Browsing by Author "Hunter, Alistair Malcolm Scott."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item A review of the fluvial geomorphology monitoring of the receiving streams of the Mooi-Mgeni [River] Transfer Scheme Phase 1.(2009) Hunter, Alistair Malcolm Scott.; Kotze, Donovan Charles.; Dent, Mark Clifford.; Archer, Lynette Deborah.The Mgeni River is the major water resource for the eThekwini Metropolitan and Msunduzi Municipalities. At the end of 2002, the Mooi-Mgeni Transfer Scheme Phase 1, which transfers water from the Mooi River into the Mgeni catchment to augment the water supply to this region, was completed. The interbasin transfer of water resulted in the loss of habitat, erosion of the stream channel and transformation of the riparian zone in the receiving streams. Stream regulation resulting in an altered flow regime is considered the greatest threat to a riverine environment. An Environmental Management Plan (EMP), incorporating fluvial geomorphological monitoring procedures, was implemented to monitor the impact of the transfer on the receiving streams, the Mpofana and Lions Rivers, and to determine the rate and magnitude of erosion. A comparison of the geomorphological monitoring procedure of the EMP with best practice geomorphological monitoring derived from a review of the national and international stream geomorphological literature was conducted in this study. In addition, the implementation of the EMP geomorphological monitoring procedures was described and onsite observations of physical impacts on the receiving streams were completed. The geomorphological monitoring of the EMP included the use of erosion pins, survey of stream cross-sections and fixed-point photography. Photographs and data were collected from February 2003 to June 2006. The comparison of these monitoring methods against stream assessment best practices revealed the strengths and weaknesses of the geomorphological monitoring implemented in the receiving streams. Several key weaknesses were revealed. Firstly, an inadequate number of stream cross sections was included in the monitoring procedures. Secondly, although the erosion pins indicated some general trends in the erosion of the stream channel, they did not give a true impression of the rate and magnitude of change in slope and channel width of the stream, and the location of the erosion pins sites did not take into account the actual direction of flow during transfer as erosion pin sites were selected during low flow conditions. In addition, it was difficult to determine whether the erosion pins had been lost due to erosion or to turbulence. The results were difficult to assess and did not show whether the erosion was localised at the pins or the section of bank or stream profile. Thirdly, analysis of platform changes in the stream channel (e.g. through a comparison of aerial photograph sets) was lacking and no attempt was made to integrate the results from the different methods. Overall, the study concluded that the geomorphological monitoring of the EMP was limited, and it did not highlight the rate and magnitude of erosion in the receiving streams. Based on the findings of this study, recommendations are provided for geomorphological monitoring of the receiving streams of the Mooi Mgeni Transfer Scheme.