Browsing by Author "Madikizela, Balungile."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Ethnobotanical study of plants from Pondoland used against diarrhoea.(2012) Madikizela, Balungile.; Van Staden, Johannes.; Finnie, Jeffrey Franklin.Diarrhoea and related diseases are the most common causes of death in children, especially from developing countries, killing about 1.5 million children under the age of five yearly. In South Africa, diarrhoea is the third leading cause of death. This condition results from food and water sources infected with Campylobacter spp., Escherichia coli, Salmonella spp., Shigella spp., Giardia intestinalis and Cryptospondium parvum amongst others. Diarrhoea spreads through faeces-contaminated water. Hence, infection is more common when there is a short supply of clean drinking and cooking water. Waterborne diseases are common in rural communities of Bizana because the majority of rural dwellers depend largely on water from unprotected sources. Most of the pathogens that cause diarrhoea have developed resistance to several antibiotics. Therefore there is a need for new and safe antidiarrhoeal drugs. Most people in developing countries use traditional medicine to treat all kinds of diseases including diarrhoea and South Africa is no exception. Each cultural group in South Africa has different medical solutions for the prevention and curing of the same disease. The people from Pondoland (AmaMpondo), around Bizana have a strong tradition of using medicinal plants for the cure and prevention of several conditions including diarrhoea. Although several researchers have conducted different types of studies in many parts of South Africa to evaluate the efficacy of traditional medicine used in the treatment of diarrhoea, there is, however, still a lot of undisclosed data that should be collected. The aims of this research were to record and collect medicinal plants that are used for treating diarrhoea in Bizana, Pondoland in the Eastern Cape and evaluate them for their pharmacological properties. An ethnobotanical approach is one of several methods that have been useful in selecting plants for pharmacological research, yielding better results than other plant selection methods. Using questionnaires, this approach was used to record plants that are used for treating diarrhoea in Bizana for testing in pharmacological assays. From the completed questionnaires, nine plants were selected for bioassays based on their higher frequency index, and the fact that the plants have never been evaluated against diarrhoea causing-microorganisms. The study revealed 34 plant species belonging to 21 families as being used in treatment of diarrhoea in the study area. Psidium guajava was the most mentioned plant species. The dried, ground plant materials were each extracted non-sequentially using petroleum ether (PE), dichloromethane (DCM), 70% ethanol (EtOH) and water. Among all the extracts, 70% ethanol yielded the highest quantity of crude extract. The extracts were each evaluated for their antibacterial, anti-inflammatory and genotoxicity properties. For the antibacterial activity, the following diarrhoea causing microorganisms were used: Gram-positive Staphylococcus aureus and Gram-negative Campylobacter jejuni, E. coli and Shigella flexneri. A microdilution assay (for S. aureus, E. coli and S. flexneri) and the disk diffusion technique (for C. jejuni) were used for antibacterial testing. The extracts were also evaluated for their ability to inhibit cyclooxygenase (COX-1 and -2) enzymes. Genotoxicity was evaluated using the Salmonella microsome assay without S9 metabolic activation. Three strains of Salmonella typhimurium TA98, TA1535 and TA1537 were used. The evaluated plant extracts showed a broad spectrum of inhibitory activity with MIC values ranging from 0.098-12.5 mg/ml and mean zone inhibition percentage ranging from 0-73%. The best activity was exhibited by DCM extracts of Rapanea melanophloeos, EtOH extracts of Ficus craterostoma and Maesa lanceolata with MIC values of 0.098 mg/ml and EtOH extracts of Searsia chirindensis with 73% mean zone inhibition percentage. The inhibitory activity against COX-1 enzyme was higher than COX-2, with 19 plant extracts for the former and 7 for the latter. The highest inhibition of COX-1 was shown by EtOH extracts of F. craterostoma and the DCM extract of S. chirindensis at 100%. Highest percentage COX-2 inhibition was shown by water extracts of F. craterostoma and DCM extracts of Tecoma capensis with 99.5% and 99.0% respectively. None of the tested plant extracts were mutagenic, at all concentrations tested against all tester strains of the bacteria. The results of this study demonstrate that people still have a rich and diverse pool of knowledge concerning the uses of plants against diarrhoea. The data also show that plants form part of the cultural heritage of the communities in Pondoland. Therefore it is important to urgently save the people’s cultural heritage by recording the existing knowledge and confirming therapeutic uses of plants through scientific methods. This will prevent the information from vanishing together with the ageing knowledge holders. In light of the fact that the evaluated plants were selected based on their ethnobotanical use for treating diarrhoea, the activities reported here goes a long way in adding value to the plants used as part of traditional medicine.Item Pharmacological evaluation of South African medicinal plants used for treating tuberculosis and related symptoms.(2014) Madikizela, Balungile.; Van Staden, Johannes.; Finnie, Jeffrey Franklin.Respiratory ailments are major human killers, especially in developing countries including South Africa. Tuberculosis is one of the most prevalent infectious respiratory tract disease posing a major threat to human healthcare worldwide. This disease is a highly contagious airborne bacterial disease that usually infects the lungs and sometimes other body parts. Tuberculosis spreads easily in overcrowded conditions from one person with an active respiratory disease to another via droplets that are emitted when they sneeze or cough. Approximately two million deaths that occur worldwide per annum are caused by tuberculosis and about 285,000 cases occur in South Africa. This is the seventh highest total number in the world. The emergence of drug-resistant tuberculosis and other pathogenic diseases over the past decades makes this disease a serious threat to human health worldwide. Emerging drug-resistant tuberculosis strains and the long duration of treatment has established an urgent need to search for new effective agents. According to a 2012 report by the World Health Organisation (WHO), South Africa, China, India and Russia are the countries with the highest prevalence of multi drug-resistant (MDR) tuberculosis. Most researchers in South Africa have focused on evaluating the antimycobacterial activity of medicinal plants against bacterial strains that cause tuberculosis, but there has not been sufficient focus on the related ailments. Therefore, one of the aims of the present study was the evaluation of the antimicrobial properties of the selected medicinal plants against Mycobacterium species and other bacterial strains related to respiratory infection. The floral diversity of South Africa has a potential for yielding new bioactive compounds, therefore pharmacological screening of plant extracts from this region is important. The aim of this study was the pharmacological evaluation of plants that are used traditionally in South Africa to treat tuberculosis and related symptoms against microorganisms that cause respiratory ailments, and the identification of compounds from antimicrobial active plant extracts. Ten plants: Abrus precatorius subsp. africanus (leaves and seeds), Asparagus africanus (leaves), Asparagus falcatus (leaves), Brunsvigia grandiflora (bulb), Ficus sur (bark and roots), Indigofera arrecta (leaves and roots), Leonotis intermedia (leaves and stem), Pentanisia prunelloides (leaves and roots), Polygala fruticosa (whole plant), and Terminalia phanerophlebia (leaves, roots and twigs) were selected based on a survey of available literature of medicinal plants used in South Africa for the treatment of tuberculosis and related symptoms. Ground plant material from different plant parts of the 10 plants were extracted sequentially with four solvents: petroleum ether (PE), dichloromethane (DCM), 80% ethanol (EtOH) as well as water, and a total of 68 extracts were produced. The plant extracts of the selected plants were evaluated for antibacterial activity against four microorganisms (Klebsiella pneumoniae, Staphylococcus aureus, Mycobacterium aurum A+ and Mycobacterium tuberculosis H37Ra) associated with respiratory infections using the microdilution assay. Cyclooxygenase-2 (COX-2) enzyme was used to evaluate the anti-inflammatory activity of the extracts. The Ames test and mitochondrial reduction (MTT) assays were used to establish toxicity of the extracts that showed noteworthy antimicrobial activity against the tested bacterial strains (Klebsiella pneumoniae, Staphylococcus aureus, Mycobacterium aurum A+ and Mycobacterium tuberculosis H37Ra). The extracts were tested for genotoxicity against Salmonella typhimurium (TA98 and TA100 strains) and cytotoxicity using monkey kidney Vero cells. Based on good antimicrobial activity observed, compounds were isolated from Terminalia phanerophlebia (leaves). Crude extracts obtained from 80% methanol (MeOH) of Terminalia phanerophlebia were successively extracted with hexane, DCM, ethyl acetate (EtOAc) and n-butanol. The fractions and isolated compounds obtained were tested for their antibacterial activity against Mycobacterium aurum A+, Mycobacterium tuberculosis H37Ra, Staphylococcus aureus and Klebsiella pneumoniae. Structure elucidation was carried out using NMR (1D and 2D) spectroscopic methods. This investigation revealed the pharmacological potential of the 10 plants used in South Africa for traditional treatment of tuberculosis and related symptoms: Abrus precatorius subsp. africanus (leaves and seeds), Asparagus africanus (leaves), Asparagus falcatus (leaves), Brunsvigia grandiflora (bulb), Ficus sur (bark and roots), Indigofera arrecta (leaves and roots), Leonotis intermedia (leaves and stem), Pentanisia prunelloides (leaves and roots), Polygala fruticosa (whole plant), and Terminalia phanerophlebia (leaves, roots and twigs). The minimum inhibitory concentration (MIC) values of the tested plant extracts ranged from 0.098 to 12.5 mg/ml. Out of 68 extracts tested from different plant parts of the 10 plant species, 18 showed good antimicrobial activity against at least one or more of the microbial strains tested with MIC values ranging from 0.098 to 0.78 mg/ml. For anti-inflammatory results, only three extracts showed high inhibition (˃ 70%) of the COX-2 enzyme. In the Ames test using Salmonella typhimurium (TA98 and TA100 tester strains), all the extracts tested were non-genotoxic. However, in the MTT assay nine extracts demonstrated cytotoxicity. Bioguided fractionation of the EtOAc fraction of Terminalia phanerophlebia (leaves) afforded two bioactive compounds: methyl gallate (methyl-3,4,5-trihydroxybenzoate) (1) and a phenylpropanoid glucoside; 1,6-di-O-coumaroyl glucopyranoside (2). These compounds are reported from Terminalia phanerophlebia for the first time. Both compounds showed good antimicrobial activity against all bacterial strains tested with MIC values ranging from 0.063 to 0.25 mg/ml. Inhibition of Mycobacterium tuberculosis by 1,6-di-O-coumaroyl glucopyranoside (2) at a MIC value of 0.063 mg/ml was noteworthy, as this bacterial strain is reported to be the leading cause of tuberculosis worldwide. The good antimicrobial property of Abrus precatorius subsps. africanus, Asparagus africanus, Asparagus falcatus, Terminalia phanerophlebia, Indigofera arrecta, Ficus sur, Leonotis intermedia and Pentanisia prunelloides partially authenticate their traditional use in the treatment of respiratory diseases. However, these plants must be used with caution as some of their extracts showed cytotoxicity against Vero cells. The results observed in this study indicate that Abrus precatorius subsp. africanus, Asparagus africanus, Asparagus falcatus, Ficus sur, Pentanisia prunelloides and Terminalia phanerophlebia could be investigated further against drug-resistant tuberculosis strains. Good antimicrobial activity exhibited by the compounds isolated from Terminalia phanerophlebia (leaves) authenticate the traditional use of this plant in treating tuberculosis and its related symptoms. Compound (2), 1,6-di-O-coumaroyl glucopyranoside showed noteworthy activity against a Mycobacterium tuberculosis strain H37Ra (0.063 mg/ml), therefore this compound could potentially serve as a lead in tuberculosis drug discovery.