Doctoral Degrees (Computer Science)
Permanent URI for this collectionhttps://hdl.handle.net/10413/7113
Browse
Browsing Doctoral Degrees (Computer Science) by Author "Fonou-Dombeu, Jean Vincent."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Forest image classification based on deep learning and ontologies.(2024) Kwenda, Clopas.; Gwetu, Mandlenkosi Victor.; Fonou-Dombeu, Jean Vincent.Forests contribute abundantly to nature’s natural resources and they significantly contribute to a wide range of environmental, socio-cultural, and economic benefits. Classifications of forest vegetation offer a practical method for categorising information about patterns of forest vegetation. This information is required to successfully plan for land use, map landscapes, and preserve natural habitats. Remote sensing technology has provided high spatio-temporal resolution images with many spectral bands that make conducting research in forestry easy. In that regard, artificial intelligence technologies assess forest damage. The field of remote sensing research is constantly adapting to leverage newly developed computational algorithms and increased computing power. Both the theory and the practice of remote sensing have significantly changed as a result of recent technological advancements, such as the creation of new sensors and improvements in data accessibility. Data-driven methods, including supervised classifiers (such as Random Forests) and deep learning classifiers, are gaining much importance in processing big earth observation data due to their accuracy in creating observable images. Though deep learning models produce satisfactory results, researchers find it difficult to understand how they make predictions because they are regarded as black-box in nature, owing to their complicated network structures. However, when inductive inference from data learning is taken into consideration, data-driven methods are less efficient in working with symbolic information. In data-driven techniques, the specialized knowledge that environmental scientists use to evaluate images obtained through remote sensing is typically disregarded. This limitation presents a significant obstacle for end users of Earth Observation applications who are accustomed to working with symbolic information, such as ecologists, agronomists, and other related professionals. This study advocates for the incorporation of ontologies in forest image classification owing to their ability in representing domain expert knowledge. The future of remote sensing science should be supported by knowledge representation techniques such as ontologies. The study presents a methodological framework that integrates deep learning techniques and ontologies with the aim of enhancing domain expert confidence as well as increasing the accuracy of forest image classification. In addressing this challenge, this study followed the following systematic steps (i) A critical review of existing methods for forest image classification (ii) A critical analysis of appropriate methods for forest image classification (iii) Development of the state-of-the-art model for forest image segmentation (iv) Design of a hybrid model of deep learning and machine learning model for forest image classification (v) A state-of-the-art ontological framework for forest image classification. The ontological framework was flexible to capture the expression of the domain expert knowledge. The ontological state-of-the-art model performed well as it achieved a classification accuracy of 96%, with a Root Mean Square Error of 0.532. The model can also be used in the fruit industry and supermarkets to classify fruits into their respective categories. It can also be potentially used to classify trees with respect to their species. As a way of enhancing confidence in deep learning models by domain experts, the study recommended the adoption of explainable artificial intelligence (XAI) methods because they unpack the process by which deep learning models reach their decision. The study also recommended the adoption of high-resolution networks (HRNets) as an alternative to traditional deep learning models, because they can convert low-resolution representation to high-resolution and have efficient block structures developed according to new standards and they are excellent at being used for feature extraction.