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Abstract

Embedding theories are concerned with the embedding of a lower dimensional man-

ifold (dim = n, say) into a higher dimensional one (usually dim = n+1, but not

necessarily so). We are concerned with the particular case of embedding 4D spher-

ically symmetric equations into 5D Einstein spaces. This scenario is of particular

relevance to contemporary cosmology and astrophysics.

Essentially, they are 5D vacuum field equations with initial data given on a 4D

spacetime hypersurface. The equations that arise in this framework are highly non-

linear systems of ordinary differential equations and they have been particularly

resistant to solution techniques over the past few years. As a matter of fact, to date,

despite theoretical results for the existence of solutions for embedding classes of 4D

spacetimes, no general solutions to the local embedding equations are known.

The Lie theory of extended groups applied to differential equations has proved to

be very successful since its inception in the nineteenth century. More recently, it

has been successfully utilized in relativity and has provided solutions where none

were previously found, as well as explaining the existence of ad hoc methods. In

our work, we utilize this method in an attempt to find solutions to the embedding

equations. It is hoped that we can place the analysis of these equations onto a firm

theoretical basis and thus provide valuable insight into embedding theories.
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Chapter 1

Introduction

Differential equations (DEs) are the connections between calculus and the real world,

‘where the rubber meets the road’ [29]. From another perspective, DEs are the

language in which the laws of nature are expressed. Indeed, the study of DEs began

very soon after the invention of the differential and integral calculus, to which it

formed a natural sequel. Newton in 1676 solved a differential equation (DE) by the

use of an infinite series, but the results were not published until 1693, the same year

in which a DE occurred for the first time in the work of Leibniz (whose account of

the differential calculus was published in 1684) [42].

Einstein’s theory of general relativity uses the language of differential geometry

to describe gravity. The resultant Einstein field equations are a set of coupled,

highly non-linear partial differential equations that must be solved to yield hopefully

physical solutions. This task is non-trivial and frequently requires some subtlety.

Indeed, the techniques applied in this dissertation have been successfully used to

obtain 4D solutions [56, 77]. General relativity is a very successful theory and it

has been accurately tested to extreme precision [94]. However it is a theory which

attempts to paint a complete picture of the universe. Hence its inconsistency [49, 52]

with the theory of quantum mechanics, and the nature of the cosmological dark

energy and dark matter, have baffled scientists for a long time. Recently [8, 26, 84],

interest has grown in attempting to solve (or soften) these difficulties by considering
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a higher dimensional bulk into which our 4D universe is embedded. This dissertation

treats the solution of some DEs arising within this general scenario.

1.1 Differential equations

Any DE expresses a relation between derivatives or between derivatives and given

functions of the variables. It thus establishes a relationship between the increments

of certain quantities and these quantities themselves. The ancient Greeks established

laws of nature in which certain relations between numbers played a privileged role.

A law of this type may describe, for example, how a certain state will develop in the

immediate future, or the influence of the state of a particle on the particles in the

neighborhood. Thus, we have a procedure for the description of a law of nature in

terms of infinitesimal differences of time and space. The increments with which the

law is conserved appear as derivatives [82]. We can thus define a DE as an equation

relating some function f to one or more of its derivatives. By this definition, it is

not difficult to see why DEs arise so readily in the sciences. Take for instance, the

function

y = f(x). (1.1)

The derivative,
df

dx
, can be interpreted as the rate of change of f with respect to x.

It is this same principle that governs any process of nature, whereby any variables

involved are related to their rate of change by the basic scientific principles that

govern the process. Indeed, many laws of nature - in chemistry, in biology, in

engineering and physics find their most natural expression in the language of DEs.

As aptly said earlier on, DEs are the language of nature.

DEs which involve only one independent variable are called ordinary differential

equations (ODEs) and those which involve two or more independent variables and

partial differential co-coefficients with respect to them are called partial differential

equations (PDEs).
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Suppose you have an ODE of, say, 2nd order, for example

y′′ = (x− y)y3, (1.2)

where y′ denotes
dy

dx
.

The conventional ways of proceeding have been to check whether the DE belongs

to a class of equations whose resolution path is already known. If this technique is

unsuccessful, the next step might be to look into tables of established solutions to

see if the form of the DE is synonymous to the equations with already established

solutions. The use of änsatze is thereafter employed as the last option [93].

The Legendre’s equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0, (1.3)

the Bessel’s equation,

x2y′′ + xy′ + (x2 − α2)y = 0, (1.4)

and the Airy’s equation,

y′′′ − 4xy′ − 2y = 0, (1.5)

where y′ =
dy

dx
, are all classic representations of a process in nature and each has a

vast literature surrounding its emergence and subsequent solutions.

1.2 Historical background of the emergence of Lie

groups

In this work, we introduce the Lie group theoretic approach to the solution of DEs,

particularly in the field of relativity. This we do on the basis of the successes it

has been able to achieve over the years, particularly in areas where other techniques

have failed.

Ironically, Lie algebras were an area Sophus Lie had little interest in initially pursu-

ing. He instead hoped to develop the equivalent of the Galois theory to DEs. To this
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end, together with Friedrich Engel, he completed the third and final volume of the

massive treatise Theorie der Transformationsgruppen [59]. In the late nineteenth

century, Lie made the profound and far reaching discovery that all these special

methods of solving DEs were in fact special cases of a general integration procedure

based on the invariance of the DE under a continuous group of symmetries (Here, a

symmetry refers to a group of transformations that transforms the set of all solutions

of the differential equation to itself.). By 1884, he had obtained all of his principal

results [39].

The applications of Lie groups have now had a profound effect on all areas of mathe-

matics and mathematically-based sciences [80, 90]. As for his original idea of devel-

oping the equivalent theory of Galois theory to DEs, one researcher notes that ‘the

remarkable range of applications of Lie groups to DEs in geometry, in analysis, in

physics, and in the engineering over the past 40 years has resurrected Lie’s original

vision into one of the most active and rewarding fields of contemporary research’

[81].

Another scientist who made great advances in the solution of DEs was Emmy

Noether, who in 1918 proved two theorems relating symmetry groups of a variational

integral to properties of its associated Euler-Lagrange equations. Though this work

was neglected for many years, generalised symmetries have now been found to be

of importance in the study of nonlinear DEs (which can be viewed as ‘completely

integrable systems’) [80, 90].

1.3 General relativity

The mathematical background for any researcher approaching the realm of general

relativity has two cornerstones; differential geometry and differential equations. Un-

til recently, research in general relativity basically attempted to develop and study

exact solutions of Einstein’s field equations. When things get difficult, the numerical

approach was the first way out; exhibiting the differential geometry background and
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treading the path of differential equations in considerably less detail, if at all [85].

It is precisely this gap that works of this nature seek to fill, by creating a fusion of

these two cornerstones.

After an experiment conducted by Michelson in 1891, it was established that light

travels at a constant speed through any vacuum, independent of the choice of the

reference frame [70]. This result was inconsistent with the Galileo invariant, which

assumes that the speed of light is not constant, but time is conserved. This problem

was solved using Lorentz transformations instead of Galileo’s transformations and

the physical consequences of this was pointed out by Einstein in 1905 [61, 62, 63].

The group consisting of the physical consequences of the Lorentian invariance, Ein-

stein’s equation of mass-energy equivalence,

E = mc2, (1.6)

and the effects of length contraction and time dilatation, became known as special

relativity.

Spacetime is a mathematical model that combines space and time into a single

continuum. Spacetime is usually interpreted with space being in 3D and time playing

the role of the fourth dimension. By combining space and time into a single manifold

(a mathematical space that on a small enough scale resembles the Euclidean space

of the same dimension), physicists have been able to significantly simplify a large

number of physical theories, as well succeed in describing in a more uniform manner,

the workings of the universe [65].

Special relativity, via Lorentz transformations introduced the notion of spacetime;

placing space and time on an equal footing. This concept was extended in general

relativity via the inclusion of curvature. Indeed, in relativistic contexts time cannot

be separated from the three dimensions of space. This is so because the observed

rate at which time passes for an object depends on the object’s velocity, relative

to the observer and also on the strength of intense gravitational fields (which can

slow the passage of time) [62]. The term spacetime has taken on a more generalised

meaning beyond treating spacetime events with the normal 3+1 dimensions. Other
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proposed spacetime theories include those with additional dimensions - normally

spatial, but there exist some speculative theories that include additional temporal

dimensions - and even some that include dimensions that are neither temporal nor

spatial. It is still unclear as to how many dimensions are needed to describe the

universe. Speculative theories like the string theory [83] predict 10 or 26 dimensions

(with M-theory [71] predicting 11 dimensions; 10 spatial and 1 temporal).

General relativity is very successful in providing a framework for accurate models

which describe an impressive array of physical phenomena. With the advent of preci-

sion astronomy, GR provides the mathematical foundations for modern (empirically

driven) cosmology and astrophysics. Mathematical relativists are still exploring the

nature of singularities and the fundamental properties of Einstein’s equations [30].

Ever more comprehensive computer simulations of specific spacetimes (such as those

describing merging black holes) are still been run [57], and the race for the first di-

rect detection of gravitational waves continues apace [29]. More than ninety years

after the theory was first published, research is more active than ever.

On the other hand, there are many interesting open questions, and in particular, the

theory as a whole is almost certainly incomplete. In contrast to all other modern the-

ories of fundamental interactions, general relativity is a classical theory - it does not

include the effects of quantum physics. The quest for a quantum version of general

relativity addresses one of the most fundamental open questions in physics. While

there are promising candidates for such a theory of quantum gravity, notably string

theory and loop quantum gravity, there is at present no consistent and complete

theory. Moreover, testing these theories may well be beyond the scope of terrestial

experiments. It has long been hoped that a theory of quantum gravity would also

eliminate another problematic feature of general relativity - the presence of space-

time singularities. These singularities are boundaries (‘sharp edges’) of spacetime

at which geometry becomes ill-defined, with the consequence that general relativity

itself loses its predictive power. Furthermore, there are singularity theorems which

predict that such singularities must exist within the universe if the laws of general
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relativity were to hold without any quantum modifications. The best-known exam-

ples are the singularities associated with the extreme models that describe black

holes and the beginning of the universe [35].

It is thus natural that high energy physicists and cosmologists should find common

ground in the extreme phenomena of our universe. There we might see signs of the

need for new theory and hints for how to build it. In modern cosmological models,

most energy in the universe is in forms that have never been detected directly and

whose theoretical nature is unclear, namely dark energy and dark matter. Moreover,

the standard model requires an early era of inflationary expansion whose nature is

poorly constrained by experiment. There have been several controversial proposals

to obviate the need for these enigmatic forms of matter and energy, by modifying

the laws governing gravity and the dynamics of cosmic expansion, for example the

modified Newtonian dynamics [14, 76]. This dissertation is contextualised within

another approach: namely to describe these phenomena via the geometric effects of

an embedding into a higher dimensional space.

Einstein’s theory of general relativity pioneered the idea that gravitation is an effect

of the curvature of spacetime. Prior to this, gravity had been viewed as a force from

the same perspective that electromagnetism was viewed. Many works have been a

sequel to Einstein’s theory, describing higher dimensional geometries in an attempt

to unify/describe natural forces. Indeed, this theory has been a key element in the

understanding of many aspects of cosmology and astrophysics [72].

In their attempts to unify general relativity with electromagnetism, Kaluza and

Klein [69] proposed that there exists an extremely compact fifth dimension. This

idea of the existence of extra dimensions was abandoned until the early 1960’s when

string theory was introduced in an attempt to explain strong nuclear forces. The

notion that the various string theories represent different limiting perspectives of

one 11-dimensional theory (the M-theory) was initiated by the duality transfor-

mations of the 1990’s. Closer to our time, there has been a large deal of interest

in 5D brane-world models which was prompted by the Horava-Witten theory [43],
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in which six of the extra dimensions from the M-theory were compactified, leav-

ing a 5D theory. Alternative scenarios include D-branes, which naturally possess

odd numbers of spatial dimensions, leading one to consider 6D models [88]. Not

long after, phenomenological models (models which mathematically express the re-

sults of observed phenomena without paying detailed attention to their fundamental

significance) such as those of Arkani-Hamed-Dimopoulos-Dvali [7, 8] and Randall-

Sundrum [84] followed. These theories all have the potential of eventually explaining

the long standing physical problems such as the dark energy and the inflationary

field.

All these models require the existence of a 4D hypersurface or brane, which is to be

embedded into a higher dimensional space, referred to as the bulk, itself satisfying

the 5 (or 6)-D Einstein field equations. As a consequence of these, a great deal of

interest has arisen in obtaining existence theorems and explicit solutions for such

embeddings.

1.4 Outline

In chapter 2 of this work, we will give a broad outline of the method of Lie symmetry

analysis. We will thereafter illustrate the technique in the resolution of an example.

This example gives a broad and generalised overview of the remarkable strength of

the Lie group analysis’ approach in the resolution of DEs. Relevant definitions in

Lie groups with their corresponding applications will then follow. We proceed with

a discussion on obtaining invariant solutions of differential equations via its symme-

tries and give a practical example on how to implement the method. The chapter

will be rounded off by a discussion on the interesting topic of hidden symmetries of

DEs. We will conclude by demonstrating the existence of these symmetries by an

analysis of a nonlinear DE.

Motivated by various higher dimensional theories in high-energy physics and cos-

mology, we seek to employ Lie group analysis for the resolution of equations that
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arise in the embedding of 4D spherically symmetric spacetimes into 5D Einstein

(vacuum) spacetimes. In chapter 3, we provide the background material of the basic

problem which we seek to solve in this work. The origin, relevance and ongoing

research in this very important field will be highlighted.

Chapter 4 gives a detailed, systematic outline of how we go about obtaining general

solutions to the main problem discussed in chapter 3.

In chapter 5, we conclude with the results obtained and their interpretations. Open

problems and other possible areas of research close out the chapter.
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Chapter 2

An Overview of the Lie group

analysis approach

2.1 Introduction

In this chapter, we give a detailed outline of the techniques we shall employ in our

study. Section 2.2 is dedicated to giving the general outline of the approach, and we

mention the direction (in the form of which particular transformation), our analysis

will point. An example of the application of the technique in the resolution of the

Emden-Fowler equation will be demonstrated in subsection 2.2.1. Subsection 2.2.2

on the other hand explains the concept behind Lie algebras and we will show its

usefulness by analysing the symmetries admitted by the Emden-Fowler equation.

We define another direction in our work by investigating the group invariant solu-

tions of a DE. These are basically singular solutions of a DE – solutions which cannot

be obtained from the general solution. Via a theorem by Bluman [11], in section

2.3, we give a detailed picture of this approach. We will illustrate this method by

again considering the Emden-Fowler equation.

We also discuss the concept of hidden symmetries in section 2.4 as they arise in our

analysis. We conclude the chapter in section 2.5.
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2.2 Lie analysis

In this section, we briefly outline the technique of Lie symmetry analysis. We will

employ this method in the resolution of ODEs that arise from relativistic models.

The strength of this approach lies mainly in the ability of the technique to solve

ODEs by using their symmetries. By a symmetry, we mean the generator of a

transformation which leaves the form of the DE invariant. The main application

of Lie point symmetries is searching for exact solutions by the reduction of an nth

order differential equation through its symmetries to an (n− 1)th order differential

equation, with the hope that the reduced equation will then be solvable.

One of the ways of solving DEs is via transforming the dependent or independent

variable. This makes the resultant DE a simpler equation on substitution of these

new variables. When the transformation depends on the variables alone, it is called

a point transformation. This is the transformation we shall concern ourselves with

here, though other forms of transformations exists (e.g contact transformations [45]).

Let us consider an invertible one-parameter group of transformations

x̃ = x̃(x, y; ε) ỹ = ỹ(x, y; ε) (2.1)

of the (x, y) plane. These transformations depend on the real parameter ε and have

the conditions

x̃|ε=0 = x x̃|ε=0 = y,

imposed on them. Transformations of the form of equation (2.1) are called point

transformations (unlike contact transformations where the transformed values also

depend on the derivative y′). The one-parameter group of transformations (2.1) is

thus called a group of point transformations.

The infinitesimal transformations of functions x̃ and ỹ can be approximately esti-

mated, via Taylor series expansion, as

x̃ ≈ x+ εξ(x, y),

ỹ ≈ y + εη(x, y).
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The expansion was done with respect to the parameter ε in the neighbourhood ε = 0,

where

ξ(x, y) =
dx̃

dε

∣

∣

∣

∣

ε=0

,

η(x, y) =
dỹ

dε

∣

∣

∣

∣

ε=0

.

An infinitesimal operator G is then written in terms of the 1st order differential

operator

G = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
.

Theorem 2.2.1. The function F(x,y) = 0 is an invariant of a group of point trans-

formations with the infinitesimal operator G if and only if it satisfies the condition

[86]

GF ≡ 0.

From Theorem 2.2.1, we can, in like manner, easily show that an nth order ODE

E(x, y, y′, ..., y(n)) = 0, (2.2)

is invariant under the generator

G = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
,

provided

G[n]E|E=0 = 0, (2.3)

holds, where

G[n] = G+
n
∑

i=1

(

η(i) −
i−1
∑

j=0

(

i

j

)

y(i+1)ξ(i−j)

)

.

This means that the action of the nth extension of G on E is zero when the original

equation is satisfied.

Note that

ξ′ =
∂ξ

∂x
+ y′

∂ξ

∂y
(2.4)
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for the first derivative,

ξ′′ =
∂2ξ

∂x2
+ 2y′

∂2ξ

∂x∂y
+ y′2

∂2ξ

∂y2
+ y′′

∂ξ

∂y
(2.5)

for the second derivative and so on (similar expressions apply to η). As a result,

condition (2.3) is an identity in the powers of y′. Equating coefficients of the different

powers of y′ to zero results in a system of linear partial differential equations in η and

ξ. Solving this system explicitly for η and ξ yields the symmetry G. This analysis

can be automated. We use a combination of program LIE [40] and the SYM package

[25] to determine the symmetries of the equations we study.

Once the symmetries are known explicitly, they can be used to reduce the order of the

DE. In order to reduce equation (2.2), we obtain reduction variables via G[1]z = 0,

where z = z(x, y, y′) is an arbitrary function of its arguments. This results in the

equation

ξ
∂Z

∂x
+ η

∂Z

∂y
+ (η′ − y′ξ′)

∂Z

∂y′
= 0 (2.6)

which has the associated Lagrange’s system

dx

ξ
=

dy

η
=

dy′

η′ − y′ξ′
.

Solving the 1st and 2nd terms in the system gives the zeroth order differential invari-

ant, while the 2nd and 3rd terms gives the first order differential invariant. These

are the new variables that make the nth order DE become an (n− 1)th order DE.

2.2.1 Special case of the generalised Emden-Fowler equation

The generalised Emden-Fowler equation

y′′ = f(x)yn (2.7)

is of great importance in the analysis of the gravitational behaviour of many cosmo-

logical and astrophysical models [60, 98]. We will look at a particular case of this

problem in order to highlight the ability of the Lie group analysis approach in the

resolution of a problem.
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Statement of the problem

We consider a particular case of equation (2.7) with f(x) = 1 and n = 2, i.e.

y′′ = y2. (2.8)

We wish to find a solution to this equation using the Lie group approach.

Solution of the problem by the Lie group approach

In determining the symmetries of equation (2.8), we require condition (2.3) to hold

for (2.8) i.e.
(

∂2η

∂x2
+ 2y′

∂2η

∂x∂y
+ y′2

∂2η

∂y2
+ y2∂η

∂y

)

− 2y2

(

∂ξ

∂x
+ y′

∂η

∂y

)

−y′
(

∂2ξ

∂x2
+ 2y′

∂2ξ

∂x∂y
+ y′2

∂2ξ

∂y2
+ y2 ∂ξ

∂y

)

= 2ηy. (2.9)

Observe that, while ξ and η do not depend on derivatives of y, these derivatives

appear in (2.9). This allows us to equate different powers of y to zero to obtain an

over-determined system of linear PDEs [45]. In the case of (2.9), the system is

y′3 :
∂2ξ

∂y2
= 0 (2.10)

y′2 :
∂2η

∂y2
− 2

∂2ξ

∂x∂y
= 0 (2.11)

y′1 : 2
∂2η

∂x∂y
− ∂2ξ

∂x2
− 3y2∂η

∂y
= 0 (2.12)

y′0 :
∂2η

∂x2
− 2y2 ∂ξ

∂x
+ y2∂η

∂y
= 2ηy (2.13)

The solution of (2.10)–(2.13) yields

η = A0 + xA1, (2.14)

ξ = −2yA1, (2.15)

which gives the two symmetries of equation (2.8) as

G1 =
∂

∂x
, (2.16)

G2 =
1

2
x
∂

∂x
− y

∂

∂y
. (2.17)
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Due to the admittance of these two symmetries, equation (2.8) can now be reduced

to quadratures. We shall now proceed to reduce equation (2.8) via G1. The new

variables for transformation will then be

u = y V (u) = y′. (2.18)

Under this transformation, equation (2.8) reduces to

V V ′ = u2, (2.19)

a 1st order DE. This implies that

V =

√

2

3
(u3 + 3β), (2.20)

where β is a constant of integration.

To obtain a solution to equation (2.8), the technique requires that we invert the

solution in equation (2.20) through the transformations hitherto made.

Using (2.18), we will have that

y′ =

√

2

3
(y3 + 3β). (2.21)

We solve this to obtain

x− α = F

[

sin−1

{

19

25

√

(

13

15
− i

2

)

+

(

3

5
− 8i

23

)

y

β
1

3

}

,

(

1

2
+

13i

15

)

]

(

17

9
+

11i

10

)

√

12 − 7i

42β
1

3

(2.22)

where α is an arbitrary constant and the function F is the incomplete elliptic integral

of the first kind.

2.2.2 Lie algebras

Definition 2.2.2. A Lie algebra L is a vector space over a field F augmented by a

bilinear composition law [ , ], known as the Lie bracket for L, such that the following

properties hold:
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(1) Bilinearity:

[αv1 + βv2, v3] = α[v1, v3] + β[v2, v3],

[v1, αv2 + βv3] = α[v1, v2] + β[v1, v3].

(2) Anti-commutativity:

[v1, v2] = −[v2, v1]

(3) The Jacobi identity

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] = 0

∀ vectors vi, i = 1, ..., 3 ∈ L and constants α, β [86].

Let Gi; i = 1, ..., m be linearly independent infinitesimal generators associated with

an m-dimensional Lie invariant transformation group. On introduction of the Lie

bracket

[G1, G2] = G1G2 −G2G1,

it is established that {Gi} generate an m-dimensional Lie algebra. Furthermore it

can be shown that if

[G1, G2] = λG1,

where λ is a non-zero constant, then reduction via G1 will result in G
[1]
2 being a

point symmetry of the reduced equation. On the other hand, reduction via G2 will

result in G
[1]
1 not being a point symmetry for the reduced equation [45]. In the case

of λ = 0, symmetries G1 and G2 will commute i.e. reduction via either of them will

result in the other being a point symmetry of the reduced equation.

We shall extensively employ the above technique in the choice of which symmetries

will be most appropriate for the reduction of the equations we studied.

Recall that we reduced the order of equation (2.8) via G1. This was due to the fact

that the Lie bracket analysis of the symmetries,

[G1, G2] =
1

2
G1. (2.23)
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We then inferred that only reduction viaG1 will result inG
[1]
2 being a point symmetry

of the resultant equation (and not vice-versa). As a result of this route of reduction,

we were able to solve the reduced equation (2.19).

To confirm our assertion, we will attempt to reduce via G2. This results in the 1st

order equation

V ′(3V − V ′u) − V ′ = 1. (2.24)

As expected, this equation cannot be solved directly as opposed to (2.19) (we note

that a solution has been obtained via the nonlocal symmetries [3]).

2.3 Group invariant solutions

In addition to the above method to find the general solution of an ODE via sym-

metries, we can also use symmetries to find singular solutions.

Let ∆ be a group of DEs defined over an open subset M ⊂ X xY ≃ R
p x R

q; where

X, Y are the spaces of the independent and dependent variables respectively. Let

G be a local group of transformations acting on M . A solution y = f(x) of ∆ is

said to be G-invariant if it remains unchanged by all the group transformations in

G [80].

In particular, if an ODE admits a one-parameter Lie group of transformations, then

special cases called invariant solutions can be constructed without knowledge of the

general solution of the ODE [11]. In this section, we shall give an outline of the

theorem by Bluman [11], on how group invariant solutions are obtained.

Theorem 2.3.1. Suppose

F (x, y, y′, ..., yn) = 0 (2.25)

admits the one-parameter Lie group of transformations

x∗ = X(x, y; ǫ) = x+ ǫξ(x, y) +O(ǫ2),

y∗ = Y (x, y; ǫ) = y + ǫη(x, y) +O(ǫ2),
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with infinitesimal generator

G = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
, (2.26)

in domain D ⊂ R2.

Without loss of generality, assume that ξ(x, y) 6= 0 in D. Let

ψ(x, y) =
η(x, y)

ξ(x, y)
, Y =

∂

∂x
+ ψ(x, y)

∂

∂y
=

1

ξ(x, y)
X

and

yk = Y k−1ψ, k = 1, 2, ...n.

Then the general solution of

Q(x, y) = F (x, y, ψ, Y ψ, ..., Y n−1ψ) = 0,

yields an invariant solution φ(x, y) = 0, of the DE (2.25).

To practically typify how to obtain invariant solutions, we shall again consider the

Emden-Fowler equation (2.8). Recall that equation (2.8) admits the symmetry

G2 =
1

2
x
∂

∂x
− y

∂

∂y
. (2.27)

Following Theorem 2.3.1, we now define

ψ =
η

ξ
=

−2y

x
(2.28)

and

Y =
∂

∂x
− 2y

x

∂

∂y
. (2.29)

We will now have that

y′ = ψ =
η

ξ
=

−2y

x
, (2.30)

y′′ = Y ψ =

[

∂

∂x
− 2y

x

∂

∂y

] [−2y

x

]

=
6y

x2
. (2.31)

The new DE,

Q(x, y) =
6y

x2
− y2 = 0, (2.32)
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has general solutions

y = 0 y =
6

x2
. (2.33)

These are two invariant solutions of the Emden-Fowler equation (2.8).

Note that we cannot obtain these solutions by setting the constants in (2.22) to

special values.

2.4 Hidden symmetries

Research has now shown that under special cases, DEs on reduction, admit symme-

tries that were not evident when they were in their original state. This breakthrough

in research has enabled scientists solve problems that were hitherto abandoned due

to its initial admittance of an inadequate number of symmetries [90].

There are two classes of hidden symmetries: Type I hidden symmetries, which occur

when one or more Lie symmetries are lost during the decrease in order of a DE, and

Type II symmetries which are lost during the increase in the order of a DE [2, 90].

A good example to show the existence of hidden symmetries is the equation

2FF (iv) + 4F ′F ′′′ = 0, (2.34)

which arise in the study of the Emden-Fowler equation (2.7) when n = 2 [68].

Equation (2.34) admits symmetries

X1 =
∂

∂x
, (2.35)

X2 = x
∂

∂x
, (2.36)

X3 = F
∂

∂F
. (2.37)

By the Lie bracket analysis of the symmetries, we proceed to reduce equation (2.34)

via X1. The differential invariants for this symmetry are

u = F V (u) = Ḟ . (2.38)
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Subsequent substitution of these new variables into equation (2.34) results in the

3rd order equation

V
[

2uV ′3 + V V ′(5V ′ + 8uV ′′) + V 2(5V ′′ + 2uV ′′′)
]

= 0. (2.39)

Equation (2.39) now admits symmetries

Y1 = u
∂

∂u
, (2.40)

Y2 = V
∂

∂V
, (2.41)

Y3 = 2u2 ∂

∂u
+ uV

∂

∂V
. (2.42)

Observe that Y3 is a new symmetry whose existence was unknown during the ad-

mittance of symmetries by the initial DE. This is a Type II hidden symmetry and

can be used for further reduction of the DE [2, 90].

2.5 Remarks and synopsis

In this chapter, we gave a detailed outline of the Lie group analysis approach. This

method was then illustrated via examples. We indicated how to reduce the order of

an equation, find its group invariant solutions and discussed the notion of hidden

symmetries.

We discuss the origin of the problem we will study in the next chapter.

20



Chapter 3

Background to the main problem

3.1 Introduction

This chapter will be dedicated to providing sufficient general relativistic (GR) back-

ground to the problem which we seek to solve. We shall employ differential geometry

as a tool in this construction, before seeking to solve the resultant system of DEs in

the next chapter. Section 3.2 will highlight basic definitions, culminating in the defi-

nition of isometric embeddings (both local and global). That section will also discuss

the Gauss, Codazzi and Ricci equations, which provide the necessary platform for

embedding one spacetime into another. Section 3.3 covers the vast amount of work

that has being done in previous years, leading up to the contemporary formulation

of the embedding equations. We shall outline these equations, in the context of

spherical symmetry, in the next section - section 3.4 - making the following chapter

a natural sequel (where we look at obtaining solutions to these equations). Section

3.5 consists of remarks and a brief synopsis of the chapter.

We shall consistently denote quantities concerning the embedded space with a tilde

while an overbar will be used to denote quantities obtained from the n-dimensional

component of the higher-dimensional metric. Also note that we shall denote differ-

entiation with respect to y and r by dots and primes respectively. We follow the
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Einstein summation convention for repeated indices.

3.2 Differential Geometry

Differential geometry is a mathematical discipline that utilises the tools of differential

and integral calculus, coupled with (multi)-linear algebra in the study of geometry.

Over the years, it has grown into a field now majorly concerned with the geometric

structures of manifolds. A systematic approach will be utilised in the introduction

of this field - by giving basic definitions of the important concepts and a discussion

on the structure of these concepts.

These materials are drawn from references [10, 32, 55, 92, 99]. For further informa-

tion, the reader is referred to these sources.

Suppose f is a function between two sets M and N . Then f is a ‘homeomorphism’

if

(1) f is continuous,

(2) its inverse f−1 is continuous, and

(3) f is bijective i.e. is 1-1 and onto.

A manifold M is a space that looks locally like the Euclidean space but may have a

different structure globally. Thus a line and a circle are one-dimensional manifolds,

a plane and sphere (the surface of a ball) are two-dimensional manifolds, and so on.

A manifold need not be equipped with any system of measurement. For example a

plane, considered purely as a manifold, is like the Euclidean plane stripped of the

notions of length and angle. More formally, every point of an n-dimensional manifold

has a neighborhood homeomorphic to a neighborhood of the n-dimensional space

R
n.

For most applications, a special kind of topological manifold called the differential

manifold is always used. To accurately define this concept, we need to understand

what an atlas is.

An n-dimensional chart at p ∈ M is a pair (λ, µ), where λ is an open set of M
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containing p. The function µ is a homeomorphism of λ onto an open set of R
n.

Additional features of this pair is that λ is a coordinate neighborhood while µ is a

coordinate map. If ψi are the coordinate functions on µ(λ), then

µi = ψi ◦ µ (3.1)

are local coordinates on λ. The set of all n-dimensional charts (λα, µα) such that

{λα} covers M , is an atlas.

Definition 3.2.1. The set M is a differentiable manifold if and only if it comes

equipped with a countable atlas, and satisfies the Hausdorff property.

The Hausdorff property is defined such that, for any two points x 6= y in M , there

are disjoint open sets A and B, with x ∈ A and y ∈ B. All metric spaces are in fact

Hausdorff spaces.

In order to measure the distances and angles on a manifold, the manifold must be

(pseudo)-Riemannian. A (pseudo)-Riemannian manifold is simply a differentiable

manifold in which each tangent space is equipped with an inner product 〈·, ·〉 in a

manner that varies smoothly from point to point. Not every differentiable mani-

fold can be given a (pseudo)-Riemannian structure though - there are topological

restrictions on doing so.

The Euclidean space itself carries a natural structure of the (pseudo)-Riemannian

manifold (i.e. the tangent spaces are naturally identified with the Euclidean space

itself and carry the standard scalar product of the space). Many familiar curves

and surfaces, including for example all n-spheres, are specified as subspaces of a

Euclidean space and inherit a metric from their embedding in it.

Now, let us suppose that M is a Ck manifold (k ≥ 1) and p is a point in M . The

tangent space of M at p, denoted by TpM is the set of all the tangent vectors to M

at p. Let f : M → N be a smooth map between two smooth manifolds. At p ∈M ,

f induces a differential map f∗ : TpM → Tf(p)N given by

(f∗X)(α) ≡ X(α ◦ f),
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where X ∈ TpM and α is a real-valued function defined in a neighborhood of f(p)

[10].

An m-dimensional submanifold of M is characterised by xa = xa(u1, u2, ..., un);

for a = 1, 2, ..., m, where n is the dimension of the manifold and is strictly less

than m (n < m). An (n − 1)-dimensional submanifold (for n ≥ 3), parametrically

characterised by

h(x1, x2, ..., xn) = 0,

is called a hypersurface.

The relation

ds2 = f(xa, dxa),

which is the measure of the infinitesimal distance between two points, is referred

to as the metric. The quantity dxa is the difference between the coordinates of the

points in the manifold. We are particularly concerned with (pseudo)-Riemannian

metric spaces, whose metric is of the form

ds2 = gab(x
c)dxadxb.

The forms dxν are the one-form gradients of the scalar coordinate fields xν while

the symmetric coefficients gab are a set of real-valued functions (since g is a tensor

field defined at all points of a spacetime manifold). The interval is timelike when

ds2 < 0, lightlike when ds2 = 0 and spacelike when ds2 > 0 (the metric is called

Riemannian if this is always true).

The fundamental theorem of Riemannian geometry states that, given a metric on

any (pseudo)-Riemannian manifold, there is a unique symmetric connection which

preserves the scalar product under parallel transport. This unique connection is

characterised by the Christoffel symbol

Γa
bc =

1

2
gad(gcd,b + gdb,c − gbc,d). (3.2)

This is referred to as the Christoffel symbol of the second kind. On the other hand,

the relation

Γabc =
1

2
(gac,b + gba,c − gbc,a) (3.3)
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is referred to as the Christoffel symbol of the first kind. Note that commas denote

partial differentiation.

We shall employ the Christoffel symbol of the second kind in the definition of the

covariant derivative of a manifold. The covariant derivative ∇ is a smooth map

between tensors of ranks (p, q) and (p, q + 1), having components

∇dV
a1,...ap

b1,...,bq
= V a1,...ap

b1,...,bq;d

= V a1,...ap
b1,...,bq,d

+ Γa1

cdV
ca2,...ap

b1,...,bq
+ ... + Γap

cdV
a1,...c

b1,...,bq

−Γc
b1dV

a1,...ap
cb2,...,bq

− ...− Γc
bqdV

a1,...ap
b1,...,c.

3.2.1 Curvature and the field equations

Geometric investigations of manifolds are done via two perspectives - intrinsic and

extrinsic. The extrinsic curvature of a manifold depends on how the manifold is

embedded into a higher dimensional space, providing a geometrical relationship

between the embedded and embedding spaces. The intrinsic curvature on the other

hand is confined to the manifold, assuming no knowledge of what happens outside

the manifold.

The intrinsic curvature of a manifold (due to the non-commutativity of covariant

differentiation) is characterised by

Ja
;cd − Ja

;dc = Ra
bcdJ

b

Jb;dc − Jb;cd = Ra
bcdJa,

where J is some vector. The quantity

Ra
bcd = Γa

bc,d − Γa
bd,c + Γa

edΓ
e
bc − Γa

ecΓ
e
bd

is called the Riemann tensor or curvature tensor of the second kind. The quantity

Rabcd = gaeR
e
bcd = Γabc,d − Γabd,c + ΓafdΓ

f
bc − ΓafcΓ

f
bd
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is referred to as the Riemann tensor of the first kind.

These Riemann tensors satisfy the properties of:

(1) Anti-symmetry on its first and second pairs i.e. Rabcd = −Rbacd = −Rabdc

(2) Symmetry on pair exchange i.e. Rabcd = Rcdab

(3) Cyclic identity i.e. Rabcd +Radbc +Racdb = 0

The relation

Rab = Γd
ad,b − Γd

ab,d + Γd
ebΓ

e
ad − Γd

edΓ
e
ab

is the expression for the symmetric Ricci tensor, obtained from the contraction

Rab = Rd
abd. Its scalar equivalent is the Ricci scalar R, given by

R = Rb
b = gabRab.

When a manifold has constant curvature, the Riemann tensor can be written as

Ramsq =
1

K
(gasgmq + gaqgms) ,

where the constant K is referred to as the radius of curvature of the manifold.

The Riemann curvature described above provides a measure of the intrinsic curva-

ture - it makes no assumptions about a higher dimensional embedding space. The

latter perspective leads to the notion of extrinsic curvature. An example of the

extrinsic curvature of a 3D spacetime in a 4D spacetime with metric

ds2 = gabdx
adxb = gABdx

AdxB − φdt2,

is given by

Ωab = − 1

2φ

∂gab

∂t
,

where φ = φ(x, y, z, t) [94]. This notion is developed further in the next section.

Before outlining the details of embedding theory, we need to describe the embedding

space. This is done via the Einstein field equations (EFE):

Gab = Rab −
1

2
gabR = KTab + gabΛ,
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where Gab is the Einstein tensor, Λ is the cosmological constant, Tab is the matter

tensor and K is a constant
(

8πG
c4

)

comprised of Newton gravitational constant (G)

and the speed of light (c). The constant K is usually set to 1 for convenience. The

EFE can be interpreted as a set of equations showing how the curvature of spacetime

is related to the matter/energy content of the universe.

The form of the Ricci tensor (Rab) in an (n + 1)-dimensional Einstein (vacuum)

spacetime is

Rab =
2Λ

1 − n
gab.

The Ricci scalar (R), is of the form

R =
2nΛ

1 − n
.

When Λ = 0; Rab = 0 = R, implying a Ricci-flat space. We shall employ Einstein

spaces as our embedding spaces - motivated by a programme of ‘geometrizing’ the

physics, we seek embedding spaces that are devoid of matter. Later on in this

section, we will highlight Eisenhart’s [28] alternative form of the EFE in a bid to

embed an n-dimensional space Vn into an m-dimensional space Vm.

3.2.2 Embedding theory

As aforementioned in the introductory chapter, a great deal of interest arose in

embeddings in a quest, via the phenomenological models [7, 8, 84], to eventually

explain long standing physical problems such as dark energy, dark matter and in-

flationary fields. Indeed, all these higher dimensional theories of gravity require a

sound knowledge of differential geometry to understand how to embed one manifold

into another. The Gauss, Codazzi and Ricci equations provide us with these tools

by relating the twisting of the manifolds relative to another, and by relating the

intrinsic and extrinsic curvatures.

An embedding f is essentially an homeomorphism onto itself. In other words, a

mapping f : M → N between manifolds M and N is an embedding if f yields a
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homeomorphism between M and f(M). This implies that f(M) is then a subman-

ifold. Embeddings could either be local or global.

Definition 3.2.2. Suppose Mn is an n-dimensional analytic manifold with metric

gij and Nn+k is an (n + k)-dimensional analytic manifold with metric g̃µν . Then

f : Mn → Nn+k is a global isometric embedding if:

(1) f is a homeomorphism onto its image,

(2) f∗ : TpM
n → Tf(p)N

n+k is injective ∀p ∈Mn, and

(3) gp(R, S) = g̃f(p) (f∗(R), f∗(S)) ∀ R, S ∈ TpM
n, ∀ p ∈Mn [32].

The function f is a local isometric embedding if and only if given a subset U ⊂Mn

(where U is an open coordinated neighborhood of the point p), the three conditions

above hold for f : U → V, V ⊂ Nn+k.

The Gauss, Codazzi and Ricci (GCR) equations

In a bid to locally embed an n-dimensional space Vn into an m-dimensional space

Vm as a hypersurface (where m > n), Eisenhart [28] produced three equations

Rhijk =
∑

σ

e(σ)(Ω
(σ)
hj Ω

(σ)
ik − Ω

(σ)
hk Ω

(σ)
ij ) + R̄αβγδy

α
,hy

β
,iy

γ
,jy

δ
,k
, (3.4)

Ω
(σ)
ij,k − Ω

(σ)
ik,j =

∑

σ

e(τ)(t
(τσ)
k Ω

(τ)
ij − t

(τσ)
j Ω

(τ)
ik ) + R̄αβγδy

α
,iy

γ
,jy

δ
,kn

β(σ), (3.5)

t
(τσ)
j,k − t

(τσ)
k,j =

∑

̺

e(̺)(t
(̺τ)
j t

(̺τ)
k − t

(̺τ)
k t

(̺τ)
j ) + glh(Ω

(τ)
lk Ω

(σ)
hj − Ω

(τ)
lj Ω

(σ)
hk )

−R̄αλµνy
µ

,jy
ν

,kn
λ(σ)nα(τ), (3.6)

known as the Gauss, Codazzi and Ricci equations respectively, where eσ = ±1

and tτσ
j describes the twisting of the nα(σ) vectors in relation to one another, for

σ, τ = n, ...,m− 1 and σ 6= τ .

These equations are essentially the field equations for Vm given initial data Vn. They

are the machinery to be used in describing the twisting of the manifolds relative to
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another, and relating the intrinsic and extrinsic curvatures. The Gauss and Codazzi

equations must be solved on Vn (i.e. on the hypersurface) while the Ricci equation

should be solved on Vm (off the hypersurface). To date, there do not exist any

known general solution to these equations. Several works have been built upon

these equations and these are what we shall highlight in the next section.

Note that for embeddings with codimension one, there is no twisting (i.e. tτσ
j = 0),

so that the Ricci equation disappears. The components of the Ricci tensor for Vm

are subsequently formulated into a propagation equation [22].

3.3 Existence theorems

Schläfli [89] was the first scientist to consider the problem of embedding an n-

dimensional (pseudo)-Riemannian manifold locally into an Euclidean manifold by

suggesting that the dimension of the embedding space should be n(n+1)
2

. This work

was motivated by a desire to understand (pseudo)-Riemannian spaces in terms of

the more familiar Euclidean manifolds.

Janet [48] and Cartan [16] proved the Schläfli theorem on the dimension of the

embedding space before Friedman [31] treated the indefinite case. Since then, several

theorems have been propounded, building upon this foundation.

One of the prominent contributors to this research was the American mathematician,

John Forbes Nash [38]. He was able to show, by two theorems, that every (pseudo)-

Riemannian manifold can be isometrically embedded (i.e. preserving the length of

every path in the embedding) into some Euclidean space.

The 1st theorem (Nash-Kuiper theorem) deals with continuously differentiable (C1)

embeddings.

Theorem 3.3.1. Let (M, g) be a Riemannian manifold and f : Mn → R
m a C∞-

embedding into the Euclidean space, where m ≥ n + 1. Then for arbitrary ǫ > 0,

there is an embedding fǫ : Mn → R
m which is
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(i) in class C1,

(ii) isometric for any two vectors v, w ∈ Tp(M) in the tangent space at p ∈M :

g(v, w) = 〈dfǫ(v), dfǫ(w)〉,

(iii) ǫ-close to f :

|f(p) − fǫ(p)| < ǫ ∀p ∈M. (3.7)

The theorem was originally proved by John Nash with the condition that m ≥ n+2.

It was later generalised by Nicholas Kuiper to the case of m ≥ n+ 1 [54].

The 2nd theorem deals with analytic embeddings that are smooth of class Ck, 3 ≤
k ≤ ∞.

Theorem 3.3.2. Given an n-dimensional Riemannian manifold M , which is either

analytic or of order Ck, 3 ≤ k ≤ ∞. Then there exists a number m (where m =

n2 + 5n + 3) and an injective map f : M → R
m (which is also analytic or of order

Ck); such that for every p ∈M , the derivative dfp is a linear map from the tangent

space TpM to R
m. This mapping is compatible with the given inner product on TpM

and the standard dot product of R
m in the sense that

〈u, v〉 = dfp(u) · dfp(v),

∀ vectors u, v ∈ TpM . This is an undetermined system of PDEs.

Nash’s embedding theorems are global in the sense that the whole manifold is em-

bedded into R
m.

Nash [78] also showed that every n-dimensional Riemannian manifold is embeddable

in R
m. He established that this was possible when m = n

2
(3n + 11) for compact

M and m = n
2
(n + 1)(3n + 11) for non-compact M , where the embeddings are Ck

isometric for k ≥ 3 (indicating that one needs a higher number of dimensions for a

smoother embedding).
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Clarke [19] and Greene [36] succeeded in providing extensions to the indefinite case.

From Clarke’s proof, it was found that the application of his results to a non-compact

Riemannian manifold will lead to a lower dimension of the Euclidean embedding

space, than that obtained by Nash. Greene on his part, succeeded in demonstrating

that the embedding can be made C∞ isometric with m = n(n + 5) for compact M

and m = 4(2n+1)(n+3) for non-compact M . In more recent times, further results

have built upon this foundation. Subsequent subsections are dedicated to describing

these results, which are the basis for our work.

3.3.1 The Dahia-Romero (DR) theorem

Despite the historical bias towards Euclidean embedding spaces, there is no real

reason to restrict one’s attention in this manner. Indeed, Rund [87] dealt with

spacetimes of constant curvature. Dahia and Romero [21, 22], on their part, were

able to propound theorems on the local embedding of an n-dimensional (pseudo)-

Riemannian manifold into both Einstein spaces and more general pseudo-Riemannian

manifolds. This they did by building upon an earlier result by Campbell and Mag-

aard [15, 66].

The Campbell-Magaard (CM) theorem

Subsequent to the work described above, several other studies [32, 87, 95, 96] fol-

lowed, showing embeddings into particular Euclidean embedding spaces and Rie-

mann manifolds. We are interested in the Campbell-Magaard theorem (stated by

Campbell [15] but proved by Magaard [66]), giving a local existence theorem for

embeddings into Ricci-flat (pseudo)-Riemannian spaces.

Theorem 3.3.3. An n-dimensional (pseudo)-Riemannian manifold with analytic

metric can be locally, analytically and isometrically embedded into an (n+1)-dimensional

Ricci-flat (R̃αβ = 0) manifold [15, 66].
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Progression of the CM theorem to the DR theorem

Anderson and Lidsey [5] considered the case when the embedded manifold is an

Einstein space. They also presented results which showed the criteria for embedding

a given manifold in a spacetime that represents the solution to Einstein’s equations

sourced by massless scalar fields.

Further results were obtained by a group consisting of Anderson, Dahia, Lidsey and

Romero [6]. They showed that Einstein and Ricci-flat spacetimes may be embedded

into spacetimes sourced by self-interacting scalar fields. Just before this result,

Dahia and Romero [21, 22] had already extended the Campbell-Magaard theorem

to Einstein embedding spaces.

Theorem 3.3.4. An n-dimensional (pseudo)-Riemannian manifold can be locally,

analytically and isometrically embedded in an (n + 1)-dimensional Einstein manifold

[22].

They improved on this result by extending it to arbitrary non-degenerate pseudo-

Riemannian manifolds.

Theorem 3.3.5. An n-dimensional pseudo-Riemannian manifold can be locally, an-

alytically and isometrically embedded in an (n + 1)-dimensional pseudo-Riemannian

manifold with a non-degenerate Ricci tensor which is equal, up to a local analytic

diffeomorphism, to the Ricci tensor of an arbitrarily given pseudo-Riemannian man-

ifold [21].

There are conditions to be satisfied for the existence of a local isometric embedding

of Mn (an n-dimensional analytic manifold with metric gij) into Nn+1, which is an

(n + 1)-dimensional manifold with metric g̃µν . The following theorem gives these

conditions and is used as a lemma in the proof of Theorems 3.3.4 and 3.3.5. It sets

out the formalism used in this dissertation.

Theorem 3.3.6. There exists a local isometric analytic embedding of a pseudo-

Riemannian manifold (Mn, g) at p ∈ U ⊂ Mn into a pseudo-Riemannian man-

ifold (Nn+1, g̃) if and only if there exist analytic functions ḡik(x
1, ..., xn, y) and
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φ̄(x1, ..., xn, y) in a neighborhood of (x1
p, ..., x

n
p , 0) with φ̄ 6= 0, ḡik = ḡki, |ḡik| 6= 0

and ḡik(x
1, ..., xn, 0) = gik(x

1, ..., xn), and such that the metric for some V ⊆ Nn+1

is

ds2 = g̃αβdy
αdyβ (3.8)

= ḡikdx
idxk + ǫφ̄2(dy)2, (3.9)

where ǫ2 = 1.

Since the metric is expressed in Gaussian form, we can set φ = 1 without any loss

of generality. It suffices to show that the embedding functions exist for the case of

embedding Mn into Nn+1. To prove the theorem, it then suffices to show that the

conditions for embedding - into Einstein and pseudo-Riemannian spaces - holds. An

elaborate and well detailed form of the proof was given by Moodley [72].

The following forms

G̃n+1
n+1 = −1

2
ḡikḡjm(R̄ijkm + ǫ(Ω̄ikΩ̄jm − Ω̄jkΩ̄im)),

R̃i(n+1) = φ̄ḡgk(∇̄jΩ̄ik − ∇̄iΩ̄jk), (3.10)

were then obtained for the Gauss and Codazzi equations respectively. As stated in

the conclusion of the CM theorem, the codimension now reduces to one and there’s

no twisting in only one extra dimension. The Ricci equation is thus replaced by the

new equation

R̃ik = R̄ik + ǫḡjm(Ω̄ikΩ̄jm − 2Ω̄jkΩ̄im) − ǫ

φ̄

∂Ω̄ik

∂y
+

1

φ̄
∇̄i∇̄kφ̄, (3.11)

called the propagation equation (because it is used to propagate off the hypersurface

in the specification of the rest of the bulk). The existence of solutions to the Gauss

and Codazzi equations (on the hypersurface), and to the propagation equation (in

the bulk) is guaranteed by an application of the Cauchy-Kowalewski theorem for

PDEs [17, 53].

By using local Sobolev spaces, Dahia and Romero [23, 24] have also constructed an

alternative approach to the embedding problem. They did this by asserting that,
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for any 4D spacetime, there exists initial data sets whose Cauchy development for

the Einstein vacuum equations is a 5D vacuum space. The 4D spacetime can then

be locally, analytically and isometrically embedded into the 5D vacuum space. This

result eliminated potential concerns raised by Anderson [4] about causality in the

embedding construction.

3.3.2 The Moodley-Amery(MA) theorem

Though the embedding results obtained by Dahia and Romero charted a new era in

embedding theory, they were nonetheless local existences results, relevant only for

local embeddings, with no mention of an application globally.

Global embedding theory has been found to be useful in the quest for new solutions

in GR [95, 96]. Global embeddings provide insight into the global properties of a

manifold and are the context for many physical applications, such as phenomeno-

logical higher dimensional cosmology. Due to the importance of the global embed-

dings, a natural sequel to the DR theorem will be to embed a (pseudo)-Riemannian

space globally into an Einstein space. This is precisely what Katzourakis [50, 51]

attempted to do.

The Katzourakis theorem

Katzourakis claimed to have provided the globalisation theorem for the Campbell-

Magaard-Dahia-Romero theorem. His claim was on the basis of successfully proving

that there exists a global isometric embedding of an arbitrary n-dimensional pseudo-

Riemannian space M into an (n+1)-dimensional Einstein space E := M×Y , where

Y is a 1-dimensional analytic manifold.

Theorem 3.3.7. Any n-dimensional real analytic pseudo-Riemannian manifold

(M ;∇M , gM) has a global isometric embedding into an (n+1)-dimensional Einstein

manifold (E ;∇E , gE) satisfying:

Ric∇
E

(gE) =
2Λ

n− 1
gE
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for Λ ∈ R.

As a remark to the theorem, he posits that repeated applications of Theorem 3.3.7

would show that M can also be embedded into a space with codimension greater

than 1. A corollary to the theorem is that any analytic manifold of the form

En+d ∼= M (n) × Y (d), d ≥ 1

admits an Einstein metric, making it an Einstein space.

Progression of the Katzourakis result to the Moodley-Amery result

After making a thorough analysis of Katzourakis assertions, Moodley and Amery

[75] came to the conclusion that Katzourakis’ theorem rests upon the assumption

that the local Einstein embedding has the form M × Y for any embedded space M .

Dahia and Romero [22] had already shown that any n-dimensional pseudo-Riemannian

spaceM can be locally embedded into an (n+1)-dimensional Einstein space equipped

with metric

diag[ḡik(x
i, y), ǫφ2(xi, y)].

Here, ḡik depends on the (n+ 1)th coordinate y, reducing to the metric for M only

along the hypersurface y = c. Based on this, Moodley and Amery claimed that it is

not true that the form of the local embedding constructed by Katzourakis is M ×Y

for any M . This was highlighted as the major limitation of his theorem. In addition,

they also pointed out that the corollary to his theorem is similarly limited.

They went further to show by a counter example that Katzourakis’ assertions were

wrong. Recall the Gauss, Codazzi and propagation equations (3.10)–(3.11). Now

taking Nn+1 to be an Einstein space, where

R̃αβ =
2Λ

1 − n
ḡαβ G̃αβ = Λg̃αβ,
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the system of equations transforms into

Λ = −1

2
ḡikḡjm(R̄ijkm + ǫ(Ω̄ikΩ̄jm − Ω̄jkΩ̄im)), (3.12)

0 = φ̄ḡjk(∇̄jΩ̄ik − ∇̄iΩ̄jk), (3.13)

2Λ

1 − n
ḡik = R̄ik + ǫḡjm(Ω̄ikΩ̄jm − 2Ω̄jkΩ̄im) − ǫ

φ̄

∂Ω̄ik

∂y
+

1

φ̄
∇̄i∇̄kφ̄. (3.14)

Moodley and Amery looked at the case of a static spherical spacetime where the

Ricci scalar is a function of r, for the embedding equations into a product space:

M × Y . Since ḡik = gik and does not depend on y, Ωik vanishes, and the Codazzi

equation does too by implication. Equations (3.12) and (3.14) (i.e. the Gauss and

propagation equations), now become

Rik =
2Λ

1 − n
gik, (3.15)

R = −2Λ, (3.16)

where Λ is the cosmological constant.

Substitution of equation (3.16) into (3.15) now yields

Rik =
Rgik

n− 1
.

This then implies that

Re
k =

Rδe
k

n− 1
, (3.17)

R =
Rn

n− 1
. (3.18)

We can deduce from equation (3.18) that R = 0, and that Rik = 0 by implication,

i.e. the embedded space must be Ricci flat for the local result to have form M × Y .

This shows that Katzourakis’ global embedding M × Y fails since there does not

exist a local embedding of form M ×Y for any non Ricci-flat space M . In addition,

R = 0 =⇒ Λ = 0, showing that the global embedding space M × Y must be
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Ricci-flat. This conclusively makes the Katzourakis theorem only a globalisation for

Ricci-flat embedded spaces, but not for non-Ricci-flat spaces [72].

At this point, Moodley and Amery corrected Katzourakis’ result and extended it to

any (pseudo)-Riemannian embedded space.

Theorem 3.3.8. Any n-dimensional real analytic pseudo-Riemannian manifold

(M, gM) has a global isometric analytic embedding into an (n+1)-dimensional Ein-

stein manifold (E , g̃E), where

R̃µν =
2Λ

1 − n
g̃µν (3.19)

for Λ ∈ R.

A brief summary of the proof of this theorem begins by assuming a global embedding

space of Ē of same Einsteinian metric structure as that of the specified local embed-

ding space. This specified local embedding space consists of the (n+1)-dimensional

patches into which the n-dimensional patches of the embedded space are embedded

as a hypersurface.

These patches are then ‘manually’ inserted into the global embedding manifold:

the y = 0 hypersurface,
∑

, of Ē is excised and the resultant cover for Ē −
∑

is

combined with the local embedding patches. Then the paracompactness of metric

spaces is used to ensure that the metrics can be made to match across the mani-

fold. Moodley and Amery thus obtained a construction which guaranteed the global

embedding space possessing the specified Ricci curvature, valid for any analytic em-

bedded spacetime.

The principal differences between the proof by Katzourakis and the correction given

by Moodley-Amery lies in the specification of the bulk cover and the counting ar-

guments used to manifest the existence of the global metric.

By making more general definitions for Ē to be any arbitrarily defined metric space,

they were able to extend this result to a more general theorem:

Theorem 3.3.9. If any n-dimensional real analytic metric space has a local isomet-

ric analytic embedding into some specified m-dimensional metric space (m ≥ n+1),
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then there exists a global isometric analytic embedding into that space.

3.4 The embedding equations

3.4.1 Embedding SS spacetimes

We consider 4D spacetimes that are spherically symmetric (SS). The term ‘spher-

ically symmetric’ implies that it is invariant under rotations [41]. The property of

being spherically symmetric can now be summed up as a metric which appears the

same in all directions, i.e. isotropic.

In order to embed SS spacetimes M , with a metric of the form

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)dr2 + r2(dθ2 + sin2θdφ2), (3.20)

where ν and λ are functions of r and t, equations (3.10)–(3.11) now transform into

[60, 72]

∂2ḡik

∂2y
=

−4ǫΛḡik

3
− ḡjm

2

(

∂ḡik

∂y

∂ḡjm

∂y
− 2

∂ḡim

∂y

∂ḡik

∂y

)

− 2ǫR̄ik, (3.21)

0 = gjk(∇jΩik − ∇̄iΩ̄jk), (3.22)

−2Λ = R + gikgjmǫ(ΩikΩjm − 2ΩjkΩim), (3.23)

where Ωik(x
j , 0) = Ωik and the form of the Ricci tensor is given by

R̄ab = Γ̄d
ad,b − Γ̄d

ab,d + Γ̄d
ebΓ̄

d
ad − Γ̄d

edΓ̄
d
ab.

This system of equations has the initial conditions

ḡik(t, r, θ, φ, 0) = gik(t, r, θ, φ), (3.24)

∂ḡik(t, r, θ, φ, 0)

∂y
= −2Ωik(t, r, θ, φ). (3.25)
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Note that Nn+1 is an Einstein space, where R̃αβ = 2Λ
1−n

g̃αβ and G̃αβ = Λg̃αβ.

Dahia and Romero [21] assert by their theorem that a solution to the system exists.

The general form of the SS spacetime has Ricci tensors

R00 = e2(ν−λ)(−ν ′2 − ν ′′ + ν ′λ′ − 2

r
ν ′) + λtt + λ2

t − νtλt,

R01 = −2

r
λt,

R11 = ν ′2 + ν ′′ − ν ′λ′ − 2

r
λ′ − e2(ν−λ)(λtt + λ2

t − νtλt),

R22 = −1 + e−2λ + re−2λν ′ − re−2λλ′,

R33 = R22sin
2θ,

with coordinates (t, r, θ, φ).

3.4.2 Solving the Gauss, Codazzi and the propagation equa-

tions

In what follows, the goal shall is to discover which SS spacetimes may be embedded

into a specified Einstein space. Accordingly, we assume

Ωik = diag[a(r)g00, b(r)g11, c(r)g22, c(r)g33], (3.26)

so that the Gauss and Codazzi equations (3.22)–(3.23) transforms into [6]

(b− a)ν ′ − a′ − 2c′ +
2b

r
− 2c

r
= 0, (3.27)

−2ǫΛ − ǫR = 2c2 + 2ab+ 4ac+ 4bc. (3.28)

The Gauss and Codazzi equations in (3.27)–(3.28) have been solved [60, 72] for the

general case of R(r) as

c = 2d+
2Λ +R

6ǫd
,

d =
18ǫ
∫

eν + I

24ǫeν
±

√

[

18ǫ
∫

eν + I

24ǫeν

]2

− 2Λ +R

12ǫ
, (3.29)

where I is a constant of integration, b(r) = c(r) and d(r) = a(r) + c(r).
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By setting a′ = b′ = c′ = 0 when R is a constant, solutions also exists for

a = b = c =
f

2
and f = ±

√

−2ǫΛ − ǫR

3
,

when ν ′ 6= 0 and

c = b and b = −a
2
± 1

2

(

a2 − 4ǫΛ

3
− 2ǫR

3

)
1

2

,

when ν ′ = 0.

At this juncture, Moodley and Amery [72] made an assumption for the bulk metric:

ḡik(y, r) = diag[A(y, r)g00, B(y, r)g11, C(y, r)g22, C(y, r)g33].

Based on this, they constructed [75] new forms of the propagation equations:

Ä+
Ȧ

2

[

−Ȧ
A

+
Ḃ

B
+
Ċ

C
+
Ḋ

D

]

+
4ǫΛ

3
A = −2ǫ

A

B
R00g

00, (3.30)

B̈ +
Ḃ

2

[

Ȧ

A
− Ḃ

B
+
Ċ

C
+
Ḋ

D

]

+
4ǫΛ

3
B = −2ǫR11g

11, (3.31)

C̈ +
Ċ

2

[

Ȧ

A
+
Ḃ

B
− Ċ

C
+
Ḋ

D

]

+
4ǫΛ

3
C = −2ǫ

C

B
R22g

22 − 2ǫ

r2

[

C

B
− 1

]

, (3.32)

D̈ +
Ḋ

2

[

Ȧ

A
+
Ḃ

B
+
Ċ

C
− Ḋ

D

]

+
4ǫΛ

3
D = −2ǫ

D

B
R33g

33 − 2ǫ

r2

[

D

B
− D

C

]

,(3.33)

with initial conditions

A(0) = 1 B(0) = 1 C(0) = 1 D(0) = 1,

Ȧ(0) = −2Ω00g
00 Ḃ(0) = −2Ω11g

11 Ċ(0) = −2Ω22g
22 Ḋ(0) = −2Ω33g

33.
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From the metric ḡik of the bulk, we have

R00g
00 = e−2λ

[

ν ′′ + ν ′2 − ν ′λ′ +
2

r
ν ′
]

= α1, (3.34)

R11g
11 = e−2λ

[

ν ′′ + ν ′2 − ν ′λ′ +
2

r
ν ′
]

= α2, (3.35)

C

B
R22g

22 +

[

C

B
− 1

]

1

r2
=
C

B
e−2λ

[

ν ′

r
− λ′

r
+

1

r2

]

− 1

r2
= α3(y), (3.36)

D

B
R33g

33 +

[

D

B
− D

C

]

1

r2
=
D

B
e−2λ

[

ν ′

r
− λ′

r
+

1

r2

]

− D

C

1

r2
= α4(y).(3.37)

Setting D
C
α3 = α4 will imply an equivalence of equations (3.36) and (3.37). Solu-

tions to these equations are not immediately clear, necessitating further simplifying

assumptions.

Moodley and Amery [75] now made an assumption of B(y) = C(y) where the r-

dependence is now absorbed into g00 and gCD. This new construction has a metric

of the form

ḡik(y, r) = diag[A(y)g00, F (y)gCD],

where F (y) is the new form of B(y) = C(y).

SS spacetimes that are embedded in this way may be shown to satisfy [73]

R00g
00 = α1 R11g

11 = R22g
22 = R33g

33 = α2,

where α1 and α2 are constants such that α1 = α2 or α1 = 0. These constraints arise

from the solution to the Gauss and Codazzi equations.

When α1 = α2;

λ(r) = −1

2
ln

[

α1

3
r2 +

B

r
+ 1

]

, ν(r) = −λ(r) + g(t),

where B,C ∈ R. These are the generalised Schwarzschild-de Sitter spacetimes.

On the other hand, when α1 6= α2 and α1 = 0;

λ(r) = −1

2
ln
[α2

2
r2 + 1

]

, ν(r) = g(t),
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where C ∈ R. This is the static Einstein universe.

These spacetimes have a Ricci scalar of R = α1 + 3α2.

The propagation equations now become

Ä+
Ȧ

2

[

3Ḟ

F
− Ȧ

A

]

+
4ǫΛ

3
A = −2ǫ

A

F
α1, (3.38)

F̈ +
Ḟ

2

[

Ȧ

A
+
Ḟ

F

]

+
4ǫΛ

3
F = −2ǫα2, (3.39)

with initial conditions in each case:

(i) α1 = α2 : A(0) = F (0) = 1, Ȧ(0) = Ḟ (0) = ±
√

−2ǫΛ−ǫR
3

.

(ii) α1 6= α2 and α1 = 0: A(0) = F (0) = 1, Ȧ(0) = −2a, Ḟ (0) = a±(a2− 4ǫΛ
3
− 2ǫR

3
)

1

2 ;

where a is an unspecified constant.

The following solutions have been previously obtained [5, 75]:

When α1 = α2:

A(y) = F (y) =























[

cosh
(

1
2

√

−2ǫΛ
3
y
)

+
√

1 + R
2Λ

sinh
(

1
2

√

−2ǫΛ
3
y
)]2

for Λ 6= 0,

[

1 + 1
2

√

−ǫR
3
y
]2

for Λ = 0.

The 4D embedded spacetimes are the generalised Schwarzschild-de Sitter spacetimes

with R = 4α1 (where −α1 is the 4D cosmological constant).

When α1 6= α2, α1 = 0 and Λ = 0 [75, 100]:






A(y) = 1,

F (y) =
[

1 + 1
2

√
−2ǫα2y

]2
.

(3.40)

These solutions clearly do not exhaust the solution space, since they specify particu-

lar values for the α’s and Λ. In the next chapter, we shall provide further solutions.

3.5 Remarks and synopsis

The relevance of the study of global embedding theories cannot be over-estimated.

They have been found to be useful in the quest for new solutions in GR [95, 96] and
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they provide insight into the global properties of a manifold (causality, for example).

Indeed, most of the phenomenological higher dimensional cosmological models are

posited using a global language.

In section 3.2 we highlighted fundamental definitions relevant to a sound under-

standing of embedding theory. We initiated this by stating some basic definitions

in differential geometry, leading to more specific definitions for local and global em-

beddings. We concluded the section by highlighting the GCR equations produced

by Eisenhart [28]. These are the tools for embedding manifolds into each other.

Section 3.3 dealt with existence theorems for embeddings. The works done by

Schläfli [89], Nash [38] and Greene et al [36] were briefly discussed. A detailed

study was then performed on more recent works - from the Dahia-Romero theorems

[21, 22] to the Moodley-Amery theorem [72].

Section 3.4 was dedicated to looking at the embedding equations that arise in a bid

to embed spacetimes, particularly the SS spacetimes (this is part of ongoing doctoral

work by Moodley [73]). These culminate in an initial value problem which we shall

solve in the next chapter.

Solutions to the highly nonlinear ODEs that arise from these embedding equations

are not easily obtained. To date, there have been no known solutions to these ODEs

(for the general case of Λ 6= 0 under the second set of initial conditions), necessitating

works of this nature. We attempt to seek a solution to the initial value problem

(3.38)–(3.39) in the next chapter, hoping that we will be able to place investigations

in this sophisticated field upon a firm basis.
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Chapter 4

Application of Lie group analysis

4.1 Introduction

In this chapter, we will attempt to employ the techniques of group analysis discussed

in chapter 2. Our goal is to solve the initial value problem (IVP) presented at the

end of chapter 3.

The chapter is structured as follows: Section 4.2 is a statement of the problem we

intend solving. This gives a proper perspective to our objective. Section 4.3 will

address the problem using the reduction-of-order technique via Lie group analysis.

This will be done via the symmetries admitted by the system of equations. Section

4.4 is dedicated to obtaining the group invariant solutions to the IVP. Section 4.5 is

a synopsis of results obtained and brief remarks thereon.

4.2 Statement of the problem

We wish to find solutions to the IVP from the previous chapter given by

Ä+
Ȧ

2

[

3Ḟ

F
− Ȧ

A

]

+
4ǫΛ

3
A = −2ǫ

A

F
α1, (4.1)
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F̈ +
Ḟ

2

[

Ȧ

A
+
Ḟ

F

]

+
4ǫΛ

3
F = −2ǫα2, (4.2)

subject to

(i) α1 = α2 : A(0) = F (0) = 1, Ȧ(0) = Ḟ (0) = ±
√

−2ǫΛ−ǫR
3

.

(ii) α1 6= α2 and α1 = 0: A(0) = F (0) = 1, Ȧ(0) = −2a, Ḟ (0) = a±(a2− 4ǫΛ
3
− 2ǫR

3
)

1

2 ;

where a is an unspecified constant.

4.3 Symmetry analysis

Using the SYM [25] package and Program LIE [40], we find that equations (4.1) and

(4.2) admit symmetries:

G1 =
∂

∂y
, (4.3)

G2 = A
∂

∂A
. (4.4)

By imposing restrictions on the system, we can obtain the following additional

symmetries:

i) Λ = 0:

Ĝ3 = 2F
∂

∂F
+ y

∂

∂y
. (4.5)

ii) Λ 6= 0 and α1 = α2 = 0:

G̃3 = F
∂

∂F
, (4.6)

G̃4 = (3A log (A) − 3A log (F ))
∂

∂A
+ (−F log (A) + F log (F ))

∂

∂F
. (4.7)

Since symmetries G1 and G2 commute, we shall now proceed to reduce equations

(4.1) and (4.2) by each of them separately. We shall begin with G2, and then see

whether reduction by G1 will make a difference to the results already obtained in

the former case.
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4.3.1 Reduction via G2

The characteristics for a DE invariant under G
[1]
2 come from the solution of

dy

0
=

dA

A
=

dȦ

Ȧ
=

dF

0
=

dḞ

0
.

The new variable (in this case the 1st order differential invariant) for the reduction

of the order of equations (4.1)–(4.2) will then be

B =
Ȧ

A
. (4.8)

Equation (4.1) now reduces to

Ḃ +
Ḃ

2

[

3Ḟ

F
+B

]

+
4ǫΛ

3
=

−2ǫα1

F
. (4.9)

The knowledge of a group of symmetries of a system of differential equations has

much the same consequences as knowledge of a similar group of symmetries of a

higher order equation [80]. With this in mind, we shall now solve for B in (4.2),

differentiate once, and substitute into (4.9). The resultant equation is

−14ǫΛ

3
+

2α1ǫ

F
− 2α2ǫ

F
+

8α2
2ǫ

2

Ḟ 2
+

16α2ǫ
2ΛF

Ḟ 2
+

8ǫ2Λ2F 2

Ḟ 2
+

12α2ǫF̈

Ḟ 2

+
12ǫΛFF̈

Ḟ 2
+

4F̈ 2

Ḟ 2
+

2
...
F

Ḟ
= 0, (4.10)

a 3rd order equation in F . This admits the sole symmetry

G1 =
∂

∂y
.

We also find additional symmetries as follows:

i) Λ = 0:

Ĝ3 = 2F
∂

∂F
+ y

∂

∂y
,

ii) Λ = 0 and α1 = α2:

Ĝ3 = 2F
∂

∂F
+ y

∂

∂y
,

Ĝ4 =
∂

∂F
,
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iii) Λ 6= 0 and α1 = α2:

G̃3 =
[

F +
α2

Λ

] ∂

∂F
.

We shall now proceed to reduce equation (4.10) via G1.

The differential invariants for this symmetry are

u = F V (u) = Ḟ . (4.11)

Substitution of these new variables in (4.10) results in the 2nd order equation

−14ǫΛ

3
+

2α1ǫ

u
− 2α2ǫ

u
+

8α2
2ǫ

2

V 2
+

16α2ǫ
2Λu

V 2
+

8ǫ2Λ2u2

V 2
+

12α2ǫV̇

V

+
12ǫΛuV̇

V
+ 6V̇ 2 + 2V V̈ = 0. (4.12)

This equation does not admit any symmetries, but we can obtain symmetries when

we impose restrictions on it:

i) Λ = 0 and α1 = α2:

Ĝ3 = 2u
∂

∂u
+ V

∂

∂V
,

Ĝ4 =
∂

∂u
,

Ĝ5 =

[

16u2 − V 4

α2
2ǫ

2

]

∂

∂u
+

[

16uV +
4V 3

α2ǫ

]

∂

∂V
.

Observe that Ĝ5 is an example of a hidden symmetry discussed in chapter 2.

On computation of the Lie bracket of these symmetries, we have that

[Ĝ3, Ĝ4] = 2Ĝ3, (4.13)

[Ĝ4, Ĝ5] = 16Ĝ3 (4.14)

and

[Ĝ3, Ĝ5] = 2Ĝ5. (4.15)

Based on this analysis, reduction of equation (4.12) will be by Ĝ4 and Ĝ5, though

under the restrictions of Λ = 0 and α1 = α2.
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Reduction via Ĝ4 has new variables

m = V N(m) = V̇ , (4.16)

and this results in a Riccati equation

8α2
2ǫ

2

m2
+

12α2ǫN

m
+ 6N2 + 2mṄ = 0. (4.17)

The Riccati equation is solved to obtain

N(m) =







1 −
Ψ1U

(

3
2

+ i
√

3
2
, 2, 2i

√
3α2ǫ
m

)

−1 F1

(

3
2

+ i
√

3
2
, 2, 2i

√
3α2ǫ
m

)

1F1

(

1
2

+ i
√

3
2
, 1, 2i

√
3α2ǫ
m

)

+ Ψ1U
(

1
2

+ i
√

3
2
, 1, 2i

√
3α2ǫ
m

)





(

−3α2ǫ+ i
√

3α2ǫ

3m

)]

, (4.18)

where Ψ1 is an arbitrary constant. The function 1F1 is the Kummer (confluent hy-

pergeometric) function of the 1st kind and the function U is the Kummer (confluent

hypergeometric) function of the 2nd kind [64].

Obtaining the general solution to the system of equations (4.1) and (4.2) requires

that we invert the solution in (4.18) through the various transformations we have

previously made [80, 93]. Unfortunately this is not possible due to the divergent

nature of these particular Kummer series. Furthermore, an attempt to carry out

a phase plane analysis of (4.18) (i.e. trying to observe whether it converges under

special conditions or values of the variables) was also unsuccessful. No other progress

in this case was possible. See later for group invariant solutions though.

ii) Λ = 0 and α2 = 0:

Ĝ3 = 2u
∂

∂u
+ V

∂

∂V

iii) Λ 6= 0 and α1 = α2:

G̃3 =
[

u+
α2

Λ

] ∂

∂u
+ V

∂

∂V
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Reduction via Ĝ4: Λ = 0 and α1 = α2

Based on the Lie bracket analysis, we can also reduce equation (4.10) by Ĝ4, though

under the restrictions of Λ = 0 and α1 = α2.

The characteristics for the reduced equation will be obtained from

dy

0
=

dF

1
=

dḞ

0
.

This has new variables

u = y V (u) = Ḟ . (4.19)

Substitution of these new variables into (4.10) results in the 2nd order equation,

4α2
2ǫ

2

V
+

6α2ǫV̇

V
+ 2V̇ 2 + V̈ = 0. (4.20)

Equation (4.20) admits symmetries:

Ĝ3 = 2V
∂

∂V
+ u

∂

∂u
,

Ĝ6 =
∂

∂u
.

Further reduction under these restrictions is via Ĝ6 (from the Lie bracket analysis),

with new variables

m = V N(m) = V̇ . (4.21)

This yields a Riccati equation

Ṅ +
6α2ǫN

m
+ 2N2 +

4α2
2ǫ

2

m
= 0, (4.22)

which is solved to obtain

N(m) =

√
2α2ǫ

(

−J6α2ǫ[4α2ǫ
√

2m] Ψ2 Γ[6α2ǫ] + J−6α2ǫ[4α2ǫ
√

2m] Γ[2 − 6α2ǫ]
)

√
m
(

J−1+6α2ǫ[4α2ǫ
√

2m] Ψ2 Γ[6α2ǫ] + J1−6α2ǫ[4α2ǫ
√

2m] Γ[2 − 6α2ǫ]
) ,

(4.23)

where Ψ2 is an arbitrary constant. The function J is the Bessel function of the 1st

kind and Γ is the gamma function. Inversion of this result is again not possible due

to the divergence of these Bessel series.
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It is essential to point out that the Lie bracket analysis asserts that reduction of

equation (4.10) can only be via G1 and Ĝ4. This will have a consequence of making

the other symmetries point-symmetries of the reduced equation. Nonetheless, we

attempted to reduce equation (4.10) via Ĝ3 and G̃3 to confirm this assertion. As

expected, the resultant DEs were not solvable.

4.3.2 Reduction via G1

We shall now consider the case of the symmetry G1, which was admitted by the

system of equations (4.1) and (4.2). The characteristics of the new DE are obtained

from
dy

1
=

dA

0
=

dȦ

0
=

dF

0
=

dḞ

0
.

From the system above, the new variables for the reduction of order will be

p = F Q(p) = Ḟ R(y) = A. (4.24)

We will now have that

Q′ =
dQ

dp
=

dQ

dy
.
dy

dp
=
F̈

Ḟ
=⇒ F̈ = QQ′, (4.25)

Ȧ =
dR

dy
=

dR

dF
.
dF

dy
=

dR

dp
.
dF

dy
= R′Ḟ =⇒ Ȧ = R′Q, (4.26)

and

Ä =
d2R

dy2
= R′′Q2 +R′QQ′. (4.27)

Upon substitution into equations (4.1) and (4.2), we have that

(R′′Q2 +R′QQ′) +
R′Q

2

[

3Q

p
− R′Q

R

]

+
4ǫΛ

3
R = −2ǫα1

R

p
, (4.28)

QQ′ +
Q

2

[

R′Q

R
+
Q

p

]

+
4ǫΛ

3
p = −2ǫα2. (4.29)

Now solving for R in equation (4.29), and substituting into equation (4.28), we

obtain

4ǫ2

Q

[

9α2
2 + 12α2Λp+ 4Λ2p2

]

+ 9Q′ [6α2 + 4ǫΛp+ 9QQ′]

+
9ǫQ

p
[α1 − α2] − 9Q2

[

Q′′ +
Q′

p

]

− 12ǫΛQ = 0. (4.30)
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This 2nd order nonlinear equation admits no symmetries except under the following

restrictions:

i) Λ = 0:

Ḡ1 = 2p
∂

∂p
+Q

∂

∂Q
.

ii)Λ 6= 0 and α1 = α2 = 0:

¯̄G1 = p
∂

∂p
+Q

∂

∂Q
.

Equation (4.30) can not be reduced to quadratures due to the inadequate number

of symmetries it admits. Unfortunately no hidden symmetries were found in any of

the reductions.

We shall now consider subcases of symmetries admitted by the system of equations

(4.1) and (4.2) to see whether this will yield solutions.

4.3.3 Reduction via G̃3

Considering equations (4.1) and (4.2) again, observe that they admit the symmetry

G̃3, though under the restrictions of α1 = α2 = 0. We will attempt to find a general

solution, under this special case, to these equations.

The new invariant

B =
Ḟ

F
(4.31)

obtained from the associated Lagrange system will now be used to reduce the system

of equations.

Reducing equation (4.2) with this invariant and subsequently substituting equation

(4.1) into it results in

−8ǫΛ

9
+

32ǫ2Λ2A2

27Ȧ2
+

8ǫΛAÄ

3Ȧ2
− 2Ä

3A
+

4Ä2

3Ȧ2
− 2

...
A

3Ȧ
= 0. (4.32)
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This 3rd order equation in A admits

G1 =
∂

∂y
,

G2 = A
∂

∂A
.

Under the restrictions of Λ = 0, it admits, in addition,

−→
G 3 = y

∂

∂y
,

−→
G 4 = A log (A)

∂

∂A
.

We will now proceed to reduce equation (4.32) via G1.

Reduction via G1 with new variables

u = A V (u) = Ȧ, (4.33)

results in the 2nd order equation

−4ǫΛ

3
+

16ǫ2Λ2u2

9V 2
+

4ǫΛuV̇

V
− V V̇

u
+ V̇ 2 − V V̈ = 0. (4.34)

This has the symmetry

G2 = u
∂

∂u
+ V

∂

∂V
.

When Λ = 0, it also yields additional symmetries:

−→
G 5 = [V log (V )]

∂

∂V
,

−→
G 6 = [V log (u)]

∂

∂u
,

−→
G 7 = [u log (V )]

∂

∂u
,

−→
G 9 = [u log (u)]

∂

∂u
,

−→
G 10 = [u log (u) log (V )]

∂

∂u
+
[

V log (V )2
] ∂

∂V
,

−→
G 11 =

[

u log (u)2
] ∂

∂u
+ [V log (u) log (V )]

∂

∂V
,

−→
G 12 = u

∂

∂u
.
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Further reduction of equation (4.34) via G2 with new variables

m =
V

u
N(m) = V̇ , (4.35)

results in a Riccati equation

−4ǫΛ

3
+

16ǫ2Λ2

9m2
+

4ǫΛN

m
+N(N −m) −mṄ(N −m) = 0, (4.36)

with solution

N(m) =
4ǫΛ

3m
+
m(12 + Ψ3) ± 4

√

−24ǫΛ + Ψ3 (2ǫΛ + 3m2)

−12 + Ψ3
, (4.37)

where Ψ3 is an arbitrary constant.

We now attempt to invert the solution in (4.37) through the various transformations.

From (4.35), we have that

V̇ (u) =
4uǫΛ

3V
+

(V
u
)(12 + Ψ3) ± 4

√

−24ǫΛ + Ψ3

(

2ǫΛ + 3(V
u
)2
)

−12 + Ψ3
. (4.38)

Solving this for V (u), and substituting for (4.33), we obtain

e−6Ψ4(−12+Ψ3)[−3A(−12 + Ψ3)]
4



1 + 6Ȧ

A

r

2ǫΛ(−12+Ψ3)+
3Ψ3Ȧ2

A2





[

2ǫΛ + 3Ȧ2

A2

]



1 − 6Ȧ

A

r

2ǫΛ(−12+Ψ3)+
3Ψ3Ȧ2

A2





[

6Ψ3Ȧ
A

+ 2
√

3Ψ3

√

2ǫΛ(−12 + Ψ3) + 3Ψ3Ȧ2

A2

]±4
q

3

Ψ3

= 1,

(4.39)

where Ψ3,Ψ4 are arbitrary constants. Unfortunately, further inversion is not possi-

ble, nor is the satisfaction of the initial conditions.

4.3.4 General symmetry reduction

The previous attempts only used individual symmetries. We will now take a general

linear combination of the two general symmetries,

ϑ
∂

∂y
+̟A

∂

∂A
,
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where ϑ and ̟ are constants.

However, noting that we still have to take the boundary conditions into account,

we check if there are any conditions on this linear combination before applying the

reductions to the equations. This leads to the condition

ϑ+̟
A

Ȧ
= 0. (4.40)

Instead of taking this to be a restriction on ϑ and ̟ (which would require

ϑ = ̟ = 0), we take it to constrain A(y) as:

A(y) = exp
(

−̟
ϑ
y
)

Ψ5, (4.41)

where Ψ5 is an arbitrary constant of integration.

Now, solving the system of equations (4.1)–(4.2) for A(y) and F (y), we obtain


















A(y) = exp (−2ay),

F (y) = 1,

(4.42)

where a = ̟
2ϑ

=
√
ǫα2. These satisfy the initial conditions under restrictions

Λ 6= 0, α1 = 0, Λ = −3

2
α2.

4.4 Group invariant solutions

As a final approach, we will now try to solve the system (4.1)–(4.2) by seeking group

invariant solutions.

4.4.1 General symmetry for (4.1)–(4.2)

We take

X1 = ζ
∂

∂y
+ A

∂

∂A
, (4.43)

where ζ is a constant, as our general symmetry without loss of generality. We shall

now attempt to obtain an invariant solution via this symmetry.
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Following the formalism by Bluman [11], we have that

ψ =
η

ξ
=
A

ζ
,

and

Y =
∂

∂y
+ ψ

∂

∂A
=

∂

∂y
+

(

A

ζ

)

∂

∂A
. (4.44)

Since

yk = y(k) = Y k−1ψ, k = 1, 2, ..., n, (4.45)

we will have that

Ȧ = ψ =
η

ξ
=
A

ζ
,

Ä = Y ψ =

[

∂

∂y
+
A

ζ

∂

∂A

] [

A

ζ

]

=
Ȧ

ζ
+
A

ζ2
.

Substituting these into equation (4.1) and solving the resultant DE for F , we obtain

F = exp

(−(3 + 4ǫζ2Λ)y

9ζ

)

Ψ6 −
6α1ǫζ

2

3 + 4ǫζ2Λ
, (4.46)

where Ψ6 is a constant.

Invoking the initial conditions, we find that

F =

[

1 +
6α1ǫζ

2

3 + 4ǫζ2Λ

]

exp

(−(3 + 4ǫζ2Λ)y

9ζ

)

− 6α1ǫζ
2

3 + 4ǫζ2Λ
. (4.47)

where, when α1 = α2:

Λ =
3

16ζ2

[

√

3 (51 − 112α1ǫζ2) + ǫ
(

13 − 8α1ǫζ
2
)

]

,

and for α1 6= α2, α1 = 0:

Λ =
−3

8ζ2

[

3
√

13 + 4ζ (3a+ a2ζ − 2α2ǫζ) + ǫ
(

11 + 6aζ2
)

]

.

Unfortunately, the resulting equation in A could not be solved.
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4.4.2 Solution for (4.10) via Ĝ3: Λ = 0

By Theorem 2.3.1, we have that

ψ =
η

ξ
=

2F

y
,

and

Y =
∂

∂y
+ ψ

∂

∂F
=

∂

∂y
+

(

2F

y

)

∂

∂F
. (4.48)

Since

yk = y(k) = Y k−1ψ, k = 1, 2, ..., n, (4.49)

we will have that

Ḟ = ψ =
η

ξ
=

2F

y
,

F̈ = Y ψ =

[

∂

∂y
+

2F

y

∂

∂F

] [

2F

y

]

= 0,

...
F = Y 2ψ =

[

∂

∂y
+

2F

y

∂

∂F

]2 [
2F

y

]

= 0.

Substituting these into equation (4.10) (with Λ = 0), we obtain the invariant solution

F =
α2

2ǫy
2

α2 − α1
. (4.50)

However, it does not satisfy the initial condition F (0) = 1, and is discarded.

4.4.3 Solution for (4.10) via G1 + Ĝ3: Λ 6= 0, α1 = α2

Since

ψ =
η

ξ
= F +

α2

Λ
,

and

Y =
∂

∂y
+
[

F +
α2

Λ

] ∂

∂F
;

we will now have that

Ḟ = ψ =
η

ξ
= F +

α2

Λ
,

F̈ = Y ψ =

[

∂

∂y
+
(

F +
α2

Λ

) ∂

∂F

]

[

F +
α2

Λ

]

= F +
α2

Λ
,

...
F = Y 2ψ =

[

∂

∂y
+
(

F +
α2

Λ

) ∂

∂F

]2
[

F +
α2

Λ

]

= F +
α2

Λ
.
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Substituting these into equation (4.10), gives the solution

F (y) =
−α2

Λ
± 2ǫ

√

3α2(α2 − 1)

9 + ǫΛ(11 + 12ǫΛ)
, (4.51)

which is a constant.

F (y) will only satisfy the system of equations (4.1) and (4.2), with the initial con-

ditions if we set F (y) = 1. In fact, if we start with F (y) = 1 and do not assume

α1 = α2, we can also obtain a solution. Substitution of this into equation (4.1), and

solving the 2nd order DE gives the general result

A(y) =









1

2
− a

2
√

−2ǫΛ
3



 exp

(

2

√

−ǫΛ
6
y

)

+





1

2
+

a

2
√

−2ǫΛ
3



 exp

(

−2

√

−ǫΛ
6

y

)





2

(4.52)

under the constraints that α1 = 0 and Λ = −3
2
α2.

In conclusion, we have now obtained solutions






















A(y) =

[(

1
2
− a

2
√

−2ǫΛ
3

)

exp
(

2
√

−ǫΛ
6
y
)

+

(

1
2

+ a

2
√

−2ǫΛ
3

)

exp
(

−2
√

−ǫΛ
6
y
)

]2

,

F (y) = 1,

(4.53)

which satisfies the initial conditions under the restrictions that Λ = −3
2
α2 and

α1 = 0. Observe that the solution obtained in equation (4.42) is actually a subset

of equation (4.53) at the point a =
√
ǫα2.

4.4.4 Solution for (4.12) via Ĝ5: Λ = 0, α1 = α2

The only other symmetry which we shall investigate is

Ĝ5 =

[

16u2 − V 4

α2
2ǫ

2

]

∂

∂u
+

[

16uV +
4V 3

α2ǫ

]

∂

∂V
. (4.54)

The reason for this is because the remaining symmetries are either the same (sub-)

cases or prolongations of the symmetries already investigated above. This symmetry

is special, in that it is a hidden symmetry that emerged during reduction.
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Using the invariant solutions approach, we now have that

ψ =
η

ξ
=

4V α2ǫ

4uα2ǫ+ V 2
,

and

Y =
∂

∂u
+

(

4V α2ǫ

4uα2ǫ+ V 2

)

∂

∂V
.

Then,

V̇ = ψ =
4V α2ǫ

4uα2ǫ+ V 2

V̈ = Y ψ =

[

∂

∂u
+

(

4V α2ǫ

4uα2ǫ+ V 2

)

∂

∂V

] [

4V α2ǫ

4uα2ǫ+ V 2

]

=
−32α2

2ǫ
2V 3

(4uα2ǫ+ V 2)3
.

Substituting these into equation (4.12), we will now obtain invariant solutions

V = ±2.89i
√
α2ǫu, (4.55)

V = ±0.6i
√

(2.05 + 1.05i)α2ǫu, (4.56)

V = ±0.6i
√

(2.05 − 1.05i)α2ǫu. (4.57)

Recall that V (u) = Ḟ (y) and u = F (y), so equations (4.55)–(4.57) become

Ḟ (y) = ±2.89i
√

α2ǫF (y), (4.58)

Ḟ (y) = ±0.6i
√

(2.05 + 1.05i)α2ǫF (y), (4.59)

Ḟ (y) = ±0.6i
√

(2.05 − 1.05i)α2ǫF (y). (4.60)

Solving equation (4.58) for F (y), we will obtain

F (y) = −2.08α2ǫy
2 + 1.44i

√
α2ǫyΨ7 + 0.25Ψ7, (4.61)

where Ψ7 is an arbitrary constant. The initial conditions reduce this solution to

F (y) = 1, (4.62)

which was already considered in section 4.4.3. This also occurs for equations (4.59)

and (4.60).
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4.5 Remarks and synopsis

In summary, we have been able to obtain a solution through group analysis of

the system of equations (4.1)–(4.2). We obtained this solution via both reduction of

order and the group invariant approach. This solution, to the best of our knowledge,

is new.
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Chapter 5

Conclusion

5.1 Summary

In this work, we have successfully employed both the tools of differential geometry

and differential equations. These were used in the understanding of the embedding

theories and resolution of the DEs that come up in the process of embedding.

The 1st chapter of this work discussed the historical background of DEs and our

proposed method (the Lie group analysis approach) of solving DEs - in particular

the nonlinear ones. We also discussed the emergence of general relativity and the

inconsistencies with other fundamental theories. The extension of GR to higher

dimensions was motivated in terms of its potentials to resolve these difficulties.

Chapter 2 gave a detailed outline of the techniques we employed in the resolution

of the IVP. The concepts behind the Lie group approach and Lie algebras was

followed by a section on obtaining invariant solutions to DEs. The phenomena of

hidden symmetries rounded up the chapter. After each concept, we illustrated these

techniques with examples.

In chapter 3, we gave the background to the IVP (which was the motivation for

this work). We employed the tools of differential geometry in the construction of

this background. From the basic concepts in differential geometry, to the theories
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underlying embeddings; we charted a path leading to the system of highly nonlinear

DEs which we analysed in chapter 4.

Chapter 4 was a group analysis of the IVP (4.1)–(4.2). We employed the tools of

reduction-of-order and group invariance and succeeded in obtaining the following

solutions:

i) Using reduction of order techniques, we obtained the solution:

N(m) =







1 −
Ψ1U

(

3
2

+ i
√

3
2
, 2, 2i

√
3α2ǫ
m

)

−1 F1

(

3
2

+ i
√

3
2
, 2, 2i

√
3α2ǫ
m

)

1F1

(

1
2

+ i
√

3
2
, 1, 2i

√
3α2ǫ
m

)

+ Ψ1U
(

1
2

+ i
√

3
2
, 1, 2i

√
3α2ǫ
m

)





(

−3α2ǫ+ i
√

3α2ǫ

3m

)]

, (5.1)

where Ψ1 is an arbitrary constant. We were unable to invert this solution due to

the divergence of these particular Kummer series.

In addition, we obtained

N(m) =

√
2α2ǫ

(

−J6α2ǫ[4α2ǫ
√

2m] Ψ2 Γ[6α2ǫ] + J−6α2ǫ[4α2ǫ
√

2m] Γ[2 − 6α2ǫ]
)

√
m
(

J−1+6α2ǫ[4α2ǫ
√

2m] Ψ2 Γ[6α2ǫ] + J1−6α2ǫ[4α2ǫ
√

2m] Γ[2 − 6α2ǫ]
) ,

(5.2)

where Ψ2 is an arbitrary constant. Inversion of this result was again not possible

due to the divergence of these Bessel series.

We also obtained an implicit solution in A,

e−6Ψ4(−12+Ψ3)[−3A(−12 + Ψ3)]
4



1 + 6Ȧ

A

r

2ǫΛ(−12+Ψ3)+
3Ψ3Ȧ2

A2





[

2ǫΛ + 3Ȧ2

A2

]



1 − 6Ȧ

A

r

2ǫΛ(−12+Ψ3)+
3Ψ3Ȧ2

A2





[

6Ψ3Ȧ
A

+ 2
√

3Ψ3

√

2ǫΛ(−12 + Ψ3) + 3Ψ3Ȧ2

A2

]±4
q

3

Ψ3

= 1.

(5.3)

This solution did not satisfy the initial conditions.

Lastly, using this technique, we obtained the solution


















A(y) = exp (−2ay),

F (y) = 1.

(5.4)
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This solution successfully satisfied the IVP under the restrictions that

a =
√
ǫα2, α2 = −3

2
Λ, α1 = 0, Λ 6= 0.

Note that this solution is a subset of the solution in equation (4.53).

ii) Using group invariant techniques, we were able to obtain the solution























A(y) =

[(

1
2
− a

2
√

−2ǫΛ
3

)

exp
(

2
√

−ǫΛ
6
y
)

+

(

1
2

+ a

2
√

−2ǫΛ
3

)

exp
(

−2
√

−ǫΛ
6
y
)

]2

F (y) = 1,

(5.5)

under the constraints that α1 = 0 and Λ = −3
2
α2. This solution satisfied the initial

conditions of the system and is accepted as a solution to the IVP.

To the best of our knowledge, solution (5.5) is a new solution to this system of

embedding equations.

5.2 Significance of the result

The new result obtained in this work will further aid the understanding of embedding

theories. It is of particular significance in the following ways:

• Particular solutions for SS spacetimes have previously only existed for embed-

dings with Ricci tensor Rij = 0 of the 4D spacetimes, together with Einstein

spaces. The new solution for the propagation equations obtained in this work

(together with those obtained by Anderson et al [5, 58]) have successfully

completed the embedding of the general Schwarzschild-de Sitter metric and

the Einstein static universe into both the Λ = 0 and Λ 6= 0 5D vacuum

spacetimes.

• Wesson [100] embedded Friedman-Lemaitre-Robertson-Walker (FLRW) into

5D Minkowski in the context of the space-time matter theory. In addition,

within the brane-world paradigm, both the FLRW and the Bianchi Type I
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spacetimes are embedded as singular branes in 5D anti de-Sitter space (ADS)

[46, 67]. The static universe we embedded is a special case of the FLRW

metric. Unlike the FLRW results, our embeddings are manifestly not Z2-

symmetric and possess non-singular energy momentum, albeit only for the

static case.

• Apart from not being Z2-symmetric, they are also not of the form of the

simplest Randall-Sundrum scenarios [84] which agrees with results obtained

by Londal [60] (which severely constrain astrophysical solutions).

5.3 Open problems

Solutions to the embedding equations have always been very difficult to find. This

has in most instances necessitated strong simplifying assumptions.

Recall that the original assumption made by Moodley and Amery [75] was

ḡik(y, r) = diag[A(y, r)g00, B(y, r)g11, C(y, r)g22, C(y, r)g33].

Based on this assumption, the propagation equations became

Ä+
Ȧ

2

[

−Ȧ
A

+
Ḃ

B
+
Ċ

C
+
Ḋ

D

]

+
4ǫΛ

3
A = −2ǫ

A

B
R00g

00, (5.6)

B̈ +
Ḃ

2

[

Ȧ

A
− Ḃ

B
+
Ċ

C
+
Ḋ

D

]

+
4ǫΛ

3
B = −2ǫR11g

11, (5.7)

C̈ +
Ċ

2

[

Ȧ

A
+
Ḃ

B
− Ċ

C
+
Ḋ

D

]

+
4ǫΛ

3
C = −2ǫ

C

B
R22g

22 − 2ǫ

r2

[

C

B
− 1

]

, (5.8)

D̈ +
Ḋ

2

[

Ȧ

A
+
Ḃ

B
+
Ċ

C
− Ḋ

D

]

+
4ǫΛ

3
D = −2ǫ

D

B
R33g

33 − 2ǫ

r2

[

D

B
− D

C

]

,(5.9)

Since the solution to this system was not immediately clear, strong simplifying

assumptions were made. This resulted in the system which we analysed in this

work. Now that we have successfully obtained a solution to the system (4.1)–(4.2),

the next step will be to employ these techniques in the resolution of system (5.6)–

(5.9).
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Moodley and Amery [73] also made an equivalent assumption of a metric of the form

ḡik(y, r) = diag[−eA(y,r), eB(y,r), (C(y, r))2, (C(y, r))2sin2θ]. (5.10)

The propagation equations that were constructed based on this assumptions are:

Ä+
Ȧ2

2
+
ȦḂ

2
+

2ȦĊ

C
+

4ǫΛ

3
= −2ǫe−B

(

A′′

2
+
A′2

4
− A′B′

4
+
A′C ′

C

)

B̈ +
Ḃ2

2
+
ȦḂ

2
+

2ḂĊ

C
+

4ǫΛ

3
= −2ǫe−B

(

A′′

2
+
A′2

4
− A′B′

4
− B′C ′

C
+

2C ′′

C

)

2CC̈ + 2Ċ2 + CĊȦ+ CĊḂ +
4ǫΛ

3
C2 = −2ǫe−B

(

−e−B + CC ′′ + C ′2 − B′CC ′

2

+
A′CC ′

2

)

.

This form of the propagation equations is particularly well suited to the study of 4D

spacetimes like the global monopole and the Reissner-Nordström spacetimes. The

former has been successfully embedded in 5D Minkowski space [75], but the Λ 6= 0

case and the Reissner-Nordström solution remain open problems. These spacetimes

are of particular physical interest because they arise as the near and far field limits

of particular solutions in Gauss-Bonnett gravity [69]. We again believe that the

knowledge garnered from solving system (4.1)–(4.2) can also be applied here.

Finally we note that time dependence may be introduced into the assumptions made

for the extrinsic curvature; both on and off the initial hypersurface. The resultant

equations will undoubtedly be much more complicated, but it is quite possible that

the propagation equations solved in this dissertation could be appropriate for classes

of solutions more general than the Schwarzschild-de Sitter and the static Einstein

universe. This issue is currently being investigated further.

Hopefully, this work will give useful insights into solving these highly nonlinear DEs

which have eluded solution to date. A further implication of these new insights is

that they may aid attempts to build more realistic higher dimensional models in

cosmology and astrophysics.
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espace euclidien, Ann. Soc. Polon. Math. 6 (1927) 1–7

[17] Cauchy A., Oeuvres completes, (Gauthier-Villars, Paris, 1882)

[18] Champagne B., Hereman W. and Winternitz P., The computer calculation of

Lie point symmetries of large systems of differential equations, Comp. Phys.

Comm. 66 (1991) 319–340

[19] Clarke C. J., On the global isometric imbedding of pseudo-Riemannian mani-

folds, Proc. Royal Soc. London Ser. A 314 (1970) 417–428

[20] Dadhich N. K., Maartens R., Papadopoulos P. and Rezania V., Black holes on

the brane, Phys. Lett. B487 (2000) 1–6

[21] Dahia F. and Romero C., The embedding of space-times in five dimensions with

non-degenerate Ricci tensor, J. Math. Phys. 43 (2002) 3097–3106

66



[22] Dahia F. and Romero C., The embedding of the spacetime in five dimensions:

An extension of the Campbell-Magaard theorem, J. Math. Phys. 43 (2002)

5804–5814

[23] Dahia F. and Romero C., Dynamically generated embeddings of spacetime,

Class. Quant. Grav. 22 (2005) 5005–5019

[24] Dahia F. and Romero C., The embedding of spacetime into Cauchy develop-

ments, Brazilian J. Phys. 35 (2005) 1140–1141

[25] Dimas S. and Tsoubelis D., SYM: A new symmetry–finding package for Math-

ematica, Proc. 10th Intl. Conference in Modern Grp. Analysis (2005) 64–70

[26] Dvali G.R., Gabadadze G. and Porrati M., 4D gravity on a brane in 5D

Minkowski space, Phys. Lett. B485 (2000) 208-214

[27] Edelstein R. M., Govinder K. S. and Mahomed F. M., Solution of ordinary

differential equations via nonlocal transformations, J. Phys. A: Math Gen 34

(2001) 1141–1152

[28] Eisenhart L. P., Riemannian Geometry, (Princeton University Press, New Jer-

sey, 1926)

[29] Flannery W., Calculus without tears: A new approach to calculus, (Berkley

science books, New York, 2004)

[30] Friedrich H., Is general relativity ‘essentially understood’?, Annalen Phys. 15

(2005) 84–108

[31] Friedman A., Local isometric imbedding of Riemannian manifolds with indefi-

nite metrics, J. Math. Mech. 10 (1961) 625–649

[32] Goenner H. F., Local isometric embedding of Riemannian manifolds and Ein-

stein’s theory of gravitation, in: General relativity and gravitation: 100 years

after the birth of Albert Einstein, Held A. (ed.), (Plenum Press, New York,

1980)

67



[33] Govinder K. S., and Leach P. G. L., On the determination of non-local symme-

tries, J. Phys. A: Math Gen 28 (1994) 5349–5359

[34] Govinder K. S., Ordinary differential equations, Lecture Notes (University of

KwaZulu-Natal, Durban, South Africa, 2010)

[35] Greene B., The elegant universe: Superstrings, hidden dimensions, and the

quest for the ultimate theory, (Vintage books, London, 1999)

[36] Greene R. E., Isometric embedding of Riemannian and pseudo-Riemannian

manifolds, Memoirs Amer. Math. Soc. 97 (1970) 1–63

[37] Guo A. and Abraham-Schrauner B., Hidden symmetries of energy-conserving

differential equations, IMA J. Appl. Math. 51 (1993) 147–153

[38] Günther M., On the embedding theorem of John Nash, Math. Nachr. 144

(1989) 165–187

[39] Hawkins T., Emergence of the theory of Lie groups: An essay in the history of

Mathematics, 1826–1926, (Springer, New York, 2000)

[40] Head A. K., LIE, a PC program for Lie analysis of differential equations, Comp.

Phys. Comm. 71 (1993) 241–248

[41] Hobson M. P., Efstathiou G. and Lasenby A. N. General relativity: An intro-

duction for physicists, (Cambridge University Press, Cambridge, 2006)

[42] Hopf L., Introduction to the differential equations of physics, (Dover Publica-

tions, New York, 1948)

[43] Horava P. and Witten E., Heterotic and Type I string dynamics from eleven

dimensions, Nucl. Phys. B460 (1996) 506–524

[44] Ibragimov H. N. and Nucci C. M., Integration of third order ordinary differ-

ential equations by Lie’s method: Equations admitting three-dimensional Lie

algebras, Lie Groups and their Applications 1 (2004) 49–64

68



[45] Ibragimov N. H., CRC handbook of Lie group analysis of differential equations,

(CRC Press Inc., Florida, 1994)

[46] Ishihara H., Causality of the brane universe, Phy. Rev. lett. 86 (2001) 381–384

[47] Ivan T., Symmetry reduction of nonlinear differential equations, Proc. Inst.

Math. NAS Ukraine 50 (2004) 266–270
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