Pure Mathematics
Permanent URI for this communityhttps://hdl.handle.net/10413/6770
Browse
Browsing Pure Mathematics by Author "Basheer, Ayoub Basheer Mohammed."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Clifford-Fischer theory applied to certain groups associated with symplectic, unitary and Thompson groups.(2012) Basheer, Ayoub Basheer Mohammed.; Moori, Jamshid.The character table of a finite group is a very powerful tool to study the groups and to prove many results. Any finite group is either simple or has a normal subgroup and hence will be of extension type. The classification of finite simple groups, more recent work in group theory, has been completed in 1985. Researchers turned to look at the maximal subgroups and automorphism groups of simple groups. The character tables of all the maximal subgroups of the sporadic simple groups are known, except for some maximal subgroups of the Monster M and the Baby Monster B. There are several well-developed methods for calculating the character tables of group extensions and in particular when the kernel of the extension is an elementary abelian group. Character tables of finite groups can be constructed using various theoretical and computational techniques. In this thesis we study the method developed by Bernd Fischer and known nowadays as the theory of Clifford-Fischer matrices. This method derives its fundamentals from the Clifford theory. Let G = N·G, where N C G and G/N = G, be a group extension. For each conjugacy class [gi]G, we construct a non-singular square matrix Fi, called a Fischer matrix. Once we have all the Fischer matrices together with the character tables (ordinary or projective) and fusions of the inertia factor groups into G, the character table of G is then can be constructed easily. In this thesis we apply the coset analysis technique (this is a method to find the conjugacy classes of group extensions) together with theory of Clifford-Fischer matrices to calculate the ordinary character tables of seven groups of extensions type, in which four are non-split and three are split extensions. These groups are of the forms: 21+8 + ·A9, 37:Sp(6, 2), 26·Sp(6, 2), 25·GL(5, 2), 210:(U5(2):2), 21+6 − :((31+2:8):2) and 22n·Sp(2n, 2) and 28·Sp(8, 2). In addition we give some general results on the non-split group 22n·Sp(2n, 2).