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Abstract 

 

Eskom is the state owned power utility in South Africa and is the biggest single generator, transmitter 

and distributor of electricity in Africa. Its Distribution Division comprises of nine operating units and 

contains a power transformer fleet of over 4000 transformers which range from 1-160 MVA with a 

maximum voltage of 132 kV. 

In its effort to improve operational reliability, allocation of resources and to reduce the financial 

burden of costly failures, Eskom has employed the use of a Plant Health Index as a part of the life 

cycle management of key assets. It allows for customization of maintenance plans for transformers 

depending on their condition rating. This optimises resources and allows for early detection of faults 

while allowing sufficient time to plan interventions to address problematic transformers.  

The Plant Health Index in its current guise has severe weaknesses that impact the accuracy as a 

transformer life assessment tool. It does not meet the immediate need for the Distribution Division of 

Eskom as it is too heavily weighted for long term plant assessment and as a result is unable to serve 

the distribution business where it is needed most, i.e. short and medium term assessments as indicated 

by the number of failures attributed to mechanical failure. This is mainly due the index placing major 

emphasis and weighting of the scores on the paper degradation. Total Dissolved Combustible Gases is 

the only method used for dissolved gas analysis while oil quality indicators are totally ignored. 

An amended index redresses the weighting between long term assessments (paper degradation), and 

short to medium term assessments (dissolved gas analysis). In addition to the Total Dissolved 

Combustible Gases method of dissolved gas analysis, methods looking at the ratio of the various 

gases present in the oil are employed for more accurate dissolved gas analysis interpretation.  Oil 

quality indicators are introduced to the index. The reasoning for this is that the life of the transformer 

is ascertained by the life of the paper, which in turn is relies on the quality of the insulating oil. Since 

the quality of the oil plays a major role in the insulation system of the transformer and if allowed to 

oxidize, sludge and degrade will place the transformer at a greater risk of failure, it should also be 

represented in any health assessment of transformers. 

An accurate health index is imperative for effective transformer life cycle management and the 

amended index better serves this need for Eskom Distribution.  
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1 Introduction 
 

Power transformers are employed in the network to transform power from one voltage level to another 

in order to reduce the transmission losses (step-up), and to make the power available to customers at 

the agreed voltage level, adequate for their equipment (step-down or step-up). A transformer forms a 

major portion of the capital investment required for a substation and therefore the life management of 

this asset cannot be over-emphasized. The expected lifespan of a transformer employed in the 

distribution network is 40 years when operated at rated conditions (40 years is specified by Eskom as 

a minimum lifespan in its transformer design criteria). This lifespan can be exceeded depending on 

various factors including design safety margins, operation, maintenance, and good life cycle 

management practices from the initial installation of the transformer. Conversely, the lack of 

transformer life cycle management can reduce the lifespan of a transformer. 

The fundamental cause of paper ageing is heat which is generated from core and copper losses when 

the transformer is loaded. The ageing rate is accelerated by the presence of moisture and oxygen 

which aid in the degradation of the paper molecules. There are various sources of moisture in the 

insulation system, which can either be external (atmospheric air through leaks or air ingress during 

maintenance), internal (ageing itself produces water), or residual (improper drying at the factory). The 

main source of oxygen is from the atmosphere [1]. 

Modern day transformers are designed and manufactured in a more precise engineering manner than 

older transformers when the technology was still primitive. This has allowed better safety margins for 

cooling coupled with reduced losses. The drying techniques have improved during manufacturing and 

the residual moisture levels have been gradually reduced. Major improvements have over the years 

been introduced in terms of life cycle management practices. 

A transformer health assessment is a method to manage the transformer through its lifecycle by 

quantifying the condition of the transformer according to certain parameters. Ideally, the transformer 

health assessments should be based on four parameters, namely, the paper life, dissolved gas analysis, 

condition of the auxiliary components and electrical diagnostic tests. Often, there is limited 

availability to assess the latter two parameters due to outage constraints and/or a lack of resources. 

Most utilities employ an abbreviated health assessment that makes use of the data most readily 

available and the accuracy of the ranking system is dependent on the quality of the transformer 

information captured. Nevertheless, the plant health index (PHI) is a convenient tool to combine the 

condition monitoring data into categories related to the assets condition and provides a snapshot of the 

condition of transformers. This allows for the planned implementation of corrective actions. 
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1.1 Research Question 
 

The research questions that need to be answered include: 

• Is the current plant health index applicable to power transformers across the distribution 

network? 

• What have other utilities done and how was the plant health index derived? 

• What can be done to improve the plant health index? 

 

1.2 Hypothesis 
 

The hypothesis is that the current health index can be improved upon by using information already 

available to the utility. The health index that takes into account the environment in which the asset is 

installed will better quantify the risk to transformers. 

 

1.3 Importance of Study and Contribution 
 

The health index will be used for the asset management of power transformers within the Distribution 

network with the aim of reducing the number of failures, improving operational reliability and 

allowing for the more effective use of resources in managing transformers. 

 

1.4 Dissertation Structure 
 

Chapter 2 covers a literature review of transformers, focussed on the construction of the transformer, 

the condition monitoring, the various faults that may occur on the transformers and the management 

of the transformer. The covers the plant health index as it currently stands and investigates how it was 

constructed. 

 

Chapter 3 covers the application of the plant health index to the distribution transformers, and 

analyses and critiques the index. A case study of the application of the plant health index is 

undertaken and illustrates why the index does not work. 
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Chapter 4 covers the application of an amended plant health index and illustrates that the index covers 

long term as well as short and medium term health assessments. 

 

Chapter 5 concludes the dissertation and recommends further research in the area of asset 

management 
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2 A Literature Review of Transformer Fundamentals and Asset 
Management 

 

2.1 Transformers  
 

A transformer is an electro mechanical device that transfers electrical energy between two or more 

circuits via electromagnetic induction. It was invented in 1885 and is primarily used to step voltage 

levels up or down to suit the needs of transmission and distribution systems [2]. 

 

2.1.1 Basic Construction and Operation 

 

The power transformers consists of paper covered coils or windings constructed around a magnetic 

iron core and immersed in oil. The current carrying coils are usually copper or aluminium and are the 

primary source of power and heat losses in the transformer. The losses fluctuate with the current 

drawn during operation and are thus referred to as load losses. The function of the iron core is to 

channel the magnetic flux between the magnetically coupled circuits. The iron core is constructed on 

finely cut sheets which result in lower eddy currents and hence lower eddy losses. Iron losses are ever 

present in transformers, irrespective of the load and are hence commonly referred to as No-Load 

losses. No load losses are made up of Eddy and Hysteresis losses which can be reduced by the choice 

of better core material and more advanced methods of construction. This increases the initial capital 

cost of transformer but is more efficient and environmentally friendly over the lifetime of the 

transformer than a cheaper less efficient transformer. Total cost of ownership models have therefore 

been introduced to ensure that utilities obtain the cost effective transformer over the lifetime of its 

operation [3]. 

 

2.1.2 Insulation (Oil/Paper) 

 

A transformer is in general made from non-ageing materials except for the insulation system. The 

copper conductors are insulated with normal cellulose Kraft paper or thermally upgraded paper. The 

insulation distances between the coils and between the coils and the yokes/clamping structures are 

filled with other solid insulation, and the entire active part is immersed in mineral oil. The mineral oil 

and the solid insulation of the transformer deteriorate with age.  
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Age assessment tests are done to determine the ageing characteristics of the oil/paper insulating 

system by means of chemical analysis of the insulating oil. 

 

The insulating paper is made up of chains of polymers called furans. Longer chains equate to the 

greater integrity of the paper and when the paper deteriorates, these chains break down and dissolve in 

the oil. The furans in the oil are thus used to estimate the degree of polymerization (DP) of the paper 

insulation in a transformer. Alternatively, the degree of polymerization can be determined by 

analysing a sample of the paper insulation of the transformer but this comes with operational 

complications as the process is intrusive and involves removing the transformer from service. 

Estimation of the DP is therefore favoured by many utilities. New Kraft paper has a DP of around 

1200 while paper with a DP approaching 200 has little remaining strength and is considered as 

approaching the end of its useful life [4]. 

 

Mineral insulating oils contain mixtures of hydrocarbon molecules and are made up of the CH3, CH2 

and CH chemical groups. Gas molecules are formed due to the degradation of the oil and include [5]: 

• Hydrogen (H2),  

• Methane (CH4),  

• Ethane (C2H6),  

• Ethylene (C2H4), and  

• Acetylene (C2H2). 

 

The formation of the gases is dependent on temperature where at low temperatures H2, CH4 and 

C2H6 may form, at intermediate temperatures C2H4 may form and at high temperatures (such as 

when arcing occurs) C2H2 is formed [5]. 

The thermal degradation of paper insulation leads to the production of Carbon Dioxide (CO2) at low 

temperatures and Carbon Monoxide (CO) at high temperatures. Oxygen (O2) and Nitrogen (N2) are 

additionally present in the oil, but are not formed due to the degradation processes [5]. The formation 

of CO2 and CO are however dependent on the amount of O2 in the oil [5]. 

The insulating oil ages in the presence of oxygen, heat and moisture. Breakdown of the oil results in 

the production of acid, moisture and sludge which impacts the integrity of the paper, reduces 

circulation and cooling, and further worsens the rate of ageing of the oil. Oil quality measurements 

such as electric strength, interfacial tension, and moisture in oil, acidity, and dissipation factor are 

used to determine the suitability of the oil to perform its function in the transformer.  
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While aged oil can be replaced or regenerated, there is no economical way of replacing the insulating 

paper, and therefore when it reaches its end of life, the transformer is considered to have reached the 

end of its useful life [4]. 

2.2 Ageing of the Transformer and Failure Mechanisms 
 

The environment in which the transformer operates impacts the rate of ageing and the lifetime of the 

transformer. Factors such as loading, climate (lightning etc.) and the integrity of the network can 

create stresses on transformers that result in premature ageing and failures of transformers.  

 

2.2.1 Ageing 

 

When the insulating paper reaches its end of life, the transformer is considered to have reached the 

end of its useful life. The ageing of transformers is therefore best measured in terms of the insulating 

paper. Transformer DP should be measured and trended to monitor the rate of ageing such that 

informed decisions can be made regarding the replacement of the transformer before the insulating 

system (due to the paper) fails. Transformers that reach their end of life in this manner are generally 

regarded as success stories as they provide a return on the capital investment outlaid for their 

installation.  

The fundamental cause of paper ageing is heat which is generated by losses when the transformer is 

loaded. The ageing rate is accelerated by the presence of moisture and/or oxygen. There are various 

sources of moisture in the insulation system, which can either be external (atmospheric air through 

leaks or air ingress during maintenance), internal (as a by-product of ageing), or residual (improper 

drying at the factory). The main source of oxygen is from the atmosphere and is the primary reason 

that air bags are fitted in the conservator of modern transformers. The bag limits the exposure of the 

oil and paper to oxidation by confining the oxygen to the bag and occupying the space that would 

ordinarily be filled with air [6]. The effect of temperature on the ageing of the paper, and hence the 

effective remaining life transformers is described by the Arrhenius equation, which shows that for an 

increase of 6°C above 110°C, the life of insulation is halved [6] [7]. 

 

𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	𝑙𝑖𝑓𝑒 = 𝐴. exp	(
𝐵

𝜃4 + 273
) (1) 

 

Where ϴH is the temperature and for thermally upgraded paper A = 9.8x10-18 and B = 15000 
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The end of life criteria using the Arrhenius equation are given in Table 1. 

Table 1: Normal insulation life of a well-dried, oxygen-free thermally upgraded insulation 
system at the reference temperature of 110 C from SANS 60076-7 [6] 

Basis 

Normal 
insulation life 

Hours Years 
50 % retained tensile strength of insulation 65 000 7.42 
25 % retained tensile strength of insulation 135 000 15.41 
200 retained degree of polymerisation in insulation 150 000 17.12 
Interpretation of distribution transformer functional life test data 180 000 20.55 

 

Emsley et al , Lundgaard et al and Kuen performed analysis and comparison experiments with the 

oil/paper insulation system for transformers, with the focus on the degree of polymerisation [1] [4] 

[8]. Emsley’s model differs from that in the standards and is given by [1]: 

 

𝐷𝑃< =
1

𝐴𝑒𝑥𝑝( −𝐸
𝑅(𝑇 + 273))𝑡 + 1

𝐷𝑃C

 (2) 
 

 

Where: 

DPt = remaining DP-value after time t (200 at end of life) 

DP0 = initial degree of polymerization (1000 after drying process) 

A = factor representative of chemical environment (moisture, oxygen, acidity) 

R = the molar gas constant (8,314 J/mole/K) 

T = the absolute temperature in C 

E = activation energy in kilojoules per mole (111 kJ/mole) 

t = time spent to pass from DP0 to DPt (hours) 

 

Figure 2-1 illustrates the equation for a range of temperatures for thermally upgraded paper with A = 

0.67x108 for dry and clean paper and Figure 2-2 illustrates for different water contents A = 1.1x108 for 

1% water added paper and A = 2.6x108 for 3% water added paper. The figures show the effect of 

increased operating temperature and increased moisture in paper, on the ageing of the paper. 
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Figure 2-1: Rate of Reduction in the Degree of Polymerisation for Operating Temperatures  

 

Figure 2-2: Degree of Polymerisation for different Temperatures for moisture contents 
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The ageing is significantly more complicated in operation as the transformer load varies throughout 

the day and between different types of customers (e.g., domestic versus industrial). Over time, the 

transformer may develop leaks which may increase the moisture in oil and paper. This will cause 

premature ageing of the paper, and oil which may then result in the formation of sludge and more 

moisture that will have further negative effects on the transformer lifespan. It is therefore imperative 

that routine checks and maintenance is carried out timeously to preserve and extend the life of the 

transformer. 

 

2.2.2 Failure Mechanisms 
 

Figure 2-3 illustrates a typical transformer failure pattern depicting the failure rate against the 

transformer age. Failures in transformers consist of infant mortality failures which occur early on in a 

transformer life and wear out failures where the rate of failure typically increases with the age of the 

transformer. 

 

Figure 2-3: Typical transformer failure pattern [5] 

 



 10 

Transformers may fail prematurely for several reasons. This includes mechanical failures from short 

circuit activity, failure of transformer components such as bushings and tapchangers, manufacturing 

defects and incorrect application of the transformer by the user. Infant mortality is usually 

experienced due to one of these factors and utilities have taken to enforcing stringent controls to 

mitigate these occurrences.  

Factories are accredited prior to tender award and the manufacturing processes and infrastructures are 

scrutinized to ensure that the factory is suitable for high quality transformer manufacturing. The 

temperature and moisture of the winding assembly area is one such control that is necessary to ensure 

that the insulating paper is as dry as possible. This promotes longevity of the transformer paper and 

hence contributes to a longer lifespan of the transformer. Design reviews take place before 

manufacturing of the transformer can commence. The onus falls on the transformer manufacturer to 

prove to the customer that the transformer is designed to international specifications with sufficient 

safety factors to accommodate for amongst others, short circuit forces and temperature rises. 

Inspection and hold points are also available to the customer to provide quality assurance at key 

points in the manufacture of the transformer. Once completed, the transformer is then subjected to a 

barrage of tests to ensure that it is suitable of operation [2]. 

Failure of components such as on load tapchangers and transformer bushings often result in the failure 

of the transformer. There is also a great risk of fire when oil type tapchangers and bushings fail. 

Regular inspections, tests and maintenance are imperative in assessing the condition of these 

components and preventing costly failures.  

Tapchangers have specified limits for the number of operations that can be tolerated before service 

and/or replacement of the tapchanger contacts. The advent of vacuum tapchangers has reduced the 

maintenance requirements for tapchangers significantly as all switching occurs in a vacuum bottle 

instead of oil. This limits arcing and prevents carbonisation of the oil thus allowing a longer lifespan 

of the contacts. Most reputable vacuum tapchangers allow for 300 000 operations before any 

maintenance is required as compared to between 50 000 – 100 000 operations for most oil type 

equivalents [9]. 

Oil impregnated paper bushings must be regularly inspected for leaks and tested for dissipation factor 

as an indication of the insulation of the bushing. These bushings are susceptible to moisture ingress 

and may fail violently and catastrophically for the transformer. As a result dry bushings formed from 

resin impregnated paper (RIP) or synthetics (RIS) have gained in popularity as they have superior 

insulating properties and are oil free, which reduces the risk of fire during failure [10]. 

Transformers are also greatly impacted by single, two or three phase faults on the network. The 

severity of the impact of the fault on the transformer depends also on the distance of the fault from the 
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transformer, as the fault current is damped by the impedance of the conductors on the 

transmission/distribution system. By the principle of its operation, the transformer is under constant 

magnetic forces that are withstood under rated conditions by the mechanical clamping, bracing and 

build of the transformer. Under fault conditions, the current seen by the transformer exceeds rated 

values. The force experienced by the transformer is proportional to I2t so the impacts of the increased 

fault current results in forces on the mechanical build of the transformer that may be overcome, 

resulting in mechanical failure [3]. Mechanical failures are prominent on poor performing networks 

and it is imperative that the substation protection is functioning and correctly graded to prevent such 

failures. In extreme cases fault limiting reactors may be employed to restrict the fault current. 

Other faults internal to transformer such as thermal faults and partial discharges may develop into 

more serious conditions that eventually lead to the dielectric breakdown of the transformer insulation. 

These faults can be monitored via the analysis of the gases in the transformer oil and from electrical 

tests on the transformer. Interventions to address the problems can then be planned and carried out 

under controlled conditions. It is therefore imperative that the plant health assessment criteria be as 

relevant and effective as possible. This is only possible with accurate field data. 

 

  



 12 

2.3 Condition Monitoring  
 

Indications of the condition of transformers and its components are possible by the collection and 

analysis of data pertaining to the operation of the transformer. Data from the transformer oil (DGA 

and DP), tapchanger oil (DGA and particle analysis) and from oil and winding temperature gauges are 

readily and easily available to users for analysis and trending. In recent times, direct measurement of 

the winding hotspot temperatures via fibre optic have been made available, as well continuous data of 

the voltage and current measurements from the transformer bushings.  

The data from electrical tests of the transformer and its components can also be trended to determine 

the condition of a transformer and whether its condition is deteriorating [11]. 

 

2.3.1 Dissolved Gas Analysis 
 

There are several established techniques for the analysis of dissolved gases in transformer oil. This 

includes, amongst others, the IEC Basic Gas Ratio Method, Key Gas Method, Total Dissolved Gases 

(TDG), Duval’s Triangle, Doernenburg’s Ratio Method etc. Some methods rely on the parts per 

million (ppm) of the different gases (TDCG) in oil for interpretation while others preferred to look at 

the ratio of the various gases to each other.  

TDCG is used to detect the possibility of a fault and is formed by adding the concentrations of H2, 

CH4, C2H6, C2H4, C2H2 and CO to find the total concentration in ppm [12] [5]. IEEE Std C57.104 

defines 4 conditions as illustrated in Table 2. 

 

Table 2: TDCG Conditions 

Condition  TDCG (ppm) Description 
1 TDCG<720 Transformer is operating satisfactorily 

2 721<TDCG<1920 Transformer exceeds normal values, additional investigation is 
required, key gases should be checked for a fault 

3 1921<TDCG<4630 High level of decomposition, additional investigation is 
required, key gases should be checked for a fault 

4 4630<TDCG Excessive decomposition. Continued operation could result in 
failure 
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Key gas method is used to identify the type of fault as there is a dominant or key gas produced 

depending on the temperature and type of fault [12] [5]. The key gases are summarised below [12] 

[5]:  

• Thermal – Oil – C2H4 

• Thermal – Cellulose – CO 

• Electrical - PD – H2 

• Electrical – Arcing – C2H2 

Ratio methods relate the ratios of gases to the type of fault. Considering the following ratios [5]. 

• Ratio 1 CH4/H2  

• Ratio 2 C2H2/C2H4  

• Ratio 3  C2H2/CH4  

• Ratio 4 C2H6/C2H2  

• Ratio 5 C2H4/C2H6  

• Ratio 6 C2H6/CH4 

The Doernenburg Ratio uses ratios 1, 2, 3 and 4, while the Rogers ratio uses 1, 2, 5 and 6 to interpret 

the type of fault occurring [12] [5]. The IEC defines a Basic Gas Ratio as shown in Table 3 which 

gives the fault conditions shown in Table 4 [12] [5]. 

Table 3: Gas ratio codes for Basic Gas Ratio 

Gas Ratio  Range Code 

C2H2/C2H4 
<0.1 0 
<3 and >0.1 1 
>3 2 

CH4/H2 
<0.1 0 
<1 and >0.1 1 
>1 2 

C2H4/C2H6 
<1 0 
>1 and <3 1 
>3 2 
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Table 4: Fault classification 

Fault Type   C2H2/C2H4 CH4/H2 C2H4/C2H6 
Normal aging, no fault  0 0 0 
Partial discharge (low energy)  Insignificant 1 0 
Partial discharge (high energy) PD 1 1 0 
Discharges of low energy D1 1 to 2 0 1 to 2 
Discharges of high energy D2 1 0 2 
Thermal fault of <150 oC  0 0 1 
Thermal fault of > 150 oC and < 300 oC T1 0 2 0 
Thermal fault of > 300 oC and < 700 oC T2 0 2 1 
Thermal fault of > 700 oC T3 0 2 2 
 

Michel Duval of Hydro Quebec developed the Duval Triangle in the 1970’s. It was developed by 

analysing DGA databases and relating the DGA to the root cause analysis. The Duval’s triangle was 

first used in IEC 60599 and has since proven to be a reliable method for the identification of the type 

of faults on transformers with a known problem. Duval Triangle uses 3 gas ratios in a triangle as 

shown in Figure 2-4 with the fault conditions listed in Table 5 The more recent Duval Pentagon uses 5 

gas ratios in a pentagon as a tool to interpret the dissolved gas [5] [13]. As Duval’s Triangle does not 

have a normal condition, it should not be used for fault type prediction [14].  

 

 

Figure 2-4: Revised Duval’s Triangle 
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Table 5: Duval’s Triangle 

Fault Code Fault Type 
PD Partial discharge 
D1 Low energy discharge 
D2 High energy discharge 
DT Mixture of electrical and thermal faults 
T1 Thermal faults  T < 300 oC 
T2 Thermal faults  300 oC < T < 700 oC 
T3 Thermal faults T> 700 oC 

 

For the transformer operator it is important that oil sample data is not looked at in isolation. It is best 

used in conjunction with operational information and in comparison to the baseline of normal 

operation of the transformer [12]. Trending of oil sample data is essential in establishing clear 

baselines that will easily highlight deviations from the normal condition. It is also advisable to use 

multiple methods of oil analysis to diagnose faults as different methods have complimenting strengths 

and weaknesses. For example, methods that focus mainly on ppm values tend to struggle with the 

early detection of faults due to their reliance on ppm thresholds for analysis. Methods that rely solely 

on ratios may provide false indications as even minor changes in the composition of gases may create 

unfavourable ratios. Methods such as the Duval Triangle and Key Gas Method do not have a normal 

condition and are thus best used for root cause analysis once it is known that a fault exists [15]. 

 

2.3.2 Oil Quality 
 

Oil quality indicators such as, moisture in the oil, electric strength, dissipation factor, interfacial 

tension and acidity, can be continuously monitored to determine the suitability of the oil to perform its 

primary functions. This information can be used by the operator to determine the point at which the 

oil requires replacement or regeneration. Inhibited mineral oil must also be monitored for passivator 

content as a depletion of the passivator will lead to oxidation of the oil. Pipers chart illustrated in 

Figure 2-5  relates the moisture in the paper to the moisture in the oil for a given temperature and is 

mathematically expressed by [3]: 

𝑇 = 31.52 − 26.605 ln 𝑝𝑐𝑡 + 17.524 ln 𝑝𝑝𝑚   (3) 
 

Where: 

T = temperature (oC) 

pct = Percentage water in paper 

ppm = ppm water in oil 
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Figure 2-5: Piper’s chart  

 

 

2.4 Transformer Lifecycle Management 
 

A transformer forms a major portion of the capital investment required for a substation and therefore 

the life management of this asset cannot be over-emphasized. The specified lifespan of a transformer 

employed in Eskom’s distribution network is 40 years when operated at rated condition. This lifespan 

can be exceeded depending on various factors including design safety margins, operation, 

maintenance, and good life cycle management practices from the initial installation of the transformer. 

Conversely, the lack of transformer life cycle management can reduce the lifespan of a transformer. 

Health or condition assessments are a key ingredient in the lifecycle management of the transformer 

fleet. It allows for customization of maintenance plans for transformers depending on their condition 

rating. This optimises resources and allows for early detection of faults while allowing sufficient time 

to plan interventions to address problematic transformers. An accurate health index is therefore 

imperative for effective transformer life cycle management. As a result, it is vitally important to use 

accurate data used for the transformer condition.  
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It is also important to learn from previous failures. Accurate root cause analysis of failures is 

imperative in preventing mistakes from being repeated. Deficiencies in particular makes, types and 

designs can be identified and rectified in future transformers at design stage, while repeat transformer 

failure sites can be flagged for more in-depth investigation of the substation and surrounding network.  

 

2.4.1 Plant Health Index 
 

Ideally, the transformer health assessments should be based on four parameters, namely, the paper 

life, dissolved gas analysis, condition of the auxiliary components and electrical diagnostic tests. 

Often, there is limited availability to assess the latter two parameters due to outage constraints and/or 

a lack of resources. Most utilities employ an abbreviated health assessment that makes use of the data 

most readily available and the accuracy of the ranking system is dependent on the quality of the 

transformer information captured.  

Nevertheless, the plant health index (PHI) is a convenient tool to combine the condition monitoring 

data into categories related to the assets condition and provides a snapshot of the condition of 

transformers. This allows for the planned implementation of corrective actions [16] [17]. 

Naderian et al present their work on a health index for power transformers and extend on the typical 

quantities such as DGA, oil quality, furfural and power factor and include other operational 

conditions, observations and history performance. They use a set of 20 inputs that are weighted 

according to importance. Interestingly the furan analysis has a lower weighting than the DGA, power 

factor and load history. They relate the health index to the condition of the transformer, the expected 

lifetime and what the requirements are for maintenance or replacement [17]. 

Jahromi et al develop a health index based on [16]: 

• DGA 

• Oil quality 

• Furfural 

• Power factor (dissipation factor) 

• Tap changer 

• Load history 

• Maintenance data 
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The last two criteria are significantly important to the PHI, as they will be used in predicting the 

future life of the transformer. They illustrated how to relate the health index to the rate of failure and 

determine a probability of failure as well as determining the remaining life of the transformer and 

relate this to the cost of replacing the units [16].  

The above method would be most effective in established networks with constant load profiles such as 

those found in first world countries. For developing countries such as South Africa, Brazil and India, 

the above PHI would be difficult to accurately implement as the networks and loads are constantly 

changing as customer base increases and, the need for industrialization and infrastructure grows. 

There is a significant amount of maintenance data available on Eskom’s Distribution Networks but 

the integrity of this data varies between the different Operating Units (OUs). Until the data is verified, 

it may lead to inaccurate PHIs for some OUs.  

Miletic presents work on medium voltage transformers where he combines the history, a visual 

inspection and a diagnostic inspection to formulate his index. The history includes the age, loading, 

fault and maintenance criteria. The visual inspection includes any identifiable defects. The diagnostic 

includes infrared assessment, oil quality and winding tests (this is an offline test). Importantly the 

index again does not consider the degree of polymerization [18]. 

Malik et al present a health index that look at two indices, namely, tier 1 which considers oil analysis, 

power factor and excitation current, operation and maintenance history and age, and tier 2 which 

considers turns ratio and SFRA. Tier 2 is offline, whereas tier can be done on line. Importantly the 

study includes information about furan analysis but does not consider the analysis in the scoring of the 

index, but uses the total dissolved combustible gases. They only give a single example of how the 

health index is applied [19]. 

Taengko et al develop a health index based on historical (loading, age, fault history) and condition 

factors (offline and online) tests. They determine the overall PHI using a matrix that correlates the two 

sets of information to determine the health of the transformer [20]. Haema et al present a health index 

that uses over 21 factors where DGA again outweighs the furan; they do include the on load tap 

changer in their condition assessment [11]. Satriyadi Hernanda et al formulate their PHI using DGA, 

oil quality and furan analysis. They also rate the DGA higher than both the oil quality and furan [21]. 

Scatiggio and Pompili have developed a health index that combines transformer dependent data such 

as dielectric and thermal conditions (DGA, furan), mechanical condition (SFRA), oil condition and 

non-transformer dependent data such as lightning frequency, substation layout, and re-occurrence of 

events at the site. They do not give details in this paper of the non-transformer dependent data; this is 

of importance for determining the risk of the transformer. They show that the age of the transformer 

cannot be used alone in determining the condition of the transformer [22].  
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Scatiggio and Pompili present an extension of the work to consider the number of dangerous events, 

and average damage per event with the health index to quantify the risk to the transformers [23]. 

This is an important consideration as external aspects such as lightning ground flash density, fault 

level at the transformer, climatic conditions can be considered part of the overall health index. 

One of the fundamental issues of the published information is that there are too many factors and as 

such it is difficult to get the weighting correct. There is no standard for which to adhere and all the 

weighting factors differ dependent on the region they are applied in. The large fleet sizes of power 

transformers in the Eskom Distribution network means that it is not practical that all factors can be 

taken into account. A different system needs to be initially used and this system must be continually 

honed as the availability and integrity of relevant data increases. The PHI should then form one input 

into a risk matrix that also considers previous failures at site, external factors such as the locations, 

lightning density and earth resistance, and network performance. 

 

2.5 Plant Health Index 
 

The Eskom Plant Health Index is calculated from the oil sample results per transformer. The PHI is 

places a greater emphasis on paper ageing than DGA. Moisture in oil is the only oil quality index 

considered and is used to estimate the moisture in the paper, which again focuses on ageing of the 

paper. To this effect the Eskom PHI differs from the models presented by Naderian et al, Jahromi et 

al, Malik et al, Taengko et al and Scatiggio and Pompili [17] [16] [19] [20] [22]. 

The drawback of a PHI that is heavily weighted towards paper ageing is that short and medium term 

failures are not detected. This poses a greater operational risk for the utility with major financial 

implications than units failing after many decades of service. A more affective PHI would give greater 

consideration to the readily available DGA and oil quality indexes, in addition to the DP of the paper. 

If weighted correctly, this would provide a PHI that is focused on early detection of problems while 

still managing to provide accurate data on the end of life criteria. 

 The following parameters are currently being used to score the condition of each transformer [24] : 

• Moisture in Paper (10%) - The ppm value of moisture in oil and the top oil temperature at the 

time of sampling is used to estimate the moisture in paper. 

• DGA (30%) - Total dissolved combustible gases (TDCG) which looks at ppm thresholds of 

flammable gases in the oil is used for DGA interpretation, and 
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• DP (60%) – DP estimated from the presence of furans in the transformer oil is used for 

scoring of the transformer ageing. 

In cases where oil samples have not been taken for DP analysis, the user is able to estimate the DP by 

using models based on the type of load experienced by the transformer and the transformers age in 

years. This method of DP estimation is flawed as ageing is significantly more complicated in 

operation than predicted by the models. The transformer load varies throughout the day and between 

different types of customers (e.g. domestic versus industrial). In many cases a single transformer may 

serve both domestic and industrial customers. Also, the model does not cater for operational issues 

such as leaks, and malfunctioning radiators and fans that may accelerate the ageing of the oil and 

paper.  

In recent times, the DP analysis from oil samples have been performed on a routine basis within 

Eskom and all laboratories are equipped for DP analysis from furans. The models are therefore no 

longer needed for DP estimation. 

 

2.5.1 Moisture in Paper (10%) 
 

Oil moisture content and temperature of the oil are the critical input variables for this assessment. The 

percentage moisture in paper is calculated using a moisture indicator based on the Pipers Chart, 

(Figure 2-5) .This criterion carries a weight of 10% to the total PHI. 

Table 6: Scoring of Moisture assessment 

Moisture (10% weighting) Score 
% Moisture per dry-weight > 5 % and high 
confidence 4 
5% >% Moisture per dry-weight > 3 % and high 
confidence 3 
3% > % Moisture per dry-weight > 2 % and high 
confidence 2 
Low moisture 1 

 

 

2.5.2 Dissolved Gas Analysis (30%) 
 

Dissolved gas is an indication of heat generation due to operating conditions as well as an indication 

of excessive heat due to a possible fault condition in the transformer. Heat accelerates the ageing of 
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liquid as well as solid insulation systems. The scoring of the DGA is based on the total dissolved 

combustible gas analysis (TDCG). This criterion carries a weight of 30% to the total PHI. 

 

Table 7: Scoring of DGA assessment 

DGA (30% weighting) Score 
TDCG >1200 8 
TDCG > 720 and CO2 less 50% 4 
TDCG > 720  3 
TDCG > 430 2 
Low TDCG 1 

 

 

2.5.3 Degree of polymerization (DP) via Furan Analysis (60%) 
 

The DP model represents the ageing of a transformer based on the operating conditions and is used in 

the calculation of the PHI where the actual DP value (calculated from the analysis of furans in the oil) 

is not available. The different loading models are as follows [24].  

DOMESTIC – is selected if the transformer is feeding domestic customers    

INDUSTRIAL – is selected if the transformer is feeding industrial customers    

LINEAR – is selected if the transformer feeds a combination of both domestic and industrial 
customers 
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Figure 2-6: DP models for different Applications 

 

The following table is used to score the degree of polymerisation after mapping the calculated DP 

against the age of the transformer using the linear model. 

Table 8: Scoring of Furans assessment 

DP ( 60% weighting ) Score 
End of Life Criteria Resample annual age < 35 4 
Extensive Deterioration Resample 2 Yearly (350 < Y < -20X+900) 3 

Moderate Deterioration 
Resample 2 Yearly (200 < Y < 350 AND Y> -

20X+900 2 
End of Life Criteria  Resample annual  age > 35  4 
Healthy  Resample 5 yearly  1 
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Figure 2-7: Degree of Polymerisation Graph 

New paper has a DP of 1200 but a DP of 900 can be expected from a newly manufactured transformer 

as a result of the drying out procedures prior to final tanking of the active part. The rate of reduction 

in the DP is then used to determine deterioration of the paper. A DP of 200 is considered as the end of 

life of the paper. 

 

2.5.4 Plant Health Index (PHI) 
 

The plant health score is the sum of 60% DP score, 30% DGA score and 10% Moisture score. A PHI 

score is then assigned to each transformer using the scoring shown in Table 9. 

Table 9: PHI Categories 

Category Descriptions Score 
A – Low risk score < 1.01 
B – Low to Medium Risk 1.01 <= score <2.01   
C – Medium Risk 2.01 <= score <3.01   
D – High Risk 3.01 <=score 
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3 The Plant Health Index for Eskom Distribution’s Power Transformers. 
 

The PHI in its current guise provided an analysis of the transformers in Eskom Distribution’s Power 

transformer fleet. 

 

3.1 Plant Health Index Analysis 
 

An accurate health index is imperative for effective transformer life cycle management. As a result, it 

is vitally important to use accurate data used for the transformer condition. This allows for the 

optimization of resources and allows for early detection of faults while allowing sufficient time to 

plan interventions to address problematic transformers. Missing and incomplete data hampers the PHI 

and poses an operational risk to the utility, which is stripped of the benefits of the PHI for 

transformers with missing or inaccurate data.  

 

3.1.1 Transformer Age 
 

There were 4359 transformers installed on the distribution network at the time of analysis. The 

transformers ranged from 1 MVA to 160 MVA units within a voltage range of 2.2 kV to 132 kV. The 

age profile in Figure 3-1 shows that the transformers’ age varied from 1 to 83 years old. There were 

42 transformers at 83 years of age installed in distribution division. There were 524 transformers 

(12% of all the transformers in the Division) that were missing data for a successful PHI calculation 

including 276 transformers (6% of all the transformers in the Division) that were missing the year of 

manufacture. The PHI is hampered by missing and incomplete data and poses a risk to the utility as 

the condition of 12% of the transformer base has not been assessed by the PHI. In cases where oil 

samples have not been taken for DP analysis, the utility is able to estimate the DP by using models 

based on the type of load experienced by the transformer and the transformers age in years. This is not 

possible for the 276 transformers that are missing the year of manufacture.  
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Figure 3-1: Transformers Age Analysis 

 

 

3.1.2 Moisture in Paper 
 

Figure 3-2 illustrates the number of transformers according to the categories defined in Table 6. 

Moisture in paper analysis was not possible for 364 transformers due to missing data or discrepancies 

in the data capturing. It is expected that the highest number of transformers would be in the low 

moisture content category and the lowest number would be in the highest moisture content category.  

 

Figure 3-2: Number of Transformers per Moisture Analysis Score 

 

 

 

 

629 626

862

1088

519

251

40 26 42

276

0

200

400

600

800

1000

1200

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 No	Data

N
um

be
r	o

f	T
ra
ns
fo
rm

er
s

Age	(years)

1625

1154 1010

206 85 14
265

0

500

1000

1500

2000

Moisture	in	
Paper<2%(1)

2%<	Moisture	
inPaper	
<3%(2)

3%<	Moisture	
inPaper	
<5%(3)

Moisture	in	
Paper>5%(4)

No	moisture	
readings

No	
temperature	
recorded

No	Data

N
um

be
r	o

f	T
ra
ns
fo
rm

er
s

Scoring	of	Moisture	Analysis	(X)



 26 

3.1.3 Dissolved Gas Analysis 
 

Figure 3-3 illustrates the number of transformers for the DGA categories defined in Table 7. It is 

expected that the highest number of transformers would be in the category with the lowest TDGC. 

Notably, the TDCG data for 335 transformers were incorrectly captured on the PHI and DGA was not 

possible for these transformers. This poses an operational risk to the utility as a large percentage of 

transformers have not been assessed for faults that could have been detected by dissolve gas analysis. 

Unexpected failures are possible and may negatively impact the utility.  

 

 

Figure 3-3: Number of Transformers per DGA Analysis Score 

 

3.1.4 DP Analysis 
 

Figure 3-4 illustrates the percentage of transformers against the type of DP data used i.e. whether the 

DP is obtained from the oil sample or from one of the models defined in Section 2.5.3. It can be seen 

that 80% of the DP values used the actual value, whereas 16% use estimated DPs and there was 4% of 

data missing. This means that 20% of the transformers in the distribution fleet do not have accurate 

information as will be shown later. 
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Figure 3-4: Percentage of transformers with DP obtained from Oil Analysis vs. the % of DP 
obtained by using the PHI Models 

 

Figure 2-1 illustrates the number of transformers in the categories defined by Section 2.5.3. The figure 

illustrates that the majority of transformers have healthy paper with the next highest number being 

that of the paper being at end of life. Again, the ageing analysis is hampered by missing data. The risk 

posed to the utility is that transformers approaching end of life will go undetected and may result in 

unexpected failures. 

 

 

Figure 3-5: Number of Transformers per DP Analysis 
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3.1.5 Plant Health Index 
 

Of the 4359 transformers in operation, there was accurate PHI data for 3835 (88% of all the 

transformers in the Division) units. Figure 3-6 illustrates the number of transformers per PHI 

category. The PHI shows that: 

• 1044 (24% of all the transformers in the Division) are rated as low risk and require normal 

maintenance, 

• 2211(51% of all the transformers in the Division) as low to medium risk, indicate minor 

deterioration but still require only normal maintenance, 

• 436 (10% of all the transformers in the Division) as medium risk, require remedial attention 

and increased condition monitoring, 

• 144 (3% of all the transformers in the Division) are rated as high risk, indicating severe 

deterioration and require immediate attention. Replacement of the unit is a distinct possibility. 

Electrical Diagnostic tests, furan analysis and frequent oil samples to monitor the DGA is 

recommended. 

• 524 transformers (12% of all the transformers in the Division) that are missing data for a 

successful PHI calculation including 276 transformers (6% of all the transformers in the 

Division) that are missing the year of manufacture.  

 

Figure 3-6: Transformers per Category 
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Figure 3-7 further illustrates the number of transformers per category per age. As expected, 74.7% of 

the transformer base fall into the low to medium risk category which requires no more than routine 

maintenance. 10% of the transformer base is rated at medium risk. Transformers in this category must 

be closely monitored such that they do not deteriorate and add to the 3.3% of transformers in the 

distribution fleet into the high risk category. It is envisaged that these transformers would need to be 

replaced in the near future. The 12% of the transformer base that do not have sufficient data for a PHI 

calculation have the potential to change the overall PHI outlook of the utilities transformer fleet. It is 

therefore imperative that the missing data is sourced for a PHI calculation.   

 

Figure 3-7: Transformers per Category per Age 
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The PHI performed for the Distribution Division’s 4359 transformers was severely hampered by 

missing or incomplete data in all of the analysis categories.  

Nevertheless, of the 4359 transformers, there is an accurate PHI calculation for 3835 (88%) 

transformers. The PHI calculation shows that 1044 (24%) of the transformers are rated as a low risk, 

2211 (51%) as low to medium risk which are indicated to have a minor deterioration, 436 (10%) as 

medium risk which require remedial attention and increased condition monitoring, and 144 (3%) are 

rated as high risk which are indicating severe deterioration and require immediate attention. 

Replacement of the unit is a distinct possibility.  

Of great concern are the 77 (2%) transformers in the 0 -10 year range that fall into PHI categories C 

and D. The PHI indicates premature ageing of these transformers as the PHI of the transformers in 

this age group should be in categories A and B. These transformers must be investigated immediately 

via analysing updated electrical tests, DGA and furan samples and the PHI recalculated. If these 

transformers still fall into category C, customized interventions based on the type of fault condition of 

the transformer may be required to improve the health of the transformer. 
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3.2 Failures 
 

The failures of distribution power transformers since the analysis of the PHI results in September 

2013 were compared to the results of the PHI model. The results are as follows: 

Figure 3-8 illustrates the number of transformer failures according to the PHI classification and the 

OU. There were a total of 92 failures on Eskom’s Distribution network since the PHI analysis in 

September 2013. 

• 18 of the transformers that failed were classified by the PHI as category A. 

• 31 of the transformers that failed were classified by the PHI as category B. 

• 4 of the transformers that failed were classified by the PHI as category C. 

• 5 of the transformers that failed were classified by the PHI as category D. 

• 34 of the transformers that failed were not classified by the PHI due to missing information. 

 

Figure 3-8: Failures of Transformers  

 

The data shows that 34 of the transformer that failed were not classified by the PHI due to insufficient 

information and indicates the OUs have to greatly improve their data capturing to correctly manage 
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the asset. It can be seen that 9 of the 92 transformers that failed were listed by the PHI as in a poor or 

in a very poor condition. Importantly, 49 of the transformers that failed were listed by the PHI as in a 

good or very good condition. This indicates that the PHI may not be serving its purpose.  

Table 10  and Figure 3-9 show the failure modes of the 92 failed transformers. Mechanical damage 

due to faults on the distribution network was responsible for 41 of the 92 failures.  

 

Figure 3-9: Transformer Failure Analysis 

 

Table 10: Failures Modes 

Failure Mode Information Total 
Mechanical Damage Due To Short 
Circuit 41 
Tapchanger Failures 3 
Bushing Failure 3 
Vandalism 1 
Data Not Available 44 

 

As a long term health assessment tool the PHI is unable to predict these failures as they occur 

suddenly often without any progression on the trends of the DGA. Eskom’s distribution transformers 
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are only sampled annually and are not fitted with online gas analysers. As a result, the PHI is unable 

to account for the rapid changes in the condition of transformers due to the impact of network 

operations. In essence, a healthy transformer in an unhealthy operating environment will be prone to 

failure and is thus “unhealthy”. 

In order for the utilities to accommodate for such eventualities the PHI must be used in conjunction 

with other key inputs to determine the probability of failure of the transformer. To account for 

mechanical forces on transformers the fault levels and performance of the network must be known  

[2] [17]. 

 

3.3 PHI Case Study for Gauteng Operating Unit 
 

Gauteng Operating Unit (GOU) showed a number of failures and was used as a particular case study 

to critique the PHI. There was a total 925 transformers with accurate data: 

• 80 transformers were not included in the PHI due to lack of data 

• 26 transformers were categorised as high risk with a likelihood of failure 

• The DP values of 20 transformers were calculated from furan analysis of the oil, 3 from the 

industrial model, 2 from the domestic model and 1 from the linear model.  

 

The PHI score for GOU is illustrated in Figure 3-10, it can be seen that there is minimal relationship 

between age and the PHI score. It is also important to note that the PHI scores are clumped around 1. 

This may be due to the PHI score being weighted in favour of the DP and being unable to cater for 

short term faults such as the mechanical due to short circuit activity. 
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Figure 3-10: PHI in GOU 

 

A comparison of the DP values obtained via furan analysis, to those obtained by using the domestic 

model showed that in some instances the model predicted more favourable DP values than the actual 

results obtain via oil analysis and vice versa, this is illustrated in Figure 3-11 where the DP values 

obtained from the oil analysis are plotted against the models. Deeper analysis into the PHI's per 

operating unit showed that the users were favouring the domestic model when unsure to improve their 

statistics. Figure 3-4 showed that 20% of transformers do not have measured values of DP, together 

with Figure 3-11 emphasises the importance of collecting accurate information. 
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Figure 3-11: Degree of Polymerisation in GOU 

 

Between October 2013 and September 2015, GOU experienced 33 power transformer failures. Of 

these failures, only 2 were listed as high risk by the PHI performed in September 2013. This indicates 

that the PHI is not working as desired for this operating unit, and prompted further investigations into 

the failures in GOU. 

Analysis of the oil sample data for the transformers in the low to medium risk showed that 8 

transformers had Total Dissolved Gases in excess of 1000 ppm yet were still classified as low to 

medium risk. Further analysis of these 8 results showed that one of the 8 transformers DGA results 

would be classified as having a thermal fault using the Duval's triangle for analysis, 1 of the unit's oil 

had an electric strength of 20 kV and 2 unit's oil had high acidity levels (0.18 and 0.44 mgKOH/g). 

The findings above calls into question the use of only TDCG for DGA analysis in the PHI instead of a 

consensus of the different recognised methods. It also shows that long term indicators of the oil need 

to be taken into account when determining the risk of failure. The life of the transformer is dependent 

on the life of the paper, which in turn relies on the quality of the oil. 
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3.3.1 Analysis of Failures 
 

At the time of the analysis, GOU possessed 24% of the Distribution Division's power transformers but 

contributes to 41% of all the failures in Distribution (12 Month Moving Average (12 MMA)) as listed 

in Table 11. The failure rate of power transformers in operation in GOU is 2.79% and is significantly 

higher than the 1.65% average. 

Table 11: Power transformer performance 

OU Installed Base Failures Months 12MMA 

Eastern Cape (EOU) 213 0 12 0.00% 

Free State (FOU) 532 8 12 1.50% 

Gauteng (GOU) 1005 28 12 2.79% 

KwaZulu-Natal 

(KZNOU) 
387 2 12 0.52% 

Limpopo (LOU) 423 5 12 1.18% 

Mpumalanga (MOU) 587 11 12 1.87% 

Northern Cape 

(NCOU) 
164 1 12 0.61% 

North West (NWOU) 530 14 12 2.64% 

Western Cape 

(WCOU) 
331 0 12 0.00% 

Distribution Total 4172 69 12 1.65% 

 

Figure 3-12 shows the number of transformer failures per age of transformer from 2011 to 2015. It is 

noticeable that transformers of all ages are failing in GOU; it cannot be said that the age of the 

transformers are the main cause of the high failure rate or that newer designs are failing more 

regularly on the network. The data points to a greater problem in the OU. Analysis of the 

manufacturer versus the number of failures was also done and no clear trend could be determined, i.e. 

all makes of transformers are failing in this operating unit. 
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Figure 3-12: Number of transformer failures according to transformer age 

 

Figure 3-13: Number of failures per zone in GOU from 2011-2015 
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 Figure 3-14: Multiple failures per substation per zone for 2011-2015 

 

Each operating unit is separated into zones of operation. GOU contains five zones as shown in Figure 

3-13 above. The statistics show that 65 failures of the 115 failures from 2011-2015 occurred in the 

Vaal zone (57% of GOU's transformer failures). 

Figure 3-14 indicates where there are repeat transformers failures and shows the zone that they occur 

in. The Vaal zone has 9 transformer bays that have experienced multiple transformer failures. The 

failures at only these substations contributed 35 of all failures in GOU from 2011-2015.   

Subsequent inspections of the substations and the surrounding networks in this area revealed that a 

significant number of the 22 kV networks that passed through populated settlements were overhead 

networks of the bare conductor type, and installed on structures built for 11 kV and 6.6 kV 

applications. This resulted in insufficient clearance between the conductors and hence a high number 

of phase to phase faults. The Vaal area is also prone to vandalism and theft, with 'wire throwing' a 

common tactic to lock out the circuit breakers. Thieves are then able to remove the conductor and 

pole mounted transformers to sell as scrap metal. Similar issues are being experienced at Ivory Park 

and Kadett substations in the Johannesburg zone, and recorders installed at Ivory Park transformer 1 

have shown in excess of 100 through faults experienced by the transformer per month. Unsurprisingly 
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given the operating conditions and the exposure to continuous through faults, phase to phase faults 

and three phase faults, the teardowns have revealed that the transformers that failed at these sites have 

exhibited significant mechanical damage. It is also the reason that the pending failures were not 

detected by the PHI as the tool is ill equipped in this regard.  

 

3.4 Conclusions and Recommendations 
 

It is clear that PHI while devised with the best of intention has several major drawbacks that prevent it 

from achieving its original target, that is to provide the operating units with a risk profile of the 

transformers in its fleet, and to prevent in-service failures by detecting deterioration of their condition 

sufficiently in advance such that the operating unit may act to prevent the failure. 

The PHI has failed in the following areas and can be improved upon to be more affective: 

DGA Analysis: One of the transformers listed as low-medium risk had a Total Dissolved 

Combustible Gases greater than 1000~ppm that would have been recognized as a developing thermal 

fault using other methods. Rather than using only the Total Dissolved Combustible Gases as an 

indication of DGA, the tool would be better served to use a consensus of the several established 

methods.  

Long Term Health Indicators of the Oil: Analysis of the oil sample data for the transformers in the 

low to medium risk showed that 8 transformers had Total Dissolved Gases in excess of 1000~ppm yet 

were still classified as low to medium risk. Further analysis of these 8 results showed that, 1 of the 

unit's oil had an electric strength of 20 kV and 2 units’ oil had high acidity levels (0.18 and 0.44 

mgKOH/g). The long term indicators of the oil need to be taken into account when determining the 

risk of failure. The life of the transformer is dependent on the life of the paper, which in turn relies on 

the quality of the oil. In addition to the Electric Strength and acidity, the tan delta and interfacial 

tension of the oil must be catered for.  

Degree of Polymerisation: There are 306 transformers in PHI categories C and D that have DP 

values below or approaching the end of life criteria (DP = 250). Of the 306 transformers; 173 have DP 

values obtained from oil samples and 133 have DP values obtained by using PHI DP models 

(Industrial, Domestic and Linear). It is evident that the models do not correctly predict the DP values. 

Predicted DP and DP models should be replaced by actual furans. Eskom conducts annual oil samples 

for DGA on all of its transformers and this practice can be extended to long term health indicators of 

the oil, and furan analysis.  
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Risk of Mechanical Failure: The analysis of the failures in Gauteng operating unit also show that 

mechanical factors must be incorporated into any condition/risk tool used by Eskom. Eskom 

distribution maintains performance files on all its circuit breakers, and power system modelling is 

conducted annually to determine among other things, fault levels at every substation. It is suggested 

that number of breaker operations be combined with fault levels, and furan analysis to produce a risk 

index for mechanical failure.  For example, high furans in the oil combined with high fault levels and 

frequent breaker operations would result in a transformer with a high risk of mechanical failure.  This 

would assist operating units such as GOU predict failures more accurately. 
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4 Amended Plant Health Index 
 

This chapter proposes an amended plant health index and transformer condition risk indicator. The 

PHI in its current guise is heavily weighted for long term plant assessment and as a result is unable to 

serve the distribution business where it is needed most, i.e. short and medium term assessments. The 

formula for the calculation of the PHI score can be amended to place more emphasis on DGA. 

Additionally, the current PHI is reliant on solely TDCG for DGA analysis. For the TDCG to detect a 

fault in the transformer, it requires a combined ppm value for all the combustible gases to be greater 

than 430 ppm. It is quite foreseeable that the TDCG would fail in the early detection faults due to its 

reliance on a minimum ppm threshold of combustible gases and therefore incorrectly classify a 

transformer with an infancy fault condition as operating normally. A better solution would be to 

incorporate some of the other well-known methods for gas analysis together with the TDCG. Methods 

that employ analysing the ratio of the gases present in the oil will negate the drawbacks of solely 

considering the ppm value of gases in the oil. It is recommended that the basic gas ratio and the 

Eskom LTPHI method be incorporated into the scoring for DGA. Duval’s triangle and the key gas 

method will not be able to be used for the PHI as it does not recognise a normal condition and hence 

can only be used for identification of faults once it is determined that there is a problem with the 

transformer.   

The current PHI also ignores the importance of the oil quality in the longevity of the transformer. The 

life of the transformer is ascertained by the life of the paper, which in turn is relies on the quality of 

the insulating oil. Since the quality of the oil plays a major role in the insulation system of the 

transformer and if allowed to oxidize, sludge and degrade will place the transformer at a greater risk 

of failure, it should also be represented in any health assessment of transformers. 
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4.1 Amended Index  
 

The amended plant health index (APHI) is illustrated in Figure 4-1, this index endeavours to account 

for the shortcomings of the current PHI by accounted for the aspects that were critiqued. 

 
Figure 4-1: Amended Plant Health Index  

 
 

4.1.1 Moisture in Paper (30%) 
 

Oil moisture content and temperature of the oil are the critical input variables for this assessment. The 

percentage moisture in paper is calculated using a moisture indicator based on the Pipers Chart. Table 

12 lists the criteria and scoring of the moisture in paper and the criterion. This criterion carries a 

weight of 30% of the total APHI. 

Table 12: Scoring of moisture in paper assessment 

Moisture (30% weighting) Score 
% Moisture per dry-weight > 5 % and high 
confidence 4 
5% >% Moisture per dry-weight > 3 % and high 
confidence 3 
3% > % Moisture per dry-weight > 2 % and high 
confidence 2 
Low moisture 1 
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4.1.2 Dissolved Gas Analysis (30%) 
 

Another weakness of the PHI is its reliance on solely TDCG for DGA analysis. For the TDCG to 

detect a fault in the transformer, it requires a combined ppm value for all the combustible gases to be 

greater than 430 ppm. Floating potential and early stage discharge type faults are generally typified by 

low levels of acetylene (10-50ppm) and hydrogen (100ppm) with small amounts of methane (10-

50ppm), ethane (10-50ppm) and ethylene (10-50ppm) also present. It is quite foreseeable that the 

TDCG would incorrectly classify a transformer with such a fault condition as operating normally.  

A better solution would be to incorporate some of the other well-known methods for gas analysis 

together with the TDCG. Methods that employ analysing the ratio of the gases present in the oil will 

negate the drawbacks of solely considering the ppm value of gases in the oil. It is recommended that 

the basic gas ratio and the Eskom LTPHI method be incorporated into the scoring for DGA. Duval’s 

triangle and the key gas method will not be able to be used for the APHI as it does not recognise a 

normal condition and hence can only be used for identification of faults once it is determined that 

there is a problem with the transformer.      

The dissolved gas analysis described in Section 2.3.1 consists of three components: 

• The basic gas ratio, shown in Table 13, which carries a weighting of 40% 

• The total dissolved combustible gases, shown in Table 14, which carries a weight of 30% 

• The LTPHI, shown in Table 15, relates the quantity of the individual dissolved gas to a score. 

The highest score is used for this component.  

 

Table 13: Scoring of Basic Gas Ratio Assessment 

The Basic Gas Ratio (40% weighting) Score 
D1 2 
D2 5 
T1 2 
T2 3.5 
T3 5 
PD 3 

 

Table 14: Scoring of TDCG assessment 

TDCG (30% weighting) Score 
TDCG >1200 ppm 8 
TDCG > 720 ppm and CO2 less 50% 4 
TDCG > 720 ppm 3 
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TDCG > 430 ppm 2 
Low TDCG 1 

 

Table 15: Scoring of LTPHI assessment 

LTPHI (30% weighting) Score 

C2H2 

< 5 ppm 0 
> 5 ppm 4 
> 15 ppm 6 
> 35 ppm 8 

H2 

< 50 ppm 0 
> 50 ppm 4 
> 150 ppm 6 
> 250 ppm 8 

C2H6 

< 50 ppm 0 
> 50 ppm 4 
> 100 ppm 6 
> 150 ppm 8 

C2H4 

< 50 ppm 0 
> 50 ppm 4 
> 100 ppm 6 
> 150 ppm 8 

CH4 

< 75 ppm 0 
> 75 ppm 4 
> 150 ppm 6 
> 250 ppm 8 

CO 

< 500 ppm 0 
> 500 ppm 1 
> 750 ppm 2.5 
> 1000 ppm 4 

 

The DGA assessment is a combination of the three components as shown in Table 16. 

Table 16: Weighting of DGA assessment 

DGA (30% weighting) Score 
Basic Gas Ratio 0.4 
TDCG 0.3 
LTPHI  0.3 

 

 

4.1.3 Oil Quality (30%) 
 

Another method of improving the PHI would be to include oil quality parameters. The life of the 

transformer is ascertained by the life of the paper, which in turn is relies on the quality of the 

insulating oil. The oil provides dielectric strength, and facilitates cooling of the transformer. The 

quality of the oil plays a major role in the insulation system of the transformer and if it is allowed to 
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oxidize, sludge and degrade, it will place the transformer at a greater risk of failure. It should 

therefore be represented in any health assessment of transformers. The key oil quality indexes are 

electric strength, moisture in the oil, acidity, dissipation factor (tan delta) and interfacial tension (IFT). 

Until then the electric strength, moisture in and acidity can be used ascertain a score for oil quality. 

All three parameters are readily available. 

The oil quality score consists of: 

• Moisture in oil, shown in Table 17 

• Electric field strength, shown in Table 18 

• Acidity, shown in Table 19 

The maximum or the highest value of the scores is used. 

Table 17: Scoring of Moisture in Oil Assessment 

Moisture in Oil Score 
Moisture > 40 ppm 30 
20 ppm < Moisture < 30 ppm 10 
10 ppm < Moisture < 20 ppm 4 
Moisture < 10 ppm 2 

 

Table 18: Scoring of Electric Field Strength assessment 

Electric Field Strength Score 
Electric field Strength < 40 kV/mm 30 
50 kV/mm < Electric field Strength <= 40 kV/mm 12 
60 kV/mm < Electric field Strength <= 50 kV/mm 5 
>60 kV/mm 0 

 

Table 19: Scoring of Acidity Assessment 

Acidity Score 
0.25 mg KOH/g < Acidity < 0.4 mg KOH/g 30 
0.1 mg KOH/g < Acidity < 0.25 mg KOH/g 12 
Acidity < 0.1 mg KOH/g 5 
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4.1.4 Degree of polymerization (DP) via Furan Analysis (30%) 
 

The accuracy of the PHI can be further enhanced by removing the option of using the DP models for 

DP prediction. As all of Eskom’s transformers are sampled at least once a year for oil quality and 

DGA, it is possible to take oil samples for furan analysis at the same time. Annual DP analysis will 

also allow for trending of the DP and will allow rate of change analysis rather than using the absolute 

value of the DP. 

 

Table 20: Scoring of Furans assessment 

Degree of Polymerisation Score 
End of Life  Resample annual age < 35 4 
Extensive Deterioration Resample 2 Yearly (350 < Y < -20X+900) 3 

Moderate Deterioration 
Resample 2 Yearly (200 < Y < 350 AND Y> -

20X+900 2 
End of Life  Resample annual  age > 35  4 
Healthy  Resample 5 yearly  1 
 

 

4.1.5 APHI Score 
 

The expected life of a transformer in the Eskom Distribution network is 40 years and it is not 

expected that the paper will degrade to catastrophic proportions in the first 10 to 15 years, even if 

highly loaded. By reducing the weighting of the DP score and increasing the weighting of the DGA 

score will assist in the detection of problems in the medium term, and even short term if the sampling 

frequency for unhealthy units is increased – transformers that fall into Category D should be sampled 

every three months, those in Category C should be sampled every six months while those 

transformers listed in Categories A and B should be sampled annually.  

The APHI score is the sum of 30% DP score, 40% DGA score, 30% moisture score and 10% oil 

quality. A PHI score is then assigned to each transformer using the scoring shown in Table 21 and 

Figure 4-2. 

 

Table 21: APHI Categories 

Category Descriptions Score 
A – Low risk score < 1.01 
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B – Low to Medium Risk 1.01 <= score <2.01   
C – Medium Risk 2.01 <= score <3.01   
D – High Risk 3.01 <=score 

 
 

 
 

Figure 4-2: APHI Categories 

 

4.1.6 Transformer Risk Index 
 

The PHI is taken further to account for the network characteristics  

• A fault level score, shown in Table 22, is used to quantify the fault level of the network where 

the transformers is installed. The higher the fault level the more likely the transformer will 

experience damage to the windings in the event of a fault. 

• Network performance score, shown in Table 23, where a score is assigned according to the 

occurrence of faults on the particular network. Breaker operations, which would include load 

shedding and faults on the network, dips on the network, reference to the location. It is 

currently difficult to quantify or trend as this information is not currently recorded. 

These scores are in the form of multipliers as illustrated in Figure 4-1 and are combined with the PHI 

or APHI to give a risk index. Figure 4-3 illustrates how the PHI is combined with the to give a more 

appropriate risk index. 

 
Table 22: Fault Level Score 

Category Descriptions Score 
Low <=3000A 1 
Medium >3000A and <=5000A 2 
High >5000A 3 

 
Table 23: Network Performance Score 
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Category Descriptions Score 
Good 1 
Moderate 2 
Poor 3 
Very Poor 5 

 
 

Table 24: Risk Index Categories 

Category Descriptions Score 
A – Low risk score < 1.01 
B – Low to Medium Risk 1.01 <= score <2.01   
C – Medium Risk 2.01 <= score <3.01   
D – High Risk 3.01 <=score 

 
 
 

 

 
Figure 4-3: Risk Index Categories 

 

4.2 Case Study 1 – Jetta Substation 
 

Case Study 1 investigates the effect of fault level and network performance on the risk index. Jetta 

substation in Gauteng OU has suffered multiple transformer failures due issues on the 22 kV network. 

The 22 kV uncovered conductors are strung along towers meant for 11 kV covered conductors. As a 

result, the network is prone to phase to phase faults and to three phase faults (due to vandalism – 

vandals throw chains across the uncovered conductors, creating a three phase fault and causing the 

pole mounted circuit breakers to lock out. The conductors are then stolen). Even though the fault 

levels are low, the continuous faults eventually result in mechanical damage to the medium voltage 

windings of the transformer. At present, the substation is operating with two 20 MVA transformers 

that are approximately 8 years old. Both transformers have DPs of 910. There are no concerns with 

respect to the DGA as the total dissolved gases for both transformers are below 430 ppm, indicating 
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normal operation. The PHI also indicates that there is very little moisture in the paper of the 

transformer. The PHI therefore lists both transformers in a good condition. 

Table 25: PHI for the Transformers at Jetta Substation 

Substation MVA Age DP TDCG 
Moisture 

Score 

PHI 

Score 
PHI 

Jetta 

88/22/11kV 
20 8 910 180 2 1.09 B 

Jetta 

88/22/11kV 
20 7 910 57 1 0.96 A 

 

This gives a false impression of the situation at Jetta substation as the transformers are at a high risk 

of failure while the defects on the network remain unattended. A more accurate assessment would be 

to incorporate the PHI with appropriate measures taken into account the fault level and the network 

performance. An example of this is shown in Table 26, where it can be seen that the risk of failure is 

quantified.  

Table 26: Risk of Failure for the Transformers at Jetta Substation 

Substation 
PHI 

Score 
PHI 

Fault 

Level 

Network 

Performance 
Risk Index 

Risk of 

Failure 

Jetta 1.09 B Low Very Poor 5.44 Very High 

Jetta 0.96 A Low Very Poor 4.61 Very High 

 

4.3 Case Study 2 – PHI Comparison with Poor Quality Oil 
 

Case Study 2 investigates the effect of oil quality on the health index with the details of the 

transformer found in Table 27. 

Table 27: Transformer Details for Case Study 2 

Substation MVA Age DP TDCG Moisture 

MODDER SHAFT 

TRFR 1 
5 12 910 249 215 
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Table 28 illustrates the results for a transformer with the PHI shown in blue against the APHI shown 

in green. 

Table 28: Comparison of PHIs for Case Study 2 

DP 

Score 

DGA 

Score 

Moisture 

Score 

PHI 

Score 
PHI APHI 

APHI 

Score 

Moisture 

in Paper 

Score 

DGA 

Score 

Oil 

Quality 

Score 

1 1 5 1.40 B D 5.5167 5 3.67 30 

 

This example shows an appreciable jump in the score from 1.4 to 5.5. With the DP being common 

between the two, it is clear that oil quality and DGA have heavily influenced this elevation in health 

index categorization. To determine whether this increase is warranted, a look at the oil sample values 

is required. This is shown in the tables below. 

Table 29: Oil Sample Results for Case Study 2 

Moisture  
(ppm) 

Electric Strength 
(kV/mm) 

Acidity 
mg KOH/g 

Sampling 
Temperature  

(oC) 
215 15 0.04 20 

 

Table 30: Dissolved Gas Content for Case Study2 

H2 
(ppm) 

O2 
(ppm) 

N2 
(ppm) 

CH4 
(ppm) 

CO 
(ppm) 

CO2 
(ppm) 

C2H6 
(ppm) 

C2H4 
(ppm) 

C2H2 
(ppm) 

63 9083 45206 11 152 2260 2 12 9 
 

 

Table 29 and Table 30 illustrate that the poor oil quality value is as a result of the extremely low (ES = 

15 kV/mm) electric strength of the oil and the high moisture content (215 ppm). Eskom’s minimum 

threshold for electric strength and moisture for new oil is ES = 70 kV, moisture = 20 ppm. This 

provides an indication of how severely the oil has deteriorated. As this is not a factor in the PHI and 

negatively impacts the longevity of the transformer, the APHI is an improvement. With such a low 

electric strength, the high risk attributed to this transformer is warranted. 



 51 

 

4.4 Case Study 3 – PHI Comparison with high DGA score 
 

Case Study 3 investigates the effect of a high DGA on the health index with the details of the 

transformer found in Table 31. 

 

Table 31: Transformer Details for Case Study 3 

Substation MVA 
Age 

(years) 
DP TDCG (ppm) Moisture (ppm) 

RATANDA TRFR 1 10 37 910 326 10 

 

Table 32 illustrates the results for a transformer with the PHI shown in blue against the APHI shown 

in green. The greater emphasis on DGA in the A PHI is due to the introduction of a short term DGA 

diagnostic tool, the Basic Gas Ratio, into the DGA score. The inclusion of this tool is intended to 

reduce the prediction horizon as this diagnosis is performed annually. It is imperative that the gas 

composition be included in the analysis to supplement the TDCG as a means to improve diagnostic 

reliability. This is achieved to some extent as deficiencies in one tool are covered by the other. 

 

Table 32: Comparison of PHIs for Case Study 3 

DP 

Score 

DGA 

Score 

Moisture 

Score 

PHI 

Score 
PHI APHI 

APHI 

Score 

Moisture 

in Paper 

Score 

DGA 

Score 

Oil 

Quality 

Score 

1 1 2.78 1.18 B D 3.134 2.78 5 0 

 

In this case study, the elevated PHI is due to the sharp increase in the DGA score from 1 to 5. The 

reason behind the increase is supported by the gas composition in the Table 33 and Table 34. 
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Table 33: Oil Sample Results for Case Study 3 

Moisture  
(ppm) 

Electric Strength 
(kV/mm) 

Acidity 
mg KOH/g 

Sampling 
Temperature  

(oC) 
10 65 0.02 35 

 

Table 34: Dissolved Gas Content for Case Study 3 

H2 
(ppm) 

O2 
(ppm) 

N2 
(ppm) 

CH4 
(ppm) 

CO 
(ppm) 

CO2 
(ppm) 

C2H6 
(ppm) 

C2H4 
(ppm) 

C2H2 
(ppm) 

37 21167 50292 28 84 626 3 59 115 
 

The high level of acetylene (C2H2) indicates that discharges are occurring in the transformer. The 

Basic gas ratio and Duval’s Triangle Figure 4-4both indicate that this is the case. 

 

Figure 4-4: Duval’s triangle for the transformer in Case Study 3 

 

The elevation in risk from category B to category D is therefore warranted. The PHI incorrectly rated 

the transformer as in a low to medium risk, as it failed to recognize the discharge type fault as the 

combined total dissolved gases were less than 430 ppm.  

 

4.5 Case Study 4 – PHI Comparison with low DGA score 
 

Case Study 4 investigates the effect of a low DGA on the health index with the details of the 

transformer found in Table 35. 
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Table 35: Transformer Details for Case Study 4 

Substation MVA 
Age 

(years) 
DP 

TDCG  

(ppm) 

Moisture  

(ppm) 

MANOR TRFR 1 40 12 1300 2789 7 

 

Table 36 illustrates the results for a transformer with the PHI shown in blue against the APHI shown 

in green. The index is downgraded from a D to a C. This is because the PHI uses only the TDCG to 

gauge the DGA risk weighting. In the APHI, the DGA score is taken from a combination of 3 

analyses to even out the deficiencies of each method. The oil sample results and the gas composition 

in the oil are listed in Table 37 and Table 38. 

 

Table 36: Comparison of PHIs for Case Study 4 

DP 

Score 

DGA 

Score 

Moisture 

Score 

PHI 

Score 
PHI APHI 

APHI 

Score 

Moisture 

in Paper 

Score 

DGA 

Score 

Oil 

Quality 

Score 

1 8 1.18 3.12 D C 2.654 1.18 5 0 

 

Table 37: Oil Sample Results for Case Study 4 

Moisture  
(ppm) 

Electric Strength 
(kV/mm) 

Acidity 
mg KOH/g 

Sampling 
Temperature  

(oC) 
7 72 0.01 58 

 

Table 38: Dissolved Gas Content for Case Study 4 

H2 
(ppm) 

O2 
(ppm) 

N2 
(ppm) 

CH4 
(ppm) 

CO 
(ppm) 

CO2 
(ppm) 

C2H6 
(ppm) 

C2H4 
(ppm) 

C2H2 
(ppm) 

9 1707 60769 277 208 2571 2259 36 0 
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The total dissolved gases in the oil for this transformer is above 1200 ppm and is hence rated as high 

risk by the current PHI. The APHI, however, recognizes that the high levels of ethane (C2H6) and 

methane (CH4) are indicative of low level heating. This condition is not ideal but is of a lower priority 

than severe overheating (Ethylene C2H4, Methane CH4) and discharge type (Acetylene C2H2, 

Hydrogen H2), and can be continuously managed by monitoring oil sampling, infrared scans and 

loading without effecting supply. Should future oil samples indicate an increase in Ethylene C2H4 

and Methane CH4, the risk would be graded in Category D.  

 

4.6 Reclassification according to APHI in GOU 
 

The transformers are rescored and classified using the APHI as illustrated in Figure 4-5 and Figure 

4-6. In comparison to Figure 3-10, it can be seen that there is less clumping around the score of 1 and 

the APHI have become significantly more distributed. It can be seen in Figure 4-6 that over 50 

transformers previously categorised in category B have moved to categories C and/or D. This is 

expected as the APHI accounts for short and medium term components. 

 

Figure 4-5: Rescoring of Transformers in GOU 
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Figure 4-6: Reclassification of Transformers in GOU 

 

Naderian [17] [25] reported a similar trend where the majority of transformers were in low risk 

category and significant proportion were in the fair to higher risk categories, the age of the 

transformers was not clear. The sample size was over 1000. 

In Figure 3-8 the failures according to the PHI categories are shown. The results are reproduced by in 

Figure 4-7, by using the ratios of the PHI to APHI in each category it can be seen that the no of failed 

transformers in categories C and D increases.  
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Figure 4-7: Reclassification of Transformers Faults for all of Distribution Transformers  

 

The addition of the network performance and fault level scores would further categorise the risk posed 

to transformers (i.e. as they are in the form of multipliers, they can only move to a higher score). At 

the time of writing there was not enough information to track the failure rates of the categories. This 

information would allow for further improvement of the APHI, particularly the scales of the risk 

index components.  
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5 Conclusion 
 

The PHI in its current guise does not meet the immediate need for the Distribution Division of Eskom. 

As can be seen from the correlation of transformer failures to the prediction model, 49 of the last 92 

transformers that failed were categorised as being in a good or very good condition by the PHI. 41 of 

the 92 failures were attributed to mechanical damage to the transformer due to faults on the 

distribution network. As a long term health assessment tool the PHI is unable to predict these failures 

as they occur suddenly often without any progression on the trends of the DGA. As a result, the PHI is 

unable to account for the rapid changes in the condition of transformers due to the impact of network 

operations. In essence, a healthy transformer in an unhealthy operating environment will be prone to 

failure and is thus “unhealthy”. 

In order for the utilities to accommodate for the detection of short and medium term failures, the PHI 

must be used in conjunction with other key inputs to determine the probability of failure of the 

transformer. To account for mechanical forces on transformers the fault levels and performance of the 

network must be known. This information is easily readily available to the utility and is easily 

implementable. 

The formula for the calculation of the PHI score can be amended to place more emphasis on DGA to 

cater for short and medium term assessments. Another weakness of the current PHI is its reliance on 

solely TDCG for DGA analysis. For the TDCG to detect a fault in the transformer, it requires a 

combined ppm value for all the combustible gases to be greater than 430 ppm. It is quite foreseeable 

that the TDCG would fail in the early detection faults due to its reliance on a minimum ppm threshold 

of combustible gases and therefore incorrectly classify a transformer with an infancy fault condition 

as operating normally. 

The current PHI also ignores the importance of the oil quality in the longevity of the transformer. The 

life of the transformer is ascertained by the life of the paper, which in turn is relies on the quality of 

the insulating oil. Since the quality of the oil plays a major role in the insulation system of the 

transformer and if allowed to oxidize, sludge and degrade will place the transformer at a greater risk 

of failure, it should also be represented in any health assessment of transformers. 

 

5.1 Recommendations 
 

It is recommended that the PHI be amended to address the deficiencies highlighted above in the 

following manner: 
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Change the PHI scoring formula to include oil quality parameters and redress the weighting of scores 

as follows: 

Include the basic gas ratio and Eskom LTPHI methods in the DGA scoring criteria to accommodate 

for gas ratios and early detection of faults. 

Introduce a functionality the will allow the distribution operating units to incorporate the risks 

associated with high fault levels and poor network performances as shown in  Figure 13. 

It is recommended that only DP values predicted from oil sample analysis be used for the end of life 

criteria. The frequent sampling of transformers for DP will also allow for the analysis of the rate of 

change on DP. This will be a more accurate method of predicting the remaining life of the paper in the 

transformer. 

It is also recommended that the operating units place more emphasis on the accurate capturing of 

transformer information. Any condition assessment model is only as accurate as the information used 

to populate it. At present, the data capturing is not at an acceptable level. 
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