Browsing by Author "Mirza, Abdul R."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Optimizing quantum communication through hybrid technology.(2012) Mirza, Abdul R.; Petruccione, Francesco.Quantum Key Distribution (QKD) is a symmetric key sharing protocol. The theoretical process exploits the principles of quantum physics to underpin a physical security against any form of eavesdropping. QKD not only ensures an information theoretically secure key exchange but also provides an active real-time means of intrusion detection at a physical level. QKD is therefore considered the encryption technology for the next generation of nano-technology powered ICT solutions. The fundamental science at the basis of QKD has been researched and developed into workable solutions with the current focus on the engineering of quantum technology enabled products. The feasibility of integrating QKD systems into conventional communication solutions remains an active field of research. The implementation of QKD across a conventional communication network requires high levels of resources in terms of the network’s reliability, transparency, delay and bandwidth. This limits the maintainable Quality of Service of the network. Investigations towards overcoming these constraints will promote the uptake of QKD as a mainstream technology. There are two classes of technology that focus on the integration of QKD into conventional architecture. The first, and most immediate, development is the adaptation of conventional systems to handle the additional requirements of quantum technology enabled products. In the case of communication networks, all-optical solutions provide the ideal platform for this expansion. This ensures that the quantum data carriers remain in the quantum regime and are manipulated by only the authenticated end users or trusted nodes. The second, quantum technology enabled products, render techniques to manipulate quantum information in an untrusted environment within the network. This involves the development of quantum memories, repeaters and data collision control. The combination of both these classes as a hybrid solution will ensure an optimal Quality of Service for quantum communication networks. The long-term reasearch into quantum networking solutions is presented as the QuantumCity project. The project investigated the long-term stability of a quantum communication network within a live environment. The network is implemented through the adaptation of conventional switched networks. It has provided positive results with various future opportunities available to expand this initiative. The successful operation of the overall solution is of course dependent of the efficiency of the QKD systems themselves. While the European Telecommunication Standards Institute (ETSI) currently drives the standardisation (ETSI ISG-QKD) of QKD, there is a need for the development of supporting technologies. This thesis aims to understand the current gaps in QKD systems and touch on various technologies that will be essential towards the development of a hybrid QKD solution. This will allow the integration of various established QKD technologies in order to optimally utilise conventional communications networks. The technologies focused on include true random number generators, polarisation-encoded QKD in fibre systems and polarisation tracking in free space units. A study and implementation of each technology is presented in this thesis.Item Towards practical quantum cryptography.(2009) Mirza, Abdul R.The information society that presides today is dependent on the communication industry to facilitate unintelligible data transfers between authenticated parties. Such requirements have, to date, taken advantage of security based on the mathematical complexities of certain algorithms. However, the advancement of computing power and the advent of the quantum computer together with the vulnerability of this scheme to mathematical progress have prompted the introduction of quantum cryptography. This process, through the laws of quantum physics, ensures provably secure data communication. Quantum cryptography provides physical protection to individual bits of information thus providing a hardware implemented solution. The implementation of this theoretical concept requires much practical innovation for transparent deployment into current cryptographic solutions. This thesis introduces the concept of quantum cryptography in a practical perspective. It raises a few core concerns with the present quantum cryptographic technology and provides some solutions towards the practical deployment of commercially feasible quantum cryptographic systems. The thesis commences with an introduction to classical cryptography focussing on key management protocols. This is followed by the presentation of the basic concepts of Quantum Key Distribution (QKD) together with an explanation of some QKD protocols and parameter required to classify such protocols. Chapter 2 discusses the theoretical and practical aspects of quantum channels in particular optical fibre. The primary challenges of transferring classical and quantum data along these channels are mentioned together with some solutions. A description of experimental usage with present QKD solutions is presented in Chapter 3. An investigation into highly efficient QKD protocols follows illustrating effective post-distribution processing for increasing the efficiency of the BB84 protocol. Chapter 4 begins with the limitations of present day QKD systems and explicates Quantum Networks as a possible solution. An introduction to classical networking theory is first presented after which some quantum network architectures based on passive optical networks are illustrated. Finally the proposed Quantum City project in conjunction with the eThekwini Municipality is explained. The realization of this project is intended to be complete by the third quarter of 2008 effectively making Durban into the first Quantum City in the world.