Browsing by Author "Li, Hui."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection.(American society for Microbiology., 2007-03-22) Moore, Penelope L.; Decker, Julie M.; Bibollet-Ruche, F.; Li, Hui.; Leseka, N.; Gray, Elin Solomonovna.; Choge, Isaac Ang'Ang'A.; Abdool Karim, Salim Safurdeen.; Treurnicht, Florette K.; Mlisana, Koleka Patience.; Shaw, George M.; Williamson, Carolyn.; Morris, Lynn.The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.Item Vertical T cell immunodominance and epitope entropy determine HIV-1 escape.(American Society for Clinical Investigation., 2012) Liu, Michael K. P.; Hawkins, Natalie.; Ritchie, Adam J.; Ganusov, Vitaly.; Whale, Victoria.; Brackenridge, Simon.; Li, Hui.; Pavlicek, Jeffrey W.; Cai, Fangping.; Abrahams, Melissa-Rose.; Treurnicht, Florette K.; Hraber, Peter.; Riou, Catherine.; Gray, Clive M.; Ferrari, Guido.; Tanner, Rachel.; Ping, Li-Hua.; Anderson, Jeffrey A.; Swanstrom, Ronald.; Cohen, Myron S.; Abdool Karim, Salim Safurdeen.; Haynes, Barton F.; Borrow, Persephone.; Perelson, Alan S.; Shaw, George M.; Hahn, Beatrice H.; Williamson, Carolyn.; Korber, Bette T. M.; Gao, Feng.; Self, Steven G.; McMichael, Andrew.; Goonetilleke, Nilu.HIV-1 accumulates mutations in and around reactive epitopes to escape recognition and killing by CD8+ T cells. Measurements of HIV-1 time to escape should therefore provide information on which parameters are most important for T cell–mediated in vivo control of HIV-1. Primary HIV-1–specific T cell responses were fully mapped in 17 individuals, and the time to virus escape, which ranged from days to years, was measured for each epitope. While higher magnitude of an individual T cell response was associated with more rapid escape, the most significant T cell measure was its relative immunodominance measured in acute infection. This identified subject-level or “vertical” immunodominance as the primary determinant of in vivo CD8+ T cell pressure in HIV-1 infection. Conversely, escape was slowed significantly by lower population variability, or entropy, of the epitope targeted. Immunodominance and epitope entropy combined to explain half of all the variability in time to escape. These data explain how CD8+ T cells can exert significant and sustained HIV-1 pressure even when escape is very slow and that within an individual, the impacts of other T cell factors on HIV-1 escape should be considered in the context of immunodominance.