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ABSTRACT 

Objective: 

To evaluate the role of vitamin A on B lymphocytes, natural killer cells and 
haematological parameters including the activation marker(l2) in HIV-1 
seropositive pregnant women. 

Patients and Methods: 

Baseline, delivery or 6 weeks post supplementation, 1 week post- partum and 3 
month post-partum samples were collected from subjects. Patients were treated 
with vitamin A and beta-carotene or placebo after the baseline bloods were 
collected and were supplemented with a bolus dose one day post delivery. For 
the purposes of this study the delivery and 6 weeks post supplementation 
samples were grouped as delivery samples. Quantification of B lymphocytes, 
the activation marker (12) and natural killer cells were measured by flow 
cytometry, using CD19, I2(HLA-DR) and CD56 monoclonal antibodies 
respectively in a random subsample of 208 patients drawn from a cohort of 400 
HIV-1 positive subjects. 
Vitamin A levels at baseline and complete blood cell counts were also evaluated. 
In this cohort a vitamin A level of <40ug/dl was considered low normal and 
<20ug/dl was considered deficient. 

Results: 

B lymphocyte counts were lower during pregnancy and recovered between 1 
week and 3 months post delivery. While natural killer cell counts were 
comparable at baseline, the placebo group did not change significantly at any of 
the intervals studied, but the vitamin A group showed a rise at 1 week post 
delivery and a subsequent fall. The activation marker (12) did not show any 
significant change in both groups. In the vitamin A group 37. 5% ( 15 out 40) and 
in the placebo group 38.5% (20 out of 52) had retinol levels of <20ug/dl. Fifty 
percent of the patients in the vitamin A group and 55. 7% in the placebo group 
had low normal retinol levels. The mean retinol levels prior to intervention were 
25.65 ug/dl (95% Cl =21. 71 ➔29.60) in the vitamin A group and 24.38 ug/dl 

(Cl=21.80➔26.97) in the placebo group; both groups were comparable at 3 
months post partum. At baseline 65.4% (136 out of 208) patients were anaemic; 
this corrected at 3 months post partum. Six patients had thrombocytopenia at 
baseline. At 3 months the two groups were comparable with platelet counts 
within expected normals in the post partum period. Leucopenia was noted in 
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5.2% (11 out of 208) patients at baseline with counts <5.0 X 109/1. At 3 months 
the two groups were comparable with a mean white cell count of 5.62 X 109/1 in 
the vitamin A group and 5.56 X 109/1 in the placebo group which was 
significantly lower than the baseline levels(vitamin A -7.80 X109/1 and placebo-
7.92 X 109/1). Lymphopenia was noted in 9.1 % (19 out of 208) patients at 
baseline. A significant increase was noted at 3 months post partum in the two 
groups. 

Conclusion: 

There was no significant effect of vitamin A on 8 lymphocytes. Natural killer cells 
in the vitamin A group increased more than in the placebo group but this 
"booster'' effect by vitamin A was very transient. No difference was noted in the 
activation marker between the 2 groups at any point. The cellular changes with 
pregnancy, in HIV+ patients in this study are the same as in HIV- patients. No 
beneficial or detrimental effect was noted on natural killer cells, B lymphocytes 
and the activation marker for vitamin A . 
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CHAPTER 1 

BACKGROUND 

1.1 Vitamin A: 

During the 1920s and 1930s, vitamin A became known as the "anti-infective" 

vitamin, and the first attempts were made then to use it therapeutically during 

infectious illnesses. Vitamin A deficiency is the leading cause of xerophthalmia, 

visual impairment and nutritional blindness in children (1,2), and has emerged 

as a major cause of childhood mortality and morbidity in the developing 

world(3). Pregnancy and HIV infection are risk factors for vitamin A 

deficiency(4). As a single intervention vitiamin A therapy may alter disease 

morbidity even when other concurrent macro- and micronutrient deficiencies are 

not corrected(S). It may also have significant immune effects in hosts who are 

not deficient in this micronutrient. Vitamin A when administered, may also have 

protective effects in various other disease states such as bronchopulmonary 

dysplasia, alcoholism and cancer. Vitamin A is an important modulator of the 

immune system being responsible for growth, cellular differentiation, 

maintenance of epithelial surfaces, reproduction and vision(6, 7), as well as 

cytokine production.(8). Vitamin A deficiency and hypovitaminosis have been 

shown to impair immune responses(8). Vitamin A is bound to its physiological 

carriers, retinol binding protein (RBP), cytoplasmic retinol binding protein 

(CRBP), retinoic acid receptor (RAR) and retinoic X receptor (RXR) which is 

essential for the growth of activated human B cells(9). 



Hypovitaminosis is associated with compromised 8-cell haematopoiesis and 

impaired humeral immunity. Vitamin A deficiency and hypovitaminosis have 

been shown to impair normal immune cytokine production which enhance B-cell 

activation. HIV infection is associated with multiple nutritional deficiencies, 

including Vitamin A(10). Vitamin A deficiency has also been implicated as a risk 

factor for increased mortality during infancy and in the perinatal period(11 ), and 

as a risk factor for mother to infant transmission of HIV in developing 

countries(12). Vitamin A influences the numbers and nature of white cells 

involved in immune, inflammatory and wound healing processes(13). 

Liver, cod liver oil, and dairy products are good sources of preformed vitamin A 

alcohol (retinol). Green leafy vegetables, carrots, and fruits such as mangoes 

are sources of carotenoids such as P-carotene, which are converted to retinal in 

the intestine. Many plant carotenoids, such as f3-carotene and p-cryptoxanthin 

can be converted to vitamin A by an oxygenase present in the intestine and 

elsewhere. Carotenoids are detectable in various tissues, but unlike vitamin A 

they do not combine with specific transport proteins and are transported mainly 

as non-polar lipids(14). 

Retinol receptors are present on cells of many different body tissues. In 

intracytoplasmic spaces retinol is converted to its active metabolites, retinoic acid 

and retinal. These metabolites in turn bind to specific intranuclear receptors that 

modulate cellular activities. Decreased serum vitamin A content is noted in a 

wide variety of infective and febrile conditions. This is probably a manifestation 

of the acute phase response. Large oral doses of vitamin A have reduced 

2 



measles morbidity and mortality(15). Vitamin A supplementation has improved 

immune function as shown by speedier reversal of measles induced 

lymphopenia and by improvement of the measles lgG antibody response during 

the acute phase of the disorder(16). Retinoic acid is probably the physiologically 

important metabolite for sustaining lgG immune responses in vivo(17). Reduced 

liver stores of vitamin A are noted following infections and the low levels may be 

due to anorexia, decreased absorption, increased metabolic requirements, or 

increased catabolism. Plasma and liver levels of vitamin A are often used for 

investigational purposes and in the absence of clinical manifestations plasma 

levels below 0.7 umol/1 (20 ug/dl) reflect vitamin A deficiency. Levels below 1,05 

umol/1 (30 ug/dl) may be associated with compromised biological action of retinol. 

A single high oral dose of the vitamin may replenish liver stores. Excessive 

vitamin A administration to pregnant women during the first trimester may be 

teratogenic(S), and extremely high intake may lead to signs of chronic toxicity. 

This is manifested by bone pain, dry skin and anorexia. Beta-carotene 

supplementation improves some indices of immune response, including 

increasing numbers of circulating Natural Killer cells in humans with inadequate 

vitamin A intake or with a previously stressed immune response(18). Low 

vitamin A levels have also been reported in many other infectious conditions, eg. 

tuberculosis, schistosomiasis, malaria, leprosy, rheumatic fever, otitis media, 

gastrointestinal and respiratory infections(S). Vitamin A is vital for maintenance 

of mucosa! integrity and immunity. In both humans and animals who are vitamin 

A deficient lymphocytes have collectively expressed fewer activation markers 
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and at times displayed reduced mitogen-induced proliferation(19). Abnormal 

specific lgG subclass proportions have also been described in vitamin A 

deficiency, and this may also relate to reduced clonal expansion of specific B cell 

subsets in response to alterations in T cell cytokine production. Abnormal 

peripheral blood lymphocyte proportions in vitamin A deficient rats were 

corrected by retinoic acid supplementation (19). Rats with induced vitamin A 

deficiency showed decrease in the proliferative response of B cells but no 

decrease in T cell response was observed. 

Beta-carotene is a non-toxic compound whose main side-effect, when taken in 

high doses, is a benign and reversible yellowing of the skin (hypercarotenaemia). 

Mechanisms of action of beta-carotene include quenching of oxygen free 

radicals, improved cell to cell communication, modulation of lipo-oxygenase 

activity, increased cytokine release and stabilization of lysosomal 

membranes(20). Beta-carotene may play a more important role than retinal in 

HIV-1 infected patients(21 ). Vitamin A together with beta-carotene in HIV­

positive women could greatly reduce viraemia(22); and an increased viral load 

has been previously shown to increase the risk of vertical transmission(23). 

Altered functional capacity of virtually all types of immune cells has been 

described in vitamin A deficiency. With HIV infection there is alteration in T-cell 

subsets and dysregulation of B lymphocytes. This study will assess the 

prevalence of vitamin A deficiency and the impact of vitamin A supplementation 

in HIV infected pregnant females. 
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1.2 HUMAN IMMUNODEFICIENCY VIRUS AND ACQUIRED 

IMMUNODEFICIENCY SYNDROME: 

The impact that human immunodeficiency virus (HIV) and AIDS have had on the 

world is unparalleled in modern times. AIDS was first diagnosed in mid-1981 

when an unusual form of pneumocystis carinii pneumonia (PCP) and Kaposi 

sarcoma were reported in young, previously healthy homosexual men. The 

pandemic is particularly devastating in sub-Saharan Africa. Over five million 

people in South Africa are expected to be HIV positive by the turn of the century 

and the epidemic is expected to peak in seven years time. HIV-1 infection in 

Kwa-Zulu Natal is increasing rapidly with 14.4%(1997) of child bearing women 

being seropositive(24). 

The World Health Organization (WHO) estimates that at least 30 million people 

are infected worldwide. There have been more than 1.4 million new infections in 

Africa every year since 1991. An estimated 90% of the world's HIV/AIDS burden 

is in resource poor settings and more than 70% of people requiring care are in 

sub-Saharan Africa(25 ). 

An estimated 26.8 million adults and 2.6 million children had become infected 

with HIV throughout the world since the start of the pandemic; of these, an 

estimated 5 million adults and 1.4 million children had died(26 ). 

Recent studies have addressed the timing of HIV transmission in neonates and 

suggest that the infection is more likely to occur as a peripartum event(27). 

HIV-1 is a member of the lentivirus subfamily of human retroviruses and the 
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etiologic agent of AIDS in the vast majority of cases throughout the world. HIV-2 

is another human retrovirus that causes AIDS and is endemic in parts of West 

Africa. It is closely related to simian immunodeficiency virus (SIV) and may be 

less pathogenic than HIV-1. HTLV-1 and HTLV-11 are also found with increased 

frequency in HIV-1 infected populations, particularly intravenous drug users(27). 

CD4+ lymphocytes and viral load have been unequivocally established as having 

clinical utility in management of HIV infected patients(28). Primary infection with 

HIV is followed by the development of detectable humeral and cellular immune 

responses to the virus and a prolonged period of clinical latency. Associated with 

the progression to AIDS is the rapid decline in normal T-cell function (switch to 

the T-helper type-2 response)(29). The polyclonal hypergammopathy, 

associated with 8-cell responses, are attributed to the T-helper type-2 responses 

(CD4+/CD29+ memory phenotype)(29,30). HIV activates resting 8-cells to 

produce various cytokines viz. TNF-alpha and IL-6. These cytokines have been 

shown to increase viral replication by acting on the Nf-KB-like L TR (long terminal 

repeats) sequences of the viral genome (30,31,32). Apoptosis appears to 

account for the progressive loss of T cells in infected individuals who develop 

AIDS irrespective of whether they bear the integrated proviral genome. Cells 

from long-term nonprogressors undergo a decreased level of apoptosis 

compared with those from patients with AIDS(33). 

Patients with HIV infection have been documented to have symptoms compatible 

with adrenal insufficiency(34) and symptoms occur in this setting with multiple 

opportunistic infections and profound wasting. Weight loss, often profound in 
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magnitude, is an almost universal feature of HIV infection, and patients may lose 

30 to 50% of their body mass before succumbing to the disease. Weight loss 

can be caused by five mechanisms: inadequate dietary intake, reduced intestinal 

absorption, abnormal utilization, increased excretion of nutrients, and increased 

host requirements. Weight loss contributes to an accelerated, downhill course; it 

can also be used to predict the time of death in patients with HIV infection. It has 

been suggested that reversal of weight loss in HIV-infected patients could repair 

the immunologic abnormalities caused by the wasting process, independent of 

those induced by the viral infection(35). 

Infection with the human immunodeficiency virus has been associated with the 

dysfunction of both T-and 8-cell activities soon after the primary viraemia. A slow 

replicating virus can be the more pathogenic type(36). Most paediatric HIV 

infection occurs in the perinatal period, when immunologic immaturity and 

antigenic naivete is well recognised(37). 

CD30 triggering may play an important role in promoting HIV replication(38). A 

rise in virus production then occurs concomitant with the onset of symptoms and 

eventually AIDS. Characteristics of long-term survivors include low infectious 

virus load, a less cytopathic HIV strain, no enhancing antibodies, TH1 

cell response greater than TH2 cell response and strong CD8+ cell antiviral 

response(39). 

The social and biologic consequences of HIV disease are greater in females. 

Women are more likely than men to rely on clinic care or to need drug 
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rehabilitation services. Several gynaecologic infections have been reported to 

have their natural course modified by HIV infection. Pelvic inflammatory 

disease(PID) has been noted to appear with less leucocytosis, but with more 

abscesses and a greater need for surgical intervention. Vaginal candidiasis is a 

common gynaecologic infection in HIV-infected women, and it has been 

commonly noted in those with normal CD4 counts, prior to the appearance of 

either oral or oesophageal candidiasis. HIV-1 seropositive pregnant women 

develop high rates of genital ulcer disease, genital warts, positive syphilis 

serology and stillbirths(40). HIV-1 seropositive women had significantly lower 

birthweight and with premature neonates. Factors that have been identified as 

possible risk factors for HIV mother-to-child transmission include impaired 

maternal clinical and immunological status, HIV seroconversion during 

pregnancy, shortened duration of pregnancy, vaginal delivery, prolonged or 

complicated labour and breast-feeding( 41 ). Pregnant women with CD4 counts < 

30% have higher risk of preterm delivery and postpartum endometritis is more 

common in HIV-1 infected women. More HIV seropositive pregnant women have 

raised temperatures on admission to the labour ward compared to the HIV 

negative women(42). Haematological parameters were abnormal in seropositive 

women and these did not progress over the course of pregnancy. At delivery 

seropositive women were more likely to receive antibiotics and have episiotomy 

although the obstetric outcome was unaffected. Seropositive women admitting to 

drug use had a significant increase in absolute lymphocyte count at delivery. 

Seropositive mothers were more likely to have sexually transmitted disease and 
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medical complications during pregnancy(43). In asymptomatic HIV infection, 

changes in the absolute levels of CD4 and CD8 lymphocyte counts were 

primarily related to changes in the other components of the white cell count. 

Pregnancy itself had no adverse effect on immunological markers in HIV infected 

individuals(44). 

In newborns the absence of the env-specific TH activity places them at risk for 

infection(45).The presence of immunologic abnormalities shortly after birth, 

confirms that HIV-1 may affect the immune system even during intrauterine 

life(46). Most of the HIV-1 infected babies showed early abnormalities in humeral 

and cellular immunity, hypergammaglobulinaemia, low percentage of CD4 

circulating lymphocytes and increased spontaneous in vitro immunoglobulin 

production. These changes were persistent in the HIV-1 infected children, but 

sporadic in those uninfected and immunological abnormalities were frequently 

found before clinical symptoms occurred(47). 
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1.3 B LYMPHOCYTES / B CELLS 

Lymphocytes are generated throughout human life though in gradually easing 

numbers. They play a dynamic role in the inflammatory response and the 

production of antibodies (48). In birds, 8 cells originate in a specialized organ 

called the Bursa of Fabricius, while in mammals 8-cell development occurs in the 

bone marrow. Each 8 cell bears a unique receptor and undergoes gene 

rearrangement which leads to the production of immunoglobulin. Each 

mammalian 8 cell produces only one heavy chain and one light chain, and 

thus bears receptors of a single specificity. A large and diverse repertoire of 8-

cell receptors is generated during the early phases of 8-cell development. The 

expression of antigen receptors on the surface of the 8 lymphocyte marks a 

major watershed in its differentiation(48). The binding of antigen to surface 

immunoglobulin early in development leads to inactivation or loss of the 

8 cell. 8 cells develop from progenitor cells in the bone marrow and rearrange 

their immunoglobulin genes to produce a receptor with unique antigen specificity. 

No surface immunoglobulin can be expressed until gene rearrangement is 

completed. This process is independent of the antigens in the environment, but it 

is however dependent on interactions with bone marrow stromal cells. Immature 

8 cells expressing surface immunoglobulin interact with antigens in 

their environment; if they encounter antigen they are rendered tolerant. These 

changes occur in the bone marrow, from which immature B cells emerge into 

the peripheral lymphocyte pool. Immature B cells differentiate within few days 

into mature B cells expressing surface lgM and lgD(48). The B cell can be 
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activated by encounter with antigen in a lymphoid organ and then respond by 

proliferating and differentiating into the last phase of the 8-cell life span. This is 

the antibody-secreting plasma cell, which may remain in the lymphoid organ but 

more usually migrates to the bone marrow. The successive stages of 8-cell 

differentiation are marked by the successive steps in the rearrangement of the 

immunoglobulin genes. Differentiation can be assessed on the basis of CDS 

expression and production of polyspecific lg(49). CDS+ B cells are strongly 

associated with autoimmune disorders and also in the rejection of HLA-DR and 

DQ compatible bone marrow graft. CDS+ B cells play a role in natural immunity 

in humans(SO). 

CD23 is also involved in 8-cell growth, pro-thymocyte maturation, myeloid 

precursor proliferation, inhibition of macrophage migration and antigen 

presentation(51 ). 

Tallon et al reported that haemodilution in pregnancy could be the cause for 

decrease in absolute lymphocyte counts of T and B cells in the third trimester of 

pregnancy(S2). As the plasma volume returns to normal post partum these cells 

return to normal numbers. 

Maclean et al reported that immunoglobulin production from peripheral blood 

was elevated in normal pregnancy and spontaneous abortion(S3). This group of 

workers were not certain as to whether the increase was as a result of increase 

in B cell numbers or increased production of immunoglobulin. B cell activation 

was also noted in some cases of spontaneous abortion. 
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Maclean et al found in normal pregnancy there is an increase in immunological 

potential of T and B lymphocytes without an increase in activity(54). 

Dodson et al found that T and B cell numbers were well within normal limits 

throughout gestation and the values were not significantly different from the 

normal non pregnant control women(SS). 

It was also confirmed in another study that B cell counts did not alter in early 

pregnancy( unpublished). 

Strelkauskas et al reported altered blood levels of T and B lymphocytes in the 

first half of human pregnancy(56). All their subjects showed an inversion of T 

and B cell levels in early pregnancy. They concluded that 8-cell levels 

(measured by surface immunoglobulin or surface antigen) were increased. 

Baines et al reported that gravid females show no increase or 

decrease in circulating thymus-derived or bone-marrow derived lymphocyte 

levels during the first eight months of pregnancy(57). 

Scott et al reported that the mean number of B cells is increased during 

gestation(58). 

HIV infected individuals, in addition to the depletion of CD4+ T cells, exhibit 

abnormalities in the 8-cell limb of the immune response and some are secondary 

to T-cell deficiency, while others are T-cell independent. B lymphocytes are not 

directly infected by HIV(59), although their function in HIV infection is severely 

impaired. The majority of AIDS patients exhibit polyclonal B-cell activation with 
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spontaneous 8-cell proliferation, increased lg secretion, and 

hypergammaglobulinaemia, suggesting chronic activation. These activated B 

cells are specific for HIV epitopes. In addition to spontaneous 8-cell 

hyperactivity, B cells from infected patients exhibit an intrinsic defect in antigen­

and mitogen-induced responses at all stages of infection(27). IL-6 is a critical 

factor in the terminal differentiation of activated B cells. It has been shown that 

exposure of normal PBL to HIV whole-virus preparation induces IL-6 production 

in vitro, predominantly by monocytes and that IL-6 induces HIV expression in 

infected monocytes, in synergy with other cytokines. Monocytes and T cells 

contribute to the secretion of IL-6, which plays an important role in the 

pathogenesis of B-cell activation in HIV infection. B cells themselves secrete 

TNF--a and IL-6 when activated and spontaneously activated B cells from HIV­

infected individuals secrete TNF-a and IL-6 which can induce HIV expression in 

chronically infected monocyte lines. The high frequency of 8-cell lymphomas in 

patients with AIDS is another manifestation of B-cell dysregulation(27). CD30+ 

CD4+ T cells exhibit significantly greater helper activity of B cell lg production 

than CD30-CD4+ T cells. CD30+ T cells exhibit potent helper activity for PWM­

driven B cell differentiation(60). B cell activation by most antigens requires 

binding of the antigen by the 8-cell surface immunoglobulin and interaction with 

antigen-specific helper T cells(61 ). These helper T cells induce a phase of 

vigorous 8-cell proliferation, after which the clonally-expanded progeny of naive 

B cells differentiate into either antibody-secreting or memory B cells. During the 

differentiation of activated B cells, several changes occur in the antibody 
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molecule. The number of B cells that express CD23 nearly doubles between 

infancy and adulthood(62). Retroviruses can induce autoimmunity, including 

polyclonal 8-cell activation, cytokine dysregulation, and molecular mimicry(59). 



1.4 HLA-DR (12) ANTIGENS 

The highly polymorphic cell surface structures involved in this system were 

initially identified in mice where they became known as the major 

histocompatibility complex (MHC) . Later, the human equivalent of the MHC, 

known as the human leucocyte antigen (HLA) system, was identified and found 

on chromosome 6 (63). Three classes of molecule, denoted I, II, and Ill, have 

been identified in the MHCs of both mouse and man. There are multiple Class I 

loci but the classical transplantation antigens fall into three positions termed H-

2K, H-2D and H-2L in the mouse and HLA-A, HLA-8 and HLA-C in man. The 

Class II genes, encoded in the A and E regions of the mouse MHC and the HLA­

D region of man, are now known to correspond directly to the immune 

response(lr) genes known to control responses to different antigens(63). Class I 

gene products are primarily recognized by cytotoxic T cells. Class II gene 

products, often called la (immune associated antigens), are primarily involved in 

the activation of helper T cells. Human HLA-DR (la) antigens were initially 

detected and studied using alloantisera, then heteroantisera and finally 

monoclonal antibodies. Originally, HLA -DR antigens were believed to be 

present exclusively on 8 cells but they were subsequently discovered on antigen 

presenting cells (monocytes, macrophages). HLA-DR antigens are widely 

distributed on haematopoietic cells and are even expressed on some non­

haematopoietic cells, especially in certain pathologic conditions(63). HLA-DR 

antigens are expressed in the earliest stages of haematolymphoid cell 

development. They are expressed throughout 8 cell ontogeny until the plasma 
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cell ( secretory) stage when they are lost. They are also present on 

haematopoietic progenitors and granulocyte, monocyte, erythroid and 

megakaryocytic precursors. HLA-DR antigens are expressed on myeloblasts but 

lost during maturation to the promyelocyte stage(64). Similarly, they are 

expressed on proerythroblasts and megakaryocytes but are absent from 

erythrocytes beyond the basophilic normoblast stage and platelets. HLA-DR 

antigens are present throughout monocyte/macrophage differentiation. HLA-DR 

are expressed at the earliest stages of T cell ontogeny but are quickly lost. The 

vast majority of thymocytes and mature peripheral and circulating lymphoid 

tissue T cells are HLA-DR negative. In vitro and in vivo activated T cells express 

HLA-DR antigens. HLA-DR antigens are expressed on the vast majority of B cell 

neoplasms(64 ). B cell neoplasms that are HLA-DR negative are those 

undergoing plasma cell differentiation. HLA-DR antigens have also been 

described in a variety of nonhaematopoietic neoplasms such as malignant 

melanomas. 

Maclean et al reported in normal pregnancy there was no activation of the 

immune system as noted by the activation marker (la)(54) . Moore et al

found the activation marker (la) percentages and absolute numbers were similar 

in normal and pre-eclamptic pregnancies(65). 

Haynes et al reported that MHC class I and class II genes play a major role in 

determining the specificity of T and B cell antiviral immune responses(66). There 

is considerable interest in searching for an HLA association with long-term 
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survivors of HIV infection(67). 
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1.5 NATURAL KILLER CELLS 

A great deal of work regarding the study of Natural Killer (NK) activity has 

occurred over the last decade. The cell type identified as being responsible 

for this activity was a large granular lymphocyte (LGL). This form of lymphocyte 

has a high cytoplasm to nuclear ratio and displays distinct azurophilic granules. 

It should be noted that, as with other cell types, heterogeneity exists amongst the 

NK cell population with some NK cells not displaying the distinct LGL morphology 

during certain states of differentiation and/or activation. In studies performed 

over the last decade on spontaneous cell-mediated cytotoxicity, it has become 

clear that natural effectors comprise a variety of cell types which mediate both 

distinct cytolytic capacities as well as non-cytolytic functions. These capacities 

include not only NK activity, but also lymphokine-activated killer (LAK) activity 

and antibody-dependent cellular cytotoxicity (ADCC). Natural Killer cells work 

synergistically with 8 cells. This interaction has been demonstrated to decrease 

viral load in severe combined immunodeficiency (SCIO) in mice(68). Natural 

Killer cells are effectors of the natural immune system and provide the first line of 

defense against infection(69). Spontaneous non-major histocompatibility 

complex (MHC) restricted killing can be mediated by NK cells(70), 

by certain activated T-cells, and by cells in the monocyte/macrophage series. NK 

cells are present in high numbers at birth, when they constitute about 20% of 

circulating lymphocytes. After an initial decline during the first year of life, the 

percentage of NK cells slowly increases to adult levels. NK cells in cord blood are 

less active than those in adults; this may reflect their immaturity or the absence 
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of cytokines necessary for full NK activation(62). HIV positive children may have 

increased natural killer cells which is associated with a decreased CD4 count. 

Unlike adults an increase in these cells might be noted in early stages of HIV 

infection(71 ). Extensive research is under way worldwide to determine the role 

of interferons and interleukins in the regulation of the NK cell. They 

mediate cytolytic reactions that do not require expression of class II MHC 

molecules on the target cells. Certain T lymphocytes which are either a/� 

positive or y/o positive may express, particularly upon activation, a cytolytic 

activity that resembles that of NK cells. These T lymphocytes should not be 

termed NK cells. They could be termed either T lymphocytes displaying "NK­

like" activity or "non-MHC requiring" cytolysis. It is known that the recognition of 

target cells by NK cells will lead to target cell destruction. Propodium iodide was 

used to stain target cells killed by NK cells and it was found that NK cell 

cytotoxicity was not cell cycle specific(72). 

The activity of NK cells against infectious diseases has received less attention, 

although in recent years increasing evidence has emerged that NK cells are 

involved in defence against such forms of disease(?O). Cells with NK activity 

have been able to inhibit microbial colonization and growth, including intracellular 

and extracellular parasites, fungi, and a wide variety of viral infections. The role 

played by NKcells in host defences against bacterial infections has remained 

unclear. NK cells may be of major significance in viral infections because of the 

ability of viruses to alter cell metabolism and architecture, and also because 

viruses are potent inducers of interferons (IFNs), which augment NK cell 
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cytotoxicity and proliferation(70). The augmented NK cell response that occurs 

after viral infection is the result of two phenomena: the activation of NK cells to a 

higher state of cytotoxicity and the proliferation of NK cells, which results in an 

increase in NK cell number. Natural killer cells are dependent on a population of 

HLA-DR+ accessory cells in viral infection(73). Depletion of HLA-DR positive 

cells from peripheral blood lymphocytes depletes NK activity(74). 

The most profound changes in LGL populations in pregnancy occur at the 

maternal/fetal interface in the uterus. NK activity has been measured and 

compared to blood samples from pregnant and non-pregnant women and from 

men. Blood NK activity was found to be lower in women than in men, and to fall 

significantly in non-pregnant women in the periovulatory period. In pregnancy, 

NK activity of blood lymphocytes is decreased from 16 weeks of pregnancy 

onwards. NK activity returns to normal (control) levels between 9 and 40 weeks 

post-partum. Antibody-dependent cell-mediated cytotoxic (ADCC) activity 

decreases during pregnancy and returns to slightly above normal (control) levels 

post-partum(70). The mechanism for the reduction in peripheral NK activity in 

pregnancy is not clear. 
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CHAPTER 2 

AIMS AND OBJECTIVES 

2.1 Purpose of Study 

To evaluate the immunological basis for the use of vitamin A as an intervention to 

modulate B cells, natural killer cell counts and the activation marker (12) in HIV 

seropositive pregnant women in developing countries. The effects of vitamin A 

on the T lymphocytes was the research focus of another researcher. 

2.2 Hypothesis 

Vitamin A and beta-carotene supplementation will modulate the immune 

responses in HIV infected pregnant women, either by enhancing 8-lymphocyte 

production and differentiation, by stimulating the production of natural killer cells 

or by altering immune activation. 

2.3 Primary Objective 

To assess the effects of Vitamin A and Beta-Carotene on natural killer cells and 

B cells. 

Specific Objectives:-

(a) To evaluate 8 cell percentages and absolute numbers.

(b) To evaluate natural killer cell percentages and absolute numbers.
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2.4 Secondary Objectives 

To assess the effects of Vitamin A on haematological parameters and activation 

status of lymphocytes. 

Specific Objectives:-

(a) To evaluate the following parameters (haemoglobin,

haematocrit, white cell counts, platelets and lymphocytes).

(b) To evaluate 12 (HLA-DR), the activation marker.
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PATIENTS AND METHODS 

3.1 PATIENTS 

Trial Population 

CHAPTER 3 

Subjects were recruited from pregnant women presenting to the ante-natal clinic 

(ANG), King Edward VIII Hospital (KEH). These subjects were part of a 

randomised, double blind, placebo controlled intervention trial using vitamin A. 

Recruitment of Study Subjects 

Routine HIV screening was conducted at King Edward VIII Hospital-Ante Natal 

Clinic ( KEH-ANG) and was preceded by pre-test counselling. When women 

returned for their results those testing positive were given post-test counselling. 

Those positive women who were between 28-32 weeks gestation had the study 

objectives and design explained to them and were asked for written informed 

consent to participate in the trial. Women were then randomly allocated to 

receive daily vitamin A (retinol palmitate and beta-carotene) or placebo. 

Sampling 

Sample size was determined at 39 in order to obtain test significance level alpha 

0.05 with 80% power in order to detect 5-7% change in numbers of absolute 

lymphocyte and Natural Killer cells. The larger numbers recruited initially allowed 

for the subsequent sub-sampling at the various time intervals (not all patients 
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recruited had the tests repeated at each interval and allowance was made for 

drop-outs. 

For the purposes of this study the first 208 patients recruited to the intervention 

trial were evaluated. Of the 208 patients intially recruited 103 were in the vitamin 

A group and 105 were in the placebo group. Sampling was performed on 

enrollment, at delivery, 1 week, and 3 months post delivery. 

Exclusion Criteria 

Any woman who did not have a fixed, traceable address at which she would 

remain for 15 months. 

Ethical Considerations 

It has been well documented that vitamin A is a potential teratogen at daily doses 

of 25 000 IU. The Teratology Society has recommended that a daily dose of 

8000 IU of vitamin A (as retinol esters) should be considered as the maximum 

dose to be given during pregnancy. The subjects were given 5 000 IU of retinol 

palmitate and it was given in the last trimester of pregnancy to minimise any 

possibility of embryotoxic effects. Since beta-carotene has not been associated 

with any embryotoxic effects an additional 30 mg of beta-carotene was included 

together with the 5000 IU of retinyl palmitate. 



Ethical Approval 

Ethical approval was granted by the Ethics Committee for the application of the 

randomised trial on vitamin A which was submitted by the Department of 

Paediatrics and Child Health to the Ethics Committee, University of Natal. 

Ethical approval for this study was granted by the Ethics Committee. 

The reference number is H192/97. 
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3.2 METHODS 

3.2.1 Vitamin A Concentrations 

Vitamin A - a daily tablet containing 5000 IU of retinal palmitate and 30mg of 

beta-carotene was administered from time of entry to study (28-32 weeks) until 

onset of labour. This was followed by a further 200,000 IU one day after delivery. 

Blood was taken for vitamin A concentration on entry to the study and one 

month later to test the effect of supplementation. The serum was separated and 

stored at -70 °C until analysis. Precautions were taken to protect the serum from 

light during separation, storage and analysis as vitamin A is sensitive to photo 

degradation. Vitamin A (serum retinal ) was measured by normal phase high 

pressure liquid chromatography using fluorescence detection. The method used 

was a modification of a previously reported method that had been successfully 

set up in our analytical unit and had been used in several studies (attached to a 

programmable fluorescence detector - HP 1046)(75). This method has been 

validated by using standard reference material for retinal (SAM 968a) from the 

National Institute for Standards and Technology (Gaithersburg, MD). All samples 

were analysed in duplicate within six months of collection and the technician was 

blinded as to the treatment groups. 

Retinal levels for the study was done in collaboration with the Analytical Unit, 

Department of Physiology, by Mrs Inga Elson in the Medical School, University of 

Natal. 

26 



3.2.2 Monoclonal Antibodies 

Monoclonal antibodies are produced by clones of plasma cells. Antibodies from 

a given clone are immunochemically identical and react with a specific epitope on 

the antigen against which they are raised(76). 

In our study CD19 was used as a marker for B lymphocytes, CD56 as the marker 

for natural killer cells and 12 (HLA-DR) as an activation marker. 

CD19 / B4 Monoclonal Antibody 

CD19 is a murine monoclonal antibody reagent. In conjunction with a fluorescent 

label, it is used to identify and enumerate the percentage of CD19 positive B 

lymphocytes in whole blood or mononuclear cell preparations by flow 

cytometry or fluorescence microscopy. This antigen is 

expressed on all normal B lymphocytes, follows the la antigen in B cell ontogeny, 

and is only lost prior to plasma cell differentiation(??). The CD19 antigen is 

present on all B cells isolated from lymphoid organs and on approximately 5% of 

normal adult bone marrow cells. The immunoglobulin chain composition of CD19 

is mouse lgG1 heavy and kappa light chains. 

CD56/NKH-1 Monoclonal Antibody 

CD56 (NKH-1) defines a human Natural Killer cell antigen, with a molecular 

weight of 200-220 Kd(78). It is expressed on a subpopulation of peripheral blood 

large granular lymphocytes (LGL) which demonstrate Natural Killer activity. More 

than 95% of cells capable of mediating spontaneous non-MHC restricted 
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cytotoxicity in peripheral blood are contained within the 10-12% of peripheral 

blood mononuclear cells (PBMC) that express CD56 (NKH-1 )(78). 20-

25% of CD56 positive cells co-express CD3 and T cell receptor gene products. 

CD56 (NKH-1) is not expressed on other T cell populations, B cells, monocytes, 

granulocytes and erythrocytes. The CD56 (NKH-1) antibody helps detect and 

enumerate Natural Killer cells in normal and disease states. Natural Killer cells 

also commonly express the cell surface marker CD16(70). The immunoglobulin 

chain composition of CD56/NKH-1 is mouse lgG1 heavy and kappa light chains. 

HLA-DR/12 Monoclonal Antibody 

The 12 antigen is an HLA-D/DR related la-like antigen with a estimated molecular 

weight of 29-34 Kd. It is present on normal B cells, monocytes, and activated T 

lymphocytes(64). It is not present on progranulocytes or resting 

T cells. The immunoglobulin chain composition of HLA-DR/12 is mouse lgG2a 

heavy and kappa light chains. Because dual markers were not used to identify 

subsets, the results of the activation marker 12 reflect both B lymphocyte and T 

lymphocyte activation. 
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3.2.3. Flowcytometry 

Flowcytometry is a modern method of studying cells. Various techniques 

could be employed to ascertain multiple physical or biological properties of a 

cell. Quantitative cell analysis, at the single-cell level, is possible through flow­

cytometry. Cell populations and sub-populations in a specimen can be 

determined by the number and type of cell surface antigens, or by measured 

internal parameters(79). Samples for flowcytometry were processed on a Coulter 

Epics Profile II flowcytometer. (Coulter Electronics-Hialeah, Florida, U.S.A.). The 

instrument was programmed to measure forward scatter (FS), log side scatter 

(LSS), and log fluorescence. 

Alignment and Sample Preparation 

Flow Check (Coulter Electronics-Hialeah, Florida, U.S.A.) alignment reagent was 

used. lmmunobrite beads (Coulter Electronics-Hialeah Florida,U.S.A.) were 

used to calibrate the instrument. A normal control was prepared and 

analysed (this sample was collected from a normal person who had not been on 

any medication or suffered from any ailment affecting the immune system 

fourteen days prior to sample collection). This sample was prepared exactly like 

the study patients' test samples of the day. The normal control lymphocyte zone 

was gated to give a yield of at least 96% of total cells analysed. Cursors were 

set on histograms to differentiate between positive and negative zones. Samples 

from the study patients were collected and prepared as follows:-
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1. 5mls of whole blood was collected in EDTA anticoagulant.

2. All tests were set up within one hour of collection.

3. 1 00ul of a well mixed sample was aliquoted into 75 x 12mm plastic

tubes(polyurethane ).

4. Respective monoclonal antibodies and isotypic controls

were added.

5. The samples were vortexed and incubated at

room temperature in the dark for 30 minutes.

The samples were passed through a Coulter Workstation - Q-Prep.(Coulter 

Epics Immunology Workstation - Hialeah, Florida, U.S.A.). This instrument has a 

Lysing (reagent A), stabilising (reagent 8) and fixing agent (reagent C). 

Reagent A - (formic acid) - 600ul 

Reagent 8 - (sodium chloride, sodium sulphate and sodium 

carbonate)- 265ul 

Reagent C - (paraformaldehyde) - 100ul 

The reagents were dispensed automatically (the amounts as indicated above) 

with vigorous mixing at intervals in a 35 second cycle in the Coulter workstation. 

After preparation in the Q-Prep workstation the control and test samples were 

analysed on the flowcytometer. Gated cells were expressed as a percentage on 

the positive analysis histograms. This was later converted to absolute numbers 

using the full blood count parameters. 
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Quality Control 

Fluorescent microspheres were used to align the flowcytometer laser and for 

calibration. To control for non-specific binding isotypic controls were used. 
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3.3 Data Management and Statistical Analysis 

MRC-Biostatistician was consulted. The following software packages were used: 

EPI-INFO6 for data capture and SAS Version 6.12 was used for statistical 

analysis. Statistical analysis consisted of univariate analysis. Univariate analysis 

depended on type of data (eg Chi-square, T-test). 

Descriptive statistics consisting of means and confidence intervals were 

calculated by group and time for each of the variables of interest. Variables were 

generally normally distributed. Parameters analysed were haemoglobin, 

platelets, white cell counts, absolute lymphocyte counts, B lymphocyte 

percentage and absolute counts, Natural Killer cell percentage and absolute 

counts, activation marker (12), percentage and absolute counts and retinol levels. 

Baseline parameters were compared between the placebo and vitamin A groups 

using Student's paired and unpaired t-test. The difference between the three 

month measurement and the baseline was calculated to assess the changes 

over time. The two groups were then compared with respect to this change 

using a unpaired t-test. The difference from baseline to 3 months post-delivery 

within each group was assessed using a paired t-test. A significance level of 

0.05 was used. 
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3.2.4 Haematological Parameters 

The patients peripheral blood samples were analysed for - haemoglobin, 

haematocrit, platelets, white cells, and absolute lymphocyte counts. These 

parameters were evaluated at each sampling interval on the Coulter Stks. Model 

(Coulter Electronics - Hialeah, Florida, U.S.A.). 
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CHAPTER 4 

Results 

The results are presented as follows: -

(1) Baseline Values

Figure 1 to Figure 4. 

(2) Trends

Figure 5 to Figure 15.
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Figure 2 

BASELINE PLATELET COUNTS 
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Figure 4 

BASELINE LYMPHOCYTE COUNTS 
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Figure 5 

HAEMOGLOBIN - TRENDS 
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Figure 7 

PLATELET COUNTS -TRENDS 
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Figure 8 

WHITE CELL COUNTS - TRENDS 
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Figure 9 

LYMPHOCYTES-TRENDS 
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Figure 10 
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Figure 11 
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Figure 12 

NATURAL KILLER CELLS - CD56 -TRENDS 
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Figure 13 

NATURAL KILLER CELLS - CD56 - TRENDS 
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Figure 14 

ACTIVATION MARKER -12 - TRENDS 
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CHAPTER 5 

DISCUSSION 

Baseline Parameters 

These were assessed when study subjects were enrolled. The following 

parameters were tested - haemoglobin, haematocrit, platelets, white cells, 

absolute lymphocyte counts, B lymphocyte percentages and absolute counts, 

Natural killer cell percentages and absolute counts and the activation marker 

percentages and absolute counts. No differences were present at baseline 

between the placebo and vitamin A treated group (Table 1 ). 
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Table 1 

Baseline parameters in Vitamin A and Placebo HIV(+) Black Mothers. 

VITAMIN A PLACEBO 

n 103 105 

Hb G/dl 10.51 10.63 
(10.26-10.76) (10.41-10.85) 

HCT 29.96 29.02 
% (26.89-31.03) (27.51-30.54) 

PLT 258.40 253.30 
X109/1 (243.39--273.37) (238.29-268.31) 

wee 7.80 7.92 
X109/I (7.41-8.19) (7.448.39) 

LYMPHS 1.77 1.71 
X109/1 (1.64-1.89) (1.60-1.81) 

CD56 10.42 10.15 
% (9.29-11.55) (9.11-11.19) 

CD56 0.20 0.18 
ABS (0.16-0.24) (0.16-0.21) 

X109/I 

CD19 10.26 10.87 
% (9.55-10.97) (10.17-11.56) 

CD19 0.18 0.19 
ABS (0.16-0.20) (0.17-0.20) 

X109/1 
12 32.13 33.03 
% (27.93-36.32) (29. 67-36.39) 

12 0.59 0.64 
ABS (0.50-0.69) (0.45-0.83) 

X109/I 

Results are presented as a Mean with (95% Confidence Intervals) 
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Baseline Parameters in HIV(+) Black Mothers 

Both groups were considered together for the purposes of describing our HIV(+) 

black African cohort. These were compared to reported parameters in HIV(-) 

normal pregnant females. 

Haemoglobin and Haematocrit 

In normal pregnancy, the maternal blood volume increases markedly 

(80,81,82,83). The blood volume at or very near term increases by 

approximately 45%. The degree of expansion varies considerably. In some 

women there is only a modest increase and in others the blood volume nearly 

doubles. The maternal blood volume starts to increase during the first trimester, 

and eventually plateaus out during the last several weeks of pregnancy. The 

increase in blood volume results from an increase in both plasma and 

erythrocytes. Although more plasma than erythrocytes is usually added to the 

maternal circulation, the increase in the volume of circulating erythrocytes is 

considerable. In spite of the augmented erythropoiesis, the concentration of 

haemoglobin, erythrocytes and the haematocrit commonly decrease during 

pregnancy. The normal range for haemoglobin in pregnancy is 11.0 - 14.0g/dl 

(84). In this study (see figure 1) the mean haemoglobin at baseline was 10.51 

g/dl (Cl=10.26-10.76) in the vitamin A group and 10.63g/dl (Cl=10.41 - 10.85) 

in the placebo group. The haemoglobin range was 7.6 - 13.5g/dl. Of the patients 

65.4% (136 out of 208) had haemoglobin levels of� 11.0g/dl. Five patients had 

haemoglobin levels of� 8.0g/dl. 
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Alger et al, reported that HIV+ patients had a significantly lower haemoglobin 

(10.6 ± 1.2g/dl) at recruitment than the HIV- patients (11.3 ± 1.3g/dl)(42). 

Various factors including poor dietary intake, lack of supplements during 

pregnancy, blood loss and infections may contribute to the anaemia. 

In this study the haematocrit values were proportional to their haemoglobin 

levels. The mean haematocrit levels were 29.96% (Cl=26,89 - 31.03) in the 

vitamin A group and 29.02% (Cl=27.51 - 30.54) in the placebo group. 

Platelets 

Conflicting reports have been made about platelet counts during pregnancy. 

Some early reports show increase in platelet counts and others show no 

significant change. Some more recent reports using modern automated 

technology show a progressive fall in pregnancy(85,86,87,88). Average platelet 

counts reported for normal pregnancy include 219 X 10
9/1 during 27 - 30 

weeks(89), 183.9 X 109/1 in the third trimester(85), and 284.18 X 109/1 during 26 -

30 weeks of pregnancy(86). In this study (see figure 2), the mean platelet count 

at baseline in the vitamin A group was 258.40 X 109/1 (Cl=243.39-273.37) and in 

the placebo 253.30 X 109/1 (Cl=238.29-268.31 ). Six patients had 

thrombocytopenia with counts <150 X10
9
/I, of whom 2 had counts of <100 X 

109
/1. The reasons for the thrombocytopenia were not noted. Two patients had 

counts of >450 X 109/1. 
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Total White Cell Count 

Total leucocyte count rises early in gestation and remains elevated during 

pregnancy, with neutrophils accounting mainly for the increase(52,53,54,90,91 ). 

Moore et al established a mean leucocyte count of 8.55 ± 1.13 x109/1 in normal 

pregnant women between 29-39 weeks(65). Pitkin et al, reported leucocyte 

counts of 5.60-12.21 x 109/1 in the third trimester of pregnancy. Maclean et al

established a mean white cell count of 10.7 X109/I in the 28th week of pregnancy. 

In this study (see figure 3) the mean leucocyte counts at baseline was 7.86 x 

109/1 with a range of 4.0-16.7 X 109/1. Eleven out of 208 patients (5.2%) of our 

cohort had white cell counts <5.0 X 109/1. Two patients in the study had white 

cell counts of > 16 X 109/1. 

Lymphocytes 

The reports in the literature are conflicting. In normal pregnancy there is no 

change in the lymphocyte count (54,55,57,91,). Pitken et al and Johnstone et al 

found that absolute lymphocyte counts decline in pregnancy (90,92). Pitken et 

al, reported a lymphocyte range of 1.13-2.58 X 109/1 in the third trimester of 

pregnancy( 90). 

Maclean et al, reported a lymphocyte mean value of 1.8 X 109/1 at 28 weeks of 

gestation(54 ). Moore et al found a mean value of 1.57 X 109/1 at 29 - 39 weeks 

of pregnancy(65). In this study (see figure 4) the mean lymphocyte count ( X 

109/1) at baseline was 1.77(Cl=1.64-1.89) and 1.71(Cl=1.60-1.81) in the vitamin A 
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and placebo groups respectively. 

Lymphopenia was noted in 9.1 % (19 out of 208) with lymphocyte counts of 

>0.3�1.0 X109/1. Lymphocytosis of >3.5 X 109/1 was noted in 2 patients while the

remaining 187 patients (89.9%) had normal lymphocyte counts. 

B Cells 

Dodson et al reported that B cell counts in gravid women is normal throughout 

gestation(55). They reported a B cell count of 10% between 25-30 weeks of 

pregnancy. Strelkauskas et al found that B cell counts ( as measured by the 

presence of surface immunoglobulin or the presence of B cell surface antigens) 

were increased(56). Tallon et al established a B cell count of 9.4% and a 

decrease in the absolute count in the third trimester of normal pregnancy(52). 

In this study (see Table 1), the B cell (CD19) percentage was 10.26% (Cl=9.55 

10.97) and 10.87% (Cl=10.17 - 11.56) in the vitamin A and placebo groups 

respectively. The B cell mean absolute count (X109/I) was 0.18 (Cl=0.16-0.20) 

and 0.19 (Cl=0.17 - 0.20) in the vitamin A and placebo groups respectively. 

Natural Killer Cells 

Very limited research has been performed on Natural Killer cells using CD56 as a 

marker in this setting. 

In this study (see Table 1) the Natural Killer cell (CD56) mean percentage was 

10.42 (9.29 - 11.55) and 10.15% (CI=9.11 - 11.19) in the vitamin A and placebo 

groups respectively. The Natural Killer cell mean absolute count was 0.20 
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(Cl=0.16 - 0.24) and 0.18 (Cl=0.16 - 0.21) X 109/1 in the vitamin A and placebo 

groups respectively. 

Kuhnert et al reported a mean Natural Killer cell percentage of 14.0 ± 6.3% in 

non-pregnant females and 12.2 ± 5.4% in pregnant females in the third trimester 

of pregnancy(93). They also reported an absolute count 0,253 x 109
/L in 

non-pregnancy and a count of 0.192 x 109/L in the third trimester of pregnancy. 

Activation Marker 

Moore et al concluded that the mean la ( activation marker) percentage in the 29-

39 weeks of normal pregnancy was 20.9% (65). Maclean et a/found that 

lymphocytes from pregnant women had increased potential rather than increased 

activity. This group of workers established that the value for la (activation 

marker) in the 28th week of pregnancy was 0.11 X 109/1 (54). In this study (see 

Table 1) the activation marker (12) mean percentages were 32.13 (CI=27.93 -

36.32) and 33.03%(Cl=29.67 - 36.39) in the vitamin A and placebo groups 

respectively. The activation marker mean absolute values were 0.59 (Cl=0.50 -

0.69) and 0.64 (Cl=0.45 - 0.83) X 10
9/1 in the vitamin A and placebo groups 

respectively. 
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VITAMIN A 

Table 2 

Retinol levels at Baseline in the Vitamin A group and Placebo Group 

VITAMIN A PLACEBO 

Retinol 
Levels 37.5% 38.5% 

<20ug/dl (n=15) (n=20) 
Retinol 
Levels 50.0% 55.7% 

>20<40 (n=20) (n=29) 
ug/dl

Retinol 
Levels 12.5% 5.7% 

>40 (n=5) (n=3) 
ug/dl

Mean Retinol P-VALUE RANGE 
Levels 25.65 24.38 
ug/dl (21. 71-29.60) (21.80-26.97) 0.5758 7.8 -64.5 

The normal retinol level in non-pregnant and pregnant females is 

20-60ug/dl(94). Retinol levels for the two groups were comparable and there

was no significant differences noted (p = 0.5758). The mean retinol levels were 

25,65ug/dl (Cl=21.71 - 29.60) and 24.38ug/dl (Cl= 21.80 - 26.97) in the vitamin A 

and placebo groups respectively. The retinol range was 7.8 - 64.5ug/dl. 

In this cohort 92 patients had retinol levels measured (see Table 2). There were 

40 patients in the vitamin A group and and 52 patients in the placebo group. 

It was established that 15 patients (37.5%) in the vitamin A group and 20 

patients (38.5%) in the placebo group were deficient. In the vitamin A group 
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62,5% (25 out of 40) and 61,5% (32 out of 52) in the placebo group had normal 

retinal levelsln the patients with normal vitamin A levels >80% of the values were 

low normals (20 - 40ug/dl). 

Coutsoudis et al found that women attending the King Edward VIII hospital 

maternity service were not, a vitamin A deficient population(12). 

Another local study done at this hospital showed multiple nutritional deficiencies 

associated with decreased or inadequate immunity in HIV positive patients(95). 

In a study done in the United States mean vitamin A levels were lower in blacks 

than in Hispanics and whites(96). Pregnancy, HIV infection, low socioeconomic 

status and race may all be associated with vitamin A deficiency. 

Pregnant women may be at higher risk for vitamin A deficiency because of 

increased demands for vitamin A by the developing fetus. In HIV positive women 

vitamin A deficiency may occur as a result of many possible factors including low 

intake and malabsorption of vitamin A-rich foods, liver disease and abnormal 

urinary losses of vitamin A during infection(97). Stephensen et al also reported 

that patients with pneumonia and sepsis excrete significant amounts of retinal 

and retinal binding protein (RBP) in their urine, unlike healthy individuals who 

excrete only trace amounts(97). Therefore, the requirement for vitamin A is 

greatly increased during acute infections which might be related to the loss of 

retinal in the urine. A high prevalence of vitamin A deficiency has been 

demonstrated among HIV-infected adults(98). During infectious illnesses 

vitamins are utilised in greater amounts than in the normal state and therefore 
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body vitamin stores are depleted(98). The reasons proposed for the low levels 

in pregnancy were an increase in circulating blood volume, an inadequate 

dietary vitamin intake, an increase in renal vitamin clearance, fetal sequestration 

and an increase in vitamin catabolism and tissue retention. The rise was 

attributed to the end of the pregnancy as well as factors like oral contraceptives. 

Baker et al found that there was progressive decrease in retinol 

during pregnancy up to 28 weeks which starts early in pregnancy(99). In 

contrast, others found an increase in retinol levels during pregnancy(100, 101 ). 

Bruinse et al observed low retinol levels in pregnancy and a rapid significant 

increase in retinol levels within days after delivery(102). The reasons for the low 

levels in pregnancy were Baranowitz et al studied 84 HIV+ patients and found 

that the majority were deficient or had low normal serum carotene levels(100). 
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TRENDS NOTED AT VARIOUS INTERVALS OF STUDY 

Haemoglobin 

Haemoglobin levels at 3 months post partum are significantly increased for both 

groups (see figure 5). These probably reflect basal non-pregnancy values for 

the study individuals, and were similar in both groups. The placebo group 

showed an earlier increase in the haemoglobin level between baseline and 

delivery compared to the vitamin A group which increased between delivery and 

1 week post partum. Similar significant differences were noted within subjects 

between delivery and 1 week in the vitamin A group and between baseline and 

delivery in the placebo group. 

Alger et al, reported a modest increase in the haemoglobin values at delivery in 

the HIV+ patients(10.6-10.9g/dl). At delivery there was no difference between 

the infected and uninfected patients(42). Our study showed a similar modest 

increase between baseline and delivery in the vitamin A (10.51 ➔10.83g/dl) and 

(10.63 ➔ 11.12g/dl) in the placebo group. 

Haematocrit 

In parallel with haemoglobin levels seen the haematocrit trends in our 

study were also elevated at 3 months compared to baseline in the two groups 

(see figure 6). The groups were comparable at 3 months and were reverting to 

normal levels post partum. 

Pritchard et al reported that in normal pregnancy the haematocrit 
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returns to normal 6-7 days post partum(82). It is possible that vitamin A therapy 

may have contributed to earlier normalisation. The significance of this difference 

is uncertain. 

Platelets 

The groups were comparable at 3 months with no significant difference in their 

means (see figure 7). The higher platelet counts at 3 months probably reflect 

normal non pregnant values. The placebo group and the vitamin A group 

showed no significant change in pregnancy. The groups behaved similarly after 

delivery with a rise at 1 week and a subsequent fall at 3 months. 

Fenton et al found that platelet counts do not change during normal 

pregnancy(89). Cairns et al reported that there is a small decline in 

platelet counts throughout pregnancy when measured using automated platelet 

counters(86). 

Fay et al reported a significant decrease in platelet counts during normal 

pregnancy which he attributed to increased consumption of platelets(87). 

White Cell Counts 

The vitamin A and placebo group showed a non significant increase in white cell 

counts during pregnancy. In both groups there were significant decreases in 

white cell counts between delivery and 1 week and between 1 week and 3 

months (see figure 8). The 3 month values (vitamin A 5.62 and placebo 5.56 X 
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109
/1) in both groups were significantly lower than the baseline values (vitamin A 

7.80 and placebo 7.92 X 109/1). The groups were comparable at 3 months with 

no significant difference in their mean values. 

Alger et al found increased white cell counts from enrollment to delivery in both 

HIV+ and HIV- mothers(42). Pitken et al reported decrease in the total white cell 

count in the 3rd trimester which continued after delivery. Their 6 week post 

partum values (non pregnant basal values) ranged between 4.32 - 7.64 X 

109
/1(90). Both groups of our cohort at 3 months were within a similar range. 

Lymphocytes 

Lymphocyte counts showed significant increases between baseline and 3 

months in the vitamin A and placebo groups (see figure 9). At 3 months the 

groups were comparable with no significant difference in their mean values. In 

both groups there was no change during pregnancy, a significant increase by 1 

week and no change between 1 week and 3 months. 

Various authors (52,53, 90,91,92) have reported lower absolute lymphocyte 

numbers during pregnancy (not always significant) which increase after delivery. 

In this study the lymphocyte counts between 1 week and 3 months remained the 

same in the vitamin A group (mean 2.17 - 2.17 x 109/1) while there was a non­

significant fall in the placebo group (2.15 - 2.04 x 109/1). Vitamin A may have a 

protective effect in maintaining the lymphocyte numbers but further studies are 

required to assess this. 
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Alger et al reported lower absolute lymphocyte counts at enrollment in a cohort of 

HIV infected women, which increased at the time of delivery (1.714 ➔ 2.214 x 

109
/1) compared to values of the HIV negative cohort (2.365 ➔ 2.294 x 109/1) 

(42). These patients did not have vitamin A supplements. This observation was 

not made in either of the study groups but the trends were similar to those 

reported in the literature. 

B Cell (CD19) Percentage 

The two groups showed a significant decrease between delivery-1 week in their 

8 cell percentage counts and a significant increase between 1 week and 3 

months (see figure 10). At 3 months both groups were comparable. 

Dodson et al reported normal T and 8 cell populations in pregnancy(55). The 

mean percentages of B cells varied between 10-20% . This cohort showed 

similar results in the vitamin A and placebo groups. 

B Cell Absolute Counts 

In both groups significant increases were noted between 1 week and 3 months 

(see figure 11 ). Although the actual lymphocyte counts increased between 

delivery and 1 week the absolute 8 cell counts remained unchanged during this 

period. This suggests that the initial lymphocyte increase was most likely due to 

T cell and Natural Killer cell recovery. 

Reports on absolute 8 cell counts in pregnancy are conflicting. 
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Tallon et al reported that the absolute number of B lymphocytes decreased 

significantly in the third trimester of pregnancy and post partum(52). 

Baines et al found that pregnancy has little or no effect on the proportions of B 

cells in maternal peripheral blood(57). 

Strelkauskas et al reported an increase in the absolute B cell counts in 

pregnancy(56). 

In this study the 3 months absolute B cell counts were significantly higher than 

baseline levels with no difference between the groups. These values probably 

reflect the "non-pregnant" levels. By inference the baseline values and the 

values at delivery and 1 week were lower than these "non-pregnant" values. 

Natural Kiler Cell (CD56) Percentage 

The placebo group showed a non significant increase between baseline, 

delivery, and 1 week and a non-significant decrease at 3 months post partum 

(see figure 12). There was a significant increase for this parameter between 

baseline and 1 week in the vitamin A group. The vitamin A group showed a 

decrease between 1 week and 3 months. The percentages of CD56 positive 

Natural Killer cells at 3 months were virtually identical in the 2 groups. 

Kuhnert et al reported a Natural Killer cell percentage of 15.1 ± 7 .1 % in women 1 

week post partum(93). 
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Natural Killer Cell Absolute Count 

In the vitamin A and placebo group there was no significant changes between 

baseline and delivery. In both groups there was a significant increase in the 

absolute count between delivery and 1 week (see figure 13). The placebo group 

did not show any decrease at all study intervals. However the vitamin A group 

showed a decline twice. At 1 week post delivery there is a significant rise in the 

vitamin A group and a gradual fall is noted to 3 months. Theoretically, if blood 

samples had been collected 1 week after the baseline supplementation a rise 

in the counts of Natural Killer cells in the vitamin A group could have been 

recorded prior to the fall noted at delivery. However to verify this theory further 

studies are required to validate the transient booster effect of vitamin A on 

Natural Killer cells. 

Kuhnert et al reported a Natural Killer absolute count of 0.266 x 109
/L in 

women 1 week post partum(93). 

Very limited research has been performed using as the CD56 Natural Killer cell 

marker in this setting. 

Activation Marker (12) Percentage 

No significant changes were noted for this parameter throughout the study. The 

two groups were comparable at 3 months with no statistically significant 

difference in their means ( see figure 14 ). 
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Activation Marker (12) Absolute Count 

There was no significant change between baseline and delivery although there 

was a downward trend. The vitamin A and placebo groups showed a similar and 

significant increase between delivery and 1 week post partum (see figure 15). At 

3 months the groups were comparable and the means showed no significant 

difference. The counts did not alter much between 1 week and 3 months. The 

two groups had no differences at any of the intervals. The increase between 

delivery and 1 week coincides with the changes noted in the total absolute 

lymphocyte counts (probably the recovery of the T and Natural Killer cells). The 

increase in the activation marker at this point probably indicates an activation of 

T cells. Monocytes expressing the activation marker 12 were excluded by the 

gating of lymphocytes only. 

Moore et al reported that the activation marker (la) percentage and absolute 

numbers showed no significant change in non pregnant as well as pregnant 

subjects(65). 
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NNIP-5 STUDY: 

This was a large controlled study of the effects of vitamin A and beta-carotene 

supplementation during pregnancy. The results of this study are relevant to our 

study. Preliminary reports from the NNIP-S (Nepal Nutritive Intervention Project 

Sarlahi-2) study were presented at the XVIII IVACG Meeting in Cairo (1998). 

Some of the findings reported at this congress follow. Malnutrition and 

micronutritional deficiencies (chronic vitamin A deficiency) were significant 

problems in mothers and infants. Vitamin A treatment reduced maternal mortality 

by 38 % and morbidity by 31 % while Beta-carotene treatment reduced these by 

50% and 47% respectively. The incidence of night blindness in Nepal was 11 %. 

Treatment with vitamin A or Beta-carotene reduced night blindness significantly­

by 40% and 65% respectively. Vitamin A reduced anaemia during and after 

pregnancy and in infants. There was a reduction in the incidence of malaria in 

the vitamin A group. There was no increase in birth defects; a slight protective 

effect with decrease in severe cranial and ocular abnormalities was noted with 

vitamin A treatment. 

Importance of this Study 

At the time of conceptualisation of the hypothesis vitamin A supplementation had 

been shown to result in decreased morbidity and mortality in infants in Nepal. 
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SUMMARY 

In this study biochemical vitamin A deficiency was noted in approximately 38% 

of the patients at baseline. Anemia at baseline was present in 65.4% of the 

patients. Haemoglobin levels showed a significant increase in both groups at 3 

months. The placebo group recovered earlier than the vitamin A group. Their 

haematocrits values were proportional to the haemoglobin values at baseline. 

The haematocrit values increased earlier in the vitamin A group (delivery to 1 

week) than the placebo group (1 week to 3 months). 

Six patients had thrombocytopenia at baseline. In both groups counts increased 

after delivery with a subsequent fall at 3 months. The platelet counts during 

pregnancy were lower than in the non - pregnant state (baseline compared to 3 

months). 

Of the patients studied 5.2% had white cell counts <5.0 X 109
/1 at baseline. 

Both groups showed a significant decrease between delivery and 1 week and 1 

week and 3 months. Pregnancy is associated with increased white cell counts 

which corrects after delivery. 

Lymphopenia was noted in 9.1 % of the patients at baseline. Total absolute 

lymphocyte counts showed a significant increase between delivery and 1 week 

post delivery in both groups. There was no fall in the vitamin A group and a non 

significant fall in the placebo group. 

8 lymphocyte counts at baseline were similar to counts reported in normal 
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pregnancy. The white cell count decreased, and the total lymphocyte count 

increased early (1 week after delivery). B lymphocyte recovery occurred 

between 1 week and 3 months. T cells and Natural Killer cells are presumed to 

have recovered earlier. Values for B lymphocytes were lower during pregnancy. 

The Natural Killer cell counts were comparable in the two groups at baseline. 

Placebo group did not show decrease at any of the intervals, while the Natural 

Killer cells showed decreases at delivery (non significant) and at 3 months in the 

vitamin A group. 

Activation marker (12) showed an increase at baseline (32 - 33%) 

compared to 20% reported in the literature for normal pregnancy. There was an 

increase between delivery and 1 week probably reflecting the activation of T 

cells. 

This study found no significant effect of vitamin A on the B cells at any point. 

Although Natural Killer cells showed a non-significant increase in the vitamin A 

group the counts in the vitamin A group fell below the placebo group at delivery 

and at 3 months. If there was a "booster" effect it was very transient. However 

the point of concern is that the Natural Killer cells in the vitamin A group fell 

below the placebo group at 3 months. No differences were noted in the 

activation marker in the 2 groups at any point. No beneficial or detrimental effect 

was noted for vitamin A for the above parameters. 

In the Nepal study patients having night blindness were symptomatic with 
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vitamin A deficiency suggesting that the deficiency was more severe. Vitamin A 

deficiency is a chronic problem which is compounded by malnutrition, infection, 

including malaria and parasitism in Nepal. The big reduction in maternal 

mortality was not seen in our study probably because the cause of death was 

multifactorial in Nepal and due to the absence of maternal mortality 

in both our groups. 

CONCLUSION: 

• No beneficial effects were noted on natural killer cells, B lymphocytes and the

(12) activation marker.

Recommendations Arising from this Study: 

• To study normal non-HIV subjects in pregnancy to document various

haematological and immunological parameters with emphasis on the CD56

marker for natural killer cells. Very few reports are published and local data is

lacking

• To study the protective effect of vitamin A on the absolute lymphocyte

numbers and to assess the short term "booster" effect on killer cells.
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APPENDIX 

Table 3 

Differences in the Haematological Parameters between Baseline and Delivery in 
Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

BASELINE DELIVERY BASELINE 

n 103 45 105 

Hb 10.51 10.83 10.63 
G/dl (10.26- 10. 76) (10.42 - 11.24) (10.41 -10.85) 

HCT 29.96 26.60 29.02 
% (26 89 - 31.03) (23.00 - 30.25) (27.51-30.54) 

PLT 258.40 264.47 253.30 
X109I1 (243.39 - 273.37) (236.38 - 292.57) (238.29-268.31) 

wee 7.80 8.63 7.92 
x109'1 (7.41 - 8.19 (7.37 - 9.90) (7.44-8.39) 

LYMPHS 1.77 1.72 1.71 
x109'1 (1.64 - 1.89) (1.50 - 2.00) (1.60 - 1.81) 

Results are presented as a mean with (95% confidence intervals). 

*Significance = p<0.05

71 

DELIVERY 

45 

11.12* 
(10.73-11.51) 

26.97 
(23.30 - 30.64) 

230.08 
(208.34- 251.81) 

8.38 
(7.34-9.41) 

1.80 
(1.60 - 2.00) 



Table 4 

Differences in the lmmunophenotype Markers between Baseline and Delivery in 
the Vitamin A and Placebo Groups 

VITAMIN A PLACEBO 

BASELINE DELIVERY BASELINE DELIVERY 

n 103 45 105 45 

CD56 10.42 10.80 10.15 10.51 
% (9.29 -11.55) (9.03- 12.57) (9.11 - 11.19) (9.24-11.79) 

CD56 
ABS 0.20 0.16 0.18 0.19 
X10911 (0.16 -0.24) (0.13 - 0.20) (0.16-0.21) (0.15- 0.23) 

CD19 10.26 9.99 10.87 10.87 
% (9.55 -10.97) (9.00 -10.98) (10.17-11.56) (9.82 - 11.92) 

·-

CD19 
ABS 0.18 0.20 0.19 0.19 

X10911 (0.16- 0.20) (0.18 -0.22) (0.17 - 0.20) (0.16 -0.22) 

12 32.13 31.74 33.03 32.35 
% (27.93 -36.32) (26. 68 -36.81) (29.67 -36.39) (27. 79 -36.90) 

12 0.59 0.55 0.64 0.56 

ABS (0.50 -0.69) (0.41 -0.69) (0.45-0.83) (0.45- 0.67) 

X109/1 

Results are presented as a mean with (95% confidence intervals) 
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Table 5 

Differences in the Haematological Parameters between Baseline and 1 Week 
post partum in the Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

BASELINE 1 WEEK BASELINE 

n 103 48 105 

Hb 10.51 11.81* 10.63 
G/dl (10.26-10.76) (11.37 -12.35) (10.41 -10.85) 

HCT 29.96 31.54 29.02 
% (26.89 -31.03) (28.47 -34.60) (27.51 -30.54) 

PLT 258.38 364.84* 253.30 
X 109/1 (243.39 - 273.37) (317.42 - 412.26) (238.29-268.31) 

wee 7.80 6.84* 7.92 
X 109/1 (7.41 -8.19) (6.23 - 7.44) (7.44 -8.39) 

LYMPHS 1.77 2.17* 1.71 
X 109/1 (1.64 -1.90) (2.00 -2.37) (1.60-1.81) 

Results are presented as a mean with (95% confidence intervals) 

*Significance = p<0.05
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1 WEEK 

45 

11.26* 
(10.80-11.72) 

30.20 
(27.04- 33.36) 

367.29* 
(334.36 -400.21) 

7.86 
(6.18 - 9.54) 

2.15* 
(1.91 -2.40) 



Table 6 

Differences in the lmmunophenotype Markers between Baseline and 1 Week 
post partum in the Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

BASELINE 1 WEEK BASELINE 

n 103 48 105 

CD56 10.42 13.36* 10.15 
% (9.29 -11.55) (10.54-16.19) (9.11 -11 .11) 

CD56 
ABS 0.20 0.29* 0.18 

X 109/1 (0.16 -0.24) (0.23 -0.34) (0.16-0.21) 

CD19 10.26 8.42* 10.87 
% (9.55 -10.97) (7.58 - 9.25) (10.17 -11.56) 

CD19 
ABS 0.18 0.18 0.19 

X109/1 (0.16 -0.20) (0.16-0.21) (0.17 -0.20) 

12 32.13 34.56 33.03 
% (27.93 - 36.32) (30.09 -39.03) (29.67 -36.39) 

12 
ABS 0.59 0.73 0.64 

X 109/1 (0.50 -0.69) (0.62 -0.84) (0.45-0.83) 

Results are presented as a mean with (95% confidence intervals) 

*Significance= p<0.05

74 

1 WEEK 

45 

11.51 
(9.84-13.18) 

0.25* 
(0.20 - 0.30) 

8.53* 
(7.35 -9. 71) 

0.18 
(0.15-0.21) 

33.25 
(28.03 -38.47) 

0.71 
(0.56 - 0.86) 



Table 7 

Differences in the Haematological Parameters between Baseline and 3 Months 
post partum in the Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

BASELINE 3 MONTH BASELINE 

n 103 46 105 

Hb 10.51 12.15* 10.63 
Gldl (10.26-10.76) (11.18-12.45) (10.41 - 10.85) 

HCT 28.96 33.58* 29.02 
% (26.89 -31.03) (30. 78 -36.38) (27.51 -30.54) 

PLT 258.38 282.16 253.39 
X 109/1 (243.39 - 273.37) (261.47 - 302.85) (238.29- 268.31) 

wee 7.80 5.62* 7.92 
X 109/1 (7.41 - 8.19) (5.15 -6.08) (7.44 -8.39) 

LYMPHS 1.77 2.17* 1.71 
X 109/1 (1.64 - 1.90) (1.93 - 2.42) (1.60 -1.81) 

Results are presented as a mean with (95% confidence intervals) 

*Significance= p<0.05
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3 MONTH 

39 

11.79* 
(11.11 - 12.48) 

35.49* 
(34.30 -36.68) 

286.84* 
(261.33 - 312.36) 

5.56* 
(5.07 - 6.06) 

2.04* 
(1.85 - 2.23) 



Table 8 

Differences in the lmmunophenotype Markers between Baseline and 3 Months 
post partum in the Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

BASELINE 3 MONTH BASELINE 

n 103 46 105 

CD56 10.42 10.73 10.15 
% (9.29 -11.55) (9.09 - 12.38) (9.11 -11.19) 

CD56 
ABS 0.20 0.23 0.18 

X 109/1 (0.16- 0.24) (0.19 -0.26) (0.16 - 0.21) 

CD19 10.26 10.38 10.87 
(9.55 - 10.97) (9.09 - 11.67) (10.17 -11.56) 

CD19 
ABS 0.18 0.22* 0.19 

X 109/1 (0.16 - 0.20) (0.19 -0.24) (0.17 - 0.20) 

12 32.13 31.99 30.03 
% (27.93 -36.32) (26. 77 - 37.22) (29.67 -36.39) 

12 
ABS 0.59 0.68 0.64 

X 109/1 (0.50 -0.69) (0.57 - 0.79) (0.45-0.83) 

Results are presented as a mean with (95% confidence intervals) 

*Significance = p<0.05

76 

3 MONTH 

39 

10.72 
(9.12-12.31) 

0.26 
(0.15-0.36) 

10.35 
(9.95 - 12. 74) 

0.23* 
(0.20 -0.27) 

35.18 
(30.49 -39.87) 

0.71 
(0.59 -0.83) 



Table 9 

Differences in the Haematological Parameters between Delivery and 1 Week 
post partum in the Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

DELIVERY 1 WEEK DELIVERY 

n 45 48 45 

Hb 10.83 11.81 * 11.12 
G/dl (10.42 -11.25) (11.37 -12.25) (10.73- 11.51) 

HCT 26.60 31.54* 26.97 
% (22.96 -30.25) (28.47 -34.60) (23.30 - 30.64) 

PLT 264.47 364.84* 230.08 
X109/I (236.38 -292.57) (317.42 -412.26) (208.34 - 251 .81) 

wee 8.63 6.84* 8.38 
X109/I (7.37 - 9.90) (6.23 -7.45) (7.34 - 9.41) 

LYMPHS 1.72 2.17* 1.80 
X109/1 (1.50 - 2.00) (1.97 -2.37) (1.60- 2.00) 

Results are presented as a mean with (95% confidence intervals) 

*Significance = p<0.05

77 

1 WEEK 

45 

11.26 
(10.80-11.72) 

30.20 
(27.04 -33.36) 

367.29* 
334.3EH400.21 

7.86 
(6.19 -9.54) 

2.15* 
(1.91 - 2.40) 



Table 10 

Differences in the lmmunophenotype Markers between Delivery and 1 Week post 
partum in the Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

DELIVERY 1 WEEK DELIVERY 

n 45 48 45 

CD56 10.82 13.36 10.52 
% (9 03 • 12.57) (10.54-16.19) (9.24 - 11.80) 

CD56 0.16 0.29* 0.19 
ABS (0.13 - 0.20) (0.23 -0.34) (0.15- 0.23) 

X109/I 

CD19 9.99 8.42* 10.87 
% (9.00 - 10.98) (7.58 - 9.25) (9.82 - 11.92) 

CD19 0.29 0.18 0.19 
ABS (0.06- 0.51) (0.16-0.21) (0.16 - 0.22) 

X109/I 

12 31.74 34.06 32.35 
% (26. 68 - 36.81) (29.03 - 39.09) (27.79 - 36.90) 

12 
ABS 0.55 0.73* 0.56 

X109/I (0.41 - 0.6'9) (0.62 - 0.84) (0.45 - 0.67) 

Results are presented as a mean with (95% confidence intervals) 

*Significance = p<0.05

78 

1 WEEK 

45 

11.51 
(9.84- 13.18) 

0.25 
(0.20 - 0.30) 

8.53* 
(7.35 - 9. 71) 

0.18 
(0.15 - 0.21) 

33.25 
(28.03 - 38.07) 

0.71* 
(0.56 - 0.86) 



Table 11 

Differences in the Haematological Parameters between Delivery and 3 Months 
post partum in the Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

DELIVERY 3 MONTH DELIVERY 

n 45 46 45 

Hb 10.83 12.15* 11.12 
G/dl (10.42 - 11.25) (11.85 -12.45) (10.73-11.51) 

HCT 26.60 33.58* 26.97 
% (22.96 - 30.25) (30. 78 -36.38) (23.30 - 30.64) 

PLT 264.47 282.16 230.08 
X109/1 (236.38 - 292.57) (261.47 - 302.85) (208.34- 251.81) 

wee 8.63 5.62* 8.38 
X109/1 (7.37 -9.90) (5.15 -6.08) (7.34 - 9.41) 

LYMPHS 1.72 2.17* 1.80 
X109/I (1.50 - 2.00) (1.93-2.42) (1.60 - 2.00) 

Results are presented as a mean with (95% confidence intervals) 

*Significance= p<0.05

79 

3 MONTH 

39 

11.79 
(11.11 - 12.48) 

35.49* 
(34.30 - 36.68) 

286.84* 
(261.33 - 312.36) 

5.56* 
(5.07 - 6.06) 

2.04 
(1.85 - 2.23) 



Table 12 

Differences in the lmmunophenotype Markers between Delivery and 3 Months 
post partum in the Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

DELIVERY 3 MONTH DELIVERY 

n 45 46 45 

CD56 10.80 10.73 10.51 
% (9.03 -12.57) (9.08 - 12.38) (9.24 - 11.80) 

CD56 
ABS 0.16 0.23* 0.19 

X10
9
/I (0.13 - 0.20) (0.19 - 0.26) (0.15-0.23) 

CD19 9.99 10.38 10.87 
% (9.00-10.98) (9.09 - 11.67) (9.82 -11.92) 

CD19 
ABS 0.19 0.22 0.19 

X10
9
/I (0.16 - 0. 21 ) (0.19 - 0.24) (0.16 -0.22) 

12 31.74 31.99 32.35 
% (26.68- 36.81) (26. 77 - 37.22) (27. 79 - 36.90) 

12 
ABS 0.55 0.68 0.56 

X109/1 (0.41 -0.69) (0.57 -0. 79) (0.45 -0.67) 

Results are presented as a mean with (95% confidence intervals) 

*Significance = p<0.05

80 

3 MONTH 

39 

10.72 
(9.12 -12.31) 

0.26 
(0.15 -0.36) 

11.35 
(9.95-12.74) 

0.23 
(0.20-0.27) 

35.16 
(30.49 - 39.87) 

0.71 
(0.59 - 0.83) 



Table 13 

Differences in the Haematological Parameters between 1 Week and 3 Months 
post partum in the Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

1 WEEK 3 MONTH 1 WEEK 

n 48 46 45 

Hb 11.81 12.15 11.26 
G/dl (11.37 -12.25) (11.85 - 12.45) (10.80 -11. 72) 

HGT 31.54 33.58 30.20 
% (28.47 -34.60) (30. 78 - 36.38) (27.04 -33.36) 

PLT 364.84 282.16* 367.29 
X109/I (317.42 - 412.26) (261.47 - 302.85) (334.36 -400.21) 

wee 6.84 5.62* 7.86 
X109/I (6.23 - 7.45) (5.15 - 6.08) (6.18 -9.54) 

LYMPHS 2.17 2.17 2.15 
X109/I (2 00-2.37) (1.93-2.42) (1.91 - 2.40) 

Results are presented as a mean with (95% confidence intervals) 

*Significance = p<0.05

81 

3 MONTH 

39 

11.79 
(11.11-12.48) 

35.49* 
(34.30 - 36.68) 

286.84* 
(261.33 - 312.36) 

5.56* 
(5.07 - 6.06) 

2.04 
(1.85 - 2.23) 



Table 14 

Differences in the lmmunophenotype Markers between 1 Week and 3 Months 
post partum in the Vitamin A and Placebo groups 

VITAMIN A PLACEBO 

1 WEEK 3 MONTH 1 WEEK 

n 48 46 45 

CD56 13.36 10.73 11.51 
% (10.54-16.19) (9.09 -12.38) (9.84-13.18) 

CD56 
ABS 0.29 0.23 0.25 

X109/I (0.23 - 0.34) (0.19 - 0.26) (0.20 -0.30) 

CD19 8.42 10.38* 8.53 
% (7.58 -9.25) (9.09 -11 .67) (7.35 -9. 71) 

CD19 
ABS 0.18 0.22 0.18 

X109/I (0.16-0.21) (0.19- 0.24) (0.15 - 0.21) 

12 34.56 31.99 33.25 
(30.09 -39.03) (26. 77 -37.22) (28.03- 38.47) 

12 
ABS 0.73 0.68 0.71 

X109/I (0.62 -0.84) (0.57 -0. 79) (0.56 - 0.86) 

Results are presented as a mean with (95% confidence intervals) 

*Significance = p<0.05

82 

3 MONTH 

39 

10.72 
(9.12 - 12.31) 

0.26 
(0.15 - 0.36) 

11.35* 
(9.95-12.74) 

0.23* 
(0.20-0.27) 

34.18 
(30.49 -37.8 7) 

0.71 
(0.59 -0.83) 



ABBREVIATIONS 

MTI - mother-to-infant 

ANC - Ante natal clinic 

NK - Natural killer 

I U - international units 

RBP - Retinol binding protein 

CRBP - Cytoplasmic retinol binding protein 

RAR - Retinoic acid receptor 

RXR - Retinoic X receptor 

ADCC - Antibody dependent cell cytotoxicity 

SCIO - Severe combined immunodeficiency 

HLA - Human leucocyte antigen 

MHC - Major histocompatibility complex 

lg - lmmunoglobulin 

umol - micromols. 

ug - micrograms 

IF N - Interferon 

IL - Interleukin 

PCP - Pneumocystis carinii pneumonia 

SIV - Simian immunodeficiency virus 

HTL V - Human T-Lymphocyte virus 

RT - Reverse transcriptase 

RNA - Ribonucleic acid 
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Tat - Trans-activator 

Rev - Regulator of HIV structural proteins 

mRNA - messenger ribonucleic acid 

Nef - Negative factor 

Vif - Viral infectivity factor 

IP/ml - Infectious particles per milliliters. 

HSV - Herpes simplex virus 

CMV - Cytomegalovirus 

EBV - Epstein Barr virus 

TNF - Tumor necrosis factor 

GM-CSF - Granulocyte/monocyte colony stimulating factor 

CTL - Cytotoxic T-lymphocyte 

TGF - Transforming growth factor 

MTS - Mycobacterium tuberculosis 

MAC - Mycobacterium avium complex 

HPV - Human papillomavirus 

PIO - Pelvic inflammatory disease 

PTK - Protein tyrosine kinase 

BCRs - B cell receptors 

SCF - Stem cell factor 

lgM - lmmunoglobulin M 

lgD - lmmunoglobulin D 

PBL - Peripheral blood lymphocyte 
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gp - Glycoprotein 

PWM - Pokeweed mitogen 

SlgM - surface lmmunoglobulin M 

LGL - Large granular lymphocyte 

LAK - Lymphokine activated killer 

APA - Antiphospholipid antibody 

T cR - T eel I receptor 

LCMV - Lymphocytic choriomeningitis virus 

HSV-FS - Herpes simplex virus type I 

Ir - Immune response 

FITC - Fluorescein isothiocyanate 

FALS - Forward angle light scatter 

RALS - Right angle light scatter 

PE - Phycoerythrin 

PMT - Photomultiplier tube 

IFM - lmmunofluorescent microscopy 

PBMC - Peripheral blood mononuclear cells 

FS - Forward scatter 

LSS - Log side scatter 

LFL - Log fluorescence 

EDTA - Ethylenediamine tetra-acetic acid 
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