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Abstract

The current state of information concerning the classical model of determin­
istic, age-dependent population dynamics - the McKendrick von Foerster
equation - is overviewed.
This model and the related Renewal equation are derived and the param­
eters involved in both are elaborated upon. Fundamental theorems con­
cerning existence, uniqueness and boundedness of solutions are outlined.
A necessary and sufficient condition concerning the stability of equilibrium
age-distributions is rederived along different lines . .
Attention is then given to generalizations of the McKendrick-von Foerster
model that have arisen from the inclusion of density- dependence into the
parameters of the system; the inclusion of harvesting terms; and the exten­
sion of the model to describe the dynamics of a two-sex population.
A technique which reduces the model, under certain conditions on the mor­
tality and fertility functions, to a system of ordinary differential equations is
discussed and applied to specific biochemical population models. Emphasis
here is on the possible existence of stable limit cycles.
The Kolmogorov system of ordinary differential equations and its use in
describing the dynamics of predator-prey systems is examined. The Kol­
mogorov theorem is applied as a simple alternative to a lengthy algorithm
for determining whether limit cycles are stable. Age-dependence is incor­
porated into this system by means of a McKendrick - von Foerster equation
and the effects on the system of different patterns of age-selective predation
are demonstrated. Finally, brief mention is made of recent work concerning
the use of the McKendrick - von Foerster equation to describe the dynamics
of both predator and prey.
A synthesis of the theory and results of a large number of papers is sought
and areas valuable to further research are pointed out.
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~ Chapter 1

Intro d uction

The use of mathematical models to describe the growth and development of

populations, be they human, animal, or otherwise, dates back at least as far

as the late eighteenth century, when the English demographer T.R. Malthus

[11 proposed that human populations have a constant, natural growth rate

by means of the model

dP(t)-- = rP(t), r = constant,
dt

(1.1)

P(t) being the total population size at time t and r the constant growth

rate.

Since for r > 0, Mathus' model predicts unlimited population growth, it

was modified by P.F. Verhulst [21 , who, in 1832, offered the alternative

dP(t)""dt = (r - sP(t))P(t), r,s = constants, (1.2)

a choice which involves the growth rate being a function of the popula­

tion size. In this way the model accounts for the self- limiting features of
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the population since the larger the population the less resource~ there are

available to each member and the slower should be its rate of growth. This

equation is often expressed alternatively as the Logistic equation

(1.3)

where Pc , called the environmental carrying capacity, is the largest number

of individuals that the environment is capable of supporting.

The solution of (1.3), given by

. Pc
P(t) = [ ] ,

1 + :(~) - 1 exp(-rt)

tends, for r > 0, asymptotically to Pc with increasing time.

Equation (1.3) was the standard approach for early deterministic popula­

tion models and although it, and modifications of it, have been applied (as

will be seen), with remarkable success to fit the growth curves of various

populations, it has the major shortcoming of ignoring the possible influence

of the age composition of a population upon its development. In fact the

Logistic equation is based on a tacit assumption that the birth and death

processes are age- independent.

There are numerous biological examples were age clearly plays a dominant

role in the dynamics of a population and it was A.G. McKendrick [31 ,

and H. von Foerster [4] who, in 1926 and 1959 respectively, independently

proposed a partial differential equation which has played a unifying role in

age-dependent population mathematics.
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The McKendrick-von Foerster equation (henceforth referred to as the M-F

equation) is derived under the conditions that age and time are continuous

variables; the population is closed to migration; the spatial variation of the

population through time is ignored; and stochastic effects are not accounted

for. In particular, in dealing with the M-F equation it is usually assumed

that only females are counted. Males are present for reproductive purposes

but are not specifically taken into consideration. This approach is adopted

since, in general, the females of a population have a biologically well-defined

beginning and end to their reproductive careers, while the reproductive

behaviour of males is difficult to quantify.

The M-F equation describes the dynamics of such a one-sex population by

means of an age-density or age-distribution function p(a, t).

The quantity p(a, t)da defines the number of individuals at time t with

ages between a and a + da, and represents some kind of smoothing or sta­

tistical average of the true integer-valued population size. More precisely,

p(a, t) = limda_p = Number of individuals aged a to a + da at time t
da In

particular, the number of individuals in the age bracket (all a2) at time t

is given by

l a :! p(a, t)da,
°1

so that the total population at time t is

P(t) = 10
00

p(a, t)da.

To obtain his equation von Foerster [41 , reasoned as follows:

3
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Assume that a small time increment 6t has passed such that the age of

each individual in the population is increased by 6a (where the obvious

requirement that clock time t and age time a be measured in the same units

is imposed). Hence, the age distribution p(a, t +6t) at time t +6t would

be the same as it was at time t if everyone was 6a younger:

p(a, t + 6t) = p(a - 6a, t). (1.6)

However, during the time interval 6t there would be a loss of individuals

in each age group due to death. This is given by

J.L(a, t)p(a, t) 6 a,

where J.L(a, t) is the prescribed age-specific death rate (also known as the

mortality function), that is, the death rate at age a and time t per unit

population of age a.

Thus, (1.6) becomes

p(a, t + 6t) = p(a - /sa, t) - J.L(a, t)p(a, t) 6 a. (1.7)

Assuming p is differentiable everywhere and expanding the two expressions

of p about t and a .yields

Bp Bp
p(a, t) + at 6 t + ... = p(a, t) - Ba 6 a + ... - J.L(a, t)p(a, t) 6 a, (1.8)

while discarding higher powers in 6a and 6 t and noting that 6a = 6t

leads to the M-F equation

Bp(a,t) Bp(a,t)
da + dt = -J.L(a, t)p(a, t).

4
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Obviously the solution to this hyperbolic partial differential equation can

only be completely determined by specifying two auxilliary conditions:

An initial condition on the age distribution at some specified time, usually

taken to be the age distribution at t = 0:

p(a, 0) = cp(a), (1.10)

and the boundary condition p(o, t), denoting the number of births at any

time t.

Hoppensteadt [5] rederived the M-F equation by basing his argument on

the following two biologically plausible assumptions:

1. The change occurring in the population of age a at time t, over a time

interval of length h, is proportional to the size of the population and

the length of the interval. Thus,

p(a + h, t + h) - p(a,t) = -JL(a,t)p(a, t)h, (1.11)

where JL(a, t) is the age-specific death rate introduced earlier.

Again, assuming p is differentiable, Taylor expanding the lead term

and passing to the limit h ~ 0 yields the M-F equation (1.9).

2. The number of individuals introduced into the population in the time
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interval (t, t + h) is!

h 1000

l3(a, t)p(a, t)da, (1.12)

where hl3(a, t) is the average number of births produced by a female

of age a in the interval (t, t+h), with l3(a, t) being the prescribed age­

specific fertility (also referred to as the fertility or fecundity function)

of the population. By definition, l3(a, t) is the average number of

offspring produced per unit time, by an individual of age a at time t.

If the birth rate B(t) is defined as the rate of addition of newborns (indi­

viduals aged zero) to the population at time t, then clearly,

B(t) =p(o, t) = 1000

l3(a, t)p(a, t)da.

As before, the initial condition

p(a,O) = cp(a) ,

(1.13)

is required for a unique solution of (1.9) to be specified.

<p(a) is most often chosen to be a smooth function, becoming zero for large

a, say a ~ p, where p is a fixed constant representing the maximum life

span of the population. The assumption that there is a finite maximum

1 Actually Hoppensteadt defines the number of individuals in the age bracket (ai, a2)

as N {Q2 p(a, t)da, and thus, (1.12) as Nh {CO {3(a, t)p(a , t)da,
lQl lo

.. where N is the population normalization constant. For convenience N has been set equal to
1 here , so that Hoppensteadt's definition of p(a, t) and that already given are in agreement.

6



attainable age, (which is often assumed to be 100 years for human popula­

tions), ensures that the integrals (1.5) and (1.13) are evaluated over finite

intervals, since necessarily p(a, t) = 0 for a ;:::: p. However, we shall adhere

throughout to the convention of using the infinite integral.

Equations (1.9), (1.5), (1.10) and (1.13)2 constitute the McKendrick-von

Foerster (M-F) model of age dependent population growth and will be the

focal point of this treatment of population dynamics.

The objective of this study was to survey the current state of information

concerning age-dependent population models and to relate and synthesise

as much of the theory and as many of the results as possible into a single

presentation. In doing so a few results have been rederived along different

lines and areas valuable to further research have been pointed out.

In the following chapter the M-F system is considered in depth and related

to the Renewal equation, an alternative approach to modelling population

growth.

This provides the foundation for the third chapter in which the M-F model

is generalized to include modifications appropriate to specific situations,

such as allowing for initial conditions p(o, t) that are not of the form (1.13),

and incorporating a harvest of members into the system.

The fourth chapter concerns the M-F system in which the mortality and

fertility functions are so chosen that the basic equations of the theory re­

duce to a system of coupled nonlinear ordinary differential equations. The

2The original McKendrick model involved J10 and f3 being functions of age only. However ,
(1.9), (1.5), (1.10) and (1.13) are also referred to in literature as the M-F model.
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emphasis here is upon the recent developments concerning the stability

properties of such models.

The topic of the final chapters is that of the dynamics of interacting pop­

ulations, in particular, predator-prey populations. While chapter 5 deals

with such models in which age- dependence is ignored and in which the

logistic equation plays a fundamental role, chapter 6, in contrast, covers

predator-prey models in which the dynamics of one or both of the species

is described by the McKendrick-von Foerster equation.
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Chapter 2

The M-F system and its

solu tion

The introductory chapter was deliberately vague about the functions JL(a, t)

and {3(a, t) involved in the M-F model. The definitions of these are obvi­

ously essential to all that will follow and before presenting the solution of

the M-F system these functions need to be elaborated upon.

It is unfair to attribute sole credit to McKendrick and von Foerster for the

continuous time, age-dependent model since, in 1911, prior to their work,

A.J. Lotka and F.R. Sharpe [15] developed an integral equation known as

the Renewal equation to model the dynamics of age-dependent populations.

However, we will see that these two approaches are simply different formu­

lations of the same model since the M-F equation can be obtained from the

Renewal equation and vice versa. The Renewal equation has been stud­

ied extensively, and we present its solution for the time- independent case

JL =JL(a) , {3 ={3(a).

While p(a, t) has been introduced as a differentiable function and JL and {3
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as functions of age and time, this chapter concludes by overviewing Gurtin

and MacCamy's classical paper [291 , in which the M-F system is established

and analysed for the case where p is not differentiable everywhere, and p,

and f3 are functions of age and total population size P(t). Theorems proving

existence and uniqueness of solutions and conditions guaranteeing p E Cl

are quoted. In particular, Gurtin and MacCamy's condition ensuring the

stability of equilibrium solutions of the system is derived along different

and somewhat simpler lines.

2.1 The functions J.l(a, t), f3(a, t) and <p(a).

Although the function p,(a, t) is used extensively in the literature on age­

dependent population dynamics, a formal definition of it is seldom given.

Fortunately, such has been provided by Impagliazzo [61 and Chiang [7],

and in presenting their definitions we restrict attention for the moment to

p, =p,(a).

Impagliazzo first defines the average force of mortality as

where l(a;) is the number of individuals at the exact age a; and d; is' the

number of deaths over the age interval [ai,ai+d. Notice that it is not

strictly correct to write l(a;) = p(a;) since p(a;) represents the number of

individuals at the exact age ai per unit age, so that substitution of p(a)

for l(a) in the above equation results in p, being dimensionless and thus

10



not expressing a rate. Figure 2.1.1 reproduced from [6, p 13] indicates the

average force of mortality data for a particular human population.

fig. 2.1.1

Average force of mortality based on data collected for a French

population of 1746.
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The force of mortality or equivalently the age-specific mortality rate JL(a),

is the continuous function that results when the age interval [lli ,a'i+d is

allowed to approach zero in length. Thus, JL(a) expresses mortality as a

time rate (which Impagliazzo stipulates as being an annual rate) at the

precise moment of attaining age a.

The function lI"(a) recurs frequently in quantitative population analyses.

For a particular cohort of individuals, that is the group of individuals all

born at the same time,

11" (a)

which in this case,

Number of individuals alive at exact age a
Number of individuals born into the cohort

M
l(OY'

~.
PTOY

Thus lI"(a) defines the probability of surviving from birth to age a and as

such is known as the survivorship function.

The formal definition of JL(a) is now given by

1 d
JL(a) =-- -lI"(a).

11" (a) da (2.1.1)

Impagliazzo establishes this in the following way:

Over an interval [lli , lli+l), the number of individuals of exact age lli+l IS

given by the number of individuals of exact age lli less the number of deaths

that occur over the age interval, Le.

12



Substituting this into the definition of p. gives

where, for convenience we have set (l;+l = a + D.a and a, = a.

Rewriting the above expression as

____1_ (l(a + D.a) - l(a))
p, - l(a) D.a ·'

and taking the limit as D.a ~ 0 leads to

1 d
p,(a) = - l(a) dal(a). (2.1.2)

(Notice that replacing l(a) by p(a), which is acceptable in (2.1.2), yields

the M-F equation for the case where the dependence of p and p, on time

has been neglected.)

Now, making use of the definition of 1r , the formal definition (2.1.1) of p,(a)

follows immediately from (2.1.2).

Definition (2.1.1) for p,(a) is most often encountered in the form

1r(a) = exp {- faG p,(a)da} , (2.1.3)

which in turn implies that p,(a) cannot be a bounded function. For suppose

that p,(a) is bounded over an age interval, then since 1r(a) is bounded,

specifically 1r(a) E [0, 11, we can allow the age variable to become as large

as we please and are guaranteed of a probability of surviving to that age.

In other words, survival to infinite age becomes possible.

13



Hence JL (a) cannot be bounded, and for a biologically realistic population

there must exist a maximum attainable age p such that

~a. JL(a)da ---+- 00 as a ---+- p, so that 7r(a) ---+- 0 as a ---+- p.

Figure 2.1.2 given in [6] indicates this property for the age- specific mor­

tality function determined for the Danish population of 1967.

14



Fig 2.1.2

The age-specific mortality curve for the Danish population (females) of

1967
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The definition of p. given by Chiang [7], has identical meaning to that given

by Impagliazzo but incorporates more information:

Here each of the di individuals that die between age lLi and ai+l is assumed

to live on the average, a fraction Ii of the interval. Hence, as for Impagli­

azzo's definition, p. is a measure of

the number of individuals dying in [lLi, ai+l)

the number of years lived in [lLi , lLi+1) by those alive at lLi

Chiang applies this definition to data collected for a number of populations.

For example, for the United States population of 1975, and for the age

interval lLi = 1 year, lLi+1 = 5 years, the value of l(lLi) is 12,804,000, ~ =
9060 and fi = 0,4 so that

p. = 0,0002 per person-year.

Again p.(a) is obtained by allowing the age-interval to tend to zero in length.

It appears that the simplest means of obtaining p.(a) is to apply definition

(2.1.1) since information concerning 7l"(a) is documented for many popula­

tions in the form of lije tables. A sample life table is given in Table 2.1

and applies to a population of vole mice (microtus agrestis) reared under

laboratory conditions. In figure 2.1.3, 7l"(a) is given as a continuous function

of age. (Table 2.1 and figure 2.1.3 also contain information concerning the

fertility of the species which will be discussed shortly.)
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Age in weeks Life table Age-specific
fertility rates

(a) 11" f3
8 0,83349 0,6504
16 0,73132 2,3939
24 0,58809 2,9727
32 0,43343 2,4662
40 0,29277 1,7043
48 0,18126 1,0815
56 0,120285 0,6683
64 0,05348 0,4286
72 0,02549 0,3000

Table 2.1: The Life Table and age-specific fertility rates of the vole

microtus agrestis compiled by Andrewartha and Birch [81.
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Fig. 2.1.3

The Life table and age-specific fertility curves for the vole microius

aqrestis [8, p38]
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Andrewartha and Birch [8] obtained this information by following through

the survival of a sample of the mice population from birth until the last

member of the population died, recording the number of offspring produced

as they aged. Only females were counted and the age-interval was chosen

arbitrarily as eight weeks. Referring to table 2.1, the figures a = 16, 7r =
0,73132 for example, mean that from a sample of 100 mice of age zero

approximately 73% survive to 16 weeks of age.

In [91Keyfitz and Flieger document the life tables for numerous human

populations. Whether the population be human or animal it is obvious, as

Frauenthal [101 remarks, that a biologically realistic form of 7r(a) must be

(i) continuous

(ii) differentiable

(iii) monotonically non-increasing; and as already mentioned

(iv) 0 < 7r(a) ~ 1 for 0 ~ a < p and 7r(p) = 0,

whe~e p represents the terminal age.

As an illustration we applied a polynomial regression to the survivorship

data for the vole mouse population in order to determine an approximate

form for J.L(a).

The curve

+ 4, 744 X 1O- 3a + 0,8527,

19



was found to fit the data with a regression coefficient of correlation 0,9998,

a standard error of ±6,912 x 10--' in the 1T' estimate and standard errors

of ±2, 200 x 10-9 ; ±3, 538 x 10-7 ; ±1, 930 x 10-5 and ±4,079 x 10--' in the

respective coefficients.

Equation (2.1.1) then gave the following curve for JL(a) :
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Fig. 2.1.4

Approximate mortality curve for Andrewartha and Birch's vole mouse

population. (The behaviour of JL(a) over the interval 0 < a < 8 is not
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indicated since the behaviour of 11"(a) here is not known. ·The current form

of 1I"(a) implies that JL(O) < 0 - which is physically nonsensical.)
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Langhaar [11] proposes that a typical form of the mortality function is that

of figure 2.1.5.

Fig. 2.1.5

The typical form of J.L(a) , [11, p201].

Age (a)
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Thus JL(a) is large for either small (especially in the case of high infant

mortality) or large a and reaches a relative minimum between these extreme

values, and JL(a) --+ 00 as a --+ p. The mortality curve for the Danish

population is in agreement with this typical behaviour. It is not known

whether the vole mouse poulation exhibits the usual "high" infant mortality

rate - information on the behaviour of 1r(a) in the age-interval 0 < a < 8

weeks and an accurate fit to this data might indicate this to be so. However,

in this case JL(a) does show a rapid increase at the extreme end of the age­

interval.

Turning now to the maternity function, quantitative population analyses

most often assume {3 to be a function of age only. The maternity function is

obtained from data of the number of female births to females of various ages.

For example, if p(a) gives the rate at which female offspring are produced

by 100 000 females of age a, then {3(a) = lO-Sp(a). In [91 , Keyfitz and

Flieger record such fertility information for human populations of many

countries.

As noted in [101 , it is' physically likely that {3(a) satisfies the properties of

being

(v) continuous!

(vi) differentiable

(vii) {3(a) > 0 for m ~ a ~ n where m and n represent the lower and

lWhile the possibility exists of ,8(a) being sectionally continuous - this could be true
of a population that is forbidden to produce during a certain age interval _ we shall, for
the most part, assume (v) to hold .
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upper limits respectively of a female's fertile age span. (According

to Frauenthal [10, p3], it is customary to assume that m = 15 and

n = 55 for human populations.)

Further,

,B(a) = 0 for {
o < a < m
n < a ::; p,

where 0 ::; m < n ::; p, and p denotes the age of maximum survivor­

ship.

(viii) ,B(a) has a single maximum.

Evidently, the age-specific fertility curve for the vole mouse (figure 2.1.3)

satisfies these conditions. In many of the situations covered in subsequent

chapters the fertility function is assumed to be of the form

,B(a) = ,Boaexp(-aa), ,Bo,a = constants, ,Bo 2: O,a 2: 0, (2.1.4)

so that, for a > 0, the typical behaviour of reproduction being greatest for

individuals of a relatively young age and approaching zero at extreme ages

is modelled.

Swart [12], in considering the controllability of the M-F system, works with

the more general form

,B(a) = f(a) exp( -aa), a>O (2.1.5)

where f(a) is an n-th degree polynomial. Of course, fertility behaviour of

the type v-viii can be approximated by (2.1.5) to any required degree of

accuracy.
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In particular, Nisbet and Gurney [13] choose the gamma- distribution

.Boan+lan exp{-aa) .
.B{a) = , ' .Ba ~ 0, a > 0, n: integer,

n.
(2.1.6)

Their illustration of the gamma-distribution for various values of n is given

in figure 2.1.6.
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Fig. 2.1.6

The shape of the gamma-distribution for a few values of n , [13, p 107].
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Nisbet and Gurney remark that while (2.1.6) may be a reasonable ap­

proximation to the fertility function of a population which reproduces at

a fairly young age, it might not adequately allow for a "juvenile" phase

during which reproduction does not occur. To model this new situation

they construct a displaced gamma-distribution,

,B(a) = ,Boh(a),

where

where the interval °(0,ad represents the juvenile phase and where gn(a, a)

is given by

To scale these functions Nisbet and Gurney introduce a parameter a2

;. Figure 2.1.7 reproduced from [131 illustrates the typical form of the

displaced gamma-distribution.
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Fig. 2.1.'1

The typical form of Nisbet and Gurney's displaced gamma- distribution

for a choice of parameters ai, a2 and n.
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However, (2.1.4) will be the basic form of the fertility functions used in

many of the applications that follow.

So far J.L and [3 have been restricted as functions of age only. While this may

be a valid assumption for populations which exhibit unchanging schedules

of age-specific fertility and mortality rates from generation to generation, or

which are examined over a short time interval, there are obviously situations

for which the influence of time cannot be ignored. This would be true for

example, of long-term human population studies and of studies of "under­

developed" communities for which factors such as improved health care

could lead in time, to a reduction in the mortality rate. It is a simple

matter to include the dependence of time into the definitions of J.L(a) and

[3(a) given earlier. Thus [3(a, t) is now the average number of offspring to

be produced per unit time by an individual of age a at time t, and from

the definition of Jl

J.L(a, t) = lim Jl = lim l( cl;) ,
<la-a <la-a a, t da

where l(a, t) is the number of individuals of exact age a at time t and cl; is

the number of deaths over the age interval [a, a + da).

This may be theoretically acceptable but presents difficulties as far as real

applications are concerned. For example, while we may be able to record

past and present behaviour of l(a, t), its future behaviour cannot be deter­

mined and hence neither can J.L(a, t). Similarly precise informat ion about

the future maternity development is simply not available from present day

data. Thus, one must either estimate these rates or develop fertility and
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mortality functions which determine future rates by depending on the past

behaviour of some demographic parameter. Models involving such choices

of J.L and f3 are included in chapter 3.

Finally, as far as tp(a) is concerned we will, for the most part, consider

(ix) tp(a) to be a Cl function satisfying tp(a) ~ 0 as a ~ 00,

as discussed in chapter 1, although attention will be given to the possibility

of <p(a) being sectionally continuous.

2.2 The Solution of the M-F model and the
Renewal equation

A general solution of the M-F system is obtained by introducing the charac­

teristic co-ordinates (t - a = c, c = constant) and integrating the ordinary

differential equations which result. This procedure leads to

{

B(t - a) exp {- fall J.L(a, t - a + a)da} ,
p(a,t) =

tp(a - t) exp {- f~ J.L(a - t + r, r)dr} ,

If the function p(o, t) = B(t), given by

B(t) = 10
00

f3(a, t)p(a, t)da,

t> a

a?: t.

(1.13)

(2.2.1)

were known, the dynamics of the population would be completely deter­

mined. Of course, B(t) is not known, but it can be found from the integral

equation obtained by substituting (2.2.1) into (1.13). It is not difficult to
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show that this results in

B(t) = G(t) + fat {3(a, t)B(t - a)71" (a, t - a)da,

where

G(t) = loo {3(a, t)rp(a - t)a(a, t)da,

and where 71"(a, t - a) and a(a, t) denote

exp {- foB J.L(a, t - a + a)da}
and exp {- f~ J.L(a - t + T, T)dT} , respectively.

(2.2.2)

Hence, the full problem forp(a, t)h.as been reduced to an integral equation

for .B (t» (2.2.2) is known as a Renewal equation and will be seen to play

a fundamental role in age-dependent population dynamics.

Clearly, the task of finding a solution to (2.2.2) is an important one in this

analysis. Equation (2.2.2) having J.L = J.L(a), {3 ={3(a), namely

where

B(t) = G(t) + fat {3(a)B(t - a)7I"(a)da, (2.2.3)

G(t) = roo
{3(a)rp(a - t)a(a, t)da = roo

{3(a)rp(a _ t) ~(a)) da, (2.2.4)
lt . lt 71" a - t

is known as the linear Renewal equation or Lotka's Renewal equation after

the biologist A.J. Lotka, who, in 1911, together with F.R. Sharpe [141,

[151 , proposed a method of solution that was to be the subject of much

criticism. Before developing the mathematics which led to their classical

31



solution and examining the criticisms raised against it , the assumptions

concerning 7r(a) , ,B(a) and "o(a) need to be established. Lotka and Sharpe,

in fact, placed no particular restrictions on these functions, but we shall

give a more specific foundation to the problem and adopt the approach

used by Lopez [16], who insists, for biological realism, that the conditions

i, v, vi, viii apply to 7r(a) and ,B (a). In addition ,,0(a) is assumed to satisfy

ix.

It is also useful to point out some of the properties of (2.2.3) . As was

proved by Feller [17] there is always a unique solution, (which assures from

the outset that the mathematical model does not contradict the real situa­

tion). Secondly, it can be shown (see Appendix 2.1) that under the above

conditions B(t) is a continuous function. Thirdly, since ,B(a) = 0 for a > n,

it follows from (2.2.4) that G(t) will vanish for t > n.

The essence of Lotka's method of solution consists in finding a family of

functions B(t) all of which satisfy (2.2.3) for t > n and selecting among

that family the particular function which satisfies (2.2.3) for t :5 n:

For t > n we have

or equivalently

B(t) = fon ,B(a)B(t - a)7r(a)da,

B(t) = f: ,B(a)B(t - a)7r(a)da.

(2.2.5)

Lotka chose the trial solution B(t) = Aert , which will satisfy (2.2.5) if and
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(2.2.6)

only if

In e-rCl,B (a)1r (a)da = l.

. It is not difficult to verify (see for example [18, p6], [10, p132]) that equation

(2.2.6) known as the characteristic ~quation has a unique real root, rb

(referred to as the dominant root); all other roots {rj}:j = 2,3, ... appear

in complex conjugate pairs with Re{rj} < rl; and Re{rj} ~ -00 as j ~ 00.

Lotka assumed an infinite number of distinct simple roots of (2.2.6) and

gave, without justification, the general solution to (2.2.5) as

This granted, the choice of coefficients

where F(rd - fon G(a)e-riClda
and H(ri) - "fon ,B(a)1r(a)e-riClda,

(2.2.7)

(2.2.8)
(2.2.9)

guarantee (as Lotka proved, [19, p87]) that (2.2.7) will not only satisfy

(2.2.5) but also the renewal equation (2.2.3).

It was not until William Feller published his paper [17] in 1941, that the

above method received some justification and was placed on a sound math­

ematical basis. It is not the intention to present here, a detailed summary

of the criticisms and corrections involved. These are given in [171. Very

briefly though, the relevant cri ticisms of Lotka's theory are mainly two:

Lotka gave no reason to believe that there must be infinitely many roots
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of (2.2.6) and no assurance that the right-hand side of (2.2.7) converges;

nor reason why there should be infinitely many distinct roots. Secondly,

the expected number of births in the first n years which depends on the

initial age structure and on the fertility and mortality schedules, represents

a function that can assume a vast variety of forms and there is no guarantee

that in all cases it can be decomposed into a sum of oscillations of the type

given by (2.2.7) .

Feller [17] discussed equation (2.2.3) under more general conditions (he

assumed an infinite fertile age span) than have been imposed here and ap­

plying a Laplace Transform solution to (2.2.3) gave, by means of a number

of theorems, conditions for the adequacy of Lotka's method. In particu­

lar, theorem 6 of [17] states that in order that the solution B(t) of (2.2.3)

be representable in the series expansion (2.2.7) where the series converges

absolutely for t > 0, it is necessary that the Laplace Transform of B(t)

L(r) = 10
00

e- rt B(t)dt,

be a single-valued function, and it is necessary and sufficient that L(r)

admit an expansion

L(r) = F(r) =L~
1- H(r) r - r/

£fulwhere Ai = -Il'[i::y; F(r) and H(r) are defined by (2.2.8) and (2.2.9) ; and

where E IA il converges absolutely.

(Theorem 6 is generalized in [17] to include the possibility of (2.2.6) having
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multiple roots. In this case (2.2.7) is replaced by

C7i

B(t) = L L (~dU - I)!) ti-1e r i
' ,

, i=1
(2.2.10)

where (1, is the multiplicity of root T, . The details of this are given in [17,

p264].)

It was Lopez [16,pp 18-28] who then demonstrated by means of a detailed

proof that the condition of Feller's Theorem 6 are satisfied when the finite­

ness of the fertile age span and the continuity of B(t) are recognized. We

have seen that these conditions are guaranteed by the requirements i, v, vii,

and ix on 1r, [3 and cp . Moreover it is unlikely that the assumptions i, iii, iv,

vi, vii, viii are ever violated for any real population, so that, working under

the further assumption ix on cp, we can safely say that Lotka's classical

solution provides a valid method for explicitly determining B(t) and hence

p(a, t) for a real population for which [3 =[3(a) and J.L =J.L(a). As Keyfitz

and Smith state:

... "in demographic work the conditions of the theorem (theorem 6 of [17])

are always met,"?

Given this assurance a useful consequence to demographic applications is

the following:

It is evident from the properties of the roots of (2.2.6) that as t ~ 00

(2.2.11)

~ [20, p.143!
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and that from (2.2.1) and from the expression (1.5) for P(t) that

P(t) = faoo B(t - a)7r(a)da,

so that

as t -+ 00. (2.2.12)

Note then that since this last integral is a constant, (2.2.12) accords with

the Malthusian growth pattern (1.1) where Tl is analogous to the natural

growth rate T.

More importantly (2.2.12) implies that

as t -+ 00,

so that the proportion of individuals in any age group (all a2) given by

f:t p(a,t)da
fooo p(a,t)da'

tends to the constant value

f:
1
2 e- r 1G7r(a)da

fooo e- r 1G7r(a)da'

as t -+ 00 .

Clearly any age-distribution of the form p(a,t) = f(a)g(t) will exhibit such

behaviour and is known as a persistent or stable age-distribution. Thus we

have arrived at Lotka's well-known conclusion, namely, that a population

which starts off with a known initial age-structure and is subjected from
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that moment to time independent fertility and mortality rates eventually

grows exponentially at a rate Tb and as it does so the population "stabi­

lizes", in that the percentage of females in any age bracket remains the

same for all values of time.

Before leaving Lotka's Method it is necessary to make mentio~ of the quan-

tity

(2.2.13)

This defines the net reproduction rate; that is, the average number of off­

spring expected to be born to a female during her life time. Comparing

(2.2.6) and (2.2.13) it follows immediately that the dominant root r1 is

positive, zero or negative, depending on whether Ra is greater than, equal

to, or less than 1. According to (2.2.12) then, the size of Ra determines (as

is physically expected), whether the population grows, shrinks or becomes

constant in size as time increases.

Since the mathematical theory for the linear Renewal equation (2.2.3) is

well established much use has been made of it in projecting birth rates and

future population sizes. Amongst others Keyfitz and Flieger [9], Keyfitz

[21], Coale [22], Bellman and Cooke [23], and Pollard [24] make extensive

use of this equation, particularly in human population contexts. Evidently

the non-linear Renewal equations which result from J.L and [3 being functions

of variables other than age alone - for example we will encounter a situation

where [3 =[3(a, B(t - a)) - present more difficulties. Various non-linear

Renewal equations and the analysis concerning these will be dealt with in
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chapter 3.

Although we have seen that the Renewal equation can be derived from

the M-F system, Lotka established his Renewal equation (2.2.3) from first

principles. Thus, it is Lotka rather than McKendrick and von Foerster, who

is often referred to as the instigator of age-dependent population dynamics.

His contribution to population theory (" ... the greatest single contribution

..."3) is contained in the series of papers ([14], [15], [19], [25], [26], [27],

[28]) extending from 1907 to 1948; the core of his work being the linear

Renewal equation (2.2.3) .

It appears that the trend followed in modelling and analyzing age-dependent

population systems is to use either the appropriate M-F system or the

appropriate Renewal equation as the starting point. Having derived the

Renewal equation from the M-F system it is worthwhile to demonstrate

that the reverse is also possible. This is achieved without difficulty by first

establishing the Renewal equation (2.2.2) from first principles.

Let B(t) denote the rate of addition of newborns to the female population,

that is the birth rate at time t. As for the M-F system, we suppose the

initial age-distribution cp(a), the age-specific death rate JL(a, t) and the age­

specific fertility function l3(a, t) are known. Following the approach used

by Hoppensteadt [18, pp 5,6] or Frauenthal [10, pp 130,131], it is conve­

nient to divide the population into two groups: the females present at time

t = 0 (initial population) and females born after time t = 0 (daughters,

granddaughters, ... of the initial population). At any time t, all females

319, p 185]
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older than age t are in the first group, while all females younger than age

t are in the second.

For the first group the density of females surviving from the initial popu-

lation to attain age a at time t, a ~ t is

since

p(a,t) = tp(a - t)a(a, t), a ~ t, (2.2.14)

a(a, t) = exp {- fat p,(a - t + T, T)dT} ,

can be shown (see Appendix 2.2) to be the probability that an individual

aged a at time t (a ~ t) survives from age a - t to age a, and tp(a - t) is

the density of females in the initial population.

Each of these females will produce newborns at the rate f3(a, t) so that

integrating f3(a, t)a(a, t)tp(a - t) over all ages yields the total birth rate at

time t due to the initial population, namely

100 f3(a, t)a(a, t)ep(a - t)da.

Likewise, in the second group consider the females of age a at time t. These

were born at time t - a at the rate B(t - a). Appendix 2.2 indicates that

the probability that an individual born at time t - a survives to age a is

given by

1r(a,t - a) = exp {- fall p,(a, a + t - a)da}.

Therefore, the density of females in the second group at time t is

p(a,t) = B(t - a)1r(a, t - a).
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Again, each of these females will bear female offspring at the rate {3 (a, t)

so that their contribution to the birth rate at time t is

~t (3(a, t)7r(a, t - a)B(t - a)da.

Combining these results yields

B(t) = G(t) + ~t (3(a, t)B(t - a)7r(a, t - a)da,

where

G(t) = 100 {3(a, t)tp(a - t)a(a, t)da.

(2.2.17)

Thus, we see that the construction of the Renewal equation (2.2.17), so

called because it describes the way the population reproduces itself, involves

establishing the solution to the M-F system,

(a t) _ { B (t - a)7r (a, t - a), a < t
P , - tp(a - t)a(a, t), a ~ t.

If one was not aware that this is the general solution of the M-F model, a

routine differentiation exercise would confirm that p(a, t) satisfies the M-F

system for t > O. However, to do so one would need the assurance that

p(a, t) is differentiable. Under the usual assumptions i-viii, on 7r and (3, and

tp E Cl, p(a, t) is differentiable everywhere. Shortly, we will encounter a

generalized version of the M-F system that allows for the possibility that

p(a, t) is not differentiable everywhere and involves more general assump­

tions concerning J.L, {3 and tp. However, (2.2.14) and (2.2.16) continue to

satisfy this system. Thus, in either case and definitely in real situations
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where the functions involved are sufficiently smooth, the Renewal equation

approach and the M-F system approach to modelling population dynamics

are essentially equivalent. While a Renewal equation approach only yields

information about B(t), the solution of the M-F system also indicates the

behaviour of the important functions P(t) and p(a, t). Of course, funda­

mental to both models is the solution of the Renewal equation.

A number of papers reviewed in chapter 3 involve a Renewal equation as

the basis of the theory. Since the M-F equation is the focal point of this

study the findings of these are extended to the appropriate M-F system,

to obtain additional information about P(t) and p(a, t) for the populations

concerned.

Having introduced the M-F system and the related Renewal equation, the

fundamental theorems concerning this model need to be outlined.

2.3 Gurtin and MacCamy's non-linear M-F

model

A classic paper in the field of age-dependent population dynamics is Gurtin

and MacCamy's paper [29], (hereinafter referred to as GMC), which estab­

lishes the fundamental features and results concerning the M-F system by

means of seven theorems. As these theorems provide the foundation for

much of which is to follow, they are listed and discussed here in an overview

of GMC.

GMC adopts a more general approach, defining a solution ~f the population
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problem up to time T > 0, as a non-negative function p on R+ x [0,T ],

such that

D ( ) 1
· p(a+h,t+h)-p(a,t)

p a,t = im h
11.-0

exists on R+ x [0, T]; .

P(t) = Iooo p(a,t)da,

is continuous for °~ t s T, and

(2.3.1)

Dp(a, t)
B(t)
p(a,O)

+ JL(a, P(t))p(a, t) = 0,
- p(o, t) = Iooo f3(a, P(t))p(a, t)da,
- tp(a) ,

a> 0,0 < t < T
0< t s T
a 2: o.

(2.3.2)
(2.3.3)
(2.3.4)

Clearly, if p(a,t) is differentiable everywhere then Dp takes the usual form

Dp = Pa + Pt·

Here then, the time dependence of both the mortality and fertility functions

is related to the total population size at time t and not to time itself. This

choice models those ecological (and human) situations in which the growth

of the population limits the availability of food, space and other resources,

and thus affects the survival and maternity behaviour of the population.

Typically, JL should increase with increasing P, and f3 should decrease with

increasing P. This dependence on P(t) now introduces non-linearity into

the M-F equation and into the appropriate Renewal equation.
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GMC examines system (2.3.1 - 2.3.4) under a number of further assump-

tions:

1. The initial age-distribution tp(a) E Ll(R) is sectionally continuous.

(Here we deviate from our usual assumption tp(a) E Cl to follow

GMC's more rigorous approach.)

2. J1.,{3 E C(R+ x R +)i J1.p(a,P) and (3p(a,P) exist for all a ~ 0, P ~

O; J1.(e,P), J1.p(e,P),{3(e,P) and (3p(e,P) as functions of P belong

to C(R+ : L oo(R+))4.

3. ep ~ 0, J1. ~ 0, (3 ~ O.

It is -pointed out in GMC that (2.3.3) is not required to hold at t = 0 and

that by (2.3.4) this relation will be satisfied at t = 0 if and only if tp satisfies

the compatibility condition

ep(O) = 10
00

{3(a, ~)tp(a)daj ~ = 10
00

tp(a)da. (2.3.5)

However, (2.3.5) is not imposed thus allowing for situations in which the

initial age distribution is completely arbitrary.

As before, integrating (2.3.2) along the characteristics yields

{

B(t - a) exp {- foG J1.(a, P(t - a + a) )da}, t > a
p(a, t) =

tp(a - t) exp {- f~ J1.(a - t + r,P(r))dr}, a ~ t

"Loo(R+) defines the space of functions bounded almost everywhere on R +.

C(A : B) defines the set of all continuous functions from A to B .
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where

B(t) = p(o, t), (2.3.7)

so that a knowledge of P and B (along with J.L, {3 and cp) completely de­

termines p(a, t) for all future time. Substitution of (2.3.6) into (2.3.1) and

(2.3.3) leads to the integral equations, given in the form

P(t) - f~ K(t - a, t, P)B(a)da + foOO(L(a, t, P)cp(a)da,

B(t) - f~ {3(t - a, P(t))K(t - a, t, P)B(a)da

+ fooo {3(a + t, P(t))L(a, t, P)cp(a)da,

in GMC, where

(2.3.8)

(2.3.9)

K(a,t ,P) - exp{-fLaJ.L(a +T -t,P(T))dT}

L(a,t,P) - exp{-f~J.L(T+a,P(T))dT}.

Notice that from (2.3.6) it follows that discontinuities in cp will propagate

along the characteristics, and even if cp is continuous, (2.3.6) implies that

p will be discontinuous across the characteristic t = a unless

limp(o, t) = B(O+) = cp(o).uo

By (2.3.9)

Thus, when cp is continuous a necessary and sufficient condition for p con­

tinuous across t = a is that (2.3.5) hold. In the physically unlikely case
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of (2.3.5) not being satisfied, B(t) defined at t = 0 by (2.3.7) will not

agree with B defined at t = 0 by (2.3.9). Gurtin and MacCamy overcome

this technical difficulty by defining B(t) by (2.3.7) for t > 0 and setting

B(O) = B(O+).

It is easily confirmed that (2.3.9) reduces to Lotka's Renewal equation

(2.2.3) for the case J.I. = J.I.(a),{3 == {3(a) and to (2.2.2) for J.I. = J.I.(a,t),{3 =
{3(a, t). The integral equations (2.3.8), (2.3.9) provide the basis for most

of the theorems established in GMC. Before listing these it is interesting

to extend the previous note on discontinuities in <p to consider Langhaar's

[11] discussion on discontinuities in B(t). Langhaar deals with the M-F

system for which J.I. = J.I.(a, t), {3 ={3(a, t) and hence with the Renewal equa­

tion (2.2.2) although his discussion would apply equally well to (2.3.9). He

notes that if G(t) or {3(a, t) develops a stepwise discontinuity at some time

t 1 due to some cataclysmic event, then B(t), given by (2.2.2) (or (2.3.9)),

also has a stepwise discontinuity at t 1 . Now equation (2.2.1), (or (2.3.6))

implies that if B(t) has a stepwise discontinuity at t = t 1 the line t - a = t1

is a stepwise discontinuity for p(a, t). Such a discontinuity could be caused

by a sudden increase (or decrease) in the fertility function {3(a, t). The pop­

ulation density p(a, t) would then be higher (lower) on the side t - a > t 1

than on the side t - a < t 1 • Langhaar illustrates this by supposing that

the birth rate of a human population increases suddenly at t = 0 due to

an event causing a sudden increase in fertility. Ten years later this jump

has increased the population among children less than ten years but has

not changed the age distribution among adults at all. "This observation
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indicates why an increasing population ordinarily has a preponderance of

young individuals and why there may be a shortage of young individuals

in a decreasing population.T

The fundamental theorems of GMC are listed as follows:

Theorem 1

Let p be a solution of the population problem up to time T > O. Then

the total population P and the birth rate B satisfy the integral equations

(2.3.8), (2.3.9) on [0,T ]. Conversely, if P and B are non-negative continuous

functions that satisfy (2.3.8), (2.3.9) on [0,T] and if p is defined on R+ x

[0,T] by (2.3.6), then p is a solution of the population problem up to time

T.

This reaffirms that the M-F system approach and the Renewal equation

approach are simply different formulations of the same model.

Theorem 2: Local Existence

There exists aT> °such that the population problem has a unique solution

up to time T.

(The proof is a direct consequence of a fixed point argument [29, pp 286,

293].)

5[11, p 2111
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Theorem 3

Let

J.L = inf J.L(a, P)
- (J~O.p~o

and suppose that

p= sup f3(a, P) < 00.
(J~O, p~o

(2.3.10)

Further, let p be a solution of the population problem up to time T. Then

for 0 s t s T,

and

P(t)
B(t)
p(a,t)

< ~e6t

< p~e6t

< p~e-~e6t (a < t)

where

6 = P- J.L , ~ = (OO rp(a)da,- Jo

(a;::: t)

11 1,0 li t = sup 1,0.
[o,t)

Thus, bounds for B(t) and P(t) are established under the assumption that

a very reasonable result applies - it is physically most likely that f3(a, P) is

uniformly bounded for all a and P. Further, these bounds could be useful

to social planning - they are easy to compute and provide rough estimates

of future populations sizes and birth rates. Notice too, that P and B can

grow at most like e6t which agrees with the Malthusian Law (1.1). Another

valuable consequence of (2.3.10) is Theorem 4.
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Theorem 4 : Uniqueness

Assume that (2.3.10) holds. Then the population problem has a unique

solution for all time.

In formulating a population problem of the M-F type the most important

questions are whether a solution to (2.3.9) and hence (2.2.1) exists and

whether it is unique - such is necessary if the model is not to contradict

the real situation. The value of Theorem 4 lies in the fact that existence

and uniqueness are guaranteed by a condition that will apply to any real

population.

The next theorem assures that the solution p will be a class Cl function.

Theorem 5

Assume that ep E CI(R+) with tjJ E LI(R+) . Assume in addition that

p,,{3 E CI(R+ X R +) and that (3a.,{3p E C(R+ X R + : Loo(R+)). Let p be a

solution of the population problem up to time T . Then pE CI(R+ x [0, TJ)

if and only if ep satisfies the compatibility condit ion (2.3.5) and

tjJ(O) - [p,(0, <1» - (3(0, <1» ] ep(O)

~oo [,Ba. (a, <1» + ,Bp (a, <1»4> - ,B(a, <1»p,(a, <1» ] ep(a)da,

(2.3.11)

where
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It seems likely that in real situations these rather rigorous conditions can

be relaxed, requiring instead that 'P, tP, J.1., {3, {3a, (3p be sufficiently smooth

bounded functions.

A form of the age-distribution that will play a significant role throughout

is the time-independent solution, p(a, t) = p(a) of (2.3.1 - 4). In this case

(2.3.1 - 4) becomes

Pa + J.1.(a, p.)p = 0
P" - fooo p(a)da
B· p(o) = fooo (3(a, P·)p(a)da.

(2.3.12)
(2.3.13)
(2.3.14)

A solution p E Cl(R+) of (2.3.12 - 14) is known as an equilibrium age­

distribution. Clearly P" and B · are constants.

In studying equilibrium age-distributions the integral

is important.

As for (2.2.15),

R(P) =hoo

(3(a, P)7l"(a, P)da, (2.3.15)

(2.3.16)

defines the probability of surviving from birth to age a in circumstances

where the population size is held constant at P' throughout the aging

process. R(P) indicates the number of children to be born to an individual

when the population size is P.
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Theorem 6

Let P > 0 and assume that f3 (., P) 7r (., P) E L1 (R+). Then a necessary

and sufficient condition that an equilibrium age-distribution exist with total

population P*, is that R(P*) = 1. In this case the (unique) equilibrium

age- distribution corresponding to P* is given by

where

p(a) = B*7r(a, P*),

B* = P*
Jooo 7r(a,P*)da

(2.3.17)

We have seen that for the linear case J.L =J.L(a), f3 =f3(a), the population

grows, declines or tends to a constant value (the equilibrium value) depend­

ing on whether Ra (as given by (2.2.13)) is greater than, less than or equal

to 1. In this case Ra is independent of P, and as pointed out in GMC it

would be fortuitous for Ra to equal 1. Here however R is a function of P,

and it is likely that there exists at least one value of P for which R(P) = l.

Once this value of P(P* say) has been attained, the age-distribution main­

tains the same shape regardless of time progressing so that the number of

individuals in any age group remains constant, and P remains at its fixed

value of P*.

Much recent work in population dynamics has concerned equilibrium age­

distributions and their stability properties; some of this is discussed in

subsequent chapters. In GMC the standard techniques are applied to in­

vestigate the stability of p(a) having corresponding birth-rate B* and total
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population P*. Considering "perturbations" e(a, t) of p(a) such that

p(a, t)
P(t)

- p(a) + e(a, t)
P* + 1000 e(a, t)da,

substitution into (2.3.1- 4) and linearization about the equilibrium position

yields to the first order, the M-F variant

ne + JL(a, p*)e +wp = 0

p(t) = ~oo e(a, t)da

e(o, t) = ~oo {3(a, P*) e(a, t)da + lep(t) ,

where

w - B*JLP(a,P*)1r(a,P*), and

le - B* Icf' {3p (a, P*)1r(a,P*)da.

Gurtin and MacCamy then make the assumption that

- -,te(a, t) = e(a)e ,

(2.3.18)

(2.3.19)

with €(a) and, being complex, and derive a necessary and sufficient con­

dition for the asymptotic stability of p(a) j namely, that all ,'s satisfying

the "gruesome'i'' transcendental equation (3.15) of [29, p 290] have negative

real part.

6This is Nisbet and Gurney's (see 113,p 1051) description of equation (3.15) given in 1291.
Nisbet and Gurney also analyse the system (2.3.18) but do not prescribe perturbations to
be of the form (2.3.19). Necessary and sufficient conditions for local stability are given in
terms of conditions on JJ and {3. The details of their work are given in 1301 .
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The very lengthy final theorem of GMC, theorem 7, proves that this linear

stability analysis is indeed valid.

However, as an alternative to GMC's method of obtaining (3.15) we have

succeeded in deriving their result along somewhat simpler lines, by adopting

instead a "Renewal equation approach" to the problem:

The appropriate Renewal equation for the system (2.3.1-4) is given by

(2.3.9) but can be written instead in the more familiar form

B(t) = G(t) + fat f3(a, P(t))B(t - a) 71" (a, P(t))da,

where

G(t) = 100 f3(a, P(t))<p(a + t)C1(a, t)da,

and 71" ( a, P (t)) is given by

7I"(a, P(t)) = exp {- faa J.L(a, P(t - a + a) )da}.

(2.3.20)

As before, assuming f3(a, P(t)) = 0 for a > n implies that G(t) will vanish

for t > n, so that (2.3.20) becomes

B(t) = fan f3(a, P(t))B(t - a)71" (a, P(t))da, t > n,

or

B(t) = faoo f3(a, P(t))B(t - a)7I"(a, P(t))da, t > n, (2.3.21)

without any loss of generality.

To investigate the stability of (2.3.17) consider a perturbation of the form

P(t) = p. + oe"Tt ,
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where P- = 1000 p(a)da; 181 is small, and 8and 1 are complex.

It is not difficult to verify that the birth-rate corresponding to (2.3.22) is

of the form

B(t) = B- + E e-rt, (2.3.23)

(where B- is the birth-rate corresponding to P., E is a complex constant,

and higher order terms in 8 have been igno~ed).

Substitution in to (2.3.21) yields

E e-rt = -B- + 1000 {3(a, P)B-1r(a,P)da +

1000 (3(a, P) E e'1(t-a)1r(a, P)da

(2.3.24)

Now p(a,t) is given by B(t - a)1r(a, P) for t > a and p(a) by (2.3.17), so

that

p(a,t) - p(a) B(t - a)1r(a, P) - B-1r(a, P-)
- E e'1(t-a)1r(a, P) + B- [1r(a, P) - 1r(a, P-)J ,

from which we obtain

P - P- = faoo E e'1(t-a)1r(a, P)da + B- faoo [1r(a, P) - 1r(a, P-) J da. (2.3.25)

Expanding 1r(a, P) in a power series in 8 and ignoring higher order terms

leads to
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so that (2.3.25) becomes

This in turn implies that

= (OO E e-a"11r(a, P)da.
10 8

On substituting (2.3.26) into (2.3.24) we obtain

(2.3.26)

(2.3.27)

Expansion of R(P) in a power series in 8, ignoring higher order terms yields
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from which (2.3.27) becomes

1 - B* Jo
oo e-a"J1r(a, P)da [Jooo j3p(a, P*)1r(a, P*) da

Jooo j3(a,P*)1r(a,P*) [J; JLP(a,P*)e"J(a-a)da] dale {

1 +B* Jooo1r(a,P*) [JoaJLP(a,p*)e"J(a-a)da] da}-l

(2.3.28)

which, setting P = P*, is exactly equation (3.15) of GMC.

A solution of the form (2.3.22) will exist if and only if , satisfies (2.3.28).

Evidently if all rr's satisfying (2.3.28) have negative real parts, all pertur­

bations will disappear in time and, as t -+ 00, P(t) -+ P"; in other words,

the equilibrium position is stable. If there exists a root of (2.3.28) having

non-negative real part the equilibrium is asymptotically unstable.

In the conclusion of GMC the special case

JL(a, P) - JL(P)
j3(a,P) _ j3(P)e-aa, a> 0, (2.3.29)

is considered. This form of JL and j3 will not be discussed here but is dealt

with in chapter 4. For the M-F system with JL and j3 described by (2.3.29)

the stability criterion (2.3.28) is a polynomial in "

,2 +, [JL(P *) + jJ.(P*)P* _ fi(P*)JL(P*)P*] +
j3(P*)

[jJ. (P*) - fi(p*)] JL(P*)P* = 0,

where jJ. and fi denote differentiation with respect to P.
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It is straight forward to verify that (2.3.30) will have negative real part

roots if and only if

and

Mp·) P(p·) 1
IoI(P·) > tJ(p·) - p.

(2.3.31)

(2.3.32)

However, Gurtin and MacCamy incorrectly weaken (2.3.32) to allow for

equality (see [29, p292]) and state that (2.3.31) will imply (2.3.32), so that

(2.3.31) is a necessary and sufficient condition for the stability of the equilib­

rium age-distribution. Their statement clearly fails to hold when jL(P*) < 0

and it is possible that jL(P*) is indeed negative. For example, we shall en-

counter a case later where,

p.(P) = 1 + c - a - (2c - q)P + (c - q)P2
, 0 < a < 1, c > a, c > qj

and P* = l.

Here jL(P*) = -q < o.
For the choice (2.3.29),

and from the above discussion, R'(P*) < 0 is a necessary but not sufficient

condition for the stability of the equilibrium age distribution, as is implied

in GMC. In the next chapter variations of the expression (2.3.15) for R

will be encountered. In each case the derivative of R with respect to an
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appropriate variable will be ~een to play an important role in stability

criteria.

This summarizes the main results of GMC in which attention was given

to the choice JJ. =JJ.(a, P), f3 =f3(a, P). Chapter 3 deals with numerous

other nonlinear variants of the M-F system, their solution and stability

properties. The GMC results will be seen to form the basis of much of the

theory involved.
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Chapter 3

Non-linear G eneralizations of

the M-F model

With GMC's model and its results providing the initiative, much of the

recent work in population theory has involved constructing and analysing

various other generalizations of the M-F model. Such modifications have

included incorporating dependence upon p(a, t) into the fertility and/or

mortality function; considering boundary conditions p(o, t) that are not

described by the usual integral (1.13); incorporating a harvest of members

into the model; and, extending the M-F system to describe the dynamics

of a two-sex population. The purpose of this chapter is to provide an

overview of these and other generalization of the M-F model, to list and

discuss the results of each, and to point out areas open to further research.

Where details are omitted the references quoted provide a fuller account

and indicate directions of other developments.

The salient feature of linearity (J.L =J.L(a), f3 =f3(a)) of course, is that

B(t) and hence p(a, t) can be explicitly calculated. The Renewal equations
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which arise here are, in general, not as amenable to solution and we will

see that the approach is not to seek an explicit solution but to investigate

asymptotic behaviour of B(t) and P(t) by determining stability criteria on

equilibrium. solutions.

3.1 Dependence of f3 on past birth rate

It has been noted earlier that while at any given instant 1T'(a) (from which

J.L(a) can be deduced) and ,B(a) can be determined from census data for the

population, precise information about future survivorship and maternity

behaviour is simply not available. One must either estimate these rates or

develop fertility and mortality functions which determine future rates by

depending on the past behaviour of some demographic parameter.

This is the ,approach used by Frauenthal [31] and Swick [32], [33] who

consider a maternity function that depends upon the past female birth

rate. In particular, their choice exploits the hypothesis of the economist and

demographer R.A. Easterlin [34], that due to increased economic and social

competition, females born in relatively large cohorts! tend to produce fewer

children than those born in small cohorts. Very roughly the argument here

is that those born in small cohorts have less peer- group job competition

than those born in large cohorts, hence have more chance to succeed, and

demonstrate this success by having more children. Implicit in this argument

is the assumption that an individual can control her own fertility, so that

the model developed would be most appropriate to human populations in

1 A cohort refers to a group of individuals all born at time t.
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developed countries.

Frauenthal [31] mentions that recent data for developed countries confirms

that survivorship behaviour is relatively constant with time, so that , to a

good approximation J..L =J..L(a), while the assumption is made that.
f3(a, t) = p(a)p(B(t - a)). (3.1.1)

B(t - a) is the value of the birth rate at time t - a, but also serves as

a measure of the initial size of the cohort born at time t - a. .B(a) is

the underlying time- independent fertility function. Hence, the maternity

behaviour of a female presently of age a at time t is a function of the size

of the cohort into which she was born.

Frauenthal and Swick study the above situation using the Renewal Equa­

tion as the starting point. In reviewing [31], [32], [33] we shall instead apply

the results of these papers to the appropriate nonlinear version of the M-F

model, namely

Po + Pt = -J..L(a)p

P(t) = ~oo p(a,t)da

B(t) = p(o,t) = ~oo .B(a)p(B(t - a))p(a,t)da

p(a,O) = cp(a) ,

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

where the biologically plausible assumption that J..L(a), f3(a, t), cp(a) are

class Cl functions has been made, so that p is at least differentiable as

discussed in chapter 2.
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As found in chapter 2, the solution to (3.1.2 - 5) is given by

{

B(t - a) exp {- Joa J.L(a)da} = B(t - a)1T' (a) , t > a
p(a, t) =

cp(a - t) exp {- J~ J.L(a - t + €)d€ }, a ~ t
(3.1.6)

Recall too from the previous chapter that for J.L =J.L(a), {3 ={3 (a), Ra

equal to 1 (where Ra is given by (2.2.13)) indicates that B(t) tends to a

constant value as time increases. Now, if in (3.1.1) the birth rate remains

at a constant level B* for a long time, {3(a, t) becomes a function of age

only, so that to preserve consistency, p(a) needs to be normalized such that

Ra = hOC p(a)1T'(a)da = 1. (3.1.7)

In this case the net reproduction rate, that is, the average number of daugh­

ters expected to be born to a female in the cohort B (r) is given by

R(B(r)) = hOC 1T'(a)p(a),B(B(r))da,

Since r = t - a is constant with increasing time

r = t - a.

R(B(r))

so that (3.1.1) becomes

,B(B(r)) Iooo P(a)1T'(a)da

- p(B(r)),

{3(a, t) = p(a)R(B(t - a)),

and Esterlin's hypothesis is satisfied if R(B) is a decreasing function.
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The focus of [31], [32], [33] is on describing the general properties of birth

trajectories (that is, birth rates B(t)) as time increases. The following are

essential to the criteria and results obtained:

- Denoting, as usual, the maximum age of childbearing by n, then

substitution of (3.1.6), into (3.1.4), indicates that the birth rate for

t > n is described by2

B(t) = 10
00

,B(a)R(B(t - a))1l"(a)B(t - a)da.

- Letting p(a) denote the equilibrium solution of (3.1.2 - 5) and

(3.1.8)

it is straightforward to verify that (3.1.8) has an equilibrium birth

rate B = B·, and the M-F system (3.1.2 - 5) has an equilibrium

point (B·, p.) if and only if R(B·) = 1.

- Expansion of BR(B) about B· leads to

(3.1.9)

where w = -B·R'(B·) and g(o) = 0 = g'(o), so that w > 0 reflects

Easterlin's hypothesis. Ignoring second order terms in (3.1.9) leads

2 where fo
oo

can replace fo
n

without loss of generality.
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to

This perhaps justifies why Frauenthal [31] worked with the maternity

function

- [ (B*-B(t-a))](3(a, t) = (3(a) 1 + a B(t _ a) (3.1.10)

which he suggested as being the most realistic for a developed nation

with effective fertility control. In (3.1.10) a is a constant and serves as

a measure of the influence of cohort size upon the current maternity

behaviour. B* is a solution of R(B*) = 1.

We restrict attention for the moment to (3.1.10) and to the analysis and

results of [31]. The advantage of (3.1.10) is that the Renewal equation

B(t) = G(t) + aB* lot 1I"(a),B(a)da + (1 - a) lot B(t - a)1I"(a),B(a)da, t > 0,

(3.1.11)

(with G(t) having the usual form), is linear and can thus be solved along

the lines of Lotka's classica-l solution.

Instead of solving directly for B(t), Frauenthal considers a birth rate B(t)

which is disturbed from its equilibrium position B*, by making the substi­

tution

B(t) = B* + B(t),

in (3.1.11). This leads to another Renewal equation

B(t) = G(t) + (1 - a) lot B(t - a)1I"(a),B(a)da, t > 0,
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where B is the deviation of B(t) from B* and

G(t) = G(t) + B* [~t 7I"(a),B(a)da - 1.]

Assuming as usual that f3(a) = 0 for a> n, so that G(t) = 0 for t > n and

further that
00

B(t) = L Qier;t, t > n,
i=O

leads to the analogue of (2.2.6)

100 - 1
e-r Clf3(a)7I"(a)da =-- .

o 1- 0:

(3.1.14)

(3.1.15)

This linear analysis sketches the proof of the theorem [31, Theorem I] which

states that if all the roots of the characteristic equation (3.1.15) have neg­

ative real part then the equilibrium birth rate B* is asymptotically stable.

Notice that if B(t) is of the form B*+ E erl for t > n as in (2.3.23), then

so is P(t), since from (3.1.6), p(a, t) = B(t - a) 71" (a) for t > n, so that

P(t) - J;' B(t - a)7I"(a)da
- B* Jooo 7I"(a)da+ E erl Jooo 7I"(a)e- r Clda

- P* + ke'", k = constant. (3.1.16)

Therefore, knowledge of the roots of (3.1.15) also indicates the asymptotic

behaviour of the population size P(t). With this in mind, we shall extend

Frauenthal's results concerning B(t) to make similar predictions about P(t).

Frauenthal points out that under the assumptions that 7I"(a) and f3(a) are

continuous and that the fertile age- span is finite (recall the discussion
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of Lopez's proof in Chapter 2, section 2.2), (3.1.14) does represent the

solution of the Renewal equation (3.1.13) for t > 0 where the coefficients

Qi can be determined along similar lines to the coefficients Ai of Lotka's

solution ((2.2.7), (2.2.8), (2.2.9)). Instead of determining these coefficients

and presenting a formal solution B(t) of (3.1.11), Frauenthal investigates

the qualitative behaviour of the birth trajectory with increasing time for

all possible values of a:

1. a < O. According to (3.1.10) this reflects the case where women

born in large cohorts produce large numbers of children, contrary to

Easterlin's hypothesis. The right-hand side of (3.1.15) is now less

than unity. From (3.1.7) and the fact that lI"(a) ~ 0, ,B(a) ~ 0, it

follows that only one real root T = Tl of (3.1.15) exists and this root

is greater than zero. The remaining roots {Ti}: j = 2,3, ... , must

occur in complex conjugate pairs with real parts less than Tl. Hence

(3.1.14) indicates that iJ grows exponentially so that B(t) and P(t)

grow without bound.

2. a = 0 corresponds to Lotka's time-independent model discussed in

section 2.2 of chapter 2.

More interesting cases occur for a > 0, being consistent with Easter­

lin's postulate:

3. 0 < a < 1. Similar analysis to that of 1. confirms that the unique

real root Tl of (3.1.15) is less than zero. All the pairs of complex

conjugate ~oots have real part less than Tl. Furthermore, it is shown
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that the dominant complex root (that is, the complex root having

largest real part), has associated with it ~ period of oscillation about

equal to I, where

1 100

-1 = - a,8(a)1I"(a)da,
~o

(3.1.17)

defines the mean age of childbearing in a population for which jJ. =
jJ.(a) , ,8 = ,8(a). Thus, if disturbed from the equilibrium position

B· , the birth trajectory B (t) (or the population size P (t)), oscillates

about B · (p.) with decreasing amplitude, eventually returning to

B· (p.).

4. cx > 1. In this case all roots {Tj} : J" = 1,2,3, ..., are complex conju­

gate pairs. Let cx = cx· correspond to the case giving rise to a purely

imaginary dominant root.

(i) cx = cx". It is shown in [311 that the period of the undamped

oscillation associated with this case is approximately equal to

2/, so that B(t) oscillates about B" with constant amplitude.

P(t) will also exhibit undamped oscillations about P".

(ii) 1 < cx < cx·. In this case the real part of the dominant root

is less than zero and B(t) oscillates about B" with decreasing

amplitude, eventually returning to B". (The same behaviour is

predicted for P (t).)

(iii) cx > cx". Here the real part of the dominant root is greater than

zero. As time increases, B(t) oscillates about B· with period
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approximately equal to 21 and increasing amplitude. Again P(t)

behaves similarly so that the population ultimately diverges to

unbounded growth.

5. 0: = 1. In this case the right-hand side of the characteristic equation

(3.1.15) becomes unbounded. Setting 0: = 1 in (3.1.11) it follows that

for sufficiently large t (t > n) B(t) remains at its equilibrium value

B·. Necessarily, if B(t) = B·, then

P(t) = 10
00

B(t - a)1J"(a)da = 10
00

B·1J"(a)da = p •.

Frauenthal's results provide a means then, of readily predicting the asymp­

totic character of B(t) and P(t) (and' hence also p(a,t)), for populations

which adjust their reproductive behaviour in accordance with the mater­

nity function (3.1.10). The most salient feature of Frauenthal's model is its

rather accurate explanation of a recent phenomenon observed in a number

of developed countries. Apparently, in recent years bounded large ampli­

tude oscillations in the birth rate have been observed, and in the United

States the period of this oscillation has been found to be about 54 years.

Keyfitz and Flieger [35] compute I, the mean age of childbearing for devel­

oped countries to be close to 27 years and Frauenthal's model predicts that

for 1 < ex < ex· a bounded solution occurs for B(t) for which the natural

period of oscillation is about 21, that is about 54 years. This agreement be­

tween observation and theoretical formulation is very encouraging. (3.1.10)

with 1 < 0: < 0:. is therefore indeed, as Frauenthal envisioned, a very re­

alistic choice of the maternity function of a developed nation. A number
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of other comments are added in [31]. Firstly, it is noted that R(B(r)) as

given by

R(B(r)) = ~oo 7r(a),B(a, t)da,

can be written in this case as

r = t - a,

B·
R(B(r)) = (1- a) + a B(r) (3.1.18)

so that for 0 < a < a·, R(B(r)) assumes a range of values. However, for

this choice of parameters the model predicts that the population approaches

a constant size. Hence, unlike the linear case J.L =J.L(a), ,B =,B(a) and the

nonlinear case J.L =J.L(a, P), ,B =,B(a, P), R need not be precisely equal

to one for a non-divergent solution to occur. In other words, a population

can approach a constant size even though every cohort does not simply

reproduce itself exactly.

Secondly, note by inspecting (3.1.18) that a drawback of the model is that

for a range of values of a and B (r}, both negative and also large positive

values of R(B(r)) can result. Both possibilities are inconsistent with the

behaviour of a real population since, as Frauenthal points out, R(B(r))

would probably never be outside the range of about 1/2 to 2 for a developed

country.

Finally, it is mentioned that the prediction that B(t) will exhibit growing

oscillations for a > a· is physically unlikely. Frauenthal argues that physi­

cal restrictions would prevent this sort of behaviour and proposes without

mathematical proof that it is more reasonable to expect a limit cycle oscil­

lation for a > a· If this were true the implications would be far reaching.
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"Such human institutions as the social security system and the educational

system would have to evolve sufficient flexibility to cope with periodic fluc­

tuations in numbers of people." 3 However, Frauenthal adds that no popu­

lation has satisfied all the assumptions of his model for a sufficiently long

time interval (in particular, the assumption that J.L = J.L(a) is not always

accurate), to give the assurance that it is, in the long-term, an accurate

model upon which such strategies can be based.

Swick [321 , [331 , on the other hand, considers Frauenthal's model with R(B)

and hence i3(B(t - a)) determined from (3.1.9) where in this case a = w =
-B·R'(B·). Again w > 0, or equivalently, R'(B·) < 0 reflects Easterlin's

hypothesis.

Using standard perturbation theory Swick arrives at the following conclu-

sions:

- If0 < -B·R'(B·) < 1 then each birth trajectory B(t) starting in some

neighbourhood of B· approaches B· with oscillations of decreasing

amplitude.

- If 1 < -B·R'(B·) < w· (w· being the purely imaginary root of

(3.1.15)) then each birth trajectory starting near B· approaches B.,

oscillating about B· with period close to 21 (where 1 is defined by

(3.1.17)).

- If -B·R'(B·) > w·, then B· is unstable.

3[31, p. 721
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Clearly the results of [31] are in agreement with these of [32] and [33]. We

see then that the behaviour of the birth rate can be completely determined

by the slope of the net reproduction rate R(B) at the equilibrium B·. Now

the applicationof these results depends on the construction of a precise

function to represent R(B). This is understandably, as Swick explains,

quite a difficult task.

The following result given in [32] formally proves what was observed in

[31] : Suppose that for w = w· (9.1.15) has the purely imaginary root r·i =
~-x:, r > 0; that nr·i is not a root of (9.1.15) for n =/: ±lj and that

c(r·) = 10
00 s,B(s)7r(s) coslr" s)ds =/: o. Then B· bifurcates at w = w· to a

periodic solution of period near r (where r = 2/).

For 1966 U.S. census data Swick shows that i»" ~ 2,3 and r = 2/ ~ 54

years, so that combining the results of [31], [32] and [33] we have that for

the choice of parameters 0 < w < 2,3, B· is asymptotically stable, but

bifurcates at w = 2,3 to a periodic birth rate of period near 54 years.

Swick also mentions that it has not been established mathematically that

these periodic solutions as asymptotically stable, but that numerical solu­

tions strongly suggest that this is the case. He adds that the numerical

solutions generated seem to imply that each birth trajectory does appraoch

the periodic solution as a limit cycle, as Frauenthal proposed.
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3.2 Dependence of f3 on present birth rate

Rorres [36] investigates the case where the fertility function depends on

B(t), so that females "adjust" their fertility according to the present birth

rate. The model studied is the M- F system having J.L = J.L(a, t), {3 =
{3(a, t, B(t)) where explicit dependence on t ime is included and where, al­

though not stated in [36], one would expect {3 to decrease with B.

In this case the net reproduction rate is given by

R(t, B( t)) = 10
00

{3(a, t, B(t) )11" (a, t)da.

By means of three theorems Rorres gives sufficient conditions for B(t) to

be contained in some interval (B', B") for all t sufficiently large, or to ap­

proach an equilibrium value B*. (Here an equilibrium birth rate is defined

as any value B* > 0 such that R(t, B*) = 1 for all t > 0.) As in [32]

and [33] the quantity R'(t, B*) (where differentiation is with respect to B)

plays a dominant role in the stability analysis of this paper. However, the

conditions derived are complicated and do not have informative physical

interpretation.

A more interesting model involving the dependence of {3 on B(t) is Swick's

[371 "welfare model." Swick argues that the most obvious deficiency in the

cohort model (3.1.2 - 5) is the lack of any dependence in f3 and J.L on the

total size of the population, P (t). He notes that although this seems to be

more important in ecological than demographic applications, it can have

impact even for human populations.
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The "welfare model" (which Swick studies from a Renewal equation ap­

proach) involves {3 ={3(a, B(t), P(t)), J1. = J1.(a, P(t)), and is so called since

it is based on the assumption that the general welfare suffers when the

population grows too large, and as a result, the fertility decreases and/or

the mortality increases.

In particular, Swick works under the assumptions that J1. is a constant and

a n+1

{3(a,B,P) = jj(B)N(P)-,anexp(-la), l,a > 0,
n.

where jj and N are unspecified functions of P and B respectively. Thus

"population pressure" effects are assumed to affect {3 rather than J1..

Now, applying an ingenious technique introduced by Gurtin and MacCamy

[38], Swick replaces the usual integral expressions for B(t) and P(t) by a

system of ordinary differential equations. The details of this manipulation

and the resulting system will not be elaborated upon here since Gurtin and

MacCamy's technique and its applications is treated in detail in the next

chapter. Suffice it to say that the technique is facilitated by {3 being of

the form described above and by J1. = J1.(P) (or by J1. being a constant as it

is above), and that by applying eigenvalue analysis to the resulting set of

c.D.E.'s, Swick readily obtains conditions on the parameters of the system

guaranteeing that the equilibrium is stable.
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3.3 Dependence of f3 on a weighted average

of p(a, t)

In all of the models discussed so far the dependence of f3 on B (t - a) or

B(t) (and P(t)) acts as a feedback mechanism, placing a degree of control

on the growth of the population. This is also the case in another variation

of the M-F model studied by Rorres [391 , [4ol, .in which f3 is a function of

the "weight" C(t) of the population, where the term weight is used in a

generic sense denoting a scalar quantity which affects female fertility. More

precisely, C(t) is defined as a weighted average with respect to age of the

age-density function , Le.

C(t) = ~oo c(a)p(a,t)da, (3.3.1)

where c(a) is a given non-negative continuous function on [ 0,001, not iden­

tically equal to zero. (This includes the case where c(a) = 1 so that

C(t) =P(t).) It also allows for different ages to be weighted differently to

account for their possibly different ecological impacts on fertility. (Another

possibility is to set c(a) equal to the average weight of a female of age a, so

that C(t) is the biomass of the populat ion - however, this has an unlikely

application in human populations.)

This problem has also been analysed by Lamberti and Vernole [411 who

consider the generalized form of the M-F Model,

Dp(a, t) = -J.L(a)p(a, t)

C(t) = ~oo c(a)p(a, t)da
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"B (t) = p(o, t) = faoo .B(a, C(t))p(a, t)da

p(a, 0) = <p(a)

(3.3.4)

(3.3.5)

where <p(a), JL(a), .B(a, C(t)) are known bounded, nonnegative continuous

functions of their variables. Notice that JL is assumed to be independent of

the "weight" variable C(t). As usual, JL(a) is defined so that

lim fa JL(a)da = 00a-oo la

ensuring that 7r(a) ~ 0 as a ~ 00 .

In [41] existence and uniqueness of a nonnegative solution of (3.3.2 - 5),

namely

{
B(t - a)7r(a) t > a

p(a,t) = <p(a - t)~ t < a
r(a-t) -,

are proved along similar lines to those of GMC.

The net reproduction rate, in this situation, is given by

R(C) = l« .B(a, C(t))7r(a)da,

and defines, as usual, the expected number of daughters to be born during

the lifetime of a female when the "weight" of the population remains fixed

at C(t). Rorres and, Lamberti and Vernole give attention to investigating

the local and global stability properties of an equilibrium age-distribution

(3.3.6)
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of the system (3.3.2 - 5). Once again, a necessary and sufficient condition

for the existence of an equilibrium age-distribution is that there exists a

C* > 0 such that

~oo {3(a, C*)ll'(a)da = 1. (3.3.7)

As in GMC, Lamberti and Vernole remark that for the linear case ( {3 =
{3 (a)) it would be fortuitous for equilibrium age distributions to exist but

demonstrate that

If lim (00 {3(a, C)da = 0 and lim (00 {3(a, C)ll'(a)da > 1
c.....+oo la e.....o la

then there exists an equilibrium age distribution.

As usual, in studying the local stability properties of (3.3.6) Rorres [391

disturbs B(t) slightly from its equilibrium position B* in order to determine

conditions under which B(t) ~ B* or equivalently p(a, t) ~ p(a) as t ~ 00.

Setting

implies that

B(t) = B*+ E e-rt (3.3.8)

C(t) = C* + ss», E, 0, I complex constants.

Now substitution of (3.3.8) into (3.3.4), use of the relation B* = c; where

D = fooo
c(a)ll'(a)da, and linearization of the resulting equation about the

equilibrium point C* leads to an analogue of the stability equation (2.3.28)

of GMC,

(3.3.9)
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Theorem 1 of [39] states the expected: If all the roots of (9.9.9) have neg­

ative real part then the equilibrium point (B*, C*) is locally stable. Clearly,

if any root of (3.3.9) has positive real part the equilibrium is unstable.

Rorres compares his criterion (3.3.9) to equation (2.3.28), remarking that

GMC's detailed analogue indicates that the dependence of J.L on P(t)( Le.

C(t) with c(a) = 1) as well as age adds to the complexity involved in

deriving such a stability condition. However, in Chapter 2 we presented

an alternative method to that used in GMC which enables (2.3.28) to be

obtained without too much computational difficulty. Notice that since

R'(C*) = Jooo (3c(a, C*)7I"(a)da, (3.3.9) is obtainable from (2.3.28) by re­

placing P* with C* and 71"(a,P*) with c(a)7I"(a). Hence theorem 7 of GMC

also guarantees that the linear analysis of [39] outlined above is indeed

consistent.

Further stability criteria are given in [39] which involve the derivative of

the net reproduction rate. It is noted that if C*R' (C*) > 0 then

hOC [(3(a, C*)7I"(a) + ~ R'(C*)c(a)7I"(a)] da = 1 + C*R'(C*) > 1

from which it is easy to verify that (3.3.9) has a unique, positive, real

root. Thus, a necessary condition for local stability is that C*R' (C*) < o.
Rorres mentions that the ideal situation would be that a particular system

is stable for all negative C*R' (C*) and proceeds to give four criteria which

will guarantee this. We shall limit attention to the case c(a) =1 since this

has the widest physical applications. The relevant criteria are then twofold:

CRITERION 3

76



Suppose JL'(a) ~ [JL(a)]2 for all a ~ o. Then r: is stable if R'(P·) < o.

The case where JL is constant leads to

CRITERION 4

The equilibrium population size P' is stable if R'(P·) < o.

Evidently these criteria have the advantage of being readily applicable. For

example, suppose that

(3(a, P) - (3(P)ae-aa ,a > 0
apd

JL - C, C = constant.

Then R(P) = (3(P) f;' ae-(a+c:)ada and R'(P·) = f~~;l, so that (3'(p.) > 0

is a sufficient condition for the stability of the equilibrium value p ".

We see again that the rate of change of the net reproduction rate with the

"weight" function C (or population size P) is the essential demographic

parameter in determining the local stability (or otherwise) of an equilibrium

point.

In [40] Rorres proceeds to investigate the global stability character of equi­

librium solutions of (3.3.2 - 5). Sufficient conditions for such stability are

presented in detail. Lamberti and Vernole conclude their paper [41] by de­

riving a global stability result for the system (3.3.2 - 5) having (3(a, C) =

f~~ where (3(a) is a continuous non-negative function. Thus (3(a, C) de­

creases with increasing C(t), which for C(t) = P(t) reflects the situation

where environmental pressures affect fecundity. We shall not discuss this

result of [41] nor the results of [40] here, but will instead review another
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variant of the M-F model proposed by Sinestari [42], [43] together with its

local and global stability properties.

3.4 Dependence of (3 upon p(a, t)

Sinestrari constructs a modification of the M-F model reflecting the situa­

tion in which interactions that influence mortality and fertility are supposed

to exist only between individuals of the same age. In particular Sinestrari

works with the system

Dp(a, t) = -JL(a, t,p(a, t))p(a, t)

P(t) = 10
00

p(a, t)da

B(t) = p(o,t) = 10
00

,B(a,t,p(a,t))p(a,t)da

p(a,0) = p(a),

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

where the explicit dependence of,B and JL on time allows one to account for

the effects of seasonal variations, improved health care etc. The dependence

of ,B and JL on p(a, t) implies that at any instant t the rate at which an

individual of age a produces children or dies depends on the individual's

age and the number of individuals (females) of that age at the given time t .

We can perhaps justify this choice by arguing that individuals of the same

age have similar preferences and needs. Therefore, increasing the number

of members in a particular age group limits the availability of necessary

resources for that age group. Thus we expect , as Sinestari assumes, that
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J.f, increases with p and {3 decreases with p, The latter assumption can also

be regarded as a reflection of Easterlin's hypothesis.

Besides the usual assumptions that J.f, ~ 0 be sectionally continuous; that

I:' !p(a)da < 00; and that {3 and J.f, be known continuous, non-negative func­

tions, the above requirements that J.f,(a, t,p) and {3(a, t,p) be respectively

nondecreasing and non- increasing functions of p are imposed throughout

[42] and [43].

Along the lines of the GMC paper Sinestrari establishes existence and

uniqueness of solutions of (3.4.1 - 4); gives a priori bounds for the growth

of P(t) and B(t) under the assumptions g = inf J.f" fj = sup{3 < 00; and

proves theorems guaranteeing the existence, uniqueness, local and global

stability of equilibrium age-distributions of (3.4.1 - 4). In what follows a

few of these results are described.

Clearly, an equilibrium age-distribution of (3.4.1 - 4) must satisfy the sys­

tem

Pa(a) = - J.f, (a, p(a))p(a)

p. = 10
00

p(a)da

B · = p(o) . 10
00

{3(a,p(a))p(a)da

(3.4.5)

(3.4.6)

(3.4.7)

Defining F(B·) = 1000
{3(a,p(a))1~)da,which is the usual net reproduction

rate evaluated at B., a solution p(a) of (3.4.5) satisfies the system if and

only if

F(B·) = 1.
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Sinestrari then demonstrates that F(B*) is non-increasing on [0, 00) so that

there exists F(O+) and F(+oo), and further, that if JL(a,p) and f3(a,p) are

strictly monotonic functions of p, then F is strictly decreasing. This leads in

turn to necessary and sufficient conditions for the existence and uniqueness

of equilibrium solutions, given as theorem 6 of [431:

Theorem 6

If there are equilibrium age-distributions of (3.4.5 - 7) then F(O+) ~ 1 and

F (+00) ~ 1. Conversely, let F (0+) > 1 and F (+00) < 1, then there exists

equilibrium age-distributions. Moreover, if JL(a,p) and f3 (a, p) are strictly

monotonic functions of p then the equilibrium age-distribution is unique.

Theorem 7 of [431, along the lines of theorem 7 of GMC concerns the local

stability of an equilibrium age-distribution:

Theorem 1

Let p(a) be an equilibrium age-distribution such that the following condi­

tion holds

10
00

lf3p(a,p(a))p(a)+ f3 (a,p(a))l exp (- loa JLp(a:,p(a:))p(a:) + JL(a:,P(a:))da:) da < 1

(3.4.9)

then p(a) is locally stable.

Notice from (3.4.8) that (3.4.9) is satisfied when

f3p(a, p) < 0 and f3p(a, p)p + f3(a, p) ~ 0 (3.4.10)

or when f3 does not depend on p and JLp(a, p) > O.

Further, if {Jp =0 = JLp then as expected, (3.4.9) reduces to the requirement

that Ra < 1, which as was seen in chapter 2, guarantees that the origin
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(p* = B* = 0) is asymptotically stable; in other words that the population

eventually becomes extinct.

Sinestrari concludes [43] with a theorem guaranteeing the global stability

of a solution of (3.4.5 - 7):

Theorem 8

Let p(a) be the unique nontrivial equilibrium age- distribution of (3.4.1

_ 4). Suppose further that there exists an age interval (rn, n) such that

f3(a, p) > 0 for rn < a < n and p ~ O; tp(a) ~ 0 in [0, n]j f3(a, p)p is a

non-decreasing function of p; and that p(a, t) is the corresponding solution

of (3.4.1 - 4). Then

lim Ip(a, t) - p(a) 1= 0
t-oo

uniformly. for a E A, A = [o,p] where p represents the age of maximum

survivorship.

The papers [42] and [43] present an interesting generalization of the M-F

system and a wealth of results concerning it. Nevertheless, to obtain expres­

sions for J.I. and f3 as functions of p for a particular population is evidently

not an easy task. The interpretation of p(a, t) is not as "straightforward"

as those of P(t) and B(t), and it is difficult to conceptualize how J.I. and f3

would in fact change with p, However, Sinestrari has proposed the following

expressions for J.I. and f3 in terms of p:

J.I.(a,p) = d(a)e(p)

where d(a) is a positive, continuous function having the form
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(p denotes as usual, the maximum attainable age.)

Such a choice of d(a) agrees with that proposed in chapter 2. Further e(p)

is assumed to be given by

e(p) = {
o:p+ E, 0:::; p :::; PI
e(p), PI < p :::; P2
pU, p > P2

where 0:, E, (1 > 0 and e(p) is increasing and continuously differentiable on

R+. Thus e(p) increases linearly with p initially but after some critical

value of p increases more rapidly perhaps due to the effects of increased

food shortages and overcrowding.

{3(a, p) is assumed to be of the form J(a)g(p), where g(p) is a continu­

ously differentiable decreasing function and J(a) is continuous but positive

only on the interval of fertility [m ,n]. Hence {3(a, p) is bounded and thus

biologically sensible.

Sinestrari applies the results of his paper [43] to this system. In particular,

from the inequalities (3.4.10) it follows that an equilibrium age-distribution

is stable if g(p) is such that

pg'(p) + g(p) ~ 0, (3.4.11)

a condition which can be readily tested.

We noted earlier that Sinestrari's choice {3 ={3(a,t,p) was another means

of modelling Easterlin's hypothesis. Frauenthal's [31] model incorporating

this hypothesis yields more informative and applicable results than those of

[421and [43], since the Renewal equation involved is linear and can he solved
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explicitly. However, Frauenthal's model involves J1. being a function of age

only and an interesting project would be an analysis along the lines of GMC

upon Frauenthal's model with f3 =f3(a, B(t - a)) and with J1. =J1.(a, P(t))

so that the possibility of self-limiting effects are included in the mortality

function.

3.5 The inclusion of a harvesting term

Incorporating a harvest of members into the M-F model leads to a further

nonlinear variant. In [44] and [45] Brauer examines such a system:

Pa(a, t) + pt(a,t) = -J1.(a, P(t))p(a, t) - v(a)

P(t) = faoo p(a,t)da

B(t) = p(o, t) = ~oo f3(a, P(t))p(a, t)da

p(a,0) = cp(a),

(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)

where v(a) is the rate at which members of age a are harvested, so that

H = faoo v(a)da < 00,

the total number of members harvested per time is constant.

A model of this form would be appropriate to an animal population in which

different age groups are harvested or preyed upon to different degrees or to

a population (human or animal) in which an epidemic affects different age
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groups to different degrees - perhaps v(a) is large for either small or large

values of a.

Applying the method of characteristics to this harvesting problem gives

{

B(t - a) exp {- Joo J.'-( a)da} - J; v(y) exp {- J"o J.'-( a)da} dy,
p(a,t) = .

cp(a - t) exp {- J:-t J.'-( a)da} - J:-tv(y) exp {- J: J.'-( a)da} dy,

where Brauer has set J.'- = J.'(a, P(t - a + a)).

Substitution of the above into (3.5.2) and (3.5.3) results in the modified

integral equations

B(t) = b(t) + fat B(t - a)f3(a, P(t)) exp {- faB J.'-( a)da} da - h1(t) (3.5.6)

t~a

(3.5.5)

t<a

with

P(t) = p(t) + fat B(t - a) exp {- faB J.'-(a)da} da - h2(t) (3.5.7)

b(t) = loo f3(a, P(t))cp(a - t) exp {- i~t J.'-( a)da} da (3.5.8)

p(t) = loo cp(a - t) exp {- i~t J.'-(a)da} da (3.5.9)

h1(t) = 10
00

v(y) [~"+t f3(a, P(t)) exp {- ~o J.'-(a)da} da] dy (3.5.10)

and

(3.5.11)
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(3.5.6) is now the appropriate Renewal equation for the system. (Notice

that exp {- foG JL* (o:)do:} is just the usual form of 1r(a, P(t - a)).)

It is not .difficult to verify that when p(a, t) = p(a), that is, the age­

distribution is an equilibrium age-distribution, these integral equations be-

come

B* [hOO

{3(a,P*) exp {-hG

JL(o:,P*)do:} da - 1]

=hoo

{3(a,P*) [hG

v(y) exp {- ~G JL(o:,P*)do:} dy] da (3.5.12)

P* = B*hoo

exp {-hG

JL(O:, P*)do:}da-hoo [hG

v(y) exp {- ~G JL(O:, P*)da} dy] da.

(3.5.13)

(P* and B* represent as usual, the constant population size and birth-rate

corresponding to p =p(a)). From (3.5.12) it follows that in the absence of

harvesting, Le. v(a) =0

hOO

{3(a, P*) exp {-hG

JL(O:, P*)do:} =hoo
{3(a, P*)1r(a, P*)da = 1

(3.5.14)

which is the usual requirement that R(P*) = 1. If there is harvesting then

v(a) > 0 and (3.5.12) implies that

hOO

fJ(a, P*)1r(a, P*)da > 1,

so that, in order to maintain equilibrium in the presence of harvesting, the

average number of offspring per member must exceed 1.
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Notice too that from the "equilibrium equation"

Pa(a) = -JL(a,P·)p(a) - v(a),

and from the biologically reasonable assumption that

p(a,t) -+ 0 as a -+ 00

results the relation

faOO JL(a,P·)p(a)da + faoo v(a)da = faoo [3(a;P·)p(a)da = B· ,

indicating, as expected, that for equilibrium to be maintained the birth

rate must be equal to the net death rate plus the harvest rate.

In [44] and [45] Brauer investigates thequalitative behaviour of solutions of

the integral equations (3.5.6) and (3.5.7) for various choices of JL and [3. In

particular the four cases [3 =[3(a), JL =JL(P)i [3 =[3(P), JL =JL(P); [3 =
[3(a), JL =JL(a)i and [3 =[3(P), JL =JL(a) are studied. The first two cases

lend themselves to a technique introduced by Gurtin and MacCamy [38],

and mentioned earlier, which enables the system (3.5.1 - 4) to be reduced

to a set of ordinary differentional equations. As this technique and its

applications are the subject of chapter 4 the analysis concerning these two

cases will not be pursued here. Brauer's work on the latter cases will be

briefly mentioned. Specifically (3.5.1- 4) with [3 =[3 (a) , JL =JL(a) provides

an interesting contrast to the linear M-F model treated in detail in chapter

2.
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(i) The choice (3 =(3(a), J.' =J.'(a) transforms the integral equations (3.5.6)

and (3.5.7) into

B(t) - b(t) + J~ (3(a)B(t - a)7l"(a)da - h1(t) (3.5.15)

P(t) - p(t) + J~ B(t - a)7l"(a)da, -h2(t) (3 .5.16)

with (3.5.15) being the analogue of Lotka's Renewal equation (2.2.3) for

the harvested M-F model.

In chapter 2 it was shown that for the linear, unharvested model every

age distribution tends to a persistent age distribution, p(a, t) = f(a)g(t)

as t -. 00. In the harvested case the counterpart of a persistent age­

distribution is a solution of the form p(a,t) = f(a)g(t) - h(a). One can

show by means of separation of variables (see [45, p.954]) the existence of

solutions of the linear harvested model of the form

p(a, t) = ?r(a) [ce.(t-O) - h(0) - /.0 ;~~ldY] , k, e = constants; k 'I o.

(3.5.17)

Substitution of (3.5.17) into (3.5.3) yields

Clearly, if k = 0, p(a, t) as given by (3.5.17) is an equilibrium age-distribution

and Jooo
{3(a)7l" (a)da = 1. However, it was seen earlier that Jooo {3(a)7l"(a)da =

1 only if there is no harvest, so that there is no solution with k = 0 if there

is a harvest. In other words, if the maternity and mortality functions de­

pend on age only and if there is harvesting there cannot be an equilibrium
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age-distribution. Moreover, persistent age-distributions either grow expo­

nentially or tend to zero exponentially with time.

In order to examine the asymptotic behaviour of an age distribution Brauer

studies the asymptotic behaviour of B(t) by setting

B(t) - B1(t) - B2(t), (3.5.18)
where

B1(t) - b(t) + f~ {3(a)Bdt - a)lI"(a)da (3.5.19)
and

B2(t) - h1(t) + f~ {3(a)B2(t - a)lI"(a)da. (3.5.20)

Now each of (3.5.19) and (3.5.20) is a linear Renewal equation with b(t) ~ 0

and h1(t) ~ o. As mentioned in chapter 2, Feller, in his paper [17] , the pur­

pose of which was to place Lotka's solution into correct mathematic context,

presents a number of theorems concerning the linear Renewal equation. Ap­

plying Feller's results to (3.5.19), (3.5.20) Brauer shows that if

• f;o {3(a)lI"(a)da < 1 then limt--+oo B1(t) = 0;

• fooo {3 (a) 11" (a)da ~ 1 and Tl is the largest real part root of

fooo er,G{3(a)lI"(a)da = 1, then B1(t) ,... cle r1t as t ~ 00;

• fooo
{3 (a) 11" (a)da < 1 then limt--+oo B2 (t) > 0;

• fooo
{3 (a) 11" (a)da = 1 then B2 ,... C2t as t ~ 00;

• fooo {3(a)lI"(a)da > 1 then B2(t) ,... C2er1t as t ~ 00.

Combining these results we see that if
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• J;o ,B(a)1r(a)da ~ 1 then Bl(t) - B2(t) is negative for all sufficiently

large t, indicating that B(t) reaches zero in finite time;

(3.5.21)

as t -. 00. Thus if Cl > C2 (the details for finding Cl and C2 can be

found from [17] - as for the coefficients Ai of Lotka's solution the value of

Cl depends on b(t) while that of C2 depends on hl(t) and hence on v(a)),

substitution of (3.5.21) into the appropriate form of (3.5.5), namely,

[
f a v(y) ]

p(a,t) = 1r(a) B(t - a) - la 1r(y) dy (3.5.22)

indicates that p(a, t) approaches a persistent age- distribution as t -. 00.

On the other hand, if v(a) is such that Cl < C2 then clearly B(t) tends to

zero in finite time. By (3.5.22) so does p(a,t).

The conclusion for the harvested linear case then, is that every age-distribution

either tends to a persistent age- distribution, which cannot be an equilib­

rium age-distribution, or vanishes identically for large t. This is in contrast

to the unharvested counterpart in which equilibrium age-distributions are

possible but extinction in finite time is not. Clearly the age-specific har­

vesting has to be carefully performed since the possibility of exponential

growth would be disasterous if the harvested species is an undesirable one,

such as an insect pest population, and the possibility of extinction is equally

disasterous if the species harvested is a "desirable" type.

(ii) The choice ,B = ,B(P), J.L = J.L(a) obviously limits the applicability of the

resulting model since the independence of age in ,B is an unlikely assumption
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for most populations. However, we could argue that this choice could be

used to model the behaviour of an animal population which is robust enough

to exist off the minimum amount of food and other resources, with the effect

that a reduction in food supplies etc. due to overcrowding, is more likely

to result in reduced fecundity than in death. In other words "population

pressure" effects primarily influence fertility rather than survivorship. The

advantage of f3 =f3(P) is that

B = f3(P)P,

which follows from (3.5.3), and the model can be described by the single

Volterra integral equation,

P(t) - p(t) + J~ 1r(a)g(P(t - a))da - h2 (t ) (3.5.23)

where

and

g(P) - f3(P)P

p(t) - J~ cp(a - t) ,..~~)t) da

h2(t) - Jooo ;~~} [J:+t 1r(a)da] dy.

(3.5.24)

(3.5.25)

(3.5.26)

The nonharvested form of (3.5.23),

P(t) = p(t) + fat 1r(a)g(P(t - a))da (3.5.27)

has been studied extensively by Londen [461 , [471 and by Brauer [481 . Lon­

den examines the question of boundedness of solutions of (3.5.27) and

shows, under quite general hypotheses that every bounded solution tends to
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a limit as t ~ 00. In [481, (which preceeds [44] and [45]), Brauer gives a con­

dition guaranteeing the boundedness of solutions under hypotheses which

are appropriate to "many population problems and derives conditions under

which solutions cannot tend to zero. It is interesting, as Brauer points out

in the introduction of [48], that (3.5.27) may also be used to describe the

dynamics of a populat ion afflicted with some disease - in this case P(t) is

the number of diseased members, 11"(a) represents the probability that a dis­

eased member survives to age a and p(t) represents the number of diseased

members who were already present at time t = P and who are still alive

at time t. Since 9 (Which by definition (3.5.24) describes the number of

members added to the population in unit time when the population size is

P), depends only on the total number of diseased members, Le. 9 =g(P),

(3.5.27) would model a disease for which recovery from the disease confers

negligible immunity, and which has a negligible incubation period since no

delay terms are included in the integral equation.

In [441 and [45] Brauer modifies the results of [48] to apply to the harvested

case (3.5.23). These are listed below

• If [Iooo 1I"(a)da][limp_oo ,B(P) ] < 1 then every nonnegative solution is

bounded on 0 ~ t < 00.

• If g'(P) fo
oo

1l"(a)da is not identically equal to 1 on any P-interval then

every bounded nonnegative solution tends to a limit P" as t ~ 00

where P" satisfies

(3.5.28)
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and

(00 [ (a V(y) ]
h2(00) = la 71"(a) la 7I"(y) dy da.

• If h2(00), which is related to the rate of harvesting, is so large that

there are no solutions of (3.5.28) then every solution of (3.5.23) must

reach zero in finite time; in other words the population has been

harvested to extinction.

• The critical value of h2( 00) for which this transition takes place is

determined by g'(p.) 1;' 7I"(a)da = 1.

• An equilibrium age-distribution corresponding to a population size

P" is stable (in the usual sense of being relatively insensitive to per­

turbations) if

g'(p.) 10
00

7I"(a)da < 1,

and unstable if

g'(p.) 10
00

7I"(a)da > 1.

Since g(P) = f3(P)P, (3.5.28) may be written as

and the above stability condition becomes

[p .f3' (p . ) + f3(p.)J10
00

7I"(a)da < 1
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(3.5.29)

Le. rp'(r)r "(a)da < 1- [1+ h'~':")] = -h;~OO)

or . p.2f3'(p.) 10
00

1l'"(a)da + h2(oo) < o.

Thus, by means of a few criteria which appear to be computationally easy

to verify, the behaviour of the harvested population is readily predicted.

Notice too from (3.5.29), that f3'(p.) < 0 is a necessary condition for sta­

bility, but in the unharvested case (h2(oo) = 0), f3'(p.) < 0, or equivalently

R'(P·) < 0" is necessary and sufficient for stability.

Brauer's papers [44], [45] provide a wealth of useful results for the harvested

M-F model for which each of J.L and f3 are functions of age only or functions

of population size only. Not considered here is the behaviour of solutions

for which J.L and f3 depend on both of these variables and Brauer suggests

that this would be worth further investigation. For example, one might

attempt to obtain results for the system (3.5.1 - 4) having J.L = J.L(a), f3 =
f3(P)ae- aa , a > o.

The literature on harvesting problems is extensive. Gurtin and Murphy

[49], [50], for example consider the constant - effort harvesting model, .

ap ap
aa + at + J.L(a, P(t))p + E(a, t)p(a, t) = 0 (3.5.30)

coupled as usual with (3.5.2), (3.5.3), (3.5.4). Here E(a, t) represents the

"effort" with which individuals of age a are harvested at time t. (A discus­

sion of the meaning of "effort" is given in section 5.6.) The total number

4Since R'(P*) = P'(P*) fo
oo 1I"(a)da
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of individuals harvested at time t, per unit time is

10
00

E(a, t)p(a, t)da,

so that the total number harvested during a time interval [0,T] is

Too '
10 10 E(a, t)p(a, t)da dt. (3.5.31)

The problem posed is finding the function E which maximises the yield

(3.5.31) subject to the dynamical equations (3.5.30), (3.5.2), (3.5.3) and

the initial condition (3.5.4). The authors introduce assumptions which sim­

plify the model sufficiently to permit explicit solutions of the optimization

problem.

In a similar fashion, Rorres and Fair [51], study (3.5.1 - 4) at equilibrium,

with JJ. =JJ.(a), {3 ={3 (a) and determine, by reformulating the problem as

an optimal control problem, the harvest rate v(a) ~ 0 and terminal time

A, which maximises the economic yield of the harvest, defined as

loA y(a)v(a)da,

y(a) being the economic value of a single harvested female of age a, under

the constraint that

~A c(a)p(d)da = 1.

Here c(a) is the cost per unit time of maintaining a single unharvested

female of age a.
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Sanchez, [52], on the other hand, incorporates a harvesting term into the

original M-F model (J.L' = J.L(a, t), {3 = {3(a, t)) which involves removing

a fraction of the population which fall within a certain age group. For

example, the author of [52] supposes that a fractiont5,O < t5 < 1 of the

population of age a ~ c(c represents some chosen age) is harvested and

replaces the usual partial differentiation equation by

PG + Pt = -J.L(a,t)p - t5X[c,oo)(a)p

where XA(a) is the characteristic function of the set A, Le. XA(a) equals

unity if a E A and zero otherwise. Solving the problem (integrating along

the characteristics) and comparing the preharvested and postharvested

birth rate and age- distribution indicates the influence of the harvesting

strategy on the dynamics of the population. In another case Sanchez inves­

tigates the effect of harvesting a fraction of the population in an age interval

c < a < d. In particular, it is assumed that J.L and {3 are independent of

time so that B(t) and hence p(a,t) can be explicitly calculated. The re­

sults of [52] and a discussion of these will not be given here. Notice though

that these models do have useful physical application in that they would

describe, for example, a game management strategy in which a proportion

of the adult female population is culled, or the onset of a disease affecting

only a fraction of a particular age group.

In a subsequent paper [53], Sanchez again assumes that only a fraction t5

of the population of age a 2:: c is harvested, but supposes that there is

a harvesting season of duration T during which harvesting occurs over a
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time interval of length h. It is assumed further that harvesting is periodic

and that it occurs at the end of the season so that T is the time between

harvesting periods. Under this seasonal harvesting strategy the M-F partial

differential equation is replaced by

Po + Pt = -JL(a)p - 6X[c,oo)(a)H(t)p

where

H (t) = { 0 ~ nT < t < (n + 1)T - h
11f (n + l)T - h < t < (n + l)T, n = 0,1,2, ...

Although JL and f3 are assumed to be independent of time in [53] the har­

vesting policy introduces time dependence into the modified M-F model.

Consequently the population problem cannot be solved explicitly. How­

ever, Sanchez introduces a technique that enables two approximate time

independent models whose birth rates bracket the true birth rate to be de­

termined. In other words two functions Be(t) and Bu(t), being solutions of

respective time-independent renewal equations can be found such that the

birth rate B(t) of the seasonally harvested system satisfies

A brief outline of the method is given in Appendix 3.1. The technique is

very useful - one now has a means of determining at any time t, upper

and lower estimates of the birth rate B(t) and hence also of p(a,t) and

of the population size P(t). This has practical consequences in regard to

population control - the seasonal harvesting strategy that ensures that the

population remains within some predetermined range can be determined.
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Sanchez's technique applies to M-F models satisfying J.L = J.L(a), [3 = [3(a)

and harvested according to his seasonal policy. As pointed out in [53] an

area worthwhile to further study would be such harvested models with J.L

and [3 incorporating density-dependent terms.

3.6 Alternative expressions for the bounday

condition p(0, t)

So far we have worked with the boundary condition

p(o, t) =B(t) = ~oo [3(a, t)p(a, t)da, (3.6.1)

but in some cases it becomes necessary to distinguish between p(o, t) and

B(t) such that p(o, t) ~ B(t). For example, Di Blasio et al [541, [551 study

the situation in which just after birth, there is a process Q controlling the

passage of the newborn B into the youngest class of age p(o, t), so that

(3.6.1) is replaced by

p(o, t) = Q(B(t))B(t),

where B(t) has the usual form,

B(t) = lOO [3(a)p(a, t)da.

(3.6.2)

(3.6.3)

This type of situation occurs in fish populations where B(t) corresponds to

the parental egg production rate (Le. the number of newborn), Q to the

proportion of newborn that survive to become fish, and hence p(o, t) corre­

sponds to the number of surviving newborn. More generally, (3.6.2) would
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describe circumstances in which shortage of food or other environmental

limitations jeopardize the newborn's ability to survive. For any population

in which cannibalism is prevalent the members of the population are them­

selves responsible for regulating p(o, t) by eliminating some of the newborn

when the number grows too large. One such choice for p(o, t) given in [56]

and dealt with again in chapter 6 is

( ) - () cB(t)P(t) _ B( ) [ cP(t)] - B( )Q(B( ))p 0, t - B t - IHB(t) - t 1 - IHB(t) - tt,
c, k = positive constants

Here c~}~~W determines the number of eggs eaten and depends on the

product of the number of eggs available B(t), and the number of "adults"

P(t). A satiation factor (1+kB(t)) is included to account for the fact that

in times of large egg production there is a limit as to the number of eggs

an adult can consume.

Di Blasio et al work under the assumptions that JL and (J are (continu­

ous) functions of age only, that the initial age-distribution cp is piecewise

continuous and that

(1) Q ~ 0 is continuous and bounded on R+ and q(x) = xQ(x) is piece­

wise continuously differentiable on R +.

Defining E(t) = p(o, t) it is not difficult to show that the solution of the

modified M-F system is in this case,

{

E(t - a)11" (a) if a < t
p(a, t) =

cp(a - t) r~~)t) if a ~ t,
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with 7l"(a) having its usual meaning. The usual renewal equation for B(t)

is now replaced by

E(t) = (G(t) + ~' {3(a)E(t - a)7l"(a)da) Q (G(t) + ~' {3(a)E(t - ~)7l"(a)da) ,

(3.6.5)

where, as in (2.2.3), G(t) is described by

G(t) = rJO

{3(a)<p(a _ t) ~(a) )da.i, 7l" a-t

As is customary, the authors of [54] and [55] investigate the properties of

the solutions of the M-F system by studying the integral equation (3.6.5).

They prove the existence of a unique, non-negative solution for all t ~ 0

and give additional results ensuring that p(a,t) > 0 for t ~ T, T > o. A

means of estimating T is also provided. Particular emphasis is placed on

the stability of equilibria and on the analysis of the stability region.

It is easy to see that an equilibrium solution of this population problem is

given by

p(a) = E7l"(a),

where E ~ 0 satisfies

ERQ(ER) = E,

and, as usual, R is defined as

R = ~oo {3(a)7l" (a)da.

(3.6.6)

Concerning the existence of equilibrium solutions two assumptions are im­

posed:
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(2) There exist solutions El and E2 of (3.6.6) such that 0 ~ El < E2

and further, Q(x) > R- I for x E (REI, RE2 ) and Q(x) < R- I for

x fI. [REil RE2 ].

This assumption does not have meaningful physical interpretation but does

ensure that two equilibrium age-distributions, PI(a) = E I1r (a) and P2(a) =

E21r (a), exist. Further, if El = 0, then P2 is the unique, non-trivial equilib­

rium.

(3) q(x) = xQ(x) is non-decreasing on R+ and q(x) > 0 for x > O; an

assumption which implies that the greater the number of newborn

the greater the number of survivors.

Amongst a number of stability theorems given in [54], [55], two are partic­

ularly concise:

Theorem 7, [56]

Let 0 < El < E2 • Then:

(i) PI(a) = EI1r (a) is unstable.

(ii) p(a,t) -+ P2 = E21r(a) uniformly as t -+ 00, or

(iii) p(a, t) -+ 0 un iformly as t -+ oo.

Theorem 8, [56]

Let 0 = El < E2 • Then:

(i) p(a,t) -+ P2(a) = E21r(a) uniformly as t -+ 00
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(ii) the trivial solution is unstable, (in other words, the population will

not become extinct).

In conclusion Di Blasio et al apply these theorems to three known fishery

models. The first of these, the Beverton-Holt model, involves

Q(x) = {

C - a
0- b+ Xo if 0:::; x < Xo,

if xo:::; x,

where a, b, ex are constants, a, b > 0, Xo ~ 0 and 0 < ex :::; 1. Thus Q(x) is

constant until some critical value of x (the number of newborn) is attained

and decreases thereafter - perhaps due to the adults eating the eggs to

reduce the increasing population pressure effects.

It is easily seen that Q and q satisfy assumptions (1) and (3). Furthermore,

if

then (2) holds with El = O.

From (3.6.6)

a 1
c - >
0- b+ xg R'

- (aR - b)l/a

(3.6.7)

(aR - b)l/a
- R

Therefore, by theorem 8 we find that all solutions of this system tend to

the unique non-trivial equilibrium age- distribution P2 (a) = E 27r (a) and

P(t) ~ E2 Jooo 7r(a)da as t ~ 00.
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The second fishery model, the Chapman model, constructed to reflect the

"recruitment process" of certain fish populations has

if x = 0,

if x> 0,

where a, b > 0 are known constants. Once again it is easily checked that Q

and q satisfy (1) and (3). Furthermore Q'(x) < 0 so that if ab > R-1 then

(2) is satisfied with El = 0 and E2 given by

Again, theorem 8 guarantees that all solutions of the M-F model tend to

E27r (a) as t -+ 00.

In these cases, the results of Di Blasio et al have the advantages of being

simple to confirm and of completely determining the asymptotic behaviour

of solutions.

However, in the event of theorem 7 being satisfied, one needs a means of

determining whether p(a,t) -+ 0 or whether p(a,t) -+ P2(a) as t -+ 00.

Such is provided by theorem 6 of [56] which describes how the initial age­

distribution influences the asymptotic behaviour of E(t):

Theorem 6, [54 ]

Let P represent the maximum attainable age, let PI = sup {a E [0, p]

,B(a) > oj and let 10 = [o,PI!. Then:

(i) if cp(a) 2:: c7r(a) on 10 with C > El, then E(t) > El for t 2:: 0 and

limt_oo E(t) = E2 •
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(ii) if t,O(a) < c1I"(a) on 10 with C < El then E(t) < El for t 2:: 0 and

limt_ oo E(t) = o.

(Hi) if <p(a) 2:: E211" (a) on 10 then E(t) 2:: E2 for t 2:: 0 and limt_oo E(t) =

E2•

[iv] if t,O(a) s E211" (a) on 10 then E(t) s E2for t 2:: o.

This theorem applies to the third fishery model, mentioned in [54] , the

Depensatory model, for which

ax
Q(x) = b+ x2' x 2:: OJ a, b > 0, (3.6.8)

so that the proportion of newborn that survive to become fish increases

with x initially but decreases after the critical value, x = bl / 2 is reached ­

probably due again to the members of the population compensating for the

increase in size by consuming the newborn.

Here too, Q and q satisfy (1) and (3). Moreover, since Q'(x) > 0 for 0 ~

x < bl /
2 and Q'(x) < 0 for x > bl / 2 , if we assume that aR > 2bl / 2 we have

that there exist solutions Ell E2 , 0 < El < E 2 , of (3.6.6) which in this case

has the form

and (2) is verified, as required.

In this case theorem 6 indicates then that if the initial age- distribution

t,O(a) is "smaller" than Pl(a) = E11l" (a) then all solutions of the M-F system

tend to zero, while if <p(a) is "greater" than Pl(a) then all solutions tend to
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E
1

1l" (a) with increasing time. Thus, as the Di Blasio et al point out, Pl(a)

acts as a minimum viable level for the population.

A natural extension of the model proposed in [54] and a topic meriting

further research is the combined system,

Pa + Pt = -J.L(a)p - v(a),

(a constant-effort strategy, E(a)p(a, t) or a seasonal policy could also be

considered) ,

P(t) - Jooo p(a, t)da

p(o, t) - B(t)Q(B(t))

B(t) - Jooo ,B(a)p(a, t)da.

This may be appropriate to a "bird of prey" population which consumes

its newborn as a means of population control and which in turn is culled

according to an age-dependent strategy as a further means of population

control.

Often ordinary differential equation models are used to study the effects of

harvesting. These could be of the form P = f(P) - h or P = f(P) - hP,

for example, where P represents the total population at time t, and h or

hP the effects of harvesting. (Chapter 5 deals in detail with such harvested

D.D.E. models in the predator-prey context.) Evidently the advantage of

using age-dependent harvested models is that a more precise study of the

effects of harvesting is possible: information relating not only to P(t), but

also to B(t) and p(a, t) can be obtained. Moreover, the harvesting policy
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can apply to a specific age-group or to a range of ages and not necessarily

to the entire population as it does in the Q.D.E. case.

3.7 Two-sex models

An obvious deficiency of the M-F model is that it involves only one function

P, the age-distribution of the female population to model the dynamics of

the entire population. A more complete description would require both

males and females to be accounted for. This is the approach adopted by

Sowummi [57] who modifies the M-F model to become:

Dp;(a, t)
Pi(t)
Pi(O, t)
Pi(a, 0)

- -JLi(a,P(t))pi(a, t)
- 1000 Pi(a, t)da
- 10

00 13;(a, P( t) )P2 (a, t)da
- tpi(a)

(3.7.1)
(3.7.2)
(3.7.3)
(3.7.4)

where i = 1,2 represent the male and female function respectively and

P(t), B(t) are the vector-valued functions P = (Pb P2), B = (Bb B2).

The model is said to be female dominant because of the dependence of

(3.7.3) on P2(a, t) - which simply recognizes the fact that gestation is a

female characteristic. Sowummi suggests that a male dominant formulation

would be meaningful in a monogamous community with a relatively low

male population - for example, in the aftermath of a war.

The work of GMC provides the guiding principle of this paper (the as­

sumptions on all the parameters are much the same as in GMC) in which

existence and uniqueness of the solution of (3.7.1 - 4) are proved, upper

bounds of the female and male populations are established and necessary
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and sufficient conditions for equilibrium are derived. Concerning the pop­

ulation bounds it is found, in comparison to theorem 3 of GMC that,

and

where

& = infa ~ oJ.l.i(a, P),
P~o

Pi = sUPa > of3(a,P) < 00, Oi = Pi - &
P~o

Notice then that the upper estimate of the female population at time t

depends only on female parameters whereas that of the male population

depends on both - a consequence of the female dominance of the model.

As Sowummi points out, these bounds have the advantage of being easy to

compute and of providing rough estimates which could be vital to social

planning.

A specific two-sex system relevant to human populations has been con­

structed by Hoppensteadt [5]: It is assumed as before that

i = 1,2

where again J.l.i denotes the death rates for male and female respectively
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but that the birth rates are given by

{CO t" "p,(o,t) = lo lo (3,(a, t)c(a, a, t)da da ,

where c(a,a', t) represents the number of couples where the male has age a

and the female has age a'. The initial numbers of couples are assumed to

be known

c(a,a',0) = co(a,a'),

and further it is required that

c(a,0, t) = c(o, a', t) = 0 for all a, a' and t.

Hoppensteadt gives the dynamical equation for c as

Bc + Bc + BBc = _ [.61(a,t) + .62 (a' ,t) ]c - d(a,a', t)c + S(a, a',Ph, P2e)'
Ba at a'

The function d(a,a', t) describes the divorce rate and S describes the source

of couples. S in turn depends on the numbers of males and females eligible

for coupling which are given, respectively, by

P1e - P1(a, t) - Jooo c(a,a', t)da',

P2e - P2(a, t) - Jo
oo c(a,a', t)da.

Thus the full model is a complicated system of nonlinear equations. It is

complicated further by the fact that S, known in demographic circles as the

the marriage function, is very difficult to estimate. Hoppensteadt quotes

forms of S that have been proposed but argues that these are inadequate.
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In its present form then, the model is of limited use for quantitative work.

However as is usual practice, Hoppensteadt introduces simplifications that

enable solution. In particular, he demonstrates that a solution is possible

under the assumptions that the data depend on age only and that males

have a selective advantage over females. In this case J.LI < J.L2, f3I 2:: f32 and

the marriage function is likely to be proportional to the number of females,

S = k(a, a')PIe = ko(a')S(a - a')Ple,

where S is the Dirac delta function, so that the further assumption is made

that an individual can mate only with someone his own age. Although

restrictive, it is not unlikely that these assumptions could be appropriate

to certain human populations. Since Hoppensteadt's system has been con­

structed to model human population development , further work along these

lines would always be of demographic value.

In sections (3.1)- (3.7) we have dealt with a number of nonlinear generaliza­

tions of the M-F model and touched upon the theory developed for these.

Other work in this field includes

- Langhaar's [11] study of the M-F system with an "immigration func­

tion" I(a, t), incorporated into the usual M-F equation, Le.

Pa + Pt = I(a, t) - J.L(a, t)Pi

- Griffel's [58] work on the inclusion of a death rate of the form J.L =
d(a)p(a, t), (f3 = f3(a)) so that, as in [42] , survival is dominated by

competition with one's peers,
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_ Coffman and Coleman's [59) study of the nonlinear system that results

when p.=p.(a, p(a,t)) and B(t) is replaced by

p(o,t) = F(p(a"t)),

so that the number of births occurring at time t is given by a known

function F, of the number of individuals of age a" a specified repro­

ductive age;

- Cushing's [60] treatment of the M-F model for which p. = p.(a) and {3(t)

is replaced by

p(o, t) = fat {g(t - s) faoo {3(a, s)p(a, s)da} ds,

where g(s) ~ 0, J:'g(s)ds = 1, is a gestation period probability den­

sity function describing the probability that a newborn produced at

any time will bear a (female) member of the population s unit of time

later. This gives recognition to the fact that in most populations the

production of a new reproducing generation is "delayed" by gestation

and maturation periods;

- the study, by Auslander et al [61] , of the effects of "hereditary" influ­

ences by setting p. =p.(a, P (t)), {3 ={3(a, P (t - r)), so that fecundity

is affected by the size of the population at some time in the past.

Instead of elaborating upon these, in concluding this chapter brief mention

is given to a specific generalization of the M-F model applied by Mars­

den and McCracken [62] to an insect population studied under laboratory

conditions.
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3.8 Agreement between model and experi­

ment

In one of the best known experiments in ecology the entomologist A.J.

Nicholson (his work is recorded in [63] and [64]), maintained a population

of sheep blowflies on a diet of chopped liver and sugar for several years,

but deliberately limited the food supply to the adult flies. A limited food

supply aggravated by competition among the adults prevented the flies from

obtaining enough protein and this was reflected- in reduced fecundity of the

population.

In modelling this situation account must be taken of the nutritional state

of the adult flies since this indirectly determines the rate of egg produc­

tion. Accordingly, Marsden and McCracken [62]5define a variable €which

measures the nutritional state (eg. mass or "health") and propose that the

situation is modelled by

(3.8.1)

where ~ = g(a, t, €, I) is the growth rate of € which depends on the food

supply f(t). The birth rate is then

B(t,€) =p(o,t,€) = faCIO faCIO f3(a,t,e',€)de'da, (3.8.2)

°This work of Marsden and McCracken is an extension of that of Oster and Auslander
[651

110



and the equation of food abundance is chosen as

df- = u(t) - c(a, t, p),
dt

(3.8.3)

where u(t) is the rate at which food is supplied to the population and c(·)

is the consumption rate by the adult flies.

Marsden and McCracken select J.L to be a constant and suggest reasonable

empirical forms for {3(.) and c(·) to be of the type,
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Fig. 3.8.1

Constitutive Relations (Reproduced from [621) .

fecundity

consumption

C(f}

f (food available)
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A numerical simulation of this model gave very good agreement with ex­

periment, as figure 3.8.2, reproduced from [62], indicates :

Fig. 3.8.2

Comparison of simulated results with experimental data, [62, p344].
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The details of this numerical simulation will not be given here, but are

available in [62] and [65]. Of interest to Marsden and McCracken is the

reason for the oscillation generated by the model. Their explanation in

terms of a bifurcation mechanism is given in [62, pp 345-348].

The violent oscillations observed are biologically plausible since reduced

food supply promoting reduced fecundity results in the next generation

being smaller in size; but for this smaller generation the food supply is

adequate and the fecundity, and hence the population size,can rebound to

their maximum levels.

Marsden and McCracken then go on to propose an M-F model for the

dynamics of a particular wasp population studied by the ecologist C.B.

Huffacker [61], in which regular oscillation in population numbers were

observed. Again, numerical simulation of the model predicts oscillation

similar to those observed experimentally. We see then that working within

the M-F framework allows close agreement between the theoretical model

and observed behaviour, and this strengthens our confidence in the use of

the M-F system as a reliable means of modelling population development.

Evidently though, the more detailed the model the more one has to rely

on and develop numerical techniques for solution. The dilemma facing the

ecological modeller is how much detail to incorporate in the mathematical

models, for the ideal is to formulate rigorous but mathematically tractable

systems.

An example of a fairly rigorous yet t ractable model was provided by Frauen­

thaI 's [31] model of Easterlin's hypothesis, where the underlying assump-
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tions not only facilitated analytic solution of the system but also resulted

in reasonable agreement between the model's predictions and recent D.S.

population behaviour.

However, it appears that often biological realism is compromised in favour

of mathematical tractability. For example, the assumption (3 =(3(P) made

in section 3.5 leads to an integral equation, the dynamics of which are

fairly well understood, but it is unlikely that this assumption is true of

many populations.

Similarly, it is difficult to imagine the assumption J.L = J.L(P) being appro­

priate to any population. However, under this assumption and the further

assumption that {3 = {3(P)ane-a a , a > 0, n = 0,1, Gurtin and MacCamy

[38] have unveiled an extremely useful "trick" which permits a full descrip­

tion of the population dynamics in terms of a few simple a.D.E.'s. In

the next chapter this method is demonstrated and applied to a biochem­

ical population for which these underlying assumptions are, in fact, quite

realistic.
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Chapter 4

The Gurtin and MacCamy

Technique and its application

It was Gurtin and MacCamy [38] who discovered that the mathematical

structure of the M-F system is such that the assumptions

J." - J."(P)

{3 - {3(P)ane-a a
, (3(P) 2: 0, ex > 0, n = 0,1,

allow the basic equations of the theory to be reduced to a system of coupled,

nonlinear, ordinary differential equations. This assumption on J." obviously

restricts the applicability of the resulting models. However, it would be

realistic in situations where the bulk of the population does not die of old

age; for example, a population of large game that is hunted or preyed upon

to such an extent that death by old age is a rare event. Nevertheless, the

technique has facilitated a wide variety of studies, providing much more

extensive analysis than has been available for the integral formulation.

In what follows Gurtin and MacCamy's method is outlined and its appli-
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cation by Frauenthal and Swick [66], and Swart [67], [69] to age-structured

biochemical population models is examined. In reviewing and relating the

results of these papers particular emphasis is given to the existence of stable

limit cycles. .

4.1 The Gurtin and MacCamy "trick"

The basis of the technique which reduces the M-F system

~ + ~ = -~(P(t))p (4.1.1)

P(t) Jooo p(a,t)da (4.1.2)

p(o,t) - B(t) = Jooo {3(a,P(t))p(a,t)da (4.1.3)

p(a,0) p(a) , (4.1.4)

to an equivalent problem involving ordinary different equations is the fol­

lowing:

Lemma [38, p. 200]

Assume that the mortality function J.1. is independent of age. Let p be a

solution of (4.1.1) and let 9 be a (sufficiently smooth) function of age with

g(a)p(a, t) -+ °as a -+ 00. (4.1.5)

Define

G(t) - Jooo g(a)p(a, t)da, (4.1.6)

H(t) - Jooo g'(a)p(a, t)da. (4.1.7)
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Then

. G + p.(P)G - g(O)B = H. (4.1.8)

The proof follows simply from multiplying (4.1.1) by 9 and integrating from

a = 0 to a = 00 to obtain

G(t) + ~oo g(a)PG(a, t)da + p.(P)G(t) = o.

Integration of the second term by parts and use of (4.1.5) results in (4.1.8).

Consider first the model involving {3 ={3(P)e- crG, Le. n = o. This assump­

tion implies that fertility is a monotone decreasing function of age (and

hence is maximum at age a = 0). Although this is biologically nonsensi­

cal, Gurtin and MacCamy [38] remark that it probably leads to a decent

approximation in situations where the population reproduces at a fairly

young age. However, its importance lies in the fact that (4.1.1 - 4) now

becomes amenable to analysis being reducible to a pair of G.D.E.'s. This

is achieved in [381in the following way:

Equation (4.1.8) with 9 =1 has the form

p + p.(P)P - B = 0,

while (4.1.8) with g(a) = e- crGyields

G + p.(P)G - B + aG = 0,

where

(OO B
G(t) =1

0
e-crGp(a, t)da = (3(P).
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Hence the M-F system reduces to

p - -p.(P)P + f3(P)G
G - [- p.(P) + f3(P) - 0:]G,

from which B(t), P(t) and hence p(a,t) may be obtained.

The relevant initial conditions for this system are

P(O) - 10
00

cp(a)da

G(O) - 10
00

e-aacp(a)da,

(4.1.12)
(4.1.13)

and follow from (4.1.2), (4.1.4) and (4.1.6). For convenience we will refer

to system (4.1.12), (4.1.13) as system 1.

The maternity function f3 = f3(P)ae- aa (Le. n = 1) provides a more realistic

alternative to our previous choice. To derive the corresponding differential

equation in this case, note firstly that (4.1.9) and (4.1.10) with G(t) given by

the first equality in (4.1.11), remain valid since they require only p. =p.(P)

to be satisfied. Now Gurtin and MacCamy set

A(t) ­
g(a)

foOO ae-aap(a, t)da,
ae-aa,

(4.1.14)

and use the relation

10
00

g'(a)p(a, t)da = -o:A(t) + G(t),

so that (4.1.8) with G replaced by A gives

A= -p.(P)A - o:A + G.
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Finally, note that

B = {3(P)A,

so that (4.1.9) and (4.1.10) lead to the system

p ­
G.
A -

-J1.(P)P+ {3(P)A
- [J1.(P) + a] G + {3(P)A
- [J1.(P) + a] A + G.

(4.1.15)
(4.1.16)
(4.1.17)

Equations (4.1.15), (4.1.16), (4.1.17) will be referred to as system II. The

set of O.D.E.'s I and II now provide a means by which, theoretically at least,

B(t) and information concerning the behaviour of P(t) may be obtained.

Gurtin and MacCamy have analysed these systems quite extensively.

4.2 Analysis of systems 1 and 11

As a further simplication Gurtin and MacCamy make the assumption

{3(P) ={3o, (4.2.1)

maintaining that one would generally expect a stronger dependence on P

in the mortality function than in the maternity function; in other words,

"population-pressure" effects are more likely to influence J1. than {3.

In this case, system I becomes

where

P - -J1.(P)P + B
B - h - J1.(P) ]B,

1= {3o - a.
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It is not difficult to verify, as is done in [38], that this system (4.2.2), (4.2.3)

has the properties of

1. f, = {(B, P) E R~ IB = 1P} being an invariant set;

2. all equilibrium points lying on L;

3. P obeying

P = b - JL(P) ]P on L. (4.2.4)

An important consequence of these properties is given as a theorem

in [38] and states that the system (4.2.2), (4.2.3) has no closed orbits.

For suppose that this system does have a closed orbit o. Then 0

must encircle at least one equilibrium point, and hence, by the above

properties, must intersect L, However, this is not possible and the

above theorem follows.

In all the situations encountered so far we have not yet come across

an explicit solution for p(a, t). Gurtin and MacCamy provide such a

solution in [38] by solving the system (4.2.2), (4.2.3). They first note

that

follows from (4.2.2) and (4.2.3) and implies that

~ (~) + 1 (~) = 1,
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and hence

Next, these authors confirm that

Pt!) exp {J.' I'(P(z))dz } =PtO) + B(O) [e'" ; 1] ,
and then demonstrate that for the linear choice

J.L(P) = b+ cP, b > 0, c > 0,

(4.2.6) takes the form

P(t) (1 - e)e-h
' + ee'"'

P(O) = . 1 + '7 - 0l- '7(1 - e)e-h' + le'"'

where

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

e= B(O)
1P(0)

l = cB(O) ,
r1

cP(O)
'7 = --,

b

10-­- b'

Equations (4.2.5) and (4.2.8) lead to an expression for the birth rate

B, and once P and B are known, substitution into the M-F solution

(2.2.1), which in this case is

{

B(t - a) exp {- J; J.L(P(t - a + a))} da,
p(a, t) =

ep(a - t) exp {- J~ J.L(P(r))dr} ,
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yields p(a, t).

Numerical calculations are carried out in [38] for the special case

and

1
77 = -, T = b, a = 4b, e= 1,

2

<P (a) = { <Po, 0 s a ~ aa,
0, a> aa.

(4.2.9)

(Gurtin and MacCamy point out that <Po and aa are not arbitrary; due

to (4.2.9) Biij is in fact equal to 0,70 and Taa = 0,71 (approximately).)

Figure 4.2.1 reproduced from [38, p 206] indicates the age- distribu­

tion p(a, t) as a function of age for various times.
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fig. 4.2.1

Dimensionless age-distribution piB(O) as a function of dimensionless

age ra for various values of dimensionless time rt, Here 17 = l, T =

b, a = 4b, and e= 1.
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This figure provides an interesting picture of how rp(a) progresses

in time - we see that the "rectangular portion" of the curve corre­

sponding to rp(a) decreases in area as time increases indicating that

the number of individuals in the intial population decreases as they

age and ultimately tends to zero. The discontinuities observed arise

due to the violation of the compatibility condition (2.3.5); instead

rp(O) # B(O). This inconsistency results in a discontinuity which

propagates along the characteristic through a = 0, t = O. Likewise,

the discontinuity in rp at a = aa propagates along the characteristic

through a = aa, t = O.

In addition, note from (4.2.8) that

r
P(t) ~ - for r > 0,

c

P(t) ~ 0 for r < O.

Clearly figure 4.2.1 illustrates this approach of p(a, t) with time to its

equilibrium value

Finally, Gurtin and MacCamy point out that this type of develop­

ment of P(t) with time is predictable from the observation that under

the assumption (4.2.7) the differential equation (4.2.2) reduces to the

classical Verhulst equation introduced in chapter 1,

p + (r - cP) P = O.
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Since (4.2.4) completely characterizes the population on the invariant

set f, = {(B, P) I B = ,P}, the M-F system under the assumptions

f3 = f3oae- a G and (4.2.7) will exhibit Verhulst behaviour whenever the

initial data satisfies B(O) = ,P(O), (Le. e= 1), as was the case in

the numerical example above.

In analyzing model IT the authors of [38] express this system as

x= -p.(P)x + Mx,

where x is the column vector (P,G, A) and

[

0 0 f30]
M = 0 -0: f30 .

o 1 -0:

Standard eigenvalue stability analysis of this system verifies the next

theorem of [38] , namely,

Under the assumptions f3(P) =f30 ~ 0, p.(P) ~ p.o > 0, (where p.o is a

constant), system II has no closed orbits. Moreover, if P.o + 0: > ~,

then P(t), G(t), A(t) and (hence) B(t) tend to zero exponentially as

t -+ 00.

Notice that the requirement P.o + 0: >~ could be expressed alter­

natively as the requirement that the net reproduction rate R(P) be

less than unity since

R(P) = 10
00

f3(a,P) exp {-loG P.(o:,P)do:} da,

126



f30 < f30
- [a + JL(P) ]2 [a + JLO ]2 .

On the strength of this and the previous theorem, Gurtin and Mac­

Camy conjecture that under reasonable assumptions concerning the

functions JL(P) and f3(P) system II has no closed orbits. (Le. no limit

cycles).

This conjecture has been investigated by Frauenthal and Swick [66],

and Swart [67], [68], who develop models, the dynamics of which

counteract this claim.

4.3 A model for a biochemical popula­

tion

Frauenthal and Swick [661 consider the dynamics of a continuously

fed biochemical reactor in which a biological organism promotes a

chemical reaction. An example of such a system would be a continu­

ous fermentation reactor in which a yeast population converts sugar

to alcohol. A reagent stream free of the biological organism flows

into the tank and a product stream containing both living and dead

organisms flows out. The mortality function must be defined so as to

account for natural death and elimination by being carried out in the

emuent stream.
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However Frauenthal and Swick work with the M-F system for which,

JL - JL(P),
and

{3 - {3(P)e-a a
, a > 0,

and maintain that the dependence of the mortality function on the

population size P alone is a reasonable assumption since much of the

mortality is actually due to the biological organism being washed out

of the tank with the effiuent stream.

They admit that the assumption on {3 is certainly unrealistic but, as

we have seen, the M-F system can now be reduced to system I, a pair

of coupled nonlinear O.D.E's.

In particular, Frauenthal and Swick assume that

(3(P)=l+r-rP, r>O, (4.3.1)

so that fertility decreases linearly with increasing population size,

which is apparently consistent with experience for a number of species,

and

JL(P) = 1 + c - a - (2c - q)P + (c _ q)P2 , (4.3.2)

where °< a < 1, c > a, C > q. Hence JL(P) exhibits the typical form

of being large for either small or large P - due to the respective effects

of scarcity and crowding - and reaches a relative minimum between

these extreme values .

From (4.1.13) of system I or from the requirement R(P·) = 1, it

follows that a necessary and sufficient condition for an equilibrium
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point [P", G·) of system I to exist is that

-JL(P) + (3(P) - a = 0,

which in this case gives (p., G·) = (1,1- a).

We have seen that when r = 0 in (4.3.1), system I admits no limit

cycle solutions. In investigating the possibility of limit cycles being

generated for r > 0 and JL given by (4.3.2), Frauenthal and Swick first

introduce the transformation

z = P - P",

y = G - G·,

so that system I in this case becomes

:i: = [q - (1 - a)(1 + r)] x + y - rxy + (2q - c)x2
- (c - q)xS

(4.3.3)

iJ = -(1- a)(r - q)x - (r - q)xy - (1 - a)(c - q)x2
- (c - q)x2y .

(4.3.4)

Routine calculation confirms that the characteristic equation corre­

sponding to the linear portion of these equations is

,X2 - [q - (1 - a)(1 + r) ]'x + (1 - a)(r - q) = 0,

with roots

1 1
,X = 2" [q - (1- a)(1 + r)]±2" {(lq - (1- a)(1 + r)]2 - 4(1- a)(r _ q))} 1/2.
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Denoting (1 - a)(l + r) by q*, it follows that if r > (1 - a)/a then

Re x < 0 for q < s' ,Re>' > 0 for q > s' , and at q = q" x =

±i [(1 - a)(r - q)]1/2 = ±i>'o. Hence, reference to the necessary and

sufficient conditions for Hopf bifurcation given in Appendix 4.1 indi­

cates that the equilibrium (P*, G*) bifurcates at q = q* into a periodic

solution with period near ~.

Also outlined in Appendix 4.1 is an algorithm, which we refer to as

Marsden and McCracken's algorithm, for determining whether the

resulting periodic solution is asymptotically stable.

In applying this algorithm, the first step is to select eo- ordinates such

that with respect to these new co-ordinates the matrix of the linear

part of system (4.3.3), (4.3.4) is

[
0 >'0]

->'0 0 .

Frauenthal and Swick achieve this by means of the transformation

The system (4.3.3), (4.3.4) then becomes (at q = q*) :

x - >'oY + 0,5 [3q* - c - (>'0 + l)r - (1 - a)(e - q*)/ >'0] X 2

+ 0,5 [q* - e + (1 + >'o)r - (1- a)(e - q*) />.o] y 2

+ [e - 2q* + (1- a)(e - q*) />.o]XY

(e - q*)X3 + 2(e - q*)X2y - (e - q*)xy2 ,
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y _ -'xoX + 0,5 [e - q* + ('xo -l)r - (1- a)(e - q*)j,Xo] X2

+ 0,5 [e - 3q* + (1- 'xo)r - (1- a)(e - q*)j,Xo] y
2

+ [2q* - c + (1- a)(e - q*)j,Xo] XY

(e - q*)X2y + 2(e - q*)xy2
- (e _ q*)Ys.

The next step is to evaluate the Lyapunov function ·V(0). It can be

verified that in this case

'V'(o) = -311" [(e - q*)(3r + q* - 2e) + r(r - q*)(e - 2q*) ] j 'xo(r - q*),

so that ·V(0) < 0, in other words, the periodic solutions are stable, if

and only if

where

D - 3(r + s') + r(r - q*),

E - Sq* [2r (r - q*) + 3r + q*].

To illustrate the qualitative nature of the limit cycles predicted by the

theory, the authors of [66] simulate solutions for various parameter

choices. The choice r = 10, c = 10,5, a = 0.9, q = 1,2(> q* = 1,1)

results in a stable limit cycle developing around the equilibrium point

(P*, G*) = (1; 0, 1).
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Fig. 4.3.1

Solution winding out to the limit cycle in phase space for r = 10; c =
10,5; a = 0,9; q = 1,2. The cycle occurs about the equilibrium point

(pe, Ge) = (1; 0, 1). (Reproduced from [66 , p '504]).
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1.1

Fig. 4.3.2

The time trajectory of the limit cycles for r = 10; c = 10,5; a =

0,9; q = 1,2. The period of oscillation is about 7 time units. (Repro­

duced from [66 ,p 505].)
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Frauenthal and Swick mention in conclusion, that although limit cy­

cles of diverse sizes and natural periods were found as the parame­

ters varied, the regions of parameter space which lead to stable limit

cycle behaviour were rather small and that an arbitrary set of pa­

rameters (r,c, q, a) would more likely lead either to a stable point or

to extinction. Nevertheless, their analysis has disproved Gurtin and

MacCamy's conjecture.

4.4 A biochemical population model in­

volving the general forms I-" = I-"(P) , (3

(3(P)e- aa •

Frauenthal and Swick's choice of mortality and fertility functions ap­

pears to be rather restrictive: p.{P) is very specialized and the linear

decrease of f3 with P might not always be a realistic assumption. For

this reason Swart [67] considers the general choice

p. - p.(P),

f3 - f3(P)e- Q Q
, a > 0,

in the M-F model, and extends the results of [66] to a wider class of

functions which are more likely to provide an accurate description of

the "biochemical reaction tank" model.

In particular p. and f3 are prescribed as arbitrary positive class C3

functions of P, containing the parameters O'll ••• , O'nl one of which is
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the "preferred" bifurcation parameter and is denoted by (J.

As in [67] Swart introduces the transformation

x = P - P*

y - G - G"

into system I and obtains

x - -JL((J,x + P*)(x + P*) + .B((J,x + p*)(y + G*)

iJ - [- JL((J, x + P*) + .B((J, X + P*) - a] (y + G*).

The linearized form of (4.4.1), (4.4.2) is then given by

x - AIx+ A2y (4.4.3)
y - Asx, (4.4.4)

where

Al - - JL((J,P*) - f;. ((J,P*)P* + /J ((J,P*);~:: ~:l P*

A2 - .B((J, P*)

As - - [f;.((J, P*) - /J((J, P*)] ;~:: ~:l P*.

(4.4.1)

(4.4.2)

(f;. and /J denote differentiation with respect to P.) In addition, the

roots of the characteristic equation of system (4.4.1), (4.4.2) are given

by
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so that if for certain values 0'0 of 0' we have A1 = 0, then

Since A2 > 0, it follows that if As < °then '\0 is purely imaginary at

0' = 0'0.

Evidently, a necessary condition for A1 to be zero for some value 0'0

is that

jL (0'0 , P*)13(0'0 ,P*) - {3(O'o, P*)J.L(O'o, P*) < 0, (4.4.5)

and a necessary and sufficient condition for As to be negative is

jL(O'o, P*) - {3 (0'0 , P*) > 0. (4.4.6)

H, in addition to (4.4.5) and (4.4.6) being satisfied, we have that

A1 < °for 0' < 0'0 and lJ~J > °at 0' = 0'0, then the Hopf criteria

(Appendix 4.1) for bifurcation into periodic orbits are met.

Swart notes that under the usual biological assumption that

{3(O', P) s 0,

the further condition

jL(O'o, P*) < 0,

follows immediately from (4.4.5). Hence a strictly increasing mortality

function cannot lead to bifurcation. It follows from (4.4.6) then, that

{3(O'o, P*) may not be zero; in other words, in the case where 13(0', P) =
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{30, {30 = constant, no closed orbits are possible, as was established

earlier.

In applying the Marsden and McCracken algorithm, Swart first in­

troduces the transformation

x = (A2)1/2X

Y _ (-AS)1/2y ,

into systems (4.4.1), (4.4.2). Having effected this transformation"V(o)

is then determined. In particular, Swart demonstrates ([67, pp 5,6])

that a necessary and sufficient condition ensuring the existence of

asymptotically stable periodic solutions is that

when evaluated at p., 0'0.( n· denotes differentiation of the entire ex­

pression with respect to P and fl. .. likewise, the second derivative of
lA

({3 / J.L) with respect to P. )

These results are then applied to the model

{3(P) = ae-kP + d

k > O,a,b,c,g,d ~ 0, g ~ c2/4b,

which Swart describes as being restrictive but considerably more re­

alistic than Frauenthal and Swicks choice (4.3.1), (4.3.2). Thereafter,

conditions on the parameters of the model are derived under which

bifurcation into stable limit cycles is indeed possible. Thus once again

Gurtin and MacCamy's previous conjecture is proved wrong.
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4.5 A more realistic form for the mater­
nity function and the Hopf bifurcation re-

sults for the model

As an improvement on the assumption f3 = f3(P)e-a a of the previous

models, Swart [68] , examines the M-F system for which

J.L - J.L(O',P)
f3 - f3(0' ,P)f(a)e-a a , 0: > 0,

(4.5.1)
(4.5.2)

where J.L is assumed to be a positive class Cl function; f3 a positive class

Cl function with a non-positive derivative with respect to P (denoted

by /;); 0' a parameter (or set of parameters); and f (a) represents a

polynomial of degree n.

In order to reduce the M-F system involving (4.5.1), (4.5.2) to a set

of D.D.E.'s, Swart constructs the weighting functions

where fi(a) denotes the i-th derivative of f(a) for 0 ~ i ~ n. Ap­

plying the same technique of the lemma of section 4.1 where now

g(a) = fi(a), i = 0, ... , n we obtain the set of n + 2 coupled D.D.E.'s:

P - -J.L(O',P)P + f3(0', P)KJ

j(i - f3(0', p)fi (o)KO - [0: + J.L(O',P) ]x: + tc:' , 0 ~ i ~ n - 1

tc: - f3(0', p)fn(o)KO - [0: + J.L(O', P) ]K".
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Notice that in this case B(t) = (3(a, P)Ko.

Swart specializes to the biologically realistic situation where f( 0) = 0

and assumes, without loss of generality that fn( 0) = 1, so that K"

is simply the Laplace transform of p with respect to a. Furthermore,

it is shown that a necessary and sufficient condition for the above

system to have an equilibrium point (P*, K*'), P* > 0, i = 0, ... , n, is

that

(3(a,P*) [fn(o) + fn-l(o) (p.(a,P*) + a) + .....

fl(o)(p.(a,P* + at-1 j- (p.(a,P*) + at+! = 0 (4.5.4).

Once again introducing the variables x = P - P*, y, = K' - K*' in

systems (4.5.3) leads to a set of O.D.E.'s which when linearized about

the origin, has associated with it a lengthy characteristic equation of

degree n +2. Again the emphasis of [681is on determining conditions

under which Hopf bifurcation will take place for suitable values of a.

In particular, Swart produces an algorithm which ensures that the

n + 2 roots of the characteristic equation consist of n real negative

roots and one complex conjugate pair

which becomes purely imaginary for some value ao of a. Roots of

this nature obviously satisfy the root criteria of Appendix 4.1. In

reviewing the content of [681 this algorithm will not be reproduced.

Instead we will examine the cases n = 1, n = 2 which are simple

enough to deal with without the aid of the algorithm.
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The case n = 1 corresponds to the maternity function

{3 =(3{a, P)ae-a a
, et> 0,

a form often used to model fertility behaviour.

From the requirement R{P*) = 1 or the "equilibrium point

equation" (4.5.4), it follows that a necessary and sufficient condition

for an equilibrium point to exist is

(3{a, P*) - [JL{a, P*) + et]2 = O.

Further, the characteristic equation of the linearized system can be

shown to be

.xS + {2 A+JLAP*}.x 2 + {2JL A+2 AAP* + JLiJ,P*}.x

+ JLP* {2 AiJ, - ,8} = 0, (4.5.5)

where A= JL + et, A = iJ, - JL{3-1,8.

It is readily verified that the polynomial .x2 + a.x + b = 0 will have

roots of the type specified earlier if and only if a = 0, b > 0 for a = ao;

while .xs+ a.x2 + b.x + c= 0 will have such roots only if a, b, c> 0 and

ab - c = 0 for a = ao.

Hence, for the case n = 1 we require

2AiJ,-{3>0

and that

at ao, (4.5.6)

[2 A+JL + AP*] [2JL A+2 AAP* + JLiJ,P*]- JLP* [2 AiJ, -,8] = 0,

(4.5.7)
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for some value 0'0, in order that equation (4.5.5) has suitable roots.

(Of course, a cubic polynomial having complex roots can have only

one complex conjugate pair so that the root criteria given here and

the general requirement of Appendix 4.1 are equivalent in this case.)

Equation (4.5.7) can be rewritten as

+2(21\ +JL) 1\ JL = 0, (4.5.8)

and since /3 ~ 0 it becomes immediately obvious that if jJ,(0', P) 2: 0 for

all 0', then all coefficients of powers of P' are positive, and therefore,

for no value of 0' can this equation be satisfied. Thus, if such a 0'0

exists it follows that

In addition, it is not difficult to verify that if JL 2: 2a, then (4.5.8)

cannot be satisfied for any 0'. Hence, a necessary condition for the

solution of (4.5.8) to exist and thus Hopf bifurcation to be possible is

that

Returning to the "well-mixed reaction vessel" problem, Swart applies

this analysis to the particular choice
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so that the mortality rate is large for either small or large P and

reaches a minimum at an intermediate value of P, and

where all parameters involved are positive constants. The restriction

6t < c < 20: guarantees that J.L remains positive. Such a choice of

J.L and [3 is obviously very synthetic but Swart points out that it is

biologically not completely imposs ible and provides a more realistic

alternative to Frauenthal and Swick's model (4.3.1), (4.3.2).

Working through the previous analysis, one can verify that the char­

acteristic roots are of the required form when (7 has the value

and further that ~((70) is indeed negative so that Hopf bifurcation

does occur at (70. Whether this bifurcation can lead to stable limit

cycles is a different matter, although, as mentioned in [68], computer

simulation seems to indicate that stable limit cycles do arise provided

c is close enough to 20: in value.

The case n = 2, and hence

f(a) = ra + sa2
, r,s, > 0

provides a useful form of [3(a, P) since there are now more param­

eters with which to model the fertility behaviour and greater accu­

racy is possible. Adapting the previous analysis to this case Swart
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demonstrates that as for the choice n = 1, necessary conditions for

Hopf bifurcation are that the function JL(O', P) has a (locally) negative

derivative, and that it "dips down" to below the value 2a.

Not only do the works of Frauenthal and Swick [66], and Swart [67],

[68] conclusively disprove Gurtin and MacCamy's [38] original conjec­

ture but they provide useful Hopf bifurcation criteria for the systems

involved.

While our emphasis throughout this chapter has been on the exis­

tence of stable limit cycles, Gurtin and MacCamy's technique has

facilitated a great deal of other analyses, some of which were men­

tioned in Chapter 3. In addition to these, Swart [12] makes use of this

technique in considering controllability in age-dependent population

dynamics. With the M-F system providing the underlying equations,

it is assumed in [12] that JL is described by (4.5.1) which we have

seen to be a reasonable assumption for the biochemical reaction tank

model or for preyed- upon animal populations for which death by

old-age is unlikely. Further, the fertility function is assumed to have

the form (4.5.2). Applying Gurtin and MacCamy's technique Swart

reduces the M-F system to the O.D.E. system (4.5.3) and then lin­

earizes this system about the equilibrium point (P-, K- i ) by setting

x = P - P-, Yi = K i - s«, 1L = 0' - 0'0. The linearized system is

expressed in the state-space notation
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where details of F and G are given in [12, p. 239].

Swart shows that the matrix B = [G,FG, F 2G, ..., Fn+lG] does not

have maximal rank. In fact, B has rank 1. In other words, we have

no guarantee that by suitably controlling the mortality function (by

means of a particular culling strategy), an arbitrary initial state.can

be steered to a desired equilibrium state in finite time. However,

Swart does demonstrate that it is possible to find a control which

will bring the total population to a specified value in finite time. The

details involved are too lengthy to repeat here but mention is made of

this in conclusion to point out a further area of study that has been

facilitated by Gurtin and MacCamy's clever technique.
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Chapter 5

Age-independent

predator-prey models

Although the emphasis in this treatment of population dynamics is

on age-dependent models, specifically the M-F model, a mathematical

study of populations would not be complete without attention being

given to age-independent models. The work done in this field is vast

and in this chapter the focus is primarily upon two species predator­

prey models; particularly those described by the Lotka-Volterra or the

more general Kolmogorov system of ordinary differential equations.

Furthermore, it is useful to study such predator-prey models here

since these and their theory provide some groundwork for, as well as
•

a contrast to, the predator-prey models examined in the next and final

chapter, in which the dynamics of the one species is described by an

age-independent Kolmogorov differential equation, and the dynamics

of the other by an age- dependent M-F equation.
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In what follows the theory concerning harvested and unharvested Kol­

mogorov systems is first established, whereafter attention is given to

specific predator-prey systems and to two other "multi-species" sys­

tems that have arisen out of attempts to model real-world situations.

5.1 The Lotka-Volterra model

In chapter 1 a brief review was given of the early deterministic O.D .E.

models of single species population growth - in these, age distribution

was not accounted for and the only variable was the population size

P(t). The logistic equation formed the canonical model.

The first step towards greater realism was to take into account the

dependence of the species on its food supply, and this led to a study of

predator-prey systems that has continued since the pioneering work

of Lotka [69] and Volterra [70], [71]1. The nonlinear model that they

independently proposed extended the basic logistic equation to the

system of quadratic differential equations:

dP1

dt

dJ:2 - P2 ( -b + dP1) , a, b, c, d > 0,

(5.1.1)

where P1(t), P2(t) are respectively the population sizes of the prey

and predator; a and b are respectively the net birth rate of prey and

lThis paper by Scudo gives an interesting overview of the life of Vito Volterra and
provides a concise, nontechnical description of his major contributions to mathematical
ecology. Also supplied is a chronological list of Volterra's works, presented between 1901
and 1936.
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net death rate of the predator (per capita rates), in the absence of

each other; and c and d relate to the interaction between the species:

Clearly the prey growth rate is diminished proportionally to the num­

ber of interactions between prey and predator, while the predator

population increases at a rate proportional to the interaction between

it and its food supply.

It was Lotka who first proposed this model in 1925. In 1927, Volterra,

being unaware of Lotka's work, presented the model again in [70] .

Hence, system (5.1.1) is known as the Lotka-Volterra model. Neither

Lotka nor Volterra restricted their work to predator-prey systems

- depending on the signs of the constants, (5.1.1) can represent a

species competing with another for the same resource or other types

of two-species interactions.

May in his well-quoted text [72]2presents a more generalized model

of the dynamics of a community of m interacting species having pop­

ulation sizes Pll P2, ••• , Pm respectively. The model consists of the set

of m G.D.E. 's

i= 1, ... ,m, (5.1.2)

each F; being a nonlinear funct ion of the relevant interacting popu­

lations, describing the growth of the i-th species at time t. System

(5.1.2) could apply to species in competition or co- operation, but

here attention will mainly be upon predator-prey situations.

2This text is referred to often and will henceforth be indicated as 'May'.
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Applying the usual standard stability analysis and denoting by Pi(t) a

small.perturbation of Pi(t) from the corresponding equilibrium value

Pt, (obtained by solving the system 0 = Fi (P; , ...,P~)) one arrives,

by Taylor expansion, at the linearized approximation

Le. = Ap(t),

where fi is the m x 1 column matrix of the 'p~s and A is called the

community matrix. Each of the elements at; of A describe the effect

of species j upon species i near equilibrium and the sign of the eigen­

values of A determine the neighbourhood stability character of the

system.

It is straightforward to verify that the eigenvalues of the community

matrix of the Lotka-Volterra system (5.1.1) evaluated at the non-zero

equilibrium point (~, %) are purely imaginary,

A = ±iv;;i,
so that the system is said to be neutrally stable: the systems trajecto­

ries in the vicinity of the non-zero equilibrium point oscillate endlessly

about the equilibrium point with a fixed amplitude that depends en­

tirely on the initial conditions and with period approximately equal

to *,. If perturbed from this equilibrium, the system will oscillate

periodically with some new, fixed amplitude.
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This result provides the basis of an important ecological argument

invoked by Elton [731 in 1958, and discussed in detail in May. Very

briefly, Elton's hypothesis states that in nature, the stability of a sys­

tem of interacting species is typically greater for structurally complex

systems than for simple ones, (where roughly speaking, one system

is said to be more complex than another if there are more species

involved and/or greater interactions among species). According to

May this hypothesis has, on occasion, been awarded the status of a

mathematical theorem, part of the foundation of the claim being the

fact that the Lotka-Volterra systems, unlike the single species logistic

model, does not possess an asymptotically stable (non-zero) equilib-

rium.

However, May counteracted this claim mathematically by investigat­

ing n predator - n prey systems and found them to be in general less

stable and never more stable than the simple two species model:

The analogue of the Lotka-Volterra model for an n- predator - n prey

system is

= Gi(t) [-bi + i: c4;Pl;(t)] ,i,j = 1,2, ... , n, <It, bi,Ci;, c4; > o.
1=1

Restricting the above coefficients to be such that all populations at

equilibrium have finite positive values, May demonstrates that the 2n
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eigenvalues occur in n pairs, each pair having the form

so that for every eigenvalue having a negative real part, there is a

companion having a positive real part.

Consequently, either all eigenvalues have zero real parts, in which

case the system is neutrally stable or, at least one eigenvalue has a

positive real part indicating instability of the system. Hence, the more

complex n predator - n prey system has at best the same stability

properties as the predator- prey model, and in general is unstable

rather than stable. Thus increasing stability of the system is not

an automatic mathematical consequence of increasing multispecies

complexity.

May points out that "while stability may usually go with complexity

in the natural world (as evidence assembled by Elton seems to indi­

cate) but not usually in general mathematical models is not really

paradoxical. In nature we deal not with arbitrary complex systems

but rather with ones selected by a long and intricate process ... The­

oretical work should not try to prove any general theorem that 'com-

plexity implies stability' but should focus on elucidating the very

special sorts of complexity which may promote such mathemati-

cally atypical stability.,,3 Such an exercise is beyond the scope of the

material covered here.

3[72, pp 3,41
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Returning to the Lotka-Volterra system, a simple but interesting ex­

ercise is to determine the effect of continuously removing constant

proportions, hi and h2 of the respective species from the system.

This could occur due to a pesticide removing both predator and prey,

or as a result of predation by a third species. The model now takes

the form

(5.1.3)

having the neutrally stable equilibrium point

(
b+ h2 a-hi)

d ' ,, c

provided that a > hi. Hence, indiscriminate harvesting of this type

increases the number of prey and decreases the number of predators.

Scudo [71] explains that Volterra's research in the field of mathemat­

ical ecology was stimulated by a zoologist's observation that, during

and after the first World War when fishing was severely limited, the

proportion of predators among the total catch increased substantially.

Volterra's harvested model model (5.1.3) explains this phenomenon.

Clearly, if the prey species is a "desired" species, harvesting is benefi­

cial, while if the prey species is undesirable harvesting could be dan­

gerous. As documented in [74], such a situation occurred in America,
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in 1868, when a population of scale insects was destroying the citrus

industry. A beetle species was imported to prey upon the insect and

kept the latter at bay until indiscriminate "harvesting" by the insec­

ticide D.D.T. was initiated, removing both predator and prey. As

predicted by (5.1.3) the prey (scale insect) population exploded and

disaster ensued.

5.2 More realistic 1 predator - 1 prey

systems

All parameters involved in the Lotka-Volterra model are constants,

and while this model may be appropriate to a number of specific in­

teracting populations, it is likely that in many cases the birth rates,

death rates and interaction coefficients involved include density de­

pendent effects. Here we review and comment on May's suggestions

for enhancing the realism of the model.

(I) Accounting for the possibility of self-limiting effects, the per

capita birth rate of the prey population becomes a function of its

population density. A likely choice is to replace a by the logistic

form

T = constant,

where k is a carrying capacity set by the resource limitations.

Thus, the population can increase up to a size k, after which
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crowding and food limitations etc ., prevent further expansion.

Other means of achieving a similar effect are,

k
a -+ Ti n PI'

a -+ r (;, -1) ,
a -+ r((;J-1), 1 ~ g > O.

(IT) In (5.1.1) the '-CPIP2 ' term describes the rate at which preda­

tors remove prey and is called the functional response. It indi­

cates an unlimited attack capacity per predator which increases

linearly with prey density. A more sensible and realistic func­

tional response might be,
(i)

so that the net predator rate is proportional to PI for small

prey populations but saturates to a constant, K, per preda­

tor for large values of PI. A further alternative is
(ii)

where D refers to some given value of prey population be­

yond which the predators capacity to capture gradually sa­

tiates.
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(ill) As for the prey birth rate, the predator per capita death rate is

also likely to be exacerbated by relatively high predator densi­

ties. We suggest that in many cases a possible replacement for

b might be the quadratic function,

w, u, v = non-negative constants,

so that the per capita death rate exhibits the likely behaviour of

being large for either small or large P2 and reaches a minimum

between these extremes.

(IV) In the Lotka-Volterra model, the per capita birth rate of the

predator is proportional to prey abundance, (indicated by the

term 'dPIP2 ' ) . As in (Il) May suggests that dPIP2 could be

more suitably replaced by expressions of the 'type (i) and (ii) in­

dicating that excessive prey abundance does not imply unlimited

proportional predator increase since there must be a limit to the

extent that predators can benefit from an excessive amount of

prey. Another possibility is dPIP2 -+ qP2\/J{, again implying a

"less fast than linear" response of P2 to PI.

Finally, a substitute to (5.1.1) proposed in May is,

so that the growth of the predator is of logistic form, with the con­

ventional carrying capacity (Pc of (1.3)) being proportional to prey

abundance.
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Assembling the above functions in various combinations suitable to

the situation under consideration gives 1 predator - 1 prey models

incorporating greater realism than the Lotka- Volterra system. Two

specific examples are:

(5.2.1)

and

(5.2.2)

In the latter case the prey, in the absence of the predator, grows

logistically while the predator, in the absence of prey, dies out expo­

nentially.

5.3 The Kolmogorov Theorem

Most of the above and many other 1 predator - 1 prey systems mod­

elled by O.D .E. 's can be written in the general form,
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(5.3.1)

known as Kolmogorov's model. F(Pll P2 ) and G(Pll P2 ) describe the

respective per capita growth rates of the two populations.

A.N. Kolmogorov [75], was responsible for deriving conditons which

necessarily guaranteed that the above system possesses either a glob­

ally stable equilibrium point or a globally stable limit cycle.

Essentially Kolmogorov's theorem states that systems of the form

(5.3.1) possess either a stable equilibrium point or a stable limit cycle

provided that F and G are continuous functions of PI and P2 , with

continuous first derivatives throughout the domain PI > 0, P2 > 0"

and that

(i) er < 0CJP;

(ii) PI (RA) + P2 (RA) < 0

(Hi) ec < 0BP2

(iv) PI (R~) + P2 (R~) > 0

(v) F(O, 0) > O.

In addition, there must exist quantities R, S, T, such that,

4May 172! ~owed for PI ~ a, P2 ~ a, but cl~arlywhen PI = a, P2 ~ a, (iii) and (iv) lead
to a contradiction. We shall adopt Komogorov s 1751 approach and require PI > 0, P2 > o.
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(vi) F(O, R) = 0,

(vii) F(S,O) = 0,

(viii) G(T,O) = 0,

(ix) S > T.

R>O

S>O

T >0

Conditions (i) - (ix) have interesting physical interpretation:

(i) the multiplication of the prey is slowed by the number of preda­

tors and, similarly,

(iii) the growth of the predators decreases with their population size,

in other words the predator population is self- limited.

(ii) For any given ratio of the two species, the rate of increase of the

prey is a decreasing function of population size while conversely,

(iv) that of the predators is an increasing function.

(v) If both populations are very small the prey multiply, but,

(vi) if there are too many predators (greater than R predators), the

prey population cannot increase.

(vii) If there are too many prey they cannot multiply even in the

absence of predators, in other words, S is the carrying capacity

for the prey; and,

(viii) if there are T or less prey, the predators have insufficient suste­

nance to multiply.
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(ix) Finally, if S < T or S = T the predators will disappear and

the populations will reach a point of equilibrium at P, = S and

P2 = o. To prevent this "collapse" of the system it is required

that S > T.

We refer to Minorsky [76] for a formal statement of the theorem and

to Rescigno and Richardson [77] , for a clear summary and extension

of the results of Kolmogorov's paper. As the conditions (i) and (ix)

imply, Kolmogorov interpreted (5.3.1) as describing the dynamics of

predator-prey interactions. Rescigno and Richardson extend the in­

terpretation of (5.3.1) to the cases of competitors and co-operators

by altering the conditions on F and G. The proof of the theorem is

given in [75] and is a direct consequence of the Poincare-Bendixson

theorem.

Often, the Kolmogorov theorem provides an easy alternative to the

laborious Marsden and McCracken (M-M) algorithm introduced in

chapter 4 and outlined in Appendix 4.1. This is illustrated by apply­

ing the two methods to a specific model investigated by Swart and

Duffy [78] , [79] :

Among the many predator-prey systems that have been studied is the

elephant-tree ecology. Of interest here, as for other models of inter­

acting species, is the stability properties of the system; in particular,

the possible existence of stable limit cycles. Knowledge of such cy­

cles provides bounds on future population sizes and thus could help
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in planning culling strategies. However, we see in section 5.4 that it

is not always safe to plan harvesting policies from knowledge of the

behaviour of nonharvested systems alone.

Swart and Duffy use the Caughley [80) model to describe the predator­

prey dynamics for the elephant-tree system and show by means of the

M-M algorithm that Hopf bifurcation into stable limit cycles may well

occur. Necessary and sufficient conditions for such an occurrence are

derived. In what follows, content of [78) is outlined.

Caughley's elephant-tree model has the form,

dJ;l - PI [a - bP1 - CP2(P1 +gt l
)

dJ;2 _ P2 [- A + kPdP2 +Bt l ) , a, b, c,g, A, k, B: positive constants,

where PI is the density of the trees (prey); P2 , the density of the

elephants (predator); a, the initial rate of increase of the trees; b, the

degree to which addition of a further unit of tree density depresses

the rate of increase of the trees; c, the rate of elimination of trees

per unit density of elephants; g, a threshold density of trees, (by

threshold density is meant the minimum number of trees necessary

for the survival of the trees - evidently if the trees are too sparse

effective pollination and hence propagation of the population is not

possible); A is the rate of decrease of the elephants in the absence

of trees; k is the rate at which elephant decrease is ameliorated at

a given ratio of trees to elephants; and B represents the threshold
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density of elephants.

The nontrivial equilibrium points of this system are

(5.3.3)

P; = (2bti {a - bg - ckA-i + [(a - bg - ckA- i)2 + 4b(ag + Bc)r/
2}

(5.3.4)

with the condition P; > ABk- i ensuring that P; is positive.

Linearizing the system about the equilibrium point (P;, P;) yields a

community matrix having eigenvalues

A =i[a - 2bP; - cP;g(P; + g)-2 - AP;(P; + Bti] ±i[D] 1/2

(5.3.5)

where

For Hopf bifurcation to occur (see Appendix 4.1) it is necessary that
.

this expression may be written as A = Ai ± iA2' where Ai :5 0 and

A2 > 0, and that for some value of a preferred parameter, Ai = O.

Thus, the authors consider the bifurcation condition
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and verify that under this assumption the corresponding value Da of

D is indeed negative.

From (5.3.4) it follows that

A = ckP; [(a - bP;)(P; + g) + Bcr1
,

which enables (5.3.6) to be rewritten as

(5.3.7)

(a - bg - 2bPn [(a - bP;)(P; + g) + BC]2 - ck(a - bP;)(P; + g)2 = o.
(5.3.8)

The choice of a bifurcation parameter is fairly arbitrary and Swart

and Duffy select 'A' as such.

From (5.3.7) it follows that the condition P; > ABk-1 implies that

P; < ~; so that throughout the analysis, the requirement ~ > ABk-1

is essential.

Analysis of the roots of (5.3.8) indicates that this equation will have

a single root P; < ~ if and only if

(a - bg)(ag + Bc)2 - ckag2 > O. (5.3.9)

If (5.3.9) is satisfied (5.3.8) will have a root P;, which, when substi­

tuted into (5.3.7) gives the "bifurcation value" Aa of A.

Recall from chapter 4, that the M-M algorithm requires ~1 > 0 at

Aa, for bifurcation to occur at Aa.

Making use of the fact that
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it is not difficult to show that ~1 < 0 at Ao, so that by choosing

a new parameter p. = -A instead of A, it obviously follows that

~~1 > 0 at p. = -Ao and that the necessary conditions for Hopf

bifurcation are therefore satisfied for A < Ao.

Now, to determine whether these cycles are stable, Swart and Duffy

apply the M-M algorithm, introducing the transformation

( ~ ) = (A~-l ~) (: ),
where a = (P; + B)(2kP;)-1 [_Dojl!2 .

The linearized system of (5.3.2) then takes the form

x - F1(X,Y)

Y - F2(X,Y),

of which in turn, the linearized form is

x - 1'\21Y

y - - 1'\2IX,

where '\2 = ~ [- Dojl/2, the form required for the application of the

M-M algorithm.

Evaluating V(o) as given in Appendix 4.1, Swart and Duffy obtain

V(o) = 31r(41'\21)-1p;6e2k3(P; + g) [(a - bP;)(P; + g) + Ber l •

(a - bp;)-2(a - bg - 2bP;)-I. V·, (5.3 .10)
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where

V· _ BcP {L [2P;2 L2 - 5p;2LP + (2P;2 - gP; - g2)P2]

P;(P; + g)P3} + L(P; + g)2 ck {-2gL2+ (P; + g)LP + p 2g}

+ L2P(P; + g) {2P;2L2 _ 5p;2LP + (2P;2 _ gP; _ g2)P2} ,

and
P - a - bg - 2bP; ,

L - a-bP;.

It is cleverly shown in [78], that for B large enough, V· and hence

'V(o) is negative, so that for all values of A < Aa and B sufficiently

large, the system (5.3.2) will exhibit stable limit cycles of period close

to 211" 1;\21-1•

We will instead apply the Kolmogorov theorem to the above elephant­

trees system. In this case,

G = -A kP1

+ P2 +B'

and it is straightforward to verify that since all parameters involved

are positive, conditions (i) - (v) are satisfied; while conditions (vi) _

(ix) imply that R = ¥, S = E' T = At and E> AkB respectively.

The latter condition was encountered in Swart and Duffy's previous

analysis.

163



Hence, according to Kolmogorov, providing ~ > At, the system

(5.3.2) possesses either a stable equilibrium point or a stable limit

cycle.

As is well-known, the necessary and sufficient conditions for the sys­

tem to posses~ local stability is that both eigenvalues (5,3,5) have

negative real part. This requires that 1L > 0 and v > 0, where

1L = AP;(P; + B)-l - [a - 2bP: - cP;g(P: +gt2
] ,

v = cP:(P: + g)-lkP2* - [a - 2bP: - cP;g(P; + gt2
] AP;,

On the other hand, if either 1L :::; 0 or v :::; 0, Kolmogorov's theorem

indicates that stable limit cycle behaviour ensues. Although the above

is a neighbourhood stability analysis Kolmogorov's theorem ensures

that, in this case, local and global stability are identical. Thus, the

complete global stability character of the system is laid bare by simple

and conventional neighbourhood analysis.

The above conditions on 1L and v are easy to test for any given set

of parameters and it appears then, that the Kolmogorov theorem

provides
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Fig. 5.4.1

Changes in the Hudson Bay Lynx and Hare populations during the

period 1845 - 1935. (Reproduced from [72, p . 92].)
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a far less laborious method for determining conditons under which

stable limit cycles are possible, than does the M-M algorithm. Here

we dealt with a specific system but May remarks that a great deal of

the models that have been proposed for 1 predator - 1 prey systems

satisfy the conditions of the theorem and hence possess either a stable

point equilibrium or a stable limit cycle. He adds that these stable

limit cycles provide satisfying explanations for those predator-prey

communities in which populations are observed to oscillate in a rather

reproducible manner. A well-documented case is that of the Hudson

Bay Lynx-hare predator-prey systems referred to in [72]; see figure

5.3.1. For many years the explanation given associated this "cycling"

phenomenom with the artificial, neutrally stable Lotka-Volterra os­

cillations. May maintains instead, the these observed oscillations are

"surely the outcome of some stable limit cycle."!

A natural consequence of the Kolmogorov theorem being satisfied

should be that V·(o) of the M-M algorithm is always negative - recall,

that the calculation of·V (0) requires .\ = ±i.\2, Le. u = 0, so that,

according to the previous discussion stable limit cycle behaviour must

ensure.

This claim was investigated for the previous elephant- tree system:

The conditions which the parameters are required to satisfy are,

5[72,p 921

a
- > ABk-1

b
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and

a - bg - 2bP; > 0, a - bP; > 0, (5.3.12)

the latter two following from (5.3.7) and (5.3.8).

Realistically, the threshold density of trees g, must satisfy g > 1,

which in turn, implies that a > b since from (5.3.11)

a - bg a - b
o< bP; < < -- < a-b.

2 2
(5.3.13)

Yet, all attempts to show that ·V(0) is negative under these restrictions

were not successful. Moreover, if one attempts to prove that 'V (0) < 0

for the general system (5.3.1) satisfying the Kolmogorov conditions (i)

- (ix) (see Appendix 5.1) one obtains an expression for V(o) containing

second and third derivatives of F and G about which the Kolmogorov

theorem yields no information. Hence a result which appears to be

evident is difficult to verify theoretically.

However, it was established (see Appendix 5.2) that under the addi­

tional conditions

P; > g, a - bg - 6bP; > 0,

'v (0) is indeed negative.

(5.3.14)

Although this requirement appears to be rather contrived it was

hoped that it would apply for biologically realistic parameter choices;

50 that the result V'(o) < 0 would be confirmed in this case.
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In [79) Swart and Duffy give ranges of parameter values deduced from

data gathered from several areas in Africa: c, the number of trees/km2

destroyed per elephant/km! per year is considered to be of the order

"'(10 with the maximum rate of destruction given by c = 273; while

the growth rate a is of the order a10-2 with the lowest rate given as

a = 0,02. Apparently, k is the most difficult parameter to estimate

and the value of k = 2 X 10-7 obtained as an average for two areas in

Africa is known to vary considerably. The lowest threshold density

for elephants that could be obtained was B = 0,01 elephanr /kmi and

a realistic choice for the threshold density of trees is 9 = 100. In

[79) attention was restricted to the situation where trees were given

the 'best possible' chance of survival, namely the case where b = 0.

However taking b #- °it is most likely that b is 'close to zero' in value;
./

according to typical data it was chosen to be of the order 6'10- 6 or

less.

Selecting parameter choices within these ranges and such that the

restrictions imposed were satisfied, it was found that (5.3.14) held

for many but not every combination of parameter values selected so

that (5.3.14) is not a consequence of the parameters involved being

biologically plausible.

The difficulty encountered in trying to show "V(0) < 0 is puzzling.

Nevertheless, we do conjecture that for the above elephant-tree sys­

tem subject to the conditions of Kolmogorov's Theorem V(0) is always

negative. Proof of this would be a commendable exercise. Far more
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valuable though, would be proof that for a general system (5.3.1)

satisfying (i)-(ix), the Lyapunov function V(o), defined in the M-M

algorithm is negative.

As mentioned earlier, in [79] Swart and Duffy deal with the elephant­

trees model under the restriction b = 0, so that the trees are assumed

to be too sparse to significantly depress the growth rate of trees. In

this case, the conditions of the Kolmogorov theorem fail to hold and

to investigate the possibility of stable limit cycles, one has no choice

but to apply the M-M algorithm. In doing so it is found in [79] that,

in general, limit cycles will not occur; but that there does exist a

narrow range of values which would lead to the existence of limit

cycles in the populations. However, the period of such cycles would

be so large that in practice one may discount entirely the possibility

of stable limit cycles.

5.4 May's modification of the Kolmogorov

Theorem

May, in [72] and [81], modified the Kolmogorov theorem stating with­

out proof, that in many cases, the results remain valid when any of the

inequalities (i), (ii), (iii), (iv) of the theorem are replaced by equal­

ities . For example, he claims that the system (5.2.1) can be seen

to have either a stable equilibrium point or a stable limit cycle even
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though in this case,

and condition (viii) is violated. The reasons given by May are sim­

ply that "this can be seen if one uses the methods of Kolmogorov's

theorem'l" and further that the above equations can be "seen to be

sensible limiting cases of more general predator-prey equations which

do satisfy the criteria (of the theorem}."? May does not substantiate

these reasons and his modification of the theorem has been challenged

by Albrecht et al [82], who attempt to show it to be incorrect by means

of a counter-example. They construct a model which satisfies May's

relaxed 'Kolmogorov conditions' and which admits a continuum of

neutrally periodic solutions - hence has neither a stable equilibrium

point nor a stable limit cycle.

In reply to their findings May remarks (in a footnote concluding [82]),

that firstly, the model chosen by Albrecht et al is contrived and does

not have physical application and secondly, that while in addition to

stable equilibrium points and stable limit cycles there may be classes

of neutrally stable periodic solutions, these are unlikely to be of bio­

logical significance. He reiterates that whether inequalities are relaxed

or not "the fact remains that essentially all the explicit 1 predator­

1 prey models that have actually been propounded in the biological

6[81, p 902j
7[72, p, 88j
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literature exhibit either stable equilibrium points or stable limit cy­

cle behaviour as the biological parameters are varied."g We know

this to be true if the conditions of Kolmogorov's theorem are satis­

fied, but the work by Albrecht et al and the insufficient evidence that

May gives for his claim suggest that, until it has been established by

formal proof, the belief that the theorem remains valid even though

inequalities are weakened, cannot be accepted.

Furthermore, Albrecht et al also suggest in [82], that under Kol­

mogorov's hypotheses there may be several possible configurations

besides that of stable point or stable limit cycle. Thus, it appeared

at first that the statement of the theorem given earlier, (which is that

given in May before the inequalities are relaxed) is inaccurate. How­

ever, in consulting the discussion of Kolmogorov's theorem given in

[771 it is apparent that all possible configurations do fall within the

purview of 'stable point or stable limit cycle', so that our statement

of the theorem is authentic.

Further work concerning the global stability properties of predator­

prey systems has been produced by Liou and Cheng [83]. These

authors adopt a less general approach than that of Kolmogorov and

consider predator-prey systems described by the model

(5.3.15)

8[82, p. 10741
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dP2 = P2(Kh(Pl ) - b), K, constant. .
dt

This is just the Lotka-Volterra system (5.1.1) with the constant prey

birth rate aj and the functional response term '-CPlP2,' as well as the

predator birth rate term 'dPlP2' replaced by more realistic functions

g(Pl ) and h(Pd respectively. Possible forms of g(Pl ) and h(Pd were

discussed in section 5.2. Recall, that we discussed replacing a by

which was also an appropriate replacement for dPlP2 • Liou and Cheng

give four criteria (a), (b), (c) and (d) which together guarantee that

the equilibrium point (P;, P;) is globally asymptotically stable in the

domain P, > 0, P2 > 0. ((a), (b) and (c) involve the properties of

g(Pl ) , h(Pl ) and f(Pd = p~(K) and their derivatives, and are not

difficult to verify; (d) is a rather complicated condition concerning the

inverse function f of f over the interval P; < r, < k, where (P;, P;)
. .

is a locally stable equilibrium such that P; = P~gp~. , k is the prey
1

carrying capacity, Le. g(k) = 0, and f : [0 ,P; ] -+ [P; ,k], since f :

[P; ,k] -+ [0 ,P; ]. Further details are given in [83, p. 65-67].)

Liou and Cheng list forms of g(Pl ) and h(Pl ) that arise in biological

contexts, most of which were mentioned in section 5.2. They mention
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that computer simulations indicate condition (d) of their paper to

be satisfied for almost all combinations of these choices of 9 and h.

Included in their list is those forms of 9 and h involved in system

(5.2.2). Now, as for system (5.2.1) May claimed in [72, p 88] that

(5.2.2) can be seen to possess either a stable point or a stable limit

even though B~ = 0 and even though (5.2.2) is not strictly of the

Kolmogorov form (5.3.1).

Assuming (d) to hold for system (5.2.2) it is not difficult to obtain,

by means of the remaining criteria (a), (b), (c) of [83], ranges of

parameter values for which Liou and Cheng's result holds and hence

for which (5.2.2) has a globally stable equilibrium point. If one could

show that, for parameter values outside of these ranges stable limit

cycle behaviour ensues, May's claim would be established for this

system. Even the assurance that (a), (b), (c) and (d) do apply to

(5.2.2) would give credibility to May's statement.

The modification of the Kolmogorov theorem appears to be an unre­

solved area in mathematical ecology, and rigorous proof or disproof of

the validity of the theorem under May's weakened conditions would

settle this contention.
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5.5 The Incorporation of Enrichment and

Harvesting into the Kolmogorov Model

In many practical situations one or both of the two species may be

harvested and removed from the system. This could occur if, for

example, one (or both) of the species is being used as a food supply

for a third species.

Brauer, Soudack and Jarosch have studied this situation extensively

and in this section the results of their papers [84], [85], [87], [88], are

reviewed. Where details are omitted, these references provide proofs,

refinements and explicit examples.

Brauer [84] first dealt with the non-harvested Kolmogorov model

d£t _ P1F(Pll P2 , k)

d£2 = P2G(Pll P2 ) ,

(5.5.1)

where again PI and P2 denote the prey and predator population sizes

respectively and k, the limiting size to which the prey population can

grow in the absence of predators (Le. F(k, 0, k) = 0), is explicitly

indicated in the per capita growth rate function F, of the prey.

This paper does not yield much new information on 1 predator-l

prey systems but does introduce the concept of enrichment, investi­

gating its effect on the stability of the system. Enrichment can take a

number of forms, but is generally described by increasing the specie's
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food supply. For the prey species in this case, enrichment is described

mathematically by an increase in the carrying capacity k, One would

expect that enrichment of the prey's environment also leads to an in­

crease in the predator population, so that in cases where the predator

species is used as a food supply for a third species, enrichment of the

prey environment may be a desirable goal for resource management.

However, it may be that such enrichment tends to cause instability

in the system and under study in [841 is the possibility of destroying

the asymptotic stability of the system by increasing k,

Among a number of assumptions made in [841 are the following:

(A) F and its first-order partial derivatives are continuous for PI > 0,

P2 > 0, k > °and

(B) G and its first-order partial derivatives are continuous for PI > 0,

P2 > °and
aG
aP

I
> 0,

aG
ap

2
< 0.

(Actually, Brauer assumed B~ ~ 0, but in the light of the pre­

vious discussion on Kolmogorov's theorem and the weakening of

inequalities, we shall restrict Bl to be strictly negative. This

means that there is intra-specific competition within the preda­

tor population Le. its growth rate is restricted by the size of its
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population.) •

(C) F and G satisfy

(::J (:~) -(::.) (:;:) > 0 for r, > O,P, > O,k > O.

It will be seen that if the above expression is negative everywhere

then no equilibrium point of (5.5.1) can be stable, so that (C)

ensures the existence of stable equilibria.

Further, it is assumed that the equilibrium point (Pi(k),P;(k)) is

unique, that F(k, 0, k) = 0 for k > 0 and that the remaining con­

ditions (ii), (iv), (v), (vi), (viii) and (ix) of Kolmogorov's theorem

hold.

The main results of [86] can be stated as follows:

Theorem 1

Let (A), ·(E) and (C) hold. Then the prey and predator equilibrium

populations, Pi (k), P; (k) are increasing functions of k.

Hence, as expected, enrichment of the prey's environment produces

an increase in both the predator and prey equilibrium populations.

Theorem 2
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Let (A), (E) and (C) hold. Then an equilibrium point (Pi(k), P;(k))

of (5.5.1) is asymptotically stable if

and unstable if

(Here and throughout Pi =Pi(k).)

This is easily seen from examining the eigenvalues of the community

matrix of (5.5.1), namely

1 { [2 ]1/2}A = 2 ~l ± ~l - 4~2 ,

where

and

A direct consequence of Kolmogorov's theorem is then

Theorem 3

Let (A), (E) and (C) and the remaining conditions .of the Kolmo- .

'gorov theorem hold. Then (5.5.1) ·.possesses , either a .:stable
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equilibrium point or a stable limit cycle in the quadrant

PI> O,P2 > O.

Combining theorem 2 and theorem 3 we see that if k is increased to

the value at which the equilibrium becomes unstable an oscillation

must be set up. In particular, if

(5.5.2)

stable limit cycle behaviour ensures, while if

the equilibrium is a stable point.

The above theorems express results that have been encountered pre­

viously. What is new and practically useful is a criterion for testing

whether the system remains stable for all k or ultimately becomes

unstable:

According to the above analysis an equilibrium point eventually be­

comes unstable as k is increased if

(5.5.3)

Calculating limk--+oo P; (k) and limk--+oo P2• (k) and substituting into the

expression

(5.5.4)
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gives conditions under which (5.5.3) is satisfied. However, violation

of (5.5.3) does not necessarily imply stability for all k unless we know

that (5.5.4) is a monotone increasing function of k. IT it is so, then

(5.5.3) implies that the system becomes unstable under sufficient en­

richment (which may be seen for example, in growth without bound

of both species or in growing amplitude oscillations which might lead

to extinction of one or both of the species as the systems trajectory

approaches the axes of the quadrant), while negation of (5.5.3) implies

the preservation of stability.

Brauer applies this last-mentioned result to system (5.2.1) encoun­

tered earlier. Here

F(Pl,P2,k) - r [1-1(] - p~:)J'
and

G(P1,P2) = S [1- ~J.
Working through the above analysis, it is found that the derivative

of (5.5.4) with respect to k is positive and that if s > r the system

remains stable under enrichment, while if s < r there are values of

"I for which enrichment causes destabilization. There is thus quite a

delicate dependence of the qualitative behaviour of the system under

enrichment on the parameters of the model, and this suggests the

need in general, for extreme caution in tampering with natural sys­

tems. Indiscriminant enrichment of an environment with the hope

of increasing a population could be dangerous in that the results may

179



be very different from the intention.

In [85] Brauer et al extend the above theory to consider the effect

of harvesting the predator population at a constant time rate on the

stability of the system. They quote an example involving lake phyto­

plankton as predator and a particular nutrient as prey. Apparently,

observations suggest large amplitude oscillation in both populations.

Of interest is whether these oscillations could be "tamed" to stable

limit cycle or stable point behaviour by suitable harvesting of the

predator.

The system under study is

d£l _ P1F(Pll P2) ,

d£2 = P2G(P1,P2) - E,

(5.5.5)

where E ~ 0 is the constant rate at which predators are harvested,

and where explicit dependence of F on k, the prey carrying capacity,

is not indicated but is assumed. Evidently, for this system to be in the

standard Kolmogorov form the second differential equation of (5.5.5)

must be expressed as

where
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Brauer et al neglect to do this and require that conditions (A), (B)

and (C) , introduced earlier, continue to hold. However, we now have

so that, in order for (B) to hold in this case, the values of P2 need to

be restricted to those satisfying

(B')

Furthermore, application of the Kolmogorov Theorem requires the

existence of a constant T, such that G(T,O) = o. This is clearly

not possible for the above choice of G(P1 , P2) . Brauer et al do over­

come this difficulty but before discussing this, the content of [851 is

overviewed:

An equilibrium point is now a solution of the pair P1F(Pll P2) ­

0, P2G(P1,P2) = E, and is denoted by (P{(E), P;(E)). As al­

ways, we require Pt(E) > 0, P;(E) > o. Furthermore, for E = 0

the equilibrium point (P{(O), P;(O)) is assumed to be unique with

pnO) > 0, P2• (0) > o. The implicit function theorem [86, p 185]

guarantees the existence of an equilibrium point (P{(E), P2·(E)) pro­

viding the community matrix of system (5.5.5), namely

[

r: (E) 8F (p. Po·)
1 ?JP; l' 2

C(E) =
r: (E) 8G (p . Po ·)

2 lJP"; l' 2
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where Pi denotes Pi(E), is non-singular; in other words det C(E) >

o for E > o. This condition holds for E = 0 since condition (C)

is equivalently detC(O) > o. (In addition Brauer et al demonstrate

that for E > 0, the equilibrium points are always positive, so that

the above requirement of Pi > 0, P; > 0 is always valid for system

(5.5.5).)

However, the criterion detC (E) > 0 for the existence of (Pi (E), P; (E))

is not useful in practice since it requires Pi (E) and P; (E) to be

known. For this reason, a critical harvest rate determined by

det C(Ec ) = 0 is introduced in [85] so that the equilibrium point in

the first quadrant exists for 0 5 E < Ec' disappears at E; and fails

to exist for E> Ec•

For example, the system having

with R, A, s, J being appropriate constants is mentioned in [85] as

being used for the study of phytoplankton-nutrient population dy­

namics. The equilibrium points in this case are

P.(E) _ sAJR
1 - sAR -E(J+A)'
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(sR - EHJ + A)
P;(E) = sJ

from which it is clear that

sRA
O~E< J+A'

ensures Pi(E) > o. Hence, for this model, E; = j~~.

Now, for E = 0, it is easily seen that a system trajectory in the

Pl - P2 plane of a solution of (5.5.5) can approach the P, or P2 axes

tangentially but cannot cross an axis, since at Pl = 0 and P2 = 0

we have ~ = 0 = ~. However, as Brauer et al note, for E >

0, P2G(Pl , P2 ) - E is negative for P2 = 0, so that an orbit which

comes near enough to the P l axis will cross it and at the crossing

~ = - E < o. If E > E; a positive equilibrium point fails to exist;

the predators are being harvested at a rate which exceeds their growth

rate. Necessarily, ~ < 0 and the orbits will be drawn downwards

to the PI axis, resulting in the biological catastrophe of the predator

becoming extinct in finite time.

As usual, studying the stability properties of the system requires

knowledge of the eigenvalues of the community matrix C(E). Straight­

forward calculation confirms that the eigenvalues are
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with

and

Now, in order to apply Kolmogorov's theorem one needs to check

that conditions (i) - (ix) apply to the harvested system. Clearly, if

conditions (i), (ii), (iv) , (v), (vi) hold for the unharvested system

(5.3.1) they will also be true of the harvested case (5.5.5). However,

as mentioned earlier, concerning condition (iii), the range of P2 needs

to be restricted in order that :t, < 0, for the harvested system. An

equivalent interpretation of conditions (vii) - (ix) for the unharvested

system is that the intersection of the prey isocline F(P1 , P2) = 0 with

the PI axis is to the right of the intersection of the predator isocline

G(P1 , P2) = 0 with the PI axis. Thus, for the harvested case (5.5.5),

Brauer et al require that the intersection of F(P1 , P2) = 0 with the

PI axis be to the right of the intersection of P2G(PI, P2) = E with

the PI axis, for conditions (vii) - (ix) to be satisfied. However, for

E > 0, P2G(Pll P2) = E has the PI axis as an asymptote (since

~ = 0), and it appears that our requirements cannot be satisfied.
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The authors of [851 note though that if one considers a region bounded

by the P2 axis and a horizontal line P2 = E, with E chosen to be large

enough so that the intersection of F(Pll P2) = 0 and P2 = E is to

the right of the intersection of P2G(Pll P2 ) = E with P2 = E, then

Kolmogorov's conditions (vii) - (ix) are satisfied in the first quadrant

where P2 > E. If E < E, a positive equilibrium point exists and hence

such an E can always be found.

Combining the above discussion with knowledge of the eigenvalues,

we have that for values of PI and P2 : such that (A), (B'), (C) and

Kolmogorov's conditions (ii), (iv), (v), (vi), as well as conditions (vii)

- (ix) in the form apply to the harvested system, the system has a

stable point for

and bifurcates into a stable limit cycle for,

Brauer et al define E, to be the critical value of E for which such a

transition occurs, Le. ~l (E,) = o. Thus harvesting at rates close to

E; and E, can produce qualitative changes in the behaviour of the

system, namely the real-life danger of predator extinction or, under

Kolmogorov's conditions, the onset of stable oscillations.

The important concept of practical stability is introduced in [85]. By

definition it implies that an orbit of a solution never comes closer to
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either axis than some preassigned distance. In this way the possibility

of extinction of a species due to an oscillation approaching an axis

very closely, is excluded. Brauer et al emphasise that the practical

stability of a system may depend on its initial state and usually can­

not be established by purely analytic means but often requires some

numerical computation. So far, in our dealing with limit cycles we

have not taken practical stability into account. It is evident though

that we will need to do so. A good example is provided by system

(6.4.2 - 4 ) of chapter 6 for which limit cycle behaviour is demon­

strated but, which is definitely not practically stable: a more valid

conclusion would be extinction of both species rather than regular,

indefinite fluctuations in population numbers.

Brauer et al apply this analysis to three models which have arisen

in separate biological contexts. They analyse the nature of solutions

by first determining the equilibrium point as a function of E. Then,

for specific parameter choices and E < Ee , .6.1(E) and .6.2(E) are

computed and thus the nature of the equilibrium is determined.

The computer simulation and practical stability analyses for these

systems are detailed in [85]. Instead of elaborating upon this work,

brief mention will be made of some of the results obtained:

One of the models studied involves

G(P P.) _ SA(P1 - J)
1, 2 - (J + A)(P1+ A)'
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and calculations indicate that enrichment of the prey environment

(Le. increasing k) tends to create system oscillations, but that har­

vesting tends to stabilize these, even to the point of being able to

change a limit cycle into an asymptotically stable equilibrium point.

The safe harvesting terms, that is the value of E less than E c which

lead to a stable situation, increase with k, Hence, if one could assign

a 'cost' to enrichment and a value to the harvested predator and de­

rive a means of calculating an optimal enrichment and corresponding

maximum safe harvest, one would obtain a valuable tool for resource

management and control. Another point that arises is that the qual­

itative behaviour of the unharvested system gives no guide to the

response to harvesting. For example, one system had an asymptot­

ically stable point for E = 0 and developed limit cycles for certain

values of E > 0, while another with a limit cycle for E = 0 exhibited

stable point behaviour for values of E > o. Thus, the behaviour be­

fore, in general, is not an indication of the behaviour after harvesting

and a stable system may be destablized by harvesting. This warns

against an intuitive approach to harvesting.

In [87] Brauer and Soudack investigate the Kolmogorov system in

which both predator and prey are harvested according to the constant­

yield strategy

(5.5.6)
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(5.5.6)

where D and E are constants, not necessarily positively valued, since

a negative harvest rate can be regarded as a rate of stocking. The

basic assumptions of [87] are along the lines of [84] and [85], namely

that
BF Ba Ba
BP

l
< 0, BP

l
> 0, BP

2
< °for r, > 0, P2 > 0,

and there exist constants R, K, T, such that

F(K, 0) = 0,
F(O,R) = 0,
a(T,O) = 0,

K>O
R>O
T > 0.

Under study here is the asymptotic behaviour of solutions of the above

system for different values of D and E and how this behaviour de­

pends on D and E. Biologically this means the study of the effects

of a variety of mechanisms such as increasing or decreasing the food

supply of the predators and introducing or removing predators from

the system. Brauer and Soudack analyse the trajectories of the sys­

tem giving attention to the existence and nature of saddle points,

equilibrium points and limit cycles. Their analysis is detailed and no

application of Kolmogorov's Theorem is made. Emphasis is given to

coexistence and extinction phenomena and regions of harvest rates

for which the predator and prey coexist or for which either of the

species becomes extinct in finite time are illustrated.
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As for the age-dependent harvested models of section 3.5, an exten­

sion of constant-yield harvesting is the study of constant- effort har­

vesting. This involves replacing D and E of (5.5.6) by DP1 and EP2

respectively, where D and E now represent harvesting efforts rather

than rates, (a discussion of the meaning of "effort" is given in sec­

tion 5.6). Notice that in this case the harvested model remains of

the Kolmogorov type, since obviously, the constants D and E can be

incorporated into the growth rate functions F and G respectively:

dP1
dt - P1F(P1,P2 ) = P1(F(PllP2 ) - D).

(5.5.7)

Thus, the Kolmogorov theorem can be tested and applied without

any difficulty.

Brauer and Soudack's work on system (5.5.7) is detailed in [881 . As in

[871 they examine how the asymptotic behaviour of the system varies

for different values D and E of constant-effort harvesting or stocking.

Instead of elaborating upon their paper, attention is given to specific

"multi-species" models that have arisen out of attempts to model

real-world situations.
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5.6 A Two-species predator-prey model

A predator-prey system of ecological concern is the baleen whale and

krill populations of the Southern Ocean. The number of baleen whales

has been drastically reduced-by excessive hunting and as a result there

is a surplus of their principal food source, the Antarctic krill. There

has been much discussion about exploiting this surplus krill, a rich

source of Vitamin A, and already close on 100,000 tons per annum

are harvested. (References to this information are available in [89].)

However, the krill are also consumed by many other ocean creatures

and the effect of krill- fishing on these as well as on the sparse baleen

whales is a cause of concern. May et al [89] construct a simple, heuris­

tic model of the situation in an attempt to predict the effect of various

fishing strategies upon the whale and krill populations. In what fol­

lows, their model and its results are discussed.

Letting PI be the prey (krill) population and P2 the predator (whale)

population, May et al propose that the prey dynamics are described

by

(5.6.1)

where all as usual, represents the percapita growth rate of the krill,

k is the carrying capacity of the environment, and the prey are con­

sumed at a rate proportional to their density, bP1 per predator, b > O.

Similarly, a logistic equation describes the dynamics of the predator
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population

(5.6.2)

with a2 being the per capita growth rate of predators, ex a positive

constant expressing how many whales can be sustained on a pop­

ulation of one krill, and the carrying capacity of the whales being

proportional to the amount of food available.

As mentioned in earlier sections, a particular type of harvesting prac­

tised in fishing (and other) industries is effort-harvesting where, fish­

ing effort is measured in units appropriate to the fishery in question.

According to Clark [90], in some cases the unit of ~easurement is

simply the total number of vessel-days per unit time; in other cases

more detailed information regarding the number of nets, lines etc. is

available. Hence 'effort' can be a constant or a function of a number

of variables. May et al assume that the krill population is harvested

under a constant effort strategy at a rate aID, where D denotes the

constant fishing effort rescaled so that D = 1 corresponds to a fishing

rate equal to the population's natural growth rate. The krill yield

is then expressed as YI = aIDP1• Similarly harvesting the whale

population under constant effort at a rate a2E gives a whale yield,
<,

The harvested predator-prey system now becomes

(5.6.3)
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(5.6.4)

May et al deal with the effects of different harvesting strategies on the

system in terms of the concept of maximum sustainable yield (MSY):

System (5.6.3), (5.6.4) is first reduced to

dX- = a1X (1 - D - X - 1IY]
dt

dY Y
- = a2Y(1 - E - - ]
dt X'

(5.6.5)

(5.6.6)

by setting X = 1];, Y = ~, and where 11 IS the dimensionless

parameter b~lk.

Routine calculation confirms that the equilibrium values for the krill

and whale populations are respectively

X. _ 1-D
- 1 + 11(1 - E) ,

Y. = (1 - D)(1 - E) ,
1 + 11(1 - E)

(5.6.7)

so that, as long as both D and E are less than unity, that is, the

fish are being caught at a rate less than their natural replacement

rate, there is a unique, and, as is easily verified, stable equilibrium.

On the other hand, one can check that if harvesting of the whales is

maintained at a level in excess of their natural growth rate, E > 1,

then the system settles to the state X · = 1- D, Y· = 0, while D > 1

guarantees extinction of both species, X· = 0, Y · = 0.
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Furthermore, the equilibrium krill and whale yields are

Yl -

Y2 -

(a1k)D(1 - D)
1 + v(1- E)

(aa2k)(1- D)E(1 - E)
1 +v(l- E)

(5.6.8)

(5.6.9)

MSY is described in [90] as being the simplest possible management

objective that accounts for the fact that a biological resource stock

cannot be exploited too severely without eventual loss in productiv­

ity. The concept of MSY is based on a model of biological growth

(see figure 5.5.1) that supposes that at any given population size less

than a particular level k, a surplus production exists that can be har­

vested indefinitely without altering the stock level. If the excess is

not removed by harvesting an increase in stock level results which

ultimately approaches the environmental carrying capacity k, where

excess production is reduced to zero.
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Clearly MSY is achieved at the population level where growth rate

is maximised. (5.6.8), (5.6.9) give sustainable yields, since, corre­

sponding to equilibrium populations .of krill and whale, they can be

continued indefinitely. For fixed E, the krill yield is maximized at

D = 0,5 while for fixed D, the whale yield is maximized at

E = (1 + v) - Jf+V, v ;6 o.
v

The parameter v can be regarded as a measure of the strength of in­

teraction between whale and krill. When v = 0, so that "interference"

by the whales is not considered, the krill population dynamics are de­

scribed by a logistic equation. It is evident from (5.6.7) and (5.6.8)

that Yl and X· decrease with increasing u, so that the presence of

whales has the expected effect of diminishing krill yield and depress­

ing the equilibrium krill population by an amount that increases as t/

increases.

Now in the absence of fishing (D = E = 0) (5.6.7) gives

X. = _1_
l +v

which indicates that if v = 1 the whales are consuming krill at the

point of MSY (X· = 0.5, Pi = ~) for the logistic equation; if v > 1

the whales are harvesting the krill. in excess of MSY (Pi < ~); while

if t/ < 1 the krill are being consumed below the MSY level (Pi > ~).

According to May et al, much controversy surrounds the question of
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whether v is expected to be close to one in natural predator-prey

systems. For the baleen whale-krill system there is apparently inade­

quate data available to provide a reliable estimate for Vj but May et

al mention that it is unlikely to be either very large or very small.

It is stressed in [89] that this type of MSY analysis is useful only if a

harvested stock can be regarded as a single, isolated population. This

was achieved earlier by setting v = 0 but if the harvested species have

strong interactions (v =1= 0), then MSY analysis applied to each species

individually cannot serve as a guiding principle for management of the

predator-prey system: Clearly, it is of no value to maximise (5.6.8/9)

separately since these are interrelated and maximizing one reduces

the other. In fact from (5.6.8) we see that Yl is maximised by making

E as large as possible, Le. E = 1. But then (5.6.9) implies Y2 = 0,

so that, to maximise krill yield we would need to harvest the whales

to extinction. Conversely, the largest whale yield corresponds to no

fishing for krill.

A better alternative is to study the situation from the point of max­

imizing a total weighted yield

Y = Yl + "fY2,

where-j is a constant representing the relative value of the whales and

the krill. "f could reflect relative economic value, processed weight,

protein content etc. and clearly, large values of"f indicate the greater

value of whales over krill and vice versa.
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Since y can be written as

kal(l - D)[D + {3E(l - E))
y = 1 + v (1 - E) ,

(5.6.10)

y may now be maximised with respect to D and E to find the global

optimum. Notice that as {3 increases in size, (5.6.10) indicates that

while, if {3 --+ 0

kal(l - D){3E(l - E)
y --+ 1 + v(l - E) ,

kal(l- D)D
y --+ 1 + v(l - Er

(5.6.11)

(5.6.12)

Hence (5.6.11) is maximised at D = 0 while (5.6.12) is maximized

when E is as large as possible. For large {3 then, it is best not to fish for

krill at all but to leave the krill as food for the more valuable whales.

However, if {3 is small, the optimum solution involves extinguishing

the relatively valueless whales and harvesting only the krill.

Yet, these "all or nothing" strategies are rather inconsistent with

attempts to preserve all species in the ecosystem. Only for a narrow

band of intermediate {3 values will the optimum solution involve both

predator and prey.

Although no concrete qualitative results are obtained, this model pro­

posed by May et al does provide a basic framework that can be read­

ily understood and expanded upon, and which gives insight into this

predator-prey situation.
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We notice though, that system (5.6.3),(5.6.4) is a system of the Kol­

mogorov type (5.5.7). Yet Kolmogorov's condition (iv) fails to hold

since in this case

If we had the assurance that Kolmogorov's theorem remains valid in

this case, we would have a simple means of determining conditions

on the parameters of the system under which either stable point be­

haviour or stable limit cycle behaviour is guaranteed. This would

obviously have useful biological application. However, no mention or

application of Kolmogorov's theorem is made in [89].

The next system to be examined is not of the predator-prey type - it

involves a single species that is divided into three groups, such that

its dynamics can be described by a "three-species" model. Mention is

made of this here since this technique has implications for including

age-structure into systems of differential equations.

5.7 A "three-species model" - the dynam­

ics of a fox population infected with ra­
bies.

The dynamics of a fox population infected with rabies - a directly

transmitted viral infection of the nervous system to which fox pop­

ulations are especially susceptible - has been modelled by Anderson
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[91], and Anderson et al [92] in attempts to investigate possible means

.of effectively checking the disease.

The fox population is divided into three separate groups: susceptibles,

infected» that are not yet infectious, and infectious individuals; each

group having population densities X, I, Y respectively, (where density

is measured as 'number per km2' ) . The model does not account for

recovered immune foxes because few survive the disease. Hence, the

total fox density N is

N=X+I+Y.

The death rate of young foxes has been found to be density dependent,

and it is assumed that the per capita death rate is linearly related

to N. In particular, the net rate is assumed to be described by (b +
,N)N, where t denotes fox life expectancy in the absence of resource

limitations, and "t measures the influence of density dependence on

the death rate. ,The per capita birth rate is assumed to be a constant

a. By definition then, the per capita population growth rate is

r = a-b.

Apparently, in the absence of rabies , fox populations tend to increase

up to some characteristic density and the logistic model

dN = rN (1- N)
dt k '

is chosen to describe this behaviour.

The following assumptions are imposed in [91] and [92]:
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- foxes contact rabies at a rate which is proportional to the number

of encounters between susceptible and infectious foxes, {3XY,

where {3 is a transmission coefficient.

- foxes pass from the incubating to the infectious state at a per

capita rate a, such that the average incubation period is :

- Rabid animals die at a constant per capita rate a so that their

life expectancy is ~.

- Rabid foxes do not contribute to the reproductive effort of the

population.

All these hypotheses allow for the set of equations:

dX
dt

= rX -IXN -{3XY (5.7.1)

d1
dt = {3XY - (q + b+ IN)1 (5.7.2)

dY
dt

=q1- (a +b+IN)Y, (5.7.3)

with the sum of the above three giving

dN
dt = aX - (b + IN)N - aY. (5.7.4)

The 'basic reproduction rate', R, as discussed in [91], is defined as

the expected number of secondary cases produced in the life time
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of an infectious individual when introduced into a population of k

susceptible animals. Anderson justifies this as being

a{3k

R = (0' + a)(a + a)'

for systems (5.7.1 - 3).

By definition, rabies will be perpetuated within the population pro­

vided R > 1, which is equivalent to the condition that the fox popu­

lation exceeds a threshold density, k > kT where

k
T

= (0' + a)(a + a) .
{3a

The case R < 1 or k < kT results in the fox population settling to its

disease free equilibrium density k, so that rabies becomes extinct in

the population; while if R > 1, rabies will alter fox abundance below

the disease free level k to an equilibrium density N* given by

N* = (0' + a)(a + a) - ar .
a{3 - a,

Depending on the choice of parameters, Anderson demonstrates that

the equilibrium value N* may be either a stable constant value (Le.

stable point) or that the system trajectory N(t) may oscillate about

N* in a stable limit cycle, with cyclic solutions tending to arise if k

is significantly larger than kT •

It is interesting that for certain realistic parameter choices (we refer to

[91, p 2461for a table of likely parameter values), the model predicts
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stable cycles with periods in the general range 3 - 5 years. The authors

note that such periods are precisely what is observed in Europe and

North America, where a striking feature of the rabies disease in fox

populations is the regular 3,4 or 5 year oscillations in fox density.

What is desired is a method of control that will maintain fox numbers

below the critical threshold density kT • In [91] and [92] four such

methods are proposed.

(a) The first involves culling - a constant quota I\,of animals is re­

moved annually. In the absence of rabies the population under

such culling satisfies

dN = r N [1 _N] _ 1\
dt k'

and has equilibrium points 0, N;, N; where

(5.7.5)

• 1 { Pf-rl\}NI 2 = - kr ± k r2 - -
, 2r k ' (5.7.6)

It is straight forward to verify that the points 0, and N; are

locally stable while N; is unstable.

From (5.7.6) it is evident that the largest admissible value that

1\ can assume is 1\ = r: ,and at this value the growth rate is at

its maximum value (its "MSY" point) , N = ~.

If 1\ > r:, (5.7.6) admits only imaginary solutions and N(t)

tends to the stable state N · = o.
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•

For the purpose of disease control Anderson et al require Ni <

kT and examine the two cases kT > ~ and kT < ~. It is not

difficult to verify their results that:

A) If kT > ~ then culling at a rate

rk [kT ]4" > r; > rkT 1- k '

will ensure a stable fox density below the threshold value

kT, while

B) if kT < ~ then necessarily /\ > r:, and the only stable point

is N· = 0; in other words it is not possible to create a non-

zero equilibrium fox density which is less than kT •

(b) An alternative to such a culling programme is a constant effort

harvesting strategy. For example, a constant number of man­

hours per unit time could be devoted to culling. In this case the

intrinsic per capita death rate changes from b to b+~b where ~b

is the additional mortality resulting from constant-effort culling.

The model now becomes

dN (N)-=rN 1-- -~bN
dt k '

which has non-zero equilibrium point N· = k (1- ~b) which is

stable.

Rabies will be eliminated providing k (1 - ~b) < kT, or equiva­

lently when ~b > 1 - ~.
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IT R is large, as it apparently often is, ~b must essentially equal

r itself for rabies to be eliminated. Thus a substantial level of

effort needs to be applied.

(c) The third alternative proposed involves vaccination. A category

of immune foxes of population density Z (t) is included into the

model. Susceptibles are vaccinated at a per capita rate 0 and

immune animals lose their immunity at a per capita rate o. The

system (5.7.1 - 3), now becomes

dX
dt - a(X + Z) - (b + I N )X - [3XY - 0X + OZ

dI
dt - [3XY-(a+b+1N)I

dY
dt - aI - (0: + b+ IN)Y

dZ
di = 0X-(0+b+1N)Z

The equilibrium of interest is the disease free state having

Y· = I· = 0, N· = k which can be shown to be stable providing

o> (a+ 0)(R - 1).

Defining the proportion of vaccinated foxes at equilibrium as

Z· 0
p = z· + X· - ~0-+-a-+-o
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it is shown in [91] , [92] that p > 1-~ results in rabies eradication.

Once again, if R is large, considerable immunization effort needs

to be applied and consequently, the disease would be difficult to

bring under control.

(d) The final control strategy involves both culling and vaccination.

Anderson et al demonstrate that under a constant effort culling

programme that adds 6b to the death rate and an immunization

plan that vaccinates a proportion p of the fox population, the

criterion
6b 1

p + -(1 - p) > 1 - -
r R

ensures that rabies is eradicated. Thus, if for example R = 4 it

would be necessary to vaccinate 75% of foxes or cull at a rate 75%

under a pure strategy; but under a combined plan, 50% of the

population need to be culled and the remaining 50% immunized.

Of the number of problems involved in applying this combined strat­

egy is that of operational timing - one wishes to avoid as far as pos­

sible, the culling of immunized foxes. Furthermore, we note that the

above results seem to suggest that rabies will be difficult to control

(either by culling, vaccination or both), once it has become estab­

lished in the fox populaton, for then R is large and much greater

than 1 in value. However, in low fox density habitats where k is close

to kT in value, Le. R is not much greater than unity, such methods

might provide effective means of control.
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This model illustrates how a rather complex situation can be quite

effectively modelled by a system that involves just three variables and

simple formulations. Clearly accuracy could be improved upon by in­

corporating, amongst others, spatial and stochastic effects and immi­

gration terms. Nevertheless the close agreement between model pre­

dictions and the observed cyclic behaviour of rabies epidemics within

fox populations suggests that the model provides quite a reliable basis

for the design of control strategies.

5.8 A "three group model" of human

population dynamics

The last model to be mentioned has been developed by Schweitzer and

Dienes [931 , and -involves a similar approach to that of the previous

model. In fact, it presents a means of incorporating age-structure

into an age-independent differential equation system. Here a closed

human population is modelled by a three-group system where the

three groups Y, F, S are interpreted as,

Y = number of pre-reproductive people

F = number of reproductive people,

and S = number of post reproductive people.

The constant terms involved in the model are b, kv , kF,J.Ly, J.LS,J.LF

where b represents the average specific fertility measured in units

ye1ar j k y , kF denote the average rate constants for moving from one
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group into the next (Le. aging) in units of yiar' and J-Ly, J-LF, J-Ls are

the average specific mortality rates for groups Y, F, S respectively in

it 1urn s year.

Unlike the population size, P(t) of the M-F model, groups Y, F and

S are assumed to account for both male and female members.

Combining these parameters the authors propose the following as a

model of human population development (though it could also apply

to animal populations).

dY
dt

=bF - kyY - J-LyY (5.8.1)

(5.8.2)

dS

dt (5.8.3)

The total population is clearly given by

N = Y +F+ S,

so that combining the above equations yields

dN
dt = bF - J-Ly Y - J-LFF - J-LsS.

Defining the growth rate r as

1 dN
r=--

N dt'
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it follows from (5.8.5) that

r=CBR-CDR

where the crude birth rate (CBR) is defined as ~' and the crude

death rate (CDR), as J.LII~ + J.LF~ + J.Ls ~.

In [93] the authors find an explicit solution to (5.8.1 - 3) which indi­

cates that each of Y, F, S and N eventually grow exponentially with

time, with r being the exponential growth constant in each case.

Recall from chapter 2 that within the M-F framework, a persistent

age distribution p(a, t) = f(a)g(t) is such that the proportion of the

population in any age group remains constant as time increases. It is

shown in [93] that the ratios ~' ~'~ do not change with time, and

again the population is said to be persistent.

In an application of this system to a concrete example - the 1967

United States population - Schweitzer and Dienes demonstrate that

this three-group model is quite an effective tool for approximate cal­

culations

From the 1967 U.S. data, the groups Y and F are chosen to be the

number of individuals in the 0-14 and 15-45 year age groups respec­

tively. S is then the remaining number of people. In addition, k y

and kF are chosen to be 0,07 and 0,03 respectively, since 0, 07 ~ 1~

and 0, 03 ~ 3
10

'

The actual U.S. data for 1967 are given in [93] as
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Growth rate T - 0,0077

Crude birth rate (CBR) - 0,0174

Crude death rate (CDR) - 0,0097

*(0 - 14) - 0,300

~(15 - 45) 0,400

!r(45 - 100) - 0,300

b - 0,044.

Now estimates for J.l.Y,J.l.F,J.l.S are obtained by taking averages of the

yearly specific death rates over each interval, (for example, J.l.y is

obtained by finding the average of all the values of J.I. over the 0-14

age interval). This leads to the values,

ur = 0,002, J.l.F = 0,0018, J.l.s = 0,028.

These values can in turn be used in the relation defining CDR,

Y F S
CDR =J.l.Y- +J.l.F- +J.l.S­N N N

and give

CDR = 0,00972,
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which is in close agreement with the actual CDR of 0,0097.

In solving the systems (5.8.1 - 3), the authors derive the relation

(r + ky + JLy)(r + kF + JLF) = b.
ky

(5.8.6)

(Details of this manipulation are given in [93, p. 396].) Substituting

the given value of r and those calculated for kr , k/l JLy,JLF, into the

above equation gives

b = 0,045;

again, a very close agreement with the actual value of 0,044.

Thus, the three-group model provides a rather realistic quantitative

description of the main characteristics of the population. However,

in general, such close agreement is not always likely since the three­

group model is a crude approximation to the actual age distribution

and the underlying assumption that the growth rate r is a constant

is not likely to be true of many populations.

The authors generalize the model to any number of groups and assign

equal age intervals to each group by letting

210



Xl
x.;
Xi,
x;
Xj+!,

bm'
J1.m,
k

denote the number of members 0 to 1 year old,
the number of members m-I to m years old,
the number of fertile members i-I to i years old,
the number of fertile members j - 1 to j years old,
the number of post-fertile members j to j + 1 years old,
the average specific fertility;
the average specific mortality, and letting
denote the rate constant for moving from one age
group to the next (Le. aging).

Again these constants are taken as the reciprocals of the age interval,

expressed in years, to which they pertain.

It is most convenient to set k = 1 so that the G.D.E.'s describing the

model become

sx, j

-- - L bmXm - Xl(l + J1.1)dt i

dX2
Xl - X2(1 + J1.2)-- -dt

dXm
dt

«x;
dt
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Since N = E~ X; we have

Assuming again that the population is in constant growth then dJ[ =
rN, and that each component grows exponentially, Le.

one can determine the ratios of the population groups as

- 1 + r + J.Lm+l

= 1 + r + J.Ln

(5.8.7)

An interesting exercise is to refine the mesh by decreasing the size

of the age groups in order to replace the current distribution by a

continuous age distribution. We follow the approach used in [93] but

extend the result to relate to the M-F equation:

The relations described by (5.8.7) for any arbitrary age interval scale

become

(5.8.8)
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where k = age i~terval'

Now let p(a) denote a continuous distribution such that for a partic­

ular value of a, p(a) = Xm •

We have then, that for small values of 6a,

dp
X m - 1 = p(a) - da 6 a,

so that

Using (5.8.8) and setting 6a = i, we obtain

1 _ _ d-,-:-p(~a),-­
kp(a)da

This leads to

dp(a)-- = -(r + J.L(a))p(a),
da

(5.8.9)

which is the time-independent form of the M-F equation with the

usual expression for J.L replaced by r + J.L(a). This "new" form is what

we expect since, in formulating the M-F equation, we do not assume

a constant growth rate as was done here. If we apply the methods of

chapter 1 used to derive the M- F equation and assume a constant

growth rate r, and time independence in p, then necessarily we would

arrive at (5.8.9). This agreement is encouraging and emphasises that

such an age-independent model can provide a fairly accurate substi­

tute for the M-F model.
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Finally, a specific population provides an interesting application of

part of the above theory. Apparently, the population of France from

1770 to 1870 is characterised by a remarkably constant growth rate

with r = 0,004. ( [93] provides the relevant references.) To apply the

results of the n-group model to this situation the authors fit a smooth

curve to the population distribution data for 1826. Their diagram is

reproduced below in figure 5.8.1.
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Fig. 5.8.1

Age distribution for France in 1826, reproduced from [93, p 393 1
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Taking the segments between the data bars as straight lines, the slope

of the curve between age groups X m , Xm - 1 is given by

(5.8.10)

Now subtracting r Xm enables J1.mXm and hence J1.m to be determined,

since from (5.8.8) follows the equation

The J1.m'S obtained in this way are compared with the published death

rates in figure 5.8.2 below, given as figure 2 of [931 . The agreement

is clearly very good and demonstrates that the n-group system, a

crude means of accounting for age- distribution, models this particular

population very effectively.
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Fig 5.8.2

Age specific death rates in France 1825 - 1827. The light bars rep­

resent actual death rates; the heavy bars have been calculated from

the 1826 age distribution.
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Hastings [94] has adopted a similar approach to modelling the dy­

namics of a predator-prey population. The prey species is divided

into two classes - juvenile prey Pf and adult prey PI. Further it is

assumed that the situation is such that the predator eats only young

prey. The model has the form

dPf = bPI - aP~ - Pd(Pd
dt

where P2 denotes the number of predators, f(PI ) determines the pre­

dation rate, b is the per capita birth rate of the prey, a is the rate at

which the juvenile prey develop into adults,ank is the dea. rate

of adult prey, and l is the death rate of the predators. This and re­

lated models are analyzed in [94] where conditions for local stability

and numerical results are given. Smith and Mead [95] also consider

predator-prey models of this form, examining how the stability char­

acter of the system changes for different parameter values.

However, in many cases, it is naive to view the state of a popula­

tion as be specified by total population number alone and, although

this technique of incorporating age structure into G.D.E. models can

be effective, the other alternative, the use of the M-F equation, can
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provide a means of modelling age-specific interactions with greater

accuracy. It is to predator-prey systems into which age dependent

effects are incorporated by means of an M-F equation that we now

turn.
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Chapter 6

A ge-dep endent

predator-prey models

The founding works of Lotka and Volterra, and McKendrick and von

Foerster have initiated a long history of studies concerning the dy­

namics of interacting species without age-structure and those of sin­

gle species with age-structure. Only much more recently has work in

theoretical ecology included studies of the dynamics of interacting,

age-structured models. In particular, Gurtin and Levine [96], [98],

[104],Levine [97], [99], [102], and Frauenthal [56], have imposed an

age-structure on a predator-prey system of the Lotka-Volterra (and

the more general Kolmogorov) type by replacing the ordinary differ­

ential equation for the prey by an M-F partial differential equation.

Within this M-Fj Kolmogorov framework, the effects of different pat­

terns of age-selective predation can be examined by varying the as­

sumptions on each model. Four types of predat ion are covered here,
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namely - predation equally on all ages of prey; predation only on the

very young; predation on all ages but with preference for the very

young and very old; and finally, predation within the same popu­

lation, that is, the predator and prey are the same species so that

cannibalism occurs.

In what ensues the theory and results of the above papers are reviewed

and related and our own comments and suggestions are added. Very

little work has been produced on predator-prey systems that involve

both predator and prey dynamics being described by M-F equations.

Understandably, such systems can quickly become extraordinarily

complex and seldom lend themselves to analytic study. In conclu­

sion, mention is made of some of the work that has appeared in this

field.

6.1 The M-F/Kolmogorov systems

Letting pda, t) denote the prey population density, it is assumed

throughout that the prey population dynamics is described by an

M-F equation

(6.1.1)

where the mortality function p, may be a function of age, time, prey

population size and / or predator population size.
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As usual, the total prey population is given by

(6.1.2)

and the prey birth rate is given, at each time t, by a birth law of the

form

(6.1.3)

Here ,B(a) is the fecundity function considered to be of the form

,B(a) = ,Boa exp(-aa)i ,Bo 2:: 0, a 2:: o. (6.1.4)

The predator population is treated as an age-independent system, its

evolution being described by the Lotka-Volterra (Kolmogorov) equa­

tion

(6.1.5)

where PI is given by (6.1.2) and b > 0, c > 0 are constants.

System (6.1.1 - 5) forms the underlying structure for the models that

follow.

6.2 Two species: Indiscriminate preda­

tion model

In the case of age-indiscriminate predation, the assumption that the

prey death function J1. is linearly related to the total predator popu-
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lation P2' Le.

is made. Thus the basic equations of the combined systems consist

of (6.1.2 - 5), together with

(6.2.1)

Although restrictive, the assumption that J.L be independent of age

may in some cases be valid, particularly if predation is so significant

that survival of the prey depends primarily on the size of the predator

population, with the result that death by old age is a rare event.

The value of J.L being independent of age, of course, is that the system

now lends itself to Gurtin and MacCamy's ([38]) moment technique.

Before applying the technique it is necessary to distinguish between

the quantities Pl( 0, t) and B(t). With the exception of the model

of section 3.6, B(t) has, until now, denoted the birth rate at time t

and B(t) = pdo, t). In this chapter B(t) will be interpreted more

specifically as the egg (or new born) production rate while Pl(O, t)

will denote the number of hatched eggs (live newborn) produced per

unit time. Thus, we have the possibility that Pl(O,t) -# B(t) with

their difference being the number of unhatched eggs (per unit time).

Where the predator is attracted equally to all ages of prey, it is as­

sumed that Pl(O, t) = B(t), since the newborn are no more vulnerable

than the older prey.
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Applying Gurtin and MacCamy's moment technique and integrating

(6.2.1) with respect to a, under the assumption that Pl(a, t) -+ 0 as

a -+ 00, one arrives at an equation for Pl' Similarly defining

(6.2.2)

.
and multiplying (6.2.1) by {3oae-a G and e-a G respectively, one obtains

analogous equations for B and A.

The resulting system of equations is

Pl - -J.LOPl - rPlP2 + B
B - -,B - rBP2 + {3oA
A - -,A - rAP2 +B.
P2 - -bP2 + CPlP2 ,

(6.2.3)

where I = J.Lo + a.

This closed set of coupled nonlinear ordinary differential equations is

now amenable to analysis and solution.

In each of the four cases to be covered there will be a variation in (a)

the survival rate of newborn which determines the relationship be­

tween pdo, t) and B(t), (b) the dynamics of the predator behaviour

and (c) the functional dependence of the death function J.L. In all, ex­

cept one case, this functional dependence of J.L will omit the inclusion

of age.

Recall that in the absence of predators the quantity

R = faoo {3(a)7r(a)da, 7r(a) = exp {- faG J.L(a)da} ,
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which in this case becomes

(6.2.4)

represents the net reproduction rate for the prey; that is, the expected

number of offspring to be born to a member of the population in its

natural life time. It is not difficult to show by means of eigenvalue

analysis or using the stability equation (2.3.28) of chapter 2, that the

equilibrium (0,0,0,0) of (6.2.3) is asymptotically stable if and only if

R < 1. Hence to prevent extinction of the species it is assumed that

R > 1, Le. f30 > [Jl (P2) + a ]2.

For convenience the ratios x = ~, y = ~ are introduced so that

system (6.2.3) becomes

PI - -JlOP1 - rP1P2+ yP1

P2 - -bP2+ CP1P2 (6.2.5)

u - -ay + f30xy - y2

X 1 -f3ox2

A theorem of [96] states an important result concerning system (6.2.5):

Let (PI,P2'y,X) be a solution 0/ (6.2.5). Then (P1 (t ), P2(t )) con­

verges, as t -+ 00, to a closed solution curve 0/ the Lotka- Volterra

equations

PI - wP1 - rP1P2
P2 - - bP2+ CP1P2, where w = -, +~.
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(6.2.6)

The result follows from proof that, as t -+ 00, ~ and ~ approach

respectively, the constants

~ and (-a + [iio),

at exponential rates.

Thus, this system involving age indiscriminate predation behaves like

a predator-prey system in which age-structure is ignored; the P1 , P2

co-ordinates of trajectories of (6.2.3) approach one of a continuum of

neutrally stable closed curves as time increases.

Gurtin and Levine [96] find that this result can be generalised to the

model for which the Lotka-Volterra predator equation is replaced by

a more general Kolmogorov equation. Starting with the Kolmogorov

model

P1 = P1F(Pb P2)

P2 = P2G(Pb P2) ,

where F(Pll P2 ) , G(Pll P2) satisfy conditions (i) - (ix) of the Kol-

mogorov theorem, they replace (6.2.6) by the M-F equation having

J.L = (J.Lo - F(P1, P2 ) ) , namely

(6.2.7)

(where~ - a = I - a = J.Lo).

We note that their choice of J.L is biologically realistic since condition

(i) of the Kolmogorov conditions requires that :~ < 0, which in turn
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implies that p. increases with increasing predator population, while

for P2 close to, or equal to zero, condition: (ii) requires that ::1 < 0

Hence p. increases with increasing prey population, and self-limitation

effects within the prey population in the near absence of predators

are accounted for.

On applying Gurtin and MacCamy's technique again, the model based

on (6.2.6) and (6.2.7) reduces to

Pl - -P.OPl + PlF(Pll P2) + B

iJ - -IB + BF(Pl, P2) + PoA (6.2.8)

A - -lA + AF(Pll P2) + B

P2 - P2G(PllP2)

Once again x = ~ and y = :1 satisfy the third and fourth equations of

system (6.2.5) so that, by the previous theorem, x and y tend asymp­

totically to 1- and (-0: +~ respectively, and (6.2.8) reduces to
y Po

the Kolmogorov system

.
P, - Pl(w + F(Pll P2))

P2 - P2G(Pll P2 ) .

(6.2.9)

Since F(Pll P2) satisfies Kolmogorov's conditions so does w+ F(Pll P2 )

and (6.2.9) possesses either a stable equilibrium or a stable limit cy­

cle. Hence, depending on the parameters involved, the Pi, P2 co­

ordinates of trajectories of (6.2.8) converge as t -+ 00, to one of these
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solution possibilities. This result demonstrates again that the age­

. indiscriminate system behaves asymptotically like the corresponding

predator-prey system in which age-structure is ignored.

Therefore ,incorporating age structure into the Kolmogorov model by

means of a McKendrick-von Foerster equation for the prey population

does not ultimately enhance the accuracy of the model. The reason

why the age-indiscriminate model behaves in this way is clearly due

to the omission of age-dependence in J.L. This allows the M-F equation

to be replaced by an O.D.E. which does not account for age structure.

A more accurate model must necessarily include J.L as a function of

age.

6.3 Two species:

born" model
"predation-on new-

In the case where predation is on the young, it is assumed, for math­

ematical simplicty, that only newborn prey (or equivalently , only

eggs) are eaten. The predator population is assumed to obey a Lotka­

Volterra type equation, but now the birth rate B(t), given by (6.1.3),

is the underlying prey variable, Le.

(6.3.1)

The age distribution PI (a, t) of the prey still obeys the evolution equa­

tion (6.1.1) but the death function J.L is taken to be a constant with
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dependence on P2 neglected, since predators have no effect on the

survival of the prey past birth.

The number of newborn (eggs) PI(O,t) now equals B(t) minus the

number of newborn consumed. The model applied by Gurtin and

Levine [961 in this case, assumes that this loss is proportional to the

product of the number born and the number of predators, namely

kP2B, where k is a positive constant.

We have then,

PI(0, t) = B(t) - kP2(t )B (t). (6.3.2)

To avoid the problem of P2 sufficiently large yielding PI( 0, t) < 0, PI(0, t)

is defined more precisely as

PI(O, t) = max(B - kP2B,0).

Levine [971 replaces this function by the continuously differentiable

approximation

B
PI(0, t) = 1 + kP

2
' k > 0 (6.3.3)

so that the number of surviving newborn decreases with P2 in a satu­

rating manner: and finds that the qualitative behaviour of the systems

involving (6.3.2) or (6.3.3) remain the same.

As before, the systems (6.1.1 - 4), (6.3.1), (6.3.3), reduce to the au­

tonomous system
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B - -IB + f30A (6.3.4)

B
A - -lA + 1+ kP2

P2 - -bP2+ cBP2

Again the assumption f30 > 1 2 ensures that the equilibrium (0,0,0,0)

corresponding to the extinction of both species is unstable. Stated

differently this means that the prey population is self- sustaining in

the absence of predators.

If f30 > 1 2 , the equations (6.3.4) have a single positive equilibrium at

which can be shown to be unstable, since the Jacobian matrix has two

negative eigenvalues and two complex conjugate eigenvalues with pos­

itive real part. Figure 6.3.1 reproduced from [97] shows the behaviour

of the system (6.3.4) for typical parameter choices.
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Fig. 6.3.1

Prey and predator populations as functions of time for equations

(6.3.4) in the case where Po = 5, I = 2, b = e = J.l.o = k = 1.
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In fact Gurtin and Levine [96], and Levine [97] , find that a consistent

pattern emerges from computer data for every choice of parameters

and initial conditions employed in (6.3.4) as long as f30 > (J-Lo + a)2

holds. The predator and prey populations oscillate with maxima in­

creasing to infinity and minima decreasing to zero. Each local maxi­

mum for the prey population is followed by a maximum for the preda­

tor, then a minimum for the prey and a minimum for the predator,

and so forth.

(It is noted in [97] that a mathematical proof of this qualitative be­

haviour has not been found, but attempts to explain it by variational

methods are detailed in [97] , [98] and [99].)

Nevertheless, although this model involving egg-eating predators is

mathematically unstable, it could represent a biological phenomenon.

Since the minima of both populations decrease to zero, the results

correspond to extinction first of the prey and then of the predator.

If the predators have alternative sources of food the model predicts

extinction of the prey alone. This led Gurtin and Levine [96] to

conjecture that the use of predators which selectively eat eggs or

newborn could be a viable means of pest control. (An interesting

application is Gurtin and Levine's reference to Carl Sagan's [100]

theory that dinosaurs became extinct because mammals ate dinosaur

eggs. The authors of [96] point out that although this theory cannot

be accepted or rejected, they have provided a possible mathematical

basis for it.)
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Once again we stress that the assumption that J,L be constant is, in

general, not an accurate one, but there are situations, as we mentioned

earlier, for which we can justify its use. Should this assumption be

appropriate, and should the remaining assumptions of system (6.3.4)

be reasonable for the populations under consideration, then the above

theory provides a clear description of the dynamics of the interacting

populations.

Levine [97] considers enhancing the accuracy of the model described

by (6.3.4) by accounting for the biological realities of self-limitation of

the prey caused by limited food supply or overcrowding; and satura­

tion of the predators appetite. He finds numerically that inclusion of

these factors can have a stabilizing effect on the predator-prey system:

Levine models the effects of self-limitation by incorporating into the

systems (6.1.1 - 4), (6.3.1), (6.3.3), a death function of the form

J,L = J,Lo + sPI, S > o.

(6.3.4) now becomes

2 B
PI - - J,LOPI - sP +---

I 1 + kP2

(6.3.5)

B (6.3.6)
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•

By applying eigenvalue analysis to this set of differential equations,

Levine demonstrates how the stability properties of (6.3.6) change

as s increases, that is, as the carrying capacity of the prey species

decreases. In particular Levine establishes that the equilibrium can

either be an asymptotically stable point or a stable limit cycle.

Secondly, satiation of the predator's appetite is accounted for in [971

in the following way: Until now the predator growth rate given by

(6.3.1) depended on the total number of newborn prey consumed.

However, there must exist a limit as to how much the predators can

eat, and it would be more realistic for (6.3.1) to reflect this. Since

1 +~P2 is the birth rate of prey minus the number of prey eaten, the

number eaten can be shown to be 1k:fP2 •

Replacing BP2 in (6.3.1) by this term leads to the new four- dimen-

Th . I ' f kBP2 lso be i .e me usion 0 1 + kP
2

can a so e mterpreted as accounting for the

effects of mutual interference of the predators since as P2 increases,
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the amount of prey available for consumption saturates to a constant

value.

Again Levine demonstrates, by eigenvalue analysis of the Jacobian

matrix at the unique positive equilibrium point of (6.3.7), that all

eigenvalues have negative real part; hence the equilibrium point is

stable.

Coleman and Frauenthal [101] extend this analysis to a model includ­

ing both self-limitation effects for the prey, and appetite saturation

for the predator. Their equilibrium point with both species present

is shown to experience a Hopf bifurcation at a critical parameter and

to manifest peculiarly shaped limit cycles.

In either of the above cases, these modifications evidently restore

stable predator-prey coexistence in the two species model involving

predation only on the very young.

This casts doubt now on the robustness of the previous extinction

phenomena. In fact, the evidence suggests that only in the case where

data collected for a predator-prey system indicates that the predator

population can be treated as an age-independent system and that the

assumption J.L = J.Lo is a valid one for the prey population (as it was for

Nicholson's blowflies), can this strategy of pest control, by means of a

predator eating the eggs or larvae of the prey, be potentially efficient.
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6.4 Two-species: predation on all ages

with extreme ages most vulnerable

According to Levine [102], there are numerous examples among insect

populations, of predation only on the very young. However among

vertebrates, predation is most likely to be on all ages but somewhat

greater on the youngest and on the oldest members, since these are

both very vulnerable.

In order to account for such a pattern of predation the death function

of the prey must depend, in a complicated manner, on age.

Levine [102] , chooses the mortality function

J.I. = J.l.o+ P2(t)D(a),

having a component J.l.o, which represents the age-independent natural

death rate, and a component that is proportional both to the size of

the predator population and to the predation rate D(a). Possible

forms of D(a) illustrated in [102] , are reproduced in figure 6.4.1.
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Fig. 6.4.1

Schematic of two possible forms of the age-dependent predation func-

tion D(a)
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D(a) is expressed in the form

(6.4.1)

where r, Al and A2 are positive constants with Al and A2 measuring

the amount of differential vulnerability among ages of prey. sl(a) is a

function that is greatest for very young ages (eg. Cl exp(-V1a) j Cll VI >

0) and s2(a) is a function that is greatest for very old ages (eg.

C2 exp(V2a)j C2, V2 > 0).

Thus the equation for the prey population dynamics becomes

(6.4.2)

while the predator dynamics are assumed to be described by an age­

weighted version of the Lotka-Volterra equation:

(6.4.3)

For the birth law the assumption is made that

(6.4.4)

where once again, ,B(a) is assumed to be of the form (6.1.4), although

Levine notes that the theory of [102] applies to more general forms of

,B(a).

Regardless of its form, ,B(a) must again obey the condition that en­

sures that the prey population is self-sustaining in the absence of
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predators, namely

Evidently, the inclusion of age dependence in this way, prevents the

set of equations (6.1.4), (6.4.1), (6.4.2),(6.4.3), (6.4.4), from being

transformed into a set of O.D .E. 's by means of Gurtin and MacCamy's

moment technique.

Notice though, that this system of mixed integrodifferential and par­

tial differential equations does include both of the classes of systems

described in sections 6.1 and 6.2 as special cases. The equations re­

duce to the "indiscriminate eating" system for A1 = A2 = 0, and to a

simplified version of the "egg-eating" system when D(a) is given by

a constant multiple of the Dirac delta function.

Levine [102] examines system (6.1.4), (6.4.1 - 4) by means of a bifur­

cation theory for nonlinear integrodifferential equations developed by

Cushing [103], treating A1 and A2 as bifurcation parameters. Levine's

lengthy analysis will not be reproduced here - [981 , [991 , [102] and

[103] provide the omitted details. The general result arising out of

this work is that bifurcating periodic solutions exist for the system

(6.1.4),(6.4.1 - 4), but that the stability properties of these solutions

and the direction of bifurcation are not known. Levine [102] mentions

that computer results hint that for many biologically reasonable pa­

rameter choices there are stable periodic solutions for A1 > 0, A2 > o.
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Figure 6.4.2 given in [102] illustrates an example of such a result. The

parameters were obtained from known data for a wolf / white- tailed

deer predator-prey population. The simulations performed over a

time interval of 100 years appear to show convergence to a periodic

solution.
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Fig. 6.4.2

Predator-prey oscillations generated by system (6.1.4), (6.4.1-4) us­

ing parameters appropriate to the wolf/white-tailed deer populations.

([102, p 913] provides the numerical parameter values and information

concerning the time scale.
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Levine remarks that this indicates stable co-existence between preda­

tor and prey. However, recalling the discussion of practical stability

of the previous section we note that this limit cycle does not appear

to be practically stable - the trajectories approach the predator axis

rather closely and a more realistic conclusion would be extinction of

the prey species. This in turn suggests that predation on ,the very

young and very old might also provide a mechanism for biologically

controlling certain prey populations.

6.5 One species: cannibalism

Cannibalism of the young has been documented in a variety of fish

species such as perch, salmon and striped bass ([100]) and, it is com­

monly believed to function as a means of population control. The

models that follow, were designed to test this belief. In each of these,

(given in [100], [101], [104], [56]) it is assumed for mathematical sim­

plicity, that only newborns are cannibalised.

The usual M-F /Kolmogorov system of the previous section is now re­

placed by the single M-F equation (6.1.1), with the subscript omitted.

Once again, (6.1.2) describes the total population size, (6.1.3) de­

scribes the birth rate, and the fecundity function is considered to be

of the form (6.1.4).

In this case p(o, t) represents the number of live newborn that survive
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cannibalism per unit time and it is assumed in [100], [101], [104], that

p(o,t) = g(B(t), P(t))B(t), (6.5.1)

where g(B, P) represents the fraction of new:borns that survive can­

nibalism. Necessarily, 0 s g(B,P) s 1.

Predation, or rather the conversion of newborn into food, is modelled

by assuming that the death function jJ. of (6.1.1) depends on both

B(t) and P(t), Le.

jJ. = f( B , P) . (6.5.2)

Once again the system (6.1.1-4), (6.5.1), (6.5.2), lends itself to the

technique of Gurtin and MacCamy and reduces to the system of

O.D.E. 's,

P -
B -
A -

-P f(B, P) + Bg(B, P)
-Bf(B,P) - aB + f30A

-Af(B,P) - aA + Bg(B,P)
(6.5.3)

As usual, an additional assumption is needed to prevent extinction of

the population. The net reproduction rate of the previous sections is

replaced by the net reproduction - survival rate defined by

r(B,P) = g(B,P) faoo f3(a)e-/(B,P) C1da

f3og(B, P)
[f(B,P) +a]2· (6.5.5)

(6.5.4)

Since e-/(B,P)a is the probability of living to age a when the birth­

rate is B and the total population size is P, r( B, P) represents the
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expected number of surviving newborn born to a member of the pop­

ulation during its life-time.

Setting P= B = A=°it follows that the relations

r(B,P) = 1, PI(B, P) = Bg(B, P),

are necessary and sufficient for B and P to be co-ordinates of a

nonzero equilibrium. The Jacobian matrix of (6.5.3) at (0,0,0) is

(

- jl "10 0·)° -(jl + a) Po° "10 -(jl + a)

where jl = 1(0,0), "10 = g(O,O) and it is assumed that jlo > 0.

A routine calculation confirms that the corresponding eigenvalues are

From (6.5.5) it follows that, r(O,O) < 1 ensures all Ai < 0, while

r(O,O) > 1 results in AI, A2 < °and A3 > 0. In other words the

equilibrium (0,0,0) is stable for r(O, 0) < 1, but unstable for

r(O,O) > 1.

As usual, the condition r(O,O) > 1 is imposed to prevent the possi­

bility of extinction of the species . Gurtin and Levine [104], discuss

three subcases of system (6.5.3):

A. In the first case cannibalism is important, not as a form of pop­

ulation control but as a primary source of food. The fraction
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of surviving newborn is treated as a monotone increasing func­

tion of the ratio ~, that is of the amount of available food per

individual:
B

g(B,P) = Q(x), x = p'

with Q(x) increasing monotonically with x.

Setting y = ~ in system (6.5.3) gives

x - -ax + f3y - Q(x)x2

y - -ay + Q(x)x - Q(x)xy.

(6.5.6)

(6.5.7)

Gurtin and Levine analyse this system by considering possi­

ble transitions of the trajectories of the system. It is far more

straight forward to apply standard linear stability analysis:

(6.5.7) has a nonzero equilibrium point

which is positive providing

(6.5.8)

Introducing the variables X = x-x·, Y = y - Y·, and substi­

tuting into (6.5.7) yields a system, the linearized form of which

\
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is

x - X [-0: - 2Q(x")x· - Q(X·)X·2] + [30Y

Y _ x [Q(X·) + Q(X·)X· - Q(X·)X·Y· - Q(X·)Y·]

+Y [-0: - X·Q(X·)].

The corresponding polynomial is given by

A2 + A(20: + 3Q(x·)x· + Q(X·)X·
2)

+

(0: + 2Q(x·)x· + Q(X·)X·2) (0: + X·Q(X·))+

(Q(X·)X· + Q(X·))([3oY· - (30) = 0., (6.5.9)

It is readily verified that the constant term of this polynomial is

equivalently

so that, since Q(x) > 0, the further requirement that JQ(x·)[3o >

20: guarantees that all coefficients of (6.5.9) are positive and

hence that (6.5.9) has negative real part roots. The latter re­

quirement is therefore necessary and sufficient for the stability

of po~itive equilibria of (6.5.7). Moreover, if JQ(O)[3o > 20:, the

above result follows since Q(x) is assumed to be monotonically

increasing.

Now P(t) can be obtained by solving

P = P [- f(xP, P) + xQ(x)],
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and since x approaches a limit z" > 0, the asymptotic behaviour

of (6.5.10) is described by

(6.5.11)

Due to self-limiting effects it is likely that f(xP, P) is an increas­

ing function of P. Under this assumption, it follows from the

solution of (6.5.11) that

if f(x· P", p.) = x·Q(x·) at some P' then
P(t) -+ P*

while

if f(x*P*,P*) < x*Q(x·) for all P, then
P(t) -+ 00

if f(O,O) > x·Q(x·), then
P(t) -+ Oast -+ 00.

Such is the type of behaviour one would expect since f(xP, P) is

the death rate and xG(x) can be thought of as the survival rate,

(the number surviving birth, per unit population size), so that

if for example, f(x· P", p.) < x*Q (x*) a population "explosion"

must result.

B. In the next case cannibalism is assumed to operate as a means

of population control rather than as a means of obtaining food.

For this reason 9 is chosen to depend explicitly on the total

population P,

g(B, P) =g(P).
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It is assumed further that 9 E Cl, that g(P) decreases mono­

tonicaly with P, and that g(O) = 1, implying that all newborn

survive in the absence of predators.

(6.5.12) is augmented with the simplest possible assumption con­

cerning i, namely

f(B, P) = JLo = constant.

In this case equations (6.5.3) take the form

P - -JLoP + g(P)B
B - -(JLO + a)B + f30Bz

z - g(P) - f3oz 2
, (6.5.13)

where Gurtin and Levine [104] introduce z = ~ for ease of anal­

ysis.

The Jacobian matrix at the unique positive equilibrium (P*, B*, z*)

can be shown to be

-JLo + B*g'(P*)

o

g'(P *)

o f3oB*

o -2(JLo + a)

Further routine calculation confirms that all roots of the cor­

responding characteristic polynomial have negative real part,

indicating that system (6.5.13) converges to a unique positive

equilibrium.
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However, we note that it is often more realistic for f = f(P),

so that density dependent effects are included in the mortality

function, Replacing J.Lo in the previous model by f(P) and work­

ing through the same analysis, we find that the Jacobian Matrix

ilib ' . t (p. B· .) • /(r)+aof the system at an equi 1 num pom " Z ,z = 130 '

is

o

o

having the characteristic polynomial

A3 + A2 {2(f(P·) + a) + f(p·) + f'(p·) - g'(P·)B·}

+ A{g(p·)f'(P·)B + 2(f(P·) + a) [f (p · ) + f'(p·) - g(P·)B·]}

2g(P·)f'(P·)B·(f(P·) + a) - g(p·)g'(P·)B·{3o = O.

If f(P) is strictly increasing and g(P) is, as assumed earlier,

strictly decreasing, the coefficients of the above equation are

. all positive so that the equilibrium point, (p., B·, z·) is stable.

Thus, including the more realistic assumption that f is a mono­

tone increasing function of P, does not alter the previous result,

However, a biologically more plausible choice of f(P)' often used

in analysis, is one that allows f(P) to be large for either small

or large P, and to reach a relative minimum between these ex­

treme values, (Such a choice, was applied in the "biochemical
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reaction tank" models of chapter 4.) Work along these lines

has been produced by Swick [105] who establishes conditions on

I(P) and g(P) for the existence of periodic solutions of a model

having much the same form as (6.5.3). Space does not permit

this analysis to be repeated here and we refer to [105] for the

details involved.

An extension on the models of A and B is model C of [104], in

which cannibalism is considered to be both a means of popula­

tion control and a source of food.

c. Here I and 9 are chosen to depend on both B and P. Defining

B
L(x,P) = l(xP,P), Q(x,P) = g(xP,P); x = p'

it is assumed that I(B,P) and g(B,P) are class Cl functions

for B ~ 0, P ~ 0, so that L(x, P) and G(x, P) are class Cl for

x ~ 0, P ~ o. For convenience the notation Q(x,O) = g(O, 0) =

10, L(x,O) = 1(0,0) = ji, x ~ °is introduced again.

In addition it is assumed that

(a)L > 0,
BL

(b) Bx ~ 0,
BL

(c) BP > 0, (6.5.14)

(d)Q > 0,

and that

(a) 10 = 1
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(b) limp.....oo [sup:z:~o Q(x,P)] = 0

(c) 130 > (ex + Jl) 2•

(6.5.15)

Assumption (6.5.14b) asserts that the probability of dying decreases

as the amount of food available per individual increases. (6.5.14c)

states that the probability of dying increases with increasing popu­

lation size. The restriction (6.5.14e) is analogous to the assumption

that Q(x) of model A be an increasing function of z. Assumption

(6.5.14f) models cannibalism as a form of population control as it im­

plies that the fraction of newborn surviving decreases with increasing

population size. The assumptions (6.5.15 a,b) strengthen this last

condition as they require that all newborn survive in the limit P -+ 0

and that no newborn survive in the limit P -+ 00. Finally, (6.5.15c)

indicates that as P -+ 0 the net reproduction-survival rate r(O, 0),

exceeds one.

Introducing the auxiliary variables

B A
x = p' z = B'

the associated system is now

p - P [- L (x,P) + xQ(x, P) ]

X - z [- a + 130z - xQ(x, P)]

z - Q(x, P) - 13oz2

(6.5.16)

Gurtin and Levine show by means of a detailed method involving

Poincare maps and the Brouwer fixed point theorem ([98], [99] or [104]
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provide the full details), that the above assumptions result in system

(6.5.16) having either stable equilibria or periodic solutions. In [104]

these authors remark that their method makes no statement about

the stability of the periodic solution, but that computer simulations

indicate stable limit cycle behaviour for a wide choice of parameters.

The results obtained for the models of A, B and C all seem to imply

that a population which cannibalises itself can achieve a stable bal­

ance. In general P(t) converges to a constant value or oscillates (in

a stable fashion for most parameter choices) about a constant value.

This lends support to the claim mentioned earlier, that cannibalism

is a means of population control.

Gurtin and Levine ([98], [104]) point out that an analogy can be

drawn between cannibalism and other population mechanisms which

affect survival. In particular, they quote a reference [106] supporting

the idea that there is a tendency for populations to compensate for

increased mortality (due either to hunting or pollution) by a higher

rate of egg survival. Thus, decreasing the population P, will increase

the number of newborn which survive. This type of behaviour is also

accounted for by (6.5.1) and (6.5.12) so that the models of B can also

be applied to these situations.

According to Gurtin and Levine ([98], [104]) ecologists differ as to how

effective this compensation is for mortality due to pollution. They

discuss ([98, pp 158-160]) the recent proposal of building a power
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plant near the Hudson River in the D.S.A. The utilities argued that

the natural compensation mechanism of the fish (bass) population in

the river would prevent the power plant from seriously reducing the

bass numbers. Several counter- arguments have been given to this ;

the most notable being that mortality due to a power plant is harder

to compensate for than mortality due to fishing or predation, because

unlike fishermen and predators, power plants will not "go elsewhere"

if fish become scarce.

Death in such a population due to pollution is age-dependent since ap­

parently [99, p414 ], power plant pollution affects mostly the younger

ages. Once again the assumption (6.5.1) as well as those of (6.5.14)

and (6.5.15) can be a means of accounting for this, and as Levine [99]

proposes, modifications to the previous model could shed light on the,

efficacy of compensation as a means of population control.

Frauenthal [56] has also studied a "cannibalism upon newborn" model

of the form (6.5.3) but chooses f(B, P) to be the linear function

f(B, P) = f(P) = J.Lo + T P, J.Lo, T > 0,

and replaces (6.5.1) by

p(0, t) = max {B - 1 : ~B' o} ;k > O.

As usual, the egg reproduction rate B(t) is given by

(6.5.17)

B(t) = 10
00

.B(a)p(a, t)da;
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Frauenthal works under the assumption that all unhatched eggs are

the victims of cannibalism, and that there are alternative food sources

available for the adults, but these are not explicitly included in the

model. Hence, the number of eggs eaten depends upon the product

of the number of eggs and the number of adults, but with a satiation

factor included, to account for the fact that in times when the amount

of eggs produced is large, the amount consumed by the adults can

only increase up until their customary appetite is satiated. Thus the

number of cannibalized eggs is

B(t)P(t)
B(t) - p(o,t) = 1 + kB(t) , k > 0,

which explains the choice of (6.5.17).

(6.5.18)

Strictly speaking, there should be one more multiplicative constant

on the right hand side of (6.5.18); without loss of generality it can be

absorbed into the parametrization, and PandB can then be scaled by

the same constant.

Under these changes (6.5.3) becomes

P = - [JLo +rP]P +max{B-1:~B'0}

(6.5.19)

B - - [JLo+ er+ rP ]B + f30A

{
. BP }A - - [JLo+ er + rP ]A + max B - ,0 .

-- . 1 + kB

254



(Frauenthal notes that this maximum function is inconvenient to treat

analytically. When equations are solved analytically, the non-zero

term in the maximum function is used and then checked a posteriori

for suitability. In numerical simulations the maximum function is

employed because it presents no computational difficulties.)

A13 this set of equations does not yield easily to analysis, Frauenthal

proceeds to suppress certain features by setting some parameters to

zero: , .

Firstly setting r =0, k =°gives a model excluding carrying capacity

and appetite satiation terms. By means of linearized stability analy­

sis, it is not difficult to show that under the condition f30 > (JLo + a)2,

all solutions approach the unique positive equilibrium

(P.,B.,A*) = [1_(JLo+a)2] (1, JLof3o , JLo ).
f30 (JLo + a)2 JLo + a

Setting r = 0, k > 0, that is suppressing only the carrying capac- .

ity term, Frauenthal applies a numerical technique to illustrate the

existence of a Hopf bifurcation. In particular, for the choice JLo =
0,015, a = 1,0, k = 1,5, and treating f30 as a bifurcation parameter,

numerical experimentation confirms that somewhere on the interval

2,83 < f30 < 2,85, the local properties of the equilibrium point switch

from stable to unstable as f30 is increased. Indeed, a Hopf bifurcation

into a stable limit cycle is found to occur at f30 = 2,8368.

Frauenthal applies this analysis to a specific situation: A crab popula-
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tion (the Northern California Dungeness crab - references concerning

it are listed in [56]), is known to practice cannibalism of its young.

This species is harvested regularly by removing adult males and ev­

ersince this exploitation, large amplitude, periodic oscillations in the

number of adult crabs have been observed.

As pointed out in [56], one expects the effect of harvesting the male

crabs to be a reduction in the value of the fertility as measured by /30,

since fewer males would make it difficult for females to find mating

partners.

However, the model just mentioned predicts that an increase rather

than a decrease in /30 leads to the onset of stable cyclic behaviour

and as such, does not appear to present an explanation for these

observations.

However in concluding [56], Frauenthal studies the full model (6.5.19).

By means of numerical methods it is shown that for fixed J.Lo, T, ex

and k, the model manifests a shift from a stable point to a stable

limit cycle as /30 decreases from 5,0 to about 4,8. Taking /30 = 4,9,

it is shown in [561 that the only stable, positive equilibrium point is

nonoscillatory so that the population approaches and then remains at

this equilibrium point. A computer generated trace of this situation

is shown in figure 6.5.1, reproduced from [56, p 96].
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Fig 6.5.1

Computer simulation of the model (6.5.19) with both carrying capac­

ity and appetite satiation, for which P.o = 0,015, r = 0,07 a = 1,0,

k = 1,5 and Po = 4,9.
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Supposing that an external effect reduces /30 to 4,8, it is demonstrated

that the stable nonoscillatory equilibrium point vanishes and the sys­

tem shifts to exhibiting stable limit cycle behaviour about the only

remaining positive equilibrium position. This solution is illustrated

in figure 6.5.2, given in [56, p.97].
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Fig. 6.5.2

Computer simulation of model (6.5.19) with both carrying capacity

and appetite satiation, for which J.Lo = 0,015, r = 0,07, £x = 1,0, k =

1,5 and Po = 4,8 .
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The reasons for this catastrophic behaviour are detailed in the Frauen­

thal reference and will not be reproduced here. With reference to the

Dungeness crab population, Frauenthal has now proposed a mech­

anism explaining the onset of the regular cycles in the population

size.

6.6 Harvested age-dependent predator­

prey models

A natural extension of the theory of section (3.5) in which we ex­

amined harvested single species, age-dependent models, and that of

section (5.5) where harvested age-independent predator-prey systems

were dealt with, is to analyse harvested age-dependent predator-prey

models.

As usual, the simplest type of harvesting to consider is constant-yield

harvesting. For example, consider the age- indiscriminate predation

model (6.1.2-5), (6.2.1) into which a constant-yield strategy v(a), has

been included for the prey so that,

H = 10
00

v(a)da,

the total number of members harvested per time is constant. Suppose

further that the predators are removed at a constant rate, K.
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Thus (6.2.1) is replaced by

aPI aPI ( P. ) ( )- + - = - J.Lo + r 2 PI - v a ,aa at

and (6.1.5) becomes

(6.2.1)'

(6.1.5)'

It is readily verified that Gurtin and MacCamy's moment technique

still applies but that system (6.1.2), (6.1.3), (6.1.4), (6.1.5)', (6.2.1)'

now reduces to

PI = -J.LOPI - rPIP2 + B - H

iJ = -,B - rBP2+ f30A - f30l

A = -,A - r AP2 + B - J (6.6.1)

where

I _ f30 ~oo ae-QQv(a)da, and

Eigenvalue analysis will yield conditions on the parameters of the

model under which stable point behaviour is guaranteed. In particu­

lar, one can obtain information about the harvesting strategies that

will ensure stable coexistence of predator and prey. Also, by choosing

a parameter as a bifurcation parameter, analysis along the lines of

261



that applied in chapter 4, could give ranges of values of Hand K for

which Hopf bifurcation into stable limit cycles results.

Similar analysis could be applied to the other age-selective predation

models covered in this chapter.

Constant-effort harvested systems are not as amenable to analysis.

We could replace K in (6.1.5)' by KP2, but replacing v(a) in (6.2.1)'

by the usual substitute E(a, t)p(a, t), prevents the application of the

moment technique. If however we set E(a, t) =E(t), (which is the

approach used by Gurtin and Murphy in [50], in studying a har­

vested single- species M-F model), so that the assumption is made

that prey of all ages are harvested with equal intensity, then a system

of D.D.E.'s can be obtained. For example,the age-indiscriminate pre­

dation model under constant-effort harvesting becomes (6.6.1), with

each of H, I, J and K replaced by EH, El, EJ and K P2 respectively.

The inclusion of harvesting terms into predator-prey systems of the

type discussed in this chapter is mentioned here because no literature

seems to have appeared on this topic. With the material for these

unharvested systems providing the basis, such further work would not

be difficult, and might provide biologically valuable information for

certain harvested predator- prey systems.
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6.7 The use of M-F equations to de­

scribe the dynamics of both predator and
prey

Among the few works that have appeared on this topic is Auslander,

Oster, and Huffacker's [61] model of a general predator-prey system

in which the life cycle of the predator is divided into two parts - adults

and immature stages:

The M-F equation

(6.7.1)

is chosen to model the predator dynamics, where J.L2(a, t) is the preda­

tor mortality function.

The mortality function of the prey is taken to depend on the number

of adult predators, the-number of prey (thus including the likelihood

of self-limitation ), and on the number of prey at the age at which

they are subject to predation. The prey dynamics are thus described

by

(6.7.2)

where,

(6.7.3)
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is the total number of prey,

{eHpf = le Pl(a, t)da, (6.7.4)

with [E, E + 8] denoting the age interval during which prey are subject

to predation, is the number of prey attacked by predators and

{a+'7
P~ = la P2(a, t)da, (6.7.5)

is the number of adult predators. Here 0: and 0: + "t denote the

onset of adulthood (i.e. breeding age) and maximum life expectancy

respectively.

A realistic assumption for the birth rate of the predator is that it

depends on the number of adult predators, that is, those in the age

interval (0:,0: + "f), and on the food supply, that is, the number of

prey that can be consumed. Thus Auslander et al set

(6.7.6)

The birth rate of the prey is similarly defined as

(6.6.7)

where (rn,n) is the breeding age-interval for the prey.

The dependence of the maternity function at time t on Pf(t - r},

the number of prey r time units earlier, is a sensible choice since if
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for example, predation in the past removes a large number of prey,

there will be few adults in the present available for mating, and /31

will subsequently be reduced.

The above system constitutes the Auslander et al predator-prey model.

The next step is to choose functional forms for /31, J.Lb /32 and J.L2. Aus­

lander et al do this by fitting curves to experimental data collected

for a wasp-moth predator- prey system. Various simplications are

made and forms for the mortality and fecundity functions are pro­

posed. (Space does not permit this analysis to be repeated here but

J61, pp 372-376] provides the omitted details.) However, the model

remains far too complex to study analytically and must be examined

through computer simulation. The simulations of [61] indicate that

for many parameter choices the system exhibits a periodic solution

and Auslander et al conjecture that this arises as a result of a Hopf

bifurcation.

Feldman and Curry [1071 have developed a system of M-F equations

to represent the dynamics of a particular biological predator- prey

system involving a species of weevil as the predator and a cotton

plant (which they indicate as being an age-dependent system) as prey.

Their model is very detailed and the assumptions concerning the birth

rates, fecundity and death functions are far too lengthy to reproduce

here. An iterative numerical technique is applied to approximate the

solution and figure 6.7.1, given in [107, p3991 illustrates the agreement

between the theoretical and experimental data.
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Fig. 6 .1.1

Model comparisons with experimental data for a boll weevil-cotton

plant (Gossypium hirsutum) predator-prey system. Details of the

time scale and other parameters are available in [107].
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As for Nicholson's blowfly population mentioned in section (3.3.3),

this excellent agreement emphasises the point that when age-structure

is a relevant factor, and when the death, birth and fertility functions

are modelled accurately, an M-F system can closely model reality.

It would be naive to concentrate on the M-F/Kolmogorov models

alone as means of modelling real-world situations. The need for a

high degree of realism so that the effect of untried harvesting (and

other) strategies can be reasonably well predicted requires, in general,

the use of M-F equations to model the dynamics of both predator and

prey, and as such it becomes necessary to use and develop numerical

techniques of solution.
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Chapter 7

Conclusion

The emphasis throughout this study has been on investigating and

relating the properties of a number of simple, conceptual M-F models.

Complex M-F systems constructed to describe the dynamics of spe­

cific populations (although few in the current literature) have been

purposely avoided, as the numerical methods involved in parameter

estimation and solution of such systems could warrant a separate

treatment.

The assumptions involved in the models examined were not always

biologically plausible. Yet in concentrating on such analytic models,

the necessary groundwork has been laid and useful quantitative and

qualitative features of the M-F system have been established.

A number of uninvestigated topics worthwhile to further research have

been highlighted. As a final example, consider the generalized M-F

model that involves a logistic density dependent growth and density
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dependent death rate such that the usual M-F equation becomes

Bp Bp [p ]Ba + Bt =-J.L(a,t,p)p 1- k(t) ,

where k(t) represents a time-dependent carrying-capacity term. Brief

mention is made of this model in [108], where Witten points out that

numerical methods for equations of this type are sparse but that there

is good reason for having to deal with such equations, both from a

numerical as well as an analytic point of view.

This is by no means an exhaustive review of the current state of

information concerning the M-F model - the references provided can

be consulted for the directions of other developments. Nevertheless,

in making accessible an overview of the literature concerning the M-F

model, it is hoped that this study will provide incentive for further

work in the field of age-dependent population dynamics.

269



Appendix 2.1
Lopez [16, P 11] proves that B(t) is a continuous function by means

of the following inductive argument: In section 2.2 it is established

that

(00 t" 71" (a)
G(t) = it ,8(a)1p(a - t)a(a, t)da = it ,8(a)lp(a - t) 71" (a _ t) da,

accounts for the expected number of births from mothers in the initial

population while

B(t) = fat ,8(a)B(t - a)7I"(a)da,

accounts for the number of births to mothers who were born sometime

between the initial moment and time t. If the assumptions (i), (v)

and (ix) on 71",,8 and ip hold, then necessarily G(t) is continuous.

Denoting by BIc(t) the expected number of births coming from the

k-th generation of mothers, we have the recurrence relation

(G(t) = 0 for t > n since ,8(a) = 0 for a > n.)

If BIc(t) is continuous, then so is BIc+1(t). This, together with the

continuity of B I (t) = G(t), proves the continuity of BIc(t) for all k.

Now, the total number of births at time t, B(t), can be attributed

either to mothers from the first generation or to mothers from the
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second, and so on. In this way B(t) can be expressed as a sum

of a finite number of continuous functions and thus, will itself be

continuous.

An alternative proof is given in [17, pp 249-2501.
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Appendix 2.2
The proof given here is along the lines of that presented by Langhaar

[11, pp 201-202].

Let ?T( a, T) denote the probability that an individual born at time

T survives to age a. Of the N individuals born at time T the

expected number that will survive to age a is N?T(a, T) and ac­

cordingly, the expected number that will survive to age a + da is

N?T(a, T) + N?Ta(a, T)da.

Hence, the expected number that will die in the age interval (a, a +
da) is -N?Ta(a,T)da. From our discussion of JL(a, t) in section 2.1 it

follows that JL(a, T + a)da is the proportion of individuals aged a at

time T + a that will die in the age interval (a, a + da). Among the

N individuals born at time T the expected number that will die in

(a, a + da) is the product of this proportion with N?T(a, T).

Thus,

-N?Ta(a,T)da = N?T(a, T)JL(a, T + a)da.

Integrating and noting that ?T(0, T) = 1 yields

?T(a, T) = exp {- loa JL(a, T + a)da}. (A.2.2.1)

Further, if an individual is of age a at time t and t > a such that

T = t - a, we have

?T(a, t - a) = exp {- loa JL(a, t - a + a)da} .
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Now consider those individuals of age a at time t, but where a ~ t.

At the initial time t = 0 (which we shall denote by time T' for the

moment) these were of age a - t and were born at time T = T' - a+t.

We shall denote by P(a - t, a, T) the probability that a randomly

chosen individual of age a - t who was born at time T will survive to

age a.

Since survival from birth to age a may be regarded as survival to age

a - t followed by survival from age a - t to age a, the theorem on the

probability of the simultaneous occurrence of two events yields

7r(a, T)
P(a - t, a, T) = ( )'7r a - t, T

Now substituting into (A.2.2.1) we have

Pta - t, a,T) = exp 1- fa" ~(a, T + an da da
exp - g.-t J.L( Cl, T + Cl) }

T can be replaced by T' - a+t, and since T' corresponds to the initial

time t = 0 we obtain

P(a - t, a, t - a) = exp {-l~t J.L(Cl, Cl + t - a)dCl}.

In (2.2.14) the substitution T = Cl + t - a has been made in the above

formula yielding

C7(a, t) = exp {- fat J.L(a - t + T, T)dT }.
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Appendix 3.1

Sanchez's [53] technique is outlined here without justification. The

reader is referred to [53,pp 363-367] for the omitted details.

To solve for Be(t) or Bu(t) will require finding or approximating the

roots of the characteristic equation

where

k(a) = k(a) = ,8(a) exp {-lG J.L(o:) do:} , 0 ~ a s c

and

k(a) = k(a).exp {- 0 [a T C] h}, a > c,

(in the case of Be(t) the last expression is multiplied by the factor

-6h)e .

If the relation 0 < I: k(a)da < 00 is satisfied then the character­

istic equation has a unique real root ru and all other roots occur

in complex conjugate pairs and satisfy Re(r) < ru. Furthermore

Bu(t) = Buexp(rut) + O[exp(rut) ] as t -+ 00 and similarly for Be(t)

with corresponding real root re. Sanchez quotes references that pro­

vide numerical methods for determining these roots.
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Appendix 4.1

The concept of Hopf bifurcation is referred to often throughout this

thesis. In [62, p 131] Marsden and McCracken give the following nec­

essary and sufficient conditions for Hopf bifurcation of an equilibrium

of a coupled system of (n+2) G.D.E.'s for some value 0'0 of a pa~am­

eter 0' of the system: All roots of the (n + 2)th degree characteristic

equation of the linearized part of the system must have negative real

parts in 0' < O; there must be a complex conjugate pair of roots,

such that for some value 0'0 of 0', }.1(0'0) = 0, }.2(0'0) -=1= 0, and

~(O'o) > o. The remaining roots must have negative real parts at

0' = 0'0. Under these conditions the equilibrium bifurcates at 0' = 0'0

to a periodic solution of the system with period near ,i:l .
Thus, the very nature of the solutions change at 0' = 0'0 - they "bifur­

cate" from stable paths leading back to the origin into paths leading

away from it and (possibly) into stable limit cycles around it, so that

a new kind of dynamic "equilibrium" is obtained.

Marsden and McCracken proceed to derive an algorithm which indi­

cates whether the resulting periodic orbits are stable. As the analysis

involved is complicated, we outline the algorithm without justifica­

tion. It is perhaps sufficient to note that the existence of stable limit

cycles depends on the nature of a Lyapunov stability function V. (We
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will restrict attention to the case n = 0 although the algorithm is not

limited to two dimensional systems of differential equations.)

We shall represent the system of differential equations by

x - f(x,y)

y - g(x,y)

Let z", and y. represent the equilibrium points,

Now introduce the new dependent variables

Y - y - v',

into system (1) so that it becomes

.
X - F(X,Y)

Y - G(X, Y),

having an equilibrium point at (0,0).

(1)

(2)

Evaluate the characteristic equation of the matrix A corresponding

to the linearised form of (2). Suppose that this equation has roots

which, for values of a parameter a of the system satisfy the previous

"root criteria" , Le.
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Now introduce new co-ordinates X,Y such that substitution into (2)

yields the new system

X - F(X,Y)

Y = C(X,Y),

for which at a = ao, the linear part is

X - 1'\21Y
Y - -1'\2IX.

(3)

(Marsden and McCracken describe this step as finding vectors el and

e2 so that Ael = -e2 and Ae2 = el. A procedure for finding el

and e2 is to find a and ex, the complex eigenvectors, and then take

el = a + ex, e2 = i(a - ex).)

The next step is to evaluate

where

iJ3F iJ3F a3c »c
- aX3 + aXaY2 + aX2ay + aY3

W2
a2F a2F »c »c a2F a2F- --- + aY2 exer --- +aX2 aXay aY2 aXay

»c »c a2F a2F a2F »c
+aX2aXay - aY2 aY2 + ex- ex»

where all these terms are evaluated at (0,0).
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If V(o) < 0 the periodic orbits are stable.

If V(o) > 0 the periodic orbits are unstable.

IfV(0) = 0 the test yields no information.
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Appendix 5.1

The fundamental equations are given by

(1)

where a is the chosen bifurcation parameter.

We assume the existence of an equilibrium point (Pi, pn where

In the usual way, the transformation X = PI - Pi, Y = P2 - P;

is made so that (1) becomes

X = (X + P;)F(X + P{, Y + P2·,a)

(2)

Y (Y+P;)G(X+P{,Y+P;,a).

The linearised form of this system is then

(3)

where

F BF ( . • )
I = BP

I
PI,P2,a,
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The eigenvalues of this system are given by

A = ~ (P{FI + P;G2)±~ [(P{ FI + p;G2)2 - 4P{P; (G2FI - GI F2) ]t .
2 2

(4)

One can verify from (ii) and (iv) of the Kolmogorov conditions

that

and

so that,

(5)

Also from Kolmogorov's condition (iv) we have that G I > o.

It is immediately clear that if F I ~ 0 then Re A < 0 and we

have a stable solution that tends to (P;, P;) by the Poincare­

Bendixson Theorem.,

If however F I > 0 and if FIP; + G2P; < 0 then the above result

also follows.

If FIP; + G2P2- > 0 then Re A > 0, and the system is unstable.

Thus, Hopf bifurcation can take place if

Then
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(where (5) indicates that the roots of (4) are imaginary).

In order to apply the Marsden and McKracken algorithm (see .

Appendix 4.1 ) we need a transformation:

so that (3) becomes

the suitable form for the algorithm to apply.

Routine calculation confirms that

Yi - (-i G2X1 + Y1 + Pf) F+ (~; G2X1 + ~~;) G

Xl = (Xl + p:~J G.

The next step is to evaluate V'(O) as given in Appendix 4.l.

However, in doing so one obtains a lengthy expression involv-

ing second and third derivatives of F and G about which the

Kolmogorov theorem.yields no information.
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Appendix 5.2

Notice that when B = 0, V · as defined on p. 163 is given by

where

H = 2p;2L2 - 5P1•
2LP + (2P;2 _ gP; _ g2) p 2

G = -2gL2+ (P; + g)) LP + P 2g.

Swart and Duffy [78] have shown that if B is large enough then

V· < 0 and hence ·V(o) < o. Thus if we can show that ~~. is

strictly increasing or decreasing, and that V· < 0 for B = 0, the

desired result that V(0) is always negative, will follow.

Firstly, note that when B = 0, G < 0 and H < 0 will ensure

V· < o.

It is straightforward to verify that G can be rewritten as

The expression

J bg(Pt + g) [2L - b(Pt + g) ]

bg(Pt + g) [2a - 3bPt - bg]

is posi tive since a - bg - 2bP; > 0 is assumed to hold and hence

imp lies that

2a - 3bPt - bg > o.
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We will now show that if

a-bg-6bP;>0, (0:)
and Pt > g, (,8)

then

and~ < 0, all of which guarantee the desired result.

The expression 1= L(LP; - b(P; + g)2) is equivalently

From (5.3.12) it follows that

When P; = 0,
Wh P • cJen I = b'

Moreover,

I < 0, (1)
1=0. (2)

Now, if (0:) and (,8) hold then

(a - bg)2 > 6bPt(a - bPt).

Hence if>. > 0, so that (1) and (2) imply that
I

a
I < °for °< PI· < - .- b
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Hence (ex) and (,8) imply that J > 0, I < 0 and hence G < o.

It is simple to verify that H can be rewritten as

H = 2P{2Lb(P{ + g) - p{2LP - gP2(P{ + g) - 2P{P(bg + bP;).

Let k denote the sum of the first two terms of H. Then k can

be expressed as

k = p{2L(3bg + 4bP{ - a).

If (ex) and (,8) hold,

then a - bg - 4bP; - 2bP; > 0
Le. a - bg - 4bP; - 2bg > 0
i.e, a - 3bg - 4bP{ > o.

Hence k < 0 and thus H < o.

Finally, ~~. = cP{LH -P;(P; +g)P3
} , which under conditions

(ex) and (,8) is negative since H is negative.

All these results confirm that V· < 0 and hence 'V(o) < 0 for all

parameter choices satisfying conditons (ex) and (,8).
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