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Abstract

The impossibility to reach an entire population, owing to time and budget constraints,

results in the need for sampling to estimate population parameters. There are various

methods of sampling and this thesis deals with a specific method of probability sampling,

known as systematic sampling. Problems within the systematic sampling context include:

(i) If the size of the population is not a multiple of the size of the sample, then conven-

tional systematic sampling (also known as linear systematic sampling) will either result in

variable sample sizes, or constant sample sizes that are greater than required; (ii) Linear

systematic sampling is not the most preferred probability sampling design for populations

that exhibit linear trend; (iii) An unbiased estimate of the sampling variance cannot be

obtained from a single systematic sample. I will attempt to make an original contribution

to the current body of knowledge, by introducing three new modified systematic sampling

designs to address the problems mentioned in (ii) and (iii) above.

We will first discuss the measures to compare the various probability sampling designs,

before providing a review of systematic sampling. Thereafter, the methodology of linear

systematic sampling will be examined as well as two other methodologies to overcome

the problem in (i). We will then obtain efficiency related formulas for the methodologies,

after which we will demonstrate that the efficiency of systematic sampling depends on

the correlation of the population units, which in turn depends on the arrangement and

structure of the population. As a result, we will compare linear systematic sampling

with other common probability sampling designs, under various population structures.

Further designs of linear systematic sampling (including a new proposed design), which are

considered to be optimal for populations that exhibit linear trend, will then be examined

to resolve the problem mentioned in (ii). Thereafter, we will tackle the problem in (iii)

by exploring various strategies, which include two new designs. Finally, we will obtain

numerical comparisons for all the designs discussed in this thesis, on various population

structures, before providing a comprehensive report on the thesis.

Keywords: linear systematic sampling; intra-class correlation coefficient; super-population

model
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Chapter 1

INTRODUCTION

1.1 Overview of Sampling

Statistics involves the study of collecting, organizing, analysing, interpreting, explaining

and presenting of data. Governments, clientele, medical agencies, institutions and organi-

zations (both profit and non-profit) regularly use statistics to influence decision-making,

such as deciding between different options, strategizing, implementing new policies, re-

viewing current policy situations, etc.

Once a problem has been identified and is presented to a statistician, he/she must then

develop a workable goal before designing the research approach. Collection of appropriate

data is then followed by the suitable analysis of the data and finally the findings are

reported thereon. The above-mentioned phases of the research cycle are interdependent

and are not unrelated. Failure to implement a good research design results in inefficient

data collection methods, which in turn results in unfavourable data analysis and finally

leads to an incorrect research report. It is clear that each phase of this research cycle is

vital. We will now take a closer look at the data collection phase.

There are three fundamental types of statistical investigations, namely, surveys, ex-

periments and observational studies. Each of these provides a different platform for data

collection. Some examples of data collection methods are questionnaires, case studies,

behaviour observation checklists, performance tests, etc. More often than not, one can-

not collect data from an entire population (group of data that contains all the possible

units that one is interested in investigating) owing to time constraints, money constraints

and the common problem of it being virtually impossible to reach an entire population

at a specific point or period in time. Consequently, we usually opt to draw a sample



2

from a population, where a sample is defined as a selected group of units/subset from

the population. Typically, we denote the population size by N and the sample size by

n, with N > n. To make generalizations about a population, based on results from the

sample, one needs to ensure that the sample is representative of the population. In other

words, the characteristics of the sample should accurately reflect the characteristics of the

population. Two conditions for drawing a representative sample are that (i) the sample

must be of sufficient size so as to capture all aspects of the population and (ii) should be

drawn in such a way so as to reduce bias, where bias is defined as the distortion of sample

characteristics from the corresponding population characteristics.

A particular sampling design is generally employed to draw a sample that provides

an estimate of a population parameter by means of a sample statistic, also known as an

estimator. A point estimator, which is calculated from the sample data, is a single value

that is used to estimate the population parameter.

An estimator is unbiased if its expected value is equal to the population parameter,

otherwise it is referred to as being biased. For a biased estimator, the level of bias is

the difference between the expected value of the point estimator and the true value of

the population parameter. Accuracy is a term that is related to bias, such that unbiased

estimators are on average equal to the population parameter and are thus considered to

be perfectly accurate estimates of the population parameter.

Furthermore, a point estimator is a variable and therefore has a distribution, where the

variance (or precision) of the point estimator, also known as the sampling variance, tells

us by how much the point estimator varies from sample to sample. One may obtain more

than one unbiased estimator of the population parameter (i.e. unbiased estimators of a

population parameter are not unique) and the comparison of these corresponding sampling

variances is then used to find the most precise estimator, i.e. the unbiased estimator with

the lowest variance. The most precise unbiased estimator, which yields optimum results,

will thus exhibit minimum variance as well as give the correct estimate of the corresponding

population parameter on average and subsequently offer the most information about that

population parameter, based on the sample. In addition, the relative efficiency between

two point estimators is given as the ratio of their variances, i.e. the relative efficiency of

point estimator a, when compared to point estimator b, is given as the variance of point

estimator b divided by the variance of point estimator a. If this value is less than one,

we can then deduce that point estimator b is preferred to point estimator a, while a value
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for the mentioned ratio which is greater than one, would imply that point estimator a is

preferred to point estimator b. This measure is most effective when both point estimators

are unbiased, or if both estimators exhibit the same degree of bias.

It should be noted that while unbiased (or accurate) estimators are desired, there

may exist cases where biased estimators provide more information about the associated

population parameter than unbiased ones, since certain biased estimators which exhibit a

low level of bias, may offer a higher degree of precision than its counterparts. This resulting

effect is thus a trade-off between accuracy and precision. A measure that captures this

trade-off is known as the mean square error (MSE) of the point estimator and is usually

used when comparing point estimators, where one or more of these point estimators are

biased. The MSE of a point estimator is found by taking the sum of the variance of

the associated estimator (measure of precision) and the squared bias of the corresponding

estimator (measure of accuracy), such that preference is given for an estimator which

exhibits a minimum MSE.

An interval estimate uses a range of values with two endpoints, such that the population

parameter is likely to fall within the specified range. An example of an interval estimate is

a confidence interval (CI), which is calculated from the point estimator and measures the

precision of the point estimator in estimating the population parameter. The explanation

of a 95% CI, where 95% is the confidence level (CL), is given as follows: If a sample was

repeatedly drawn many times, according to a particular sampling design, where each time

we calculated the point estimator and the corresponding CI for the associated population

parameter, then we would expect that in 95% of the cases, the population parameter

would lie within the CI. It should be noted that a narrower CI denotes a more precise

point estimator, as the variance of the estimator has an inverse effect on the width of the

CI. Three factors that affect the width of the CI are (i) the sampling variance, (ii) the size

of the sample and (iii) the CL. A lower sampling variance, which results in a narrower CI,

can be achieved by employing a sampling design which obtains samples that are relatively

similar, i.e. smaller variation between samples. Alternatively, one can increase the size of

the sample to achieve a narrower CI, but larger sample sizes incur greater costs, so that one

needs to balance this trade-off. A higher CL will result in an increased probability that the

population parameter will lie within the CI, such that a wider CI is needed, hence one also

needs to balance this trade-off. For practical situations, the sampling variance is unknown

and is thus estimated from the sample, so that we then construct the corresponding CIs
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according to this estimate.

It is thus of paramount importance to explore the effects of the various sampling designs

on the level of bias, variance, MSE and CI of the associated point estimators, as well as

the ability to produce an unbiased estimator of the corresponding sampling variance, when

attempting to estimate the required population parameter. We will now take a closer look

at the various probability sampling designs that can be employed for the estimation of

population parameters.

There are various probability sampling designs to draw a representative sample, e.g.

simple random sampling (SRS), stratified sampling, cluster sampling, systematic sampling

etc. SRS involves randomly selecting a sample of size n from a population of size N , such

that each population unit has an equal chance of selection for the sample, at each stage

of the random selection. Simple random sampling with replacement (SRSWR) randomly

selects a population unit for the sample, notes/records it, and then replaces it into the

population to be eligible for the next random selection. There is thus a possibility that

sampling units may be repeated when conducting SRSWR, since the population units

that are selected for the sample are replaced, thus having a chance of being selected

again in the random selections that follow. Simple random sampling without replacement

(SRSWOR) is a slight adaption of SRSWR, which ensures a sample of distinct population

units, because it randomly selects each population unit for the sample, as in the case

of SRSWR, but now without replacing it before the next random selection. Stratified

sampling involves dividing the entire population into subgroups (strata) according to some

characteristic and then a particular form of random selection is independently carried

out within each subgroup (stratum), such that the randomly selected population units

for all the strata collectively form the stratified sample. It should be noted that if a

simple random sample (with or without replacement) is drawn from each stratum, then

this sampling design is termed as stratified random sampling (STR) and the randomly

selected population units for all the strata collectively form a stratified random sample.

Cluster sampling entails dividing the population into groups (clusters) and then randomly

selecting entire clusters, so that the selected units within the clusters collectively form a

cluster sample. Systematic sampling involves randomly selecting a population unit from

the first k population units and selecting every kth population unit thereafter, such that

the selected population units collectively form a systematic sample with sampling interval

k, where the value of k is found by dividing the population size (N) by the sample size
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(n). It can be further noted that if we were to draw independent systematic samples from

each stratum, then the corresponding sampling design is termed as stratified systematic

sampling and the randomly selected population units for all the strata collectively form a

stratified systematic sample (this will be discussed later in Section 4.2.5).

Figure 1.1 visually depicts the differences between SRSWOR, STR, cluster sampling

and systematic sampling, where each design selects a sample of n = 20 integers from a

population of N = 100 integers {1, ..., 100} (Lohr 2010, p.27). We omit SRSWR, since we

wish to make comparisons where the sample obtained for each design contains n distinct

sampling units. However, we can expect the results to be similar to that of SRSWOR.

The stratified random sample is obtained by first dividing the population into 10 strata

of equal size, such that the first strata contains the integers from 1 to 10, the second strata

contains the integers from 2 to 20, and so forth. Two integers are then selected from

each stratum, using SRSWOR, and these randomly selected integers collectively form the

stratified random sample. The cluster sample is obtained by first dividing the population

into 20 clusters of equal size, such that the first cluster contains the integers from 1 to 5,

the second cluster contains the integers from 6 to 10, and so forth. Four clusters are then

selected using SRSWOR and the integers within these clusters collectively form the cluster

sample. A systematic sample is obtained by randomly selecting an integer from the first

5 integers (i.e. k = N/n = 100/20 = 5) and then selecting every fifth integer thereafter.

In the example given in Figure 1.1, the integer 3 was randomly selected and thereafter

every fifth value, i.e. 3, 8, 13, ..., 98. From Figure 1.1, it follows directly that a systematic

sample ensures a more even spread of the sample over the entire population, as compared

to the other probability sampling designs, for the population under consideration.

All the theory discussed thus far is a representation of the authors’ understanding,

which is interpreted from a variety of sources and can be broadly found in any standard

introductory chapter on sample survey, e.g. Kalton (1983), Lehtonen & Pahkinen (2004),

Lohr (2010), etc.

This thesis narrows the study to focus on the performance of systematic sampling for

various population structures, while making comparisons to the other probability sampling

designs mentioned above, as well as the designs which will be introduced later on.
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Figure 1.1: Graphic depiction of common probability sampling designs, when drawing a

sample of 20 integers from a population of 100 integers {1, ..., 100}

1.2 Systematic Sampling

Comprehensive theoretical discussions on systematic sampling were initially provided by

Madow & Madow (1944), Cochran (1946) and Yates (1948). Systematic sampling is

commonly used in forestry, land use/cover area frame surveys, census, record sampling

and for household and establishment surveys (Murthy & Rao 1988). Some applications of

systematic sampling for forestry are provided by Hasel (1938), Finney (1948) and Zinger

(1964), while applications for land use/cover area frames are given by Osborne (1942),
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Dunn & Harrison (1993) and D’Orazio (2003). Other examples of systematic sampling

are provided in the fields of soil sampling (see Manson (1992) and Jacobsen (1998)) and

environmental studies (see McArthur (1987) and NRC (2000)). Good summaries for the

topic under consideration are given by Murthy (1967), Cochran (1977), Iachan (1982),

Bellhouse (1988) and Murthy & Rao (1988).

Systematic sampling entails the following: Suppose that a sample of n units is to be

selected from a population of size N using systematic sampling. The first step is always

to present the population as a ”frame” (set of all possible sampling units), with each

population unit to be identified by a unique identifier, say unit number 1, unit number

2, ..., unit number N . A simple way to draw this sample would then be to determine a

suitable sampling interval, say k, and to select units at equal intervals on the frame, where

the value of k is found by dividing N by n. For example, if k = 5, then a unit is randomly

selected from the frame, along with every fifth unit thereafter. More specifically, a 1-in-k

systematic sample is obtained by randomly selecting a unit from the first k units in the

frame and every kth unit thereafter. Another simple way to look at systematic sampling

is that we are dividing the population into k possible samples and then selecting one of

these samples at random. We next discuss some of the merits and shortcomings of using

systematic sampling, as opposed to other probability sampling designs.

1.2.1 Advantages of systematic sampling

Some advantages of systematic sampling were noted by Daniel (2012) as follows:

(i) Systematic sampling is considered to be straightforward and inexpensive.

(ii) Systematic sampling is generally the preferred probability sampling design when

there is a list of names or items available, in particular, for the case when records

are numbered consecutively, or when population units can be ranked consecutively

by attaching an integer to each of them.

(iii) Systematic sampling is often an economical design when the selection procedure is

done manually, since only one randomization is required to select the first sampling

unit and that particular sampling unit defines the sample, whereas in the case of

SRSWR, SRSWOR and STR, we require n randomizations and this can be time-

consuming for large sample and population sizes.
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Moreover, systematic sampling provides a useful alternative to SRS, since (Scheaffer,

Mendenhall & Ott 1995):

(i) Systematic sampling is much simpler to practise in the field and hence is less likely

to have selection errors by field-workers, particularly if there is no good frame.

(i) Systematic sampling often supplies us with greater information per unit cost for

populations with certain patterns in the arrangement of units.

Systematic sampling is usually more precise than SRS, since a systematic sample is more

likely to contain units which are spread more evenly over the population as listed in the

frame, when compared to the sampled units in a simple random sample, as shown in the

earlier example.

1.2.2 Disadvantages of systematic sampling

The key shortcomings when conducting systematic sampling are that:

(i) If N is not a multiple of n, then systematic sampling will either result in variable

sample sizes or constant sample sizes that are greater than n. Consequently, the

former scenario results in biased estimates of the population parameters, while the

latter scenario is undesired since sample sizes are usually fixed in advance. These

scenarios will be extensively discussed in Chapters 2 and 3.

(ii) Systematic sampling is susceptible to periodic distortions, since the process of selec-

tion can interact with a population that exhibits periodic characteristics.

Example 1.1: If there is a sampling frame containing adult residents in an area

that consisted only of couples and a list is arranged as husband, wife, husband, wife

etc. Now, if every tenth person is to be sampled, then the sample chosen will be

only husbands or only wives.

So, if a sampling design coincides with the periodicity of that characteristic, then

the sampling design is considered to be non-random and the common property of

systematic sampling being random is then compromised. A further discussion on

this will be given in Chapter 4.

(iii) Systematic sampling is not the most preferred probability sampling design for pop-

ulations that exhibit linear trend, as discussed in Chapter 4.



9

(iv) Certain pairs of population units will have a zero probability of being selected in the

sample, which results in the estimation of the sampling variance being more complex

(Daniel 2012). This disadvantage will be further explained in Chapter 6.

The fundamental aims of this thesis are to tackle these disadvantages, which will more

often than not result in us providing modified systematic sampling designs. One may

solve the disadvantage in (iv) by opting to maintain the conventional systematic sampling

design, as shown in Chapter 6.

1.2.3 Scope of thesis

This thesis is divided into nine chapters. Chapter 2 discusses the methodology of the

systematic sampling design, as well as discussing two common designs for dealing with

the disadvantage in (i), i.e. the fractional interval method (FIM) and circular system-

atic sampling (CSS). In Chapter 3, we obtain an estimate for the population mean, the

corresponding sampling variance and the intra-class correlation coefficient (ICC), when

conducting either systematic sampling or CSS. The corresponding sampling variance ob-

tained in Chapter 3 will then be used in Chapter 4, where we will compare the efficiency

of systematic sampling to the other probability sampling designs, for various population

structures. The population structures that will be discussed are populations in random

order, populations that exhibit linear trend, periodic populations (solution to the disad-

vantage in (ii)), auto-correlated populations and stratified populations. Chapter 5 deals

with various designs of systematic sampling, which are optimal for populations that ex-

hibit linear trend, i.e. Yates end corrections method (YEC), centered systematic sampling

(CESS), balanced systematic sampling (BSS), modified systematic sampling (MSS) and

a new proposed design termed as balanced modified systematic sampling (BMSS). Error

comparisons for each design to all the previously discussed designs are obtained, so as to

solve the disadvantage in (iii). The problem of estimating the sampling variance will then

be explored in Chapters 6 and 7, where various approaches (which include a new design

for each chapter) are examined. Strategies to tackle the disadvantage in (iv) are to: (i)

construct slightly biased variance estimators based on certain assumptions; (ii) supple-

ment the systematic sample with independent sample(s); (iii) supplement the systematic

sample with a dependent sample. We will examine strategies related to (i) and (ii) in

Chapter 6, while strategies related to (iii) will be examined in Chapter 7. In Chapter 8,

we provide numerical analysis for all the designs discussed, by considering various popula-



10

tion structures. Finally, in Chapter 9 we pool all the theory and results from the previous

chapters with a concluding comprehensive report of the different aspects and variations of

systematic sampling.



11

Chapter 2

METHODOLOGY

The theory behind systematic sampling for the case where the sampling interval k=N/n is

an integer (or if N is a multiple of n) is fairly straightforward, since all possible systematic

samples are of size n. However, the theory behind systematic sampling for the case where

k is not an integer (or if N is not a multiple of n) is a bit more complex, since systematic

samples sizes may vary. The two common methods that alleviate the problem of variable

sample sizes are the FIM and CSS. Both of these methods will be discussed in detail later

on in this chapter.

Before discussing the methodologies, we first need to develop some notation which will

be used throughout this thesis. For a population of size N , we respectively denote the

population units and the corresponding variate values by Ui and yi, for i ∈ {1, ..., N}. A

variate value is defined as a single value that is usually a number (quantitative), which is

a reading on our variable of interest, taken on the corresponding population unit. In this

notation we use Y to denote our general variable of interest, which is associated with the

variate values of each population unit, i.e. the variate value y5, correspondingly represents

the variate value of the fifth population unit (U5), which denotes the particular value for

this population unit that is associated with the variable of interest (Y ).

Example 2.1: Suppose that we are interested in the average amount of household income

for a given population. The population units will be the households and each household

has a corresponding variate value (i.e. income) attached to it. These variate values are

associated with our variable of interest, which is the average amount of household income

for the population.

The theory presented in this chapter is a representation of the authors’ understanding

of the corresponding literature, interpreted from a variety of sample survey sources (see
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Kish (1965), Murthy (1967) and Särndal et al. (2002)) and where minor contributions to

the field are made, this will be clearly indicated in the text.

2.1 Case (A): If k =N/n is an Integer

Suppose that we are to draw a sample of size n from a population of size N , using

systematic sampling, where k is an integer. The corresponding methodology is given as

follows:

(i) Randomly select an integer between 1 and k, say i, where 1 ≤ i ≤ k.

(ii) The sample units chosen will be those elements with population unit numbers given

by

i+ (j − 1)k, for j = 1, ..., n. (2.1)

This process of selecting a systematic sample is known as linear systematic sampling (LSS).

This particular method of selection is commonly known as the restricted selection method,

since the selection of the first sampling unit is at random and restricted to the first k

population units, i.e. the first sampling unit is chosen by a random selection from the first

k population units.

Table 2.1 contains a list of possible values of random start i along with the corre-

sponding sample outcomes, when selecting a sample of size n from a population of size N ,

using LSS when k is an integer. From Table 2.1, it is clear that the selection of the first

population unit automatically determines the entire sample.

Table 2.1: Samples for possible values of i using LSS, where k is an integer

Possible values of i Sample

i = 1 S1={U1, U1+k, U1+2k, ..., U1+(n−1)k}
...

...

i = h Sh={Uh, Uh+k, Uh+2k, ..., Uh+(n−1)k}
...

...

i = k Sk={Uk, U2k, ..., Unk}
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Another way of looking at systematic sampling is to take into account that the entire

population of size N is equally divided into k sampling units, each of size n. The process of

selecting a systematic sample is thus equivalent to selecting one of these k sampling units

at random. Systematic sampling is thus a form of cluster sampling, where each possible

systematic sample can be viewed as a cluster.

For a given numbering of the population units, we are thus selecting one cluster of units

from the k possible clusters, with a probability of 1/k. Note that all the clusters collectively

form the entire population, where we select one cluster at random. Each population unit

(Ui) belongs to one and one cluster alone. Hence, the probability of selecting a cluster (i.e.

P(Cluster is selected) = 1/k, for all i ∈ {1, ..., k}) is also the probability that a particular

population unit is selected. The first-order inclusion probabilities are thus given by

πi = P(Ui is selected in the sample) = 1/k, for all i ∈ {1, ..., N}.

We have therefore demonstrated that systematic sampling is a probability sampling de-

sign, as it is possible to determine the probability of selection of each population unit.

Furthermore, if for some i, j ∈ {1, ..., N}

πij = P(Ui and Uj are both selected for the sample),

then for all i, j ∈ {1, ..., N}, the second-order inclusion probabilities are given by

πij =


0 if Ui and Uj are in different clusters,

1/k if Ui and Uj are in the same cluster.

This demonstrates that it is impossible to have certain pairs of population units within

the same systematic sample. The implications of this result will be shown in Chapter 6.

2.2 Case (B): If k =N/n is not an Integer

If N is not a multiple of n, then we may represent this by N = nk + c, where 0 < c < n.

Now, if c/k is an integer, then by conducting LSS with a sampling interval of k, we obtain

samples of fixed size given by n + c/k. As a result, this reduces to the LSS design given

in (2.1), where the sample sizes are now n + c/k. This scenario is demonstrated by the

following example.

Example 2.2: Suppose that we have a population of size N = 27 and we wish to draw

a sample of size n = 7, using LSS. We thus note that k = 3 and c = 6, thus satisfying
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N = nk + c and 0 < c < n. The possible systematic samples are then defined as:

(i) S1 = {U1, U4, U7, U10, U13, U16, U19, U22, U25}, for i = 1;

(ii) S2 = {U2, U5, U8, U11, U14, U17, U20, U23, U26}, for i = 2;

(iii) S3 = {U3, U6, U9, U12, U15, U18, U21, U24, U27}, for i = 3.

We thus obtain possible samples of constant size n+c/k = 7+6/3 = 9. The corresponding

sample size is greater than the desired size and this is unadvisable since sample sizes are

usually fixed in advance owing to budget constraints. Moreover, if c/k is not an integer,

then by conducting LSS with a sampling interval of k, we obtain samples of variable size

given by either n+INT(c/k) or n+INT(c/k)+1, where INT(a) is defined as the first integer

before a. This is demonstrated by the following example.

Example 2.3: Suppose that we have a population of size N = 19 and we wish to draw

a sample of size n = 5, using LSS. We thus note that k = 3 and c = 4, thus satisfying

N = nk + c and 0 < c < n. The possible systematic samples are then defined as:

(i) S1 = {U1, U4, U7, U10, U13, U16, U19}, for i = 1;

(ii) S2 = {U2, U5, U8, U11, U14, U17}, for i = 2;

(iii) S3 = {U3, U6, U9, U12, U15, U18}, for i = 3.

We thus obtain variable sample sizes of either n + INT(c/k) = 6 or n + INT(c/k) + 1 =

7. As discussed in Chapter 1, a representative sample would require a fixed sample of

sufficient size, such that samples with variable size may over-represent or under-represent

the population. As a result, LSS with variable sample sizes results in biased estimates of

population parameters (refer to Section 3.2) and is thus not an advisable approach. It

should be noted that the probability of selecting a particular population unit is given as

1/k = 1/3, irrespective of whether Ui belongs to a sample of size n = 6 or a sample of size

n = 7, since only one sample is randomly selected from the k = 3 possible samples and

each population unit falls into one of these k = 3 samples only.

In light of the above discussion, various strategies have been proposed over the years,

for the case when k is not an integer, such that all samples are of fixed sample size n. Two

common strategies are to (i) conduct systematic sampling such that the sampling interval

has a fractional value (termed as the FIM) and (ii) to conduct systematic sampling in a

circular fashion, which is termed as CSS. We will now discuss these two approaches.
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2.2.1 Fractional interval method

This method was introduced by Kish (1965) and further investigated by Murthy (1967).

It selects a linear systematic sample by giving k a fractional value, where k = N/n and n

is a fixed sample size. A random number, say i, is selected from the uniform distribution

on the interval (0, k]. The sample units chosen will be those elements with population unit

numbers given by α, where

α− 1 < i+ (j − 1)k ≤ α, for j = 1, ..., n. (2.2)

This is best demonstrated by the following example.

Example 2.4: Suppose that we have a population of size N = 14 and we wish to

draw a sample of size n = 3, using the FIM. For this situation, the sampling interval is

given by k = 14/3. Next, suppose that a random number i = 1/5 is selected from the

uniform distribution, on the interval (0, 14/3]. By applying (2.2), we thus conclude that

the population unit numbers 1, 5 and 10 are respectively chosen. The systematic sample,

for the above situation, is subsequently given as Si = {U1, U5, U10}. This is demonstrated

graphically in Figure 2.1.

Figure 2.1: Selecting a sample of size 3 from a population of size 14, using the FIM with

i = 1/5

The remainder of this subsection is solely due to the author. Table 2.2 contains a list of

possible values of random start i along with the corresponding sample outcomes, when

selecting a sample of size n = 3 from a population of size N = 14, using the FIM. From

Table 2.2, it follows that each distinct sample is given by the interval

(t− 1)/n < i ≤ t/n, for t = 1, ..., N. (2.3)



16

Table 2.2: Samples for possible values of i using the FIM, where N = 14 and n = 3

Possible values of i Sample

0 < i ≤ 1/3 S1={U1, U5, U10}

1/3 < i ≤ 2/3 S2={U1, U6, U10}

2/3 < i ≤ 1 S3={U1, U6, U11}

1 < i ≤ 4/3 S4={U2, U6, U11}

4/3 < i ≤ 5/3 S5={U2, U7, U11}

5/3 < i ≤ 2 S6={U2, U7, U12}

2 < i ≤ 7/3 S7={U3, U7, U12}

7/3 < i ≤ 8/3 S8={U3, U8, U12}

8/3 < i ≤ 3 S9={U3, U8, U13}

3 < i ≤ 10/3 S10={U4, U8, U13}

10/3 < i ≤ 11/3 S11={U4, U9, U13}

11/3 < i ≤ 4 S12={U4, U9, U14}

4 < i ≤ 13/3 S13={U5, U9, U14}

13/3 < i ≤ 14/3 S14={U5, U10, U14}

The next example shows that in some cases we obtain samples that coincide, when

applying the interval given by (2.3).

Example 2.5: Suppose that we have a population of size N = 10 and we wish to draw

a sample of size n = 4, using the FIM. For this situation, the sampling interval is given

by k = 10/4. Table 2.3 contains a list of possible values of random start i along with the

corresponding sample outcomes, when selecting a sample of size 4 from a population of

size 10, using the FIM, where each interval is as defined by (2.3).

It thus follows from Table 2.2 and Table 2.3 that there are N distinct samples in the

former table, whereas we obtain samples that coincide in the latter table. We can thus

show that each distinct sample for Table 2.3 (and more specifically for the case where

2N/n is an integer) is given by the interval

(t− 1)/2 < i ≤ t/2, for t = 1, ..., 2N/n. (2.4)
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Table 2.3: Samples for possible values of i using the FIM, where N = 10 and n = 4

Possible values of i Sample

0 < i ≤ 1/4 S1={U1, U3, U6, U8}

1/4 < i ≤ 2/4 S2={U1, U3, U6, U8}

2/4 < i ≤ 3/4 S3={U1, U4, U6, U9}

3/4 < i ≤ 1 S4={U1, U4, U6, U9}

1 < i ≤ 5/4 S5={U2, U4, U7, U9}

5/4 < i ≤ 6/4 S6={U2, U4, U7, U9}

6/4 < i ≤ 7/4 S7={U2, U5, U7, U10}

7/4 < i ≤ 2 S8={U2, U5, U7, U10}

2 < i ≤ 9/4 S9={U3, U5, U8, U10}

9/4 < i ≤ 10/4 S10={U3, U5, U8, U10}

Using (2.3) and (2.4), we can thus define the probability of selecting a specific sample,

using the FIM, to be

P(Si is selected) =


n/2N if 2N/n is an integer,

1/N otherwise.

This result follows since each interval for the possible values of i is of equal length, thus

each possible sample has an equal probability of being the selected sample. Furthermore,

the possible samples obtained using the FIM are not mutually exclusive, since there are

population units that occur more than once within the possible samples. In fact, there

is an equal probability of inclusion in the sample for every population unit, regardless of

whether 2N/n is an integer or not, i.e.

πi = P(Ui is in the sample) = n/N, for all i ∈ {1, ..., N}.

2.2.2 Circular systematic sampling

CSS is another design that produces samples of fixed sample size n. We will first focus

on the methodology of CSS, before explaining the choice of sampling interval. Thereafter,

we will discuss the relationship between CSS and the other systematic sampling designs

mentioned in this chapter.
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Methodology

CSS was first introduced by Lahiri (1954) and involves the arrangement of sampling units

in a circular fashion, such that the last population unit (UN ) is followed by the first unit

(U1). A random integer, say r, is selected from the interval [1, N ] with probability 1/N ,

and k is taken to be the closest integer to N/n. The sample is then given by the population

unit Ur and every kth population unit thereafter, until a sample of size n is obtained. By

letting k be the nearest integer to N/n, we ensure a more even spread of the sample over

the population (Murthy 1967). There are N possible samples in total for CSS, with each

sample having a probability of 1/N of being selected. This method of selection is known

as the unrestricted selection method, since the selection of the first sampling unit is at

random and unrestricted to the entire frame, i.e. the first sampling unit is chosen by a

random selection from the N population units. The above-mentioned methodology is best

demonstrated by example.

Example 2.6: Suppose that we have a population of size N = 14 and we want to draw

a sample of size n = 3, using CSS. For this situation, k = 5 since N/n = 14/3 = 4.6

is nearest to integer 5. Also, suppose a random integer, say r = 7, is selected from the

interval [1, 14]. For a sample of size n = 3, LSS will result in the selection of population

units U7, U12 and U17, owing to the random start of r = 7 and sampling interval k = 5.

This sample contains the population unit U17 which is non-existent, since there are only 14

population units in the frame. However, if we start counting the population units again,

such that U15 corresponds to population unit U1 (i.e. circular transversal), then U17 will

correspond to population unit U3 and the circular systematic sample will subsequently be

found to be S7 = {U3, U7, U12}. This example is visually depicted in Figure 2.2.

Table 2.4 contains a list of all possible values of a random start r and the corresponding

sample outcomes, when selecting a sample of size n = 3 from a population of size N = 14,

using CSS. From Table 2.4, it thus follows that the possible samples are not mutually

exclusive, since there are population units that occur more than once within the possible

samples. In fact, just as in the case with the FIM, there is an equal probability of inclusion

in the sample for every unit, i.e.

πi = P(Ui is in the sample) = n/N, for all i ∈ {1, ..., N}.
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Figure 2.2: Selecting a sample of size 3 from a population of size 14, using CSS with r = 7

Table 2.4: Samples for possible values of i using CSS, where N = 14 and n = 3

Possible values of i Sample

r = 1 S1={U1, U6, U11}

r = 2 S2={U2, U7, U12}

r = 3 S3={U3, U8, U13}

r = 4 S4={U4, U9, U14}

r = 5 S5={U1, U5, U10}

r = 6 S6={U2, U6, U11}

r = 7 S7={U3, U7, U12}

r = 8 S8={U4, U8, U13}

r = 9 S9={U5, U9, U14}

r = 10 S10={U1, U6, U10}

r = 11 S11={U2, U7, U11}

r = 12 S12={U3, U8, U12}

r = 13 S13={U4, U9, U13}

r = 14 S14={U5, U10, U14}
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Choice of sampling interval

For the case where N is a multiple of k, Sudhakar (1978) showed that the sampling units

will coincide when N/n is rounded up. This situation is demonstrated by the next example.

Example 2.7: Suppose that we draw a sample of size n = 9 from a population of size

N = 24, using CSS. For this situation, k = 3 since N/n = 24/9 = 2.6 is nearest to

integer 3. Also, suppose that a random integer, say r = 3, is selected from the interval

[1, 14]. This subsequently results in S3 = {U3, U6, U9, U12, U15, U18, U21, U24}, i.e. the first

sampling unit will coincide with the ninth sampling unit.

Sudhakar (1978) argued that one can achieve n distinct sampling units, if and only if

N and k are co-prime (i.e. N 6= (n−1)k), by considering this result to be applicable when

n is not fixed beforehand. A summary of this result suggests that k be chosen beforehand,

with N and k being co-prime to obtain a sample of n distinct population units. The

shortcoming of this approach is that sample sizes are usually fixed beforehand owing to

budget constraints. Bellhouse (1984) suggests an alternative approach to overcome this

shortcoming. He proposed that a new sampling interval, k′, be defined as

k′ =


INT(N/n) if N = (n− 1)k,

INT(N/n+ 1/2) if N 6= (n− 1)k.

(2.5)

Hence, by using (2.5), where N/n is rounded down when N is a multiple of k, we obtain n

distinct sampling units. On the contrary, Sengupta & Chattopadhyay (1987) argued that

coincidence of sampling units is still possible when N/n is rounded up in (2.5), as shown

in the next example.

Example 2.8: Suppose that we wish to draw a sample of size n = 22 from a population of

size N = 60, using CSS. For this situation, k = 3 since N/n = 60/22 = 2.72 is nearest to

integer 3. By noting that N 6= (n−1)k, we then apply (2.5) to get k′ = INT(60/22+1/2) =

3. Now, for any random start, the first and the second sampling units coincide with the

(n− 1)th and nth unit, respectively.

Sengupta & Chattopadhyay (1987) provides a theorem which states that for any

circular systematic sample, one can achieve n distinct sampling units, if and only if

lcm(N, k) ≥ nk, or equivalently if and only if gcd(N, k) ≤ N/n, where lcm(a, b) and

gcd(a, b) respectively denote the lowest common multiple and the greatest common divi-

sor, for constants a and b. This theorem is not in disagreement with Sudhakar’s (1978)

results and can be used as an extension to Bellhouse’s (1984) approach. Consequently,
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a new sampling interval, k∗, suggested by the author, can thus be defined by using the

above-mentioned theorem along with (2.5), such that

k∗ =


INT(N/n) if lcm(N, k) ≥ nk (or gcd(N, k) ≤ N/n),

INT(N/n+ 1/2) otherwise.

(2.6)

It should be noted that most authors suggest the use of a sampling interval given by

INT(N/n). While this sampling interval will always result in samples of n distinct sampling

units, it does not ensure an even spread of the sample over the population, as would a

sampling interval of INT(N/n+ 1/2), i.e. INT(N/n+ 1/2) ≥ INT(N/n), resulting in the

selection of units that are further apart in the frame when applying the sampling interval

INT(N/n+ 1/2), as opposed to the sampling interval INT(N/n).

Relationship to other systematic sampling designs

We have thus shown that for both the FIM and CSS, any population unit will have a

chance of n/N of being in the sample and every possible sample will be of size n. With

the assumptions that 2N/n is not an integer and lcm(N, k) ≥ nk (or gcd(N, k) ≤ N/n),

we thus conclude that the FIM and CSS are equivalent designs, since both designs have

the same probability of selection for each possible sample and they both define the same

set of possible samples (refer to Tables 2.2 and 2.4).

If N is a multiple of n, then CSS reduces to LSS. Moreover, if N � n, then the

difference between LSS and CSS is negligible (Murthy 1967). It should be noted that

for LSS, the probability of selecting a sample (1/k) is also the probability that a partic-

ular population unit is selected, whereas for CSS these probabilities are not equal, i.e.

P(Si is selected) = 1/N 6= n/N = P(Ui is in the sample), for all i ∈ {1, ..., N}. Moreover,

the possible samples that are defined for CSS (and the FIM) are not mutually exclusive,

unlike LSS which defines k mutually exclusive samples.

For the remainder of this thesis, we will use CSS as the preferred design over the FIM,

since CSS is equivalent to the FIM in most cases (i.e. 2N/n is not an integer in most cases

and lcm(N, k) < nk seldom occurs) and it is easier to apply CSS, as opposed to the FIM.

In the next chapter, we focus our attention on the derivation of formulae which are

associated with the variable of interest, for both LSS and CSS.
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Chapter 3

ESTIMATION OF THE

POPULATION MEAN

This chapter is divided into two parts. The first part consists of deriving formulae which

are associated with the estimation of the population mean (Y ), for the case when k is an

integer, i.e. we will conduct LSS. In the second part of this chapter, we will derive related

formulae for the case when k is not an integer, conducting either LSS or CSS.

3.1 Case (A): If k =N/n is an Integer

We will first derive formulae for an estimate of Y and the corresponding sampling variance,

followed by obtaining an alternative formula for the sampling variance, which will be

expressed in terms of the ICC. Thereafter, we will discuss the link between the ICC and

the analysis of variance (ANOVA). Throughout this section we will assume that k is an

integer, i.e. N = nk.

3.1.1 Population mean estimation

Theorem 3.1: An unbiased estimator of Y and the corresponding sampling variance,

when conducting LSS, are respectively given by

Ŷ = yi =
1

n

n∑
j=1

yij =
Gi
n
, (3.1)

Var(yi) =
1

k

k∑
i=1

(yi − Y )2, (3.2)
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where yi =
∑n

j=1 yij/n denotes the ith systematic sample mean (i.e. the mean of the

sample with random start i) and yij denotes the variate value of the population unit

corresponding to the jth unit of the ith systematic sample, with i = 1, ..., k and j = 1, ..., n.

Note that Gi =
∑n

j=1 yij , for i ∈ {1, ..., k}, is the ith systematic sample total, where the

probability that the systematic sample total isGi, is the same as the probability of selecting

that particular systematic sample, i.e. P(Gi) = 1/k.

Proof : By using the fact that P(Gi) = 1/k, we obtain

E(Gi) =

k∑
i=1

Gi × P(ith systematic sample is selected)

=
1

k

k∑
i=1

Gi =
1

k

k∑
i=1

n∑
j=1

yij =
Y.
k
. (3.3)

Thus, by using (3.3), it follows that

E(yi) = E

 1

n

n∑
j=1

yij

 = E

(
Gi
n

)
=

1

n
E(Gi) =

Y·
nk

=
Y·
N

= Y .

We thus conclude that yi =
∑n

j=1 yij/n is an unbiased estimator of Y . Now, by applying

(3.1), the sampling variance of yi is then expressed as

Var(yi) = Var

(
Gi
n

)
=

1

n2
Var(Gi). (3.4)

Accordingly, by using (3.1), (3.3) and (3.4), we obtain

Var(yi) =
1

n2

k∑
i=1

[Gi − E(Gi)]
2 × P(Gi) =

1

k

k∑
i=1

(
Gi
n
− Y·
nk

)2

=
1

k

k∑
i=1

(
yi − Y

)2
.

Note that
∑k

i=1

(
yi − Y

)2
is a measure of the variation for the sample means, which is

calculated as the sum of the deviations of each sample mean from the population mean. If

the sample means are relatively similar, then we obtain a small sampling variance, which

in turn improves the reliability of this estimation procedure.

Cochran (1977) provides us with three additional formulae for Var(yi), where two of

these formulae are used to compare LSS with SRS (one of these formulae is derived in the

next section). The third formula, which will be given in Section 4.1.3, expresses Var(yi)

in terms of the corresponding sampling variance when conducting STR, and will be used

to compare LSS with STR.



24

3.1.2 Intra-class correlation coefficient

The ICC between pairs of population units that lie within the same systematic sample is

defined as

ρ = Cov(yij , yil)/σ
2, for j, l = 1, ..., n, (j 6= l) and i = 1, ..., k, (3.5)

where

Cov(yij , yil) =
1

nk(n− 1)

k∑
i=1

n∑
j=1

n∑
l=1
j 6=l

(yij − Y )(yil − Y ), (3.6)

such that yij and yil are random variables that represent two distinct units from the ith

systematic sample and

σ2 ,
1

nk

k∑
i=1

n∑
j=1

(yij − Y )2 (3.7)

is defined as the population variance. The divisor in (3.6) is obtained by noting that

there are k systematic samples with n sampling units within each sample and (n − 1)

comparisons for each particular sampling unit.

Using the above notation, we next express Var(yi) in terms of the ICC, before obtaining

alternative formulae for the ICC which are related to the ANOVA. An alternative formula

to (3.2), as shown below, will be used to obtain efficiency comparisons in Chapter 4.

Theorem 3.2: The sampling variance given in (3.2) can be written as

Var(yi) =
S2
Y

n

(
N − 1

N

)[
1 + (n− 1)ρ

]
, (3.8)

where

S2
Y ,

1

N − 1

N∑
j=1

(
yi − Y

)2
=

1

N − 1

k∑
i=1

n∑
j=1

(
yij − Y

)2
(3.9)

is the adjusted population variance.
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Proof : By applying (3.2), we obtain

Var(yi) =
1

k

k∑
i=1

(yi − Y )2

=
1

kn2

k∑
i=1

 n∑
j=1

(yij − Y )

2

=
1

Nn

k∑
i=1

 n∑
j=1

(yij − y)2 + 2
n∑
j=1

n∑
l>j

(yij − Y )(yil − Y )


=

1

Nn

k∑
i=1

n∑
j=1

(yij − Y )2 +
2

Nn

k∑
i=1

n∑
j=1

n∑
l>j

(yij − Y )(yil − Y )

=
1

Nn

k∑
i=1

n∑
j=1

(yij − Y )2 +
1

Nn

k∑
i=1

n∑
j=1

n∑
l 6=j

(yij − Y )(yil − Y ). (3.10)

Now, by using (3.5), (3.6) and (3.7), it follows that

k∑
i=1

n∑
j=1

n∑
l 6=j

(yij − Y )(yil − Y ) = nk(n− 1)Cov(yij , yil)

= nk(n− 1)ρσ2

= (n− 1)ρ

k∑
i=1

n∑
j=1

(yij − Y )2. (3.11)

Finally, substituting (3.11) into (3.10) and then applying (3.9), results in

Var(yi) =
1

Nn

k∑
i=1

n∑
j=1

(yij − Y )2 +
1

Nn
(n− 1)ρ

k∑
i=1

n∑
j=1

(yij − Y )2

=
S2
Y (N − 1)

Nn
+

(n− 1)ρS2
Y (N − 1)

Nn
=
S2
Y

n

(
N − 1

N

)[
1 + (n− 1)ρ

]
.

We thus conclude that positive correlation between population units that lie within the

same systematic sample, increases Var(yi) by a multiplier of (n− 1) (Cochran 1977). We

further note from (3.8), that one cannot be certain that the sampling variance will decrease

if the sample size is increased, or equivalently if the sampling interval is decreased, since

N = nk is fixed. This is in direct contrast to SRS and STR, where larger samples result

in lower sampling variances. Empirical results given by Madow (1946) show us the erratic

behaviour of the sampling variance as the sample size increases, when conducting LSS.

We will now discuss the ICC as a measure of homogeneity, by explaining the ANOVA.

This approach is used in many standard sample survey textbooks, such as Särndal et al.

(2002) and Lohr (2010). The ANOVA, which is used to explain the variance decomposition

of N population units that are divided into k clusters of size n, is given as follows:
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(i) The total sum of squares (SST), measures the total variation between all population

units, and is given by

SST =

k∑
i=1

n∑
j=1

(yij − Y )2. (3.12)

(ii) The sum of squares between clusters (SSB), measures the variation among the cluster

means, and is given by

SSB = n
k∑
i=1

(yij − Y )2. (3.13)

(iii) The sum of squares within clusters (SSW), measures the variation among population

units that are within the same cluster, and is given by

SSW =

k∑
i=1

n∑
j=1

(yij − yi)2. (3.14)

(iv) Standard sample survey texts (Särndal et al. 2002) bear evidence that equations

(3.12), (3.13) and (3.14) are related by

SST = SSW + SSB. (3.15)

(v) The adjusted population variance, given by (3.9), is commonly referred to as the

total mean square (MST), and is expressed as

MST = S2
Y =

SST

N − 1
=

1

N − 1

k∑
i=1

n∑
j=1

(yij − Y )2. (3.16)

(vi) The variance between clusters, known as the mean square between clusters (MSB),

is given by

MSB =
SSB

k − 1
=

n

k − 1

k∑
i=1

(yi − Y )2. (3.17)

(vii) The variance within clusters, known as the mean square within clusters (MSW), is

given by

MSW =
SSW

N − k
=

1

N − k

k∑
i=1

n∑
j=1

(yi − Y )2. (3.18)
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Since LSS is a form of cluster sampling (refer to Section 2.1), we can use (i) to (vii)

for LSS. The formulae in (3.12) to (3.18) will remain the same and the only difference

will be that we are now considering k systematic samples, instead of k clusters. The

sum of squares between systematic samples (SSB) is thus a measure of the variation

among systematic sample means, while the sum of squares within systematic samples

(SSW ) measures the variation among population units that are within the same systematic

sample. Furthermore, the variance between systematic samples (S2
bsys) is given by (3.17),

while the variance among population units that are within the same systematic sample

(S2
wsys) is given by (3.18).

For any given discrete population, SST is clearly fixed, so that an increase in SSW

results in a corresponding decrease in SSB (refer to (3.15)). Analytical work done by

Stuart (1976) concludes that cluster sampling should be done in such a way that the

clusters are made as internally heterogeneous (large variation between the population

units that lie within the clusters) as possible and/or as externally homogeneous (small

variation between the clusters) as possible to obtain maximum precision in estimation.

We thus obtain maximum precision of estimates when conducting LSS, if the population

units that lie within the same systematic sample vary as much as possible (i.e. maximize

SSW ), while attaining minimum difference between the k systematic sample means (i.e.

minimize SSB). This will consequently result in a lower sampling variance. One can

achieve the goal of lowering the sampling variance by rearranging the population units, so

that different systematic samples are formed. This is in direct contrast to SRS, in which

the arrangement of population units has no effect on the sampling variance. Different

orderings/arrangements of population units and the corresponding effect on estimation,

when conducting LSS, will be discussed in Chapters 4 and 5. We next obtain alternative

formulae for the ICC, using the ANOVA given above.

By using equations (3.5), (3.6), (3.7), (3.10) and (3.12), we obtain

ρ = Cov(yij , yil)/σ
2

=

(n− 1)

k∑
i=1

n∑
j=1

(yij − Y )2

−1
k∑
i=1

n∑
j=1

n∑
l 6=j

(yij − Y )(yil − Y )

=
1

(n− 1)SST

[
NnVar(yi)− SST

]
. (3.19)
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Now, by applying (3.2) and (3.13), it follows that

NnVar(yi) =
Nn

k

k∑
i=1

(yi − Y )2 = n2
k∑
i=1

(yi − Y )2 = nSSB. (3.20)

Hence, substituting (3.20) into (3.19), results in

ρ =
1

(n− 1)SST
[nSSB − SST ]. (3.21)

Another expression for ρ can be found by using (3.15) and (3.21), such that

ρ =
1

(n− 1)SST
[n(SST − SSW )− SST ]

=
1

(n− 1)SST
[(n− 1)SST − nSSW ] = 1− nSSW

(n− 1)SST
. (3.22)

A final measure of ρ is obtained by applying (3.16), (3.18) and (3.22), i.e.

ρ = 1− nSSW

(n− 1)SST

= 1− n(N − k)MSW

(n− 1)(N − 1)MST

= 1− nk(n− 1)MSW

(n− 1)(N − 1)MST
= 1−

(
N

N − 1

)
MSW

MST
. (3.23)

Now, if N is large, then N/(N − 1) u 1 and by substituting this result into (3.23), we

obtain

ρ u 1− MSW

MST
. (3.24)

By referring to (3.24), we thus note that ρ > 0 when MST > MSW , i.e. when the

adjusted population variance is greater than the variance among population units that lie

within the same systematic sample (S2
Y > S2

wsys). The population units that lie within

the same systematic sample will thus tend to contain similar values and are labelled as

homogeneous. In contrast, we can expect ρ < 0 when MST < MSW , i.e. when the

adjusted population variance is less than the variance among population units that lie

within the same systematic sample (S2
Y < S2

wsys). In this case, the population units

that lie within the same systematic sample will tend to contain dissimilar values and are

labelled as heterogeneous. Complete homogeneity within the systematic samples indicates

no variation among the population units within each systematic sample, so that SSW = 0

for this scenario, resulting in ρ = 1 or ρmax = 1 (refer to (3.22)). By substituting this result

into (3.8), we obtain Var(yi) = S2
Y (N − 1)/N , i.e. the sampling variance is at a maximum

value. Conversely, complete heterogeneity within the systematic samples indicates that
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there is maximum variation among the population units within each systematic sample.

From (3.15), we thus conclude that SSW = SSWmax = SST for this scenario and since

SST is fixed, it follows that SSB = SSBmin = 0. By substituting SSW = SST into

(3.22), we obtain ρ = −1/(n − 1) or ρmin = −1/(n − 1). Stuart (1976) concludes that

complete heterogeneity within clusters provides optimal results in terms of precision. It

is thus desirable to obtain an ordering/arrangement of the units which results in ρ being

as close to the value of −1/(n− 1) as possible. One can easily verify that Var(yi) = 0, by

substituting ρ = −1/(n− 1) into (3.8).

3.2 Case (B): If k =N/n is not an Integer

We next derive a formula for an estimate of Y and then proceed to find the associated level

of bias for this estimator as well as the corresponding sampling variance, when conducting

LSS for the case when k is not an integer. We follow this by obtaining formulae for an

estimate of Y and the corresponding sampling variance, when conducting CSS. Finally,

we will discuss the ICC for both LSS and CSS.

3.2.1 Population mean estimation

We now assume that k is not an integer, such that N = nk + c, where 0 < c < n and c/k

is not an integer. In Chapter 2, we showed that if we apply LSS for this situation, then we

either obtain samples of size n+INT(c/k) or n+INT(c/k)+1. Consequently, samples are

either over-representative or under-representative of the population and thus one cannot

obtain unbiased estimates of the population parameters. As a result, we obtain a biased

estimate of Y , as shown in the next theorem.

Theorem 3.3: Suppose that we draw a sample of size n from a population of size N ,

using LSS, where k is not an integer. If c denotes the remainder, where N = nk + c,

0 < c < n and c/k is not an integer, then a biased estimator of Y , the associated level of

bias for the estimator and the corresponding sampling variance, are respectively given by
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Ŷ = yi =
1

ni

ni∑
j=1

yij =
Gi
ni
, (3.25)

B
(
Ŷ
)

=
k∑
i=1

yi

(
1

k
− ni
N

)
, (3.26)

Var(yi) =
1

k

k∑
i=1

(yi − y)2, (3.27)

where ni, yi =
∑ni

j=1 yij/ni, for i ∈ {1, ..., k}, and y =
∑k

i=1 yi/k respectively denotes

the size of the ith systematic sample, the ith systematic sample mean and the average

of the k systematic samples. Note that ni is either n + INT(c/k) or n + INT(c/k) + 1

and Gi/ni, for i ∈ {1, ..., k}, is the ith systematic sample mean, where the probability

that the systematic sample mean is Gi/ni, is the same as the probability of selecting that

particular systematic sample, i.e. P(Gi/ni) = 1/k.

Proof : Now, since there are k possible systematic samples, we note that

E
(
Ŷ
)

= E(yi) = E

(
Gi
ni

)
= E

 ni∑
j=1

yij
ni

 =
k∑
i=1

ni∑
j=1

yij
nik

=
k∑
i=1

yi
k

= y. (3.28)

In addition, Y is defined as

Y ,
1

N

k∑
i=1

ni∑
j=1

yij . (3.29)

Hence, by comparing (3.28) to (3.29) and noting that N 6= nik, for all i ∈ {1, ..., k}, we

thus conclude that Gi/ni is a biased estimator of Y . To obtain the level of bias we use

(3.25), (3.28) and (3.29), such that

B
(
Ŷ
)
, E

(
Ŷ
)
− Y

=
1

k

k∑
i=1

yi −
1

N

k∑
i=1

ni∑
j=1

yij =
1

k

k∑
i=1

yi −
1

N

k∑
i=1

yini =
k∑
i=1

yi

(
1

k
− ni
N

)
.

Finally, we can find the sampling variance by applying (3.25) and (3.28), i.e.

Var(yi) = Var

(
Gi
ni

)
=

k∑
i=1

[
Gi
ni
− E

(
Gi
ni

)]2

× P

(
Gi
ni

)
=

1

k

k∑
i=1

(yi − y)2.

We next derive formulae for an estimate of Y and the corresponding sampling variance,

when conducting CSS, such that the sample size is fixed.
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Theorem 3.4: Suppose that we draw a sample of size n from a population of size N ,

using CSS, where the random starting point r is an integer drawn from the interval [1, N ]

and k is not an integer. Let k∗ and c denote respectively the sampling interval that is

given by (2.6) and a non-zero integer, such that N = nk∗ + c. An unbiased estimator of

Y and the corresponding sampling variance are thus respectively given as

Ŷ = yr =
G′r
n
, (3.30)

Var(yr) =
1

N

N∑
r=1

(yr − Y )2, (3.31)

where yr = G′r/n is the rth circular systematic sample mean and

G′r =



∑n
j=1 y(j−1)k∗+r for r = 1, ..., k∗ + c;∑n−1
j=1 y(j−1)k∗+r + y(n−1)k∗+r−N for r = k∗ + c+ 1, ..., 2k∗ + c;∑n−2
j=1 y(j−1)k∗+r + y(n−1)k∗+r−N + y(n−2)k∗+r−N for r = 2k∗ + c+ 1, ..., 3k∗ + c;

...
...

yr + y(n−1)k∗+r−N + y(n−2)k∗+r−N + ...+ yk∗+r−N for r = (n− 1)k∗ + c+ 1, ..., N ;

is the rth circular systematic sample total. It should be noted that the probability that

the circular systematic sample total is G′r, is the same as the probability of selecting that

particular circular systematic sample, i.e. P(G′r) = 1/N .

Proof : Now, since there are N possible samples that could be selected, we note that

E(Ŷ ) = E(yr) = E

(
G′r
n

)
=

1

N

N∑
r=1

G′r
n

=
1

Nn

N∑
r=1

G′r =
nY·
Nn

= Y , (3.32)

which follows since each population unit is repeated n times, when referring to all the

possible samples (see Section 2.2.3). We thus conclude that yr = G′r/n is an unbiased

estimator of Y . Now, by using (3.30), we obtain

Var(yr) = Var

(
G′r
n

)
=

1

n2
Var(G′r) =

1

n2

N∑
r=1

[
G′r − E(G′r)

]2 × P(G′r), (3.33)

which follows since there are N possible circular systematic samples. Also, by using (3.32),

we note that

E(G′r) = nY . (3.34)

Thus, by applying (3.30), (3.33) and (3.34), it follows that

Var(yr) =
1

Nn2

N∑
r=1

[
G′r − nY

]2
=

1

N

N∑
r=1

[
G′r
n
− Y

]2

=
1

N

N∑
r=1

[
yr − Y

]2
.
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Theorems 3.3 and 3.4 thus indicate another comparative advantage of CSS, since we are

able to obtain an unbiased estimate of Y for CSS, whereas an unbiased estimate of Y

is unobtainable when conducting LSS, for the case where N = nk + c, 0 < c < n and

c/k is not an integer. Moreover, if ni = N/k for all i (i.e. all systematic samples are of

equal size), then the level of bias in (3.26) reduces to zero, which then makes it possible to

obtain an unbiased estimate for Y , when conducting LSS. If N = nk + c, 0 < c < n and

c/k is an integer, then ni = n+ c/k, for all i. Consequently, it is then possible to obtain

an unbiased estimate of Y , where the corresponding formulae are obtained by replacing n

in the previous section, with n+ c/k.

3.2.2 Intra-class correlation coefficient

The ICC requires that all clusters/systematic samples be of equal size. It is thus not

applicable to use this measure of homogeneity for LSS when N = nk + c, 0 < c < n and

c/k is not an integer. An alternative measure, δ, which is related to ρ, is obtained by

assuming n and N to be large, such that n u n + 1 and (N − 1)/(N − k) u 1 (Särndal

et al. 2002). Thus, by using these values together with (3.16), (3.18) and (3.22), it follows

that

ρ = 1− nSSW

(n− 1)SST
u 1− SSW

SST
u 1− (N − 1)SSW

(N − k)SST
= 1− MSW

MST
= δ. (3.35)

By substituting SSW = 0 into (3.35), we obtain δ = 1 or δmax = 1, which is a result of

complete homogeneity within the systematic samples. Conversely, by substituting SSW =

SST into (3.35), it follows that δ = −(k− 1)/(N − k) or δmin = −(k− 1)/(N − k), which

is a result of complete heterogeneity within the systematic samples. In Section 3.1.2, we

concluded that complete heterogeneity within systematic samples provided optimal results

for LSS, in terms of precision. It is thus desirable to obtain an ordering/arrangement of

the units which results in δ being as close to the value of −(k − 1)/(N − k) as possible,

if we were to conduct LSS, for the case where N = nk + c, 0 < c < n and c/k is not an

integer.

There is an analogue to Theorem 3.2, which can be used to express Var(yr) (the

sampling variance when conducting CSS) in terms of the ICC. This result was noted by

Murthy & Rao (1988) and given as

Var(yr) =
S2
Y

n

(
N − 1

N

)
[1− (n− 1)ρ′],
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where ρ′ = 2
∑N

r=1

∑n−1
j=0

∑n−1
j′>j(yr+jk∗ − Y )(yr+j′k∗ − Y )/n(n− 1)(N − 1)S2

Y denotes the

ICC between pairs of population units that lie within the same circular systematic sample,

with the deviations calculated from Y .

Throughout this chapter we derived estimates for Y and the corresponding sampling

variances. We can, however, obtain an estimate of the population total Y· and the corre-

sponding sampling variance, by noting that Y· , NY , such that

Ŷ· = NŶ . (3.36)

The corresponding sampling variance is thus given as

Var(Ŷ·) = Var(NŶ ) = N2Var(Ŷ ). (3.37)

We can now obtain the formulae for an estimate of Y· and the corresponding sampling

variance, by substituting the relative formulae into (3.36) and (3.7) respectively. However,

for the purpose of this thesis, we will only consider estimating Y and refer to the variance

of this estimate as the sampling variance.

In the next chapter, we will use (3.8) to compare the efficiency of LSS with the other

probability sampling designs. We will also discuss various population structures, where

we will obtain related efficiency comparisons within each population structure.
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Chapter 4

EFFICIENCY AND

POPULATION STRUCTURES

In the first part of this chapter we compare the efficiency of LSS to that of SRSWR,

SRSWOR and STR. In Chapter 1, we noted that the variance of an unbiased estimate

of the population parameter is a comparative measure, with the classic notion that the

better estimate is the one which exhibits the lower variance. Consequently, we use the

relative efficiency between two different estimators, produced by two different sampling

designs, as a measure of efficiency (i.e. the ratio of the sampling variances), since we obtain

unbiased estimates of Y when conducting either SRSWR, SRSWOR, STR (Cochran 1977)

or LSS (see Theorem 3.1). It is easily deduced from (3.8) that the sampling variance,

when conducting LSS, depends on n (or k, since N = nk is fixed) and the ICC, as S2
Y

and N are fixed. In Section 3.1.2, we mentioned that a larger value of n (or a smaller

value of k) does not necessarily lead to a lower sampling variance, i.e. the sampling

variance, when conducting LSS, does not vary consistently with n. Hence, the only factor

that proportionately affects the sampling variance is the ICC, which depends on (i) the

ordering of population units from which the systematic sample is to be drawn, (ii) the

amount of correlation between successive population units and (iii) is also related to n

(Murthy & Rao 1988). Consequently, for the second part of this chapter, we will compare

the efficiency of LSS to the other probability sampling designs, by considering various

population structures.

Throughout this chapter we assume that k is an integer, however we usually can apply

the results obtained in this chapter to LSS when k is not an integer (Murthy & Rao 1988).
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Theoretical efficiency comparisons of CSS to the other probability sampling designs, on

various population structures, will be left for further studies. However, we will empirically

test the efficiency of CSS against other probability sampling designs in Chapter 8. In this

chapter and all subsequent chapters, we will use the notation yLSS , ySRSWR, ySRSWOR

and ySTR to denote the sample means, when conducting LSS, SRSWR, SRSWOR or

STR, respectively.

4.1 Efficiency of Linear Systematic Sampling

We next compare the efficiency of LSS to each of the other probability sampling designs

mentioned in Chapter 1, i.e. comparing their respective sampling variances. In this section,

the formula for Var(yLSS) is given by (3.8), while other corresponding sampling variance

formulae are given by Cochran (1977).

4.1.1 Comparison to SRSWR

Suppose that we draw a sample of size n from a population of size N , using SRSWR. An

unbiased estimator of Y is given by ySRSWR, with the corresponding sampling variance

expressed as

Var(ySRSWR) =
S2
Y

n

(
N − 1

N

)
. (4.1)

The relative efficiency of SRSWR, with respect to LSS, is thus given by

Var(yLSS)

Var(ySRSWR)
=
S2
Y

n

(
N − 1

N

)[
1 + (n− 1)ρ

] [S2
Y

n

(
N − 1

N

)]−1

= 1 + (n− 1)ρ.

Clearly, if ρ < 0, then LSS is more efficient than SRSWR. By using (3.24), we thus conclude

that if MST < MSW , then ρ < 0 and consequently LSS is then more efficient than

SRSWR. This then translates to imply that the more heterogeneous the population units

that lie within the same systematic sample, the greater the efficiency gains when choosing

LSS over SRSWR. Conversely, we conclude that if MST > MSW , then ρ > 0 and LSS

is then less efficient than SRSWR. This consequently means that the more homogeneous

the population units that lie within the same systematic sample, the greater the efficiency

loss when choosing LSS over SRSWR. If we substitute ρ = 0 (i.e. no correlation amongst

population units that lie within the same systematic sample) into (3.8) and then compare
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this result with (4.1), we see that Var(yLSS) = Var(ySRSWR) and thus conclude that no

efficiency is gained when choosing one design over the other for this scenario.

4.1.2 Comparison to SRSWOR

Suppose that we draw a sample of size n from a population of size N , using SRSWOR. An

unbiased estimator of Y is given by ySRSWOR, with the corresponding sampling variance

expressed as

Var(ySRSWOR) =
S2
Y

n

(
N − n
N

)
. (4.2)

The relative efficiency of SRSWOR, with respect to LSS, is thus given by

Var(yLSS)

Var(ySRSWR)
=
S2
Y

n

(
N − 1

N

)[
1 + (n− 1)ρ

] [S2
Y

n

(
N − n
N

)]−1

=

(
N − 1

N − n

)[
1 + (n− 1)ρ

]
u 1 + (n− 1)ρ,

which follows if we assume N to be relatively larger than n. The discussion of the effect of

ρ < 0 and ρ > 0, given in the previous section, thus applies provided that we assume N to

be relatively larger than n. By substituting ρ = 0 into (3.8) and comparing this result with

(4.2), we see that Var(yLSS) > Var(ySRSWOR) and consequently there would be a gain

in efficiency when choosing SRSWOR over LSS for this scenario. From the above result

on the relative efficiency, we note that this gain in efficiency tends to zero as N becomes

relatively larger than n. For convenience and simplicity, one may thus choose LSS as the

preferred sampling design. By substituting ρ = −1/(N−1) into (3.8) and then comparing

this result with (4.2), we see that Var(yLSS) = Var(ySRSWOR), with no efficiency being

gained when choosing one design over the other for this situation. More specifically, we

thus conclude that LSS is more efficient than SRSWOR, if and only if ρ < −1/(N − 1).

By applying (4.1) and (4.2), we obtain the relative efficiency of SRSWOR, with respect

to SRSWR, given by

Var(ySRSWR)

Var(ySRSWOR)
=
S2
Y

n

(
N − 1

N

)[
S2
Y

n

(
N − n
N

)]−1

=
N − 1

N − n
.

This result shows us that SRSWOR is always more efficient that SRSWR (except when

n = 1) and both designs will be approximately equally efficient when N is large, i.e.

larger population sizes result in a higher probability of obtaining distinct sampling units

for SRSWR. Both designs are equivalent when n = 1 and this result is trivial, since there
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is only one unit sampled and replacement of the sampling unit thereafter does not affect

the sample. In light of this result, we will focus on SRSWOR as being our preferred

SRS design. We thus obtain efficiency comparisons between LSS and SRSWOR, before

applying the results to make efficiency comparisons between LSS and SRSWR, e.g. if we

find that LSS is more efficient than SRSWOR, then we conclude that LSS is more efficient

than SRSWR (i.e. transitive law).

4.1.3 Comparison to STR

Suppose that we draw a sample of size n from a population of size N , using STR with the

assumption of equally sized strata of size k, such that one unit is selected per stratum.

An unbiased estimator of Y is given by ySTR, with the corresponding sampling variance

expressed as

Var(ySTR) =
S2
wst

n

(
N − n
N

)
, (4.3)

where S2
wst =

n∑
s=1

k∑
i=1

(yis − y·s)
2/n(k − 1) denotes the variance amongst population units

that are within the same stratum; yis denotes the variate value of the population unit

corresponding to the ith element of the sth stratum; and y·s =
k∑
i=1

yis/k is the sth stratum

mean, for s ∈ {1, ..., n}. The degrees of freedom for S2
wst is given as n(k − 1), since we

have one parameter (i.e. stratum mean) within each stratum of k units, resulting in each

of the n strata having (k − 1) degrees of freedom.

We next attempt to find an expression for comparing the efficiency of LSS in terms of

STR, when estimating Y . With the assumption that N = nk, we define LSS as being the

process of dividing the N population units into n strata of k population units each and

then selecting one population unit from each stratum, where the sampling unit selected

is located in the same position for every stratum. The LSS design, which was depicted

by Table 2.1, is thus transposed and can be compared to STR, with one unit drawn from

each stratum. The arrangement is such that, the first k units belong to the first stratum,

the second k units belong to the second stratum, and so forth. Cochran (1977) states that

there is a similar theorem to that of Theorem 3.2, which gives an expression for Var(yLSS)

and can be used to compare LSS to STR. The corresponding result is given by

Var (yLSS) =
S2
wst

n

(
N − n
N

)[
1 + (n− 1)ρwst

]
, (4.4)

where ρwst = 2
k∑
i=1

n∑
s=1

n∑
l>s

(yis − y·s) (yil − y·l)/
[
n (n− 1) (k − 1)S2

wst

]
is the ICC between
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pairs of population units that lie within the same systematic sample, where the deviations

are calculated from their respective stratum means. We next obtain the relative efficiency

of STR, with respect to LSS, by using (4.3) and (4.4), i.e.

Var (yLSS)

Var (ySTR)
=
S2
wst

n

(
N − n
N

)[
1 + (n− 1) ρwst

]{S2
wst

n

(
N − n
N

)}−1

= 1 + (n− 1) ρwst.

Clearly, if ρwst < 0, then LSS is more efficient than STR and if ρwst > 0, then LSS is less

efficient than STR. By substituting ρwst = 0 into (4.4) and then comparing this result

with (4.3), we see that Var(yLSS) = Var(ySTR) and thus conclude that no efficiency is

gained when choosing one design over the other for this scenario.

It consequently follows from the above discussion, that the only comparable factor

which affects the efficiency of LSS is the ICC. The ICC depends on the ordering of the

population units from which a systematic sample is to be drawn, the amount of correlation

between successive elements in the population and is also related to n. We will thus

consider different population structures to examine the efficiency of LSS.

4.2 Population Structures

We will now discuss the various population structures (i.e. random ordered, linear trend,

periodic, auto-correlated and stratified populations) and obtain efficiency comparisons for

each population structure.

4.2.1 Population in random order

The following theorem shows the relationship between SRSWOR and LSS, for a population

that is in random order.

Theorem 4.1: For a randomly ordered population of size N , the probability of selecting

any specific sample of size n using either, LSS or SRSWOR, is 1/(CNn ) = n!(N − n)!/N !,

which results in both designs being equivalent.

Proof : This proof, which was first presented by Madow & Madow (1944), is given by

Murthy (1967). The total number of possible samples of size n that can be drawn from

a population of size N , using SRSWOR, is given as N(S) = CNn , i.e. the order of the

sampling units does not have any effect and thus do not matter. The probability of

selecting any specific sample Si (i.e. N(Si) = 1) of n sampling units is thus given by

P(Si) = N(Si)/N(S) = 1/(CNn ). By assuming N = nk, such that LSS is equivalent to CSS
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(see Section 2.2.3), we then use the unrestricted selection method, since the population

units are random and the order doesn’t matter. There are N ! permutations of orderings

of the population units, which results in N(S) = N(N !) being the total number of possible

systematic samples, which may be repeated. Furthermore, if we consider LSS of equally

spaced intervals, of size k, we get (N−n)! possible orderings of choosing a specific sample.

Hence, the number of systematic samples which contains a specific set of n sampling units

is given as N(Si) = N(N − n)!n!, since there are n! orderings of the n sampling units and

the first sampling unit may be any one of the N population units. The probability of

selecting any specific sample of n sampling units, using LSS, is thus given as

P (Si) =
N (Si)

N (S)
=
N (N − n)!n!

N (N !)
=

[
N !

(N − n)!n!

]−1

=
1

CNn
.

The equivalence of Var(ySRSWOR) and Var(yLSS), for any single finite population in ran-

dom order, is not exactly true, since Var(yLSS) is not proportional to n (refer to Section

3.2.2). However, Madow & Madow (1944) proved that LSS is expected to be equally

efficient to SRSWOR, by considering all N ! permutations of the finite randomly ordered

population of size N , i.e. E[Var(yLSS)] = Var(ySRSWOR).

Example 4.1: Suppose that we are required to conduct a survey for a company on their

employees’ work related traveling expenses. In addition, suppose that we sample from a

list of their employees and that this list is arranged in ascending order according to their

surnames. Although the list is arranged in ascending order, the population is considered

to be random, since there is no relation to work related traveling expenses (variable of

interest) and surnames (ordered variable). Therefore, the order of the population units do

not matter and LSS can be viewed as SRSWOR.

To compare LSS to STR, we compare (4.2) to (4.3), such that the relative efficiency

of STR, with respect to LSS, is given by

Var (yLSS)

Var (ySTR)
=

Var (ySRSWOR)

Var (ySTR)
=
S2
Y

n

(
N − n
N

)[
S2
wst

n

(
N − n
N

)]−1

=
S2
Y

S2
wst

.

We thus conclude that if the variance amongst population units which lie within the same

stratum is greater than the adjusted population variance, then LSS is more efficient than

STR. In contrast, if the variance amongst population units which lie within the same

stratum is less than the adjusted population variance, then LSS is less efficient than STR.
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4.2.2 Populations that exhibit linear trend

Trend is defined as a general path that is followed by the variate values of a population,

as the population unit numbers (i ∈ {1, ..., N}) increase in a sequence and/or as time

progresses, if the variate indices indicate points in time. If the variate values tend to

increase as the population unit numbers increases, then the trend is said to be positive.

Conversely, if the variate values tend to decrease as the population unit numbers increases,

then the trend is said to be negative. Trend can either be linear or non-linear (parabolic

trend, quadratic trend, exponential trend etc.). For the purpose of this thesis, we will only

consider linear trends. We will first discuss a hypothetical linear trend model, in which the

variate values of the population units exhibit arithmetic progression, i.e. a perfect linear

trend model. We then obtain formulae for Var(yLSS),Var(ySRSWOR) and Var(ySTR), for

this model, before obtaining related efficiency comparisons. Finally, we will discuss the

ICC, when comparing LSS to the other probability sampling designs for the population

under consideration.

Perfect linear trend model

Mathematical evidence, originally given by Madow & Madow (1944) and later discussed

by Murthy (1967) and Cochran (1977), is used to show the efficiency of LSS under the

presence of linear trend in a population. A hypothetical population that exhibits linear

trend may be represented by the model

yi = a+ bi, for i = 1, ..., N. (4.5)

This model depends on constants a and b, where the variate values are increasing by a

constant factor b, resulting in the population exhibiting perfect linear trend. By applying

(4.5), we obtain

Y =
1

N

N∑
i=1

yi

=
1

N
[(a+ b) + ...+ (a+Nb)] =

1

N

[
Na+ b

N∑
i=1

i

]
= a+

b (N + 1)

2
. (4.6)
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Furthermore, by using (4.5) and (4.6), we obtain

S2
y =

1

(N − 1)

N∑
i=1

[
a+ bi−

{
a+

b (N + 1)

2

}]2

=
b2

(N − 1)

N∑
i=1

[
i− (N + 1)

2

]2

=
b2

(N − 1)

[
N∑
i=1

i2 −N
(
N + 1

2

)2
]

=
b2

(N − 1)

[
N (N + 1) (2N + 1)

6
− N(N + 1)2

4

]

=
b2N (N + 1)

(N − 1)

(
4N + 2− 3N − 3

12

)
=
b2N (N + 1)

12
. (4.7)

Efficiency comparisons

By applying (2.1), for the model in (4.5), we note that

yi =
1

n
[(a+ bi) + (a+ b {i+ k}) + ...+ (a+ b {i+ (n− 1)k})]

= a+ bi+
bk

n

(n−1)∑
i=1

i = a+ bi+
bk (n− 1)

2
. (4.8)

Thus, by using (3.2), (4.6) and (4.8), we obtain

Var (yLSS) =
1

k

k∑
i=1

[
a+ bi+

bk (n− 1)

2
−
{
a+

b (N + 1)

2

}]2

=
b2

k

k∑
i=1

[
i+

nk − k
2

− (N + 1)

2

]2

=
b2

k

k∑
i=1

[
i− (k + 1)

2

]2

=
b2

k

[
k∑
i=1

i2 − k
(
k + 1

2

)2
]

=
b2

k

[
k (k + 1) (2k + 1)

6
− k(k + 1)2

4

]

= b2 (k + 1)

(
4k + 2− 3k − 3

12

)
=
b2 (k + 1) (k − 1)

12
=
b2
(
k2 − 1

)
12

. (4.9)

Moreover, if we use (4.2) and (4.7), then

Var (ySRSWOR) =
b2N (N + 1)

12n

(
N − n
N

)
=
b2N (N + 1)

12n

[
n (k − 1)

N

]
=
b2 (N + 1) (k − 1)

12
. (4.10)
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Finally, using (4.3) and (4.7), results in

Var (ySTR) =
b2k (k + 1)

12n

[
n (k − 1)

nk

]
=
b2 (k + 1) (k − 1)

12n
=
b2
(
k2 − 1

)
12n

, (4.11)

which follows since S2
wst is obtained by substituting k for N in (4.3), i.e. under the

perfect trend model, for the setup of population units into strata (see Section 4.1.3), the

sum of squares between population units within a stratum is related to the total sum of

squares, with the only difference being that we are now considering k population units in
k∑
i=1

(yis − y·s)
2, instead of N population units in

N∑
i=1

(
yi − Y

)2
.

The relative efficiency of SRSWOR, with respect to LSS, is obtained by using (4.9)

and (4.10), such that

Var (yLSS)

Var (ySRSWOR)
=
b2
(
k2 − 1

)
12

[
b2 (N + 1) (k − 1)

12

]−1

=
(k + 1) (k − 1)

(N + 1) (k − 1)
=

k + 1

N + 1
< 1,

which follows if n ≥ 2. We thus conclude that LSS is more efficient than SRSWOR if

n ≥ 2. Similarly, by using (4.9) and (4.11), we obtain the relative efficiency of STR, with

respect to LSS, i.e.

Var (yLSS)

Var (ySTR)
=
b2
(
k2 − 1

)
12

[
b2
(
k2 − 1

)
12n

]−1

= n,

which is greater than 1 if n ≥ 2. We thus conclude that LSS is less efficient than STR by

a factor of n. Now, by using the transitive law with the assumption that n ≥ 2, we show

that

Var (ySTR) < Var (yLSS) < Var (ySRSWOR) < Var (ySRSWR) .

Hence, we conclude that STR is the most efficient probability sampling design for popu-

lations that exhibit linear trend. Furthermore, substituting n = 1 into (4.9), (4.10) and

(4.11), results in

Var (ySTR) = Var (yLSS) = Var (ySRSWOR) = Var (ySRSWR) .

which follows since we have proven the equivalence between SRSWR and SRSWOR in

Section 4.1.2, for the case when n = 1. Also, by applying (4.9) and (4.10), while assuming

N to be relatively larger than k, we obtain an approximation for the relative efficiency of

SRSWOR, with respect to LSS, given by

Var (yLSS)

Var (ySRSWOR)
=
b2
(
k2 − 1

)
12

[
b2 (N + 1) (k − 1)

12

]−1

=
(k + 1) (k − 1)

(N + 1) (k − 1)
=

(k + 1)

(N + 1)
u

k

N
=

1

n
.
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The relation of the efficiencies for the sampling designs, when N is relatively larger than

k, is thus given as

Var (ySTR) : Var (yLSS) : Var (ySRSWOR) : Var (ySRSWR) u
1

n2
:

1

n
: 1 : 1.

We thus conclude that STR is more efficient than LSS by a factor of n, which in turn is

more efficient than both SRSWOR and SRSWR, by an approximate factor of n, when N

is relatively larger than k. As a result, STR is more efficient than both SRSWOR and

SRSWR, by an approximate factor of n2 (by using the transitive law).

Intra-class correlation coefficient

For populations that exhibit linear trend, we can expect a high degree of variation between

population units that lie within the same systematic sample. The cross products of the

pairs of population units that lie within the same systematic sample, with deviations

calculated from Y , are thus predominantly negative. A negative ICC (ρ < 0) is thus

achieved and this results in LSS being more efficient than both SRSWR and SRSWOR,

for this scenario. It should be noted that the greater the degree of trend in a population,

the greater the efficiency gains when choosing LSS over either SRSWR or SRSWOR.

Now, let us view LSS in terms of STR (as in Section 4.1.3) for populations that exhibit

linear trend. Strata are thus likely to be internally homogenous and if the ith unit is

selected for each strata, then the deviation between any sampling unit and its respective

stratum mean, will likely have the same coefficient as the deviation of other sampling

units from their respective stratum means. Both deviations from their respective stratum

means are likely to be either positive or negative, resulting in their cross products being

predominantly positive, i.e. ρwst > 0. We thus conclude that STR is more efficient than

LSS for populations that exhibit linear trend. It should be noted that the greater the

degree of trend in a population, the greater the efficiency loss when choosing LSS over

STR.

4.2.3 Periodic populations

All periodic populations have a period, where the period is defined as an interval, in which

the variate values of a population perform a complete cycle. The variate values follow

regular oscillations that are repeated (cycle), i.e. the variate values of the population

monotonically increase and then monotonically decrease at regular intervals. ”Periodic
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variations are likely to occur in certain natural populations such as land fertility, forest

growth, events over time, etc. and in records such as payroll, census list of individuals

arranged by households, etc.” (Murthy & Rao 1988, p.157). Finney (1950) provides an

example for a population that exhibits unexplainable periodic variation, but this claim

was considered to be invalid by Milne (1959), since the calculations applied by Finney was

owing to measurement errors, which created a false result of periodic variation. Other

examples of periodic populations are given by Madow (1946) and Matérn (1960). Initial

comparisons between LSS and STR for periodic populations, were obtained by Madow &

Madow (1944).

To view the effect of LSS for periodic populations, we will consider a discrete hypothet-

ical periodic population, given in Figure 4.1, where the variate values of the population

are plot against the population unit numbers (i = 1, ..., 24). The period for this hy-

pothetical population is given as AB=8, since we obtain a complete cycle between AB,

before the cycle gets repeated. Moreover, the population mean can easily be interpreted

from the graph, i.e. Y = 2.5. Now, if we conduct LSS with k = 8 and a random start

i = 1, then we obtain a sample which has no variation amongst the sampling units, i.e.

we obtain complete homogeneity within the systematic samples, such that ρ = 1 and

Var(yLSS) = S2
Y (N −1)/N (see equation (3.8)). This is no different to randomly selecting

a sample of size one and hence results in SRSWR, SRSWOR and STR, providing more

efficient results than LSS. Conducting LSS with k = 8 and random start i = 3, results in

a sample that correctly estimates Y . Nevertheless, we still consider this estimator to be

inefficient and inaccurate, since all possible systematic sample means, with k being equal

to the period, will not capture the variance explained by the population and will also, on

average inaccurately estimate Y . Finally, conducting LSS with k = 4 and random start

i = 4, results in the variate values of each successive pair of sampling units being equidis-

tant from Y , i.e. the average of the variate values, for every successive pair of sampling

units, is equivalent to Y . Furthermore, the sampling variance is zero when k is half the

period and n is even, since all the possible systematic sample means are equal to Y , i.e.

there is complete heterogeneity within the systematic samples and thus ρ = −1/(n − 1),

which results in Var(yLSS) = 0 (see Section 3.1.2). Consequently, LSS is more efficient

than SRSWR, SRSWOR, and STR for this scenario. By defining a similar hypothetical

population, we can then show that Var(yLSS) 6= 0 if n is odd and k is half the period.

This is owing to us obtaining an extra unit sampling after pairing the (n− 1) successive
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Figure 4.1: Selecting samples from a periodic population of size 24 with period AB=8, using

LSS

sampling units, where the average of the variate values of each of these pairs is equal to

Y . Nevertheless, LSS is still much more efficient than SRSWR, SRSWOR and STR for

this scenario.

A hypothetical population of this nature and those that exhibit an exact sine curve are

rare in practice. However, we can generalize the results for the hypothetical population

and apply it to all realistic periodic populations. We thus conclude that LSS is more

efficient than SRSWR, SRSWOR and STR, for periodic populations, if k is equal an odd

multiple of half the period (Cochran 1977). Conversely, LSS is less efficient than SRSWR,

SRSWOR and STR, if k is an integral multiple of the period (Cochran 1977). Moreover,

we obtain efficiency gains when conducting LSS when n is even, as opposed to the case

when n is odd, if the sampling interval is equal to an odd multiple of half the period.

It is thus of great importance that a sampler recognizes if a population exhibits periodic

variation before sampling, so as to remove any periodicity bias, by selecting an appropriate

sampling interval.
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4.2.4 Auto-correlated populations

So far we have shown that the efficiency of LSS depends on the arrangement/ordering

of population units and we provided some assumptions, i.e. random order, linear trend

and periodic. These assumptions are based on a single finite population which results

in inconsistencies, when comparing the efficiencies between sampling designs. We will

therefore consider a more realistic method of comparison, as shown below, which was

originally introduced by Cochran (1946).

Auto-correlated populations are described by the phenomenon where variate values of

population units which occur closer, in a given population, are more alike (higher corre-

lation), as compared to those that occur further apart. In this notation, we use ρu to

denote the serial correlation for the pair of population units yi and yj (i 6= j), such that

u = |i − j| represents the distance between these pairs. To test if a population exhibits

autocorrelation, one can plot a correlogram, where ρu, for yi and yj , is plot against u

(Cochran 1977). Cochran (1946) used this notation to introduce the super-population

model, which assumes that the population units for a finite population are drawn at ran-

dom from an infinite super-population. Now, we can obtain efficiency comparisons from

an average of many finite populations and these results will converge with the finite pop-

ulation results, as the finite population increases, i.e. as N becomes larger. Accordingly,

the super-population model is given by

Em (yi) = µ, Em(yi − µ)2 = σ2, Em (yi − µ) (yi+u − µ) = ρuσ
2, (4.12)

where the function Em denotes the average of all possible finite populations, which can be

selected from this super-population. The model is based on the assumptions that:

ρu ≥ 0 (i.e. ρu is positive); (4.13)

∆ρu = ρu+1 − ρu ≤ 0 (i.e. ρu is decreasing). (4.14)

We will first consider some preliminary results, before comparing LSS to the other

probability sampling designs.

A common identity used in the ANOVA is given as

N
N∑
i=1

(
yi − Y

)2
=

1

2

N∑
i=1

N∑
j=1
j 6=i

(yi − yj)2,
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which can be expressed as

N∑
i=1

(
yi − Y

)
=

1

N

N∑
i=1

N∑
j>i

(yi − yj)2

=
(N − 1)

2
× 2

N (N − 1)

N∑
i=1

N∑
j>i

(yi − yj)2

=
(N − 1)

2
E(yi − yj)2

=
(N − 1)

2
E
[(
yi − Y

)
−
(
yj − Y

)]2
=

(N − 1)

2
E
[(
yi − Y

)2
+
(
yj − Y

)
− 2

(
yi − Y

) (
yj − Y

)]
, (4.15)

since there are N(N − 1)/2 pairs of (yi, yj), where j > i. Now, in the N(N − 1)/2 pairs

of (yi, yj), there are (N − 1) pairs where u = 1, (N − 2) pairs where u = 2, and so forth.

Thus, by averaging (4.15) over all possible finite populations, we obtain

Em

[
N∑
i=1

(
yi − Y

)2]
=
N − 1

2
E
[
Em

{(
yi − Y

)2
+
(
yi − Y

)2 − 2
(
yi − Y

) (
yj − Y

)}]
=
N − 1

2
E
[
2σ2 − 2σ2ρu

]
= (N − 1)σ2

[
1− 2

N (N − 1)

N−1∑
u=1

(N − u) ρu

]
, (4.16)

which follows from (4.12). The expected sum of squares for a single stratum is obtained by

replacing N in (4.16) by k, since there are k population units within each stratum (refer

to reasoning in Section 4.2.2). Moreover, the expected sum of squares for each of the n

strata is equivalent, resulting in

Em (SS within strata) = n (k − 1)σ2

[
1− 2

k (k − 1)

k−1∑
u=1

(k − u) ρu

]
. (4.17)

The expected sum of squares for a single systematic sample is obtained by replacing

ρu and N in (4.16), by ρku and n respectively, since correlations between consecutive

population units are ρk, ρ2k, ρ3k, ..., rather than ρ1, ρ2, ρ3, ..., and there are n units in the

sample. Furthermore, the expected sum of squares for each of the k systematic samples

is equivalent, which results in

Em (SSW ) = k (n− 1)σ2

[
1− 2

n (n− 1)

n−1∑
u=1

(n− u) ρku

]
. (4.18)

Now, if we apply (4.2) and (4.16), then we obtain the expected variance of ySRSWOR,
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given by

σ2
SRSWOR =

(k − 1)

N (N − 1)
Em

[
N∑
i=1

(
yi − Y

)2]

=
(k − 1)σ2

N

[
1− 2

N (N − 1)

N−1∑
u=1

(N − u) ρu

]
. (4.19)

Likewise, by applying (4.3) and (4.17), we obtain the expected variance of ySTR, which is

given as

σ2
STR = Em

[
(N − n)

n2 (k − 1)N

n∑
s=1

k∑
i=1

(yis − y·s)
2

]

=
1

Nn
Em(SS within strata) =

(k − 1)σ2

N

[
1− 2

k (k − 1)

k−1∑
u=1

(k − u) ρu

]
. (4.20)

Finally, by respectively using (3.20), (3.15), (3.12), (4.16) and (4.18), we obtain the ex-

pected variance of yLSS , which is given by

σ2
LSS = Em

[
SSB

N

]
=

1

N

[
Em

{
N∑
i=1

(
yi − Y

)2}− Em (SSW )

]

=
σ2

N

[
(N − 1)− 2

N

N−1∑
u=1

(N − u) ρu −

{
k (n− 1)− 2k

n

n−1∑
u=1

(n− u)ρku

}]

=
σ2

N

[
(k − 1)− 2

N

N−1∑
u=1

(N − u) ρu +
2k

n

n−1∑
u=1

(n− u) ρku

]

=
(k − 1)σ2

N

[
1− 2

N (k − 1)

N−1∑
u=1

(N − u) ρu +
2k

n (k − 1)

n−1∑
u=1

(n− u) ρku

]
. (4.21)

The expected relative efficiency of STR, with respect to SRSWOR, is then obtained by

applying (4.19) and (4.20), such that

σ2
SRSWOR

σ2
STR

=
(k − 1)σ2

N

1−
2
N−1∑
u=1

(N − u) ρu

N (N − 1)


(k − 1)σ2

N

1−
2
k−1∑
u=1

(k − u) ρu

k (k − 1)



−1

= 1− 2

N (N − 1)

N−1∑
u=1

(N − u) ρu

[
1− 2

k (k − 1)

k−1∑
u=1

(k − u) ρu

]−1

> 1,

which follows if we use the conditions in (4.13) and (4.14) (Cochran 1946). By using the

relationship between SRSWR and SRSWOR, as in Section 4.1.2, it thus follows that

σ2
STR ≤ σ2

SRSWOR ≤ σ2
SRSWR, (4.22)
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for all n ≥ 1, while equivalence occurs when n = 1. It should be noted that there is no

general result for the expected relative efficiency of LSS, with respect to either SRSWOR

or STR. However, we can obtain results by introducing an additional assumption, as shown

in the next theorem, and then apply the transitive law to (4.22).

Theorem 3.1: If we provide an additional assumption to (4.13) and (4.14), such that the

correlogram is convex, i.e.

∆2ρu = δ2
u = ρu+1 + ρu−1 − 2ρu ≥ 0, for u = 2, ..., (N − 2), (4.23)

then

σ2
LSS ≤ σ2

STR ≤ σ2
SRSWOR ≤ σ2

SRSWR,

for any n, where LSS and STR are equally efficient when δ2
u = 0, for u = 2, ..., (N − 2).

Proof : The complete proof of this theorem is given by Cochran (1946); however, we will

provide a simplified version for the special case, which considers the sampling of two units

from two strata. The variance of ySTR is thus given as

Var (ySTR) = Var

[
yi + yj

2

]
=

1

4
[Var (yi) + Var (yj) + 2Cov (yi, yj)]

=
1

4

[
2σ2 + 2σ2ρu

]
=
σ2

2
[1− ρu] . (4.24)

Table 4.1 shows the number of combinations for each pair of population units, with respect

to their distance apart, for a population of size 2k. By using Table 4.1, we obtain the total

number of combinations of pairs of population units, which is given as

Tc = 1 + 2 + ...+ (k − 1) + k + (k − 1) + ...+ 1

= k + 2

k−1∑
u=1

u = k + 2

[
k (k − 1)

2

]
= k2. (4.25)

Table 4.1: Number of combinations for each pair of population units, with their

corresponding distance apart, when N = 2k

Distance Apart 1 2 ... k − 1 k k + 1 ... 2k − 1

Number of Combinations 1 2 ... k − 1 k k − 1 ... 1
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Thus, by applying (4.24) and (4.25), we can obtain the expected variance of ySTR, over

k2 combinations, which is given by

σ2
STR = Em

[
σ2

2
(1 + ρu)

]
=
σ2

2
Em [1 + ρu] =

σ2

2k2

∑[
1 + ρu

]
=

σ2

2k2

[
k2 +

∑
ρu

]
. (4.26)

Now, by using Table 4.1, it follows that

∑
ρu = 1ρ1 + ...+ (k − 1) ρk−1 + kρk + (k − 1) ρk+1 + ...+ 1ρ2k−1

=

k−1∑
u=1

uρu + kρk +

k−1∑
u=1

uρ2k−u. (4.27)

Hence, substituting (4.25) and (4.27) into (4.26), results in

σ2
STR =

σ2

2k2

[
k + 2

k−1∑
u=1

u+

k−1∑
u=1

uρu + kρk +

k−1∑
u=1

uρ2k−u

]

=
σ2

2k2

[
k−1∑
u=1

u (2 + ρu + ρ2k−u) + k (1 + ρk)

]
. (4.28)

The variance of yLSS is obtained by replacing ρu in (4.24) with ρk, since each pair of

sampling units is k units apart if n = 2. Accordingly,

Var(yLSS) =
σ2

2
[1 + ρk]. (4.29)

Similarly, as in the case of STR, we use Table 4.1 to obtain the total number of combina-

tions, which is given as k2 in (4.25). By applying (4.29), we can thus obtain the expected

variance of yLSS , over k2 combinations, which is given as

σ2
LSS = Em

[
σ2

2
(1 + ρk)

]
=
σ2

2
Em [1 + ρk] =

σ2

2k2

∑[
1 + ρk

]
=

σ2

2k2

[
k2 +

∑
ρk

]
. (4.30)

By using Table 4.1, where every value in the distance apart row is replaced with k, we

obtain

∑
ρu = 1ρk + 2ρk + ...+ (k − 1) ρk + kρk + (k − 1) ρk + ...+ 1ρk

= 2

k−1∑
u=1

uρk + kρk. (4.31)
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Hence, substituting (4.25) and (4.31) into (4.30), results in

σ2
LSS =

σ2

2k2

[
k + 2

k−1∑
u=1

u+ 2
k−1∑
u=1

uρk + kρk

]

=
σ2

2k2

[
k−1∑
u=1

u (2 + 2ρk) + k (1 + ρk)

]
. (4.32)

By comparing (4.28) to (4.32), we note that σ2
LSS ≤ σ2

STR if and only if

k−1∑
u=1

u (2 + 2ρk) ≤
k−1∑
u=1

u (2 + ρu + ρ2k−u),

or equivalently, if and only if

k−1∑
u=1

u [(ρu − ρk) + (ρ2k−u − ρk)] ≥ 0. (4.33)

Now, by using the assumptions given in (4.14) and (4.23), we obtain

δ2
u = ρu+1 + ρu−1 − 2ρu ≥ 0, for u = 2, ..., (N − 2),

i.e.

∇u−1 = ρu−1 − ρu ≥ ∇u = ρu − ρu+1 ≥ 0.

Thus

∇1 ≥ ∇2 ≥ ... ≥ 0,

implies

∇u +∇u−1 + ...+∇u+t−1 ≥ ∇u+t +∇u+t+1 + ...+∇u+2t−1,

i.e.

ρu − ρu+t ≥ ρu+t − ρu+2t, for t ≥ 1.

For t = k − u, we obtain

ρu − ρk ≥ ρk − ρ2k−u.

We then conclude the proof by applying the above result to (4.33).

Cochran (1977) notes that the assumptions in (4.13), (4.14) and (4.23) are satisfied

for the cases where the correlograms are linear, exponential and hyperbolic tangent. Ex-

amples of natural populations that exhibit positive convex decreasing correlograms are

given by: (i) a linear autocorrelation function of ρu = (l − u)/l, for particular classes of

economic time series, proposed by Wold (1938); (ii) an exponential autocorrelation func-

tion of ρu = exp(−λu), for forestry and land use/cover area frame surveys, proposed by
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Osborne (1942) and Matérn (1947); (iii) a hyperbolic tangent autocorrelation function

of ρu = tanh(u−3/5), for investigating the weekly rainfall for two meteorological stations

that are located at a distance of u units apart, proposed by Fisher & Mackenzie (1922).

Furthermore, Bellhouse (1988) noted that any process which is autoregressive and has real

roots, with respect to the characteristic equation, will exhibit a positive convex decreasing

correlogram.

4.2.5 Stratified populations

If the entire population is divided into groups (or strata) that are internally homogenous

and externally heterogeneous (i.e. population units within a stratum are alike according to

some characteristic and strata differ amongst each other according to some characteristic),

then this population is known as a stratified population. Stratified populations may be

naturally defined or they may be defined by a sampler, e.g. a sampler may divide the

population into strata according to some characteristic, which is related to the variable of

interest. Examples of naturally defined stratified populations exist in certain multi-stage

sampling designs, where the strata may be defined as provinces, municipalities, regions

etc.

Multi-stage designs involve a nesting population structure of more than two categorical

stages, such that the first stage involves dividing the population into primary sampling

units (PSUs), the second stage involves dividing the primary sampling units into secondary

sampling units (SSUs), and so forth, until a sampling design is employed to select the final

stage sampling units, which collectively form the sample. If at one of the stages we

divide the sampling units into strata and then at the next stage we apply an independent

SRS design within each stratum, then we are simply employing a STR design for those

two particular stages of sampling. Alternatively, we can use an independent systematic

sampling design within each stratum for the corresponding stage of sampling, which is

then termed as stratified systematic sampling. Stratified systematic sampling and STR

are thus referred to as a two-stage sampling designs, where the first stage involves the

constructing of strata and the second stage involves the independent random selection of

units within the strata. An example of stratified systematic sampling for a large scale

survey is given by Arnab & North (2012).

Madow & Madow (1944) provides us with two stratified systematic sampling designs,

where the first design assumes that the sampling interval within each stratum is equal,
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while the second design assumes unequal sampling intervals, i.e. for a population that

is divided into L strata, the sampling interval for the jth stratum is given by kj , for

j ∈ {1, ..., L}.

Stratified systematic sampling is more often than not, more efficient than STR, for

the case where strata are considered to be large and more than one unit is drawn from

each stratum. This is because stratified systematic sampling ensures a more even spread

of the stratum sample over the corresponding stratum, for each of the strata, as compared

to STR (Murthy & Rao 1988). This preference is used with the objective to reduce the

variance within strata and results in efficiency gains, if and only if systematic sampling

within strata is more precise than SRS within strata.

So far we have considered sampling from populations in its original state. It may

thus be advantageous to order the population units before sampling, so as to make sys-

tematic sampling more efficient. A sampler may then opt to order the population in

ascending/descending order according to some auxiliary variable (a readily available vari-

able which is correlated to the variable of interest, such that the variate values of this

variable are easier to obtain, than those of the variable of interest). The resulting effect

is a population that approximately exhibits linear trend, where the stronger the degree of

correlation between the auxiliary variable and the variable of interest, results in a stronger

degree of linear trend. The results obtained in this chapter, for populations that exhibit

linear trend, may then apply. In the next chapter, we will examine and compare various

designs of LSS, for populations that exhibit linear trend.
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Chapter 5

LINEAR SYSTEMATIC

SAMPLING DESIGNS IN THE

PRESENCE OF LINEAR

TREND

In this chapter, we will discuss LSS designs which are considered to be optimal, when

sampling from a population that exhibits linear trend. By assuming a linear trend model

averaged over the super-population model, we will compare the various designs by com-

paring the expected MSEs of the corresponding sample means. We will first introduce

some preliminary results, in which we will provide a generic formula for calculating the

expected MSEs of the sample means. Thereafter, we will discuss some designs, which

include YEC, CESS, BSS, MSS and a new proposed design termed as BMSS. It should be

noted that the designs which are discussed in this chapter are not restricted to populations

that exhibit linear trend only, such that they could also be shown to be useful for other

population structures (numerical results for these designs on other population structures

are given in Chapter 8). Note that throughout this chapter we will assume that k is an

integer, so that we will be conducting sampling linearly.
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5.0 Preliminary Results

The model for a hypothetical population that exhibits perfect linear trend, given by (4.5),

is considered to be unrealistic. A more realistic model for linear trend is given by

yi = a+ bi+ ei, for i = 1, ..., N, (5.1)

where ei denotes the random error which follows the super-population model, given by

Cochran (1946), such that

Em (ei) = 0, Em
(
e2
i

)
= σ2, Em (eiej) = 0 (i 6= j) . (5.2)

By using (5.1), we obtain

Y =
1

N

N∑
i=1

yi =
1

N

N∑
i=1

a+
b

N

N∑
i=1

i+
1

N

N∑
i=1

ei = a+
b (N + 1)

2
+ e, (5.3)

which follows since e =
N∑
i=1

ei/N is the mean random error of the population.

Theorem 5.1: With the assumption of equal weights (1/n) being applied to all the

sampling units, the expected MSE of any sample mean, for the model in (5.1), is given by

EmMSE (yLT )
∆
= Em

[
E
({
yLT − Y

}2
)]

= σ2

(
1

n
− 1

N

)
+ Var (yPLT ) , (5.4)

where yPLT denotes a linear unbiased estimator of (4.6), using the probability sampling

design associated with yLT .

Proof : By using (5.1) and (4.5), we obtain

yLT = yPLT + ei,

where ei =
∑
ei/n denotes the mean random error of the sample and

∑
denotes the sum

over the sample. Now, by using the above expression along with (5.3) and (4.6), we obtain

an expression for the expected MSE of yLT , given by

EmMSE (yLT )
∆
= Em

[
E
({
yLT − Y

}2
)]

= Em

[
E

({
yPLT − a−

b (N + 1)

2

}2

+
{
ei − e

}2

)]
= EmVar (yPLT ) + E

[
Em

(
e2
i − 2eie+ e

2
)]
, (5.5)
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which follows if we use the conditions in (5.2), i.e.

EmE

[
2

(
yPLT − a−

b (N + 1)

2

)(
ei − e

)]
= 0.

Furthermore, by applying the conditions in (5.2), we obtain

Em
(
e2
i

)
= Em

[(
1

n

∑
ei

)2
]

= Em

 1

n2

∑ e2
i +

∑∑
j 6=i

eiej


=

1

n2

∑Em
(
e2
i

)
+
∑∑

j 6=i
Em (eiej)

 =
1

n2

∑
σ2 =

σ2

n
, (5.6)

Em

(
e

2
)

= Em

 1

N

N∑
j=1

ej

2
= Em

 1

N2

 N∑
j=1

e2
j +

N∑
i=1

N∑
j 6=i

eiej


=

1

N2

 N∑
j=1

Em
(
e2
j

)
+

N∑
i=1

N∑
j 6=i

Em (eiej)

 =
1

N2

N∑
j=1

σ2 =
σ2

N
, (5.7)

and

Em
(
eie
)

= Em

 1

nN

∑ N∑
j=1

eiej

 =
1

nN

∑ N∑
j=1

Em (eiej) =
nσ2

nN
=
σ2

N
, (5.8)

which follows since a sample of size n results in ei = ej occurring n times. We then

conclude the proof by substituting (5.6), (5.7) and (5.8) into (5.5), i.e.

EmMSE (yLT ) = EmVar (yPLT ) + E

[
σ2

n
− 2σ2

N
+
σ2

N

]
= Var (yPLT ) + σ2

(
1

n
− 1

N

)
.

It should be noted that Var(yPLT ) represents the linear trend component, while the

assumption of equal weights being applied to all the sampling units results in a min-

imum expected error variance component, represented by σ2(1/n − 1/N). Hence, the

most desirable sampling design(s) for populations that exhibit linear trend, are those that

are associated with estimator(s) that completely remove the linear trend component (i.e.

yPLT = a+ b(N + 1)/2) and exhibit minimum expected error variance.
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By substituting either (4.9), (4.10) or (4.11) into (5.4), we respectively obtain the expected

MSEs for yLSS ySRSWOR, and ySTR, such that

EmMSE (yLSS) = σ2

(
1

n
− 1

N

)
+
b2
(
k2 − 1

)
12

, (5.9)

EmMSE (ySRSWOR) = σ2

(
1

n
− 1

N

)
+
b2 (N + 1) (k − 1)

12
, (5.10)

EmMSE (ySTR) = σ2

(
1

n
− 1

N

)
+
b2
(
k2 − 1

)
12n

, (5.11)

which follows since there are equal weights being applied to all the sampling units and

yLSS , ySRSWOR, and ySTR, are all design unbiased estimators of Y . With the assumption

of n ≥ 2, we obtain error comparisons using (5.9) to (5.11), where the result is then given

as

EmMSE (ySTR) < EmMSE (yLSS) < EmMSE (ySRSWOR) < EmMSE (ySRSWR) . (5.12)

We will next discuss various LSS designs for populations that exhibit linear trend.

Within each design we will (i) discuss the corresponding methodology, (ii) obtain expected

MSE formulae, and (iii) compare the corresponding expected errors, to that of all the

previously discussed designs.

5.1 Yates End Corrections

5.1.1 Methodology

Yates (1948) proposed an estimator that eliminates linear trend. The design is equivalent

to LSS; however, an estimate of Y is obtained by applying weights to the first and the last

sampling units, as shown in the next theorem.

Theorem 5.2: The YEC estimator of Y with random start i, for i ∈ {1, ..., k}, is given

as

yY EC = yLSS +
(2i− k − 1)

2 (n− 1) k

(
yi − yi+(n−1)k

)
. (5.13)

Proof : An estimate of Y with random start i, for i ∈ {1, ..., k}, is given as

yY EC =
1

n

λ1yi +

n−2∑
j=1

yi+jk

+ λ2yi+(n−1)k

 , (5.14)
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where λ1 and λ2 are the weights applied to the first and the last sampling units, respec-

tively. By substituting (4.5) into (5.14) and then equating this result to (4.6), we obtain

yY EC =
1

n

λ1 (a+ bi) +

n−2∑
j=1

a+ b (i+ jk)

+ λ2 {a+ b [i+ (n− 1) k]}


= a+

b (N + 1)

2
. (5.15)

Now, by equating the coefficients of a in (5.15), it follows that

λ1 = 2− λ2. (5.16)

Similarly, by equating the coefficients of b in (5.15), we obtain

1

n

[
λ1i+ (n− 2) i+

(n− 1) (n− 2) k

2
+ λ2i+ λ2 (n− 1) k

]
=
N + 1

2
. (5.17)

Substituting (5.16) into (5.17), results in

2

[
2i− λ2i+ (n− 2) i+

(n− 1) (n− 2) k

2
+ λ2i+ λ2 (n− 1) k

]
= n (N + 1) ,

which simplifies to

λ2 = 1− n (2i− k − 1)

2 (n− 1) k
. (5.18)

The weight applied to the first sampling unit is thus obtained by substituting (5.18) into

(5.16), such that

λ1 = 1 +
n (2i− k − 1)

2 (n− 1) k
. (5.19)

We then conclude the proof, by substituting (5.18) and (5.19) into (5.14), i.e.

yY EC =
1

n

yi +
n (2i− k − 1)

2 (n− 1) k
yi +

n−2∑
j=1

yi+jk

+ yi+(n−1)k −
n (2i− k − 1)

2 (n− 1) k
yi+(n−1)k


= yLSS +

(2i− k − 1)

2 (n− 1) k

(
yi − yi+(n−1)k

)
,

where yi +
n−2∑
j=1

yi+jk + yi+(n−1)k =
n∑
j=1

yi+(j−1)k = nyLSS . This estimator is unbiased and

Var(yY EC) = 0, for the model in (4.5) (i.e. the linear trend component is completely

removed), since we constructed yY EC by equating it to (4.6). For the realistic linear trend

model in (5.1), we can expect this estimator to be slightly biased; however, estimator

yY EC is usually more efficient than yLSS (Murthy & Rao 1988).
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5.1.2 Expected mean square error

The generic expected MSE formula, given in (5.4), assumes equal weights are applied

to all the sampling units and is thus not applicable for the YEC estimator. The more

appropriate method for obtaining the expected MSE of yY EC is given as follows:

EmMSE (yY EC)
∆
= Em

[
E
({
yY EC − Y

}2
)]

= E
{

Em

[(
yY EC − Y

)2]}
=

1

k

k∑
i=1

Em
[
yY EC − Y

]2
, (5.20)

which follows since there are k possible samples. Now, by using the model in (5.1), we

obtain

yLSS =
1

n

n∑
j=1

y{i+(j−1)k}

=
1

n

na+ nbi+ bk
n−1∑
j=1

j +
n∑
j=1

e{i+(j−1)k}


= a+ bi+

bk (n− 1)

2
+ ei = a+ b

[
i+

k (n− 1)

2

]
+ ei, (5.21)

which follows since ei =
n∑
j=1

e{i+(j−1)k}/n. Moreover, by using (5.3) and (5.21), it follows

that

yLSS − Y = a+ b

[
i+

k (n− 1)

2

]
+ ei − a−

b (N + 1)

2
− e

= b

[
i+

(N − k)

2
− (N + 1)

2

]
+ ei − e = b

[
2i− k − 1

2

]
+ ei − e. (5.22)

In addition, by applying the model in (5.1), we obtain

yi − yi+(n−1)k = a+ bi+ ei −
[
a+ b {i+ (n− 1) k}+ ei+(n−1)k

]
= ei − b (n− 1) k − ei+(n−1)k. (5.23)

If we use (5.13), (5.22) and (5.23), then it follows that

Em

[(
yY EC − Y

)2]
= Em

[
yLSS +

(2i− k − 1)

2 (n− 1) k

(
yi − yi+(n−1)k

)
− Y

]2

= Em

[
b

(
2i− k − 1

2

)
+ ei − e

+
(2i− k − 1)

2 (n− 1) k

(
ei − b (n− 1) k − ei+(n−1)k

) ]2

= Em

[
ei − e+

(2i− k − 1)

2 (n− 1) k

(
ei − ei+(n−1)k

)]2

. (5.24)
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By applying the conditions in (5.2), we obtain

Em
[
ei
(
ei − ei+(n−1)k

)]
= Em

 1

n

n∑
j=1

e{i+(j−1)k}

(ei − ei+(n−1)k

)
=

1

n

 n∑
j=1

Em
(
e{i+(j−1)k}ei

)
−

n∑
j=1

Em
(
e{i+(j−1)k}ei+(n−1)k

)
=
σ2 − σ2

n
= 0, (5.25)

where ei+(j−1)k = ei and ei+(j−1)k = ei+(n−1)k each occur once, for j = 1, ..., n. Likewise,

Em
[
e
(
ei − ei+(n−1)k

)]
= Em

 1

N

N∑
j=1

ej

(ei − ei+(n−1)k

)
=

1

N

 N∑
j=1

Em (eiej)−
N∑
j=1

Em
(
ei+(n−1)kej

)
=
σ2 − σ2

N
= 0, (5.26)

where ei = ej and ei+(n−1)k = ej each occur once, for j = 1, ..., N and i ∈ {1, ..., k}.

Furthermore, by applying the conditions in (5.2) along with the assumption of n ≥ 2, we

obtain

Em

[(
ei − ei+(n−1)k

)2]
= Em

[
e2
i − 2eiei+(n−1)k + e2

i+(n−1)k

]
= Em

(
e2
i

)
− 2Em

(
eiei+(n−1)k

)
+ Em

(
e2
i+(n−1)k

)
= σ2 + σ2 = 2σ2. (5.27)

Expanding (5.24) and then substituting (5.6), (5.7), (5.8), (5.25), (5.26) and (5.27), results

in

Em

[(
yY EC − Y

)2]
= σ2

(
1

n
− 1

N

)
+
σ2(2i− k − 1)2

2(n− 1)2k2
. (5.28)

Now, by substituting (5.28) into (5.20), it follows that

EmMSE (yY EC) =
1

k

k∑
i=1

[
σ2

(
1

n
− 1

N

)
+
σ2(2i− k − 1)2

2(n− 1)2k2

]

= σ2

(
1

n
− 1

N

)
+

σ2

2(n− 1)2k3

k∑
i=1

(2i− k − 1)2. (5.29)

The summation term on the right hand side of (5.29) simplifies to

k∑
i=1

(2i− k − 1)2 =
k
(
k2 − 1

)
3

. (5.30)
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Finally, substituting (5.30) into (5.29), results in

EmMSE (yY EC) = σ2

(
1

n
− 1

N

)
+
σ2
(
k2 − 1

)
6(n− 1)2k2

. (5.31)

5.1.3 Error comparisons

If we compare (5.9) to (5.31), then we see that EmMSE(yY EC) < EmMSE(yLSS), if and

only if σ2 < b2(n − 1)2k2/2. Furthermore, by comparing (5.11) to (5.31), we note that

EmMSE(yY EC) < EmMSE(ySTR), if and only if σ2 < b2(n − 1)2k2/2n. Thus, by using

(5.12), we conclude that yY EC is expected to be subject to the least amount of error, when

compared to ySRSWR, ySRSWOR, yLSS and ySTR, if and only if σ2 < b2(n− 1)2k2/2n.

5.2 Centered Systematic Sampling

5.2.1 Methodology

CESS was first discussed by Madow (1953) and involves selecting the centrally located

sample from all the possible linear systematic samples, thus resulting in no randomization.

If k is odd, then the sample units chosen will be those elements with population unit

numbers given by

[(2j − 1) k + 1] /2, for j = 1, ..., n. (5.32)

The sample is thus selected by applying LSS with a predetermined start of i = (k + 1)/2.

If k is even, then then the population unit numbers of the sampling units are given by

either

(2j − 1) k/2, for j = 1, ..., n, (5.33)

or

[(2j − 1) k + 2] /2, for j = 1, ..., n, (5.34)

with probability 1/2. The sample is thus selected by applying LSS, where the predeter-

mined start is either i = k/2 or i = (k + 2)/2, with probability 1/2.

The corresponding estimator of Y (i.e. yCESS) is obtained by using (5.32), (5.33) and

(5.34), such that

yCESS =


n−1

n∑
j=1

y[(2j−1)k+1]/2 if k is odd,

n−1
n∑
j=1

y(2j−1)k/2 or n−1
n∑
j=1

y[(2j−1)k+2]/2 if k is even.
(5.35)
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It should be noted that for CESS, some population units have no chance of being selected

for the sample and thus yCESS is subject to bias (Murthy 1967). However, yCESS is

unbiased for the model in (4.5), as shown in the next section.

5.2.2 Expected mean square error

If k is odd, then an estimator of (4.6) is obtained by using (4.5) and (5.35), such that

yCSS(k odd) = a+
b

2n

k n∑
j=1

(2j − 1) + n

 = a+
b

2
[k (n+ 1)− k + 1] = a+

b (N + 1)

2
.

Similarly, if k is even, then yk/2 = a+ bN/2 and y(k+2)/2 = a+ b(N + 2)/2. By selecting

yk/2 or y(k+2)/2 with probability 1/2, we can then show that yCSS(k even) is an unbiased

estimator of (4.6), i.e. E
[
yCESS(k even)

]
=
[
yk/2 + y(k+2)/2

]
/2 = a+ b(N + 1)/2. We may

thus use (5.4) to obtain the expected MSE of yCESS , since there are equal weights being

applied to all the sampling units and yCESS is unbiased for the perfect linear trend model.

The variance of y(k+1)/2 is thus given as

Var(y(k+1)/2) = 0. (5.36)

Furthermore, the variances of yk/2 and y(k+2)/2 are respectively given as

Var(yk/2) = E

[(
a+

bN

2
−
{
a+

b (N + 1)

2

})2
]

= E

[(
− b

2

)2
]

=
b2

4
(5.37)

and

Var(y(k+2)/2) = E

[(
a+

b (N + 2)

2
−
{
a+

b (N + 1)

2

})2
]

= E

[(
b

2

)2
]

=
b2

4
. (5.38)

If we assume the model in (5.1), then by substituting (5.36) into (5.4) when k is odd and

either (5.37) or (5.38) into (5.4) when k is even, we obtain

EmMSE(yCESS) =


σ2 (1/n− 1/N) if k is odd,

σ2 (1/n− 1/N) + b2/4 if k is even.

(5.39)

We thus obtain a complete removal of the trend component in (5.39), when k is odd.
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5.2.3 Error comparisons

By comparing (5.9) to (5.39), we conclude that:

(i) EmMSE(yCESS) < EmMSE(yLSS), when k is odd;

(ii) EmMSE(yCESS) < EmMSE(yLSS), when k ∈ {4, 6, ...};

(iii) EmMSE(yCESS) = EmMSE(yLSS), when k = 2.

Furthermore, by comparing (5.11) to (5.39), we get EmMSE(yCESS) < EmMSE(ySTR)

when k is odd and for the case when k is even, provided that k2 − 1 > 3n. Hence, by

using (5.12), we thus conclude that yCESS is expected to be subject to the least amount

of error, when compared to ySRSWR, ySRSWOR, yLSS and ySTR when k is odd and for

the case when k is even, if and only if k2 − 1− 3n is non-zero and positive. Finally, if we

compare (5.31) to (5.39), it follows that EmMSE(yCESS) < EmMSE(yY EC) when k is odd

and for the case when k is even, provided that σ2 > 3b2(n− 1)2k2/2(k2 − 1).

5.3 Balanced Systematic Sampling

5.3.1 Methodology

The methodology of this design was first introduced by Sethi (1965) and later termed as

BSS by Murthy (1967, p.165). One way of viewing a balanced arrangement is that it

reverses the order, with respect to the population unit numbers, of every alternative set

of k population units. LSS is then applied to this balanced arrangement to select the

balanced systematic sample.

Instead of applying LSS to a balanced arrangement, one can alternatively use the

following equivalent methodology, given by Murthy (1967, p.165). If n is even, then a

balanced systematic sample is chosen by selecting those elements with population unit

numbers given by

i+ 2jk, 2(j + 1)k − i+ 1, for j = 0, ..., (n− 2)/2. (5.40)

The population is thus divided into n/2 groups, each consisting of 2k population units. A

random start is then selected from the interval [1, k], before selecting a pair of sampling

units from each group according to the random start, such that each unit is paired with

a unit that occurs at an equivalent position at the other end of the respective group, i.e.
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the first sampling unit in the group is paired with the last unit, the second sampling unit

in the group is paired with the second last unit, and so forth. This results in optimum

sampling within each of the n/2 groups, when n is even (Murthy 1967). Alternatively, if

n is odd, then a balanced systematic sample is chosen by selecting those elements with

population unit numbers given by

i+ 2jk, 2(j + 1)k − i+ 1, i+ (n− 1)k, for j = 0, ..., (n− 3)/2. (5.41)

For this situation, the first N − k population units are divided into (n − 1)/2 groups,

each consisting of 2k population units. A random start is then selected from the interval

[1, k], before selecting two units from each group using the pairing technique above. The

nth sampling unit, which corresponds to the random start, is then selected from a group

which consists of the last k population units. Conversely, this does not result in optimum

sampling, since we obtain an extra sampling unit after selecting the (n − 1) paired units

using optimum sampling, where the variate value of this extra sampling unit will on average

give the sample an uneven weighting, for the population under consideration.

The corresponding estimator of Y (i.e. yBSS) with random start i, for i ∈ {1, ..., k},

is thus obtained by using (5.40) and (5.41), such that

yBSS =


n−1

∑(n−2)/2
j=0 (yi+2jk + y2(j+1)k−i+1) if n is even,

n−1
[∑(n−3)/2

j=0 (yi+2jk + y2(j+1)k−i+1) + yi+(n−1)k

]
if n is odd.

(5.42)

This estimator is design unbiased since each population unit has an equal chance, 1/k, of

being selected.

5.3.2 Expected mean square error

If n is even, then an estimator of (4.6) is obtained by using (4.5) and (5.42), i.e.

yBSS(n even) =
1

n

na+ b

ni
2

+ 2k

(n/2−1)∑
i=1

i+ 2k

n/2∑
i=1

i− ni

2
+
n

2


= a+

b

n

[
nk

2

(n
2
− 1
)

+
nk

2

(n
2

+ 1
)

+
n

2

]
= a+ b

[
nk

4
− k

2
+
nk

4
+
k

2
+

1

2

]
= a+ b

[
N

2
+

1

2

]
= a+

b (N + 1)

2
. (5.43)

Similarly, when n is odd, we find that

yBSS(n odd) = a+
b

2

[
N + 1 +

(2i− k − 1)

n

]
. (5.44)
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The variance of yBSS(n even) is obtained by using (4.6) and (5.43), i.e.

Var(yBSS(n even)) = 0. (5.45)

Furthermore, we obtain the variance of yBSS(n odd) by using (4.6), (5.44) and (5.30), such

that

Var(yBSS(n odd)) = E

[(
a+

b

2

{
N + 1 +

(2i− k − 1)

n

}
−
{
a+

b

2
(N + 1)

})2
]

= E

[(
b

2

{
2i− k − 1

n

})2
]

=
b2

4n2k

k∑
i=1

(2i− k − 1)2 =
b2
(
k2 − 1

)
12n2

. (5.46)

We next use (5.4) to obtain the expected MSE of yBSS , since there are equal weights being

applied to all the sampling units and yBSS is design unbiased. Consequently, if we assume

the model in (5.1), then by substituting (5.45) into (5.4) when n is even and (5.46) when

n is odd, we obtain

EmMSE (yBSS) =


σ2 (1/n− 1/N) if n is even,

σ2 (1/n− 1/N) + b2(k2 − 1)/12n2 if n is odd.

(5.47)

We thus obtain a complete removal of the trend component in (5.47), when n is even.

5.3.3 Error comparisons

By comparing (5.9) to (5.47), we see that EmMSE(yBSS) < EmMSE(yLSS) when n ≥ 2.

Moreover, by comparing (5.11) to (5.47), we note that EmMSE(yBSS) < EmMSE(ySTR)

when n ≥ 2. By using (5.12), we thus conclude that yBSS is expected to be subject to the

least amount of error, when compared to ySRSWR, ySRSWOR, yLSS and ySTR, if n ≥ 2

(equality occurs when n = 1). Furthermore, if we compare (5.31) to (5.47), then we see

that EmMSE(yBSS) < EmMSE(yY EC) when n is even and for the case when n is odd, if

and only if σ2 > b2(n− 1)2k2/2n2. Finally, by comparing (5.39) to (5.47), we note that

(i) EmMSE(yBSS) = EmMSE(yCESS), when n is even and k is odd;

(ii) EmMSE(yBSS) > EmMSE(yCESS), when n is odd and k is odd;

(iii) EmMSE(yBSS) < EmMSE(yCESS), when n is even and k is even;

(iv) EmMSE(yBSS) < EmMSE(yCESS), when n is odd and k is even, if and only if

(k2 − 1)/n2 < 3.
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5.4 Modified Systematic Sampling

5.4.1 Methodology

The method of MSS was first considered by Singh, Jindal & Garg (1968). It creates a

sample by selecting pairs of sampling units that are equidistant from each end of the

population. A modified arrangement is one that reverses the order of the second half

of population units, i.e. the first n/2 groups of k population units are monotonically

increasing, with respect to their population unit numbers, and the last n/2 groups of k

population units are monotonically decreasing, or vice versa. If n is odd, then the number

of groups which are monotonically increasing is not equal the number of groups which are

monotonically decreasing. To obtain a modified arrangement, we thus leave the middle

group of k units in the order of the initial arrangement, e.g. if we have five groups of k

units each (i.e. n = 5 is odd), then a modified arrangement is applied by only reversing

the order of the population units in the last two groups, such that the last population unit

in the third group (U3k) is followed by the last population unit in the fifth group (U5k) and

so forth, until the final population unit is the first unit in the fourth group (U3k+1). LSS

is then applied to this modified arrangement to select the modified systematic sample. It

should be noted that the modified systematic sample is spread evenly over the population,

except in the middle.

Instead of applying LSS to a modified arrangement, one can alternatively use the

following equivalent methodology, given by Singh et al. (1968). If n is even, then a modified

systematic sample is chosen by selecting those elements with population unit numbers

given by

i+ jk, N − jk − i+ 1, for j = 0, ..., (n− 2)/2. (5.48)

The population is thus divided into two groups, such that the first N/2 population units

belong to the first group and the last N/2 population units belong to the second group.

We then select n/2 sampling units from the first group using LSS and pair each of these

units with a corresponding unit from the second group, such that the units paired occur

at opposite ends of each group, i.e. the first unit in the first group is paired with the last

unit in the second group, the second unit in the first group is paired with the second last

unit in the second group, and so forth. This results in optimum sampling for the case

when n is even (Sethi 1965). Alternatively, if n is odd, then a modified systematic sample
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is chosen by selecting those elements with population unit numbers given by

i+ jk, N − jk − i+ 1, i+ (n− 1)k/2, for j = 0, ..., (n− 3)/2. (5.49)

For this situation, the first (N − k)/2 population units belong to the first group, the last

(N −k)/2 population units belong to the second group and the middle set of k population

units belong to the third group. We then select (n − 1)/2 sampling units from the first

group using LSS and pair each of these units with a corresponding unit from the second

group, as defined for the case where n is even. The nth sampling unit, which corresponds

to the random start, is then selected from the third group. Just as in the case of n being

odd for BSS, we do not achieve optimum sampling, since we obtain an extra sampling unit

after selecting the (n− 1) sampling units using optimum sampling.

The corresponding estimator of Y (i.e. yMSS) with random start i, for i ∈ {1, ..., k},

is thus obtained by using (5.48) and (5.49), such that

yMSS =


n−1

∑(n−2)/2
j=0 (yi+jk + yN−jk−i+1) if n is even,

n−1[
∑(n−3)/2

j=0 (yi+jk + yN−jk−i+1) + yi+(n−1)k/2] if n is odd.

(5.50)

This estimator is design unbiased since each population unit has an equal chance, 1/k, of

being selected.

5.4.2 Expected mean square error

If n is even, then an estimator of (4.6) is obtained by using (4.5) and (5.50), such that

yMSS(neven) =
1

n

na+ b

ni2 + k

(n−2)/2∑
i=1

i+
Nn

2
− ni

2
− k

(n−2)/2∑
i=1

i+
n

2




= a+
b

n

[
n (N + 1)

2

]
= a+

b (N + 1)

2
. (5.51)

Likewise, when n is odd, we find that yMSS(n odd) = a+ b(N + 1 + (2i−k−1)/n)/2. Now,

in MSS, we obtain the same estimator as that for BSS, when considering the model in

(4.5), i.e. yMSS(n even) = yBSS(n even) and yMSS(n odd) = yBSS(n odd). By noting that equal

weights are being applied to all the sampling units for MSS, we then use (5.47), such that

EmMSE (yMSS) =


σ2 (1/n− 1/N) if n is even,

σ2 (1/n− 1/N) + b2(k2 − 1)/12n2 if n is odd.

(5.52)

There is thus a complete removal of the trend component in (5.52), when n is even. We

can now apply the error comparisons, given in Section 5.3.3, for MSS.
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5.5 Balanced Modified Systematic Sampling

5.5.1 Methodology

The author next proposes a new design, which uses MSS in conjunction with a balanced

arrangement and is thus termed as BMSS. It creates a sample by applying MSS on a

balanced arrangement. A balanced modified arrangement is achieved by reversing the

order, with respect to the population unit numbers, of every alternative set of k population

units, before reversing the order of a group of population units that occur at the end of the

population, i.e. we are using a modified arrangement on the balanced arrangement. For

the case where n is even, we apply a balanced arrangement, before reversing the order of

the last n/2 sets of k population units. For the case where n is odd, we apply a balanced

arrangement, before reversing the order of the last (n − 1)/2 sets of k population units.

LSS is then applied to this balanced modified arrangement to obtain a balanced modified

systematic sample. It should be noted that BMSS reduces to LSS when n = 2. We will

thus assume n > 2 for the remainder of this section.

Instead of applying LSS to a balanced modified arrangement, one can alternatively

use the following equivalent methodology. The population unit numbers of the sampling

units, when selecting a balanced modified systematic sample, is given as follows:

(A) if n/2 is an even integer, then

i+ 2jk, 2(j + 1)k − i+ 1, for j = 0, ..., (n− 4)/4, (5.53)

and

N + i− k − 2jk, N − i− k − 2jk + 1, for j = 0, ..., (n− 4)/4; (5.54)

(B) if n/2 is an odd integer, then

i+ 2jk, N + i− k − 2jk, for j = 0, ..., (n− 2)/4, (5.55)

and

2(j + 1)k − i+ 1, N − i− k − 2jk + 1, for j = 0, ..., (n− 6)/4; (5.56)

(C) if n = 3, then

i+ 2jk, 2(j + 1)k − i+ 1, N − i− 2jk + 1, for j = 0, ..., (n− 3)/4; (5.57)
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(D) if n 6= 3 and (n+ 1)/2 is an even integer, then

i+ 2jk, 2(j + 1)k − i+ 1, N − i− 2jk + 1, for j = 0, ..., (n− 3)/4, (5.58)

and

N + i− 2(j + 1)k, for j = 0, ..., (n− 7)/4; (5.59)

(E) if (n+ 1)/2 is an odd integer, then

i+ 2jk, 2(j + 1)k − i+ 1, i+ (n− 1)k/2, for j = 0, ..., (n− 5)/4, (5.60)

and

N − i− 2jk + 1, N + i− 2(j + 1)k, for j = 0, ..., (n− 5)/4. (5.61)

The corresponding estimator of Y (i.e. yBMSS) with random start i, for i ∈ {1, ..., k}, is

thus the average of the sample variate values chosen, using the respective population unit

numbers for the various cases given above. The resulting estimator is design unbiased

since each population unit has an equal chance, 1/k, of being selected.

5.5.2 Expected mean square error

If n/2 is an even integer, then an estimator of (4.6) is obtained by using (4.5), (5.53) and

(5.54), such that

yBMSS(A) = a+ b(N + 1)/2 = Y ,

which results in

Var
[
yBMSS(A)

]
= 0. (5.62)

Similarly, if n/2 is an odd integer, then by using (4.5), (5.55) and (5.56), we obtain

yBMSS(B) = a+ b[N + 1 + 2(2i− k − 1)/n]/2.

Thus, by applying (5.46), we obtain

Var
[
yBMSS(B)

]
= E

[{
a+

b

2

(
N + 1 +

2 (2i− k − 1)

n

)
−
(
a+

b (N + 1)

2

)}2
]

= 4E

[{
b

2

(
2i− k − 1

n

)}2
]

=
b2
(
k2 − 1

)
3n2

. (5.63)
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For the case when n = 3, we find that

yBMSS(C) = a+
b

2

[
10k − 2i+ 4

3

]
,

which is obtained by using (4.5) and (5.57). The corresponding variance is thus given as

Var
[
yBMSS(C)

]
= E

[{
a+

b

2

(
10k − 2i+ 4

3

)
−
(
a+

b [3k + 1]

2

)}2
]

= E

[{
b

2

(
10k − 2i+ 4− 9k − 3

3

)}2
]

= E

[{
b

2

(
2i− k − 1

n

)}2
]

=
b2
(
k2 − 1

)
12n2

, (5.64)

which follows if we apply (5.46). By using (4.5), (5.58) and (5.59), for the case when n 6= 3

and (n+ 1)/2 is an even integer, we obtain

yBMSS(D) = a+
b

2

[
N + 1− (2i− k − 1)

n

]
such that

Var
[
yBMSS(D)

]
= E

[{
a+

b

2

(
N + 1− (2i− k − 1)

n

)
−
(
a+

b (N + 1)

2

)}2
]

= E

[{
b

2

(
2i− k − 1

n

)}2
]

=
b2
(
k2 − 1

)
12n2

, (5.65)

which follows if we apply (5.46). Finally, if (n+ 1)/2 is an odd integer, then

yBMSS(E) = a+
b

2

[
N + 1 +

(2i− k − 1)

n

]
,

which is obtained by using (4.5), (5.60) and (5.61). The corresponding variance is found

by noting the equivalence of yBMSS(E) to yBSS(n odd) in (5.44), such that we then use

(5.46), i.e.

Var
[
yBMSS(E)

]
=
b2
(
k2 − 1

)
12n2

. (5.66)

We next use (5.4) to obtain the expected MSE of yBMSS , since there are equal weights

being applied to all the sampling units and yBMSS is design unbiased. Consequently, if

we assume the model in (5.1), then by substituting (5.62) to (5.66) into (5.4), for the

respective cases, we obtain

EmMSE (yBMSS) =


σ2(1/n− 1/N) if n/2 is an even integer;

σ2(1/n− 1/N) + b2(k2 − 1)/3n2 if n/2 is an odd integer;

σ2(1/n− 1/N) + b2(k2 − 1)/12n2 if n is odd.

(5.67)
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We thus obtain a complete removal of the trend component when n/2 is an even integer.

5.5.3 Error comparisons

We will now compare yBMSS to all the other estimators, by assuming that n > 2.

By comparing (5.9) to (5.67), we see that EmMSE(yBMSS) < EmMSE(yLSS) for all

the cases. Likewise, we obtain the same result when we compare (5.11) to (5.67), i.e.

EmMSE(yBMSS) < EmMSE(ySTR). Thus, by using (5.12), we conclude that yBMSS is ex-

pected to be subject to the least amount of error, when compared to ySRSWR, ySRSWOR,

yLSS and ySTR, except when n = 2. If n = 2, then

EmMSE(ySTR) < EmMSE(yLSS) = EmMSE(yBMSS) < EmMSE(ySRSWOR).

Moreover, by comparing (5.31) to (5.67), we see that EmMSE(yBMSS) < EmMSE(yY EC),

when:

(i) n/2 is an even integer;

(ii) n/2 is an odd integer, if and only if σ2 > 2b2(n− 1)2k2/n2;

(iii) n is odd, if and only if σ2 > b2(n− 1)2k2/2n2.

Also, by comparing (5.39) to (5.67), we note that:

(i) EmMSE(yBMSS) = EmMSE(yCESS), when n/2 is an even integer and k is odd;

(ii) EmMSE(yBMSS) < EmMSE(yCESS), when n/2 is an even integer and k is even;

(iii) EmMSE(yBMSS) > EmMSE(yCESS), when n/2 is an odd integer and k is odd;

(iv) EmMSE(yBMSS) < EmMSE(yCESS), when n/2 is an odd integer and k is even, if

and only if (k2 − 1)/n2 < 3/4;

(v) EmMSE(yBMSS) > EmMSE(yCESS), when n is odd and k is odd;

(vi) EmMSE(yBMSS) < EmMSE(yCESS), when n is odd and k is even, if and only if

(k2 − 1)/n2 < 3.

Finally, the comparison of (5.47) to (5.67), results in:

(i) EmMSE(yBMSS) = EmMSE(yBSS), when n/2 is an even integer;

(ii) EmMSE(yBMSS) > EmMSE(yBSS), when n/2 is an odd integer;
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(iii) EmMSE(yBMSS) = EmMSE(yBSS), when n is odd.

The above comparison can then be used to compare yBMSS to yMSS , since EmMSE(yMSS) =

EmMSE(yBSS). We thus conclude that yBMSS is expected to be subject to the same

amount of error, when compared to both yBSS and yMSS , except for the case when n/2

is an odd integer, which results in the former estimator being expected to be subject to

more error than the latter estimators.

Table 5.1 provides a summary of all the estimators mentioned in this chapter, when

sampling from a population that exhibits a rough linear trend, given by the model in (5.1).

The second column of Table 5.1 shows us what restrictions are placed on each estimator.

The third column is a measure of the linear trend component. All estimators, except

for yY EC , which have a zero in the third column, have completely removed linear trend.

Estimator yY EC completely removes the linear trend component, but this consequently

results in a larger corresponding error variance component, since different weights are

being applied to the first and the last sampling units. The last column in Table 5.1 shows

us which estimators are unbiased, when estimating (5.3). From Table 5.1, we conclude that

the estimators which are subject to the least amount of error are yCSS(k odd), yBSS(n even),

yMSS(n even) and yBMSS(n/2 an even integer) , for populations that exhibit a rough linear

trend.

Throughout this thesis, we have estimated Y for various populations and we have

provided expressions for the variance of each of these estimates. All of these variance

expressions require us to have full knowledge of the population. Since we cannot study

an entire population (Chapter 1), we thus need to estimate these variance expressions. In

the next chapter, we will discuss the problem that arises when estimating Var(yLSS) and

then provide some solutions to the problem.
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Chapter 6

ESTIMATION OF THE

SAMPLING VARIANCE

If y is an unbiased estimator of Y , then Var(y) = E(y2)−Y 2
can be unbiasedly estimated

by y2 − Est(Y 2
), where Est(Y

2
) denotes an unbiased estimate of Y

2
=
∑N

i=1 y
2
i /N

2 +∑N
i=1

∑N
j 6=i yiyj/N

2 (Murthy 1967). Now, if we conduct LSS, then an unbiased estimate

of
∑N

i=1 y
2
i /N

2 is given by
∑n

j=1 y
2
i+(j−1)k/n

2k, since there is an equal probability of each

population unit being included in the sample. Unfortunately, an unbiased estimate of∑N
i=1

∑N
j 6=i yiyj/N

2 is unobtainable when conducting LSS with a single start, since certain

pairs of population units have a zero probability of being included in the sample, i.e.

πij = 0 for certain combination values of i and j. This results in it being impossible to

obtain an unbiased estimate of Var(yLSS) from a single start.

In light of the above result, we will first construct estimators of Var(yLSS) and find the

least biased estimator, for various population structures. Thereafter, we will examine some

designs which result in an unbiased estimate of the sampling variance. The designs that

will be discussed are multiple-start linear systematic sampling (MLSS), partially systematic

sampling (PSS) and a new proposed design termed as multiple-start balanced modified

systematic sampling (MBMSS). For simplicity reasons we will assume that k = N/n is an

integer; however, the usual variance estimation problem is also applicable for CSS.

6.1 Variance Estimation from a Single Systematic Sample

In this section we will study eight estimators of Var(yLSS) on various population struc-

tures. Each estimator is based on the linear systematic sample with random start i, where
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i ∈ {1, ..., k}. We will first define the estimators, before comparing them amongst each

other on various population structures, so as to find the most accurate estimator for each

underlying population model. We will thus use the expected value of each estimator, the

corresponding expected bias and the expected relative bias, as comparative measures. It

should be noted that there are many variance estimators which can be constructed and

utilized for LSS. However, we will only define eight estimators, which widely represent the

different types of variance estimators that can be used for LSS. The theory presented for

this section is given by Wolter (2007).

6.1.1 Eight estimators of the variance

The first estimator is defined by assuming that the population is in random order. From

Section 4.2.1, we note that LSS is equivalent to SRSWOR for this situation and hence this

estimator is given as

v1 = s2

(
1

n
− 1

N

)
,

where s2 =
∑n

j=1(yij−yLSS)2/(n−1) is the sample variance. If a randomly ordered popu-

lation is expected (i.e. Var(yLSS) u Var(ySRSWOR)), then it is trivial that v1 will approx-

imately be an unbiased estimator of Var(yLSS). If LSS is more efficient than SRSWOR,

such that Var(yLSS) < Var(ySRSWOR), then v1 provides an overestimate of Var(yLSS).

Conversely, if LSS is less efficient than SRSWOR, such that Var(yLSS) > Var(ySRSWOR),

then v1 provides an underestimate of Var(yLSS). It is common practice for a survey statis-

tician to use v1 as an estimate of Var(yLSS) and this can result in a badly biased estimate

if the population exhibits some structure, other than random.

A second estimator is constructed by assuming that the systematic sample is a stratified

random sample, where two population units are selected from each successive stratum, of

size 2k. This estimator, which is based on non-overlapping differences, is then given as

v2 =

(
1

n
− 1

N

)
1

n

n/2∑
j=1

a2
i,2j ,

where aij = ∆yij = yij − yi,j−1, such that ∆ denotes the first difference operator. The

objective of the third estimator is to increase the degrees of freedom in v2. This estimator,

which is based on overlapping differences, is then given as

v3 =

(
1

n
− 1

N

)
1

2(n− 1)

n∑
j=2

a2
ij .
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Other estimators, which are based on higher-order contrasts than aij , have been suggested

in literature. Examples of this are given by the next three estimators:

v4 =

(
1

n
− 1

N

)
1

6(n− 2)

n∑
j=3

b2ij ,

v5 =

(
1

n
− 1

N

)
1

3.5(n− 4)

n∑
j=5

c2
ij ,

and

v6 =

(
1

n
− 1

N

)
1

7.5(n− 8)

n∑
j=9

d2
ij ,

where

bij = ∆aij = ∆2yij = yij − 2yi,j−1 + yi,j−2,

cij =
1

2
∆4yij + ∆2yi,j−1 =

yij
2
− yi,j−1 + yi,j−2 − yi,j−3 +

yi,j−4

2

and

dij =
1

2
∆8yij + 3∆6yi,j−1 + 5∆4yi,j−2 + 2∆2yi,j−3 =

yij
2
− yi,j−1 +−...+ yi,j−8

2
,

respectively denotes the second difference, a linear combination of the second and fourth

differences and a linear combination of the second, fourth, sixth and eighth differences of

the sample data. The corresponding degrees of freedom are given by 6(n− 2), 3.5(n− 4)

and 7.5(n − 8), which respectively represents the product of the sum of squares of the

coefficients in bij , cij , and dij and the number of contrasts for the summations in v4, v5

and v6.

Another estimator, which was initially studied by Koop (1971), can be constructed by

splitting the original linear systematic sample into sub-samples of equal size. By letting

p and n/p be integers and by splitting the linear systematic sample into p sub-samples of

size n/p, we then show that the αth systematic sub-sample mean is given by

yα =
p

n

n/p∑
j=1

yi,p(j−1)+α, for α = 1, ..., p.

An estimator of Var(yLSS) is thus given by

v7 =

(
1

n
− 1

N

)
n

p(p− 1)

p∑
α=1

(yα − yLSS)2.

Koop examined this estimator when p = 2, i.e. splitting the original linear systematic

sample into half. He obtained expressions for the bias of v7, relative to Var(yLSS), in

terms of the ICC.
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The final type of estimator is constructed by making assumptions on the correlation

between the population units. Examples of such assumptions were initially examined by

Cochran (1946) and later by Osborne (1942) and Matérn (1947) for forestry and land

use/cover area frame surveys. These authors assumed a super-population model (see

Section 4.2.4) from which correlation arises and a further assumption that the correlation

between two population units, which are k units apart, is given as ρk = exp(−λk), where

λ is a constant. Accordingly, an estimator of Var(yLSS) is given as

v8 =


(

1

n
− 1

N

)
s2 [1 + 2/ln(ρ̂k) + 2ρ̂k/(1− ρ̂k)] if ρ̂k > 0,(

1

n
− 1

N

)
s2 if ρ̂k ≤ 0.

where

ρ̂k =
1

(n− 1)s2

n∑
j=2

(yij − yLSS) (yi,j−1 − yLSS)

is an estimate of ρk.

6.1.2 Theoretical properties of the eight estimators

A comparative measure that will used in this section is the expected relative bias of

estimator vα, which is defined as

Rm(vα) = Bm(vα)/Em [Var(yLSS)] , for α = 1, ..., 8,

where Bm(vα) = Em [E(vα)]− Em [Var(yLSS)] is the expected bias of estimator vα.

A simple mathematical model, in which the variate values of a population consists of

a trend and a random error component, is given as

yij = µij + eij , for i = 1, ..., k, and j = 1, ..., n, (6.1)

where the µij ’s denotes fixed constants and the eij ’s denotes the random errors. We now

will use the model above to represent the various population structures.

Random model

A randomly ordered population model can be represented by

µij = µ, (6.2)
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where the eij ’s are given as iid N(0, σ2) random variables. From the definition of the

model, we assume that there is no correlation present, so that

Em [Var(yLSS)] =

(
1

n
− 1

N

)
σ2

(refer to Cochran (1946)). By using (6.1) and (6.2), we obtain

E
(
s2
)

= E

 1

n− 1

n∑
j=1

(yij − yLSS)2


=

1

n− 1

n∑
j=1

E
(
e2
ij − 2eijei + e2

i

)
=

1

n− 1

n∑
j=1

(
σ2 − σ2

n

)
= σ2, (6.3)

which follows since

n∑
j=1

E (eijei) =
n∑
j=1

E [eij (ei1 + ...+ eij + ...+ ein) /n] = σ2/n

and E
(
e2
i

)
= σ2/n. Thus, by applying (6.3), we conclude that v1 is expected to be an

unbiased estimator of Var(yLSS), i.e.

Em [E (v1)] = Em

[
E

(
s2

n

{
N − n
N

})]
= Em

[
σ2

n

(
N − n
N

)]
= Em [Var (yLSS)] .

Furthermore, we can also deduce that v2 is expected to be an unbiased estimator of

Var(yLSS), since

Em [E (v2)] = Em

E


(

1

n
− 1

N

)
1

n

n/2∑
j=1

a2
i,2j




= Em

( 1

n
− 1

N

)
1

n

n/2∑
j=1

E(yi,2j − yi,2j−1)2


= Em

( 1

n
− 1

N

)
1

n

n/2∑
j=1

E
(
e2
i,2j − 2ei,2jei,2j−1 + e2

i,2j−1

)
= Em

( 1

n
− 1

N

)
1

n

n/2∑
j=1

2σ2

 = Em

[(
1

n
− 1

N

)
σ2

]
= Em [Var (yLSS)] .

Likewise, we can then show that estimators v3 to v7 are expected to be unbiased estimates

of Var(yLSS). Wolter (2007) states that an exact expression for Bm(v8) is unobtainable

without making some assumptions on the distribution; however, we can expect Bm(v8) u 0.

Linear trend model

A population that exhibits linear trend is given by the model

µij = a+ b [i+ (j − 1)k] , (6.4)
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where a and b denote fixed constants and the eij ’s are given as iid N(0, σ2) random

variables. The expected variance of yLSS , under this model, is given as

Em [Var (yLSS)] = σ2

(
1

n
− 1

N

)
+
b2
(
k2 − 1

)
12

(refer to (5.9)). An expression for the expected value of v1 is given by

Em [E (v1)] = Em

[
E

{(
1

n
− 1

N

)
s2

}]

= Em

( 1

n
− 1

N

)
1

n− 1

n∑
j=1

E(yij − yLSS)2

 . (6.5)

Now, by using (5.21) and (6.4), it follows that

n∑
j=1

E(yij − yLSS)2 =
n∑
j=1

E

[
a+ b {i+ (j − 1) k}+ eij −

{
a+ b

[
i+

k (n− 1)

2

]
+ ei

}]2

=

n∑
j=1

E

[
bk

{(
j − 1− (n− 1)

2

)
+ (eij − ei)

}]2

=

n∑
j=1

[
b2k2

{
(j − 1)− (n− 1)

2

}2

+ E
(
e2
i,j − 2eijei + e2

i

)]

= b2k2

[
n (n− 1) (2n− 1)

6
− n(n− 1)2

2
+
n(n− 1)2

4

]
+

n∑
j=1

(
σ2 − σ2

n

)

= b2k2n (n− 1)

[
4n− 2− 6n+ 6 + 3n− 3

12

]
+ nσ2

(
1− 1

n

)
=
b2k2n (n− 1) (n+ 1)

12
+ σ2 (n− 1) . (6.6)

On substituting (6.6) into (6.5), we obtain

Em [E (v1)] = Em

[(
1

n
− 1

N

)(
b2k2n (n+ 1)

12
+ σ2

)]
=

(
1

n
− 1

N

)(
b2k2n (n+ 1)

12
+ σ2

)
.

Similarly, we can obtain the expected values of estimators v2 to v7, for the model under

consideration. Table 6.1 gives us the expected values of v1 through to v7 along with the

corresponding approximate expected relative bias, under the assumptions that k is large

and b is not very close to zero (see Wolter (2007)). The expected value of v8 is obtained

by assuming ρ̂k > 0 (i.e. ln(ρ̂k) is defined) and then approximating v8 by the functions

Em
[
E(s2)

]
and Em

[
E(ρ̂ks

2)
]
, such that

Em [E (v8)] =

(
1

n
− 1

N

)
γ1

[
1 +

2

ln (γ2/γ1)
+

2γ2/γ1

(1− γ2/γ1)

]
,

where γ1 = Em
[
E
(
s2
)]

= b2k2n (n+ 1) /12 + σ2 (which follows from equation (6.6)) and

γ2 = Em
[
E
(
ρ̂ks

2
)]

= b2k2 (n− 3) (n+ 1) /12− σ2/n.
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Table 6.1: Expected values of v1 to v7 with their corresponding expected relative bias, under

the linear trend model

Estimator Em [E(vα)] Rm(vα)

v1 (1/n− 1/N)
[
b2k2n(n+ 1)/12 + σ2

]
n

v2 (1/n− 1/N)
[
b2k2/2 + σ2

]
−(n− 6)/n

v3 (1/n− 1/N)
[
b2k2/2 + σ2

]
−(n− 6)/n

v4 (1/n− 1/N)σ2 −1

v5 (1/n− 1/N)σ2 −1

v6 (1/n− 1/N)σ2 −1

v7 (1/n− 1/N)
[
b2k2n(p+ 1)/12 + σ2

]
k

From Table 6.1, it is clear that estimators v2 and v3 are the least biased and hence

the preferred estimators of Var(yLSS), for the linear trend model. It should be noted that

Cochran (1977) promotes the use of estimator v4 for linear trend populations. From Table

6.1, we see that estimators v4, v5 and v6 eliminate the linear trend component and this

is not desirable since Var(yLSS) is a function of linear trend. However, estimators v4, v5

and v6 should not be disregarded for linear trend populations, i.e. if we compare (5.47),

(5.52) and (5.67) to the expected values of v4, v5 and v6 in Table 6.1, with the notion

that yBSS , yMSS and yBMSS are all unbiased estimators of Y , then we note that esti-

mators v4, v5 and v6 are unbiased estimators of Var
[
yBSS(n even)

]
, Var

[
yMSS(n even)

]
and

Var
[
yBMSS(n/2 even integer)

]
. Moreover, these estimators are slightly biased for Var(yY EC).

It should be noted that it is impossible to estimate Var(yCESS), since certain population

units have no chance of being selected (Murthy 1967).

Periodic population model

Let us consider an example of an exact periodic population, given by the model

µij = a sin (b[i+ (j − 1)k]) ,

where eij = 0, for all values of i and j. Now, if we let b = π/2, then the period is given

by 2π/b = 4. Furthermore, if we suppose that k = 4, then it follows that:



81

(i) y1 = 1
n

n∑
j=1

asin
(
π
2 [1 + (j − 1) 4]

)
= 1

n

n∑
j=1

a = a;

(ii) y2 = 1
n

n∑
j=1

asin
(
π
2 [2 + (j − 1) 4]

)
= 1

n

n∑
j=1

0 = 0;

(iii) y3 = 1
n

n∑
j=1

asin
(
π
2 [3 + (j − 1) 4]

)
= 1

n

n∑
j=1

(−a) = −a;

(iv) y4 = 1
n

n∑
j=1

asin
(
π
2 [4 + (j − 1) 4]

)
= 1

n

n∑
j=1

0 = 0.

Note that we cannot provide an accurate estimate of Var(yLSS) from a single sample,

i.e. the actual value of Var(yLSS) is a2/2; however, all the variance estimators equate to

zero, since the variate values of all the sampling units, from any one of the four samples,

are equivalent. On the other hand, if k is equal to an odd multiple of half the period,

then Var(yLSS) = 0 and all estimators will be relatively large, since there is maximum

variation in the variate values of the sampling units (see Section 4.2.3). This illustration

again highlights the dangers of conducting LSS on periodic populations.

Auto-correlated population model

As shown in Section 4.2.4, an auto-correlated population assumes that the variate values

of the population are correlated and hence the random errors are correlated, i.e. the

eijs, given in (6.1), are not correlated random variables. An example of this is given

by the underlying model used to construct v8, which is represented by the first-order

autoregressive process, given by

yt − µ = φ (yt−1 − µ) + εt, for t = 1, ..., N, (6.7)

where εt denotes uncorrelated (0, σ2) random variables and φ denotes the first-order au-

tocorrelation coefficient, such that 0 < φ < 1. Thus, by using (4.21), we obtain

Em [Var (yLSS)] = σ2

(
1

n
− 1

N

)
×

[
1− 2

(k − 1)

(
φ− φN

)
(1− φ)

+
2

N (k − 1){(
φ− φN

)
(1− φ)2 −

(N − 1)φN

(1− φ)

}
+

2k

(k − 1)

(
φk − φN

)
(1− φk)

− 2k

n (k − 1)

{(
φk − φN

)
(1− φk)2 −

(n− 1)φN

(1− φk)

}]
. (6.8)

We can then approximate (6.8) to the order 0
(
n−2

)
, such that

Em [Var (yLSS)] = σ2

(
1

n
− 1

N

)[
1− 2

(k − 1)

φ

(1− φ)
+

2k

(k − 1)

φk

(1− φk)

]
+ 0

(
n−2

)
,

(6.9)
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where n is an index to a sequence and k is fixed. The corresponding expected values of all

the estimators are given in Table 6.2. Large-n approximations, similar to that of (6.9), are

provided for the expected values of v1, v7 and v8. Estimator v8 provides a good estimate

of Var(yLSS), since −2φ/k(1−φ) u 2/ln(φk) (Cochran 1946) and thus Em[E(v8)] in Table

6.2 is almost identical to (6.9).

Comparisons of the expected biases of the estimators are dependent on the values of φ

and k, such that the differences between the expected values of the estimators are negligi-

ble when φ is small, and gets larger as φ increases, whereas these differences decrease as k

increases (assuming φ is fixed). It is thus likely that estimator v8 will provide an underes-

timate of Var(yLSS), whilst the remaining estimators (especially v1) are likely to provide

an overestimate. Furthermore, estimator v8 is likely to exhibit the smallest absolute bias,

unless when φ is small, since the approximation of 2/ln(φk) is inadequate when φ u 0.

Table 6.2: Expected values of v1 to v8 for the auto-correlated population model

Estimator Em [E(vα)]

v1

(
1
n −

1
N

)
σ2 + 0

(
n−2

)
v2

(
1
n −

1
N

)
σ2
(
1− φk

)
v3

(
1
n −

1
N

)
σ2
(
1− φk

)
v4

(
1
n −

1
N

)
σ2
[
1− 4φ3

3 + φ2k

3

]
v5

(
1
n −

1
N

)
σ2
[
1− 12φk

7 + 8φ2k

7 − 4φ3k

7 + φ4k

7

]
v6

(
1
n −

1
N

)
σ2
[
1− 28φk

15 + 24φ2k

15 − 20φ3k

15 + 16φ4k

15 − 12φ5k

15 + 8φ6k

15 −
4φ7k

15 + φ8k

15

]
v7

(
1
n −

1
N

)
σ2
[
1 + 2

(p−1)

] [
pφpk

(1−φpk)
− φk

(1−φk)

]
+ 0

(
n−2

)
v8

(
1
n −

1
N

)
σ2

[
1 + 2

ln(φk)
+ 2φk

(1−φk)

]
+ 0

(
n−2

)
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Stratification effects model

The classic notion of LSS being a process of selecting one population unit from each of

the n strata, of size k (as in Section 4.1.3), is given by the model

µij = µj ,

such that µij denotes a constant value within each stratum and the eij ’s are given as iid

N(0, σ2) random variables. Under this model, the expected variance of yLSS is given as

Em [Var(yLSS)] =

(
1

n
− 1

N

)
σ2

and the corresponding expected values of all the estimators are as given in Table 6.3. With

the highly probable assumptions of n being large and ρ̂k > 0, we provide an approximation

for the expected value of v8 in Table 6.3.

Table 6.3: Expected values of v1 to v8 for the stratification effects model

Estimator Em [E(vα)]

v1 (1/n− 1/N)
[∑n

j=1 (µj − µ)2 /(n− 1) + σ2
]

a

v2 (1/n− 1/N)
[∑n/2

j=1 (µ2j−1 − µ2j)
2 /n+ σ2

]
v3 (1/n− 1/N)

[∑(n−1)
j=1 (µj − µj+1)2 /2(n− 1) + σ2

]
v4 (1/n− 1/N)

[∑n−2
j=1 (µj − 2µj+1 + µj+2)2 /6(n− 2) + σ2

]
v5 (1/n− 1/N)

[∑n−4
j=1 (µj/2− µj+1 + µj+2 − µj+3 + µj+4/2)2 /3.5(n− 4) + σ2

]
v6 (1/n− 1/N)

[∑n−8
j=1 (µj/2− µj+1 +−...+ µj+8/2)2 /7.5(n− 8) + σ2

]
v7 (1/n− 1/N)

[
n
∑p

α=1 (µα − µ)2 /p(p− 1) + σ2
]

b

v8 (1/n− 1/N)(ω1 + σ2) [1 + 2/lnκ+ 2κ/(1− κ)]c

a µ =
∑n

j=1 µj/n.

b µα = α-th systematic sub-sample mean of the µj .

c κ = ω2/(ω1 + σ2), ω1 =
∑n

j=1(µj − µ)2/(n− 1) and

ω2 =
∑n−1

j=1 (µj − µ)(µj+1 − µ)/(n− 1).
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From Table 6.3, we note that the differences between v1 to v7 is negligible, if the mean

of each stratum (µj , for j ∈ {1, ..., n}) is approximately equal. However, this is not

common in practice, since stratification is such that strata are externally heterogeneous.

We will next evaluate the bias of each estimator, by assigning arbitrary values for µj ,

n, σ2 and p. Accordingly, Table 6.4 contains the expected relative bias of each estimator,

for the cases µj = j, j1/2, j−1 and ln(j) + sin(j), where n = 20, σ2 = 100 and p = 2.

Examples of linear trend between the strata are given by µj = j, j1/2 and j−1, while an

example of non-linear trend is given by µj = ln(j) + sin(j). From Table 6.4, it is clear

that estimators v4, v5 and v6 have the lowest level of bias and are thus preferred for the

stratification effects model. The contrasts for these estimators are likely to eliminate the

linear trend component in the stratum means, µj , which is appropriate since Var(yLSS) is

not a function of this trend. Amongst these suitable estimators, we can further conclude

that estimator v6 is the most preferred estimator when the trend component is non-linear.

If the stratum means for neighbouring, non-overlapping pairs of strata are approxi-

mately equal (i.e. µ2j u µ2j−1, for j = 1, ..., n/2), then the expected bias of estimator

v2 will be the smallest. Also, if the average of the stratum means for neighbouring, non-

overlapping groups of p strata are approximately equal (i.e. µ1 u µ2 u ... u µα u ...µp,

where µα = p
∑n/p

j=1 µα+(j−1)p/n), then the expected bias of estimator v7 will be the small-

est. It should be noted that equality for each of these two cases results in the expected

bias for the corresponding estimators being zero.

Table 6.4: Expected relative bias multiplied by σ2 for v1 to v8 under the stratification effects

model

Estimator µj = j µj = j1/2 µj = j−1 µj = ln(j) + sin(j)

v1 35.000 1.046 0.050 0.965

v2 0.500 0.022 0.013 0.243

v3 0.0500 0.020 0.008 0.243

v4 0.000 0.000 0.001 0.073

v5 0.000 0.000 0.001 0.034

v6 0.000 0.000 0.000 0.013

v7 5.000 0.177 0.022 0.206

v8 −0.670 −0.396 −0.239 −0.373
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We will next examine three designs which allow for an unbiased estimate of the sam-

pling variance, two of which apply multiple random starts to the LSS design as well as

the BMSS design (see Section 5.5), while the third design supplements the linear system-

atic sample with an independent simple random sample. Within each design we shall

discuss the corresponding methodology, before obtaining expressions for the sample mean,

the corresponding sampling variance and an unbiased estimate of the sampling variance.

Thereafter, we will discuss the efficiency of the relative designs.

6.2 Multiple-Start Linear Systematic Sampling

6.2.1 Methodology

The method of inter-penetrating sub-sampling (or replicated sampling) was initially dis-

cussed by Mahalanobis (1946) and Tukey (1950) and later in the context of systematic

sampling (i.e. MLSS) by Deming (1950), Gautschi (1957), Shiue (1960) and Tornqvist

(1963). MLSS involves the selection of more than one linear systematic sample by apply-

ing the corresponding number of random starts.

The method of selecting a sample of size nm (where nm is now the required sample

size with m being an integer) from a population of size N , using MLSS, is given as follows:

(i) Randomly select m integers (i1, ..., im) from the first k integers, such that 2 ≤ m < k.

(ii) The population unit numbers of the sampling units are then given by

ih + (j − 1)k, for h = 1, ...,m and j = 1, ..., n.

This method can be viewed as selecting m clusters (each of size n) from k clusters, using

SRS, where the clusters are defined as in Table 2.1.

6.2.2 Estimation formulae

Tornqvist (1963) suggested the use of SRSWR for step (i) above, such that an unbiased

estimate of Y is given by

y
(m)
LSS(WR) =

1

m

m∑
h=1

yi′h
, (6.10)

where (i) the superscript m denotes the number of random starts; (ii) i′h ∈ {i′1...., i′m} for

step (i) denotes integers, where P(i′h = i′j) = 1/k for j ∈ {1, ..., h − 1, h + 1, ...,m}; and

(iii) yi′h
denotes the mean of the sample that is chosen with random starts i′h in step (ii).
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For this setup, the sample means can be viewed as population units, where we select a set

of m sample means from the k possible sample means, using SRSWR. The corresponding

adjusted population variance is thus obtained by replacing yi and N in (3.9) with yi and

k respectively, such that

S2
y =

1

k − 1

k∑
i=1

(yi − Y )2,

where the replacement of yi and N in Y =
∑N

i=1 yi/N , by yi and k respectively, results in∑k
i=1 yi/k = Y . Moreover, the variance of the estimator in (6.10) is obtained by replacing

S2
Y , N and n in (4.1) by S2

y , k and m respectively, such that

Var
(
y

(m)
LSS(WR)

)
=

(
k − 1

mk

)
1

k − 1

k∑
i=1

(
yi − Y

)2
=

1

mk

k∑
i=1

(
yi − Y

)2
=

Var (yLSS)

m
, (6.11)

which follows from (3.2). An unbiased estimate of (6.11) is then given as

v9 =
1

m (m− 1)

m∑
h=1

(
yi′h
− y(m)

LSS(WR)

)2
,

since an unbiased estimate of Var(yLSS) is given by

1

(m− 1)

m∑
h=1

(
yi′h
− y(m)

LSS(WR)

)2
.

Note that the degrees of freedom (given by (m − 1)) is adjusted for error, since we are

sampling with replacement (Cochran 1977, pp.29-30).

Gautschi (1957) suggested the use of SRSWOR for step (i), such that an unbiased

estimate of Y is given by

y
(m)
LSS(WOR) =

1

m

m∑
h=1

yih =
1

nm

m∑
h=1

n∑
j=1

yih+(j−1)k, (6.12)

where (i) ih ∈ {i1, ..., im} for step (i) denotes m distinct integers, i.e. P(ih = ij) = 0 for all

j ∈ {1, ..., h− 1, h+ 1, ...,m}; and (ii) yih denotes the mean of the sample that is chosen

with random starts ih in step (ii). The variance of the estimator in (6.12) is then obtained

by replacing S2
Y , N and n in (4.2), by S2

y , k and m respectively, such that

Var
(
y

(m)
LSS(WOR)

)
=

(
k −m
mk

)
1

k − 1

k∑
i=1

(
yi − Y

)2
=

(
k −m
k − 1

)
Var (yLSS)

m
. (6.13)
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Thus, if LSS is an efficient design for a sample of size n, then we can expect MLSS to be

efficient at a sample of size nm. An unbiased estimate of (6.13) is then given by

v10 =

(
k −m
mk

)
1

m− 1

m∑
h=1

(
yih − y

(m)
LSS(WOR)

)2
,

since an unbiased estimate of
∑k

i=1(yi − Y )2/(k − 1) is given by the expression

m∑
h=1

(
yih − y

(m)
LSS(WOR)

)2
/(m− 1),

i.e. we are now sampling without replacement and thus do not adjust the degrees of

freedom, as in the case of SRSWR (Cochran 1977, pp.21-27).

6.2.3 Efficiency comparisons

By using (6.11) and (6.13), we obtain the relative efficiency of y
(m)
LSS(WOR), with respect to

y
(m)
LSS(WR), given by

Var
(
y

(m)
LSS(WR)

)
Var

(
y

(m)
LSS(WOR)

) =

[
Var (yLSS)

m

] [(
k −m
k − 1

)
Var (yLSS)

m

]−1

=
k − 1

k −m
> 1,

with the assumption of 2 ≤ m < k. For the remainder of this thesis, we will thus only

consider selecting the m random starts using SRSWOR, where y
(m)
MLSS = y

(m)
LSS(WOR) now

denotes the sample mean, when conducting MLSS.

Gautschi (1957) examined the efficiency of LSS, when compared to MLSS, under the

super-population model for various population structures, where appropriate adjustments

to the sample size were applied for the former design (see Section 6.3.3). Under the super-

population model in (4.12), if we denote the expected variance of y
(m)
MLSS by σ2

MLSS , then

a summary of Gautschi’s results is given as follows:

(i) for randomly ordered populations, σ2
MLSS = σ2

LSS ;

(ii) for populations that exhibit linear trend, σ2
MLSS > σ2

LSS ;

(iii) for auto-correlated populations, where the correlogram is assumed to be linear,

σ2
MLSS > σ2

LSS ;

We are thus presented with a trade-off between accuracy (unbiased estimate of the sam-

pling variance) and precision (efficiently estimating Y ), when comparing LSS to MLSS for

populations that exhibit linear trend and auto-correlated populations.
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6.3 Multiple-Start Balanced Modified Systematic Sampling

6.3.1 Methodology

The author next proposes a new design, which considers the application of BMSS (as

discussed in Section 5.5) with m multiple random starts. With the assumption of n > 2,

we note that there are five possible cases for the methodology of BMSS, i.e.

(A) n/2 is an even integer;

(B) n/2 is an odd integer;

(C) n = 3;

(D) n 6= 3 and (n+ 1)/2 is an even integer;

(E) (n+ 1)/2 is an odd integer.

Accordingly, the method of selecting a sample of size nm from a population of size N ,

using MBMSS, is given as follows:

(i) Randomly select m integers (i1, ..., im) from the first k integers, using SRSWOR,

where 2 ≤ m < k.

(ii) For h = 1, ...,m, the sample units chosen for the respective cases will be those

elements with population unit numbers given by

Case(A):

ih + 2jk, 2(j + 1)k − ih + 1, for j = 0, ..., (n− 4)/4, (6.14)

N + ih − k − 2jk, N − ih − k − 2jk + 1, for j = 0, ..., (n− 4)/4, (6.15)

Case(B):

ih + 2jk, N + ih − k − 2jk, for j = 0, ..., (n− 2)/4, (6.16)

2(j + 1)k − ih + 1, N − ih − k − 2jk + 1, for j = 0, ..., (n− 6)/4, (6.17)

Case(C):

ih + 2jk, 2(j + 1)k − ih + 1, N − ih − 2jk + 1,

for j = 0, ..., (n− 3)/4, (6.18)
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Case(D): (6.18) as well as

N + ih − 2(j + 1)k, for j = 0, ..., (n− 7)/4, (6.19)

Case(E):

ih + 2jk, 2(j + 1)k − ih + 1, ih + (n− 1)k/2,

for j = 0, ..., (n− 5)/4, (6.20)

N − ih − 2jk + 1, N + ih − 2(j + 1)k, for j = 0, ..., (n− 5)/4. (6.21)

6.3.2 Estimation formulae

By using (6.14) and (6.15), we obtain the sample mean for case (A), given as

y
(m)
MBMSS(A) =

1

nm

m∑
h=1

(n/4−1)∑
j=0

[
yih+2jk + y2(j+1)k−ih+1 + yN+ih−k−2jk + yN−ih−k−2jk+1

]
.

(6.22)

Theorem 6.1: The sample mean, given by (6.22), is an unbiased estimate of Y .

Proof : For i = 1, ..., k, we denote the ith balanced modified systematic sample total by

Ti =

(n/4−1)∑
j=0

[
yi+2jk + y2(j+1)k−i+1 + yN+i−k−2jk + yN−i−k−2jk+1

]
,

such that by using (6.22), we obtain

E
(
y

(m)
MBMSS(A)

)
=

1

nm

m∑
h=1

E (Ti) =
m

nm

k∑
i=1

Ti

(
1

k

)
=

1

nk

k∑
i=1

Ti =
Y·
nk

= Y .

The sample means (Ti/n, for i = 1, ..., k) can now be viewed as population units, such

that we are selecting m sample means from the k possible sample means, using SRSWOR.

We thus replace yi, N and n in (4.2) by Ti/n, k and m respectively, to obtain the variance

of y
(m)
MBMSS , written as

Var
(
y

(m)
MBMSS(A)

)
=
S2
T

m

(
k −m
k

)
=

(
k −m
k − 1

) Var
(
yBMSS(A)

)
m

, (6.23)

where

S2
T =

1

k − 1

k∑
i=1

(
1

n
Ti − Y

)2

=
k

k − 1
Var

(
yBMSS(A)

)
,

such that the replacement of yi and N in Y =
∑N

i=1 yi/N , by Ti/n and k respectively,

results in
∑k

i=1 Ti/nk = Y·/N = Y . Thus, we obtain efficient results for MBMSS when
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the sample size is nm, if and only if BMSS is an efficient design for a sample of size n.

Furthermore, if we let

T =
1

m

m∑
h=1

Tih = ny
(m)
MBMSS(A),

then it is not difficult to show that an unbiased estimate of (6.23), is given by

v11 =

(
k −m
mk

)
1

n2 (m− 1)

m∑
h=1

(
Tih − T

)2
,

i.e.
m∑
h=1

(
Tih − T

)2
/n2 (m− 1) is an unbiased estimate of S2

T .

Similarly, we can obtain unbiased estimates of the population mean for cases (B) to

(E) by using the corresponding population unit numbers in (6.16) to (6.21). We can then

apply the above method, so as to obtain the corresponding sampling variances and the

associated unbiased variance estimators.

6.3.3 Efficiency comparisons

We will now compare the efficiency of MBMSS, to that of SRSWOR, STR, LSS and MLSS,

under various population structures. We will assume that n/2 is an even integer, such that

the expressions obtained in the previous section may then be used. It should be noted

that the results obtained in this section need not necessarily apply for the cases (B) to

(E).

Before considering the efficiency comparisons on various population structures, we

first need to make appropriate adjustments to the sample size. Accordingly, suppose there

exists an integer l, such that k = lm. We then randomly select a population unit from

the first l units and every lth unit thereafter, so as to obtain a linear systematic sample

of size nm. We can now replace n and k by nm and l respectively, for the corresponding

variance expressions obtained for LSS, SRSWOR and STR.

Population in random order

A population in random order can be represented by the model

yi = µ+ ei, for i = 1, ..., N, (6.24)

where the random errors are drawn from a super-population (Cochran 1946), such that

Em(ei) = 0, Em(e2
i ) = σ2 and Em(eiej) = 0 (i 6= j).
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By substituting (6.24) into Ti and noting that Y = µ+ e, we then use (6.23) to obtain an

expression for the expected variance of y
(m)
MBMSS(A), i.e.

σ2
MBMSS(A) = Em

[
k −m

mk (k − 1)

k∑
i=1

(
1

n
Ti − Y

)2
]

=
k −m

mk (k − 1)

k∑
i=1

Em

[
1

n
(nµ+ eT )−

(
µ+ e

)]2

=
k −m

mk (k − 1)

k∑
i=1

Em

[
1

n
eT − e

]2

=
k −m

mk (k − 1)

k∑
i=1

Em

[
e2
T

n2
− 2eT e

n
+ e

2
]
, (6.25)

where

eT =

(n/4−1)∑
j=0

(
ei+2jk+e2(j+1)k−i+1 + eN+i−k−2jk + eN−i−k−2jk+1

)
.

Now, since there are n terms in eT , it follows that

E
(
e2
T

)
= nσ2 (6.26)

and

Em
(
eT e
)

=
1

N
Em [eT (e1 + ...+ eN )] =

nσ2

N
. (6.27)

Thus, by substituting (5.7), (6.26) and (6.27) into (6.25), it follows that

σ2
MBMSS(A) =

k −m
mk (k − 1)

k∑
i=1

(
σ2

n
− 2σ2

N
+
σ2

N

)
=

(k −m) k

mk (k − 1)

[
N − n
nN

]
σ2 =

(k −m)nσ2

mnN
=
l − 1

N
σ2, (6.28)

since k = lm. Similarly, the expected sampling variances for the comparative designs can

be show to be equivalent to (6.28). We can thus conclude that MBMSS is as equally

efficient as SRSWOR, STR, LSS and MLSS, for populations in random order.

Population with linear trend

If we substitute the model in (5.1) into Ti, we note that

Ti =

(n/4−1)∑
j=0

[4a+ b (2N + 2)] + eT

= na+ bn

(
N + 1

2

)
+ eT .
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Taking the expectation of (6.23) and then substituting the above expression along with

(5.3), results in

σ2
MBMSS(A) =

k −m
mk (k − 1)

k∑
i=1

Em

(
1

n
Ti − Y

)2

=
k −m

mk (k − 1)

k∑
i=1

Em

[
1

n

{
na+ bn

(
N + 1

2

)
+ eT

}
−
{
a+

b (N + 1)

2
+ e

}]2

=
k −m

mk (k − 1)

k∑
i=1

E
[eT
n
− e
]2

=
l − 1

N
σ2, (6.29)

which follows from (6.25) and (6.28). By replacing k and n in (5.9), (5.10) and (5.11),

by l and nm respectively, we then obtain the corresponding expected variances of yLSS ,

ySRSWOR and ySTR under the model in (5.1), i.e.

σ2
LSS = σ2

(
1

nm
− 1

N

)
+
b2
(
l2 − 1

)
12

=
l − 1

N
σ2 +

b2 (l − 1) (l + 1)

12
, (6.30)

σ2
SRSWOR = σ2

(
1

nm
− 1

N

)
+
b2 (N + 1) (l − 1)

12

=
l − 1

N
σ2 +

b2 (N + 1) (l − 1)

12
(6.31)

and

σ2
STR = σ2

(
1

nm
− 1

N

)
+
b2
(
l2 − 1

)
12nm

=
l − 1

N
σ2 +

b2 (l − 1) (l + 1)

12nm
, (6.32)

where yLSS , ySRSWOR, ySTR are unbiased estimates of Y , resulting in the expected MSEs

of these estimates being equivalent to the corresponding expected sampling variances.

Furthermore, by taking the expectation of (6.13) and substituting (5.9) into it, we obtain

σ2
MLSS =

k −m
m (k − 1)

[
σ2

(
1

n
− 1

N

)
+
b2
(
k2 − 1

)
12

]

=
k −m

m (k − 1)

[
k − 1

N
σ2 +

b2 (k − 1) (k + 1)

12

]
.

Remembering that k = lm, it follows that

σ2
MLSS =

lm−m
m (lm− 1)

[
lm− 1

N
σ2 +

b2 (lm− 1) (lm+ 1)

12

]
=
l − 1

N
σ2 +

b2 (l − 1) (lm+ 1)

12
. (6.33)

By comparing (6.30), (6.31), (6.32) and (6.33) to (6.29), we conclude that MBMSS is more

efficient than LSS, SRSWOR, STR and MLSS.
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Periodic population

Let us assume that yi exhibits an exact periodic function with period 2h and N = 2Qh,

where h and Q are positive integers. Moreover, suppose that the worst case scenario for

LSS is observed, i.e. k = 2ah, where a ∈ {1, 2, ...}, such that Q = an. Now, the variate

values corresponding to this scenario are given by yj = yj+2h = ... = yj+2h(Q−1), for

j = 1, ..., 2h, which results in LSS being equivalent to the random selection of a single

population unit, i.e. the distance between each sampling unit is k, which is an integral

multiple of the period. Thus, N = 2ah = k and by replacing yi and k in (3.2) with yi and

N respectively, we then obtain Var(yLSS) =
∑N

i=1(yi − Y )2/N = σ2.

Let us next consider BMSS for this scenario. If we assume that n/2 is an even integer,

then by using (5.53) and (5.54), we obtain the variate values of the ith balanced modified

systematic sample, for i = 1, ..., 2ah, i.e.

yi+4ahj , y4(j+1)ah−i+1, y2Qh+i−2ah−4ahj , y2Qh−i−2ah−4ahj+1, for j = 0, ..., n/4− 1.

By comparing yi+4ahj to y4(j+1)ah−i+1, we note that the distance between these units is

given by 4ah−2i+1, which is not a function of 2h, since i ∈ {1, ..., 2ah} and h is a positive

integer. We thus conclude that yi+4ahj 6= y4(j+1)ah−i+1. Also, by comparing yi+4ahj to

y2Qh+i−2ah−4ahj , we note that the distance apart is 2Qh− 2ah− 8ahj = 2h(Q− a− 4aj),

which results in yi+4ahj = y2Qh+i−2ah−4ahj . Moreover, the distance between y4(j+1)ah−i+1

and y2Qh−i−2ah−4ahj+1 is given by 2Qh − 6ah − 8ahj = 2h(Q − 3a − 4aj), resulting in

y4(j+1)ah−i+1 = y2Qh−i−2ah−4ahj+1. By using the transitive law, we thus conclude that a

balanced modified systematic sample of size n (where n/2 is an even integer), is equivalent

to the random selection of two population units with distinct variate values, resulting in

BMSS being twice as efficient as LSS. Now, since MLSS and MBMSS are equivalent to

the selection of m linear systematic samples and m balanced modified systematic samples

respectively, we thus conclude that MBMSS is twice as efficient as MLSS, which in turn is

much more efficient than LSS, i.e. MLSS is equivalent to SRSWOR of m sampling units

with distinct variate values. By assuming n/2 to be an even integer, the best case scenario

(i.e. k = ch for c ∈ {1, 3, ..., }) results in

Var
[
y

(m)
MBMSS(A)

]
= Var

[
y

(m)
MLSS

]
= Var

[
yBMSS

]
= Var

[
yLSS

]
= 0.

Hence, MBMSS is equally efficient as MLSS and LSS, and more efficient than SRSWOR

and STR, when k is an odd multiple of half the period. If we use a more realistic periodic
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population model under the assumptions of the super-population model in (4.12), then it

will not be difficult to show that MBMSS is less efficient than STR, which in turn is less

efficient than SRSWOR, for the worst case scenario.

Auto-correlated population

If we assume that the population units are correlated, as discussed in Section 4.2.4, then

the sum of the serial correlations for the ith balanced modified systematic sample is given

as

n/4−1∑
j=0

[ρ2k−2i+1 + ρN−k−4jk + ρN−2i−k−4jk+1 + ρN+2i−3k−4jk−1 + ρN−3k−4jk + ρ2i−1] .

Therefore, the sum of the serial correlations for MBMSS can be written as

m∑
h=1

n/4−1∑
j=0

[ρ2k−2ih+1 + ρN−k−4jk + ρN−2ih−k−4jk+1 + ρN+2ih−3k−4jk−1 + ρN−3k−4jk + ρ2ih−1] .

Remembering that k = lm, we use the above expression, along with (4.16) and (4.18), to

obtain the expected variance of yMBMSS(A), written as

σ2
MBMSS(A) =

lm− 1

N
σ2 +

2σ2

n2

m∑
h=1

n/4−1∑
j=0

[
ρ2lm−2ih+1 + ρN−lm−4jlm + ρN−2ih−lm−4jlm+1

+ ρN+2ih−3lm−4jlm−1 + ρN−3lm−4jlm + ρ2ih−1

]
− 2σ2

N2

N∑
u=1

(N − u)ρu. (6.34)

By replacing k and n in (4.19) to (4.21) by l and nm respectively, we then obtain the

corresponding expected variance of ySRSWOR, ySTR and yLSS , i.e.

σ2
SRSWOR =

l − 1

N
σ2 +

2(l − 1)σ2

N2(N − 1)

N−1∑
u=1

(N − u)ρu, (6.35)

σ2
STR =

l − 1

N
σ2 +

2σ2

Nl

l−1∑
u=1

(l − u)ρu, (6.36)

σ2
LSS =

l − 1

N
σ2 − 2σ2

N2

N−1∑
u=1

(N − u)ρu +
2σ2

n2m2

nm−1∑
u=1

(nm− u)ρlu. (6.37)

Furthermore, by taking the expectation of (6.13) and substituting (4.21) into it, we obtain

σ2
MLSS =

k −m
m(k − 1)

(k − 1)σ2

N

[
1− 2

N(k − 1)

N−1∑
u=1

(N − u)ρu +
2k

n(k − 1)

n−1∑
u=1

(n− u)ρku

]
.
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Remembering that k = lm, reduces the above expression to

σ2
MLSS =

l − 1

N
σ2 − 2(l − 1)σ2

N2(lm− 1)

N−1∑
u=1

(N − u)ρu +
2(l − 1)2

n2(lm− 1)

n−1∑
u=1

(n− u)ρlmu. (6.38)

From (6.34) to (6.38), it is difficult to obtain simple theoretical comparisons and we will

thus resort to some numerical comparisons in Chapter 8.

6.4 Partially Systematic Sampling

6.4.1 Methodology

Supplementing a linear systematic sample with an independent simple random sample,

termed as PSS, was first noted by Zinger (1963, 1964) and later discussed in detail by

Zinger (1980) and Wu (1984). The corresponding method for selecting a sample of size

n = n1 + n2 from a population of size N , is given as follows:

(i) If we suppose that k = N/n1 is an integer, then randomly select an integer between

1 and k, say i, where 1 ≤ i ≤ k.

(ii) Select a sample of size n1 using LSS, such that the sample units chosen will be those

elements with population unit numbers given by

i+ (j − 1)k, for j = 1, ..., n1. (6.39)

(iii) Select n2 sampling units from the remainingN−n1 population units using SRSWOR.

(iv) The partially systematic sample is then given as the sample in step (ii), supplemented

with the sample in step (iii).

6.4.2 Estimation formulae

If we let ys and yr denote the means resulting from steps (ii) and (iii) respectively, then

an unbiased estimate of Y , given by Zinger (1980), is the weighted average of the corre-

sponding means, i.e.

yPSS = y(β) = (1− β)ys + βyr, 0 ≤ β ≤ 1. (6.40)

Zinger further provides the corresponding variance of (6.40), by taking the expectations

with respect to the designs in (ii) and (iii), such that

Var(y(β)) = α1(β)S2
Y + α2(β)Var(ys), (6.41)
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where

α1(β) =
β2(N − 1)(N − n1 − n2)

n2N(N − n1 − 1)
,

α2(β) =

[
1− βk

(k − 1)

]2

− β2(N − n1 − n2)

n2(k − 1)2(N − n1 − 1)

and

Var(ys) =
S2
Y

n1

(
N − 1

N

)
[1 + (n1 − 1)ρ].

Suppose that Qs =
∑

(yi − ys)2 , Qr =
∑

(yi − yr)2 and Qb =
∑

(ys − yr)2 respectively

denote the sum of squares within the linear systematic sample, the sum of squares within

the simple random sample and the sum of squares between both samples. An unbiased

estimate of (6.41) is provided by Wu (1984) and given as

v11 = v(y(β)) = B(Qs + λQr) +DQb,

where

B =
d2α1(β)− d1α2(β)

d2(n1 + λc1) + d1(n1 + λc2)
, D =

α1(β)[n1 + λc2] + α2(β)[n1 + λc1]

d2(n1 + λc1) + d1(n1 + λc2)
,

c1 =
(n2 − 1)(N − n1)

(N − n1 − 1)
, c2 =

n2
1(n2 − 1)

(N − n1)(N − n1 − 1)
,

d1 =
(N − n1 − n2)

n2(N − n1 − 1)
, d2 =

(n2N
2 − n2N − n2

1 − n1n2)

n2(N − n1)(N − n1 − 1)
.

Wu further noted that v(y(β)) will always be non-negative if

(a) λ ≥ 0 and (b) β ≥ (k − 1)/2k. (6.42)

By letting λ = 1 and β = (k− 1)/2k, we obtain an estimator which eliminates Qs and Qr,

i.e.

v

(
y

(
k − 1

2k

))
=

(
k − 1

2k

)2 [
ys − yr

]2
.

The values of β = n2/(n1 +n2) and β = 1/2 respectively correspond to a natural weighted

average and an unweighted average of ys and yr (Zinger 1980). Zinger examined these

two values along with the assumption that λ = 1, for the estimator v(y(β)). He showed
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that v(y(n2/(n1 + n2))) is prone to producing negative values, while

v

[
y

(
1

2

)]
=

(N − n1 − n2)(Qs +Qr)

N [(n2k − 2)(n1 + n2) + (n1 − n2)k]

+

[
1

4
− n2({N − n1}{n1 + n2} −N)

N({n2k − 2}{n1 + n2}+ {n1 − n2}k)

]
Qb

will always be non-negative and is thus the preferred weighting.

The assumption that k is large and n2 ≤ n1 is usually met in most practical cases,

since if n2 > n1 is true, then it is more beneficial to use MLSS, owing to its simplicity (Wu

1984). Accordingly, the optimum value of β, say βopt, which minimizes (6.41) and results in

LSS being more efficient than SRSWOR, is usually smaller than (k−1)/2k u 1/2 (Wolter

2007). By using (6.42), we thus conclude that there is a trade-off between efficiency and

non-negative unbiased estimation of the sampling variance, when choosing an appropriate

value of β. Wu suggests the following approach to overcome this trade-off:

(i) if βopt > (k − 1)/2k, then use y (βopt) and v (y (βopt));

(ii) if 0.2 ≤ βopt ≤ (k − 1)/2k, then use either y((k − 1)/2k) and v(y((k − 1)/2k)), or

y(1/2) and v(y(1/2));

(iii) if βopt < 0.2, then use y(βopt) and the truncated variance estimator, given by

v+(y(βopt)) = max{y(βopt), 0}.

Wus approach is reasonably justified, except for case (iii), where a zero variance estimate

is no more dangerous than a negative variance estimate (Wolter 2007).

6.4.3 Efficiency comparisons

Zinger (1980) studied the efficiency of PSS, when compared to SRSWOR, by assuming four

artificial populations, two of which, exhibit stratification effects and linear trend (Cochran

1977, pp.211-212) as well as two that are in random order. He then concluded that PSS

is more efficient than SRSWOR for Cochran’s artificial populations, as well as one of the

artificial populations in random order, provided that n2 > 2. Zinger further compared

PSS with MLSS by making the appropriate adjustments to the sample size. No simple

conclusion was drawn for Cochran’s artificial populations, i.e. PSS was more efficient than

MLSS in some cases, while MLSS was more efficient than PSS in other cases.
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It should be noted that Wu (1984) considered a modified approach to PSS, where the

linear systematic sample of size n1 is supplemented by another linear systematic sample,

of size n2. He examined two cases where (i) n1 = n2 and (ii) n1 = n2l, such that l is an

integer greater than one. It is trivial that case (i) reduces to MLSS with m = 2, while

case (ii) does not seem to have any comparative advantage over MLSS (Wolter 2007).

Moreover, this approach is not directly comparable to the usual PSS design, since we

obtain values of β, which is not the same as that of PSS.

We next examine further designs which result in an unbiased estimate of the corre-

sponding sampling variances, by supplementing a linear systematic sample with a depen-

dent sample.
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Chapter 7

SUPPLEMENTING A

SYSTEMATIC SAMPLE WITH

A DEPENDENT SAMPLE

In this chapter, we will examine some designs which supplement a systematic sample with

a dependent sample. The designs that will be discussed are new systematic sampling

(NSS), new partially systematic sampling (NPSS), balanced random sampling (BRS) and

a new proposed design termed as balanced modified random sampling (BMRS). In NSS,

we supplement a circular systematic sample with a sample of continuous units, while

NPSS involves the supplementation of a circular systematic sample with a simple random

sample without replacement. BRS is a slight adaption of MSS, whereby half the sample

is selected using SRSWOR and the other half of the sample are the paired units, using

the MSS pairing technique, as discussed in Section 5.4.1. Similarly, BMRS divides the

population into groups, before conducting SRSWOR within each group and then pairs

these sampling units using the MSS pairing technique. Before discussing each design, we

will obtain some preliminary results to aid us in obtaining expressions for an estimate Y ,

the corresponding sampling variance and an estimate of the sampling variance.

7.0 Preliminary Results

Theorem 7.1: Suppose that we draw a without-replacement sample of size n from a pop-

ulation of size N , such that the sample space is given as S. If πi > 0, for all i ∈ {1, ..., N},

then the Horvitz & Thompson (1952) unbiased estimator of Y and the corresponding
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variance, are respectively given by

Ŷ HT =
1

N

∑
Ui∈S

yi
πi
, (7.1)

Var
(
Ŷ HT

)
=

1

N2

N∑
i=1

(1− πi)
πi

y2
i +

1

N2

N∑
i=1

N∑
j 6=i

(πij − πiπj)
πiπj

yiyj . (7.2)

Proof : For i = 1, ..., N , let ti be a random variable, such that

ti =


1 if ith unit is drawn,

0 otherwise.

Clearly, if we have a sample of size n = 1, then ti follows a Bernoulli distribution with

probability πi, i.e. ti ∼ BIN(1, πi). Hence, E(ti) = πi and Var(ti) = πi(1−πi). Now, if we

take yi to be a fixed variable, then

E
(
Ŷ HT

)
= E

 1

N

∑
Ui∈S

yi
πi

 =
1

N
E

(
N∑
i=1

tiyi
πi

)
=

1

N

N∑
i=1

yi = Y .

Moreover, if we assume that πi = 0, for some i ∈ {1, ..., N}, then E(ti) 6= πi = 0 and thus

E
(
Ŷ HT

)
6= Y .

The variance of the estimate in (7.1) is then given as

Var
(
Ŷ HT

)
= Var

(
1

N

N∑
i=1

tiyi
πi

)

=
N∑
i=1

(
yi
Nπi

)2

Var (ti) +
N∑
i=1

N∑
j 6=i

yiyj
N2πiπj

Cov (titj). (7.3)

Now,

Cov (titj) = E (titj)− E (ti) E (tj) = πij − πiπj ,

since titj = 1 if and only if both units Ui and Uj are in the sample. By substituting this

expression as well as Var(ti) = πi(1− πi) into (7.3), we obtain the result in (7.2).

Theorem 7.2: With the assumption of a sampling design that exhibits fixed sample

sizes, a form of the variance expression in (7.2), proposed by Sen (1953) and Yates &

Grundy (1953), is given by

Var
(
Ŷ HT

)
=

1

2N2

N∑
i=1

N∑
j 6=i

(πiπj − πij)
[(

yi
πi

)
−
(
yj
πj

)]2

. (7.4)
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Proof : By using the given assumption, we obtain
∑N

i=1 ti = n for every possible sample,

which results in
N∑
i=1

πi =

N∑
i=1

E (ti) = E

(
N∑
i=1

ti

)
= n. (7.5)

Furthermore,
N∑
j 6=i

πij = (n− 1)πi, (7.6)

since there are (n− 1) values for j once the ith population unit is selected. By using (7.5)

and (7.6), it then follows that

1

πi

N∑
j 6=i

(πiπj − πij) =

N∑
j 6=i

πi − (n− 1)

=
N∑
j=1

πj − πi − (n− 1) = (1− πi) . (7.7)

Finally, by substituting (7.7) into (7.2), we obtain

Var
(
Ŷ HT

)
=

1

N2

N∑
i=1

N∑
j 6=i

y2
i (πiπj − πij)

π2
i

− 1

N2

N∑
i=1

N∑
j 6=i

(πiπj − πij)
yiyj
πiπj

=
1

N2

 N∑
i=1

N∑
j>i

(πiπj − πij)

{(
yi
πi

)2

+

(
yj
πj

)2
}
− 2

N∑
i=1

N∑
j>i

(πiπj − πij)
yiyj
πiπj


=

1

N2

N∑
i=1

N∑
j>i

(πiπj − πij)

[(
yi
πi

)2

+

(
yj
πj

)2

− 2yiyj
πiπj

]

=
1

2N2

N∑
i=1

N∑
j 6=i

(πiπj − πij)
[(

yi
πi

)
−
(
yj
πj

)]2

.

Theorem 7.3: If we assume that πij > 0, for all i, j ∈ {1, ..., N} (i 6= j), then an

unbiased estimator of (7.4) is given by

vY G =
1

2N2

N∑
i=1

N∑
j 6=i

titj

(
πiπj − πij

πij

)[(
yi
πi

)
−
(
yj
πj

)]2

, (7.8)

Proof: The expected value of vY G is given as

E(vY G) =
1

2N2

N∑
i=1

N∑
j 6=i

E (titj)

(
πiπj − πij

πij

)[(
yi
πi

)
−
(
yj
πj

)]2

=
1

2N2

N∑
i=1

N∑
j 6=i

(πiπj − πij)
[(

yi
πi

)
−
(
yj
πj

)]2

= Var
(
Ŷ HT

)
,
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which follows since the expected value of the product of both indicator variables is given

as E(titj) = P(Ui and Uj ∈ S) = πij . Now, if we assume that πij = 0, for some i and

j ∈ {1, ..., N} (i 6= j), then E(titj) 6= πij = 0, so that

E(vY G) 6= Var
(
Ŷ HT

)
.

Two basic properties of a good sampling design are that πi > 0, for all i ∈ {1, ..., N},

and πij > 0, for all i, j ∈ {1, ..., N} (i 6= j). The condition on the first-order inclusion

probabilities ensures that a sampling design produces samples of distinct sampling units,

while the condition on the second-order inclusion probabilities ensures that it is possible

to obtain an unbiased estimate of the sampling variance, provided that the corresponding

sampling design exhibits fixed sample sizes. Thus, for each sampling design, we will aim to

prove that the conditions of the inclusion probabilities hold true and/or obtain expressions

for the inclusion probabilities. We can then substitute these expressions into (7.1), (7.4)

and (7.8), so as to obtain the corresponding formulae. Furthermore, we will also discuss

the methodology and efficiency of each design.

7.1 New Systematic Sampling

7.1.1 Methodology

NSS was first introduced by Singh & Singh (1977). The corresponding methodology to

select a sample of size n from a population of size N is given as follows:

(i) Randomly select an integer r from the interval [1, N ].

(ii) Let u ≤ n be an integer, such that the sample units selected (of size u) for the sample

S′u, will be those elements with population unit numbers given by

r + i, for i = 0, 1, ..., u− 1. (7.9)

(iii) With a sampling interval of k′′ = INT[(N−u)/(n−u)], the remaining n−u sampling

units selected for the sample S′′u are given by the population unit numbers

r + u− 1 + jk′′, for j = 1, ..., n− u. (7.10)

(iv) The new systematic sample is then given as Su = S′u ∪ S′′u.
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The method of selection for the sample S′′u is the unrestricted method, which is applied

in a circular fashion, such that UN+r = Ur (refer to Section 2.2.3). Furthermore, the

probabilities of selecting the samples are given as

P(S′u) = P(S′′u) = P(Su) = 1/N, for r ∈ {1, ..., N}.

7.1.2 Inclusion probabilities

Theorem 7.4: Under the NSS design, a necessary and sufficient condition for all the

sampling units to be distinct is given as (n − u)k′′ ≤ N − u, where N − u and (n − u)

represents the population size and the sample size respectively, when selecting sample S′′u.

Proof : The population unit numbers for the sample, corresponding with random start r,

is obtained by using (7.9) and (7.10), such that

r, r + 1, ..., r + u− 1, r + u− 1 + k′′, r + u− 1 + 2k′′, ..., r + u− 1 + (n− u)k′′.

Now, if a sample consists of Ur as the first sampling unit and at most Ur−1 as the last

sampling unit, then it is trivial that all sampling units will be distinct. Thus, by using

the rth sample above, we conclude that all sampling units are distinct, if the population

unit number of the last sampling unit is less than the population unit number of the first

sampling unit, i.e.

r + u− 1 + (n− u)k′′ < N + r,

where UN+r = Ur, as shown above. We can then conclude the proof, since for all values

of i and j, it follows that (i+ 1) ≤ j if i < j.

Theorem 7.5: Under the NSS design, all second-order inclusion probabilities are non-zero

if

(i) k′′ ≤ u;

(ii) u+ (n− u)k′′ ≥ N/2 + 1.

Proof : Table 7.1 represents all the possible distances between pairs of population units

for sample Su, i.e. we use the sample in the previous theorem to calculate the distances

apart. Now, if we assume k′′ > u such that k′′ = u+ 1, then the distance u will not reflect

in Table 7.1. Similarly, if we let k′′ = u+ 2, then the distances u and u+ 1 will not reflect

in Table 7.1. Finally, if we substitute any value of k′′ such that k′′ ≤ u, then we note that

all the possible distances are fully represented in Table 7.1. Moreover, if we conduct CSS
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for a population of size N , then the distance between two sampling units will never exceed

N/2 (Singh & Singh 1977). Thus, just as in the previous explanation, we only obtain all

the possible distances in Table 7.1, if (n − u)k′′ + u − 1 ≥ N/2, where (n − u)k′′ + u − 1

represents the distance between the first sampling unit in (7.9) and the last sampling unit

in (7.10), using the circular transversal concept in the previous theorem. We then conclude

the proof, since all the possible distances occur at least once. Singh & Singh showed that

by using the conditions in this theorem, we obtain a limitation to the sample size, given

by

n ≥
√

(2N + 4)− 1.

The first-order inclusion probability for the population unit Ui in the sample S′′u is

given as

πi(S′u) = E
(
I ′
)

=
1

N

N∑
r=1

I ′ =
u

N
, (7.11)

where S′u in the subscript indicates that we are considering the corresponding sample space

and

I ′ =


1 if Ui ∈ S′u,

0 otherwise,

denotes an indicator variable, such that each population unit occurs u times when applying

(7.9), for r = 1, ..., N . Likewise, the first-order inclusion probability for the population

unit Ui in the sample S′′u is given as

πi(S′′u) = E
(
I ′′
)

=
1

N

N∑
r=1

I ′′ =
n− u
N

, (7.12)

where

I ′′ =


1 if Ui ∈ S′′u,

0 otherwise,

denotes an indicator variable, such that each population unit occurs (n − u) times when

applying (7.10), for r = 1, ..., N , i.e. we use CSS where the sample size is (n− u) (refer to

Section 2.2.3 by replacing n with (n − u) in πi). The first-order inclusion probability for

the population unit Ui in the sample Su is then obtained by using (7.11) and (7.12), such

that

πi = πi(S′u) + πi(S′′u) =
n

N
,

since S′u and S′′u are mutually exclusive. Exact values for the πijs are calculated for various

cases by Singh & Singh (1977).
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7.1.3 Efficiency comparisons

If yNSS denotes the sample mean when conducting NSS, then the variance of yNSS can

be written as

Var (yNSS) =
N − 1

N
S2
Y −

1

Nn

N∑
i=1

n∑
j=1

(yij − yi)
2 (7.13)

(Singh & Singh 1977). By using (7.13), Singh & Singh compared the efficiency of their

design, to that of LSS and SRSWOR, under different population structures. A summary

of the results is given as follows:

(i) For a population in random order, σ2
NSS = σ2

LSS = σ2
SRSWOR , where σ2

NSS denotes

the expected sampling variance, when conducting NSS, under the super-population

model in (4.12).

(ii) If k is an odd multiple of half the period, n − u is even and u = 2k′′, then the

means of the yi’s associated with samples S′u and S′′u are equivalent to Y and hence

Var(yNSS) = 0. NSS is thus expected to be more efficient than LSS for periodic

populations, since the range of the extreme values for Var(yNSS) is less than that

of Var(yLSS). Also, since (7.9) is defined as a continuous selection of u sampling

units, we obtain greater variation between the sampling units, which in turn results

in efficiency gains over SRSWOR, of size u.

(iii) For both auto-correlated populations and populations that exhibit linear trend, NSS

is less efficient than LSS, but more efficient than SRSWOR, provided that u is small

and k′′ is large. We are thus presented with a trade-off between an unbiased estimate

of the sampling variance and efficient estimation of the population mean Y .

7.2 New Partially Systematic Sampling

7.2.1 Methodology

Leu & Tsui (1996) adopted a modified approach to NSS, termed as NPSS. The corre-

sponding methodology to select a sample of size n from a population of size N is given as

follows:

(i) Randomly select an integer t from the interval [1, N ].
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(ii) If k = N/n is an integer, then let u = 2, otherwise define k as the closest integer to

N/(n − 1) and let u be an integer, where 2 ≤ u ≤ INT(n/2) + 1. Furthermore, let

a = N − (n− u)k.

(iii) Select a sample S′t, of size u, from the sample space ST = {Ut, Ut+1, ..., Ut+a−1},

using SRSWOR.

(iv) The remaining n−u sampling units, selected for the sample S′′t , will be those elements

with population unit numbers given by

t+ a− 1 + ik, for i = 1, ..., n− u. (7.14)

(v) The new partially systematic sample is then defined by St=S
′
t ∪ S′′t .

It should be noted that, just as in the previous design, we obtain UN+t = Ut.

Leu & Tsui (1996) then used the theory of an optimal choice of the sampling in-

terval, given by Bellhouse (1984), to ensure an even spread of the sample. If we let

k1 = INT[N/(n − 1)] and k2 = INT(N/n) + 1, then the choices for parameters k and u

are given as follows:

(i) if k1 = 1, then select u = INT(n/2) and k = 1;

(ii) if k = N/n is an integer, then select k = N/n and u = 2. Otherwise, select k as

follows:

(a) if k1 ≥ 2 and k1 ≥ k2, then select k = k1 and u = 2;

(b) if k1 ≥ 2 and k1 < k2, then let u be a minimal integer which satisfies (u−1)k2 ≥

n, such that if u ≥ k2, then select k = k1 and if u < k2, then select k as either

k1 or k2, subject to which one is closer to a/u.

These recommendations of the choices of u and k, along with the restrictions in the

next theorem, will not result in any limitations on the sample size, which results in a

comparative advantage of NPSS over NSS.

7.2.2 Inclusion probabilities

Under NPSS, we obtain n distinct sampling, since N = a + (n − u)k results in only one

circular transversal. As a result, πi > 0, for all i ∈ {1, ..., N}.
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Theorem 7.6: Under the NPSS design, all second-order inclusion probabilities are non-

zero if

(a) u ≥ 2 and (b) a ≥ k.

The proof to this theorem is given by Leu & Tsui (1996).

Any fixed population unit Ui in the sample space ST = {Ut, Ut+1, ..., Ut+a−1}, will

occur a times, for t = 1, ..., N . Furthermore, since there are N possible values for t in the

sample space ST , we obtain

πi(S′t) =
1

N
× aP (Ui ∈ ST |i ∈ {t, t+ 1, . . . , t+ a− 1}) =

( a
N

) u
a

=
u

N
, (7.15)

as we are selecting u sampling units from the a units in ST , using SRSWOR. The first-order

inclusion probability for the population unit Ui in the sample S′′t is given by

πi(S′′t ) = E
(
I ′′t
)

=
1

N

N∑
i=1

I ′′t =
n− u
N

, (7.16)

where

I ′′t =


1 if Ui ∈ S′′t ,

0 otherwise,

represents an indicator variable, such that each population unit occurs (n−u) times when

applying (7.13), for t = 1, ..., N , i.e. we use CSS where the sample size is (n− u) (refer to

Section 2.2.3 by replacing n with (n − u) in πi). The first-order inclusion probability for

the population unit Ui in the sample St is then obtained by using (7.15) and (7.16), i.e.

πi = πi(S′t) + πi(S′′t ) =
n

N
,

since S′t and S′′t are mutually exclusive. Exact values for the πij ’s are calculated for various

cases by Leu & Tsui (1996).

7.2.3 Efficiency comparisons

For t = 1, ..., N , Leu & Tsui (1996) used the following notation:

yut = the mean of the yi’s for the sample S′t,

yst = the mean of the yi’s for the sample S′′t ,

y·t =

a−1∑
i=1

yit/a,where yit = yt+i,

yNPSS = [uyat + (n− u)yst]/n = NPSS mean.
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Accordingly, the variance of yNPSS can be written as

Var (yNPSS) =
u

n2N

(
1− u

a

) N∑
t=1

a−1∑
i=0

(yit − y·t)
2

a− 1
+

1

N

N∑
t=1

[
uy·t + (n− u) yst

n
− Y

]2

(7.17)

(Leu & Tsui 1996). By using (7.17), Leu & Tsui compared the efficiency of their design

to that of LSS and SRSWOR, under different population structures. Under the super-

population model in (4.12), if we denote the expected variance of yNPSS as σ2
NPSS , then

a summary of Leu & Tsui’s results are given follows:

(i) For a population in random order, σ2
NPSS = σ2

LSS = σ2
SRSWOR.

(ii) For the model in (4.5): Var(yNPSS) > Var(yLSS); Var(yNPSS) < Var(ySRSWOR)

when n > 2; and Var(yNPSS) = Var(ySRSWOR) when n = 2.

(iii) If k is an integral multiple of the period, then NPSS is more efficient than LSS for

periodic populations, since we are selecting u ≥ 2 units from the from the sample

space ST , allowing for NPSS to offer more variation within the corresponding sam-

ples. If k is an odd multiple of half the period and if the yi’s of the u units selected

are the same as that of the linear systematic sample, then Var(yNPSS) = 0. NPSS

is thus expected to be on average more efficient than LSS for periodic populations,

since the range of the extreme values for Var(yNPSS) is less than that of Var(yLSS).

(iv) For auto-correlated populations in the form of a linear, exponential or hyperbolic

correlogram, we obtain σ2
LSS < σ2

NPSS < σ2
SRSWOR.

We are thus presented with a trade-off between an unbiased estimate of the sampling

variance and efficient estimation of Y , when considering auto-correlated populations and

populations that exhibit linear trend.

Leu & Tsui (1996) further compared the efficiency of their design to that of MLSS,

for linear trend populations and auto-correlated populations. By denoting the number of

random starts by l, such that N = nk and n = ml, they concluded that:

(i) For the model in (4.5):

(a) Var(yNPSS) = Var(y
(l)
MLSS), when l = 2 and m = 1;

(b) Var(yNPSS) < Var(y
(l)
MLSS), for all other cases, except when l = 2 and m < 5,

as well as the case when l ≥ 3 and m = 1.
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(ii) For auto-correlated populations:

(a) Var(yNPSS) < Var(y
(l)
MLSS), under the exponential correlogram;

(b) Var(yNPSS) < Var(y
(l)
MLSS), under the hyperbolic correlogram, except when

n = 4, which results in Var(yNPSS) > Var(y
(l)
MLSS);

(c) Var(yNPSS) < Var(y
(l)
MLSS), under the linear correlogram, except when l = 2

and n = 4 and 6, which results in Var(yNPSS) > Var(y
(l)
MLSS).

We thus conclude that NPSS is more often than not, more efficient than MLSS for auto-

correlated populations and populations that exhibit linear trend.

7.3 Balanced Random Sampling

7.3.1 Methodology

A design which adopts the advantages of both SRSWOR and MSS is known as BRS and

is originally attributed to Singh & Garg (1979). BRS divides the population into two

groups, before selecting sampling units from the first group using SRSWOR and then

pairing these units with units from the second group, using the MSS pairing technique,

as discussed in Section 5.4.1. We can thus expect BMRS to perform particularly well for

populations that exhibit linear trend.

If we assume that n and N are even, then the methodology of BRS is given as follows:

(i) Select a sample S′r (of size n/2) from the sample space S′ = {U1, U2, ..., UN/2}, using

SRSWOR, where the population unit numbers of the sampling units are given by

ri, for i = 1, ..., n/2.

(ii) A dependent sample to S′r, given by S′′r , is of size n/2 and belongs to the sample

space S′′ = {UN/2+1, UN/2+2, ..., UN}, where the population unit numbers of the

sampling units are given by

N + 1− ri, for i = 1, ..., n/2.

(iii) The balanced random sample is then given as Sr = S′r ∪ S′′r .
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7.3.2 Inclusion probabilities

The first-order inclusion probability for the unit Ui in the sample S′r is given as

πi(S′r) =


0 if Ui ∈ S′′,

(n/2)/(N/2) = n/N if Ui ∈ S′,
(7.18)

since we are selecting n/2 units from the sample space S′, of size N/2. Likewise, the

first-order inclusion for the unit Ui in the sample S′′r , is given as

πi(S′′r ) =


0 if Ui ∈ S′,

(n/2)/(N/2) = n/N if Ui ∈ S′′.
(7.19)

By noting that S′r and S′′r are mutually exclusive, we then use (7.18) and (7.19) to obtain

the first-order inclusion probability for the unit Ui, for i ∈ {1, ..., N}, in the sample Sr,

i.e.

πi(Sr) = πi(S′r) + πi(S′′r ) =
n

N
.

To obtain the second-order inclusion probabilities, we first note that there are two

possible cases for the πij ’s in the sample Sr, i.e. (i) i+ j = N + 1 and (ii) i+ j 6= N + 1.

For case (i), the selection of unit Ui from a sample space is paired with the unit Uj from

the other sample space. Thus, the probability of selecting units Ui and Uj , given that Ui

and Uj are paired, is equivalent to the probability of selecting Ui, i.e.

πij(Sr) = πi(Sr) =
n

N
. (7.20)

For case (ii), unit Ui is not paired with unit Uj from the other sample space, thus the

probability of selecting the units Ui and Uj , given that Ui and another paired unit are

already selected, is given as

πij(Sr) = πi(Sr) × P (Uj is selected|Ui and another unit are selected)

=
( n
N

) n− 2

N − 2
. (7.21)

The second-order inclusion probability for the pair of units (Ui, Uj) in Sr (i 6= j), is thus

obtained using (7.20) and (7.21), such that

πij(Sr) =


n/N if i+ j = N + 1,

n(n− 2)/N(N − 2) otherwise.
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7.3.3 Efficiency comparisons

If we denote yBRS as the sample mean when conducting BRS, then the variance of yBRS

can be written as

Var (yBRS) =

(
1

n
− 1

N

)
2

N − 2

 N∑
i=1

(
yi − Y

)2 − 1

2

N/2∑
i=1

(yi − yN+1−i)
2

 (7.22)

(Singh & Garg 1979). By using (7.22), Singh & Garg compared the efficiency of their

design to that of LSS, SRSWOR and STR, under different population structures. A

summary of the results is given as follows:

(i) For both the model in (4.5) and periodic populations, Var(yBRS) = 0 and hence

BRS is more efficient than all the designs.

(ii) If we assume a linear correlogram for auto-correlated populations, then BRS is twice

as efficient as SRSWOR, but less efficient than both LSS and STR.

Singh & Garg (1979) further provided methodologies, along with the corresponding

inclusion probabilities, for other cases of BRS, i.e. (i) N and n are both odd; (ii) N is

odd and n is even; and (iii) N is even and n is odd. However, for the purposes of this

thesis we shall only consider the case discussed in this section.

7.4 Balanced Modified Random Sampling

7.4.1 Methodology

The author next proposes a new design, which adopts the advantages of both SRSWOR

and MSS, termed as BMRS. BMRS divides the population into n/4 groups, before using

a MSS pairing technique within each group. We then select two pairs within each group,

using SRSWOR. We can thus expect BMRS to perform particularly well for populations

that exhibit linear trend. For this design, we will assume that k is an integer and n/2 is

an even integer.

The methodology to select a sample of size n from a population of size N , using BMRS,

is given as follows:

(i) Select n/4 pairs of integers
(
{i1, i2}, {i3, i4}, ..., {in/2−1, in/2}

)
from the first 2k

integers, using an independent SRSWOR selection for each pair, i.e. i2s−1 6= i2s, for

s = 1, ..., n/4.
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(ii) The randomly selected sample, Si, will contain those units with population unit

numbers given by

i2s−1 + 4(s− 1)k, i2s + 4(s− 1)k, for s = 1, ..., n/4.

(iii) The dependent sample containing the paired sampling units, Sj , will be those units

with population unit numbers given by

4k − i2s−1 + 4(s− 1)k + 1, 4k − i2s + 4(s− 1)k + 1, for s = 1, ..., n/4.

(iv) The balanced modified random sample is then given as Ss = Si ∪ Sj .

Table 7.2 depicts the above-mentioned design, whereby the population is divided into n/4

groups, each containing 2k pairs of population units and SRSWOR is applied within each

group to select two pairs of units, which collectively represent a balanced modified random

sample. From Table 7.2, we can easily verify that BMRS reduces to BRS if n = 4, i.e. we

only consider group 1 and replace 4k with N .

Table 7.2: Pairs of population units for the BMRS design

Group 1 Group 2 . . . Group s = n/4

{U1, U4k} {U4k+1, U8k} . . . {U(n−4)k+1, Unk}

{U2, U4k−1} {U4k+2, U8k−1} . . . {U(n−4)k+2, Unk−1}
...

...
...

{U2k, U2k+1} {U6k, U6k+1} . . . {U(n−2)k, U(n−2)k+1}

7.4.2 Inclusion probabilities

Theorem 7.7: Under BMRS, the first-order inclusion probability of the population unit

Ui, for all i = 1, ..., N , is given by πi = 1/k.

Proof : Under BMRS, each group contains 2k pairs of units and thus the selection of two

distinct pairs within each group is equivalent to applying SRSWOR to select two units

from a population of size 2k, i.e. πi = 2/2k = 1/k.
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Theorem 7.8: Under BMRS, the second-order inclusion probabilities for the pair of

population units {Ui, Uj}, for all i, j = 1, ..., N (j 6= i) and s = 1, ..., n/4, are given by

πij =


1/k if i+ j = 4k + 8k(s− 1) + 1,

1/k(2k − 1) if i, j ∈ {1 + 4k(s− 1), ..., 4ks} and i+ j 6= 4k + 8k(s− 1) + 1,

1/k2 otherwise.

Proof : From Table 7.2, if we assume that Ui and Uj are paired, then the sum of their

population unit numbers is given by i + j = 4k + 8k(s − 1) + 1, for all i, j = 1, ..., N

(j 6= i) and s = 1, ..., n/4. For this case, the probability of selecting units {Ui, Uj} is

equivalent to the probability of only selecting unit Ui, i.e. πij = πi = 1/k. Furthermore,

if we assume units Ui and Uj are not paired, but to belong to the same group (i.e. i and

j ∈ {1 + 4k(s − 1), ..., 4ks} and i + j 6= 4k + 8k(s − 1) + 1 for all i, j = 1, ..., N (j 6= i),

where s = 1, ..., n/4), then

πij = πi × P (Uj is selected|Ui is selected) =
1

k

(
1

2k − 1

)
,

since we are selecting one pair from the remaining 2k − 1 pairs, after selecting the unit

Ui. The final possibility of selecting {Ui, Uj} for the sample is that Ui and Uj belong to

different groups, such that

πij = πi × P (Uj is selected|Ui is selected) =
1

k

(
1

k

)
=

1

k2
,

since the selection of unit Ui is independent from the selection of unit Uj .

7.4.3 Efficiency comparisons

Theorem 7.9: Under BMRS, if we denote the sample mean by yBMRS , then the variance

of yBMRS can be written as

Var (yBMRS) =

(
1

n
− 1

N

)
4

n (2k − 1)

n/4∑
s=1

[St (s)− Sw (s)], (7.23)

where

Sw(s) =
∑4k

i=1(yi+4k(s−1) − y4k+1−i+4k(s−1))
2/4 = the sum of squares within the pairs of

units for group s,

St(s) =
∑4k

i=1

(
yi+4k(s−1) − Y s

)2
= the total sum of squares within group s and

Y s =
∑4k

i=1 yi+4k(s−1)/4k = the mean of group s.
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Proof : Under our proposed design, we can view each group from Table 7.2 as a stratum.

For this situation, we denote ns = 4 as the number of sampling units selected from stratum

s and Ns = 4k as the size of stratum s. Furthermore, if we denote the variance within

stratum s by σ2
s , then the sampling variance, when conducting STR (based on the selection

of ns sampling units from stratum s, of size Ns), is given by

Var (ySTR) =
1

N2

n/4∑
s=1

Ns (Ns − ns)σ2
s

ns
, (7.24)

where N =
∑n/4

s=1Ns and n =
∑n/4

s=1 ns. By applying the relevant substitutions, we obtain

Ns (Ns − ns)
nsN2

=
4k (4k − 4)

4N2
= 4

(
k2

N2
− k

N2

)
=

4

n

(
1

n
− 1

N

)
. (7.25)

Let us now consider the selection of pairs of units within each stratum, of size 2k pairs,

such that the variance within each stratum is equivalent to the mean sum of squares

between the pairs, i.e.

σ2
s =

1

2k − 1
Sb (s) =

1

2k − 1
[St (s)− Sw (s)] , (7.26)

where Sb(s) denotes the sum of squares between the pairs of units within stratum s. We

then conclude the proof by substituting (7.25) and (7.26) into (7.24).

We will next use (7.23) to compare BMRS to SRSWOR, LSS and STR (based on the

selection of one unit per stratum), under different population structures.

Population in random order

For the model in (6.24), if we let es =
∑4k

i=1 ei+4k(s−1)/4k, then we obtain

Em [St (s)] =
4k∑
i=1

Em
[
µ+ ei+4k(s−1) − (µ+ es)

]2
=

4k∑
i=1

Em
[
ei+4k(s−1) − es

]2
=

4k∑
i=1

(
σ2 − σ2

4k

)
= 4kσ2 − σ2, (7.27)

which follows since ei+4k(s−1) occurs once in es , for i ∈ {1, ..., 4k} and s ∈ {1, ..., n/4}.

Also,

Em [Sw (s)] =
1

4

4k∑
i=1

Em
[
µ+ ei+4k(s−1) −

(
µ+ e4k+1−i+4k(s−1)

)]2
=

1

4

4k∑
i=1

[
Em

(
e2
i+4k(s−1)

)
+ Em

(
e2

4k+1−i+4k(s−1)

)]
= 2kσ2, (7.28)
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since i + 4k(s − 1) 6= 4k + 1 − i + 4k(s − 1). We then obtain the expected variance of

yBMRS , by using (7.23), (7.27) and (7.28), i.e.

σ2
BMRS =

(
1

n
− 1

N

)
4

n (2k − 1)

n/4∑
s=1

(
4kσ2 − σ2 − 2kσ2

)
=

(
1

n
− 1

N

)
4

n (2k − 1)

n/4∑
s=1

σ2 (2k − 1) =

(
1

n
− 1

N

)
σ2. (7.29)

The expected variances of ySRSWOR, yLSS and ySTR are known to be equal to (7.29).

We thus conclude that BMRS is as equally efficient to SRSWOR, LSS and STR, for

populations in random order.

Population with linear trend

If we assume the model in (5.1), then

Y s =
1

4k

4k∑
i=1

[
a+ b {i+ 4k (s− 1)}+ ei+4k(s−1)

]
= a+

b (4k + 1)

2
+ 4bk (s− 1) + es.

Consequently, we obtain

Em [St (s)] =

4k∑
i=1

Em

[
b {i+ 4k (s− 1)}+ ei+4k(s−1) −

{
b (4k + 1)

2
+ 4bk (s− 1) + es

}]2

= Em

[
b2

4k∑
i=1

{
i− (4k + 1)

2

}2
]

+
4k∑
i=1

Em
[
ei+4k(s−1) − es

]2
= Em

[
b2

4k∑
i=1

{
i− (4k + 1)

2

}2
]

+ 4kσ2 − σ2, (7.30)

which follows from (7.27). Moreover,

Em [Sw (s)] =
1

4

4k∑
i=1

Em

[
b (i+ 4k {s− 1}) + ei+4k(s−1)

−
(
b {4k + 1− i+ 4k (s− 1)}+ e4k+1−i+4k(s−1)

) ]2

= Em

[
b2

4

4k∑
i=1

(2i− 4k − 1)2

]
+

1

4

4k∑
i=1

[
Em

(
e2
i+4k(s−1)

)
+ Em

(
e2

4k+1−i+4k(s−1)

)]
= Em

[
b2

4k∑
i=1

{
i− (4k + 1)

2

}2
]

+ 2kσ2 (7.31)

By using (7.23), (7.29), (7.30) and (7.31), we obtain

σ2
BMRS =

(
1

n
− 1

N

)
σ2. (7.32)



117

Thus, by comparing (7.32) to (5.9), (5.10) and (5.11) (i.e. ySRSWOR, yLSS and ySTR are

all unbiased estimators of the population mean), we conclude that BMRS is more efficient

than SRSWOR, LSS and STR, for populations that exhibit linear trend.

Periodic populations

Let us assume that yi exhibits an exact periodic function with period 2h and N = 2Qh.

Under this assumption, we then note that each group in Table 7.2 is equivalent for the

two cases of k = ah, for a ∈ {1, 3, ...}, and k = 2ah, for a ∈ {1, 2, ...}. Accordingly, we

obtain

St(1) = St(2) = ... = St(n/4), Sw(1) = Sw(2) = ... = Sw(n/4) and Y s = Y ,

Thus, if we only consider the first group in Table 7.2, then (7.23) reduces to

Var (yBMRS) =

(
1

4
− 1

4k

)
1

2k − 1

[
4k∑
i=1

(
yi − Y

)2 − 1

4

4k∑
i=1

(yi − y4k+1−i)
2

]

=
k − 1

2k − 1

[
σ2 − 1

16k

4k∑
i=1

(yi − y4k+1−i)
2

]
. (7.33)

If we suppose the best case scenario for LSS, i.e. k = ah, for a ∈ {1, 3, ...}, then it is

known that Var(yLSS) = 0 (see Section 4.2.3) and by comparing this result to (7.33),

we thus conclude that LSS is more efficient that BMRS for this situation. On the other

hand, if we suppose the worst case scenario for LSS, i.e. k = 2ah, for a ∈ {1, 2, ...},

then Var(yLSS) = σ2 (see Section 6.3.3) and by comparing this result to (7.33), we thus

conclude that BMRS is more efficient than LSS for this situation. When comparing (7.33)

to either (4.2) or (4.3), we note that simple theoretical comparisons are difficult to deduce

and we will thus resort to some numerical comparisons in the next chapter.

It should be noted that the author is in disagreement with the corresponding results

obtained in Singh and Garg’s (1979) paper. Accordingly, the latter authors deduced that

Var(yBRS) = 0 under the exact periodic function and this is incorrect, since BMRS reduces

to BRS when n = 4 and by referring to (3.7), (4.15) and (7.33), we obtain

σ2 =
1

8k

4k∑
i=1

4k∑
j 6=i

(yi − yj)2 =
2

16k

4k∑
i=1

4k∑
j 6=i

(yi − yj)2 >
1

16k

4k∑
i=1

(yi − y4k+1−i)
2,

which follows since (yi − y4k+1−i) is the minimum difference between any pair of units,

under the exact periodic function. Further evidence of this is provided in the next chapter.

A possible explanation for this is that Singh & Garg may have assumed that a perfect
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linear trend pattern is repeated after every set of 2h units in the population, rather than

variate values which are monotonically increasing and monotonically decreasing at every

set of 2h units in the population. One can easily verify that this assumption results in

Var(yBRS) = Var(yBMRS) = 0.

Auto-correlated population

Under the model in (4.12), we obtain

Em [St (s)] = (4k − 1)σ2

[
1− 2

4k (4k − 1)

4k−1∑
u=1

(4k − u) ρu

]
, (7.34)

which follows if we replace N in (4.16) by 4k, since there are 4k population units within

group s. Moreover, by using (4.15) and (4.16), it follows that

Em [Sw (s)] =
1

4
Em

[
4k∑
i=1

(
yi+4k(s−1) − y4k+1−i+4k(s−1)

)2]

=
1

4

4k∑
i=1

[
2σ2 − 2σ2ρ|4k+1−2i|

]
=
σ2

2

[
4k −

4k∑
i=1

ρ|4k+1−2i|

]

= 2kσ2

[
1− 1

4k

4k∑
i=1

ρ|4k+1−2i|

]
. (7.35)

Now, on substituting (7.34) and (7.35) into (7.23), it follows that

σ2
BMRS =

(
1

n
− 1

N

)
σ2

[
1− 1

2k (2k − 1)

4k−1∑
u=1

(4k − u) ρu +
1

2 (2k − 1)

4k∑
i=1

ρ|4k+1−2i|

]
.

By comparing this result to the related expected variance expressions in Section 4.2.4,

we conclude that it is difficult to obtain simple theoretical comparisons and we will thus

resort to some numerical comparisons in the next chapter.
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Chapter 8

NUMERICAL ANALYSIS

This chapter focuses on numerically comparing the various designs presented in this thesis,

under various population structures. The populations under consideration will be artificial

populations, which exhibit the structures given in Section 4.2, as well as a natural pop-

ulation. To obtain the artificial populations, we apply Monte Carlo simulations by using

the statistical software package R. For each artificial population model, we will simulate

G = 1000 finite populations, each of size N = 120. By using the simple mathematical

model in (6.1), we present the specifications for the artificial populations in Table 8.1.

The final population, of size N = 176, is the strip-wise complete enumeration on length

and timber volume for ten blocks of the blacks mountain experimental forest, studied

by Hasel (1942). The variable of interest (Y ) is the total amount of timber volume and

P6A represents the population in its natural state (i.e. arranged as in the frame), while

P6B is a result of the population arranged according to the length of the strips. These

arrangements are depicted in Figures 8.1 and 8.2. From Figure 8.1, we note that P6A

is approximately a stratified population, since the blocks in which the strips occur can

be considered as strata. By arranging the population in ascending order according to an

auxiliary variable, which in this case is the length of the strips, we obtain a population

that approximately exhibits linear trend, P6B, represented by Figure 8.2.

We will next compare all the sampling designs discussed in this thesis, for the above-

mentioned populations. The comparative measures that will be used are the MSEs of the

corresponding sample means and the corresponding percentages of CIs which contain the

true population mean. For the artificial populations, we will average these comparative

measures over the 1000 populations, so as to obtain their respective expected quantities.

The CL used for the intervals will be 95% (nominal rate), with the classic notion that the
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Table 8.1: Specifications for the Artificial Populations

Population Description Trend Component (µij) Error Component (eij)

P1 Random 0 iid N(0, 100)

P2 Linear Trend 10i iid N(0, 100)

P3 Periodic 10 sin[π/2× (i+ {j − 1}k)] iid N(0, 1)

P4 Stratified j iid N(0, 1)

P5 Auto-correlated 0 eij = ρei−1,j + εij

e11 ∼ N(0, 100/(1− ρ2))

εij iid N(0, 100)

ρ = 0.6

Figure 8.1: Timber volume for ten blocks of the blacks mountain experimental forest,

arranged according to the frame
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Figure 8.2: Timber volume for ten blocks of the blacks mountain experimental forest,

arranged according to the length of strips

better estimate is the one which exhibits a higher expected percentage and estimates which

exhibit an expected percentage lower than the nominal rate are considered undesirable.

If the design is not applicable for the specific sample size, then we will denote this in the

analysis by N/A, i.e. if n = 7, then k = N/n is not an integer, which results in LSS, YEC,

CESS, BSS, MSS, BMSS MLSS, MBMSS, BRS and BMRS being inapplicable.

The expected MSEs of the sample means, related to the various sampling designs dis-

cussed in this thesis, are presented in Tables 8.2 to 8.8. For the multiple-start designs,

we consider the number of random starts as m = 2 and 3. For the PSS design, we let

n1 be a maximum value, such that the sampling interval, given by N/n1, is an integer.

Furthermore, we consider an unweighted average of the corresponding sample means, i.e.

β = 1/2. For NSS and NPSS, we let u = 2, which results in a maximum number of

sampling units obtained using the systematic selection procedure.



122

T
ab

le
8.

2:
E

xp
ec

te
d

M
ea

n
S

q
u

ar
e

E
rr

or
s

of
th

e
S

am
p

le
M

ea
n

s,
fo

r
al

l
th

e
D

es
ig

n
s,

u
n

d
er

P
1

E
st

im
a
to

r
k

is
an

in
te

ge
r

k
is

n
ot

an
in

te
ge

r

n
=

4
n

=
8

n
=

12
n

=
20

n
=

40
n

=
7

n
=

14
n

=
21

n
=

35

y
L
S
S

24
.1

1
71

11
.8

2
8
2

7.
31

89
4.

01
30

1.
57

06
N

/A
N

/A
N

/A
N

/A

y
C
S
S

2
4.

11
7
1

11
.8

28
2

7.
31

89
4.

01
30

1.
57

06
13
.4

56
1

6.
29

36
3.

84
07

2.
05

31

y
S
R
S
W
R

2
4.

71
3
5

12
.3

68
9

8.
21

31
4.

95
90

2.
48

29
14
.0

99
5

7.
12

75
4.

69
56

2.
83

08

y
S
R
S
W
O
R

24
.0

9
05

11
.6

4
1
4

7.
45

39
4.

16
72

1.
66

92
13
.3

88
6

6.
34

89
3.

90
64

2.
02

20

y
S
T
R

24
.0

9
78

11
.6

3
33

7.
44

96
4.

15
33

1.
66

90
N

/A
N

/A
N

/A
N

/A

y
Y
E
C

25
.8

9
36

12
.1

5
6
8

7.
44

64
4.

05
25

1.
57

98
N

/A
N

/A
N

/A
N

/A

y
C
E
S
S

23
.1

7
68

11
.5

9
7
8

7.
04

36
4.

13
61

1.
71

06
N

/A
N

/A
N

/A
N

/A

y
B
S
S

24
.1

8
30

11
.7

5
7
8

7.
36

70
4.

16
93

1.
64

94
N

/A
N

/A
N

/A
N

/A

y
M
S
S

24
.1

1
40

11
.6

3
4
0

7.
48

64
4.

10
96

1.
69

92
N

/A
N

/A
N

/A
N

/A

y
B
M
S
S

2
4.

16
6
4

11
.7

26
8

7.
56

24
4.

04
20

1.
72

94
N

/A
N

/A
N

/A
N

/A

y
(2

)
M
L
S
S

24
.0

5
90

11
.7

5
6
0

7.
41

68
4.

17
47

1.
63

35
N

/A
N

/A
N

/A
N

/A

y
(3

)
M
L
S
S

N
/A

N
/
A

7
.3

79
5

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

y
(2

)
M
B
M
S
S

2
4.

05
9
0

11
.6

28
7

7.
51

86
4.

19
96

1.
64

05
N

/A
N

/A
N

/A
N

/A

y
(3

)
M
B
M
S
S

N
/A

N
/
A

7
.4

56
9

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

y
P
S
S

3
2.

32
9
4

15
.8

06
5

14
.0

64
5

5.
83

19
2.

50
91

28
.1

82
1

13
.8

50
7

25
.2

84
7

4.
99

66

y
N
S
S

2
4.

23
3
5

11
.7

23
7

7.
52

53
4.

02
88

1.
57

79
13
.2

63
4

6.
26

88
3.

97
62

1.
99

31

y
N
P
S
S

2
4.

09
2
6

11
.7

31
1

7.
36

44
4.

04
02

1.
58

04
13
.3

52
5

6.
27

98
3.

96
75

1.
99

60

y
B
R
S

2
4.

21
6
1

11
.6

56
9

7.
42

58
4.

15
22

1.
67

36
N

/A
6.

34
03

N
/A

N
/A

y
B
M
R
S

24
.2

1
61

11
.6

1
9
5

7.
44

45
4.

14
47

1.
66

42
N

/A
N

/A
N

/A
N

/A



123

T
ab

le
8.

3:
E

xp
ec

te
d

M
ea

n
S

q
u

ar
e

E
rr

or
s

of
th

e
S

am
p

le
M

ea
n

s,
fo

r
al

l
th

e
D

es
ig

n
s,

u
n

d
er

P
2

E
st

im
at

or
k

is
an

in
te

ge
r

k
is

n
ot

an
in

te
ge

r

n
=

4
n

=
5

n
=

8
n

=
15

n
=

30
n

=
7

n
=

14
n

=
21

n
=

35

y
L
S
S

7
51

6.
8
1

48
1
5.

78
18

80
.6

3
53

0.
52

12
6.

96
N

/A
N

/A
N

/A
N

/A

y
C
S
S

7
5
16
.8

1
48

1
5.

78
18

80
.6

3
53

0.
52

12
6.

96
24

57
.4

6
11

41
.2

0
21

39
.2

2
19

63
.7

7

y
S
R
S
W
R

30
0
32
.9

6
24

0
15
.7

2
15

01
0.

74
80

06
.2

6
40

03
.4

8
17

15
6
.7

6
85

76
.9

0
57

17
.1

1
34

30
.6

0

y
S
R
S
W
O
R

29
2
7
4
.8

5
23

2
0
8.

47
14

12
7.

76
70

64
.3

5
30

27
.8

4
16

29
1
.7

1
76

39
.9

3
47

56
.2

5
24

50
.6

3

y
S
T
R

1
89

7.
3
3

9
7
8.

4
4

24
5.

26
40
.7

7
6.

65
N

/A
N

/A
N

/A
N

/A

y
Y
E
C

26
.1

5
20
.1

7
12
.0

7
5.

87
2.

45
N

/A
N

/A
N

/A
N

/A

y
C
E
S
S

47
.5

5
43
.9

6
11
.5

7
30
.6

9
26
.5

6
N

/A
N

/A
N

/A
N

/A

y
B
S
S

24
.4

8
21

2.
3
7

11
.6

7
8.

00
2.

48
N

/A
N

/A
N

/A
N

/A

y
M
S
S

24
.3

0
21

1.
7
0

11
.7

2
8.

16
2.

38
N

/A
N

/A
N

/A
N

/A

y
B
M
S
S

24
.0

8
21

2.
5
8

11
.4

7
8.

03
3.

05
N

/A
N

/A
N

/A
N

/A

y
(2

)
M
L
S
S

14
7
71
.2

0
N

/A
36

29
.7

2
N

/A
22

7
.4

1
N

/A
N

/A
N

/A
N

/A

y
(3

)
M
L
S
S

N
/A

N
/A

N
/A

14
64
.6

7
32

6.
42

N
/A

N
/A

N
/A

N
/A

y
(2

)
M
B
M
S
S

14
7
71
.2

0
N

/A
11
.7

1
N

/A
3
.5

6
N

/A
N

/A
N

/A
N

/A

y
(3

)
M
B
M
S
S

N
/
A

N
/
A

N
/A

63
.9

15
15
.3

2
N

/A
N

/A
N

/A
N

/A

y
P
S
S

33
1
9
8
.5

6
31

7
6
9.

22
15

62
6.

34
99

84
.2

4
47

69
.0

3
30

77
1
.5

5
15

03
2.

67
30

05
8.

99
57

47
.5

8

y
N
S
S

49
5
8
1
.3

4
27

3
1
6.

76
75

23
.3

9
20

48
.8

6
15

5.
95

11
06

2
.4

2
10

14
.8

2
54

3.
13

20
59
.4

7

y
N
P
S
S

20
0
86
.4

1
12

0
79
.5

6
39

14
.0

2
84

8.
92

16
1.

66
66

68
.2

2
11

50
.0

3
58

2.
98

18
15
.9

8

y
B
R
S

24
.3

8
N

/
A

11
.6

8
N

/A
2
.5

0
N

/A
6.

30
N

/A
N

/A

y
B
M
R
S

24
.3

8
N

/
A

11
.6

2
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A



124

T
ab

le
8.

4:
E

xp
ec

te
d

M
ea

n
S

q
u

ar
e

E
rr

or
s

of
th

e
S

am
p

le
M

ea
n

s,
fo

r
al

l
th

e
D

es
ig

n
s,

u
n

d
er

P
3

E
st

im
a
to

r
k

is
a
n

o
d

d
m

u
lt

ip
le

of
h

al
f

th
e

p
er

io
d

(=
4)

k
is

an
in

te
gr

al
m

u
lt

ip
le

of
th

e
p

er
io

d
(=

4)

k
=

6
k

=
10

k
=

30
k

=
8

k
=

12
k

=
20

y
L
S
S

0
.0

42
0.

07
4

0.
24

3
50
.0

43
50
.0

96
50
.1

68

y
C
S
S

0
.0

42
0.

07
4

0.
24

3
50
.0

43
50
.0

96
50
.1

68

y
S
R
S
W
R

2
.5

55
4.

24
7

12
.7

36
3
.3

98
5.

09
9

8.
50

0

y
S
R
S
W
O
R

2
.1

47
3.

85
4

12
.4

15
2
.9

99
4.

71
4

8.
14

3

y
S
T
R

2
.4

08
4.

15
5

12
.7

02
3
.3

91
5.

19
2

8.
49

2

y
Y
E
C

0
.0

88
0.

21
1

2.
12

2
50
.0

48
50
.0

96
50
.1

77

y
C
E
S
S

0
.0

42
0.

07
2

0.
25

3
0
.0

55
0.

09
3

0.
15

4

y
B
S
S

2
5.

09
4

25
.0

60
25
.1

92
25
.1

33
25
.0

77
25
.2

04

y
M
S
S

0
.0

41
0.

07
6

0.
24

2
25
.1

32
25
.0

76
25
.2

05

y
B
M
S
S

0
.0

41
0.

07
6

0.
24

3
25
.1

31
26
.0

76
27
.8

74

y
(2

)
M
L
S
S

2
2.

81
6

23
.7

43
24
.7

93
N

/A
24
.0

07
24
.5

22

y
(3

)
M
L
S
S

N
/A

0.
07

5
N

/A
15
.2

71
N

/A
16
.2

63

y
(2

)
M
B
M
S
S

1
1.

88
1

13
.2

29
24
.7

93
N

/A
12
.5

22
13
.7

11

y
(3

)
M
B
M
S
S

N
/
A

0.
07

5
N

/A
7
.9

56
N

/A
16
.2

63

y
P
S
S

1
1.

62
1

16
.6

03
24
.6

60
4
.1

83
6.

34
2

24
.2

08

y
N
S
S

0
.2

92
1.

46
3

12
.7

31
0
.2

79
1.

09
2

2.
93

5

y
N
P
S
S

0
.2

70
0.

73
2

6.
38

0
38
.0

17
33
.0

51
25
.0

92

y
B
R
S

2
.1

65
3.

88
7

12
.5

06
N

/A
4.

74
9

8.
22

3

y
B
M
R
S

2
.3

19
4.

02
1

12
.5

06
N

/A
N

/A
N

/A



125

T
ab

le
8.

5:
E

xp
ec

te
d

M
ea

n
S

q
u

ar
e

E
rr

or
s

of
th

e
S

am
p

le
M

ea
n

s,
fo

r
al

l
th

e
D

es
ig

n
s,

u
n

d
er

P
4

E
st

im
at

or
n

=
4

n
=

8
n

=
12

n
=

15
n

=
20

n
=

24
n

=
40

y
L
S
S

0.
2
41

0
0.

11
66

0.
07

49
0.

05
95

0.
04

16
0.

03
35

0.
01

78

y
C
S
S

0.
24

1
0

0.
11

66
0.

07
49

0.
05

95
0.

04
16

0.
03

35
0.

01
78

y
S
R
S
W
R

0.
55

8
8

0.
78

09
1.

07
72

1.
31

16
1.

71
36

2.
03

80
3.

35
40

y
S
R
S
W
O
R

0.
5
44

7
0.

73
50

0.
97

76
1.

15
72

1.
44

00
1.

64
41

2.
25

48

y
S
T
R

0.
24

0
8

0.
11

70
0.

07
50

0.
05

83
0.

04
20

0.
03

32
0.

01
67

y
Y
E
C

0.
34

10
0.

20
14

0.
15

89
0.

14
18

0.
12

17
0.

11
50

0.
09

34

y
C
E
S
S

0.
24

8
0

0.
11

85
0.

07
48

0.
05

46
0.

04
34

0.
03

35
0.

01
74

y
B
S
S

0.
23

82
0.

11
49

0.
07

55
0.

05
93

0.
04

22
0.

03
47

0.
01

79

y
M
S
S

0.
24

2
2

0.
11

53
0.

07
60

0.
05

94
0.

04
16

0.
03

42
0.

01
78

y
B
M
S
S

0.
24

20
0.

11
69

0.
07

59
0.

05
76

0.
04

20
0.

03
36

0.
01

70

y
(2

)
M
L
S
S

0.
36

1
1

0.
23

87
0.

19
24

N
/A

0.
15

53
0.

14
39

0.
11

68

y
(3

)
M
L
S
S

N
/A

N
/A

0
.2

85
8

0.
25

96
N

/A
0.

22
40

N
/A

y
(2

)
M
B
M
S
S

0.
36

1
1

0.
11

51
0.

08
94

N
/A

0.
04

61
0.

03
39

0.
01

71

y
(3

)
M
B
M
S
S

N
/A

N
/A

0
.0

74
8

0.
06

72
N

/A
0.

03
33

N
/A

y
P
S
S

0.
66

9
3

0.
84

16
1.

64
40

1.
64

75
1.

68
45

2.
99

00
3.

03
26

y
N
S
S

0.
71

7
3

0.
44

89
0.

25
98

0.
37

75
0.

08
11

0.
06

55
0.

03
39

y
N
P
S
S

0.
43

32
0.

24
10

0.
16

13
0.

12
87

0.
09

28
0.

07
51

0.
03

90

y
B
R
S

0.
24

0
3

0.
11

70
0.

07
49

N
/A

0.
04

21
0.

03
32

0.
01

69

y
B
M
R
S

0.
24

0
3

0.
11

63
0.

07
46

N
/A

0.
04

15
0.

03
33

0.
01

68



126

T
ab

le
8.

6:
E

xp
ec

te
d

M
ea

n
S

q
u

ar
e

E
rr

or
s

of
th

e
S

am
p

le
M

ea
n

s,
fo

r
al

l
th

e
D

es
ig

n
s,

u
n

d
er

P
5

E
st

im
a
to

r
k

is
an

in
te

ge
r

k
is

n
ot

an
in

te
ge

r

n
=

4
n

=
8

n
=

12
n

=
20

n
=

40
n

=
7

n
=

14
n

=
21

n
=

35

y
L
S
S

33
.7

3
46

14
.5

5
4
8

8.
17

97
3.

36
29

0.
91

37
N

/A
N

/A
N

/A
N

/A

y
C
S
S

3
3.

73
4
6

14
.5

54
8

8.
17

97
3.

36
29

0.
91

37
16
.9

65
4

6.
48

19
3.

53
19

1.
66

10

y
S
R
S
W
R

3
7.

69
2
7

18
.9

47
6

12
.6

87
1

7.
53

41
3.

77
12

21
.5

40
7

10
.8

99
0

7.
25

81
4.

32
49

y
S
R
S
W
O
R

36
.7

4
24

17
.8

3
3
1

11
.5

14
4

6.
33

12
2.

53
53

20
.4

54
6

9.
70

84
6.

03
83

3.
08

92

y
S
T
R

34
.2

5
08

15
.0

2
72

8.
82

48
4.

16
40

1.
25

63
N

/A
N

/A
N

/A
N

/A

y
Y
E
C

35
.2

8
59

14
.9

0
4
9

8.
27

96
3.

41
30

0.
90

43
N

/A
N

/A
N

/A
N

/A

y
C
E
S
S

32
.0

4
58

13
.6

2
4
4

8.
01

75
3.

39
41

0.
88

65
N

/A
N

/A
N

/A
N

/A

y
B
S
S

35
.9

4
07

16
.3

5
5
6

9.
78

36
4.

79
31

1.
54

17
N

/A
N

/A
N

/A
N

/A

y
M
S
S

34
.3

4
21

14
.3

9
1
4

8.
27

04
3.

49
35

0.
89

40
N

/A
N

/A
N

/A
N

/A

y
B
M
S
S

3
5.

09
1
6

16
.1

30
5

9.
88

32
5.

16
39

1.
62

02
N

/A
N

/A
N

/A
N

/A

y
(2

)
M
L
S
S

35
.8

9
17

16
.5

3
8
2

9.
66

93
4.

80
15

1.
38

47
N

/A
N

/A
N

/A
N

/A

y
(3

)
M
L
S
S

N
/A

N
/
A

10
.5

46
1

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

y
(2

)
M
B
M
S
S

3
5.

89
1
7

17
.0

01
5

10
.4

83
7

5.
51

56
1.

97
56

N
/A

N
/A

N
/A

N
/A

y
(3

)
M
B
M
S
S

N
/A

N
/
A

11
.0

11
6

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

y
P
S
S

4
8.

88
8
5

23
.4

22
9

21
.0

20
1

8.
26

83
3.

55
48

42
.3

95
3

20
.4

56
6

38
.6

16
4

7.
40

10

y
N
S
S

6
4.

08
1
0

17
.6

73
4

9.
30

08
3.

78
16

0.
97

18
22
.2

46
8

7.
16

43
3.

46
83

1.
78

29

y
N
P
S
S

3
5.

72
9
5

15
.4

25
3

8.
74

52
3.

64
26

0.
96

83
19
.0

20
5

6.
93

33
3.

53
52

1.
61

62

y
B
R
S

3
6.

52
7
6

17
.5

76
0

11
.4

88
8

6.
24

96
2.

49
53

N
/A

9.
62

01
N

/A
N

/A

y
B
M
R
S

37
.5

2
76

17
.1

2
2
1

11
.5

66
5

5.
48

13
1.

85
71

N
/A

N
/A

N
/A

N
/A



127

T
ab

le
8.

7:
E

xp
ec

te
d

M
ea

n
S

q
u

ar
e

E
rr

or
s

of
th

e
S

am
p

le
M

ea
n

s,
fo

r
al

l
th

e
D

es
ig

n
s,

u
n

d
er

P
6

A

E
st

im
at

o
r

k
is

an
in

te
ge

r
k

is
n

ot
an

in
te

ge
r

n
=

4
n

=
8

n
=

11
n

=
16

n
=

22
n

=
6

n
=

12
n

=
18

n
=

24
n

=
30

y
L
S
S

5
97

6.
0
1

31
5
8.

7
7

53
6.

08
32

5.
60

13
0.

05
N

/A
N

/A
N

/A
N

/A
N

/A

y
C
S
S

59
7
6.

01
3
1
58
.7

7
53

6.
08

32
5.

60
13

0.
05

22
88
.3

9
83

6.
37

33
1.

98
23

8.
15

37
3.

51

y
S
R
S
W
R

60
2
8.

67
3
0
14
.3

3
2
19

2.
24

15
07
.1

7
10

96
.1

2
40

19
.1

1
20

09
.5

6
13

39
.7

0
10

04
.7

8
80

3.
82

y
S
R
S
W
O
R

59
2
5.

32
2
8
93
.7

6
2
06

6.
97

13
77
.9

8
96

4.
59

39
04
.2

8
18

83
.2

4
12

09
.5

6
87

2.
24

67
0.

62

y
S
T
R

49
8
6.

96
1
6
07
.8

1
57

4.
74

43
3.

55
19

6.
46

N
/A

N
/A

N
/A

N
/A

N
/A

y
Y
E
C

60
8
3.

59
1
88

8.
84

33
7.

01
16

3.
29

11
8.

04
N

/A
N

/A
N

/A
N

/A
N

/A

y
C
E
S
S

70
7
5.

10
8
7.

6
8

8.
60

20
.9

2
47

7.
03

N
/A

N
/A

N
/A

N
/A

N
/A

y
B
S
S

54
4
1.

31
2
3
52
.9

4
49

4.
80

95
.1

9
15

4.
12

N
/A

N
/A

N
/A

N
/A

N
/A

y
M
S
S

29
4
8.

21
4
36
.8

3
1
02

1.
60

16
3.

28
19

2.
87

N
/A

N
/A

N
/A

N
/A

N
/A

y
B
M
S
S

87
8
3.

34
2
2
78
.5

7
46

9.
53

18
0.

81
11

8.
10

N
/A

N
/A

N
/A

N
/A

N
/A

y
(2

)
M
L
S
S

64
0
1.

00
2
9
18
.5

2
N

/A
15

04
.1

8
25

0.
17

N
/A

N
/A

N
/A

N
/A

N
/A

y
(3

)
M
L
S
S

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

y
(2

)
M
B
M
S
S

64
0
1.

00
4
2
89
.5

4
N

/A
10

85
.0

3
21

9.
11

N
/A

N
/A

N
/A

N
/A

N
/A

y
(3

)
M
B
M
S
S

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

y
P
S
S

61
6
0.

41
2
9
05
.8

5
2
70

1.
18

12
92
.9

6
10

38
.9

8
44

21
.6

3
61

44
.8

2
30

60
.9

1
30

18
.1

9
74

2.
91

y
N
S
S

1
4
08

1
.5

2
3
1
32
.3

6
10

71
.5

6
56

5.
25

18
6.

57
66

48
.8

6
10

26
.5

0
40

7.
22

29
6.

44
15

7.
25

y
N
P
S
S

62
9
9.

56
2
7
18
.3

6
89

6.
58

44
7.

03
18

5.
45

26
35
.6

8
76

6.
45

40
5.

99
25

4.
87

16
1.

87

y
B
R
S

32
0
7.

38
1
5
66
.4

0
N

/A
74

5
.9

0
52

2.
13

21
13
.3

9
10

19
.4

0
65

4.
74

47
2.

40
36

3.
01

y
B
M
R
S

32
0
7.

38
3
5
55
.4

8
N

/A
73

9
.3

8
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A



128

T
ab

le
8.

8:
E

xp
ec

te
d

M
ea

n
S

q
u

ar
e

E
rr

or
s

of
th

e
S

am
p

le
M

ea
n

s,
fo

r
al

l
th

e
D

es
ig

n
s,

u
n

d
er

P
6

B

E
st

im
a
to

r
k

is
an

in
te

ge
r

k
is

n
ot

an
in

te
ge

r

n
=

4
n

=
8

n
=

11
n

=
16

n
=

22
n

=
6

n
=

12
n

=
18

n
=

24
n

=
30

y
L
S
S

33
0
2.

58
6
7
4.

2
2

38
1.

01
32

0.
28

38
.6

5
N

/A
N

/A
N

/A
N

/A
N

/A

y
C
S
S

33
0
2.

58
6
74
.2

2
38

1.
01

32
0.

28
38
.6

5
14

30
.3

7
54

7.
70

36
8.

18
14

9.
75

45
3.

60

y
S
R
S
W
R

60
2
8.

67
3
0
14
.3

3
2
19

2.
24

15
07
.1

7
10

96
.1

2
40

19
.1

1
20

09
.5

6
13

39
.7

0
10

04
.7

8
80

3.
82

y
S
R
S
W
O
R

59
2
5.

32
28

9
3.

7
6

20
66
.9

7
13

77
.9

8
96

4.
59

39
04
.2

8
18

83
.2

4
12

09
.5

6
87

2.
24

67
0.

62

y
S
T
R

18
4
2.

24
5
6
1.

1
4

42
4.

11
24

0.
45

13
0.

71
N

/A
N

/A
N

/A
N

/A
N

/A

y
Y
E
C

14
8
0.

44
3
9
7.

0
3

12
6.

27
19

4.
71

26
.6

6
N

/A
N

/A
N

/A
N

/A
N

/A

y
C
E
S
S

6
6.

20
1
95

7.
0
5

15
4.

55
54

0.
03

23
.4

3
N

/A
N

/A
N

/A
N

/A
N

/A

y
B
S
S

13
5
1.

92
5
0
6.

2
7

49
3.

61
13

0.
78

42
.0

3
N

/A
N

/A
N

/A
N

/A
N

/A

y
M
S
S

14
4
6.

73
4
8
1.

1
3

48
9.

71
14

8.
21

37
.9

3
N

/A
N

/A
N

/A
N

/A
N

/A

y
B
M
S
S

12
8
5.

59
6
03
.5

3
18

7.
93

17
1.

68
30

1.
60

N
/A

N
/A

N
/A

N
/A

N
/A

y
(2

)
M
L
S
S

29
2
0.

36
16

1
2.

8
9

N
/A

32
1
.0

6
17

7.
81

N
/A

N
/A

N
/A

N
/A

N
/A

y
(3

)
M
L
S
S

N
/A

N
/
A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

y
(2

)
M
B
M
S
S

2
92

0.
3
6

62
7.

84
N

/A
28

7
.3

9
87
.7

0
N

/A
N

/A
N

/A
N

/A
N

/A

y
(3

)
M
B
M
S
S

N
/A

N
/
A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

y
P
S
S

44
4
0.

21
22

6
8.

3
1

21
38
.2

5
12

59
.2

2
10

37
.9

1
37

84
.1

7
61

11
.2

2
30

59
.8

4
30

01
.6

3
72

6.
18

y
N
S
S

90
1
4.

36
24

9
9.

37
10

36
.6

8
37

1.
87

76
.4

9
46

02
.0

5
85

3.
25

21
8.

25
18

9.
42

68
.4

5

y
N
P
S
S

50
4
4.

98
11

0
4.

1
4

60
3.

41
37

9.
79

87
.2

1
26

92
.8

1
58

6.
11

22
8.

26
16

9.
56

73
.9

0

y
B
R
S

13
6
4.

48
6
6
6.

3
7

N
/A

31
7
.3

2
22

2.
12

89
9
.0

8
43

3.
67

27
8.

54
20

0.
97

15
4.

43

y
B
M
R
S

13
6
4.

48
6
7
0.

9
8

N
/A

23
8
.9

5
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A



129

From Table 8.2, we note that most of the estimators are approximately subject to the

same amount of error, as expected for P1. The expected error of estimation is relatively

large for yPSS which is owing to the weights (i.e. α1 and α2) being applied to the respective

variance components. Moreover, ySRSWR is slightly subject to more error than the other

estimators, since we are sampling with replacement. It should be noted that if G →

∞, then the corresponding expected MSEs for all the estimators, apart from yPSS and

ySRSWR, will tend to converge. Also, if N →∞, then the expected MSE of ySRSWR will

converge to that of the other estimators.

The conclusions from Table 8.3 are as follows:

(i) If n = 4, then the expected MSEs of yBSS , yMSS , yBMSS , yBRS and yBMRS are

the smallest and are thus preferred. We further note that yY EC is slightly subject

to more error, while yCESS is approximately subject to twice as much error, when

compared to these estimators. This is expected, since yCESS does not completely

remove the linear trend component (i.e. k is even), unlike the favourable estimators,

and yY EC eliminates the linear trend component while increasing the expected error

variance component.

(ii) If n = 5, then the expected MSE of yY EC is the smallest. Just as in the case for

n = 4, we do not obtain a removal of the linear trend component for estimator

yCESS , resulting in yCESS being roughly prone to twice as much error, when related

to yY EC . Furthermore, since n is odd, the linear trend component is not entirely

eliminated when conducting either BSS, MSS or BMSS, thus contributing to the

corresponding estimators being susceptible to approximately 10 times as much error,

when compared to yY EC .

(iii) The explanation for the case of n = 8 and n = 4 is similar, with the only difference

being that k is now odd for the former case. As a result, yCESS completely removes

the linear trend component and is thus approximately prone to the same amount

of minimum error as yBSS , yMSS , yBMSS , yBRS and yBMRS . Furthermore, the

expected MSE of y
(2)
MBMSS is approximately equivalent to the preferred estimators,

since MBMSS involves the selection of two balanced modified systematic samples of

size n = 4 and this is optimal, i.e. n/2m is an even integer.

(iv) For the case where n = 15, we obtain related results to the situation when n =

5; however, the expected MSE of yY EC , relative to that of either yBSS , yMSS or
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yBMSS , is approximately 7.5 times smaller, when compared to the case when n = 5.

Moreover, the expected MSE of yY EC , relative to that of yCESS , is approximately

2.5 times larger than is the case when n=5.

(v) If n = 30, then estimators yY EC , yBSS , yMSS and yBRS are advantageous over the

other estimators. As expected, this is the only case where yBMSS is not subject to

the same amount of error as that of yBSS and yMSS , i.e. n/2 = 15 is an odd integer.

Moreover, the expected MSE of yCESS is roughly 11 times larger, than that of the

favourable estimators.

(vi) All the other estimators, which were not mentioned in (i) to (v), are heavily sus-

ceptible to error. The expected MSE of ySTR (which is the smallest of these least

preferable estimators) gets closer to the expected MSEs of the favourable estimators

as n increases, however, there is still a great difference when n = 30.

(vii) For the situation when k = N/n is not an integer, there is no design which offers

good results, apart from BRS, which is only applicable when n = 14 is even.

For P3, we note that σ2 u 50, which follows since the corresponding sin curve is such

that sin(π/2) = 1, sin(π) = 0, sin(3π/2) = −1, sin(2π) = 0, sin(5π/4) = 1, ..., resulting

in y1 u 10, y2 u 0, y3 u −10, y4 u 0, y5 u 10, ... and Y u 0, i.e. the population

size is divisible by the period = 4. Accordingly, by examining Table 8.4, we conclude the

following:

(i) If k is an odd multiple of half the period, then the most preferable designs are LSS,

CSS, CESS, MSS and BMSS. The expected MSE of yBSS is given by σ2/2 u 25,

since BSS reduces to the selection of two population units with different variate

values. We further note the relationship between the multiple-start designs to that

of the corresponding single-start designs. Consequently, if k = 10, then y
(3)
MLSS

and y
(3)
MBMSS are comprised of three linear systematic samples and three balanced

modified systematic samples, each of size n = 4, respectively. This sample size

corresponds to optimal cases for LSS and BMSS and thus y
(3)
MLSS and y

(3)
MBMSS are

both favourable for this situation.

(ii) If k is an integral multiple of the period, then the most advantageous design is CESS.

For this situation, LSS reduces to a simple random sample of size one, resulting in

the expected MSEs of yLSS , yCSS and yY EC , all being approximately equivalent to
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σ2. Moreover, the explanation for the expected MSE of yBSS in (i) also applies here,

as well as for yMSS . The expected MSE of yBMSS is equivalent to that of yBSS and

yMSS when k = 8 and slightly greater than that of yBSS and yMSS when k = 12

and 20 (i.e. n/2 is an odd integer).

(iii) The expected MSEs of yBRS and yBMRS are not approximately equal to zero, i.e.

by referring to (7.33), we note that σ2 u 50 6= (yi − y4k+1−i)
2/4 u 25.

From Table 8.5, we conclude that estimators yLSS , yCSS , ySTR, yCESS , yBSS , yMSS ,

yBMSS , yBRS and yBMRS are all approximately subject to the same amount of minimum

error, when comparing all the estimators. The explanation of the optimality of MBMSS,

given for point (i) above, also applies here. We further note that MBMSS is always

favoured over MLSS, except for the case when n = 4, which results in both designs being

equivalent, i.e. n/m = 2.

If k is an integer, then by referring to Table 8.6, we conclude that the most preferable

sampling designs are LSS, CSS, CESS and MSS, under P5. Between these designs we can

further deduce that yCESS is susceptible to the least amount of error for most cases. For

the case where n = 20, the most advantageous designs are LSS and CSS. Moreover, yY EC

is marginally subject to more error than that of yCESS , for the case where n = 40. If

k is not an integer, then yCSS is prone to the least amount of error for most cases. In

addition, as n increases, there is a greater reduction in the expected MSEs of yNSS and

yNPSS , when compared to all the other applicable estimators. More notably, the case

n = 21 results in a minimum expected MSE of estimator yNSS , while estimator yNPSS is

prone to the least amount of error if n = 35.

From Table 8.7, we note that yCESS is on average susceptible to the least amount of

error, for the case where k is an integer. When compared to all the other estimators, the

expected MSE of yMSS is a minimum when n = 4, while the expected MSEs of yY EC and

yBMSS are minimum when n = 22. If k is not an integer, then CSS and NPSS are on

average the most advantageous designs. For the rearranged population, given by Table 8.8,

we see that the estimators related to CESS and YEC on average perform the best when

k is an integer, while the most favourable designs, for the case where k is not an integer,

are on average CSS and BRS. The performances of estimators yNSS and yNPSS are very

poor for small sample sizes and improve drastically as the sample size increases. More

notably, if n = 18 or n = 30, then the corresponding estimators are subject to minimum
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error, when compared to the other estimators. A major feature, when comparing Table

8.7 and Table 8.8, is the fact that in most instances, we obtain a reduction in the expected

MSE of the estimators, when rearranging the population. In addition, the expected MSEs

related to the SRS designs are constant, i.e. there is no efficiency gain by rearranging

the population, when conducting SRS. Notable increases in the expected MSEs, when

rearranging the population, are for yCESS (n = 8, 11 and 16), yBSS (n = 16), yMSS

(n = 8), yY EC (n = 16), yBMSS (n = 22) and yCSS (n = 18 and 30). We may thus

conclude that by rearranging the population according to a correlated auxiliary variable,

we most likely will obtain a reduction in error, when estimating the population mean.

Further conclusions, which can be drawn from Tables 8.3 to 8.8, are noted as follows:

(i) If k is an integer, then yLSS is subject to the same amount of error as is association

with yCSS , for all populations.

(ii) The LSS design is usually preferred over the SRS designs, except when k is an integral

multiple of the period for P3 and when n = 8 for P6A. Furthermore, if n = 4, then

ySRSWOR is prone to less error, when compared to yLSS , under P6A.

(iii) The LSS design offers a strict improvement over the STR design for P3 (when k is an

odd multiple of half the period), P5, P6A (when n = 11, 16 and 22) and P6B (when

n = 11 and 22). Approximate equivalence in the expected MSEs of yLSS and ySTR,

occur for P4. The STR design is favoured over LSS for all other populations/cases.

(iv) Under P2, the sample means for the designs from Chapter 5 are susceptible to less

error, when compared to that for LSS, SRSWR, SRSWOR and STR, except for the

case when n = 30, which results in STR being advantageous over CESS. Moreover,

we generally obtain the same result for P6B.

(v) A key feature for the MLSS design is that the expected MSE of y
(m)
MLSS , for a sample

of size n, is approximately less than m times smaller than the expected MSE of

yLSS , for a sample of size n/m. Hence, if LSS is a favourable design for a sample of

size n/m, then we note that MLSS is a preferable design for a sample of size n. A

similar relation applies to MBMSS and BMSS.

(vi) Estimator yPSS performs poorly for all populations and in most cases offers no

advantage, in terms of a lower expected MSE, over the other estimators.
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(vii) The NSS and NPSS designs offer improvement over SRS when n is not small. The

rate of reduction in the expected MSEs of yNSS and yNPSS are greater than that of

ySRSWR and ySRSWOR, as n increases. For most populations, estimators yNSS and

yNPSS are usually subject to more error than estimator yLSS , while the opposite

holds true for P3, when k is an integral multiple of the period.

(viii) Estimators yBRS and yBMRS are approximately prone to the same amount of error in

most cases. Furthermore, the associated designs are usually preferred over the SRS

designs for most populations. If k is an integral multiple of the period, then estimator

yBRS is susceptible to less error, when compared to yLSS , ySRSWR and ySTR, for P3,

while estimator yBRS is marginally subject to more error than ySRSWR. Moreover,

if k is an odd multiple of half the period, then the balanced random designs are

preferred to STR and SRSWR, but are less favourable when compared to LSS and

SRSWOR, under P3. For P5, the LSS and STR designs are advantageous over the

balanced random sampling designs.

Table 8.9 represents the Monte Carlo simulations for the expected CLs associated with

the sample means, using the corresponding sampling designs for the populations under

consideration. The artificial populations are for a fixed sample of size n = 12, while the

natural population is for a fixed sample of size n = 16. We omit the CESS, since there is

no randomization involved with this design. By noting that the nominal rate is 95%, we

refer to Table 8.9 and conclude the following:

(i) All estimators are able to produce expected CLs that are slightly above, or approx-

imately equivalent to the nominal rate, under P1 and P5.

(ii) For P2, all estimators generate an expected CL that is above the nominal rate, where

the associated CIs for estimators yLSS and yCSS will always contain Y .

(iii) Under P3, estimators y
(2)
MBMSS and yNSS will almost surely exhibit CIs that will con-

tain Y , whereas the CIs associated with yBSS will always contain Y . The expected

CL for estimator y
(2)
MLSS is approximately 5 percentage points below the nominal

rate. In addition, the expected CL for estimators ySRSWR, ySTR, yY EC and yNPSS

are all slightly below the nominal rate, while all other estimators generate expected

CLs above the nominal rate.
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Table 8.9: Expected Confidence Levels Constructed Using the Estimators Associated with

The Sampling Designs

Estimator
Population

P1 P2 P3 P4 P5 P6A P6B

yLSS 95.89 100 95.74 95.60 96.59 90.92 100

yCSS 95.89 100 95.71 95.62 96.58 90.89 100

ySRSWR 95.01 95.06 94.91 95.13 95.06 95.05 95.07

ySRSWOR 95.04 95.08 95.07 95.06 95.02 95.03 95.09

ySTR 94.99 95.09 94.87 95.05 95.08 95.09 95.01

yY EC 96.04 95.96 94.36 97.00 96.53 100 100

yBSS 95.73 96.13 100 95.98 96.18 100 90.84

yMSS 95.94 95.95 95.95 95.87 96.48 90.90 100

yBMSS 95.86 96.00 96.20 96.17 96.54 100 100

y
(2)
MLSS 95.34 96.00 89.81 95.86 95.48 98.69 95.67

y
(3)
MLSS 95.21 95.33 95.21 95.32 95.28 N/A N/A

y
(2)
MBMSS 95.34 95.97 99.67 95.33 95.44 96.53 96.09

y
(3)
MBMSS 95.23 95.21 95.22 95.21 95.30 N/A N/A

yPSS 95.07 96.06 97.50 95.85 95.47 97.23 97.43

yNSS 95.43 96.54 99.78 96.25 95.93 96.60 96.02

yNPSS 95.36 95.79 94.76 94.03 95.54 38.45 34.84

yBRS 95.11 95.09 97.25 95.07 95.07 95.10 94.88

yBMRS 95.13 95.10 97.13 95.08 95.13 95.15 94.99

(iv) The expected CLs for estimators yY EC , yBMSS and yNSS are marginally advanta-

geous over the other estimators for P4. Apart from estimator yNPSS , which produces

an expected CL of approximately 1 percentage point below the nominal rate, all other

estimators generate expected CLs which are slightly above the nominal rate, for P4.

(v) Under P6A, the corresponding CIs for estimators yY EC , yBSS , and yBMSS will

always contain Y . In addition, the expected CL of estimator y
(2)
MLSS is well above

the nominal rate, while the expected CLs associated with estimators yLSS , yCSS and

yMSS are roughly 4 percentage points below the nominal rate. All other estimators,

apart from yNPSS , are able to generate expected CLs above the nominal rate.
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(vi) The CIs corresponding to estimators yLSS , yCSS , yY EC , yMSS and yBMSS will

always contain Y , under P6B. Furthermore, the expected CL of estimator yBSS is

roughly 4 percentage points below the nominal rate. All other estimators, apart

from yNPSS , are able to generate expected CLs that are approximately close to the

nominal rate.

(vii) For the natural population, given by P6A and P6B, estimator yNPSS performs very

poorly in providing a CI which contains Y .

(viii) The expected CLs associated with estimators yY EC and yBMSS , are on average bet-

ter than that of all the other estimators, when considering all population structures.

A similar simulation study for the eight variance estimators in Section 6.1 can then be

obtained by using the expected bias of the estimators as a further comparative measure.

An example of such a study is given by Wolter (2007). Consequently, all the theory

discussed in Section 6.1 is supported by the numerical results provided by Wolter.

We next provide a comprehensive report on all the work coved in this thesis as well as

some remarks on future studies for the topic on hand.
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Chapter 9

CONCLUSIONS

The conventional systematic sampling design, also known as LSS, is often used for large

scale sampling (Arnab & North 2012), since it is simple to apply and further ensures a

more even spread of the sample over the listed population elements, as opposed to the case

when conducting SRSWR, SRSWOR or STR. However, there are shortcomings within the

systematic sampling context and a recap of the key disadvantages discussed earlier is as

follows:

(i) If N is not a multiple of n, then LSS will either result in variable sample sizes or

constant sample sizes that are greater than n. Consequently, the former situation

results in biased estimates of population parameters, while the latter situation is

undesired since sample sizes are usually fixed in advance.

(ii) LSS is susceptible to periodic distortions, since the process of selection can negatively

interact with the population structure where periodic characteristics are evident.

(iii) LSS is not the most preferred probability sampling design for populations that ex-

hibit linear trend.

(iv) Certain pairs of population units will have a zero probability of being selected in the

sample, which results in it being impossible to obtain an unbiased estimate of the

sampling variance, from a single sample.

In this thesis, we provided solutions to the above-mentioned shortcomings and as a result,

we generally introduced some modified systematic sampling designs. The designs that

aided us in solving problem (i) are the FIM and CSS. For problem (iii), we presented four

variations of systematic sampling (i.e. YEC, CESS, BSS, MSS) as well as a new proposed
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design known as BMSS. To tackle problem (iv), we first considered the application of

LSS and subsequently proposed eight estimators of the sampling variance, after which

we made assumptions on the population structure, so as to find the estimator with the

least amount of bias, under each underlying population structure. We then provided some

modified systematic sampling designs to solve problem (iv), given by MLSS, PSS, NSS,

NPSS and BRS, as well as two new proposed designs given by MBMSS and BMRS. The

notion of supplementing a systematic sample with independent sample(s) was suggested

for MLSS, MBMSS and PSS, while the supplementation of a systematic sample with a

dependent sample was suggested for NSS, NPSS, BRS and BMRS. We then numerically

tested the designs against each other, under various population structures, so as to find

the best design for each underlying population structure, i.e. we numerically provided a

solution to problem (ii).

9.1 Conclusions

The significant results obtained in this thesis are summarized as follows:

(i) The FIM and CSS are advantageous over LSS when k is not an integer, since the

former designs result in samples of fixed sample size n. We are thus able to obtain

unbiased estimates of the population parameters for the required sample size, when

applying the former designs, whereas this is not possible for LSS. In addition, the

FIM is more often than not equivalent to CSS, while discrepancies between the two

designs occur when 2N/n is an integer or when lcm(N , k)< nk, which are rare in

practice. Moreover, the FIM and CSS reduce to LSS when k is an integer. The

usual CSS design, which uses a sampling interval of INT(N/n+ 1/2), may result in

sampling units that coincide, so that we thus suggested using the sampling interval

given in (2.6) to obtain distinct sampling units, while ensuring an even spread of the

sample over the population.

(ii) When conducting LSS, maximum precision of estimates is obtained when the pop-

ulation units that lie within the same systematic sample vary as much as possible,

i.e. the variance within the possible systematic samples is high, which consequently

is equivalent to saying that the difference between the possible systematic samples

that could be selected is as low as possible. Consequently, the sampling variance is

dependent on the arrangement of the population units from which the systematic
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samples are to be drawn. Evidence of this is given in (3.8), where Var(yLSS) varies

consistently with the ICC, which in turn largely depends on the ordering of popula-

tion units and the amount of correlation between successive population units. This is

in direct contrast to the SRS designs, where the arrangement of the population units

has no effect on the corresponding sampling variances. A summary on the efficiency

of LSS, when compared to SRSWR, SRSWOR and STR, is given as follows:

(a) For randomly ordered populations: LSS is expected to be equivalent to both

SRSWOR and STR, and more efficient than SRSWR.

(b) For populations that exhibit linear trend: LSS is more efficient than both SR-

SWR and SRSWOR, but less efficient than STR.

(c) For periodic populations: If k is an odd multiple of half the period, then

Var(yLSS) u 0 and thus LSS is more efficient than SRSWR, SRSWOR and

STR. On the other hand, if k is an integral multiple of the period, then

Var(yLSS) = σ2 and thus LSS is less efficient than SRSWR, SRSWOR and

STR.

(d) For auto-correlated populations: In the case of a positive convex decreasing

correlogram, LSS is more efficient than SRSWR, SRSWOR and STR. This

assumption applies for the cases where the correlograms are linear, exponential

and hyperbolic tangent, as well as for any process which is autoregressive and

has real roots, with respect to the characteristic equation.

(e) For stratified populations: stratified systematic sampling is more often than

not, more efficient than STR, for the case where strata are considered to be

large and more than one unit is to be drawn from each stratum for the sample.

(iii) In Chapter 5, we considered variations of the LSS design that are optimal for pop-

ulations that exhibit linear trend. Under the assumption that k is an integer, the

corresponding designs are summarized as follows:

(a) The YEC estimator inherits the LSS design, with the only difference being that

an estimate of Y is obtained by applying appropriate weights to the first and

last sampling units. As a result, we obtain a complete removal of the linear

trend component; however, the unevenly weighted sampling units result in a

larger error variance component. Consequently, this estimator is slightly biased

in practice. Nevertheless, preference is given to this estimator over yLSS .
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(b) CESS involves the selection of the centrally located linear systematic sample

and there is thus no randomization required. Consequently, some population

units have no chance of being selected for the sample when applying CESS, so

that yCESS is prone to exhibit an element of bias. A further disadvantage of

this estimation procedure is that it is impossible to provide an estimate of the

error associated with yCESS , when estimating Y .

(c) BSS entails reversing the order, with respect to the population unit numbers, of

every alternative set of k population units, before applying LSS on this balanced

arrangement. Estimator yBSS is consequently design unbiased.

(d) MSS divides the population into two groups and then reverses the population

units in the second group, with respect to their population unit numbers, i.e.

If n is even, then we reverse the order of the last n/2 sets of k populations and

if n is odd, then we reverse the order of the last (n− 1)/2 sets of k population

units. LSS is then applied to this modified arrangement. Estimator yMSS is

consequently design unbiased.

(e) BMSS involves the application of MSS on a balanced arrangement, i.e. we

apply a balanced arrangement and then apply a modified arrangement, before

conducting LSS on this balanced modified arrangement. Estimator yBMSS is

consequently design unbiased. BMSS reduces to LSS if n = 2.

For populations that exhibit a rough linear trend, estimators yY EC and yCESS are

generally expected to be subject to less error, when compared to estimators yLSS ,

ySRSWR, ySRSWOR and ySTR. Moreover, estimators yBSS and yMSS are always

expected to be subject to less error than estimators yLSS , ySRSWR, ySRSWOR and

ySTR, for n ≥ 2. On the other hand, estimator yBMSS is prone to less error when

compared to the latter estimators if n > 2. When comparing these designs amongst

each other, we provide the following recommendations for the most appropriate

design(s), under the assumption of linear trend:

(a) if k is even and n/2 is an even integer, then it is best to use BSS, MSS, or

BMSS;

(b) if k is even and n/2 is an odd integer, then it is best to use BSS or MSS;

(c) if k is even and n is odd, then it is best to use YEC;
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(d) if k is odd and n/2 is an even integer, then it is best to use CESS, BSS, MSS,

or BMSS;

(e) if k is odd and n/2 is an odd integer, then it is best to use CESS, BSS or MSS;

(f) if k is odd and n is odd, then it is best to use CESS.

(iv) If we maintain the usual systematic sampling design, then we need to construct

estimators, which are based on certain assumptions, to estimate Var(yLSS). These

estimators will be biased if the population exhibits some structure, other than ran-

dom. Accordingly, we constructed eight estimators (refer to estimators v1 to v8

in Section 6.1.1) and tested them on various population structures. The following

recommendations are given for each population structure:

(a) For randomly ordered populations: estimators v1 to v7 are unbiased and are

thus preferred, while estimator v8 is expected to be slightly biased.

(b) For populations that exhibit linear trend: Estimators v2 and v3 are least bi-

ased and thus favourable. Estimators v4, v5 and v6 remove the linear trend

component and are thus not desirable since Var(yLSS) is a function of linear

trend. However, these estimators are unbiased estimators of Var
[
yBSS(n even)

]
,

Var
[
yMSS(n even)

]
and Var

[
yBMSS(n/2 even integer)

]
, and are slightly biased es-

timators of Var(yY EC). It is impossible to obtain an estimate for the error

associated with yCESS , when estimating Y .

(c) For periodic populations: all estimators are heavily biased and we thus cannot

provide an adequate estimate of Var(yLSS).

(d) For auto-correlated populations: Estimator v8 is most likely to exhibit the

smallest absolute bias and thus provides a good estimate of Var(yLSS). Fur-

thermore, estimator v8 will likely provide an overestimate of Var(yLSS), while

all other estimators tend to underestimate Var(yLSS).

(e) For stratified populations: Estimators v4, v5 and v6 are the least biased and are

thus most favoured. These estimators tend to eliminate the trend component

in the stratum means and are thus ideal since Var(yLSS) is not a function of

trend. If the trend component is non-linear, then estimator v6 is preferred over

estimators v4 and v5.
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(v) MLSS and MBMSS involve the selection of m linear systematic samples and m

balanced modified systematic samples, respectively. We obtain more efficient results

if the m samples are selected using SRSWOR, as opposed to selecting them using

SRSWR. If LSS is a preferable design for a sample of size n/m, then we note that

MLSS is a favoured design for a sample of size n. The same relationship holds

true for BMSS and MBMSS. Equivalence between MLSS and MBMSS occurs when

n/m = 2, since LSS is equivalent to BMSS when n = 2.

(vi) PSS involves the supplementation of a linear systematic sample with an independent

sample, using SRSWOR. A natural weighted average of the corresponding sample

means provide efficient results, when estimating Y ; however, the associated estimator

of the sampling variance (v11) may assume negative values for this situation. An

unweighted average of the corresponding sample means will always result in v11 ≥ 0;

however, we do not obtain efficient results when estimating Y for this scenario.

We are thus presented with a trade-off, where we can either have v11 that may

assume negative values and an estimate of Y that is subject to less error than that

of ySRSWOR, or v11 ≥ 0 and an estimate of Y that is subject to more error than

ySRSWOR. In Chapter 9, we noted that an unweighted average of the corresponding

sample means results in yPSS being heavily subject to error, when estimating Y .

We thus conclude that PSS is not a desirable design.

(vii) NSS selects a continuous set of population units from the frame, chosen according

to a random start, and supplements these units with a dependent circular system-

atic sample, so that the selected units collectively form the new systematic sample.

Assumptions on the design to produce positive second-order inclusion probabilities

result in a restriction on n. A modified design known as NPSS, randomly selects a

sample space of size a from the frame, before selecting u units within this sample

space, using SRSWOR. These sampling units are then supplemented with a circular

systematic sample of size n−u, which is selected according to the randomly selected

sample space, so that all the selected units collectively form the new partially sys-

tematic sample. Furthermore, NPSS involves a modified selection of the circular

systematic sample, when compared to NSS, where appropriate values of k and u are

chosen to ensure distinct sampling units, as well as an even spread of the sample over

the population. The corresponding choices of u and k, along with the restrictions in
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Theorem 7.6, will not result in any limitations on n and thus NPSS is advantageous

over NSS on this basis.

(viii) BRS first selects n/2 units from the first N/2 population units, using SRSWOR,

before selecting units that occur at an equivalent position at the other end of the

population, i.e. we use a MSS pairing technique. BMRS divides the population

into n/4 groups and then uses the MSS pairing technique within each group, before

selecting two pairs of units for each group, using SRSWOR. BMRS thus reduces to

BRS when n = 4.

(ix) Three important characteristics, when comparing estimators of a specific population

parameter, are given as follows:

(A) the best estimator will exhibit minimum MSE;

(B) the best estimator will exhibit the highest percentage of CIs, which contains

the true population mean;

(C) it must be possible to find an unbiased estimate of the corresponding sampling

variance of the estimator.

Accordingly, by comparing all the designs, we provide the following recommenda-

tions:

(a) For randomly ordered populations: use any design, except SRSWR and PSS.

(b) For populations that exhibit linear trend: If k is an integer, then use either

BRS (if N and n are even), BMRS (if n/2 is an even integer) or MBMSS (if

n/m = 4). If these designs are inapplicable, then use the designs from Chapter

5, according to the recommendations in (iii)((a) to (f)), such that we are able

to satisfy both (A) and (C) if n is even (refer to (iv)(b)). Furthermore, if k is

not an integer, then use NPSS (if n is not small), otherwise, use CSS.

(c) For periodic populations: If mk is an odd multiple of half the period, then

use MBMSS, i.e. MBMSS is preferred over MLSS on the basis of (B). If the

assumptions that correspond to m are not true and k is an odd multiple of half

the period, then use LSS, CSS, CESS, MSS or BMSS, if preference is given to

(A) over (C), alternatively, use NPSS if preference is given to (C) over (A). If

the assumptions that correspond to m are not true and k is an integral multiple
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of the period, then use CESS if preference is given to (A) over (C), otherwise

use NSS if preference is given to (C) over (A).

(d) For auto-correlated populations: If k is an integer, then use CESS if preference

is given to (A) over (C), alternatively, use NSS if preference is given to (C) over

(A). Moreover, if we assume n to be large, then use NPSS if k is not an integer,

otherwise use CSS if and only if preference is given to (A) over (C).

(e) For stratified populations: use STR, MBMSS (if n/2m is an even integer), BRS

(if N and n are even) or BMRS (if n/2 is an even integer).

(x) If we arrange a population in ascending/descending order according to an auxiliary

variable, then we obtain a population that approximately exhibits linear trend, where

the stronger the degree of correlation between the auxiliary variable and the variable

of interest, results in the rearranged population exhibiting a stronger degree of linear

trend. The designs in Chapter 5, as well as MBMSS, BRS and BMRS are then

optimal for this situation.

Finally, we note in passing that all the systematic sampling designs and variance

estimators require us to have knowledge of the population structure, so that we may

apply the most suitable design and/or variance estimator for the corresponding population

structure. In practice we are not given the population structure and thus, the onus is on the

survey statistician to gather as much information about the population as possible, prior

to sampling, so as to estimate the population structure. This may involve the building of

appropriate models, where we can then apply the most suitable design and/or variance

estimator, as presented in this thesis, according to the estimated population structure.

9.2 Future Studies

This thesis primarily focused on solving problems (ii) to (iv). For large scale sampling, we

are often presented with the scenario where N is not a multiple of n, and thus problem

(i) often occurs in practical situations. For our future studies, we will thus provide: (a)

further designs to solve problem (i); (b) modifications to some of the designs presented in

this thesis; and (c) an extension to the BMRS design. A brief overview of such studies is

given as follows:
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(i) Balanced modified circular systematic sampling :

This proposed design uses CSS on a balanced modified arrangement. We first divide

the population into n+ 1 groups, such that the first n groups contain k population

units each and the last group is of size c, i.e. N = nk+c, 0 < c < n. We then reverse

the order, with respect to the population unit numbers, of every alternative group.

Thereafter, we reverse the order of the last n/2 groups of units if n is even, otherwise

we reverse the order of the last (n + 1)/2 groups of units when n is odd. We then

apply CSS, with our proposed sampling interval in (2.6), to this balanced modified

arrangement, so as to obtain the balanced modified circular systematic sample.

(ii) Remainder balanced modified systematic sampling :

If k = N/n is not an integer, then the population size can be expressed as N =

nk + c = (n− c)k + c(k + 1), where 0 < c < n. We then divide the population into

two groups, where the first group contains the first (n − c)k population units and

the second group contains the last c(k + 1) units. Now, select (n − c) units with

a sampling interval of k in the first group, using BMSS. Also, select c units with a

sampling interval of (k + 1) in the second group, using BMSS. The selected units

then collectively form the remainder balanced modified systematic sample.

(iii) Multiple-start remainder balanced modified systematic sampling :

If there exists integers p and q, such that (n − c)/p and c/q are integers, then we

select p balanced modified systematic samples of size (n− c)/p from the first group

and supplement this with q balanced modified systematic samples of size c/q in the

second group, using the groups and sampling intervals in (ii). This design results in

an unbiased estimate of the associated sampling variance, since every possible pair

of population units will have a chance of being selected for the sample.

(iv) New partially balanced modified systematic sampling :

By referring to Section 7.2.1, we select the n− u sampling units for the sample S′′t ,

using balanced modified circular systematic sampling, as discussed in (i).

(v) Further methodologies for BMRS are given as follows:

(a) If n/2 is an odd integer: We first group the first set of 2k population units

with the last set of 2k population units, the second set of 2k population units

with the second last set of 2k population units, and so forth, such that the first
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(n− 2)/4 groups each contain 4k population units and the last group contains

2k population units. Apply BMRS on the first (n−2)/4 groups to select (n−2)

sampling units and then supplement these sampling units with two units from

the last group, which are selected using SRSWOR. It should be noted that if

n = 2, then BMRS reduces to MSS.

(b) If n = 3: For this situation, we view the entire population as a group. We then

select two units using MSS and supplement these units by randomly selecting

a unit from the remaining N − 2 population units.

(c) If n 6= 3 and (n+ 1)/2 is an even integer: We use the grouping method defined

in (a), such that the first (n − 3)/4 groups each contain 4k population units

and the last group contains 3k population units. We then apply BMRS on the

first (n−3)/4 groups to select (n−3) sampling units and supplement this with

three units from the last group, according to (b).

(d) If (n+ 1)/2 is an odd integer: We use the grouping method defined in (a), such

that the first (n − 5)/4 groups each contain 4k population units and the last

group contains 5k population units. Next, apply BMRS on the first (n− 5)/4

groups to select (n−5) sampling units. We then use the MSS pairing technique

for the last group, before randomly selecting two pairs of units using SRSWOR

and then supplement this with a randomly selected unit from the remaining

5k − 4 population units.

(vii) Balanced modified systematic sampling with end corrections (BMSSEC):

By applying weights to the first and last sampling units of yBMSS when n/2 is not

an even integer, we obtain an estimator that completely removes the linear trend

component. The corresponding estimator will exhibit a lower MSE, when compared

to yBMSS for this scenario. This estimator is given in the next theorem.

Theorem 9.1: The BMSSEC estimator of Y with random start i, for i ∈ {1, ..., k}, is

given as

yBMSSEC = yBMSS +
[(xn + x1)−K]

n (xn − x1)
(yx1 − yxn) , (9.1)

where K = n(N + 1)/2 −
∑n−1

j=2 xj and x1, ..., xn are the population unit numbers of the

sampling units, when conducting BMSS, which are arranged in ascending order, e.g. if the

balanced modified systematic sample is y7, y2 and y12 then x1 = 2, x2 = 7 and x3 = 12.
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Proof : An estimate of Y with random start i, for i ∈ {1, ..., k}, is given as

yBMSSEC =
1

n

ψ1yx1 +

(n−1)∑
j=2

yxj + ψ2yxn

 , (9.2)

where ψ1 and ψ2 are the weights applied to the first and the last sampling units, respec-

tively. By substituting (4.5) into (9.2) and then equating this result to (4.6), we obtain

yBMSSEC =
1

n

ψ1 (a+ bx1) +

(n−1)∑
j=2

(a+ bxj) + ψ2 (a+ bxn)

 = a+
b(N + 1)

2
. (9.3)

By equating the coefficients of a in (9.3), it follows that

ψ1 = 2− ψ2. (9.4)

Similarly, by equating the coefficients of b in (9.3), we obtain

1

n

ψ1x1 +

(n−1)∑
j=2

xj + ψ2xn

 =
N + 1

2
. (9.5)

Substituting (9.4) into (9.5) results in

2

2x1 − ψ2x1 +

(n−1)∑
j=2

xj + ψ2xn

 = n (N + 1) ,

which simplifies to

ψ2 =
K − 2x1

xn − x1
. (9.6)

The weight applied to the first sampling unit is thus obtained by substituting (9.6) into

(9.4), such that

ψ1 =
2xn −K
xn − x1

. (9.7)

We thus conclude the proof by substituting (9.6) and (9.7) into (9.2), i.e.

yBMSSEC =
1

n

(2xn −K)

(xn − x1)
yx1 +

n−1∑
j=2

yxj +
(K − 2x1)

(xn − x1)
yxn


= yBMSS +

1

n

[
(2xn −K)

(xn − x1)
yx1 +

(K − 2x1)

(xn − x1)
yxn − yx1 − yxn

]
= yBMSS +

1

n

[
{2xn −K − (xn − x1)}

(xn − x1)
yx1 +

{K − 2x1 − (xn − x1)}
(xn − x1)

yxn

]
= yBMSS +

{(xn + x1)−K}
n (xn − x1)

(yx1 − yxn) ,

where yx1 +
∑n−2

j=1 yxj + yxn =
∑n

j=1 yxj = nyBMSS .
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In closing, we note that this thesis specifically dealt with systematic sampling with an

equal probability of selection. However, it may be advantageous to conduct systematic

sampling with unequal probabilities, i.e. to consider the situation where each population

unit has an auxiliary variable of size attached to it. The systematic sample would then

be selected in a way that ensures that the probability of selection is positively correlated

with the size measures of the items. This is commonly referred to as pps (probability

proportionate to size) systematic sampling. Moreover, we only considered sampling in one-

dimension. Systematic sampling is often used for spatial sampling. The usual systematic

sampling problems, which were presented in this thesis, also applies to these fields, so

that we may translate the designs and theory discussed in this thesis to pps systematic

sampling and spatial systematic sampling, so as to find the suitable solutions for the

problems within these fields.



148

Bibliography

Arnab, R. & North, D. (2012), ‘An appraisal of household income and expenditure survey

design’, Pakistan Journal of Statistics 28(4), 423–436.

Bellhouse, D. R. (1984), ‘On the choice of the sampling interval in circular systematic
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