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Abstract

The impossibility to reach an entire population, owing to time and budget constraints,
results in the need for sampling to estimate population parameters. There are various
methods of sampling and this thesis deals with a specific method of probability sampling,
known as systematic sampling. Problems within the systematic sampling context include:
(1) If the size of the population is not a multiple of the size of the sample, then conven-
tional systematic sampling (also known as linear systematic sampling) will either result in
variable sample sizes, or constant sample sizes that are greater than required; (i) Linear
systematic sampling is not the most preferred probability sampling design for populations
that exhibit linear trend; (i74) An unbiased estimate of the sampling variance cannot be
obtained from a single systematic sample. I will attempt to make an original contribution
to the current body of knowledge, by introducing three new modified systematic sampling
designs to address the problems mentioned in (iz) and (7i7) above.

We will first discuss the measures to compare the various probability sampling designs,
before providing a review of systematic sampling. Thereafter, the methodology of linear
systematic sampling will be examined as well as two other methodologies to overcome
the problem in (7). We will then obtain efficiency related formulas for the methodologies,
after which we will demonstrate that the efficiency of systematic sampling depends on
the correlation of the population units, which in turn depends on the arrangement and
structure of the population. As a result, we will compare linear systematic sampling
with other common probability sampling designs, under various population structures.
Further designs of linear systematic sampling (including a new proposed design), which are
considered to be optimal for populations that exhibit linear trend, will then be examined
to resolve the problem mentioned in (i¢). Thereafter, we will tackle the problem in (4i7)
by exploring various strategies, which include two new designs. Finally, we will obtain
numerical comparisons for all the designs discussed in this thesis, on various population

structures, before providing a comprehensive report on the thesis.

Keywords: linear systematic sampling; intra-class correlation coefficient; super-population

model
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Chapter 1

INTRODUCTION

1.1 Overview of Sampling

Statistics involves the study of collecting, organizing, analysing, interpreting, explaining
and presenting of data. Governments, clientele, medical agencies, institutions and organi-
zations (both profit and non-profit) regularly use statistics to influence decision-making,
such as deciding between different options, strategizing, implementing new policies, re-
viewing current policy situations, etc.

Once a problem has been identified and is presented to a statistician, he/she must then
develop a workable goal before designing the research approach. Collection of appropriate
data is then followed by the suitable analysis of the data and finally the findings are
reported thereon. The above-mentioned phases of the research cycle are interdependent
and are not unrelated. Failure to implement a good research design results in inefficient
data collection methods, which in turn results in unfavourable data analysis and finally
leads to an incorrect research report. It is clear that each phase of this research cycle is
vital. We will now take a closer look at the data collection phase.

There are three fundamental types of statistical investigations, namely, surveys, ex-
periments and observational studies. Each of these provides a different platform for data
collection. Some examples of data collection methods are questionnaires, case studies,
behaviour observation checklists, performance tests, etc. More often than not, one can-
not collect data from an entire population (group of data that contains all the possible
units that one is interested in investigating) owing to time constraints, money constraints
and the common problem of it being virtually impossible to reach an entire population

at a specific point or period in time. Consequently, we usually opt to draw a sample



from a population, where a sample is defined as a selected group of units/subset from
the population. Typically, we denote the population size by N and the sample size by
n, with N > n. To make generalizations about a population, based on results from the
sample, one needs to ensure that the sample is representative of the population. In other
words, the characteristics of the sample should accurately reflect the characteristics of the
population. Two conditions for drawing a representative sample are that (i) the sample
must be of sufficient size so as to capture all aspects of the population and (éi) should be
drawn in such a way so as to reduce bias, where bias is defined as the distortion of sample
characteristics from the corresponding population characteristics.

A particular sampling design is generally employed to draw a sample that provides
an estimate of a population parameter by means of a sample statistic, also known as an
estimator. A point estimator, which is calculated from the sample data, is a single value
that is used to estimate the population parameter.

An estimator is unbiased if its expected value is equal to the population parameter,
otherwise it is referred to as being biased. For a biased estimator, the level of bias is
the difference between the expected value of the point estimator and the true value of
the population parameter. Accuracy is a term that is related to bias, such that unbiased
estimators are on average equal to the population parameter and are thus considered to
be perfectly accurate estimates of the population parameter.

Furthermore, a point estimator is a variable and therefore has a distribution, where the
variance (or precision) of the point estimator, also known as the sampling variance, tells
us by how much the point estimator varies from sample to sample. One may obtain more
than one unbiased estimator of the population parameter (i.e. unbiased estimators of a
population parameter are not unique) and the comparison of these corresponding sampling
variances is then used to find the most precise estimator, i.e. the unbiased estimator with
the lowest variance. The most precise unbiased estimator, which yields optimum results,
will thus exhibit minimum variance as well as give the correct estimate of the corresponding
population parameter on average and subsequently offer the most information about that
population parameter, based on the sample. In addition, the relative efficiency between
two point estimators is given as the ratio of their variances, i.e. the relative efficiency of
point estimator a, when compared to point estimator b, is given as the variance of point
estimator b divided by the variance of point estimator a. If this value is less than one,

we can then deduce that point estimator b is preferred to point estimator a, while a value



for the mentioned ratio which is greater than one, would imply that point estimator a is
preferred to point estimator b. This measure is most effective when both point estimators
are unbiased, or if both estimators exhibit the same degree of bias.

It should be noted that while unbiased (or accurate) estimators are desired, there
may exist cases where biased estimators provide more information about the associated
population parameter than unbiased ones, since certain biased estimators which exhibit a
low level of bias, may offer a higher degree of precision than its counterparts. This resulting
effect is thus a trade-off between accuracy and precision. A measure that captures this
trade-off is known as the mean square error (MSE) of the point estimator and is usually
used when comparing point estimators, where one or more of these point estimators are
biased. The MSE of a point estimator is found by taking the sum of the variance of
the associated estimator (measure of precision) and the squared bias of the corresponding
estimator (measure of accuracy), such that preference is given for an estimator which
exhibits a minimum MSE.

An interval estimate uses a range of values with two endpoints, such that the population
parameter is likely to fall within the specified range. An example of an interval estimate is
a confidence interval (CI), which is calculated from the point estimator and measures the
precision of the point estimator in estimating the population parameter. The explanation
of a 95% CI, where 95% is the confidence level (CL), is given as follows: If a sample was
repeatedly drawn many times, according to a particular sampling design, where each time
we calculated the point estimator and the corresponding CI for the associated population
parameter, then we would expect that in 95% of the cases, the population parameter
would lie within the CI. It should be noted that a narrower CI denotes a more precise
point estimator, as the variance of the estimator has an inverse effect on the width of the
CI. Three factors that affect the width of the CI are (i) the sampling variance, (i) the size
of the sample and (7i) the CL. A lower sampling variance, which results in a narrower CI,
can be achieved by employing a sampling design which obtains samples that are relatively
similar, i.e. smaller variation between samples. Alternatively, one can increase the size of
the sample to achieve a narrower CI, but larger sample sizes incur greater costs, so that one
needs to balance this trade-off. A higher CL will result in an increased probability that the
population parameter will lie within the CI, such that a wider CI is needed, hence one also
needs to balance this trade-off. For practical situations, the sampling variance is unknown

and is thus estimated from the sample, so that we then construct the corresponding Cls



according to this estimate.

It is thus of paramount importance to explore the effects of the various sampling designs
on the level of bias, variance, MSE and CI of the associated point estimators, as well as
the ability to produce an unbiased estimator of the corresponding sampling variance, when
attempting to estimate the required population parameter. We will now take a closer look
at the various probability sampling designs that can be employed for the estimation of
population parameters.

There are various probability sampling designs to draw a representative sample, e.g.
simple random sampling (SRS), stratified sampling, cluster sampling, systematic sampling
etc. SRS involves randomly selecting a sample of size n from a population of size N, such
that each population unit has an equal chance of selection for the sample, at each stage
of the random selection. Simple random sampling with replacement (SRSWR) randomly
selects a population unit for the sample, notes/records it, and then replaces it into the
population to be eligible for the next random selection. There is thus a possibility that
sampling units may be repeated when conducting SRSWR, since the population units
that are selected for the sample are replaced, thus having a chance of being selected
again in the random selections that follow. Simple random sampling without replacement
(SRSWOR) is a slight adaption of SRSWR, which ensures a sample of distinct population
units, because it randomly selects each population unit for the sample, as in the case
of SRSWR, but now without replacing it before the next random selection. Stratified
sampling involves dividing the entire population into subgroups (strata) according to some
characteristic and then a particular form of random selection is independently carried
out within each subgroup (stratum), such that the randomly selected population units
for all the strata collectively form the stratified sample. It should be noted that if a
simple random sample (with or without replacement) is drawn from each stratum, then
this sampling design is termed as stratified random sampling (STR) and the randomly
selected population units for all the strata collectively form a stratified random sample.
Cluster sampling entails dividing the population into groups (clusters) and then randomly
selecting entire clusters, so that the selected units within the clusters collectively form a
cluster sample. Systematic sampling involves randomly selecting a population unit from
the first k population units and selecting every kth population unit thereafter, such that
the selected population units collectively form a systematic sample with sampling interval

k, where the value of k is found by dividing the population size (IN) by the sample size



(n). It can be further noted that if we were to draw independent systematic samples from
each stratum, then the corresponding sampling design is termed as stratified systematic
sampling and the randomly selected population units for all the strata collectively form a
stratified systematic sample (this will be discussed later in Section 4.2.5).

Figure 1.1 visually depicts the differences between SRSWOR, STR, cluster sampling
and systematic sampling, where each design selects a sample of n = 20 integers from a
population of N = 100 integers {1, ..., 100} (Lohr 2010, p.27). We omit SRSWR, since we
wish to make comparisons where the sample obtained for each design contains n distinct
sampling units. However, we can expect the results to be similar to that of SRSWOR.

The stratified random sample is obtained by first dividing the population into 10 strata
of equal size, such that the first strata contains the integers from 1 to 10, the second strata
contains the integers from 2 to 20, and so forth. Two integers are then selected from
each stratum, using SRSWOR, and these randomly selected integers collectively form the
stratified random sample. The cluster sample is obtained by first dividing the population
into 20 clusters of equal size, such that the first cluster contains the integers from 1 to 5,
the second cluster contains the integers from 6 to 10, and so forth. Four clusters are then
selected using SRSWOR and the integers within these clusters collectively form the cluster
sample. A systematic sample is obtained by randomly selecting an integer from the first
5 integers (i.e. Kk = N/n = 100/20 = 5) and then selecting every fifth integer thereafter.
In the example given in Figure 1.1, the integer 3 was randomly selected and thereafter
every fifth value, i.e. 3, 8, 13, ..., 98. From Figure 1.1, it follows directly that a systematic
sample ensures a more even spread of the sample over the entire population, as compared
to the other probability sampling designs, for the population under consideration.

All the theory discussed thus far is a representation of the authors’ understanding,
which is interpreted from a variety of sources and can be broadly found in any standard
introductory chapter on sample survey, e.g. Kalton (1983), Lehtonen & Pahkinen (2004),
Lohr (2010), etc.

This thesis narrows the study to focus on the performance of systematic sampling for
various population structures, while making comparisons to the other probability sampling

designs mentioned above, as well as the designs which will be introduced later on.
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Figure 1.1: Graphic depiction of common probability sampling designs, when drawing a

sample of 20 integers from a population of 100 integers {1, ..., 100}

1.2 Systematic Sampling

Comprehensive theoretical discussions on systematic sampling were initially provided by
Madow & Madow (1944), Cochran (1946) and Yates (1948). Systematic sampling is
commonly used in forestry, land use/cover area frame surveys, census, record sampling
and for household and establishment surveys (Murthy & Rao 1988). Some applications of
systematic sampling for forestry are provided by Hasel (1938), Finney (1948) and Zinger

(1964), while applications for land use/cover area frames are given by Osborne (1942),



Dunn & Harrison (1993) and D’Orazio (2003). Other examples of systematic sampling
are provided in the fields of soil sampling (see Manson (1992) and Jacobsen (1998)) and
environmental studies (see McArthur (1987) and NRC (2000)). Good summaries for the
topic under consideration are given by Murthy (1967), Cochran (1977), Iachan (1982),
Bellhouse (1988) and Murthy & Rao (1988).

Systematic sampling entails the following: Suppose that a sample of n units is to be
selected from a population of size N using systematic sampling. The first step is always
to present the population as a "frame” (set of all possible sampling units), with each
population unit to be identified by a unique identifier, say unit number 1, unit number
2, ..., unit number N. A simple way to draw this sample would then be to determine a
suitable sampling interval, say k, and to select units at equal intervals on the frame, where
the value of k is found by dividing N by n. For example, if £k = 5, then a unit is randomly
selected from the frame, along with every fifth unit thereafter. More specifically, a 1-in-k
systematic sample is obtained by randomly selecting a unit from the first k£ units in the
frame and every kth unit thereafter. Another simple way to look at systematic sampling
is that we are dividing the population into k possible samples and then selecting one of
these samples at random. We next discuss some of the merits and shortcomings of using

systematic sampling, as opposed to other probability sampling designs.

1.2.1 Advantages of systematic sampling

Some advantages of systematic sampling were noted by Daniel (2012) as follows:
(i) Systematic sampling is considered to be straightforward and inexpensive.

(ii) Systematic sampling is generally the preferred probability sampling design when
there is a list of names or items available, in particular, for the case when records
are numbered consecutively, or when population units can be ranked consecutively

by attaching an integer to each of them.

(iii) Systematic sampling is often an economical design when the selection procedure is
done manually, since only one randomization is required to select the first sampling
unit and that particular sampling unit defines the sample, whereas in the case of
SRSWR, SRSWOR and STR, we require n randomizations and this can be time-

consuming for large sample and population sizes.



Moreover, systematic sampling provides a useful alternative to SRS, since (Scheaffer,

Mendenhall & Ott 1995):

(i)

(i)

Systematic sampling is much simpler to practise in the field and hence is less likely

to have selection errors by field-workers, particularly if there is no good frame.

Systematic sampling often supplies us with greater information per unit cost for

populations with certain patterns in the arrangement of units.

Systematic sampling is usually more precise than SRS, since a systematic sample is more

likely to contain units which are spread more evenly over the population as listed in the

frame, when compared to the sampled units in a simple random sample, as shown in the

earlier example.

1.2.2 Disadvantages of systematic sampling

The key shortcomings when conducting systematic sampling are that:

(i)

(iii)

If N is not a multiple of n, then systematic sampling will either result in variable
sample sizes or constant sample sizes that are greater than n. Consequently, the
former scenario results in biased estimates of the population parameters, while the
latter scenario is undesired since sample sizes are usually fixed in advance. These

scenarios will be extensively discussed in Chapters 2 and 3.

Systematic sampling is susceptible to periodic distortions, since the process of selec-

tion can interact with a population that exhibits periodic characteristics.

Example 1.1: If there is a sampling frame containing adult residents in an area
that consisted only of couples and a list is arranged as husband, wife, husband, wife
etc. Now, if every tenth person is to be sampled, then the sample chosen will be

only husbands or only wives.

So, if a sampling design coincides with the periodicity of that characteristic, then
the sampling design is considered to be non-random and the common property of
systematic sampling being random is then compromised. A further discussion on

this will be given in Chapter 4.

Systematic sampling is not the most preferred probability sampling design for pop-

ulations that exhibit linear trend, as discussed in Chapter 4.



(iv) Certain pairs of population units will have a zero probability of being selected in the
sample, which results in the estimation of the sampling variance being more complex

(Daniel 2012). This disadvantage will be further explained in Chapter 6.

The fundamental aims of this thesis are to tackle these disadvantages, which will more
often than not result in us providing modified systematic sampling designs. One may
solve the disadvantage in (iv) by opting to maintain the conventional systematic sampling

design, as shown in Chapter 6.

1.2.3 Scope of thesis

This thesis is divided into nine chapters. Chapter 2 discusses the methodology of the
systematic sampling design, as well as discussing two common designs for dealing with
the disadvantage in (i), i.e. the fractional interval method (FIM) and circular system-
atic sampling (CSS). In Chapter 3, we obtain an estimate for the population mean, the
corresponding sampling variance and the intra-class correlation coefficient (ICC), when
conducting either systematic sampling or CSS. The corresponding sampling variance ob-
tained in Chapter 3 will then be used in Chapter 4, where we will compare the efficiency
of systematic sampling to the other probability sampling designs, for various population
structures. The population structures that will be discussed are populations in random
order, populations that exhibit linear trend, periodic populations (solution to the disad-
vantage in (ii)), auto-correlated populations and stratified populations. Chapter 5 deals
with various designs of systematic sampling, which are optimal for populations that ex-
hibit linear trend, i.e. Yates end corrections method (YEC), centered systematic sampling
(CESS), balanced systematic sampling (BSS), modified systematic sampling (MSS) and
a new proposed design termed as balanced modified systematic sampling (BMSS). Error
comparisons for each design to all the previously discussed designs are obtained, so as to
solve the disadvantage in (iii). The problem of estimating the sampling variance will then
be explored in Chapters 6 and 7, where various approaches (which include a new design
for each chapter) are examined. Strategies to tackle the disadvantage in (iv) are to: (i)
construct slightly biased variance estimators based on certain assumptions; (i) supple-
ment the systematic sample with independent sample(s); (ii7) supplement the systematic
sample with a dependent sample. We will examine strategies related to (i) and (i7) in
Chapter 6, while strategies related to (iii) will be examined in Chapter 7. In Chapter 8,

we provide numerical analysis for all the designs discussed, by considering various popula-
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tion structures. Finally, in Chapter 9 we pool all the theory and results from the previous
chapters with a concluding comprehensive report of the different aspects and variations of

systematic sampling.
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Chapter 2

METHODOLOGY

The theory behind systematic sampling for the case where the sampling interval k=N /n is
an integer (or if N is a multiple of n) is fairly straightforward, since all possible systematic
samples are of size n. However, the theory behind systematic sampling for the case where
k is not an integer (or if N is not a multiple of n) is a bit more complex, since systematic
samples sizes may vary. The two common methods that alleviate the problem of variable
sample sizes are the FIM and CSS. Both of these methods will be discussed in detail later
on in this chapter.

Before discussing the methodologies, we first need to develop some notation which will

be used throughout this thesis. For a population of size IV, we respectively denote the
population units and the corresponding variate values by U; and y;, for i € {1, ..., N}. A
variate value is defined as a single value that is usually a number (quantitative), which is
a reading on our variable of interest, taken on the corresponding population unit. In this
notation we use Y to denote our general variable of interest, which is associated with the
variate values of each population unit, i.e. the variate value y5, correspondingly represents
the variate value of the fifth population unit (Us), which denotes the particular value for
this population unit that is associated with the variable of interest (Y).
Example 2.1: Suppose that we are interested in the average amount of household income
for a given population. The population units will be the households and each household
has a corresponding variate value (i.e. income) attached to it. These variate values are
associated with our variable of interest, which is the average amount of household income
for the population.

The theory presented in this chapter is a representation of the authors’ understanding

of the corresponding literature, interpreted from a variety of sample survey sources (see
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Kish (1965), Murthy (1967) and Sarndal et al. (2002)) and where minor contributions to

the field are made, this will be clearly indicated in the text.

2.1 Case (A): If k= N/n is an Integer

Suppose that we are to draw a sample of size n from a population of size N, using
systematic sampling, where k is an integer. The corresponding methodology is given as

follows:
(i) Randomly select an integer between 1 and k, say i, where 1 <1i < k.

(ii) The sample units chosen will be those elements with population unit numbers given
by
i+ (j— 1k, for j =1,...,n. (2.1)

This process of selecting a systematic sample is known as linear systematic sampling (LSS).
This particular method of selection is commonly known as the restricted selection method,
since the selection of the first sampling unit is at random and restricted to the first k
population units, i.e. the first sampling unit is chosen by a random selection from the first
k population units.

Table 2.1 contains a list of possible values of random start ¢ along with the corre-
sponding sample outcomes, when selecting a sample of size n from a population of size IV,
using LSS when k is an integer. From Table 2.1, it is clear that the selection of the first

population unit automatically determines the entire sample.

Table 2.1: Samples for possible values of ¢ using LSS, where k is an integer

Possible values of 4 Sample
i=1 S1={U1, Uiy, Urt2k, -+ Utpn—1)i}

i=h Sk={Un, Untks Unt2ks -, Ups(n—1)k}

1=k Sk:{Uk7 U2k7 ceey Unk}
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Another way of looking at systematic sampling is to take into account that the entire
population of size N is equally divided into k£ sampling units, each of size n. The process of
selecting a systematic sample is thus equivalent to selecting one of these k£ sampling units
at random. Systematic sampling is thus a form of cluster sampling, where each possible
systematic sample can be viewed as a cluster.

For a given numbering of the population units, we are thus selecting one cluster of units
from the k possible clusters, with a probability of 1/k. Note that all the clusters collectively
form the entire population, where we select one cluster at random. Each population unit
(U;) belongs to one and one cluster alone. Hence, the probability of selecting a cluster (i.e.
P(Cluster is selected) = 1/k, for all ¢ € {1, ..., k}) is also the probability that a particular

population unit is selected. The first-order inclusion probabilities are thus given by
m; = P(U; is selected in the sample) = 1/k, for alli € {1,...,N}.

We have therefore demonstrated that systematic sampling is a probability sampling de-
sign, as it is possible to determine the probability of selection of each population unit.

Furthermore, if for some i,j € {1,..., N}
mi; = P(U; and Uj are both selected for the sample),
then for all 4,j € {1, ..., N}, the second-order inclusion probabilities are given by

0 if U; and Uj are in different clusters,
T, ij =
1/k if U; and Uj are in the same cluster.

This demonstrates that it is impossible to have certain pairs of population units within

the same systematic sample. The implications of this result will be shown in Chapter 6.

2.2 Case (B): If k= N/n is not an Integer

If N is not a multiple of n, then we may represent this by N = nk + ¢, where 0 < ¢ < n.
Now, if ¢/k is an integer, then by conducting LSS with a sampling interval of k, we obtain
samples of fixed size given by n + ¢/k. As a result, this reduces to the LSS design given
in (2.1), where the sample sizes are now n + ¢/k. This scenario is demonstrated by the
following example.

Example 2.2: Suppose that we have a population of size N = 27 and we wish to draw

a sample of size n = 7, using L.SS. We thus note that £ = 3 and ¢ = 6, thus satisfying
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N =nk + cand 0 < ¢ < n. The possible systematic samples are then defined as:

(i) S1={U1,Us, Uz, U, U3, Usg, Urg, Us2, Uas }, for i = 1;
(i) Se = {Us2,Us,Ug, U1, Ui, Ui7,Usg, Uag, Usg }, for i = 2;

(iii) S3 = {Us, Us, Ug, U12, Uis, Urs, Ua1, Uaa, Uar}, for i = 3.

We thus obtain possible samples of constant size n+c/k = 7+6/3 = 9. The corresponding
sample size is greater than the desired size and this is unadvisable since sample sizes are
usually fixed in advance owing to budget constraints. Moreover, if ¢/k is not an integer,
then by conducting LSS with a sampling interval of k, we obtain samples of variable size
given by either n+INT(c/k) or n+INT(c/k)+1, where INT(a) is defined as the first integer
before a. This is demonstrated by the following example.

Example 2.3: Suppose that we have a population of size N = 19 and we wish to draw
a sample of size n = 5, using LSS. We thus note that £ = 3 and ¢ = 4, thus satisfying

N =nk + cand 0 < ¢ < n. The possible systematic samples are then defined as:

(i) S1 ={U1,U4,Uz,Us0,Us3,Us6,Urg}, fori =1;
(i) So = {U2,Us,Us,Ui1,Uis, Uiz}, fori = 2;

(iii) 53 = {Ug, Uﬁ, Ug, U12, U15, Ulg}, for i = 3.

We thus obtain variable sample sizes of either n + INT(¢/k) = 6 or n 4+ INT(c¢/k) + 1 =
7. As discussed in Chapter 1, a representative sample would require a fixed sample of
sufficient size, such that samples with variable size may over-represent or under-represent
the population. As a result, LSS with variable sample sizes results in biased estimates of
population parameters (refer to Section 3.2) and is thus not an advisable approach. It
should be noted that the probability of selecting a particular population unit is given as
1/k = 1/3, irrespective of whether U; belongs to a sample of size n = 6 or a sample of size
n = 7, since only one sample is randomly selected from the k = 3 possible samples and
each population unit falls into one of these k = 3 samples only.

In light of the above discussion, various strategies have been proposed over the years,
for the case when k is not an integer, such that all samples are of fixed sample size n. Two
common strategies are to (i) conduct systematic sampling such that the sampling interval
has a fractional value (termed as the FIM) and (ii) to conduct systematic sampling in a

circular fashion, which is termed as CSS. We will now discuss these two approaches.
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2.2.1 Fractional interval method

This method was introduced by Kish (1965) and further investigated by Murthy (1967).
It selects a linear systematic sample by giving k a fractional value, where k = N/n and n
is a fixed sample size. A random number, say i, is selected from the uniform distribution
on the interval (0, k]. The sample units chosen will be those elements with population unit

numbers given by «, where
a—-1<i+(-Dk<a, forj=1,..n. (2.2)

This is best demonstrated by the following example.

Example 2.4: Suppose that we have a population of size N = 14 and we wish to
draw a sample of size n = 3, using the FIM. For this situation, the sampling interval is
given by k = 14/3. Next, suppose that a random number ¢ = 1/5 is selected from the
uniform distribution, on the interval (0,14/3]. By applying (2.2), we thus conclude that
the population unit numbers 1, 5 and 10 are respectively chosen. The systematic sample,
for the above situation, is subsequently given as S; = {U1, Us, U1o}. This is demonstrated

graphically in Figure 2.1.

select select select
1 73 143
5 15 15
LR 1 ] 1 L 1 1 1 ] L 1 1 1 1

Figure 2.1: Selecting a sample of size 3 from a population of size 14, using the FIM with
i=1/5

The remainder of this subsection is solely due to the author. Table 2.2 contains a list of
possible values of random start ¢ along with the corresponding sample outcomes, when
selecting a sample of size n = 3 from a population of size N = 14, using the FIM. From

Table 2.2, it follows that each distinct sample is given by the interval

(t—1)/n<i<t/n, fort=1,.., N. (2.3)



Table 2.2: Samples for possible values of ¢ using the FIM, where N = 14 and n =3

Possible values of 7

Sample

0<i<1/3 S1={Uu, Us, Uio}
1/3<i<2/3 Sy={U1, Us, U0}
2/3<i<1 S3={Ux, Us, U1}
1<i<4/3 Sy={Us, Us, Un1}
4/3 <i <5/3 S5={U2, Uz, U1}
5/3 <i<2 Se={U2, Uz, Ur2}
2<i<7/3 S7={Us, Uz, U2}
7/3<i<8/3 Ss={Us, Us, Ur2}
8/3<i<3 So={Us, Us, U13}
3<i<10/3 S10={U4, Us, U3}
10/3 <i<11/3 S11={Us, Uy, Ui3}
11/3<i<4 S12={Us, Uy, Ur4}
4<i<13/3 S13={Us, Uy, U4}

13/3 <i < 14/3

S14={Us, Uro, Ur4}
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The next example shows that in some cases we obtain samples that coincide, when
applying the interval given by (2.3).
Example 2.5: Suppose that we have a population of size N = 10 and we wish to draw
a sample of size n = 4, using the FIM. For this situation, the sampling interval is given
by k = 10/4. Table 2.3 contains a list of possible values of random start i along with the
corresponding sample outcomes, when selecting a sample of size 4 from a population of
size 10, using the FIM, where each interval is as defined by (2.3).

It thus follows from Table 2.2 and Table 2.3 that there are N distinct samples in the
former table, whereas we obtain samples that coincide in the latter table. We can thus
show that each distinct sample for Table 2.3 (and more specifically for the case where

2N/n is an integer) is given by the interval

(t—-1)/2<i<t/2, fort=1,..,2N/n. (2.4)
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Table 2.3: Samples for possible values of ¢ using the FIM, where N =10 and n =4

Possible values of 4 Sample

0<i<1/4 S1={U, Us, Us, Us}
1/4 <i<2/4 So={Un, Us, Us, Us}
2/4 <i<3/4 S3={U1, Us, Us, Ug}
3/4<i<1 Ss={U1, Us, Us, Uo}
1<i<5/4 Ss={Us, Uy, Uz, Ug}
5/4 <i<6/4 Se={U2, Us, Uz, Uy}
6/4<i<T7/4 S7={U2, Us, Uz, Uro}
T/A<i<2 Ss={U2, Us, Uz, Uro}
2<i<9/4 So={Us, Us, Us, Uro}
9/4 <i <10/4 S10={Us, Us, Us, Uro}

Using (2.3) and (2.4), we can thus define the probability of selecting a specific sample,
using the FIM, to be

n/2N if 2N/n is an integer,
P(S; is selected) =

1/N  otherwise.
This result follows since each interval for the possible values of i is of equal length, thus
each possible sample has an equal probability of being the selected sample. Furthermore,
the possible samples obtained using the FIM are not mutually exclusive, since there are
population units that occur more than once within the possible samples. In fact, there
is an equal probability of inclusion in the sample for every population unit, regardless of

whether 2N/n is an integer or not, i.e.

m; = P(U; is in the sample) = n/N, foralli e {1,...,N}.

2.2.2 Circular systematic sampling

CSS is another design that produces samples of fixed sample size n. We will first focus
on the methodology of CSS, before explaining the choice of sampling interval. Thereafter,
we will discuss the relationship between CSS and the other systematic sampling designs

mentioned in this chapter.
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Methodology

CSS was first introduced by Lahiri (1954) and involves the arrangement of sampling units
in a circular fashion, such that the last population unit (Uy) is followed by the first unit
(Uy). A random integer, say r, is selected from the interval [1, N] with probability 1/N,
and k is taken to be the closest integer to N/n. The sample is then given by the population
unit U, and every kth population unit thereafter, until a sample of size n is obtained. By
letting k& be the nearest integer to N/n, we ensure a more even spread of the sample over
the population (Murthy 1967). There are N possible samples in total for CSS, with each
sample having a probability of 1/N of being selected. This method of selection is known
as the unrestricted selection method, since the selection of the first sampling unit is at
random and unrestricted to the entire frame, i.e. the first sampling unit is chosen by a
random selection from the N population units. The above-mentioned methodology is best
demonstrated by example.

Example 2.6: Suppose that we have a population of size N = 14 and we want to draw
a sample of size n = 3, using CSS. For this situation, & = 5 since N/n = 14/3 = 4.6
is nearest to integer 5. Also, suppose a random integer, say r = 7, is selected from the
interval [1,14]. For a sample of size n = 3, LSS will result in the selection of population
units Uy, U2 and Uy, owing to the random start of » = 7 and sampling interval k = 5.
This sample contains the population unit U;7 which is non-existent, since there are only 14
population units in the frame. However, if we start counting the population units again,
such that Ujs corresponds to population unit Uy (i.e. circular transversal), then Uj7 will
correspond to population unit Us and the circular systematic sample will subsequently be
found to be S7 = {Us, Uz, Ui2}. This example is visually depicted in Figure 2.2.

Table 2.4 contains a list of all possible values of a random start r and the corresponding
sample outcomes, when selecting a sample of size n = 3 from a population of size N = 14,
using CSS. From Table 2.4, it thus follows that the possible samples are not mutually
exclusive, since there are population units that occur more than once within the possible
samples. In fact, just as in the case with the FIM, there is an equal probability of inclusion

in the sample for every unit, i.e.

m; = P(U; is in the sample) = n/N, for alli e {1,...,N}.
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Uy Uis

Uy

Us

Uy Uy
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Figure 2.2: Selecting a sample of size 3 from a population of size 14, using CSS with r =7

Table 2.4: Samples for possible values of ¢ using CSS, where N =14 and n =3

Possible values of 4 Sample
r=1 S1={U1, Us, Un1}
r—=9 So={Us, Uz, U12}
r— S3={Us, Us, U3}
r—= S4={Uy, Ug, Ur4}
- Ss={Uy, Us, U1o}
=6 Se={Us, Us, U1}
— S;={Us, Uz, U2}
- Ss={Uy, Us, Uis}
= So={Us, Uy, Ur4}
r =10 S10={U1, Us, U1o}
r=11 S11={Uz, Uz, Un1}
r=12 S19={Us, Us, Uiz}
r=13 S13={Uy, Uy, U13}

r=14 S14={Us, Uio, Ur4}
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Choice of sampling interval

For the case where N is a multiple of k, Sudhakar (1978) showed that the sampling units
will coincide when N/n is rounded up. This situation is demonstrated by the next example.
Example 2.7: Suppose that we draw a sample of size n = 9 from a population of size
N = 24, using CSS. For this situation, k = 3 since N/n = 24/9 = 2.6 is nearest to
integer 3. Also, suppose that a random integer, say r = 3, is selected from the interval
[1,14]. This subsequently results in S3 = {Us, Ug, Ug, U12, U1s, U1s, Ua1, U2}, i.e. the first
sampling unit will coincide with the ninth sampling unit.

Sudhakar (1978) argued that one can achieve n distinct sampling units, if and only if
N and k are co-prime (i.e. N # (n—1)k), by considering this result to be applicable when
n is not fixed beforehand. A summary of this result suggests that k& be chosen beforehand,
with N and k being co-prime to obtain a sample of n distinct population units. The
shortcoming of this approach is that sample sizes are usually fixed beforehand owing to
budget constraints. Bellhouse (1984) suggests an alternative approach to overcome this
shortcoming. He proposed that a new sampling interval, &', be defined as

v INT(N/n) if N = (n— 1)k, o)

INT(N/n+1/2) if N # (n—1)k.

Hence, by using (2.5), where N/n is rounded down when N is a multiple of k, we obtain n
distinct sampling units. On the contrary, Sengupta & Chattopadhyay (1987) argued that
coincidence of sampling units is still possible when N/n is rounded up in (2.5), as shown
in the next example.

Example 2.8: Suppose that we wish to draw a sample of size n = 22 from a population of
size N = 60, using CSS. For this situation, k = 3 since N/n = 60/22 = 2.72 is nearest to
integer 3. By noting that N # (n—1)k, we then apply (2.5) to get ¥ = INT(60/22+1/2) =
3. Now, for any random start, the first and the second sampling units coincide with the
(n — 1)th and nth unit, respectively.

Sengupta & Chattopadhyay (1987) provides a theorem which states that for any
circular systematic sample, one can achieve n distinct sampling units, if and only if
lem(N, k) > nk, or equivalently if and only if gcd(N,k) < N/n, where lem(a,b) and
ged(a, b) respectively denote the lowest common multiple and the greatest common divi-
sor, for constants @ and b. This theorem is not in disagreement with Sudhakar’s (1978)

results and can be used as an extension to Bellhouse’s (1984) approach. Consequently,
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a new sampling interval, k*, suggested by the author, can thus be defined by using the
above-mentioned theorem along with (2.5), such that

INT(N/n) if lem(N, k) > nk (or ged(N, k) < N/n),
k* = (2.6)

INT(N/n+1/2) otherwise.
It should be noted that most authors suggest the use of a sampling interval given by
INT(N/n). While this sampling interval will always result in samples of n distinct sampling
units, it does not ensure an even spread of the sample over the population, as would a
sampling interval of INT(N/n +1/2), i.e. INT(N/n+1/2) > INT(N/n), resulting in the
selection of units that are further apart in the frame when applying the sampling interval

INT(N/n +1/2), as opposed to the sampling interval INT(N/n).

Relationship to other systematic sampling designs

We have thus shown that for both the FIM and CSS, any population unit will have a
chance of n/N of being in the sample and every possible sample will be of size n. With
the assumptions that 2N/n is not an integer and lem(N, k) > nk (or ged(NV, k) < N/n),
we thus conclude that the FIM and CSS are equivalent designs, since both designs have
the same probability of selection for each possible sample and they both define the same
set of possible samples (refer to Tables 2.2 and 2.4).

If N is a multiple of n, then CSS reduces to LSS. Moreover, if N > n, then the
difference between LSS and CSS is negligible (Murthy 1967). It should be noted that
for LSS, the probability of selecting a sample (1/k) is also the probability that a partic-
ular population unit is selected, whereas for CSS these probabilities are not equal, i.e.
P(S; is selected) = 1/N # n/N = P(U; is in the sample), for all i € {1, ..., N}. Moreover,
the possible samples that are defined for CSS (and the FIM) are not mutually exclusive,
unlike LSS which defines k& mutually exclusive samples.

For the remainder of this thesis, we will use CSS as the preferred design over the FIM,
since CSS is equivalent to the FIM in most cases (i.e. 2N/n is not an integer in most cases
and lem(N, k) < nk seldom occurs) and it is easier to apply CSS, as opposed to the FIM.

In the next chapter, we focus our attention on the derivation of formulae which are

associated with the variable of interest, for both LSS and CSS.
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Chapter 3

ESTIMATION OF THE
POPULATION MEAN

This chapter is divided into two parts. The first part consists of deriving formulae which
are associated with the estimation of the population mean (Y), for the case when k is an
integer, i.e. we will conduct LSS. In the second part of this chapter, we will derive related

formulae for the case when k is not an integer, conducting either LSS or CSS.

3.1 Case (A): If k= N/n is an Integer

We will first derive formulae for an estimate of Y and the corresponding sampling variance,
followed by obtaining an alternative formula for the sampling variance, which will be
expressed in terms of the ICC. Thereafter, we will discuss the link between the ICC and
the analysis of variance (ANOVA). Throughout this section we will assume that & is an

integer, i.e. N = nk.

3.1.1 Population mean estimation

Theorem 3.1: An unbiased estimator of ¥ and the corresponding sampling variance,

when conducting LSS, are respectively given by
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where 7, = Z?Zl yij/n denotes the ith systematic sample mean (i.e. the mean of the
sample with random start i) and y;; denotes the variate value of the population unit
corresponding to the jth unit of the ith systematic sample, withi =1,....,kand j =1, ...,n.
Note that G; = Z?:l yij, for i € {1,...,k}, is the ith systematic sample total, where the
probability that the systematic sample total is G;, is the same as the probability of selecting
that particular systematic sample, i.e. P(G;) = 1/k.

Proof: By using the fact that P(G;) = 1/k, we obtain

k
E(G;) = Z G; x P(ith systematic sample is selected)
i=1

1 1 e Y
1= 1=1 9=

Thus, by using (3.3), it follows that

n

_ 1< G; 1 Y, Y
E(;) =E Ezyij =E<> = B(G)=—=5x=Y.
j=1

We thus conclude that 7; = 27:1 yij/n is an unbiased estimator of Y. Now, by applying

(3.1), the sampling variance of g; is then expressed as

Var(7,) = Var <i> _ %Var(Gi). (3.4)

Accordingly, by using (3.1), (3.3) and (3.4), we obtain

n

k k ' 9 B
Vrlh) = 55 Yo (G - B@IP x PG = 130 (T ) = -
=1 i=1 ]

Note that Zle (y; — 7)2 is a measure of the variation for the sample means, which is
calculated as the sum of the deviations of each sample mean from the population mean. If
the sample means are relatively similar, then we obtain a small sampling variance, which
in turn improves the reliability of this estimation procedure.

Cochran (1977) provides us with three additional formulae for Var(y;), where two of
these formulae are used to compare LSS with SRS (one of these formulae is derived in the
next section). The third formula, which will be given in Section 4.1.3, expresses Var(y;)
in terms of the corresponding sampling variance when conducting STR, and will be used

to compare LSS with STR.
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3.1.2 Intra-class correlation coefficient

The ICC between pairs of population units that lie within the same systematic sample is

defined as

p = Cov(yij,ya)/o?, forj,l=1,...n,(j#1)andi=1,..k, (3.5)
where
k n n o
Cov(yl], yzl) n — 1 Z yz] yzl - Y) (36)
=1 j=11=1
J#l

such that y;; and y; are random variables that represent two distinct units from the ith
systematic sample and
1 en & =
= — S (i —Y)? (3.7)
i=1 j=1
is defined as the population variance. The divisor in (3.6) is obtained by noting that
there are k systematic samples with n sampling units within each sample and (n — 1)
comparisons for each particular sampling unit.
Using the above notation, we next express Var(;) in terms of the ICC, before obtaining
alternative formulae for the ICC which are related to the ANOVA. An alternative formula
o (3.2), as shown below, will be used to obtain efficiency comparisons in Chapter 4.

Theorem 3.2: The sampling variance given in (3.2) can be written as

2
Var(7,) = i ( - 1) 14+ (1)), (3.8)
where N X P .
é 1 Z m Z Z (yij - Y) (39)
j=1 i=1 j=1

is the adjusted population variance.
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Proof: By applying (3.2), we obtain

Var(@) = 1 S~ V)?

1
1 & _
= n2 Z Z(yij Y)
i=1 | j=1
1 E [ n B
:]\TnZ > Wiy-7 +2ZZ%J )(yi —Y)
i=1 | j=1 j=1 l>]
1 k n B
= 3 2 2 NTLZZZ vis — V) — V)
i=1 j=1 P 1j 1155
kK n
Ninzz (v = ZZZ Yij = Y)(ya —Y). (3.10)
i=1 j=1 =1 j=1 l#j

Now, by using (3.5), (3.6) and (3.7), it follows that

n

kK n
ZZZ yzg yzl _7) = nk:(n — 1)COV(yij,yz‘l)

i=1 j=1 I#£j
=nk(n — 1),002
k n o
— =13y — V) (3.11)
i=1 j=1

Finally, substituting (3.11) into (3.10) and then applying (3.9), results in

k n k n
Var(p) = -3 g~ VP4 = 1Dp YD (i~ Y
i=1 j=1 i=1 j=1
2 (N _ n— 2(N — 2 _

We thus conclude that positive correlation between population units that lie within the
same systematic sample, increases Var(y;) by a multiplier of (n — 1) (Cochran 1977). We
further note from (3.8), that one cannot be certain that the sampling variance will decrease
if the sample size is increased, or equivalently if the sampling interval is decreased, since
N = nk is fixed. This is in direct contrast to SRS and STR, where larger samples result
in lower sampling variances. Empirical results given by Madow (1946) show us the erratic
behaviour of the sampling variance as the sample size increases, when conducting LSS.
We will now discuss the ICC as a measure of homogeneity, by explaining the ANOVA.
This approach is used in many standard sample survey textbooks, such as Sarndal et al.
(2002) and Lohr (2010). The ANOVA, which is used to explain the variance decomposition

of N population units that are divided into k clusters of size n, is given as follows:
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(i) The total sum of squares (SST), measures the total variation between all population

units, and is given by

k n
SST =" (i - Y)* (3.12)

i=1 j=1

(ii) The sum of squares between clusters (SSB), measures the variation among the cluster

means, and is given by

k
SSB=n) (7;-Y)" (3.13)

=1

(iii) The sum of squares within clusters (SSW), measures the variation among population

units that are within the same cluster, and is given by

k n
SSW =2 (v —7)* (3.14)

i=1 j=1

(iv) Standard sample survey texts (Sdrndal et al. 2002) bear evidence that equations

(3.12), (3.13) and (3.14) are related by

SST = SSW + SSB. (3.15)

(v) The adjusted population variance, given by (3.9), is commonly referred to as the
total mean square (MST), and is expressed as

k n
SST
MST:S%:N_l N—lzzy” . (3.16)

=1 j=1

(vi) The variance between clusters, known as the mean square between clusters (MSB),

is given by

k
SSB
MSB = —— = Z (3.17)

(vii) The variance within clusters, known as the mean square within clusters (MSW), is

given by

MSW = o = ZZ@ -Y)% (3.18)
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Since LSS is a form of cluster sampling (refer to Section 2.1), we can use (i) to (vii)
for LSS. The formulae in (3.12) to (3.18) will remain the same and the only difference
will be that we are now considering k systematic samples, instead of k clusters. The
sum of squares between systematic samples (SSB) is thus a measure of the variation
among systematic sample means, while the sum of squares within systematic samples
(SSW') measures the variation among population units that are within the same systematic
sample. Furthermore, the variance between systematic samples (Sbsy .) is given by (3.17),
while the variance among population units that are within the same systematic sample
(S sys) is given by (3.18).

For any given discrete population, SST is clearly fixed, so that an increase in SSW
results in a corresponding decrease in SSB (refer to (3.15)). Analytical work done by
Stuart (1976) concludes that cluster sampling should be done in such a way that the
clusters are made as internally heterogeneous (large variation between the population
units that lie within the clusters) as possible and/or as externally homogeneous (small
variation between the clusters) as possible to obtain maximum precision in estimation.
We thus obtain maximum precision of estimates when conducting LSS, if the population
units that lie within the same systematic sample vary as much as possible (i.e. maximize
SSW), while attaining minimum difference between the k systematic sample means (i.e.
minimize SSB). This will consequently result in a lower sampling variance. One can
achieve the goal of lowering the sampling variance by rearranging the population units, so
that different systematic samples are formed. This is in direct contrast to SRS, in which
the arrangement of population units has no effect on the sampling variance. Different
orderings/arrangements of population units and the corresponding effect on estimation,
when conducting LSS, will be discussed in Chapters 4 and 5. We next obtain alternative

formulae for the ICC, using the ANOVA given above.
By using equations (3.5), (3.6), (3.7), (3.10) and (3.12), we obtain

p= COV(yija yil)/o'2

-1
n

kK n kK n
= n—l ZZ ylj*?)Q ZZ yzg yzl*?)
i=1 j=1 i=1 j=1 [#j
1

= m [NnVar(yi) — SST] (3.19)
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Now, by applying (3.2) and (3.13), it follows that

k k
N — _
NnVar(g;) = 7” S @ -Y)?=n*Y (7~ Y)? =nSSB. (3.20)
i=1 =1

Hence, substituting (3.20) into (3.19), results in

1

T 1jgsT"SSB — S57) (3.21)

p:

Another expression for p can be found by using (3.15) and (3.21), such that

1
1 nSSW
A final measure of p is obtained by applying (3.16), (3.18) and (3.22), i.e.
_1_ nSSW
P m=1)8sT

_ n(N—k)MSW
(n—1)(N—-1)MST

__ nk(n-1)MSW N MSW (3.23)
(n—1)(N—-1)MST N—-1) MST" '

Now, if N is large, then N/(N — 1) = 1 and by substituting this result into (3.23), we

obtain
MSW

- MST’
By referring to (3.24), we thus note that p > 0 when MST > MSW, ie. when the

~

p=1

(3.24)

adjusted population variance is greater than the variance among population units that lie
within the same systematic sample (5’)2/ > ngsys). The population units that lie within
the same systematic sample will thus tend to contain similar values and are labelled as
homogeneous. In contrast, we can expect p < 0 when MST < MSW, i.e. when the
adjusted population variance is less than the variance among population units that lie
within the same systematic sample (S3 < Sﬁ,sys). In this case, the population units
that lie within the same systematic sample will tend to contain dissimilar values and are
labelled as heterogeneous. Complete homogeneity within the systematic samples indicates
no variation among the population units within each systematic sample, so that SSW =0
for this scenario, resulting in p = 1 or pye, = 1 (refer to (3.22)). By substituting this result

into (3.8), we obtain Var(y;) = SZ(N —1)/N, i.e. the sampling variance is at a maximum

value. Conversely, complete heterogeneity within the systematic samples indicates that
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there is maximum variation among the population units within each systematic sample.
From (3.15), we thus conclude that SSW = SSW,,,4, = SST for this scenario and since
SST is fixed, it follows that SSB = SSBp, = 0. By substituting SSW = SST into
(3.22), we obtain p = —1/(n — 1) or pmim = —1/(n — 1). Stuart (1976) concludes that
complete heterogeneity within clusters provides optimal results in terms of precision. It
is thus desirable to obtain an ordering/arrangement of the units which results in p being
as close to the value of —1/(n — 1) as possible. One can easily verify that Var(y;) = 0, by
substituting p = —1/(n — 1) into (3.8).

3.2 Case (B): If k = N/n is not an Integer

We next derive a formula for an estimate of Y and then proceed to find the associated level
of bias for this estimator as well as the corresponding sampling variance, when conducting
LSS for the case when k is not an integer. We follow this by obtaining formulae for an
estimate of Y and the corresponding sampling variance, when conducting CSS. Finally,

we will discuss the ICC for both LSS and CSS.

3.2.1 Population mean estimation

We now assume that & is not an integer, such that N = nk + ¢, where 0 < ¢ < n and ¢/k
is not an integer. In Chapter 2, we showed that if we apply LSS for this situation, then we
either obtain samples of size n+INT(c/k) or n+INT(c/k)+ 1. Consequently, samples are
either over-representative or under-representative of the population and thus one cannot
obtain unbiased estimates of the population parameters. As a result, we obtain a biased
estimate of Y, as shown in the next theorem.

Theorem 3.3: Suppose that we draw a sample of size n from a population of size IV,
using LSS, where k is not an integer. If ¢ denotes the remainder, where N = nk + ¢,
0 < ¢ < n and ¢/k is not an integer, then a biased estimator of Y, the associated level of

bias for the estimator and the corresponding sampling variance, are respectively given by
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S 1 & G;
i n; Zyw T ) (3 25)
7=1
-~ k 1 n;

B (Y) =3 7 (k . N) : (3.26)

Lk
Var(y;) =+ > (@ =) (3.27)

=1

where n;, §; = 371 yij/ni, for i € {1,....k}, and § = Sk 7:/k respectively denotes
the size of the ith systematic sample, the ith systematic sample mean and the average
of the k systematic samples. Note that n; is either n + INT(¢/k) or n + INT(¢/k) + 1
and G;/n;, for i € {1,...,k}, is the ith systematic sample mean, where the probability
that the systematic sample mean is G;/n;, is the same as the probability of selecting that
particular systematic sample, i.e. P(G;/n;) = 1/k.

Proof: Now, since there are k possible systematic samples, we note that

~ k

E(Y):E(;,Q:E(%):E ii{f :Z y” zk:i;:y (3.28)
i = i1

=1 =1

In addition, Y is defined as

ng

k
y £ % z; z; Yij- (3.29)
1=1 7=

Hence, by comparing (3.28) to (3.29) and noting that N # n;k, for all ¢ € {1,...,k}, we
thus conclude that G;/n; is a biased estimator of Y. To obtain the level of bias we use

(3.25), (3.28) and (3.29), such that

B(?) éE(?) Y

n;

Finally, we can find the sampling variance by applying (3.25) and (3.28), i.e

v v () -5 & (2] (&) - 13

i=1

w\»—l

I
=
Mw

=1

We next derive formulae for an estimate of Y and the corresponding sampling variance,

when conducting CSS, such that the sample size is fixed.
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Theorem 3.4: Suppose that we draw a sample of size n from a population of size N,
using CSS, where the random starting point 7 is an integer drawn from the interval [1, N|
and k is not an integer. Let k* and ¢ denote respectively the sampling interval that is
given by (2.6) and a non-zero integer, such that N = nk* + ¢. An unbiased estimator of

Y and the corresponding sampling variance are thus respectively given as

N /
Y=y, = % (3.30)
1 .
Var(gr) = N Z(yr - Y)Qv (331)
r=1

where g, = GI./n is the rth circular systematic sample mean and
Z?:l Y(G—1)k*+r forr=1,...k*+¢;

-1 * *
> Y-k e T Y1)k e N forr =k*+c+1,...2E" + ¢

! __ — * *
G’" - Z?:lQ Y(—1)k*4r + Yn—1)k*+r—N + Yn—2)k*+r—N forr =2k"+c+1,...,3k" + ¢

Yr + Y-k +r-N T Y-k tr-N T o T Yprgr—n  forr=m—-1k" +c+1,..,N;
is the rth circular systematic sample total. It should be noted that the probability that
the circular systematic sample total is GV., is the same as the probability of selecting that
particular circular systematic sample, i.e. P(G}) =1/N.

Proof: Now, since there are N possible samples that could be selected, we note that

~ N n _
BY) =B =5 (5 ) = Z* Lya=-"Toy e

r=1

which follows since each population unit is repeated n times, when referring to all the
possible samples (see Section 2.2.3). We thus conclude that §, = G} /n is an unbiased
estimator of Y. Now, by using (3.30), we obtain

Var(@,) = Var [ Z2) = L var(@) 1% E(G)]? x P(G") (3.33)
r(y,) = Var r( =P )5 .

n n?

which follows since there are N possible circular systematic samples. Also, by using (3.32),

we note that

E(G)) =nY. (3.34)

Thus, by applying (3.30), (3.33) and (3.34), it follows that

1 & 1L G <12 1 2
Var(y,) —TZ NZ[TLY} =y 2w
r=1 r=1

r=1
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Theorems 3.3 and 3.4 thus indicate another comparative advantage of CSS, since we are
able to obtain an unbiased estimate of Y for CSS, whereas an unbiased estimate of Y
is unobtainable when conducting LSS, for the case where N = nk + ¢, 0 < ¢ < n and
¢/k is not an integer. Moreover, if n; = N/k for all i (i.e. all systematic samples are of
equal size), then the level of bias in (3.26) reduces to zero, which then makes it possible to
obtain an unbiased estimate for Y, when conducting LSS. If N = nk +¢, 0 < ¢ < n and
¢/k is an integer, then n; = n + ¢/k, for all i. Consequently, it is then possible to obtain
an unbiased estimate of Y, where the corresponding formulae are obtained by replacing n

in the previous section, with n + ¢/k.

3.2.2 Intra-class correlation coefficient

The ICC requires that all clusters/systematic samples be of equal size. It is thus not
applicable to use this measure of homogeneity for LSS when N = nk +¢, 0 < ¢ <n and
¢/k is not an integer. An alternative measure, ¢, which is related to p, is obtained by
assuming n and N to be large, such that n ® n+ 1 and (N — 1)/(N — k) = 1 (Sérndal
et al. 2002). Thus, by using these values together with (3.16), (3.18) and (3.22), it follows
that

nSSW._ . SSwW. .~ (N-1SSwW = MSW _
(n—1)SST — SST — (N —k)SST MST

p=1- 5. (3.35)

By substituting SSW = 0 into (3.35), we obtain § = 1 or ;4 = 1, which is a result of
complete homogeneity within the systematic samples. Conversely, by substituting SSW =
SST into (3.35), it follows that § = —(k—1)/(N — k) or dpmin, = —(k —1)/(N — k), which
is a result of complete heterogeneity within the systematic samples. In Section 3.1.2, we
concluded that complete heterogeneity within systematic samples provided optimal results
for LSS, in terms of precision. It is thus desirable to obtain an ordering/arrangement of
the units which results in § being as close to the value of —(k — 1)/(N — k) as possible,
if we were to conduct LSS, for the case where N = nk + ¢, 0 < ¢ < n and ¢/k is not an
integer.

There is an analogue to Theorem 3.2, which can be used to express Var(y,) (the
sampling variance when conducting CSS) in terms of the ICC. This result was noted by

Murthy & Rao (1988) and given as

Var(y,) = Sj <NJ\_rl> (=l
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where p/ =23V Z?:_ol ;L,;lj(yrﬂk* —Y)(Yrijirr — Y)/n(n—1)(N —1)SZ denotes the
ICC between pairs of population units that lie within the same circular systematic sample,
with the deviations calculated from Y.

Throughout this chapter we derived estimates for Y and the corresponding sampling
variances. We can, however, obtain an estimate of the population total Y. and the corre-

sponding sampling variance, by noting that Y. £ NY, such that

A~

Y. = NY. (3.36)
The corresponding sampling variance is thus given as
Var(Y)) = Var(N?) = NZVar(?). (3.37)

We can now obtain the formulae for an estimate of Y. and the corresponding sampling
variance, by substituting the relative formulae into (3.36) and (3.7) respectively. However,
for the purpose of this thesis, we will only consider estimating Y and refer to the variance
of this estimate as the sampling variance.

In the next chapter, we will use (3.8) to compare the efficiency of LSS with the other
probability sampling designs. We will also discuss various population structures, where

we will obtain related efficiency comparisons within each population structure.



34

Chapter 4

EFFICIENCY AND
POPULATION STRUCTURES

In the first part of this chapter we compare the efficiency of LSS to that of SRSWR,
SRSWOR and STR. In Chapter 1, we noted that the variance of an unbiased estimate
of the population parameter is a comparative measure, with the classic notion that the
better estimate is the one which exhibits the lower variance. Consequently, we use the
relative efficiency between two different estimators, produced by two different sampling
designs, as a measure of efficiency (i.e. the ratio of the sampling variances), since we obtain
unbiased estimates of Y when conducting either SRSWR, SRSWOR, STR. (Cochran 1977)
or LSS (see Theorem 3.1). It is easily deduced from (3.8) that the sampling variance,
when conducting LSS, depends on n (or k, since N = nk is fixed) and the ICC, as SZ
and N are fixed. In Section 3.1.2, we mentioned that a larger value of n (or a smaller
value of k) does not necessarily lead to a lower sampling variance, i.e. the sampling
variance, when conducting LSS, does not vary consistently with n. Hence, the only factor
that proportionately affects the sampling variance is the ICC, which depends on (i) the
ordering of population units from which the systematic sample is to be drawn, (ii) the
amount of correlation between successive population units and (7i7) is also related to n
(Murthy & Rao 1988). Consequently, for the second part of this chapter, we will compare
the efficiency of LSS to the other probability sampling designs, by considering various
population structures.

Throughout this chapter we assume that k is an integer, however we usually can apply

the results obtained in this chapter to LSS when k is not an integer (Murthy & Rao 1988).
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Theoretical efficiency comparisons of CSS to the other probability sampling designs, on
various population structures, will be left for further studies. However, we will empirically
test the efficiency of CSS against other probability sampling designs in Chapter 8. In this
chapter and all subsequent chapters, we will use the notation ¥;gq, Ysrswr> YSRSWOR
and Ygrp to denote the sample means, when conducting LSS, SRSWR, SRSWOR or

STR, respectively.

4.1 Efficiency of Linear Systematic Sampling

We next compare the efficiency of LSS to each of the other probability sampling designs
mentioned in Chapter 1, i.e. comparing their respective sampling variances. In this section,
the formula for Var(g;qg) is given by (3.8), while other corresponding sampling variance

formulae are given by Cochran (1977).

4.1.1 Comparison to SRSWR

Suppose that we draw a sample of size n from a population of size N, using SRSWR. An
unbiased estimator of Y is given by %grgy g, With the corresponding sampling variance
expressed as

2 _
Var(swswn) = 2 (S ) (4.)

n

The relative efficiency of SRSWR, with respect to LSS, is thus given by

Clearly, if p < 0, then LSS is more efficient than SRSWR. By using (3.24), we thus conclude
that if MST < MSW, then p < 0 and consequently LSS is then more efficient than
SRSWR. This then translates to imply that the more heterogeneous the population units
that lie within the same systematic sample, the greater the efficiency gains when choosing
LSS over SRSWR. Conversely, we conclude that if MST > MSW, then p > 0 and LSS
is then less efficient than SRSWR. This consequently means that the more homogeneous
the population units that lie within the same systematic sample, the greater the efficiency
loss when choosing LSS over SRSWR. If we substitute p = 0 (i.e. no correlation amongst

population units that lie within the same systematic sample) into (3.8) and then compare
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this result with (4.1), we see that Var(y;qg) = Var(ygrgwr) and thus conclude that no

efficiency is gained when choosing one design over the other for this scenario.

4.1.2 Comparison to SRSWOR

Suppose that we draw a sample of size n from a population of size N, using SRSWOR. An
unbiased estimator of Y is given by Jsrswonr, With the corresponding sampling variance
expressed as

_ S22 (N —n
Var(Fswswor) = - (). (1.2

n

The relative efficiency of SRSWOR, with respect to LSS, is thus given by

() w2 (5]

= <N_1> 1+ (n—1)p] =1+ (n—1)p,

N —n

which follows if we assume IV to be relatively larger than n. The discussion of the effect of
p < 0and p > 0, given in the previous section, thus applies provided that we assume N to
be relatively larger than n. By substituting p = 0 into (3.8) and comparing this result with
(4.2), we see that Var(y;gg) > Var(Ysrswor) and consequently there would be a gain
in efficiency when choosing SRSWOR over LSS for this scenario. From the above result
on the relative efficiency, we note that this gain in efficiency tends to zero as N becomes
relatively larger than n. For convenience and simplicity, one may thus choose LSS as the
preferred sampling design. By substituting p = —1/(NN —1) into (3.8) and then comparing
this result with (4.2), we see that Var(yrgg) = Var(yspswor), with no efficiency being
gained when choosing one design over the other for this situation. More specifically, we
thus conclude that LSS is more efficient than SRSWOR, if and only if p < —1/(N —1).
By applying (4.1) and (4.2), we obtain the relative efficiency of SRSWOR, with respect
to SRSWR, given by

Var(yspswr) Sy <N— 1) [512/ <N_n>yl _ N1
Var(Yspswor) 1 n N N-—n

N

This result shows us that SRSWOR is always more efficient that SRSWR (except when
n = 1) and both designs will be approximately equally efficient when N is large, i.e.
larger population sizes result in a higher probability of obtaining distinct sampling units

for SRSWR. Both designs are equivalent when n = 1 and this result is trivial, since there
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is only one unit sampled and replacement of the sampling unit thereafter does not affect
the sample. In light of this result, we will focus on SRSWOR as being our preferred
SRS design. We thus obtain efficiency comparisons between LSS and SRSWOR, before
applying the results to make efficiency comparisons between LSS and SRSWR, e.g. if we
find that LSS is more efficient than SRSWOR, then we conclude that LSS is more efficient
than SRSWR (i.e. transitive law).

4.1.3 Comparison to STR

Suppose that we draw a sample of size n from a population of size N, using STR with the
assumption of equally sized strata of size k, such that one unit is selected per stratum.
An unbiased estimator of Y is given by g p, with the corresponding sampling variance

expressed as

_ S22, (N—n
Var(Ysrr) = nt< N )7 (4.3)

where S2, = i i (yis — J.s)*/n(k — 1) denotes the variance amongst population units
that are Withi;:}c}llzlsame stratum; y;s denotes the variate value of the population unit
corresponding to the ith element of the sth stratum; and ., = Xk: yis/k is the sth stratum
mean, for s € {1,...,n}. The degrees of freedom for S2, is glifnlen as n(k — 1), since we
have one parameter (i.e. stratum mean) within each stratum of k£ units, resulting in each
of the n strata having (k — 1) degrees of freedom.

We next attempt to find an expression for comparing the efficiency of LSS in terms of
STR, when estimating Y. With the assumption that N = nk, we define LSS as being the
process of dividing the N population units into n strata of k population units each and
then selecting one population unit from each stratum, where the sampling unit selected
is located in the same position for every stratum. The LSS design, which was depicted
by Table 2.1, is thus transposed and can be compared to STR, with one unit drawn from
each stratum. The arrangement is such that, the first k units belong to the first stratum,
the second & units belong to the second stratum, and so forth. Cochran (1977) states that

there is a similar theorem to that of Theorem 3.2, which gives an expression for Var(y gg)

and can be used to compare LSS to STR. The corresponding result is given by

_ S22, (N—n
Var (yLSS): L <

" ~ ) 1+ (n—1)puwst], (4.4)

n

i > Wis = Uos) Wa — Y1)/ [n(n— 1) (k — 1) S2,] is the ICC between

k
=1s=11[>s

where pyst = 2
i



38

pairs of population units that lie within the same systematic sample, where the deviations
are calculated from their respective stratum means. We next obtain the relative efficiency
of STR, with respect to LSS, by using (4.3) and (4.4), i.e.

Var (Yr.s5)  Ses (N —n Sest (N—mn -
= 1+ (n—-1 =14+(n-1 .
Var (Ysrr) n N [L+ (= 1) pus] n N (n=1) pust

Clearly, if pyst < 0, then LSS is more efficient than STR and if p,s > 0, then LSS is less
efficient than STR. By substituting p,st = 0 into (4.4) and then comparing this result
with (4.3), we see that Var(ygq) = Var(ygrp) and thus conclude that no efficiency is
gained when choosing one design over the other for this scenario.

It consequently follows from the above discussion, that the only comparable factor
which affects the efficiency of LSS is the ICC. The ICC depends on the ordering of the
population units from which a systematic sample is to be drawn, the amount of correlation
between successive elements in the population and is also related to n. We will thus

consider different population structures to examine the efficiency of LSS.

4.2 Population Structures

We will now discuss the various population structures (i.e. random ordered, linear trend,
periodic, auto-correlated and stratified populations) and obtain efficiency comparisons for

each population structure.

4.2.1 Population in random order

The following theorem shows the relationship between SRSWOR and LSS, for a population
that is in random order.

Theorem 4.1: For a randomly ordered population of size IV, the probability of selecting
any specific sample of size n using either, LSS or SRSWOR, is 1/(CY) = n!(N —n)!/N!,
which results in both designs being equivalent.

Proof: This proof, which was first presented by Madow & Madow (1944), is given by
Murthy (1967). The total number of possible samples of size n that can be drawn from
a population of size N, using SRSWOR, is given as N(S) = CX, i.e. the order of the
sampling units does not have any effect and thus do not matter. The probability of
selecting any specific sample S; (i.e. N(S;) = 1) of n sampling units is thus given by
P(S;) = N(S;)/N(S) = 1/(CY). By assuming N = nk, such that LSS is equivalent to CSS
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(see Section 2.2.3), we then use the unrestricted selection method, since the population
units are random and the order doesn’t matter. There are N! permutations of orderings
of the population units, which results in N(S) = N(N!) being the total number of possible
systematic samples, which may be repeated. Furthermore, if we consider LSS of equally
spaced intervals, of size k, we get (N —n)! possible orderings of choosing a specific sample.
Hence, the number of systematic samples which contains a specific set of n sampling units
is given as N(S;) = N(N — n)!n!, since there are n! orderings of the n sampling units and
the first sampling unit may be any one of the N population units. The probability of

selecting any specific sample of n sampling units, using LSS, is thus given as

N(S;) N(N-n)n! [ N! ]—1 1
CN(S) O NI [(N-m)n!| —CN

The equivalence of Var(ygrsior) and Var(y;gg), for any single finite population in ran-
dom order, is not exactly true, since Var(ygg) is not proportional to n (refer to Section
3.2.2). However, Madow & Madow (1944) proved that LSS is expected to be equally
efficient to SRSWOR, by considering all N! permutations of the finite randomly ordered
population of size N, i.e. E[Var(y;s5)] = Var(Yspswor)-
Example 4.1: Suppose that we are required to conduct a survey for a company on their
employees’ work related traveling expenses. In addition, suppose that we sample from a
list of their employees and that this list is arranged in ascending order according to their
surnames. Although the list is arranged in ascending order, the population is considered
to be random, since there is no relation to work related traveling expenses (variable of
interest) and surnames (ordered variable). Therefore, the order of the population units do
not matter and LSS can be viewed as SRSWOR.

To compare LSS to STR, we compare (4.2) to (4.3), such that the relative efficiency
of STR, with respect to LSS, is given by

Var (Yrss) _ Var (Usrswor) _ Sy <N—”) |:S7_21)st (N—”ﬂ_l _ S5
Var (Ysrg) Var (Ysrr) n N n N S2 st

We thus conclude that if the variance amongst population units which lie within the same
stratum is greater than the adjusted population variance, then LSS is more efficient than
STR. In contrast, if the variance amongst population units which lie within the same

stratum is less than the adjusted population variance, then LSS is less efficient than STR.
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4.2.2 Populations that exhibit linear trend

Trend is defined as a general path that is followed by the variate values of a population,
as the population unit numbers (i € {1,...,N}) increase in a sequence and/or as time
progresses, if the variate indices indicate points in time. If the variate values tend to
increase as the population unit numbers increases, then the trend is said to be positive.
Conversely, if the variate values tend to decrease as the population unit numbers increases,
then the trend is said to be negative. Trend can either be linear or non-linear (parabolic
trend, quadratic trend, exponential trend etc.). For the purpose of this thesis, we will only
consider linear trends. We will first discuss a hypothetical linear trend model, in which the
variate values of the population units exhibit arithmetic progression, i.e. a perfect linear
trend model. We then obtain formulae for Var(y;qg), Var(¥grswor) and Var(ggrp), for
this model, before obtaining related efficiency comparisons. Finally, we will discuss the
ICC, when comparing LSS to the other probability sampling designs for the population

under consideration.

Perfect linear trend model

Mathematical evidence, originally given by Madow & Madow (1944) and later discussed
by Murthy (1967) and Cochran (1977), is used to show the efficiency of LSS under the
presence of linear trend in a population. A hypothetical population that exhibits linear

trend may be represented by the model
yi=a+bi, fori=1,...,N. (4.5)

This model depends on constants a and b, where the variate values are increasing by a
constant factor b, resulting in the population exhibiting perfect linear trend. By applying

(4.5), we obtain

1 N
Y = Z?Jz
i=1

=

1 1 Y b(N +1)
:N[(a+b)+...+(a+Nb)]:N Na+biz;z]:a+2. (4.6)
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Furthermore, by using (4.5) and (4.6), we obtain

N 2
, 1 wpiJo BN
Sy(N—l)Z;[ 0 { T H
R R R M
_(N_l);[z 2 ]
b? N N+1
Ry [E—N( ;)
0 [N(N+1)(2N+1)  N(N+1)°
T (N-1) 6 a 4
CVPN(N+1) (AN+2-3N -3\ b0N(N+1)
(N -1) ( 12 >_ 12 ' (47)

Efficiency comparisons

By applying (2.1), for the model in (4.5), we note that

Ui = S l(atbi)+ (a+b{i+k}) + oo+ (a+bfi+ (n— Dk}

3

="
_ bi 4 28 . _ bi
a—+ H—n ;z a—+ b1+

bk (n —1)

: (4.8)

Thus, by using (3.2), (4.6) and (4.8), we obtain

Var(yLSS)—]tZk: {a—i—bi—i—W—{a—i—WHz

izj 3 N:”]
{

_l’_

(4.9)

3k — 2 — b2 (k2 -1
:b2(k+1)<4k+2 3k 3>:b(k+1)(k 1) _ ( )'
12 12 12

Moreover, if we use (4.2) and (4.7), then

_ VN(N+1) (N—-n
Var (Ysrswor) = 19n N

_BN(N+1) [n(k—l)] b (N +1) (k—1)

12n N
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Finally, using (4.3) and (4.7), results in

vk (k+1) [n(k‘—l)] b (k+1)(k—1)  b* (K —1)

— = 4.11
12n nk 12n 12n ( )

Var (Ysrr) =

which follows since S2, is obtained by substituting k¥ for N in (4.3), i.e. under the
perfect trend model, for the setup of population units into strata (see Section 4.1.3), the
sum of squares between population units within a stratum is related to the total sum of
squares, with the only difference being that we are now considering k£ population units in
Zk: (yis — J..)°, instead of N population units in JZV: (yi — ?)2.

= The relative efficiency of SRSWOR, with reszgéct to LSS, is obtained by using (4.9)

and (4.10), such that

1

Var (7ss) _ U* (k1) {b2<N+1><k:—1>}1: (k+1)(k=1) _ k+1

= = <
Var (Ysrswor) 12 12 (N+1)(k—1) N+1

which follows if n > 2. We thus conclude that LSS is more efficient than SRSWOR  if

)

n > 2. Similarly, by using (4.9) and (4.11), we obtain the relative efficiency of STR, with

respect to LSS, i.e.

Var (Ysrr) 12 12n

which is greater than 1 if n > 2. We thus conclude that LSS is less efficient than STR by

Var (yrss) _ 0° (K* —1) [b2 (¥ — 1)] B =n

a factor of n. Now, by using the transitive law with the assumption that n > 2, we show

that
Var (Jsrr) < Var (¥rss) < Var (Usrswor) < Var (Tsprswr) -

Hence, we conclude that STR is the most efficient probability sampling design for popu-
lations that exhibit linear trend. Furthermore, substituting n = 1 into (4.9), (4.10) and
(4.11), results in

Var (Jsrr) = Var (Yss) = Var (Usrswor) = Var (Tsrswr) -

which follows since we have proven the equivalence between SRSWR and SRSWOR in
Section 4.1.2, for the case when n = 1. Also, by applying (4.9) and (4.10), while assuming
N to be relatively larger than k, we obtain an approximation for the relative efficiency of

SRSWOR, with respect to LSS, given by

Var(pss) V(R -) [N+ ) (-]

Var (Ysrswor) 12 12
Gt D)(k-1) (k1) _k 1

12

(N+1)(k—1) (N+1) N n
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The relation of the efficiencies for the sampling designs, when N is relatively larger than

k, is thus given as

1 .
72 .

S|

Var (Ysrr) : Var (Jrss) : Var (Usrswor) : Var (Usrswr) = -

We thus conclude that STR is more efficient than LSS by a factor of n, which in turn is
more efficient than both SRSWOR and SRSWR, by an approximate factor of n, when N
is relatively larger than k. As a result, STR is more efficient than both SRSWOR, and

SRSWR, by an approximate factor of n? (by using the transitive law).

Intra-class correlation coefficient

For populations that exhibit linear trend, we can expect a high degree of variation between
population units that lie within the same systematic sample. The cross products of the
pairs of population units that lie within the same systematic sample, with deviations
calculated from Y, are thus predominantly negative. A negative ICC (p < 0) is thus
achieved and this results in LSS being more efficient than both SRSWR and SRSWOR,
for this scenario. It should be noted that the greater the degree of trend in a population,
the greater the efficiency gains when choosing LSS over either SRSWR or SRSWOR.
Now, let us view LSS in terms of STR (as in Section 4.1.3) for populations that exhibit
linear trend. Strata are thus likely to be internally homogenous and if the ith unit is
selected for each strata, then the deviation between any sampling unit and its respective
stratum mean, will likely have the same coefficient as the deviation of other sampling
units from their respective stratum means. Both deviations from their respective stratum
means are likely to be either positive or negative, resulting in their cross products being
predominantly positive, i.e. pys > 0. We thus conclude that STR is more efficient than
LSS for populations that exhibit linear trend. It should be noted that the greater the
degree of trend in a population, the greater the efficiency loss when choosing LSS over

STR.

4.2.3 Periodic populations

All periodic populations have a period, where the period is defined as an interval, in which
the variate values of a population perform a complete cycle. The variate values follow
regular oscillations that are repeated (cycle), i.e. the variate values of the population

monotonically increase and then monotonically decrease at regular intervals. ” Periodic
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variations are likely to occur in certain natural populations such as land fertility, forest
growth, events over time, etc. and in records such as payroll, census list of individuals
arranged by households, etc.” (Murthy & Rao 1988, p.157). Finney (1950) provides an
example for a population that exhibits unexplainable periodic variation, but this claim
was considered to be invalid by Milne (1959), since the calculations applied by Finney was
owing to measurement errors, which created a false result of periodic variation. Other
examples of periodic populations are given by Madow (1946) and Matérn (1960). Initial
comparisons between LSS and STR. for periodic populations, were obtained by Madow &
Madow (1944).

To view the effect of LSS for periodic populations, we will consider a discrete hypothet-
ical periodic population, given in Figure 4.1, where the variate values of the population
are plot against the population unit numbers (i = 1,...,24). The period for this hy-
pothetical population is given as AB=8, since we obtain a complete cycle between AB,
before the cycle gets repeated. Moreover, the population mean can easily be interpreted
from the graph, i.e. Y = 2.5. Now, if we conduct LSS with & = 8 and a random start
¢ = 1, then we obtain a sample which has no variation amongst the sampling units, i.e.
we obtain complete homogeneity within the systematic samples, such that p = 1 and
Var(y;gg) = S&(N —1)/N (see equation (3.8)). This is no different to randomly selecting
a sample of size one and hence results in SRSWR, SRSWOR and STR, providing more
efficient results than LSS. Conducting LSS with k£ = 8 and random start ¢ = 3, results in
a sample that correctly estimates Y. Nevertheless, we still consider this estimator to be
inefficient and inaccurate, since all possible systematic sample means, with k being equal
to the period, will not capture the variance explained by the population and will also, on
average inaccurately estimate Y. Finally, conducting LSS with £ = 4 and random start
1 = 4, results in the variate values of each successive pair of sampling units being equidis-
tant from Y, i.e. the average of the variate values, for every successive pair of sampling
units, is equivalent to Y. Furthermore, the sampling variance is zero when k is half the
period and n is even, since all the possible systematic sample means are equal to Y, i.e.
there is complete heterogeneity within the systematic samples and thus p = —1/(n — 1),
which results in Var(y;gg) = 0 (see Section 3.1.2). Consequently, LSS is more efficient
than SRSWR, SRSWOR, and STR for this scenario. By defining a similar hypothetical
population, we can then show that Var(y;gg) # 0 if n is odd and k is half the period.

This is owing to us obtaining an extra unit sampling after pairing the (n — 1) successive
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Figure 4.1: Selecting samples from a periodic population of size 24 with period AB=8, using
LSS

sampling units, where the average of the variate values of each of these pairs is equal to
Y. Nevertheless, LSS is still much more efficient than SRSWR, SRSWOR and STR for
this scenario.

A hypothetical population of this nature and those that exhibit an exact sine curve are
rare in practice. However, we can generalize the results for the hypothetical population
and apply it to all realistic periodic populations. We thus conclude that LSS is more
efficient than SRSWR, SRSWOR and STR, for periodic populations, if k is equal an odd
multiple of half the period (Cochran 1977). Conversely, LSS is less efficient than SRSWR,
SRSWOR and STR, if k is an integral multiple of the period (Cochran 1977). Moreover,
we obtain efficiency gains when conducting LSS when n is even, as opposed to the case
when n is odd, if the sampling interval is equal to an odd multiple of half the period.
It is thus of great importance that a sampler recognizes if a population exhibits periodic
variation before sampling, so as to remove any periodicity bias, by selecting an appropriate

sampling interval.
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4.2.4 Auto-correlated populations

So far we have shown that the efficiency of LSS depends on the arrangement/ordering
of population units and we provided some assumptions, i.e. random order, linear trend
and periodic. These assumptions are based on a single finite population which results
in inconsistencies, when comparing the efficiencies between sampling designs. We will
therefore consider a more realistic method of comparison, as shown below, which was
originally introduced by Cochran (1946).

Auto-correlated populations are described by the phenomenon where variate values of
population units which occur closer, in a given population, are more alike (higher corre-
lation), as compared to those that occur further apart. In this notation, we use p, to
denote the serial correlation for the pair of population units y; and y; (i # j), such that
u = |i — j| represents the distance between these pairs. To test if a population exhibits
autocorrelation, one can plot a correlogram, where p,, for y; and y;, is plot against u
(Cochran 1977). Cochran (1946) used this notation to introduce the super-population
model, which assumes that the population units for a finite population are drawn at ran-
dom from an infinite super-population. Now, we can obtain efficiency comparisons from
an average of many finite populations and these results will converge with the finite pop-
ulation results, as the finite population increases, i.e. as N becomes larger. Accordingly,

the super-population model is given by

Em (i) = En(yi — p)? =02, En (i — 1) Yitu — 1) = puo?, (4.12)

where the function E,, denotes the average of all possible finite populations, which can be

selected from this super-population. The model is based on the assumptions that:

pu >0 (ie. p, is positive); (4.13)

Apy = put1 — pu <0 (i.e. p, is decreasing). (4.14)

We will first consider some preliminary results, before comparing LSS to the other
probability sampling designs.
A common identity used in the ANOVA is given as

N N

N
N -7 =53 ),
i=1 j
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which can be expressed as

N o 1 N N
Z(yi_y) :NZZ(%_%)Q
=1 i=1 j>i
N-1 2 NN
— ( - ) 5 N(N—l)izl§(yi_yj)2
= (]\[2_1)]*3(?;1%)2
= Vg 7) - (T
= (NQ— l)E [(yz - Y)2 + (yj —?) -2 (yl —?) (Z/j _?)] , (4.15)

since there are N(N — 1)/2 pairs of (y;,y;), where j > i¢. Now, in the N(N — 1)/2 pairs
of (yi,y;), there are (N — 1) pairs where u = 1, (N — 2) pairs where v = 2, and so forth.
Thus, by averaging (4.15) over all possible finite populations, we obtain

N

Z (yz —7)2

i=1

N

En =B B {5V V) 2 (V) (55— V) }]

= %E [20% — 20%p, ]

9 N-1
:(N—1)02 II_WZ(N_U>[)“]7 (4.16)

u=1
which follows from (4.12). The expected sum of squares for a single stratum is obtained by
replacing N in (4.16) by k, since there are k population units within each stratum (refer
to reasoning in Section 4.2.2). Moreover, the expected sum of squares for each of the n

strata is equivalent, resulting in

k—1
E,, (SS within strata) = n (k — 1) o’ [1 - k‘(k‘2—1) Z (k —u) pu] . (4.17)

u=1

The expected sum of squares for a single systematic sample is obtained by replacing
pu and N in (4.16), by pk, and n respectively, since correlations between consecutive
population units are pg, por, P3k, ---, rather than pi1, po, p3, ..., and there are n units in the
sample. Furthermore, the expected sum of squares for each of the k systematic samples
is equivalent, which results in

1

(’I’L - u) Pku | - (4'18)
1

n

2
n(n—1)

u

E. (SSW)=k(n—1)c® |1 -

Now, if we apply (4.2) and (4.16), then we obtain the expected variance of Yspswor,
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given by
N
k—1 2
TERSWOR = N((N _)1)E > (wi-Y)
i=1
N—-1
(k—1)0? 2 B
= £ N =) X (N =) pu| - (4.19)

Likewise, by applying (4.3) and (4.17), we obtain the expected variance of §gpp, which is

given as
2 _ — =2
R [ EEEPR ]
1 -  (k—1)02 2 =
= —E,, (55 within strata) = ~ [1 TR (k—u)pu|. (4.20)

Nn

u=1

Finally, by respectively using (3.20), (3.15), (3.12), (4.16) and (4.18), we obtain the ex-

pected variance of 3 g, which is given by

B
0755 = Em [SS]

N
_1lg (0, )’ —w, (SSW)
—N m ;(yl_ ) - Hm
0_2 9 N-1 2% n—1
- [(N—l)—Nu:1 (N—u)pu—{km—l)—n;m—u)pku}]
0_2 9 N-1 n—1
-Z [(’“‘”‘Nu:l <N—u>pu+;<n—u>pku]
— 1) o2 N-1 n—1
= (k ]é) [1_ N(;_ 3 Z (N—u),ou-l-n(:k_l)Z(n—u)pku] . (4.21)
u=1 u=1

The expected relative efficiency of STR, with respect to SRSWOR, is then obtained by
applying (4.19) and (4.20), such that

T - S wm ||
2 N —u) py 2 k—u) py
0%rswor _ (k—1)0 | _u=l (k—1)0° | _u=l
o2rp N N(N-1) N E(k—1)
9 N-1 5 k-1 -1
e S (N1 — e S (k—u)pu| > 1,

which follows if we use the conditions in (4.13) and (4.14) (Cochran 1946). By using the
relationship between SRSWR and SRSWOR, as in Section 4.1.2, it thus follows that

2 2 2
05rR < OSRSWOR < OSRSWR> (4.22)
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for all n > 1, while equivalence occurs when n = 1. It should be noted that there is no
general result for the expected relative efficiency of LSS, with respect to either SRSWOR
or STR. However, we can obtain results by introducing an additional assumption, as shown
in the next theorem, and then apply the transitive law to (4.22).

Theorem 3.1: If we provide an additional assumption to (4.13) and (4.14), such that the

correlogram is convex, i.e.
A2pu = (55 = put1 + pu—1—2p, >0, foru=2 .. (N —2), (4.23)

then
2 L2 2 < 52
0LSS = 0STR = OSRSWOR = OSRSWR>
for any n, where LSS and STR are equally efficient when 62 = 0, for u = 2,..., (N — 2).
Proof: The complete proof of this theorem is given by Cochran (1946); however, we will
provide a simplified version for the special case, which considers the sampling of two units

from two strata. The variance of ygpp is thus given as

Var (Jsrp) = Var [yz;y]}

1
=1 [Var (y;) + Var (y;) + 2Cov (yi, y;)]
2

1
= —[20% +207%p,] = 5 [

1 1—p). (4.24)

Table 4.1 shows the number of combinations for each pair of population units, with respect
to their distance apart, for a population of size 2k. By using Table 4.1, we obtain the total

number of combinations of pairs of population units, which is given as
T.=142+. .+ k- +k+(k-1)+..+1

k—1
:k+22u:k+2[k(k2_1)}:k2. (4.25)

u=1

Table 4.1: Number of combinations for each pair of population units, with their

corresponding distance apart, when N = 2k

Distance Apart 1 2 .. k-1 k k+1 ... 2k-1

Number of Combinations 1 2 ... k-1 k k-1 .. 1
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Thus, by applying (4.24) and (4.25), we can obtain the expected variance of Jgrp, over
k? combinations, which is given by

J2

o%rr = Em [2 (1+ Pu)]

2
g
= g Bl :2k2z L+l _2k:2

B4 pu] : (4.26)

Now, by using Table 4.1, it follows that

> pu=1p1+ ot (k= 1) pee1 + kpe + (k= 1) prst + ... + 1pap—1

k—1 k—1
= upy + kpg + Z UP2k—u- (4'27)
u=1 u=1

Hence, substituting (4.25) and (4.27) into (4.26), results in

k-1
k+2Zu+Zupu+kpk+Zupzk u]

2
OSTR =

2 k—1

= % [Z u (2 + pu + kafu) +k (1 + pk) (4'28)

u=1
The variance of 3y gg is obtained by replacing p, in (4.24) with pg, since each pair of
sampling units is k£ units apart if n = 2. Accordingly,
o2
Var(yLss) = 5 [1+ ol (4.29)
Similarly, as in the case of STR, we use Table 4.1 to obtain the total number of combina-
tions, which is given as k2 in (4.25). By applying (4.29), we can thus obtain the expected
variance of 7j; ¢g, over k% combinations, which is given as

2 o?
orss = Em [2 (1+ Pk)}

g
= —E,
5 (14 px] = QkQZ +pk 2k2

4> pk] . (4.30)

By using Table 4.1, where every value in the distance apart row is replaced with k, we

obtain

> pu=1pr+ 20k + .+ (k= 1) pr + kpp + (k= 1) pr + ... + 1

k—1
=2 upy + kpk. (4.31)

u=1
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Hence, substituting (4.25) and (4.31) into (4.30), results in

k—1 k—1
o
0%gs = CT E+2) u+2) upp+ kpy
u=1 u=1
0_2 k—1
= o [Z w(2+ 2p) + k(1 + pp) (4.32)
u=1
By comparing (4.28) to (4.32), we note that 0% oo < 0%, if and only if
k—1 k—1
u=1 u=1
or equivalently, if and only if
k—1
> ul(p + (p2k—u — p1)] = 0. (4.33)
u=1

Now, by using the assumptions given in (4.14) and (4.23), we obtain

62 = pus1 4 pu_1—2p, >0, foru=2, .., (N-2),

ie.
Vu-1=pu-1—pPu=>Vu=py—pus1 = 0.
Thus
Vi>2Vy>.. >0,
implies
Vu+Vy1+ ..+ Vg1 2 Vgt + Vg + o+ Vigae 1,
ie.

Pu — Putt = Putt — Put2ts fort > 1.

For t = k — u, we obtain
Pu = Pk = Pk — P2k—u-

We then conclude the proof by applying the above result to (4.33).

Cochran (1977) notes that the assumptions in (4.13), (4.14) and (4.23) are satisfied
for the cases where the correlograms are linear, exponential and hyperbolic tangent. Ex-
amples of natural populations that exhibit positive convex decreasing correlograms are
given by: (i) a linear autocorrelation function of p, = (I — u)/I, for particular classes of
economic time series, proposed by Wold (1938); (ii) an exponential autocorrelation func-

tion of p, = exp(—Au), for forestry and land use/cover area frame surveys, proposed by
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Osborne (1942) and Matérn (1947); (iii) a hyperbolic tangent autocorrelation function
of p, = tanh(u_3/ %), for investigating the weekly rainfall for two meteorological stations
that are located at a distance of w units apart, proposed by Fisher & Mackenzie (1922).
Furthermore, Bellhouse (1988) noted that any process which is autoregressive and has real
roots, with respect to the characteristic equation, will exhibit a positive convex decreasing

correlogram.

4.2.5 Stratified populations

If the entire population is divided into groups (or strata) that are internally homogenous
and externally heterogeneous (i.e. population units within a stratum are alike according to
some characteristic and strata differ amongst each other according to some characteristic),
then this population is known as a stratified population. Stratified populations may be
naturally defined or they may be defined by a sampler, e.g. a sampler may divide the
population into strata according to some characteristic, which is related to the variable of
interest. Examples of naturally defined stratified populations exist in certain multi-stage
sampling designs, where the strata may be defined as provinces, municipalities, regions
etc.

Multi-stage designs involve a nesting population structure of more than two categorical
stages, such that the first stage involves dividing the population into primary sampling
units (PSUs), the second stage involves dividing the primary sampling units into secondary
sampling units (SSUs), and so forth, until a sampling design is employed to select the final
stage sampling units, which collectively form the sample. If at one of the stages we
divide the sampling units into strata and then at the next stage we apply an independent
SRS design within each stratum, then we are simply employing a STR. design for those
two particular stages of sampling. Alternatively, we can use an independent systematic
sampling design within each stratum for the corresponding stage of sampling, which is
then termed as stratified systematic sampling. Stratified systematic sampling and STR
are thus referred to as a two-stage sampling designs, where the first stage involves the
constructing of strata and the second stage involves the independent random selection of
units within the strata. An example of stratified systematic sampling for a large scale
survey is given by Arnab & North (2012).

Madow & Madow (1944) provides us with two stratified systematic sampling designs,

where the first design assumes that the sampling interval within each stratum is equal,
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while the second design assumes unequal sampling intervals, i.e. for a population that
is divided into L strata, the sampling interval for the jth stratum is given by k;, for
jed{l,...,L}.

Stratified systematic sampling is more often than not, more efficient than STR, for
the case where strata are considered to be large and more than one unit is drawn from
each stratum. This is because stratified systematic sampling ensures a more even spread
of the stratum sample over the corresponding stratum, for each of the strata, as compared
to STR (Murthy & Rao 1988). This preference is used with the objective to reduce the
variance within strata and results in efficiency gains, if and only if systematic sampling
within strata is more precise than SRS within strata.

So far we have considered sampling from populations in its original state. It may
thus be advantageous to order the population units before sampling, so as to make sys-
tematic sampling more efficient. A sampler may then opt to order the population in
ascending/descending order according to some auxiliary variable (a readily available vari-
able which is correlated to the variable of interest, such that the variate values of this
variable are easier to obtain, than those of the variable of interest). The resulting effect
is a population that approximately exhibits linear trend, where the stronger the degree of
correlation between the auxiliary variable and the variable of interest, results in a stronger
degree of linear trend. The results obtained in this chapter, for populations that exhibit
linear trend, may then apply. In the next chapter, we will examine and compare various

designs of LSS, for populations that exhibit linear trend.
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Chapter 5

LINEAR SYSTEMATIC
SAMPLING DESIGNS IN THE
PRESENCE OF LINEAR
TREND

In this chapter, we will discuss LSS designs which are considered to be optimal, when
sampling from a population that exhibits linear trend. By assuming a linear trend model
averaged over the super-population model, we will compare the various designs by com-
paring the expected MSEs of the corresponding sample means. We will first introduce
some preliminary results, in which we will provide a generic formula for calculating the
expected MSEs of the sample means. Thereafter, we will discuss some designs, which
include YEC, CESS, BSS, MSS and a new proposed design termed as BMSS. It should be
noted that the designs which are discussed in this chapter are not restricted to populations
that exhibit linear trend only, such that they could also be shown to be useful for other
population structures (numerical results for these designs on other population structures
are given in Chapter 8). Note that throughout this chapter we will assume that k is an

integer, so that we will be conducting sampling linearly.
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5.0 Preliminary Results

The model for a hypothetical population that exhibits perfect linear trend, given by (4.5),

is considered to be unrealistic. A more realistic model for linear trend is given by
yi=a+bi+e, fori=1,.. N, (5.1)

where e; denotes the random error which follows the super-population model, given by

Cochran (1946), such that
E,. (e;) =0, E,, (€7) = 0%, Enm (eiej) = 0(i # j). (5.2)

By using (5.1), we obtain

N N
Y = 1Zyz Za+NZz Nzei:a—Fb(]VQ—i_l)—f-e, (5.3)
i=1 i=1

N
which follows since € = 3 e;/N is the mean random error of the population.
i=1
Theorem 5.1: With the assumption of equal weights (1/n) being applied to all the

sampling units, the expected MSE of any sample mean, for the model in (5.1), is given by

EnMSE (717) 2 Ep, {E ({yLT B ?}2)}

=52 <71l — ]i7> + Var (Yppr) (5.4)

where §p; denotes a linear unbiased estimator of (4.6), using the probability sampling
design associated with yrp.
Proof: By using (5.1) and (4.5), we obtain

Yrr = Yprr + €is

where € = ) e;/n denotes the mean random error of the sample and ) | denotes the sum
over the sample. Now, by using the above expression along with (5.3) and (4.6), we obtain

an expression for the expected MSE of 31, given by
_ A _ - 2
EnMSE (yr) = Em [E ({yLT ~Y} )}

o ({pmur o= MO0 s e ay7)|

E,Var (§ppp) + E [Em (é,? %+ 52)} : (5.5)

:Em
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which follows if we use the conditions in (5.2), i.e

En.E [2 (yPLT —a— b(N;l)) (e — e)} =0.

Furthermore, by applying the conditions in (5.2), we obtain

En () = Bny _(;Zei)Q

=E, % Ze?—l—ZZeiej

| J#i
1 5 1 , o2
= ZEm(ei)+ZZEm(ei€j) :EZU = (5.6)
| J#i
- 1 N 2
=2
E., (e ) =E, ~ Z ej
[\ =
i 1 N N N
_ 2
=B |3 |G+ e
L j=1 =1 j#i
R N N 1N o2
2
S ) ICAEINS 3 SENCII RS SESL A
=1 i=1 j#i =1
and
- 1 N no?  o?
Em (élé) = Em n7N Zzlelej == Z ZE ezej T == N, (58)
]:
which follows since a sample of size n results in e; = e; occurring n times. We then

conclude the proof by substituting (5.6), (5.7) and (5.8) into (5.5), i.e

o2 202 o2

EnMSE (y11) = EmVar (Yprr) + E [n - N] = Var (Ypyr) + 07 (:L - ;,) :
It should be noted that Var(yp; ) represents the linear trend component, while the
assumption of equal weights being applied to all the sampling units results in a min-
imum expected error variance component, represented by o2(1/n — 1/N). Hence, the
most desirable sampling design(s) for populations that exhibit linear trend, are those that
are associated with estimator(s) that completely remove the linear trend component (i.e.

Yprr = a+ b(IN +1)/2) and exhibit minimum expected error variance.
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By substituting either (4.9), (4.10) or (4.11) into (5.4), we respectively obtain the expected

MSES for yLSS ySRSWOR, and gSTR’ such that

11 v? (k* — 1)
— S o\ )
_ 1 1 W (N+1)(k—1
EnMSE (Ysrswor) = 0~ (n - N> + ( 12) ( )7 (5.10)
1 1 b* (k* — 1)
— T -\ )

which follows since there are equal weights being applied to all the sampling units and
Y155 Usrswonr, and Yer g, are all design unbiased estimators of Y. With the assumption
of n > 2, we obtain error comparisons using (5.9) to (5.11), where the result is then given

as

EnMSE (Gs7r) < EnMSE (¥1,55) < EnMSE (Jspswor) < EnMSE (Jspswr) - (5.12)

We will next discuss various LSS designs for populations that exhibit linear trend.
Within each design we will (¢) discuss the corresponding methodology, (i7) obtain expected
MSE formulae, and (i7i) compare the corresponding expected errors, to that of all the

previously discussed designs.

5.1 Yates End Corrections

5.1.1 Methodology

Yates (1948) proposed an estimator that eliminates linear trend. The design is equivalent
to LSS; however, an estimate of Y is obtained by applying weights to the first and the last
sampling units, as shown in the next theorem.

Theorem 5.2: The YEC estimator of Y with random start i, for i € {1,...,k}, is given
as

(20— k—1)

Yyec =YLss + =10k (¥ = Yittn-1)k) - (5.13)

Proof: An estimate of Y with random start i, for i € {1,...,k}, is given as

n—2

_ 1
Yvec = Ay + Zyz’+jk + oYt (n—1)k | (5.14)
j=1
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where A\ and Ao are the weights applied to the first and the last sampling units, respec-
tively. By substituting (4.5) into (5.14) and then equating this result to (4.6), we obtain

n—2

Brio = | M (@40 + [ Satbl+ih) | +hfatbli+(n-1)H)
j=1
:a—|—b(N2+1). (5.15)

Now, by equating the coefficients of a in (5.15), it follows that
A=2— o (5.16)

Similarly, by equating the coefficients of b in (5.15), we obtain

1

- [/\171+(n—2)i+(n_1)(n_2)k

N+1
+ Ao+ Ao (n — 1)4 = T+ (5.17)

Substituting (5.16) into (5.17), results in

n—=1)(n—2)k

Q[Qi—)\gi—l—(n—2)i+ +)\2i+)\2(n—1)k}:n(]\7+1),

which simplifies to
n(2i—k—1)

=1
Az 2(n—1)k

(5.18)

The weight applied to the first sampling unit is thus obtained by substituting (5.18) into
(5.16), such that

n(2—k—1)
M=l ———"- 5.19
! T (n—1)k (5:19)
We then conclude the proof, by substituting (5.18) and (5.19) into (5.14), i.e.
. n—2 .
_ 1 n(2t—k—1) n(2i—k—1)
Yvec = YT Wyz + ;yi—&-]‘k t Yit(n-1)k — Wyi—i—(n—l)k

_ (2 —k — 1)
=YLss + -1k (% = Yit (n—1)k) -

where y; + ni2 Yitjk + Yit(n—1)k = Zn: Yit(j—1)k = NYrgs- This estimator is unbiased and
Var(¥y gc) ]:0, for the model in ](:41.5) (i.e. the linear trend component is completely
removed), since we constructed Jy o by equating it to (4.6). For the realistic linear trend
model in (5.1), we can expect this estimator to be slightly biased; however, estimator

Yy gc s usually more efficient than gy g (Murthy & Rao 1988).
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5.1.2 Expected mean square error

The generic expected MSE formula, given in (5.4), assumes equal weights are applied
to all the sampling units and is thus not applicable for the YEC estimator. The more

appropriate method for obtaining the expected MSE of 7y g is given as follows:
_ A _ 12
EnMSE (Typc) = En [E ({ZJYEC - Y} )]
2 1< 2
= E{En [@yvec — V)] } = 1 D Bnlpvie - ), (5.20)
i=1

which follows since there are k possible samples. Now, by using the model in (5.1), we

obtain

_ 1
Yrss = ﬁ Zy{i+(j—1)k}

j=1
1 n—1 n
= ﬁ na + nbi 4+ bk Zj + Z e{i+(j71)k}
7j=1 7=1
bk (n —1 k(n—1
=a+bi+(n2)+6i:a+b|:i+(n2)]+€i7 (5.21)

n

which follows since €; = ) egi1(j_1)x}/n. Moreover, by using (5.3) and (5.21), it follows

=1
that
— kE(n—1 b(N+1) _
yLss—YZCH-b[iJr (n2 )} € —a— ( 2+ )—E
N -k N+1 — 21—k —1 _
:b{i+( 5 )—( ;_):|+€i—€:b|:z2:|+€7;—6. (5.22)

In addition, by applying the model in (5.1), we obtain

Yi = Yir(n—1)k = a +bi +e; — [a +b0{i+(n—-1)k}+ ez’—i—(n—l)k}

=ei—bn—1)k—eimn1)k (5.23)

If we use (5.13), (5.22) and (5.23), then it follows that

) — k — L 2
Y)Q} =E,, |:yLSS + W (yz - yi+(n_1)k) - Y:|

p(2-k-1Y
2 1

2
2i —k—1
+(2(n—1)k‘) (ei_b(n_ 1)k_€i+(n—1)k)]

En {(yYEC -

=E,,

_ (2i—k— 2
=E,, I:ei —e+ w (Gi - ei+(n—1)k):| . (5.24)
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By applying the conditions in (5.2), we obtain

n

1

Em [ (ei = €irm-1k)] = Em n Z efirG-r} | (€ = €irn-1)r)
j=1
1 | — n
—n Z En, (e{H(jfl)k}ei) - ZEm (€{i+(j71)k}€i+(n71)k)
Jj=1 j=1
o2 — 52

-2 = —o, (5.25)

where e, (;j_1)x = €; and €, (j_1)r = €;4(n—1)k €ach occur once, for j = 1,...,n. Likewise,

N
_ 1
Em [5 (ei - ei+(n71)k)] =En, N Z €5 (ei - ei+(n71)k)

7j=1
1| al
= N Z Em (Giej) - Z Em (6i+(n—1)k€j)
j=1 J=1
0.2 o 0.2
pu— pr— o2
¥ 0, (5.26)

where e¢; = e; and e;; (,—1); = €; each occur once, for j = 1,..., N and i € {1,...,k}.
Furthermore, by applying the conditions in (5.2) along with the assumption of n > 2, we

obtain

Em |:(€z — €i+(n—1)k)2] = Em [(3@2 - 2€iei+(n—1)k + 612+(n—1)k]
= En (€]) — 2Em (€i€is(n-1)k) + Em <€z2+(n—1)k>

=0 +0% =202 (5.27)

Expanding (5.24) and then substituting (5.6), (5.7), (5.8), (5.25), (5.26) and (5.27), results

in
_ 2 o (1 1 0%(2i — k — 1)
| D, -Y)| = - — = . 5.28
[(yYEC ) } o <n N) 2n — 1)214:2 ( )
Now, by substituting (5.28) into (5.20), it follows that
k . 2
1 11 02(2i —k —1)
E,.MSE (7 =_ o? ( — ) +
11 o’ k
2 : 2
=0 |-—%< |+ 2i—k—1)" 5.29
<n N> 2(n1)2k3;( ) (5:29)
The summation term on the right hand side of (5.29) simplifies to
k 2
k(k*—1
(2 —k—1)% = g. (5.30)

3

=1
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Finally, substituting (5.30) into (5.29), results in

11 o? (k* —1)
E,,MSE (y = =—-— )|+ —52. 5.31
vee) =o* (5= ) + o 5:31)

5.1.3 Error comparisons

If we compare (5.9) to (5.31), then we see that E,,MSE(7y p~) < E.nMSE(7y;gg), if and
only if 02 < b%*(n — 1)?k?/2. Furthermore, by comparing (5.11) to (5.31), we note that
EnMSE Wy go) < EnMSE(Ygrp), if and only if 02 < b%(n — 1)2k?/2n. Thus, by using
(5.12), we conclude that Ty - is expected to be subject to the least amount of error, when

compared t0 Ygpsw r» Jsrswors Unss and Ysrg, if and only if 02 < b%(n — 1)2k%/2n.

5.2 Centered Systematic Sampling

5.2.1 Methodology

CESS was first discussed by Madow (1953) and involves selecting the centrally located
sample from all the possible linear systematic samples, thus resulting in no randomization.
If £ is odd, then the sample units chosen will be those elements with population unit
numbers given by

(2 —1)k+1]/2, forj=1,..,n. (5.32)

The sample is thus selected by applying LSS with a predetermined start of i = (k+ 1)/2.
If k is even, then then the population unit numbers of the sampling units are given by
either

(2j —1)k/2, forj=1,..,n, (5.33)

or

(2 —1)k+2]/2, forj=1,..n, (5.34)

with probability 1/2. The sample is thus selected by applying LSS, where the predeter-
mined start is either ¢ = k/2 or i = (k + 2)/2, with probability 1/2.

The corresponding estimator of Y (i.e. Jopgg) is obtained by using (5.32), (5.33) and
(5.34), such that

n~t ;y[(2j71)k+1]/2 if k& is odd,
Ycrss = "a L& o (5.35)
n Zly(zj—nk/z or n- Z:ly[(gj_l)k_i_g}/g if k is even.
J:
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It should be noted that for CESS, some population units have no chance of being selected
for the sample and thus yopgg is subject to bias (Murthy 1967). However, §opgg is

unbiased for the model in (4.5), as shown in the next section.

5.2.2 Expected mean square error

If k is odd, then an estimator of (4.6) is obtained by using (4.5) and (5.35), such that

Yoss(kodd) = 0+ 5 k;(2y—1)+n —a+ o+ ) —k+ 1] =at Do

Similarly, if & is even, then ¥y /o = a + bN/2 and Y3 42)/2 = a + b(N +2)/2. By selecting

Yk/2 OF Y(ky2)/2 With probability 1/2, we can then show that Ycgg is an unbiased

k even)
estimator of (4.6), i.e. E [?CESS(k even)} = [yk/g + y(k+2)/2] /2 =a+b(N+1)/2. We may
thus use (5.4) to obtain the expected MSE of §-pgg, since there are equal weights being
applied to all the sampling units and ¥, ggg is unbiased for the perfect linear trend model.

The variance of J 1)/ 1s thus given as

Var@(kﬂ)/z) =0. (536)

Furthermore, the variances of yj, , and Y49 /o are respectively given as

(o)
(—2> ] -7 (5.37)

<a+ b(N2+ 2) {a+ b(N2+ 1)})2]
_g [(gﬂ _ ij (5.38)

If we assume the model in (5.1), then by substituting (5.36) into (5.4) when k is odd and

Var(y,2) = E

=E

and

Var(Y(g42)/2) = E

either (5.37) or (5.38) into (5.4) when k is even, we obtain

o?(1/n—1/N) if k is odd,
EnMSE(Ycpss) = (5.39)
02 (1/n—1/N)+b*/4 if kis even.

We thus obtain a complete removal of the trend component in (5.39), when & is odd.
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5.2.3 Error comparisons

By comparing (5.9) to (5.39), we conclude that:
(i) E,,MSE(Wcgss) < EmMSE(Ygg), when k is odd;
(ii) E,MSE(Ucpss) < EmMSE(Y1gg), when k € {4,6,...};
(if}) EnMSE(fepss) = EnMSE(7, ¢g), when k = 2.

Furthermore, by comparing (5.11) to (5.39), we get E,,MSE(Jorss) < EnMSE(Ygrr)
when k is odd and for the case when k is even, provided that k> — 1 > 3n. Hence, by
using (5.12), we thus conclude that Jopgg is expected to be subject to the least amount
of error, when compared to Ysrswr: Usrswor, Yrss and Yerp when £ is odd and for
the case when k is even, if and only if k2 — 1 — 3n is non-zero and positive. Finally, if we
compare (5.31) to (5.39), it follows that E,,,MSE(yorss) < EmMSE(¥y o) when k is odd
and for the case when k is even, provided that o2 > 3b%(n — 1)2k%/2(k* — 1).

5.3 Balanced Systematic Sampling

5.3.1 Methodology

The methodology of this design was first introduced by Sethi (1965) and later termed as
BSS by Murthy (1967, p.165). One way of viewing a balanced arrangement is that it
reverses the order, with respect to the population unit numbers, of every alternative set
of k population units. LSS is then applied to this balanced arrangement to select the
balanced systematic sample.

Instead of applying LSS to a balanced arrangement, one can alternatively use the
following equivalent methodology, given by Murthy (1967, p.165). If n is even, then a
balanced systematic sample is chosen by selecting those elements with population unit

numbers given by
i+ 2jk, 2+ Dk —i+1, for j =0,...,(n—2)/2. (5.40)

The population is thus divided into n/2 groups, each consisting of 2k population units. A
random start is then selected from the interval [1, k|, before selecting a pair of sampling
units from each group according to the random start, such that each unit is paired with

a unit that occurs at an equivalent position at the other end of the respective group, i.e.
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the first sampling unit in the group is paired with the last unit, the second sampling unit
in the group is paired with the second last unit, and so forth. This results in optimum
sampling within each of the n/2 groups, when n is even (Murthy 1967). Alternatively, if
n is odd, then a balanced systematic sample is chosen by selecting those elements with

population unit numbers given by
1+ 25k, 20+ 1)k —i+1, i+ (n—1)k, forj=0,...,(n—3)/2. (5.41)

For this situation, the first N — k& population units are divided into (n — 1)/2 groups,
each consisting of 2k population units. A random start is then selected from the interval
[1, k], before selecting two units from each group using the pairing technique above. The
nth sampling unit, which corresponds to the random start, is then selected from a group
which consists of the last k& population units. Conversely, this does not result in optimum
sampling, since we obtain an extra sampling unit after selecting the (n — 1) paired units
using optimum sampling, where the variate value of this extra sampling unit will on average
give the sample an uneven weighting, for the population under consideration.

The corresponding estimator of Y (i.e. §pgg) with random start i, for i € {1, ..., k},
is thus obtained by using (5.40) and (5.41), such that

— —2)/2 . .
_ nt 2520 )/ (yi+2jk + yQ(j+1)k_i+1) if n is even,
YBss = (5.42)

_ —3)/2 e
n! [Z;Zo )/ (Yit2jk + Y2(j+1)k—i+1) T yi+(n71)k] if n is odd.
This estimator is design unbiased since each population unit has an equal chance, 1/k, of

being selected.

5.3.2 Expected mean square error

If n is even, then an estimator of (4.6) is obtained by using (4.5) and (5.42), i.e.
1 ni (n/2-1) /2 ni  n

yBSS(neven):E na +b ?4-2]6 Z Z+2k22—5+§
i=1 i=1

b k /n nk /n n
—‘”n{z 2‘1)%(2“)%}
gk ko mk k1
a 4 2 4 2 2
N 1 b(N +1)
a+b[2+2} a-+ 5 (5.43)

Similarly, when n is odd, we find that

_ b }
yBSS(n Odd) =a-+ 5 |:N + 1 + (544)
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The variance of Jpgg(n even) 18 Obtained by using (4.6) and (5.43), i.e.

Var(@BSS(n even)) = 0. (545)

Furthermore, we obtain the variance of ¥pgg(y oaa) by using (4.6), (5.44) and (5.30), such

<a+2{N+1+(%_:_1)}—{a+g(z\f+1)}>2]

that

Var(Ypssn oad)) = E

b(2i—k—1))>
e[y
2 k 2 (12
:422]{:;(2@'—19—1)2:%. (5.46)

We next use (5.4) to obtain the expected MSE of 7pgg, since there are equal weights being
applied to all the sampling units and yggg is design unbiased. Consequently, if we assume
the model in (5.1), then by substituting (5.45) into (5.4) when n is even and (5.46) when

n is odd, we obtain

o%(1/n —1/N) if n is even,
EnMSE (ypss) = (5.47)
o2 (1/n—1/N) +b*(k? —1)/12n? if n is odd.

We thus obtain a complete removal of the trend component in (5.47), when n is even.

5.3.3 Error comparisons

By comparing (5.9) to (5.47), we see that E,,,MSE(ypgg) < EmMSE(y;gg) when n > 2.
Moreover, by comparing (5.11) to (5.47), we note that E,,MSE(yzg5) < En,MSE(Ygrr)
when n > 2. By using (5.12), we thus conclude that g is expected to be subject to the
least amount of error, when compared to Ygpswr, Ysrswors Yrss and Ygrp, if n > 2
(equality occurs when n = 1). Furthermore, if we compare (5.31) to (5.47), then we see
that E,,,MSE(7ypgg) < EmMSE(¥y o) when n is even and for the case when n is odd, if
and only if 02 > b?(n — 1)2k?/2n2. Finally, by comparing (5.39) to (5.47), we note that

(i) E,,MSE(¥psg) = EmMSE(Yopss), when n is even and k is odd;
(ii) E,MSE(Ygss) > EmMSE(Yorss), when n is odd and k is odd,;
(iii) E,MSE(¥gss) < EnMSE(Ycopgs), when n is even and k is even;

(iv) EnMSE(7pgs) < EnmMSE(Yopss), when n is odd and k is even, if and only if
(k? —1)/n? < 3.
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5.4 Modified Systematic Sampling

5.4.1 Methodology

The method of MSS was first considered by Singh, Jindal & Garg (1968). It creates a
sample by selecting pairs of sampling units that are equidistant from each end of the
population. A modified arrangement is one that reverses the order of the second half
of population units, i.e. the first n/2 groups of k population units are monotonically
increasing, with respect to their population unit numbers, and the last n/2 groups of k
population units are monotonically decreasing, or vice versa. If n is odd, then the number
of groups which are monotonically increasing is not equal the number of groups which are
monotonically decreasing. To obtain a modified arrangement, we thus leave the middle
group of k£ units in the order of the initial arrangement, e.g. if we have five groups of k
units each (i.e. n =5 is odd), then a modified arrangement is applied by only reversing
the order of the population units in the last two groups, such that the last population unit
in the third group (Usg) is followed by the last population unit in the fifth group (Us) and
so forth, until the final population unit is the first unit in the fourth group (Usg41). LSS
is then applied to this modified arrangement to select the modified systematic sample. It
should be noted that the modified systematic sample is spread evenly over the population,
except in the middle.

Instead of applying LSS to a modified arrangement, one can alternatively use the
following equivalent methodology, given by Singh et al. (1968). If n is even, then a modified
systematic sample is chosen by selecting those elements with population unit numbers

given by
i+ jk, N —jk—i4+1, forj=0,...,(n—2)/2. (5.48)

The population is thus divided into two groups, such that the first N/2 population units
belong to the first group and the last N/2 population units belong to the second group.
We then select n/2 sampling units from the first group using LSS and pair each of these
units with a corresponding unit from the second group, such that the units paired occur
at opposite ends of each group, i.e. the first unit in the first group is paired with the last
unit in the second group, the second unit in the first group is paired with the second last
unit in the second group, and so forth. This results in optimum sampling for the case

when n is even (Sethi 1965). Alternatively, if n is odd, then a modified systematic sample
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is chosen by selecting those elements with population unit numbers given by
i+ gk, N —jk—i+1, i+ (n—1)k/2, forj=0,...,(n—3)/2. (5.49)

For this situation, the first (N — k)/2 population units belong to the first group, the last
(N — k)/2 population units belong to the second group and the middle set of & population
units belong to the third group. We then select (n — 1)/2 sampling units from the first
group using LSS and pair each of these units with a corresponding unit from the second
group, as defined for the case where n is even. The nth sampling unit, which corresponds
to the random start, is then selected from the third group. Just as in the case of n being
odd for BSS, we do not achieve optimum sampling, since we obtain an extra sampling unit
after selecting the (n — 1) sampling units using optimum sampling.

The corresponding estimator of Y (i.e. ¥,;5g) with random start 4, for i € {1,...,k},
is thus obtained by using (5.48) and (5.49), such that

n~t E(n 2 /Q(Z/ij + YN—jk—it1) if n is even,

Ymss = (n—3)/2 (5.50)
T S Wik + UN—jh—it1) F Yire1yks2] if 7 s odd.

This estimator is design unbiased since each population unit has an equal chance, 1/k, of

being selected.

5.4.2 Expected mean square error

If n is even, then an estimator of (4.6) is obtained by using (4.5) and (5.50), such that

1 ni (n—2)/2 (n—2)/2
yMSS(neven):E na +b ?—Fk‘ Z —|—7_7_]€ Z

5 5 (5.51)

b|:n(N+1):| b(N +1)
=a+—|———| =a+————=.
Likewise, when n is odd, we find that ¥y;g5(n oda) = @ +b(N + 1+ (2i —k —1)/n)/2. Now,
in MSS, we obtain the same estimator as that for BSS, when considering the model in

(4.5), 1. Yrrss(n even) = YBSS(n even) 20 Yn155(n odd) = YBSS(n odd)- BY noting that equal

weights are being applied to all the sampling units for MSS, we then use (5.47), such that

o2 (1/n —1/N) if n is even,
EnMSE (Yr55) = (5.52)

o2 (1/n—1/N)+b*(k*> —1)/12n? if n is odd.

There is thus a complete removal of the trend component in (5.52), when n is even. We

can now apply the error comparisons, given in Section 5.3.3, for MSS.
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5.5 Balanced Modified Systematic Sampling

5.5.1 Methodology

The author next proposes a new design, which uses MSS in conjunction with a balanced
arrangement and is thus termed as BMSS. It creates a sample by applying MSS on a
balanced arrangement. A balanced modified arrangement is achieved by reversing the
order, with respect to the population unit numbers, of every alternative set of k population
units, before reversing the order of a group of population units that occur at the end of the
population, i.e. we are using a modified arrangement on the balanced arrangement. For
the case where n is even, we apply a balanced arrangement, before reversing the order of
the last n/2 sets of k population units. For the case where n is odd, we apply a balanced
arrangement, before reversing the order of the last (n — 1)/2 sets of k population units.
LSS is then applied to this balanced modified arrangement to obtain a balanced modified
systematic sample. It should be noted that BMSS reduces to LSS when n = 2. We will
thus assume n > 2 for the remainder of this section.

Instead of applying LSS to a balanced modified arrangement, one can alternatively
use the following equivalent methodology. The population unit numbers of the sampling

units, when selecting a balanced modified systematic sample, is given as follows:

(A) if n/2 is an even integer, then
i+ 24k, 2(j + 1)k —i+1, for j = 0, ..., (n — 4) /4, (5.53)
and
N+i—k—2jk, N—i—k—2jk+1, forj=0,..,(n—4)/4  (5.54)
(B) if n/2 is an odd integer, then
i+ 2jk, N +i—k —2jk, forj=0,...,(n—2)/4, (5.55)
and
20+ 1)k—i+1, N-—-i—k—-2jk+1, forj=0,..,(n—6)/4; (5.56)
(C) if n =3, then

i+2jk, 2+ Dk—i+1, N—i—2jk+1, forj=0,..(n—3)/4 (557)
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(D) if n # 3 and (n + 1)/2 is an even integer, then
i+ 25k, 2+ Dk—i+1, N—i—2jk+1, forj=0,...(n—3)/4, (5.58)
and

N +i—2(j+ 1k, for j =0,....,(n—7)/4; (5.59)

(E) if (n+1)/2 is an odd integer, then
i+ 25k, 2+ Dk—i+1, i+(n—1k/2, forj=0,..(n—5)/4, (5.60)
and

N—i—2jk+1, N+4+i—-20G+1k  forj=0,..,(n—5)/4  (5.61)

The corresponding estimator of Y (i.e. ¥p,795) with random start i, for i € {1,...,k}, is
thus the average of the sample variate values chosen, using the respective population unit
numbers for the various cases given above. The resulting estimator is design unbiased

since each population unit has an equal chance, 1/k, of being selected.

5.5.2 Expected mean square error

If n/2 is an even integer, then an estimator of (4.6) is obtained by using (4.5), (5.53) and
(5.54), such that
Ymss) =a+b(N +1)/2=Y,

which results in
Var [yBMSS(A)] = O (562)

Similarly, if n/2 is an odd integer, then by using (4.5), (5.55) and (5.56), we obtain

Thus, by applying (5.46), we obtain

s 22520 2
= 4E [{S (21_:_1) }2] = 172(/7;;—1) (5.63)

Var [yBMSS(B)} =E
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For the case when n = 3, we find that

_ b 10k —2i+4
yBMSS(C):@+§ 3 |

which is obtained by using (4.5) and (5.57). The corresponding variance is thus given as

: [ b (10k — 2 + 4 b3k + 11\ )2
Var [yBMSS(C)} =E {a—i— B <3> — <a+ [2]>} ]

g | [0 (10— 2i+4-9k-3\"
B 2 3

ey

which follows if we apply (5.46). By using (4.5), (5.58) and (5.59), for the case when n # 3

and (n+ 1)/2 is an even integer, we obtain

n

{a+g(N+1_<%—:—l>>_(a+b<fg+l>>}1
{b<2i—k—1>}2 _ -1
2 n

12n2
which follows if we apply (5.46). Finally, if (n 4+ 1)/2 is an odd integer, then
(2i —k—1)
n

_ b 21—k —1

such that

Var [@BMSS(D)} =E

=E (5.65)

)

_ b
yBMSS(E) :CL+§ |:N+1+

which is obtained by using (4.5), (5.60) and (5.61). The corresponding variance is found
by noting the equivalence of Ypargs(p) 10 Ypss(m oaa) i (5.44), such that we then use

(5.46), i.e.

b? (k* —1)
12n?

We next use (5.4) to obtain the expected MSE of Jz,,69, since there are equal weights

Var [yBMSS(E)} = (5.66)

being applied to all the sampling units and Jp,,95 is design unbiased. Consequently, if
we assume the model in (5.1), then by substituting (5.62) to (5.66) into (5.4), for the
respective cases, we obtain
o%(1/n—1/N) if n/2 is an even integer;
EnMSE (Ypnss) = § 02(1/n —1/N) +02(k2 —1)/3n%  if n/2 is an odd integer;

o%(1/n —1/N) +b*(k?> —1)/12n? if n is odd.
(5.67)
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We thus obtain a complete removal of the trend component when n/2 is an even integer.

5.5.3 Error comparisons

We will now compare yg)sgg to all the other estimators, by assuming that n > 2.
By comparing (5.9) to (5.67), we see that E,,MSE(yguyss) < EnMSE(yrgg) for all
the cases. Likewise, we obtain the same result when we compare (5.11) to (5.67), i.e.
E,.MSE@grss) < EnmMSE(ggrg). Thus, by using (5.12), we conclude that §z,,45 is ex-
pected to be subject to the least amount of error, when compared to Ysrsw rs Ysrswor:

Yrss and Ygorp, except when n = 2. If n = 2, then
EnMSE(¥srr) < EmMSE(yLss) = EmMSE(Yparss) < EmMSE(Ysrswor)-

Moreover, by comparing (5.31) to (5.67), we see that E,,MSE(yz55) < EnMSE(¥y o),

when:
(i) n/2 is an even integer;
(ii) n/2 is an odd integer, if and only if 02 > 2b%(n — 1)2k?/n?;
(iii) » is odd, if and only if 02 > b?(n — 1)2k2/2n?.
Also, by comparing (5.39) to (5.67), we note that:
(i) EnMSE(Wgirss) = EmMSE(Yorss), when n/2 is an even integer and k is odd;
(ii) E,MSE(@grss) < EmMSE(Yogpss), when n/2 is an even integer and k is even;
(iii) E,MSE(Ugarss) > EmMSE(Yogpss), when n/2 is an odd integer and k is odd;

(iv) EmMSE(¥g1ss) < EmMSE(Yoggs), when n/2 is an odd integer and k is even, if
and only if (k? — 1)/n? < 3/4;

(v) EnMSE(Wgirss) > EmMSE(Yopsg), when n is odd and k is odd;

(vi) EmMSE(¥g1ss) < EnMSE(Ycogss), when n is odd and k is even, if and only if
(k? —1)/n? < 3.

Finally, the comparison of (5.47) to (5.67), results in:
(i) E,MSE(Ugrs5) = EmMSE(ypgg), when n/2 is an even integer;

(ii) Ex,MSE(Ugiss) > EmMSE(ypgg), when n/2 is an odd integer;
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(iii) E,MSE(Ugarss) = EmMSE(Ugsg), when n is odd.

The above comparison can then be used to compare ¥z 95 t0 Uargg, since E, MSE(7,95) =
E.MSE(ypgs). We thus conclude that §z,;95 is expected to be subject to the same
amount of error, when compared to both ¥z and 7,,gg, except for the case when n/2
is an odd integer, which results in the former estimator being expected to be subject to
more error than the latter estimators.

Table 5.1 provides a summary of all the estimators mentioned in this chapter, when
sampling from a population that exhibits a rough linear trend, given by the model in (5.1).
The second column of Table 5.1 shows us what restrictions are placed on each estimator.
The third column is a measure of the linear trend component. All estimators, except
for ¥y pc, which have a zero in the third column, have completely removed linear trend.
Estimator ¥y po completely removes the linear trend component, but this consequently
results in a larger corresponding error variance component, since different weights are
being applied to the first and the last sampling units. The last column in Table 5.1 shows
us which estimators are unbiased, when estimating (5.3). From Table 5.1, we conclude that
the estimators which are subject to the least amount of error are Yogsr odd)> YBSS(n even):
YmSS(n even) A0d UBAISS(n/2 an even integer) » 10T populations that exhibit a rough linear
trend.

Throughout this thesis, we have estimated Y for various populations and we have
provided expressions for the variance of each of these estimates. All of these variance
expressions require us to have full knowledge of the population. Since we cannot study
an entire population (Chapter 1), we thus need to estimate these variance expressions. In
the next chapter, we will discuss the problem that arises when estimating Var(y;g¢g) and

then provide some solutions to the problem.
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Chapter 6

ESTIMATION OF THE
SAMPLING VARIANCE

If 3 is an unbiased estimator of Y, then Var(y) = E(y?) — Y can be unbiasedly estimated
by 7% — Est(?Q), where Est(?Q) denotes an unbiased estimate of Y = Zf\;l y?/N? +
Zf\i1 Zj\;z yiy;/N? (Murthy 1967). Now, if we conduct LSS, then an unbiased estimate
of ZZ]\LI yf /N? is given by Z?Zl yl.2+(j_1) e/ n’k, since there is an equal probability of each
population unit being included in the sample. Unfortunately, an unbiased estimate of
Zf\il Zj\;z vy /N 2 is unobtainable when conducting LSS with a single start, since certain
pairs of population units have a zero probability of being included in the sample, i.e.
m;; = 0 for certain combination values of ¢ and j. This results in it being impossible to
obtain an unbiased estimate of Var(7;gg) from a single start.

In light of the above result, we will first construct estimators of Var(y;g5) and find the
least biased estimator, for various population structures. Thereafter, we will examine some
designs which result in an unbiased estimate of the sampling variance. The designs that
will be discussed are multiple-start linear systematic sampling (MLSS), partially systematic
sampling (PSS) and a new proposed design termed as multiple-start balanced modified
systematic sampling (MBMSS). For simplicity reasons we will assume that K = N/n is an

integer; however, the usual variance estimation problem is also applicable for CSS.

6.1 Variance Estimation from a Single Systematic Sample

In this section we will study eight estimators of Var(y;gg) on various population struc-

tures. Each estimator is based on the linear systematic sample with random start i, where
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i € {1,...,k}. We will first define the estimators, before comparing them amongst each
other on various population structures, so as to find the most accurate estimator for each
underlying population model. We will thus use the expected value of each estimator, the
corresponding expected bias and the expected relative bias, as comparative measures. It
should be noted that there are many variance estimators which can be constructed and
utilized for LSS. However, we will only define eight estimators, which widely represent the
different types of variance estimators that can be used for LSS. The theory presented for

this section is given by Wolter (2007).

6.1.1 Eight estimators of the variance

The first estimator is defined by assuming that the population is in random order. From

Section 4.2.1, we note that LSS is equivalent to SRSWOR for this situation and hence this

1 1
_ 2 = _ =
”1_S(n N)’

where 52 = > i=1(Yi5—Yrs g)?/(n—1) is the sample variance. If a randomly ordered popu-

estimator is given as

lation is expected (i.e. Var(yrgg) = Var(Ysrswor)), then it is trivial that vy will approx-
imately be an unbiased estimator of Var(y;gg). If LSS is more efficient than SRSWOR,
such that Var(y;gg) < Var(gspswor), then v; provides an overestimate of Var(y;gg).
Conversely, if LSS is less efficient than SRSWOR, such that Var(y;¢g) > Var(Ysprswor),
then v provides an underestimate of Var(yrgg). It is common practice for a survey statis-
tician to use v; as an estimate of Var(y;gg) and this can result in a badly biased estimate
if the population exhibits some structure, other than random.

A second estimator is constructed by assuming that the systematic sample is a stratified
random sample, where two population units are selected from each successive stratum, of
size 2k. This estimator, which is based on non-overlapping differences, is then given as

1 1\ 18,
vy = (n_N>n : @25 5
j=1
where a;; = Ay;j = yij — ¥ij—1, such that A denotes the first difference operator. The
objective of the third estimator is to increase the degrees of freedom in v9. This estimator,
which is based on overlapping differences, is then given as

(1 1 1 &,
CT\n TN 2 &

J
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Other estimators, which are based on higher-order contrasts than a;;, have been suggested

in literature. Examples of this are given by the next three estimators:

(1 1 I o
U4_(n N)G(n—2)j§bij’

11 1 = 5
Vg = _——— B —— C: -
>~ \n N/ 35(n—14) i

=5
and
11 1 "
=(-- =) ——" N
V6 <n N> 75(n—8) JZ; i
where
bij = Aaij = A%yij = yij — 2yij-1 + Yij-2,
1 Yii i ia
Cij = §A4yij + A%y = g = Yij—1 T Yij—2 — Yij—3 + 71’;
and
L8 6 1 2 Yij Yij—8
dij = §A Yij +3A%i -1+ 5A%; o + 20%; ;3 = o "Y1t et T

respectively denotes the second difference, a linear combination of the second and fourth
differences and a linear combination of the second, fourth, sixth and eighth differences of
the sample data. The corresponding degrees of freedom are given by 6(n —2), 3.5(n —4)
and 7.5(n — 8), which respectively represents the product of the sum of squares of the
coefficients in b;j, ¢;j, and d;; and the number of contrasts for the summations in vy, vs
and vg.

Another estimator, which was initially studied by Koop (1971), can be constructed by
splitting the original linear systematic sample into sub-samples of equal size. By letting
p and n/p be integers and by splitting the linear systematic sample into p sub-samples of

size n/p, we then show that the ath systematic sub-sample mean is given by

» n/p
Vo = - Zlyi’p(j_IHW fora=1,..,p.
J:

An estimator of Var(y;gg) is thus given by

11 nooe~,_
U7 = <n - N> p(pl);(?/a - yLSS)z'

Koop examined this estimator when p = 2, i.e. splitting the original linear systematic
sample into half. He obtained expressions for the bias of vy, relative to Var(y;gg), in

terms of the ICC.
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The final type of estimator is constructed by making assumptions on the correlation
between the population units. Examples of such assumptions were initially examined by
Cochran (1946) and later by Osborne (1942) and Matérn (1947) for forestry and land
use/cover area frame surveys. These authors assumed a super-population model (see
Section 4.2.4) from which correlation arises and a further assumption that the correlation
between two population units, which are k units apart, is given as py = exp(—Ak), where

A is a constant. Accordingly, an estimator of Var(y qg) is given as

(1 _ 1) $2[1+ 2/In(px) + 20/ (1 — i) if pe > O,

s = n N
o 1 1
n
where
1 n
ﬁk_'Ol_])égEZ(yU‘_gLSS)@ﬁdfl_'yLSS)

is an estimate of pg.

6.1.2 Theoretical properties of the eight estimators

A comparative measure that will used in this section is the expected relative bias of

estimator v,, which is defined as
R (va) = Bim(va)/Em [Var(yrsg)], fora=1,..,8,

where By, (vy) = Ep, [E(va)] — Ep, [Var(yrgg)] is the expected bias of estimator vg,.
A simple mathematical model, in which the variate values of a population consists of

a trend and a random error component, is given as
Yij = Mij + €45, fori=1,..,k, and j =1,...,n, (6.1)

where the 1;;’s denotes fixed constants and the e;;’s denotes the random errors. We now

will use the model above to represent the various population structures.

Random model

A randomly ordered population model can be represented by

Mij = (6.2)
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where the e;;’s are given as iid N(0,0?) random variables. From the definition of the

model, we assume that there is no correlation present, so that

1 1
By [Var(7ss)] = (— — ~ | 0
[Var(y.s5)] <n N> o
(refer to Cochran (1946)). By using (6.1) and (6.2), we obtain

n

1

E(s*) =E n_lz(yzj—@;ss)z
j=1
_— zn:E(e?—%-é-Jré?): ! zn: O (6.3)
n_lj:1 * RO n_lj:1 n ’ '

which follows since

n

n
ZE(eijEi> = ZE [eij (ei1 + ... + €ij + ... + ein) /n] = 02/n
j=1 j=1

and E (€7) = o?/n. Thus, by applying (6.3), we conclude that vy is expected to be an

unbiased estimator of Var(y;gg), i.e.

BB (o0) = B [ (S {52 D)] = 80 [ (F52)] = B Vs (s

Furthermore, we can also deduce that vy is expected to be an unbiased estimator of

Var(ygg), since

1 1)\1 2
—E, (n — N) - ZE(yi,zj — Yi2j-1)

j=1
1 n/2
2 2
) - E E (€72, — 2eij€i2j 1+ €i9j_1)

n -

7=1
e (1)1
oo n N

7112 20%| = Ep [(711 — ]17) 02} = Em [Var (71s5)] -

Likewise, we can then show that estimators v3 to v; are expected to be unbiased estimates

of Var(yrsg). Wolter (2007) states that an exact expression for B,,(vg) is unobtainable
without making some assumptions on the distribution; however, we can expect B, (vg) = 0.
Linear trend model

A population that exhibits linear trend is given by the model

piy = a+bfi+ (j — D], (6.4)
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where a and b denote fixed constants and the e;;’s are given as iid N(0,0?%) random

variables. The expected variance of ¥ gg, under this model, is given as

1 1>%_¥(k2—1)

E,, [Var (§155)] = 0 <n N 15

(refer to (5.9)). An expression for the expected value of vy is given by

En [E (01)] = En, {E { (711 _ ]1V> SzH

=En (1 - 1> ! > By —rss)?| - (6.5)

n N/ )n—14%
7j=1

Now, by using (5.21) and (6.4), it follows that

n

ZE(W —@Lss)2 :iE[a+b{i+(j—1)k}+eij — {a+b [z+k(n2_1)] +€¢}]2

j=1 j=1

- Soefe{ (51052 )]

n
J=1

—1))2
{1 - G (e -2 1 @)

2 nn—1)(2n-1) n(n —1)? +n(n—l)2
B 6 2 4 :
7j=1
_ U’k*n 1
(n=D+D) 2,y (6.6)

On substituting (6.6) into (6.5), we obtain

ol (1 §) (P2 )] (1 4) (222 ).

Similarly, we can obtain the expected values of estimators vy to v7, for the model under
consideration. Table 6.1 gives us the expected values of v; through to v; along with the
corresponding approximate expected relative bias, under the assumptions that k is large
and b is not very close to zero (see Wolter (2007)). The expected value of vg is obtained
by assuming pr > 0 (i.e. In(py) is defined) and then approximating vg by the functions
En [E(s?)] and Ep, [E(ps?)], such that
1 1 2 2
En )= (5 )0 [1+ ey + T

where 71 = Ep, [E (s?)] = 0*k*n (n+ 1) /12 + o2 (which follows from equation (6.6)) and
Y2 = B, [E (prs?)] = b*k* (n = 3) (n+1) /12 — 02 /n.
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Table 6.1: Expected values of v; to v7 with their corresponding expected relative bias, under

the linear trend model

Estimator Em [E(va)] R (va)
v (1/n—1/N) [b*k*n(n+1)/12 + o] n
Vg (1/n —1/N) [b?k*/2 + o] —(n—6)/n
v3 (1/n—1/N) [b*k?/2 + o] —(n—6)/n
vy (1/n—1/N)o? -1
vs (1/n —1/N)o? -1
vg (1/n —1/N)o? -1
vy (1/n—1/N) [b*k*n(p + 1)/12 + 2] k

From Table 6.1, it is clear that estimators vs and vs are the least biased and hence
the preferred estimators of Var(y;gg), for the linear trend model. It should be noted that
Cochran (1977) promotes the use of estimator v4 for linear trend populations. From Table
6.1, we see that estimators vy, v5 and vg eliminate the linear trend component and this
is not desirable since Var(y;gg) is a function of linear trend. However, estimators vy, vs
and vg should not be disregarded for linear trend populations, i.e. if we compare (5.47),
(5.52) and (5.67) to the expected values of v4, vs and vg in Table 6.1, with the notion
that ¥pgs, Uass and Ypargg are all unbiased estimators of Y, then we note that esti-
mators vy, vs and vg are unbiased estimators of Var [@B SS(n even)} , Var [g MSS(n even)] and
Var |Ypnrss(n/2 even integer):| . Moreover, these estimators are slightly biased for Var(yy gc)-
It should be noted that it is impossible to estimate Var(yoggg), since certain population

units have no chance of being selected (Murthy 1967).

Periodic population model

Let us consider an example of an exact periodic population, given by the model
pij = asin (B[t + (j — 1)k])

where e;; = 0, for all values of ¢ and j. Now, if we let b = /2, then the period is given

by 27 /b = 4. Furthermore, if we suppose that k = 4, then it follows that:
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Jj=1 j=1
(iil) ¥ = % anl asin (g B+(j—1) 4]) = % il (—a) = —a;
(iv) gy = i asin (3[4 (j—1)4]) =2 i 0=0.

Jj=1 j=1

Note that we cannot provide an accurate estimate of Var(y;gg) from a single sample,
i.e. the actual value of Var(7j; gg) is a?/2; however, all the variance estimators equate to
zero, since the variate values of all the sampling units, from any one of the four samples,
are equivalent. On the other hand, if k£ is equal to an odd multiple of half the period,
then Var(y;gg) = 0 and all estimators will be relatively large, since there is maximum
variation in the variate values of the sampling units (see Section 4.2.3). This illustration

again highlights the dangers of conducting LSS on periodic populations.

Auto-correlated population model

As shown in Section 4.2.4, an auto-correlated population assumes that the variate values
of the population are correlated and hence the random errors are correlated, i.e. the
ei;s, given in (6.1), are not correlated random variables. An example of this is given
by the underlying model used to construct vg, which is represented by the first-order

autoregressive process, given by
Yy — =@ (Y—1 — p) + &, fort=1,...,N, (6.7)

where ¢; denotes uncorrelated (0,02) random variables and ¢ denotes the first-order au-

tocorrelation coefficient, such that 0 < ¢ < 1. Thus, by using (4.21), we obtain

B B 1 1 2 (¢—¢N) 2
E,, [Var (7155)] = 0” (n—N> X [1_(k—1) 1-9¢) NG-1

{(¢—¢N> <N—1>¢N}+ % (0= o)
(&

(1—¢)?  (1-9) —1) (1—¢F)

2k (" — o)  (n—1)¢N
‘n<k—1>{<1_¢k>2 BTy H 68

We can then approximate (6.8) to the order 0 (n_Q), such that

_ 1 1 2 o 2k " _
B [Var (Fss)] = o (n N> [1 G-D0-9)  G-1 <1—¢k)} +0 (),
(6.9)
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where n is an index to a sequence and k is fixed. The corresponding expected values of all
the estimators are given in Table 6.2. Large-n approximations, similar to that of (6.9), are
provided for the expected values of v, vy and vg. Estimator vg provides a good estimate
of Var(7, gg), since —2¢/k(1 — ¢) = 2/In(¢*) (Cochran 1946) and thus E,,[E(vs)] in Table
6.2 is almost identical to (6.9).

Comparisons of the expected biases of the estimators are dependent on the values of ¢
and k, such that the differences between the expected values of the estimators are negligi-
ble when ¢ is small, and gets larger as ¢ increases, whereas these differences decrease as k
increases (assuming ¢ is fixed). It is thus likely that estimator vg will provide an underes-
timate of Var(y;gg), whilst the remaining estimators (especially v1) are likely to provide
an overestimate. Furthermore, estimator vg is likely to exhibit the smallest absolute bias,

unless when ¢ is small, since the approximation of 2/ ln((ﬁk) is inadequate when ¢ = 0.

Table 6.2: Expected values of v; to vg for the auto-correlated population model

Estimator En [E(va)]
" (L-4)o*+0(n?)
" (b (-e)
" (L= 4) o (1- o)
v (F-%)o? [1-4+ o]
v (- #)o? [1- B+ 2 -2 o
N R Ll L e e e R SR A ]
v7 (5 — )0 [1 + (pzl)} [(llid);:k) - (1?2@] +0(n7?)

. G- o [+ g+ | H007)




83

Stratification effects model

The classic notion of LSS being a process of selecting one population unit from each of

the n strata, of size k (as in Section 4.1.3), is given by the model
Hij = Hj;
such that p;; denotes a constant value within each stratum and the e;;’s are given as iid

N(0,0?) random variables. Under this model, the expected variance of 7, gg is given as

B Var(ss)] = (5 - ) o

and the corresponding expected values of all the estimators are as given in Table 6.3. With

the highly probable assumptions of n being large and p; > 0, we provide an approximation

for the expected value of vg in Table 6.3.

Table 6.3: Expected values of v to vg for the stratification effects model

Estimator Em [E(va)]
i (1/n=1/N) [ (= ) (0 = 1) + 02|
va (1/n = 1/N) [S503 (2j1 = p2y)? fm + 0
vs (1/n = 1/N) [S050 (5 = pja)? /20 = 1) + 02
v4 (1/n = 1N) [52F (g = 2501 + 1ga2)” /6(n = 2) + 02|
vs (=N [0 (/2 g+ e — pges + pa/2) /35(n = 4) + 07
v (1/n = 1/N) [S528 (3/2 = py1 + =+ p348/2)% /T5(n = 8) + 7]
vr (1/n=1/N) [0 0, (g =70 /p(p = 1) + 0]
vg (1/n —1/N) (w1 + 0?) [1 4+ 2/Ink + 2k/(1 — K)]°

aﬁ: Z?:l luj/n

b 71, = a-th systematic sub-sample mean of the -

k= wa/ (w1 +0?), wi =30 (uy —@)?*/(n—1) and
wy = Y11 (1 — ) (pj 1 — 1)/ (n — 1).
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From Table 6.3, we note that the differences between vy to vy is negligible, if the mean
of each stratum (p;, for j € {1,...,n}) is approximately equal. However, this is not
common in practice, since stratification is such that strata are externally heterogeneous.

We will next evaluate the bias of each estimator, by assigning arbitrary values for s,
n, o2 and p. Accordingly, Table 6.4 contains the expected relative bias of each estimator,
for the cases y; = j,7%/2,57" and In(j) + sin(j), where n = 20, 0> = 100 and p = 2.

Examples of linear trend between the strata are given by u; = j,j 1/2 and 51

, while an
example of non-linear trend is given by p; = In(j) + sin(j). From Table 6.4, it is clear
that estimators vy, v5 and vg have the lowest level of bias and are thus preferred for the
stratification effects model. The contrasts for these estimators are likely to eliminate the
linear trend component in the stratum means, p;, which is appropriate since Var(y,gg) is
not a function of this trend. Amongst these suitable estimators, we can further conclude
that estimator vg is the most preferred estimator when the trend component is non-linear.

If the stratum means for neighbouring, non-overlapping pairs of strata are approxi-
mately equal (i.e. poj = pgj_1, for j = 1,...,n/2), then the expected bias of estimator
vy will be the smallest. Also, if the average of the stratum means for neighbouring, non-
overlapping groups of p strata are approximately equal (i.e. 1y & iy & ... ® [, = ... [,
where p, = pzyi Ii Ha+(j—1)p/™), then the expected bias of estimator vz will be the small-

est. It should be noted that equality for each of these two cases results in the expected

bias for the corresponding estimators being zero.

Table 6.4: Expected relative bias multiplied by o2 for v; to vg under the stratification effects

model

Estimator p;=j p; = j1/2 Hnj = jfl = In(j) + sin(j)

v1 35.000 1.046 0.050 0.965
U2 0.500 0.022 0.013 0.243
U3 0.0500 0.020 0.008 0.243
vy 0.000 0.000 0.001 0.073
Vs 0.000 0.000 0.001 0.034
Ug 0.000 0.000 0.000 0.013
vy 5.000 0.177 0.022 0.206

Ug —-0.670  —0.396 —0.239 —0.373
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We will next examine three designs which allow for an unbiased estimate of the sam-
pling variance, two of which apply multiple random starts to the LSS design as well as
the BMSS design (see Section 5.5), while the third design supplements the linear system-
atic sample with an independent simple random sample. Within each design we shall
discuss the corresponding methodology, before obtaining expressions for the sample mean,
the corresponding sampling variance and an unbiased estimate of the sampling variance.

Thereafter, we will discuss the efficiency of the relative designs.

6.2 Multiple-Start Linear Systematic Sampling

6.2.1 Methodology

The method of inter-penetrating sub-sampling (or replicated sampling) was initially dis-
cussed by Mahalanobis (1946) and Tukey (1950) and later in the context of systematic
sampling (i.e. MLSS) by Deming (1950), Gautschi (1957), Shiue (1960) and Tornqgvist
(1963). MLSS involves the selection of more than one linear systematic sample by apply-
ing the corresponding number of random starts.

The method of selecting a sample of size nm (where nm is now the required sample

size with m being an integer) from a population of size N, using MLSS, is given as follows:
(i) Randomly select m integers (i1, ..., i,,) from the first k integers, such that 2 < m < k.
(ii) The population unit numbers of the sampling units are then given by

in+ (j — Dk, forh=1,...,mandj=1,...,n

This method can be viewed as selecting m clusters (each of size n) from k clusters, using

SRS, where the clusters are defined as in Table 2.1.

6.2.2 Estimation formulae

Torngvist (1963) suggested the use of SRSWR for step (i) above, such that an unbiased

estimate of Y is given by
(m
yLSS WR) Z Yir s (6.10)

where (7) the superscript m denotes the number of random starts; (i7) 4}, € {i....,4,,} for
step (i) denotes integers, where P(i), = i%) = 1/k for j € {1,....h — 1,h + 1,...,m}; and

(ii1) Yy denotes the mean of the sample that is chosen with random starts ; in step (ii).
h
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For this setup, the sample means can be viewed as population units, where we select a set
of m sample means from the k possible sample means, using SRSWR. The corresponding
adjusted population variance is thus obtained by replacing y; and N in (3.9) with 7; and
k respectively, such that

k
i Z@i -Y)?,
i=1
where the replacement of ; and N in Y = Zf\i 1 ¥i/N, by §; and k respectively, results in

Zle 7;/k =Y. Moreover, the variance of the estimator in (6.10) is obtained by replacing
SZ. N and n in (4.1) by S%, k and m respectively, such that

E-1\ 1 <
Var <?(LTE)S(WR)> = (mk) F_1 > Wi

i=1

S‘H

Zk: y)? = Yar (nyzLSS)’ 6.11)

which follows from (3.2). An unbiased estimate of (6.11) is then given as

2

L ()
m(m—1) }; (yz‘g - yLSS(WR)) ’

Vg =

since an unbiased estimate of Var(y;gg) is given by

R A 2
(m—l)hzl@ ~Tissovm)

Note that the degrees of freedom (given by (m — 1)) is adjusted for error, since we are
sampling with replacement (Cochran 1977, pp.29-30).
Gautschi (1957) suggested the use of SRSWOR for step (i), such that an unbiased
estimate of Y is given by
(m) 1 ¢ 1 o\

YLsswor) = . ; Yin = oo 1; ; Yip+(G—1)ks (6.12)
where (i) ip, € {i1, ..., } for step (i) denotes m distinct integers, i.e. P(ip, =i;) = 0 for all
je{l,..,h—1,h+1,...,m}; and (ii) 7;, denotes the mean of the sample that is chosen
with random starts iy, in step (ii). The variance of the estimator in (6.12) is then obtained

by replacing S2, N and n in (4.2), by S%, k and m respectively, such that

(m) k—m : k—mY Var (yrss)
Var (yLSS(WOR)) =1 Z - o (6.13)

=1
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Thus, if LSS is an efficient design for a sample of size n, then we can expect MLSS to be

efficient at a sample of size nm. An unbiased estimate of (6.13) is then given by

(k—m I </ _(m) 2
o=\ " e ) —1 2 (yzh - yLSS(WOR)) ’

since an unbiased estimate of Zle@i —Y)?/(k — 1) is given by the expression

i 2
> <yzh Tres WOR)) /(m —1),
h=1

i.e. we are now sampling without replacement and thus do not adjust the degrees of

freedom, as in the case of SRSWR (Cochran 1977, pp.21-27).

6.2.3 Efficiency comparisons

By using (6.11) and (6.13), we obtain the relative efficiency of y(L’g)S(WO R)» With respect to

y(gg)s(w R)’ given by

m) m k—1 m

_(m)

Var (yLSS(WR)> _ [Val" (yLSS):| [(k - m) Var (yLSS):| - _ k-1
—( - S k-m

Var (yLSS(WOR))

with the assumption of 2 < m < k. For the remainder of this thesis, we will thus only
consider selecting the m random starts using SRSWOR, where y%}”%ss = g(LTg)S(WO ) HOW
denotes the sample mean, when conducting MLSS.

Gautschi (1957) examined the efficiency of LSS, when compared to MLSS, under the
super-population model for various population structures, where appropriate adjustments
to the sample size were applied for the former design (see Section 6.3.3). Under the super-
population model in (4.12), if we denote the expected variance of @S\ZQSS by 02,55 » then

a summary of Gautschi’s results is given as follows:
(i) for randomly ordered populations, a%/[ LSS = O‘%SS;
(ii) for populations that exhibit linear trend, 0%, ¢5 > 0% gg;

(iii) for auto-correlated populations, where the correlogram is assumed to be linear,
2 2 .
OMLSS = OLSS)

We are thus presented with a trade-off between accuracy (unbiased estimate of the sam-

pling variance) and precision (efficiently estimating Y), when comparing LSS to MLSS for

populations that exhibit linear trend and auto-correlated populations.
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6.3 Multiple-Start Balanced Modified Systematic Sampling

6.3.1 Methodology

The author next proposes a new design, which considers the application of BMSS (as
discussed in Section 5.5) with m multiple random starts. With the assumption of n > 2,

we note that there are five possible cases for the methodology of BMSS; i.e.
(A) n/2 is an even integer;

(B) n/2is an odd integer;

(D) n# 3 and (n+ 1)/2 is an even integer;
(E) (n+1)/2 is an odd integer.

Accordingly, the method of selecting a sample of size nm from a population of size IV,

using MBMSS; is given as follows:

(i) Randomly select m integers (i1, ...,%m) from the first k integers, using SRSWOR,

where 2 < m < k.

(ii) For h = 1,...,m, the sample units chosen for the respective cases will be those

elements with population unit numbers given by

Case(A):
in+2jk, 2+ 1k—ip+1, forj=0,.. (n—4)/4, (6.14)
Ntip—k—2jk, N—ip—k—2jk+1, forj=0,..(n—4)/4, (6.15)

Case(B):
i, + 2k, N +ip—k—2jk, forj=0,...(n—2)/4, (6.16)
2+ 1)k —ip+1, N—ip—Fk—2jk+1, forj=0,..(n—6)/4, (6.17)

Case(C):

in + 2jk, 25 + 1)k — i, + 1, N —ip, — 25k + 1,

for j =0,...,(n —3)/4, (6.18)
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Case(D): (6.18) as well as

N +ip — 205 + 1k, for j = 0,..., (n — 7)/4, (6.19)
Case(E):
in+ 2jk, 2+ Dk —ip + 1, in+ (n—1)k/2,
forj=0,...,(n—5)/4, (6.20)
N —ip—2jk+1,  N+i,—2(+1k forj=0,..(n—5)/4 (6.21)

6.3.2 Estimation formulae

By using (6.14) and (6.15), we obtain the sample mean for case (A), given as

(n/4-1)
1 m
y({}%ms % Z Z [yih-i-ij T Y2(j+1)k—ip+1 T YN+ip—k—2jk T yN—ih—k—zij]-
h=1 j=0
(6.22)
Theorem 6.1: The sample mean, given by (6.22), is an unbiased estimate of Y.

Proof: For i =1, ..., k, we denote the ith balanced modified systematic sample total by

(n/4-1)

T = Z [Yit2jk + Yo(i+1)k—it1 + YN+imk—2jk + YN—iek—2jk+1]
=0

such that by using (6.22), we obtain

_(m 1 & m e~ (1 1 Y, -
E@ﬁw%zwssm))—anE(Ti)—nm;Ti(k>—nkZﬂ_k Y.

The sample means (7;/n, for i = 1,...,k) can now be viewed as population units, such
that we are selecting m sample means from the k possible sample means, using SRSWOR.
We thus replace y;, N and n in (4.2) by T;/n, k and m respectively, to obtain the variance

of @5@% Msge Written as

2 _ _ Var (¥
_(m) St (k—=m\ _[(k—m ( BMSS(A))
Var (yMBMSS(A)> =-=I ( ? ) = ( ) ; (6.23)

m k-1 m
where

e —— k L ?2——k 0]
T—k_1; ntT —k_lvar(yBMSS(A)>,

such that the replacement of y; and N in ¥ = Zf\i 1Yi/N, by T;/n and k respectively,
results in Zle T;/nk = Y./N =Y. Thus, we obtain efficient results for MBMSS when
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the sample size is nm, if and only if BMSS is an efficient design for a sample of size n.

Furthermore, if we let
1 m
— E =n
~m = yMBMSS(A)’

then it is not difficult to show that an unbiased estimate of (6.23), is given by

o= (") s 2 0 1)

h=

ie. % (T;, — T)Q/n2 (m — 1) is an unbiased estimate of SZ.

éli:nrllﬂarly, we can obtain unbiased estimates of the population mean for cases (B) to
(E) by using the corresponding population unit numbers in (6.16) to (6.21). We can then
apply the above method, so as to obtain the corresponding sampling variances and the

associated unbiased variance estimators.

6.3.3 Efficiency comparisons

We will now compare the efficiency of MBMSS, to that of SRSWOR, STR, LSS and MLSS,
under various population structures. We will assume that n/2 is an even integer, such that
the expressions obtained in the previous section may then be used. It should be noted
that the results obtained in this section need not necessarily apply for the cases (B) to

Before considering the efficiency comparisons on various population structures, we
first need to make appropriate adjustments to the sample size. Accordingly, suppose there
exists an integer [, such that £ = Im. We then randomly select a population unit from
the first [ units and every [th unit thereafter, so as to obtain a linear systematic sample
of size nm. We can now replace n and k by nm and [ respectively, for the corresponding

variance expressions obtained for LSS, SRSWOR and STR.
Population in random order
A population in random order can be represented by the model
yi = 1+ e, fori=1,...,N, (6.24)
where the random errors are drawn from a super-population (Cochran 1946), such that

En.(ei) =0, En(e?) = o? and En(eiej) =0 (i # 7).
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By substituting (6.24) into 7; and noting that Y = i + €, we then use (6.23) to obtain an

expression for the expected variance of @S\Z% MSS(A) ie.

k—m e —\?
oXrparss(a) = B [mk 1) > (nTz — Y)

—1) 4
=1
k 2
k—m 1
— E _ _
T 2 o e = (u+7)]
k 2
k—m 1 _
— E _ _ 5
mk(k—l); m{neT e]
k —
k—m ek 2ere o
_ E. [ZL _ € 6.25
mk(kz—l); m|:2 n —}-e], (6:25)
where
(n/4-1)
er = Z (€i+2jkz+62(j+1)k—z‘+1 + eN+ti—k—2jk + 6N—i—lc—2jk+1)«
j=0
Now, since there are n terms in ep, it follows that
E (e}) = no® (6.26)
and
E,. (QTE) = lEm [eT (61 + ...+ eN)] = Tl;"2 (627)
N N

Thus, by substituting (5.7), (6.26) and (6.27) into (6.25), it follows that

k
k—m o2 202 o2
2 _
TUBMSSU) = (e T 2 <n ok N>

i=1
(k—m)k [N-n] 5 (k-—m)no? 1-1,
_ _ _ 2
mk(k—1) | nN mnN N 7 (6.28)

since k = Im. Similarly, the expected sampling variances for the comparative designs can
be show to be equivalent to (6.28). We can thus conclude that MBMSS is as equally
efficient as SRSWOR, STR, LSS and MLSS, for populations in random order.

Population with linear trend

If we substitute the model in (5.1) into 7;, we note that

(n/4-1)
Ti= Y [a+b2N+2)]+er
j=0

N+1
=na+ bn — + ep.
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Taking the expectation of (6.23) and then substituting the above expression along with

(5.3), results in
k 2
k—m 1 —
2 _ ity
TMBMSS(A) = T e—1) i:E 1 En (nTz Y>

:Wf(;le)Zi:Em[; {na—l—bn <N2+1) +€T}— {“b(Nzﬂ)H}r

kE—m i er -12 [1—-1
= mk (k- 1) ;E[ _e] =N (6.29)

which follows from (6.25) and (6.28). By replacing k and n in (5.9), (5.10) and (5.11),
by [ and nm respectively, we then obtain the corresponding expected variances of ¥ gg,

Ysrswor and Ygrp under the model in (5.1), i.e.

1 1 V(P-1) 1-1 v(I-1)(1+1)
2 o of + L _ 2
0158 =0 <nm N> + 12 N o° + 12 y (630)
5 oo (1 1 V(N +1)(1—-1)
OSRSWOR =0 | =~ 77 | T 2
-1 5, PIN+1)(I-1)
= 31
e + B (6.31)
and
1 1 V(P-1) 1-1 V(I-1)(1+1)
2 2 2
- - _ = = 6.32
OsTR =€ <nm N) 12nm N 7T 12nm ’ (6:32)

where ¥;.gs, Uspswonr, YsTr are unbiased estimates of Y, resulting in the expected MSEs
of these estimates being equivalent to the corresponding expected sampling variances.

Furthermore, by taking the expectation of (6.13) and substituting (5.9) into it, we obtain

_ k-m 11 v? (k? —1)
U?”Lss_m(k—l) [U2<n_N>+ 12 ]
k—m [k—1 b2 (k—1)(k+1)
:m(k:—l)[ N oot 12 ]

Remembering that k = Im, it follows that

N 12
=1 45 V(- 1)(Im+1)
=Nt 12

Im—m [lm-—1 b2 (Im — 1) (Im + 1)
0-12\/[LSS = m(lm— 1) |: 02 + :|

. (6.33)

By comparing (6.30), (6.31), (6.32) and (6.33) to (6.29), we conclude that MBMSS is more
efficient than LSS, SRSWOR, STR and MLSS.
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Periodic population

Let us assume that y; exhibits an exact periodic function with period 2h and N = 2Qh,
where h and @) are positive integers. Moreover, suppose that the worst case scenario for
LSS is observed, i.e. k = 2ah, where a € {1,2,...}, such that @ = an. Now, the variate
values corresponding to this scenario are given by y; = yjion = ... = YjponQ-1), for
j = 1,...,2h, which results in LSS being equivalent to the random selection of a single
population unit, i.e. the distance between each sampling unit is k, which is an integral
multiple of the period. Thus, N = 2ah = k and by replacing 7, and k in (3.2) with y; and
N respectively, we then obtain Var(g,gg) = Y.~ (g — Y)?/N = o2

Let us next consider BMSS for this scenario. If we assume that n/2 is an even integer,
then by using (5.53) and (5.54), we obtain the variate values of the ith balanced modified

systematic sample, for i = 1, ..., 2ah, i.e.

Yitdahj, Ya(j+1)ah—i+1s Y2Qh+i—2ah—4ahjs Y2Qh—i—2ah—dahj+1, for j =0,..n/4—1.

By comparing Yit4anj $0 Ya(j11)an—i+1, We note that the distance between these units is
given by 4ah —2i+ 1, which is not a function of 2h, since i € {1, ...,2ah} and h is a positive
integer. We thus conclude that y;y4ahj # Ya(j+1)ah—i+1- Also, by comparing y;i4an; to
Y2Qh-+i—2ah—4ahj, We note that the distance apart is 2Qh — 2ah — 8ahj = 2h(Q — a — 4aj),
which results in y;i40n; = Y2Qh+i—2ah—4ahj- Moreover, the distance between Ya(j+1)ah—it1
and YaQh—i—2ah—41ahj+1 18 given by 2Qh — 6ah — 8ahj = 2h(Q — 3a — 4aj), resulting in
Y4(j+1)ah—i+1 = Y2Qh—i—2ah—4ahj+1- By using the transitive law, we thus conclude that a
balanced modified systematic sample of size n (where n/2 is an even integer), is equivalent
to the random selection of two population units with distinct variate values, resulting in
BMSS being twice as efficient as LSS. Now, since MLSS and MBMSS are equivalent to
the selection of m linear systematic samples and m balanced modified systematic samples
respectively, we thus conclude that MBMSS is twice as efficient as MLSS, which in turn is
much more efficient than LSS, i.e. MLSS is equivalent to SRSWOR of m sampling units
with distinct variate values. By assuming n/2 to be an even integer, the best case scenario

(i.e. k=ch for c € {1,3,...,}) results in

Var [yg\%MSS(A)] = Var [ygﬂss} = Var [@BMSS] = Var [yLSS] =0.

Hence, MBMSS is equally efficient as MLSS and LSS, and more efficient than SRSWOR

and STR, when k is an odd multiple of half the period. If we use a more realistic periodic
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population model under the assumptions of the super-population model in (4.12), then it
will not be difficult to show that MBMSS is less efficient than STR, which in turn is less
efficient than SRSWOR, for the worst case scenario.

Auto-correlated population

If we assume that the population units are correlated, as discussed in Section 4.2.4, then
the sum of the serial correlations for the ith balanced modified systematic sample is given
as

n/4—1

Z [P2k—2i+1 + PN—k—4jk + PN—2i—k—4jk+1 T PN+2i—3k—4jk—1 + PN—3k—ajk + P2i—1] -
§=0

Therefore, the sum of the serial correlations for MBMSS can be written as

n/4—1

m
E E [P2k—2ip+1 + PN—k—djk + PN—2ip—k—4jk-+1 + PN+2ip—3k—4jk—1 T PN—3k—djk + P2i,—1] -
h=1 j=0

Remembering that k = Im, we use the above expression, along with (4.16) and (4.18), to

obtain the expected variance of ¥y;prr55(4), written as

n/4—1
TMBMSS(A) = T ¢ + 2 [pZZm—2ih+1 + PN—im—4jim + PN—2i) —im—4jim+1
h=1 j=0

+ PN+2ij,—3lm—4jlm—1 + PN—3lm—4jlm + PQih—1]
N
202

u=1

By replacing k£ and n in (4.19) to (4.21) by [ and nm respectively, we then obtain the

corresponding expected variance of Ysrswonr, UYstr and yrgg, i-€.

N-1
1-1 2(1 — 1)o?
0SRsSWOR = N o’ + N2(N —1) Z(N — U)pu, (6.35)
u=1
[—1 202 =1
odrR = ng TN (I = u)pu, (6.36)
u=1
l—1 20.2 N-1 20_2 nm—1
0%55 = TO’Q -z (N —u)py, + 2.2 Z (nm — u)py. (6.37)
u=1 u=1

Furthermore, by taking the expectation of (6.13) and substituting (4.21) into it, we obtain

k—m (k—1)0 2 = 2% =
012\4LSS = m(k— 1)( N) 1- N(k‘—l) Z(N_u)pu+ n(k:— 1) Z(n_u)pku

u=1 u=1
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Remembering that k& = Im, reduces the above expression to

-1 201 - 1)0? = 2(1—1)2 2
2 _ 2 E _ § _
OMLSS — N g N2(lm _ 1) ~ (N u)pu + n2(lm — 1) u:1(n u)plmu (638)

From (6.34) to (6.38), it is difficult to obtain simple theoretical comparisons and we will

thus resort to some numerical comparisons in Chapter 8.

6.4 Partially Systematic Sampling

6.4.1 Methodology

Supplementing a linear systematic sample with an independent simple random sample,
termed as PSS, was first noted by Zinger (1963, 1964) and later discussed in detail by
Zinger (1980) and Wu (1984). The corresponding method for selecting a sample of size

n = n1 + no from a population of size N, is given as follows:

(i) If we suppose that k = N/ny is an integer, then randomly select an integer between

1 and k, say i, where 1 <1 < k.

(ii) Select a sample of size ny using LSS, such that the sample units chosen will be those

elements with population unit numbers given by

i+ (j— 1)k, for j =1,...,n1. (6.39)

(iii) Select ng sampling units from the remaining N —n; population units using SRSWOR.

(iv) The partially systematic sample is then given as the sample in step (ii), supplemented
with the sample in step (iii).
6.4.2 Estimation formulae

If we let 7, and 7, denote the means resulting from steps (ii) and (iii) respectively, then
an unbiased estimate of Y, given by Zinger (1980), is the weighted average of the corre-

sponding means, i.e.

Zinger further provides the corresponding variance of (6.40), by taking the expectations

with respect to the designs in (ii) and (iii), such that

Var(y(8)) = a1(8)SY + az(B)Var(y,), (6.41)
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where
~ BAN = 1)(N —ny — ny)
o (f) = neN(N —ny —1)
[ Bk 2_ B2(N — nq —no)
az(B) = [1 (k:—l)} na(k —1)2(N —ny — 1)
and

2 _
Var(,) = 2% (Y50 ) 1+ (- 1)

Suppose that Qy = (4 — 7,)% » Qv = S (i — 7,)? and Q, = 3(7, — 7,)? respectively
denote the sum of squares within the linear systematic sample, the sum of squares within
the simple random sample and the sum of squares between both samples. An unbiased

estimate of (6.41) is provided by Wu (1984) and given as

vi1 = v(F(B)) = B(Qs + AQr) + DQy,

where
B doo (ﬁ) — dlo@(ﬂ) D al(ﬁ)[m + /\CQ] + OéQ(B)[TLl + )\01]
N dg(nl + )\01) + dl(nl + )\02)7 N dg(nl + /\01) + dl(nl + )\Cg)
- (n2 —1)(N —n1) o — n3(ng — 1)
TN —-1) T (N—n)(N=ng —1)’
& = (N —ni —ng) & — (naN? —nagN — n} — ning)
YT (N —ng — 1) 7 (N —=n)(N—ny—1)

Wu further noted that v(g(5)) will always be non-negative if
(a) A >0 and (b) B> (k—1)/2k. (6.42)
By letting A = 1 and 8 = (k — 1)/2k, we obtain an estimator which eliminates Q¢ and @,

v (y (";%1» - <k%1)2 7. - 75",

The values of § = na/(n1+n2) and 8 = 1/2 respectively correspond to a natural weighted

i.e.

average and an unweighted average of 7, and 7, (Zinger 1980). Zinger examined these

two values along with the assumption that A = 1, for the estimator v(y(5)). He showed
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that v(g(na/(n1 + ng))) is prone to producing negative values, while

v{<1)] (N — 1 —n2)(Qs + Qr)

N[(ngk — 2)(?11 + ng) + (m — ng)k]

Z B N({ngk — 2}{711 + ng} + {Tl1 — ng}k) @

" [1 ng({N—nl}{nl—i—ng}—N)

will always be non-negative and is thus the preferred weighting.

The assumption that k is large and no < np is usually met in most practical cases,
since if ng > mq is true, then it is more beneficial to use MLSS, owing to its simplicity (Wu
1984). Accordingly, the optimum value of 3, say Sopt, which minimizes (6.41) and results in
LSS being more efficient than SRSWOR, is usually smaller than (k—1)/2k = 1/2 (Wolter
2007). By using (6.42), we thus conclude that there is a trade-off between efficiency and
non-negative unbiased estimation of the sampling variance, when choosing an appropriate

value of 8. Wu suggests the following approach to overcome this trade-off:

(i) if Bopt > (k - 1)/2k7 then use y (ﬁopt) and v (y (Bopt))§

(ii) if 0.2 < Bopr < (k — 1)/2k, then use either y((k — 1)/2k) and v(y((k — 1)/2k)), or
7(1/2) and v(y(1/2));

(iii) if Bopr < 0.2, then use y(Bopt) and the truncated variance estimator, given by

04 (Y(Bopt)) = max{y(Bopt), 0}

Wus approach is reasonably justified, except for case (iii), where a zero variance estimate

is no more dangerous than a negative variance estimate (Wolter 2007).

6.4.3 Efficiency comparisons

Zinger (1980) studied the efficiency of PSS, when compared to SRSWOR, by assuming four
artificial populations, two of which, exhibit stratification effects and linear trend (Cochran
1977, pp.211-212) as well as two that are in random order. He then concluded that PSS
is more efficient than SRSWOR for Cochran’s artificial populations, as well as one of the
artificial populations in random order, provided that no > 2. Zinger further compared
PSS with MLSS by making the appropriate adjustments to the sample size. No simple
conclusion was drawn for Cochran’s artificial populations, i.e. PSS was more efficient than

MLSS in some cases, while MLSS was more efficient than PSS in other cases.
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It should be noted that Wu (1984) considered a modified approach to PSS, where the
linear systematic sample of size n; is supplemented by another linear systematic sample,
of size ny. He examined two cases where (i) n; = ng and (ii) n; = nol, such that [ is an
integer greater than one. It is trivial that case (i) reduces to MLSS with m = 2, while
case (ii) does not seem to have any comparative advantage over MLSS (Wolter 2007).
Moreover, this approach is not directly comparable to the usual PSS design, since we
obtain values of 8, which is not the same as that of PSS.

We next examine further designs which result in an unbiased estimate of the corre-
sponding sampling variances, by supplementing a linear systematic sample with a depen-

dent sample.
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Chapter 7

SUPPLEMENTING A
SYSTEMATIC SAMPLE WITH
A DEPENDENT SAMPLE

In this chapter, we will examine some designs which supplement a systematic sample with
a dependent sample. The designs that will be discussed are new systematic sampling
(NSS), new partially systematic sampling (NPSS), balanced random sampling (BRS) and
a new proposed design termed as balanced modified random sampling (BMRS). In NSS,
we supplement a circular systematic sample with a sample of continuous units, while
NPSS involves the supplementation of a circular systematic sample with a simple random
sample without replacement. BRS is a slight adaption of MSS, whereby half the sample
is selected using SRSWOR and the other half of the sample are the paired units, using
the MSS pairing technique, as discussed in Section 5.4.1. Similarly, BMRS divides the
population into groups, before conducting SRSWOR within each group and then pairs
these sampling units using the MSS pairing technique. Before discussing each design, we
will obtain some preliminary results to aid us in obtaining expressions for an estimate Y,

the corresponding sampling variance and an estimate of the sampling variance.

7.0 Preliminary Results

Theorem 7.1: Suppose that we draw a without-replacement sample of size n from a pop-
ulation of size N, such that the sample space is given as S. If m; > 0, for all i € {1, ..., N},

then the Horvitz & Thompson (1952) unbiased estimator of Y and the corresponding



100

variance, are respectively given by

Yt = Z i (7.1)

UGS

ey

v T 1 (1 —m) W2+ 1 L 7ng ;) 5
ar<HT)_N?Z R T v ()

Proof: For i =1,...,N, let t; be a random variable, such that

1 if ith unit is drawn,
0 otherwise.

Clearly, if we have a sample of size n = 1, then t; follows a Bernoulli distribution with
probability m;, i.e. t; ~ BIN(1, ;). Hence, E(¢;) = m; and Var(¢;) = m;(1 — ;). Now, if we
take y; to be a fixed variable, then

= 1 ‘ 1 (&
E(Vir)=F NUZ:Si/r :NE(Z; y) Z?/l—

1=

i

Moreover, if we assume that m; = 0, for some i € {1,..., N}, then E(¢t;) # m; = 0 and thus
(YHT> #Y.

The variance of the estimate in (7.1) is then given as

= 1 & tiyi
Var (YHT) — Var (NZ - >
i=1

N 2 N N iy
. I .
Z ( Nm) Var (t;) + Z N, Cov (tit;). (7.3)

Now,

Cov (titj) =FE (titj) —E (tz) E (tj) = M5 — Ty,

since t;t; = 1 if and only if both units U; and U; are in the sample. By substituting this

expression as well as Var(t;) = m;(1 — m;) into (7.3), we obtain the result in (7.2).

Theorem 7.2: With the assumption of a sampling design that exhibits fixed sample
sizes, a form of the variance expression in (7.2), proposed by Sen (1953) and Yates &

Grundy (1953), is given by

Var (Virr) = 513 i i (mim; — i) Ki) - <7yé>} } (7.4)
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Proof: By using the given assumption, we obtain Zf\;l t; = n for every possible sample,

which results in

N N N
d m=> E(ti)=E (Z tl-) =n. (7.5)

=1 =1 =1
Furthermore,

Z T35 = 7Tu (76)

J#i
since there are (n — 1) values for j once the ith population unit is selected. By using (7.5)

and (7.6), it then follows that

—E 7T17TJ m] Em (n—1)

]751 J#i

N
:Zﬂ'j—ﬂ'i—(n—l):(l_ﬂ'i)- (7'7)

=1

Finally, by substituting (7.7) into (7.2), we obtain

Var (Vi) = 3-S5 e, )

i=1 j#i i=1 j#i
1 NN Yi Yj yly]
:W ZZ(MT@'—TM’]’){<M> +< > } QZZ Ty — 7'r1] gy
i=1 j>i i=1 j>i J
1w yi\>  (v\ 2vw;
“wxym e |(2) +(2) -2
1 Al Yi Yj 2
S S [(2) - (2)
i=1 ji J

Theorem 7.3: If we assume that m;; > 0, for all 7,5 € {1,..., N} (i # j), then an

unbiased estimator of (7.4) is given by

wommak o (L)) ()] o

1=1 j#i

Proof: The expected value of vy is given as

oo () )- )

1=1 ]#t

- S (2) - ()] v,

=1 j#i
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which follows since the expected value of the product of both indicator variables is given
as E(t;t;) = P(U; and U; € §) = m;;. Now, if we assume that m;; = 0, for some ¢ and
j€{l,..., N} (i # j), then E(t;t;) # m;; = 0, so that

E(vyg) # Var (?HT) .

Two basic properties of a good sampling design are that =; > 0, for all i € {1,..., N},
and m;; > 0, for all 4,5 € {1,..., N} (i # j). The condition on the first-order inclusion
probabilities ensures that a sampling design produces samples of distinct sampling units,
while the condition on the second-order inclusion probabilities ensures that it is possible
to obtain an unbiased estimate of the sampling variance, provided that the corresponding
sampling design exhibits fixed sample sizes. Thus, for each sampling design, we will aim to
prove that the conditions of the inclusion probabilities hold true and/or obtain expressions
for the inclusion probabilities. We can then substitute these expressions into (7.1), (7.4)
and (7.8), so as to obtain the corresponding formulae. Furthermore, we will also discuss

the methodology and efficiency of each design.

7.1 New Systematic Sampling

7.1.1 Methodology

NSS was first introduced by Singh & Singh (1977). The corresponding methodology to

select a sample of size n from a population of size N is given as follows:
(i) Randomly select an integer r from the interval [1, N].

(ii) Let uw < n be an integer, such that the sample units selected (of size u) for the sample

S/, will be those elements with population unit numbers given by

r+1, fori=0,1,...,u— 1. (7.9)

(iii) With a sampling interval of ¥ = INT[(N —u)/(n—wu)], the remaining n—u sampling

units selected for the sample S!/ are given by the population unit numbers

r+u—1+j5k", forj=1,...n —u. (7.10)

(iv) The new systematic sample is then given as S, = S!, U S...
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The method of selection for the sample S/ is the unrestricted method, which is applied
in a circular fashion, such that Uny, = U, (refer to Section 2.2.3). Furthermore, the

probabilities of selecting the samples are given as

P(S.) =P(S!)) =P(S,) = 1/N, forr e {1,...,N}.

7.1.2 Inclusion probabilities

Theorem 7.4: Under the NSS design, a necessary and sufficient condition for all the
sampling units to be distinct is given as (n — u)k” < N — u, where N — u and (n — u)
represents the population size and the sample size respectively, when selecting sample S...
Proof: The population unit numbers for the sample, corresponding with random start r,

is obtained by using (7.9) and (7.10), such that
rr+loar+u—1Lr+u—1+k r+u—1+2E" .. r+u—1+4+(n-—-u)k".

Now, if a sample consists of U, as the first sampling unit and at most U,_; as the last
sampling unit, then it is trivial that all sampling units will be distinct. Thus, by using
the rth sample above, we conclude that all sampling units are distinct, if the population
unit number of the last sampling unit is less than the population unit number of the first
sampling unit, i.e.

r+u—1+n-—-uk”"<N+r,

where Uy 4, = U,, as shown above. We can then conclude the proof, since for all values

of ¢ and j, it follows that (i + 1) < j if i < j.

Theorem 7.5: Under the NSS design, all second-order inclusion probabilities are non-zero
if

(i) K" <w;

(ii)) u+ (n—uw)k” > N/2+ 1.

Proof: Table 7.1 represents all the possible distances between pairs of population units
for sample 5, i.e. we use the sample in the previous theorem to calculate the distances
apart. Now, if we assume k” > u such that ¥’ = u+ 1, then the distance u will not reflect
in Table 7.1. Similarly, if we let & = u + 2, then the distances v and u + 1 will not reflect
in Table 7.1. Finally, if we substitute any value of k" such that k¥” < u, then we note that

all the possible distances are fully represented in Table 7.1. Moreover, if we conduct CSS
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for a population of size IV, then the distance between two sampling units will never exceed
N/2 (Singh & Singh 1977). Thus, just as in the previous explanation, we only obtain all
the possible distances in Table 7.1, if (n — u)k” +u—1 > N/2, where (n — u)k” +u — 1
represents the distance between the first sampling unit in (7.9) and the last sampling unit
in (7.10), using the circular transversal concept in the previous theorem. We then conclude
the proof, since all the possible distances occur at least once. Singh & Singh showed that
by using the conditions in this theorem, we obtain a limitation to the sample size, given
by

n>+@2N+4)-1.

The first-order inclusion probability for the population unit U; in the sample S! is

given as
1Y U
sy =B () =52 ' =+ (7.11)
r=1

where S/, in the subscript indicates that we are considering the corresponding sample space

and

1 ifU; e S;“
I' =
0 otherwise,

denotes an indicator variable, such that each population unit occurs u times when applying
(7.9), for r = 1,...,N. Likewise, the first-order inclusion probability for the population
unit U; in the sample S!/ is given as

N
1 n—1u
sy =B(I") = %) 1= "% (7.12)

r=1
where

" 1 ifU; e Sg,

0 otherwise,

denotes an indicator variable, such that each population unit occurs (n — u) times when
applying (7.10), for r =1, ..., N, i.e. we use CSS where the sample size is (n —u) (refer to
Section 2.2.3 by replacing n with (n — u) in m;). The first-order inclusion probability for
the population unit U; in the sample S, is then obtained by using (7.11) and (7.12), such

that
n

T = Ti(Sy) T Ti(sy) = N’

since S7, and S]] are mutually exclusive. Exact values for the 7;;s are calculated for various

cases by Singh & Singh (1977).
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7.1.3 Efficiency comparisons

If Yy gg denotes the sample mean when conducting NSS, then the variance of §ygg can

be written as

N n
_ N -1 1 _
Var (Ynss) = TS%/ ~ Nn Z Z (yij — yi)2 (7.13)
i=1 j=1

(Singh & Singh 1977). By using (7.13), Singh & Singh compared the efficiency of their

design, to that of LSS and SRSWOR, under different population structures. A summary

of the results is given as follows:

(i)

(iii)

7.2

For a population in random order, 012\, g5 = U%SS = U% RSWOR » Where 012\, gg denotes
the expected sampling variance, when conducting NSS, under the super-population

model in (4.12).

If k£ is an odd multiple of half the period, n — u is even and u = 2k”, then the
means of the y;’s associated with samples S/, and S are equivalent to Y and hence
Var(yngg) = 0. NSS is thus expected to be more efficient than LSS for periodic
populations, since the range of the extreme values for Var(yygg) is less than that
of Var(yrgg). Also, since (7.9) is defined as a continuous selection of u sampling
units, we obtain greater variation between the sampling units, which in turn results

in efficiency gains over SRSWOR, of size u.

For both auto-correlated populations and populations that exhibit linear trend, NSS
is less efficient than LSS, but more efficient than SRSWOR, provided that u is small
and k" is large. We are thus presented with a trade-off between an unbiased estimate

of the sampling variance and efficient estimation of the population mean Y.

New Partially Systematic Sampling

7.2.1 Methodology

Leu & Tsui (1996) adopted a modified approach to NSS, termed as NPSS. The corre-

sponding methodology to select a sample of size n from a population of size N is given as

follows:

(1)

Randomly select an integer ¢ from the interval [1, N].
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(ii) If K = N/n is an integer, then let u = 2, otherwise define k as the closest integer to
N/(n —1) and let u be an integer, where 2 < u < INT(n/2) + 1. Furthermore, let
a=N—(n—-u)k.

(iii) Select a sample Sy, of size u, from the sample space Sy = {U, U1, .oy Utra—1}s

using SRSWOR.

(iv) The remaining n—u sampling units, selected for the sample .S}, will be those elements

with population unit numbers given by

t+a—1+1ik, fori=1,...,n—u. (7.14)

(v) The new partially systematic sample is then defined by S;=S; U S} .

It should be noted that, just as in the previous design, we obtain Uy = Us.

Leu & Tsui (1996) then used the theory of an optimal choice of the sampling in-
terval, given by Bellhouse (1984), to ensure an even spread of the sample. If we let
k1 = INT[N/(n — 1)] and k2 = INT(N/n) + 1, then the choices for parameters k and u

are given as follows:
(i) if k1 = 1, then select u = INT(n/2) and k = 1;

(ii) if ¥ = N/n is an integer, then select £ = N/n and u = 2. Otherwise, select k as

follows:

(a) if k1 > 2 and k1 > ko, then select k = k; and u = 2;

(b) if k1 > 2 and k1 < ko, then let u be a minimal integer which satisfies (u—1)kg >
n, such that if © > ko, then select k = k1 and if u < ko, then select k as either

k1 or ko, subject to which one is closer to a/u.

These recommendations of the choices of u and k, along with the restrictions in the
next theorem, will not result in any limitations on the sample size, which results in a

comparative advantage of NPSS over NSS.

7.2.2 Inclusion probabilities

Under NPSS, we obtain n distinct sampling, since N = a 4+ (n — u)k results in only one

circular transversal. As a result, m; > 0, for all i € {1,..., N}.
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Theorem 7.6: Under the NPSS design, all second-order inclusion probabilities are non-

zero if
(a) u>2 and (b) a>k.

The proof to this theorem is given by Leu & Tsui (1996).
Any fixed population unit U; in the sample space Sy = {Uy, Upy1, ..., Uppq—1}, will
occur a times, for t = 1, ..., N. Furthermore, since there are N possible values for t in the

sample space S7, we obtain

1 . a\ u U
Tis) = x aP (U; € Spli e {t,t+1,....,t+a—1}) = (N> = (7.15)

as we are selecting v sampling units from the a units in S7, using SRSWOR. The first-order

inclusion probability for the population unit U; in the sample S}’ is given by

n—u

N
|
sy =B () =5 D I =~ (7.16)
=1

where

1 ifU; e Sgl,
I =

0 otherwise,
represents an indicator variable, such that each population unit occurs (n —u) times when
applying (7.13), for t =1, ..., N, i.e. we use CSS where the sample size is (n — u) (refer to
Section 2.2.3 by replacing n with (n — ) in ;). The first-order inclusion probability for
the population unit U; in the sample S; is then obtained by using (7.15) and (7.16), i.e.

n

Ti = Ti(sy) T Tisy) T

since Sy and Sy are mutually exclusive. Exact values for the 7;;’s are calculated for various

cases by Leu & Tsui (1996).

7.2.3 Efficiency comparisons
Fort=1,...,N, Leu & Tsui (1996) used the following notation:

Yt = the mean of the y;’s for the sample S,

Js = the mean of the y;’s for the sample Sy,
a—1

Y= yit/a, where yir = Y4,
1

-.
Il

Unpss = (Wl + (n — uw)yy]/n = NPSS mean.
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Accordingly, the variance of ¥ pgg can be written as

2

Wi+ n—w)yy v

(7.17)
(Leu & Tsui 1996). By using (7.17), Leu & Tsui compared the efficiency of their design
to that of LSS and SRSWOR, under different population structures. Under the super-
population model in (4.12), if we denote the expected variance of Yy pgg as 0% pgg, then

a summary of Leu & Tsui’s results are given follows:
(i) For a population in random order, 0% pgg = 0265 = T2 pswoR-

(ii) For the model in (4.5): Var(ynpgs) > Var(ypss); Var(ynpss) < Var(Ysrswor)

when n > 2; and Var(yypgg) = Var(Ysrswor) when n = 2.

(iii) If k is an integral multiple of the period, then NPSS is more efficient than LSS for
periodic populations, since we are selecting w > 2 units from the from the sample
space St, allowing for NPSS to offer more variation within the corresponding sam-
ples. If £ is an odd multiple of half the period and if the y;’s of the u units selected
are the same as that of the linear systematic sample, then Var(gypgg) = 0. NPSS
is thus expected to be on average more efficient than LSS for periodic populations,

since the range of the extreme values for Var(ypgg) is less than that of Var(yrgg).

(iv) For auto-correlated populations in the form of a linear, exponential or hyperbolic

correlogram, we obtain U%Ss < U?VPSS < U%RSWOR.

We are thus presented with a trade-off between an unbiased estimate of the sampling
variance and efficient estimation of Y , when considering auto-correlated populations and
populations that exhibit linear trend.

Leu & Tsui (1996) further compared the efficiency of their design to that of MLSS,
for linear trend populations and auto-correlated populations. By denoting the number of

random starts by [, such that N = nk and n = ml, they concluded that:
(i) For the model in (4.5):

(a) Var(Ynpsg) = Var@g\l}LSS), when [ =2 and m = 1;

(b) Var(yypss) < Var(yg\l/}LSS), for all other cases, except when [ =2 and m < 5,

as well as the case when [ > 3 and m = 1.
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(ii) For auto-correlated populations:

(a) Var(gnpsg) < Var@g\l} Lss), under the exponential correlogram;

(b) Var(yypgg) < Var@g\l/[)LSS), under the hyperbolic correlogram, except when

n = 4, which results in Var(gypgg) > Var@g\l/}LSS);

(¢) Var(gypgsg) < Var(yg\l/} .sg), under the linear correlogram, except when [ = 2

and n = 4 and 6, which results in Var(yypgg) > Var(ySQLSS).

We thus conclude that NPSS is more often than not, more efficient than MLSS for auto-

correlated populations and populations that exhibit linear trend.

7.3 Balanced Random Sampling

7.3.1 Methodology

A design which adopts the advantages of both SRSWOR, and MSS is known as BRS and
is originally attributed to Singh & Garg (1979). BRS divides the population into two
groups, before selecting sampling units from the first group using SRSWOR, and then
pairing these units with units from the second group, using the MSS pairing technique,
as discussed in Section 5.4.1. We can thus expect BMRS to perform particularly well for
populations that exhibit linear trend.

If we assume that n and N are even, then the methodology of BRS is given as follows:

(i) Select a sample S (of size n/2) from the sample space S" = {Uy, Ua, ..., Un/2}, using

SRSWOR, where the population unit numbers of the sampling units are given by

T, fori=1,...,n/2.

(ii) A dependent sample to S., given by S/, is of size n/2 and belongs to the sample
space S” = {Unj241,Unja42; -, Un}, where the population unit numbers of the

sampling units are given by

N+1-—r; fori=1,..,n/2.

(iii) The balanced random sample is then given as S, = S. U S!.
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7.3.2 Inclusion probabilities

The first-order inclusion probability for the unit U; in the sample S/ is given as

0 if U, € S”,
Ti(SL) = (7.18)
(n/2)/(N/2)=n/N ifU; €5,
since we are selecting n/2 units from the sample space S, of size N/2. Likewise, the
first-order inclusion for the unit U; in the sample S/, is given as
0 if U; € Sl,
7'['7;(57/”/) = (719)
(n/2)/(N/2) =n/N ifU; € S".
By noting that S;. and S are mutually exclusive, we then use (7.18) and (7.19) to obtain
the first-order inclusion probability for the unit U;, for i € {1,..., N}, in the sample S,,
i.e.
n
Ti(s,) = Ti(sy) T sy T N
To obtain the second-order inclusion probabilities, we first note that there are two
possible cases for the m;;’s in the sample S, i.e. (i) i+j=N+1and (i1) i+j # N + 1.
For case (i), the selection of unit U; from a sample space is paired with the unit U; from
the other sample space. Thus, the probability of selecting units U; and Uj, given that U;

and Uj are paired, is equivalent to the probability of selecting Uj;, i.e.

n

Tij(Sy) = Ti(S,) = N (7'20)

For case (ii), unit U; is not paired with unit U; from the other sample space, thus the
probability of selecting the units U; and Uj, given that U; and another paired unit are

already selected, is given as
Tij(s,) = Ti(s,) X P (Uj is selected|U; and another unit are selected)
ny n—2
=(— ) 21
(N ) N —2 (7:21)

The second-order inclusion probability for the pair of units (U;, U;) in S, (i # j), is thus
obtained using (7.20) and (7.21), such that

n/N ifi+j=N+1,
Tij(sr) =
n(n —2)/N(N —2) otherwise.
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7.3.3 Efficiency comparisons

If we denote yprg as the sample mean when conducting BRS, then the variance of Jgpg
can be written as

N/2

N
_ 1 1 2 —2
Var (Yprs) = (n - N) N_9 (vi—Y) - 5 E (vi — ynt1-3)° (7.22)
i=1 i=1

(Singh & Garg 1979). By using (7.22), Singh & Garg compared the efficiency of their
design to that of LSS, SRSWOR and STR, under different population structures. A

summary of the results is given as follows:

(i) For both the model in (4.5) and periodic populations, Var(ygrg) = 0 and hence
BRS is more efficient than all the designs.

(ii) If we assume a linear correlogram for auto-correlated populations, then BRS is twice

as efficient as SRSWOR, but less efficient than both LSS and STR.

Singh & Garg (1979) further provided methodologies, along with the corresponding
inclusion probabilities, for other cases of BRS, i.e. (i) N and n are both odd; (ii) N is
odd and n is even; and (iit) N is even and n is odd. However, for the purposes of this

thesis we shall only consider the case discussed in this section.

7.4 Balanced Modified Random Sampling

7.4.1 Methodology

The author next proposes a new design, which adopts the advantages of both SRSWOR
and MSS, termed as BMRS. BMRS divides the population into n/4 groups, before using
a MSS pairing technique within each group. We then select two pairs within each group,
using SRSWOR. We can thus expect BMRS to perform particularly well for populations
that exhibit linear trend. For this design, we will assume that & is an integer and n/2 is
an even integer.

The methodology to select a sample of size n from a population of size N, using BMRS,

is given as follows:

(i) Select n/4 pairs of integers ({2'1, i}, {83, a}s oy {nj2-1, in/g}) from the first 2k
integers, using an independent SRSWOR selection for each pair, i.e. i95_1 # i, for

s=1,..,n/4.
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(ii) The randomly selected sample, S;, will contain those units with population unit

numbers given by

i9s—1 + 4(s — 1)k, i9s + 4(s — 1)k, fors=1,...,n/4.

(iii) The dependent sample containing the paired sampling units, S;, will be those units

with population unit numbers given by

Ak —igs—1 +4(s— Dk +1, 4k —is+4(s—1k+1, fors=1,..,n/4

(iv) The balanced modified random sample is then given as Sy = .S; U S;.

Table 7.2 depicts the above-mentioned design, whereby the population is divided into n/4
groups, each containing 2k pairs of population units and SRSWOR is applied within each
group to select two pairs of units, which collectively represent a balanced modified random
sample. From Table 7.2, we can easily verify that BMRS reduces to BRS if n =4, i.e. we
only consider group 1 and replace 4k with V.

Table 7.2: Pairs of population units for the BMRS design

Group 1 Group 2 - Group s =n/4
{U1, Usk} {Usk+1, Usk} oo AUm—aprt1, Unk}
{U2, Us—1}  {Usks2, Usk—1} - AUm—ayk+2, Unk—1}
{Uak, Uzkt1t {Usk, Uskt1t - {Umn—2pk Un—2yrs1}

7.4.2 Inclusion probabilities

Theorem 7.7: Under BMRS, the first-order inclusion probability of the population unit
U, for all i =1,...,N, is given by m; = 1/k.

Proof: Under BMRS, each group contains 2k pairs of units and thus the selection of two
distinct pairs within each group is equivalent to applying SRSWOR to select two units
from a population of size 2k, i.e. m; = 2/2k = 1/k.
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Theorem 7.8: Under BMRS, the second-order inclusion probabilities for the pair of
population units {U;, Uj}, for all 4,5 =1,..,N (j # i) and s = 1,...,n/4, are given by

1/k i+ j = 4k + 8k(s — 1) + 1,
Tij = 1/k(2k—1) ifi,5 € {1+4k(s—1),...,4ks} and i+ j # 4k +8k(s — 1) + 1,

1/k? otherwise.

Proof: From Table 7.2, if we assume that U; and U; are paired, then the sum of their
population unit numbers is given by i + j = 4k + 8k(s — 1) + 1, for all 4,5 = 1,.... N
(j # 1) and s = 1,...,n/4. For this case, the probability of selecting units {U;, U;} is
equivalent to the probability of only selecting unit U;, i.e. m;; = m; = 1/k. Furthermore,
if we assume units U; and U; are not paired, but to belong to the same group (i.e. i and
je{l+4k(s—1),...,4ks} and i +j # 4k +8k(s — 1)+ 1 forall ¢,j =1,..,N (j # 1),
where s = 1,...,n/4), then

1 1
mi; = m X P (Uj is selected|U; is selected) = z <2k 1) ,

since we are selecting one pair from the remaining 2k — 1 pairs, after selecting the unit
Ui. The final possibility of selecting {U;, U;} for the sample is that U; and U; belong to
different groups, such that

1/1 1
mi; = m X P (Uj is selected|U; is selected) = % <kz> =

since the selection of unit U; is independent from the selection of unit U;.

7.4.3 Efficiency comparisons

Theorem 7.9: Under BMRS, if we denote the sample mean by yz,,rg, then the variance
of Yparrs can be written as
n/4

Var (Ypprs) = (1 - ;,) 71(213—1) Z (St (5) — Sw ()], (7.23)

n
s=1

where

Sw(s) = Z?il(yiﬂk(s,l) — y4k+1,i+4k(s,1))2/4 = the sum of squares within the pairs of
units for group s,

Si(s) = Zil (yi+4k(s_1) — ?5)2 = the total sum of squares within group s and

Y, = Z?il Yitak(s—1)/4k = the mean of group s.
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Proof: Under our proposed design, we can view each group from Table 7.2 as a stratum.
For this situation, we denote ns = 4 as the number of sampling units selected from stratum
s and Ng = 4k as the size of stratum s. Furthermore, if we denote the variance within
stratum s by o2, then the sampling variance, when conducting STR. (based on the selection
of ng sampling units from stratum s, of size Nj), is given by

n/4 2
s— 1N
Var (Tsrn) = 73 Z )% (7.24)

where N = Zn/ Y N, and n = S n/4 ~,ns. By applying the relevant substitutions, we obtain

Ns (Ns —ns) _ 4k (4k — 4) K2k 4/1 1
4] =—-—=). 2
ngN2 4N? N2 N2 n\n N (7.25)

Let us now consider the selection of pairs of units within each stratum, of size 2k pairs,
such that the variance within each stratum is equivalent to the mean sum of squares

between the pairs, i.e.

1 1
g Y 1Sb (s) = % —1 (St (s) — Sw (s)], (7.26)

g

where Sp(s) denotes the sum of squares between the pairs of units within stratum s. We
then conclude the proof by substituting (7.25) and (7.26) into (7.24).
We will next use (7.23) to compare BMRS to SRSWOR, LSS and STR (based on the

selection of one unit per stratum), under different population structures.

Population in random order

For the model in (6.24), if we let €5 = Z?ﬁl €i+ak(s—1)/4k, then we obtain

4k
_ 2
[St ZE M+ez+4k‘(s 1) — (M+es)]
=1
) 4k 0_2
=Y E, g = 2 ) =4ko® - 0? 2
Z z+4ks 1) } ; <U 4]{7> ko o, (7 7)

which follows since e;4;(s—1) occurs once in e , for i € {1,...,4k} and s € {1,...,n/4}.
Also,

4k

Epn [Sw (8)] Z Enm [1+ €sange—1) — (0 + eapr1—irans-1))]”
=1

- if: [Em (612+4k(571)> +En (eik+17i+4k(371))} = 2ko?, (7.28)
i=1
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since i + 4k(s — 1) # 4k + 1 — i 4+ 4k(s — 1). We then obtain the expected variance of
Uparrs, by using (7.23), (7.27) and (7.28), i.c.

n/4

1 1 4
2 _ § 2 2 2
n/4

_ (; _ ;f) n(2:—1) ;102 (2k—1) = <i = ;{) 0. (7.29)

The expected variances of Ysrswors Urss and Ygrr are known to be equal to (7.29).
We thus conclude that BMRS is as equally efficient to SRSWOR, LSS and STR, for

populations in random order.

Population with linear trend

If we assume the model in (5.1), then

4k
_ 1 _ b(4k +1) _
Y, = 1 i:E 1 [a—i— b{Z + 4k (8 — 1)} + ei+4k(571)] =a+ - + 4bk (3 - 1) =+ és.

Consequently, we obtain

4k 2
b(4k +1
B (50 ()] = DB o5+ 4 (s~ D} +evpaniey — { 0 avi s 1) e}
=1
4k 2 4k
k1 .
= Em bz Z {’L - ( 9 ) } + ZEm [62'—1—4]4:(8—1) — 65]2
=1 1=1
4k 2
—E, |$? ; {Z _ (4k; 1)} ] 4 dko? — o2, (7.30)

which follows from (7.27). Moreover,

b(i+4k{s —1}) + eiran(s—1)

1 4k
Enm [Sw ()] = ; > Em
i=1

2
— (b{4k +1 =i+ 4k (s = 1)} + eaps1-itan(s—1)) ]

p2 4k J o1
=En |7 ; (20 =4k =17\ + ; [Em <6?+4k(sfl)> + En <€ik+17i+4k(371))}
4k 2
=Ep |12 {z - (4k2+ D } + 2ko? (7.31)
=1

By using (7.23), (7.29), (7.30) and (7.31), we obtain

1 1
O—QBMRS = (n - N) 0'2. (732)
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Thus, by comparing (7.32) to (5.9), (5.10) and (5.11) (i.e. Ysrswonrs Urss and Ygrp are
all unbiased estimators of the population mean), we conclude that BMRS is more efficient

than SRSWOR, LSS and STR, for populations that exhibit linear trend.

Periodic populations

Let us assume that y; exhibits an exact periodic function with period 2h and N = 2Qh.
Under this assumption, we then note that each group in Table 7.2 is equivalent for the
two cases of k = ah, for a € {1,3,...}, and k = 2ah, for a € {1,2,...}. Accordingly, we

obtain
Si(1) = 8(2) = ... = Se(n/4), Sw(1)=8u(2)=..=S5y(n/4) and Y,=Y,

Thus, if we only consider the first group in Table 7.2, then (7.23) reduces to

L1 . 4k L, g
Var (Ypnrrs) = <4 - 4k> o1 [Z (vi—Y) - 1 Z (yi — y4k+1i)2]

i=1 i=1

2k -1 16k 4

4k
A [02 - (i — y4k+1i)2] : (7.33)
i=1
If we suppose the best case scenario for LSS, i.e. k = ah, for a € {1,3,...}, then it is
known that Var(yrgg) = 0 (see Section 4.2.3) and by comparing this result to (7.33),
we thus conclude that LSS is more efficient that BMRS for this situation. On the other
hand, if we suppose the worst case scenario for LSS, i.e. k = 2ah, for a € {1,2,...},
then Var(y,gg) = 02 (see Section 6.3.3) and by comparing this result to (7.33), we thus
conclude that BMRS is more efficient than LSS for this situation. When comparing (7.33)
to either (4.2) or (4.3), we note that simple theoretical comparisons are difficult to deduce
and we will thus resort to some numerical comparisons in the next chapter.
It should be noted that the author is in disagreement with the corresponding results
obtained in Singh and Garg’s (1979) paper. Accordingly, the latter authors deduced that

Var(ygps) = 0 under the exact periodic function and this is incorrect, since BMRS reduces

to BRS when n = 4 and by referring to (3.7), (4.15) and (7.33), we obtain

4k 4k 4k 4k
T 8k ZZ vi) ~ 16k ZZ vi)* > 161@2 — Yakr1-i)°s
i=1 j#i i=1 j#i

which follows since (y; — Yar+1—i) is the minimum difference between any pair of units,
under the exact periodic function. Further evidence of this is provided in the next chapter.

A possible explanation for this is that Singh & Garg may have assumed that a perfect
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linear trend pattern is repeated after every set of 2h units in the population, rather than
variate values which are monotonically increasing and monotonically decreasing at every

set of 2Ah units in the population. One can easily verify that this assumption results in

Var(Yprs) = Var(ypgyrs) = 0.

Auto-correlated population

Under the model in (4.12), we obtain

4k—1

m [Se (s)] = (4k — 1) o [1 — 4]{:«42_1) Z (4k — u) pu] , (7.34)

u=1
which follows if we replace N in (4.16) by 4k, since there are 4k population units within

group s. Moreover, by using (4.15) and (4.16), it follows that

ik

1

B [Sw ()] = [ Em [Z (Yiran(s—1) — y4k+1i+4k(sl))2]

=1
sk

< Z 20” — 20” pag1-24)]
2 4k
= o [‘Uf - Zp4k+1—2i|]
= [1 - ZP\M-{—I 2@] (7.35)

Now, on substituting (7.34) and (7.35) into (7.23), it follows that

4k—1

4k
1 1 1 1
2 2
=|-—-—= 1-— 4k — ” _9
9BMRS <n N>U [ 2% (2k — 1) ;( u) p +2(2k_1);/)4k+1 2i|

By comparing this result to the related expected variance expressions in Section 4.2.4,
we conclude that it is difficult to obtain simple theoretical comparisons and we will thus

resort to some numerical comparisons in the next chapter.
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Chapter 8

NUMERICAL ANALYSIS

This chapter focuses on numerically comparing the various designs presented in this thesis,
under various population structures. The populations under consideration will be artificial
populations, which exhibit the structures given in Section 4.2, as well as a natural pop-
ulation. To obtain the artificial populations, we apply Monte Carlo simulations by using
the statistical software package R. For each artificial population model, we will simulate
G = 1000 finite populations, each of size N = 120. By using the simple mathematical
model in (6.1), we present the specifications for the artificial populations in Table 8.1.
The final population, of size N = 176, is the strip-wise complete enumeration on length
and timber volume for ten blocks of the blacks mountain experimental forest, studied
by Hasel (1942). The variable of interest (Y') is the total amount of timber volume and
P6A represents the population in its natural state (i.e. arranged as in the frame), while
P6B is a result of the population arranged according to the length of the strips. These
arrangements are depicted in Figures 8.1 and 8.2. From Figure 8.1, we note that P6A
is approximately a stratified population, since the blocks in which the strips occur can
be considered as strata. By arranging the population in ascending order according to an
auxiliary variable, which in this case is the length of the strips, we obtain a population
that approximately exhibits linear trend, P6B, represented by Figure 8.2.

We will next compare all the sampling designs discussed in this thesis, for the above-
mentioned populations. The comparative measures that will be used are the MSEs of the
corresponding sample means and the corresponding percentages of CIs which contain the
true population mean. For the artificial populations, we will average these comparative
measures over the 1000 populations, so as to obtain their respective expected quantities.

The CL used for the intervals will be 95% (nominal rate), with the classic notion that the
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Table 8.1: Specifications for the Artificial Populations

Population Description Trend Component (f4;) Error Component (e;;)
P1 Random 0 iid NV (0, 100)
P2 Linear Trend 107 iid IV (0, 100)
P3 Periodic 10sin[7/2 x (i + {j — 1}k)] iid N(0,1)
P4 Stratified J iid N(0,1)
P5 Auto-correlated 0 €ij = pPei—1,j + €ij

e11 ~ N(0, 100/(1 - PQ))
€;; iid N (0, 100)
p=0.6
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Figure 8.1: Timber volume for ten blocks of the blacks mountain experimental forest,

arranged according to the frame
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Figure 8.2: Timber volume for ten blocks of the blacks mountain experimental forest,

arranged according to the length of strips

better estimate is the one which exhibits a higher expected percentage and estimates which
exhibit an expected percentage lower than the nominal rate are considered undesirable.
If the design is not applicable for the specific sample size, then we will denote this in the
analysis by N/A, i.e. if n = 7, then k = N/n is not an integer, which results in LSS, YEC,
CESS, BSS, MSS, BMSS MLSS, MBMSS, BRS and BMRS being inapplicable.

The expected MSEs of the sample means, related to the various sampling designs dis-
cussed in this thesis, are presented in Tables 8.2 to 8.8. For the multiple-start designs,
we consider the number of random starts as m = 2 and 3. For the PSS design, we let
ny be a maximum value, such that the sampling interval, given by N/nq, is an integer.
Furthermore, we consider an unweighted average of the corresponding sample means, i.e.
B = 1/2. For NSS and NPSS, we let v = 2, which results in a maximum number of

sampling units obtained using the systematic selection procedure.
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From Table 8.2, we note that most of the estimators are approximately subject to the

same amount of error, as expected for P1. The expected error of estimation is relatively

large for ¥ pgg which is owing to the weights (i.e. a; and o) being applied to the respective

variance components. Moreover, Jsrsy g is slightly subject to more error than the other

estimators, since we are sampling with replacement. It should be noted that if G —

0o, then the corresponding expected MSEs for all the estimators, apart from ypgg and

Ysrswrs Will tend to converge. Also, if N — oo, then the expected MSE of ygrgyp Wil

converge to that of the other estimators.

The conclusions from Table 8.3 are as follows:

(i)

(i)

(iii)

(iv)

If n = 4, then the expected MSEs of ¥gss, Unrss, YBmsss Yrs and Ypiyrrs are
the smallest and are thus preferred. We further note that yy g is slightly subject
to more error, while Y-pgg is approximately subject to twice as much error, when
compared to these estimators. This is expected, since Jopgg does not completely
remove the linear trend component (i.e. k is even), unlike the favourable estimators,
and ¥y go eliminates the linear trend component while increasing the expected error

variance component.

If n = 5, then the expected MSE of ¥y g is the smallest. Just as in the case for
n = 4, we do not obtain a removal of the linear trend component for estimator
Yopss, resulting in Yo pgg being roughly prone to twice as much error, when related
to Yy gco. Furthermore, since n is odd, the linear trend component is not entirely
eliminated when conducting either BSS, MSS or BMSS, thus contributing to the
corresponding estimators being susceptible to approximately 10 times as much error,

when compared to Yy g

The explanation for the case of n = 8 and n = 4 is similar, with the only difference
being that k is now odd for the former case. As a result, Yopgg completely removes
the linear trend component and is thus approximately prone to the same amount
of minimum error as Ygsg, Ymss, Ysmss, Yprs and Ygprps. Furthermore, the
expected MSE of yﬁB mss 1s approximately equivalent to the preferred estimators,
since MBMSS involves the selection of two balanced modified systematic samples of

size n = 4 and this is optimal, i.e. n/2m is an even integer.

For the case where n = 15, we obtain related results to the situation when n =

5; however, the expected MSE of ¥y g, relative to that of either ¥zgg, Yargg or
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YpMmSss 1S approximately 7.5 times smaller, when compared to the case when n = 5.
Moreover, the expected MSE of ¥y ¢, relative to that of yopgg, is approximately

2.5 times larger than is the case when n=5.

(v) If n = 30, then estimators Uy rc, Upss, Ymss and Yprg are advantageous over the
other estimators. As expected, this is the only case where yp,795 is not subject to
the same amount of error as that of ypgg and ¥,,5g, i.-e. n/2 = 15 is an odd integer.
Moreover, the expected MSE of J-pgg is roughly 11 times larger, than that of the

favourable estimators.

(vi) All the other estimators, which were not mentioned in (i) to (v), are heavily sus-
ceptible to error. The expected MSE of gy p (which is the smallest of these least
preferable estimators) gets closer to the expected MSEs of the favourable estimators

as n increases, however, there is still a great difference when n = 30.

(vii) For the situation when k& = N/n is not an integer, there is no design which offers

good results, apart from BRS, which is only applicable when n = 14 is even.

For P3, we note that o2 = 50, which follows since the corresponding sin curve is such
that sin(7/2) = 1, sin(7) = 0, sin(37/2) = —1, sin(27) = 0, sin(bn/4) = 1, ..., resulting

~ ~

iny =10, yo =0, y3 = 10, y4 = 0, y5 = 10, ... and Y = 0, i.e. the population

L

size is divisible by the period = 4. Accordingly, by examining Table 8.4, we conclude the

following:

(i) If £ is an odd multiple of half the period, then the most preferable designs are LSS,
CSS, CESS, MSS and BMSS. The expected MSE of §pgg is given by 02/2 = 25,
since BSS reduces to the selection of two population units with different variate
values. We further note the relationship between the multiple-start designs to that
of the corresponding single-start designs. Consequently, if & = 10, then @S\?})LSS
and yﬁ’B mss are comprised of three linear systematic samples and three balanced
modified systematic samples, each of size n = 4, respectively. This sample size
corresponds to optimal cases for LSS and BMSS and thus yﬁf}ws and @S\‘?B MSS are

both favourable for this situation.

(ii) If k is an integral multiple of the period, then the most advantageous design is CESS.
For this situation, LSS reduces to a simple random sample of size one, resulting in

the expected MSEs of §;g5, Ycss and Yy gc, all being approximately equivalent to
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2. Moreover, the explanation for the expected MSE of 7z in (i) also applies here,
as well as for ¥);55. The expected MSE of y5,,59 is equivalent to that of ypgg and
Ynrss when k = 8 and slightly greater than that of Ypgg and ¥,;9g when k = 12
and 20 (i.e. n/2 is an odd integer).

(iii) The expected MSEs of Jppg and Ygurs are not approximately equal to zero, i.e.

by referring to (7.33), we note that o2 = 50 # (y; — Yars1-i)2/4 = 25.

From Table 8.5, we conclude that estimators Yrsg, Yoss, Ystrs YcESSs YBSSs UMSSs
Ysmsss Ysrs and Upgarps are all approximately subject to the same amount of minimum
error, when comparing all the estimators. The explanation of the optimality of MBMSS,
given for point (i) above, also applies here. We further note that MBMSS is always
favoured over MLSS, except for the case when n = 4, which results in both designs being
equivalent, i.e. n/m = 2.

If k£ is an integer, then by referring to Table 8.6, we conclude that the most preferable
sampling designs are LSS, CSS, CESS and MSS, under P5. Between these designs we can
further deduce that Yo pgg is susceptible to the least amount of error for most cases. For
the case where n = 20, the most advantageous designs are LSS and CSS. Moreover, ¥y po
is marginally subject to more error than that of yopgg, for the case where n = 40. If
k is not an integer, then y-gg is prone to the least amount of error for most cases. In
addition, as n increases, there is a greater reduction in the expected MSEs of 7y g and
Ynpss, when compared to all the other applicable estimators. More notably, the case
n = 21 results in a minimum expected MSE of estimator ¥y gg, while estimator ¥y pgg is
prone to the least amount of error if n = 35.

From Table 8.7, we note that y-pgg is on average susceptible to the least amount of
error, for the case where k is an integer. When compared to all the other estimators, the
expected MSE of 7,,4¢ is a minimum when n = 4, while the expected MSEs of 4y - and
Ypmss are minimum when n = 22. If k is not an integer, then CSS and NPSS are on
average the most advantageous designs. For the rearranged population, given by Table 8.8,
we see that the estimators related to CESS and YEC on average perform the best when
k is an integer, while the most favourable designs, for the case where k is not an integer,
are on average CSS and BRS. The performances of estimators yygg and yypgg are very
poor for small sample sizes and improve drastically as the sample size increases. More

notably, if n = 18 or n = 30, then the corresponding estimators are subject to minimum
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error, when compared to the other estimators. A major feature, when comparing Table

8.7 and Table 8.8, is the fact that in most instances, we obtain a reduction in the expected

MSE of the estimators, when rearranging the population. In addition, the expected MSEs

related to the SRS designs are constant, i.e. there is no efficiency gain by rearranging

the population, when conducting SRS. Notable increases in the expected MSEs, when

rearranging the population, are for Jopgg (n = 8, 11 and 16), Ypgg (n = 16), Yurgg

(n =

8), Jypc (n = 16), Uprgs (n = 22) and Yogg (n = 18 and 30). We may thus

conclude that by rearranging the population according to a correlated auxiliary variable,

we most likely will obtain a reduction in error, when estimating the population mean.

Further conclusions, which can be drawn from Tables 8.3 to 8.8, are noted as follows:

(i)

(i)

(iii)

(v)

If k£ is an integer, then 7 g is subject to the same amount of error as is association

with o4, for all populations.

The LSS design is usually preferred over the SRS designs, except when k is an integral
multiple of the period for P3 and when n = 8 for P6A. Furthermore, if n = 4, then

Ysrswor 1S prone to less error, when compared to ¥ gg, under P6A.

The LSS design offers a strict improvement over the STR design for P3 (when & is an
odd multiple of half the period), P5, P6A (when n = 11, 16 and 22) and P6B (when
n = 11 and 22). Approximate equivalence in the expected MSEs of 4; ¢g and §grp,

occur for P4. The STR design is favoured over LSS for all other populations/cases.

Under P2, the sample means for the designs from Chapter 5 are susceptible to less
error, when compared to that for LSS, SRSWR, SRSWOR and STR, except for the
case when n = 30, which results in STR being advantageous over CESS. Moreover,

we generally obtain the same result for P6B.

A key feature for the MLSS design is that the expected MSE of yg\}”g gg- for a sample
of size n, is approximately less than m times smaller than the expected MSE of
Yrss, for a sample of size n/m. Hence, if LSS is a favourable design for a sample of
size n/m, then we note that MLSS is a preferable design for a sample of size n. A

similar relation applies to MBMSS and BMSS.

Estimator §pgg performs poorly for all populations and in most cases offers no

advantage, in terms of a lower expected MSE, over the other estimators.
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(viii)
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The NSS and NPSS designs offer improvement over SRS when n is not small. The
rate of reduction in the expected MSEs of 3 ygg and ¥ pgg are greater than that of
Yspswr ad Yspswor, as n increases. For most populations, estimators 4 gg and
Ynpgs are usually subject to more error than estimator y;gg, while the opposite

holds true for P3, when £ is an integral multiple of the period.

Estimators Yppg and ¥ garpg are approximately prone to the same amount of error in
most cases. Furthermore, the associated designs are usually preferred over the SRS
designs for most populations. If k is an integral multiple of the period, then estimator
YpRs is susceptible to less error, when compared to ¥y g5, Ysrsw r and ygrg, for P3,
while estimator ygppg is marginally subject to more error than ygrgy p. Moreover,
if k£ is an odd multiple of half the period, then the balanced random designs are
preferred to STR and SRSWR, but are less favourable when compared to LSS and
SRSWOR, under P3. For P5, the LSS and STR designs are advantageous over the

balanced random sampling designs.

Table 8.9 represents the Monte Carlo simulations for the expected CLs associated with

the sample means, using the corresponding sampling designs for the populations under

consideration. The artificial populations are for a fixed sample of size n = 12, while the

natural population is for a fixed sample of size n = 16. We omit the CESS, since there is

no randomization involved with this design. By noting that the nominal rate is 95%, we

refer to Table 8.9 and conclude the following:

(i)

All estimators are able to produce expected CLs that are slightly above, or approx-

imately equivalent to the nominal rate, under P1 and P5.

For P2, all estimators generate an expected CL that is above the nominal rate, where

the associated Cls for estimators 7, g and Y gg will always contain Y.

Under P3, estimators 55\2/[)3 mss and Yy gg will almost surely exhibit Cls that will con-
tain Y, whereas the Cls associated with §zgg will always contain Y. The expected
CL for estimator yﬁ’ws is approximately 5 percentage points below the nominal
rate. In addition, the expected CL for estimators Ysrowr: Ystr, UyEc and Unpgs
are all slightly below the nominal rate, while all other estimators generate expected

CLs above the nominal rate.
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Table 8.9: Expected Confidence Levels Constructed Using the Estimators Associated with

The Sampling Designs

Population
Estimator
P1 P2 P3 P4 P5 P6A P6B
Y155 95.89 100 95.74 95.60 96.59 90.92 100
Yoss 95.89 100 95.71 95.62 96.58 90.89 100

VSRS R 9501  95.06 9491 9513 9506 9505  95.07
Usrswor | 95.04 9508 9507  95.06  95.02 9503  95.09

Ysrr 9499 9509 9487 9505 9508 9509  95.01
Uy EC 96.04 9596 9436  97.00 9653 100 100

Unss 95.73 9613 100 9598  96.18 100  90.84
Tniss 95.94 9595 9595 9587 9648  90.90 100
Unrss 95.86  96.00 9620 9617  96.54 100 100

Ty 9534 96.00  89.81 9586 9548  98.69  95.67
7 oo 9521 9533 9521 9532 9528  N/JA  N/A

U oes | 9534 9597 99.67 9533 9544 9653  96.09

_(3)
7 ss | 9523 9521 9522 9521 9530  N/A  NJ/A

Upss 9507  96.06  97.50  95.85 9547  97.23  97.43
Unss 9543 9654  99.78  96.25 9593  96.60  96.02
TN pss 0536 9579 9476  94.03 9554 3845  34.84
TnRs 9511  95.09  97.25 9507  95.07 9510  94.88
UBM RS 9513 9510  97.13  95.08 9513 9515  94.99

(iv) The expected CLs for estimators Uy pc, Upmss and Jygg are marginally advanta-
geous over the other estimators for P4. Apart from estimator § pgg, which produces
an expected CL of approximately 1 percentage point below the nominal rate, all other

estimators generate expected CLs which are slightly above the nominal rate, for P4.

(v) Under P6A, the corresponding Cls for estimators Uy pc, Upss, and Ugurgg will
always contain Y. In addition, the expected CL of estimator yg\?LSS is well above
the nominal rate, while the expected CLs associated with estimators ¥ gg, Yogg and
Ynrss are roughly 4 percentage points below the nominal rate. All other estimators,

apart from ¥ pgg, are able to generate expected CLs above the nominal rate.
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(vi) The CIs corresponding to estimators ¥rgs, Ucss, Uyrcs Umss and Ygurgg will
always contain Y, under P6B. Furthermore, the expected CL of estimator Fzgg is
roughly 4 percentage points below the nominal rate. All other estimators, apart
from Yy pgg, are able to generate expected CLs that are approximately close to the

nominal rate.

(vii) For the natural population, given by P6A and P6B, estimator 7y pgg performs very

poorly in providing a CI which contains Y.

(viii) The expected CLs associated with estimators Jy o and Jppsgg, are on average bet-

ter than that of all the other estimators, when considering all population structures.

A similar simulation study for the eight variance estimators in Section 6.1 can then be
obtained by using the expected bias of the estimators as a further comparative measure.
An example of such a study is given by Wolter (2007). Consequently, all the theory
discussed in Section 6.1 is supported by the numerical results provided by Wolter.

We next provide a comprehensive report on all the work coved in this thesis as well as

some remarks on future studies for the topic on hand.
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Chapter 9

CONCLUSIONS

The conventional systematic sampling design, also known as LSS, is often used for large
scale sampling (Arnab & North 2012), since it is simple to apply and further ensures a
more even spread of the sample over the listed population elements, as opposed to the case
when conducting SRSWR, SRSWOR or STR. However, there are shortcomings within the
systematic sampling context and a recap of the key disadvantages discussed earlier is as

follows:

(i) If N is not a multiple of n, then LSS will either result in variable sample sizes or
constant sample sizes that are greater than n. Consequently, the former situation
results in biased estimates of population parameters, while the latter situation is

undesired since sample sizes are usually fixed in advance.

(ii) LSS is susceptible to periodic distortions, since the process of selection can negatively

interact with the population structure where periodic characteristics are evident.

(iii) LSS is not the most preferred probability sampling design for populations that ex-

hibit linear trend.

(iv) Certain pairs of population units will have a zero probability of being selected in the
sample, which results in it being impossible to obtain an unbiased estimate of the

sampling variance, from a single sample.

In this thesis, we provided solutions to the above-mentioned shortcomings and as a result,
we generally introduced some modified systematic sampling designs. The designs that
aided us in solving problem (i) are the FIM and CSS. For problem (iii), we presented four

variations of systematic sampling (i.e. YEC, CESS, BSS, MSS) as well as a new proposed
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design known as BMSS. To tackle problem (iv), we first considered the application of
LSS and subsequently proposed eight estimators of the sampling variance, after which
we made assumptions on the population structure, so as to find the estimator with the
least amount of bias, under each underlying population structure. We then provided some
modified systematic sampling designs to solve problem (iv), given by MLSS, PSS, NSS,
NPSS and BRS, as well as two new proposed designs given by MBMSS and BMRS. The
notion of supplementing a systematic sample with independent sample(s) was suggested
for MLSS, MBMSS and PSS, while the supplementation of a systematic sample with a
dependent sample was suggested for NSS, NPSS, BRS and BMRS. We then numerically
tested the designs against each other, under various population structures, so as to find
the best design for each underlying population structure, i.e. we numerically provided a

solution to problem (ii).

9.1 Conclusions

The significant results obtained in this thesis are summarized as follows:

(i) The FIM and CSS are advantageous over LSS when k is not an integer, since the
former designs result in samples of fixed sample size n. We are thus able to obtain
unbiased estimates of the population parameters for the required sample size, when
applying the former designs, whereas this is not possible for LSS. In addition, the
FIM is more often than not equivalent to CSS, while discrepancies between the two
designs occur when 2N/n is an integer or when lem(N, k)< nk, which are rare in
practice. Moreover, the FIM and CSS reduce to LSS when k is an integer. The
usual CSS design, which uses a sampling interval of INT(N/n + 1/2), may result in
sampling units that coincide, so that we thus suggested using the sampling interval
given in (2.6) to obtain distinct sampling units, while ensuring an even spread of the

sample over the population.

(i) When conducting LSS, maximum precision of estimates is obtained when the pop-
ulation units that lie within the same systematic sample vary as much as possible,
i.e. the variance within the possible systematic samples is high, which consequently
is equivalent to saying that the difference between the possible systematic samples
that could be selected is as low as possible. Consequently, the sampling variance is

dependent on the arrangement of the population units from which the systematic
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samples are to be drawn. Evidence of this is given in (3.8), where Var(y;gg) varies
consistently with the ICC, which in turn largely depends on the ordering of popula-
tion units and the amount of correlation between successive population units. This is
in direct contrast to the SRS designs, where the arrangement of the population units
has no effect on the corresponding sampling variances. A summary on the efficiency

of LSS, when compared to SRSWR, SRSWOR and STR, is given as follows:

(a) For randomly ordered populations: LSS is expected to be equivalent to both
SRSWOR and STR, and more efficient than SRSWR.

(b) For populations that exhibit linear trend: LSS is more efficient than both SR-
SWR and SRSWOR, but less efficient than STR.

(c) For periodic populations: If k is an odd multiple of half the period, then
Var(yrgg) = 0 and thus LSS is more efficient than SRSWR, SRSWOR and
STR. On the other hand, if k is an integral multiple of the period, then
Var(7.g5) = o2 and thus LSS is less efficient than SRSWR, SRSWOR. and
STR.

(d) For auto-correlated populations: In the case of a positive convex decreasing
correlogram, LSS is more efficient than SRSWR, SRSWOR and STR. This
assumption applies for the cases where the correlograms are linear, exponential
and hyperbolic tangent, as well as for any process which is autoregressive and

has real roots, with respect to the characteristic equation.

(e) For stratified populations: stratified systematic sampling is more often than
not, more efficient than STR, for the case where strata are considered to be

large and more than one unit is to be drawn from each stratum for the sample.

(iii) In Chapter 5, we considered variations of the LSS design that are optimal for pop-
ulations that exhibit linear trend. Under the assumption that k is an integer, the

corresponding designs are summarized as follows:

(a) The YEC estimator inherits the LSS design, with the only difference being that
an estimate of Y is obtained by applying appropriate weights to the first and
last sampling units. As a result, we obtain a complete removal of the linear
trend component; however, the unevenly weighted sampling units result in a
larger error variance component. Consequently, this estimator is slightly biased

in practice. Nevertheless, preference is given to this estimator over ¥ gg.
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(b) CESS involves the selection of the centrally located linear systematic sample
and there is thus no randomization required. Consequently, some population
units have no chance of being selected for the sample when applying CESS, so
that Yo pgg is prone to exhibit an element of bias. A further disadvantage of
this estimation procedure is that it is impossible to provide an estimate of the

error associated with 7 pgg, when estimating Y.

(c) BSS entails reversing the order, with respect to the population unit numbers, of
every alternative set of k population units, before applying LSS on this balanced

arrangement. Estimator §pgg is consequently design unbiased.

(d) MSS divides the population into two groups and then reverses the population
units in the second group, with respect to their population unit numbers, i.e.
If n is even, then we reverse the order of the last n/2 sets of k populations and
if n is odd, then we reverse the order of the last (n — 1)/2 sets of k population
units. LSS is then applied to this modified arrangement. Estimator ¥,,gg is

consequently design unbiased.

(e) BMSS involves the application of MSS on a balanced arrangement, i.e. we
apply a balanced arrangement and then apply a modified arrangement, before
conducting LSS on this balanced modified arrangement. Estimator ¥z,,99 is

consequently design unbiased. BMSS reduces to LSS if n = 2.

For populations that exhibit a rough linear trend, estimators ¥y g and Yoggg are
generally expected to be subject to less error, when compared to estimators ¥y gg,
Yspswrs Usrswor and Yerp. Moreover, estimators ypgg and ;g9 are always
expected to be subject to less error than estimators ¥;sq, Ysprswrs Ysrswor and
Ygrr, for n > 2. On the other hand, estimator ¥z,,95 is prone to less error when
compared to the latter estimators if n > 2. When comparing these designs amongst
each other, we provide the following recommendations for the most appropriate

design(s), under the assumption of linear trend:
(a) if k is even and n/2 is an even integer, then it is best to use BSS, MSS, or
BMSS;
(b) if k is even and n/2 is an odd integer, then it is best to use BSS or MSS;

(c) if k is even and n is odd, then it is best to use YEC;
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if k is odd and n/2 is an even integer, then it is best to use CESS, BSS, MSS,
or BMSS;

if k is odd and n/2 is an odd integer, then it is best to use CESS, BSS or MSS;

if k£ is odd and n is odd, then it is best to use CESS.

(iv) If we maintain the usual systematic sampling design, then we need to construct

estimators, which are based on certain assumptions, to estimate Var(y;gg). These

estimators will be biased if the population exhibits some structure, other than ran-

dom. Accordingly, we constructed eight estimators (refer to estimators v; to vg

in Section 6.1.1) and tested them on various population structures. The following

recommendations are given for each population structure:

(a)

(b)

For randomly ordered populations: estimators v; to v7 are unbiased and are

thus preferred, while estimator vg is expected to be slightly biased.

For populations that exhibit linear trend: Estimators vy and vs are least bi-
ased and thus favourable. Estimators v4, vs and vg remove the linear trend
component and are thus not desirable since Var(7;gg) is a function of linear

trend. However, these estimators are unbiased estimators of Var [yB SS(n even)} ,

Var {yMSS(n even)} and Var [yB MSS(n/2 even integer) | and are slightly biased es-
timators of Var(gy o). It is impossible to obtain an estimate for the error

associated with Jopgg, when estimating Y.

For periodic populations: all estimators are heavily biased and we thus cannot

provide an adequate estimate of Var(ygg).

For auto-correlated populations: Estimator vg is most likely to exhibit the
smallest absolute bias and thus provides a good estimate of Var(y;gg). Fur-
thermore, estimator vg will likely provide an overestimate of Var(y;gg), while

all other estimators tend to underestimate Var(g;gg).

For stratified populations: Estimators v4, vs and vg are the least biased and are
thus most favoured. These estimators tend to eliminate the trend component
in the stratum means and are thus ideal since Var(yrgg) is not a function of
trend. If the trend component is non-linear, then estimator vg is preferred over

estimators v4 and vs.



(v)

(vii)
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MLSS and MBMSS involve the selection of m linear systematic samples and m
balanced modified systematic samples, respectively. We obtain more efficient results
if the m samples are selected using SRSWOR, as opposed to selecting them using
SRSWR. If LSS is a preferable design for a sample of size n/m, then we note that
MLSS is a favoured design for a sample of size n. The same relationship holds
true for BMSS and MBMSS. Equivalence between MLSS and MBMSS occurs when

n/m = 2, since LSS is equivalent to BMSS when n = 2.

PSS involves the supplementation of a linear systematic sample with an independent
sample, using SRSWOR. A natural weighted average of the corresponding sample
means provide efficient results, when estimating Y; however, the associated estimator
of the sampling variance (vi1) may assume negative values for this situation. An
unweighted average of the corresponding sample means will always result in v1; > 0;
however, we do not obtain efficient results when estimating Y for this scenario.
We are thus presented with a trade-off, where we can either have vi; that may
assume negative values and an estimate of Y that is subject to less error than that
of Ysrswonr, of v11 > 0 and an estimate of Y that is subject to more error than
Ysrswor- 1n Chapter 9, we noted that an unweighted average of the corresponding
sample means results in Fpgg being heavily subject to error, when estimating Y.

We thus conclude that PSS is not a desirable design.

NSS selects a continuous set of population units from the frame, chosen according
to a random start, and supplements these units with a dependent circular system-
atic sample, so that the selected units collectively form the new systematic sample.
Assumptions on the design to produce positive second-order inclusion probabilities
result in a restriction on n. A modified design known as NPSS, randomly selects a
sample space of size a from the frame, before selecting v units within this sample
space, using SRSWOR. These sampling units are then supplemented with a circular
systematic sample of size n — u, which is selected according to the randomly selected
sample space, so that all the selected units collectively form the new partially sys-
tematic sample. Furthermore, NPSS involves a modified selection of the circular
systematic sample, when compared to NSS, where appropriate values of k and u are
chosen to ensure distinct sampling units, as well as an even spread of the sample over

the population. The corresponding choices of v and k, along with the restrictions in
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Theorem 7.6, will not result in any limitations on n and thus NPSS is advantageous

over NSS on this basis.

(viii) BRS first selects n/2 units from the first N/2 population units, using SRSWOR,

before selecting units that occur at an equivalent position at the other end of the

population, i.e. we use a MSS pairing technique. BMRS divides the population

into n/4 groups and then uses the MSS pairing technique within each group, before

selecting two pairs of units for each group, using SRSWOR. BMRS thus reduces to
BRS when n = 4.

(ix) Three important characteristics, when comparing estimators of a specific population

parameter, are given as follows:

(A)
(B)

(€)

the best estimator will exhibit minimum MSE;

the best estimator will exhibit the highest percentage of Cls, which contains

the true population mean;

it must be possible to find an unbiased estimate of the corresponding sampling

variance of the estimator.

Accordingly, by comparing all the designs, we provide the following recommenda-

tions:

(a)
(b)

For randomly ordered populations: use any design, except SRSWR, and PSS.

For populations that exhibit linear trend: If k£ is an integer, then use either
BRS (if N and n are even), BMRS (if n/2 is an even integer) or MBMSS (if
n/m = 4). If these designs are inapplicable, then use the designs from Chapter
5, according to the recommendations in (iii)((a) to (f)), such that we are able
to satisfy both (A) and (C) if n is even (refer to (iv)(b)). Furthermore, if £ is

not an integer, then use NPSS (if n is not small), otherwise, use CSS.

For periodic populations: If mk is an odd multiple of half the period, then
use MBMSS, i.e. MBMSS is preferred over MLSS on the basis of (B). If the
assumptions that correspond to m are not true and k is an odd multiple of half
the period, then use LSS, CSS, CESS, MSS or BMSS, if preference is given to
(A) over (C), alternatively, use NPSS if preference is given to (C) over (A). If

the assumptions that correspond to m are not true and k is an integral multiple
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of the period, then use CESS if preference is given to (A) over (C), otherwise
use NSS if preference is given to (C) over (A).

(d) For auto-correlated populations: If k is an integer, then use CESS if preference
is given to (A) over (C), alternatively, use NSS if preference is given to (C) over
(A). Moreover, if we assume n to be large, then use NPSS if £ is not an integer,

otherwise use CSS if and only if preference is given to (A) over (C).

(e) For stratified populations: use STR, MBMSS (if n/2m is an even integer), BRS

(if N and n are even) or BMRS (if n/2 is an even integer).

(x) If we arrange a population in ascending/descending order according to an auxiliary
variable, then we obtain a population that approximately exhibits linear trend, where
the stronger the degree of correlation between the auxiliary variable and the variable
of interest, results in the rearranged population exhibiting a stronger degree of linear
trend. The designs in Chapter 5, as well as MBMSS, BRS and BMRS are then

optimal for this situation.

Finally, we note in passing that all the systematic sampling designs and variance
estimators require us to have knowledge of the population structure, so that we may
apply the most suitable design and/or variance estimator for the corresponding population
structure. In practice we are not given the population structure and thus, the onus is on the
survey statistician to gather as much information about the population as possible, prior
to sampling, so as to estimate the population structure. This may involve the building of
appropriate models, where we can then apply the most suitable design and/or variance

estimator, as presented in this thesis, according to the estimated population structure.

9.2 Future Studies

This thesis primarily focused on solving problems (ii) to (iv). For large scale sampling, we
are often presented with the scenario where IV is not a multiple of n, and thus problem
(i) often occurs in practical situations. For our future studies, we will thus provide: (a)
further designs to solve problem (i); (b) modifications to some of the designs presented in
this thesis; and (c) an extension to the BMRS design. A brief overview of such studies is

given as follows:



(i)

(iii)

(iv)

(v)
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Balanced modified circular systematic sampling:

This proposed design uses CSS on a balanced modified arrangement. We first divide
the population into n + 1 groups, such that the first n groups contain k£ population
units each and the last group is of size ¢, i.e. N = nk+c, 0 < ¢ < n. We then reverse
the order, with respect to the population unit numbers, of every alternative group.
Thereafter, we reverse the order of the last n/2 groups of units if n is even, otherwise
we reverse the order of the last (n + 1)/2 groups of units when n is odd. We then
apply CSS, with our proposed sampling interval in (2.6), to this balanced modified

arrangement, so as to obtain the balanced modified circular systematic sample.

Remainder balanced modified systematic sampling:

If £k = N/n is not an integer, then the population size can be expressed as N =
nk +c¢=(n—c)k+c(k+1), where 0 < ¢ < n. We then divide the population into
two groups, where the first group contains the first (n — ¢)k population units and
the second group contains the last ¢(k 4+ 1) units. Now, select (n — ¢) units with
a sampling interval of k in the first group, using BMSS. Also, select ¢ units with a
sampling interval of (k 4 1) in the second group, using BMSS. The selected units

then collectively form the remainder balanced modified systematic sample.

Multiple-start remainder balanced modified systematic sampling:

If there exists integers p and ¢, such that (n — ¢)/p and ¢/q are integers, then we
select p balanced modified systematic samples of size (n — ¢)/p from the first group
and supplement this with ¢ balanced modified systematic samples of size ¢/q in the
second group, using the groups and sampling intervals in (ii). This design results in
an unbiased estimate of the associated sampling variance, since every possible pair

of population units will have a chance of being selected for the sample.

New partially balanced modified systematic sampling:
By referring to Section 7.2.1, we select the n — u sampling units for the sample S},

using balanced modified circular systematic sampling, as discussed in (i).
Further methodologies for BMRS are given as follows:

(a) If n/2 is an odd integer: We first group the first set of 2k population units
with the last set of 2k population units, the second set of 2k population units

with the second last set of 2k population units, and so forth, such that the first
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(n — 2)/4 groups each contain 4k population units and the last group contains
2k population units. Apply BMRS on the first (n—2)/4 groups to select (n—2)
sampling units and then supplement these sampling units with two units from
the last group, which are selected using SRSWOR. It should be noted that if
n = 2, then BMRS reduces to MSS.

(b) If n = 3: For this situation, we view the entire population as a group. We then
select two units using MSS and supplement these units by randomly selecting

a unit from the remaining N — 2 population units.

(c) If n # 3 and (n+1)/2 is an even integer: We use the grouping method defined
in (a), such that the first (n — 3)/4 groups each contain 4k population units
and the last group contains 3k population units. We then apply BMRS on the
first (n — 3)/4 groups to select (n — 3) sampling units and supplement this with

three units from the last group, according to (b).

(d) If (n+1)/2 is an odd integer: We use the grouping method defined in (a), such
that the first (n — 5)/4 groups each contain 4k population units and the last
group contains 5k population units. Next, apply BMRS on the first (n — 5)/4
groups to select (n—5) sampling units. We then use the MSS pairing technique
for the last group, before randomly selecting two pairs of units using SRSWOR
and then supplement this with a randomly selected unit from the remaining

5k — 4 population units.

(vii) Balanced modified systematic sampling with end corrections (BMSSEC):
By applying weights to the first and last sampling units of Jz,,99 when n/2 is not
an even integer, we obtain an estimator that completely removes the linear trend
component. The corresponding estimator will exhibit a lower MSE, when compared

to Ygargs for this scenario. This estimator is given in the next theorem.

Theorem 9.1: The BMSSEC estimator of Y with random start i, for i € {1,...,k}, is

given as
[(zn + x1) — K]
n(x, — 1)

YpMmssEC = Upmss + (Y1 — Yan) > (9.1)

where K =n(N +1)/2 — Z?:_QI xj and x1, ..., x, are the population unit numbers of the
sampling units, when conducting BMSS, which are arranged in ascending order, e.g. if the

balanced modified systematic sample is y7, yo and y1o then x1 = 2, xo = 7 and x5 = 12.
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Proof: An estimate of Y with random start 4, for i € {1, ..., k}, is given as

(n—1)

_ 1
Upmssec = | V1Yo + > Yy + Yot | (9.2)
j=2

where 11 and o are the weights applied to the first and the last sampling units, respec-
tively. By substituting (4.5) into (9.2) and then equating this result to (4.6), we obtain

(n—1)

_ 1 b(N +1
Taussio =+ | (@t be) £ (a+bey) 4 (a+bra) | =a+ WD o)
j=2
By equating the coefficients of a in (9.3), it follows that
Y1 =2—1s. (9.4)
Similarly, by equating the coefficients of b in (9.3), we obtain
(n—1)
1 N+1
” Y11 + Z T+ Yoy, | = - (9.5)
7j=2
Substituting (9.4) into (9.5) results in
(n—1)
2|22 — Yomy + Y+ on | =n(N+1),
j=2
which simplifies to
K -2z
thy = =1 (9.6)
In — T1

The weight applied to the first sampling unit is thus obtained by substituting (9.6) into

(9.4), such that
2x, — K
= ——. (9.7)

ITn — T1

We thus conclude the proof by substituting (9.6) and (9.7) into (9.2), i.e

_ 1| (22, — K 2:31)
Ypmssec = F— ywl + Zyw] 1) Yzn
o 1 (an—K) (K —211)
=YBmss + [ (n — 1) Yz, + (@n — 1) Yz = Yz1 = Yzu
_7 1 [{Q:UnK(xnxl)} {K —2x1 — (z, — x1)} }
BMSS (xn — 301) 1 (J:n _ le) Tn
o {(xn + 1) — K}
=VYpmss T (@n — 1) (Y21 — Yo »

where Yg, + Z 1 Yo; T Yz, = Z;;l Yz; = NYBMSS-
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In closing, we note that this thesis specifically dealt with systematic sampling with an
equal probability of selection. However, it may be advantageous to conduct systematic
sampling with unequal probabilities, i.e. to consider the situation where each population
unit has an auxiliary variable of size attached to it. The systematic sample would then
be selected in a way that ensures that the probability of selection is positively correlated
with the size measures of the items. This is commonly referred to as pps (probability
proportionate to size) systematic sampling. Moreover, we only considered sampling in one-
dimension. Systematic sampling is often used for spatial sampling. The usual systematic
sampling problems, which were presented in this thesis, also applies to these fields, so
that we may translate the designs and theory discussed in this thesis to pps systematic
sampling and spatial systematic sampling, so as to find the suitable solutions for the

problems within these fields.
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