Doctoral Degrees (Ecology)
Permanent URI for this collectionhttps://hdl.handle.net/10413/7487
Browse
Browsing Doctoral Degrees (Ecology) by Author "Bitani, Nasiphi."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Effects of landscape and forest structural characteristics on the avian communities in Southern Mistbelt Forests, Midlands of KwaZulu-Natal, South Africa.(2023) Bitani, Nasiphi.; Downs, Colleen Thelma.; Ehlers Smith, David Alan.; Ehlers Smith, Yvette Cathrine.Globally forest ecosystems are under threat from land-use changes threatening biodiversity. Biodiversity conservation in forest systems has become a major concern as these impacts affect ecosystem functioning. Habitat destruction results in highly fragmented forest patches with reduced habitat quality. Therefore, it is essential to assess species' responses to these changes for conservation. Like other parts of the world, South African forests are threatened by destruction, mainly habitat conversion to exotic commercial tree plantations. Forest bird species within this system have been reported to be declining. Considering these impacts, it is important to understand the main drivers at different spatial scales. This study aimed to assess local and landscape drivers of avian communities in the Southern Mistbelt Forests in the Midlands of KwaZulu-Natal, South Africa. The objectives were to assess (1) the local scale drivers and influences on bird species richness, use and functional diversity, (2) microhabitat requirements and occupancy of understorey forest specialist bird species using camera traps, and (3) landscape attributes influencing bird species richness, habitat use and functional groups. Firstly, the influence of forest structure and composition on bird species richness, habitat use and functional diversity in 14 selected Southern Mistbelt Forest patches of KwaZulu-Natal were assessed. The bird species were surveyed using point count surveys. Functional diversity for each surveyed patch was quantified using three indices: functional richness, functional evenness and functional divergence. Species-specific responses were assessed by focusing on three forest specialists, orange ground-thrush Geokichla gurneyi, forest canary Crithagra scotops, and Cape parrot Poicephalus robustus. Bird community and forest bird specialists' responses to forest structure and tree species diversity varied. Forest structural complexity, canopy cover, and tree species richness were the main structural characteristics influencing bird functional diversity. Also, forest composition and structure are important for bird species and functional richness. Secondly, the microhabitat requirements of forest specialist bird species using camera surveys in the selected 14 Southern Mistbelt Forests were assessed. The results showed that the microhabitat requirements of the understorey forest specialist species are specific. Occupancy models showed that forest specialist understorey birds are mainly influenced by tree species richness, understorey cover of leaf litter and water. Lastly, the bird species richness, habitat use and functional groups’responses to selective logging history, livestock grazing and adjacent matrix type were assessed. The bird communities were surveyed using point-counts. Functional diversity was quantified using functional richness, functional divergence and functional evenness estimated using bird functional traits. The disturbance did not affect bird species richness. Forest specialists' responses to disturbance were species-specific depending on the type of disturbance and intensity. The orange ground-thrush and forest canary were affected by livestock grazing, while the Cape parrot was influenced by forest logging history. Functional richness for all functional groups was high in disturbed forests, while functional evenness for forest specialists and insectivores was low in disturbed sites. The results of this study provide insight into the local and landscape drivers of avian species richness and diversity. Forest patches with high tree species diversity and structural complexity should be maintained to conserve forest specialists, bird species richness and functional richness. Also, to maintain the persistence of the understorey forest specialists, forest structures within 5 m of the forest floor should be maintained. It is recommended to use functional diversity indices with taxonomic indices to understand bird species responses to disturbance better.