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ABSTRACT 

 
The purpose of the present study is to obtain insight into the formation, behaviour and 

magnitude of welding-induced residual stresses and distortions resulting from welding nozzles 

onto cylindrical pressure vessels. A hybrid methodology that comprises numerical analysis, 

experimental measurements and empirical calculations is used in the present study. The welding 

process induces a high thermal gradient on the material due to non-uniform temperature 

distribution; thereby causing the portion of the material that is exposed to high temperatures to 

expand. However, the relatively cooler material portion that is away from the weld pool resists 

such expansion, thereby subjecting the structure to stresses and distortions around the fusion 

zone (FZ) and the heat-affected zone (HAZ).  

Over the last two decades a number of studies have been done in an effort to predict the effect 

of welding-induced residual stresses on the integrity of welded structures. However, to this end, 

such studies have focussed on analysing residual stresses on bead-on-plate, plate-to-plate and 

[to a less extent] on pipe-to-pipe weld joints. Fewer studies have looked at nozzle-cylinder 

joints of pressure vessels as is the case in this study. The second chapter gives a detailed review 

of applicable literature. The constitutive model described in the third chapter includes a two-

phase sequentially-coupled thermo-mechanical analysis, which incorporates metallurgical 

effects. The non-linear transient problem is solved using an axisymmetric 2D model with 

‘element birth’ technique, developed on ABAQUS. The first phase comprises the thermal 

analysis based on Goldak’s moving heat source model that is used to determine temperature 

histories. The second phase is a sequel stress/strain analysis wherein the temperature fields are 

used as input loads. 

The results discussed in chapters three and four show that there is a high concentration of 

residual stresses close to the weld centre-line, and these die down as distance away from centre-

line increases. It is also shown that the inside surface is under tensile stresses, while the outer 

surface is under compressive stress, whose magnitude approaches yield strength of the material. 

Axial deflections of up to 0.384mm and radial shrinkage of 0.0237mm are observed. Distortion 

decreases as distance away from weld centre-line increases. Minimum axial shrinkage, which is 

close to zero, is observed at the restrained end. The analytical results show adequate 

corroboration and agreement with the experimental measurements. A number of mitigation 

techniques are suggested in order to alleviate the impact of residual stress and distortions on 

fatigue performance of welded structures. 
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Chapter 1 

Introduction 
 

Pressure vessels comprise critical plant equipment within industrial operations. The fact that the 

vessel operates under pressure, and normally operates at high temperatures, necessitates that 

care is taken to ensure safety of humans operating it and the environment within which it 

operates. It is important therefore to exercise diligence when designing, fabricating and / or 

repairing pressure vessels, as any level of deviation may lead to catastrophic consequences. 

This study examines the residual stress distribution and distortions in a pressure vessel weld 

fusion zone [FZ], Heat Affected Zone [HAZ] and surrounding areas, arising as a result of 

welding nozzles onto pressure vessels. 

1.1. Layout of the Report 

The first chapter of this dissertation provides the background information to development and 

behaviour of residual stresses and distortions, the different types of residual stresses and 

distortions, the requirements and scope of the study, the research questions, and the envisaged 

methodological approach. The second chapter presents the overview of related literature, with 

specific focus on their relevance to the present study. The third chapter gives an account of how 

the Finite Element [FE] Model is formulated using the ABAQUS code, and how the developed 

model is used to solve the sequentially coupled thermo-mechanical problem, which is examined 

in the present study. The fourth chapter discusses the empirical and experimental methods used 

to verify results from the Finite Element Analysis [FEA] model discussed in the preceding 

chapter. The discussion of the results of numerical, empirical and experimental analyses is 

given in the fifth chapter; and furthermore this chapter gives the conclusions and 

recommendations of the study. 

 

1.2. What is Residual Stress? 

 

The Residual Stress Organisation defines residual stresses as ‘those stresses that exist within a 

body in the absence of external loading or thermal gradients’. According to Sterjovski (2003) 

residual stresses are those that  remain in a structure after the removal of any externally-induced 
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loading. There is number of reasons why residual stresses would develop in metal structures, 

and these include manufacturing processes such as rolling, forging, casting and welding. During 

the welding process, thermal strains that occur as a result of heating and cooling cycles of the 

weld metal and surrounding areas, are the main course of residual stresses.  

Karlsson (2005) states that residual stresses are in a balanced state within the component or 

structure, such that some parts of the structure experiences compressive stresses while others 

are under tensile stress. The maximum value that tensile residual stresses can attain is equal to 

yield stress of the material. Residual stresses may be beneficial or harmful to the structure 

depending on their nature and magnitude. Compressive residual stresses have been shown to 

have favourable effects in that they increase fatigue strength and reduce stress corrosion 

cracking and brittle fracture, amongst others. For this reason the compressive stresses may be 

deliberately introduced after the manufacturing process through shot-peening, autofrettaging, 

etc. [Siddique, 2005]. 

Pilipenko (2001) also states that stresses experienced by the body can either be externally 

stimulated [i.e. macro stresses] or can exist internally within the body without influence of an 

external force [i.e. micro stresses]. Residual stresses fall under the category of micro stresses. 

Internal stresses are in a self-equilibrium state. This implies that, notwithstanding the stress 

distribution in the body, the stresses in any cross-section are balanced by the sum of forces and 

the sum of moments of the forces. 

 

Sterjovski (2003) observes that residual stresses can be classified into two groups according to 

their causes. The first category is that of residual stresses produced by structural mismatch, e.g. 

materials of different lengths forcibly welded together. The second category belongs to those 

residual stresses produced as a result of non-linear distribution of non-elastic mechanical and 

thermal strains. The two types of residual stresses normally found in pressure vessels are 

autofrettage-induced and welding-induced residual stresses. Both these types of residual stress 

fall under the second category stipulated above. Appendix A below provides more detail on the 

classification of residual stresses. 

 

1.2.1 Autofrettage-induced Residual Stress 

The concept of autofrettaging of pressure vessels is well-captured in Lee and Koh (2002) where 

the authors explain that in thick-walled pressure vessels fatigue cracks usually originate from 

the internal vessel surface and quickly grow into a fully-fledged fracture. The reason for such 

behaviour is that a pressurised thick-walled vessel is exposed to the largest tensile hoop stresses 

at the inside surface. In order to prevent early failure of a pressure vessel due to such tensile 

hoop stress, an autofrettage process that produces favourable compressive hoop stresses at the 
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inside diameter is normally employed. The induced compressive stresses counteract the tensile 

stresses caused by the internal pressure, thereby increasing the elastic strength of the vessel 

[Lee and Koh, 2002]. The dichotomy of this however is that the force equilibrium in the 

pressure vessel ensures that tensile hoop stresses are produced close to the outer surface of the 

vessel. Therefore an optimal situation is where the favourable impact of compressive hoop 

stresses is maximised, while the unfavourable impact of tensile stresses is minimised. 

Maleki et al (2010) states that hydraulic autofrettage is ‘a process whereby a cylindrical or 

spherical pressure vessel is subjected to high internal pressure till its walls become partially 

plastic’. The above process has an effect of improving the fatigue life of the vessel through the 

resultant hoop residual stress. Therefore the utility of the autofrettage process is to produce 

compressive hoop residual stress around the internal surface of the pressure vessel thereby 

increasing its fatigue life [Maleki et al, 2010]. Balasubramanian and Guha (2004) observes that 

there is a ‘causal-link’ relationship between defected welds and weld-related failures, which 

suggests that a number of failure-related disruptions can be attributed to fatigue on its own. 

Furthermore, fatigue often comes before the commencement of brittle failure. Fatigue life 

extension is therefore a useful phenomenon. 

Koh (2000) uses the local strain approach to investigate the ‘low-cycle fatigue life of the 

autofrettaged pressure vessel with radial holes subjected to cyclic internal pressure’. Local 

stress and strain distribution near the hole is determined through the employment of the elastic-

plastic finite element stress analysis model. It was established that autofrettaging up to 50% OS 

(overstrain) had an effect of extending the fatigue life of the pressure vessel with radial holes by 

up to 45%. However, autofrettaging by more than 50% OS had no significant effect on the 

vessel’s fatigue life. The reason for such findings is attributed to the fact that the autofrettage 

process produced detrimental tensile residual stresses near the outside surface of the pressure 

vessel, and high stress concentration around the holes. 

It therefore follows that whereas autofrettaging can be significantly beneficial in as far as 

extending fatigue life of a pressure vessel is concerned, it can also easily be unfavourable if 

applied in a sub-optimal fashion.  

 

1.2.2 Welding-Induced Residual Stress 

The arc welding process uses the ‘Joule effect’ [i.e. generation of heat by passing electrical 

current through a conductor] to produce the energy required to fuse the metal pieces together. 

The base and filler metal are melted and joined together through the formation of the weld 

liquid pool. Depending on the material, the surface temperature of the piece varies from 1,700K 

(1,430°C) to 2,500K (2,230°C).  In the weld liquid pool, convective effects take place that 
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improve the transportation of heat; and once heat source is removed the metal solidifies [Anca 

et al, 2010]. 

 

The understanding of welding residual stress formation is given in a very comprehensible way 

in Pilipenko (2001). Pilipenko illustrates the causes of welding residual stress and deformation 

through considering the metallic body to be made of numerous small cubic elements. The 

attempt to weld such a metallic body will induce high temperatures on it. Supposing that the 

induced heating was experienced equally amongst all the elements would in turn result in such 

elements being exposed to the same rise in temperature and therefore same magnitude of 

expansion in all directions. Due to such isothermal changes and equi-expansion amongst all 

elements, there would be neither internal stresses nor deformations formed as a result of the 

heating process. 

However, supposing that the heating was not uniform amongst the elements would mean that 

each element experiences expansion that is commensurate with the temperature rise it is 

exposed to. In such a case each element would expand differently to the other, both in 

magnitude and direction. At the same time, the continuous nature of the metallic body would 

result in one element restricting the free expansion of the other, resulting in stress build-up. 

Such state of affairs changes the geometry and internal stress state of the elements, and hence 

the entire body. 

If, during the heating process all elements were stressed elastically [i.e. below yield point], then 

the body would return to its initial stress-free condition after cooling. However, if the elements 

were stressed plastically [i.e. above yield point], then after cooling, each element would change 

dimensions proportionally to the amount of plastic deformation it experienced. The resultant 

changes in the state of the elements’ internal stress and geometrical dimensions become 

permanent. Hence residual stress and distortions are formed in the metallic body. 

 

The formation of welding-induced stresses and distortions can also be understood through 

incompatible strain theory. Feng (2005) holds that the residual stress distribution and the 

amount of weld distortion depend on the final state of the plastic strain distributions and their 

compatibility in the joint. The welding-induced incompatible inelastic strains in the weldment 

during the weld thermal cycle comprises transient thermal strains, cumulative plastic strains, 

and final inherent shrinkage strains. During welding, the incompatible thermal strains, resulting 

from the non-linear temperature distributions, generate the mechanical strains, which lead to 

incremental plastic strains, that accumulate during the thermal cycle, in the weldment if 

yielding occurs. The cumulative plastic strains then interact with weldment stiffness and the 

joint rigidity upon completion of welding cycles. This leads to the final state of residual stress 

and distortion in the FZ and HAZ. 
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1.3. Welding-induced Distortions 

Distortions are caused by the non-uniform temperature distributions during welding. Similar to 

the residual stresses, distortions can also either be longitudinal [i.e. parallel to the weld seam] or 

transversal [i.e. perpendicular to the weld seam]. Furthermore, other types of distortions include 

angular distortions, which occur in the “through-thickness” direction; bending distortion and 

buckling distortion, which is caused by instability on thin plates. Whereas welding residual 

stress is mostly localised within the neighbourhood of the fusion zone and HAZ, welding 

distortion occurs through the entire structure. This usually causes problems when assembling 

welded components into other structures due to dimensional changes. 

 

1.4. Arc Welding 

The American Welding Society [AWS] defines welding as a “localised coalescence of 

materials or non-metals produced by either heating of the materials to a suitable temperature 

with or without the application of pressure, or by application of pressure alone, with or without 

the use of filler metal” [Anca et al, 2010]. The term arc welding refers to a sizeable group of 

welding processes that join metals through using an electric arc. Such welding processes 

include Gas Metal Arc [GMAW], Flux Cored Arc [FCAW], Submerged Arc [SAW], Gas 

Tungsten Arc [GTAW] and Shielded Metal Arc [SMAW]. The joining process is achieved 

through maintaining the heat from the arc between the tip of the electrode and the work-piece. 

The heat ensures that the metals are melted and joined together through the use of a filler metal.  

For the purposes of this study, the Shielded Metal Arc Welding [also known as Manual Metal 

Arc Welding] process is considered.  Figure 1.1 below illustrates the SMAW process. SMAW 

is a process that generates an arc through a stick-like electrode with flux covering. It is often 

called ‘stick welding’. The electrical connection is as shown in Figure 1.1(a), where an 

electrode is connected to one terminal of the power source and the work-piece is linked to the 

other terminal. As the weld is laid, the flux coating of the electrode evaporates and gives off 

vapours and a layer of slag forms on top of the deposited weld metal [Figure 1.1(b)]. The 

released protective gas forms a shielding cloud over the molten weld pool to avert influx of 

impurities. The slag protects the weld from atmospheric contamination or oxidation as it 

solidifies. 
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Figure 1.1. The Shielded Metal Arc Welding Process: (a) overall process; (b) welding area 
enlarged 

Source: Kou (2003) 

 

One advantage of the SMAW process is its simplicity, portability and inexpensiveness. On the 

other hand, the fact that the quality of the gas shield is lower compared to other arc welding 

processes [e.g. Gas-Tungten Arc Welding] works as a disadvantage, especially when welding 

oxidation-sensitive materials such as aluminium. 

 

1.5. Welding Metallurgy 

The resultant microstructure of the work-piece is significant for the determination of the 

mechanical properties and hence integrity of such work-piece once welded. The areas of the 

work-piece are the fusion zone [FZ], the heat-affected zone [HAZ], and the parent or base 

metal. Ideally the microstructure of all the three components should be the same, thereby 

ensuring the same properties across the work-piece; however in reality this is not the case. The 

final microstructure of the work-piece is affected by such parameters as cooling rate [i.e. 

cooling down rate from 800
o
C to 500

o
C or Δt8-5], alloying additions, oxygen content and type of 

welding process. Continuous-cooling transformation [CCT] diagrams are usually used to 

explain the development of microstructure in carbon steels. CCT diagrams will be discussed in 

more in Chapter four below. 
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The HAZ region, being an intermediate location between the peak temperature-exposed weld 

metal and the relatively cool parent metal, experiences high temperature gradients during the 

welding process. Figure 1.2 below shows the various sub-regions of the HAZ in ferritic steels. 

Region 0 represents the unaffected base metal. Region 1 depicts the sub-region that was heated 

to below the lower critical temperature for austenitic transformation (A1), whereas region 2 was 

heated to between A1 and the upper critical temperature for complete austenite transformation 

(A3). Region 2 contains a mixture of transformed austenite grains and the over-tempered parent 

metal [Zarzour, 1996]. 

 

 

Figure 1.2. Relationship Between Various HAZ Sub-regions and Fe-C Phase Diagram 

Source: Zarzour et al (1996) 

 

Region 3 represents a complete austenite transformation with little or no grain growth. This 

region is known as fine grain HAZ or FG HAZ. Region 4 experienced some grain growth and 

homogenisation, whereas the coarse grain HAZ [CG HAZ] represented by region 5 was 

exposed to temperature close to melting, and underwent significant grain growth. In a multi-

pass weld, region 5 is exposed to some grain refinement due to the reheating effect from 

subsequent weld-passes. 
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1.6. Research Questions 

This study purports to answer the following questions: 

a. What does the residual stress distribution looks like in a multi-pass full-

penetration weld of a nozzle onto a pressure vessel? 

The magnitude and direction of the residual stresses within various positions of the 

weld-piece will be determined and plotted against the proximity to the weld zone in 

order to determine the potential impact to the integrity of the structure. 

 

b. What types of distortions or deformations arise as a result of welding nozzles onto 

cylindrical pressure vessels? 

The magnitude and characterisation of welding-induced distortions and their 

significance in influencing the life expectancy of the welded pressure vessel structure 

will be examined. 

 

c. What is the final matrix microstructure of the weld region and the heat affected 

zone [HAZ], and how does this influence the integrity of the pressure vessel? 

The proportions of martensite, bainite, ferrite and austenite that exist within the 

microstructure of the weld region and surrounding areas are to be evaluated in order to 

understand the metallurgical appearance of the structure, and hence to be able to predict 

its thermo-mechanical properties. 

 

d. What type of changes in mechanical properties of the weld region, HAZ and the 

parent metal does the welding process bring about? 

The yield strength, toughness and hardness will be worked out before and after welding 

through experimental methods. This will give the change in mechanical properties 

introduced by the welding process, and the effect thereof. 

 

e. What are the main factors affecting welding-induced residual stresses and 

distortions in pressure vessel nozzle welding, and how can these be optimised in 

order to mitigate their impact? 

Using available literature, investigations into which influential factors contribute 

substantially to the formation and behaviour of welding-induced residual stresses and 

distortions shall take place and answers to this question provided. 
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1.7. Research Methodology 

Leggatt (2008) holds that “the best approach for reliable determination of residual stresses is by 

a combination of measurements and modelling. Any discrepancies should be investigated, and 

improved measurements and modelling methods should be applied until consistent results are 

obtained”. The approach taken is this study is influenced by this assertion. A combination of 

numerical (finite element methods), empirical (formulae-based calculations) and experimental 

(lab testing) methods are used in this study. The detailed methodological approach is discussed 

in chapters three and four below. 

 

1.8. Requirements and Scope of Present Study 

Given the preceding discussion, it is clear that while welding is widely used in permanent 

processes for steel manufacturing and fabrication applications, there is still a number of adverse 

effects that such process inevitably causes. A number of studies and analytical evaluations have 

been done in an effort to predict the effect and influence of  welding-induced residual stresses 

on the integrity and fatigue life of welded structures. However, to this end such studies have 

focused on analysing welding-induced residual stresses on bead-on-plate, plate-to-plate and (to 

a less extent) on pipe-to-pipe weld joints. There have been fewer studies that looked at nozzle-

cylinder joints on pressure vessels. 

In most industrial applications, pressure vessels have to have nozzles for operations purposes. 

These may range from small inert gas purge nozzles to large man-hole covered access nozzles. 

Given their weld joints and associated residual stresses, such nozzles present a level of 

vulnerability to the pressure vessel integrity that need to be understood in order for mitigation 

measures to be taken. It therefore follows that detailed analytical studies of welding-induced 

residual stresses and distortions on nozzle joints of pressure vessels stand to provide a host of 

benefits in design optimisation, reduced failure rate, improved fatigue life, reduction of 

environmental pollution and reduction in cost of re-welding or re-working of structures. 

The aim of this study therefore is to investigate transient and residual welding stresses and 

distortions in multi-pass nozzle welds of pressure vessel structures, and to recommend 

mitigating measures for reducing their negative impact on life-expectancy and performance of 

the welded structure.The scope of work in this dissertation is limited to the circumferential 

welding on nozzles onto cylindrical pressure vessels made of high strength carbon steel. The 

present investigation focuses on the welding- induced residual stresses and distortions through 

applying a combination of finite element modelling, empirical calculation, and verification 

experiments. 
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The next chapter looks at the review of relevant literature with specific focus on its relatedness 

to the subject of this dissertation. 
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Chapter 2 

Literature Review 
 

Since the early 1970’s a number of studies on welding process simulations ranging from heat 

source modelling to materials micro-structure investigations and other related aspects has been 

done. One of the initial (first) works on finite element method [FEM] application to stress/strain 

analysis produced a FE algorithmic procedure to numerically generate residual stress through a 

moving heat source simulating the welding process. This work was performed by Rybicki et al 

(1977). The authors employ a hybrid-type analysis that combines experimental and 

computational methods whereby simple FE techniques are used to incorporate the measured 

(through ultrasonic shear waves) residual stress during crack analysis. The study identifies the 

significance of the residual stress distribution ahead and behind the advancing crack tip in 

relation to plastic zone size in the area. Further earlier work on heat source models included 

models on multiple-point heat sources by Rybicki  et al (1978).  Ued and Yamakawa (1971) 

and Hibbitt and Marcal (1973) performed some of the early works in simulations of welding 

processes using the finite elements method. Friedman (1975), Rybicki et al (1978) and 

Andersson (1978) presented further work on simulation methodology through using 

sequentially coupled analysis technique. 

Subsequent to the early work given above, there were numerous studies of welding process 

using finite elements method, and a corresponding number of experiments were made to 

validate the results from modelling techniques. Welding-induced residual stress has since 

received increasing attention within the welding research community in the last 20 years. Dong 

et al (2005) observe that the driving force behind such interest is that ‘application of modern 

structural integrity assessment procedures for defective welded components requires more 

accurate information on the weld residual stress state to give a more realistic assessment’. 

Furthermore, the need to better understand and characterise residual stresses associated to 

pressure vessel repairs has become more evident; especially since weld repairs have become a 

structural integrity concern for ageing pressure vessel and piping components. [Dong et al, 

2005].  

 

In their later study that sought to develop a residual stress prediction model on a multi-pass 

butt-welded 2.25Cr-1Mo Steel pipes, Deng and Mukarawa (2008) came up with thermal-

metallurgical-thermal computational procedure based on an ABAQUS code. The authors found 
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that on the inside surface of the pipe, tensile residual stresses were produced near the weld 

fusion zone and the HAZ; while compressive residual stresses were generated away from the 

FZ and HAZ. The outside surface showed an opposite of the inside, with compressive stresses 

generated at the FZ, while relatively large tensile stresses were produced away from the FZ. 

Brust et al (1997) summarise recent findings, which investigated the effect of residual stress 

fields on crack growth in pipes and cylindrical vessels, and conclude that crack growth 

behaviour observed in repair welds may be quite different to that of original fabrication welds. 

 

2.1 Definitions used in Numerical Analysis [Lindgren, 2006] 

For the purposes of this dissertation’s context, and in particular the literature review discussed 

hereunder, the terms used herein will be defined as follows: 

a. A model refers to a finite element model that is used to present certain aspects of 

the behaviour of the system. 

b. Simulation is an imitation of the internal process, and not just the resultant 

outcome, of the system under investigation 

c. Validation is the process where the accuracy of the model is evaluated by 

comparing model results with experimental results. 

d. Calibration is the determination of parameters in order to create a match with some 

predetermined measurements 

e. Verification is the process where it is assured that the model is correct with respect 

to the conceptual model 

f. The conceptual model comprises the governing mathematical equations chosen to 

define the various aspects and parameters of the FE input file 

g. Qualification is the process of assuring the integrity of the concept model with 

respect to reality 

 

The discussion below attempts to group the research works according to their objectives and 

focus. 

 

2.2. Factors that Influence Residual Stress 

There is a number of factors that have an influence on welding-induced residual stress 

distributions in a weld-piece. Anca et al (2010) observe that a number of factors have influence 

on the magnitude of the residual stresses and their distribution, including the type of welding, 

number of passes, material properties and degree of constraint or restraint. They further 

conclude that material that is rigidly constrained will have greater residual stresses than one that 

is allowed to distort freely during the welding process. Leggatt (2008) resolves that residual 
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stress is affected by ‘numerous factors, including the geometry of the parts to be joined, the use 

of fabrication aids such as tasks, cleats and jigs, the pass sequence for multi-pass welds and the 

welding sequence for structures with more than one weld’. Furthermore, material properties, 

such as coefficient of thermal expansion, yield strength, and metallurgical phase change may 

also influence residual stresses. 

 

2.2.1 Welding Restraints 

The restraint at a weld joint may be described as the resistance to the free movement in any 

direction of the heated material [Leggatt, 2008]. Leggatt (2008) performs a study whose aim is 

to provide an overview of how the specified ‘principal factors’ affect the magnitude, direction 

and distribution of residual stress in welded joints and structures. Tests done show that residual 

stresses may be found at a distances considerably away from the weld, and do not always dies 

out rapidly between one or two plate thicknesses, as is usually claimed. The author established 

that restraints during welding, as well as materials used have significant impact on the 

magnitude and distribution of welding-induced distortions on structures.  

 

2.2.2 Post Weld Heat Treatment and Residual Stress 

Sterjovski et al (2004) in their analysis of cross-weld properties of quenched and tempered (QT) 

steels defines post weld heat treatment [PWHT] as ‘a stress-relieving process whereby residual 

stresses are reduced by heating between 540 and 590
o
C for a set time depending upon plate 

thickness’. Their study concentrated on transportable pressure vessels. All residual stresses were 

found to be compressive, and the maximum value recorded through experiments was 205 MPa. 

Furthermore the authors discovered that whereas the weld metal hardness and base metal 

hardness were suitably matched before PWHT, the hardness of the weld metal decreased below 

that of the base metal after PWHT [Sterjovski et al, 2004]. 

 

Legatt’s (2008) testing of residual stress in a circumferential weld of C-Mn Steel pipe before 

and after PHWT showed that PHWT has the effect of reducing residual stresses significantly in 

magnitude. Smith et al (1997) perform a study whose purpose is to ‘provide detailed 

information on the effect of a long PHWT on the microstructure and mechanical properties of a 

welded joint in ASTM A302, Gr B Pressure Vessel Steel’. They conclude that Post Weld Heat 

Treatment (PWHT) has an effect of reducing welding-process-induced residual stresses, while 

also tempering the Heat Affected Zone (HAZ). However, excessive PWHT may have undesired 

consequence such as reducing weld metal strength. 
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2.2.3 Effect of Welding Process  

Moraitis and Labeas (2009) state that most welding processes operate in conduction limited 

mode such that the heat deposited onto the surface of the components being welded is 

conducted through the metallic material. In the Heat Affected Zone, and particularly the 

keyhole area, inter-related optical and physical phenomena, such as laser light absorption, 

reflection and phase change, are further observed. 

Maraitis and Labeas (2009) develop a prediction model for residual stresses and distortions due 

to Laser Beam Welding (LBW) of butt joints in pressure vessels. The authors performed a two-

level analysis; namely localised (level-1) three-dimensional model for keyhole attributes 

prediction, and a global (level-2) model. The level-1 model was developed by means of non-

linear thermo-mechanical analysis, and is used to predict ‘keyhole’ shape and size. The global 

welding simulation model represented the entire welded configuration, and used results from 

level-1 simulation in order to compute residual stress and strain fields. The authors conclude 

that due to its inherent capabilities to focus in small spot diameter, through its high-power 

density welding technology, the Laser Beam Welding (LBW) process produces a narrower Heat 

Affected Zone (HAZ), resulting in less distortions, residual stresses and strains compared to 

conventional welding methods (e.g. TIG, Arc and Electric Beam Welding). 

In their study to determine the effect of welding processes on toe-cracking behaviour of fillet-

welds on a Pressure Vessel Grade Steel, Balasubramanian and Guha (2004) concluded that the 

welding process significantly influenced the crack initiation life of the joints failing from the toe 

region. The authors compared fatigue performances of cruciform joints fabricated by the semi-

automatic Flux Cored Arc Welding (FCAW) and the manual Shielded Metal Arc Welding 

(SMAW). Fatigue crack growth was experimentally measured using Vertical Pulsar of 200kN 

capacity. It was established that fatigue growth rate is relatively less in SMAW joints than in 

FCAW joints. This is because crack initiation is delayed in SMAW joints, and hence crack 

initiation life is longer as compared to FCAW joints. Furthermore, it was found that the lower 

heat input of the SMAW process ensures that the Coarse Grain HAZ (CGHAZ) contains low 

carbon martensite, while the higher heat input in FCAW process causes formation of bainitic 

structure in the CGHAZ region. It therefore follows that whereas automatic welding process 

(e.g. Submerged Arc Welding) are normally favoured over their manual counterparts due to 

higher productivity, lower costs, and better control of geometry; it was noted however, that the 

service lives of such automatic welds are usually shorter than that of manual welds 

[Balasubramanian and Guha, 2004]. 

Teng and Chang (1998) observe that high-speed welding [e.g. Laser Beam Welding] yields a 

slightly narrower isotherm, thereby influencing the shrinkage of butt welds and reducing 
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residual stress. Furthermore, high welding speed reduces the amount of adjacent material 

affected by the heat of the welding arc. The magnitude of the HAZ is therefore relatively 

smaller. 

2.2.4 Effect of Weld Conditions  

In their analytical study of residual stresses in repair welds, Dong et al (2005) established that 

welding conditions (e.g. heat input, number of passes, and inter-pass temperature) are important 

parameters when analysing repair weld residual stresses. The temperature of the weld-piece 

before and during welding may have an influence on the residual stress distribution of such 

weld-piece. The preheat temperature is the one which the work-piece is heated to prior to 

welding. The inter-pass temperature is the temperature of the work-piece before each run is 

deposited in multi-pass applications. Keehan (2004) holds that both these parameters have a 

significant effect on the weld cooling rate, and hence the final microstructure. 

Keehan (2004) also observes that the heat generated during the welding process is a function of 

current, voltage and welding speed. Increasing heat input increases the area of weld bead, and 

may result in fewer runs being required to completely fill up the weld. In a multi-run weld, high 

heat input removes most of the columnar structure, and improves toughness. The author further 

states that the diameter of the electrode is proportional to the heat input, and hence it increases 

cooling times. Furthermore, the larger electrode diameters increase the amount of columnar 

region in the weld metal, thereby decreasing the magnitude of re-austenitised and tempered 

areas within the weld. This in turn increases the weld metal hardness and reduces toughness. 

Having studied weld joints in both ‘as-welded’ and after PWHT conditions, Smith et al (1997) 

conclude that the effect of high heat input welding on mechanical properties of the joint tend to 

be more significant at the HAZ than the  weld-metal. The toughness of the HAZ therefore 

becomes the determining factor of the integrity of the weld joint produced by high weld heat 

input (i.e. 4.3 kJ), and not so much the weld metal. Furthermore, the width of the HAZ 

increases with increasing heat input. 

Qureshi (2004) used a combination of experimental and numerical methods to determine impact 

of welding speed on residual stress. The study showed that for the lowest welding speed, 

residual stresses were in their highest magnitude for both internal surfaces [tensile stresses] and 

external surfaces [compressive stresses] of the cylinder. Lower welding speed results in higher 

heat input per unit length, and consequently wider FZ and HAZ. It has been demonstrated in 

many studies that varying heat input, with everything else remaining constant, will have an 

influence on temperature distributions and hence the residual stresses of a welded structure. In a 
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study performed by Qureshi (2004), it was shown that heat input increase causes a 

corresponding increase in residual stress.  

Siddique (2005) establishes that increasing heat input per unit length has an effect of increasing 

the magnitude of residual stresses and their zone of influence. Malik et al (2007) solved a 

transient non-linear thermo-mechanical problem of a pipe-to-shell multi-pass butt weld joint 

using FE modelling and experimental validation. The authors established that welding speed, 

heat source parameters and total heat input significantly affect the resultant outlook of FZ and 

HAZ. 

Gery et al (2005) provide a thermal simulation study of a plate butt joint using FE transient heat 

transfer analysis with the objective to determine energy input, impact of heat source 

distribution,  and welding speed on resultant temperature distributions. Their study revealed that 

welding speed, heat source distributions, and energy input has significant impact on the shape 

and boundaries of the FZ and HAZ. The temperature distributions were also impacted, as well 

as the residual stresses and distortions. 

2.2.5 Weld-piece Geometry 

In their investigation of the effects of pipe geometry on residual stresses – especially the effects 

on circumferential variations of residual stresses – Lee and Chang (2008) established, through a 

3D thermo-mechanical FE model, that the pipe diameter influences the axial and hoop residual 

stresses in thin-walled pipe welds. The authors conclude that the thinner walled pipes have 

lower tensile residual stresses compared to the thicker walled pipes. Dong (2003) concludes that 

pipe radius and thickness have an influence on residual stress. In their study to analyse the 

thermo-mechanical behaviour and evaluate the distributions of residual stresses in circular patch 

welds through finite element [FE] techniques, Teng et al (2000) discovered that the weld line 

experiences contractions after patch welding. The resultant circumferential residual stress is 

close to the material’s yield strength. They further established that as the size of the patch 

decreases, the residual stress in the patch centre increases. 

Siddique (2005) concludes that pipe diameter has significant effect on the magnitude of the 

residual stresses as well as on the zone of influence. The peak values of the axial residual 

stresses near the weld centreline and their zone of influence increase with pipe diameter. The 

author also concludes that increasing pipe wall thickness has an effect of decreasing the 

magnitude of residual stress. This can be attributed to the fact that a pipe of smaller wall 

thickness has low stiffness and is more prone to the radial shrinkage resulting from bending 

stresses. It was however noted that the zone of residual stresses increases with pipe wall 

thickness. Qureshi (2004) established that for both circumferential and axial welds residual 
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stress varied proportionally with the diameter of a cylinder. This is accredited to increased 

cylinder bending for larger diameters. The author further worked out that the larger wall 

thicknesses reduced residual stress, and increased the stress zone. Qureshi also studied the 

impact of root-gap opening and established that axial stress profiles showed no significant 

variation against changes in root-gap, while tensile hoop stress was slightly higher for zero root-

gap. 

2.2.6 Mechanical Properties 

Anca et al (2010) hold that the most important mechanical properties during residual stress 

evaluation are Young’s modulus, thermal dilatation coefficient, and (to a lesser extent) 

Poisson’s ratio. According to Deng and Murakawa (2008) the two main factors that generally 

affect welding residual stresses are shape deformation, i.e. strain, and the variation of 

mechanical properties such as yield strength  

Nonaka et al (2001) evaluate performance of repair welds applied to degraded materials of high 

temperature and high pressure system. They performed a number of mechanical properties tests 

on the base metal, weld fusion zone and the HAZ, including hardness tests, creep tests, Charpy 

impact test and creep-fatigue tests. They established that the Charpy impact energy of the 

simulated HAZ materials, of header base material and of the girth welded materials were much 

higher than those of the base metal. This suggested that heat conducted during the repair 

welding restored the ductility of these materials. Deng and Murakawa (2008) conclude that 

hoop residual stress on the outside surface is influenced by Yield Strength during phase 

transformation process.  

Karlsson (2005) attempts to estimate residual stresses that arise as a result of welding nozzles 

onto a pressure vessel. The author establishes that whereas the circumferential residual stress 

tends to depend on the yield strength of the material, irrespective of the geometry of the weld-

piece, the radial residual stress varies disproportionately with the pipe radius, i.e. the smaller the 

pipe radius, the higher the radial residual stress. The maximum value of radial residual stresses 

for the materials studied ranges between 60 and 80% of the yield strength. 

2.2.7 Welding Sequence 

Teng et al (2003) perform a thermal elasto-plastic analysis using finite element techniques to 

analyse the thermo-mechanical behaviour in circular patch welded plates. Their study includes 

single pass and multi-pass butt welds. The sequences that were examined were back-step 

welding, progressive welding and jump welding. The authors establish that ‘a large tensile 

stress occurs near the weld bead and a comprehensive stress appears away from the weld bead 
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in longitudinal residual stresses along the X-direction for single-pass and multi-pass butt 

welds’. In this study the authors recommend back-step welding as a preferred welding sequence 

for circular patch welds. This sequence has a relatively more favourable effect to residual stress 

compared to progressive welding and jump welding sequences. This can be attributed to the 

‘heat-treatment effect’ on the tail of the preceding weld run. The discussed welding sequences 

are shown in figure 2.1 below. 

 

Figure 2.1: Various Welding Sequences for Circumferential welds 

Source: Teng et al (2003) 
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Teng et al (2003) also advise that in order to prevent the rigid restraint in the weld bead, and 

thereby consequently decreasing residual stress, more free space should be made available for 

free movement of the welding structure during the welding procedure. Sattari-Far and Javadi 

(2008) present a ‘parametric study to determine the effect of welding sequence on welding 

distortions of pipes’. The authors employ a sequentially-coupled 3D thermo-mechanical 

analysis to study nine various welding sequences and their impact on resultant distortions. It 

was established that a continuous segment as well as tail-joining segments of the weld bead 

resulted in higher welding induced distortions than an alternating segment sequence, which 

ensures that weld metal is deposited evenly across the circumference of a pipe in a progressive 

fashion. 

Ozcatalbas and Vural (2009) investigate the impact of various welding sequences on distortion 

tendencies in welding of steel lattice beams through the use of distortion forces. The employed 

experimental methodology comprises the use of force measuring plates to measure distortion 

forces created by welding cycle on the beam. Twenty different welding sequences were 

evaluated, and minimum distortion was observed while using a welding sequence of mixed 

type, and which is based at the end of the beam. Gannon et al (2010) determine the influence of 

welding sequence on residual stress and distortions in flat bar stiffeners applicable in ship hull 

construction. The authors use a sequentially-coupled thermo-mechanical elasto-plastic model to 

evaluate four different welding sequences. Similar to the previous studies, it was also 

established that the welding sequence that employed an alternating segment method – in both 

location and direction – produced the least residual stress and distortions compared to other 

welding sequences. 

2.2.8 Metallurgical Phase Transformation 

Lee and Chang (2009) determine residual stresses in a multi-pass butt-welded high-strength 

steel plate through employing a sequentially-coupled 3D thermo-metallo-mechanical FE 

analysis, incorporating metallurgical effects. The developed FE model incorporates volumetric 

change and variation in yield stress of the base metal and weld metal due to martensitic and 

austenitic transformations. The authors establish that volumetric increase during the austenitic-

martensitic transformation [i.e. during cooling] has an effect of reducing longitudinal tensile 

residual stresses in the weld region and the HAZ. 

Deng and Murakawa (2006) analyse thermal effects, phase transformation effects and 

mechanical effects in multi-pass butt-welded steel pipes. Using a thermal elastic-plastic finite 

element model they conclude that the volumetric change as a result of martensitic 

transformation has a significant influence on welding residual stress. The effect results in 
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change of both the magnitude and direction of residual stress in the weldment. They further 

state that the Yield Strength change induced by solid-state phase transformation is also 

influential to the resultant welding-induced residual stress. 

Yaghi and Becker (2004) explains that ‘strains are induced when solid phase transformation 

from austenite to ferrite, pearlite, bainite and martensite take place during cooling, caused by 

local material dilatations’.  Such dilatations are assumed to be proportional to the fractional 

quantities of the transformed material phases, which in turn are iteratively determined for each 

time step in the thermal analysis. Leggatt (2008) observes that phase change is yet another 

material property factor that affects residual stresses. In particular, the temperatures at which 

the phase transformation commences and terminates are sensitive to the cooling rate. Where the 

cooling rate is fast, e.g. HAZ, phase transformation occurs at relatively low temperatures.  

Deng and Murakawa (2008) study incorporated solid-phase transformation effects. They 

established that ‘the final matrix microstructure of the weld zone and the HAZ is a mixture 

consisting of bainite and martensite, with the volume fraction of bainite being higher than that 

of martensite’. Their simulation results demonstrated that in order to obtain precise prediction 

results, phase-dependant material properties such as yield strength were needed. Deng (2009) 

holds that previous experimental studies have shown that measured stresses in the fusion zone 

[FZ] and HAZ are lower than those in the base metal adjacent to the HAZ. This is because of 

the volumetric change of the material due to martensitic transformation in a relatively low 

temperature. The author concludes that martensitic transformation has significance influence on 

the welding residual stress for med-carbon steels. 

It has been shown in previous studies that when analyzing welding-induced residual stresses on 

high strength carbon steels solid-state phase transformation should be taken into account in the 

welding simulation, given that it induces important physical and mechanical effects such as 

volumetric changes in the material [Lee and Chang, 2009]. 

When steel is heated above the ‘A1’ temperature, its structure starts to transform from body-

centred cubic (ferritic) structure to face centred cubic (austenitic) structure. During cooling the 

austenite changes back to martensite, whose micro-structure will depend on how rapid the 

cooling is [Deng and Murakawa, 2006]. The diagrammatical illustration of this behaviour is 

shown in figure 2.2 below. The solid-state phase transformation represented in figure 2.2 below 

is due to thermal cycles that take place during the welding process. When pearlite-ferrite carbon 

steel is heated over ‘A1’ temperature during the heating phase of welding, its microstructure 

starts to transform into austenite, and when the temperature reaches ‘A3’ pearlite-ferrite 

completely changes to austenite. The volume change due to this martensitic transformation is 
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represented in figure 2.2 below. The quantity of martensite formed depends on the temperature 

reached during cooling [Lee and Chang, 2009]. 

 

 

 

 

 

 

 

 

 

Figure 2.2: Volume Change due to Phase Transformation 

Source: Lee and Chang (2009) 

 

Pilipenko (2001) observes that microstructural transformation at low temperatures [i.e. 

martensitic] in the fusion zone and the HAZ can change the residual stress distribution 

significantly; whereas transformations achieved at high temperatures [i.e. austenitic] may have 

no significant impact on residual stress distribution. 

2.3. Three-Dimensional (3D) versus Two-Dimensional (2D) FE Models 

When comparing 2D and 3D modelling, Siddique (2005) concludes that “through proper 

modelling of the welding arc, almost identical transient temperature distributions can be 

achieved in both the two and three dimensional models for the same arc parameters”. The 

author further states that while comparing residual stress distributions from 2D and 3D models, 

it was clear that the two results were adequately comparable for engineering judgements 

purposes. 

In their study to evaluate temperature fields and residual stress in multi-pass welds of stainless 

steel pipes through a finite element procedure developed in the ABAQUS code, Deng and 

Murakawa (2006b) established that results from 2D and 3D simulations showed very good 
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correlation between the two models. They then conclude that a 2D model can therefore 

accurately predict the thermal cycles during steel pipe welding. 
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Chapter 3 

Numerical Analysis 
 

Finite Element Analysis [FEA] is a numerical modelling scheme utilised for simulation of 

engineering structures in order to virtually study the expected behaviour of such structure under 

particular conditions. The significance of this method is the capability to isolate essential 

parameters of the complex welding process and procedure to study the effects of respective 

parameters on the formation of welding-induced stresses and deformation. Although 

experimental methods are used to calibrate the simulation procedures, the latter still however 

has an advantage that they can be used for systematic investigations on relevant parameters 

which may not be accommodated by experimental studies alone [Feng, 2005]. 

Kisioglu (2005) observes that while many researchers have developed analytical and 

experimental methods to predict the effect of weld joints on structural behaviour; advances in 

computer-aided modelling such as FEM have helped even further the analysis of structural 

behaviour in welded components. The complexity of the welding simulation problem can be 

appreciated through considering that the enormous temperature differential in the arc area 

creates a non-uniform distribution of heat in the work-piece. The increasing temperature causes: 

a decrease in yield strength, an increase of the coefficient of thermal expansion, a decrease in 

thermal conductivity, and an increase in specific heat. Furthermore, welding causes changes in 

the physical and metallurgical structures in the weld [Feng, 2005]. The process of determining 

the welding stresses and distortions through FEA simulation is therefore an inherently difficult 

problem to solve. 

3.1 Modelling Approach 

3D numerical modelling is accepted as an effective method of solving complex welding 

problems accurately. However the computing time and costs make this method unviable for 

practical industrial applications. Alternatively, 2D modelling or a hybrid model of 2D and 3D 

elements is accepted as a realistic alternative modelling approach for practical applications. The 

main features of the FEA Model are discussed below.  

Taylor et al (2002) stipulates two alternative ways in which numerical simulation of the 

welding process can take place, namely the thermo-fluid approach and the thermo-mechanical 

approach. In the thermo-fluid approach, the complex fluid and thermo-dynamics local to the 
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weld pool are modelled by observing the weld pool and the HAZ. The physical characteristics 

of the molten weld pool as well as the HAZ are represented through the conservation of mass, 

momentum and heat equations, together with the surface tension and latent heat boundary 

conditions. Alternatively, the thermo-mechanical behaviour of the weld structure could be 

modelled, with specific focus to the heat source.  A variety of heat source models can be used in 

the simulation of welding, whose accuracy relies on the empirical and theoretical parameters 

describing the weld pool shape and size [Yaghi and Becker, 2004]. A thermo-mechanical 

modelling approach, incorporating a 2D model, is adopted in this study. 

3.2 Geometrical Modelling Strategy 

There are three general types of FEA models that are usually applied for welding stress 

prediction [Feng, 2005]. 

a. Axisymmetric model. When both geometry and loading have a common axis of 

symmetry, the axisymmetric condition exists. 

b. Plane-stress model. This condition exists when the plate thickness is small or the 

temperature and stress changes in the thickness direction are negligible. Mostly 

used in 3D structural analysis 

c. Generalised plane-strain model. It assumes the existence of a plane, which contains 

all displacement vectors that have a constant strain value normal to the plane [i.e. a 

cross-sectional plane remains a plane when it deforms]. For 2D modelling analysis 

of a weld cross-section, the generalised plane-strain condition must be specified in 

lieu of the general plane-strain condition that restricts displacements normal to the 

cross-sectional plane. This condition assumes complete rigidity of the cross-section 

such that the entire cross-section yields under load. 

3.3 The Thermo-metallo-mechanical [TMM] Problem  

In order to understand the thermodynamic and physical interaction phenomenon that occurs 

during welding, it is important to understand the individual aspects involved in this non-linear 

interactive relationship.  Figure 3.1 below represent the schematic features of this phenomenon. 

During welding, the non-uniform temperature distribution experienced by the material causes 

thermal stress(1), and the induced phase transformation (2) affects the structural distribution in 

the solid-liquid transition or martensitic / pearlitic transformations in the solid phase. This 

brings about transformation stress (3), and interrupts the strain field in the body. According to 

Feng (2005), arrows in the opposite direction indicate interaction in the following manner. 

Existing stress in material performs work, some of which is converted into heat (4), thereby 

affecting the temperature distribution. Stress-strain aspect has an effect of accelerating phase 
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transformation (5). There is also latent heat released due to phase transformation (6), which 

affects the temperature distribution. 

 

 

Figure 3.1: Thermo-metallo-mechanical Interaction During Welding 

Source: Feng (2005) 

 

In this study, a non-linear time-dependant thermal elastic-plastic analysis of a moving heat 

source is performed to predict the thermal and mechanical behaviour of the weldment and HAZ. 

The solution of non-linear transient problem is divided into two parts. Firstly, a thermal analysis 

[incorporating phase transformation effects] is performed to predict the temperature history of 

the model. Secondly, the predicted temperature field is applied as input for the subsequent 

mechanical analysis. 

3.3.1 Coupling of Thermal and Mechanical Analyses 

In a coupled analysis, thermal and mechanical behaviours are analysed sequentially in the time 

increments incorporating the effect of the mechanical work in the thermal evolution process. In 

the uncoupled thermo-mechanical problem, the thermal evolution results predicted by the 
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welding analysis can be independently verified prior to the mechanical analysis [Feng, 2005]. 

The degree of the finite element shape functions for the displacement is usually one order 

higher than that for the temperatures in order to have consistency between the two coupled 

modelling procedures. This is because temperature fields directly become thermal strain in the 

mechanical analysis [Lindgren, 2006]. The average temperature is used to compute a constant 

thermal strain to be applied as a thermal load in the mechanical analysis.   

In this study, given the insignificance of mechanical work done compared to the thermal energy 

generated by the welding arc, the thermo-mechanical behaviour of the material during welding 

is simulated using the sequentially coupled formulation [Deng, 2009]. 

3.3.2 Thermal Analysis 

Appreciating that temperature has a significant driving influence on the resultant 

microstructure, stress, strain and ultimately formation of distortions and other weld defects 

during the arc welding process; it becomes critically important therefore to accurately compute 

the transient temperature fields. During thermal analysis, it is assumed that the latent heat is 

evenly distributed during solidification or melting. 

Heat Source Modelling 

Consider a fixed Cartesian plane of (x, y, z) coordinates. A heat source located at z = 0 and at 

time t = 0 moves with constant velocity v along the z-axis. Figure 3.2 below gives a graphical 

illustration of the moving heat source model as suggested by Goldak et al (1984). The model 

follows a Gaussian distribution and has good features of density and power distribution control 

in the FZ and HAZ. Goldak’s moving heat source model revealed that the temperature gradient 

in front of the heat source was lower than expected, while the trailing edge’s gradient was 

steeper than revealed by experiments [Karunakaran and Subramanian, 2001]. Hence two 

ellipsoidal sources were combined to give the total heat flux as shown in figure 3.2 below.  
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Figure 3.2: Goldak’s Moving Heat Source Model 

Source: Sattari-Far and Javadi (2008) 

 

The corresponding heat input is estimated through the following equations: 

   
      

      
        

  

  
  

  

   
  

  
         (3.1) 

   
      

      
        

  

  
  

  

   
  

           (3.2) 

where: 

ff and fr are the front and rear fractions of the heat flux 

af , ar , b and c are semi-characteristic arc dimensions in the x, z and y directions respectively as 

depicted in figure 3.2 

Values of b and c can be chosen as half-width of the fusion zone [Bang et al, 2002]. The z-

coordinate is related to the moving coordinate as follows: 

                  (3.3) 

where   is the welding speed, and   is the lag factor that defines the position of the heat source 

at time t = 0 

    
   

      
       

   

      
            

                (3.4) 

Where    arc efficiency, E = welding voltage, and I = Welding current 
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Boundary Conditions 

The heat transfer coefficients for convection and radiation are used to calculate the heat flux 

losses on the surfaces of the weld-piece using the following equations; 

                    (3.5) 

           
           (3.6) 

where; 

T0 is the ambient temperature 

T is the surface temperature of the weld pool 

  is the emissivity 

  is the Stefan-Boltzmann constant 

h is the convection coefficient 

Losses are not applied to the weld metal surface just under the arc while welding heat source is 

applied. Complete insulation is assumed in this case. 

Modelling the Multi-pass Effect 

The multi-pass effect in welding is modelled using the ‘element birth and death technique’. The 

elements of each weld bead are meshed distinctly, and then linked to adjacent passes and the 

base metal mesh with contact surfaces. The weld metal elements and contact surfaces are de-

activated at the commencement of the analysis, and reactivated at a specific time to simulate the 

bead addition sequence. [Bang et al, 2002]. 

Material Specification 

The materials used in this study include ASTM A106 Grade B seamless high strength carbon 

steel pipe, ASTM A516 Grade 70 high strength low alloy pressure vessel plate, and the Afrox 

7018-1 low hydrogen high strength filler metal. Table 3.1 below presents the mechanical 

properties for these materials. 
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Table 3.1: Mechanical Properties for the Materials 

 UTS 
(MPa) 

YS 
(MPa) 

%EL Poisson’s 
ratio 

Young’s 
Modulus 

(GPa) 

Plate 535 344 19 0.3 210 
Pipe 510 260 31 0.3 210 
Filler 
Metal 

510 350 26 0.3 210 

 

The chemical composition of base metals and the filler metal are tabulated in table 3.2 below. 

It can be observed from the said table that the chemical composition of all three materials is 

similar, and hence the equally similar material properties in table 3.1 above. 

Table 3.2: Material Chemical Composition 

 C Si Mn P S Ni Cr Mo Cu V Nb T
i 

Al 

Plate 
Min/Ma
x 

0.19
7 

0.30
7 

1.0
3 

0.01
1 

0.000
1 

0.01
7 

0.13
7 

- 0.15
1 

0.001
2 

-  0.02
7 

0.20
1 

0.32
7 

1.0
4 

0.01
3 

0.002 0.02
1 

0.15 0.00
1 

0.18
4 

0.001
4 

0.00
1 

 0.03
7 

Pipe 
Min/Ma
x 

0.19
8 

0.24 0.7
9 

0.00
9 

0.004 0.05 0.09 0.01
1 

0.08 0.001    

0.30 0.26 1.0
6 

0.03
5 

0.035 0.40 0.40 0.15 0.40 0.08 0.01 - 0.04
1 

Filler 
Metal 

0.05 0.25 1.3 - - - - - - - - - - 
0.09 0.45 1.5 0.02

5 
0.025 0.01 0.06 0.03 - 0.02 - - - 

 

Meshing 

Fine mesh is used in the FZ and HAZ since high temperature gradients are expected in these 

regions. Element size is then increased as distance away from weld centreline increases. The 4-

noded isoparametric quadrilateral elements are used. 

3.3.3 Metallurgical Effects 

During welding, the filler metal and base metal are melted at high temperature within the weld 

pool, subjected to solidification as they cool down, and then recrystallized – all within a thermal 

cycle. Meanwhile, the HAZ is also subjected to microstructural transformations due to high 

temperature gradients [Wang et al, 2009]. The temperature fields therefore determine the 

distribution and magnitude of welding-induced stresses and distortions through both thermal 

strains and phase transformation strains. Solid state transformation occurs during welding of 

steel.  
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It is well understood that transformation between body-centred cubic [bcc] form of iron [α – 

ferrite] and the face-centred cubic [fcc] form of iron [ϒ – austenite] is the main determinant of 

the microstructure and properties of steel. Phase transformation occurs when nuclei start 

forming randomly within the parent phase, i.e. nucleation. Such nuclei grow into particles and 

start consuming the parent phase and thereby developing a new phase. Thermo-mechanical 

processing methods of steel have been optimised over the years, in terms of parent metal 

properties. However, during welding the optimal base metal properties are altered due to 

localised thermal cycles [Elmer et al, 2003]. The inevitable result is the FZ and the HAZ whose 

microstructures differ from that of parent metal, thereby creating non-optimal properties in 

welded joints. 

Lindgren (2006) observes that there are three generic options of dealing with the 

microstructural changes in numerical analysis, namely; 

a. Ignoring microstructure changes completely. This is normally relevant if phase 

transformation takes place at high temperatures, and hence impact thereof on 

resultant residual stresses is considered negligible. 

b. Accounting for microstructural changes in a simplified manner. Some authors, for 

example, use peak temperature and cooling rate Δt8-5 as the only variables for 

determining microstructural changes. 

c. Performing a full thermo-metallo-mechanical analysis, incorporating volumetric 

changes as result of phase transformation 

In as far as the third option is concerned; a method that is widely used in accounting for solid 

state transformation during welding is that of using isothermal temperature-time-transformation 

[TTT] or continuous-cooling-transformation [CCT] curves to determine the evolution of 

transformation during the thermal cycle. CCT diagrams are used to predict the transformation 

that occurs during cooling in a thermal cycle; whereas TTT curves help determine the rate of 

transformation at a constant temperature. A typical CCT diagram for low alloy steel is given in 

figure 3.3 below. It should be observed that austenite forms once, during heating, the 

temperature increases above A1; and it decomposes during cooling when the temperature falls 

below A3. Similarly, depending on the cooling rate [i.e. Δt8-5], ferrite, pearlite, bainite and/or 

martensite will form. Martensite forms at very rapid cooling rates. 

Austenite – Ferrite Transformation 

The decomposition of austenite into ferrite, pearlite or bainite is accomplished through a 

diffusive transformation process, i.e. the diffusion of carbon atoms. The reaction rate is 

controlled by diffusion of carbon atoms in the austenite phase under most conditions. [Elmer et 
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al, 2003]. This diffusion is described by the John-Mehl-Avrami-Kolmogorov [JMAK] law, 

which is given by equation 3.7 below. The utilisation of JMAK or Avrami equation to calculate 

the fraction transformed during cooling is in line with Scheil’s additivity rule, which states that 

“the fraction which transforms at any given temperature is a function of only the proportion of 

the metal already transformed and the temperature T” [Anca et al, 2005]. The fractional 

volume of transformed material after a hold time at a given constant temperature is given by the 

following Avrami equation: 

                       (3.7) 

where; 

n is the time exponent with a value between 1 and 4 

  
    

 
          (3.8) 

k is a temperature-dependent time coefficient 

N is the rate of nucleation per unit volume 

G is the rate of nuclei growth into particles 

The temperatures at which austenitic transformation begins during heating [ A1] and the one at 

which austenitic transformation is completed [A2] can be worked out using the following 

equations [Deng,2009]: 

                                              (3.9) 

                                                      

                                   (3.10) 

Figure 3.3 shows the transformation of austenite into various phases [i.e. ferrite, pearlite, bainite 

and martensite] at corresponding cooling rates. It can be seen from the illustration that cooling 

the material at 0.33
o
C/sec will result to the formation of bainite over a wide range of cooling 

rate, and hence material thickness. Bainite formation will impede the formation of ferrite and 

pearlite, whose mechanical properties are less favourable [Ford and Scott, 2008]. The kinetics 

of the formation of ferrite, pearlite and bainite is the function of cooling rates during welding. 

However, the rapid cooling can suppress the formation of these phases and result in the 

development of a distorted lattice structure and the formation of martensite. 
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Figure 3.3. CCT Diagram for Low Carbon Low Alloy Steel 

Source: Ford and Scott (2008) 

NB: coloured circles represent sections discussed in the text 

 

Martensitic Transformation 

During cooling, when the temperature reaches Ms, austenite begins to transform into martensite. 

Figure 3.3 shows that martensitic transformation takes place at cooling rates higher than 

8.4
0
C/sec. This transformation is said to be diffusionless in that it occurs without the diffusion 

of carbon atoms, but  instead it comes to pass through some form of cooperative, homogeneous 

movement of many atoms that results in crystal structure change. Given the diffusionless nature 

of the transformation, martensite inherits the chemical composition of the parent austenite. The 

formation of the body-centred tetragonal [bct], in a super-saturation form, results in the 

increased volume of the metal. The magnitude of the volumetric expansion in the FZ and the 

HAZ is dependent on the fractional volume of martensite transformed [Deng, 2009]. 

Martensitic transformation occurs through a time-independent process, and is not influenced by 

the cooling rate. Martensitic transformation cannot therefore be described by the Avrami 
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equation; instead the fractional volume can be calculated using Koistinen-Marburger law as 

follows; 

                                 (3.11) 

Where; 

   is the residual volume fraction of austenite at Ms 

k is the coefficient describing martensitic development as function of temperature [k = 0.011 for 

steels]. 

The data generated through the utilisation of both the Avrami law and the Koistinen-Marburger 

law is used to plot the CCT/TTT curves accordingly. 

Figure 3.4 below illustrates the volumetric changes that occur during austenitic transformation 

[which takes place during heating], and the martensitic transformation [which occurs during 

rapid cooling]. The volumetric change as a result of rapid cooling-induced martensitic 

transformation, is evident through the rise in volume between temperatures Ms and Mf  

 

Figure 3.4. Schematic Illustration of Volumetric Change due to Phase Transformation 

Source: Deng (2009) 

 

The initial temperature Ms for carbon steel can be calculated using equation (3.12) below 

                                    (3.12) 
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3.3.4 Mechanical Model 

Temperature histories from thermal analysis are given as inputs for the mechanical problem. 

The filler metal passes are tied to adjacent passes and the base metal with contact surfaces. 

Element birth technique can be skipped in this phase, due to significant numerical problems 

arising from the distortion of weld-pass elements during sequential activation [Bang et al, 

2002]. Feng (2005) also observes that in a multi-pass weld joint, the root and cap weld passes 

usually dominate the formation of weld residual stresses and distortion. The fill passes have less 

influence on the final state of welding stresses and distortion, and therefore may be lumped 

together as one weld pass for purposes of FEA modelling [mechanical analysis], without 

compromising the accuracy of the results.  

Thermo-mechanical analysis can be performed through one of the three constitutive models, 

namely elasto-plastic, elasto-viscoplastic and unified plasticity. Rate independent elasto-plastic 

models are the most frequently used in the simulation of thermal processes involving high 

heating/cooling rates [Simsir and Gur, 2008]. Therefore, during mechanical analysis, either the 

common rate-independent plasticity model – based on von Mises yield criterion – could be 

used, or the rate-dependant plasticity model. In this study the accumulated rate-dependent 

plasticity is neglected given the high temperature gradients experienced by the material during a 

relatively short thermal cycle. The pressure loading is left out in this study; only the thermal 

loading from the temperature histories is used. The thermal expansion coefficient is set to zero 

above melting temperature in order to prevent stress being applied to the liquid. The thermo-

elastic-plastic constitutive model is developed to describe the deformation behaviour. 

 It is shown in Feng (2005) that the stress-strain constitutive equation is as follows: 

   
    

    

  

 
             

  

  

 
                         

     
 

  
              

  
    (3.13) 

   
    

  

    
     

  

  
    

  

   

 
      

  

    
       (3.14) 

where,                 represent Young’s Modulus, Poisson’s ratio, coefficient of thermal 

expansion and dilatation of the i-th constituent respectively. And G, F,         correspond to 

Gibbs free energy, yield function, stress and structural fraction respectively. 
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3.4. Finite Element Modelling 

A sequentially-coupled thermo-mechanical problem, with metallurgical effects, is considered in 

this study. The problem is simplified as an axisymmetric 2D analysis, which is performed using 

the ABAQUS® code, version 6.11. Figure 3.5 shows the steps taken in the modelling process. 

First, the thermal analysis is performed, incorporating metallurgical effects; and then the 

subsequent mechanical analysis takes place. 

 

Figure 3.5. Overview of the Thermo-Mechanical Analytical Procedure 

Source: Qureshi (2004) 
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Figure 3.6 below shows the axisymmetric model developed to solve the thermo-mechanical 

problem. There are four weld passes as indicated in the schematic, and the dimensions of each 

weld pass is known so that proper calculations of the volumetric body heat flux per weld pass 

could be performed. 

It can be seen in figure 3.6 that the pipe and plate are joined through a full-penetration four-pass 

butt-weld. The dimensions of each weld pass are known, and are used to calculate the 

volumetric heat flux transferred to the weld-piece during welding. The “element birth and 

death” technique is used to model the multi-pass weld. 

 

 

  

Figure 3.6. The Axisymmetric FE Model 

3.4.1 Modelling Assumptions 

Axisymmetry refers to a condition where welding heat is deposited at the same time around the 

circumference of the weld. This assumption is common amongst circumferential multi-pass 

welding applications as it reduces the size of the FE model and computational time significantly 

[Bang et al, 2002]. The latent heat of fusion is taken as 2.7x10
5
 J/kg at solidus and liquidus 

temperatures of 1440
o
C and 1550

o
C respectively, and is used to model the solid-liquid 

transformation. Heat losses are not applied to the weld metal surface just under the arc while 

welding heat source is applied. Complete insulation is assumed in this case. 
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3.4.2 Thermal Analysis 

The body heat flux is calculated for the axisymmetric model using equations 3.1, 3.2, 3.3 and 

3.4 for each weld bead. The dimensions of the weld beads are used to calculate the exact 

volume of the melted pool so that it can be used for heat input calculations. The ambient 

temperature of 21
o
C is applied throughout the calculations, as was recorded in the experiments. 

The heat rate required to raise the temperature of weld-piece from 21
o
C to 1500

o
C was then 

calculated using the above information, and inputted into the axisymmetric model as heat input 

per weld pass. The emissivity of 0.625 and convection coefficient of 15 W/m
2
.K were used for 

boundary conditions throughout the thermal analysis. The Stefan Boltzmann constant was taken 

as 5.67x10
-8
. The axisymmetric model allows for the ‘lumping’ of the entire heat quantity 

during the heating cycle. The calculated volumetric flux shown in table 3.3 was therefore 

inputted into the model as a lumpsum for the duration of the weld-pass heating cycle. 

 

Table 3.3: Heat Input Parameters of Each Weld Pass 

Weld Pass Volume m3 (x10-7) Cycle Time (heat + 

cool) s 

Volumetric Flux 

J/m3.s (x1010) 

1 4.39 80 5.53 

2 6.45 94 4.42 

3 4.70 77 4.98 

4 8.91 75 2.56 

 

The volumetric change due to phase transformation was considered through incorporating the 

temperature-dependant material properties that correspond to the actual phases of the material at 

corresponding temperatures. Lingamanaik and Chen (2011) established that the thermal 

conductivities of austenite and martensite can be determined using the equations below. 

                                      (3.15) 

                                     (3.16) 

Similarly, the values of specific heat for austenite and martensite are given by the equations 

below 

                                   (3.17) 

                                    (3.18) 
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In order to match the appropriate material phases to the corresponding properties, the austenite 

properties are used between A3 and A1 temperatures, and martensite properties are used 

between Ms and Mf temperatures. Austenitising temperatures are determined using equations 

3.9 and 3.10, whereas the martensitic transformation temperatures are worked out through 

equations 3.11 and 3.12. The resultant values are given in table 3.4 below 

 

Table 3.4: Austenitising and Martensitic Transformation Temperatures 

Temperature 0C Plate Pipe Filler Metal 

A3 823 816 845 

A1 723 719 721 

Ms 429 367 467 

Mf 232 170 270 

 

The temperature-dependant material properties were calculated using the equations 3.15 to 3.18 

above, as well as the values given in table 3.4. Figure 3.7 below illustrates the outcome of such 

calculations. 

 

Figure 3.7. Temperature-dependant Material Properties 
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Figure 3.8. The Mesh of the Axisymmetric Model 

 

The parent metal (PM) and filler metal (FM) material properties are plotted against temperature 

to shown the variation of the former as temperature increases. It can be seen that the properties 

of the two metals are fairly similar. The pipe and plate material was taken as similar for the 

purposes of the above analysis. 

The DCAX4 element type was used to produce the mesh as shown in figure 3.8. The finer mesh 

was used for the FZ and HAZ regions given the high temperature gradients that exist there. The 

mesh size increases as the distance away from the weld centre-line increases. 
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Figure 3.9. Temperature Distribution Across the Weld Metal 

 

Temperature distribution schematic in figure 3.9 shows temperatures registered from the centre 

of each weld bead. The nodes were chosen from each weld bead and their temperatures plotted 

against time as shown. It can be seen that temperatures of up to 2300
o
C are reached in the weld-

pool as a result of the heat input. The inter-pass temperatures range between 100
o
C and 200

o
C. 

The relatively lower peak temperature reached during the fourth pass is due to the lower 

volumetric heat flux generated during this pass. The temperature histories are subsequently used 

as the only loading in the stress analysis problem. 

3.4.3 Mechanical Analysis 

The thermo-elastic-plastic model is developed based on von Mises yield criterion in order to 

describe the residual stress distribution and distortions. Thermal loading from the preceding 

thermal analysis is used as input into the mechanical model. The rest of the model is similar to 

the thermal model, except for the elements that were made one order higher in the stress 

analysis than the previous analysis. 
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Figure 3.10. Von Mises Stress Distribution 

 

The above von Mises mapping illustrates the stress distribution after the cooling stage of the 

final weld pass. It can be seen that tensile residual stresses as high as the material yield strength 

are experienced in the FZ and HAZ of the weld immediately after cooling. The stresses 

disappear as the distance away from the weld centre-line increases. 

Radial residual stresses are quite high [in the region of 337 MPa] in the HAZ of the plate side of 

the weld-piece as shown in figure 3.11(a). This value is quite close to the yield stress value of 

344 MPa for the plate material. Axial stress values are highly tensile on the inside of the pipe 

close to the HAZ, and in the CGHAZ region of the plate side, while the external surface is 

under compressive stress.  
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Figure 3.11. Residual Stress Distribution, (a) Radial, (b) Axial, (c) Hoop 

 

Tensile hoop stresses exists in the FZ and HAZ of the weld-piece, whilst compressive stresses 

exist further away from the weld centre-line. It appears therefore that the internal surface is 

generally under tensile stress, while the external surface is under compressive stress. 

 

(a) 

(b) 

(c) 
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Figure 3.12. 3D Deformed Shape of the Weld-piece 

 

The 3D illustration in figure 3.12 shows the extent of deformation from the original shape 

dimensions. It must be noted that the weld-piece was constrained at point ‘x’, and all the other 

points were free to move. Movement in the axial ‘y’ direction is conspicuous from the figure. 

 

 

 

 

 

 

x 
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Figure 3.13. Contours for Axial and Radial Distortions 

(a) 

(b) 

(c) 
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The deflection of the welded structure is clearly visible in the contours shown in figure 3.13. 

Deflections of up to 0.384mm in the axial direction, and 0.0237mm in the radial direction are 

observed. The weld-piece was ‘pulled’ down in the axial direction as cooling took place. This is 

visible in both sketches (a) and (c) in figure 3.13. Radial shrinkage around the FZ and HAZ is 

clearly visible in sketch (b). Although the magnitude of the deflection is significantly 

magnified, it is however still clear that welding induces distortions and changes in dimensions 

of the welded structure  
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Chapter 4 

Experimental and Empirical 

Analysis 
 

It was mentioned in chapter one above that the methodology adopted in this study involves a 

hybrid of numerical analysis, empirical calculations and validating experiments. This chapter 

discusses the experiments and empirical calculations performed in order to validate the 

numerical simulations discussed in the preceding chapter. The experimental work includes the 

work physically performed at the mechanical workshop and the testing laboratory, as well as 

extracts from previous similar studies where physical experiments could not be performed due 

to lack of facilities. 

4.1 Weld-piece Preparation 

Two weld-pieces were prepared according to the geometry given in figure 4.1 below. Table 4.1 

gives the welding conditions that existed during the preparation of the weld-piece specimens. 

Table 4.1: Welding Conditions 

Welding Conditions 

Room temperature: 21oC 

No preheat 

Cooling at room temperature 

Welding procedure: SMAW 

High strength pressure vessel plate 252 x 252 x 10mm 

2” seamless carbon steel pipe chamfered @ 45o  

Root gap of 2mm 

AWS A5.1.91 E7018-1 H8 low hydrogen electrode – 3.15mm 
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Figure 4.1: The Weld-piece Geometry 

 

The high strength carbon steel pipe is welded onto the pressure vessel plate of similar strength 

using low hydrogen high strength E-1708 electrodes. Materials ASTM A106 and ASTM A516, 

for the pipe and plate respectively, were chosen for practical purposes since these materials are 

typically used for pressurised system application. A hole of the same size as the internal 

diameter of the pipe was drilled through the plate [figure 4.2 (a)] in order to position the pipe in 

the same way that the nozzle would be positioned on the pressure vessel. The root gap of 2mm 

was attained through mounting the pipe on the plate by inserting a 2mm steel rod in between the 

pipe and the plate [figure 4.2 (b)], and placing four equi-spaced tag welds around the weld 

groove. A four pass full penetration weld was then performed using the SMAW process [figure 

4.2 (c) and (d)]. 
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Figure 4.2: Preparation of the Weld-piece 

 

4.1.1 Equipment Used 

A Miller TIG Welder, model 330A/BP was used for welding the above material. The machine 

can be used on either the TIG mode or the SMAW mode; all that has to happen is to either place 

the selector on DC- [TIG] or DC+ [SMAW] positions. The current was set at 67.5A and the 

voltage of 30V was supplied through a three-phase source. Figure 4.3 shows the front of the 

welding machine. 

 

(b) 

(c) 
(d) 

(a) 
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Figure 4.3: The Miller A330/BP TIG Welding Machine 

 

Temperature was measured using the Sentry ST677 HDS infrared thermometer, with a 

temperature range of 32 to 1650
o
C, an accuracy of 2%, a response time of 500 milliseconds, 

and a distance/spot ration of 50:1. This is shown in figure 4.4 
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Figure 4.4: The Sentry ST677 Thermometer 

 

4.1.2 Welding Outputs 

As mentioned above, four weld passes were performed. During each weld pass, temperature 

measurements were taken in the weld-pool; and just before commencement of the subsequent 

weld pass, inter-pass temperature measurements were recorded. Table 4.2 gives details of the 

welding outputs. 

 

Table 4.2: Welding Outputs 

Pass Voltage 

V 

Current 

A 

Interp. 

Temp C  

Weld 

Temp C 

Speed 

mm/s 

Filler 

Metal 

Cycle 

Time s 

Interp. 

time s 

1 30 67.5 21 1571 2.37 3.15mm 80 90 

2 30 67.5 118 1563 2.06 3.15mm 94 65 

3 30 67.5 170 1592 2.46 3.15mm 77 52 

4 30 67.5 189 1587 2.53 3.15mm 75 45 
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4.2 Structure of Experiments 

Experiments are conducted in order to ensure reliability of numerical simulations [i.e. Finite 

Element Analysis] and to extend the utility of the research work to practical applications. Three 

main types of validation categories are performed as given in Figure 4.5. 

4.2.1 Thermal Model Validation 

For weld thermal model validation, two types of experimental approaches are employed. The 

first approach is based on temperature measurement through infrared thermometer as described 

in section 4.1 above. Temperature distributions of sections away from the Fusion Zone (FZ) and 

in the Heat Affected Zone (HAZ) are measured experimentally and compared with the Finite 

Element Analysis (FEA) data at the corresponding locations. In order to match the experimental 

data, Finite Element (FE) models can be calibrated by varying the welding process parameters 

accordingly. 

 

 

Figure 4.5: Schematic Illustration of Validation Experiments 
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The recorded temperatures in table 4.2 above are in agreement with the FE temperature fields 

shown in figure 3.9 above. Both peak and inter-pass temperatures are not too far from the 

measured values. 

The second approach is the comparison of FZ and HAZ from experimental macrograph. In 

order to avoid undesired heat effects, samples were cut by using laser cutting. Samples were 

also cut well away from start/end and tack weld locations. For FZ and HAZ macrograph 

measurement, the following steps were taken: 

a. Sample preparation by laser cutting 

b. The sample was mounted on resin cast 

c. Sequential grinding by using silicone carbine abrasive paper with varying grit sizes 

[300, 500, 800, 1000] 

d. Diamond paste polishing with particle sizes of 9 µm, 6 µm, 3 µm, and 1 µm. 

e. Etching the sample with 2% nital solution for 30 seconds and rinsing with alcohol 

f. Study the sample to reveal HAZ and FZ dimensions 

Figure 4.6 shows the macrographs observed from a few specimens that were prepared according 

to the procedure stipulated above. The transition zone is clearly visible in (a) and (b), such that 

one can see the change from weld metal to parent metal. The HAZ is shown at different 

directional planes in (c) and (b), and the effect of high temperature exposure is quite evident. 
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Figure 4.6: The FZ and HAZ Macrographs. (a) Transition Zone on Pipe Side; (b) Transition 

Zone on Plate Side; (c) HAZ on Pipe Side; (d) HAZ on Plate Side 

 

4.2.2 Structural Model Validation 

As illustrated in figure 4.5, both residual stress and distortion measurements must take place in 

order to adequately validate the weld structural model. For distortion, transient axial and 

residual radial distortions are measured on weld specimens. Furthermore, hoop and axial 

residual stresses are also measured on the same weld specimens in order to obtain comparable 

results. 

 

 

 

(a) (b) 

(c) (d) 
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Figure 4.7: Residual Axial Stress Distribution on the Outer Surface 

Source: Qureshi (2004) 

 

Residual stress can be measured by hole-drilling method. The Mathar – Soete hole drilling 

strain measurement technique is widely used and has acceptable accuracy. As the hole is drilled 

on to the material, residual strain is released, and the change in strain is measured. Electrical 

strain gauges are used for measuring the changes in strain along the number of locations on the 

weld-piece. Three strain gauges are normally positioned 120-Degree from each other around the 

circumference of the measuring point on the weld-piece. Once the strain values are known, 

residual stress is calculated using the standard stress/strain formulae. Results are then displayed 

in the graphical format to show the changes in residual stress as the location drifts away from 

the weld fusion zone. 

Due to lack of hole-drilling technique facilities, for the purposes of this study, data from 

previous similar experiments is used to validate the FE model. Qureshi (2004) performs a study 

to analyse residual stress and distortions in thin-walled cylinders using FE methods and 

experiments. The material used in the study is low carbon steel AH36, whose chemical 

composition is similar to the material used in the present study. The results of Qureshi’s 

experiments are therefore used for the purposes of validating the structural model [residual 

stress and distortions] of the present study.  
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Qureshi used the hole-drilling method to measure the residual stress and a dial indicator to 

measure distortions. Figure 4.7 shows the distribution of the axial residual stress on the outer 

surface of the cylinder at different circumferential locations from the weld start position [i.e. at 

50, 90, 150 and 250 degrees from weld start]. It is observed that at the weld centre-line, the 

compressive axial stresses are at their highest value [i.e. up to -250 MPa], which is close to the 

yield stress of the weld metal material. As the distance from the weld centre-line increases, the 

magnitude of the compressive axial stress decreases all the way to zero, and eventually changes 

direction to tensile as distance grows even further away from weld centre-line. The axial stress 

distribution on the inner surface of the cylinder is almost a mirror image of the outer surface 

stress profile. 

The hoop residual stress distribution is shown in figure 4.8. It can be observed that the hoop 

stresses are virtually zero at the weld centre-line, increase to the maximum tensile value as 

distance away from the weld centre-line increases,  then decreases back to zero before changing 

direction to compressive further away from the weld centre-line. The compressive stress peak 

values are higher than the tensile stress peak values. The hoop stress distribution profile of the 

inner surface is similar to that of the outer surface except that the tensile stress peak values are 

higher than compressive stresses. It therefore follows that the outer surface is under 

compressive residual stress, while the inner surface is under tensile stress.   

 

Figure 4.8: Residual Hoop Stress Distribution on the Outer Surface 

Source: Qureshi (2004) 

 



56 | P a g e  
 

Qureshi’s study reveals that maximum axial and radial deflection occur near the weld centre-

line. Axial face tilt ranging from -0.34 to 0.23mm is observed on a 300mm diameter cylinder of 

3mm thickness. The axial shrinkage decreases as distance away from weld centre-line increases. 

Minimum axial shrinkage, which is close to zero, is observed at the restrained end, whereas the 

restraint-free end experiences some deflection. 

 

 

Figure 4.9: Electronic Rockwell Hardness Tester 

 

Mechanical properties of the weld specimen are tested through the Rockwell B hardness test as 

well as Vickers tester. Hardness is known as a measure of the material’s resistance to plastic 

deformation. The Electronic Rockwell Hardness Tester, shown in figure 4.9 was used for 

hardness measurement. The prepared specimen is shown in figure 4.10; the marked points 

illustrate the positions on the specimen where measurements were made. Table 4.3 gives the 

values of hardness measured in this study. 
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Figure 4.10: Hardness Test Specimen 

The measured values are then compared with the calculated values in table 4.4, and they are 

found to be in agreement. Apart from the plate-side HAZ, all calculated and measured hardness 

values are within 10% deviation of each other. The relatively lower measured values also 

indicate that weld metal and HAZ are tougher than anticipated. The ultimate tensile strength 

values, that are equivalent to the determined hardness, are also given in the table. 

 

Table 4.3: Measured Hardness Values 

Specimen Plate Plate HAZ Weld metal Pipe HAZ Pipe 

 HRB HV HRB HV HRB HV HRB HV HRB HV 

Specimen 

1 

77.1 141 82.1 160 92.1 204 90.5 194 85.3 172 

80.1 152 91 196 89 188 88.5 186 86.6 178 

82 160 94 213 89.3 188 74.2 135 84.1 168 

Specimen 

2 

82.5 162 88.3 184 95 217 91.4 197 82.1 160 

82.5 162 84.8 172 89.4 188 92.5 206 87.4 180 

81.8 160 91.3 196 91.8 204 95 217 80.2 152 

Average 81 156 88.5 187 91.1 198 88.7 189 84.3 168 

UTS MPa 517  598  641  599  545  
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The sections of the specimen that were examined include the weld metal, the HAZ on the plate 

side, the HAZ on the pipe side and the parent metal. It can be seen from table 4.3 that the parent 

metal is the least hard of all sections, while the weld metal is the hardest part, followed by the 

HAZ regions. The microstructure composition of the various regions attests to this, with FZ and 

HAZ being relatively martensitic structure while the parent metal comprises of mostly 

pearlite/ferrite microstructure.  

 4.2.3 Phase Transformation Validation 

The last part of the validation experimental work comprises the determination of phase 

transformation that took place during welding. This is done through microstructure 

characterisation, which gives insight into the nature of the microstructure of both the FZ and 

HAZ. The part that was prepared for macrographs above, is used for the purposes of 

microstructure characterisation. Light Optical Microscopy (LOM) is one of the most commonly 

used techniques for microstructure characterisation in weld metallurgy. Figure 4.11 shows the 

advanced Nikon Eclipse MA200 microscope, which was used for this part of experiments. 

 

 

Figure 4.11: The Nikon MA200 Electronic Microscope 
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Figure 4.12: The FZ and HAZ Microstructure Characterisation. (a) Pipe Parent Metal; (b) Plate 

Parent Metal; (c) Weld Metal; (d) HAZ on Pipe Side; (e) CGHAZ on Plate Side; (f) FGHAZ on 

Plate Side 

 

(a) (b) 

(c) (d) 

(e) (f) 
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The results for the macrostructure characterisation are shown in figure 4.12. The parent metals 

for both the pipe and the plate comprises of pearlite and ferrite. The horizontal lines shown in 

(b) are the evidence of the cold-rolling process of the ASTM 516 plate material. The weld metal 

is mainly ferritic with clear traces of martensite. Martensite is more visible in the HAZ regions 

on both the pipe side and the plate side as shown in (d), (e) and (f). Trapped carbon [martensite] 

can be seen in the CGHAZ microstructure shown in (e). The rapid cooling at room temperature 

resulted in the formation of martensite around the FZ and HAZ regions as was expected. It was 

therefore necessary to incorporate phase transformation effects during the FE modelling, given 

the evident presence of martensite.  

 

4.3 Empirical Analysis 

The empirical analysis for the present study comprises mostly the calculations for maximum 

hardness in the FZ and HAZ regions of the welded structure. The formulae used are based on 

experimental studies by Kasuya et al (1995). The principle is that maximum hardness depends 

on the chemical composition of the material and the cooling rate of the weld-piece; and 

knowledge of these allows for the maximum hardness to be predicted so as to determine the 

susceptibility to failures such as cold cracking.  

4.3.1 Maximum Hardness Calculations 

Cold cracking or hydrogen-induced-cracking [HIC] is one of the most significant factors that 

reduce life expectancy of the welded structure. The main factors that contribute to HIC include 

microstructure of high hardness, hydrogen content and tensile restraint stresses. The maximum 

HAZ hardness [often limited to 350 HV for HSLA steels] is generally regarded as an 

approximate index for susceptibility to cold cracking [Bang et al, 2002]. 

Kasuya et al (1995) suggested a formula to work out maximum hardness as follows: 

   
      

 
          

          

   
       (4.1) 

Where; 

   is the hardness value where martensite volume fraction reaches 100% in CG HAZ 

   is the hardness value where martensite volume fraction becomes almost zero per cent in in 

CG HAZ. 

  is defined by:    
       

 

  
 

     
  
  

 
         (4.2) 
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Where; 

  is the cooling time between 800
o
C and 500

o
C [t8/5] 

   is the cooling time corresponding to    

   is the cooling time corresponding to    

The four constants [  ,   ,    and   ] depend on the chemical composition of steel [i.e. 

weight - %] and are defined as follows: 
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where ‘B’ is the boron content for S < 0.016 wt.% 
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The above equations are used to calculate maximum HAZ hardness from the chemical 

composition, and calculate cooling time from the thermal analysis. Cold cracking is determined 

through comparing the calculated maximum HAZ hardness with limiting hardness of 350 HV. 

The geometry of FZ and HAZ is predicted from the peak temperature distribution. Average 

peak temperatures of 1316
o
C and 954

o
C represent CG HAZ and FG HAZ respectively [Bang et 

al, 2002]. 

The chemical composition of filler metal, plate material and pipe material as given in table 3.2 

was used to calculate the maximum hardness of the FZ, the HAZ on the plate side and the HAZ 

on the pipe side respectively. Energy input per unit length as presented in table 3.3 was utilised 

for the calculation of cooling rate t8-5. Appendix B provides a graph from where the value of the 

cooling rate can be read using the heat input value. The average heat input value for the 

experiments conducted in this study is 0.7 MJ/m, which results to t8-5 of 3.2 seconds. The Boron 
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content is assumed to be 2, thereby giving a value of ΔH of 0.03. The resultant maximum 

hardness values are given in table 4.3 for all targeted parts of the weld-piece. 

Table 4.4: Calculated Hardness Values 

Hardness Fusion Zone Plate-side HAZ Pipe-side HAZ 

HM 376 472 472 

HB 195 211 192 

HVmax 209 243 213 

 

It can be seen from table 4.4 that all maximum hardness values are well below the 350 limit, 

which mean that the structure is less susceptible of HIC. 
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Chapter 5 

Discussion of Results and 

Conclusions 
 

The preceding chapters gave a detailed analysis, both numerically and experimentally, of the 

behaviour of welding-induced residual stress stresses and distortions in SMAW welded pressure 

vessel nozzle-joints. The numerical results were validated to be within reasonable agreement 

with the experimental results. This final chapter gives a brief discussion of the findings, 

conclusions and recommendation of the present study 

5.1 Main Findings of the Study 

The main findings of the present study can be summarised as follows: 

a. The 2D axisymmetric FE model is an effective, cost-effective and time-saving 

method of thermo-mechanical analysis. The results produced by the model are 

comparable with results from similar studies performed through 3D FE models. 

b. The welding process produces significantly high residual stresses, whose value 

approaches that of the material yield stress. If such stresses are not effectively 

treated, they may significantly affect fatigue performance of the welded structure. 

c. The produced stresses and distortions are concentrated around the FZ and the HAZ 

regions. The magnitude of the stresses and distortions rapidly decrease as distance 

away from weld centre-line increases. 

d. The inside surface of the vessel or pipe is under tensile stress, while the external 

surface is under compressive stress. 

e. The microstructure of the FZ and the HAZ comprises a combination of ferrite and 

martensite. On the other hand, the parent metal is pearlitic/ferritic. Rapid cooling at 

room temperature [with no preheat] therefore resulted in formation of martensite in 

the weld metal and HAZ. 

f. Hardness tests show that the weld metal and HAZ regions are harder than the 

parent metal. This is supported by the microstructure characterisation, which shows 

martensitic structure around the weld zone and HAZ, and peartic/ferritic structure 

of the parent metal 
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g. Heat input is the most influential parameter that determines the residual stress 

distribution during the welding process. 

 

5.2 Mitigation Techniques 

A number of welding parameters that are influential in determining the resultant residual stress 

and distortions were discussed in chapter two above. Identifying such parameters alone is not 

adequate, hence this section discusses techniques that could be used to mitigate the impact of 

some of these. 

5.2.1 Welding Parameters 

Welding Speed and Heat Input: A parametric analysis including three different welding speeds, 

and with all other factors kept constant, revealed that significantly higher residual stresses are 

observed – both on the inner and outer surface – at lower welding speeds than higher speeds 

[Qureshi, 2004]. Such observation can be attributed to the fact that lower welding speeds result 

in higher heat input per unit volume, and consequently wider FZ and HAZ regions are obtained, 

thereby causing higher residual stresses. The effect of heat input is the same as that of welding 

speed. Optimal heat input can therefore be obtained through ensuring optimal values of voltage, 

current and welding speed for a particular welding procedure. 

Welding Sequence: The alternating welding sequence should as far as practically possible be 

the preferred method over the progressive or continuous welding sequence. The former is 

implemented through alternating the weld passes [or portions thereof] between various 

directions or sides of the weld-piece in order to allow more inter-pass cooling time and less heat 

build-up. The resultant impact is the reduction of residual stress and distortions. 

Special welding consumable: After welding, high tensile residual stresses are formed at the 

weld toe. The magnitude of the tensile stress has been shown to be even higher in high strength 

carbon steels compared to ordinary mild steel with relatively lower yield strength [Feng, 2005]. 

In order to prevent stress-induced cracking at the weld toe, compressive stresses have to be 

introduced to ‘neutralise’ the tensile stresses. One way of achieving such result is to use a 

lower-temperature-transformation consumable, which induces compressive residual stresses 

through the volumetric expansion due to martensitic transformation at lower temperatures. 

Experiments that were recently performed showed that low-temperature martensitic 

transformation neutralises the tensile stress from the cooling process and reverses the residual 

stress direction [Feng, 2005]. 
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Radius : thickness (R/t) Ratio or Wall thickness: Axial stresses increase in the FZ and HAZ as 

the R/t ratio of the pipe decreases. This can be attributed to the fact that the pipe is stiffer at a 

lower R/t ratio and there is more constraint at the axial direction. On the other hand, however, 

the hoop residual stress increases as the R/t ratio increases. Qureshi (2004) studied three wall 

thicknesses [i.e. 3, 4 and 5mm] to determine impact thereof on residual stress distribution. The 

study showed that a decrease of about 100 MPa in compressive stress could be achieved by 

increasing cylinder wall thickness from 3 to 5mm. However, increased wall thickness also 

results in enhanced stress zone of influence. An optimal R/t ratio or wall thickness, that will 

balance axial and hoop stresses, as well as stress zone of influence, must therefore be 

determined for specific cases. 

Post-weld heat treatment (PWHT): PWHT comprises the heating of parts [or all] of the welded 

structure to high temperatures [depending on the material] and holding at such temperature for a 

predetermined period of time while the stresses are relieved. A rule of thumb is to hold the 

structure for about one hour for every 25mm thickness. The procedure can be carried out in a 

furnace or on site using heater blankets, flame torch or similar methods. A number of numerical 

and experimental studies has been done on PWHT as a form of thermal stress relief [TSR]. It 

has been shown through such studies that PWHT is an effective method of reducing residual 

stress, on the surface of the welded structure, to lower levels within the elastic range [Qureshi, 

2004]. PWHT has an effect of reducing the magnitude of tensile residual stresses in the FZ and 

HAZ regions, thereby improving fatigue performance of the joint. 

It has been observed that the residual stress in pipe-cylinder welds vary linearly with 

temperature. Residual stress will decrease by the yield stress ratio [i.e. Yield Stress at T2 / Yield 

Stress at T1, where T2>T1] whenever the temperature of the welded structure is uniformly 

increased. This effectively means that nozzle-vessel joints that are exposed to high operating 

temperatures experience lower residual stresses than those operating at room temperature. This 

fact should be considered when predicting the fatigue life of the welded structure.    

Mechanical Stress Relieving (MSR): MSR treatments are carried out to reduce stress field by 

mechanically loading the welded structure, thereby introducing a new stress distribution. The 

load is thereafter removed and reduced net residual stresses occur as a result. Some of the 

widely used MSR treatments include axial pull, application of external pressure and application 

of internal pressure. In pressure vessel applications, the internal pressure method – which 

entails the application of hydrostatic pressure on the internal walls of the vessel and nozzles – is 

widely favoured for its simplicity and effectiveness. Also known as autofrettage, the internal 

pressure application technique  is a process whereby a cylindrical or spherical pressure vessel is 

subjected to high internal pressure till its walls become partially plastic. The hydrostatic 
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pressure application has an effect of improving the fatigue life of the vessel through the 

imposing of favourable compressive stresses to counteract the tensile stresses on the inner 

surface of the vessel.  

 

5.3 Conclusions 

In the present study, numerical methodology  based on finite element analysis for the 

determination of temperature profiles and subsequent welding-induced residual stresses and 

distortions in SMAW welded pressure vessel nozzle joints of high strength carbon steel are 

developed and implemented successfully. The results of such numerical analysis are compared 

with experimental results and found to be within reasonable correlation. A set of conclusions 

can now therefore be drawn from the above discussion. 

Residual Stress and Distortions 

The following conclusions are drawn with regards to welding-induced residual stress and 

distortions: 

a. Hoop and axial residual stresses are symmetrically distributed due to the symmetry 

that exists across the weld line. 

b. In the FZ and HAZ regions, high tensile axial stresses, that are close to the yield 

stress of the material, are present at the inner surface of the nozzle-vessel joint. 

Similarly, the outer surface experiences high compressive stresses. 

c. Residual stress magnitude decreases and changes direction as distance away from 

weld centre-line increases. 

d. In the FZ and HAZ regions, maximum axial and radial deflection occur. As the 

distance away from weld centre-line increases, axial shrinkage decreases and 

reaches zero at the restrained end. However, the free end experiences some 

deflection. 

Microstructure of FZ and HAZ 

a. The microstructure of the FZ comprises of ferritic/martensitic microstructure.  

b. The HAZ metallurgical outlook is dominated by martensitic structure with clear 

visibility of trapped carbon inside the bcc microstructure 

Mechanical Properties 

a. The Hardness tests show that the weld metal and HAZ regions are harder than the 

parent metal. This is supported by the microstructure characterisation, which shows 
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martensitic structure around the weld zone and HAZ, and peartic/ferritic structure 

of the parent metal. 

Welding Parameters 

A detailed review of studies that discussed the influence of welding parameters on residual 

stress and distortions of welded structures was performed in chapter two above. The following 

conclusions can be drawn from such discussion: 

a. Heat input is the most influential parameter in the creation of welding-induced 

residual stress and distortions. Increasing the value of heat input [either directly or 

indirectly] results in enhancement of residual stress fields 

b. Pipe wall thickness generally varies inversely with residual stress. Increasing wall 

thickness results in a decrease of both axial and hoop stresses. However, larger wall 

thickness also increases the stress zone of influence. It is therefore prudent to 

determine optimal wall thickness for a specific case. 

c. Root-gap opening assists in ensuring weld penetration. However, it also causes 

axial displacement due to increased lateral shrinkage. Root-gap must therefore just 

be adequate for weld penetration. 

d. Restraints have an influence on axial deformation of circumferentially welded 

structures. Low restraint produces high axial deformation, and vice versa. The 

impact of restraints on residual stress magnitude is not significant. 

e. The alternating welding sequence is a useful tool of ensuring longer inter-pass 

cooling time and less heat build-up during welding, which in turn results in reduced 

residual stress. 

Mechanical Stress Relieve (MSR) Treatments 

a. Internal pressure application or autofrettage is the most effective MSR treatment 

method. The applied hydrostatic pressure introduces the compressive stresses on 

the internal surface of the welded structure, which is already under tensile stress. 

The compressive stresses neutralise the tensile stresses, thereby causing stress 

relief. 

 

5.4 Recommendations 

The present study has successfully addressed some of the important questions within the subject 

of pressure vessel fabrication and repairs. It is therefore recommended that the information 

tabled in the present study be used in industrial applications in order to improve fatigue 
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performance of nozzle-shell joints in pressure vessels. It is recommended that the provided 

information is included into the standard operating procedures for pressure vessel fabrication, 

repairs and preventive maintenance. It is also recommended that the techniques discussed in this 

study are employed to predict the fatigue life of the pressure vessel structure under specific 

operating conditions. 

The scope of the present study did not extend to the optimisation of the welding process in 

order to achieve the most optimally performing nozzle-shell joint. Instead the study identified 

the important weld parameters and suggested ways of mitigating their influence. It is therefore 

recommended that for further studies, the scope be extended to include the optimisation 

[possibly through advanced mathematical modelling approaches] of welding parameters in 

order to achieve an optimal weld joint. 
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APPENDIX A 

CATEGORIES OF RESIDUAL STRESSES AND DISTORTIONS 

RESIDUAL STRESS CLASSIFICATION DISTORTIONS CLASSIFICATION 

Lifespan Direction Origin Lifespan Direction Origin 

Temporal [i.e. 
exists in a 
specific 
moment] 

Longitudinal [i.e. 
parallel the 
welding direction] 

Thermal Stress 
[i.e. caused by 
non-uniform 
temperature 
distribution] 

Temporal [i.e. 
exists in a 
specific 
moment] 

Longitudinal [i.e. 
parallel the 
welding direction] 

Caused by non-
uniform 
temperature 
distribution 
during welding 

Residual [i.e. 
exists after 
processing 
such as 
welding] 

Transversal [i.e. 
perpendicular to 
the welding 
direction] 

Phase 
Transformation 
Stress [i.e. caused 
by volumetric 
changes at high 
temperature] 

Residual [i.e. 
exists after 
processing 
such as 
welding] 

Transversal [i.e. 
perpendicular to 
the welding 
direction] 

 

  Plastic 
Deformation 
Stress [i.e. occurs 
in areas close to 
the weld and on 
the weld itself] 

 Angular 
Distortion [i.e. 
caused by non-
uniform 
temperature 
distributions in 
the “through-
thickness” 
direction 

   Rotational 
Distortion [i.e. 
angular distortion 
in the plane of 
the plate due to 
thermal 
expansion or 
contraction 

Bending 
Distortion [i.e. 
distortion in the 
plane through the 
weld line and 
perpendicular to 
the plate] 

Buckling 
Distortion [i.e. 
distortion caused 
by compressive 
stresses inducing 
instability on thin 
plates 
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APPENDIX B 
 

 Cooling Time vs. Arc Energy for Air and Water-Cooled SMAW 
Welds for ASTM A517 grade 70 Steel 

Source: Johnson (1997) 
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