Masters Degrees (Grassland and Rangeland Science)
Permanent URI for this collectionhttps://hdl.handle.net/10413/7562
Browse
Browsing Masters Degrees (Grassland and Rangeland Science) by Author "Everson, Theresa Mary."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Evaluation of improved Brachiaria grasses in low rainfall and aluminium toxicity prone areas of Rwanda.(2010) Mutimura, Mupenzi.; Everson, Theresa Mary.Abstract available in the print copy.Item Grazing management in the communal rangelands of the Upper Thukela, Kwazulu-Natal.(2005) Tau, Mahlodi Solly.; Everson, Theresa Mary.The grazing management project in the Okhombe ward of the Amazizi Tribal Authority formed part of the National Department of Agriculture's LandCare program to address communal natural resource management issues. Okhombe land is communal whereby every member of the community is the legal owner of the rangeland with individual ownership of stock with the chieftaincy playing a major role in land allocation. In order to avoid critics of the past and address the top-down approach of the past interventions, a participatory approach was conducted in the planning and implementation of the grazing system. The service providers held a series of visioning workshops with the community in an effort to better understand community resource use patterns, needs, constraints and opportunities as part of the participatory approach. Issues identified by the community were the need for fencing grazing camps, animal health improvement, subdivision of rangeland and crop fields and the development of a rotational grazing system. The main aims of this study were to develop a participatory grazing plan with the community, develop and support institutional structures governing range management, and build capacity of the community in range management. The effect of the current grazing system on species composition was determined. In addition to these, the project investigated the potential different fodder trees has on alleviating feed and nutritional deficit, particularly during the dry winter months of the Upper Thukela. Among the main achievements of this study was the development and strengthening of local institutional structures and effective liaison by all structures with the Inkosi and the tribal council. The community developed a rotational grazing plan, marked the camp boundaries, produced digital maps and successfully built fence boundaries (approximately 20 kms of fencing) to divide their land. The fence boundaries separated the crop fields and rangeland, closed ward boundaries in the upland to prevent access by cattle from neighbouring wards, and divided the land into three camps. Six crush pens were constructed in each subward of the Okhombe ward. A communal herders fund opened and fence construction improved crop yields due to a decrease in crop damage by cattle. Okhombe ward, located in the Highland Sourveld region of KwaZulu-Natal, experiences feed and nutrition deficits to ruminants during winter. The prevailing species composition in Okhombe was investigated as part of the grazing plan. The veld condition of the sites ranged from poor (40.7%) in the bottomland to an averaged of 47.0% in upland sites. The most distinctive feature of the rangeland in this area was the loss of highly palatable Decreaser grass species (P <0.05), such as Themeda triandra in the bottom slopes « 1300 m) when compared to the upland (> 1800 m). The proportional abundance of Decreaser species accounted for an averaged of 1.02% of the bottomland and an averaged of 11.5% of the upland compared to the values of 49% in the benchmark (grassland in optimal condition). The composition of the less palatable Increaser Il species was very high at all elevations (1200 m -80.7%, 1400 m - 75.8% and 1700 m - 55.7%) when compared to the low benchmark composition of 19%. The dominant grasses of the bottom slopes were Increaser Il species, such as Eragrostis curvula, Eragrostis plana and Sporobolus africanus and unpalatable Increaser III species such as Aristida junciformis. A significant difference (P < 0.05) in the composition of Decreaser, Increaser I and Increaser Il species was found between the bottom and slopes compared to the upland region. However, the grass cover formed by these tufted species was generally high, making it more resistant to physical degradation. The bottom slope ranged from reasonable to excellent cover (16.9%), the middle slope ranged from reasonable (15.9%) to a good cover of 18.1%, averaging 16.7% and a range of 16.1% to 17.9% for the upland plateau. In the agroforestry trial the potential of different fodder species for supplementing fodder was examined. Leucaena leucocephala had the potential of being a suitable fodder tree species for use in alley cropping (P < 0.05) compared to Morus alba and Acacia karroo. Results from the partially intercropped treatments showed that L. leucocephala yield (665 kg ha-I) varied significantly (P < 0.05) from the A. karroo (378 kg ha-I) and M alba yield (345 kg ha-I). Treatments that were fully intercropped varied, but no significant difference (P > 0.05) were recorded. Morus alba produced the least yield of 345 kg ha-I, A. karroo yielded 378 kg ha-1 and 1. leucocephala recorded the high of 664 kg ha-I. Results from the second season showed similar trend in that 1. leucocephala yielded a significant (P < 0.05) fodder production of 1715 kg ha-I in comparison to M. alba (1101 kg ha-I) and A karroo (1140 kg ha-I). M alba yielded the least dry matter production (P < 0.05) but had high potential (P < 0.05) for addressing lack of firewood in rural areas. Morus alba yielded high fuel wood production from both two seasons. There were no significant differences in fuel wood yield (P > 0.05) from the partially intercropped M alba (507.9 kg ha-I) and 1. leucocephala (455.0 kg ha-I) but the yield from both species varied significantly from the A. karroo yield (103.kg ha-I). With regard to fully intercropped plots, fuel wood yield from all tree species varied significantly, A karroo resulting in low yield (63 kg ha-I), 1. leucocephala recorded 243 kg ha-l and M alba the highest yield of 444 kg ha-I. In the second season, M. alba yielded an averaged fuel wood production of 728 kg ha-l and a low of 439 kg ha-I from 1. leucocephala. Acacia karroo, a slow growing indigenous tree, might be preferred by farmers due to its less branches resulting in minimal light competition with crops. Leucaena leucocephala tend to grow slowly in its initial establishment stage, but once roots become well established, it grows fast and produces high quantity of fodder. The effect all fodder trees had on crop yield was not negative during the trial period and further research on long term effects of alley cropping is recommended. The conclusions drawn here were based on tree growth and their likely impact in alley cropping. Leucaena leucocephala was also recommended as a preferred species for rural ruminants based on the forage quality study. The results showed high content of crude protein (19.27%), low NDF content (50.38%) and very low tannin content (1.19%) from 1. leucocephala compared to A. karroo with a high tannin content of 5.69%. Acacia karroo had a crude protein content of 13.60%, NDF percentages of 44.16 and 34.64% of ADF content. Morus alba also had a recommended chemical composition of 11.71% of CP, 42.86% of NDF, 36.96% of ADF and a low tannin content of 0.65%. L. leucocephala foliage proven is readily degradable under different diet ranging within 24 hrs of intake (P < 0.001) compared to other feeds. L. leucocephala had high dry matter loss degraded from the rumen under Eragrostis hay diet with poor nutrients to high protein concentrates diet. Under the Eragrostis hay diet for instance, L. leucocephala tend to degrade rapidly with values of dry matter loss ranging from 32.2% to 39% at 4 hrs to 16 hrs, when compared to low dry mater loss of 26% at 4 hrs to 31.33% at 16 hrs. Feeds such as M alba tend to degrade slowly within 24 hrs of intake and rapidly degrades after the stated period. The ep content of maize stover was very low ranging from 1.60% in maize stalks to 2.63% in maize leaves. The fibre content in maize stover was very high when compared to lower values in fodder samples. The NDF content ranged from 77.92% in maize leaves to 81.60% in maize stalks. Maize leaves when compared to a combination of maize leaves and maize stalks sole tend to degrade better within 24 hrs of intake. This was due to low (P < 0.05) degradability rate of maize stalks compared to a combination of maize stalks and leave and leaves sole and least NDF content in maize leaves might have attributed to these results. Due to poor chemical compositions of these roughage samples, the study recommended the establishment of fodder banks and agroforestry systems to curb the nutrients deficit during winter. In conclusion therefore, this study highlight that the sustainability of rural systems to manage communal grazing land should be further explored. Most of the challenging issues in communal range management are social in nature rather than technical concepts. These include ways of improving social contributions from cattle to the community while maintaining cultural values of the use of cattle. The interventions in communal range management by service providers should understand the institutional arrangements within a community and an attempt to strengthen such existing structures is recommended. Further interventions by service providers in Okhombe ward should bring in the planning discussions, experts from social sciences, to deal with understanding of community dynamics. Complexities in communal range management involve dealing with non-stock owners within project boundaries. Communities from neighbouring wards should not be ignored and ways of improving communications and updating project details to them should be formulated. Shortage of land and closing of ward boundaries to prevent access to land by neighbouring wards is among community complexities to be explored. Communities in rural lands do share land and in most cases boundaries are known but invisible by an outsider to identify. It is important to strengthen and maintain every success in communal lands as that may form core of the project. Successes on grazing management by locals is far from being the improvement in veld but there are rather various factors to the successes of grazing projects in rural areas. Examples of successes based on Okhombe project are reduction in stock theft, improved in relationship between community and locals institutions, a reduction in stock mortalities during winter and improved animal health. Veld improvement is among successes but there are accomplishments phases to fulfil before focusing on improvement of species composition.Item Re-vegetation dynamics of land cleared of Acacia mearnsii (black wattle)(2005) Glaum, Melanie Jane.; Zacharias, Peter John Kenneth.; Granger, James Edmund.; Everson, Theresa Mary.; Smith, M.The overall aim of the study was to investigate re-vegetation of disturbed sites, using nursery grown plugs (from seedling trays) of Themeda triandra, Heteropogon contortus and Hyparrhenia dregeana in order to reach practical management guidelines for re-vegetation using indigenous grass plugs. A number of field trials were set up at Kamberg Nature Reserve (29°24'S, 29°40'E) on a site that was clear felled of A. mearnsii in October 1997. The trials were established in January 1998 and January 1999. A total of approximately 52 ,000 nursery raised plugs of T. triandra, H. contortus and H. dregeana were planted into an area of approximately 7,000 m2 . In the planting density trial , plugs of H. dregeana only and a combination of T. triandra/H. contortus were planted at 15 cm and 30 cm spacings. The T. triandra/H. contortus combination at 30 spacing showed the greatest survival and lateral plant growth (tiller number and basal area) and this combination is thus recommended. In the over-sowing trials, the H. dregeana and T. triandra/H. contortus combination at both 15 cm and 30 cm spacing were over-sown with E. curvula. The survival and lateral growth of the T. triandra/ H. contortus combination at 30 cm was again greater than the other treatments. Over-sowing with E. curvula suppressed the survival and lateral growth of the planted plugs across all treatments compared to not over-sowing. The over-sown conditions showed a significant decrease in the diversity of the plots, both in the number of species present and the Shannon diversity index. An area that had been cleared of A. mearnsii and sown to E. curvula 25 years previously was shown to have a lower number of species than the neighbouring veld. Nursery raised plugs of T. triandra were planted into the mature E. curvula in an attempt to improve the biodiversity of these areas. To re-introduce T. triandra into these E. curvula swards the plugs must be planted into the centre of a gap rather than around the base of an E. curvula plant. For improved survival of the plugs the E. curvula tufts must be clipped, while for best lateral growth the E. curvula tufts must be sprayed with a glyphosate herbicide three months prior to planting and clipping. However, the added expense of spraying and clipping is not warranted as the clipped treatments also showed good growth. Transplant shock is common when planting nursery raised plugs out into the field, as there is a relatively small root volume in the plug compared to the above ground leaf biomass. Alleviation of moisture stress at planting using a starch based polymer with high water holding capacity (Terrasorb®) and a white, needle punched geo-fabric (Agrilen®) to provide a seven day period of artificial shade after planting did not show significant improvements over the control with regards to survival or plant growth. Thus these methods of moisture amelioration are not recommended in revegetation through planting of plugs at this study site. A trial was established to investigate the biomass production of six different treatments to determine their potential to support a fire. The total biomass for the plots which were over-sown by E. tef and planted to only H. dregeana were on average sufficient for a fire, but there was a discontinuous fuel load across these plots, especially in the replications that had very low survival rates and thus these plots could not be burnt. The control and herbicide sprayed plots also showed sufficient fuel load for a fire, but this fuel load was made up of A. mearnsii saplings and bramble with very little grass cover and thus a fire would not have burnt through these plots either. The T. triandra/H. contortus combination did not produce sufficient fuel load, due to poor survival. Thus only the plots over-sown with E. curvula were able to burn in this trial and as a burning trial per se the trial was abandoned. Seed bearing hay (thatch) was collected in early summer (December 1997) and late summer (April 1998). Both times of year of harvesting proved to be successful in terms of grass cover, although the early harvested thatch had a greater number of species per plot. The Shannon diversity indexes of the two treatments were not significantly different. The multi-response permutation procedure technique confirmed that there was a compositional difference between the treatments. By the end of the trial Harpochloa falx and T. triandra and H. dregeana were indicators for the early and the late harvested thatch respectively. Comparing the thatching trial and the planting density trial indicated that the T. triandra/H. contortus combination at 30 cm spacing would be recommended to maximize biodiversity. The summer months have been shown to be the best time to plant the plugs, although the actual success will be dependant on the conditions within a particular year. The plugs should not be kept in the nursery for longer than three months and larger plugs (96 seedlings per tray) should be used. Nursery raised plugs of T. triandra and H. contortus were planted in an equal mix in an area that was cleared of A. mearnsii in 1996. By June 1998 661 H. contortus seedlings and 14 T. triandra seedlings had germinated naturally. The November 1998 population consisted of 418 H. contortus seedlings and 18 T. triandra seedlings. By May 2000 the June 1998 population showed a survival of 78.4% and the November 1998 population showed a survival of 91 .1 %. In the various trials, the ability of the nursery raised plugs used for re-vegetation to suppress the regrowth of A. mearnsii was investigated by determining the number of A. mearnsii seedlings per metre squared. The plant spacing and species of plugs used did not have a significant effect on the number of A. mearnsii seedlings per metre squared. Over-sowing with E. curvula did, however, significantly suppress the wattle re-growth. In the thatching trial the early harvested plots showed lower numbers of A. mearnsii per metre squared than the late harvest plots, as they were covered with a thick layer of thatch soon after the A. mearnsii was cleared which suppressed the A. mearnsii re-growth. Although E. curvula is able to produce a high biomass and suppress the A. meansii seedlings, it has a detrimental effect on the biodiversity of the area. Therefore, in conservation areas, where biodiversity is of great importance the planted plugs (at 30 cm spacing) or seed bearing hay must be used in preference to sowing E. curvula , although it must be remembered that greater follow up control is likely to be needed with planted plugs or seed bearing hay. The area must be planted or thatched as soon as possible after clear felling to provide competition for the A. mearnsii seedlings.