihe boarder of the Rel, ie

i"'imu:’ o t! Frmns

Lie [ the relative arbentathon in the confiparation error between a comfiaration an the boprder of » RelC
wnd the 1/0 port & such &8 Lo prodees an extrema walue of Ea 603
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The DC motor and chain and sprocket power transmission unit ng each notlve delve wheel
RollerMHP with & maximum iranalatbonal velocity mi::unly‘.ilm,fl. Pl e
mmmm.mmm:mwm u: B in order o prevend
excessive wear on the drive motors, U & maximum Lufu'n of & m, squlvalent
to the maximum p seen by the control law in Equation 5.30, a gain of k; = 0.0 provides the
mapping of maximum tranalathonal velocity to suitable configurstions on the hoarder
nfl;gumqnimd.

Through much the same analysis of Eq. 533, the ky nnd ky can be

chosen to ide maximum sngular veboc mt"ﬁi the capability of the physical
mﬁWl:RﬂhHﬂF. . " i

Although this -.hﬂqumﬂ-iﬁlﬁﬁ tuning the controller, it s alwwys
best . Doeline =0
-ﬂﬁw mw mlulpthmndh 4

sround the goal configuration. e J0L0, 0.0, 0.0]7 in times bess than 10 seconds.

5.2.4.4 Testing and Hesponse Characteristics

For testing purposes, the polar coornlinate based posture stabilising control lew Wi it
directly into the llnﬂnlltrﬁ'mur driver, see the PolarCentrolAlgorithm() i
Appemdix C.1.

The polar coordinate transformatbon wees trajectories that seem “natural® |n the senee
that the trajectories mimic bhu-nlhd-mdﬁ:ﬁrd. This is beneficial as one can
the maximum area oceupisd by the mobile platform during posture stabilwation,

Blultiple tests were preformed durlng the on-line tuning of the controller. Tasks sere as

sgned & dificulty rating mmmmmhmmmm-n
"‘ltimulnhd'bylhuruqu-ud motion. For examp parking operation is Ul most
m;mmmh- drive, while a straight lne mothon i
Lhe Bpsiesl,

Preliminary tests involved the on-line of the controlier and all performed from
the ssme initinl . ﬂl‘ilﬂ.-l L00) mhm:ﬂﬂﬂh m (LA,
ey = 0.3 and by = 5

e o
(=
s 1.5 e
- P
z }_:.- ¥, Swess -
% EE .l"r
“1.79 F
8- b
i -:::1 '#L‘\“‘ N Brwna
AT = -
Lt Lk LM LS LA BAm  tam T ame  sam
Thms (a)

Figure 515 Posturs Siabillsstion -

The *natural” rsponse characiermticn of the contioller can be soen in the 5, — Lrajeciony,
Figure 5.16. mrwwlmm“hmﬂummﬂ'l.ﬂtnﬂlh inithal

Th
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mmuhn errar with an absolute value of p = 6. 32cm. This can be considered reasonnble (i
of the digitised low-lavel [eedback infrastructiure and frictionsl efscte of RollerbdHP's
drive infrastrocture.

P r—
Cont

""""4 Fisal Cesfigesstion

LE ] [=0.003, » 910, 0 003 )"

l.nl-.l

Lo Y
B IR
b SEE
R /
1,008

- R T

1088 gpieial ComPigesnkien

¥ )

REEEL L [-3.00, =k.80, D.0Q)°

LR
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".r“ e & . A - - - e R
-4, BN FRL B . 1.aaw

w1
Figure 5.16: Position Trajectory -

The control inputs fall well below saturation levels and show good convergence propserties, Fig-

ure 5,17,
LB LA Tranlehienal Yalssity
[
i {z-n
"‘l'\.

hegulos Paletily = [redlel
iiiri
~)

ey Impar hagoler Welsaity T e
B
- LY — =
-
o —
Y — 2 — — i
= e 2w e e - - = i -
Tiss fa]

Figurs 5,171 Control mw.mnﬂmmumwm
inpul w a8 | — oo amd g — 0 s o practical seqguairement during application of Lhie conisoller

The angles ¥ and § are undefined for ¢ = y = 0 and as such, the practical application of this
enmrulﬁr requires glight madification to the control lew implementation. As p - ﬂ the values
for % mmad 6 must be “locked” on the values pesumed in the fnal l.u'Thdt
praciical olbstruction partially contributes o the siesdy state error of the contraller nnd can ke

seen in the sngular velocity response kn Fiyguare 5.17,

From insight inio the extremuns of the translational snd velocity mputs over the
m?mhmwlqummﬂn{:.udlh ical limitatbons of Haoller-
MHP, the controller was tuned o as Lo sttain minimum convergence times while avoiding
contial imput saturaticn. With this setap, & = 05, by = 04 and & =06, Figure 5.18
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With thess tuning parameter values, Lhe steady state evror s approximately 2% of the initial
configuration ertar wilh an absohile value of p = Tem Figoure 518,
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based controller. A response from an initial bon of [0.00, —3.00, 0.00]" s shown In

Figure 5.21. The position trajectory i ahown in re 5.22.

The control ioputs are within thelr Hmits as shown in Figure 523 RollerMHP can be seon

Earﬁ:rnﬂ.n,g a parallel parking operstion In the video located on the CD scoompanying this
issartation.

5.2.5 Summary

In thie particular instance of platiorm facilitation of the motl
l:qﬂmdthmt:hhmﬁm l.l"lulﬁi"muh'ﬁpa::nnlhﬂinl:::
through full state feedback copirol, of under-actusted mobility svstems with nonholopomic

&l
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kinemalic constraints. Thes constraints limit the appheability of suitabls eontrollers to noe-
linanr, piecewls coptinoous and time varying

The reaponss achieved with the polar coordinate transformation based controller | enables
the occupancy regien' to be estimated before hand. This is due to the “natural® response char-
et Lhrough the implementation of the control law. Alss, the propertie of the
rewulting fully qualificd vector Eelg make oplimisation of the controller, i terims of malching
phirsical copabllities with the those produced by ihe tuned controller, & relatively simpbs task.

Dhue Lo the wechor eld propertios of Brockett's system, 1.0, the state locking charsciermtics of
the nonllonomic integrator, Eum st lisition on the applieation of control laws, de-

sigmad 10 stabilise Em integratars, does not produce feasible state Lrajectores

o kesnangho: e o rasioi (e greralec onAEuN o of dfrenl e

i 3 to i i configurnbiomn 4 drenlial drive
orms into that of Brodett's system.

5.3 Chapter Summary

Th Tuek Exscution Layer of the AMTS has been presented in terms of control and navigation
requirements. The real-time aspocts of material payload and transportation task execution i
mssociated with this laver of the AMTS, and so methods of establishing “longest execution time™
metrice ahoubd be of concern.  Establishing these sort of performance metris for the Global
Mavigation sub-block = & dificull, or perhaps even intractable due Lo i he uncertainty

;eranl of dynamic obataclss, sich as cdher mobile materials and routing robot

grounds for far more tractable efforts. The RoC in the definition of & Fid
ihat grovides the grounds to dewelop “longest execution time” metrics. As psen in section
5.2.4, optimize certain classed of posture stabilisation controllers such that physicsl
capabilitks of materialy handling and routing robot forms ean to “longest execution
time” guantitks through oonssdenng the sise of the . This wns in sectbon 5.2.4.3
i ﬂhmﬂﬂhﬂﬂ?tnhn:.m:?. 10} second convergence time® Induependent of initial

-

Vios thim dimeussion, the n 8 comisdared a8 Lhe soial ol w pasiorm

ol o gy Vb - g, Byl b oo P o b+ e ot lisatci
mlu-llnhh anl somiling bt platform

Snater clatarbs aiw willy slmolute eerininty, Le. the plam Inyoul

B8 rakprags W srtting time i et ol Lot e



Chapter 6

Summary and Future Research

“‘Problems worihy of atfack prove their worih by fighiing back'® - Paul
Erdos

This chapier aims ot summarising this dssertation in such & way &8 (o bring islo soope Ue
crucial insights into the problems lnvelved in fseiliisting ile materials handling eovinmments

crealed through MOM production operalions.

The research objectives of section 1.2 are once again addressed inclading the solutbon meth-
ods employed in achieving them,

6.1 Mass Customisation Manufacturing

lo ibe omiexi of fscilitating modern niche markets and establishing frst mover marksd chare
througk resporsive the suwecsssful implemantation af MOM produc-
thon structures relies an s manufacturing ability to constructively and concurrently [nle-
grate all mailable munufscturing resources, This [ncludes both passive and active kur-
ing Infrastructure

Tlhnmu;l lhﬂnﬁ:’mdﬂ lfudhiwbm of the production w‘dﬁd I MCTl;lﬂ
recall Figure 2.1 BEmANL Imogeel Egliesrs Meross Ipllmes. n
luMmuﬂmﬁmhu.mﬂﬁHﬁm{hﬂmﬂnMW{mﬂ

b provide the in ure Lo ips, thaan
alding the development of third world nations through constructive and rebevant research and
development practices.

maderials handling, is just & imporiant as the development enggineered
mslerials handbng and routing robots, o lacilitating the materials handling requirements ol
custommer-induced varistions in production requbremenis.

im
The determinmsic nuiure of customer-induced varinbions in production reguirensents pliys
-mmhmmmmmdﬂmmﬂWMHnﬂplmthml

m““ﬂm’ﬁ:ﬁmw m,m:hntl;mnhllnmhl;i]pht-
developed during I'ﬂnl'ﬂlj:l'n uction implemwniation ance
qﬂ:hi.;high:ﬂhnndﬁurm tj ?lpnm:huhﬂjdmhl:m methodi of

ng probabilistic models to develop metries thal describe customar preference in product

is evidence that there exiwis o ressarch community involved in the resenrch reguired to
mchieve insight into the development of efficlent MCM production operathons.
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6.1.2 MCM Product Design through DFMC

It is not uneomman for enginears to create and Iniroduoe unnecessiry production problems me
o manifacturing saviranment through appressive design snd development of products that are
sensitive o process and product configuration varialions, An far ss the problem space nsso-
ciated with this research project is concerned, the design of products that minimise required
materials handling s » particularly useful d goal. In Lhis regard, DFMC plays one of the
mosd crucial mles o satablishing successinl MOM productben operatlons and mplicitly doter-
mire= the produciion dynamics and materials handling and routing environment associnbed
with production rate output of a manufacturing system, recall the pre-filter annlogy of Figure
1

Product jos wmu’}lmﬂﬂh-hlmhtmmpﬂdtﬂl Phalk “hes
have well™, in terms of prod bounded variations i production reqeiremeents, and products
that have the capability of the psyche of demanding customers. This is by 0o owans
nn eary {aak. although Lhrnu;hl.h: appleation ol fenibis matenals haadbing and routing sy
taims, Lﬂ]npruhlmnm:hhd with customer-induced msterial routing variations could be to &
eatnr dagron,

6.1.3 The FMRP Definition and Problem Space

A thin research was concerned with materials hindliog snd routing in MOM production .
vironments, the problem space associsted with performing a materials handling and routing
task betwesn distnbuted. unconnected, manulncturing infrastructure required quaptification in
ofiler b rstablish & well defined peoblim space

The FMRP tashk definition provided in section 2.3.2.3 takes into sccount Lhe varlou forms
of motion comtrol reguired (o provide robust material paviosd transfer to and from msterials
handling infrastroctare vis correct alignment, Lhrough posture stabisation. of Lhe mobile robol
platform with the inpot foutput port infrastructure of FMS processing cells.

A material trassportation primitiee of 8 FMHEP task essentinlly decomposes into a global
rﬂ.hrﬂmmn:uﬂhnlu' nnd peal-time obstacle avoidance problem. There s muadh
itErmture on this subject in mobile rubothcs rescarch commuuity although, in the majoriiy
ol the Hterature, applieation soope (alls under unstructured environments unbike those wtilis-
Ing strigtured plant layouts for production implementation, There iz & oesd o develop path
planning slgorithms for mobile materials handling and routing robot plitforma that inchuds
optimisations hased on koowledge of schaiduling oultputs in the production plant.

6.2 The AMTS for Generic Encapsulation

Cuantiiving the propertes and requirereenia for developing solutbons o the problem spece
spanned by the materials handling environment of MCM based customer-induced varlations in

production requiroments, has allwsil for the genenic encapsulation of functionality in
an implementation architetiore. Tha architeclore, the AMTS. provides ble materisls han-
dling and rovting system implementations with the capability of with highes-leved
managemeni frameworks at a bevel thal can allow for the application of ipl imiza-
tinns procedures.

By implementing an architecture rather than & specific materials syslems miplemsen-
Lation, one can encapsulate the generie motion control and communicstbon reqaired in

order to perform high-level'! material payload routing in the dynamic production environments
of MCM production plant.

' High-level i the senne of schuduling managament and sitanomous apseralbon



8.2 The AMTS for Generic Encapsulation

6.2.1 Device Collections versus Monolithic Robot Implementations

Duﬂmmmmdﬂnﬁ.ﬂﬂhm“wwmmmmﬂmwh
M‘Em“h-unchﬂn& resgecLive laved sl Uhe associaled functionality reguired
axecution. Thizs axiomalic property allows for & shift in the way in which I.hf:

vices, snch performing well defined operstions, can be seen in RolleeMHP's pliywical
implanentation.

6.2.2 The Need for Software Scalability and Code Re-Use

In order to produce an extensible and sealable framewark for developing control structures for
uﬂﬂhmmhh handling and mbn:rl. platforma; methods from Operating Sys-
Hn mhpulmgmd h&:ﬂ-ﬁd HAL solitware constrect
rﬂmtmpmnmmhhuhlrnppl robotic sysiems with bet-

wire implemenlat ong

Player Robot Devies Imerfaoe is Uha workds leading implementation of this functonali
mdhmnft}nmmmmnﬂmu-ﬂm i the mobile robotes

T'f.'l"u:iu- m dnhuﬂﬁqnlmin;m s

long s esch systom marshaling and Player's messaging constructs.
Hﬂ-ﬂm“km-!ﬁnhmwﬂnﬂummmrﬂhuhhhﬂmﬂmdh—
tributhon and resouros § exnmple, Player's server (mplementation can sccepl an
arbitrarily Inrge Anount :ql.:rlpl.l:uum-.nj that multiple clionts can
hﬂm'lnnlhl-m I-quhnuhnlnlnndﬂrﬁhumﬂmm
environments where the task allocation systems could Imploment dynamic client mhmﬂiml
in the ugwder FHHFluh-ﬂmulmwmﬂumuﬂumblhmhm

is and out of various of the plant, Thllmuldhmm‘ndmhhhmh
environmants whare there are multiple active wiraless networks, in order Lo masimiss
the communiontion signal strength providing FMRP teak sllocations.

6.2.3 The Motion Control Problem

Chapter b presenbad the control olsiructions and sslutions in implemesting full state fesdback
control in arder 1o perform posture stabilisation of diffeeotial dive plaiforms. Dee to Brock-
pit's Condiion, linesr conirol was nel aecesible and aon-linsar conirel laws or discontinisous

m:ﬂhmhﬂmhiummmm to those estab-
z.d which relies on the creation of functions to the stability

ol et comdaol svstem. As the AMTS specification an Lhe capabilities

ficn idevices ralkber than mechanical configurabion, an effor to produce

hnlnm.i: dnk-'nuﬂlﬂ:-htillqﬁ-ﬂ-dh-rum&hmhmmﬂm
for pusdare siabilisation. However, the posture stabilisation performance provided by the polar

coordinets iransformaiion based posture siabiliser of section §.2.4 shows that differential drive
platforms are highly spplicabie in the materials handling environment of MCM production op-

i iy configuratbons pmllmu in fﬂdhl:;ll;.:l#hlﬂ“ij nnd :q_lu;.thﬂhhl-

Ilmllﬁ n mechankeal complexity socom ihe lunctinnmliiy. Trings

af ﬂlhm maintenance and nmnummm The simpler mechani-

-:ll en-ni’q;unlmu would provide n more robust mobility generaiing device snd =0 the sutho

-dt!'lrmlllldﬂvunllm-ﬂﬂ:nﬂnﬂmﬂ!y ation for physical mplemestations
Tacilitating the oubput specifications of the Mobility winre wuilebloch
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6.3 Research Project Summary

This resenrch project has produced a materials handling and routing system implementation
architéctiure with the axiomatic properties to shift the way in w minderinls - dling and
rouling sysiems &re in a system managemeni and uiilissiion v studying
ihe problem space spanmed by the systems implicitly linked to matertals and routing
reguiremments, such as plant layout and customer-induced varistions in production requirements
broughi on by the operating structure of MOM produection implemeniatione. & well defined
Aexible materials handling tsak was guantified in & FMAP definition.

Based on the FMRP definition and requisite execution functionality Isiing, Lhe
AMTS, & physical instance of & subset of the AMTS was realised to produce HollerMHP
mobile robot platform. By developing RollerMHP in alignment with the & network

L peneric control structure deved ing the Player Robot Device Interface,
hwnmmdw in ﬂpanﬂunmrnbu::-ﬂ:wmmd T e

HollerMHF provided a sound test bod lor establizhing the applicabiliey of differantiol drives
I pmvidl:f the mecessary mobility in order 1o execule materiils hand mid Fouling opers
ations in MOCM The coniral abstructions establishad pn bsonbormie
kinemntics and tinl constrainis were overcome through the use of disconbinuous rontrol
lown anel nonlinear control laws, sach showing asymptotic stability in the sense of Lyopunov.

ihe production dynsmics associnied with costomer-indored varnations in Fiiiire-
ments in Mass Coetomisation Manulscturing Ower the ressarch project, following papers
wire written and poblsbed in mbernstional conlerence proceedings.

- Bright. G and Walker. A J. Standandised framework for Sexible malerials handling man-
ngemant, based on operaling sysiem primitives. fn proc. of the Australanan ©
on Hebotics and Auteration, ACKA, 2007, Brishane Awstralin

« Bright, G and Walker, A Mobile mechatromc platform architecture for lexible ma-
terinls hondling. fn proc, af the Australasion Conference on Rabolica and Awlomation,
ACRA, 2007, Brisbane Australla

« BHright. G and Walker, A.J, A mobile mechatronic platform architecturs for the develop-
menk of Aexible matorials handling systems. in proe. af the ITEh Inlernabional Frdemtion
of Automatic Control, IFAC, H‘.rl?ﬂdﬂmu 2008, Seoul Korten

6.4 Future Research

Puiure research in the Geld of sdvanced mamaisctunng systems should imvolve Lhe development
ol werg inteprated maierials handling and routing svstems. This verieal inbegration into
higher- manufact uring mansgement frameworks would allow for higher. bevel manufacturing
mecution and control syslema to perform roal-time materials hanidling and routing scheduling

timisation procedures through structured access 1o “task sink interfaces” associnted with the
:Ejlint'l devices performdng paylond routing operations in & production plant. |o this regard,
thio Tusk Allocation Layer of the AMTS architecture reqguires development. Furt ermore, design
of the systems used in Integrating the sub-blocks of the Task Allocation Layer should develop
on knowledge of the properties and chirwctoristics of MCM production environments covered

in chaptor 2.

Midduflewmre systems are required Lo provide the necessary syntactic and semantic translation
batweern the software systems sssociated with higher-level manufncturing management [rame-
works and those sssoriated with the encapsulation of the Task Allocation Layer of the AMTS
The respuest prolocols of mierest are asocisied with instilling mutually exclisies aeeess sperifi-
catbons between the input /output port infrastreeture of procesing cells and materials handling
robot platforms. The defmition of 8 FMRP, recall section 2.1.2 3. incorparated Lhe notion of &



request acoess protoce] for this resson.
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Appendix A
Embedded System Technology

A somewhsl sparse desoripiion of ithe embedded control techno developsid Acronnme
Incorporated has been incloded bere in order fo provide insight loto the technology used in
implementing the embedded sysiems during this research project.

A.1 BrainStem(® Technology

BramStemdl) technology Integrates hardwase amd software to produce embedded control med-
ules that operate in  form analogous to the human nervous system. The technology was

developed by Acroname Ine rided [37), and ls used ressRreh cEi‘unuhau. achibemmbe
institutions, and n commercin ﬂﬂpm] E'.Luipumnt Humt?mum'l |OEM) applications alike

A.1.1 Hardware Module Implementation

BralnStemJi bli-il.'l‘llu!-h:t','r' bl st encapsulisiad in & fmily of PICLACE? based embedded con-
trol modules, Figure Al

Flgurs A.1: BralnStem{ll Metwork and Form Fector - The 110 bus conmecior on each
modale has heen designes) (o allow poset of modiles e be stacked on 1o of mch other, mack like
the A 104 Form fnctor

All comtrol modules have & standirikisesd siinl UART, Tater-Integrats] Chreail (1H0) Buas, ad
logie power jnderfnce which allows tle techookgy (o develop on networking concepls by relay-
ing leformntion scross industry standard sis such & M. This allows for scalability in
hardware implementation through the wifhsation of & commos form (aclor

In » BrainStemdl etwork, oné moduls is configured to sct as & router and handles trafic

btween the host computing plationm asd all other modules on Lhe network, otillsing ies biil-in
routing engine

#1



A. EMBEDDED SYSTEM TECHNOLOGY

Each module has & differenl spplication scope ranging from general purpose use for interfsc-
ing with sensors, actusiors, LCT) sereens, and other embedided hardware through to dedicated
gl resodubion malion coalral.  An intmduction to the ombedded oontrol modules utilised
during this research project [ presentod in sections AL L1 and A1.12

A.1.1.3 BranStemd) Moto 1.0 Module
The BrainStem(f) Mota 1.0 module hes been specifically designed lor chosed loop motion control

applicationes and provides two Ligh resoluison motion contred channels. Each motion contmd
chanme] has the 10 Lq.l:lhllli].' of providing & Pulse Width Modulstion (WM ) signal between
2.5kHz and AMHz and a TTL? logic “direction” sgnal to drive a multitude of H-brdges DO
motor drivers. Quadralure encoder inputs are also avallalle on each motion control channel for
velocily snd position leedback in order to implement elosed loog motion contral of DC motor
drive systema, Figure A2,

Chahnfiel 0 Chassal |

-, E—
o

FICLBCRRE o adEms

Figure A 3 BralnStem@E Moto 1.0 Module and BMotlon Chanmel Pinout - The L3540
low drogeout volinge regulator on the BrainStamgy Moto 1.0 module allows & voliage Teebwmn
4.0V amd 13V 1o power the modile

The Mota 1.0 module @& shipped with Browars based embedded PID contial algorithme and
can perform both closed loop velochy snd postilon control. The user can change the gains In
the rmbedded PID jthms through a bulli-in command st in order to tune their sywtams
for an sficient closed contml implementation

ke Mot 1.0 parforms 4 state Lalde decoding on its guadrature inpuls, this snabling screu-
rale, ot resdstant feedback control in motion svitems uiilsing H-brdge based motor drivers
s [ motor interfsce ciroumitnry and quadratume encoders a8 feadback devicea

T'he Moto 1.0 keeps track of encoder counts for sach motion controd channel ks & 32 L ac-
cumidator. All feedback information mto e embedded PID contml from the qusdralure
oncoder inputs s made avadlable 1o U user through memary mapped 1/0 porta, allowing the
utier to nguire dats to perform odometric caloulptions” by reading memory mapped 1/0. Hom
cormnputing platforms manipulate the Moto 1.0 module through s ssrial UART sommunicstion
link, The sccess and operating modes for BrainStemd modules is discusssd ander ssction
Al

A1 1l.2 BrainStem® GF 1.0 Module

The BramStem@@ GP L0 module = 5 general :u:riumu smbsedded controllor and provides the
same 1/ facilities as most smbsiided micro-controller systems

' Trummstor- Transisios Logie
||_'|'.¢_,.¢_|._.| = cpvered T seciem 13 71



Al BrainStem{l Technology

Diginal 1ip
-unu:_n P -
Flgura A& BrainStemy GP 1.0 Module and 1/0 Pinout - The GF L0 module has

reonmily been replaced I:, the GF 1.0 moduls, which las ulded fanetionality, |7

Apart from providing the standard serin]l UART and 110 inlerface, the module provides A /D
faeilithes, digital 1/0 and an srray of PWM channels {or driving standard RC sorve’s, Figure A3

BralaSuem modules operate in the context of & wystem archibeciure thul ranges from high-
lrvel soltware Application Programming [nterfanes (APT's) and support librarkss, through to
low-level deviee |0 for communieating with peripheral embedded hardware. An overvies of
the HralnSteomil) architecture follows in sectlon A.1.2

A.1.2 System Architecture

The BrainStemd nrchitecture encapsulates high-level softwars, industry standard commumnics-
thon and inter-conmpect standacds, aod hardware modules Lo provide s comprehensive envinon-
mant for robotic system development, Figere A4

A.l.2.1 High-Level Applicstion Programming Interfsce

The highest krvel of abstraction bolds cross-platfionm soltware library support and Application
Programiming loterfaces [APs) for Jawa, C and C4—+ developen. Supporied computing and
Operating System (05) platforms include Windows, WiniCE, PalmOS, MacO8 X, and Linux

A.1.2.2 Embedded Hun-Time Kernel and Programming Framowork

A WrninStem() specific embedded language has been developed by Acroname
pillsd Tiny Embeddad A | } that encapaulstes n aubsed of the © programming an-
guige. Esch Brai module has bﬂm equipped with an smbedded multi-tnsking run-time
herial Lhal slkres severnl embedded TEA programs Lo ssecube copourrently. The embedded

kernel exvcules op-oodes stored in & peripheral EEPROM memory chip to provide concurmency
for embedded application execution. Due to the EEPROM based implemeniation of the run-
time kwrned, BrainStam@l) modules are limited to n computational perlormance of around S000
opsEral s sevond, which & considernbly slow when conskdering that the PIC1BC252 pro-
vicing the UPU core mnd 170 peripherals rans st 40MHz. Flexibility kn program execution =
however, greatly increased through the embedded run-time kernel TEA source files are com-
piled by the “aSteep™ compller on the host machine, inwo executsble ohjecis These cxecutabls
can then be loaded onto a BrainStem@ module through the hos-lo-modale serial communmi-
entbon link in an In Syetem Programming (18P} fashion. A wirtusl machine shstraction hes
baen dewloped and encapsulated in the “a v software application that allows embedded

A



A. EMBEDDED SYSTEM TECHNOLOGY
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Figure A.d: The Architecture of the BrainStemiy Technology - The “a” prefix on sach
software bioch bs pepreenls “Acosame”™ and = oeed throoghout the siftware ATl for maintain
poriahility between coenprating Eationms
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A.} BralnStem® Technology

ﬁ*ﬂﬂm@uhhwmnm“ﬂm,mmmmme
A1.2.3 Packelised Communication Protocol

Hﬂlm m!ﬂ'ﬂlm“lpuﬁﬂhiﬂﬂﬂﬂ. I'ilhf:“:immﬂniﬂ;:lé
mﬂnhimmhﬂmhﬂﬁm”wlh'lﬁlm packet processing engine’, which

atandard serial packet structures that e g by the

inble handling the embedded firmware on Lha Hr.u.inE‘t-an‘:lEl
rnnduh.hu I:ulimmlhl muduhihmqlhﬁmrlthrﬂu;hlhu
“aSiem” wre dismantlsd back nto standnrd streams

of serial ldulhhﬂ

A.1.3 Operating Modes

Br modules can run in multiple operating modes. These modes are not
mﬂmhhpﬂﬂu for & module to be running in more than one operating mode st
Fﬂ'!-ilﬂlhl netant.

ik

A.1L3.1  Blave Mode

In this mode, & host Ler reads 170 ihe
e DART, Breinieess ot st o Grminton baberon Eebver el bk Dot sat
n number of analog, digital, TIC and other devices.

A.1.3.2 TEA Mode

BrainStem{y modules operaie in this mode by executing, multiple coneurrent, embed-
ded TEA programs through ihe [scilities oflerd by the run-time kernel,

A.1.33 HReflex Mode

In this mode, one cominand or device 10 triggers another command or seri of commands.
Heflexes are sl Uhe lowwst level of program execution and are generally used in the contexi of
Inturrupt Berviee Houllnes (ISR} to froe up the module from polling eritleal 1/0 translibons

A.1.4 Summary

Wmhmhnhunmﬂti—lmrﬂmﬂn architecture that can facilitate cross-
phﬂnrmdmhﬂml- embedded systammn gan&mmmntm:-nhﬁdﬂh_h
f

plemented I.nli. frmily urﬁm embeddad m W
scope runges from generdl parposs digital 1/0 to dedicated closed mnuu-

Vin the o of & sharwd brary sncapmilaton of pedist processing Functicms implemssied in O
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Appendix B
Embedded TEA Code Listing

Incloded here are source code listings for the embedded applications that were mn on the
BrainStem) modubes

B.1 TEA Source File for BrainStem® GFP 1.0 Module

This code mainiains sensor tudlw iri il scraichpad, such that HollerMHP's ooboard com-
puber can rewd in arrays conaksting of rnge data.

‘% The Devantech SRFO8 SRFO2 u-k'l:-“nﬁ sengors have the sama
IIC :.nt-r.l‘lﬂl. infact BAmE 4
g0 use the same source code and headar p:utntjpu

08, taa>
tll-'-"

B.tan>
ot taar

ld.-a‘!lna HUHBFEUH.H.RE 12
vodd main{void)

int sopar_ret = 0;
int debog;

BCore_Sleep (500000 ;

iot ;
int i:

vﬁ%hﬂ}
char sopar address = {char}OxEd;
ford{i = 0; i ¢ NUMOFSOMNARS: {++)

sopar ret = aSEFDS_Essgelst({char)sosar sddress, aSRF08_OM);
-l]"ll_“ri.;-ht{j. snnar_ret)
] 1 J = 1
sonat_address = (char) (sonar sddress + 2);
]
}

B.2 BrainStem(® Moto 1.0 TEA Source File

The code for controlling the left drive whesl has been listod heri, the code {or controlling the
right drive wheel is the same, apart from channel sslection,

// Embadded TEA code for the Brainstem Driviog the Laft Motor

a7




B. EMBEDDED TEA CODE LISTING

szl eytense
void set_chansel parssetars(void)
1

aMotion SetMede(0, aMOTION SODE_ENCVEL, {1 << aMOTION_ PUMFLAC TEVEIDD);
aMotion SetMode(l, aMOTION_MODE_OFF, O);

eMotion_SetParameter(0, wMOTION_PARAR® P, 320%;

eMotion_SetParameter(0, aMOTION_PARAM I, ©);

aMotion_SetParameter(0, aMOTION_PARAM D, 1600);

aMotiecn_SetParametar {0, aMOTIOR_PARAM_COFFSET, 0);

aMotion_SetParameter{0, aMOTION_PARAM_PWMRAIL, 33767);:
aMotion_SetParametar(d, aMOTION_PARAM_FERIOD, 200 ;

aMotion_SetParametar{d, aMOTION_PARAM_PWMFRED, (iot) (ObOO00000GOI0BII1L01100);
¥

void configure motor_ costrol{veid)

1

/f Bat the ramp accalerstion mtep
M time to 00ms for smooth

£f welecity trapaitions

aMotion SetRamphccStepTise(0, 200);

/f Configure chasasls for velocity demping
eMotion SetRanpFlags(0, 0x0001);

eMotion SetEscc3200, 0, 0);
eMotion_RampEnable(0, 1)

return;
-1|.:1|1: mainlwodld)

£/ local storage for the acratchpad "refereoce walocity!
imt laft_welocity;

set_channel parameters()

configures motor ceatrel()

Jf Initialise the required scratchpad values

// to zerc to prevest Any BASTY BOTOF FUNANEYS
ff at power cm

aPad WriteInt(0, (iot)0);

/f Gtart the infinits leoop to conmtinuously update
/i welocity setpoints

while{l)

i
left_velocity = aPad Resdlst((cher)0);
aMotion_SetRampVel(0, lelt_welocityl;

raturn 0



Appendix C
C++ Player Driver Code

Below is a listing of the driver osde developsd to support Holler MHP under the position2d
and sonar mierlsce specifications of the Playver Robol Devies Interlace.

C.1 position2d Driver Code

Included in the code Bsted here, are methods for creabing Hle struclures st run-time, for
dals logging purposes. A.hlmhdld:lthumhmnuthnnllhn olnr coordinats trans-

formation bassd posture stabilisation control low of section 5.2.4. cin ba seen under
the Modiol larMHP Driver: :PolarControlAlgorithm() method which runs in (s own thread
of execution afier being iwvoked through the processing methods associated with

HodRs]llerMilF Driver: Hﬂﬂmlﬁﬁ{} recall that & child implementation of & Driver

ohject must sl in an infinite loop process Messages which nrrive on thelr associated
MassageCuoue object

C.1.1 Header File modrollermhp.h

l‘.‘n I‘Hll :’_HE E;im

=E5i§: ‘!&'." "

#include <libplaysrcore/playercore.b>
#include <catdio>

int paxidouble, double);
Elul ModRollerMHP Driver : public Driver

virtual void Main{):
pl Sdevnddr_t tion_addr;
pl%_ﬂiﬂﬂ'_t m-lﬂr;

int Lut_jum
int lamt_rticks
boal nd.-ltrfilltl:.l.'lu-ﬂ

dnbj;l ive;
double Tive;
boal l-::i:z:.u i

aSvenlib “ﬂ-!
ptiresd sutex_t controller_sxit _mutex;



C. C++ PLAYER DRIVER CODE

int GetOdometry(int* 1t, int* rt, short* lv, short* rv);
int UpdateOdometry(int 1t, int rt);

int GetLibraries();

int OpenTerminal();

int ClearAccumulator(const char channel);

public:
double posx;

double posy;
double posa;

pthread_t polarcontrolthread;
FILE* xerror;

FILE* yerror;

FILE* therror;

FILE* xposition;

FILE* yposition;

FILE* velinput;

FILE* omegainput;

const char* serial_port;

bool polar_controller_called;

bool position_target_reached;
player_position2d_cmd_pos_t localpositioncmd;

ModRollerMHP Driver(ConfigFile* cf, int section);

// controller thread

static void* polarentryfunc(void* arg);

int ProcessMessage(MessageQueue* resp_queue,
player_msghdr* hdr,
void* data);

int ProcessVelCommand(player_position2d_cmd_vel_t* cmd);

int thread_controller();

int PolarControlAlgorithm();

virtual int Setup();
virtual int Shutdown();
int SetVelocity(int, int);

};
#endif // ModRollerMHP_Driver

C.1.2 Source File modrollermhp.cc

S

*

Player - One Hell of a Robot Server
Copyright (C) 2000
Brian Gerkey, Kasper Stoy, Richard Vaughan, & Andrew Howard

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

T R R O EE R R R R FE RN EE XX &R
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C.1 position2d Driver Code

f* Bource cods for supporting wheeled mobile robots which utilise,
# g8 there underlying drive control infrastructure, BrainStes Moto 1.0 sodulss

-
= Author: Anthomy John Walker, awalkerfukzn.ac.za

1lerabp, "
#include “modrollarmbn constants.h®

Drivers ModiollsrMHP_Driver_Init{ConfigFile* cf, int aecticn)
{

) return {(Drivers) (pev ModRallerMiiF _Driver{ct, section}));
void ModRoller®HP Driver Register(DriverTables table)

{
table—»Addlimiver { “modrol lerahp® , ModRollerMHP _Driver_Init);
}

extern “C*
;:n: player_driver_ ipit(DriverTabla® table)

HodRol larMiF _Driver_Register (tabla);
return{l);
¥
ModRollerMHF _Driver: NodRoller®HP Driver (ConfigFiles of, int ssection)
i' Driveri{ci, section)
mamset (Ethis->*position_addr, O, wizsof (player devaddr t));
mamget (Athie->pover_addr, O, sizecf(player_devaddr_t}):
if {cf->Readbevicelddr (kthia- itioo_sddr, sectiom, “provides®,

PLAYER_POSITION2D_CODE, -1, == )

. if {AddInterface{this->poaition_asddr) i= 0}
;_H:E?H.Et:ur {-1);

}

if {ci—>Readbevi celddr (kthin->pover_addr, section, “providsse®,
PLAYER_POVNER_CODE, -1, WULL) == 0)

i
1if (AddInterface (this->povar_addr) |= 0)

this—>SetError(-1);
return;

}
}
this->»sarial port = ci->Resdftring(section, "port", MODROLLERMHP DEFAULTPONT);
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C. C++ PLAYER DRIVER CODE

}

int ModRollerMHP Driver::Setup()

{

}

puts("ModRollerMHP Driver initialising...");

this->posx = this->posy = this->posa = 0.0;
this->odometryinitialised = false;
this->polar_controller_called = false;
this->gammadeltainit = false;
pthread_mutex_init(&this->controller_exit_mutex, NULL);

this~>xerror =
fopen("/home/awalker/development/motiondriver/logdata/x.txt", "w+");

this->yerror =
fopen("/home/awalker/development/motiondriver/logdata/y.txt", "w+");

this->therror =
fopen("/home/awalker/development/motiondriver/logdata/th.txt","w+");

this->velinput =
fopen("/home/awalker/development/motiondriver/logdata/velin.txt", "w+");
this->omegainput =

fopen(”/home/awalker/development/motiondriver/logdata/omegain.txt", "w+");
this->xposition =
fopen("/home/awalker/development/motiondriver/logdata/xpos.txt", "w+");

this->yposition =
fopen("/home/awalker/development/motiondriver/logdata/ypos.txt", "w+");

if (GetLibraries() != 0)
PLAYER_ERROR("Could not retrieve library entry addresses");
}
if (OpenTerminal() != 0)
PLAYER_ERROR1("failed to open terminal: %s\n", strerror(errno));
}

this->ClearAccumulator(0};
this->ClearAccumulator(1);

// Start the Main() thread... calls dummy static funcs etc.
StartThread();

puts("ModRollerMHP Driver initialised");
return(0);

%nt ModRollerMHP_Driver: :Shutdown()

puts("Releasing the ModRollerMHP_Driver...");

// Set the heartbeat to link dependant
aModuleVal_Set(this->stemref, 4, aMODULE_VAL_HBFLAG, 0);

StopThread();
if (this->ioref)

if (aI0_ReleaseLibRef (this->ioref, NULL) != 0)
PLAYER_ERROR("Failed to release the I0 library");
}

if (this->stemref)
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C.1 position2d Driver Code

=i

{
if (aSvem_Releaselibflef (this->svemref, WULL))
PLAYER_ERROR{"Failed to release the 3Jtem library®)|

¥

feloma{this->xarror);
fclome(this->yarror);
f:lﬂlliﬁll =tharror)
fclone(thin->velisput) ;
felops (this->omegainput) ;
feloss(this->sporition);
feloss(thin->ypoaition);

1!£mi-mlitiu.w == trus)
3 prhread_join(this->polarcentrolthread, KULL);

pthread_sstex_destroy(kthis->controller_sxit_mutex);
puta (*Nodhol lerMiF_Driver is shutdosm.®);

; returnil);

izt ModiellerMiF _Driver::ProcessMessage{Hessagelueues reap_quaie,
player bdr,

Iﬂdl datal

if (Mesnage: MatchMessage (bdr, PLAYER MSGTYPE_CHD,
PLAYER ITIONZD_ CHD_VEL,
thin->*position_addr))

asgert (hir->pigs = pizecf(player positionZd_cmd_vel_t}};
thi I-I-:‘rgull'l'i-lﬂnumﬂ{ (player _positionZd_cmd_wvel t+)datal;
raturn(0);

s
alne if [Hllur Mat h.H-l (hdr, PLAYER _MSCTYPE.CHD,
PLAYER_POSITION ¢ n g4

mn?p-nntim uhtlr.'lil

apsart (hdr-*size = aizecf (player positiondd_ cmd_pos_t));
this-*localpositioneed = ={player_positiondd ced pos_te)dsta;
if (this-»polar_controller_called = falsa)

puta("Threading Contraller...");
this->thresd_costreller();
this->polar_cestroller_ -l;ij_l-ld = Trua;

; returs(0);

ales 210 1 iMatchMans {hdr, PLAYER_MSGTYFE_HEQ,
PLATER_POSITIONZD_REDQ CET. M
t:h'?ﬂutlu_lﬂ.ﬂ]

sssert (hdr->sizs = sizeof (player_ position2d geom_t));
player_ pn-umn.?d geon_t geom;

gwom . pons.px = 0.0;
geom. pose.py = 0,0;
goce. pone.pa = 0.0;
geom.size. 8l = O, 60
geoE. Bizge.av = 0. 600;

Td



C. C++ PLAYER DRIVER CODE

this->Publish(this->position_addr, resp_queue, PLAYER_MSGTYPE_RESP_ACK,
PLAYER_POSITION2D_REQ_GET_GEOM,
(void*)&geom, sizeof(player_position2d_geom_t), NULL);

return(0);

else if(Hessage::Matchﬁessage(hdr, PLAYER_MSGTYPE_REQ,
PLAYER_POSITION2D_REQ_RESET_0ODOM,
this->position_addr))

if (hdr->size != sizeof (player_position2d_reset_odom_config_t))

PLAYER_WARN("Arguement to req reset odom is wrong size");
return(-1);

this->ClearAccumulator (0);
this->ClearAccumulator(1l);

this->posx = 0;
this->posy = 0;
this->posa = 0;

this->Publish(this->position_addr, resp_queue,
PLAYER_MSGTYPE_RESP_ACK, PLAYER_POSITION2D_REQ_RESET_ODOM);

return(0);

else
return(-1);

int ModRollerMHP Driver::SetVelocity(int 1lv, int rv)
{

aErr err = aErrNone;

err = aPad_WriteInt(this->stemref, 2, 0, 1lv);
err = aPad_WriteInt(this->stemref, 4, 2, rv);
if(err != aErrNomne)

PLAYER_ERROR("SetVelocity Failed");
return(-1);

return(0);

int ModRollerMHP_Driver: :ProcessVelCommand(player_position2d_cmd_vel_t* cmd)
{

double rotation = 0.0;

double command_leftvel = 0.0;

double command_rightvel = 0.0;

int final_leftvel = 0;

int fipal rightvel = 0;

double translation = cmd-~>vel.px;

double rotspeed = cmd->vel.pa;

double omega = rotspeed/MODROLLERMHP_MAXROTSPEED;

double v = translation/MODROLLERMHP_MAXTRANS;

int sigma = max(fabs(v), fabs(omega));
switch(sigma)

case 1:

if (translation > Q)
translation = MODROLLERMHP_MAXTRANS;

else
translation = -MODROLLERMHP_MAXTRANS;
rotspeed = rotspeed/fabs(v);

104



C. C++ PLAYER DRIVER CODE

ﬂmn = nti.lﬂtyrq]. xral} - thetarelative + M_FI;
elte = gEmma + thata.ralatlw,

thia-> a_negative =
this- 13 lta_negative = E:].‘l’.l.
¥

double kIl = 0.5;
double k2 = 0.4;
doubla k3 = 0.6;

player_positionld cod vel t velemd;

valemd. wal poe = klsrhoscos(gamma}

double A = (sin(gamna)ecos(gamna)/gamma) ;

dounbls B = gamma + kd+dalta;

velecmd.vel.pa = k2sgamma + kl=fs=B;

fprintf (this-»velinput, "Kf'n", velcmd.vel.px);
fprintf{thig-ropegainput, *Efve™, welcmd.vel.pal;
this-*ProcessVelConmand (kvelcmd) ;

ifj{rh& + fabe(thetarelatival) < 0.1}

this-*gammadeltainit = falsa;
pthread _mutex_lock(kthis-r*controller_sxit_muitex);
this-rpositicn_target _reachad = trua;
this-rpolar_ceotreller_called = falae;

) pthread_sutex_unlock{kthis=rcontroller_sxit_sutex);

returni{d);

int ModRollerMHP_Driver: :Getlibraries()

aErr err = aErrfone;
all_GetLibRef (kthis->icraf, Berr);
'.i.'.t'Eurr i= aErrNone)

, PLAYER_ERRORS"mI0_GetlLibRef() failed™):

aStem_GetLibHAef (kthis-»stemref, berr);
iffarr 1= aErrHonoe)

PLAYER_ERAOR{"aStem Cetlibharf{} failed"}:

returnf {(intlerr);

int HodRkollerWHF Driver::0OpenTerminall)

i
aErr err = aErrNone;

aStrean CreateSerial (this-»ioref, this-*sarial_port, 9600,

Ethis->linkstream, karr);
1i'$a-rr = aErrfons)

PLAYEE_ERROAL ("aStream CreateSerial() failed: Ys'a", strerror(errnol};
FLAYER_ERROR({*Heleasing the library references, please try againho®);

aStem_Releaselibflef (this-»stemraf, NULL);
al0_ReleaselibRef (this->icref, HT.I'LL}I,
returni{-1);

adtem_SetStream(this-»stemref, this-*linkstream, kStemModuleStream,

ifferr !'= aErrNome}

1

BeyT)




.1 positiondd Driver Code

h:rvnh'.}
I:I.zl 2t
if(rotepaed > 0)
rotapesd < MODAOLLERMEHP MAXROTSPEED;
o etapend = —WODROLLERMHP MAXROTSPEED
translation = trapelation/fabe{omegal;
break;

-

¥
defanlt:
break;

rotation = rotepeed = MODHOLLERMHF _AXLE_LENGTH / 2.00;
command_ri = trapslation # rotation;
commapd_leitwvel = translation - rotation;

fimal leftvel = (imtlrint{coamand leftvel / WODROLLERMHP WPS_PER_TICK):
final rightwal = {(int)rint{command_rightvael / MODROLLERMHP _WPS_PER_TICK);

if(SecWelocity(final leftvel, fioal_rightvel) I= 0]

PLAYER_ERROR(“ProcessVelCommand() failed®);:
pthread esxit(NOLL);

retarn{d) ;

}

.::nt HodRoller™WF_Driver: :PolarControlAlgorithm()

double deltax = this-*posx - this-*localpositioncsd,pon,px|

double deltay = this->poay - this-*localpoaltionced.poa.py|

double thetarelative = this->posa - this-*localpositioncmd.pos,pa;

double rotate_isto_goal = this-*localpositioncmd . pos,pa;

double xrel = deltazecom(rotate_into_goal) + deltay*sin{rotate_into_goal);
double yral = -deltazesin(rotate_into_goal) + deltayscos(rotate_into_goal);
fprintf{this-*zerror, “Xf'w*, deliax);

Tpristf (this-*yarror, "Lf\a*, deltay);

fpriotf (this->thervor, “Lf\a®, thetarslative);

doubla E'-I: }

double delta;

double suclid xy = daltazsdeltas + delriaysdsltay;
iiEthil‘l‘ilﬂlﬂllllmt == falsal

rbo = gqri{enclid_xy);
amis = atan?{yrel, xrel) - thetarelative + H_PIL;
alta = gamma * thetarelative;
t.hil-:l-g‘_._lqltl.ﬂ = [REEE;
this->*delta_pbegative = delta;
thin->ganmadeliainit = troe;
¥

rho = sgqrtf{euclid_xy);
iIErhn £ 0.2

5.-..]. - I-Hli‘lsml_II-l'L.lﬂ;
1ta = thin->delta_negative;
}

nI!u

1105



C.1 popitiondd Diriver Code

1
PLAYER_ERROR("aStenSetStream failsd to sst the sten packet processor®);
if(laModulelltil EnsureModuls(this->stenref, 4))

PLY {"Active Modnle Not Feund®);
ntur-.}-lh
char kh;
ot = aModuleVal Get{this->stemraf, 4, aMDDULE VAL HEFLAGC, kbb};
it ((err = aErrNons) kk (Eb != 1})
arr = aModuleVal _Set(this->stemref, 4, aMODULE_VAL _HBFLAG, 1);

) return{0);

.-E:t ModRollerMHP Driver: :GetDdomstry(ist® 1t, imt* rt, short* lv, shorts pv)

:g..“u hﬂ[-lll oo

arr = aMotion_GetEnc32{this->stemref, 2, O, buif);
ﬂ?n' I= aErrHone)

FLAYEHR_ERROR1(“Failed to retrieve laft encoder data %4“, erri
slt = alftil_Retrievelnt((const chars)buff);

err = aMotion QetEncA2(this-dstemref, 4, 1, buff);
ﬂ'rn i= aErrHome)

FLATER_ERROAL("Failed to retriave right socoder dats™, ecr);

]
syt = alitil Setrievelnt{(comst char+)buff);
arr = aMoticn GetPIDIoput (this->stemcef, 2, 0, 1¥v);
iflerr '= afrrione)
y PLAYER_ERRDR1({"Failed to retrisve left sncodar vel feedback", err);
arr = aMotion GetPIDIoput(this->stemref, 4, 1, TV¥)|
uiln* i= aErrNoma)

3 PLAYER_ERROR1{"Failed to retrisve right encoder vel feedback", err);

raturn(0);
int ModflollerMHP_Driver::UpdateOdomstry(int 1t, int rt)
¢ int ltdelta

double IEd-itl. T dsiea, a_delta, d_delta;

1:I'E Ithis->odometryinitialised)

this=->1last Jticks = 1t;
this->last_rticks = rt;
this-rodosstryinivialissd = Tros;
) return(0) ;
ltdalta = 1t - this->last_lticks;
rtdelta = rt - this->last_rtichks;

1l _delta = ltdalta = A_PFEA_TICK:
Tdelts = rdelts » MODAOLLERNHP MCPER-TICH.
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C. C++ PLAYER DRIVER CODE

a_delta = (r_delta - 1_delta) / MODROLLERMHP_AXLE_LENGTH;
d_delta = (1_delta + r_delta) / 2.00;

// Implement 2nd order Runge-Kutta numerical integration
// for pose update

theta_hat = this->posa + (a_delta/2);

this->posx += (d_delta * cos(theta_hat));

this->posy += (d_delta * sin(theta_hat));

this->posa += a_delta;

this->posa = NORMALIZE(this->posa);

this->last_lticks = 1t;
this->last_rticks = rt;
return(0);

}

int ModRollerMHP_Driver::ClearAccumulator(const char channel)

aErr err = aErrNone;
aPacketRef packet;

char data[aSTEMMAXPACKETBYTES] ;

data[0] = cmdMO_ENC32;
data[1] = (char)channel;
data[2] = 0;

datal[3] = 0;

datal[4] = 0;

data[5] = 0;

aPacket_Create(this->stemref, 2, 6, data, &packet, &err);
if(err != aErrNone)

PLAYER_ERROR("Failed to create the ClearAccumulator packet");
return(-1);

}
aStem_SendPacket(this->stemref, packet, &err);
if%err I= aErrNone)

PLAYER_ERROR("Failed to send ClearAccumulator packet to module 2");
return(-1);

aPacket_Create(this->stemref, 4, 6, data, &packet, &err);
if(err != aErrNone)

PLAYER_ERROR("Failed to create the ClearAccumulator packet");
return(-1);

aStem_SendPacket (this->stemref, packet, &err);
if(err !'= aErrNone)

PLAYER_ERROR("Failed to send ClearAccumulator packet to module 1");
return(-1);

return(0);

EOid ModRollerMHP_Driver: :Main()

player_position2d_data_t position_data;
//player_power_data_t power_data;
double leftvel_mps = 0.0;

double rightvel _mps = 0.0;

int left_ticks = 0;

int right_ticks = 0;
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short leftvel = O
ghort rightvel = §;
bool first_sntry;
bool axited;

fﬁf(::}
ptmu_mu:nmé;hﬂ;
Ptmqﬂ i
¢ if (this->GetDdcastry(hleft ticks, kright_ticks, kleftvel, Erightvel))
, FLAYER _ERROR("Failed to retrisve Ddometry data");
el
Updateddometry(laft_ticks, right_ticks);
fprintf (this->xposition, "Xf\n", this->poax);
[pruu{thirﬂ‘pﬂitlﬂ: "H"m": thin=>posy) ;
tion_dets.pos.px = this=->ponx;
ﬁtimﬂ“,ﬁl.;r = th"'?':“g
tion_data.pos.ps = this= i
;:ﬁtim_dltl.gzl.gr = 0,0 o

laftvel_ mpe = leftval = MODROLLERNHF_WFS_PER_TICK:
rightvel mpa = rightvel « MODROLLERMEP MPS_PER_TICK:;

position data.vel.px = (laftvel sps + rightvel mpa) / 2.00;

Eﬂlitl;ﬂ_ﬂltl.‘lli.plr = (rightvel =pa - laftvel_spe) /
pnlitim,uh-nui = 0;

this->*Publiah(this-*popition sddr, WULL, PLAYER_MSGTYFE_DATA,

FUTI!-EHIE!TIE-EU..N“_!TI'I'I
{voids )kposition_data, e p— {playsr_poaitiondd _data_t),

ex_lock(kthis->contraller_exit_mutex);
irst_sm = this-rpolar_costroller_called;
axited = Fposition_target _reachsd;
pthread mutex mmlock(kthis->controller_sxit_sutex);
if(first_smtry == trus)
l.fEIlltllﬂ = trua)
3 pthread_join(this->polarcontrolthraad, NULL);

}
uslesp(10000);

}
i“ HadRollerHHP _Driver: :thread_coatreller()

prhiread_createlkpolarcontrolthresd, WNULL, Ekpelarestryfonc, this);
raturn(0) |
i:ﬂ- max (double v, double w)
if{v > w)
ifiv » 1)

raturnii);
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}
return%%??
if%w > v)
if(w > 1)
return(2);

else
return(0);

return(0);

void* ModRollerMHP_Driver::polarentryfunc(void* arg)

{
ModRollerMHP Driver* modrop = (ModRollerMHP_Driver*)arg;
sleep(3);
while(modrop->position_target_reached == false)
1
modrop->PolarControlAlgorithm() ;
usleep(150000) ;

}
modrop->SetVelocity(0,0);
puts("Exiting control thread");
pthread_exit (NULL);

C.2 sonar Driver Code

Listed her is the code which allows RollerMHP’s array of 12 SRF02 ultrasonic sensors to appear
as an array of generic sonar devices,

C.2.1 Source File sonaracc.cc

/*
Player - One Hell of a Robot Server
Copyright (C) 2000
Brian Gerkey, Kasper Stoy, Richard Vaughan, & Andrew Howard

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
HE&CHANT&B{LETY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

¥ O B R ERE E FFKE EOEEEE RN

4
// Driver which implememts the device abstractions for the ultrasonic sensors
// and the conveyor system of the RollerMHP Materials Handling Platform.

// Interfaces supported : sonar
//  actarray
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C.2 ponar Driver Codde

#include <libplayercors/playercore.h>
const iot pusberofscoars = 13

class Somardcc : public Driwer

private:
virtual wvoid Maia();

// Iptegreted sooar and cooveyor systes data storage
int Sopardata[custerofscoars]:

{/{ For future support af the mctuator array interface
player_devaddr_t conveyor_addrens;

/fAaferences and strean abatractions
allLib iored:
gitreamfaf ]'..iu.'hll'.rl-u.

/i Internal Rn.h?r.l
int OetSomarDatalinte scmar);
int GetBonarPosa{player_ l_-l.r_l-u_t- SOBATEeoREtTy)

int OpenSarialPert();
int GethllRefarencesi);

.r'i" int GetConveyorState (aSteslih stenref, player_sctarray_sctustorgecs_t* pirl;
a:

aStaplib svampraf

conat chare sarial port;

Sonariec{ConfigFiles ef, int sectiom);
int Pﬂ:mw resp_quess, player_msghdrs hdr, voids datal)
f7int ProcessConveyorPos {playesr _sctarray_position_cmd_t+ cad);
/fint ProcessConveyorfome( pl.m_rﬂ actarray _bose_cmd_t* cmd);
wirtoal imt Sstup();
virtual int Shwtdown();
| 5

/ fConstructor
-ilm-lrl-l:l:: :Bopardce(ConfigFiles cf, imt ssctionm) 1 Driwver(cf, section)

menset (kthis->sonar_address, 0, sizecd (player_devaddr t));
messet (krthis-reonveyor_addreas, 0. sizeod (player_devaddr_t));
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C. C++ PLAYER DRIVER CODE

if (cf->ReadDeviceAddr(&(this->sonar_address), section, "provides",
PLAYER_SONAR_CODE, -1, NULL) == 0);

if (this->AddInterface(this->sonar_address))

{
this->SetError(-1);
return;

if (cf->ReadDeviceAddr (& (this->conveyor_address), section, "provides",
PLAYER_ACTARRAY_CODE, -1, NULL) == 0);

if (this->AddInterface(this->conveyor_address) != 0)

{
this->SetError(-1);
return;

this->serial_port = cf->ReadString(section, "port", "ttyUSBO");

static player_sonar_geom_t sonargeometry = {12, {{0.0, -0.236, (3*(M_PI/2))},
{0.0, 0.236, (M_PI1/2)},
{0.236, 0.0, 0.0},

{-0.236, 0.0, M_PI},
{0.204, 0.118, (M_P1/6)},
{-0.204, -0.118, (7«(M_PI/6))},
{0.204, -0.118, (11+(M_PI/6))},
{-0.204, 0.118, (5%(M_PI/6))},
{0.118, -0.204, (5x(M_PI/3))},
{-0.118, 0.204, (2*x(M_PI/3))},
{0.118, 0.204, (M_PI/3)},
{-0.118, -0.204, (4=(M_PI/3))},}

%ﬁis—>sonargeom = sonargeometry;
}

//Driver Initialisation method
Driverx*

SonarAcc_Init(ConfigFilex cf, int section)

return ((Driver*) (new SonarAcc(cf, section)));

// Driver Registration Function
void
SonarAcc_Register (DriverTablex table)

table->AddDriver("sonaracc", SonarAcc_Init);
// To avoid C++ name mangling
?xtern !Icll

int player_driver_init(DriverTable* table)

SonarAcc_Register(table);
return(0);

}
int .
SonarAcc: :GetSonarData(int* sonar)

aErr err = aErrNone;

int j = 0;
for(int i = 0; i < 12; i++)
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C.2 sonar Driver ﬂﬂit

arr = aPad_ReadInt(thie->stemref, 2, j, ksonar(il):
: this->soaardsta.ranges[i] = (sonar[i1)/100.0);
1= 3 +2;
Jluslesp(1000]
this-*aopardats. ranges_coummt = 13;
retura(0) ;

114
Soparkce: :fatdllRsfarences()

izt arr = aErrMooe;
if (al0_GetLibRef (kthis->lored, NULL) I= 0)

fprincf (stderr, "Failed to get the I0 Library Referspce’n");
ifi{aStem_OotLibRef (kthis—>stemref. WULL} = 0O)

fprintf (stderr, "Falled to get the Stem Library Refersnce'n®);
raturniaerr) ;

int
Sonarhce: :OpanSerialPore ()
{

if (aftrean_Creatsferial (this->ioref, this->aserial port, 9600,
kthim=->Linkstream, NULL))

Tprincy (atderr, *Failed to Opes serial port IT=\n®,
this->garial_port);

if {lﬂtﬂsﬂc‘lﬂ:ﬂ-—tm--w , this-> inkarream, EStsmModuleScream,
WULL)

fprintf(stderr, *Failed to set the packet stream’n”™):

ff Ser amtobeartbeat stuff to sasure & healthy stream and watchdog safety
Ftrmmu_h-m-{m—ut-ni_ 23]

fprintf (srderr, "Active Moduls Mot Found®);

rl'tni'n(-l];
char heartbeat;
int ret = aModuleVal Get(this-»stemref, 2, aMODULE_VAL_HBFLAD, kbeartbeat];
if{{rat == 0} ki (heartbeat I= 1))

ret = aMpdoleVal _Bet(thip->svemraf, 2, aHODULE VAL HEFLAG, 1);
returnid});

imt
Bonarkcc: : Setupl)

puts(*BonarAce Driver Tnitialising™);
%ffﬂi‘tﬂlﬂlfl‘rmt} I=0)

fpriotsf (stderr, “Setup GetdllReferences failed™);
lt'r.u.1r.ﬂ—1]:

if (DpasSeriaiPert() = 0}
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C. C++ PLAYER DRIVER CODE

{

fprintf (stderr, "Setup OpenSerialPort Failed");
return(-1);

aModuleVal_Set(this->stemref, 2, aMODULE_VAL_IICBAUD, 1);

StartThread();
puts("SonarAcc Driver Initialised and awaiting commands");
return(0);

}

int

SonarAcc: : Shutdown()

puts("Shutting Down The sonaracc Driver on RollerMHP");
StopThread();

aModuleVal_Set(this->stemref, 2, aMODULE_VAL_IICBAUD, 2);
aModuleVal_Set(this->stemref, 2, aMODULE_VAL_HBFLAG, 0);
aStream_Destroy(this->ioref, this->Linkstream, NULL);
if(this->ioref)

{
if (aI0_ReleaseLibRef (this->ioref, NULL) != 0)

PLAYER_ERROR("Failed to release the I0 library");
}
}

if (this->stemref)
if (aStem_ReleaseLibRef (this~>stemref, NULL) != Q)

{
PLAYER_ERROR("Failed to release the Stem library");

}
}

return(Q0);

int
SonarAcc: :GetSonarPose(player_sonar_geom_t* sonargeometry)

{

// Functionality handled internally by the ProcessMessage() method
return(0);

int
SonarAcc::ProcessMessage (MessageQueue* resp_queue, player_msghdr* hdr, void=
data)

if (Message: :MatchMessage (hdr, PLAYER_MSGTYPE_REQ,
{PLAYER_SDNAR_REQ,GET_GEUH ,this->sonar_address))

this->Publish(this~>sonar_address, resp_queue,
PLAYER_MSGTYPE_RESP_ACK, PLAYER_SONAR_REQ_GET_GEOM,
(void*)&this->sonargeom, sizeof (player_sonar_geom_t), NULL);
return(0);

else if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_REQ,
PLAYER_ACTARRAY_GET_GEOM_REQ,
this->conveyor_address))
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{

// de future conveyor bandler kere
ratura(0);

#los 1f(Message: :MatchMensege(hde, PLAYER MAGTYPE_CHD
PLAYER _ACTARRAY_ POS_CMD, .
this-rcomveyor_address))

i
sssert (bdr->size == gizeof{player_actarray_position_emd_t));
this=>SetCeaveyorfos(this—>stened,
(player_actarray_position_cmd_t+)}data);
r-tui'll'.m;

ales
;itu:t['ll:

vold

%ocurh:c: tMadnd)

Enr{|;1

pthread_testcancel(};
ProceaaMesnages() ;
{f (thin=->0stBonarData (this->Sonardeta) = O}

fprintf(atderr, “CetSooarData Failed™);

thip=*Publisk{this->scnar_address, WOLL, FLAYER _MSOTYFE_DATA,
FPLAYER_SONAR_DATA_RANGCES, (woids}kthis->somardats,
sizecf (player_scoar dats t), NULL);
un loap( 10000 ;
)
}




C. C++ PLAYER DRIVER CODE
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Appendix D

Logic Based Switching Controller
Implementation

Listed below is the oode implementation of the logic based switching controller eoverd in section
5.2.3. The controller was integrated into the RollerHHP Driver driver during testing parposs,
Currently, the code is being ported to an abstract driver.

D.1 Modified ModRollerMHP Driver Code

Listed here = the driver code which implemanta the logic based ewitching controller by creating
a Bwitcher object on the heap, which then implemonts the algorithms considerad in ssction
5.2.3 to provide RollerMHP with posture stabiliastlon.

D.1.1 Header File modrollermhp.h

#ilndef Hn-dﬂulllrII{F Driver
#define _ModRo TMHP_Driver

e

#include <libplayercore/playercore.b¥
Hinclude "seitcher.h®

/f function used in maintaining curvature during saturation of costrol imputa
int nl{huﬂ- double);

.-‘ ard declaration of Switchar Class
lll tchar;

El"l HodRol lesMEP _Driver @ public Driver
I the Main

thread
virtual void Main();
// sddress structures for the drivers interface spacificaticne
playsr_ -h'nﬂt t pomition sddr;
P & power_mddr |
// intersal nﬂ_u'-, book keeping data
iat l-l.l‘t__ltlr.h

int lm,ﬂ

boal odons tialisad;

S shared 1ibr refarences, BrainStem Librariss
aftreamRef serialstream;

alOLib foref;
JF the serisl file etream abstraction
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D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

afrenlib stemref;

/¢ Toternal Wethode

int Eltﬂﬂﬂlﬂltr_ffintl lt, int= rt, shorte lyv, short+* rv);
int Updateldometry{imt 1t, imt ri);

int -Eatl.lhrarin{h

int OpenTerminal(};

iot ClearAccumulator(conet char chanmel);

public:

ﬁ ]J;tm'nnl odometric posm, public mo that it ig accessible from the Switcher

class

dogble posx;

double posy;

double posa;

// Pointer to the serial device file

const chars merial_port;

ff pehlic bool for keoping track of whether the controller has been

Ff enlled and initialined, 1.8. cemporally active

?] "'{i ud'::] low-level hing based log 11
pointer to the ying low-level switching ic controller

Switchers comtrollerp;

ModRol lerMiP_Driver(ConfigFile* cf, int section);
int FroceseMessage (Hessagelusuar reap _gueus,
player hdr, o
wolds data);
iot ProcessVelCommand (player positiondd c=d wel t+ cmd);
/f BtartController() calls Evecutelfontrol() through the comtrollerp poloter
iot StartCootroller();

wirtual int Setupl);
virtual int Bhutdown() |
int SetVelocity(int, int);

I
fendif // ModRollarMEP_Driver

D.1.2 Source Fille modrollermhp.cc

4 Flayar - Ona Hll] of & Robot Server

Capin:hl L) 2000
rian Oarkey, Hasper Stoy, Rickerd Vaughan, k& Abdrow Howard

1'“: s:nlnl i8 free softwere; you can redistribute it and/or modify

the terms of the CNU Oeperal Public License ai published by
uu Frea Softwars Foundation; sither version 2 of the Liceunsa, or
{at your option) amy latar warsiom.

‘I'ul am is distributed in the hope that it will be usaful,
ANY WARRANTY; withoot even the implisd 'ﬂ.ﬂ'l.ltjr af

m‘rﬂ‘ﬂ'ﬁn“ [iTeses Tor Bore detarls. sndes

-

-

-

L

-

-

-

-

:

L]

-

-

L

.

# You should bave ur.n“ﬂ & copy of the GNU Ceneral Public License

* along with this ; if pot, write to the Fres Software

« F tion, Inc., Temple Place, Suite 330, Bosbesm, MA O2111-1307 D54
#
!
i

B R

#ine
sine
E n.:ing: ::inr;r'rihtﬂ h*
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D.1 Modified ModRollerMsP Driver Code

E}irﬂ,u
'-.;m
¥ ﬂn.h:-
#include *modrollershp.h”

#include "modrollermbp_congtants, h®
Binclude "switcher. b"

/f Forward declaration of Suitcher class
class Bwitcher;
Driver®s ModRollerMAP Driver lsit{CeafigFiles cf, int section)

1
roturn ({Drivers])(nev ModRollerMHP Driver{cf, sectioal));

void ModRollerMHP Driver Rsgister{DriverTables table)
{
table->hddlriver { “modrol lernhp™, ModRollerMHP _Driver _Imit);

l.r
}Iﬂ: player _driver_isnit{DriverTabls* tabla)

Modioller®SP_Driver Register(tabla);
retura{d);

}

HodRol ler®iP _Driver: :ModRollerMHP DOriver(ConfigFiles cf, int sectiom)
: Driverf{cf, section)

mapset (kthis-*position_addr, 0, siZec! (player_devaddr_t)};
memset (kthis->pover_addr, 0, sizeof (player devaddr _t));

if{cf->ReadDevicedddr (kthis->positicn_addr, section, “provides™,
PLAYER_POSITIORZD_CODE, =1, NULL) == 0}

{
if (AddInterfaca{this->position_addr} f= 0}

thig=>»SatError{-1);:
return;

}

if (ef=>ReadDevicedddr (kthis-ypovar_nddr, section, “provides”,
PLAYER_POMER_CODE, -1, NULL) == 0) i

if (AddInterface{this->pover_asddr) i= 0}
i
this-»SetError(-1);
} returm;
}
thig-*esrial part = cf-»AsadString(ssction, "port”
NODROLLERRAP, DEFAULT. SERIALPORE) | ' '

}
int ModRollerMAP_Driver: :Setup()
{

puts{"ModlollerMHF_Driver Initialising..,");
'I_'hj_[—}m = 0.0;
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D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

this->posy = 0.0;
this->posa = 0.0;

this->odometryinitialised = false;
this->controller_called = false;

if (GetLibraries() != 0)
PLAYER_ERROR("Failed To Gain Shared Library References\n");
}
if (OpenTerminal() != 0)

PLAYER_ERROR("Failed To Create Serial Stream\n");

this->ClearAccumulator(0Q);
this->ClearAccumulator(1);

// Start the Main() thread... calls dummy static funcs etc.
StartThread();

// Create a logic based switching controller on the heap
this->controllerp = new Switcher(this);

puts("ModRollerMHP_Driver initialised");
return(0) ;

}
int ModRollerMHP_Driver: :Shutdown()

puts("Releasing the ModRollerMHP_Driver...");

// Set the heartbeat to link dependant
aModuleVal_Set(this->stemref, 4, aMODULE_VAL_HBFLAG, 0);

// Free up heap memory used by the logic based switching controller
delete this->controllerp;

StopThread() ;
if (this->ioref)

if (aI0_ReleaseLibRef (this~->ioref, NULL) != 0)

PLAYER_ERROR("Failed To Release The IO Library");
}

if (this->stemref)
if (aStem_ReleaselLibRef (this->stemref, NULL))
PLAYER_ERROR("Failed To Release The Stem Library Reference");

}
puts("ModRollerMHP_Driver is shutdown.");
return(0);

int ModRollerMHP_Driver::ProcessMessage(MessageQueue* resp_queue,
player_msghdr* hdr,
void* data)
if (Message: :MatchMessage (hdr, PLAYER_MSGTYPE_CMD,
PLAYER_POSITION2D_CMD_VEL,
this->position_addr))

assert(hdr->size = sizeof (player_position2d_cmd_vel_t));
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13,1 Modifled HodRollerMHP Driver Code

thin=-»*ProcessVelConmand { (player positiondd cmd_vel_te)datal;
return(0};

]
loe if (Mess Hltchﬂl:lmthﬂ. FLAYER MMCTYPE_OMD,

thu-ipn- ition_addr))

feaasert (bdr->aizre = sizecd (player_ positiondd_cmd_pos_t));
this-r*coptrellerp->throughputesd = »(player_positicndd cad_pos_t=ldatas;
if{thin->controller_called == fales)

puts(*Starting/Mestarting the Svitching Controller®);

this->»itartControllec();
this-rcontroller_called = trus;
petural0);
bos
"'Lun.llﬂil.
illi if (Meamage:: H“:M"“Em( . PLAYER_MSGTYPE_RED,
PLAYER_POS ﬂ-l?-ﬂ GET
this-*ponition_nd

aEgart (hdr->size = pizecf(player_ positiconld geas t));
player_poaitiondd_geom t geom;
geon. poss.px = 0.0;
§oia.paRs.py = g.

‘eime.81 - 0.508;
geon.wize.ow = 0.610;

F&hil-“lm[mrﬁum._ﬁ resp_gquengs , FLAYER MSOTYFE_RESF_ACK,

(voide Tﬁl sizecf (player_positiondd geom_t), NULL);

}
alse if (Ham : tHat {hdr, PLAYER_MBGTYPE_RED,
mmmﬂmm_ '
thig-rpositisn_mddr))
if (hdr->size != aizecf (player_position2d_reset_odom_config_ t))

FPLAYER_WARN(*Argusment to req reset odom is wreng size®)|
return(-1};

thig-*ClearAccumalator {0} ;
this-»Cleariccumulater{l);
thia- = Q)
this- mr = Q)
this->posa = 0
this->*Publish(this- tioo_sddr, resp gquens
PLAYER_MSGTYPE_RESF_ACK, PLAYER POSITIONZD RED RESET_(DOM);
ratarnil);
elss

returnl{-1);

:r.m Modfoller®MEP Driver: :SetVelocity(iot Iv, int ov)
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D. LOGIC BASED SWITCHING CONTROLLER IMPLEMENTATION

aErr err = aErrNone;

err = aPad_WriteInt(this->stemref, 4, 0, 1lv);
err = aPad_WriteInt{this->stemref, 2, 2, rv);
if%err != aErrNone)

PLAYER_ERROR("SetVelocity() Failed");
return(-1);

return(0);

int ModRollerMHP_Driver::ProcessVelCommand(player_position2d_cmd_vel_t#* cmd)
{

double rotation = 0.0;

double command_leftvel = 0.0;

double command_xightvel = 0.0;

int final_leftvel = 0;

int final_rightvel = 0;

double tramslation = cmd->vel.px;
double rotspeed = cmd->vel.pa;

double omega = rotspeed/MODROLLERMHP_MAXROTSPEED;
double v = translation/MODROLLERMHP_MAXTRANS;

int sigma = max(fabs(v), fabs(omega));
switch(sigma)

{

case 1:

if (translation > 0)
translation = MODROLLERMHP_MAXTRANS;

else
translation = ~MODROLLERMHP_MAXTRANS;

rotspeed = rotspeed/fabs(v);
break;

case 2:

if(rotspeed > 0)
rotspeed = MODROLLERMHP_MAXROTSPEED;

else
rotspeed = -MODROLLERMHP_MAXROTSPEED;

translation = translation/fabs(omega);
break;

}
default:

break;
}

rotation = rotspeed * MODROLLERMHP_AXLE_LENGTH / 2.00;
command_rightvel = translation + rotation;
command_leftvel = translation - rotation;

final_leftvel = (int)rint(command leftvel / MODROLLERMHP_MPS_PER_TICK) ;
final_rightvel = (int)rint(command_rightvel / MODROLLERMHP_MPS_PER_TICK);

if(SetVelocity{(final_leftvel, final_rightvel) != Q)

PLAYER_ERROR("ProcessVelCommand() failed");
pthread_exit (NULL);

return(0);

}
int ModRollerMHP_Driver::StartController()
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putal "StartContrallar() ") ;
this->controllarp->ExscuteControl ()}
return (0] |

in.t ModlollesMHP _Driver:iGetlibraries()

sErr err = aErrNons;

all_GetLibhef (Ethis->*ioref, kert);
if(err '= aErrNops)

PLAYER ERROR(“all_CetLibRsaf () failed *);
aSten_CetlibRef (Ethin->otemref, kerr);
if{ers != aErrfoss)

y PLAYEE_FRROR{“sStes GetLiblef () fuiled *);

returnf (intlerr);
}:.nt HodRoller®HP Driver::OpsoTerminal ()

aErr arr = aErrMone;

aStream_CreateSerisl (this->ioref, this->serial_port, 5600
Ethis->sarislatrean, Berr);

.1.:%5:': '= aErrHonal

PLAYER_ERROAL("aStreasm Createfarial(} failed: Ya'n", strerror(errno)]|
PLAYER_ERROR(*BrainStam's Barial Connection Failedin®);

aStam_RelsasalibRaf (thin->atemraf, kerr);
reture(-1);

aStesm_SerStreamithis->stemraf, this-*serialstream,
kStezModuleStress, Barr);

1f{err 1= gErrlons}
PLAYER _ENEOR({"aStes Sstovrean(): BErainStes Packet Processor Failed®);

:!:?Mhﬂ’tﬂmlm.-ﬂmt. &)}
PLAYER_FREMH("BrainfStes Moduls Not Active's™);

char haartbeat ;
arr = aModoleWal Cet(this->stenref, 4, aMODULE VAL HEFLAG, kheartbeat];
1f({f{err == aErrifoza) ki (beartbeat 1'- 1))

aModuleVal Set{this->stemred, 4, aMDDULE_VAL_HBFLAG, 1);
retural (inclercl;

int ModRollerMHP Driver: ;GetOdosetry{int= 1t, int® rt, short+ lv, shorts rv}

{
char buff [4]:
aErr err = air.r#nuu.

orr = pHotion_GetEnc3Z{this-»stemraf, 4, O, buff);
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if%err I= aErrNone)
PLAYER_ERROR1("Failed to retrieve left encoder data %d", err);

}
*1t = aUtil_Retrievelnt ({const char*)buff);
err = aMotion_GetEnc32(this->stemref, 2, 1, buff);
if(err != aErrNone)

PLAYER_ERROR1("Failed to retrieve right encoder data", err);

}
*rt = aUtil_Retrievelnt((const charx)buff);

err = aMotion_GetPIDInput(this->stemref, 4, 0, 1lv);
if (err !'= aErrNone)

PLAYER_ERROR1("Failed to retrieve left encoder vel feedback", err);

err = aMotion_GetPIDInput(this->stemref, 2, 1, rv);
ifgerr != aErrNone)

PLAYER_ERROR1("Failed to retrieve right encoder vel feedback", err);

return(0);

}
int ModRollerMHP_Driver::UpdateOdometry(int 1lt, int rt)
int ltdelta, rtdelta;

double 1_delta, r_delta, a_delta, d_delta;
double theta_hat;

if (!this->odometryinitialised)
this~>last_lticks = 1t;
this->last_rticks = rt;
this->odometryinitialised = true;
return(0);

ltdelta = 1t - this—>last_lticks;
rtdelta = rt - this->last_rticks;

1_delta = ltdelta = MODROLLERMHP_M_PER_TICK;
r_delta = rtdelta * MODROLLERMHP_M_PER_TICK;

a_delta (r_delta - 1_delta) / MODROLLERMHP_AXLE_LENGTH;
d_delta = (1l_delta + r_delta) / 2.00;

// Implement 2nd order Runge-Kutta numerical integration
// for pose update

theta_hat = this->posa + (a_delta/2);

this->posx += (d_delta » cos(theta_hat));
this->posy += (d_delta * sin(theta_hat));
this->posa += a_delta;

this->posa = NORMALIZE(this->posa);

this->last_lticks = 1t;
this->last_rticks = rt;

return(0);

}

int ModRollerMHP_Driver::ClearAccumulator (const char channel)

aExrr err = aErrNone;
aPacketRef packet;
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char data(aSTEMMAIPACKETBYTES) ;

datal0] = cdMD _ENC32;
datall] = (char)chaocnel;
data = 0z

data[3] = 0;

datald] = 0;

datalb] = 0;

aPacket _Create(this—>stemref, 2, 6, data, &packet, Rerr);
if{ary |= aErrilone)

PLAYER_ERROR("Failed to create tha ClearAccumulator peckst®);
raturol-1);

aften_SendPacket(thiz->stemref, packet, kerr);
:ii-r: f= aErrNone)
PLAYER _ERROR(*Feiled to send Clearlccusulator packet to the module®™);
, retural-1];:

aPacket_Create(this->stemyed, 4, 6, data, Epacket, berr);:
ﬂilrr I= aErrione)

PLAYER ERROR("Failed to creste the Clsardccumulator packet");
returni=-13;

aftem_HendPackst(this->stemref, packet, kerr);
if{arr |= aErrNona)

FLATEH?BH§UHI"F:iI-d to send ClearAcoumulator packet to the module”);
eaturni=1);

raturni);

gnid HodRellatMHP _Driver: :Meia()

playar positioadd data_t positiom_data;
/i pover interface is disabled for mow
ff player_power_data it powesr_data;
doable leftval spe = 0.0;

doukls rightvel = 0.0;

int lefec_ticks = O

int right_ticks = 0;

short leftval = 0

short rightvel = 3

ford;id
thread_testcancel();
rocenaHaanages() ;
if{thin->GatOdonetry (klaft_ticke, Gright_ticks, kleftvel, krightvel))

PLAYER_ERROR{"Failed to retrieve Odometry data®);

updltiai==i=#?{li!t_tiﬂll. right_ticks);

pomition data.pos.px = this->poey;
ponition_dats.pos.py = FpOBY ;
position_data.pos.pa = this->posa;
pesition _data.vel.py = 0.0;
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leftvel _mps = leftvel * MODROLLERMHP _MPS_PER_TICK;
rightvel _mps = rightvel * MODROLLERMHP_MPS_PER_TICK;

position_data.vel.px = (leftvel_mps + rightvel_mps) / 2.00;
position_data.vel.pa = (rightvel_mps - leftvel _mps) /
MODROLLERMBP _AXLE_LENGTH;
position_data.stall = 0;

this->Publish(this->position_addr, NULL, PLAYER_MSGTYPE_DATA,
PLAYER_POSITION2D_DATA_STATE,
(void*)&position_data, sizeof (player_position2d_data_t),

NULL) ;
usleep(15000);
}
int max(double v, double w)
if(v > w)
if(v > 1)

return{l);

else
return(0);

}
else if(w > v)
if(w > 1)
return(2);

else
return(0);

1se
return(0);

}

D.1.3 Switcher Header File switcher.h

#ifndef _Switcher

#define _Switcher

#include "modrollermhp.h"

#include <libplayercore/playercore.h>
#include <pthread.h>

#include <cstdio>

class ModRollerMHP_Driver;
class Switcher {

// storage for x1, x2 and x3. The diffeomorphic state variables
double nonholo_int_state[3];

double relative_configuration[3];

// switch variable for triggering an exit status

int target_reached;

// the discrete image and left limit of the switching signal
int sigma;

int sigma_negative;

boeol sigma_initialised;

// Logfile Handles

FILEx region_data_wl;

FILE* region_data_w2;

FILE* sigma_image_history;
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FILE» x_srror;

FILE+ y_error;

FILE» th_srror;

ff & variable for holding control regiomn status

it comtrol region;

ff motex for comtrolled accesm to comtroller iotermals
pthread putax_t accens _mubex;

pthread mutex_t sigma_snd_sigsa_oeg;

public:

Eonmt-r to the rempective positiondd interface
lerMHP_Drivers modrollarp;

J/ thread id for the stats tracking thresd

pthread t sigma_transition;

/4 thread id for the coatrel implesenptation thread

pthresd t control_applicatios;

A local storage of the goal Lo CODVETES onlo

player_positiondd cad_pos_t H

A7 hnd barw begins the declaratios of methods used to ioplement the algorithm
JF epdate the intersal diffscsorphic state

int UpdataStateloternal();

/7 determines the current stats Teqion

int Dpdats Control _Ragioo{doubls, doubls, doubla);

FF the ﬁ-itﬂb_tu fusctionn image sanipulator F: A3 x § -» 8

int Phil);

A/ function to bandle the setting of cootrol ipputs u = g (x] :t A"3 x 8 =» RA"2
iot Comtzol(};

/4 thread ntz}' functien for diffesmorphic state tracking

atatic voids phi R_sigma_neg(voids};

A thread emtry for control mignal :I.'q-lulnu:l:lun

static voide U_g_nigma_z{voide);

/f function for getting the controller up and running

irt Exacutelontral();

A Constructes onto the undsrlying ‘ModrollerMHP Driver® driver
hltfbur{!ﬁﬂnlllrﬁl.ﬂri“r-;;
“Buitcher();

Pendif f/ Svitcher

D.1.4 Switcher Source File svitcher.cc
e

Player - (os Hell of a Robot Server
t (C) 2000
ian Gerkey, Kasper Stoy, Richard Vaughan, & Andrew Howard

This program is fres software| you can redistribute it snd/or modify
it under the terms of the ONU General Public Licanse as published by
tha Froa Software Foundatlion elther versiom 3 of the Licenps, or
{at your option) amy later version.

m:uma is dimtributed in the hope that it will be useful ,
buat ANY WARRANTY; without sven the %ﬂmtr of

U Ganeral Public Liceies for mors devails.

You should have received a copy of the GNU General Fublic License
ml with 'r.h.l.l mm; Af mot, write to the Frees Software
Fi tien, Iae, Temple Place, Suite 330, Boston, Mi O2111-130T7 U=

See tha

LIy
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*
/%
*

Multi threaded C++ implementation of the logic based switching controller

*
Author: Anthony John Walker, awalker@ukzn.ac.za

*/

#include "switcher.h"
#include <math.h>
#include <unistd.h>
#include <string.h>

#include <cstdio>

// Forward declaration of ModRollerMHP Driver class for reference semantics
class ModRollerMHP_Driver;

?witcher::Switcber(ModRollerMHP_Drivar* modro)

}

puts("Commisioning low-level Controller...");
this->sigma_initialised = false;

// Gain reference to the associated ModRollerMHP_Driver
this->modrollerp = modro;

pthread_mutex_init(&this->access_mutex, NULL);

pthread_mutex_init (&this->sigma_and_sigma_neg, NULL);

this->target_reached = 0;

memset (¥this->throughputcmd, 0, sizeof (player_position2d_cmd_pos_t));

region_data_wl =
fopen("/home/awalker/development/ModRollerMHP/logdata/wl.txt", "w+");

region_data_w2 =
fopen("/home/awalker/development/ModRollerMHP/logdata/w2.txt", “"w+");

sigma_image_history =
fopen("/home/awalker/development/ModRollerMHP/logdata/sigma.txt", "w+");

X_error =
fopen("/home/awalker/development/ModRollexMHP/logdata/error_x.txt", "w+");

y_error =
fopen(”/home/awalker/development/ModRollerMHP/logdata/error_y.txt", "w+");

th_error =
fopen("/home/awalker/development/ModRollerMHP/logdata/error_th.txt", "w+");

puts("Low-Level Controller Has Been Commissioned");

?witcher::‘Switcber()

puts("Uncommisioning Low-Level Controller");

fclose(this->region_data_wl);
fclose(this->region_data_w2);
fclose(this->sigma_image_history);
fclose(this->x_error);
fclose(this->y_error);
fclose(this->th_error);

if (this->target_reached == 1)
puts("joining any ’zombie’ threads");

pthread_join(this->sigma_transition, NULL);
pthread_join(this->control_application, NULL);

pthread_mutex_destroy(&this->access_mutex);

pthread_mutex_destroy(&this->sigma_and_sigma_neg);
puts("Done") ;
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¥
int Switcher: :UpdateStatelnternal ()
i

A Caleulate the relative disturbance input, i.s ths error relative to goal

/7 ponm

double deltax = this->modrollerp-»posx - this->throughputcsd. ;

doubls deltay = this-*modrollerp-*posy = this->throughputcnd. ’“,;.

double thetarsl = this->medrollerp->posa - this-*threughpetond.pos.pa;

fpriotf (thin-*z_srror, "Lf'\o", daltax):

fprintf (this->y_arror, "if'n", daltay);:

fprinef (this->th_srver, "Rf\a", thetarel);

doubls rotate_theta_into_goal = this->throughputond.pos . pa;

doubls xrel = deltaxscos{rotate thets inte_goal) =
deltaysain(rotate_theta_isto_goal);

doubls yrel = —dsltax*sinirctats_theta into_goal) +
daltayscos(rotate_theta_imto_goall;

S hpply & diffecsorphisa to the configuration FTATE

/f in erdar to produce the geseric "nooholonomic imtegrator"

I described by Rodger Brockstt

double 2l = zrelscos({thetarel) + yrelsain(thetaral);

doubles x3 = thetarel;

double xd = Je(xrelesin(thetarel) - yrelecos(thatarsl}) - thetarale
(zral=conithetaral) + yrelssin(thetarel));

£ Lock mccem@ to the coptroller interpal when updating the stats
pehraad _sutex _lock{kthis->access_sutex);

this-ruonhelo_iot_statal0] = =xi;
thim-*nonholo_lnt_state[l] = x3;
this-*nonhelo_int_state[2] = x3;

this-sralative_configurstien[d] = xrel;

thim=>ralative_configuration[i] = yrel;
thin-rrelative_configuration(2] = thetarel;

// Unlock the sutex as we are Timished with the impertant data
pthresd_mutes uslock(bthis->access mtex);
// Expose the curreat comtrol region
this->ipdate Control Regica(xi, x2, x3);
: returnil);
/F This function propagates the sigsa image and is defiosd as a mapping
/f trom ™3 x B -> B. sigma = philx sigma left 1im) r R"3 x 8 -> §
i'“ Bwitchar: (Phi()

m_lm{nul—uwmi} ;
sigoa_left_lim = this-3>a Sgative;
:nt T on = this-»centrol ol

mutas_unlock{kthis->sigma_snd_sigms neg) |
Hgﬂnlﬂl_lh |= region)

pute("Sigea Image Svitch...");

pthread_matex_ Lnun-:nu--rmmmi

this=->pigna = this->contro

this->sigma_negative = this->=

gtb:m,mm mm{m--Hip-._uﬂ_imh
E{?hil-llln_w_llltuﬂ'. "Id\n", this->sigma);

returnid
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pthread_mutex_lock(&this->sigma_and_sigma_neg);
this->sigma = this->sigma_negative;

this->sigma_negative = this->sigma;
pthread_mutex_unlock(&this->sigma_and_sigma_neg) ;
fprintf(this->sigma_image_history, "%d\n", this->sigma);

return(0);

}

int Switcher::Control()

double ControlInputs[2];

pthread_mutex_lock(&this->access_mutex);
double x1 = this->nonholo_int_state[0];
double x2 = this->nonholo_int_state[1];

double x3 = this->nonholo_int_state[2];
double X = this->relative_configuration[0];
double Y = this->relative_configuration[1];

double Th = this->relative_configuration[2];
pthread_mutex_unlock(&this->access_mutex);

pthread_mutex_lock(&this->sigma_and_sigma_neg) ;
int sigma = this->signma;
pthread_mutex_unlock(&this->sigma_and_sigma_neg);

switch(sigma) {

case 1:
Controllnputs[0] = 1;
ControlInputs[1] = 1;
break;

case 2:

ControlInputs [0]
ControlInputs 1]
break;

case 3:

Controllnputs[0] = -x1 + (x2*x3)/(x1#x1 + x2%x2);
ControlInputs[1] = -x2 - (x1#x3)/(x1*x1 + x2*x2);
break;

case 4:

ControlInputs[0]
ControlInputs[1]
break;

default:
break;

x1 + (x2%x3)/(x1#x1 + x2=*x2);
x2 - (x1*x3)/(x1*x1 + x2%x2);

0;
0;

player_position2d_cmd_vel_t cmd;

cmd.vel.px = ControlInputs[0] + Controllnputs[1]*(X*sin(Th) - Yxcos(Th));
cmd.vel.pa = Controllnputs([1];

cmd.vel.px *= 0.4;

cmd.vel.pa *= 0.4;

modrollerp->ProcessVelCommand (&cmd) ;

return(0);

}
int Switcher::Update_Control_Region(double x1, double x2, double x3)

// Create and store the region variables
double wl = x3*%x3;
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double w2 = xlsx]l & x2sxd;

/7 For data logging and debugging

fprintf (this—>region_data_wvl, "if\a*, wi);
fprintf(this->region_data wd, “If\n®, w2);

doohle regiongain = 0.5;
f!hﬂlnpthmmiqlnlulﬂﬁlmlnglm
double pi_1 = regiongaizels=(1 - Il]:'."l"l.hl}}‘.l

desble 712 - replegnintd Sepi.

= regiongainedepl
doubile pi_4 = regioogaised=pi_ I
double epeilom = sgrel{wl » w2);

A Initialise the sigss image on first call to comtreller
if (ehis-raigma_initialised = falws)

1400 €= w2 < pi_1)

thu.rm mutex_lock(kthis-»sigma_and sigss_pag) |
in-*pigma_negative = 1;
this-»control_region = 1,'
mutex_unlock(ithis->sigmn_and_sigma_neg) ;
pilon = 1;
ia~Faigma_initialised = Lroé;

aloe if({pi_1 == w2 < pi_3¥)
praresd sutes lock(kthis->sigss_sed siges_sag);
this-*aigma _nsgative = I;
this->copntrol _regiom = 2;
pth;-ﬂ.-tu-mlut(ﬂhil—lﬁ—_-d_li—_ﬂl §
ilon = 1;
E:l-fllllﬂu_l.ll.'li.l.tllld - truej

slse if(u2 >= pi_3)

{
prhread motex lock(kthis->sigma and_signs neg) |

}

this-raigma_pagative = 3;
thil—numl_m:u - 3.

pﬂ:ﬂﬂ_ﬂ:u_ ck{kthis->migma_and_sigms_neg) ;
E:l-::lpl:uit ianlised = true;

alea

W:,ln:ﬁiﬁi:—hiﬂw};
E->aigma_nagative = 4;
lhu-i-:-mtml ion = §;

ey l mnlockikthis->sipsa_and_sigma_sag) :
-
ml—hnp_h.l.tlﬂl.-ﬂ - L

}

mn-d.-: lock (this->aigna -Iﬂ_ﬂ.“_—‘}
lm.l_.l:;..,q " r.urt-w

prhread mitex_colock(kthis- nip-_lm,ﬂ.pt_nﬂ j
S/ Set curremt control regiom
AF(0 <= w2 < pi_2)

1
(el > pi_1) kk (local_sigma_neg == 23]
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this->control_region = 2;
}
( else
this->control_region = 1;
}
}
else if(pi_2 <= w2 < pi_4)
if((w2 > pi_3) && (local_sigma_neg == 3))
{
this->control_region = 3;
}
( else
this->control_region = 2;
}
}
else if(w2 >= pi_4)
this->control_region = 3;
else
this->control_region = 4;

}
// Update sigma image
this->Phi();
if (epsilon < 0.1)

this->target_reached = 1;
this->sigma_initialised = false;
}

return(0) ;

%nt Switcher: :ExecuteControl ()

// Thread the handler functions to start the ball rolling

this->sigma_initialised = false;

pthread_create(&sigma_transition, NULL, &phi_R_sigma_neg, this);

pthread_create(&control_application, NULL, &U_g_sigma_x, this);
y return(0);

void* Switcher::phi_R_sigma_neg(void#* arg)

{

Switcher* control = (Switcher*)arg;
sleep(2);
while(control->target_reached == 0)

control->UpdateStatelnternal();
usleep (150000) ;
¥
pthread_exit (NULL) ;
}
void* Switcher::U_g_sigma_x(void* arg)

i

Switcher* control = (Switcher*)arg;
sleep(2);
while(control->target_reached == 0)
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coptrol=*Coantrall);
uslaspi 1600000 ;

y Mmm:m: H

D.2 Configuration File for RollerMHP

iver

sans “modrol lerabp”
plugis */home/svalker/development /ModRollerMHP/11itmodrol larmbp. sc®
provides [*positicald:0” "power:0*]

port "teySi*

alvayson O

i

driver

BAmE L] L]
plu,g;l.n‘imuﬂklrfdluihplntf!lﬂ'ﬂmuutultuﬂihmﬂ:,l-n"
provides [“monar:0" “actarray:0"]

m Ilttmi

name "wih"

provides [*position2d:1"]

requires [“poaitiocndd:0” “sonar:0®)
distance_ospsilon 0.3

angla_ 1;5

mEE_ 0.15

max_acceleratios 0.1

safety dist_Oms 0.4

free_space _cutoff Oma B00000.0

]

L
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