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ABSTRACT 

 

Many countries in the world record annual summary statistics such as economic indicators 

like Gross Domestic Product (GDP) and vital statistics for example the number of births and 

deaths. In this thesis we focus on mortality data from various causes including Tuberculosis 

(TB) and HIV. TB is an infectious disease caused by bacteria called Mycobacterium 

tuberculosis. It is the main cause of death in the world among all infectious diseases. An 

additional complexity is that HIV/AIDS acts as a catalyst to the occurrence of TB. 

Vaidyanathan and Singh revealed that people infected with mycobacterium tuberculosis 

alone have an approximately 10% life time risk of developing active TB, compared to 60% 

or more in persons co-infected with HIV and  mycobacterium tuberculosis. South Africa was 

ranked seventh highest by the World Health Organization among the 22 TB high burden 

countries in the world and fourth highest in Africa. 

The research work in this thesis uses the 2007 Statistics South Africa (STATSSA) data on 

TB and HIV as the primary cause of death to build statistical models that can be used to 

investigate factors associated with death due to TB. Logistic regression, Survey Logistic 

regression and generalized linear models (GLM) will be used to assess the effect of risk 

factors or predictors to the probability of deaths associated with TB and HIV. This study will 

be guided by a theoretical approach to understanding factors associated with TB and HIV 

deaths. Bayesian modeling using WINBUGS will be used to assess spatial modeling of 

relative risk and spatial prior distributions for disease mapping models. Of the 615312 

deceased, 546917 (89%) died from natural death, 14179 (2%) were stillborn and 54216 (9%) 

from non-natural death possibly accidents, murder, suicide. Among those who died from 

natural death and disease, 65052 (12%) died of TB and 13718 (2%) died of HIV. The results 

of the analysis revealed risk factors associated with TB and HIV mortality. 
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CHAPTER ONE 

 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Background 

  
Many countries in the world record annual summary statistics for economic indicators (such as 

Gross Domestic Product (GDP) and unemployment rate under Millennium Development Goals 

(MDGs) and vital statistics (such as the number of births and deaths). In particular, Statistics 

South Africa (STATSSA) collects annual data on nationwide number of deaths and associated 

causes. Tuberculosis (tubercle bacillus- TB) is an infectious disease caused by bacteria called 

Mycobacterium tuberculosis. These bacteria attack mainly the lungs (pulmonary TB), but also at 

lower extent other parts of the body such as the central nervous system, circulatory system, and 

the skeletal system (Khaled, 2008).   

TB is the main cause of death in the world among all infectious diseases (Herchline and 

Amorosa, 2010). TB is classified as latent when it is not yet causing illness or active when illness 

has already been developed. Details can be found in Mzolo (2009). Despite advances in TB 

treatments which dramatically reduced TB cases up to the 1980s, the appearance of HIV/AIDS 

during the 1980s led to a rapid increase of TB, especially in the poorest parts of the world, 

mainly in Africa (Williams and Dye, 2003).   

HIV/AIDS acts as catalyst to the occurrence of TB; hence it can dramatically increase the 

proportion of active TB cases. A study done in India by Vaidyanathan and Singh (2003) revealed 

that people infected with mycobacterium tuberculosis alone have an approximately 10% life time 

risk of developing active TB, compared to 60% or more in persons co-mortality with HIV and  

mycobacterium tuberculosis.  In other words, regions with high rates of HIV/AIDS cases have 
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also high rates of active TB. A short report of WHO (2009) provides the following frightening 

data: 

“In 2008, there were an estimated 8.9–9.9 million incident cases of TB, 9.6–13.3 million 

prevalent cases of TB, 1.1–1.7 million deaths from TB among HIV-negative people and 

an additional 0.45–0.62 million TB deaths among HIV-cause of death people (classified 

as HIV deaths in the International Statistical Classification of Diseases), with best 

estimates of 9.4 million, 11.1 million, 1.3 million and 0.52 million, respectively”.  

Lawn (2010) states that because of HIV and TB co-infection, the WHO DOTS (Directly 

Observed Treatment Short course) program has failed to control TB in Sub-Saharan Africa, even 

in countries with good model of TB control such as Tanzania and Malawi.  

The research work in this thesis uses the 2007 Statistics South Africa (STATSSA) data on TB 

and HIV as the primary causes of death to build statistical models that can be used to investigate 

factors associated with death due to TB and HIV. 

1.2 Literature Review  

1.2.1 The Problem 

 

According to Singer (1997) the battle with TB in South Africa poses immense challenge to the 

government. The annual number of new TB cases in South Africa averages at 377 per 100,000 

members of the population. Comparatively in other hard-hit parts of the world, the average is 

only about 200 per 100,000. Right now, approximately 10,000 people die of TB in South Africa 

every year. Singer (1997) argues further that in South Africa TB tends to affect the poorer 

populations, who have historically suffered a low standard of health care. But poverty is not the 

only contributing factor. Nearly two-thirds of the population of the country is infected with the 
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TB germ, thus approximately 160,000 South Africans from all walks of life become ill with TB 

every year. In 2006, South Africa was ranked seventh highest by the WHO among the 22 TB 

high burden countries in the world and fourth highest in Africa. In general, ensuring that patients 

adhere and complete their TB treatment has presented major challenges; treatment takes six to 

eight months, and patients often discontinue treatment before they are cured. The primary goal of 

the new national TB control programme is to ensure a high cure rate of infectious TB patients the 

first time around by insuring that they complete their treatment. In the strategic priorities for the 

National Health System set by the Department of Health for 2004-2009, the TB control 

programme is cited as achieving limited success, given its synergistic relationship with Human 

Immunodeficiency Virus (HIV) (SA, DoH, 2003). In South Africa responsibility for public 

health care is devolved to provinces among which the quality of TB control varies greatly. TB 

Treatment success remains low compared with other African countries with a higher prevalence 

of HIV and with considerably fewer resources (SA, DoH, 2003). 

1.2.2 TB and HIV Interaction 

 
According to the report published by Williams and Dye in 2003, HIV/AIDS has dramatically 

increased the incidence of TB in Sub-Saharan Africa where up to 60% of TB patients are co-

infected with HIV and each year 200,000 TB deaths are attributed to HIV co-infection. In their 

report, they also indicate that antiretroviral (ARV) drugs can prevent TB by preserving immunity  

and that early therapy, plus high levels of coverage and compliance, will be needed to avert a 

significant fraction of TB cases. However, they assert that ARVs could enhance the treatment of 

TB while TB programmes provide an important entry point for the treatment of HIV/AIDS.  

Corbett et al (2003) considers the decades leading up to 1980 when TB was in the decline 

throughout the world. However, as published by World Health Organization (WHO), in their 
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report on Global Tuberculosis Control: Surveillance, Planning, Financing, in 2003, 30% of 

people in Sub-Saharan Africa are latently infected with Mycobacterium Tuberculosis and the 

rapid spread of HIV during the 1980s and 1990s led to a similarly rapid increase in the incidence 

of TB, with notification rates in some countries increasing by more than five times in ten years. 

The report by UNAIDS in 2003 on the global HIV/AIDS epidemic presents the fact that 

HIV/AIDS control strategies have not substantially reduced the mortality of HIV in the Sub-

Saharan Africa. Raviglione and Pio, (2002) suggest that the decline in immunity in people co-

infected with HIV and TB has meant that even good TB control programmes based on short-

course chemotherapy have not been sufficient to contain the rising incidence of TB (De Cock 

and Chaisson, 1999).  Cohen (2002) argued that the development of new classes of ARV drugs, 

the availability of cheap generic equivalence, and the increasing commitment of international 

donors to making ARV drugs widely available in poor countries should all help to reduce HIV-

related illness and deaths over the subsequent years (Tan, Upshur, and Ford, 2003). Whether 

ARVs have a significant impact on TB depends on their efficacy in preventing disease 

progression and prolonging life on population coverage and patient compliance. The impact also 

depends on the synergy between the treatment of TB patients and the provision of ARV therapy 

to those patients who are HIV infected. 

As the TB and HIV pandemic continue to collide in sub-Saharan Africa resulting in increased 

incidence and mortality, the relative contribution to disease specific mortality of AIDS-related 

Smear-Negative Pulmonary TB (SNPTB) as result of increased incidence, under-recognition and 

diagnosis, and poor management practices is unknown (Getahun, Harrington, and Nunn, 2007). 

 In 2007 the World health Organization (WHO) published revised recommendations for the 

diagnosis of SNPTB to address the diagnostic and treatment challenges of HIV-associated TB in 
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resource-constrained settings. In South Africa, more than 16% of the population is infected with 

HIV, and 1000 people die from AIDS-related diseases each day, and two-thirds of those with 

HIV also suffer from TB, because of their weakened immune systems (AMREF, 2008). In 2004 

estimates exceeded the 50% mark for TB patients living with HIV in South Africa (Dye, 2006). 

According to Bekker and Wood (2010), South Africa is believed to have the most people 

(approximately 1 million persons) living with both TB disease and HIV mortality. When the HIV 

epidemic set in, existing rates of latent TB mortality (LTBI) were extremely high in many 

communities, with over two-thirds of adults in poor South African communities for example, 

being infected. In those with HIV co-infection, subsequent risk of developing TB through 

reactivation of latent TB was extremely high, with overall rates reaching as high as 20-30% per 

year in those with the most advanced immunodeficiency. 

Lawn (2010) state that DOTS does not reduce the very high susceptibility of HIV-infected 

individuals to develop rapidly progressive disease following exposure, thus although DOTS 

reduces transmission risk in the community, this may be out-weighed many-fold by the greatly 

increased risk of rapidly progressive disease in HIV-infected. Major increases in incidence rates 

of TB may further contribute to transmission, although this is off-set to some extent by the fact 

that HIV-associated TB cases are generally less infectious than disease cases in HIV-uninfected 

people.  

Furthermore, the result that co-mortality with HIV significantly increases the risk of developing 

TB was established by Raviglione et al. (1997). However, as published by World Health 

Organization (WHO), on their report in (2000), the TB and HIV co-epidemic is increasing and 

will continue to fuel the TB epidemic. 
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1.2.3 Theoretical Framework 

 

This study will be guided by a theoretical approach to understanding factors associated with TB 

death. Such factors can be grouped into specific categories as shown in the figure below: 

 

Figure 1: Factors associated with TB mortality. 

1.2.3.1 Biological factors 

 
Tuberculosis (TB) is one of the leading causes of death among individuals living with AIDS, not 

only because they are more susceptible to TB, but also because TB can increase the rate at which 

the AIDS virus replicate. One of the first indications of HIV mortality may be the sudden start of 

TB often in a site outside the lungs (extra-pulmonary TB). Individuals who have TB and also 

HIV infected are more likely to die from TB than any other deaths. TB can occur at any point in 

the course of progression of the HIV disease. The risk of developing TB rises sharply with 

decline in immune status. HIV promotes the rapid progression of latent TB death (LTBI) to 

active disease and is the most powerful known risk factor for the activation of latent TB (Uriz, 

Reparaz, and Sola, 2007).  
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1.2.3.2   Socioeconomic factors 

 

Many studies have shown that factors that drive the TB epidemic are mostly socio-economic 

factors. Examples include education, occupation, and health status just to point out a few. TB is 

also associated with poverty. The majority of the poor in the world are likely to contract TB as a 

result of contributing factors such as lack of basic health services, poor nutrition and inadequate 

living conditions. It is evident that those who are exposed to conditions such as unemployment 

and living in crowded areas are more likely to be infected with the disease. The higher rates in 

poorer sectors of society are due not only to the poor housing and overcrowding brought about 

by urbanization and population increase, but also attributable to poor diets which lower 

resistance to the disease (Collins, 1981). 

1.2.3.3   Environmental factors 

 

Poor working environments may increases the risk of tuberculosis. For example working in the 

mines where shafts are poorly ventilated may facilitate easy spread of the TB bacteria. Incidence 

rates in prisons and homeless shelters are higher than that in general population. TB incidence is 

generally higher in urban than in rural areas. The tendencies for the burden of TB to be higher in 

urban than in rural areas may be due to high population density, crowded living and working 

conditions as well as life style changes associated with urban living. TB bacteria also can 

establish in nursing homes because older adults often have immune systems weakened by illness. 

1.2.3.4   Socio-demographic factors 

 

Demographic factors include age (expressed as a grouped variable), gender and marital status 

have been linked to TB infection. The TB epidemic in rural and urban areas is most severe for a 

variety of reasons including population dynamics where migrant mine and factories workers 
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carry the bacteria, back home during holidays and spread it to their households and surrounding 

areas (Zuma et al.,2005). Crowded living environments are also the effect of urbanization where 

people move to cities in search of work and most of these end up living in crowded informal 

settlements. In addition Zwang et al. (2007) stated that the co-infection of TB and HIV affects 

more males at an earlier age who are likely to be exposed to poor working environments that put 

them at risk of TB than females. 

1.3 Methodology used in the study 

1.3.1 Collection of data 

 

The data used in this study is registration and records survey data on deaths from various causes 

gathered by Statistics South Africa in 2007. Our main interest is on deaths due to TB and HIV. 

1.3.2 Statistical Analysis and Statistical Software 

 
Exploratory analysis is performed using graphical displays and some basic summary statistics 

such as mean and the three quartiles as well as associated dispersion statistics in the form of 

tables. 

Logistic regression, as a special case of the Generalized Linear Models (GLM), was used to 

assess the effect of risk factors or predictors to the probability of deaths associated with TB and 

HIV. Statistical modeling and analysis was done using STATA software. 

1.4 Objectives of this thesis 

1.4.1 General objective 

 
The study aims to identify factors that can be used to explain TB and HIV mortality in South 

Africa. The work will also be concerned with statistical methods that can be best used to model 
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these associations, to identify factors associated with TB and HIV mortality in South Africa 

during the year 2007. 

1.4.2 Specific objectives 

1. To investigate and identify factors associated with TB and HIV death in South 

Africa using mortality gathered by STATS SA in 2007. 

2. To apply logistic regression, a special case of generalized linear regression 

modeling, to relate a binary outcome namely death due to TB (HIV) to a number 

of predictor variables including the effect of HIV (TB) co-mortality. 

3. To extend the regression model in Objective No. 2 to account for correlated data 

using survey logistic regression. 

4. To extend the univariate modelling approach to a joint modeling of the two binary 

outcomes in one model as possible future study. 

5. Suggest a spatial modelling approach to study the distribution of risk due to TB 

and HIV in South Africa.   

1.5 Overview of the thesis 

 
In addition to Chapter one which contains the introduction and literature review, Chapter two 

presents exploratory data analysis. Chapter three gives a brief review of generalized linear 

models, discusses important statistical issues in binary logistic regression modeling and the 

estimation of parameters involved. These models will also be used to model TB and HIV 

mortality and associated causes to achieve the research objectives. Chapter four will focus on 

data analysis and the interpretation of results. In Chapter five, we apply the Bayesian modeling 

and mapping using WinBUGS version 1.4. Finally, Chapter six will provide conclusions, 

implications, and avenues for future research work. 
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CHAPTER TWO 

EXPLORATORY DATA ANALYSIS 

2.1 Introduction  

 
The data was sourced from Statistics South Africa consist of 615312 deaths from various causes 

in the year 2007. As a preliminary exploratory analysis, the use of tools such as cross tabulations 

and graphical displays will guide in understanding of important relationships.  

Results from such an exploratory analysis will assist in building a more formal statistical model 

to understand the relationship between key predictor variables and the response variable. Our 

interest in the current work is death due to tuberculosis (TB) and HIV. The synergy between TB 

and HIV has attracted a huge interest in recent times.  

However, in this study, the author most importantly considered only four variables among 

fourteen, namely those which have potential significant effect on TB death and HIV death 

defined as the presence or absence of the disease.  

The four used variables are: age group, sex, death province and death Institution. It should be 

noted however that we cannot include the other ten variables in analysis such as death type, 

marital status, province of birth, province of residence, smoking status, pregnancy, HIV cause-

related (self-reported), education level, occupation, and type of industry or business of work 

because there was a high rate of missing data in these variables. 

2.2 Data Description 

 

Table 2.0.Shows a description of the factor variables to be used and the codes assigned to the 

levels of each variable. 
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Table 2.0: Data description  

 
 
 
Variable Name Description 

TB   cause-

related 

Yes=1, No=0 

HIV cause-

related 

Yes=1, No=0 

Age group 0-15=1, 16-30=2, 31-45=3, 46-60=4, 61-75=5, 76-90=6, >90=7 

Sex Male=1, Female=2 

Death 

Institution 

Hospital (in-patient)=1, Emergency room/out-patient)=2, Death on arrival=3, 

Nursing home=4, Home=5,Other=6 

Death province Western Cape=1, Eastern Cape=2, Northern Cape=3, Free State=4, KwaZulu-

Natal=5, North West=6, Gauteng=7, Mpumalanga=8, Limpopo=9, Outside South 

Africa=10 

Note that Other=Unknown, not applicable and unspecified. Yes=TB-cause of death and HIV- cause of death; No=Non TB and HIV negative. 

A similar description of variables is used for HIV Data. 

2.3 Exploratory Analysis of TB Deaths Data 

 

In this section, an exploratory analysis of the TB data is presented. The interpretation and 

analysis presented in this section is based on a cross-tabulation analysis presented in Table 2.1. 

Of the 615312 deceased people, 546917 (88%) died from natural death and disease, among the 

deceased 65052 (12%) died of TB. The percentage of TB deaths among males is 11.18%, P 

<0.001 (see Table 2.1). The percentage of deaths among  0-15 years old is 2.29%, 16.49% for 

16-30 years old, 19.05% for 31-45, 12% for 46-60 years old, 4.28% for 61-75 years old, 1.47% 

for 76-90 years, to late 50’s old and 2.41% for above 90 years old. It shows that death due to TB 

appear to be in younger age groups (16-30 years, 31-45 years, 46-60 years) than older people, P 

< 0.001 (see Table 2.1).   

Western Cape Province, and Gauteng to some extent, has, in general, lower risk of TB deaths 

than the other regions of South Africa while KwaZulu-Natal, Mpumalanga and Eastern Cape 

have higher risk of TB death. Risk of TB death also differs by death Institution. The results 
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indicate that risk of death was highest in hospital (in-patient) followed by emergency room (out-

patient) and home, with rates of 14.53%, 9.1% and 8.55% respectively than other death 

Institutions. 

It is observed from Figure 2.1 that overall 32% of TB Deaths occurred in KwaZulu-Natal, 

followed by Eastern Cape (16%) and Gauteng (13%). The lowest percentage of deaths occurred 

in Northern Cape (2%). Less than 1% of deaths registered were outside South Africa. It is 

important to note that the distribution of deaths by province of occurrence is largely similar to 

the distribution of the South African population by province.  

 

 

Figure 2 .1: Percentage distribution of TB deaths by province of death occurrence, 2007  
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Table 2.1: Percentage of TB and NON TB deaths, With P-values for Chi-Square test, According to selected Demographic, 
Social, Health status and life style  

 
NO N TB TB N 

 
NO N TB TB N 

Demographic/Provincial Characteristics 
   

Death province 
  

P<0.001 

     

  
 

Age group 
  

P<0.001 Western Cape 92.07 7.93 48091 

 

  
 

Eastern Cape 88.5 11.5 88200 

0-15 97.71 2.29 86111 Northern Cape  91.2 8.8 15466 

16-30 83.51 16.49 85939 Free State 89.73 10.27 52341 

31-45 80.95 19.05 157694 KwaZuLu-Natal 85.42 14.58 142861 

46-60 88.1 11.9 114469 Noth West 89.91 10.09 46331 

61-75 95.72 4.28 93158 Gauteng 92.59 7.41 118449 

76-90 98.53 1.47 66109 Mpumalanga 88.1 11.9 49168 

>90 97.59 2.41 11832 Limpopo 92.24 7.76 53826 

   

 

Outside South Africa 90.5 9.5 579 

Sex 
  

P<0.001 
    

 

   

Health status and life style                                                

 Male 88.82 11.18 314138 
    

Female 90.05 9.95 299933 Death Institution  
  

P<0.001 

     

   
    

Hospital (in-patient) 85.47 14.53 263962 

    

Emergency room/out-patient) 90.9 9.1 10672 

    

Death on arrival 93.63 6.37 15254 

    

Nursing home 94.81 5.19 12630 

    

Home 91.45 8.55 193850 

    

Other 93.66 6.34 118944 

 

2.4 Exploratory Analysis of HIV Death Data  

The data provided by Statistics South Africa consist of 615312 deaths from various causes in the 

year 2007. Of these deaths, the proportion of non-HIV cause related deaths was 97.77% and the 

proportion of HIV cause of death was 2.23%. HIV cause-related deaths varied according to 

different factors as described in this Section. Table 2.2 present the distribution of the number of 

HIV cause-related deaths by each variable. The mortality rate due to HIV was 2.23%, with the 

risk of HIV death also varying by age. The risk of HIV cause related death was highest among 

those in age group 31 to 45 with a rate of 4.32% followed by those in age group 16 to 30 with a 
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rate of 3.88%. Those who are in age group 76 to 90 and above were less likely to be infected 

with HIV. Thus the risk of HIV cause related death in this group is much lower. Results in Table 

2.2 show that females are more likely to die of HIV than males. The HIV cause-related death rate 

for males and females were 1.95% and 2.53% respectively. 

The analysis shows that in 2007 death due to HIV was highest in the Western Cape and 

KwaZulu-Natal with rates of 3.25% and 3.17% respectively. These were followed by Northern 

Cape with 2.32%. Limpopo province had the lowest risk of death due to HIV.  

Examination of results in Table 2.2 indicates that the number of death by HIV is higher for 

hospitalized people 3.49%. 

 

Figure 2.2:  The percentage distribution of HIV deaths by province of death occurrence, 2007. 

 

The Overall is 615312, for HIV negative N=601594 and N=13718 for HIV cause of death. 
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Table 2.2: Percentage of Non HIV death and HIV cause of death, With P-values for Chi-Square test, 
According to selected Demographic, Social, Health status and life style  

 

 

     

              

   Non HIV death HIV death N     

Demographic/Provincial Characteristics       
 
Age group    P<0.001     

 

0-15   98.84 1.16 86111     

16-30   96.12 3.88 85939     

31-45   95.68 4.32 157694     

46-60   98.06 1.94 114469     

61-75   99.72 0.28 93158     

76-90   99.95 0.05 66109     

>90   99.52 0.48 11832     
 

Sex     P<0.001     

Male   98.05 1.95 314138     

Female   97.47 2.53 299933     

          
 

Death province    P<0.001     

Western Cape  96.75 3.25 48091     

Eastern Cape  98.16 1.84 88200     

Northern Cape   97.68 2.32 15466     

Free State   98.03 1.91 52341     

KwaZuLu-Natal  96.83 3.17 142861     

North West   98.36 1.64 46331     

Gauteng   97.77 2.23 118449     

Mpumalanga  98.05 1.95 49168     

Limpopo   99.48 0.52 53826     

         

  
                                        
                                      P<0.001        

Death Institution                                                                                                                                                                         

Hospital (in-patient)           96.51 3.49                                 263962        

Emergency room/out-patient)          97.03 2.97                                  10672        

Death on arrival           98.55 1.45                                  15254        

Nursing home           98.36 1.64                                   12630        

Home            99.03 0.97                                 193850        

Other            98.42 1.58                                 118944        
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2.5 Interaction of TB and HIV 

 
Table 2.3 shows that the risk of TB death is higher among individuals infected with HIV 

compared to those who are HIV negative. 

People who died of HIV related causes are at higher risk of TB death as the primary cause. The 

observed probability of dying of TB given HIV cause of death is 24% compared to 10% for non 

HIV related causes.  

 

Table 2.3: Two-way table showing the joint distribution of TB deaths by HIV deaths   

 

Variable Category TB No TB Total  

HIV cause-
related 

HIV 
negative 61734 (10)  539860 (90)  

601594 

  
HIV cause of 
death 3318 (24) 10400 (76) 

13718 

  Total 65052 550260 615312 

     

 

The table shows that 24% were reported to have died due to co-mortality while 10% died of TB 

but not with HIV. The results shows that individuals who died of other causes of death (non TB) 

but with HIV related causes is 76% while those who died of TB alone with no HIV related cause 

was 10%. 
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Figure 2.3: The joint distribution of TB deaths by HIV deaths  

 

Figure 2.3 shows the effect of the joint dynamics of HIV and TB. From a disease modelling 

standpoint modelling co-mortality can present formidable mathematical challenges due to the 

fact that the models of transmission are quite intertwined. Furthermore, the fact that HIV 

activates TB an individual who died of TB could have been co-infected with HIV and vice-versa. 

Here the risk of TB and HIV mortality is give 24% corresponding to 3318 cases within TB cause 

related deaths.  

2.6 Summary 

2.6.1 Tuberculosis 

 
The exploratory analysis carried out in this chapter indicates that the risk of TB death is higher 

among males than females. The possible reason is that males tend to work in environments that 

increase the risk of TB infection. One possible working environment is that males work in mines 
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more than females where shafts in mines are poorly ventilated and therefore facilitating very 

easy spread of TB bacteria. Returning migrant mine workers carry the bacteria back home during 

holidays and may possibly spread it to their surrounding areas. The preliminary results on TB 

death data indicate that TB cause-related seems to be higher among younger individuals. The 

reason is possibly due to the fact that younger individuals are more vulnerable to co-infection 

with HIV. The fact that TB is an opportunistic infection among HIV infected individuals may 

explain this correlation. 

Individuals who live in informal settlements, or work in crowded environments, such as factories 

where there is a lot of pollution, or in crowded households tend to be at higher risk of contracting 

and dying of TB than other living and working condition. 

2.6.2 Human Immune Virus 

 

The exploratory analysis carried out in this chapter indicates that HIV cause related death is high 

among females than males. Possible reasons for this include the fact that women are exposed to 

sexual abuse, rape and commercial sex activities for survival which expose them to HIV. A 

possible biological reason for a high HIV transmission rate in females is that females have a 

larger cervical area which makes it easier for HIV to establish itself in females than in males. 

The cause of death in young individuals could be due to the fact that they are more sexually 

active and inexperienced which lead them to be at higher risk of HIV infection hence high HIV 

mortality. Low levels of education, poverty, overcrowding and unemployment are much 

associated with the less knowledge about HIV/AIDS. 
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CHAPTER THREE 

GENERALIZED LINEAR MODELS 

 

3.1 The Exponential Family 

 
Generalized Linear Models (GLMs) are an extension of the classical linear models and are used 

to model observations on random variables having a distribution belonging to the exponential 

family of distributions. If the probability density function (p.d.f.) of the i-th observation from a 

random sample of size n from a random variable Y is given by 

                                   ,),(
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where a, b and c are known functions, then f(.) is said to belong to the exponential family. The 

parameter i is called the “natural location parameter” whilst   is the “dispersion parameter”. 

Many known distributions belong to the exponential family (e.g. normal, binomial and Poisson 

distributions). The mean and variance of i  are respectively given by 

                                                 ),(')( ii bYE                                                             (3.2) 

and 

                                          ).(')b'a()Var(Y i

2

i                                                         (3.3) 

McCullagh and Nelder (1989) and Myers, Montgomery and Vining (2002, pp.157-160) provide 

a detailed theoretical background of these models.   

 In particular, the publication by McCullagh and Nelder (1989) is the most referenced book on 

generalized linear models (GLMs). The idea was first developed by Nelder and Wedderburn 
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(1972) and extended later by Dobson (1990), with discussion on the theory and application of 

such models, to numerous application areas. 

In order to discuss the use of GLMs to regression problems, let us consider n  independent 

observations nyyy ,,, 21   of a random variable Y. 

 Let  ii Y
 
and suppose each of the iy depend on a set of predictor variables or explanatory 

variables pxxx ,,, 21  , also called covariates in application areas such as medical research. We 

aim to estimate or fit the model of the form 

  0 1 1 .i i p pg x x          

Then formally, the random variable Y is said to conform to a generalized linear model (GLM) if 

it has the following three conditions hold:  

(1) Each realization iy  of Y belongs to an exponential family of distributions with p.d.f. of 

the form (1) for which the natural parameter is i , .,,2,1 ni   i  is considered to be a 

function of  p ,,, 10  T  with .np   

(2) A linear predictor i ippii xxx   22110  which is a linear combination of 

values of the explanatory variables. 

(3) A monotonic function called link function iig  )(  between the mean response 

)( ii YE and the linear predictor i  for .,,2,1 ni                                                    

 If  )( iii g  ippii xxx   22110 , then g is called a canonical link. 

(McCullagh and Nelder, 1989; Myers, Montgomery and Vining, 2002, p.161). 

To see how the idea of a canonical link arises let nYYY ,,, 21   be independently distributed 

observations such that i  is distributed as  i,1  then, 
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Note that since in this case 

  iii    

then 













i

i
i






1
log  

The function   











i

i
ig






1
log  is called the canonical link function. Therefore, if  










 i

i





1
log = 0 1 1 2 2 ,i i p ipx x x        

it implies that 
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Since also    iii pp  1var  it can easily be shown that  

  ii pb    

and  

   1 .i i ib p p    

Some well-known distributions and their associated canonical link functions are tabulated below.  

Table 3: Common distributions with corresponding link functions for constructing 

generalized linear models 

 
Distribution Link function 

Normal  Identity link: ii    

Binomial 
Probit link: ),(1

ii    where   is the cumulative function of the standard 

normal distribution 

Logit link: 

i

i

i
p

p




1
ln  

Complementary log-log link: ))1ln(ln( ii    

Power link: 










0),ln(

0,








i

i

i  

Poisson  Log link: )ln( ii    

Gamma 

Reciprocal link: 

i

i



1

  

Source: Myers, Montgomery and Vining (2002, p.162). 
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As shown in the Table 3, it is assumed the link function (denoted by g) is a monotonic and 

differentiable function which links the mean response i =  iy and the linear predictor  ii x . 

If i equals i , the link function is called a canonical link function. If  ig  corresponding 

to  iii   . Thus each member of the exponential family of distributions has a unique 

canonical link function. For example, the canonical link function for Binomial (or Binary) data is 

the logit link given by  

 iii   = 








 i

i


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1
log  

where 

 .i ip   

 The generalized linear model for independent Bernoulli observations with logit link is referred 

to as the logistic regression model. With GLMs the identification of the mean-variance 

relationship and the choice of the scale on which the effects are to be measured can be done 

separately, thus overcoming the shortcomings of the data transformation approach. GLMs 

transform the parameters to achieve the linear additivity. 

3.2 Estimation of Parameters 

 

Parameter estimation for generalized linear models is done using the method of maximum 

likelihood. It follows from equation (3.2) that the log-likelihood of a generalized linear model 

can be written as 

                        )],())([(
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                                          (3.4) 

(Myers, Montgomery and vining, 2002, p.163). 

Consider the case of a GLM with canonical link function of the form  
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 )( iii g  ippii xxx   22110 . 

 Estimates of the parameters ),,,,( 210 p   are computed by differentiating the log-

likelihood function given by equation (3.4) with respect to   and then solving the system of 

equations 0

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

l
.  This leads to the score equations given by 
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Thus this system of 1p equations can be written in matrix form as  
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where X is a )1(  pn  design matrix, y = 
T

nyyy ),,,( 21   is an 1n  vector of observations 

and T

n ),,,( 11   is the 1n  vector of expected mean responses.  

The simultaneous systems of equations (3.5) are solved iteratively using for example the Taylor 

approximation. After convergence the asymptotic variance-covariance matrix of ̂  is given by 

1T )X()ˆVar(  WX                                                                                                     (3.6) 
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3.3 Model Checking 

3.3.1Goodness-of-fit Test 

 

The log-likelihood-ratio (deviance) and the Pearson’s chi-square statistics are the main tools used 

for assessing the goodness-of–fit of the fitted generalized linear model (Agresti, 2002). They 

measure the discrepancy of fit between the maximum log-likelihood achievable and the achieved 

log-likelihood by the fitted model. The most commonly used measure in GLMs called deviance, 

is defined as 

                                                  yyyyD ;ˆ;2ˆ,    }                                      (3.8) 

 where  y;̂  is the log-likelihood under the model of interest and  yy;  is the log-likelihood 

under the maximum achievable (saturated) model (Agresti, 2002, p.118). Under the hypothesis 

that the model is correct, the deviance (3.8) has a chi-square distribution with pn  degrees of 

freedom where n  is the number of observations and p is the number of model predictor variables 

(Myers, Montgomery and Vining, 2002, p.134). For a binomial model such as the one we are 

dealing with defined by 
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the deviance (3.8) for binomial data is given by 
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(Agresti, 2002, pp.140-141). 
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3.4 Model Selection and Diagnostics 

3.4.1 Model Selection 

 

There can be a number of models in the family of generalized linear models that describe a given 

data set. Therefore, it is necessary to select the simplest rational model that sufficiently describes 

the particular data (Agresti, 1990). As in most applications including the current one there can be 

many variables under consideration. In this case the stepwise selection procedure is mostly 

preferred because it has an advantage of minimizing the chances of keeping redundant variables 

and leaving out important variable in the model. In all the procedures, a variable that leads to a 

significant change in the deviance (given by equation 3.8) when added to or dropped from the 

model is retained, otherwise it is dropped. This method of model selection is referred to as 

deviance analysis and is used to test the model for the goodness-of –fit. 

3.5 Logistic Regression Model (LRM) 

 

The logistic regression model (LRM) is a member of generalized linear models used to model 

binary data and its main properties will be discussed because it will be the main application tool 

in analysis of the mortality data in the thesis. Consider n  independent observations iy  of a 

binary random variable iY  taking values 1 for a success and 0 for a failure.  Each realization iy  of  

iY  is said to follow a Bernoulli distribution with probability density function given by 

,1,0,)1()(
1




yppyf ii yy

i  
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where p is the probability of success, i.e. )1(  iYPp . For n  independent Bernoulli trials, the 

number of successes 



n

i

iYY
1

 follows a binomial distribution with probability density function 

given by 

  yny pp
y

n 









1 ; ny ,,2,1,0  . 

Thus let us consider a binomial random variable Y with parameters n  and .p  Given a set of 

explanatory variables pxx ,,,x 21   assumed to have an effect on the response y , the probability 

of response |( yYPp  pxx ,,,x 21  ) is said to follows a logistic distribution if 

p (x)
)exp(1

)exp(

22110

22110

pp

pp

xxx

xxx













                                                          (3.10) 

or in terms of the logit function as 

pp xxx
p

p
 










 22110

1
ln)logit(p(x)                                                     (3.11) 

where p ,,, 210 are unknown model parameters to be estimated (Agresti, 2002, p.182). 

The predictor variables pxx ,,,x 21   can be continuous (example, age) or categorical (example, 

sex, marital status). The parameters p ,,, 210  are interpreted as log odds ratios with 

respect to the reference level of the factor variable under consideration. 

 Thus, parameter estimates and associated variance-covariance matrix are calculated using 

equations (3.5), (3.6) and (3.7) earlier stated. 
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3.5.1 Fitting a logistic regression model 

 

The fitting of a logistic regression model is exactly the same as for any Generalized Linear 

Models for binomial but with n  fixed at 1n . Therefore the details of its fitting process will not 

be repeated here but for interested readers the book by Agresti (2002) is recommended. As 

already stated in Section 3.2, the estimating equations for a GLM  particularly the case of the 

logistic regression model are readily solved using iterative methods generally installed in 

statistical packages such as SAS, Genstat, and SPSS. As in (3.6), the variance-covariance matrix 

of the vector ̂ =  Tp ˆ,,ˆ,ˆ
10   is given by 

)ˆ(ˆ V =(XT WX) 1
, 

where W is the kk  diagonal matrix with diagonal elements )ˆ1(ˆ
iii ppn   for ki ,,2,1   

(Agresti, 2002). Hence, the standard error of j̂  is )ˆ1(ˆ
iii ppn  . As a consequence, a 

%100)1(   confidence interval of j  is j̂  ,
2

t )ˆ( jse   where )ˆ( jse  = )ˆ1(ˆ
iii ppn  , 

and  ,
2

t is the value of the t-distribution on  =k-1 degrees of freedom at the left of which the 

area under the curve or distribution is 
2

1


  

3.5.2 Odds ratios 

 
For interpretation of regression parameters in the logistic regression model given by (3.11), 

many researchers prefer reporting odds ratios than the direct model parameter pjj ,,2,1,ˆ  . 

In general, in the case of a binomial distribution with probability of success p , the odds of a 

success is defined as  
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p

p
O




1failure of  prob

success of  prob
. 

For two probabilities of success 
1p  and

2p , the ratio of the associated odds 
1O  and 

2O  is called 

odds ratio and is given by 

)1/(

)1/(

22

11

2

1

pp

pp

O

O




  . 

Clearly, the logistic regression defined in terms of logit (3.11) is a log (odds).   

To explain the dependence of the odds ratio on covariates, consider the special case of one 

categorical explanatory variable ,x for example exposure status with value 0x for unexposed 

and 1x for exposed. Then, from equation (3.10) assuming  xp  is the probability of infection 

by a disease, we have 

                                                     
)exp(1

)exp(

10

10

x

x
xp








                                                    (3.12) 

or equivalently 

                                       x
p

p
xpit 10

1
ln)(log  




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 .                                                 (3.13) 

The odds of disease for those exposed  1x  is
)exp(

1
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1

1
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


p

p
O . 

Likewise the odds of disease for those unexposed  0x is ).exp(
1

0

2

2
2 




p

p
O  

Finally the odds ratio of exposed relative to unexposed is now given by 

).exp(
)exp(

)exp(
1
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2

1 
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
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Hence, the odds ratio comparing the two odds of disease is the exponential of the slope 

parameter 1  in model (3.13) or likewise 1  is the log odds ratio,  log . 
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The calculations of odds ratio in the case of a binary explanatory variable such as exposure status 

(exposed versus unexposed) can be generalized to the case of a categorical variable with l  levels 

where 3l . In such a situation one level is taken as the reference, and model (3.13) can be 

extended to the case of multiple linear logistic regression model with 1l  dummy variables 

121 ,,, lxxx   where 1ix  if level i is considered, otherwise 0ix  for .1,,2,1  li   Model 

(3.13) becomes 

  1122110
1

ln)(log 


 ll xxx
p

p
xpit    

(see Agresti, 2002, p.178). Note that term model is used for  xp  because the equations describe 

the probability of success  xp  in terms of the covariates. The odds ratio associated with level 

i relative to the reference is calculated in the same way as for the case of a one variable with two 

levels except here it has to be interpreted conditional on the other variables held constant. 

Now, consider the case when x  is a continuous variable, we can calculate the odds of an event 

When x  increases by one unit relative to the odds when x  remains unchanged. The two odds at 

1x and x  are respectively  

)].1(exp[
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and similarly 
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1
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2
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O  


 . 

It follows that the odds ratio is then given by  

)exp(
)exp(

)]1(exp[
1

10

10

2

1 



 






x

x

O

O
. 



31 

 

 Here, the odds ratio is again the exponential of the slope parameter, and can be interpreted as the 

ratio of the odds when x  increases by one unit. It immediately follows from )exp( 1   

that )ln(1   , i.e. the slope parameter 
1 can be interpreted as the natural logarithm of the odds 

ratio .  Hence, if %100)1(   confidence interval of 
1  is )ˆ(,ˆ

11
2

  sevt  , then a  

%100)1(   confidence interval of the odds ratio   is{exp[ )ˆ(,ˆ
11

2

  sevt ] }where
1̂ is the 

estimate of 
1 ,  is the significance level (often taken as 0.05),  )ˆ( 1se is the standard error of 

1̂ , 
),

2
( 
t is appropriately read or derived from the t-distribution quantiles. Now, consider the 

multiple logistic regression model (3.10) or equivalently model (3.11). 

The interpretation of the slope parameter 1  in the case of the one-variable binary logistic 

regression model (3.12) can be extended to the case of multiple logistic regression model (3.10). 

If an explanatory variable jX  is continuous, the parameter j  in model (10) is the increase in 

natural logarithm of odds ratio at 1 jj xX  relative to jj xX   when the other 1p variables 

are maintained unchanged or constant. If an explanatory variable jX is categorical with l  levels, 

the parameter k  can be interpreted as the increase in natural logarithm of odds ratio at level 

k relative to the reference level of jX with 1,,2,1  lk   and .,,2,1 pj   Confidence 

intervals of parameters and odds ratios are calculated in similar way as for the case of one 

explanatory variable. 

3.6 Model Selection and Diagnostics for LRM 

 

The same procedures discussed in section 3.4 for model selection apply here. For ungrouped 

binary data, the deviance statistic D  (or D ) is used only to select variables and not as a measure 
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of goodness-of-fit. Hosmer and Lemeshow (1989) proposed and discussed the goodness-of-fit as 

explained in the next section. In the section inappropriateness of the deviance statistic as a 

measure of goodness-of-fit test will also be discussed. 

3.7 Model checking 

3.7.1 Goodness-of-fit Test 

 

Recall that the deviance is given by (3.8) as 

                                            yyyyD ;ˆ;2ˆ,    }                                               (3.14) 

Where  y;̂  is the log-likelihood under the current model and  yy;  is the log-likelihood 

under the maximum achievable (saturated) model. We consider the typical case of grouped data 

where the ith group has im  observations in it instead of the case ungrouped binary data. 

Suppose generally i ~Bin iim , , then   iiii mYE   . The likelihood function is  
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Therefore, the log-likelihood for the fitted model is  
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The log-likelihood for the maximal (saturated) model ( )ˆ
ii y is  
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Substituting  y;̂  and  yy;  in equation (3.14) gives 
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With rearrangement of terms, D  becomes 
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Recall in the case of ungrouped binary outcomes 1im , for all i, therefore D  becomes 
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Since  
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the equation (3.17) can be written as  
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A detailed discussion about the deviance can be found in Collett (2003) and in McCullagh and 

Nelder (1989). It is pointed out that the deviance cannot be used as a measure of goodness-of-fit 

of the model for ungrouped binary data (see Myers, Montgomery and vining, 2002). Note that in 

all the model construction and formulation we evaluate the outcome or response at the 

population and not at the individual level which is not the focus of the current thesis. 

3.8 Cluster Survey Logistic Regression Model (CSLRM) 

3.8.1 Introduction 

 
Logistic regression models used to analyze data from the complex surveys is referred to in the 

literature as Cluster Survey Logistic Regression Models (CSLRMs) to distinguish them from the 

ordinary logistic regression models discussed above. Survey logistic regression models follow 

the same theory as ordinary logistic regression models. The exception is that they account for the 

complexity of survey designs. When data are from simple random sampling, the survey logistic 

regression model and the ordinary logistic regression model are identical. In addition to that, 

Cluster survey logistic regression models obtain more reliable estimates compared to simple 

logistic regression which fail to take into account features of population leading to inference 

results that are statistically unreliable particularly if within cluster correlation is large. 
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3.8.2 The Model (CSLRM) 

 

In order to concisely define the models consider the problem of disease prevalence in 

epidemiology. 

Let  1 ijhijh yp  be the probability that the disease is present and   01  ijhijh yp  that it 

is not present in the thi  observation or individual within the thj  primary sampling unit (PSU) 

nested within the thh  stratum  ,,2,1;,,2,1;,,2.1  hnjmi hhj . In this case the log-

likelihood function is given by 
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Thus in general the survey logistic regression model is given by  

                  logit   , ijhijh       ,,2,1;,,2,1;,,2,1  hnjmi hhj                         (3.18) 

where ijh   is the row of the design matrix corresponding to the characteristics of the thi   

observation in the thj   PSU within thh    stratum, and    is a vector of unknown parameters of 

the model.                                                                         

3.8.3 Estimation of parameters for CSLRM 

 

We refer to sections 3.2 and 3.3 for discussion of the method of maximum likelihood estimation 

used to estimate parameters of the model. Calculation of the standard errors of the parameter 

estimates, which are used to perform appropriate statistical tests and construct confidence 

intervals for the parameters, when data come from complex design, is complicated. The 

covariance matrix of parameter estimates under the CLRM can be obtained through the Taylor 

expansion approximation procedure (Vittinghoff et al., 2005). This technique estimates variance 

taking account of variation among clusters and computes the overall variance estimate by 
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pooling stratum variance estimates together. There are other methods of variance estimation for 

complex survey data other than the Taylor expansion approximation (also known as linearization 

method). These methods are based sample re-use principle. Key among them are the jackknife 

and the bootstrap methods (see Vittinghoff, 2005; Lehtonen and Pahkinen, 1995; and Skinner, 

Holt, and Smith, 1989). The jackknife and bootstrap methods are illustrated with examples in 

Lehtonen and Pahkinen (1995). Currently only the Taylor expansion approximation will be used. 

The degrees of freedom for the t-test statistics used for testing the significance of the parameters 

equals the number of clusters minus the number of strata in the sample survey design. This 

statistic can then be used to construct confidence intervals for the parameters, especially if n (the 

overall sample size) is small. When n is large, as is the case with our data, the sampling 

distribution of the parameter estimators are approximated by a normal distribution. Hence, the 

Wald chi-square statistic can also be used to test for the significance of the parameters and to 

construct confidence intervals (which are also called normal confidence intervals) given by 

                                                       ,ˆ

2

jjj v                                                   (3.19) 

where 
2

z  is the 100 



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


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2
1


th percentile of the standard normal distribution, and jjv  is the 

variance of j̂  given by diagonal elements of variance-covariance matrix of ̂ after model 

convergence. Note again that these intervals are on a logit scale, if the canonical link function is 

used. 

Fortunately, the trouble of calculating estimates and their variance has been circumvented by 

implementation of the procedures in statistical packages that appropriately account for the 

complexity of survey designs. This procedure is implemented in packages such as STATA 11, 

under survey logistic regression (SLR). It was developed basically for fitting a linear logistic 
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regression model for discrete response variables to survey data. When the data are from the 

simple random sampling method, SLR is identical to the standard logistic regression. Maximum 

likelihood estimation method and the Taylor expansion approximations procedure will be used to 

fit the model in chapter 4. For SLR to be used it requires that there be at least two or more 

clusters per stratum, otherwise the stratum will not make any contribution in the estimation. 
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CHAPTER FOUR 

APPLICATION OF THE LOGISTIC REGRESSION MODELS 

 

 
The model discussed in Chapter 3 under Section 3.5, was fitted using TB and HIV as the binary 

response Y with the four variables discussed and presented in Chapter 2 as predictor variables. 

The survey logistic regression (SLR) model was fitted with province of death as the clustering 

variable.  

The STATA commands or code used are listed in appendix A.1 

4.1 Interpretation of Model results for TB Death Data 

 
Table 4.1 contains the odds ratios, standard errors, 95% confidence intervals and their p-value of 

the incidence of the disease. Cluster and stratification design variables were built-in using 

STATA SURVEYLOGISTIC procedure. Note that survey logistic regression models have the 

same theory as ordinary logistic regression models, with the exception that they account for the 

complexity of survey designs. When data are from simple random sampling, the survey logistic 

regression model and the ordinary logistic regression model are identical (Heeringa, West, and 

Berglund, 2010). 

Results for both simple and cluster survey logistic regression models, with TB mortality was the 

response variable, are presented in Table 4.1. The results show that the odds ratio of death due to 

TB for females to males is 0.8784 with a 95% confidence interval of 0.8642- 0.8928, (P <0.001). 

This means that females are at lower risk of TB death than males. The corresponding estimates 

under survey logistic regression are OR = 0.8784, 95% CI 0.8449- 0.9132, P < 0.001. The 

parameter estimates for the ORs is the same in both approaches but the standard errors are 

different with the one from survey logistic regression larger than that from the simple logistic 
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regression. Thus the danger of using ordinary logistic regression with clustered data is that Type 

I error may be committed more often than when survey logistic regression is used. 

The age group 31-45years has the highest odds of TB death. The results from both simple and 

survey logistic regression models are (OR=10.0222, 95% CI 9.5683- 10.4975, P <0.001), and 

(OR=10.0222, 95% CI 7.9326-12.6622, P<0.001). For age groups 16-30 the respective results 

are (OR=8.4066, 95% CI 8.0118-8.8209, P <0.001) and (OR=8.4066, 95%CI 6.8986-10.2442, P 

<0.001). The  age group with least odds ratio is age groups 76 to 90 whose OR point estimate 

0.636 with a 95% confidence interval of 0.5886-0.6872 and under the simple logistic regression 

(P < 0.001) and  (OR=0.636, 95% CI 0.481-0.841, P < 0.005) for cluster survey logistic. 

Examination of the odds ratios in Table 4.1 indicate that the proportion of death by TB is higher 

for hospitalized people. The simple interpretation is that TB infected seek medical care than just 

remaining at home. In summary it should be noted that results from tables 4.1 shows that the 

odds ratios are the same for simple logistic regression and for clustering survey logistic 

regression, but the standard error and confidence intervals are significantly different. The 

standard errors are higher under cluster logistic regression. 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 



40 

 

Table 4.1: Logistic Regression for TB death data 

  
Simple Logistic Regression 
 

 

     Cluster  Survey  Logistic Regression 
  

Variable OR (Std.Err) 95% CI  p-value OR (Std.Err) 95% CI  p-value 

Age group                 
 
0-15 REF               

16-30 8.406(0.206) 8.0118 8.8209   < 0.001 8.406(0.735) 6.8986 10.244  <0.001 

31-45 10.02(0.237) 9.5683 10.497   < 0.001 10.022(1.035) 7.9326 12.662  <0.001 

46-60 5.749(0.141) 5.4796 6.0324   < 0.001 5.749(0.632) 4.4839 7.372  <0.001 

61-75 1.902(0.053) 1.8009 2.0093   < 0.001 1.902(0.231) 1.4449 2.5042  <0.001 

76-90 0.64(0.025) 0.5886 0.6872   < 0.001 0.636(0.078) 0.481 0.841  0.005 

>90 1.051(0.67) 0.9268 1.1917  0.439 1.051(0.179) 0.7148 1.545  0.777 
 
Sex                 

 
Male REF               

Female 0.878(0.007) 0.8642 0.8928    <0.001 0.878(0.015) 0.8449 0.9132  <0.001 

         
Death 
Institution         
Hospital (in-
patient) REF        
Emergency 
room/out-
patient) 0.5888(0.02) 0.5507 0.6295 <0.001 0.5888(0.024) 0.5375 0.6450 <0.001 

Death on 
arriva l 0.3999(0.0131) 0.3744 0.4272 <0.001 0.3999(0.062) 0.2810 0.5691 <0.001 

Nurs ing home 0.3218(0.0132) 0.2972 0.3483 <0.001 0.3218(0.057) 0.2152 0.4811 <0.001 

Home 0.5497(0.0051) 0.5392 0.5604 <0.001 0.5497(0.046) 0.4545 0.6648 <0.001 

Other 0.3979(0.0052) 0.3878 0.4082 <0.001 0.3979(0.039) 0.3171 0.4993 <0.001 
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4.2 Interpretation of Model results for HIV Death Data 

 

The same model as that for TB death was fitted for HIV cause-related at death. The HIV model 

was also fitted using survey logistic regression a procedure in STATA. The results in Table 4.2 

contain the odds ratios, Standard error, 95% confidence intervals and p-values of HIV cause-

related at death. The odds of death with HIV if you are a female is 1.3075 times that of males 

with a 95% confidence interval of 1.2637-1.3529, and P <0.001 and the results under CSLR are 

(OR = 1.3075, 95% CI 1.1877-1.44, P < 0.001). This means that the HIV related death burden is 

more in females than in males. Overall point estimates of ORs are the same but the standard 

errors are larger and confidence intervals wider under both the CSLR. 

Individual in age group 31-45 have higher odds of dying with HIV than any other age group. 

This result is confirmed by logistic regression with estimates (OR =3.8399, 95% CI, 3.5914-

4.1054, P <0.001), and for cluster survey logistic regression OR=3.8399, 95% CI 3.1847-4.63, 

P<0.001). For age group 16-30 the results are (OR=3.4349, 95% CI 3.1986-3.6886, P <0.001) 

under the simple logistic regression and OR=3.4349, 95%CI 2.9854-3.952, P <0.001) under 

cluster survey logistic. The odds rations of the age groups 61-75, 76-90 and > 90 are all 

estimated as less than one in both the simple and cluster logistic regression models confirming 

that these age groups die less with HIV related causes than the younger age groups where the 

impact of HIV infection is most felt. 
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Table 4.2: Simple and Survey Logistic regression for HIV death data 

 

  Simple logistic regression   
 
Survey  logistic regression  

Variable OR( Std.Err) 95% CI  p-value OR (Std.Err) 95% CI  p-value 

Age group                  

0-15        REF               

16-30 3.4349(0.125) 3.1986 3.6886  <0.001 3.43499(0.213) 2.9854 3.952  <0.001 

31-45 3.8399(0.131) 3.5914 4.1054  <0.001 3.8399(0.317) 3.1847 4.63  <0.001 

46-60 1.6816(0.064) 1.5598 1.8128  <0.001 1.6816(0.184) 1.3121 2.155 0.001 

61-75 0.237(0.016) 0.2067 0.2718  <0.001 0.237(0.040) 0.1614 0.348  <0.001 

76-90 0.0386(0.007) 0.0268 0.0555  <0.001 0.0386(0.011) 0.0198 0.075   <0.001 

>90 0.4116(0.056) 0.3149 0.5378  <0.001 0.4116(0.174) 0.1578 1.073 0.066 

Sex                 

Male         REF               

Female 1.3075(0.023) 1.2637 1.3529 
   
<0.001 1.3075(0.556) 1.1877 1.44 

      
<0.001 

         

Death Institution                  

Hospital (in-
patient)     REF               
Emergency 
room/out-
patient) 0.8457(0.049) 0.7548 0.9474 0.004 0.8457(0.101) 0.6468 1.1059 0.191 

Death on arrival 0.4061(0.028) 0.355 0.4645 
             
<0.001 0.4061(0.097) 0.2354 0.7007 0.005 

Nurs ing home 0.4603(0.033) 0.4006 0.5289 
         
<0.001 0.4603(0.079) 0.3107 0.6819      0.002 

Home 0.2699(0.007) 0.2568 0.2838 
         
<0.001 0.2699(0.045) 0.1845 0.395 

      
<0.001 

Other 0.4427(0.011) 0.4211 0.4654 

         

<0.001 0.4427(0.157) 0.1974 0.9925  0.048 
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4.3 Interpretation of Multiple Logistic Regression Model for TB Death  

 

Tables 4.3 contain the odds ratios, p-value and their confidence intervals of the odds of TB death 

using the multiple logistic regression models. The tables were constructed from the estimated 

model in Appendix A1. It is important to note that  both simple and multiple  logistic regression 

assess the association between the independent variables or sometimes called predictor variables, 

but the simple logistic regression is mostly used as an exploratory tool for associations between 

one (dichotomous) outcome and one (categorical) exposure variable while multiple logistic 

regression is used to explore associations between one (dichotomous) outcome variable and two 

or more exposure variables (which may be  continuous, ordinal or categorical). The purpose of 

multiple logistic regressions is to let the user to isolate the relationship between the outcome 

variable and the effects of one or more variables conditional on other factors being present.  

Since the odds ratios produced by Multiple Logistic regression are the same as those given by 

survey logistic regression, interpretation given in Section 4.1 also apply here. The only 

difference is the confidence intervals, standard errors and p-value. 

It can be seen that multiple logistic regressions (Table 4.3) confirm this difference. We note that 

the odds ratio of death due to TB for females to males is 0.867 with a 95% confidence interval of 

0.8513- 0.8830, with P <0.001 for the multiple logistic regression and OR = 0.867, 95% CI 

0.8472- 0.8873, P < 0.001 for survey multiple logistic regression.  The odds of TB death is 

highest in the age group 31-45 years old followed by those in age group 16- 30 years old. The 

smallest OR is that for individuals in the age groups 76 - 90 and >90 years old. This result is also 

confirmed by the multiple logistic regression results for the age group 31-45 years (OR = 9.9218, 

95% CI 9.3628- 10.5143, P <0.001), and for the survey multiple logistic regression model the 

point estimate is OR =9.9218, 95% CI 7.4085-13.2878, and P<0.001.  
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Table 4.3 shows that the odds of death with TB is higher in hospitals than any other health 

institution. This should be interpreted to mean that TB infected individuals do go to hospitals 

more than any other institution seeking for treatment. This result is in line with what one would 

expect compared to results from the univariate analysis. In general confidence interval are wider 

under survey multiple logistic regression than multiple logistic regression. Thus again it is clear 

the survey multiple logistic regression is more protective to type I error than the multiple logistic 

regression. One notable difference between the univariate analysis compared to the multivariate 

analysis is that the latter assess significance of predictor variables accounting for the presence of 

other covariates in the models therefore leading to more reliable results and conclusions. 
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Table 4.3: Multiple Logistic regression for TB death 

  Multiple logistic regression survey : Multiple  Logistic regression 

Variable OR(Std.Err)       95% CI  p-va lue OR(Std.Err) 95% CI  p-va lue 

Age group                

0-15 REF        

16-30 8.369(0.25) 7.8844 8.8844 <0.001 8.36(0.92) 6.5207 10.7424 <0.001 

31-45 9.92(0.29) 9.3628 10.5143 <0.001 9.92(1.28) 7.4085 13.2878 <0.001 

46-60 6.20(0.18) 5.8439 6.5789 <0.001 6.20(0.76) 4.6905 8.1968 <0.001 

61-75 2.248(0.07) 2.1075 2.3995 <0.001 2.25(0.29) 1.6664 3.0347 <0.001 

76-90 0.82(0.03) 0.76 0.9019 <0.001 0.82(0.12) 0.5951 1.1518 0.228 

>90 1.46(0.09) 1.2876 1.6689 <0.001 1.46(0.27) 0.9645 2.2284 0.069 

Sex         

Male REF        

Female 0.86(0.008) 0.8513 0.883 <0.001 0.86(0.01) 0.8472 0.8873 <0.001 

         

Death Institution         

Hospital  (in-patient)            REF        
Emergency room/out-
patient) 0.57(0.02) 0.5325 0.6111  <0.001 0.57(0.04) 0.4926 

       
0.6604 

             
<0.001 

Death on arriva l  0.43(0.01) 0.4003 0.4588  <0.001 0.43(0.05) 0.3297 0.5569 <0.001 

Nurs ing home 0.64(0.03) 0.5942 0.7018  <0.001 0.64(0.09) 0.4691 0.8891 0.013 

Home 0.59(0.01) 0.5877 0.6121  <0.001 0.59(0.05) 0.5000 0.7195 <0.001 

Other 0.38(0.01) 0.3741 0.3955  <0.001 0.38(0.03) 0.3235 0.4574 <0.001 

Province of death                 

Western Cape REF               

Eastern Cape 0.74(0.03) 0.6871 0.8027 <0.001 0.74(0.04) 0.6640 0.8305 <0.001 

Northern Cape  0.75(0.05) 0.6502 0.8633 <0.001 0.75(0.11) 0.5334 1.0524 0.087 

Free State 0.89(0.05) 0.8012 0.9991 0.048 0.89(0.09) 0.6981 1.1468 0.337 

KwaZuLu-Natal 0.96(0.03) 0.8961 1.0318 0.276 0.96(0.03) 0.8859 1.0437 0.307 

North West 1.04(0.04) 0.9546 1.1327 0.37 1.04(0.04) 0.9438 1.1456 0.385 

Gauteng 0.72(0.03) 0.6689 0.7785 <0.001 0.72(0.04) 0.6282 0.8290 <0.001 

Mpumalanga 0.98(0.04) 0.8990 1.0742 0.701 0.98(0.06) 0.8618 1.1206 0.771 

Limpopo 0.83(0.04) 0.7555 0.9136 <0.001 0.83(0.07) 0.6908 0.9993 0.049 

Outs ide South Africa 1.07(0.16) 0.8022 1.4438 0.624 1.07(0.04) 0.9873 1.1731 0.086 
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4.4 Interpretation of Multiple Logistic Regression Model for HIV Death 

 

In the results in Table 4.4 below, similar interpretation procedure as for TB is done. The results 

show that among age groups, those who are in 31 to 45 years old are more likely to die due to 

HIV related causes than those in the age group 76 to 90 years old. The odds ratio for the 31-45 

age group is 3.8596, 95% CI 3.488-4.2704, P-value < 0.001 for multiple logistic and 

(OR=3.8596, 95%CI 3.1960-4.6610, P-value < 0.001) for the survey multiple logistic. The odds 

ratios of HIV related mortality in both types of multivariate logistic regression models for those 

in age groups 61-75 years, 76-90 years and > 90 are all less than one confirming the univariate 

analysis result that HIV related mortality is higher in the younger age groups since this is where 

the impact of HIV infection is most experience. 

The odds of HIV related mortality for females 1.4154 times of males with a 95% confidence 

intervals (1.364-1.469, with P <0.001) the multiple logistic regression and (1.2818-1.563, P < 

0.001) for survey multiple logistic. This again is a confirmation of the result found under the 

univariate analysis that females experience a higher burden of HIV related mortality than males. 
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Table 4.4: MULTIPLE AND SURVEY LOGISTIC REGRESSION FOR HIV 

 

  

MULTIPLE LOGISTIC REGRESSION  

 

 

SURVEY : MULTIPLE LOGISTIC REGRESSION  

Variable OR(Std.Err) 95% CI  p-va lue OR(Std.Err) 95% CI  p-va lue 

Age group                  

0-15 REF               

16-30 3.43(0.18) 3.096 3.8159  <0.001 3.43(0.27) 2.8681 4.1192  <0.001 

31-45 3.85(0.19) 3.488 4.2704  <0.001 3.85(0.32) 3.196 4.661 <0.001 

46-60 1.80(0.09) 1.62 2.0038  <0.001 1.80(0.24) 1.3247 2.4509 0.002 

61-75 0.27(0.02) 0.233 0.3183  <0.001 0.27(0.07) 0.1501 0.4936 0.001 

76-90 0.04(0.01) 0.031 0.0658  <0.001 0.04(0.02) 0.0203 0.1009  <0.001 

>90 0.47(0.07) 0.358 0.6255  <0.001 0.47(0.22) 0.1653 1.3544 0.142 

Sex                 

Male REF               

Female 1.41(0.03) 1.364 1.469    <0.001 1.41(0.06) 1.2818 1.563 <0.001 

         

Death Institution         

Hospital (in-patient) REF        

Emergency room/out-
patient) 0.82(0.05) 0.737 0.9287 0.001 0.82(0.07) 0.6771 1.0104 0.061 

Death on arrival 0.39(0.03) 0.348 0.4583 <0.001 0.39(0.09) 0.2409 0.6622 0.003 

Nurs ing home 0.96(0.07) 0.834 1.112 0.604 0.96(0.18) 0.6257 1.4811 0.846 

Home 0.34(0.008) 0.325 0.3599 <0.001 0.34(0.07) 0.2184 0.5356 <0.001 

Other 0.45(0.01) 0.43 0.4791 <0.001 0.45(0.16) 0.2057 1.0018 0.05 

Death province         

Western Cape REF        

Eastern Cape 0.63(0.04) 0.553 0.7283 <0.001 0.63(0.05) 0.5277 0.7637 <0.001 

Northern Cape 0.51(0.07) 0.39 0.6745 <0.001 0.51(0.12) 0.2989 0.8802 0.021 

Free State 0.43(0.05) 0.352 0.5425 <0.001 0.43(0.09) 0.2669 0.7153 0.004 

KwaZuLu-Natal 0.61(0.04) 0.542 0.6871 <0.001 0.61(0.06) 0.4846 0.7684 0.001 

North West 0.53(0.04) 0.459 0.6309 <0.001 0.53(0.13) 0.3083 0.9396 0.033 

Gauteng 0.62(0.04) 0.552 0.7129 <0.001 0.62(0.03) 0.5606 0.7013 <0.001 

Mpumalanga 0.42(0.04) 0.358 0.5069 <0.001 0.42(0.08) 0.2741 0.6615 0.002 

Limpopo 0.27(0.03) 0.224 0.3481 <0.001 0.27(0.02) 0.2416 0.3219 <0.001 

Outs ide South Africa 0.39(0.15) 0.185 0.8452 0.017 0.39(0.04) 0.3202 0.4886 <0.001 
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4.5 TB death and HIV cause of death Co-mortality 

 

As mentioned previously, TB and HIV are closely interlinked. TB is a leading cause of HIV-

related morbidity and mortality. HIV is the most important factor fuelling the TB plague in 

populations with a high HIV death. 

Table 4.5 below shows the distribution of TB deaths and death with HIV according to different 

levels of key important factor variable. The table shows the synchronization between these two 

causes of morbidity and mortality.  The distribution by age shows that death due to TB and death 

with HIV is high in the same age group of 31-45 year old with rates of 16.49 % and 3.88 % 

respectively. The distribution according to sex shows that males are at higher risk of TB death 

(11.18%) compared to females (9.95 %), but for HIV it is females who are at higher risk of death 

with HIV with rates of (2.53%) for females and (1.95%) for males.  
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Table 4.5: TB and HIV Co-mortality 

 
Parameter Total(N=65052) TB+(%) Total (N=13718) HIV+(%) 

Age group         

0-15 1976 2.29 1001 1.16 

16-30 14170 16.49 3337 3.88 

31-45 30046 19.05 6814 4.32 

46-60 13618 11.90 2220 1.94 

61-75 3984 4.28 259 0.28 

76-90 973 1.47 30 0.05 

>90 285 2.41 57 0.48 

Sex         

Male 35115 11.18 6111 1.95 

Female 29856 9.95 7584 2.53 

Death province         

Western Cape 3813 7.93 1563 3.25 

Eastern Cape 10146 11.50 1622 1.84 

Northern Cape  1361 8.80 359 2.32 

Free State 5373 10.27 998 1.91 

KwaZulu-Natal 20832 14.58 4528 3.17 

North West 4674 10.09 762 1.64 

Gauteng 8773 7.41 2643 2.23 

Mpumalanga 5850 11.90 958 1.95 

Limpopo 4175 7.76 278 0.52 

Outs ide South Africa 55 9.50 7 1.21 

Death Institution          

Hospital (in-patient) 38352 14.53 9221 3.49 

Emergency room/out-patient) 971 9.10 317 2.97 

Death on arrival 971 6.37 221 1.45 

Nurs ing home 655 5.19 207 1.64 

Home 16567 8.55 1876 0.97 

Other 7536 6.34 1876 1.58 

 
The pattern presented under death province shows that KwaZulu-Natal has highest deaths due to 

TB followed by Mpumalanga, Eastern Cape, Free State and North West. On the other hand 

Western Cape seems to have high death with HIV. 
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TB Death and HIV Death results 

 

In this section we discuss results for fitting TB and HIV jointly. In this analysis if TB and HIV 

were both reported as causes of death either as primary cause or secondary cause that 

observation was given a value of 1 and all other pairs given a value of 0. This binary variables 

was then used as the response variables as the analysis. 

The predictor variables used are those that were used in the simple and multiple logistic 

regression models that is age, sex, and death institution. The model was fitted in STATA using 

multivariate logistic regression and survey multivariate logistic regression. The results for both 

types of adjusted logistic regressions are given in Table 4.6.  The estimates of odds ratios are the 

same in both models but the cluster survey multivariate logistic regression model estimates have 

higher standard errors as expected. The risk of death due to co-mortality is highest in the age 

group 31-45 years (OR=10.25, 95% CI, 7.63-13.77 under the survey multivariate logistic 

regression). The odds ratios and  the 95% confidence intervals for the age groups 16-30, 46-60, 

61-75, 76-90, > 90 are respectively 8.52 (95% CI: 6.62, 10.98), 6.27 (95% CI: 4.73, 8.29), 2.28 

(95%CI: 1.68, 3.10), 0.85 (95% CI: 0.61,1.18) and 1.42 (95% CI:0.95, 2.11). There seems to be a 

decreasing odds death due to co-mortality as we move to higher age groups from the 31-45 years 

age group. The odds of death due to co-mortality is lower for females compared to males 

(OR=0.87, 95% CI: 0.85-0.88).In the results tables parameter estimates and their standard errors 

are given rather than odds. The standard errors can be used to calculate the confidence interval 

limits for the odds ratios by first finding confidence limits of the parameter estimates which 

represent the log odds ratios. 
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Table 4.6: MULTIVARIATE LOGISTIC REGRESS ION AND SURVEY MULTIVARIATE LOGISTIC 

REGRESSION FOR TB DEATH AND HIV DEATH CO-MORTALITY 

 

 

  

 
Multivariate logistic regression 

  
  
  

Survey multivariate logistic regression 
 

  
  

Paramete
r OR(Std. Err) 

95% CI 
  p-value OR(Std.Err) 

95% CI 
  p-value 

Age group                 

0-15 REF               

16-30 8.52(0.27) 8.02 9.06 <0.001 8.52(0.95) 6.62 10.98 <0.001 

31-45 10.25(0.31) 9.65 10.87 <0.001 10.25(1.34) 7.63 13.77 <0.001 

46-60 6.27(0.19) 5.89 6.66 <0.001 6.27(0.78) 4.73 8.29 <0.001 

61-75 2.28(0.08) 2.14 2.44 <0.001 2.28(0.31) 1.68 3.1 <0.001 

76-90 0.85(0.04) 0.78 0.92 <0.001 0.85(0.12) 0.61 1.18 0.283 

>90 1.42(0.09) 1.24 1.62 <0.001 1.42(0.25) 0.95 2.11 0.079 

Sex                 

Male REF               

Female 0.87(0.008) 0.85 0.88 <0.001 0.87(0.01) 0.85 0.89 <0.001 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 

 

CHAPTER FIVE 

 

BAYESIAN MODELLING AND MAPPING USING WINBUGS 

 

5.1 Introduction 

 
In previous Chapters a frequentist likelihood approach has been applied in modeling TB and HIV 

mortality data. These methods include the logistic regression under the generalized linear model 

(GLM) and Survey logistic regression (SLR). In this chapter we focus on the Bayesian spatial 

disease approach which requires spatial prior distributions for model parameters and information 

or data to estimate the posterior distributions. Prior distributions and data likelihood provide two 

sources of information about any problem. The likelihood informs the model about the parameter 

via the data, while the prior distribution informs the model via prior beliefs or assumptions about 

the model parameters. Let   denote the vector of parameters of interest in the likelihood and let 

y denote the data. The product of the likelihood and the prior distributions is called the posterior 

distribution defined as: 

     ,||  gyLyp   

where  g is the prior distribution of the parameter vector  . 

When the sample size is large and the data is informative about cause specific mortality; the 

likelihood will contribute more to the relative risk estimation (Lawson et al., 2003, p.28). 

Disease and mortality mapping studies aim to summarize spatial variation in disease risk or 

generally in the risk of an event, in order to asses and quantify the amount of true spatial 

heterogeneity and the associated patterns, to help infer about areas of elevated or lowered risk. 

Much more work has been done in disease mapping therefore the area is relatively more 
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developed compared to other application areas. In this work it was assumed that the observed 

deaths  i  for each census area  ni ,,1  follow a Poisson distribution with mean iii   , 

where i  are the expected cases for each census area obtained by indirect standardization, and 

i  is the relative risk (RR) for each specific area. The expected number of cases, i  
was 

computed via  

,i irN    

where 
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i
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

was the overall risk of death in the population and iN was the population at risk in 

the i-th province. We first calculated the RR through conventional Poisson models with TB 

deaths and HIV deaths as individual categorical variable. 

In order to take into account both extra-Poisson variability and spatial correlation, smoothed RR 

estimators were also obtained in an entirely Bayesian approach, using the Poisson generalized 

linear mixed models with two random effects. The structured spatial component is modeled by 

including a neighborhood (adjacent) structure that reflects the effect of factors with a greater 

action scope than the spatial unit that smoothly varies with provinces. In this chapter the focus 

will be on spatial models for smoothing area data. 

5.2 Spatial models for smoothing area data 

 

Given the observed number of deaths in an area, i , and the expected number of deaths, i , it is 

assumed that the observed cases i  follow a Poisson distribution that is:  

 iii Poisson  ~ ,  ni ,,2,1                                                                          (5.1) 

therefore the likelihood of the relative risk i is 
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                                                                                        (5.2) 

It follows that the maximum likelihood estimate of the relative risk of mortality in area i , i , is 

given by: 

i

i
i




̂                                                                                                                             (5.3) 

with the estimated standard error of 
i̂  given by 

i̂
i

i



̂
                                                                                                                           (5.4) 

5.3 Model fitting and interpretation of results 

 
In this chapter we will fit four models namely the Poisson gamma, Poisson generalized linear 

mixed model, Spatial model and Spatial convolution model in order to compare which one is the 

best. In what follows, we consider first the likelihood models in equation (5.2) for case event 

data which allows the application of Poisson-process models in this analysis. The probability 

model given by equation (5.1) is the classic model assumed in many disease mapping studies 

involving counts and similarly to equation (5.3) which gives its likelihood. The log-likelihood 

associated with this model given by: 

  i

n

i

iii

n

i

il  



11

ln                                                                                                  (5.5) 

 By differentiating and equating the derivative to zero we get the maximum likelihood estimator 

of i as just
i

i




, which is the SMR (Lawson et al., 2003, p.19), where SMR mean the 

standardized mortality ratio. 
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5.3.1 Poisson-Gamma model 

 

When the data likelihood is Poisson it is assumed that there is a common relative risk parameter 

which follows a single gamma prior and hence the posterior distribution is given by: 

      gyLyp ||  , 

where  g is gamma distributed with parameters ,, or   ,Gamma , and therefore ignoring 

terms which do not depend on   the data likelihood is given by 

 

 

       




n

i ii
iL

1
exp|   

 dependent only on a single parameter  with a gamma prior. A Bayesian specification for this 

model is: 

 

 .,~

,~|





Gamma

Poisson ii 
 

Also note that in the notation of multilevel models, it is common to use iii   . 

Consider   .,,1,~ niPoissoni    The likelihood is given by 
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To account for heterogeneity in the Poisson rates we assume a Gamma   ,  prior distribution 

for . That is,  ,,~  Gamma  so that the probability density function of  is  

   
11 


 


 



ef  

The posterior distribution then follows immediately as 

     
  1
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||
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The Gamma distribution is conjugate to the Poisson distribution, therefore posterior mean is then 
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and likewise the posterior variance is given by 
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Thus in effect 

  11,~|





 nynGammay . 

5.3.2 Poisson-Gamma with hyper parameters for  and   

 

In the Poisson-gamma model,   has a   ,Gamma  distribution at the first level of the 

hierarchy. The parameters  and   will have a hyper prior distributions h and ,h respectively, 

at the second level of the hierarchy. This hierarchical structure can then be written as: 

  ii Poissony ~| , 

 ,,~,|  Gamma  

 .~|  h  

 .~|  h  

 
At this point the parameters are assumed to be fixed. For example in this model if we assume 

 ,  fixed then the gamma prior would be fixed. However, by allowing a higher level of 

variation, it means hyper-prior for ,,  we can fix the value of   and   without heavily 

influencing the lower-level variation. In this case, the relative risks have posterior distribution 

given by 

   iii yGamma ,~  

and the posterior expectation of i  based on a single count observation is 
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5.3.3 Poisson-Gamma spatial moving average (convolution) model 

 

A conjugate Poisson-gamma spatial moving average distribution can be specified for non-

negative counts defined on a spatial lattice using the distribution Pois.conv in WinBUGS version 

1.4. 

Spatial moving average models have been developed primarily for continuous spatial processes 

and are carried out in WinBUGS 1.4. Suppose we have a set of area-specific spatially correlated 

Poisson count data (or random effects) i , ni ,,1 (where n is the number of areas in the study 

region). It assumed that the counts i  are conditionally independent (given area mean i ): 

i  ~ Poisson ( i  ) 

The model for each is constructed by specifying an arbitrary grid of latent i-th gamma random 

variables Jjj ,,1,   (where J is the total number of grid cells defining the latent process) 

covering the study region. These are then convolved with a kernel matrix whose elements, ijk , 

represent the relative contribution of the latent variable in grid cell j to the Poisson mean in area 

i: 

.ijj ji k   

One interpretation of Poisson-gamma moving average model is to view the gamma random 

variables as representing the location and magnitude of unmeasured risk factors, and the area-

specific Poisson means i  as representing the cumulative effect of these risk factors in each area, 

weighted by their distance from the area according to the kernel 'weights' ijk .  
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5.3.4 Poisson –Gamma with spatial conditional autoregressive 

 
Conditional autoregressive (CAR) modelling has found considerable application for the analysis 

of spatial data. CAR variables used in conjunction with the likelihood to implement the Gibbs 

sampling updating implies a pairwise difference joint specification and hence improper joint 

posterior distribution. The main idea for a conditional autoregressive model is that the 

probability estimated at any given location, say ,i are conditional on the level of neighbouring 

value. The standard or “proper’’ CAR models for expectation of a specific observation, iy , is 

often of the form 

   


 
ij

jjijiii ywyy |  

where i is the expected mean value at location i  and  is a spatial autocorrelation parameter. 

The spatial correlation parameter,   determines the size and nature of the spatial neighbourhood 

effect. The notation iy  means observations from all other locations except i  

5.4 MCMC methods 

 

To generate random samples from  yf | , we use a Markov chain satisfying the following: 

  ttf  |1  should be easy to generate from, the equilibrium distribution of the selected Markov 

Chain which must be the posterior distribution,  yf |  of interest. 

In the MCMC approaches one uses the previous sample value to randomly generate the next 

sample value, from the sample generating a Markov Chain. The process proceeds as follows: 

(1) Select an initial 0  
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(2)  Monitor convergence using convergence diagnostics. If no convergence occurs, generate 

more observations 

(3) Cut off the first B observations called the burn in period, and  

(4)  Plot the posterior distribution 

(5)  Obtain summaries of the posterior distribution (mean, median, standard deviation, 

quantiles, correlations, 95% confidence intervals) 

In this approach, we specified a particular quantile of the distribution of interest, typically 2.5% 

and 97.5%, to give a 95% confidence interval. The maps below consist of smoothed relative risk 

and standard mortality rate. 
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Figure 5: RR of TB Death mapped in 9 Province of South Africa: (top left) RR; (top right) 2.5% lower 
limit for the RR; (bottom left) 97.5% upper limit for the RR. 



60 

 

The Gibbs sampler is a MCMC method that is widely applicable to a broad class of Bayesian 

problems and it has sparked a major increase in the Bayesian analysis. This is an algorithm that 

generates a sequence of random variables from a joint distribution of two or more random 

variables. These sequences are required to approximate the joint distribution or to compute the 

summary statistics such as the expectation of the distribution. 

5.4.1 Sampling the Hyper-parameter   

 
As mentioned already, from Gibbs sampler approach, it can be shown that the full 

conditional density for the hyper parameter  is given by  

 
 

 Sf
J
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

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using a Gibbs sampler from the gamma distribution, where j  are the latent variables. For the 

hyper-parameter  one assumes a gamma random variable distributed as  

  ,~ Gamma  

for small 0 in an attempt not to be informative. 

5.5 Application and Interpretation of Model result for TB Death Data 

 

Consider the following data from annual report on deaths from various causes gathered by 
Statistics South Africa in 2007. 
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Table 5: TB and HIV Deaths Data 

 
Id Provinces Census 2007 TB observed TB expected HIV observed HIV expected 

1 KwaZulu-Natal 10259230 20832 13748.26 4528 2900.17 

2 Free State 2773059 5373 3716.14 998 783.91 

3 Eastern Cape 6527747 10146 8747.75 1622 1845.32 

4 Mpumalanga 3643435 5850 4882.52 958 1029.96 

5 Limpopo 5238286 4175 7019.76 278 1480.81 

6 Northern Cape  1058060 1361 1417.89 359 299.10 

7 North West 3271948 4674 4384.70 762 924.94 

8 Western Cape 5278585 3813 7073.76 1563 1492.19 

9 Gauteng 10451713 8773 14006.21 2643 2954.58 

 

The models were fitted using WINBUGS. We fitted the four models defined above for TB death 

using 100 000 iteration with a burn in period of 10 000 iterations and thinning of 10. On testing 

convergence one should always look at the time series history, the plot of the random variable 

being generated versus the number of iterations. In addition to showing poor mixing, such a 

history can also suggest a minimum burn-in period for some starting value. The model scripts 

and the history plots are in appendix C. 

Table 5.1: Relative risk parameter estimates of TB death from four models 

 
Provinces Poisson-Gamma Poisson-GLMM Spatial CAR Convolution Model 

Median(95%Credible 
interval) 

Median(95%Credible 
interval) 

Median(95%Credible 
interval) 

Median(95%Credible 
interval) 

1 1.52(1.49,1.54) 1.52(1.50,1.54) 0.48(0.45,0.48) 14.52(-5.63,27.51) 

2 1.45(1.41,1.48) 1.45(1.41,1.48) 0.42(0.39,0.45) -1.95(-11.34,3.98) 

3 1.16(1.14,1.18) 1.16(1.14,1.18) 0.20(0.18,0.22) -1.22(-3.62,0.35) 

4 1.20(1.17,1.23) 1.20(1.17,1.23) 0.23(0.21,0.26) -1.39(-5.91,-0.02) 

5 0.60(0.58,0.61) 0.59(0.58,0.61) -0.47(-0.49,-0.44) -0.48(-7.3,1.83) 

6 0.96(0.91,1.01) 0.96(0.91,1.01) 0.01(-0.04,0.06) -0.24(-6.92,4.9) 

7 1.07(1.04,1.10) 1.07(1.03,1.09) 0.12(0.09,0.14) -0.38(-2.34,1.92) 

8 0.54(0.52,0.56) 0.54(0.52,0.56) -0.57(-0.59,-0.54) -0.38(-3.85,4.51) 

9 0.63(0.61,0.64) 0.63(0.61,0.64) -0.42(-0.44,-0.39) -3.15(-4.79,-0.52) 

beta 6.87(2.13,16.2) -0.05(-0.33,0.22) -0.052(-0.06,-0.04) -5.27-8.96,-0.68) 

sigma  0.38(0.25,0.68) 0.66(0.44,1.17) 10.14 (2.29,26.69) 

Sigma v    0.05(0.01,1.003) 

Provinces keys: 1-KwaZuLu-Natal, 2-Free State, 3-Eastern Cape, 4-Mpumalanga, 5-Limpopo, 6-
Northern Cape, 7-North West, 8-Western Cape, 9-Gauteng 
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Table 5.2: DIC Values  
 

 TB Observed 

Model Dbar Dhat Pd DIC 

Poisson-Gamma 103.283 94.311 8.972 112.255 

Poisson-GLMM 103.302 94.313 8.989 112.291 

Spatial CAR 107.128 94.316 12.812 119.94 

Convolution Model 118.879 94.303 24.576 143.455 

 

5.6 Discussion of TB Model Results 

 

We first explored variations in TB mortality by administrative province as per 2007 census as 

shown in table 5. The map of standard deviations of TB death rates showed spatial variations in 

South Africa with KwaZulu-Natal, Free State, Mpumalanga and Eastern Cape provinces 

showing the highest variations as shown in Table 5.1, and it shows that TB mortality is higher in 

KwaZulu-Natal followed by Free State and it shows that these mortality levels are significant 

with p-value =0.005 and the standard deviation was 0.0104. In this chapter, a Bayesian approach 

was applied in the data using WinBugs software where we model the data using the Poisson-

Gamma, Poisson GLMMs, Spatial Car and Spatial convolution priors. As stated above  follows 

a gamma distribution and the prior values were 001.0  and 001.0 . As defined above in 

section 5.4.1 note that the Gibbs sampler usually produces chains with smaller autocorrelations 

than other samplers reason why from the Table 5.1 sigma was also used to get results, it is 

expected that the distribution of the weight to spike as the sampler approaches stationary. For all 

the models, 100 000 iterations were carried out, discarding the first 10 000 samples and storing 

every tenth sample. These were then summarized to get the relevant estimates and it was noted 

that coefficient parameters had converged based on the history plot. The corresponding 2.5 and 

97.5 percentiles were mapped as estimates of an approximate 95% credible interval for the 

posterior mean coverage. Therefore it is worth comparing the four results from these different 

approaches. From these results one can see that the estimates are quite comparable, see Tables 
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5.1 for more details. Thus, inference drawn from the four modeling approaches provides some 

degree of confidence in the results. When looking at standard deviations, means, medians, DIC 

and confidence interval for the TB model it is clear that they are comparable and significant, but 

the best model is the Poisson-Gamma based on the results given by Table 5.2 where the DIC is 

112.25 followed by Poisson-GLMMs with a DIC value of 112.3. 

5.7 Application and Interpretation of Model result for HIV Death Data 

 

In the case of the HIV model the same procedure as that of TB was followed. The data set was 

presented in Table 5. In the HIV model, the map of standard deviation showed that spatial 

variations in HIV deaths rates is highest in KwaZulu-Natal followed by Free State, then Northern 

Cape and Western Cape. In Table 5.3 below, the DIC shows that Poisson-Gamma model was the 

best model with a DIC value of 96.9. The model was initialized and 100 000 iterations were 

simulated with a burn in of 10,000 and thinning of 10. These were then summarized in Table 5.4 

to get the relevant estimates of mortality risk and it was noted that coefficient parameters had 

converged based on the history plot but sigma was not considered as it doesn’t monitor the 

convergence and we then drop the directions of all edges to obtain the conditional independence 

graph. The corresponding 2.5 and 97.5 percentiles were mapped as estimates of an approximate 

95% credible interval for the posterior mean coverage. It was noted that coefficient parameters 

converged and the history plot showed convergence (see appendix D for more detail). 

When we plotted the two chains history plots together we observed and hence concluded that 

there is a positive correlation of HIV and TB risk in the same province. The Scripts of the 

selected model and history of complete trace plots for HIV fixed effects parameters can be found 

in appendix D. 
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Table 5.3: DIC VALUE FOR HIV DEATH 
Model Dbar 

 
Dhat 
 

pD 
 

DIC 

Poisson-Gamma 88.5 79.4 8.8 96.9 

Poisson-GLMM 88.6 79.6 8.9 97.5 

Spatial CAR 92.7 79.6 13.1 105.8 

Convolution Model 107.1 79.5 27.5 134.7 
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Figure 5.1: RR of HIV Death mapped in 9 Province of South Africa: (top left) RR; (top right) 2.5% lower limit for the RR; (bottom left) 

97.5% upper limit for the RR. 

Table 5.4: Parameter estimate of HIV Death 
Provinces Poison-Gamma Poisson-GLMM Spatial CAR Convolution Model 

 Median(95%Credible 
interval) 

Median(95%Credible 
interval) 

Median(95%Credible 
interval) 

Median(95%Credible 
interval) 

1 1.56(1.52,1.61) 1.6(1.52,1.61) 1.6(1.50,1.64) 1.56(1.44,1.68) 

2 1.27(1.2,1.4) 1.3(1.19,1.35) 1.3(1.18,1.36) 1.27(1.15,1.39) 

3 0.88(0.84,0.92) 0.9(0.84,0.92) 0.87(0.83,0.93) 0.87(0.81,0.96) 

4 0.93(0.87,0.98) 0.93(0.87,0.99) 0.92(0.86,0.99) 0.93(0.84,1.02) 

5 0.19(0.16,0.21) 0.2(0.17,0.21) 0.19(0.17,0.21) 0.18(0.16,0.21) 

6 1.2(1.1,1.3) 1.19(1.07,1.32) 1.19(1.1,1.3) 1.19(1.05,1.35) 

7 0.8(0.76,0.88) 0.82(0.77,0.88) 0.82(0.76,0.89) 0.82(0.74,0.91) 

8 1.05(0.9,1.1) 1.04(0.99,1.1) 1.05(0.98,1.11) 1.046(0.96,1.14) 

9 0.9(0.86,0.93) 0.89(0.86,0.93) 0.894(0.8,0.9) 0.89(0.82,0.97) 

Beta 3.9(1.18,9.4) -0.14(-0.58,0.29) -0.14(-0.17,-0.11) -015(-0.65,0.26) 

sigma  1.013(0.67,1.79) 1.013(0.67,1.79) 0.05(0.01,1.005) 

Sigma v    0.51(0.33,096) 

Provinces keys: 1-KwaZuLu-Natal, 2-Free State, 3-Eastern Cape, 4-Mpumalanga, 5-Limpopo, 6-
Northern Cape, 7-North West, 8-Western Cape, 9-Gauteng. 

CHAPTER SIX 
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DISCUSSION AND CONCLUSION 

 
The objective of this study is to understand factors that can be used to explain mortality due to 

TB and co-mortality with HIV in South Africa. The analysis was based on mortality data from 

STATS SA collected for the year 2007. The study is particularly concerned with statistical 

methods that can best be used to model these associations, and to identify factors affecting TB 

and HIV mortality in South Africa during the year 2007. The study aims to explore the 

association of risk factors associated with TB and HIV mortality which can include 

demographic, environment, biological and social factors. But because of the problem of a high 

rate of missing values the study focused mainly on demographic type of risk factors. The study 

was also extended to attempt and explain the spatial distribution of risk of mortality due to these 

two conditions. 

6.1 Tuberculosis 

 

Tuberculosis (TB) is the main cause of death in the world among all infectious diseases 

(Herchline and Amorosa, 2010). TB is one of the leading causes of death in HIV individuals in 

South Africa. HIV can dramatically fuel the rate of TB mortality, because HIV compromises the 

immune system. 

The exploratory analysis carried out in this study indicates that TB incidence is higher among 

males than females. This is because males tend to work in more TB prone environments than 

females. One possible such working environment is that males work in mines more than females 

where shafts in mines are poorly ventilated and therefore facilitating very easy spread of TB 

bacteria. Environments where overcrowding is a common feature are ideal conditions for the 

spread of TB and air-borne diseases. Migrant mine workers carry the bacteria back home during 
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holidays and spread it to their surrounding areas. Previous studies on TB prevalence indicate that 

TB prevalence seems to be higher among younger individuals. This can be attributed to the fact 

that younger individuals are increasingly becoming more vulnerable due to infection with HIV. 

Given TB is one of the opportunistic infections among HIV infected- individuals may explain 

this correlation. It also suggests that people with low level of education are more TB infected 

because they are unemployed which lead them to live in high crowded places and high levels of 

poverty. Those who live in informal settlements and those who work in crowded environments 

such as factories where there is a lot of pollution tend to die of TB than other living and working 

condition.  

6.2 Human Immune Virus (HIV) 

 
Globally the estimated number of people living with HIV in 2007 was 33.2 million and 22.5 

million persons were living with HIV in Sub-Saharan Africa (UNAIDS, 2007). HIV represents 

one of the most serious challenges to health and society in general. In South Africa, 16 % of the 

population is infected with HIV, and 1000 people die from AIDS-related causes each day, and 

two-thirds of those with HIV also suffer from TB, because of their weakened immune systems 

(AMREF, 2008). 

The exploratory analysis carried out in this study indicates that HIV is more prevalent among 

females than males. This is largely because females are exposed to sexual abuse, rape and 

commercial sex activities for survival which expose them to HIV mortality. A possible biological 

reason is that females have a larger cervical area which makes it easier for HIV to establish itself 

in females than in males. The high prevalence in young individuals could be due to the fact that 

they are more sexually active and inexperienced which puts them at higher risk of HIV mortality. 

Individuals with lower education levels tend to be less informed about the risks of HIV; thus low 
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levels of education, poverty, overcrowding and unemployment are much associated with the less 

knowledge about HIV/AIDS. 

6.3 Conclusion 

 
This work has investigated factors associated with TB mortality and HIV deaths in South Africa. 

A number of models were used to aid key the estimation of effects of important factors 

associated with the risk of death due to the two infections. Generalized linear models, survey 

logistic regression models and Bayesian spatial disease mapping were used to identity these 

factors. The survey logistic regression model that accounts for more variability in the data helped 

to produce more reliable standard errors of parameter estimates. The results from it given in 

Table 4.1 lead to the same conclusions as the ones given by simple logistic regression model in 

the same table for TB deaths data but with better standard errors. Similar results for HIV 

mortality data are shown in Table 4.2. To ensure that the estimates of effects were adjusted for 

other factors in the model multiple logistic regression and survey logistic regression models. 

The analyses identified factors affecting deaths with TB and HIV in South Africa during the year 

2007, and the identified factors may be used to guide policy and decision making to speed up the 

provision of a better life for all. A statistical model was fitted and parameters to assess 

significance of a number of factors estimated. The analysis seems to indicate that TB deaths are 

highly associated with demographic factors. These factors are such as age and sex.  

The researcher analyzed a complex survey data of TB mortality and HIV deaths in South Africa 

as presented by STATSSA. The most intriguing fact is the variations of results depending on 

different provinces.  For example, KwaZulu-Natal is leading in the number of TB and HIV 

deaths as compared to other provinces. We have also noticed that TB is probably a major 

contributor of deaths among individuals infected with HIV.  
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In chapter 5 under the Bayesian modeling and mapping using WinBUGS section we gave some 

background theory, and then proceed without going into deep details on how the models are 

formulated and estimated. The Tables 5, 5.1, 5.2, 5.3, and 5.4 showed a positive correlation of 

TB and HIV at enumerator area level, therefore the spatial modeling helped a lot in mapping 

areas that are prone to TB and to HIV. We were able to evaluate the proportion of deaths 

associated with TB in South Africa in the year 2007, and reviewed regression modeling for 

relating a binary outcome to a number of predictor variables. Finally, this study was able to 

quantify factors related to TB and co-mortality with HIV and such results will help to guide 

decisions on how to mitigate the problem. 

The major limitation of the study is the data which is very large and could not allow analysis at 

the level of individual members; therefore policy makers and further researchers should focus 

more on individual level, for example TB and HIV both as individual causes of death and co-

mortality. In addition to that, analysis at the individual level might give more insight into the 

disease than analysis at the general level. One major limitation was the high rate of missing 

values in most categories of risk factors which made it difficult to use such information in the 

analysis. There are avenues for further work on the subject. In this study our focus was on TB 

and HIV in South African as well as those who died with both diseases. The results of the study 

can be used in a number of ways as regards public health policies. In terms of provision of public 

health services priority should be directed to provinces with high TB and HIV burden such as 

KwaZulu-Natal. It might be necessary to conduct a detailed province and district within province 

assessments of TB and HIV control programs, setting targets for each district and tracking the 

progress. This may help to understand the root causes of high HIV and TB infection rates hence 
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put in place control measures in order to reduce mortality due these two highly synergistic 

diseases.  

It may also be necessary to conduct research and surveillance about- other TB relevant variables 

such as TB and HIV age categories and gender, number of death by sex and district municipality.  

Also conduct further research to explore the associations between TB variables such as 

environmental, demographic, and other socioeconomics variables not used in this study. The 

GLM and Survey logistic regression models results showed a positive correlation of TB and HIV 

at an enumerator area level, therefore spatial modeling of these data helped a lot in improving 

results and in mapping areas that are prone to TB and HIV. 
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APPENDIXES 

 

Appendix A 

 

Procedures for the Generalized Linear Models  

 

A.1      STATA   Procedures  

 

The STATA system was used to fit the logistic regression model discussed in Chapter 3 and 

fitted in Chapter 2 and 4.  LOGISTIC REGRESSION was used to fit the model. The stepwise 

procedure implemented in   LOGISTIC REGRESSION was applied. 

A.1.1     Model Selection Using STATA Code 

 

The following stepwise selection procedure was used by including the following statements: 

Set memory 400m 

Set more off 

log using "D:\dataset.log", replace 

describe 

summarize 

gen tb=0 

replace tb =1 if CauseA=="A16" | CauseA=="A17" | CauseA=="A18" | CauseA=="A19" 

label var tb "TB Cause-related" 

label values tb tbv 

label define tbv 0 "No TB" 1 "TB" 

gen hiv=0 

replace hiv=1 if CauseA=="B20" | CauseA=="B21" | CauseA=="B22" | CauseA=="B23" | 

CauseA=="B24" 

label var hiv "HIV cause-related" 

label values hiv hv 
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label define hv 0 "HIV negative" 1 "HIV cause-related " 

//HIVB 

gen hiv2=0 

replace hiv2=1 if CauseB=="B20" | CauseB=="B21" | CauseB=="B22" | CauseB=="B23" | 

CauseB=="B24" 

label var hiv2 "HIV cause-related" 

label values hiv2 hv2 

label define hv2 0 "HIV negative" 1 "HIV cause-related " 

//HIVC 

gen hiv3=0 

replace hiv3=1 if CauseC=="B20" | CauseC=="B21" | CauseC=="B22" | CauseC=="B23" | 

CauseC=="B24" 

label var hiv3 "HIV cause-related " 

label values hiv3 hv3 

label define hv3 0 "HIV negative" 1 "HIV cause-related " 

tab tb, miss 

tab hiv, miss 

tab hiv2, miss 

tab hiv3, miss 

//HIVD 

gen hiv4=0 

replace hiv4=1 if CauseD=="B20" | CauseD=="B21" | CauseD=="B22" | CauseD=="B23" | 

CauseD=="B24" 

label var hiv4 "HIV cause-related " 

label values hiv4 hv4 

label define hv4 0 "HIV negative" 1 "HIV cause-related " 

//HIV5 

gen hiv5=0 

replace hiv5=1 if OtherCause=="B20" | OtherCause=="B21" | OtherCause=="B22" | 

OtherCause=="B23" | OtherCause=="B24" 

label var hiv5 "HIV cause-related " 
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label values hiv5 hv5 

label define hv5 0 "HIV negative" 1 "HIV cause-related " 

//Combination of cases of HIV 

gen hivc=0 

replace hivc=1 if (hiv==1 | hiv2==1 | hiv3==1 |hiv4==1 | hiv5==1) 

label var hivc "HIV cause-related " 

label values hivc hvc 

label define hvc 0 "HIV negative" 1 "HIV cause-related " 

tab hivc 

gen EduCodeg=1 if EduCode==0 

replace EduCodeg=2 if EduCode>0 & EduCode<=9 

replace EduCodeg=3 if EduCode>9 & EduCode<=12 

replace EduCodeg=4 if EduCode==13 

replace EduCodeg=5 if EduCode>=97 & EduCode<=99 

label var EduCodeg "Education group" 

label values EduCodeg edv 

label define edv 1 "None" 2 "Primary Education" 3 "Secondary Education" 4 "University" 5 

"Other" 

tab EduCodeg 

gen ageg=1 if Age<=15 

replace ageg=2 if Age>15 & Age<=30 

replace ageg=3 if Age>30 & Age<=45 

replace ageg=4 if Age>45 & Age<=60 

replace ageg=5 if Age>60 & Age<=75 

replace ageg=6 if Age>75 & Age<=90 

replace ageg=7 if Age>90 & Age<. 

label var ageg "Age group" 

label values ageg agev 

label define agev 1 "0-15" 2 "16-30" 3 "31-45" 4 "46-60" /// 

5 "61-75" 6 "76-90" 7 ">90" 

//New variable for Sex 
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replace Sex=3 if Sex==8 | Sex==9 

label variable Sex "Gender" 

label values Sex sex 

label define sex 1 "Male" 2 "Female" 3 "Other" 

//New variable for Marital status 

replace MStatus=8 if MStatus==9 

label var MStatus "Marital Status" 

label values MStatus mst 

label define mst 1 "Single" 2 "Civil marriage" 3 "Living as married" 4 "Widowed" /// 

5 "Religious law marriage" 6 "Divorced" 7 "Customary marriage" 8 "Other" 

//New variable for Province of birth 

replace Birth_Prov=10 if Birth_Prov==98 

replace Birth_Prov=11 if Birth_Prov==97 | Birth_Prov==99 

label var Birth_Prov "Province of birth" 

label values Birth_Prov bpr 

label define bpr 1 "Western Cape" 2 "Eastern Cape" 3 "Northern Cape" 4 "Free State" /// 

5 "KwaZuLu-Natal" 6 "North West" 7 "Gauteng" 8 "Mpumalanga" 9 "Limpopo" 10 "Outside 

South Africa" 11 "Other" 

tab Birth_Prov 

//New variable for Death province 

replace Death_Prov=10 if Death_Prov==98 

label var Death_Prov "Province of death" 

label values Death_Prov dpr 

label define dpr 1 "Western Cape" 2 "Eastern Cape" 3 "Northern Cape" 4 "Free State" /// 

5 "KwaZuLu-Natal" 6 "North West" 7 "Gauteng" 8 "Mpumalanga" 9 "Limpopo" 10 "Outside 

South Africa" 

tab Death_Prov 

//New variable for Place of death 

replace DeathInst=6 if DeathInst==8 | DeathInst==9 

label var DeathInst "Place of death" 

label values DeathInst dinst 
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label define dinst 1 "Hospital(in-patient)" 2 "Emergency room(out-patient)" 3 "Death on arrival" 

/// 

4 "Nursing home" 5 "Home" 6 "Other" 

tab DeathInst 

//New variable for Province of residence 

replace Res_Prov=10 if Res_Prov==98 

replace Res_Prov=11 if Res_Prov==97 | Res_Prov==99 

label var Res_Prov "Province of residence" 

label values Res_Prov rpr 

label define rpr 1 "Western Cape" 2 "Eastern Cape" 3 "Northern Cape" 4 "Free State" /// 

5 "KwaZuLu-Natal" 6 "North West" 7 "Gauteng" 8 "Mpumalanga" 9 "Limpopo" 10 "Outside 

South Africa" 11 "Other" 

tab Res_Prov 

//New variable for Occupation of deceased 

label var Occupation "Occupation of deceased" 

label values Occupation occ 

label define occ 0 "Armed forces" 1 "Legislators,Senior officer" 2 "Professionals" 3 

"Technicians and Associated" /// 

4 "Clerks" 5 "Searvice workers,shop" 6 "Skilled agricultural" 7 "Craft and related trader" /// 

8 "Plant and machine operator" 9 "Elementary occupation" 

tab Occupation 

//New variable for Type of Industry/Business 

replace Industry=10 if Industry==97 | Industry==98 | Industry==99 

label var Industry "Type of Industry" 

label values Industry ind 

label define ind 0 "Private households,etc" 1 "Agriculture,hunting,etc" 2 "Mining and quarrying" 

3 "Manufacturing" /// 

4 "Electricity,gas and etc" 5 "Construction" 6 "Wholesale and retail" 7 "Transport,storage and 

etc" /// 

8 "Financial intermediate" 9 "Community, social and etc" 10 "Other" 

tab Industry 
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//New variable for Smoking status 

replace Smoker=3 if Smoker==4 | Smoker==8 | Smoker==9 

label var Smoker "Smoking status" 

label values Smoker sms 

label define sms 1 "Yes" 2 "No" 3 "Other" 

tab Smoker 

//New variable for Pregnancy status 

replace Pregnancy=3 if Pregnancy==8 | Pregnancy==9 

label var Pregnancy "Pregnancy status" 

label values Pregnancy preg 

label define preg 1 "Yes" 2 "No" 3 "Other" 

tab Pregnancy 

//Demographic variables 

//Age 

tab ageg, miss  

tab ageg tb,miss row  chi2 

//Sex 

tab Sex, miss 

tab Sex tb, miss row  chi2 exact 

//Marital status 

tab MStatus, miss 

tab MStatus tb, miss row  chi2 

//Province of birth 

tab Birth_Prov 

tab Birth_Prov tb, miss row  chi2 

//Death province 

tab Death_Prov 

tab Death_Prov tb, miss row  chi2 

//Place of death 

tab DeathInst 

tab DeathInst tb, miss  row chi2 
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//Province of residence 

tab Res_Prov 

tab Res_Prov tb, miss  row chi2 

//Education level 

tab EduCodeg 

tab EduCodeg tb, miss  row chi2 

//Occupation  

tab Occupation 

tab Occupation tb, miss  row chi2 

//Type of industry 

tab Industry 

tab Industry tb, miss  row chi2 

//Smoking status 

tab Smoker 

tab Smoker tb, miss  row chi2 

//Pregnancy 

Tab Pregnancy 

tab Pregnancy Sex if Age<=15, cell 

tab Pregnancy tb if Sex==2 & Age>15, miss  row chi2 

//Underlying causes of death 

tab NaturalUnnatural tb, miss  row chi2 exact 

tab NaturalUnnatural 

//HIV 

tab hivc 

tab tb hivc, row chi2 exact 

A.1.2 Model Fitting Using STATA Statements 

 

The following codes were used to fit Simple and Multiple Logistic Regression, by including the 

following statements: 

// 

//Logistic regression 
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// 

//Univariable 

// 

//TB versus Age 

xi: logistic tb i.ageg if ageg<. 

//TB versus Sex 

xi: logistic tb i.Sex if Sex<8 

//TB versus Marital status 

xi: logistic tb i.MStatus 

//TB versus Province of birth 

xi: logistic tb i.Birth_Prov 

//TB versus Province of death 

xi: logistic tb i.Death_Prov 

//TB versus death Institution 

xi: logistic tb i.DeathInst 

//TB versus Province of residence 

xi: logistic tb i.Res_Prov 

//TB versus Education level 

xi: logistic tb i.EduCodeg 

//TB versus Occupation  

xi: logistic tb i.Occupation 

//TB versus type of industry 

xi: logistic tb i.Industry 

//TB versus smoking status  

xi: logistic tb i.Smoker 

//TB versus HIV 

xi: logistic tb i.hivc 

// 

//Logistic regression 

// 

//Multivariable 
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// 

xi: logistic tb Age i.Sex i.MStatus i.Birth_Prov i.Death_Prov i.DeathInst i.Res_Prov /// 

i.EduCodeg i.Occupation i.Industry i.Smoker i.hivc  if (Age>90 & Age<. & Sex<3) 

 

Appendix B 

 

STATA SURVEYLOGISTIC  

 

This procedure was used to fit a survey logistic regression model discussed and fitted in Chapter 

4. The same variables selected by LOGISTIC REGRESSION were used to fit the survey logistic 

regression model. On the other hand, for complex survey data this means data presented by strata 

and clusters. In our case we choose province of death as cluster so that we have ten clusters 

(provinces) and one stratum (South Africa). 

 

// 

//Clustering 

// 

svyset Death_Prov {to define variable which is cluster} 

 

// 

//Logistic regression 

// 

//Univariable 

// 

//TB versus Age 

xi: svy: logistic tb i.ageg if ageg<. 

//TB versus Sex 

xi: svy:logistic tb i.Sex if Sex<8 

//TB versus Marital status 

xi:svy: logistic tb i.MStatus 

//TB versus Province of birth 
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xi: svy: logistic tb i.Birth_Prov 

//TB versus death Institution 

xi: svy: logistic tb i.DeathInst 

//TB versus Province of residence 

xi: svy: logistic tb i.Res_Prov 

//TB versus Education level 

xi: svy: logistic tb i.EduCodeg 

//TB versus Occupation  

xi: svy: logistic tb i.Occupation 

//TB versus type of industry 

xi: svy: logistic tb i.Industry 

//TB versus smoking status  

xi: svy: logistic tb i.Smoker 

//TB versus HIV 

xi: svy: logistic tb i.hivc 

// 

//Logistic regression 

// 

//Multivariable 

// 

xi: svy:logistic tb Age i.Sex i.MStatus i.Birth_Prov  i.DeathInst i.Res_Prov /// 

i.EduCodeg i.Occupation i.Industry i.Smoker i.hivc if (Age>90 & Age<. & Sex<3) 

// 

 

APPENDIX C 

 

TB DEATH MODELING CODES AND HISTORY PLOTS 

 

 

C.1 Poisson-gamma/Test Code 

# The model 

model 
{ 
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# The likelihood 
 for (i in 1:N) { 

  Tbobserved[i]  ~ dpois(mu[i]) 
  mu[i]<- Tbexpected[i]*theta[i] 
  RR[i] <- theta[i]       # Area-specific relative risk (for 

maps) 
  SMR[i]<-Tbobserved[i]/Tbexpected[i] 
  theta[i]~dgamma(alpha,beta) 

 } 
 # Other priors: 
 alpha~dgamma(0.1,0.0001) 

 beta~dgamma(0.1,0.0001) 
  
} 

 
 
Data 

list(N=9) 
 
Tbobserved[] Tbexpected[] 

20832 13748.26412 
5373 3716.141225 
10146 8747.751034 

5850 4882.521073 
4175 7019.760688 
1361 1417.892798 

4674 4384.696052 
3813 7073.764867 
8773 14006.20815 

END 
 
# Initialization 

list(theta=c(1,1,1,1,1,1,1,1,1),alpha=1,beta=1) 
list(theta=c(1,1,1,1,1,1,1,1,1),alpha=1.5,beta=1) 

 

Figure 5.2: History: Complete trace plots for TB fixed effects parameter fitting Poisson-Gamma 
model 
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RR[5] chains 1:2

iteration
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   0.54

   0.56

   0.58

 
 

RR[9] chains 1:2

iteration

10000 25000 50000 75000

    0.6

   0.62

   0.64

   0.66

alpha chains 1:2

iteration

10000 25000 50000 75000

    0.0

   10.0

   20.0

   30.0

   40.0

 
beta chains 1:2

iteration

10000 25000 50000 75000
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   10.0

   20.0

   30.0

   40.0

 
Figure 5.2: TB History plot by fitting Poisson-Gamma model 

 

 

C.2 Poisson GLMMs/Test Code 

# The model 

model 
{ 

# The likelihood 
 for (i in 1:N) { 
  Tbobserved[i]  ~ dpois(mu[i]) 

  terms[i]<-beta+b[i] 
  log(mu[i]) <- log(Tbexpected[i])+terms[i] 
  RR[i] <- exp(terms[i])                           # Area-specific relative risk (for maps) 

  SMR[i]<-Tbobserved[i]/Tbexpected[i] 
   
 } 

# Non-spatial for random effects:  
 
for (i in 1:9) 

{ 
 b[i] ~dnorm(0.0,tau.b) 
 } 

  
 # Other priors: 
 beta ~ dflat()   

 tau.b  ~ dgamma(0.5, 0.0005)     # prior on precision 
 sigma <- sqrt(1 / tau.b)    # standard deviation 
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} 
 

 
# Initialization 
list(beta=0,b=c(0,0,0,0,0,0,0,0,0),tau.b=1) 

list(beta=0.5,b=c(0.5,0.5,0.5,0,2,0,0,0,0),tau.b=1) 
Data 

# The data 

list(N=9) 
Tbobserved[] Tbexpected[] 

20832 13748.26412 
5373 3716.141225 
10146 8747.751034 

5850 4882.521073 
4175 7019.760688 
1361 1417.892798 

4674 4384.696052 
3813 7073.764867 
8773 14006.20815 

END 

 

Figure 5.3: History: Complete trace plots for TB fixed effects parameter fitting Poisson-GLMM 
model 
 

RR[1] chains 1:2

iteration

10000 25000 50000 75000

   1.45

  1.475

    1.5

  1.525

   1.55

  1.575

RR[2] chains 1:2

iteration

10000 25000 50000 75000

   1.35

    1.4

   1.45

    1.5

   1.55

 
 

RR[3] chains 1:2

iteration

10000 25000 50000 75000

    1.1

  1.125

   1.15

  1.175

    1.2

  1.225

RR[4] chains 1:2

iteration

10000 25000 50000 75000

    1.1

   1.15

    1.2

   1.25

 
 

RR[5] chains 1:2

iteration

10000 25000 50000 75000

   0.56

   0.58

    0.6

   0.62

   0.64

RR[6] chains 1:2

iteration

10000 25000 50000 75000

    0.8

    0.9

    1.0

    1.1

 
 

RR[7] chains 1:2

iteration

10000 25000 50000 75000

    1.0

   1.05

    1.1

   1.15

RR[8] chains 1:2

iteration

10000 25000 50000 75000

    0.5

   0.52

   0.54

   0.56

   0.58
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RR[9] chains 1:2

iteration

10000 25000 50000 75000

    0.6

   0.62

   0.64

   0.66

beta chains 1:2

iteration

10000 25000 50000 75000

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
 

sigma chains 1:2

iteration

10000 25000 50000 75000

    0.0

    0.5

    1.0

    1.5

    2.0

 
Figure 5.3: TB History plot by fitting Poisson-GLMMs 
 

C.3 Spatial CAR Model /Test Code 

# The model 

model 
{ 
# The likelihood 

 for (i in 1 : N) { 
  Tbobserved[i]  ~ dpois(mu[i]) 
  terms[i]<-beta+ b[i] 

  log(mu[i]) <- log(Tbexpected[i])+terms[i] 
  SMR[i]<-Tbobserved[i]/Tbexpected[i] 
  RR[i] <- exp(terms[i])        # Area-specific relative risk (for 

maps) 
 } 
 

# CAR prior distribution for random effects:  
 b[1:N] ~ car.normal(adj[], weights[], num[], tau) 
 for(k in 1:sumNumNeigh) { 

  weights[k] <- 1 
 } 
  

 # Other priors: 
 beta~dnorm(0.0,0.001) 
 tau ~ dgamma(0.5, 0.0005)     # prior on precision 

 sigma <- sqrt(1 / tau)    # standard deviation 
} 
 

Data 

# The data 

list(N=9) 
 
Tbobserved[] Tbexpected[] 

20832 13748.26412 
5373 3716.141225 
10146 8747.751034 

5850 4882.521073 
4175 7019.760688 
1361 1417.892798 

4674 4384.696052 
3813 7073.764867 
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8773 14006.20815 
END 

 
 
Adjecency information 
list( num = c(3, 6, 4, 4, 3, 4, 4, 2, 4 
), 
adj = c( 
4, 3, 2,  

9, 7, 6, 4, 3, 1,  
8, 6, 2, 1,  
9, 5, 2, 1,  

9, 7, 4,  
8, 7, 3, 2,  
9, 6, 5, 2,  
6, 3,  

7, 5, 4, 2 
), 
sumNumNeigh = 34) 
 

Initialization 
list(beta=0,b=c(0,0,0,0,0,0,0,0,0),tau=1) 
list(beta=0.5,b=c(1,0,1,0,0,0,0,0,0),tau=1.4) 

Figure 5.4: History: Complete trace plots for TB fixed effects parameter fitting Spatial 

CAR model 

 
RR[1] chains 1:2

iteration

10000 25000 50000 75000

    1.4

   1.45

    1.5

   1.55

    1.6

RR[2] chains 1:2

iteration

10000 25000 50000 75000

   1.35

    1.4

   1.45

    1.5

   1.55

 
 

RR[3] chains 1:2

iteration

10000 25000 50000 75000

    1.1

   1.15

    1.2

   1.25

RR[4] chains 1:2

iteration

10000 25000 50000 75000

    1.1

   1.15

    1.2

   1.25

    1.3

 
 

RR[5] chains 1:2

iteration

10000 25000 50000 75000

   0.54

   0.56

   0.58

    0.6

   0.62

   0.64

RR[6] chains 1:2

iteration

10000 25000 50000 75000

   0.85

    0.9

   0.95

    1.0

   1.05

    1.1

 
 

RR[7] chains 1:2

iteration

10000 25000 50000 75000

   0.95

    1.0

   1.05

    1.1

   1.15

RR[8] chains 1:2

iteration

10000 25000 50000 75000

    0.5

   0.52

   0.54

   0.56

   0.58

 
RR[9] chains 1:2

iteration

10000 25000 50000 75000

   0.58

    0.6

   0.62

   0.64

   0.66

   0.68

beta chains 1:2

iteration

10000 25000 50000 75000

   -0.1

  -0.08

  -0.06

  -0.04

  -0.02

6.93889E-18
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sigma chains 1:2

iteration

10000 25000 50000 75000

    0.0

    1.0

    2.0

    3.0

 
Figure 5.4: TB History plot by fitting Spatial CAR model 
 

 

C.4 Spatial Model with convolution priors /Test Code 

 

# The model 

model 
{ 
# The likelihood 

 for (i in 1 : N) { 

  Tbobserved[i]  ~ dpois(mu[i]) 
  terms[i]<-beta+ b[i]+v[i] 
  log(mu[i]) <- log(Tbexpected[i])+terms[i] 

  SMR[i]<-Tbobserved[i]/Tbexpected[i] 
  RR[i] <- exp(terms[i])        # Area-specific relative risk (for 
maps) 
  v[i]~dnorm(0.0,1.0E-3) 
  
                            v[i]~dnorm(0.0,tau.v) 
} 
 
 
# CAR prior distribution for random effects:  
 b[1:N] ~ car.normal(adj[], weights[], num[], tau) 
 for(k in 1: sumNumNeigh) { 
  weights[k] <- 1 
 } 
  
 # Other priors: 
 beta ~ dnorm(0.0,1.0E-4)  
  
 tau  ~ dgamma(0.5, 0.0005)     # prior on precision 
 tau.v  ~ dgamma(0.5, 0.0005)     # prior on precision 
 sigma <- sqrt(1 / tau)    # standard deviation 
 sigma.v<-sqrt(1/tau.v) 

} 
 

Data 

# The data 

list(N=9) 
Tbobserved[] Tbexpected[] 
20832 13748.26412 

5373 3716.141225 
10146 8747.751034 
5850 4882.521073 

4175 7019.760688 
1361 1417.892798 
4674 4384.696052 
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3813 7073.764867 
8773 14006.20815 

END 
 
 

Adjecency information 
list( num = c(3, 6, 4, 4, 3, 4, 4, 2, 4 
), 

adj = c( 
4, 3, 2,  
9, 7, 6, 4, 3, 1,  

8, 6, 2, 1,  
9, 5, 2, 1,  
9, 7, 4,  

8, 7, 3, 2,  
9, 6, 5, 2,  
6, 3,  

7, 5, 4, 2 
), 
sumNumNeigh = 34) 

 
Initialization 
list(beta=0,b=c(0,0,0,0,0,0,0,0,0),v=c(0,0,0,0,0,0,0,0,0),tau=1,tau. v=1) 

list(beta=1,b=c(1,0,1,0,0,1,0,0,0),v=c(1,0,1,0,1,0,0,0,0),tau=1,tau.v=1.5) 

 

 

Figure 5.5: History: Complete trace plots for TB fixed effects parameter fitting Spatial 

Convolution model 

 
RR[1] chains 1:2

iteration

10000 25000 50000 75000

    1.4

    1.5

    1.6

    1.7

RR[2] chains 1:2

iteration

10000 25000 50000 75000

    1.3

    1.4

    1.5

    1.6

 
 

RR[3] chains 1:2

iteration

10000 25000 50000 75000

    1.0

    1.1

    1.2

    1.3

RR[4] chains 1:2

iteration

10000 25000 50000 75000

    1.1

   1.15

    1.2

   1.25

    1.3

 
 

RR[5] chains 1:2

iteration

10000 25000 50000 75000

    0.5

   0.55

    0.6

   0.65

    0.7

RR[6] chains 1:2

iteration

10000 25000 50000 75000

    0.8

    0.9

    1.0

    1.1

 
 

RR[8] chains 1:2

iteration

10000 25000 50000 75000

   0.45

    0.5

   0.55

    0.6

RR[7] chains 1:2

iteration

10000 25000 50000 75000

   0.95

    1.0

   1.05

    1.1

   1.15

    1.2
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beta chains 1:2

iteration

10000 25000 50000 75000

  -30.0

  -20.0

  -10.0

    0.0

   10.0

RR[9] chains 1:2

iteration

10000 25000 50000 75000

  0.575

    0.6

  0.625

   0.65

  0.675

    0.7

 
Figure 5.5: TB History plot by fitting spatial Convolution model. 

 

APPENDIX D 

 

 HIV DEATH MODELING CODES AND HISTORY PLOTS 

 

D.1 Poisson-gamma /Test CODE 

 

# The model 

model 
{ 

# The likelihood 
 for (i in 1:N) { 
  HIVobserved[i]  ~ dpois(mu[i]) 

  mu[i]<- HIVexpected[i]*theta[i] 
  RR[i] <- theta[i]       # Area-specific relative risk (for 
maps) 

  SMR[i]<-HIVobserved[i]/HIVexpected[i] 
  theta[i]~dgamma(alpha,beta) 
 } 

 # Other priors: 
 alpha~dgamma(0.1,0.0001) 
 beta~dgamma(0.1,0.0001) 

  
} 
 

list(N=9) 
 
HIVobserved[] HIVexpected[] 

4528 2900.172 
998 783.9133 
1622 1845.322 

958 1029.959 
278 1480.806 
359 299.1019 

762 924.9437 
1563 1492.198 
2643 2954.584 

 
END 
# Initialization 

list(theta=c(1,1,1,1,1,1,1,1,1),alpha=1,beta=1) 
list(theta=c(1,1,1,1,1,1,1,1,1),alpha=1.5,beta=1) 
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Figure 5.6: History: Complete trace plots for HIV fixed effects parameter fitting 

 
RR[1] chains 1:2

iteration

10000 25000 50000 75000

   1.45

    1.5

   1.55

    1.6

   1.65

RR[2] chains 1:2

iteration

10000 25000 50000 75000

    1.1

    1.2

    1.3

    1.4

    1.5

 
 

RR[3] chains 1:2

iteration

10000 25000 50000 75000

   0.75

    0.8

   0.85

    0.9

   0.95

    1.0

RR[4] chains 1:2

iteration

10000 25000 50000 75000

    0.8

    0.9

    1.0

    1.1

 
 

RR[5] chains 1:2

iteration

10000 25000 50000 75000

   0.15

  0.175

    0.2

  0.225

   0.25

RR[6] chains 1:2

iteration

10000 25000 50000 75000

    0.8

    1.0

    1.2

    1.4

    1.6

 
 

RR[7] chains 1:2

iteration

10000 25000 50000 75000

    0.7

    0.8

    0.9

    1.0

RR[8] chains 1:2

iteration

10000 25000 50000 75000

    0.9

    1.0

    1.1

    1.2

 
 

RR[9] chains 1:2

iteration

10000 25000 50000 75000

    0.8

   0.85

    0.9

   0.95

    1.0

beta chains 1:2

iteration

10000 25000 50000 75000

    0.0

    5.0

   10.0

   15.0

   20.0

 
Figure 5.6: HIV history plot by fitting Poisson-Gamma 

 

D.2 Poisson-GLMMs /Test CODE 

# The model 

model 

{ 
# The likelihood 
 for (i in 1:N) { 

  HIVobserved[i]  ~ dpois(mu[i]) 
  terms[i]<-beta+b[i] 
  log(mu[i]) <- log(HIVexpected[i])+terms[i] 

  RR[i] <- exp(terms[i])                           # Area-specific relative risk (for maps) 
  SMR[i]<-HIVobserved[i]/HIVexpected[i] 
   

 } 
# Non-spatial for random effects:  
 

for (i in 1:9) 
{ 
 b[i] ~dnorm(0.0,tau.b) 

 } 
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 # Other priors: 

 beta ~ dflat()   
 tau.b  ~ dgamma(0.5, 0.0005)     # prior on precision 
 sigma <- sqrt(1 / tau.b)    # standard deviation 

} 
 
 

# Initialization 
list(beta=0,b=c(0,0,0,0,0,0,0,0,0),tau.b=1) 
list(beta=0.5,b=c(0.5,0.5,0.5,0,2,0,0,0,0),tau.b=1) 

 
 
Data 

list(N=9) 
HIVobserved[] HIVexpected[] 
4528 2900.172 

998 783.9133 
1622 1845.322 
958 1029.959 

278 1480.806 
359 299.1019 
762 924.9437 

1563 1492.198 
2643 2954.584 
END 

 
Figure 5.7: History: Complete trace plots for HIV fixed effects parameter fitting 

 
RR[1] chains 1:2

iteration

10000 25000 50000 75000

   1.45

    1.5

   1.55

    1.6

   1.65

    1.7

RR[2] chains 1:2

iteration

10000 25000 50000 75000

    1.1

    1.2

    1.3

    1.4

    1.5

 
 

RR[3] chains 1:2

iteration

10000 25000 50000 75000
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    0.8

   0.85

    0.9

   0.95

    1.0

RR[4] chains 1:2

iteration

10000 25000 50000 75000

    0.8

    0.9

    1.0

    1.1

 
 

RR[5] chains 1:2

iteration

10000 25000 50000 75000

   0.15

  0.175

    0.2

  0.225

   0.25 RR[6] chains 1:2

iteration

10000 25000 50000 75000

    0.8

    1.0

    1.2

    1.4

    1.6

 
 

RR[7] chains 1:2

iteration

10000 25000 50000 75000

    0.7

    0.8

    0.9

    1.0

RR[8] chains 1:2

iteration

10000 25000 50000 75000

    0.9

    1.0

    1.1

    1.2
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RR[9] chains 1:2

iteration

10000 25000 50000 75000

    0.8

   0.85

    0.9

   0.95

    1.0

beta chains 1:2

iteration

10000 25000 50000 75000

   -2.0

   -1.0

    0.0

    1.0

 
Figure 5.7: HIV history plot by fitting Poisson-GLMMs 

 

D.3 Spatial CAR Model /Test Code 

# The model 

model 
{ 

# The likelihood 
 for (i in 1 : N) { 
  HIVobserved[i]  ~ dpois(mu[i]) 

  terms[i]<-beta+ b[i] 
  log(mu[i]) <- log(HIVexpected[i])+terms[i] 
  SMR[i]<-HIVobserved[i]/HIVexpected[i] 

  RR[i] <- exp(terms[i])        # Area-specific relative risk (for 
maps) 
 } 

 
# CAR prior distribution for random effects:  
 b[1:N] ~ car.normal(adj[], weights[], num[], tau) 

 for(k in 1:sumNumNeigh) { 
  weights[k] <- 1 
 } 

  
 # Other priors: 
 beta~dnorm(0.0,0.001) 

 tau ~ dgamma(0.5, 0.0005)     # prior on precision 
 sigma <- sqrt(1 / tau)    # standard deviation 
} 
 
Data 

# The data 

list(N=9) 
HIVobserved[] HIVexpected[] 

4528 2900.172 
998 783.9133 
1622 1845.322 

958 1029.959 
278 1480.806 
359 299.1019 

762 924.9437 
1563 1492.198 
2643 2954.584 

 
END 
 
 
Adjecency information 

list( num = c(3, 6, 4, 4, 3, 4, 4, 2, 4 
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), 
adj = c( 

4, 3, 2,  
9, 7, 6, 4, 3, 1,  
8, 6, 2, 1,  

9, 5, 2, 1,  
9, 7, 4,  
8, 7, 3, 2,  

9, 6, 5, 2,  
6, 3,  
7, 5, 4, 2 

), 
sumNumNeigh = 34) 
Initialization 

list(beta=0,b=c(0,0,0,0,0,0,0,0,0),tau=1) 
list(beta=0.5,b=c(1,0,1,0,0,0,0,0,0),tau=1.4) 

 

Figure 5.8: History: Complete trace plots for HIV fixed effects parameter fitting 

 
RR[1] chains 1:2

iteration
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    1.4

    1.5

    1.6

    1.7

    1.8

RR[2] chains 1:2

iteration

10000 25000 50000 75000

    1.0

    1.1

    1.2
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    1.4

    1.5

 
 

RR[3] chains 1:2

iteration
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    0.8
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RR[4] chains 1:2

iteration
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    0.8

    0.9

    1.0

    1.1

 
 

RR[5] chains 1:2

iteration

10000 25000 50000 75000

  0.125

   0.15

  0.175

    0.2

  0.225

   0.25

RR[6] chains 1:2

iteration

10000 25000 50000 75000

    0.8

    1.0

    1.2

    1.4

    1.6

 
 

RR[7] chains 1:2

iteration

10000 25000 50000 75000

    0.7

    0.8

    0.9

    1.0

RR[8] chains 1:2

iteration

10000 25000 50000 75000

    0.9

    1.0

    1.1

    1.2

 
 

RR[9] chains 1:2

iteration

10000 25000 50000 75000

    0.8

    0.9

    1.0

beta chains 1:2

iteration

10000 25000 50000 75000

  -0.25

   -0.2

  -0.15

   -0.1

  -0.05

 
Figure 5.8: HIV history plot by fitting Spatial CAR model 

D.4 Spatial Model with convolution priors /Test CODE 

# The model 
model 
{ 
# The likelihood 
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 for (i in 1 : N) { 
  HIVobserved[i]  ~ dpois(mu[i]) 

  terms[i]<-beta+ b[i]+v[i] 
  log(mu[i]) <- log(HIVexpected[i])+terms[i] 
  SMR[i]<-HIVobserved[i]/HIVexpected[i] 

  RR[i] <- exp(terms[i])        # Area-specific relative risk (for 
maps) 
  v[i]~dnorm(0.0,1.0E-3) 
                            v[i]~dnorm(0.0,tau.v) 

 } 
 
 
# CAR prior distribution for random effects:  
 b[1:N] ~ car.normal(adj[], weights[], num[], tau) 
 for(k in 1: sumNumNeigh) { 
  weights[k] <- 1 
 } 
  
 # Other priors: 
 beta ~ dnorm(0.0,1.0E-4)  
  
 tau  ~ dgamma(0.5, 0.0005)     # prior on precision 
 tau.v  ~ dgamma(0.5, 0.0005)     # prior on precision 
 sigma <- sqrt(1 / tau)    # standard deviation 
 sigma.v<-sqrt(1/tau.v) 

} 
 
Data 

# The data 

list(N=9) 
 

HIVobserved[] HIVexpected[] 
4528 2900.172 
998 783.9133 

1622 1845.322 
958 1029.959 
278 1480.806 

359 299.1019 
762 924.9437 
1563 1492.198 

2643 2954.584 
END 
 

 
Adjecency information 
list( num = c(3, 6, 4, 4, 3, 4, 4, 2, 4 

), 
adj = c( 
4, 3, 2,  

9, 7, 6, 4, 3, 1,  
8, 6, 2, 1,  
9, 5, 2, 1,  

9, 7, 4,  
8, 7, 3, 2,  
9, 6, 5, 2,  

6, 3,  
7, 5, 4, 2 
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), 
sumNumNeigh = 34) 

 
Initialization 
list(beta=0,b=c(0,0,0,0,0,0,0,0,0),v=c(0,0,0,0,0,0,0,0,0),tau=1,tau.v=1) 

list(beta=1,b=c(1,0,1,0,0,1,0,0,0),v=c(1,0,1,0,1,0,0,0,0),tau=1,tau.v=1.5) 
 
END 

 

Figure 5.9: History: Complete trace plots for HIV fixed effects parameter fitting 

 
RR[2] chains 1:2

iteration

10000 50000 100000

    1.0

    1.2

    1.4

    1.6

RR[1] chains 1:2

iteration

10000 50000 100000

    1.2

    1.4

    1.6

    1.8

    2.0

 
 

RR[3] chains 1:2

iteration

10000 50000 100000

    0.7

    0.8

    0.9

    1.0

    1.1

RR[4] chains 1:2

iteration

10000 50000 100000

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

 
 

 

RR[5] chains 1:2

iteration

10000 50000 100000

    0.1

   0.15

    0.2

   0.25

RR[6] chains 1:2

iteration

10000 50000 100000

    0.8

    1.0

    1.2

    1.4

    1.6

 
 

RR[7] chains 1:2

iteration

10000 50000 100000

    0.6

    0.7

    0.8

    0.9
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Figure 5.9: HIV history plot by fitting Spatial Convolution model 
 

 


